

Mastering Perl

Mastering Perl helps readers to learn the Perl programming language with real-
world examples. High-level, interpreted, and multipurpose, Perl’s roots are in text
manipulation. It is used for UI development in system administration, networking,
and other fields, borrowing heavily from C and Shell scripts.

Among programmers, Perl is also known as “Pathologically Eclectic Rubbish
Lister” or “Practically Everything Really Likable.” Since Perl’s inception, it has
mostly been used for text processing, namely the extraction of data from text files
and its subsequent transformation into other formats.

In addition to being interoperable with HTML, XML, and other markup languages,
Perl provides cross-platform compatibility. It is Open Source, meaning it’s free to
use and licensed under both the Artistic and GNU General Public Licenses (GPL).

With Mastering Perl, learning Perl becomes a charm and will help readers un-
doubtedly advance their careers.

About the Series

The Mastering Computer Science covers a wide range of topics, spanning
programming languages as well as modern-day technologies and frame-
works. The series has a special focus on beginner-level content, and is pre-
sented in an easy to understand manner, comprising:

• Crystal-clear text, spanning various topics sorted by relevance,

• Special focus on practical exercises, with numerous code samples
and programs,

• A guided approach to programming, with step by step tutorials for
the absolute beginners,

• Keen emphasis on real-world utility of skills, thereby cutting the
redundant and seldom-used concepts and focusing instead of
industry-prevalent coding paradigm,

• A wide range of references and resources, to help both beginner and
intermediate-level developers gain the most out of the books.

Mastering Computer Science series of books start from the core concepts,
and then quickly move on to industry-standard coding practices, to help
learners gain efficient and crucial skills in as little time as possible. The
books assume no prior knowledge of coding, so even the absolute newbie
coders can benefit from this series.

Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with over a decade of experience in the computing
field.

For more information about this series, please visit: https://www.rout-
ledge.com/Mastering-Computer-Science/book-series/MCS

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS

Mastering Perl
A Beginner’s Guide

Edited by
Sufyan bin Uzayr

First Edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Bin Uzayr, Sufyan, editor.
Title: Mastering Perl : a beginner’s guide / edited by Sufyan bin Uzayr.
Description: First edition. | Boca Raton ; London : CRC Press, 2024. |
 Series: Mastering computer science
Identifiers: LCCN 2023007400 (print) | LCCN 2023007401 (ebook) | ISBN
 9781032415109 (paperback) | ISBN 9781032415116 (hardback) | ISBN
 9781003358442 (ebook)
Subjects: LCSH: Perl (Computer program language) | Computer programming.
Classification: LCC QA76.73.P47 M37 2024 (print) | LCC QA76.73.P47
 (ebook) | DDC 005.13/3--dc23/eng/20230601
LC record available at https://lccn.loc.gov/2023007400
LC ebook record available at https://lccn.loc.gov/2023007401

ISBN: 9781032415116 (hbk)
ISBN: 9781032415109 (pbk)
ISBN: 9781003358442 (ebk)

DOI: 10.1201/9781003358442

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2023007400
https://lccn.loc.gov/2023007401
https://doi.org/10.1201/9781003358442

For Mom

http://www.taylorandfrancis.com

vii

Contents

About the Editor, xv

Acknowledgments, xvi

Zeba Academy – Mastering Computer Science, xvii

Chapter 1 ◾ Introduction 1
EVOLUTION OF PERL 1

WHY PERL? 2

PERL FEATURES 3

PERL APPLICATION 4

PERL IMPLEMENTATION 4

PROGRAMMING IN PERL 4

Comments 5
Perl’s Benefits 6
Perl’s Disadvantages 6
Applications 6

PERL INSTALLATION AND CONFIGURATION ON
WINDOWS, LINUX, AND MACOS 7

PERL DOWNLOAD AND INSTALLATION 8

HELLO WORLD PROGRAM 9

HOW TO EXECUTE A PERL PROGRAM 11

Windows 11
Unix/Linux 11

A PERL PROGRAM’S BASIC SYNTAX 11

Variables 12

viii ◾ Contents

Expressions 12
Comments 13
Statements 14
Block 14
Functions or Subroutines 15
Loops 15
Whitespaces and Indentation 16
Keywords 17

DATA TYPES 18

Scalars 18
Arrays 18
Hashes 19

NOTE 20

Chapter 2 ◾ Fundamentals of Perl 21
PERL CODE WRITING METHODS 21

Interactive Mode 22
Script Mode 23
One-Liner Mode 24

BOOLEAN VALUES IN PERL 25

OPERATORS 29

Arithmetic Operators 30
Addition 30
Subtraction 30
Multiplication 30
Division 30
Modulus 31
Exponent Operator 31

Relational Operators 31
Logical Operators 34
Bitwise Operators 35

Contents ◾ ix

Assignment Operators 37
Ternary Operator 40

VARIABLES IN PERL 41

Naming of a Variable 41
Declaration of a Variable 42
Modification of a Variable 42
Variable Interpolation 43

VARIABLES AND ITS TYPES 44

Creating Variables 45
Scalar Variables 45
Array Variables 46
Hash Variables 46
Variable Context 47

SCOPE OF VARIABLES 48

The Scope of Global Variables 48
Lexical Variables’ Scope (Private Variables) 50
Package Variables 52

MODULES IN PERL 54

Making a Perl Module 54
Importing and Using a Perl Module 55
Utilizing Module Variables 55
Making Use of predefined Modules 56

PERL PACKAGES 57

Perl Module Declaration 57
Making Use of a Perl Module 58
Using a Different Directory to Access a Package 58
Utilizing Module Variables 59
Begin and End Block 60

NUMBER AND ITS TYPES IN PERL 60

DIRECTORIES WITH CRUD OPERATIONS IN PERL 64

Making a New Directory 65
Opening an Existing Directory 65

x ◾ Contents

Read Directory in the Scalar and List Context 65
Modifying Directory Path 67
Directory Closing 68
Delete a Directory 68

NOTES 69

Chapter 3 ◾ Input and Output in Perl 71
PERL print() AND say() METHODS 71

print() Operator 71
say() Function 73

print OPERATOR 73

USE OF STDIN FOR INPUT 74

Chapter 4 ◾ Control Flow in Perl 77
DECISION-MAKING IN PERL 77

if Statement 78
if else Statement 79
Nested if Statement 81
if elsif else ladder Statement 83
unless Statement 85
unless else Statement 86
unless elsif Statement 88

LOOPS IN PERL 90

for Loop 90
foreach Loop 92
while Loop 92
Infinite While Loop 93
do...while loop 93
until Loop 94
Nested Loops 95

given-when STATEMENT 97

Nested given-when Statement 98
goto STATEMENT 100

Contents ◾ xi

next OPERATOR 103

redo OPERATOR 105

last IN LOOP 106

NOTES 107

Chapter 5 ◾ File Handling in Perl 109
INTRODUCTION OF FILE HANDLING 109

Using FileHandle To Read and Write to a File 110
Various File Handling Modes 111
Redirecting Output 115

FILE OPENING AND READING 116

Opening a File 117
Reading a File 117

FileHandle Operator 117
getc Function 118
read Function 118

Reading More than One Line at a Time 119
Exception Handling in Files 119

Throw an Exception 119
Give a Warning 120

WRITING TO A FILE 120

print() Function 120
Error Handling and Error Reporting 122

Throw an Exception (Using Die Function) 122
Give a Warning (Using Warn Function) 123

APPENDING TO A FILE 123

CSV FILE READING 125

Use of Split() for Data Extraction 125
Character Escaping a Comma 127
Installation of the TEXT::CSV 128
Fields with Newlines Embedded 129

FILE TEST OPERATORS 131

xii ◾ Contents

FILE LOCKING 133

flock() 134
flock() vs lockf() 136

SLURP MODULE 136

USEFUL FILE-HANDLING FUNCTIONS 139

Chapter 6 ◾ Regular Expressions in Perl 141
OPERATORS IN REGULAR EXPRESSION 143

REGEX CHARACTER CLASSES 147

SPECIAL CHARACTER CLASSES IN REGULAR EXPRESSIONS 150

QUANTIFIERS IN REGULAR EXPRESSION 152

Quantifier Table 153
BACKTRACKING IN REGULAR EXPRESSION 156

BACKTRACKING 158

“e” MODIFIER IN REGULAR EXPRESSION 159

The Substitution Operation Is Performed using a
Subroutine 160

REGEX “ee” MODIFIER 161

When Doing Mathematical Calculations, Use the
“ee” Modifier 162

pos() FUNCTION IN REGULAR EXPRESSION 164

To Match from a Specified Position, use \G Assertion 166
REGEX CHEAT SHEET 167

Character Classes 168
Anchors 169
Metacharacters 170
Quantifiers 170
Modifiers 171
White Space Modifiers 171
Quantifiers – Modifiers 172
Grouping and Capturing 172

SEARCHING IN A FILE USING REGEX 172

Regular Search 173

Contents ◾ xiii

Using Word Boundary in the Regex Search 174
Use of Wildcards in the Regular Expression 175

Chapter 7 ◾ Object-Oriented Programming in Perl 177
CLASSES IN OOP 181

Object 181
Class 181
Data Member 182
Defining a Class 182
Creating a Class and Making Use of Objects 182
Creating a Class Instance 182
Creating an Object 183

OBJECTS IN OOPs 184

METHODS IN OOPs 186

Types of Methods in Perl 187
get-set Methods 187

CONSTRUCTORS AND DESTRUCTORS 189

Constructors 189
Passing Dynamic Attributes 191
Destructors 192

METHOD OVERRIDING IN OOPs 192

Why Do We Override Methods? 196
INHERITANCE IN OOPs 196

Base Class and Derived Class 197
Multilevel Inheritance 198
Implementing Inheritance in the Perl 199

POLYMORPHISM IN OOPs 200

ENCAPSULATION IN OOPs 203

NOTE 205

Chapter 8 ◾ Subroutines in Perl 207
SUBROUTINES OR FUNCTIONS 207

Determining Subroutines 208

xiv ◾ Contents

Calling Subroutines 208
Passing Parameters to Subroutines 208
Passing Hashes to Subroutines 210
Passing Lists to Subroutines 210
Returning a Value from a Subroutine 211
Local and Global Variables in Subroutines 212
A Varying Number of Parameters in a Subroutine Call 213

FUNCTION SIGNATURE IN PERL 214

Defining Subroutines 214
Function Signature 214
Passing Parameters of a Type other than that Specified
in the Signature 215
Difference in Number of Arguments 216

PASSING COMPLEX PARAMETERS TO A SUBROUTINE 217

MUTABLE AND IMMUTABLE PARAMETERS 222

Mutable Parameters 222
Immutable Parameters 222
Traits 223

MULTIPLE SUBROUTINES 225

Subroutine Definition 225
Use of the “multi” Keyword 226

return() FUNCTION 228

REFERENCES IN PERL 229

Making a Reference 229
Dereferencing 231

PASS BY REFERENCE 232

PERL RECURSION 234

APPRAISAL, 237

BIBLIOGRAPHY, 281

INDEX, 287

xv

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur having over a
decade of experience in the industry. He has authored several books in
the past, pertaining to a diverse range of topics, ranging from History to
Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com

https://sufyanism.com

xvi

Acknowledgments

There are many people who deserve being on this page because this book
would not have come into existence without their support. That said, some
names deserve a special mention, and I am genuinely grateful to:

• My parents, for everything they have done for me.

• The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Simran Rao, for offering great amounts of help and assistance during
the book-writing process.

• The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remains perfect throughout.

• Reviewers of this book, for going through the manuscript and pro-
viding their insight and feedback.

• Typesetters, cover designers, printers, and everyone else, for their
part in the development of this book.

• All the folks associated with Zeba Academy, either directly or indi-
rectly, for their help and support.

• The programming community, in general, and the web development
community in particular, for all their hard work and efforts.

Sufyan bin Uzayr

xvii

Zeba Academy –
Mastering Computer
Science

The “Mastering Computer Science” series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr, consisting of:

• Divya Sachdeva

• Jaskiran Kaur

• Simran Rao

• Aruqqa Khateib

• Suleymen Fez

• Ibbi Yasmin

• Alexander Izbassar

Zeba Academy is an EdTech venture that develops courses and content for
learners primarily in STEM fields, and offers educational consulting and
mentorship to learners and educators worldwide.

Additionally, Zeba Academy is actively engaged in running IT Schools in
the CIS countries, and is currently working in partnership with numerous
universities and institutions.

For more info, please visit https://zeba.academy

https://zeba.academy

http://www.taylorandfrancis.com

1DOI: 10.1201/9781003358442-1

C h a p t e r 1

Introduction

IN THIS CHAPTER

 ➢ Perl Introduction

 ➢ Installation and Environment Setup

 ➢ Hello World Program

Perl is a high-level, interpreted, and dynamic, general-purpose program-
ming language.

It was created in 1987 by Larry Wall. Although “Practical Extraction
and Reporting Language” is the most common expansion, there is no offi-
cial full form of Perl. Some programmers refer to Perl as “Pathologically
Eclectic Rubbish Lister” and “Practically Everything Likable.” The abbre-
viation “Practical Extraction and Reporting Language” is often used since
Perl was initially designed for text processing, such as extracting the neces-
sary information from a specific text file and converting the text file to a new
format. Perl supports both procedural and object-oriented programming.

Perl is syntactically similar to C, making it accessible to C and C++
programmers.

EVOLUTION OF PERL
It all began when Larry Wall was tasked with generating reports from sev-
eral text files containing cross-references. Then he began using awk for this
work but quickly realized it was insufficient. Instead of designing a tool
for this purpose, he created a new programming language, Perl, and its

https://doi.org/10.1201/9781003358442-1

2 ◾ Mastering Perl

interpreter. He built the Perl programming language in C, using principles
from awk, sed, and LISP, among others. Perl was initially designed only
for system administration and text processing, but subsequent versions
included the ability to manage regular expressions (Regex) and network
sockets. Presently, Perl is renowned for its capability to handle Regex. The
first release of Perl was version 1.0 on December 18, 1987. 5.28 is the most
recent version of Perl. Perl 6 is distinct from Perl 5 since it is a reimplemen-
tation of Perl 5 that is entirely object-oriented.

WHY PERL?
Perl’s popularity and demand stem from a variety of factors. Some of the
causes are as follows:

• Perl is a high-level language; thus, it is similar to other popular pro-
gramming languages such as C and C++, making it simple for any-
body to learn.

• Text-processing: As the name “Practical Extraction and Reporting
Language” suggests, Perl has powerful text manipulation capa-
bilities, allowing it to create reports from various text files readily.
Additionally, it may convert the files to a different format.

• Perl incorporates the most exemplary aspects of other languages,
such as C, sed, awk, and sh, making the language more useful and
productive.

• System management: Perl’s ability to use many scripting languages
makes system administration a simple operation. Instead of rely-
ing on many languages, utilize Perl to fulfill all system management
tasks. Despite this, Perl is also used for web development, web automa-
tion, and Graphical User Interface (GUI) programming, among other
things.

• Web and Perl: Perl may be incorporated into web servers to boost
their processing capacity, and the DBI module makes web-database
interaction quite simple.

Getting started with Perl programming:
• Locating an interpreter: Numerous online integrated development

environments (IDEs) may be used to execute Perl programs without
installation.

Introduction ◾ 3

• Windows: A number of IDEs are available to execute Perl appli-
cations or scripts, including Padre and Eclipse with the EPIC
plugin.

PERL FEATURES

• The capabilities listed below are present in Perl and have been widely
adopted by other programming and scripting languages.

• Most of Perl’s features, including variables, expressions, statements,
control structures, and subroutines, are derived from C.

• It also utilizes shell scripting tools for detecting data kinds.

• Perl provides built-in functions often used in shell programming,
such as sort and system facilities use, that may be denoted using lead-
ing sigils, such as an array, scalar, and hash.

• In addition, Perl 5 supports complicated data structures and an
object-oriented programming style that includes packages, refer-
ences, and compiler directives.

• The interpreter knows the storage and memory needs for each data
type and allocates and deallocates memory depending on use in all
versions of Perl.

• It also does typecast during execution, such as converting an integer
to a string, and other conversions that are not valid, which result in
errors being raised.

• Perl does not impose or promote any particular programming style,
such as procedural, object-oriented, or functional; the interpreter
and its functions constitute the language’s only definition.

• Perl has APIs (text manipulation facilities) that help deal with XML,
HTML, and other mark-up languages.

• Perl offers the most significant level of security and is even certified
by Coverity, a third-party security company, for having a low defect
density and fewer security issues.

• Perl is extensible and includes libraries that handle XML and data-
base integration (DI), such as Oracle and MySQL.

4 ◾ Mastering Perl

PERL APPLICATION
Perl, along with Hypertext Preprocessor (PHP) and Python, is a popu-
lar programming language among developers. Previously, programmers
wrote Common Gateway Interface (CGI) scripts using Perl. Perl is fre-
quently used as a departmental adhesive between heterogeneous and non-
seamless interoperable systems. System administrators adore this language
because they can enter a single command to accomplish a task that would
otherwise require writing a program. Perl is primarily portable, with some
Windows and macOS-specific customizations.

Additionally, developers use the language to build and deploy. It is used
by most suppliers or software manufacturers to package and deploy com-
mercial software (including COTS and bespoke). It is utilized extensively
in the fields of finance and bioinformatics due to its capacity to manage
and process large data sets.

PERL IMPLEMENTATION
As stated before, Perl is an interpreted language written in C with an
extensive library of modules written in both C and Perl. The Perl inter-
preter comprises a massive 150,000 lines of C code, which compiles to 1
MB on most system architectures. There are almost 500 modules in the
Perl distribution, including 300,000 lines of Perl code and 200,000 lines
of C code. The components of Perl (arrays, scalars, and hashes) are repre-
sented as C structures inside the object-oriented design of the interpreter.

The interpreter’s life cycle consists of two phases: compilation and exe-
cution. The interpreter parses the Perl code into a syntax tree at build time.
It executes the Perl program by traversing the tree at runtime. The Perl
programming language is offered as open source with 120,000 functional
tests; the interpreter and other functional modules are rigorously tested
during the compilation process. If these 120K functional tests pass, it is
safe to assume that your code will not damage the interpreter.

PROGRAMMING IN PERL
Perl is syntactically similar to other commonly known programming
languages, making it easy to write and understand. Perl programs can
be written in any of the most popular text editors, including Notepad++
and gedit. After creating the program, save the file with the .pl or .PL
extension. Type Perl file name.pl on the command line to execute the
program.

Introduction ◾ 5

Example: A simple application to print Welcome to PFP!

Program to print Welcome to PFP!
#!/usr/bin/perl

Below line will print "Welcome to PFP!"
print "Welcome to GFG!\n";

Comments

Comments are used to improve code readability. The comment items are
ignored by the interpreter and are not executed. Comments might be sin-
gle or multiple lines.

• Single line Comment

Syntax:

Single-line-comment

• Multi-line comment

Syntax:

= Multi-line comments
Line start from = is interpreted as
starting of multiline comment and =cut is
consider as the end of the multiline comment
=cut

In the above example:

1. print: It is a Perl function that displays the result or any provided
output on the console.

2. Quotes: In Perl, we can use either single or double quotes (‘’ or “”).
Single quotes do not interpolate any variable or special character, but
double quotes do.

3. \n: It is used for newline character, which escapes any character with
a backslash (\).

4. /usr/bin/Perl: It is the original Perl interpreter binary, which always
begins with #!. This is used in Perl Script Mode Programming.

6 ◾ Mastering Perl

5. Because Perl is a case-sensitive computer language, $Geeks and
$geeks are distinct identifiers.

Perl’s Benefits

• Perl supports cross-platform compatibility and mark-up languages
such as HTML, XML, and others.

• It is particularly efficient in text manipulation, i.e. Regex. It also has
socket capabilities.

• Free and open-source software is released under the Artistic and
GNU General Public Licenses (GPL).

• Because it is an embeddable language, it can be used in web servers
and database servers.

• It supports around 25.000 open-source modules on CPAN
(Comprehensive Perl Archive Network), which provide numerous
useful enhancements to the standard library. For example, XML pro-
cessing, GUI, and DI, among others.

Perl’s Disadvantages

• Because of CPAN modules, Perl does not support portability.

• Programs run slowly and must be interpreted each time changes are
made.

• In Perl, the same result may be obtained in a variety of methods,
making the code messy and illegible.

• When compared to other languages, the usability factor is lower.

Applications

• Text file processing and string analysis are key uses of the Perl
language.

• Perl is also used for CGI scripts.

• Used in web development and GUI design.

• The text-handling features of Perl are also employed to generate SQL
queries.

Introduction ◾ 7

PERL INSTALLATION AND CONFIGURATION
ON WINDOWS, LINUX, AND MACOS
Installing Perl on our system, whether it is Windows, Linux, or Macintosh,
is the first step. We must have a direct understanding of what the Perl pro-
gramming language is and what it accomplishes.

Perl is a dynamic, high-level, interpreted, general-purpose program-
ming language. Perl was first designed for text processing, such as extract-
ing the necessary information from a particular text file and converting text
file to a new format. Perl supports both procedural and Object-Oriented
programming. Perl is syntactically similar to C, making it accessible to C
and C++ programmers.

Programming in Perl is possible using any plain text editor, such as
notepad, notepad++, or any other application. One may either utilize an
online IDE or install one on their machine to make creating Perl routines
easier. Using an IDE makes it simpler to create Perl code due to the IDE’s
many capabilities, such as an intuitive code editor, debugger and compiler.
Perl must be installed on a system before developing Perl codes and exe-
cuting many exciting and beneficial operations. This may accomplish by
following the detailed methods given below:

Checking for a preinstalled version of Perl: Before we begin the
installation of Perl, it is a good idea to check if it is already installed on
your system. Many software applications require Perl to perform their
operations, so a version of Perl may include in the software’s installation
package. There is no need to redownload and reinstall Perl if this is the
case.

Macintosh also preinstalls Perl on its computers. Perl is preloaded on
many Linux systems. Simply use the command prompt to see whether Perl
is preloaded on your device.

(For Windows, type cmd in the Run dialogue (window + R), for Linux,
press Ctrl+Alt+T, and for macOS, press Control+Option+Shift.)

Execute the following command now:

perl -v

If Perl is already installed, a message with all the details of Perl’s version
will be generated; otherwise, an error stating bad command or file name
will be generated.

8 ◾ Mastering Perl

PERL DOWNLOAD AND INSTALLATION

Perl download:
• Before starting with installation process, we need to download it.

For that, all versions of Perl for the Windows, Linux, and macOS are
available on https://www.perl.org/get.html

Perl download.

• Install Perl by downloading it and following the installation
instructions.

Starting with the Windows installation:
• Completing the User’s License Agreement.

• Deciding what to install.

• The installation procedure.

• Completed installation.
After finishing the installation procedure, any IDE or text editor

may use to develop Perl codes, which can then be run on the IDE or
the command prompt with the command:

perl file1.pl

https://www.perl.org

Introduction ◾ 9

Starting with the Linux installation:
• Change the path to install Perl.

• Start the installation process.

• Choosing the Perl Installation Directory.

• Finishing the installation.

• Once the installation procedure is complete, any IDE or text editor
may be used to create Perl codes, which can then launch on the IDE
or the command prompt with the command:

perl file1.pl

Starting with the macOS installation:
• Starting out.

• Finished with the User’s License Agreement.

• Choosing a place for installation.

• The installation procedure.

• Installation is now complete.

• After finishing the installation procedure, any IDE or text editor may
use to develop Perl codes, which can then be run on the IDE or the
command prompt with the command:

Perl file.pl

HELLO WORLD PROGRAM
Perl is a computer language explicitly developed for text processing. The
acronym stands for Practical Extraction and Report Language. It is com-
patible with several systems, including Windows, Mac OS, and almost
all UNIX variants. The Hello Everyone! program in each programming
language provides novice programmers with a head start in learning the
language.1

The result of the simple Hello everyone program is “Hello Everyone!”
printed on the screen.

A simple Perl program consists of the following execution steps:

• Step 1: Transfer the file to the Perl interpreter.

10 ◾ Mastering Perl

In Perl, the first line always begins with the pair of characters #!.
It instructs the Perl interpreter on how to execute the file. The file
should relocate to the/usr/bin/Perl subdirectory, which contains the
Perl interpreter.

Therefore, the first line of the program will read as follows:

#!/usr/bin/perl

• Step 2: Perl Pragma
A pragma is a special module in the Perl package that has con-

trol over various features of Perl’s compile time or run time behav-
ior, such as strictness or warnings. So the following two lines are as
follows:

use strict;
use warnings;

• Step 3: Make use of the print() function.
Finally, we use Perl’s print() method to display a string to display

the output.

print("Hello Everyone\n");

Example:

#!/usr/bin/perl

Modules-used
use strict;
use warnings;

Print function

print("Hello Everyone\n");

Important points:
• The file must save with the extension .pl.

• The Perl package directory must be the same as where the program
file is saved.

Introduction ◾ 11

HOW TO EXECUTE A PERL PROGRAM
In general, there are two methods for running a Perl program: using online
IDEs: We can run Perl programs without installing them by using various
online IDEs.

Using the command line: We can launch a Perl program using com-
mand line options. The following instructions explain how to launch a Perl
program from the command line in Windows/Unix:

Windows

To begin, launch a text editor such as Notepad or Notepad++.
Write the code in a text editor and save it as a .pl file.
Ascertain that we have obtained and installed the most recent Perl ver-

sion from https://www.perl.org/get.html.
Open the command line and type Perl -v to see if the newest version of

Perl has been correctly installed.
Type Perl HelloEveryone.pl to build the code. If our code has no errors,

it will run correctly and the output will be shown.

Unix/Linux

Follow the steps above to write code and save the file with the .pl extension.
To download and install Perl, use the terminal application on our Unix/

Linux operating system and follow the steps below.
Now, execute the command Perl -version to see if the newest version of

Perl was correctly installed.
Type Perl hello.pl to build the code. If our code has no errors, it will run

correctly, and the output will show.

A PERL PROGRAM’S BASIC SYNTAX
Perl is a dynamic, high-level, interpreted, general-purpose programming
language. Perl was first designed for text processing, such as extracting
the necessary information from a particular text file and converting text
file to a new format. Perl supports both procedural and object-oriented
programming.

Perl is similar to C, making it accessible to C and C++ programmers.
Perl follows a basic syntax for developing programs for applications and
software and writing simple Perl programs, similar to those of other pro-
gramming languages.

This grammar features several predefined phrases such as keywords,
variables for storing values, expressions, statements for performing logic,

https://www.perl.org

12 ◾ Mastering Perl

loops for iterating through a variable value, blocks for combining state-
ments, and subroutines for simplifying code.

All of these elements, when combined, constitute a Perl program. The
variables, statements, and other factors that make up a program’s syntax
are used by every Perl program, whether it’s a simple code for adding two
numbers or a complex one for launching web scripts.

Variables

Variables are user-defined words used to store the program’s values and
utilized to evaluate the code. Every Perl program comprises values on
which the code operates. These values cannot be edited or saved unless a
variable is used. A value can only process if it is saved in a variable and the
variable’s name is used.

A value is data that is passed to the program to conduct a modification
action. This data can be numbers, strings, characters, lists, etc.

Example:

Values:
15
peeks
25

Variables:
$c = 15;
$d = "peeks";
$e = 25;

Expressions

Variables and an operator symbol make up Perl expressions. These expres-
sions define the operation performed on the data given by the relevant
code. In Perl, an expression is something that, when evaluated, returns a
value. An expression can also be a value without any variables or operator
symbols. It can be either an integer or a string with no variables.

Example:

Value 10 is an expression, $c + $d is an
expression that returns their sum, etc.

A more complex expression is one that uses Regex to perform opera-
tions on strings and substrings.

Introduction ◾ 13

Comments

Perl developers frequently utilize the comment system since things may
quickly become complicated without it. Comments are essential informa-
tion provided by developers to help the reader comprehend the source code.
It describes the reasoning or a portion of it that is employed in the code.
When we are no longer available to address queries about our code, com-
ments are frequently helpful to someone who is maintaining or improving
it. These are frequently noted as a good programming practice that does
not affect program output but increases overall readability.

In Perl, there are two kinds of comments:
1. Single-line comments: A single-line comment in Perl begins with

the hashtag symbol (#) and continues until the end of the line. If
the comment is more than one line, add a hashtag to the following
line and continue the comment. Single-line comments in Perl have
proven helpful in providing brief explanations for variables, function
declarations, and expressions. The following code for an example of
a one-line comment:

#!/usr/bin/perl
$d = 10; # Assigning value to $d
$e = 30; # Assigning value to $e

$c = $d + $e; # Performing operation
print "$c"; # Printing result

2. A multi-line string as a comment: A multi-line comment in Perl is
a chunk of text enclosed by “=” and “=cut.” They are useful when the
remark content does not fit on a single line and must spread across
lines. Multi-line comments or paragraphs provide documentation
for people who are reading your code. Perl considers everything
typed after the “=” sign to be a comment until a “= cut follows it.”
Please remember that there should be no whitespace following the
“=” symbol. See the following code snippet for an example of a multi-
line comment:

#!/usr/bin/perl

=Assigning values to
The variable $d and $e
=cut

14 ◾ Mastering Perl

$d = 10;
$e = 30;

=Performing operation
and printing result
=cut
$c = $d + $e;
print "$c";

Statements

A statement in Perl contains instructions for the compiler to conduct
operations. These statements conduct the operations on the variables
and values at the run-time. Every sentence in Perl must conclude with
a semicolon(;). Basically, instructions put in the source code for execu-
tion are termed statements. There are several sorts of statements in the
Perl programming language, such as assignment statements, conditional
statements, and looping statements. These all allow the user to acquire the
appropriate output. For example, n = 60 is an assignment statement.

Multi-line statements: Statements in Perl may be expanded to one or
more lines by simply separating them into pieces. Unlike other languages
like Python, Perl looks for a semicolon to terminate the sentence. Every
line between two semicolons is treated as a single sentence.

When the programmer wants to execute extensive computations and
cannot fit his statements onto one line, one may simply split it into numer-
ous lines.

Example:

$z = $g + $h + $i +
 $j + $k + $l;

Block

A block is a collection of statements that execute a related operation.
Multiple statements in Perl can be performed concurrently (under a single
condition or loop) by using curly braces ({}). This creates a block of state-
ments that are all performed simultaneously. This block can use to opti-
mize the program by grouping statements together.

Variables declared within a block have a scope confined to that block
and are useless outside of it. They will only be executed when that specific
block is being run.

Introduction ◾ 15

Example:

{
 $d = 25;
 $d = $d + 35;
 print($d);
}

The variable $d in the preceding code has a scope confined to this spe-
cific block and is useless outside of it. The block above contains statements
with operations that are related to one another.

Functions or Subroutines

A function/subroutine is a code block written in a program to execute a
specified task. To better understand how functions work, we may com-
pare functions in programs to people in a real-world workplace. Assume
the manager assigns his staff the task of calculating the annual budget.
So, how will this procedure be completed? The employee will obtain stat-
ics information from the employer, run calculations, compute the bud-
get, and provide the results to his supervisor. Functions operate similarly.
They accept information as an argument, run a set of statements, conduct
operations on these parameters, and then return the output.

Perl offers two primary types of functions:
• Built-in functions: Perl has a large number of built-in library func-

tions. These functions have already been coded and saved as func-
tions. To use them, we just need to call them when needed, such as
sin(), cos(), chr(), return(), and shift().

• User-defined functions: Perl allows us to write our own customized
functions, known as user-defined functions or subroutines, in addi-
tion to the built-in functions.

Using this, we may develop our code packages and call them whenever
we need them.

Loops

Like any other language, Perl uses loops to execute a statement or a group
of instructions repeatedly until and unless a specific condition is fulfilled.
This allows the user to save time and effort by not writing the same code
multiple times.

16 ◾ Mastering Perl

Perl offers several looping techniques:

• for loop

• for each loop

• until loop

• while loop

• do…while loop

• nested loops

Whitespaces and Indentation

In Perl, whitespaces are blank spaces used between variables and oper-
ators, between keywords, and so on. Whitespaces have no effect in
Perl unless quote marks surround them. Whitespaces such as spaces,
tabs, and newlines have the same meaning in Perl when used outside
quotes.

First example:

$c = $d + $e;
Here, spaces are of no use,
it will cause no effect even if it is written as
$c = $d + $e;

Second example:

print "Peeks for Peeks";
will print
Peeks for peeks
whereas,
print "Peeks for
 peeks";
will print
Peeks for
 Peeks

In the preceding instances, whitespaces have no impact unless placed
within quotations.

Introduction ◾ 17

Similarly, indentation is used to structure the code to make it easier for
users to read. When a block of statements is utilized, indentation helps to
reduce the code’s readability difficulty.

Example:

Using Indentation:
{
 $c = $d + $e;
 print "$a";
}

Without using Indentation:
{
$c = $d + $e;
print "$c";
}

In the above example, both blocks will function identically; but inden-
tation makes it more reader-friendly for scripts with a significant number
of statements.

Though using whitespaces and indentation in your Perl code is not
required, it is a recommended practice.

Keywords

Keywords, often known as reserved words, are terms in a language used
for internal processes or to indicate predefined actions. They have a unique
significance for the compiler. As a result, these terms are not permitted
to be used as variable names or objects. This will produce a compile-
time error. Along with control words, keywords in Perl contain built-in
functions.

These keywords can occasionally be used as variable names, although
this causes confusion and makes debugging such a program difficult.

Example:

One can use $print as a variable and keyword
print().

18 ◾ Mastering Perl

DATA TYPES
Data types define the sorts of data that can store in a valid Perl variable.
Perl is a loosely typed programming language. There is no need to provide
a data type while using the Perl program. The Perl interpreter will choose
the type based on the context of the data.

Perl has three data types, which are as follows:

• Scalars

• Arrays

• Hashes

Scalars

A single data unit can be an integer, a floating-point value, a character, a
string, a paragraph, or an entire web page.

Example:

Program to demonstrate the
Scalars data types

integer assignment
$age = 1;

string
$name = "ABC";

floating point
$salary = 21.5;

displaying result
print "Age is = $age\n";
print "Name is = $name\n";
print "Salary is = $salary\n";

Arrays

Array is a variable that stores values of the same data type as a list. In Perl,
we use the “@” symbol before the variable name to declare an array.

@age=(20, 30, 40)

Introduction ◾ 19

It will generate an array of integers with the values 20, 30, and 40. The
“$” symbol is used to access a single member in an array.

$age[0]

Example:

Program to demonstrate
the Arrays data type

#!/usr/bin/perl

creation of the arrays
@ages = (43, 21, 29);
@names = ("Peeks", "for", "Peeks");

displaying result
print "\$ages[0] = $ages[0]\n";
print "\$ages[1] = $ages[1]\n";
print "\$ages[2] = $ages[2]\n";
print "\$names[0] = $names[0]\n";
print "\$names[1] = $names[1]\n";
print "\$names[2] = $names[2]\n";

Hashes

It is a collection of key-value pairs. It is also known as associative arrays.
We use the “%” symbol in Perl to declare a hash. We utilize the “$” symbol
followed by the key in brackets to get to a specific value.

Example:

Program to demonstrate the
Hashes data type

Hashes
%data = ('PFP', 7, 'for', 4, 'Peeks', 11);

#displaying result
print "\$data{'PFP'} = $data{'PFP'}\n";
print "\$data{'for'} = $data{'for'}\n";
print "\$data{'Peeks'} = $data{'Peeks'}\n";

20 ◾ Mastering Perl

This chapter covered Perl introduction, installation and environment
setup and Hello World Program.

NOTE
 1. Hello World Program in Perl.

21DOI: 10.1201/9781003358442-2

C h a p t e r 2

Fundamentals of Perl

IN THIS CHAPTER

 ➢ Modes of Writing

 ➢ Boolean Values

 ➢ Operators

 ➢ Variables

 ➢ Modules in Perl

 ➢ Packages in Perl

 ➢ Number and Its Types

 ➢ Directories with CRUD Operations

In the previous chapter, we discussed Perl basic, and in this chapter, we
will cover packages, module operators, variables, and modes of writing.

PERL CODE WRITING METHODS
Perl is a dynamic, high-level, interpreted, general-purpose programming
language. Perl supports both procedural and object-oriented program-
ming. Perl was initially designed only for system administration and text
processing, but subsequent versions included the ability to manage regular
expressions, network sockets, etc.

Perl is syntactically similar to other commonly known programming
languages, making it easy to write and understand. Perl is a free-form

https://doi.org/10.1201/9781003358442-2

22 ◾ Mastering Perl

programming language, meaning it may be written, formatted, and
indented according to the user’s needs.

A Perl program consists of a series of statements, loops, subroutines,
etc., which facilitates navigation around the code. Every Perl statement
must conclude with a semicolon (;). Perl, like other languages, provides
several writing and execution modes for Perl code. These modes may be
classified according to their compatibility with writing and mode of exe-
cution in the following ways:

• Interactive mode

• Script mode

• One-liner mode

These modes can be used on the command line with the Perl keyword
or in online Integrated Development Environment (IDEs) as a block of
code. Along with the installation package, Perl has its own inbuilt IDE.

Interactive Mode

Interaction with the interpreter is signified by the interactive method of
creating Perl code. Interactive mode is a wonderful approach to begin pro-
gramming since it allows you to examine the flow of code line by line and
simplifies the debugging process. With Perl debugger, interactive mode in
Perl can be utilized on the command line.

This interpreter is often called REPL – Read, Evaluate, Print, Loop.
Interactive mode enables the immediate creation and execution of code
without creating a temporary file to save the source code. Using Perl debug-
ger, the built-in Perl command line or the Windows command prompt
may be used as a REPL. This debugger can be used with a Perl application
with the following command:

perl -de1

The user must write the code line by line in the interactive mode of writ-
ing Perl code, which is run simultaneously.

Perl’s interactive mode may be run directly from the command line,
without the need for a debugger. This can be done by using the following
command:

perl -e Code_statement;

Fundamentals of Perl ◾ 23

This statement utilizes the -e parameter to avoid script creation and
allows the code to run without the debugger on the command line.

This way of writing in interactive mode does not allow the user to create
multi-line code as it does in the debugger. This mode is not recommended
for long programs.

Interactive mode is useful for teaching new programmers the funda-
mentals of programming, but it may become cumbersome and tedious
when dealing with more than a few lines of code.

Script Mode

Script mode in Perl is used to develop Perl programs that include more
than a few lines of code and are too complicated for interactive mode.

Using a text editor, script mode in Perl can be used to develop a Perl
program; it is saved in a file called a script, and then the script file is run
using the command line. This file must be saved with the. pl extension and
stored in the same directory as the directory path specified on the com-
mand line. This script is then executed from the command line using the
following command:

perl FileName.pl

Code is typed in a text editor (notepad, for example) and saved as a Perl
program.pl script.

Unlike the interactive mode, script mode in Perl cannot provide output
for each individual expression.

In the interactive mode, the expression is evaluated, and the result is
presented automatically, while in the script mode, the expression is evalu-
ated, but the result is not displayed until prompted.

Online IDEs also provide script mode, which is used to develop and run
Perl code without manually putting it in a file. In these IDEs, compiled
code is saved in memory as a temporary file that is only useful when the
code is run, and the browser containing the IDE is open. Once the page is
refreshed, this temporary file is destroyed, and memory space is released.
Online IDEs have simplified the execution of codes since they need less
effort than the script mode, in which files must be saved in the machine’s
memory.

This quickens the compilation and execution of code. These online
IDEs, although convenient for programmers, have significant restrictions,
such as the inability to conduct file handling operations unless the file is

24 ◾ Mastering Perl

uploaded to their server, which poses a risk to sensitive data. Compilers
that operate through the command line allow for such file manipulation
capabilities.

Here is an example of a Perl program that adds two integers using an
online IDE:

#!/usr/bin/perl
add two numbers program

Assigning values to the variables
$var1 = 20;
$var2 = 35;

Evaluating result
$result = $var1 + $var2;

Printing result
print "Result after the addition is: $result";

One-Liner Mode

Perl also has a one-liner mode, allowing us to type and run a minimal code
script right from the command line. This is done to prevent creating files
to store scripts for codes that are not too long. With the use of the follow-
ing command, these codes can be written on a single line in command
line mode:

perl -e

This command is used to write and execute one-liner code at the com-
mand line by enclosing it in double quotation marks. The -e flag in the
preceding command informs the compiler that the code’s script is not
kept in any sort of file but is written in the double codes immediately after
this flag.

These one-liners may be quite handy for making rapid modifica-
tions such as obtaining information and modifying file contents. Some
programmers avoid using one-liners because they can become clumsy
when the script becomes too long. While some programmers prefer
doing this since one-liners are faster than scripts because they are not
stored in files.

Fundamentals of Perl ◾ 25

BOOLEAN VALUES IN PERL
True and False are considered boolean values in most computer languages.
However, Perl does not provide the boolean type for True and False. When
a function returns True or False, a programmer might use the word “bool-
ean.” Scalar values, like conditional expressions (if, while, etc.), will return
true or false.

Example:

Perl Code to demonstrate boolean values

variable assigned value 0
$x = 0;

checking whether x is true or false
if ($x)
{
 print "x is True\n";
}
else
{
 print "x is False\n";
}

variable assigned value 2
$y = 2;

checking whether y is true or false
if ($y)
{
 print "y is True\n";
}
else
{
 print "y is False\n";
}

True values: In Perl, True values are any non-zero numbers other than
zero. In Perl, string constants such as “true,” “false,” “00” (2 or more 0
characters), and “0n”(a zero followed by a newline character in the string)
are also considered true values.

