Mastering

Cloud-Native
Microservices

Designing and implementing Cloud-Native Microservices
for Next-Gen Apps

Chetan Walia

Mastering
Cloud-Native
Microservices

Designing and implementing Cloud-Native
Microservices for Next-Gen Apps

Chetan Walia

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-699

www.bpbonline.com

11}

Dedicated to

My mother, who inspired me to pursue my dreams and
always supported me at every step of the life. Her
love and guidance continue to inspire me. I dedicate
this book to her, as a gratitude for her unwavering belief in

my potential. Her memory will forever be cherished.

iv

About the Author

Chetan Walia is a senior techno-functional leader and Technology Advisor with
over 24 years of experience in Cloud Computing, Digital Transformation, and IT
Modernization. He has a proven track record of delivering successful business
outcomes through technology innovation, with expertise in Cloud Computing,
Digital Transformation, Application Modernization, Telecom Domain, and
Financial Planning.

Chetan is an expert in Delivery Management, pre-sales, and client engagement. He
has successfully delivered complex Cloud Migration and Digital Transformation
programs worth over USD 100 million, and his client portfolio includes Microsoft,
AT&T, Amazon Web Services, and more. He is a sought-after speaker, thought
leader, and author, with a reputation for grasping the big picture and developing
solutions that achieve results.

Chetan has led pre-sales, scoping, and solution-framing sessions and formulated
and implemented design principles to strengthen cybersecurity. He has extensive
experience in Cloud consulting to build Vision, Strategy, Architecture, and
Roadmap.

Chetan's delivery experience includes driving Enterprise Cloud Transformation at
Scale, devising and facilitating the biggest Azure Cloud Migration, and establishing
Managed Services engagement. He has managed accounts for leading companies
in North America, Latin America, and the Asia Pacific regions.

In his personal life, Chetan is a passionate traveler who enjoys exploring the far
corners of the world. He is an accomplished photographer with self-published
coffee table books based on his own expeditions. He is also passionate about
mountains and has experience in high-altitude trekking and mountain-biking.

About the Reviewer

Karthikeyan Shanmugam is an experienced Solutions Architect professional
with about 22+ years of experience in the design & development of enterprise
applications across industry domains. Currently he is working as Senior Solutions
Architect at Amazon Web Services where he helps customers build scalable, secure,
resilient and cost-efficient architectures on AWS. Prior to that, he has worked in
companies like Ramco Systems, Infosys, Cognizant and HCL Technologies.

He is author of Kubernetes book ' IoT Edge computing with MicroK8s' published
with Packt. His specializations include cloud, cloud-native, containers and
container orchestration tools such as Kubernetes, IoT, digital twin and microservices
domains and has obtained multiple certifications from various cloud providers.

He is also contributing author in leading journals such as InfoQ, ContainerJournal,
DevOps.com, TheNewStack & Cloud Native Computing Foundation (CNCFE.io)
blog.

His articles on emerging technologies (includes Cloud, Docker, Kubernetes,
Microservices, Cloud-native development, etc.) can be read on his blog upnxtblog.
com.

vi

Acknowledgement

I would like to express my heartfelt gratitude to the following individuals who
have played a significant role in the creation of this book.

First and foremost, I want to thank my father, Sh. Sarabjit Walia, for his firm belief
in thinking big and pushing me to reach for the stars. His visionary mindset has
been a constant source of inspiration.

I would like to take this opportunity to express my heartfelt gratitude to my sister,
Dr. Jyoti, and her husband, Sangram Singh Sandhu. They are avid readers and
have extensive collections of books that inspired me to write a book and become
part of their book collection.

I am deeply thankful to my brother, Amit Walia, and his wife, Manmeet, for their
firm support, encouragement, and motivation at every step of this endeavour.
Their belief in my abilities and their constant presence has been invaluable.

Lastly, I would also like to express my appreciation and love to my nephew,
Sanmay Walia, a vibrant and energetic four-year-old, whose infectious enthusiasm
and boundless energy have kept me motivated. His presence has brought joy and
light into my life.

To all those mentioned above and to those who have been there for me, I am truly
grateful. Thank you all from the bottom of my heart.

vii

Preface

Microservice architecture is at the heart of cloud-native application architecture,
and it has become a crucial tool for companies deploying cloud-based applications.
Microservices-based cloud applications are becoming increasingly popular, and
enterprises are looking for experienced architects, and DevOps experts who can
build, run and develop them. In this book, you will learn how to break down
a monolith, create microservices, overcome challenges, and strategize for cloud
adoption. 'Mastering Cloud-Native Microservices' is a guide to help you
understand design and implementation steps using industry best practices and
design patterns. In a practical case study approach, we will review challenges and
solutions faced while identifying and implementing Cloud-native Microservices
design patterns.

In this book, readers will learn how to break down a monolithic application
into smaller, independent microservices, which can be developed and deployed
separately. One of the key benefits of microservices-based cloud applications is
that they are designed to take advantage of the elasticity, resiliency, and flexibility
of the cloud. The book explores how microservices-based cloud applications can
achieve these goals, and provides readers with a comprehensive understanding of
the cloud-native concept.

The book is written in an example-driven approach, which makes it easier for
readers to understand complex concepts. The book includes case studies that
demonstrate how microservices-based cloud applications can be used in real-
world scenarios, and provides readers with practical guidance on how to develop
and deploy these types of applications.

Key Features:

Comprehensive Coverage: The book covers a wide range of topics related to
cloud-native microservices adoption, including modern application design
principles, microservice adoption frameworks, design patterns for microservices,
cloud-powered microservices, inter-service communication, event-driven data
management, the serverless approach, security by design, and cloud migration.

Case study-based approach: The book uses case studies to provide real-world
examples of microservices implementation and best practices. This approach helps
readers understand how to apply the concepts to their own projects.

viii

Practitioner View: The book provides a practitioner's perspective on cloud-
native microservices adoption, making it useful for solution architects, solution
experts, pre-sales, and techno-functional roles. It helps readers to understand the
challenges and benefits of adopting cloud-native microservices, and how to apply
these principles in real-world scenarios.

This preface provides an overview of the chapters you will explore throughout this
book, offering a glimpse into the valuable knowledge and insights you will gain.

Chapter 1: Cloud-Native Microservices- In this chapter, we delve into the world
of cloud-native microservices, discussing their adoption in modern application
architecture. We explore key principles, challenges, and the adoption framework
for cloud-native microservices. Five industry success stories demonstrate the
transformative power of cloud-native microservices.

Chapter 2: Modern Application Design Principles- The Chapter focuses on
the design principles necessary for building resilient, scalable, and performant
modern applications. We delve into the Twelve-Factor App methodology and
explore design principles for availability, observability, security, and more.

Chapter 3: Microservice Adoption Framework- This chapter provides a structured
approach to adopting microservices, covering strategies for breaking down
monolithic applications, designing microservices, and building resilient systems.
We explore enabling technologies such as Docker and Kubernetes, emphasizing
the importance of technology adoption and DevOps processes.

Chapter 4: Design Patterns for Microservices- This chapter delves into essential
design patterns for microservices, including integration, database management,
observability, and cross-cutting concerns. By understanding and implementing
these patterns effectively, you can build scalable and maintainable microservices
that meet modern application architecture requirements.

Chapter 5: Cloud-Powered Microservices- In this chapter, we explore the
powerful combination of microservices and cloud services. We discuss key design
patterns that enhance the capabilities of cloud-powered microservices, such as
data management, design and implementation, messaging, and reliability.

Chapter 6: Monolith to Microservices Case Study- The Chapter takes a deep
dive into the practical aspects of transitioning from a monolithic architecture to
microservices. It explores the challenges faced by legacy systems and provides

ix

effective strategies for updating them. The chapter also covers successful database
migration and showecases case studies of practitioners who have implemented
microservices.

Chapter 7: Inter-Service Communication- In this chapter, the core concepts
are of inter-service communication in microservices architecture. It covers
different communication models, including synchronous and asynchronous
communication, event-driven communication, and service mesh. The chapter
highlights the importance of effective communication patterns for building
complex microservices architectures.

Chapter 8: Event-Driven Data Management- The Chapter provides an in-depth
discussion of event-driven data management for microservices. It explores
technologies like event sourcing and CQRS, event-based data replication,
validation, integration, access control, and lineage. The chapter explains how
event-driven architectures enable communication between decoupled services
and how events can be used to implement business transactions.

Chapter9: The Serverless Approach- The Chapter explores the serverless approach
to microservices development. It covers serverless architecture, frameworks,
function-as-a-service platforms, edge computing, monitoring and logging,
security, and best practices for serverless microservices development. The chapter
showcases case studies of successful serverless microservices implementations.

Chapter 10: Cloud Microservices - Security by Design - The Chapter focuses on
building secure microservices through a security-by-design approach. It covers
practices for authentication, communication, and data security, container security,
monitoring, compliance, infrastructure security, threat detection, and continuous
security monitoring. The chapter addresses common security concerns and
provides guidance on ensuring the confidentiality, integrity, and availability of
microservices-based architectures.

Chapter 11: Cloud Migration Strategy- The Chapter serves as a comprehensive
guide to the cloud migration journey. It covers the goals, principles, strategy,
and lifecycle stages of cloud migration. The chapter provides an overview of the
assessment, planning, design, execution, testing, cutover, and post-cutover stages,
highlighting best practices for a successful migration.

I hope that this book will serve as a valuable resource, equipping readers with the
knowledge and practical guidance needed to adopt and implement microservices
successfully. Each chapter aims to provide in-depth insights, real-world examples,
and best practices to ensure a comprehensive understanding of microservices
architecture and its related concepts.

Let's embark on this exciting journey into the world of microservices and discover
the immense potential it holds for modern application development.

xi

Coloured Images

Please follow the link to download the
Coloured Images of the book:

https://rebrand.ly/bqagctl

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
E

ey
Elu

J

xiii

Table of Contents

1. Cloud-Native MiCrOSeIVICeS......cecerurrrerrrrrererererereeesesesesssesessssssssssssssssssssssssssssesasesens 1
INtrOAUCHON ...t 1
SEIUCHUTE ... e 2
ODbJECHIVES ...ttt 3
Understanding the cloud native microServices.............cccoeccueicunicunccunccunnane 3
Adopting cloud-native miCroservicescccocovereiiiiininiiiiciiniiiicccens 4
Capability maturity level modelcccooeiiiiiniiiiiiiiiccs 7

Focus area: people, process and knowledge to achieve

End-to-end accountabilitlycccoovviiiiniiiiiiciiiiiiciccccce s 9

Focus area: technology and design maturity for enabling

Ze10-t0UCH OPETALIONS ...ttt 10
Play book for cloud-native microservices adoption...........ccccvvueuiciiininnnns 12
Key principles of MiCroservices............cooviiviiiiiiiiiiiinininiicicinneccees 15
Short case study 01: Snap on AWSccccociiiviiiiiniiiiicece e 18

What can we learn from this example?.............cccocovvveciiciiiinnncniiieeenne, 18
Short case study 02: Wynk MUSiC APpc.ccucuiucuieiniiciniiciniciceinciecieceeenes 19

What can we learn from this example?..............ccccovvvvvvviveecnnesiieiiinnn, 19
The biggest challenges with microservices adoption..........c.ceeeceuevreiucuennacs 20
Short Case Study 03: UPWARD, INC. ..cootiuiiriiiieiriiciciiccieiiceneeeieieneaes 21

What can we learn from this example?.............cccccovvveiiiiiiiinncniiiiiisicnn, 22
Short Case Study 04: The Government of India Powers a
Population-Scale Vaccine Drive ... 23

What can we learn from this example?.............ccccovvveiiiiiiiinciiiiicicene, 23
SWOT analysis for your application stack...........c.ccceceeveieiiiiininiiiiiiiicne, 24

Short case study 05: IMDDb Video Team Builds Strategies for the Future....26
What can we learn from this example?..............ccccooevvvvcvccnnnesiiieiiinnn, 26

CONCIUSION ettt ettt ettt et e e et e s e e e e e seeareeeseaseesesaseessesseeessnseeseseeeean 28

xiv

2. Modern Application Design Principles........cnirenriesencesniennnscessescsnnaene 29
INErOAUCHON ..ot 29
SEUCEUTE ... 30
ODbJECHIVES ..o 31
Modern application design requirements............c.cccccevviriiiiiiinnniiciniininns 31

AVAIADIITEY oo 32
SCALADITIEY oot 33
Performanceccocvivicuciiiiiiiciciciiiiccicc 34
ObBSCTVADILIEYvveviieicc s 34
SCCUTTEY vttt 35
RESTIIETICY ..ot 36
COSt OPEIMIZALION. .. 37
Portability, being cloud-agn0oStiC...........cccovvcviiiiiiiisiciiiiiicieeccs 38
ClOUA-TAFIVE ... 39
AIIMEL @ADL ...t e et e e eaeen 40
DevOps AeliVerycovovvvvivueuiiiiiiiiiiiiiiiiiciscccts 41
SUSEATRADIITEY ... 41
The Twelve-Factor App methodologyccooccuiueuiuciniicincicinincieccceenes 41
COC DASE.......oov 42
Dependenciescoucuvuvvueuiiiiiiiiiiciiiiiiicis e 43
CONFIQUIAHIONS ..ot 43
BACKING SETVICES ...t 44
BUTLA, TOLCASE, TUT coovevveeeeeeeeeeieeeeeeeeeeee ettt e et e s et e e s eeaesseveesseraeesnns 44
PFOCESSES ...t 46
Port Dindingcccovvvvviiiiiiiiiiiicicicctccecc 46
CONMCUTTEIICY et 47
DiSpOSADILILY ...t 48
DeU/PTOA PATTEY ..o 49
LOGGING vt 49
AN PFOCESSES ...vovvvviiiicveieicictcie et 50

Going beyond the twelve factors..........ccooccueuviicicininiciiiniicciccecceaes 50

X0

APTITSE oo 50
SCCUTTEY .t 51
CONCIUSION ...t 51
3. Microservice Adoption Framework..........enciinininnicninniinnninnnscessescsnnaens 53
INErOAUCHON ... 53
SEUCEUTE ... s 54
ODbJECHIVES ... 55
From monolith t0 MICrOSEIVICES.........cceuvuiueueiriicieiriecieireccieiece e 55
Breaking the monolith: Strategies for building a microservice design 57
Organizing data into bounded contexts or dOMAINSccccvvvevevevnieencnnne 58
Building resilient microservices: Techniques for handling
failure and fAultscoovvvvviiiiiiiiiii 60
Monitoring microservices: Best practices for testing and
AeDUQING MICTOSCTTICES ...t 61
Embracing continuous delivery with DevOpsccccvvevvvvieieecciiiieieicnne, 62
Enabling technologies for MiCroServices...........cccocvicueurinicueiniiereininecnennnaes 63
Docker and microservices: Use cases for containerizationc...c..c...... 63
Using Docker: Exploring the benefits of containerization..............cc.ccoeeeunee 65
Key components of DOCKETccccoouovviiiiiciiiiiiiiiiciccisicic 66
Container orchestration with Kubernetes.............ccccoccvvvvvivvccinininincnnn, 67

Advantages of using Kubernetes: Orchestration for scalability

ANd AVAILADIITEY ..o 67
Components of KUDETNELESccccciiiiviciciciiiiiiiiiciciiccicccc 68
Alternatives to container orchestration: Other t00ls............ccccovvvvvvcciniiinnnnns 70
Microservices adoption using Domain Driven Design...........ccccccocevvvnnnn. 71
Domain-driven application decomposition Steps..............cccoevvvvvvviiriennnnne. 71
Short case study 06: Insurance Claim Processingccoccceeeuecururcueurcunnnces 72
Using microservices correctly: Characteristics.........ccouvvvvvvivieicnciiniineinn, 75
Short case study 07: Modernizes Architecture Using Microservices 77

Learning from the above eXample..............ccoowevueurireensiniiiiiiiiiiiiiiciccccceieinn 78

xvi

Using microservices correctly: Characteristics.........ccouvvvvvvviicieciiiiiiniinn, 78
CONCIUSION ..o 81
4. Design Patterns for MiCroSeIvicesccuviirirriesunseisnisesnesisnssensnssessssesesnsseannes 83
INtrOdUCHON ... 83
SEUCHUTE ... 84
ODbJECHIVES ...t 85
Design patterns for miCroservices..........cocvviviiiriiiciiininicicneccees 86
Decomposttion patterml............ccoivvciiiiiiiiiiiiiicciceccec 87
Decompose by business capabilitlycccccovvvviviiieieieciiiiiiecccceeene, 87
AAVANEAGES ... 88
DiSAAVANEAGES ..o 88

Whent t0 USe thiS PALLETTLcucuvveiiireiiieieiciciecit e 88
Decompose by subdOmaincccevvviviiiicciiiiiiiiccccicicccc 89
AAVANEAGES ... 89
DiSAAVANEAGES ...t 90

WHhen t0 USe HHiS PALEETTLc.vvveveeeiiiiiieieiciiiieee s 90
Decompose by transactions..............cccccevivivincciiiiiiininiciiiiiseeccseeeee 90
AAVANEAGES ..o 90
DiSAAUVANEAGES ...t 91

When t0 use thiS PALEETTLc.cuuuiiciiiiiiiciciiicicicicic e 91
Decompose by service per team............cocovvvvieueieciiiiiieieicciiiiiseeccse e 91
AAVANEAGES ... 92
DiSAAVANEAGES ..o 92

Whent t0 USe thiS PALLETTLcucuvevviieiiiieieieiciect e 92
Bulkhead pattern for resiliency............cocovvvvvvciiiiiiininiciciiiiicecccscce i 93
AAVANEAGES ... 93
DiSAAVANEAGES ...t 94

WHhen t0 1Se HHIS PALEETTLcvvvveeiiiiiiieieicicieiee s 94

Sidecar pattern for Service Meshccovvvciiiiivivicciiiiiiieccice 94

AAVANEAGES ..o 95

DISAAUANIAGES ...t 95
Whert t0 USe thiS PALLETTLevveiieiiiieicicicicicict 96
Strangler pattern for [6Qacy SYSEEMIScccvcuiciiiiiiiniciiiiiiicccic 96
AQVANEAZES ..o 96
DiSAAVANEAGES ...t 97
When t0 use thiS PALEETTLcucuvvuiiiiciiiiiiiciciciciciicc e 97
Integration pattern..........ccoooooviiiiiiii 97
API gateway pattern for API management...............ccooevvvvvvviiinnnenenenennnn. 98
AAVANEAGES ... 98
DISAAVANIAGES ...ttt 99
When t0 USe thiS PALLETTLcuveiieiiciiicicicieiitc e 99
API aggqregator pattern for compoSsite SEYVICES..........covvvviiiiiieiiinciiiiiieia 99
AQVANEAGES ..o 100
DiSAAVANEAGES ...t s 100
When t0 1se thiS PALLETTLc.cucvvvviiiiiciciiiiiiiiiiicic s 100
Gateway offloading pattern for performancecccocvvvvvvvvcunnnicennnnn, 101
AAVANEAGES ... 101
DiSAAVANEAGES ... 102
When t0 USe this PALLETTLcvvevveieveieiciiiicicecccece s 102
Gateway routing pattern for traffic ShAPING........cccovvvvvvvviiivnciiiiiiene, 102
AAVANEAGES ... 103
DiSAAVANTAGES ...t 103
Wher t0 USe thiS PALLETTLcvvvvieiiieiciiciciciccccc s 103
Asynchronous messaging pattern for loose cOuUplingcoevvvvvvcurnnn. 103
AQVANEAGES ... 104
DiSAAVANEAGES ... 105
When t0 use thiS PALLETTLc.cuvuviiiiiiiiiiiiiiiiiicciccc s 105
Branch pattern for parallel processing.............cccocuveviecovvnvcecncicieiiienennn, 105
AAVANEAGES ..o 106
DiSAAVANEAGES ...t 106

When t0 USe this PALLETTLovvevvieieieiciiiciciecccee s 106

xviii

Chained microservices pattern for SeqUENCINGcccccvvvvvveviieinciiviiiiennnn. 106
AAVANEAGES ... 107
DiSAAVANEAGES ...t 108
WHhen t0 1Se HhiS PALEETTLc.oovvveveeiiiiiiieieiciiieeeee et 108

Database management pattern ..o 108

Command Query Responsibility Segregator (CQRS)

pattern for separation Of CONCEINS..........coovvvvvvivriiiiiiiiiieiciciiiicisieecsia 108
AAVANEAGES ... 109
DiSAAVANEAGES ...ttt 109
WHhen t0 1Se HhiS PALEETTLc.oovvvvueuiiiiiiieieiciiiseee et 110

Database per service pattern for decoupling............cccocevvvvvivivvcciinnnnnnnn. 110
AAVANEAGES ..o 111
DiSAAUVANEAGES ...t 111
When t0 use thiS PALEETTc.cvuvuiuiiciiiiiiciciiiccicicie s 111

Shared database per service pattern for CONSIStENCYcoovvvvvvvvviirreiiiiiiiinns 111
AAVANEAGES ... 112
DiSAAVANEAGES ... 112
Whent t0 USe thiS PALLETTLcvvvveieviieiciciciciitcccte s 112

Event sourcing pattern for auditing and reconciliationccccevevnnee. 112
AAVANEAGES ... 113
DiSAAVANEAGES ...t 114
WHhen t0 1Se HhiS PALEETTLc.oovvveveueiiiiiieieicicieeee e 114

Saga pattern for long-running transactions...........cccevecovvvvieveeccinnennnn. 114

Choreography saga PALEITccccovvveueuciiiiiiiiicicieiicicccc s 115
AAVANEAGES ...t 116
DiSAAVANEAGES ... 116
WHhHen t0 USe HHiS PALEETTLc.vvveveieiiiiieieiecicieeeeect e 116

Orchestration SAgA PALIEYILcovvvveveveviiiiiicicieieeeee e 116
AAVANEAGES ..o 117
DiSAAVANEAGES ...t 117

When t0 use thiS PALLETTLc.cucuviviiiiiciiiiiiiiiiccccc s 118

xXix

Observability patternccccooviiiiiiiii 118
Distributed tracing pattern for root-cause analysisccccccccvcvvvrieirnnen. 118
AAVANEAGES ..o 119
DiSAAUVANEAGES ...t 119
When t0 use thiS PALLETTLc.cucuviviiiiiiiiiiiiiiiiccicc s 119
Health check API pattern for self-healing..............ccccocovuevvvviviiiiiinniciniinns 119
AAVANEAGES ... 120
DiSAAVANEAGES ... 121
When t0 USe thiS PALLETTLcvvvveieiiieiciiiiciiecccee s 121
Log aggregation pattern for centralized [0gINGcccoovvvvvvvviviiiiiicicncnan, 121
AAVANEAGES ... 122
DiSAAVANEAGES ...t 122
WHhen t0 1Se tHhis PALEETTLc.oovvvvueueiiiiiiieieiciiieieee et 122
Application metrics pattern for performance monitoringc.ccceceeueuene. 123
AAVANEAGES ..o 123
DiSAAUVANEAGES ... 123
When t0 use thiS PALLETTLc.cucuvuviiiiiiiiiiiiiiicccc s 123
Audit logging pattern for COMpliance..............c.coevvevvvvienecccciiiieieieccn, 124
Exception tracking pattern for debugging..........ccccocovvvvvvvivivviincciceninnnn, 124
Monitoring Vs microservices observability............ccccvvvviviviicciiiiiiiincnenns 125
Cross-cutting concern pattern............cococeeeinieeciiinnncceec e 126
Blue-green deployment pattern for zero-downtime..............ccccoevvvvvvevnnnn. 126
AAVANEAGES ... 127
DiSAAVANEAGES ...t 127
WHhen t0 1Se HhiS PALEETTLc.oovvvvueuiiiiiiieieiciiiseee et 127
Canary pattern for incremental 10llOULS...........ccccovvvviviiiiiiiiiiciiiie, 127
AAVANEAGES ..o 127
DiSAAUVANEAGES ... 128
When t0 use thiS PALLETTLc.cucuviviiiiiiiiiiiiiiiiccicc s 129
Canary Vs blue-green deployment pattern for deployment strategies 129

Circuit breaker pattern for fault tolerance...............ccocovvvvivivvinnccncnnnnnnn. 129

XX

AQVANEAGES ...t 130
DiSAAVANEAGES ...t 131

When t0 use thiS PALLETTL ...t 131
External configuration pattern for dynamic configuration 131
Service discovery pattern for service registration and discovery 132
Client-side service diSCOVEIY PALLEYH........cccvvvvvriiiiiiiciciiiciciiccinicces 133
Server-Side diSCOVErY PALICINcocvvvieviiiiiiiiiiicicicc s 133

Service diSCOVErY MELNOASccvveveiiiiiiiiiiiiiciccc s 134
AAVANEAGES ... 134
DiISAAVANTAGES ...t 134

When t0 USe thiS PALLETTLcvvvvieiiieiciiiciciccccccc s 135
CONCIUSION ... 135
5. Cloud-Powered MiCIOSeIViCeS......ccouvururrrrererereresrsrssesereressssssesesssenssssssssesesessssessnes 137
INtrodUCtON. ... 137
SEUCHUTE .. 139
ODJECHIVES ..ot 140
Data management design patterns ..., 140
Materialized DICTWcceveveveviiciiiiiiiiiiciicce e 141
AQVANEAGES ...t 141
DiSAAVANEAGES ... 142

When t0 1se thiS PALLETTLc.cuvvviiiiiiiiciiiiiiiiiiccccce s 143
SHATAING.c..ocoviiieiciciiii 143
DiSAAVANEAGES ...t s 144

When t0 use thiS PALEETTLc.cucuviviiiciciiiiiiiiiicccc s 145

VALEE K@Y .. 145
AAVANEAGES ... 146
DiSAAVANEAGES ... 146

When t0 USe this PALLETTLcuvvveieviieiciiieiciiecee s 147
Design and implementation patterns ..o, 147

ATDASSAAOT ..ottt ettt essae e 147

xxi

AQVANEAGES ...t 147
DiSAAVANEAGES ...t 148
When t0 use thiS PALLETTL ...t 148
ANH-COTTUPHON LAYET ..o 149
AAVANEAGES ..o 149
DiSAAVANEAGES ...t 150
Whent t0 USe this PALLETTLovvvveieieieiciiiicicteee s 150
Backends for FIONEeNds..............ooeveviveiiieiiieiiieiiiiiciiiciice 150
AAVANEAGES ... 150
DiISAAVANTAGES ...t 151
When t0 USe thiS PALLETTLcvvvvieiiieiciiiciciccccccc s 151
Leader lectionccuvueveveueieieieieieieiiiitiiciittcc s 151
AQVANEAGES ..o 153
DiSAAVANEAGES ...t s 153
When t0 1se thiS PALLETTLc.cucvvvviiiiiciciiiiiiiiiiicic s 153
Messaging design patterns............coeveveveieiiiininiiiccc 153
Pipes and filters.........cccveiioiiiiiiiiiiiiiiicc 153
AAVANEAGES ... 154
DiISAAVANTAGES ...t 155
Whern t0 USe thiS PALLETTLcuvvviciiieiciiiciciiccccce s 155
Priority QUEUEoouviiiiiiiiiiiiciccc 155
AQVANEAGES ...t 156
DiSAAVANEAGES ... 156
When t0 use thiS PALEETTLc.cucuviviiiciciiiiiiiiiicccc s 156
Publisher-subSCIIDEYccuevvueieiiieiiiiiiiiiiiiccccccce s 156
AAVANEAGES ... 157
DiSAAVANEAGES ... 158
When t0 USe this PALLETTLcvvvvieveieiciiiicictce s 158
Queue-based 10ad [€VEIlINGcovevvveviiiiiiiiicieee e, 158
AAVANEAGES ...t 158

DiSAAVANIAGES ...t 159

xxii

When t0 uSe this PALLETTLovvvvieieieiciiiiciccccce s 159
Sequential COMDOYovvviviiiurieiiiiiiiieieicctcs s 159
AAVANEAGES ...t 159
DiSAAVANEAZES ...ttt 160

Wher t0 USe thiS PALLETTLcuvvvivcviieiciiiciiciccccce s 160
RelHabilitycovoviviiiiiiiiicicicii 160
Compensating transaction..........ccoeeecveeieieieieeciiiieieeecccee s 160
AAVANEAGES ..o 161
DiSAAVANEAGES ... 161

When t0 USe this PALLETTLovvevveieieieiciciciciieccce s 162
Deployment StAMPSc.ccoveeioiiiiiiiiiiiiisiceicccctss s 162
AAVANEAGES ... 163
DiSAAVANIAGES ...t 163

Wher t0 USe thiS PALLETTLvvvvieiiieiciiiciiiccccce s 163

GOOMES ..ot 163
AQVANEAGES ...t 163
DiSAAVANEAGES ... 164

WHeN 0 USE HHIS PALEETTL ...ttt 164
TRIOHIING oot 164
AAVANEAGES ..o 165
DiSAAVANEAGES ... 165

When t0 USe this PALLETTLcvvvevieieieiciiiictecece s 165
CONCIUSION ...ttt 165
6. Monolith to Microservices Case Studycoceceererreresuniresrercsunsesesseesnssesessesesnene 167
INtrodUction. ..o 167
SEUCHUTE ... 168
ODJECHIVES ...ttt 169
Transitioning from monolith to microservices architecture......................... 169
Monolithic to microservice design principle.............ccvvvvvvvvinncciceriiiininnnnns 170

Challenges of legacy SYStEMS........cccueuieeueuririeuerriieieinieeieieieeieseeeeesesenaeaes 171

Strategies for updating legacy systems to microservices...........c.cccceuvvnnns 173
Migrating Travelguru application to microservices: A Case Study............ 175
Case Study: Business CRAllenge............c.ccccccvveiviciiiciniiiniciciccceicce, 176
Case Study: Solution Delivered for Microservices Migration 177
Target technology SHACKc.cccccvviviciniiiiiiiiiiciccccc s 179

Case Study: Technology Roadmap for Microservices Adoption.................... 180
Case Study: Application Transition to Microservices Architecture 182
Case Study: Successful Database Migration to Microservices 184
Recommendations to minimize doWNLIMEccccviviviiiiiniiiniiiiiccn, 186

Case Study: Business Outcome of Microservices Migration 187
Case Study: Best Practices Implemented in Microservices Migration 188
CONCIUSION ...t 189
7. Inter-Service COMMUNICAtION....ucuevvieeiiiteitieicteetceteetceeneesee s enene 191
INtrOAUCHON ... 191
SEUCHUTE ... 192
ODbJECHIVES ..ottt 193
Inter-Service cOMMUNICAtIONcccviiiiiiiiiiiiiiae 193
Challenges of distributed SYStems............cccvvvvvverecviiiiiniiecciiiiceecccses 194
Communication MOAelsccccvvvuveiiiiiiiiiieiiiiiicicec s 195
Synchronous inter-service CommMuNICAtiON.cccuevveiecuerriieeremreeeerenreeaenes 196
RESTFUL APIS ...ttt 196
AAVANEAGES ... 197
DiSAAVANEAGES ... 197

Remote Procedure Calls (RPCS)ccccuovvuvuvviciiiiiniiieiciciiiieeecciieeee 197
AAVANEAGES ... 197
DiSAAVANEAGES ... 197

§RPC Remote Procedure Callscccoveveeiiiiciiinieiiiiiiieieieccicieeeinn 198
AAVANEAGES ..o 198
DiSAAVANEAGES ... 198

Asynchronous Inter-Service cOMmUNICAtIONc.cuvuuiucuiucuriucircicieieeeenn. 198

xXxXiv

MeSSAZE DIOKETS ...t 199
AAVANEAGES ... 199
DiSAAVANEAGES ... 199

Message broker MOdels.................cccciviiiiiiiiiiiiiiiiiicccicc e 200

Message broker SOfttAreccccuceiviiiviiiciiiiiiiciccccc e 201

RADDIEMQ .t 201
AAVANEAGES ... 201

APACHE KAFKA ..o 201
AAVANEAGES ... 202

IBM MQ .ottt 202
AAVANEAGES ... 202

AZUTE SETTVICE DUS ...t 202
AAVANEAGES ... 203

Amazon Simple Queue Service (SQS)covvvvivuriiiiiiiiiiiiiiiiiciceecca 203
AAVANEAGES ... 203

Event-driven communicationcccccccviiiiniiiiiniiiniiiiciccccceans 203

Publish-subscribe architeCture..............ccoovvveiiviiiiniciciiiiicicecccses 204

Event-driven architeCture............ccovveccioiniviciciiiiiiiccccccciceeeccs 205

EVent SOUTCING ..ottt 205

SerialiZationovcvcuieiiiicicc 206

Serialization formats..........cccvviviviiiiciiiiiiiiicccic s 206

Serialization [iDYaries..........c.ccccivciviiiciiiciiiiiiiiicciccc 206

Best practices for serializationcccoovvvciiiiiiininciiiiiiiicccsis 207

SEIVICE MESH ...oueiiiiiicc s 207

Features of Service Mesh............cocovvvvveieiciiiiiiiicieiccciciceecc e, 209

Tools/third-party products for Service MESHccvveeveeericerierierienne, 211

ISHIO SETVICE TMESN ... 212
Features Of ISHOcccvovviiuiiiiiiiiciciceeee e 213

Idempotent operations...........ccococueiiiiiiiiiiiiin 214

Implementing idempotenClcccccovoiviiiiieieiciiiiiiiiceciicice s 214

CONCIUSION c. ettt ettt e e e e e e ettt e e e e seeeaaaeeeessssssateeeesessnsaeeeeas 215

xXX0

8. Event-Driven Data Management..........cocevvvevereirenennineienennisnnesnennesesessessesene 217
INErOAUCHON ...t 217
SEUCHUTE ... 218

ODJECHIVES. ...t 218
Event-driven data management and data governance...........cccccceeueurinnne 219
Technologies for event-driven data management............cccccceccuvcucuncucuncenn. 221

AWS KINESIS c.vviviieiiiiiiiteieteieicte et 221

AAVANEAGES ... 222
DiSAAVANEAGES ... s 222

G00gle Cloud PUb/SUb..........cccevieerieirieirieisiesteeteete e 222
AAVANEAGES ... 222
DiSAAVANEAGES ...t 223

AZUTE VN GFTM . 223
AAVANEAGES ... 223
DiSAAVANEAGES ...t 224

Apache Kafka 01 KUDErnetescccccvvvvvviiiiniciiiiiiiiiicciiicisecccnnns 224
AAVANEAGES ... 224
DiSAAVANEAGES ... s 224

Event sourcing and CQRS. ... 225
Event-based data replication...........cccovuiuiiiininiiiiiiiiiiicccs 226
AAVANEAGES ..o 227
Event-driven data validationccccooiiiii, 228
AAVANEAGES ... 228
Event-driven data integration............ccooeeiiiniiniiiccccs 229
AAVANEAGES ... 229
Event-based data access control ..o, 230
AAVANEAGES ..o 230
Event-based data lineage............cccccoovviviniiiiiiiininiiiiiciccs 231
AAVANEAGES ... 231

Data governance in miCroSeIViCes..........oouievirieuirieieiinieenieiiinieeeseeeieeeeenens 232

Data privacy and complianceccccooeuiiiiininiiiiiciiiincccccns 233

xXxvi

Data Lifecycle Management.............cccovuruiuiiiininiiiiccciiicccescccnns 234
AAVANEAGES ... 234
CONCIUSION ...t 235
9. The Serverless APProach ... 237
INErOAUCHON ...t 237
SEUCHUTE ... 238
ODbJECHIVES ..ottt 239
Understanding the serverless architecturec.coooeceennicnnnccrnennccnnns 239
Use cases for Function-as-a-Service (FaaS)cccovvevveveeeeeeeeeeeeeeeeene 240
Serverless framewWOrK.........cccoviiiiiiiiiiiii 241
Key features..........ccocvvivviiiiiiiiiiiiiciiiiiiciccc 242
Function-as-a-Service platforms..........cocooeiiiiiiiiiniiccccns 243
AWS LAMBAA ... 245
Features of AWS Lambdacccccccovvivviiiiiiiiiiiiiiiiiiicccciccec, 245
Advantages of AWS LAMDAAc.ccoeeiviiiiiiiiiiiiiicicccccccc, 246
Disadvantages of AWS Lambdaccccovvviiiiiiiiciiiiicicccccna, 246
AZUTE fUNCHONS ...t 247
Features of Azure fUnctions...........cccoceeeevcviniiiniecciciiiiceeecccceee, 247
Disadvantages of AWS Lambdacccovvviiiiiiiiiniiiiiicicccccnn, 248
Google cloud fUNCHIONScccuviiiiiiiiciiiiciciceccc s 248
Serverless approach and edge computing...........ccceecuvicuricinccinicenecenenenn. 249
Serverless monitoring and 10ggiNg ... 251
Serverless monitoring and logging is provided by Azure monitor 252
Other popular OPIONSc.cuvvvveveieveieiciiiiiciitcccee s 253
Serverless SECUTILYccoiiiiiiiiiiiiiic e 253
Best practices for serverless microservices development.............ccccccuvunne 254
Serverless microservices case Studiescccovureriiiiiiiniiiiciincn 256
CONCIUSION ..o 257
10. Cloud Microservices - Security by Designccoceevvrerinisenrencsncsensesscsnesenene 259

TNETOUCHION cece ettt e e et e e e s e e eaaeeeeseesesassaaeesssssnnnnes 259

SHUCHUTE .. 261
ODJECHIVES ...t 261
Cloud Microservices - Security by Design.........ccccccceiiniiininniiiicnne. 262
Authentication and access CONLIOLccccucuviicuiiniicininiicerceeeenes 263
Authentication and authorization mechanisms in cloud microservices........ 263
Role-based access control (RBAC)........cccouvvvvviiiciiiciciiicisiisisicisieiiieieincan, 264
Multi-factor authentication (MFA).........ccccooviviviiciiiiiiiiciciiicccn 265
Access cOntrol lists (ACLS)....c.cuvueuvueieieieieiiiiiiiciiiiicccicceeeee s 266
Communication SECUTILYcccceviiiiirieicciiie s 267
Data SeCUTTEYcoviuiiiiiiiciccc 269
Data security and encryption techniques for microservices........................ 269
Security of data in transit and at 1est...........cccocevvvvvviviniecciiie 270
Immutable iNfrastruCtUTeccovvvviiiiiiiiiicciiccc 271
CoNtaiNer SECUTILYccviiiiiiiiiiiiiiicc s 272
Monitoring and incident 1eSpONSe...........ccccovvvevriricciininininccn 273
Compliance and risk managementcccocoeviiiiiniiiiiinice 274
Compliance and regulatory considerationsccocevvvvviriviecccinnnnnnn. 274
Threat MOAEliNgc.ccvvevviiiiiiiiiiiiiiiiiicccccc s 275
Penetration teStingcccueveeviiieiiiiiiiiiiicece 276
Infrastructure SECUTItY ... 277
Threat detection and rESPONSE..........c.cccurucuiuciiucuriiciriieieicireieeseeeeeeeeeeee s 278
Continuous security MONItOriNgccccocvviiviiiiiiniiiiiins 279
CONCIUSION ..o 280
11. Cloud Migration Strategyuniinieisinciniiiinniisncinsssnseenssesseesseseans 281
INtrOAUCHON ...t 281
Planning and executing a cloud migration strategy............cccccoevruiiinnns 281
SEUCHUTE ... 282
ODbJECHIVES ..ot 284
Cloud migration goals ... 284

Capex and Opex cost OPHIMIZALIONcucuvveveveieiciciicieieeccce e 285

XXUI1L

Optimize resource consumption and dynamic elasticity.............ccocevveurnne. 285
Vendor and application consolidation................cccvvvvvovnivinnciiiniiininenns 286
Agility and innovation via DevOps, Multi-cloud, PaaS, AI/ML, IoT 286
Scalability, flexibility, and global reachccccccocovvvviiviiinccinnnn, 287
Reliability, availability, and SECUTIEYccccccvviviiiiviiiiiiiiicccce 287
Customer experience And iNSIGNEScccovvvvvvvverrciiiiiiieeiciceecce 288
IT modernization and iNterationccceveevecciiiiiineeciiiiseeeccn, 288
Reduce, consolidate, and retire the physical data center footprint 289
Cloud migration principles.........ccooviiiiiiiiiiiiccces 289
Security first: Secure the network, protect the data, and control access........ 290
Monitor and optimize workloads for costccccovvvininiiiiciiiiiiiiicns 291
Deploy infrastructure as Code.............ovvvvvviineeiiiiiiisieieiciiiceiecccses 291
Make allocations match demand...............ccocoveeiinieineieeeiecicieii, 292
Automate and implement DevOps practices............ccoevveevciviniiinecncanan, 292
Training the staff for future mode of 0perationscccocovvveevvcivrieinnennnns 293
Leverage cloud-native SErUICES...........covvvmriieiiiiiiiciciiiciieeicicseseiee e 293
Cloud migration strategycccoveiiiiiininiiiiciiiicces 293
Business goals and obJectives...............cccuvvieiiiiiciiiiiiiiiiicciccceeea, 294
Cloud service provider SElectioncccecvveiiiviciiieiiieiiisieiiieciseeie 294
Data security and compliance...............ccccoevvciiiniiinncciiiiiiiecccccies 295
COSt OPHIMIZALION .. 295
Scalability and flexibilitycccovvveiiiiiiiiiiiiiii s 295
LeQaCY SYSEEINIS.c.vcuvcvivviiiiniitiiiiiticeic s 295
Change Mmanagement...........cccovevvveveveueiiiiiiiisieecccisie e 296
Performance and reliability..............ccccovvvvvviviiiiiiiiiiiiiicciiccecc 296
GOUCITANICE ...ttt 296
Continuous improveMentccccvvveveueciiiiisieeececies s 296
MiQration SEYALEGYcvcveieveuiiiiiiiiiiiiiicicicieccietcs e 297
Migration Plan..........cccceciiviiiiiiiciiiiciie 297
Skills and traiNingccccocoveviiiiiiiiiciiiicisccc s 297

Performance and optimization..............ccccccvieivivccciiiiiiiccciciceeec, 297

Data management............ccccoovevvvveiiieiiiiiiiiiiiiieie e 298
INEEQEALION .. 298
Vendor Managementcccovvvevvvrccucicieieieieceeesiesesesssss 298
Stakeholder COMMUNICALIONouvveviereieiieieieieieieieeeicteee 299
Organizational change Managementccoovvvvvvviviiiiivneciiiiiieeenns 299
Cloud migration life cycle strategycccovvvvmiiiiiiiniiiiccce, 299
ASSESSIMENE SEAZC ... 300
Per application assessment SEAZEccccvcvvvvivicciciiiiiiiiicccisiceeec, 301
Planming StAZEc.cvoveveveiviiiiieieiciicicce e 303
DeSIGI SEAGE.eeveviiiiiiieiiiceitc 303
EX@CUION SEAZE ...t 303
TeStING SEAZE ...vvveeiietcecc s 304
CULOVOE SEAZE ... 304
Big Bang CULOTETc.covvviveieieiiiciiiiieieicicieise et 304
AAVANEAGES ...t 304
DiSAAVANEAGES ... 305
Phased CULOVEToueueviveieieieieieicicicicictctcte s 305
AQVANEAZES ... 305
DiSAAVANEAGES ...t s 305
Parallel CULOUETccoccvviiiiiiiiiiiicciccic s 306
AAVANEAGES ... 306
DiSAAVANEAGES ... 306
Post CULOVET SEAZC ...t 306
OPpHIMIZALION SEAGEcoevvveiiieiecect s 307
CONCIUSION ..o 308

el CHAPTER 1

Cloud-Native
Microservices

Innovate at Scale with Cloud-Native Microservices

Introduction

Microservices have gained popularity due to their agility and cloud adoption
readiness. The combination of microservices and cloud computing has become
a key in enterprise architecture, and enterprises continue to reap the benefits
of cloud computing. This chapter will cover the industry trends (with short case
studies) and how Cloud-native Microservices adoption helping next generation
applications. We will discuss the biggest challenges faced by organization when
adopting microservices right from culture to technical complexity. Best practices to
resolve these challenges and to have a seamless cloud adoption and microservices
architecture implementation will be covered throughout this book.

o According to Technavio the cloud microservices market share is expected to increase
by USD 1.59 billion from 2021 to 2026, and the market's growth momentum will
accelerate at a CAGR of 25.1%.

e According to the Microservices Architecture Market Research Report the
Microservices Architecture industry is projected to grow from USD 5.49 Billion
in 2022 to USD 21.61 Billion by 2030, exhibiting a compound annual growth rate
(CAGR) 0of 18.66% during the forecast period (2022 — 2030).

e According to the 2021 Cloud Native Computing Foundation (CNCF) survey, 92% of
respondents reported that they use containers in production, up from 84% in 2020.

2 Mastering Cloud-Native Microservices

The Cloud Microservices market is growing worldwide, and that is no secret
anymore. A large number of companies are upgrading their product portfolios so
that they are not only cloud-ready but cloud-native with microservices architecture.
The trend is in favour of cloud-native microservices, and organizations that move
quickly will have an advantage. There have been tremendous success stories
across all industry verticals, including retail and e-commerce, healthcare, telecom/
media and entertainment, BFSI, government, and manufacturing. Certainly, there
are challenges with respect to investment OPEX/CAPEX, Competitor Landscape,
Timelines, ROI for such migrations and modernizations. It is very important for
a company to comprehend all the aspects including the risk involved in order to
strategize better. Therefore, the key question we should ask yourself would be:

“Cloud-native Microservices” Is it the right choice for your next application?

Companies have shifted from bare-metal infrastructures and monolithic architectures
tomicroservices and container-based architecturesin today's fast-paced environment.
A better, more flexible, and scalable way to work is being established with cloud
native microservices. Organizations can add new application components without
revising entire applications or waiting for a release window. In other words, we are
able to create new microservices quickly to achieve better results.

In this book, we will examine all aspects of cloud-native microservices, including
scalability, flexibility, and resilience. By breaking down applications into small,
loosely-coupled services that can be developed, deployed, and scaled independently,
cloud-native microservices architecture can help organizations deliver applications
faster and with greater reliability. However, adopting cloud-native microservices
requires asignificant shiftin application development, deployment, and management
practices, and may not be the best choice for every application. It is imperative to
evaluate your specific needs and goals before making a decision. The purpose of this
book is to provide you with the right tools, knowledge, and resources to plan, build
and implement an optimal roadmap for your business.

Structure

In this chapter we will discuss following topics:
e Understanding the cloud native microservices
e Adopting cloud-native microservices
e Capability maturity level model

o Focus area: People, Process and Knowledge to achieve End-to-end
accountability

Cloud-Native Microservices 3

o Focus area: Technology and Design Maturity for enabling Zero-touch
operations

e Play Book for cloud-native microservices adoption
e Key principles of microservices

e Short case study 01: Snap on AWS

e Short case study 02: Wynk Music App

e The biggest challenges with microservices adoption
e Short Case Study 03: UPWARD, Inc.

¢ Short Case Study 04: The Government of India Powers a Population-Scale
Vaccine Drive

e SWOT analysis for your application stack
e Short Case Study 05: IMDDb Video Team Builds Strategies for the Future

e Conclusion

Objectives

The purpose of this chapter is to provide you with an overview of the 'Cloud-Native
Microservices' adoption framework and why it's the right choice for your next
application. To bring the focus back to the three pillars of any transformation, we will
discuss the capability maturity level model I devised. We will also talk about how
we can move to the next level, whether it's through people, process, or technology.
We will discuss the Cloud-native Microservices adoption framework playbook for
successful digital transformation in detail. We will be covering five industry success
stories to understand the importance of Cloud-Native Microservices and how they
can change the game.

Understanding the cloud native
microservices

So the key question to start with would be "Is it the right choice for your next
application or enterprise?”. Rather than being a monolithic entity, cloud-native
microservices architectures develop large applications using loosely coupled
microservices. A microservice is a small, autonomous, self-contained software
component, organized around a business domain, which allows each part to be
easily monitored, tested, and updated without affecting the others, enabling greater
speed and agility in business and operations.

4 Mastering Cloud-Native Microservices

For any organization to make it a right choice, it is important to develop a strategy
with strong governance before moving forward in terms of guiding principles,
migration/modernization goals, and business priorities. The technology stack,
cloud provider, partners, tools, and so on will be determined by the core strategy
and target business value.

In microservices, pieces of code are logically separated so that they can run
independently with as few dependencies as possible. However, individual
microservices can still communicate with one another and work together to create a
complex application. Using self-contained microservices reduces dependencies and
the need to coordinate changes across services. As a result, one failed service will
have less impact on the entire application.

Containers go well with cloud native microservices and we must plan accordingly
when defining a key strategy for such a transformation. The use of containers
allows developers to work without constraints imposed by hardware components
because they are software-only solutions. Microservices can be designed and tested
independently, each performing a specific function.

Likewise, microservices also offer many advantages, but for a successful digital
transformation, we need to look beyond technology. Itis only through understanding
current capability maturity levels and how to reach desired maturity levels
encompassing people, process, and technology that we will be able to answer our
main question: Is it the right choice for your next application? Let us start with the
cloud adoption framework and capability maturity level model.

Adopting cloud-native microservices

Cloud adoption framework required to help clients/organizations build, migrate,
modernize, operate, expand, and optimize their applications, infrastructure, data,
and analytics in the Cloud. Technology upgrades are only one aspect of the business
value equation, but delivering the right value is the key. Hence, we need to consider
all aspects like people, process, and technology in our framework.

Next generation application and digital transformation requires industry leaders
to rethink their business priorities, strategies, and operations to ensure continued
success and value-based delivery. For example, as illustrated in Figure 1.1: Key
drivers for Cloud-native Microservices adoption can be achieved through a planned
adoption.

Cloud-Native Microservices 5

Key drivers for Cloud-native Microservices adoption

Reduce customer Increase New
chum customer Increase ARPU Customer delight
acquisition
Growth in Value- Cost transformation Reduce operation Improve time to
added services costs (OPEX) market
Improve Customer Bus1_nes§ Opfar_ahopal Modemization
Experience consolidation efficiencies

Figure 1.1: Key drivers for Cloud-native Microservices adoption

*ARPU is a metric that stands for average revenue per user

*Opex (operational expenditure) is the money an organization spends on an ongoing,
day-to-day basis to run its business.

Cloud-native microservices adoption can help achieve the following key drivers:

Reduce customer churn: By leveraging cloud-native microservices,
organizations can develop and deploy new features and functionality faster,
leading to a better customer experience and reduced churn. For example, a
mobile banking application can use microservices to provide customers with
a seamless experience across multiple devices and platforms, enabling them
to easily access their accounts, make payments, and view their transaction
history.

Increase new customer acquisition: Cloud-native microservices can help
organizations deliver new products and services faster, leading to increased
customer acquisition and market share. For instance, a streaming service can
use microservices to create personalized content recommendations for new
users, helping to increase engagement and retention.

Increase ARPU: By delivering more personalized and relevant services,
organizations can increase average revenue per user (ARPU) and drive
growth. For example, a retail company can use microservices to create
targeted promotions and loyalty programs for customers, driving repeat
purchases and increasing ARPU.

Customer delight: By leveraging cloud-native microservices, organizations
can create innovative, user-friendly experiences that delight customers and

Mastering Cloud-Native Microservices

differentiate themselves from competitors. For instance, a healthcare provider
can use microservices to offer a virtual health platform that allows patients
to easily schedule appointments, access medical records, and connect with
doctors in real-time.

Growth in value-added services: Cloud-native microservices can enable
organizations to develop and offer new value-added services that enhance
their existing offerings. For example, a telecommunications provider can use
microservices to create an Al-powered virtual assistant that helps customers
troubleshoot technical issues and provides personalized recommendations
for new services.

Cost transformation: By adopting cloud-native microservices, organizations
can reduce costs and improve efficiency by leveraging automation, scaling
on demand, and reducing infrastructure overhead. For instance, a logistics
company can use microservices to automate shipping and logistics processes,
reducing the need for manual intervention and saving on operational costs.

Reduce operation costs (OPEX): Cloud-native microservices can help
organizations reduce operational costs by providing greater visibility,
control, and automation. For example, a financial services company can
use microservices to automate fraud detection and prevention processes,
reducing the need for manual intervention and saving on operational costs.

Improvetime to market: Cloud-native microservices can enable organizations
to deliver new products and services faster, reducing time to market and
improving competitiveness. For instance, a software company can use
microservices to create a cloud-based platform that enables customers to
quickly and easily deploy and manage applications.

Improve customer experience: By leveraging cloud-native microservices,
organizations can create more personalized, intuitive, and responsive
experiences that improve customer satisfaction and loyalty. For example,
an e-commerce company can use microservices to provide personalized
product recommendations, real-time inventory updates, and streamlined
checkout processes, improving the overall customer experience.

Business consolidation: Cloud-native microservices can enable
organizations to consolidate disparate systems and applications, improving
data management, reducing complexity, and enhancing agility. For instance,
a financial services company can use microservices to integrate and
consolidate customer data from multiple sources, enabling more accurate
and efficient risk management.

Operational efficiencies: Cloud-native microservices can help organizations
streamline operations, automate manual tasks, and reduce complexity,

Cloud-Native Microservices 7

leading to greater efficiency and cost savings. For example, a healthcare
provider can use microservices to automate patient intake and registration
processes, reducing wait times and improving the overall patient experience.

¢ Modernization: Cloud-native microservices can help organizations
modernize legacy systems and applications, enabling them to leverage new
technologies and stay competitive. For instance, a manufacturing company
can use microservices to modernize its production processes, improving
efficiency and quality while reducing costs.

We have mentioned business value several times, but how to achieve the same or
step up capability maturity in terms of end-to-end accountability for people, process,
and knowledge should be part of our strategy. Furthermore, achieving zero-touch
operations with technology design maturity will be a key investment in architecture,
operations and monitoring, delivery, provisioning, site reliability engineering, and
security and compliance. We will be covering all these aspects throughout this book
and how you can enable your organization or application to gain these benefits
through Cloud-native Microservices adoption.

Capability maturity level model

As illustrated in Table 1.1: Capability Maturity Level Model will help and provide
direction on how to improve overall capability maturity level in any of the
organization covering all key aspect i.e. People, Process, and Technology.

s Ao Capability Maturity Level Value
ocus Are 1 2 g Delivered
Cross-func-
Team tional teams DevOps DevSecOps
People, Design think- End-to-end
Profess and | Process Agile ing / process Process account-
blueprint automation ou
Knowledge P ability
Workload o
FinOps | cost predict- Cos;ta(;gﬁml— Cloud ROI
ability

8 Mastering Cloud-Native Microservices

Architec- Client . . Cloud-native
Microservices or Cloud
ture Server A .
gnostic
Operations | ,, .. . Self-healing, | Data insights
and Moni- Meonit c%rian and Preven- | oncloud and
toring & | tive AI/ML Observability
. Periodic cl1/ CD. Complete
Delivery Automation .
Release Automation
workflow
Technology fo : Zero-touch
and Design | Provision- Scrivted Infrastructure Shift left -- ;
Maturity ing p as a code Optimization operations
Site .
Reliability Service Scalability Performance
. 1 and .
Engineer- | availability S Matrix
H reliability
ing
Control the
Security | Monitor the | Access, Pro- Securitv b
and Com- | Environ- | tect the Data, ty by
. Design
pliance ment and Secure
the network

Table 1.1: Capability Maturity Level

Our basics should be clear at a high level or to begin with. Every organization would
like to be next generation ready and to achieve the same we need to upgrade / upskill
all three key pillars i.e. people, process and technology. In the following chapters,
we will discuss technology-side design patterns in detail to help you implement
and modernize your application stack. The purpose of this chapter is to understand
the big picture and the approach one should take even before writing the first line
of code.

Capability maturity level model (Table 1.1) created for explaining organization
maturity levels for cloud adoption is different from the Capability Maturity Model
(CMM) methodology which is used to develop and refine an organization's software
development process. CMM talks about five maturity levels that can be developed
incrementally from one level to the next. Skipping levels is not allowed / feasible.

e Level 1 - Initial

e Level 2 - Repeatable

e Level 3 - Defined

e Level 4 - Managed (Capable)

e Level 5 - Optimizing (Efficient)

Cloud-Native Microservices 9

Logically these steps are very much applicable to every activity we perform. Right
now we do not intend to go in details of CMM but it is recommended to review
them.

Let’s review the process | best practice to improve our Capability Maturity level for each of
these focus area (refer: Table 1.1: Capability Maturity Level)

Focus area: people, process and knowledge to
achieve End-to-end accountability

e Team maturity is critical aspect and idea is to fast-forward from traditional
waterfall development to a DevOps | DevSecOps model to have end to end
accountability. An automation strategy for application and infrastructure
development and management needs to be adopted and accordingly team
structure, roles and responsibilities will need to be changed. Similarly,
moving to cloud will bring in some of the cybersecurity challenges and hence
eventually we should adopt DevSecOps practice. For example, some of the
basics things like knowledge management, resource training and upskilling
for future needs will help in moving to next level.

e FinOps:Itisaboutoptimizing cloud spending by workload cost predictability,
and cost Optimization. Following definition is from FinOps.org. We will be
discussion more about FinOps in next chapter. As illustrated in Figure 1.2:
Cloud FinOps Defined as maximizing the business value from the resources
deployed and to and maintain financial accountability for cloud services.

Cloud FinOps Definition
“FinOps is an evolving cloud financial management discipline and cultural practice that enables
organizations to get maximum business value by helping engineering, finance, technology and business

teams to collaborate on data-driven spending decisions.”

At its core, FinOps is a cultural practice. It’s the way for teams to manage their cloud costs, where everyone
takes ownership of their cloud usage supported by a central best-practices group. Cross-functional teams in
Engineering, Finance, Product, etc work together to enable faster product delivery, while at the same time

gaining more financial control and predictability.
* Above reference is from

https://www.finops.org/introduction/what-is-finops/
Figure 1.2: Cloud FinOps Definition

10

Mastering Cloud-Native Microservices

For example, many of the organizations end up spending more on cloud
services compared to their on-premises footprints cost. Idea is to control
costs and deliver business value. It is a financial management side of your
Cloud adoption. You should be able to take the decision on underutilized
resources, predict and plan spend.

Process maturity is heart of any transformation success. In order to improve
quality, cost, and delivery time, businesses should focus on optimizing
processes. Most of the time, there are issues because we view it as a software
development process, a business transaction process, or some other
improvement to a function. Business processes need to be enhanced end-to-
end to achieve the desired competitive edge. Processes should be measured,
automated, and continuously improved. For example, we need to have value
driven process to achieve year on year continuous improvement. High level
of automation to support zero down time, zero touch operation, and fast
track deployments. Need to progress from Agile way of working to Design
thinking / process blueprint.

Focus area: technology and design maturity for
enabling Zero-touch operations

Architecture: Enterprise architect practice evolved overtime from being
almost non-existent to reactive that focused only on ad hoc technical
issues. Next stages were functioning that is a business-outcome-driven
Enterprise Architect (EA) practice; Integrated practice delivering business
value and is repeatable. Finally, ubiquitous enterprise architecture has
become the organization's default mode of operation. We have seen
organization adopting Client Server architect for earlier legacy days to now
Microservices based Cloud-native or Cloud Agnostic design principles. For
example, Modern application have unique requirements to innovate faster,
improve performance, security, and reliability, all while lowering their total
cost of ownership. We will have a dedicated chapter on modern application
design requirement but for now we need to understand it is important for an
organization to have a design maturity at architect level.

Operations and monitoring: An operational monitoring strategy needs to be
in place starting from types of data to collect to self-healing, and preventive
AI/ML Data insights on cloud. Idea is to have system matured enough to
provide leading indicators of an outage or service degradation and act to
prevent the same. For example, we need to have a system to capture metrics,
traces, and logs for enabling effective observability to understand why part
of the incident and with that we will be able to eliminate its reoccurrence.
Data insights on cloud will help us for taking timely action for Self-healing,
and Preventive AI/ML eventually getting to a stage of zero touch operations.

Cloud-Native Microservices 11

Delivery: We have seen the time of periodic release cycles and in fact it is
still operational in many of the organizations. Having code release once a
month used to be a normal norm with hotfixes getting released in-between
and then having code merge issues. Agile software development approach
is to accelerate time to market and improve code quality achieved through
CI/CD Automation Workflow. For example, Developers gain the most from
continuous integration because it allows them to test their code automatically
and continuously integrate it with the code of their colleagues. Business
users benefit from Continuous Delivery as soon as code has been accepted
at the CI stage and has been tested logically. Continuous deployment allows
code that has been accepted in the CI/CD cycle to be seamlessly pushed into
production.

Provisioning: Infrastructure as code (IaC) uses the DevOps methodology
and versioning for managing and provisioning infrastructure through
code instead of through manual processes. Developers can deploy
applications without manually provisioning servers, operating systems,
storage, and other infrastructure components with IaC, which automates
infrastructure provisioning. For example, Chef, Puppet, Ansible, Terraform,
AWS CloudFormation are some of the scripting tools used for building
infrastructure pipelines. These tools are well suited to CI/CD automation
workflows.

Site Reliability Engineering: By implementing Site Reliability Engineer
(SRE) practices, software systems become more reliable in critical areas
such as availability, performance, latency, efficiency, capacity, change
management, monitoring, emergency response, and incident response.
For example, SRE practice will ensure service availability, scalability and
reliability with performance matrix for tracking and trend analysis. It is
a process of proactively writing code and developing internal tools and
applications for services to combat reliability and performance concerns for
a seamless production operation.

Security and compliance: With Cloud adoption cyber security took centre
stage and we need to have a strong security and compliance mechanism in
place to Control the Access, Protect the data, and Secure the network, monitor
the environment. We will have a dedicated chapter covering ‘Security by
Design’ to understand the approach one should need to take while planning
any such a digital transformation journey. For example, implementing 256-
bit AES encryption for your data at rest and TLS 1.2 data in transit by design
would enhance security. Encryption at rest and in transit means that your
data is fully encrypted in any situation.

12 Mastering Cloud-Native Microservices

Play book for cloud-native microservices
adoption

For any successful digital transformation, we need to have a defined road map in
place. Whether it’s enterprise wide modernization or even if we want to venture
into newer tech like Metaverse technology, Blockchain, and the like. Key principles
towards the approach or the play book will remain same. Below Play-Book is more
aligned to this book and focusing to Cloud adoption and Microservices. In order to
stay relevant in today’s ever-changing environment of Volatility, Uncertainty, and
Complexity, modern businesses need to realign, reconsider, re-plan and re-prioritize
their road-map. This play book will give you a direction to move fast and fail fast
(in case it’s not the right decision). For example, as illustrated in Figure 1.3: Play
Book for Cloud Native Microservices adoption should cover these aspects. We have
discussed them in detail with example for you to have a clarity for creating your
own roadmap.

Play Book for Cloud-native Microservices adoption

Align your Be prepared for a Identify the CAPEX/ _OPEX B.eg_m by
reason and key ltural shift current and Model with the defining the
principles citural si future state ROI business logic
Par_t'ner with Get feedback and Decide when to Plan to build Embrace New
both internal and adjust use CI/CD pipelines | | Ways to Improve
external experts] Microservices pip Y P
. Building
Recogni ze capabilities for Improve design Leverage . Do not
employees’ fear . DevOps Reinventing the
. the workforce of maturity . .
of being replaced the future methodologies wheel every time
Automation Cloud Native
matters Microservices

Figure 1.3: Play Book for Cloud-native Microservices adoption

e Align your reason and key principles: Analyse how digital transformation
adds value to your business. Figure out your business strategy (phase-wise
approach) before you invest in anything. For example, optimize applications
to reduce resource (hardware / software) consumption and provide dynamic
elasticity could be one of the key principle. Idea is to have a clear vision and
a high level strategy with goals in place even before you start.

e Be prepared for a cultural shift: Digital transformation must put people at
the centre as it is not just a technology adoption. Repeating it again as it is
one of the main miss causing failures, delays, and cost overrun. For example,

Cloud-Native Microservices 13

Train and certify workforce according to future mode of operations. Good
example would be FinOps or Security compliance on Cloud. Idea is to have
participation and involvement of your complete workforce and prepare
them well for any such change.

Identify the current and future state of your organization's maturity in
terms of people, process, knowledge, and technical design maturity. Phase-
wise plan to upgrade one or more components to achieve end-to-end
accountability with Zero-touch operations on Cloud. For example, creating
phase wise roadmap for each of the components (the way given in previous
table) for eventually achieving goals and strategy defined by organization.
Ideas is to work in parallel on overall maturity covering people, process, and
technology.

CAPEX / OPEX Model with the ROI needs to be well defined and accordingly,
the transformation approach should be finalized (cap and grow, evaluation,
and revolution). For example, application do not work in isolation and hence
we need to build move groups for specific set of apps related to technical
or business domain. We can plan to implement cap and grow methodology
where we cap any further expenditure on perm and grow apps on Cloud.
Similarly, evaluation or revolution approach might fit better for in certain
scenarios/organizations.

Begin by defining the business logic of the future app and breaking it down
into large components which can be split out into more Microservices later
using design patterns. For example, Domain-Driven Design should be the
starting point for breaking monolith into logical microservices to have failure
isolation, decentralization and other benefits. We will be discussing multiple
examples and different option to achieve desired results throughout this
book.

Partner with both internal and external experts: Do more and do it faster
with partners that share your vision. Leverage insider knowledge about
what works and what doesn’t in their domain. For example, it is critical to
get outside in view and vice versa. We need to review industry best practices
and success stories while planning any such digital transformation journey.

Get feedback and adjust: Need to design the customer experience from the
outside in by obtaining extensive and in-depth input from the customers
and other stakeholders. For example, the key advantage of microservices
would be the ease of upgrading and adjusting without impacting complete
application. Idea is to break your transformation plan in multiple phases and
conduct lesson learnt session and improve for next iteration. So you explore,
experiment, test and optimize your design for next set of applications.

14

Mastering Cloud-Native Microservices

Decide when to use Microservices: Companies started with a monolith that
got too big and was broken up for the scaling demands of its rapidly growing
customer base. Sometimes it is a great start for a start-up environment. For
example, a detailed discovery and assessment of your application set is
required to understand the complexity involved in any such migration. We
have seen cases where legacy systems have issues and need to be modernize
but the cost and risk involved is too high as legacy (source architecture) is
not clear to anyone or in any of the documentation.

Plan to build continuous integration and deployment pipelines with "one-
button" deployment and release setup. To orchestrate services, consider
Docker and Kubernetes. For example, build continuous delivery (CI/CD
pipelines) and implement DevOps culture for your organization. There are
many tools to support but the key is in mind-set for adopting this approach.

Embrace New Ways to Improve: Bring start-up culture for agile decision-
making, rapid prototyping, and flat structures. For example, we recommend
POC approach for every new tech stack or for every new group of application
you want to upgrade. Decide on the target architect and build POC (without
automation or pipelines) to validate the concept and then start building
Cloud native microservices. Idea is to fail fast and improve.

Recognize employees’ fear of being replaced: Success would be difficult
when employees perceive Digital Transformation as a risk to their jobs. For
example, partner with them as they know the best about the applications in
scope. Their inputs clubbed with the organization’s vision which will help
in deciding application deposition and dependency with other apps in the
ecosystem. Idea is to grow together in a close collaboration.

Building capabilities for the workforce of the future: Train and upskill
your workforce. For example, Train your workforce for future business and
technology needs. It is much easier to learn newer technology compared
to understand the whole business from scratch. Idea is to leverage their
years of experience and understanding of issues to build next generation
applications. Dedicated effort to upskill your workforce will help for a
seamless transformation.

Improve design maturity: Invest in technology solutions that will scale with
your long-term goals. For example, Identify application Bill of material
(BOM) for Cloud-native Microservices application. List of approved
software’s with their minimum version for any application deployment on
Cloud while keeping in consideration your security, and scalability goals.

Leverage DevOps methodologies: Plan to use DevOps, agile software
development methodologies and that will help significantly in your
Cloud transformation journey. For example, improve collaboration across

Cloud-Native Microservices 15

DevOps, app dev and IT operations teams across your organization and
accordingly the tools and technology adoption will progress to support
DevOps. Microservices, Cloud native serverless application architectures,
and container management goes very well with DevOps approach.

¢ Do not reinvent the wheel every time: We have seen tremendous success
when you follow a factory delivery model rather than isolated functional
or development teams. Idea is to have a repeatable, standardized processes
and technology framework to achieve higher velocity and a predictable
outcome. For example, you can have a factory with multiple scrum teams
responsible for cloud migration and application modernization to use cloud
native microservices architect. They will have a better performance when
workload assigned to teams would have similar tech stack (for instance, one
set of team focusing on Windows work load and another set on Unix/Linux)
that way they will be able to build common code repositories and repeatable
processes.

e Automation matters: In continuation to the above point. We need to
understand that automation matters a lot and it is nothing new to IT industry
we have been writing scripts / programs from very initial days of industry
to automate as much as possible. For example, the meaning of automation
and expectation from automation is a lot different from initial days. Now we
need immutable environments, serverless setup, PAAS / SAAS solutions,
single click deployment, zero touch operations, multi-cloud setup, AI/ML
embedded monitoring, IA Ops solution, and so on.

e Last but not the least ‘Cloud Native Microservices”: Design patterns,
inter-service communication, event-driven data management, deployment
strategy, and the like, to be well defined. All that will be covered in detail
with examples and case studies but right now we need to be clear on why
would business invest, what would be ROI, what all RISKS we should plan
to mitigate, what would be our approach, roadmap, and timelines and
finally, how all three key pillars that is people, process, and technology will
progress together.

An enterprise can gain substantial business and operational benefits from
microservices, but like any other technology, they are not guaranteed to succeed.
Therefore, we need a strategy in place before moving to a microservice architecture
and selecting suitable candidate applications and above point gives you a snippet on
how to approach any of the large scale transformation.

Key principles of microservices

Microservices architecture is an approach to building software systems that involves
breaking down a large monolithic application into smaller, independent services.

16 Mastering Cloud-Native Microservices

As illustrated in Figure 1.4: Key Principles of Microservices implementation and the
same will be reflected in upcoming examples:

/ Key Principles of Microservices \

> Process Automation

> Decentralization & Discrete Boundaries ‘

) Independent Deployable ‘

) Highly Observable ‘

) Modeled Around Business Capabilities ‘

) Isolate Failure & Fault tolerance ‘

> Inter-Service Communication ‘
\ Figure 1.4: Key Principles of Microservices /

e Process automation: Microservices architecture emphasizes automating
the deployment, testing, and monitoring of services to streamline the
development process. For example, an e-commerce application may
automate the deployment of microservices responsible for order processing,
inventory management, and payment processing. With DevOps tools such
as Jenkins, Git, Docker, Kubernetes, and Ansible, microservice deployment,
testing, and monitoring can be automated.

e Decentralization & Discrete Boundaries: Microservices are independent
and self-contained services that operate within discrete boundaries. Each
service should perform a single business function and should not depend
on other services. This allows for greater flexibility and scalability, as well
as reducing the risk of system-wide failures. For example, a video streaming
platform may have separate microservices for user authentication, video
encoding, and content delivery. To ensure independent and self-contained
services with discrete boundaries, microservices architecture relies on
containerization technologies like Docker and container orchestration tools
like Kubernetes or Docker Swarm.

