

A Computational
Approach to Physics

A Computational
Approach to Physics

By

M. Ebrahim Foulaadvand

A Computational Approach to Physics

By M. Ebrahim Foulaadvand

This book first published 2023

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2023 by M. Ebrahim Foulaadvand

All rights for this book reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the copyright owner.

ISBN (10): 1-5275-0126-4
ISBN (13): 978-1-5275-0126-3

Dedicated to the memory of Jamshid Kashani (Jamshid al-Kashi)
(c1380-1429), the Persian (Iranian) mathematician and astronomer
who invented the mechanical planetary computer which he called the
Plate of Zones, and could graphically solve several planetary prob-
lems, including the prediction of the accurate positions in longitude
of the Sun and Moon, and the planets in terms of elliptical orbits;
the latitudes of the Sun, Moon, and planets; and the ecliptic of the
Sun. Kashani computed the Pi number to the 16th decimal place and
directed the Samarkand observatory.

Contents

Preface xi

Acknowledgement xiii

1 1st order differential equations in physics 1
1.1 First order differential equations 1

1.1.1 Coffee Cooling problem 1
1.1.2 Nonlinear 1st order differential equations . . . 4
1.1.3 Radioactive decay 5

1.2 Nonlinear differential equation: Population Growth . . 8
1.3 Master equation . 10
1.4 Problems . 17

2 2nd order differential equations in physics 21
2.1 Introduction . 21
2.2 Free fall near Earth’s surface 22
2.3 Effect of air drag . 24

2.3.1 Linear air drag force 25
2.3.2 Quadratic air drag force 26

2.4 Two-dimensional projectile motion 31
2.4.1 Linear air drag force 32
2.4.2 Quadratic air drag force 34

2.5 Problems . 39

3 Oscillatory motion 45
3.1 Simple Harmonic oscillator 45
3.2 Numerical Solution: Euler-Cromer Algorithm 47
3.3 Other algorithms . 49

vii

viii Contents

3.3.1 Mid-Point Algorithm 49
3.3.2 Euler-Richardson Algorithm 50
3.3.3 Verlet Algorithm 51
3.3.4 Velocity Verlet Algorithm 52

3.4 Lissajous figures . 53
3.5 Damped harmonic oscillator 55
3.6 Driven damped harmonic oscillator 61
3.7 Oscillation of a Pendulum 65
3.8 Driven damped nonlinear pendulum 69
3.9 Damped oscillator: nonsinusoidal external force 71
3.10 problems . 73

4 Coupled Oscillations 77
4.1 Longitudinal motion 77

4.1.1 unequal masses and spring constants 80
4.2 Numerical approach 83

4.2.1 Runge-Kutta (RK) algorithm 84
4.2.2 Coupled oscillators: numerical results 88

4.3 Forced coupled oscillations 91
4.4 Fourier and spectral analysis 95
4.5 Discrete Fourier transform 97
4.6 Power spectrum . 100
4.7 Continuum wave equation 109
4.8 Problems . 111

5 Partial differential equations: parabolic type 115
5.1 Foundation and classification 115

5.1.1 classification scheme 115
5.1.2 Numerical solution 118
5.1.3 1st order partial differential equation 118

5.2 2nd order prototype parabolic PDE: diffusion equation 119
5.3 Numerical solution of 1D heat eq. 123
5.4 Other schemes for solving heat eq. 128
5.5 Diffusion equation with a source 131
5.6 Problems . 134

6 Partial differential equations: hyperbolic type 137
6.1 Advection equation . 137
6.2 Numerical solution of the advection equation 138

6.2.1 Forward time Forward space algorithm 138

§Contents ix

6.2.2 Lax and Lax-Wendroff algorithms 140

6.3 Implicit algorithms . 142

6.4 d’Alembert Wave equation 143

6.5 Nonlinear hyperbolic PDEs 148

6.5.1 Solution of Burgers equation: Lax method . . . 149

6.5.2 Traffic flow equation 151

6.6 Problems . 156

7 Partial differential equations: elliptic type 159

7.1 Laplace equations . 159

7.2 Numerical solution of Laplace equation 160

7.3 Relaxation methods 164

7.3.1 Jacobi method 165

7.3.2 Gauss-Seidel method 168

7.3.3 Simultaneous over relaxation method 171

7.4 Poisson equation . 171

7.5 Multiple Fourier transform method 174

7.6 Problems . 176

8 Quantum mechanics 179

8.1 Introduction . 179

8.2 Numerical algorithms for Schrödinger equation 180

8.2.1 FTCS method 180

8.2.2 Visscher method 182

8.2.3 Crank method 183

8.2.4 Crank-Nicolson Algorithm 187

8.3 Expectation values . 189

8.4 Wavepacket evolution in a potential 190

8.5 Time independent Schrödinger eq. 192

8.5.1 Step function potential 194

8.5.2 Infinite square well 199

8.5.3 Perturbation of the infinite square well 207

8.6 finite square well . 210

8.6.1 Numerical solution 217

8.7 Harmonic oscillator potential 218

8.8 Variational method . 223

8.9 Problems . 225

x Contents

9 Molecular dynamics 227
9.1 Introduction . 227
9.2 Inter-particle forces 228
9.3 Integration from equations of motion 231

9.3.1 The numerical algorithm 234
9.3.2 Reduced units 234

9.4 A molecular dynamics programme 235
9.5 Macroscopic quantities 236

9.5.1 Temperature 237
9.5.2 Pressure . 238

9.6 A molecular dynamics simulation 239
9.6.1 Velocity distribution 240
9.6.2 Equation of state 242
9.6.3 Heat capacity 244

9.7 Triangular lattice in two dimensions 246
9.8 Structural and static properties 248
9.9 Dynamical properties 252

9.9.1 Mean-squared displacement 252
9.9.2 velocity autocorrelation 255

9.10 Problems . 260

10 Stochastic processes 263
10.1 Randomness and determinism 263
10.2 Particles in box . 265
10.3 Random walk . 269

10.3.1 One-dimensional random walk 271
10.3.2 Higher dimensional random walk 274

10.4 Variants of random walk 278
10.4.1 Persistent random walk 278
10.4.2 Random walk with steps of variable lengths . . 280
10.4.3 Random walk on a continuum 283
10.4.4 Random walk with a trap 285
10.4.5 Self-avoiding random walk 287

10.5 Random walk and diffusion 290
10.6 Random walk and entropy 295
10.7 Problems . 297

Bibliography 301

Preface

The subject of Computational Physics has attracted much interest
among physics and engineering students in recent years. It is a widely
growing field thanks to the development and improvement of com-
putational facilities namely, hard and software, clusters of comput-
ers, and parallel computation. Outstanding books on computational
physics, such as the one written by Gould, Tobochnik, and Christian,
from which I have learnt a lot, and the one by Landau, José Páez
and Bordeianu have inevitably stimulated the students’ interests to
the subject. Physics is now profoundly and remarkably connected to
numerical techniques and simulation methods. It requires a lot of
computational skills for a proper understanding of its concepts and
challenges. This has dramatically affected the traditional practice of
training physics. The computational approach to physics is becom-
ing an integral part of the physics educational programme. Many
departments have included a computational physics course in their
bachelor’s or master’s curricula. Students normally enjoy computa-
tional subjects because they realise how easier and more fascinating
it will be to employ computational methods and techniques to solve
complex problems in physics that are not amenable to exact analytical
solutions. They mostly prefer to avoid the complexity of rigorous ana-
lytical solutions and instead enjoy solving the physical problems facil-
itated by packages and softwares numerically. The above opinion and
viewpoint are based on the feedback I gained from students over a cou-
ple of years of experience in teaching computational physics. In many
existing books on computational physics, the lack of a sufficient num-
ber of solved problems and examples is obvious. Many of these books
heavily emphasise on teaching numerical techniques such as numerical
differentiation, error analysis, root finding, etc., instead of applying

xi

xii

them to concrete physical problems. Another major shortcoming of
many books with the terms ”computation” and ”physics” is their con-
centration on details of writing subroutines and codes without imple-
menting them to sophisticated physical problems to be solved by these
codes. Of course, there are exceptions, like the notable books written
by Nicholas J. Giordano, and Alejandro Garcia, from which I have sig-
nificantly learnt, borrowed, and benefited. On the contrary, the main
goal of this book is to introduce students how to apply numerical tech-
niques to problems of classical as well as modern physics. The book
focuses and emphasizes on solving physics problems. In some sense, it
can be considered as a problem solver. The distinguishing pedagogical
feature of the book is two-fold. First, it provides many numerically
solved problems and examples, and second, it briefly reviews analytical
results and exact solutions as warming up before numerical involve-
ment to problems that cannot be solved analytically. In this way, the
students will achieve a better insight into the necessity of the numerical
approach as a supplementary tool for the description of the underly-
ing physics of the problem. The book level is upper intermediate and
will be most appropriate for senior undergraduates, and junior post-
graduate students. It is assumed that the potential reader has elemen-
tary programming knowledge. Therefore, I have avoided including the
basics of computer programming and numerical methodologies such as
differentiation, integration, etc. All the source codes and programme
listings are in C programming language. You can access these codes
and subroutines in the appendix, which appears online on the book’s
website: http://www.znu.ac.ir/members/newpage/998/en.

I am hopeful that the book will attract the attention of bright
and interested students. Needless to say that the book is not free
of typos and errors. It is highly appreciated to receive your com-
ments and suggestions that can be sent to any of my email addresses:
foolad@znu.ac.ir or ebrahim.foulaadvand@gmail.com.

Tehran, April 2023 M. Ebrahim Foulaadvand

Acknowledgement

I was attracted and inspired to Computational Physics during the
”computer application in physics” undergraduate course that I passed
with Reza Ejtehadi in 1998 at the former Aria Mehr (current Sharif)
University of Technology in Tehran when I was a graduate student.
He is gratefully appreciated. I am immensely thankful to the Institute
for Research in Fundamental Sciences (IPM) at Tehran for providing
me with a working office at which most of the manuscript was writ-
ten. I am especially indebted to Somayyeh Belbasi, my former Ph.D.
student, who contributed to several codes and subroutines. Some col-
leagues have provided essential advice and encouragement, including
Andreas Schadschneider from the University of Köln, Gunter Schütz
from the Jülish Forschungszentrum and Philipp Maass from the Uni-
versity of Osnabrück. Special thanks are dedicated to Ahmad Shariati
and Amir Aghamohammadi from the Alzahra University of Tehran
for invaluable help, advice, and technical support. Sincere thanks are
given to anonymous referees who proposed valuable and constructive
comments to the text. I appreciate the helps and feedback from many
enthusiastic students during my lectures on Computational Physics
that I gave at the University of Zanjan, Tarbiyat Modares univer-
sity/Tehran, and the Institute for Advanced Studies at Basic Sciences
(IASBS)/Zanjan from which this book has been evolved and emerged.
It is the author’s pleasure to thank the Cambridge Scholar Publica-
tion for the very enjoyable cooperation which made this book possible.
Finally, the author deeply appreciates his wife, Azadeh, his son Aria
Radin, and his daughter Arnika for their understanding, support, and
patience during the preparation period of the manuscript.

xiii

Chapter 1

1st order differential
equations in physics

The laws of physics are frequently formulated within the mathematical
framework of differential equations. Therefore, it would be natural to begin
our numerical investigations from such equations. For the sake of simplic-
ity, let us start from the simplest case i.e.; first-order differential equations.
There are a lot of topics that involve first-order equations. Examples include
cooling of hot bodies, the Fourier law of heat transfer, decay of radioactive
nuclei, etc. As our first topic let us numerically explore the problem of coffee
cooling which is discussed in several computational textbooks.

1.1 First order differential equations

In this section, we try to introduce some physical problems which are
mathematically formulated in terms of first-order ordinary differential
equations. We begin with the old problem of coffee cooling which
dates back to the time of Newton.

1.1.1 Coffee Cooling problem

If you put a cup of hot coffee on a table it will cool down until its
temperature reaches the room’s temperature. Experimental measure-
ment of coffee temperature versus time proves that to a good approx-
imation the temperature-time curve T (t) obeys an exponential fall

1

2 Chapter 1. 1st order differential equations in physics

(H. Gould and Chriastian, 2006). Energy transfer from the hot water
in a cup of coffee to the surrounding air is complicated and in general
involves convection, radiation, and conduction mechanisms. However,
it can be shown that if the temperature difference between coffee and
its surroundings is not too large, the rate of the coffee temperature
change can be taken to be proportional to the temperature difference
between coffee and its surrounding. Mathematically, one can formu-
late this statement by the following differential equation:

dT

dt
= −r(T − Ts). (1.1)

where T (t) denotes the instantaneous coffee temperature and Ts de-
notes the surrounding (room) temperature. The constant r is the
cooling constant. The minus sign in (1.1) implies that if T > Ts, the
coffee temperature will decrease with time. The value of the cool-
ing constant r depends on the heat transfer mechanism, the contact
area with the surroundings, and the thermal properties of the wa-
ter. Equation (1.1) is sometimes known as Newtons law of cooling.
Although we all know the analytical solution of the linear first-order
differential equation (1.1) let us re-obtain it. We show the initial cof-
fee temperature by T0 and perform a change of variable T − Ts = Y .
Equation (1.1) then becomes dY

dt = −rY . In terms of the new variable
Y , the initial condition becomes Y (0) = T0 − Ts. We therefore, find
Y (t) = Y (0)e−rt which in turn implies:

T (t) = T0e
−rt + (1− e−rt)Ts (1.2)

To solve (1.1) numerically we should be able to give T (t) at discrete
times tn which are separated from each other by a fixed time interval
Δt. In fact, the nth step of time will be tn = nΔt. The next step is
to write the time derivative in a finite difference form. This is simply
achieved by Taylor expansion around tn as follows:

T (tn+Δt) = T (tn)+Δt
dT

dt
(tn)+

1

2
(Δt)2

d2T

dt2
(tn)+O(Δt)3 (1.3)

Keeping only the term proportional to Δt in (1.3) one finds:

dT

dt
(tn) =

T (tn +Δt)− T (tn)

Δt
+O(Δt) (1.4)

§1.1. First order differential equations 3

time (s)

T
em

pe
ra

tu
re

(C
)

0 1000 2000 3000
0

10

20

30

40

50

60

70

80

90

r = 0.01 computed

r = 0.01 analytical

r = 0.03 computed

r = 0.03 analytical

r = 0.05 computed

r = 0.05 analytical

Figure 1.1: Time evolution of coffee temperature for various values of cool-
ing rate parameter r. Numerical results have been compared to analytical
ones. The time step has been set to Δ = 0.1 s. The initial and surrounding
temperatures are T0 = 87 0C, Ts = 17 0C.

Putting this on the left-hand side of (1.1) and ignoring the truncation
error, which is of order Δt, we simply find:

Tn+1 = Tn − rΔt(Tn − Ts) (1.5)

Note we have used Tn as a shorthand notation for T (tn). This is the
basic equation that can be iterated from n = 0 to give the temper-
ature T at subsequent steps n = 1, 2, · · · . The routine CoffeeCool

(see appendix 1.A) implements this algorithm which is known as the
Euler algorithm. Figure (1.1) shows the numerical solution of (1.1)
for some values of cooling rate r. The parameters have been set to
T0 = 87 0C, Ts = 17 0C, and Δt = 0.1 s. We have compared our
numeric solution with the analytical one given by (1.2). You see there
is a very good agreement between computed and analytical results.
This shows that the Euler algorithm has a good performance in solv-
ing linear first-order differential equations.

4 Chapter 1. 1st order differential equations in physics

1.1.2 Nonlinear 1st order differential equations

In the coffee cooling problem, we encountered a linear first-order differ-
ential equation which was numerically solved by the Euler algorithm.
The Euler algorithm can also be implemented to solve non-linear first-
order equations in the following general form:

dx

dt
= f(x, t) (1.6)

Where f(x, t) is a given function. Note the independent variable t
need not necessarily be time and the dependent variable x need not
be position. Let xn and fn be shorthand notations for x(tn) and
f(xn, tn) correspondingly where tn is the n − th timestep. One can
obtain the numerical solution of (1.6) according to the Euler algorithm
as follows:

xn+1 = xn +Δtf(xn, tn) (1.7)

If we want a better approximation we should resort to higher-order
terms in the Taylor expansion. To this end, we have:

xn+1 = x(tn+Δt) = x(tn)+Δt
dx

dt
(tn)+

1

2
(Δt)2

d2x

dt2
(tn)+O(Δt)3 (1.8)

From (1.6) we can replace dx
dt (tn) and d2x

dt2 (tn) with f(xn, tn) and
df
dt (xn, tn) respectively. To evaluate the latter one we proceed as fol-
lows:

df

dt
(xn, tn) =

∂f

∂x
(xn, tn)

dx

dt
(xn, tn) +

∂f

∂t
(xn, tn) (1.9)

Using (1.6) it can be simplified as follows:

df

dt
(xn, tn) =

∂f

∂x
(xn, tn)f(xn, tn) +

∂f

∂t
(xn, tn) (1.10)

Therefore, the second-order Taylor expansion gives:

xn+1 = xn +Δtf(xn, tn) +
1

2
(Δt)2[

∂f

∂x
(xn, tn)f(xn, tn)+

∂f

∂t
(xn, tn)] +O(Δt)3 (1.11)

Given f all the terms on the right-hand side of (1.11) can be evaluated.
We can go to higher terms in the Taylor expansion but the manipula-
tions become more cumbersome. For more details, see other references
(Pang, 2006; Scherer, 2010; Rubin H. Landau and Bordeianu, 2008).

§1.1. First order differential equations 5

1.1.3 Radioactive decay

Another example that involves a first-order linear differential equation
is the decay of radioactive nuclei. Many unstable nuclei can decay into
smaller atoms. This phenomenon is random in nature and we can only
speak of the decay probability. A typical example is the nucleus of a
Uranium isotope 238U which can decay into a lighter atom 234Th.
Suppose we have N(t) Uranium atoms at time t. If we denote the
decay rate by λ, during the infinitesimal time interval [t, t + Δt] on
average a small number of Uranium atoms decay. This number will
be proportional to the number of atoms N(t) and the time interval
Δt. The proportionality constant is the decay rate λ. Therefore we
can write the following equation:

N(t)−N(t+Δt) = λΔtN(t) (1.12)

Even though the number of nuclei should be an integer number but
we often can treat this number as a continuous variable and end up
with the following first-order linear differential equation in the limit
Δt → 0:

N(t+Δt)−N(t)

Δt
=

dN(t)

dt
= −λN(t) (1.13)

Equation (1.13) can simply and analytically be solved. The solution
turns out to be:

N(t) = N0e
−λt (1.14)

In which N0 is the initial number of uranium Nuclei at t = 0. Note the
decay rate λ has the dimension of inverse time. We can solve (1.13)
numerically as we did for the coffee cooling problem. Denoting N(tn)
by Nn we can turn (1.13) into a finite difference equation:

Nn+1 −Nn

Δt
= −λNn → Nn+1 = Nn(1− λΔt) (1.15)

The routine NuclearDecay (see appendix 1.B for details) implements
the above Euler algorithm to find the numerical solution of (1.13). Fig-
ure (1.2) compares the numerical solutions with the analytical ones for
some choices of decay rate λ. As you see there is an excellent agree-
ment between numerical and analytical solutions. A useful concept in
nuclear decay is half-life T 1

2
which is the time that half of the nuclei

6 Chapter 1. 1st order differential equations in physics

time (s)
0 5 10 15 20

0

100

200

300

400

500

600

700

800

900

1000

r = 0.2 analytic

r = 0.2 computed

r = 0.5 analytic

r = 0.5 computed

r = 1.0 analytic

r = 1.0 computed

N(t)

Figure 1.2: Computed number of undecayed nuclei versus time for various
values of the decay constant λ by Euler algorithm with Δt = 0.01. The num-
ber of radioactive nuclei has been initially set to N0 = 1000. Comparison is
made with the analytical solution.

decay. Theoretically, it is related to decay rate λ as T 1
2
= ln2

λ . Numer-
ically we can compute T 1

2
via a simple if command in the subroutine.

In the time loop, we can simply find the timestep t∗ at which the con-
dition N(t∗) = N0

2 is satisfied. Half-life is then found to be T 1
2
= t∗Δt.

A more realistic situation is the double decay process. Let us pose this
problem exactly as it is presented in problem four from chapter one of
the book (Giordano and Nakanishi, 2006).

Problem:

Consider a radioactive decay problem involving two types of nuclei
A and B with population NA(t) and NB(t). Suppose type A nuclei
decay to type B which then also decay according to the following dif-
ferential equations:

dNA(t)

dt
= −λANA(t) (1.16)

§1.1. First order differential equations 7

dNB(t)

dt
= λANA(t)− λBNB(t) (1.17)

where λA and λB are decay constants for each type of nucleus. Use
the Euler method to solve these coupled equations for NA(t) and NB(t)
as a function of time. Explore the behaviour found for different values
of λA

λB
.

Before trying to solve the problem numerically the exact analytical
solution is presented. Equations (1.16) and (1.17) form a linear set of
first-order differential equations. Assume at t = 0 there are N0A and
N0B nuclei respectively. Equation (1.16) simply gives:

NA(t) = N0Ae
−λAt (1.18)

Replacing NA(t) from (1.18) into (1.17) we find:

dNB(t)

dt
= λAN0Ae

−λAt − λBNB(t) (1.19)

Equation (1.19) is an inhomogeneous first-order differential equation
for NB(t). Its solution comprises the sum of a special solution of the
inhomogeneous equation plus an arbitrary solution of the homoge-
neous equation. To find the special solution we assume Ns

B(t) = aebt.
Putting this into (1.19) we arrive at abebt = λAN0Ae

−λAt − λBae
bt.