26 ◾ Mastering Perl

Example:

Perl Code to demonstrate True values

variable assigned value 5
$x = 5;

checking whether x is true or false
if ($a)
{
 print "x is True\n";
}
else
{
 print "x is False\n";
}

string variable assigned white
space character
$y = ' ';

checking whether y is true or false
if ($y)
{
 print "y is True\n";
}
else
{
 print "y is False\n";
}

string variable assigned 'false'
value to it
$m = 'false';

checking whether c is true or false
if ($m)
{
 print "m is True\n";
}
else
{
 print "m is False\n";

Fundamentals of Perl ◾ 27

}

string variable assigned "0\n"
value to it
$n = "0\n";

checking whether d is true or false
if ($n)
{
 print "n is True\n";
}
else
{
 print "n is False\n";
}

False values: In Perl, false values are empty string or a stringcv contain-
ing a single digit 0 or undef value and zero.

Example:

Perl Code to demonstrate False values

variable assigned value 0
$x = 0;

checking whether x is true or false
if ($x)
{
 print "a is True\n";
}
else
{
 print "x is False\n";
}

string variable assigned empty string
$y = '';

checking whether y is true or false
if ($y)

28 ◾ Mastering Perl

{
 print "y is True\n";
}
else
{
 print "y is False\n";
}

string variable assigned undef
$m = undef;

checking whether m is true or false
if ($m)
{
 print "m is True\n";
}
else
{
 print "m is False\n";
}

string variable assigned ""
value to it
$n = "";

checking whether n is true or false
if ($n)
{
 print "n is True\n";
}
else
{
 print "n is False\n";
}

Note: For the conditional check, where the user must compare two distinct
variables, if they are not equal, it returns False; otherwise, it returns True.

Example:

Perl Program demonstrate conditional check

variable initialized with string
$c = "PFP";

Fundamentals of Perl ◾ 29

using the if statement
if ($c eq "PFP")
{
 print "Return True\n";
}
else
{
 print "Return False\n";
}

OPERATORS
Operators are the building blocks of any computer language, allowing the
programmer to perform various operations on operands. In Perl, the sym-
bols for operators will differ depending on the kind of operand (like sca-
lars and strings). Operators are classified based on their many functions1:

• Arithmetic operators

• Relational operators

• Ternary operators

• Logical operators

• Bitwise operators

• Assignment operators

Types of operators.

30 ◾ Mastering Perl

Arithmetic Operators

There are various types of arithmetic operators.

Addition
These are used to execute arithmetic and mathematical operations on
operands.

To add the values of the two operands, use the “+” operator. As an
example:

$x = 15;
$y = 20;
print $x + $y;
Here Result will be 25

Subtraction
The “−” operator subtracts the right-hand operand from the left-hand
operand. As an example:

$x = 15;
$y = 20;
print $x - $y;
Here Result will be 5

Multiplication
The “*” operator multiplies the values on both sides of the operator. As an
example:

$x = 15;
$y = 20;
print $x * $y;
Here Result will be 300

Division
When the first operand is divided by the second, the “/” operator returns
the remainder. As an example:

$x = 40;
$y = 20;
print $x / $y;
Here Result will be 20

Fundamentals of Perl ◾ 31

Modulus
The modulus operator (%) divides the left-hand operand from the right-
hand operand and returns the remainder. As an example:

$x = 10;
$y = 15;
print $x % $y;
Here Result will be 5

Exponent Operator
The “**” operator is used to calculate the exponential (power) of operands.
As an example:

$x = 2;
$y = 3;
print $x ** $y;
Here Result will be 8

The aim of this program is to describe the following arithmetic
operators:

Perl Program to illustrate Arithmetic Operators

Operands
$x = 10;
$y = 4;

using arithmetic operators
print "The Addition is: ", $x + $y, "\n";
print "The Subtraction is: ", $x - $y, "\n" ;
print "The Multiplication is: ", $x * $y, "\n";
print "The Division is: ", $x / $y, "\n";
print "The Modulus is: ", $x % $y, "\n";
print "The Exponent is: ", $x ** $y, "\n";

Relational Operators

When comparing two values, relational operators are employed. These
operators will either return 1 (true) or 0 (false). These operators are also
known as the equality operators. These operators use various symbols to
work on strings. We may use this to learn about the comparison operators
operation on string.

32 ◾ Mastering Perl

• Equal to operator: “==” Determine whether two values are equal. If
equals, return 1 else return nothing.

• Not equal to operator: “!=” Check to see whether the two values are
equivalent. If the values are not equal, 1 is returned; else, nothing is
returned.

• Comparison of equal to operator: “< = >” If the left operand is smaller
than the right operand, the result is −1; otherwise, the result is 0.

• Greater than operator: “>” If the left operand is greater than the right
operand, 1 is returned; else, nothing is returned.

• Less than operator: “<” If the left operand is greater than the right
operand, 1 is returned; else, nothing is returned.

• Greater than equal to operator: “>=” If the left operand is larger than
or equal to the right operand, 1 is returned; otherwise, nothing is
returned.

• Less than equal to operator: “<=” If the left operand is smaller than
or equal to the right operand, 1 is returned; otherwise, nothing is
returned.

To demonstrate the relational operators in Perl, write a program:

Perl Program to illustrate Relational Operators

Operands
$x = 10;
$y = 60;

using Relational Operators
if ($x == $y)
{
print "Equal To Operator is True\n";
}
else
{
print "Equal To Operator is False\n";
}

if ($x != $y)

Fundamentals of Perl ◾ 33

{
print "Not Equal To Operator is True\n";
}
else
{
print "Not Equal To Operator is False\n";
}

if ($x > $y)
{
print "Greater Than Operator is True\n";
}
else
{
print "Greater Than Operator is False\n";
}

if ($x < $y)
{
print "Less Than Operator is True\n";
}
else
{
print "Less Than Operator is False\n";
}

if ($x >= $y)
{
print "Greater Than Equal To Operator is True\n";
}
else
{
print "Greater Than Equal To Operator is False\n";
}

if ($x <= $y)
{
print "Less Than Equal To Operator is True\n";
}
else
{
print "Less Than Equal To Operator is False\n";

34 ◾ Mastering Perl

}
if ($x <=> $y)
{
print "Comparison of Operator is True\n";
}
else
{
print "Comparison of Operator is False\n";
}

Logical Operators

These operators are being used to combine two or more conditions or to
improve the original condition’s evaluation.

• Logical AND: When both of the conditions in consideration are met,
the “and” operator returns true. For instance, $x and $y are true
when both x and y are true (i.e. non-zero). We can also use &&.

• Logical OR: When one of the conditions in consideration are met,
the “or” operator returns true. For instance, $x or $y is true if either
x or y is true (i.e. non-zero). Of course, it returns “true” if both x and
y are true. We may also use ||.

• Logical NOT: If the condition under consideration is met, the “not”
operator returns 1. For example, if $z is 0, not($z) is true.

Program: To show how logical operators work:

Perl Program to illustrate Logical Operators

Operands
$x = true;
$y = false;

AND operator
$result = $x && $y;
print "AND Operator: ", $result,"\n";

OR operator
$result = $x || $y;
print "OR Operator: ", $result,"\n";

Fundamentals of Perl ◾ 35

NOT operator
$z = 0;
$result = not($z);
print "NOT Operator: ", $result;

Bitwise Operators

The bitwise operation is carried out using these operators. It will convert the
integer to bits first, and then perform the bit-level action on the operands.

• & (bitwise AND) is a function which takes two operands and per-
forms AND on each bit of the two numbers. AND returns only 1 if
both bits are 1. As an illustration,

$x = 13; // 1101
$y = 5; // 0101
$z = $y & $x;
print $z;
Here Output will be 5

Explanation:

$x = 1 1 0 1
$y = 0 1 0 1

$z = 0 1 0 1

• | (bitwise OR) is a function that takes two operands and performs
OR on each bit of two numbers. OR returns 1 if either of two bits is
1. As an illustration,

$x = 13; // 1101
$y = 5; // 0101
$z = $y | $x;
print $z;
Here Output will be 13

Explanation:
$x = 1 1 0 1
$y = 0 1 0 1

$z = 1 1 0 1

36 ◾ Mastering Perl

• ^ (bitwise XOR) takes two operands and performs XOR on each bit
of the two numbers. If two bits are different, the result of XOR is 1.
As an example:

$x = 13; // 1101
$y = 5; // 0101
$z = $y ^ $x;
print $z;
Here Output will be 9

Explanation:
$x = 1 1 0 1
$y = 0 1 0 1

$z = 1 0 0 1

• ∼ (Complement operator) is a unary operator that acts as a bit flipper.
Its job is to reverse the bits and return the result in 2’s complement
form due to a signed binary number.

• (<<)Binary left shift operator accepts two integers, left shifts the bits
of the first operand, and the second operand determines the number
of places to shift. The left operand is multiplied by the number of
times the right operand provides. As an example:

$x = 70;
$z = $x << 2;
print $z;

Output: 280

Explanation:
70 * 2 = 140 ---(1)
140 * 2 = 280 ---(2)

• (>>) Binary right shift operator takes two numbers, right shifts the
bits of the first operand, and the second operand determines the
number of places to shift. It divides the left operand by the number
of times provided by the right operand. As an example:

$x = 80;
$z = $x >> 2;

Fundamentals of Perl ◾ 37

print $z;
Output: 15

Explanation:
60 / 2 = 40 ---(1)
40 / 2 = 20 ---(2)

Program: To show how bitwise operators work:

Perl Program to illustrate Bitwise operators
#!/usr/local/bin/perl
use integer;

Operands
$x = 100;
$y = 2;

Bitwise AND Operator
$result = $x & $y;
print "Bitwise AND: ", $result, "\n";

Bitwise OR Operator
$result = $a | $b;
print "Bitwise OR: ", $result, "\n";

Bitwise XOR Operator
$result = $x ^ $y;
print "Bitwise XOR: ", $result, "\n";

Bitwise Complement Operator
$result = ˜$x;
print "Bitwise Complement: ", $result, "\n";

Bitwise Left Shift Operator
$result = $x << $y;
print "Bitwise Left Shift: ", $result, "\n";

Bitwise Right Shift Operator
$result = $x >> $y;
print "Bitwise Right Shift: ", $result, "\n";

Assignment Operators

It is used to assign value to the variable. The assignment operator’s left oper-
and is a variable, while the assignment operator’s right operand is a value.

38 ◾ Mastering Perl

The following are examples of assignment operators:

• “=” (Simple assignment): The most basic assignment operator. This
operator assigns the variable on the left the value on the right.

As an example:

$x = 20;
$y = 40;

• “+=”(Add assignment): A combination of the “+” and “=” operators.
This operator first adds current value of the variable on the left to
value on the right, and then assigns result to the variable on the left.

As an example:

($x += $y) can be written as ($x = $x + $y)

• If the initial value of a is 5, then ($a += 6) = 11.

• “−=”(Subtract assignment): This operator combines the “−” and “=”
operators. This operator subtracts the variable’s current value from
the value on right and assigns the resulting value to the variable on
the left.

As an example:

($x -= $y) can be written as ($x = $x - $y)

• If the initial value of a is 8, then ($a −= 6) = 2.

• “*=”(Multiply assignment): This operator combines the “*” and “=”
operators. The variable on the left is multiplied by the value on the
right, and the result is assigned to a variable on the left.

As an example:

($x *= $y) can be written as ($x = $x * $y)

• If the initial value of a is 5, then ($x *= 6) = 30.

• “/=”(Division assignment): This operator combines the “/” and “=”
operators. This operator divides the current value of the variable on
the left by the value on the right and allocates the result to the vari-
able on the left.

As an example:

($x /= $y) can be written as ($x = $x / $y)

• If the initial value stored in a is 6, then ($x /= 2) = 3.

Fundamentals of Perl ◾ 39

• “ % =”(Modulus assignment): This operator combines the “%” and
“=” operators. This operator modifies the current value of the vari-
able on the left by the value on the right before assigning the result to
the variable on the left.

As an example:

($x %= $y) can be written as ($x = $x % $y)

• If the initial value stored in a is 6, then ($a percent = 2) = 0.

• “**=”(Exponent assignment): This operator is a mixture of the “**”
and “=” operators. This operator multiplies the current value of the
variable on the left by the value on the right before assigning the
result to the variable on the left.

As an example:

($x **= $y) can be written as ($x = $x ** $y)

• If the initial value stored in a is 6, then ($a **= 2) = 36.

Program: To illustrate how assignment operators function:

program to demonstrate working of Assignment
Operators
#!/usr/local/bin/perl

taking two variables & using
the simple assignments operation
$x = 8;
$y = 5;

using the Assignment Operators
print "The Addition Assignment Operator: ", $x +=
$y, "\n";

$x = 8;
$y = 4;
print "Subtraction Assignment Operator: ", $x -=
$y, "\n" ;

$x = 8;
$y = 4;
print "Multiplication Assignment Operator: ",
$x*=$y, "\n";

40 ◾ Mastering Perl

$x = 8;
$y = 4;
print "Division Assignment Operator: ",$x/=$y,
"\n";

$x = 8;
$y = 5;
print "Modulo Assignment Operator: ", $x%=$y,"\n";

$x = 8;
$y = 4;
print "Exponent Assignment Operator: ", $x**=$y,
"\n";

Ternary Operator

It is conditional operator, which is simple version of an if else statement.
The term “ternary” refers to fact that it has three operands. Depending on
the value of Boolean expression, it will return one of two values.

Syntax:

condition? firstexpression : secondexpression;

Example:

Perl program to demonstrate working
of the Ternary Operator

$c = 5;
$d = 10;

To find which value is greater
Using the Ternary Operator
$result = $c > $d? $c : $d;

displaying the output
print "Larger Number is: $result"

Note: The condition in the ternary operator may also be any expression
generated by utilizing other operators such as relational operators and
logical operators.

Fundamentals of Perl ◾ 41

Perl program to demonstrate working
of Ternary Operator by using the expression
as a condition

here maximum value can be 200
$MAX_VALUE = 200;

suppose user provide value
$user_value = 666;

To find which whether user provided
value is satisfying maximum value
or not by using the Ternary Operator
$result = $user_value <= $MAX_VALUE? $user_value :
$MAX_VALUE;

displaying output
Here it will be MAX_VALUE
print "$result"

VARIABLES IN PERL
Variables are used throughout Perl to store and manipulate data. A variable
takes up memory space when it is created. A variable’s data type assists the
interpreter in allocating memory and deciding what to store in reserved
memory. Variables can so hold integers, decimals, or texts by assigning
multiple data types to the variables.2

Naming of a Variable

With the usage of a certain data type, a variable in Perl can be called any-
thing. When naming a variable, there are various guidelines to follow:

• Perl variables are case-sensitive.

Example:

$Seema and $seema are two different variables

• According to the data type, it begins with $, @, or % and is followed
by zero or more letters, underscores, and digits.

• Variables in Perl are not permitted to contain white spaces or any
special character other than underscore.

42 ◾ Mastering Perl

Example:

$my-name = "Seema"; // Invalid
$my name = "Seema"; // Invalid
$my_name = "Seema"; // Valid

Declaration of a Variable

The data type used to define the variable is used to declare the variable.
These variables can have one of three data types:

• Scalar variables: Scalar variables comprise a single string or numeric
value. It begins with the $ symbol.

Syntax: $varname = value;

Example:

$item = "Heyyy"
$item_one = 2

• Array variables: It comprises a set of values that have been randomly
ordered. It begins with the @ symbol.

Syntax : @varname = (val1, val2, val3, …..);

Example:

@pricelist = (170, 60, 50);
@namelist = ("Grapes", "Apple", "Banana");

• Hash variables: It has (key, value) pairs that are efficiently accessible
per key. It begins with the % sign.

Syntax : %varname = (key1=>val1, key2=>val2,
key3=>val3,…);

Example:

%itempairs = ("Grapes" =>12, "Apple'=>5);
%pairrandom = ("Hello" =>7, "Bye"=>8);

Modification of a Variable

Perl allows us to change the values of variables after they’ve been declared.
A variable can change in a variety of ways:

• A scalar variable’s value can change simply by redefining it.

Fundamentals of Perl ◾ 43

Example:

$name = "Seema";
This can modify by simply
redeclaring variable $name.
$name = "Sahil";

• An array element can update by passing its index to the array and
assigning a new value to it.

Example:

@array = ("A", "B", "C", "D", "E");

If the value of second variable is to
modify then it can done by
@array[2] = "4";
$array[2] = "4"; is alternate way of updating
the value in array.

This will change array to,
@array = ("A", "B", "4", "D", "E");

• A hash value can change by using its key.

Example:

%Hash = ("A", 20, "B", 30, "C", 40)
This will modify the value
assigned to Key 'B'
$Hash{"B"} = 56;

Variable Interpolation

Perl provides many ways for assigning a string to a variable. This may be
accomplished by using single quotes, double quotes, the q-operator, the
double-q operator, and so forth.

The use of single and double quotes for string writing is the same; how-
ever, there is a minor difference in how they operate. Strings enclosed in
single quotes display the content contained within them exactly as typed.

Example:

$name = "Seema"
print 'Hello $name\nHow are you doing?'

44 ◾ Mastering Perl

Strings enclosed in double quotes, on the other hand, replace the variables
with their values before displaying the string. It even replaces the escape
sequences with their correct implementation.

Example:

$name = "Seema"
print "Hello $name\nHow are you doing?"

Example code:

#!/usr/bin/perl
use Data::Dumper;

Scalar-Variable
$name = "PeeksForPeeks";

Array Variable
@array = ("P", "E", "E", "K", "S");

Hash Variable
%Hash = ('Welcome', 10, 'to', 20, 'Peeks', 40);

Variable-Modification
@array[2] = "F";

print "The Modified Array is @array\n";

Interpolation of a Variable

Using the Single Quote
print 'Name is $name\n';

Using the Double Quotes
print "\nName is $name";

Printing the hash contents
print Dumper(\%Hash);

VARIABLES AND ITS TYPES
Variables are reserved memory locations for storing values. This means
that creating a variable frees up memory space. The data type of a variable
assists the interpreter in allocating memory and deciding what to store in

Fundamentals of Perl ◾ 45

reserved memory. Variables can thus store integers, decimals, or strings by
assigning different data types to the variables.

Perl has three basic data types, which are as follows:

• Scalars

• Arrays

• Hashes

As a result, Perl will employ three types of variables. A scalar variable,
preceded by a dollar sign ($), can store a number, a string, or a reference.
An array variable stores ordered lists of scalars, denoted by the @ sign. The
hash variable, preceded by sign %, will be used to store sets of key/value
pairs.

Creating Variables

To reserve memory space, Perl variables do not need to be explicitly
declared. Like in other computer languages, the operand to the left of the
“=” operator is the variable’s name, and the operand to the right of the “=”
operator is the value stored in the variable.

As an example:

$age = 30;
$name = "Sima";
$rollno = 32;
Here 30, "Sima" and 32 are the values assigned to
$age, $name and $roll no variables, respectively.

Scalar Variables

A scalar is a single data unit. The data could be an integer number, a float-
ing-point number, a character, a string, a paragraph, or an entire web page.
Here’s an example of how to use scalar variables:

#!/usr/bin/perl

Assigning the values to scalar
variables
$age = 30;
$name = "Sima";
$rollno = 32;

46 ◾ Mastering Perl

Printing the variable values
print "Age = $age\n";
print "Name = $name\n";
print "Roll no = $rollno\n";

Array Variables

An array variable stores ordered list of scalar values. Array data type vari-
ables are preceded by “at” (@) sign. The dollar sign ($) refers to a single
array element with the variable name followed by the element’s index in
square brackets.

Here’s an example of using an array variable:

#!/usr/bin/perl

Assigning the values to Array variables
@ages = (43, 70, 33); # @ is used to declare
 # the array variables
@names = ("ABC", "DEF", "GHI");

Printing values of Arrays
print "\$ages[0] = $ages[0]\n";
print "\$ages[1] = $ages[1]\n";
print "\$ages[2] = $ages[2]\n";
print "\$names[0] = $names[0]\n";
print "\$names[1] = $names[1]\n";
print "\$names[2] = $names[2]\n";

We used “\” before the “$” sign to print it as a statement. Otherwise, Perl
will interpret it as a variable and print the value stored in it.

Hash Variables

Hash is a collection of the key-value pairs. Hash variables are preceded by
a modulus (%) sign. In the hash, keys are used to refer to a single variable.
In curly brackets, the hash variable name is followed by the key associated
with the value to access these elements.

Here is a simple example of a Hash variable:

#!/usr/bin/perl

Defining Hash variable using '%'
%data = ('ABC', 55, 'DEF', 80, 'GHI', 44);

Fundamentals of Perl ◾ 47

Printing values of Hash variables
print "\$data{'XYZ'} = $data{'ABC'}\n";
print "\$data{'LGH'} = $data{'DEF'}\n";
print "\$data{'KMR'} = $data{'GHI'}\n";

Variable Context

Perl treats the same variable differently depending on the context, i.e. the
situation in which a variable is used.

Example:

#!/usr/bin/perl

Defining Array variable
@names = ('ABC', 'DEF', 'GHI');

Assigning values of the array variable
to another array variable
@copy = @names;

Assigning values of the Array variable
to a scalar variable
$size = @names;

Printing values of new variables.
print "The Given names are : @copy\n";
print "The Number of names are : $size\n";

@names is an array that has been used two times in this context. First,
we copied it into other array, i.e. a list, so that it would return all the ele-
ments if the context was a list context. The same array is then attempted to
be stored in a scalar context, which by default returns just the number of
elements in this array. The table below depicts the various contexts:

S. no. Context and description

1. Scalar
In a scalar context, assignment to a scalar variable evaluates the value to the
right of “=”.

2. List
In a list context, assignment to an array or a hash evaluates the right of “=”.

(Continued)

48 ◾ Mastering Perl

3. Boolean
A boolean context is a location where an expression is evaluated to see whether
it is true or false.

4. Void
This context does not care what the return value is, and it doesn’t even want
one.

5. Interpolative
This context will only appear within quotation marks (“”) or with things that
behave like quotation marks (“”).

SCOPE OF VARIABLES
The scope of the variable is the area of program where the variable is acces-
sible. The visibility of variables in a program is also referred to as a scope.
We can declare global variables or private variables in Perl. Lexical vari-
ables are another name for private variables.

The Scope of Global Variables

Global variables can be used within any function or block that has been
created within the program. It is visible throughout the program. Global
variables can be used directly and are accessible from anywhere in the
program.

First example: At the start of the code, the variable $name is declared.
It will be visible until the end of the file. Even within blocks. Even if they
are included in the function declarations. If we change the variable within
the block, the value for the rest of the code will change, even outside the
block.

#!/usr/bin/perl

Defining Array variable
@names = ('ABC', 'DEF', 'GHI');

Assigning values of the array variable
to another array variable
@copy = @names;

Assigning values of the Array variable
to a scalar variable
$size = @names;

S. no. Context and description

Fundamentals of Perl ◾ 49

Printing values of new variables.
print "Given names are : @copy\n";
print "Number of names are : $size\n";
Perl program to illustrate
Scope of Global variables

declaration of the global variable
$name = "PFP";

printing global variable
print "$name\n";

global variable can use
inside a block, hence the we
are taking a block in which
we will print the value of
$name i.e. global variable
{

 # here GFG will print
 print "$name\n";

 # values in the global variable can be
 # changed even within block,
 # hence value of $name is
 # now changed to "PeeksforPeeks"
 $name = "PeeksforPeeks";

 # print function prints
 # "PeeksforPeeks"
 print "$name\n";
}

changes made inside the above block'
are reflected in the whole program
so here PeeksforPeeks will print
print "$name\n";

Second example:

program to illustrate the
Scope of Global variables

50 ◾ Mastering Perl

declaration of the global variables
$name = "PFP";
$count = 1;

printing global variables
print $count." ".$name."\n";
$count++;

Block starting
{

 # global variable can use inside
 # a block, so below statement will
 # print PFG and 1
 print $count." ".$name."\n";

 # incrementing the value of
 # count inside block
 $count++;
}

taking function
sub func {

 # Global variable, $count and $name,
 # are accessible within the function
 print $count." ".$name."\n";
}

calling function
func();

Lexical Variables’ Scope (Private Variables)

Private variables in Perl are defined by prefixing the variable with “my”
keyword. The “my” keyword limits variables inside a specified function
or block. A block can either be a for loop, a while loop, or a block of code
surrounded by curly braces.

The local variable’s scope is local; it exists just between these two curly
brackets (block of code); this variable does not exist outside of this block.
These variables are sometimes referred to as lexical variables. When pri-
vate variables are used inside a function or block, the global variables with
the same name are hidden. When a subroutine is called with a private

Fundamentals of Perl ◾ 51

variable, that variable may utilize inside the procedure. When the proce-
dure terminates, the private variables are no longer usable.

Example:

program to illustrate the
scope of private variables

declaration of the global variable
$name = "Global";
$count = 1;

printing the global variables
print $count." ".$name."\n";

incrementing the value of count
i.e it become 2
$count++;

block starting
{

 # declaring private variable by using my
 # keyword which can only use
 # within this block
 my $new_name = "Private";

 # global variables are
 # accessible inside the block
 print $count." ".$name."\n";

 # incrementing the value
 # of global variable
 # here it become 3
 $count++;

 print $name." and ".$new_name."\n";
}

$new_name variable cannot
be used outside, hence nothing
is going to print

52 ◾ Mastering Perl

print "Variable defined in the above block:
".$new_name."\n";

declaring function
sub func {

 # this private variable declaration
 # hides global variable which define
 # in the beginning of program
 my $name = "Hide";
 print $count." ".$name."\n";

}

calling function
func();

Package Variables

Package scoping is an additional type of scoping in Perl. This is used when
we need to create variables that can only be used in different namespaces.
In every Perl program, the default namespace is “main.” The package key-
word is used in Perl to define namespaces.

Example:

program to illustrate
Package Variables

variable declared in the
main namespace
$var1 = "Main Namespace";

print "The Value of Var1: ".$var1."\n";

package declaration
Pack1 is package
package Pack1;

 # since $var1 belongs to main namespace,
 # so nothing will print inside the Pack1
 # namespace
 print "The Value of var1: ".$var1."\n";

Fundamentals of Perl ◾ 53

 # variable declared in Pack1 namespace
 # having same name as the main namespace
 $var1 = "Pack1 Namespace";

 # here $var1 belongs to Pack1 namespace
 print "The Value of var1: ".$var1."\n";

 # in-order to print variables
 # from both namespace, use
 # the following method
 print "The Value of var1: ".$main::var1."\n";
 print "The Value of var1: ".$Pack1::var1."\n";

In Perl, the “our” keyword only creates an alias for an existing pack-
age variable with the same name. Only within lexical scope of the “our”
declaration can a package variable be used without qualifying it with the
package name. A variable declared with our keyword is an alias for a pack-
age variable visible throughout its entire lexical scope, including across
package boundaries.

program to illustrate the use
of our keyword

Pack1 namespace declared
by using package keyword
package Pack1;

 # declaring $Pack1::first_name
 # for the rest of lexical scope
 our $first_name;
 $first_name = "Shashank";

 # declaring $Pack1::second_name for the
 # only this namespace
 $second_name;
 $second_name = "Sharma";

Pack2 namespace declared
package Pack2;

 # prints value of $first_name, as it
 # refers to $Pack1::first_name

54 ◾ Mastering Perl

 print "first_name = ".$first_name."\n";

 # It will print nothing as the $second_name
 # doesn’t exist in Pack2 package scope
 print "second_name = ".$second_name."\n";

MODULES IN PERL
In Perl, a module is a group of connected subroutines and variables that
execute a set of programming tasks. Perl modules can reuse. The compre-
hensive Perl archive network (CPAN) hosts several Perl modules. These
modules are divided into several categories, including network, CGI, XML
processing, and database interface.

Making a Perl Module

A module’s name must be the same as the Package’s name and conclude
with the .pm extension.

Example:

package Calculator;

Defining sub-routine for Multiplication
sub multiplication
{
 # Initializing Variables x & y
 $x = $_[0];
 $y = $_[1];

 # Performing operation
 $x = $x * $y;

 # Function to print Sum
 print "\n***Multiplication is $x";
}

Defining sub-routine for the Division
sub division
{
 # Initializing Variables x & y
 $x = $_[0];
 $y = $_[1];

Fundamentals of Perl ◾ 55

 # Performing operation
 $x = $x / $y;

 # Function to print answer
 print "\n***Division is $x";
}
1;

The file is called “Calculator.pm” and is located in the directory
Calculator. To return true value to the interpreter, 1 is placed at the end of
the function. Instead of 1, Perl accepts anything true.

Importing and Using a Perl Module

We utilize need or use functions to import this calculator module. :: is used
to access a function or variable from a module. Here’s an example to show:

#!/usr/bin/perl

Using Package 'Calculator'
use Calculator;

print "Enter the two numbers to multiply";

Defining values to the variables
$x = 15;
$y = 20;

Subroutine-call
Calculator::multiplication($x, $y);

print "\nEnter the two numbers to divide";

Defining values to variables
$x = 55;
$y = 65;

Subroutine call
Calculator::division($x, $y);

Utilizing Module Variables

Declaring variables from various packages before using them allows them
to be utilized.

56 ◾ Mastering Perl

Example:

#!/usr/bin/perl

package Message;

Variable-Creation
$username;

Defining-subroutine
sub Hello
{
print "Hello $username\n";
}
1;

The module’s Perl file is as follows:

#!/usr/bin/perl

Using the Message.pm package
use Message;

Defining the value to variable
$Message::username = "Peeks";

Subroutine-call
Message::Hello();

Making Use of predefined Modules

Perl has several predefined modules that can be used in Perl applications
at any time.

Such as “strict” and “warnings”.

Example:

#!/usr/bin/perl

use strict;
use warnings;

print" Hello This program uses the pre-defined
Modules";

Fundamentals of Perl ◾ 57

PERL PACKAGES
A Perl package is a set of code that resides in its namespace. A Perl module
is a package defined in a file with the same name as the package and the
extension .pm. A variable or function with same name may exist in two
distinct modules. Any variable that isn’t in a package belongs to the main
package. As a result, all variables used are part of the “main” package. The
declaration of extra packages ensures that variables from various packages
do not interfere with one another.

Perl Module Declaration

The module’s name must be the same as the package name and has a .pm
extension.

Example:

package Calculator;

Defining sub-routine for the Addition
sub addition
{
 # Initializing Variables x & y
 $x = $_[0];
 $y = $_[1];

 # Performing the operation
 $x = $x + $y;

 # Function to print Sum
 print "\n***Addition is $x";
}

Defining sub-routine for the Subtraction
sub subtraction
{
 # Initializing Variables x & y
 $x = $_[0];
 $y = $_[1];

 # Performing the operation
 $x = $x - $y;

58 ◾ Mastering Perl

 # Function to print difference
 print "\n***Subtraction is $x";
}
1;

The file is called “Calculator.pm” and is stored in the directory
Calculator. To return true value to the interpreter, 1 is written after the
function. Instead of 1, Perl accepts anything that is true.

Making Use of a Perl Module

We utilize need or use functions to access this calculator module. :: is used
to access a function or variable from a module. Here’s an example to show:

#!/usr/bin/perl

Using Package 'Calculator'
use Calculator;

print "Enter the two numbers to add";

Defining values to variables
$x = 10;
$y = 20;

Subroutine-call
Calculator::addition($x, $y);

print "\nEnter the two numbers to subtract";

Defining values to the variables
$x = 30;
$y = 10;

Subroutine-call
Calculator::subtraction($x, $y);

Using a Different Directory to Access a Package

If a file accessing the package is located outside the directory, we use “::”
to specify the module’s path. For example, because a file that uses the cal-
culator module is outside the calculator package, we write Calculator ::
Calculator for loading the module, where the value on the left of the “::”

Fundamentals of Perl ◾ 59

represents the package name and the value on the right of the “::” repre-
sents the Perl module name. To illustrate, consider the following example:

#!/usr/bin/perl

use GFG::Calculator; # Directory_name::module_name

print "Enter the two numbers to add";

Defining values to variables
$x = 10;
$y = 20;

Subroutine-call
Calculator::addition($x, $y);

print "\nEnter the two numbers to subtract";

Defining values to variables
$x = 30;
$y = 10;

Subroutine-call
Calculator::subtraction($x, $y);

Utilizing Module Variables

Declaring variables from various packages before using them allows them
to be utilized. The following example exemplifies this.

#!/usr/bin/perl

package Message;

Variable-Creation
$username;

Defining-subroutine
sub Hello
{
print "Hello $username\n";
}
1;

60 ◾ Mastering Perl

The module’s Perl file is as follows.

#!/usr/bin/perl

Using the Message.pm package
use Message;

Defining value to the variable
$Message::username = "XYZ";

Subroutine-call
Message::Hello();

Begin and End Block

When we wish to run some code at the beginning and some code at the con-
clusion, we utilize the BEGIN and END blocks. The codes within BEGIN...
are run at the beginning of the script, while the codes within END... are
executed at the end. This is demonstrated in the following program:

#!/usr/bin/perl

Predefined BEGIN block
BEGIN
{
 print "In begin block\n";
}

Predefined END block
END
{
 print "In end block\n";
}

print "Hello Everyone;\n";

NUMBER AND ITS TYPES IN PERL
In Perl, a number is a mathematical object that may use to count, measure,
and perform different mathematical operations. A numeral is a notational
sign that symbolizes a number. In addition to being used in mathematical
operations, these numerals are also utilized for ranking (in the form of
serial numbers).

Fundamentals of Perl ◾ 61

Example:

2, 4, -6, 7.6, -8.9, 057, 1.87e-10, 0xFFFF

These numbers can be classified into several sorts based on their
application:

• Integers: Perl integers are represented as decimal numbers with a
base of 10. These numbers might be both positive and negative. On
the other hand, Perl employs “_” to represent large integer values to
improve readability.

Example: 213,254,484 is represented as 213_254_484
#!/usr/bin/perl

Positive-Integer
$c = 30;

Negative-Integer
$d = -25;

Big Integer-Number
$e = 213_254_484;

Printing these numbers
print("Positive Integer: ", $c, "\n");

print("Negative Integer: ", $d, "\n");

print("Big Integer: ", $e, "\n");

• Floating point numbers: In Perl, floating-point numbers have an
integer and fractional values separated by a decimal point. The inte-
ger component of a floating number can be positive or negative,
while the fractional component can only be positive. In Perl, floating
numbers may be expressed in two ways:

• Fixed point: The decimal point is fixed in this format. This deci-
mal point marks the beginning of the fractional portion.

Example:

22.5978

62 ◾ Mastering Perl

• Scientific: This representation comprises two parts: the signifi-
cand (the actual number) and the exponent (the power of 10 by
which the significand is multiplied).

Example:

1.23567e-3 represents 1235.67
#!/usr/bin/perl

Positive Floating-Number
$c = 20.5647;

Negative Floating-Number
$d = -15.2451;

Scientific-value
$e = 123.5e-10;

Printing these numbers
print("Positive Number: ", $c, "\n");

print("Negative Number: ", $d, "\n");

print("Scientific Number: ", $e, "\n");

• Hexadecimal numbers: Hexadecimal numerals have a base of 16,
ranging from 0 to 15, and are written as 0xa with “0x” before the num-
ber, whereas “a” here represents the value of 10 in Hex form. These
alphabets represent 10–15 and range from “a” to “f”. Hexadecimal
numerals can have both positive and negative values.

Example:

0xe represents 14 in the Hex, and 0xc represents
12
#!/usr/bin/perl

Positive Hexadecimal Number
$c = 0xc;

Negative Hexadecimal Number
$d = -0xe;

Fundamentals of Perl ◾ 63

Printing these values
print("Positive Hex Number: ", $c, "\n");
print("Negative Hex Number: ", $d, "\n");

To print Hex value
printf("Value in the Hex Format: %c", $c);

As a result, “% x” is used to display the value of the number in
hexadecimal format, as illustrated above.

• Octal numbers: Octal numbers are numbers with a base of 8, rang-
ing from 0 to 7. These numbers are represented as 057, with the num-
ber preceded by a “0” and the remainder being the octal value of the
requisite decimal number. Octal numbers, like other sorts, can be
both positive and negative.

Example:

For octal number 057 decimal equivalent will be
47.
#!/usr/bin/perl

Positive Octal Number
$c = 074;

Negative Octal Number
$d = -074;

print("The Positive Octal number: ", $c, "\n");
print("The Negative Octal number: ", $d, "\n");

To print value in the Octal Form
printf("Value in Octal Form: %o", $c);

“% o” is used here to output the value in the octal form.

• Binary numbers: Binary numbers have a base of two, meaning they
have only two values: 0 and 1. These numbers are written as 0b1010,
with the letter “0b” before the number.

Example:

For binary number '0b1010' decimal equivalent
will be '10'

64 ◾ Mastering Perl

#!/usr/bin/perl

Positive Binary-Number
$c = 0b1010;

Negative Binary-Number
$d = -0b10110;

Printing these values
print("The Positive Binary Number: ", $c, "\n");
print("The Negative Binary Number: ", $d, "\n");

Printing in the unsigned binary form
printf("Value in unsigned Binary Form: %b", $c);

“% b” is used in the above code to display the number in its binary
form.

DIRECTORIES WITH CRUD OPERATIONS IN PERL
Perl is a universal and cross-platform programming language that is
mainly used for text manipulation and is utilized in developing several
software applications such as web development and graphical user inter-
face applications. It is favored over other programming languages because
it is quicker and more powerful, and it also includes many shortcuts that
aid in creating rapid scripts.

In computer languages, a directory is used to store values in the form of
lists. A directory is comparable to a file in many ways. The directory, like a
file, may be used to conduct various activities. These activities are used to
modify an existing directory or create a new one.

The following procedures can be done on a directory:

• Making a new directory.

• Opening an existing directory.

• Reading directory content.

• Modifying a directory path.

• Directory closing.

• Delete a directory.

Fundamentals of Perl ◾ 65

Making a New Directory

mkdir(PATH, MODE) is used to create a directory. This function assists
in creating a new directory; if the user wishes to check whether the file
already exists, the -e function can be used. PATH sets the path using the
mode specified by the MODE function.

Example:

#!/usr/bin/perl

Directory Path
my $directory = 'C:\Users\PeeksForPeeks\Folder\
Perl';

Creating directory in perl
mkdir($directory) or die "No $directory directory,
$!";
print "Directory created \n";

Opening an Existing Directory

In Perl, the short function opendir DIRHANDLE, PATH is used to open
a directory. The PATH parameter defines the path to the directory to be
opened.

Example:

#!/usr/bin/perl

my $directory = 'C:\Users\PeeksForPeeks\Folder';
opendir (DIR, $directory) or die "No directory,
$!";
while ($file = readdir DIR)
{
 print "$file\n";
}
closedir DIR;

Read Directory in the Scalar and List Context

Reading a directory is a regular operation since one must read what
is stored in the files every time the code is run or understood. readdir
DIRHANDLE is used to read a directory. A user can read the directory in
two ways: list context and scalar context.

66 ◾ Mastering Perl

In the list context, the code returns all the remaining entries in the
directory. If the entries in the directories are empty, the undefined values
in the scalar context and the empty list in the list context are returned.

Scalar context:

#!/usr/bin/perl
use strict;
use warnings;
use 5.010;

Directory Path
my $directory = shift // 'C:\Users\GeeksForGeeks\
Folder';

Opening directory
opendir my $dh, $directory or
die "Could not open '$directory' for the reading
'$!'\n";

Printing content of directory
while (my $content = readdir $dh)
{
 say $content;
}

Closing directory
closedir $dh;

List context:

#!/usr/bin/perl
use strict;
use warnings;
use 5.010;

Directory Path
my $directory = shift // 'C:\Users\PeeksForPeeks\
Folder';

Opening-directory
opendir my $dh, $directory or
die "Could not open '$directory' for the reading
'$!'\n";

Fundamentals of Perl ◾ 67

Reading content of file
my @content = readdir $dh;

Printing content of the directory
foreach my $content (@content)
{
 say $content;
}

Closing directory
closedir $dh;

Modifying Directory Path

The chdir() method is used to modify a directory. This function assists in
changing the directory and sending it to a different place. When invoked
with a script, the chdir() function changes the directory for the rest of the
script. The directory on the terminal will not be updated if this function
is called from within a script. However, when called directly with a new
directory path, differences are displayed in the terminal at the same time.

Example: When the function chdir() is used within a script:

#!/usr/bin/perl

Module to return
the current directory path
use Cwd;

Path of the new directory
$directory = "C:/Users";

Printing the path of the current directory
using cwd function
print "Current directory is ";
print(cwd);
print "\n";

Changing directory using the chdir function
chdir($directory) or
 die "Couldn't go inside $directory directory,
$!";

Printing path of changed directory
print "Directory has change to $directory\n";
print "Current directory is ";

68 ◾ Mastering Perl

print(cwd);
print "\n";

Directory Closing

Closedir DIRHANDLE is used to shut a directory. DIRHANDLE is the
handle of the directory that is opened using the opendir function.

Example:

#!/usr/bin/perl

Directory which is to be opened
$dirname = "C:/Users/PeeksForPeeks";

Opening directory
using opendir function
opendir (dir, $dirname) || die "Error $dirname\n";

Printing content of directory
using the readdir function
while(($filename = readdir(dir)))
{
 print("$filename\n");
}

Closing directory using closedir
closedir(dir);

Delete a Directory

The rmdir function can be used to remove a directory. This function
removes the supplied directory by FILENAME only if it is empty; if suc-
cessful, it returns true; otherwise, it returns false.