¢ Independent Deployable: Microservices should be independently
deployable, allowing for faster development and deployment cycles. Each
service can be developed, tested, and deployed independently, without
affecting other services. For example, a ride-hailing service may have separate
microservices for driver matching, ride tracking, and payment processing,

Cloud-Native Microservices 17

each of which can be updated and deployed without disrupting other
services. Microservices can be independently deployed using continuous
integration and continuous deployment (CI/CD) tools such as Jenkins,
CircleCl, and TravisCI.

Highly Observable: Microservices should be highly observable, meaning that
developers and operators should be able to easily monitor and troubleshoot
services in real-time. This requires detailed logging and monitoring of
service performance and events. For example, a social media platform may
monitor microservices for user authentication, post creation, and comment
moderation to ensure that the platform is functioning as intended. To ensure
highly observable microservices, logging and monitoring tools such as stack
Elasticsearch, Logstash, Kibana (ELK), Prometheus, Grafana, and Jaeger
can be used.

Modeled around business capabilities: Microservices should be designed
around business capabilities rather than technical concerns. This allows
for a more efficient and effective development process that is aligned with
business needs. For example, a healthcare application may have separate
microservices for patient data management, appointment scheduling, and
prescription management. Microservices can be modeled around business
capabilities using Domain-Driven Design (DDD) and Event-Driven
Architecture (EDA) principles. Tools such as Apache Kafka, RabbitMQ, and
AWS EventBridge can enable event-driven architectures.

Isolate Failure and Fault tolerance: Microservices should be designed to
isolate failures and to be fault-tolerant. This means that if one service fails, it
should not affect the entire system, and the system should be able to recover
quickly from failures. For example, an online banking platform may have
separate microservices for account management, transaction processing, and
fraud detection, each of which should be able to function independently in
case of a failure in other services. To isolate failures and ensure fault-tolerant
microservices, technologies such as circuit breakers (Hystrix), health checks,
and service meshes (Istio) can be used.

Inter-Service Communication: Microservices should be able to communicate
with each other seamlessly and efficiently. This requires a well-defined
API that allows services to interact with each other. For example, a travel
booking application may have separate microservices for flight booking,
hotel booking, and car rental booking, each of which needs to communicate
with the others to provide a seamless booking experience for the user. Inter-
Service Communication: Inter-service communication can be facilitated
through API gateways such as Kong, Apigee, and AWS API Gateway, and
messaging protocols such as REST, gRPC, and GraphQL.

18 Mastering Cloud-Native Microservices

We know success stories from Amazon, Netflix, Uber, Spotify, Etsy, and many more for
their Cloud adoption and microservices implementation. Let us discuss some relatively
smaller but smart implementations and how they got benefitted for the same.

Short case study 01: Snap on AWS

This case study is one of many examples of start-ups leveraging cloud technologies
and scaling up as required. With AWS pay-as-you-grow cloud computing, Snap
avoided any upfront capital costs for building the platform. As shown in Figure 1.5:
Snap on AWS case study snippet explaining their adoption story.

Snap on AWS
“Snap was born in the cloud — launching its flagship app, Snapchat, in 2011 on a cloud-native,

monolithic architecture. As the app grew in popularity, Snap migrated to a microservices architecture

on Amazon Web Services (AWS) to improve scalability, optimize availability, minimize latency, and
reduce costs. On AWS, Snap now supports more than 306 million Snapchat users sending over 5.4
billion Snaps daily with 20 percent less latency than its prior architecture. Freed from managing
infrastructure, Snap engineers can focus on developing new, unique offerings, such as Bitmoji TV,
which renders users’ Bitmoji avatars as the stars of personalized, animated videos in real time with the
compute power of Amazon Elastic Compute Cloud (Amazon EC2) G4 instances. Snap continues to

innovate on AWS, experimenting with new services and features to enhance visual communication

and storytelling for its users.” * Above reference is from
https://aws.amazon.com/solutions/case-studies/innovators/snap
Figure 1.5: Snap on AWS Case Study

What can we learn from this example?

¢ Cloudisagreatoption forastart-up as thereis not upfront capital expenditure.

¢ There is a need for continuous optimization whether it is cost, performance,
technology, business.

e (Cloud native services will help your organization get maximum advantage
of cloud adoption.

¢ Building low-latency, near real-time messaging architecture that handles
over 10 million transactions per second is not efficient on any of the on
premise data centre.

¢ In their phase two: Snap runs on Amazon EKS to evolve from a monolithic
architecture to providing a secure, fast, and highly scalable micro services
infrastructure.

Cloud-Native Microservices 19

e Migrating to Amazon DynamoDB is again not just lift and shift operation
rather they re-architect the data for better scalability and performance.

e Despite the short timeline and high pressure, Security is ensured, and
Continuous Integration and Continuous Delivery are used.

Short case study 02: Wynk Music App

In this case study, Wynk wanted to re-architect and re-build their existing monolithic
application stack into a Cloud Native Microservices architecture to support a large
customer base and expand it. Re-architecting is meant to create an open and loosely
coupled integration landscape that can connect various new features that can be
released within 2 to 4 weeks. For example, as illustrated in Figure 1.6: Wynk Music
App case study snippet explaining their adoption story.

Wynk Music App by Airtel Raises the User Experience Bar with Amazon EKS

“Wynk Music—a leading music streaming service in India with 72 million monthly active users and more
than 14 million tracks in its content catalog. To grow its music subscription revenue, Wynk sought to offer a
high-quality search and discovery experience where users have easy access to their desired content with a
single click. Wynk sought assistance from Amazon Web Services (AWS) to launch its new Content
Discovery platform, where users are given real-time tailored music recommendations. To create an agile and
horizontally scalable infrastructure to support the new Discovery platform, Wynk moved its monolithic
applications to Amazon Elastic Kubernetes Service to easily start, run, and scale Kubernetes applications in
the AWS Cloud. By running AWS EKS, the Wynk DevOps team has around 100 microservices live in
production at any time, while reducing development time for new customer services from 2 weeks to 4 days.

With a microservice-driven approach using AWS EKS, Wynk’s DevOps teams can run, scale and test tasks

independently and in parallel resulting in faster services creation.”
* Above reference is from https://aws.amazon.com/solutions/case-studies/wynkmusic-eks

Figure 1.6: Wynk Music App by Airtel Case Study

What can we learn from this example?

¢ Scalability is a key feature of Cloud and that helps where we need to multiply
user base.

e They have implemented microservice (100 microservices in prod at any
given point in time).

e Significantly reduced development and release time which is critical factor
for time to market.

e No better way to manage such a large amount of events per second.

e Data Analytics used for generation recommendations.

20 Mastering Cloud-Native Microservices

¢ DevOps implementation for end to end ownership for each of the
microservices.

e Used Amazon EKS to easily maintain Kubernetes clusters.

e Significantly saved on infrastructure provisioning because of auto scalability.

The biggest challenges with microservices
adoption

By now we have seen some of the good examples of implementing Cloud-native
microservices but it is critical to know the possible pitfalls. Let us discuss: What
could possibly go wrong?

There are a lot more moving parts in microservices than in traditional applications,
which requires new skills and new ways of working. An organization won't be able
to realize the full potential of microservices unless they develop, deploy, run, and
maintain them strategically. Here are some scenarios that could lead to failure.

e (Cost of innovation and ROI

O

Certainly, we will need to invest time, money, and people for innovation
anything and to take idea from POC stage to Production. ROI would
matter for building a business case and the same is true for modernization
of your workloads / applications. Usually ROI will be based on reduced
costs, greater operational efficiency, and improved software developers’
productivity.

e Why not invest in another SAAS product?

O

Application modernization is the process of updating old applications to
make them more efficient, reliable, and profitable. We can achieve that by
updating, rehosting, or replacing.

Update: Rewriting or redesigning the entire code or certain parts of the
code to bring the app back to life.

Rehost: Migrating an application from a mainframe/legacy/on-prem
datacentre to another infrastructure, usually the cloud.

Replace: Remove the legacy app and replace it with a brand new SAAS-
based software system. Usually, this approach is beneficial when we
consolidate and retire multiple legacy applications with a mature SAAS
product.

e Increased resource usage and network communication

Cloud-Native Microservices 21

o Due to their self-contained nature, microservices rely heavily on
networks for communication. As a result, there may be slower response
times (network latency) and an increase in network traffic.

e Difficult in Global Testing and Debugging

o Because microservice-based applications are distributed across multiple
servers and devices, testing and debugging them can be challenging. To
test and debug an application effectively, you need to be able to access all
the servers and devices in the system. The process can be challenging in
large, distributed systems.

e Integration between different APIs, communication protocols

o Communication overhead increases when an application is divided
into multiple smaller modules. When handling requests between
modules, developers must take extra care. It might be necessary to use
an interpreter/converter if different systems communicate in different
ways which will increase complexity.

o Dependency management between services will required additional
effort.

o Microservices can create information silos if not planned properly.
o [Extensive monitoring and logging required.

e Skill gap is another big issue in our industry

It's true for both legacy and latest technologies. Microservices implementation
would require individual with both technical and domain understanding.

Basically, overall management, planning and execution is not an easy task as there
are many moving parts right from Monoliths to Microservices design conversion,
from Waterfall to DevOps adoption, Microservices + DevOps + Cloud + Cloud
Native adoption, technology upgrading (leveraging open-source technologies), API
integration.

Let us see some more examples as case studies:

Short Case Study 03: UPWARD, Inc.

In this case study, UPWARD wanted to accelerate its business growth by overhauling
its entire infrastructure. They wanted to develop high-quality code, increase
scalability, and improve release times while reducing costs. With Infrastructure
as Code (IaC), UPWARD has been able to standardize infrastructure design and
streamline all changes by using PaaS (Cloud-Native) and modernize applications

22 Mastering Cloud-Native Microservices

with a Microservices architecture. For example, as illustrated in Figure 1.7: UPWARD
case study snippet explaining their adoption story.

/ UPWARD, eyeing enterprise markets at home and abroad, migrates service platform to \

Azure for cloud service innovating last one mile of sales

“UPWARD, Inc., a provider of UPWARD, a cloud service for sales engagement (SanS) combining GIS and
CRM, has migrated part of its service platform to Microsoft Azure. By changing from its lanS-based
architecture to a microservices architecture and combining the new architecture with Azure’s PaaS, the
company has gained the reliability required of an enterprise system and the speed and agility to respond to
changes in the environment. The goal of the new platform is to provide a service that can be used in sales fields

without being conscious about the complex functions of CRM.”

* Above reference is from https://customers.microsoft.com/en-us/story
Figure 1.7: UPWARD Case Study

What can we learn from this example?

e Rebuilding platform from laaS to Azure PaaS to meet enterprise needs,
aiming to improve security, scalability, and operability.

¢ Many organizations initially prefer IaaS approach to start cloud journey
mainly because of their comfort level with somewhat similar to on-premises
setup.

¢ Cloud native and microservices adoption gives much better flexibility, and
scalability.

e By automating continuous integration pipelines and environment builds
using infrastructure as code, you can achieve a quick and cost-effective
development and release cycle.

e Low latency applications are critical to bringing more digital experiences to
stakeholders, including end users in this case. In addition, it is essential to
monitor across layers of applications.

e Microservices and PaaS solution works well for flexible scaling of applications
and platforms.

e Seamless Worldwide scalability can be achieved with ease once you are on
Cloud.

Cloud-Native Microservices 23

Short Case Study 04: The Government of
India Powers a Population-Scale Vaccine

Drive

In this case study, we will see how technology help in a fight against COVID-19. We
have seen significant usage of technology right from contact tracking to seamless
vaccination drives. In this scenario need to have a scalable solution that can be rolled
out quickly cannot be fulfilled easily without Cloud adoption. As shown in Figure
1.8: The Government of India Powers a Population-Scale Vaccine Drive case study
snippet explaining their success story.

The Government of India Powers a Population-Scale Vaccine Drive on AWS
“Government of India, needed a highly reliable, scalable, and resilient technical infrastructure to power a large-
scale COVID-19 vaccination drive for India’s more than 1.3 billion citizens. The result was a microservices-
based, cloud-native architecture developed from the ground up. Using the elasticity and agility of AWS-
managed solutions, the Ministry launched the Co-WIN application quickly at population scale. It scales in
seconds to handle user registrations and consistently supports 10 million vaccinations daily. When application
access opened to those in the 18-44 age group, unprecedented traffic volumes saw the solution scale in 1
minute from 6,000 requests per second to 46,000 requests per second.

Delivering fast scaling without the requirement to manage servers, the solution relies on Amazon DynamoDB,
a fully managed, serverless, key-value NoSQL database designed to run high-performance applications at

virtually any scale. The use of Elastic Kubernetes Service - a managed container service to run and scale

applications—also helps to deliver performance and high availability.”

* Above reference is from https.//aws.amazon.com/solutions/case-studies/meity-gov-india-case-study

Figure 1.8: The Government of India Co-Win Vaccine Drive Case Study

What can we learn from this example?

e Cloud native microservices proven to be best solution to develop a secure,
resilient architecture and to deliver a solution that required high-performing,
reliable, cost-effective infrastructure for rapid scaling to handle huge surges
in demand.

e It is a smart user interface and providing a single source of truth for the
administration and tracking of vaccinations. “Co-WIN made it easier
for people to get vaccinated generate certificates, linking it with Aadhaar
(individual identification number).

e Performance is excellent, and the application runs smoothly and flexibly
(worked well for 1.3 billion Indians).

24 Mastering Cloud-Native Microservices

SWOT analysis for your application stack

We are going with the assumption that you are familiar with the basics of Cloud if
not Cloud native with an understanding of Microservices at a high level. You might
be implementing Cloud Native Microservices, or maybe you are looking for ways to
start a digital transformation journey.

During the past few years, we have moved from the cloud age, when resources
needed to run applications could be rented in the cloud as a service, to the cloud
native age, where applications are built to maximize elasticity and resilience in the
cloud by being purpose built and optimized. Although the advantages are clear,
adoption is not straightforward as it requires re-structuring and re-designing of
current applications and infrastructure. Need to build and implement distributed
systems, microservices, containers, serverless, and other emerging technologies and
architectures.

So we have started with our key question “Is it the right choice for your next application?”

It can be answered once we have a clear understanding of how this technology
approach will impact my business objectives, what the investment would be, and
when it would be implemented in terms of timelines.

SWOT analysis for an application stack deposition for a cloud-native microservices journey:

Strengths:

e Scalability: Cloud-native microservices can be scaled up or down easily to
handle traffic spikes or sudden changes in demand.

e Agility: Microservices are designed to be modular and independent, making
it easier to add new features or modify existing ones without affecting the
entire application.

e Resilience: Cloud-native microservices are designed to be fault-tolerant,
with automated failover and self-healing capabilities.

e DevOps integration: The use of DevOps practices in a cloud-native
microservices environment enables teams to release software more frequently
and with greater confidence.

e Cost efficiency: Cloud-native microservices are designed to use resources
efficiently, which can lead to cost savings.

Weaknesses:

o Complexity: Managing a cloud-native microservices environment can be
complex, especially as the number of services and components increases.

¢ Inter-service communication: As microservices communicate with each
other via APIs, there may be a risk of performance issues or failure if the API
isn't designed properly.

Cloud-Native Microservices 25

e Security: Cloud-native microservices environments can be vulnerable to
security threats, such as unauthorized access, data breaches, or API attacks.

e Overhead: The use of container orchestration platforms like Kubernetes
adds an additional layer of complexity and overhead.

Opportunities:

e Innovation: Cloud-native microservices provide an opportunity to innovate
and create new services or features quickly and easily.

e Competitive advantage: By leveraging cloud-native microservices,
organizations can gain a competitive advantage by delivering software
faster and more efficiently.

¢ Collaboration: Cloud-native microservices enable teams to work together
more closely and collaborate on code, which canlead toincreased productivity
and efficiency.

Threats:

¢ Vendor lock-in: If an organization relies heavily on a specific cloud provider
or container orchestration platform, it may be difficult to switch to another
provider or platform.

e Adoption challenges: The adoption of cloud-native microservices may
face challenges, such as resistance from legacy systems, lack of expertise, or
difficulty adapting to new processes and workflows.

o Integration issues: Integrating cloud-native microservices with existing
systems and applications may be challenging, especially if they were not
designed to work together.

¢ Compliance and governance: Cloud-native microservices may be subject to
regulatory compliance requirements, such as GDPR or HIPAA, which can be
complex to manage.

The goal of cloud native applications is to maximize the potential of cloud
computing by optimizing their environments to achieve transformational business
and digital outcomes and microservices go hand in hand when it comes to actual
implementation. To understand better, we need to perform a SWOT analysis for the
applications in scope and decide on their deposition in terms of refactor, re-platform,
repurchase, re-host, relocate, retain, retire.

We need to understand that there is a big difference between application being Cloud
ready and Cloud native. Cloud ready application is the one which can be deployed
on cloud as Software used currently will work as is on Cloud environment at least
as a IAAS option. Whereas Cloud native application will be utilizing economies
of scale and designed for distributed computing. It is elastic, easy to deploy and

26 Mastering Cloud-Native Microservices

manage on demand, and resilient to failures. It is recommended to refer “Table 1.1:
Capability Maturity Level’ while evaluating your own setup / applications / data
centre in scope.

As an example, let us take a look at a relatively simple case where moving workload
and storage to the cloud seems obvious. In reality, it is still a complicated process
involving multiple applications and hundreds of interfaces. So we need to perform a
detailed discovery exercise for deciding eventual deposition of our set of applications.

Short case study 05: IMDb Video Team
Builds Strategies for the Future

In this case study, IMDb needs a reliable, secure and a mechanism to search and
recommend fast for a consistentengagement with user base. Cloud base Infrastructure
and storage is in any case best fit solution and now they can introduce this customer
base to newer services just by plug and play approach (adding new functionality as
and when required). In Figure 1.9: IMDDb Video Team Builds Strategies case study
snippet explaining their adoption.

/ IMDb Video Team Builds Strategies for the Future Using AWS \

“IMDb is a popular and authoritative source worldwide for movie, TV, and celebrity content, designed to help fans

discover and decide what to watch. The IMDb consumer site has a combined web and mobile audience of more than

200 million monthly visitors.

The IMDb Originals & Events team of producers, editors, and motion designers creates extensive original video
content each year. The team needed an infrastructure that could support access to its millions of digital raw media
assets and archive them securely. The team was previously using on-premises content storage and web-based file

hosting services for storage and distribution.”

* Above reference is from

https://aws.amazon.com/solutions/case-studies/imdb-video-case-study
Figure 1.9: IMDUb Video Team Case Study

What can we learn from this example?

e Amazon Simple Storage Service (Amazon S3) used for a cost-effective,
scalable archive solution to future-proof these assets.

¢ In this case it is sound like an easy decision but look at the volumes, number
of events per day you will understand complexity.

e It is even more mission critical as fans are waiting for certain movie or
supports event and hence timely delivery is crucial factor to manage.

Cloud-Native Microservices 27

Redundantly store data on a number of devices across multiple Availability
Zone is another design factor.

Let us go back to our discussion on how to decide on your applications deposition?

Cloud-first strategy and migration are not a destination, but a step towards
innovation-friendly environments. Following section is from Cloud migration
perspective as modernizing application to be Cloud native and microservices is one
of the deposition category for you cloud strategy.

This scenario would sound similar once you analyse your application stack and
on-premises data centre. We will experience following situations, once we start
analysing our workload for categorization under eventual application deposition.

A renewed digital strategy requires modernizing IT infrastructure
provisioning as infrastructure as code (IaC).

It involves re-designing and fixing decades of legacy architecture with
limited documentation.

Due to multiple other dependencies, timelines would be another issue.

Re-platforming and refactoring accounted for XX% usually higher percent
of all applications.

Additionally, a X% of all legacy app were decommissioned, reducing
technical debt.

Modern SAAS applications were also used to replace legacy applications.

Usually the existing workloads will be categorised under one of the popular
6R category i.e. Re-host, Re-platform, Re-factor/Re-architect, Re-purchase,
Retire and Retain.

While analysing workload / applications we need to define its complexity
in term of t-shirt sizing and again that process needs to be mathematically
designed based on number of interfaces, volumetric, technology stack,
disaster recovery requirements and the like.

Applications do not work in isolation and hence we need to create move
groups of application that work as a unit or have strong dependencies between
them. Therefore, their deposition plan, timelines for their modernization,
migration, and cutover needs to be aligned.

Cloud migration is not just about moving your application stack to the cloud; it
is an iterative process of optimization to decrease costs, improve performance and
flexibility and reach the full potential of the cloud. The journey would be unique for

28 Mastering Cloud-Native Microservices

every organization, as there is no one-size-fits-all migration plan / strategy available.
We can discuss industry best practices and success stories to define a roadmap for our
own journey. Both aspects of Cloud-Native Microservices are covered in this book,
whether it is application modernization or building/designing a new application
based on the Cloud-Native Microservices design pattern.

Conclusion

Investing in People, Process, and Technology:

Will Drive Success in the Cloud Native and Microservices Landscape

Innovation and modernization are more needed than ever to meet rising demands
and expectations from IT / Software teams. No matter whether you are modernizing
your existing application stack or migrating / optimizing workloads to use cloud
native or you are building a new set of applications directly on the cloud utilizing
cloud native microservices principles. Another key aspect we have discussed it to
invest in all three key pillars i.e. People, Process, and Technology as they have hard
dependency on each other.

We will need to deep dive into many other areas in and around Cloud Native and
Microservices for analysing, and finalizing an efficient solution. For example, Hybrid
and Super Cloud (multi-cloud) application platform and now to balance between
cloud-native and cloud agnostic. Similarly, other key area for a deep dive would
be DevOps, Serverless, API management and Mainframe modernization. From this
chapter take away would be the clarity around Capability Maturity Levels, Play
Book for Cloud-native Microservices adoption framework, applications deposition
strategy, and What all can we learn from those short case studies.

In next chapter we will deep dive into Modern Application Design Principles
covering 12-Factor application methodology for building Cloud-native Microservices
applications, Modern application design requirements.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

R0
()

4 & CHAPTER 2
Modern
Application
Design Principles

Building the Future with Modern Application Design Principles

Introduction

Modern application design principles refer to the set of best practices, techniques,
and strategies used to design and develop software applications that can meet
the evolving needs and requirements of today's enterprises. The goal of modern
application design is to create software applications that are scalable, reliable, secure,
and can be easily maintained and updated.

During uncertain times like the Covid crisis and war situations, modern application
design principles become even more critical for businesses. Companies need to adapt
quickly to changing market conditions and customer needs. Modern applications
can help businesses to respond rapidly to changing market dynamics and customer
requirements, enabling them to remain competitive and profitable. For example,
during the Covid crisis, many companies shifted their operations online to reach
customers at their doorsteps. This required modern applications that could provide
seamless online experiences for customers, such as e-commerce platforms, video
conferencing, and online collaboration tools. Companies that had invested in
modern application design principles were better equipped to handle the sudden
shift to online channels and were able to continue serving their customers.

Technologies such as Artificial Intelligence, IoT, 5G, Cloud Computing, and
cybersecurity are critical components of modern application design principles.

30 Mastering Cloud-Native Microservices

These technologies help businesses to build applications that are scalable, reliable,
secure, and can be easily maintained and updated.

In this chapter, we will review the 12-Factor application methodology for building
Cloud-native microservices applications that offers portability, agility, and scalability.
In addition to that we will discuss about additional key aspects / X-factors based on
industry experience and modern application needs. In order to increase innovation
and create new customer experiences, organizations must modernize how they
build and operate applications. The latest application development paradigm
enables you to rapid innovation by using cloud-native architectures, loosely coupled
microservices, DevOps, managed databases, as well as built-in monitoring and self-
healing mechanisms. So the key question for this chapter would be What are the
modern application design requirements and how can we achieve them.

Structure

In this chapter we will discuss following topics:
e Modern application design requirements
o Availability
o Scalability
o Performance
o Observability
o Security
o Resiliency
o Cost optimization
o Portability, being Cloud-Agnostic
o Cloud-native
o AI/ML enabled
o DevOps delivery
o Sustainability
e The Twelve-Factor App methodology
o Codebase: One codebase tracked in revision control, many deploys

o Dependencies: Explicitly declare and isolate dependencies

Modern Application Design Principles 31

o Config: Store config in the environment

o Backing services: Treat backing services as attached resources
o Build, release, run: Strictly separate build and run stages

o Processes: Execute the app as one or more stateless processes
o Port binding: Export services via port binding

o Concurrency: Scale out via the process model

o Disposability: Maximize robustness with fast start-up and graceful
shutdown

o Dev/prod parity: Keep development, testing, staging, and production
as similar as possible

o Logs: Treat logs as event streams

o Admin processes: Run admin/management tasks as one-off
processes

¢ Going beyond the twelve factors:
o API First
o Security

e Conclusion

Objectives

The purpose of this chapter is to provide you with the details of modern application
design requirements along with the Twelve-Factor App methodology. The following
principles will come in handy whether you have to design an entirely new application
directly on the cloud, or if you want to modernize your legacy workload using
microservices. These will be your design principles for building complex mission
critical production systems.

Modern application design requirements

Firstly, let us list the core requirements for a modern application, and then we will
try to understand the way to achieve them (will share some examples from the major
Cloud service providers). There can be addition design requirements based on the
type of workload but in any case would be most recommended set. For example, as

32 Mastering Cloud-Native Microservices

illustrated in Figure 2.1: Modern Application Design Requirement will have these as key
components.

/ Modern Application Design Requirements \

Availability Scalability Performance Observability
Cost Portability,
Security Resiliency NS being Cloud-
Optimization .
Agnostic
Cloud-native AI/ML enabled Dex.fOps Sustainability
Delivery

\ Figure 2.1: Modern Application Design Requirements /

Availability

Typically, availability is planned and configured between 99.9% to 99.999%, for
Production systems. Modern application design principles dictate that there should
be no single point of failure, and continuous monitoring should be in place to detect
failures and trigger failover mechanisms. It's important to carefully evaluate the
need for high availability on a per-application basis, as implementing HA solutions
can add to the overall cost and complexity of operations. To ensure high availability,
modern applications should be designed to be fault-tolerant, meaning that they
are able to continue functioning even in the event of hardware or software failures.
This can be achieved through techniques such as redundancy, load balancing, and
automatic failover. In addition, continuous monitoring and proactive management
are essential for detecting and addressing issues before they impact users.

When evaluating the need for high availability, it's important to consider the
potential impact of downtime on the business. Applications that are critical to
business operations or customer experience may require higher levels of availability,
while others may be able to tolerate more downtime. It's also important to consider
the cost and complexity of implementing high availability solutions, as well as the
ongoing maintenance and management required to ensure they continue to function

properly.

e For example, let us review some of the Azure Cloud availability options (all
other major Cloud provider will have similar options).

Modern Application Design Principles 33

o We should select multiple Availability Zone (AZ is a physically
separate location within an Azure region). There are three Availability
Zones per available per Azure region.

o Azure virtual machine scale sets (VMSS) allows you to create and
manage a group of load-balanced virtual machines. The number of
VM instances can auto-scale in response to demand or a schedule.

o Azure's availability sets enable it to understand how your application
is designed to provide redundancy and availability.

o The Azure Load Balancer that distributes traffic between multiple
virtual machines and can be combined with an availability zone or
availability set to get the most application resilience.

o Multiple copies of your data are stored in Azure Storage to safeguard
against planned and unplanned events, such as hardware failures,
network outages, and massive natural disasters.

o Azure Site Recovery is used to replicates workloads running on a
virtual machines (VMs) from one primary site to another, ensuring
business continuity and disaster recovery.

Scalability

Scalability is usually a concern when volumes are large or subject to sudden spikes.
In the previous section, we mentioned VMSS and it is more of a scalability solution
for VMs. Cloud scalability refers to the ability to scale up or down cloud resources
according to demand. Cloud computing allows companies to better manage their
resources and costs, which is one of the main benefits of using it. Another benefit of
cloud scalability is that it enables businesses to make architectural decisions that are
more dynamic and adaptable to changing business requirements. Unlike traditional
static architectural decisions that may hinder a system's ability to meet changing
business needs, cloud scalability allows for more dynamic decision-making that can
better support evolving business requirements.

For example, for a major launch or event, organizations do not have to overhaul their
infrastructure as they would with on premise solutions. Traditionally, organizations
that have not yet adopted the Cloud have gone through days or even months of
preparation before a major release, like the iPhone launch, or before a large sporting
event, like the World Cup. Traditionally, architectural decisions are implemented as
static, one-time events, with a few major versions of a system over its lifetime. As a
business continues to evolve, these initial decisions might hinder the system's ability
to deliver changing business requirements.

34 Mastering Cloud-Native Microservices

Performance

Performance is a critical consideration for mission-critical applications in every
organization, as these applications can have a direct impact on revenue or customer
experience. In today's fast-paced digital world, users expect high performance and
quick response times from the applications they use. As a result, organizations need
to design and implement applications that can handle high volumes of traffic and
requests without experiencing performance degradation or downtime.

Cloud-native microservices architecture is well-suited for high-performance
applications. With microservices, applications are broken down into smaller,
independent services that can be scaled and optimized individually. This allows
organizations to isolate and address performance bottlenecks in specific services
without affecting the performance of the entire application. Moreover, cloud-native
microservices architecture is highly scalable and can handle large volumes of traffic
and concurrent users without impacting performance. Cloud providers offer a range
of services and tools that can be used to optimize application performance, such as
load balancers, auto-scaling, and content delivery networks (CDNss).

In addition to this, cloud-native microservices architecture allows for the use
of modern programming languages and frameworks that are optimized for
performance. For example, many microservices are built using container technologies
like Docker and Kubernetes, which provide low overhead and fast startup times.
These technologies allow for efficient use of resources and can reduce the overall
infrastructure requirements needed to support high-performance applications.

For example, there is another category of use cases that require extensive calculations
and high speed such as weather forecasting and risk assessment. These compute-
heavy and data-intensive workloads that need to process complex simulations
(some including terabytes of data) would gain a significant advantage in Cloud.
On-premises solution for such a scenario would be much more expensive because
of the initial high procurement cost, secondly, aging hardware will impact the total
cost of ownership.

Observability

The ability to observe a system's current state based on its logs, metrics, traces,
application processes, data processes, and hardware processes is what defines
observability. You cannot analyse and fix problems at the speed you need if you
cannot monitor your servers, containers, and data in the cloud.

Monitoring dashboards used in earlier scenarios are usually configured so that they
alert you to performance issues you may encounter / expect to see later. It is assumed
that you can predict what problems will arise before they occur in these dashboards
and then it is configured to monitor the same possible scenario. On the other

Modern Application Design Principles 35

hand, cloud-native observability does not just mimic what logging, tracing, and
monitoring apps did before the cloud. Observability is where an environment has
been fully designed to capture complete observability data. With this data, you can
investigate what is going on and identify the root cause of issues you may not have
been able to anticipate. It helps accelerate DevOps adoption because it allows you to
identify and rectify issues occurring between different projects and containers.

For example, observability is extremely helpful to cross-functional teams in
enterprise environments in figuring out what is happening in highly distributed
systems. It is possible to improve performance if you are able to observe what is
slow or broken. When teams implement an observability solution, they can receive
alerts about issues and resolve them proactively before users are affected.

Security

Security is a critical aspect of modern application design, and it is a top priority
for most organizations when moving or expanding to the cloud. Adopting cloud-
native microservices design patterns can significantly enhance an organization's
cybersecurity posture. Here are some tips to keep your cloud data secure:

e Application Gateway with WAF: Application Gateway is a web traffic load
balancer that helps manage traffic to your web applications. It can make
routing decisions based on additional attributes of an HTTP request, such
as URL path or host headers. You can deploy Web Application Firewall
(WAF) on Azure Application Gateway or WAF on Azure Front Door Service
to make it more secure.

e Protect data using encryption: Data encryption at rest and in motion is
crucial. For example, AES-256 encryption should be used, and enhanced
data protection should be implemented with encryption at all transport
layers, file shares, and communication channels.

¢ Key Vault: It should be used to securely store and tightly control access to
tokens, passwords, certificates, API keys, and other secrets. For example,
Azure Key Vault (AKV) is a recommended solution for key management
on Microsoft Azure Cloud. AKV makes it easy to create and control the
encryption keys and other certificates.

e Multi-factor Authentication (MFA): MFA is an excellent way to secure
logins, and it is commonly used these days in financial transactions,
connecting to official websites, and more. It usually includes passwords,
security questions, captcha, apps that authenticate, OTPs via SMS or calls,
and even biometric data.

¢ DevSecOps and Automation: Organizations that have adopted the highly
automated DevOps CI/CD culture must ensure appropriate security controls

36

Mastering Cloud-Native Microservices

are identified and embedded in code and templates as early as possible in
the development process.

Zero Trust: In cloud security, zero trust means not automatically trusting
anyone or anything within or outside the network and verifying (i.e.,
authorizing, inspecting, and securing) everything. It promotes a least
privilege governance strategy where users/individuals are only given access
to the resources they need to perform their duties.

Implement Email Security System: Many cyberattacks, such as phishing
and malware attacks, begin with an email. Having an effective email security
system and user awareness training in place will help prevent such situations.

Ensure Software and OS Patches are updated: It is a very common and
obvious measure that is often overlooked. In recent years, the majority of
large-scale attacks have taken advantage of systems and devices that have
been left vulnerable due to ignored updates. The purpose of patches is to
address critical vulnerabilities.

Resiliency

It is true that cloud resilience cannot be achieved unless it is designed, implemented,
and maintained. The question is, how can an organization ensure that they get it
right from the start?

Define Resilience: Before embarking on the four-step process, it's important
to have a clear understanding of what resilience means for your organization.
Define what resilience means in the context of your cloud workloads and
what outcomes you are looking to achieve. This will help ensure that the
steps you take are aligned with your goals.

Consider Risk Assessment: In addition to assessing business resilience
requirements, it's also important to perform a risk assessment. Identify
potential risks that could impact the availability, performance, or security
of your cloud workloads. This will help inform your resilience strategy and
ensure that you are prepared to address potential issues.

Implement Automated Failover: One key aspect of cloud resilience is the
ability to quickly recover from failures. Implementing automated failover can
help reduce downtime and ensure that your applications remain available.
This can be achieved through the use of load balancers, auto-scaling, and
other automation tools.

Monitor and Continuously Improve: Resilience is not a one-time effort, but
an ongoing process. It's important to monitor your cloud workloads and
resilience strategy on an ongoing basis and make adjustments as needed.

Modern Application Design Principles 37

This can help you identify and address issues before they become major
problems.

¢ Consider Redundancy and Replication: Resilience can also be achieved
through redundancy and replication. This means having multiple copies
of your data and applications in different locations to ensure availability in
the event of a failure. Consider implementing a multi-region deployment
strategy to ensure that your applications remain available even if an entire
region goes down.

e Have a Disaster Recovery Plan: In addition to implementing a resilience
strategy, it's also important to have a disaster recovery plan in place. This
plan should outline the steps to take in the event of a major outage or disaster,
including how to recover your data and applications and restore service to
your customers.

Cost optimization

By using cloud cost optimization, you can reduce your overall cloud spend by
identifying mismanaged resources whetheritis VM's, memory or storage, eliminating
waste or ideal capacity, reserving capacity for higher discounts, and right-sizing
computing services. By designing your application for scalability and consuming
services as you go, the cloud gives your organization unlimited scalability and
lower costs. However, we need to understand that Amazon Web Services (AWS)
and Microsoft Azure, or any other cloud for that matter will charge customers for
the resources they order, whether they use them or not. There is solution to fine tune
your expense by going serverless, or implementing other cost optimization tools.

Cloud Cost Optimization strategy would include:

¢ Find Unused or Unattached Resources: There are unused or unattached
resources that can simply be removed to optimize cloud costs. Many a time
your cloud admin or developer might "spin up a resource" a temporary server
or attach some storage or memory to perform a task or test and then forget
to remove it afterward. You will be surprised at the number of development
and testing environments per application. We can save significantly once
we develop governance and accountability mechanisms (easy to do for non-
prod env's).

¢ Identify and Consolidate Idle Resources: There are idle resources sometimes
as your consumption forecast or consumption trends changed and that
would be the next step in optimizing cloud computing costs. It is possible
for an idle computing instance to have a CPU utilization level between 1 to
10%. Enterprises waste a significant amount of money when they receive a
bill for 100% of their computing instance which is actually almost ideal most

38 Mastering Cloud-Native Microservices

of the time. This can be one of the drawbacks of implementing microservices
without considering resource consumption overhead.

¢ Right Size Computing Services: Computing services are right-sized
by analysing them and modifying them accordingly. Provides cloud
optimization, which means getting the most out of the resources you are
paying for. For example, cloud cost optimization relies heavily on heat maps.
It is a visual tool that shows how computing demand peaks and valleys over
time. Since cloud elasticity allows us to expand on demand, we no longer
need to provision for peaks.

e Investin Reserved Instances: Investing in reserved instances is a smart idea
for enterprises that intend to use the cloud for the long term especially when
we know our consumption trends. In exchange for an upfront payment and
time commitment, these discounts are large. It is crucial to optimize cloud
costs through RI, as savings can be as high as 75%.

Portability, being cloud-agnostic

The portability of cloud services refers to the ability to move applications or data
from one cloud service provider to other cloud service provider (CSP) without the
need to rewrite the code or restructure the application. Enterprises using public cloud
services are increasingly relying on cloud-agnostic development strategies. Being
cloud-agnostic is a key feature that businesses are looking for to manage cloud costs.
As a result of this portability, they will be able to switch between providers based
on performance and cost-efficiency. It is possible to gain edge computing benefits
by using different providers based on the region. Flexible, reliable, and avoiding
vendor lock-in are some of the benefits of this approach.

For solution to be cloud agnostic all its tools, platforms, applications, and pipelines
should be compatible with any other cloud service provider infrastructure and can
be moved between cloud environments without any code change. However, there
are certain drawbacks to this approach as it limits the use of Cloud-Native options
and to maintain this level of portability you will need to invest more while migration
and maintaining these applications.

e Costs & Complexity upfront: Being cloud-agnostic can save time, money,
and stress in the long run, but it also requires more upfront work. Initial
development costs and complexity are likely to increase if you develop an
agnostic cloud strategy from scratch, regardless of which workloads you
plan to run in the cloud.

Modern Application Design Principles 39

¢ Inability to use vendor-specific features: In a strictly cloud-agnostic strategy,
it may be difficult to take advantage of new features introduced by AWS,
Microsoft Azure, Alibaba, Google Cloud Platform, or another large provider.
For example, the Amazon Relational Database Service (Amazon RDS) is a
cost-effective, easy-to-set-up, operate, and scale managed database service
in the AWS cloud environment, although it does not support cloud-agnostic
features.

e Terraform (HashiCorp): With HashiCorp Terraform, infrastructure can be
defined as code (for example, instead of cloud-specific scripting for ARM
temples in Azure). Additionally, the organization must maintain these
scripts if it wishes to switch providers at any time. Scripts for different cloud
providers require developers to have a certain level of knowledge about each
platform. This is because they should know about what type of instance is
spun up and what size the instance should be. There are other configuration
tools, such as ansible, chef, and puppet, that have similar abilities while
having specifics of their own.

e Interface Layers and Design Patterns: Even though multiple vendors
provide similar services, the interface to these services may differ. As a result,
the application design can have separate service layers to reduce the friction
in porting services between them. Similarly, vendors recommend various
design patterns that are cloud-native, but their implementations are different
from one cloud provider to another. Therefore, in a way we have to limit
ourselves to the lowest common denominator.

Cloud-native

For this section, let us not discuss Cloud-native in detail as we will be going in
depth of Cloud-native design principles, patterns with scenarios in coming chapters.
At high level Cloud-native refers to an approach to software development and
deployment that leverages cloud computing services, infrastructure, and platforms
to build and run applications that are optimized for the cloud environment. Cloud-
native applications are designed to be scalable, resilient, and flexible, making them
well-suited for modern, dynamic, and distributed environments.

Microservices, on the other hand, are an architectural style that structures applications
as a collection of small, independent, and loosely coupled services. Each service is
responsible for performing a specific function and communicates with other services
using lightweight protocols such as RESTful APIs or messaging queues.

40 Mastering Cloud-Native Microservices

For example, as illustrated in Figure 2.2: Cloud Native official definition from “Cloud
Native Computing Foundation’.

/ Cloud Native \

The Cloud Native Computing Foundation provides the official definition:

“Cloud-native technologies empotwer organizations to build and run scalable applications in modern, dynamic
environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable

infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with
robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal

toil.”

* Above reference is from https.//www.cncf.io
Figure 2.2: Cloud-native

Cloud-native and Microservices: They are often used together to create highly
scalable and resilient applications. For example, a company might use a cloud
platform such as AWS to host a microservices architecture for their e-commerce site.
Each service could be designed to handle a specific task, such as processing orders,
managing inventory, or handling payments. By using a cloud-native approach, the
company can take advantage of the platform's scalability, availability, and elasticity
features to ensure that the application can handle large amounts of traffic and
can scale up or down as needed. The use of microservices also makes it easier to
manage the application, since each service can be developed, tested, and deployed
independently.

AI/ML enabled

With artificial intelligence and machine learning, applications can perform many
tasks that previously required humans to perform by themselves. Many businesses
are embarking on the next generation of digital transformation journey by utilizing
Machine Learning (ML) and Artificial Intelligence (AI). A business's nature and
the way that AI/ML are implemented determine the benefits we can drive.

For example, from simple product recommendations to product design optimization,
many different use cases can be implemented with the help of AI/ML. Machine
learning in a way is a subset of Al that uses deep learning with neural network
algorithms. It can recognize patterns and perform complex computational tasks
with precision. During the Covid-19 outbreak widely available chest X-ray were
used with artificial intelligence for diagnosis. COVID-19 caused pneumonia,
pneumonia, and normal CXRs as a dataset to train Microsoft CustomVision. The

Modern Application Design Principles 41

model performed with high sensitivity and accuracy. We will not be able to discuss
the AI/ML approach, technologies, and modules in detail. However, you can view
the AI/ML document on your preferred cloud platform. There are solutions and
jumpstart kits available to implement and experiment with advanced techniques
like Reinforcement learning, Data preparation and analytics, AIOps, Build and train
models and the like.

DevOps delivery

Ability to deliver quality applications and services at high velocity can be achieved
by adopting DevOps practices which is a combination of culture, process, and tools.
It aims at merging development, quality assurance, and operations (deployment
and integration) into a single, continuous set of processes. In many ways, this
methodology is an extension of the Agile and continuous delivery approaches.

As mentioned earlier it is a change in culture and mind-set. It is about breaking
down barriers between traditionally siloes development and operations teams. The
two teams work together through DevOps to optimize both developer productivity
and operations reliability.

Communication, efficiency, and quality improvement all come naturally with the
adoption of DevOps. In addition to that, quality assurance/testing and cyber-
security teams may become tight-knit as well.

Sustainability

In most cases, cloud computing is more environmentally friendly than traditional
data centres as they have greater focus and investment towards reducing the carbon
footprint. Public clouds are a greener option when compared with more traditional
on-premises computing. However, the resource your application going to consume
will be based on how efficiently it has been designed and the governance around it.
If it is not done properly then the cloud may not be green for you.

Power-optimized application development is usually not the focus area. The ability
to code and deploy an application that requires the minimum amount of power
to carry out ongoing operations. Optimized workloads would require less cloud
resources and accordingly will consume less power and less monthly expense
for cloud resources. All major public clouds are working towards lower carbon
footprints by efficiently designing their data centres and using renewable energy.

The Twelve-Factor App methodology

The Twelve-Factor App methodology for building software-as-a-service applications.
These best practices are the base designed for enable applications to be built with

42 Mastering Cloud-Native Microservices

portability and resilience. For example, as illustrated in Figure 2.3: The Twelve-Factor
Application methodology as defined by 12factor.net.

The Twelve-Factor Application Methodology

“In the modern era, software is commonly delivered as a service: called web apps, or software-as-a-

service. The twelve-factor app is a methodology for building software-as-a-service apps that:

* Use declarative formats for setup automation, to minimize time and cost for new developers joining the
project;

* Have a clean contract with the underlying operating system, offering maximum portability between
execution environments;

* Are suitable for deployment on modern cloud platforms, obviating the need for servers and systems
administration;

* Minimize divergence between development and production, enabling continuous deployment for maximum
agility;

And can scale up without significant changes to tooling, architecture, or development practices.

The twelve-factor methodology can be applied to apps written in any programming language, and

which use any combination of backing services (database, queue, memory cache, etc).”

* Above reference is from https.//12factor.net
Figure 2.3: The Twelve-Factor Application

Code base

We should track code changes for the app in a version control system such as Git
or SVN. For any changes, code should be checked out into a local development
environment. Storing code in a version control system will ensure basic hygiene
and enable our team to work together. We will have an audit trail of changes to the
code that will help in resolving merge issues, and the ability to roll back (if req.) the
code to a previous version. It also provides a place from which to do continuous
integration (CI) and continuous deployment (CD) pipelines will pick latest source
code. For example, as illustrated in Figure 2.4: Codebase is key component for
application design and deployment.

Codebase (One codebase tracked in revision control, many deploys) \
Production
Configuration @
Settings S Staging
Provisioni Source I
Sro_wtswmng Code . QA
crpts Repository -
Source —o Developer
Code </>

DevSecOps

Figure 2.4: Codebase

Modern Application Design Principles 43

For example, while developers might be working on different versions (branch) of
the code in their development environments, at any given time the single source
of truth is the code in the version control system (usually the main branch). Using
the repository code, a single build is produced, which is then combined with an
environment-specific configuration to produce an immutable release for the target
environment. Any changes/modifications should be built and deployed in a new
release.

Dependencies

In 12-factor apps, dependencies should never be implicit, and they should always
be declared explicitly and checked into version control. That way, our code can
be started quickly in a repeatable manner and dependencies can be tracked
easily. Cloud-native applications cannot rely on implicitly existing system-wide
packages. Explicitly declaring and isolating application dependencies is what this
factor focuses on. As a result, it simplifies the setup for new developers and supports
portability between cloud platforms, enabling consistency between development
and production environments.

For example, package managers such as sbt and maven can be used to manage
all application packages. Configuration management tools, such as chef, ansible,
and so on., can be used to install system-level dependencies in non-containerized
environments. Similarly, the Docker file can be used for containerized environments.

Configurations

Almost every modern app requires some level of configuration. Each environment,
such as development, testing, and production, has its own configuration. We
usually have a build (source code) + configuration specific to environments. These
configurations usually include service account credentials, environment-specific
settings (if any) and resource handles for backing services such as databases. One of
the key principles is that the configurations for each environment should be external
to the code and not checked into version control. You have multiple configurations,
but everyone only works on one version of the code. The configuration depends on
the deployment environment. Using this approach, a single binary can be deployed
to all environments, with only the runtime configuration differing. Checking whether
the configuration can be made public without revealing credentials is an easy way to
determine whether it has been externalized correctly.

For example, a better approach is to store configuration in environment variables.
A developer can easily change these at runtime for different environments, they
are unlikely to be checked into version control, and they are not dependent on the
programming language or development framework.

44 Mastering Cloud-Native Microservices

Backing services

All services that the app consumes in its normal operation, such as file systems,
databases, caching systems, and message queues, should be accessed as services
and externalized in the configuration. These backing services are abstractions of
the underlying resources. As an example, decoupling storage from the app allows
you to seamlessly change the underlying storage type when writing data to storage.
Without changing the app code, you can switch from a local PostgreSQL database to
Cloud SQL for PostgreSQL. For example, as illustrated in Figure 2.5: Backing Services
is an important application design element.

/ Backing Services (treat backing resources as attached resources) \

Application

. Database
\ Figure 2.5: Backing Services /

For example, the purpose of this factor is to treat these backing services as bound
resources. You can use bound resources to connect your application to a backing
service. Your application can consume a database resource by providing a username,
a password, and a URL.

Build, release, run

The software deployment process should be divided into three distinct stages:
build, release, and run. Every stage should produce an artifact that can be uniquely
identified. An environment's configuration and a build should be associated with
every deployment. The result is an easy rollback process and a visible audit trail of
every release / deployment.

¢ Build: We should focus on building everything needed for our application
during the build stage; packaging builds with configuration into release
artifacts and running applications should not involve additional build steps.
Abuild artifact (for example a WAR or JAR file) is created by combining the

Modern Application Design Principles 45

dependencies declared during the design phase. After a build is complete,
an environment-independent server is packaged, containing all of the
application's configuration. Especially for cloud-native applications that
need to be deployed in multiple environments, this is crucial.

¢ Release: During the release stage, output from the build stage is combined
with configuration values (both environmental and application-specific) to
produce another release. Labelling these releases with unique IDs gives the
ability to rollback to previous versions in case anything goes wrong, and
allows for historical auditing.

¢ Run: In the run stage, the application is launched using tools like containers
and processes on the cloud.

For example, as illustrated in Figure 2.6: Build, Release, and Run needs to be strictly
separated.

/ Build, release, and Run (Strictly separate build and run stages) \

Deliver
. . Notify of Notify of . Deploy
Comunit Tngger Build build Run Tests test bm.!d fo where
Change Build environ-
outcome outcome necessary
ment
CI/CD Pipeline processes should be grouped and separated under build, release, and run
' Design Build Release ‘ Run

K Figure 2.6: Build, release, and Run g j

For example, it is a standard process that each release must enforce by defining a
strict separation across the build, release, and run stages. When you commit code
that has passed all required tests, the build stage is usually triggered automatically
or we can manually run the build. During the build stage, the code is compiled,
files are fetched, and assets are packaged into self-contained binaries. During the
build stage, an artifact is created. Release stages combine the build artifacts with
environment configurations once the build stage is complete. As a result, a release is
created. Continuous deployment applications can automatically deploy the release
into the environment. Alternatively, you can use the same continuous deployment
app pipeline to trigger the release. Finally, the run stage launches and starts the
release.

46 Mastering Cloud-Native Microservices

Processes

You run twelve-factor apps in the environment as one or more processes. These
processes should be stateless (which will be useful while scaling up or down) and
should not share data with each other. Processes can also be transported across
different computing infrastructures when they are created as stateless apps.

This requires a change in how you think about handling and persisting data if you
are used to sticky sessions. Despite the fact that processes can disappear at any time,
local storage contents are not guaranteed to remain available (there are workaround
solutions like persistence storage but it is not a recommended solution). In order to
reuse data, you must explicitly persist it in a database or external backing service.
For example, as illustrated in Figure 2.7: Processes needs to be stateless.

/ Processes (execute the app as one or more stateless processes) \
I \
Process A %

Process B Process C Process D

Database Database Database
Figure 2.7: Processes

Memory stores can be used as a backing service if you need to persist data. Your
apps will be able to cache state and share common data between processes so that
loose coupling is encouraged.

For example, each microservice having its own process, isolated from other running
services. Data stores or distributed caches can be used to externalize required state.

Port binding

The port-binding factor states that cloud-native applications should export
services using port binding. The principle of port binding asserts that services and
applications are identified by their port numbers, not their domain names. By using
manual manipulation domain names and associated IP addresses can be assigned at
run time. Therefore, it is unreliable to use them as a point of reference. For example,
as illustrated in Figure 2.8: Export services via Port binding.

Modern Application Design Principles 47

/ Port Binding (Export services via port binding) \
‘ http://<a_dns>:3030 http://<another_dns>:4040 http://<some_other_dns>:5050 ‘
Service A Service B Service C

& Figure 2.8: Port Binding /

A service or application can be exposed to the network more reliably and more easily
by exposing its port number. Port binding relies on the idea that a process should be
accessible to the network uniformly by means of its port number.

For example, 0 through 1023 are the well-known ports (also called system ports).

Number Assignment
20 File Transfer Protocol (FTP) Data Transfer
21 File Transfer Protocol (FTP) Command Control
22 Secure Shell (SSH) Secure Login
23 Telnet remote login service, unencrypted text messages
25 Simple Mail Transfer Protocol (SMTP) email delivery
53 Domain Name System (DNS) service
67, 68 Dynamic Host Configuration Protocol (DHCP)
80 Hypertext Transfer Protocol (HTTP) used in the Internet
443 HTTP Secure (HTTPS) HTTP over TLS/SSL

Above list is an example only for your understanding as there are more commonly used ports
available.

Concurrency

Idea is to scale out horizontally across multiple identical processes rather than
scaling up one large instance on a higher capacity server. Scale out the application
seamlessly in cloud environments by designing it as a concurrent application.
Apps should be decomposed into separate processes based on their types, such
as background, web, and worker processes. This allows your app to scale up and
down based on individual workload demands. The principles of disposability and
statelessness are at the core of apps that are ideally suited to horizontal scaling. For

48 Mastering Cloud-Native Microservices

example, as illustrated in Figure 2.9: Concurrency should be designed as Scale out
via the Process model.

K Concurrency (Scale out via the process model) \

AN o o
Web Server 1 — 8 g
: :
s = =
© o
c =2 ==}
a Web Server 2 — F Business Services 1 E Data Storage 1
! & 3
e
Web Server 3 — Business Services 2 \ Data Storage 2

Workload Type >
Figure 2.9: Concurrency
For example, Using App Engine, you can host your apps on Google Cloud's managed
infrastructure if you are using GCP. You can have one or several instances running
at the same time, with requests being distributed among them based on the current
load. Similarly, if you are on Azure, VMSS provides scalability to add VM as per
the application needs. Automatic scaling allows you to balance performance and

cost by setting target CPU utilization, target throughput, and maximum concurrent
requests.

In addition, we will cover serverless in a later chapter. Serverless solutions such
as AWS Lambda, Azure Functions, GCP Cloud Functions, and others can be fully
managed by cloud providers and will scale as per need.

Disposability

You should treat application infrastructure / cloud infrastructure as disposable
resources. Your apps should be able to handle the temporary loss of the underlying
infrastructure and should be able to gracefully shut down and restart. Cloud-native
applications have disposable processes that can be started and stopped quickly. In
order to scale, deploy, release, or recover quickly, an application needs to be able to
start quickly and shut down gracefully.

Modern Application Design Principles 49

While your application is starting, hundreds or thousands of requests may be denied
if it takes time to reach a steady state. Therefore, there are some key design elements
to be considered:

e Utilize backing services to decouple state management and storage of
transactional data.

e Managing environment variables outside of the app allows them to be used
at runtime.

e Minimize start-up time. The start-up process will take a significant amount
of time if you are downloading and initializing several packages or binaries
(this process can be tuned).

Dev/Prod parity

It is critical to keep environments across the application lifecycle (Prod and non-
prod env’s) as identical as possible and avoid costly shortcuts. Every application
will have different environments (Prod, and Non-Prod) during its development
lifecycle. These environments are development, testing, staging, and production. We
have seen applications with 10 or more non-production environments. Therefore,
it becomes critical to keep these environments as similar as possible otherwise
debugging and environment management becomes a big overhead.

As developers have embraced source control, configuration management, and a
separate build, run, and deploy process, maintaining environment parity has become
easier. As a result, it is easier to deploy an app to multiple environments consistently.

Dev, test, and production parity can be achieved with tools like Docker. Containers
provide a uniform environment for running code, which is one of the benefits. In
order to eliminate the differences between development, testing, and production
environments, it is important to be able to lock down every detail of the environment.

Logging

Using logs, you can monitor the health of your apps. You should decouple log
collection, processing, and analysis from the core logic of your apps and treat them
as a separate stream of events. We have seen many enterprises that process logs using
another 3rd party software for observability. It is especially beneficial to decouple
logging when you are running your applications in public clouds. This is because

50 Mastering Cloud-Native Microservices

it eliminates the overhead of managing log storage locations and aggregating
distributed virtual machines.

/ Logs (Treat logs as event streams) \

Event Store (DB)

2

Interested Service 1

Event Event Event Event

Message Broker

\ Interested Service 2

\ Figure 2.10: Logs /

Admin processes

Administrative processes include one-off tasks or timed, repeatable tasks, such as
generating reports, running batch scripts, backing up databases, and migrating
schemas. Admin processes was written with one-off tasks in mind in the twelve-
factor manifesto. The importance of this factor becomes apparent when you are
creating repeatable tasks for cloud-native apps. Data cleanup and analysis can be
run as one-time processes for administrative/ management tasks. Therefore, you
should decouple the management of admin processes from the app when designing
for admin processes. You can invoke these tasks independently from the application
using independent tools for example Cronjobs).

Going beyond the twelve factors

There are addition key factors which are of integrated part of today’s modern
application design should be considered while designing / modernization of your
application stack.

API first

Consider your code to be consumed by a client, gateway, or another service and
designit as a service. APIs are used to communicate between apps. Start by designing
an API strategy when you are building apps for your app's ecosystem and then think
about how the app will be used. The API should be designed in a way that makes
it easy for external stakeholders and app developers to consume. API endpoints

Modern Application Design Principles 51

should isolate and decouple the consuming applications from the app infrastructure
that provides them. As a result, the app's consumers will not be affected by changes
to the underlying service or its infrastructure.

Let's say you are designing a mobile application for a retail company that sells clothes
online. In this case, you should design an API strategy that makes it easy for external
stakeholders and app developers to consume. For example, you can create APIs for
product catalogue, shopping cart, payment gateway, and order tracking. These APIs
should be designed in a way that isolates and decouples the mobile app from the
app infrastructure that provides them. This way, even if the underlying service or
infrastructure changes, the mobile app's users won't be affected.

Security

Considering the increasing number of touchpoints within modern applications, as
well as the risk of cyber-attacks, itis crucial that you adhere to standard procedures to
secure the network, protect the data while it is in transit and at rest with encryption,
control access based on need only, and monitor your environment for any security
breaches. Security covers a wide range of topics, including operating systems,
networks and firewalls, data and database security, application security, and identity
management. In an enterprise's ecosystem, security must be addressed in all its
dimensions. APIs allow an app to access apps within your enterprise ecosystem.
Thus, when designing and building your app, make sure security considerations
are taken into account. Use Transport Layer Security (TLS) to help protect data
in transit. Use app-level security to control access to your app based on who the
consumer is. In order to enforce security, you can use API keys (for apps consuming
them), certification-based authentication, JSON Web Tokens (JWTs) exchange, or
Security Assertion Markup Language (SAML).

Continuing with the same example of a mobile application for a retail company, you
should also consider security while designing and building your app. For instance,
you can use Transport Layer Security (TLS) to help protect data in transit between
the mobile app and the backend services. You can also use app-level security to
control access to your app based on who the consumer is. This can be done by
requiring users to log in with a valid username and password or using other forms
of authentication such as biometrics. Furthermore, you can use API keys to ensure
that only authorized apps consume your APIs. Finally, you can monitor your
environment for any security breaches and take corrective actions if needed.

Conclusion

From Complexity to Simplicity:

Designing Modern Applications with Efficiency and Excellence

52 Mastering Cloud-Native Microservices

Modern application is becoming more and more capable, and complex as well
unless you design them well based of principles we have discussed. In modern
applications there are multiple points of access to the open internet, and they
must also be reliable, secure, cost-efficient, and high performing. In this chapter
we have explored many system design concepts and we will continue exploring
detail around the Cloud Native and Microservices design patterns for designing a
modern application. Concepts we have discussed in this chapter will come in handy
when you plan to refactor your application from a monolith into microservices.
As we have discussed the following application design requirements are critical in
today's applications: availability, scalability, performance, observability, security,
resiliency, cost optimization, portability, Cloud-native, AI/ML enabled, DevOps,
and sustainability. We have discussed the Twelve-Factor App methodology in details
covering some of the examples related to implementation approach.

In next chapter we will discuss, Cloud Native Microservice Adoption Framework.
We will review Microservice architecture style and its key components in detail. We
will review their benefits and challenges from a practitioner view point using a short
step wise case study on ‘Breaking the Monolith'.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 3

Microservice
Adoption
Framework

Adopt Microservices with Confidence: A Framework for Success

Introduction

In production today, many applications run on n-tier, monolithic architectures.
However, these architectures are notideal for cloud-based systems. Cloud adoption is
driven primarily by the need for agility and flexibility to keep pace with accelerating
innovation and disruption from competitors. Many companies, find that simply
moving their legacy systems to the cloud does not adequately meet their needs.
They cannot achieve their goals because of their monolithic systems. We need an
architecture optimized for the cloud, and microservices fit the bill.

In this chapter we will discuss microservice architecture style and its enabling
technologies. We will review its benefits and challenges from a practitioner view
point using a short case study ‘Breaking the Monolith’. Monolithic application
conversion to microservices is a process of modernizing and providing business
value. So, while designing cloud-native microservices we should repeatedly ask
ourselves as a checkpoint to ensure that as an end result refactored systems can
support the requirements of its modern business. Most of the modern application
requirements we have discussed in last chapter can be achieved by refactoring the
monolithic application to create microservices and migrating it to the cloud.

When modernizing a monolithicapplication for the cloud, microservices are likely the
best choice. Compared to large monoliths, microservices are relatively lightweight,
use fewer resources, and are loosely coupled and distributed, so it is easier to scale

54 Mastering Cloud-Native Microservices

particular services up and out. A second reason is that the overall architecture was
designed to work well in the cloud.

In comparing monoliths and microservices architectures, it is important to remember
that monoliths were the default option before the internet age and application
requirements were different. Previously, applications had access to all the data
they needed without having to ask other applications to share information, so
we have seen huge ERP systems and enterprise applications based on monolithic
architectures. Microservices, on the other hand, are designed to communicate with
one another in a cloud computing environment. Microservices complete their own
tasks and then pass them on to the next. In this way, microservices do not become
slowed down by a single point of contention, and if a certain service has increased
load, auto-scaling up can be performed easily for the targeted workload / service.

Structure

In this chapter we will discuss following topics:

e From Monolith to microservices
o Breaking the Monolith: Strategies for building a microservice design
o Organizing data into bounded contexts or domains

o Building Resilient Microservices: Techniques for handling failure
and faults

o Monitoring Microservices: Best practices for testing and debugging
microservices

o Embracing continuous delivery with DevOps

¢ Enabling technologies for microservices
o Docker and Microservices: Use cases for containerization
o Using Docker: Exploring the benefits of containerization
o Container Orchestration with Kubernetes

o Advantages of Using Kubernetes: Orchestration for scalability and
availability

o Components of Kubernetes

o Alternatives to Container Orchestration: Other tools

e Microservices adoption using Domain Driven Design
o Domain-driven application decomposition steps

o Short Case Study 06: Insurance Claim Processing

Microservice Adoption Framework 55

e Characteristics of microservices design
o Using Microservices Correctly: Characteristics

o Case Study: Modernizing Architecture using Microservices

e Conclusion

Objectives

This chapter aims to introduce a Microservice Adoption Framework that enables
organizations to adopt microservices in a structured and organized manner. It covers
various topics related to microservices adoption, including strategies for building a
microservices architecture by breaking down a monolith application, best practices
for organizing data into bounded contexts or domains, and techniques for building
resilient microservices that can handle failures and faults.

The chapter also covers best practices for testing and debugging microservices
through monitoring and emphasizes the importance of embracing continuous
delivery with the help of DevOps tools and practices. Enabling technologies for
microservices, such as Docker and Kubernetes, are also discussed, including their
use cases and benefits for microservices development and deployment.

Additionally, the chapter provides a stepwise approach to Domain Driven Design
for microservices architecture and includes a case study on microservices adoption
using DDD in Insurance Claim processing. It also covers the characteristics of
microservices design and best practices and principles for using microservices
effectively, including a case study for modernizing architecture using microservices.

By the end of this chapter, readers will gain a clear understanding of the benefits
and challenges of microservices adoption and the key strategies, best practices, and
enabling technologies involved in the successful implementation of microservices
architecture.

From monolith to microservices

Most big applications today were once monolithic systems, because they are easier
to develop, easier to test, easier to deploy, and even scale horizontally. It is difficult to
work on individual functions in isolation in a monolithic system due to its numerous
interdependent functions. As a result, if even a small change needs to be made, the
whole application must be taken down. In a monolithic application, it can also be
difficult to understand which code controls which function.

There are poorly designed monolithic applications and there are monolithic
applications (with better "layered" or "n-tier" designs) usually with Presentation
Layer, Business Layer, and Data Access Layer. Layered architectures are defined

56 Mastering Cloud-Native Microservices

by the rule that each layer can only use its layer directly below it. For example,
as illustrated in Figure 3.1, monolithic architecture request and response sequence
represented.

Monolith Architecture

N
—_— —_— — — ’
(% < Presentation Layer |, Business Layer «— DataAccess Layer |, %

User Database

Figure 3.1: Monolith Design

Monoliths are large blocks of code with multiple tightly coupled modules in
software. Monoliths are deployable binaries that contain both applications and
business logic. An application that is monolithic usually has three layers, namely the
database, the user interface, and the server-side application. As you can see in the
above representation, each layer has a very specific purpose.

Thus, you could have one team working on database changes in the datalayer, another
team working on Representational State Transfer (REST APIs) in the business
layer, and another team creating the front-end interface. While this architecture
sounds great, it does not solve one problem. It remains a single application despite
its layered architecture. In order to implement any large changes, you will have to
re-deploy the entire application.

e REST, or Representational State Transfer, is a software architectural style
that defines a set of constraints and properties based on HTTP. It is often
used in the development of web services that allow different applications to
communicate with each other over the internet.

o REST APIs typically use HTTP methods to perform operations on a web
server, such as GET, POST, PUT, DELETE, and so on. These methods are
used to retrieve data from a server, create or update data on the server,
or delete data from the server. REST APIs can return data in a variety
of formats, such as XML, JSON, or HTML. In general, REST APIs are
designed to be easy to use and flexible, allowing developers to build
a wide range of applications that can interact with web services in a
consistent and predictable way.

On the other hand, we can increase the speed of software development - time to
market - by splitting the application into multiple functions (microservices) by
moving from a monolithic to a microservice architecture, allowing us to work
independently on each component. Microservices typically consist of an API layer,
compute resources, and data storage, and can either be built to scale or leveraged
through open-source services.

Microservice Adoption Framework 57

For example, as illustrated in Figure 3.2: Microservices Architecture and the way it is
communicating between services represented.

/ Microservices Architecture \

User Interface 4\

Microservices A

\X

Microservices B Microservices C Microservices D

Database Database Database
Figure 3.2: Microservices Architecture

A microservice architecture provides future-proofing for systems so they can adapt
to changing business requirements. In complex networks of systems that require
constantly evolving applications, microservices are most beneficial. Systems and
applications can benefit from microservice architecture when they become too large
and complex and need to be separated into smaller components.

-

We can start with transforming one service at a time instead of re-factoring complete
applicationend to end. Selecthigh-value functions for migration that can demonstrate
improvement through data that is measured against a predetermined baseline.
Instead of rewriting applications from the ground up to move microservices, it
makes better business sense for large applications to incrementally refactor them
into microservices using the following strategies:

Breaking the monolith: Strategies for building a
microservice design

Breaking down a monolithic application into microservices requires careful planning
and strategy to ensure that the transition is smooth and effective. Here are some
additional details to consider when building a microservice design:

e Identify the boundaries of your services: Before you can start breaking
down your monolith, you need to identify the boundaries of your services.
This means understanding how your application is structured and where the
different functionalities lie. Once you have identified the boundaries, you
can start breaking them down into smaller, independent services.

58 Mastering Cloud-Native Microservices

e Restructure your teams: As you start breaking down your monolith into
microservices, you'll need to restructure your teams accordingly. This means
creating cross-functional teams that are responsible for specific services.
These teams should be self-sufficient and have the autonomy to make
decisions about their services.

e Use a RESTful API: A RESTful API is a common way of communicating
between microservices. It provides a standardized way of sending and
receiving data, which makes it easier to integrate different services. If you're
not already using a RESTful API, consider implementing one.

e Keep your communication protocol simple: When designing your
communication protocol, keep it as simple as possible. The protocol should
be responsible for transmitting data only, without transforming it. This helps
to reduce the complexity of your architecture and makes it easier to maintain.

¢ Use endpoints to process requests: Requests should be received by
endpoints, which process them and emit responses. Endpoints are
responsible for handling a specific type of request and should be designed to
be as independent as possible.

e Avoid tight coupling: To avoid tight coupling between components,
microservice architectures try to keep things as simple as possible. This
means that services should be designed to be as independent as possible,
with minimal dependencies on other services.

e Consider an event-driven architecture: Sometimes, an event-driven
architecture can be a better option than a RESTful APL. An event-driven
architecture relies on asynchronous messaging, which can help to decouple
services and improve scalability. However, it can be more complex to
implement and maintain than a RESTful APL

Organizing data into bounded contexts or
domains

In monolithic applications, all business features are stored in a single database. This
singular database may not make sense as a monolith is broken up into microservices.
A service that accesses the database heavily may interrupt other services' access to
the database. Furthermore, multiple teams trying to modify a single database at the
same time can lead to a bottleneck in the collaboration process. Depending on the
microservice data needs, the database may need to be split up or additional data
storage tools added. Monolith applications mostly have a database with multiple
schemas for all business functions of the application. As a monolith application is
split into microservices, this singular database will not work. A central database can

Microservice Adoption Framework 59

become a bottleneck for traffic scaling and usually couple high traffic bad performing
queries can bring down performance of complete DB. That way, if a particular
service accesses the database with peak load can impact the database access of
other services. Secondly, a single database can become a collaboration bottleneck to
handle modifications at the schema level. Extremely large databases with 100’s of
tables would require specialized handling and understanding. This may call for the
database to be split up to support microservice data needs. Schema planning can be
accomplished using bounded contexts, which is a pattern used in DDD. As a result,
some data will be duplicated in different databases, posing a new set of problems
to keep them in sync. Here are some points to consider while organizing data for a
microservice design:

e Define bounded contexts: Bounded contexts refer to a set of related
functionalities within a microservice architecture that share a common
language and business rules. By defining bounded contexts, you can ensure
that each service only has access to the data it needs to perform its specific
functions. This can help to reduce dependencies between services and
improve performance.

e Use Domain-Driven Design (DDD): DDD is a design approach that
focuses on modelling the problem domain of a business. It helps to identify
and define bounded contexts and can provide a shared understanding of
the business domain. DDD also emphasizes the importance of language
and terminology, which can help to ensure that teams are using a common
language to describe the domain.