The only way for this equation to be satisfied at an arbitrary time t
is that b = −λA to have a common exponential factor e−λAt on both
sides. With this b the unknown a turns out to be a = λA

λB−λA
N0A which

then gives the special solution as follows: Ns
B(t) =

λA

λB−λA
N0Ae

−λAt.
Having found the special solution, NB(t) can be written as follows:

NB(t) = Ns
B(t) + Ce−λBt (1.20)

where the constant C is determined by requiring that NB(t) satisfies
the initial condition NB(0) = N0B. Constant C simply is found to be:
C = N0B − λA

λB−λA
N0A. Putting this C into (1.20) NB(t) becomes:

NB(t) =
λA

λB − λA
N0A(e

−λAt − e−λBt) +N0Be
−λBt (1.21)

To solve the problem numerically we show the number of nuclei A and
B in timestep n by Nn

A and Nn
B respectively. The application of the

8 Chapter 1. 1st order differential equations in physics

Euler algorithm with a timestep τ gives:

Nn+1
A = Nn

A − τλAN
n
A = Nn

A(1− τλA) (1.22)

Nn+1
B = Nn

B + τ(λAN
n
A−λBN

n
B) = Nn

B(1− τλB)+ τλAN
n
A (1.23)

Figure (1.3) sketches the computed NA and NB versus time obtained
by the programme DoubleNuclearDecay (see appendix 1.C for de-
tails). Comparison to the analytical solution is also shown. The pa-
rameters are chosen as follows: N0A = 1000, N0B = 200, λA = 0.2 and
λB = 0.1. As you see NB increases first and then after reaching a
maximum and then it decreases exponentially to zero. The reason is
that we have chosen λA > λB so that in the early stages of the decay
process, the number of decayed nuclei of type A exceeds the number
of B nuclei therefore NB(t) increases. After a sufficient time, there
remain fewer A nuclei hence the source of B nuclei production smears
off, and the decay process dominates the production. There is an ex-
cellent agreement between computed and analytical solutions. We see
the Euler algorithm also shows a successful performance in dealing
with a linear set of first-order differential equations.

1.2 Nonlinear differential equation: Pop-
ulation Growth

As another application of first-order differential equations, we consider
the growth and extinction of populations. In contrast to previous ex-
amples, the growth problem often involves nonlinear differential equa-
tions. Let us begin with a simple solvable nonlinear problem which is
posed as a problem in chapter one of (Giordano and Nakanishi, 2006).
Suppose the number of individuals in a population is N(t) at time t.
The population number can grow over time through the birth process.
The number of newly born individuals per time unit is assumed to be
proportional to N(t) with proportionality constant a. The population
number can decrease over time due to the death process. The death
rate can be proportional to N2(t) to allow for the fact that food will
become harder to find when the population number becomes larger.
One can then write the following nonlinear rate equation:

dN(t)

dt
= aN(t)− bN2(t) (1.24)

§1.2. Nonlinear differential equation: Population Growth 9

time (reduced unit)
0 10 20

100

200

300

400

500

600

700

800

900

1000

Nucleus A, computed

Nucleus A, analytic

Nucleus B, computed

Nucleus B, analytic

N(t)

Figure 1.3: Number of undecayed nuclei A and B versus time. The Euler
algorithm with a timestep τ = 0.01 has been implemented. Comparison is
made with analytical solution. Decay rates are λA = 0.2 and λB = 0.1.

Hopefully, equation (1.24) can be solved exactly. For this purpose,
we simply write it as dN

aN−bN2 = dt and integrate it from both sides.
Supposing that at t = 0 the population number is N(0) = N0. We
have:

dN

aN − bN2
= dt ⇒

∫ N(t)

N0

dN

aN − bN2
=

∫ t

0

dt = t (1.25)

Concerning the identity 1
aN−bN2 = 1

aN + b
a2−abN we find:

t =

∫ N(t)

N0

(
dN

aN
+

bdN

a2 − abN
) =

1

a
[ln

N(t)

N0
− ln

a− bN(t)

a− bN0
] (1.26)

Equation (1.26) gives: at = ln (a−bN0)N(t)
N0[a−bN(t)] which then implies:

N0

a− bN0
eat =

N(t)

a− bN(t)
(1.27)

10 Chapter 1. 1st order differential equations in physics

A simple algebra gives N(t) as follows:

N(t) =
aN0e

at

a+ bN0(eat − 1)
(1.28)

In the long-time limit t � 1
a one finds N → Ns = a

b . Note that
we could obtain the stationary solution by setting the left-hand side
of (1.24) equal to zero. Now let us see to what extent the numerical
solution agrees with the exact one. As usual, we incorporate the Euler

algorithm which is implemented as Nn+1−Nn

τ = aNn − b(Nn)2. We
find:

Nn+1 = Nn(1 + aτ − bτNn) (1.29)

Figure (1.4) shows the numerical solution, based on the iteration in
(1.29). It has been obtained by the programme PopulationGrowth

(see Appendix 1.D for more details). The numerical solution is also
compared to the analytical solution. As you see the agreement between
computed and analytical results is still very good. We have chosen the
time unit such that a = 1 and have varied the death rate b. The initial
population number is set to N0 = 1000. Let us see what happens if N0

becomes smaller. Figure (1.5) shows N(t) for N0 = 5. Here you see
a different behaviour. Since the initial population is small the death
term i.e.; −bN2 would be very small in the early stages of the dynamics
and therefore the birth term gives rise to the population increase.
After a sufficient time, when the population has grown considerably,
the death rate becomes large and does not allow for further population
increase. As a result of competition between birth and death processes,
the system comes to a stationary behaviour at Ns =

a
b .

1.3 Master equation

Another common application of first-order differential equations ap-
pears in random processes. Suppose the outcome of an event can be
realised in M different ways. The best example is throwing a die. In
this case, the outcome event is the number shown by the top face of
the dice. The number can be one to six (M = 6). When the stochas-
tic dynamics occur in continuous time one can speak from the rate
which is the probability of occurrence of an event per time unit. Let
P (n, t) denote the probability that at time t the nth outcome occurs

§1.3. Master equation 11

time (reduced unit)
0 0.25 0.5 0.75 1

0

100

200

300

400

500

600

700

800

900

1000

a=1, b=0.01 computed

a=1, b=0.01 analytic

a=1, b=0.1 computed

a=1, b=0.1 analyticN(t)

Figure 1.4: Number of population individuals versus time with N0 = 1000.
The Euler algorithm with a timestep τ = 0.001 has been used. Comparison
is made with analytical solution.

(n = 1, 2, · · · ,M). Let wn,m denote the probability of transition from
state n to state m (m �= n) during the infinitesimal interval [t, t+ δt].
One can write the following first-order differential equation for P (n, t)
(van Kampen, 1992):

∂P (n, t)

∂t
=

∑
m �=n

[P (m, t)wm,n − P (n, t)wn,m] (1.30)

To see the derivation of (1.30) you may refer to any standard text-
book on stochastic dynamics and statistical physics. I can suggest a
very good one: (Reichel, 1998) (see chapter five). Equation (1.30),
known as the Master equation, is linear and first order but the subtle
point is that it is not local in the discrete state variable n and that
is the point that makes its solution hard to find, if not impossible, in
general. In a few special cases, we can analytically solve the Master
equation. Despite our goal is not to solve the problems analytically
but for didactic purposes, we prefer to start with the problems which
are amenable to exact solutions. As one of these examples let us come

12 Chapter 1. 1st order differential equations in physics

time (reduced unit)
0 2 4 6 8 10

0

10

20

30

40

50

60

70

80

90

100

110

a=1, b=0.01, computed

a=1, b=0.01, analytic

a=1, b=0.04, computed

a=1, b=0.01, analytic

N(t)

Figure 1.5: Number of population individuals versus time with a smaller
initial population number N0 = 5. The Euler algorithm with a timestep
τ = 0.001 has been implemented.

back again to the birth-death process. Suppose we have a population.
In a more realistic description, the population number at time t can
be any number 0 ≤ n < ∞. During the infinitesimal time interval δt
the population number n can change by one number. It can increase
to n+1 if a birth process occurs or decrease to n−1 if a death process
happens. For simplicity, we assume that the birth and death rates
depend linearly on the current population number n. The propor-
tionality constants are taken as β and γ respectively. In terms of the
transition rates, the only non-zero ones are those in which n and m
differ by one. Therefore we have wn,n+1 = βn and wn,n−1 = γn. We
can now write the Master equation for this random process:

∂P (n, t)

∂t
= β(n−1)P (n−1, t)+γ(n+1)P (n+1, t)−(β+γ)nP (n, t)

(1.31)

We recall that equation (1.31) is not local in variable n and this makes
the analytic solution cumbersome. However, it is possible to exactly
find the mean number of the population and its deviation from the

§1.3. Master equation 13

mean value. This is elegantly done by the method of generating func-
tion in chapter five of (Reichel, 1998). We refer interested readers to
this excellent book for details and only quote the main results here.
The mean number of population 〈n(t)〉 is defined as follows:

〈n(t)〉 =
∞∑

n=−∞
nP (n, t) (1.32)

It should be noted that the physical range for n starts from zero and
we should simply set P (n, t) = 0 for n < 0. Defining a generating
function F (z, t):

F (z, t) =
∞∑

n=−∞
znP (n, t) (1.33)

We simply find:

〈n(t)〉 = ∂F (1, t)

∂z
; 〈n2(t)〉 − 〈n(t)〉 = ∂2F (1, t)

∂z2
(1.34)

Higher moments are obtained similarly. With the help of the Master
equation (1.31) and the definition of generating function F (z, t) we can
obtain the following first-order partial differential equation for F (z, t)
(see (Reichel, 1998) for details).

∂F (z, t)

∂t
= (z − t)(βz − γ)

∂F (z, t)

∂z
(1.35)

It is possible to solve (1.35) by the method characteristics (Sneddon,
1957). This method is explained in many mathematical physics books
such as (Myint-U and Debnath, 2007). Another good reference is
(Hassani, 2013). The application of this method to (1.35) with ini-
tial condition P (n, 0) = δm,n gives:

F (z, t) = (
γ(z − 1)e(β−γ)t − βz + γ

β(z − 1)e(β−γ)t − βz + γ
)m (1.36)

Taking the partial derivatives of F (z, t) with respect to variable z
according to (1.34) gives:

〈n(t)〉 = me(β−γ)t (1.37)

14 Chapter 1. 1st order differential equations in physics

〈n2(t)〉 − 〈n(t)〉2 = m(
γ + β

γ − β
)e(β−γ)t(1− e(β−γ)t) (1.38)

Now it is about time we solved the problem numerically and enjoy its
beauty and convenience. Let us see if our Euler algorithm can give
a satisfactory result or not. Because we have used n to denote the
population number we denote the time step counter by k. Let P k

n be
a short notation for P (n, kτ) where τ is the timestep. The Master
equation (1.31) turns into the following finite difference form:

P k+1
n = P k

n +τβ(n−1)P k
n−1+τγ(n+1)P k

n+1−τ(β+γ)nP k
n (1.39)

The discretised initial condition implies P 0
n = δm,n. Equation (1.39)

allows for finding the probabilities at time step k+1 from their values
at time step k. Nevertheless, to implement the Euler scheme to (1.39)
we encounter a problem immediately! To evaluate P 1

0 we need to know
the unphysical quantity P 0

−1. We need not worry because we know
the physical range of n does not include negative numbers so we can
remedy this problem by introducing a boundary condition P (n, t) =
0 whenever n becomes negative. But be careful! there is another
problem in front of us. What should be done with the upper limit of
n? In principle, n can go to infinity but we cannot treat this infinite
limit by computer and will have to consider a finite upper limit for n.
Let us suppose n ≤ M where M should be taken as large as possible.
Now another problem arises when we want to evaluate P 1

M . In fact
(1.39) gives the unphysical term P 0

M+1. A plausible assumption could
be to set P 0

M+1 = P 0
M . More generally by setting:

P k
−1 = 0; P k

M+1 = P k
M (1.40)

We can iterate (1.39) to any desired time step. The right-hand side
of equation (1.40) can approximately be a finite difference form of

the Neumann boundary condition ∂P (∞,t)
∂n = 0. Another possibility

(method two) is to set P k
M+1 = 0. Specifying the right boundary con-

dition we can iterate (1.39) in time and find P k
n k = 1, 2, · · · in the

physical range n = 0, 1, 2, · · · . The programme PopulationMaster

(see appendix 1.E for details) implements the Euler algorithm with
a time step τ = 0.01 for solving the Master equation (1.31) numer-
ically. Figure (1.6) exhibits the numerical solution for case β = 0.1
and γ = 0.2. We have set M = 100 and m = 20 (initial number of

§1.3. Master equation 15

t (reduced unit)
10 20 30 40 50

0

2

4

6

8

10

12

14

16

18

20

computed (method one)

computed (method two)

analytic solution

<n(t)> m=20

M=100

Figure 1.6: The average number of population 〈n(t)〉 versus time. The
Euler algorithm with a timestep τ = 0.01 is used. The parameters are
β = 0.1, γ = 0.2,M = 100 and m = 20.

population). You see both methods one and two give a result that is
in excellent agreement with the analytical solution (1.37). Now let us
interchange the values of β and γ that is to set β = 0.2 and γ = 0.1.
Figure (1.7) shows the result. We see entirely different behaviour. Now
the computed answer deviates notably from the analytical one. The
reason is certainly not due to the weakness of the Euler algorithm but
to the inappropriateness of the right boundary condition. In the case
where the birth rate is larger than the death rate, (β > γ) we know
from the analytic solution that the average number of the population
grows exponentially in time (see equation (1.37)). Accordingly, we can
conclude that when t has increased the probability to have a larger
population increases. This implies that for a fixed time t, the larger the
n the larger P (n, t) will be. Consequently, the boundary condition for
P k
M+1 should be treated carefully. Can you suggest a more reasonable

condition to reproduce the large-time behaviour of the exponentially
growing population? As our final example of the birth-death process,
we consider the following non-linear problem (Nicolis and Prigogine,
1977). This time let us formulate the problem in the context of chem-

16 Chapter 1. 1st order differential equations in physics

t (reduced unit)
2 4 6 8 10

15

20

25

30

35

40

45

50

55

60

computed (method one)

computed (method two)

analytic solution

<n(t)>

Figure 1.7: The average number of population 〈n(t)〉 versus time. The
Euler algorithm with a timestep τ = 0.01 is used. The parameters are
β = 0.2, γ = 0.1,M = 100 and m = 20.

ical reactions. Consider a binary chemical reaction that occurs with
the rate k (D. A. Mcquarrie and Russel, 1994).

2X → B (1.41)

The transition rate for this reaction is proportional both to the rate k
and the number of different ways 1

2nX(nX − 1) a pair of X molecules
react to form a B molecule if there are nX molecules in the system.
Suppose before the reaction the number of X and B−type molecules
are nX + 2 and nB − 1 respectively. After the reaction, we have nX

and nB molecules of types X and B respectively. The transition rate
turns out to be k

2 (nX +2)(nX+1). We can write the following Master
equation for the probability to have n molecules of type X at time t:

∂P (n, t)

∂t
=

k

2
(n+2)(n+1)P (n+2, t)− k

2
n(n− 1)P (n, t) (1.42)

The natural boundary condition implies P (−1, t) = 0. Let us solve
the problem numerically by the Euler method. Figure (1.8) shows the

§1.4. Problems 17

time (reduced unit)
0 5E-05 0.0001 0.00015 0.0002

25

50

75

100

125

150

175

200

225

m = 100

m = 200

m = 300nX

Figure 1.8: Time dependence of X type molecules average number. The
Euler algorithm with a timestep τ = 10−6 is used. The parameters are
k = 1 and m = 100, 200 and 300.

average number of X molecules versus time for some initial values m.
It should be noted that we do not obtain the correct result unless the
timestep is chosen very tiny. We have set τ = 10−6 to get a good
result when the initial number of X molecules m is of order 102. For
larger values of m, the timestep τ should be even smaller. The reason
is due to the nonlinear term n(n+ 2) in the Master equation. Before
ending this chapter we should like to mention that the favourite Euler
algorithm has shown very good performance in first-order differential
and difference equations even when they are not local in their state
variables or even nonlinear. I know you are curious to see what this
simple algorithm can do when encountering higher-order differential
equations. Chapter two gives you the answer!

1.4 Problems

Problem 1.1 Numerically solve the coffee-cooling problem when the
cooling rate r is not constant. It would be reasonable to assume that

18 Chapter 1. 1st order differential equations in physics

r(t) is a decreasing function of time. for instance, take r(t) = r0e
−αt.

Explore the solution for values α = 1, 2, 3 per minute. Take r0 the
same as the constant r in figure (1.1). Compare your results with the
one presented in figure (1.1).

Problem 1.2 Suppose you have K radioactive nuclei. Each nucleus
can decay into a smaller one at its own rate. Denote the number of nu-
clei at time t by N1(t), · · · , NK(t) and the decay rates by λ1, · · · , λK .

(a) Try to analytically solve the following linear set of decay differen-
tial equations.

dN1

dt
= −λ1N1(t);

dN2

dt
= λ1N1(t)− λ2N2(t); · · ·

dNK

dt
= λK−1NK−1(t)− λKNK(t) (1.43)

For the initial condition assume N1(0) = N0 and Nk(0) = 0 k =
2, · · · , N . The analytical answer turns out to be (Foulaadvand,
2006):

Ni(t) = N0λi−1λi−2 · · ·λ1

N∑
k=1

e−λkt∏k
j=1(j �=k)(λj − λk)

(1.44)

(b) Numerically solve the set of equations by the Euler algorithm and
compare your result with the analytical solution.

Problem 1.3 The master equation for chemical reaction kinetics
A+X ⇔ A+Y in which the number of molecules A remains constant
turns out to be:

Ṗn(t) = k2(N−n+1)Pn−1(t)+k1(n+1)Pn+1(t)−[k1n+k2(N−n)]Pn(t)

(1.45)

N is the total number X molecules plus Y molecules (remains con-
stant). If n denotes the number of X molecules,

(a) numerically solve this equation and obtain the mean number of n
that is 〈n〉.

§1.4. Problems 19

(b) Numerically obtain 〈n2〉 and then calculate the standard deviation
of n.

(c) Can you solve the problem analytically?

Problem 1.4 Consider a linear birth-death process that includes the
possibility of a change in the population due to immigration. Let α
be the immigration rate which is the probability in unit time that
an individual enters society. Assuming that at t = 0 there are m
individuals in the society,

(a) write the master equation and obtain the generating function
F (z, t) =

∑∞
n=−∞ znP (n, t) for the process.

(b) Numerically compute the mean population number 〈n〉.
(c) Numerically obtain the process variance 〈n2〉 − 〈n〉2.
(d) Try to solve the problem analytically.

Problem 1.5 We intend to discuss the oscillatory and chaotic be-
haviours in chemical reactions. To obtain oscillations, it is essential
to have a series of chemical reactions such that the products of some
reactions are the reactants of others. In the following, we consider
a simple set of reactions that can lead to oscillations under certain
conditions (Lefever and Nicolis, 1971)

A → X ; B +X → Y +D; 2X + Y → 3X ; X → C (1.46)

Assume that the density of constituents A and B are held constant
and taking the rate constant be equal to unity, the corresponding rate
equations turn out to be:

dX

dt
= A−B −BX +X2Y ;

dY

dt
= BX −X2Y (1.47)

(a) Obtain the steady-state concentrations of molecules X and Y by
setting the above equations equal to zero. Show that the steady
values are (Xs, Ys) = (A, B

A).

(b) By writing a programme, try to numerically solve Eq. (1.47) for
given initial concentrations X(0) and Y (0) and fixed values of A
and B.

Chapter 2

2nd order differential
equations in physics

2.1 Introduction

In this chapter, we will consider second-order ordinary differential
equations in physics particularly, in classical mechanics. Inarguably
the most prominent second-order differential equation in physics is the
Newton equation of motion for a point-like particle of mass m:

m
d2r

dt2
= F(r,v, t) (2.1)

In equation (2.1) the force acting on the particle can depend, in its
most general form, on the particle’s instantaneous position r, its ve-
locity v as well as time t. Equation (2.1) is second-order in time
and consequently, two initial conditions r(0) and v(0) should be spec-
ified to solve the equation. There are several examples in physics
where you can exactly solve (2.1). You can refer to standard text-
books on classical mechanics to see these examples (Symon, 1971;
Thornton and Marion, 2003; Fowles and Cassiday, 2004; Arya, 1997).
Here we emphasize on the cases where exact analytical solutions are
not exactly known. Of course, for pedagogical purposes, we normally
begin with problems having analytical solutions so that we can com-
pare our numerical solutions with analytical ones. It is better to turn

21

22 Chapter 2. 2nd order differential equations in physics

(2.1) into two first-order differential equations as follows:

dr

dt
= v (2.2)

dv

dt
= a =

F

m
(2.3)

Equations (2.2) and (2.3) form a set of two by two linear system of
first-order differential equations. It is possible to implement the Eu-
ler algorithm for discretising these equations and turning them into a
finite difference form. Denoting the particle’s position, velocity, and
acceleration vectors at timestep n by rn, vn, and an the Taylor ex-
pansions of (2.2) and (2.3) up to the second term give:

rn+1 = rn + τvn + o(τ)2 (2.4)

vn+1 = vn + τan + o(τ)2 (2.5)

In equations (2.4) and (2.5) τ is the timestep, rn,vn, and an are ab-
breviations for r(tn),v(tn), and a(r(tn),v(tn), tn) respectively. Hav-
ing initial conditions i.e.; r0 and v0 we can iterate (2.4) and (2.5) to
find the particle’s position and its velocity in every time step. Let us
begin our first example with the well-known problem of free fall near
the Earth’s surface.

