

Objective-C

Objective-C is a general-purpose, object-oriented programming language that
extends the C programming language with Smalltalk-style messaging. While si-
multaneously developing for OS X and iOS, Objective-C’s capabilities have been
bolstered by the inclusion of a dynamic runtime and assistance for object-oriented
programming.

Objective-C: The Ultimate Guide walks developers and coders through a straight-
forward and practical method of learning the Objective-C programming language.
This book discusses the basics in brief, and then moves on to more advanced and
detailed exercises to help readers quickly gain the required knowledge. The focus in
this book remains on writing optimized and well-structured code in Objective-C.

Key Features:

• Follows a hands-on approach and offers practical lessons and tutorials
related to Objective-C

• Discusses Objective-C using real world industry concepts
• Includes at-length discussion of Objective-C concepts to help build robust

knowledge

https://taylorandfrancis.com

Objective-C
The Ultimate Guide

Sufyan bin Uzayr

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 9781032413211 (hbk)
ISBN: 9781032413198 (pbk)
ISBN: 9781003357506 (ebk)

DOI: 10.1201/9781003357506

Typeset in Minion Pro
by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003357506

For Dad

https://taylorandfrancis.com

vii

Contents

About the Author, xix

Acknowledgments, xx

Chapter 1    ◾    Crash Course in Objective-C� 1
OBJECTIVE-C SPECIFICS 2

WHY OBJECTIVE-C? 2

DIFFERENTIATING OBJECTIVE-C VERSUS SWIFT 3

DIFFERENTIATING OBJECTIVE-C FROM C++ 3

UPSIDES AND DOWNSIDES OF OBJECTIVE-C 4

Upsides 4
Downsides 4

FACTORS TO CONSIDER 5

OBJECTIVE-C OVERVIEW 5

FRAMEWORK FOR THE FOUNDATION 6

LEARNING OBJECTIVE-C 6

USING OBJECTIVE-C 6

SETUP OF THE OBJECTIVE-C ENVIRONMENT� 6

LOCAL ENVIRONMENT CONFIGURATION 6

EDITOR OF TEXT 6

GCC COMPILER 7

UNIX/LINUX INSTALLATION 7

MAC OS INSTALLATION 8

WINDOWS INSTALLATION 9

STRUCTURE OF THE OBJECTIVE-C PROGRAM 9

viii    ◾    Contents

OBJECTIVE-C EXAMPLE OF HELLO EVERYONE 9

BASIC SYNTAX IN OBJECTIVE-C� 11

OBJECTIVE-C TOKENS 11

SEMICOLONS; 11

COMMENTS 11

IDENTIFIERS 12

KEYWORDS 12

WHITESPACE IN OBJECTIVE-C 12

DATA TYPES IN OBJECTIVE-C 13

TYPES OF INTEGERS 14

TYPES OF FLOATING-POINT 14

VOID TYPE 15

VARIABLES IN OBJECTIVE-C 15

OBJECTIVE-C VARIABLE DEFINITION 16

OBJECTIVE-C VARIABLE DECLARATION 17

OBJECTIVE-C lvalues AND rvalues 18

CONSTANTS IN OBJECTIVE-C 19

INTEGER LITERALS 19

FLOATING-POINT LITERALS 19

CHARACTER CONSTANTS 20

STRING LITERALS 21

CONSTANT DEFINITION 21

#define Preprocessor 21
const Keyword 22

OPERATORS IN OBJECTIVE-C 22

ARITHMETIC OPERATORS IN OBJECTIVE-C 23

RELATIONAL OPERATORS 23

LOGICAL OPERATORS IN OBJECTIVE-C 24

BITWISE OPERATORS 24

ASSIGNMENT OPERATORS 25

MISC OPERATORS ↦ SIZEOF & TERNARY 26

OPERATORS’ PRECEDENCE IN THE OBJECTIVE-C 26

Contents    ◾    ix

LOOPS IN OBJECTIVE-C 27

CONTROL STATEMENTS FOR LOOPS 28

INFINITE LOOP 28

DECISION MAKING IN OBJECTIVE-C 29

THE ? : OPERATOR 30

FUNCTIONS IN OBJECTIVE-C 30

CREATING A METHOD 31

DECLARATIONS OF METHOD 32

CALLING A METHOD 32

FUNCTION ARGUMENTS 34

BLOCKS IN OBJECTIVE-C 34

Simple Block Declaration Syntax 35
Implementation of a Simple Block� 35

BLOCKS TAKE ARGUMENTS AND RETURN VALUES 35

BLOCKS USING THE TYPE DEFINITIONS 35

NUMBERS IN OBJECTIVE-C 36

ARRAYS IN OBJECTIVE-C 38

DECLARING ARRAYS 38

ARRAYS INITIALIZATION 39

ACCESSING ARRAY ELEMENTS 39

ARRAYS IN OBJECTIVE-C IN DEPTH 40

POINTERS IN OBJECTIVE-C 41

WHAT EXACTLY ARE POINTERS IN OBJECTIVE-C? 41

How Do Pointers Work? 42
OBJECTIVE-C NULL POINTERS 43

DETAILS ABOUT OBJECTIVE-C POINTERS 43

STRINGS IN OBJECTIVE-C 44

STRUCTURES IN OBJECTIVE-C 46

CREATING A STRUCTURE 47

ACCESS TO STRUCTURE MEMBERS 47

FUNCTION ARGUMENTS AS STRUCTURES 48

POINTERS TO STRUCTURES 50

x    ◾    Contents

BIT FIELDS� 52

PREPROCESSORS IN OBJECTIVE-C� 52

EXAMPLES OF PREPROCESSORS� 53

PREDEFINED MACROS� 54

OPERATORS OF PREPROCESSORS� 55

Macro Continuation (\)� 55
Stringize (#)� 55
Token Pasting (##)� 55
defined() Operator� 56

PARAMETERIZED MACROS� 56

Typedef IN OBJECTIVE-C� 57

typedef vs #define� 58
TYPE CASTING IN OBJECTIVE-C� 59

INTEGER PROMOTION� 59

USUAL ARITHMETIC CONVERSION� 60

LOG HANDLING IN OBJECTIVE-C� 61

NSLog METHOD� 61

DISABLING LOGS IN THE LIVE Apps� 61

ERROR HANDLING IN OBJECTIVE-C� 62

NSError� 62

COMMAND-LINE ARGUMENTS� 64

BIBLIOGRAPHY� 65

Chapter 2    ◾    OOP in Objective-C� 67
OBJECT-ORIENTED PROGRAMMING� 67

OPERATIONS AND DATA� 67

IMPLEMENTATION AND INTERFACE� 68

THE OBJECT MODEL� 71

THE METAPHOR OF MESSAGING� 73

CHARACTERISTIC OF OBJECTIVE-C� 75

DEFINITIONS OF OBJECTIVE-C CLASSES� 75

ALLOCATING AND INITIALIZING OBJECTIVE-C OBJECTS� 76

Contents    ◾    xi

ACCESSING DATA MEMBERS� 76

Properties� 77
Modularity� 78
Reusability� 79

INHERITANCE IN OBJECTIVE-C� 80

BASE AND DERIVED CLASSES� 81

ACCESS THE CONTROL AND INHERITANCE� 83

Hierarchies of Class� 83
Definitions of Subclass� 84

DYNAMISM� 85

POLYMORPHISM IN OBJECTIVE-C� 85

DATA ENCAPSULATION IN OBJECTIVE-C� 88

EXAMPLE OF DATA ENCAPSULATION� 90

CREATING A STRATEGY� 91

CATEGORIES IN OBJECTIVE-C� 91

CATEGORY CHARACTERISTICS� 92

POSING IN OBJECTIVE-C� 93

POSING RESTRICTIONS� 93

EXTENSIONS IN OBJECTIVE-C� 94

EXTENSIONS’ CHARACTERISTICS� 95

Example of Extensions� 95
PROTOCOLS IN OBJECTIVE-C� 96

DYNAMIC BINDING IN OBJECTIVE-C� 99

COMPOSITE OBJECTS IN OBJECTIVE-C� 101

CLASS CLUSTERS� 101

WHAT EXACTLY IS A COMPOSITE OBJECT?� 101

An Example of a Composite Object� 102
FOUNDATION FRAMEWORK IN OBJECTIVE-C� 104

Functionality-Based Foundation Classes� 105
FAST ENUMERATION IN OBJECTIVE-C� 106

COLLECTIONS IN THE OBJECTIVE-C� 106

MEMORY MANAGEMENT IN OBJECTIVE-C� 107

xii    ◾    Contents

“MANUAL RETAIN-RELEASE” OR MRR 108

Basic MRR Rules 109
“AUTOMATIC REFERENCE COUNTING” OR ARC 110

BIBLIOGRAPHY 112

Chapter 3    ◾    Interface and API� 113
iOS IN OBJECTIVE-C 113

IMPLEMENTATION AND INTERFACE 113

OBJECT CREATION 114

METHODS 114

Class Methods 114
Instance Methods 115

IMPORTANT OBJECTIVE-C DATA TYPES 115

Printing Logs 115
CONTROL STRUCTURES 115

PROPERTIES 116

Properties of Accessing 116
CATEGORIES 116

Arrays 116
Dictionary 117

ENVIRONMENT SETUP 117

Installation of Xcode 117
INTERFACE BUILDER 118

SIMULATOR FOR iOS 118

FIRST iPHONE APPLICATION 118

FIRST iOS APPLICATION’S CODE 119

AppDelegate.h 120
AppDelegate.m 120
ViewController.h 123
ViewController.m 123

ACTIONS AND OUTLETS IN iOS 124

DELEGATES IN iOS 125

How to Create a Delegate 126

Contents    ◾    xiii

UI ELEMENTS� 128

What Are UI Elements?� 128
How Do We Insert UI Elements?� 128
Our Focus� 128
Our Strategy� 128

LIST OF UI ELEMENTS� 129

ACCELEROMETER IN iOS� 130

UNIVERSAL APPLICATIONS IN iOS� 131

CAMERA MANAGEMENT IN iOS� 132

LOCATION HANDLING IN iOS� 134

SQLite DATABASE IN iOS� 137

SENDING EMAIL ON iOS� 144

AUDIO AND VIDEO IN iOS� 146

FILE HANDLING IN iOS� 148

METHODS FOR FILE HANDLING� 148

Check to See If a File in Objective-C Exists at a Given Path� 148
Comparing the Contents of Two Files� 148
Check to See If It Is Writable, Readable, and Executable� 149
Move File� 149
Copy File� 149
Remove File� 149
Read File� 149
Write File� 149

ACCESSING MAPS ON iOS� 150

IN-APP PURCHASE IN iOS� 152

iAd INTEGRATION IN iOS� 158

GameKit IN iOS� 159

STORYBOARDS IN iOS� 162

AUTO LAYOUTS IN iOS� 163

Aim of Our Example� 163
Our Strategy� 163
The Involved Steps� 164

xiv    ◾    Contents

TWITTER AND FACEBOOK ON iOS� 167

MEMORY MANAGEMENT IN iOS� 170

MEMORY MANAGEMENT CHALLENGES� 170

RULES FOR MEMORY MANAGEMENT� 170

DEALING WITH MEMORY IN ARC� 170

MEMORY MANAGEMENT TOOLS� 170

ANALYTICAL METHODS FOR MEMORY ALLOCATIONS� 171

APPLICATION DEBUGGING IN iOS� 171

CHOOSING A DEBUGGER� 171

HOW TO LOCATE CODING ERRORS� 171

SET BREAKPOINTS� 171

BREAKPOINT EXCEPTION� 172

IN AN iOS App, WE MAY USE GOOGLE APIs� 172

NOTE 174

BIBLIOGRAPHY 174

Chapter 4 ◾ Functional Programming 177
WHY OBJECT-FUNCTIONAL PROGRAMMING? 178

OBJECTIVE-C FUNCTIONAL PROGRAMMING 178

On Functional Programming 180
On the ObjC Runtime 180
On Objective-C and Language Design 181

WRITE OBJECTIVE-C CODE 181

CLASSES AND OBJECTS 183

METHODS AND COMMUNICATION 185

CLASS METHODS 188

Properties and Accessor Methods Are Declared 188
BLOCKS 190

PROTOCOLS AND CATEGORIES 192

Types and Coding Strategies Are Defined 193
CREATE THE VIDEO App 195

Set the App’s Audio Behavior 195
Build View Controller Class Declaration 198

Contents    ◾    xv

Import the Brightcove Player SDK Header File
into the Program 198
Look at the Code 198
Construct the View Controller Implementation
in Objective-C 198
Customize the Project to Reflect Our Values 198
Declare Properties 199

DEFINE INITIALIZATION METHOD 200

Setup Player 200
Configure Player 201
Use the Brightcove Library to Request Material 202
Look at the Code 203

NOTE 205

BIBLIOGRAPHY 205

Chapter 5 ◾ Code Management 207
WHY MUST WE PERFORM THIS? 208

ANATOMY OF A FRAMEWORK 209

STATIC AND DYNAMIC FRAMEWORKS 209

ARCHITECTURES AND SLICING OF PROCESSORS 210

DEVELOPING A DYNAMIC STRUCTURE 210

SETTING UP OUR PROJECT 210

DEVELOPING OUR CODE 211

ACCESS CONTROL 211

UMBRELLA HEADER 211

UNIVERSAL SUPPORT 212

UTILIZING OUR DYNAMIC FRAMEWORK 215

DEVELOPING A STATIC FRAMEWORK 215

SETTING UP OUR PROJECT 215

DEVELOPING OUR CODE 215

ACCESS CONTROL 215

UMBRELLA HEADER 216

PACKAGING 216

xvi    ◾    Contents

MODIFY BUILD SETTINGS TO SUPPORT STATIC
FRAMEWORKS� 216

MODULE SUPPORT� 216

CREATING THE BUNDLE STRUCTURE� 217

UNIVERSAL SUPPORT� 218

UTILIZING OUR STATIC FRAMEWORK� 220

RECOMMENDATIONS� 220

COMPILING AND CONSTRUCTING THE FRAMEWORK� 221

UPLOADING AN APPLICATION’S FRAMEWORK TO THE
APP STORE� 221

MEMORY MANAGEMENT IN OBJECTIVE-C� 221

“MANUAL RETAIN-RELEASE” OR MRR� 222

Basic MRR Rules� 223
“AUTOMATIC REFERENCE COUNTING” OR ARC� 225

Effective Procedures Prevent Memory-Related Issues� 226
DEBUG MEMORY ISSUES USING ANALYSIS TOOLS� 226

THE GOAL OF MEMORY MANAGEMENT� 226

Avoid Crashing� 227
Strong vs Weak� 227
Atomic and Nonatomic� 228

DESIGN PATTERNS IN iOS� 228

FAÇADE� 229

When to Use the Facade Pattern?� 229
An Illustration of Facade Design Pattern� 230

DECORATOR� 230

When Should We Use a Decorator Pattern?� 230
Example of Decorator Style Design� 230

MEMENTO� 231

ADAPTER� 231

When to Use an Adapter?� 231
Illustration of Adapter Pattern� 231

OBSERVER� 231

Contents    ◾    xvii

When Should We Use a Decorator Pattern?� 232
Example of Decorator Style Design� 232

STRATEGY� 232

FACTORY� 232

COMMAND� 233

COMPOSITE� 233

ITERATOR� 233

MEDIATOR� 233

SINGLETON� 233

When Should We Use the Singleton Design Pattern?� 234
Illustration of Singleton Pattern� 234

MVC� 234

MVP� 235

MVVM� 236

Feature Assessment� 236
VIPER� 237

WHAT ARE THE ADVANTAGES OF EMPLOYING iOS
DESIGN PATTERNS?� 237

Prepared to Develop iOS Applications Using iOS Design
Patterns� 238

BIBLIOGRAPHY� 238

Chapter 6    ◾    Code Optimization� 239
OBJECTIVE-C CODE OPTIMIZATION AT COMPILE TIME� 239

OBJECTIVE-C PIPELINE� 240

SECURE CODE� 243

Security Breach through HTTPS Response Cache� 244
RESUME BACKGROUND DISCLOSURE OF SCREENSHOT
DATA� 245

SSL PINNING� 245

BEST PRACTICES WITH OBJECTIVE-C CODING
CONVENTION� 250

Operators� 250

xviii    ◾    Contents

Types 250
Methods 250
Pragma Mark and Implementation Organization 251
Control Structures 251
Switch 252
For 253
While 253
Import 253
Header Prefix 254
Properties 254
Private Methods and Properties 254
Extern, Const, and Static 255
Naming 255
Enums 256

HARDENING OF SYSTEMS 256

Hardening of Systems to Reduce the “Attack Surface” 256
Advantages of System Hardening 257

NOTE 257

BIBLIOGRAPHY 257

APPRAISAL, 259

OBJECTIVE-C CHEAT SHEET, 305

INDEX, 309

xix

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a decade
of experience in the industry. He has authored several books in the past,
pertaining to a diverse range of topics, ranging from History to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields. He special-
izes in a wide variety of technologies such as JavaScript, Dart, WordPress,
Drupal, Linux, and Python. He holds multiple degrees including ones in
Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries.
He has lived and taught in numerous universities and educational institu-
tions around the globe. Sufyan takes a keen interest in technology, politics,
literature, history, and sports, and in his spare time, he enjoys teaching
coding and English to young students.

Learn more at sufyanism.com

https://sufyanism.com

xx

Acknowledgments

There are many people who deserve to be on this page, for this book would
not have come into existence without their support. That said, some names
deserve a special mention, and I am genuinely grateful to:

•	 My parents, for everything they have done for me.

•	 The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Simran Rao, for offering great amounts of help and assistance during
the book-writing process.

•	 The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

•	 Reviewers of this book, for going through the manuscript and pro-
viding their insight and feedback.

•	 Typesetters, cover designers, printers, and everyone else, for their
part in the development of this book.

•	 All the folks associated with Zeba Academy, either directly or indi-
rectly, for their help and support.

•	 The programming community in general, and the web development
community in particular, for all their hard work and efforts.

Sufyan bin Uzayr

1DOI: 10.1201/9781003357506-1

C h a p t e r 1

Crash Course in
Objective-C

IN THIS CHAPTER

➢ What is Objective-C

➢ Major Concepts

➢ Advantages and Disadvantages

➢ Syntax and Code Basics

➢ Additional Info

Objective-C language is a general-purpose, object-oriented programming
language that extends the C programming language with Smalltalk-style
messaging. Apple’s primary programming language for the OS X and iOS
operating systems and their associated APIs, Cocoa, and Cocoa Touch.
This book will walk you through a straightforward and practical method
of learning the Objective-C programming language.

Programming in Objective-C is a general-purpose programming lan-
guage. Although it is not unique to any platform or system, use it to con-
struct a wide range of frameworks. Programming in Objective-C adds
communications features to the language C.

Objective-C is one of the primary programming languages used by
Apple for the iOS platform and is used to develop mobile apps for this
platform. Being the superset of the C programming language, it allows

https://doi.org/10.1201/9781003357506-1

2    ◾    Objective-C

developers to be more detail-oriented and accommodating of objects and
other programming languages.

Numerous programming languages exist. Three programming lan-
guages are now in high demand: Swift, Objective-C , and C++. Let’s exam-
ine the fundamental distinctions between Objective-C and the other two
programming languages:

OBJECTIVE-C SPECIFICS
Objective-C is excellent for memory management; there are avail-
able compilers that can turn Objective-C code into static code analy-
sis, which the language then uses to distinguish important information
from “trash.”

The most crucial aspect of Objective-C to understand is that it is very
object-oriented. Using this additional language, you can move graphs and
modify files, but it is crucial to understand its limits to comprehend its
benefits.

Objective-C, a programming language created in the 1980s, retains
many features used in iOS-specific mobile app development. While there
has been no breakthrough that enables Objective-C to be utilized on all
platforms, Objective-C is compatible with C and other languages for iOS
apps.

Objective-C competes with Swift, a more recent iOS programming lan-
guage. Several discussions over whether programming language provides
superior iOS mobile application development outcomes.

WHY OBJECTIVE-C?
For several reasons, the Objective-C programming language is selected.
It’s an object-oriented language, first and foremost. Object-oriented
approaches are required to give the type of capability seen in the Cocoa
frameworks. Second, since Objective-C is an extension of ANSI C, exist-
ing C applications are converted to utilize the software frameworks with-
out sacrificing any of the efforts that went into their creation. Because
Objective-C includes C, you receive all of the advantages of C while deal-
ing with it.

You may select whether to use object-oriented programming methods
(for example, to create a new class) and when to use procedural program-
ming techniques (define a structure and some functions instead of a class).

Furthermore, Objective-C is a very basic programming language. It has
a simple, clear syntax that is simple to pick up.

Crash Course in Objective-C    ◾    3

Object-oriented programming poses a high learning curve to new
recruits with its self-conscious vocabulary and focuses on abstract design.
A well-structured language, such as Objective-C, may make becoming an
expert object-oriented programmer considerably easier.

Objective-C is exceptionally dynamic when compared to other C-based
object-oriented languages. For usage at runtime, the compiler saves a lot
of information about the objects themselves. Decisions taken at compile
time are deferred until after the program has been executed. Objective-C
programs have a lot of flexibility and power because of their dynamism. It
provides two major advantages that are difficult to get with other ostensi-
bly object-oriented languages.

Objective-C has an open, dynamic binding approach that can allow a
basic interactive user interface design. Messages are not always bound by
the receiver’s class or method name. Therefore a software framework may
enable users to make decisions at runtime and provide developers a cre-
ative latitude in their design. (Terms like dynamic binding, message, class,
and receiver will be defined later in this text.)

Dynamism allows for the creation of advanced development tools. It’s
feasible to construct tools that monitor, intervene, and disclose the underly-
ing structure and activity of Objective-C programs using an interface to the
runtime system, which offers access to information about running apps.

DIFFERENTIATING OBJECTIVE-C VERSUS SWIFT
Swift is the programming language that Apple introduced in June 2014.
Objective-C has all the flaws one would anticipate from a language derived
from C. To differentiate keywords and types from C types, Objective-C
prefixes new keywords with @. Swift is not based on C. Therefore, it may
combine all Objective-C types and object-related keywords and extract
their many @ symbols.

In addition to other modern programming languages, Swift code
nearly resembles natural English. This readability makes it easier for exist-
ing programmers from JavaScript, Java, Python, C#, and C++ to adopt
Swift as part of their toolchain, in contrast to the painful experience that
Objective-C programmers had.

DIFFERENTIATING OBJECTIVE-C FROM C++
Wilkerson states that C++ was introduced in 1979 to combine objects and
instance methods with the original C programming language. Objective-C
language was founded on the belief that object-oriented programming

4    ◾    Objective-C

would be more productive and successful for big software projects; several
senior experts see this as the cause for C++’s widespread acceptance in
the years that followed. According to programming community experts,
C++ is the language used to create most current desktop applications. As
a result of its popularity, many frameworks and libraries have been devel-
oped to extend C++ for functions such as high-performance graphics,
audio digital signal processing, and user interface design.

Both languages are derived from C, but they are two entirely distinct
languages. Objective-C relies heavily on its runtime library to handle
inheritance and polymorphism, while C relies heavily on compile-time
choices for transmission. Nevertheless, in C++, the focus is often on com-
pile-time conclusions. C++ is a middle-level programming language that
runs on several cross-platform operating systems including Windows,
UNIX, Mac OS, etc. Objective-C, in contrast, is a general-purpose, object-
oriented programming language that Apple uses in its operating systems
and Cocoa APIs, etc.

UPSIDES AND DOWNSIDES OF OBJECTIVE-C
Upsides

•	 Compatibility with both C++ and Objective-C++

•	 Effective attributes such as method swizzling

•	 More dependable assistance in coding Binary Frameworks.

Downsides

•	 Since Objective-C is built upon C, namespacing is required. All
classes inside an Objective-C program must be globally unique.
Therefore, there is a practice of prefixing class names to avoid con-
flict. This is why we own the “NS” prefix for Foundation Framework
classes and the “UI” prefix for UIKit classes.

•	 Specific pointers.

•	 The ability to send a message on a nil object without dropping
and the lack of strict type make it harder to identify and resolve
issues.

•	 The syntax of the language is tedious and complex.

Crash Course in Objective-C    ◾    5

FACTORS TO CONSIDER
Objective-C application development may be expedited and is an
excellent approach to adding object-based functionality to an appli-
cation. There are many important considerations about this superset
language:

Maintenance is essential; this pertains to upgrading Objective-C devel-
oped applications. Although the language is dated, it is not outdated. It
merely takes minimal maintenance to remain current.

Less adaption is necessary as many APIs still have a lot to catch up for
Swift-developed applications. This suggests that Objective-C may be sim-
pler to deploy to iOS mobile applications.

Object handling made simpler Apple is all about having an object net-
work. Using Objective-C, these objects are readily movable.

Objective-C may simplify iOS mobile applications in all Apple iOS
devices, including smartphones and tablets.

OBJECTIVE-C OVERVIEW
Objective-C supports object-oriented programming, along with the four
object-oriented development pillars.

•	 Encapsulation

•	 Data hiding

•	 Inheritance

•	 Polymorphism

Example:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];

 NSLog (@"hello everyone");
 [pool drain];
 return 0;
}

6    ◾    Objective-C

FRAMEWORK FOR THE FOUNDATION
The Foundation Framework has a plethora of functionality, which are
described below.

It includes several expanded datatypes such as NSArray, NSDictionary,
NSSet, and others.

It has an extensive collection of functions for handling files, strings, etc.
It has URL processing functions and utilities like date formatting, data

handling, error handling, etc.

LEARNING OBJECTIVE-C
When studying Objective-C, the essential thing to remember is to stay
focused on principles rather than getting bogged down in language
technicalities.

The goal of studying a programming language is to become a better
programmer or become more successful at developing, implementing, and
maintaining existing systems.

USING OBJECTIVE-C
As previously stated, Objective-C is utilized in iOS and Mac OS X. It has
a sizable iOS user base and a rapidly growing Mac OS X user base. And
because Apple prioritizes quality, this is fantastic news for individuals who
have just begun learning Objective-C.

SETUP OF THE OBJECTIVE-C ENVIRONMENT

LOCAL ENVIRONMENT CONFIGURATION
If we want to create our own environment for the Objective-C program-
ming language, we must install Text Editor and The GCC Compiler on our
computer.

EDITOR OF TEXT
This is where we will type our program. Some editors are Windows
Notepad, the OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

On various operating systems, the name and version of the text editor
may differ. Notepad, for example, will be used on Windows, and use vim
or vi on both Windows and Linux or UNIX.

Source files are files that we produce with our editor that contain pro-
gram source code. Objective-C source files are commonly named with the
extension “.m.”

Crash Course in Objective-C    ◾    7

Before starting our programming, make sure we have one text editor
in place, and we have enough knowledge to develop a computer program,
store it in a file, compile it, and eventually run it.

GCC COMPILER
Our program’s source code is written in a source file and is human read-
able. It must “compiled” into machine code before our CPU can run the
program as instructed.

Use this GCC compiler to transform our source code into an executable
application. We’re assuming we’re familiar with programming language
compilers.

The GCC compiler is available for free on various systems, and the tech-
nique for installing it on those platforms is detailed here.

UNIX/LINUX INSTALLATION
The first step is to install gcc and the gcc Objective-C package. This is
accomplished by:

$ su -
$ yum install gcc
$ yum install gcc-objc

The following command is used to configure package dependencies:

$ yum install make libpng libpng-devel libtiff
libtiff-devel libobjc
 libxml2 libxml2-devel libX11-devel libXt-devel
libjpeg libjpeg-devel

Download and install GNUStep to unlock all of Objective-functionality.
The package is obtained by visiting http://wwwmain.gnustep.org/resources/
downloads.php

Now we must navigate to the downloaded location and unpack the file
using:

$ tar xvfz gnustep-startup-.tar.gz

Now we must navigate to the folder GNUStep-startup, which is created
by using:

$ cd gnustep-startup-<version>

http://wwwmain.gnustep.org
http://wwwmain.gnustep.org

8    ◾    Objective-C

The construction procedure must then be configured.

$. /configure

Then we may construct by

$ make

We must eventually create the environment by

$./usr/GNUstep/System/Library/Makefiles/GNUstep.sh

We have a helloeveryone.m Objective-C file that looks like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];

 NSLog (@"hello everyone");
 [pool drain];
 return 0;
}

Now we can build and execute an Objective-C file, say helloeveryone.m,
by using cd to get to the file’s location and then doing the following steps:

$ gcc 'gnustep-config --objc-flags'
-L/usr/GNUstep/Local/Library/Libraries
-lgnustep-base helloeveryone.m -o helloeveryone
$./helloeveryone

MAC OS INSTALLATION
If we’re running Mac OS X, the simplest method to get GCC is to down-
load Apple’s Xcode development environment and follow the straightfor-
ward installation instructions. Once we’ve installed Xcode, we’ll be able to
utilize the GNU C/C++ compiler.

Xcode is presently being downloaded at https://developer.apple.com/
xcode/.

https://developer.apple.com
https://developer.apple.com

Crash Course in Objective-C    ◾    9

WINDOWS INSTALLATION
To run an Objective-C program on Windows, we must first install MinGW
and GNUStep Core. Download both at: https://www.gnu.org/software/
gnustep/windows/installer.html.

We must first install the MSYS/MinGW System package. The GNUstep
Core package then is installed and both of which have a self-explanatory
Windows setup.

Then, go to Start -> All Programs -> GNUstep -> Shell to utilize
Objective-C and GNUstep.

Navigate to the helloeveryone.m folder.
We may use to compile the code.

$ gcc 'gnustep-config --objc-flags'
-L /GNUstep/System/Library/Libraries helloeveryone.m
-o hello -lgnustep-base -lobjc

STRUCTURE OF THE OBJECTIVE-C PROGRAM
Before we examine the fundamental building blocks of the Objective-C
programming language, let’s look at a bare minimum Objective-C pro-
gram structure that we can use as a reference in the later chapters.

OBJECTIVE-C EXAMPLE OF HELLO EVERYONE
A simple Objective-C program consists of the following components:

•	 Preprocessor Commands

•	 Interface

•	 Implementation

•	 Method

•	 Variables

•	 Statements & Expressions

•	 Comments

Consider a simple code that prints the words “Hello Everyone.”

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject

https://www.gnu.org
https://www.gnu.org

10    ◾    Objective-C

- (void)sampleMethod;
@end

@implementation SampleClass

- (void)sampleMethod {
 NSLog(@"Hello, Everyone \n");
}

@end

int main() {
 /* first program in the Objective-C */
 SampleClass *sampleClass = [[SampleClass alloc]
init];
 [sampleClass sampleMethod];
 return 0;
}

Let’s examine several components of the code above:

•	 The first line of the code, #import <Foundation/Foundation.h>, is a
preprocessor instruction that instructs an Objective-C compiler to
import the Foundation.h file before real compilation.

•	 The following line @interface SampleClass:NSObject demonstrates
interface creation. It inherits the foundation class for all objects,
NSObject.

•	 (void)sampleMethod; demonstrates how to define a method.

•	 The following line, @end, signifies the end of an interface.

•	 The following line demonstrates how to implement the interface
SampleClass.

•	 The sampleMethod is implemented in the following line, (void)
sampleMethod.

•	 The next line @end signifies the conclusion of an implementation.

•	 The following line, int main(), is the program’s main function, where
execution starts.

Crash Course in Objective-C    ◾    11

• The next line /*…*/ will be disregarded by the compiler and has been
included to provide additional program comments. Therefore, these
lines are known as comments in the program.

• The following line NSLog(…) is an Objective-C function that causes
the message “Hello, Everyone” to appear on the screen.

• The next line return 0; concludes the main() function and returns
the number 0.

BASIC SYNTAX IN OBJECTIVE-C

OBJECTIVE-C TOKENS
A token is a keyword, an identifier, a constant, a string literal, or a symbol
in an Objective-C program. For instance, the following Objective-C state-
ment is made up of six tokens:

NSLog(@"Hello, Everyone \n");

Individual tokens are referred to as:

NSLog
@
 (
 "Hello, Everyone \n"
)
;

SEMICOLONS;
A semicolon is a statement terminator in an Objective-C program. That is, a
semicolon must follow each sentence. It denotes the end of a single logical entity.

For example, consider the following two statements:

NSLog(@"Hello, Everyone \n");
return 0;

COMMENTS
Comments are similar to help text in our Objective-C application and are
disregarded by the compiler. As illustrated below, they begin with/* and
end with the characters */.

/* first program in the Objective-C */

12    ◾    Objective-C

There can be no comments within comments, and they cannot be
within a string or character literals.

IDENTIFIERS
An Objective-C identifier recognizes a variable, function, or other user-
defined items. An identifier starts with a letter A to Z, a to z, or an under-
score and ends with zero or more letters, underscores, or numbers (0 to 9).

Punctuation characters such as @, $, and per cent are not permitted
within identifiers in Objective-C. Objective-C is a computer language
that is case sensitive. Thus, in Objective-C, Manpower and manpower
are two different IDs. The following are some instances of appropriate
identifiers:

Kohd lara bac move_name b_213
name50 _temp j b23b9 retVal

KEYWORDS
The following is a list of reserved terms in Objective-C. These reserved
terms are not permitted to be used as constant, variable, or other identifier
names.

auto else Return switch
break enum register typedef
case extern long union
const float short unsigned
Char goto signed void
continue for sizeof volatile
default if struct while
do int Static _Packed
double protocol interface implementation
NSObject NSInteger NSNumber CGFloat
property nonatomic; retain weak
strong unsafe_unretained; readwrite readonly

WHITESPACE IN OBJECTIVE-C
A blank line has simply whitespace, potentially with a remark, and is com-
pletely ignored by an Objective-C compiler.

In Objective-C, whitespace refers to blanks, tabs, newline charac-
ters, and comments. Whitespace divides one section of a statement from

Crash Course in Objective-C    ◾    13

another and allows the compiler to determine where one element, such
as int, ends, and the next element starts in a statement. As a result, in the
following sentence

int ages;

For the compiler to distinguish between int and age, there must be at
least one whitespace character (typically a space). In contrast, the follow-
ing statement,

fruit = grapes + apples; // get total fruit

There are no whitespace characters required between fruit and =, or
between = and grapes. However, we are allowed to include any for read-
ability purposes.

DATA TYPES IN OBJECTIVE-C
Data types are a comprehensive framework used in the Objective-C pro-
gramming language for declaring variables or functions of various sorts.
A variable’s type dictates how much storage space it takes up and how the
bit pattern recorded is interpreted.

Objective-C types can be classed as follows:

Sr. No. Types and Description

1 Basic types
They are arithmetic types divided into two categories:
(a) integer types and (b) floating-point types.

2 Enumerated types
They are arithmetic types once more, and they are used to
construct variables that can only be allocated discrete
integer values throughout the program.

3 The type void
The type specifier void signifies that there is no accessible
value.

4 Derived types
Among them are pointer types, array types, structure types,
union types, and function types.

The aggregate types are the array and structure types combined. A
function’s type indicates the type of the function’s return value.

14    ◾    Objective-C

TYPES OF INTEGERS
The table below contains information on standard integer types, including
storage sizes and value ranges.

Type Storage Size Value Range

char 1 byte −128 to 127 or 0 to 255
unsigned char 1 byte 0 to 255
signed char 1 byte −128 to 127
int 2 or 4 bytes −32,768 to 32,767 or −2,147,483,648 to 2,147,483,647
unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295
short 2 bytes −32,768 to 32,767
unsigned short 2 bytes 0 to 65,535
long 4 bytes −2,147,483,648 to 2,147,483,647
unsigned long 4 bytes 0 to 4,294,967,295

The sizeof operator can determine the precise size of a type or variable
on a specific platform. The phrase sizeof(type) returns the object or type’s
storage size in bytes. The following is an example of determining the size
of an int type on any computer.

#import <Foundation/Foundation.h>

int main() {
 NSLog(@"The Storage size for int : %d \n",
sizeof(int));
 return 0;
}

TYPES OF FLOATING-POINT
The table below contains information on typical float-point types, includ-
ing storage sizes, value ranges, and precision.

Type Storage Size Value Range Precision

float 4 byte 1.2E − 38 to 3.4E + 38 6 decimal-places
double 8 byte 2.3E − 308 to 1.7E + 308 15 decimal-places
long double 10 byte 3.4E − 4932 to 1.1E + 4932 19 decimal-places

The float.h header file includes macros that let us use these values and
other information about the binary representation of real numbers in our
applications. The following example will output the storage space occupied
by a float type and its range values.

Crash Course in Objective-C    ◾    15

#import <Foundation/Foundation.h>

int main() {
 NSLog(@"The Storage size for float : %d \n",
sizeof(float));
 return 0;
}

VOID TYPE
The void type indicates that there is no value available. It is used in three
different contexts.

Sr. No. Types and Description

1 Function returns as void
Several Objective-C functions do not return a value or return a void. The
return type of a function with no return value is void. As an example,
consider void exit (int status).

2 Function arguments as void
Some Objective-C functions do not accept any parameters. A void can be
accepted by a function that has no parameters. For instance, int rand(void).

VARIABLES IN OBJECTIVE-C
A variable is just the name assigned to a storage location that our pro-
grams may access. In Objective-C, each variable has a type that governs
the amount and layout of the variable’s memory, the range of values stored
inside that memory, and the set of operations that can apply to the variable.

A variable’s name can be letters, numbers, and the underscore char-
acter. Start it with a letter or an underscore. Because Objective-C is case-
sensitive, upper and lowercase letters are different.

Sr. No. Type and Description

1 char
A single octet is typical (one byte). It is a type of integer.

2 int
The machine’s most natural integer size.

3 float
A floating-point value with single precision.

4 double
A floating-point value with double precision.

5 void
Represents absence of type.

16    ◾    Objective-C

The Objective-C programming language also defines different sorts of
variables, which we will discuss in later chapters, such as Enumeration,
Pointer, Array, Structure, Union, etc. Let us look at fundamental variable
types in this section.

OBJECTIVE-C VARIABLE DEFINITION
In Objective-C, a variable definition tells the compiler where and how
much storage to generate for the variable. A variable description describes
a data type and includes a list of one or more variables of that type, as seen
below.

type variablelist;

In this case, a type must be a valid Objective-C data type, such as char,
w char, int, float, double, bool, or any user-defined object. The variable list
can have one or more identifier names separated by commas. Here are
some examples of valid declarations.

int c, d, e;
char k, kh;
float g, salary;
double q;

The line int c, d, e; declares and defines the variables c, d, and e; and tells
the compiler to create variables of type int called c, d, and e.

In their declaration, variables can be initialized (given an initial value).
The initializer is made of an equal sign followed by a constant expression,
as seen below.

type variablename = value;

Example:

extern int c = 3, d = 5; // declaration of c
and d.
int c = 3, d = 5; // definition and
initializing c and d.
byte k = 22; // definition and
initializes k.
char y = 'y'; // the variable y has
the value 'y'.

Crash Course in Objective-C    ◾    17

For variables declared without an initializer, variables with static stor-
age duration are automatically initialized with NULL (all bytes have the
value 0). In contrast, the initial value of all other variables is indeterminate.

OBJECTIVE-C VARIABLE DECLARATION
A variable declaration assures the compiler that there is at least one vari-
able with the specified type and name, allowing the compiler to continue
with further compilation without requiring more information. A variable
declaration only has significance at the time of compilation; the compiler
requires the actual variable declaration when linking the program.

A variable declaration is essential when you are utilizing many files. You
specify your variable in one of the files accessible at the time of program
linking. To define a variable at any location, you will utilize the extern
keyword. Variables are declared several times in Objective-C programs,
but they can only be defined once per file, function, or code block.

Example: Try out the following example, in which variables are declared
at the top but defined and initialized inside the main function.

#import <Foundation/Foundation.h>

// Variable-declaration:
extern int x, y;
extern int z;
extern float f;

int main () {
 /* variable-definition: */
 int x, y;
 int z;
 float f;

 /* actual-initialization */
 x = 10;
 y = 20;

 z = x + y;
 NSLog(@"The value of z : %d \n", z);

 f = 70.0/3.0;
 NSLog(@"The value of f : %f \n", f);

 return 0;
}

18    ◾    Objective-C

The same idea applies to function declarations, where we offer a func-
tion name at the time of declaration, and its actual definition is provided
afterward. The following example uses a C function, and as we may know,
Objective-C also supports C style functions.

// function-declaration
int func();

int main() {
 // function-call
 int k = func();
}

// function-definition
int func() {
 return 0;
}

OBJECTIVE-C lvalues AND rvalues
In Objective-C, there are two types of expressions.

•	 lvalue: Expressions that refer to a memory location are called “lvalue”
expressions. An lvalue can be on either the left or right side of an
assignment.

•	 rvalue: The word rvalue refers to a data value stored in memory at
some address. An rvalue is an expression that cannot be assigned a
value; therefore, it can occur on the right but not the left side of an
assignment.

Variables are lvalues and can thus appear on the left side of an assign-
ment. Because numerical literals are rvalues, they cannot be allocated
and cannot appear on the left-hand side. The following is a correct
statement:

int k = 20;

However, the following is not a legitimate statement and would result in
a compile-time error.

Crash Course in Objective-C    ◾    19

CONSTANTS IN OBJECTIVE-C
The constants denote values that the program cannot modify during its
execution. These values are also known as literals.

Any fundamental data type may include integer constants, floating
constants, character constants, and string literals. Additionally, there are
enumeration constants.

The constants are processed identically to regular variables, except their
values are not altered once they are defined.

INTEGER LITERALS
An integer literal may be a decimal, octal, or hexadecimal constant. The
base or radix is specified by a prefix: 0x or 0X for hexadecimal, 0 for octal,
and nothing for decimal.

A literal integer may also include a suffix consisting of U and L, which
stand for unsigned and long, respectively. Write the suffix with uppercase
or lowercase letters and in any sequence.

The following are instances of integer literals:

414 /* Legal */
235u /* Legal */
0xFeeL /* Legal */
068 /* Illegal: 8 is not octal digit */
032UU /* Illegal: cannot repeat suffix */

Other types of Integer literals are illustrated below.

95 /* decimal */
0215 /* octal */
0x6b /* hexadecimal */
50 /* int */
50u /* unsigned int */
50l /* long */
50ul /* unsigned long */

FLOATING-POINT LITERALS
An integer part, a decimal point, a fractional part, and an exponent part
comprise a floating-point literal. Floating-point literals can be represented
in either decimal or exponential form.

When representing in decimal form, including the decimal point, expo-
nent, or both; when representing in exponential form, include the integer
portion, fractional part, or both. e or E introduces the signed exponent.

20    ◾    Objective-C

The following are some instances of floating-point literal:

3.14159 /* Legal */
314159E-5L /* Legal */
510E /* Illegal: the incomplete exponent */
210f /* Illegal: no-decimal or exponent */
.e55 /* Illegal: missing integer or the
fraction */

CHARACTER CONSTANTS
Character literals, such as ‘x,’ are contained in single quotes and may be
kept in a simple char variable.

A character literal in Objective-C can be a simple character (for exam-
ple, ‘x’), an escape sequence (for example, ‘\t’), or a universal character (for
example, ‘u02C0’).

Certain letters in C have unique significance when followed by a back-
slash and signify things like newline (\n) or tab (\t). A list of some of these
escape sequence codes is as follows.

Escape Sequence Meaning

\\ \ character
\' ‘character
\" “character
\? ? character
\a Alert or bell
\b Backspace
\f Form-feed
\n Newline
\r Carriage return
\t Horizontal-tab
\v Vertical-tab

\ooo Octal number of the one to three digits
\xhh. . . Hexadecimal number of the one or more digits

The following is an example of a few escape sequence characters.

#import <Foundation/Foundation.h>

int main() {
 NSLog(@"Hello\tEveryone\n\n");
 return 0;
}

Crash Course in Objective-C    ◾    21

STRING LITERALS
Double quotes “” are used to surround string literals or constants.
Characters in a string are comparable to character literals in that they
are plain characters, escape sequences, and universal characters. We can
divide an extensive line into numerous lines using string literals and
whitespaces.

Here are some string literal instances. The strings in all three variants
are identical.

"hello, sweetie"

"hello, \

sweetie"

"hello, " "s" "sweetie"

CONSTANT DEFINITION
In C, there are two straightforward ways to define constants.

•	 Using #define preprocessor

•	 Using const keyword

#define Preprocessor

The following is the syntax for using the #define preprocessor to declare a
constant:

#define identifiervalue

Example:

#import <Foundation/Foundation.h>

#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'

int main() {
 int area;

22    ◾    Objective-C

 area = LENGTH * WIDTH;
 NSLog(@"The value of area : %d", area);
 NSLog(@"%c", NEWLINE);
 return 0;
}

const Keyword

Constants of a specific type can be declared with the const prefix, as seen
below.

const typevariable = value;

Example:

#import <Foundation/Foundation.h>
int main() {
 const int LENGTH = 20;
 const int WIDTH = 15;
 const char NEWLINE = '\n';
 int area;
 area = LENGTH * WIDTH;
 NSLog(@"The value of area : %d", area);
 NSLog(@"%c", NEWLINE);
 return 0;
}

OPERATORS IN OBJECTIVE-C
An operator in Objective-C is a symbol that instructs the compiler to do
particular mathematical or logical operations. The Objective-C language
has several built-in operators, including the following:

•	 Arithmetic Operators

•	 Assignment Operators

•	 Relational Operators

•	 Bitwise Operators

•	 Logical Operators

•	 Misc Operators

Crash Course in Objective-C    ◾    23

This session will walk us through arithmetic, relational, logical, bitwise,
assignment, and other operators.

ARITHMETIC OPERATORS IN OBJECTIVE-C
The table mentioned below lists all the arithmetic operators offered by the
Objective-C programming language. Assume variable A has a value of 20,
and variable B has a value of 30, then.

Operator Description Example

+ Adds the two operands C + D will give 30
- Subtracts the second operand from the first C − D will give −12
* Multiplies both the operands C * D will give 100
/ Divides numerator by the denominator D / C will give 3
% Modulus Operator and the remainder of after

integer division
D % C will give 0

++ The increment operator increases the integer
value by one

C++ will give 14

−− The decrement operator decreases the integer
value by one

C−− will give 7

RELATIONAL OPERATORS
The table below lists all the relational operations provided by the
Objective-C programming language. Assume variable C has a value of 20
and variable D has a value of 30, then.

Operator Description Example

== Compares the values of two operands; if they are
equal, the condition becomes true.

(C == D) is not true.

!= Compares the values of two operands; if the values are
not equal, the condition evaluates to true.

(C != D) is true.

> If value of the left operand is larger than the value of
the right operand, the condition is determined to be
true.

(C > D) is not true.

< The condition is true if value of the left operand is
smaller than the value of the right operand.

(C < D) is true.

>= The condition is true if value of the left operand is
larger than or equal to the value of the right operand.

(C >= D) is not true.

<= The condition is true if value of the left operand is less
than or equal to the value of the right operand.

(C <= D) is true.

24    ◾    Objective-C

LOGICAL OPERATORS IN OBJECTIVE-C
The table mentioned below lists all of the logical operators provided by the
Objective-C programming language. Assuming variable C is 1 and vari-
able D is 0, then.

Operator Description Example

&& Defined as the Logical AND operator. If both operands
are non-zero, the condition is satisfied.

(C && D) is false.

|| Defined as the Logical OR Operator. If any of the two
operands are non-zero, the condition is satisfied.

(C || D) is true.

! Defined as the Logical NOT Operator. In Objective-C to
reverse the logical state of its operand, use. When a
condition is true, the Logical NOT operator returns
false.

!(C && D) is true.

BITWISE OPERATORS
The bitwise operator operates on bits and performs operations bit by bit.
The truth tables for &, |, and are shown below.

c d c & d c | d c ^ d

0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if C = 70; and D = 23; now, in binary format, they will be as
follows:

C = 0011 1100
D = 0000 1101

C&D = 0000 1100
C|D = 0011 1101
C^D = 0011 0001

˜C = 1100 0011

The bitwise operations provided by Objective-C are given in the table
below. Assume variable C has a value of 70 and variable D has a value of
23, then.

Crash Course in Objective-C    ◾    25

Operator Description Example

& Binary AND Operator copies a bit to the
result if it exists in both operands.

(C & D) will give 12, which is
0000 1100

| If bit exists in both operands, the binary OR
operator copies it.

(C | D) will give 61, which is
0011 1101

^ If bit is set in one operand but not both, the
binary XOR operator replicates it.

(C ^ D) will give 49, which is
0011 0001

∼ Binary Ones Complement Operator is a
unary operator that ‘flipping’ bits.

(∼C) will give −61, which is
1100 0011 in 2’s complement
form.

<< Left Shift Binary Operator: The left operand’s
value is shifted left by the number of bits
given by the right operand.

C << 2 will give 240, which is
1111 0000

>> Right Shift Binary Operator: The value of the
left operand is shifted right by the number
of bits given by the right operand.

C >> 2 will give 15, which is
0000 1111

ASSIGNMENT OPERATORS
The Objective-C language supports the following assignment operators:

Operator Description Example

= A simple assignment operator assigns
the right operands’ values to the left
operand.

Z = X + Y will assign value of X +
Y into Z

+= It adds the right operand to the left
operand and assigns the resulting value
to the left operand.

Z += X is equivalent to Z = Z + X

-= It subtracts the right operand from the
left operand and assigns the resulting
value to the left operand.

Z -= X is equivalent to Z = Z – X

*= Multiplication AND assignment, This
operation multiplies the right operand
by the left operand and assigns the
product to the left operand.

Z *= X is equivalent to Z = Z * X

/= Divide AND assignment divide the left
operand by the right operand and
assign the resulting value to the left
operand.

Z /= X is equivalent to Z = Z / X

%= AND assignment operator, modulus. It
uses two operands to calculate the
modulus and assigns the result to the
left operand.

Z %= X is equivalent to Z = Z % X

(Continued)

26    ◾    Objective-C

<<= The assignment AND shift-left operator. Z <<= 2 is same as Z = Z << 2
>>= The assignment AND right shift

operator.
Z >>= 2 is same as Z = Z >> 2

&= The AND bitwise assignment operator. Z &= 2 is same as Z = Z & 2
^= OR is a bitwise exclusive assignment

and assignment operator.
Z ^= 2 is same as Z = Z ^ 2

|= OR inclusive bitwise and assignment
operator.

Z |= 2 is same as Z = Z | 2

MISC OPERATORS ↦ SIZEOF & TERNARY
Other essential operations provided by Objective-C language include size
of and ? :

Operator Description Example

sizeof() Returns the size of the variable. sizeof(x), where a is an integer, will
return 4.

& Returns the address of a variable. &x; will give the actual address of the
variable.

* Pointer to a variable. *x; will pointer to a variable.
? : The Conditional Expression If the Condition is true ? Then value A :

Otherwise value B.

OPERATORS’ PRECEDENCE IN THE OBJECTIVE-C
Operator precedence controls how words in an expression are grouped.
This influences the evaluation of an expression.

Certain operators have greater precedence than others; for instance, the
multiplication operator has higher precedence than the addition operator.
For example, c = 17 + 3 * 4; here, c is assigned 29, not 80, because operator
* has higher precedence than +, so it first gets multiplied with 3*4 and then
added into 12.

Here, operators with the most significant precedence are positioned at
the top of the table, while those with the lowest precedence are positioned
at the bottom. Within an expression, operators with higher precedence
will be evaluated first.

Category Operator Associativity

Postfix () [] −>. ++ − − Left to right
Unary + − ! ∼ ++ − − (type)* & sizeof Right to left
Multiplicative * / % Left to right

Operator Description Example

(Continued)

Crash Course in Objective-C    ◾    27

Additive + − Left to right
Shift << >> Left to right
Relational < <= > >= Left to right
Equality == != Left to right
Bitwise XOR ^ Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR || Left to right
Conditional ?: Right to left
Assignment = += −= *= /= %=>>= <<= &= ^= |= Right to left
Comma , Left to right

LOOPS IN OBJECTIVE-C
There may be events when we need to execute a code block numerous times.
In general, statements are performed in the following order: the first state-
ment in a function is executed first, then the second, and so on. Control
structures in programming languages allow for more sophisticated execu-
tion routes. A loop statement allows us to run a statement or collection of
statements many times. The Objective-C programming language includes
the following loop types to address looping needs.

Loop in Objective-C.

Category Operator Associativity

28    ◾    Objective-C

Sr. No. Loop Type and Description

1 while loop
While a specific condition is true, a sentence or set of statements is repeated.
Before running the loop body, it checks the condition.

2 for loop
The code that maintains the loop variable is abbreviated when a series of
statements is executed many times.

3 do...while loop
It’s similar to a while statement. Only it checks the condition after the loop body.

4 nested loops
A while, for, or do while loop can include one or more loops.

CONTROL STATEMENTS FOR LOOPS
Loop control statements alter the execution sequence. All automated
objects produced in that scope are deleted when execution exits that scope.

Objective-C supports the following control statements. To learn more
about the control statements, click the links below.

Sr. No. Control Statement and Description

1 break statement
The loop or switch statement is terminated, and execution is transferred to the
statement immediately after the loop or switch.

2 continue statement
The loop will skip the rest of its body and instantly retest its state before repetition.

INFINITE LOOP
If condition never becomes false, loop becomes endless. Traditionally, the
for loop is used for this purpose. Because none of the three for loop expres-
sions are necessary, we may create an infinite loop by leaving the condi-
tional expression empty.

#import <Foundation/Foundation.h>

int main () {

 for(; ;) {
 NSLog(@"loop will run forever.\n");
 }

 return 0;
}

Crash Course in Objective-C    ◾    29

It is believed to be true when the conditional statement is miss-
ing. Although we may use an initialization and increment expression,
Objective-C programmers prefer to use them for(;;) construct to represent
an endless loop.

DECISION MAKING IN OBJECTIVE-C
The programmer must define one or more conditions to be evaluated or
tested by the program, a statement or statements to be performed if the
condition is discovered to be true, and optionally, further statements to be
run if the condition is decided to be false.

The general shape of a common decision-making framework in most
programming languages is shown below.

Decision making in Objective-C.

The Objective-C programming language treats any non-zero and non-
null value as true, but any zero or null value is false.

The Objective-C programming language has the following decision-
making statements.

30    ◾    Objective-C

Sr. No. Statement and Description

1 if statement
A boolean expression is followed by one or more statements in an if statement.

2 if...else statement
When boolean expression is false, the if an optional else statement follows the
statement.

3 nested if statements
One if or else if statement can use inside another if or else if statement(s).

4 switch statement
A switch statement checks a variable for equality against a set of values.

5 nested switch statements
One switch statement can be used inside another switch statement(s).

THE ? : OPERATOR
We discussed the conditional operator?:, which may be used to replace if…
else expressions. It takes the overall shape shown below.

Exp1? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Take note of the colon’s
use and location.

A? expression’s value is decided as follows: Exp1 is evaluated. If it is true,
Exp2 is evaluated and the value of the entire? Expression is determined. If
Exp1 is false, Exp3 is evaluated, and its value becomes the expression’s value.

FUNCTIONS IN OBJECTIVE-C
A function in Objective-C is a collection of statements that execute a par-
ticular activity. Every Objective-C program has one C function, called
main(), and even the simplest applications may declare extra functions.

We may break up your code into various functions. It is up to us how we
split our code across distinct functions, but logically, each function should
fulfil a particular task.

A function declaration informs the compiler about the function’s name,
return type, and arguments. The body of a function is specified by its definition.

In Objective-C, the function is referred to as a method.
The Objective-C base framework contains various built-in methods

that our application may call. For instance, the appendString() function
appends one string to another.

A method is recognized by several names, including function, subrou-
tine, process, etc.

Crash Course in Objective-C    ◾    31

CREATING A METHOD
The following is the general form of a method definition in the Objective-C
programming language:

- (returntype) methodname:(argumentType1)
argumentName1
joiningArgument2:(argumentType2)argumentName2
joiningArgumentn:(argumentTypen)argumentNamen {
 body of function
}

A method specification consists of a method header and a method body
in the Objective-C programming language. Here are all of the components
of a method:

•	 Return type: In Objective-C a method may return a value as its
returntype. The function’s data type of value is specified by return
type. Some methods carry out the necessary tasks but do not return
a value. The term void is used as the returntype in this scenario.

•	 Method name: This is the method’s actual name. The method signa-
ture comprises the method name and the argument list.

•	 Arguments: An argument functions similarly to a placeholder. When
we call a function, we pass an argument with a value. This value is
known as the actual parameter or argument. A method’s param-
eter list specifies the type, order, and the number of parameters.
Arguments are optional; a method may not have any arguments.

•	 Joining argument: A joining argument makes it easier to read and
more explicit while invoking it.

•	 Method body: The method body comprises statements that describe
what the method performs.

Example: The following is the source code for the max() method. This
function accepts two parameters, numb1 and numb2, and returns the
greater of the two:

/* function returning max between two numbers */
- (int) max:(int) numb1 secondNumber:(int) numb2 {

32    ◾    Objective-C

 /* the local variable declaration */
 int result;

 if (numb1 > numb2) {
 result = numb1;
 } else {
 result = numb2;
 }

 return result;
 }

DECLARATIONS OF METHOD
A method declaration gives the compiler the function’s name and how to
invoke it. The function’s actual body in Objective-C method can be speci-
fied independently.