¢ Implement data isolation: To ensure that each service only has access to the
data it needs, you can implement data isolation techniques, such as using
separate databases or schemas. By doing this, you can ensure that each
service has its own isolated data store, which can help to reduce the risk of
conflicts and improve scalability.

e Use Event-Driven Architecture (EDA): EDA is an architectural pattern
that emphasizes the use of events to communicate between microservices.
By using events, you can reduce the need for services to access a central
database and can help to reduce dependencies between services.

e Use data replication: When data needs to be shared across multiple
microservices, you can use data replication techniques to keep the data in
sync. However, data replication can be complex and can pose challenges in
terms of data consistency and synchronization.

e Monitordatausage:Itisimportant to monitor data usage across microservices
to identify any potential bottlenecks or performance issues. This can help
to identify services that are accessing the database heavily and can help to
optimize the database schema to improve performance.

60

Mastering Cloud-Native Microservices

Choose the right data storage tools: Depending on the data needs of each
microservice, you may need to choose different data storage tools. For
example, some services may benefit from using a NoSQL database, while
others may require a relational database. It is important to choose the right
tool for the job to ensure optimal performance and scalability.

Building resilient microservices: Techniques for
handling failure and faults

All the services must interact to complete actions, which makes things more
complicated. You need to cater for the fact that your system is now distributed with
multiple points of failure. You must be able to deal with both cases where a service
is not responding and slow network responses. It can also be tricky to recover from
a failure, since you need to ensure that those services that are back online do not
become overloaded with pending messages. We will be covering design patterns
in detail like bulkhead and circuit breaker in next chapter to see how to design for

failure.

Bulkheads: A ship's hull consists of several individual watertight bulkheads,
so if any one of them gets damaged, the failure only affects that bulkhead,
rather than the entire ship. Partitioning can also be used in software to
isolate failures in small parts of the system. Service boundaries (that is, the
microservices themselves) serve as bulkheads to isolate failures.

Circuit breaker: When a service fails, this pattern ensures that the failure
does not negatively impact the entire system. For each call, we have to wait
for a timeout before moving on if the number of calls to the failed service was
high. As a result of making the call to the failed service and waiting for it to
respond, the overall system would eventually become unstable. In the event
of a circuit breaker trip, fallback logic can be initiated instead after a defined
threshold of failed attempts is reached.

In addition to the two key patterns that we mentioned above, we must also take into
account the following points to build a setup that is failure proof.

The implementation of redundant and backup components or services
means that you have multiple instances of each service running in different
locations in order to be able to continue serving requests even if one instance
fails.

A self-healing and recovery mechanism must be implemented. This
means that the system should be able to detect and recover from failures
automatically, for example by restarting failed services or rolling back failed
deployments. Consequently, the system will be able to recover from failures
without the need for manual intervention if there are any.

Microservice Adoption Framework 61

e Developing monitoring and alerting systems. Monitoring systems are
systems that are capable of monitoring the health and performance of the
services, and that alert the appropriate teams when a problem or failure is
detected. By doing so, issues can be identified quickly and addressed before
they become serious problems.

As a whole, when it comes to building a microservices architecture for failure, we
need to design it to be resilient and self-healing and implement mechanisms for
detecting and recovering from failures. Providing a more reliable and stable platform
for running an application can ensure that the system can continue to function even
when individual components or services fail, as well as providing a more stable
platform for operating the application.

Monitoring microservices: Best practices for
testing and debugging microservices

Having a test environment up and running for an application built in one codebase
does not require much effort. Things are more complicated when it comes to
microservices. The unit tests will still be quite similar to those of the monolith and
should notbe any more painful. However, integrating and testing systems can be more
challenging. Your setup might require several services to be started simultaneously,
different datastores to be set up, and message queues that you did not need with
your monolith. Due to the increasing number of moving parts, it is very difficult to
predict the different types of failures that can occur when functional tests are run in
this situation. Here are some ways to improve monitoring of microservices:

¢ Adopt Continuous Integration and Delivery (CI/CD): CI/CD practices
can help to automate the process of building, testing, and deploying
microservices. This can help to reduce the risk of errors and make it easier to
detect issues early on in the development process.

o Use logging and tracing: Logging and tracing can provide visibility into
the behavior of microservices at runtime. By logging key events and tracing
requests across different services, you can gain insights into the performance
of the system and identify potential issues.

¢ Implement health checks: Health checks can be used to monitor the status
of individual microservices and ensure that they are running properly. By
implementing health checks, you can detect issues early on and take action
to prevent service outages.

¢ Use metrics: Metrics can provide insights into the performance and behavior
of microservices over time. By collecting metrics on key performance
indicators such as response times, error rates, and resource usage, you can
identify trends and potential issues before they become critical.

62 Mastering Cloud-Native Microservices

e Use APM Tools: Application Performance Monitoring (APM) tools can
provide deep insights into the behavior of microservices at runtime. By using
APM tools, you can track performance metrics, detect errors, and diagnose
issues quickly and efficiently.

e Implement load testing: Load testing can be used to simulate high levels of
traffic on your microservices architecture. By load testing your system, you
can identify potential bottlenecks and performance issues before they impact
your users.

¢ Monitor third-party services: Microservices often rely on third-party services
such as databases, message queues, and APIs. It is important to monitor the
performance of these services and ensure that they are running properly to
prevent issues from affecting your microservices architecture.

By monitoring, you can identify issues early and take action accordingly. Different
services have different baselines, and you need to understand them, as well as react
when they behave unexpectedly. Microservice architectures are resilient to partial
failures, which is one of their advantages.

Embracing continuous delivery with DevOps

Continuous delivery is a crucial aspect of microservice architecture, and adopting
DevOps tools and practices is essential to make it work effectively. The continuous
delivery process involves integrating code changes, building and testing them, and
then deploying them to the production environment automatically. This automation
process helps ensure that new features and fixes can be released faster and more
reliably.

DevOps practices involve collaboration and communication between development
and operations teams to automate and streamline the entire software delivery
process, from code development to deployment and monitoring. By adopting
DevOps practices, organizations can improve their deployment frequency, reduce
deployment failure rates, and shorten the time between fixes. One of the key
benefits of DevOps in a microservice architecture is that it allows teams to deploy
services independently of each other. By breaking down the application into smaller
components, teams can work on specific services independently, without disrupting
other services. This enables teams to release services more frequently, iterate faster,
and get feedback from users more quickly. Another important aspect of DevOps in
microservice architecture is the ability to automate the testing process. As the number
of services increases, testing them manually becomes impractical. Automated testing
can help detect problems early on in the development cycle, reducing the risk of
deployment failures.

Microservice Adoption Framework 63

Overall, embracing continuous delivery with DevOps tools and practices is critical
to the success of a microservice architecture. It enables faster and more frequent
deployments, greater flexibility, and more resilience to failures.

Enabling technologies for microservices

Microservices architecture relies heavily on containerization technology to
encapsulate individual services into self-contained units that can be easily deployed
and managed. Docker containers are one such technology that allows developers to
package an application and its dependencies into a portable container image. This
image can then be deployed to any environment that supports Docker, making it
easy to move the application across different platforms without having to worry
about compatibility issues.

One of the major benefits of using Docker containers in a microservices architecture is
that it allows applications to be independent of the host environment. Each container
runs in its own isolated environment, with its own set of resources allocated to it.
This makes it easier to manage resources and ensures that each service runs in a
consistent and predictable environment.

To manage these containers and deploy them to a production environment, a
container orchestration tool is typically used. Kubernetes is one of the most popular
container orchestration tools available today, and it provides a robust and flexible
platform for deploying and managing containerized applications.

For example, consider an e-commerce application that consists of multiple
microservices, such as a product catalog service, a shopping cart service, and
a payment processing service. Each of these services can be encapsulated in a
Docker container, which is then deployed to a Kubernetes cluster. Kubernetes
can automatically scale these services up or down based on demand, ensure that
each service is running correctly, and provide a range of other management and
monitoring features.

Overall, Docker and Kubernetes are two essential technologies for building and
deploying microservices-based applications. By encapsulating services in containers
and leveraging container orchestration tools like Kubernetes, developers can build
scalable, resilient, and highly available applications that can be easily managed and
updated.

Docker and microservices: Use cases for
containerization

The Docker platform is an open-source platform for developing, deploying,
running, updating and managing containers. The use of containers simplifies the

64 Mastering Cloud-Native Microservices

development and delivery of distributed applications. With the move towards
cloud-native development and hybrid multicloud environments, they have become
increasingly popular. Linux and other operating systems offer developers the ability
to create containers without Docker. However, Docker simplifies, speeds up, and
secures containerization.

For example, as illustrated in Figure 3.3: Docker — Develop faster. Run anywhere
functionality enables us to build and run application efficiently.

Docker - Develop faster. Run anywhere.

“Docker makes development efficient and predictable. Docker takes away repetitive, mundane configuration
tasks and is used throughout the development lifecycle for fast, easy and portable application development —
desktop and cloud. Dacker’s comprehensive end to end platform includes Uls, CLIs, APIs and security that are
engineered to work together across the entire application delivery lifecycle.”

Build:

* Get a head start on your coding by leveraging Docker images to efficiently develop your own unique
applications on Windows and Mac. Create your multi-container application using Docker Compose.

* Integrate with your favorite tools throughout your development pipeline

* Package applications as portable container images to run in any environment consistently from on-premises
Kubernetes to AWS ECS, Azure ACI, Google GKE and more.

Run:

* Deliver multiple applications hassle free and have them run the same way on all your environments
including design, testing, staging and production — desktop or cloud-native.

* Deploy your applications in separate containers independently and in different languages. Reduce the risk of
conflict between languages, libraries or frameworks.

* Above reference is from https.//www.docker.com/

Figure 3.3: Docker - Develop faster. Run anywhere.

A number of advantages make Docker containers particularly popular over
virtual machines (VMs). VMs contain complete copies of an operating system,
the application, and the necessary binaries and libraries. Storage capacity for this
usually amounts to dozens of gigabytes. Additionally, VMs can be slow to boot,
unlike Docker containers. On the other hand, Docker containers usually require less
storage space because they contain images that are only a few megabytes in size.
Docker allows fewer virtual machines and operating systems to be used, allowing
more applications to be processed. Containers can also be used on edge devices,
such as Raspberry Pis, which are compact single-board computers.

The ability to run different applications on a single operating system instance greatly
enhances diverse deployment options. A key advantage of Docker containers is their
ability to isolate apps not only from one another, but also from their underlying
systems.

Microservice Adoption Framework 65

Using Docker: Exploring the benefits of
containerization

e Containers are lighter than VMs, as shown in the Figure 3.3, since they do not
carry a full OS instance and hypervisor. They only need OS processes and
dependencies to execute code.

¢ Containerized applications can be written once and run anywhere, resulting
in increased developer productivity. Also, containers can be deployed,
provisioned, and restarted much faster and easier than virtual machines. As
a result, they are ideal for use in continuous integration and continuous
delivery (CI/CD) pipelines, as well as in Agile and DevOps development
teams.

¢ Resources can be utilized more efficiently with containers: Containers allow
developers to run multiple copies of applications on the same hardware as
they can with virtual machines.

e Versioning of container images: Docker allows you to track versions of a
container image, roll back to a previous version, and even see who built the
version.

e Utilizing existing containers as templates for building new ones is an
excellent way to reuse containers.

For example, as illustrated in Figure 3.4: Virtual Machine Vs Docker the advantages of
Docker over VM related to the resource consumption has been highlighted.

/ Virtual Machine Vs Docker \

/> ==f,
paw docker
7 — }7} = }:}
__ __ \ \ == —
[] [] o I
I — = BH =
Utilization Size Boot up Time Utilization Size Boot up Time
‘ VM1 | ‘ VM2 ‘ ‘ VM3 ‘ ‘ Container01 | ‘ Container02 | ‘ Container03 |
. AppOl | App02 | App03 | AppOL | App02 | App03 |
" tbs || mbs || mbs | | | Libs | Libs | Libs |
| Guest OS ‘ | Guest OS ‘ ‘ Guest OS | | Docker Engine |
| Hypervision ‘ | Host OS |

‘ Physical Server (HW) | | Physical Server (HW) ‘
Figure 3.4: Virtual Machine Vs Docker

66

Mastering Cloud-Native Microservices

Key components of Docker

These are core components that are commonly used in Docker-based applications.
They work together to provide a platform for building, deploying, and running
applications in containers.

DockerFile: DockerFile automates the process of creating Docker images. To
assemble the image, Docker Engine runs a series of command-line interface
(CLI) instructions.

Docker images: In a Docker image are the executable source code and all
the tools, libraries, and dependencies needed to run the code in a container.
A Docker image is made up of layers, each corresponding to a version. New
top layers are created whenever a developer updates the image, and these
top layers replace the previous top layers. Previously saved layers can be
rolled back or reused in other projects.

Docker containers: A Docker container is an instance of a Docker image that
is running live. Containers are executable files, unlike Docker images, which
only exist as read-only files. Administrators can use Docker commands to
adjust their settings and conditions.

Docker daemon: Using commands from the client, Docker daemon creates
and manages Docker images. A Docker daemon acts as your Docker
implementation's control center.

Docker registry: Docker registries are open-source storage and distribution
systems for Docker images. Through the registry, you can track images in
repositories and identify them by tagging. Version control software, such as
git, is used to accomplish this.

Docker Engine: This is the core of the Docker platform and is responsible for
managing the containers.

Docker Hub: This is a cloud-based registry service that allows users to share
and find Docker images.

Docker Compose: This is a tool for defining and running multi-container
Docker applications. It allows users to specify the dependencies between
containers in a single file, making it easy to manage complex applications.

Docker Swarm: Thisis a clustering and scheduling tool for Docker containers.
It allows users to create a cluster of Docker hosts and schedule containers to
run on them.

Interms ofbuilding and running containers, Docker is one of the most popular options.
This system is based on a client-server architecture. Docker clients communicate
with Docker daemons, which build, run, and distribute Docker containers. Clients

Microservice Adoption Framework 67

and daemons can run on the same system, or clients can connect to remote Docker
daemons. UNIX sockets or a network interface are used to communicate between
the Docker client and daemon.

Container orchestration with Kubernetes

The Kubernetes container orchestration platform is also called "K8s" or "Kube"
and is used to schedule, manage, and scale containerized applications. In addition
to its breadth of functionality, open-source ecosystem, and portability across
cloud providers, developers chose and still choose Kubernetes for its breadth of
functionality, open-source ecosystem, and wide range of sharing tools. There are
several public cloud providers that offer managed Kubernetes services, including
Amazon Web Services (AWS), Google Cloud, IBM Cloud, and Microsoft Azure.

For example, as illustrated in Figure 3.5: Kubernetes — Production Grade Container
Orchestration explains how K8 will help enterprise to scale.

/ Kubernetes - Production-Grade Container Orchestration \
“Kubernetes, also known as K8s, is an open-source system for automating deployment, scaling, and

management of containerized applications.”

It groups containers that make up an application into logical units for easy management and discovery.
Kubernetes builds upon 15 years of experience of running production workloads at Google, combined with
best-of-breed ideas and practices from the community.

Planet Scale: Designed on the same principles that allow Google to run billions of containers a week,
Kubernetes can scale without increasing your operations teant.

Never Outgrow: Whether testing locally or running a global enterprise, Kubernetes flexibility grows with you
to deliver your applications consistently and easily no matter how complex your need is.

Run K8s Anywhere: Kubernetes is open source giving you the freedom to take advantage of on-premises,
hybrid, or public cloud infrastructure, letting you effortlessly move workloads to where it matters to you.

* Above reference is from https://kubernetes.io/
Figure 3.5: Kubernetes - Production-Grade Container Orchestration

By automating deployments, updates (rolling-updates), and managing our apps
and services, Kubernetes can speed up the development process. In addition, it has
self-healing capabilities. When a process within a container crashes, Kubernetes
can detect and restart it. Kubernetes schedules, monitor, and automates container-
related, including;:

Advantages of using Kubernetes: Orchestration
for scalability and availability

e Deployment: Maintain a desired state for a specified number of containers
deployed on a specified host.

68

Mastering Cloud-Native Microservices

Rollouts: In Kubernetes, you can initiate, pause, resume, or roll back rollouts.

Service discovery: Using a DNS name or IP address, Kubernetes can expose
a container to the internet or to other containers.

Storage provisioning: Your containers can be mounted to persistent local or
cloud storage via Kubernetes.

Load balancing: Performance and stability can be maintained by Kubernetes
load balancing based on CPU utilization or custom metrics.

Autoscaling: Using Kubernetes autoscaling, you can spin up new clusters
when traffic spikes.

Self-healing: To prevent downtime when a container fails, Kubernetes
restarts or replaces it automatically. Containers that do not pass the health
check can also be taken down.

For example, as illustrated in Figure 3.6: Container Orchestration with Kubernetes
explains it is key components and how they interact and manage your application.

Container orchestration with Kubernetes
Worker Node 01 \
Pod 1 Pod 2 Pod 3
Contamerl ontamerl
ContamerZ
; | Container3 ||| Container3 ||[Container3 |
@ Kubernetes Master
User APIS Docker ‘
erver
Interface ‘ Kubelet ‘ ‘ Kube-proxy |
Scheduler

.
s

Pod 1 Pod 2 Pod 3

Worker Node 02 \

Controller Manager

eted

| Container? ||| Container? |

| Container3 ||| Container3 |

‘ Docker ‘

K ‘ Kubelet ‘ ‘Kube—proxy| j

Figure 3.6: Container orchestration with Kubernetes

Components of Kubernetes

Kubernetes is an open-source system for automating the deployment, scaling, and
management of containerized applications. It consists of a number of components,
including;:

Microservice Adoption Framework 69

Kubectl: To interact with the master node of Kubernetes, Kubectl is a
command line tool (CLI).

Kubernetes master: A Kubernetes Master is a node that manages all
Kubernetes clusters. The orchestration of the worker nodes is handled by it.

e}

API Server: A Kube API Server is a frontend for the Kubernetes control
plane, interfacing with APIs.

Scheduler: Pods are watched by the scheduler and are assigned to
specific hosts.

Controller-Manager: Controller manager runs the controllers in
background.

% A node controller is responsible for detecting and responding to
node failures.

% A replication controller determines how many identical copies of
a pod should be running on a cluster.

% Services and pods are connected by endpoint controllers.

% Access management is handled by the Services account and Token
controllers.

% Pod replication is ensured by ReplicaSet controllers.

% Podsand ReplicaSets are updated declaratively by the deployment
controller.

% The DaemonSets controller ensures that all nodes run a copy of
specific pods.

% Ajob controller supervises batch jobs carried out by pods.

% Communication is enabled by services.

Etcd: etcd is a key-value store. The data stored in etcd includes job scheduling
information, pods, state information, etc.

Worker Nodes: Worker nodes are the nodes where the application actually
running in Kubernetes cluster. Kubelet processes are used to control each of
these worker nodes.

O

Kubelet: Kubelet is the primary node agent runs on each nodes
and reads the container manifests which ensures that containers are
running and healthy.

Kube-proxy: Kube-proxy is a process helps us to have network proxy
and loadbalancer for the services in a single worker node. It performs
TCP/UDP network routing and connection folding.

70 Mastering Cloud-Native Microservices

e Pods: A group of one or more containers deployed to a single node.
o Containersinapod share an IP Address, hostname and other resources.
o Containers within the same pod have access to shared volumes.

o Pods abstract network and storage away from the underlying
container. Containers can be moved around the cluster more easily
this way. Horizontal pod auto scaling allows pods of a deployment to
be automatically started and stopped based on CPU usage.

o Each Pod has its unique IP Address within the cluster.

¢ Deployment: A deploymentis a blueprint for the Pods to be created. Handles
update of its respective Pods. This will keep the pods running and allow
them to be updated (with rolling updates) in a more controlled manner.

e Service: A service is responsible for making our Pods discoverable inside the
network or exposing them to the internet.

These are the main components of Kubernetes, but there are many others that are
part of the system, such as various CLI tools and various plugins and extensions that
can be added to the system to extend its capabilities.

Alternatives to container orchestration: Other
tools

Kubernetes may be the default choice for container orchestration, but it is worth
exploring alternatives as well.

Using Docker's swarm mode, you can natively manage a cluster of Docker engines.
By using Docker CLI, you can create a swarm, deploy application services to it,
and manage it. Other container orchestration systems include Apache Mesos and
Marathon.

In terms of container orchestration, Kubernetes has emerged as the top choice for
enterprises. Containerized applications have the advantage of being portable. On-
premises and cloud applications can run simultaneously. There are now managed
Kubernetes services offered by three of the most popular cloud service providers -
AWS, Microsoft Azure, and Google Cloud. Kubernetes generally has the same core
functionality, but each cloud provider may offer different features on top.

e Amazon Elastic Kubernetes Service (EKS)
e Azure Kubernetes Service (AKS)
e Google Cloud Kubernetes Engine (GKE)

Microservice Adoption Framework 71

Microservices adoption using Domain
Driven Design

Domain-driven design is one of the key design principles for migrating a monolithic
application to a microservices architecture. In this process, the applicationis refactored
into smaller services based on domain grouping. The process of completing specific
business goals or solving a particular domain problem requires deep understanding
of a particular domain. To solve specific business problems, developers work closely
with domain experts to design goal-oriented application design models.

e This model offers the tightest alignment with business domains and the most
flexible and agile IT model, resulting in a shorter time-to-market.

e The product-centric approach helps drive an engineering culture across the
organization by clarifying ownership and squad independence.

¢ Domain alignment reduces enterprise-wide duplication of capabilities (both
applications and data).

e By promoting end-to-end ownership and a continuous improvement culture,
this model builds deeper domain and functional skills in squads.

Domain-driven application decomposition
steps

There is no one specific set of steps for decomposing an application using domain-
driven design (DDD), because the process varies depending on the specific
requirements and characteristics of the application. It is important to note, however,
that there are some general steps that are commonly followed when decomposing
an application using DDD:

o Identify the core business domains and sub-domains within the application.
In order for this to be successful, it is necessary to understand both the
business requirements and objectives of the application as well as the various
entities, relationships, and processes that are involved in it.

¢ Adomain model provides a conceptual model of the business domain, which
illustrates how the various entities and their relationships are connected
within that domain, as well as their relationships with each other. This is
done by defining the key concepts and entities within each domain, and
defining their relationships and interactions between those entities.

¢ In each domain, define the bounded contexts, which are specific areas
within each domain within which certain rules and models apply in order

72 Mastering Cloud-Native Microservices

to achieve certain objectives. As well as ensuring that the domain model
remains consistent and cohesive within a single area, bound contexts also
allow for flexibility and variation in other areas of the model.

e Itis important to identify the interfaces and integration points between the
various bounded contexts, as well as the communication and collaboration
mechanisms which will be used to ensure seamless integration. In order to
integrate the different bounded contexts in the application, it is necessary
to define the architecture and design of the application, including all of the
components, services, and APIs that will be used.

e Implement the application using the defined architecture and design,
following the principles and practices of DDD in order to ensure that the
domain model is accurately represented and that the application is aligned
with business objectives and requirements. As part of this process, the
various components, services, and APIs that make up the application are
implemented along with the infrastructure and deployment mechanisms
which are required.

The purpose of domain-driven application decomposition is to decompose the
application into smaller, more focused, and cohesive modules that are more
accurately reflecting the underlying business domains and that can be easily
integrated and maintained by the end user. This can be beneficial for improving the
design, maintainability, and flexibility of the application, and it will make it much
easier to evolve and adapt to changing business requirements as time goes on.

Short case study 06: Insurance Claim
Processing

Let us review an example of how logical flow for an insurance claim processing
application can be designed as microservices architect.

For example, as illustrated in Figure 3.7: Logical flow - Insurance Claim processing
explains the business side of the requirement.

Microservice Adoption Framework 73

Logical flow — Insurance Claims Processing \

Sulil:ﬁlirsr;?cm AS;;I':SGM Claims Decision Claims Analytics Reporting
Claims can be Analyse submitted Real-time claim Assess and identify ~ Monitoring fraud,
reported online documents, status, automated potential and leveraging claims
within minutes segment claims or quick actual claims leaks data for marketing
and documents can based on their settlement, self- based on claims and sales, and real-
be uploaded classifications service damage data analysis and time insights into
assessert reporting claims workflow

Figure 3.7: Logical flow — Insurance Claims Processing /

Logical flow of insurance claim processing converted in a high level architecture
flow using Domain-driven design principles. For example, as illustrated in Figure
3.8: Architecture - Insurance Claim processing explains the microservices design side
of the logical flow explained in Figure 3.7 requirement.

Architecture — Insurance Claims Processing

Claims Claims Assignment Claims Decision Claims
Submission ‘ P F Doc AL ‘ Fstimate Repai Analytics
Publish/subscrib arse Forms ocumen stimate Repairs
€ messasing Fraud Detection AT/ML Validate
) Coverage . Analytics
Cloud Dataflow
| Classify Documents AUML |
Payment Business
\ Processing Intelligence
Reporting
‘ Cloud Storage ‘ ‘ Archival Storage ‘ BigQuery ‘

Figure 3.8: Architecture — Insurance Claims Processing

74

Mastering Cloud-Native Microservices

As represented in previous architect diagram for Insurance Claims processing
functionality has been designed as a set of microservices specifically designed to
perform specific task and communication flow designed for achieving the end
results as follows:

Let us

Claims Submission with two microservices will cover consume submission
of claims via any channel i.e. online forms, paper PDFs and scanned images
and perform inline data transformation to store data for near and long term
analysis.

Claims Analysis will have four microservices performing advanced
analytics to intelligently accelerate claims processing, parsing form fields
and tables from ingested documents, using Al to classify claims documents,
and performing claims segmentation and run fraud detection models.

Claims Decision again will have four microservices making a decision
on claims significantly faster and accurately, validating claim, predicting
payment and automatically settling claims.

Claims Leakage Analytics will have another set of microservices to analyse
and create models to gain insight, to analyse average settlement cost trends,
and to understand subrogation recovery trends, and so on.

Reporting will help in analyse and by data visualization models.

expand further as your microservices / applications will need to have

Infrastructure, Security, and Operations related services linked with it. For example,
as illustrated in Figure 3.9: Architecture - Insurance Claim processing explains
the microservices design along with key components related to Security and
Infrastructure completing the Architect explained in previous Figure 3.8.

U
Estimat
User 7 Publish/subscr Parse Forms Document Al
b . &
API Marjfagement D¢ Messaging Fraud Detection AI/ML Validate Leakage
Coverage

Devices\ %
:‘,_ \?/\:Edgoe Servib I i ! - I
OJL Reporting

Cloud

Architecture — Insurance Claims Processing

~

. . . Claims Claims
Claims Claims Assignment Decision Analytics

Submission

Analytics

Dataflow Classify Documents AI/ML

\ | Payment ‘ ‘ Business ‘

Decision ‘ BigData ‘

Processing Intelligence

Archival ‘ ‘ BigQuery ‘ ‘

‘ ‘ Cloud Storage

Storage
Security Infrastructure Services
j Sensitive Data Inter-service .
‘ Identity & Access | Maz nt ‘ Communication ‘ Messaging ‘

Figure 3.9: Architecture — Insurance Claims Processing

Microservice Adoption Framework 75

API Management: APl management will manage APIs across clouds and
on-premises. It will include API gateway for traffic optimization.

Edge Services: Edge services (if applicable) will be another touchpoint for
your application egress and ingress connections directly from end users.

Infrastructure services: Cloud environments complement microservices by
providing networking, messaging, microservice communication, logging
and monitoring, virtualisation, service discovery and proxying, resiliency
features, and more.

Security: We will not have application / microservices on cloud without
security framework integration. It will have services related to identify
and access management, sensitive data management, encryption keys, and
security related operations.

Using microservices correctly: Characteristics

A microservices design typically consists of the following characteristics:

Fine-grained and focused: Rather than being monolithic and handling
multiple unrelated functions, microservices are typically designed to be fine-
grained and focused on a specific business capability or function. The overall
architecture becomes more modular and adaptable by allowing each service
to be developed, tested, and deployed independently of the others. For
example, the document submission microservice can be updated without
affecting the payment processing microservice.

Loosely coupled and highly cohesive: Each microservice has a clear and well-
defined responsibility and interface for communicating with other services,
so microservices are typically loosely coupled. As a result, the services can be
developed, tested, and deployed independently of one another, improving
overall flexibility and adaptability. For instance, the payment processing
microservice can communicate with the document submission microservice
via APIs or other communication mechanisms.

Scalable and resilient: Typically, microservices are built to handle large
volumes of traffic and requests and to recover from failures and disruptions
without affecting the application's overall functionality. In order to achieve
this, redundant and backup services are used, circuit breakers and retry
mechanisms are used, and self-healing and recovery mechanisms are used.
For example, in the case of insurance claim processing, the system must be
built to handle large volumes of traffic and requests, and to recover from
failures and disruptions without affecting the overall functionality of the
application.

76 Mastering Cloud-Native Microservices

e API-driven and event-driven: It is typical for microservices to be API-driven
and event-driven, which means that services communicate with one another
via APIs or other communication mechanisms, and events trigger actions
and reactions within the system. As a result, the services are loosely coupled
and can interact dynamically and flexible. For example, when a new claim is
submitted, an event can be triggered, which in turn can trigger the document
submission microservice to start processing the documents.

e Built and deployed independently: In general, microservices are designed
to be built and deployed independently of one another, with each service
having its own codebase, build pipeline, and deployment process, all of
which are separate from the others. By doing this, it makes it possible to
develop, test, and release the services independently of each other, which
in turn makes the architecture a lot more flexible and agile. For instance, the
document submission microservice can be updated and deployed without
affecting the payment processing microservice.

In breaking down a target system into constituent services, there is a real risk of
decomposition occurring along existing boundaries within the organization. There
are more independent parts to manage, and parts that do not integrate well. This is
despite the fact that the resulting services can communicate with one another, which
makes the system potentially more fragile.

Business objectives must be taken into account when designing microservices.
Rather than using microservices to route calls between teams, this might require
teams across organizational boundaries to collaborate and design services together.

For example, as illustrated in Figure 3.10: Architecture Using Microservices with flaws
as each organization has its own activation and order management system, and
each view of the customer is different, so the ordering system cannot scale and from
business perspective as well customer management will have issues.

Database

Architecture Using Microservices with flaws

{ Order Entry

System

Order

Pre-Paid A
re-ra 7| Activation

LB

o

User Héé\)
S New Customer
r . Order TN
\ % <> Post-Paid Activation %_

)

Devices 0 E;ia base
r API Management
O Wieline <\ O, < CED
&/ Activation _g_
Cloud Database

Figure 3.10: Architecture Using Microservices with flaws

Microservice Adoption Framework 77

For example, as illustrated in Figure 3.11: Re-designed Architecture Using Microservices.
A single unified view of the customer is provided by the database once an order
has been received. Orders are sent to an orchestration service, which contacts each
individual ordering system as necessary. It is important to understand that we
are not splitting customer database in this case just because we are implementing
microservices design. For this scenario keeping order management data for all
service lines for a customer will be stored together for better overall management

and analytics.
Re-designed Architecture Using Microservices \
/ OMS - Order Management System \

Pre-Paid Order Post-Paid Order Wireline Order

/ﬁ Management Management Management
@ Order Entry
User System %

\

New Customer

/ Order Orchestration Service N

Customer

Database

Devices v Re-new
/ APT Order Activation Service
OJ(’ I_o Management Cross Sell/ ‘\

Up Sell
Pre-Paid Post-Paid Wireline

K Activation Activation Activation/
Figure 3.11: Re-designed Architecture Using Microservices /

To make microservices as loosely coupled as possible, sharing between microservices
should be kept at a minimum. It is important to carefully consider how to share the
database across microservices, whatever the reason may be. It does violate some
of the principles of a microservices-based architecture to share a database. In this
case, the two services sharing a database must coordinate changes in the shared
database, as the context is not bounded. Basically, for the functional logical from of
the application sharing or keeping Customer DB intact makes more sense in above
case discussed in Figure 3.11.

@]
/ o
=1
a.

Short case study 07: Modernizes
Architecture Using Microservices

In this case study, volume of players' and their data stored in a RDBMS causing issues.
During peak times, the monolithic SQL architecture was not scalable or efficient,
causing downtime. As part of its strategy to improve backend efficiency, increase
developer productivity, and reduce costs, the company decided to modernize its

78

Mastering Cloud-Native Microservices

architecture using microservices on AWS. For example, as illustrated in Figure 3.12:

Modernizes Architecture Using Microservices.

/ MovieStarPlanet Modernizes Architecture Using Microservices

/

"MovieStarPlanet Modernizes Architecture Using Microservices on AWS, Saving Over 40% on Hosting
Costs. With over 400 million registered players, MovieStarPlanet has a lot of data to store. But scaling
was a struggle on the company’s aging SQL-based monolithic architecture, and servers could take up to
20 minutes to boot. To create a better experience for its players, they decided to modernize its architecture.
By modernizing using microservices on Amazon Web Services (AWS), MovieStarPlanet improved

engagement and retention, reduced dynamic hosting costs by over 40 percent, and increased developer

productivity, helping create new experiences for players.”

* Above reference is from

https://aws.amazon.com/solutions/case-studies/moviestarplanet-case-study
Figure 3.12: MovieStarPlanet Modernizes Architecture Using Microservices

Learning from the above example

Their solution is Amazon Neptune, a serverless graph database that
provides fast, reliable, and fully managed service that is easy to build and
run applications on.

Its purpose-built databases allow storing and navigating relationships, and
one of its main advantages is that for different microservices you can choose
the appropriate database. Using nodes instead of tables allows nodes to store
data, and there's no limit to the number and kind of relationships a node can
have-which makes them perfect for social applications.

A microservices architecture is employed in Amazon EC2, a web service that
provides resizable, secure compute capacity in the cloud.

Kubernetes Service (Amazon EKS) implemented as a managed container
service to run and scale Kubernetes applications in the cloud or on premises.

Consequently, the company on longer is concerned about outages that can
occur during peak times or during game launches due to server overload.

Using microservices correctly: Characteristics

Organizations can benefit from a number of key practices and considerations
that can help them make use of microservices correctly and effectively. Prior to
microservices becoming trendy, many companies built monoliths that could not be
managed effectively. It was a real challenge to scale, manage, and evolve such a large
application effectively in the cloud, which clashed with modern management and
scaling practices. Here are some situations where microservices are not appropriate.

Microservice Adoption Framework 79

Microservices should not be your first step: The point here is that
you shouldn't jump straight into a microservices architecture without
understanding the requirements of your application. It's better to start
with a monolithic architecture and only move to microservices when
you need to scale. For example, a small e-commerce startup might start
with a monolithic application for their online store and only switch to a
microservices architecture when they need to handle more traffic and scale
up their backend.

DevOpsisessential formicroservices: Managing amicroservicesarchitecture
can be complex, so you need a DevOps team that can automate deployment
and monitoring. For example, a company that uses microservices for its
financial services platform might have a DevOps team that uses tools like
Kubernetes and Prometheus to deploy and monitor the microservices.

Managing your own infrastructure is not a good idea: When you're dealing
with multiple databases, message brokers, and data caches in a microservices
architecture, it's helpful to use a Platform as a Service (PaaS) solution to
manage your infrastructure. For example, a healthcare provider that wants
to develop a patient management system using microservices could use
a PaaS provider like Amazon Web Services (AWS) or Microsoft Azure to
manage their infrastructure.

Avoid creating too many microservices: It's important to strike a
balance between breaking down your application into small, manageable
microservices and keeping the complexity under control. For example,
a social media platform that wants to implement microservices should
group related functionalities together and create a manageable number of
microservices instead of creating a separate microservice for every feature.

Value identification is the key step: Before implementing microservices,
you should clearly understand the business requirements and objectives that
the architecture will support. For example, a financial institution that wants
to implement microservices should first identify the business goals it wants
to achieve and then design the microservices architecture accordingly.

Determine the granularity level: Microservices should be finely tuned and
focused on asingle business capability or function, instead of being monolithic
and handling a wide variety of unrelated functions simultaneously. For
example, an e-learning platform that wants to implement microservices
should identify the appropriate granularity level for each service, such as a
microservice that handles course registration or a microservice that handles
course content delivery.

80

Mastering Cloud-Native Microservices

Well defined boundaries between microservices: Each microservice should
have a clear responsibility and a well-defined interface for communicating
with other microservices. By doing so, the microservices will be loosely
coupled, so they can be developed, tested, and deployed independently. For
example, a service that handles user authentication should not overlap with
a service that handles product search.

APIs based communication mechanisms: In a microservices architecture,
communication between microservices is crucial. APIs are a great way to
ensure that microservices can communicate with each other in a robust
and scalable manner. For example, a microservices architecture might use
RESTful APIs or message-based communication systems like gRPC or Kafka.

Observability is essential: Monitoring and observability systems help
identify and diagnose issues and failures by providing visibility into the
performance and behaviour of microservices. For example, a company that
uses microservices for its travel booking platform might use tools like Jaeger
and Grafana to monitor and observe their microservices architecture.

Keep an eye out for potential latency issues: When microservices are
dependent on each other, it's possible to introduce latency. Performance
testing is important to identify any sources of latency in the microservices
architecture. For example, a video streaming service that uses microservices
for encoding and delivery might run performance tests to ensure that the
latency between the two microservices is kept to a minimum.

Security should be a top priority: With microservices, there are multiple
entry points to a system that must be secured. Each microservice should
be designed with security in mind, and the communication between them
should be secured as well. It is also important to have strong authentication
and authorization mechanisms in place. For example, a financial institution
that uses microservices for its online banking system should implement
secure communication protocols such as HTTPS, use encryption for sensitive
data, and enforce access control policies for each microservice.

Plan for testing and continuous integration: Microservices require
a significant amount of testing, especially when making changes or
introducing new services. Implementing a testing strategy that includes
unit tests, integration tests, and end-to-end tests is essential. Continuous
integration (CI) should also be used to ensure that changes made to one
microservice do not negatively impact other microservices or the system as
a whole. For example, an e-commerce company that uses microservices for
its online ordering system should have a well-defined testing strategy that
includes automated tests for each microservice and CI/CD pipelines that
ensure changes are thoroughly tested before being deployed.

Microservice Adoption Framework 81

Conclusion

Unlocking Agility and Scalability:

Refactoring Monoliths to Microservices with Precision

A monolithic architecture can be migrated to microservices in a systematically
organized manner but it is a time-consuming task to execute. Microservices have
their own advantages over monolithic architecture, but a transition from monoliths
to microservices must be justified. It may be fatal to make an unnecessary switch.
When a system becomes too complex to maintain and operate, it should be refactored
into microservices. As we have seen in this chapter, there are some steps you can take
to make refactoring more sensible and manageable. We have discussed, Monolith vs
Microservices application and how to build a microservice architecture by splitting
the monolith. We have reviewed bounded contexts and failure resistant design and
the importance of DevOps adoption. A successful Microservices implementation
works well with technologies like Docker and Kubernetes for container orchestration.
Domain Driven Design helps in logical split and we have seen scenarios to do it
systematically to modernizes our architecture.

In next chapter, we will cover the design patterns for Microservices architecture and
how to use them efficiently. Implementing the correct design pattern for your use
case can help increase component reusability, thus reducing development time and
effort. Each of these patterns will be reviewed using use cases with diagrammatic
representations of their components and interconnections.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Eli5E
E‘.‘%

CHAPTER 4
Design
Patterns for
Microservices

Design Patterns that Power Microservices Architecture

Introduction

In a business environment, selecting the right architectural style and implementing it
can save capital and human resources. When discussing software architecture, there
are usually a lot of questions that arise, such as alternative patterns, what can happen
if we adopt these patterns, and how they might negatively affect us. However, there
are a wide array of needs in every business, which adds to the confusion, especially
with the ever-increasing number of microservice patterns that are on the market. By
using the right combination of patterns, you will be able to create services that are
more scalable, secure, and maintainable.

In this chapter we will cover design patterns for microservices. The term "design
pattern” refers to a general solution to a common software design problem that can
often be repeated to resolve the problem. It is important to realize that design patterns
are not plug-and-play blocks, but rather approaches to addressing particular situations
that can be used for a wide range of issues as a description or template of how to deal
with them. It is not a code block, and it does not plug-and-play. Using these patterns
can help you speed up your development by applying tested, proven structured
approaches to specific problems. As a result, we minimize known bottlenecks and
minimize issues that may not be apparent until later in the implementation process.
In addition to preventing subtle issues that can lead to major problems, coders and
architects can improve code readability by reusing design patterns.

84 Mastering Cloud-Native Microservices

As an example, Google was affected by an outage on December 14, 2020 for
approximately 45 minutes around the world. Due to the service-oriented architecture
of Google, all of its services, such as Gmail, YouTube, Google Drive, and the like,
were still working despite the issue affecting only one service, which is why the
outrage went viral. It is clear that if the architecture had been monolithic, these
Google services would not have been available as well.

We will be taking a look at how proven design patterns can be used to achieve the
essential microservice design requirements for a modern application in this chapter.

Structure

In this chapter we will discuss following topics / design patterns:

e Design Patterns for Microservices
o Decomposition Pattern
o Decompose by Business Capability
o Decompose by Subdomain
o Decompose by Transactions
o Decompose by Service per Team
o Bulkhead Pattern for Resiliency
o Sidecar Pattern for Service Mesh

o Strangler Pattern for Legacy Systems

e Integration Pattern
o API Gateway Pattern for API Management
o API Aggregator Pattern for Composite Services
o Gateway Offloading Pattern for Performance
o Gateway Routing Pattern for Traffic Shaping
o Asynchronous Messaging Pattern for Loose Coupling
o Branch Pattern for Parallel Processing

o Chained Microservices Pattern for Sequencing

e Database Management Pattern

o CQRS (Command Query Responsibility Segregator) Pattern for
Separation of Concerns

o Database per Service Pattern for Decoupling

o Shared Database per Service Pattern for Consistency

Design Patterns for Microservices 85

o Event Sourcing Pattern for Auditing and Reconciliation

o Saga Pattern for Long-Running Transactions

e Observability Pattern
o Distributed Tracing Pattern for Root-Cause Analysis
o Health Check API Pattern for Self-Healing
o Log Aggregation Pattern for Centralized Logging
o Application Metrics Pattern for Performance Monitoring
o Audit Logging Pattern for Compliance
o Exception Tracking Pattern for Debugging

o Monitoring Vs Microservices Observability

e Cross-Cutting Concern Pattern
o Blue-Green Deployment Pattern for Zero-Downtime
o Canary Pattern for Incremental Rollouts
o Canary VsBlue-Green Deployment Pattern for Deployment Strategies
o Circuit Breaker Pattern for Fault Tolerance
o External Configuration Pattern for Dynamic Configuration

o Service Discovery Pattern for Service Registration and Discovery

e Conclusion

Objectives

It is no secret that microservices present an entirely new set of challenges as a result
of their distributed service-oriented architecture. In this chapter, we are going to
discuss design patterns related to application decomposition into microservices,
integration, data management, observability, as well as other cross-cutting concerns
in order to achieve essential microservices design principles.

A number of widely used microservice design patterns will be explored in this
chapter that will assist in the implementation of microservice architectures efficiently.
You should always remember that if you follow the correct design pattern for your
use case, you will be able to increase component reusability, resulting in a reduction
in development time and effort as well. The use of microservice design patterns,
however, can cause some problems that cannot be solved. In order to make the right
choice, it is important to understand the caveats and advantages of each design
pattern, in addition to the scenarios in which they are most appropriate, in order to
make the best choice.

86 Mastering Cloud-Native Microservices

Design patterns for microservices

A pattern is a way for us to design an optimized structure for your microservices.
There are many ways we can design and build microservices. As part of this course,
we will review key design patterns used with an understanding of workflows,
advantages, disadvantages, and scenarios best suited to each design pattern. When
you use the correct design pattern, you can help to increase component reusability,
which in turn can result in shortened development times.

For example, as illustrated in Figure 4.1: Essential Microservice Design Principles that
we need to achieve using design patterns described in this chapter:

Essential Microservice Design Principles

Independent, Scalability Decentralization Resilient Services Real-TLmﬁ Load
autonomous Balancing
Continuous Seamless API Isolation from
Availability delivery through Integration and - Auto -Provisioning
I Failures
DevOps Observability

Figure 4.1: Essential Microservice Design Principles

For example, as illustrated in Figure 4.2: Design Patterns for Microservices is a list
of key design patterns used for decomposition, integration, data management,
observability, and other misc. cross cutting concerns. To help you choose the right
design pattern for your application modernization, let's examine design patterns in
detail.

Design Patterns for Microservices

Transactions

Decompose by Gateway Routing Event Sourcing - Circuit Breaker
S er Team
Asynchm_ﬂaus — Log Aggregation -
Bulkhead Messaging External
Saga

Configuration

Chained
Microservices

Decomposition Integration Data Management Observability Cross-Cutting Concern
Decompose by . N
Business API Gateway CQRS Distributed Blue-Green
Capability Tracing Deployment
_ N Gateway
DS“;';F’ ose by Aggregation
~ubdomain Database per -
e Canary
Gateway Service g
Decompose by Offloading Health Check API

i
It

Shared Database Metrics

; Service Discovery
per Service

Strangler

Figure 4.2: Design Patterns for Microservices

Design Patterns for Microservices 87

For example, as illustrated in Figure 4.3: Microservices Design patterns within an
Application will give as a perspective how multiple patterns will be deployed in any
of the microservice and the way they communicate with end users, internally with
other services and with external interfaces and legacy systems.

/ Microservices Design patterns within an Application \
)

Backends for Frontends

Microservice for Pre-

API Gatewa Paid
r Y Gateway
+ Routing Microservice for Post-
Paid
Devices VAPI
Offloading

Cr LO)

Cloud \

Sidecar

Order Activation
Service

|

Gateway
Aggregation

Order Orchestration Mw
Service (Legacy

workload) /
IR

12

v
Stmngl?r Anti-corruption
Layer
Remote Service
Legacy
Monolith
Figure 4.3: Microservices Design patterns within an Application

Decomposition pattern

It has been discussed previously in this chapter as well as the importance of domain
driven design. One of the most critical steps is establishing the foundation of your
new architect and how microservices will be designed, so it needs to be planned
with care. In order for your application to scale and perform properly under higher
workloads, decomposition strategies play a crucial role in determining how well it
can scale and perform. As a rule, we do not want to decompose large monolithic
applications and create another distributed monolithic system with its own set of
issues and challenges.

Decompose by business capability

You can decompose a monolith using your organization's business capabilities.
Business capabilities refer to what a business does to generate value (for example,
sales, customer service, compliance, or marketing). As each industry and sector has
its own set of capabilities, these capabilities differ from organization to organization.
Aslong as your team has sufficient insight into your organization's business units and
you have subject matter experts for each of them, you can use this pattern. Rather
than creating development teams around technical features, these teams are created
to deliver business value as opposed to technical features alone.

88

Mastering Cloud-Native Microservices

Advantages

Services can be scaled independently of one another in order to meet the
unique requirements of the business capability they provide. This can enable
efficient resource utilization as well as the ability to handle a large number
of users or transactions.

An application can be made more resilient by decomposing it into a set of
small services. When a service goes down, it will only affect a subset of the
overall application, rather than the entire application.

In addition to providing faster development cycles, increased flexibility
in selecting the appropriate technology for the job, and better support for
DevOps practices such as continuous integration and delivery, services can
be developed, tested, and deployed independently of one another.

Produce a stable microservices architecture when business capabilities are
relatively stable.

Rather than focusing on technical features, development teams deliver
business value.

Disadvantages

Communication between services may introduce latency if they are deployed
in separate containers or on separate machines, which can negatively impact
system performance.

The design of the application is tightly coupled with the business model.

Identifying business capabilities and services often requires a deep
understanding of the overall business.

When to use this pattern

Businesses generate value by utilizing their business capabilities. Each business type
has its own set of capabilities, which is what makes them unique. A team that has
a good understanding of the organization's business units, along with additional
experts who have expertise in specific business units, should be able to use a
decomposition method by business capability. Insurance companies, for example,
have a wide range of capabilities, including sales, marketing, underwriting, claims
processing, billing, and compliance, among others. As a rule of thumb, we usually
use this pattern as a starting point and then decompose it further.

Design Patterns for Microservices 89

Decompose by subdomain

It makes use of a domain-driven design (DDD) subdomain to decompose monoliths.
A domain model is broken down into different subdomains that can be divided into
different categories as core (a key differentiator for the organization), supporting
(possibly connected to the organization but not a differentiator), and generic (not
business-specific).

It is appropriate for existing monolithic systems that have clearly defined
boundaries between the subdomain-related modules to use this pattern. The scope
of the subdomain's model is called a bounded context; microservices are developed
around this context, so you can repackage existing modules as microservices without
significantly rewriting existing code. Consequently, microservices can be developed
around existing modules without rewriting code significantly.

Similarly, decomposition by business capability provides the same benefits since
the architecture is stable, since the subdomains are relatively stable. Furthermore,
services are cohesive and loosely coupled which ensures maintainability.

For example, as illustrated in Figure 4.4: Decompose by Business Capability and by
Subdomain.

K Decompose by Business Capability and by Subdomain \
[Decompose by Business \ | \

Decompose by subdomain

<

Capability

Sales

CRM

Customer Service

Retention

Insurance Identity Manageent

Monolith

Compliance

Fraud Detection

Validate Coverage

Claims Processing

Payment Processing

Campaigns

Marketing

\ / Business Intelligence
\ Figure 4.4: Decompose by Business Capability and by Subdomain

Advantages

TTII]

kk__ L]

o The benefits of loosely coupled architecture include scalability, resilience,
maintainability, extensibility, location transparency, protocol independence,
and time independence.

90 Mastering Cloud-Native Microservices

e As aresult, systems become more predictable and scalable.

Disadvantages
e Too many microservices complicate service discovery and integration.

¢ An in-depth understanding of the overall business is necessary to identify
business subdomains.

When to use this pattern

This pattern expands on the decomposition by business capability pattern. Identifying
subdomains requires an understanding of the business and its organizational
structure. It is best suitable approach when we have well defined boundaries for
subdomains and teams responsible for single services present in an organization.

Decompose by transactions

When a business transaction is completed in a distributed system, multiple
microservices are usually called by the application to accomplish it. It is a good
idea to group your microservices based on transactions if you are concerned about
response times and your modules do not form a monolithic system. You can avoid
latency and two-phase commits if you use this pattern.

The purpose of microservices is to communicate with one another in order to
complete a single transaction. A two-phase commit problem can occur if any of the
services are unavailable at the same time during the transaction. The idea behind this
pattern is to group microservices that are involved in the same transaction together
in order to solve this problem.

In this case, the purchase service includes many other services. Once you click
"checkout," your shopping cart will be retrieved, and then the order will be created.
After payment has been received, an email will be sent, inventory status will
be updated, and the shipping process will begin. In the event that a payment is
complete, then the Validation Service will be used, followed by a new update for the
Inventory Service.

Advantages

e Each service is designed to handle a specific transaction type, making it
easier to understand and maintain the system, particularly when there are
many services or when they are interdependent.

e It is possible to reuse transactions between different systems, allowing for
the faster development of new systems based on common transactions.

Design Patterns for Microservices 91

e Data consistency is not a problem, and response times is faster.

For example, as illustrated in Figure 4.5: Decompose by Transactions:

/ Decompose by Transactions \
/ Decompose by \

Transactions Purchase Service
Sales Service ‘ Product ‘
‘ Payment ‘
Purchase Service ‘ Inventory ‘
Shipping
Insurance . . 1.
Accounting Service Validation
Monolith g
Notification Service

Marketing Service

\ Figure 4.5: Decompose by Transactions /

Disadvantages

e Dueto the fact that multiple functionalities are implemented in a microservice
rather than as separate microservices, cost and complexity are increased.

e When updating data, services that handle transactions may share data
between them, which could lead to consistency issues and require additional
coordination.

¢ The number of business domains and dependencies among them can
affect the growth of transaction-oriented microservices. Example we have
seen above will have issues to scale as multiple key payment process and
customer experience services have been grouped together.

When to use this pattern

An organization, should utilize this pattern if response times are crucial for customers
(for example, in a reservation service). We should not use this pattern as default
choice rather it is a strong candidate for specific scenarios with in your application.

Decompose by service per team

A service-based decomposition pattern, as opposed to previous decomposition
patterns, breaks a monolith into microservices that are managed by individual

92 Mastering Cloud-Native Microservices

teams. Each team is responsible for maintaining a business capability's code base. It
is the responsibility of each team to develop, deploy, test, and negotiate APIs with
other teams. Each microservice should be owned by only a single team. Multiple
sub-teams within a large team may own different microservices within the same
team, if there is a larger team.

For example, as illustrated in Figure 4.6: Decompose by Service per Team shows how
a monolith can be broken into microservices that each team can manage, maintain,
and deliver independently.

/ Decompose by Service per Team \

/ Decompose by Service per\

Team
Microservice 01
(Team 01)

Microservice 02
(Team 02)

Insurance Microservice 03
Monolith (Team 03)

Microservice 04
(Team 04)

Microservice 05

(Team 05) /
\ Figure 4.6: Decompose by Service per Team /

Advantages

¢ Code bases and microservices are not shared among teams, and they operate
independently.

e Each team may use a different technology, framework, or programming
language that is most appropriate for the particular microservice.

Disadvantages

e Team alignment with end-user functionality or business capabilities can be
challenging.

e Circular dependencies between teams make it difficult to deliver large,
coordinated application increments.

When to use this pattern

A team that is responsible for a particular business capability /function owns a
code base that is deployed as a service. The Decompose by Service by Team pattern

Design Patterns for Microservices 93

requires a high level of coordination and communication between teams, as well as
a clear definition of service boundaries in order to ensure that services are loosely
coupled and easy to maintain. The management of multiple services also requires an
overall organization structure that can support the autonomy of teams.

Bulkhead pattern for resiliency

As a software design pattern, bulkheads are primarily used to isolate components
from each other in order to improve system resiliency. In situations where multiple
interconnected components are present in a system, and a single component's failure
may affect the performance or availability of the entire system, this pattern is often
used.

Bulkhead patterns create compartments or bulkheads for each component of the
system. These compartments are designed to be isolated from one another in order
to prevent the failure of one component from impacting the other components.

For example, as illustrated in Figure 4.7: Bulkhead Patterns. The solution isolates
Service B and Services C from cascading failures by isolating each issue within its
own bulkhead, preventing the entire solution from failing.

f Bulkhead Patterns \

Workload 01 : Workload 02

: ‘ Connection Pool H Connection Pool ‘
! I

'

Service B Service C

Service A

\ Figure 4.7: Bulkhead Patterns /

As a general rule, you will use a combination of techniques to implement the
bulkhead pattern, such as resource pooling, circuit breakers, and timeouts. As an
example, you might create a resource pool for each component of the system, and
use circuit breakers to prevent one component from overloading the others. It is also
possible to implement timeouts to ensure that each component has a limited amount
of time to accomplish its tasks, as well as to prevent one component from blocking
the other.

Advantages

¢ The ability to preserve some functionality in the event of a service failure.
The application's other features and services will continue to work.

94 Mastering Cloud-Native Microservices

¢ The advantages of isolating different parts of the system are that it is easier
to design and implement failure-resistant systems. If one service or container
fails, it will only affect a subset of the overall application, rather than the
entire system.

e It is possible to create a fault-tolerant system by limiting the amount of
resources consumed by a service. If a service consumes too many resources,
it can be isolated and restarted, therefore reducing the possibility of the
entire system going down.

Disadvantages

e When partitioning Service B and Services C into bulkheads, consider the
level of isolation offered by the technology as well as the overhead in terms
of cost, performance and manageability.

e As aresult of the bulkhead pattern, additional overhead is introduced, such
as the need for additional configuration, monitoring, and management.

¢ It may be expensive to set up and maintain the bulkhead pattern, depending
on the specific requirements of the system.

¢ The added complexity and less efficient use of resources.

When to use this pattern

Combine bulkheads with retry, circuit breaker, and throttle patterns to provide
sophisticated faulthandling. As a best practice, when it comes to partitioning services
into bulkheads, you should consider deploying them in separate virtual machines,
containers, or processes. Containers offer the best balance between resource isolation
and low overhead.

Sidecar pattern for service mesh

This pattern enables heterogeneous technologies and components to be used
in applications by deploying the application components in separate processor
containers to provide isolation and encapsulation. Additionally, it enables the
application to use heterogeneous technologies and components. The Sidecar pattern
is named after a motorcycle sidecar. The idea is to attach a sidecar to a parent
application and provide support for the application. Both sidecars and parents share
the same life cycle and are created and retired together. For example, the Ambassador
sidecar pattern can also be used as a sidecar pattern. This is because it routes the calls
directly to the Ambassador, which handles the request logging, routing, and circuit
breaker functions for the application.

Design Patterns for Microservices 95

Advantages

As a result of separating cross-cutting concerns from the main service, the
main service can remain focused on its specific business logic and be more
decoupled from the underlying infrastructure.

A sidecar pattern provides flexibility in choosing the right technology or
framework for a cross-cutting concern without modifying the main service.

The sidecar pattern can make it easier to deploy new versions of the main
service without deploying new versions of the sidecar.

A sidecar is runtime and programming language independent of its primary
application, so you do not have to develop one sidecar per language.

Due to its proximity to the primary application, there is no significant latency
in communication between them.

For example, as illustrated in Figure 4.8: Sidecar Patterns:

/

o

Sidecar Patterns \

Sidecar

Application
Core Functionality

Peripheral tasks such as:

Proxy to remote services

Platform abstraction

Logging

Configuration

Request/Response to 3rd party interface

Figure 4.8: Sidecar Patterns /

« e e e o+ .

Disadvantages

The sidecar service may introduce additional latency if it is deployed in a
separate container or on a different machine from the main service. Latency
can negatively impact the overall performance of the system.

Consider building functionality into a sidecar as a separate service or as a
more traditional daemon before adding it to a sidecar.

When the cost of providing a sidecar service for each instance is not worth
the benefit of isolation.

96 Mastering Cloud-Native Microservices

When to use this pattern

e There are a variety of languages and frameworks used in your primary
application. The sidecar service can be used by applications written in a
variety of languages and frameworks.

e Having a service that shares the full life cycle of your main application while
being able to be updated independently is essential.

Strangler pattern for legacy systems

When you are migrating a legacy system, you should gradually replace certain parts
of the system with new applications and services as the system evolves. As soon as
all the features of the old system are replaced with the new system, it will eventually
stall the old system and allow it to be decommissioned. It is expected that you
will mostly be working with brownfield applications, which are large, monolithic
applications (legacy codebases). As a result of the Strangler pattern, two separate
applications are created in the same URI range, which helps provide a solution or
rescue. Eventually, you will be able to turn off the monolithic application because
the newly refactored application chokes or replaces the original application until the
new application chokes or replaces it.

There are three steps involved in the strangler application process: transform,
coexist, and eliminate.

¢ Transform: Create a parallel new site with modern approaches, based on the
existing one.

e Coexist: Redirect the current site to the new one for a period of time so the
new functionality can be implemented incrementally while leaving the
existing site alone for a period of time.

¢ Eliminate: Get rid of the old features of the existing site and replace them
with the new ones at new site.

Advantages

e This pattern enables an incremental migration from a monolithic application
to a microservices-based architecture, reducing the risk of a big-bang
migration and allowing for a more gradual transition.

e A phased roll-out of the new system is possible using the Strangler
pattern, reducing the risk of introducing new bugs or interrupting existing
functionality.

Design Patterns for Microservices

97

e Provides a way for system transformations to be done with a minimum

amount of risk.

¢ During the refactoring process, old services will continue to work while the
updated versions are being implemented.

For example, as illustrated in Figure 4.9: Strangler Patterns:

Strangler Patterns

Web UI

Web Ul

\

/

‘ API Gateway ‘ API Gateway ‘ ‘ API Gateway ‘
— — '
Microservices L
egacy . .
. Mornolith Microservices
eacy Microservices
Monolith
Early Migration Phase Later Migration Phase Migration Complete
Figure 4.9: Strangler Patterns
Disadvantages

e As a result of implementing the Strangler pattern, the system can be more
complex to manage and test, particularly in situations where there are many
services or where the services are interdependent.

e Alot of attention needs to be paid to routing and network management on

a regular basis.

e This requires you to ensure that you have a plan for reverting back to the
old way of doing things when things go wrong, so that you can quickly and
safely go back to the old way of doing things.

When to use this pattern

It is important to consider how you can handle both new and legacy systems that are
potentially using the same services and data stores. Make sure both can access these

resources simultaneously.

Integration pattern

Having learned how to decompose an application and how to decompose it, we will
then move on to understanding integration patterns, which are the next important

98 Mastering Cloud-Native Microservices

task. This is essentially the idea of adding more services or structuring an application
so that the services are able to communicate with each other and with the clientin a
very efficient manner.

API gateway pattern for API management

As its name suggests, API gateways are single entry points that aggregate calls to
each microservice. While this may seem very similar to the aggregator pattern, it
has some important differences. In addition to this, the new service does not store
any data and instead is responsible for API assembly, request routing, and new
authentication features. It is shown in Figure 4.6 that the API gateway can serve
multiple clients through a variety of communication channels. API Gateway is
an API management system which exposes APIs based on the needs of the client.
The gateway can then process requests through API composition, invoke multiple
services and aggregate the results of the multiple services.

For example, as illustrated in Figure 4.10: API gateway Patterns:

/ API gateway Patterns \

API

Gateway

T
Service A > %

User
- Database
7N
4 Service B

Devices %>

Service C —(g\

Cloud pﬁ/ | Database

@

Authentication
Database
Figure 4.10: API gateway Patterns

Advantages

e Acting as a facade. The facade architectural pattern is not a new one - in
essence, it implements a single interface in front of a complex system to
improve its usability and provide loose coupling. It is possible to maintain
and change the location of the backend components through the facade
without affecting the client.

Design Patterns for Microservices 99

Disadvantages

e When a single point entry via API Gateway becomes inefficient, it can
eventually become a monolithic process. This is where the backend for
frontend (BFF) pattern is used: Applications can have multiple API gateways
based on business tasks or client apps (such as separate gateways for web
and mobile applications).

e An API gateway should help your API grow, which will increase traffic to
your API, and your gateway should be prepared to handle these spikes and
comfortably scale. In this article, Uber documents how they handled scaling
challenges.

When to use this pattern

The API gateway provides clients with a cleaner interface through which to interact,
which is another reason for its adoption. A pattern like this should be used for load
balancing when high availability is required, but it can also be combined with rate
limiting and throttling.

API aggregator pattern for composite services

A microservice architecture can consist of tens to hundreds of services. However, the
problem with getting information about a specific product is that many additional
calls are required to other services in order to get the necessary information.
Aggregator patterns are designed to collect data from a variety of microservices and
return it as an aggregate for processing. Figure 4.5 shows how the new aggregator
service will be able to maintain a common collection of information from various
services in one database. This will enable it to store it. In this case, the various
services can push events onto a messaging queue/bus, which are then collected by
the aggregator, which records the events in the database.

e To reduce latency as much as possible, the gateway should be located as
close as possible to the backend services.

¢ Gateways can cause a bottleneck in the process. Make sure that the gateway
has sufficient performance to handle the load as well as the ability to scale to
accommodate anticipated growth.

e Make sure that the design is robust by using techniques such as bulkheads,
breaks, retries, and timeouts.

e A better approach would be to place an aggregation service behind the
gateway rather than building an aggregation into the gateway itself.

100 Mastering Cloud-Native Microservices

e Itislikely that demand aggregation will have different resource requirements
than other services in the gateway, which can have an impact on the gateway's
routing and offloading capabilities.

For example, as illustrated in Figure 4.11: Gateway Aggregator Patterns:

/ Gateway Aggregator Patterns \
Service A %@

API Gateway

Database

A8

Service C Database

K Figure 4.11: Gateway Aggregator Patterns /

Advantages

Service B

Aggregator

e API Aggregator simplifies the overall system by hiding the complexity of
interacting with multiple microservices from the client.

e The API Aggregator pattern centralizes the management of APIs, making
it easier to address cross-cutting concerns such as security, monitoring, and

logging.
¢ Usingthe APl Aggregator pattern, caching canbe implemented at the gateway

level, reducing the number of requests to the underlying microservices and
improving performance.

e A key component of the API Aggregator pattern is the ability to route
requests to different microservices depending on the specific requirements,
which allows for more flexible and decoupled service integrations.

Disadvantages

¢ You should ensure that the gateway service is properly designed to meet
the requirements of your application with regard to availability as it may
introduce a single point of failure.

When to use this pattern

A client can use this pattern if it has to communicate with multiple backend services
in order to perform an operation. The client may be using a network with significant
latency, such as a cellular network.

Design Patterns for Microservices 101

Gateway offloading pattern for performance

The offloading of shared or specialized service functions to the gateway proxy can
simplify the development of applications by moving common service functionality,
such as the use of SSL certificates, from other parts of the application to the gateway
proxy. In order to handle complex security issues properly (token validation,
encryption, SSL certificate management) and other complex tasks, team members
with highly specialized skills may be necessary. The certificate required by an
application needs to be configured and deployed to all instances of the application,
for example, every time the application is deployed. In order to ensure that the
certificate does not expire, it has to be managed with each new deployment. Every
time an application is deployed, any generic certificate that expires must be updated,
tested, and verified. It is a good idea to delegate some functionality to a gateway,
especially cross-cutting functions like certificate management, authentication, SSL
termination, auditing, protocol translation, and throttling.

For example, as illustrated in Figure 4.12: Gateway Offloading pattern:

/ Gateway Offloading pattern \

&
+ Routing
% T Unencrypted Microservices
Gateway
Aggregation

Offloading Traffic

\ Figure 4.12: Gateway Offloading pattern /

Advantages

¢ You can simplify the service development process by eliminating the need to
distribute and maintain supporting resources such as web server certificates,
secure web configurations, and website security codes.

e Simplifying the configuration process leads to easier management, scalability,
and upgrading of the service.

e It is best to have dedicated teams implement functions requiring specific
knowledge, such as Security. In this way, your core team will be able to focus
on the application's functionality, while the relevant experts will take care of
these specialized yet cross-functional concerns.

¢ You can configure the gateway to ensure some consistency in monitoring
and logging requests and responses, even if the service is not properly

102 Mastering Cloud-Native Microservices

instrumented. This can be accomplished by configuring the gateway in such
a way that a minimum level of monitoring and logging is maintained.

Disadvantages

o There should be a high level of availability and resilience for your gateway.
Having multiple instances of the gateway will prevent the failure of a single
point of failure.

e Ensure that the gateway is designed for the capacity and scale needs of
your application and endpoints. Be sure that the gateway does not become
a bottleneck for the application and is sufficiently scalable so that it does not
become a bottleneck.

When to use this pattern

e In general, this is a feature that is common among application deployments
with different resource requirements, including memory resources, storage
capacity, and network connections, but may not be the same across all
deployments.

e As part of this project, you would like to shift responsibility for network
security, throttling, and other network boundary concerns to a more
specialized team. Business logic should never be delegated to gateways.

Gateway routing pattern for traffic shaping

It helps with a single endpoint, route requests to multiple services or instances.
Using this pattern, you can expose multiple services to a single endpoint and route
requests to the appropriate service, expose multiple instances of the same service for
load balancing or availability purposes, and expose different versions of the same
service and route traffic across them.

For example, as illustrated in Figure 4.13: Gateway Routing pattern:

/ Gateway Routing pattern \

@)
v " API Gateway) Service A S
m API Gatewa ervice g
User 4 Ver.1.1 H@
Database
= Service A TS
) Ver1.1 —CBDo
. S Database
Devices %) Service A @
»/—_ Ver.1.2 _%_
— Database
OJ(L Service B
Cloud ./

K Figure 4.13: Gateway Routing pattern /

Design Patterns for Microservices 103

Advantages

e The gateway routing level is the highest level of routing and is based on IPs,
ports, headers, and URLSs.

e There are several ways to limit public network access to the backend services,
such as limiting them to only be accessed via the gateway or by using a
private virtual network. The gateway serves as the public endpoint for the
services.

Disadvantages

e Consider resiliency and fault tolerance capabilities when implementing the
gateway service. It can introduce a single point of failure.

e There is a possibility that the gateway service will become a bottleneck for
your business. Ensure the gateway service is scalable and capable of handling
the load expected as your business grows.

When to use this pattern

When a client needs to access multiple services behind a gateway, you want to
simplify the client application by using a single endpoint to access all the services
that the client needs to consume. As part of your deployment strategy, you would
like to implement a method in which clients can access multiple versions of the
service at the same time.

Asynchronous messaging pattern for loose
coupling

Asynchronous messaging is one of the most scalable patterns due to the asynchronous
nature of microservices. This pattern uses asynchronous messaging between services
for communication. Microservices communicate with one another via messaging
channels.

Asynchronous communication can take a number of different forms, including:

e Service Request/Response - a service sends a request message to a recipient
and expects to receive a response message within a reasonable period of time.

¢ Thenotification system is used when someone sends a message to a recipient,
but the sender is not expecting a reply from the recipient. Neither is sent.

e A request/asynchronous response request is sent by a service to a receiver
and is eventually expected to receive a response message from the receiver.

104 Mastering Cloud-Native Microservices

e Publish/subscribe service sends a message to zero or more recipients, one or
more recipients, of whom some may reply to the message.

Technology examples that use asynchronous messaging are Apache Kafka,
RabbitMQ.

The message passing pattern is another method that microservices use to
communicate with each other. The services are connected by exchanging messages
across a queue. This style of communication has a number of advantages, including
the fact that it does not require service discovery and the services are not tightly
coupled. As synchronous systems are tightly coupled, any problem that occurs in
synchronous downstream dependencies can have an immediate impact on upstream
callers. Depending on the specific requirements, such as protocols, Amazon Web
Services offers a variety of services for implementing this pattern, including retries
from upstream callers that can quickly fan out and amplify problems. In one possible
implementation, Amazon Simple Queue Service (Amazon SQS) queueing and
Amazon Simple Notification Service (Amazon SNS) are combined to implement
the solution.

For example, as illustrated in Figure 4.14: Asynchronous Messaging pattern:

/ Asynchronous Messaging pattern \

Load Balancer

A

|

Service A Service B Service C Service D

|]]

Synchronous HTTP

Database Database Database Database

Asynchronous
Message Broker 1iessaging quene
Figure 4.14: Asynchronous Messaging pattern

Advantages

o There is also the issue of reliability. In the event that one of our report
generation services is down (and you know there will be one), or there
is a network glitch (and you know that is going to happen), you will lose
synchronous messages after a certain timeout, and for asynchronous
messages, you will have retries and a dead letter queue.

Design Patterns for Microservices 105

e The other advantage of queues that they allow us to prioritize our requests.
If the same service processes both product views and purchase requests, then
we can make sure that the latter gets the first priority. If the service is under
heavy load, we can serve the product views slowly, perhaps even dropping
some. This will ensure that the purchase requests are not adversely affected
by the load.

Disadvantages

e Itis true that asynchronous messaging does add complexity to the process,
since instead of sending a message and waiting for a reply, you must send a
message, listen to a reply queue, and then route the message to the sending
client based on a message ID.

e In addition, the use of asynchronous communication and the addition of
a queue between components means that we must necessarily add some
latency to the system. We are adding two hops to each communication instead
of communicating directly, one from the sending service to the queue, and
another from the queue to the receiving service, instead of communicating
directly.