2.2 Free fall near Earth’s surface

Consider the motion of a particle of mass m in the gravitational field
of the Earth. See figure (2.1). If we take into account the variation
of the Earth’s gravitational field with the distance from the Earth’s
centre, then the force on the particle is not constant. According to
Newton’s law of gravitation, the force due to the Earth on a particle
of mass m is given by:

F = − GmM

(R+ y)2
j (2.6)

where y is measured from the Earth’s surface, R is the Earth radius,
M is the Earth mass and G is the gravitational constant. Note the

§2.2. Free fall near Earth’s surface 23

Figure 2.1: A freely falling object in the Earth’s gravitational field.

positive direction of the y axis is taken outward from the Earth’s
surface. Showing GM

R2 by g the Newton equation of motion becomes:

a =
dv

dt
= − g

(1 + y
R)2

j (2.7)

If we let R → ∞ we will reach the simple equation a = −gj and the
equation of motion can be analytically solved easily. Keeping R finite
there is no exact analytical solution for the Newton equation with
(2.7) and it should be solved numerically. In this particular problem,
the force does not depend on velocity and time but does depend on
the particle’s position y. Here we have ayn = − g

(1+ yn
R

)2
. Suppose

the particle is dropped from the height h above the Earth’s surface
with zero initial velocity. We intend to obtain the hit velocity to
the ground. The programme FreeFall (see Appendix 2.A for details)
numerically solves the motion of a free-falling body with the Euler
algorithm. Figure (2.2) shows the dependence of the absolute value
of the hit velocity difference |ΔVhit| = |V cons

hit − V var
hit | on height h for

the cases where the motion acceleration is constant g and position-
dependent. As you see, by increasing the height h from which the
particle has dropped the effect of variation of the gravitational field to
the distance from the Earth’s centre is amplified. The impact velocity
itself is around 1000 m/s so the relative impact velocity difference
is less than one percent even if the particle has dropped from fifty
kilometres above the ground level. If the particle moves in the vicinity
of the Earth we can neglect the variation of the gravitational field to
distance from the Earth’s centre hereafter unless otherwise stated.

24 Chapter 2. 2nd order differential equations in physics

h (m)
10000 20000 30000 40000 50000

0

0.5

1

1.5

2

2.5

3

3.5

4

ΔVimp| |
(m/s)

Figure 2.2: Modulus of the hit velocity difference versus height. The Euler
algorithm with a timestep τ = 10−3 is used. The particle initially dropped
with zero velocity.

2.3 Effect of air drag

Near the Earth, another important modification should be taken into
consideration: the effect of drag force due to air. This resistive force
depends on the particle’s shape in a complicated manner if the object
has a non-simple geometry. Furthermore, the motion of air plays an
important role. We will restrict ourselves to simple cases where the
particle has a simple geometry such as a sphere and the air motion
is steady, uniform, and laminar. The direction of the drag force in
simple cases where the object does not rotate will be opposite to the
object’s velocity and we can write:

Fd(v) = −F (v)v̂ (2.8)

where v = |v|. Even with this approximation, F (v) has a nontriv-
ial dependence on the object’s velocity modulus v. Two common
dependence forms are normally discussed in the elementary litera-
ture. In the first case, F (v) is linearly proportional to v which is
F (v) = c1v, and in the second case which is phenomenologically ob-

§2.3. Effect of air drag 25

served at high velocities, F (v) is proportional to the square of velocity
modulus: F (v) = c2v

2. In summary, we have:

F1d(v) = −c1v : F2d(v) = −c2vv (2.9)

2.3.1 Linear air drag force

Now let us solve a problem in which the effect of air drag is assumed
to have a linear dependence on velocity magnitude. The problem is:
Suppose we drop an object from height h above the ground level with
zero initial velocity in the presence of air drag. What will be the hit
velocity?

As usual, we first try to solve the problem analytically. If there is
no air resistance the answer is simply found to be: vhit =

√
2gh. If

there is air resistance the answer will be somewhat more difficult. In
the case of linear drag force, the equation of motion becomes (positive
y directs outward to the Earth):

dv

dt
= −g − c1

m
v (2.10)

Note here v is not the velocity modulus but the vertical component
of velocity vy. Initial conditions are y(0) = h and v(0) = 0. Equation
(2.10) is an inhomogeneous first-order linear differential equation and
its solution turns out to be:

v(t) =
gm

c1
(e−

c1t

m − 1) (2.11)

As you see, for t > 0 the velocity component v(t) is negative which
indicates that the object is moving downward. To find the hitting
velocity, we should be able to find the time the object hits the ground
(flight time). Another integration from (2.11) gives:

y(t) = h− gm

c1
[
m

c1
(e−

c1t

m − 1) + t] (2.12)

To find the flight time we set y = 0 and reach the following transcen-
dental equation:

c1h

gm
=

m

c1
(e−

c1t

m − 1) + t (2.13)

26 Chapter 2. 2nd order differential equations in physics

Unfortunately, we are unable to exactly find the hitting time t from
(2.13) and therefore cannot find the hitting velocity exactly. However,
it is possible to proceed approximately. Suppose the quantity c1

m is

small. Expanding e−
c1
m

t up to the third order in (2.13) we arrive at
the following cubic equation:

h

g
=

t2

2
− c1t

3

6m
. (2.14)

If there is no air drag we simply find t =
√

2h
g . When c1 �= 0 we

avoid proceeding with the exact but complicated solution of the cubic
equation. Alternatively, we consider that the hitting time has a power
expansion in c1

m . Keeping up to the third term we write t as:

t =

√
2h

g
+ α

c1
m

+ β(
c1
m
)2 (2.15)

Replacing t from (2.15) in (2.14) and comparing the coefficients on
both sides we find α and β as follows:

t =

√
2h

g
+

h

3g

c1
m

+
5
√
2

36
(
h

g
)

3
2 (

c1
m
)2 + o(

c1
m
)3 (2.16)

Putting the hitting time t from (2.16) into (2.11) one finds the hitting
velocity. Now let us simulate the problem. We can easily implement
the effect of air drag into our code. The programme AirdragFall

(see Appendix 2.B for more details) does the job for us with the Euler
algorithm. Figure (2.3) sketches the hitting velocity versus height h.
Comparison is done to the free fall. We have also shown the simulation
result by a better algorithm, namely the Euler-Richardson algorithm.
We will soon explain this algorithm but for the moment you see the
Euler algorithm performance is as good as this new algorithm. The
air drag slows the object and hence the hit velocity is reduced.

2.3.2 Quadratic air drag force

Let us see the effect of the quadratic drag force on the problem. Since
the motion is downward it is easier to take the y direction downward to

§2.3. Effect of air drag 27

h (m)
0 50 100 150 200

0

10

20

30

40

50

60

Euler algorithm
Euler-Richardson algorithm
No air drag (analytic)

Vhit

Figure 2.3: Dependence of hitting velocity vhit(m/s) on the height h. The
object has dropped with zero initial velocity. The Euler algorithm with a
timestep τ = 0.01 is used. The air drag constant c1 has been set to 0.1.

Earth and the origin at the initial position of the object. The equation
of motion turns out to be:

dv

dt
= g − c2

m
v2 (2.17)

where v is an abbreviation for the vertical component vy of the velocity.
We try to proceed analytically. An integration gives:∫ v(t)

0

dv

g − c2
mv2

= t (2.18)

Using the integral tables we find:∫
du

a2 − u2
=

1

a
coth−1(

u

a
) + C (2.19)

Implementing the initial conditions yields:

v(t) =

√
mg

c2
coth(

√
c2g

m
t) (2.20)

28 Chapter 2. 2nd order differential equations in physics

Another integration gives (see integral tables):

y(t) =
m

c2
ln[sinh(

√
c2g

m
t)] (2.21)

By setting y(t) = h one finds the hitting time:

t =

√
m

c2g
sinh−1(e

hc2
m) (2.22)

By replacing the hitting time from (2.22) in (2.20) the hitting velocity
vh is found:

vh =

√
mg

c2
coth[sinh−1(e

hc2
m)] (2.23)

Note the inverse of cosine hyperbolic is:

sinh−1(x) = ln(x+
√
x2 + 1) (2.24)

The interesting point is that we could solve the problem analytically
when the air drag depends on v in a quadratic manner. Let us see
how much the simulation results are close to the analytic ones. Figure
(2.4) shows the dependence of the hit velocity on dropping height h
for various values of the air drag coefficient c2. The numerical results
are in excellent agreement with the analytical result (2.23) (not shown
in the graph). As you see, the larger the drag coefficient c2 the less
the magnitude of hitting velocity. Notice that if the drop height h is

large enough, the particle reaches the terminal velocity vT =
√

mg
c2

.

For c2 = 0.1 and 0.01 the height h = 150 m is quite enough for reach-
ing the terminal velocity. Let us continue our numerical investigations
by solving another problem on the one-dimensional motion of a parti-
cle in the Earth’s gravitational field. This problem is put forward in
(H. Gould and Chriastian, 2006) (problem 3-9).

Problem: Suppose a pebble is thrown vertically upward with an
initial velocity v0. In the absence of air resistance, we know that the

maximum height reached by the pebble is
v2
0

2g , its velocity upon return
to the Earth equals v0, the time of ascent equals the time of descent,
and the total travel time is 2v0

g . We are interested to see the difference
between the ascent and the descent times. Suppose there is an air drag

§2.3. Effect of air drag 29

h (m)
0 50 100 150

0

10

20

30

40

50

60

c2 = 0.1

c2 = 0.01

c2 = 0.001

c2 = 0.0

Vhit
(m/s)

Figure 2.4: Dependence of hitting velocity magnitude vhit on dropping
height h for the quadratic air drag. The object has dropped with zero
initial velocity. The Euler algorithm with a timestep τ = 0.001 is used.

force that is proportional to the square of velocity magnitude.

Let us first try to solve the problem analytically as usual. In the
ascending part of the motion (the y axis is taken upward with the
origin on the ground) the equation of motion becomes:

dv

dt
= −g − c2

m
v2 (2.25)

An integration gives:

∫ 0

v0

dv

v2 + mg
c2

= −c2
m
tasc (2.26)

in which tasc denotes the ascent time at which the particle’s velocity
becomes zero and its height from the ground becomes maximum. The
integral in the left-hand side of (2.26) can exactly be evaluated by the
following indefinite integral from integral tables (see (Spiegel, 1998)

30 Chapter 2. 2nd order differential equations in physics

for example):∫
du

a2 + u2
=

1

a
tan−1(

u

a
) (2.27)

It turns out that:

tasc =

√
m

c2g
tan−1(

√
c2
mg

v0) (2.28)

You can easily verify that in the limit c2 → 0 the ascent time tasc
approaches v0

g . To find the maximum height H we first find the time
dependence of velocity in the ascent part of the motion. Setting the
upper limit of the integral in (2.26) to v(t) we find:

v(t) =

√
mg

c2
tan[tan−1(

√
c2
mg

v0)−
√

c2g

m
t] (2.29)

Another integration, using the indefinite integral
∫
tanudu = −ln(cosu),

gives:

y(t) =
m

c2
{ln cos[tan−1(

√
c2
mg

v0)−
√

c2g

m
t]−ln cos[tan−1(

√
c2
mg

v0)]}

(2.30)

Replacing t by tasc in (2.30) we can find the maximum height H :

H = y(tasc) = −m

c2
ln cos[tan−1(

√
c2
mg

v0)] (2.31)

Having found the maximum height H we are now able to find the
descent time tdsc analytically. One simply should replace h in (2.22)
by H . It turns out:

tdsc =

√
m

c2g
sinh−1({cos[tan−1(

√
c2
mg

v0)]}−1) (2.32)

The above relations for tasc, tdsc and H will reduce to their known
values when c2 → 0. Let us verify this explicitly for H . In (2.31) if we

keep up to the first term in the Taylor series tan−1 x = x + x3

3 + · · ·
and up to the second term for cosx we find;

H = −m

c2
ln(1− c2

2mg
v20) (2.33)

§2.4. Two-dimensional projectile motion 31

v0 (m/s)
25 50 75 100

0

100

200

300

400

500

c2 = 0.1 numeric

c2 = 0.1 analytic

c2 = 0.01 numeric

c2 = 0.01 analytic

c2 = 0.005 numeric

c2 = 0.005 analytic

no air drag

H(m)

Figure 2.5: The computed maximum height H versus v0 for some values
of c2. The Euler algorithm with τ = 0.01 is used. Comparison to analytic
solution shows an excellent agreement.

If we approximate ln(1−x) by −x we find the well-known result: H =
v2
0

2g . Figure (2.5) shows the dependence of the computed maximum
height H on v0 for some values of drag coefficient c2 obtained by
the programme AirDragAscend (see Appendix 2.C for more details).
Comparison is made with the analytical solution (2.31) and also to the
case with no air drag. In figure (2.6) we have sketched the difference
between computed descent and ascent times ΔT = tdsc − tasc versus
v0 for some values of c2. Comparison to the analytical solution shows
excellent agreement.

2.4 Two-dimensional projectile motion

We are all familiar with the two-dimensional motion of a projectile in
the absence of air resistance perhaps from high school physics. In a
typical example, a cannonball is fired from the ground at angle θ0 to
the horizon with an initial velocity v0. The maximum height H , the

32 Chapter 2. 2nd order differential equations in physics

v0 (m/s)
50 100 150

0

0.5

1

1.5

2

2.5

3

c2 = 0.1 numeric

c2 = 0.1 analytic

c2 = 0.01 numeric

c2 = 0.01 analytic

c2 = 0.005 numeric

c2 = 0.005 analytic

TΔ (s)

Figure 2.6: The computed ΔT = tdsc − tasc versus v0 for some values
of c2. Comparison to analytic solution shows an excellent agreement. The
Euler algorithm with a timestep τ = 0.01 is used.

flight time T , and the range R turn out to be:

H =
v20 sin

2 θ0
2g

; T =
2v0 sin θ0

g
; R =

v20 sin 2θ0
g

(2.34)

In this section, we intend to numerically study the air resistance effect
on the characteristics of a two-dimensional projectile motion. Suppose
the projectile mass is m and it is subjected to a constant gravitational
field which is directed in the −j direction (positive y direction points
upward to Earth). Moreover, there is an air drag force Fd which
opposes the projectile velocity v. See figure (2.7) for illustration.

2.4.1 Linear air drag force

If the magnitude of Fd is proportional to v, the Newton equation of
motion becomes (positive y direction outward to Earth):

m
dv

dt
= −mgj− c1vv̂ = −mgj− c1v (2.35)

§2.4. Two-dimensional projectile motion 33

Figure 2.7: The projectile trajectory in the Earth’s gravitational field with
air drag.

In terms of components, we obtain the following set of linear uncoupled
differential equations:

m
dvx
dt

= −c1vx (2.36)

m
dvy
dt

= −mg − c1vy (2.37)

The flight time is the sum of ascent time Tasc and descent time Tdsc.
An integration gives the following equation for the ascent time:

∫ v0 sin θ0

0

dvy
g + c1

mvy
=

∫ Tasc

0

dt = Tasc (2.38)

The ascent time simply turns out to be:

Tasc =
m

c1
ln(1 +

c1
mg

v0 sin θ0) (2.39)

Note in the limit of c1 → 0 (no air resistance) a Taylor expansion of
the logarithm function leads to Tasc = v0 sin θ0

g as expected. To find

34 Chapter 2. 2nd order differential equations in physics

the maximum heightH we should integrate from vy(t). An integration
of (2.37) gives:

vy(t) = (v0 sin θ0 +
mg

c1
)e−

c1
m

t − mg

c1
(2.40)

Another integration from (2.40) gives:

y(t) =
m

c1
(v0 sin θ0 +

mg

c1
)(1 − e−

c1
m

t)− mg

c1
t (2.41)

To find H we should substitute t with Tasc in (2.41). A bit of algebra
gives:

H =
m

c1
(v0 sin θ0 +

mg

c1
)[1− (1 +

c1
mg

v0 sin θ0)
−1]−

m2g

c21
ln(1 +

c1
mg

v0 sin θ0) (2.42)

To find the range R we need to find the descent time Tdsc. However,
according to (2.13) by replacing h withH we arrive at a transcendental
equation for descending time that cannot be solved analytically. To
find the range R we note that R = x(T) = x(Tasc+Tdsc). From (2.36)
we have:

x(t) =
mv0 cos θ0

c1
(1− e−

c1
m

t) (2.43)

2.4.2 Quadratic air drag force

Now let us see how analytically we can proceed if the air resistance
depends quadratically on the projectile’s velocity. The vectorial equa-
tion of motion becomes (y axis upward):

m
dv

dt
= −mgj− c2v

2v̂ = −mgj− c2vv (2.44)

where v =
√
v2x + v2y is the projectile’s velocity magnitude. In terms of

components, we obtain the following set of coupled differential equa-
tions:

m
dvx
dt

= −c2vvx (2.45)

§2.4. Two-dimensional projectile motion 35

x (m)
0 10 20 30 40 50 60 70 80

0

2

4

6

8

10

12

14

16

c2 = 0.1

c2 = 0.01

c2 = 0.005

c2 = 0.0

Y (m)

Figure 2.8: Cannonball trajectory computed by the Euler algorithm for
three values of c2. Comparison is made with no air resistance situation. The
simulation parameters are h = 10 m,v0 = 30 m/s, θ0 = 45o and τ = 0.01.

m
dvy
dt

= −mg − c2vvy (2.46)

Unfortunately, equations (2.45) and (2.46) are coupled and above that

non-linear due to the term v =
√
v2x + v2y . To the best of my knowl-

edge, no analytical solution has been found up to now and we have
to resort to numerical analysis. The programme 2dProjectile (see
Appendix 2.D for more details) simulates the two-dimensional motion
of a projectile in the presence of air resistance. Figure (2.8) shows the
computed cannonball trajectory of unit mass (m = 1) in the presence
of quadratic air resistance drag force F (v) = c2v

2 for three values of
drag coefficient c2. Initial conditions are h = 10 m, θ0 = 45o and
v0 = 30 m/s. The Euler algorithm with τ = 0.01 has been used. We
are interested to know how the quantities: range, total flight time,
and the maximum height H will vary when there is air resistance. In
figure (2.9) we show the variation of maximum height H versus firing
angle θ0 for some values of c2. Figure (2.10) shows the dependence of
range R on θ0. As expected by increasing the air resistance the range

36 Chapter 2. 2nd order differential equations in physics

θ0

0 20 40 60 80
10

15

20

25

30

35

40

45

50

55

60

c2 = 0.1

c2 = 0.01

c2 = 0.005

c2 = 0.0

(degree)

H(m)

Figure 2.9: The maximum height H computed by the Euler algorithm
for three values of c2. Comparison is made with no air resistance situation.
The simulation parameters are h = 10 m,v0 = 30 m/s, and τ = 0.01.

R decreases. We also notice that by increasing c2 the angle at which
the range is maximised will decrease. Now let us investigate how the
motion characteristics vary when h is changed. Figure (2.11) shows
the dependence of range R on h for fixed θ0, v0 and c2. As our final
example, we consider the following problem:

Consider the motion of two identical objects that both start their
motion from height h. One object is dropped vertically from rest and
the other is thrown with a horizontal velocity v0. Which object reaches
the ground first? Discuss three cases: no air resistance, air resistance
with a linear dependence on velocity magnitude, and air resistance with
quadratic dependence on velocity magnitude.

In the case of no drag force, both objects reach the ground simulta-
neously. The reason is that equation of motion for vy does not depend
on vx for the object thrown horizontally. Equations of motion for vx
and vy remain decoupled when we have a linear drag force. We recall
that the equation of motion for the vertical velocity vy is (2.37) and

§2.4. Two-dimensional projectile motion 37

θ0

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

110

c2 = 0.1

c2 = 0.01

c2 = 0.005

c2 = 0.0

(degree)

R(m)

Figure 2.10: The projectile range R computed by the Euler algorithm for
three values of c2. Comparison is made with no air resistance situation.
The simulation parameters are h = 10 m,v0 = 30 m/s, and τ = 0.01.

since this equation does not depend on vx the initial value vx(0) does
not affect it. However, for the third case i.e.; quadratic drag force the
equations of motion for velocity components are coupled and the initial
velocity vx(0) affects the problem. Figure (2.12) shows the falling time
difference ΔT = T2 − T1 versus h. Note T1 corresponds to initial zero
velocity whereas T2 refers to non-zero initial horizontal velocity. We
see that for large h the falling time difference ΔT does not depend on
h. This is because for large h both objects reach the terminal velocity
and the horizontally thrown object velocity becomes vertical. Conse-
quently, they will have the same speed. The difference between falling
time is associated with the early stages of the flight before the objects
reach the terminal velocity. Before closing the chapter, we remind you
that the Euler algorithm did a very good performance in dealing with
second-order ordinary linear differential equations involving the free
fall motion under the gravitational field. In the next chapter, we will
encounter oscillatory motion and examine if the Euler algorithm can
successfully be applied to this sort of motion.

38 Chapter 2. 2nd order differential equations in physics

h (m)
20 40 60 80 100 120

40

50

60

70

80

90

100

110

120

130

140

150

160

170

c2 = 0.01

c2 = 0.005

c2 = 0.0

R (m)

Figure 2.11: The range R computed by the Euler algorithm versus height
h for two values of c2. Comparison is made with no air resistance situation.
The simulation parameters are θ0 = 45o, v0 = 30 m/s and τ = 0.01.

h (m)
100 200 300 400 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c2 = 0.05

c2 = 0.01

c2 = 0.005

ΔT(s)

Figure 2.12: The computed falling time difference ΔT by the Euler algo-
rithm versus height h for two values of c2. The simulation parameters are
vx0 = 30 m/s and τ = 0.01.

§2.5. Problems 39

2.5 Problems

Problem 2.1 Suppose a bicyclist of mass m = 60 kg generates a
constant power P to ride her bicycle.

(a) Ignoring the damping effects caused by earth and air, obtain the
velocity time dependence both analytically and numerically (see
chapter two of (Giordano and Nakanishi, 2006) for further de-
tails).