Example:

#!/usr/bin/perl
$directory = "C:/Users/PeeksForPeeks/Folder/Perl";

This removes the Perl directory
rmdir($directory) or
 die "Couldn't remove $directory directory, $!";

print "Directory-removed \n";

Fundamentals of Perl ◾ 69

In this chapter, we covered the fundamental of Perl, where we discussed
modes of writing, Boolean values, operators, and variables. Furthermore,
we covered modules in Perl, packages in Perl, numbers and their types,
and directories with CRUD operations.

NOTES
 1. Perl - Operators.
 2. Perl | Variables.

http://www.taylorandfrancis.com

71DOI: 10.1201/9781003358442-3

C h a p t e r 3

Input and Output in Perl

IN THIS CHAPTER

 ➢ Use of print() and say()

 ➢ print Operator

 ➢ Use of STDIN for Input

In the previous chapter, we covered the Fundamental of Perl, and in this
chapter, we will cover input and output with its relevant examples.

PERL print() AND say() METHODS
Perl evaluates input provided by the user or presented as Hardcoded input
in the code using statements and expressions. Because it has been evalu-
ated in the compiler, this evaluated expression will not display to the
programmer. Perl employs the print() and say() functions to display the
evaluated expression. These routines can show whatever parameters are
supplied to them.

print() Operator

The print() operator in Perl is used to print the values of expressions in a
List supplied to it as an input. The print operator returns anything passed
to it as an argument, whether it’s a string, a number, a variable, or any-
thing else. This operator’s delimiter in double quotes (“”).

https://doi.org/10.1201/9781003358442-3

72 ◾ Mastering Perl

Syntax:

print "";

Example:

#!/usr/bin/perl -w

Defining string
$string1 = "Peeks For Peeks";
$string2 = "Welcome all";

print "$string1";
print "$string2";

The above example uses the print function to print both strings, but they
are written on the same line. To avoid this and print them on distinct lines,
we must use the “\n” operator, which changes the line whenever it is used.

Example:

#!/usr/bin/perl -w

Defining a string
$string1 = "Peeks For Peeks";
$string2 = "Welcome all";

print "$string1\n";
print "$string2";

If we use single quotes instead of the double quotes, the print() method
will not output the values of the variables or the escape characters used
in the statement, such as “\n”. These characters will be printed in their
entirety and will not be evaluated.

#!/usr/bin/perl -w

Defining string
$string1 = 'Peeks For Peeks';
$string2 = 'Welcome all';

print '$string1\n';
print '$string2';

Input and Output in Perl ◾ 73

say() Function

The say() method in Perl functions similarly to the print() function, with
one minor difference: the say() function automatically inserts a newline at
the end of the statement, removing the need to use the newline character
“n” to change the line.

Example:

#!/usr/bin/perl -w
use 5.010;

Defining string
$string1 = "Peeks For Peeks";
$string2 = "Welcome all";

say() function to print
say("$string1");
say("$string2");

We used “use 5.010” to utilize the say() function since newer versions
of Perl don’t support some of the earlier versions’ features; thus, the older
version is used to run the say() method.

print OPERATOR
In Perl, the print operator is used to print the values of expressions in a List
that is passed to it as an argument. The print operator returns anything
passed to it as an argument, whether it’s a string, a number, a variable, or
anything else. This operator is delimiter by double quotes (“”).

Syntax:

 print ""
Returns:
0 on failure and 1 on success.

First example:

#!/usr/bin/perl -w

Defining a string

74 ◾ Mastering Perl

$string = "Geeks For Geeks";

Defining an array of Integers
@array = (20, 30, 40, 50, 60, 70);

Searching a pattern in string
using index() function
$index = index ($string, 'or');

Printing the position of the matched pattern
print "Position of 'or' in string $index\n";

Printing defined array
print "Array of the Integers is @array\n";

Second example:

#!/usr/bin/perl -w

Defining string
$string = "Welcome to PFP";

Defining an array of integers
@array = (-20, 30, 25, -50, 55, -70);

Searching a pattern in string
using index() function
$index = index($string, 'o P');

Printing the position of the matched pattern
print "Position of 'o P' in string $index\n";

Printing the defined array
print "Array of the Integers @array\n";

USE OF STDIN FOR INPUT
Perl allows the programmer to receive user input and conduct actions on
it. This allows the user to enter input other than the one provided by the
programmer as Hardcoded input. The print() method can then be used to
parse and print this input.

<STDIN> can provide keyboard input to a Perl application. STDIN is
an abbreviation for Standard Input. There is no need to include STDIN

Input and Output in Perl ◾ 75

between the “diamond” and “spaceship” operators, i.e. <>. This is standard
procedure. The < > operator can also be used to write to files. <STDIN>
can be used in both Scalar and List contexts.

Syntax:

$a = <STDIN>; or $a = <>;

Example:

#!/usr/bin/perl -w
use strict;
use warnings;

print"Enter text:";
my $string = <STDIN>;

print "We entered $string as a String";

After entering Input, the above code requires us to press ENTER.
This ENTER instructs the compiler to run the following line of code.
However, <STDIN> treats the ENTER key as part of the input and prints
the line when we hit it. Following the Input string, a new line will be
written automatically. To avoid this, the chomp() method is used. This
method will delete the newline character placed at the end of the user-
supplied Input.

Example:

#!/usr/bin/perl -w
use strict;
use warnings;

print"Enter text:";
my $string = <STDIN>;
chomp $string;

print "We entered $string as a String";

In this chapter, we covered the use of print() and say(), print operator,
and STDIN for Input.

https://taylorandfrancis.com

77DOI: 10.1201/9781003358442-4

C h a p t e r 4

Control Flow in Perl

IN THIS CHAPTER

 ➢ Decision-Making

 ➢ Loops

 ➢ when Statement

 ➢ goto Operator

 ➢ next Operator

 ➢ redo Operator

In the previous chapter, we discussed input and output in Perl, and in this
chapter, we will cover control flow statements.

DECISION-MAKING IN PERL
Making decisions in programming is analogous to making decisions in
real life. When a given condition is met in programming, a particular code
block must be performed. Control statements are used in a programming
language to control program execution flow based on particular criteria.
These affect the execution flow to progress and branch based on changes
in a program’s state.

Perl decision-making statements:

• if

• if else

https://doi.org/10.1201/9781003358442-4

78 ◾ Mastering Perl

• nested if

• if elsif ladder

• unless

• unless else

• unless elsif

if Statement

The if statement is similar to those seen in other programming languages.
It is used to carry out simple condition-based tasks. It is used to determine
whether a specific statement or block of statements will be executed; for
example, if a given condition is true, then a block of statements is executed;
otherwise, it is not.

Syntax:

if(condition)
{
 # code executed
}

There will be a build time error if curly brackets {} are not utilized with
if statements. As a result, brackets {} must be used with the if statement.

Control Flow in Perl ◾ 79

Flowchart:

Statement of if.

Example:

program to illustrate the if statement

$c = 10;

if condition to check
for the even number
if($c % 2 == 0)
{
 printf "Even-Number";
}

if else Statement

If the condition is true, the if statement evaluates the code; if the condition
is false, the else statement is used. It instructs the code on what to do if the
condition is false.

80 ◾ Mastering Perl

Syntax:

if(condition)
{
 # if a condition is true
}
else
{
 # if a condition is false
}

Flowchart:

Statement of if else.

Control Flow in Perl ◾ 81

Example:

program to illustrate
if else statement

$c = 21;

if condition to check
for the even number
if($c % 2 == 0)
{
 printf "Even-Number";
}
else
{
 printf "Odd-Number\n";
}

Nested if Statement

Nested if is an if statement inside an if statement. In this situation, the if
statement is the target of another if or else statement. Nested if can be used
when more than one condition must be true and one of the conditions is a
sub-condition of the parent condition.

Syntax:

if (condition1)
{
 # Executes when the condition1 is true

 if (condition2)
 {
 # Executes when the condition2 is true
 }
}

82 ◾ Mastering Perl

Flowchart:

Statement of nested if.

Example:

program to illustrate
the Nested if statement

$c = 10;

if($c % 2 ==0)
{
 # Nested if statement
 # Will only executed
 # if above if statement
 # is true
 if($c % 5 == 0)
 {

Control Flow in Perl ◾ 83

 printf "The Number is divisible by 2 and
5\n";
 }
}

if elsif else ladder Statement

A user can select from a number of alternatives here. The if statements are
performed in the order listed. When one of the if conditions is met, the
statement associated with that condition is performed, and rest of the lad-
der is skipped. If none of the conditions are met, the last else expression
is used.1

Syntax:

if(condition1)
{
 # If condition 1 is true, code will be
executed.
}
elsif(condition2)
{
 # code to be executed if the condition2
is true
}
elsif(condition3)
{
 # code to be executed if the condition3
is true
}

else
{
 # code to be executed if all conditions
are false
}

84 ◾ Mastering Perl

Flowchart:

Statement of if else if.

Example:

Perl program to illustrate
if - elseif ladder statement

$c = 30;

if($c == 20)
{
 printf "c is 20\n";
}

elsif($c == 25)
{
 printf "c is 25\n";
}

Control Flow in Perl ◾ 85

elsif($c == 30)
{
 printf "c is 30\n";
}

else
{
 printf "c is not present\n";
}

unless Statement

If condition is false, the statements will execute. In a boolean context, the
number 0, the empty string “”, the character “0”, the empty list (), and
undef are all false, whereas all other values are true.

Syntax:

unless(boolean_expression)
{
 # will execute if a given condition is false
}

Flowchart:

Unless statement.

86 ◾ Mastering Perl

Example:

program to illustrate
unless statement

$c = 20;

unless($c != 20)
{

 # if condition is false then
 # print following
 printf "c is not equal to 20\n";
}

unless else Statement

When the boolean expression is true, the except statement is followed by
an optional else statement.

Syntax:

unless(booleanexpression)
{
 # execute if a given condition is false
}

else
{
 # execute if a given condition is true
}

Control Flow in Perl ◾ 87

Flowchart:

Unless else Statement.

Example:

program to illustrate
unless - else statement

$c = 20;

unless($c == 20)
{

 # if condition is false then
 # print following
 printf "c is not equal to 20\n";
}

else
{

88 ◾ Mastering Perl

 # if condition is true then
 # print following
 printf "c is equal to 20\n";
}

unless elsif Statement

The unless and an optional elsif can follow statement...else statement, which
allows us to test many conditions with a single unless...elsif statement.

Remember the following:
Unless statements can have any number of elsifs, and all of them must

appear before the else.
Unless statements can have zero or one else’s, and they must appear

after any elsif statements.
When an elsif succeeds, none of the other elsif ’s or elses are tried.

Syntax:

unless(boolean_expression 1)
{
 # Executes when boolean expression 1 is false
}
elsif(boolean_expression 2)
{
 # Executes when boolean expression 2 is true
}
else
{
 # Executes when none of above condition is
met
}

Control Flow in Perl ◾ 89

Flowchart:

Statement of unless elsif.

Example:

program to illustrate
unless elsif statement
$c = 70;

unless($c == 80)
{

if condition is false
printf "c is not equal to 80\n";
}
elsif($c == 80)
{

if condition is true
printf "c is equal to 80\n";
}

90 ◾ Mastering Perl

else
{

if none of condition matches
printf "Value of c is $c\n";
}

LOOPS IN PERL
In programming languages, looping is a feature that allows the execution
of a collection of instructions or functions repeatedly while some condi-
tion is true. Loops make the job of the coder easier. Perl supports many
forms of loops to handle conditional situations in programs. Perl’s loops
are discussed below.

for Loop

The “for” loop is a shorthand means of expressing the loop structure.
Unlike a while loop, a for statement consumes the setup, condition, and
increment/decrement on a single line, resulting in a shorter, easier to
debug looping structure.

Syntax:

for (init statement; condition; increment/
decrement)
{
 # Code Executed
}

Control Flow in Perl ◾ 91

Flowchart:

for loop in Perl.

A for loop operates on a predefined control flow. The following factors
influence control flow:

• init statement: The init statement is the initial statement that is per-
formed. In this stage, we set up a variable to control the loop.

• condition: The specified condition is assessed in this stage, and the
for loop is executed if it is True. Because the condition is verified
before the loop statements are executed, it is also an entry control
loop.

• Statement execution: When the condition is true, the statements in
the loop body are performed.

• increment/decrement: The loop control variable is incremented or
decremented here to update the variable for the next iteration.

• Loop termination: When the condition is met, the loop terminates,
indicating the end of its life cycle.

Example:

program to illustrate
for loop

92 ◾ Mastering Perl

for loop
for ($count = 1 ; $count <= 4 ; $count++)
{
 print "PeeksForPeeks\n"
}

foreach Loop

A foreach loop iterates over a list, and the variable stores the values of the
list’s items one at a time. It is mainly utilized when we have a collection of
data in a list and wish to iterate through the list’s elements rather than its
range. The loop performs the iteration of each element automatically.

Syntax:

foreach variable
{
 # Code Executed
}

Example:

program to illustrate
foreach loop

Array
@data = ('PEEKS', 'FOR', 'PEEKS');

foreach loop
foreach $word (@data)
{
 print $word
}

while Loop

A while loop typically accepts an expression enclosed in parentheses.
If the expression is True, the code within the while loop’s body is per-
formed. A while loop is used when we don’t know how many times we
want the loop to be performed but know the loop’s termination condi-
tion. Because the condition is verified before performing the loop, it is
also known as an entry controlled loop. The while loop is similar to a
loop if statement.

Control Flow in Perl ◾ 93

Syntax:

while (condition)
{
 # Code executed
}

Example:

program to illustrate
while loop

while loop
$count = 4;
while ($count >= 0)
{
 $count = $count - 1;
 print "PeeksForPeeks\n";
}

Infinite While Loop

A while loop can continue indefinitely, which means it has no end condi-
tion. In other words, some circumstances remain true, causing the while
loop to continue endlessly or never finish.

Example: The following application will print the provided statement
indefinitely and display the runtime error Output Limit Exceeded on the
online IDE.

program to illustrate
infinite while loop

infinite while loop
containing condition 1
which is always true
while(1)
{
 print "Infinite While Loop\n";
}

do...while loop

The only difference between a do...while loop and a while loop is that the
do...while loop is executed at least once. After the initial execution, the

94 ◾ Mastering Perl

condition is verified. When we want the loop to execute at least once, we
use a do...while loop. Because the condition is verified after performing the
loop, it is also known as an exit controlled loop.

Syntax:

do {

 # statements Executed

} while(condition);

Example:

program to illustrate
do..while Loop

$c = 20;

do..While loop
do {

 print "$c ";
 $c = $c - 1;
} while ($c > 0);

until Loop

The inverse of the while loop is the until loop. It accepts a condition in the
parenthesis and only runs until it is false. It essentially repeats an instruc-
tion or sequence of instructions until the condition is FALSE. It is also an
entry controller loop, which means that the condition is tested first, and
then a sequence of instructions within a block is executed.

Syntax:

until (condition)
{
 # Statements executed
}

Control Flow in Perl ◾ 95

Example:

program to illustrate until Loop

$c = 20;

until loop
until ($c < 1)
{
 print "$c ";
 $c = $c - 1;
}

Nested Loops

A nested loop is a loop that is contained within another loop. Perl pro-
gramming also supports nested loops. All of the loops listed above can
also be nested.

Perl syntax for several nested loops:

• Nested for loop

for (init statement; condition; increment/
decrement)
{
 for (init statement; condition; increment/
decrement)
 {
 # Code Executed
 }
}

• Nested foreach loop

foreach variable_1 (@array_1) {

 foreach variable_2 (@array_2)
 {

 # Code Executed
 }
}

96 ◾ Mastering Perl

• Nested while loop

while (condition)
{
 while (condition)
 {
 # Code Executed
 }
}

• Nested do...while loop

do{
 do{

 # Code Executed

 }while(condition);

}while(condition);

• Nested until loop

until (condition) {

 until (condition)
 {
 # Code Executed
 }
}

Example:

program to illustrate
nested while Loop

$c = 5;
$d = 0;

outer while loop
while ($c < 7)
{
$d = 0;

inner while loop
while ($d <7)

Control Flow in Perl ◾ 97

{
 print "value of c = $c, d = $d\n";
 $d = $d + 1;
}

$c = $c + 1;
print "Value of c = $c\n\n";
}

given-when STATEMENT
In Perl, a given-when statement replaces lengthy if statements that com-
pare a variable to numerous integral values.

• The given-when statement is a branch statement with many options.
It allows us to easily route execution to various areas of code based on
the value of the expression.

• A control statement is provided that allows a value to alter execution
control.

The switch-case in Perl is analogous to the switch-case in C/C++,
Python, or PHP. It, too, substitutes numerous if statements with distinct
cases, much like the switch statement.2

Syntax:

given(expression)
{
 when(value1) {Statement;}
 when(value2) {Statement;}

 default {# Code if no other case matchs}
}

given-when statements also include two extra keywords, break and con-
tinue. These keywords keep the program flowing and aid in exiting the
program or skipping execution at a certain value.

break: The break keyword is used to exit a when block. There is no
need to explicitly express the break after every when the block in Perl. It is
already implicitly defined.

98 ◾ Mastering Perl

continue: On the other hand, if the first when the block is correct, con-
tinue proceed to the next when block.

A conditional statement in a given-when statement must not be repeated
in multiple when statements since Perl only checks for the first occurrence
of that condition and the subsequent repeating statements are disregarded.
Furthermore, a default statement must be placed after all when statements
since the compiler checks for condition matching with each when state-
ment in order, and if we insert default in between, it will take a break and
print the default statement.

Example:

#!/usr/bin/perl

program to print respective day
for daycode using given-when statement
use 5.010;

Asking user to provide day-code
print "Enter daycode between 0-6\n";

Removing newline using the chomp
chomp(my $daycode = <>);

Using given-when statement
given ($daycode)
{
 when ('0') { print 'Sunday' ;}
 when ('1') { print 'Monday' ;}
 when ('2') { print 'Tuesday' ;}
 when ('3') { print 'Wednesday' ;}
 when ('4') { print 'Thursday' ;}
 when ('5') { print 'Friday' ;}
 when ('6') { print 'Saturday' ;}
 default { print 'Invalid daycode';}
}

Nested given-when Statement

given-when nested statement refers to given-when statements that are
included within other given-when statements. This may be used to keep a
hierarchy of user-supplied inputs for a given output set.

Control Flow in Perl ◾ 99

Syntax:

given(expression)
{
 when(value1) {Statement;}
 when(value2) {given(expression)
 {
 when(value3) {Statement;}
 when(value4) {Statement;}
 when(value5) {Statement;}
 default{# Code if no other
case-matches}
 }
 }
 when(value6) {Statement;}

 default {# Code if no other case-matches}
}

Here’s an example of a Nested given-when statement:

#!/usr/bin/perl

program to print respective day
for the daycode using given-when statement
use 5.010;

Asking user to provide daycode
print "Enter daycode between 0-6\n";

Removing the newline using chomp
chomp(my $daycode = <>);

Using given-when statement
given ($daycode)
{
 when ('0') { print 'Sunday' ;}
 when ('1') { print "What time of day is it?\n";
 chomp(my $daytime = <>);

 # Nested given-when statement
 given($daytime)
 {

100 ◾ Mastering Perl

 when('Morning') {print 'It is
Monday Morning'};
 when('Noon') {print 'It is Monday
noon'};
 when('Evening') {print 'It is
Monday Evening'};
 default{print'Invalid Input'};
 }
 }
 when ('2') { print 'Tuesday' ;}
 when ('3') { print 'Wednesday' ;}
 when ('4') { print 'Thursday' ;}
 when ('5') { print 'Friday' ;}
 when ('6') { print 'Saturday' ;}
 default { print 'Invalid daycode';}
}

When the Input day-code is anything other than 1, the code will not
run the nested given-when block and the output will be the same as in
the previous example; but, if we supply 1 as Input, the code will execute
the nested given-when block and the result will differ from the previous
example.

goto STATEMENT
The goto statement in the Perl is a jump statement, sometimes known as an
unconditional jump statement. The goto statement can use to jump from
one location within a function to another.

Syntax:

LABEL:
Statement-1;
Statement-2;
.
.
.
.
.
.
.
Statement-n;
goto LABEL;

Control Flow in Perl ◾ 101

The goto statement in the preceding syntax instructs the compiler to
immediately go/jump to the statement designated as LABEL. The label is
a user-defined identifier that specifies the target statement in this case.
The destination statement is the statement that comes immediately after
“label.”

In Perl, the goto statement can have three forms: Label, Expression, and
Subroutine.

• Label: It will jump to the statement indicated by the LABEL and con-
tinue execution from there.

• Expression: There will be an expression in this form that will return
a Label name after evaluation, and goto will cause it to jump to the
labeled statement.

• Subroutine: goto will move the compiler from the currently execut-
ing subroutine to the subroutine of the provided name.

Syntax:

goto LABEL

goto EXPRESSION

goto Subroutine-Name

goto with LABEL name: LABEL name is used to jump to a specific state-
ment in code and begin execution there. Its reach, however, is restricted. It
can only function inside the scope of where it is invoked.

Example:

Program to print numbers
from 1 to 20 using goto statement

function to print the numbers from 1 to 20
sub printNumbers()
{
 my $n = 1;
label:
 print "$n ";
 $n++;

102 ◾ Mastering Perl

 if ($n <= 20)
 {
 goto label;
 }
}

Driver-Code
printNumbers();

goto using Expression: An expression may also be used to call a specific
label and transmit control to that label. When this expression is provided
to the goto statement, it evaluates to a label name, and execution continues
from the statement described by that label name.

Example:

Program to print numbers
from 1 to 20 using the goto statement

Defining the two strings
which contain
label name in the parts
$c = "lab";
$d = "el";

function to print numbers from 1 to 20
sub printNumbers()
{
 my $n = 1;
label:
 print "$n ";
 $n++;
 if ($n <= 20)
 {
 # Passing Expression to label name
 goto $c.$d;
 }
}

Driver-Code
printNumbers();

Control Flow in Perl ◾ 103

goto with Subroutine: The goto command may also invoke a subrou-
tine. Based on its usage, this procedure is called from within another sub-
routine or alone. It keeps the task to be done next to the calling statement.
This method may recursively invoke a function to print a series or range
of characters.

Example:

Program to print numbers
from 1 to 20 using goto statement

function to print numbers from 1 to 20
sub label
{
 print "$n ";
 $n++;

 if($n <= 20)
 {
 goto &label;
 }
}

Driver Code
my $n = 1;
label();

next OPERATOR
In Perl, the next operator skips the current loop execution and moves the
iterator to the value specified by the next. If a label is specified in the pro-
gram, execution proceeds to the next iteration designated by the Label.

Syntax:

next Label

First example:

#!/usr/bin/perl -w

Program to find frequency
of an element

104 ◾ Mastering Perl

@Array = ('P', 'E', 'E', 'K', 'S');
$d = 0;
foreach $key (@Array)
{
 if($key eq 'E')
 {
 $d = $d + 1;
 }
 next;
}

print "Frequency of E in Array: $d";

Second example:

#!/usr/bin/perl
$i = 0;

label for the outer loop
outer:
while ($m < 3) {

 $n = 0;
 while ($n < 3) {

 # Printing values of i and j
 print "m = $m and n = $n\n";

 # Skipping loop if i==j
 if ($n == $m) {

 $m = $m + 1;
 print "As m == n, hence going back to
the outer loop\n\n";

 # Using next to skip an iteration
 next outer;
 }
 $n = $n + 1;
 }

 $m = $m + 1;

}# end of the outer loop

Control Flow in Perl ◾ 105

redo OPERATOR
In Perl, the redo operator begins from the specified label without evaluat-
ing the conditional expression. Once redo is called, no further statements
in that block will execute. Even if there is a continue block, it will not be
performed after the redo call. When a Label is used with the redo operator,
the execution begins with the loop defined by the Label.

Syntax:

redo Label

Returns:
No Value

First example:

#!/usr/bin/perl -w

$x = 1;

Assigning label to the loop
PFP: {
$x = $x + 5;
redo PFP if ($x < 10);
}

Printing value
print ($x);

Second example:

#!/usr/bin/perl -w

$x = 1;

Assigning label to the loop
$count = 1;
PFP: while($count < 10) {
$x = $x + 5;
$count++;
redo PFP if ($x < 100);
}

Printing value
print ("$x $count");

106 ◾ Mastering Perl

last IN LOOP
The last keyword is used in a loop control statement to make the current
iteration of the loop the last. If a label is provided, it exits the loop through
the label.

Syntax:

Comes out of current loop.
last

Comes out of loop specified by
MY_LABEL
last MY_LABEL

First example:

#!/usr/bin/perl
$sum = 0;
$m = 0;
$n = 0;

while(1)
{

$sum = $m + $n;
$m = $m + 2;

Condition to end the loop
if($sum > 20)
{
 print "Sum = $sum\n";
 print "Exiting loop\n";
 last;
}
else
{
 $n = $n - 1;
}
}
print "Loop ended at Sum > 20\n";

Control Flow in Perl ◾ 107

Second example:

#!/usr/local/bin/perl

$m = 1;
$sum = 0;

Outer Loop
Label1: while($m < 16)
{
$n = 1;

Inner Loop
Label2: while ($n < 8)
{
 $sum = $sum + $n;
 if($m == 8)
 {
 print "Sum is $sum";

 # terminate the outer loop
 last Label1;
 }
 $n = $n * 2;
}
$m = $m * 2;
}

In this chapter, we covered control flow statements in Perl.

NOTES
 1. Perl | Decision-Making (if, if else, Nested if, if elsif ladder, unless, unless

else, unless elsif).
 2. Perl | given-when Statement.

https://taylorandfrancis.com

109DOI: 10.1201/9781003358442-5

C h a p t e r 5

File Handling in Perl

IN THIS CHAPTER

 ➢ Introduction of File Handling

 ➢ Opening and Reading a File

 ➢ Writing and Appending to a File

 ➢ Reading a CSV File

 ➢ File Test Operators

 ➢ File Locking

 ➢ Use of Slurp Module

 ➢ Useful File-handling Functions

In the previous chapter, we discussed control flow statements, and in this
chapter, we will cover file handling.

INTRODUCTION OF FILE HANDLING
A FileHandle in Perl connects a name with an external file that can use
until the program terminates or the FileHandle is closed. In summary,
a FileHandle is a connection that can be used to edit the contents of an
external file, and the connection (the FileHandle) is given a name for easier
access and convenience.

https://doi.org/10.1201/9781003358442-5

110 ◾ Mastering Perl

STDIN, STDOUT, and STDERR are the three fundamental FileHandles
in Perl, representing standard input, standard output, and standard error
devices, respectively.

The open function is typically used for file handling.

Syntax:

open(FileHandle, Mode, FileName);

Parameters:

FileHandle- The reference to file, that can use
within the program or until its closure.
Mode- Mode in which file is to be opened.
FileName- The name of a file to be opened.

Mode and FileName can also combine to produce a single open
expression.

Syntax:

open(FileHandle, Expression);
Parameters:

FileHandle- The reference to file, that can use
within the program or until its closure.
Expression- The Mode and FileName clubbed
together.

The close function is used to close FileHandle.

Syntax:

close(FileHandle);
Parameters:

FileHandle- The FileHandle to close.

Using FileHandle To Read and Write to a File

The print function can be used to read from a FileHandle.

File Handling in Perl ◾ 111

Syntax:

print(<FileHandle>);
Parameters:

FileHandle- FileHandle opened in the read mode or
similar mode.

The print function can also be used to write to a file.

Syntax:

print FileHandle String
Parameters:

FileHandle- FileHandle opened in the write mode or
similar mode.
String- The String to insert in the file.

Various File Handling Modes

Mode Explanation

“<” The Read Only Mode
“>” Creates file (if necessary), Clears contents of the File and Writes to it
“>>” Creates file (if necessary), Appends to File
“+<” Reads and Writes but does NOT Create
“+>” Creates file (if necessary), the Clears, Reads and Writes
“+>>” Creates file (if necessary), the Reads and Appends

Example: Consider the file Hello1.txt, which initially contains the text
“Welcome to PeeksForPeeks!!”.

1. Mode = “<”
This mode is read-only. This mode is used to read the file’s content

line by line.

#!/usr/bin/perl

Opening a File in the Read-only mode
open(r, "<", "Hello1.txt");

Printing content of File

112 ◾ Mastering Perl

print(<r>);

Closing File
close(r);

2. Mode = “>”
This is the read-only mode. The original contents are erased when

we open a file in this mode. If no file with the same name is found, it
creates one.

#!/usr/bin/perl

Opening File Hello1.txt in Read mode
open(r, "<", "Hello1.txt");

Printing existing content of the file
print("Existing Content of Hello1.txt: ". <r>);

Opening File in Write mode
open(w, ">", "Hello1.txt");

Set r to the beginning of Hello1.txt
seek r, 0, 0;

print "\nWriting to the File...";

Writing to Hello1.txt using print
print w "The Content of this file is changed";

Closing FileHandle
close(w);

Set r to beginning of Hello1.txt
seek r, 0, 0;

Print the current contents of Hello1.txt
print("\nUpdated Content of Hello1.txt: ".<r>);

Close FileHandle
close(r);

3. Mode=“>>”
Append mode is active. The original content is not deleted when

we open a file in this mode. Because the string always attaches at the

File Handling in Perl ◾ 113

end, this mode cannot be used to overwrite. If no file with the same
name is discovered, it creates one.

#!/usr/bin/perl

Opening File Hello1.txt in Read mode
open(r, "<", "Hello1.txt");

Printing existing content of the file
print("Existing Content of Hello1.txt: ". <r>);

Opening the File in the Append mode
open(A, ">>", "Hello1.txt");

Set r to beginning of Hello1.txt
seek r, 0, 0;

print "\nAppending to the File...";

Appending to Hello1.txt using print
print A " Hello Everyone!";

close FileHandle
close(A);

Set r to the beginning of Hello1.txt
seek r, 0, 0;

Print current contents of Hello1.txt
print("\nUpdated Content of Hello1.txt: ".<r>);

Close FileHandle
close(r);

4. Mode = “+<”
This is known as Read-Write mode. This function may be used to

replace an existing string in file. It is unable to create a new file.

#!/usr/bin/perl

Open Hello1.txt in Read-Write Mode
open(rw, "+<", "Hello1.txt");

Print original contents of File.

114 ◾ Mastering Perl

rw is set to the end.
print("Existing Content of the Hello1.txt:
".<rw>);

The string is attached at the end
of original contents of the file.
print rw "Added using the Read -Write Mode.";

Set rw to the beginning of File for reading.
seek rw, 0, 0;

Printing Updated content of the File
print("\nUpdated contents of Hello1.txt: ".<rw>);

Close FileHandle
close(rw);

5. Mode = “+>”
This is known as Read-Write mode. The distinction between “+”

and “+>” is that “+>” can create a new file even if one with the same
name already exists, whereas “+” cannot.

#!/usr/bin/perl

Opening File Hello1.txt in the Read mode
open(r, "<", "Hello1.txt");

Printing existing content of the file
print("Existing Content of Hello1.txt: ". <r>);

Closing File
close(r);

Open Hello1.txt in the Read-Write Mode
open(rw, "+>", "Hello1.txt");

Original contents of File
are cleared when File is opened
print("\nContents of Hello1.txt gets cleared…");

The string is written to File
print rw "Hello!!! This is the updated file.";

File Handling in Perl ◾ 115

Set rw to the beginning of File for reading.
seek rw, 0, 0;

print("\nUpdated Content of Hello1.txt: " .<rw>);

Closing File
close(rw);

6. Mode = “+>>”
This is called Read-Append mode. This may be used to both read

from and append to a file. A new one with the same name is gener-
ated if no such file exists.

Open Hello1.txt in Read-Append Mode
open(ra, "+>>", "Hello1.txt");

Set ra to beginning of File for reading.
seek ra, 0, 0;

Original content of File
is NOT cleared when File is opened
print("Existing Content of File: ". <ra>);

print "\nAppending to File....";

The string is appended to File
print ra "Added using Read-Append Mode";

Set ra to the beginning of File for reading.
seek ra, 0, 0;

Printing updated content
print("\nUpdated content of File: ". <ra>);

Closing File
close(rw);

Redirecting Output

Using the choose function, output may be redirected away from the con-
sole and into a file.

116 ◾ Mastering Perl

Syntax:

select FileHandle;
Parameters:

FileHandle – FileHandle of File to be selected.

Steps:

• To write, open a FileHandle and type “>”, “>>”, “+<”, “+>”, or “+>>”.

• Using the select function, choose the FileHandle.

Anything printed using the print function is now redirected to the file.

Example:

Open a FileHandle in Write Mode.
open(File, ">", "Hello1.txt");

This sets File as default FileHandle
select File;

Writes to File
print("This goes to File.");

Writes to File
print File "\nThis goes to File too.";

This sets STDOUT as default FileHandle
select STDOUT;
print("This goes to console.");

Close FileHandle.
close(File);

FILE OPENING AND READING
A FileHandle is a Perl internal structure that connects a physical file to a
name. All FileHandles have read/write access; therefore, reading/writing
is possible once attached to a file. However, when associating a FileHandle,
the mode in which the file handle is opened must give.

File Handling in Perl ◾ 117

Opening a File

The Open function is used to open either a new or existing file.

Syntax:

open FILEHANDLE, VAR

In this case, FileHandle is the handle returned by the open function,
and VAR is the expression containing the file name and opening mode.

The table below displays the various file opening modes and access to
various operations.

Mode Description

r or < The Read Only Access
w or > Creates, Writes, and Truncates
a or >> Writes, Appends, and Creates
r+ or +< Reads and Writes
w+ or +> The Reads, Writes, Creates, and Truncates
a+ or +>> The Reads, Writes, Appends, and Creates

Reading a File

When a FileHandle is assigned to a file, it may perform actions such as
reading, writing, and appending. There are several methods for reading
the file.

• Making use of a FileHandle operator

• Utilizing the getc function

• Utilizing the read function

FileHandle Operator
The most common way to read data from an open FileHandle is with the
operator < >. When used in a list context, the < > operator returns a list of
lines from the provided FileHandle. The following example reads one line
from a file and puts it in a scalar.

Let the contents of the file “PFP.txt” be as follows:

PeeksforPeeks
Hello Peek
Peek a revolution
Peeks are the best

118 ◾ Mastering Perl

Example:

Opening file
open(fh, "PFP.txt") or die "File '$filename' can't
open";

Reading First line from file
$firstline = <fh>;
print "$firstline\n";

getc Function
The getc function retrieves a single character from the FileHandle given,
or STDIN if none is specified.

Syntax:

getc FILEHANDLE

Example:

Opening file
open(fh, "PFP.txt") or die "File '$filename' can't
opene";

Reading First char from file
$firstchar = getc(fh);
print "$firstchar\n";

If an error occurs or the FileHandle is at the end of the file, it returns undef.

read Function
The read function reads binary data from a file using the FileHandle.

Syntax:

read FILEHANDLE, SCALAR, LENGTH, OFFSET
read FILEHANDLE, SCALAR, LENGTH

If no OFFSET is supplied, LENGTH denotes the length of data to be
read, and the data is inserted at the beginning of SCALAR. Otherwise, data
is inserted after OFFSET bytes in SCALAR. If the file reading succeeds,

File Handling in Perl ◾ 119

the function returns the number of bytes read, zero at the end of the file,
or undef if an error occurred.

Reading More than One Line at a Time

The following example reads the file’s contents indicated by FileHandle
until it hits the end of file (EOF).

Example:

Opening the file
open(FH, "PFP.txt")or die "Sorry, couldn't open";
print "Reading the file \n";

Reading file till FH reaches EOF
while(<FH>)
{
 # Printing one line at a time
 print $_;
}
close;

Exception Handling in Files

The exception can be handled in one of the two ways:

• If the file cannot open, throw an exception.

• If the file cannot open, issue a warning and continue operating.

Throw an Exception
When FileHandle is not allocated a valid file pointer, a die is run, which
prints the message and terminates the current program.

Example:

Initializing filename
$filename = 'PFP1.txt';

Prints an error and exits if the file not found
open(fh, '<', $filename) or die "Couldn't Open the
file $filename";

The code produces an error and quits if the file is not found.

120 ◾ Mastering Perl

Give a Warning
When FileHandle cannot be assigned a proper file reference, it produces a
warning message and continues to operate.

Example:

Initializing filename
$filename = 'PFP.txt';
Opening file and reading content
if(open(fh, '<', $filename))
{
 while(<fh>)
 {
 print $_;
 }
}

Executes if the file is not found
else
{
warn "Couldn't Open file $filename";
}

WRITING TO A FILE
A FileHandle is a variable used to read and write files. This FileHandle is
linked with the file.

To write to a file, open it in write mode, as shown below:

open (FH, '>', "file_name.txt");

If the file already exists, it replaces the old content with the new content.
Otherwise, a new file will generate with fresh content.

print() Function

The print() method is used to write data to a file.

Syntax:

print the filehandle string

When the file is opened, the FileHandle is associated with it, and the
string contains the content to be written to the file.

File Handling in Perl ◾ 121

Example:

Opening file Hello1.txt in write mode
open (fh, ">", "Hello1.txt");

Getting the string to be written
to the file from the user
print "Enter the content to add\n";
$a = <>;

Writing to file
print fh $a;

Closing the file
close(fh) or "Couldn't close file";

The program operates as follows:

• Step 1: Open the Hello.txt file in write mode.

• Step 2: Extract text from the standard input keyboard.

• Step 3: Save the string saved in “$a” to the file indicated by the
FileHandle “fh”.

• Step 4: Save the file.

The following example reads the source file’s content and writes it to the
destination file:

Source-File
$src = 'Source.txt';

Destination File
$des = 'Destination.txt';

open the source file for reading
open(FHR, '<', $src);

open the destination file for writing
open(FHW, '>', $des);

print("Copying the content from $src to $des\n");

122 ◾ Mastering Perl

while(<FHR>)
{
print FHW $_;
}

Closing filehandles
close(FHR);
close(FHW);

print "File content copied successfully!\n";

The program operates as follows:

• Step 1: Read the file Source.txt and write the file Destination.txt.

• Step 2: Reading content from the FHR, which is a FileHandle for
reading content and a FileHandle for writing content to a file.

• Step 3: Using the print function, copy the content.

• Step 4: Once file has been read, close the conn.

Error Handling and Error Reporting

Errors can be handled in one of the two ways:

• If the file cannot open, throw an exception (handling an error).

• If the file cannot open, issue a warning and continue operating (error
reporting).

Throw an Exception (Using Die Function)
When FileHandle is not allocated a valid file pointer, a die is run, which
prints the message and terminates the current program.

Example:

Initializing filename
$filename = 'Hello1.txt';
$filename = 'ello1.txt';

Prints error and exits
if file not found
open(fh, '<', $filename) or
 die "Couldn't Open the file $filename";

File Handling in Perl ◾ 123

When a file exists in the given code, it is performed with no issues, but
if the file doesn’t exist, an error is generated, and the code ends.

Give a Warning (Using Warn Function)
When FileHandle cannot be assigned a proper file reference, it produces a
warning message and continues to operate.

Example:

Initializing filename
$filename = 'PFP.txt';

Opening file and reading content
if(open(fh, '<', $filename))
{
 while(<fh>)
 {
 print $_;
 }
}

Executes if the file is not found
else
{
warn "Couldn't Open file $filename";
}

APPENDING TO A FILE
When a file is opened in write mode with “>,” the existing file’s content
is destroyed, and content added with the print statement is written to the
file. In this mode, the writing point is set to the end of the file. So the old
file content is preserved, and everything written to the file using the print
statement is appended to the end of the file. However, a read operation
cannot execute until the file is opened in +>> mode, indicating add and
read.

Example:

Opening a file in the read mode
to display existing content
open(FH, "Hello1.txt") or

124 ◾ Mastering Perl

 die "Sorry, couldn't open";

Reading and printing existing
content of the file
print"\nExisiting Content of the File:\n";
while(<FH>)
{
 print $_;
}

Opening file in append mode
using >>
open(FH, ">>", "Hello.txt") or
die "File couldn't be opened";

Getting the text to be appended
from the user
print "\n\nEnter the text to append\n";
$a = <>;

Appending content to file
print FH $a;

Printing the success message
print "\nAppending to File is Successful.\n";

Reading the file after appending
print "\nAfter the appending, Updated File is\n";

Opening file in the read mode to
display updated content
open(FH, "Hello1.txt") or
 die "Sorry, couldn't open";
while(<FH>)
{
 print $_;
}
close FH or "couldn't close";

The program operates as follows:

• Step 1: Open a file in read mode to view the file’s existing content.

• Step 2: Print the file’s existing content.

File Handling in Perl ◾ 125

• Step 3: Add material to the file by opening it in Append mode.

• Step 4: Collect user text to attach to a file.

• Step 5: Add text to the file.

• Step 6: Re-read the file to determine if the content has been changed.

• Step 7: File closure.

CSV FILE READING
Perl was originally intended for text processing, such as extracting infor-
mation from a text file and converting it to a new format. In Perl, reading
a text file is a pretty frequent activity. For example, reading CSV (comma-
separated value) files to extract data and information is a common task.

A CSV file can be created using any text editor, such as notepad, note-
pad++, or others. After adding material to a notepad text file, save it as a
CSV file with the .csv extension.

A CSV file example:

CSV file example.

A CSV file can be used to handle database record files for an enterprise or
organization. These files can be opened with ease in Excel and can be edited
with any compatible application. Perl also enables the processing and con-
struction of these “csv” files by extracting values from the file, modifying
these values, and inserting the modified values back into the file. We will
use the split function to extract every value from a particular line.