When to use this pattern

When it comes to a microservice architecture, asynchronous communication is the
way to go. In asynchronous messaging, messages are exchanged between software
systems in an asynchronous (non-blocking) manner. When the sender and the
receiver of a message must remain independent of each other, and when the sender
does not require a response from the receiver prior to continuing its work, this pattern
is commonly used. An example of how asynchronous messaging is used is when
system components are located on different machines or locations in a distributed
environment. As a result, asynchronous messaging allows these components to
communicate with each other without establishing direct connections, which can
lead to improved system performance and scalability.

Branch pattern for parallel processing

As a result of the combination of the aggregator and chained design patterns, the
branch pattern is the advanced version which aims to combine the positive aspects
of both patterns to better serve the business layer of an application. This pattern is
designed for simultaneous processing of requests and responses from two or more
microservices at the same time. To put it simply, we can see in Figure 4.9 that the
developer has the option to dynamically configure service calls in this pattern. The
calls in this pattern can also be made in a contemporary manner. Due to this, service
A has the ability to call both service B and service C at the same time.

106

Mastering Cloud-Native Microservices

For example, as illustrated in Figure 4.15: Branch pattern:

/

o

Branch pattern \

Load Balancer
le Service C %@
. Database

Service A — Service B
! !
B> cgd

Database Database
Figure 4.15: Branch pattern /

Advantages

Using a branch microservice pattern, it is possible for developers to configure
service calls dynamically. All service calls will take place in a simultaneous
manner, which means that service A will be able to call service B and service
C at the same time.

It is possible to support more than one version of a service simultaneously
using the Branch pattern, which is useful in situations in which a new
version of the service is being developed and tested, but the previous version
remains in production.

An incremental rollout is possible using the Branch pattern, which reduces
the risk of introducing new bugs or disrupting existing functionality.

Disadvantages

Add on complexity. The branch pattern can also cause code to be less efficient,
as the microservice must evaluate each branch and determine which path to
take.

In some cases, implementing the Branch pattern may make the system more
challenging to manage and test, particularly in situations where there are
multiple versions of the service or where the services are interdependent.

When to use this pattern

Abranch microservice design pattern allows the processing of responses and requests
from multiple separate microservices at the same time. The chained design pattern

Design Patterns for Microservices 107

differs from the chained design pattern in that instead of being passed sequentially
to two or more chains of mutually exclusive microservices, the request is sent to
two or more chains of mutually exclusive microservices at the same time. Using
this design pattern, users can generate responses using a single chain as well as a
number of chains. It expands on the Aggregator design pattern.

Chained microservices pattern for sequencing

It is important to keep in mind that in a chained microservice design pattern, a
single consolidated response to the request is produced. If a request is received by
a client of service A, the client then communicates with service B, which in turn
can communicate with service C. There is a high probability of synchronous HTTP
request/response messaging being used by all services.

The key part to note is that the client will be blocked until the complete request/
response chain, that is service <-> service B and service B <-> service C, is completed.
Service B's request to Service C can be completely different than Service A's request
to Service B. Likewise, Service B's response to Service A Form Service C to Service
B can be completely different. And that is the whole point anyway, where different
services increase their business value.

The other important aspect to keep in mind is to ensure that the chain is not made
too long. It is important because the synchronous nature of the chain can appear on
the client's side as a long wait, especially with regards to web pages that are waiting
for the response to be displayed.

Advantages

e There is no doubt that the chained microservice pattern has its own
advantages. The main advantage is the ease of implementation; due to the
chain calls being synchronous, itis easier to understand the network calls. We
do not prefer to use asynchronous communication methods. For example, as
illustrated in Figure 4.16: Chained Microservices pattern:

/ Chained Microservices pattern \

Load Balancer

S
I

Service A Service B Service C
!) !
> o &
[Eba; Database Database

K Figure 4.16: Chained Microservices pattern /

108 Mastering Cloud-Native Microservices

Disadvantages

e Due to the fact that the client does not receive any output until the request
has been processed by each service and the corresponding responses have
been produced, it is always recommended to avoid making long chains since
the client will wait until the chain is complete.

e One of the obvious problems with this pattern is its inability to handle
asynchronous communication, which increases complexity and compromises
its scalability.

When to use this pattern

If the currentscope of the applicationis toolarge tobe able to add in more microservices
at the moment, then the chained microservice pattern can prove useful.

Database management pattern

Getting data into and out of a database is a critical component of any application.
Therefore, this section will cover a wide variety of techniques for managing data
using the following patterns: Command Query Separation of Responsibility, Event
Acquisition, Database per Service, Shared Database per Service, and Saga Pattern.

Command Query Responsibility Segregator

(CQRS) pattern for separation of concerns

The CQRS pattern is about separating the create, update, and delete operations
from the retrieval operations. Essentially, the query side model keeps updated
information by subscribing to the events that are published on the command side,
so that it is always up to date. It is quite challenging to implement queries from
multiple services using the database-per-service model, so the CQRS pattern has
been designed to help implement queries from multiple services.

A common database for each service or a database for each facilitator is present in
every microservice design. However, since there is only one database per service
in the database for each service architecture, we are not able to implement a query
in the database. This is why you can apply a pattern known as the CQRS pattern
in this situation. Based on this design, the program will be split into two sections
— command and query. It is the query section of the code that will take care of the
materialized views, while the command section of the code will handle all requests
that are completely related to the CREATE, UPDATE, and then the DELETE
operations. To update the materialized views, a series of events utilizing the pattern
mentioned above is used.

Design Patterns for Microservices 109

For example, as illustrated in Figure 4.17: CQRS (Command Query Responsibility
Segqregator) pattern:

-~

L

User Interface

CQRS pattern \

Tables

Command Write Database

Eventual
Consistency

Materialized
Query Read Database | View

Figure 4.17: CQRS pattern /

Advantages

Using the CQRS pattern has the advantage of improving a system's
scalability and performance. Using the CQRS pattern, the command and
query components of a system can be optimized and scaled independently
of one another by separating the responsibilities of the system into distinct
components. As a result, the system will be able to handle large volumes of
requests without degrading performance or availability.

Consequently, the flexibility that is offered by this design pattern helps
systems to stay more flexible over time, resulting in increased application
performance, security, and scalability as they continue to evolve.

The CQRS pattern can also facilitate the understanding and maintenance
of the code. CQRS patterns can make a system more modular and easier to
understand by dividing its responsibilities into separate components. As a
result, developers can make changes to the system without affecting other
parts of the code, making it easier for them to work with it.

Disadvantages

Its partiality must be evaluated before implementation. CQRS also has
the potential disadvantage of requiring additional resources and effort to
implement than other patterns. In order to design and implement the CQRS
pattern successfully, it may require more effort and resources due to the
requirement of creating separate components for handling commands and
queries.

110 Mastering Cloud-Native Microservices

When to use this pattern

The CQRS pattern is an excellent choice for cases where the number of data reads is
much higher than the number of data writes. In cases like this, microservice design
patterns like CQRS will help you to scale the read model independently rather than
scaling the write model. It is recommended that the CQRS pattern be used along
with event sourcing since the two patterns complement each other. CQRS can be
used when systems have different loads on the read and write aspects of a database
in order to separate those concerns.

Database per service pattern for decoupling

In a microservices architecture, loose coupling is a major component of the
architecture, as each individual microservice is able to independently store and
retrieve information from its own data store. When you use a database-per-service
pattern, you can select the most appropriate data store (such as a relational or
non-relational database) according to your business needs and application. There
is no common data layer between microservices, changes to a single microservice
database do not affect other microservices, individual data stores cannot be accessed
directly by other microservices, and persistent data is only accessed through APIs.
This means that microservices do not share a data layer. Additionally, decoupling
your data stores improves the resiliency of your entire application and makes sure
that one database cannot become a single point of failure for your application.

In the following illustration, you will see that the "Sales," "Customer," and
"Compliance" microservices use different AWS databases. Using the Amazon API
Gateway API, these microservices are accessed as Lambda functions of AWS and
ensure that the data is kept private and not shared among the microservices. AWS
Identity and Access Management (IAM) policies ensure that data is protected. It
should be noted that each microservice uses a database type that meets the individual
requirements, for example, "Sales" uses Amazon Aurora, "Customer” uses Amazon
DynamoDB, and "Compliance" uses Amazon Relational Database Service (Amazon
RDS) for SQL Server.

For example, as illustrated in Figure 4.18: Database-per-service pattern:

Design Patterns for Microservices 111

/ Database-per-service pattern \

T
Service A &—@ Amazon

Aurora

API
Gateway

Database

TN
Service B e—@ Amazon

f— DynamoDB
Database

OJ(") (‘_{/‘B Relational
J; ﬂ Service C % DB Service

Narts (Amazon RDS)

Devices

Cloud Authentication Database

Database
K Figure 4.18: Database-per-service pattern /

Advantages

e There needs to be loose coupling between your microservices. Microservices
have different compliance or security requirements for their databases.

e A more precise control of scaling is required between your microservices.

Disadvantages

¢ In order to implement complex transactions and queries that span multiple
microservices and data stores, you might have to deal with a lot of managing
and maintaining multiple relational and non-relational databases.

e Your data stores need to meet two of the CAP theorem requirements:
consistency, availability, or partition tolerance.

When to use this pattern

In cases where teams require complete ownership of their microservices for scaling
and operational purposes, the database per service pattern should be used.

Shared database per service pattern for
consistency

This pattern is characterized by the fact that a database is shared by many
microservices at the same time. This pattern often leads to microservices becoming a
distributed monolith, which can be a nightmare for the developer. Even though this
pattern implies sharing a database, it does not imply that single tables should ever
be shared among multiple microservices (which should never be done). Due to this
tight coupling between the services, the system maintainability and performance are
degraded as well. This leads to a very high degree of coupling between the services.

112 Mastering Cloud-Native Microservices

Advantages

When it comes to quick development time, a shared database pattern is very
useful. Despite the fact that it is not the best practice, it does significantly reduce
the development effort by a huge margin. For example, as illustrated in Figure 4.19:
Shared-database-per-service pattern:

/ Shared-database-per-service pattern \
0

@ Service A
User
EED
Service B %

Devices RDBMS
& Database
O—I l—o ‘ ? Service C

Cloud Authentication

Database

K Figure 4.19: Shared-database-per-service pattern /

Disadvantages

e Given that the database is shared between the two services, there is a risk
that one of the services might corrupt or delete some data due to the fact that
the database is shared.

e The performance of other services that are sharing the same database will be
affected if one service fires expensive queries on the database.

When to use this pattern

The use of this pattern can serve as an encouragement when an organization prefers
not to refactor an existing code base by many changes due to business requirements
or other limitations.

Event sourcing pattern for auditing and
reconciliation

The idea behind event sourcing is not storing state, but storing events in a system
that can be replayed whenever the need arises. Since each event is irremovable and
immutable, there is no need to update or delete them to guarantee good performance

Design Patterns for Microservices 113

at writing. These factors result in better performance. As opposed to updating data
directly in data stores, events are stored in a series of events, instead of being updated
directly in those data stores as they happen. In order to calculate the state of their
own data stores, microservices replay events from an event store. Patterns like this
provide visibility into the current state of an application as well as additional context
regarding how it got to where it is at the moment. Although the command and query
data stores may have different schemas, the Event Source pattern will still be able to
reproduce the data for any given event even if the command data store and query
data store have different schemas. In order to implement this pattern, either Amazon
Kinesis Data Streams or Amazon EventBridge can be used.

An event sourcing system can be used to atomically update state and publish events.
It is the traditional way to persist an entity that it is saved with the current state.
Event sourcing takes a new approach to persistence that is event-centric. Business
objects are persisted by storing a sequence of state change events. Each time an
object's state changes, a new event is added to the sequence of events. Due to the
fact that this is an operation, it is atomic in nature because it is an operation.

It is possible to reconstruct an entity's current state by replaying its events. To
understand how event sourcing works, you can look at the order entity. Traditionally,
each order is associated with a row in the ORDER table, along with a row in another
table like the ORDER_LINE_ITEM table. An order is saved in the order service when
it is saved by keeping its status changes: created, approved, shipped, and cancelled.

A number of events are recorded in an event log, which serves as both an event
database and also as a message broker for the order. The event log contains enough
information to reconstruct the order status. Services can subscribe to events through
an API provided by the event store. Event stores are the backbone of an event-driven
microservices architecture where all events stored in the event store are delivered
from the event store to all interested subscribers.

Advantages

e This is the only audit logging solution that provides 100% accuracy for
auditing, which is often an afterthought, leading to the inherent risk of
incomplete auditing. With event sourcing, each state change corresponds to
one or more events, ensuring that auditing is completely accurate.

¢ In this pattern, you will be able to identify and reconstruct the state of the
application at any time in the past. This will create a permanent audit trail
and make troubleshooting easier. However, the data will eventually become
consistent, which may not be appropriate for some use cases.

114 Mastering Cloud-Native Microservices

For example, as illustrated in Figure 4.20: Event Sourcing pattern:

K Event Sourcing pattern \
[Presentation Layer J / Materialized Views \
External
Systems

[Sequence of Events

Order Created
Order Updated
Order Saved
Order Updated

)
)
%
Order Confirmed % \ /
)
)
)

Event Store

Published Events

Order Shipped

Order Assigned
Order In Transit
Replayed Events | Query for Current state of entities

[
[
[
{
[
[
{
[
[Order Delivered |
\ Figure 4.20: Event Sourcing pattern /

Disadvantages

e As different types of events contain different payloads, there needs to be a
single source of truth for defining and determining the correct format for
each type of message.

When to use this pattern

Due to the fact that more applications are requiring real-time data in an asynchronous
manner but in an organized manner, event sourcing is becoming increasingly
popular.

Saga pattern for long-running transactions

There is a design pattern called Saga, which is one way to manage data consistency
across microservices during distributed transactional situations. A saga is a sequence
of transactions that updates each service and publishes a message or event to trigger
the next transaction step. If a step fails, then the saga performs compensating
transactions that counteract the previous transactions.

It is essential that transactions are atomic, consistent, isolated, and durable (ACID).
While transactions within a single service comply with ACID, cross-service data
consistency requires a cross-service transaction management strategy in order to
ensure data consistency.

Design Patterns for Microservices 115

e As far as Atomicity is concerned, it is an indivisible and irreducible set of
operations that must all occur or none of them will.

¢ Consistency refers to the fact that the data only moves from one valid state
to another valid state when a transaction is made.

e The isolation of concurrent transactions ensures that the data state of a
concurrent transaction will be the same as the state of a sequentially executed
transaction.

e The durable nature of the system means that committed transactions will
remain committed even in the event of a system failure or power outage.

The two-phase commit protocol (2PC) is a distributed transaction protocol that
requires all participants to commit or roll back a transaction before it can proceed.
Although some of the participating implementations, including, are able to support
this model, other systems, such as NoSQL databases and messaging, do not.

In the Saga pattern, a sequence of local transactions is used for transaction
management. Each saga participant performs an atomic amount of work and
updates the database and then publishes a message or event that triggers the next
local transaction in the saga in response to the previous local transaction. A series
of compensatory transactions are run by Saga when a local transaction fails, which
restores the changes that were made by the previous local transaction.

There are two approaches to developing sagas:

e Choreography based: Participant transactions are orchestrated by an
orchestrator.

e Orchestration based: Using a messaging queue, local transactions trigger
local transactions in other services based on domain events.

Choreography saga pattern

With the application of publish-subscribe principles, the choreography provides the
possibility of coordinating sagas. As part of the choreography, each microservice
executes its own local transaction and publishes events to the message broker system,
thereby triggering local transactions in other microservices. It can be very difficult
and confusing to manage transactions between Saga microservices as the number of
workflow steps increases. The choreography also decouples the direct dependency
on microservices for the management of transactions from the choreography.

116 Mastering Cloud-Native Microservices

For example, as illustrated in Figure 4.21: Choreography Saga Pattern:

/ Choreography Saga Pattern \
V

Client

Request

C Message Broker <] [><] <] (>

Service A Service B Service C Service D

|]]]

Database Database Database Database

Figure 4.21: Choreography Saga Pattern /

e Itis perfect for simple workflows that require a limited number of participants
and do not require a coordination logic. It is not necessary to implement and
maintain additional services. It does not introduce a single point of failure,
since the responsibilities are distributed among the participants.

Advantages

Disadvantages

e There is a risk of cyclic dependency between saga participants because they
must consume each other's commands, which makes workflow confusing
when adding new steps, as it is difficult to track which saga participants
listen to which commands. Integration testing is difficult since all services
must be running in order to simulate a transaction.

When to use this pattern

Choreography saga patterns are typically used for events-driven interactions
between services, in which the interactions become a series of independent steps
rather than a single, monolithic operation.

Orchestration saga pattern

An alternative to sagas is orchestration. It can be used to coordinate sagas by using
a centralized controller microservice, allowing for the sequential execution of local

Design Patterns for Microservices 117

microservice transactions. This centralized controller microservice orchestrates the
saga workflow and calls to sequentially execute local microservice transactions. As
a result of orchestrating and managing saga transactions in a centralized manner,
orchestrator microservices are able to roll back steps with compensating transactions
in the event that any of them fail.

For example, as illustrated in Figure 4.22: Orchestration Saga Pattern:

/ Orchestration Saga Pattern \

V

Client
Request

(Orchestration

@

Service A Service B Service C Service D

]]]]

Database Database Database Database

\ Figure 4.22: Orchestration Saga Pattern /

Advantages

¢ When there is control over every participant in the process, as well as control
over the flow of activities, this system will be ideal for complex workflows
involving many participants or those that add new participants over time.

¢ Astheorchestrator unilaterally depends on the participants of the saga, it does
not introduce cyclical dependencies. There is no need for saga participants to
be aware of other participants' commands. Separation of concerns simplifies
the business logic.

Disadvantages

¢ Due to the additional complexity of the design, a coordination logic has to be
implemented. There is an additional point of failure, since the orchestrator is
responsible for managing the entire process.

118 Mastering Cloud-Native Microservices

When to use this pattern

e Data consistency in a distributed system without tight coupling must be
ensured. If one of the operations in a sequence fails, it must be rolled back or
compensated.

e The orchestration saga pattern is typically used when the interactions
between services are more tightly coupled, and it makes it more natural
to think of the interactions as a single, monolithic operation. Contrary to
the choreography saga pattern which emphasizes independent steps and is
more event-driven.

Observability pattern

In order to achieve observability, you must collect telemetry from endpoints and
services in your multi-cloud computing environment, derived from instrumentation
that originates from the endpoints and services. There are countless components
of today's modern environment, including hardware, software, and cloud
infrastructure, containers, open source tools, and microservices, that generate
records of every activity that occurs. Observability is a way of understanding what
is happening across all of these environments and between technologies so that you
can identify and resolve problems so that your systems remain reliable and efficient,
and your customers are happy. As modern cloud environments are dynamic and
constantly changing in scope and complexity, most problems cannot be recognized
or monitored due to the fact that they are dynamic. With observability, you are
able to eliminate this common problem of unknown unknowns, allowing you to
understand new types of problems as they arise continuously and automatically.

Distributed tracing pattern for root-cause
analysis

It is possible for your applications to benefit from a number of benefits during the
development and operation phases if you move from monolithic to microservices-
centric designs. It is important to remember, however, that when your components
are distributed across computers and physical locations, and subject to dynamic
horizontal scaling across transient compute units, traditional tools for analyzing
and gathering information become ineffective. Using distributed tracing, we are
able to associate requirements with their execution in a distributed environment,
giving us the means to pinpoint failures and performance issues in order to resolve
them quickly. Thus, to reiterate, the challenge is to understand how an application
behaves and find the cause of the problem.

Design Patterns for Microservices 119

Advantages

¢ Providing visibility into changes reduces the overhead required for rollbacks
and deployments. Distributed tracing supports polyglot development
because it is agnostic in nature. One trace can be propagated across multiple
clients since it is agnostic.

e With distributed tracking, developers spend less time troubleshooting and
debugging problems than without it, which leads to higher productivity.

Disadvantages

¢ One of the most prominent disadvantages is that aggregating and storing
traces can require a significant amount of infrastructure, which can be
costly in terms of human capital and monetary resources. For example, as
illustrated in Figure 4.23: Distributed Tracing Pattern:

K Distributed Tracing Pattern \

Service A

At 7
fod® Tace
e me € ey, " fl?fg

Tra

Service B Service C

] j
g €8>

Database Database
K Figure 4.23: Distributed Tracing Pattern /

When to use this pattern

It is possible to perform advanced latency analysis on your transactions with
advanced latency analysis. With advanced latency analysis, you can obtain a detailed
end-to-end analysis of the total time it takes to process a transaction. You can also
examine the details to find the bottlenecks in your application.

Health check API pattern for self-healing

Monitoring containers and microservices in near real-time is critical to several aspects
of microservices operations. Essentially, health monitoring can enable near real-time
information about containers and microservices. Essentially, the main problem is
how a live service should recognize that it is unable to respond to requests. The
solution is implemented as an API endpoint that returns the health status of the
microservice. This response code indicates the application's health status as well as

120 Mastering Cloud-Native Microservices

any components or services that it may utilize. As part of the monitoring process,
the monitoring tool or framework will perform a check of latency or response time.

There are a number of typical checks that can be performed by monitoring tools,
including;:

It is important to validate the response code. For example, a response code of 200
(OK) indicates that the application has responded without error. In order to provide
more comprehensive results, the monitoring system can also search for other
response codes as well.

The health check API can be used by using any HTTP client, such as a web browser or
a command-line tool like curl, to make an HTTP request to its endpoint. In response,
the API would provide information regarding the current status of the service or
application, which you could then use to monitor its performance and availability.

Check if your SSL certificate is not up-to-date and measure the response time, which
is a combination of network latency and the time it took the application to complete
the request.

In order to measure DNS latency, you may want to measure the response time of a
DNS lookup for the application's URL.

For example, as illustrated in Figure 4.24: Health Check API Pattern:

/ Health Check API Pattern \
IBD

Database

fapihealth/check /\O
\ Service A
HTTP 200
- O
—— O
_— O
K Figure 4.24: Health Check API Pattern /

Advantages

e It is possible to test the availability levels and expected responses of
an application using the API, by pinging it for memory usage as well as
physical server resources. It is possible to check the status of an application's
dependencies (external services and databases). The container orchestrators
may also be able to use health checks to check the status of an app.

Design Patterns for Microservices 121

e Health Check API patterns provide a centralized and standardized method
of monitoring and managing a system's health and status. In addition to
ensuring that the system is functioning as expected, it can also assist with
identifying and addressing potential issues or inefficiencies more quickly.

o Improved performance and user experience: The Health Check
API pattern can assist in improving overall system performance
and user experience by providing real-time information about the
system's health and status. In addition to helping to ensure that the
system remains responsive and stable under heavy load, it can also
be particularly useful for systems with high traffic and performance
requirements.

Disadvantages

e It is important to consider the number of endpoints to expose for an
application, as well as whether or not to use the same endpoint for monitoring
as is used for general access, but to a specific pathway specially designed for
health verification checks.

When to use this pattern

It is important to monitor the availability and correct operation of websites and
web applications on a regular basis. Typically, this type of API is used in situations
where it is necessary to monitor the availability and performance of a service or
application, for example, in a production environment where downtime could have
serious consequences.

Log aggregation pattern for centralized logging

When there is a microservices architecture and the need to troubleshoot a problem
that spans multiple components, log aggregation is used. It attempts to solve the
problem of how to view and search through a wide array of log files generated by
individual distributed runtimes in a microservices environment in a way that is easy
to understand and use. There is a solution to this problem by using a centralized
logging service that aggregates logs from individual service instances and enables
users to search, analyze and configure alerts based on specific logs that are produced
by individual service instances.

It is a pattern of collecting log data from various components of a system and storing
it in a central repository, such as a log file or database, via the use of dedicated tools
and mechanisms. This can help to make the log data more accessible and easier to
manage, as well as to prevent the log data from being lost or corrupted.

122

Mastering Cloud-Native Microservices

For example, as illustrated in Figure 4.25: Log Aggregation Pattern:

/

N

Log Aggregation Pattern \

€8>

Database

Service A

Log
Log Server

Pipeline
(Analytics and Dashboards)

Figure 4.25: Log Aggregation Pattern /

ojofo

Service B

Advantages

There are times when we need to debug problems across multiple components
when we are using a microservice architecture, and logging aggregates are
useful when we do so. The issue it attempts to solve is how to effectively
view and search different log files resulting from individual distributed
runtimes in a microservice environment.

Alog aggregation system saves engineers the time and effort of interpreting
all the log files individually. This allows them to gain a better understanding
of the systems they are responsible for. Additionally, log aggregation makes
identifying correlations between events much easier.

Disadvantages

There is no doubt that log management tools are resource-intensive. Not
only do they require substantial storage for log data, but they also eat up
a substantial amount of CPU time when collecting and managing log data.

In addition, collecting and managing log data can result in a large amount
of data that may be difficult to manage and interpret. Consequently, it can
be difficult to identify and focus on the most relevant log data, as well as to
identify trends or patterns within the data, making it difficult to identify the
most important data.

When to use this pattern

There is a need to have some kind of machinery that can gather, store, aggregate,
view, and analyse log data, which is why this is not an optional design pattern,

Design Patterns for Microservices 123

however some of the tools and third-party products can be evaluated in terms of
how they can be implemented.

Application metrics pattern for performance
monitoring

As a key component of the production environment, monitoring and alerting play
a key role. Monitoring systems collect metrics from all parts of an application's
technology stack that provide important information about the application's health.
In addition to infrastructure-level metrics, there are also application-level metrics,
such as service request latency and number of requests processed, that can be used
to measure service request performance.

Service developers are responsible for collecting metrics about the behavior of their
service in two ways. First, they have to instrument their service so they can collect
data about it. The second step is to provide these metrics, along with those from
the JVM and application framework, to the metrics server. It is possible to use an
application metrics service such as AWS CloudWatch or Prometheus, which polls
endpoints to obtain metrics, and Grafana, a data visualization tool, can be used to
view metrics once they are in Prometheus.

Advantages

¢ The goal of metrics is to give developers an understanding of how a system
is doing both in the past and in the present by giving them a numerical
representation of data. Since metrics deal with numerical data, they offer the
possibility of conducting statistical analysis and making predictions about
how a system will behave in the future, and the purpose of metrics is to
understand how an application behaves.

Disadvantages

¢ Among the potential disadvantages of using the Application Metrics pattern
is that implementing and maintaining it can require significant resources
and effort. In addition to the need for specialized tools and infrastructure,
collecting and analyzing application metrics can be a complex process.

e Moreover, collecting and analyzing application metrics may generate a large
amount of data, which can be difficult to manage and interpret.

When to use this pattern

There are a number of applications that can benefit from the Application Metrics
pattern, including web applications, mobile applications, and distributed systems.

124 Mastering Cloud-Native Microservices

As well as improving the reliability and performance of an application, it can also
provide valuable insights into how the application is being used and potential
opportunities for optimization. In addition, the ability to monitor and track
application metrics can be useful in meeting service level agreements (SLAs) and
other performance requirements.

Audit logging pattern for compliance

The audit logging pattern is a design pattern that is used to capture and record
information about the operations and events that occur in a software system. Among
the many purposes of using audit logs, such as tracking and debugging errors,
monitoring system usage and performance, and meeting compliance requirements,
is tracking and debugging errors.

An audit logging pattern typically involves capturing and recording relevant
information using dedicated logging mechanisms and tools. Among these details
are the time and date of the event, the user or system responsible for initiating it, and
the specific actions or operations that took place. In order to analyze and report the
audit logs, they can be stored in a central repository, such as a database or log file.

There are a number of different types of systems that can benefit from the Audit
Logging pattern, including web applications, distributed systems, and cloud-based
applications. As well as improving a system's reliability and maintainability, it
can also provide valuable insight into the system's behavior and usage. As part of
compliance requirements, such as those relating to data privacy and security, the
ability to track and record system events may be useful.

Exception tracking pattern for debugging

It is a design pattern for identifying, tracking, and managing errors and exceptions
that occur in software systems. An error or exception is a situation in which the
system is unable to perform a desired operation or function as expected, often as a
result of invalid input, missing data, or other unexpected circumstances.

The exception tracking pattern involves the use of dedicated tools and mechanisms
to capture and record information about errors and exceptions as they occur in
the system. Input or data that was involved in the error can be included in this
information, as well as the time and date of the error, the specific operation or function
that caused the error, and the specific error. To identify and fix the underlying issues,
the exception tracking system can be used to analyze and report on errors and
exceptions.

Avariety of different types of systems can benefit from the Exception Tracking pattern,
including web applications, distributed systems, and cloud-based applications.
Besides improving the reliability and maintainability of a system, it can also provide

Design Patterns for Microservices 125

valuable insights as to the types of errors and exceptions occurring within it. In
addition, the ability to track and manage exceptions can assist in preventing errors
from affecting the system's performance and availability.

Monitoring Vs microservices observability

The concepts of monitoring and microservices observability are related but distinct
in software engineering. As part of monitoring, data about the performance and
behavior of a software system is collected and analyzed with the aim of identifying
and resolving potential issues or inefficiencies. On the other hand, microservice
observability refers to the ability to understand the behavior and interactions of the
individual microservices within a microservice-based system.

There is a significant difference between monitoring and microservices observability
in terms of granularity. Monitoring typically involves aggregating data from across
the entire system, providing an overview of the system's overall performance and
behavior. The observability of microservices, on the other hand, involves analyzing
the interactions and behavior of individual microservices and provides a more
detailed, fine-grained view of the entire system.

For example, as illustrated in Figure 4.26: Monitoring Vs Microservices Observability:

/ Monitoring Vs Microservices Observability \

Health
Check APT

Availability

Monitoring
Exception
Tracking
k Figure 4.26: Monitoring Vs Microservices Observability /

In addition, the focus of the two approaches is another important difference.
Observability of microservices is aimed at understanding the behavior and interactions
of the individual microservices that make up the system, as opposed to monitoring,
which is typically focused on identifying potential issues or inefficiencies in the system.
Observability of microservices can therefore be used to identify and debug interaction
issues between microservices, while monitoring can be used to identify and address
performance and availability issues related to the system as a whole.

Audit
Logging

Log
Aggregation

Microservice

Observability

Distributed
Tracing

Application
Metrics

126 Mastering Cloud-Native Microservices

A software system's performance and reliability can be managed and improved
using both monitoring and microservices observability, both of which are important
tools. The two tools have some overlap in terms of the data they gather and the
goals they seek to achieve, but they serve different purposes and can be combined to
provide a more comprehensive view of the system and its behavior.

By now we should be clear about the difference between monitoring vs observability.
For today’s workload it is not an optional feature rather it is a must have capability
for a stable setup.

Cross-cutting concern pattern

The cross-cutting concern pattern is a design pattern that addresses concerns that
are common across a number of modules or components in a software system.
There are many aspects of the system that are associated with these concerns, such
as logging, security, or performance, which are not specific to a particular module
or component.

Blue-green deployment pattern for zero-downtime

Ablue/green deployment is a deployment strategy in which you create two separate,
but identical environments in which you run the current application version and
the new application version, with the current environment running the current
application version. By simplifying the rollback process if a deployment fails, a blue/
green deployment strategy can greatly increase application availability and reduce
deployment risk. Following the completion of testing on the green environment,
live application traffic will be directed to the green environment and the blue
environment will be deprecated once the green environment has been completed.

For example, as illustrated in Figure 4.27: Blue-Green Deployment Pattern:

/ Blue-Green Deployment Pattern \

J J !

Blue Env. Green Env. Blue Env. Green Env. Blue Env. Green Env.
(Active) (Staging) (Active) (Staging) (Staging) (Active)
Release A Release A Release B Release A Release B

(@{N)Dev;(lps
Pipeline
Figure 4.27: Blue-Green Deployment Pattern

Design Patterns for Microservices 127

Advantages

¢ Inany deployment to production, there is always a risk that the deployment
will fail, which could result in a system outage and adverse effects on users.
The release can be tested and completed on a separate non-live environment
before being deployed to production. Additionally, the original production
environment can be maintained as a fall-back during the "burn-in" period for
the new release as a fall-back.

Disadvantages

¢ In comparison with other deployment methods, blue-green deployments are
more expensive, and provisioning infrastructure on-demand using IaC is an
effective way to save money.

¢ There may be a period of slowness when users are suddenly switched to a
new environment for the first time.

When to use this pattern

In particular, this pattern supports agile development practices with short release
cycles using Continuous Deployment (CD) via an automated DevOps pipeline.
This pattern is particularly well suited for production release schedules based on
CD via an automated DevOps pipeline.

Canary pattern for incremental rollouts

Canary deployment refers to the process of introducing new updates in microservices
in a safe and reliable manner. It is similar to blue-green deployment, but uses a
slightly different approach to it. As opposed to another full environment waiting
to be switched over once deployment has been completed, canary deployments cut
over just a small subset of servers or nodes before the other servers or nodes have
been completed. Generally, this deployment pattern has a lower risk of failure than
the other deployment patterns (in contrast to the other deployment patterns). It can
be set in the target environment and updated in small increments such as 5%, 25%,
50%, 75%, and 100%. Due to the incremental nature of the software, only a small
number of users will be affected if an app-breaking bug becomes available in the
production environment after a new release.

Advantages

¢ By using this pattern, organizations will be able to test in production with real
users and compare the performance of both versions live, as well as define
the threshold for triggering a rollback and accelerate the process since only
a subset of users exposed to the updated version will have to be rerouted.

128

Mastering Cloud-Native Microservices

Using the Canary pattern to release a new version of an application to a
limited group of users reduces the risk associated with deploying a new
version of an application. Especially useful for critical applications or
applications that have a large user base, this can ensure that the application
remains stable and available even if the new version encounters problems.

Enhanced user experience as the Canary pattern is used to test a new
application with real users before releasing it to the entire user base, it can
assist in identifying and resolving potential issues that may negatively affect
the user experience. This can help to improve the overall quality of the
application, as well as to ensure that users have a positive experience when
using the application.

Disadvantages

A disadvantage of the canary pattern is that it can be challenging to
implement, particularly for applications which have a large user base or
complex architectures. The canary deployment process can require significant
planning and effort, as well as the use of specialized tools and infrastructure.

As a result, the canary pattern may require ongoing monitoring and
management to ensure that the new version of the application performs as
expected and to identify and resolve any potential issues. As a result, the
implementation of the canary pattern can be more complex and costly.

For example, as illustrated in Figure 4.28: Canary Pattern:

f

Canary Pattern \

90% traffic ‘ 10% traffic

[|

b ‘ b
i
i

Service A Service B Service C i Service A Service B Service C
Release 1.10 ! Release 1.11
@EVOES

Pipeline
Figure 4.28: Canary Pattern

Design Patterns for Microservices 129

When to use this pattern

For applications that are of utmost importance to the business or have a large user
base, the canary pattern can be particularly useful, since it can provide assurance
that the application remains stable and available even when there are problems with
the new version. As well as being useful for complex or multi-faceted applications, it
can help ensure that the new version is stable and performs well before it is released
to all users.

Canary Vs blue-green deployment pattern for
deployment strategies

There are some key differences between the Canary pattern and Blue-Green
deployment pattern when deploying software applications in a production
environment.

e Scale: As part of the Canary Deployment pattern, a new version of an
application is released to a small group of users, while the Blue-Green
Deployment pattern involves running two identical versions of an
application, one serving live traffic, the other testing and deployment.

o Userexperience: By using the Canary pattern, anew version of an application
can be tested by real users before being released to the entire user base,
allowing for the identification and resolution of potential issues before they
affect the user experience. By contrast, the Blue-Green Deployment pattern
does not require real user testing, since traffic is routed to the live application
during the deployment and testing of the new version.

¢ Rollback: Since the Canary pattern is intended to test a new version of an
application with a small subset of users before it is released to the entire user
population, it does not typically include a rollback mechanism. By contrast,
the Blue-Green Deployment pattern includes a rollback mechanism, since
it involves running two identical versions of an application and switching
between them as needed.

In general, the canary deployment pattern emphasizes testing and feedback,
whereas the Blue-Green deployment pattern emphasizes availability and rollback.
Both patterns can be useful in different situations, and which pattern will be the
most suitable for a particular deployment will depend on the specific requirements
and goals of the application.

Circuit breaker pattern for fault tolerance

It is a reliability pattern based on the concept of circuit breaker, which is a term
that refers to the electrical switch that automatically protects an electrical circuit

130

Mastering Cloud-Native Microservices

from damage caused by an overload. In an application with two services invoked
synchronously, it becomes relevant because one service may become unavailable,
and requests will continue to pin it until it becomes available again. Until the services
are able to pin unavailable services, this could exhaust network resources, resulting
in low performance and poor user experience. Thus, the pattern prevents a failure
of one component from cascading beyond its limit and affecting the entire system.

Circuit breakers are implemented as state machines with the following states:

Closed: The proxy routes the request to the operation and keeps track of
recent failures. If the operation is unsuccessful, the proxy increments the
count. A proxy is placed in the Open state if the number of recent failures
exceeds a specified threshold within a given period of time. The proxy starts
a timeout timer at this point, and when it expires it becomes Half-Open.

Open: The application's request fails immediately, and an exception is
returned to the application as a result of the failure.

Half open: Invoking the operation is permitted by a limited number of
requests from the application. Upon successful completion of these requests,
the circuit breaker switches to the Closed state (resets the failure counter)
and assumes that the fault that caused the failure has been fixed.

For example, as illustrated in Figure 4.29: Circuit Breaker Pattern:

f

o

Circuit Breaker Pattern \

success fail fast

multiple timeout

Closed Failure Open — Half-Open

failure
success

Figure 4.29: Circuit Breaker Pattern /

Advantages

A circuit breaker acts as a proxy for operations that might fail. It should
monitor the number of recent failures that have occurred within the system,
and use this information to determine whether to permit the operation to
continue or simply return an exception immediately in the event of a failure.

Increased availability, and Improved resiliency: The Circuit Breaker
pattern prevents one service's failure from impacting the availability of the

Design Patterns for Microservices 131

entire system by breaking the circuit and stopping the flow of requests to the
failing service. As a result, the system's overall availability can be improved.

Disadvantages

e There should be adequate logging even when the circuit is in half-open or
open status, as it allows the administrator to further optimize the failure
threshold or success threshold values even when the circuit is in half-open
or open status.

e It is possible for a service to fail due to several reasons, for instance being
unable to process requests due to overload. Circuit breakers must be designed
in this situation to identify the cause and act accordingly.

¢ Insome cases, the circuit breaker pattern can cause legitimate requests to be
blocked, which can affect the availability and functionality of a system even
when the target service is healthy and responsive.

When to use this pattern

Despite our best efforts, we cannot guarantee that each service will be fault-tolerant at
all times. Networks can go down, systems can starve for resources, databases might
go down, and so on. To handle such situations gracefully, we need to incorporate
fault tolerance in our services and Circuit Breaker pattern addresses it very well.

When a system is unable to handle a large number of requests or has become
unresponsive, the Circuit Breaker pattern prevents it from becoming overwhelmed.
In addition to experiencing high levels of traffic, this can also occur when it is
dependent on a service that is slow or unresponsive. By detecting these situations
and automatically failing fast, the Circuit Breaker pattern prevents the system from
trying to process requests that will fail in the future. The system can be made more
reliable and available, and the load on the system can be reduced, allowing it to
recover more quickly.

External configuration pattern for dynamic
configuration

The External Configuration pattern is a design pattern for microservices that enables
services to retrieve their configuration from external sources, including configuration
servers or configuration databases. By using this pattern, microservice architectures
can be made more flexible and maintainable. Many times, services are required to
run in a variety of environments, and environment-specific configuration is needed,
such as secret keys, database credentials, and so on. Changing a service for each
environment comes with a number of disadvantages. In this case, we might be

132 Mastering Cloud-Native Microservices

wondering how we could make a service run in multiple environments without any
modifications being made to it.

In a microservices architecture, each service may have its own unique configuration
settings that control its behavior and functionality. Some of the configuration settings
include the network address of the service, the maximum number of connections the
service can handle, and the amount of memory or CPU allowed for it.

By using the External Configuration pattern, these configuration settings can be
managed and maintained externally, rather than being hardcoded within the service
itself. By doing so, it is much easier to modify and update configuration settings
without rebuilding and redeploying the service. Additionally, it enables the system
to be configured differently in different environments (for example: development,
staging, and production), which can improve its flexibility and maintainability.

External Configuration is commonly implemented using configuration servers (such
as Spring Cloud Config) and configuration databases (such as MongoDB or Apache
ZooKeeper). Depending on the system's requirements and constraints, a specific
technology will be used.

Service discovery pattern for service registration
and discovery

This pattern is used to create microservice architectures that are more scalable,
flexible, and resilient as it allows services to discover each other and communicate
with each other across networks. It is also used to enable microservice architectures
to become more scalable, flexible, and resilient.

In a microservices architecture, services are typically deployed in isolation of each
other and run on different hosts or in different environments and may run on different
hosts or in different environments. As a result, it can be challenging for services to
find each other and communicate, as they may not have a fixed IP address or they
may be deployed or scaled dynamically.

By providing a service registry that contains a list of all of the available services and
their network addresses, the service discovery pattern addresses this problem. A
service can query the service registry in order to find the network address of another
service when it wishes to communicate with it. In this way, it is possible for services
to discover one another dynamically, and the system can scale and evolve more
easily as a result.

In order to implement service discovery, it is common to use DNS, load balancers,
as well as dedicated service discovery tools such as consul and eureka. The specific
technology used for the implementation will depend on the requirements and
constraints of the system.

Design Patterns for Microservices 133

The types of service discovery are as follows: server-side and client-side.

Client-side service discovery pattern

It is the client-side microservice that searches for the service it needs, and uses a
discovery server to locate that service, then makes a second request to the actual
service. This is referred to as client-side service discovery. It is obvious that two calls
will be made, one to a service registry and one to an actual service. This is called
client-side service discovery.

For example, as illustrated in Figure 4.30: Client-side Service Discovery Pattern

/ Client-side Service Discovery Pattern \

Discovery
Service

Client call
ien Microservices

K Figure 4.30: Client-side Service Discovery Pattern /

Server-Side discovery pattern

This is called the Server-side service discovery process, where the client sends the
information describing the service it wants to reach, and the load balancer will check
with the service registry and transport the request to the right destination based on
the information provided.

For example, as illustrated in Figure 4.31: Server-Side Service Discovery Pattern:

/ Server-Side Service Discovery Pattern \

Service Registry

Client LB
@ Microservices

K Figure 4.31: Server-Side Service Discovery Pattern /

With microservice architectures, one of the primary challenges is allowing services
to discover and interact with one another. In addition to making it difficult for services
to communicate with each other due to the distributed nature of microservices
architectures, they also pose additional challenges, such as monitoring the health
of those systems and letting customers know when new applications are made
available.

134

Mastering Cloud-Native Microservices

Service discovery methods

DNS based: When it comes to the discovery of services using a DNS approach,
standard DNS libraries are used as clients. In this model, each microservice
receives an entry in a DNS zone file, and performs a DNS lookup to find the
microservice.

Key/Value Store and sidecar based: As the central service discovery
mechanism, a key/value store and sidecar are used to connect a strongly
consistent data store such as Consul or Zookeeper with a sidecar. Essentially,
a sidecar is used to communicate with this mechanism. In this model, a
microservice is configured to communicate with a local proxy. A separate
process communicates with service discovery, and then uses that information
to set up the proxy.

Specialized service discovery and library/sidecar based: This model
exposes functionality directly to the end developer using a library (and
API) that is directly exposed to the developer, who uses the library to make
communication with a specialized service discovery solution.

Advantages

A service discovery system can locate a network automatically, meaning
that a long configuration process will not be required in order to set it up.
It consists of devices connecting via a common language over the network,
allowing devices and services to connect without the need for manual
intervention. (that is Kubernetes service discovery, Amazon Web Services
service discovery)

There is an advantage to server-side service discovery in that it makes the
client application lighter since it is not required to deal with the lookup
procedure and can simply provide a request for services to the router, as
opposed to dealing with the lookup procedure.

This type of service discovery has the advantage of avoiding the need for the
client application to communicate with a router or a load balancer, because
the client application does not have to travel through these devices.

Disadvantages

Having a dependency on the service registry: The Service Discovery pattern
relies on a central service registry for maintaining a list of available services,
as well as the network addresses of those services. There is a possibility that
the system will become unavailable or unstable if the service registry is not
available or inaccessible, which can result in the services not being able to
communicate with each other.

Design Patterns for Microservices 135

e The overhead and latency associated with querying a service registry and
resolving the network address of a target service can significantly impact
the performance of the communication process. For applications that require
low-latency processing or high-throughput processing, this can have a major
impact on the overall performance of the system.

e The service registry maintains a list of all the available services and their
network addresses, which can also make it a valuable target for attackers.
Therefore, proper security measures must be taken in order to protect the
service registry and prevent unauthorized access from taking place.

When to use this pattern

Using the Service Discovery patternis the ideal solution for microservice architectures
in which services are deployed independently and can run on a variety of hosts
and environments depending on their location. This pattern is particularly useful
when it comes to situations in which the network addresses of services may change
dynamically, for example, when services are deployed or scaled dynamically.

A service discovery pattern can also be useful in situations where the number of
services or the size of the system is expected to increase over time, as well. As a result
of having a central service registry, this pattern allows the system to scale and evolve
more easily by eliminating the need to manually update the network addresses of
the services.

Conclusion

Building a Solid Foundation:

Navigating Microservice Architecture with Proven Design Patterns

In my opinion, a microservice architecture is one that allows functionalities to be
flexible, testable, and scalable. However, the execution of a microservice architecture
can present several challenges that a microservice design pattern can assist with
overcoming. In order to achieve best practices when setting up microservices
architecture, you need to use the right design patterns. In this chapter, we have
discussed design patterns related to application decomposition into microservices,
integration, data management, observability, as well as other cross-cutting concerns
in order to achieve essential microservices design principles. With the level of details
shared you will be able to select right combination of patterns for your microservices
based application design.

Our next chapter will cover design patterns that are relevant to Cloud-Native
architecture and show how to apply them to your applications. When you

136 Mastering Cloud-Native Microservices

implement the right design pattern based on your use case, you can increase the
reusability of your components, which will reduce the time and effort it takes to
develop your application. We will discuss each of these patterns with the help of
use cases accompanied by diagrammatic representations of their components and
interconnections. It is not surprising that Chapters 4 (Design Patterns for Microservices)
and 5 (Cloud-Powered Microservices) together will cover all the key design patterns
that will prove useful for building cloud-based microservices applications that are
reliable, scalable, and secure.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 5

Cloud-Powered
Microservices

Unleashing the Power of Cloud with Cloud-Powered Microservices

Introduction

In this chapter, we will cover the design patterns for Cloud-Native architecture and
how to use them efficiently. Implementing the correct design pattern for your use
case can help increase component reusability, thus reducing development time and
effort. Each of these patterns will be reviewed using use cases with diagrammatic
representations of their components and interconnections. Together, Chapters 4
(Design Patterns for Microservices) and 5 (Cloud-Powered Microservices) cover all the key
design patterns that are useful for building cloud-based microservices applications
that are reliable, scalable, and secure.

In cloud computing, computing services, such as storage, processing, networking,
and others, are delivered over the Internet on a pay-as-you-go basis over the Internet.
With cloud-based infrastructure and services, organizations can deploy and scale
their applications quickly and easily without having to manage and maintain
physical servers and other infrastructure.

As a result of combining microservices with cloud computing, organizations can
reap many benefits such as increased scalability, reliability, and agility. The use of
cloud-based infrastructure and services, for example, can allow organizations to
automatically scale their applications up and down based on demand, and eliminate
the need to employ complex and expensive scaling solutions. Further, by using

138 Mastering Cloud-Native Microservices

microservices, it becomes easier to decouple the different components of the system,
which will allow you to update and modify individual services without affecting
the rest of the system, making it easier to modify and update other components of
the system as well. In our previous chapters, we discussed Modern Application
Design Principles, Microservice Adoption Framework, and Microservice Design
Patterns for Microservices. As we move forward, it is necessary to understand how
Cloud, and in particular the key components of Cloud Native, such as cloud-based
infrastructure and services, Continuous Integration and Delivery (CI/CD), some
PaaS, and Serverless solutions can help us to take our solutions to the next level.

For example, as illustrated in Figure 5.1: Cloud-Powered Microservices - Cloud Design
Patterns that enhance your microservices design.

/ Cloud-Powered Microservices - Cloud Design Patterns \

(" Data Management a Reliability d Messaging d Design and
Implementation
Compensating Pipes and Filters
Materialized View Transaction Ambassador
Priorit
Deployment Anti-Corruption
Stamps N Layer
Shardi Publisher /
ardin,
J Subscriber
Geodes Backends for
Queue-Based Load Frontends
Leveling
Valet Key Throttling Sequential Convoy Leader Election

N . N N
Figure 5.1: Cloud Design Patterns

In this chapter we will discuss Cloud Native Data Management, Reliability, Design
and Implementation, and Messaging Patterns.

e Data Management Design Patterns: There are a number of proven design
patterns for cloud native data management that have been developed
specifically to solve common problems related to data management within the
context of cloud computing. As a result, these patterns provide a structured
approach to solving problems, and can be applied to a wide variety of
scenarios and technologies associated with cloud-based computing. Some
common cloud native data management design patterns include the Cache-
Aside, CQRS, Event Sourcing, Index Table, Materialized View, Sharding,
Static Content Hosting, and Valet Key.

e Design and Implementation Design Patterns: A set of proven solutions
to common challenges associated with building, deploying, and
managing cloud-based applications are known as cloud native design
and implementation design patterns. There are a number of cloud-based

Cloud-Powered Microservices 139

scenarios and technologies that can be applied to these patterns. There
are several common design and implementation patterns for cloud native
applications, including the Ambassador, Anti-Corruption Layer, Backends
for Frontends, Compute Resource Consolidation, External Configuration
Store, Leader Election, Pipes and Filters, and Static Content Hosting.

e Messaging Design Patterns: Using cloud native messaging design patterns,
developers can solve common challenges associated with developing,
deploying, and managing cloud-based messaging applications. Cloud-based
messaging technologies and scenarios can be applied to these patterns,
which provide a structured approach to solving problems. There are several
common patterns associated with cloud-native messaging, including the
Asynchronous Request-Reply, Claim Check, Choreography, Competing
Consumers, Pipes and Filters, Priority Queue, Publisher-Subscriber, Queue-
Based Load Levelling, Scheduler Agent Supervisor, and Sequential Convoy.

¢ Reliability Design Patterns: There are a number of practices and techniques
that can be used to improve the reliability of a system, which are known
as reliability design patterns. As a general rule, these patterns aim at
identifying and addressing potential failure points within a system, as well
as implementing mechanisms that can be used to detect and recover from
failures that do occur. There are many patterns that will improve a system's
reliability related to Redundancy, Failover, Monitoring, Recovery, Load
Balancing. We will discuss some of the patterns related to Compensating
Transactions, Deployment Stamps, Geodes, and Throttling, in this chapter.

Structure

In this chapter we will discuss following topics:

e Data management design patterns
o Materialized view
o Sharding
o Valet Key

¢ Design and implementation patterns
o Ambassador
o Anti-corruption layer
o Backends for frontends

o Leader election

e Messaging design patterns

140

Mastering Cloud-Native Microservices

o Pipes and filters

o Priority queue

o Publisher-subscriber

o Queue-based load levelling

o Sequential convoy
Reliability

o Compensating transaction

o Deployment stamps

o Geodes

o Throttling

Conclusion

Objectives

Microservices perform specific tasks and communicate with other microservices
through well-defined APIs. Scalability and flexibility are among the key benefits of
cloud-powered microservices. Because each microservice is independent, it can be
scaled up or down as needed, without affecting the whole system. The objective
of this chapter is to further enhance power of microservices by working closely
with some of the cloud native patterns related to Data Management, Design and
Implementation, Messaging, and Reliability. These pattern will help:

Improved scalability: The ability to scale microservices independently
allows applications to scale as required. This is particularly useful in the
cloud, where resources can be easily added or removed as needed.

Enhanced flexibility: Microservices are modular and can be developed and
deployed independently, making it easier to update and modify individual
components of the application. Some of the design and implementation
pattern covered in this chapter will further enhance flexibility.

Improved reliability: It is possible to design microservices to be highly
resilient and fault-tolerant, which can enhance the overall reliability of the
system. We will be discussing couple of cloud native pattern specialized to
improve on the reliability.

Data management design patterns

Almost all of the quality attributes of cloud applications are influenced by data
management, which is a key component of cloud applications. As a result of

Cloud-Powered Microservices 141

performance, scalability or availability requirements, data is typically hosted across
multiple servers and in different locations, which can present a number of challenges.
For example, data consistency must be maintained, and data will typically need
to be synchronized across different locations. To maintain security assurances of
confidentiality, integrity, and availability, data should be protected at rest, in transit,
and by authorized access mechanisms.

We have already discussed CQRS, and Event Sourcing Data Management Design
Patterns in previous chapter. Let us discuss some of the other key methods that will
enhance our data management capabilities.

Materialized view

Materialized views are pre-computed tables that contain the results of a SELECT
statement. They are sometimes called snapshot views since they contain the results
of a SELECT statement in a table that can be queried like other tables.

In materialized views, the underlying data is not frequently updated and is frequently
queried, but the data in the view is frequently queried. The results of the SELECT
statement can be accessed quickly by materializing the view, rather than having to
execute the SELECT statement each time the view is queried.

It is often a priority for developers and data administrators to consider how data
will be stored rather than how it will be read when storing data. Usually, the storage
format chosen depends on the data format, the requirements for managing data size
and integrity, and the type of storage used. NoSQL document stores, for instance,
often present data as aggregates containing all the information for each entity. It is
important to note, however, that this may negatively impact queries. In order to
obtain the required information, a query must extract all the data for the relevant
entities when it needs only a subset of the data from some entities, for example a
summary of orders for several customers without all of the order details.

Advantages

e Materialized views can improve the performance of queries that involve
aggregating large amounts of data, since the results of the SELECT statement
are stored and readily accessible. In applications with high concurrency or
queries that are run frequently, this may prove particularly useful.

e Materialized views reduce database load by pre-compiling and storing
the results of SELECT statements in a table in order to reduce the load on
the database. As a result, the number of queries that are executed against
the database can be reduced, which can contribute to improved system
performance.

142

Mastering Cloud-Native Microservices

Materialized views simplify queries by allowing you to retrieve precomputed
results rather than having to write complex SELECT statements. This makes
it easier to write and maintain queries, and also improves readability.

In cases where the underlying data changes frequently and you wish to ensure
that your queries return consistent results, materialized views can assist in
ensuring data consistency by storing the results of SELECT statements in a
table.

A materialized view is often used in data warehousing applications to
improve query performance against large datasets. The results of SELECT
statements can be pre-computed and stored, allowing the data to be accessed
more quickly and with fewer resources.

For example, as illustrated in Figure 5.2: Materialized View Pattern:

/

Materialized View Pattern \

Microservices
Application Data / Req -
onp, .

Order_ 1D Item_ID Quantity 4 VJGW
101 5005 30 Materialized View
101 2002 30

Ttem_ID Item_Name Total_Sale
102 5005 70

2002 Laptop 110
103 5005 10 -

5005 Pen Drive 30
Item_ID Item_Name Catagory
2002 Laptop HW
5005 Pen Drive HwW

1234 Extension Code | Ele
K Figure 5.2: Materialized View Pattern J

Disadvantages

Materialized views have the disadvantage of containing stale data, which
can be a major drawback. Materialized views are updated only when the
REFRESH MATERIALIZED VIEW statement is executed, so if the underlying
data changes frequently, the materialized view may not be reflected until it
is refreshed.

The materialized view requires additional maintenance as it mustbe refreshed
to ensure that it contains up-to-date data. As a result, the process can be time-
consuming and resource-consuming, particularly if the materialized view is
based on a complex SELECT statement.

Cloud-Powered Microservices 143

e This may be a problem if you work with large datasets or have limited
storage capacity. Materialized views require additional storage space to store
the results of the SELECT statement.

e Materialized views generally do not support DML (insert, update, delete)
operations, which means that they cannot be used to modify data. In order
to ensure that the materialized view reflects these changes, you must modify
the underlying data in the base table.

e There may be compatibility issues with materialized views, and they may
not be supported by all database systems due to differences in syntax. If you
are using multiple database systems or need to migrate your data, this can
make it more difficult to work with materialized views.

When to use this pattern

The underlying data of your SELECT statement does not change very frequently and
you frequently use it. You wish to improve the performance of queries involving
aggregation of large quantities of data. By pre-calculating and storing the results of
SELECT statements in a table, you will reduce the load on the database. Accessing
pre-computed results will simplify queries as opposed to writing complex SELECT
statements.

Sharding

Data Sharding refers to the practice of dividing large datasets into smaller pieces, or
"shards," and distributing them across multiple servers or databases. By allowing
a system to handle more concurrent users and larger amounts of data, this can
improve its performance and scalability.

Sharding patterns can be categorized into several types, including:

e Lookup strategy. In this strategy, the sharding logic creates a mapping that
routes requests for data to the shard which contains the data using the shard
key. The tenant ID may be used as the shard key in a multi-tenant application
in which all the data for each tenant is stored together. There may be multiple
tenants sharing the same shard, but data for a single tenant will not be spread
across multiple shards.

o Advantages: Using virtual shards offers greater control over shard
configurations and usage. The use of virtual shards also minimizes
the impact of rebalancing data because new physical partitions can be
added to compensate for workload imbalances.

e Using range-based sharding, data can be divided according to a range of
values. A user's data could be stored on one shard for users with last names

144

Mastering Cloud-Native Microservices

that begin with A-M, while data for users whose last names begin with N-Z
would be stored on another shard.

o Advantages: This approach is easy to implement and works well with
range queries, since they are able to retrieve multiple items from a
single shard at once.

Using a hash function to map a key value to a specific shard, this type of
sharding divides the data based on a hash function. Using a hash function, all
data for users whose user IDs correspond to odd numbers could be stored on
one shard, while data for users whose user IDs correspond to even numbers
would be stored on another.

o Advantage: In this way, there is a greater chance that data and load
will be distributed more evenly.

For example, as illustrated in Figure 5.3: Sharding Pattern:

/

o

{ Application }

ShardingPattern \

@ Sharding
@ @ Logic

i ! l l

Shard A Shard B Shard C Shard D
8D Ed Ed e
Database Database Database Database

Figure 5.3: Sharding Pattern /

Disadvantages

There can be a lot of complexity involved when it comes to sharding,
particularly when you are trying to use it to partition and distribute the data
within an existing database. It takes a lot of planning and design, as well as
custom development to implement sharding within an existing database.

Due to additional complexity associated with routing requests to the
appropriate shard and merging the results, there is an increased overhead to
database operations when sharding is employed. This can result in slower
performance in some cases as a result of the extra complexity.

Cloud-Powered Microservices 145

e The difficulty of executing queries spanning multiple shards, since the data
is distributed across multiple physical locations, can make it very difficult to
perform certain types of data analysis or reporting for the data that is being
distributed over multiple shards.

When to use this pattern

e Itis possible to use Sharding when a database is growing too large for one
server to handle efficiently: Sharding is a method by which a larger database
is divided into smaller, more manageable pieces.

e Sharding can be used to distribute a database's workload across multiple
servers to improve performance, in the case of a database experiencing
performance problems because of a high volume of reads and writes.

Valet key

The valet key design pattern is used in situations where a user needs to give another
user access to a system or resource, but does not wish to allow them full access to it.
It is commonly used in situations where a user needs to grant access to a resource,
but does not wish to give them full control over it.

This key or token is usually referred to as a valet key. The key allows time-limited
access to specific resources as well as predefined operations such as reading and
writing to storage or queues, or uploading and downloading in the web browser.
In addition to enabling clients to perform the required operations without requiring
the application to directly handle the data transfer, applications may create and
issue valet keys to client devices or web browsers quickly and easily. As a result, the
application and the server are not burdened with the overhead of processing and the
impact on performance and scalability.

When implementing this pattern, you should consider the following factors:

¢ In the event that the key is leaked or compromised, it effectively unlocks the
target item and is available for malicious use for the remainder of its validity
period. To minimize the risk of unauthorized operations against the data store,
specify a short validity period. The client may not be able to complete the
operation before the key expires, however, if the validity period is too short.

e Generally, the key should allow the user to only perform the actions
required to complete the operation, such as read-only access if the client is
not permitted to upload data to the data store. In order to upload files, it is
common to specify a write-only key, a location, and a validity period. It is
crucial to specify correctly the resource or set of resources for which the key
applies.

146

Mastering Cloud-Native Microservices

Use HTTPS to deliver the key over a secure channel. The key can be
embedded in a URL that users activate in a web page, or it can be used in a
server redirection operation that triggers the download automatically.

You should protect sensitive data while in transit. Sensitive data delivered
through the application will usually be sent using Transport Layer Security
(TLS), and this should be enforced for clients that directly access the data
store.

For example, as illustrated in Figure 5.4: Valet Key Pattern:

e

o

Valet Key Pattern \

Request Resources ‘ -
‘ Application

Return Token

Scoped by Functionality and Limited Duration

2= (P) CIeED

Using Tokent -

Figure 5.4: Valet Key Pattern /

Ro

[
n
o
=

i

Devices

£

o
Q
g
A

Advantages

You can reduce the risk of unauthorized access to other resources by giving
an application or service access only to the resources it requires.

The performance of an application or service can be improved by only
granting access to the resources it requires, thereby reducing the risk of
overloading the system.

Disadvantages

The implementation of the valet key pattern may require additional
configuration and management efforts, which can lead to an increase in the
complexity of your cloud environment.

In terms of functionality, an application or service may be limited in terms of
what functions it can perform, which could impact the overall value of the
application or service.

Cloud-Powered Microservices 147

When to use this pattern

A valet key minimizes resource loading and maximizes performance and scalability.
By using a valet key, the resource doesn't need to be locked, no remote server call
is required, the number of valet keys can be unlimited, and the data transfer is not
impacted by a single point of failure.

Design and implementation patterns

Cloud-based applications can be built using a number of different design and
implementation patterns. Amongthe factors considered ingood designare consistency
and coherence in component development and deployment, maintainability, so as
to simplify administration and development, and reusability, allowing components
and subsystems to be reused in other applications and situations. In the design and
implementation phases, decisions are made that have a significant impact on the
quality and overall cost of ownership of cloud-hosted applications and services.
Some of the key design considerations would include Serverless computing,
Microservices, Containerization, Security, Auto-scaling, and Reliability.

Ambassador

In the ambassador pattern, communication between microservices is handled by
a separate service, known as an ambassador. By abstracting away, the underlying
implementation details and providing a consistent interface for other services to
interact with, the ambassador acts as a proxy for the microservices.

One of the major benefits of using the ambassador pattern is that it can help to
decouple the microservices from one another. This allows it to be easier to update
or change the implementation of a service without affecting the other services.
Furthermore, ambassadors are capable of handling tasks such as authentication, and
monitoring, thereby reducing the workload on microservices.

It is possible to implement the ambassador pattern using a wide variety of
technologies, such as reverse proxies or load balancers. As a result of this pattern,
common client connectivity tasks like monitoring, logging, routing, security (such
as TLS), and resilience patterns can be offloaded in a language-independent manner.
In order to extend the networking capabilities of legacy applications, or other
applications that are difficult to modify, it is often used.

Advantages

e Offloaded features can be managed independently of the application. You
are able to update and modify the ambassador without affecting the legacy
functionality of the application. It also allows for separate, specialized teams

148

Mastering Cloud-Native Microservices

to implement and maintain security, networking, and authentication features
that have been moved to the ambassador.

The ambassador can handle authentication and rate limiting, which can
help to reduce the burden on microservices themselves. This can allow the
microservices to be scaled up and down more easily.

The ambassador can handle tasks such as authentication and access control,
which can help to enhance the application's overall security.

The ambassador can perform tasks such as monitoring and error handling,
which can contribute to the application's overall reliability.

For example, as illustrated in Figure 5.5: Ambassador Pattern:

/

o

Ambassador Pattern \

Host

Ambassador

Application Code
Request v Authentication ~ |Request)
o Remote Service
Response

m v' Circuit Breaking
Functionality P v Monitoring

v Security

Figure 5.5: Ambassador Pattern /

Disadvantages

An increase in complexity: The ambassador pattern may add an additional
layer of complexity to an application, which can make troubleshooting
problems and ensuring that all components are functioning properly more
challenging.

When to use this pattern

It is necessary to develop a common set of client connectivity features for multiple
languages or frameworks. It is necessary to offload cross-cutting client connectivity
concerns to infrastructure developers or other specialized teams. Legacy applications
or applications that are difficult to modify must support cloud or cluster connectivity
requirements.

Cloud-Powered Microservices 149

Anti-corruption layer

An anti-corruption layer (ACL) is a design pattern that involves isolating an
application from changes or differences in external systems or APIs by creating a
separate layer in the application. The purpose of the ACL is to "shield" the rest of the
application from any changes or inconsistencies in the external system, protecting it
from what is known as "technical debt." For example, the data or functionality of most
applications depends on other systems. As an example, when a legacy application
is migrated to a modern system, it may still require existing legacy resources. New
features must be able to access the legacy system. The transition to a modern system
is particularly difficult when different features of a larger application are gradually
moved.

Using the ACL pattern has the advantage of decoupling the internal and external
systems, making it easier to make changes to either system without adversely
affecting the other. The ACL can also serve as a tool for protecting the internal system
from technical debt by isolating it from external problems and inconsistencies.

For example, as illustrated in Figure 5.6: Anti-Corruption Layer Pattern:

/ Anti-Corruption Layer Pattern \

Q Backends for Frontends
@ API Gatewa
User
(,/\B Gateway
U Routing Microservice A
CO—~— Microservice C
.
Devi s Aggregation Microservice B /
evices
Cloud [Anti-corruption Layer }
[Legacy Monolith J
K Figure 5.6: Anti-Corruption Layer Pattern /
Advantages

e As a result of the ACL, the internal system is more resistant to changes or
inconsistencies in the external system, making the internal system more
resilient to changes or problems in the external system.

e An ACL provides enhanced flexibility by decoupling internal and external
systems, making it easier to change or update either without affecting the
other.

150 Mastering Cloud-Native Microservices

Disadvantages

e Anti-corruption layers may add latency to calls between the two systems, as
well as adding an additional service that must be managed.

e ACL patterns can increase the complexity of an application, making it
more difficult to troubleshoot problems and ensure that all components are
working together properly.

When to use this pattern

This patterns works well when there is a plan to migrate to a new system in multiple
stages, however integration between the legacy system and the new system must be
maintained. In the case it’s planned as an application migration strategy, consider
whether the anti-corruption layer will be permanent or will be retired after all legacy
functionality has been migrated.

Backends for Frontends

In the Backends for Frontends (BFF) pattern, backends are created separately for
each frontend client instead of serving all clients from a single backend. In addition
to web applications and mobile applications, this approach can be beneficial when
building applications that have multiple frontend clients.

Usually, in the beginning, the application may be designed to serve a desktop web
Ul, and a backend service is developed to provide those features. Later, mobile
applications were created interacting with the same backend. Backend services
become general-purpose, serving both desktop and mobile users. Due to very
different requirements on each device, this common backend becomes problematic.

Having a separate backend optimized for mobile clients can improve the overall
user experience for mobile applications, which may have different performance
and network connectivity requirements than a web application. It is also possible to
decouple the frontend and backend with the BFF pattern, so that one can be changed
without affecting the other. As each microservice is able to address a specific set
of concerns, it is especially useful when building applications using a microservice
architecture.

Advantages

e It is possible to improve the overall user experience by creating separate
backends for each frontend client. By doing so, you are able to optimize the
backend for the specific performance and network connectivity requirements
of each client.

Cloud-Powered Microservices 151

e As a result of the BFF pattern, each front-end client is able to have its own
set of features and capabilities, rather than being constrained by a single
backend for all clients. This allows applications with multiple front-end
clients to be developed and maintained more easily.

¢ Inapplications that use microservices architectures, the BFF pattern can assist
in decoupling the frontend and backend, making it easier to make changes to
one without affecting the other.

e You can create more granular security controls by creating separate backends
for each frontend client, improving the security of each client.
Disadvantages

¢ There is an increase in complexity when creating and maintaining separate
backends for each frontend client as opposed to using a single backend for
all clients.

e Implementing this pattern will likely result in code duplication across services.

For example, as illustrated in Figure 5.7: Backends for Frontends Pattern:

/ Backends for Frontends Pattern \

Sy - % B

Backend
Service
A

\ Figure 5.7: Backends for Frontends Pattern /

Backend

Service
B

Backend Service

When to use this pattern

Client-specific logic and behaviour should only be included in frontend-focused
backend services. General business logic and other global features should be handled
elsewhere in your application.

Leader election

There should be only one task instance elected to act as the leader, and this instance
should coordinate the actions of other subordinate task instances. Each instance of
the task instance can act as the leader if it is running the same code. Consequently,
the election process must be carefully managed to prevent two or more instances
from simultaneously taking on the leadership role.

152 Mastering Cloud-Native Microservices

A robust mechanism for selecting the leader is essential in the system. In many
solutions, the subordinate task instances monitor the leader through a heartbeat
method, or by polling. This method has to handle events such as network outages
and process failures. It is necessary for the subordinate task instances to elect a new
leader if the designated leader terminates unexpectedly, or if there is a network
malfunction that renders the leader unavailable to them.

In a distributed system, there are several algorithms for electing a leader, such as:

e Bully algorithm: As part of this algorithm, each node announces its
leadership claim to all of the other nodes. If a node receives a leadership
claim from another node with a higher identifier, it backs down and allows
the other node to assume leadership. When a node receives a leadership
claim from a lower identifier node, it rejects that claim and asserts its own
leadership. This continues until a leader is selected.

¢ Ring algorithm: It consists of a ring of nodes, each having its own unique
identifier. Each node sends its identifier to its neighbors repeatedly, and the
node with the highest identifier becomes the leader.

e Paxos algorithm: It involves multiple rounds of voting and message passing
in order to ensure consensus among a group of nodes.

For example, as illustrated in Figure 5.8: Leader Election Pattern:

/ Bully Algorithm \

Leader Election Pattern

/ Ring Algorithm \ / Paxos Algorithm \

* Node A broadcasts a leadership * The nodes are organized in a ring * Node A proposes a value (e.g. a
claim to all other nodes. and each node is assigned a unique leadership claim) to the other
* Node B receives the leadership identifier. nodes.

The other nodes vote on the
proposed value.

claim and compares its own + Node A sends its identifier to Node .
identifier to the identifier of Node A. B.

If Node B's identifier is higher than
Node A's identifier, it broadcasts a
leadership claim of its own.

Node C receives the leadership
claim from Node B and compares its
own identifier to the identifier of
Node B.