(b) In the previous part, the velocity grows indefinitely. To circum-
vent this unphysical problem a source of dissipation should be in-
cluded. The main dissipation source comes from the air resistance
of the bicyclist. As a first approximation to the air drag force,
consider the conventional form −B1v as the energy loss term and
solve the problem numerically by implementing a proper term in
the velocity update rule and obtain the velocity as a function of
time. Take the generated power P = 200 Watts. What should
approximately be the air drag constant B1 to have a constant ve-
locity of 30 km/hour? We remark that the linear drag is known
as the Stocks law in hydrodynamics. The coefficient B1 strongly
depends on the object’s shape. For a sphere, it turns out that
B1 = 6πηR where η is the shear viscosity and R is the object ra-
dius. For a derivation of this relation, you may consult a standard
fluids mechanics textbook.

(c) Noting that the air shear viscosity is η = 2 × 10−5 Poise(Pa.s),
estimate the rider frontal area (effective radius).

Problem 2.2 In problem one, replace the linear air drag with a
quadratic one force −B2v

2. As stated, the linear drag coefficient B1

depends on the air viscosity η and the frontal areaA of the bicycle rider
in contact with air. An estimation of the quadratic drag coefficient B2

turns out to be B2 = 1
2CρA in which ρ is the fluid (here air) density

and C a drag coefficient. For a qualitative derivation see chapter two
of (Giordano and Nakanishi, 2006).

(a) Write down the Newton equation of motion and obtain the termi-
nal velocity by equalising the input power generated by the rider
to the dissipated one into the air.

40 Chapter 2. 2nd order differential equations in physics

(b) Try to solve the problem analytically.

(c) Obtain the velocity updating scheme which now includes only the
quadratic air drag force (take C = 1).

(d) Numerically solve the problem and obtain the velocity-time curve
for the rider. Take ρair = 1.2kg/m3 and A = 0.33 m2.

Problem 2.3 Add a linear air drag term to the quadratic one and
numerically solve the problem. Compare your numerical solution with
problem two.

Problem 2.4 In our 2D projectile motion we took the coefficient of
quadratic air drag force to be constant c2. We saw in problem two
that this coefficient depends linearly on the air density ρ. However,
the air density changes with altitude. Incorporating this fact into
account gives rise to considerable changes in the projectile motion. To
investigate this effect quantitatively we need to know how air density
depends on altitude. In the simplest approach, we take the air to be
an isothermal ideal gas. The ideal gas equation of state is p = ρRT

M
where M is the air molar mass. Next, we employ the Euler equation
for the airflow which is the simplified version of the Navier-Stocks fluid

dynamics equation. The Euler equation is ρ∂	v(z,t)
∂t = −∇p(z, t) + ρg.

In the steady state we have ∂	v(z,t)
∂t = 0 and we get dp

dz = −ρg. If we
replace p from the equation of state into this differential equation we
get a differential equation for pressure ρ:

dρ

dz
= −gM

RT
ρ

. The solution of this first-order differential equation is ρ(z) = ρ0e
− gMz

RT .
This is the well-known barometric formula. ρ0 is the air density at sea

level. Now take c2 = ce−
gMz
RT in the quadratic air drag force and

numerically solve the projectile problem. Which quantity undergoes
a notable change? Obtain the dependence of the maximum height
attained by the projectile on the initial velocity.

Problem 2.5 We know that air temperature varies with height there-
fore the isothermal approximation is not realistic. Another approach
is to take the atmosphere to be a poor conductor. Moreover, we as-
sume that the connectivity is poor too. This leads to the so-called
adiabatic approximation.

§2.5. Problems 41

(a) By solving the linearised Navier-Stock (Euler) equation show that
the density becomes:

ρ(z) =
M

RT
p0[1− γ − 1

γ

gρ0z

p0
]
γ−1
γ

(b) Numerically solve the projectile problem when the atmosphere is
taken as an adiabatic ideal gas and compare your results with
those in problem four. Take the initial condition the same.

Problem 2.6 Solve the motion of a 2D projectile in the air when the
air temperature linearly decreases with altitude i.e.; T (z) = T0(1− z

H).
Compare your findings with previous atmospheric models.

Problem 2.7 Solve the 2D projectile motion in a non-inertial ref-
erence frame. In reality, the Earth is a rotating system around the
Sun and we have to take into account non-inertial forces such as cen-
trifugal and Coriolis. The true equation of motion turns out to be
(Thornton and Marion, 2003):

m
d2r

dt2
= F−mR̈−ṁω × r −mω × (ω × r)− 2mω × v

F is the total sum of forces acting on the particle as measured in the
inertial reference frame, the second and third terms arise from the
translational and rotational accelerations of the moving frame relative
to the fixed inertial one (here the Sun system). The third one is called
centrifugal and the last term is the so-called Coriolis force. Retaining
only the Coriolis force in the projectile problem and ignoring the air
resistance,

(a) Sketch the projectile range in terms of initial velocity and compare
your results to the case where the Coriolis force is absent.

(b) Include the air resistance and Coriolis force into the motion equa-
tion and repeat part (a). Take ω = 2π/year.

Problem 2.8 Magnus effect: An interesting observation in sports
is the curve of balls in flight due to their rotation. The curvature in a
spinning ball trajectory is a purely hydrodynamical effect and was first
investigated in 1850 by G. Magnus and is now known as the Magnus

42 Chapter 2. 2nd order differential equations in physics

effect. It can be explained qualitatively by observing that the speed
of the ball’s surface relative to the air is different on opposite edges of
the ball. Suppose a ball with radius r is moving in x direction with
a cnetre of mass speed v. The ball is spinning around the −y axis
with a constant angular velocity ω. It turns out that the velocity of
the ball’s top surface is v − ωr whereas its bottom surface velocity is
v + ωr. If we assume that the air drag is quadratic in velocity, it can
be shown that there is a net outward force (in (+z) direction) on the
bottom surface of the ball which is proportional to the relative velocity
(v + ωr)2 to air. Similarly, the ball experiences a net downward force
(in (−z) direction) on its top surface which is proportional to the
relative velocity (v − ωr)2 to air. The net force, the Magnus force, is
the algebraic sum of these forces: FM ∝ (v+ωr)2 − (v−ωr)2 ∼ vrm.
Showing the proportionality coefficient by CM the Magnus force on a
spinning object can be more generally written as FM = CMω×v. We
now wish to solve a sports problem in football. All of us have seen
spectacular goals scored from a fixed kick. Let us try to find the ball
trajectory when Magnus’s force of incorporated. Assume the ball is
located 25 m away for the goal perpendicular to the goal line. Assume
a player gives an initial velocity v0 = 60 km/h in such a way that
the ball takes off the ground at angle θ0 = 20 degrees. what should
be the initial angular velocity provided by the kicker so that the ball
arrives at the top left corner of the goal? Take the goal post height
H = 2.44 m, its width L = 7.32 m and CM

m = 0.02.

Problem 2.9 Motion of golf ball: I invite those of you who are
interested in golf play to solve this problem. Hopefully, we have all
gradients to attack this problem. Suppose both a drag force Fd and
the Magnus force are exerted on a gold ball of radius R and mass
m. Let y denote the ball’s height to the ground and x the horizontal
direction along the initial velocity v0. The equation motions will be:

dvx
dt

= −Fd,x

m
− CMωvy

m

dvy
dt

= −Fd,y

m
+

CMωvx
m

− g

Note that the ball is hit with a backspin (spin axis along z) with a
constant angular velocity ω. Take the air drag as Fd = −CρAv2v̂ with
a velocity-dependent C. At low speeds up to 14 m/s take C = 1

2 . At

§2.5. Problems 43

higher velocities take C(v) = 7
v . You can see (Giordano and Nakanishi,

2006) for a detailed discussion. We take CMω
m = 0.25 s−1.

(a) Numerically solve the equations of motion and plot the ball tra-
jectory in the y − x plane.

(b) Take the drag coefficient C to be constant and re-plot the trajec-
tory. Do you see any significant difference?

(c) Suppose a wind is blowing in the z direction with constant velocity
15 m/s. Plot the trajectory in both the y − x and z − x planes.

Problem 2.10 Motion of Tennis ball: Try to model the motion of
a Tennis ball and numerically solve it. You may consult the paper
The aerodynamics of Tennis balls by S̆tĕpánek in American journal of
physics (Stepanek, 1988).

Chapter 3

Oscillatory motion

3.1 Simple Harmonic oscillator

Many systems in science and especially in physics undergo regular
oscillatory motions. The evolution of planets around the Sun and
pendulum motion are among the most ubiquitous ones we observe in
our everyday life. Less obvious examples are microscopic phenom-
ena such as the oscillations of atoms in crystalline solids or electron
motion in atomic orbitals. In this chapter, we intend to pursue our
numerical investigations of these types of motion. Physically speak-
ing, a motion is called oscillatory if an object, or a system of objects,
repeats its motion regularly in time along a finite spatial path. You
have certainly seen in your undergraduate mechanics’ course that ev-
ery mechanical system in the vicinity of its potential energy minimum
performs an oscillatory motion. Let us for simplicity restrict ourselves
to one dimension and consider the simplest system i.e.; a point-like
particle with mass m which is subjected to a time-independent poten-
tial V (x). Suppose the initial conditions are such that the particle is
in the vicinity of one of the potential energy minima say x∗. A Taylor
expansion of V (x) around x∗ gives:

V (x) = V (x∗)+ (x−x∗)
dV

dx
(x∗)+

1

2
(x−x∗)2

d2V

dx2
(x∗)+ · · · (3.1)

With no loss of generality, we can set V (x∗) = 0. Since V (x) is min-
imum at x∗ we have dV

dx (x
∗) = 0 and therefore the Newton equation

45

46 Chapter 3. Oscillatory motion

Figure 3.1: A linear frictionless mass-spring system.

of motion becomes:

m
d2x

dt2
= −dV

dx
= −d2V

dx2
(x∗)(x − x∗) (3.2)

Since the potential is minimum at x∗ the second derivative of potential

is positive. Calling the positive coefficient d2V
dx2 (x

∗) by k and shifting
the origin of our new system of coordinates to x∗ we find the Newton
equation of motion as follows:

m
d2x

dt2
= −kx (3.3)

where it is understood that now x denotes the deviation of the par-
ticle’s position from the potential energy minimum. An oscillatory
mass-spring system, see figure (3.1), is a prototype example. Equa-
tion (3.3) is a linear second-order ordinary differential equation that
can simply be solved analytically. In fact, the force on the particle is
proportional to its deviation from the equilibrium point: F (x) = −kx
which is the simplest form of Hooke’s law. Introducing the angular

frequency ω0 =
√

k
m , the solution of (3.3) turns out to be:

x(t) = D cos(ω0t+ θ0) (3.4)

As you see the particle undergoes a sinusoidal motion which is known
as simple harmonic motion in the literature. The motion is periodic
with the period T = 2π

ω0
. The amplitude D and the phase θ0 are given

once the initial conditions x0 and v0 are specified. According to (3.4)
at t = 0 we have:

x0 = D cos θ0 ; v0 = −Dω0 sin θ0 (3.5)

Equation (3.5) simply gives D and θ0 as follows:

θ0 = − tan−1(
v0

x0ω0
); D =

√
x2
0 +

v20
ω2
0

(3.6)

§3.2. Numerical Solution: Euler-Cromer Algorithm 47

Although the position and velocity of the oscillator are continuously
changing, its total mechanical energy E remains constant and is given
by:

E =
1

2
mv2+

1

2
kx2 =

1

2
kD2 =

1

2
k(x2

0+
v20
ω2
0

) =
1

2
mv20 +

1

2
kx2

0 (3.7)

3.2 Numerical Solution: Euler-Cromer Al-
gorithm

Let us now solve the differential equation (3.3) numerically. As usual,
we prefer first to proceed with our simple but favorite Euler algorithm.
The recursive equations through which we can iterate the oscillator’s
velocity and position are:

xn+1 = xn + vnτ ; vn+1 = vn + anτ = vn − k

m
xnτ (3.8)

The programme Oscillator (see Appendix 3.A for details) numeri-
cally solves the Newton equation of motion for our simple harmonic
oscillator. In figure (3.2) we exhibit the time dependence of the oscil-
lator’s position for some choices of time step τ . In our system of units,
we have set m = 1 and k = 9 such that ω0 becomes equal to 3. As
you can see our programme fails to reproduce the analytical solution
i.e.; simple harmonic sinusoidal motion! The oscillation’s amplitude
grows over time which is unphysical. This behaviour persists if we go
to smaller time steps. As a matter of fact, the failure is not associ-
ated with the timestep but is intrinsic to the computational algorithm
itself. Up to now, our Euler algorithm has successfully reproduced
the analytical solutions but this time it is unable to do so. Unfortu-
nately, the Euler algorithm is not suitable for oscillatory motions. To
remedy the problem, we have to resort to more advanced algorithms.
The simplest one which can give us a satisfactory answer is the Euler-
Cromer algorithm (Cromer, 1981). According to this algorithm, we
should first update the velocity and then use the updated velocity for
position updating. Precisely speaking, the algorithm is implemented
for a general force as follows:

vn+1 = vn + anτ + o(τ)2 xn+1 = xn + vn+1τ + o(τ)2 (3.9)

48 Chapter 3. Oscillatory motion

t (reduced unit)
0 5 10 15 20

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

= 0.001

= 0.005

= 0.010

X

τ
τ
τ

Figure 3.2: Time evolution of the harmonic oscillator’s position for T = 20
units of time. The Euler algorithm is used.

Note the only difference to the Euler algorithm is the replacement of
vn by vn+1 in the position updating. For our particular case of linear
restoring force, we have:

vn+1 = vn + anτ = vn − k

m
xnτ ; xn+1 = xn + vn+1τ (3.10)

Despite this simple change, the result is amazing. Figure (3.3) depicts
the position-time curve for the same values of time step τ . You can see
that the problem has been nicely cured and we get a reasonable answer.
Despite there is no meaningful difference between the three choices of
τ in figure (3.3), the difference becomes more prominent if we look
at the variation of computed total energy in time. Let us denote the
oscillator energy at time step n by En and the difference between the
computed energy and its exact value by ΔEn = En −E. Figure (3.4)
plots the dependence of energy difference ΔEn as a function of n: The
Euler-Cromer algorithm preserves the energy in an oscillatory fashion.
By decreasing the timestep τ , we reduce the computational error in
total energy. The oscillatory character of ΔE is associated with the
restoring force. Let us introduce some more advanced algorithms.

§3.3. Other algorithms 49

time (reduced unit)
0 5 10 15 20

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

= 0.001
= 0.005
= 0.010

X

τττ

Figure 3.3: Time evolution of the harmonic oscillator position for T = 20
units of time. The Euler-Cromer algorithm is used.

3.3 Other algorithms

3.3.1 Mid-Point Algorithm

The third algorithm we introduce is the mid-point algorithm. Anal-
ogous to the Euler-Cromer, in this algorithm the velocity is updated
first. However, we use the mean velocity during the timestep interval
to obtain the new position. The midpoint algorithm can be written
as:

vn+1 = vn+anτ+o(τ)2; xn+1 = xn+
1

2
(vn+vn+1)τ +o(τ)2 (3.11)

Substitution of vn+1 in the right-hand side of the position update we
find:

xn+1 = xn + vnτ +
1

2
anτ

2 + o(τ)3 (3.12)

50 Chapter 3. Oscillatory motion

T (reduced unit)
0 2 4 6 8 10

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ΔEn

Red:Δt = 0.001 Green:Δt = 0.005 Blue:Δt= 0.01

Figure 3.4: Energy difference ΔEn as a function of n for various values of
time step τ . The Euler-Cromer algorithm is used.

3.3.2 Euler-Richardson Algorithm

We leave the derivation of this algorithm and only quote the re-
sult here. Interested readers can find the derivation in chapter 3 of
(H. Gould and Chriastian, 2006). Technically, this algorithm exploits
the half-step concept. We first define the velocity and acceleration
values at half steps via first-order Taylor expansions as follows:

vn+ 1
2
= v(tn +

τ

2
) = vn +

τ

2
an + o(τ)2 (3.13)

an+ 1
2
= a(tn +

τ

2
) = an +

τ

2
a′n + o(τ)2 (3.14)

We now express the update rules:

xn+1 = xn + vn+ 1
2
τ + o(τ)3 (3.15)

vn+1 = vn + an+ 1
2
τ + o(τ)3 (3.16)

§3.3. Other algorithms 51

3.3.3 Verlet Algorithm

One of the most common and efficient algorithms in computational
physics is attributed to Verlet (the letter ”t” should not be pro-
nounced). To obtain this algorithm, we write the Taylor expansions
of xn−1 and xn+1 up to the third order in τ as follows:

xn±1 = xn ± vnτ +
1

2!
anτ

2 ± 1

3!
a′nτ

3 + o(τ)4 (3.17)

Adding the corresponding Taylor expansions gives:

xn+1 + xn−1 = 2xn + anτ
2 + o(τ)4 (3.18)

In other words, we get:

xn+1 = 2xn − xn−1 + anτ
2 + o(τ)4 (3.19)

Equation (3.19) is known as the Verlet algorithm. It is also known
as Leapfrog algorithm. Note that its local truncation error is small
(fourth order). If the force does not depend on velocity one can up-
date the position solely from (3.19) irrespective of the velocity update
because an can only depend on tn and xn. This makes the algorithm
very fast which is very desirable. Nevertheless, it is possible to obtain
the updated velocity if it is required. To this end, we Subtract xn−1

from xn+1 and find:

vn =
xn+1 − xn−1

2τ
+ o(τ)2 (3.20)

Clearly, the velocity update error is second-order and is not as precise
as the position update. The notable point is that the Verlet algorithm
is not self starting. As you can see from (3.19) to find the new position
xn+1 we need to know not only the current position xn but also the
previous position xn−1. We call these types of algorithms as two steps.
Being a two-step algorithm causes a drastic problem in the beginning!
According to (3.19) we have x1 = 2x0 − x−1 + a0τ

2 but x−1 is un-
known to us. To circumvent this problem people normally obtain x1

via another algorithm. For example, we can find x1 from the Euler
algorithm: x1 = x0 + v0τ . Once x1 is obtained we can iterate (3.19)
and update the positions in time.

52 Chapter 3. Oscillatory motion

3.3.4 Velocity Verlet Algorithm

Another version of the Verlet algorithm which is most frequently used
in computational physics and in particular in molecular dynamics is
the so-called Velocity Verlet. To obtain this algorithm we note that
according to (3.20) and up to the first order in τ we have xn−1 =
xn+1− 2τvn. If we replace this xn−1 into (3.18) and solve for xn+1 we
simply get:

xn+1 = xn + vnτ +
1

2
anτ

2 + o(τ)4 (3.21)

To obtain the velocity update we note that (3.20) gives:

vn+1 =
xn+2 − xn

2τ
+ o(τ)2 (3.22)

According to (3.19) we have:

xn+2 = 2xn+1 − xn + an+1τ
2 + o(τ)4 (3.23)

If we replace xn+2 from (3.23) into (3.22) we get:

vn+1 =
xn+1 − xn

τ
+

1

2
an+1τ + o(τ)2 (3.24)

The final stage is to replace xn+1 in (3.24) from (3.21) which yields:

vn+1 = vn +
1

2
(an + an+1)τ + o(τ)2 (3.25)

Equations (3.21) and (3.25) comprise the velocity Verlet algorithm.
Notice that between (3.21) and (3.25) you have to take an intermediate
step and evaluate the new acceleration an+1. This is only possible
if the force on the particle does not depend on velocity i.e.; F =
F (r, t). If this is the case one can simply obtain an+1 from the updated
position xn+1. Now that we have learnt some more algorithms it
would be interesting to see how these algorithms are compared to
each other when energy conservation is considered. Figure (3.5) plots
the time series of the energy difference to the exact value for the Euler-
Richardson and Verlet algorithms. Note we have already obtained this
quantity for the Euler-Cromer algorithm in figure (3.4). As you see in
figure (3.5) the result of ΔEn in the Euler-Richardson algorithm for
Δt = 0.001 is too tiny (of order 10−7) to be observed in the graph.

§3.4. Lissajous figures 53

T (reduced unit)
0 2 4 6 8 10

0

5E-05

0.0001

0.00015

0.0002

0.00025

ΔEn

Green: Euler-Richardson, Δ t = 0.005
Blue: Verlet,Δ t = 0.001

Red: Verlet, Δ t = 0.005

Figure 3.5: Comparison of the energy difference ΔEn time series for the
Euler-Richardson and Verlet algorithms.

The Euler-Richardson algorithm gives a better result for a fixed Δt
but suffers from the fact that ΔEn increases with n. On the other
hand, the benefit of the Verlet algorithm is that alike Euler-Cromer
ΔEn does not grow monotonously with n but rather oscillates around
a fixed value.

3.4 Lissajous figures

Before pursuing our numerical studies on one-dimensional oscillatory
motion, let us show you some interesting figures arising from two-
dimensional oscillatory motion. These figures are called Lissajous
figures in honour of French physicist, mathematician, and musician
Jules Antoine Lissajous (1822-1880). Among other innovations, Lis-
sajous invented the Lissajous apparatus, an optical-based device that
created the figures that bear his name. In 1855 Lissajous invented a
set of tuning forks that were part of an apparatus for the visualization
and analysis of sound vibrations. This particular set was manufac-
tured by the Parisian scientific instrument maker Rudolph Koenig for

54 Chapter 3. Oscillatory motion

x
-1 -0.5 0 0.5 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

y

φ = π/6

φ = π/4

red : x

y

green : φ = π/3x

Figure 3.6: Lissajous figures for two values of φx.

educational demonstrations and also for the fine calibration of new
tuning forks. You can see the apparatus in the Whipple Museum of
Science in Cambridge. Imagine that the vertical and horizontal inputs
to an oscilloscope are sinusoidal in time, that is, x = Ax(sinωxt+φx)
and y = Ay sin(ωyt+φy). If the curve that is drawn repeats itself it is
called a Lissajous figure. Equivalently x and y can be regarded as the
coordinates of a particle restricted to moving in the x−y plane. Figure
(3.6) shows the trajectory in the x− y plane for Ax = Ay = 1, φy = π

4
and two values of φx = π

3 ,
π
6 . As you can see, there is a dramatic

dependence on the phases. The effect of varying the amplitudes Ax

and Ay is only to rescale the figure. Figure (3.7) illustrates this point
for Ax = 2 and Ay = 3. Phases are φx = π

6 and φy = π
4 correspond-

ingly. In figure (3.8) we change ωx to 2.33, the other parameters are :
φx = π

6 and φy = π
4 . You see a notable change in the x− y diagram.