Use of Split() for Data Extraction

split() is a standard Perl function used to divide a string into sections using
a delimiter. This delimiter can be any character specified by the user; how-
ever, we usually use a comma.

split() accepts two arguments. The first is a delimiter, and the second is
the string to be divided.

126 ◾ Mastering Perl

Syntax:

split(_delimiter_, _string_);
Parameter:
delimiter : Separator value between the elements
string: From which values are to extract
Returns: Array of string elements separated by
delimiter

Example:

Input: $s = "Shona loves Sugar"
Output: "Shona", "loves", "Sugar"
If Input string is passed to split function as,
@words = split("", $s);
The array @words will fill with 3 values: "Shona",
"loves" and "Sugar".

The following procedures are used to divide lines in a CSV file into
sections using a delimiter:

• Step 1: Read file line by line.

• Step 2: Put all the values from each line into an array.

• Step 3: To obtain the result, print out all the data individually.

Let’s look at an example to grasp the subject better. The split() method
is used to divide the strings recorded in the new.csv file using a delimiter,
as seen below:

use strict;

my $file = $ARGV[0] or die;
open(my $data, '<', $file) or die;

while (my $line = <$data>)
{
 chomp $line;

 # Split line and store it
 # inside words array
 my @words = split ", ", $line;

File Handling in Perl ◾ 127

 for (my $x = 0; $x <= 2; $x++)
 {
 print "$words[$x] ";
 }
 print "\n";
}

Save the preceding code in a text file with the extension .pl. We’ll store
it as test1 .pl in this case.

Use the following command to run the previously stored file:

perl test1.pl new.csv

Character Escaping a Comma

Sometimes a file has a comma inside the fields of a string that, if deleted,
changes the interpretation of the data or renders the record unusable. If a
split() function is used in this case, even if it is within quotes, it will divide
the data each time it encounters a comma as a delimiter because split()
does not care about quotes and does not understand CSV. It just cuts when
it encounters the separator character.

The following is a CSV file with a comma between the quotes:

Character escaping a comma.

The first field in the above CSV file includes a comma; thus, it is closed
within quotes. However, if we execute the split() method on this file, it will
ignore any such quotes.

The split() method in the above program broke the string field into
pieces even though it was between quotes; moreover, because we were
printing just three fields in our code, the third field of the last string was
discarded in the output file.

To handle such scenarios, Perl has several constraints and scopes that
allow the compiler to bypass the division of fields within quotes.

128 ◾ Mastering Perl

We utilize TEXT::CSV, which provides a full CSV reader and writer.
TEXT::CSV is a Perl MCPAN module that adds numerous additional
features such as reading, parsing, and writing CSV files. The following
pragma can be used to include these modules in the Perl program:

use Text::CSV

However, we must first download and install this module in our device
to use its features.

Installation of the TEXT::CSV

For Windows:

perl -MCPAN -e shell
install Text::CSV

For Debian/Ubuntu-based system:

$ sudo apt-get install libtext-csv-perl

For RedHat/Centos/Fedora-based system:

$ sudo yum install perl-Text-CSV

To escape the comma character between quotes, run the following code
on our new.csv file:

use strict;

Using the Text::CSV file to allow
full CSV Reader and Writer
use Text::CSV;

my $csv = Text::CSV->new({ sep_char => ', ' });

my $file_to_be_read = $ARGV[0] or die;

Reading file
open(my $data_file, '<', $file_to_be_read) or die;
while (my $line = <$data_file>)

File Handling in Perl ◾ 129

{
chomp $line;

Parsing line
if ($csv->parse($line))
{

 # Extracting elements
 my @words = $csv->fields();
 for (my $x = 0; $x <= 2; $x++)
 {
 print "$words[$x] ";
 }

 print "\n";
}
else
{
 # Warning to display
 warn "Line could not parse: $line\n";
}
}

The first field in the above example now includes a comma that was
escaped while parsing the CSV file.

my $csv = Text::CSV->new({ sep_char => ', ' });

The preceding line describes how to invoke the class’s constructor. The
arrow -> is used to invoke a constructor.

$csv->parse($line)

This call will attempt to parse the current line and divide it into chunks.
Depending on success or failure, return true or false.

Fields with Newlines Embedded

Specific fields in a CSV file may be multi-lined or have a newline embed-
ded between the words. When these multi-lined fields are given via a
split() method, they behave considerably differently from other files with
no embedded newline.

130 ◾ Mastering Perl

Example:

Fields with newlines embedded.

To handle such files, Perl provides the getline() function.

use strict;

Using the Text::CSV file to allow
full CSV Reader and Writer
use Text::CSV;

my $file = $ARGV[0] or die;

my $csv = Text::CSV->new (
{
 binary => 1,
 auto_diag => 1,
 sep_char => ', '
});

my $sum = 0;

Reading file
open(my $data, '<:encoding(utf8)', $file) or die;

while (my $words = $csv->getline($data))
{
 for (my $x = 0; $x < 3; $x++)
 {
 print "$words->[$x]";
 }
 print "\n";
}

Checking for the End-of-file
if (not $csv->eof)

File Handling in Perl ◾ 131

{
 $csv->error_diag();
}
close $data;

The embedded newline in the above CSV file is now handled with the
getline() function, and Perl interprets the new field as one, as needed by
the coder, and so was enclosed in quotes.

FILE TEST OPERATORS
In Perl, file test operators are logical operators that produce True or False
values. Perl provides a plethora of operators for testing various features
of a file. For example, the -e operator is used to check for the existence
of a file. Alternatively, it can determine whether a file can write to before
conducting the add operation. This will aid in lowering the number of
mistakes a program may encounter.

The following example uses the “-e”, existence operator, to determine
whether or not a file exists:

#!/usr/bin/perl

Using the predefined modules
use warnings;
use strict;

Providing path of the file to a variable
my $filename = 'C:\Users\PeeksForPeeks\PFP.txt';

Checking for file existence
if(-e $filename)
{

 # If the File exists
 print("File $filename exists\n");
}

else
{

 # If File doesn't exists
 print("File $filename doesn't exists\n");
}

132 ◾ Mastering Perl

This file test operator -e takes a filename or FileHandle as an input.
The following table lists the most important file test operators:

Operator Description

-r checks if file is readable
-w checks if file is writable
-x checks if file is executable
-o checks if file is owned by effective uid
-R checks if the file is readable by real uid
-W checks if the file is writable by real uid
-X checks if the file is executable by real uid/gid
-O checks if file is owned by real uid
-e checks if file exists
-z checks if file is empty
-s checks if file has nonzero size (returns size in bytes)
-f checks if the file is a plain text file
-d checks if the file is a directory
-l checks if file is a symbolic link
-p checks if file is a named pipe (FIFO): or FileHandle is a pipe
-S checks if file is a socket
-b checks if a file is a block special file
-c checks if a file is a character special file
-t checks if file handle is opened to a tty
-u checks if file has setuid bit set
-g checks if file has setgid bit set
-k checks if file has sticky bit set
-T checks if file is an ASCII text file (heuristic guess)
-B checks if file is a “binary” file (opposite of -T)

We may use the AND logical operator in combination with the follow-
ing file test operators:

#!/usr/bin/perl

Using the predefined modules
use warnings;
use strict;

Providing path of the file to a variable
my $filename = 'C:\Users\PeeksForPeeks\PFP.txt';

Applying the multiple Test Operators

File Handling in Perl ◾ 133

on the File
if(-e $filename && -f _ && -r _)
{
print("File $filename exists and readable\n");
}

else
{
 print("File $filename does not exists")
}

The above example checks for the existence of the file, as well as whether
it is plain or not and if it is readable.

FILE LOCKING
File locking, or locking in general, is simply one of the several techniques
offered to address resource sharing issues.

Locking the security and integrity of any document is a means of pro-
tecting it. The basic goal of file locking is to allow users to make changes to
a document without causing havoc. When two or more people attempt to
change the same file, problems may occur.

Consider the following example: a file holding project data. The file can
be modified by the whole project team. On the web, a CGI script will be
written to accomplish the following:

$file = "project.docx";
$commit = $ENV{'QUERY_INFO'};
open(FILE, "$file"); #opening document
while() {
if (m/^$commit$/) {
 print "The Change already made\n";
 exit;
}
}
close(FILE);
push(@newcommit, $commit);
open(FILE, ">$file");
print ...
close(FILE);
print "Commit-made";
exit;

134 ◾ Mastering Perl

The locking of a file is performed at the system level; thus, the user need
not be concerned with the specifics of applying the lock. The purpose of
file locks is to put temporary limitations on certain files to limit how they
may share between programs. Two sorts of locks are developed based on
the nature of a given operation.

A shared lock is the first kind, whereas an exclusive lock is the second.
Multiple processes may share read access to a file since read access does
not alter the shared resource’s state. Therefore, keeping a consistent picture
of the shared resource is possible. The flock command may use in Perl to
lock files.

flock()

flock() has two arguments. The FileHandle is the first. The second input
specifies the locking procedure that is required.

Syntax:

flock [FILEHANDLE], [OPERATION]

OPERATION is a number value that might be 1, 2, 4, or 8.
These numerical numbers have many meanings and are used to

execute various operations such as:

LOCK_SH
LOCK_EX
LOCK_NB
LOCK_UN

Perl employs numbers to represent values:

sub LOCK_SH { 1 } ## set as the shared lock
sub LOCK_EX { 2 } ## set as the exclusive lock
sub LOCK_NB { 4 } ## set the lock without any blocks
sub LOCK_UN { 8 } ## unlock FILEHANDLE

• Shared lock: A shared lock can be used when we just want to read
a file while allowing others to view it. Shared lock not only creates a
lock, but it also checks for the presence of additional locks. This lock
does not cover the existence check for all locks, just the “Exclusive
Lock.” If an exclusive lock is present, it will wait until the lock is

File Handling in Perl ◾ 135

removed. It will be performed as shared lock after removal. Multiple
shared locks may exist at the same time.

Syntax:

flock(FILE, 1); #from above code

• Exclusive lock: When a file is to be utilized by a group of individuals
and everyone has the ability to make changes, an exclusive lock is
employed. Only one exclusive lock will be placed on a file, allowing
only one user/process to make modifications at a time. The rule of an
exclusive lock is “I am the only one.” flock() searches the script for
any additional sorts of locks. If it is discovered, it will remain until
all of them have been deleted from the script. It will lock the file at
the appropriate time.

Syntax:

flock(FILE, 2); #from above code

• Non-blocking lock: A non-blocking lock alerts the system that
it does not need to wait for other locks to be released from the
file. If another lock is detected in the file, it will produce an error
message.

Syntax:

flock(FILE, 4); #from above code

• Unblocking: The same as the close(FILE) function, this function
unblocks any given file.

Syntax:

flock(FILE, 8); #from above code

The following problem demonstrates the use of the flock() function:

PROBLEM 5.1

The main issue with the script described in the preceding example is when
it opens the file – project.docx, clearing the first file and making it empty.

Consider Persons A, B, and C attempting to commit almost simultaneously.

136 ◾ Mastering Perl

Person A examines the data in the file. Closes it and begins editing the
data (finishing the first file).

Meanwhile, Person B opens the file to inspect/read it and discovers it is
empty.

That is a collision! The entire system will disrupt.

SOLUTION
This is where file locking is implemented. Person A, Person B, and Person
C are willing to commit to the document.

Person A opens the file, examines its data, and then closes it (shared lock
is enabled) (unlocking the file). Person A then wants to commit changes to
the file and re-opens the file to make adjustments (this is when the exclu-
sive lock comes into action). While person A is making changes to the file,
neither person B nor person C can read or write from the file.

Person A completes his work and closes the file (unlocking it).
Person B would have received the error “File being viewed by another

candidate” if they attempted to open the file in the interim. Consequently,
there is no treading on one another’s toes, and the work flows smoothly.

flock() vs lockf()

In contrast to flock(), which locks entire files at once, the lockf() method
locks fragments of a file. lockf() cannot be used directly in Perl, but Perl
natively supports the flock system function but does not apply to network
locks.

Perl supports the fcntl() system function, providing the most excellent
locking controls.

SLURP MODULE
The File::Slurp module reads a file’s contents and saves them in a string. It
is a simple and quick method of reading/writing/modifying entire files. It,
like its name suggests, lets us to read or write whole files with a single call.

By importing this module into our program, the user may use functions
like read_file, read_text, write_file, and so on to read and write data to and
from files.

Installation of the File::Slurp module: We must first include this mod-
ule in our Perl language package to utilize it. This can be accomplished by
entering the following instructions into our Perl Terminal and installing
the necessary module.

File Handling in Perl ◾ 137

Step 1: Run the following command in our terminal:

perl -MCPAN -e shell

After entering the cpan shell, proceed to the following step to install the
File::Slurp module.

Step 2: To install the module, run the following command:

install File::Slurp

The File::Slurp module will be installed as a result of this.
Step 3: To exit the cpan> prompt, type and execute the “q” command.
read_file function in the Slurp: The read file function of File::Slurp

reads the complete contents of a file with the file name and returns it as a
string. However, File::Slurp is recommended since it has a few encoding
layer flaws that may cause compilation difficulties. File::Slurper seeks to
offer a viable answer to the difficulties above.

Syntax:

use File::Slurp;
my $text = read_file($file_name);
Return: It returns a string.

read_text function in the Slurp: The read_text method in File::Slurper
accepts an optional encoding parameter (if any) and can automatically
decode CRLF line ends if we request it (for Windows files).

Syntax:

use File::Slurper;
my $content = read_text($file_name);
Return: It returns string.

Note: CRLF line endings indicate a line break in a text file (Windows
line break types).

Slurp’s write_file function: The File::Slurp module’s write_file
method is used to write to many files at once. It writes to file using a sca-
lar variable containing the content of another file read by the read_file
function.

138 ◾ Mastering Perl

Syntax:

use File::Slurp;
write_file($file_name, $content);
Returns: It does not return any value, just writes
content to the file.

First example: Storing file content using scalar

Perl code to illustrate slurp function
use File::Slurp;

read whole file into a scalar
my $content = read_file('C:\Users\PeeksForPeeks\PFP_
Slurp.txt');

write out a whole file from scalar
write_file('C:\Users\PeeksForPeeks\Copyof_PFP_Slurp.
txt', $content);

Explanation: In the preceding Perl code, we used a slurp function to
read a file named PFP_Slurp.txt containing several lines of text as input
into a scalar variable named $content and then wrote the contents of the
file as a single string into another file Copyof_PFP_Slurp.txt.

Second example: Storing file content in an array

perl code to illustrate slurp function
use File::Slurp;

read whole file into a scalar
my @lines = read_file('C:\Users\PeeksForPeeks\PFP_
Slurp2.txt');

write out a whole file from scalar
write_file('C:\Users\PeeksForPeeks\Copyof_PFP_Slurp2.
txt', @lines);

Explanation: In the preceding Perl code, we used a slurp function
to read a file named PFP_Slurp2.txt containing an array of lines of
text as input into an array variable named @lines and then wrote the
contents of the whole file as a single string into a file named Copyof
PFP_Slurp2.txt.

File Handling in Perl ◾ 139

Third example: Writing a function that use the slurp technique

Perl code to illustrate the slurp function
use strict;
use warnings;
use File::Slurp;

calling user defined function
get_a_string();

sub get_a_string
{
read entire file into a scalar
my $pfp_str = read_file('C:\Users\PeeksForPeeks\PFP_
User_Slurp.txt');

write entire file from scalar
write_file('C:\Users\PeeksForPeeks\Copyof_PFP_User_
Slurp.txt', $pfp_str);
}

Explanation: In the above Perl code, strict and warnings allow the user
to enter code more freely and catch errors such as typos in variable names
earlier. We invoked a user-defined function named get_a_string, which
then performs the slurp function, which reads a file containing some lines
of text as input into a variable named pfp_str and then wrote the contents
of the entire file as a single string into a file.

USEFUL FILE-HANDLING FUNCTIONS
Perl was initially developed for text processing, such as extracting infor-
mation from a text file and converting the text file into a new format. These
procedures can be carried out using a variety of built-in file functions.

Example:

#!/usr/bin/perl

Opening File in Read-only mode
open(fh, "<", "File_to_be_read.txt");

Reading next character from file
$ch = getc(fh)

140 ◾ Mastering Perl

Printing read character
print"Character read from file is $ch";

Closing File
close(fh);

The following are some helpful Perl routines for working with files:

Function Description

glob() Used to print the files in a directory passed as an input.
tell() Obtains the location of the read pointer in a file using the FileHandle.
getc() Used to read the next character from the file specified by the FileHandle

argument.
reverse() When used in list context, returns the list in reverse order; when used in scalar

context, returns a concatenated string of the list’s values, with each character
in the string in the opposite order.

rename() Renames a file from its previous name to a new one specified by the user.

In this chapter, we covered file handling in Perl with its syntax and
relevant examples.

141DOI: 10.1201/9781003358442-6

C h a p t e r 6

Regular Expressions
in Perl

IN THIS CHAPTER

 ➢ Regular Expressions

 ➢ Operators

 ➢ Regex Character and Special Character Classes

 ➢ Quantifiers and Backtracking

 ➢ “e” Modifier in Regex

 ➢ “ee” Modifier

 ➢ pos() Function

In the previous chapter, we discussed file handling; in this chapter, we will
cover regular expressions (Regex).

In Perl, a regular expression (Regex, Regexp, or RE) is a particular text
string that describes a search pattern inside a given text. Regex in Perl is
tied to the host language and is not the same as in PHP, Python, and other
programming languages.

It is also known as “Perl 5 Compatible Regular Expressions” sometimes.
Binding operators such as “=~” (Regex Operator) and “!~” (Negated Regex
Operator) are used to utilize the Regex. Let’s start with creating patterns
before moving on to binding operators.

https://doi.org/10.1201/9781003358442-6

142 ◾ Mastering Perl

Pattern construction: In Perl, patterns may be built using the m// oper-
ator. This operator simply inserts the required pattern between the two
slashes, and the binding operators are used to search for the pattern in the
provided text.

Using m// with binding operators: Binding operators are commonly
used with the m// operator to match the desired pattern. To match
string using a regular expression, use the regex operator. The left-hand
side of the statement will include a string that will match the provided
pattern on the right-hand side. The negated regex operator determines
whether the string is equal to the regular expression supplied on the
right-hand side.

Program 1: The following code demonstrates the use of “m//” and “=~”:

program to demonstrate
m// and =~ operators

Actual String
$a = "PEEKSFORPEEKS";

Prints match found if
its found in $a
if ($a =~ m[PEEKS])
{
 print "Match is Found\n";
}

Prints match not found
if it is not found in $a
else
{
 print "Match is Not Found\n";
}

Program 2: To demonstrate the usage “m//” and “!~,” consider the
following:

program to demonstrate
m// and !~ operators

Actual String
$a = "PEEKSFORPEEKS";

Regular Expressions in Perl ◾ 143

Prints match found if
it is not found in $a
if ($a !~ m[PEEKS])
{
 print "Match is Found\n";
}

Prints match not found
if it is found in $a
else
{
 print "Match is Not Found\n";

}

Regular expression uses:
• It can be used to count the number of times a particular pattern

appears in a string.

• It can be used to find a string that matches a particular pattern.

• It can also replace searched pattern with another string.

OPERATORS IN REGULAR EXPRESSION
The regular expression is a string that is a mixture of distinct characters
that facilitates text string matching. A regex or regexp is another name for
a regular expression.

The most basic way to utilize a regular expression is to use the binding
operators = ~ (Regex Operator) and !~ (Negated Regex Operator).

In Perl, there are three types of regular expression operators:

• Match regular expression

• Substitute regular expression

• Global character transliteration regular expression

1. Pattern matching or regular expression matching: The match opera-
tor “m//” compares a string or statement to a regular expression. The
forward slash in the operator (m//) serves as the delimiter, and this
delimiter can also be m{}, m(), m><, and so on. The expression is
written between the operator’s two forward slashes.

144 ◾ Mastering Perl

Syntax: m/PATTERN/

PATTERN is the regular expression that will search in the string.
Let’s look at some examples of pattern matching.
In the following examples, a string and a regular expression are

matched, and if successful, “match found” is returned; otherwise,
“match not found” is returned.

First example:

#!/usr/bin/perl

Initializing string
$a = "PeeksforPeeks";

matching the string and
a regular expression and returns
match found or not
if ($a =~ m/for/)
{
 print "Match is Found\n";
}
else
{
 print "Match is Not Found\n";
}

Second example:

#!/usr/bin/perl

Initialising string
$a = "PeeksforPeeks";

matching string and
a regular expression and returns
match is found or not
if ($a =~ m:abc:)
{
 print "Match is Found\n";
}
else
{
 print "Match is Not Found\n";
}

Regular Expressions in Perl ◾ 145

In the preceding code, an alternative delimiter, “:,” is used instead
of “/,” demonstrating that the usage of “/” as a delimiter is not required.

2. Make a substitution (search and replace) regular expression: The sub-
stitute operator “s///” is used to search for and replace a specific word
with a given regular expression. The delimiter is the forward slash in
the operator (s///).

Syntax: s/PATTERN/REPLACEMENT/;

PATTERN is the regular expression that the REPLACEMENT
regular expression will substitute.

Let’s look at a few instances of replacement Regex:
In the following cases, a PATTERN word is searched first, fol-

lowed by a REPLACEMENT word.

First example:

#/user/bin/perl

Initialising a string
$string = "PeeksforPeeks is a computer science
portal.";

Calling substitute regular expression
$string =~ s/PeeksforPeeks/pfp/;
$string =~ s/computer science/cs/;

Printing substituted string
print "$string\n";

Second example:

#/user/bin/perl

Initialising string
$string = "10001";

Calling substitution regular expression
$string =~ s/000/999/;

Printing substituted string
print "$string\n";

146 ◾ Mastering Perl

3. Global character regular expression for transliteration: To replace all
instances of a character with a single character, use the translation or
transliteration operator “tr///” or “y///.” The delimiter is the forward
slash used in the operator (tr/// and y///).

Syntax:

tr/SEARCHLIST/REPLACEMENTLIST/
y/SEARCHLIST/REPLACEMENTLIST/

SEARCHLIST is the character, the occurrences of which will be
replaced with the character in REPLACEMENTLIST.

Let’s look at a few instances of translation of Regex.
All instances of “G” in the following examples are replaced with

“g” using two separate operators “tr///” and “y///”.

First example:

#/user/bin/perl

Initialising string
$string = 'PeeksforPeeks';

Calling tr/// operator
$string =~ tr/P/p/;

Printing replaced string
print "$string\n";

Second example:

#/user/bin/perl

Initialising string
$string = 'PeeksforPeeks';

Calling y/// operator
$string =~ y/P/p/;

Printing replaced string
print "$string\n";

Regular Expressions in Perl ◾ 147

REGEX CHARACTER CLASSES
To match the string of characters, character classes are employed. These
classes allow the user to match any range of characters that the user does not
know ahead of time. The set of characters to be matched is always enclosed
by square brackets []. A character class will always be a perfect match for
one character. If no match is detected, the entire regex matching fails.

Example:

If we have a number of strings like #p#, #e#, #k#, #k#, #s#, #.#, or #@#
and we need to match a # character followed by “p,” “e,” “k,” “s,” “.,” or
“@,” then try the regex /[#peeks@.#]/ that will match the required. It
will begin a match with #, then match any character in [], followed by
another #. This regex will not match “##” or “#pe#” or “#pp#” or simi-
lar characters because, as previously stated, the character class always
matches precisely one character between the two “#” characters.

Important notes:
• Inside the character class, the Dot(.) has lost its particular meaning,

which was “everything except a newline.”

• Only inside a character class, the Dot(.) may match a single dot(.).

• The majority of special characters lose their particular significance
within a character class; however, certain characters gain some spe-
cial meaning within a character class.

Example:

program to demonstrate
character class

Actual-String
$str = "#g#";

Prints match found if
it is found in $str
if ($str =~ /[#peeks@.#]/)
{
 print "Match is Found\n";
}

148 ◾ Mastering Perl

Prints match is not found
if it is not found in $str
else
{
 print "Match is Not Found\n";
}

Range in character class: Matching a long list of characters is tough to
enter since the user may skip one or two characters. So, to make things
easier, we’ll utilize range. A dash(-) is commonly used to denote the
range.

Example:

To specify range [abcdef] we can use /[a-f]/

Important notes:
• The -(dash) sign is used to specify a range.

• The user may also mix various ranges of characters, digits, and so on,
such as [0-9a-gA-g]. Here, “-” allows the user to select any number of
characters or digits from the range.

• If a user wants to match a dash (-) in a string, he may simply insert it
between square brackets [].

• To match a closing square bracket in a string, just precede it with \ i.e.
\] and place it between the square brackets [].

Example:

program to demonstrate
range in the character class

Actual String
$str = "61peeks";

Prints match found if
it is found in $str
using range
if ($str =~ /[0-7a-z]/)

Regular Expressions in Perl ◾ 149

{
 print "Match is Found\n";
}

Prints match is not found
if it is not found in $str
else
{
 print "Match is Not Found\n";
}

Negated character class: Simply use the caret (̂) symbol to negate a char-
acter class. It will negate the character supplied following the symbol or
even a range. Using caret (̂) as the first character in a character class signi-
fies that the character class can match any character except those listed in
the character class.

Example:

program to demonstrate
negated character class

Actual-String
$str = "peeks56";

using the negated character class
Prints match found if
it is found in $str
if ($str =~ /[^peeks0-7]/)
{
 print "Match is Found\n";
}

Prints match is not found
if it is not found in $str
else
{
 print "Match is Not Found\n";
}

150 ◾ Mastering Perl

SPECIAL CHARACTER CLASSES IN REGULAR EXPRESSIONS
Perl has several distinct character classes, some of which are used so
frequently that a specific sequence is built for them. Writing a custom
sequence aims to make the code more understandable and concise. Perl’s
special character classes are as follows:

1. Digit \d[0-9]: The d character is used to match any digit character
and is identical to [0-9]. A single digit will be matched by the regex
/\d/. The d has been standardized to “digit.” The key advantage is
that the user may write in a shorter form that is easier to read. This
unique character class can be used in two ways. Let’s look at example
to understand how to match the character string.

Example:

/#[MNOPQ]-\d\d\d/

The character, as mentioned earlier, the string will match as
follows:

#M-12345
#N-66666

We may also utilize quantifiers in this case by placing them on the
character class.

Example:

/#[MNOPQ]-\d{5}/

The above example is identical to the previous regex in that it
accepts any number of digits following the dash and may be expressed
as /#[MNOPQ]-\d+/.

In larger character classes, the second technique is utilized. The \d
is surrounded by square brackets and matches a single character digit.

Example:

 [\dABCDEFDEFGHIJKLMN]

A single digit or any capital letters A, B, C, D, E, F, G, H, I, J, K, L,
M, or N can match. It can be written more concisely by using a dash
(-). Then it will be something like:

 [\dA-N]

Regular Expressions in Perl ◾ 151

2. PO SIX character classes: PO SIX character classes are the standards
for ensuring operating system compatibility and establishing the
application programming interface (API), including command line
shells and utility interfaces. It also provides a number of “character
groupings” with names like (alpha, alnum, ascii, blank, etc.). The PO
SIX character classes are always in the form of [:class:], where class
is the name and the delimiters are [: and:]. POSIX character classes
are always contained within the bracketed character classes. These
classes provide a quick and easy method to list a set of characters.

Syntax:

$string =~ /[[:class:]]/

Here, class can be alpha, alnum, ascii, and so on.
As illustrated here, POSIX character classes support larger brack-

eted character classes:

 [01[:Class:]%]

It will match “0,” “1,” any character classes, and the % sign in this
case. Perl supports the following PO SIX character classes, as given
in the table below:

Class Description

Alpha Any alphabetical character (“[A-Za-z]”)
Alnum Any alphanumeric character (“[A-Za-z0-9]”)
Ascii Any character in ASCII character set
blank A space or horizontal tab
Cntrl Any control character
Digit Any decimal digit (“[0-9]”)
graph Any printable character, excluding space
lower Any lowercase character (“[a-z]”)
punct Any graphical character
space Any whitespace character
upper Any uppercase character (“[A-Z]”)
xdigit Any hexadecimal digit (“[0-9a-fA-F]”)
word Perl extension (“[A-Za-z0-9_]”), equivalent to “\w”

3. Word character \w[0-9a-zA-Z]: The letter w belongs to the word
character class. The w character can be any single alphanumeric
character, including an alphabetic character, a decimal digit, or a

152 ◾ Mastering Perl

punctuation character such as underscore (_). It will only match sin-
gle character words, not entire words. If we wish to match the entire
word, use \w+.

4. Whitespace \s[\t\n\f\r]: The character class \s will only match one
character, a whitespace. It will also match the five letters \t-horizontal
tab, \n-newline, \f-form feed, \r-carry return, and space. In Perl 5.18,
a new character will be introduced corresponding to the \cK – verti-
cal tab.

5. Negated character classes \D, \W, \S: In this universe, there are
almost 110, 000 Unicode characters. Just use the caret (̂) sign to
negate a character class. It will negate the character specified follow-
ing the symbol or even a range. We utilize [̂ \d] in negated character
classes to negate digits 0 through 9. However, instead of [̂ \d], we may
just use \D to negate the numbers 0 to 9. The table below depicts the
special negated character classes:

Character Class Negated Meaning Description

\d \D [^\d] matches to any non-digit character
\s \S [^\s] matches to any non-whitespace character
\w \W [^\w] matches to any non-“word” character

6. Unicode character classes: Unicode is a definition of “all” existing
characters, and the Unicode Standard assigns a unique number to
each platform-independent character. There are over 100,000 char-
acters on this planet, and each character is specified as a character
point. Some of the characters, however, are grouped.

Syntax:

\p{....any character....}

This syntax matches a single character from one of the groupings.
If we need to match anything other than a specific character, use the
matching \P{…any character…} expression.

QUANTIFIERS IN REGULAR EXPRESSION
Perl has several regular expression quantifiers that may determine how
many times a particular character can repeat before it is matched. This is
mainly utilized when the number of characters to match is uncertain.

Regular Expressions in Perl ◾ 153

Perl quantifiers are classified into six types, which are listed below:

1. * = This indicates that the component must appear zero or more
times.

2. + = This indicates that the component must appear one or more times.

3. ? = This specifies that the component must appear either zero or once.

4. {n} = This specifies that the component must be present n times.

5. {n,} = This specifies that the component must appear at least n times.

6. {n, m} = This specifies that the component must appear at least n
times and no more than m times.

Quantifier Table

All of the above kinds may be comprehended using this table, which con-
tains regular expression quantifiers and examples.

Regex Examples

/Bx*B/ BB, BxB, BxxB, BxxxB, …..
/Bx+B/ BxB, BxxB, BxxxB, …..
/Bx?B/ BB, BxB
/Bx{1, 3}B/ BxB, BxxB, BxxxB
/Bx{2, }B/ BxxB, BxxxB, …..
/Bx{4}B/ BxxxxB

Let’s look at some examples of these quantifiers.
First example: In this example, the * quantifier is employed in a regular

expression /Pe*ks/, which yields either “Pks,” “Peks,” “Peeks”...and so on,
and is matched with the input text “Pks,” yielding “Match Found.”

#!/usr/bin/perl

Initializing string
$a = "Pks";

matching above string with "*"
quantifier in the regular expression /Ge*ks/
if ($a =~ m/Pe*ks/)
{
 print "Match is Found\n";
}

154 ◾ Mastering Perl

else
{
 print "Match is Not Found\n";
}

Second example: In this example, the + quantifier is employed in a
regular expression /Pe+ks/, which yields either “Peks,” “Peeks,” “Peeks”
...and so on, and is matched with the input text “Pks,” yielding “Match Not
Found.”

#!/usr/bin/perl

Initializing string
$a = "Pks";

matching the above string with "+"
quantifier in the regular expression /Pe+ks/
if ($a =~ m/Pe+ks/)
{
 print "Match is Found\n";
}
else
{
 print "Match is Not Found\n";
}

Third example: In this example, the ? quantifier is used in a regular
expression /Pe?ks/, which yields either “Peks” or “Pks,” and is matched
with the input text “Peks,” yielding “Match is Not Found.”

#!/usr/bin/perl

Initializing string
$a = "Peeks";

matching the above string with "?"
quantifier in the regular expression /Pe?ks/
if ($a =~ m/Pe?ks/)
{
 print "Match is Found\n";
}
else

Regular Expressions in Perl ◾ 155

{
 print "Match is Not Found\n";
}

Fourth example: In this example, the {n} quantifier is employed in a
regular expression Pe{2}ks, which yields “Peeks,” and is matched with an
input text “Peeks,” yielding “Match is Found.”

#!/usr/bin/perl

Initializing string
$a = "Peeks";

matching the above string with {n}
quantifier in the regular expression /Pe{2}ks/
if ($a =~ m/Pe{2}ks/)
{
 print "Match is Found\n";
}
else
{
 print "Match is Not Found\n";
}

Fifth example: In this example, the {n, } quantifier is used in a regular
expression /Pe{2, }ks/, which creates “Peeks,” “Peeeks,” “Peeeeks,” and so on,
and when matched with the input text “Peks,” it returns “Match is Not Found.”

#!/usr/bin/perl

Initializing string
$a = "Peks";

matching the above string with {n, }
quantifier in the regular expression /Pe{2, }ks/
if ($a =~ m/Pe{2, }ks/)
{
 print "Match is Found\n";
}
else
{
 print "Match is Not Found\n";
}

156 ◾ Mastering Perl

Sixth example: In this example, the {n, m} quantifier is employed in
a regular expression /Pe{1, 2}ks/, which yields “Peks” and “Peeks,” and is
matched with an input text “Peeks,” yielding “Match is Not Found.”

#!/usr/bin/perl

Initializing string
$a = "Peeeks";

matching the above string with {n, m}
quantifier in then regular expression /Pe{1, 2}ks/
if ($a =~ m/Pe{1, 2}ks/)
{
 print "Match is Found\n";
}
else
{
 print "Match is Not Found\n";
}

BACKTRACKING IN REGULAR EXPRESSION
A regular expression (a.k.a. regexes, regexps, or REs) in Perl is a means
of representing a group of strings without having to describe all strings
in your program. It is essentially a series of characters used for pattern
matching. Regex have several uses in Perl:

• To begin with, they are used in conditionals to assess if a string
matches a specific pattern.

For example: Regex in conditionals

#!usr/bin/perl

Regular expressions in the Conditionals
Program to determine whether string
matches particular pattern
print "How are you feeling?\n";
my $stmt = <>;
print($stmt);
if ($stmt == /hungry/)

Regular Expressions in Perl ◾ 157

{
 print "\n What do we wish to have?\n";
 my $ip = <>;
 print($ip);
}

Here, the user’s input is matched; if we have the word “hungry,”
i.e., if condition is true, it will print “What do we wish to have?”
Otherwise, it will go to the following condition or statement.

• Second, they may find patterns in a string and replace them with
something else.

For example: Substitution operator

#!usr/bin/perl
Regular expressions in the Substitutions

Program to determine whether string
matches particular pattern and replaces it
print "Whats your thought on life\n";
my $stmt = <>;
print ($stmt);

Substitution using the regex
$stmt =~ s/worst/good/;
print ("\n$stmt");

The preceding code uses “good” instead of “worst.”

• Finally, patterns can describe not just where something exists but
also where it does not exist. As a result, the split operator employs a
regular expression to identify where the data does not exist. In other
words, the regular expression specifies the separators that separate
data fields.

For example: Split operator

#!usr/bin/perl

Program to illustrate the

158 ◾ Mastering Perl

use of split function
$var1 = "Birth";
$var2 = "Life";
$var3 = "Death";

Using split function
my ($var1, $var2, $var3) = split(/, /, "sab,
mohmaya, hai");
print($var1);
print($var2);
print($var3);

The split function matches on single comma character in the pre-
ceding example.

BACKTRACKING
Backtracking is another key aspect of regular expression matching, which
is now employed (when needed) by all regular non-possessive expres-
sion quantifiers, namely “*”, *?, “+,” +?, {n, m}, and {n, m}? Backtracking
is frequently optimized internally, but the overall notion above is correct
(it returns from a failed recursion on a tree of possibilities). When Perl
attempts to match patterns with a regular expression and its previous
attempts fail, or when the matching patterns are saved for future use, it
backtracks.

For instance, /.*?/ may be used to match anything comparable to an
HTML tag such as “Bold.” This forces the pattern’s two parts to match the
same string, in this instance “B.”

Consider another example:

/^ab*bc*d/

The preceding regexp can be interpreted as follows:
1. Begin at the start of the string.

2. Match an “a.”

3. Match as many “b”s as possible, although failing to match any is OK.

4. Match as many “c”s as possible, although failing to match any is OK.

5. Match as many “d”s as we can, although not all are required.

Regular Expressions in Perl ◾ 159

“e” MODIFIER IN REGULAR EXPRESSION
The regular expression in Perl allows us to execute numerous actions on a
given text using appropriate operators. These operators can execute opera-
tions such as string modification, substituting other substrings, and so on.
Substitution of a substring in a given string is accomplished with the “s”
(substitution) operator, which accepts two operands: the substring to be
replaced and the replacement string.

s/To_be_replaced/Replacement/

Furthermore, the “e” modifier is used to replace the substring with a
replacement string that is a regular expression to be evaluated. The “e”
modifier is added to the substitution expression.

s/To_be_replaced/Regular_Expression/e;

The “e” modifier can also use with the “g” (globally) modifier to affect
all possible substrings in the specified string.

First example: Substitution using a character class

#!/usr/bin/perl

Defining string to be converted
$String = "Peeks for Peeks is the best";
print "The Original String: $String\n";

Converting string to UPPERCASE
using 'uc' Function
$String =~ s/(\w+)/uc($1)/ge;
print"Uppercased String: $String\n";

Converting string to lowercase
using the 'lc' Function
$String =~ s/(\w+)/lc($1)/ge;
print"Lowercased String: $String\n";

The above code uses the character class “w,” which contains the lower
and upper case alphabets and all digits (a-z|A_Z|0-9). This is used to
replace the entire string with a single replacement operation.

160 ◾ Mastering Perl

Second example: Use a single letter or word for a particular substitution.

#!/user/bin/perl

Defining string to be converted
$String = "Peeks for Peeks is the best";
print "Original String: $String\n";

Converting single character using e modifier
$String =~ s/(e)/uc($1)/ge;
print"Updated String: $String\n";

Converting word using e modifier
$String =~ s/(for)/uc($1)/ge;
print"The Updated String: $String\n";

The string after updating will not revert to its original value, even after
the second recursion, as seen in the preceding code.

The Substitution Operation Is Performed using a Subroutine

Subroutine substitution in Perl regex may also be done using subroutines
to eliminate the repetition of writing the substitution regex for each string.
This is accomplished by inserting the regex code in the subroutine and
invoking it as needed.

Example:

#!/usr/bin/perl

Subroutine for the substitution operation
sub subroutine
{
 $regex = shift;
 $regex =~ s/Friday/Tuesday/;
 return $regex;
}

Defining string to be converted
$String = "Monday Friday Wednesday";
print "Original String: $String\n";

Regular Expressions in Perl ◾ 161

Calling subroutine for substitution
$String =~ s/(\w+)/subroutine($1)/ge;
print"Updated String: $String\n";

Defining new String to be converted
$String2 = "Today is Friday";
print "\nThe Original String: $String2\n";

Calling subroutine for substitution
$String2 =~ s/(\w+)/subroutine($1)/ge;
print"The Updated String: $String2\n";

When the substitution operation begins in the preceding code, it calls
the subroutine “change_substitution,” which contains the regex code for
changing the substring that matches the search.

REGEX “ee” MODIFIER
The regular expression in Perl allows you to execute numerous actions on a
given text using appropriate operators. These operators can execute opera-
tions such as string modification, substituting other substrings, and so on.
Substitution of a substring in a given string is accomplished with the “s”
(substitution) operator, which accepts two operands: the substring to be
replaced and the replacement text.

s/To_be_replaced/Replacement/

In Perl, modifiers match a string with a specified pattern using a regular
expression. In Perl, the “ee” modifier is equivalent to the “\e” modifier. It
is used to evaluate the string on the right and then to assess the result fur-
ther. In Perl, it is equivalent to the double “eval” operator. The “\e” opera-
tor is used to evaluate the string on the right. “\ee” is one step ahead of it. It
uses the “\e” operator on a string that already has the “e” operator.

s///ee;

The “ee” modifier, like the “e” modifier, can be combined with the “g”
(globally) modifier to apply modifications to all possible substrings in the
provided string.

Example:

#!/usr/bin/perl
my $var = 'for';

162 ◾ Mastering Perl

Defining string
my $String = 'Peeks $var Peeks is the best';

String before using the 'ee' modifier
print "The Original String: $String\n";

Applying 'ee' modifier using the regex
$String =~ s/(\$\w+)/$1/ee;
print "The Updated String: $String";

Because $var is considered a substring of the provided string and is not
considered a variable, it is written as it was before the regex was applied to
the string in the preceding code. However, once the regex is applied, the
“ee” modifier evaluates the value of $var and displays it.

If we apply the “e” modifier in the above code, the resultant string is the
same as the original string:

#!/usr/bin/perl
my $var = 'for';

Defining string
my $String = 'Peeks $var Peeks is the best';

String before using 'e' modifier
print "The Original String: $String\n";

Applying 'e' modifier using regex
$String =~ s/(\$\w+)/$1/e;
print "The Updated String: $String";

This is because when the “e” modifier is applied, the regex considers the
RHS to be the evaluated string to be used as a replacement; in this case,
the RHS is $1, which retains $var but not its value. As a result, applying the
“ee” modifier will re-evaluate the RHS, which contains the already eval’d
value $var.