If Node C's identifier is higher than
Node B's identifier, it broadcasts a
leadership claim of its own.

* This process continues until a leader
is elected.

Qelected.

Figure 5.8: Leader Election Pattern

Node B compares its own identifier
to the identifier of Node A.

If Node B's identifier is higher than
Node A's identifier, it becomes the
leader.

If Node B's identifier is lower than
Node A's identifier, it sends its
identifier to the next node in the
ring.

This process continues until a leader

AN

If a majority of nodes agree on the
proposed value, it is accepted.

If a majority of nodes do not agree
on the proposed value, Node A
proposes a new value and the
process repeats.

This process continues until a value
is accepted by a majority of nodes.

)

Cloud-Powered Microservices 153

Advantages

e The leader provides a single point of coordination for the other nodes,
making it easier to coordinate actions and make decisions. The leader can
continue to function even if some nodes fail, as long as the majority of nodes
remain online.

Disadvantages

e As the leader coordinates the actions of all the nodes in a large distributed
system, it may become a bottleneck. It is possible for some leader election
algorithms, such as Paxos, to be complicated to implement. This may require
a considerable amount of message passing and voting, which may adversely
affect performance.

When to use this pattern

By making decisions on behalf of the group and coordinating state updates, a leader
can ensure that all nodes have a consistent view of the system state. Having decision-
making centralized in a single node allows the system to potentially make decisions
more quickly since it does not have to wait for input from all nodes.

As long as the majority of nodes are available, a leader can continue to function even
if some nodes fail. This can improve the overall robustness and availability of the
system.

Messaging design patterns

To maximize scalability, cloud applications require a loosely coupled messaging
infrastructure connecting components and services. A messaging design pattern is
a set of guidelines which can be used to help design and implement an effective
messaging system. These patterns can be applied to a variety of messaging scenarios,
including communication between microservices and communication between
different systems. We have already discussed Asynchronous Messaging Pattern in
last chapter (refer Figure 4.14 for the flow). Let us review other key messaging design
patterns and how we can implement them for our scenario.

Pipes and filters

Amessage design patternsuch as pipes and filters divides a larger process into smaller,
independent steps that can be executed either simultaneously or sequentially. The
data being processed flows through a series of pipes connecting the filters, and each
step is represented by a filter. In the context of systems that need to process large

154 Mastering Cloud-Native Microservices

amounts of data in a complex manner, this pattern allows the data to be processed in
smaller chunks, thus improving performance and scalability.

Pipes and filters can be implemented using a messaging system to pass data between
the filters. Each filter can process the data and pass it to the next filter in the pipeline,
or it can send the processed data to a separate location. One or more filters may be a
bottleneck, especially if a large number of requests appear in a stream from one data
source. The time it takes to process a single request is determined by the speed of the
slowest filter in the pipeline. As a key advantage of the pipeline structure, parallel
instances of slow filters can be run, thus increasing the throughput of the system by
spreading the load.

Consider, for example, the processing of large volumes of log data. In order to analyse
the log data, several filters could be used to parse it, filter out irrelevant entries, and
aggregate it. By implementing each filter as its own microservice or process, the data
can be passed between the filters using the messaging system. Filters in a pipeline can
be located on various machines, allowing them to be scaled independently as well as
utilizing the elasticity of many cloud environments. Filters with high computational
requirements can be hosted on high-performance hardware, while filters that are
less demanding can be hosted on commodity hardware that is less expensive.

For example, as illustrated in Figure 5.9: Pipes and Filters Pattern:

/ Pipes and Filters Pattern \

Source
Data
System

Filter

. . ‘ Transformed Data
Business Logic ‘

K Figure 5.9: Pipes and Filters Pattern

Advantages

e The pipes and filters pattern provides a modular approach to dividing a
larger process into smaller, independent steps. This helps to simplify the
process of understanding and maintaining the system. Each filter can be
implemented and tested separately, reducing complexity.

Cloud-Powered Microservices 155

e Due to the fact that the filters can be executed in parallel, the pipes and filters
pattern can improve the scalability of a system. By adding additional filters
or increasing the number of instances of each filter, data can be processed
more quickly and larger volumes can be handled.

Disadvantages

e This pattern provides increased flexibility, but it can also introduce
complexity, especially if the filters are distributed among different servers.

e There will be repetition of messages if a filter in a pipeline fails after posting
a message to the next stage. This will then run again, posting a duplicate
message to the pipeline. In order to prevent this, the pipeline should detect
and eliminate duplicate messages in order to avoid two instances of the same
message being passed to the next filter.

When to use this pattern

An application's processing can easily be separated into a number of steps. Each of
these steps needs to be scalable in a different way.

Priority queue

Queues usually follow a first-in, first-out (FIFO) structure, and consumers typically
receive messages in the same order in which they are posted. However, priority
queues are data structures that store a collection of items with a corresponding
priority. This allows you to efficiently retrieve and remove items with the highest
priority, as well as insert new items into the queue.

In the context of messaging design patterns, a priority queue can be used to prioritize
the handling of messages. For example, a messaging system might have a priority
queue for handling urgent messages, such as emergency alerts or critical system
notifications. Priority queue messages are processed in advance of non-urgent
messages, thus ensuring that critical information is delivered as soon as possible.

156 Mastering Cloud-Native Microservices

For example, as illustrated in Figure 5.10: Priority Queue Pattern:

K Priority Queue Pattern \

Processor
Processor

High Priority Queue w
b Erocessor
Medium Priority Queue Prf)ce’SSOri
peptiation [C DARDADG D) [erosewer]
Low Priority Queue C
Dedicated queues with dedicated processors per priority

& Figure 5.10: Priority Queue Pattern /

Advantages

e By prioritizing certain messages, you can increase the efficiency of your
system by ensuring that they are processed as quickly as possible.

¢ In addition, you will be able to ensure that resources are allocated more
efficiently as a result of prioritizing certain messages, which will in turn
reduce the overall operational costs of your system.

Disadvantages

o Identifying priorities can be challenging, and you may need to invest
significant time and effort in this process.

e It may be possible for certain messages to be unfairly prioritized over others
if the priority of a message is not properly set. This may lead to customer
dissatisfaction.

When to use this pattern

There are many tasks that need to be handled by the system, each with a different
priority. Different users or processes are required to be managed as per priority.

Publisher-subscriber

In this pattern, the sender packages events into messages, using a known message
format, and sends these messages via the input channel. As a result, it increases
scalability and improves sender responsiveness. It is the responsibility of the

Cloud-Powered Microservices 157

messaging infrastructure to ensure messages are delivered to interested subscribers.
Senders can send a single message to the input channel, then return to their core
processing responsibilities.

e There is one output messaging channel per subscriber.

e Message brokers or event buses are mechanisms that copy messages from
the input channel to the output channel for all subscribers interested in the
message.

As the publisher and subscribers are not required to know about each other's
implementation details, this pattern can help decouple components of an application.
As new subscribers can easily be added or removed from the list without affecting
the publisher or other subscribers, it provides flexibility and modularity.

For example, as illustrated in Figure 5.11: Publisher-Subscriber Pattern:

/ Publisher-Subscriber Pattern \

[Publisher J {Publisher] [Pub]isher } Subscriber A

| ‘ | Subscriber B

M brok .
L smgebroker/ | Gupucramel | Subscrberc

Subscriber E

Subscriber n

\ Figure 5.11: Publisher-Subscriber Pattern /

Advantages

e Messages can be effectively managed even if one or more receivers are offline
as it decouples subsystems that need to communicate.

e In addition to improving reliability, asynchronous messaging can assist
applications in running smoothly even when there is an increase in load and
can handle intermittent failures more effectively as well.

e Message routing provides separation of concerns for your applications.
Each application can focus on its core capabilities, while the messaging
infrastructure handles everything required to route messages reliably to
multiple destinations.

158 Mastering Cloud-Native Microservices

Disadvantages

¢ Communication in a publish-subscribe system is considered unidirectional.
If a specific subscriber needs to communicate status back to the publisher,
use the Request/Reply Pattern. In this pattern, one channel is used to
communicate with the subscriber and another channel is used to communicate
with the publisher via a response channel.

e The order in which consumer instances receive messages is not guaranteed,
and is not necessarily reflective of the order in which messages were created.

e As some solutions require that messages are processed in a certain order,
the Priority Queue pattern can be used to ensure that certain messages are
delivered before others.

When to use this pattern

You can use the publisher-subscriber pattern when you want to decouple components
of an application in order to make them more modular and easier to maintain.

Queue-based load levelling

As the queue functions as a buffer that absorbs excess traffic and prevents the
system from becoming overloaded, this pattern is useful for mitigating the impact
of sudden spikes in workload. As well as improving overall system performance,
it also provides a more predictable and controlled method for processing requests.

Due to the queue decoupling the tasks from the service, the service is able to handle
the messages at its own pace, regardless of the volume of requests from concurrent
tasks. Additionally, there will be no delay to the task if the service is unavailable at
the time the message is posted.

Advantages

¢ By buffering incoming requests in a queue, the system can process them at a
more consistent rate, which may improve overall performance.

¢ Load leveling reduces resource usage by smoothing out spikes in workload,
thus reducing the impact on CPU and memory.

Cloud-Powered Microservices 159

For example, as illustrated in Figure 5.12: Queue-Based Load Levelling Pattern:

f Queue-Based Load Levelling Pattern \

Service
Message Queue @
Request Request @ @
received at a processed at a
variable rate consistent rate
K Figure 5.12: Queue-Based Load Levelling Pattern /

Disadvantages

¢ Agqueue can add additional latency to the system, as requests may be delayed
while waiting to be processed.

When to use this pattern

The pattern can be applied to any application that uses services that are subject to
overloading.

Sequential convoy

Sequential convoys refer to a messaging pattern in which a series of messages are
sent sequentially from one node to another in a network. It is used to ensure that a
message is delivered to the intended recipient and that the message is received in the
correct order. The application must be able to process messages in sequential order
in order to handle increased load while also being able to scale out. This pattern is
useful for ensuring that a set of related tasks are executed in the correct order and
that the output of one task is available to the next task.

Advantages

¢ This pattern ensures that tasks are executed in the correct order: Sequential
Convoy ensures that tasks are executed in the order in which they are
defined, which can be useful if data integrity needs to be maintained or if
certain tasks need to be completed ahead of others.

e By breaking the code down into smaller, more manageable tasks, the
Sequential Convoy pattern can simplify code.

160 Mastering Cloud-Native Microservices

Disadvantages

e If the convoy contains computationally intensive tasks, it may be slower than
other approaches that allow tasks to be executed simultaneously. Scalability is
limited by the FIFO requirement for extreme throughput scenarios (millions
of messages per minute or second).

For example, as illustrated in Figure 5.13: Sequential Convoy Pattern:

/ Sequential Convoy Pattern \

Task Category A

SessionID:Al €3
e
Message Queue -
Task Category B
- (ad] (ad] (ad] o)

SessionID:B2 @

— &
- Message arrive sin a —
Task queue (FIFO) and Catego%r C
SessionID:C1 processed per Category @@

K Figure 5.13: Sequential Convoy Pattern /

When to use this pattern

If you have messages arriving in order, you should process them in the same order
as well. Arriving messages may be "categorized" in such a way that the category
becomes the unit of scale for the system as a whole.

Reliability

We have already discussed some of the reliability patterns that are specifically
designed for Cloud Native Microservices architects in a previous chapter, such as
Bulkheads and Circuit Breakers. Let us review some other key reliability design
patterns in this section. Essentially, these patterns are all intended to improve the
reliability and robustness of a system. They can be deployed individually or in
combination to address a variety of types of failures or challenges that a system may
encounter as it matures over time.

Compensating transaction

The compensating transaction is a transaction that undoes the effects of a previous
transaction. It ensures that the overall system remains in a consistent state, despite
an error in a previous transaction. Cloud-based applications modify data, which
may be spread across a variety of data sources located in different geographical
locations. Rather than attempting to provide strong transactional consistency to avoid
contention and improve performance in a distributed environment, applications
should implement eventual consistency instead.

Cloud-Powered Microservices 161

Typically, a business operation consists of several separate steps as described in this
model. It is possible that the overall view of the system state will be inconsistent
while these steps are being performed. However, once the steps have been executed
and the operation is complete, the system should become consistent again. It
is common for compensating transactions to be used in conjunction with other
reliability patterns, such as retries and timeouts, to handle temporary failures or
to enhance the reliability of operations. As well as rolling back changes made by a
transaction, they may also be used if the transaction fails or is cancelled by the user.

The system must be able to undo the effects of a compensating transaction in case
it is necessary to track the system's state prior to and after each transaction in order
to implement a compensating transaction. A database or other persistent storage
mechanism can be used to store the system state.

Advantages

e This ensures that the entire system stays in a consistent state: Should a
transaction fail, a compensating transaction can be used in order to restore
the system to its previous state by undoing the effects of that transaction.
As a result, data corruption or other problems resulting from incomplete or
failed transactions can be prevented.

Disadvantages

e It can be complex to implement: Implementing a compensating transaction
requires tracking the state of the system before and after each transaction,
as well as the capability of undoing the effects of each transaction. It is not
an easy process to accomplish, particularly if the system consists of many
different transactions or is dependent on a large number of other transactions.

For example, as illustrated in Figure 5.14: Compensating Transaction Pattern:

/ Compensating Transaction Pattern \
Book Flight Bnok Hotel Event Event Book Flight
AtoB BE1 BE2 Bto A

S
Transaction
\failed

Cancel Flight Cancel Hotel Cancel Taxi Cancel Tuxi Cancel Flight
AtoB BtoBH BHtoB Bto A

compensating transaction to undo complete chain

\ Figure 5.14: Compensating Transaction Pattern /

162 Mastering Cloud-Native Microservices

When to use this pattern

This pattern should only be used if there is a need to undo operations if they fail.
If possible, design solutions to avoid the complexity of requiring compensating
operations wherever possible.

Deployment stamps

A Deployment Stamp pattern requires the creation of a stamp that is associated with
a specific version of a component whenever that component is deployed. The stamp
can then be used to track the progress of the deployment, as well as to identify which
version of the component is currently running in the system.

You may have several stamps that represent a subset of your customers within a
single geographical region, or you may have multiple stamps to support horizontal
scaling out within that region. Stamps operate independently of one another and
can be deployed and updated independently.

e In addition, it may be necessary for you to keep certain customers' data
separate from that of other customers. Similarly, you may have some
customers that require a greater amount of system resources than others,
and you may wish to separate them on different sets of infrastructure.

¢ Depending on the customer, you may have some who are tolerant of frequent
updates to your system, while others may be risk-averse and would prefer
infrequent updates to the system that serves their needs. Deploying these
customers in isolated environments may make sense.

For example, as illustrated in Figure 5.15: Deployment Stamps Pattern. Stamp 1, 2,
and 3 can be on different version (release). Tenant C for example needs dedicated
resources.

f Deployment Stamps Pattern \
[Tenant A } [lenant B } [Tenant C } [Tmant D J [Temmt n J

O o

Web Server Tenant Web Server Tenant Web Server Tenant
o) ~3 [<) ~3 o) ~3
A®CB J©CHB 1®C8

—_—) — o] —_— —— —_— —

Deployment Stamp 1 Deployment Stamp 2 Deployment Stamp 3
West US East US Europe

k Figure 5.15: Deployment Stamps Pattern /

Cloud-Powered Microservices 163

Advantages

e A deployment stamp pattern enables the creation of unique identifiers that
are associated with specific versions of software components, thus improving
deployment tracking. In this way, deployment progress can be tracked easily
and version versions of components can be identified in the system.

e Itiseasier to troubleshoot issues and maintain system reliability with stamps
that track deployment progress and identify the version of a component that
is currently being used.

Disadvantages

¢ It may be necessary to add additional infrastructure and complexity to the
system as a result of implementing the deployment stamps pattern.

¢ To ensure that the deployment stamps accurately reflect the current state of
the system, the deployment stamps pattern requires ongoing maintenance.

When to use this pattern

It is necessary to track the progress of software deployments and identify any issues
that may arise during the deployment process when performing rolling updates in
a cloud environment.

Geodes

We can enhance Deployment Stamp pattern to address multi-location near-edge
compute using the Geode pattern. A Geodes pattern is a collection of backend services
are deployed to a set of geographical nodes, and each of these nodes is capable of
handling any request made by any client in any geographical region. By distributing
request processing around the globe, this pattern enables serving requests in a style
that is active-active, improving latency and increasing the availability of the service.

Getting data closer to the user is crucial for availability and performance. In today's
modern cloud infrastructure, load balancing of front-end services and back-end
services can be done geographically as well as replication of back-end services. When
data is geo-distributed across a far-flung user base, the geo-distributed datastores
should also be collocated with the compute resources that process the data. The
geode pattern enables the compute to be near the data.

Advantages

e Asaresult of this design pattern, everything is implicitly decoupled, leading
to a system that is highly distributed and decoupled.

164 Mastering Cloud-Native Microservices

Disadvantages

e For clustering in situations where there is no need for geographical
distribution, consider availability zones and paired regions.

When to use this pattern

The objective is to implement a high-scale platform with users spread across a large
geographical area.

Throttling

The throttling pattern is a design pattern that is used to manage the flow of requests
to a system in order to prevent the system from being overloaded. Typically, the
load on cloud applications varies based on the number of active users or the type of
activity performed by users. During business hours, for example, the system may
be required to perform computationally expensive analyses, or users may be more
active. In addition, there may be sudden and unanticipated bursts of activity. This
pattern is commonly used in situations where a high volume of requests is expected
and we may not be able to process them all simultaneously.

Various strategies are available to handle varying loads in the cloud, depending on
the business objectives of the application. Autoscaling can be used as a strategy for
matching provisioned resources to user needs at any given time. Despite the fact that
autoscaling can trigger the provisioning of additional resources, this provisioning
does not occur immediately.

As part of the throttling pattern, mechanisms are implemented to limit the rate at
which requests are processed. By setting limits on the number of requests that can
be processed per unit of time (for example per second, per minute) or by setting
limits on the number of requests that can be processed concurrently, this can be
accomplished.

There are several throttling strategies that can be implemented by the system,
including;:
e Requests from an individual user who has already accessed system APIs

more than n times per second over a specified period of time are rejected.

e By disabling or reducing the functionality of selected non-essential services,
essential services can operate without interruption as long as sufficient
resources are available.

e Refusing to perform operations on behalf of applications or tenants with a
lower priority.

Cloud-Powered Microservices 165

Advantages

By limiting the rate at which requests are processed, the Throttling pattern
can help to prevent the system from becoming overwhelmed and ensure that
it remains stable and reliable.

By limiting the rate at which requests are processed, the Throttling pattern
can help to ensure that resources are used efficiently. This will ensure that
the system is able to take advantage of the available resources to the fullest
extent possible.

For example, as illustrated in Figure 5.16: Throttling Pattern:

/

-

Throttling Pattern \

Client B Client A
SessionID:B2 Session]D:Al

Client C
SessionID:C1

150 request
per second

100 request
per second

800 request
per second

oftli B
Apply Throttling on
Client B @%J

Request
(a1 (1]
Figure 5.16: Throttling Pattern /

Disadvantages

Using the Throttling pattern, requests are processed at a slower rate,
resulting in a reduction in overall system throughput. The Throttling pattern
can increase latency, which can adversely affect the system's performance, by
limiting the rate at which requests are processed.

When to use this pattern

In order to ensure that resources provided by an application are not monopolized by
a single tenant. For handling bursts of activity.

Conclusion

Seamless Integration of Cloud and Microservices:

Accelerating Business Potential with Cloud Native Architectures

166 Mastering Cloud-Native Microservices

"Cloud-Powered Microservices' is a term that refers to microservices-based systems
that are built and deployed on the cloud and that take advantage of Cloud Native
functionality. As a software architecture style, microservices involve constructing
one application as a set of small, independent services that communicate with one
another via well-defined interfaces, often using lightweight messaging protocols.
Each service is responsible for a specific business capability and can be developed,
deployed, and scaled independently. We have discussed cloud native data

management, reliability, design and implementation, and messaging patterns in
detail.

In our next chapter, ‘Monolith to Microservices Case Study’ we will re-design an
application from a legacy monolith to microservices based design using patterns
and architect concepts described in the preceding five chapters.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 6

Monolith to
Microservices
Case Study

From Monolith to Microservices: A Practitioner’s Journey

Introduction

In application modernization, a monolithic architecture is replaced with a
microservice architecture. This is so that an existing application can be updated
and improved to be used more effectively in a modern computing environment.
In our previous chapters, we discussed the relationship between Microservices
and cloud computing, since microservices are often deployed on the cloud using
the Cloud native design pattern. By combining microservices and cloud native,
enterprises are able to develop, deploy, and manage highly scalable, flexible, and
hybrid cloud applications. Containers, service meshes, microservices, DevOps and
continuous integration/continuous deployment (CI/CD) development practices,
and declarative APIs are used to accomplish this. We have already discussed below
listed the key steps, and now in this chapter we will examine the implementation
approach from the practitioner's point of view using a case study.

Determine which monolithic components can be decomposed into microservices:
When identifying components to be separated into microservices, consider the
degree of independence and separation of concerns they exhibit. Components
that are deployable independently, have clear boundaries, and are relatively self-
contained are ideal candidates for microservices.

168 Mastering Cloud-Native Microservices

Break down the monolith into smaller components, extracting them into separate
microservices: This step involves refactoring the code to extract the identified
components into separate microservices, as well as making necessary changes
to the build and deployment processes. Additionally, it require the design and
implementation of APIs that will allow microservices to communicate with each
other.

Develop and implement RESTful APIs for communication between microservices:
Use a tool such as OpenAPI or Swagger to develop and implement RESTful APIs.
When designing APIs, ensure that security, versioning, and documentation are taken
into account.

Create continuous integration and delivery (CI/CD) pipelines for each
microservice: CI/CD pipelines enable microservices to be built, tested, and deployed
independently, improving speed and reliability.

The microservices should be deployed to a cloud platform or container
orchestration system: Cloud platforms and container orchestration systems such
as Kubernetes facilitate the deployment and management of microservices at scale.

Monitoring and optimizing the performance of the microservices: Use monitoring
and logging tools to monitor the performance and reliability of the microservices,
and make any necessary modifications to make them more scalable and reliable.

Continually iterate and improve the microservices: As the microservices evolve,
you need to split larger ones into smaller ones, or merge smaller ones together as
necessary. In order to ensure that your organization's architecture meets its needs,
continually review and optimize it.

Structure

In this chapter we will discuss following topics:
e Transitioning from Monolith to Microservices Architecture
e Monolithic to Microservice Design Principle
e Challenges of Legacy Systems
e Strategies for Updating Legacy Systems to Microservices

e Migrating TravelGuru Application to Microservices: A Case Study
o Case Study: Business Challenge
o Case Study: Solution Delivered for Microservices Migration
o Case Study: Technology Roadmap for Microservices Adoption

o Case Study: Application Transition to Microservices Architecture

Monolith to Microservices Case Study 169

o Case Study: Successful Database Migration to Microservices
o Case Study: Business Outcome of Microservices Migration

o Case Study: Best Practices Implemented in Microservices Migration

e Conclusion

Objectives

Our objective is to leverage Cloud Native Microservices to design or migrate a
system that provides several key benefits. This includes faster time to market for
new services and applications, thanks to an automated and comprehensive lifecycle
management process. We aim to achieve a shorter time to market for new services
and applications, and decouple them from the underlying infrastructure, making
application development much easier. By leveraging microservices architecture and
continuous integration/continuous delivery (CI/CD), we expect to see a significant
increase in the cadence of small and regular updates to applications.

Using containers and microservices, we aim to give users the ability to deploy
only the necessary components, rather than deploying entire monolithic network
functions, which will help reduce the total cost of ownership (TCO). In our case
study, we will evaluate a proposed technical stack and approach to modernize a
travel website, with the goal of delivering a highly distributed and scalable solution
that can adapt to changing customer needs and preferences.

Transitioning from monolith to
microservices architecture

Remember how we started this book? In our first chapter, we discussed the importance
of adopting cloud-native microservices for successful digital transformation, and
the key drivers for cloud-native microservices adoption. In this chapter, we will
apply these principles to our case study on modernizing the TravelGuru website/
application.

Moving from a monolithic architecture to a microservices architecture involves
breaking down a large, monolithic application into smaller, independently
deployable components. By doing so, we can achieve faster time-to-market for new
services and applications, improved lifecycle management, and greater application
scalability and availability. The aim of transitioning from a monolithic architecture
to a cloud microservices architecture is to modernize and improve the application,
making it more suitable for modern computing environments. Depending on the
organization's specific needs and constraints, there will be a different strategy for
achieving this goal.

170 Mastering Cloud-Native Microservices

One of the key advantages of microservices is that they enable a greater degree of
flexibility in application development and deployment. By decoupling individual
services from the underlying infrastructure, we can develop and deploy applications
that are highly distributed and easier to manage. This approach also allows us to use
continuous integration/continuous delivery (CI/CD) to streamline the application
update process. With the use of containers and microservices, users are able to
deploy only what they need, rather than having to deploy entire monolithic network
functions, thereby reducing the TCO.

In our case study, we will explore the steps involved in transitioning from a
monolithic to a microservices architecture for the TravelGuru application. We will
examine the challenges faced by the team and the approach taken to modernize the
system. We will also discuss the benefits achieved and provide guidance on best
practices for deploying microservices in a cloud environment.

Monolithic to microservice design principle

When transitioning from a monolithic architecture to a microservices architecture,
there are several design principles that should be implemented to ensure a successful
transition.

¢ Single Responsibility Principle: Each microservice should have a single,
well-defined responsibility, and should be loosely coupled with other
services.

e Decentralized Data Management: Each microservice should have its own
data store, and data should be shared between services through APIs or
message queues.

e High Cohesion: Each microservice should have high cohesion, meaning
that all of its components and functionality should be related to its defined
responsibility.

e Loose Coupling: Microservices should be loosely coupled, meaning that
changes to one service should not affect the functionality of other services.

e Automatic Scaling: Microservices should be designed to automatically scale
up or down based on demand.

e Self-Containment: Each microservice should be self-contained and should
not rely on the state of other services.

¢ Failure Isolation: Microservices should be designed to fail independently, so
that a failure in one service does not affect the functionality of other services.

e Composability: Microservices should be composable, meaning that they can
be combined to create new functionality.

Monolith to Microservices Case Study 171

e Stateless: Microservices should be stateless, meaning that they do not
maintain any client-specific state.

e Asynchronous: Microservices should be designed to communicate
asynchronously, to minimize latency and improve scalability.

¢ Automated Deployment: Microservices should be designed for automated
deployment, making it easy to deploy and update individual services.

¢ Monitoring and logging: Microservices should be designed with monitoring
and logging capabilities to enable debugging and troubleshooting.

¢ Service Discovery: Microservices should be designed with service discovery
capability to enable service-to-service communication.

e API-driven: Microservices should be designed with a well-defined API to
enable easy integration with other services.

¢ Event-driven architecture: Microservices should be designed to use event-
driven architecture to enable loosely-coupled communication between
services.

e Service observability: Microservices should be designed for observability,
meaning that the service should be able to provide metrics, tracing, and
logging information to enable monitoring and troubleshooting.

Challenges of legacy systems

It is critical to understand a legacy system and challenges with the same for better
planning it is modernisation journey. A legacy system is a computer system,
application, or technology that has been in use for a long period of time. It is no
longer actively being developed or supported by the vendor. They are often based
on obsolete technologies and not be compatible with new systems or software.

As an example, a bank that still uses an old mainframe system to process transactions,
that system is old and runs on proprietary software that no longer is maintained by
the vendor, this system is expensive to maintain, it is difficult to integrate with new
software and hardware, and itnotbe able tohandle new data types or communications.
Working with existing legacy code can be challenging, as it be difficult to understand
the code and how it works, especially when the original developers are no longer
available to assist. It also be difficult to understand the functionality of the system or
how to make changes due to inadequate documentation of the code.

Moreover, existing legacy code be difficult to maintain, as it not be compatible with
newer technologies and software, or it be vulnerable to security vulnerabilities.
An organization need to weigh the costs and benefits of updating or maintaining
legacy code before upgrading or maintaining it, as updating or modernizing legacy

172

Mastering Cloud-Native Microservices

code can be a time-consuming and costly process. The decision to rewrite legacy
code be made by some organizations, but this can also be a very time-consuming
and complex process, especially if the legacy code is large and complex. The key
challenges of legacy systems are:

Technical debt: The maintenance and updating of legacy systems can
often result in significant technical debt, which refers to the expense of
maintaining and updating an older system. Organizations find this to be a
significant burden, making it difficult to implement new features or modify
the system. In addition, as technology changes, the system becomes less and
less compatible and more difficult to maintain and upgrade as it becomes
older. As a result, the problem becomes more complex as the system becomes
older.

Data migration: It is necessary for organizations to consider how they will
migrate data from an old system to a new one when updating or replacing a
legacy system. During the migration process, organizations need to ensure
data integrity and consistency, since this is a complex and time-consuming
process. The data migration process can also be risky, as data be lost or
corrupted during the migration, or the new system notbe capable of handling
the data from the old system.

System integration: As legacy systems not be compatible with newer
systems and software, it be difficult to integrate them into the existing
technology landscape of an organization. For organizations requiring data or
processes to be shared between systems, this can pose a significant challenge.
Integrating a legacy system with new software and hardware requires custom
development and testing, both of which can be time-consuming and costly.

User training: Users also be resistant to change and be unwilling to learn new
systems or processes when updating or replacing a legacy system. This can
be a challenge for organizations with varying levels of technical expertise.

Security concerns: It is possible that legacy systems lack security features
that are present in newer systems, leaving organizations vulnerable to cyber-
attacks. These systems not be able to encrypt data, authenticate users, or
detect and prevent intrusion, making sensitive data vulnerable to cyber-
attacks.

Vendor support: It be difficult to obtain updates and technical support for
legacy systems, since the vendor no longer support them. Organizations
need to rely on third parties for support, which can be costly and not be
reliable.

System upgrades and maintenance costs: It is often necessary for
organizations to weigh the costs and benefits of upgrading or maintaining

Monolith to Microservices Case Study 173

legacy systems because it can be a costly process. In addition to the cost of
upgrading or replacing the system, organizations should also consider the
benefits of a new system, including enhanced efficiency and security, as well
as the cost of maintaining the existing system. It be more cost-effective to
maintain the legacy system rather than upgrade it in some cases.

Strategies for updating legacy systems to
microservices

Legacy systems can be modernized in several ways to improve efficiency, security,
scalability, and efficiency. There are several approaches an organization can take
when modernizing legacy systems:

Gradual Modernization: One approach is to gradually modernize the
legacy system by updating one component or module at a time. This
approach allows organizations to keep the existing system running while
gradually migrating to a new system. This approach can be time-consuming
but reduces the risk of downtime and allows the organization to test each
component thoroughly. For example, the travel website could update one
component or module at a time. For example, they could start by migrating
the hotel booking component to a microservices architecture. This would
allow them to keep the existing system running while gradually migrating
to a new system. Once the hotel booking component is migrated, they could
move on to other components like flight booking or car rental.

Re-platforming: This involves moving the legacy system to a new operating
system or hardware platform, in order to improve performance and
scalability. A cloud-based system can also be used to move the system, which
offers additional benefits such as flexibility and cost savings in addition to
increased flexibility. For systems that are running outdated hardware or
operating systems, or that must be scaled up or down to meet changing
demands, re-platforming is a good option. It is important to note, however,
that this approach can be complex and time-consuming, since it requires
significant changes to the system's infrastructure and require extensive
testing and validation. As an example, the travel website could move their
legacy system to a new operating system or hardware platform to improve
performance and scalability. For example, they could move their system
to a cloud-based platform, which would offer benefits like flexibility and
cost savings in addition to increased scalability. This would help them meet
changing demands and keep up with the growing traffic on their website.

Re-hosting: During this process, the system is moved to a new hosting
environment, such as a virtual machine or container, in order to improve

174

Mastering Cloud-Native Microservices

performance. The system can be scaled up or down to meet changing
demands if it runs on outdated hardware or needs to be scaled up or down.
However, this approach can also be complex, as it requires significant
changes to the system's infrastructure and require extensive testing and
validation. As an example, the travel website could move their legacy system
to a new hosting environment, such as a virtual machine or container, to
improve performance. For example, they could move their flight booking
component to a container-based environment, which would allow them to
scale the component up or down based on demand. This would help them
meet changing demands and ensure that their website runs smoothly.

Re-architecting: It involves making significant changes to the system's
architecture, such as breaking up monolithic systems into microservices, in
order to enhance scalability, reliability, and maintainability. A system that
has become complex and difficult to maintain or scale is often subjected to
this approach. It is, however, a complex and time-consuming process and
can require significant changes to both the system's code and infrastructure.
As an example, the travel website could break up their monolithic system
into microservices to enhance scalability, reliability, and maintainability.
For example, they could break up their hotel booking component into
microservices like search, booking, and payment. This would help them
manage the complexity of their system and ensure that each microservice is
easily maintainable.

Re-coding: As part of this process, the system's code is rewritten in order to
improve performance, scalability, and security, as well as make the system
easier to maintain and maintainable. The use of this approach is often
recommended for complex systems that have become difficult to maintain
or scale. However, this approach can be complex and time-consuming, as
well as requiring a significant amount of expertise and resources. As an
example, the travel website could rewrite their system's code to improve
performance, scalability, and security. For example, they could rewrite their
car rental component to make it more efficient and secure. This would help
them keep up with the growing traffic on their website and ensure that their
users' data is safe.

Wrapping: In order to make the legacy system easier to use and integrate with
other systems, it is necessary to create a new user interface or application
programming interface (API). This approach can be a useful option for
systems that have important functionality but are difficult to use or integrate
with other systems. There is, however, the potential for this approach to
be complex and time-consuming, as well as requiring significant changes
to the system's infrastructure and code. As an example, the travel website
could create a new user interface or API to make their legacy system easier to

Monolith to Microservices Case Study 175

use and integrate with other systems. For example, they could create a new
API for their destination information component, which would allow other
websites to easily integrate with their content. This would help them reach a
wider audience and provide more value to their users.

Refactoring: This involves making small changes to the system's code in order
to improve performance, scalability, and security, as well as make the system
easier to maintain. For systems that are difficult to maintain and scale, but
that still have important functionality, this approach is often used. Although
this approach is generally less complex and time-consuming than a complete
re-write of the code, a significant amount of expertise and resources will still
be required. As an example, the travel website could make small changes
to their system's code to improve performance, scalability, and security. For
example, they could refactor their travel guides component to make it more
efficient and maintainable. This would help them manage the complexity of
their system and ensure that each component is easily maintainable.

Migrating Travelguru application to
microservices: A Case Study

The Travelguru company had a monolithic application that had been built over
several years and had grown to include many features and functionalities. The
monolithic architecture became a bottleneck for the company's growth as the
company expanded, however. There was an issue with scaling, deploying, and
maintaining the application. As a result, the company decided to move from a
monolithic architecture to a microservices architecture in order to achieve better
scalability, flexibility, and deployment reliability.

The Travelguru application was a web-based application that provided
several services to customers, for their travel needs including flight booking,
hotel booking, car rental, vacation packages. In addition, there is support and
interactive services like destination information, travel guides and reviews.
As a result of partnering with various other platforms over the last year, this
company has been able to enhance their user base as well as fine tune their
business model in order to become more agile and user-friendly. Now the
increased volume creating new positive challenges for business to scale at
a much faster pace and to be able to rollout new services on monthly basis.

This application was built using Java and was run on a single server.
With the increasing number of customers and transactions, the application
was struggling to keep up with the load, resulting in slow performance
and frequent downtime. As a consequence of the company realizing that
the monolithic architecture was not suitable for their current and future
requirements, they changed the architecture.

176

Mastering Cloud-Native Microservices

Monolithic technology stack (Travelguru application): A monolithic
technology stack refers to a software architecture where all the components
of an application are tightly integrated and deployed as a single unit. In a
monolithic stack, all the modules or services of the application share the same
codebase, database, and runtime environment. In this case, below mention
technologies were used with a monolithic architecture.

o Front-end: JSP, ASP.NET, HTML and JavaScript (old web technologies)
are used to create a dynamic user interface.

o Back-end: The server-side logic was built in Java (older version 6).

o Database: To store and manage customer data, booking information,
and other website information, Oracle (version 11) is used.

o Search Engine: The website uses open source search engine
technologies to enable fast and efficient searching for flights, hotels,
and other travel options.

o Web Server: HTTP requests and responses are handled by Apache on
the website.

o On-premises Infrastructure: On-premises infrastructure, using virtual
machines, provides scalability, reliability, and cost-effectiveness.

o Monolithic Architecture: This website has a monolithic architecture,
with all functionalities combined into a single codebase.

Case Study: Business Challenge

Running a monolithic architecture for a travel booking and planning website using
old technologies like Java 6, Oracle 11g DB, Apache, and JSP, ASP.NET created
several additional business challenges, such as:

Security vulnerabilities: As these technologies are older, they have known
security vulnerabilities that cannot be easily patched or resolved. This can
put the website and user data at risk.

Lack of support: As these technologies are no longer actively supported, it is
difficult to find developers with expertise in these technologies, and there be
limited resources available for troubleshooting and problem-solving.

Limited performance: The older technologies are not able to handle the high
demand and load of a travel booking and planning website, leading to poor
performance and a poor user experience.

Limited ability to integrate with new technologies: As the technologies are
outdated, it be difficult to integrate them with newer technologies and tools
that could improve the website's functionality and performance.

Monolith to Microservices Case Study 177

Limited ability to scale: As the system is monolithic and uses outdated
technologies, it is not able to handle the scalability required for high demand
and experience performance issues.

Case Study: Solution Delivered for
Microservices Migration

To overcome these challenges, the company adopted several strategies, including
modernizing a monolithic architecture for a travel booking and planning website
using cloud-based microservices:

Company ‘Travelguru’ want to adopt a phase wise approach in order to minimize
any impact on the running business and at the same time modernize to manage
growing demand. Steps they followed:

Discovery and Planning: As part of this phase, the existing monolithic
application is analyzed to identify the functional components that can be
broken down into smaller, independent services in order to facilitate the break
down process. For example, the application functionality for flight booking,
hotel booking, car rental, and package deals. Each of these functionalities can
be broken down into separate microservices. A plan is also developed for
re-architecting the application, replacing the old technologies with modern,
cloud-native technologies, and selecting a cloud provider that is capable of
providing the required services.

Proof of Concept (PoC): A proof of concept is developed to demonstrate the
feasibility of migrating to microservices and the new architecture by selecting
a small subset of functionality of the existing application, for example flight
booking, and using them in a Proof of Concept. For this phase, a small set of
services is created and deployed in the cloud. The recommended technology
stack for this phase would validate approach for complete migration/
modernization:

o Programming Language: Java 11

Java 11 is a widely used programming language that is well-suited
for building microservices. It has a large developer community and a
vast array of libraries and tools available, making it an ideal choice for
building microservices.

o Framework: Spring Boot

Spring Boot is a popular and widely used framework for building
microservices. It provides a comprehensive set of tools and features
that make it easy to build, deploy, and manage microservices, making
it a good choice for a PoC.

178

Mastering Cloud-Native Microservices

o Database: PostgreSQL

PostgreSQL is a reliable and scalable open-source database that is well-
suited for use in microservices architecture. It is a popular choice for
building web applications, providing good performance and stability.

o Service Mesh: Istio

Istio is a popular service mesh that provides a comprehensive set
of tools for managing microservices. It offers features such as traffic
management, service discovery, and security, making it a good choice
for a PoC.

o Cloud Provider: Azure

Azure is a cloud provider that offers a wide range of services for
building and deploying microservices. It provides a scalable and
reliable platform for hosting microservices, making it a good choice
for a PoC.

o Deployment and Scaling: Kubernetes

Kubernetes is a popular and widely used container orchestration
platform that provides a scalable and reliable platform for deploying
and managing microservices. It offers features such as automatic
scaling, rolling updates, and self-healing, making it an ideal choice for
a PoC.

Overall, the selected technology stack providesareliable, scalable, and comprehensive
set of tools for building, deploying, and managing microservices, making it an ideal
choice for a PoC for migrating from a monolithic to a microservices architecture.

Incremental Migration: In this phase, the existing applicationis incrementally
migrated to the new microservices architecture. The migration is done in
small chunks, and each chunk is tested thoroughly before being moved
forward. The first service to be migrated, for instance, is the flight booking
service, which is thoroughly tested and deployed to the cloud, and the
second service is the hotel booking service. As a result of this approach, the
migration is more controlled and less risky, as the system is still operational
during this phase of the migration process.

Performance Optimization: As part of this phase, the new microservices-
based system is optimized for performance. For example, caching can be
implemented to improve the performance of the system. As well as optimizing
database queries, it is also possible to implement load balancing to distribute
the load between multiple instances of the microservices in order to improve
the system's performance.

Monolith to Microservices Case Study 179

Continuous Integration and Deployment (CI/CD): In this phase, we
will setup a CI/CD pipeline that will automate the testing, building,
and deployment of the microservices. By doing so, it will ensure that the
microservices are always up-to-date and stable. For example, Jenkins, Gitlab,
has been used in order to automate the testing, building, and deployment.

Monitoring and Logging: In the next phase of the development process,
monitoring and logging tools will be set up for tracking the health and
performance of the microservices as well as for identifying any problems and
troubleshooting them as quickly as possible. Examples of these are Grafana,
and Elasticsearch /Kibana. Elasticsearch open source used in this case.

Data Migration: An important aspect of this phase involves migrating data
from the old monolithic system to the new microservices-based system. This
can involve migrating data from the old database to the new one, as well as
ensuring that all data has been migrated properly and is accessible by the
new system. Oracle to PostgreSQL DB migration done for this case.

Stabilization: In this phase, the new microservices-based system is
stabilized by fixing any issues that were encountered during the migration
and thoroughly testing the system. Once all services have been migrated, the
whole system is tested for its performance and scalability. Once all services
are migrated, the system will be evaluated to ensure that it is stable, reliable,
and can handle the expected load.

Deployment and maintenance: As part of this phase, the new microservices-
based system will be deployed and put into operation on the production
environment. To ensure that the system remains stable and performs at its
best, regular monitoring and maintenance is conducted. To ensure that the
microservices and user data are secure, security measures are implemented
as well.

It is recommended that the technology stack used in this phased approach be based
on cloud-native technologies and a cloud-optimized architecture. As a result of this
phased approach and the use of these technologies, businesses are able to minimize
the risks associated with migration by testing and validating the new architecture and
system incrementally, which allows for a less risky and more controlled transition.
In addition, this approach allows the system to continue to function even during
the migration process, thereby minimizing the disruption to the business during the
migration process.

Target technology stack

Front-end: Web technologies such as HTML, CSS, and JavaScript to create the
user interface. It uses frameworks such as React, Angular to create dynamic
and responsive Ul

180

Mastering Cloud-Native Microservices

Back-end: Java, Python has been used to build the server-side logic.

Database: DB Migrated to PostgreSQL to store and manage customer data,
booking information, and other website data. Plan in place to have a separate
Data warehousing (DWH) solution for better data insight and analytics.

Search Engine: Elasticsearch customized for efficient searching of flights,
hotels, and other travel options.

Web Server: Apache to handle HTTP requests and responses.

Cloud Infrastructure: The website hosted on a cloud infrastructure, using
Microsoft Azure, to provide scalability, reliability, and cost-effectiveness.
Infrastructure as a code methodology followed.

Containers and Orchestration: The website used Docker containerization
technologies and Kubernetes (Azure Kubernetes) for orchestration to
manage and deploy the microservices.

Service Mesh: Istio used for service mesh to handle service-to-service
communication, traffic management, and security.

Monitoring and Logging: The website used monitoring and logging
tools such as Grafana, and Elasticsearch/Kibana to track performance,
troubleshoot issues and analyze logs.

Case Study: Technology Roadmap for
Microservices Adoption

Modernizing a monolithic architecture for this travel booking and planning website
from (Java 6, Oracle 11g, JSP, JavaScript, Apache) to (Java 11, Spring Boot, PostgreSQL,
Istio, Azure, and Kubernetes) offers the following advantages:

Technology that is up-to-date:

The Java 11 platform: The new Java 11 release provides features such as
improved performance, new language constructs, and support for new
standards such as HTTP/2, TLS 1.3, and JDK Flight Recorder.

Spring Boot: It provides a modern, easy-to-use framework for building
microservices. Spring Boot provides an embedded servlet container, which
simplifies the deployment process and eliminates the need to deploy WAR
files. Moreover, it is equipped with several built-in features, including
security, data access, and caching, which can help reduce the development
time.

Monolith to Microservices Case Study 181

PostgreSQL: The database is an open-source, robust relational database that
is known for its performance, scalability, and high availability.

Istio: Istio provides a service mesh that helps manage and secure
microservices. It provides features such as traffic management, service
discovery, load balancing, and monitoring.

Cloud-native services provided by Azure: Microsoft Azure is a major cloud
provider that provides scalability, security, and global reach. Azure provides
a variety of services, including compute, storage, and networking, as well as
advanced security features such as DDoS protection.

Container orchestration systems such as Kubernetes can assist with the
deployment, scaling, and management of containerized applications. A
number of features are included with Kubernetes, including self-healing,
automatic scaling, and rollbacks, which can improve its availability and
scalability.

Performance improvement: The improved performance and scalability of
PostgreSQL can be achieved by migrating from Oracle 11g to PostgreSQL.
By allowing for horizontal scaling, microservices can also help to improve
the overall performance of the system. Using microservices architecture, new
instances of a service can be added as a result of increased traffic, enabling
horizontal scaling.

Enhanced security: Service meshes such as Istio can provide security
features such as authentication, authorization, and encryption. Furthermore,
a cloud provider such as Azure can provide advanced security features such
as DDoS protection and security groups.

Development and maintenance have been improved: The use of
microservices and Spring Boot can make development and maintenance
of the system easier, by allowing for more granular updates and making it
easier to test and deploy new features. The microservice architecture enables
the monolithic application to be broken down into smaller, independent
services, making it easier to make changes and updates to individual portions
of the system without affecting the entire system as a whole.

Cost-saving improvements: In order to reduce costs, businesses can use
Azure's pay-as-you-go pricing, which allows them to pay only for the
resources they use. Moreover, Azure offers a variety of pricing options,
including reserved instances and spot instances, that can further reduce
costs.

182 Mastering Cloud-Native Microservices

o Using Kubernetes: Businesses will be able to take advantage of automatic
scaling, which can help to reduce costs by running only the number of
instances required. Additionally, Kubernetes provides features such as
automatic binpacking, which can help to optimize resource usage and reduce
costs.

e DevOps improvements: The use of Kubernetes can facilitate the
improvement of the availability and scalability of the system by providing
features such as automatic scaling, self-healing, and rollbacks.

o Using Istio, businesses can take advantage of features such as traffic
management, service discovery, load balancing, and monitoring.
These functions can improve the system's availability and scalability.

e Productivity improvements for developers: It is possible for businesses to
reduce development time by utilizing Spring Boot's built-in features such
as security, data access, and caching. As part of Spring Boot, an embedded
servlet container is provided, which simplifies the deployment process and
eliminates the need for WAR files.

e As a result of Java 11, businesses can take advantage of new language
constructs such as enhanced type inference and improved exception
handling, which can improve developer productivity.

Case Study: Application Transition to
Microservices Architecture

The Domain-Driven Design (DDD) approach played a key role in the creation of
the below microservices architecture. DDD helped in defining the boundaries of
the different domains and subdomains of the travel booking and planning website,
which helped in breaking down the monolithic application into smaller, more
manageable microservices.

By focusing on the business domains, DDD helped to identify the different functional
components of the application and how they interact with each other. This approach
helped in defining the service boundaries and in ensuring that each microservice
had a well-defined and focused responsibility.

DDD also helped in defining the language and terminology used within each
domain, which helped in improving communication and collaboration between the
development team and the business stakeholders. This led to a better understanding
of the business requirements and ensured that the microservices were designed to
meet those requirements.

Monolith to Microservices Case Study 183

In order to transform a monolithic travel booking and planning website into a
microservice, the following functional components were converted as scalable
microservices:

Search: Elasticsearch would be used to index and search the data in real-time,
providing fast, accurate search results. Elasticsearch would be configured
to index data including flight, hotel and rental car availability, prices, and
locations. Additionally, the search service would provide advanced search
features such as full-text, geospatial, and faceted searches. There would be
multiple types of searches that could be handled by the search service, such
as flights, hotels, car rentals, vacation packages, and the like.

Booking: The booking microservice would handle the business logic of the
booking functionality, including validating availability, calculating prices,
and processing payments. Spring Boot's built-in data access and caching
capabilities can be utilized to improve performance and reduce development
time by using the service. As part of the booking service, cancellations and
modifications would also be handled, and real-time status updates would be
provided.

Payment: The payment microservice would handle the secure processing of
credit card transactions using a payment gateway such as Stripe. Additionally,
the service would handle the business logic associated with the payment
functionality, such as handling refunds and generating invoices. Multiple
payment methods, including credit cards, debit cards, and digital wallets,
would also be supported.

User Management: The user management microservice would handle the
business logic of the user management functionality, including validating
user credentials, managing user profiles and permissions. Additionally,
Spring Boot's built-in security support would be utilized for the service, thus
enhancing security and reducing development time. The user management
service would also provide functionalities such as forgot password, account
verification, and account deactivation.

Front-end: A front-end microservice would handle all user interface requests
and provide a responsive, user-friendly interface for all user interface
requests. React.js, a JavaScript library for building user interfaces, would be
used for the front-end of the service, and APIs would be used to integrate it
with the other microservices.

Deployment and scaling: The microservices would be deployed and
scaled using Kubernetes and Istio. Kubernetes would be used for container
orchestration, which would handle the deployment, scaling, and management
of the microservices. It is expected that Istio will serve as an infrastructure
mesh that will provide features such as traffic management, service discovery,

184 Mastering Cloud-Native Microservices

load balancing, and monitoring, thereby improving system availability and
scalability.

¢ Data migration: In order to migrate data from the Oracle 11g database of the
monolithic system to the PostgreSQL database, a controlled process would
need to be utilized. In order to minimize downtime and ensure data integrity,
the old database's data would need to be extracted, transformed if necessary,
and loaded into the new PostgreSQL database. A plan for handling issues
that arise during the migration, such as data loss or inconsistent data, is
essential.

e DPersonalization: A personalization microservice would be responsible for
providing users with personalized recommendations based on their search
history, booking history, and browsing history. In addition to analyzing
user data and offering personalized recommendations, this microservice
would also use past searches, bookings, and browsing history to suggest
options similar or related to the user's search, booking, or browsing history.
In addition, it would provide personalized recommendations through
collaborative filtering, content-based filtering, and hybrid methods.

e Notifications: Using the notifications microservice, users will receive
notifications such as confirmation of bookings, flight status updates, and price
drops. In order to communicate with users in real-time, this microservice
would utilize technologies such as WebSockets and push notifications. It
would also communicate with users via email, SMS and push notifications.
As part of the notifications service, users would also be able to schedule
notifications for future events, track delivery status, and manage their opt-
in/opt-out preferences.

To ensure a smooth transition and minimize downtime, it is important to keep
in mind that this is a complex process that requires careful planning, testing, and
monitoring. Moreover, it is important to plan for handling problems that arise
during the transition, such as data migration and service integration.

Case Study: Successful Database Migration to
Microservices

Travelguru, a leading travel website, had been using a monolithic Oracle 11g
database for many years. As the company grew, the database became increasingly
complex and difficult to maintain. The database was also unable to scale to meet
the company's growing needs. Travelguru recognized the need to migrate to a more
scalable and flexible architecture.

Monolith to Microservices Case Study 185

Challenge: The primary challenge for Travelguru was to migrate the existing data
from Oracle 11g to a new cloud-based PostgreSQL microservices architecture without
any disruption to the website's availability. The migration had to be completed in a
timely and efficient manner while ensuring the data's integrity and compliance with
regulatory requirements.

Solution: Travelguru implemented a phased migration strategy to minimize
downtime and ensure data consistency between the on-premises Oracle 11g database
and cloud-based PostgreSQL microservices. The following steps were taken to
complete the migration:

Detailed Analysis: To ensure a successful migration, Travelguru analyzed
the existing data schema and access patterns using ERwin and Oracle SQL
Developer Data Modeler. This analysis helped identify the data entities
required for the new microservices and their relationships.

Data Extraction: Travelguru used tools like SQL Developer and Oracle
Data Pump to extract data from the Oracle 11g database. The extracted data
was then transformed to match the PostgreSQL schema. Large amounts of
data were transferred securely and efficiently using Amazon Web Services
DataSync.

Data Load: Data was loaded into the new PostgreSQL microservice databases
using tools like pgAdmin or pgLoader. Testing was conducted to ensure that
the data was loaded correctly, and the microservices could access it properly.
Database triggers or stored procedures were used to ensure data integrity
and consistency.

Data Validation: Data validation involved comparing data from the cloud-
based PostgreSQL microservice databases to the Oracle 11g database and
identifying any discrepancies. A tool like dbt was used to automate this
process.

Data Synchronization: Travelguru synchronized the on-premises Oracle 11g
database and cloud-based PostgreSQL microservice databases using tools
such as AWS DMS, Azure Database Migration Service, or Google Cloud SQL
Replication. Data was replicated in real-time, ensuring consistency between
on-premises and cloud-based databases.

Cutover: The monolithic application was switched over to use cloud-based
PostgreSQL microservice databases by updating the application code to
use the new microservices and configuring the application accordingly.
Travelguru implemented a phased migration strategy, which involved
migrating data and services in smaller, incremental steps to minimize
downtime.

186

Mastering Cloud-Native Microservices

Monitoring: The new microservices and databases were monitored to
ensure that they were functioning as expected. This included monitoring the
performance and availability of the microservices and databases, as well as
identifying and resolving any issues.

Security and Compliance: Travelguru ensured that the data was protected
and met regulatory and compliance requirements by setting up encryption,
access control policies, and auditing mechanisms. The migration process
adhered to compliance requirements, such as GDPR, HIPAA, or SOC 2.

Data Partitioning and Sharding: Travelguru partitioned and sharded
the data to improve performance and scalability based on the data access
patterns and performance requirements.

Travelguru's migration from Oracle 11g to cloud-based PostgreSQL microservices was
successful, ensuring the website's uninterrupted availability. The new architecture
improved scalability, flexibility, and performance while adhering to regulatory and
compliance requirements. By implementing a phased migration strategy, Travelguru
minimized downtime and ensured data consistency.

Recommendations to minimize downtime

Test the migration process: The migration process should be tested in a
staging environment that is identical to the production environment before
migrating the production database. This will allow you to identify and
resolve any issues that arise during the migration process, thereby reducing
the risk of downtime in the production environment. Create a replica
of the production environment, configure the cloud-based PostgreSQL
microservice databases, and run the migration process with sample data to
test the migration process.

Use a phased approach: Organize the migration process into smaller,
manageable phases to minimize the risk of downtime and improve
performance. This will allow you to migrate data and services incrementally.
Phased migrations can be accomplished by migrating services one at a time,
starting with non-critical services and progressing to critical services as
necessary.

Use database replication: Ensure that the data between the Oracle 11g
database and the PostgreSQL microservice databases is replicated using a
database replication solution, such as AWS DMS, Azure Database Migration
Service, or Google Cloud SQL Replication. By configuring Golden Gate,
Streams or Data Guard according to the use case, you will be able to switch
over to the new databases gradually, minimizing downtime.

Optimize database performance: Optimize the performance of cloud-based
PostgreSQL microservice databases by configuring them correctly, indexing

Monolith to Microservices Case Study 187

tables, and implementing caching mechanisms. Having the right instance
type, the right storage, and the right number of replicas configured can help
to improve the performance of the microservices once the migration has been
completed. The performance of microservices can also be improved through
the use of caching mechanisms such as Redis, memcached, or Ehcache.

Implement a rollback plan: A rollback plan should be developed in case
of any issues during the migration process. This will enable you to quickly
switch back to the on-premises Oracle 11g database, minimizing downtime.

Case Study: Business Outcome of Microservices
Migration

There are several functional and business benefits gained from modernizing
‘TravelGuru’ a monolithic architecture based travel booking and planning website,
including;:

Improved customer experience: Microservices architecture and newer
technologies enable the system to offer faster and more responsive services,
thereby improving the customer experience. Additionally, improved search
functionality and personalization capabilities will make the system more
appealing to users as well.

Increased flexibility: This is achieved by breaking the monolithic application
down into smaller, independently deployable services, thereby making the
system more flexible, easier to maintain and more up-to-date.

Improved on demand scalability: Cloud-based technologies enable the
system to scale horizontally and vertically on demand, allowing it to handle
increased traffic and demand.

Increased security: As a result of utilizing Azure, the system took advantage
of the built-in security features, such as Azure Security Center, to enhance its
security.

Improved search functionality: With Elasticsearch, the system can provide
enhanced search functionality, such as full-text search and faceted search.
This will provide a better user experience for customers and increase their
chances of finding the appropriate travel option.

Improved business agility: With microservices and cloud-based technologies,
the system becomes more agile and responsive to the changing needs of the
business, allowing it to quickly respond to new market trends and customer
requirements, enabling the business to gain a competitive advantage.

Cost Savings: The pay-as-you-go model of cloud providers will contribute
to the reduction of costs associated with idle capacity by using cloud-based
technologies.

188

Mastering Cloud-Native Microservices

Overall, the modernization of the architecture will result in a more robust, scalable,
and efficient platform, which will benefit the long-term growth of the business,
improve customer satisfaction, and increase revenue.

Case Study: Best Practices Implemented in
Microservices Migration

Best practices that were implemented in the successful Monolith to Microservices
Cloud-native migration for a travel related website:

Identifying the right set of microservices: To identify the right set of
microservices for the travel related website, the team could break down the
monolithic application into smaller services such as flight booking, hotel
reservation, car rental, and travel insurance. For example, the flight booking
service could be responsible for handling flight search, availability, booking,
and payment processing.

Designing for fault-tolerance and high availability: To ensure that the
microservices are highly available and fault-tolerant, the team could use load
balancing, auto-scaling, and health checks. For example, the hotel reservation
service could use auto-scaling to scale up or down based on demand and
load balancing to distribute traffic to healthy instances.

Using containerization and orchestration tools: To deploy and manage
the microservices, the team could use containerization tools such as Docker
and orchestration tools such as Kubernetes. For example, the flight booking
service could be deployed as a Docker container and managed using
Kubernetes.

Integrating with existing legacy systems: To integrate the microservices
with existing legacy systems, the team could use APIs and message queues.
For example, the flight booking service could integrate with the airline
reservation system using APIs and message queues.

Testing and monitoring: To ensure that the microservices are working as
expected, the team could perform extensive testing and set up monitoring tools
to track the performance and availability of the microservices. For example,
the car rental service could be tested using end-to-end testing to ensure that
the booking, pickup, and drop-off process is working correctly, and monitored
using metrics and logs to track the performance and availability.

Ensuring data consistency: To maintain data consistency across different
microservices, the team could use event-driven architecture and transaction
management. For example, the hotel reservation service could publish an
event when a booking is made, and the car rental service could subscribe
to that event and update its availability accordingly. The team could also

Monolith to Microservices Case Study 189

use transaction management to ensure that all changes made by different
microservices are committed or rolled back together.

¢ Ensuring security and compliance: To ensure the security and compliance
of the microservices, the team could use encryption, authentication, and
authorization mechanisms. For example, the travel insurance service could
use encryption to protect sensitive customer data, and authentication and
authorization to ensure that only authorized users can access the service.

¢ Implementing DevOps practices: To ensure faster and smoother deployment
of microservices, the team could implement DevOps practices such as
continuous integration, continuous delivery, and automated testing. For
example, the flight booking service could be automatically tested and deployed
to production when new code changes are committed to the repository.

e Leveraging cloud-native technologies: To take advantage of cloud-native
benefits such as elasticity, scalability, and resilience, the team could use
cloud-native technologies such as serverless computing, managed databases,
and storage services. For example, the car rental service could use serverless
functions to perform small tasks such as sending email notifications or
updating availability.

e Separating concerns and responsibilities: To ensure that each microservice
has a clear and well-defined responsibility, the team could separate concerns
and responsibilities using domain-driven design principles. For example,
the flight booking service could be responsible for handling flight-related
operations such as search, booking, and payment processing, while the
hotel reservation service could be responsible for handling hotel-related
operations such as search, booking, and payment processing.

e Implementing service discovery and routing: To enable communication
between microservices, the team could implement service discovery and
routing mechanisms. For example, the flight booking service could discover
and communicate with the hotel reservation service using a service registry
and a routing mechanism such as API Gateway.

e Monitoring and optimizing performance: To ensure optimal performance of
the microservices, the team could set up monitoring and optimization tools to
identify performance bottlenecks and optimize the system accordingly. For
example, the flight booking service could use a distributed tracing system to
track the performance of each service call and identify performance issues.

Conclusion

Empowering the Travel Industry (case study):

Accelerating Growth through Microservices & Cloud Migration

190 Mastering Cloud-Native Microservices

In conclusion, investment in microservice adoption and cloud migration can bring
significantbenefits foramonolithictravel booking and planning website. The microservice
architecture provides increased scalability and flexibility, while cloud-based technologies
provide increased security, improved scalability, and cost savings. The system will be
able to provide faster and more responsive services, improved data management,
improved search functionality, and better customer experience as a result of using
newer technologies such as Java 11, Spring Boot, PostgreSQL, Istio, Azure, Elasticsearch,
and Kubernetes. Additionally, it can improve the system's overall performance,
increase developer productivity, and enhance its ability to adapt to changing business
requirements. We believe that investing in microservice adoption and cloud migration
can translate into long-term benefits for the business and help it to remain competitive in
the marketplace. Our top three learnings from this case study include:

e A microservices architecture offers increased scalability and flexibility:
A monolithic application is broken down into smaller, independently
deployable services that enable faster and more frequent updates, resulting
in a more current and feature-rich application.

e By leveraging cloud-based technologies, like Azure, the system can benefit
from the built-in security features, while reducing the costs associated
with maintaining on-premises infrastructure and software. Cloud-based
technologies provide cost savings, improved security, and improved
scalability: In addition, cloud-based technologies can enhance scalability,
enabling the system to cope with increased traffic and demand.

¢ Incorporating newer technologies like Java 11, Spring Boot, PostgreSQL,
Elasticsearch, Istio, and Kubernetes into the system enables the system
to deliver faster and more responsive services, better data management,
improved search functionality, and enhanced customer service. As a result,
the business will be more satisfied with its customers, earn more revenue,
and gain a competitive advantage.

Next, in Chapter 7 ‘Inter-Service Communication’, we will examine inter-service
communication, service meshes, and message brokers as methods for improving
the overall performance and reliability of distributed systems by enabling
communication and collaboration between different services.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 7

Inter-Service
Communication

Seamless Inter-Service Communication for Microservices

Introduction

In a microservice architecture, inter-service communication refers to communication
between microservices. Microservice architecture involves running a distributed
system on different machines, with each service being a component or process of
the enterprise application. All of these services work together to handle requests
from clients of this enterprise application, so they interact using an inter-service
communication method. Thus, these services must work together at all times.
There are two main approaches to inter-service communication in microservice
architecture: synchronous communication and asynchronous communication.

Synchronous communication involves the use of REST APIs, Remote Procedure
Calls (RPCs), or gRPC. These mechanisms allow services to interact with each
other in real-time, making direct requests and awaiting responses. This approach
is suitable for scenarios where immediate response and tight coordination among
services are required.

On the other hand, asynchronous communication involves the use of message
broker software such as Apache Kafka, RabbitMQ, or other similar solutions. With
asynchronous communication, services communicate by exchanging messages
through a message broker, enabling decoupling and asynchronous processing.
This approach is beneficial for scenarios where loose coupling, scalability, and fault
tolerance are priorities.

192 Mastering Cloud-Native Microservices

There are a few key differences between asynchronous and synchronous
communication in microservices related to Performance, Reliability, and Design
Complexity. Which communication pattern to use in a microservices-based
architecture depends on the specific application requirements and constraints of the
system. During this chapter, we will examine both asynchronous and synchronous
communication styles as well as how to determine which pattern is most appropriate
for a given use case.

Increasingly, distributed systems use service meshes to improve reliability, scalability,
and security. Service meshes are dedicated infrastructure layers that connect services
in a distributed environment. The system's performance and reliability can be
improved with features like load balancing, circuit breaking, and observability. In
addition to simplifying management of the system and improving its performance,
service meshes provide a dedicated infrastructure layer that handles communication
between services.

Structure

In this chapter we will discuss following topics:

e Inter-Service communication
o Challenges of distributed systems
o Communication models

¢ Synchronous Inter-Service communication
o RESTful APIs
o Remote Procedure Calls (RPCs)
o gRPC

¢ Asynchronous Inter-Service communication
o Message brokers
o Message broker models

o Message broker software

= RabbitMQ
» Apache Kafka
= IBMMQ

= Azure service bus
* Amazon Simple Queue Service (SQS)

e Event-driven communication

Inter-Service Communication 193

o Publish-Subscribe Architecture
o Event-Driven Architecture

o Event Sourcing

Serialization
o Serialization Formats (JSON, Protobuf, Thrift)
o Serialization Libraries (Jackson, Gson, Protobuf, et)
o Best Practices for Serialization

Service Mesh

o Features of Service Mesh
o Tools/third-party Products for Service Mesh

o Istio Service Mesh

Idempotent Operations
o Implementing Idempotency

Conclusion

Objectives

We will discuss the purpose of inter-service communication, service meshes, and
message brokers in this chapter to improve the overall performance and reliability of
distributed systems by enabling communication and collaboration between different
services. It is important to understand the differences between asynchronous and
synchronous communication in microservices-based architectures because the
choice of communication pattern can have significant impacts on the performance,
reliability, and complexity of the system.

Throughout this chatter, we will provide a clear and concise understanding of message
brokers and service meshes as approaches to inter-service communication within
a microservices architecture. Through this, you should gain a solid understanding
of the key differences, types, and advantages of these two key approaches. This
will enable you to make an informed decision regarding which approach is most
appropriate for your application.

Inter-Service communication

Inter-service communication is the process of exchanging data and messages
between microservices. It is a critical aspect of microservices architecture because
microservices are typically designed to be loosely coupled and independently

194

Mastering Cloud-Native Microservices

deployable. Therefore, they need to communicate with each other to perform
complex operations and deliver value to end-users.

There are several reasons why inter-service communication is important in
microservices architecture:

Microservices typically represent a specific domain or business capability.
Therefore, they need to communicate with each other to provide a complete
business solution.

Microservices are designed to be independently deployable, which means
they canbe scaled, updated, or replaced without affecting other microservices.
Therefore, they need to communicate with each other to perform complex
operations that span multiple microservices.

Microservices are designed to be loosely coupled, which means they can
use different programming languages, frameworks, or platforms. Therefore,
they need to communicate with each other using well-defined interfaces and
standard protocols.

Challenges of distributed systems

It is important to note that distributed systems are made up of multiple components
that are connected via a network, working together to achieve a common goal. These
systems may be challenging to design and maintain for the following reasons:

Communication latency: The components of a distributed system may be
located at different locations, and communication between them may be
slow, causing processing delays.

Network failures: In distributed systems, communication between
components can be delayed or interrupted due to network failures or other
issues.

Consistency: There can be challenges in maintaining consistency between
the different components in a distributed system, particularly if they are
updating shared data. This can result in inconsistencies or conflicts in the
data.

Concurrency: Multiple requests may be handled concurrently by distributed
systems, which can lead to race conditions and deadlocks.

Partial failure: It is possible for individual components in a distributed
system to fail or become unavailable. This can result in a partial failure of
the system as a whole, in which some components continue to operate while
others do not.

Inter-Service Communication 195

¢ Integration complexity: Distributed systems can present challenges in terms
of integrating different components and ensuring that they work seamlessly
as a result of differences in technology, protocols, and data formats.

e Monitoring and debugging: Monitoring and debugging issues in a
distributed system may be difficult due to the involvement of multiple
components and the difficulty in reproducing them.

e Security: It may be difficult to ensure that data is secure and that only
authorized users have access to it on distributed systems due to security
threats such as hacking or data breaches.

For example, in an airline industry distributed systems is being used for various
components such as ticketing, reservation, and baggage handling, etc. This
geographical distribution can introduce delays in communication between these
components, impacting the overall processing time. For example, when a customer
makes a reservation, the request needs to be transmitted to the appropriate system
for processing, which can experience latency if the systems are not well-connected
or communicating. Handling and minimizing communication latency is crucial
for providing efficient and responsive services to the airline customers. All these
challenges can be handled with a proper inter-service communication design. It
is crucial to ensure that communication channels are reliable, efficient, and secure
for the smooth operation of a microservices architecture. We can design inter-
service communication in microservice architecture using two approaches that is
synchronous communication or Asynchronous communication. We might use both
Synchronous and Asynchronous communication within an application for managing
communication between different components.

Communication models

There are two primary communication models in microservices architecture:
synchronous and asynchronous.

e Synchronous communication means that a client sends a request to a
microservice and waits for a response before proceeding. Synchronous
communication is useful when a client needs an immediate response from a
microservice to continue its work. Examples of synchronous communication
include RESTful APIs, remote procedure calls (RPCs), and gRPC. For example,
consider an e-commerce website that allows users to purchase products online.
When a user adds a product to their cart and clicks "Checkout," the website sends
a synchronous request to the Payment microservice to process the payment. The
website waits for a response from the Payment microservice before displaying
the confirmation page to the user.

196 Mastering Cloud-Native Microservices

e Asynchronous communication means that a client sends a message to a
microservice without waiting for a response. Asynchronous communication is
useful when a client does not need an immediate response from a microservice
or when a microservice needs to perform long-running or background tasks.
Examples of asynchronous communication include message brokers and event-
driven architecture. For example, consider a shipping microservice that needs
to notify the Inventory microservice when a product is shipped. The shipping
microservice can send an asynchronous message to the Inventory microservice
using a message broker. The Inventory microservice can consume the message
and update its database without the shipping microservice waiting for a response.

In summary, inter-service communication is essential in microservices architecture
because microservices are designed to be loosely coupled and independently
deployable. Synchronous communication is useful when a client needs an immediate
response from a microservice, while asynchronous communication is useful when a
client does not need an immediate response or when a microservice needs to perform
long-running or background tasks.

Synchronous inter-service communication

A synchronous inter-service communication is a method of communicating in real-
time between two or more services. The sender sends a request and waits for the
response before continuing. Although this provides immediate feedback and error
handling, it may also result in slower performance if one of the services takes a long
time to respond. In order to facilitate synchronous inter-service communication,
RESTful APIs, RPCs, and gRPC can be used.