A method declaration in Objective-C consists of the following
components:

- (returntype) functionname:(argumentType1)
argumentName1
joiningArgument2:(argumentType2)argumentName2
joiningArgumentn:(argumentTypen)argumentNamen;

The method declaration for the above-described function max() is as
follows:

-(int) max:(int)numb1 andNum2:(int)numb2;

When defining a method in one source file and calling it in another,
method declaration is necessary. In this scenario, the function should be
declared at the start of the file invoking the function.

CALLING A METHOD
When creating an Objective-C method, we define what the function must
accomplish. We must invoke that function to complete the specified oper-
ation to utilize a method.

When a program invokes a function, program control is passed to the
invoked method. A called method performs a stated task and returns

Crash Course in Objective-C    ◾    33

program control to the main program when its return statement or func-
tion-ending closing brace is reached.

To call a method, simply give the needed arguments along with the
method name, and if the method returns a result, we may save it. As an
example,

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
/* method-declaration */
- (int)max:(int)numb1 andNumb2:(int)numb2;
@end

@implementation SampleClass

/* method returning max between two numbers */
- (int)max:(int)numb1 andNumb2:(int)numb2 {

 /* the local variable declaration */
 int result;

 if (numb1 > numb2) {
 result = numb1;
 } else {
 result = numb2;
 }

 return result;
}

@end

int main () {

 /* the local variable definition */
 int x = 200;
 int y = 100;
 int ret;

 SampleClass *sampleClass = [[SampleClass alloc]
init];

34    ◾    Objective-C

 /* calling method to get the max value */
 ret = [sampleClass max:x andNumb2:y];

 NSLog(@"Max value is : %d\n", ret);
 return 0;
}

FUNCTION ARGUMENTS
If a function accepts arguments, it must define variables that accept the
arguments’ values in Objective-C. In Objective-C, these variables are
known as the function’s formal parameters.

The formal parameters operate similarly to other local variables within
the function, generated upon entrance and removed upon departure.

There are two methods for passing arguments to a function when call-
ing it.

Sr. No. Call Type and Description

1 Call by value
This method replicates the real value of an argument into the function’s formal
parameter. Changes to the parameter within the function do not affect the
argument in this case.

2 Call by reference
This method inserts an argument’s address into the formal parameter. The address
is utilized within the function to obtain the actual parameter used in the call. This
signifies that changes to the parameter affect the argument.

To pass arguments, Objective-C employs call by value by default. In
general, this implies that code within a function cannot change the argu-
ments used to call the function, and the preceding example is utilized the
same way when using the max() function.

BLOCKS IN OBJECTIVE-C
An Objective-C class is a type of object that combines data with associated
functionality. It is sometimes more appropriate to express a single job or
unit of action rather than the collection of methods.

The addition of blocks to C, Objective-C, and C++ has made it possible
to create separate chunks of code that can be handed to methods and func-
tions like values. Add blocks to collections like NSArray or NSDictionary
as they are Objective-C objects. They are comparable to closures or lamb-
das in other programming languages since they may also catch values
from the surrounding scope.

Crash Course in Objective-C    ◾    35

Simple Block Declaration Syntax

returntype (^block_Name)(argument_Type);

Implementation of a Simple Block

returntype (^block_Name)(argument_Type)= ^{
};

Here’s an easy example:

void (^simpleBlock)(void) = ^{
 NSLog(@"This is block");
 };

BLOCKS TAKE ARGUMENTS AND RETURN VALUES
Blocks, like methods and functions, can take arguments and return values.

Here’s a simple example of creating and running a block with param-
eters and return values.

double (^multiplyTwoValues)(double, double) =
 ^(double firstValue, double secondValue) {
 return firstValue * secondValue;
 };

double result = multiplyTwoValues(12,41);
NSLog(@"Result is %f", result);

BLOCKS USING THE TYPE DEFINITIONS
Here’s an easy example of using typedef in a block. Please remember that
this sample does not yet operate with the online compiler. To execute the
same, use XCode.

#import <Foundation/Foundation.h>

typedef void (^CompletionBlock)();
@interface SampleClass:NSObject
- (void)performActionWithCompletion:(CompletionBlock)
completionBlock;
@end

36    ◾    Objective-C

@implementation SampleClass

- (void)performActionWithCompletion:(CompletionBlock)
completionBlock {

 NSLog(@"ActionPerformed");
 completionBlock();
}

@end

int main() {

 /* my first program in the Objective-C */
 SampleClass *sampleClass = [[SampleClass alloc]
init];
 [sampleClass performActionWithCompletion:^{
 NSLog(@"The Completion is called to intimate
action is performed");
 }];

 return 0;
}

NUMBERS IN OBJECTIVE-C
To preserve fundamental data types such as int, float, and bool in object
form in the Objective-C programming language.

The following table lists the most significant Objective-C methods for
dealing with NSNumber.

Sr. No. Method and Description

  1 + (NSNumber *)numberWithBool:(BOOL)value
Creates and returns an NSNumber object with the provided value as a BOOL.

  2 + (NSNumber *)numberWithChar:(char)value
Creates and returns an NSNumber object with the specified value as a signed
char.

  3 + (NSNumber *)numberWithDouble:(double)value
Creates and returns an NSNumber object with the specified value as a double.

  4 + (NSNumber *)numberWithFloat:(float)value
Creates and returns an NSNumber object with the specified value as a float.

(Continued)

Crash Course in Objective-C    ◾    37

  5 + (NSNumber *)numberWithInt:(int)value
Creates and returns an NSNumber object with the specified value as a signed int.

  6 + (NSNumber *)numberWithInteger:(NSInteger)value
Creates and returns an NSNumber object with the supplied value, treated as an
NSInteger.

  7 − (BOOL)boolValue
Returns receiver’s value as a BOOL.

  8 − (char)charValue
Returns receiver’s value as a char.

  9 − (double)doubleValue
Returns receiver’s value as a double.

10 − (float)floatValue
Returns receiver’s value as a float.

11 − (NSInteger)integerValue
Returns receiver’s value as an NSInteger.

12 − (int)intValue
Returns receiver’s value as an int.

13 − (NSString *)stringValue
Returns receiver’s value as a human-readable string.

Here’s a basic example of using NSNumber to multiply two numbers
and return the result.

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
- (NSNumb *)multiplyA:(NSNumb *)a withB:(NSNumb *)b;
@end

@implementation SampleClass

- (NSNumb *)multiplyA:(NSNumb *)a withB:(NSNumb *)b {
 float numb1 = [a floatValue];
 float numb2 = [b floatValue];
 float product = numb1 * numb2;
 NSNumb *result = [NSNumb numbWithFloat:product];
 return result;
}

@end

int main() {

Sr. No. Method and Description

38    ◾    Objective-C

 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];

 SampleClass *sampleClass = [[SampleClass alloc]
init];
 NSNumb *a = [NSNumb numbWithFloat:10.5];
 NSNumb *b = [NSNumb numbWithFloat:10.0];
 NSNumb *result = [sampleClass multiplyA:a withB:b];
 NSString *resultString = [result stringValue];
 NSLog(@"Product is %@",resultString);

 [pool drain];
 return 0;
}

ARRAYS IN OBJECTIVE-C
The array data structure in the Objective-C programming language may
hold a fixed-size sequential collection of the elements of the same type. A
collection of data is stored in an array, although it is generally more con-
venient to conceive an array as a collection of variables of the same type.

Instead of defining individual variables like number0, number1,…, and
number99, we define one array variable like numbers and use numbers[0],
numbers[1,…, and numbers[99] to represent individual variables. An
index is used to access a specific element in an array.

All arrays are made up of contiguous memory locations. The first ele-
ment refers to the lowest address, while the last element corresponds to the
highest address.

Array in Objective-C.

DECLARING ARRAYS
In Objective-C, a programmer defines an array by describing the kind of
elements and the quantity of elements needed by the array as follows:

type array_Name [array_Size];

Crash Course in Objective-C    ◾    39

This is referred to as a single-dimensional array. The arraySize constant
must be bigger than zero, and the type can be any acceptable Objective-C
data type. For example, to declare a 10-element array of type double named
balance, use the following statement:

double balance[20];

Balance is now a variable array that can store upto ten double
numbers.

ARRAYS INITIALIZATION
In Objective-C, we may initialize an array one by one or with a single line,
as seen below.

double balance[5] = {2000.0, 3.0, 4.4, 19.0, 56.0};

The number of values between the braces { } cannot exceed the number
of items declared for the array between the square brackets []. The follow-
ing is an example of assigning a single array element.

If the array size is not specified, an array only large enough to accom-
modate the initialization is generated. As a result, if we write:

double balance[] = {2000.0, 3.0, 4.4, 19.0, 56.0};

We will construct the same array as in the previous example.

balance[4] = 56.0;

The preceding statement assigns a value of 56.0 to the array’s fifth mem-
ber. Because all arrays have 0 as the index of their first element, also known
as the base index, the array with the fourth index will be the fifth, that is,
the last element.

ACCESSING ARRAY ELEMENTS
The array name is indexed to find an element. This is accomplished by fol-
lowing the array name with the element’s index enclosed in square brack-
ets. As an example,

double salary = balance[8];

40    ◾    Objective-C

The above code will choose the 9th member from the array and assign
its value to the salary variable. The following is an example that employs
all three concepts mentioned earlier: declaration, assignment, and array
access.

#import <Foundation/Foundation.h>

int main () {
 int nm[10]; /* nm is an array of 10 integers */
 int x,y;

 /* initialize elements of array nm to 0 */
 for (x = 0; x < 10; x++) {
 nm[x] = x + 100; /* set element at location
x to x + 100 */
 }

 /* output each array element's value */
 for (y = 0; y < 10; y++) {
 NSLog(@"The Element[%d] = %d\n", y, nm[y]);
 }

 return 0;
}

ARRAYS IN OBJECTIVE-C IN DEPTH
Arrays are vital in Objective-C and require a lot more information. The
following are a few key array ideas that any Objective-C developer should
understand:

Sr. No. Concept and Description

1 Multi-dimensional arrays
Objective-C supports multi-dimensional arrays. The two-dimensional array is
the most basic type of multi-dimensional array.

2 Passing arrays to functions
We can pass a pointer to an array to the method by supplying the array’s name
without an index.

3 Return array from a function
A function in Objective-C can return an array.

4 Pointer to an array
By merely specifying the array name without any index, we may produce a
reference to the first element of an array.

Crash Course in Objective-C    ◾    41

POINTERS IN OBJECTIVE-C
Objective-C pointers are simple and enjoyable to learn. Some Objective-C
programming tasks are easier to accomplish with pointers, while oth-
ers, such as dynamic memory allocation, cannot be performed without
them. As a result, learning pointers are required to become a proficient
Objective-C programmers. Let us begin by studying them in small and
easy steps.

As you may know, each variable is a memory location. Each mem-
ory location has an address in Objective-C that can be accessed using
the ampersand (&) operator, representing a memory address. Consider
the following example, which prints the addresses of the variables
specified.

#import <Foundation/Foundation.h>

int main () {
 int var1;
 char var2[10];

 NSLog(@"The Address of var1 variable is: %x\n",
&var1);
 NSLog(@"The Address of var2 variable is: %x\n",
&var2);

 return 0;
}

WHAT EXACTLY ARE POINTERS IN OBJECTIVE-C?
A pointer in Objective-C is a variable whose value is the address of
another variable, i.e., the memory location’s direct address. Like any vari-
able or constant, a pointer must be declared before using them to hold any
variable address. A pointer variable declaration has the following general
form:

type *var_name;

In Objective-C the pointer’s base type is type, which must be a valid
Objective-C data type, and the pointer variable’s name is var_name. The
asterisk * in Objective-C is used to declare a pointer is the same asterisk

42    ◾    Objective-C

used for multiplication. In this case, though, the asterisk indicates a vari-
able as a pointer. The valid pointer declarations are as follows:

int *ip; /* pointer to integer */
double *dp; /* pointer to double */
float *fp; /* pointer to float */
char *ch /* pointer to character */

The true data type of all pointer values, whether integer, float, character
or otherwise, is a lengthy hexadecimal number representing a memory
location. The sole distinction between pointers of various data types is the
data type of the variable or constant pointed to by the pointer.

How Do Pointers Work?

There are just a handful of significant actions that we will do regularly
using pointers. (a) we create a pointer variable, (b) we assign the address of
a variable to a pointer, and (c) we ultimately access the value at the address
accessible via the pointer variable. This is accomplished using the unary
operator *, which returns the variable’s value at the location given by its
argument. The following illustration employs these operations:

#import <Foundation/Foundation.h>

int main () {
 int var = 30; /* actual variable-declaration */
 int *ip; /* pointer variable-declaration */

 ip = &var; /* store address of var in the
pointer variable*/

 NSLog(@"Address of var variable: %x\n", &var);

 /* address stored in the pointer variable */
 NSLog(@"Address stored in the ip variable: %x\n",
ip);

 /* access value using the pointer */
 NSLog(@"The Value of *ip variable: %d\n", *ip);

 return 0;
}

Crash Course in Objective-C    ◾    43

OBJECTIVE-C NULL POINTERS
In Objective-C, it is usually a good idea to assign a NULL value to a
pointer variable if the allocated address is unknown. This is done during
variable declaration. A null pointer is a pointer in Objective-C that has
been assigned the value NULL.

The NULL pointer in Objective-C is a zero-valued constant declared in
numerous standard libraries. Take a look at the following program:

#import <Foundation/Foundation.h>

int main () {
 int *ptr = NULL;
 NSLog(@"Value of the ptr is : %x\n", ptr);
 return 0;
}

The following outcome is produced when the given code is compiled
and executed in Objective-C:

Value of ptr is: 0

Most operating systems prohibit applications from accessing memory
at address 0 because the operating system reserves that memory. However,
memory address 0 is significant since it indicates that the pointer is not
meant to point to an accessible memory region. However, if a pointer has
the null (zero) value, it is presumed to point to nothing.

To check for a null pointer, use the following if statement:

if(ptr) /* succeeds if x is not null */
if(!ptr) /* succeeds if x is null */

DETAILS ABOUT OBJECTIVE-C POINTERS
Pointers are highly crucial in Objective-C programming and have several
yet simple ideas. The following are a few key pointer concepts that any
Objective-C developer should understand:

Sr. No. Concept and Description

1 Objective-C – Pointer arithmetic
On pointers, four arithmetic operators are available: ++, −−, +, −

2 Objective-C – Array of pointers
Arrays may be used to contain a collection of pointers.

(Continued)

44    ◾    Objective-C

3 Objective-C – Pointer to pointer
Objective-C supports pointer on the pointer and so on.

4 Passing pointers to functions in Objective-C
Passing an argument by reference or address allows the called function
to alter the provided argument in the calling code.

5 Return pointer from functions in Objective-C
A function in Objective-C can return a pointer to a local variable, a
static variable, or dynamically allocated memory.

STRINGS IN OBJECTIVE-C
The string is represented in the Objective-C programming language by
NSString, and its subclass NSMutableString provides numerous methods
for constructing string objects. The Objective-C @”…” syntax is the easiest
way to generate a string object.

NSString *greeting = @"Heyyy";

The following is a simple example of producing and printing a string.

#import <Foundation/Foundation.h>

int main () {
 NSString *greeting = @"Heyyy";
 NSLog(@"The Greeting message is: %@\n", greet);

 return 0;
}

Objective-C provides a plethora of techniques for manipulating
strings.

Sr. No. Method and Purpose

  1 – (NSString *)capitalizedString;
Returns the receiver’s capitalized representation.

  2 – (unichar)characterAtIndex:(NSUInteger)index;
The character at the given array position is returned.

  3 – (double)doubleValue;
As a double, this method returns the floating-point value of the
receiver’s text.

Sr. No. Concept and Description

(Continued)

Crash Course in Objective-C    ◾    45

  4 – (float)floatValue;
As a float, it returns the floating-point value of the receiver’s text.

  5 – (BOOL)hasPrefix:(NSString *)aString;
A Boolean value indicates if a provided string matches the receiver’s
beginning characters.

  6 – (BOOL)hasSuffix:(NSString *)aString;
A Boolean value indicates if a provided string matches the receiver’s
terminating characters.

  7 – (id)initWithFormat:(NSString *)format ...;
Returns an NSString object created by utilizing a given format
string as a template and then substituting the remaining argument
values.

  8 – (NSInteger)integerValue;
The NSInteger value of the receiver’s text is returned.

  9 – (BOOL)isEqualToString:(NSString *)aString;
Returns a Boolean value indicating if a provided string and the
receiver are equal using a literal Unicode-based comparison.

10 – (NSUInteger)length;
The number of Unicode characters in the receiver is returned.

11 – (NSString *)lowercaseString;
The lowercased representation of the receiver is returned.

12 – (NSRange)rangeOfString:(NSString *)aString;
The range of the first occurrence of a specified string within the
receiver is returned.

13 – (NSString *)stringByAppendingFormat:(NSString *)format ...;
Returns a string created by attaching a string formed from a
provided format string and the following parameters to the
receiver.

14 – (NSString *)stringByTrimmingCharactersInSet:(NSCharacterSet
*)set;

Returns a new string created by eliminating characters from both
ends of the receiver part of a specific character set.

15 – (NSString *)substringFromIndex:(NSUInteger)anIndex;
Returns a new string containing the receiver’s characters from the
one at the provided index to the end.

The following example employs a few of the functions discussed above:

#import <Foundation/Foundation.h>

int main () {
 NSString *str1 = @"Hello";
 NSString *str2 = @"Everyone";
 NSString *str3;
 int len ;

46    ◾    Objective-C

 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];

 /* uppercase-string */
 str3 = [str2 uppercaseString];
 NSLog(@"Uppercase-String : %@\n", str3);

 /* concatenates the str1 and str2 */
 str3 = [str1 stringByAppendingFormat:@"Everyone"];
 NSLog(@"Concatenated-string: %@\n", str3);

 /* total length of the str3 after concatenation */
 len = [str3 length];
 NSLog(@"Length of the Str3 : %d\n", len);

 /* InitWithFormat */
 str3 = [[NSString alloc] initWithFormat:@"%@
%@",str1,str2];
 NSLog(@"Using initWithFormat: %@\n", str3);
 [pool drain];

 return 0;
}

STRUCTURES IN OBJECTIVE-C
Arrays in Objective-C enable us to construct types of variables that may
store many data items of the same kind. Still, the structure is another user-
defined data type accessible in Objective-C programming that allows us to
mix data items of various types.

Structures are used to represent data. Assume we wish to keep track of
your library books. We might wish to keep note of the following charac-
teristics of each book:

•	 Title

•	 Author

•	 Subject

•	 Book ID

Crash Course in Objective-C    ◾    47

CREATING A STRUCTURE
The struct statement is required to define a structure. The struct statement
creates a new data type for our code with more than one member. The
struct statement format is illustrated below.

struct [structure tag] {
 member-definition;
 member-definition;
 ...
 Member-definition;
 } [one or more structure variables];

The structure tag is optional in Objective-C, and each member defini-
tion is a standard variable definition, such as int i; float f; or any other
acceptable variable definition. Although this is optional, we can declare
one or more structure variables after the structure’s definition, before the
final semicolon. This is how we would declare the Book structure.

struct Books {
 NSString *title;
 NSString *authors;
 NSString *subjects;
 int bookid;
 } book;

ACCESS TO STRUCTURE MEMBERS
The member access operator is used to gain access to any structure member
(.). The member access operator in Objective-C is represented by a period
between the name of the structure variable and the name of the structure
member that we want to access. To define variables of the structure type,
we would use the struct keyword. The example below demonstrates how
to use structure.

#import <Foundation/Foundation.h>

struct Books {
 NSString *title;
 NSString *authors;
 NSString *subjects;
 int bookid;
};

48    ◾    Objective-C

int main() {
 struct Books Book1; /* Declare Book1 of the
type Book */
 struct Books Book2; /* Declare Book2 of the
type Book */

 /* book1 specification */
 Book1.title = @"Objective-C Programming";
 Book1.authors = @"Luka Mli";
 Book1.subjects = @" Tutorial of Objective-C
Programming";
 Book1.bookid = 4387307;

 /* book2 specification */
 Book2.title = @"Telecom Billing";
 Book2.authors = @"Sara Ali";
 Book2.subjects = @" Tutorial of Telecom Billing";
 Book2.bookid = 9875701;

 /* print Book1 info */
 NSLog(@"Book 1 title : %@\n", Book1.title);
 NSLog(@"Book 1 authors : %@\n", Book1.authors);
 NSLog(@"Book 1 subjects : %@\n", Book1.subjects);
 NSLog(@"Book 1 bookid : %d\n", Book1.bookid);

 /* print Book2 info */
 NSLog(@"Book 2 title : %@\n", Book2.title);
 NSLog(@"Book 2 authors : %@\n", Book2.authors);
 NSLog(@"Book 2 subjects : %@\n", Book2.subjects);
 NSLog(@"Book 2 bookid : %d\n", Book2.bookid);

 return 0;
}

FUNCTION ARGUMENTS AS STRUCTURES
A structure can be sent as a function parameter as any other variable or
pointer can. We would access structural variables in the same way we did
in the preceding example.

#import <Foundation/Foundation.h>

struct Books {

Crash Course in Objective-C    ◾    49

 NSString *title;
 NSString *authors;
 NSString *subjects;
 int bookid;
};

@interface SampleClass:NSObject
/* function-declaration */
- (void) printBook:(struct Books) book ;
@end

@implementation SampleClass

- (void) printBook:(struct Books) book {
 NSLog(@"Book title : %@\n", book.title);
 NSLog(@"Book authors : %@\n", book.authors);
 NSLog(@"Book subjects : %@\n", book.subjects);
 NSLog(@"Book bookid : %d\n", book.bookid);
}

@end

int main() {
 struct Books Book1; /* Declare Book1 of the
type Book */
 struct Books Book2; /* Declare Book2 of the
type Book */

 /* book1 specification */
 Book1.title = @"Objective-C Programming";
 Book1.authors = @"Luka Mli";
 Book1.subjects = @" Tutorial of Objective-C
Programming";
 Book1.bookid = 4387307;

 /* book2 specification */
 Book2.title = @"Telecom Billing";
 Book2.author = @"Sara Ali";
 Book2.subject = @" Tutorial of Telecom Billing";
 Book2.book_id = 9875701;

 SampleClass *sampleClass = [[SampleClass alloc]
init];

50    ◾    Objective-C

 /* print Book1 info */
 [sampleClass printBook: Book1];

 /* Print Book2 info */
 [sampleClass printBook: Book2];

 return 0;
}

POINTERS TO STRUCTURES
As seen below, we may define pointers to structures in the same way that
define pointers to any other variable.

struct Books *struct-pointer;

The address of a structural variable can now be stored in the above-
described pointer variable in Objective-C. In Objective-C to find the
address of a structure variable, use the & operator before the structure’s
name, as shown below.

Struct-pointer = &Book1;

To access the structure members from a pointer to that structure, use
the -> operator as shown below.

Struct-pointer->title;

Let us rewrite the above example using a structure pointer; perhaps,
this will help us comprehend the notion.

#import <Foundation/Foundation.h>

struct Books {
 NSString *title;
 NSString *authors;
 NSString *subjects;
 int book-id;
};

@interface SampleClass:NSObject
/* function-declaration */

Crash Course in Objective-C    ◾    51

- (void) printBook:(struct Books *) book ;
@end

@implementation SampleClass
- (void) printBook:(struct Books *) book {
 NSLog(@"Book title : %@\n", book->title);
 NSLog(@"Book authors : %@\n", book->authors);
 NSLog(@"Book subjects : %@\n", book->subjects);
 NSLog(@"Book bookid : %d\n", book->bookid);
}

@end

int main() {
 struct Books Book1; /* Declare Book1 of the
type Book */
 struct Books Book2; /* Declare Book2 of the
type Book */

 /* book 1 specification */
 Book1.title = @"Objective-C Programming";
 Book1.authors = @"Luka Mli";
 Book1.subjects = @" Tutorial of Objective-C
Programming";
 Book1.bookid = 4387307;

 /* book 2 specification */
 Book2.title = @"Telecom Billing";
 Book2.authors = @"Sara Ali";
 Book2.subjects = @" Tutorial of Telecom Billing";
 Book2.bookid = 9875701;

 SampleClass *sampleClass = [[SampleClass alloc]
init];
 /* print Book1 info by passing address of the
Book1 */
 [sampleClass printBook:&Book1];

 /* print Book2 info by passing address of the Book2
*/
 [sampleClass printBook:&Book2];

 return 0;
}

52    ◾    Objective-C

BIT FIELDS
Bit Fields allow data to be packed into a structure. This is especially helpful
when memory or data storage is limited.

Packing several objects into a machine word, such as, 1 bit flags can be
compacted.

External file formats can be read in if they are not standard. As an
example, consider 9-bit integers.

We may achieve this in an Objective-C structure declaration by putting:
bit length after the variable. As an example,

struct packed_struct {
 unsigned int f1:1;
 unsigned int f2:1;
 unsigned int f3:1;
 unsigned int f4:1;
 unsigned int type:4;
 unsigned int my_int:9;
 } pack;

The packed_struct, in this case, has six members: Four 1-bit flags f1..f3,
a4 bit type, and a 9-bit my_int

The bit mentioned above fields are automatically packed as compactly
as feasible by Objective-C, provided the field’s maximum length is less
than or equal to the computer’s integer word length. If this is not the case,
specific compilers may allow for field memory overlap, while others may
store the next field in the following word.

PREPROCESSORS IN OBJECTIVE-C
The Objective-C Preprocessor is a distinct step in the compilation pro-
cess, not part of the compiler. An Objective-C Preprocessor is just a text
replacement tool that informs the compiler to perform the necessary pre-
processing before actual compilation. The Objective-C Preprocessor will
be referred to as the OCPP.

A pound sign (#) precedes all preprocessor commands. It must be the
first non-blank character, and a preprocessor directive should begin in the
first column for readability. The section that follows lists all of the key pre-
processor directives.

Crash Course in Objective-C    ◾    53

Sr. No. Directive and Description

  1 #define
Substitutes preprocessor macro

  2 #include
Inserts particular header from another file.

  3 #undef
Undefines preprocessor macro

  4 #ifdef
If this macro is defined, it returns true.

  5 #ifndef
If this macro is not defined, it returns true.

  6 #if
Checks if a compile-time condition is true.

  7 #else
Alternative for #if

  8 #elif
#else an #if in the one statement.

  9 #endif
Ends the preprocessor conditional.

10 #error
Prints the error message on stderr.

11 #pragma
Issues special commands to the compiler using standardized method.

EXAMPLES OF PREPROCESSORS
Examine the samples below to understand various directives better.

#define MAXARRAY_LENGTH 22

This directive instructs the OCPP to replace MAXARRAY_LENGTH
instances with 20. To improve readability, use #define for constants.

#import <Foundation/Foundation.h>
#include "myheader.h"

These directives instruct the OCPP to retrieve foundation.h from the
Foundation Framework and insert it into the current source file. The next
line instructs OCPP to retrieve myheader.h from the local location and
insert it into the current source file.

#undef FILE_SIZE
#define FILE_SIZE 41

54    ◾    Objective-C

This instructs the OCPP to undefine the current FILE_SIZE to 41.

#ifndef MESSAGE
 #define MESSAGE "We wish"
#endif

This instructs the OCPP to define MESSAGE only if it has not already
been defined.

#ifdef DEBUG
/* Our debugging statements here.. */
#endif

If DEBUG is defined, this instructs the OCPP to process the statements
contained. This is essential if the -DDEBUG option is passed to the gcc
compiler during compilation. This defines DEBUG, allowing us to toggle
debugging on and off during compilation.

PREDEFINED MACROS
Several macros are defined in ANSI C. Although each is accessible for use
in programming, the predefined macros are not modified directly.

Sr. No. Macro and Description

1 __DATE__
The current date as character literal in the “MMM DD YYYY” format

2 __TIME__
The current time as character literal in the “HH:MM:SS” format

3 __FILE__
This contains current filename as string literal.

4 __LINE__
This contains the current line number as decimal constant.

5 __STDC__
Defined as 1 when the compiler complies with ANSI standard.

Consider the following example:

#import <Foundation/Foundation.h>

int main() {
 NSLog(@"The File :%s\n", __FILE__);
 NSLog(@"The Date :%s\n", __DATE__);

Crash Course in Objective-C    ◾    55

 NSLog(@"The Time :%s\n", __TIME__);
 NSLog(@"The Line :%d\n", __LINE__);
 NSLog(@"ANSI :%d\n", __STDC__);

 return 0;
}

OPERATORS OF PREPROCESSORS
To assist us in constructing macros, the Objective-C preprocessor pro-
vides the following operators.

Macro Continuation (\)

A macro must typically be confined to a single line. Use the macro con-
tinuation operator in Objective-C to continue a macro that is too long for
a single line. As an example,

#define message_for(x, y) \
 NSLog(@#x " and " #y ": We miss you\n")

Stringize (#)

The stringize or number-sign operator (“#”) transforms a macro argu-
ment into a string constant when used within a macro definition. Use this
operator in a macro with a predefined argument or parameter list. As an
example,

#import <Foundation/Foundation.h>

#define message_for(x, y) \
 NSLog(@#x " and " #y ": We miss you\n")

int main(void) {
 message_for(Carole, Debra);
 return 0;
}

Token Pasting (##)

The token-pasting operator (##) joins two parameters within a macro dec-
laration. It enables the joining of two different tokens in the macro specifi-
cation into a single token. As an example,

#import <Foundation/Foundation.h>

56    ◾    Objective-C

#define tokenpaster(n) NSLog (@"token" #n " = %d",
token##n)

int main(void) {
 int token24 = 60;

 tokenpaster(24);
 return 0;
}

defined() Operator

The preprocessor defined operator is used in the constant expressions to
verify if an identifier is defined using #define. The value is true if the pro-
vided identifier is defined (non-zero). The value is false if the symbol is not
specified (zero). The following is the definition of the defined operator:

#import <Foundation/Foundation.h>

#if !defined (MESSAGE)
 #define MESSAGE "We wish"
#endif

int main(void) {
 NSLog(@"Here message is: %s\n", MESSAGE);
 return 0;
}

PARAMETERIZED MACROS
Simulating functions using parameterized macros is one of OCPP’s most
powerful features. For example, we may have the following code to square
a number:

int square(int a) {
 return a * a;
 }

We may modify the preceding code using a macro as follows:

#define square(a) ((a) * (a))

Before using them, macros with parameters must be specified with the
#define directive. The parameter list enclosed by parentheses must come

Crash Course in Objective-C    ◾    57

immediately after the macro name. Spaces are not permitted between the
macro name and the open parenthesis. As an example,

#import <Foundation/Foundation.h>

#define MAX(x,y) ((x) > (y)? (x) : (y))

int main(void) {
 NSLog(@"The Max between 30 and 20 is %d\n", MAX(20,
30));
 return 0;
}

Typedef IN OBJECTIVE-C
The Objective-C programming language includes a typedef keyword used
to rename a type. Below mentioned is an example of how to define the
term BYTE for one-byte numbers:

typedef unsigned char BYTE;

Following this type definition, the identifier BYTE can use as an abbre-
viation for the type unsigned char, for instance:

BYTE by1, by2;

Uppercase letters are used by convention for these definitions to remind
the user that the type name is only a symbolic abbreviation. However, low-
ercase letters can also be used, as seen below.

typedef unsigned char byte;

We may also use typedef to assign a name to a user-defined data type.
For example, we may use typedef with the structure to build a new data
type and then use that data type to declare structure variables, as seen
below explicitly.

#import <Foundation/Foundation.h>

typedef struct Books {
 NSString *title;
 NSString *authors;

58    ◾    Objective-C

 NSString *subjects;
 int bookid;
} Book;

int main() {
 Book book;
 book.title = @"Objective-C Programming";
 book.authors = @"TutorialsPoint";
 book.subjects = @"Programming-tutorial";
 book.bookid = 200;

 NSLog(@"Book title : %@\n", book.title);
 NSLog(@"Book authors : %@\n", book.authors);
 NSLog(@"Book subjects : %@\n", book.subjects);
 NSLog(@"Book Id : %d\n", book.bookid);

 return 0;
}

typedef vs #define

The #define directive is an Objective-C directive that is used to declare
aliases for various data types, similar to typedef but with the following
differences:

Typedef can only give symbolic names to types, but #define may also be
used to define aliases for values, such as 1 as ONE, etc.

The compiler interprets typedef declarations, whereas the pre-processor
processes #define statements.

The following is the most basic use of #define.

#import <Foundation/Foundation.h>

#define TRUE 1
#define FALSE 0

int main() {
 NSLog(@"The Value of TRUE : %d\n", TRUE);
 NSLog(@"the Value of FALSE : %d\n", FALSE);

 return 0;
}

Crash Course in Objective-C    ◾    59

TYPE CASTING IN OBJECTIVE-C
Type casting is a method of converting a variable from one data type to
another. For example, if we want to convert a long number to a basic inte-
ger, we may use the type cast long to int. As seen below, we may explicitly
use the cast operator to change values from one type to another.

(typename) expression

In Objective-C, we often use CGFloat for floating-point operations,
derived from the fundamental type of float in 32-bit cases and double in
64-bit cases. Consider the following example, in which the cast operator
divides one integer variable by another in a floating-point operation:

#import <Foundation/Foundation.h>

int main() {
 int sum = 27, count = 15;
 CGFloat mean;

 mean = (CGFloat) sum / count;
 NSLog(@"The Value of mean : %f\n", mean);

 return 0;
}

Note that the cast operator takes precedence over the division operator.
Thus, the sum value is first changed to type double before being divided by
count, returning a double value.

Type conversions can be implicit (done automatically by the compiler)
or explicit (expressed explicitly using the cast operator). When type con-
versions are required, it is considered good programming practice to uti-
lize the cast operator.

INTEGER PROMOTION
Integer promotion is when values of the integer type “smaller” than int
or unsigned int are upgraded to int or unsigned int. Consider adding a
character to an int.

#import <Foundation/Foundation.h>

int main() {

60    ◾    Objective-C

 int x = 27;
 char c = 'c';
 int sum;

 sum = x + c;
 NSLog(@"The Value of sum : %d\n", sum);

 return 0;
}

USUAL ARITHMETIC CONVERSION
The usual arithmetic conversions are done implicitly to cast their values in
a common type. If operands continue to be of various types, the compiler
converts them to the type that appears highest in the following hierarchy.

Usual arithmetic conversions.

The assignment operators and the logical operators && and || do not
undergo the standard arithmetic conversions. To further comprehend the
concept, consider the following example.

Crash Course in Objective-C    ◾    61

#import <Foundation/Foundation.h>

int main() {
 int x = 27;
 char c = 'c';
 CGFloat sum;

 sum = x + c;
 NSLog(@"The Value of sum : %f\n", sum);
 return 0;
}

LOG HANDLING IN OBJECTIVE-C
In this section, we will describe log handling and provide appropriate
examples.

NSLog METHOD
We utilize the NSLog function in the Objective-C programming language
to print logs, which we first used in the Hello World example.

Consider a simple code that prints the words “Hello Everyone.”

DISABLING LOGS IN THE LIVE Apps
Because we utilize NSLogs in our application, it will be written in device
logs, which is not good in a live build. As a result, we employ a type defini-
tion for printing logs, as illustrated below.

#import <Foundation/Foundation.h>

#if DEBUG == 0
#define DebugLog(...)
#elif DEBUG == 1
#define DebugLog(...) NSLog(__VA_ARGS__)
#endif

int main() {
 DebugLog(@"Debug log, our custom addition gets \
 printed during the debug only");
 NSLog(@"The NSLog gets printed always");
 return 0;
}

62    ◾    Objective-C

ERROR HANDLING IN OBJECTIVE-C
Error handling in Objective-C programming is handled via the Foundation
framework’s NSError class.

An NSError object has more detailed and extensible error information
than an error code or error text. An NSError object has three fundamen-
tal attributes: an error domain (expressed by a string), a domain-specific
error code, and a user info dictionary providing application-specific
information.

NSError
NSError objects are used in Objective-C programs to provide information
about runtime faults that users should be aware of. Typically, a program
will display this error information in a dialog or sheet. However, it may
interpret data and either request that the user attempt to recover from the
error or seek to repair the issue on its own.

The NSError Object consists of:

•	 Domain: The error domain must not be nil and can be one of the pre-
set NSError domains or an arbitrary string specifying a new domain.

•	 Code: The error code.

•	 User Info: The error’s userInfo dictionary, which may be null.

The example below demonstrates how to generate a custom error.

NSString *domain = @"com.MyCompany.MyApplication.
ErrorDomain";
NSString *desc = NSLocalizedString(@"Unable to
complete process", @"");
NSDictionary *userInfo = @{ NSLocalizedDescriptionKey
: desc };
NSError *error = [NSError errorWithDomain:domain
code:-101 userInfo:userInfo];

Here is the complete code for the error as mentioned in the above exam-
ple, which was passed as a pointer reference:

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject

Crash Course in Objective-C    ◾    63

-(NSString *) getEmployeeNameForID:(int) id
withError:(NSError **)errorPtr;
@end

@implementation SampleClass

-(NSString *) getEmployeeNameForID:(int) id
withError:(NSError **)errorPtr {
 if(id == 1) {
 return @"Employee Test-Name";
 } else {
 NSString *domain = @"com.MyCompany.
MyApplication.ErrorDomain";
 NSString *desc =@"Unable to complete process";
 NSDictionary *userInfo = [[NSDictionary alloc]
 initWithObjectsAndKeys:desc,
 @"NSLocalizedDescriptionKey",NULL];
 *errorPtr = [NSError errorWithDomain:domain
code:-101
 userInfo:userInfo];
 return @"";
 }
}

@end

int main() {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 SampleClass *sampleClass = [[SampleClass alloc]
init];
 NSError *error = nil;
 NSString *name1 = [sampleClass
getEmployeeNameForID:1 withError:&error];

 if(error) {
 NSLog(@"Error-finding Name1: %@",error);
 } else {
 NSLog(@"Name1: %@",name1);
 }

 error = nil;

64    ◾    Objective-C

 NSString *name2 = [sampleClass
getEmployeeNameForID:2 withError:&error];

 if(error) {
 NSLog(@"Error-finding Name2: %@",error);
 } else {
 NSLog(@"Name2: %@",name2);
 }

 [pool drain];
 return 0;
}

COMMAND-LINE ARGUMENTS
When your Objective-C programs are executed, we can provide specific
values from the command line to them. These data are known as com-
mand-line arguments, and they are frequently helpful for your program,
particularly when we want to control our program from outside rather
than hard-coding those values inside the code.

The command-line arguments are handled using the main() function
parameters, where argc is the number of arguments supplied, and argv[] is
a pointer array pointing to each argument passed to the program. The fol-
lowing is a simple example that checks for command-line arguments and
takes appropriate action.

#import <Foundation/Foundation.h>

int main(int argc, char *argv[]) {
 if(argc == 3) {
 NSLog(@"Argument supplied is %s\n", argv[1]);
 } else if(argc > 3) {
 NSLog(@"supplied too many arguments.\n");
 } else {
 NSLog(@"One argument expected.\n");
 }
}

When the preceding code is built and performed with a single param-
eter, say “testing,” the outcome is as follows:

The argument supplied is testing.

Crash Course in Objective-C    ◾    65

The following result is obtained when the below code is built and per-
formed with two parameters, say testing1 and testing2.

Supplied too many arguments.
The following result is obtained when the code is built and executed

without any arguments.

One argument is expected.

It should be noted that argv[0] contains the program’s name, argv[1] is
a reference to the first command-line parameter provided, and *argv[n] is
the last argument. If no arguments are given, argc is set to one; otherwise,
argc is set at 3 if one argument is supplied.

A space separates all command line parameters. However, if the argu-
ment contains a space, you can pass it by enclosing it in double quotes “” or
single quotes ‘’. Let us rewrite the above example, this time printing the pro-
gram name and passing a command-line parameter inside double quotes:

#import <Foundation/Foundation.h>

int main(int argc, char *argv[]) {
 NSLog(@"Program name is %s\n", argv[0]);

 if(argc == 3) {
 NSLog(@"Argument supplied is %s\n", argv[1]);
 } else if(argc > 3) {
 NSLog(@"supplied too many arguments.\n");
 } else {
 NSLog(@"One argument expected.\n");
 }

 return 0;
}

This chapter provided a crash tutorial on environmental setup, basic
syntax, data types, loops, functions, strings, and error handling.

BIBLIOGRAPHY
	 1.	 Objective-C Tutorial – https://www.tutorialspoint.com/objective_c/index.

htm, accessed on May 4, 2022.
	 2.	 About Objective-C – https://developer.apple.com/library/archive/documen-

tation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/
Introduction.html, accessed on May 4, 2022.

https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com

66    ◾    Objective-C

	 3.	 Difference between C and Objective-C – https://www.geeksforgeeks.org/
difference-between-c-and-objective-c/, accessed on May 4, 2022.

	 4.	 Objective-C – Toolshttps://educationecosystem.com/guides/programming/
objective-c/history, accessed on May 4, 2022.

	 5.	 Object-Oriented Programming in Objective-C – https://medium.com/
ios-objective-creation/lesson-1-introduction-to-objective-c-programming-
22f5fe71172, accessed on May 4, 2022.

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://educationecosystem.com
https://educationecosystem.com
https://medium.com
https://medium.com
https://medium.com

67DOI: 10.1201/9781003357506-2

C h a p t e r 2

OOP in Objective-C

IN THIS CHAPTER

➢➢ Objects and Classes

➢➢ Class Patterns and Clusters

➢➢ Object Properties

➢➢ Additional OOP

In the previous chapter, we discussed the crash course of Objective-C and
in this chapter, we will cover OOP’s concept.

OBJECT-ORIENTED PROGRAMMING
As humans, we are constantly confronted with data and perceptions that
we must interpret. We must separate the underlying structure from the
surface features and identify the critical relationships at work. Abstractions
explain causes and consequences, uncover patterns and frameworks, and
distinguish between what is and is not relevant. Object orientation offers
an abstraction of the data on which you work; moreover, it gives a tangible
grouping between the data and the operations performed on the data –
giving the data behavior.

OPERATIONS AND DATA
Data and actions on data have typically been separated in programming
languages. Except when operations affect it, data is static and immutable.

https://doi.org/10.1201/9781003357506-2

68    ◾    Objective-C

Procedures and functions that act on data don’t have a permanent state of
their own; they’re solely helpful for affecting data.

This separation is, of course, based on how computers operate, so it’s
not something you can lightly dismiss. It provides the backdrop against
which we labor, just as the differences between matter and energy and
nouns and verbs do. All programmers, even object-oriented programmers,
must specify the data structures that their programs will utilize and the
functions that will operate on the data at some point.

This is all there is to it in a procedural programming language like C.
The language may provide multiple forms of data and function organiza-
tion, but it will not divide the world. The fundamental parts of the design
are functions and data structures.

Object-oriented programming restructures the world at a higher level
rather than disputing it. It divides processes and data into objects, then
combined into organized networks to produce a complete program.
Objects and object interactions are the fundamental design components
of an object-oriented programming language.

Every object contains state (data) and behavior (operations on data).
They are similar to conventional physical things in this regard. A
mechanical item, such as a pocket watch or a piano, may effortlessly
embody state and behavior. But practically everything intended to do a
task does. Even basic objects with no moving elements, such as a bottle,
integrate state (the amount of liquid in the bottle, whether it is open, and
how warm the contents are) with behavior (the ability to dispense its
contents at various flow rates, to be opened or closed, to withstand high
or low temperatures).

The force and attractiveness of items come from their similarity to
actual things. They can not only represent real-world components, but
they can also perform specified tasks as software components.

IMPLEMENTATION AND INTERFACE
We must be able to grasp abstractions and express them in program design
to create programs. A programming language’s role is to assist us in accom-
plishing this. The language should make it easier to innovate and design
by allowing you to represent abstractions that reveal how things function.
It should allow us to concretize our thoughts in the code we write. Surface
details should not obscure your program’s architecture.

All programming languages have tools for expressing abstractions.
In essence, these devices are methods of collecting implementation

OOP in Objective-C    ◾    69

details, concealing them, and providing them with a common interface,
in the same way, that a mechanical item separates its interface from its
implementation.

Structures and functions are the primary abstraction units of the C lan-
guage. Both conceal implementation components in various ways:

C structures aggregate data pieces into bigger units that may be treated
as separate entities on the data side. While some programs must dive into
the structure and alter the fields individually, most programs may treat it
as a single entity, not a collection of components but the sum of those ele-
ments. Because one structure may include others, a complex information
arrangement can be constructed from simpler levels.

In modern C, a structure’s fields have their own namespace, so their
names won’t clash with similarly named data objects outside the struc-
ture. Keeping implementation details out of the interface requires parti-
tioning the program namespace. Consider the tremendous challenge of
giving each item of data in an extensive program a unique name while also
ensuring that new names do not clash with existing ones.

Functions encapsulate activities that are used frequently without hav-
ing to be re-implemented in the procedural world. Like data items local to
a function, fields inside a structure are protected under their namespace.
Complex actions are created from simpler elements because functions can
reference (call) other functions.

Functions are reused. They are called any number of times after being
defined without thinking about the implementation again. The most often
used functions may be grouped into libraries and utilized across vari-
ous applications. The function interface is all required of the user, not the
source code.

Functions, unlike data components, are not divided into different
namespaces. Every function must have its own name. While the function
itself is reusable, the name is not.

Although C structures and functions may express large abstractions,
they maintain the separation between data and data operations. The most
outstanding levels of abstraction in a procedural programming language
nevertheless reside on one side or the other of the data-versus-operations
split. The way the computer operates is always reflected in the applications
you create.

Object-oriented programming languages don’t give up any benefits of
structures and functions; instead, they add a higher-level abstraction unit
that conceals the interaction between a function and its data.

70    ◾    Objective-C

Assume you have a collection of functions that interact with a specific
data structure. You want to make those functions easy to use by removing
the structure from the interface as much as feasible. So you add a couple
more functions to help handle the data. The functions are responsible for
allocating memory for the data structure, initializing it, retrieving infor-
mation from it, changing values inside it, keeping it up to date, and clear-
ing its memory. All the users of Objective-C have to do is call the functions
and provide them with the structure.

The structure has become an opaque token due to these modifications,
and other programmers will never need to see inside. They may focus on
the functions rather than the data organization. You’ve started the process
of making an item.

The next step is to implement this concept in a programming language
and entirely conceal the data structure so that it is not required to be pro-
vided between functions. All that is exposed to consumers is a functional
interface; the data becomes an internal implementation detail. Users may
conceive of objects based on their behavior since they encapsulate (hide)
their data.

The interface to the functions has been much simplified due to this
stage. Callers aren’t required to understand how they work (what data they
use). This may now be classified as an item.

All functions that have access to the secret data structure are grouped.
As a result, an object is more than a collection of random functions; it’s
a collection of connected behaviors backed by common data. To utilize
an object’s function, we must first build the object (give it its internal
data structure) and then tell it the function it should execute. You start
thinking about the object’s overall function rather than the individual
functions.

Learning object-oriented programming is all about moving from
thinking about functions and data structures to thinking about object
behaviors. It may seem strange at first, but as you acquire expertise with
object-oriented programming, we’ll discover that it’s a more natural way
of thinking. Lists, containers, tables, controllers, and even managers are
all analogous to real-world objects in programming. Using programming
objects as an example simply expands the comparison naturally.

The types of abstractions that a programming language allows us to
encode may be used to evaluate it. Extraneous issues should not distract
us, nor should we be obliged to explain ourselves using a language that
does not correspond to the reality we’re attempting to depict.

OOP in Objective-C    ◾    71

If, for example, you must constantly attend to the business of matching
the correct data with the correct method, you are compelled to be aware of
the complete program at a low level of implementation at all times. While
we may still create programs with a high degree of abstraction, the transi-
tion from concept to implementation can be challenging and increasingly
tricky as programs become more complex.

Object-oriented programming languages provide us with a more exten-
sive vocabulary and a richer model to work in by giving a greater degree
of abstraction.

THE OBJECT MODEL
The object-oriented programming insight is to integrate state and behavior
data and data operations into a high-level unit, an object, and provide lan-
guage support. A collection of related functions and a data structure that
fulfils those functions form an object. The functions in Objective-C are
known as the object’s methods, and the data structure’s fields are known
as its instance variables.

Model of object.

If we’ve ever worked on a challenging programming problem, our
design certainly incorporated sets of functions that work on a specific type
of data implicit “objects” without language support.

Object-oriented programming makes these function groups clear and
allows us to think about the group rather than its components. The only

72    ◾    Objective-C

way to access an object’s data, and hence the only interface, is via its
methods.

When both state and behavior are combined in a single thing, it
becomes more than either alone; the whole is greater than the sum of its
parts. An object is a self-contained “subprogram” having authority over a
specific functional area. It can function as a full-fledged modular compo-
nent inside a bigger program design.

For example, if we were to create software that simulated residential
water usage, we might create objects to represent the various components
of the water-delivery system. One example is a Faucet object, which has
methods for starting and stopping the water flow, adjusting the flow rate,
returning the quantity of water consumed in a specific period, and so on.
A Faucet object would require instance variables to track whether the tap
is open or closed, how much water is being used, and where the water is
coming from to perform this function.

A programmatic Faucet object can be wiser than a real one (it’s like a
mechanical faucet with many gauges and instruments). But, like any other
system component, a genuine faucet has both state and behavior. We’ll
need programming units, like objects, which mix state and behavior, to
represent a system successfully.

A program comprises a network of linked items that work together to
solve a puzzle piece (as illustrated in the below image). Each object has a
defined function in the program’s general architecture and may connect
with other objects. Objects interact through messages, which are requests
for methods to be performed.

Network in objects.

OOP in Objective-C    ◾    73

The network’s objects will not be identical. In addition to Faucet
objects, a program that replicates water use may include Pipe objects that
carry water to the Faucet and Valve objects that control the flow between
pipes. There may be a Building object to coordinate a system of pipes,
valves, and faucets, some Appliance objects that can switch valves on and
off (equivalent to dishwashers, toilets, and washing machines), and per-
haps some User objects to operate the appliances and faucets. When a
Building object in Objective-C is asked how much water is being utilized,
it may request information from each Faucet and Valve object. When a
user turns on an appliance, it must first turn on a valve to get the water
it needs.

THE METAPHOR OF MESSAGING
Each programming paradigm has its own set of terms and metaphors. The
vocabulary of object-oriented programming encourages you to consider
what happens in a program from a unique viewpoint.

There’s a temptation, for example, to consider things to be actors with
human-like motivations and capacities. It’s tempting to speak about an
object determining what to do in a scenario, requesting information from
other objects, introspecting to get the required information, transferring
responsibilities to another object, or managing a process.

This metaphor requires you to conceive objects as executing their meth-
ods rather than functions or methods doing the job, as you would in a pro-
cedural programming language. Objects are the agents of the program’s
action rather than passive receptacles for state and behavior.

This metaphor is quite helpful. An object is similar to an actor in spe-
cific ways: it has a specific job to perform in the program’s overall design.
Within that role, it may work somewhat independently of the other com-
ponents. It interacts with other things as they perform their functions, yet
it is self-contained and may operate independently. It can’t deviate from
the script, just like a performer onstage, yet the part it performs might be
diverse and intricate.

Objects as actors mesh well with the primary metaphor of object-ori-
ented programming, which is that objects interact through messages.
Instead of executing a method like a function, we send a message to an
object and ask it to do one of its methods.

This metaphor leads to a beneficial way of thinking about methods
and objects; however, it takes some getting accustomed to it. It isolates
procedures from the specific data they operate on and instead focuses on

74    ◾    Objective-C

behavior. A start method, for example, in an object-oriented program-
ming interface, may start an operation, an archive method, and a draw
method, for example, might output an image. The method name does
not tell which action is started, which information is saved, or which
picture is drawn. These procedures may be performed differently by dis-
tinct objects.

Methods are, therefore, a vocabulary of abstract activities. To make one
of those behaviors concrete, you must associate the method with an object.
This is accomplished by designating the object as the message’s recipient.
The process that is started, the data archived, and the rendered picture are
all determined by the item you choose as the recipient.

Methods are called via a specific receiver since they are objects (the
owner of the method and the data structure the method will act on). The
same procedure might be implemented differently by different receivers.
As a result, various receivers might respond to the same message differ-
ently. A message’s outcome can’t be determined just based on the mes-
sage or method name; it additionally relies on the object that receives the
message.

The messaging metaphor nicely captures the concept that actions may
be abstracted from their specific implementations by separating the mes-
sage (the requested behavior) from the receiver (the owner of a method
that can react to the request).

Objective-C offers considerable support for designing object-oriented
iOS iPad apps. However, the field of object-oriented programming is vast.
It is not hyperbole to say that whole volumes have been written on the
subject. As a result, a comprehensive review of object-oriented software
development is outside the scope of this book. Instead, we will present the
fundamental notions of object-oriented programming before describing
the concept as it applies to Objective-C application development. Again,
while we aim to offer the essential knowledge you need in this chapter,
if we are inexperienced with Objective-C programming, we recommend
reading a copy of Objective-C 2.0 Essentials.

The main goal of the Objective-C programming language is to add
object orientation to the C programming language, and classes, also
known as user-defined types, are the central feature of Objective-C that
support object-oriented programming.

A class is used to specify an object’s form, and it combines data repre-
sentation and data manipulation methods into a single package. Members
of a class are the data and methods contained within it.

OOP in Objective-C    ◾    75

CHARACTERISTIC OF OBJECTIVE-C

•	 @interface and @implementation are the two sections that define the
class.

•	 Almost everything takes the shape of an object.

•	 Objects are often referred to as receivers because they receive
messages.

•	 Instance variables are found in objects.

•	 Scope exists in objects and instance variables.

•	 Classes hide the implementation of an object.

•	 Properties are used to give other classes access to class instance
variables.

DEFINITIONS OF OBJECTIVE-C CLASSES
We create a blueprint for a data type when you create a class. This doesn’t
define any data, but it does define what the class name means, that is,
what a class object will be made up of and what operations are performed
on it.

The @interface keyword is followed by the interface(class) name and the
class body, enclosed by a pair of curly braces. All classes in Objective-C are
derived from the base class NSObject. All Objective-C classes are derived
from it. It includes basic memory allocation and initialization methods.
For example, using the keyword class, we defined the Box data type as
follows:

@interface Box:NSObject {
 //Instance-variables
 double length; // box Length
 double breadth; // box Breadth
}
@property(nonatomic, readwrite) double height; //
Property

@end

76    ◾    Objective-C

ALLOCATING AND INITIALIZING OBJECTIVE-C OBJECTS
A class supplies the blueprints for objects; hence an object is formed from
a class. We define objects of a class in the same way as we declare variables
of fundamental kinds. The statements that follow declare two Box objects.

Box box1 = [[Box alloc]init]; // Create the box1
object of the type Box
Box box2 = [[Box alloc]init]; // Create the box2
object of the type Box

ACCESSING DATA MEMBERS
The direct member access operator is used to access the properties of class
objects (.). To illustrate, consider the following example:

#import <Foundation/Foundation.h>

@interface Box:NSObject {
 double length; // box Length
 double breadth; // box Breadth
 double height; // box Height
}

@property(nonatomic, readwrite) double height; //
Property
-(double) volume;
@end

@implementation-Box

@synthesize height;

-(id)init {
 self = [super init];
 length = 2.0;
 breadth = 2.0;
 return self;
}

-(double) volume {
 return length*breadth*height;
}

OOP in Objective-C    ◾    77

@end

int main() {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 Box *box1 = [[Box alloc]init]; // Create the
box1 object of the type Box
 Box *box2 = [[Box alloc]init]; // Create the
box2 object of the type Box

 double volume = 0.0; // Store volume of
box here

 // box1 specification
 box1.height = 6.0;

 // box2 specification
 box2.height = 12.0;

 // volume of the box 1
 volume = [box1 volume];
 NSLog(@"Volume of the Box1 : %f", volume);

 // volume of the box 2
 volume = [box2 volume];
 NSLog(@"Volume of the Box2 : %f", volume);

 [pool drain];
 return 0;
}

Properties

•	 In Objective-C, properties ensure that a class’s instance variable is
accessed from outside the class.

•	 The following are the various parts of the property declaration.

•	 @property is a keyword that starts properties.

•	 It’s followed by access specifiers such as nonatomic, atomic, read-
write, and readonly, strong, unsafe unretained, and weak. This dif-
fers depending on the variable’s type. We can use unsafe unretained,

78    ◾    Objective-C

strong, or weak for any pointer type. We may also use readwrite or
readonly for other types.

•	 The variable’s datatype follows this.

•	 A semicolon finally concludes the property name.

•	 In the implementation class, we can add a synthesize statement.
However, in the most recent version of XCode, the program handles
the synthesis, and the synthesize statement is no longer required.

The only way to access the class’s instance variables is through the proper-
ties. For the properties, getter and setter methods are built internally.

For example, consider the property @property (nonatomic, readonly)
BOOL isDone. Setters and getters have been constructed under the hood,
as illustrated below.

-(void)setIsDone(BOOL)isDone;
-(BOOL)isDone;

Modularity

A module in Objective-C is nothing more than a file containing source
code to a C programmer. A practical technique to divide a vast (or even
not-so-large) program into manageable bits is to break it down into sepa-
rate files. Each item may be worked on and compiled separately and then
connected after the program is completed.