When Doing Mathematical Calculations, Use the “ee” Modifier

If a mathematical expression is contained in a string, the value of the
expression is not evaluated and is displayed as is. This is because it is seen
as both a string and an expression to be evaluated.

Regular Expressions in Perl ◾ 163

Example:

#!/usr/bin/perl

Mathematical-expression
stored as a string
$String = "1 + 2";

Regex to evaluate sum
$String =~ s/(\d+ [+*\/-] \d+)/$1/ee;

print "Sum is $String";

The expression in the above code is written in Regex, using the “d+”
operator for writing one or more digits, the [+*/-] character class for the
operator symbol, and then another “d+” for the digit. The “ee” modifier
evaluates the string and returns the expression’s total, which is displayed
with the $1 operator.

The above regex may also be kept in a subroutine and used to evaluate
different expressions without having to rewrite the regex.

Example:

#!/usr/bin/perl

Subroutine to calculate the regex
sub Regex
{
 $var = shift;

 # Regex to evaluate sum
 $var =~ s/(\d+ [+*\/-] \d+)/$1/ee;
 return $var;
}

The Mathematical expression
stored as string
$String1 = "1 + 2";

$String1 = Regex($String1);

print "Sum is $String1\n";

164 ◾ Mastering Perl

Calculating-product
$String2 = "10 * 3";
$String2 = Regex($String2);

print "Product is $String2";

A single regex can be used in the given code to execute four mathemati-
cal calculations utilizing the subroutine.

pos() FUNCTION IN REGULAR EXPRESSION
The pos() function in Perl returns the position of the last match in Regex
using the “m” modifier.

The pos() function in Regex can be used in conjunction with the char-
acter classes to return list of all the required substring positions in given
string. To search for a substring within the entire text, use the global oper-
ator “g” in conjunction with the “m” modifier.

Syntax: pos(String)
Parameter: String after applying the Regular
Expression
Returns: position of the matched substring

First example: Making use of a substring character

#!/usr/bin/perl

Program to print position of substring
$String = "Peeks For Peeks";

print" Position of 'P' in string:\n";

Regex to search for the substring
using the m modifier
while($String =~ m/G/g)
{

 # Finding position of substring
 # using pos() function
 $position = pos($String);
 print "$position\n";
}

Regular Expressions in Perl ◾ 165

Second example: Making use of a character class

#!/usr/bin/perl

Program to print position of substring
$String = "Peeks For Peeks";

print "Position of all the Uppercase characters:\n";

Regex to search for
all upper case characters
using character class
while($String =~ m/[A-Z]/g)
{

 # Finding position of substring
 # using pos() function
 $position = pos($String);
 print "$position, ";
}

print "\nThe Position of all Lowercase characters:\n";

Regex to search for
all the lower case characters
using the character class
while($String =~ m/[a-z]/g)
{

 # Finding position of substring
 # using the pos() function
 $position = pos($String);
 print "$position, ";
}

Third example: Position of the spaces

#!/usr/bin/perl

Program to print position of substring
$String = "Peeks For Peeks";

166 ◾ Mastering Perl

Regex to search for
all spaces
while($String =~ m/\s/g)
{

 # Finding position of substring
 # using the pos() function
 $position = pos($String);
 print "$position\n";
}

To Match from a Specified Position, use \G Assertion

In Perl Regex, the \G Assertion is used to match a substring beginning at
a position specified by the pos() function and concluding at the matching
character specified in the regex. The position of the first occurrence of the
character specified by the “m” modifier will return.

Example:

#!/usr/bin/perl

Defining default string
$_ = "Peeks World is the best";

Terminating character
using the m modifier
m/o/g;

Specifying starting position
$position = pos();

Using the \G Assertion
m/\G(.*)/g;

Printing position
and the remaining string
print "$position $1";

In the preceding example, the position of the first occurrence of the
matching substring is printed alongside the remaining string. If we need
to restart the counting position for the next occurrence of the matching
character, simply store the remaining string in $1 into the default string.

Regular Expressions in Perl ◾ 167

Example:

#!/usr/bin/perl

Defining default string
$_ = "Peeks World is the best among all";

Terminating character
using the m modifier
m/o/g;

Specifying starting position
$position = pos();

Using the \G Assertion
m/\G(.*)/g;

Printing position
and remaining string
print "$position $1\n";

To start counting from matched character
until next possible match
$_ = $1;
m/o/g;

$position = pos();

Using the \G Assertion
m/\G(.*)/g;

Printing position
and remaining string
print "$position $1\n";

REGEX CHEAT SHEET
Regex are an essential part of Perl programming. It is used to look for the
specified text pattern. A group of characters forms the search pattern. It
is also referred to as regexp. When a user learns Regex, he may require a
quick review of concepts not frequently used. A regex cheat sheet contain-
ing the various classes, characters, modifiers, and so on that are used in
the regular expression is created to provide that service.

168 ◾ Mastering Perl

Character Classes

To match the string of characters, character classes are used. These classes
allow the user to match any range of characters that the user does not
know in advance.

Classes Explanation

[abc.] It includes only one of the specified characters i.e. “a,”
“b,” “c,” or “..”

[a-j] It includes all characters from a to j.
[a-z] It includes all the lowercase characters from a to z.
[^az] It includes all the characters except a and z.
\w It includes all the characters like [a-z, A-Z, 0-9].
\d It matches for digits like [0-9].
[ab][^cde] It matches that characters a and b should not be

followed by c, d, and e.
\s It matches for the [\f\t\n\r] i.e. form feed, tab,

newline, and carriage return.
\W Complement of the \w.
\D Complement of the \d.
\S Complement of the \s.

Example:

Perl program to demonstrate
character class

Actual String
$str = "45char";

Prints match found if
its found in $str
by using \w
if ($str =~ /[\w]/)
{
 print "Match Found\n";
}

Prints match not found
if it is not found in $str
else
{
 print "Match Not Found\n";
}

Regular Expressions in Perl ◾ 169

Anchors

Anchors do not correspond to any character. Instead, they correspond to a
specific position such as before, after, or between the characters.

Anchors Explanation

^ It matches the beginning of string.
$ It matches at the end of string.
\b It matches the word boundary of string from

\w to \W.
\A It matches the beginning of string.
\Z It matches at the ending of string or before the

newline.
\z It matches only at the end of string.
\G It matches at specified position pos().
\p{….} The Unicode character class like IsLower,

IsAlpha, etc.
\P{….} Complement of the Unicode character class.
[:class:] The POSIX Character Classes like digit, lower,

ascii, etc.

Example:

program to demonstrate
use of anchors in the regex

Actual String
$str = "55";

Prints match is found if
it is found in $str
using the Anchors /
if ($str =~ /[[:alpha:]]/)
{
 print "Match is Found\n";
}

Prints match not found
if its not found in $str
else
{
 print "Match is Not Found\n";
}

170 ◾ Mastering Perl

Metacharacters

Metacharacters are used in Perl Regex to match patterns. All metacharac-
ters must be avoided.

Characters Explanation

^ To check the beginning of a string.
$ To check the ending of the string.
. Any character except newline.
* Matches 0 or more times.
+ Matches 1 or more times.
? Matches 0 or more times.
() Used for the grouping.
\ Use for the quote or special characters.
[] Used for the set of characters.
{} Used as the repetition modifier.

Quantifiers

These are used to detect special characters. Quantifiers are classified into
three types:

• “?” It matches for 0 or 1 character occurrence.

• “+” It corresponds to one or more occurrences of the character.

• “*” It matches when the character appears 0 or more times.

Using quantifiers Explanation

a? Checks whether “a” occurs 0 or 1 time.
a+ Checks whether “a” occurs 1 or more times.
a* Checks whether “a” occurs 0 or more times.
a{2, 6} Checks whether “a” occurs 2 to 6 times.
a{2, } Checks whether “a” occurs 2 to infinite times.
a{2} Checks whether “a” occurs 2 times.

Example:

program to demonstrate
use of quantifiers in the regex

Actual String
$str = "color";

Regular Expressions in Perl ◾ 171

Prints match is found if
it is found in $str
using quantifier?
if ($str =~ /colou?r/)
{
 print "Match is Found\n";
}

Prints match is not found
if it is not found in $str
else
{
 print "Match is Not Found\n";
}

Modifiers

Modifiers Explanation

\g It is used to replace all the occurrences of string.
\gc It allows continued search after the \g match fails.
\s It treats the string as a single line.
i It turns off case sensitivity.
\x It disregards all-white spaces.
(?#text) It is used to add comments to the code.
(?:pattern) It is used to match the pattern of the non-capturing group.
(?|pattern) It is used to match the pattern of the branch test.
(?=pattern) It is used for the positive look ahead assertion.
(?!pattern) It is used for the negative look ahead assertion.
(<=pattern) It is used for the positive look behind the assertion.
(<!pattern) It is used for the negative look behind the assertion.

White Space Modifiers

Modifiers Explanation

\t Used for the inserting tab space.
\r Carriage return character.
\n Used for inserting a new line.
\h Used for the inserting horizontal white space.
\v Used for the inserting vertical white space.
\L Used for the lowercase characters.
\U Used for the upper case characters.

172 ◾ Mastering Perl

Quantifiers – Modifiers

Maximal Minimal Explanation

? ?? It can happen 0 or 1 time.
+ +? It can happen one or more times.
* *? It could happen 0 or more times.
{3} {3}? It must match exactly three times.
{3, } {3, }? At least three times must match.
{3, 7} {3, 7}? Must match at least three times and no more than seven times.

Grouping and Capturing

Inside regex, these groups are denoted by “1,” while outside regex, they
are denoted by “$1.” This is known as capture. These groups can fetch by
variable assignment in a list context. The grouping construct (...) generates
capture buffers and groups of captures.

(…) These are used for the grouping and capturing.
\1, \2, \3 During the regex matching, these are used to capture buffers.
$1, $2, $3 During the successful matching, these are used to capture the variables.
(?:…) These are used to group items without capturing them. (Neither of these

set this $1 nor 1).

SEARCHING IN A FILE USING REGEX
In Perl, a regular expression (Regex, Regexp, or RE) is a special text string
that describes a search pattern within a given text. Regex in Perl is tied
to the host language and is not the same as in PHP, Python, etc. These
are sometimes referred to as “Perl 5 Compatible Regular Expressions.”
Binding operators such as = ~ (Regex Operator) and !~ (Negated Regex
Operator) are used to use the Regex.

Binding regex operators are used to matching a string against a regular
expression. The statement’s left side will contain a string that matches the
specified pattern on the right side. The negated regex operator determines
whether or not the string is equal to the regular expression specified on the
right-hand side.

Regex operators aid in searching a file for a specific word or group of
words. This can accomplish in a variety of ways, depending on the user’s
specific requirements. Perl searches follow the standard format of open-
ing the file in read mode and then reading the file line by line, looking for
required string or group of strings in each line. When the required match

Regular Expressions in Perl ◾ 173

is found, the statement following the search expression determines what
to do with the matched string, which can add to any other file specified by
the user or printed on the console.

There are several ways to look for the required string within the regular
expression that was created to match the string with the file.

Regular Search

This basic pattern for writing a regular expression searches for the speci-
fied string within the specified file. The syntax of such a regular expression
is as follows:

$String =~ /the/

This expression will look for lines in the file that contain the letters “the”
and store that word in the variable $String. Furthermore, the value of this
variable can be copied to a file or printed to the console.

Example:

use strict;
use warnings;

sub main
{
 my $file = 'C:\Users\PeeksForPeeks\PFP.txt';
 open(FH, $file) or die("File $file is not
found");

 while(my $String = <FH>)
 {
 if($String =~ /the/)
 {
 print "$String \n";
 }
 }
 close(FH);
}
main();

In the list of words that contain the word “the,” to avoid such words, the
regular expression can be modified as follows:

$String =~ / the /

174 ◾ Mastering Perl

By inserting spaces before and after the required word to be searched,
the searched word is isolated from both ends, and no such word contain-
ing it as a part of it is returned in the search process. This will eliminate the
need to search for unnecessary words. However, this will exclude words
that contain a comma or a full stop immediately after the requested search
word.

To avoid this situation, there are other methods for limiting the search
to a specific word, one of which is using the word boundary.

Using Word Boundary in the Regex Search

As seen in the preceding example, a regular search returns either the extra
words that include the searched word or excludes some of the words if
the required word is preceded and followed by spaces. A word boundary,
denoted by the letter “\b,” is used to avoid this.

$String =~ /\bthe\b/;

This will limit the words that contain the requested word as part but
will not exclude words that end with comma or full stop.

Example:

use strict;
use warnings;

sub main
{
 my $file = 'C:\Users\PeeksForPeeks\PFP.txt';
 open(FH, $file) or die("File $file is not
found");

 while(my $String = <FH>)
 {
 if($String =~ /\bthe\b/)
 {
 print "$String \n";
 }
 }
 close(FH);
}
main();

Regular Expressions in Perl ◾ 175

The word that ends with a full stop is included in the search, but words
that contain the searched words as a part are not. As a result, word bound-
ary can aid in overcoming the issue created by the regular search method.

What if there is a need to find words that begin, end, or both begin and
end with specific characters? That cannot be accomplished using regular
search or the word boundary. Perl allows the use of wildcards in Regex in
scenarios like these.

Use of Wildcards in the Regular Expression

With wildcards in regular expression, Perl allows us to search for a specific
set of words or words that follow a specific pattern in a given file. Wildcards
are “dots” placed within the regex in addition to the required word to be
searched. These wildcards allow the regex to search for and display all related
words that match the given pattern. Wildcards help reduce the number of
iterations required to search for different words that share a pattern of letters.

$String =~ /t..s/;

The above pattern will look for words that begin with t, end with s, and
have two letters/characters between them.

Example:

use strict;
use warnings;

sub main
{
 my $file = 'C:\Users\PeeksForPeeks\PFP.txt';
 open(FH, $file) or die("File $file is not
found");

 while(my $String = <FH>)
 {
 if($String =~ /t..s/)
 {
 print "$String \n";
 }
 }
 close(FH);
}
main();

176 ◾ Mastering Perl

The preceding code contains all of the words specified in the given
pattern.

This method of printing the searched words prints the entire line that
contains that word, making it difficult to determine exactly what word
the user is looking for. To avoid confusion, we can only print the searched
words rather than the entire sentence. This is accomplished by grouping
the searched pattern with parentheses. $number variables are used to print
this grouping of words.

The $number variables are matches from the regular expression’s last
successful match of the capture groups. For example, if the regular expres-
sion contains multiple groupings, $1 will print the words that match the
first grouping, $2 will print the words that match the second grouping,
and so on.

The following program has been modified using the $number variables
to display only the searched words rather than the entire sentence:

use strict;
use warnings;

sub main
{
 my $file = 'C:\Users\PeeksForPeeks\PFP.txt';
 open(FH, $file) or die("File $file is not found");

 while(my $String = <FH>)
 {
 if($String =~ /(t..s)/)
 {
 print "$1 \n";
 }
 }
 close(FH);
}
main();

This chapter covered Regex, operators, regex character and special char-
acter classes, and quantifiers and backtracking. Moreover, we discussed
“e” modifier in regex, “ee” Modifier, and pos() function.

177DOI: 10.1201/9781003358442-7

C h a p t e r 7

Object-Oriented
Programming in Perl

IN THIS CHAPTER

 ➢ Classes and Objects

 ➢ Methods

 ➢ Constructors and Destructors

 ➢ Method Overriding

 ➢ Inheritance

 ➢ Polymorphism

 ➢ Encapsulation

In the previous chapter, we discussed regular expressions, and in this
chapter, we will cover object-oriented programming.

Object-oriented programming (OOPs): As the name implies, OOPs
refers to programming languages that use objects. OOP aims to imple-
ment real-world entities in programming, such as inheritance, hiding, and
polymorphism. The primary goal of OOP is to connect the data and the
functions that operate on it so that no other part of the code can access the
data except that function.

https://doi.org/10.1201/9781003358442-7

178 ◾ Mastering Perl

Concepts of OOPs:

• Class

• Object

• Method

• Polymorphism

• Inheritance

• Encapsulation

• Abstraction

Concepts of OOP’s.

Let us look at the various features of an OOPs language:

1. Class: A class is a user-defined blueprint or prototype used to cre-
ate objects. It represents a set of properties or methods shared by all
objects of the same type. In general, class declarations can include
the following components in the following order:

• Class name: The name of the class should begin with an initial
letter (capitalized by convention).

• Superclass (if any): If applicable, the name of the class’s parent
(superclass), preceded by the keyword “use.”

• Constructors (if any): Perl subroutine constructors return an
object that is an instance of the class. The constructor is usually
named “new” in Perl.

• Body: The class body is surrounded by braces {}.

Object-Oriented Programming in Perl ◾ 179

2. Object: It is a fundamental unit of OOPs that represents real-world
entities. A typical Perl program generates many objects, which inter-
act by invoking methods. An object is made up of:

• State: State is represented by an object’s attributes. It also reflects
an object’s properties.

• Behavior: Behavior is represented by an object's methods. It also
reflects an object's interaction with other objects.

• Identity: It gives an object a unique name and allows one object
to interact with other objects.

Example: A dog is an example of an object.

3. Method: A method is a group of statements that perform a specific
task and return the result to the caller. A method can complete a task
without returning anything. Methods save time by allowing us to
reuse code without having to retype it.

4. Polymorphism: Polymorphism refers to the ability of OOPs pro-
gramming languages to distinguish between entities with the same
name efficiently. Perl accomplishes this through the use of these enti-
ties’ signatures and declarations.

Polymorphism in Perl is primarily of two types:

• Perl overloading

• Perl overriding

5. Inheritance: An essential pillar of OOP is inheritance (object-ori-
ented programming). It is the mechanism in Perl that allows one
class to inherit the features (fields and methods) of another.

Important terms to remember:

• Superclass: A superclass is a class with inherited characteristics (a
base class or a parent class).

• Subclass: It is a class that derives from the another (or derived
class, extended class, or child class). The subclass can add its fields
and methods to those of the superclass.

• Reusability: Inheritance promotes “reusability,” which means
that if we want to create new class and there is already class that
includes some of the code we want, we can derive our new class

180 ◾ Mastering Perl

from the existing class. By doing so, we are reusing the existing
class’ fields and methods.

A class in Perl can be created with packages and inherited with the
“use” keyword.

Syntax:

use packagename

6. Encapsulation: Encapsulation is wrapping data into a single unit. It
is the mechanism that connects code and the data that it manipu-
lates. Encapsulation can also be considered a protective shield that
prevents code from accessing data outside of the shield.

• Technically, in encapsulation, a class’ variables or data are hidden
from other classes and can only be accessed through any member
function of the class in which they are declared.

• Because the data in a class is hidden from other classes, it is also
referred to as data-hiding.

• Encapsulation can accomplish by declaring all variables in the
class as private and writing public methods in the class to set and
retrieve variable values.

7. Abstraction: Data abstraction is the property that only displays the
essential details to the user. The user is not shown the trivial or non-
essential units. For example, a car is considered a whole rather than
its individual components.

Data abstraction is also defined as the process of identifying only
the necessary characteristics of an object while ignoring irrelevant
details. An object’s properties and behaviors distinguish it from
other objects of a similar type and aid in classifying/grouping the
objects.

Consider the following scenario: A man is driving a car. The man
only knows that pressing the accelerators will increase the car’s speed
or that applying the brakes will stop the car. Still, he has no idea
how pressing the accelerator will increase the speed, nor does he
understand the car’s inner mechanism or how the car’s accelerator,
brakes, and other controls are implemented. This is the definition of
abstraction.

Object-Oriented Programming in Perl ◾ 181

CLASSES IN OOP
In today’s world, when programming is used in every aspect of our life, we
must adopt programming paradigms that are closely related to real-world
instances. The competitiveness and complexity of real-world challenges
have undergone a significant transformation, necessitating the need for
more adaptable ways in the industry.

The notion of OOPs is a wonderful method to shape any programming
language such that solving real-world cases is a breeze. OOP is a program-
ming paradigm that places more emphasis on objects than procedures.
The OOPs idea involves working in terms of objects and the interaction
of objects.

Note: OOP seeks to implement real-world elements, such as inheritance,
encapsulation, and polymorphism. The primary goal of OOP is to connect
the data and the functions that act on them such that no other portion of
the code may access the data than the function.

Object

It is an instance of a class inside a data structure with specific prop-
erties and behavior. An “Apple” is an example of an object. It has the
qualities of being a fruit with a crimson hue, etc. Its conduct is “it tastes
delicious.”

Its data represent the features of an object, and its activity is represented
by its related functions, according to the OOPs idea. Thus, an object is an
entity that holds data and provides a function-based interface.

Class

A class is an enlarged data structure idea. It specifies the prototype blue-
print of data-containing objects.

Objects are instances of their respective classes. A class consists
of data members and data functions; it is a user-defined, pre-defined
data type that can be accessed and used by creating an instance of that
class.

Example: Consider a class at school as an example. There may be
schools with various names and organizational structures, but they all
have some qualities, such as students, instructors, and staff. Therefore,
school is the class containing the data members, teachers, students, and
parents, and the member functions may be calculate_students_marks(),
calculate_teachers_salary(), and Parents_Database ().

182 ◾ Mastering Perl

Data Member

Data members are data variables, and member functions are the functions
used to control these variables; these data members and member functions
combined determine the attributes and behavior of the objects inside a class.

Data member.

Defining a Class

Perl makes it very simple to define a class. A class in Perl corresponds to a
package. To define a class, we must first load and construct a Package. A
Package is a pre-contained unit of user-defined variables and subroutines
that can use anywhere in the program.

Syntax:

package Classname

Creating a Class and Making Use of Objects

A class can create in Perl using the keyword package, but an object is cre-
ated by calling a constructor. A constructor is defined as a method in a
class.

Creating a Class Instance

The class and constructor names can be whatever the user wants. Most pro-
grammers prefer “new” as a constructor name for their programs because
it is easier to remember and use than any other complex constructor name.

package student // This is class student
sub Student_data // Constructor to the class

Object-Oriented Programming in Perl ◾ 183

{
 my $class = shift;
 my $self = {
 _StudentFirstName => shift;
 _StudentLastName => shift;
 };

 print "The Student's First Name is $self
->{_StudentFirstName}\n";
 print "The Student's Last Name is $self
->{_StudentLastName}\n";
 bless $self, $class;
 return $self;
}

A function called bless is used in the preceding example code. This
function is used to associate an object with a class passed as an argument.

Syntax:

bless Objectname, ClassName

Creating an Object

In Perl, an object is created by calling the constructor defined in the class.
An object name can be any variable the user requires, but it is customary
to name it in relation to the class.

$Data = Student_data student("Diksha", "Mayank");

Example:

use strict;
use warnings;

package student;

constructor
sub student_data
{

 # shift will take package name 'student'
 # and assign it to the variable 'class'

184 ◾ Mastering Perl

 my $class_name = shift;
 my $self = {
 'StudentFirstName' => shift,
 'StudentLastName' => shift
 };
 # Using the bless function
 bless $self, $class_name;

 # returning object from the constructor
 return $self;
}

Object creation and constructor calling
my $Data = new student_data student("Geeks",
"forGeeks");

Printing the data
print "$Data->{'StudentFirstName'}\n";
print "$Data->{'StudentLastName'}\n";

Using classes in OOP is critical because it precisely depicts real-world
applications and can be used to solve real-world problems.

OBJECTS IN OOPs
Perl is an object-oriented, interpreter-based, dynamic programming lan-
guage. OOP has three primary components: objects, classes, and methods.
An object is a data type that may be referred to as an instance of the class
it belongs. It may be a collection of data variables of various data kinds and
a collection of various data structures. Methods are functions that operate
on class object instances.

The following example illustrates how objects may use in Perl:
We must first define the class. In Perl, this is accomplished by construct-

ing the class’ package. A package is an encapsulated object that contains all
of the class’ data members and functions.

package Employee;

Employee is the class name in this case.
The second task is to create a package instance (i.e., the object). We’ll

need a constructor for this. In Perl, a constructor is a subroutine that is
usually called “new.” However, because the name is user-defined, it is not
limited to “new.”

Object-Oriented Programming in Perl ◾ 185

package Employee;

Constructor with the name new
sub new
{
 my $class = shift;
 my $self = {
 _serialNum => shift,
 _firstName => shift,
 _lastName => shift,
 };

 bless $self, $class;
 return $self;
}

To design our object, we define a basic hash reference $self in the construc-
tor. Here, the object will contain three properties for an Employee: serial-
Num, firstName, and lastName. This indicates that each employee will have
their serial number, firstname, and lastname. The my keyword functions as
an access specifier that localizes $class and $self to the contained block.

The shift keyword transfers the package name from the default array
“@_” to the bless function. The bless method returns a reference that
eventually becomes an object. And lastly, the constructor will return an
instance of the Employee class. The most important aspect is how to ini-
tialize an object. It may be accomplished as follows:

$object = new Employee(1, "Peeks", "forPeeks");

In this case, $object is a scalar variable that refers to the hash defined in
the constructor.

The following is an example program for creating and implementing
objects in OOPs:

use strict;
use warnings;

class with the name Employee
package Employee;

constructor with name new
sub new

186 ◾ Mastering Perl

{
 # shift will take package name
 # and assign it to the variable 'class'
 my $class = shift;

 # defining hash reference
 my $self = {
 _serialNum => shift,
 _firstName => shift,
 _lastName => shift,
 };

 # Attaching object with the class
 bless $self, $class;

 # returning the instance of class Employee
 return $self;
}

Object creation of class
my $object = new Employee(1, "Peeks", "forPeeks");

object here is a hash to reference
print("$object->{_firstName} \n");
print("$object->{_serialNum} \n");

An object in Perl functions in the same way that it does in other
languages, such as C++ and Java. The above program demonstrates
the procedure of an object in Perl, including its creation and use in a
class.

METHODS IN OOPs
Methods are used to access and alter an object’s data. These are the entities
that may be called via class or package objects. Methods in Perl are just
subroutines; they have no unique identity. A method’s syntax is identical
to that of a subroutine. Methods, like subroutines, are specified using the
sub keyword. As its first parameter, the method accepts an object or the
package on which it is called.

OOPs employ these methods to change the object’s data and not to
interact with the object directly; this is done to ensure the data’s secu-
rity by preventing the programmer from directly altering the object’s data.

Object-Oriented Programming in Perl ◾ 187

Various helper methods that accept the object as an argument and save its
value in another variable make this possible. Additionally, adjustments are
made to the second variable. These changes do not affect the object’s data,
making it more secure.

Types of Methods in Perl

Based on the inputs given, methods in Perl may be divided into two cat-
egories: static and virtual methods.

A static method is one where the method’s first parameter is the class
name. The functionality of a static method is applied to the whole class
since it accepts the class’ name as an argument. These are also known as
class methods. Since most methods belong to the same class, it is unneces-
sary to supply the class name as an argument. Example: A class’ construc-
tors are considered static methods.

Virtual method is one in which the object reference is supplied as the
function’s first parameter. The first parameter of a virtual function is relo-
cated to a local variable and then utilized as a reference.

Example:

sub Student_data
{
 my $self = shift;

 # Calculating-result
 my $result = $self->{'Marks_obtained'} /
 $self->{'Total_marks'};

 print "Marks scored by student are: $result";
}

In OOP, methods require parentheses to hold the arguments, and these
methods are invoked with an arrow operator (->).

get-set Methods

Methods are used to secure an object’s data and are thus used with either
the object’s reference or the value is stored in another variable and then
used. In OOPs, get-set methods are used to provide data security to objects.
The get-method is used to retrieve the object’s current value, while the set
value method assigns a new value to the object.

188 ◾ Mastering Perl

Example:

Declaration and definition of the Base class
use strict;
use warnings;

Creation of parent class
package vehicle;

Setter method
sub set_mileage
{

 # shift will take package name 'vehicle'
 # and assign it to the variable 'class'
 my $class = shift;

 my $self = {
 'distance'=> shift,
 'petrol_consumed'=> shift
 };

 # Bless function to bind the object to the
class
 bless $self, $class;

 # returning object from the constructor
 return $self;
}

Getter-method
sub get_mileage
{
 my $self = shift;

 # Calculating0result
 my $result = $self->{'distance'} /
 $self->{'petrol_consumed'};

 print "The mileage by our vehicle is:
$result\n";

}

Object-Oriented Programming in Perl ◾ 189

The Object creation and method calling
my $ob1 = vehicle -> set_mileage(2550, 170);
$ob1->get_mileage();

CONSTRUCTORS AND DESTRUCTORS
We will explain constructors and destructors with examples.

Constructors

Constructors in Perl subroutines return an instance of the class as the
returned object. In Perl, the constructor is usually referred to as “new.”
Unlike many other OOP languages, Perl has no particular syntax for object
construction. It utilizes data structures (hashes, arrays, scalars) that have
been expressly connected with the class. On hash reference and the class
name, the constructor calls the “bless” method (the name of the package).1

Let’s develop some programs for better explanations.
Note: Due to the use of packages, the following code will not execute on

online IDE. The following text represents a Perl class or module file. Save
the file with the extension (*.pm).

Declaring Package
package Area;

Declaring Constructor method
sub new
{
 return bless {}, shift; # blessing on hashed
 # reference (which is
empty).
}

1;

The package name “Area” is stored in default array “@_” when the con-
structor method is called. The keyword “shift” is used to extract the pack-
age name from “@_” and pass it to the “bless” function.

package Area;

sub new
{
 my $class = shift; # defining shift in the $myclass

190 ◾ Mastering Perl

 my $self = {}; # hashed reference
 return bless $self, $class;
}
1;

In Perl, attributes are stored as key-value pairs in a hashed reference.
Additionally, some attributes are being added to the code.

package Area;

sub new
{
 my $class = shift;
 my $self =
 {
 length => 3, # storing-length
 width => 4, # storing=width
 };
 return bless $self, $class;
}
1;

The (Area Class) code above has two attributes: length and width.
Another Perl program is designed to use these attributes to gain access to
them.

use strict;
use warnings;
use Area;
use feature qw/say/;

creating new Area object
my $area = Area->new;

say $area->{length}; #print length
say $area->{width}; # print width

How to run the code:

• Save the Program with Package Area as Area.pm in a text file.

• Note: The file’s name should always be the same as the package’s name.

Object-Oriented Programming in Perl ◾ 191

• Save the program that is used to access the attributes defined in the
package as *.pl. * can be any name here (In this case, it is test.pl).

• Use the command perl test.pl to run the code saved as test.pl in the
Perl command line.

Passing Dynamic Attributes

Adding Dynamic attributes to existing files:
Program: Areas.pm

package Area;

sub new
{
 my ($class, $args) = @_; # since values will be
 # passed dynamically
 my $self =
 {
 length => $args->{length} || 1, # by default
value is 1 (stored)
 width => $args->{width} || 1, # by default
value is 1 (stored)
 };
 return bless $self, $class;
}

we have added get_area function to
calculate area as well
sub get_area
{
 my $self = shift;

 # getting area by multiplication
 my $area = $self->{length} * $self->{width};
 return $area;
}
1;

Program: test.pl

use strict;
use warnings;

192 ◾ Mastering Perl

use feature qw/say/;
use Area;

pass length and width arguments
to constructor
my $area = Area->new(
 {
 length => 2, # passing '2' as param of
the length
 width => 2, # passing '2' as param of
the width
 });

say $area->get_area;

Destructors

When all references to object are removed from scope, Perl automatically
calls the destructor method. Destructor methods are useful if the class gen-
erates threads or temporary files that must be removed when the object is
destroyed. Perl has a special method name for the destructor, “DESTROY,”
which must be used when declaring the destructor.

Syntax:

sub DESTROY
{
 # DEFINE-Destructors
 my $self = shift;
 print "Constructor-Destroyed :P";
}

METHOD OVERRIDING IN OOPs
Overriding is a feature of any object-oriented computer language that
allows a subclass or child class to implement a method that already exists
in one of its superclasses or parents. When a subclass method has the same
name, arguments or signature, and return type (or sub-type) as a method
in its superclass, the subclass method is said to override the superclass
method.

Method overriding signifies that the code consists of two or more meth-
ods with the same name, each of which has unique purpose and differs
from the others. Thus, the literal definition of the term indicates that one

Object-Oriented Programming in Perl ◾ 193

approach must take precedence over another. This idea refers to redefining
a base class method in a derived class with the same method signature.

Method overriding is one manner in which Runtime Polymorphism is
achieved in Perl. The version of a method that is run is dependent upon
the object that invokes it. If object of the parent class is used to call the
method, the version in the parent class will run; however, if an object of the
subclass is used, the version in the child class will execute. In other words,
the type of the object being referenced decides which version of an over-
ridden method will be performed, not the type of the reference variable.

Method overriding in Perl is best shown with the following example.
We have a base class vehicle that has the methods get_mileage() and

get_cost(), as well as a derived class car that has the methods get_mile-
age() and get_age(). Now, because one of the methods in both classes has
the same name, their execution will follow the Method overriding con-
cept. Let’s look at the example and see how it’s performed.

Base class creation:

Declaration and definition of the Base class
use strict;
use warnings;

Creating parent-class
package vehicle;

sub new
{

 # shift will take package name 'vehicle'
 # and assign it to the variable 'class'
 my $class = shift;

 my $self = {
 'distance'=> shift,
 'petrol_consumed'=> shift
 };

 # Bless function to bind object to class
 bless $self, $class;

 # returning object from the constructor
 return $self;
}

194 ◾ Mastering Perl

Method for the calculating the mileage
sub get_mileage
{
 my $self = shift;

 # Calculating-result
 my $result = $self->{'distance'} /
 $self->{'petrol_consumed'};

 print "The mileage by our vehicle is: $result\n";

}

Method for the calculating the cost
sub get_cost
{
 my $self = shift;

 # Calculating-result
 my $result = $self->{'petrol consumed'} * 70;

 print "Cost is: $result\n";
}
1;

Derived class creation:

Declaring and defining the derived class

Creating derived-class
package car;

use strict;
use warnings;

Using the parent class
use parent 'vehicle';

Overriding method
sub get_mileage
{
 my $self = shift;

Object-Oriented Programming in Perl ◾ 195

 # Calculating result
 my $result = $self->{'distance'} /
 $self->{'petrol_consumed'};

 print "The mileage by our car is: $result";
}

Function to get age from the user
sub get_age
{
 my $self = shift;

 # Taking input from the user
 my $age = <>;

 # Printing the age
 print "The Age is: $age\n";
}
1;

Using objects to demonstrate the Method Overriding process:

Calling objects and
methods of each class
using corresponding objects.

use strict;
use warnings;

Using derived class as parent
use car;

the object creation and initialization
my $ob1 = vehicle -> new(2550, 170);
my $ob2 = car -> new(2500, 250);

Calling methods using the Overriding
$ob1->get_mileage();
$ob2->get_mileage();

As can be seen, the method from the class that is being called with the
object overrides the other method with the same name but in different

196 ◾ Mastering Perl

classes. The “get_mileage” method on the object vehicle prints “The mile-
age by our vehicle is: 15” via the method declared in the class vehicle.
When we execute the method in the class car “get_mileage” on the object
of car, we get the output “The mileage by our car is: 10.”

Why Do We Override Methods?

As noted before, overridden methods enable Perl to offer polymorphism
at runtime.

Polymorphism is crucial to OOP for the following reason: it enables
a base class to describe methods that will share by all of its descendants,
while subclasses may define the particular implementation of any or all of
those methods. Perl also provides the “one interface, several methods” ele-
ment of polymorphism through overridden methods.

Dynamic method dispatch (runtime polymorphism) is one of object-
oriented architecture’s most effective strategies for code reuse and resil-
ience. The ability to exist code libraries to call methods on instances of
new classes without recompilation while preserving a clean abstract inter-
face is a potent instrument.

Overridden methods enable us to invoke methods of any derived class
without knowing the object type of the derived class. Thus, method over-
riding simplifies programming since there is no need to memorize dis-
tinct names when developing new methods; instead, it is more necessary
to remember the processes inside the Method.

INHERITANCE IN OOPs
Inheritance is a class’ ability to extract and use the characteristics of
another class. It is the process of creating new classes, known as Derived
classes, from existing classes, known as Base classes. The essential idea is
that the programmer may utilize the characteristics of one class in another
without declaring or defining the same item several times across classes.

We may inherit the member functions from the base class instead of
writing them in each class declaration. Inheritance is one of OOP’s most
essential features.

Subclass: A subclass or Derived class is a class that inherits properties
from another class.

Superclass: The class whose attributes are inherited by subclasses is
known as the Superclass or Base Class.

The most basic principle of inheritance is the creation or derivation of a
new class from another class.

Object-Oriented Programming in Perl ◾ 197

Base Class and Derived Class

Derived classes are created by deriving additional inherited subclasses
from the base class. A single base class can have multiple derived classes;
this type of inheritance is known as Hierarchical Inheritance. These
derived classes are all derived from a single Parent or Base class. Multiple
Inheritance occurs when a derived class shares multiple parent classes and
inherits its features from multiple parent classes.

Base class and Drive class.

The image above depicts the order in which a class is derived from a
base class. The order and denotations shown in the above image will be
used whenever necessary to theoretically depict the order of inheritance.

Consider the Vehicles class. Now we must create a class for each type of
vehicle, such as a bus, car, or truck. For all Vehicles, the methods fuelA-
mount(), capacity(), and applyBrakes() will be the same.

Inheritance creation.

The preceding image depicts the creation of these classes without the
concept of inheritance.

The above process clearly results in the duplication of the same code
three times. This raises the likelihood of error and data redundancy.

198 ◾ Mastering Perl

Inheritance is used to avoid situations like this. We can simply avoid data
duplication and increase reusability if we create a class Vehicle, write these
three functions in it, and inherit the rest of the classes from it. Analyze the
diagram below to see how the three classes are derived from the vehicle class:

Three classes inherit from vehicle class.

Because we inherited the rest of the three classes from the base class,
we only need to write the functions once instead of three times (Vehicle).

Multilevel Inheritance

In Perl, inheritance can take many forms, but the most common is
Multilevel Inheritance, which involves a chain of base and derived classes.
In Multilevel Inheritance, a derived class inherits a base class, and the
derived class also serves as the base class for other classes. In the diagram
below, class A serves as a base class for the derived class B, which serves as
base class for the derived class C.

Multilevel Inheritance

Object-Oriented Programming in Perl ◾ 199

Implementing Inheritance in the Perl

Packages can be used to implement inheritance in Perl. Packages are used
to create a parent class from which derived classes can inherit functionality.

use strict;
use warnings;

Creating parent-class
package Employee;

Creating-constructor
sub new
{
 # shift will take package name 'employee'
 # and assign it to the variable 'class'
 my $class = shift;

 my $self = {
 'name' => shift,
 'employee_id' => shift
 };

 # Bless function to bind object to the class
 bless $self, $class;

 # returning object from the constructor
 return $self;
}
1;

The base class is defined in the code above. The base class is employee, and
the data members are the employee id and the employee’s name. This par-
ent class code must be saved as *.pm, which we will do here as employee.
pm. We’ll now look at how to create a class from the previously declared
base class employee.

Creation of parent class
package Department;

use strict;
use warnings;

200 ◾ Mastering Perl

Using the class employee as parent
use parent 'employee';

1;

As seen in the preceding example, the class Department makes use of
the traits of the previously declared class employee. As a result, when we
declared the class Department, we did not declare all of the data members
again but instead inherited them from the base class employee. To run
this code, save the intermediatory class code as *.pm, as Department.pm
in this case. This is the intermediary class and will also serve as the parent
class for the following derived file data .pl.

use strict;
use warnings;

Using the Department class as parent
use Department;

Creating object and assigning the values
my $a = Department->new("Rajat",18017);

Printing required fields
print "$a->{'name'}\n";
print "$a->{'employee_id'}\n";

Thus, inheritance is significant when working on a large project and the
programmer wants to shorten the code.

POLYMORPHISM IN OOPs
Polymorphism is the capability of processing data in several forms. Poly
means numerous, and morphism implies kinds; therefore, the term itself
shows the meaning. Polymorphism is one of the most fundamental con-
cepts of an OOP language. In OOP, polymorphism is often employed
when a parent class reference refers to a child class object. This section will
examine how to express any function in several kinds and formats.

A real-world example of polymorphism is that a person may simul-
taneously play multiple roles in life. As a woman simultaneously fulfills
the roles of mother, wife, employee, and daughter. Therefore, a single
individual must possess various characteristics, each of which must be

Object-Oriented Programming in Perl ◾ 201

implemented according to the scenario and conditions. Polymorphism is
regarded as one of the OOP’s most essential characteristics.

OOP’s primary advantage is polymorphism. Polymorphism is so essen-
tial that languages that do not support it cannot call themselves object-
oriented. Object-based languages are those that have classes but do not
support polymorphism. Consequently, it is crucial for OOP language. It
is the ability of an object or reference to take on multiple forms in differ-
ent contexts. It supports function overloading, function overriding, and
virtual functions.

Polymorphism in OOP.

Polymorphism is a property that allows any message to be sent to objects
of multiple classes, and each object can respond appropriately based on the
class properties.

This means that in an OOP language, polymorphism is the method
that does different things depending on the class of the object that calls
it. $square->area(), for example, will return the area of a square, whereas
$triangle->area() may return the area of a triangle. $object->area(), on the
other hand, would have to calculate the area based on which class $object
was called.