Theoretically, we know that the x − y curve is closed when the ratio
between ωx and ωy is the form of a

b where a and b are integer numbers.
In figure (3.8) we see that the curve is more space-filling although it
is actually a closed curve.

§3.5. Damped harmonic oscillator 55

x
-2 -1 0 1 2

-3

-2

-1

0

1

2

3

y

Figure 3.7: Re scaling of Lissajous figures by changing amplitudes: Ax = 2
and Ay = 3 with phases: φx = π

6
and φy = π

4
.

3.5 Damped harmonic oscillator

From our everyday experience, we know that most of the oscillatory
motions in nature gradually attenuate and diminish such that the dis-
placement becomes zero gradually unless energy is injected into the
system. Such a kind of motion is said to be damped and the system is
said to be dissipative rather than conservative. In mechanical motions
such as a mass-spring system or pendulum, the underlying dissipa-
tion mechanism is associated with frictional drag force caused by the
ground or air. For small velocities, it is a reasonable approximation
to assume that the drag force is proportional to the first power of
the velocity. Focusing our attention first on a mass-spring system the
equation of motion can be written as:

m
d2x

dt2
= −kx− γv (3.26)

56 Chapter 3. Oscillatory motion

x
-1 -0.5 0 0.5 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

ω = 2.33
x

ω = 3y

y

Figure 3.8: A Lissajous figure for φx = 2.33 and φx = 3.

where γ is the damping coefficient. Dividing both sides of (3.26) by

m and introducing β = γ
2m and ω0 =

√
k
m we arrive at the following

equation of motion:

d2x

dt2
= −ω2

0x− 2βv (3.27)

Note ω0 is the characteristic angular frequency in the absence of damp-
ing. Equation (3.27) is a homogeneous second-order linear differen-
tial equation. It can be exactly solved once the initial conditions x0

and v0 are given. We know from undergraduate mechanics e.g.; in
(Thornton and Marion, 2003) that three types of a solution emerge:
underdamped when ω0 > β, critically damped when ω0 = β and over-
damped when ω0 < β. In the underdamped case, the solution turns
out to be:

x(t) = De−βt cos(ω1t+ δ) (3.28)

§3.5. Damped harmonic oscillator 57

with ω1 =
√
ω2
0 − β2. Note that ω1 < ω0. The constants D and δ are

determined by the initial conditions. From (3.28) we have:

x0 = D cos δ; v0 = −D(β cos δ + ω1 sin δ) (3.29)

dividing v0 by x0 we find:

v0
x0

= −β − ω1 tan δ (3.30)

which gives δ, as follows, in terms of initial conditions:

δ = − tan−1[
v0
x0

+ β

ω1
] (3.31)

As expected in the limit of no damping β → 0 equation (3.31) becomes

identical to (3.6). A bit algebra gives D =
√
x2
0 + (v0+βx0

ω1
)2 which

approaches (3.6) in the limit β → 0. In the critically damped case,
the solution becomes:

x(t) = (A+Bt)e−βt (3.32)

Note there is no oscillation in this case. Constants A and B are de-
termined by the initial conditions. One simply finds:

A = x0; B = v0 + βx0 (3.33)

In the overdamped case (ω0 < β) we have:

x(t) = e−βt(A1e
ω2t +A2e

−ω2t) (3.34)

A1 and A2 are given by the initial conditions and ω2 =
√
β2 − ω2

0 . At
t = 0 we have x0 = A1 + A2 and v0 = −βx0 + ω2(A1 − A2). These
equations can simply be solved and we find:

A1 =
x0(ω2 + β) + v0

2ω2
; A2 =

x0(ω2 − β) − v0
2ω2

(3.35)

We now try to simulate the damped motion of a linear one-dimensional
oscillator. As we showed, the Euler algorithm fails to reproduce the
analytical solution. We incorporate both the Euler-Cromer (EC) and
Euler-Richardson (ER) algorithms. Furthermore, we set our param-
eters as follows: m = 1, k = 9 (ω0 = 3) and γ = 0.5. The initial

58 Chapter 3. Oscillatory motion

t (reduced unit)
0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

simulation

analytic

x(t)

γ = 0.5

time (reduced unit)
0 10 20

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

V

γ = 0.5

ω0 = 3

Figure 3.9: Position (left) and velocity (right) versus time for a damped
harmonic oscillator with ω0 = 3 and γ = 0.5. For position, a comparison
is made with the analytical solution. The simulation data are obtained by
the Euler-Cromer algorithm with a timestep τ = 0.01.

conditions were chosen such that x0 = 1 and v0 = 0. The programme
DampedOscillator (see Appendix 3.B for details) numerically solves
the Newton equation of motion for the damped harmonic oscillator.
Figure (3.9) sketches the time evolution of the position and the ve-
locity of a damped harmonic oscillator. As you see, the agreement
between the analytical solution and the numerical answer is excellent.
Let us compute the period of the motion. For this purpose, in the
code, we evaluate the time steps at which x is maximised. The period
is defined as the difference between adjacent maxima. For the given
parameters, we find T = 2.1 which gives ωcomp = 2π

T = 2.992. On

the other hand, the analytical solution gives ω1 =
√
ω2
0 − β2 = 2.958.

The error in angular frequency is:
|ω1−ωcomp|

ω1
= 0.011. The angular

frequency in the underdamped case is ω0 = 3 therefore damping re-
duces the angular frequency (increases the period) as expected. Note
that γ = 0.5 is a rather large damping coefficient but it slightly affects
the angular frequency. In figure (3.10) we exhibit the position and
velocity versus time for three values of γ = 1, 2, 3. Note that the pe-
riod increases with increasing γ. Furthermore, the amplitude shows a
remarkable decrease upon increasing γ. Let us now come to the issue
of energy. Due to the damping mechanism, the total energy is not con-
served. In the underdamped case the total energy E = 1

2mv2 + 1
2kx

2

§3.5. Damped harmonic oscillator 59

time (reduced unit)
0 5 10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

γ = 1
γ = 2
γ = 3

ω0 = 3

X

time (reduced unit)
0 5 10

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

γ = 1
γ = 2
γ = 3

V

ω0 = 3

Figure 3.10: Position (left) and velocity (right) versus time for a damped
harmonic oscillator with ω0 = 3 and various values of γ = 1, 2, 3. The
simulation data are obtained by the Euler-Cromer algorithm with a timestep
τ = 0.01.

can be obtained after some algebra (using Eq. (3.28)) as follows:

E(t) =
D2

2
e−

γt
m [(k +mβ2)cos2(ω1t+ δ) +mω2

1sin
2(ω1t+ δ)+

γω1sin(ω1t+ δ)cos(ω1t+ δ)] (3.36)

As you see it has a complicated trigonometric dependence. Figure
(3.11) depicts the dependence of E on time for three values of γ. You
see total energy E is an ever-decreasing function of time. Let us now
investigate the motion characteristics in the critically damped and
overdamped cases. In figure (3.12) we show x and v dependence on
time for γ = 5, 6, 7. Initial conditions are x0 = 1, v0 = 0. Note that the
critical value of the damping coefficient γc equals 2mω0 which in our
problem becomes 6. Therefore γ = 5 is in the underdamped regime
whereas γ = 7 lies in the overdamped regime. We remark that for
γ ≥ γc there is no oscillation. At a critically damped regime where
γ = γc we have the quickest relaxation towards equilibrium as depicted
in figure (3.12). For the critically damped case and using (3.32) the
total energy E is found to be:

E =
1

2
e−

γt
m [(k+mβ2)(A+Bt)2 +mB2 − 2βBm(A+Bt)] (3.37)

60 Chapter 3. Oscillatory motion

time (reduced unit)
0 2 4 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ = 1
γ = 2
γ = 3

E

Figure 3.11: Total energy E versus time for an underdamped harmonic
oscillator with ω0 = 3 and various values of γ = 1, 2, 3. The simulation data
are obtained by the Euler-Cromer algorithm with a timestep τ = 0.01.

Also for the overdamped case and using (3.34) we find the total energy
E, after lengthy but straightforward algebra, as follows:

E =
1

2
e
−γt
m {A2

1e
2ω2t[k +m(ω2

2 + β2 − 2βω2)]+

A2
2e
−2ω2t[k+m(ω2

2 +β2+2βω2)]+2A1A2[k−m(ω2
2 −β2)]} (3.38)

Figure (3.13) shows the dependence of the damped oscillator’s energy
E on time for critically damped and overdamped cases. n both cases,
the energy decreases over time. As you can see, in the critical damping
case, the rate of energy decrease is maximum. The other counterin-
tuitive point is that by increasing the damping coefficient γ the rate
of energy decrease does not grow! Of course, this conclusion should
be taken with caution. The initial conditions may affect the result.
For clarification and a deeper insight onto the problem, we try another
initial condition: x0 = 0 but v0 = 1. Figure (3.14) exhibits the energy-
time curve for three values of damping coefficient γ = 6, 7, 8. You see
that in this case, the sharpest decrease corresponds now to γ = 8.

§3.6. Driven damped harmonic oscillator 61

time (reuced unit)
0 1 2 3 4 5

0

0.25

0.5

0.75

1

γ = 5
γ = 6
γ = 7

x

time (reduced unit)
0 1 2 3 4 5

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

γ = 5
γ = 6
γ = 7

v

Figure 3.12: Computed position (left) and velocity (right) versus time for
a damped harmonic oscillator with ω0 = 3 for γ = 5, 6, 7 corresponding to
underdamped, critically damped, and overdamped cases. The simulation
data are obtained by the Euler-Cromer algorithm with a timestep τ = 0.01.

Eventually, we exhibit the two-dimensional phase-space plot for some
values of γ in figure (3.15). Note that for γ ≥ γc the phase-space curve
does not bend around the origin which is due to the non-oscillatory
nature of the problem. The origin point (0, 0) in the phase-space is
called an attractor.

3.6 Driven damped harmonic oscillator

In many practical situations, a physical system is derived by an ex-
ternal force. In this section, we intend to explore the characteristics
of this driven motion when the system is a damped harmonic oscilla-
tor. Consider a driven damped linear one-dimensional oscillator that
is subjected to an external force F (t) in addition to the linear restor-
ing force and a linear damping force. The equation of motion can be
written as:

m
d2x

dt2
= −kx− γv + F (t) (3.39)

For simplicity we assume the driving force F (t) has a sinusoidal de-
pendence on time with frequency ω i.e.; we take F (t) = F0 cosωt.
This choice is not too specific of course. In fact, for any type of peri-
odic external force, one can perform the Fourier decomposition of the

62 Chapter 3. Oscillatory motion

time (reduced unit)
0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

critical (computed)

critical (analytic)

over damped, computed

over damped, analytic

over damped, computed

over damped, analytic

E
γ=7
γ=7
γ=8
γ=8

γ=6
γ=6

Figure 3.13: Total energy E versus time for critically damped and over-
damped harmonic oscillator with ω0 = 3. Comparison with the analytical
solution is excellent. The simulation data are obtained by the Euler-Cromer
algorithm with a timestep τ = 0.01.

external force. Therefore, if we know the answer to an arbitrary fre-
quency ω we can find the answer by the superposition principle since
the differential equation is linear. Let us recall some analytical re-
sults from classical mechanics before attempting to solve the problem
numerically. The analytical solution of (3.39) is the sum of a particu-
lar solution and a complementary one (solution of the corresponding
homogeneous equation) (Thornton and Marion, 2003):

x(t) = xc(t) + xp(t) (3.40)

We know the complementary solution from the previous section. The
particular solution, the solution of the steady state, turns out to be:

xp(t) = D(ω) cos(ωt− δ(ω)) (3.41)

D(ω) and δ(ω) are as follows (Thornton and Marion, 2003):

D(ω) =
A√

(ω2 − ω2
0)

2 + 4β2ω2
(3.42)

§3.6. Driven damped harmonic oscillator 63

time (reduced unit)
0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

E

γ=6
γ=7
γ=8

Figure 3.14: Total energy E versus time for critically damped and over-
damped harmonic oscillator with ω0 = 3. The initial conditions are different
from the figure (3.13). Here we have x0 = 0 and v0 = 1. The simulation
data are obtained by the Euler-Cromer algorithm with a timestep τ = 0.01.

δ(ω) = tan−1(
2ωβ

ω2
0 − ω2

) (3.43)

In which A = F0

m and β = γ
2m . Note the complementary part of the

solution can be in one of the three cases underdamped, overdamped,
and critically damped. The constants in the complementary solution
xc(t) are determined by the initial conditions. Let us now solve the
problem numerically. The programme DrivenDampedOscillator (see
Appendix 3.C for details) numerically solves the Newton equation of
motion for a driven damped harmonic oscillator. We set the spring

constant k = 9 and mass m = 1 which gives ω0 =
√

k
m = 3. Also

we take γ = 0.5 and ω = 2. Figure (3.16) shows the position-time
and the velocity-time curves respectively for two different initial con-
ditions. They have been obtained numerically by two methods of
Euler-Richardson (ER), and second-order Runge-Kutta (RK2) which
will be explained later. Actually, the results of the two algorithms
are identical to the eye precision. You see that after a sufficient time

64 Chapter 3. Oscillatory motion

X
-0.5 0 0.5 1 1.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
γ = 0.5
γ = 2
γ = 4
γ = 6
γ = 8

V

Figure 3.15: Phase space plot for the damped harmonic oscillator for
various values of γ. The simulation data are obtained by the Euler-Cromer
algorithm with a timestep τ = 0.01.

which is 4-5 times the relaxation time τ = 1
γ , the system reaches

a steady state and the effects of initial conditions are smeared out.
The bahaviour of the harmonically driven oscillator is entirely differ-
ent from the non-driven one. Let us explore the effect of varying ω0

while the driving angular frequency ω is kept fixed. Figure (3.17)
depicts the time evolution of the oscillator position for three values
of ω0 = 0.2, 0.25, 0.3 corresponding to three phases of over critical,
critical, and under critical. ω is fixed at 2. As you see after elapsing
sufficient time, the system executes a harmonic motion with a ω0 de-
pendent amplitude. It is simply possible to numerically evaluate the
motion amplitude in the steady state. For details see appendix 3.C.
Figure (3.17) shows the dependence of the computed amplitude on ω.
We see that for certain values of ω, there is resonance frequency ωR

at which the steady motion amplitude is maximum. This resonance
frequency is simply obtained by minimising the denominator of (3.42).
It turns out that:

ωR =
√
ω2
0 − 2β2 (3.44)

§3.7. Oscillation of a Pendulum 65

t (reduced unit)
0 5 10 15 20

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x0=1 , v0=0

x0=0 , v0=1

x

t (reduced unit)
0 5 10 15 20

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x0=1, v0=1

x0=0, v0=1

v

Figure 3.16: Position-time (left) and velocity-time (right) curves of a
driven damped linear oscillator for two initial conditions: x0 = 1, v0 = 0
and x0 = 0, v0 = 1. The parameters values are: ω0 = 3,γ = 0.5 and ω = 2.

It is apparent that for β >
√
2
2 ω0 there will be no resonance.

3.7 Oscillation of a Pendulum

The pendulum motion is a common oscillatory motion in nature. The
theoretical formulation of the problem dates back to Galileo’s time
in the early seventeen century. He conducted a series of experiments
and could give physical accounts of this perpetual motion. Galileo’s
argument was incompatible with Aristotle’s physical laws. Huygens
obtained the motion period in terms of the pendulum length and grav-
itational field g. A simple pendulum consists of a particle or bob of
mass m attached to the lower end of a rigid string of length L and
negligible mass. The upper end of the string pivots without friction on
a support. If the bob is pulled to one side from its equilibrium position
and released, the pendulum swings in a vertical plane if Coriolis force
is neglected. See figure (3.18) for illustration. If θ (in radian) denotes
the pendulum deflection angle from the vertical equilibrium position
the equation of motion in the absence of friction becomes:

d2θ

dt2
= − g

L
sin θ (3.45)

Equation (3.45) is a nonlinear second-order differential equation. It
cannot be solved exactly and we have to resort to analytical approx-
imations and numerics. If θ is sufficiently small one can replace sin θ

66 Chapter 3. Oscillatory motion

t (reduced unit)
0 10 20 30 40

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

ω0 = 0.2
ω0 = 0.25
ω0 = 0.3

overcitical
critical

under critical

Figure 3.17: The computed Position-time plots for three values of ω0.
The simulation data are obtained by the Euler-Richardson algorithm with
a time step of τ = 0.01.

with θ and the equation becomes linear analogous to the one we en-
countered in the linear harmonic oscillator motion. You simply need
to replace x by θ and k

m by g
L and obtain the solution:

θ(t) = θ0 cos(ω0t+ φ) (3.46)

θ0 and φ are constants that depend on the initial displacement and
velocity of the pendulum and ω0 =

√
g
L . In particular, the motion

period turns out to be T = 2π
√

L
g . In the small angle approximation,

the period does not depend on the motion angular amplitude θ0. This
is not true when initial angular displacement θ0 is not small. Let us
first evaluate the motion amplitude analytically for large deflections.
To this end, we utilise the energy conservation law as follows:

E = EK + EP =
1

2
mL2θ̇2 +mgL(1− cos θ) (3.47)

Note the zero of the gravitational potential energy is taken as the
rest position of the pendulum mass i.e.; at θ = 0. For simplicity,

§3.7. Oscillation of a Pendulum 67

Figure 3.18: A pendulum performs oscillatory motion in the gravitational
field.

we assume the initial angular velocity is zero and therefore the total
energy becomes E = mgL(1 − cos θ0) where θ0 is the initial angular

displacement. From (3.47) we simply find: dθ
dt =

√
2g
L (cos θ − cos θ0).

In terms of half angles, the motion’s period becomes:

T

4
=

∫ 0

θ0

dt

dθ
dθ =

√
L

4g

∫ θ0

0

dθ√
sin2 θ0

2 − sin2 θ
2

(3.48)

By introducing z =
sin θ

2

sin
θ0
2

and k = sin θ0
2 the integral becomes:

T = 4

√
L

g

∫ 1

0

dz√
(1− z2)(1 − k2z2)

(3.49)

This integral is the standard elliptical integral of the first kind. Un-
fortunately, there is no exact solution in terms of known function.

Putting the Taylor expansion of the term (1 − k2z2)−
1
2 = 1 + k2z2

2 +
3k4z4

8 + · · · in (3.49) gives the following expansion for the period T :

T = 2π

√
L

g
(1 +

k2

4
+

9k4

64
+ · · ·) (3.50)

68 Chapter 3. Oscillatory motion

Substituting in terms of θ0 gives (Garcia, 1999):

T = 2π

√
L

g
(1 +

θ20
16

+
11θ40
3072

+ · · ·) (3.51)

You see when the initial deflection angle θ0 is small one recovers the
well-known result. Let us now solve the problem numerically. For this
purpose, we recast the differential equation (3.45) as two first-order
ones as follows:

dω

dt
= − g

L
sin θ ;

dθ

dt
= ω (3.52)

It turns out that implementing the Euler algorithm leads to numerical
instability. The Euler-Cromer algorithm gives:

ωn+1 = ωn − g

L
sin θnτ ; θn+1 = θn + ωn+1τ (3.53)

We noticed in a harmonic oscillator that in problems involving os-
cillatory motion, the Euler-Cromer method conserves energy over a
complete period of motion. We set the pendulum length L in such
a way that ω0 =

√
g
L = 3. Also the bob mass m is taken to be

unity. Let us denote the maximum angle θ by θ0. Initial angle and
angular velocity are set to θ(0) = θ0 = 0.2 rad and θ̇(0) = 0 re-
spectively. Three numerical algorithms were used: Euler-Cromer,
Euler-Richardson, and second-order Runge-Kutta. For Δt = 0.005
the evaluated periods are Tcomp = 2.09, 2.1, 2.1 for the three methods
correspondingly. The analytical period by truncating the series after
the fourth order is Tanalytic = 2.099. The corresponding small angle

period is T = 2π
√

L
g = 2.094. Figure (3.19) shows deflection an-

gle θ versus time for various values of initial displacement computed
by the second-order Runge-Kutta algorithm. The values for T are:
2.096, 2.099, 2.115, and 2.178 respectively. In figure (3.20) we have
depicted the dependence of period T on the maximum angle obtained
from computation and analytical solution. In small θ0 there is a very
good agreement between the analytical and computational solutions.
Deviation for values of θ0 larger than one radian is seen.

§3.8. Driven damped nonlinear pendulum 69

t (reduced unit)
0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

θ

θ0 = 0.1
θ0 = 0.2
θ0 = 0.4
θ0 = 0.8

Figure 3.19: The pendulum deflection angle θ vs time for some values of
θ0 in rads. The second-order Runge-Kutta algorithm has been used with a
time step of τ = 0.01.