Using the static storage class designator to restrict the scope of names to
the files where they are declared improves source module independence.
This kind of module is a file system-defined unit. It’s a container for source
code rather than a logical language unit. Each coder decides what gets
inside the container. We don’t have to use them to group logically similar
pieces of the code. We may put your socks in one drawer, underwear in
another, and so on, or you can use another organization system or jumble
everything up.

Object-oriented programming languages allow us to utilize file con-
tainers for your source code, but they also have a logical module called
class definitions. As you would anticipate, each class is often specified in its
source file. Logical modules are paired with container modules.

In Objective-C, for example, the component of the Valve class that
interacts with Pipe objects may be defined in the same file as the Pipe class,
resulting in a container module for Pipe-related code and the Valve class

OOP in Objective-C    ◾    79

being divided into several files. No matter how many files the source code
was in, the Valve class definition would still work as a modular unit inside
the program’s construction. It would still be a logical module.

Under “Processes of Abstraction,” the mechanisms that make class defi-
nitions logical components of the language are addressed in depth.

Reusability

In Objective-C one of the main goals of object-oriented programming is
to make the code you create as reusable as possible – to have it serve many
various scenarios and applications – so that you don’t have to re-implement
something that has previously been done even if just slightly differently.

The following elements impact reusability: how stable and bug-free the
code is; how clear the documentation is; how simple and easy the pro-
gramming interface is; how efficiently the code accomplishes its job; and
how complete the feature set is.

These considerations aren’t limited to the object model. They are used
to determine the reusability of any code, including standard C functions
and class declarations. Functions that are efficient and well-documented,
for example, are more reusable than those that are undocumented and
unreliable.

Nonetheless, a broad comparison reveals that class definitions favor
reusable code in ways that functions do not. There are many ways to make
functions more reusable, such as giving data as arguments rather than
assuming particular global variables. Despite this, only a tiny portion of
functions is extended beyond the purposes they were developed. In at least
three ways, their reusability is constrained by design:

•	 The names of functions are global; each function must have its own
name (except for those declared static). This naming restriction
makes it difficult to depend extensively on library code when devel-
oping a complicated system. The programming interface would be
difficult to grasp and so large that significant generalizations would
be challenging to express.

In contrast, classes may share programming interfaces. When the
same naming conventions are used repeatedly, a large amount of
functionality is packed into a compact, easy-to-understand interface.

•	 One by one, functions are chosen from a library. It is up to program-
mers to choose the specific functions they need.

80    ◾    Objective-C

•	 On the other hand, objects are functional bundles rather than indi-
vidual methods and instance variables. Users of an object-oriented
library in Objective-C won’t get bogged down putting together their
answers to a problem since they offer integrated services.

•	 Functions are usually linked to unique data structures created for
a given application. Data and function interaction is an inevitable
aspect of the interface. Only those who agree to utilize the same data
structures as the function’s arguments will find it beneficial.

An object does not have this difficulty since it conceals its data.
One of the main reasons classes is reused more readily than func-
tions is this.

An object’s data is secured and will not be accessed by any other portion
of the program. As a result, methods may rely on their reliability. They can
be confident that data has not become irrational or unusable due to exter-
nal access. Consequently, a data structure supplied to an object is more
dependable than one passed to a function, and methods may rely on it
more. As a result, reusable methods are easy to develop.

A class may also be re-implemented to utilize a new data structure
without altering its interface since an object’s data is concealed. All appli-
cations that utilize the class may update to the new version without repro-
gramming; no source code changes are necessary.

INHERITANCE IN OBJECTIVE-C
Starting with something familiar is the most straightforward approach
to communicating something unfamiliar. If we’re describing a schoo-
ner, it helps if our audiences are familiar with sailboats. Suppose we’re
explaining how a harpsichord works. In that case, it’s helpful if we
can presume our audience has seen a piano inside or heard a guitar
played, or at the very least is acquainted with the concept of a musical
instrument.

The same is true if we want to describe a new kind of object; starting
from the definition of an existing object simplifies the description.

Given this, object-oriented programming languages allow us to base a
new class definition on an existing one. A superclass is the base class, while
a subclass is a new class. Only how the subclass varies from the superclass
is specified in the subclass specification; everything else is assumed to be
the same.

OOP in Objective-C    ◾    81

In object-oriented programming, inheritance is one of the most impor-
tant concepts. Inheritance in Objective-C allows us to define a class in
terms of another class, making application development and maintenance
easier. This also allows for the reuse of code functionality and a quick
implementation time.

Instead of developing entirely new data members and member func-
tions when creating a class, the programmer can specify that the new class
should inherit the members of an existing class. The old class is the base
class, while the new class is the derived class.

The concept of inheritance establishes a connection – for instance,
mammal IS-A animal, dog IS-A mammal, dog IS-A animal, etc.

BASE AND DERIVED CLASSES
Objective-C only supports multilevel inheritance, which means that
it may have just one base class but supports multilevel inheritance. All
Objective-C classes are derived from the superclass NSObject.

@interface derivedclass: baseclass

Consider the following for a base class Person and its derived class
Employee:

#import <Foundation/Foundation.h>

@interface Person : NSObject {
 NSString *personName;
 NSInteger personAge;
}

- (id)initWithName:(NSString *)name andAge:(NSInteger)
age;
- (void)print;

@end

@implementation Person

- (id)initWithName:(NSString *)name andAge:(NSInteger)
age {
 personName = name;
 personAge = age;

82    ◾    Objective-C

 return self;
}

- (void)print {
 NSLog(@"The Name is: %@", personName);
 NSLog(@"The Age is: %ld", personAge);
}

@end

@interface Employee : Person {
 NSString *employeeEducation;
}

- (id)initWithName:(NSString *)name andAge:(NSInteger)
age
 andEducation:(NSString *)education;
- (void)print;
@end

@implementation Employee

- (id)initWithName:(NSString *)name andAge:(NSInteger)
age
 andEducation: (NSString *)education {
 personName = name;
 personAge = age;
 employeeEducation = education;
 return self;
 }

- (void)print {
 NSLog(@"The Name is: %@", personName);
 NSLog(@"The Age is: %ld", personAge);
 NSLog(@"Education: %@", employeeEducation);
}

@end

int main(int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 NSLog(@"The Base class Person Object");
 Person *person = [[Person alloc]
initWithName:@"Rajat" andAge:15];

OOP in Objective-C    ◾    83

 [person print];
 NSLog(@"Inherited Class Employee Object");
 Employee *employee = [[Employee alloc]
initWithName:@"Rajat"
 andAge:15 andEducation:@"BA"];
 [employee print];
 [pool drain];
 return 0;
}

ACCESS THE CONTROL AND INHERITANCE
If a derived class is defined in the interface class, it can access all of its base
class’s private members, but it cannot access those defined in the imple-
mentation file.

The different access kinds are summarized in the following fashion
based on who has access to them.

With the exceptions indicated below, a derived class inherits all base
class methods and variables.

•	 Variables declared with the help of extensions in the implementation
file are not accessible.

•	 Methods declared with the help of extensions in the implementation
file are not accessible.

•	 The derived class method is run if the inherited class implements the
base class method.

Hierarchies of Class

Any class in Objective-C can be used as a superclass for defining a new
class. A class can be a subclass of another class and a superclass for its sub-
classes. As a result, any number of classes can be linked in a hierarchy of
inheritance, as shown in Figure.

Hierarchy of inheritance.

84    ◾    Objective-C

Starting with something familiar is the most straightforward approach
to communicating something unfamiliar. If we’re describing a schooner, it
helps if our audience is familiar with sailboats. Suppose we’re explaining
how a harpsichord works. In that case, it’s helpful if we can assume our
audience has seen a piano inside or heard a guitar played, or at the very
least is acquainted with the concept of a musical instrument.

The same is true if we want to describe a new kind of object; starting
from the definition of an existing object simplifies the description.

Given this, object-oriented programming languages allow us to base a
new class definition on an existing one. A superclass is the base class, while
a subclass is a new class. Only how the subclass varies from the superclass
is specified in the subclass specification; everything else is assumed to be
the same.

Definitions of Subclass

A subclass may update the definition it inherits from its superclass in three
ways.

It may add additional methods and instance variables to the class defi-
nition it inherits. The most typical motivation for creating a subclass is to
solve a problem. Subclasses always add additional methods and instance
variables if the methods demand it.

Replacing an existing method in Objective-C with a new one might
change the behavior it inherits. This is accomplished by simply cre-
ating a new method with the same name as an inherited one. The
new version takes precedence over the previous one. (The inherited
method remains valid for the class that defined it and any classes that
inherit it.)

It may improve or expand the behavior it inherits by replacing an
existing method with a new one, but it keeps the old one by integrating it
into the new one. In the body of the new method, a subclass sends a mes-
sage to execute the old version. Each class in an inheritance chain may
influence the behavior of a method in some way. Class D, for example,
may override a method specified in class C and integrate C’s version,
while C’s version incorporates a version declared in the root class, as
shown in Figure.

Subclasses tend to round out the definition of a superclass, making it
more particular and specialized. Instead of subtracting code, they add and
occasionally change it. It’s worth noting that methods and instance vari-
ables can’t be deleted or overridden in most cases.

OOP in Objective-C    ◾    85

DYNAMISM
The issue of how much memory a program will take was once resolved
when the source code was built and linked. As soon as the program begins,
it is given the entire RAM it would ever need. This memory could not be
expanded or contracted.

In hindsight, it’s clear that this was a significant constraint. It restricted
how programs are built and what a program could perform. It limited not
just the programming approach but also the design. The development of
methods like malloc, which dynamically allocates memory while a pro-
gram runs, opened up previously unimaginable possibilities.

Compile-time and link-time limitations are restrictive because they
require decisions based on information discovered in the programmer’s
source code rather than information gained from the user as the program
runs.

Although dynamic memory allocation eliminates one such limitation,
many others remain, just as restrictive as static memory allocation. For
example, at build time, the parts that make up an application must be
matched to data types. And an application’s bounds are usually specified
at link time. The whole program contains inside a single executable file.
New modules and types are not addable while the application is running.

The goal of Objective-C is to get beyond these limits and make pro-
grams as dynamic and fluid as possible. It moves most decision-making
efforts from build and link time to runtime. The idea lets programmers
determine what happens rather than artificially limiting their activities by
language demands and compiler and linker requirements.

For object-oriented design, three types of dynamism are essential:

•	 Dynamic typing involves waiting until runtime to determine an
object’s class.

•	 Dynamic binding involves determining which method to invoke at
runtime.

•	 Dynamic loading involves adding new components to a program as
it runs.

POLYMORPHISM IN OBJECTIVE-C
Polymorphism is the ability of different things to react to identical signals
uniquely.

86    ◾    Objective-C

The fact that each class has its own namespace leads to polymorphism.
The names assigned inside a class definition are not incompatible with
names given elsewhere. This is true for both instance variables in an
object’s data structure and its methods.

An object’s instance variables, like the fields of a C structure, are in
a protected namespace, as are method names. Method names, unlike C
function names, are not global symbols. A method name in one class can-
not clash with the names of methods in other classes; two classes with
completely distinct names may implement identically named methods.

The interface of an object includes method names. When a message
instructs an object to complete a task, the message specifies the method
the object should use. Because several objects might have methods with
the same name, a message’s meaning is understood concerning the object
that receives it. The same message might trigger two different methods
when delivered to two different objects.

Polymorphism’s key advantage is that it simplifies the programming
interface. It enables the establishment of conventions that are reused from
class to class. Rather than establishing a new name for each new function,
you add to a program. We may reuse existing names. Separate from the
classes that implement them, the programming interface may be defined
as a collection of abstract behaviors.

Polymorphism is defined as having several forms. Polymorphism often
happens when a hierarchy of classes is connected via inheritance.

Because of Objective-C polymorphism, a call to a member function
will run a different code depending on the kind of object that invokes the
function.

Consider the following scenario: we have a class Shape that offers the
fundamental interface for all forms. The shape is the foundation class from
which squares and rectangles are formed.

We have the function printArea, which will display information about
the OOP feature polymorphism.

#import <Foundation/Foundation.h>

@interface Shape : NSObject {
 CGFloat area;
}

<CODE>- (void)printArea;

OOP in Objective-C    ◾    87

- (void)calculateArea;
@end

@implementation Shape
- (void)printArea {
 NSLog(@"Area is %f", area);
}

- (void)calculateArea {

}

@end

@interface Square : Shape {
 CGFloat length;
}

- (id)initWithSide:(CGFloat)side;
- (void)calculateArea;

@end

@implementation Square
- (id)initWithSide:(CGFloat)side {
 length = side;
 return self;
}

- (void)calculateArea {
 area = length * length;
}

- (void)printArea {
 NSLog(@"The Area of square is %f", area);
}

@end

@interface Rectangle : Shape {
 CGFloat length;
 CGFloat breadth;
}

88    ◾    Objective-C

- (id)initWithLength:(CGFloat)rLength
andBreadth:(CGFloat)rBreadth;
@end

@implementation Rectangle
- (id)initWithLength:(CGFloat)rLength
andBreadth:(CGFloat)rBreadth {
 length = rLength;
 breadth = rBreadth;
 return self;
}

- (void)calculateArea {
 area = length * breadth;
}

@end

int main(int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 Shape *square = [[Square alloc]initWithSide:20.0];
 [square calculateArea];
 [square printArea];
 Shape *rect = [[Rectangle alloc]
 initWithLength:20.0 andBreadth:15.0];
 [rect calculateArea];
 [rect printArea];
 [pool drain];
 return 0;
}

In the above example, depending on the availability of the methods cal-
culateArea and printArea, either the method from the base class or the
method from the derived class was performed.

Polymorphism manages method switching between the base and
derived classes based on their method implementations.

DATA ENCAPSULATION IN OBJECTIVE-C
We must be able to leave implementation details behind and conceptualize
in terms of units that organize those elements under a standard interface
to design successfully at any degree of abstraction. The barrier between

OOP in Objective-C    ◾    89

interface and implementation must be absolute for a programming unit
to be genuinely effective. The implementation must be encapsulated in the
interface, hiding it from other portions of the program. Encapsulation
shields an implementation against unintended consequences and unau-
thorized access.

A function in C is explicitly encapsulated; its implementation is unavail-
able to other portions of the program and shielded from activities outside
the function’s body. Method implementations are similarly enclosed in
Objective-C, but an object’s instance variables are more significant. They’re
concealed inside the thing yet visible from the outside. Information hiding
is another term for the encapsulation of instance variables.

At first glance, concealing information in instance variables may limit
our programming flexibility. It provides you with greater leeway to act and
frees us from restrictions that we may otherwise face. If any component
of an object’s implementation leaks out and becomes accessible or a con-
cern to other program sections, it ties the implementer’s and users’ hands.
Neither could make changes without consulting the other first.

We’re interested in the Faucet object built for a program that mimics
water usage and wants to utilize it in another program we’re building. Once
we’ve agreed on the object’s interface, we won’t have to worry about others
working on it, fixing issues, and finding better implementation methods.
These enhancements help us, but none of them change what we do in our
program. Nothing they do can damage our code since we rely entirely on the
interface. The implementation of the object is isolated from our software.

Furthermore, although individuals developing the Faucet object may be
curious about how we use it and want to make sure it fits our requirements,
they aren’t concerned with how we write our code. Nothing we do will
affect the object’s implementation or restrict its ability to make modifica-
tions in future versions. The implementation is protected from whatever
other object users or we could do.

The following two key features are included in all Objective-C programs.
Methods are the parts of a program that perform actions, and they have

termed program statements (code).
Program data is the information about the program that is influenced

by its functions.
Encapsulation is an Object-Oriented Programming concept that con-

nects data and the functions that handle it, keeping them safe from outside
influence and misuse. The crucial OOP notion of data hiding was initially
developed from data encapsulation.

90    ◾    Objective-C

Data encapsulation and data abstraction are two mechanisms for bun-
dling data and its functions. Data encapsulation exposes only the inter-
faces while hiding the implementation details from the user.

By constructing user-defined kinds or classes, Objective-C enables the
properties of encapsulation and data hiding. For instance,

@interface Adder : NSObject {
 NSInteger total;
}

- (id)initWithInitialNumber:(NSInteger)initialNumber;
- (void)addNumber:(NSInteger)newNumber;
- (NSInteger)getTotal;

@end

Total is a private variable that we can’t access from outside the class. This
means that they can only be accessible by other Adder class members and
not by the other part of our program. This is one method of encapsulation.

Methods in the interface file are public in scope and accessible.

EXAMPLE OF DATA ENCAPSULATION
Data encapsulation and data abstraction may be seen in any Objective-C
program that implements a class with public and private member vari-
ables. Consider the following situation:

#import <Foundation/Foundation.h>

@interface Adder : NSObject {
 NSInteger total;
}

- (id)initWithInitialNumber:(NSInteger)initialNumber;
- (void)addNumber:(NSInteger)newNumber;
- (NSInteger)getTotal;

@end

@implementation Adder
-(id)initWithInitialNumber:(NSInteger)initialNumber {
 total = initialNumber;

OOP in Objective-C    ◾    91

 return self;
}

- (void)addNumber:(NSInteger)newNumber {
 total = total + newNumber;
}

- (NSInteger)getTotal {
 return total;
}

@end

int main(int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 Adder *adder = [[Adder alloc]
initWithInitialNumber:10];
 [adder addNumber:5];
 [adder addNumber:4];

 NSLog(@"Total is %ld",[adder getTotal]);
 [pool drain];
 return 0;
}

The total of the numbers in the above class is returned. The public mem-
bers addNum and getTotal are class’s external interfaces, and a user must
be familiar with them to utilize them. The private member total is hidden
from the outside world, but it is required for the class to function correctly.

CREATING A STRATEGY
Most of us have come to the realization that unless we have a compelling
reason, we should make class members private by default. That is an amaz-
ing encapsulation.

Data encapsulation is crucial because it is one of the critical aspects of all
Object-Oriented Programming (OOP) languages, including Objective-C.

CATEGORIES IN OBJECTIVE-C
We might want to extend an existing class by adding behavior that is only
useful in specific circumstances. Objective-C provides categories and
extensions for adding such extensions to existing classes.

92    ◾    Objective-C

The simplest way to add a method to an existing class, perhaps to add
functionality to make something easier to do in your application, is to use
a category.

The @interface keyword in Objective-C is used to declare a category,
just as it is in a standard Objective-C class description, but it does not indi-
cate any inheritance from a subclass. Instead, it uses parentheses to specify
the category name, such as this:

@interface Class_Name (Category_Name)

@end

CATEGORY CHARACTERISTICS
Even if we don’t have the original implementation source code, we can
establish a category for any class in Objective-C.

Any methods declared in a category in Objective-C will be available to
all instances of the original class and any subclasses.

There is no difference between a category-added method and one imple-
mented by the original class at runtime.

Let’s have a look at an example of a category implementation. Let’s give
the Cocoa class NSString a category. This category will allow us to add a
new method called getCopyRightString to return the copyright string. It
is displayed below.

#import <Foundation/Foundation.h>

@interface NSString(MyAdditions)
+(NSString *)getCopyRightString;
@end

@implementation NSString(MyAdditions)
 
+(NSString *)getCopyRightString {
 return @"Copyright Point.com 2022";
}

@end

int main(int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];

OOP in Objective-C    ◾    93

 NSString *copyrightString = [NSString
getCopyRightString];
 NSLog(@"Accessing Category: %@",copyrightString);

 [pool drain];
 return 0;
}

Even though any methods introduced by a category are available to all
class instances and subclasses, we must import the category header file in
any source code file where we want to utilize the new methods. Otherwise,
you may encounter compiler warnings and failures.

Because we have a single class in our example, we haven’t included any
header files; in this situation, we need to include the header files mentioned
above.

POSING IN OBJECTIVE-C
Before discussing Posing in Objective-C, it’s important to note that posing
was declared deprecated in Mac OS X 10.5 and is no longer accessible for
use. Those who are unconcerned about the deprecated methods can there-
fore skip this chapter.

A class in Objective-C can completely replace another class in a pro-
gram. It is argued that the replacing class “poses as” the target class.
Instead, the posing class receives all messages sent to the target class in
versions that allow posing.

As shown above, the poseAsClass method in NSObject allows us to
replace the existing class.

POSING RESTRICTIONS

•	 Only one of a class’s direct or indirect superclasses is used.

•	 No new instance variables are defined in the posing class not present
in the target class (though it may define or override methods).

•	 Before the posing, the target class may not have received any messages.

•	 A posing class can use super to call overridden methods, integrating
the target class’s implementation.

•	 A posing class in Objective-C can override methods defined in
categories.

94    ◾    Objective-C

#import <Foundation/Foundation.h>

@interface MyString : NSString

@end

@implementation MyString

- (NSString *)stringByReplacingOccurrencesOfString:(NS
String *)target
withString:(NSString *)replacement {
 NSLog(@"Target string: %@",target);
 NSLog(@"Replacement string: %@",replacement);
}

@end

int main() {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 [MyString poseAsClass:[NSString class]];
 NSString *string = @"Test";
 [string stringByReplacingOccurrencesOfString:@"a"
withString:@"c"];

 [pool drain];
 return 0;
}

EXTENSIONS IN OBJECTIVE-C
A class extension in Objective-C is similar to a category, except it can only
be applied to a class for which the source code is available at compile time
(the class is compiled simultaneously).

We can’t declare a class extension on a framework class, such as a Cocoa
or Cocoa Touch class like NSString since the methods declared by a class
extension are implemented in the implementation block for the original
class.

Extensions are simply categories that don’t have a name. It’s also known
as “anonymous categories.”

OOP in Objective-C    ◾    95

@interface keyword is used to declare an extension, precisely like it is
in a regular Objective-C class description, but it does not show any inheri-
tance from a subclass. Instead, as illustrated below, it just adds parenthesis.

@interface ClassName ()

@end

EXTENSIONS’ CHARACTERISTICS

•	 An extension is only declared for classes for which we know the orig-
inal source code implementation.

•	 A class extension adds private methods and variables only available
to that class.

•	 Even the inherited classes cannot access any methods or variables
declared inside the extensions.

Example of Extensions

Let’s make a class called Sample_Class with an extension. Let’s have a pri-
vate variable internalID in the extension.

Then, after processing the internalID, create a method called getExter-
nalID that returns the externalID.

The following example will not work with an online compiler.

#import <Foundation/Foundation.h>

@interface Sample_Class : NSObject {
 NSString *name;
}

- (void)setInternalID;
- (NSString *)getExternalID;

@end

@interface Sample_Class() {
 NSString *internalID;
}

@end

96    ◾    Objective-C

@implementation Sample_Class

- (void)setInternalID {
 internalID = [NSString stringWithFormat:
 @"UNIQUEINTERNALKEY%dUNIQUEINTERNALKEY",arc4ran
dom()%100];
}

- (NSString *)getExternalID {
 return [internalID
stringByReplacingOccurrencesOfString:
 @"UNIQUEINTERNALKEY" withString:@""];
}

@end

int main(int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 Sample_Class *sample_Class = [[Sample_Class alloc]
init];
 [sample_Class setInternalID];
 NSLog(@"ExternalID: %@",[sample_Class
getExternalID]);
 [pool drain];
 return 0;
}

The internalID is not returned explicitly in the preceding case. We
delete the UNIQUEINTERNALKEY and simply make the remaining
value available to the getExternalID function.

The above example only employs a string operation, but it may include
numerous features such as encryption and decryption.

PROTOCOLS IN OBJECTIVE-C
Objective-C allows us to design protocols that specify the techniques
utilized in a specific context. Protocols are implemented in protocol-
conforming classes.

A network URL handling class, for example, will have a protocol con-
taining methods such as the processCompleted delegate method, which
informs the caller class once the network URL fetching operation is
complete.

OOP in Objective-C    ◾    97

The protocol syntax is provided below.

@protocol ProtocolName
@required
// list of the required methods
@optional
// list of the optional methods
@end

The methods with the keyword @required are implemented in the
classes that adhere to the protocol, whereas the methods with the keyword
@optional are optional.

Here is the syntax:

@interface MyClass : NSObject <MyProtocol>
.....
@end

This implies that any instance of MyClass will react not just to the
methods stated directly in the interface but also to the methods
needed in MyProtocol. There is no need to redeclare the protocol
methods in the class interface; simply implementing the protocol
suffices.

If you want a class to use several protocols, describe them as a comma-
separated list. We have a delegate object that retains the reference to the
protocol-implementing calling object.

An example is shown below.

#import <Foundation/Foundation.h>

@protocol PrintProtocolDelegate
- (void)processCompleted;

@end

@interface PrintClass :NSObject {
 id delegate;
}

- (void) printDetails;

98    ◾    Objective-C

- (void) setDelegate:(id)newDelegate;
@end

@implementation PrintClass
- (void)printDetails {
 NSLog(@"Printing Details");
 [delegate processCompleted];
}

- (void) setDelegate:(id)newDelegate {
 delegate = newDelegate;
}

@end

@interface Sample_Class:NSObject<PrintProtocolDeleg
ate>
- (void)startAction;

@end

@implementation Sample_Class
- (void)startAction {
 PrintClass *printClass = [[PrintClass alloc]init];
 [printClass setDelegate:self];
 [printClass printDetails];
}

-(void)processCompleted {
 NSLog(@"The Printing Process Completed");
}

@end

int main(int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 Sample_Class *sampleClass = [[Sample_Class alloc]
init];
 [sample_Class startAction];
 [pool drain];
 return 0;
}

OOP in Objective-C    ◾    99

We saw how the delegate methods are called and performed in the preced-
ing example. It begins with startAction, and after the process is finished, the
delegate method processCompleted is called to notify the action is finished.

We shall never have a program developed without a delegate in any iOS
or Mac app. As a result, we must understand how delegates are used. To
minimize memory leaks, delegate objects should utilize the unsafe_unre-
tained property type.

DYNAMIC BINDING IN OBJECTIVE-C
Dynamic binding decides which method to call at runtime rather than
compile time. Late binding is another term for dynamic binding. All meth-
ods in Objective-C are dynamically resolved at runtime. Both methods
namely the selector and the receiving object decide the specific code run.

Polymorphism is enabled through dynamic binding. Consider the fol-
lowing set of objects: Rectangle and Square. A printArea method is imple-
mented differently for each object.

The exact code that should be performed by the expression [anObject
printArea] is decided at runtime in the following code snippet. The run-
time system uses selector for the method run to find the proper method in
whatever class anObject turns out to be.

Let’s look at some basic code that demonstrates dynamic binding.

#import <Foundation/Foundation.h>

@interface Square:NSObject {
 float area;
}

- (void)calculateAreaOfSide:(CGFloat)side;
- (void)printArea;
@end

@implementation Square
- (void)calculateAreaOfSide:(CGFloat)side {
 area = side * side;
}

- (void)printArea {
 NSLog(@"The Area of square is %f",area);
}

100    ◾    Objective-C

@end

@interface Rectangle:NSObject {
 float area;
}

- (void)calculateAreaOfLength:(CGFloat)length
andBreadth:(CGFloat)breadth;
- (void)printArea;
@end

@implementation Rectangle

- (void)calculateAreaOfLength:(CGFloat)length
andBreadth:(CGFloat)breadth {
 area = length * breadth;
}

- (void)printArea {
 NSLog(@"The Area of Rectangle is %f",area);
}

@end

int main() {
 Square *square = [[Square alloc]init];
 [square calculateAreaOfSide:20.0];

 Rectangle *rectangle = [[Rectangle alloc]init];
 [rectangle calculateAreaOfLength:20.0
andBreadth:15.0];

 NSArray *shapes = [[NSArray alloc]initWithObjects:
square, rectangle,nil];
 id obj1 = [shapes objectAtIndex:0];
 [obj1 printArea];

 id obj2 = [shapes objectAtIndex:1];
 [obj2 printArea];

 return 0;
}

OOP in Objective-C    ◾    101

As shown in the above example, the printArea method is dynamically
determined during runtime. It is an example of dynamic binding and can
be beneficial in various circumstances involving similar types of objects.

COMPOSITE OBJECTS IN OBJECTIVE-C
We may construct a subclass within a class cluster that creates a class that
contains an object. These composite items are class objects. So we’re probably
wondering what a class cluster involves. So, initially, let’s define a class cluster.

CLASS CLUSTERS
The foundation framework makes considerable use of class clusters as a
design pattern. A collection of private concrete subclasses is grouped
under a class cluster’s public abstract superclass. This collection of classes
simplifies an object-oriented framework’s publicly visible design without
decreasing its functional richness. The abstract factory design pattern in
Objective-C is used to create class clusters.

Instead of developing many classes for comparable tasks, we construct
a single class that will handle everything depending on the input value.

In NSNumber, for example, there are several clusters of classes such
as char, int, bool, and so on. We combine them all into a single class that
handles all of the related actions in one place. The value of these basic
types is wrapped into objects by NSNumber.

WHAT EXACTLY IS A COMPOSITE OBJECT?
We build a composite object by embedding a private cluster object in an
object of our design. This composite object in Objective-C can rely on the
cluster object for basic functionality, intercepting messages that it wishes
to handle in a certain way. This approach decreases the amount of code
we must build and allows us to use the Foundation Framework’s proven
functionality.

Composite object.

102    ◾    Objective-C

The composite object in Objective-C must declare itself to be a subclass
of the cluster’s abstract superclass. It must override the primitive meth-
ods of the superclass as a subclass. It can also override derived methods,
although this isn’t required because the derived methods make their way
via the primitive ones in Objective-C.

The count method of NSArray class is an example; the implementation
of a method overridden by the intervening object might be as basic as

- (unsigned)count {
 return [embedded_Object count];
}

An Example of a Composite Object

Kindly see the example from the Apple documentation provided below to
see a comprehensive example.

#import <Foundation/Foundation.h>

@interface ValidatingArray : NSMutableArray {
 NSMutableArray *embeddedArray;
}

+ validatingArray;
- init;
- (unsigned)count;
- objectAtIndex:(unsigned)index;
- (void)addObject:object;
- (void)replaceObjectAtIndex:(unsigned)index
withObject:object;
- (void)removeLastObject;
- (void)insertObject:object atIndex:(unsigned)index;
- (void)removeObjectAtIndex:(unsigned)index;

@end

@implementation ValidatingArray
- init {
 self = [super init];
 if (self) {
 embeddedArray = [[NSMutableArray
allocWithZone:[self zone]] init];
 }

OOP in Objective-C    ◾    103

 return self;
}

+ validatingArray {
 return [[self alloc] init] ;
}

- (unsigned)count {
 return [embeddedArray count];
}

- objectAtIndex:(unsigned)index {
 return [embeddedArray objectAtIndex:index];
}

- (void)addObject:(id)object {
 if (object != nil) {
 [embeddedArray addObject:object];
 }
}

- (void)replaceObjectAtIndex:(unsigned)index
withObject:(id)object; {
 if (index <[embeddedArray count] && object != nil)
{
 [embeddedArray replaceObjectAtIndex:index
withObject:object];
 }
}

- (void)removeLastObject; {
 if ([embeddedArray count] > 0) {
 [embeddedArray removeLastObject];
 }
}

- (void)insertObject:(id)object atIndex:(unsigned)
index; {
 if (object != nil) {
 [embeddedArray insertObject:object
atIndex:index];
 }
}

104    ◾    Objective-C

- (void)removeObjectAtIndex:(unsigned)index; {
 if (index <[embeddedArray count]) {
 [embeddedArray removeObjectAtIndex:index];
 }
}

@end

int main() {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 ValidatingArray *validatingArray = [ValidatingArray
validatingArray];

 [validatingArray addObject:@"Object1"];
 [validatingArray addObject:@"Object2"];
 [validatingArray addObject:[NSNull null]];

 [validatingArray removeObjectAtIndex:2];
 NSString *aString = [validatingArray
objectAtIndex:1];
 NSLog(@"Value at the Index 1 is %@",aString);
 [pool drain];

 return 0;
}

In the above example, adding null objects to the validating array’s one
function would result in a crash in a typical circumstance. However, our val-
idating array handles it. Similarly, each method in the validating array adds
validating procedures in addition to the standard sequence of operations.

FOUNDATION FRAMEWORK IN OBJECTIVE-C
The specifics of the Foundation framework may be found in Apple docu-
mentation, as shown below.

The Foundation framework defines a fundamental layer of Objective-C
classes. It includes various paradigms that specify functionality not cov-
ered by the Objective-C language and gives a collection of helpful basic
object types. The Foundation structure provides these objectives.

•	 Provide a minimal selection of fundamental utility classes.

•	 Introduce standard protocols for things like de-allocation to make
software development more straightforward.

OOP in Objective-C    ◾    105

•	 Unicode strings, object persistence, and object dissemination are all
supported.

•	 To improve portability, provide some OS independence.

The framework was created by NeXTStep, which Apple later bought,
and the foundation classes are included in Mac OS X and iOS. It bears the
class prefix “NS” since NeXTStep created it.

All of our example applications have utilized Foundation Framework.
Foundation Framework is practically a need.

To import an Objective-C class, we usually use #import Foundation/
NSString.h>, but it’s all done in #import Foundation/Foundation.h> to
prevent importing too many classes.

All objects, including the foundation kit classes, are based on NSObject.
It includes memory management techniques. It also has a basic runtime
system interface and the ability to act like Objective-C objects. It is the
root of all classes and has no base classes.

Functionality-Based Foundation Classes

Sr. No. Loop Type and Description

1 Data storage
NSArray, NSDictionary, and NSSet provide storage for the Objective-C objects
of any type.

2 Text and strings
The NSCharacterSet class represents multiple character groups utilized by the
NSString and NSScanner classes. Text strings are represented by the NSString
classes, including methods for finding, combining, and comparing texts. An
NSScanner object scans numbers and words from an NSString object.

3 Dates and times
The NSDate, NSTimeZone, and NSCalendar classes hold and represent time
and date information. They provide ways for determining date and time
variations. They provide methods for displaying the dates and times in a
variety of formats and altering times and dates based on location throughout
the world, in collaboration with NSLocale.

4 Exception handling
Exception handling is used to deal with unforeseen occurrences, and it is
available in Objective-C via NSException.

5 File handling
The class NSFileManager is used to manage files.

6 URL loading system
A collection of classes and protocols allows users to access standard Internet
protocols.

106    ◾    Objective-C

FAST ENUMERATION IN OBJECTIVE-C
Fast enumeration is a feature of Objective-C that aids in enumerating
through a collection. So, to understand quick enumeration, we must first
understand the collection covered in the following part.

COLLECTIONS IN THE OBJECTIVE-C
Collections are basic constructs. Its function is to hold and handle other
items. The fundamental objective of a collection is to provide a standard
mechanism to store and retrieve things effectively.

There are several sorts of collections. While they all provide the same
function of being able to contain other items, they primarily differ in
how objects are retrieved. The most often used collections in Objective-C
are:

•	 NSArray

•	 NSSet

•	 NSMutableSet

•	 NSDictionary

•	 NSMutableDictionary

•	 NSMutableArray

The syntax for fast enumeration

for (class_Type variable in collection_Object) {
 statements
 }

Here’s an example of a quick enumeration

#import <Foundation/Foundation.h>

int main() {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 NSArray *array = [[NSArray alloc]
 initWithObjects:@"string1",
@"string2",@"string3",nil];

OOP in Objective-C    ◾    107

 for(NSString *aString in array) {
 NSLog(@"The Value is: %@",aString);
 }

 [pool drain];
 return 0;
}

Fast enumeration backwards

for (class_Type variable in [collection_Object
reverseObjectEnumerator]) {
 statements
 }

In fast enumeration, here’s an example of reverseObjectEnumerator.

#import <Foundation/Foundation.h>

int main() {
 NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];
 NSArray *array = [[NSArray alloc]
 initWithObjects:@"string1",
@"string2",@"string3",nil];

 for(NSString *aString in [array
reverseObjectEnumerator]) {
 NSLog(@"The Value is: %@",aString);
 }

 [pool drain];
 return 0;
}

MEMORY MANAGEMENT IN OBJECTIVE-C
Memory management is a necessary procedure in every programming
language. It is the process by which objects’ memory is allocated when
needed and deallocated when they are no longer needed.

Object memory management is a performance issue; if an application
does not release unused objects, its memory footprint expands, and per-
formance decreases.

108    ◾    Objective-C

Objective-C Memory management approaches may be divided into two
categories.

•	 “Manual Retain-Release” or MRR

•	 “Automatic Reference Counting” or ARC

“MANUAL RETAIN-RELEASE” OR MRR
In MRR, we manage memory explicitly by keeping track of the items
independently. This is accomplished by using a model known as reference
counting, which is provided by the Foundation class NSObject in combi-
nation with the runtime environment.

The only difference between MRR and ARC in Objective-C is that we
handle the retain and release manually in the former while handled auto-
matically in the latter.

The diagram shown below is an example of how memory management
works in Objective-C.

Manual retain-release.

The Class A object’s memory life cycle is shown in the diagram above.
As you can see, the retain count in Objective-C is shown under the object;
when the retain count reaches 0, the item is liberated, and its memory is
reallocated for other objects to utilize.

OOP in Objective-C    ◾    109

The alloc/init function in NSObject is used to construct the class A
object. The number of retains is now 1.

Class B now keeps Class A’s object, and Class A’s object now has a retain
count of two.

The item is then copied by Class C. It is now constructed as a new instance
of Class A, with the same instance variables. The retain count is 1 instead of the
original object’s retain count. The dotted line in the diagram represents this.

Class C uses the release method to release the copied object, which
causes the keep count to drop to zero and the item to be destroyed.

The keep count for the original Class A Object is two, and it must be
released twice before it may be destroyed. This is accomplished using Class
A and Class B release statements to set the keep count to 1 and 0, respec-
tively. The thing is finally destroyed.

Basic MRR Rules

•	 We own whatever we make: A method that starts with “alloc,” “new,”
“copy,” or “mutableCopy” is used to construct an object.

•	 We may use retained to acquire ownership of an object: A received
object is usually guaranteed to stay valid inside the method in which
it was received. That method may also return the object to its invoker
securely. Retain is used in two scenarios.

•	 We use an accessor method or an init method to gain ownership
of an object we wish to save as a property value.

•	 To avoid the invalidation of an object as a result of another action.

•	 When we no longer need something, we must give up ownership of
it: A release message or an autorelease message is used to relinquish
control of an item. Consequently, relinquishing ownership of an item
is referred to as “releasing” an object in Cocoa parlance.

•	 We must not give up ownership of something we don’t own: This is a
consequence of the previously mentioned policy norms.

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
- (void)sampleMethod;
@end

110    ◾    Objective-C

@implementation SampleClass
- (void)sampleMethod {
 NSLog(@"Hello, Everyone \n");
}

- (void)dealloc {
 NSLog(@"Object deallocated");
 [super dealloc];
}

@end

int main() {

 /* my first program in the Objective-C */
 SampleClass *sampleClass = [[SampleClass alloc]
init];
 [sampleClass sampleMethod];

 NSLog(@"Retain Count after the initial allocation:
%d",
 [sampleClass retainCount]);
 [sampleClass retain];

 NSLog(@"Retain Count after the retain: %d",
[sampleClass retainCount]);
 [sampleClass release];
 NSLog(@"Retain Count after the release: %d",
[sampleClass retainCount]);
 [sampleClass release];
 NSLog(@"SampleClass dealloc will call before
this");

 // Should set object to nil
 sampleClass = nil;
 return 0;
}

“AUTOMATIC REFERENCE COUNTING” OR ARC
Automatic Reference Counting, or ARC, employs the same reference
counting approach as MRR, but it inserts the proper memory manage-
ment method calls for us at build time. For new projects, we are highly
recommended to adopt ARC. If we utilize ARC, we usually don’t need to
know about the underlying implementation detailed in this chapter, while

OOP in Objective-C    ◾    111

it could be helpful in some instances. See Transitioning to ARC Release
Notes for further information on ARC.

We do not need to introduce release and retain methods in ARC since
the compiler will take care of it. Objective-core C’s methodology hasn’t
changed. Internally, it makes it simpler for the developer to write with-
out worrying about the retain and release actions, reducing the amount of
code written and the risk of memory leaks.

Another notion called garbage collection is utilized in Mac OS X along-
side MRR, but it hasn’t been acknowledged since its deprecation in OS X
Mountain Lion. Furthermore, trash collection was never available for iOS
objects. Garbage collection is also not used on OS X while using ARC.

Here’s an example of an ARC. Because the online compiler does not
support ARC, this will not work.

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
- (void)sampleMethod;
@end

@implementation SampleClass
- (void)sampleMethod {
 NSLog(@"Hello, everyone \n");
}

- (void)dealloc {
 NSLog(@"Object deallocated");
}

@end

int main() {
 /* my first program in the Objective-C */
 @autoreleasepool {
 SampleClass *sampleClass = [[SampleClass alloc]
init];
 [sampleClass sampleMethod];
 sampleClass = nil;
 }
 return 0;
}

In this chapter, we covered OOP’s concept with its relevant examples.

112    ◾    Objective-C

BIBLIOGRAPHY
	 1.	 Object-Oriented Programming with Objective-C.
	 2.	 Obj-C Memory Management.
	 3.	 Objective-C Environment Setup – https://www.tutorialspoint.com/objective_

c/objective_c_environment_setup.htm#:∼:text=In%20order%20to%20
run%20Objective,install%20the%20GNUstep%20Core%20package,
accessed on May 6, 2022.

	 4.	 Installing compiler for Objective-C – http://referencedesigner.com/tutori-
als/objectivec/objectivec_02.php, accessed on May 6, 2022.

	 5.	 Installing and using GNUstep and Objective-C on Windows – https://
www.techotopia.com/index.php/Installing_and_using_GNUstep_and_
Objective-C_on_Windows, accessed on May 6, 2022.

	 6.	 Objective-C Program Structure – https://www.tutorialspoint.com/objective_
c/objective_c_program_structure.htm, accessed on May 7, 2022.

	 7.	 Structures in Objective-C – https://www.educative.io/answers/what-are-
structures-in-objective-c, accessed on May 7, 2022.

	 8.	 Objective-C Code – https://developer.apple.com/library/archive/referenceli-
brary/GettingStarted/RoadMapiOS-Legacy/chapters/WriteObjective-
CCode/WriteObjective-CCode/WriteObjective-CCode.html, accessed on
May 7, 2022.

	 9.	 Installing Xcode and Compiling Objective-C on Mac OS X – https://
www.techotopia.com/index.php/Installing_Xcode_and_Compiling_
Objective-C_on_Mac_OS_X#Installing_Xcode_on_Mac_OS_X, accessed
on May 7, 2022.

	 10.	 Classes Are Blueprints for Objects – https://developer.apple.com/library/
a rchive/documentat ion/Cocoa/Conceptua l /Progra mmingWit h
ObjectiveC/DefiningClasses/DefiningClasses.html#:∼:text=Working%20
with%20Objects.,Object ive%2DC%20Classes%20Are%20also%20
Objects,but%20they%20can%20receive%20messages, accessed on May 7,
2022.

	 11.	 Objective-C Classes & Objects – https://www.tutorialspoint.com/objective_c/
objective_c_classes_objects.htm, accessed on May 9, 2022.

	 12.	 Quick Refresh: What Is Objective-C – https://blog.teamtreehouse.com/
beginners-guide-objective-c-classes-objects, accessed on May 9, 2022.

	 13.	 Classes, Objects, and Methods in Objective-C – https://www.informit.com/
articles/article.aspx?p=1722550&seqNum=7, accessed on May 9, 2022.

	 14.	 Objective-C Instances – http://www.apeth.com/iOSBook/ch05.html, accessed
on May 9, 2022.

http://referencedesigner.com
http://referencedesigner.com
https://www.techotopia.com
https://www.techotopia.com
https://www.techotopia.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.educative.io
https://www.educative.io
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://www.techotopia.com
https://www.techotopia.com
https://www.techotopia.com
https://developer.apple.com
https://developer.apple.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://blog.teamtreehouse.com
https://blog.teamtreehouse.com
https://www.informit.com
https://www.informit.com
http://www.apeth.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com

113DOI: 10.1201/9781003357506-3

C h a p t e r 3

Interface and API

IN THIS CHAPTER

➢➢ Interfaces

➢➢ APIs

In the previous chapter, we discussed OOP’s concept in Objective-C, and
in this chapter, we will cover Interface and API.

iOS IN OBJECTIVE-C
Objective-C is the programming language used in iOS development. It
is an object-oriented language. Thus, individuals with experience with
object-oriented programming languages will find it simple.

IMPLEMENTATION AND INTERFACE
In Objective-C, the file where the class is declared is referred to as the inter-
face file, and the file where the class is defined as the implementation file.

A basic interface file, MyExample.h, might look like this:

@interface MyClass:NSObject {
 // class-variable declared
}

// class-properties declared
// class-methods and instance-methods declared
@end

https://doi.org/10.1201/9781003357506-3

114    ◾    Objective-C

The implementation file MyExample.m might look like this:

@implementation MyClass
 // class-methods defined
@end

OBJECT CREATION
The following is how objects are created:

MyExample *objectName = [[MyClass alloc]init] ;

METHODS
The following method is declared in Objective-C:

-(returnType)method_Name:(type_Name) variable1 :(type_
Name)variable2;

Example:

-(void)calculateAreaForRectangleWithLength:(CGfl
oat)length
andBreadth:(CGfloat)breadth;

We may be wondering what the andBreadth string is for; it’s an optional
string that helps us read and comprehend the method more readily, espe-
cially when we call it. We use the following line to call this function in the
same class:

[self calculateAreaForRectangleWithLength:40
andBreadth:30];

As previously stated, the usage of andBreadth aids us in understanding
that breadth is 20. Self is used to indicate that the method is a class method.

Class Methods

Class methods are accessed without first constructing a class object. They
are not linked with any variables or objects. An example is shown below.

+(void)simpleClass_Method;

Interface and API    ◾    115

These are accessed by using the class name (let’s say MyExample) as
follows:

[MyExample simpleClass_Method];

Instance Methods

Instance methods are accessed only once a class object has been created.
Memory is set aside for instance variables. The following is an example of
an instance method.

-(void)simpleInstance_Method;

It may be accessed after creating a class object as follows:

MyExample *objectName = [[MyExample alloc]init] ;
[object_Name simpleInstance_Method];

IMPORTANT OBJECTIVE-C DATA TYPES

Sr. No. Data Type

1 NSString
It is a string representation.

2 CGfloat
It represents a floating-point value (normal float is also allowed, but CGfloat is
preferred).

3 NSInteger
It’s used to represent integers.

4 BOOL
It is used to express Boolean operations (YES or NO are BOOL types allowed).

Printing Logs

NSLog – This function is used to print a statement. In the release and
debug modes, they will be displayed in the device logs and debug console,
respectively. As an example,

NSlog(@"");

CONTROL STRUCTURES
Except for a few modifications, such as the for-in statement, most control
structures are the same as in C and C++.

116    ◾    Objective-C

PROPERTIES
Variable properties are used to allow an external class to access the class.
As an example,

@property(nonatomic, strong) NSString *myString;

Properties of Accessing

To access properties, use the dot operator. We will do the following to
access the property, as mentioned earlier.

self.myString = @"Test";

We may also use the set approach, as seen below.

[self setMyString:@"Test"];

CATEGORIES
Categories are used to extend existing classes with new methods. We may
add methods to classes that don’t even have implementation files where
the real class is defined. The following is an example category for our class:

@interface MyExample(customAdditions)
- (void)sampleCategoryMethod;
@end

@implementation MyExample(categoryAdditions)

-(void)sampleCategoryMethod {
 NSLog(@"Just test category");
}

Arrays

The array classes used in Objective-C are NSMutableArray and NSArray.
The name implies that the former is mutable, whereas the latter is immu-
table. An example is shown below.

NSMutableArray *bMutableArray = [[NSMutableArray
alloc]init];
[anArray addObject:@"firstobject"];
NSArray *bImmutableArray = [[NSArray alloc]
initWithObjects:@"firstObject",nil];

Interface and API    ◾    117

Dictionary

The dictionary classes used in Objective-C are NSMutableDictionary and
NSDictionary. The name implies that the former is mutable, whereas the
latter is immutable. An example is shown below.

NSMutableDictionary *bMutableDictionary =
[[NSMutableArray alloc]init];
[bMutableDictionary setObject:@"firstobject"
forKey:@"aKey"];
NSDictionary*bImmutableDictionary= [[NSDictionary
alloc]initWithObjects:[NSArray arrayWithObjects:
@"firstObject",nil] forKeys:[NSArray
arrayWithObjects:@"bKey"]];

ENVIRONMENT SETUP
Here we will discuss the environment setup.

Installation of Xcode

•	 Step 1: Download the most recent version of Xcode from: https://
developer.apple.com/downloads/.

•	 Step 2: Open the Xcode dmg file with a double-click.

•	 Step 3: We will discover a gadget that has been installed and opened.

•	 Step 4: The window will show two items: the Xcode program and the
shortcut to the Application folder.

•	 Step 5: Drag the Xcode to the application to copy it to our apps.

https://developer.apple.com
https://developer.apple.com

118    ◾    Objective-C

•	 Step 6: Xcode will now be available as part of other apps that we may
pick and execute.

INTERFACE BUILDER
An interface builder is a tool that allows for the quick construction of
UI interfaces. We have a diverse range of UI components that have been
designed for usage. We just drag and drop it into our UI view. We’ll learn
about adding UI elements, generating outlets, and creating actions for the
UI elements in the following pages.

At the right bottom, an object library contains all the essential UI ele-
ments. The file extension xibs is commonly used to refer to the user inter-
face. Each of the xibs is associated with a view controller.

SIMULATOR FOR iOS
An iOS emulator comprises two sorts of devices: iPhones and iPads in vari-
ous versions. iPhone models include the iPhone (standard), iPhone Retina,
and iPhone 5. The iPad comes in two varieties: iPad and iPad Retina.

We may replicate the location in an iOS simulator to experiment with
the app’s latitude and longitude effects. In the simulator, we can also mimic
memory warnings and in-call status. The simulator can be used for most
purposes, although it cannot test device functions such as the accelerom-
eter. As a result, we may always require an iOS device to test all application
situations thoroughly.

FIRST iPHONE APPLICATION
Developing the First App:

We’ll make a simple single-view application (a blank App) to run on the
iOS simulator.

The procedures are as follows.

•	 Step 1: Launch Xcode and choose to Create a new Xcode project.

•	 Step 2: Click on Single View Application.

•	 Step 3: Enter the product name, the application name, the organiza-
tion name, and finally, the corporate identification.

•	 Step 4: Ensure that Use Automatic Reference Counting is enabled to
automatically release the resources allocated when they are no longer
needed. Next, click.

Interface and API    ◾    119

•	 Step 5: Choose the project directory and click Create.

•	 Step 6: We will be able to choose between supported orientations and
build and release options. There is a field deployment goal: the device
version we want to support; let’s say we choose 4.3, the minimum
deployment target allowed right now. These are not necessary, and
we may concentrate on executing the program for the time being.

•	 Step 7: Now, pick the iPhone simulator from the drop-down beside
the Run button and press the Run button.

•	 Step 8: We have now successfully run our first application.

Let’s modify the backdrop color to get started with the interface builder.
Choose ViewController.xib. Change the color of the backdrop on the right
side and run.

The deployment target is configured to iOS 6.0 by default, and auto-lay-
out is enabled. We adjusted the deployment target at the start of this appli-
cation’s construction to ensure it operates on iOS 4.3 and later devices, but
we did not disable auto-layout.

To turn off auto-layout, uncheck the auto-layout checkbox in the file
inspector of each nib, that is, the xib files. The parts of the Xcode project
IDE are listed.

The file inspector is located in the inspector selector bar, and auto-lay-
out may be unchecked there. We may utilize auto-layout when we want to
target iOS 6 devices. We will also be able to use several new features, such
as a passbook if we increase the deployment target to iOS 6. For the time
being, let’s remain with iOS 4.3 as the deployment target.

FIRST iOS APPLICATION’S CODE
Five separate files were created for your application. The following is a list
of them:

•	 AppDelegate.h

•	 AppDelegate.m

•	 ViewController.h

•	 ViewController.m

•	 ViewController.xib

120    ◾    Objective-C

AppDelegate.h

// Header File that provides all the UI related items.
#import <UIKit/UIKit.h>

// Forward-declaration (Used when class will define /
imported in the future)
@class ViewController;

// Interface for the Appdelegate
@interface AppDelegate : UIResponder
<UIApplicationDelegate>

// Property-window
@property (strong, nonatomic) UIWindow *window;

// Property-Viewcontroller

@property (strong, nonatomic) ViewController
*viewController;
//this marks end of the interface
@end

Important code elements:

•	 AppDelegate is a subclass of UIResponder, which handles iOS events.

•	 Implements the UIApplicationDelegate delegate methods, which
give critical application events such as finished launching, about to
terminate, etc.

•	 To manage and coordinate the multiple views on the iOS device
screen, use the UIWindow object. It’s similar to the base view on top
of which all additional views are loaded. An application typically has
only one window.

•	 UIViewController handles the screen flow.

AppDelegate.m

// Imports class Appdelegate's interface
import "AppDelegate.h"

Interface and API    ◾    121

// Imports viewcontroller to load
#import "ViewController.h"

// Here Class definition starts
@implementation AppDelegate

// Method to intimate us that application launched
successfully
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)
launchOptions {
 self.window = [[UIWindow alloc]
initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for the customization after the
application launch.
 self.viewController = [[ViewController alloc]
 initWithNibName:@"ViewController" bundle:nil];
 self.window.rootViewController = self.
viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)
application {
 /* Use this method to release the shared resources,
save user data,
 invalidate timers, and store enough application
state information
 to restore our application to its current state if
it is
 terminated later. If our application supports
background
 execution, this method is called instead of
 applicationWillTerminate: when a user quits.*/
}

- (void)applicationWillEnterForeground:(UIApplication
*)application {
 /* Called as part of transition from the background
to the

122    ◾    Objective-C

 inactive state. Here we can undo many of the
changes made on
 entering background.*/
}

- (void)applicationDidBecomeActive:(UIApplication *)
application {
 /* Restart any tasks that were paused (or not yet
started) while
 application was inactive. If the application was
previously in
 background, optionally refresh user interface.*/
}

- (void)applicationWillTerminate:(UIApplication *)
application {
 /* Called when application is about to terminate.
Save data if
 appropriate. See also
applicationDidEnterBackground:. */
}

- (void)applicationWillTerminate:(UIApplication *)
application {
 /* Called when application is about to terminate.
Save data if appropriate.
 See also applicationDidEnterBackground:. */
}
@end

Important code elements:

•	 Delegates for UIApplications are specified here. The methods
specified here are UI application delegates with no user-defined
methods.

•	 A UIWindow object is created to hold the program.

•	 As the window’s first view controller, UIViewController is assigned.

•	 The makeKeyAndVisible function is used to make the window
visible.

Interface and API    ◾    123

ViewController.h

#import <UIKit/UIKit.h>

// Interface for the class ViewController
@interface ViewController : UIViewController

@end

Important code elements:

•	 The ViewController class derives from the UIViewController class,
which provides the primary view management mechanism for iOS
apps.

ViewController.m

#import "ViewController.h"

// Category, extension of the ViewController class
@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after the loading view,
typically from nib.
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}
@end

Important code elements:

•	 The introductory class UIViewController defines two methods that
are used here.

124    ◾    Objective-C

•	 Perform initial setup in viewDidLoad, which is called after the view
has loaded.

•	 In the case of a memory warning, the didReceiveMemoryWarning
method is invoked.

ACTIONS AND OUTLETS IN iOS
In iOS, actions and outlets are called ibActions and ibOutlets, respectively,
where ib stands for interface builder. These are UI components, and we
will investigate them after we have a visual understanding of how to apply
them.

Actions and Outlets – Involved Steps:

•	 Step 1: Let’s utilize our First iPhone Application.

•	 Step 2: Choose the ViewController.xib file from the navigation
section.

•	 Step 3: We can now choose UI components from the library pane on
the right side of our window.

•	 Step 4: In our interface builder, drag and drop the UI elements to our
display.

•	 Step 5: Insert a Label and a Round Rect Button into our view.

•	 Step 6: Click the Editor Selector button in the workspace toolbar,
located in the upper right corner.

Select the Assistant editor button.

•	 Step 7: In the center of our editor area, we notice two windows:
ViewController.xib and ViewController.h.

•	 Step 8: Right-click the label and select, hold, and drag the new refer-
ring outlet.

•	 Step 9: Insert the ViewController. h in the space between the
curly brackets. If there are no curly brackets in the file, add the
ViewController first.

•	 Step 10: Enter the label name for the outlet, in this case, myTitleLa-
bel. When you click connect, the ibOutlet will finish.

Interface and API    ◾    125

•	 Step 11: To add an action, right-click the Round rect button, choose
Touch up inside, and drag it below the curly braces.

•	 Step 12: Drop it and give it the name setTitleLabel.

•	 Step 13: Open the ViewController.m file and look for the function
described below.

-(IBAction) setTitleLabel:(id)sender {
}

•	 Step 14: Insert the following statement within the procedure men-
tioned above.

[myTitleLabel setText:@"Heyyy"];

•	 Step 15: Now, start the application by clicking the run button.

•	 Step 16: Now press the button.