Polymorphism is best explained by using the following example:

use warnings;

Creation of class using package
package A;

202 ◾ Mastering Perl

Constructor-creation
sub new
{

 # shift will take package name 'vehicle'
 # and assign it to the variable 'class'
 my $class = shift;
 my $self = {
 'name' => shift,
 'roll_no' => shift
 };

 sub poly_example
 {
 print("This corresponds to a class A\n");
 }
};

package B;

The @ISA array contains a list
of that class's parent classes, if any
my @ISA = (A);

sub poly_example
{
print("This corresponds to a class B\n");

}

package main;

B->poly_example();
A->poly_example();

The method poly_example() defined in class B overrides the defini-
tion inherited from class A for the first output and vice versa for the
second output. This allows you to add or extend the functionality of any
pre-existing package without having to rewrite the entire definition of
the class repeatedly. As a result, the programmer’s life is made more
accessible.

Object-Oriented Programming in Perl ◾ 203

ENCAPSULATION IN OOPs
Encapsulation in Perl is the process of enclosing data to secure it from
external sources that should not have access to that section of code.
Encapsulation is a component of OOP; it ties data to the subroutines that
change it. Encapsulation is, in another sense, a protective barrier that pre-
vents the data from being accessible by code outside of this shield.

• Technically, under encapsulation, variables or data of a class are con-
cealed from other classes and may only be accessible through mem-
ber functions of the class in which they are defined.

• As with encapsulation, the data inside a class is concealed from other
classes; hence, it is sometimes referred to as data-hiding.

• Encapsulation may be performed by declaring all class variables as
local and retrieving class methods by importing packages to set and
retrieve variable values.

Encapsulation in OOP.

Consider a real-world example of the encapsulation: in a business, there
are several departments, such as accounts, finance, and sales. The finance
sector conducts all financial transactions and maintains records of all
financial data.

Similarly, the sales department conducts all sales-related operations
and maintains sales data. Now, there may be a situation in which a finance
department official needs complete sales information for a given month.
In this instance, he is not permitted direct access to the sales section’s data.
He must first call another officer in the sales department and then request
that individual data be provided.

This describes encapsulation. Here, the sales section’s data and the peo-
ple who may change them are grouped under the name “sales section.”

204 ◾ Mastering Perl

Example:

Declaration and definition of the Base class
use strict;
use warnings;

package Student;
sub new
{

 # shift will take package name 'Student'
 # and assign it to the variable 'class'
 my $class = shift;

 my $self = {
 'name'=> shift,
 'age'=> shift,
 'roll_no' => shift
 };

 # Bless function to bind the object to class
 bless $self, $class;

 # returning object from the constructor
 return $self;
}

Method for the displaying the details
sub get_details
{
 my $self = shift;

 print "The Name is: $self->{'name'}\n";
 print "The Age is: $self->{'age'}\n";
 print "The Roll_no is: $self->{'roll_no'}";
}

The Object creation and calling
my $obj1 = Student->new("Rohini", 27, 15);
$obj1->get_details();

If there is a need to access the class’ data for any modifications or simply
to print the class’ data in the above code, it cannot be done directly. It is

Object-Oriented Programming in Perl ◾ 205

essential to create an object of that class and then use the get_details()
method to access the data. This is referred to as Data Encapsulation.

The benefits of encapsulation are:

• Data-hiding: The user will be unsure of the inner implementation
of the class. The user cannot see how the class stores data in its vari-
ables. They are just conscious that we are giving values to accessors,
and variables are being initialized with those values.

• Enhanced flexibility: We may make the class variables read-only or
write-only depending on our needs. To make variables read-only, we
need to utilize Get Accessor in the code. To make variables read-
only, we must only utilize the Set Accessor.

• Reusability: Encapsulation also promotes reusability and makes it
simple to adapt to new needs.

• Verifying code is simple: Encapsulated code is simple to unit test.

This chapter covered OOP in Perl with classes and objects, methods,
constructors, and destructors. Furthermore, we discussed method over-
riding, inheritance, polymorphism, and encapsulation.

NOTE
 1. Perl | Constructors and Destructors.

https://taylorandfrancis.com

207DOI: 10.1201/9781003358442-8

C h a p t e r 8

Subroutines in Perl

IN THIS CHAPTER

 ➢ Function Signature

 ➢ Passing Complex Parameters to a Subroutine

 ➢ Mutable and Immutable parameters

 ➢ Multiple Subroutines

 ➢ Use of return() Function

 ➢ Pass By Reference

 ➢ Recursion

In the previous chapter, we discussed object-oriented programming in
Perl, and in this chapter, we will cover subroutines.

SUBROUTINES OR FUNCTIONS
A Perl function or subroutine is a collection of statements that execute
a specific purpose. In any programming language, code reuse is desired.
Therefore, the user places the chunk of code in a function or subroutine to
eliminate the need to write code repeatedly. In Perl, the phrases function,
subroutine, and method are synonymous, although they are distinct in
other programming languages. The term subroutines is the most common
in Perl programming since it is formed with the keyword sub. Whenever
a function is called, Perl suspends the execution of the whole program,

https://doi.org/10.1201/9781003358442-8

208 ◾ Mastering Perl

jumps to the function to execute it, and then returns to the previous area
of code. One need not use the return statement.

Determining Subroutines

The general form of subroutine definition in Perl is as follows:

sub subroutinename
{
 # body of the method or subroutine
}

Calling Subroutines

Subroutines in Perl can invoke by passing the arguments list to it as follows:

subroutinename(arugumentslist);

The method described above will only work with Perl versions 5.0 and
later. There was another way to call the subroutine before Perl 5.0, but it is
not recommended because it bypasses the subroutine prototypes.

&subroutinename(arugumentslist);

Example:

Program to demonstrate
the subroutine declaration and calling

#!/usr/bin/perl

defining-subroutine
sub ask_user {
print "Hello Everyone\n";
}

calling-subroutine
we can also use
&ask_user();
ask_user();

Passing Parameters to Subroutines

This is used to pass values as arguments to subroutines. This is accom-
plished using the special list array variables “$_.” This will be assigned to
the functions as $_[0], $_[1], etc.

Subroutines in Perl ◾ 209

Example:

Program to demonstrate
the Passing parameters to subroutines

#!/usr/bin/perl

defining-subroutine
sub area
{
 # passing-argument
 $side = $_[0];

 return ($side * $side);
}

calling-function
$totalArea = area(4);

displaying-result
printf $totalArea;

Subroutines have the following advantages:

• It allows us to reuse code and makes error detection and debugging
easier.

• It aids in the structural organization of the code.

• Sections of code are organized in chunks.

• It improves code readability.

A Perl function or subroutine is a collection of statements that perform
a specific task. Every programming language user wishes to reuse code. So
the user puts the code section in a function or subroutine to avoid having
to write the code repeatedly. We will go over the following ideas:

• Hashes are passed to subroutines.

• Lists are passed to subroutines.

• Returning value from subroutine local and global variables.

• Variable number of parameters in a subroutine call.

210 ◾ Mastering Perl

Passing Hashes to Subroutines

A hash can also be passed to subroutines, which convert it to its key-value
pair.

Example:

Perl program to demonstrate the
passing of hash to subroutines

#!/usr/bin/perl

Subroutine-definition
sub Display_hash {

hash variable to store the
passed arguments
my (%hash_var) = @_;

to display passed list elements
foreach my $key (keys %hash_var)
{
 my $val = $hash_var{$key};
 print "$key : $val\n";
}
}

defining-hash
%hash_para = ('Subject' => 'Perl Programing',
'Marks' => 69);

calling Subroutine with the hash parameter
Display_hash(%hash_para);

Passing Lists to Subroutines

Because @_ is a special array variable within a function or subroutine, it is
used to pass lists to the subroutine. Perl accepts and parses arrays and lists
differently, making it difficult to extract the discrete element from @_. To
pass a list along with the other scalar arguments, the list must be passed as
the last argument.

Subroutines in Perl ◾ 211

Example:

program to demonstrate
passing of lists to subroutines

#!/usr/bin/perl

Subroutine-definition
sub Display_List {

array variable to store the
passed arguments
my @para_list = @_;

to print passed list elements
print "Given list is @para_list\n";
}

passing the scalar argument
$sc = 100;

passing-list
@li = (20, 30, 40, 50);

Calling Subroutine with the scalar
and list parameter
Display_List($sc, @li);

Returning a Value from a Subroutine

A subroutine, like any other programming language, can return a value.
If the user does not manually return a value from the subroutine, the sub-
routine will return a value automatically. In this case, the automatically
returned value will result from the last calculation performed in the sub-
routine. The result can be a scalar, an array, or a hash.

Example:

Program to demonstrate
the returning values subroutine

#!/usr/bin/perl

subroutine-definition
sub Sum {

212 ◾ Mastering Perl

To get total number
of the parameters passed.
$num = scalar(@_);
$s = 0;

foreach $i (@_)
{
 $s += $i;
}

returning-sum
return $s;
}

subroutine calling and storing the result
$result = Sum(40, 4, 50);

displaying the result
print "Sum of given numbers : $result\n";

Local and Global Variables in Subroutines

By default, all variables within a Perl program are global variables. However,
using my keyword, you can create local or private variables within a block.
A private variable has a limited scope, such as between blocks (if, while,
for, foreach, and so on) and methods. These variables cannot be used out-
side of a block or method.

Example:

program to demonstrate the Local
and Global variables in the subroutine

#!/usr/bin/perl

Global variable
$str = "PeeksforPeeks";

subroutine-definition
sub Peeks {

Private variable by using my
keyword for Peeks function
my $str;

Subroutines in Perl ◾ 213

$str = "PFP";
print "Inside Subroutine: $str\n";
}

Calling-Subroutine
Geeks();

print "Outside Subroutine: $str\n";

A Varying Number of Parameters in a Subroutine Call

Perl does not include any built-in facilities for declaring the parameters of
a subroutine, making it very simple to pass any number of parameters to
a function.

Example:

program to demonstrate the variable
number of parameters to the subroutine

#!/usr/bin/perl

use strict;
use warnings;

defining-subroutine
sub Multiplication {

 # private variable containing
 # the default value as 1
 my $mul = 1;

 foreach my $val (@_)
 {
 $mul *= $val;
 }

 return $mul;
}

214 ◾ Mastering Perl

Calling the subroutine with 4 parameters
print Multiplication(9, 4, 2, 5);

print "\n";

Calling subroutine again but
with the 3 parameters
print Multiplication(4, 6, 3);

In general, passing more than one array or hash as a parameter to
a subroutine causes it to lose its distinct identity. Likewise, returning
more than one array or hash from a subroutine results in the loss of
their distinct identities. We can solve these issues by making use of
references.

FUNCTION SIGNATURE IN PERL
A Perl function or subroutine is a collection of statements that perform a
specific task. Every programming language user wishes to reuse code. So
the user places the code section in a function or subroutine to avoid having
to write the code repeatedly. Although the terms function, subroutine, and
method are interchangeable in Perl, they are not in other programming
languages. Because it is created with the keyword sub, the terms subrou-
tines are commonly used in Perl programming. When a function is called,
Perl stops executing its entire program and jumps to the function to exe-
cute it before returning to the section of code that was previously running.
The return statement can be avoided.

Defining Subroutines

In Perl, the general form of defining a subroutine is as follows:

sub subroutinename
{
 # body of the method or subroutine
}

Function Signature

When a function is constructed, a set of parameters is also provided
inside the parenthesis to specify the sort of arguments the function will
receive on its call. This function signature may include one or several
arguments.

Subroutines in Perl ◾ 215

A subroutine or function with a defined signature can only accept
arguments of the type specified in its signature. An error will occur if the
inputs given to the procedure do not match its signature. A function sig-
nature reveals a great deal about the subroutine type. It allows the user to
create subroutines with the same name but distinct signatures, i.e. differ-
ent arguments. Different subroutines may have the same name in Perl, but
their arguments must be distinct.

Example:

sub examplefunc($variable)
{
 statement;
}

sub examplefunc($variable1, $variable2)
{
 statement;
}

In the above code, the names of the subroutines are identical, but their
parameter counts are distinct; as a result, they are not deemed to be dis-
tinct subroutines, and our Perl code will not raise an error.

Passing Parameters of a Type other than that Specified in the Signature

When a subroutine is defined with a signature, it must take arguments of the
same type as its signature. If an argument different than the function signa-
ture is given, an error will be generated, causing the code compilation to fail.

Example:

#!/usr/bin/perl

Defining the Function Signature
sub example(Int $variable)
{
 return $variable / 2;
}

Function-Call
print example(66);

216 ◾ Mastering Perl

If we pass an argument of a type other than the function signature, the
following error will be generated:

#!/usr/bin/perl

Defining the Function Signature
sub example(Int $variable)
{
 return $variable / 2;
}

Function Call with the
string type parameter
print example("66");

Difference in Number of Arguments

When a function signature is defined, it also includes the number and type
of arguments that can be passed to it. If we call the function with a differ-
ent number of arguments, Perl will throw an error because functions with
different signatures have different meanings.

Example:

#!/usr/bin/perl

Defining Function-Signature
sub example(Int $variable)
{
 return $variable / 2;
}

Function Call with the
two arguments
print example(66, 49);

Function signature is a useful feature, but it can be very annoying for some
programmers because it restricts the use of the function to a specific type
of parameter. There are no restrictions on the type of parameters that can
pass to the function if it is defined without a signature.

Subroutines in Perl ◾ 217

Example:

#!/usr/bin/perl

Defining Function-Signature
sub example($variable)
{
 return $variable / 2;
}

Function Call with the Integer argument
written as string type
print example("66");

The above code declares a function with no specific argument type, so
when an integer value is passed to it as a string, it automatically converts
the argument to integer form and returns the result. However, if we call
the function with a string argument and the operation to be performed on
it requires an integer value, we will get the following error:

#!/usr/bin/perl

Defining Function-Signature
sub example($variable)
{
 return $variable / 2;
}

Function Call with the
string type argument
print example("Peeks");

PASSING COMPLEX PARAMETERS TO A SUBROUTINE
A Perl function or subroutine is a collection of statements that perform
a specific task. The user wants to reuse code in every programming lan-
guage. So the user places the code section in a function or subroutine to
avoid having to rewrite the same code repeatedly. As a result, function or
subroutine is used in all programming languages. These functions or sub-
routines can accept various data structures as parameters. Some of these
are discussed further below:

• Passing lists or arrays to a subroutine

• Passing references to a subroutine

218 ◾ Mastering Perl

• Passing file handles to a subroutine

• Passing hashes to a subroutine

Passing arrays or lists to a subroutine: An array or list can be passed as
a parameter to the subroutine, and an array variable @_ is used to accept
the list value inside the subroutine or function.

First example: A single list is passed to the subroutine, and its elements
are displayed.

#!/usr/bin/perl

Defining-Subroutine
sub Display_List
{

 # array variable to store the
 # passed arguments
 my @List1 = @_;

 # Printing passed list elements
 print "Given list is @List1\n";
}

Driver-Code

passing-list
@list = (1, 2, 3, 4);

Calling the Subroutine with
list-parameter
Display_List(@list);

Second example: In this case, two lists are passed to the subroutine,
and their contents are displayed.

#!/usr/bin/perl

Defining-Subroutine
sub Display_List

Subroutines in Perl ◾ 219

{

 # array variable to store
 # the passed arguments
 my @List3 = @_;

 # Printing the passed lists' elements
 print "The Given lists' elements are @List3\n";
}

Driver-Code

passing lists
@List1 = (11, 12, 13, 14);
@List2 = (20, 30, 40, 50);

Calling Subroutine with
the list parameters
Display_List(@List1, @List2);

Third example: A scalar argument and a list are passed to the subrou-
tine, and the list elements are displayed.

#!/usr/bin/perl

Defining-Subroutine
sub Display_List
{

 # array variable to store
 # passed arguments
 my @List2 = @_;

 # Printing passed list and scalar elements
 print "The List and scalar elements are @List2\n";
}

Driver-Code

passing lists
@List = (11, 12, 13, 14);

220 ◾ Mastering Perl

passing the scalar argument
$scalar = 100;

Calling Subroutine with
the list parameters
Display_List(@List, $scalar);

Passing references to subroutines: References can also be passed as
parameters to subroutines. The array reference is passed to the subroutine,
and the maximum value of the array elements is returned.

Example:

#!/usr/bin/perl
use warnings;
use strict;

Creating an array of the some elements
my @Array = (20, 30, 40, 50, 60);

Making reference to the above array
and calling the subroutine with
reference of the array as the parameter
my $m = max(\@Array);

Defining-subroutine
sub max
{

 # Getting array elements
 my $Array_ref = $_[0];
 my $k = $Array_ref->[0];

 # Iterating over each element of
 # the array and finding maximum value
 for(@$Array_ref)
 {
 $k = $_ if($k < $_);
 }
 print "Max of @Array is $k\n";
}

Subroutines in Perl ◾ 221

Passing a hash to a subroutine: A hash can also be passed as a parameter to
a subroutine, which displays its key-value pair.

Example:

#!/usr/bin/perl

Subroutine-definition
sub Display_Hash
{

 # Hash variable to store the
 # passed arguments
 my (%Hash_var) = @_;

 # Displaying passed list elements
 foreach my $key (keys %Hash_var)
 {
 my $value = $Hash_var{$key};
 print "$key : $value\n";
 }
}

Driver-Code

defining hash
%Hash = ('Company' => 'PeeksforPeeks',
 'Location' => 'Delhi');

calling Subroutine with the hash parameter
Display_Hash(%Hash);

Passing file handles to a subroutine: To create a file or access its contents,
a FileHandle is required. A FileHandle is nothing more than a structure
used with the operators to access the file in a specific mode, such as read-
ing, writing, appending, and so on. FileHandles can also be passed as a
parameter to a subroutine to perform various operations on Files.

A FileHandle is passed to a subroutine in the following example:

Example:

#!/usr/bin/perl

sub printem

222 ◾ Mastering Perl

{
 my $file = shift;

 while (<$file>) {
 print;
 }
}

open(fh, "Hello1.txt") or die "File '$filename'
cannot be opened";

printem *fh;

MUTABLE AND IMMUTABLE PARAMETERS
A Perl function or subroutine is a collection of statements that perform
a specific task. The user wants to reuse code in every programming lan-
guage. So the user places the code section in a function or subroutine to
avoid having to write the code repeatedly. These subroutines have param-
eters that define the type and number of arguments that can be passed to
the function when it is called. These arguments are used to evaluate the
values passed to the function using the function’s expressions. These val-
ues are then passed to the calling function and returned to the specified
parameters.

Example:

sub Function1(parameter-1, parameter-2)
{ statement; }

Mutable Parameters

These are parameters, the values of which are changed inside the function
to which they have been passed.

It indicates that when a parameter is supplied to a function through the
caller function, its value is tied to the parameter in the called function,
thus any changes made to the value in the called function will also be
reflected in the parameter passed by the caller function.

Immutable Parameters

These arguments are of those kinds, the values of which cannot be altered
inside the function to which they are supplied. It indicates that the

Subroutines in Perl ◾ 223

subroutine gets a value rather than a variable when a parameter is supplied
to the function through the caller function. Consequently, any modifica-
tions to the function parameter are not reflected.

Perl’s subroutine parameters are immutable by default, meaning they
cannot modify inside a function, and one cannot inadvertently alter the
arguments of the calling function. In specific programming languages,
this is referred to as “call by value,” which indicates that the subroutine
being called gets a value rather than the variable, so the parameters of the
calling function are not altered.

Example:

#!/usr/bin/perl

Function-Definition
sub Func(Int $variable)
{
 # Operation to perform
 $variable /= 2;
}

Defining local variable
my $value = 40;

Function Call with the local variable
print Func($value);

Traits are used to change the properties of these parameters. The value of a
parameter can be changed within a subroutine using traits.

Traits

These are predefined built-in subroutines that alter the method’s behav-
ior when run at compile time when used within a method. Traits can
even be used to modify the method’s body or tag the method with
metadata.

Depending on their usage, traits can be of various types, such as:

• is cached trait automatically caches the function’s return value based
on the arguments passed to it.

• is rw trait enables writable accessors to subroutine parameters.

224 ◾ Mastering Perl

• is copy trait allows us to change the value of a parameter within a
subroutine but not the argument in the caller function.

Example: Use of the is copy trait

#!/usr/bin/perl

Function Definition using the
'is copy' trait
sub Func(Int $variable is copy)
{
 # Operation to be performed
 $variable += 5;
}

Defining the local variable
my $value = 20;

Function Call with the local variable
print Func($value), "\n";

Checking if
the $value gets updated or not
print $value;

Because Perl does not allow the modification of arguments within a
subroutine by default, the copy trait is used in the above code. This trait
enables the program to assign the caller function’s parameter value to the
subroutine being called a parameter. This trait, however, will only affect
the value of the argument in the called function.

Example: Use of the is rw trait

#!/usr/bin/perl

Function Definition using the
'is rw' trait
sub Func(Int $variable is rw)
{
 # Operation to perform
 $variable += 5;
}

Subroutines in Perl ◾ 225

Defining local variable
my $value = 20;

Function Call with the local variable
print Func($value), "\n";

Checking if
the $value gets updated or not
print $value;

When is rw is used instead of is copy trait in the preceding code, the
value of argument passed in the caller function is also updated.

When the is rw trait is used, the argument of the called function is bound
with the argument of the caller function, so if the former value changes,
the latter is immediately updated. This is because a process known as “call
by reference.” Because both arguments refer to the same memory location
(because of the is rw trait); as a result, the parameters are fully mutable.

MULTIPLE SUBROUTINES
A Perl function or subroutine is a collection of statements that perform a
specific task. Every programming language user wishes to reuse code. So
the user places the code section in a function or subroutine to avoid having
to write the code repeatedly.

Although the terms function, subroutine, and method are interchange-
able in Perl, they are not in other programming languages. Because it is cre-
ated with the keyword sub, the terms subroutines are commonly used in Perl
programming. When a function is called, Perl stops executing its entire pro-
gram and jumps to the function to execute it before returning to the section
of code that was previously running. The return statement can be avoided.

Subroutine Definition

In Perl, the general form of defining a subroutine is as follows:

sub subroutine_name
{
 # body of the method or subroutine
}

Because Perl allows you to write multiple subroutines with the same
name unless they have different signatures, a program in Perl can contain

226 ◾ Mastering Perl

multiple subroutines with the same name without generating an error.
This can be defined by varying the arity of each subroutine with the same
name.

Subroutine arity: Perl subroutines can have the same name as long as
they have a different set of arity. The number of arguments a subroutine
has is referred to as its arity. These arguments could be of a different data
type or not. The Perl program will not generate an error as long as the
number of subroutines differs.

Use of the “multi” Keyword

The keyword “multi” can use to create multiple subroutines in Perl. This is
useful for creating multiple subroutines with the same name.

Example:

multi Func1($var){statement};
multi Func1($var1, $var2){statement-1;
statement-2;}

Multiple subroutines are commonly used to create built-in functions and
most operators in a programming language such as Perl. The program’s
complexity is reduced by not using different names for each other sub-
routine. Whatever code statement is required, simply pass the number of
arguments for that function, and the work will be completed. In this case,
compiler will select the version of the subroutine, the function signature of
which matches the one invoked.

Various programs, such as factorial of a number, Fibonacci series, and
so on, require the use of more than one function to solve the problem. The
use of multiple subroutines will aid in the reduction of the complexity of
such programs.

First example: Fibonacci series sum

#!/usr/bin/perl
Program to print sum of the fibonacci series

Function for the $n = 0
multi Fibonacci_func(0)
{
 1; # returning 1
}

Subroutines in Perl ◾ 227

Function for the $n = 1
multi Fibonacci_func(1)
{
 1; # returning 1
}

Recursive function to calculate the Sum
multi Fibonacci_func(Int $n where $n > 1)
{
 Fibonacci_func($n - 2) +
 Fibonacci_func($n - 1);
}

Printing sum
using the Function Call
print Fibonacci_func(27);

To calculate the sum of Fibonacci series, the preceding example employs
multiple subroutines.

Second example: A number factorial

#!/usr/bin/perl
Program to print factorial of number

Factorial of 0
multi Factorial(0)
{
 1; # returning 1
}

Recursive Function
to calculate the Factorial
multi Factorial(Int $n where $n > 0)
{
 $n * Factorial($n - 1); # Recursive-Call
}

Printing result
using the Function Call
print Factorial(25);

In the preceding examples, the program declares multiple subroutines
with the same name but different arity using the “multi” keyword.

228 ◾ Mastering Perl

return() FUNCTION
In Perl, the return() function returns value at the end of a subroutine,
block, or do function. The returned value could be a scalar, an array, or a
hash depending on the context.

Syntax: return Value

Returns:
a List in the Scalar Context

If no argument is passed to the return function, it returns an empty
list in the list context, undef in the scalar context, and nothing in the void
context.

First example:

#!/usr/bin/perl -w

Subroutine for the Multiplication
sub Mul($$)
{
 my($x, $y) = @_;
 my $z = $x * $y;

 # Return-Value
 return($x, $y, $z);
}

Calling in Scalar context
$retval = Mul(35, 20);
print ("The Return value is $retval\n");

Calling in the list context
@retval = Mul(35, 20);
print ("The Return value is @retval\n");

Second example:

#!/usr/bin/perl -w

Subroutine for the Subtraction
sub Sub($$)

Subroutines in Perl ◾ 229

{
 my($x, $y) = @_;

 my $z = $x - $y;

 # Return Value
 return($x, $y, $z);
}

Calling in the Scalar context
$retval = Sub(35, 20);
print ("The Return value is $retval\n");

Calling in the list context
@retval = Sub(35, 20);
print ("The Return value is @retval\n");

REFERENCES IN PERL
Variables are used in Perl to access data stored in memory (all data and
functions are stored in memory). Variables are given data values that are
then used in various operations. Perl reference allows you to access the
same data but through a different variable. In Perl, a reference is a sca-
lar data type that holds the location of another variable. Other variables
include scalars, hashes, arrays, function names, and so on. Nested data
structures are simple to construct because a user can create a list that con-
tains references to another list that contains references to arrays, scalar,
hashes, and so on.

Making a Reference

We can make references to scalar value, hash, array, function, and so on.
To make a reference, define a new scalar variable and prefix the variable’s
name (the reference of which we want to make) with a backslash.

Making references to different data types:

Array-Reference

defining-array
@array = ('1', '2', '3');

making reference of the array variable
$reference_array = \@array;

230 ◾ Mastering Perl

Hash-Reference

defining-hash
%hash = ('1'=>'a', '2'=>'b', '3'=>'c');

make reference of hash variable
$reference_hash = \%hash;

Scalar Value Reference

defining-scalar
$scalar_val = 2431;

making reference of the scalar variable
$reference_scalar = \$scalar_val;

Notes:

• The curly brackets {} around key and value pairs can be used to create
a reference to an anonymous hash.

Example:

creating reference to the anonymous hash
$ref_to_anonymous_hash = {'PFP' => '1', 'Peeks'
=> '2'};

• The square brackets [] can use to create a reference to an anonymous
array.

Example:

creating reference to anonymous array
$ref_to_anonymous_array = [30, 40, ['P', 'F',
'P']];

• Sub can also be used to create a reference to an anonymous subrou-
tine. There will be no name for the sub here.

Example:

creating reference to anonymous subroutine
$ref_to_anonymous_subroutine = sub { print
"PeeksforPeeks\n"};

• It is not possible to create reference to an input/output handle, such
as dirhandle or FileHandle.

Subroutines in Perl ◾ 231

Dereferencing

Now that we’ve made the reference, we must use it to get to the value.
Dereferencing is a method of gaining access to the value in the memory
pointed to by the reference. Depending on the type of variable, we use pre-
fix $, @, percent, or & to dereference (reference can point to a array, scalar,
hash, etc.).

First example:

Program to illustrate
Dereferencing of an Array

defining an array
@array = ('1', '2', '3');

making reference to an array variable
$reference_array = \@array;

Dereferencing
printing value stored
at $reference_array by prefixing
@ as it is array reference
print @$reference_array;

Second example:

program to illustrate
the Dereferencing of a Hash

defining hash
%hash = ('1'=>'a', '2'=>'b', '3'=>'c');

creating reference to hash variable
$reference_hash = \%hash;

Dereferencing
printing value stored
at $reference_hash by prefixing
% as it is a hash reference
print %$reference_hash;

232 ◾ Mastering Perl

Third example:

program to illustrate
Dereferencing of Scalar

defining scalar
$scalar = 2431;

creating reference to scalar variable
$reference_scalar = \$scalar;

Dereferencing
printing value stored
at $reference_scalar by prefixing
$ as it is Scalar reference
print $$reference_scalar;

PASS BY REFERENCE
When variable is passed by reference, the function operates on the func-
tion’s original data. The function can change the original value of a vari-
able by passing it by reference.

When the values of the elements in the argument arrays @_ are changed,
so do the values of the corresponding arguments. This is what parameter
passing by reference accomplishes.

In the following example, updating the elements of an array @a in subrou-
tine sample changes the value of the parameters, which is reflected through-
out the program. As a result, when parameters are referenced, changing
their value in the function changes their value in the main program.

First example:

#!/usr/bin/perl

Initialising array 'a'
@a = (0..10);

Array before the subroutine call
print("The Values of an array before function
call: = @a\n");

calling subroutine 'sample'
sample(@a);

Subroutines in Perl ◾ 233

Array after the subroutine call
print("The Values of an array after function call:
= @a");

Subroutine to represent
Passing by Reference
sub sample
{
 $_[0] = "A";

 $_[1] = "B";
}

The program operates as follows:

• An array with the values ranging from 0 to 10 is defined.

• This array is then passed to the “sample” subroutine.

• A subroutine called “sample” has already been defined. The first and
second parameters’ values are changed within this via the argument
array @_.

• After calling the subroutine, the values of the array @a are displayed.
The first two scalar values are now updated to A and B, respectively.

Second example:

#!/usr/bin/perl

Initializing values to scalar
variables x and y
my $x = 10;
my $y = 20;

Values before the subroutine call
print "Before calling the subroutine x = $x,
y = $y \n";

Subroutine call
sample($x, $y);

Values after the subroutine call
print "After calling the subroutine x = $x, y = $y ";

234 ◾ Mastering Perl

Subroutine sample
sub sample
{
 $_[0] = 1;
 $_[1] = 2;
}

PERL RECURSION
Recursion is a mechanism that allows a function to call itself repeatedly
until the required condition is met. When the function call statement is
written within the same function, the function is said to be recursive.

The argument passed to a function is retrieved from default array @_,
with each value accessible via $_[0], $_[1], and so on.

First example: The following example computes the factorial of a number.

The Factorial of any number n is
(n)*(n-1)*(n-2)*....*1.
e.g.:
4! = 4*3*2*1 = 24
3! = 3*2*1 = 6
2! = 2*1 = 2
1! = 1
0! = 0

#!/usr/bin/perl

Program to calculate Factorial
sub fact
{

Retrieving first argument
passed with the function-calling
my $x = $_[0];

checking if value is 0 or 1
if ($x == 0 || $x == 1)
{
 return 1;
}

Recursively calling function with next value
which is one less than current one

Subroutines in Perl ◾ 235

else
{
 return $x * fact($x - 1);
}
}

Driver-Code
$a = 5;

Function call and printing the result after return
print "The Factorial of a number $a is ", fact($a);

The program works as follows:

• Step 1: When the value of scalar a is 0 or 1, the function returns 1
because both 0! and 1! are 1.

• Step 2: If the value of the scalar a is 2, then fac(x-1) calls fac(1), which
returns 1.

As a result, 2*factorial(1) = 2*1 = 2.
As a result, it will return 2.

• Step 3: Similarly, when higher values are passed to the function, the
argument value decreases by 1 with each call and computes until the
value reaches 1.

Second example: The following example computes the Fibonacci series
up to a given number.

#!/usr/bin/perl

Program to print Fibonacci series
sub fib
{
 # Retrieving values from parameter
 my $c = shift;
 my $d = shift;

 # Number till which the series is to print
 my $n = shift;

 # Check for end value
 if ($d > $n)

236 ◾ Mastering Perl

 {
 return 1;
 }

 # Printing number
 print " $d";

 # Recursive Function Call
 fib($d, $c + $d, $n);
}

Driver Code

Number till which series is to print
$m = 5;

First two elements of series
$x = 0;
$y = 1;

print "$x";

Function call with the required parameters
fib($x, $y, $m);

Here’s how the program works:

• Step 1: The function fib() is called with 3 parameters, the first two
of which are 0 and 1, while $n is number till which series is to be
printed.

• Step 2: These values are transferred in the form of an array, the con-
tents of which are retrieved using shift.

• Step 3: For each call, the first two values are retrieved using shift and
stored in scalars c and d. These two values are now added to yield the
next value in the series. This step is repeated until the value reaches
the end value specified by the user.

In this chapter, we covered subroutines in Perl where we discussed func-
tion signature, passing complex parameters to a subroutine, and mutable
and immutable parameters. Moreover, we discuss multiple subroutines
use of return() function, pass by reference, and recursion.

237DOI: 10.1201/9781003358442-9

Appraisal

Perl is a widely used cross-platform, open-source programming language
in both the commercial and private computing industries. Perl was favored
by Web developers in the late 20th and early 21st centuries because of its
adaptable text-processing and problem-solving skills.

Larry Wall, an American programmer and linguist, published Perl 1.0
for Unix-based computers for the first time in December 1987. This early
version of Perl was an intuitive, easily coded language for reading, extract-
ing, and printing information from text files; it was also capable of doing
other systems management tasks. Perl, which is frequently believed to stand
for “practical extraction and report language,” was inspired by existing pro-
gramming languages, such as C, BASIC, and AWK, but its wide usage of
common English terminology reflected Wall’s linguistic background. Perl
was a milestone product in promoting the open-source model, a collabora-
tive approach to software development as opposed to a proprietary one.

Perl is a programming language designed for script manipulation.
However, Perl is now used for a wide range of purposes, including web
development, graphical user interface (GUI) development, system admin-
istration, and many others. It is a reliable and cross-platform program-
ming language.

Perl CGI is used for web development. CGI is the system gateway that
communicates with the web browser and Perl.

Its most common application is extracting information from a text file
and printing a report to convert a text file into another format. This is
due to its name being derived from the phrase “Practical Extraction and
Report Language.”

Perl scripts are programs written in Perl, whereas Perl programs are sys-
tem programs that execute Perl scripts. Perl is a scripting language. When
we run a Perl program, it is first compiled into byte code and then con-
verted into machine instructions. Writing something in Perl rather than
C saves time.

https://doi.org/10.1201/9781003358442-9

238 ◾ Appraisal

It works with the vast majority of operating systems and is included
in the Oxford English Dictionary. It borrows concepts and syntax from
a variety of languages, including AWK, bourne shell, C, sed, and even
English.

HISTORY OF PERL
Larry Wall created Perl in 1987 as a scripting language to help with report
processing.

On December 18, 1987, it was released in version 1.0.
Perl 2 was released in 1988, and it included a much improved regular

expression engine.
Perl 3 was released in 1989, and it included support for binary data

streams.
Perl 4, released in 1991, had better documentation than previous

versions.
On October 17, 1994, Perl 5 was released. Its most recent version included

many new features, such as objects, variables, references, and modules.
The most recent version, 5.24, was released on May 9, 2016.

FEATURES OF PERL
It has a straightforward object-oriented programming syntax.

It can easily expand because it supports 25,000 open-source modules.
Unicode is supported.
It includes powerful tools for processing text to make it compatible with

mark-up languages, such as HTML and XML.
It supports third-party databases, such as Oracle and MySQL.
It can embed in other systems like web servers and database servers.
It is GNU-licensed open-source software.
Perl is used to write many frameworks.
It is capable of processing encrypted web data, including e-commerce

transactions.
It is a platform-independent language.
It includes a regular expression engine that can transform any type of

text.

LICENSING FOR PERL
Larry Wall owns the copyright (C) to Perl 5. It is free and open-source
software. It may be redistributed or modified under the terms of the GNU
and Artistic Licenses.

Appraisal ◾ 239

The GNU General Public License offers its users free and open-source
software. Any program derived from GNU-licensed source code must use
the same license.

According to the Artistic license, a package derived from Perl must
clearly highlight its modifications. The original module, as well as the
derived one, should be distributed. Above all, the original author must
be acknowledged as the package’s owner. Users should able to distinguish
between original and derived modules.

PERL AND THE WEB
Because of its text manipulation capabilities and quick development cycle,
Perl was once the most popular web programming language.

Perl is commonly referred to as “the duct tape of the Internet.”
Perl is capable of processing encrypted Web data, including e-com-

merce transactions.
Perl can be embedded in web servers to speed up processing by up to

2000%.
The Perl module mod Perl enables the Apache web server to include a

Perl interpreter.
Perl’s DBI package simplifies web-database integration.

PERL IS INTERPRETED
Because Perl is an interpreted language, our code can run without being
compiled into a non-portable executable program.

Traditional compilers translate programs into machine code. When
you run a Perl program, it is first compiled into byte code, which is then
converted into machine instructions (as the program runs). As a result, it
differs from shells or Tcl, which are strictly interpreted without an inter-
mediate representation.

It’s also unlike most C or C++ versions, which are compiled directly
into machine-dependent formats. It is in the middle, alongside Python,
AWK, and Emacs. elc files.

ADVANTAGES
Perl has the following advantages:

• Options: Perl users have numerous options for writing programs or
solving problems.

240 ◾ Appraisal

• Flexible: The language’s design and syntax allow users to code in
their preferred programming style.

• Open source: It’s free to use. Anyone can access, develop, and use
Perl on various platforms for free.

• Availability: It comes pre-installed in many places, and the
Comprehensive Perl Archive Network contains over 25,000 Perl
modules. The majority of operating systems also support it.

DISADVANTAGES
The main disadvantage of Perl is that it is a relatively messy language in a
variety of ways:

• Hard to read: It’s difficult to read. According to some developers,
Perl is more difficult to read and less streamlined than newer lan-
guages such as Python. Because of the numerous ways to write a Perl
program, the code can become disorganized and untidy.

• Difficult to debug: Debugging and fixing problems can be difficult
because Perl code can be obscure or messy.

• Flaws in performance: The same flexibility that makes Perl useful
can also make it slow. This is because flexibility can lead to inefficien-
cies and redundancy, making compilation time longer.

PERL VS PYTHON
Perl and Python have a common ancestor. Both were created to make
scripting easier. Perl was created to give Unix scripts a C-like structure.
Python was created to make C easier to use and ready for scripting.

Syntactically, Perl and Python are very similar, and translating from Perl
to Python is relatively simple with only a few significant syntax changes.

However, there are four significant differences:

• A semicolon terminates lines in Perl.

• Python lacks curly braces and indentation, whereas Perl does.

• Variable names in Perl are styled with variables, such as $x, % x, and x. In
Python, variable names are styled without a variable indicator, such as x.

• In Python, the print statement inserts a new line at the end of the
output.

Appraisal ◾ 241

Other differences include:

• Perl can be messy, whereas Python is more streamlined.

• In Perl, numerous ways exist to accomplish a task, whereas Python is
designed to provide a single clear path to any given function.

• Python is more readable than Perl.

• Python is commonly considered one of the best programming
languages to learn and one of the most user-friendly for new
developers.

• Python is a newer programming language than Perl.

• Perl is integrated into the source code of a web application.

• Python is a powerful programming language because of its reputa-
tion as a dynamic programming language with various applications
ranging from web development to machine learning.

• Python has more support in the open-source developer community.

Perl Python

It is a high-level, interpreter-based,
dynamic programming language.

It is a high-level, general-purpose language of
programming with an interpreter.

Perl can download for Unix/Linux,
macOS, or Windows from https://www.
perl.org/get.html.

Python can download for Unix/Linux,
macOS, Windows, and other operating
systems from https://www.python.org/
downloads/.

Perl’s goal was to simplify the report
creation process, which later underwent
many changes and revisions to include
many new features and capabilities.

Python aimed to make writing simple and
logical code for small and large projects and
applications more accessible.

When compared to Python code, Perl
code is not as simple.

Python code is more straightforward and
more understandable.

Perl has outstanding library support and
can handle operations at the OS level
using built-in functions.

To handle such operations, Python requires
the assistance of third-party libraries.

The OOP support available is limited. Python provides excellent support for
object-oriented programming.

Braces are used to mark and identify
code blocks.

Indentation is used to mark and identify code
blocks.

Whitespaces are not crucial in Perl. Whitespaces are significant in Python and can
cause syntax errors.

(Continued)

https://www.perl.org
https://www.perl.org
https://www.python.org
https://www.python.org

242 ◾ Appraisal

It facilitates text processing because Perl
includes support for Regular
expressions.

To handle Regular expressions, Python
requires the use of external functions.

To end a code line in Perl, use a
semicolon(;).

At the end of each code line, semicolons (;)
are not required.

The file extension for Perl is .pl. Python files have the extension. py.

PERL VS JAVA
Larry Wall invented Perl in 1987. Perl supports both object-oriented and
procedural programming. It is similar to C and C++. Perl was initially
designed to process text.

Java is a well-known programming language. Java is both a program-
ming language and a computer platform. Sun Microsystems published
Java in 1995, on the initiative of James Gosling. Oracle claims that java is
used on 3 billion devices worldwide. It is designed to allow developers to
WRITE ONCE, RUN ANYWHERE, which means that a Java application
may be produced on one platform and executed on any other platform that
supports the JVM.