3.8 Driven damped nonlinear pendulum

Now we consider more complicated and realistic situations. We wish
to add three ingredients to the pendulum problem simultaneously: dis-
sipation, nonlinearity, and drive. Possible sources of friction include
the effective bearing where the string of the pendulum connects to the
support, air resistance, etc. For simplicity, we assume the damping
forces take the simple linear form −γ dθ

dt . The minus sign guarantees
that the damping force always opposes the pendulum motion. Analo-
gous to the linear harmonic oscillator, we take the driving force to be
a sinusoidal one with angular frequency ω. The Newton equation of
motion becomes:

d2θ

dt2
= − g

L
sin θ − γ

mL

dθ

dt
+

F0

mL
cosωt (3.54)

Denoting γ
mL by q and F0

mL by A0 the equation of motion becomes:

d2θ

dt2
= − g

L
sin θ − q

dθ

dt
+A0 cosωt (3.55)

70 Chapter 3. Oscillatory motion

(radian)
0.5 1 1.5

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

Analytical

Euler-Richardson

2nd Runge-Kutta

T

θ0

Δt = 0.001

Figure 3.20: T vs θ0. Two numerical algorithms Euler-Richardson and
2nd order Runge-Kutta have been used with a time step of τ = 0.001.

Equation (3.55) is an inhomogeneous nonlinear second-order differen-
tial equation. Despite the impossibility of solving the equation exactly,
it contains very rich and intriguing features that will be seen shortly.
The computer programme DrivenDampedPendulum (see Appendix 3.D
for details) numerically solves Newton’s equation of motion for this
driven nonlinear damped pendulum. Note that due to the presence
of driving force, the deflection angle θ may become larger than π or
less than −π therefore we adjust the value of θ after each iteration
(by subtraction or adding an appropriate multiple of ±π) such that
it lies in the interval [−π, π]. Recall that our pendulum can swing
around its pivot point which corresponds to |θ| > π. Figure (3.21)
exhibits the time dependence of θ for various values of driving force
amplitudes A0. Due to nonlinearity in the problem, we do not have
a full periodic motion but the overall pattern repeats itself. Another
interesting point is that changing the driving force amplitude has a
dramatic effect on the time dependence of θ. Let us now investigate
the effect of changing the damping coefficient γ while keeping other
parameters fixed. Figure (3.22) shows θ − t for various values of γ.
The other parameters’ values are :A0 = 1.2, ω = 0.67. Initial condi-
tions are the same as in figure (3.21). When damping is small the

§3.9. Damped oscillator: nonsinusoidal external force 71

time (s)
100 110 120 130

-3

-2

-1

0

1

2

3 A0 = 1.2
A0 = 1.5
A0 = 1.8

θ(rad)

Figure 3.21: Deflection angle θ vs time. The algorithms Euler-Richardson
and 2nd order Runge-Kutta have been used (they give identical results)
with a timestep τ = 0.01. Initial conditions are θ0 = 0.2 rad and ω0 = 0.
Other parameters are q = 0.5 and ω = 0.66.

nonlinearity is strong enough to make the motion non-periodic and
quite irregular. By increasing the damping the motion characteristics
become more regular and closer to a periodic motion. For sufficiently
large damping the system’s steady state is a harmonic motion with
the same period of the driving force.

3.9 Damped oscillator: nonsinusoidal ex-
ternal force

Lastly in this section, we explore the characteristics of a damped linear
oscillator which is driven by a periodic but nonsinusoidal external
force. As an exemplification, consider the motion of a swing. It can be
modeled by a damped linear oscillator. The external force is impulse
type and is non-zero during the push time interval Δt. for simplicity
assume the external force is a half sine wave with period T . The
associated angular frequency of the external force is ω = 2π

T . The

72 Chapter 3. Oscillatory motion

time (s)
0 50 100 150 200

-40

-30

-20

-10

0

q = 0.3
q = 0.5
q = 1.0

θ(rad)

Figure 3.22: Unrestricted θ vs time for various values of damping coef-
ficient. The other parameters are as follows: A0 = 1.2, ω = 0.66. Initial
conditions are θ0 = 0.2 rad and ω0 = 0. The Euler-Richardson algorithm
has been used with τ = 0.01.

external force Fext(t) takes the following form in each period:

Fext(t) = F0 cosωt 0 ≤ t ≤ T

4
and

3T

4
≤ t ≤ T (3.56)

Figure (3.23) depicts the position versus time for various values of ω
in the initial stages of the dynamics (steady-state not reached) and
the steady-state behaviour. A comparison with the case of sinusoidal
driving force with the same ω is made. You see a substantial difference
when the driving force is not sinusoidal but impulsive. Despite the mo-
tion being periodic when the force is impulsive-like it is not harmonic
and contains two characteristic time scales. In conclusion, we learnt
in this chapter to numerically solve one particle oscillatory motion. In
the next chapter, we shall learn how to generalise our methodology
for systems of interacting particles undergoing oscillatory motion.

§3.10. problems 73

time (reduced unit)
0 5 10 15

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

= 1.0
= 2.0
= 4.0
= 5.0

x

ωωωω
time (reduced unit)

20 25 30 35 40
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25 = 1.0 nonsinusoidal
= 1.0 sinusoidal
= 2. nonsinusoidal
= 2. sinusoidal

x

ωωωω

Figure 3.23: x (Left) vs time for various values of driving force angular
frequency ω. The other parameters are: F0 = 1., ω0 = 3, γ = 0.5. Initial
conditions are x0 = 0 and v0 = 0. Euler-Richardson algorithm has been
used with τ = 0.01. (Right) x vs time in steady state for various values of
driving force angular frequency ω. A comparison to harmonic motion with
the same frequency is done.

3.10 problems

Problem 3.1 Let us adopt a complex number approach and take
x(t) as the real part of X(t) which also satisfies the same differential
equation.

(a) Show that:

X(t) = e−βt(A1e
iω1t +A2e

−iω1t) (3.57)

where constants A1 and A2 are complex numbers.

(b) Assuming that X(0) is real and equals x0 obtain A1 and A2 in
terms of x0 and v0.

(c) Substitute A1 and A2 in (3.57) and then take the real part to
show:

x(t) = e−βt(x0 cosω1t+
v0 + βx0

ω1
cosω1t) (3.58)

(d) By writing (3.58) in the form x(t) = e−βtD cos(ω1t+φ) show that

D =
√
x2
0 + (v0+βx0

ω1
)2 and φ = − tan−1(v0+βx0

ω1x0
).

74 Chapter 3. Oscillatory motion

Problem 3.2 If the restoring force is a nonlinear function of x then
the oscillator is called anharmonic. Take the restoring force as −kx−α

and numerically solve the problem with an appropriate algorithm.

(a) Obtain the position-time curve as well as the period for α = 2, 3.

(b) Does the period depend on the amplitude? If yes, draw the period
versus amplitude.

(c) Try to obtain the period with the method you learnt in classical
physics (in the form of an integral) then try to approximately get
the integral value.

(d) Compare your numerical to analytical results.

Problem 3.3 Consider a simple non-harmonic oscillator in one di-
mension. The force on the oscillator is −F0 if it is on the right of the
origin x = 0 and +F0 if it is on the left of the origin. In other words,
F (x) = F0[S(x)− S(−x)] where S is the step function. Note that the
force is discontinuous at x = 0.

(a) Solve the problem analytically and prove that the motion is pe-

riodic with period T = 4
√

2m
F0

. See (Masoumi and Foulaadvand,

2008) for details.

(b) Numerically solve the problem and plot the x− t curve as well as
the motion period.

Problem 3.4 Suppose a point particle of mass m is moving with
a constant velocity v0 > 0 along the x axis in the x < 0 region.
When it crosses the origin x = 0, an impulsive force is exerted on
the particle. Numerically solve the problem and plot the x− t curve.
Take t = 0 as the time of exerting the impulsive force F (t) = S0δ(t)
on the particle. What is the S0 dimension? For analytic solution see
(Thornton and Marion, 2003).

Problem 3.5 Include a non-linear restoring force −λx4 in a damped
oscillator and numerically solve the problem. Consider both under-
damped and overdamped cases. Discuss the role of λ on the physics
of the problem.

§3.10. problems 75

Problem 3.6 Numerically solve the motion of a damped simple
oscillator when the dissipation term is quadratic in velocity that is
Fd = −Cv2. How many distinctive regimes you can identify?

Problem 3.7 Consider the forced oscillation of an anharmonic os-
cillator. Take the driving force sinusoidal F0 cosωt. Add a nonlinear
term −λx4 to the quadratic potential 1

2kx
2.

(a) Numerically solve the problem and plot the behaviour of the os-
cillator in time.

(b) Do you see any steady behaviour? C) Can you observe resonance
phenomena (sharp increase in the oscillator amplitude)? Discuss
the role of λ on all parts of the problem.

Chapter 4

Coupled Oscillations

4.1 Longitudinal motion

In the previous chapter, we became familiar with the numerical solu-
tions of the oscillatory motion of a point-like particle, mostly in one
dimension and, in some special cases, in higher dimensions. In this
chapter, we wish to pursue our investigation of the basic features of
oscillation in a system comprising many particles. Our ultimate task
is to relate the microscopic description of the oscillatory dynamics of
an interacting many-body system to the macroscopic wave motion of a
continuum medium. You have already seen this in your undergraduate
classical mechanics and wave courses, but here, we intend to verify it
in a numerical and computational context. Let us start with the well-
known problem of N coupled oscillators (in one dimension) connected
to each other by a set of springs. We consider the fixed boundary
condition where two springs connect the first and the last masses to
two rigid walls of infinite mass. For simplicity, we assume the oscilla-
tors (masses) are point-like, and springs are massless. Moreover, the
equilibrium distance between masses is taken to be a. See figure (4.1)
for illustration. Taking the masses to be m1,m2, · · · ,mN , the spring
constants k1, k2, · · · , kN+1 and the deviation from the equilibrium po-
sition at time t by u1(t), u2(t), · · · , uN (t), the Newton equations of

77

78 Chapter 4. Coupled Oscillations

Figure 4.1: A linear system of coupled mass-spring with fixed boundary
condition.

motion for this chain of oscillators become:⎧⎪⎨
⎪⎩
m1

d2u1

dt2 = −k1u1 − k2(u1 − u2)

mi
d2ui

dt2 = −ki(ui − ui−1)− ki+1(ui − ui+1) i = 2, · · · , N − 1

mN
d2uN

dt2 = −kN (uN − uN−1)− kN+1uN .

(4.1)

Specifying the initial conditions u1(0), · · · , uN (0) and u̇1(0), · · · , u̇N(0)
it would be possible to solve the equations at least numerically. For
some special cases, analytical solutions exist. The most straightfor-
ward solvable case is when all the masses are equal to each other,
and all the spring constants are identical. The underlying idea is the
concept of normal mode. In a normal mode, all the system ingredi-
ents (here the masses) perform an oscillatory motion with a common
frequency ω but each with a different amplitude and phase. More
concisely, in a normal mode, we have:

uj(t) = �(ajeiωt) = |aj | cos(ωt+ φj) (4.2)

where it is understood that aj = |aj |eiφj is a complex number. The
use of complex numbers considerably facilitates mathematical calcu-
lations. We recall that all the results can be equivalently obtained
without resorting to complex numbers. Whether a normal mode exists
crucially depends on the microscopic detail of the system, boundary
conditions, etc. In principle, for a linear oscillatory system possess-
ing N degrees of freedom, we have N normal modes i.e., N normal
frequencies ω1, ω2, · · · , ωN which are associated with their N ampli-
tudes and phases for each degree of freedom. The mode characteristics
crucially depend on the boundary conditions. For a one-dimensional
coupled system of mass-spring confined between two rigid walls, the
normal modes turn out to be:

ωn = 2

√
k

m
sin

nπ

2(N + 1)
n = 1, 2, · · · , N (4.3)

§4.1. Longitudinal motion 79

For details, you may see standard classical mechanics textbooks such
as (Thornton and Marion, 2003). In mode n, the amplitude of mass j
displacement can be written as:

aj,n = an sin
jnπ

N + 1
(4.4)

Note an is a complex number. The linearity of the equations implies
the superposition principle, according to which the general solution
will be a linear combination of all modes:

uj(t) = �[
N∑

n=1

cnan sin
jnπ

N + 1
eiωnt] (4.5)

Showing the unknown cnan by |cn||an|eiδn = dne
iδn and taking the

real part we have:

uj(t) =

N∑
n=1

sin
jnπ

N + 1
(μn cosωnt− νn sinωnt) (4.6)

In which μn = dn cos δn and νn = dn sin δn. We have 2N unknowns
μ1, μ2, · · · , μN and ν1, ν2, · · · , νN which will be determined by the
initial conditions. Using some orthogonality relation in trigonometry
(Thornton and Marion, 2003) they turn out to be:

μn =
2

N + 1

N∑
j=1

uj(0) sin
jnπ

N + 1
(4.7)

νn = − 2

ωn(N + 1)

N∑
j=1

u̇j(0) sin
jnπ

N + 1
(4.8)

Before we discuss the general form where the masses and springs are
different, I would like to address other boundary conditions for the
present case where the masses and spring constants are identical. In
the first case, there is no wall, and N masses are connected by N − 1
springs. In this case, the motion equations of the first and last mass
change, but the other ones’ motion equations remain unchanged. We
have:{

md2u1

dt2 = −k(u1 − u2)

md2uN

dt2 = −k(uN − uN−1).
(4.9)

80 Chapter 4. Coupled Oscillations

It can be shown that N normal modes will be (Aghamohammadi,
2021):

ωn = 2

√
k

m
sin

nπ

2N
n = 0, 1, 2, · · · , N − 1 (4.10)

Note that the first mode i.e., n = 0 has a zero frequency. This arises
from the translational symmetry and describes an oscillatory motion
with an infinite period i.e., a rigid translation. The other example
describes a situation where the last mass is connected to the first
one instead of being connected to a wall. We can imagine all the
masses moving in a circle. Here the equations of the first and last
mass become:{

md2u1

dt2 = −k(2u1 − u2 − uN)

md2uN

dt2 = −k(2uN − u1 − uN−1).
(4.11)

It can be shown that N normal modes will be (Aghamohammadi,
2021):

ωn = 2

√
k

m
| sin nπ

N
| n = 0, 1, 2, · · · , N − 1 (4.12)

Similarly, the translational symmetry implies that the first modal fre-
quency becomes zero. We end this issue by noting that in the N → ∞
limit, the density of states does not depend on the type of boundary
condition. Now we turn to the most general case where the masses
and spring constants are unequal.

4.1.1 unequal masses and spring constants

For this general case, we can write the set of N differential equations
in (4.1) in a matrix form as follows:

M
d2U

dt2
= −KU (4.13)

In which U † = (u1, u2, · · · , uN), the mass matrix Mij = miδi,j and
the K matrix elements are as follows:

Ki,j = (ki + ki+1)δi,j − kiδi,j+1 − ki+1δi,j−1 (4.14)

§4.1. Longitudinal motion 81

Note that for other types of boundary conditions, the elements of
matrixK will change slightly, however, the formalism we present below
will work irrespective of the boundary condition. You can simply verify
that the matrix K is symmetric. According to (4.14) we have:

Kj,i = (kj + kj+1)δj,i − kjδj,i+1 − kj+1δj,i−1 =

(kj + kj+1)δi,j − kjδi,j−1 − kj+1δi,j+1 (4.15)

where use has been made from the symmetry of the Kronecker delta
function. With interchanging j ↔ i in the first term of (4.15), replac-
ing j with i+1 in the second term, and j+1 with i in the third term
we conclude:

Kj,i = (ki + ki+1)δi,j − ki+1δi,j−1 − kiδi,j+1 (4.16)

Now you see that Kj,i = Ki,j, which proves that matrix K is sym-
metric. As you will shortly notice, this symmetry greatly helps us in
solving the differential equations (4.1). To solve (4.13) analytically,
we perform a linear change of variable from U to V via a real-valued
matrix A:

V = AU (4.17)

The set of equations (4.13) becomes:

M
d2V

dt2
= −AKA−1V. (4.18)

If the matrix A is properly chosen such that the combination D =
AKA−1 is diagonal, we can simply solve the equations

M
d2V

dt2
= −DV (4.19)

In terms of initial conditions, we have:

V (0) = AU(0); V̇ (0) = AU̇(0) (4.20)

Equations (4.19) are a set of decoupled linear second order differential

equations mi
d2vi
dt2 = −Diivi i = 1, · · · , N . These uncoupled equations

can be simply solved given the initial conditions in (4.20). Having

82 Chapter 4. Coupled Oscillations

found V (t), we simply obtain the original solution U(t) by a matrix
transformation as follows:

U(t) = A−1V (t) (4.21)

It remains to see if it is always possible to obtain A such that the
matrix D is diagonal. We know from linear algebra that since matrix
K is symmetric, it is always possible to find the required matrix A. A
fundamental theorem in linear algebra asserts that for normal matrices
(a real matrix is normal whenever it commutes with its transpose
[A,At] = 0) we can always find such a diagonalising transformation
(Lipschutz, 2012). You can easily verify that a symmetric matrix is
normal. In fact, the columns of A are the corresponding eigenvectors
of K. Moreover, the diagonal elements of D will be the eigenvalues of
K. The problem thus reduces to solve the eigenvalue problem KX =
λX . Since the matrix K is symmetric, its eigenvalues are real, and it
would not be difficult, thanks to the band structure of K, to show by
the induction that all the eigenvalues are positive. In other words, the
matrix K is a positive definite matrix. For details, you may consult
this standard textbook on linear algebra (Lipschutz, 2012). Showing
Dii = di by ω2

i the N frequencies ωi will be the normal modes of the
system, and we have:

vi(t) = αi cos(ωit+ θi) i = 1, 2, · · · , N (4.22)

2N constant α1, α2, · · · , αN and θ1, θ2, · · · , θN will be determined once
the initial conditions are given. According to (4.17) we have:

ui(t) =

N∑
j=1

A−1
ij αj cos(ωjt+ θj) i = 1, 2, · · · , N (4.23)

You see that each mass performs an oscillatory motion which is a linear
combination of N normal modes. In some special cases, there exists
an analytical solution for eigenvalues. We became familiar with one in
which all the masses were equal and all the spring constants identical.
Another important example that is amenable to analytic solutions
is a different mass among the other but equal ones. The different
mass plays the role of impurity, and many exciting phenomena such
as localisation arise (A. Aghamohammadi and Mousavi, 2017). We
refer interested readers to the literature (A. Kolan and Titus, 1985;

§4.2. Numerical approach 83

Williams and Maris, 1985). I think we have had enough of analytics.
Let us see how we can numerically proceed in the coupled oscillations
problem.

4.2 Numerical approach

Two numerical approaches can be devised to solve the linear system
of differential equations in (4.13). In the first method, one numer-
ically solves the eigenvalue problem KX = λX to find the corre-
sponding eigenvalues and eigenvectors. There are numerous packages
and canned subroutines that can do the task for you. Nevertheless, I
greatly warn you that despite its simplicity, the solution of eigensys-
tems is a fairly complicated business. All these methods and subrou-
tines are subject to serious numerical errors if the matrix K is mathe-
matically ill-conditioned. Readers are referred to the advanced numer-
ical linear algebra textbooks for further details. However, I strongly
recommend that you use canned routines and avoid using your own
subroutines. Almost all the canned routines nowadays trace their an-
cestry back to the routines published in (J. H. Wilkinson and Bauer,
1986). A public-domain implementation of the handbook routines in
FORTRAN is the EISPACK set of programmes. Open-source libraries
such as LINPACK and LAPACK are among other well-known matrix
solvers. One of the best routines I can suggest is tqli which you can
find in the masterpiece Numerical Recipe (W. H. Press and Flannery,
2002). This routine gives you all the eigenvalues and the associated
eigenvectors of a real symmetric matrix. Hopefully, for many pur-
poses in physics and engineering, the matrix we wish to find its spec-
trum is real symmetric, and we will rarely encounter to consider non-
symmetric matrices. We will later come back to the above method
in more detail, and will solve some problems. Let us now discuss the
second approach for solving equations (4.13). This approach is the
natural generalization of the previous methods implemented for solv-
ing linear differential equations. You remember that the Euler-Cromer
did the job for us when we had only one particle. Let us devise this
method for our coupled-oscillators problem. For this purpose, we turn
the second-order equations (4.13) into 2N first-order ones:

dui

dt
= vi i = 1, · · · , N (4.24)

84 Chapter 4. Coupled Oscillations

⎧⎪⎨
⎪⎩
m1

dv1
dt = −k1u1 − k2(u1 − u2)

mi
dvi
dt = −ki(ui − ui−1)− ki+1(ui − ui+1) i = 2, · · · , N − 1

mN
dvN
dt = −kN (uN − uN−1)− kN+1uN .

(4.25)

Denoting the displacement and velocity of mass i at time step n by un
i

and vni , the generalisation of the Euler-Cromer algorithm becomes:

vn+1
1 = vn1 − τ [

k1
m1

un
1 +

k2
m1

(un
1 − un

2)] (4.26)

vn+1
i = vni −τ [

ki
mi

(un
i −un

i−1)+
ki+1

mi
(un

i −un
i+1)] i = 2, · · · , N−1 (4.27)

vn+1
N = vnN − τ [

kN
mN

(un
N − un

N−1) +
kN+1

mN
un
N] (4.28)

un+1
i = un

i + τvn+1
i i = 1, 2, · · · , N (4.29)

Given the initial conditions U(0) and U̇(0), one simply can proceed
iteratively in time. Aside from Euler-Cromer, we can employ more
advanced algorithms. Let us introduce an important one that is very
useful and common for solving ordinary differential equations the so-
called Runge-Kutta algorithm. We first introduce it in the context of a
single first-order differential equation and then will generalize it to the
case of a system of second-order differential equations. The advantage
of the Runge-Kutta (RK) algorithm is that it applies to the general
case of nonlinear differential equations.