•	 Step 17: The action on the button has updated the label that we
established.

•	 Step 18: From the above example, IBOutlet establishes a reference to
the UIElement (here for the UILabel). Similarly, the IBAction asso-
ciates the UIButton with a method invoked at the event touch-up
inside.

•	 Step 19: We may experiment with actions by selecting different events
as we create them.

DELEGATES IN iOS
Delegation example:

Assume that object A requests an action from object B. Object A should
be aware that B has completed the task and take the appropriate action when
the activity is finished. This is accomplished with the assistance of delegates.

The main principles in the preceding example are:

•	 B’s delegate object is A.

•	 A will be a reference for B.

•	 B’s delegate methods will be implemented by A.

•	 B will inform A via delegate techniques.

126    ◾    Objective-C

How to Create a Delegate

•	 Step 1: Create a single view application first.

•	 Step 2: Then choose File → New → File.

•	 Step 3: Select Objective-C Class and then click Next.

•	 Step 4: Name the class SampleProtocols, with NSObject as a subclass.

•	 Step 5: Then click Create.

•	 Step 6: Add a protocol to the SampleProtocols.h file, and the updated
code looks like this:

#import <Foundation/Foundation.h>

// Here Protocol definition starts
@protocol SampleProtocolsDelegate <NSObject>
@required
- (void) processCompleted;
@end

// Here Protocol Definition ends
@interface SampleProtocols : NSObject {
 // Delegate to respond-back
 id <SampleProtocolsDelegate> _delegate;
}
@property (nonatomic,strong) id delegate;

-(void)startSampleProcess; // Instance-method
@end

•	 Step 7: Put the instance method into action by changing the
SampleProtocols.m file below.

#import "SampleProtocols.h"

@implementation SampleProtocols

-(void)startSampleProcess {
 [NSTimer scheduledTimerWithTimeInterval:3.0
target:self.delegate
 selector:@selector(processCompleted)
userInfo:nil repeats:NO];
}
@end

Interface and API    ◾    127

•	 Step 8: Drag a UILabel from the object library onto the UIView in
ViewController.xib.

•	 Step 9: Create an IBOutlet for the label, call it myLabel, and then alter
the code in ViewController.h to use SampleProtocolsDelegate.

#import <UIKit/UIKit.h>
#import "SampleProtocols.h"

@interface ViewController : UIViewController<Sampl
eProtocolDelegate> {
 IBOutlet UILabel *myLabel;
}
@end

•	 Step 10: Implement the delegate method, create a SampleProtocols
object, and invoke the startSampleProcess method. The updated
ViewController.m file looks like this:

#import "ViewController.h"

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 SampleProtocol *sampleProtocols =
[[SampleProtocols alloc]init];
 sampleProtocol.delegate = self;
 [myLabel setText:@"Processing...."];
 [sampleProtocols startSampleProcess];
 // Do any additional setup after loading view,
typically from nib.
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

128    ◾    Objective-C

#pragma mark - Sample protocols delegate
-(void)processCompleted {
 [myLabel setText:@"Process-Completed"];
}
@end

•	 Step 11: We will see the result. The label initially shows “process-
ing...,” which is changed when the SampleProtocols object calls the
delegate method.

UI ELEMENTS
What Are UI Elements?

UI elements are the visual components of an application’s user interface.
Some of these components are interactive, like buttons and text boxes,
while others are instructive, like photos and labels.

How Do We Insert UI Elements?

We can add UI components using both code and an interface builder.
Depending on the situation, we can use either option.

Our Focus

In our apps, we’ll emphasize adding UI components using code. The
interface builder is basic and straightforward; UI components are simply
dragged and dropped.

Our Strategy

We will develop a basic iOS application and use it to demonstrate some UI
features.

•	 Step 1: Create a Viewbased application, much like we did with our
first iOS app.

•	 Step 2: Only the ViewController.h and ViewController.m files will
be updated.

•	 Step 3: In our ViewController.m file, we add a function for construct-
ing the UI element.

•	 Step 4: In our viewDidLoad function, we will call this method.

•	 Step 5: The key lines of code in the code have been clarified using a
single-line comment above those lines.

Interface and API    ◾    129

LIST OF UI ELEMENTS
The following table lists the UI components and their related capabilities:

Sr. No. UI Specific Elements

  1 Text Fields
A user interface element allows the program to receive user input.

  2 Input types – TextFields
Using the keyboard property of UITextField, we can specify the type of input that
the user can provide.

  3 Buttons
It is responsible for managing user actions.

  4 Label
It’s used to show static content.

  5 Toolbar
It is utilized to modify anything based on our present point of view.

  6 Status Bar
It displays the device’s vital information.

  7 Navigation Bar
It has navigation buttons from a navigation controller and a stack of view
controllers that can be pushed and popped.

  8 Tab Bar
It is typically used to switch between different subtasks, views, or models inside
the same view.

  9 Image View
It’s used to show a single image or a series of images.

10 Scroll View
It is used to display larger content than the screen's size.

11 Table View
It shows a scrollable list of data in numerous rows and sections.

12 Split View
It is used to show two panes, with the master pane controlling the information on
the detail pane.

13 Text View
It displays a scrollable list of text content that may be edited if needed.

14 View Transition
It describes the different view transitions between perspectives.

15 Pickers
It is used for showing and choosing data from a list.

16 Switches
It serves as a disable and enables switch for activities.

17 Sliders
It allows users to make changes to a value or process across a range of possible values.

18 Alerts
It is used to provide consumers with critical information.

19 Icons
It is a visual depiction of the activity or anything linked to the program.

130    ◾    Objective-C

ACCELEROMETER IN iOS
The accelerometer detects changes in the device’s location in the three
directions x, y, and z. We can determine the device’s current position con-
cerning the ground. This example requires running on a device and does
not function in a simulator.

Steps Involved with an accelerometer:

•	 Step 1: Make a basic View-based application.

•	 Step 2: In ViewController, add three labels.
xib and make ibOutlets named xlabel, ylabel, and zlabel.

•	 Step 3: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>
@interface ViewController : UIViewController<UIAcc
elerometerDelegate> {
 IBOutlet UILabel *xlabel;
 IBOutlet UILabel *ylabel;
 IBOutlet UILabel *zlabel;
}
@end

•	 Step 4: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 [[UIAccelerometer sharedAccelerometer]
setDelegate:self];
 //Do any additional setup after loading
view,typically from nib
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];

Interface and API    ◾    131

 // Dispose of any resources that can recreate.
}

- (void)accelerometer:(UIAccelerometer *)
accelerometer didAccelerate:
 (UIAcceleration *)acceleration {
 [xlabel setText:[NSString stringWithFormat:@"%f
",acceleration.x]];
 [ylabel setText:[NSString stringWithFormat:@"%f
",acceleration.y]];
 [zlabel setText:[NSString stringWithFormat:@"%f
",acceleration.z]];
}
@end

UNIVERSAL APPLICATIONS IN iOS
A universal application is created in a single binary for both the iPhone
and the iPad. A universal App enables code reuse and quick upgrades.

Steps involved in universal application

•	 Step 1: Make a basic View-based application.

•	 Step 2: In the right-hand file inspector, rename the ViewController.
xib file to ViewController iPhone.xib.

•	 Step 3: Select File → New → File... then the subheading “User
Interface” and View. Next, click.

•	 Step 4: Select iPad as the device family and then click Next.

•	 Step 5: Select Create and save the file as ViewController iPad.xib.

•	 Step 6: In both ViewController iPhone.xib and ViewController iPad.
xib, place a label in the center of the screen.

•	 Step 7: Select the identity inspector in ViewController iPad.xib and
change the custom class to ViewController.

•	 Step 8: Update the application: In AppDelegate.m, use the
DidFinishLaunching:withOptions function as follows:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)
launchOptions {

132    ◾    Objective-C

 self.window = [[UIWindow alloc]
initWithFrame:[[UIScreen
 mainScreen] bounds]];

 // Override point for the customization after
the application launch.
 if (UI_USER_INTERFACE_IDIOM() ==
UIUserInterfaceIdiomPhone) {
 self.viewController = [[ViewController
alloc]
 initWithNibName:@"ViewController_iPhone"
bundle:nil];
 } else {
 self.viewController = [[ViewController
alloc] initWithNibName:
 @"ViewController_iPad" bundle:nil];
 }
 self.window.rootViewController = self.
viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

•	 Step 9: Change the device in the project summary to universal.

CAMERA MANAGEMENT IN iOS
A camera is a typical feature of a mobile device. We may snap pictures
using the camera and utilize them in our program; it’s also reasonably
straightforward.

Steps involved in camera management

•	 Step 1: Make a basic View-based application.

•	 Step 2: Add a button to ViewController.xib and build an IBAction
for it.

•	 Step 3: Add an image view and build an IBOutlet called imageView.

•	 Step 4: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController<UIIma
gePickerControllerDelegate> {

Interface and API    ◾    133

 UIImagePickerController *imagePicker;
 IBOutlet UIImageView *imageView;
}

- (IBAction)showCamera:(id)sender;
@end

•	 Step 5: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

- (IBAction)showCamera:(id)sender {
 imagePicker.allowsEditing = YES;

 if ([UIImagePickerController
isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]) {
 imagePicker.sourceType =
UIImagePickerControllerSourceTypeCamera;
 } else {
 imagePicker.sourceType =

UIImagePickerControllerSourceTypePhotoLibrary;
 }
 [self presentModalViewController:imagePicker
animated:YES];
}

-(void)imagePickerController:(UIImagePickerControl
ler *)picker

134    ◾    Objective-C

 didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 UIImage *image = [info objectForKey:UIImagePicke
rControllerEditedImage];

 if (image == nil) {
 image = [info objectForKey:UIImagePickerContr
ollerOriginalImage];
 }
 imageView.image = image;
}

-(void)imagePickerControllerDidCancel:(UIImagePickerCo
ntroller *)picker {
 [self dismissModalViewControllerAnimated:YES];
}
@end

LOCATION HANDLING IN iOS
We can simply find the user’s current position in iOS if the user allows the
application access to the information using the core location framework.

Steps involved in location handling

•	 Step 1: Make a basic View-based application.

•	 Step 2: Choose our project file, then targets, and add CoreLocation.
framework.

•	 Step 3: In ViewController, add two labels. xib and build ibOutlets
with the names latitudeLabel and longitudeLabel.

•	 Step 4: Select File → New → File... → select Objective-C class and
click next.

•	 Step 5: Give the class the name LocationHandler and the “subclass
of” as NSObject.

•	 Step 6: Click the Create button.

•	 Step 7: Make the following changes to LocationHandler.h:

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>

@protocol LocationHandlerDelegate <NSObject>

Interface and API    ◾    135

@required
-(void) didUpdateToLocation:(CLLocation*)
newLocation
 fromLocation:(CLLocation*)oldLocation;
@end

@interface LocationHandler : NSObject<CLLocationMa
nagerDelegate> {
 CLLocationManager *locationManager;
}
@property(nonatomic,strong)
id<LocationHandlerDelegate> delegate;

+(id)getSharedInstance;
-(void)startUpdating;
-(void) stopUpdating;

@end

•	 Step 8: Make the following changes to LocationHandler.m:

#import "LocationHandler.h"
static LocationHandler *DefaultManager = nil;

@interface LocationHandler()

-(void)initiate;

@end
//implementation
@implementation LocationHandler

+(id)getSharedInstance{
 if (!DefaultManager) {
 DefaultManager = [[self allocWithZone:NULL]
init];
 [DefaultManager initiate];
 }
 return DefaultManager;
}

-(void)initiate {
 locationManager = [[CLLocationManager alloc]
init];

136    ◾    Objective-C

 locationManager.delegate = self;
}

-(void)startUpdating{
 [locationManager startUpdatingLocation];
}

-(void) stopUpdating {
 [locationManager stopUpdatingLocation];
}

-(void)locationManager:(CLLocationManager *)
manager didUpdateToLocation:
 (CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation {
 if ([self.delegate respondsToSelector:@selector
 (didUpdateToLocation:fromLocation:)]) {
 [self.delegate
didUpdateToLocation:oldLocation
 fromLocation:newLocation];
 }
}
@end

•	 Step 9: Update ViewController.h to include the LocationHandler del-
egate and two ibOutlets.

#import <UIKit/UIKit.h>
#import "LocationHandler.h"

@interface ViewController : UIViewController<Locat
ionHandlerDelegate> {
 IBOutlet UILabel *latitudeLabel;
 IBOutlet UILabel *longitudeLabel;
}
@end

•	 Step 10: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

Interface and API    ◾    137

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 [[LocationHandler getSharedInstance]
setDelegate:self];
 [[LocationHandler getSharedInstance]
startUpdating];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

-(void)didUpdateToLocation:(CLLocation *)
newLocation
 fromLocation:(CLLocation *)oldLocation {
 [latitudeLabel setText:[NSString
stringWithFormat:
 @"Latitude: %f",newLocation.coordinate.
latitude]];
 [longitudeLabel setText:[NSString
stringWithFormat:
 @"Longitude: %f",newLocation.coordinate.
longitude]];
}
@end

SQLite DATABASE IN iOS
SQLite is used to manage data on iOS. It employs sqlite queries, making it
simpler for individuals familiar with SQL.

Steps required

•	 Step 1: Make a basic View-based application.

•	 Step 2: Select your project file, then targets, and finally the libsqlite3.
dylib library in frameworks.

•	 Step 3: Create a new file by choosing File New File..., then selecting
Objective-C class and clicking Next.

138    ◾    Objective-C

•	 Step 4: Name the class DBManager and include “sub class of” as NSObject.

•	 Step 5: Click Create.

•	 Step 6: Make the following changes to DBManager.h:

#import <Foundation/Foundation.h>
#import <sqlite3.h>

@interface DBManager : NSObject {
 NSString *databasePath;
}

+(DBManager*)getSharedInstance;
-(BOOL)createDB;
-(BOOL) saveData:(NSString*)registerNumber
name:(NSString*)name
 department:(NSString*)department
year:(NSString*)year;
-(NSArray*) findByRegisterNumber:(NSString*)
registerNumber;

@end

•	 Step 7: Make the following changes to DBManager.m:

#import "DBManager.h"
static DBManager *sharedInstance = nil;
static sqlite3 *database = nil;
static sqlite3_stmt *statement = nil;

@implementation DBManager

+(DBManager*)getSharedInstance {
 if (!sharedInstance) {
 sharedInstance = [[super allocWithZone:NULL]
init];
 [sharedInstance createDB];
 }
 return sharedInstance;
}

-(BOOL)createDB {
 NSString *docsDir;
 NSArray *dirPaths;

Interface and API    ◾    139

 // Get documents directory
 dirPaths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 docsDir = dirPaths[0];

 // Build path to the database file
 databasePath = [[NSString alloc]
initWithString:
 [docsDir stringByAppendingPathComponent:
@"student.db"]];
 BOOL isSuccess = YES;
 NSFileManager *filemgr = [NSFileManager
defaultManager];

 if ([filemgr fileExistsAtPath: databasePath]
== NO) {
 const char *dbpath = [databasePath
UTF8String];
 if (sqlite3_open(dbpath, &database) ==
SQLITE_OK) {
 char *errMsg;
 const char *sql_stmt =
 "create the table if not exists
studentsDetail (regno integer
 primary key, name text, department text,
year text)";

 if (sqlite3_exec(database, sql_stmt,
NULL, NULL, &errMsg) != SQLITE_OK) {
 isSuccess = NO;
 NSLog(@"Failed to create the table");
 }
 sqlite3_close(database);
 return isSuccess;
 } else {
 isSuccess = NO;
 NSLog(@"Failed to open/create the
database");
 }
 }
 return isSuccess;
}

140    ◾    Objective-C

- (BOOL) saveData:(NSString*)registerNumber
name:(NSString*)name
 department:(NSString*)department
year:(NSString*)year; {
 const char *dbpath = [databasePath UTF8String];

 if (sqlite3_open(dbpath, &database) == SQLITE_
OK) {
 NSString *insertSQL = [NSString
stringWithFormat:@"insert into
 studentsDetail (regno,name, department,
year) values
 (\"%d\",\"%@\", \"%@\",
\"%@\")",[registerNumber integerValue],
 name, department, year];
 const char *insert_stmt = [insertSQL
UTF8String];
 sqlite3_prepare_v2(database, insert_stmt,-1,
&statement, NULL);

 if (sqlite3_step(statement) == SQLITE_DONE)
{
 return YES;
 } else {
 return NO;
 }
 sqlite3_reset(statement);
 }
 return NO;
}

- (NSArray*) findByRegisterNumber:(NSString*)
registerNumber {
 const char *dbpath = [databasePath UTF8String];

 if (sqlite3_open(dbpath, &database) == SQLITE_
OK) {
 NSString *querySQL = [NSString
stringWithFormat:
 @"select name, department, year from
studentsDetail where
 regno=\"%@\"",registerNumber];

Interface and API    ◾    141

 const char *query_stmt = [querySQL
UTF8String];
 NSMutableArray *resultArray =
[[NSMutableArray alloc]init];

 if (sqlite3_prepare_v2(database, query_stmt,
-1, &statement, NULL) == SQLITE_OK) {
 if (sqlite3_step(statement) == SQLITE_
ROW) {
 NSString *name = [[NSString alloc]
initWithUTF8String:
 (const char *) sqlite3_column_
text(statement, 0)];
 [resultArray addObject:name];

 NSString *department = [[NSString
alloc] initWithUTF8String:
 (const char *) sqlite3_column_
text(statement, 1)];
 [resultArray addObject:department];

 NSString *year = [[NSString alloc]
initWithUTF8String:
 (const char *) sqlite3_column_
text(statement, 2)];
 [resultArray addObject:year];
 return resultArray;
 } else {
 NSLog(@"Notfound");
 return nil;
 }
 sqlite3_reset(statement);
 }
 }
 return nil;
}

•	 Step 8: Update the ViewController.xib file.

•	 Step 9: Create IBOutlets for the text fields mentioned above.

•	 Step 10: Make an IBAction for the buttons.

142    ◾    Objective-C

•	 Step 11: Update ViewController.h as follows:

#import <UIKit/UIKit.h>
#import "DBManager.h"

@interface ViewController : UIViewController<UITex
tFieldDelegate> {
 IBOutlet UITextField *regNoTextField;
 IBOutlet UITextField *nameTextField;
 IBOutlet UITextField *departmentTextField;
 IBOutlet UITextField *yearTextField;
 IBOutlet UITextField
*findByRegisterNumberTextField;
 IBOutlet UIScrollView *myScrollView;
}

-(IBAction)saveData:(id)sender;
-(IBAction)findData:(id)sender;
@end

•	 Step 12: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (id)initWithNibName:(NSString *)nibNameOrNil
bundle:(NSBundle *)
 nibBundleOrNil {
 self = [super initWithNibName:nibNameOrNil
bundle:nibBundleOrNil];

 if (self) {
 // Custom-initialization
 }
 return self;
}

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after the loading
the view from its nib.
}

Interface and API    ◾    143

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

-(IBAction)saveData:(id)sender {
 BOOL success = NO;
 NSString *alertString = @"Data Insertion
failed";

 if (regNoTextField.text.length>0
&&nameTextField.text.length>0 &&
 departmentTextField.text.length>0
&&yearTextField.text.length>0) {
 success = [[DBManager getSharedInstance]
saveData:
 regNoTextField.text name:nameTextField.text
department:
 departmentTextField.text year:yearTextField.
text];
 } else {
 alertString = @"Enter all the fields";
 }

 if (success == NO) {
 UIAlertView *alert = [[UIAlertView alloc]
initWithTitle:
 alertString message:nil
 delegate:nil cancelButtonTitle:@"OK"
otherButtonTitles:nil];
 [alert show];
 }
}

-(IBAction)findData:(id)sender {
 NSArray *data = [[DBManager getSharedInstance]
findByRegisterNumber:
 findByRegisterNumberTextField.text];

 if (data == nil) {
 UIAlertView *alert = [[UIAlertView alloc]
initWithTitle:
 @"Data not found" message:nil delegate:nil
cancelButtonTitle:
 @"OK" otherButtonTitles:nil];
 [alert show];

144    ◾    Objective-C

 regNoTextField.text = @"";
 nameTextField.text =@"";
 departmentTextField.text = @"";
 yearTextField.text =@"";
 } else {
 regNoTextField.text =
findByRegisterNumberTextField.text;
 nameTextField.text =[data objectAtIndex:0];
 departmentTextField.text = [data
objectAtIndex:1];
 yearTextField.text =[data objectAtIndex:2];
 }
}

#pragma mark - Text field delegate
-(void)textFieldDidBeginEditing:(UITextField *)
textField {
 [myScrollView setFrame:CGRectMake(20, 60, 400,
300)];
 [myScrollView setContentSize:CGSizeMake(400,
450)];
}

-(void)textFieldDidEndEditing:(UITextField *)
textField {
 [myScrollView setFrame:CGRectMake(20, 60, 400,
450)];

}

-(BOOL) textFieldShouldReturn:(UITextField *)
textField {
 [textField resignFirstResponder];
 return YES;
}
@end

SENDING EMAIL ON iOS
We can send emails using the iOS device’s Email App.

Steps required

•	 Step 1: Make a basic View-based application.

Interface and API    ◾    145

•	 Step 2: Choose your project file, then targets, and finally MessageUI.
framework.

•	 Step 3: In ViewController.xib, build a button and an action for send-
ing an email.

•	 Step 4: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>
#import <MessageUI/MessageUI.h>

@interface ViewController : UIViewController<MFMai
lComposeViewControllerDelegate> {
 MFMailComposeViewController *mailComposer;
}

-(IBAction)sendMail:(id)sender;

@end

•	 Step 5: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

-(void)sendMail:(id)sender {
 mailComposer = [[MFMailComposeViewController
alloc]init];
 mailComposer.mailComposeDelegate = self;
 [mailComposer setSubject:@"Test mail"];
 [mailComposer setMessageBody:@"Testing message

146    ◾    Objective-C

 for test mail" isHTML:NO];
 [self presentModalViewController:mailComposer
animated:YES];
}

#pragma mark - mail compose delegate
-(void)mailComposeController:(MFMailComposeViewCon
troller *)controller
 didFinishWithResult:(MFMailComposeResult)result
error:(NSError *)error{

 if (result) {
 NSLog(@"Result : %d",result);
 }

 if (error) {
 NSLog(@"Error : %@",error);
 }

 [self dismissModalViewControllerAnimated:YES];
}
@end

We will see the output after hitting Send Email.

AUDIO AND VIDEO IN iOS
Audio and video are pretty popular in today's technologies. It is supported
in iOS via the AVFoundation.framework and the MediaPlayer.framework.

Procedures involved

•	 Step 1: Make a basic View-based application.

•	 Step 2: Choose your project file, targets, and then AVFoundation.
framework and MediaPlayer.framework.

•	 Step 3: In ViewController.xib, add two buttons and an action for
playing audio and video.

•	 Step 4: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>
#import <AVFoundation/AVFoundation.h>
#import <MediaPlayer/MediaPlayer.h>

@interface ViewController : UIViewController {

Interface and API    ◾    147

 AVAudioPlayer *audioPlayer;
 MPMoviePlayerViewController *moviePlayer;
}
-(IBAction)playAudio:(id)sender;
-(IBAction)playVideo:(id)sender;
@end

•	 Step 5: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

-(IBAction)playAudio:(id)sender {
 NSString *path = [[NSBundle mainBundle]
 pathForResource:@"audioTest" ofType:@"mp3"];
 audioPlayer = [[AVAudioPlayer alloc]
initWithContentsOfURL:
 [NSURL fileURLWithPath:path] error:NULL];
 [audioPlayer play];
}

-(IBAction)playVideo:(id)sender {
 NSString *path = [[NSBundle mainBundle]
pathForResource:
 @"videoTest" ofType:@"mov"];
 moviePlayer = [[MPMoviePlayerViewController
 alloc]initWithContentURL:[NSURL
fileURLWithPath:path]];
 [self presentModalViewController:moviePlayer
animated:NO];
}
@end

148    ◾    Objective-C

Please remember that we must include audio and video files to ensure
that we receive the desired results.

When we click on the play video button, we will see the output.
We will hear the sounds when we press the play button.

FILE HANDLING IN iOS
Because file management cannot be demonstrated visually using the pro-
gram, the essential techniques for managing files are detailed here. It is
important to note in Objective-C that the application bundle only has read
access and that we will not be able to edit the files. You can still make
changes to your application’s documents directory.

METHODS FOR FILE HANDLING
The techniques for accessing and altering files are detailed further below.
We must change the FilePath1, FilePath2, and FilePath strings with our
needed complete file paths to achieve the desired action.

Check to See If a File in Objective-C Exists at a Given Path

NSFileManager *fileManager = [NSFileManager
defaultManager];

//Get the documents directory
NSArray *directoryPaths =
NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsDirectoryPath = [directoryPaths
objectAtIndex:0];

if ([fileManager fileExistsAtPath:@""]==YES) {
 NSLog(@"File exists");
}

Comparing the Contents of Two Files

if ([fileManager contentsEqualAtPath:@"FilePath1"
andPath:@" FilePath2"]) {
 NSLog(@"Same-content");
}

Interface and API    ◾    149

Check to See If It Is Writable, Readable, and Executable

if ([fileManager isWritableFileAtPath:@"FilePath"]) {
 NSLog(@"isWritable");
}

if ([fileManager isReadableFileAtPath:@"FilePath"]) {
 NSLog(@"isReadable");
}

if ([fileManager isExecutableFileAtPath:@"FilePath"])
{
 NSLog(@"isExecutable");
}

Move File

if([fileManager moveItemAtPath:@”FilePath1”
 toPath:@”FilePath2” error:NULL]) {
 NSLog(@”Moved-successfully”);
}

Copy File

if ([fileManager copyItemAtPath:@"FilePath1"
 toPath:@"FilePath2" error:NULL]) {
 NSLog(@"Copied-successfully");
}

Remove File

if ([fileManager removeItemAtPath:@”FilePath”
error:NULL]) {
 NSLog(@”Removed-successfully”);
}

Read File

NSData *data = [fileManager contentsAtPath:@”Path”];

Write File

[fileManager createFileAtPath:@"" contents:data
attributes:nil];

150    ◾    Objective-C

ACCESSING MAPS ON iOS
Maps are usually helpful for locating places. The MapKit framework is
used to incorporate maps into iOS.

Procedures involved

•	 Step 1: Develop a basic view-based application.

•	 Step 2: Choose our project file, then targets, and finally MapKit.
framework.

•	 Step 3: We need additionally include the Corelocation.framework.

•	 Step 4: Insert a MapView into ViewController.xib and create an
ibOutlet called mapView.

•	 Step 5: Select File New File to create a new file. Next, choose the
Objective-C class.

•	 Step 6: Name the class MapAnnotation with the term “subclass of”
as NSObject.

•	 Step 7: Click the Create button.

•	 Step 8: Make the following changes to MapAnnotation.h:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface MapAnnotation : NSObject<MKAnnotation>
@property (nonatomic, strong) NSString *title;
@property (nonatomic, readwrite)
CLLocationCoordinate2D coordinate;

- (id)initWithTitle:(NSString *)title
andCoordinate:
 (CLLocationCoordinate2D)coordinate2d;

@end

•	 Step 9: Make the following changes to MapAnnotation.m:

#import "MapAnnotation.h"

@implementation MapAnnotation
-(id)initWithTitle:(NSString *)title andCoordinate:
 (CLLocationCoordinate2D)coordinate2d {

Interface and API    ◾    151

 self.title = title;
 self.coordinate =coordinate2d;
 return self;
}
@end

•	 Step 10: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>
#import <CoreLocation/CoreLocation.h>

@interface ViewController : UIViewController<MKMap
ViewDelegate> {
 MKMapView *mapView;
}
@end

•	 Step 11: Make the following changes to ViewController.m:

#import "ViewController.h"
#import "MapAnnotation.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 mapView = [[MKMapView alloc]initWithFrame:
 CGRectMake(20, 110, 320, 310)];
 mapView.delegate = self;
 mapView.centerCoordinate =
CLLocationCoordinate2DMake(38.32, -142.02);
 mapView.mapType = MKMapTypeHybrid;
 CLLocationCoordinate2D location;
 location.latitude = (double) 38.32239;
 location.longitude = (double) -142.023919;

 // Add the annotation to our map view
 MapAnnotation *newAnnotation = [[MapAnnotation
alloc]
 initWithTitle:@"Apple Head quaters"
andCoordinate:location];

152    ◾    Objective-C

 [mapView addAnnotation:newAnnotation];
 CLLocationCoordinate2D location2;
 location2.latitude = (double) 38.32239;
 location2.longitude = (double) -142.023919;
 MapAnnotation *newAnnotation2 = [[MapAnnotation
alloc]
 initWithTitle:@"Test annotation"
andCoordinate:location2];
 [mapView addAnnotation:newAnnotation2];
 [self.view addSubview:mapView];
}

// When map annotation point is added, zoom it
(1500 range)
- (void)mapView:(MKMapView *)mv
didAddAnnotationViews:(NSArray *)views {
 MKAnnotationView *annotationView = [views
objectAtIndex:0];
 id <MKAnnotation> mp = [annotationView
annotation];
 MKCoordinateRegion region =
MKCoordinateRegionMakeWithDistance
 ([mp coordinate], 1500, 1500);
 [mv setRegion:region animated:YES];
 [mv selectAnnotation:mp animated:YES];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}
@end

IN-APP PURCHASE IN iOS
In-App purchases are used to acquire additional content or upgrade an
application’s features.

The involved steps

•	 Step 1: Ensure that you have a unique App ID in iTunes Connect and
update the application’s bundle ID and code signing in Xcode with
the corresponding provisioning profile.

Interface and API    ◾    153

•	 Step 2: Create a new application and update its information. More
information is available in Apple’s Add new apps documentation.

•	 Step 3: Add a new product now for In-App purchase to your applica-
tion’s Manage In-App Purchase page.

•	 Step 4: Ensure that the bank information for your application is set
up. This must be configured for In-App purchase to function. Create
a test user account using the Manage Users option on the App’s
iTunes Connect page.

•	 Step 5: The following steps involve handling code and designing the
user interface for our In-App purchase.

•	 Step 6: Create a single-view application with the bundle identifier
specified in iTunes connect.

•	 Step 7: Update the ViewController.xib file.

•	 Step 8: Create IBOutlets for the three labels and the button. Name
them productTitleLabel, productDescriptionLabel, productPriceLa-
bel, and purchaseButton.

•	 Step 9: Choose our project file, then targets, and finally StoreKit.
framework.

•	 Step 10: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>
#import <StoreKit/StoreKit.h>

@interface ViewController : UIViewController<
SKProductsRequestDelegate,SKPaymentTransactionObse
rver> {
 SKProductsRequest *productsRequest;
 NSArray *validProducts;
 UIActivityIndicatorView *activityIndicatorView;
 IBOutlet UILabel *productTitleLabel;
 IBOutlet UILabel *productDescriptionLabel;
 IBOutlet UILabel *productPriceLabel;
 IBOutlet UIButton *purchaseButton;
}

- (void)fetchAvailableProducts;
- (BOOL)canMakePurchases;

154    ◾    Objective-C

- (void)purchaseMyProduct:(SKProduct*)product;
- (IBAction)purchase:(id)sender;

@end

•	 Step 11: Make the following changes to ViewController.m:

#import "ViewController.h"
#define kTutorialPointProductID
@"com.tutorialPoints.testApp.testProduct"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];

 // Adding the activity indicator
 activityIndicatorView =
[[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:UIActivity
IndicatorViewStyleWhiteLarge];
 activityIndicatorView.center = self.view.
center;
 [activityIndicatorView hidesWhenStopped];
 [self.view addSubview:activityIndicatorView];
 [activityIndicatorView startAnimating];

 //Hide the purchase button initially
 purchaseButton.hidden = YES;
 [self fetchAvailableProducts];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

-(void)fetchAvailableProducts {
 NSSet *productIdentifiers = [NSSet
 setWithObjects:kTutorialPointProductID,nil];

Interface and API    ◾    155

 productsRequest = [[SKProductsRequest alloc]
 initWithProductIdentifiers:productIdentifiers];
 productsRequest.delegate = self;
 [productsRequest start];
}

- (BOOL)canMakePurchases {
 return [SKPaymentQueue canMakePayments];
}

- (void)purchaseMyProduct:(SKProduct*)product {
 if ([self canMakePurchases]) {
 SKPayment *payment = [SKPayment
paymentWithProduct:product];
 [[SKPaymentQueue defaultQueue]
addTransactionObserver:self];
 [[SKPaymentQueue defaultQueue]
addPayment:payment];
 } else {
 UIAlertView *alertView = [[UIAlertView
alloc]initWithTitle:
 @"Purchases are disabled in your device"
message:nil delegate:
 self cancelButtonTitle:@"Ok"
otherButtonTitles: nil];
 [alertView show];
 }
}
-(IBAction)purchase:(id)sender {
 [self purchaseMyProduct:[validProducts
objectAtIndex:0]];
 purchaseButton.enabled = NO;
}

#pragma mark StoreKit Delegate

-(void)paymentQueue:(SKPaymentQueue *)queue
updatedTransactions:(NSArray *)transactions {
 for (SKPaymentTransaction *transaction in
transactions) {
 switch (transaction.transactionState) {
 case SKPaymentTransactionStatePurchasing:

156    ◾    Objective-C

 NSLog(@"Purchasing");
 break;

 case SKPaymentTransactionStatePurchased:
 if ([transaction.payment.
productIdentifier
 isEqualToString:kTutorialPointProduc
tID]) {
 NSLog(@"Purchased ");
 UIAlertView *alertView =
[[UIAlertView alloc]initWithTitle:
 @"Purchase is completed
succesfully" message:nil delegate:
 self cancelButtonTitle:@"Ok"
otherButtonTitles: nil];
 [alertView show];
 }
 [[SKPaymentQueue defaultQueue] finishT
ransaction:transaction];
 break;

 case SKPaymentTransactionStateRestored:
 NSLog(@"Restored ");
 [[SKPaymentQueue defaultQueue] finishT
ransaction:transaction];
 break;

 case SKPaymentTransactionStateFailed:
 NSLog(@"Purchase failed ");
 break
 default:
 break;
 }
 }
}

-(void)productsRequest:(SKProductsRequest *)
request
didReceiveResponse:(SKProductsResponse *)response
{
 SKProduct *validProduct = nil;
 int counts = [response.products count];

Interface and API    ◾    157

 if (counts>0) {
 validProducts = response.products;
 validProducts = [response.products
objectAtIndex:0];

 if ([validProduct.productIdentifier
 isEqualToString:kTutorialPointProductID])
{
 [productTitleLabel setText:[NSString
stringWithFormat:
 @"Product Title: %@",validProduct.
localizedTitle]];
 [productDescriptionLabel
setText:[NSString stringWithFormat:
 @"Product Desc: %@",validProduct.
localizedDescription]];
 [productPriceLabel setText:[NSString
stringWithFormat:
 @"Product Price: %@",validProduct.
price]];
 }
 } else {
 UIAlertView *tmp = [[UIAlertView alloc]
 initWithTitle:@"Not-Available"
 message:@"No products to purchased"
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"Ok", nil];
 [tmp show];
 }

 [activityIndicatorView stopAnimating];
 purchaseButton.hidden = NO;
}
@end

Note: We must change the value of kTutorialPointProductID to the
productID we established for our In-App Purchase. We may add several
products by modifying the NSSet of productIdentifiers in fetchAvailable-
Products. Handle the purchase-related actions for the product IDs we add
in the same way.

158    ◾    Objective-C

Check that we have logged out of your account from the settings screen.
Select Use Existing Apple ID when we click the Initiate Purchase button.
Enter the correct username and password for our test account. In a few
seconds, we will get the following notice.

We will receive an alert once our product has been successfully pur-
chased. Where we show this notice, we may view the necessary code for
changing the application functionality.

iAd INTEGRATION IN iOS
The apple server serves advertisements using iAd. iAd assists us in gener-
ating income from an iOS app.

Steps involved in iAd integration

•	 Step 1: Develop a basic view-based application.

•	 Step 2: Select our project file, then targets, and finally iAd.framework
in frameworks.

•	 Step 3: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>
#import <iAd/iAd.h>

@interface ViewController : UIViewController<ADBan
nerViewDelegate> {
 ADBannerView *bannerView;
}
@end

•	 Step 4: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 bannerView = [[ADBannerView alloc]
initWithFrame:
 CGRectMake(0, 0, 330, 60)];

Interface and API    ◾    159

 // Optional to set background color to clear
the color
 [bannerView setBackgroundColor:[UIColor
clearColor]];
 [self.view addSubview: bannerView];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

#pragma mark - AdViewDelegates

-(void)bannerView:(ADBannerView *)banner
 didFailToReceiveAdWithError:(NSError *)error {
 NSLog(@"The Error loading");
}

-(void)bannerViewDidLoadAd:(ADBannerView *)banner
{
 NSLog(@"The Ad loaded");
}

-(void)bannerViewWillLoadAd:(ADBannerView *)banner
{
 NSLog(@"The Ad will load");
}

-(void)bannerViewActionDidFinish:(ADBannerView *)
banner {
 NSLog(@"The Ad did finish");
}
@end

GameKit IN iOS
Gamekit is a framework that gives a leaderboard, achievements, and more
features to an iOS application. In this tutorial, we will describe the proce-
dures required to install a leaderboard and change the score.

The involved steps

•	 Step 1: Ensure that we have a unique App ID in iTunes Connect and
update the application’s bundle ID and code signing in Xcode with
the relevant provisioning profile.

160    ◾    Objective-C

•	 Step 2: Create a new application and edit its details. We may know
more about this in apple-add new applications documentation.

•	 Step 3: Set up a leaderboard in the Manage Game Center of our appli-
cation’s page where add a single leaderboard and specify leaderboard
ID and score Type. Here we supply leader board ID.

•	 Step 4: The following stages are connected to handling code and
developing UI for our application.

•	 Step 5: Create a single view application and input the bundle identi-
fication as the identifier given in iTunes connect.

•	 Step 6: Update the ViewController.xib.

•	 Step 7: Choose our project file, then targets, and finally GameKit.
framework.

•	 Step 8: Create IBActions for the newly inserted buttons.

•	 Step 9: Make the following changes to the ViewController.h file:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface ViewController : UIViewController
<GKLeaderboardViewControllerDelegate>

-(IBAction)updateScore:(id)sender;
-(IBAction)showLeaderBoard:(id)sender;

@end

•	 Step 10: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 if([GKLocalPlayer localPlayer].authenticated ==
NO) {

Interface and API    ◾    161

 [[GKLocalPlayer localPlayer]
 authenticateWithCompletionHandler:^(NSError
*error) {
 NSLog(@"Error%@",error);
 }];
 }
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

- (void) updateScore: (int64_t) score
 forLeaderboardID: (NSString*) category {
 GKScore *scoreObj = [[GKScore alloc]
 initWithCategory:category];
 scoreObj.value = score;
 scoreObj.context = 0;

 [scoreObj reportScoreWithCompletionHandler:^(NS
Error *error) {
 // Completion code can be added here
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:nil message:@"Score Updated
Succesfully"
 delegate:self cancelButtonTitle:@"Ok"
otherButtonTitles: nil];
 [alert show];
 }];
}

-(IBAction)updateScore:(id)sender {
 [self updateScore:200 forLeaderboardID:@"tutori
alsPoint"];
}

-(IBAction)showLeaderBoard:(id)sender {
 GKLeaderboardViewController
*leaderboardViewController =
 [[GKLeaderboardViewController alloc] init];
 leaderboardViewController.leaderboardDelegate =
self;

162    ◾    Objective-C

 [self presentModalViewController:
 leaderboardViewController animated:YES];
}

#pragma mark - Gamekit delegates
- (void)leaderboardViewControllerDidFinish:
(GKLeaderboardViewController *)viewController {
 [self dismissModalViewControllerAnimated:YES];
}
@end

STORYBOARDS IN iOS
iOS 5 introduces storyboards. When we employ storyboards, we should
aim for a deployment goal of 5.0 or above. Storyboards assist us in creat-
ing all of the screens of an application and connecting them under a single
interface MainStoryboard.storyboard. It also aids in the reduction of cod-
ing for pushing and showing view controllers.

Procedures involved

•	 Step 1: Create a single-view application and ensure that the story-
board checkbox is selected while creating the application.

•	 Step 2: Choose MainStoryboard.storyboard with a single view con-
troller. Update the view controllers after adding one more.

•	 Step 3: Now, link the two view controllers. Right-click the “show
modal” button and move it to the left-side view controller’s right-
view controller.

•	 Step 4: Choose a modal from the three options displayed.

•	 Step 5: Make the following changes to ViewController.h:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

-(IBAction)done:(UIStoryboardSegue *)seque;

@end

•	 Step 6: Make the following changes to ViewController.m:

#import "ViewController.h"

Interface and API    ◾    163

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

-(IBAction)done:(UIStoryboardSegue *)seque {
 [self.navigationController popViewControllerAni
mated:YES];
}

@end

•	 Step 7: Choose the MainStoryboard.storyboard and right-click on
the Exit button on the right side view controller, then pick done and
link with the back button.

AUTO LAYOUTS IN iOS
In iOS 6.0, auto-layouts were added. We should have a deployment goal
of 6.0 or greater when using auto-layouts. Auto-layouts allow us to design
interfaces compatible with many orientations and devices.

Aim of Our Example

We will add two buttons positioned at a specific distance from the screen’s
center. Additionally, we will attempt to include a resizable text box posi-
tioned a specific distance above the buttons.

Our Strategy

We will add a text box, two buttons, and their respective restrictions to the
code. Each UI Element's restrictions will be generated and applied to the
super view. To get the desired outcome, we must deactivate auto-resizing
for each UI item we add.

164    ◾    Objective-C

The Involved Steps

•	 Step 1: Create a basic view-based application.

•	 Step 2: We will just modify ViewController.m, as seen below:

#import "ViewController.h"
 
@interface ViewController ()
@property (nonatomic, strong) UIButton *leftButton;
@property (nonatomic, strong) UIButton *rightButton;
@property (nonatomic, strong) UITextField *textfield;

@end
@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 UIView *superview = self.view;

 /*1. Create leftButton and add to view*/
 self.leftButton = [UIButton buttonWithType:UIButton
TypeRoundedRect];
 self.leftButton.
translatesAutoresizingMaskIntoConstraints = NO;
 [self.leftButton setTitle:@"LeftButton" forState:UI
ControlStateNormal];
 [self.view addSubview:self.leftButton];

 /* 2. Constraint to the position LeftButton's X*/
 NSLayoutConstraint *leftButtonXConstraint =
[NSLayoutConstraint
 constraintWithItem:self.leftButton attribute:NSLayo
utAttributeCenterX
 relatedBy:NSLayoutRelationGreaterThanOrEqual
toItem:superview attribute:
 NSLayoutAttributeCenterX multiplier:1.0
constant:-60.0f];

 /* 3. Constraint to the position LeftButton's Y*/
 NSLayoutConstraint *leftButtonYConstraint =
[NSLayoutConstraint

Interface and API    ◾    165

 constraintWithItem:self.leftButton attribute:NSLayo
utAttributeCenterY
 relatedBy:NSLayoutRelationEqual toItem:superview
attribute:
 NSLayoutAttributeCenterY multiplier:1.0f
constant:0.0f];

 /* 4. Add constraints to the button's superview*/
 [superview addConstraints:@[leftButtonXConstraint,
 leftButtonYConstraint]];

 /*5. Create the rightButton and add to our view*/
 self.rightButton = [UIButton buttonWithType:UIButto
nTypeRoundedRect];
 self.rightButton.
translatesAutoresizingMaskIntoConstraints = NO;
 [self.rightButton setTitle:@"RightButton" forState:
UIControlStateNormal];
 [self.view addSubview:self.rightButton];

 /*6. Constraint to the position RightButton's X*/
 NSLayoutConstraint *rightButtonXConstraint =
[NSLayoutConstraint
 constraintWithItem:self.rightButton attribute:NSLay
outAttributeCenterX
 relatedBy:NSLayoutRelationGreaterThanOrEqual
toItem:superview attribute:
 NSLayoutAttributeCenterX multiplier:1.0
constant:60.0f];

 /*7. Constraint to the position RightButton's Y*/
 rightButtonXConstraint.priority =
UILayoutPriorityDefaultHigh;
 NSLayoutConstraint *centerYMyConstraint =
[NSLayoutConstraint
 constraintWithItem:self.rightButton attribute:NSLay
outAttributeCenterY
 relatedBy:NSLayoutRelationGreaterThanOrEqual
toItem:superview attribute:
 NSLayoutAttributeCenterY multiplier:1.0f
constant:0.0f];
 [superview addConstraints:@[centerYMyConstraint,
 rightButtonXConstraint]];

166    ◾    Objective-C

 //8. Add the Text field
 self.textfield = [[UITextField alloc]initWithFrame:
 CGRectMake(0, 100, 100, 30)];
 self.textfield.borderStyle =
UITextBorderStyleRoundedRect;
 self.textfield.
translatesAutoresizingMaskIntoConstraints = NO;
 [self.view addSubview:self.textfield];

 //9. The Text field Constraints
 NSLayoutConstraint *textFieldTopConstraint =
[NSLayoutConstraint
 constraintWithItem:self.textfield
attribute:NSLayoutAttributeTop
 relatedBy:NSLayoutRelationGreaterThanOrEqual
toItem:superview
 attribute:NSLayoutAttributeTop multiplier:1.0
constant:60.0f];
 NSLayoutConstraint *textFieldBottomConstraint =
[NSLayoutConstraint
 constraintWithItem:self.textfield
attribute:NSLayoutAttributeTop
 relatedBy:NSLayoutRelationGreaterThanOrEqual
toItem:self.rightButton
 attribute:NSLayoutAttributeTop multiplier:0.8
constant:-60.0f];
 NSLayoutConstraint *textFieldLeftConstraint =
[NSLayoutConstraint
 constraintWithItem:self.textfield
attribute:NSLayoutAttributeLeft
 relatedBy:NSLayoutRelationEqual toItem:superview
attribute:
 NSLayoutAttributeLeft multiplier:1.0
constant:30.0f];
 NSLayoutConstraint *textFieldRightConstraint =
[NSLayoutConstraint
 constraintWithItem:self.textfield
attribute:NSLayoutAttributeRight
 relatedBy:NSLayoutRelationEqual toItem:superview
attribute:
 NSLayoutAttributeRight multiplier:1.0
constant:-30.0f];

Interface and API    ◾    167

 [superview addConstraints:@
[textFieldBottomConstraint,
 textFieldLeftConstraint, textFieldRightConstraint,
 textFieldTopConstraint]];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}
@end

Important notes: In steps 1, 5, and 8, we simply created two buttons and
a text field programmatically.

In the following stages, we set constraints and applied them to the rel-
evant super views, essentially self-views. The restrictions of one of the left
buttons are depicted here.

NSLayoutConstraint *leftButtonXConstraint =
[NSLayoutConstraint
constraintWithItem:self.leftButton attribute:NSLayoutA
ttributeCenterX
relatedBy:NSLayoutRelationGreaterThanOrEqual
toItem:superview attribute:
NSLayoutAttributeCenterX multiplier:1.0
constant:-70.0f];

We have constraintWithItem and toItem, which determine the UI com-
ponents we want to limit. The attribute determines how the two items are
connected. “relatedBy” determines how much influence the characteristics
have on the components. The multiplier is the multiplication factor, and
the constant is added.

In the above example, the X of leftButton is always bigger than or equal
to −60 pixels concerning the super view’s center. Other limitations are
defined in the same way.

TWITTER AND FACEBOOK ON iOS
Twitter is now included in iOS 5.0, while Facebook is integrated into
iOS 6.0. The classes given by Apple are used in our tutorial, and the
deployment targets for Twitter and Facebook are iOS 5.0 and iOS 6.0,
respectively.

168    ◾    Objective-C

Steps required

•	 Step 1: Develop a basic view-based application.

•	 Step 2: Select your project file, then targets, and add Social.frame-
work and Accounts.framework to the frameworks list.

•	 Step 3: Create ibActions for two buttons named facebookPost and
twitterPost.

•	 Step 4: Make the following changes to ViewController.h:

#import <Social/Social.h>
#import <Accounts/Accounts.h>
#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

-(IBAction)twitterPost:(id)sender;
-(IBAction)facebookPost:(id)sender;

@end

•	 Step 5: Make the following changes to ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can recreate.
}

-(IBAction)facebookPost:(id)sender {
 SLComposeViewController *controller =
[SLComposeViewController

Interface and API    ◾    169

 composeViewControllerForServiceType:SLServiceTy
peFacebook];
 SLComposeViewControllerCompletionHandler
myBlock =
 ^(SLComposeViewControllerResult result){

 if (result ==
SLComposeViewControllerResultCancelled) {
 NSLog(@"Cancelled");
 } else {
 NSLog(@"Done");
 }
 [controller dismissViewControllerAnimated:
YES completion:nil];
 };
 controller.completionHandler = myBlock;

 //Adding Text to the facebook post value from
iOS
 [controller setInitialText:@"My test post"];

 //Adding the URL to the facebook post value
from the iOS
 [controller addURL:[NSURL
URLWithString:@"http://www.test.com"]];

 //Adding Text to the facebook post value from
the iOS
 [self presentViewController:controller
animated:YES completion:nil];
}

-(IBAction)twitterPost:(id)sender {
 SLComposeViewController *tweetSheet =
[SLComposeViewController
 composeViewControllerForServiceType:SLServiceTy
peTwitter];
 [tweetSheet setInitialText:@"My test tweet"];
 [self presentModalViewController:tweetSheet
animated:YES];
}
@end

170    ◾    Objective-C

MEMORY MANAGEMENT IN iOS
Initially, iOS’s memory management was non-ARC (Automatic Reference
Counting), requiring us to retain and release objects. Now that it supports
ARC, we no longer need to retain and release objects. Compilation time is
handled automatically by Xcode.

MEMORY MANAGEMENT CHALLENGES
According to Apple documentation, the two most significant memory
management issues are:

•	 Releasing or erasing data that is currently in use. It typically results
in an application crash or corrupted user data.

•	 Memory leaks are caused by not releasing inactive data. Memory
leaks occur when allocated memory is not released even though it
is not used again. Leaks cause your application to consume ever-
increasing amounts of memory, which may lead to poor system per-
formance or (in iOS) the termination of our application.

RULES FOR MEMORY MANAGEMENT

•	 We are responsible for releasing the items we generate when they are
no longer required.

•	 Retain is used to acquire ownership of an object you did not create.
You must also release these things when they are no longer required.

•	 Do not release the items we do not possess.

DEALING WITH MEMORY IN ARC
In ARC, we do not need to employ release and retain. Therefore, all of
its associated objects will be freed when the view controller is deleted.
Similarly, sub-objects of any object are released when their parent object
is released. Note that the whole class will not be released if other classes
hold a strong reference to an object of a class. Therefore, poor qualities are
advised for delegates.

MEMORY MANAGEMENT TOOLS
With the use of Xcode instrumentation, memory utilization is analyzed. It
has features like Activity Monitor, Allocations, Leaks, and Zombies.

Interface and API    ◾    171

ANALYTICAL METHODS FOR MEMORY ALLOCATIONS

•	 Step 1: Launch an existing application.

•	 Step 2: Select Product and then Profile.

•	 Step 3: On the following page, pick Allocations and then Profile.

•	 Step 4: We’ll look at memory allocation for various objects.

•	 Step 5: We can switch between view controllers to see if the memory
is appropriately released.

•	 Step 6: Similarly, we may utilize Activity Monitor instead of
Allocations to observe the total Memory assigned to the application.

•	 Step 7: We can access our memory use and pinpoint any leaks using
these tools.

APPLICATION DEBUGGING IN iOS
While developing an application, we may make mistakes that lead to many
faults. We must debug the program to correct these issues or flaws.

CHOOSING A DEBUGGER
Xcode includes two debuggers, notably GDB and LLDB. GDB is the default
database type. LLDB is a debugger included in the open-source LLVM
compiler project. The “edit active schemes” option allows you to modify
the debugger.

HOW TO LOCATE CODING ERRORS
We must construct your application and compile the code to identify cod-
ing-related issues. If the code includes errors, the compiler will show all
messages, errors, warnings, and potential causes.

Click Product followed by Analyze to spot possible flaws in an
application.

SET BREAKPOINTS
Breakpoints enable us to determine the various states of our application’s
objects, facilitating the identification of several problems, including logical
errors. Simply clicking on the line number will establish a breakpoint. To
remove a breakpoint, click and drag it out of the document.

172    ◾    Objective-C

When we launch the program and press the playVideo button, it will
halt at the line number where we put the breakpoint. It allows users to
assess the current condition of the application when the breakpoint is hit.

It is simple to determine which thread triggered the breakpoint. You
can see objects like self, sender, and so on down the bottom, which carry
the values of the relevant objects, and we can expand some of these objects
to see their state.

Click the continue button (leftmost button) to proceed with the application.
When we launch the program and press the playVideo button, it will

halt at the line number where we put the breakpoint. It allows us to assess
the current state of the application when the breakpoint is hit.

It is simple to determine which thread triggered the breakpoint. You
can see objects like self, sender, and so on down the bottom, which carry
the values of the relevant objects, and we can expand some of these objects
to see their state.

Click the continue button (leftmost button) to proceed with the application.

BREAKPOINT EXCEPTION
We also have exception breakpoints, which cause an application to halt
where the exception occurs. After selecting the debug navigator, we can
put exception breakpoints by clicking the Add button. Then we must
choose Add Exception Breakpoint.

IN AN iOS App, WE MAY USE GOOGLE APIs
Some Google services in Objective-C, such as Drive, Gmail, and many
more, have public APIs used to build apps that enable users to interact
with their data in these services. To use these services, applications must
implement one of the OAuth 2.0 client flows to gain user approval and
access tokens that provide access to the APIs.1

To obtain access tokens for the signed-in user, we may use the Google
Sign-In library, which implements the OAuth 2.0 procedure.

Before we begin
We must first finish the basic Google Sign-In integration.

1. Determine which scopes have been granted: Before calling a Google
API, use the grantedScopes property of GIDGoogleUser to see which
scopes have been given to our app.

Interface and API    ◾    173

NSString *driveScope = @"https://www.googleapis.
com/auth/drive.readonly";

// Check if user has granted Drive scope
if (![user.grantedScopes
containsObject:driveScope]) {
 // request the additional drive scope
}

Whether or not the user has authorized a specific scope, we may
need to request an additional scope to support a specific interaction.

2.	Ask for extra scopes: If we need to request more scopes, use the addS
copes:presentingViewController:callback or addScopes:presentingW
indow:callback methods to ask the user to allow our app to be more
accessible.

To request read-only access to a user’s Drive via Objective-C, for
example:

NSArray *additionalScopes = @[@"https://www.
googleapis.com/auth/drive.readonly"];
[GIDSignIn.sharedInstance
addScopes:additionalScopes
 presentingViewController:self

callback:^(GIDGoogleUser * _Nullable user,
 NSError *
_Nullable error) {
 if (error) { return; }
 if (user == nil) { return; }

 // Check if the user granted access to the
scopes we requested.
}];

3.	Make an API call using new tokens: Wrap your Google API requests
in a doWithFreshTokens: block to guarantee that they always have
valid access tokens.

[user.authentication doWithFreshTokens:^(GIDAuthen
tication * _Nullable authentication,
 NSError *
_Nullable error) {

174    ◾    Objective-C

 if (error) { return; }
 if (authentication == nil) { return; }

 // Get an access token to attach it to a REST
or gRPC request.
 NSString *accessToken = authentication.
accessToken;

 // Or, get object that conforms to
GTMFetcherAuthorizationProtocol for
 // use with GTMAppAuth and Google APIs client
library.
 id<GTMFetcherAuthorizationProtocol> authorizer
= [authentication fetcherAuthorizer];
}];

Call the API with the access token by including it in the header of a
REST or gRPC request (Authorization: Bearer ACCESS TOKEN) or by
using the fetcher authorizer with the Google APIs Client Library.

This chapter covered iOS in Objective-C and used Google APIs with its
relevant code.

NOTE
 1. Google Identity

BIBLIOGRAPHY
 1. How to use Object C in IOS? – https://intellipaat.com/blog/tutorial/ios-tutorial/

objective-c/#:∼:text=Objective%20C%20is%20used%20in,functions%2C
%20and%20control%20flow%20constructs, accessed on May 10, 2022.

 2. iOS - Objective-C – https://www.tutorialspoint.com/ios/ios_objective_c.htm,
accessed on May 10, 2022.

 3. Building your first iOS application – https://livebook.manning.com/book/
objective-c-fundamentals/chapter-1/, accessed on May 10, 2022.

 4. iOS – Objective-C -https://developer.mixpanel.com/docs/ios-objective-c-
quickstart, accessed on May 10, 2022.

 5. How do I create delegates in Objective-C? – https://stackoverflow.com/
questions/626898/how-do-i-create-delegates-in-objective-c#:∼:text=To%20
create%20one%2C%20you%20define,as%20implementing%20the%20
delegate%20protocol.&text=Then%20you%20could%20create%20
an,MyClass%20alloc%5D%20init%5D%3B%20myWebView, accessed on
May 10, 2022.