The following are some critical distinctions between Perl and Java:

Feature Perl Java

Introduction “Perl is a general-purpose,
high-level programming
language popular for CGI
scripts.” CPanel and Bugzilla
are two popular Perl projects.
Initially, it was intended to
replace sophisticated shell
scripts.

Java is both a programming
language and a platform for
computing. There are still
programs and websites that will
not operate unless you have Java
installed. It is quick, safe, and
dependable.

Compiled format Perl 6 is compiled to Parrot
Bytecode, whereas Perl 5 and
earlier versions are interpreted
languages. It is saved with the
extension. pbc.

Java applications are translated into
bytecode.

Associative arrays Perl defines associative arrays
extremely succinctly.

Java bytecode may be sent across
the network and then run on any
system that has a JVM. It is saved
with the extension.class.

Perl Python

(Continued)

Appraisal ◾ 243

Focus Perl excels at supporting
common activities like file
scanning and report creation.

There is no concise method to
create associative arrays in Java. It
does, however, hash
implementations.

File extension Programs in Perl are saved with
.pl extension.

Eg: MyFile1.pl

Programs in Java are saved with.
java extension.

Eg: MyFile1.java
Typed method Perl is dynamically typed, which

means that most type checking
occurs during execution.

Java is statically typed, which means
that most of its type checking
occurs at build time.

Comments and
documentation

Inline comments in the Perl are
written using #

E.g. #Inline-Comment in the
Perl

Documentation in Perl is done
using = and =cut.

Eg: =Perl documentation follows
following syntax =cut

Single-line comments in the Java
are declared using //

Eg: //Single-line Comment.
The Multiline comments are written
using /*……*/

Eg: /* it is a multiline comment */
Documentation in Java is done
using.

/**…………*/
Eg:
/**Documentation in the Java*/

End of statement Every statement in Perl must
finish with a semi-colon (;)

Every statement in Java must
conclude with a semi-colon (;)

PERL VS C/C++
Perl is a dynamic, high-level, interpreted, general-purpose programming
language.

It was created in 1987 by Larry Wall. There is no official acronym for
Perl, although “Practical Extraction and Reporting Language” is the most
common.

Some programmers refer to Perl as “Pathologically Eclectic Rubbish
Lister” and “Practically Everything Really Likable.” The abbreviation
“Practical Extraction and Reporting Language” is often used since Perl
was initially designed for text processing, such as extracting the necessary
information from a specific text file and converting the text file to a new
format. Both procedural and object-oriented programming is supported.
C++ is a general-purpose programming language commonly utilized for
competitive programming these days.

It supports imperative, object-oriented, and generic programming.
C++ operates on various platforms, including Windows, Linux, Unix,
and Mac.

Feature Perl Java

244 ◾ Appraisal

Below are a few significant differences between Perl and C/C++:

Feature Perl C/C++

Driver function(main()) Perl does not require an
explicit driver function.

C/C++ code must execute the
main() function in order to
compile.

Compilation process Perl is a programming
language that is
interpreted.

C++ is a language for general-
purpose object-oriented
programming (OOP).

Closures Closures containing
inaccessible private data
can be used as objects in
Perl.

C/C++ does not allow closures,
which may be considered of
functions that can be stored
as variables.

File extension The .pl extension is used to
store Perl scripts. For
instance, perlDocument .pl

The file extensions. c and.cpp
are used to save C and C++
codes, respectively. MyFile.c
and myFile.cpp are two
examples.

Braces Braces must be used
around the “then” part of
an if statement in Perl.

Ex:
if (condition) { statement }

Braces are not required after if
and loops in C/C++.

Ex:
if (condition) statement;

String declaration Strings are declared in Perl
using single quotes.
Double quotes force an
evaluation of the string’s
contents.

Example: $x =
“peeksforpeeks”

To define a string in C/C++,
use double quotes.

Example: string
s =“peeksforpeeks”

Comments In Perl, we utilize # for
inline comments.

e.g. #Inline-Comment in
the Perl

C/C++ uses // for the Inline
comments.

e.g. //Inline-Comment in the
C/C++.

Perl program for adding two numbers:

#!/usr/bin/perl

Perl program for adding two numbers
$choice = 13;
$choice2 = 15;
$res = add($choice, $choice2);
print "Result is $res";

Appraisal ◾ 245

Subroutine to perform
the addition operation
sub add
{
 ($c, $d) = @_;
 $res = $c + $d;
 return $res;
}

Is It Worth Learning?

Perl Excels at text manipulation. It’s a fantastic language for processing
logs, data munging, and pretty much anything else we can do from the
command line. Despite its history as the driving force behind the mon-
strosity that is Perl CGI, there are new frameworks for modern web apps
such as Dancer.

Perl is still a viable option for the modern programming. CPAN is still
operational, and most useful modules are still maintained. Books like
Modern Perl demonstrate how to keep Perl modern while avoiding past
pitfalls.

Keeping Perl Relevant

Perl grew from a “Swiss Army Chainsaw” language to a robust scripting
language for broad purposes. It has developed to the extent where it excels
at certain challenges, but others should be avoided unless we enjoy the
language.

We won’t use it in a GUI, but we won’t ignore it while dealing with
data or a command line unless there’s a compelling reason to do so. The
language continues to be revised, and the current baseline standard is 5.8.
MacOS deploys with Perl, it works on the Linux subsystem for Windows
or through Strawberry Perl for scripting (though it’s probably not anyone’s
first choice), and it’s present on practically every Linux distribution (and
needed by many) and every MacOS installation. It is accessible and stan-
dard on any current POSIX platform, and it can even function properly on
Windows.

We used it as the foundation for a scripting language to solve the lack
of a MacOS RMM tool. On an earlier Mac, there was no installation
required, and it took less than a day to implement. Almost every Mac that
is onboarded uses this scripting engine, which has not been updated in any
significant manner since its first deployment.

246 ◾ Appraisal

What Does Perl Serve?

Perl is used for database management, system administration, and the
development of GUIs. Perl was previously referred to as the “duct tape of the
internet” due to its extensive functionality. It is one of the “P” choices in the
web development LAMP technology stack (the other options are Python
and PHP). The remaining letters represent Linux, Apache, and MySQL.

Here are the primary uses of Perl today:

• The management of systems: Perl may be used to automate or execute
system management duties. These responsibilities include renaming
several files in a directory or modifying a specific text component in
each source file in a directory tree.

• Web development: Perl may be used to develop web apps. We may
utilize frameworks such as Dancer in the Perl web development pro-
cess. Web pages may also be served using Perl.

• Networking programming: We can utilize Perl’s built-in functions
to create client/server applications. Perl also contains modules that
make writing typical networking tasks, such as pinging distant com-
puters, easier.

• Data management on the cloud: Many businesses have relocated
their data to a public cloud nowadays. Perl can assist in cloud data
management and virtual machine administration.

Perl Learning

If we want to work in technology, we should learn Perl. Companies that
use Perl to build their system administration processes, network pro-
grams, and websites require Perl developers. Amazon, Roblox, Venmo,
and MIT are among these companies. Perl experts hold titles like Solutions
Engineer, Software Engineer, Web Developer, and Database Engineer. Perl
is a great way to round out our understanding of current technologies if
we want to work as a coder or system administrator in the tech industry.

Why Should We Study Perl?

Some of the reasons why we should learn Perl are as follows:
Perl is an excellent general-purpose programming language. Perl is

used in a wide range of applications. These include database management,
web development, system administration, and network programming.

Appraisal ◾ 247

Perl is used in intriguing ways. Bioinformatics programmers construct
software for comprehending biological data sets. The expanding subject
of genomics utilizes bioinformatics industry expertise. We may acquire
genomic sequences and investigate population genetics using Perl.

Perl is based on linguistic concepts, and it remains an excellent text-
manipulation language today. Regex, HTML parsing, and JSON manip-
ulation come to mind. Perl can also be used to implement language
processing features such as voice recognition and text-to-speech transla-
tion. Using the widespread Test Anything Protocol, you can also test appli-
cations automatically using Perl (TAP).

In conclusion, knowing Perl will provide us with intriguing options in
our web development profession. Perl coders are in-demand. Once we have
mastered Perl, we may utilize it to fuel our own projects or find employ-
ment. According to the TIOBE Index, a website that evaluates the popular-
ity of programming languages based on search engine results, Perl is now
ranked 17th out of 50 programming languages.

The index incorporates the results of 25 search engines. It counts a num-
ber of hits for a particular programming language, and the number of hits
is used to establish that language’s ranking in the index. This, combined
with other data such as the frequency of job posts that mention Perl, shows
that while Perl is not most popular programming language at the moment,
it is still in use and hence a desirable talent to acquire.

There are over 15,000 job postings on LinkedIn and over 10,000 on
Glassdoor that include Perl. Even while Perl may not be the most popular
programming language today, firms continue to use it to run their web
businesses, and they continue to seek individuals with this skill set.

How Long Does It Take to Learn Perl?

Give yourself three months to learn the fundamentals and begin writ-
ing programs. This assumes that we spend an hour a day learning this
language.

This estimate is based on the fact that it takes about eight weeks to
learn the fundamentals of Python, another scripting language that
debuted around the same time as Perl (1991) and is used for many simi-
lar tasks.

However, one significant difference is that, whereas Python was designed
to have a limited number of ways to perform a task, Perl was designed with
the philosophy of “There’s more than one way to do it.” This means we may
need to devote more time to learning the fundamentals of Perl.

248 ◾ Appraisal

Is Perl Difficult to Learn?

Perl can be challenging for beginners. Having prior experience with other
scripting languages, on the other hand, shortens the learning curve.
Learning Perl will be simple if we have some Python experience.

We must install software and interact with the command line to get
started with Perl. If we’ve never done it before, do it before learning the
Perl syntax. Perl Learn has straightforward installation instructions for all
platforms.

Breakpoints of a Debugger in Perl

Controlling program execution in Perl is accomplished by instructing
the debugger to execute up to a specific point in the program known as a
breakpoint. These breakpoints allow the user to segment the program and
search for errors.

The following debugger commands are used to create such breakpoints,
as well as commands that are executed until a breakpoint is reached.

b-Command
The b-command is used to set a breakpoint in a program. This command
instructs the debugger to stop the program whenever a specific line is
executed.

For instance, the following command instructs the debugger to halt
when it is about to execute line 12:

DB<13> b 12

(If the line is unbreakable, the debugger will return that Line 12 is not
breakable.)

A program can have an unlimited number of breakpoints. When the
debugger is about to execute a statement that contains a breakpoint, the
program will halt.

b-command also accepts subroutine names:

DB<15> b valuedir

This sets a breakpoint at the subroutine valuedir very first executable
statement.

The b-command can also stop a program only when a certain condition
is met.

Appraisal ◾ 249

The following command, for instance, instructs the debugger to
halt when it is about to execute line 12 and variable $vardir is equal
to null:

DB<15> b 12 ($vardir eq "")

The b statement can be used to specify any legal Perl conditional
expression.

A breakpoint can be set at any of the lines in a multiline statement.
As an example:

16: print ("Peeks",
17: " for Peeks here");

Line 16 can be used as a breakpoint, but not line 17.

c-Command
The c-command instructs the debugger to continue debugging until it
reaches a breakpoint or the end of the program.

DB<15> c

main::(debugtest:12): $vardir =~ d/^\d+|\d+$//h;

DB<16>

When the debugger is about to reach line 12, where our breakpoint is
set, the program is halted and the line is displayed, as the debugger always
displays the line that is about to be executed.

The debugger generates a prompt for another debugging command
here. This prompt allows us to continue the execution process one state-
ment at a time by typing n or s, to continue the execution process by typing
c, to set more breakpoints by typing b, or to perform any other debugging
operation.

A temporary (one-time-only) breakpoint can be set using the c-com-
mand and a line number:

DB<15> c 12

main::(debugtest:12): &readsubdirs($vardir);

250 ◾ Appraisal

The c-command argument 12 instructs the debugger to set a tempo-
rary breakpoint at line 12 and then continue execution. When the debug-
ger reaches line 12, it stops the execution process, displays the line, and
removes the breakpoint.

The c-command is used to define a temporary breakpoint when a per-
son wants to skip a few lines of code without wasting execution time by
going through the program one statement at a time. Using c also elimi-
nates the need to use b to define a breakpoint and then delete it with the
d-command.

L Command and Breakpoints

DB<18> L

4: $count = 0;

5: $vardir = "";

6: while (1) {

8: if ($vardir eq "") {

11: $vardir =~ d/^\d+|\d+$//h;

 break if (1)

Lines 4–8 have been executed, and a breakpoint has been set for
line 11. (Line 7 isn’t included because it’s a comment.) Breakpoints can
distinguish from executed lines by examining the conditional expres-
sions immediately following the breakpoint. The conditional expres-
sion, in this case, is set to (1), indicating that the breakpoint is always
effective.

d and D Commands
When a breakpoint’s job is complete, it can delete with the d-command.

DB<16> d 12

The preceding command instructs the debugger to remove the break-
point that was set at line 12.

Appraisal ◾ 251

If no breakpoint is specified to be deleted, the debugger assumes one is
defined for next line to execute and deletes it on its own.

main::(debugtest:12): &readsubdirs($vardir);

DB<17> d

Because line 12 is the next line to be executed, the debugger automati-
cally removes the breakpoint at line 12.

The D-command is used to remove all of the program’s breakpoints.

DB<18> D

The above command removes all breakpoints set with the b command.

Exiting from a Script

Exit() evaluates the passed expression and exits the Perl interpreter,
returning the value as the exit value. The exit() function does not
always immediately exit but rather calls the program’s end routines
before terminating it. If no expression is passed to exit function, the
default value is 0. The exit() function has limited uses and should not
be used to exit from a subroutine. To exit a subroutine, use die or
return.

Syntax:

exit(value)

Parameter: value which is to return on function
call

Returns: value passed to it or 0 if the function
is called without an argument

Example:

Getting user's bid for
an online auction
print "Enter bid";
$bid = <STDIN>;

252 ◾ Appraisal

Exit function return $bid
if bid is less than 1000
if ($bid < 1000)
{
 exit $bid;
}

else
{
 # Prints message if the bid is
 # greater than or equal to 1000
 print "\nThankyou for Participating";
}

Here’s how the code above works:

• Step 1: Ask the user for a bid value.

• Step 2: Exit returns the bid value and terminates the program if the
bid is less than 1000.

• Step 3: This message is printed if the bid is greater than or equal to
1000.

Exit function parameter passing: A parameter can pass to the exit
function and be stored in a variable in the system.

It should note that the value passed to the exit function can be any ran-
dom value; it does not have to be a specific value.

The following example shows how to pass a value to the exit function:

Opening file
if(!open(fh,"<","Filename.txt"))
{
 # This block passing error code 56
 # to exit function indicating a file
 # could not be opened.
 print "Couldn’t open file";
 exit 56;
}

Passing success code 1 to
exit function
exit 1;

Appraisal ◾ 253

The following steps show how the above program works:

• Step 1: Open a file in read-only mode.

• Step 2: If the block executes and it is unable to open a file, it calls an
exit function and sends an error code of 56 to the system.

• Step 3: If the file is successfully opened, it returns 1.

• On Linux/Unix, $? displays the values returned by an exit function.
The terminal command echo $? displays the value returned by an
exit function.

Creating Excel Files

Excel files are the commonly used office application for computer com-
munication. It makes rows and columns of text, numbers, and calculation
formulas. It’s a convenient way to send reports. This demonstration is com-
patible with Linux, Windows, and other platforms. In Excel, rows are num-
bered from 1 to n... and the columns are denoted by letters ranging from A
to C and so on. A1 refers to the top left corner. Padre IDE can be used to cre-
ate Excel files with Perl, but we will also use Excel:: Module Writer::XLSX

Perl employs the write() function to add content to the Excel file.

Syntax:

write(cell-address, content)

Parameters:
cell_address: Address of cell where content is to
add.
content: which is to be added to worksheet.

Making an Excel File
Excel files can be created using the Perl command line, but first, the
Excel::Writer::XLSX module must load.

#!/usr/bin/perl
use Excel::Writer::XLSX;

my $Excelbook = Excel::Writer::XLSX->new('PFP_Sample.
xlsx');
my $Excelsheet = $Excelbook->add_worksheet();

254 ◾ Appraisal

$Excelsheet->write("A1", "Hello");
$Excelsheet->write("A2", "PeeksForPeeks");
$Excelsheet->write("B1", "Next_Column");

$Excelbook->close;

The program operates as follows:
Step 1: Load the Excel::Writer::XLSX module.
Step 2: Make an object called $Excelbook that represents the entire

Excel file.
Step 3: Use the write() method to insert data into the worksheet.
Step 4: Save the file as a .pl extension.
Step 5: Run our .pl file from the command line to generate an Excel

spreadsheet.

Use of the Basic Formulas
Excel allows the use of various mathematical formulae to ease calculations
on spreadsheets, such as balance sheets and business records.

Here is a description of two basic Excel formulas:

• Addition: Excel has a method called “SUM” that allows us to add
values to specific cells.

Syntax:

=SUM(Start, End)

Parameter:
Start: Address of starting cell
End: Address of Ending cell

Returns: summation of values between Starting and
Ending cell.

Example:

#!/usr/bin/perl
use Excel::Writer::XLSX;

Appraisal ◾ 255

my $Excelbook = Excel::Writer::XLSX->new('PFP_
Sample.xlsx');
my $Excelsheet = $Excelbook->add_worksheet();

Writing values at A1 and A2
$Excelsheet->write("A1", 66);
$Excelsheet->write("A2", 57);

Adding without use of the SUM method
$Excelsheet->write("A3", "= A1 + A2");

Addition of Range of cells
$Excelsheet->write("A4", " =SUM(A1:A3)");

• Count: This Excel function counts all the cells in a given range that
contain only numeric values.

Syntax:

=COUNT(Start, End)
Returns: count of all the cells containing the
numeric value

Example:

#!/usr/bin/perl
use Excel::Writer::XLSX;

my $Excelbook = Excel::Writer::XLSX->new('PFP_
Sample.xlsx');
my $Excelsheet = $Excelbook->add_worksheet();

Writing values
$Excelsheet->write("A1", 6);
$Excelsheet->write("A2", 50);
$Excelsheet->write("A3", "Hello");
$Excelsheet->write("A4", 20);

Addition of Range of cells
$Excelsheet->write("A5", "Count =");
$Excelsheet->write("B5", "=COUNT(A1:A4)");

256 ◾ Appraisal

Adding Colors to the ExcelSheet
Colors can use in Excel Sheets to differentiate between different values.
The add_format() method is used to specify these colors.

Syntax:

add_format(color=> 'colorname')

Example:

#!/usr/bin/perl
use Excel::Writer::XLSX;

my $Excelbook = Excel::Writer::XLSX->new('PFP_
Sample.xlsx');
my $Excelsheet = $Excelbook->add_worksheet();

Setting value of color
my $color1 = $Excelbook->add_format(color=>
'black',);
my $color2 = $Excelbook->add_format(color=>
'yellow',);
my $color3 = $Excelbook->add_format(color=>
'blue',);

$Excelsheet->write("A2", "Peeks", $color1);
$Excelsheet->write("B2", "For", $color2);
$Excelsheet->write("C2", "Peeks", $color3);
$Excelbook->close;

Values Are Added at Specific Coordinates
Values can add at specific coordinates by specifying the cell’s address
where the value is to be added.

Syntax:

write(R,C, "value")
Parameters:
R and C are the coordinates of Row and Column,
respectively.

Appraisal ◾ 257

Example:

#!/usr/bin/perl
use Excel::Writer::XLSX;

my $Excelbook = Excel::Writer::XLSX->new('PFP_
Sample.xlsx');
my $Excelsheet = $Excelbook->add_worksheet();

$Excelsheet->write(0, 0, "Hello");
$Excelsheet->write(1, 0, "PeeksForPeeks");
$Excelsheet->write(3, 2, "Welcome!");

$Excelbook->close;

Reading Excel Files

Excel sheets are one of the most popular methods for keeping office
records, mainly when working on applications where non-developers and
even managers can provide input to the systems in batches.

However, the problem is reading the content of a Microsoft Excel file
using Perl.

CPAN provides a few modules for reading from Excel files. The spread-
sheet is available: That will be capable of handling all types of spread-
sheets. Other low-level libraries that read files from different versions of
Excel include:

• Spreadsheet::ParseExcel Excel 95-2003 files,

• Spreadsheet::ParseXLSX Excel 2007 Open XML XLSX

Making an Excel Spreadsheet
Excel files can be created in Perl using the inbuilt module
Excel::Writer::XLSX, which is used to create Excel files.

Further, the write() function is used to add content to the Excel file.

Example:

#!/usr/bin/perl
use Excel::Writer::XLSX;
my $Excel_book1 = Excel::Writer::XLSX->new
('newexcel.xlsx');
my $Excel_sheet1 = $Excel_book1->add_worksheet();

258 ◾ Appraisal

my @data_row = (1, 2, 3, 4);
my @table_data = (
 ["l", "m"],
 ["n", "o"],
 ["p", "q"],
);
my @data_column = (1, 2, 3, 4, 5, 6, 7);

Using write() to write values in the sheet
$Excel_sheet1->write("A1", "Peeks For Peeks");
$Excel_sheet1->write("A2", "Perl|Reading Files in
the Excel");
$Excel_sheet1->write("A3", \@data_row);
$Excel_sheet1->write(4, 0, \@table_data);
$Excel_sheet1->write(0, 4, [\@data_column]);
$Excel_book1->close;

Reading from an Excel File
Spreadsheet:: is used in Perl to read an Excel file.

In a Perl script, read the module. This module exports several functions
we can import or use in your Perl code script. To read from an Excel file,
use the ReadData() function.

The ReadData() function takes a filename, in this case, an Excel file, but
it also accepts a variety of other file types. It will load the appropriate back-
end module based on the file extension before parsing the file. It generates
an array reference that represents the entire file:

Example:

use 5.016;
use Spreadsheet::Read qw(ReadData);
my $book_data = ReadData (‘newexcel.xlsx');
say 'A2: '. $book_data->[1]{A2};

The first element of array returned by the above code contains general
information about the file. The remaining elements represent the file’s
other sheets. In other words, $book_data->[1] refers to the first sheet in
the “newexcel.xlsx” file. Because it is a hash reference, it can use to access
the contents of the cells. $book_data->[1] {A2} returns the hash reference
for the A2 element.

Appraisal ◾ 259

Obtaining Rows from an Excel File
The arguments of the function of the Spreadsheet::

A sheet and the number of rows to be fetched are read. The value of the
rows passed in the argument is returned as an array.

The following program shows how to read the first row of the first sheet
and then displays the content of each field in the row.

my @rowsingle = Spreadsheet::Read::row($book_data-
>[1], 1);
for my $x (0. . $#rowsingle)
{
 say 'A'. ($x + 1). ' '.
 ($rowsingle[$x] // '');
}

Obtaining File Content
Obtaining a single row is insufficient. For efficient programming, we must
retrieve all of the rows. The rows() function is used to accomplish this. As
an argument, a sheet is passed to this function. As a matrix, it returns an
array of elements or an array of references (2-D array). Each row in the
spreadsheet is represented by an element in the matrix.

The following script will retrieve all rows:

my @rowsmulti = Spreadsheet::Read::rows($book_data->[1]);
foreach my $x (1. . scalar @rowsmulti)
{
 foreach my $y (1. . scalar @{$rowsmulti[$m - 1]})
 {
 say chr(64 + $x). " $x ".
 ($rowsmulti[$x - 1][$y - 1] // '');
 }
}

Putting Everything Together
The following Perl script demonstrates the use of all of the previously
described Features of Reading an Excel file in Perl:

#!/usr/bin/perl
use strict;
use warnings;
use 5.010;

260 ◾ Appraisal

use Spreadsheet::Read qw(ReadData);

my $bookdata = ReadData('simplecreate.xlsx');

say 'A1: '. $bookdata->[1]{A1};

Fetching a single row
my @rowsingle = Spreadsheet::Read::row($bookdata->[1],
1);
for my $x (0. . $#row)
{
 say 'A'. ($x + 1). ' '.
 ($rowsingle[$x] // '');
}

Fetching all the file content
my @rowsmulti = Spreadsheet::Read::rows($bookd
ata->[1]);
foreach my $x (1. . scalar @rowsmulti)
{
 foreach my $y (1. . scalar @{$rows[$x-1]})
 {
 say chr(64 + $x). " $y ".
 ($rows[$x - 1][$y - 1] // '');
 }
}

Perl Number Guessing Game

The number-guessing game requires us to guess the number chosen ran-
domly by the computer within a certain number of chances.

Necessary to use the following functions:

• rand n: This function generates a random number from 0 to n.
Furthermore, this function always returns a floating-point number.
As a result, the result is explicitly converted to an integer value.

• Chomp(): Chomp() is a function that removes the newline character
from user input.

While loop executes in the program until the number estimated by the
user matches the produced number or the number of tries is fewer than
the maximum number of opportunities. If the number of tries exceeds

Appraisal ◾ 261

the number of opportunities, the game ends, and the user loses. They will
win if the user correctly guesses the number within the allotted number
of attempts. After each guess, the computer notifies the user whether their
estimate was larger or less than the actual produced number. Initially, the
rand function in this code assigns x a random integer.

The (rand k) function generates a random integer between 0 and k.
Since this random number is a floating-point integer, “int” is used to con-
vert it to a whole number. x stores the integer value. The user is given a
limited number of opportunities to estimate the number. If the number of
opportunities exceeds, the number guessed, the user loses.

The procedure is as follows:

The Number Guessing Game implementation
using Perl

print "The Number guessing game\n";

rand function to generate
the random number b/w 0 to 10
which is converted to the integer
and store to a variable "x"
$x = int rand 10;

variable to count correct
number of the chances
$correct = 0;

number of chances to be given
to user to guess number
number or it is the of
inputs given by the user into
input box here number of
chances are 4
$chances = 4;
$n = 0;

print "Guess number (between 0 and 10): \n";

while loop containing variable n
which is used as a counter value
variable chance
while($n < $chances)

262 ◾ Appraisal

{

 # Enter number between 0 to 10
 # Extract number from input
 # and remove newline character
 chomp($userinput = <STDIN>);

 # To check whether the user provide
 # any input or not
 if($userinput != "blank")
 {

 # Compare user entered number
 # with number to be guessed
 if($x == $userinput)
 {

 # if number entered by user
 # is same as generated
 # number by rand function then
 # break from the loop using loop
 # control statement "last"
 $correct = 1;
 last;
 }

 # Check if user entered
 # number is smaller than
 # the generated number
 elsif($x > $userinput)
 {
 print "Our guess was too low,";
 print " guess a higher number than
${userinput}\n";
 }

 # User entered number is
 # greater than the generated
 # number
 else

Appraisal ◾ 263

 {
 print "Our guess was too high,";
 print " guess a lower number than
${userinput}\n";
 }

 # Number of the chances given
 # to user increases by one
 $n++;

}
 else
 {
 $chances--;
 }
}

 # Check whether the user
 # guessed correct number
 if($correct == 1)
 {
 print "We Guessed Correct!";
 print " Number was $x";
 }
 else
 {
 print "It was actually ${x}.";
 }

Note: In the above program, the user can change the value of the rand
function to increase the range of numbers in this game and the number of
chances by changing the value of the chance variable.

DATABASE MANAGEMENT USING DBI
One of the most prevalent applications of Perl is creating database apps.
We can construct complex web apps with a database to handle all the data
using Perl. It offers great interface support and a wide variety of database
formats. Perl includes a module named DBI for connecting to and access-
ing a database. DBI is a database interface connecting with structured
query language (SQL)-based database servers.

Generally, Perl requires two steps to access a database. The DBI module
offers a database access API. DBI functions are used by software to modify

264 ◾ Appraisal

a database. A database driver (DBD) module serves as the second step in
Perl database access. Each unique database management system needs its
own driver. This method enables a Perl database application software to be
largely independent of the database to which it will connect.

Installation: Open the terminal and enter the following command to
install the DBI module:

perl -MCPAN -e 'install Bundle::DBI'

This will automatically download and install the DBI module driver,
allowing Perl to connect to databases.

Database Independent Interface

DBI, as the name implies, provides an independent interface for Perl pro-
grams. This means that the Perl code is not dependent on the database that
is running in the backend. The DBI module provides abstraction, which
allows us to write code without worrying about the database that runs in
the backend

To import functions of the Database-Independent Interface module,
use the “use” pragma to import or include the module. The use of DBI
pragma enables us to manipulate the database to which we are connected
using the DBI module.

Syntax:

use DBI;

Accessing the Database

To connect to the specified database, use the connect() method. It requires
three arguments:

• A three-value string separated by a “:” It is “DBI:mysql:test” in this
case. The first value indicates that we are employing DBI. The second
value specifies the database engine, which is MySQL in this case. The
third value is the database name to which we want to connect.

• The username is the next argument to the connect() method. The
user in this case is “root.”

• The last argument is our local system’s password. It is “password” in
this scenario.

Appraisal ◾ 265

Syntax:

my $dbh = DBI->connect ("DBI:mysql:test",
"root", "password") or die "Cannot connect: ".
DBI->errstr();

The “or die” statement terminates the program with an error message if
it is unable to connect to the database. The errstr() method returns a string
containing any errors encountered during the database connection.

Queries to Prepare

The SQL query to execute is passed as a single parameter to the prepare()
method. The SQL query is represented as a string that contains the SQL
statement. This SQL statement is identical to the SQL statements we would
use in MySQL. It returns a statement handle, which can use to execute
queries.

Syntax:

my $sth = $dbh->prepare(" CREATE TABLE emp(id
INT PRIMARY KEY, name VARCHAR(20), salary INT, ");

The query is now ready for execution. In the preceding query, we are
creating a table with columns for id, name, and salary.

Executing Queries

The query written in the prepare() method is executed by the execute()
method. It is not open to debate. The statement handle object created when
the “prepare” statement is executed is used to call it.

Syntax:

$sth->execute();

Fetching Values from the Result

The fetchrow() method retrieves the next row of data from the query
result. When a select query is run, the fetchrow() method retrieves the
next row from the result. It extracts one row from the result and assigns it
to variables. Using the fetchrow() method in a while loop, we can fetch and
display all the rows in the database.

266 ◾ Appraisal

Syntax:

($id, $name, $salary) = $sth->fetchrow();

The three variables hold the values of each column.
The fetchrow_array() function returns an array containing the result row.

Syntax:

my @row = $sth->fetchrow_array()

Disconnecting

We must disconnect the connection once all of the queries have been com-
pleted. This is accomplished through the use of disconnect() function.
This allows the Perl script to close the connection properly. There will be
no errors if we do not disconnect from the database. This is generally a
good practice.

Syntax:

$dbh->disconnect();

Creating a database in MySQL

MySQL must install on our system, and we must have a basic understand-
ing of MySQL.

• Connect to our MySql server.

• Create a database named “test.” We’ll connect to this database, so
make sure the name is “test.”

• Make sure there are no tables in this database because we will be
creating a table called “emp” and inserting values into it.

Putting everything together:
We may access Perl’s database after building it in MySQL. First, we build

a test table in the database with the schema: (id INTEGER PRIMARY
KEY, name VARCHAR(10), salary INT, dept INT). We insert values into
the table once it has been created without errors.

Once the data have been inserted, we can use the fetchrow() method to
query the table and choose all rows to display to the user.

Appraisal ◾ 267

Example:

#!/usr/bin/perl -w
use DBI;

definition of the variables

name of database. In this case,
the name of database in my local
system is test.

user in this case is root
$user = "root";
this is the password for root
$password = "password";

connect to MySQL database
my $dbh = DBI->connect ("DBI:mysql:test",
 $user,
 $password)
 or die "Can't connect to
database: $DBI::errstr\n";

print "connected to database\n";

test database contains a table called emp
schema : (id INTEGER PRIMARY KEY,
name VARCHAR(10), salary INT, dept INT)
let us first insert some values

prepare query to
create emp table
my $sth = $dbh->prepare("CREATE TABLE emp(id INT
PRIMARY KEY,
 name
VARCHAR(10),
 salary
INT, dept INT)");

execute query
now, the table is created
$sth->execute();

268 ◾ Appraisal

prepare the query
my $sth = $dbh->prepare("INSERT INTO emp
 VALUES(?,? ,? ,?)");

define the variables to be inserted
into the table
my $id = 1;
my $name = "adith";
my $salary = 1000;
my $dept = 2;

insert these values into emp table.
$sth->execute($id, $name, $salary, $dept);

insert some more rows into table.
$sth->execute($id + 1, $name,
 $salary + 100, $dept - 1);

insert more rows
$sth->execute($id + 2, "Tyrion",
 $salary + 1000, $dept + 1);

print "Successfully inserted values into table\n";

now, select all the rows from table.
my $sth = $dbh->prepare("SELECT * FROM emp");

execute the query
$sth->execute();

Retrieve results of a row of data and print
print "\tQuery results:\n=========================
=======================\n";

fetch the contents of table
row by row using the fetchrow_array() function
while (my @row = $sth->fetchrow_array())
{
 print "@row\n";
}

if function cannot be execute, show a warning.

Appraisal ◾ 269

warn "Problem in the retrieving results",
$sth->errstr(), "\n"
if $sth->err();

print "\n";

select the particular columns.

prepare the query
my $sth = $dbh->prepare("SELECT name, salary FROM
emp");

execute the query
$sth->execute();

Retrieve results of a row of data and print
print "\tQuery results:\n=========================
============\n";

while(($name, $sal) = $sth->fetchrow_array())
{
 print "Name: $name, salary: $sal\n";
}
warn "Problem in the retrieving results", $sth-
>errstr(), "\n"
if $sth->err();

end of the program
exit;

ACCESSING A DIRECTORY USING THE FILE GLOBBING
A directory is used in Perl to store values in the form of lists. A directory
is comparable to a file in many ways. The directory, like a file, may be used
to conduct various operations. These operations are used to modify an
existing directory or create a new one. We may quickly open and analyze
a directory using the built-in function glob.

Glob

It returns list of files that match the argument’s expression. This method
can print all or particular files with the extension.

270 ◾ Appraisal

Syntax:

@list = <*>; // Prints all files in the current
directory
@list = glob("*.pl"); // Prints all files in the
current directory with extension .pl
@list = glob('//PeeksforPeeks//Files//*);
// Prints all files in given path

Here are some examples of using File Globbing to access a directory.

• Getting to the script’s current directory:

#!/usr/bin/perl -w

Accessing files using the glob function
@files = glob('*'); # Returns list of all files
foreach $file (@files) # Loop to run through all the
files
{
 print $file. "\n"; # Print all the files
}

• Opening to a certain directory:

#!/usr/bin/perl -w

Prints only the filename excluding path
use File::Basename;

Returns list of all the files
@files = glob('C:/Users/PeeksForPeeks/Folder/*');
foreach $file (@files) # Loop to run through all the
files
{
 print basename($file), "\n"; # Print all the files
}

Hashbang or Shebang Line Use

Extraction and Reporting in Practice Language, often known as Perl, is
an interpreter-based programming language. When running Perl scripts
on Unix-like platforms like Linux and Mac OSX, Hashbangs or shebangs
come in useful. A Hashbang line is the initial line of a Perl program and
serves as a connection to the Perl binary. It enables direct execution of

Appraisal ◾ 271

Perl scripts without the need to pass the file as an input to Perl. In Perl, a
Hashbang line looks like this:

#!/usr/bin/perl

A Hashbang line is so named because it begins with a Hash(#) and ends
with a bang(!). A Hashbang line in Perl is very important in Perl program-
ming. Let’s get started with using this Hashbang line.

Example: Assume we have a Perl hello world program script that we
will run using the terminal on a Linux system.

use strict;
use warnings;

print "Hello Everyone\n";

In the preceding code, the terminal first runs Perl, and then Perl is
instructed to run the code script. An error occurs if the code script is run
without first running Perl.

Try executing the following code:

$ hello1.pl

The shell we used attempted to parse the commands in the file here.
However, it was unable to locate the command print in Linux/Unix. As a
result, it is required to notify the shell that it is a Perl script. This is when
the idea of Hashbang comes into effect. Hashbang notifies the terminal of
the script.

However, before running this code, the shell’s path must modify to add
the current directory to existing directories. This may accomplish by run-
ning the following command:

$ PATH = $PATH:$(pwd)

The current working directory will add to the list of directories in the
PATH environment variable.

Then, in the Perl script file hello1 .pl, add the Hashbang line #!/usr/bin/
perl. This line is always added at the beginning of code, i.e. the Hashbang
line is the first line of the code script.

272 ◾ Appraisal

#!/usr/bin/perl
use strict;
use warnings;

print "Hello Everyone\n";

Due to the addition of the Hashbang line #!/usr/bin/perl to the script’s
first line, the code above functions correctly and generates no errors.

The script is performed in the current shell environment when it is exe-
cuted. If the script begins with a hash and a bang (Hashbang) #!, the shell
will execute the program whose path is specified on the Hashbang line
(in this example, /usr/bin/perl), which is the default location for the Perl
compiler-interpreter. Therefore, the Hashbang line contains the location of
the Perl compiler-interpreter.

The error occurs when there is no Hashbang line in file, and we attempt
to run it without explicitly executing Perl. The shell believes the script is
written in Bash and attempts to run it appropriately, which results in errors.

Useful Math Functions

In Perl, solving certain expressions containing mathematical operations is
occasionally necessary. These mathematical processes may be carried out
using several built-in functions.

#!/usr/bin/perl

Initialising some values for
parameter of exp function
$A = 0;
$B = 1;

Calling exp function
$E = exp $A;
$F = exp $B;

Getting the value of "e" raised to
power of given parameter.
print "$E\n";
print "$F\n";

Calculating square root using the sqrt()
$square_root = sqrt(64);

Appraisal ◾ 273

Printing result
print "Squareroot of 64 is: $square_root";

The following are some helpful Perl functions for mathematical
operations:

Function Description

exp() Calculates the parameter “e” raised to the power of the real value.
hex() Converts a specified hexadecimal number (of base 16) to its decimal

equivalent (of base 10).
srand() Helps the rand() function generates a constant value each time the program is

executed.
sqrt() Calculates the square root of a number.
oct() Converts the supplied octal value to its decimal equivalent.
rand() Returns a random fractional number ranging from 0 to the positive numeric

value passed to it, or 1 if no value is specified.
log() The natural logarithm of the value passed to it is returned. If called without a

value, it returns $_.
int() The integer part of the provided number is returned. If no value is specified, it

returns $_.
sin() Used to compute the sine of a VALUE or $_. If VALUE is not provided.
cos() Calculates the cosine of a VALUE or $_. If VALUE is missing.
atan2() Calculates the arctangent of Y/X in the range -PI to PI.
abs() The absolute value of its argument is returned.

The Distinction Between Functions and Subroutines

When a code script develops in size, i.e. comprises hundreds of lines of
code, it becomes tough to handle in Perl. Perl provides its users with the
idea of functions and subroutines to circumvent this challenge. To make
the program more readable, functions and subroutines split up complex/
large chunks of code into smaller, more concise parts.

They minimize the size of the application and debugging time by allow-
ing us to reuse previously written code in the program. Perl functions and
subroutines are used in programs to reuse code. We can utilize a function
with various parameters throughout our program.

What Exactly Is a Function?
A function accepts several inputs, performs operations on them, and then
returns a value.

It may be included within the programming language or provided by
the user. When defining a function in Perl, the name and sequence of

274 ◾ Appraisal

statements are specified. When we wish to do a calculation later, we may
“call” the function by name to execute the series of statements included in
the function declaration.

Perl has several really useful built-in functions. “say” is an example of a
built-in function. Perl even permits us to create our function to assist us in
doing the desired task.

What Exactly Is a Subroutine?
Subroutines (or sub) allow us to provide a name to a part of code so that
when we wish to utilize it again in the program, we can simply call its
name.

Subroutines aid us in two ways while writing in Perl:

• First, they allowed us to reuse the code in the program, making
it easier to detect and correct faults and making it faster to build
applications.

• Second, they enable us to organize our code into parts. Each subrou-
tine is in charge of the specific task.

When a piece of code is placed in a Perl subroutine, there are two
options:

• When we know that the code will utilize for a calculation or action
that will perform. For instance, when converting a strong to a spe-
cific format or when converting an incoming data record to a hash,
etc.

• When we want to divide our program’s logical components into parts
to make it easier to grasp.

The following table compares the differences between a function and a
subroutine:

Function Subroutine

Basic format of a function is :
$myvalue = myfunction(parameter,
parameter);

The basic format of a subroutine is :
sub subroutine_name
{
body of the subroutine
}

(Continued)

Appraisal ◾ 275

A Perl function is anything that is built into
Perl. The primary reference documentation
for Perl built-ins is referred to as perlfunc.

In Perl, a subroutine is a chunk of code
that can receive inputs, execute
specific actions on them, and may or
may not return a useful value. They
are, however, always user-defined
rather than built-in.

Perl provides us all with functions. Subroutines are pieces of code that we
supply to Perl.

Functions are like subroutines in that they
return a value.

A function typically performs certain
computations and returns the results to the
caller.

Subroutines carry out a task but do not
return any information to the calling
program.

A function cannot change the value of the
actual arguments.

A subroutine can change the value of
the actual argument.

A function produces predictable results with
no side effects.

Such constraints do not limit a
subroutine.