4.2.1 Runge-Kutta (RK) algorithm

We begin from the simplest case where we have only one dependent
variable x which depends on an independent variable t. Note that x
and t are not necessarily position and time. They could denote any
variable. The most general first-order nonlinear differential equation
can be written as follows:

dx

dt
= f(x, t) (4.30)

§4.2. Numerical approach 85

where f(x, t) is a given function. The equation is endowed with a
given initial condition x(0). There are various orders of Runge-Kutta
algorithms, namely second order, fourth order, etc. These are all
based on the Taylor expansion of x(t + τ). As usual, I avoid giving
the proof and only state the result here. For details, you may consult
books on numerical mathematics and computational physics book such
as (H. Gould and Chriastian, 2006; Scherer, 2010; Vesely, 2001). We
first introduce kn1 and kn2 as follows:

kn1 = f(xn, tn)τ ; kn2 = f(xn +
kn1
2
, tn +

τ

2
)τ (4.31)

where as usual, τ denotes the time step and xn = x(tn). The most
common form of the second-order Runge-Kutta algorithm, hereafter
shown by RK2, is:

xn+1 = xn + kn2 + o(τ)3 (4.32)

It can be shown that the most general form of the RK2 algorithm has
the following form provided c1 + c2 = 1:

xn+1 = xn + c1k
n
1 + c2k

n
2 + o(τ)3 (4.33)

The form (4.32) corresponds to c1 = 0, c2 = 1. Another common
choice corresponds to c1 = 1

3 , c2 = 2
3 which is known as Ralston

algorithm. Note that the form of kn2 depends on the choice for c1 and

c2. In the Ralston algorithm, we have kn2 = f(xn +
3kn

1

4 , tn + 3τ
4)τ . In

the fourth-order Runge-Kutta (RK4) algorithm, we should define two
additional functions kn3 and kn4 as follows:

kn3 = f(xn +
kn2
2
, tn +

τ

2
)τ (4.34)

kn4 = f(xn + kn3 , tn + τ)τ (4.35)

The fourth-order Runge-Kutta algorithm turns out to be:

xn+1 = xn +
1

6
(kn1 + 2kn2 + 2kn3 + kn4) + o(τ)4 (4.36)

Now that we have become familiar with the Runge-Kutta algorithm
and its variants, let us generalise it to the case when the number of

86 Chapter 4. Coupled Oscillations

dependent variables exceeds one. We do it for the simplest case of two
dependent variables. Moreover, we assume the number of independent
variables does not increase. Showing the dependent variables by x1

and x2, the most general set of first-order differential equations will
be:

dx1

dt
= f1(x1, x2, t) (4.37)

dx2

dt
= f2(x1, x2, t) (4.38)

where functions f1 and f2 are known. For each variable x1, and x2,
we define the functions k1,x1 , · · · , k4,x1 , k1,x2 , · · · , k4,x2 as follows:

kn1,x1
= f1(x1n, x2n, tn)τ ; kn1,x2

= f2(x1n, x2n, tn)τ (4.39)

where x1n = x1(tn), x2n = x2(tn).

kn2,x1
= f1(x1n +

kn1,x1

2
, x2n +

kn1,x2

2
, tn +

τ

2
)τ (4.40)

kn2,x2
= f2(x1n +

kn1,x1

2
, x2n +

kn1,x2

2
, tn +

τ

2
)τ (4.41)

kn3,x1
= f1(x1n +

kn2,x1

2
, x2n +

kn2,x2

2
, tn +

τ

2
)τ (4.42)

kn3,x2
= f2(x1n +

kn2,x1

2
, x2n +

kn2,x2

2
, tn +

τ

2
)τ (4.43)

kn4,x1
= f1(x1n + kn3,x1

, x2n + kn3,x2
, tn + τ)τ (4.44)

kn4,x2
= f2(x1n + kn3,x1

, x2n + kn3,x2
, tn + τ)τ (4.45)

We can now express RK2 and RK4 algorithms. The second-order RK
algorithm:

x1n+1 = x1n + c1k
n
1,x1

+ c2k
n
2,x1

+ o(τ)3 (4.46)

x2n+1 = x2n + c1k
n
1,x2

+ c2k
n
2,x2

+ o(τ)3 (4.47)

§4.2. Numerical approach 87

where the most natural choice for coefficients are c1 = 0 and c2 = 1.
The fourth-order RK algorithm:

x1n+1 = x1n +
1

6
(kn1,x1

+ 2kn2,x1
+ 2kn3,x1

+ kn4,x1
) + o(τ)4 (4.48)

x2n+1 = x2n +
1

6
(kn1,x2

+ 2kn2,x2
+ 2kn3,x2

+ kn4,x2
) + o(τ)4 (4.49)

The generalisation to more than two dependent variables is straight-
forward. I am almost sure that if you have learnt the case of two
variables, you can simply write the corresponding lengthy equations
for more than two variables. Let us apply the case of two dependent
variables to the Newton equation of motion in physics. For simplicity,
we consider the one-dimensional motion of a point-like particle that is
subjected to a force. In its most general case, the force can depend on
time as well as the position and velocity of the particle. Our depen-
dent variables are the particle’s position x and its velocity v. As you
know, we can recast the second-order Newton equation for a particle
of mass m into two first-order equations as follows:

dx

dt
= v (4.50)

dv

dt
= a(x, v, t) =

F (x, v, t)

m
(4.51)

In our notation we have f1(x, v, t) = v and f2(x, v, t) = a(x, v, t).
Explicitly the RK4 algorithm for one dimensional Newton equation
turns out to be as follows:

kn1,x = vnτ ; kn1,v = a(xn, vn, tn)τ (4.52)

kn2,x = (vn+
kn1,v
2

)τ ; kn2,v = a(xn+
kn1,x
2

, vn+
kn1,v
2

, tn+
τ

2
)τ (4.53)

kn3,x = (vn+
kn2,v
2

)τ ; kn3,v = a(xn+
kn2,x
2

, vn+
kn2,v
2

, tn+
τ

2
)τ (4.54)

kn4,x = (vn + kn3,v)τ ; kn4,v = a(xn + kn3,x, vn + kn3,v, tn + τ)τ (4.55)

xn+1 = xn +
1

6
(kn1,x + 2kn2,x + 2kn3,x + kn4,x) + o(τ)4 (4.56)

88 Chapter 4. Coupled Oscillations

vn+1 = vn +
1

6
(kn1,v + 2kn2,v + 2kn3,v + kn4,v) + o(τ)4 (4.57)

We are now able to implement the Runge-Kutta algorithm in our
coupled system of mass-spring. Here the 2N dependent variables are
u1, v1, u2, v2, · · · , uN , vN . The equations of motion will be:

dui

dt
= vi;

dvi
dt

= ai(ui−1, ui, ui+1) i = 1, 2, · · · , N (4.58)

with appropriate u0 and uN+1 associated with the given boundary
conditions. The explicit form of ai is given by equations (4.13). The
programme CoupledOscillators (see Appendix 4.A for details) nu-
merically solves the Newton equation of motion for the coupled mass-
spring system with the Runge-Kutta algorithm.

4.2.2 Coupled oscillators: numerical results

Let us solve a problem to see how well the numerical solution can
reproduce the analytical result. Consider the simplest case of N = 2
coupled oscillators. Take the initial condition so that the system is in
its first mode. For example take: u1(0) = u2(0) = u0 with zero initial
velocities. In this mode, we have:

u1(t) = u2(t) = u0 cos(ω1t). (4.59)

In which ω1 = 2
√

k
m sin(π6) =

√
k
m is the first mode frequency. When

u1(0) = −u2(0) = u0 the system is initiated in its second mode having

frequency ω2 = 2
√

k
m sin(π3) =

√
3k
m . In this mode, we have:

u1(t) = −u2(t) = u0 cos(ω2t). (4.60)

Figure (4.2) sketches the computed position-time plots of both masses.
When the initial displacements are random, the system no longer re-
mains in a mode, and its constituents exhibit a motion that contains
both mode frequencies. Figure (4.3) shows such a motion with this
initial condition: u1(0) = +0.1, u2(0) = −0.4 and zero initial veloc-
ities. When N increases and initial conditions become random, the
motion of each particle becomes more complicated, and in general,
it contains all the modal frequencies. In figure (4.4), we show the
motion of particles n = 3 and n = 8 in a system having N = 10

§4.2. Numerical approach 89

time (reduced unit)

x 1,
x 2

2 4 6 8 10
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

particle 1, analytic

paticle 2, analytic

particle 1, numeric

particle 2, numeric

Figure 4.2: Time evolution of two particles in the first mode. Mass m
and stiffness constant k have been set to unity. The numerical algorithm
has been velocity Verlet which can be seen to have rather poor performance
compared to the exact solution.

particles with initial displacements and velocities which are randomly
and uniformly chosen in the interval [−1,+1]. We see in this case
of entirely random initial condition particles exhibit a highly compli-
cated behaviour involving contributions from all the modes. In this
N = 10 particle system, let us consider another initial condition such
that all the particles are initially at rest. Particle one is displaced one
unit towards the right and released. All the other particles’ initial dis-
placements are zero. Figure (4.5) shows the computed position-time
plot of particle 5, compared to the analytical solution. Figure (4.6)
exhibits the phase space of particle five associated with the described
initial condition. From figures (4.5) and (4.6) we conclude that the
numerical solution obtained via RK2 deviates, to some extent, from
the exact solution. It would be interesting to see how well the numer-
ical simulation preserves energy conservation. We have compared the
energy deviation from the constant initial energy for two algorithms:
Euler Cromer and RK2. Figure (4.7) shows the time evolution of en-
ergy deviation ΔE = Enum − E for each algorithm. We see that ΔE

90 Chapter 4. Coupled Oscillations

time (reduced unit)

x 1,
x 2

0 5 10 15 20
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

particle 1

particle 2

u1(0)= 0.1 u2(0)= - 0.4

Figure 4.3: Time evolution of two particles with random initial displace-
ments u1(0) = +0.1, u2(0) = −0.4 and zero initial velocities. RK2 algorithm
has been implemented with τ = 0.01.

increases initially but then begins to decrease, accompanied by fluc-
tuations. By decreasing the time step, we can not avoid such a high
energy deviation. It can be concluded that neither of these algorithms
is good as far as energy conservation is concerned. For τ = 0.01, we
obtain ΔE = 0.4997, 0.4961 for the Euler-Cromer and Runge-Kutta,
respectively. These values are increased to ΔE = 0.4999, 0.4996 cor-
respondingly when the timestep is reduced to τ = 0.001. This tells us
that contrary to our intuition, we can not decrease the energy devi-
ation by reducing the timestep. Before coming to the next problem,
it would be instructive to discuss another type of boundary condition
i.e.; the moving wall boundary condition. In this case, the left wall
is assumed to perform a period motion with a given frequency Ω. As
usual, N + 1 springs connect N masses to each other. The equations
of motion can be written as follows:

mi
d2ui

dt2
= −ki(ui − ui−1)− ki+1(ui − ui+1) i = 1, · · · , N (4.61)

§4.3. Forced coupled oscillations 91

time (reduced unit)

x 1,
x 2

10 20 30

-1

-0.5

0

0.5

1

1.5 particle 3

particle 8

N = 10

Figure 4.4: The computed time evolution of particles 3 and 8 with random
initial displacements in positions and velocities. RK2 algorithm with τ =
0.01 has been implemented.

Provided we set u0(t) = A cos(Ωt) and uN+1(t) = 0. We leave it as
an exercise to you to analytically find the modal frequencies for the
periodic and free boundary conditions.

4.3 Forced coupled oscillations

We are all familiar with the forced oscillation of a single harmonic
oscillator from our classical mechanics’ course. However, we may have
rarely dealt with this issue when there is more than one particle. For
simplicity, we consider a one-dimensional system of identical coupled
oscillators with only one of the masses, say mass s, driven by a sinu-
soidal driving force with frequency ω. The more general case where all
the masses are driven can be treated by the superposition principle.
In a system of coupled oscillators, we expect to have amplitudes res-
onance whenever ω equals one of the system modes. To gain a better
insight, let us first formulate the problem mathematically. The equa-
tions of motion for a driven system with N coupled oscillators can be

92 Chapter 4. Coupled Oscillations

time (reduced unit)
0 10 20 30

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Analytic

Numeric

x5(t)

Figure 4.5: Time evolution of 5-th particle. RK2 algorithm has been used
with a time step τ = 0.01. Comparison to the analytic result is also shown.

written as follows:

miüi = −ki(ui − ui−1)− ki+1(ui − ui+1) + δs,iF0 cosωt (4.62)

In a vectorial notation, we can recast these equations into the following
compact form by introducing the vector F † = (0, · · · , F0 cosωt, · · · , 0)
with the term F0 cosωt in the s place:

MÜ = −KU + F. (4.63)

Note the matrixK is given in (4.14). By a unitary transformation V =
AU to normal coordinates V† = (v1, · · · , vN) we reach the following
set of decoupled equations:

MV̈ = −DV +AF. (4.64)

Each normal oscillator vi has the following uncoupled equation of mo-
tion:

v̈i = −ω2
i vi +

∑
j

Aijδs,j
F0

mi
cosωt (4.65)

§4.3. Forced coupled oscillations 93

x
-0.5 -0.25 0 0.25 0.5

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Analytic

Numeric

v

Figure 4.6: Phase space diagram of 5-th particle with τ = 0.01.

which will be simplified as follows:

v̈i = −ω2
i vi +Ais

F0

mi
cosωt i = 1, · · · , N (4.66)

Equation (4.66) is a set of forced oscillation equations with a sinusoidal
driving force with the same frequency but a different amplitude. In
the steady state, vi has the following time dependence:

vi = Di(ω) cos(ωt− δi(ω)). (4.67)

In which the amplitude Di is given below:

Di(ω) =
AisF0

mi|ω2 − ω2
i |
. (4.68)

When there are drag forces, a term −ΓU̇ is added to the right-hand
side of (4.63), and we have:

MV̈ = −DV −AΓA−1V̇ +AF. (4.69)

We assume the drag force is proportional to the velocity consequently,
the matrix Γ is diagonal: Γij = δijγi. Provided B = AΓA−1 is diag-

94 Chapter 4. Coupled Oscillations

time (reduced unit)

E
ne

rg
y

de
vi

at
io

n

0 25 50 75 100
0

0.1

0.2

0.3

0.4

0.5

Euler Crommer

Runge-Kutta 2

Initial Energy = 0.5

Figure 4.7: Time evolution of energy deviation ΔE by two algorithms of
Eular-Comer and RK2 with a time step τ = 0.01.

onal we can proceed analytically. The equations of motion become:

v̈i = −ω2
i vi − biv̇i +Ais

F0

mi
cosωt i = 1, · · · , N (4.70)

The steady-state solution of equations (4.70) turns out to be:

vi = Di(ω) cos(ωt− δi(ω)). (4.71)

The amplitude Di(ω) and the phase δi(ω) can be simply obtained by
replacing F0 with AisF0, m with mi and

γ
m with bi in equations (3.42)

and (3.43) of chapter 3. Now let us return to computation. We can eas-
ily modify our programme CoupledOscillators such that the driving
force is also included. The programme ForcedCoupledOscillators

(see Appendix 4.B for details) does the job for us. As an example, we
have simulated the motion of a system of N = 3 forced-oscillators for
fixed boundary conditions and have numerically obtained the ampli-
tude dependence on ω for three oscillators as shown in figure (4.8).
All the masses and spring constants have been set to unity. We see
that each amplitude exhibits three resonances that coincide with three
natural mode frequencies of the system.

§4.4. Fourier and spectral analysis 95

ω

A
m

pl
itu

de

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

particle 1

particle 2

particle 3

Figure 4.8: Dependence of amplitudes Di(ω), i = 1, 2.3 on driving fre-
quency ω. The masses and spring constants have been set to unity. The
drag coefficient was taken bi =

γi
m

= 0.05. The RK2 algorithm with τ = 0.01
is used.

4.4 Fourier and spectral analysis

In this section, we intend to gain more insight into the problem of cou-
pled oscillations by investigating the power spectrum of the system’s
masses displacements time series. Before doing that, let us briefly re-
view the Fourier series. Every real-valued periodic function f with
period T can be expanded in a Fourier series as follows:

f(t) =
a0
2

+
∞∑
k=1

(ak cosωkt+ bk sinωkt) (4.72)

where ωk = kω0 = k 2π
T . The Fourier coefficients are:

ak =
2

T

∫ T

0

f(t) cosωktdt k = 0, 1, · · · (4.73)

bk =
2

T

∫ T

0

f(t) sinωktdt k = 1, · · · (4.74)

96 Chapter 4. Coupled Oscillations

t
-6 -4 -2 0 2 4 6

-1

-0.5

0

0.5

1

N = 5

N =10

N = 30

f(t)

Figure 4.9: Fourier series of step function sums for N = 5, 10, 30.

Note a0/2 is the average of f over the period T . Let us give an
example. Consider the series:

f(t) =
4

π
(sin t+

1

3
sin 3t+ · · ·) = 4

π

N→∞∑
k=1

sin(2k − 1)t

2k − 1
(4.75)

In figure (4.9), we have drawn the series in (4.75) for some finite values
of N . The series represents the step function in the interval [−π, π].
In other words, the functional form of f(t) is as follows:

f(t) = +1 0 < t < π f(t) = −1 − π < t < 0. (4.76)

You see that the Fourier expansion gives poor results near discontinu-
ity points of f(t) such as 0, π, and −π. Figure (4.10) shows the sketch
of the sum up to 32 terms. You see quite a large error and small os-
cillations even when 32 terms are considered. These small oscillations
that increase in amplitude as a sharp edge is approached are known
as the Gibbs phenomenon. For further mathematical insight, you can
see an excellent mathematical physics book (Myint-U and Debnath,
2007; Hassani, 2013). As another example, consider the periodic func-
tion f(t) = t − π < t < π. Using (4.73) and (4.74) you can simply

§4.5. Discrete Fourier transform 97

t
-5 0 5

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

f(t)

N = 32

Figure 4.10: Fourier series of the sum in (4.75) for N = 32.

verify ak = 0 and bk = 2
k (−1)k−1. Figure (4.11) shows the Fourier

series of the periodic f(t) = t in the interval [−π, π] for three values
of N = 5, 10, 50. The partial sum of the Fourier series becomes:

fN(t) =

N∑
k=1

(−1)k−1 2 sinkt

k
. (4.77)

Gibbs’ phenomenon is clearly seen. Near discontinuities at ±π strong
oscillations occur.

4.5 Discrete Fourier transform

In practice, it is rarely possible to give the analytic form of a periodic
function. Instead, a set ofN discrete data points approximate the con-
tinuous function f(t) in the period interval T . These N data points
fi i = 0, 1, · · · , N−1 are function values sampled at regular sampling
interval ti = iΔ. More concisely, we have fi = f(ti) = f(iΔ). More-
over, we have T = NΔ. In this case, the infinite Fourier series coeffi-
cients ak and bk are substituted by N discrete values known as discrete

98 Chapter 4. Coupled Oscillations

t
-5 0 5

-4

-3

-2

-1

0

1

2

3

4

N = 5
N = 10
N= 50

f(t)

f(t) = t

Figure 4.11: Partial Fourier series for the periodic linear function f(t) = t
in the interval [−π, π].

Fourier transforms (DFT), which are evaluated by turning the inte-
grals (4.73) and (4.74) into a sum as follows (H. Gould and Chriastian,
2006):

ak =
2Δ

T

N−1∑
i=0

fi cosωkti (4.78)

bk =
2Δ

T

N−1∑
i=0

fi sinωkti (4.79)

The independent DFT coefficients are a0, a1, · · · , aN
2
, b1, · · · , bN

2 −1 com-

prising N independent DFT coefficients. Sometimes the DFT coeffi-
cients are expressed by complex numbers Xk:

Xk =
1

N

N−1∑
j=0

e−
2πijk

N (4.80)

The independent complex DFT coefficients are k = 0, 1, · · · , N
2 − 1 (N

is assumed to be an even number). Let us now solve a problem.

§4.5. Discrete Fourier transform 99

k
0 25 50 75 100 125 150 175 200

-5E-15

-4E-15

-3E-15

-2E-15

-1E-15

0

1E-15

2E-15

3E-15

4E-15

5E-15

N = 200

N = 400

ak

Δ= 0.1

Figure 4.12: DFT coefficients ak for the function f(t) = sin πt
10

with N =
200, 400 sampling points.

Suppose f(t) = sin πt
10 . Choose the number of data points to be

N = 200 and the sampling time Δ = 0.1. Repeat your analysis for
N = 400 and Δ = 0.1. Explain your results by comparing the period
of f(t) with NΔ, the assumed period. If the combination of N and
Δ are not properly chosen, do you find any spurious results for the
coefficients?

The function f(t) = sin(πt10) is periodic with the period T = 20.
Figures (4.12) and (4.13) show the DFT coefficients ak and bk for
k = 0, 1, · · · , N

2 − 1: As you can see, all ak are practically zero.
Theoretically, we have ak = 0 due to the orthogonality relation:∫ T

0

sin(
2πnt

T
) cos(

2πmt

T
) = 0 (4.81)

Moreover, in the time-continuous Fourier series, we should have bk =
δ1,k. Discrete Fourier series results are in good agreement with contin-
uous results. In figures (4.14) and (4.15) we have sketched the Fourier
coefficients for other combinations of N and Δ. We see spurious be-
haviour when NΔ is not an integer multiple of period T . Let us

100 Chapter 4. Coupled Oscillations

k
0 2 4 6 8 10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N = 200

N = 400

bk Δ = 0.1

Figure 4.13: DFT coefficients bk for the function f(t) = sin πt
10

with N =
200, 400 sampling points.

consider the functions f1(t) = sin πt
10 + sin πt

5 , f2(t) = sin πt
10 + cos πt

5 ,
and f3(t) = sin πt

10 + 1
2 cos

πt
5 . Functions f1(t), f2(t) and f3(t) are pe-

riodic with T = 20. Figure (4.16) shows ak and bk for f2(t) and f3(t)
respectively with N = 200 and Δ = 0.2 where NΔ = 20 = T . The re-
sults are in good agreement with time-continuous Fourier coefficients.
Figure (4.17) exhibits ak and bk for f2(t) and f3(t) respectively with
N = 210 and Δ = 0.2. Note NΔ = 21 �= T . As you see, the results
are spurious. As our last example, consider a non-periodic function
that rapidly goes to zero for |t| large. We take f(t) = t3e−t2 . Figure
(4.18) shows ak and bk coefficients.