 6. Objective-C Delegation by Example – https://eezytutorials.com/ios/objec-
tive-c/objective-c-delegation-by-example.php#.Y1RG63ZBzIU, accessed on
May 10, 2022.

https://intellipaat.com
https://intellipaat.com
https://www.tutorialspoint.com
https://livebook.manning.com
https://livebook.manning.com
https://developer.mixpanel.com
https://developer.mixpanel.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://eezytutorials.com
https://eezytutorials.com

Interface and API    ◾    175

 7. iOS – UI Elements - https://www.tutorialspoint.com/ios/ios_ui_elements.htm,
accessed on May 11, 2022.

 8. Introducing Objective-C UI – https://www.swiftbysundell.com/special/
introducing-objective-c-ui/, accessed on May 11, 2022.

 9. Basic UI Elements – https://www.coursera.org/lecture/ios-app-develop-
ment-basics/basic-ui-elements-zgBda, accessed on May 11, 2022.

 10. iOS – Accelerometer – https://www.tutorialspoint.com/ios/ios_accelerom-
eter.htm, accessed on May 11, 2022.

 11. Sending Email using the iOS application – https://www.javatpoint.com/
sending-email-using-ios-application, accessed on May 11, 2022.

 12. iOS – Accessing Maps – https://www.tutorialspoint.com/ios/ios_access-
ing_maps.htm, accessed on May 12, 2022.

 13. iOS – iAd Integration – https://www.tutorialspoint.com/ios/ios_iad_inte-
gration.htm, accessed on May 12, 2022.

 14. Auto Layout Basics – https://www.google.com/url?sa=t&rct=j&q=&esrc=
s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjdqPj8y_T6AhUI
RmwGHQlDDwYQFnoECCMQAQ&url=https%3A%2F%2Fguides.code-
path.com%2Fios%2FAuto-Layout-Basics&usg=AOvVaw2KhY1Yb7RSSsvT
GEDRTNB4, accessed on May 12, 2022.

 15. Constraints programmatically with Objective-C – https://stackoverflow.
com/questions/51989666/constraints-programmatically-with-objective-c,
accessed on May 12, 2022.

 16. Building an App with Only Code Using Auto Layout – https://www.google.
com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ve
d=2ahUKEwjhv-CIzPT6AhX6TWwGHQBAAScQFnoECCAQAQ&url=h
ttps%3A%2F%2Fwww.raywenderlich.com%2F6004856-building-an-app-
with-only-code-using-auto-layout&usg=AOvVaw3nIluzeAAJD2dDvpbBe
fAe, accessed on May 12, 2022.

https://www.swiftbysundell.com
https://www.swiftbysundell.com
https://www.coursera.org
https://www.coursera.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://stackoverflow.com
https://stackoverflow.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.tutorialspoint.com

https://taylorandfrancis.com

177DOI: 10.1201/9781003357506-4

C h a p t e r 4

Functional Programming

IN THIS CHAPTER

➢➢ Writing Methods

➢➢ Project-based Samples

In the previous chapter, we discussed interface and API in Objective-C,
and in this chapter, we will cover functional programming.

Object-functional programming is a programming technique that
emphasizes object transformation and employs both object-oriented and
functional tools and ideas to do this. The creation of effects in general
and the modification of objects and object references in particular rarely
occurs, as transparently as feasible to other parts of the code and as far
away from transformational code as practicable.

Data and behavior are brought together, and access modifiers are uti-
lized to enable only reasonable dependencies wherever feasible. Functional
features and many features traditionally provided more frequently by func-
tional languages are used to avoid mutation of object and object references
as much as possible and easily remain modular even in the small, for exam-
ple, with functions as a lightweight alternative to the Strategy Pattern. As
is typical for functional programming, the software is separated into code
mostly devoid of effects and code-producing effects, with effects being as
transparent to other parts of the code as possible; this ensures that large
portions of the code are unaffected by the disadvantages that effects entail,
such as for local understandability and modular composability.

https://doi.org/10.1201/9781003357506-4

178    ◾    Objective-C

In contrast to object orientation, objects are often immutable, at least
from the outside; methods typically calculate but do not cause visible con-
sequences. In contrast to functional programming, functions operate less
on passive data structures and more frequently as methods belonging to
objects or object types with access to their private data and behavior.

Appropriate mechanisms are utilized to achieve key outcomes, such as
displaying data on the screen; these mechanisms might take on various
forms.

WHY OBJECT-FUNCTIONAL PROGRAMMING?
Programming is not about implementing desired behavior in an “arbi-
trary” manner. The creation and improvement of the software should be
efficient, and the outcomes should be of good quality. Object-oriented and
functional programming assist this objective in their unique ways.

On the one hand, this approach develops positive characteristics, such
as local understandability and modular composability. On the other
hand, its typically imperative emphasis hinders these positive charac-
teristics. In addition, mutable objects are not easily employed safely in
a parallel setting, and pure object orientation is sometimes too cumber-
some for tiny applications. In contrast, the functional method is distin-
guished by its lightweight characteristics and its restriction and isolation
of effects.

The functional method provides fewer tools for organizing software
systems, abstracting data, and eliminating unwanted dependencies. In
contrast, the object-oriented method provides effective replies with its
associated objects and properties.

Therefore, the advantages of one strategy are the disadvantages of the
other. Combining both strategies combines their strengths and compen-
sates for their respective deficiencies. We get the potential benefits of both
without their downsides. The amount to which this promise is fulfilled is
also contingent on the language used.

OBJECTIVE-C FUNCTIONAL PROGRAMMING
This is called Objective-C:

@interface NSArray (Map)
DefineMethod(map, id (^)(id), NSArray*);
DefineMethod(reduce, id (^(^)(id))(id), NSArray*);
@end

Functional Programming    ◾    179

@interface NSString (Funcs)
DefineProperty(uppercaseString, NSString*);
DefineMethod(plus, NSString*, NSString*);
@end

int main()
{
 Print(@[@"foo", @"bar", @"baz"].map(NSString.
uppercaseString));
 // -> (FOO, BAR, BAZ)

 Print(@"Hello".plus(@" I Miss you"));
 // -> Hello I Miss you

 Print(@[@"foo", @"bar", @"baz"].reduce(NSString.
plus));
 // -> foobarbaz

 InstanceProperty massUppercaser = NSArray.
map(NSString.uppercaseString);
 Print(massUppercaser(@[@"abc",@"def"]));
 // -> (ABC, DEF)

 InstanceProperty exclamate = NSString.plus(@"!!");
 Print(@[@"quick", @" to batmobile"].map(NSString.
uppercaseString).map(exclamate).reduce(NSString.
plus));
 // -> QUICK! TO THE BATMOBILE!
}

It does compile and run.
The methods NSArray.map, NSArray.reduce, and NSString.plus are

implemented as standard Objective-C methods:

@implementation NSString (Plus)
- (NSString*) plus:(NSString*) string
{
 return [self stringByAppendingString:string];
}
@end

The basic concept is to build different, parameter-less methods (such
as -[NSString plus] instead of -[NSString plus:]) that return a block that

180    ◾    Objective-C

accepts an argument used as the parameter of the real method. It’s OK if
we need to reread that phrase, but it’s not that difficult.

Building block wrapper implementations for every single method would
be tedious. With resolveInstanceMethod, the objective-C runtime allows
us to add methods on demand. This was almost shockingly uncomplicated.

The whole point is made here. This hack is likely filled with problems, so
do not use it for anything important.

A few random thoughts we picked up along the way:

On Functional Programming

exclamate = NSString.plus(@“!!”); is a partial application of the NSString.
plus function in Functional Programming. It generates a new function
with one less parameter. (Does it refer to currying or partial application?
We’re not sure; my impression is that it’s the same for functions with two
or fewer parameters.)

We’re a noob at functional programming. These block attributes are
most likely referred to as monoids.

On the ObjC Runtime

To add class methods at runtime in Objective-C, adding instance methods
to the metaclass is necessary. Class methods are the instance methods of
a class’s metaclass.

Similarly, resolveClassMethod might be disregarded for the most
part. When resolveClassMethod fails, the runtime runs the metaclass’s
resolveInstanceMethod.

Because I care about my mental health, we only included support for
object (id) argument and return types. Using NSInvocation and va args,
we began experimenting with methods with more than one parameter, but
things were getting out of hand.

Because YOLO, we’re swizzling [NSObject resolveInstanceMethod].
This is strong; it is comparable to modifying the dispatch mechanism of
the language.

Clang supports the dot notation for attributes and method signatures
with no arguments, including Class methods. Class.method may replace
[Class method]. However, they do not support autocomplete.

Because we care about our personal wellbeing, we only included sup-
port for object (id) argument and return types. Using NSInvocation and
va args, we had begun playing with methods with>1 parameter, but things
were getting out of hand.

Functional Programming    ◾    181

On Objective-C and Language Design

I’ve said before that Objective-C is quite adaptable. Overall, it does not
complain excessively: dynamic languages rule. As usual, the least enter-
taining aspect is the stupid block syntax.

In the Objective-C community, Higher-Order Messaging is hardly
a novel notion. Of course, there are the KVC collection operators, such
as [items valueForKeyPath:@“@sum.price”]; the mere existence of
NSInvocation demonstrates that language maintainers have long been
interested in this area.

Before UIKit and stackoverflow, cocoadev.com had this page: http://
cocoadev.com/HigherOrderMessaging.

We wonder what the Cocoa Target-Action paradigm might look like
if it weredesigned with Functional Programming in mind. The last con-
sideration is that we implemented block methods as read-only attributes.
What if method properties were read/write? At runtime, we might write
NSString.plus = <something else> for the whole class or for a particular
instance.

WRITE OBJECTIVE-C CODE
If we have never developed for iOS or Mac OS X, we must familiarize our-
selves with Objective-C, the major programming language. Objective-C is
not a difficult programming language, and once we get familiar with it, we
will recognize its beauty. The Objective-C programming language permits
complex object-oriented programming. It expands the conventional ANSI
C programming language by adding syntax for class and method defini-
tions. Additionally, it encourages the dynamic expansion of classes and
interfaces, which any class may adopt.

If we are acquainted with ANSI C, the material below should assist you
in learning the fundamental syntax of Objective-C. And if we’ve coded in
other object-oriented languages, we’ll discover that Objective-C supports

It is enjoyable to use a programming language with an entirely differ-
ent coding style than what it was created for. However, if you examine
Objective-C source files from the mid-1990s and compare them to modern
UIKit, you will see that they are not the same language. In old-style ObjC,
the id type was inferred for arguments and return types (it still functions),
and methods often returned self rather than void.1

http://cocoadev.com
http://cocoadev.com

182    ◾    Objective-C

many conventional object-oriented principles, like encapsulation, inheri-
tance, and polymorphism.

The Objective-C Programming Language provides a comprehensive
explanation of the Objective-C language.

Objective-C language is the superset of the C programming language.
The Objective-C programming language defines a syntax for establish-

ing classes and methods, invoking object methods, dynamically extending
classes, and developing problem-specific programming interfaces. Being
a superset of the C programming language, Objective-C offers the same
syntax as C. We have access to all the standard components, including
basic types (int, float, etc.), structures, functions, pointers, and control-
flow constructs like if…else and for expressions. In addition, we have
access to the standard C library functions, such as those defined in stdlib.h
and stdio.h.

Objective-C extends ANSI C with the following syntax and features:

•	 Introduction of new classes

•	 Class and instance methods

•	 Calling a method (called messaging)

•	 Declaration of attributes (and automatic synthesizing of accessor
methods from them)

•	 Static and dynamic typing

•	 Blocks are enclosed code portions and may be executed at any
moment

•	 Protocols and categories as extensions to the fundamental language

Don’t worry if we’re unfamiliar with these Objective-C features right
now. As we continue reading this essay, you will discover more about
them. If we are procedural programmers new to object-oriented notions,
it may be helpful to see an object as a structure with related methods. This
concept is not too distant from the truth, especially regarding runtime
implementation.

In addition to offering the majority of abstractions and methods available
in other object-oriented programming languages, Objective-C is a highly
dynamic programming language, which is its most significant feature. It
is dynamic in that it allows the behavior of an application to be decided

Functional Programming    ◾    183

as it is running (i.e., during runtime) as opposed to being fixed when the
application is developed. Thus, the dynamic nature of Objective-C liber-
ates a program from limitations imposed during compilation and link-
ing; it pushes the majority of symbol resolution responsibilities to runtime
when the user is in control.

CLASSES AND OBJECTS
As with most other object-oriented programming languages, Objective-C
classes enable data encapsulation and specify the operations performed
on that data. An object is a class’s instance during runtime. It holds a copy
of the instance variables specified by its class and pointers to the class’s
methods. An object is created in a two-step method known as allocation
and initialization.

The Objective-C definition of a class involves two independent compo-
nents: the interface and the implementation. The interface section includes
the class declaration and specifies the class’s public interface. Like C, we cre-
ate header and source files to segregate public declarations from implemen-
tation details. (Other declarations are included in the implementation file if
they are part of the programmatic interfaces but are intended to be private.)
The filename extensions for these files are mentioned in the table below.

Extension Source Type

.h Files with headers. Header files include declarations for classes, types,
functions, and constants.

.m Files for implementation. This extension indicates that the file contains both
Objective-C and C code. It is also known as a source file.

.mm Files for implementation. This extension allows C++ code to be included in
Objective-C and C code implementation files. Use this extension only if our
Objective-C code refers to C++ classes or features.

When including header files in our source code, add a pound import
(#import) directive as one of the first lines in a header or source file; a
#import directive is similar to C’s #include directive, but it ensures that
the same file is never included more than once. Import the framework’s
umbrella header file in Objective-C, which has the same name as the
framework, if we need to import most or all of the framework’s header
files. The following is the syntax for importing the (fictitious) Gizmo
framework’s header files:

#import <Gizmo/Gizmo.h>

184    ◾    Objective-C

The syntax for declaring a class called MyClass in Objective-C, which
inherits from the base (or root) class, NSObject, is shown below. (A root
class is one from which all other classes directly or indirectly derive.) The
@interface compiler directive begins the class definition and concludes
with the @end directive. The name of the parent class comes after the class
name (and is separated by a colon). A class in Objective-C can only have
one parent.

Declaration of members and method.

Declarations of properties and methods are written between @inter-
face and @end. These declarations provide the class’s public interface.
(“Declared Properties and Accessor Methods” describes declared prop-
erties.) A semicolon is used after each property and method declaration.
Place declarations for any custom methods, constants, or data types related
to the class’s public interface outside the @interface…@end block.

Similar syntax applies to class implementations. It starts with a @imple-
mentation directive followed by the class’s name and concludes with a @
end directive. Method implementations exist in the middle. (Function
implementations should not be placed inside the @implementation… @
end block.) Always import the interface file as one of the initial lines of
code in an implementation.

#import "MyClass.h"

@implementation MyClass
- (id)initWithString:(NSString *)aName

Functional Programming    ◾    185

{
 // here the code goes
}

+ (MyClass *)myClassWithString:(NSString *)aName
{
 // here the code goes
}
@end

Objective-C provides both dynamic and static typing for variables hold-
ing objects. The class name is included in the variable type declaration for
statically typed variables. Instead, dynamically typed variables utilize the
object’s type id. In some cases, dynamically typed variables are employed.
Dynamically typed variables are used in a collection object such as an
array (where the exact types of the included objects are uncertain). Such
variables provide for increased dynamism and flexibility in Objective-C
programming.

This example displays variable declarations that are statically and
dynamically typed:

MyClass *myObject1; // Static-typing
id myObject2; // Dynamic-typing
NSString *user_Name; // From our First iOS App
(static typing)

The initial declaration has an asterisk (*). Object references in
Objective-C must always be pointers. Don’t be concerned if this criterion
does not make total sense to us. We don’t have to be a pointer specialists
to start Objective-C programming. Just remember to insert an asterisk in
front of the variable names for statically typed object declarations. The id
type implies a pointer.

METHODS AND COMMUNICATION
If we are new to object-oriented programming, it may be helpful to con-
ceive of a method as an object-specific function. We invoke its method by
sending a message to, or messaging, an object. In Objective-C, there are
two types of methods: instance methods and class methods.

A method whose execution is restricted to a specific instance of a class
is an instance method. In other words, we must construct an instance of

186    ◾    Objective-C

the class before using an instance method. Instance methods are the most
prevalent method type.

The execution of a class method is limited to the method’s class. An
object instance doesn’t need to be the recipient of a message.

The method’s declaration includes the method type identifier, a return
type, one or more signature keywords, and information on the argument
type and name. Here is the method declaration for insertObject:atIndex:
instance.

Declaration of object.

A minus sign precedes the declaration of instance methods (−), whereas
class methods are indicated by a plus sign (+). The section titled “Class
Methods” describes class methods in greater detail.

The actual name of a method (insertObject:atIndex:) is the concatena-
tion of all signature keywords, including colons. The colon characters indi-
cate that a parameter is present. In the preceding illustration, the method
accepts two parameters. If a method has no parameters, the colon follow-
ing the first and only signature keyword is omitted.

When calling a method, a message is sent to the object that imple-
ments the method. (Although “sending a message” is commonly used
as a synonym for “calling a method,” the actual sending is performed by
the Objective-C runtime.) A message comprises the method’s name and
the parameter information required (properly conforming to type). All
messages sent to an object are dispatched dynamically, making the poly-
morphic behavior of Objective-C classes possible. (Polymorphism refers
to the capacity of various object types to respond to the same message.)
Occasionally, the method invoked is implemented by a superclass of the
receiving object’s class.

Functional Programming    ◾    187

For the runtime to dispatch a message, a message expression is neces-
sary. A message expression encloses the message (along with any necessary
parameters) within brackets ([and]) and, just inside the leftmost bracket,
the object receiving the message. For instance, the following syntax is used
to send the insertObject:atIndex: message to an object held by the myAr-
ray variable:

[myArray insertObject:anObject atIndex:0];

To avoid declaring multiple local variables to store interim results, we
can nest message expressions in Objective-C. Each expression’s return
value is used as a parameter or as the receiving object of another mes-
sage. To retrieve the values, we could, for instance, replace any of the vari-
ables used in the previous example with messages. Consequently, if we had
another object named myAppObject with methods for accessing the array
object and the object to insert into the array, you could have written the
preceding example as follows:

[[myAppObject theArray] insertObject:[myAppObject
objectToInsert] atIndex:0];

For invoking accessor methods, Objective-C additionally supports a
dot-notation syntax. Accessor methods get and set an object’s state, which
is critical to encapsulation, a fundamental aspect of all objects. Objects
conceal or encapsulate their state and provide a standard interface for all
instances to access that data. We may rewrite the preceding example using
dot-notation syntax as follows:

[myAppObject.theArray insertObject:myAppObject.
objectToInsert atIndex:0];

For assignment, we may also use dot-notation syntax:

myAppObject.theArray = aNewArray;

This is merely another way of saying [myAppObject setTheArray:
aNewArray];. A reference to a dynamically typed object (object of type id)
is not used in a dot-notation expression.

We’ve already used dot syntax to assign a variable in our First iOS App:

self.user_Name = self.textField.text;

188    ◾    Objective-C

CLASS METHODS
Even though the preceding examples send messages to an instance of a
class, it is also possible to send messages to the class itself. (A class is
a runtime-generated object of type Class.) When communicating with
a class, the method you specify must be a class method rather than an
instance method. Class methods in C++ are comparable to static class
methods.

Class methods are frequently used as factory methods to create new
class instances or to access shared information associated with the class.
The syntax for a class method declaration is identical to that of an instance
method, except that the method type identifier is preceded by a plus sign
(+) instead of a minus sign (−).

Following is an example of using a class method as a factory method for
a class. In this instance, the array method is a class method on the NSArray
and NSMutableArray classes that allocates, initializes, and returns a new
class instance.

NSMutableArray *myArray = nil; // nil is essentially
same as NULL

// Create new array and assign it to myArray variable.
myArray = [NSMutableArray array];

Properties and Accessor Methods Are Declared

The property is some data encapsulated or stored by an object in the
broadest sense. It is either an attribute or a relationship to one or more
other objects, such as a name or a color. The class of an object defines an
interface that allows users of its objects to retrieve and modify the values of
encapsulated properties. The methods that carry out these operations are
referred to as accessor methods.

There are two categories of accessor methods, each of which must
adhere to a naming convention. The “getter” accessor method that returns
a property’s value has the same name as the property. A “setter” accessor
method has the form setPropertyName:, with the first letter of the prop-
erty name capitalized. Properly named accessor methods are essential to
several Cocoa and Cocoa Touch framework technologies, including key-
value coding (KVC), a mechanism for indirectly accessing an object’s
properties via their names.

Functional Programming    ◾    189

Declared properties provide a notational convenience for the declara-
tion and implementation of accessor methods in Objective-C. In our First
iOS App, the user_Name property was declared:

@property (nonatomic, copy) NSString *user_Name;

Declared properties avoid the need to implement getter and setter meth-
ods for each accessible property in the class. Instead, we use the property
declaration to indicate the desired behavior. The compiler can then gener-
ate (or synthesis) real getter and setter methods based on that declaration.
Declared properties decrease the amount of boilerplate code we have to
write, making our code clearer and less prone to errors. To acquire and
set items of an object’s state, use defined properties or accessor methods.

In our class interface, we put property declarations with method dec-
larations. Public properties are declared in the class header files, whereas
private properties are declared in a class extension in the source file.
Controller objects, such as delegates and view controllers, should typically
have private properties.

The @property compiler directive is used in the basic property declara-
tion, followed by the type information and the property name. Custom
options can describe how the accessor methods operate, whether the prop-
erty is a weak reference and whether it is read-only. Following the @prop-
erty directive, the alternatives are in parentheses.

The lines of code below demonstrate a few additional property
declarations:

@property (copy) MyModelObject *theObject; // Copy
object during assignment.
@property (readonly) NSView *rootView; // Declare
only getter method.
@property (weak) id delegate; // Declare
delegate as weak reference

The compiler automatically synthesizes declared properties. When
a property is synthesized, it generates accessor methods for it and a pri-
vate instance variable that “backs” the property. The name of the instance
variable is the same as the property’s name but with an underscore prefix
(_). In methods for object initialization and deallocation, our App should
directly access an instance variable (rather than its property).

190    ◾    Objective-C

We can override auto synthesis and explicitly synthesize a property to
give an instance variable a new name. In the class implementation, use the
@synthesize compiler directive to instruct the compiler to build the accessor
methods and the appropriately named instance variable.† As an example:

@synthesize enabled = _isEnabled;

In addition, when we declare a property, we may give custom names
for the accessor methods, which are commonly used to force the getter
methods of Boolean properties to have a standard form, as illustrated here:

@property (assign, getter=isEnabled) BOOL enabled; //
Assign the new value, change name of getter method

BLOCKS
A block in Objective-C is an object that encapsulates a work unit or code
segment that may be performed at any moment. Essentially, they are
anonymous, portable functions that may be sent as inputs to methods and
functions or returned from methods and functions. Blocks contain typed
argument lists and may have an inferred or stated return type. Additionally,
we may assign a block to a variable and then call it like we would a function.

A caret (̂) is used to denote blocks syntactically. There are additional,
well-known syntax norms for block arguments, return values, and body
(the executed code). The following diagram illustrates the syntax for
assigning a block to a variable.

Blocks.

†	 Write Objective-C Code

Functional Programming    ◾    191

The block variable may then be accessed as if it were a function:

int result = myBlock(4); // result 28

A block shares local lexical scope info. If you implement a method and
that method specifies a block, the block has access to the method’s local
variables and arguments (including stack variables) and functions and
global variables, including instance variables. If a variable is defined with
the __block modifier, its value is modified inside the block. As long as
there is a reference to the block, the local variables continue even after the
method or function inside the block has returned and its local scope has
been deleted.

As arguments of a method or function, blocks might act as callbacks.
When called, the method or function does some work and, at the proper
times, calls back to the code that initiated it through the block to seek further
information or acquire program-specific behavior. Blocks make it possible
for the caller to give the callback code at invocation. Instead of encapsulat-
ing the necessary data in a “context” structure, blocks collect data from the
same lexical scope as the host method or function. As the block code does
not need to be implemented in a distinct method or function, the imple-
mentation code may be simplified and made easy to comprehend.

Many Objective-C framework methods use block arguments. For
instance, the Foundation framework’s NSNotificationCenter class speci-
fies the following function with a block parameter:

- (id)addObserverForName:(NSString *)name object:(id)
obj queue:(NSOperationQueue *)queue usingBlock:(void
(^)(NSNotification *note))block

This technique installs a notification center observer (notifications are
discussed in Streamline our App with Design Patterns). When a notice
with the specified name is posted, the block is called to handle it.

opQ = [[NSOperationQueue alloc] init];
 [[NSNotificationCenter defaultCenter] addObserverF
orName:@"CustomOperationCompleted"
 object:nil queue:opQ
 usingBlock:^(NSNotification *notif) {
 // handle notification
 }];

192    ◾    Objective-C

PROTOCOLS AND CATEGORIES
A protocol specifies methods that may be implemented by any class, even
if those classes do not share a superclass. Protocol methods create behavior
that is agnostic to specific classes. Protocols merely specify an interface
that other classes must implement. When your class implements a proto-
col’s methods, it is said to conform to that protocol.

A protocol specifies a set of methods that forms a contract between
objects without needing them to be instances of a specific class. This con-
tract allows these items to communicate with one another. One object
wants to inform another object about the events it is experiencing, or it
may seek guidance on these occurrences.

The UIApplication class implements an application’s needed func-
tionality. Instead of requiring you to subclass UIApplication to get basic
messages on the current status of the application, the UIApplication
class provides these notifications by invoking particular methods of
the delegate object it has allocated. An object that implements the
UIApplicationDelegate protocol’s methods may receive these alerts and
respond appropriately.

In the interface block, you indicate that your class adheres to or adopts
a protocol by enclosing the protocol’s name in angle brackets (<…>) fol-
lowing the name of the class from which our class inherits. In our First
iOS App, you adopted the UITextFieldDelegate protocol in the following
line of code:

@interface HelloEveryoneViewController :
UIViewController <UITextFieldDelegate> {

We are not required to declare the protocol methods that we implement.
A protocol’s declaration resembles that of a class interface, with the dis-

tinction that protocols do not have a parent class and do not have instance
variables (although they can declare properties). The following is a basic
protocol declaration with only one method:

@protocol MyProtocol
- (void)myProtocolMethod;
@end

Adopting a protocol for many delegate protocols is as simple as imple-
menting the techniques described by that protocol. Some protocols need

Functional Programming    ◾    193

us to say that you support the protocol explicitly, and protocols might have
both required and optional ways.

When we start looking through the header files of the Objective-C
frameworks, we ll come across something like this:

@interface NSDate (NSDateCreation)

This line defines a category by surrounding the category’s name in
parentheses, per syntax standard. A category is an Objective-C language
feature that allows us to expand the interface of a class without subclass-
ing. The category’s methods become part of the class type (within the pro-
gram’s scope) and are inherited by all subclasses of the class. We may send
a message to any class instance (or its subclasses) to activate a category-
defined method.

Categories are used to organize similar method declarations inside a
header file. Even distinct category definitions are included in separate
header files. These strategies are used throughout the frameworks’ header
files for clarity.

We may also use a class extension, which is an anonymous category,
to specify private properties and methods in the implementation (.m)
file. The only difference between a class extension and a category is the
absence of text between the parenthesis. Here is an example of a typical
class extension:

@interface MyAppDelegate ()
@property (strong) MyDataObject *data;
@end

Types and Coding Strategies Are Defined

Several words in Objective-C cannot be used as variable names because
they are reserved for particular uses. These words are compiler instructions
with at-signs (@) prefixes, such as @interface and @end. Other restricted
phrases include specified types and their associated literals. Objective-C
employs a variety of types and literals that are not included in ANSI C. In
some instances, these types and literals substitute their ANSI C equiva-
lents. The following table lists some of the essential literal types and the
permitted literals for each.

194    ◾    Objective-C

Type Description and Literal

id The kind of dynamic object. For both dynamically and statically typed objects,
the negative literal is nil.

Class The kind of dynamic class. Its negative literal is Nil.
SEL A selector’s data type (typedef); this data type reflects a method signature at

runtime. It is inverse literal NULL.
BOOL A Boolean expression. YES and NO are the literal values.

These specified types and literals are frequently used in error-checking
and control-flow programs. We may test the proper literal in our pro-
gram’s control-flow statements to determine how to continue. As an
example:

NSDate *dateOfHire = [employee dateOfHire];
if (dateOfHire != nil) {
 // handle this
}

To summarize, if the object indicating the date of hire is not nil if it is a
real object, then the reasoning proceeds on a certain path. Here’s a quick
technique to perform the same branching:

NSDate *dateOfHire = [employee dateOfHire];
if (dateOfHire) {
 // handle this
}

We can trim these lines of code even further (assuming we don’t need a
reference to the dateOfHire object):

if ([employee dateOfHire]) {
 // handle this
}

We handle Boolean values in a similar manner. The isEqual: method in
this example returns a Boolean value.

BOOL equal = [objectA isEqual:objectB];
if (equal == YES) {
 // handle this
}

Functional Programming    ◾    195

Shorten this code similarly to the code that checks for the lack or exis-
tence of nil.

In Objective-C, sending a message to nil has no negative consequences.
There is no consequence other than the runtime returning null if the
method should return an object. Return values from messages delivered
to nil are guaranteed to function as long as they are of the object type.

The self and super are also key reserved concepts in Objective-C. The
first word, self, is a local variable that may refer to the current object inside
a message implementation; it is analogous to this in C++. The reserved term
super may be substituted for self, but only as of the recipient of a message
expression. If we send a message to self, the runtime first searches for the
method implementation in the current object’s class; it searches for it in its
superclass if it cannot find it there. When a message is sent to a super, the
runtime first searches for the method implementation in the superclass.

Both self and super is mostly used for transmitting messages. When the
self class implements the method to call, we send a message to the self. For
instance:

[self doSomeWork];

In dot notation, the self is also called the accessor method created by a
defined property. As an example:

NSString *theName = self.name;

Messages to super are frequently sent in overrides (reimplementations)
of methods inherited from a superclass. The method invoked in this sce-
nario has the same signature as the method overwritten.

CREATE THE VIDEO App
Create the code for an introductory video player App.

Set the App’s Audio Behavior

At the app level, the audio session manages audio behavior. Explore the
AVAudioSession class in further detail.

We will utilize AVAudioSessionCategoryPlayback for this example.
Even when the Ring/Silence switch is silent, and the screen is locked, this
plays audio. To maintain simplicity, we will place this code in the App
Delegate.

196    ◾    Objective-C

Open the App Delegate implementation file in our project
(AppDelegate.m).

Add code to the didFinishLaunchingWithOptions function to set the
audio session type. Ensure that the AVFoundation framework is imported.

The following code is required to guarantee that audio is played when
expected. Without setting this code, we cannot hear the video while the
mute button is used.

For simplicity in the example, we’ve placed this in the App delegate.

// AppDelegate.m
// Simple VideoPlayback

#import "AppDelegate.h"
#import <AVFoundation/AVFoundation.h>

@interface AppDelegate ()

@end

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application didFi
nishLaunchingWithOptions:(NSDictionary *)launchOptions
{
// Override point for the customization after
application run

NSError *categoryError = nil;
BOOL success = [[AVAudioSession sharedInstance] setCat
egory:AVAudioSessionCategoryPlayback
error:&categoryError];

if (!success)
{
 NSLog(@"AppDelegate Debug - Error setting
AVAudioSession category. Because of this in
Objective-C, there may be no sound. '%@'",
categoryError);
}
return YES;
}

Functional Programming    ◾    197

- (void)applicationWillResignActive:(UIApplication *)
application {
// Sent when the application is about to move in
Objective-C from the active to an inactive state.
This can occur for certain temporary interruptions
(such as an incoming phone call or SMS message) or
when the user quits the application and begins the
transition to the background state.
// Use this method in Objective-C to pause ongoing
tasks, disable timers, and throttle down OpenGL ES
frame rates. Games should use this method in
Objective-C to pause the game.
}

- (void)applicationDidEnterBackground:(UIApplication
*)application {
// Use this method to release the shared resources,
save user data, invalidate timers, and store enough
application state information to restore your
application to its current state if it is terminated
later.
// If our application supports background execution,
this method is called instead of
applicationWillTerminate: when a user quits.
}

- (void)applicationWillEnterForeground:(UIApplication
*)application {
// Called as part of the transition from the
background in Objective-C to the inactive state. We
can undo many of the changes made on entering the
background.
}

- (void)applicationDidBecomeActive:(UIApplication *)
application {
// Restart any paused (or not yet started) tasks while
the application was inactive. If the application in
Objective-C was previously in the background, refresh
the user interface optionally.
}

198    ◾    Objective-C

- (void)applicationWillTerminate:(UIApplication *)
application {
// Called when application is about to terminate. Save
data if appropriate. See also applicationDidEnter
Background:.
}

@end

Build View Controller Class Declaration

Include the Brightcove SDK in the View Controller class.

Import the Brightcove Player SDK Header File into the Program

For the Brightcove Player SDK, add the following import statement:

@import BrightcovePlayerSDK;

Look at the Code

The View Controller header has now been finished. Here is the complete
code:

// ViewController.h
// Simple VideoPlayback

#import <UIKit/UIKit.h>
@import BrightcovePlayerSDK;

@interface ViewController : UIViewController

@end

Construct the View Controller Implementation in Objective-C

In Objective-C to play a video from the Brightcove catalog service, update
the View Controller implementation.

Customize the Project to Reflect Our Values

To access our Video Cloud account, enter the token and playlist id
values.

This example displays a video returned using the Brightcove Playback
API, the most recent and recommended API for retrieving material from
our Video Cloud library.

Functional Programming    ◾    199

Add our values for the below the #import directives:

•	 This line specifies Our Brightcove Playback API Policy Key.

•	 Our Video Cloud Account ID is defined here.

•	 Specifies the Video Cloud Video ID.

// ** Customize these values with our own account
information **
static NSString * const
kViewControllerPlaybackServicePolicyKey = @"our policy
key";
static NSString * const kViewControllerAccountID =
@"our account id";
static NSString * const kViewControllerVideoID = @"our
video id";

Declare Properties

Add the following class declarations to the ViewController interface
section:

•	 Brightcove delegates are added to the UI. This enables our App to
respond to video playback events.

•	 The BCOVPlaybackService class defines methods for getting data
from the Playback API asynchronous.

•	 The BCOVPlaybackController class defines methods for controlling
playback capability.

•	 Defines the Brightcove UI controllers’ player view.

•	 This property defines the video container view.

@interface ViewController ()
<BCOVPlaybackControllerDelegate>

@property (nonatomic, strong) BCOVPlaybackService
*playbackService;
@property (nonatomic, strong)
id<BCOVPlaybackController> playbackController;
@property (nonatomic) BCOVPUIPlayerView *playerView;

200    ◾    Objective-C

@property (nonatomic, weak) IBOutlet UIView
*videoContainer;

@end

DEFINE INITIALIZATION METHOD
In the ViewController implementation section, write an init function that
calls the setup method defined in the next step.

@implementation ViewController
#pragma mark the Setup Methods

- (instancetype)initWithCoder:(NSCoder *)coder
{
self = [super initWithCoder:coder];
if (self)
{
 [self setup];
}
return self;
}

Setup Player

•	 Create a setup function underneath the init function invoked when
the App loads.

•	 Creates a playback controller using the shared manager. The
BCOVPlayerSDKManager class in Objective-C is a singleton that
allows us to build additional SDK-related objects.

•	 Optional: We must transmit our Video Cloud Account ID to Video
Cloud Analytics if you override the BCOVVideo class or do not uti-
lize the Brightcove player and playback service or catalog. You can
now access data for this App in Video Cloud Analytics.

- (void)setup
{
_playbackController = [BCOVPlayerSDKManager.
sharedManager createPlaybackController];

_playbackController.analytics.account =
kViewControllerAccountID; // this is Optional

Functional Programming    ◾    201

_playbackController.delegate = self;
_playbackController.autoAdvance = YES;
_playbackController.autoPlay = YES;

_playbackService = [[BCOVPlaybackService alloc] initWi
thAccountId:kViewControllerAccountID policyKey:kViewCo
ntrollerPlaybackServicePolicyKey];
}

Configure Player

Do the following in the viewDidLoad function:

•	 Using the usual VOD structure, create and configure the Brightcove
player controls.

•	 The player view is added as a subview to the main view.

•	 Turn off the auto-resize mask.

•	 To establish dynamic constraints for the player view, use Auto Layout.

•	 The player view is assigned to the associated global variable.

•	 The player view is linked to the playback controller.

•	 This method invokes the requestContentFromPlaybackService func-
tion, which we will write in the following step.

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading view,
typically from nib.

 // Setup our player view. Create with a standard
VOD layout in Objective-C.
 BCOVPUIPlayerView *playerView =
[[BCOVPUIPlayerView alloc]
initWithPlaybackController:self.playbackController
options:nil controlsView:[BCOVPUIBasicControlView
basicControlViewWithVODLayout]];

 _videoContainer addSubview:playerView];
 playerView.
translatesAutoresizingMaskIntoConstraints = NO;

202    ◾    Objective-C

 [NSLayoutConstraint activateConstraints:@[
 [playerView.topAnchor
constraintEqualToAnchor:_videoContainer.topAnchor],
 [playerView.rightAnchor
constraintEqualToAnchor:_videoContainer.rightAnchor],
 [playerView.leftAnchor
constraintEqualToAnchor:_videoContainer.leftAnchor],
 [playerView.bottomAnchor
constraintEqualToAnchor:_videoContainer.bottomAnchor],
]];
 _playerView = playerView;

 // Associate playerView with playback controller.
 _playerView.playbackController =
_playbackController;

 [self requestContentFromPlaybackService];
 }

Use the Brightcove Library to Request Material

You must first request a video from our Video Cloud collection to play
video content.

Create a method called requestContentFromPlaybackService under-
neath the viewDidLoad function as follows:

- (void)requestContentFromPlaybackService
{
[self.playbackService findVideoWithVideoID:kViewContro
llerVideoID parameters:nil completion:^(BCOVVideo
*video, NSDictionary *jsonResponse, NSError *error) {

 if (video)
 {
 [self.playbackController setVideos:@[video
]];
 }
 else
 {
 NSLog(@"ViewController Debug – The Error
retrieving video: '%@'", error);
 }

}];
}

Functional Programming    ◾    203

Look at the Code

The implementation of the View Controller is now complete. Here is the
complete code:

// ViewController.m
// Simple-Video-Playback

#import "ViewController.h"

// ** Customize these values with our own account
information **
static NSString * const
kViewControllerPlaybackServicePolicyKey = @"our policy
key";
static NSString * const kViewControllerAccountID =
@"our account id";
static NSString * const kViewControllerVideoID = @"our
video id";

@interface ViewController ()
<BCOVPlaybackControllerDelegate>

@property (nonatomic, strong) BCOVPlaybackService
*playbackService;
@property (nonatomic, strong)
id<BCOVPlaybackController> playbackController;
@property (nonatomic) BCOVPUIPlayerView *playerView;
@property (nonatomic, weak) IBOutlet UIView
*videoContainer;

@end

@implementation ViewController
#pragma mark Setup Methods

- (instancetype)initWithCoder:(NSCoder *)coder
{
self = [super initWithCoder:coder];
if (self)
{
 [self setup];
}

204    ◾    Objective-C

return self;
}

- (void)setup
{
_playbackController = [BCOVPlayerSDKManager.
sharedManager createPlaybackController];

_playbackController.analytics.account =
kViewControllerAccountID; // this is optional

_playbackController.delegate = self;
_playbackController.autoAdvance = YES;
_playbackController.autoPlay = YES;

_playbackService = [[BCOVPlaybackService alloc] initWi
thAccountId:kViewControllerAccountID policyKey:kViewCo
ntrollerPlaybackServicePolicyKey];
}

- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading view,
typically from nib.

// Set up our player view. Create with a standard VOD
layout.
BCOVPUIPlayerView *playerView = [[BCOVPUIPlayerView
alloc] initWithPlaybackController:self.
playbackController options:nil controlsView:[BCOVPUIBa
sicControlView basicControlViewWithVODLayout]];

[_videoContainer addSubview:playerView];
 playerView.translatesAutoresizingMaskIntoConstraints
= NO;
 [NSLayoutConstraint activateConstraints:@[
 [playerView.topAnchor constraintEqualToAnchor:_
videoContainer.topAnchor],
 [playerView.rightAnchor constraintEqualToAnchor:_
videoContainer.rightAnchor],
 [playerView.leftAnchor constraintEqualToAnchor:_
videoContainer.leftAnchor],

Functional Programming    ◾    205

 [playerView.bottomAnchor constraintEqualToAnchor:_
videoContainer.bottomAnchor],
]];
_playerView = playerView;

// Associate playerView with playback controller.
_playerView.playbackController = _playbackController;

[self requestContentFromPlaybackService];
}

- (void)requestContentFromPlaybackService
{
[self.playbackService findVideoWithVideoID:kViewContro
llerVideoID parameters:nil completion:^(BCOVVideo
*video, NSDictionary *jsonResponse, NSError *error) {

 if (video)
 {
 [self.playbackController setVideos:@[video
]];
 }
 else
 {
 NSLog(@"ViewController Debug – The Error
retrieving video: '%@'", error);
 }

}];
}

@end

In this chapter, we covered Functional Programming with writing
methods and a sample of the project in Objective-C.

NOTE
 1. Functional Programming in Objective-C

BIBLIOGRAPHY
 1. Functional Programming in Objective-C – https://bou.io/Functional

ProgrammingInObjectiveC.html, accessed on May 11, 2022.
 2. Objective-C Functions – https://www.tutorialspoint.com/objective_c/objective_

c_functions.htm, accessed on May 11, 2022.

https://bou.io
https://bou.io
https://www.tutorialspoint.com
https://www.tutorialspoint.com

206    ◾    Objective-C

 3. Higher-Order Functions in Objective-C – https://betterprogramming.pub/
higher-order-functions-in-objective-c-850f6c9–0de30, accessed on May 11,
2022.

 4. Functions In Objective-C – https://www.google.com/url?sa=t&rct=j&q=&
esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi-tauczPT6Ah
UCRmwGHVNQDuUQFnoECBwQAQ&url=https%3A%2F%2Fblog.dev-
genius.io%2Ffunctions-in-objective-c-1282145253f2&usg=AOvVaw3sPsel
GfVcc4xKYk3WfGaS, accessed on May 11, 2022.

 5. Essence of object Functional Programming practical potential of Scala –
https://blog.codecentric.de/essence-of-object-functional-programming-
practical-potential-of-scala#:∼:text=Object%2Dfunctional%20program-
ming%20is%20a,and%20principles%20to%20this%20end, accessed on May 12,
2022.

 6. Object-Oriented Functional Programming – https://academy.realm.io/
posts/altconf-saul-mora-object-orientated-functional-programming/,
accessed on May 12, 2022.

 7. Difference between Functional Programming and Object Oriented
Programming – https://www.geeksforgeeks.org/difference-between-functional-
programming-and-object-oriented-programming/, accessed on May 12, 2022.

 8. Functional Programming in Objective-C – https://bou.io/Functional
ProgrammingInObjectiveC.html, accessed on May 12, 2022.

 9. Write Objective-C Code – https://developer.apple.com/library/archive/
referencel ibrar y/Gett ingStar ted/RoadMapiOS-Legacy/chapters/
WriteObjective-CCode/WriteObjective-CCode/WriteObjective-CCode.
html#:∼:text=Objective%2DC%20Is%20a%20Superset%20of%20the%20
C%20Language&text=As%20a%20superset%20of%20the,..else%20and%20
for%20statements, accessed on May 12, 2022.

 10. Objective-C Basic Syntax – https://www.tutorialspoint.com/objective_c/
objective_c_basic_syntax.htm, accessed on May 12, 2022.

 11. Objective-C Hello World Tutorial – https://www.google.com/url?sa=t&rct
=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjuteiE
zfT6AhWBXmwGHTfsAegQFnoECB8QAQ&url=https%3A%2F%2Fwww.
digitalocean.com%2Fcommunity%2Ftutorials%2Fobjective-c-hello-world-
tutorial&usg=AOvVaw3b7aBcZTghSGFmBvL7pZ_t, accessed on May 12,
2022.

 12. Programming in Objective-C: Creating Your First Program – https://www.
google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact
=8&ved=2ahUKEwjuteiEzfT6AhWBXmwGHTfsAegQFnoECCIQAQ&ur
l=https%3A%2F%2Fwww.informit.com%2Farticles%2Farticle.aspx%3Fp%
3D2159356&usg=AOvVaw1saEKgSLXoLUdgeJHHQ31Z, accessed on May
12, 2022.

 13. Write Objective-C Code – https://developer.apple.com/library/archive/reference
library/GettingStarted/RoadMapiOS-Legacy/chapters/WriteObjective-
CCode/WriteObjective-CCode/WriteObjective-CCode.html, accessed on
May 12, 2022.

https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://academy.realm.io
https://academy.realm.io
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://bou.io
https://bou.io
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://blog.codecentric.de
https://blog.codecentric.de
https://blog.codecentric.de
https://betterprogramming.pub/
https://betterprogramming.pub/

207DOI: 10.1201/9781003357506-5

C h a p t e r 5

Code Management

IN THIS CHAPTER

➢➢ Frameworks

➢➢ Memory Management

➢➢ System Design

In the previous chapter, we covered functional programming, and in this
chapter, we will discuss code management with its relevant examples.

Allocate memory for each object used by our program. It must be deal-
located when the object is no longer needed so that our application utilizes
memory as effectively as possible. To prevent memory leaks and references
to nonexistent objects, it is essential to comprehend Objective-memory C’s
management environment.

Unlike C#, Objective-C does not employ trash collection. Instead, it
employs a reference-counting environment that monitors the number
of instances of an object. As long as at least one reference to the object
exists, the Objective-C runtime guarantees that the object is in memory.
Nevertheless, if there are no longer any references to the object, the run-
time is permitted to release it and utilize the memory for something else.
If we attempt to access an object after it has been released, your application
may probably crash.

https://doi.org/10.1201/9781003357506-5

208    ◾    Objective-C

In Objective-C, there are two mutually incompatible methods for man-
aging object references:

•	 Send ways to manually add or reduce the number of references to an
object.

•	 Allow the new automated reference counting (ARC) mechanism in
Xcode 4.2 (and later) to perform the job for you.

•	 Although ARC is the recommended method for managing memory
in new programs, it is still vital to understand what is going on below
the hood. The first section of this chapter demonstrates how to man-
ually track object references, followed by a discussion of the practical
ramifications of ARC.

A framework is conceptually just a mechanism to modularize compiled
code. Frameworks are the best approach to sharing code reused inside and
outside your company. They make maintaining library dependencies sim-
pler than managing a binary package and a global header.

A framework is a specific kind of macOS bundle (and macOS bundles
are simply files) intended for usage by developers. Often, a framework bun-
dle includes development resources (typically statically-built libraries and
interface headers), but it may also include graphics, storyboards, xibs, and
property list files.

A compiler may extract built binaries from a framework and link them
during build or run time. The Finder presents bundles with a .framework
extension as regular folders for easy review by a developer.

Due to these unique characteristics, framework bundles need precise
directory layouts and file placements to function successfully, especially
for their most frequent use, binary code distribution.

WHY MUST WE PERFORM THIS?
There are several reasons why we would want to design a framework and
a few reasons why we must. Frameworks are the ideal approach for us and
our developers to provide built libraries for usage outside our business.
They may also make the structure of a large application much easier to
maintain since we can divide the application into many targets and man-
age each project individually. Fundamentally, there are three fundamental
reasons why frameworks exist:

Code Management    ◾    209

•	 Modularity: Remove and replace independent portions of your source
without worrying about weird compiler errors or linker issues. Work
on discrete portions of our codebase.

•	 Reuse: Group-related processes so that they are reused across our
application or applications.

•	 Encapsulation: Develop portions of your codebase to be wholly inde-
pendent and interference-free.

We are likely already familiar with these concepts. However, due
to the intricacies of establishing a framework, many individuals avoid
doing so.

However, if we’re designing iOS applications that are more complex
than the most fundamental, we should consider frameworks.

ANATOMY OF A FRAMEWORK
There are several methods to build and package a framework bundle, and
our decisions should be based on how you see the framework being used
in production. If we’ve never done anything like this before, it’s good to
familiarize ourselves with Apple’s instructions on framework bundles
before proceeding.

Typically, a structure includes the following:

•	 Compilation of binary code: A well-constructed framework should
have numerous binaries for various processor architectures.

•	 Interface header: Since this is Objective-C, we will need to supply
headers for each class in our framework.

•	 Different resources: Sometimes, frameworks are utilized to distrib-
ute additional resources. There are always better methods to share
resources that belong to our code, such as a dedicated resources
package. Thus we would not recommend doing this.

STATIC AND DYNAMIC FRAMEWORKS
There are two types of frameworks: static and dynamic. The distinction
between the two is precisely as it sounds: static frameworks are connected
during the construction phase, while dynamic frameworks are linked dur-
ing the compilation phase.

210    ◾    Objective-C

Apple’s frameworks are all dynamically linked, whereas yours may be
either. Before iOS 8, dynamic linking of frameworks is only supported on
macOS; however, it is now supported on iOS.

Static frameworks might increase your application’s disc size and build
time since the complete binary is transferred and linked during the build.
Dynamic frameworks only employ the necessary portions of the frame-
work at build time and execute linking during runtime, possibly increas-
ing your App’s start time but decreasing its total disc size.

A further benefit of dynamic frameworks is that frameworks are updated
without rebuilding the application since linking occurs on every startup.

Dynamic frameworks are unquestionably the more current approach,
but there are excellent reasons to utilize static frameworks, particularly for
code distributed outside the enterprise.

ARCHITECTURES AND SLICING OF PROCESSORS
Typically, a framework’s binaries include many copies of the same code
tailored to various processor architectures. These parts are called slices
since they are combined into a single binary. To construct an appropriate
framework, we must include slices for each version of the ARM instruc-
tion set used by iOS devices that we want to support and a slice for the
specific x86 version of iOS used by the iPhone simulator.

DEVELOPING A DYNAMIC STRUCTURE
Creating a dynamic framework using Xcode is far less complicated than
we may believe. We will create the ExampleKit framework in this example,
which includes the EKObject data structure and the EKSession processing
object. We can locate both classes in this location, but we shouldn’t inter-
act with them just yet.

Create a new Xcode project to begin. Select “Cocoa Touch Framework”
and name our project ExampleKit. Building a git repository for our project
is a smart idea.

SETTING UP OUR PROJECT
Let’s examine what Apple’s template currently gives us before we continue.

•	 We already have an umbrella header with explicit instructions for
importing public headers.

•	 All required construction stages are currently in place.

•	 Setting code signing to “do not code sign.”

Code Management    ◾    211

As we’ll see when we construct a static framework, these are advanta-
geous qualities. Apple has completed the majority of the challenging tasks
for us. We simply need to specify a deployment target, the minimal version
of iOS we want to support.

DEVELOPING OUR CODE
If we’ve previously created an iOS App target, we’re likely acquainted with
“target membership.” We know that resources are included in the App’s
“copy resources” build phase, implementation files must be included in the
“compile sources” build phase, and header files are not typically specified
in an App’s build phases.

Add both classes to your project and ensure that they have been copied
to the source directory. After doing so, ensure that both.m files are mem-
bers of our framework’s “ExampleKit” target.

Headers are also part of the construction process and must be target
members when constructing a framework. We may have previously seen
that the target membership option is accessible in the file inspector.h files.
Add them as additional members of the target.

ACCESS CONTROL
When we uploaded the header files to the target, we were also presented
with an access control picker. Ensure both header files are set to “Public”
as opposed to “Project” or “Private.”

These names are somewhat deceptive; all headings will be accessible to
our customers and searchable in the finder, but headers must be expressly
made public to be imported into the umbrella header. In general, we
should place headers that our customers should use in “Public” and head-
ers that are particular to our library’s implementation in “Project” and
“Private.” They are not hidden but won’t appear in code completion, won’t
be imported in our umbrella header, and are commonly recognized as not
being used outside the framework. (This is something Swift permits that
Objective-C does not – real file and project privacy.)

UMBRELLA HEADER
Regarding the umbrella header, we must return and make our newly cre-
ated class interfaces visible. This allows them to be imported with a single
sentence. In the ExampleKit.h file, import them as follows:

#import <ExampleKit/EKObject.h>
#import <ExampleKit/EKSession.h>

212    ◾    Objective-C

UNIVERSAL SUPPORT
We’re using an Xcode template explicitly intended for developing dynamic
frameworks, so most of the setting has already been completed. Compile
our code once to ensure that everything is functioning properly before
continuing.

Remember when we were discussing the business of slicing? Xcode will
only construct our framework for the specified platform and related slices.
Thus, if we develop an iPhone simulator, we will get a framework with an
x86 slice but no ARM slice. If we develop for iPhones, we will get a frame-
work with arm slice(s). However, simulator support is not included.

We will need to construct a script that compiles for *both* platforms and
all viable slices, combines the binaries generated by each and generates a
framework using the structure from one of the two single-platform builds.

set -e
set +u

if [[$SCRIPT_RUNNING]]
then
exit 0
fi
set -u
export SCRIPT_RUNNING=1

Environment Variables
TARGET_NAME=${PROJECT_NAME}
OUTPUT_DIR=${PROJECT_DIR}/Release

Encapsulate the Xcode Build Process
function build_dynamic_framework {

 xcrun xcodebuild -project "${PROJECT_FILE_PATH}" \
 -target "${PROJECT_NAME}" \
 -configuration "${CONFIGURATION}" \
 -sdk "${1}" \
 ONLY_ACTIVE_ARCH=NO \
 BUILD_DIR="${BUILD_DIR}" \
 OBJROOT="${OBJROOT}" \
 BUILD_ROOT="${BUILD_ROOT}" \
 SYMROOT="${SYMROOT}" $ACTION

}

Code Management    ◾    213

Encapsulate the Lipo
function merge_binaries {

 xcrun lipo -create "${1}" "${2}" -output "${3}"

}

1 - Get SDK to determine platform (iphoneos or
iphonesimulator)
if [["$SDK_NAME" =˜ ([A-Za-z]+)]]; then
SDK_PLATFORM=${BASH_REMATCH[1]}
else
echo "Could not find platform name from SDK_NAME:
$SDK_NAME"
exit 1
fi

2 - Get the Opposite Platform (iphonesimulator -->
iphoneos, iphoneos --> iphonesimulator)
if ["$SDK_PLATFORM" == "iphoneos"]; then
OTHER_PLATFORM=iphonesimulator
else
OTHER_PLATFORM=iphoneos
fi

3 - Get build directories
CURRENT_DIR=${BUILD_DIR}/${CONFIGURATION}-${SDK_
PLATFORM}
OTHER_DIR=${BUILD_DIR}/${CONFIGURATION}-${OTHER_
PLATFORM}

4 - Build the Opposite Platform
build_dynamic_framework "${OTHER_PLATFORM}"

5 - Copy Framework Structure
rm -rf "${OUTPUT_DIR}"
mkdir -p "${OUTPUT_DIR}"
cp -R "${BUILD_DIR}/${CONFIGURATION}-${SDK_
PLATFORM}/${PROJECT_NAME}.framework" "${OUTPUT_
DIR}/${PROJECT_NAME}.framework"

214    ◾    Objective-C

6 - Merge Into /Release
merge_binaries "${CURRENT_DIR}/${PROJECT_NAME}.
framework/${PROJECT_NAME}" "${OTHER_DIR}/${PROJECT_
NAME}.framework/${PROJECT_NAME}" "${OUTPUT_
DIR}/${PROJECT_NAME}.framework/${PROJECT_NAME}"

Instead of simply naively copying and pasting this script, ensure we
comprehend its purpose. You may need to adjust it for future Xcode
releases and our project’s particular settings. It may be advantageous to
add the script as a separate file rather than entering it straight into Xcode
so that we can more easily manage it using version control.

This step may not be necessary for every framework build throughout
the development process since it might lengthen the duration of the build.
Several methods exist for separating the platform binding script:

•	 We might manually activate and disable it in the build steps of our
target.

•	 We might construct our script only to execute when the RELASE
setting is used.

•	 Instead of adding the script to our main target’s build phases, we
might establish a new aggregate target, connect our framework tar-
get as a dependency, and add the script to that target’s build phases.

The first choice is the simplest. Precede our opponent’s construction
stages as the final phase. Then, just construct our target for “Generic iOS
Device,” and we’re done; however, we will need to deactivate and re-enable
the script as required.

The second alternative is similarly rather straightforward. Simply
enclose our script in an if statement and determine if the build configura-
tion is configured for release:

if [$CONFIGURATION == Release]; then
script-here
fi

My preferred option is the third one. Create a new aggregate target with
the name “Framework.” Then, add our dynamic framework target as a
dependency and instead add our script to the new “Framework” target.
Then, construct the “Framework” target for “Generic iOS Device” when

Code Management    ◾    215

building a universal binary, and only the framework target when building
a binary containing slices exclusively for the presently chosen platform.

UTILIZING OUR DYNAMIC FRAMEWORK
Our dynamic framework differs somewhat from using Apple’s
OS-integrated dynamically linked frameworks. Because we’re supplying
the binary as part of our App, we must embed it, so the runtime knows to
load and link it from inside the App upon startup.