RESTful APIs

It is a software architectural style that defines a set of constraints that can be applied
to the development of web services using Representational State Transfer (REST).
Providing interoperability between computer systems on the Internet is possible
with web services that adhere to the REST architectural style, called RESTful web
services. Through the use of a uniform and predefined set of stateless operations,
RESTful web services allow requesting systems to access and manipulate textual
representations of web resources.

A RESTful web service is based on the HTTP protocol and operates on resources
identified by a Uniform Resource Identifier (URI) through HTTP verbs (GET,
POST, PUT, DELETE, and the like.). In addition to defining the set of operations
and resources on which they operate, the Application Programming Interface
(API) also specifies the format of the response and request messages. RESTful APIs
can be used with Hypertext Transfer Protocol Secure (HTTPS) to provide secure
communication over the internet. Through Secure Sockets Layer/Transport Layer

Inter-Service Communication 197

Security (SSL/TLS), HTTPS establishes an encrypted connection between a client
(such as a web browser) and a server, encrypting the data being transmitted. By
doing so, we can avoid man-in-the-middle attacks and other types of cybercrime.

Advantages

e The RESTful API is well established and widely used and is supported by
a large developer community. It uses HTTP, which is a well-known and
popular protocol.

e As stateless services, they are scalable and easily cacheable since the server
does not store any client context between requests.

Disadvantages

e They can be less efficient than other types of APIs, such as SOAP, which
include additional features such as error handling and security.

¢ Theydonothavebuilt-in support for complex data types, such as attachments
or multi-part messages. They do not have a standard way to specify the API
structure, which can lead to inconsistency in the design of RESTful APIs.

Remote Procedure Calls (RPCs)

It is common practice to implement microservices using RPCs. This allows the
creation of distributed systems in which different parts of a program can be executed
on different machines, potentially improving efficiency and scalability. RPC operates
using a client-server model, in which the client sends a request to the server to execute
a particular function, along with any necessary arguments. A network protocol, such
as HTTP or TCP/IP, is used to communicate between the client and the server. The
server then executes the function and returns the result to the client.

Advantages

e It is easy to create distributed systems using RPCs without the need for
complex programming, making the creation of distributed systems and
adding new functionality to existing systems easy.

e RPCs enable greater interoperability between applications and platforms by
enabling communication between different systems and languages.

Disadvantages

e Using RPCs can add some overhead, as the client and server must
communicate using a network protocol. This can potentially lower
performance when compared to a system that executes all functions locally.

198 Mastering Cloud-Native Microservices

¢ Risks associated with RPCs: If RPCs are not implemented correctly, they
can potentially create security vulnerabilities. For instance, if the server does
not authenticate client requests properly, it could be susceptible to attacks.

gRPC Remote Procedure Calls

A remote procedure calls (RPC) system developed by Google is known as gRPC
(gRPC Remote Procedure Calls). In addition to supporting many languages and
platforms, gRPC is highly efficient, has low network overhead, and supports many
languages and platforms as well as HTTP/2 as the transport medium. Protocol
Buffers are used for interface description.

Advantages

e gRPC supports bi-directional streaming, which allows for asynchronous
communication between the client and server. This is useful for real-time
applications and for the transmission of large amounts of information.

e The gRPC protocol includes built-in load balancing, which can distribute
traffic among multiple servers and improve a system's scalability.

e In order to ensure the security of communication between microservices,
gRPC supports multiple authentication mechanisms, including TLS and
OAuth2.

Disadvantages

¢ In a microservices architecture, gRPC can introduce some complexity, as
communication between services can become more complex as a result.

e There is limited browser support for gRPC, making it an unsuitable choice
for applications that require browser support.

e gRPC uses Protocol Buffers for the description of interfaces, which may
require additional configuration.

Asynchronous Inter-Service
communication

The term asynchronous inter-service communication refers to the use of asynchronous
communication between different services within a distributed system. An
asynchronous communication model does not require the sender and receiver to
communicate simultaneously. Instead, the sender sends a message and does not
wait for a response before proceeding with other tasks. The receiver can then process

Inter-Service Communication 199

the message at their own pace, without blocking the sender. In a microservices
architecture, asynchronous communication can be useful for communicating
between services when they are performing different tasks. Asynchronous
communication can facilitate greater scalability by allowing each service to process
requests independently and according to the availability of resources. As a result,
the system can continue functioning even if one service becomes unavailable, which
can also increase reliability.

It is possible to communicate asynchronously between services using a variety of
technologies and protocols, including message queues, event buses, and remote
procedure calls.

Message brokers

Message brokers are software applications that allow applications, systems,
and services to communicate and exchange information with one another. They
accomplish this by translating messages between formal messaging protocols. As
a result, interdependent services can communicate directly, regardless of whether
they are written in different languages or implemented on a different platform. A
message broker is used to facilitate communication between different components
of distributed systems and microservices architectures.

Advantages

e It is possible to decouple different systems and services by using message
brokers. This decoupling can make it easier to update and maintain the
system, since changes to one component do not necessarily affect others.

e Asresources become available, message brokers can facilitate the scalability
of a system by allowing different components to process messages
simultaneously.

¢ In the event that one of the systems is unavailable, message brokers can
provide reliability by storing and forwarding messages.

e A message broker can provide security by encrypting messages and
authenticating senders and receivers.

Disadvantages

¢ Complexity: The implementation and maintenance of a message broker can
be challenging, as it requires setting up additional infrastructure and adding
logic for sending and receiving messages. This can increase the overall
complexity of the system.

200

Mastering Cloud-Native Microservices

Latency: The use of a message broker can result in additional latency in the
communication between microservices, depending on the system's size and
complexity. In particular, this can apply to scenarios where the message
broker is located on a separate machine or in a different network from
senders and recipients.

Reliability: As another component that must be available and functioning
correctly for communication to take place, message brokers can introduce
additional points of failure into a system. This increases its overall complexity
and risk.

Message broker models

To facilitate communication between different systems and services, message
brokers can utilize a variety of different models. Some common message broker
models include:

Publish-subscribe model: Messages are published to a topic by the producer,
and multiple message consumers subscribe to topics from which they wish
to receive messages in this message distribution pattern, often called “pub/
sub.” All messages published to a topic are distributed to all applications
subscribed to it. This method is known as broadcast distribution, where the
message's publisher and consumers are in a one-to-many relationship.

Point-to-point model: It is the distribution pattern used in message queues
in which the sender and receiver have a one-to-one relationship. Point-to-
point messaging is used when messages must be acted upon only once and
must be sent to only one recipient and consumed only once. Each message in
the queue is sent to only one recipient and consumed only once.

Request-response model: As part of the request-response model of message
brokers, a sender (client) submits a request to the message broker, which
forwards it to the specific receiver (server). Once the request has been
processed by the server, it will return a response to the message broker, and
the message broker will forward the response to the client. In situations
where the sender expects a response to the request, this model is often used
to facilitate synchronous communication between different systems and
services. In the request-response model, the sender sends a request and
waits for the response before proceeding with other tasks. This ensures that
the response is received before any further processing is undertaken.

Event-driven model: The event-driven model of message brokers involves a
sender sending an event message to a message broker, which then forwards
the message to the appropriate receivers, who then process the message and
take appropriate action. It is commonly employed to facilitate asynchronous

Inter-Service Communication 201

communication between different systems and services, in which the sender
does not need to wait for a response before continuing with another task. Using
an event-driven model, the sender can send an event and proceed with other
tasks, while the receivers process the event as resources become available. An
event-driven model is often used when various systems or services must be
notified of specific events or changes, or when an event does not need to be
processed in a specific order. Applications that require rapid scaling or that
require large amounts of data processing may find it useful.

Message broker software

Message broker software is software that acts as an intermediary between the sender
and receiver of a message, receiving messages from the sender and forwarding them
to the intended recipient. As a result, it facilitates communication between different
systems, applications, and services within a distributed environment.

A variety of message broker software platforms are available, including Apache
Kafka, RabbitMQ, IBM MQ, Azure Service Bus, and Amazon Simple Queue Service

(SQS).
RabbitMQ

A message broker software that implements the Advanced Message Queuing
Protocol (AMQP), is an open-source software. A distributed system can benefit from
RabbitMQ when it facilitates communication between various systems and services.
It supports a variety of messaging patterns, including publish-subscribe, point-to-
point, request-response, and event-driven messaging.

Advantages

e Itisscalable horizontally by adding more servers to the cluster, enabling it to
handle large volumes of data.

e It provides features such as message acknowledgment, message persistence,
and automatic recovery to ensure that messages are delivered in a reliable
manner.

e Itis available in a wide variety of languages and platforms, enabling it to be
used in a variety of applications.

Apache Kafka

Kafka is an open-source platform for developing real-time data pipelines and
streaming applications based on distributed event streaming. The Kafka cluster
works by allowing producers to send data to topics, and consumers to read data

202 Mastering Cloud-Native Microservices

from those topics. Messages published to Kafka are stored for a configurable period
of time, allowing consumers to review data at their own pace.

Advantages

e Itisscalable horizontally by adding more brokers to the cluster, which allows
it to handle large volumes of data.

e Kafka ensures that messages are delivered reliably by storing all published
messages for a configurable period of time. Additionally, it offers features
such as message acknowledgments and automatic recovery to ensure that
messages are delivered reliably.

e Kafka is designed to handle high levels of data throughput, making it well-
suited for applications that require real-time processing of large amounts of
data.

IBM MQ

It is widely used in a variety of industries and applications, and it is designed to be
highly scalable and reliable. IBM MQ (formerly IBM WebSphere MQ) is a messaging
middleware platform that makes data exchange between applications, systems, and
services possible.

In IBM MQ, producers can send messages to queues within the system, and
consumers can receive those messages from those queues. It provides features
such as message persistence, message acknowledgment, and automatic recovery
to ensure that messages are delivered reliably. A number of different messaging
patterns are supported by IBM MQ, including point-to-point, publish-subscribe,
request-response, and event-driven messaging.

Advantages

e It is designed to be highly scalable, so that it can handle large volumes of
messages. The cluster can be scaled horizontally by adding more servers.

e A security feature of IBM MQ is encryption and authentication, which is
used to protect messages and maintain communication integrity.

Azure service bus

As a messaging platform provided by Microsoft Azure, Azure Service Bus enables
applications, systems, and services to exchange data. There are many industries and
applications that use it because it is highly scalable and reliable. There are a number
of messaging patterns supported by Azure Service Bus, including point-to-point,
publish-subscribe, request-response, and event-driven messaging. In addition, it

Inter-Service Communication 203

supports a variety of languages and platforms, making it easy to use in a variety of
environments.

Advantages

It is designed to be highly scalable, which enables it to handle large volumes
of messages, and can be scaled horizontally by adding more servers to the
cluster.

To ensure that messages are delivered reliably, Azure Service Bus provides
features such as message persistence, message acknowledgement, automatic
recovery, and message expiration and discarding.

To protect messages and ensure the integrity of communication, Azure
Service Bus includes security features such as encryption and authentication.
For Azure resources, Service Bus supports security protocols such as Shared
Access Signatures (SAS), Role Based Access Control (RBAC), and managed
identities.

Amazon Simple Queue Service (SQS)

It is designed to be highly scalable and reliable, and it has been widely utilized in
a variety of industries and applications. Amazon Simple Queue Service (SQS)
allows you to send, store, and receive messages at any volume between software
components without losing messages or requiring other services to be available. A
variety of messaging patterns can be supported by SQS, including point-to-point,
publish-subscribe, request-response, and event-driven messaging.

Advantages

It can scale horizontally by adding more servers to the cluster, allowing it to
handle large volumes of messages.

SQS provides features such as message persistence, message
acknowledgement, and automatic recovery, which ensure the delivery of
messages reliably. You also have the ability to deduplicate messages while
processing messages at high scale.

You can send sensitive data securely between applications using AWS Key
Management and Centrally manage your keys with SQS security features,
including encryption and authentication.

Event-driven communication

Event-driven communication is a form of asynchronous communication where
microservices communicate with each other by producing and consuming events.

204 Mastering Cloud-Native Microservices

An event is a notification that something has happened in a microservice. Event-
driven communication is useful in microservices architecture because it allows
microservices to be loosely coupled, independent, and scalable.

There are several best practices for implementing event-driven communication in
microservices architecture:

e Use a message broker: A message broker is a middleware that facilitates
the exchange of events between microservices. A message broker provides
several features such as message queuing, message filtering, and message
routing that simplify event-driven communication.

¢ Use a publish-subscribe architecture: A publish-subscribe architecture is a
pattern where a publisher sends events to a message broker, and multiple
subscribers receive the events. A publish-subscribe architecture allows
microservices to communicate without knowing about each other and
decouples the producer from the consumer.

e Use an event-driven architecture: An event-driven architecture is a
pattern where microservices are designed to be event-driven. An event-
driven architecture promotes loose coupling and scalability by allowing
microservices to respond to events instead of calls.

e Use event sourcing: Event sourcing is a pattern where the state of a
microservice is derived from a series of events. Event sourcing allows
microservices to be auditable, scalable, and recoverable.

Publish-subscribe architecture

A publish-subscribe architecture is a pattern where a producer sends events to a
message broker, and multiple subscribers receive the events. A publish-subscribe
architecture is useful when a producer needs to notify multiple subscribers of
an event without knowing who the subscribers are. For example, consider an
e-commerce website that sells products to customers. When a customer places
an order, the Order microservice can send an event to the Payment and Shipping
microservices. The Payment and Shipping microservices can subscribe to the Order
event and process the payment and shipping of the order.

One commonly used message broker is Apache Kafka, which is a distributed
streaming platform that provides features such as fault-tolerance, scalability, and
high throughput. Kafka uses a publish-subscribe model where producers write
events to topics, and consumers subscribe to topics to receive events. Kafka also
supports features such as retention policies, partitioning, and replication that
simplify the management of events.

Inter-Service Communication 205

Event-driven architecture

An event-driven architecture is a pattern where microservices are designed to be
event-driven. In an event-driven architecture, microservices communicate with each
other by producing and consuming events. An event-driven architecture is useful
when microservices need to communicate asynchronously and be loosely coupled.
For example, consider a video streaming website that allows users to upload and
view videos. When a user uploads a video, the Video microservice can send an event
to the Encoding microservice to encode the video. The Encoding microservice can
send an event to the Notification microservice to notify the user when the video is
ready to view.

One commonly used protocol for event-driven communication is Apache Avro, which
is a data serialization system that supports schema evolution and efficient binary
encoding. Avro provides a compact binary format that reduces the size of events
and improves performance. Avro also provides features such as schema validation,
data compression, and RPC integration that simplify event-driven communication.

Event sourcing

Event sourcing is a pattern where the state of a microservice is derived from a series
of events. In event sourcing, events represent changes to the state of a microservice,
and the current state of the microservice is derived by replaying the events. For
example, consider a banking application that allows users to transfer money between
accounts. When a user transfers money, the Transfer microservice can produce
an event that represents the transfer. The Account microservice can consume the
event and update the balance of the source and destination accounts. The balance
of the accounts can be derived by replaying the events that represent the transfers.
Event sourcing is useful when a microservice needs to be auditable, scalable, and
recoverable. One commonly used database for event sourcing is Apache Cassandra,
which is a distributed NoSQL database that provides features such as scalability,
fault-tolerance, and tunable consistency. Cassandra stores events as rows in a table
and provides features such as partitioning, replication, and indexing that simplify
the management of events. Cassandra also integrates with Apache Kafka to provide
a complete event-driven architecture.

Overall, event-driven communication is a powerful pattern for microservices
architecture that promotes loose coupling, scalability, and resilience. By using
message brokers, publish-subscribe architectures, event-driven architectures, and
event sourcing, microservices can communicate asynchronously and react to events
instead of calls, which simplifies the design and implementation of distributed
systems.

206 Mastering Cloud-Native Microservices

Serialization

Serialization is the process of converting data structures or objects into a format that
can be transmitted or stored, such as binary or text. In the context of microservices,
serialization is an important aspect of inter-service communication since it allows
services to exchange data in a standardized way. Serialization can help microservice
implementation, especially when different services are based on different technology
stacks, by providing a common format for communication between these services.
Let's consider an example to understand this in more detail:

Suppose we have a microservices-based e-commerce application that consists of several
services such as Order Service, Product Service, and Payment Service. The Order
Service is written in Java, the Product Service is written in Python, and the Payment
Service is written in Go. To communicate between these services, we need a common
data format that all services can understand. This is where serialization comes in. For
example, let's say the Order Service needs to retrieve information about a product
from the Product Service, and the Payment Service needs to process a payment for an
order created by the Order Service. To transmit this data between the services, we can
define a schema using a serialization format such as JSON or Protobuf.

We can use a serialization library that is compatible with all the languages used in our
microservices-based application. For instance, we can use Protobuf for serialization,
which has libraries available for Java, Python, and Go.

Serialization formats

There are many serialization formats available, but some of the most commonly
used ones for microservices are JSON, Protobuf, and Thrift.

e JSON is a lightweight text-based format that is easy to read and write,
making it a popular choice for web-based applications. JSON is also human-
readable and can be used with almost any programming language.

e Protobuf and Thrift are binary serialization formats that are designed for
efficient and compact data transfer. They provide features such as schema
evolution, field-level data validation, and data compression, making them
suitable for high-performance and large-scale systems. Protobuf and Thrift
also provide code generation tools that simplify the process of working with
serialized data.

Serialization libraries

There are many serialization libraries available for different programming languages,
such as Jackson and Gson for Java, Protobuf for Java, C++, and Python, and Thrift
for multiple languages.

Inter-Service Communication 207

These libraries provide APIs for encoding and decoding data in different formats
and handle serialization details such as schema evolution, field mappings, and type
conversion. They also provide features such as streaming, compression, and security
that can improve the efficiency and reliability of inter-service communication.

Best practices for serialization
Here are some best practices to consider when working with serialization:

e Use a compact serialization format such as Protobuf or Thrift for large data
transfers to reduce network bandwidth and improve performance.

e Use a text-based serialization format such as JSON for small or human-
readable data transfers to improve ease of use and debugging.

¢ Define a schema or contract for your data using a language-agnostic format
such as Avro or Swagger, to ensure compatibility between different services.

e Considerusingcode generationtoolsto createserializationand deserialization
code for your data models to reduce the potential for errors.

e Use appropriate security measures such as encryption and authentication to
protect your data during transfer and storage.

Service mesh

It is recommended that you review Chapter 4, Service Discovery Pattern before diving
into Service Mesh concepts. Service Discovery Pattern covered in detail in Chapter
4 includes the types of service discovery (client-side, server-side), as well as the
types of service discovery methods such as DNS based, Key/Value Store based
and sidecar based, and specialized service discovery (library/sidecar based). Both
the service discovery pattern and service mesh facilitate communication between
services in distributed systems. The service discovery pattern is a design pattern
that is appropriate for small systems, whereas the service mesh is a dedicated
infrastructure layer that is more appropriate for large, complex distributed systems.

Service Mesh: Containers and container orchestrators, like Kubernetes, have
resolved numerous challenges by packaging services with their own runtimes and
efficiently mapping them to machines. However, a crucial aspect was still missing -
effective management of inter-service communication. This is where the concept of a
service mesh comes into play. The service mesh serves as a powerful design pattern
that abstracts the underlying network infrastructure, providing a standardized
solution by deploying sidecar proxies alongside your services. These proxies, often
leveraging technologies like the Envoy proxy, handle critical networking tasks,
security enforcement, and observability.

208

Mastering Cloud-Native Microservices

By incorporating a service mesh, you can streamline your operational processes
significantly. Service developers no longer need to invest excessive time and effort
in manual connection and networking configurations, retries, or timeout setups.
Instead, the burden is shifted to the dedicated sidecar proxies, which effectively
handle these tasks on behalf of the services. For example, as illustrated in Figure
7.1, Istio Service Mesh Architect in an Istio service mesh, several components work
together to provide advanced networking, security, and observability features.

-

Istio Service Mesh Architect

\

.

Service A Service B
& e
Data Mesh Traffi @ !
| Plane Sidecar Proxy €5h ratie Sidecar Proxy !

Encrypted Traffic \

[
i Control
| Plane

‘ istiod [Pilot J [Galley J [Citadel] [Sidecar Injector ﬂ !

/

Figure 7.1: Istio Service Mesh Architect

Here's an explanation of the key components from above Figure 7.1:

Data Plane: The Data Plane consists of sidecar proxies deployed alongside
each service within the mesh. These proxies intercept and control network
communication between services. In Istio, the Envoy proxy is commonly
used as the sidecar proxy. The sidecar proxies handle traffic routing, load
balancing, service discovery, and enforcing policies defined in the Control
Plane.

Control Plane: The Control Plane manages and configures the behaviour of
the service mesh. It consists of several components:

o Pilot: Pilot is responsible for service discovery, traffic management,
and configuration distribution to the sidecar proxies. It translates
high-level routing rules into configurations understood by the sidecar
proxies, enabling features like load balancing, circuit breaking, and
fault injection.

o Galley: Galley is responsible for validating and distributing
configuration changes within the Control Plane. It ensures that the
configuration changes made through various mechanisms, such as
Kubernetes ConfigMaps or Istio's Custom Resource Definitions

Inter-Service Communication 209

(CRDs), are validated, converted into the appropriate format, and
distributed to the relevant components.

o Citadel: Citadel is responsible for providing secure service-to-service
communication within the mesh. It manages and issues Transport
Layer Security (TLS) certificates for authentication and encryption
between services. Citadel integrates with identity providers, such as
Kubernetes Service Account Tokens or external certificate authorities,
to establish trust and secure communication channels.

o Sidecar Injector: The Sidecar Injector is a web-hook component that
automatically injects the sidecar proxies into the pods of services that
are part of the mesh. It intercepts pod creation requests and modifies
them to include the necessary sidecar containers.

e Mesh Traffic: Mesh Traffic refers to the actual network traffic flowing between
services within the service mesh. The sidecar proxies control and route this
traffic based on the policies and configurations set in the Control Plane.

These components work together to provide advanced networking capabilities,
secure communication, and observability within the service mesh. On top of the
infrastructure layer, a service meshis a platform layer that enables the communication
of individual services in a managed, observable, and secure manner. Using this
platform layer, we can create robust enterprise applications based on chosen
infrastructure that utilize various microservices. Service meshes utilize consistent
tools to factor out all the common concerns associated with running a service,
such as monitoring, networking, and security. As a result, service developers and
operators can focus on developing and managing applications for their users rather
than implementing measures to address individual service challenges. In addition
to improving the reliability and performance of the system, it provides a wide range
of features to help manage communication between services.

Features of service mesh

A service mesh is a dedicated infrastructure layer that handles service-to-service
communication within a microservices architecture. Some of the features of a service
mesh include:

¢ Load balancing: Service meshes typically include load balancing capabilities
to ensure that incoming requests are distributed equally across multiple
instances of a service. This can improve the performance and reliability of
the system by ensuring that no single instance of a service is overloaded. As
aresult of the observed latencies or the number of outstanding requests, load
balancing at the session level can significantly improve performance over
Kubernetes' layer-4 load balancing.

210

Mastering Cloud-Native Microservices

Observability: To facilitate monitoring and understanding of the behavior
of the system, service meshes offer observability features such as metrics,
logging, and tracing. A variety of metrics can be used to assess the system's
performance and health, including request rates, errors, and latencies.
In addition to providing information about events and activities within
the system, logging also provides information on errors and requests.
Observability features such as Tracing can assist in identifying issues and
improving the overall reliability and performance of the system by providing
information regarding the flow of requests through the system, including the
path that requests take and the time it takes for a request to complete.

Security: Security features such as encryption and authentication are
provided by service meshes in order to protect communication between
services and to ensure system integrity. By encoding data during transit,
encryption helps protect it so that it can only be accessed by authorized
parties. By verifying the identity of users and services, authentication
ensures that only authorized parties can access the system. By implementing
a service mesh, achieving zero trust becomes easier. Service meshes provide
these authentication and authorization identities through a central certificate
authority that certifies each service.

Service discovery: Aservice mesh oftenincludes aservice discovery capability
to identify and communicate with other services. These services are routed
based on URL path, host header, API version, or other application-level
criteria. Service meshes provide a dedicated infrastructure layer that handles
communication between services, which can simplify the management of
the system.

Retry of failed requests: You can configure the maximum number of retries,
along with a timeout period in order to limit the maximum latency of a
service mesh, by understanding HTTP error codes.

Circuit breaking: An instance that consistently fails requests will be
temporarily marked as unavailable by the service mesh. After a backoff
period, the instance will be re-tried. Circuit breakers can be configured based
on a number of criteria, including the number of consecutive failures. In the
event that one service fails, circuit breaking capabilities can often be included
in service meshes to prevent cascading failures.

Multi-tenancy: In order to maximize efficiency, it is more efficient to share
infrastructure among tenants and use service mesh settings and policies to
separate them. A multi-tenancy service mesh is divided into tenants with
their own logical isolation, which means that the services within each tenant
cannot interact with services from other tenants in the mesh. As a result,
each tenant can have a separate environment within the mesh, which can

Inter-Service Communication 211

be useful for separating different organizations or applications. To allow
administrators to control access to resources within the multi-tenancy service
mesh, role-based access control (RBAC) is often included in multi-tenancy
service meshes. To ensure that tenants do not consume excessive amounts
of resources, they may also include features such as quotas and rate limits.

Optimized Communication: As new services are added to an application,
or new instances of existing services are added environment becomes
more complicated. Service meshes capture all aspects of service-to-service
communication as performance metrics as well. It is possible, for example,
to collect data about how long it took for a retry to succeed in the case of a
service failure by using a service mesh. As data on failure times for a given
service aggregates, rules can be written to determine the optimal wait time
before retrying that service, ensuring that the system does not become
overburdened by unnecessary retries.

Improved reliability: A service mesh can improve the overall reliability of the
system by providing features such as load balancing and circuit breaking. By
distributing incoming requests equally across multiple instances of a service,
load balancing can help improve the system's performance and reliability by
ensuring that no single instance of a service becomes overloaded.

Tools/third-party products for service mesh

There are several popular tools and third-party products available for implementing
a service mesh. Some of the most popular ones are as follows:

Istio: As an open-source service mesh platform with load balancing, circuit
breaking, and observability capabilities, Istio is designed to be scalable and
reliable, as well as supporting a variety of programming languages and
platforms. The Istio service runs alongside the service as a sidecar proxy,
which means that it communicates with other services in the mesh.

Linkerd: Open-source Linkerd is an easy-to-use and lightweight service mesh
platform. Similar to Istio, Linkerd is implemented as a sidecar proxy and
provides features such as load balancing, circuit breaking, and observability.
It also supports various programming languages and platforms.

Consul Connect: In addition to load balancing, circuit breaking, and
observability, Consul Connect is a service mesh platform from HashiCorp.
Designed as a sidecar proxy, Consul Connect integrates with other
HashiCorp tools, such as Consul and Nomad, as well as supporting a variety
of programming languages and platforms. Consul Connect is scalable and
reliable.

212

Mastering Cloud-Native Microservices

AWS App Mesh: As a service mesh platform provided by Amazon Web
Services (AWS), Amazon App Mesh offers load balancing, circuit breaking,
and observability features. AWS App Mesh is a sidecar proxy implemented
by Amazon Web Services and is designed to be scalable and reliable. It
integrates with other AWS services, including Amazon ECS and Amazon
EKS.

Azure Service Fabric Mesh: In addition to load balancing and circuit
breaking, Azure Service Fabric Mesh provides observability, load balancing,
and circuit breaking features as part of its service mesh platform. In addition
to being scalable and reliable, Azure Service Fabric Mesh is integrated with
other Azure services including Azure Functions and Azure Kubernetes
Service (AKS). It is implemented as a sidecar proxy.

Google Cloud Anthos: As part of Google Cloud Anthos, Istio is an open-
source service mesh platform that includes features such as load balancing,
circuit breaking, and observability. Istio is an open-source service mesh
platform. As well as supporting a wide range of programming languages
and platforms, it is designed to be reliable and scalable.

IBM Cloud App Mesh: It is also based on Istio, an open-source service
mesh platform. IBM Cloud App Mesh is scalable and reliable and provides
features such as load balancing, circuit breaking, and observability. In
addition to supporting a wide range of programming languages and
platforms, it integrates well with other IBM Cloud services, including IBM
Cloud Kubernetes Service.

Google Cloud Network Service Tiers: An integrated network architecture
based on Google Cloud Network Service Tiersincludes a service mesh referred
to as Google Front End (GFE). GFE is a reverse proxy service that provides
features including load balancing, circuit breaking, and observability as a
reverse proxy service. As well as being scalable and reliable, it integrates
with other Google Cloud services such as Google Kubernetes Engine.

Google Cloud Endpoints: In addition to providing a service mesh for
APIs, Google Cloud Endpoints also offers features such as load balancing,
circuit breaking, and observability. It is designed to be highly reliable and
scalable. As part of Google Cloud Endpoints, other Google Cloud services
such as Google Kubernetes Engine (GKE) and Google Cloud Functions are
integrated.

Istio service mesh

Let us review Istio in more detail as it is one of the most popular open-source
extensible service mesh that is built on Envoy and provides teams with the ability to
connect, secure, control, and observe their services using an extensible open-source

Inter-Service Communication 213

service mesh. Since Istio was open-sourced in 2017, it has been a collaboration with
IBM, Google, and Lyft, who contributed to its original components as well as the
Cloud Native Computing Foundation, which donated Envoy in 2017.

In this way, Istio has had time to mature and improve its feature set and now offers
a wide range of features, including load balancing, traffic routing, policy creation,
metrics, and service-to-service authentication. Istio consists of a set of components
that work together to form a service mesh, including Envoy, Mixer, and Pilot.

¢ Envoy: The Envoy proxy is a high-performance, modern proxy which serves
as a data plane for the service mesh. It routes traffic between microservices,
load balances, and handles other network-related functions. Envoy is
deployed as a sidecar alongside each microservice in the system, allowing it
to intercept and control all network traffic to and from the service.

e Mixer: It is a component that provides policy enforcement and telemetry
collection for the service mesh. Observability features of Mixer are also
provided, including the collection of metrics and logs from the service mesh
as part of observability features. It can be used to enforce access control
policies, rate limits, and other types of policies on traffic flowing through the
service mesh.

¢ Pilot: Itisresponsible for configuring Envoy proxies and providing them with
routing and traffic management rules in order to provide service discovery
and traffic management capabilities for the service mesh. Pilot also provides
features such as canary releases and A /B testing, allowing developers to roll
out new versions of their microservices with confidence.

Features of Istio

Istio is an open-source service mesh platform that provides several features to
manage, secure, and observe microservices in a distributed environment. Some of
the key features of Istio are:

e Secure communication between services in a cluster using TLS encryption
and strong authentication and authorization based on identity

e Load balancing for HTTP, gRPC, WebSockets, and TCP traffic

e With rich routing rules, retries, failovers, and fault injection, you can control
the behavior of traffic in a fine-grained manner

¢ Providing access controls, rate limits, and quotas through a pluggable policy
layer and configuration API

e Metrics, logs, and traces are automatically generated for all traffic within a
cluster, including ingress and egress

214 Mastering Cloud-Native Microservices

Idempotent operations

In a microservices architecture, idempotent operations can be particularly important
for maintaining data consistency and preventing duplicate requests. For instance,
if a client sends a request to create a new order, but the request fails due to a
network error, the client may retry the request. If the order creation operation is not
idempotent, this can result in duplicate orders being created in the system.

Implementing idempotency

To implement idempotency in a microservices-based system, we can assign a unique
identifier to each request that the client sends. This identifier can be generated by the
client or by the service handling the request. When the service receives a request with
a unique identifier, it checks to see if the same request has already been processed.
If the request has already been processed, the service returns the same response as
the previous request. If the request has not been processed, the service processes the
request and returns a response.

For example, suppose we have an e-commerce application that uses a microservices
architecture. The Order Service is responsible for creating new orders. When a client
sends a request to create a new order, the Order Service generates a unique identifier
for the request and saves it in a database. The Order Service then processes the
request and sends a response to the client. If the client retries the request with the
same unique identifier, the Order Service checks the database to see if the request
has already been processed. If the request has already been processed, the Order
Service returns the same response as before. If the request has not been processed,
the Order Service processes the request and returns a new response.

By implementing idempotency in this way, we can ensure that duplicate orders are
not created in the system and that data consistency is maintained. Additionally,
clients can safely retry requests without worrying about creating duplicate data in
the system.

An idempotent operation is one that can be repeated multiple times without
changing the result. In other words, applying it more than once will always produce
the same result as applying it once.

¢ In distributed systems, idempotent operations can be useful, as they ensure
that operations are performed only once, even if the same operation is
repeated multiple times. This can ensure the integrity of the system and
prevent unintended effects.

e A distributed environment often requires the use of idempotent operations
in conjunction with other techniques such as pessimistic locking, versioning,
and transaction processing.

Inter-Service Communication 215

e The use of idempotent operations within a microservices architecture can
help to ensure that requests to microservices are handled reliably, even if
they are retried due to failures or delays.

e Inorder to avoid unintended consequences when applying non-idempotent
operations more than once, it is important to carefully design operations so
that they are idempotent when appropriate. Inconsistencies may occur in
data if a non-idempotent operation updates a database record multiple times
if the operation is repeated.

e The ability to make an operation idempotent may not always be possible, in
which case it may be necessary to use other techniques, such as transactions
or versioning, to ensure consistency.

For better understanding let us see some of the examples:

e Readingdata from a database or other storage system is typically idempotent,
since it does not modify the data in any way.

e Data deletion: Data deletion from a database or other storage system is
typically idempotent, which means that the data cannot be retrieved or
modified once it has been deleted.

e The updating of data in a database or other storage system can be made
idempotent by identifying each update with a unique identifier and only
implementing the update if the identifier does not already exist.

e The GET, HEAD, and DELETE HTTP methods are idempotent, whereas the
POST and PUT methods are not. This means that HTTP requests utilizing
GET, HEAD, or DELETE methods are safe to retry, but not those using POST
or PUT methods.

Conclusion

Unlocking the Power of Microservice Communication:

Navigating Synchronous, Asynchronous, and Event-Driven Paradigms

In conclusion, this chapter has covered a variety of topics related to inter-service
communication in microservice design. We have discussed the challenges of
distributed systems, the importance of choosing the appropriate communication
pattern, and the benefits of both synchronous and asynchronous communication
models.

We have explored the most common synchronous communication patterns,
including RESTful APIs, remote procedure calls (RPCs), and gRPC. Additionally, we

216 Mastering Cloud-Native Microservices

have examined the advantages and disadvantages of asynchronous communication
patterns, including the use of message brokers such as RabbitMQ, Apache Kafka,
IBM MQ, Azure service bus, and Amazon Simple Queue Service (SQS).

Furthermore, we have delved into the topic of event-driven communication and
how it can be used to build publish-subscribe and event-driven architectures, as
well as event sourcing. We have also discussed the importance of serialization and
provided an overview of serialization formats, libraries, and best practices.

Finally, we have introduced the concept of a service mesh and its features, as well as
some of the popular third-party tools used to implement it. We have also highlighted
the benefits of Istio, an open-source service mesh platform that provides advanced
traffic management, security, and observability for microservices.

Opverall, by understanding the concepts and techniques discussed in this chapter,
developers can design reliable, scalable, and secure inter-service communication
systems that meet the specific requirements of their microservice architecture.

In the next chapter, we will explore "Event-driven data management”, a pattern
that allows microservices to communicate with one another and coordinate data
management. Event-driven architecture is common in modern applications built
with microservices and allows for communication between decoupled services.
Events can be used to implement business transactions across multiple services.
Each step in a transaction involves updating a business entity and publishing an
event that triggers the next step.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

ElifE
E‘.‘%

CHAPTER 8

Event-Driven
Data Management

Event-Driven Data Management for Agile Microservices

Introduction

Microservices are becoming increasingly popular as a means of constructing scalable
and flexible systems, but managing data in a microservices environment can be quite
challenging. By allowing each microservice to store its own data and communicate
changes to that data through publishing and subscribing to events, event-driven
data management can assist in addressing these challenges. Since each microservice
stores its own data, each microservice can evolve independently of the others,
which results in increased flexibility and scalability, as a result of event-driven data
management. In addition, by using events to communicate data changes, it allows
for asynchronous communication between microservices, which improves the
system's performance.

Itis also crucial to note that Command Query Responsibility Segregation (CQRS) is
another important concept related to event-driven data management (we discussed
it in Chapter 4). CQRS is a pattern for separating read and write operations into
multiple microservices. Therefore, scalability and performance can be further
enhanced by allowing different microservices to specialize in different types of data
access.

Data governance challenges are also created by the implementation of event-driven
data management. It is a must to implement data quality checks, data lineage

218 Mastering Cloud-Native Microservices

tracking, and data security controls across multiple microservices in order to ensure
accurate, complete, and consistent data. To comply with data privacy laws and
regulations, it is also necessary to implement data encryption, secure data transfer
protocols, and user access controls for microservices.

In a microservices architecture, data lifecycle management is also essential to
maintaining and managing data throughout its lifecycle, from creation to deletion.
It is necessary to implement policies regarding data retention, data archiving, and
data deletion in order to ensure that data is not retained indefinitely and is disposed
of securely. In order to ensure that data is accurate, complete, and consistent, these
design patterns and practices must be implemented. This will enhance the flexibility
and scalability of the system.

Structure

In this chapter we will discuss following topics:
e Event-driven data management and data governance
¢ Technologies for event-driven data management
o AWS Kinesis
o Google Cloud Pub/Sub
o Azure Event Grid
o Apache Kafka on Kubernetes
e Event sourcing and CQRS
e Event-based data replication
e Event-driven data validation
e Event-driven data integration
e Event-based data access control
e Event-based data lineage
e Data governance in microservices
e Data privacy and compliance
e Data Lifecycle Management

e Conclusion

Objectives

By utilizing event sourcing and CQRS, Event-Driven Data Management, Event-
Driven Data Replication, Event-Driven Data Validation, Event-Driven Data

Event-Driven Data Management 219

Integration, Event-Driven Data Access Control, and Event-Driven Data Lineage,
microservice projects can be more efficiently and effectively managed as a result.

e A microservice architecture can benefit from event sourcing and CQRS
because they enable better separation of concerns and simplify data
management.

e Event-based data replication ensures that all microservices are accessing the
most up-to-date data in real-time.

e Event-driven data validation ensures that only valid data is processed and
stored within a microservice, reducing the risk of data inconsistency.

¢ Adataecosystemcanbecreated moreeasily withevent-drivendataintegration,
allowing seamless integration of data from multiple microservices.

e An event-based data access control system enhances security by preventing
unauthorized users from accessing specific data within a microservice.

e Using event-based data lineage, it is possible to track data changes over time
in a microservice, making it easier to troubleshoot and audit the data.

Ultimately, event-driven data management enables better data management, real-
time data replication, data validation, data integration, data access control, and data
lineage tracking, which are all essential components of microservice architecture.

Event-driven data management and data
governance

Event-driven data management and data governance are essential concepts for
developing and managing microservices architectures. Microservices are becoming
increasingly popular for building scalable and flexible systems by breaking
down monolithic architecture into small, independently deployable services. The
management of data in a microservices architecture, however, can be challenging.
Using the event-driven data management design pattern, microservices can store
their own data and communicate changes by publishing and subscribing to events.

¢ Event sourcing and CQRS: By using a log of events instead of storing the
current state of the system directly, event sourcing allows for a more flexible
and scalable data management system. CQRS provides more scalable
and flexible data management by separating read and write operations
into separate microservices. As an example, in an e-commerce system, a
microservice handles the write operations (such as updating or adding
products) whereas another microservice handles the read operations (such
as displaying products).

220

Mastering Cloud-Native Microservices

Event-based data replication: Using events, data can be replicated across
microservices. For instance, when a user updates their profile information in
one microservice, an event is sent to the other microservices that require the
same update.

Event-driven data validation: A microservice managing a customer's billing
information may send an event when a new credit card is added to ensure
data consistency. An event handler within another microservice can validate
credit card information prior to processing any new orders. For example,
a microservice that handles a customer's billing information may send an
event when a new credit card is added.

Event-driven data integration: Data can be integrated by utilizing events
from different microservices. For example, a microservice that manages a
customer's profile information can send an event whenever a new address is
added. When orders have not yet been shipped, an event handler in another
microservice that manages the customer's orders could update the shipping
address.

Event-based data access control: By using events, microservices can be
used to control data access and enforce data security. For instance, when
a user logs in or out, the microservice that manages user authentication
and authorization may send an event. It may be possible to grant or revoke
access to sensitive data based on the event handler of another microservice
that manages sensitive data.

Event-based data lineage: In a system, data can be tracked by events, such as
when data is received from external sources and an event is sent when new
data is received. An event handler in another microservice that maintains a
data lineage could record the origin and flow of that data through the system.

Data governance in microservices: Data governance practices can be
implemented as part of a microservices architecture in order to ensure the
accuracy, completeness, and consistency of data. Examples include data
quality checks, data lineage tracking, and data security controls.

Data privacy and compliance: Data privacy laws and regulations may apply
to microservices and event-driven data management. In order to ensure that
sensitive data is protected and is only accessible to authorized individuals,
it is necessary to implement data encryption, secure data transfer protocols,
and user access controls.

Data lifecycle management: Data can be managed throughout the entire
lifecycle of a microservices architecture, from creation to deletion. As a
means of ensuring that data is not retained longer than necessary and is
securely disposed of, it may be necessary to implement policies regarding
data retention, archiving, and deletion.

Event-Driven Data Management 221

Technologies for event-driven data
management

Event-Driven Data Management is a paradigm that allows systems to respond
to events in real-time and is widely used in applications that require continuous
processing of high volumes of data, such as financial trading, social media analytics,
and IoT. To manage these large amounts of data, a distributed and scalable
architecture is needed, which can efficiently process and store data streams from
various sources.

Technologies for Event-Driven Data Management provide a range of tools and
services that enable real-time processing of data streams. These technologies include
messaging systems, stream processing engines, event hubs, and other related
services. These technologies allow data to be ingested, processed, and stored in real-
time, enabling applications to respond to events as they occur.

These technologies provide a scalable and distributed architecture for managing
the flow of events, allowing for seamless communication and coordination between
different components in a system. This architecture enables the efficient and reliable
processing of data streams, even at high volumes, and ensures that data is processed
and stored securely and reliably.

Some of the cloud native technologies used for the same are AWS Kinesis, Google
Cloud Pub/Sub, Azure Event Grid, and Apache Kafka on Kubernetes.

AWS Kinesis

As a fully managed service provided by Amazon Web Services (AWS), Kinesis
allows easy ingress and egress of streaming data. It can also be used for data
integration, data replication, and real-time streaming. A microservice running in one
region can be replicated to another microservice running in another region using
Kinesis in order to ensure disaster recovery and high availability. There are three key
components to the kinesis platform: kinesis data streams, kinesis data firehose, and
kinesis data analytics.

e Using kinesis data streams, you can collect, process, and analyze data streams
in real-time. It can handle millions of events per second, which makes it
suitable for processing high-volume data streams.

e With kinesis data firehose, you can easily load streaming data into data lakes,
data stores, and analytics tools.

e Kinesis data analytics provides SQL-based processing and analysis of
streaming data.

222

Mastering Cloud-Native Microservices

Advantages

Scalability: Kinesis can handle millions of events per second, making it
suitable for handling high-volume data streams.

Reliability: Kinesis is designed to automatically scale and replicate data
across multiple availability zones, providing high availability and fault
tolerance.

Cost-effective: Kinesis is a pay-as-you-go service and can be cost-effective
for large scale event-driven data management.

Disadvantages

Latency: Kinesis has a small latency of a few seconds, which may not be
suitable for some real-time streaming use cases that require sub-second
latencies.

Limited storage: Kinesis has a default retention period of 24 hours for data
streams, and older data is automatically deleted. This can be extended to
7 days but it may not be sufficient for some use cases that require longer
retention periods.

Limited event size: Kinesis has a maximum event size of 1MB which may
not be sufficient for some use cases that require larger event sizes.

Google Cloud Pub/Sub

A messaging service provided by Google Cloud Platform (GCP) that enables the
exchange of messages between microservicesin areliable, scalable, and asynchronous
manner. Real-time data replication, integration, and streaming can be performed
using it. As an example, Pub/Sub can be used to enable a multi-cloud event-driven
architecture between microservices running on Google Cloud Platform and those
running on Amazon Web Services. Pub/Sub systems send messages to topics and
receive messages from subscribers. Topics and subscribers can be managed through
the GCP Console, the cloud command-line tool, or the Cloud Pub/Sub API.

Advantages

Scalability: Pub/Sub can handle millions of messages per second, making it
suitable for handling high-volume data streams.

Reliability: Pub/Sub provides at-least-once delivery semantics and
automatic retries for failed deliveries, providing high availability and fault
tolerance.

Event-Driven Data Management 223

¢ Asynchronous: Pub/Sub allows for asynchronous communication between
microservices, which can improve system performance and scalability.

e Multi-cloud: Pub/Sub can be used to send messages between microservices
running on GCP as well as on other cloud providers, enabling a multi-cloud
event-driven architecture.

¢ Flexibility: Pub/Sub supports various message formats such as JSON, Avro,
and Protocol Buffers, and allows for custom attributes on messages.

Disadvantages

e Limited storage: Pub/Sub has a default retention period of 7 days for
messages, and older messages are automatically deleted. This retention
period can be increased but it may not be sufficient for some use cases that
require longer retention periods.

e Complexity: Setting up and managing Pub/Sub can be complex, especially
for large scale, high volume deployments.

Azure event grid

Microsoft Azure's Event Grid is a fully managed service that allows users to publish
and subscribe to events from various Microsoft Azure services and third-party
services. This service can be used for data replication, integration, and real-time
streaming based on events. A multi-cloud event-driven architecture is enabled by the
ability to send events from a microservice running on Azure to another microservice
running on a different cloud provider, using Event Grid. With Event Grid, you can
create custom events, subscribe to built-in Azure events, and route events to various
endpoints such as Azure Functions, Azure Logic Apps, or webhooks. Events are
published to topics and received by subscribers following a publish-subscribe model.

Advantages

e Reliability: Event Grid provides at-least-once delivery semantics and
automatic retries for failed deliveries, providing high availability and fault
tolerance.

e Easy to use: Event Grid provides a simple API for sending and receiving
events, and also has pre-built connectors for popular Azure services and
third-party services.

e Multi-cloud: Event Grid allows for events to be sent and received between
Azure services and services running on other cloud providers, enabling a
multi-cloud event-driven architecture.

224

Mastering Cloud-Native Microservices

Disadvantages

Limited storage: Event Grid has a default retention period of 24 hours for
events, and older events are automatically deleted. This retention period
can be increased but it may not be sufficient for some use cases that require
longer retention periods.

Latency: Event Grid has a small latency of a few seconds, which may not
be suitable for some real-time streaming use cases that require sub-second
latencies.

Limited event size: Event Grid has a maximum event size of 64KB which
may not be sufficient for some use cases that require larger event sizes.

Apache Kafka on Kubernetes

Event streaming platforms such as Apache Kafka are distributed, high-performance,
and fault-tolerant. They can be used for real-time streaming, data integration, event
replication, and load balancing. As a result of its easy scaling, load balancing and
automatic failover, Kafka is a popular choice for event-driven data management on
Kubernetes. Additionally, Kubernetes facilitates better management and monitoring
of the Kafka cluster, as well as providing a platform for deploying other microservices.

Advantages

Scalability: Kafka can handle millions of events per second, making it
suitable for handling high-volume data streams.

Reliability: Kafka provides fault-tolerance and automatic data replication,
providing high availability and fault tolerance.

High Throughput: Kafka can handle high-throughput and low-latency data
streams.

Easier management and monitoring: when deployed on Kubernetes, it
allows for easier management and monitoring of the Kafka cluster.

Disadvantages

Limited storage: Kafka has a default retention period for events, and older
events are automatically deleted. This retention period can be increased
but it may not be sufficient for some use cases that require longer retention
periods.

Latency: Kafka has a small latency of a few seconds, which may not be
suitable for some real-time streaming use cases that require sub-second
latencies.

Event-Driven Data Management 225

Event sourcing and CORS

By using event sourcing, the state of an application can be stored as a sequence
of events. Each event represents a change in the state of the application, such as
the creation, modification, or deletion of an object. An application log contains the
events. This sequence of events can be replayed to reconstruct the application's state
at any given moment.

An event-sourced system has the following characteristics:
o The state of the system is stored as a sequence of events.

e The events are stored in an append-only log, which guarantees that the
events are immutable and can be replayed in the same order.

e The current state of the system is derived by replaying the events.

e The events can be used to reconstruct the state of the system at any point in
time, providing a clear audit trail and historical analysis of the system state.

In a CQRS application, commands (write operations) are used to change the state of
the system, while queries (read operations) are used to retrieve information.

A CQRS system has the following characteristics:

e The read and write operations are handled separately, allowing for better
scalability.

¢ The read model is optimized for querying and retrieving data, while the
write model is optimized for handling changes to the system.

¢ The read and write models can be implemented using different technologies
and patterns, depending on the requirements of the system.

¢ The read and write models can be scaled independently, allowing for better
resource utilization.

As a result of combining event sourcing and CQRS, an event-driven system
architecture can be developed. While event sourcing provides a clear audit trail of
changes to the system state, CQRS provides a method for handling reads and writes
separately. In this manner, event-driven architectures can handle high-scale read
and write loads while providing a clear audit trail and historical analysis of the
current state of the system.

An example of how Event Sourcing and CQRS can be used together in a banking
system is as follows:

The write-side of the system generates an "AmountDeposited" event when a
customer deposits money into their account and stores the event in the event store.

226 Mastering Cloud-Native Microservices

The event contains information such as the customer's account number, the date and
time of the deposit, and the deposit amount.

The read-side of the system can then use the events in the event store to build a
view of the current balance of each account. This is accomplished by replaying all
of the events for a particular account and updating its view of the account balance
accordingly. In the case of three "AmountDeposited" events for an account, the read-
side is able to add up the amounts from those events to determine the account's
current balance.

In the event store, the write-side creates an "AmountWithdrawn" event when a
customer withdraws money from their account. The read-side updates its view of
the account balance by replaying the events for that account, including the most
recent "AmountWithdrawn" event.

This example allows for complete separation of the write and read sides, which
has several advantages. Rather than worrying about updating views of the data
overhead, the write-side can focus on storing events in the event store quickly and
efficiently. Without having to worry about the overhead of generating events, the
read-side can focus on providing fast and efficient access to the current state of the
data.

The combination of Event Sourcing and CQRS can lead to a robust, scalable, and
maintainable banking system capable of handling large amounts of transactions,
providing efficient access to account information, and providing a complete audit
trail of all transactions.

Event-based data replication

Using event-based data replication, data is replicated between different systems or
services by propagating events that indicate changes to the data. When data needs
to be made available in multiple locations or systems, this approach is useful since it
allows for real-time or near-real-time data replication. In event-based data replication,
changes are captured by capturing events, such as the creation, modification, or
deletion of an object, that represent changes to the data. The events are propagated
to other systems and services, which consume them and update their local copies of
the data accordingly.

Event-based data replication can be used in a variety of situations, including;

e Distributed Systems: Data needs to be replicated across multiple systems,
such as a cluster of servers, to ensure high availability and fault tolerance.

e Multi-Region: Data needs to be replicated across multiple regions, such as
different data centers or cloud providers, to ensure low latency and high
availability.

Event-Driven Data Management 227

Cross-System: Data needs to be replicated across different systems, such as a
database and a cache, to ensure consistency and high performance.

Microservices: Data needs to be replicated across multiple microservices, to
ensure consistency and low latency.

Advantages

Low Latency: Data is replicated in near real-time, which can be useful in
situations where low latency is important.

High Availability: Data is replicated to multiple systems, which can increase
the availability of the data.

Consistency: By using events, it is possible to ensure that all systems or
services are updated with the same information.

Flexibility: Event-based data replication can be used with different types of
systems and services, such as databases, caches, and message queues.

There are a variety of technologies that can be used to implement event-based data
replication, depending on the requirements of the system. Some of the most common
technologies include:

Message Queues: It is possible to capture and propagate events using
technologies such as Apache Kafka, RabbitMQ, and AWS Kinesis. These
technologies provide a durable, scalable, and fault-tolerant way to handle
events, and can be used to replicate data in real-time and batch in both
instances.

Data Replication Platforms: It is possible to capture and propagate database
events using technologies such as Debezium, MySQL replication, and
MongoDB replication. Data replication technologies such as these allow for
the replication of data from one or more source databases to one or more
target databases, and can be utilized for both real-time and batch replication
applications.

Event-Driven Architecture Frameworks: A variety of technologies can
be used to capture and propagate events between different microservices,
including Apache Camel and Spring Cloud Stream. Itis possible to implement
both real-time and batch data replication using these frameworks, which
provide a means of implementing event-based data replication between
microservices.

Cloud-Based Services: Cloud providers such as Amazon Web Services,
Microsoft Azure, and Google Cloud offer services for capturing and
propagating events, including Amazon Kinesis, Azure Event Grid, and

228 Mastering Cloud-Native Microservices

Cloud Pub/Sub. It is possible to implement both real-time and batch data
replication using these services. They provide both a scalable and fault-
tolerant method of handling events.

It's worth noting that the choice of technology for implementing event-based data
replication will depend on the requirements of the system, such as scalability, fault-
tolerance, and durability.

Event-driven data validation

The event-driven data validation technique involves validating data as it is being
captured, usually as an event, prior to storing or analysing it. In situations where
data needs to be validated as soon as it is captured, to ensure that it meets certain
constraints or standards, this approach can be used, as it enables real-time or near-
real-time data validation. As a result of event-driven data validation, events that
represent changes to data, for example, the creation, modification, or deletion of
objects, are recorded. These events are then passed through a series of validation
checks, which are designed to ensure that the data meets certain constraints or
standards. If the data passes all validation checks, it will be stored or processed. If the
data fails one or more validation checks, an error message will be generated or the
data is rejected. Event-driven data validation can be used in a variety of situations,
including;:

¢ Data Quality: Ensuring that data meets certain standards of quality, such as
completeness, accuracy, and consistency.

¢ Business Rules: Ensuring that data meets certain business rules, such as
constraints on data values or relationships between data elements.

¢ Compliance: Ensuring that data meets certain compliance requirements,
such as data privacy and security regulations.

Advantages

¢ Low Latency: Data is validated in near real-time, which can be useful in
situations where low latency is important.

e High Data Quality: By validating data as soon as it is captured, it is possible
to ensure that the data meets certain standards of quality.

e Compliance: By validating data as soon as it is captured, it is possible to
ensure that the data meets certain compliance requirements.

o Flexibility: Event-driven data validation can be used with different types of
systems and services, such as databases, message queues, and microservices.

Event-Driven Data Management 229

The validation process can be implemented with a variety of technologies such as
rule engines, data quality tools or simple regex validation checks.

Event-driven data integration

As part of event-driven data integration, changes to the data are propagated between
different systems and services through the propagation of events. In situations where
data has to be made available in multiple locations or systems, or where data needs
to be transformed before it can be stored or processed, this approach can be useful
for real-time or near-real-time data integration. By capturing events that represent
changes in the data, such as the creation, modification, or deletion of an object,
event-driven data integration works. An integration step is then used to transform,
validate, or route this data to the appropriate target system or service based on a
series of integration steps.

Event-driven data integration can be used in a variety of situations, including;:

¢ Data Synchronization: Synchronizing data between different systems, such
asa CRM system and an ERP system, to ensure consistency and completeness.

¢ Data Transformation: Transforming data between different formats, such as
JSON and XML, to ensure compatibility and efficiency.

e Data Consolidation: Consolidating data from multiple sources, such as
different databases or microservices, to provide a single view of the data.

Advantages

e Low Latency: Data is integrated in near real-time, which can be useful in
situations where low latency is important.

e High Data Quality: By integrating data as soon as it is captured, it is possible
to ensure that the data meets certain standards of quality, such as consistency
and completeness.

¢ Flexibility: Event-driven data integration can be used with different types of
systems and services, such as databases, message queues, and microservices.

¢ Real-time integration: It allows to integrate data in real-time as soon as the
event is captured.

The integration process can be implemented with a variety of technologies such as
enterprise service bus (ESB), data integration platforms or event-driven architecture
frameworks.

230 Mastering Cloud-Native Microservices

Event-based data access control

Using event-based data access control, the system controls access to data by capturing
events that occur during the processing of data. In situations where unauthorized
access to data or the restriction of access is required depending on the circumstances
of an event, this approach is suited to providing real-time or near-real-time access
control. An event-based data access control system captures events that represent
data changes, such as the creation, modification, or deletion of objects, which are
used to control access to data. In order to ensure that the user or system requesting
access to data is authorized to do so, these events are then passed through a series of
access control checks. Data access is granted if the user or system is authorized. Data
access is denied if the user or system is not authorized.

Event-based data access control can be used in a variety of situations, including;:

e Data Security: Ensuring that data is protected from unauthorized access,
such as by encrypting the data or by restricting access to the data to certain
users or systems.

e Data Privacy: Ensuring that data is protected from unauthorized access,
such as by masking the data or by restricting access to the data to certain
users or systems.

¢ Compliance: Ensuring that data access is compliant with certain regulations,
such as data privacy and security regulations.

Advantages

¢ Low Latency: Access control is applied in near real-time, which can be useful
in situations where low latency is important.

e High Data Security: By controlling access to data as soon as it is captured,
it is possible to ensure that the data is protected from unauthorized access.

o Flexibility: Event-based data access control can be used with different
types of systems and services, such as databases, message queues, and
microservices.

e Real-time control: It allows to control access to data in real-time as soon as
the event is captured.

Event-based data access control can be implemented with a variety of technologies
such as identity and access management (IAM) systems, access.

Event-Driven Data Management 231

Event-based data lineage

Using event-based data lineage, data's lineage or history can be tracked as events
are generated by the system in real-time or near-real-time. In situations where data
needs to be traced back to its origins, or where data must be audited for compliance
or quality assurance purposes, this approach provides real-time or near-real-time
lineage tracking. As part of event-based data lineage, data changes, including the
creation, modification, or deletion of a data object, are recorded. Based on these
events, a lineage graph is constructed. This graph illustrates the relationships
between the different versions of the data and the systems or processes that were
responsible for creating or transforming the data. The lineage graph can be used to
trace the origin of data, to understand how data has been transformed over time, or
to identify the systems or processes that have been involved in the data's lifecycle.
Event-based data lineage can be used in a variety of situations, including;

¢ Data Governance: Ensuring that data is properly managed and controlled,
such as by tracking the origin of data and understanding how it has been
transformed over time.

¢ Compliance: Ensuring that data is compliant with certain regulations, such
as data privacy and security regulations, by tracking the origin of data and
understanding how it has been transformed over time.

e Data Quality: Ensuring that data is of high quality, such as by tracking the
origin of data and understanding how it has been transformed over time.

Advantages

e Low Latency: Lineage is captured in near real-time, which can be useful in
situations where low latency is important.

e High Data Traceability: By capturing lineage as soon as it is generated, it is
possible to ensure that data is traceable back to its origin.

o Flexibility: Event-based data lineage can be used with different types of
systems and services, such as databases, message queues, and microservices.

¢ Real-time tracking: It allows to track the data lineage in real-time as soon as
the event is captured.

Event-based data lineage can be implemented with a variety of technologies such
as data governance platforms, data catalogs, data lineage tools, and event-driven
architecture frameworks.

232 Mastering Cloud-Native Microservices

Data governance in microservices

In microservices, data governance is defined as a set of policies, procedures, and
standards that ensure that data is properly managed and controlled within a
microservice architecture. Data quality, data security, data privacy, data compliance,
and data lineage are examples of data quality issues. Data governance in
microservices is difficult because each microservice operates independently and has
its own storage and processing capabilities. In this situation, it can be challenging to
ensure that data is consistent across all microservices and that data is being used in
a secure and compliant manner.

To address this challenge, organizations may implement a number of different
strategies, such as:

e Data Catalogs: A centralized data catalog can be used to document the data
that is being used by each microservice, including information such as data
schema, data lineage, and data usage policies.

e Data Governance Platforms: Platforms such as Collibra and Informatica
can be used to manage data governance policies, procedures, and standards
across all microservices.

¢ Data Quality and Data Governance Microservices: These microservices can
be used to ensure that data is of high quality and that data is being used in a
compliant and secure manner.

e Event-Driven Data Governance: Event-driven data governance can be
used to track the lineage of data and to ensure that data is being used in a
compliant and secure manner.

e Identity and Access Management (IAM): IAM systems can be used to ensure
that only authorized users and systems have access to data, regardless of
which microservice they are interacting with.

Additionally, organizations may also need to implement appropriate data security
and data privacy measures in order to ensure that their data is protected from
unauthorized access and that it is used in a compliant manner.

Overall, the goal of data governance in microservices is to ensure that data is properly
managed and controlled across all microservices, regardless of where the data is
stored or how it is utilized. With the implementation of appropriate data governance
strategies and technologies, organizations may be able to ensure that their data is of
the highest quality, that they are using the data in a compliant and secure manner,
and that their data can be traced easily throughout their lifecycle.

Event-Driven Data Management 233

Data privacy and compliance

Compliance with data privacy laws, regulations, and guidelines refers to the set
of laws, regulations, and guidelines that organizations must adhere to in order to
protect personal information of individuals and to ensure that the data is used in an
ethical and lawful manner.

Some of the key data privacy and compliance regulations include:

General Data Protection Regulation (GDPR): This regulation applies to
organizations operating in the European Union and governs the collection,
storage, and use of personal data.

California Consumer Privacy Act (CCPA): This regulation applies to
organizations operating in California and governs the collection, storage,
and use of personal data.

Health Insurance Portability and Accountability Act (HIPAA): This
regulation applies to organizations handling personal health information
and governs the collection, storage, and use of personal data.

The Payment Card Industry Data Security Standard (PCI DSS): This
regulation applies to organizations handling credit card information and
governs the collection, storage, and use of personal data.

To ensure compliance with these regulations, organizations must implement
appropriate data privacy and security measures, such as:

Data Encryption: Data should be encrypted both at rest and in transit to
protect against unauthorized access.

Data Access Control: Access to personal data should be restricted to only
those who need it to perform their job.

Data Governance: Organizations should implement data governance
policies, procedures, and standards to ensure that data is being used in a
compliant and secure manner.

Data Privacy Microservices: Microservices can be used to ensure that data is
being used in a compliant and secure manner.

Data Privacy Compliance Tools: Tools such as OneTrust and TrustArc can be
used to automate compliance with data privacy regulations.

Data Privacy and Compliance Training: Organizations should ensure that
all employees are trained on data privacy and compliance regulations and
best practices.

234 Mastering Cloud-Native Microservices

The organization should also implement a data breach response plan in addition
to these strategies, as well as perform regular audits to ensure compliance with
data privacy and security regulations. It is imperative that organizations take the
necessary steps to ensure they are complying with all laws and regulations governing
the collection, storage, and use of personal data, since data privacy and compliance
are critical issues for organizations. It is possible for organizations to protect the
personal information of individuals and use data in an ethical and lawful manner by
implementing appropriate data privacy and security measures.

Data Lifecycle Management

Organizations use data lifecycle management (DLM) to manage the entire lifecycle
of their data, from creation to deletion, through the use of policies, procedures,
and technologies. The goal of DLM is to ensure that data is effectively managed,
protected, and used in a manner that supports the organization's business objectives.

The key stages of the data lifecycle include:

e Creation: Data is created through various means such as data entry, data
collection, data import, and data generation.

e Processing: Data is processed, transformed, and analyzed to extract insights
and value.

e Storage: Data is stored in various forms such as databases, data lakes, and
data warehouses.

¢ Backup and Recovery: Data is backed up to ensure that it can be recovered
in the event of a disaster or data loss.

e Archiving: Data that is no longer required for day-to-day operations is
archived, either for long-term retention or for compliance purposes.

¢ Deletion: Data that is no longer needed is deleted in order to save storage
space and to protect against data breaches.

DLM involves implementing policies and procedures to govern how data is
created, stored, processed, and deleted, as well as technologies that support data
management, such as data catalogues, data governance platforms, data archiving
tools, and data deletion tools.

Advantages

¢ Data Quality: DLM ensures that data is of high quality and that it is accurate,
complete, and consistent.

Event-Driven Data Management 235

e Data Governance: DLM ensures that data is being used in a compliant and
secure manner.

e Data Privacy: DLM ensures that personal data is protected and that it is
being used in an ethical and lawful manner.

e Data Efficiency: DLM helps organizations to use data more efficiently
by reducing storage costs, improving performance and reducing data
duplication.

¢ Data Compliance: DLM ensures that organizations are in compliance with
data privacy and security regulations.

As part of DLM implementation, many teams and stakeholders are involved,
including IT, data science, data governance, legal, and compliance. A comprehensive
understanding of the organization's data management objectives and the technical,
legal, and compliance requirements is required. It is imperative that organizations
utilize DLM to ensure that their data is of high quality, compliant, secure, and
efficient throughout its entire lifecycle, from creation to deletion. As a result,
organizations are able to maximize the value of their data and satisfy internal and
external stakeholders' needs.

Conclusion

Unleashing the Potential of Event-Driven Data:

Driving Efficiency, Real-Time Insights, and Seamless Integration

Overall, learning about Event-Driven Data Management will assist you in developing
a better understanding of data management techniques such as Event-driven data
sourcing, CQRS, event-based data replication, event-based data validation, event-
driven data integration, event-based data access control, and event-based data
lineage, among others. As a result of these techniques, data can be managed more
efficiently and effectively in a microservice architecture. Several technologies,
including AWS Kinesis, Google Cloud Pub/Sub, and Azure Event Grid, can be
used to implement Event-Driven Data Management, providing event-driven data
streaming, event-driven data integration, and event routing. With these technologies,
you can manage event-driven data, handle data streams in real-time, handle data
integration, control data access, and track data lineage, all of which are vital aspects
of developing modern applications.

In the next chapter, ‘Microservices without Servers: The Serverless Approach’,
we will discuss the serverless approach to building microservices. This approach
utilizes cloud-based platforms such as AWS Lambda, Google Cloud Functions, or

236 Mastering Cloud-Native Microservices

Azure Functions to build and deploy microservices. By using this approach, cost
savings are possible, automatic scaling is possible, and integration with other cloud-
based services is easy. However, it is also subject to limitations such as cold starts
and limitations on memory and compute resources, which can negatively impact
performance and restrict the size and complexity of microservices.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Eli5E
E‘i‘%

CHAPTER 9

The Serverless
Approach

Revolutionizing Microservices with Serverless Architecture

Introduction

The adoption and growth of cloud computing will certainly continue to accelerate.
As companies move beyond their initial forays into cloud computing and have
established its benefits, they are increasingly seeking additional applications. The
market for serverless platforms is growing rapidly, including AWS Lambda, Azure
Functions, IBM Cloud Functions, and Google Cloud Functions.

The term "serverless" refers to a cloud execution model that facilitates the
development and implementation of cloud-native applications more efficiently and
cost-effectively.

There is a true pay-as-you-go service offered by functions-as-a-service, which means
the infrastructure scales transparently in response to the needs of the application. In
serverless computing, the service provider takes care of all the infrastructure (server-
side IT), so all you need to do is write code. Technically, servers remain involved,
however. As opposed to traditional enterprise architectures, serverless computing
does not rely on servers, but rather on how they are implemented and managed.

Top benefits of serverless computing;:

¢ No infrastructure management: Serverless platforms allow you to deploy
your code and have it run in high availability.

238

Mastering Cloud-Native Microservices

Dynamic Scalability: Serverless computing allows for dynamic scaling
up and down of the infrastructure to match the demands of any workload
within seconds.

Faster time to market: The use of serverless applications reduces the
operations dependencies on each development cycle, allowing teams to
deliver more functionality in less time.

More efficient use of resources: Organizations can reduce their total cost of
ownership by implementing serverless technologies.

Flexibility: With serverless computing, developers can easily create
and deploy microservices without having to worry about infrastructure
management.

Security: Security measures such as IAM, encryption, network security, etc.,
can be implemented by the cloud provider to ensure the security of sensitive
data and systems.

With the rise of cloud computing and the need to build and deploy applications
in a more cost-effective and scalable manner, serverless computing has gained
tremendous popularity in recent years. Cloud computing in which the cloud
provider manages the infrastructure and dynamically allocates resources as required
for the execution of code is known as serverless computing. This model involves the
developer writing code and uploading it to the cloud, which then executes the code
as soon as a specific event or trigger occurs. By doing so, the developer does not
need to manage or allocate server resources, providing a cost-effective and highly
scalable solution.

Structure

In this chapter we will discuss following topics:

Understanding the serverless architecture
Serverless framework
Function-as-a-Service (Faa$S) platforms

o AWS Lambda

o Azure functions

o Google cloud functions

Serverless approach and edge computing
Serverless monitoring and logging

Serverless security

The Serverless Approach 239

e Best Practices for serverless microservices development
e Serverless microservices case studies

e Conclusion

Objectives

The objective of this chapter is to build modern, scalable, and cost-effective cloud
applications. Architects and Developers must understand the serverless computing
paradigm, including the Serverless Architecture, the Serverless Framework, and FaaS
platforms such as AWS Lambda, Azure Functions, and Google Cloud Functions. In
addition to Serverless Monitoring and Logging, Serverless Security, and Best Practices
for Serverless Microservices Development, these topics are essential. With serverless
computing, developers can focus on developing business logic rather than worrying
about the underlying infrastructure, resulting in reduced operational overhead,
increased scalability, and reduced cost. Increasing application performance and
reducing latency are also significant benefits of the Serverless approach and Edge
Computing. Insights into how these concepts can be effectively applied in practice
can be gained from real-world Serverless microservices case studies. Ultimately,
understanding these topics will allow developers to create efficient, secure, and
highly available cloud applications that can adapt to the changing demands and
workloads of the cloud.

Understanding the serverless architecture

Using the serverless architecture, the cloud provider manages the underlying
infrastructure and dynamically allocates resources according to code execution
requirements. As part of this architecture, the developer writes code and uploads it to
the cloud, which executes it in response to specific triggers or events. Consequently,
the developer does not need to manage or allocate server resources, resulting in an
extremely cost-effective and highly scalable solution.

The key components of a serverless architecture are:

e Functions: Serverless architecture is based upon functions, small,
independent units of code that are executed when specific events or triggers
occur. Functions can be written in a variety of programming languages and
deployed and executed in the cloud.

e Event triggers: Cloud providers execute functions in response to specific
events or triggers, such as HTTP requests, messages sent to queues, timers,
and the like. When an event occurs, the associated function processes the
event and returns its results.

240

Mastering Cloud-Native Microservices

API Gateway: An API gateway is used to expose the functions to the internet,
allowing external clients to invoke them. The API gateway functions as a
front-end for the functions, handling authentication, authorization, and
traffic management. In addition to caching, logging, and monitoring, it also
provides other features.

Cloud infrastructure: Cloud providers manage the underlying infrastructure,
which includes servers, storage, databases, and the like. They also
dynamically allocate resources so that end-users experience high availability
and low latency.