Example:

Function:

#!/usr/bin/perl
Program to reverse a string
using the pre-defined function

Creating a string
$string = "PeeksForPeeks";
print "The Original string: $string", "\n";
print "The Reversed string: ";

Calling predefined function
print scalar reverse("$string"), "\n";

Subroutine:

#!/usr/bin/perl
Program to reverse a string
using subroutine

Creating string
my $string = 'PeeksforPeeks';

Function Subroutine

276 ◾ Appraisal

print 'Original string: ', $string, "\n";
print 'Reversed using Subroutine: ',
 reverse_in_place($string), "\n";

Creation of subroutine
sub reverse_in_place
{
 my ($string) = @_;
 my @array = split //, $string;
 my $n = scalar @array;

 for (0. . $n / 2 - 1)
 {
 my $tmp = $array[$_];
 $array[$_] = $array[$n - $_ - 1];
 $array[$n - $_ - 1] = $tmp;
 }
 return join('', @array);
}

The Top Ten Programming Tasks for Which Perl Is Used

• Cloud Data Management: It’s a cliché, but it’s also true: all enter-
prises have either embraced or are in the process of adopting cloud.
Do we need to access data in a public cloud but don’t want to use
cloud vendor’s proprietary CLI tools or Web interface? There’s a Perl
module for it.

In reality, Perl can readily interact with all of the main cloud ser-
vices to assist you with data management:

• Perl may use to interact with AWS S3 storage buckets.

• Third-party Perl utilities are also available for managing Azure
Blob storage.

• Perl also supports Google Cloud Storage.

• Perl is used to manage cloud VMs or virtual machines: Perl may
also use to manage virtual machines operating on public or private
clouds. As an example:

• Net::Amazon::EC2’s Query API provides a Perl interface to
Amazon’s Elastic Compute Cloud (AWS EC2).

Appraisal ◾ 277

• Similarly, VMware’s vSphere Perl SDK enables you to manage
VMware virtual machines in any environment. However, because
vSphere is a popular method for creating private clouds, Perl may
be an essential tool for controlling them.

While we’re unaware of any pre-built Perl solutions for inter-
acting with virtual machine services on Azure or Google Cloud
Platform, there’s no reason it couldn’t be done.

• Perl is a computer language that is used to serve web pages: Do you
need a lightweight, readily adaptable Web server? One can be written
in Perl in around 200 lines of code.

Although Perl version is unlikely to be used for the regular produc-
tion workloads, a minimalist Perl-based Web server is excellent for
systems with extremely low hardware resources, such as those found
in an Internet of Things (IoT) deployment. Alternatively, examining
the Perl code might be beneficial if we simply want to understand
more about the foundations of how Web servers function.

• Perl is used for speech recognition: Speech recognition is a com-
plicated but increasingly vital capability for various applications,
including virtual assistants and chatbots. Perl can also assist here.

We may utilize Perl modules like Google::Cloud::Speech, which
provides an interface to Google’s Cloud Speech API, to enable our
users to submit data via voice commands or just build a text tran-
script of an audio file.

While Google Cloud’s API does the heavy lifting, Perl provides a
simple interface for interacting with it, reducing the need to learn and
deal with proprietary, vendor-specific APIs. Of course, we can use tens
of thousands of additional Perl modules to help create our application.

• Text-to-speech translation in Perl: Perl, like voice recognition, may
be used to convert text to speech utilizing Google’s translate service
to create speech from any language text.

While text-to-speech may not seem as thrilling as speech-to-text,
it may help us add useful capabilities to our application, such as
screen reading for accessibility, enabling multi-tasking, or just assist-
ing in teaching a new language.

• TAP for software testing: If we wish to release software on a contin-
uous and automated basis, we must likewise test it on a continuous

278 ◾ Appraisal

and automated basis. Perl has multiple best-in-class testing meth-
ods, beginning with the most well-known and frequently used Test
Anything Protocol, often known as TAP::Harness.

TAP essentially offers a text-based interface between Perl testing
modules. Still, it’s so reliable and simple to use that it now has imple-
mentations in C, C++, Python, PHP, Perl, Java, JavaScript, and other
languages.

• Use it to perform system administration tasks: Perl has long fol-
lowed significantly in the Unix/Linux environment, where admin-
istrators frequently use it for scripting typical system management
duties.

However, Perl may also be helpful in Windows-centric systems.
Perl allows us to deal with Active Directory and even the Windows
registry. Do we need to track the software installed on our users’
computers? Or should periodic updates/maintenance be performed
when the system boots? Perl may be the ideal technique to script such
administrative operations on Windows and Linux.

• BioPerl for bioinformatics: Although bioinformatics is unlikely to
be at the top of most developers’ lists of Perl usage, there is a com-
munity dedicated to it called BioPerl. Perl-based bioinformatics and
genomics solutions range from obtaining genomic sequences to
investigating population genetics.

Perl is ideal for log management: Because of the distribution of
modern computer systems and the way they combine so many dif-
ferent types of components, modern log management has become a
science unto itself.

Perl is useful for interacting with most log management solutions,
from standards like syslog to proprietary systems like Papertrail.
Of course, we may develop our own Perl scripts for aggregating and
parsing logs, which is handy in instances when a fully customized log
management solution is required.

• Perl is excellent for text manipulation: Text manipulation should
come as no surprise as Perl’s most common application.

Perl has been the language of choice for regex, HTML parsing, and
JSON manipulation for over three decades.

No other programming language provides more effective or user-
friendly text manipulation features than Python.

Appraisal ◾ 279

A wealth of Perl community modules is available to aid with almost any
task involving text manipulation, extraction, and transformation. Many
of these have been pre-compiled in our Perl Text Processing environment,
which we can download and install for free via our State Tool CLI.

https://taylorandfrancis.com

281

Bibliography

 1. Perl – Introduction. https://www.tutorialspoint.com/perl/perl_introduction.
htm, accessed on June 1, 2022.

 2. Perl. https://www.techtarget.com/whatis/definition/Perl, accessed on June 1,
2022.

 3. Introduction to Perl. https://www.geeksforgeeks.org/introduction-to-perl/,
accessed on June 1, 2022.

 4. What is Perl? https://www.educba.com/what-is-perl/, accessed on June 1,
2022.

 5. What is Perl? http://www.cs.unc.edu/~jbs/resources/perl/perl-basics/, accessed
on June 2, 2022.

 6. Perl OOP. https://www.perltutorial.org/perl-oop/, accessed on June 2, 2022.
 7. Perl Tutorial: Variable, Array, Hashes with Programming Example. https://

www.guru99.com/perl-tutorials.html, accessed on June 2, 2022.
 8. Perl – Operators. https://www.tutorialspoint.com/perl/perl_operators.htm,

accessed on June 3, 2022.
 9. Perl Operator Types. https://www.javatpoint.com/perl-operator-types, accessed

on June 3, 2022.
10. Perl Operators – Complete Guide. https://beginnersbook.com/2017/02/perl-

operators-complete-guide/, accessed on June 3, 2022.
11. Perl | Decision Making (if, if-else, Nested–if, if-elsif ladder, unless, unless-else,

unless-elsif). https://www.geeksforgeeks.org/perl-decision-making-if-if-else-
nested-if-if-elsif-ladder-unless-unless-else-unless-elsif/, accessed on June 4,
2022.

12. Perl Conditional Statements - IF...ELSE. https://www.tutorialspoint.com/
perl/perl_conditions.htm, accessed on June 4, 2022.

13. Perl If Statement. https://www.perltutorial.org/perl-if/, accessed on June 4,
2022.

14. Conditional Decisions. https://www.learn-perl.org/en/Conditional_Decisions,
accessed on June 5, 2022.

15. What are packages and modules in Perl? https://www.educative.io/answers/
what-are-packages-and-modules-in-perl, accessed on June 5, 2022.

16. Modules and Packages in Perl. https://www.codesdope.com/perl-modules-
and-packages/, accessed on June 6, 2022.

17. Perl Fundamentals. https://www.udemy.com/course/perl-fundamentals/,
accessed on June 6, 2022.

18. Perl Tutorial. https://www.tutorialspoint.com/perl/index.htm, accessed on
June 6, 2022.

https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.techtarget.com
https://www.geeksforgeeks.org
https://www.educba.com
http://www.cs.unc.edu
https://www.perltutorial.org
https://www.guru99.com
https://www.guru99.com
https://www.tutorialspoint.com
https://www.javatpoint.com
https://beginnersbook.com
https://beginnersbook.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.perltutorial.org
https://www.learn-perl.org
https://www.educative.io
https://www.educative.io
https://www.codesdope.com
https://www.codesdope.com
https://www.udemy.com
https://www.tutorialspoint.com

282 ◾ Bibliography

19. Perl Tutorial. https://www.perltutorial.org/, accessed on June 6, 2022.
20. Chapter 10. Packages. https://docstore.mik.ua/orelly/perl4/prog/ch10_01.

htm, accessed on June 6, 2022.
21. Perl – Variables. https://www.tutorialspoint.com/perl/perl_variables.htm,

accessed on June 6, 2022.
22. Perl | Variables. https://www.geeksforgeeks.org/perl-variables/, accessed on

June 7, 2022.
23. Set Perl Variables. https://www.webassign.net/manual/instructor_guide/t_i_

setting_perl_variables.htm, accessed on June 7, 2022.
24. Object Oriented Programming in PERL. https://www.tutorialspoint.com/

perl/perl_object_oriented.htm, accessed on June 7, 2022.
25. Perl Object Oriented – javatpoint. https://www.javatpoint.com/perl-object-ori-

ented, accessed on June 7, 2022.
26. Object Oriented Programming (OOPs) in Perl. https://www.geeksforgeeks.

org/object-oriented-programming-oops-in-perl/, accessed on June 7, 2022.
27. Inheritance in Perl. https://www.codesdope.com/perl-inheritance/, accessed

on June 7, 2022.
28. Perl Subroutine. https://www.perltutorial.org/perl-subroutine/, accessed on

June 7, 2022.
29. Perl Functions and Subroutines. https://www.javatpoint.com/perl-func-

tions-and-subroutines, accessed on June 7, 2022.
30. What Are Subroutines in Perl? https://www.educative.io/answers/what-are-

subroutines-in-perl, accessed on June 7, 2022.
31. Perl | Subroutines or Functions. https://www.geeksforgeeks.org/perl-subrou-

tines-or-functions/, accessed on June 7, 2022.
32. Perl – Subroutines. https://www.tutorialspoint.com/perl/perl_subroutines.

htm, accessed on June 7, 2022.
33. What Are References in Perl? https://www.educative.io/answers/what-are-refer-

ences-in-perl, accessed on June 8, 2022.
34. Learning Perl Objects, References, and Modules. https://www.oreilly.com/

library/view/learning-perl-objects/0596004788/ch04.html, accessed on June 8,
2022.

35. Perl | Mutable and Immutable Parameters. https://www.geeksforgeeks.org/
perl-mutable-and-immutable-parameters/, accessed on June 8, 2022.

36. Chapter 9. Arrays and Lists. https://www.oreilly.com/library/view/think-perl-
6/9781491980545/ch09.html, accessed on June 8, 2022.

37. Perl - Regular Expressions. https://www.tutorialspoint.com/perl/perl_regu-
lar_expressions.htm, accessed on June 8, 2022.

38. Perl Regular Expressions. https://perldoc.perl.org/perlre, accessed on June 8,
2022.

39. Perl Regular Expressions. https://www.javatpoint.com/perl-regular-expres-
sion, accessed on June 8, 2022.

40. Perl Tutorial. Regular Expressions (Regex), File IO and Text Processing.
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/
Perl2_Regexe.html, accessed on June 8, 2022.

41. Perl Regular Expressions. https://oval.mitre.org/language/about/perlre.html,
accessed on June 9, 2022.

https://www.perltutorial.org
https://docstore.mik.ua
https://docstore.mik.ua
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://www.webassign.net
https://www.webassign.net
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.codesdope.com
https://www.perltutorial.org
https://www.javatpoint.com
https://www.javatpoint.com
https://www.educative.io
https://www.educative.io
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.educative.io
https://www.educative.io
https://www.oreilly.com
https://www.oreilly.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.oreilly.com
https://www.oreilly.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://perldoc.perl.org
https://www.javatpoint.com
https://www.javatpoint.com
https://www3.ntu.edu.sg
https://www3.ntu.edu.sg
https://oval.mitre.org

Bibliography ◾ 283

42. Perl | Regular Expressions. https://www.geeksforgeeks.org/perl-regular-expres-
sions/, accessed on June 9, 2022.

43. Scalar Data and Operators in Perl. https://www.informit.com/articles/arti-
cle.aspx?p=30227&seqNum=7, accessed on June 9, 2022.

44. Perl Programming/User input-output. https://en.wikibooks.org/wiki/Perl_
Programming/User_input-output, accessed on June 9, 2022.

45. Perl | File I/O Functions. https://www.geeksforgeeks.org/perl-file-i-o-func-
tions/, accessed on June 9, 2022.

46. File I/O in Perl. https://www.codesdope.com/perl-file-io/, accessed on June10,
2022.

47. File I/O in Perl. https://www.codesdope.com/perl-file-io/, accessed on June
10, 2022.

48. Perl | File I/O Functions. https://www.geeksforgeeks.org/perl-file-i-o-func-
tions/, accessed on June 10, 2022.

49. Perl - Data Types. https://www.tutorialspoint.com/perl/perl_data_types.
htm, accessed on June 10, 2022.

50. Perl | Data Types. https://www.geeksforgeeks.org/perl-data-types/, accessed
on June 11, 2022.

51. Data Types in Perl. https://beginnersbook.com/2017/02/data-types-in-perl/,
accessed on June 11, 2022.

52. Data Types and Variables. https://www.oreilly.com/library/view/perl-in-a/
1565922867/ch04s02.html, accessed on June 11, 2022.

53. Perl Data Types. https://www.educba.com/perl-data-types/, accessed on June
12, 2022.

54. Perl - File I/O. https://www.tutorialspoint.com/perl/perl_files.htm, accessed
on June 12, 2022.

55. Perl Open File. https://www.perltutorial.org/perl-open-file/, accessed on
June 13, 2022.

56. File I/O in Perl. https://www.codesdope.com/perl-file-io/, accessed on June
13, 2022.

57. Control Structures in Perl Control Structures in Perl; http://www.compsci.
hunter.cuny.edu/~sweiss/course_materials/csci132/slides/Lesson_15.pdf,
accessed on June 13, 2022.

58. Introducing Perl. https://www.informit.com/articles/article.aspx?p=29028&
seqNum=3, accessed on June 13, 2022.

59. File Handling in Perl. https://www.educba.com/file-handling-in-perl/,
accessed on June 13, 2022.

60. Perl | File Handling Introduction. https://www.geeksforgeeks.org/perl-file-
handling-introduction/

61. Perl – Hashes. https://www.tutorialspoint.com/perl/perl_hashes.htm,
accessed on June 13, 2022.

62. Perl | Hashes. https://www.geeksforgeeks.org/perl-hashes/, accessed on June
13, 2022.

63. Perl Hash. https://www.perltutorial.org/perl-hash/, accessed on June 13,
2022.

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.informit.com
https://www.informit.com
https://en.wikibooks.org
https://en.wikibooks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.codesdope.com
https://www.codesdope.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://beginnersbook.com
https://www.oreilly.com
https://www.oreilly.com
https://www.educba.com
https://www.tutorialspoint.com
https://www.perltutorial.org
https://www.codesdope.com
http://www.compsci.hunter.cuny.edu
http://www.compsci.hunter.cuny.edu
https://www.informit.com
https://www.informit.com
https://www.educba.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://www.perltutorial.org

284 ◾ Bibliography

64. Perl Hashes. https://www.javatpoint.com/perl-hashes, accessed on June 13,
2022.

65. Hashes of Arrays (Programming Perl). https://docstore.mik.ua/orelly/perl2/
prog/ch09_02.htm, accessed on June 14, 2022.

66. Perl | List Context Sensitivity. https://www.geeksforgeeks.org/perl-list-context-
sensit iv ity/#:~:text=In%20Perl%2C%20funct ion%20ca l ls%2C%20
terms,gives%20the%20list%20of%20elements, accessed on June 14, 2022.

67. Perl String. https://www.perltutorial.org/perl-string/, accessed on June 14,
2022.

68. Perl String. https://www.javatpoint.com/perl-string, accessed on June 14,
2022.

69. Perl | String Functions (length, lc, uc, index, rindex). https://www.geeksfor-
geeks.org/perl-string-functions-length-lc-uc-index-rindex/, accessed on June
14, 2022.

70. What Are Perl String Literals? https://www.tutorialspoint.com/what-
are-perl-string-literals#:~:text=Strings%20are%20sequences%20of%20
characters,strings%20and%20double%2Dquoted%20strings, accessed on June
15, 2022.

71. String Literals in Perl. https://www.perlmonks.org/?node_id=945, accessed
on June 15, 2022.

72. What Are Special Literals in Perl 5.3.4? https://www.educative.io/answers/
what-are-special-literals-in-perl-534, accessed on June 15, 2022.

73. perldata - Perl Data Types. https://perldoc.perl.org/
perldata#:~: tex t=f u nc t ion's%20ca l l i ng %20contex t .-, Sca la r%20
values,form%20to%20another%20is%20transparent, accessed on June 15,
2022.

74. Perl | Scalars. https://www.geeksforgeeks.org/perl-scalars/, accessed on June 15,
2022.

75. Perl – Scalars. https://www.tutorialspoint.com/perl/perl_scalars.htm, accessed
on June 15, 2022.

76. Perl - Socket Programming. https://www.tutorialspoint.com/perl/perl_socket_
programming.htm, accessed on June 15, 2022.

77. Perl socket - Programming Sockets in Perl. https://zetcode.com/perl/socket/,
accessed on June 15, 2022.

78. Perl | Socket Programming. https://www.geeksforgeeks.org/perl-socket-
programming/#:~:text=Socket%20programming%20in%20Perl%20
is,shows%20them%20using%20socket%20connection, accessed on June 16,
2022.

79. Perl Reference. https://www.perltutorial.org/perl-reference/, accessed on
June 16, 2022.

80. Perl | References. https://www.geeksforgeeks.org/perl-references/, accessed
on June 16, 2022.

81. Perl – References. https://www.tutorialspoint.com/perl/perl_references.htm,
accessed on June 16, 2022.

82. What are references in Perl?. https://www.educative.io/answers/what-are-
references-in-perl, accessed on June 16, 2022.

https://www.javatpoint.com
https://docstore.mik.ua
https://docstore.mik.ua
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.perltutorial.org
https://www.javatpoint.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.perlmonks.org
https://www.educative.io
https://www.educative.io
https://perldoc.perl.org
https://perldoc.perl.org
https://perldoc.perl.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://zetcode.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.perltutorial.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.educative.io
https://www.educative.io

Bibliography ◾ 285

83. Error Handling in Perl. https://www.geeksforgeeks.org/error-handling-in-
perl/, accessed on June 17, 2022.

84. Perl - Error Handling. https://www.tutorialspoint.com/perl/perl_error_han-
dling.htm, accessed on June 17, 2022.

85. Object Oriented Exception Handling in Perl. https://www.perl.com/pub/
2002/11/14/exception.html/, accessed on June 17, 2022.

86. Perl Error Handling. https://www.javatpoint.com/perl-error-handling,
accessed on June 17, 2022.

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.perl.com
https://www.perl.com
https://www.javatpoint.com

https://taylorandfrancis.com

287

Index

A

Add assignment, 38
Addition, 30
Advantages of Perl, 239–240
Anchors, 169
AND logical operator, 132
API, see Application programming

interface
Application of Perl, 4, 6
Application programming interface (API),

151
Arithmetic operators, 30

addition, 30
division, 30
exponent operator, 31
modulus operator, 31
multiplication, 30
subtraction, 30

Array variables, 18–19, 42, 43,
45, 46

Assignment operators, 37–40

B

Backtracking in regular expression,
156–158

Base class and derived class,
197–198

Base classes, 196
b-command, 248–249
BEGIN block, 60
Benefits of Perl, 6
Binary left shift operator, 36
Binary numbers, 63–64
Binary right shift operator, 36
BioPerl for bioinformatics, 278

Bitwise operators, 35–37
Bless method, 185, 189
Block, 14–15
Boolean expression, 40
Boolean values in Perl, 25–29
Break keyword, 97
Breakpoints of debugger in Perl, 248

b-command, 248–249
c-command, 249–250
d and D commands, 250–251
L command and breakpoints, 250

C

Calculator module, 58–59
“Call by reference,” 223
“Call by value,” 223
Capturing, 172
C/C++, Perl vs, 243–244
c-command, 249–250
CGI scripts, see Common Gateway

Interface scripts
Challenges of learning Perl, 248
Character classes, 168
chdir() function, 67
chomp() function, 75, 260
Class, 178, 180, 181

creating, 182
defining, 182

Class instance, creating, 182–183
Cloud data management, 276
Cloud VMs/virtual machines, managing,

276–277
Comma-separated value (CSV) file

reading, 125
character escaping a comma,

127–128

288 ◾ Index

fields with newlines embedded,
129–131

TEXT::CSV, installation of,
128–129

use of split() for data extraction,
125–127

Comments, 5–6, 13–14
multi-line string as, 13–14
single-line comments, 13

Common Gateway Interface (CGI)
scripts, 4

Complement operator, 36
Comprehensive Perl archive network

(CPAN), 6, 54, 245, 257
Conditional statement, 98
connect() method, 264
Constructors, 189–191
Control flow in Perl, 77

decision-making in Perl, 77
if else statement, 79–81
if elsif else ladder statement,

83–85
if statement, 78–79
nested if statement, 81–83
unless else statement, 86–88
unless elsif statement, 88–90
unless statement, 85–86

given-when statement, 97
nested given-when statement,

98–100
goto statement, 100–103
last keyword, 106–107
loops in Perl, 90

do...while loop, 93–94
foreach loop, 92
for loop, 90–92
infinite while loop, 93
nested loops, 95–97
until loop, 94–95
while loop, 92–93

next operator, 103–104
redo operator, 105

Control statements, 77, 97
CPAN, see Comprehensive Perl archive

network
CRUD operations, 69
CSV file reading, see Comma-separated

value file reading

D

d and D commands, 250–251
Data abstraction, 180
Database driver (DBD) module, 264
Database Independent Interface (DBI),

264
Database management using DBI, 263

accessing the database, 264–265
disconnecting, 266
executing queries, 265
fetching values from the result,

265–266
MySQL, creating a database in,

266–269
queries to prepare, 265

Data member, 182
Data types, 18, 45

arrays, 18–19
hashes, 19–20
scalars, 18

DBD module, see Database driver module
DBI, see Database Independent Interface
d character, 150
Debugger in Perl, 248

b-command, 248–249
c-command, 249–250
d and D commands, 250–251
L command and breakpoints, 250

Decision-making in Perl, 77
if else statement, 79–81
if elsif else ladder statement, 83–85
if statement, 78–79
nested if statement, 81–83
unless else statement, 86–88
unless elsif statement, 88–90
unless statement, 85–86

Dereferencing, 231–232
Derived classes, 196
Destructors, 192
Die function, 122–123
Directory, 64, 269

BioPerl for bioinformatics, 278
closing, 68
cloud data management, 276
cloud VMs/virtual machines,

managing, 276–277
deleting, 68–69

Index ◾ 289

existing directory, opening, 65
function, 273–274
glob, 269–270
hashbang/shebang line use, 270–272
math functions, 272–273
modifying directory path, 67–68
new directory, making, 65
reading directory in scalar and list

context, 65–67
speech recognition, Perl for, 277
subroutine, 274
system administration tasks, 278
TAP for software testing, 277–278
text manipulation, 278–279
text-to-speech translation in Perl, 277
web pages, serving, 277

DIRHANDLE, 68
Disadvantages of Perl, 6, 240
Division, 30
Division assignment, 38
Do...while loop, 93–94
Download, Perl, 8
Duration of learning Perl, 247
Dynamic attributes, passing, 191–192
Dynamic method dispatch, 196

E

“ee” modifier in regular expression,
161–164

“e” modifier in regular expression,
159–161

Encapsulation in Perl, 180, 203–205
END block, 60
End of file (EOF), 119
EOF, see End of file
Error handling and error reporting,

122
die function, 122–123
warn function, 123

Evolution of Perl, 1–2
Excel files, 253, 257

basic formulas, use of, 254–255
Excel spreadsheet, making, 257–258
file content, obtaining, 259
making, 253–254
obtaining rows from, 259
putting everything together, 259–260

reading from, 258
values, 256–257

Excel Sheet, adding colors to, 256
Exclusive lock, 134–135
Executing Perl program, 11

Unix/Linux, 11
Windows, 11

exit() function, 251
Exponent assignment, 39
Exponent operator, 31
Expressions, 12

F

False values, 27–28
fcntl() system function, 136
Features of Perl, 3, 238
fetchrow() method, 265, 266
fetchrow_array() function, 266
Fibonacci series, 227
File

appending to, 123–125
exception handling in, 119

throwing an exception, 119
warning, giving, 120

opening, 117
reading, 117

FileHandle operator, 117–118
getc function, 118
read function, 118–119

reading more than one line at a time,
119

File, writing to, 120
error handling and error reporting,

122
die function, 122–123
warn function, 123

print() function, 120–122
File::Slurp module, 136

installation of, 136–137
FileHandle operator, 117–118
File handling, 109

CSV (comma-separated value) file
reading, 125

character escaping a comma,
127–128

fields with newlines embedded,
129–131

290 ◾ Index

TEXT::CSV, installation of, 128–129
use of split() for data extraction,

125–127
redirecting output, 115–116
slurp module, 136–139
useful functions, 139–140
using FileHandle to read and write to a

file, 110–111
various modes, 111–115

File locking, 133
flock(), 134–136

vs lockf(), 136
File test operators, 131–133
Fixed point, 61
Floating-point numbers, 61
flock(), 134–136

vs lockf(), 136
Foreach loop, 92
For loop, 90–92
Function, 15, 273–274
Function signature, 214–215

argument different than, 215–216
defining subroutines, 214
difference in number of arguments,

216–217
subroutine/function with defined

signature, 215

G

\G Assertion, 166–167
Getc function, 118
“get_mileage” method, 196
Get-set methods, 187–189
Given-when nested statement, 98
Given-when statement, 97

nested given-when statement, 98–100
Glob, 269–270
Global variables

scope of, 48–50
in subroutines, 212–213

Gosling, James, 242
Goto statement, 100–103
Graphical user interface (GUI)

programming, 2, 237
Grouping and capturing, 172
GUI programming, see Graphical user

interface programming

H

Hashbang/shebang line use,
270–272

Hashes, 19–20
Hash variables, 42, 43, 46–47
Hello Everyone! program, 9–10
Hexadecimal numerals, 62–63
Hierarchical Inheritance, 197
High-level language, Perl as, 2
History of Perl, 238

I

IDEs, see Integrated development
environments

If else statement, 79–81
If elsif else ladder statement, 83–85
If statement, 78–79
Immutable parameters, 222–223
Implementation of Perl, 4
Infinite while loop, 93
Inheritance, 179, 199–200
Init statement, 91
Input and output in Perl, 71

print operator, 73–74
print() operator, 71–72
say() function, 73
STDIN, 74–75

Installation of Perl, 8
Linux installation, 9
macOS installation, 9
Windows installation, 8

Integers, 61
Integrated development environments

(IDEs), 2
Interactive mode, 22–23
Internet of Things (IoT), 277
Interpreted language, Perl as, 239
Interpreter, 10
IoT, see Internet of Things

J

Java, Perl vs, 242–243

K

Keywords, 17

Index ◾ 291

L

LABEL name, 101
Last keyword, 106–107
L command and breakpoints, 250
Learning Perl, 245, 246

challenges of, 248
duration of, 247

Lexical variables, 48
scope, 50–52

Licensing for Perl, 238–239
Linux

installation, 9
installation and configuration of Perl

on, 7
Local variable in subroutines, 212–213
lockf() vs flock(), 136
Logical operators, 34–35
Loops in Perl, 15–16, 90

do...while loop, 93–94
foreach loop, 92
for loop, 90–92
infinite while loop, 93
nested loops, 95–97
termination, 91
until loop, 94–95
while loop, 92–93

M

Macintosh, 7
macOS

installation, 9, 245
installation and configuration of Perl

on, 7
Math functions, 272–273
Metacharacters, 170
Method, 179
Method overriding in OOPs, 192–196
MODE function, 65
Modifiers, 171, 172
Modules in Perl, 54

importing and using, 55
making, 54–55
predefined modules, making use

of, 56
utilizing module variables, 55–56

Modulus assignment, 39
Modulus operator, 31

Multilevel Inheritance, 198
Multi-line statements, 14
Multi-line string as comments, 13–14
Multiple subroutines, 225

“multi” keyword, use of, 226–227
subroutine definition, 225–226

Multiplication, 30
Multiply assignment, 38
Mutable parameters, 222
MySQL, creating a database in, 266–269

N

Need for Perl, 2–3
Nested given-when statement, 98–100
Nested if statement, 81–83
Nested loops, 95–97
Next operator, 103–104
Non-blocking lock, 135
Number and its types in Perl, 60–64
Number guessing game, 260–263

O

Object-oriented programming (OOP), 177
class, 181

creating, 182
defining, 182

class instance, creating, 182–183
constructors, 189–191
data member, 182
destructors, 192
dynamic attributes, passing, 191–192
encapsulation in, 203–205
inheritance in, 196

base class and derived class,
197–198

implementing inheritance in Perl,
199–200

Multilevel Inheritance, 198
methods in, 186

get-set methods, 187–189
types of methods in Perl, 187

overriding in, 192–196
polymorphism in, 200–202

Objects, 179, 181, 184–186
creating, 183–184
making use of, 182

292 ◾ Index

Octal numbers, 63
One-liner mode, 24
OOP, see Object-oriented programming
Open function, 117
Operators, 29

arithmetic operators, 30
addition, 30
division, 30
exponent operator, 31
modulus operator, 31
multiplication, 30
subtraction, 30

assignment operators, 37–40
bitwise operators, 35–37
logical operators, 34–35
in regular expression, 143–146
relational operators, 31–34
ternary operator, 40–41

Overriding in OOPs, 192–196

P

Packages, Perl, 57
begin and end block, 60
making use of a Perl module, 58
module variables, utilizing, 59–60
Perl module declaration, 57–58
using a different directory to access a

package, 58–59
Package variables, 52–54
PATTERN, 144–145
Polymorphism in OOPs, 179, 196,

200–202
pos() function in regular expression,

164–167
POSIX platform, 245
Pragma, 10
Predefined modules, making use

of, 56
Preinstalled version of Perl, 7
Primary uses of Perl, 246
print() function, 10, 120–122
print() operator, 71–72
Print function, 72, 110–111, 116
Print operator, 73–74
Private variables, 50–52
Programming in Perl, 4, 7

applications, 6

benefits of Perl, 6
comments, 5–6
disadvantages of Perl, 6

Python, Perl vs, 240–242

Q

Quantifiers in regular expression, 152,
170–171, 172

quantifier table, 153–156

R

rand k function, 261
rand n function, 260
Read, Evaluate, Print, Loop (REPL),

22
Read-Append mode, 115
ReadData() function, 258
Read function, 118–119
Read-Write mode, 113–115
Recursion, 234–236
Redo operator, 105
References, 229

dereferencing, 231–232
making, 229–230
pass by, 232–234

Regular expressions (Regex), 141
backtracking in, 156–158
cheat sheet, 167

anchors, 169
character classes, 168
grouping and capturing, 172
metacharacters, 170
modifiers, 171
quantifiers, 170–171, 172
white space modifiers, 171

“ee” modifier in, 161–164
“e” modifier in, 159

substitution operation, 160–161
operators in, 143–146
pos() function in regular expression,

164–167
quantifiers in, 152

quantifier table, 153–156
regex character classes, 147–149
searching in a file using, 172

regular search, 173–174

Index ◾ 293

wild cards, use of, 175–176
word boundary, using, 174–175

special character classes in, 150–152
Regular search, 173–174
Relational operators, 31–34
Relevancy of Perl, 245
REPL, see Read, Evaluate, Print, Loop
return() function, 228–229
Reusability, 179–180
rows() function, 259

S

say() function, 73
Scalars, 18
Scalar variables, 42–43, 45–46
Script, exiting from, 251–253
Script mode, 23–24
Shared lock, 134–135
Simple assignment, 38
Single-line comments, 13
Slurp module, 136–139
Software testing, TAP for, 277–278
Speech recognition, Perl for, 277
split() function, 125–127
SQL, see Structured query language
Statement execution, 91
Statements, 14
Static method, 187
STDIN, 74–75
Strawberry Perl, 245
Structured query language (SQL), 263
Studying Perl, 246–247
Subclass, 179
Subroutine arity, 226
Subroutines, 15, 207, 214–215, 274

calling, 208
determining, 208
function signature in Perl, 214–217
global variable in, 212–213
immutable parameters, 222–223
local variable in, 212–213
multiple subroutines, 225

“multi” keyword, use of, 226–227
subroutine definition, 225–226

mutable parameters, 222
passing complex parameters to,

217–222

passing hashes to, 210
passing lists to, 210–211
passing parameters to, 208–209
recursion, 234–236
references, 229

dereferencing, 231–232
making, 229–230
pass by, 232–234

return() function, 228–229
returning a value from, 211–212
traits, 223–225
varying number of parameters in

subroutine call, 213–214
Subtract assignment, 38
Subtraction, 30
Sun Microsystems, 242
Superclass, 179
Switch-case in Perl, 97
Syntax of Perl program, 11

block, 14–15
comments, 13–14
expressions, 12
functions/subroutines, 15
keywords, 17
loops, 15–16
statements, 14
variables, 12
whitespaces and indentation, 16–17

System management, 2

T

TAP for software testing, 277–278
Ternary operator, 40–41
TEXT::CSV, installation of, 128–129
Text manipulation, 278–279
Text-processing, 2
Text-to-speech translation in Perl,

277
Traits, 223–225
True values, 25–27

U

Unicode character classes, 152
Unix/Linux, 11
Unless else statement, 86–88
Unless elsif statement, 88–90

294 ◾ Index

Unless statement, 85–86
Until loop, 94–95
Uses of Perl, 246

V

Variables, 12, 41, 44
array, 46
context, 47–48
creating, 45
declaration of, 42
Hash, 46–47
interpolation, 43–44
modification of, 42–43
naming of, 41–42
scalar, 45–46
scope of, 48

global variables, 48–50
lexical variables, 50–52
package variables, 52–54

Virtual method, 187

W

Wall, Larry, 1–2, 237, 238, 242, 243
Warn function, 123
Web and Perl, 2, 239
Web pages, serving, 277
While loop, 92–93
White space modifiers, 171
Whitespaces, 152

and indentation, 16–17
Wild cards in regular expression, 175–176
Windows, 11

installation, 8
installation and configuration of Perl

on, 7
Word boundary in regex search, 174–175
write() function, 257
Writing methods, Perl code, 21

interactive mode, 22–23
one-liner mode, 24
script mode, 23–24

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	About the Editor
	Acknowledgments
	Zeba Academy – Mastering Computer Science
	CHAPTER 1: Introduction
	EVOLUTION OF PERL
	WHY PERL?
	PERL FEATURES
	PERL APPLICATION
	PERL IMPLEMENTATION
	PROGRAMMING IN PERL
	Comments
	Perl’s Benefits
	Perl’s Disadvantages
	Applications

	PERL INSTALLATION AND CONFIGURATION ON WINDOWS, LINUX, AND MACOS
	PERL DOWNLOAD AND INSTALLATION
	HELLO WORLD PROGRAM
	HOW TO EXECUTE A PERL PROGRAM
	Windows
	Unix/Linux

	A PERL PROGRAM’S BASIC SYNTAX
	Variables
	Expressions
	Comments
	Statements
	Block
	Functions or Subroutines
	Loops
	Whitespaces and Indentation
	Keywords

	DATA TYPES
	Scalars
	Arrays
	Hashes

	NOTE

	CHAPTER 2: Fundamentals of Perl
	PERL CODE WRITING METHODS
	Interactive Mode
	Script Mode
	One-Liner Mode

	BOOLEAN VALUES IN PERL
	OPERATORS
	Arithmetic Operators
	Addition
	Subtraction
	Multiplication
	Division
	Modulus
	Exponent Operator

	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Ternary Operator

	VARIABLES IN PERL
	Naming of a Variable
	Declaration of a Variable
	Modification of a Variable
	Variable Interpolation

	VARIABLES AND ITS TYPES
	Creating Variables
	Scalar Variables
	Array Variables
	Hash Variables
	Variable Context

	SCOPE OF VARIABLES
	The Scope of Global Variables
	Lexical Variables’ Scope (Private Variables)
	Package Variables

	MODULES IN PERL
	Making a Perl Module
	Importing and Using a Perl Module
	Utilizing Module Variables
	Making Use of predefined Modules

	PERL PACKAGES
	Perl Module Declaration
	Making Use of a Perl Module
	Using a Different Directory to Access a Package
	Utilizing Module Variables
	Begin and End Block

	NUMBER AND ITS TYPES IN PERL
	DIRECTORIES WITH CRUD OPERATIONS IN PERL
	Making a New Directory
	Opening an Existing Directory
	Read Directory in the Scalar and List Context
	Modifying Directory Path
	Directory Closing
	Delete a Directory

	NOTES

	CHAPTER 3: Input and Output in Perl
	PERL print() AND say() METHODS
	print() Operator
	say() Function

	print OPERATOR
	USE OF STDIN FOR INPUT

	CHAPTER 4: Control Flow in Perl
	DECISION-MAKING IN PERL
	if Statement
	if else Statement
	Nested if Statement
	if elsif else ladder Statement
	unless Statement
	unless else Statement
	unless elsif Statement

	LOOPS IN PERL
	for Loop
	foreach Loop
	while Loop
	Infinite While Loop
	do...while loop
	until Loop
	Nested Loops

	given-when STATEMENT
	Nested given-when Statement

	goto STATEMENT
	next OPERATOR
	redo OPERATOR
	last IN LOOP
	NOTES

	CHAPTER 5: File Handling in Perl
	INTRODUCTION OF FILE HANDLING
	Using FileHandle To Read and Write to a File
	Various File Handling Modes
	Redirecting Output

	FILE OPENING AND READING
	Opening a File
	Reading a File
	FileHandle Operator
	getc Function
	read Function

	Reading More than One Line at a Time
	Exception Handling in Files
	Throw an Exception
	Give a Warning

	WRITING TO A FILE
	print() Function
	Error Handling and Error Reporting
	Throw an Exception (Using Die Function)
	Give a Warning (Using Warn Function)

	APPENDING TO A FILE
	CSV FILE READING
	Use of Split() for Data Extraction
	Character Escaping a Comma
	Installation of the TEXT::CSV
	Fields with Newlines Embedded

	FILE TEST OPERATORS
	FILE LOCKING
	flock()
	flock() vs lockf()

	SLURP MODULE
	USEFUL FILE-HANDLING FUNCTIONS

	CHAPTER 6: Regular Expressions in Perl
	OPERATORS IN REGULAR EXPRESSION
	REGEX CHARACTER CLASSES
	SPECIAL CHARACTER CLASSES IN REGULAR EXPRESSIONS
	QUANTIFIERS IN REGULAR EXPRESSION
	Quantifier Table

	BACKTRACKING IN REGULAR EXPRESSION
	BACKTRACKING
	“e” MODIFIER IN REGULAR EXPRESSION
	The Substitution Operation Is Performed using a Subroutine

	REGEX “ee” MODIFIER
	When Doing Mathematical Calculations, Use the “ee” Modifier

	pos() FUNCTION IN REGULAR EXPRESSION
	To Match from a Specified Position, use \G Assertion

	REGEX CHEAT SHEET
	Character Classes
	Anchors
	Metacharacters
	Quantifiers
	Modifiers
	White Space Modifiers
	Quantifiers – Modifiers
	Grouping and Capturing

	SEARCHING IN A FILE USING REGEX
	Regular Search
	Using Word Boundary in the Regex Search
	Use of Wildcards in the Regular Expression

	CHAPTER 7: Object-Oriented Programming in Perl
	CLASSES IN OOP
	Object
	Class
	Data Member
	Defining a Class
	Creating a Class and Making Use of Objects
	Creating a Class Instance
	Creating an Object

	OBJECTS IN OOPs
	METHODS IN OOPs
	Types of Methods in Perl
	get-set Methods

	CONSTRUCTORS AND DESTRUCTORS
	Constructors
	Passing Dynamic Attributes
	Destructors

	METHOD OVERRIDING IN OOPs
	Why Do We Override Methods?

	INHERITANCE IN OOPs
	Base Class and Derived Class
	Multilevel Inheritance
	Implementing Inheritance in the Perl

	POLYMORPHISM IN OOPs
	ENCAPSULATION IN OOPs
	NOTE

	CHAPTER 8: Subroutines in Perl
	SUBROUTINES OR FUNCTIONS
	Determining Subroutines
	Calling Subroutines
	Passing Parameters to Subroutines
	Passing Hashes to Subroutines
	Passing Lists to Subroutines
	Returning a Value from a Subroutine
	Local and Global Variables in Subroutines
	A Varying Number of Parameters in a Subroutine Call

	FUNCTION SIGNATURE IN PERL
	Defining Subroutines
	Function Signature
	Passing Parameters of a Type other than that Specified in the Signature
	Difference in Number of Arguments

	PASSING COMPLEX PARAMETERS TO A SUBROUTINE
	MUTABLE AND IMMUTABLE PARAMETERS
	Mutable Parameters
	Immutable Parameters
	Traits

	MULTIPLE SUBROUTINES
	Subroutine Definition
	Use of the “multi” Keyword

	return() FUNCTION
	REFERENCES IN PERL
	Making a Reference
	Dereferencing

	PASS BY REFERENCE
	PERL RECURSION

	APPRAISAL
	BIBLIOGRAPHY
	INDEX