DEVELOPING A STATIC FRAMEWORK
Constructing a static framework is more complex than building a dynamic
framework since Xcode does not provide a suitable template. Due to this,
we must begin with Xcode’s static library template and add scripting to
package the static library as a framework appropriately.

SETTING UP OUR PROJECT
Create a new Xcode Project and choose the “Cocoa Touch Static Library”
template this time. Again, give this project the name “ExampleKit” and
create a git repository beside it.

We will see some variations if we construct the dynamic framework
before reaching this point. EmampleKit.h does not seem to be intended as
an umbrella header. It defines an interface for a class named ExampleKit
and includes a .m file for implementing the class.

Start by addressing this issue: remove the interface definition from
ExampleKit.h and delete ExampleKit.m.

DEVELOPING OUR CODE
As in the previous example, our static framework will consist of two
classes: EKObject and EKSession. Both are offered here. Add all four files
to your project and ensure that EKObject.m and EKSession.m are included
in your ExampleKit static library target.

ACCESS CONTROL
Previously, we could apply access control to each header by adding it to the
target and selecting its access control level in the file and identity inspec-
tor. Since this template was not intended to be a framework, such func-
tionality is not included. We must manually add a headers phase.

Click the plus sign (+) in the upper left corner of the “Build Phases” sec-
tion of our target’s settings to add a new “header phase.”

216    ◾    Objective-C

Once this is complete, we will be able to add each heading as a mem-
ber to the target and set a level of access control. Ensure that EKSession.h
and EKObject.h are “public,” but exclude ExampleKit.h from the target’s
membership.

UMBRELLA HEADER
Similarly to the dynamic framework, we will expose our headers in the
umbrella header to import them all at once. Proceed to ExampleKit.h and
import them as follows:

#import <ExampleKit/EKObject.h>
#import <ExampleKit/EKSession.h>

Construct our “ExampleKit” target and ensure it builds without any
issues.

PACKAGING
Because we’re using a template intended for a static library, we’ll need to
modify our target to generate a static framework. Our template does not
provide the required directory structure and symbolic links, so we’ll need
to modify our target’s build settings and write a script to do some hard
work.

MODIFY BUILD SETTINGS TO SUPPORT STATIC
FRAMEWORKS

•	 Change the Public Headers Search Path option to include/$(PROJECT
NAME).

•	 Change setting for Dead Code Stripping to NO.

•	 Change the Style of the Strip to Non-Global Symbols.

Rebuild our static target, then right-click on “libExampleKit.a” and choose
“Show in Finder.” Our static library has been condensed into a single bundle
and some headers. However, there is currently no unified framework.

MODULE SUPPORT
The dynamic framework template automatically generates a module map
at build time and installs it in the corresponding directory. Clang Modules

Code Management    ◾    217

are a superior method of importing files than #include (or #import, which
is simply #include without the duplication) and are required if we want
your framework to be compatible with Swift projects. Create a new empty
file with the name “module.modulemap” It requires no target membership.

framework module ExampleKit {
 umbrella header "ExampleKit.h"

 export *
 module * { export * }
}

CREATING THE BUNDLE STRUCTURE
Add the following script as the last build step for our static library target:

set -e
export FRAMEWORK_LOCN="${BUILT_PRODUCTS_
DIR}/${PRODUCT_NAME}.framework"

Create Directory for the Actual Headers Location for
Version A
mkdir -p "${FRAMEWORK_LOCN}/Versions/A/Headers"

Symbolically Link Headers to their Parse Directory
ln -sfh A "${FRAMEWORK_LOCN}/Versions/Current"
ln -sfh Versions/Current/Headers "${FRAMEWORK_LOCN}/
Headers"
ln -sfh "Versions/Current/${PRODUCT_NAME}" \
"${FRAMEWORK_LOCN}/${PRODUCT_NAME}"

Copy the Public Headers Into Their Directory
cp -a "${TARGET_BUILD_DIR}/${PUBLIC_HEADERS_FOLDER_
PATH}/" \
"${FRAMEWORK_LOCN}/Versions/A/Headers"

Create the Module Directory
mkdir -p "${FRAMEWORK_LOCN}/Modules"

Copy the Module Map
cp -f "${SRCROOT}/${PRODUCT_NAME}/module.modulemap"
"${FRAMEWORK_LOCN}/Modules/"

218    ◾    Objective-C

Now, regenerate our static library target for “Generic iOS Device.”
Display our libExampleKit.a product in the finder and examine it! We will
now note that the “ExampleKit.framework” is now included in addition to
the regular build products. Double-clicking should reveal a package with
the correct structure for an objective-C framework.

UNIVERSAL SUPPORT
Similarly to the Dynamic Framework, you must use a script to generate the
target for both platforms and combine their binaries into a single multi-
slice binary. This script differs somewhat from the dynamic framework,
but only slightly. Since we’re essentially merging files that a script rather
than Xcode generated, we’ll need to refer to them using an environment
variable named “STATIC LIB.” This script is executed each time you wish
to make a fat binary, similar to the dynamic framework. There are many
ways to decouple it from our usual build process to allow us more develop-
ment freedom.

set +u 

if [[$SCRIPT_RUNNING]]
then
exit 0
fi
set -u
export SCRIPT_RUNNING=1

Environment Variables
FRAMEWORK_NAME=${PROJECT_NAME}
STATIC_LIB="lib${PROJECT_NAME}.a" # Product of other
target
FRAMEWORK_LOCATION="${BUILT_PRODUCTS_DIR}/${FRAMEWORK_
NAME}.framework" # Product of script in other target
build phase
OUTPUT_DIR=${PROJECT_DIR}/Release

Encapsulate the Xcode Build Process
function build_static_library_and_framework {

 xcrun xcodebuild -project "${PROJECT_FILE_PATH}" \
 -target "${PROJECT_NAME}" \
 -configuration "${CONFIGURATION}" \

Code Management    ◾    219

 -sdk "${1}" \
 ONLY_ACTIVE_ARCH=NO \
 BUILD_DIR="${BUILD_DIR}" \
 OBJROOT="${OBJROOT}" \
 BUILD_ROOT="${BUILD_ROOT}" \
 SYMROOT="${SYMROOT}" $ACTION

}

Encapsulate Lipo
function merge_binaries {

 xcrun lipo -create "${1}" "${2}" -output "${3}"

}

1 - Get SDK to determine the platform (iphoneos or
iphonesimulator)
if [["$SDK_NAME" =˜ ([A-Za-z]+)]]; then
SDK_PLATFORM=${BASH_REMATCH[1]}
else
echo "Could not find platform name from SDK_NAME:
$SDK_NAME"
exit 1
fi

2 - Get the Opposite Platform (iphonesimulator -->
iphoneos, iphoneos --> iphonesimulator)
if ["$SDK_PLATFORM" == "iphoneos"]; then
OTHER_PLATFORM=iphonesimulator
else
OTHER_PLATFORM=iphoneos
fi

3 - Get the build directories
CURRENT_DIR=${BUILD_DIR}/${CONFIGURATION}-${SDK_
PLATFORM}
OTHER_DIR=${BUILD_DIR}/${CONFIGURATION}-${OTHER_
PLATFORM}

4 - Build Opposite Platform
build_static_library_and_framework "${OTHER_PLATFORM}"

220    ◾    Objective-C

5 – Copy the Framework Structure
rm -rf "${OUTPUT_DIR}"
mkdir -p "${OUTPUT_DIR}"
cp -R "${BUILD_DIR}/${CONFIGURATION}-${SDK_
PLATFORM}/${PROJECT_NAME}.framework" "${OUTPUT_
DIR}/${PROJECT_NAME}.framework"

6 - Merge Into /Release
merge_binaries "${CURRENT_DIR}/${STATIC_LIB}"
"${OTHER_DIR}/${STATIC_LIB}" "${OUTPUT_DIR}/${PROJECT_
NAME}.framework/${PROJECT_NAME}"

After deciding how to include this script, rebuild your target for “Generic
iOS Device,” and we’ll discover our static framework in the/Release direc-
tory of our project folder.

UTILIZING OUR STATIC FRAMEWORK
Utilizing our static library in Xcode is equivalent to utilizing any of
Apple’s dynamically linked-platform frameworks. We do not need to
mention ExampleKit.framework as an embedded binary; just add it to our
App target’s “Linked Libraries and Frameworks” target and verify that
our framework bundle resides inside the app project folder. We may get a
finished version of the static ExampleKit framework and a properly con-
nected application.

RECOMMENDATIONS
Developing a universal structure is just half of the fight. Suppose we want
to provide our framework for usage by more than a few individuals with
particular use cases in mind. In that case, there are a few things we should
do to ensure that it will operate in a completely foreign codebase regardless
of the circumstances.

Creating a decent framework cannot be reduced to a collection of rules;
it requires a whole shift in perspective. We must consider that our user is an
engineer who may attempt to accomplish various things with our frame-
work. They may get access to secret implementations, subclass things they
shouldn’t, and put our custom data structures in collections in unantici-
pated ways. They may create terrible code, retain items in memory for too
long, or apply our programming patterns poorly. Our objective is to generate
as many potential situations as possible and prepare for them in advance.

Nevertheless, there are a few solutions to a variety of typical issues.

Code Management    ◾    221

COMPILING AND CONSTRUCTING THE FRAMEWORK
To properly construct our framework for simulators and Real devices such
as iPhones, we must first have appropriate architectural settings.

Open our framework’s.xcodeproj file, navigate the build settings tab,
and search for the Valid Architectures setting. We will notice that the
debug and release options already contain the values armv7, arm7s, and
arm64; if not, add them; compatibility with real devices requires these
architectures.

We may add the Any Simulator SDK option for Simulators in Debug
and Release modes. Add x86 64 and other architectures to this setting.

UPLOADING AN APPLICATION’S FRAMEWORK
TO THE APP STORE
Ensure the following before creating a successful archive for our software
and sending it to the App Store:

•	 If we want to activate bitcode in our framework, ensure that the bit-
code settings have been added to the framework. Go to the frame-
work project settings and, for each target, change the Enable Bitcode
option to YES for both Debug and Release modes.

Search for bitcode configurations. Add -fembed-bitcode to both
the Debug and Release modes, or add -fembed-bitcode-marker to the
Debug mode and -fembed-bitcode to the Release mode.

Add BITCODE GENERATION MODE to the User Defined set-
tings section, and then add bit code for both Debug and Release
modes, or add a marker in Debug and bitcode in Release mode.

•	 Open our App project, navigate to the target App settings, and then
to the Build Phases page, where we may add the following Run Script
to eliminate incompatible architecture before uploading the build.

Mention the input file path as our.framework file path, such as

$(SRCROOT)/Frameworks/AppColors/AppColors.framework

MEMORY MANAGEMENT IN OBJECTIVE-C
Memory management is a necessary procedure in every programming
language. It is the process by which objects’ memory is allocated when
needed and deallocated when they are no longer needed.

222    ◾    Objective-C

Object memory management is a performance issue; if an application
does not release unused objects, its memory footprint expands and perfor-
mance decreases.

Objective-C memory management approaches may be divided into two
categories.

•	 “Manual Retain-Release” or MRR

•	 “Automatic Reference Counting” or ARC

“MANUAL RETAIN-RELEASE” OR MRR
In MRR, we manage memory explicitly by keeping track of the items
independently. This is accomplished by using a model known as reference
counting, which is provided by the Foundation class NSObject in combi-
nation with the runtime environment.

The only difference between MRR and ARC is that we handle the retain
and release manually in the former while handled automatically in the latter.

The diagram shown below is an example of how memory management
works in Objective-C.

Manual retain-release.

The Class A object’s memory life cycle is shown in the diagram above.
As you can see, the retain count is shown under the object; when the retain

Code Management    ◾    223

count reaches 0, the item is liberated, and its memory is reallocated for
other objects to utilize.

The alloc/init function in NSObject is used to construct the Class A
object. The number of retains is now 1.

Class B now keeps Class A’s object, and Class A’s object now has a retain
count of 2.

The item is then copied by Class C. It is now constructed as a new
instance of Class A, with the same instance variables. The retain count is 1
instead of the original object’s retain count. The second horizontal line in
the diagram represents this.

Class C uses the release method to release the copied object, which
causes the keep count to drop to 0 and the item to be destroyed.

The keep count for the original Class A Object is 2, and it must be
released twice before it may be destroyed. This is accomplished using Class
A and Class B release statements to set the keep count to 1 and 0, respec-
tively. The thing is finally destroyed.

Basic MRR Rules

•	 We own whatever we make: a method that starts with “alloc,” “new,”
“copy,” or “mutableCopy” is used to construct an object.

•	 We may use retained to acquire ownership of an object: a received
object is usually guaranteed to stay valid inside the method in which
it is received. That method may also return the object to its invoker
securely. Retain is used in two scenarios.

•	 We use an accessor method or an init method to gain ownership
of an object we wish to save as a property value.

•	 To avoid the invalidation of an object as a result of another
action.

•	 When we no longer need something, we must give up owner-
ship of it: a release message or an autorelease message is used to
relinquish control of an item. Consequently, relinquishing own-
ership of an item is referred to as “releasing” an object in Cocoa
parlance.

•	 We must not give up ownership of something we don’t own: this is a
consequence of the previously mentioned policy norms.

224    ◾    Objective-C

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
- (void)sampleMethod;
@end

@implementation SampleClass
- (void)sampleMethod {
 NSLog(@"Hello, Everyone \n");
}

- (void)dealloc {
 NSLog(@"Object deallocated");
 [super dealloc];
}

@end

int main() {

 /* my first program in the Objective-C */
 SampleClass *sampleClass = [[SampleClass alloc]
init];
 [sampleClass sampleMethod];

 NSLog(@"Retain Count after the initial allocation:
%d",
 [sampleClass retainCount]);
 [sampleClass retain];

 NSLog(@"Retain Count after the retain: %d",
[sampleClass retainCount]);
 [sampleClass release];
 NSLog(@"Retain Count after the release: %d",
[sampleClass retainCount]);
 [sampleClass release];
 NSLog(@"SampleClass dealloc will call before
this");

 // Should set object to nil
 sampleClass = nil;
 return 0;
}

Code Management    ◾    225

“AUTOMATIC REFERENCE COUNTING” OR ARC
Automatic Reference Counting, or ARC, employs the same reference
counting approach as MRR, but it inserts the proper memory manage-
ment method calls for us at build time. For new projects, we are highly
recommended to adopt ARC. If we utilize ARC, we usually don’t need to
know about the underlying implementation detailed in this chapter, while
it could be helpful in some instances.

We do not need to introduce release and retain methods in ARC since
the compiler will take care of it. Objective-C core methodology hasn’t
changed. Internally, it makes it simpler for the developer to write with-
out worrying about the retain and release actions, reducing the amount of
code written and the risk of memory leaks.

Another notion called garbage collection is utilized in Mac OS X along-
side MRR, but it hasn’t been acknowledged since its deprecation in OS X
Mountain Lion. Furthermore, trash collection was never available for iOS
objects. Garbage collection is also not used on OS X while using ARC.

Here’s an example of an ARC. Because the online compiler does not
support ARC, this will not work.

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
- (void)sampleMethod;
@end

@implementation SampleClass
- (void)sampleMethod {
 NSLog(@"Hello, everyone \n");
}

- (void)dealloc {
 NSLog(@"Object deallocated");
}

@end

int main() {
 /* my first program in the Objective-C */
 @autoreleasepool {
 SampleClass *sampleClass = [[SampleClass alloc]
init];

226    ◾    Objective-C

 [sampleClass sampleMethod];
 sampleClass = nil;
 }
 return 0;
}

Effective Procedures Prevent Memory-Related Issues

There are two primary types of problems caused by improper memory
management: 

•	 Releasing or erasing data that is currently in use.

•	 This often results in the program crashing or, in the worst case, dam-
aged user data.

•	 Memory leaks result from the failure to release inactive data.

•	 A memory leak occurs when allocated memory is not released,
despite never being utilized again. Our program uses ever-increasing
quantities of memory due to memory leaks, which may result in poor
system performance or the termination of our application.

DEBUG MEMORY ISSUES USING ANALYSIS TOOLS
We may use the Clang Static Analyzer included in Xcode to find flaws with
your code at compilation time.

If memory management difficulties do emerge, there are additional
tools and approaches we may use to identify and diagnose the problems.

Many of the tools and approaches, including the usage of NSZombie to
aid detect over-released objects, are explained in Technical Note TN2239,
iOS Debugging Magic.

Instruments may be used to monitor reference counting events and
detect memory leaks.

THE GOAL OF MEMORY MANAGEMENT
The objective of any memory management system is to lower a program’s
memory footprint. Controlling the lifespan of objects produced inside the
application accomplishes this. According to memory management best
practices, objects should only live for as long as necessary and not a mil-
lisecond longer.

iOS and OS X Apps have developed an object ownership model. An
internal reference-counting mechanism keeps track of how many owners

Code Management    ◾    227

each object has. When an item is claimed as one’s own, the reference count
increases by one. The opposite also holds true. After the item is released
(when it is no longer needed), its reference count is decreased. As long as
the reference count is more than zero, the existence of an object is assured.
However, once the count approaches zero, the operating system is permit-
ted to delete it.

Historically, developers manually managed an object’s reference count
using specific memory management methods supplied by the NSObject
protocol. The term for this is Manual Retain Release (MRR). Automatic
Reference Counting (ARC) is implemented in Xcode 4.2 to insert these
method calls automatically.

Avoid Crashing

Manually regulating object ownership may be difficult and time-consum-
ing, mainly because a programmer must remember to surrender posses-
sion of the object when using it. This is a routine that is required but not
always practicable. This implies that every alloc, retain, and copy call must
be paired with a release or autorelease on the same object.

A memory leak or a dangling pointer will happen if these calls are not
balanced. If an object is not released, its underlying memory will never
be removed, resulting in a memory leak. Minimal leakage will have no
discernible impact on your software. However, if enough memory is used,
the software will ultimately crash! In contrast, if we repeatedly attempt to
release an object, we will have what is known as a dangling pointer. When
we attempt to access the hanging pointer, you will be requesting an invalid
memory location, and your software will likely fail once again.

Strong vs Weak

Both strong and weak references exist between things. A strong reference
implies ownership; a strong property increments the object’s reference
count. The referent object is the owner of the referred item. A weak refer-
ence means that the object referred to does not possess the referenced item.
Weak references do not increase the object’s reference count. The lifespan
of an item is defined by the number of strong references to it. An item is
not released as long as it is strongly referenced. The weak identifies a refer-
ence that does not maintain the life of the referred object. If there are no
strong references to an object, the weak reference is null.

Strong is the default attribute for object types in ARC. An item is con-
sidered “alive” as long as a strong pointer points.

228    ◾    Objective-C

Atomic and Nonatomic

Atomicity relates to the behavior of the class or object in a multithreaded
environment. Atomic accessors guarantee that the value is entirely set or
retrieved in the thread that is accessing the variable.

In setting or retrieving a specific property, an atomic accessor is consid-
ered thread-safe.

Atomic accessors do not guarantee thread safety for the whole class.
They merely assure that the property is not accessed during the set.

Making accessors atomic reduces speed since the compiler must run
more instructions when accessing our values.

Make them atomic when threads are possible.
If we know they are not accessed in a threaded environment, make

them non-atomic. Therefore, non-atomic is much quicker than atomic.
Nonatomic is used to indicate that the referenced object is not

thread-safe. This indicates that the item cannot handle several requests
simultaneously. Defines a reference that does not maintain the object’s
existence. If there are no strong references to an object, the weak refer-
ence is null.

DESIGN PATTERNS IN iOS
iOS design patterns aid in providing reusable solutions to common dif-
ficulties such as creating complicated code structures and managing code
when building Apps. In a nutshell, it’s a template for reusing and under-
standing code.

There are several design patterns available for creating seamless iOS
applications. We may know how to construct an iOS App, but to design
iOS Apps successfully and efficiently, we must first grasp iOS design pat-
terns. Although design patterns may not be flashy, and most developers
may not pay much attention to them, they are pretty crucial. Design pat-
terns are reusable solutions to typical software development challenges.
A design is simply a template that assists developers in writing code that
is simple to comprehend and reusable. In addition, the use of design pat-
terns enables the developer to modify or replace code pieces with relative
simplicity and speed.

As a result of how Cocoa has been constructed, Cocoa developers will
discover that they are already using iOS patterns. These design patterns
are in place to aid developers in adhering to best practices to expedite and
simplify the development process.

Code Management    ◾    229

Design patterns are reusable solutions to common software design chal-
lenges. They are templates meant to assist us in writing code that is sim-
ple to comprehend and reuse. The following are the most frequent Cocoa
design patterns:

•	 Creational: Singleton

•	 Structural: Decorator, Adapter, and Facade

•	 Behavioral: Observer and Memento

FAÇADE
The Facade design pattern creates a unified user interface for a compli-
cated subsystem. Instead of providing a collection of classes and APIs to
the user, we just offer one basic unified API.

Façade design pattern.

This design helps work with many classes, especially if they are challeng-
ing to use or comprehend. If the classes beneath the facade are expected
to change, the facade class can keep the same API while things change
behind the scenes. For example, if you decide to update our backend ser-
vice, we will only need to alter the code that utilizes our API, not the code
within our Facade.

When to Use the Facade Pattern?

•	 During the development of a complicated subsystem, design patterns
provide a straightforward and consistent interface.

•	 A Facade design pattern is used to split a subsystem into many levels.

230    ◾    Objective-C

An Illustration of Facade Design Pattern
The computer startup is the best illustration of a Facade design pat-
tern. Many components, such as RAM, hard disc, and motherboard, are
required for the computer to boot. A computer will present all capabilities
via a single interface to simplify the process.

The Facade design pattern accomplishes the same goal by concealing
the system’s complexity and facilitating the client’s access to the system.

DECORATOR
The Decorator design dynamically adds behaviors and responsibilities
to an object without altering its code. It is an alternative to subclassing in
which the functionality of a class is altered by wrapping it in another object.

Category and Delegation are two typical implementations of this pat-
tern in Objective-C. Extensions and Delegation are two extremely typical
implementations of this paradigm in Swift.

This is used to separate implementation-specific behavior from the
generic class. Many iOS UI components, such as UIScrollView, employ
delegates to control their behavior. As this is an application-specific job,
the UIScrollView class is unaware of the scrolled content. To inform the
application of scrolling events, the UIScrollViewDelegate is used. The
application may implement the delegate and intercept the scrolling events
given by UIScrollView.

When Should We Use a Decorator Pattern?

When an expansion is required, the Decorator design pattern is used. For
instance, the Windows operating system features need “optional” compo-
nents such as the title bar, status bar, and scrollbars.

Objects also implement the “decoration” extension of this design style.
These objects have a similar interface, characteristics, superclass, and
intermediate superclasses.

Example of Decorator Style Design
The Decorator dynamically assigns additional object responsibilities. The
decorations put on pine or fir trees are known as decorators. Decorate a
tree with lights, garland, candy canes, glass ornaments, etc.

The decorations have little influence on the overall aesthetic of the tree,
which remains recognized as a Christmas tree regardless of its presence.
The installation of lights, which can “light up” a Christmas tree, may dis-
play additional functionality.

Code Management    ◾    231

MEMENTO
Memento Pattern keeps our information someplace. This externalized
state is later restored without breaking encapsulation; private data stays
private. Archiving, Serialization, and State Restoration are examples of
Memento pattern implementations.

ADAPTER
The Adapter design pattern transforms a class’s interface into another
interface that customers anticipate. The adapter makes it possible for
classes with conflicting interfaces to collaborate. It decouples the cli-
ent from the targeted object’s class. Apple employs protocols to do its
tasks. Protocols like UITableViewDelegate, UIScrollViewDelegate,
NSCoding, and NSCopying may be familiar. Using the NSCopying
protocol as an example, any class may implement a standard copy
function.

When to Use an Adapter?

•	 When a third-party class is required, its interface does not match the
actual application’s code.

•	 In the lack of specialized functionality and limited extensibility, an
Adapter is used with existing subclasses.

Illustration of Adapter Pattern
Suppose you have a Bird class with the fly() and create sound meth-
ods (). Additionally, the ToyDuck class has a squeak() function. Now
that you’re short on ToyDuck items, you want to replace them with
Bird items. Birds possess comparable skills, but their interface is dis-
tinct; thus, we cannot use them directly. Consequently, we will use the
Adapter pattern. A bird would be our client, whereas ToyDuck would be
our customer.

OBSERVER
The Observer design pattern establishes a one-to-many dependence
between objects such that when the state of one objects changes, its
dependents are immediately alerted and changed. The Observer pattern
is simply a publish-and-subscribe paradigm with loose coupling between
the topic and its observers. There may be communication between the

232    ◾    Objective-C

observer and the observed item without each party knowing a great deal
about the other. The observer pattern is implemented in Cocoa in two
ways: Notifications and Key-Value Observing (KVO). Delegate: This is
used to prevent implementation-specific behavior from being included in
the generic class. Many iOS UI components, such as UIScrollView, employ
delegates to control their behavior. As this is an application-specific job,
the UIScrollView class is unaware of the scrolled content. To inform the
application of scrolling events, the UIScrollViewDelegate is used. The
application may implement the delegate and intercept the scrolling events
given by UIScrollView.

When Should We Use a Decorator Pattern?

When an expansion is required, the Decorator design pattern is used. For
instance, the Windows operating system features need “optional” compo-
nents such as the title bar, status bar, and scrollbars.

Objects also implement the “decoration” extension of this design style.
These objects have a similar interface, characteristics, superclass, and
intermediate superclasses.

Example of Decorator Style Design
The Decorator dynamically assigns additional object responsibilities. The
decorations put on pine or fir trees are known as decorators. Decorate a
tree with lights, garland, candy canes, glass ornaments, etc.

The decorations have little influence on the overall aesthetic of the tree,
which remains recognized as a Christmas tree regardless of its presence.
The installation of lights, which can “light up” a Christmas tree, may dis-
play additional functionality.

STRATEGY
Strategy pattern permits the modification of an algorithm’s behavior dur-
ing runtime. We may build a family of algorithms using interfaces and
encapsulate and make them interchangeable, enabling us to choose which
algorithm to execute at runtime.

FACTORY
Factory method design makes adding or deleting new kinds from the
codebase easier. We just need a new class and a new factory to create a
new type.

Code Management    ◾    233

COMMAND
The Command design pattern encapsulates a request as an object, allow-
ing you to parameterize clients, queue or log requests, and offer undoable
activities. The request object connects one or more operations on a single
receiver. The Command pattern distinguishes between objects that make
a request and those that receive and execute that request. For example,
Mechanism of targeted action.

COMPOSITE
The Composite design pattern assembles linked elements into tree struc-
tures to describe part-whole hierarchies. It allows clients to handle indi-
vidual objects and object combinations consistently. It is a component
of the Model-View-Controller aggregation pattern. For example, View
Hierarchy.

ITERATOR
The Iterator design pattern enables sequential access to the components
of a collection or other aggregate object without disclosing its underlying
representation. The Iterator pattern moves the accessing and traversal of
a collection’s items from the collection itself to an iterator object. Iterator
provides an interface for accessing collection items and maintains the
current element’s position. Different iterators may implement distinct tra-
versal strategies. For example, Enumerators.

MEDIATOR
The Mediator design pattern specifies an item that encapsulates how a col-
lection of things communicate. The mediator encourages loose coupling
by preventing objects from explicitly referencing one another, enabling us
to modify their interaction independently. This increases the reusability
of some items. In this paradigm, a “mediator object” centralizes compli-
cated communication and control logic across system components. These
objects inform the mediator object when their status changes and reply to
requests made by the mediator object. Instances include Controller Classes
in the AppKit Framework and View Controllers in UIKit.

SINGLETON
The Singleton design pattern assures that a class has only one instance and
gives a global point of access to that instance. The class maintains track
of its one instance and prevents further instances from being generated.

234    ◾    Objective-C

Singleton classes should be used when it makes sense for a single object
to offer access to a global resource. Typically, it employs lazy loading to
generate the instance only when required for the first time.

When Should We Use the Singleton Design Pattern?

If we are needed to manage resources, you should implement this design
technique. We must replace a Singleton with a connection pooling HTTP
client that is more efficient and resource-friendly.

Illustration of Singleton Pattern
The Singleton function is indicated when just one instance of a class or a
single object copy is required. Global access is allowed for a single instance.
It employs a lazy loading strategy to create a single instance on the first
attempt.

MVC

•	 Models: These are in charge of the domain data or a data access layer
that manipulates the data; for example, consider the “Person” or
“PersonDataProvider” classes.

•	 Views: Views are in charge of the presentation layer (GUI) in the iOS
environment; consider everything beginning with the “UI” prefix.

•	 Controller/Presenter/ViewModel: The glue or mediator between the
Model and the View, in general, responsible for adjusting the Model
by reacting to user actions on the View and updating the View with
Model changes.

MVC model.

Code Management    ◾    235

The ViewController is the owner of the Model and contains the View.
The issue is that we used to write both the controller and view code in the
ViewController. It complicates the ViewController. That’s why it’s known
as a Massive View Controller. When developing a ViewController test, you
must mimic the view and its life cycle. However, opinions are tough to
ridicule. And we don’t want to fake the view if we’re simply testing the
controller logic. All of these factors contribute to the difficulty of writing
examinations.

Viewcontroller of MVC.

MVP

MVP model.

Model View Presenter comprises three elements: the Presenter
(UIKit-independent mediator), the Passive View (UIView and/or
UIViewController), and the Model. This pattern identifies Views as the
receivers of UI events, calling the required Presenter. In reality, it is the
responsibility of the Presenter to update the View with the new data sup-
plied by the Model. View has a looser connection to the model. Responsible
for linking the Model to the View is the Presenter. Interface-based

236    ◾    Objective-C

interaction with the view facilitates unit testing. Typically, View to
Presenter Means one-to-one mapping. There may be several speakers for
intricate perspectives.

MVVM
In MVVM, the View solely contains visual aspects such as layout, anima-
tion, and initializing UI components. The ViewModel is a specific layer
that exists between the View and the Model. ViewModel is the author-
itative representation of View. In other words, the ViewModel offers a
collection of interfaces, each representing a UI component in the View.
We utilize the “binding” approach to link UI components to ViewModel
interfaces.

Specifically, for MVVM in iOS programming, the View is represented
by UIView/UIViewController. We only do:

•	 Initiate, layout, and display UI components.

•	 Connect UI elements to the ViewModel.

In contrast, we perform the following in the ViewModel:

•	 Create controller logic, including pagination and error handling.

•	 Write presentational logic and give View interfaces.

Feature Assessment

The MVVM View has more responsibilities than the MVP View, even
though this is not immediately apparent in our little example. Because
the first one changes its state from the View Model by establishing bind-
ings, the second one transmits all events to the Presenter without updat-
ing itself.

Testability – the View Model is ignorant of the View, simply allowing
us to test it. The View is checked, but as it is dependent on UIKit, we may
wish to avoid it.

Easy to use – it has the same amount of code as MVP in our example,
but in the actual App, where we would have to send all events from the
View to the Presenter and manually update the View, MVVM would be
far slimmer if bindings are utilized.

Code Management    ◾    237

VIPER
Difficulties with MVVM:

It is compounded on iOS by the absence of bindings and the inclination
to continue transferring too many tasks from a view controller class to a
view model class.

Without good, reusable, tested, and single-responsibility components,
the use of any MVVM solution is limited.

Simply stating “we’re using MVVM” or having a rudimentary imple-
mentation of MVVM in a project without analyzing how it improves our
code reuse, efficiency, and adherence to the single responsibility principle
can mislead us on how beneficial or maintainable the design is.

VIPER applies Clean Architecture to iOS applications. VIPER in
Objective-C is an acronym that stands for View, Interactor, Presenter,
Entity, and Routing. Clean Architecture separates the logical framework
of an application into different levels of responsibility. This makes it easy to
separate dependencies (such as our database) and test interactions at layer
boundaries.

The main VIPER components are:

•	 View: It shows what the Presenter instructs it to and communicates
user input to the Presenter.

•	 Interactor: It includes business logic given by a use case.

•	 Presenter: It contains view logic for preparing material for display
(as provided by the Interactor) and responding to user inputs (by
requesting new data from the Interactor).

•	 Entity: It stores fundamental model items used by the Interactor.

•	 Routing: It contains navigation logic detailing the sequence in which
screens are shown.

WHAT ARE THE ADVANTAGES OF EMPLOYING iOS
DESIGN PATTERNS?
The design pattern improves the definition of interfaces and is device-spe-
cific. However, it is entirely up to us to use the code and add it to a particu-
lar template. The table below summarizes the advantages of employing iOS
design patterns.

238    ◾    Objective-C

Benefit Explanation
Bring Tested
Solutions

Design patterns assist you in resolving software development
challenges and guiding us through all of the phases.

Code Unification Design patterns also help to tackle the problem by providing standard
solutions that have been tested for specific faults and restrictions. It
will help us identify errors in the App’s architectural design when
organizing and developing.

Common
Vocabulary

Other developers can readily grasp the solutions you have created to meet
the difficulty by just expressing the name of a given design pattern.

Prepared to Develop iOS Applications Using iOS Design Patterns

This tutorial provides top iOS design patterns that are simply used in iOS
applications. We discovered the definition, examples, and justifications for
using iOS design patterns.

Using the mentioned iOS design patterns may significantly enhance
our App development.

Consult our seasoned App development team if we want to design iOS
mobile applications. As the leading iOS mobile App development firm, we
can assist in creating a fully working iOS application utilizing the most
recent iOS design principles.

In this chapter, we covered code management with its relevant examples.

BIBLIOGRAPHY
	 1.	 Obj-C Memory Management.
	 2.	 Advanced Memory Management Programming Guide.
	 3.	 iOS: Design Patterns: Chetan Aggarwal.
	 4.	 Nine Best iOS Design Patterns to Develop Powerful iPhone Apps.
	 5.	 Obj-C Memory Management – https://www.tutorialspoint.com/objective_c/

objective_c_memory_management.htm, accessed on May 13, 2022.
	 6.	 Memory management – https://livebook.manning.com/book/objective-c-

fundamentals/chapter-9/, accessed on May 13, 2022.
	 7.	 Programming in Objective-C: Creating Your First Program – https://www.

informit.com/articles/article.aspx?p=2159356, accessed on May 13, 2022.
	 8.	 Creating Your First Objective-C Application – https://andybargh.com/cre-

ate-your-first-objective-c-application/, accessed on May 13, 2022.
	 9.	 Creating your custom Objective-C Framework for iOS Apps – https://

prathma.medium.com/creating-your-custom-objective-c-framework-for-
ios-apps-5d5ccf95c6c7, accessed on May 13, 2022.

	 10.	 About Memory Management – https://developer.apple.com/library/archive/
documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt
.html, accessed on May 13, 2022.

	 11.	 Memory Management in Objective-C – https://medium.com/@JanlCodes/
memory-management-in-objective-c-7acc36d20caf, accessed on May 13, 2022.

	 12.	 Best iOS Design Patterns to Develop Powerful iPhone Apps – https://www.
spaceotechnologies.com/blog/ios-design-patterns, accessed on May 13, 2022.

https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://livebook.manning.com
https://livebook.manning.com
https://www.informit.com
https://www.informit.com
https://andybargh.com
https://andybargh.com
https://prathma.medium.com
https://prathma.medium.com
https://prathma.medium.com
https://developer.apple.com
https://developer.apple.com
https://medium.com
https://medium.com
https://www.spaceotechnologies.com
https://www.spaceotechnologies.com

239DOI: 10.1201/9781003357506-6

C h a p t e r 6

Code Optimization

IN THIS CHAPTER

➢➢ Optimization Tips

➢➢ Writing Secure Code

➢➢ Best Coding Practices

➢➢ Security and Hardening Ideas

The previous chapter covered frameworks, memory management, and sys-
tem design in Objective-C. In this, we will discuss code optimization.

OBJECTIVE-C CODE OPTIMIZATION AT COMPILE TIME
Code optimization is developing or rewriting code so that a program uti-
lizes the least amount of memory or disk space, requires the least CPU
time or network bandwidth, or makes the most effective use of additional
cores.

Code compilation is one of the necessary procedures (together with
linking, bundling the resources, code signing, and so on).

Our source code was initially created in a high-level programming lan-
guage, such as Objective-C, Swift, or C++. It is the compiler’s responsibil-
ity to convert our high-level source code into low-level machine code to
generate an executable program. There are other sorts of compilers, but in
the iOS/macOS ecosystem, we only deal with frontend and backend com-
pilers. The frontend translates our source code into an intermediate lan-
guage that the backend can comprehend. This intermediate representation

https://doi.org/10.1201/9781003357506-6

240    ◾    Objective-C

is converted into machine code by the backend, taking into account the
individual operating system and processor architecture. This is the core of
these two entities.

Different pipelines exist for Swift and Objective-C, although LLVM
supports both.

LLVM is a large project that consists of LLVM Core as the backend,
and Clang as the “LLVM native” frontend for the C language family (C/
Objective-C/C++/Objective-C ++), and an interaction protocol between
the frontend and backend. The primary component of this protocol is
LLVM IR (Intermediate Representation) – the intermediate language
that can be understood by both the front and back ends. It is irrelevant
to LLVM Core whatever front-end generated the source code’s IR-code.
The Core simply manipulates this representation to build an executable or
dynamic library.

OBJECTIVE-C PIPELINE
So the pipeline for good old Objective-C code looks like this:

Objective-C pipeline.

As you can see, the first conversion Clang does on our code is the devel-
opment of an AST’ (Abstract Syntax Tree) – a representation in which all
of the functions, operators, variables, declarations, etc. are nodes of a mas-
sive semantic tree. Here’s an AST example:

$ cat test1.cc
 int f(int y) {
 int result = (y / 42);
 return result;
 }

which then turns into:

$ clang -Xclang -ast-dump -fsyntax-only test1.cc
 TranslationUnitDecl 0x5aea0d0 <<invalid
sloc>>

Code Optimization    ◾    241

 ... cutting out internal declarations of clang ...
 '-FunctionDecl 0x5aeab50 <test.cc:1:1,
line:4:1> f 'int (int)'
 |-ParmVarDecl 0x5aeaa90 <line:1:7, col:11> x
'int'
 '-CompoundStmt 0x5aead88 <col:14, line:4:1>
 |-DeclStmt 0x5aead10 <line:2:3, col:24>
 | '-VarDecl 0x5aeac10 <col:3, col:23> result
'int'
 | '-ParenExpr 0x5aeacf0 <col:16, col:23>
'int'
 | '-BinaryOperator 0x5aeacc8 <col:17,
col:21> 'int' '/'
 | |-ImplicitCastExpr 0x5aeacb0 <col:17>
'int' <LValueToRValue>
 | | '-DeclRefExpr 0x5aeac68 <col:17> 'int'
lvalue ParmVar 0x5aeaa90 'x' 'int'
 | '-IntegerLiteral 0x5aeac90 <col:21>
'int' 42
 '-ReturnStmt 0x5aead68 <line:3:3, col:10>
 '-ImplicitCastExpr 0x5aead50 <col:10> 'int'
<LValueToRValue>
 '-DeclRefExpr 0x5aead28 <col:10> 'int'
lvalue Var 0x5aeac10 'result' 'int'

The AST is then translated into LLVM IR, which is lower level
(less human-readable), but some parts of the source code may still
be understood (a comprehensive description of the language can find
here):

int main()
{
 return 0;
}

which then turns into

define i32 @main() #0 {
 %1 = alloca i32, align 4
 store i32 0, i32* %1
 ret i32 0
 }

242    ◾    Objective-C

Clang passes LLVM IR to LLVM Core, optimizing (if appropriate)
and converting the code to target-specific machine code. Consequently,
we have a collection of object files (*.o) that are subsequently linked and
combined into an executable or dynamic library. This final output is often
referred to as a “a.out,” “.dylib,” or “.so” file.

As was previously evident, LLVM Core is where code optimiza-
tion occurs, and Intermediate Representation is the source of these
optimizations.

Here are the LLVM optimization levels and their short descriptions:

•	 None [-O0]: The compiler does not optimize source code. With
this option, the compiler aims to decrease the cost of compilation
and deliver anticipated results from debugging. Statements are
independent: if you pause the program with a breakpoint between
statements, you may add a new value to any variable or move the
program counter to any other statement in the function and get
the expected results from the source code. Use this option dur-
ing development when we intend to resolve logic issues and need a
quick compilation time. Do not utilize this shipping option for our
executable.

•	 Fast [-O, O1]: The compiler performs simple optimizations to
improve code performance while reducing the effect on compile time.
Additionally, this option consumes more RAM during compilation.

•	 Faster [-O2]: The compiler executes almost all available optimizations
that do not need a trade-off between space and time. This option pre-
vents the compiler from making loop unrolling and function inlin-
ing. This option boosts both compilation time and produced code
performance.

•	 Fastest [-O3]: The compiler does all optimizations to increase the
resulting code’s performance. This option may cause the resulting
code to be larger since the compiler will aggressively inline routines.
(This choice is often not advised.)

•	 Fastest, Smallest [-Os]: The compiler does all optimizations that do
not normally increase the size of the source code. This is the prefer-
able method for shipping code since it reduces the memory footprint
of the executable.

Code Optimization    ◾    243

•	 Quickest and Aggressive Optimisation [-Ofast]: This option allows
“Fastest” and aggressive optimizations that may violate stringent
standards compliance but should function well with well-behaved
code.

SECURE CODE

•	 Incorrect platform usage: To save sensitive data, use adequate
keychain security.

•	 Keychain safety: Make certain that the program deletes the user’s
data when the user logs out.

Keychain data linked with the program is not cleared off by default
following uninstalling. If a user reinstalls the software and attempts
to login with a different user, it may unintentionally provide access to
the prior user’s account. To avoid this, ensure that the related appli-
cation’s keychain data is checked and deleted when it is launched for
the first time after reinstallation. The following code may use to do
the wiping procedure:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)
launchOptions
{
 //Clear keychain on the first run in case of
reinstallation
 if (![[NSUserDefaults standardUserDefaults]
objectForKey:@"FirstRun"]) {
 // Delete the values from the keychain
here
 [[NSUserDefaults standardUserDefaults]
setValue:@"1strun" forKey:@"FirstRun"];
 [[NSUserDefaults standardUserDefaults]
synchronize];
 }
}

According to the kSecAttrAccessible property, iOS provides the
following restricted protection class:

- kSecAttrAccessibleAlwaysThisDeviceOnly: Keychain
data can always access, regardless of device is

244    ◾    Objective-C

locked or not. These data won't include in an
iCloud or local backup.
- kSecAttrAccessibleAfterFirstUnlock: Keychain
data can't be accessed after a restart until the
device has been unlocked once by the user.
- kSecAttrAccessibleAfterFirstUnlockThis
DeviceOnly: Keychain data can't be accessed after
a restart until the device has been unlocked once
by a user. This attribute items do not move to a
new device. As a result, when restoring from a
backup of a different device, these items will be
missing.
- kSecAttrAccessibleWhenUnlocked: Keychain data
can be accessed only while the user unlocks the
device.
- kSecAttrAccessibleWhenUnlockedThisDeviceOnly:
The data in Keychain item can be accessed only
while the user unlocks the device. The data won't
include in an iCloud or local backup.
- kSecAttrAccessibleWhenPasscodeSetThis
DeviceOnly: Keychain data can be accessed only
when the device is unlocked. This protection class
is only available if a passcode is set on the
device. The data won't include in an iCloud or
local backup.

•	 Unsafe data storage: It is not suggested to store sensitive data on the
client-side.

Only the refresh token may be kept locally on the keychain if an
application utilizes OAuth for login.

To login while using offline authentication, use Password-Based Key
Derivation Function 2.

Security Breach through HTTPS Response Cache

After logging out, it is best to delete any cached replies.

[[NSURLCache sharedURLCache] removeAllCached
Responses];

Implement Empemeral configuration property of the URLSession
instead of the cookie, which store session-related data in RAM instead of
the local cache ..ephmeral

Code Optimization    ◾    245

The cache can also disable by setting cache policy to .notAllowed. It
prevents storing cache in memory or disk.

RESUME BACKGROUND DISCLOSURE OF
SCREENSHOT DATA

@property (UIImageView *)backgroundImage;

- (void)applicationDidEnterBackground:(UIApplication
*)application {
 UIImageView *myBanner = [[UIImageView alloc]
initWithImage:@"overlayImages1.jpg"];
 self.backgroundImage = myBanner;
 [self.window addSubview:myBanner];
}

•	 Unsafe communication: It is not suggested to utilize insecure proto-
cols such as HTTP, FTP, and so on.

Sending sensitive data across other channels should be avoided (e.g.,
SMS, MMS, or notifications).

All communication should take place over a secure channel that sup-
ports the following:

SSL versions of protocols are not supported.
Ciphers with less than 128 bits are not supported.
Disable the cipher suites NULL, MD5, SHA1, MD4, RC4, and CBC.
SSL certificates must be valid and issued by a CA.
App Transport Security is enabled by default in iOS 9 and later (ATS).

Correctly implement ATS Exceptions.
Ensure that no self-signed or incorrect certificates are allowed in any

NSURL calls.
It is recommended that only TLSv1.2 and TLSv1.3 be supported.
To prevent MiTM attacks, use SSL pinning.

SSL PINNING
This may accomplish by developing it from scratch or by utilizing one of
the frameworks listed below:

AFNetworking offers a comprehensive network library solution.
TrustKit is an open-source framework that simplifies the implementa-

tion of SSL pinning on both Objective-C and Swift.

246    ◾    Objective-C

Apple’s NSURLSession API is used for secure communication.

(void)URLSession:(NSURLSession *)session didReceiveCha
llenge:(NSURLAuthenticationChallenge *)challenge
completionHandler:(void (^)
(NSURLSessionAuthChallengeDisposition, NSURLCredential
* _Nullable))completionHandler {

 // Get the remote certificate
 SecTrustRef serverTrust = challenge.
protectionSpace.serverTrust;
 SecCertificateRef certificate = SecTrustGetCertifi
cateAtIndex(serverTrust, 0);

 // Set the SSL policies for domain name check
 NSMutableArray *policies = [NSMutableArray array];
 [policies addObject:(__bridge_transfer id)
SecPolicyCreateSSL(true, (__bridge CFStringRef)
challenge.protectionSpace.host)];
 SecTrustSetPolicies(serverTrust, (__bridge
CFArrayRef)policies);

 // Evaluate the server certificate
 SecTrustResultType result;
 SecTrustEvaluate(serverTrust, &result);
 BOOL certificateIsValid = (result ==
kSecTrustResultUnspecified || result ==
kSecTrustResultProceed);

 // Get the local and remote cert data
 NSData *remoteCertificateData = CFBridgingRelease(
SecCertificateCopyData(certificate));
 NSString *pathToCert = [[NSBundle mainBundle]
pathForResource:@"github.com" ofType:@"cer"];
 NSData *localCertificate = [NSData dataWithContent
sOfFile:pathToCert];

 // pinnning check
 if ([remoteCertificateData
isEqualToData:localCertificate] && certificateIsValid)
{
 NSURLCredential *credential = [NSURLCredential
credentialForTrust:serverTrust];

Code Optimization    ◾    247

 completionHandler(NSURLSessionAuthChallenge
UseCredential, credential);
 } else {
 completionHandler(NSURLSessionAuthChallenge
CancelAuthenticationChallenge, NULL);
 }
}

•	 Unsafe authentication: Implement the following session depending
on the application’s business requirements:

•	 We propose terminating the user’s session if it is inactive for more
than 5 minutes in highly sensitive applications.

•	 If the program returns from a background state, users must be
re-authenticated.

•	 If the user hit the logout button, correctly terminate the user’s
session on both the client and server sides.

Because ephemeral sessions do not employ persistent storage, they
are the best practice.

•	 Inadequate cryptography: The preferred technique for symmetric
encryption is AES, with a key of at least 128 bits and a safe mode.

Asymmetric encryption should use RSA with 2048 bits or ECC
with a safe curve.

Use arc4random() for random number generators instead, as it is an
unsafe method in Objective-C.

For safe random number generation, use SecRandomCopyBytes.
Avoid employing the cryptographic methods described below since

they are insecure.

•	 DES, 3DES

•	 RC2

•	 RC4

•	 BLOWFISH

•	 MD4

•	 MD5

•	 SHA1

248    ◾    Objective-C

The algorithms listed below are recommended:
Algorithms for confidentiality: AES-GCM-256 or ChaCha20-Poly1305.
SHA-256, SHA-384, SHA-512, Blake2, and the SHA-3 family are exam-

ples of integrity algorithms.
Algorithms for digital signatures: RSA (3072 bits and higher), ECDSA

with NIST P-384.
RSA (3072 bits and higher), DH (3072 bits and higher), ECDH with

NIST P-384.

•	 Insecure authorization: Applications should avoid utilizing id refer-
ences with guessable numbers.

Server-side authorization checks should perform.
Enforce authorization checks on all server-side requests.

•	 Client code reliability

•	 Overflow of Buffers

•	 Avoid using unsafe functions like sprintf(), gets(), and getpw ()

•	 It is recommended that a limit size be enforced for str buffer gets
s(str, sizeof(str));

•	 To avoid overflow or underflow attacks, provide the following
security flags in your application.

–	 While developing Apps, enable Address Space Layout
Randomization (ASLR). It is enabled by default in iOS 4.3 and
macOS 10.7. Prior to this release, we had to explicitly activate
it by including the -pie parameter.

–	 The application should build with the Non-Executable (NX)
flag set (-allow stack execute). This enables the operating sys-
tem to identify specific sections of memory as non-executable.

–	 To reduce the possibility of corruption, enable stack canaries.

–	 The -fstack-protector option allows stack canaries only for
functions with buffers larger than 8 bytes (e.g., a string
on the stack), and is enabled by default when building for
macOS 10.6 and later.

–	 The -fstack-protector-all switch allows stack canaries to
be enabled for all functions.

Code Optimization    ◾    249

–	 D_FORTIFY_SOURCE: It adds static and dynamic bounds
checking to a number of routines that would otherwise have
none (sprintf, vsprintf, snprintf, vsnprintf, memcpy, memp-
cpy, memmove, memset, strcpy, stpcpy, strncpy, strcat and
strncat). Only compile-time inspection is performed if the
level is set to 1 (-D_FORTIFY_SOURCE=1). When building
for macOS 10.6 and later, Level 1 is enabled by default. Level 2
includes extra run-time verification.

–	 MallocCorruptionAbort: An environment variable that
instructs 32-bit Apps to abort malloc calls if the heap struc-
ture is corrupted. Aborting on heap corruption is enabled by
default in 64-bit Apps.

•	 Control flow expressions like “if,” “for,” “while,” “switch,” and “try”
should not be too nested.

•	 In the case of an exception, implement an appropriate error-handling
mechanism:

void save() {
 try {
 saveDocument();
 } catch (const std::exception& ex) {
 log << "Exception while saving document: "
<< ex.what();
 }
 }

ptrace: This is the most popular system call used by Apps to
observe and manipulate other processes.

•	 Excessive functionality: Remove any secret backdoor functionality
or other internal development security controls that are not meant to
be released into production.

Check all security protections are turned on in the production
environment.

• Tampering with the Code: The Mobile Security Testing Guide
describes the following factors that might make debugging an appli-
cation difficult:1

250    ◾    Objective-C

In the production environment, do not save any sensitive data in the
log file.

BEST PRACTICES WITH OBJECTIVE-C CODING
CONVENTION
The majority of these standards are intended to align with Apple’s docu-
mentation and community-accepted best practices. Some are influenced
by personal tastes. This section tries to provide a standard method of
doing things so that everyone follows the same procedure. It is suggested
to do something we do not particularly enjoy in order to be consistent with
everyone else.

This section is primarily intended for iOS development, although it also
applies to Mac.

Operators

NSString *foo = @"bar";
NSInteger answer = 52;
answer += 8;
answer++;
answer = 50 + 2;

To be consistent with other operators, the + +, − −, and so on are placed
after the variable rather than before it. Unless there is just one operand,
operators should always be separated by spaces.

Types

According to Apple’s best practices and 64-bit safety, NSInteger and
NSUInteger should be used instead of int, long, and so on. For the same
reasons, CGFloat is recommended over float. This code is future-proofed
for 64-bit systems.

Apple types should be preferred over basic ones. When working with
time intervals, for example, use NSTimeInterval rather than double, even
if they are equivalent. This is considered recommended practice and results
in more readable code.

Methods

- (void)someMethod {
 // Do the stuff
}

Code Optimization    ◾    251

- (NSString *)stringByReplacingOccurrencesOfString:(NS
String *)target withString:(NSString *)replacement {
 return nil;
}

Always leave a space between the − or + and the return type ((void) in this
case). A space should never separate the return type and method name.

A space should never use before or after a colon. There should always be
a space between the class and the * if the argument type is a pointer.

Always provide a space between the method’s finish and the opening
bracket. The initial bracket should never appear on the line after it.

Between methods, there should always be two new lines. This corre-
sponds to several Xcode templates (though they vary somewhat) and
improves readability.

Pragma Mark and Implementation Organization

An example of a UIView:

#pragma mark - NSObject
- (void)dealloc {
 // Release..
 [super dealloc];
}

#pragma mark - UIView
- (id)layoutSubviews {
 // Stuff..
}

- (void)drawRect:(CGRect)rect {
 // Drawing-code
}

Methods should group by inheritance. If some UIResponder methods
were utilized in the preceding example, they should be placed between
the NSObject and UIView methods because that is where they fall in the
inheritance chain.

Control Structures

After the control structure, there should always be a space (i.e., if,
else, etc.).

252    ◾    Objective-C

If/Else

if (button.enabled) {
 // Stuff..
} else if (otherButton.enabled) {
 // Other stuff..
} else {
 // More stuff..
}

Else statements should start on the same line as the previous if statement.

// Comment explaining conditional
if (something) {
 // Do-stuff
}

// Comment explaining alternative
else {
 // Do the other stuff
}

If we want to include comments around the if and else statements, use
the structure shown above.

Switch

switch (something.state) {
 case 0: {
 // Something..
 break;
 }

 case 1: {
 // Something..
 break;
 }

 case 2:
 case 3: {
 // Something..
 break;
 }

Code Optimization    ◾    253

 default: {
 // Something..
 break;
 }
}

Each case should have brackets surrounding it. If more than one case is
used, they should be on distinct lines. The default case should always be
the last case and present.

For

for (NSInteger x = 0; x < 10; x++) {
 // Do something..
}

for (NSString *key in dictionary) {
 // Do something..
}

When iterating with integers, it is preferable to begin at 0 and use rather
than begin at 1 and use <=. In general, fast enumeration is desired.

While

while (something < somethingElse) {
 // Do-something..
}

Import

Always use @class in header files instead of #import whenever feasible
because it gives a modest compile-time performance gain.

Because the @class directive reduces the amount of code viewed by
the compiler and linker, it is the easiest approach to provide a forward
declaration of a class name. Because it is basic, it avoids possible issues
that may arise when importing files that import other files. If one
class defines a statically typed instance variable of another class and
their two interface files import one other, neither class will compile
successfully.

254    ◾    Objective-C

Header Prefix

It is preferable to include frameworks that are utilized in the majority of a
project with a header prefix. If these frameworks are in the header prefix,
they should never import into project source files.

For example, consider the following header prefix:

#ifdef __OBJC__
 #import <Foundation/Foundation.h>
 #import <UIKit/UIKit.h>
#endif

#import <Foundation/Foundation.h> should never occur in the project
outside of the header prefix.

Properties

@property (nonatomic, retain) UIColor *topColor;
@property (nonatomic, assign) CGSize shadowOffset;
@property (nonatomic, retain, readonly)
UIActivityIndicatorView *activityIndicator;
@property (nonatomic, assign, getter=isLoading) BOOL
loading;

If the attribute is nonatomic, it must come first. The next choice should
always keep or assign since omitting it results in a warning. If it is given,
readonly should be the next choice. In header files, readwrite should never
be provided. Only in class extensions should readwrite be utilized. Last
should be the getter or setter. Setter should use sparingly.

Private Methods and Properties

MyShoesTier.h

@interface MyShoesTier : NSObject {

}

@property (noatomic, retain, readonly) MyShoe *shoe;

.....

@end

Code Optimization    ◾    255

MyShoesTier.m

#import "MyShoesTier.h"

@interface MyShoesTier ()
- (void)_crossLace:(MyLace *)firstLace
withLace:(MyLace *)secondLace;
@property (nonatomic, retain, readwrite) MyShoe *shoe;
@property (nonaomic, retain) NSMutableArray *laces;
@end

@implementation MyShoesTier

...

@end

Because a named category cannot be used if it adds or alters any proper-
ties, private methods should always introduce in a class extension.

Note: The above example demonstrates an authorized usage of a read-
write attribute.

Extern, Const, and Static

extern NSString *const kMyConstant;
extern NSString *MyExternString;
static NSString *const kMyStaticConstant;
static NSString *staticString;

Naming

Everything should prefix with a 2–3 letter prefix in general. Longer pre-
fixes are permissible but not preferred.

If the code is application-specific, it is a good idea to prefix classes with
an application’s particular application. If we want to use the code in other
Apps or open-source, it is a good idea to do something unique to us or our
firm for the prefix.