Database Services: In serverless architectures, data is stored and retrieved
using a variety of database services, including NoSQL databases, SQL
databases, and key-value stores. As a result, developers can focus on writing
code rather than managing databases since these services are typically fully
managed by the cloud provider.

Message queues: The use of message queues in a serverless architecture
allows functions to process events asynchronously. Functions can receive
events from a message queue, process them, and send the results to other
functions or databases.

Monitoring and Logging: This architecture provides developers with a
variety of tools for monitoring and logging, including performance metrics,
error reporting, and debugging. These tools assist them in identifying and
resolving issues with their functions.

Security: Cloud providers are responsible for the security of the infrastructure.
Security measures such as IAM, encryption, network security, etc., can be
implemented to ensure that sensitive data and systems are protected.

Use cases for Function-as-a-Service (FaaS)

Dynamic Web Applications: The Serverless Framework can be used to build
dynamic web applications that require the ability to handle varying levels of
user traffic. By deploying and executing functions based on user requests,
infrastructure management and scaling are not necessary. In order to reduce
the costs and complexity associated with managing infrastructure, serverless
functions could be deployed to handle authentication and authorization, for
example.

Event-driven applications: As an event-driven framework, the Serverless
Framework is ideally suited to the development of applications that process
data from multiple sources, such as chatbots or IoT applications. Functions
can be triggered by events, process the data, and return the results, allowing

The Serverless Approach 241

them to scale dynamically based on demand. Serverless functions, for
example, could be deployed to process data from a chatbot, providing users
with real-time insights and recommendations.

e Microservices: The Serverless Framework provides a natural fit for
microservices-based applications, where functions can be deployed and
executed as independent units of code. By managing and deploying
microservices in this manner, developers are able to concentrate on providing
value to their customers rather than managing and deploying them. An
image processing function, for example, might be handled by a serverless
function, reducing infrastructure management costs and complexity.

¢ Backend services: By using the Serverless Framework, backend services such
as authentication, authorization, image processing, and data processing can
be built without the need for server management. Functions can be triggered
by events, such as a user request, and return the results to the client. This
reduces the cost and complexity of managing infrastructure, while allowing
for dynamic scalability as demand changes.

e Batch processing: In order to reduce the cost and complexity of managing
infrastructure, the Serverless Framework can be utilized for batch processing
tasks such as data extraction and analysis. Functions may be triggered
by a timer, process data, and return the results, reducing infrastructure
management costs. Organizations are able to process large amounts of data
efficiently and cost-effectively using the Serverless Framework because
batch processing can be scaled dynamically.

Therefore, serverless architecture and Function-as-a-Service offer an affordable
and scalable means of building and deploying applications. They are well suited
for dynamic web applications, event-driven applications, microservice-based
applications, backend services, and batch processing tasks. Organizations can
reduce costs, improve scalability, and deliver value to their customers by leveraging
the benefits of serverless computing.

Serverless framework

Using the Serverless Framework, developers can create, deploy, and manage
microservice-based applications using cloud platforms, including Amazon Web
Services, Microsoft Azure, and Google Cloud, which are all open-source. As a result,
developers can easily build and deploy serverless applications using this tool set. It
provides tools and abstractions for building and deploying microservices.

A Serverless Framework allows developers to define microservices as individual
functions, which are then automatically deployed to the cloud. This allows
developers to focus on writing code while the framework takes care of the underlying

242

Mastering Cloud-Native Microservices

infrastructure. As part of the Serverless Framework, tools for managing cloud
resources, including Lambda functions and DynamoDB tables, can also be provided,
allowing resources to be managed centralized and automated. By providing detailed
logs and metrics, the framework allows for real-time monitoring of performance and
status of microservices, as well as identifying and resolving problems.

Key features

Some of the key features of the serverless framework:

Microservice support: Serverless framework provides native support
for creating, deploying, and managing microservices. It makes it easier
for developers to create, deploy, and manage microservices as individual
functions.

Event-driven design: The serverless framework supports event-driven
design, which is well suited to microservices architecture. In order to build
dynamic, event-driven applications, each microservice can be triggered by
an event, such as a user request or data update, and executed in response.

Decentralized deployment: Developers can deploy and manage
microservices independently using the Serverless Framework, allowing
them to update and scale microservices based on their needs.

Built-in templates: A number of common use cases can be handled with
the Serverless Framework, including building REST APIs, processing data,
and facilitating authentication and authorization. As a result, developers can
easily begin building microservices without having to invest time and effort
in writing complex code.

Customizable plugins: The serverless framework provides a range of
customizable plugins that can be used to extend its functionality and support
custom use cases. By doing so, it is possible to extend the capabilities of the
framework to meet specific requirements by adding new functionality, such
as security and monitoring, to microservices.

Debugging and testing: By providing tools for debugging and testing
microservices, the Serverless Framework simplifies the identification and
resolution of problems. With this solution, microservices can be tested locally
before being deployed to the cloud, and they can be debugged in real time
with the built-in debugger.

Cost optimization: A serverless framework enables organizations to
reduce infrastructure costs and improve the performance and reliability of
microservices by scaling microservices dynamically based on demand.

The Serverless Approach 243

Cross-platform support: Using the Serverless Framework, it is possible
to build and deploy microservices to a wide variety of cloud platforms,
including Amazon Web Services, Microsoft Azure, and Google Cloud.

Integrations: With the Serverless Framework, a variety of popular tools
and services can be integrated, including AWS Lambda, AWS S3, and
AWS DynamoDB. By leveraging the full capabilities of the cloud platform,
microservices can be easily integrated with existing tools and services.

Automated deployment: Using the Serverless Framework, developers can
easily deploy microservices to the cloud using automated deployment. Using
the framework, microservices can be deployed via a simple command-line
interface, thereby automating the deployment process and reducing manual
effort.

Resource management: Cloud resources, such as Lambda functions and
DynamoDB tables, can be managed using the Serverless Framework. As a
result, resources can be managed in an automated and centralized manner,
reducing the need for manual effort and improving consistency.

Monitoring and logging: It is possible to monitor and log the performance
and status of microservices in real time with the serverless framework, which
offers monitoring and logging capabilities. The framework provides detailed
logs and metrics, which can be used to identify and resolve issues, as well as
to improve the performance and reliability of microservices.

Support for multiple languages: This framework supports multiple
programming languages, including JavaScript, Python, TypeScript, and
more, making it possible to build microservices based on the language of
your choice and take advantage of all the cloud platform's features.

Function-as-a-Service platforms

The Function-as-a-Service (FaaS) platform is a cloud-based computing platform that
enables developers to create and deploy microservices in a serverless environment
through the use of cloud computing. They provide a way to execute code in response
to events, such as HTTP requests, changes in database records, or the arrival of
messages in a queue.

For example, let's outline the process of architecting a Function-as-a-Service (Faa$S)
platform for a travel booking website. This example will focus on the key steps
involved in designing the platform architecture, irrespective of the specific cloud
provider (AWS, Azure, or GCP).

Identify Functionality: Determine the key functions or microservices
required for the travel booking website, such as user registration, flight
search, hotel booking, payment processing, and email notifications.

244

Mastering Cloud-Native Microservices

Function Design: Define the logic and functionality for each function. For
example, the flight search function would handle search queries, interact
with the flight database, and return relevant results.

Function Packaging: Package each function along with its dependencies and
configurations into deployable units. This may involve using containerization
technologies (for example Docker) or function packaging tools provided by
the Faa$S platform.

Event Triggers: Identify the events that will trigger function execution. In
the case of the travel booking website, event sources can include HTTP
requests from users, database updates for new bookings, or scheduled tasks
for sending email notifications.

Function Invocation: Configure the eventsources to trigger the corresponding
functions. For example, an HTTP request to the flight search endpoint should
invoke the flight search function.

Scaling and Resource Allocation: Configure the FaaS platform to
automatically scale the functions based on incoming workload. This ensures
that the platform can handle a high volume of requests during peak booking
periods.

Execution Environment: Specify the runtime environment for each function,
ensuring that it includes the necessary resources (CPU, memory, and so on)
and supports the programming language used for function development.

Function Execution and Monitoring: Implement the function execution
logic within the FaaS platform. The platform will execute the functions,
handle input data (for example user search criteria), process the logic, and
capture outputs (for example search results). Implement monitoring and
logging mechanisms to track function execution and performance.

Integration with External Services: Integrate the functions with external
services required for the travel booking website, such as databases for storing
bookings, payment gateways for processing transactions, and email services
for sending notifications. Utilize the FaaS platform's integration capabilities
or APIs to interact with these services.

Billing and Cost Management: Set up the FaaS platform's billing and cost
management features to track the resources consumed by the functions. This
ensures efficient resource allocation and helps manage costs associated with
function execution.

Developer Tools and SDKs: Leverage the developer tools, SDKs, and CLIs
provided by the FaaS platform to facilitate local testing, debugging, and

The Serverless Approach 245

deployment automation. These tools streamline the development process
and enhance developer productivity.

By following this process, you can architect a FaaS platform for a travel booking
website, enabling functions to handle various tasks and integrating them seamlessly
with external services.

AWS Lambda

Amazon Web Services (AWS) Lambda is a serverless computing service that enables
developers to run code based on events, such as database changes, messages arriving
in a queue, or HTTP requests. Lambda automatically manages the underlying
infrastructure, so developers need not worry about servers, virtual machines, or
operating systems.

As demand for aserviceincreases, AWS Lambda can automatically allocate additional
resources to handle the increased load. This eliminates the need for developers to
manage capacity or provision new servers. It is also possible to build and deploy
complex applications using AWS Lambda, which is integrated with other AWS
services, such as Amazon S3, Amazon API Gateway, and Amazon DynamoDB.

Features of AWS Lambda

e Event-driven computing: By triggering a function in response to the upload
of a new image to an Amazon S3 bucket, AWS Lambda can be used as an
example of event-driven computing. After performing image processing,
the function can store the processed image back in the S3 bucket, including
resizing and watermarking.

e Microservices architecture: Microservice architectures can be built using
AWS Lambda by creating separate functions for each service, for example.
For instance, a function can be created for handling user authentication,
another for handling image processing, and another for handling payment
processing. This allows for greater scalability and resiliency, as well as
making it easier to deploy and manage individual functions.

e High availability: It is possible to achieve high availability using AWS
Lambda by deploying multiple functions across multiple Availability
Zones. AWS Lambda automatically routes traffic in the event of a failure in
a particular Availability Zone to healthy functions in other zones, ensuring
that the application continues to operate.

¢ Monitoring and logging: Using Amazon CloudWatch Logs to monitor the
logs generated by Lambda functions is an example of how AWS Lambda can
be used for monitoring and logging. In addition to providing insight into

246

Mastering Cloud-Native Microservices

how the application is functioning, this can assist in identifying performance
issues and debugging problems.

Scalability: The use of automatic scaling policies with AWS Lambda can be
used to ensure that the appropriate amount of resources are always available
as an example of how AWS Lambda can be used for scalability. When the
number of function invocations increases, Amazon Web Services Lambda can
automatically provide additional resources to meet the increased demand.

Cost optimization: As an example of how AWS Lambda can be utilized
for cost optimization, factors such as frequency and duration of function
invocations, as well as the cost of storing and transferring data can be
considered. For instance, if a function is only invoked infrequently, it can be
configured to use less resources, reducing costs.

Advantages of AWS Lambda

Cost-effective: AWS Lambda only charges per second of compute time
consumed by an application, making it a cost-effective way to runinfrequently
used applications.

Easy integration: Using AWS Lambda, you can build complex applications
without the need to manage multiple services.

Focus on code: The AWS Lambda service eliminates the need for developers
to manage servers, virtual machines, or operating systems, enabling them to
concentrate on writing code instead.

Disadvantages of AWS Lambda

Cold starts: A cold start can occur when an application has not been used for
an extended period of time. This can increase latency.

Limited resources: AWS Lambda provides limited resources such as memory
and CPU, which may affect the performance of an application.

Debugging challenges: Due to the dynamic nature of the underlying
infrastructure, debugging serverless applications can be more challenging
than debugging traditional applications.

The AWS Lambda service provides a convenient method of building and running
applications through a cost-effective, scalable, and flexible serverless computing
service. In spite of some challenges, including cold starts and limited resources,
AWS Lambda is an extremely popular choice for organizations seeking to build and
deploy serverless applications.

The Serverless Approach 247

Azure functions

In Azure functions, developers can build and run event-driven applications and
microservices without having to manage infrastructure, enabling them to focus
on writing code while Azure handles the underlying infrastructure, scaling, and
maintenance. It is a Serverless compute service provided by Microsoft Azure. The
Azure Functions programming language supports a wide range of programming
languages, including C#, Java, JavaScript, and Python. As a result, it is accessible to
a wide range of developers. During periods of high traffic, the service automatically
scales up and down to handle the load, so organizations do not have to worry about
managing infrastructure during peak periods.

With Azure functions, customers only pay for the resources they use, making it a
cost-effective option for organizations of all sizes. Deployment is easy and can be
performed using a variety of tools and processes, including Azure DevOps and Git.
In addition, Azure Functions can also be integrated into other Azure services, such
as Event Grid, Azure Cosmos DB, and Azure Storage, enabling complex, multi-tier
applications to be developed. In terms of monitoring and logging, Azure functions
providesarich setoflogging and monitoring tools for monitoring and troubleshooting
applications. Additionally, the service provides automatic diagnostics and logging,
capturing performance metrics and system events.

Features of Azure functions

¢ Event-driven computing: The Azure functions can be triggered by a variety
of events, such as data changes, messages, and API calls, making it an
excellent choice for event-driven applications.

e Language support: As Azure functions supports a wide range of
programming languages, including C#, Java, JavaScript, and Python, it is
accessible to a wide variety of developers.

e Automatic scaling: During periods of high traffic, Azure functions
automatically scales up or down to handle the load, so organizations do not
have to worry about managing infrastructure.

e DPay-per-use pricing: In addition, Azure Functions provides a cost-effective
solution for organizations of all sizes, since customers are only charged for
the resources they consume.

e Easy deployment: It is easy to deploy and can be completed using a variety
of tools and processes, such as Azure DevOps and Git.

o Integration with Azure services: With Azure functions, you can build
complex, multi-tier applications that integrate with other Azure services
such as Event Grid, Azure Cosmos DB, and Azure Storage.

248 Mastering Cloud-Native Microservices

¢ Logging and monitoring: The Azure functions platform offers a rich set of
logging and monitoring tools that enable you to track the health of your
applications. These tools enable you to troubleshoot any problems that may
arise.

e Security: The Azure functions platform provides a secure environment,
with features such as role-based access control, security certificates, and
encryption.

e Serverless computing: Azure functions is a great choice for organizations
seeking to reduce operational overhead and improve productivity by
building and running event-driven applications and microservices without
managing infrastructure.

¢ Increased productivity: In addition to eliminating the need to manage
infrastructure, Azure functions allows developers to focus on developing
their applications instead of managing infrastructure.

Disadvantages of AWS Lambda

¢ Limitations on customizing the underlying infrastructure: Due to the
fact that Azure Functions uses a shared infrastructure, customers cannot
customize the underlying infrastructure.

e Cold starts: It is possible for Azure Functions to undergo a cold start, where
the function must be started from a state of dormancy. This can result in a
delay in processing requests.

¢ Performance: Aninfrastructure's performance can be affected by the number
of functions running on it and the size of the resource allocation.

The Azure functions service allows organizations to develop and run event-driven
applications and microservices easily using Serverless compute services. For
organizations seeking to reduce operational overhead and improve productivity,
it is an excellent choice due to its cost-effective pricing, ease of deployment, and
scalability.

Google cloud functions

Cloud functions, offered by Google Cloud, is a serverless computing platform.
Without managing the underlying infrastructure, developers can execute their code
upon specific events, such as the update of a database or the creation of a new file.
As soon as developers upload their code to Google Cloud functions, the platform
automatically provisioned the necessary resources to run the code, scaling up or
down as required. By eliminating the need to manage servers, developers are able to
focus their attention on developing their applications rather than managing servers.

The Serverless Approach 249

As Google Cloud functions supports a variety of programming languages, including
JavaScript, Python, and Go, it can be used to perform a variety of tasks, including
back-end processing and microservice development. Additionally, the platform
integrates with other Google Cloud services, such as Google Cloud Storage,
Google BigQuery, and Google Cloud Pub/Sub, enabling developers to develop
more powerful applications. Google Cloud Functions is an effective solution for
developing and running serverless applications in the cloud that is flexible, scalable,
and cost-effective.

Serverless approach and edge computing

The landscape of cloud computing is constantly evolving, and two notable
advancements have emerged: serverless computing and edge computing. Serverless
architecture allows developers to focus solely on writing code without worrying
about infrastructure management, while edge computing brings computation and
data storage closer to the network edge for improved performance. Combining these
two paradigms brings forth a logical progression that enables even more efficient
and responsive application architectures.

A Perfect Match: Microservices and Serverless at the Edge:

Microservices, an architectural pattern consisting of small, independent, and loosely
coupled services, align perfectly with serverless computing at the edge. Breaking
down applications into smaller, modular services simplifies deployment and
management. Each microservice can be deployed as a serverless function, ensuring
efficient resource utilization and scalability. This approach enables organizations
to distribute workloads across multiple edge nodes, enhancing performance and
responsiveness.

Serverless approaches can benefit edge computing:

¢ Resource Optimization: Due to the limitations of the edge devices, edge
computing resources such as processing power, memory, and storage are
limited. By allocating only the resources necessary for a specific task and
releasing them once the task has been completed, a serverless approach
can help optimize these resources. The result is a reduction in waste and
improved resource utilization, making edge computing applications easier
to deploy and manage.

e Event-Driven Processing: Designed for event-driven processing, serverless
computing is an ideal solution for edge computing scenarios requiring real-
time processing of data. By deploying edge computing in Internet of Things
(IoT) deployments, data collected from sensors can be processed and acted
upon in real time without having to be transmitted to a central data center.

250 Mastering Cloud-Native Microservices

e Easy Deployment: Serverless computing facilitates the deployment and
management of edge computing applications. Developers are able to deploy
their code to the serverless platform and the platform will handle the scaling,
resource allocation, and security for them. By doing so, organizations can
deploy and manage edge computing solutions more easily, even for non-
technical users.

e Cost Effective: In contrast to charging for reserved resources, serverless
computing is designed to be cost-effective as it only charges for the resources
that are used during specific tasks. By doing so, small-scale edge computing
deployments that do not require a large amount of resources all the time can
result in significant cost savings.

¢ Improved Resilience: Considering that edge computing devices can often
be deployed in remote or difficult-to-access locations, it is imperative that
they are deployed in a resilient manner. By providing automatic failover
and disaster recovery capabilities, serverless approaches can enhance
edge computing deployment resilience, ensuring that edge computing
deployments remain operational even in the event of a failure.

For example, how serverless edge computing can benefit traffic management
systems:

This scenario involves a manufacturing company deploying a system that can
provide real-time monitoring of its machines and predictive maintenance alerts. As
part of its performance monitoring systems, the company has installed a network
of sensors and devices on its machines. Edge devices process and analyze this
data to provide predictive maintenance alerts and determine if any maintenance
is necessary. This system can be deployed using a serverless approach, which
reduces infrastructure costs and maintenance requirements for the company. The
sensor data can be processed in real-time using a serverless computing platform that
allocates resources only when necessary and releases them once the processing has
been completed. As a result, deployment and management costs are reduced, and
the processing occurs in real-time, without any delays. Furthermore, a serverless
computing platform ensures that the system is always available and secure, even if
the company does not possess in-house technical expertise.

In this case, the serverless approach has helped the manufacturing company deploy
a cost-effective and scalable industrial IoT solution that allows it to monitor the
performance of its machines in real-time and to provide predictive maintenance
alerts. As a result, the company has been able to improve its maintenance processes,
reduce downtime, and improve its overall operating efficiency.

The Serverless Approach 251

Serverless monitoring and logging

Some of the most popular options for monitoring and logging serverless applications
include Amazon CloudWatch, Microsoft Azure Monitor, and Google Cloud
Monitoring. We briefly discussed some of the other options as well.

Amazon CloudWatch: Specifically designed to monitor and log serverless
applications and resources, Amazon CloudWatch is a monitoring and
logging service provided by Amazon Web Services (AWS). It is possible
to monitor the performance and health of your serverless applications,
including AWS Lambda functions, Amazon API Gateway APIs, and AWS
App Runner applications, in real-time with Amazon CloudWatch. For future
analysis and troubleshooting, you can also log and store your application
logs, metrics, and traces in CloudWatch.

Monitor and log serverless events using CloudWatch:

Real-time Monitoring: Your serverless applications will be monitored in
real-time by CloudWatch, allowing you to quickly identify and respond to
problems as they arise.

Log Management: You can store and analyze all your serverless application
logs in one place with CloudWatch, a centralized log management solution.

Alarm Management: By setting up alerts and notifications based on
predefined metrics and conditions, CloudWatch provides alarm management
capabilities.

Metrics Collection: By collecting and storing metrics from your serverless
applications and resources, CloudWatch allows you to monitor the
performance and health of your applications over time.

Trace Collection: You can easily debug and optimize your serverless
applications using CloudWatch by collecting and storing traces.

In addition to being cost-effective and easy-to-use, CloudWatch is a popular solution
for organizations deploying serverless solutions on Amazon Web Services.

Microsoft Azure Monitor: Asamonitoringand logging service provided by Microsoft
Azure, Microsoft Azure Monitor facilitates the monitoring and troubleshooting of
cloud-based applications and services by organizations. Performance and health
indicators of Azure resources, including Azure functions, a serverless computing
platform, are provided by Azure Monitor.

252

Mastering Cloud-Native Microservices

Serverless monitoring and logging is provided
by Azure monitor

Real-time Monitoring: Real-time monitoring of your serverless applications
allows you to quickly identify and resolve issues.

Log Management: Serverless application logs can be analyzed and stored in
Azure Monitor centralized log management solution.

Alarm Management: Using Azure Monitor, you can set up alerts and
notifications based on predefined metrics and conditions.

Metrics Collection: Monitor the performance and health of your serverless
applications with Azure Monitor, which collects and stores metrics.

Trace Collection: By collecting and storing traces from your serverless
applications, Azure Monitor makes it easy to debug and optimize your
applications.

Integration with Azure Monitor for Containers: Using Azure Monitor for
Containers, you can monitor and troubleshoot containerized workloads,
including serverless functions. By integrating Azure Monitor with Azure
Monitor, you can monitor and troubleshoot your serverless applications and
containers in one place.

Google Cloud Monitoring: Monitor and troubleshoot cloud-based
applications and services with Google Cloud Monitoring, a monitoring and
logging service offered by Google Cloud Platform (GCP). Using Google
Cloud Monitoring, you can analyze the performance and health of GCP
resources, including Cloud Functions.

Serverless monitoring and logging is provided by Google Cloud Monitoring;:

Real-time Monitoring: Monitoring your serverless applications in real time
allows you to identify and resolve issues quickly.

Log Management: Serverless application logs can be stored and analyzed in
one place using Google Cloud Monitoring.

Alarm Management: With Google Cloud Monitoring, you can set up alerts
and notifications based on predefined metrics.

Metrics Collection: With Google Cloud Monitoring, you can monitor the
performance and health of your serverless applications and resources.

Trace Collection: You can easily debug and optimize your serverless
applications with Google Cloud Monitoring, which collects and stores traces.

The Serverless Approach 253

Other popular options

New Relic: Serverless applications and resources are monitored, logged, and
alerted in real time with New Relic. For organizations deploying serverless
solutions across multiple cloud platforms, New Relic supports a wide range
of services and platforms.

Thundra: Serverless observability platform Thundra monitors, logs, and
debugs serverless applications in real time. By providing a detailed view
of serverless functions and underlying infrastructure, Thundra makes
troubleshooting and optimizing serverless applications easier.

Serverless Framework Dashboard: Serverless Framework Dashboard
provides monitoring and logging for serverless applications. Organizations
deploying serverless solutions with the Serverless Framework prefer
Dashboard because it provides real-time monitoring, logging, and alert
management for serverless functions.

Serverless security

The advent of serverless computing has introduced new security challenges that
must be addressed in order to ensure the protection of applications and data. Here
are some best practices and key considerations for securing serverless applications:

Identity and Access Management (IAM): In the context of serverless
computing, IAM is the process of controlling access to serverless resources,
such as functions and APIs. AWS IAM, for example, provides numerous
features that enable users to manage their access to AWS services, including
Lambda. The Lambda function can only be accessible to specific IAM users
or roles by creating an IAM policy.

Encryption: Ensure the confidentiality and privacy of sensitive data by
encrypting it. As an example, when using Amazon Web Services (AWS) S3
for data storage, you can enable server-side encryption for all objects stored
in the bucket. In this manner, all data stored in S3 is encrypted while at rest.

Network Security: Implementing network security measures such as firewalls
and virtual private networks is necessary to protect serverless applications
from network-based threats. With Amazon Virtual Private Cloud (VPC),
you can create a secure network environment for your serverless applications
that prevents unauthorized access to your data and resources.

Input Validation: The input validation process involves checking the data
received by a serverless function before processing it. This prevents attacks
such as SQL injection and cross-cutting. For example, when creating a REST

254 Mastering Cloud-Native Microservices

APT using AWS API Gateway, input validation can be accomplished using
request validation rules, which are defined in the API Gateway configuration.

¢ Resource Access Control: In order to prevent unauthorized access to other
resources, such as databases and APIs, it is crucial to implement appropriate
access control policies and network segmentation for serverless functions.
You can create a security group for Amazon RDS for database storage that
only allows access to the database from specific IP addresses, such as those
used by serverless functions, when using Amazon RDS for database storage.

e Monitoring and Logging: Monitoring and logging are critical components
of a serverless application security strategy. It is also possible to use
CloudWatch to store logs from serverless functions so that real-time detection
and response to security incidents can be accomplished. For example, using
Amazon CloudWatch, you can set up alerts and notifications to monitor the
security and health of your serverless applications.

e Third-Party Components: The functionality of serverless applications is
often extended by third-party components, such as libraries and plugins.
As a result, it is necessary to assess the security of these components and
implement appropriate controls to mitigate potential security risks. For
example, when using a third-party library in your serverless function,
you should verify the security of the library and monitor for updates and
vulnerabilities.

Ultimately, serverless applications must be secured with a combination of appropriate
security controls and best practices, such as IAM, encryption, network security,
input validation, resource access control, monitoring and logging, and third-party
components. By adhering to these best practices, you can ensure the security of your
serverless applications and prevent potential security threats from occurring. The
next chapter will cover cloud-related security in detail.

Best practices for serverless microservices
development

In recent years, serverless computing has become increasingly popular, providing
organizations with a flexible and scalable platform for developing and deploying
applications. Serverless computing has the advantage of enabling the development
and deployment of microservices, which are independent, modular components of
an application that can be developed independently. We will discuss some of the
best practices for developing serverless microservices in this section.

e Start Small: As a first step toward serverless microservices implementation,
it is recommended that you begin small and gradually scale up as needed.

The Serverless Approach 255

This allows you to experiment with different configurations and technologies,
and to make any necessary changes without having to make major changes
to your entire application.

Focus on Functionality: In order for serverless microservices to be
successful, they should be focused on delivering specific functionalities. Each
microservice should have a well-defined purpose and should be designed to
address a specific problem.

Use Event-Driven Architecture: The serverless computing architecture is
based on an event-driven architecture, where functions are triggered by
events, such as a request for a REST API or a message in a message queue. It
is important to keep this in mind when designing serverless microservices,
and to design each microservice to respond to specific conditions.

Implement Monitoring and Logging: Monitoring and logging are critical
components of any application, including serverless microservices. You can
monitor the health and performance of your microservices in real time using
tools such as Amazon CloudWatch, Microsoft Azure Monitor, or Google
Cloud Monitoring.

Use a Configuration Management Tool: It can be challenging to manage
the configuration of multiple microservices when your application grows.
Using a configuration management tool, such as AWS Systems Manager
or HashiCorp Terraform, can enable you to manage and automate the
configuration of your microservices.

Implement Security Best Practices: As with any other application, serverless
microservices are susceptible to security risks. In order to protect against
potential security threats, it is imperative to implement appropriate security
controls, including IAM, encryption, network security, and input validation.

Use a CI/CD Pipeline: A continuous integration and continuous deployment
pipeline, such as AWS CodePipeline or Jenkins, can be used to automate the
process of building, testing, and deploying your serverless microservices.

Design for Resilience: Serverless computing is based on a pay-per-execution
model, which means each function is charged based on how often it is
executed. For this reason, microservices must be designed to be resilient to
failures, such as by using retry logic.

Optimize Cold Starts: Serverless microservice performance can be
significantly impacted by cold starts, which occur when a function is invoked
for the first time after a period of inactivity. It is possible to minimize cold start
times by provisioning more memory, prewarming instances, and optimizing
your code to minimize cold start times.

256

Mastering Cloud-Native Microservices

Use Managed Services: The serverless computing platforms, including
AWS, Azure, and Google Cloud, provide a variety of managed services that
can be used to construct serverless microservices. As an example, you can
reduce the operational overhead of your microservices by using managed
databases, such as AWS DynamoDB or Azure Cosmos DB, or managed
message queues, such as AWS SQS or Azure Service Bus.

Test and Debug Efficiently: Debugging serverless microservices can be
challenging, as it requires you to recreate the execution environment for each
function in order to resolve the issue. As an alternative to using AWS SAM
Local or Azure Functions Core Tools to simulate the execution environment
locally, you can use these tools. Additionally, it is vital that you implement
robust testing practices, including unit testing, integration testing, and end-
to-end testing, to ensure that your microservices function as they should.

Consider Cost Optimization: It is essential to consider cost optimization
when developing serverless microservices because serverless computing
operates on a pay-per-execution basis. By reducing memory sizes,
implementing autoscaling, and monitoring usage patterns, you can identify
and eliminate unnecessary usage in order to reduce costs.

Serverless microservices case studies

These case studies showcase the benefits of using serverless microservices, including
improved scalability, reduced infrastructure costs, and faster time to market.

Netflix: The Netflix service processes and distributes video content in real-
time using serverless microservices. AWS Lambda functions are used to
process and transcode video content in real-time, triggered by events such
as the start of a video by a subscriber. As a result of the platform scaling
automatically, video content is delivered smoothly and without interruptions,
as the functions are also automatically scaled according to demand. Even
during periods of high demand, Netflix is able to provide subscribers with a
high-quality streaming experience.

Capital One: In the Capital One credit decision engine, machine learning
algorithms are used to make credit decisions triggered by events, such as
a customer applying for a loan. These algorithms are constructed using
serverless technologies such as AWS Lambda and API Gateway. During
periods of high demand, the engine can process billions of requests per
month, as the functions are automatically scaled by the platform to meet
demand. Capital One is able to provide real-time credit decisions to its
customers, improving the customer experience and reducing processing
times for loan applications.

The Serverless Approach 257

e The New York Times: AWS Lambda is used to develop the content
management system for the New York Times, which processes incoming
news articles and images, stores the content in a database, and makes it
available for publication. In addition to its scalability, the CMS is highly
secure, with data encrypted at rest and in transit, and it is highly secure,
with the platform automatically managing the scaling of functions based on
demand. As a result, The New York Times is able to manage a large volume
of content and ensure that the content is protected and secure, while reducing
operational overhead and costs associated with managing the CMS.

e Amazon Alexa: Using serverless microservices, Amazon Alexa processes
voice commands and provides relevant information to users via voice
commands. The system is designed to respond to voice commands in real-
time using AWS Lambda and other serverless technologies. As soon as
a user makes a voice request, such as asking for the weather or setting a
reminder, a Lambda function processes the request and provides the user
with the pertinent information. Also, the platform scales the functions to
meet demand, ensuring that Alexa can handle a large number of requests
even during periods of high demand.

It is evident from these examples that organizations can create and deploy cost-
effective, scalable, and secure applications using serverless microservices. By
breaking down complex systems into smaller, independent functions, serverless
microservices provide organizations with the opportunity to focus on delivering
business value, while the platform manages and scales the underlying infrastructure.

Conclusion

From Infrastructure Management to Business Innovation:

Driving Success with Serverless Microservices

In conclusion, the serverless approach has emerged as a popular way to build and
deploy microservices. This is because of its numerous benefits, including reduced
operational overhead, improved scalability, and cost savings. As a result of serverless
microservices, organizations are free to focus on delivering business value without
having to manage the underlying infrastructure. In the event of high demand, the
platform is capable of scaling and managing the infrastructure to ensure that the
microservices remain available and performant.

Additionally, serverless microservices give organizations the option of quickly
and easily modifying and scaling their services as needed without the need for
manual intervention. By responding quickly to changing business requirements,

258 Mastering Cloud-Native Microservices

organizations can ensure that their applications remain relevant and valuable to
their customers while maintaining relevance and value.

'Security by Design for Microservices', our next chapter, will address the construction
and deployment of microservices. As microservices and the cloud become
increasingly popular, it is important to implement security measures that protect
against potential vulnerabilities and threats. Security in the cloud is the primary
concern of top IT executives. Among the most rapidly growing technologies, cloud
computing offers a number of advantages, including flexibility, cost savings, and
accessibility. Cloud computing, however, is associated with a number of security
concerns, and this is the main reason why enterprises hesitate to move to the cloud.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

i
:ﬁ%

{ND)

< JJ CHAPTER 10

Cloud
Microservices -
Security by Design

Introduction

Microservices have become an increasingly popular method of developing and
deploying applications over the past few years. Microservices provide greater
flexibility and scalability, making them an attractive option for organizations looking
to streamline their IT infrastructures.

The benefits of microservices, however, come with new security challenges.
Microservices are designed as distributed systems, so a vulnerability in one
microservice could compromise the entire system as a whole. Additionally, since
microservices are typically deployed in cloud environments, they may be vulnerable
to a variety of external threats.

In order to address these challenges, it is imperative to adopt a "security by design"
approach to building and deploying microservices. This means incorporating
security into the design of the system from the beginning, rather than adding it as
an afterthought.

Key principles of security by design for cloud microservices:

e Authentication and Authorization: The purpose of authentication is
to verify that a user or system is who they claim to be. The purpose of
authorization is to determine what actions the user or system is authorized
to perform. To ensure that only authorized users and systems can access

260

Mastering Cloud-Native Microservices

your microservices, you should use strong authentication mechanisms such
as multi-factor authentication, OAuth, or JWT tokens. As part of this process,
access control policies are implemented in order to determine what actions
each user or system is authorized to perform, such as reading, writing, or
deleting data.

Encryption: The process of encryption involves transforming data into a
secure code in order to protect it from unauthorized access. For microservices,
encryption is important to protect data in transit and at rest. To ensure that
all data transmitted between microservices is encrypted, use HTTPS for
communication between them. Furthermore, ensure that sensitive data
is encrypted before it is stored in a database, and that encryption keys are
securely stored.

Monitoring and Logging: Implement monitoring tools to track system
performance, resource usage, and security events. Monitoring and logging
are crucial for detecting potential security breaches and identifying the root
cause of any problems that may arise. These tools can include real-time
monitoring of log files, as well as automated alerts for suspicious activity.
Ensure that logs are securely stored, as well as implementing a retention
policy to ensure that logs are retained for a period that is appropriate.

Patching and Updating: It is critical that you maintain the security of your
microservices architecture by keeping all software and systems up-to-date
with the latest security patches and updates. Implement a patch management
process to ensure that all updates are applied in a timely manner, not just the
microservices themselves, but the underlying infrastructure and operating
system as well.

Separation of Concerns: By separating your microservices into multiple
layers, each of which serves a specific purpose and function, you can
minimize the impact of a security breach on the rest of the system. This
involves breaking down the functionality of your system into smaller, more
manageable pieces, followed by the implementation of appropriate security
controls at each layer. Furthermore, this prevents unauthorized access to
critical parts of the system.

Testing: Itis crucial to conduct rigorous security testing on your microservices
in order to identify potential weaknesses and vulnerabilities. Automated
testing can be performed using tools such as penetration testing, vulnerability
scanning, and fuzz testing; manual testing may include code reviews, threat
modelling, and red team/blue team exercises. To identify any potential
weaknesses in how the microservices interact with each other, it is important
to test not only individual microservices, but also the entire system.

Cloud Microservices - Security by Design 261

It is possible to ensure that your microservices architecture is secure and resistant to
potential attacks by incorporating these principles into the architecture. Remember,
security is not a one-time effort, but is a continuous process that requires constant
attention and adaptation to changing threats.

Structure

In this chapter we will discuss following topics:

Cloud Microservices - Security by Design
Authentication and Access Control
o Authentication and authorization mechanisms in cloud microservices
o Role-based access control (RBAC)
o Multi-factor authentication (MFA)
o Access control lists (ACLs)
Communication Security
Data Security
o Data security and encryption techniques for microservices
o Security of data in transit and at rest
o Immutable infrastructure
Container Security
Monitoring and Incident Response
Compliance and Risk Management
o Compliance and regulatory considerations
o Threat modelling
o Penetration testing
Infrastructure Security
Threat Detection and Response
Continuous Security Monitoring

Conclusion

Objectives

The objective of learning "Cloud Microservices - Security by Design' covering
authentication and access control, communication security, data security, container

262 Mastering Cloud-Native Microservices

security, monitoring and incident response, compliance and risk management is to
develop an in-depth understanding of security principles and practices, which are
essential in designing and implementing secure microservice architectures.

The specific objectives of this chapter is to equip you with and understanding of
Security aspect including:

¢ Knowledge about different types of security threats and risks associated
with cloud microservices.

e Learning about the best practices for implementing authentication and
access control mechanisms for microservices.

¢ Understanding the importance of communication security and how to
implement secure communication channels between microservices.

¢ Gaining knowledge about different data security techniques and how to
protect sensitive data in microservices.

e Learning about the best practices for monitoring and incident response in
microservices to detect and respond to security incidents in real-time.

¢ Understanding theregulatory compliance requirements and risk management
strategies for cloud microservices.

As a result of learning "Cloud Microservices - Security by Design", learners will
acquire the knowledge and skills necessary to design and implement secure
microservice architectures in the cloud while ensuring compliance with regulatory
standards and managing security risks effectively.

Cloud Microservices - Security by Design

In today's fast-paced and dynamic business environment, microservices-based cloud
applications have become increasingly popular due to their scalability, agility, and
cost-effectiveness. However, the distributed nature of microservices architecture
and the use of cloud services introduce new security challenges that need to be
addressed to ensure the confidentiality, integrity, and availability of the system.
In this context, authentication and access control, communication security, data
security, container security, monitoring and incident response, compliance and risk
management, infrastructure security, threat detection and response, and continuous
security monitoring are crucial components of a comprehensive security strategy
for microservices-based cloud applications. In this chapter, we will discuss each of
these components in detail and highlight the security mechanisms and best practices
that can be used to secure a microservices-based cloud application. For example, as
illustrated in Figure 10.1, Cloud Microservices - Security by Design.

Cloud Microservices - Security by Design 263

/ Cloud Microservices - Security by Design \

Authentication and Communication . . . Monitoring and
- . Data Security Container Security .
Access Control Security Incident Response

Compliance and Risk Infrastructure Threat Detection and Continuous Security
Management Security Response Monitoring

k Figure 10.1: Cloud Microservices - Security by Design /

Authentication and access control

An important aspect of cloud microservices security is authentication and access
control. Microservices architecture involves dividing a large application into smaller,
independent services that can communicate with each other. A microservice can
have its own authentication and access control system.

Authentication and authorization mechanisms
in cloud microservices

Cloud microservices require authentication and authorization mechanisms to verify
the identity of users and systems and to control access to resources. Here are some
common mechanisms used for authentication and authorization:

e OAuth: For cloud microservices, OAuth is a widely used authentication
and authorization protocol. By providing access tokens to authorized
users, OAuth allows users to grant access to their resources to third-party
applications without sharing their credentials. As part of OAuth, users are
provided with access tokens that can be used to access protected resources.

e OpenID Connect: This authentication protocol is based on the OpenlID
protocol, which was developed on top of OAuth. Through OpenID Connect,
users can log in to applications using their existing social media or email
accounts. Applications can use OpenID Connect to verify users' identities
and obtain basic information about their profiles.

e JSON Web Tokens (JWT): A JWT is a secure means of transferring claims
between parties. JWTs are self-contained tokens that contain information
about the user or system and are digitally signed to ensure their authenticity.
Frequently, cloud microservices use JWTs to implement authorization and
access control policies.

264 Mastering Cloud-Native Microservices

e SAML: Security Assertion Markup Language (SAML) is an XML-based
standard for exchanging authentication and authorization information
between parties. By using SAML, users are able to access multiple
applications without having to log in to each application separately. SAML is
commonly used in enterprise environments to provide single sign-on (SSO)
functionality.

Authentication and authorization mechanisms should be selected based on the
specific requirements of your application as well as the resources that you want
to protect. To ensure the effectiveness of your authentication and authorization
mechanisms over time, it is important to select one that is secure, intuitive, and
interoperable. Additionally, it is important to properly configure and maintain your
authentication and authorization mechanisms.

Role-based access control (RBAC)

Among the most widely used methods of access control in cloud microservices
is RBAC, which is a method for controlling access to resources based on the roles
assigned to users within an organization or system. In RBAC, users are assigned
roles, and each role is assigned a set of permissions which determine what actions
they are permitted to perform.

Each role in an RBAC system is defined by a set of permissions that allow users to
access specific resources and perform specific actions. As an example, a developer
can be assigned the role of "developer," which allows them to access the development
environment and modify code, while a tester can be assigned the role of "tester,"
which enables them to access the testing environment and execute test cases.

RBAC has several benefits for cloud microservices:

e Simplifies Access Control Management: By defining permissions based
on roles rather than individual users, RBAC simplifies access control
management. As a result, access control policies are less administratively
burdensome, and users are able to ensure that they have access to the
resources they need to do their jobs more easily.

e Enforces Least Privilege: By ensuring that users have only the permissions
they need to perform their job responsibilities, RBAC enforces the principle
of least privilege. As a result, accidental or intentional data breaches caused
by users accessing resources they are not permitted to access are minimized.

e Increases Security: It prevents unauthorized access and protects against
insider threats by ensuring that only authorized users have access to
resources.

Cloud Microservices - Security by Design 265

The implementation of RBAC requires careful planning and design to ensure that the
roles and permissions are appropriate for the specific use case you are implementing.
To ensure that your RBAC policies remain effective in preventing unauthorized
access to your resources, it is important to review and update them regularly.

For example, imagine that you have a microservices application that provides access
to customer data. The application has the following roles:

¢ Anadministrator has full access to all customer data, has the ability to create
and modify user accounts, and can change access control policies.

e Managers have access to customer data for the customers they manage, and
they can create and modify user accounts for the employees they supervise.

e Asalesperson has access to customer data for the customers they are assigned
to, and can create and modify their own user accounts.

e Staff members can access customer data in order to provide customer support
and can create and modify their own user accounts.

The permissions associated with each role describe what actions the user is permitted
to perform. For example, the Salesperson role may have the following permissions:

e View customer data for customers they are assigned to.
e Edit customer data for customers they are assigned to.
e Create and view their own user account.

As part of RBAC implementation, each user is assigned to one or more roles.
For example, a salesperson might be assigned to the salesperson role, while an
administrator might be assigned to the administrator role. Depending on the roles
and permissions associated with those roles, access control policies can be defined.
For example, a policy may permit salespeople to view and edit customer data for the
customers with which they are assigned, while denying them access to data for all
other customers.

The role-based access control system simplifies management and reduces error
risk by allowing administrators to manage access control policies based on roles
rather than individual users. Additionally, RBAC ensures that users have only the
permissions they need to perform their job responsibilities, reducing the risk of
accidental or intentional data breaches.

Multi-factor authentication (MFA)

MFA is a security mechanism used in cloud microservices to prevent unauthorized
access to resources. It requires users to provide two or more forms of authentication
before granting access to one system, application, or data.

266 Mastering Cloud-Native Microservices

The most common types of factors used in MFA are:

¢ Something the user knows (such as a password, PIN, or answer to a security
question)

¢ Something the user has (such as a smart card, token, or mobile device)

e Something the user is (such as a biometric, such as a fingerprint or facial
recognition)

There are several types of attacks that can occur against a password, so MFA provides
an additional layer of security. By requiring multiple factors, MFA makes it more
difficult for an attacker to gain access to a system or application, even if one factor
has been compromised.

Here are some of the benefits of using MFA in cloud microservices:

e Improved Security: Multiple forms of authentication improve security by
making it harder for attackers to gain unauthorized access to resources.

e Reduced Risk of Credential Theft: Even if an attacker obtains a user's
password, they would still need the other authentication factor to gain
access, so MFA can reduce the risk of credential theft.

e Compliance: To ensure sensitive data is protected, many compliance
frameworks and regulations require the use of multi-factor authentication
(MFA).

Cloud microservices can be provided with a variety of MFA solutions, including
time-based one-time passwords (TOTPs), SMS codes, and push notifications. When
choosing an MFA solution, you need to ensure it meets your security requirements
and integrates well with your cloud microservices platform.

In addition, it is important to note that MFA is not a silver bullet and should be used
in conjunction with other security measures, such as RBAC and regular security
audits, in order to provide a comprehensive security program.

Access control lists (ACLs)

The use of ACLs in cloud microservices allows users or groups to control access to
resources based on their identities or the groups they belong to. The ACL is used
to specify which users or groups are permitted to perform specific actions on a
resource, such as reading, writing, or executing.

Each entry in an ACL specifies the type of access (read, write, execute, and the like),
the user or group, and whether the permission is granted or denied.

Cloud Microservices - Security by Design 267

In contrast to traditional file permissions, which allow only read, write, and execute
permissions on files and directories, ACLs provide a more fine-grained approach to
access control. With ACLs, you can specify permissions for specific users or groups,
allowing for more granular control over access to resources.

Here are some of the benefits of using ACLs in cloud microservices:

Improved Security: By providing a finer-grained access control mechanism,
ACLs increase security by reducing the possibility of unauthorized access to
data.

Flexibility: Access control policies can be more easily defined with ACLs,
since you can specify permissions for specific users or groups.

Simplified Management: With ACLs, you can delegate control over
specific resources to other users or groups rather than relying on a single
administrator to manage everything.

Communication security

Security protocols should be implemented in cloud microservices to ensure
communication security and protect sensitive information from unauthorized
access. Here are some best practices for implementing security protocols in cloud
microservices:

Use Transport Layer Security (TLS) for encryption: TLSS is a protocol for
encrypting network communications. Using TLS can help prevent man-in-
the-middle attacks, eavesdropping, and data tampering by encrypting data
transmitted between a client and a server. TLS can be implemented at an
application level in a microservice architecture using tools such as OpenSSL
or Let's Encrypt. As an example, you can build a secure server using TLS
using the https module in a microservices-based application built with
Node js.

Implement authentication and authorization: The authentication and
authorization of microservices are crucial components of microservices
security. Authentication verifies the identity of users and microservices
while authorization determines which actions can be performed by a
user or microservice. For example, a popular approach for implementing
authentication and authorization in microservices is to use OAuth 2.0 with
JSON Web Tokens (JWT). JWT is a compact, URL-safe way to represent
claims to be transferred between two parties. Spring Security and Spring
Cloud Security can be used to implement OAuth 2.0 with JWT in a
microservices-based application built using Spring Boot.

268

Mastering Cloud-Native Microservices

Use mutual SSL authentication: As a security technique, mutual SSL
authentication, also known as two-way SSL authentication, requires that both
the server and client authenticate each other through SSL/TLS certificates.
It provides an additional level of security, ensuring that only authorized
clients can access the server and only authorized servers can access the
client. Mutual SSL authentication can be implemented using certificates.
The Microsoft.AspNetCore.Authentication. Certificate package can
be used to implement mutual SSL authentication in a microservices-based
application built using ASP.NET Core.

Implement rate limiting: The purpose of rate limiting is to limit the number
of requests a client may make to a server within a given period of time.
In addition to preventing denial-of-service attacks, rate limiting can also
improve the application's performance and reliability. In a microservices-
based application built on Kubernetes, you may use Istio to implement
rate limiting at different levels, such as at the application level or the API
gateway level.

Use virtual private networks (VPNs): It is a secure and private network
connection that enables remote users or microservices to connect to a private
network as if they were directly connected to it. VPNs are a method of
establishing a secure, private network connection over a public network using
a number of tools, including OpenVPN and WireGuard. OpenVPN can be
used to create a VPN between microservices in a Docker-based application.
It contributes to the security of communication between microservices and
prevents eavesdropping and data tampering.

Secure Shell (SSH): SSH provides encryption, data integrity, and
authentication for establishing secure shell connections between a client
and a server. In a microservices-based application, SSH can be used for
establishing secure communication channels between microservices.

Service Mesh: Service mesh is a dedicated infrastructure layer for managing
service-to-service communication in a microservices-based application. As
well as load balancing, service discovery, and traffic management, it also
offers security features such as mutual TLS authentication, rate limiting, and
access controls. Istio, Linkerd, and Consul are popular implementations of
service mesh.

JSON Web Tokens (JWT): A popular approach to authentication and
authorization within microservices is the use of JWT. JWT is a compact,
URL-safe method of expressing claims that can be transferred between
parties. In a microservices-based application, JWT can be used to establish
secure communication channels between microservices, without the need
for session state. JWT can be used to securely transmit authentication and
authorization information between microservices.

Cloud Microservices - Security by Design 269

Network Segmentation: Using network segmentation, microservices can
be isolated and protected from potential attacks by dividing a network
into smaller subnetworks. As part of network segmentation, virtual LANs
(VLANS), virtual private networks (VPNs), or software-defined networking
(SDN) can be used.

Data security

Here are some key data security measures to consider when working with cloud-
based microservices:

Data security and encryption techniques for
microservices

As part of the implementation of security protocols in cloud microservices, data
security is an essential component. A microservice-based application usually
exchanges and processes sensitive data, which must be protected from unauthorized
access and data breaches. The following techniques are commonly used to secure
data in microservices-based applications:

Encryption: As part of encryption, data is encoded in a way that only
authorized parties can access it. Encryption can be used to secure data both
at rest (when it is stored) and during transit (while it is being transmitted).
In microservices-based applications, there are several encryption techniques
that are used, including symmetric key encryption, asymmetric key
encryption, and hashing. Several encryption tools, including OpenSSL and
Berypt, can be used to implement encryption in microservices.

Digital Signatures: In order to ensure data integrity and authenticity, digital
signatures are used. A digital signature is a mathematical method for verifying
the authenticity of digital messages or documents. By implementing digital
signatures in microservices, you can ensure that data has not been tampered
with during transmission or storage. Tools such as GnuPG and OpenSSL can
be used to implement digital signatures.

Access Control: Using access control, data and services are restricted based
on the identity or role of the user. You can implement access control at the
application level by using tools such as OAuth or OpenID Connect, or you
can implement it at the infrastructure level by using tools such as Amazon
Web Services (AWS) Identity and Access Management (IAM).

Tokenization: As part of tokenization, sensitive data is replaced with non-
sensitive data called tokens, which can then be used in place of the sensitive
data, reducing the risk of data breach. The tokenization process can be used for

270

Mastering Cloud-Native Microservices

protecting sensitive information such as credit card numbers, social security
numbers, and other personally identifiable information. Microservices can
be implemented using tools such as Stripe and CyberSource.

Masking: As part of masking, sensitive data is replaced with non-sensitive
data of the same type, but without any relationship to the original data.
In storage or transmission, masking can protect sensitive data. In order to
implement masking in microservices, tools such as Oracle Data Masking and
IBM InfoSphere Optim can be utilized. Masking can be used to protect data
such as credit card numbers, social security numbers, and other personally
identifiable information.

Security of data in transit and at rest

Securing data at rest (in storage) and data in transit (during transmission) are both
critical aspects of securing data in microservices-based applications. Here are some
common techniques used to secure data at rest and data in transit:

Security of data Data at Rest: Data at rest refers to data that is stored on a
physical device, such as a hard drive, solid-state drive, or USB drive. This
data is vulnerable to unauthorized access, theft, and damage, so it is essential
to ensure its security using below methods:

Encryption: By encoding the data in such a manner that only authorized
parties can access it, encryption is one of the most commonly used techniques
for protecting data at rest. There are two types of encryption: symmetric
key encryption and asymmetric key encryption. During symmetric key
encryption, the same key is used to encrypt and decrypt the data, whereas
for asymmetric key encryption, different keys are used. A microservices-
based application might also utilize a hashing technique, which is a one-
way process that converts data into a fixed-size string of characters. A
hashing technique is commonly used to store passwords and other sensitive
information. AWS Key Management Service (KMS), for example, provides
an easy-to-use and secure method for managing encryption keys used to
secure data at rest. As well as supporting symmetric and asymmetric key
encryption, it provides a range of key management functions, including
rotation and versioning of keys.

Access Control: By using tools such as OAuth or OpenID Connect, access
control can be implemented at the application level to restrict access to data
and services based on the user's identity or role. In order to implement
access control at the infrastructure level, tools such as Amazon Web Services
(AWS) Identity and Access Management (IAM) or Google Cloud Identity
and Access Management can be used. It is possible to implement access
control in a microservices-based application that stores sensitive data using

Cloud Microservices - Security by Design 271

OAuth, which allows users to grant third-party applications access to their
data without sharing their login credentials, as an example. A user could,
for example, use OAuth to allow a financial management application to
access their bank account information without sharing their banking login
credentials.

¢ Redundancy: A redundancy system ensures that data will not be lost in
the event of a system failure through the replication of data across multiple
servers or storage devices. AWS offers a number of services that can be used to
implement data redundancy in microservices-based applications, including
Amazon S3 for storing and retrieving files, Amazon EBS for storing blocks,
and Amazon RDS for storing databases.

e Security of data Data in Transit: Data in transit refers to data that is being
transmitted from one location to another over a network, such as the
internet or a local network. This type of data is vulnerable to interception,
modification, and theft, so it is important to take steps to secure it using
below methods:

e Transport Layer Security (TLS): This protocol is used to secure
communication over the internet by encrypting data during transmission.
As an example, Let's Encrypt provides TLS certificates for websites and
applications. Let's Encrypt can be used to encrypt data during transmission
to secure communication between microservices.

e Virtual Private Network (VPN): Using a VPN, users can securely connect
to a private network over the internet. VPNs are also useful for protecting
data during transmission by encrypting it. For instance, OpenVPN is a free,
open-source VPN that can be used to establish a secure connection between
microservices. This VPN uses TLS encryption to protect communication
between microservices.

e Secure Sockets Layer (SSL): SSL was a deprecated protocol for securing
communication over the internet. SSL encrypts data during transmission
in order to protect data in transit. As an example, OpenSSL is a free, open-
source toolkit that can be used to implement SSL encryption in microservice-
based applications. It offers a range of cryptographic features, including
encryption, decryption, digital signatures, and hashes.

Immutable infrastructure

By making the infrastructure immutable, which means that it cannot be altered after
deployment, immutable infrastructure improves the security of microservices-based
applications. By doing so, unauthorized changes to the system are prevented, the
attack surface is reduced, and any changes to the infrastructure are tracked and
intentional.

272 Mastering Cloud-Native Microservices

Whenever a new version of a microservice is deployed, a new server or container
is created to host that version in an immutable infrastructure model. Once the old
server or container has been destroyed, any changes made to the old service version
are then discarded. This ensures that the system remains in a known and secure
state, and reduces the risk of vulnerabilities being introduced through changes made
to the infrastructure.

The following are examples of techniques and tools used to implement immutable
infrastructure in microservice-based applications:

¢ Containerization: The containeris a lightweight, portable, and self-contained
environment that may be used to host microservices. By deploying a new
container for each new version of a microservice, containers can be used to
implement immutable infrastructure, which ensures that the infrastructure
remains unchanged after deployment. Containerization platforms such
as Docker are popular for implementing immutable infrastructure in
microservices-based applications.

¢ Configuration Management: In addition to automating the deployment of
infrastructure components, such as servers and databases, conﬁguration
management tools can be used to ensure the integrity and consistency of the
infrastructure. By automating the deployment of new servers or containers
for each new version of the microservice, configuration management tools
can be utilized to implement immutable infrastructure. As an example,
Ansible can be used to implement immutable infrastructure in microservice-
based applications using configuration management.

e Infrastructure-as-Code (IaC): Managing infrastructure components using
code is known as Infrastructure-as-Code. Immutable infrastructure can be
implemented using IaC by defining the desired state of infrastructure as code
and automatically creating new infrastructure components when changes are
made. For example, Terraform is a popular tool for implementing immutable
infrastructure in microservices-based applications.

Container security

Microservices-based applications require container security, which is a crucial aspect
of securing them. Containers provide isolation and portability, which makes them
an ideal choice for hosting microservices. However, containers can also introduce
security challenges, including vulnerabilities in container images, insecure image
registry systems, and runtime security issues. Some examples of techniques and tools
for securing containers in microservices-based applications are presented following;:

e Secure Image Creation: To create secure container images, it is important
to start with a minimal and secure base image, remove all unnecessary

Cloud Microservices - Security by Design 273

components, and verify that all necessary software components are up-to-
date and do not have known vulnerabilities. The container image must also
be constructed in a secure environment to prevent tampering. For example,
Docker Content Trust can be used to guarantee that container images are
signed and verified in order to prevent tampering.

Image Registry Security: The purpose of image registries is to store container
images and make them available to the container runtime environment.
It is important to make sure that the image registry is protected from
unauthorized access, tampering, and distribution of malicious images. One
such open-source image registry is Harbor, which provides features such
as role-based access control, vulnerability scanning, and image signing and
verification.

Container Runtime Security: In order to ensure container runtime security,
the container runtime environment must be secured and the containers
must be isolated from each other and the host system. It is important to
ensure that the container runtime environment is up-to-date, as well as that
the containers are configured to run in an isolated and secure manner. As
an example, Kubernetes provides several security features, including Pod
Security Policies, that can be utilized to ensure containers are running in a
secure and isolated environment.

Container Orchestration Security: As part of a microservices-based
application, container orchestration is the process of managing and scaling
containers. It is essential that the container orchestration system be secure,
as well as the containers being deployed and managed securely. A popular
service mesh such as Istio can be used to secure container communication
within a microservices-based application by providing features such as
mutual TLS authentication, access control, and traffic management.

Microservices-based applications can be secured by utilizing these techniques
and tools against container vulnerabilities, image tampering, and other security
challenges associated with containerization.

Monitoring and incident response

Monitoring and incident response are essential components of microservices-based
applications. However, as microservices can be distributed across multiple servers
and containers, it may be difficult to detect and respond to security threats. In
microservices-based applications, the following techniques and tools are used for
monitoring and responding to incidents:

Centralized logging and monitoring: With centralized logging and
monitoring, a unified view of the microservices environment is provided,

274 Mastering Cloud-Native Microservices

allowing proactive detection of security incidents. It is crucial to collect logs
from all the microservices and centralize them for analysis and monitoring.
Monitoring tools can be used to analyze logs in real time and to detect
security incidents. Using Elasticsearch and Kibana, microservice logs can be
collected, analyzed, and visualized.

¢ Security monitoring and incident response in microservices environments:
An important component of security monitoring in microservices is
analyzing the behavior of the microservices and detecting suspicious
behavior. Detecting and responding to security incidents, such as attacks
or data breaches, involves monitoring network traffic, system events, and
user activity. The Elastic Stack can be used in microservices environments
to monitor security events and alerts and to provide automated incident
response. Log collection, analysis, visualization, and real-time alerts are
provided by Elasticsearch, Logstash, Kibana, and Beats.

¢ Distributed Tracing: With distributed tracing, it is possible to identify
performance issues and detect security incidents by providing insight into
the flow of requests between microservices. It is important to trace requests
across multiple microservices and to correlate logs and metrics from different
microservices. As an example, OpenTelemetry provides a framework for
distributed tracing of microservices environments as an open-source project.
With OpenTelemetry, developers can instrument their microservices to
capture trace data and send it to a centralized system for analysis.

These techniques and tools enable microservice-based applications to be monitored
for security incidents and threats, and incidents can be detected and responded to
quickly and efficiently.

Compliance and risk management

The security of microservices must include compliance and risk management.
The storage and processing of sensitive data by microservices-based applications
requires adherence to relevant regulations and standards, as well as protection
against threats and vulnerabilities, in addition to ensuring compliance with relevant
regulations and standards.

Compliance and regulatory considerations

In microservices-based applications, compliance and risk management techniques
and tools can be found here. Security for microservices relies heavily on compliance
and regulatory considerations. In order to ensure the protection of sensitive data

Cloud Microservices - Security by Design 275

stored and processed by microservices-based applications, they must adhere to
relevant regulations and standards. Security of microservices requires consideration
of the following compliance and regulatory issues:

General Data Protection Regulation (GDPR): In the European Union,
the GDPR regulates the privacy and protection of data of individuals.
Organizations must comply with GDPR when storing or processing personal
data of EU citizens. According to GDPR, organizations must implement
appropriate organizational and technical measures to protect personal data.

Health Insurance Portability and Accountability Act (HIPAA): A US
law called HIPAA regulates the use and disclosure of protected health
information (PHI). Microservices-based applications that store or process
PHI are required to comply with HIPAA. In order to protect PHI, organizations
must implement appropriate technical and organizational measures.

Payment Card Industry Data Security Standard (PCI DSS): Microservices-
based applications that process credit card payments must comply with
PCI DSS, a standard that outlines security requirements for companies
that process credit card payments. The PCI DSS requires organizations to
implement appropriate technical and organizational measures to protect
cardholder data.

ISO 27001 (Information Security Management System): The ISO 27001
standard specifies the requirements for establishing, implementing,
maintaining, and continually improving an information security
management system (ISMS). For the protection of sensitive data stored or
processed in microservices-based applications, an ISMS based on ISO 27001
can be implemented.

Microservice-based applications can ensure that the data is protected and minimize
the risk of data breaches and other security incidents by complying with relevant
regulations and standards.

Threat modeling

Identifying, evaluating, and prioritizing potential threats to microservices-based
applications are the objectives of threat modeling. It involves identifying the assets
that need to be protected, potential attackers, and the methods that attackers can use
to exploit vulnerabilities in the application. Threat modeling can help minimize the
risk of security incidents by identifying and addressing vulnerabilities before they
can be exploited by attackers.

276 Mastering Cloud-Native Microservices

The following are some key steps involved in threat modeling for microservice-
based applications:

o Identify the assets: A threat model begins with identifying the assets
that need to be protected, such as sensitive data, servers, databases, and
applications.

e Create an architecture diagram: A microservices-based application
architecture diagram should be created once the assets have been identified,
and this diagram should include all components of the application, such as
servers, databases, APIs, and external dependencies.

¢ Identify potential threats: As a next step, it is important to identify potential
threats to the application. This can be accomplished through brainstorming
with the team or through the use of tools that assist in this process.

e Analyze the potential impact: Following the identification of potential
threats, the next step is to assess the likelihood of the threats occurring, as
well as the potential impact of the threats on the application.

¢ Prioritize threats: Threats can be prioritized based on their potential impact,
allowing us to determine which threats require immediate attention and
which can be addressed later on.

e Develop mitigation strategies: Following the prioritization of threats,
mitigation strategies to address the vulnerabilities can be developed. These
strategies may include implementing security controls, amending the
application architecture, or updating the code.

Microservices-based applications can identify potential vulnerabilities and
prioritize efforts to address them by performing threat modeling. By doing so, data
breaches and other security incidents are minimized, and compliance with relevant
regulations and standards is ensured.

Penetration testing

It is a method of testing the security of microservices-based applications by
simulating an attack on the application, also known as pen testing. Penetration
testing aims to identify vulnerabilities that may be exploited by attackers and
provides recommendations for improving application security. Microservices-
based applications require penetration testing in order to comply with compliance
regulations and manage risks.

The key steps involved in conducting a microservices penetration test are as follows:

e Scoping: A penetration test begins with the identification of the systems,
applications, and data that will be tested, as well as the specific security
controls that will be examined.

Cloud Microservices - Security by Design 277

Reconnaissance: After obtaining information about the application that
will be tested, the next step is to gather information about the network
architecture, the operating system, and the application itself.

Vulnerability scanning: An automated vulnerability scan identifies potential
vulnerabilities within an application by using automated tools.

Exploitation: Following the identification of potential vulnerabilities, the
next step is to attempt to exploit them. This involves utilizing various tools
and techniques to gain unauthorized access to the application.

Reporting: Upon completion of the penetration test, a report is generated
containing a summary of the vulnerabilities identified, the impact of the
vulnerabilities, and recommendations for remedying the vulnerabilities.

Microservices-based applications are able to identify vulnerabilities and prioritize
efforts to resolve them by conducting regular penetration testing. In addition
to reducing the risk of data breaches and other security incidents, this ensures
compliance with relevant regulations and standards.

Infrastructure security

Microservices-based applications deployed in the cloud require a high level
of infrastructure security. Following are some key steps involved in ensuring
infrastructure security:

Ensuring secure configuration: This involves configuring firewalls, access
controls, and logging in accordance with best practices for securing the cloud
platform. In AWS, for example, organizations can enforce security policies
and monitor activity by using services such as AWS Config, AWS CloudTrail,
and AWS Identity and Access Management (IAM).

Apply security patches and updates regularly: In order to ensure that the
infrastructure remains protected against known vulnerabilities, organizations
should apply security patches and updates on a regular basis. For example,
in AWS, organizations may use services such as AWS Systems Manager to
automate the management of patches across multiple instances.

Enforcing strong password policies: By enforcing password complexity
and rotation policies and limiting the number of administrative users,
strong password policies can help to prevent unauthorized access to the
infrastructure. It is possible for organizations to enforce strong password
policies and limit administrative access in AWS using AWS IAM.

Limiting network exposure of microservices: In order to limit network
exposure, network security groups, firewalls, and other security controls
can be used. Only microservices requiring access to the internet or external
networks should be exposed to the network. It is possible for organizations

278

Mastering Cloud-Native Microservices

to limit network exposure by using AWS VPCs and security groups, for
instance.

Implementing secure backups and disaster recovery plans: To ensure business
continuity in case of a security incident or other disruption, it is necessary to
have a disaster recovery plan in place. Organizations can use services such as
AWS Backup to automate backup and recovery of data by securely storing and
testing backups regularly. For example, organizations can utilize AWS Backup
services to ensure backups and recovery of data are performed efficiently.

By following these steps, organizations can ensure that the underlying cloud
infrastructure for their microservices-based applications is secure and can minimize
the risk of data breaches and other security incidents.

Threat detection and response

A critical part of cybersecurity is threat detection and response, as it assists
organizations in identifying and responding to potential security threats. In addition
to improving threat detection, incident response plans help organizations respond
quickly to incidents by using machine learning and artificial intelligence.

As examples of how machine learning and artificial intelligence can be used in threat
detection and response, we provide the following:

Machinelearningand Alforidentifyingsecurity threatsand vulnerabilities:
To detect security threats and vulnerabilities in cloud infrastructure, cloud
service providers can analyze the vastamount of data generated by their cloud
infrastructure using machine learning and artificial intelligence algorithms.
For example, an artificial intelligence system could monitor cloud instances
and storage for anomalous behavior, such as unusual traffic patterns,
unauthorized access attempts, or unexpected changes to the configuration or
data. Additionally, machine learning models may be used to identify known
attack patterns and malware signatures and identify potential threats before
they cause damage.

Incident response plans for responding quickly to security incidents: As
part of their incident response plans, cloud service providers should specify
how they will handle various security incidents. It is important that these
plans include procedures for detecting the nature and scope of an incident,
isolating affected systems, and restoring operations as soon as possible. A
cloud service provider, for instance, should have a plan in place to investigate
a data breach quickly, contain the damage, and notify affected parties as soon
as possible if a cloud customer reports a data breach.

Monitoring and responding to suspicious activity, such as DDoS attacks:
By combining automated and manual monitoring tools, cloud service
providers can detect and respond to suspicious activity in their infrastructure

Cloud Microservices - Security by Design 279

in a timely manner. In order to identify traffic patterns associated with
DDoS attacks and block traffic from the offending IP addresses, they can
use network monitoring tools. To identify and block attacks targeting cloud
instances, storage, and other resources, they can also use intrusion detection
and prevention systems (IDS/IPS).

Cloud security relies heavily on threat detection and response, and cloud service
providers can ensure the safety of their cloud infrastructure and protect the data
of their customers by using machine learning and artificial intelligence to identify
security threats and vulnerabilities, incident response plans, and monitoring for
suspicious activity such as DDoS attacks.

Continuous security monitoring

As part of continuous security monitoring, automated tools and processes are
implemented that scan, detect, and respond to potential security threats within the
cloud environment continuously. Using these tools and processes will ensure that
the cloud environment is secure and free of potential vulnerabilities and threats.

Implementing automated security testing, such as security scanning and
vulnerability assessments: As a result of automated security testing tools
offered by cloud providers, organizations can identify potential vulnerabilities
in their cloud environments. Amazon Inspector, for example, automatically
evaluates the security and compliance of AWS applications. Its goal is to
provide actionable recommendations for remediation of vulnerabilities in
the cloud environment. Another example is Azure Security Center, which
provides continuous security assessment and monitoring of Azure resources.

Implementing continuous security monitoring: Cloud providers also
provide tools and services that enable continuous security monitoring. For
example, AWS CloudWatch enables organizations to monitor and collect
operational data and logs from AWS resources in real-time. Alarms can
be set up so that organizations are made aware of any unusual activity,
allowing them to detect potential security risks. Azure Security Center, for
example, provides continuous security assessment and monitoring of Azure
resources. By using the service, potential security threats can be detected and
mitigation recommendations can be provided.

Proactively monitoring for threats and vulnerabilities: In order to detect
and respond to potential security threats, cloud providers provide real-
time alerts and notifications. AWS, for instance, offers Amazon GuardDuty,
a threat detection service that continuously monitors for malicious activity
and unauthorized behavior within AWS accounts. In order to detect potential
security threats, the service analyzes CloudTrail event logs and VPC flow
logs using machine learning. Another example is Azure Security Center,

280 Mastering Cloud-Native Microservices

which provides alerts for potential security threats, such as network attacks,
malware infections, and suspicious user activity.

¢ Implementing automated security incident response procedures: Cloud
providers provide automated incident response procedures thathelp organizations
respond quickly to potential security incidents. For example, Amazon Web
Services offers AWS Config, which offers automated remediation for security
incidents. AWS Lambda functions can be automatically triggered to remediate
any security violations within the AWS environment using the service.

Conclusion

Building Fortresses in the Cloud:

Mastering Security in Microservices for Resilience and Compliance

In conclusion, having an understanding of the concepts, principles, and best practices
of security in microservices architecture allows learners to develop a comprehensive
understanding of the various security threats and risks associated with cloud
microservices and how to mitigate them effectively.

During the chapter, you have gained an in-depth understanding of different security
aspects such as authentication and access control, communication security, data
security, container security, monitoring, and incident response, as well as compliance
and risk management.

Overall, this understanding will help you to develop and implement a secure
microservices architecture that meets regulatory standards, meets business
requirements, and is resilient to security threats and risks. Learning through a
security-by-design approach allows you to create scalable, reliable, and secure cloud
infrastructure by ensuring security is integrated into the microservice architecture
from the beginning.

In our next chapter, we will discuss the step wise process of migrating on-premises
application to Cloud: A Practitioner's Journey.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

i
5‘%

CHAPTER 11

Cloud Migration
Strategy

Smooth Cloud Migration with a Comprehensive Strategy

Introduction

The purpose of this chapter is to review the concepts we have covered in the last
ten chapters and see how they can be utilized to plan and implement a cloud
migration strategy. As a result of our learnings from cloud-native microservices,
modern application design principles, microservice adoption frameworks, design
patterns for microservices, cloud-powered microservices, monolith to microservices
case studies, inter-service communication for microservices, event-driven data
management for microservices, microservices without servers, and security by
design for microservices.

Planning and executing a cloud migration
strategy

Several benefits can be realized from migrating to the cloud for organizations,
including scalability, flexibility, and cost savings. However, it is a complex process
that requires careful planning and execution. Several key considerations should
be taken into account by organizations when implementing a cloud migration
strategy. In this chapter we will discuss the approach and principles for planning
and executing a Cloud Migration Strategy.

282 Mastering Cloud-Native Microservices

First step is to define migration goals and then build a Migration strategy to achieve
the same.

To begin, itis necessary to assess the current environment, which includes identifying
the applications and systems that are currently running on-premises and their
dependencies. As a result of this assessment, organizations will be able to determine
which applications and systems are suitable for migration to the cloud.

Following this, it is crucial to define the cloud strategy, which includes identifying
which applications and systems should be migrated to the cloud, selecting the cloud
provider, and also determining the cloud deployment model.

Migrating to the cloud requires consideration of application modernization. By
utilizing containerization, microservices architecture, or serverless computing,
organizations can modernize existing applications to make them more cloud-
friendly. It is also beneficial to refactor applications to incorporate cloud-native
services, including databases, storage, and messaging.

When migrating to the cloud, organizations should ensure that their cloud provider
provides appropriate security measures, including encryption, firewalls, and identity
and access management. Security and compliance are critical considerations. There
should also be consideration of compliance requirements, such as HIPAA or GDPR,
and the cloud provider should be capable of meeting these requirements.

An effective migration plan can be created once the cloud strategy has been defined
and the applications and systems have been assessed and modernized. The migration
plan should outline the steps required to migrate applications and systems to the
cloud, as well as how to test and validate the migrated applications to ensure they
are working correctly.

To ensure their cloud environment is performing as expected after migration,
organizations must monitor and optimize it. This includes monitoring applications
and systems to ensure they are performing correctly and optimizing the cloud
environment to ensure the organization is getting the most out of its cloud investment.

In conclusion, planning and executing a cloud migration strategy is a complex
process that requires careful consideration of a range of factors. It is possible for
organizations to successfully migrate to the cloud and benefit from the benefits
associated with cloud computing by following a systematic approach and
implementing best practices and learnings from the areas discussed in this chapter.

Structure

In this chapter we will discuss following topics:
e Cloud Migration Goals
o Capex and Opex Cost Optimization

o Optimize resource consumption & dynamic elasticity

Cloud Migration Strategy 283

o Vendor and application consolidation

o Agility & Innovation via DevOps, Multi-cloud, PaaS, AI/ML, IoT
o Scalability, Flexibility, and Global reach

o Reliability, Availability and Security

o Customer Experience and Insights

o IT Modernization and Integration

o Reduce, consolidate, retire the physical data center footprint

e Cloud Migration Principles

o Security First: Secure the Network, Protect the Data, and Control
Access

o Monitor and Optimize Workloads for Cost

o Deploy infrastructure as code

o Make allocations match Demand

o Automate and implement DevOps practices

o Training the staff for future mode of operations

o Leverage cloud-native services

e (Cloud migration strategy
o Business Goals and Objectives
o Cloud Service Provider Selection
o Data Security and Compliance
o Cost Optimization
o Scalability and Flexibility
o Legacy Systems
o Change Management
o Performance and Reliability
o Governance
o Continuous Improvement
o Migration strategy
o Migration Plan
o Skills and training

284 Mastering Cloud-Native Microservices

o Performance and Optimization
o Data Management

o Vendor Management

o Stakeholder communication

o Organizational Change Management

e Cloud migration life cycle strategy:
o Assessment Stage
o Planning Stage
o Design Stage
o Execution Stage
o Testing Stage
o Cutover Stage

o Post Cutover Stage

e Conclusion

Objectives

In this chapter, you will gain an understanding of the Cloud Migration process, as
well as the goals, principles, strategies, and stages of the life cycle. As a result of this
knowledge, individuals will be able to effectively plan, design, execute, and manage
cloud migration projects while optimizing costs, resources, security, reliability,
scalability, flexibility, and customer satisfaction. Furthermore, this knowledge
will facilitate the integration of IT systems, modernization of legacy systems, and
compliance with regulations related to data security and environmental sustainability.

Cloud migration goals

From on-premises infrastructure to the cloud, cloud migration is the process by
which an organization's IT systems, applications, and data are moved. Several
goals are achieved through cloud migration, including cost optimization, resource
optimization, consolidation of vendors and applications, agility and innovation,
scalability and flexibility, global reach, reliability, availability, security, customer
experience and insights, IT modernization and integration, and reducing the
footprint of physical data centers. For example, as illustrated in Figure 11.1: Cloud
Migration Goals.

Cloud Migration Strategy

285

Cloud Migration Goals

Capex and Opex Cost
Optimization

Optimize resource
consumption and
dynamic elasticity

Vendor and application
consolidation

Agility and Innovation
via DevOps, Multi-
cloud, PaaS, AI/ML,

IoT

Scalability, Flexibility,
and Global reach

Reliability, Availability
and Security

Customer Experience
and Insights

IT Modernization and
Integration

Reduce, consolidate,
retire the physical data

Environmental
sustainability

\

center footprint

Figure 11.1: Cloud Migration Goals

.

Capex and Opex cost optimization

As part of cloud migration, it is essential to optimize capex and Opex costs. In IT,
Capex refers to the capital expenditures associated with purchasing and maintaining
infrastructure and equipment, whereas Opex refers to the operational expenditures
associated with running and maintaining systems and applications.

As a result of cloud migration, organizations can reduce Capex and Opex costs by
eliminating the need to maintain costly hardware, software, and infrastructure. An
organization can eliminate the costs associated with running an email server on-
premises by migrating it to the cloud, for example, eliminating the need for costly
hardware, software licenses, and maintenance.

It is also possible to optimize Capex and Opex costs through the adoption of cloud-
based storage solutions through cloud migration. Organizations can eliminate the
need for expensive on-premises storage equipment, reduce backup and disaster
recovery costs, and only pay for the storage capacity they require with cloud storage.

Optimize resource consumption and dynamic
elasticity

A key objective of cloud migration is to optimize resource consumption and achieve
dynamic elasticity. The amount of computing resources required to run applications
and services is called resource consumption, which refers to how much processing
power, storage, and bandwidth are required. In computing, dynamic elasticity refers
to the ability to scale computing resources according to changing demands.

286 Mastering Cloud-Native Microservices

By using cloud-based services such as Infrastructure-as-a-Service (IaaS) and
Platform-as-a-Service (PaaS), organizations can optimize resource consumption
and achieve dynamic elasticity. As an example, organizations can use elastic scaling
capabilities of cloud-based IaaS services if they migrate their website to the cloud.
It is possible for an organization to automatically scale up its computing resources
during periods of high traffic, and then scale down its resources when traffic levels
return to normal during periods of low traffic.

Utilizing cloud-based load balancers is another example of optimizing resource
consumption and achieving dynamic elasticity as a result of cloud migration. By
distributing traffic between multiple servers, load balancers ensure that no single
server becomes overloaded. Organizations can optimize resource consumption
by migrating to the cloud and using cloud-based load balancers to handle traffic
fluctuations by scaling resources up and down as needed.

Vendor and application consolidation

Cloud migration is aimed at consolidating vendors and applications. Consolidation
reduces costs, streamlines operations, and improves efficiency, and helps
organizations reduce costs. Migration to cloud-based services provided by a
single vendor can assist organizations in consolidating vendors and applications.
In addition to simplifying procurement, reducing vendor management costs, and
ensuring better interoperability, this can result in reduced vendor management costs.

When an organization utilizes multiple vendors for email, CRM, and human
resources applications, it can consolidate these applications by using a single cloud-
based platform such as Microsoft 365 or Salesforce to consolidate these applications.
By providing a single platform for all applications, this can reduce the complexity of
managing multiple vendors and improve efficiency.

Agility and innovation via DevOps, Multi-
cloud, PaaS, AI/ML, IoT

By leveraging cloud-based services such as DevOps, multi-cloud, PaaS, AI/ML, and
IoT, organizations can achieve agility and innovation.

e DevOps: To improve efficiency and speed up the delivery of software
products, DevOps is a software development methodology that
emphasizes collaboration between development and operations teams. The
implementation of cloud-based development tools and services can assist
organizations in adopting DevOps practices.

e Multi-cloud: By using multiple cloud computing services from different
providers, organizations can achieve higher levels of resilience, reduce
vendor lock-in, and optimize costs. Multi-cloud computing is the use of

Cloud Migration Strategy 287

multiple cloud computing services from different providers. Migration to
cloud-based services from multiple providers can assist organizations in
adopting multi-cloud strategies.

e PaaS:Platform-as-a-Service (PaaS)is a cloud computing model that provides
a platform for developing, testing, and deploying software applications. It
is possible to reduce the development and deployment costs of software
applications by using PaaS. Migration to cloud-based PaaS platforms such as
Google App Engine or Microsoft Azure can assist organizations in adopting
PaaS.

e AI/ML: Artificial Intelligence/Machine Learning (AI/ML) refers to a set
of technologies that enable computers to learn and perform tasks that are
typically performed by humans. By allowing organizations access to cloud-
based AI/ML platforms such as Amazon SageMaker or Google Cloud Al
Platform, cloud migration can assist organizations in adopting AI/ML.

e IoT: The Internet of Things (IoT) is a network of sensors, software, and
connectivity embedded in physical objects, vehicles, buildings, and other
objects. By providing access to cloud-based IoT platforms such as Amazon
Web Services IoT and Microsoft Azure IoT Hub, cloud migration can assist
organizations in adopting IoT.

Scalability, flexibility, and global reach

Migration to the cloud requires scalability, flexibility, and global reach as fundamental
goals. By utilizing cloud-based services that can dynamically allocate resources to
meet changing demands and provide access to a global network of data centers,
cloud migration can assist organizations in achieving scalability, flexibility, and
global reach. For example, an organization that experiences periodic spikes in traffic
can use cloud-based services such as auto-scaling to dynamically allocate resources
to meet changing needs by using cloud-based services such as auto-scaling. A
business can also use cloud-based content delivery networks (CDNs) to distribute
content across a global network of data centers in order to reach a global audience.

Reliability, availability, and security

The objectives of cloud migration are to improve reliability, availability, and security.
Cloud migration provides organizations with access to cloud-based services that are
designed to be highly available, fault-tolerant, and secure. In order to ensure that
a company's mission-critical applications are always available, cloud-based load
balancers can be utilized to distribute traffic across multiple instances. As an example,
an organization requiring high availability for its mission-critical applications can
utilize cloud-based security services such as encryption and access control to ensure
data security.

288 Mastering Cloud-Native Microservices

Additionally, cloud service providers provide service-level agreements (SLAs)
which guarantee a certain level of uptime and availability. These agreements can
help organizations ensure their applications and data are always available.

Customer experience and insights

By providing access to cloud-based analytics, machine learning, and artificial
intelligence services, cloud migration can help organizations improve customer
experience and gain insights into customer behavior.

Through the implementation of cloud-based services, organizations will be
able to process and analyze data in real-time, improving customer experience.
Organizations can use this information to better understand their customers'
behavior and preferences, thereby tailoring their products and services accordingly.
Retail organizations, for example, can analyze customer behavior on their website
through cloud-based analytics services and identify patterns in customer preferences
by using cloud-based analytics. Based on this information, they can then develop
personalized promotions and offers tailored to the needs and preferences of
individual customers.

In addition to providing access to cloud-based services enabling machine learning
and artificial intelligence, cloud migration can assist organizations in gaining insight
into customer behavior. Organizations can utilize these services to identify patterns
and trends in customer behavior that may otherwise be difficult or impossible to
identify using traditional analytics approaches. As an example, a financial services
company can use cloud-based machine learning services to analyze customer
behavior and identify potential fraud patterns. This helps the organization prevent
and detect fraud in advance, thereby increasing customer trust and loyalty.

By analyzing data from social media and other sources, organizations can also gain
insights into customer sentiment and feedback using cloud-based data analytics
services. The organization may be able to identify opportunities to improve its
products and services based on a better understanding of customer needs and
preferences.

IT modernization and integration

The use of cloud-based services that enable automation, scalability, and flexibility
can assist organizations in achieving the goal of IT modernization and integration.

Cloud Migration Strategy 289

As a result, organizations may be able to streamline their IT operations, reduce
costs, and improve overall efficiency as a result. To take advantage of cloud-based
automation tools and services, organizations that use legacy on-premises systems
can migrate to a cloud-based system. By automating routine tasks, such as backups
and software updates, the organization can reduce the workload of its IT staff and
improve efficiency.

On-premises systems can also be integrated with cloud-based systems through cloud-
based integration services. Using cloud-based integration services, an organization
can streamline its business processes by connecting its on-premises ERP system with
a cloud-based CRM system.

Reduce, consolidate, and retire the physical data
center footprint

By providing access to cloud-based services that eliminate the need for physical
hardware and infrastructure, cloud migration can assist organizations in reducing,
consolidating, and retiring the physical footprint of their data centers. Consequently,
organizations can decrease their data center footprint, reduce costs, and improve
overall efficiency. For example, an organization that has several on-premises data
centers can consolidate them into a single cloud-based data center to reduce costs
and improve efficiency. By utilizing cloud-based services such as virtual machines,
storage, and databases, the organization can eliminate the need for physical
hardware.

Organizations can also reduce their data center footprint by eliminating the need for
a secondary physical data center for disaster recovery purposes by utilizing cloud-
based disaster recovery services. As a substitute, the organization can use cloud-
based disaster recovery services to replicate its data and applications to a cloud-
based data center that can be activated in the event of a disaster.

Cloud migration principles

As a result of cloud migration, an organization's data, applications, and other IT
resources are moved from on-premises infrastructure to cloud-based infrastructure.
A successful cloud migration requires careful planning and adherence to cloud
migration principles in order to make maximum use of the scalability, flexibility,

290

Mastering Cloud-Native Microservices

and cost savings that the cloud platform offers. For example, as illustrated in Figure
11.2: Cloud Migration Principles:

-~

-

Cloud Migration Principles \

Security First: Secure
the Network, Protect the Monitor and Optimize Deploy infrastructure as Make allocations match
Data, and Control Workloads for Cost code Demand
Access
Automate and Training the staff for L Joud-nati
implement DevOps future mode of everage cloud-native

: : services
practices operations

Figure 11.2: Cloud Migration Principles /

Security first: Secure the network, protect the
data, and control access

When planning for cloud migration, it is essential to prioritize security as a critical
principle. In the cloud, there are a number of security risks that organizations need
to address. When securing cloud environments, organizations should focus on the
following three areas:

Secure the Network: Any cloud environment relies heavily on the network,
which must be secure to prevent unauthorized access and attacks. During
the transition to the cloud, organizations should ensure that their cloud
provider has implemented robust network security controls such as
firewalls, intrusion detection and prevention systems, and security gateways.
Additionally, organizations should implement their own network security
controls, such as using a virtual private network (VPN) to establish secure
communication between their network and that of their cloud provider. In
addition, organizations should monitor their network traffic regularly in
order to detect any suspicious activities and respond as quickly as possible
to any possible security incidents.

Protect the Data: When moving to the cloud, organizations should implement
robust data security controls to prevent theft, loss, and damage, including
encryption, access controls, and backups. Organizations can ensure their
data is protected even if it falls into the wrong hands by encrypting data at
rest and in transit. Access controls may be implemented to ensure that only
authorized personnel have access to sensitive information. Having a robust
backup and recovery strategy in place is critical in the event of data loss or
damage. It is also important for organizations to ensure that any regulations

Cloud Migration Strategy 291

applicable to their industry or location regarding data privacy and security
are being followed.

e Control Access: To ensure that only authorized personnel can access the
organization's resources in a cloud environment, access control is critical.
Multi-factor authentication, role-based access control, and identity and
access management (IAM) should be implemented by organizations as
robust access control mechanisms.

¢ The use of multi-factor authentication (MFA) requires the user to provide
two or more forms of identification, including a password and a biometric
indicator, such as a fingerprint or facial recognition. Organizations can assign
different roles to different personnel and grant access to resources based on
those roles using role-based access control (RBAC). A centralized platform
for managing user identities and access across multiple cloud services is
provided by IAM solutions.

Monitor and optimize workloads for cost

The organization must ensure that it is not overpaying for cloud resources when
moving to the cloud by monitoring and optimizing workloads for cost. It involves
continuously monitoring the utilization of cloud resources, identifying underutilized
resources, and adjusting resources accordingly. A company may, for example, have
a development environment that is only used during working hours. By using
automation tools, such as AWS Lambda, the organization can automatically spin up
and down the environment at set times, thereby saving costs when the environment
is not in use.

It is also possible to track resource usage and costs by project, department, or
application using cloud resource tags, which allow organizations to identify areas
where cost saving can be made and allocate costs more accurately.

A continuous monitoring and optimization of workloads for cost can help
organizations reduce their cloud spending and utilize cloud resources in the most
efficient manner possible.

Deploy infrastructure as code

In order to automate provisioning and management of cloud resources, infrastructure
as code uses configuration files. As a result, organizations can manage their cloud
infrastructure more efficiently, consistently, and scalable, while reducing the risk
of human error. As an example, an organization may create templates that contain
the infrastructure and services that are required for a particular application using a
tool such as AWS CloudFormation. The templates can then be managed, tested, and
deployed in a repeatable and consistent manner, thereby reducing errors and saving
time.

292 Mastering Cloud-Native Microservices

The use of infrastructure automation tools such as Ansible, Chef, or Puppet can also
provide organizations with the ability to manage infrastructure and application
configurations at scale, ensuring consistency and reducing the risk of configuration
drift.

Using infrastructure as code, organizations can automate the deployment, scaling,
and management of cloud resources, reduce human error, and ensure that their
cloud environment remains consistent, scalable, and maintainable over time.

Make allocations match demand

Animportant aspect of cloud migration involves matching the allocation of resources
with the actual demand for those resources. This means scaling up resources in
times of high demand and scaling down in times of low demand. During the holiday
season, for example, an e-commerce website may experience an increase in traffic. By
using cloud resources such as AWS EC2 Autoscaling, the website can automatically
increase the number of servers during peak periods and reduce them when demand
subsides. By doing so, the website will be able to handle the increased traffic without
incurring unnecessary costs or overprovisioning resources.

Additionally, organizations can use cloud storage solutions such as AWS S3 and
Azure Blob Storage to store and retrieve data as needed without having to use
physical storage devices. By doing so, storage resources can be allocated according
to demand, rather than being overprovisioned.

Organizations can ensure that cloud resources are used efficiently, reduce costs, and
increase overall performance by making allocations match demand.

Automate and implement DevOps practices

In order to automate and implement DevOps practices, automation tools are
employed to streamline the deployment and management of cloud resources. In
order to ensure that applications and services are delivered quickly and reliably,
DevOps practices ensure development and operations teams work seamlessly
together. In order to ensure that applications are delivered quickly and reliably, an
organization may use tools such as Jenkins to automate the development and testing
process before deploying them to the cloud.

The use of containerization technologies, such as Docker and Kubernetes, is another
example. These tools allow organizations to package applications into containers.
This makes them more portable, scalable, and easier to deploy and manage.

Automation and DevOps practices can reduce the time and effort needed to
deploy and manage cloud resources, while improving the reliability and quality of
applications and services.

Cloud Migration Strategy 293

Training the staff for future mode of operations

In order to prepare the employees for future mode of operations, it is necessary to
educate them regarding the cloud platform and its capabilities, as well as provide
them with the necessary skills to effectively operate and maintain cloud resources. As
an example, an organization may offer training to its employees on cloud computing
concepts such as infrastructure as code, containerization, and microservices. The
training may also include a description of the specific cloud platform and services
that the organization plans to use.

It is also possible to establish a cloud center of excellence (CCoE). A CCoE is a group
of experts within the organization who provide guidance and support to other
teams throughout the cloud migration process. Furthermore, the CCoE can provide
training and workshops in order to ensure employees are familiar with the cloud
platform as well as the best practices for maintaining and operating cloud resources.
An organization can reduce the risk of errors and downtime by training its staff for
the future mode of operations.

Leverage cloud-native services

Instead of migrating legacy applications and services as-is to the cloud, cloud-
native services utilize services that are specifically designed for cloud platforms. It
is typically the case that cloud-native services are highly scalable, fault-tolerant, and
easy to deploy and manage.

Similarly, rather than trying to migrate a legacy database to the cloud, an organization
can use cloud-native databases such as Amazon Aurora or Google Cloud Spanner.
Moreover, cloud-native databases provide features such as automatic backups and
point-in-time recovery, in addition to being highly scalable and able to scale up and
down automatically to meet demand.

Serverless computing platforms, such as AWS Lambda and Azure Functions, can
also be used as examples. These platforms enable organizations to run code without
having to manage the underlying infrastructure. As demand increases or decreases,
the platforms automatically scale up and down. Users only pay for the resources
they consume.

Cloud-native services enable organizations to maximize the scalability, availability,
and performance of cloud platforms.

Cloud migration strategy

Developing a cloud migration strategy requires careful consideration and
involvement from leadership to ensure that the strategy aligns with the organization's
goals, budget, and compliance requirements. For example, as illustrated in Figure

294

Mastering Cloud-Native Microservices

11.3: Cloud migration strategy during the planning of a cloud migration strategy,
leadership should consider the following key points:

/

\.

Cloud migration strategy

Business Goals and Cloud Service Data Security and Cost Optimization
Objectives Provider Selection Compliance P
Scalability and Legacy Systems Change Performance and
Flexibility gacy 2y Management Reliability
Continuous N Performance and
Governance I Migration Plan PR
mprovement Optimization
Vendor Stakeholder Organizational
Data Management M.) . Change
anagement communication M.
anagement

\

/

Figure 11.3: Cloud migration strategy

Business goals and objectives

Business goals and objectives should be identified as part of the cloud migration
strategy. The cloud migration strategy should be aligned with the organization's
overall business goals.

Clarify the business objectives and goals that the cloud migration strategy
will support.

Ensure alignment with business objectives by involving key stakeholders in
the planning process.

Cloud service provider selection

To determine which cloud service provider is most suitable for your organization,
you should evaluate the provider's capabilities, pricing, security, compliance, and
support, among other factors.

A review of multiple cloud service providers should be conducted based on
key criteria such as cost, security, compliance, and customer support.

Validate the capabilities of shortlisted providers by performing a proof of
concept (POC).

Cloud Migration Strategy 295

Data security and compliance

Any cloud migration strategy should place a high priority on data security and
compliance. Ensure that the selected cloud provider complies with all relevant
regulations and industry standards, such as GDPR and HIPAA.

¢ Make sure you are familiar with your organization's data security and
compliance requirements.

e It is important to choose a cloud service provider that meets these
requirements and provides transparent security and compliance controls.

Cost optimization

Cloud migration is primarily motivated by cost savings. Therefore, it is crucial to
consider the total cost of ownership (TCO) when planning a cloud migration strategy.
Assess the costs associated with moving to the cloud, including infrastructure,
license fees, and support costs.

e Identify the costs associated with moving to the cloud and identify areas
where cost savings can be achieved by conducting a TCO analysis.

e Using cloud cost optimization tools can assist in managing costs.

Scalability and flexibility

Scalability and flexibility of cloud services allow businesses to quickly adapt to
changing market conditions. In order to accommodate future growth, ensure that
the cloud migration strategy allows for scalability and flexibility.

e Consider future market conditions and potential growth opportunities.

¢ Aflexible and scalable cloud service provider is the best choice.

Legacy systems

Consider refactoring or re-architecting any legacy systems that need to be migrated
to the cloud.

¢ Determine which legacy systems need to be migrated to the cloud.

e Evaluate the existing architecture and plan to refactor or rearchitect the
system to accommodate the cloud environment.

296 Mastering Cloud-Native Microservices

Change management

The success of any cloud migration strategy depends on the success of change
management. To ensure a smooth transition, leaders should plan for the impact of
the change on employees, including training and support.

¢ Engage key stakeholders in the planning process to ensure their support and
buy-in.

¢ Communicate, train, and provide support as part of an effective change
management plan.

Performance and reliability

In order to ensure business continuity and maintain customer confidence, ensure
that the chosen cloud provider offers a high level of performance and reliability.

e It is important to select a cloud service provider that provides high-
performance and reliable services.

e Perform a performance and reliability test before and after migrating to the
cloud.

Governance

Establish clear governance structures and processes for the cloud migration project
to ensure that the strategy aligns with the organization's policies and standards.

e The governance structures and processes for the cloud migration project
should be clearly defined.

e Ensure compliance with policies and standards for the use of cloud services.

Continuous improvement

To assess the effectiveness of the cloud migration strategy and identify opportunities
for further optimization and improvement, leadership should establish continuous
improvement processes. The process may include regular performance reviews,
user feedback, and benchmarking against industry standards.

e Plan to review and improve the cloud migration strategy and plan on a
regular basis, such as quarterly or bi-annually.

e Analyze and prioritize areas for improvement based on data and metrics.

e Identify areas for improvement by soliciting feedback from stakeholders.

Cloud Migration Strategy 297

Migration strategy

This may include a lift-and-shift approach, re-architecting, or hybrid approach,
depending on the organization's business requirements and IT infrastructure.

¢ Ensure that the cloud migration strategy is aligned with the overall business
strategy and objectives of the organization.

e Take into account the impact on stakeholders, such as customers, employees,
and partners.

¢ To determine the best cloud deployment model for the organization, use a
data-driven approach.

Migration plan

There should be a detailed migration plan developed by the leadership that outlines
the scope, timeline, and budget of the migration. In order to keep stakeholders
informed of the migration progress, this plan should consider the order in which
applications and services will be migrated, potential risks, and communication
plans.

e To reduce risk and improve transparency, break down the migration plan
into manageable phases or stages.

e Each phase of the migration plan should have clear roles and responsibilities.

e Make sure that the migration plan includes contingency plans for potential
risks or problems.

Skills and training

The leadership team should assess the skills and training required to manage the
cloud infrastructure and ensure that the IT team is trained in the required technologies
and tools to support the cloud environment.

¢ Develop and maintain the necessary skills for cloud computing by providing
training and development opportunities for IT staff.

¢ To supplement the skills of the IT team, consider partnering with a third-
party vendor or consultant.

e Ensure that the organization has a culture of learning and development.

Performance and optimization

To ensure that the cloud infrastructure meets the business requirements and delivers
the expected benefits, leadership should establish performance metrics and ongoing

298 Mastering Cloud-Native Microservices

monitoring and optimization processes.

e Track and measure the effectiveness of the cloud environment by establishing
performance metrics and key performance indicators (KPIs).

e Identify opportunities for resource optimization by regularly monitoring
resource usage.

¢ Enhance the efficiency of the cloud environment by utilizing automation and
other tools.

Data management

Data management and storage in the cloud environment should be considered by
leadership, including data backup and recovery processes, disaster recovery plans,
and data lifecycle management.

¢ Ensure compliance with regulations and industry standards by developing
clear data management policies and procedures.

e Protect sensitive data by using encryption and other security measures.

¢ To ensure data recovery in the event of a disaster, regularly back up data and
test disaster recovery plans.

Integration

It is important for leaders to evaluate how cloud-based applications and services
will integrate with existing IT systems and processes, including legacy systems, on-
premises applications, and third-party applications.

o Identify requirements and test plans for the integration strategy.

e If you wish to streamline the integration process, you may wish to consider
using API management tools or other integration platforms.

e To ensure that integration issues are resolved quickly, IT teams and
stakeholders should establish clear communication channels.

Vendor management

Cloud providers and other vendors should be managed in accordance with service
level agreements, security requirements, and compliance obligations. This may
include auditing vendors, monitoring performance, and maintaining ongoing
relationships.

e Service level agreements (SLAs) should establish clear expectations and
requirements for cloud providers.

Cloud Migration Strategy 299

e Ensure that cloud providers' performance is regularly reviewed and assessed
in relation to their service level agreements.

e Ensure that clear communication channels are maintained with cloud
providers to ensure that issues are addressed as soon as possible.

Stakeholder communication

In order to keep stakeholders informed of the migration progress and address any
concerns or questions they may have, leadership should develop a communication
plan, which may include regular updates, training and education programs, and
support services.

e Establish clear communication channels and provide regular updates to
stakeholders regarding the cloud migration process.

¢ To reach all stakeholders, use a variety of communication channels, such as
email, video conferencing, and town hall meetings.

¢ Ensure that feedback is provided and that concerns are addressed in a timely
and transparent manner.

Organizational change management

The leadership of an organization should consider the organizational change
management aspects of cloud migration, including how to manage resistance to
change and ensure that employees have the necessary skills and resources to be
successful in the new environment.

¢ In order to manage cultural and organizational changes, use a change
management framework such as ADKAR or Kotter's 8-Step Model.

e Inform stakeholders of the benefits of the cloud environment and address
any concerns or resistance they may have.

e Ensure that employees are trained and supported to work in a cloud
environment.

A successful cloud migration strategy requires careful planning, evaluation, and
execution. Business leaders should consider these key points and work closely with
their IT team and cloud service provider to ensure a successful transition.

Cloud migration life cycle strategy

The process of cloud migration involves the transfer of data, applications, and services
from an organization's on-premises infrastructure to a cloud-based environment. A
brief overview of the cloud migration lifecycle and the strategic decisions required
at each stage is provided below. For example, as illustrated in Figure 11.4: Cloud

300 Mastering Cloud-Native Microservices

migration life cycle strategy this process involves several stages requiring strategic
decisions.

/ Cloud migration life cycle strategy \

Post
Cutover
Stage

Cutover
Stage

Execution
Stage

Assessment
Stage

Planning
Stage

Design
Stage

Testing
Stage

‘ Cloud migration life cycle... Program Governance >

K Figure 11.4: Cloud migration life cycle strategy /

Assessment stage

An assessment of the organization's existing IT infrastructure is conducted at this
point in order to determine which applications, data, and services will be migrated
to the cloud. As a strategic decision, it is necessary to identify potential roadblocks
to the migration, determine the business goals, and prioritize the migration at
this point. Establish business objectives for cloud migration, such as cost savings,
scalability, and agility, for example. Determine which applications and services are
the most critical and should be prioritized for migration. Determine what legacy
systems can be retired or replaced after an analysis of the existing IT infrastructure.

¢ Define Business Objectives: The best practice is to clearly define and
document the business objectives that the cloud migration is intended to
achieve. For example, a company may define its business objective as
reducing IT infrastructure costs by 30% over the next three years by migrating
to the cloud.

¢ Identify Workloads for Migration: Identify workloads which are best suited
for cloud migration based on factors such as business criticality, complexity,
and resource usage. As an example, a company may choose to migrate its
non-critical web applications first to the cloud, followed by its more complex
ERP system.

e Assess Workload Dependencies: Ensure that all dependencies are taken
into account before migration and understand the dependencies among
workloads. Suppose a company has an application that depends on a
database server, and both of these components must be moved to the cloud
in order to ensure the application functions properly.

e Analyze the Current Infrastructure: An analysis of the existing IT
infrastructure to identify hardware, software, and network configurations
is the best practice. For example, a company may conduct an analysis of

Cloud Migration Strategy 301

its current IT infrastructure to determine the number and types of servers,
storage devices, and network devices that will need to be migrated.

Identify Security and Compliance Requirements: The best practice is to
identify security and compliance requirements and make sure the cloud
service provider is capable of meeting them. A company may be required
to comply with HIPAA compliance standards and may require the cloud
service provider to implement the appropriate security controls.

Evaluate Cloud Service Providers: A best practice is to evaluate and
compare the capabilities, pricing, and support of multiple cloud service
providers. As an example, a company may evaluate multiple cloud service
providers, including Amazon Web Services, Microsoft Azure, and Google
Cloud Platform, and determine which one best meets its needs.

Determine Cloud Deployment Models: Analyze the business needs and
workloads to determine the most appropriate cloud deployment model
(public, private, hybrid). For example, a company may choose to deploy
non-critical workloads in a public cloud and critical workloads in a private
cloud in a hybrid cloud deployment model.

Develop a Proof-of-Concept: Test the cloud deployment model and
migration process by developing a proof-of-concept. In order to test the
migration process and evaluate the performance and scalability of the cloud
deployment model, a company may migrate a non-critical workload to the
cloud for the purposes of developing a proof-of-concept.

Per application assessment stage

Note: An application assessment is a separate activity required for each
application. Sometimes it is referred to as an application discovery process.

Identify the applications: Prior to migration, identify the applications
that need to be migrated, determine their dependencies, and ensure all
dependencies have been accounted for. In order to avoid performance issues
due to on-premises vs. cloud hosting, there will be some applications that
need to come together for the cutover.

Assess Application Architecture: Determine if any changes need to be made
to the architecture of each application before migration. Suppose a company
is migrating its monolithic web application from on-premises to the cloud.
As part of the application assessment process, the monolithic architecture
of the application is determined to not be suitable for a cloud environment
and needs to be refactored into microservices. This is due to the fact that the
monolithic application will be less scalable, less resilient, and less adaptable
to cloud environments.

302

Mastering Cloud-Native Microservices

o The company will need to redesign the application into smaller,
modular components, each containing its own functionality and
communication protocols. Consequently, the application is more
flexible and adaptable to the cloud environment as these components
can be deployed and managed independently. Additionally, this
architecture allows for the efficient allocation of resources, as resources
can be assigned to specific components in accordance with their needs.

o As part of the microservices architecture, the company will also have
to consider how the application will be stored, secured, and integrated
with other systems. In order to ensure that the refactored application
functions correctly and securely in the cloud environment, these
considerations will be considered when developing the migration
strategy and test plan.

Assess Application Interactions: Identify any potential issues that may
arise from the interaction between each application and other systems and
applications. It is crucial to identify and assess application interactions in
modern IT environments, since applications typically interact and integrate
with other applications, systems, and databases. These interactions, which
are complex, can have a significant impact on cloud migration success.

Identify Potential Issues: There can be compatibility issues, integration
problems, or data migration challenges during migration due to interactions
between applications. By identifying these potential issues early in the
assessment phase, they can be addressed proactively and avoided later.

Prioritize Migration Order: Migration orders can be prioritized based
on application interactions. In order to avoid disrupting other systems
or to ensure dependencies are migrated first, applications with critical
dependencies on other systems may need to be migrated later in the process.

Evaluate Cloud Readiness: Determine if any modifications or refactoring
are necessary to make each application cloud-ready. In order to develop a
migration plan that addresses the unique needs of each application, assessing
cloud readiness helps identify the hardware, software, and networking
requirements.

o Determine Feasibility: It is possible to decide whether an application
can be migrated to the cloud by evaluating its cloud readiness. Some
applications may not be compatible with cloud environments or may
need significant modifications. A cloud readiness assessment can
identify potential challenges and determine whether it is feasible to
migrate each application.

o Estimate Costs: An application's cloud readiness is essential to
estimating migration costs. To make sure the application or data is
compatible with the cloud environment, identify any hardware or
software requirements.

Cloud Migration Strategy 303

Planning stage

As part of this phase, the organization develops a comprehensive migration plan
describing the scope, timeline, and budget of the migration. It is important to make
strategic decisions regarding the cloud provider, the migration strategy, and the
appropriate tools and technologies for the migration. For example:

e A cloud provider should be selected based on factors such as security,
compliance, and cost.

e Choose a migration strategy, such as lift-and-shift, re-architecture, or a

hybrid approach.

¢ Plan the migration in a realistic timeframe and within a reasonable budget.

Design stage

During this stage, the organization designs the cloud infrastructure that will be
used to host its applications and services. The strategic decision is to determine the
optimal cloud architecture, data management, and security policies. For example:

¢ A multi-cloud architecture, a hybrid cloud architecture, or a serverless
architecture is the optimal cloud architecture.

e Identify and implement data management policies, including data storage,
backup, and recovery.

e Ensure compliance with regulations by establishing security policies and
procedures.

Execution stage

During this stage, the organization migrates its applications, data, and services to
the cloud infrastructure. The strategic decision is to manage the migration process,
prioritize workloads, and minimize disruptions to its business operations. For
example:

e Set a priority for workloads and determine the order in which applications
and services will be migrated.

e Select the appropriate migration tools and technologies, such as the AWS
Migration Hub or the Azure Site Recovery service.

e Keep stakeholders informed of the migration progress by developing a
communication plan.

304 Mastering Cloud-Native Microservices

Testing stage

As part of this phase, the organization tests the migrated applications and services
to ensure their smooth operation on the new cloud infrastructure. In order to ensure
that the applications are functioning correctly, it is necessary to determine the
appropriate testing methodology and tools.

For example:

o Identify the most appropriate testing methodology, such as unit testing,
integration testing, or performance testing.

¢ Inorder to ensure that the migrated applications and services are functioning
properly, use testing tools and automation.

e Make sure that a rollback plan is in place in case issues are discovered during
testing.

Cutover stage

The cutover stage is the final phase of the cloud migration process, which involves
moving the organization from the old on-premises infrastructure to the new
cloud-based infrastructure. The types of cutover decision-making strategies that
organizations can use vary based on their needs and objectives.

Big Bang Cutover

It is a rapid approach, but it can also be risky, as any issues or errors can affect
the entire organization. The organization moves all of its applications and data to
the cloud simultaneously. In organizations with limited downtime windows, this
approach is ideal for migrations that need to take place quickly.

An e-commerce start-up wishes to move all of its infrastructure to the cloud before the
holiday season in order to handle increased traffic. As they have a limited timeframe
for migrating and want to avoid any downtime during the holiday season, they
choose the Big Bang cutover strategy.

Advantages
e Inashort period of time, all applications and data are migrated to the cloud.

¢ Managing the old infrastructure is minimal once the migration has been
completed.

e Coordination between the two environments is minimal.

Cloud Migration Strategy 305

Disadvantages

e High risk: Any problems or errors encountered during the migration could
have a significant impact on the entire organization.

¢ Alimited amount of testing has been conducted before the migration, which
may lead to issues in the new environment.

e There are limited options for fallback if the migration fails.

Phased Cutover

In the phased cutover approach, the organization moves applications and data in a
phased approach, ensuring that each phase is tested and validated before progressing
to the next. In contrast to the Big Bang cutover strategy, this approach is less risky,
as any issues can be identified and resolved before moving on to the next phase.
However, this approach requires careful planning and coordination and can take
longer.

A healthcare organization wishes to move its electronic health records system into
the cloud. The organization chose a phased cutover strategy, moving one department
at a time, beginning with the least critical department. Following the validation of
each system, they move on to the next department. This ensures that the system is
validated before moving forward.

Advantages

¢ A phased approach minimizes risk by allowing for testing and validation of
applications and data before moving onto the next phase.

¢ Flexibility: The migration plan can be adjusted based on the results of each
phase.

e A better fallback option: If a phase fails, the organization can revert to its
previous configuration.

Disadvantages

¢ Taking a phased approach to migration requires a longer period of time than
switching over in one go.

¢ Ahigher level of coordination is required during the migration process: The
organization must coordinate between two environments.

¢ During the migration process, the organization must manage both the old
and new environments simultaneously.

306 Mastering Cloud-Native Microservices

Parallel Cutover

As part of the parallel cutover approach, the organization runs both the old on-
premises infrastructure and the new cloud-based infrastructure simultaneously for
a period of time, in order to test and validate the new environment while minimizing
risks and downtime.

For a financial services company that wishes to move its trading application to
the cloud, a parallel cutover strategy is chosen, which involves running both on-
premises infrastructure and cloud-based infrastructure simultaneously for one
week. By doing so, the new system can be thoroughly tested and validated before it
is completely transitioned to the cloud.

Advantages

e Itis low risk to run both environments simultaneously to allow for testing
and validation prior to switching completely to the new environment.

e A better fallback option: If the new environment fails, the organization can
easily switch back to the old environment.

e Withminimal downtime, the organization can switch to the new environment.

Disadvantages

¢ Themigration process requires the organization to manage both environments
simultaneously.

¢ During the migration process, a greater degree of coordination is required
between two environments.

¢ The cost of running two environments simultaneously may be greater than
the cost of a phased cutover or a Big Bang.

Post cutover stage

It is crucial for the organization to optimize and manage the cloud environment
effectively during the post-cutover stage in the cloud migration life cycle following
the cutover stage. Here are some strategic planning considerations for FinOps and
AlIOps in the post-cutover stage:

FinOps: A Financial Operations (FinOps) framework is designed to help
organizations optimize their cloud spending. Here are some strategic planning
considerations for FinOps post-cutover:

Monitor cloud costs: Monitor cloud costs on a regular basis in order to identify
any overruns or inefficiencies. Use cost management tools provided by the cloud
provider or third-party providers in order to gain visibility into cloud costs.

Cloud Migration Strategy 307

Optimize cloud spend: Use cost optimization techniques such as resizing,
rightsizing, and instance scheduling to reduce cloud spend without compromising
performance. Analyze cloud usage data to identify areas of inefficiency or waste.

Implement governance and controls: Manage cloud spending in accordance with
organizational goals and budgets. Establish budgets and alerts to ensure that
spending does not exceed allocated amounts.

Conduct regular cost reviews: Maintain regular cost reviews to track progress,
identify new opportunities for optimization, and ensure that cloud costs remain
within reasonable limits.

e AlIOps: In the post-cutover stage, there are some strategic planning
considerations for Artificial Intelligence for IT Operations (AIOps).

¢ Implement monitoring and alerting: Monitor cloud infrastructure and
applications using monitoring and alerting tools. Utilize machine learning
to identify anomalies and potential issues before they become problematic.

¢ Automate incident management: Automate the incident triage and
resolution process using incident management tools that employ machine
learning. This can help reduce downtime and improve service levels.

e Use predictive analytics: It can be beneficial to use predictive analytics
to identify potential issues and to proactively address them before they
become critical. This will improve the availability of the systems and reduce
downtime.

Optimization stage

This stage involves optimizing the organization's cloud infrastructure in order to
increase performance, scalability, and cost-effectiveness. The strategic decision
involves analyzing performance metrics and adjusting the cloud infrastructure as
needed to meet business objectives. For example:

¢ Analyze performance metrics and determine areas for optimization, such as
scaling up or down in response to demand.

¢ Identify and eliminate unnecessary resources or optimize usage in order to
reduce costs.

¢ The cloud infrastructure should be monitored and maintained on an ongoing
basis to ensure that it meets the business needs.

Overall, successful cloud migration requires careful planning, execution, and
ongoing optimization to ensure that the business objectives are met and the cloud
infrastructure is delivering the expected results.

308 Mastering Cloud-Native Microservices

Conclusion

Seamless Transition to the Cloud:

Unlocking Efficiency, Scalability, and Sustainability for Growth

In conclusion, the migration to the cloud has become an increasingly popular strategy
for organizations seeking to optimize their operations, reduce costs, and improve
their overall performance. The goals of cloud migration include Capex & Opex
cost optimization, resource optimization, vendor and application consolidation,
agility & innovation, scalability, flexibility, IT modernization and integration, and
environmental sustainability.

These goals can only be achieved by following certain principles during the
cloud migration process, including following security first approach, optimizing
workloads, automating and implementing DevOps practices, training staff for
future modes of operations, and utilizing cloud-native services.

Furthermore, organizations need to develop a cloud migration strategy that aligns
with their business goals and objectives, selects the right cloud service provider,
prioritizes data security and compliance, implements change management, and
establishes governance process enabling continuous improvement.

Overall, cloud migration is a complex and multifaceted process that requires
careful planning, execution, and monitoring. As outlined above, organizations can
successfully migrate to the cloud and achieve their desired results by following the
goals, principles, strategies, and life cycle stages discussed in this chapter.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

A

Advanced Message Queuing Protocol
(AMQP) 201
agility and innovation
via AI/ML 287
via DevOps 286
via Internet of Things (IoT) 287
via multi-cloud 286

via Platform-as-a-Service
(PaaS) 287

AlOps 307
Amazon CloudWatch 251
using 251

Amazon Relational Database Service
(Amazon RDS) 39

Amazon Simple Notification Service
(Amazon SNS) 104

Index

Amazon Simple Queue Service
(Amazon SQS) 104, 203

Amazon Web Services (AWS) 37, 251
ambassador pattern 147
anti-corruption layer (ACL) 149
Apache Kafka 201

on Kubernetes 224
API aggregator pattern 99
API gateway pattern 98
Application Gateway 35
application metrics pattern 123

Application Performance
Monitoring (APM) tool 62

Artificial Intelligence (AI) 40

asynchronous inter-service
communication 198, 199

message brokers 199

message broker software 201

310 Mastering Cloud-Native Microservices

asynchronous messaging pattern 103
audit logging pattern 124

authentication and access control
system, cloud microservices

access control lists (ACLs) 266, 267
JSON Web Tokens (JWT) 263

multi-factor authentication
(MFA) 265, 266

OAuth 263
OpenID Connect 263

role-based access control
(RBAC) 264, 265

SAML 264

average revenue per user
(ARPU) 5

AWS App Mesh 212
AWS Kinesis 221, 222
AWS Lambda 245
advantages 246
features 245, 246
Azure event grid 223, 224
Azure functions 247
features 247, 248
Azure Key Vault (AKV) 35
Azure Service Bus 202
Azure Service Fabric Mesh 212

B

Backends for Frontends (BFF)
pattern 99, 150

Big Bang cutover strategy 304
blue/green deployment pattern 126
branch pattern 105

bulkhead pattern 93

C

California Consumer Privacy Act
(CCPA) 233

canary pattern 127, 128
capability maturity level model 7, 8
architecture 10
delivery 11
FinOps 9
operations and monitoring 10
process maturity 10
provisioning 11
security and compliance 11
Site Reliability Engineering 11
team maturity 9
case studies

Government of India Powers a
Population-Scale Vaccine Drive
23

IMDb Video Team Builds Strategies
26,27

insurance claim processing 72-75

Snap on AWS 18

UPWARD 21, 22

Wynk Music App 19
chained microservices pattern 107
choreography saga pattern 115
CI/CD tools 17
circuit breaker pattern 129, 130
Cloud Cost Optimization strategy 37
cloud microservices

authentication and access control 263
cloud migration goals 284

agility and innovation 286

availability 287

Capex and Opex cost optimization 285

Index 311

customer experience and insights 288
flexibility 287
global reach 287

IT modernization and
integration 288, 289

reliability 287
resource consumption and dynamic
elasticity optimization 285, 286

scalability 287
security 287

vendor and application
consolidation 286

cloud migration life cycle strategy 299
assessment stage 300, 301
cutover stage 304
design stage 303
execution stage 303
optimization stage 307

per application assessment
stage 301, 302

planning stage 303
post cutover stage 306, 307
testing stage 304

cloud migration principles 289
allocation matching 292
cloud-native services, leveraging 293
DevOps practices 292

infrastructure as code deployment 291

monitoring and optimizing workloads,

for cost 291
security 290, 291
training 293
cloud migration strategy
business goals and objectives 294

change management 296

cloud service provider selection 294
continuous improvement 296
cost optimization 295

data management 298

data security and compliance 295
developing 293

executing 282

governance 296

integration 298

legacy systems 295

migration plan 297

migration strategy 297

organizational change
management 299

performance and reliability 296
performance optimization 297, 298
planning 281
scalability and flexibility 295
skills and training 297
stakeholder communication 299
vendor management 298
Cloud-Native Microservices 1-4
adopting 4-7
challenges 20, 21
key drivers, achieving 5-7
key principles 15-18
play book 12-15
cloud service provider (CSP) 38
Command Query Responsibility
Segregation (CQRS) 217
communication models
asynchronous communication 196
synchronous communication 195
communication security 267

authentication and authorization 267

312 Mastering Cloud-Native Microservices

JWT 268
mutual SSL authentication, using 268
network segmentation 269
rate limiting 268
Secure Shell (SSH) 268
service mesh 268
TLS, for encryption 267
VPN, using 268
compensating transaction 160
compliance and risk management 274
considerations 274, 275
penetration testing 276, 277
threat modeling 275, 276
Consul Connect 211
container orchestration 70
container security 272
container orchestration security 273
container runtime security 273
image registry security 273
secure image creation 272, 273
content delivery networks (CDNs) 34
continuous delivery 62
continuous security monitoring 279
Control Plane
Citadel 209
Gallery 208
Pilot 208
Sidecar Injector 209
CQRS pattern 108
CQRS system
characteristics 225, 226
cross-cutting concern pattern 126

blue-green deployment pattern for
zero-downtime 126, 127

canary pattern for incremental
rollouts 127-129

canary, versus blue-green
deployment pattern 129

circuit breaker pattern for fault
tolerance 129-131

External Configuration pattern 131,
132

service discovery pattern 132
cutover decision-making strategies

Big Bang cutover 304

parallel cutover 306

phased cutover 305
D

database management pattern 108
choreography saga pattern 115, 116
CQRS pattern 108-110

database per service pattern for
decoupling 110, 111

event sourcing pattern 112-114
orchestration saga pattern 116-118

saga pattern for long-running
transactions 114, 115

shared database per service pattern for
consistency 111, 112

database per service pattern 110, 111
data governance 232

data lifecycle management
(DLM) 234, 235

data management design patterns 140,
141

materialized view 141-143
sharding pattern 143-145
valet key 145, 146

data privacy and compliance regulations
233

Index 313

data privacy and security measures 233
data security 269

data at rest 270

data in transit 270

encryption techniques 269, 270

example techniques 272

immutable infrastructure 271
Data warehousing (DWH) solution 180
decomposition pattern 87

bulkhead pattern for resiliency 93, 94

decompose by business capability 87,
88

decompose by service per team 91, 92
decompose by subdomain 89, 90
decompose by transactions 90, 91
sidecar pattern for service mesh 94-96

strangler pattern for legacy
systems 96, 97

deployment 70
Deployment Stamp pattern 162

design and implementation patterns
147

ambassador pattern 147, 148
anti-corruption layer (ACL) 149, 150

Backends for Frontends (BFF)
pattern 150, 151

leader election 151-153

design patterns, for microservices 86, 87
cross-cutting concern pattern 126
database management pattern 108
decomposition pattern 87
integration pattern 97, 98
observability pattern 118

DevOps

continuous delivery 62

distributed systems
challenges 194

distributed tracing pattern 118

Docker
containerization, benefits 65
containerization use cases 63, 64
key components 66

Docker Compose 66

Docker container 66

Docker daemon 66

Docker Engine 66

DockerFile 66

Docker Hub 66

Docker image 66

Docker registry 66

Docker Swarm 66

Domain-Driven Design (DDD) 17, 59
decomposition steps 71,72

for microservices adoption 71

E
edge computing
benefits 249, 250

Elasticsearch, Logstash, Kibana (ELK)
17

Enhanced flexibility 140
etced 69
event-based data access control 230
event-based data lineage 231
event-based data replication 226, 227
Event-Driven Architecture (EDA) 17, 59
event-driven communication 203

best practices 204

event-driven architecture 205

event sourcing 205

314 Mastering Cloud-Native Microservices

publish-subscribe architecture 204
event-driven data integration 229
event-driven data management

data governance 219

data governance, in microservices 220

data lifecycle management 220

data privacy and compliance 220

event-based data access control 220

event-based data lineage 220

event-based data replication 220

event-driven data integration 220

event-driven data validation 220

event sourcing and CQRS 219

technologies 221
event-driven data validation 228
event-sourced system 225
event sourcing pattern 112, 113
exception tracking pattern 124
External Configuration pattern 131, 132

F

FinOps 9

Function-as-a-Service (FaaS)
platforms 243, 244
Serverless framework 241
use cases 240, 241

G

gateway offloading pattern 101
gateway routing pattern 102, 103

General Data Protection Regulation
(GDPR) 233, 275

Geodes pattern 163

Google Cloud Anthos 212
Google Cloud Endpoints 212
Google cloud functions 248, 249

Google Cloud Network Service Tiers
212

Google Cloud Pub/Sub 222, 223
Google Front End (GFE) 212
Google Kubernetes Engine (GKE) 212

Government of India Powers a
Population-Scale Vaccine
Drive case study 23

Gradual Modernization 173
gRPC Remote Procedure Calls 198

H
health check API pattern 119, 120

Health Insurance Portability
and Accountability
Act (HIPAA) 233, 275

Hypertext Transfer Protocol Secure
(HTTPS) 196

I

IBM Cloud App Mesh 212

IBM MQ 202

idempotency
implementing 214, 215

idempotent operations 214

IMDb Video Team Builds Strategies
case study 26

Improved reliability 140
Improved scalability 140
infrastructure security 277

insurance claim processing application
case study 72-75

integration pattern 97
API aggregator pattern for composite
services 99, 100
API gateway pattern for API
management 98, 99

Index 315

branch pattern for parallel
processing 105, 106

chained microservices pattern for
sequencing 107, 108

gateway offloading pattern for
performance 101, 102

gateway routing pattern for
traffic shaping 102-105
inter-service communication 191-194
communication models 195, 196

distributed systems, challenges 194,
195

event-driven communication 203, 204
ISO 27001 275
Istio 181, 211
Istio service mesh 212, 213

features 213

J

Java 11 platform 180
JSON Web Tokens (JWTs) 51

K

Kubectl 69

Kubelet 69

Kube-proxy 69

Kubernetes 181
advantages 67, 68

alternatives, to container orchestration
70

components 68-70
container orchestration 67
Kubernetes Master 69

L
leader election pattern 151, 152
Linkerd 211

log aggregation pattern 121, 122

M
Machine Learning (ML) 40
materialized views 141
message broker models 200
event-driven model 200
point-to-point model 200
publish-subscribe model 200
request-response model 200
message brokers 199
message broker software platforms
Amazon Simple Queue Service
(SQs) 203
Azure service bus 202, 203
IBM MQ 202
Kafka 201, 202
RabbitMQ 201
messaging design patterns 153
pipes and filters 153-155
priority queue 155, 156
publisher-subscriber 156-158
queue-based load levelling 158, 159
sequential convoy 159, 160
Microservice Adoption Framework 55
microservices
characteristics 75-77
characteristics, using 78-80
Microsoft Azure Monitor 251

modern application design
principles 29, 30

AI/ML enabled 40, 41
APIs 50, 51
availability 32, 33
Cloud-native 39, 40

cost optimization 37, 38

316 Mastering Cloud-Native Microservices

DevOps delivery 41
observability 34, 35
performance 34
portability 38, 39
requirements 31, 32
resiliency 36, 37
scalability 33
security 35, 36
sustainability 41

Modernizes Architecture, with
microservices 77, 78

monolith, to microservices 55-57
continuous delivery, with DevOps 62

data, organizing into bounded
context or domains 58-60

microservices monitoring 61, 62
resilient microservices, building 60, 61

strategies, for building a microservice
design 57, 58

monolith to microservices architecture
transition

design principle 170, 171
legacy system and challenges 171, 172

legacy system update, strategies 173-
175

performing 169, 170
multi-factor Authentication (MFA) 35

o
observability pattern 118

application metrics pattern for
performance monitoring 123

audit logging pattern for compliance
124

distributed tracing pattern for root-
cause analysis 118, 119

exception tracking pattern
for debugging 124

health check API pattern for
self-healing 119-121
log aggregation pattern for centralized
logging 121, 122
monitoring, versus microservices
observability 125, 126
Opex 5
orchestration saga pattern 116, 117

P
parallel cutover approach 306
pattern 86

Payment Card Industry Data Security
Standard (PCI DSS) 233, 275

penetration testing 276, 277

phased cutover approach 305

pipes and filters pattern 153

pod 70

PostgreSQL 181

priority queue 155

priority queue pattern 155

Proof of Concept (PoC) 177
publisher-subscriber pattern 156, 157
publish-subscribe architecture 204

Q

queue-based load levelling 158

R

re-architecting 174
re-coding 174
refactoring 175
re-hosting 173, 174
reliability patterns 160

compensating transaction 160, 161

Index 317

Deployment Stamp pattern 162
Geodes pattern 163
throttling pattern 164, 165
Remote Procedure Calls (RPCs) 191, 197
re-platforming 173

Representational State Transfer
(REST APIs) 56, 58, 196

resource consumption 285

S

saga pattern 114, 115
Security Assertion Markup
Language (SAML) 51
security by design, for cloud
microservices 262
authentication 259
authorization 259, 260
communication security 267
compliance and risk management 274
container security 272
continuous security monitoring 279
data security 269
encryption 260
infrastructure security 277, 278
logging 260
monitoring 260

monitoring and incident
response 273,274

patching 260
separation of concerns 260
testing 260
threat detection and response 278, 279
updating 260
sequential convoy 159
serialization 206

best practices 207

formats 206
libraries 206, 207
serverless approach and edge
computing 249
serverless architecture 239
components 239, 240
Serverless Framework 241
key features 242, 243
serverless microservices case studies
Amazon Alexa 257
Capital One 256
Netflix 256
The New York Times 257
serverless microservices development
best practices 254-256
serverless monitoring and logging
by Azure monitor 251, 252
by Google cloud monitoring 252
by New Relic 253

by Serverless Framework Dashboard
253

by Thundra 253
serverless security

best practices 253, 254
service 70
Service discovery pattern 132

client-side service discovery pattern
133

server-side service discovery pattern
133

service discovery methods 134
Service Mesh 207, 208

Control Plane 208

Data Plane 208

features 209-211

318 Mastering Cloud-Native Microservices

Mesh Traffic 209
tools/ third-party products 211, 212
sharding patterns 143

shared database per service pattern 111,
112

sidecar pattern 94
Snap on AWS case study 18
Spring Boot 180
strangler pattern 96
SWOT analysis
for application stack 24, 25

synchronous inter-service
communication 196

gRPC Remote Procedure Calls 198
Remote Procedure Calls (RPCs) 197
RESTful APIs 196, 197

T
technologies, for microservices

Docker 63-65

enabling 63

Kubernetes container orchestration 67
threat detection and response 278
threat modeling 275, 276
throttling pattern 164
Transport Layer Security (TLS) 51, 209

Travelguru application migration
case study 175, 176

best practices 188, 189

business benefits 187

business challenge 176
challenges, overcoming 177-179
database migration 184-186
recommendations 186, 187
target technology stack 179, 180
technology adoption 180-182

transition, to microservices
architecture 182-184

Twelve-Factor App methodology 41, 42
admin processes 50
backing services 44
build 44
code base 42, 43
concurrency 47, 48
configuration 43
dependencies 43
Dev /Prod parity 49
disposability 48, 49
logging 49, 50
port binding 46, 47
processes 46
release 45
run 45

two-phase commit protocol (2PC) 115

U
Uniform Resource Identifier (URI) 196
UPWARD case study 21, 22

Vv

valet key design pattern 145

virtual machine scale sets (VMSS) 33
virtual machines (VMs) 33

W

Web Application Firewall (WAF) 35
worker nodes 69

wrapping 174

Wynk Music App case study 19

Mastering Cloud-Native
Microservices

DESCRIPTION

Microservices-based cloud-native applications are
software applications that combine the architectural
principles of microservices with the advantages of
cloud-native infrastructure and services. If you want to
build scalable, resilient, and agile software solutions
that can adapt to the dynamic needs of the modern
digital landscape, then this book is for you.

This comprehensive guide explores the world of cloud-
native microservices and their impact on modern
application design. The book covers fundamental
principles, adoption frameworks, design patterns, and
communication strategies specific to microservices. It
then emphasizes on the benefits of scalability, fault
tolerance, and resource utilization. Furthermore, the
book also addresses event-driven data management,
serverless approaches, and security by design. All in all,
this book is an essential resource that will help you to
leverage the power of microservices in your cloud-
native applications.

By the end of the book, you will gain valuable insights
into building scalable, resilient, and future-proof
applications in the era of digital transformation.

KEY FEATURES

» Gain a comprehensive understanding of the key
concepts and strategies involved in building
successful cloud-native microservices
applications.

» Discover the practical techniques and
methodologies for implementing cloud-native
microservices.

» Getinsights and best practices for implementing
cloud-native microservices.

WHAT YOU WILL LEARN

» Gaininsight into the fundamental principles and
frameworks that form the foundation of modern
application design.

» Explore a comprehensive collection of design
patterns tailored specifically for microservices
architecture.

» Discover a variety of strategies and patterns to
effectively facilitate communication between
microservices, ensuring efficient collaboration
within the system.

» Learn about event-driven data management
techniques that enable real-time processing and
efficient handling of data in a distributed
microservices environment.

» Understand the significance of security-by-design
principles and acquire strategies for ensuring the
security of microservices architectures.

WHO THIS BOOK IS FOR

This book is suitable for cloud architects, developers, and practitioners who are interested in learning about design
patterns and strategies for building, testing, and deploying cloud-native microservices. It is also valuable for techno-
functional roles, solution experts, pre-sales professionals, and anyone else seeking practical knowledge of cloud-native
microservices.

978-93-5551

BPB PUBLICATIONS

www.bpbonline.com

	Book title

	Inner title

	Copyright
	Dedicated
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Coloured Images
	Piracy
	Table of Contents
	Chapter 1: Cloud-Native
Microservices
	Introduction
	Structure
	Objectives
	Understanding the cloud native microservices
	Adopting cloud-native microservices
	Capability maturity level model
	Focus area: people, process and knowledge to achieve End-to-end accountability
	Focus area: technology and design maturity for enabling Zero-touch operations

	Play book for cloud-native microservices adoption
	Key principles of microservices
	Short case study 01: Snap on AWS
	What can we learn from this example?

	Short case study 02: Wynk Music App
	What can we learn from this example?

	The biggest challenges with microservices adoption
	Short Case Study 03: UPWARD, Inc.
	What can we learn from this example?

	Short Case Study 04: The Government of India Powers a Population-Scale Vaccine Drive
	What can we learn from this example?

	SWOT analysis for your application stack
	Short case study 05: IMDb Video Team Builds Strategies for the Future
	What can we learn from this example?

	Conclusion

	Chapter 2: Modern Application Design Principles
	Introduction
	Structure
	Objectives
	Modern application design requirements
	Availability
	Scalability
	Performance
	Observability
	Security
	Resiliency
	Cost optimization
	Portability, being cloud-agnostic
	Cloud-native
	AI/ML enabled
	DevOps delivery
	Sustainability

	The Twelve-Factor App methodology
	Code base
	Dependencies
	Configurations
	Backing services
	Build, release, run
	Processes
	Port binding
	Concurrency
	Disposability
	Dev/Prod parity
	Logging
	Admin processes

	Going beyond the twelve factors
	API first
	Security

	Conclusion

	Chapter 3: Microservice Adoption
Framework
	Introduction
	Structure
	Objectives
	From monolith to microservices
	Breaking the monolith: Strategies for building a microservice design
	Organizing data into bounded contexts or domains
	Building resilient microservices: Techniques for handling failure and faults
	Monitoring microservices: Best practices for testing and debugging microservices
	Embracing continuous delivery with DevOps

	Enabling technologies for microservices
	Docker and microservices: Use cases for containerization
	Using Docker: Exploring the benefits of containerization
	Container orchestration with Kubernetes
	Advantages of using Kubernetes: Orchestration for scalability and availability
	Components of Kubernetes
	Alternatives to container orchestration: Other tools

	Microservices adoption using Domain Driven Design
	Domain-driven application decomposition steps

	Short case study 06: Insurance Claim Processing
	Using microservices correctly: Characteristics

	Short case study 07: Modernizes Architecture Using Microservices
	Using microservices correctly: Characteristics

	Conclusion

	Chapter 4: Design Patterns for Microservices
	Introduction
	Structure
	Objectives
	Design patterns for microservices
	Decomposition pattern
	Decompose by business capability
	Decompose by subdomain
	Decompose by transactions
	Decompose by service per team
	Bulkhead pattern for resiliency
	Sidecar pattern for service mesh
	Strangler pattern for legacy systems

	Integration pattern
	API gateway pattern for API management
	API aggregator pattern for composite services
	Gateway offloading pattern for performance
	Gateway routing pattern for traffic shaping
	Asynchronous messaging pattern for loose coupling
	Branch pattern for parallel processing
	Chained microservices pattern for sequencing

	Database management pattern
	Command Query Responsibility Segregator (CQRS) pattern for separation of concerns
	Database per service pattern for decoupling
	Shared database per service pattern for consistency
	Event sourcing pattern for auditing and reconciliation
	Saga pattern for long-running transactions
	Choreography saga pattern
	Orchestration saga pattern

	Observability pattern
	Health check API pattern for self-healing
	Log aggregation pattern for centralized logging
	Application metrics pattern for performance monitoring
	Audit logging pattern for compliance
	Exception tracking pattern for debugging
	Monitoring Vs microservices observability

	Cross-cutting concern pattern
	Blue-green deployment pattern for zero-downtime
	Canary pattern for incremental rollouts
	Canary Vs blue-green deployment pattern for deployment strategies
	Circuit breaker pattern for fault tolerance
	External configuration pattern for dynamic configuration
	Service discovery pattern for service registration and discovery

	Conclusion

	Chapter 5: Cloud-Powered Microservices
	Introduction
	Structure
	Objectives
	Data management design patterns
	Materialized view
	Sharding
	Valet key

	Design and implementation patterns
	Ambassador
	Anti-corruption layer
	Backends for Frontends
	Leader election

	Messaging design patterns
	Pipes and filters
	Priority queue
	Publisher-subscriber
	Queue-based load levelling
	Sequential convoy

	Reliability
	Compensating transaction
	Deployment stamps
	Geodes
	Throttling

	Conclusion

	Chapter 6: Monolith to Microservices Case Study
	Introduction
	Structure
	Objectives
	Transitioning from monolith to microservices architecture
	Monolithic to microservice design principle

	Challenges of legacy systems
	Strategies for updating legacy systems to microservices
	Migrating Travelguru application to microservices: A Case Study
	Case Study: Business Challenge
	Case Study: Solution Delivered for Microservices Migration
	Case Study: Technology Roadmap for Microservices Adoption
	Case Study: Application Transition to Microservices Architecture
	Case Study: Successful Database Migration to Microservices
	Case Study: Business Outcome of Microservices Migration
	Case Study: Best Practices Implemented in Microservices Migration

	Conclusion

	Chapter 7: Inter-Service Communication
	Introduction
	Structure
	Objectives
	Inter-Service communication
	Challenges of distributed systems
	Communication models

	Synchronous inter-service communication
	RESTful APIs
	Remote Procedure Calls (RPCs)
	gRPC Remote Procedure Calls

	Asynchronous Inter-Service communication
	Message brokers
	Message broker models
	Message broker software
	RabbitMQ
	Apache Kafka
	IBM MQ
	Azure service bus
	Amazon Simple Queue Service (SQS)

	Event-driven communication
	Publish-subscribe architecture
	Event-driven architecture
	Event sourcing

	Serialization
	Serialization formats
	Serialization libraries
	Best practices for serialization

	Service mesh
	Features of service mesh
	Tools/third-party products for service mesh
	Istio service mesh

	Idempotent operations
	Implementing idempotency

	Conclusion

	Chapter 8: Event-Driven Data Management
	Introduction
	Structure
	Objectives
	Event-driven data management and data governance
	Technologies for event-driven data management
	AWS Kinesis
	Google Cloud Pub/Sub
	Azure event grid
	Apache Kafka on Kubernetes

	Event sourcing and CQRS
	Event-based data replication
	Event-driven data integration
	Event-based data access control
	Event-based data lineage
	Data governance in microservices
	Data privacy and compliance
	Data Lifecycle Management
	Conclusion

	Chapter 9: The Serverless Approach

	Introduction
	Structure
	Objectives
	Understanding the serverless architecture
	Use cases for Function-as-a-Service (FaaS)
	Serverless framework
	Key features

	Function-as-a-Service platforms
	AWS Lambda
	Features of AWS Lambda
	Advantages of AWS Lambda
	Disadvantages of AWS Lambda
	Azure functions
	Features of Azure functions
	Disadvantages of AWS Lambda
	Google cloud functions

	Serverless approach and edge computing
	Serverless monitoring and logging
	Serverless monitoring and logging is provided by Azure monitor

	Serverless security
	Best practices for serverless microservices development
	Serverless microservices case studies
	Conclusion

	Chapter 10: Cloud Microservices -Security by Design
	Introduction
	Structure
	Objectives
	Cloud Microservices - Security by Design
	Authentication and access control
	Authentication and authorization mechanisms in cloud microservices
	Role-based access control (RBAC)
	Multi-factor authentication (MFA)
	Access control lists (ACLs)

	Communication security
	Data security
	Data security and encryption techniques for microservices
	Security of data in transit and at rest
	Immutable infrastructure

	Container security
	Monitoring and incident response
	Compliance and risk management
	Compliance and regulatory considerations
	Threat modeling
	Penetration testing

	Infrastructure security
	Threat detection and response
	Continuous security monitoring
	Conclusion

	Chapter 11: Cloud Migration Strategy
	Introduction
	Planning and executing a cloud migration strategy
	Structure
	Objectives
	Cloud migration goals
	Capex and Opex cost optimization
	Optimize resource consumption and dynamic elasticity
	Vendor and application consolidation
	Agility and innovation via DevOps, Multi-cloud, PaaS, AI/ML, IoT
	Scalability, flexibility, and global reach
	Reliability, availability, and security
	Customer experience and insights
	IT modernization and integration
	Reduce, consolidate, and retire the physical data center footprint

	Cloud migration principles
	Security first: Secure the network, protect the data, and control access
	Monitor and optimize workloads for cost
	Deploy infrastructure as code
	Make allocations match demand
	Automate and implement DevOps practices
	Training the staff for future mode of operations
	Leverage cloud-native services

	Cloud migration strategy
	Business goals and objectives
	Cloud service provider selection
	Data security and compliance
	Cost optimization
	Scalability and flexibility
	Legacy systems
	Change management
	Performance and reliability
	Governance
	Continuous improvement
	Migration strategy
	Migration plan
	Skills and training
	Performance and optimization
	Data management
	Vendor management
	Stakeholder communication
	Organizational change management

	Cloud migration life cycle strategy
	Assessment stage
	Per application assessment stage
	Planning stage
	Design stage
	Execution stage
	Testing stage
	Cutover stage
	Big Bang Cutover
	Phased Cutover
	Parallel Cutover
	Post cutover stage

	Conclusion

	Index
	Back title