Here are a few examples if our firm is Awesome Buckets and you have
an application called Bucket Hunter:

ABLoadingView // Simple view that can use in other
applications

256    ◾    Objective-C

BHAppDelegate // Application specific-code
BHLoadingView // 'ABLoadingView' customized for Bucket
Hunter application

Enums

enum {
 Foo,
 Bar
};

typedef enum {
 SSLoadingViewStyleLight,
 SSLoadingViewStyleDark
} SSLoadingViewStyle;

typedef enum {
 SSHUDViewStyleLight = 9,
 SSHUDViewStyleDark = 13
} SSHUDViewStyle;

HARDENING OF SYSTEMS
Systems hardening refers to a set of tools, approaches, and best practices
for reducing vulnerability in technology applications, systems, infrastruc-
ture, firmware, and other domains. The purpose of system hardening is to
decrease security risk by removing potential attack channels and compress-
ing the attack surface of the system. By deleting unnecessary programs,
functions, Apps, ports, permissions, access, and so on, attackers and mal-
ware have less possibilities to build a foothold within our IT environment.

System hardening necessitates a systematic strategy to auditing, iden-
tifying, closing, and controlling any security vulnerabilities throughout
our firm.

Hardening of Systems to Reduce the “Attack Surface”

The “attack surface” is the sum of all potential faults and backdoors in
technology that hackers can exploit. These flaws can manifest themselves
in a variety of ways, including:

•	 Passwords, both default and hardcoded.

•	 Plain text files are used to store passwords and other credentials.

Code Optimization    ◾    257

•	 Vulnerabilities in unpatched software and firmware.

•	 BIOS, firewalls, ports, servers, switches, routers, or other infrastruc-
ture components that are not properly set.

•	 Network traffic or data at rest that is not encrypted.

•	 Inadequacy or lack of privileged access controls.

Advantages of System Hardening

Continuous work is required for system hardening; however, the invest-
ment will pay off in significant ways across your business via:

•	 Enhanced system functionality: Because there are fewer applications
and functions, there is less danger of operational errors, misconfigu-
rations, incompatibilities, and compromise.

•	 Significantly better security: A smaller attack surface means less
danger of data breaches, illegal access, system hacking, or malware.

•	 Simplified compliance and audibility: Because there are fewer pro-
grams and accounts and a less complicated environment, auditing
the environment is typically more visible and accessible.

This chapter covered code optimization, where we discussed system
hardening, Secure code and code optimization at compile time.

NOTE
 1. Secure Code Wiki

BIBLIOGRAPHY
 1. Xcode Build Optimization: A Definitive Guide – https://flexiple.com/ios/

xcode-build-optimization-a-definitive-guide/, accessed on May 14, 2022.
 2. Compile-time code optimization for Swift and Objective-C – https://dmto-

polog.com/code-optimization-for-swift-and-objective-c/, accessed on May
14, 2022.

 3. Improving build efficiency with good coding practices – https://developer.
apple.com/documentation/xcode/improving-build-efficiency-with-good-
coding-practices, accessed on May 14, 2022.

 4. Optimizing Objective-C – https://www.informit.com/articles/article.
aspx?p=1676715&seqNum=6, accessed on May 14, 2022.

https://flexiple.com
https://flexiple.com
https://dmtopolog.com
https://dmtopolog.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://www.informit.com
https://www.informit.com

258    ◾    Objective-C

5. How To Boost Xcode’s Compile Time and Runtime – https://betterprogram-
ming.pub/improve-xcode-compile-and-run-time-8b8f812c17f8, accessed
on May 14, 2022.

6. COD 316 – Creating Secure iOS Code in Objective-C – https://www.securi-
tyinnovation.com/course-catalog/creating-secure-ios-code-in-objective-c/,
accessed on May 14, 2022.

7. Creating Secure iOS Code in Objective-C – https://niccs.cisa.gov/education-
training/catalog/security-innovation/creating-secure-ios-code-objective-c,
accessed on May 14, 2022.

8. Objective-C Runtime Security and Obfuscation – https://kolinsturt.github.
io/lessons/2013/12/12/secure-coding-in-iOS, accessed on May 14, 2022.

9. Objective-C – https://securecode.wiki/docs/lang/objectivec/, accessed on
May 14, 2022.

https://niccs.cisa.gov
https://niccs.cisa.gov
https://kolinsturt.github.io
https://kolinsturt.github.io
https://securecode.wiki
https://betterprogramming.pub
https://betterprogramming.pub
https://www.securityinnovation.com
https://www.securityinnovation.com

259DOI: 10.1201/9781003357506-7

Appraisal

Objective-C programming language is a general-purpose, object-oriented
programming language that extends the C programming language with
Smalltalk-style messaging. Before the introduction of Swift, it was the pri-
mary programming language used by Apple for the OS X and iOS operat-
ing systems and their corresponding application programming interfaces
(APIs): Cocoa and Cocoa Touch. In the early 1980s, the programming
language Objective-C was created. It was chosen as the primary program-
ming language for NeXT’s NeXTSTEP operating system, from which OS
X and iOS inherit. Portable Objective-C applications that do not utilize the
Cocoa or Cocoa Touch libraries, or use components that may be ported or
re-implemented for other platforms, can also be built for any system sup-
ported by GNU Compiler Collection (GCC) or Clang.3

Objective-C “implementation” software files typically have.m filename
extensions, but Objective-C “header/interface” files have.h filename exten-
sions, the same as C header files. The file extension for Objective-C++ doc-
uments is .mm.

Objective-C was built principally by Brad Cox and Tom Love at their
firm Stepstone in the early 1980s. Both were exposed to Smalltalk at the
Programming Technology Center of ITT Corporation in 1981. The first
work on Objective-C dates back to about that time.

In 1986, Cox presented the initial explanation of Objective-C in his
book Object-Oriented Programming, An Evolutionary View. Although he
was cautious to note that the issue of reusability involves more than sim-
ply the language, Objective-C was often compared with feature of other
languages. In 1988, the language was licensed, and the NeXTSTEP code
library was built.

Apple Computer utilized OpenStep in its new operating system, Mac
OS X, after purchasing NeXT in 1996. This includes Objective-C, Project
Builder, NeXT’s Objective-C-based developer tool, and Interface Builder,
its interface design tool (both now merged into one Xcode application).

https://doi.org/10.1201/9781003357506-7

260    ◾    Objective-C

The majority of Apple’s current Cocoa API is built on OpenStep interface
objects, and it is the most important Objective-C development environ-
ment in use today.

Swift, which Apple launched at WWDC 2014, was described as
“Objective-C without the C.” The Objective-C programming language
has a lengthy history. Although it has languished as a niche language for
most of that time, the arrival of the iPhone has rocketed it to popularity:
Objective-C was named the winner of the TIOBE Programming Language
Award for 2011 in January 2012. This award is given to the language with
the highest use growth over the past 12 months; in 2011, Objective-C
jumped from eighth to the fifth position on the index.

The origins of Objective-C may be traced to a section of International
Telephone and Telegraph (ITT) where Tom Love and Brad Cox sought
to increase the productivity of programmers. In 1981, a special edition
of Byte magazine presented Smalltalk, a breakthrough new program-
ming language created by Alan Kay and his colleagues at Xerox PARC.
Smalltalk introduced a whole new way of conceiving program develop-
ment, which Kay termed “object-oriented.” Instead of writing a program
as a set of operations (“procedures”) that accept data as inputs, a program
would be re-oriented around the data itself, which would be organized
into “objects.” Smalltalk envisioned programs as collections of objects
that would exchange messages, therefore invoking “methods” (perform
actions). The invoked methods were chosen “dynamically,” that is, while
the program was executing. A Smalltalk application may edit itself in real-
time in reaction to human input.

Objective-C has been around for 35 years, making it older than many
current macOS and iOS software developers. Swift, which debuted in 2014,
is swiftly gaining momentum and displacing Objective-C from the mar-
ket. Observations indicate that about half of the most popular applications
in the App Store are created in Swift, which is a significant increase in just
5 years.

The million-dollar issue is whether developers should consider
Objective-C for new iOS projects or go for Swift from the beginning. Let’s
examine the present state of Objective-C.

First, nobody has ever heard any official word from Apple on the dep-
recation of Objective-C support or even a possible date when it would
be discontinued. A large amount of code created in Objective-C is still
being maintained, and a large number of popular applications are built
in this language. Consider: who would commit to transferring all those

Appraisal    ◾    261

applications to a different language simply for its purpose? Imagine the
amount of time and money that such a project would need with no appar-
ent return.

Thus, we can conclude that Objective-C will continue to exist in the
foreseeable future. Objective-C programmers may rest confident that their
talents will continue to be in demand. With new applications and young
developers picking the language to learn, the situation is different.

A COMPARISON OF OBJECTIVE-C AND SWIFT
Let’s analyze how Objective-C compares to Swift and what might tip the
scales in this matter to determine if it’s a smart idea to choose it as the
language for our new iOS App project.

Let’s explore the differences between Objective-C and Swift in further
depth.

•	 Objective-C’s performance is sluggish owing to runtime code compi-
lation. According to an official Apple release, Swift is 2.6 times more
efficient than Objective-C.

•	 Objective-C inherits its code structure from C and, as a result, has
a syntax with several special symbols that is reasonably difficult. On
the other hand, Swift is similar to plain English, making its learning
curve simpler than that of Objective-C.

•	 The primary difference in code safety is how Objective-C and Swift
handle null pointers. A null pointer in Objective-C does not result
in an application crash, making it challenging to identify and repair.
In Swift, however, null pointers result in easily identifiable crashes.
Overall, Objective-C applications may include more hidden prob-
lems than Swift applications.

•	 Objective-C demands the maintenance of two code files: time- and
effort. With Swift, we need to maintain a single code file, reducing
the time and human labor required.

•	 Objective-C often requires more lines of code than Swift.

•	 Objective-C lacks support for dynamic libraries and instead utilizes
static ones. They are bulkier and hinder application performance.
Swift utilizes dynamic libraries that decrease the size of the whole
application and improve its performance and quickness.

262    ◾    Objective-C

Sr. No. Swift Objective-C

01. Swift is a high-level, general-
purpose programming language
that prioritizes safety and speed.

Objective-C is a general-purpose
programming language regarded as a superset
of the C programming language. It was
created to provide object-oriented features.

02. Chris Lattner created it in
conjunction with Apple’s other
programmers.

Brad Cox and Tom Love created it at their
firm, Stepstone.

03. Objective-C, Rust, Ruby, and
Python affected it.

The language was inspired by C and
Smalltalk.

04. Swift appeared for the first time
in 2014.

Objective-C was initially introduced in
1984.

05. Swift type is static. The type of Objective-C is dynamic.
06. Swift is an open-source,

Apache-licensed project.
The licensing for Objective-C is General
Public License.

07. It has just classes. Both Structs and classes are present.
08. It was built for developing iOS,

Mac, Apple TV, and Apple
Watch applications.

Objective-C is created with Smalltalk
communications capabilities in mind.

09. Swift polymorphism is not
directly present.

In Objective-C, polymorphism exists
immediately at compile time.

10. It employs true and false values. It employs YES and NO values, as well as
BOOl.

11. Swift has more template types
than Objective-C.

Objective-C has lesser templates than Swift

ADVANTAGES OF OBJECTIVE-C

•	 The language was built as a preprocessor GCC package for current
C compilers.

•	 C++ is more compatible with Objective-C.

•	 Objective-C has more stability.

•	 Private API use is simplified in Objective-C.

NEGATIVES OF OBJECTIVE-C

•	 Contrary to C++, Objective-C does not enable operator overloading.

•	 The original version of Objective-C did not enable garbage collec-
tion but still utilizes a C-based runtime, which increases the appli-
cation’s size.

Appraisal    ◾    263

•	 Since it is based on C Compilers, it requires a header file to function
properly.

•	 Objective-C is a rather complicated language, although this is antici-
pated given its antiquity.

SHOULD WE GO FOR OBJECTIVE-C?
As can be seen, even a cursory comparison of the primary features of both
languages reveals that Swift is superior to Objective-C. Moreover, one of
Objective-C’s last advantages over Swift has lately been eliminated.

Swift 5, the most recent version of the programming language, has ABI
stability, a significant step toward attaining outstanding performance and
security. Swift’s lack of ABI stability was a significant issue until recently,
but it has been addressed.

With the release of the newest version of Swift, Apple is pushing devel-
opers to utilize it for future iOS applications. The youthful language has a
lot of unique benefits over the older and more demanding Objective-C, so
it makes sense.

WHY SHOULD WE LEARN OBJECTIVE-C IN 2022?
Most macOS, XCode, and iOS kernel codes are written in C and C++.
Since Objective-C is officially not a programming language but rather a
huge preprocessor for pure C, it “fits in” with them rather well.

Objective-C is the foundation of Apple’s whole ecosystem. Swift is
mainly built on top of it. Therefore it is necessary to know the “base” to
understand how the system works from the inside and why Swift looks and
functions as it does.

Objective-C helps in understanding, for instance, that not all NSProxy
objects are NSObject and the distinction between Int, NSInteger, and
NSNumber. In addition to how Swizzling works, what a Selector is, how
the responder chain operates, etc. This is strongly enclosed and abstracted
in Swift, so it is not readily apparent.

In addition, like any C language, Objective-C facilitates an understand-
ing of the fundamental operation of links, pointers, and memory.

Objective-C Is Still Used in the Development

First, it seems that every project that has lasted for more than 2–3 years
has Objective-C code. It may be at least a hidden layer that is made reliant

264    ◾    Objective-C

and does not truly fit into the common code base, but it exists and requires
periodic maintenance: bug fixes and feature additions.

While certain Apps cannot be rebuilt in Swift, doing so would involve
time and money that neither the firm nor the client is willing to spend.
Consequently, the Objective-C database is expanding.

Thirdly, if complicated work with network, memory, and device
resources is required, languages with a lower level of abstraction than
Swift are used. Depending on the amount of abstraction required, it may
be Objective-C, Objective-C++, or just C and C++.

Swift is More Complex Than Objective-C for Some Tasks

Swift problem-solving may be tedious and tricky; using long-established
Objective-C crutches is more convenient.

Primarily, we discuss memory management: to insert a message into
unauthorized memory, one must actively control memory management or
threads. Let us examine some instances.

Memory allocation, handling pointers and links directly, etc., are
examples of Objective-C’s purely “sish” aspects. Using Objective-C, you
may thus gently optimize the program and increase speed and memory
estimations when you must work very carefully with memory (such as
when dealing with video and audio streams). You must use ARC while
programming in Swift (although there are also life hacks here).

Furthermore, ARC does not resolve several issues, such as the lifetime of
an object. Consider that there is a 14-minute voicemail. The customer has
already listened to 12 – and they “ate up” the entire RAM. In Objective-C,
they may be readily purged at the level of pointers and bytes, leaving just
the current minute and the two preceding seconds. And on Swift, this will
need a high degree of abstraction and a significant amount of code (or
using Objective-C tricks via the Swift interface).

C++ is also used to create libraries that implement video or image rec-
ognition, computer vision, and cryptographic computations. And con-
necting with them through Swift is complex, costly, and time-consuming.
Typically, it is simpler to build a header file in Objective-C, write a few
methods for a nice wrapper, and refer to them immediately. Such occur-
rences are prevalent when connecting with third-party libraries.

OBJECTIVE-C LANGUAGE CHARACTERISTICS
We should be experienced with reading Objective-C code and mentally
understanding how the runtime functions. This section examines the

Appraisal    ◾    265

language and its semantics in further detail; it deconstructs the mental
model we’ve constructed based on our intuition and exposes the principles
that comprise Objective-C.

Strong and Weak Citations

A significant portion of programming Objective-C involves handling
the references that running code has to objects and the references that
objects hold to one another. Before introducing ARC, Objective-C used
manual memory management on iOS and garbage collection on OS
X. Both of these strategies have their benefits and drawbacks. Now it
employs ARC, which incorporates the most advantageous elements of
both approaches.

Automatic Reference Counting, or ARC, is a compile-time system
that inserts manual memory management calls into the code as it is con-
structed. The compiler is quite intelligent, and the ARC code is well opti-
mized. While ARC has liberated developers from writing manual memory
management code, it cannot break reference cycles like garbage collection
can-based platforms. For this reason, developers must instruct the com-
piler on how to prevent reference cycles.

When an item no longer receives strong references, it is deallocated. If
it was the last object with a solid reference for another object, that item is
likewise deallocated. The diagram depicts a reference cycle.

Reference cycle.

Object A cannot be deallocated until Object C is, and Object C is not
deallocated so long as Object B maintains a strong reference. Object B will
never be released until Object A has been released. This is a reference cycle,
which will lead to memory leaks in an application.

266    ◾    Objective-C

In below figure, the strong connection between Object C and Object
A (represented by a solid line) has been replaced with a weak connection
(symbolized by a dashed line).

Breaking reference cycle.

Weak references do not prevent objects from being deallocated.
Therefore, Object A, Object B, and Object C are deallocated in that order.

If we have experience with C or C++, we will likely recognize an issue
with weak references. If an object may be deallocated and we have a weak
reference to it, a dangling pointer may result. With ARC compiling for iOS
5 and OS X 10.7, weak references to objects become null upon deallocation;
these are known as zeroing weak references.

iOS 4 and OS X 10.6 do not support the weak keyword used to identify
weak references. Hence unsafe_unretained must be used in its place. As
its name suggests, it is risky to depend on a reference to an unsafe_unre-
tained object. As long as we know this restriction, the application code we
create should be safe.

Let’s quickly explore the various sorts of Objective-C variables. Local
variables belong to their enclosing scope (simply: the surrounding pair of
curly brackets) and are only accessible during the execution of that scope.
Additionally, there are instance variables, which are valid until the object
instance is deallocated.

Local and instance variables are both strong references by default.
Properties declared using the @property directive are likewise by default
strong. The weak keyword (or, when declaring properties, the weak key-
word in the qualifier list) is used to mark variables as weak.

The compiler determines how objects are returned from methods based
on their names. Alloc, copy, init, mutableCopy, and new methods return
objects that pass ownership to the calling procedure. All other methods

Appraisal    ◾    267

return objects without transferring ownership. The compiler uses this
naming convention to insert the relevant memory management code.

id instanceVariable;
...
-(void)performLongRunningTask
{
//ARC transfers ownership from copy to local variable
id obj = [someObject copy];

//ARC makes new strong reference to obj id anotherObj
= obj;

//Transferring to instance varable does not require
any memory management code
//instanceVariable is strong and init returns strong
reference instanceVariable = [[SomeObject alloc]
init];

} //anotherObj goes out of the scope, and its
reference is removed

ARC uses many optimizations to minimize unnecessary memory man-
agement code, so the code here is not an exact reflection of what occurs
behind the scenes. Nonetheless, this is the mental picture you should
establish as a developer.

Commonly, strong and weak references are “owned” and “owned by,”
respectively. When an item has another object, it employs a strong refer-
ence. If an item is owned by another object and has a reference to its owner,
the reference is weak. This is not adequate reasoning for all references, but
it is a helpful method for remembering the memory management prin-
ciples of Objective-C.

As a specific example, let’s examine NSArray. Arrays hold robust refer-
ences to every element they include. We may consider an array to be the
owner of these things, even if other objects may also own them.

The Delegation pattern in Objective-C provides a further illustration.
Delegation is a typical technique for using loosely connected callbacks,
particularly in user interface programs. A typical example of delegation in
iOS is the UITableViewDataSource protocol. View controller-owned table
views must know what to present to the user. The view controller must
send this information to the table view.

268    ◾    Objective-C

Weak references in the UITableViewDataSource.

OBJECTIVE-C: EXCEPTIONS AND ERRORS
There are two sorts of mistakes that can occur when a program runs in
Objective-C. Unexpected errors are “serious” programming errors that
cause your program to terminate prematurely. These are known as excep-
tions because they indicate a rare occurrence in your software. On the
other hand, expected errors in Objective-C occur naturally throughout
the execution of a program and can be utilized to evaluate the success of
an activity. These are known as errors.

We might also think of the contrast between exceptions and errors as
distinguishing their target audiences. In general, exceptions are used to
notify the programmer of a problem, whereas errors notify the user that a
requested action is not being accomplished.

Control flow of exception and error.

For example, attempting to access a non-existent array index is an
exception (a programming error), but failing to open a file is an error

Appraisal    ◾    269

(a user error). In the former situation, something went severely wrong in
our program’s flow, and it should presumably shut down immediately after
the exception. In the latter case, we’d want to inform the user that the file
couldn’t be opened and potentially request that they attempt the opera-
tion, but there’s no reason our software couldn’t continue to operate after
the error.

EXCEPTION HANDLING
The primary advantage of Objective-C exception handling features is iso-
lating error detection from error treatment. When a piece of code detects
an exception, it may “throw” exception to the closest error-handling block,
which can “catch” and correctly handle particular errors. The ability to
throw exceptions from random places avoids the need to continuously check
for success or failure notifications from each function engaged in a given job.

@try, @catch(), and @finally are used to catch and handle exceptions,
whereas @throw is used to detect them. If we have dealt with exceptions in
C#, you should be acquainted with these exception-handling constructs.

It is crucial to realize that exceptions in Objective-C are pretty sluggish.
Therefore, their usage is restricted to detecting severe programming flaws
and not for fundamental control flow. If you are attempting to identify
what to do in the event of an anticipated problem (e.g., failure to load a
file), please refer to the section under Error Handling.

THE CLASS NSException
Instances of the NSException class or a subclass thereof represent excep-
tions. This is a simple method for encapsulating all the pertinent informa-
tion about an exception. The three characteristics of an exception are as
follows:

•	 name – An instance of NSString identifying the exception uniquely.

•	 reason – An instance of NSString that describes the exception in a
human-readable format.

•	 userInfo – An instance of NSDictionary containing application-specific
data about the exception.

The Foundation framework defines several variables defining “standard”
exception names. These strings are used to determine the kind of caught
exception.

270    ◾    Objective-C

We can also construct new exception objects with custom data using
the initWithName:reason:userInfo: initialization method. Custom excep-
tion objects may be caught and thrown using the same techniques detailed
in the following sections.

MAKING EXCEPTIONS
Let’s begin by looking at a program’s default exception-handling behavior.
When we try to access an index Objective-C that does not exist, the objec-
tAtIndex: function of NSArray throws an NSRangeException (a subclass
of NSException). So, if we request the tenth item in an array with just three
components, we’ll have an exception to play with:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 NSArray *crew = [NSArray arrayWithObjects:
 @"Shave",
 @"Lywood",
 @"Frank", nil];

 // throw an exception.
 NSLog(@"%@", [crew objectAtIndex:10]);

 }
 return 0;
}

When an uncaught exception is encountered, Xcode stops the applica-
tion and shows you the line that caused the problem.

NSLog(@"%@", [crew objectAtIndex:10]); thread1: signal
SIGABRT

CATCHING EXCEPTIONS
Any code that may result in an exception should be placed in a @try block
to manage it. The @catch() directive is then used to capture particular
exceptions. If we need to run any housekeeping code, we may do so in a

Appraisal    ◾    271

@finally block. All three of these exception-handling directives are illus-
trated in the following example:

@try {
 NSLog(@"%@", [crew objectAtIndex:10]);
}
@catch (NSException *exception) {
 NSLog(@"Caught an exception");
 // We will just silently ignore exception.
}
@finally {
 NSLog(@"Cleaning-up");
}

The [crew objectAtIndex:10] message causes the software to throw an
NSRangeException, captured by the @catch() command. The real excep-
tion handling occurs inside the @catch() clause. In this instance, we just
show a descriptive error notice, but we’ll likely need to create code to
address the issue in other situations.

When an exception is detected in the @try block, the program goes to
the matching @catch() block, preventing the execution of any code after
the exception. This is problematic if the @try block requires cleanup (e.g.,
if it opened a file, it needs to be closed). The @finally block resolves this
issue since its execution is assured regardless of whether an exception was
thrown. This makes it the ideal location to resolve any outstanding issues
from the @try block.

After the @catch() directive, the parenthesis allows you to specify the
kind of an exception to capture. The exception is an NSException, the basic
exception class in this instance. However, an exception may be any type,
not simply NSException. The following @catch() directive, for example,
will handle a generic object:

@catch (id genericException)

EXCEPTION THROWING
When an exceptional circumstance is detected in our code, we create an
instance of NSException and populate it with the necessary details. Then,
using the appropriately titled @throw directive, we throw it, causing the
nearest @try/@catch block to handle it.

272    ◾    Objective-C

The following example creates a function for generating random inte-
gers between a defined interval. The function throws a custom error if the
caller supplies an improper interval.

#import <Foundation/Foundation.h>

int generateRandomInteger(int minimum, int maximum) {
 if (minimum >= maximum) {
 // Create exception.
 NSException *exception = [NSException
 exceptionWithName:@"RandomNumberIntervalEx
ception"
 reason:@"*** generateRandomInteger(): "
 "maximum parameter not greater
than minimum parameter"
 userInfo:nil];

 // Throw exception.
 @throw exception;
 }
 // Return a random integer.
 return arc4random_uniform((maximum - minimum) + 1)
+ minimum;
}

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 int result = 0;
 @try {
 result = generateRandomInteger(0, 10);
 }
 @catch (NSException *exception) {
 NSLog(@"Problem!!! Caught exception: %@",
[exception name]);
 }

 NSLog(@"The Random Number is: %i", result);

 }
 return 0;
}

Appraisal    ◾    273

This code will not throw an error since it supplies a valid interval (0,
10) to generateRandomInteger(). Change the interval to something like
(0, −10), and we’ll see the @catch() block in action. When the framework
classes receive exceptions, this is what happens beneath the hood (e.g., the
NSRangeException raised by NSArray).

We may also re-throw exceptions that you’ve already caught. This is
handy if we want to be notified when an exception occurs but do not want
to handle it ourselves. We may easily omit the argument to the @throw
directive as a convenience:

@try {
 result = generateRandomInteger(0, -10);
}
@catch (NSException *exception) {
 NSLog(@"Problem! Caught exception: %@", [exception
name]);

 // Re-throw current exception.
 @throw
}

The caught exception is then sent up to the next-highest handler,
which in this case is the top-level exception handler. This should show
the output of our @catch() block and the standard Terminating pro-
gram due to an uncaught exception … message, followed by an abrupt
shutdown.

The @throw directive isn’t restricted to NSException objects; it
may throw anything. Instead of a standard exception, the following
example throws an NSNumber object. Also, observe how we may target
distinct objects by following the @try block with numerous @catch()
statements:

#import <Foundation/Foundation.h>

int generateRandomInteger(int minimum, int maximum) {
 if (minimum >= maximum) {
 // Generate number using the "default"
interval.
 NSNumber *guess = [NSNumber
 numberWithInt:generateRando
mInteger(0, 10)];

274    ◾    Objective-C

 // Throw number.
 @throw guess;
 }
 // Return random integer.
 return arc4random_uniform((maximum - minimum) + 1)
+ minimum;
}

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 int result = 0;
 @try {
 result = generateRandomInteger(30, 10);
 }
 @catch (NSNumber *guess) {
 NSLog(@"Warning: Used default interval");
 result = [guess intValue];
 }
 @catch (NSException *exception) {
 NSLog(@"Problem! Caught exception: %@",
[exception name]);
 }

 NSLog(@"The Random Number: %i", result);

 }
 return 0;
}

The generateRandomInteger() attempts to create a new integer between
specified “default” boundaries rather than producing an NSException
object. The example demonstrates how to use @throw with various
objects, but it isn’t the ideal application architecture, nor is it the most
efficient use of Objective-C exception-handling facilities. If we truly want
to use the thrown value, as the preceding code does, we would be better
served with a simple conditional check using NSError, as detailed in the
next section.

Furthermore, several of Apple’s core frameworks anticipate an
NSException object to be thrown, so use caution when integrating with
the standard libraries.

Appraisal    ◾    275

ERROR HANDLING
Errors are intended to be an efficient and easy method to determine
if an activity was successful or not, while exceptions are intended to
alert programmers when something has gone wrong. In contrast to
exceptions, errors are intended to be utilized in routine control flow
statements.

THE NSError CLASS
The only similarity between mistakes and exceptions is that they are both
implemented as objects. The NSError class incorporates all information
required to indicate errors:

•	 code – An NSInteger that provides a unique identification for the
error.

•	 Domain – An instance of NSString that defines the error’s domain
(described in more detail in the next section).

•	 userInfo – An instance of NSDictionary containing application-
specific data about the problem. This is used far more often than the
userInfo dictionary of NSException.

In addition to these essential characteristics, NSError contains many
variables that help in displaying and processing errors. These are all short-
cuts into the userInfo dictionary given in the preceding list.

•	 localizedDescription – An NSString holding the error’s whole expla-
nation, often including the failure’s cause. Typically, this figure is
shown to the user via an alert panel.

•	 localizedFailureReason – An NSString offering an independent
explanation of the error’s cause. This is only used by customers that
want to separate the error’s cause from its entire explanation.

•	 recoverySuggestion – An NSString provides the user with instruc-
tions on how to recover from the mistake.

•	 localizedRecoveryOptions – An NSArray of titles for the error dia-
log’s buttons. A single OK button to dismiss the warning is presented
if this array is empty.

276    ◾    Objective-C

•	 helpAnchor – An NSString to show when the Help anchor button is
pressed in an alert panel.

Similar to NSException, the initWithDomain:code:userInfo function
may be used to initialize NSError objects with specific data.

ERROR DOMAINS
An error domain is essentially a namespace for error codes. Codes must
be distinct within a single domain, although they may overlap with codes
from different domains. In addition to avoiding code clashes, domains
give information about the source of an issue. NSMachErrorDomain,
NSPOSIXErrorDomain, NSOSStatusErrorDomain, and NSCocoaError
Domain are the four primary built-in error domains. The NSCocoaError
Domain includes error codes for most of Apple’s standard Objective-C
frameworks; however, some frameworks define their error domains (e.g.,
NSXMLParserErrorDomain).

If we need to generate new error codes for your libraries and Apps, we
should always add them to your error domain; you should never expand
any predefined error domains. Creating our domain is a simple endeavor.
Because domains are just strings, we need to specify a string constant that
does not clash with any of the application’s other error domains. Apple
recommends that domains use the form of com.<company>.<project>.
ErrorDomain.

DETECTING ERRORS
There are no language constructs devoted to handling NSError objects
(though several built-in classes are designed to handle them). They are
intended for use with functions that return an object when successful and
nil when unsuccessful. Following is the standard approach for capturing
errors:

•	 Declare a variable named NSError. It does not need allocation or
initialization.

•	 Pass this variable as a double pointer to a potentially error-prone
function. If anything goes wrong, the function will utilize this refer-
ence to log error-related information.

•	 Check the function’s return value for success or failure. If the action
was unsuccessful, we may use NSError to handle or show the problem.

Appraisal    ◾    277

A function does not typically return an NSError object; instead, it returns
the expected result if it succeeds and nil otherwise. Always use the function’s
return value to discover problems; never use the existence or absence of an
NSError object to determine whether an operation was successful. Error
objects are intended to describe a possible error, not indicate if one happened.

First, we create a file path to ∼/Desktop/SomeContent.txt. Then, we
construct an NSError reference and provide it to the stringWithContents
OfFile:encoding:error: method to record any issues when loading the file.
We’ve sent a reference to the *error pointer, which indicates that the func-
tion is asking a pointer to a pointer (i.e., a double pointer). This allows the
method to supply the variable with its content. Finally, we examine the
return value (rather than the existence of the error variable) to determine
if stringWithContentsOfFile:encoding:error: succeeded or failed. If it
does, we may work with the content variable’s value; otherwise, we utilize
the error variable to show information about what went wrong.

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 // Generate desired file path.
 NSString *filename = @"SomeContent.txt";
 NSArray *paths =
NSSearchPathForDirectoriesInDomains(
 NSDesktopDirectory,
NSUserDomainMask, YES
);
 NSString *desktopDir = [paths
objectAtIndex:0];
 NSString *path = [desktopDir
 stringByAppendingPathCompone
nt:filename];

 // Try to load the file.
 NSError *error;
 NSString *content = [NSString
stringWithContentsOfFile:path

encoding:NSUTF8StringEncoding
 error:&error];

278    ◾    Objective-C

 // Check if it is worked.
 if (content == nil) {
 // Some kind of the error occurred.
 NSLog(@"The Error loading file %@!",
path);
 NSLog(@"Description: %@", [error
localizedDescription]);
 NSLog(@"Reason: %@", [error
localizedFailureReason]);
 } else {
 // Content the loaded successfully.
 NSLog(@"Content-loaded!");
 NSLog(@"%@", content);
 }
 }
 return 0;
}

This code will likely result in an error as the ∼/Desktop/SomeContent.
txt file does not exist on our computer. Create a SomeContent.txt file on
our desktop for the load to succeed.

CUSTOM ERRORS
We may set custom errors by taking a double reference to an NSError
object and filling it with your data. Remember that your function or
method should return an object or nil depending on its success (do not
return the NSError reference).

The following example utilizes an error rather than an exception
to handle erroneous arguments sent to the generateRandomInteger()
method. Observe that **error is a double-pointer, allowing us to initial-
ize the underlying value inside the method. It is crucial to verify that the
user has given a genuine **error argument using if (error!= NULL). This
is done in functions that generate errors. Since the **error parameter is a
double-pointer, the *error parameter may assign a value to the underlying
variable. Again, we check for mistakes using the return value (if (result ==
nil)) rather than the error variable.

#import <Foundation/Foundation.h>

NSNumber *generateRandomInteger(int minimum, int
maximum, NSError **error) {

Appraisal    ◾    279

 if (minimum >= maximum) {
 if (error != NULL) {

 // Create error.
 NSString *domain = @"com.MyCompany.
RandomProject.ErrorDomain";
 int errorCode = 4;
 NSMutableDictionary *userInfo =
[NSMutableDictionary dictionary];
 [userInfo setObject:@"The Maximum
parameter is not greater than minimum parameter"
 forKey:NSLocalizedDescription
Key];

 // Populate the error reference.
 *error = [[NSError alloc]
initWithDomain:domain

code:errorCode

userInfo:userInfo];
 }
 return nil;
 }
 // Return random integer.
 return [NSNumber
 numberWithInt:arc4random_uniform((maximum
- minimum) + 1) + minimum];
}

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 NSError *error;
 NSNumber *result = generateRandomInteger
(0, -10, &error);

 if (result == nil) {
 // Check to see what is went wrong.
 NSLog(@"An error occurred!");
 NSLog(@"Domain: %@ Code: %li", [error
domain], [error code]);

280    ◾    Objective-C

 NSLog(@"Description: %@", [error
localizedDescription]);
 } else {
 // Safe to use returned value.
 NSLog(@"The Random Number: %i", [result
intValue]);
 }

 }
 return 0;
}

NSError’s localizedDescription, localizedFailureReason, and associated
attributes are kept in its userInfo dictionary using special keys provided
by NSLocalizedDescriptionKey, NSLocalizedFailureReasonErrorKey, and
so on. So, to characterize the issue, we just add some strings to the proper
keys, as demonstrated in the previous sample.

Generally, we should provide constants for specific error domains and
codes to ensure consistency between classes.

THE OBJECTIVE-C LANGUAGE’S FEATURES
Here is a shortlist of factors that, in my opinion, make Objective-C a strong
and enjoyable programming language.

CLASSES ARE OBJECTS
Each class in Objective-C is an instance of a meta-class produced and
handled automatically by the runtime. It is possible to create class meth-
ods, pass classes as arguments, store them in collections, etc. We just send
a message to the class in Objective-C we want to instantiate to generate
an instance. There is no need to redesign a “factory” system. No particu-
lar constructor mechanism is required at the language level. This helps to
keep the language simple and effective.

Moreover, meta-classes are also objects!

DYNAMIC TYPING
Similar to Ruby, Python, Smalltalk, and Groovy… Extremely beneficial
since we do not always know in advance what our runtime objects will
be. Using dynamic typing in Objective-C is straightforward. This, for
instance, defines a variable that may store a reference to an object:

id myObject;

Appraisal    ◾    281

OPTIONAL STATIC TYPING
Nonetheless, Objective-C also supports static typing. The ideal of both
worlds.

This defines a variable capable of storing a reference to an object of type
NSView or a subclass:

NSView *myObject;

CATEGORIES
Categories allow us to design new methods and add them to classes whose
source code we do not know (such as the standard Cocoa classes provided
by Apple). This facilitates class extension without the need for subclass-
ing. Extremely helpful for adapting existing classes to the specifications of
frameworks we want to utilize or build.

MESSAGE SENDING
We communicate with things through messages. Typically, the recipient
of a message has a method that directly corresponds to the message (i.e.,
that has the same name or, in Objective-C terms, the same selector). In
this situation, the method will be called. Nevertheless, this is not the only
potential conclusion. An object may also handle a message by forward-
ing it to another object, broadcasting it to many objects, introspecting it,
applying custom logic, etc.

The Syntax for Expressing Messages

Objective-C’s message patterns are similar to natural language phrases
with gaps (prefixed with colons). When we create code to convey a mes-
sage to an object, we fill in the blanks with real data to form a coherent
statement. This expressing message is derived from Smalltalk and makes
the code extremely expressive.

Sending a message to an ordered collection, for example, requesting it
to insert a specified item at index 10:

[myCollection insert:myObject atIndex:10]

A message sending expression may be interpreted as a sentence, with
the subject being the receiver and the message being the remainder of the
sentence (e.g., an action that we want the recipient to perform): “myCollec-
tion insert myObject at index 10.”

282    ◾    Objective-C

INTROSPECTION
Object introspection is simple. For example, we may ask an object for its
class using the following syntax:

[myObject class]

Determine whether an object contains the method “foo”:

[myObject respondsToSelector:@selector(foo)]

Request the signature of an object’s method “foo”:

[myObject methodSignatureForSelector:@selector(foo)]

Ask whether a class is a subclass of another:

[class1 isSubclassOfClass:class2]

DYNAMIC OPERATING TIME
Objective-C has a dynamic runtime. It permits the creation of messages
at runtime, the dynamic creation of classes, the dynamic addition of
methods to existing classes, the modification of method implementa-
tions, etc.

AUTOMATIC GARBAGE COLLECTION
The automated garbage collector works simultaneously with the applica-
tion code on its thread. It employs a generational approach to increase effi-
ciency by focusing on memory zones that are more likely to contain trash.
It works for both objects and raw C memory blocks allocated using the
NSAllocateCollactable() method and equivalent techniques. The malloc()
operates as expected, enabling access to memory that the collector does
not maintain.

The garbage collector is an opt-in service; our application may instead
depend on a reference counting mechanism if we prefer not to utilize it.
This system has an inventive approach for delayed release that significantly
reduces the effort of human reference counting.

Note that the iPhone does not support the automated trash collector at
the time of writing.

Appraisal    ◾    283

C INSIDE
Objective-C programming language is an object-oriented extension of the
C programming language and a superset of C. This implies that the raw
power of C is accessible and that C libraries may be used directly (there
are quite a few!). In addition, this provides a symbiotic link between the
language and the operating system since Mac OS X, a UNIX system, is
written mainly in C and Objective-C for the higher-level portions.

C++ FLUENT
Objective-C is not simply a superset of C, but it can also interpret and exe-
cute C++ code. In this setup, the language is referred to as Objective-C++
and permits the blending of Objective-C and C++ code statements. It also
permits the direct use of C++ libraries.

SIMPLICITY
The Smalltalk-inspired object system of Objective-C tends toward simplic-
ity. Many characteristics that tend to make languages difficult (templates,
overloading, multiple inheritances, etc.) are missing in Objective-C, which
provides simpler programming paradigms by leveraging its dynamic
nature.

ACCESS TO APPLE’S PRODUCTS

Each new version of Mac OS X via Objective-C, and now the iPhone
OS, is loaded with exciting new capabilities that are accessed straight
from Objective-C. This makes Objective-C substantially more enjoyable
to use.

WORKING WITH OBJECTIVE-C FILES
In Objective-C, we looked at the NSFileHandle, NSFileManager, and
NSData Foundation Framework classes in Working with Directories in
Objective-C. We examined how the NSFileManager class, in particular,
allows us to interact with directories in Objective-C. This chapter pro-
gresses from dealing with directories to going through the specifics of
working with files utilizing all three of these classes.

OBTAINING AN NSFileManager REFERENCE
First, we must review the processes required to gain a reference to create
an instance of the NSFileManager class.

284    ◾    Objective-C

The defaultManager is used to create an instance of the class. As an
example: get a hold of the NSFileManager object instance:

NSFileManager *filemgr;
filemgr = [NSFileManager defaultManager];

Checking to See If a File Exists

The NSFileManager class has a fileExistsAtPath instance function that
determines if a particular file already exists. The method accepts an
NSString object providing the path to the file as an input and returns a
boolean YES or NO result indicating the presence or absence of that file:

NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

if ([filemgr fileExistsAtPath: @"/tmp/myfiles.txt"]
== YES)
 NSLog (@"The File is exists");
else
 NSLog (@"The File does not found");

Comparison of Two Files’ Contents

The contentsEqualAtPath function compares the contents of two files for
equivalence. This method accepts the paths to the two files to be compared
as parameters and returns a boolean YES or NO indicating if the file con-
tents match:

NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

if ([filemgr contentsEqualAtPath: @"/tmp/myfiles.txt"
andPath: @"/tmp/sales.txt"] == YES)
 NSLog (@"The File contents is match");
else
 NSLog (@"File contents don’t match");

Checking in Objective-C If a File Is Readable, Writable,
Executable, and Deleteable

The majority of operating systems include some kind of file access con-
trol. These often take the form of properties that govern the degree of

Appraisal    ◾    285

access each user or user group has to a file. As a result, it is not guar-
anteed that our software will have read or write access to a certain file
and the necessary rights to delete or execute it. Using the isReadable-
FileAtPath, isWritableFileAtPath, isExecutableFileAtPath, and isDelet-
ableFileAtPath methods is the easiest way to determine whether our
application has a certain access permission. Each method accepts a
single input in the form of the file’s path and returns a boolean value of
YES or NO. For instance, the following code fragment verifies if a file
is writable:

NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

if ([filemgr isWritableFileAtPath: @"/tmp/myfiles.
txt"] == YES)
 NSLog (@"The File is writable");
else
 NSLog (@"The File is read only");

File Moving/Renaming

The moveItemAtURL function is used to rename a file (given proper per-
missions). This function gives a boolean YES or NO result and accepts
as inputs the pathname of the file to be relocated, the destination path,
and an optional NSError object with information about any issues found
during the operation. This option is set to NULL if no error description
information is required. This procedure will fail if the destination file path
already exists.

NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

NSURL *oldPath = [NSURL fileURLWithPath:@"/tmp/
myfiles.txt"];
NSURL *newPath= [NSURL fileURLWithPath:@"/tmp/
newfiles.txt"];

[filemgr moveItemAtURL: oldPath toURL: newPath error:
nil];

286    ◾    Objective-C

Making a File Copy

The copyItemAtPath function is used to copy files. Like the move method,
this function takes as arguments the source and destination pathnames
and an optional NSError object. The returned boolean result indicates
whether or not the operation was successful:

NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

if ([filemgr copyItemAtPath: @"/tmp/myfile.txt"
toPath: @"/Users/demo/newfiles.txt" error: NULL]
== YES)
 NSLog (@"Copy-successful");
else
 NSLog (@"Copy-failed");

Delete a File

The removeItemAtPath function deletes the file supplied by the path from
the file system. The pathname of the file in Objective-C is to be deleted,
and an optional NSError object is sent as parameters to the procedure. The
operation’s success is reported as usual in the form of a boolean YES or
NO return value:

NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

if ([filemgr removeItemAtPath: @"/tmp/myfiles.txt"
error: NULL] == YES)
 NSLog (@"Remove-successful");
else
 NSLog (@"Remove-failed");

Making a Symbolic Connection

The createSymbolicLinkAtPath function makes a symbolic link to a spe-
cific file. This function accepts the symbolic link’s path, the path of the file
to which the link should point, and an optional NSError object. The fol-
lowing code, for example, generates a symbolic link from/tmpUsers/demo/
myfiles21.txt to the pre-existing file /tmp/myfiles.txt:

NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

Appraisal    ◾    287

if ([filemgr createSymbolicLinkAtPath: @"/tmp/
myfiles2.txt"
 withDestinationPath: @"/tmp/myfiles.
txt" error: NULL] == YES)
 NSLog (@"Link-successful");
else
 NSLog (@"Link-failed");NSFileManager *filemgr;

filemgr = [NSFileManager defaultManager];

if ([filemgr createSymbolicLinkAtPath: @"/Users/demo/
files1.txt"
 withDestinationPath: @"/tmp/myfiles.
txt" error: NULL] == YES)
 NSLog (@"Remove-successful");
else
 NSLog (@"Remove-failed");

Reading and Writing Files with NSFileManager

The NSFileManager class provides essential file reading and writing
functionality. These features are reasonably restricted compared to the
possibilities supplied by the NSFileHandle class, but they can still be
helpful.

To begin, the contents of a file may be read and stored in an NSData
object using the contentsAtPath method:

NSFileManager *filemgr;
NSData *databuffer;

filemgr = [NSFileManager defaultManager];

databuffer = [filemgr contentsAtPath: @"/tmp/myfiles.
txt"];

After storing the contents of a file in an NSData object, the data may be
written to a new file with the createFileAtPath method:

databuffer = [filemgr contentsAtPath: @"/tmp/myfiles.
txt"];

[filemgr createFileAtPath: @"/tmp/newfiles.txt"
contents: databuffer attributes: nil];

288    ◾    Objective-C

<google>IOSBOX</google> In the preceding example, we transferred
the contents of an existing file to a new file. However, we cannot control
how much data is read or written, and we cannot add data to the end of
an existing file. If the file/tmp/newfiles.txt had previously existed in the
preceding example, it and any data it contained would have been replaced
by the source file’s contents. A more adaptable system is necessary. The
Foundation Framework provides this in the form of the NSFileHandle
class.

Managing Files Utilizing the NSFileHandle Class

The NSFileHandle class has a variety of methods intended to give a more
sophisticated mechanism for interacting with files. This class is used to
manage devices and network sockets, and files. In the following sections,
we will examine some of the most frequent applications of this class.

Creating an Object of Type NSFileHandle

When a file is opened for reading, writing, or modification, an
NSFileHandle object is produced (reading and writing). The fileHandle-
ForReadingAtPath, fileHandleForWritingAtPath, and fileHandleForUp-
datingAtPath functions do this. After opening a file, it must be closed
using the closeFile method after we are through working with it. If an
attempt to open a file fails, such as when a non-existent file is attempted to
be opened for reading, these methods return nil.

The following code sample, for instance, opens a file for reading and
writing and then closes it without actually modifying the file:

NSFileHandle *file;

file = [NSFileHandle fileHandleForWritingAtPath: @"/
tmp/myfiles.txt"];

if (file == nil)
 NSLog(@"Failed to open the file");

[file closeFile];

NSFileHandle File Offsets and Seeking

NSFileHandle objects keep track of the current location inside a file. This
is known as file offset. When a file is opened for the first time, its offset is
0 (the beginning of the file). This indicates that all read or write operations

Appraisal    ◾    289

using the NSFileHandle methods will begin at offset 0 in the file. To con-
duct actions at various positions inside a file, such as appending data to
the end, it is essential to the first search for the desired offset. Use the seek-
ToEndOfFile function to relocate the current offset to the end of the file.
For instance, seekToFileOffset enables us to define the specific place inside
the file where the offset should be positioned. The last way to identify the
current offset is the offsetInFile method. The offset is saved as an unsigned
long to accommodate large file sizes.

The following example opens a file for reading and then uses a series of
methods to shift the offset to various locations, printing the current offset
after each change:

NSFileHandle *file;

file = [NSFileHandle fileHandleForUpdatingAtPath:
@"/tmp/myfiles.txt"];

if (file == nil)
 NSLog(@"Failed to open the file");

NSLog (@"Offset = %llu", [file offsetInFile]);

[file seekToEndOfFile];

NSLog (@"Offset = %llu", [file offsetInFile]);

[file seekToFileOffset: 30];

NSLog (@"Offset = %llu", [file offsetInFile]);

[file closeFile];

File offsets are an important component of working with files with
the NSFileHandle class, so take the time to ensure we grasp the notion.
It is difficult to predict where data will be read or written in a file without
knowing the current offset.

READING DATA FROM A FILE
After opening a file and assigning it a file handle, the contents of that file
are read from the current offset point. The readDataOfLength function
reads a specified number of bytes from a file, beginning at the current

290    ◾    Objective-C

offset. For example, the code below reads 5 bytes from offset 10 in a file.
The data read is returned in the form of an NSData object:

NSFileHandle *file;
NSData *databuffer;

file = [NSFileHandle fileHandleForReadingAtPath:
@"/tmp/myfiles.txt"];

if (file == nil)
 NSLog(@"Failed to open the file");

[file seekToFileOffset: 10];

databuffer = [file readDataOfLength: 5];

[file closeFile];

DATA SAVING TO A FILE
The writeData method writes the data in an NSData object to the file
beginning at the offset point. In Objective-C, it should be noted that this
does not insert data but rather replaces any existing data in the file at the
relevant spot.

To see this in action, we must first create a file. Create a file called
quickfox.txt in the/tmp directory, enter the following content, and save it:

The quick brown fox overtook the sluggish hound.
Next, we’ll develop a program that opens the file for updating, navigates

to position 10, and then adds some data there:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSFileHandle *file;
 NSMutableData *data;

 const char *bytestring = "black dog";

 data = [NSMutableData dataWithBytes:bytestring
length:strlen(bytestring)];

Appraisal    ◾    291

 file = [NSFileHandle
fileHandleForUpdatingAtPath: @"/tmp/quickfox.txt"];

 if (file == nil)
 NSLog(@"Failed to open the file");

 [file seekToFileOffset: 10];

 [file writeData: data];

 [file closeFile];

 }
 return 0;
}

FILE TRUNCATION
The truncateFileAtOffset method truncates a file at the supplied offset.
When invoking this function, give an offset of 0 to remove the entire con-
tents of a file:

NSFileHandle *file;

 file = [NSFileHandle
fileHandleForUpdatingAtPath: @"/tmp/quickfox.txt"];

 if (file == nil)
 NSLog(@"Failed to open the file");

 [file truncateFileAtOffset: 0];

 [file closeFile];

HOW TO WORK AS AN iOS DEVELOPER
An iOS developer is a technology professional who creates mobile applica-
tions. They produce Apps that people use daily by applying their expertise
in the iOS operating system and computer programming languages. If we
appreciate utilizing technology to build new things, we might want to con-
sider a career as an iOS developer. This piece in Objective-C will look at
some of the most typical job tasks of an iOS developer and their average
compensation and the measures that may take to become one.

292    ◾    Objective-C

WHAT EXACTLY IS AN iOS DEVELOPER?
An iOS developer is someone who builds software for mobile operating
systems. They employ computer languages to create, test, and optimize
programs that users may easily download and use. iOS developers can
work as part of a team of other software engineers and IT experts at a soft-
ware firm or as freelancers.

WHAT DOES AN iOS DEVELOPER DO?
The primary Objective of an iOS developer is to design mobile Apps that
are pleasant to users. While the day-to-day responsibilities of an iOS devel-
oper may vary, they are often responsible for accomplishing specific tasks.
Among the responsibilities you might anticipate doing in this position are
the following:

•	 Testing, optimizing, and debugging programs to guarantee quality

•	 Recognizing possible concerns and overcoming challenges

•	 Coding and designing application architectures

•	 Publishing programs for download by customers

•	 Continuously doing maintenance to enhance application
performance

•	 Developing and implementing modifications to an application

•	 Working with other members of the team to design and create new
features.

iOS DEVELOPER INCOME AND EMPLOYMENT FORECAST
The average annual income for an iOS developer is $115,556. This might
vary depending on our degree of education, job experience, and skill set.
The sector we work in, the size of the company we work for, and the cost of
living in our area may all influence our salary. In addition to their yearly
income, many iOS developers get employer-provided perks. The most
prevalent advantages include:

•	 Health insurance

•	 Health savings account

•	 Remote work opportunities

Appraisal    ◾    293

•	 Stock options

•	 Paid time off

•	 Commuter assistance

The Bureau of Labor Statistics (BLS) projects that the employment of
software developers, quality assurance analysts, and testers will expand
by 22 percent from 2019 to 2029, which is much higher than the average
rate of growth for all professions. According to the BLS, this rise may be
attributable to the growing need for computer software.

HOW TO BECOME AN iPhone PROGRAMMER
Here are some measures we may take to begin our iOS development career:

1.	Pursue an undergraduate degree: Although it is possible to become
an iOS developer without a bachelor’s degree, finishing a bachelor’s
program in software engineering, computer science, or mathematics
will help us acquire the knowledge and abilities necessary to flour-
ish in this field. Additionally, many businesses choose people with
formal training in a related profession. We may study the following
courses throughout our undergraduate education to prepare for a job
as an iOS developer:

•	 Mobile development

•	 Microcontroller architecture

•	 Data structures and algorithms

•	 Web development

•	 Networking

•	 Introduction to operating systems

•	 Embedded systems

•	 Computer programming languages

•	 Assembly language

2.	Take Swift and Objective-C classes: As an iOS developer, you must
have a solid grasp of Swift, SwiftUI, and Objective-C. Swift is a funda-
mental programming language that enables the creation of variables

294    ◾    Objective-C

and the writing of functions to develop professional Apps in SwiftUI,
a popular iOS framework. These packages give us all the resources
necessary to develop user-friendly Apps. Objective-C classes are also
available to acquaint students with another popular iOS program-
ming language.

Swift and Objective-C use the same iOS foundations, yet the lan-
guages are somewhat distinct. Many iOS developers opt to study
Swift first because it is more straightforward and more popular, but
exploring Objective-C might give you a more well-rounded candidate
for employment. Start by searching for online Swift and Objective-C
courses.

3.	Develop our software: Creating our apps is one of the most effective
methods to progress as an iOS developer. This will allow us to experi-
ment with various ways and acquire practical experience working
with various programming languages. Providing samples of the apps
we’ve developed may help impress hiring managers and illustrate our
degree of expertise.

Install Xcode on our computer to apply your Swift, Objective-C,
and other programming language expertise. Xcode in Objective-C is
the integrated development environment (IDE) used by iOS applica-
tion developers. This tool allows you to write code, design user inter-
faces, and publish our Apps for people.

CONNECTIONS, DATA, AND THE CLOUD IN NETWORKING
In today’s age of ubiquitous mobile devices and constant Internet connec-
tions, networking is a fundamental issue. On iOS alone, many Apps use
the network in one way or another, either by utilizing built-in mechanisms
such as iCloud synchronization or GameKit’s communication architecture
or by communicating directly with Internet-based servers. In addition,
customer expectations often conflict with the capabilities and constraints
of wide-area mobile networks like EDGE, 3G, and HDPSA+, leaving you,
the application developer, to optimize a high-latency, low-throughput net-
work channel.

Fortunately, I have vast knowledge and expertise to contribute to this
subject. This section presented the URL loading mechanism and asyn-
chronous, synchronous, and synthetic-synchronous network access. We
will learn the best practices for handling various forms of data transmit-
ted via the network and how to handle system-independent binary data

Appraisal    ◾    295

effectively. We will also learn how to identify services on the network and
establish your services and make their information accessible in the same
way.

Probably most significantly, we will discover the reasoning behind the
following network-centric programming fundamentals on the Mac and iOS:

•	 The main thread should never visit the network.

•	 When feasible, use asynchronous network primitives.

•	 Use streams for all data processing.

•	 Ensure that data processing and transport handling are ignorant of
one other.

BASIC PRINCIPLES
While the data access APIs on the Mac and iOS are typically storage-
agnostic, there might be significant differences between loading a file from
a disc and reading it through the network. To reinforce the teachings of
this section, we’ll take a few moments to clarify these distinctions and
provide a solid foundation for whatever we may learn about networking
in the future.

With both network and local file access, several issues might affect the
performance of our program. These fall into two major categories:

Latency in Objective-C refers to the length of time required to reach the
desired resource. This often refers to the seek-time of the underlying stor-
age media when discussing local drives. This refers to the round-trip time
of a network command packet.

Throughput is the rate at which data may be sent to or retrieved from a
resource. Typically, local drives have a fast throughput and may transfer
hundreds of megabytes per second. This might range from tens of giga-
bytes per second to a few kilobytes per second on a network.

Bandwidth availability is also related to these two categories. For local
storage, reads and writes often pass across a hardware bus, which offers a
much greater throughput than hard drives. Therefore, unless many discs
are used concurrently, the total throughput is likely to equal that of the
physical media utilized by a specific process. This indicates that if we read
or write to numerous devices simultaneously, we will likely not see a sig-
nificant increase in the throughput of each device compared to if we han-
dled each device individually.

296    ◾    Objective-C

However, on the network, available bandwidth is often far more limited,
and a single activity may rapidly use all available bandwidth, saturating
the connection. Therefore, conducting multiple processes in parallel would
likely result in a slowdown of all activities as the available bandwidth is
divided among them. In addition, there are other nodes, such as wireless
access points and routers, between your device and the real resource. Any
of them may have bandwidth issues and any number of other clients, and
they may impose particular restrictions to prevent anyone client from
using excessive bandwidth. Many popular access points and routers, for
instance, only let four concurrent HTTP requests from a single client to
a single destination resource; all others are denied until some of the first
four are completed. Therefore, it is generally advantageous for HTTP client
software to apply the same restriction internally to prevent several concur-
rent activities from spinning their wheels and using local resources like
memory, CPU, and battery life.

In contrast, there is often minimal difference when requesting several
resources from the same place through the network, although doing so
with files on the same local disc might cause a significant slowdown. The
seek time is the root source of delay in disk-based storage systems. When
reading a single huge file, the disc will search the file once and then read
a (mostly) contiguous stream of data. When multiple files are being read
and written concurrently, the disk’s read head must repeatedly travel back
and forth across the magnetic platter to switch between the files, resulting
in disc thrashing. These clunking and clicking noises are audible during
moments of intense computer activity. Recent advancements in solid-state
storage have led to the widespread use of solid-state drives (SSDs) over
platter-based magnetic hard disc drives; therefore, the latency issue is far
less of a concern in such storage systems. The iPhone employs solid-state
storage.

NETWORK DELAY
The most common causes of latency in network transmissions are net-
work congestion (which may occur at any point along the path) or inef-
ficiency of the underlying transmission protocol. Both wired and wireless
network connections employ variants of the Ethernet protocol. This pro-
tocol is responsible for identifying other devices on the local network and
efficiently transporting data between them. However, mobile devices using
the cellular network use a protocol such as GSM or HSDPA, which must
sustain data throughput even when devices are traveling fast between

Appraisal    ◾    297

endpoints such as cell towers. Consequently, these protocols have sub-
stantial overhead compared to Ethernet. This is exacerbated because most
Ethernet or Wi-Fi devices have throughputs in the tens or hundreds of
megabits per second, but HSDPA+ and “4G”1 cellular networks are only
starting to surpass the 15 Mbit threshold. Consequently, it is usual to delay
up to a full second (or even two!) while establishing a connection via a cel-
lular network, especially with slower protocols such as GSM and 3G.

If your application makes many connections, such as when retrieving
data from a server using the HTTP protocol, the latency might be a sig-
nificant issue. Imagine you must make around 20 distinct calls to get a
complete list of 200 comments (the server returns 10 per page). By default,
each call will establish a new connection, and each connection will have
significant latency. If the latency is high, regardless of the actual through-
put speed, this will take between 10 and 40 seconds, which is not a pleas-
ant experience. If throughput is similarly sluggish, the situation worsens.
I’ve seen an implementation of synchronizing data from such an API take
over an hour when many calls are to be performed, with network delay
accounting for over half of that time.

ASYNCHRONICITY
With so many possible problems awaiting that, we must interact with net-
work resources in an entirely asynchronous manner. We cannot empha-
size this point enough: it must always be asynchronous, regardless of the
circumstances.

It is easy to convince oneself in Objective-C that something does not
need asynchronous execution. Possibly we use the network seldom; perhaps
we only transmit or receive minimal quantities of data. Maybe we merely
transfer data and do not wait for a response, or we only do network activi-
ties in reaction to user interaction. We’ve heard all these justifications, but
we have some bad news: the network will still catch us. For instance:

•	 We seldom use the network:If we do it seldom, the user is probably
not anticipating it. Our user is more likely to be frustrated if our
infrequent action causes the program to become unresponsive than
if it were a regular occurrence since they cannot anticipate when it
will occur.

•	 We only transmit tiny data packets: Little packets may travel rela-
tively rapidly on networks with limited capacity, but network delay

298    ◾    Objective-C

disregards packet size. Establishing the connection may take so long
that the program becomes unresponsive, even for a short time, which
is a Bad Thing.

•	 We simply send messages; we never wait for a response: Even if we
are not expecting a response, our send operation will not finish until
the network stack gets confirmation that the data has been received
successfully. We might employ a protocol with unguaranteed data
transport, but for delivering user data, this is a terrible choice; we
need to ensure the data arrives securely.

•	 It is always triggered by human input. Thus users have learned to
anticipate a little wait: The user may alter their decision. If every-
thing is performed synchronously, there is no way to abort an action
asynchronously if the user determines it takes too long.

SOCKETS, PORTS, STREAMS, AND DATAGRAMS
The OS X and iOS networking systems use the BSD sockets technology.
This makes a network connection seem similar to a file: data is delivered
and received by writing to or reading from a normal file handle, and the
kernel handles the rest. There are additional capabilities, but it is doubt-
ful that we will need to examine them for our objectives. When dealing
with network connections, the primary distinction is that neither data nor
space to write is accessible on demand. Incoming data is not accessible
until it has arrived over the transport medium, and outgoing data is tem-
porarily kept in a system buffer until the system can transmit it over the
wire. We examined NSStream and observed events and methods based on
these concepts: data accessible to read and space available to write.

The file handle of a network connection is known as a socket. Once
constructed, they may be used very identically to conventional file handles
until an NSFileHandle object is wrapped around them. The primary dis-
tinction is the inability to search inside the data stream; it is purely an
ordered-access system.

There are two fundamental types of sockets.
Stream sockets are meant to transmit vast volumes of ordered data

between two ends of a connection. Typically, the underlying transport
guarantees material delivery in the right sequence.

On the other hand, Datagram sockets do not give any delivery or order-
ing assurances. Each datagram is treated as an independent entity, and no
effort is taken to guarantee that all datagrams follow the same path across

Appraisal    ◾    299

the network. Depending on each node’s circumstances and travel, each
datagram might take a different path.

Datagram sockets, typically utilizing the Unified Datagram Protocol
(UDP) over the Internet Protocol (IP), are typically used for streaming
media. A datagram from a specific location in the underlying data stream
is expected to arrive at a specific time. Still, the data is reassembled without
receiving every byte in order. If we’ve ever seen a live webcast, we’ve likely
seen the speaker’s picture replaced with fragments of an earlier frame,
looking twisted and wrapped to follow the speaker’s movement. This dem-
onstrates the absence of datagrams. Occasionally, the video data offers a
whole frame, and in between, the data consists simply of alterations to
apply to the previous frame to form the current frame. When a whole
frame is missing, the picture of the incorrect frame is warped to construct
a new one, resulting in the aforementioned aesthetic effect.

Streaming sockets and Transmission Control Protocol (TCP) over IP
are used for most network communication. TCP guarantees delivery at the
expense of time-to-destination guarantees. If a problem occurs during the
transfer, the receiving endpoint may verify that it got the packet correctly
and request a resend if necessary.

The TCP protocol also guarantees that order is preserved even if some
packets arrive properly and others do not; if packet A fails and packet B
succeeds, the contents of packet B are held until the contents of packet A
are successfully delivered.

TCP provides transmission windows as well. These let each end-
point transmit the amount of data it can effectively handle to the other.
Consequently, unlike UDP (Unified Datagram Protocol), an endpoint
never transmits data that the recipient cannot presently process. On the
other hand, Datagram protocols are intended to send data as quickly as
possible (or at least at a constant pace), enabling the receiver to simply
ignore any packets that come before it can process them.

We shall use TCP/IP rather than datagrams in the following instances.
Datagram protocols often need additional application-level work to effec-
tively handle failures such as missing packets, which is outside the scope
of this book.

The Internet Protocol sits underneath the TCP and UDP protocols. This
is the origin of many items we may already recognize: IP addresses with
dotted octets, such as 192.168.23.5, derive from IP protocol version 4. Each
connection endpoint is made accessible by a port on the IP address, a 16-bit
integer identifying a specific endpoint. There are a variety of standard

300    ◾    Objective-C

port assignments recorded with the appropriate authorities, so some ser-
vices are often available through a well-known port number. HTTP, for
instance, uses port 80, while HTTPS utilizes port 443. When provided
over TCP/IP, Apple Filing Protocol utilizes port 548, and there are many
more common assignments in use, representing a significant portion of
the protocol’s 65535 available ports.

The 32-bit addressing mechanism used by IPv4 only permits around
4.3 billion different addresses. Add to that the fact that significant areas
of these addresses are restricted from general use exclusively as local-net-
work private addresses or for other communication, such as multicast IP,
and it’s not unexpected that we’ve run out. Early in 2012, service provid-
ers picked up the last available IPv4 addresses. The solution is the current
implementation of IPv6, the most recent standard version. This upgrade
employs a 128-bit addressing method, which is predicted to outlast the
lives of everyone living now by a significant margin. From the software’s
perspective, the only difference is how an address is given.

AUTHENTICATION
Using two techniques, the URL connection tells its delegate of an authen-
tication challenge. First, it will determine if the built-in credential storage
is used to automatically search up login information by invoking – con-
nection. When the connection is initiated, ShouldUseCredentialStorage is
true. The connection will presume that the response is YES if the delegate
does not implement this method.

This value will be used to generate a default challenge response if
an authentication challenge is received from a remote service. This
answer may already include valid credentials if the credential storage is
accessed. If implemented, the – connection:willSendRequestForAuthen
ticationChallenge: method of the delegate will provide data on the chal-
lenge and any relevant stored credential that the system will try to use
to satisfy the challenge. This is the most common technique for adding
credentials to the store for subsequent usage. Thus, we should typically
implement it.

The second argument is an instance of NSURLAuthenticationChallenge,
which contains all known information on the challenge. We may iden-
tify the authentication mechanism, the suggested credential (if one was
accessible from the store or if a protocol supports a common “anonymous”
credential), the number of prior unsuccessful tries, and more using this
object.

Appraisal    ◾    301

For instance, we can access an NSURLProtectionSpace object that
describes the domain against which the credential is applied; this typically
refers to the host, port, and protocol used and (depending on the proto-
col) may also specify a realm to restrict the authentication’s applied scope
further. For example, a conventional HTTP connection would provide a
protocol of HTTP, a host of www.apple.com, and a port of 80 (the default
port for HTTP services) (the default port for HTTP services).

An example realm for HTTP may be a subfolder: presumably, most
of the host is available, but accessing www.testsite.com/secure/ needs a
credential. In this case, the realm would be “secure” since the credential
would only provide access to objects inside the folder resource. The pro-
tection area also offers data such as the certificate trust chain for a secure
connection and information on whether the credential will be transferred
securely. We may use any of these to determine whether or not to return a
valid credential to the server.

The essence of the issue is the generation of an NSURLCredential
object. To authenticate against a service, we must generate a credential and
present it to the sender of the authentication challenge, available through
the -sender method. The authentication challenge sender is any object
that conforms to the protocol NSAuthenticationChallengeSender, which
defines the methods.

DIFFERENCE BETWEEN OBJECTIVE
AND OTHER LANGUAGES

C AND OBJECTIVE-C

C Language Objective-C

It is a language based on procedures.
Problems are resolved sequentially.

The computer language Objective-C is an
object-oriented language. It provides syntax and
semantics to enable an object-oriented
programming language. It does not, however,
enable multiple inheritance properties.

C language may be referred to as
Objective-C’s subset

Objective-C is the superset of the C programming
language. It also has classes and objects in
addition to the C programming language.

The C language’s pointers are
susceptible to security threats.

Objective-C utilizes null pointers and is hence
type-safe compared to C.

It is fundamentally a low-level
language that is too similar to
assembly language.

Objective-C is a high-level programming language
that combines C with a small-talk messaging
style.

(Continued)

https://www.apple.com
https://www.testsite.com

302    ◾    Objective-C

The C programming language does
not provide classes. Bjarne
Stroustrup created the C++
programming language to bring
object-oriented capabilities such as
classes to the C programming
language.

Objective-C is an object-oriented programming
language that supports classes and a dynamic
runtime.

It uses a top-down programming
methodology.

It uses a bottom-up programming methodology.

Large program code is broken down
into smaller chunks called
functions in this programming
language.

Large program code is broken down into smaller
codes known as Objects and Classes in this
programming language.

It only supports pointers. Both pointers and references are supported.
Declaring variables at the beginning
of a program is required.

Variables are specified anywhere in this
programming language.

The C programming language
doesn’t provide exception
handling.

Exception handling in Objective-C may be
implemented using catch and try sections.

C prohibits the definition of
functions with default parameters.

It permits function definitions with default
parameters.

C cannot execute Objective-C code. Objective-C is capable of executing C code.
C includes malloc(), calloc(), and
free() for dynamic memory
allocation and deallocation,
respectively.

Objective-C includes the new and deleted
operators for memory allocation and
deallocation.

Data is not protected in the C
programming language.

Using the notion of encapsulation, Objective-C
security is implemented.

There is no facility for inline
function.

It supports the function inline.

C does not permit the overloading
of functions and operators.

Objective-C enables the overloading of functions
and operators.

It is often referred to as function-
driven language.

It is known as object-oriented programming.

Encapsulation, Data hiding,
inheritance, polymorphism, and
abstraction are not supported.

Objective-C’s most essential characteristics are
encapsulation, data hiding, inheritance,
polymorphism, and abstraction.

The C language lacks support for
templates.

Objective-C is compatible with templates.

It is beneficial for embedded
services.

It is helpful for gaming, networking, etc.

C Language Objective-C

Appraisal    ◾    303

C++ LANGUAGE AND OBJECTIVE-C

Sr. No. C++ Objective-C

01. C++ is a high-level, object-oriented,
procedural, general-purpose
programming language. It was
referred to as “C with Classes.” It is a C
programming language extension.

Objective-C language is a general-
purpose, object-oriented
programming language that
provides syntax and semantics for
object-oriented programming and
operates as a superset of the C
programming language.

02. Bjarne Stroustrup created it in 1980 at
Bell Laboratories.

1980: Brad Cox and Tom Love of
Productivity Products International
design the product (PPI).

03. It allows for multiple inheritances. It is not compatible with multiple
inheritances.

04. Structs and classes are handled
identically in C++.

Structs and classes are not handled
identically in Objective-C.

05. In C++, methods are used to invoke the
implemented functionality.

In Objective-C, messaging is used to
invoke implemented functionality.

06. It is a typed static language. It is a typed dynamic language.
07. True, false, and bool are used. It employs YES, NO, and BOOL.
08. Standard Template Library is present. It lacks template libraries.
09. Evernote, LinkedIn, Opera, Microsoft,

NASA, and Facebook are among the
businesses that use C++.

Uber, Pinterest, Instagram, Slack,
Instacart, and more businesses use
Objective-C.

https://taylorandfrancis.com

305DOI: 10.1201/9781003357506-8

Objective-C Cheat Sheet

Assumptions

This cheat sheet assumes our project has Automatic Reference Counting
(ARC) enabled. Enjoy

Class Header (.h)

#import "HeaderFile.h"
@interface Class_Name : SuperClass {
 //declare the instance variables
 // (optional)
}
// define-properties
// define-methods (including any
// custom-initializers) @end

Class Implementation (.m)

#import "ClassName.h" @implementation ClassName
// synthesize properties (optional in
// the Xcode 4.4+)
// implement-methods (including any
// custom-initializers, and dealloc) @end

Defining Methods

- (anytype)doIt;
- (anytype)doItWithX:(anytype)x;
- (anytype)doItWithX:(anytype)x andY:
(anytype)y;

https://doi.org/10.1201/9781003357506-8

306    ◾    Objective-C

Implementing Methods

- (anytype)doItWithX:(anytype)x andY:(anytype)y {
 //Do something with x and y... return retVal;
}

Creating a Class Instance

ClassName * my_Class = [[ClassName alloc] init];

Calling a Method

[myClass doIt]; [myClass doItWithX:x];
[myClass doItWithX:x andY:y];

Defining Properties

@property (attribute1, attribute2) property_Name;

strong Adds ref to keep the object alive
weak Object can disappear, and become nil
assign Normal assign, and no reference
copy Make the copy on assign
nonatomic Make not threadsafe, increase perf
readwrite Create the getter&setter (default)
readonly Create just getter

Synthesizing Properties

//Optional in Xcode 4.4+ @synthesize property_Name;
@synthesize property_Name=
 _myInstanceVariable;

Using Properties

[myClass setProperty_Name:x]; myClass.property_Name =
x; // alternative

x = [myClass property_Name];
x = test.property_Name; // alternative

Objective-C Cheat Sheet    ◾    307

Declaring Variables

anytype my_Variable;

Int 1, 2, 500, 10000
float
double

1.5, 3.14, 578.234

BOOL YES, NO, TRUE, FALSE
ClassName * NSString *, NSArray *, etc.
id Can hold ref to any object

Custom Initializer Example

- (id)initWithParam:(anytype)param {if ((self =
[super init])) {
 self.property_Name = param;
 }
 return self;
}

NSString Quick Examples

NSString *personOne = @"Raj"; NSString *personTwo =
@"Sham"; NSString *combinedString =
 [NSString stringWithFormat: @"%@: Heyyy, %@!",
personOne, personTwo];
NSLog(@"%@", combinedString); NSString *tipString =
@"24.99";
float tipFloat = [tipString floatValue];

NSArray Quick Examples

NSMutableArray *array = [NSMutableArray
arrayWithObjects:
 personOne, personTwo, nil]; [array
addObject:@"Waldo"]; NSLog(@"%d items!", array.count);
for (NSString *person in array) {
 NSLog(@"Person: %@", person);
}
//Xcode 4.4+ alt: array[2] NSString *waldo =
 [array objectAtIndex:2];

https://taylorandfrancis.com

309

Index

A

Abstract Syntax Tree (AST), 240–241
Accelerometer in iOS, 130–131
Access control, 211, 215–216
Adapter design pattern, 231
Address Space Layout Randomization

(ASLR), 248
Advantages of Objective-C, 262
AFNetworking, 245
Allocating and initializing Objective-C

objects, 76
Anonymous categories, 94
AppDelegate, 120
AppDelegate.h, 120
AppDelegate.m, 120–122
Apple, 1, 8, 102, 210, 250, 283
Application debugging in iOS, 171

breakpoint exception, 172
breakpoints, setting, 171–172
choosing, 171
coding errors, locating, 171
Google APIs, 172–174

App store, uploading application’s
framework to, 221

ARC, see Automatic Reference Counting
Arguments, 31
Arguments and return values, blocks

taking, 35
Arithmetic conversion, 60–61
Arithmetic operators in Objective-C, 23
Array name, 39
Arrays in Objective-C, 38, 46, 116

accessing array elements, 39–40
declaring arrays, 38–39
in depth, 40
initialization, 39

arraySize constant, 39
ASLR, see Address Space Layout

Randomization
Assignment operators, 25–26
AST, see Abstract Syntax Tree
Asynchronicity, 297–298
Attack surface, 256–257
Audio and video in iOS, 146–148
Authentication, 300–301
Auto layouts in iOS, 163

aim of our example, 163
our strategy, 163–164
the involved steps, 164–167

Automatic garbage collection, 282
Automatic Reference Counting (ARC),

110–111, 225, 227, 265
dealing with memory in, 170
effective procedures, 226

AVAudioSessionCategoryPlayback,
195

B

Base and derived classes, 81–83
Bit Fields, 52
Bitwise operators, 24–25
Blocks in Objective-C, 34, 190–191

arguments and return values, blocks
taking, 35

simple block, implementation of, 35
simple block declaration syntax, 35
type definitions, blocks using,

35–36
BLS, see Bureau of Labor Statistics
Breakpoint exception, 172
Breakpoints, setting, 171–172

310    ◾    Index

Brightcove Player SDK Header File,
importing, 198

Brightcove SDK, 198
Building object in Objective-C, 73
Bundle structure, creating, 217–218
Bureau of Labor Statistics (BLS), 293

C

C++, 264, 283
Objective-C versus, 3–4

Called method, 32
Camera management in iOS, 132–134
C and Objective-C, 301–303
Catching exceptions, 270–271
Categories in Objective-C, 91–93, 281
Character constants, 20
Characteristic of Objective-C, 75
Cheat sheet, 305–307
C inside, 283
Clang Static Analyzer, 226
Class, 74, 93

hierarchies of, 83–84
and objects, 183–185

Class clusters, 101
Class methods, 188

properties and accessor methods,
188–190

closeFile method, 288
Cocoa developers, 228
Code management, 207

design patterns in iOS, 228
Adapter design pattern, 231
advantages of employing, 237
Command design pattern, 233
Composite design pattern, 233
Decorator design, 230
Facade design pattern, 229–230
Factory method design, 232
Iterator design pattern, 233
Mediator design pattern, 233
Memento Pattern, 231
Model View Presenter (MVP),

235–236
MVC, 234–235
MVVM, 236
Observer design pattern,

231–232

prepared to develop iOS
applications using, 238

Singleton design pattern, 233–234
Strategy pattern, 232
VIPER, 237

dynamic framework, utilizing, 215
dynamic structure, developing, 210

access control, 211
developing code, 211
setting up the project, 210–211
umbrella header, 211
universal support, 212–215

framework, anatomy of, 209
dynamic frameworks, 209–210
processors, architectures and

slicing of, 210
static frameworks, 209–210

frameworks, 208–209
memory management in Objective-C,

221
Automatic Reference Counting

(ARC), 225–226
debug memory issues using analysis

tools, 226
goal of, 226–228
Manual Retain-Release (MRR),

222–224
static framework, 215

access control, 215–216
app store, uploading application’s

framework to, 221
bundle structure, creating,

217–218
compiling and constructing the

framework, 221
developing the code, 215
modifying build settings to

support, 216
module support, 216–217
packaging, 216
recommendations, 220
setting up the project, 215
umbrella header, 216
universal support, 218–220
utilizing, 220

Code optimization, 239
compile time, 239–240
control structures, 251–252

Index    ◾    311

enums, 256
extern, const, and static, 255
for, 253
header prefix, 254
import, 253
methods, 250–251
naming, 255–256
operators, 250
pipeline, 240–243
pragma mark and implementation

organization, 251
private methods and properties,

254–255
properties, 254
screenshot data, resume background

disclosure of, 245
secure code, 243

HTTPS response cache, security
breach through, 244–245

SSL pinning, 245–250
switch, 252–253
system hardening, 256

advantages of, 257
to reduce “attack surface,”

256–257
types, 250
while, 253

Coding errors, locating, 171
Collections in Objective-C, 106–107
Command design pattern, 233
Command-line arguments, 64–65
Comments, 11–12
Composite design pattern, 233
Composite objects in Objective-C, 101

class clusters, 101
example of, 102–104

Conditional operator?:, 30
Constant definition, 21

const keyword, 22
#define preprocessor, 21–22

Constants in Objective-C, 19
Const keyword, 22
contentsEqualAtPath function, 284
Control statements for loops, 28
Control structures, 115
copyItemAtPath function, 286
createSymbolicLinkAtPath function, 286
Custom errors, 278–280

D

Data, operations and, 67–68
Data encapsulation in Objective-C, 88

example of, 90–91
strategy, creating, 91

Datagram sockets, 298
Data members, accessing, 76

modularity, 78–79
properties, 77–78
reusability, 79–80

Data saving to a file, 290–291
Data types in Objective-C, 13, 115

character constants, 20
constant definition, 21

const keyword, 22
#define preprocessor, 21–22

constants in Objective-C, 19
floating-point, types of, 14–15
floating-point literals, 19–20
integer literals, 19
integers, types of, 14
lvalues and rvalues, 18
printing logs, 115
string literals, 21
variable declaration, 17–18
variable definition, 16–17
variables in Objective-C, 15–16
void type, 15

Decision making in Objective-C, 29
conditional operator?:, 30

Declared properties, 189
Declaring arrays, 38–39
Decorator design, 230
#define, typedef vs, 58
defined() operator, 56
#define preprocessor, 21–22
Definitions of Objective-C classes, 75
Delegation pattern in Objective-C, 267
Design patterns in iOS, 228

Adapter design pattern, 231
advantages of employing, 237–238
Command design pattern, 233
Composite design pattern, 233
Decorator design, 230
Facade design pattern, 229–230
Factory method design, 232
Iterator design pattern, 233

312    ◾    Index

Mediator design pattern, 233
Memento Pattern, 231
Model View Presenter (MVP), 235–236
MVC, 234–235
MVVM, 236
Observer design pattern, 231–232
prepared to develop iOS applications

using, 238
Singleton design pattern, 233–234
Strategy pattern, 232
VIPER, 237

Detecting errors, 276–278
Development, Objective-C used in,

263–264
Dictionary classes, 117
didFinishLaunchingWithOptions

function, 198
Double quotes, 21
Downsides of Objective-C, 4
Dynamically typed variables, 185
Dynamic binding in Objective-C, 99–101
Dynamic frameworks, 209–210

utilizing, 215
Dynamic operating time, 282
Dynamic structure, developing, 210

access control, 211
developing code, 211
setting up the project, 210–211
umbrella header, 211
universal support, 212–215

Dynamic typing, 280
Dynamism, 3, 85

E

“Edit active schemes” option, 171
Email, sending, on iOS, 144–146
Environment for Objective-C, 6
Error handling in Objective-C, 62,

275
custom errors, 278–280
detecting errors, 276–278
error domains, 276
NSError, 62–64
NSError class, 275–276

Errors, exceptions and, 268–269
Exception, 269

catching, 270–271

and errors, 268–269
making, 270
NSException class, 269–270
throwing, 271–274

Extensions in Objective-C, 94
characteristics, 95
example of, 95–96

F

Facade design pattern, 229–230
Facebook on iOS, 167–169
Factory method design, 232
Fast enumeration in Objective-C, 106

collections in Objective-C, 106–107
Faucet object, 72, 89
Features of Objective-C language

Apple’s products, access to, 283
automatic garbage collection, 282
C++ fluent, 283
categories, 281
C inside, 283
classes, 280
dynamic operating time, 282
dynamic typing, 280
introspection, 282
message sending, 281
optional static typing, 281
simplicity, 283

FileHandleForReadingAtPath, 288
FileHandleForUpdatingAtPath, 288
FileHandleForWritingAtPath, 288
File handling in iOS, 148

auto layouts in iOS, 163
aim of example, 163
involved steps, 164–167
strategy, 163–164

GameKit in iOS, 159–162
iAd integration in iOS, 158–159
in-app purchase in iOS, 152–158
maps access on iOS, 150–152
methods for, 148

check to see if a file in Objective-C
exists at a given path, 148

check to see if it is writable,
readable, and executable, 149

comparing the contents of two files,
148–149

Index    ◾    313

copy file, 149
move file, 149
read file, 149
remove file, 149
write file, 149

storyboards in iOS, 162–163
Twitter and Facebook on iOS, 167–169

File truncation, 291
First iPhone Application, 118

accelerometer in iOS, 130–131
actions and outlets in iOS, 124–125
audio and video in iOS, 146–148
camera management in iOS, 132–134
code, 119

AppDelegate.h, 120
AppDelegate.m, 120–122
ViewController.h, 123
ViewController.m, 123–124

delegates in iOS, 125
creating, 126–128

location handling in iOS, 134–137
sending email on iOS, 144–146
SQLite database in iOS, 137–144
UI elements, 128

focus, 128
inserting, 128
list of, 129
strategy, 128

universal applications in iOS, 131–132
Floating-point, types of, 14–15
Floating-point literals, 19–20
Foundation framework, 6, 101, 104, 269

functionality-based foundation classes,
105

Framework, anatomy of, 209
dynamic frameworks, 209–210
processors, architectures and slicing

of, 210
static frameworks, 209–210

Frameworks, 208–209
Functionality-based foundation classes, 105
Functional programming, 177, 178, 180

blocks, 190–191
classes and objects, 183–185
class methods, 188

properties and accessor methods,
188–190

initialization method, defining, 200

Brightcove library, using, 202
configure player, 201–202
looking at the code, 203–205
setup player, 200–201

and language design, 181
methods and communication,

 185–187
ObjC runtime, 180
object-functional programming, 178
protocols and categories, 192

types and coding strategies,
193–195

video app, creating, 195
Brightcove Player SDK Header File,

importing, 198
customizing the project, 198–199
declarations, 199–200
looking at the code, 198
setting app’s audio behavior, 195–198
View Controller class declaration,

building, 198
View Controller implementation,

constructing, 198
writing Objective-C code, 181–183

Function arguments, 34
Functions in Objective-C, 30, 69, 71

called method, 32–34
creating a method, 31–32
declarations of method, 32
function arguments, 34

G

GameKit in iOS, 159–162
GCC, see GNU Compiler Collection
GCC compiler, 7
generateRandomInteger(), 274
“Getter” accessor method, 188
GIDGoogleUser, 172
GNU Compiler Collection (GCC), 259
Goal of Objective-C, 74, 85
Google APIs, 172–174

H

Hello Everyone, Objective-C example of,
9–11

helpAnchor, 276

314    ◾    Index

I

iAd integration in iOS, 158–159
Identifiers, 12
Implementation and interface, 68–71
In-app purchase in iOS, 152–158
Income and employment forecast,

292–293
Infinite loop, 28–29
Inheritance in Objective-C, 80

accessing control and inheritance, 83
class, hierarchies of, 83–84
subclass, definitions of, 84

base and derived classes, 81–83
dynamism, 85

Initialization method, defining, 200
Brightcove library, using, 202
configure player, 201–202
looking at the code, 203–205
setup player, 200–201

Initializing Objective-C objects, 76
Integer literals, 19
Integer promotion, 59–60
Integers, types of, 14
Interface, implementation and, 68–71
Interface and API, 113

application debugging in iOS, 171
breakpoint exception, 172
breakpoints, setting, 171–172
choosing, 171
coding errors, locating, 171
Google APIs, 172–174

file handling in iOS, 148
accessing maps on iOS, 150–152
auto layouts in iOS, 163–167
GameKit in iOS, 159–162
iAd integration in iOS, 158–159
in-app purchase in iOS, 152–158
methods for, 148–149
storyboards in iOS, 162–163
Twitter and Facebook on iOS,

167–169
First iPhone Application, 118

accelerometer in iOS, 130–131
actions and outlets in iOS, 124–125
AppDelegate.h, 120
AppDelegate.m, 120–122
audio and video in iOS, 146–148

camera management in iOS, 132–134
delegates in iOS, 125–128
location handling in iOS, 134–137
sending email on iOS, 144–146
SQLite database in iOS, 137–144
UI elements, 128
UI elements, list of, 129
universal applications in iOS,

131–132
ViewController.h, 123
ViewController.m, 123–124

iOS in Objective-C, 113
arrays, 116
categories, 116–117
class methods, 114–115
control structures, 115
dictionary classes, 117
environment setup, 117–118
implementation and interface,

113–114
important Objective-C data types,

115
instance methods, 115
interface builder, 118
object creation, 114
properties, 116
simulator for iOS, 118
Xcode, installation of, 117–118

memory management in iOS, 170
analytical methods for memory

allocations, 171
challenges, 170
dealing with memory in arc, 170
rules for, 170
tools, 170

Interface builder, 118
@interface keyword, 75, 95
Internet Protocol (IP), 299
Introspection, 282
iOS design patterns, 228

Adapter design pattern, 231
advantages of employing, 237–238
Command design pattern, 233
Composite design pattern, 233
Decorator design, 230
Facade design pattern, 229–230
Factory method design, 232
Iterator design pattern, 233

Index    ◾    315

Mediator design pattern, 233
Memento Pattern, 231
Model View Presenter (MVP), 235–236
MVC, 234–235
MVVM, 236
Observer design pattern, 231–232
prepared to develop iOS applications

using, 238
Singleton design pattern, 233–234
Strategy pattern, 232
VIPER, 237

iOS developer, 292
income and employment forecast,

292–293
working as, 291

iOS in Objective-C, 113
accelerometer in, 130–131
actions and outlets in, 124–125
application debugging in, 171

breakpoint exception, 172
breakpoints, setting, 171–172
choosing, 171
coding errors, locating, 171
Google APIs, 172–174

audio and video in, 146–148
auto layouts in, 163

aim of our example, 163
our strategy, 163–164
the involved steps, 164–167

camera management in, 132–134
categories, 116

arrays, 116
dictionary classes, 117

control structures, 115
data types, 115

printing logs, 115
delegates in, 125

creating, 126–128
environment setup, 117

Xcode, installation of, 117–118
GameKit in, 159–162
iAd integration in, 158–159
implementation and interface,

113–114
in-app purchase in, 152–158
interface builder, 118
location handling in, 134–137
maps access on, 150–152

memory management in, 170
analytical methods for memory

allocations, 171
challenges, 170
dealing with memory in ARC,

170
rules for, 170
tools, 170

methods, 114
class methods, 114–115
instance methods, 115

object creation, 114
properties, 116

of accessing, 116
sending email on, 144–146
simulator for, 118
SQLite database in, 137–144
storyboards in, 162–163
Twitter and Facebook on, 167–169
universal applications in, 131–132

IP, see Internet Protocol
iPhone application, see First iPhone

Application
iPhone programmer, 293

developing the software, 294
Swift and Objective-C classes,

293–294
undergraduate degree, pursuing, 293

isEqual: method, 194
Iterator design pattern, 233

J

Joining argument, 31

K

Key-value coding (KVC), 188
Key-Value Observing (KVO), 232
Keywords, 12
kSecAttrAccessible property, 243
KVC, see Key-value coding
KVO, see Key-Value Observing

L

Language characteristics, 264
strong and weak citations, 265–268

316    ◾    Index

Learning Objective-C, 6
in 2022, 263

development, Objective-C used in,
263–264

Swift, 264
Live apps, disabling logs in, 61
Local environment configuration, 6
localizedDescription, 275
localizedFailureReason, 275
localizedRecoveryOptions, 275
Location handling in iOS, 134–137
Log handling in Objective-C, 61

live apps, disabling logs in, 61
NSLog method, 61

Logical operators in Objective-C, 24
Loops in Objective-C, 27

control statements for, 28
infinite loop, 28–29

Lvalues, 18

M

Mac OS installation, 8
Macro continuation, 55
makeKeyAndVisible function, 122
MallocCorruptionAbort, 249
Manual Retain-Release (MRR), 108, 222,

227
basic MRR rules, 109–110
basic MRR rules, 223–224

MapKit framework, 150
Maps access on iOS, 150–152
Max() function, 34
Mediator design pattern, 233
Memento Pattern, 231
Memory management in iOS, 170

analytical methods for memory
allocations, 171

challenges, 170
dealing with memory in ARC, 170
rules for, 170
tools, 170

Memory management in Objective-C,
107, 221

Automatic Reference Counting (ARC),
110–111, 225–226

debugging memory issues using
analysis tools, 226

goal of, 226
atomic and nonatomic, 228
avoid crashing, 227
strong vs weak, 227

Manual Retain-Release (MRR),
108–110, 222–224

Message sending, 281
Messaging, metaphor of, 73–74
Metaphor of messaging, 73–74
Method

called method, 32–34
creating, 31–32
declarations of, 32

Method body, 31
Method name, 31
Mobile Security Testing Guide, 249
Model View Presenter (MVP), 235–236
Module in Objective-C, 78–79
Module support, 216–217
moveItemAtURL function, 285
MRR, see Manual Retain-Release
MVC, 234–235
MVP, see Model View Presenter
MVVM, 236
myAppObject, 187
MyClass, 97
MyProtocol, 97

N

Negatives of Objective-C, 262–263
Networking, 294

asynchronicity, 297–298
authentication, 300–301
basic principles, 295–296
network delay, 296–297
sockets, ports, streams, and datagrams,

298–300
NSArray class, 102
NSError, 62–64
NSError class, 275–276
NSError object, 62
NSException class, 269–270
NSFileHandle, creating an object of, 288
NSFileHandle Class, managing files

utilizing, 288
NSFileHandle file offsets and seeking,

288–289

Index    ◾    317

NSFileManager class, 284
NSFileManager reference, obtaining, 283

checking in Objective-C, 284–285
checking to see if a file exists, 284
comparison of two files’ contents, 284
delete a file, 286
file moving/renaming, 285
making a file copy, 286
NSFileHandle, creating an object of, 288
NSFileHandle Class, managing files

utilizing, 288
NSFileHandle file offsets and seeking,

288–289
reading and writing files with

NSFileManager, 287–288
symbolic connection, making, 286–287

NSLog method, 61, 115
NSMutableString, 44
NSNotificationCenter class, 191
NSNumber, 36–37, 101
NSString, 44
NULL pointer, 43
Number-sign operator, 55
Numbers in Objective-C, 36–38

O

OAuth 2.0 procedure, 172
ObjC runtime, 180
Objective-C Preprocessor (OCPP), 52, 53–54
Object memory management, 107
Object model, 71–73
Object-oriented programming (OOP), 67

allocating and initializing Objective-C
objects, 76

categories in Objective-C, 91
category characteristics, 92–93

characteristic of Objective-c, 75
composite objects in Objective-C, 101

class clusters, 101
example of, 102–104

data encapsulation in Objective-C, 88
example of, 90–91
strategy, creating, 91

data members, accessing, 76
modularity, 78–79
properties, 77–78
reusability, 79–80

definitions of Objective-C classes, 75
dynamic binding in Objective-C,

99–101
extensions in Objective-C, 94

characteristics, 95
example of, 95–96

fast enumeration in Objective-C, 106
collections in Objective-C,

106–107
Foundation framework in Objective-C,

104
functionality-based foundation

classes, 105
implementation and interface, 68–71
inheritance in Objective-C, 80

accessing control and inheritance,
83–84

base and derived classes, 81–83
class, hierarchies of, 83–84
dynamism, 85
subclass, definitions of, 84

memory management in Objective-C,
107

Automatic Reference Counting
(ARC), 110–111

Manual Retain-Release (MRR),
108–110

messaging, metaphor of, 73–74
object model, 71–73
operations and data, 67–68
polymorphism in Objective-C, 85–88
posing in Objective-C, 93

restrictions, 93–94
protocols in Objective-C, 96–99

Observer design pattern, 231–232
OCPP, see Objective-C Preprocessor
OOP, see Object-oriented programming
OpenStep, 259
Operations and data, 67–68
Operators in Objective-C, 22

arithmetic operators, 23
assignment operators, 25–26
bitwise operators, 24–25
logical operators, 24
operators’ precedence in Objective-C,

26–27
relational operators, 23
sizeof and ternary, 26

318    ◾    Index

Operators’ precedence in the Objective-C,
26–27

Optional static typing, 281

P

Parameterized macros, 56–57
Pointers in Objective-C, 41

details, 43–44
NULL pointer, 43
working, 42

Polymorphism, 85–88, 99
poseAsClass method, 93
Posing in Objective-C, 93

restrictions, 93–94
Pragma mark and implementation

organization, 251
Predefined macros, 54–55
Preprocessors in Objective-C, 52

examples of, 53–54
operators of, 55

defined() operator, 56
macro continuation, 55
stringize, 55
token-pasting operator, 55–56

parameterized macros, 56–57
predefined macros, 54–55

Printing logs, 115
processCompleted, 96, 99
Processors, architectures and slicing of,

210
Properties in Objective-C, 77–78
Protocols and categories, 192

types and coding strategies,
193–195

Protocols in Objective-C, 96–99

R

readDataOfLength function, 289
Reading data from a file, 289–290
Reasons for selecting Objective-C,

2–3
recoverySuggestion, 275
Relational operators, 23
removeItemAtPath function, 286
resolveClassMethod, 180
resolveInstanceMethod, 180

Resume background disclosure of
screenshot data, 245

Return type, 31
Reusability in Objective-C, 79–80
Rvalues, 18

S

Screenshot data, resume background
disclosure of, 245

SecRandomCopyBytes, 247
Secure code, 243

HTTPS response cache, security
breach through, 244–245

seekToFileOffset function, 289
Semicolons, 11
Sending email on iOS, 144–146
setPropertyName:, 188
Setup of Objective-C environment, 6

editor of text, 6–7
GCC compiler, 7
local environment configuration, 6
Mac OS installation, 8
Unix/Linux installation, 7–8
Windows installation, 9

Simple block, implementation of, 35
Simple block declaration syntax, 35
Simplicity, 283
Simulator for iOS, 118
Single-dimensional array, 39
Singleton design pattern, 233–234
Sizeof and ternary, 26
Smalltalk, 260
Solid-state drives (SSDs), 296
SQLite database in iOS, 137–144
SSDs, see Solid-state drives
SSL pinning, 245–250
Static framework, 209–210, 215

access control, 215–216
app store, uploading application’s

framework to, 221
bundle structure, creating, 217–218
compiling and constructing the

framework, 221
developing the code, 215
modifying build settings to support, 216
module support, 216–217
packaging, 216

Index    ◾    319

recommendations, 220
setting up the project, 215
umbrella header, 216
universal support, 218–220
utilizing, 220

Storyboards in iOS, 162–163
Strategy, creating, 91
Strategy pattern, 232
Streaming sockets, 299
Stringize, 55
String literals, 21
Strings in Objective-C, 44–46
Structure of Objective-C program, 9–11, 46

access to structure members, 47–48
Bit Fields, 52
creating, 47
function arguments as, 48–50
pointers to, 50–51

Subclass, definitions of, 84
Superclass, 80
Swift, 260, 264

Objective-C and, 3, 261, 293–294
Swift 5, 263
Syntax in Objective-C

comments, 11–12
identifiers, 12
keywords, 12
semicolons, 11
tokens, 11
whitespace, 12–13

System hardening, 256
advantages of, 257
to reduce “attack surface,” 256–257

T

TCP, see Transmission Control Protocol
Text editor, 6–7
Token-pasting operator, 55–56
Tokens, 11
Transmission Control Protocol (TCP), 299
truncateFileAtOffset method, 291
TrustKit, 245
Twitter on iOS, 167–169
Type casting in Objective-C, 59

arithmetic conversion, 60–61
integer promotion, 59–60

Type definitions, blocks using, 35–36

Typedef in Objective-C, 57
vs #define, 58

Types of Objective-C, 13

U

UDP, see Unified Datagram Protocol
UIApplicationDelegate delegate methods,

120, 122
UI elements, 128

focus, 128
inserting, 128
list of, 129
strategy, 128

UIScrollView class, 230
UIScrollViewDelegate, 230
UITextFieldDelegate protocol, 192
UIViewController, 120, 122
UIWindow object, 120, 122
Umbrella header, 211, 216
Unary operator, 42
Undergraduate degree, pursuing, 293
Unified Datagram Protocol (UDP), 299
Universal applications in iOS, 131–132
Universal support, 212–215, 218–220
Unix/Linux installation, 7–8
Upsides of Objective-C, 4
Using Objective-C, 6

V

Variable declaration, 17–18
Variable definition, 16–17
Variables in Objective-C, 15–16
Video app, creating, 195

Brightcove Player SDK Header File,
importing, 198

customizing the project, 198–199
declarations, 199–200
looking at the code, 198
setting app’s audio behavior,

195–198
View Controller class declaration,

building, 198
View Controller implementation,

constructing, 198
ViewController, 235
ViewController.h, 123

320    ◾    Index

ViewController.m, 123–124
View Controller class declaration,

building, 198
View Controller implementation,

constructing, 198
ViewModel, 236
VIPER, 237
Void type, 15

W

Whitespace in Objective-C, 12–13
Windows installation, 9
Working with Objective-C files, 283

data saving to a file, 290–291
file truncation, 291
iOS developer, 292

income and employment forecast,
292–293

working as, 291
iPhone programmer, 293

developing the software, 294
Swift and Objective-C classes,

293–294
undergraduate degree, pursuing,

293

NSFileManager reference, obtaining,
283

checking in Objective-C, 284–285
checking to see if a file exists, 284
comparison of two files’ contents,

284
delete a file, 286
file moving/renaming, 285
making a file copy, 286
NSFileHandle, creating an object

of, 288
NSFileHandle Class, managing files

utilizing, 288
NSFileHandle file offsets and

seeking, 288–289
reading and writing files with

NSFileManager, 287–288
symbolic connection, making,

286–287
reading data from a file, 289–290

writeData method, 290

X

XCode, 3, 35
installation of, 117–118, 170

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	About the Author
	Acknowledgments
	CHAPTER 1: Crash Course in Objective-C
	OBJECTIVE-C SPECIFICS
	WHY OBJECTIVE-C?
	DIFFERENTIATING OBJECTIVE-C VERSUS SWIFT
	DIFFERENTIATING OBJECTIVE-C FROM C++
	UPSIDES AND DOWNSIDES OF OBJECTIVE-C
	Upsides
	Downsides

	FACTORS TO CONSIDER
	OBJECTIVE-C OVERVIEW
	FRAMEWORK FOR THE FOUNDATION
	LEARNING OBJECTIVE-C
	USING OBJECTIVE-C
	SETUP OF THE OBJECTIVE-C ENVIRONMENT
	LOCAL ENVIRONMENT CONFIGURATION
	EDITOR OF TEXT
	GCC COMPILER
	UNIX/LINUX INSTALLATION
	MAC OS INSTALLATION
	WINDOWS INSTALLATION
	STRUCTURE OF THE OBJECTIVE-C PROGRAM
	OBJECTIVE-C EXAMPLE OF HELLO EVERYONE
	BASIC SYNTAX IN OBJECTIVE-C
	OBJECTIVE-C TOKENS
	SEMICOLONS;
	COMMENTS
	IDENTIFIERS
	KEYWORDS
	WHITESPACE IN OBJECTIVE-C
	DATA TYPES IN OBJECTIVE-C
	TYPES OF INTEGERS
	TYPES OF FLOATING-POINT
	VOID TYPE
	VARIABLES IN OBJECTIVE-C
	OBJECTIVE-C VARIABLE DEFINITION
	OBJECTIVE-C VARIABLE DECLARATION
	OBJECTIVE-C lvalues AND rvalues
	CONSTANTS IN OBJECTIVE-C
	INTEGER LITERALS
	FLOATING-POINT LITERALS
	CHARACTER CONSTANTS
	STRING LITERALS
	CONSTANT DEFINITION
	#define Preprocessor
	const Keyword

	OPERATORS IN OBJECTIVE-C
	ARITHMETIC OPERATORS IN OBJECTIVE-C
	RELATIONAL OPERATORS
	LOGICAL OPERATORS IN OBJECTIVE-C
	BITWISE OPERATORS
	ASSIGNMENT OPERATORS
	MISC OPERATORS ↦ SIZEOF & TERNARY
	OPERATORS’ PRECEDENCE IN THE OBJECTIVE-C
	LOOPS IN OBJECTIVE-C
	CONTROL STATEMENTS FOR LOOPS
	INFINITE LOOP
	DECISION MAKING IN OBJECTIVE-C
	THE ? : OPERATOR
	FUNCTIONS IN OBJECTIVE-C
	CREATING A METHOD
	DECLARATIONS OF METHOD
	CALLING A METHOD
	FUNCTION ARGUMENTS
	BLOCKS IN OBJECTIVE-C
	Simple Block Declaration Syntax
	Implementation of a Simple Block

	BLOCKS TAKE ARGUMENTS AND RETURN VALUES
	BLOCKS USING THE TYPE DEFINITIONS
	NUMBERS IN OBJECTIVE-C
	ARRAYS IN OBJECTIVE-C
	DECLARING ARRAYS
	ARRAYS INITIALIZATION
	ACCESSING ARRAY ELEMENTS
	ARRAYS IN OBJECTIVE-C IN DEPTH
	POINTERS IN OBJECTIVE-C
	WHAT EXACTLY ARE POINTERS IN OBJECTIVE-C?
	How Do Pointers Work?

	OBJECTIVE-C NULL POINTERS
	DETAILS ABOUT OBJECTIVE-C POINTERS
	STRINGS IN OBJECTIVE-C
	STRUCTURES IN OBJECTIVE-C
	CREATING A STRUCTURE
	ACCESS TO STRUCTURE MEMBERS
	FUNCTION ARGUMENTS AS STRUCTURES
	POINTERS TO STRUCTURES
	BIT FIELDS
	PREPROCESSORS IN OBJECTIVE-C
	EXAMPLES OF PREPROCESSORS
	PREDEFINED MACROS
	OPERATORS OF PREPROCESSORS
	Macro Continuation (\)
	Stringize (#)
	Token Pasting (##)
	defined() Operator

	PARAMETERIZED MACROS
	Typedef IN OBJECTIVE-C
	typedef vs #define

	TYPE CASTING IN OBJECTIVE-C
	INTEGER PROMOTION
	USUAL ARITHMETIC CONVERSION
	LOG HANDLING IN OBJECTIVE-C
	NSLog METHOD
	DISABLING LOGS IN THE LIVE Apps
	ERROR HANDLING IN OBJECTIVE-C
	NSError
	COMMAND-LINE ARGUMENTS
	BIBLIOGRAPHY

	CHAPTER 2: OOP in Objective-C
	OBJECT-ORIENTED PROGRAMMING
	OPERATIONS AND DATA
	IMPLEMENTATION AND INTERFACE
	THE OBJECT MODEL
	THE METAPHOR OF MESSAGING
	CHARACTERISTIC OF OBJECTIVE-C
	DEFINITIONS OF OBJECTIVE-C CLASSES
	ALLOCATING AND INITIALIZING OBJECTIVE-C OBJECTS
	ACCESSING DATA MEMBERS
	Properties
	Modularity
	Reusability

	INHERITANCE IN OBJECTIVE-C
	BASE AND DERIVED CLASSES
	ACCESS THE CONTROL AND INHERITANCE
	Hierarchies of Class
	Definitions of Subclass

	DYNAMISM
	POLYMORPHISM IN OBJECTIVE-C
	DATA ENCAPSULATION IN OBJECTIVE-C
	EXAMPLE OF DATA ENCAPSULATION
	CREATING A STRATEGY
	CATEGORIES IN OBJECTIVE-C
	CATEGORY CHARACTERISTICS
	POSING IN OBJECTIVE-C
	POSING RESTRICTIONS
	EXTENSIONS IN OBJECTIVE-C
	EXTENSIONS’ CHARACTERISTICS
	Example of Extensions

	PROTOCOLS IN OBJECTIVE-C
	DYNAMIC BINDING IN OBJECTIVE-C
	COMPOSITE OBJECTS IN OBJECTIVE-C
	CLASS CLUSTERS
	WHAT EXACTLY IS A COMPOSITE OBJECT?
	An Example of a Composite Object

	FOUNDATION FRAMEWORK IN OBJECTIVE-C
	Functionality-Based Foundation Classes

	FAST ENUMERATION IN OBJECTIVE-C
	COLLECTIONS IN THE OBJECTIVE-C
	MEMORY MANAGEMENT IN OBJECTIVE-C
	“MANUAL RETAIN-RELEASE” OR MRR
	Basic MRR Rules

	“AUTOMATIC REFERENCE COUNTING” OR ARC
	BIBLIOGRAPHY

	CHAPTER 3: Interface and API
	iOS IN OBJECTIVE-C
	IMPLEMENTATION AND INTERFACE
	OBJECT CREATION
	METHODS
	Class Methods
	Instance Methods

	IMPORTANT OBJECTIVE-C DATA TYPES
	Printing Logs

	CONTROL STRUCTURES
	PROPERTIES
	Properties of Accessing

	CATEGORIES
	Arrays
	Dictionary

	ENVIRONMENT SETUP
	Installation of Xcode

	INTERFACE BUILDER
	SIMULATOR FOR iOS
	FIRST iPHONE APPLICATION
	FIRST iOS APPLICATION’S CODE
	AppDelegate.h
	AppDelegate.m
	ViewController.h
	ViewController.m

	ACTIONS AND OUTLETS IN iOS
	DELEGATES IN iOS
	How to Create a Delegate

	UI ELEMENTS
	What Are UI Elements?
	How Do We Insert UI Elements?
	Our Focus
	Our Strategy

	LIST OF UI ELEMENTS
	ACCELEROMETER IN iOS
	UNIVERSAL APPLICATIONS IN iOS
	CAMERA MANAGEMENT IN iOS
	LOCATION HANDLING IN iOS
	SQLite DATABASE IN iOS
	SENDING EMAIL ON iOS
	AUDIO AND VIDEO IN iOS
	FILE HANDLING IN iOS
	METHODS FOR FILE HANDLING
	Check to See If a File in Objective-C Exists at a Given Path
	Comparing the Contents of Two Files
	Check to See If It Is Writable, Readable, and Executable
	Move File
	Copy File
	Remove File
	Read File
	Write File

	ACCESSING MAPS ON iOS
	IN-APP PURCHASE IN iOS
	iAd INTEGRATION IN iOS
	GameKit IN iOS
	STORYBOARDS IN iOS
	AUTO LAYOUTS IN iOS
	Aim of Our Example
	Our Strategy
	The Involved Steps

	TWITTER AND FACEBOOK ON iOS
	MEMORY MANAGEMENT IN iOS
	MEMORY MANAGEMENT CHALLENGES
	RULES FOR MEMORY MANAGEMENT
	DEALING WITH MEMORY IN ARC
	MEMORY MANAGEMENT TOOLS
	ANALYTICAL METHODS FOR MEMORY ALLOCATIONS
	APPLICATION DEBUGGING IN iOS
	CHOOSING A DEBUGGER
	HOW TO LOCATE CODING ERRORS
	SET BREAKPOINTS
	BREAKPOINT EXCEPTION
	IN AN iOS App, WE MAY USE GOOGLE APIs
	BIBLIOGRAPHY

	CHAPTER 4: Functional Programming
	WHY OBJECT-FUNCTIONAL PROGRAMMING?
	OBJECTIVE-C FUNCTIONAL PROGRAMMING
	On Functional Programming
	On the ObjC Runtime
	On Objective-C and Language Design

	WRITE OBJECTIVE-C CODE
	CLASSES AND OBJECTS
	METHODS AND COMMUNICATION
	CLASS METHODS
	Properties and Accessor Methods Are Declared

	BLOCKS
	PROTOCOLS AND CATEGORIES
	Types and Coding Strategies Are Defined

	CREATE THE VIDEO App
	Set the App’s Audio Behavior
	Build View Controller Class Declaration
	Import the Brightcove Player SDK Header File into the Program
	Look at the Code
	Construct the View Controller Implementation in Objective-C
	Customize the Project to Reflect Our Values
	Declare Properties

	DEFINE INITIALIZATION METHOD
	Setup Player
	Configure Player
	Use the Brightcove Library to Request Material
	Look at the Code

	BIBLIOGRAPHY

	CHAPTER 5: Code Management
	WHY MUST WE PERFORM THIS?
	ANATOMY OF A FRAMEWORK
	STATIC AND DYNAMIC FRAMEWORKS
	ARCHITECTURES AND SLICING OF PROCESSORS
	DEVELOPING A DYNAMIC STRUCTURE
	SETTING UP OUR PROJECT
	DEVELOPING OUR CODE
	ACCESS CONTROL
	UMBRELLA HEADER
	UNIVERSAL SUPPORT
	UTILIZING OUR DYNAMIC FRAMEWORK
	DEVELOPING A STATIC FRAMEWORK
	SETTING UP OUR PROJECT
	DEVELOPING OUR CODE
	ACCESS CONTROL
	UMBRELLA HEADER
	PACKAGING
	MODIFY BUILD SETTINGS TO SUPPORT STATIC FRAMEWORKS
	MODULE SUPPORT
	CREATING THE BUNDLE STRUCTURE
	UNIVERSAL SUPPORT
	UTILIZING OUR STATIC FRAMEWORK
	RECOMMENDATIONS
	COMPILING AND CONSTRUCTING THE FRAMEWORK
	UPLOADING AN APPLICATION’S FRAMEWORK TO THE APP STORE
	MEMORY MANAGEMENT IN OBJECTIVE-C
	“MANUAL RETAIN-RELEASE” OR MRR
	Basic MRR Rules

	“AUTOMATIC REFERENCE COUNTING” OR ARC
	Effective Procedures Prevent Memory-Related Issues

	DEBUG MEMORY ISSUES USING ANALYSIS TOOLS
	THE GOAL OF MEMORY MANAGEMENT
	Avoid Crashing
	Strong vs Weak
	Atomic and Nonatomic

	DESIGN PATTERNS IN iOS
	FAÇADE
	When to Use the Facade Pattern?
	An Illustration of Facade Design Pattern

	DECORATOR
	When Should We Use a Decorator Pattern?
	Example of Decorator Style Design

	MEMENTO
	ADAPTER
	When to Use an Adapter?
	Illustration of Adapter Pattern

	OBSERVER
	When Should We Use a Decorator Pattern?
	Example of Decorator Style Design

	STRATEGY
	FACTORY
	COMMAND
	COMPOSITE
	ITERATOR
	MEDIATOR
	SINGLETON
	When Should We Use the Singleton Design Pattern?
	Illustration of Singleton Pattern

	MVC
	MVP
	MVVM
	Feature Assessment

	VIPER
	WHAT ARE THE ADVANTAGES OF EMPLOYING iOS DESIGN PATTERNS?
	Prepared to Develop iOS Applications Using iOS Design Patterns

	BIBLIOGRAPHY

	CHAPTER 6: Code Optimization
	OBJECTIVE-C CODE OPTIMIZATION AT COMPILE TIME
	OBJECTIVE-C PIPELINE
	SECURE CODE
	Security Breach through HTTPS Response Cache

	RESUME BACKGROUND DISCLOSURE OF SCREENSHOT DATA
	SSL PINNING
	BEST PRACTICES WITH OBJECTIVE-C CODING CONVENTION
	Operators
	Types
	Methods
	Pragma Mark and Implementation Organization
	Control Structures
	Switch
	For
	While
	Import
	Header Prefix
	Properties
	Private Methods and Properties
	Extern, Const, and Static
	Naming
	Enums

	HARDENING OF SYSTEMS
	Hardening of Systems to Reduce the “Attack Surface”
	Advantages of System Hardening

	BIBLIOGRAPHY

	APPRAISAL
	OBJECTIVE-C CHEAT SHEET
	INDEX