4.6 Power spectrum

The power spectrum is an important concept in data analysis. The
power spectrum Pk of a set of data points is defined as:

Pk =
√
a2k + b2k (4.82)

§4.6. Power spectrum 101

k
0 2 4 6 8 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N = 200

N = 205

N = 200
ak

Δ = 0.1
Δ = 0.1
Δ = 0.05

Figure 4.14: Fourier coefficients ak for N = 200,Δ = 0.1, N = 205,Δ =
0.1 and N = 200,Δ = 0.05.

Let us give some examples to illustrate the notion of the power spec-
trum. The examples are chosen from (H. Gould and Chriastian, 2006).
In the first example, consider a data set with N points correspond-
ing to f(t) = 0.3 cos 2πt

T + r, where r is a random number uniformly
chosen between 0 and 1. We have taken T = 4. In figure (4.19)
f(t) = 0.3 cos 2πt

T + r is drawn for N = 128 sampling points with spac-

ing Δ = 4T
N = 0.125. For each sample point fj = f(jΔ) we choose a

random number r uniformly distributed in [0, 1]. It is possible to iden-
tify a period visually. Figure (4.20) shows the power spectrum Pk. As
we can see, there is a peak at k = 4, which corresponds to the periodic-
ity of f(t). The frequency fk at which the power spectrum is maximum
is fk = k

ΔN . Here k = 4 and we have f4 = 1
4 . This gives a period

T = 1
f4

= 4 as expected. The power spectrum remains unchanged
when T = 4 is increased to T = 16. As our next example, we consider
a one-dimensional random walk. We will investigate the random walk
in our future chapters, but for the moment, we borrow somewhat from
your knowledge on this subject. Figure (4.21) shows the profile of a
random walker, which changes its walk direction at each time step
Δt = 1 with probability p = 0.5. The walker has taken 256 steps. No

102 Chapter 4. Coupled Oscillations

k
0 2 4 6 8 10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N = 200

N = 205

N = 200
bk

Δ = 0.1
Δ = 0.1
Δ = 0.05

Figure 4.15: Fourier coefficients bk for N = 200,Δ = 0.1;N = 205,Δ =
0.1 and N = 200,Δ = 0.05.

particular frequency can be identified. Hence, we expect the power
spectrum not to take a large value for large k. The power spectrum of
this walk profile is shown in figure (4.22). The sharp peak at k = 1 is
attributed to the large frequency of changing the walk direction in the
next step. Let us now come back to our favourite problem of coupled
oscillators. First, we take N = 2 oscillators (fixed boundary condi-
tion) and prepare the system in the initial condition corresponding to
the first mode. More specifically, u1(0) = u2(0) = 1 with zero initial
velocities. As usual, all the masses and spring constants have been
set to unity. We numerically solve the system equations by the RK2
algorithm with a timestep τ = 0.01. Figure (4.23) shows the evaluated
power spectrum of the second mass both from the numerical solution
and the exact one. You see that there is a peak at ωk = 1, which

coincides with the first mode frequency ω1 =
√

k
m = 1 of the system.

Note that the horizontal axis is versus ωk = kω0 = k 2π
T . Next, we

take N = 10 and initialize the system in the third mode. According
to equation (4.4) the initial displacements for the third mode n = 3

§4.6. Power spectrum 103

k

a k,
b k

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ak, f2

ak, f3

bk, f3

bk, f2

N = 200 Δ = 0.1

Figure 4.16: DFT coefficients ak, bk for f2(t) and f3(t) with N = 200,Δ =
0.1. Note that NΔ = 20 = T .

become as follows:

uj(0) = sin
3πj

11
j = 1, · · · , 10. (4.83)

We expect the power spectrum to exhibit a peak at ω3 = 2 sin(3π22) ∼
0.83. Figure (4.24) shows the corresponding power spectrum for the
particle 5: The peak is located at ωk = 0.83, which coincides with the
third modal frequency ω3. The power spectrum is the same for all
other particles because the system is set and remains in a mode. We
now consider random initial displacements between −0.5 and +0.5 and
zero initial velocities. Figure (4.25) shows the power spectrum (both
numeric and analytic) for a N = 2 particle system sampled at Δ = 0.1.

Two peaks associated with the modal frequencies ω1 =
√

k
m = 1 and

ω2 =
√

3k
m = 1.7 are in good agreement with the theoretical val-

ues of mode frequencies. Eventually, figure (4.26) exhibits the power
spectrum for N = 10 particle system prepared with initial condition
subjected to a random displacement of particles. Here we have taken
Δ = 0.01 and T = 102.4, which is four times the sampling time for

104 Chapter 4. Coupled Oscillations

k

a k,
b k

0 2 4 6 8 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ak, f2

bk, f2

ak, f3

bk, f3

N = 210 Δ = 0.1

Figure 4.17: Discrete Fourier coefficients ak, bk for f2(t) and f3(t) with
N = 210,Δ = 0.1. Note that NΔ = 21 �= T .

N = 2 particle system. Note that all the 10 modal frequencies are
not detected by looking at the power spectrum peaks. To remedy this
problem, a windowing procedure is often prescribed. For details refer
to (Garcia, 1999). So far, we have investigated a system where all
the masses are identical and all the spring constants are equal. It is
worth considering a disordered system. The disorder can be gener-
ated by having unequal masses or spring constants (or both). As a
consequence of the disorder, the normal modes are no longer simple si-
nusoidal functions. Instead, some of them become localized such that
only some of the particles move significantly while the others remain
essentially at rest. This effect is known as the Anderson localization
(A. Kolan and Titus, 1985). Typically, the modes above a certain fre-
quency are localized, whereas those below this threshold frequency
are extended. Let us consider a simple disordered system such that
the mass of one oscillator is equal to one-fourth of the others. Let
us set N = 20 and use fixed boundary conditions. We use random
initial displacements between −0.5 and +0.5 and zero initial veloci-
ties. Data are sampled at intervals of Δ = 0.1. We expect the normal
mode frequencies to correspond to the well-defined peaks in the power

§4.6. Power spectrum 105

k

a k,
b k

0 5 10 15 20 25 30 35 40
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

ak

bk

N = 200 Δ = 0.1

Figure 4.18: DFT coefficients ak, bk for an aperiodic function f(t) = t3e−t2

with N = 200,Δ = 0.1.

t
0 5 10 15

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(t)

Figure 4.19: Sampling of the stochastic function f(t) = 0.3 cos 2πt
T

+ r in
an interval of 4T .

106 Chapter 4. Coupled Oscillations

k
10 20 30 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(k)

Figure 4.20: Power spectrum of the function f(t) = 0.3 cos 2πt
T

+ r with
T = 4.

time step number
0 100 200

-15

-10

-5

0

5

10

15

x(t)

Figure 4.21: Profile of a random walker with N = 256 steps. x denotes
the walker distance from the origin. The walker has been initially placed at
x = 0.

§4.6. Power spectrum 107

k
0 5 10 15 20

1

2

3

4

5

6

7

8

9

pk

Figure 4.22: Power spectrum for the random walk profile in figure (4.21).

=k
0 2 4 6 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Analytic

Numeric

ω0ωk

pk

Δ = 0.1

Figure 4.23: Computed power spectrum of the second oscillator with
sampling time Δ = 0.1 and Ndata = 256 points for a N = 2 system of
coupled oscillators with fixed boundary condition. RK2 algorithm has been
used.

108 Chapter 4. Coupled Oscillations

ω
0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Analytic

Numeric

k

pk

Δ = 0.1

Figure 4.24: Computed power spectrum of the fifth oscillator with sam-
pling time Δ = 0.1 and Ndata = 256 points for a N = 10 system of coupled
oscillators with fixed boundary condition prepared in the third mode.

ω
0 2 4 6

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

Analytic

Numeric

k

pk

Δ = 0.1

Figure 4.25: Computed power spectrum of the second oscillator with sam-
pling time Δ = 0.1 and Ndata = 256 points for a N = 2 system of coupled
oscillators with fixed boundary condition and random initial condition.

§4.7. Continuum wave equation 109

ω
0 1 2 3 4 5 6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Analytic

Numeric

k

pk

Δ = 0.01

T = 102.4

Figure 4.26: Computed power spectrum of the second oscillator with sam-
pling time Δ = 0.01 andNdata = 2560 points for aN = 10 system of coupled
oscillators with fixed boundary condition and random initial condition.

spectrum P (ω). In figure (4.27), we depict the power spectrum, each
corresponding to a different sample of initial conditions. The peak
amplitudes depend on initial conditions. For a sufficient number of
initial conditions, we expect to reveal all the peaks (normal modes).

4.7 Continuum wave equation

It is now the appropriate time to obtain the continuum longitudi-
nal wave equation from our discrete chain of oscillators. Suppose
we increase the number of oscillators and, at the same time, reduce
their mass in such a manner that the mass density remains constant.
Remind you that the equilibrium distance between oscillators is a,
and hence the average density becomes ρ = m

a . Now let us increase
the number of oscillators N to infinity, decrease their mass m and
their equilibrium distance a toward zero such that ρ and chain length
L = (N + 1)a remain constant. In this limit, the distance of oscilla-
tor j from the left end of the chain can be shown by the continuum

110 Chapter 4. Coupled Oscillations

ω
0 1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

pk

Δ = 0.1

T = 512

ω
0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

k

Δ = 0.1

T = 512pk

Figure 4.27: Power spectrum of the second particle in a N = 10 particle
system for three samples. Sampling time T has been 512.

variable x = ja. We recall the Newton equation for oscillator j:

d2uj(t)

dt2
=

ka2

ma2
[uj+1(t) + uj−1(t)− 2uj(t)] (4.84)

If we denote uj(t) by u(x, t), we can recast the Newton equation for
the jth oscillator as follows:

∂2u(x, t)

∂t2
=

ka2

m

[u(x+ a, t) + u(x− at)− 2u(x, t)]

a2
(4.85)

The Taylor series expansion up to the second term yields:

u(x± a, t) = u(x, t)± a
∂u(x, t)

∂x
+

a2

2

∂2u(x, t)

∂x2
+ · · · (4.86)

Inserting expansion (4.86) in (4.85) gives:

∂2u(x, t)

∂t2
=

ka2

m

∂2u(x, t)

∂x2
(4.87)

The coefficient ka2

m can be written as ka
m
a

. Its denominator is nothing

but ρ. In the numerator, we should notice that k goes to infinity such
that ka becomes a constant T , which is the force per unit length of the

system. The coefficient ka2

m thus becomes a constant c2 where c has a
velocity dimension. Eventually, in the continuum limit, the equation
of motion turns into the d’Alembert wave equation:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
(4.88)

§4.8. Problems 111

Let us finish this chapter and invite you to see the numerical schemes
for solving the continuum wave equation in the next chapter.

4.8 Problems

Problem 4.1 For the linear mass-spring chain with free boundary
conditions, obtain the complex particle amplitudes aj and compare
your results with the fixed boundary conditions discussed in the text.

Problem 4.2 For the linear mass-spring chain with periodic bound-
ary conditions, obtain the complex particle amplitudes aj and compare
your results with the fixed and free boundary conditions results.

Problem 4.3 Obtain the modal frequencies and complex amplitudes
for the linear mass-spring chain with one free and one fixed bound-
ary condition. Compare your results with the other boundary con-
ditions. Which boundary condition has the smallest lowest mode?
Which boundary condition has the largest lowest mode?

Problem 4.4 We want to simulate the wave reflection in a coupled
system of mass-spring.

(a) Choose free boundary conditions and assume the initial condition
to be a pulse of the form, u1 = 0.2, u2 = 0.6, u3 = 1.0, u4 =
0.6, u5 = 0.2, and all other uj = 0. After the pulse reaches the
right end, what is the phase of the reflected pulse? are the dis-
placements in the reflected pulse in the same direction as the in-
coming pulse (a phase shift of zero degrees) or the opposite di-
rection (a phase shift of 180 degrees)? What happens for fixed
boundary conditions? Choose N to be as large as possible so that
it is easy to distinguish the incident and reflected waves.

(b) Change the boundary condition into periodic. Do you see any
reflection? Sketch the system shape at various times.

(c) Change the boundary conditions into fixed and produce a Gaussian-
like pulse in the middle of the system. Verify that two travelling
waves emerge (one left-moving and the other right-moving).

112 Chapter 4. Coupled Oscillations

Problem 4.5 Write a general programme that gives you the N nor-
mal modes of a linear chain of mass-spring for arbitrary boundary
conditions.

Problem 4.6 Consider the forced mass-spring chain with periodic
boundary conditions. Assume a sinusoidal force is exerted on the first
mass so that it moves in time as u1(t) = cosωt.

(a) Numerically solve the system equations and show that in the
steady-state a travelling wave is established.

(b) verify that all masses oscillate with the same amplitude but dif-
ferent phases.)

(c) What is the phase difference between the first and jth masses?

Problem 4.7 Consider a defective linear mass-spring system. In the
simplest case, one of the masses, mass s, has a different massms = λm.
Note that λ can be greater or smaller than unity.

(a) Write down the equations of motion and try to solve them ana-
lytically. Note that you can simply obtain the normal modes via

Eq.(4.19). In fact we have: ωi =
√

Dii

mi
. However, it would be

a difficult task to analytically obtain the mode shape that is the
amplitudes and phases of each mass.

(b) Numerically find the normal modes by diagonalisation of matrixK
in Eq.(4.14) and discuss their dependence on disorder parameter
λ.

(c) Try to see if you observe a localisation transition in the system
when you increase λ. Localisation means a state in which only
a few particles have notable amplitudes, whereas the other ones
are essentially at rest. You should be able to find the transition
frequency ωc beyond which localisation occurs.

(d) Another type of disorder is associated with spring constants. As-
sume all the masses are identical this time, but one of the springs,
spring s, has a different stiffness constant. Take its stiffness as
k′ = λk, try to find the normal modes and their shape, and com-
pare your findings with those found in part (b) and the normal
mass-spring system. Consider fixed boundary conditions.

§4.8. Problems 113

Problem 4.8 Suppose there is damping in our mass-spring system
(equal masses and equal springs). Take the damping coefficient per
mass as γ = 2β for all the oscillators.

(a) Do we have the concept of mode in this case? In other words, is
there a common frequency at which all the N masses perform a
damped harmonic oscillation?

(b) What occurs if the masses or spring constants become different?
C) Numerically find the normal modes of a damped mass-spring
system having N masses.

Problem 4.9 Consider an undamped mass-spring system with N
equal masses and fixed boundary conditions (spring constants are
equal). A sinusoidal force with frequency ω and amplitude F0 drives
the mass n of the system. Numerically solve the equations of mo-
tion and plot the amplitude dependence of mass n versus driving fre-
quency ω. You should observe N peaks at the locations of normal
modes. These peaks correspond to resonance phenomena. Besides the
peaks, you should observe some frequencies at which the amplitude
becomes very small (theoretically zero)! These are anti-resonance fre-
quencies. Give a physical interpretation of them. For more details
refer to (Somayyeh Belbasi and Joe, 2014).

Problem 4.10 Consider a disordered mass-spring chain with equal
spring constants and one mass impurity say mass n. Take mn = λm.
Assume the system is sinusoidally driven on one of its masses with
frequency ω and amplitude F0. The input power given to the system
by the driving force at time t is the product of driving force F (t) =
F0 cosωt times the vj(t) where j is the mass number on which the
driving force is acted.

(a) Numerically solve the system equations of motion using the pro-
gramme ForcedCoupledOscillators and obtain the average in-
put power (over the period of the driving force) P̄j .

(b) Sketch P̄j versus j for a given value of the disorder factor λ. For
which j the input power is minimum? For which j the input power
is maximum?

(c) Take j = n i.e., the driving force is exerted on the defective parti-
cle. For what value of ω is the average input power maximum or
minimum? Consider fixed boundary conditions.

114 Chapter 4. Coupled Oscillations

Problem 4.11 Consider problem ten with the last mass N connected
by a spring to a large massM = 10m. Moreover, assume that n = N+1

2
(take N odd) and that the driving force is exerted on the first particle
(j = 1). Solve the problem numerically and find the value of λ at which
the average input power is minimised

Problem 4.12 Consider a coupled system of mass-spring in two di-
mensions. Consider a rectangular geometry with fixed boundary con-
ditions at all sides (endmost springs are connected to rigid walls). For
simplicity, take all the masses to be identical to each other. Take the
spring constants identical as well.

(a) Write the system of equations in the harmonic approximation.

(b) Obtain the modal frequencies and determine the lowest mode in
terms of m, k and N where N is the number of masses per row
(column). If you cannot proceed analytically, do not worry! Your
PC can help you. Simply try to turn the mode problem into a
matrix eigenvalue one and then find the modes by the method
you learnt in the text.

(c) Discuss two types of polarisation: transverse and longitudinal.

Chapter 5

Partial differential
equations: parabolic
type

5.1 Foundation and classification

So far, we have only dealt with those parts of physics which are mathe-
matically formulated by ordinary differential equations (ODEs). How-
ever, we all know that physics is mainly involved with partial differ-
ential equations (PDEs). Maxwell equations in electrodynamics, wave
equation in acoustics and optics, Schrödinger equation in quantum me-
chanics, diffusion equation in statistical physics, heat transfer equation
in thermodynamics, and Navier-Stocks equation in fluid mechanics are
well-known examples of PDEs being the mathematical milestones. We
assume the readers are familiar with the underlying physics of these
equations and intend to cover the standard techniques developed for
their numerical solutions. For completeness, we first try to briefly
review the required mathematics.

5.1.1 classification scheme

We restrict ourselves to linear PDEs, which are ubiquitous in physics
and engineering. As a further restriction, we consider only second-

115

116 Chapter 5. Partial differential equations: parabolic type

order PDEs in two independent variables x and y. The generalisation
to more independent variables is normally straightforward. The most
general second-order PDE for the unknown real function φ(x, y) can
be written as follows:

a
∂2φ(x, y)

∂x2
+ b

∂2φ(x, y)

∂x∂y
+ c

∂2φ(x, y)

∂y2
+ d

∂φ(x, y)

∂x
+

e
∂φ(x, y)

∂y
+ fφ(x, y) + g = 0 (5.1)

Extension to higher orders or more independent variables is straight-
forward. The real coefficients a, b, c, d and e can depend, in princi-
ple, on x and y. The classification scheme is given according to the
sign of the discriminant Δ = b2 − 4ac. The equation is hyperbolic,
parabolic, and elliptic if Δ is positive, zero, and negative correspond-
ingly (Myint-U and Debnath, 2007). Note that this classification ap-
plies to quasilinear second-order PDEs in two independent variables
in which the last four terms in the left-hand side of (5.1) are generally
written as f(x, y, φ, ∂φ

∂x ,
∂φ
∂y). Equations with more than two indepen-

dent variables may not feat neatly into the above classification scheme.
Nevertheless, the concepts of parabolic, elliptic, and hyperbolic can be
extended to such types of PDEs. For more details, you may consult
(Myint-U and Debnath, 2007). Notice the variables x, and y do not
necessarily signify spatial coordinates. The nature of these variables
depends on the problem under consideration. Some concrete examples
from physics include the two-dimensional Poisson equation (elliptical):

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
= −ρ(x, y)

ε0
(5.2)

which in the special case of zero charge density in the space reduces
to the Laplace equation. A prototype example of a parabolic equation
is the one- dimensional heat or heat diffusion equation:

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2
(5.3)

where T (x, t) is the temperature of a 1D rod at position x at time
t, D = k

ρcp
the thermal diffusivity, k the thermal conductivity, ρ the

mass density and cp the specific heat capacity at constant pressure.
For derivation see (T. L. Bergman and Dewitt, 2011). When dealing

§5.1. Foundation and classification 117

Figure 5.1: Solution domain for a linear two-dimensional partial differen-
tial equation.

with the diffusion phenomenon, T (x, t) is replaced with n(x, t), which
denotes the number density of diffusive particles at position x and
time t. Throughout the book, we interchangeably use the words heat
and diffusion for this equation. A typical example from hyperbolic
PDEs is the ubiquitous one-dimensional d’Alembert wave equation:

∂2ψ(x, t)

∂t2
= c2

∂2ψ(x, t)

∂x2
(5.4)

The solution of (5.1) is required in a region R in the x− y plane. The
value of φ or its partial derivative (or a combination of them) should
be prescribed on the boundary of R for being able to solve the problem
within the solution domain. See figure (5.1) for illustration. Contrary
to ODEs, there is no general existence and uniqueness theorem for
PDEs. Sometimes there is no solution for a given boundary condi-
tion at all. For the hyperbolic equations, the region is semi-infinite,
whereas, for the elliptical types, the region is closed and finite. There
is a Cauchy problem in the context of PDEs, which specifies the con-
ditions under which boundary conditions there will exist a unique
solution. For details, consult (Myint-U and Debnath, 2007) and the
reference therein. In this book, we consider those problems for which
unique solutions exist.

118 Chapter 5. Partial differential equations: parabolic type

Figure 5.2: Discretization of a two dimensional space with grids ΔX and
ΔY which can be unequal in a general case.

5.1.2 Numerical solution

To numerically solve a PDE, one should replace the partial derivatives
with finite difference relations obtained from Taylor series expansion.
To illustrate the objective, consider a two-dimensional rectangular do-
main in the x − y plane within which we wish to solve a PDE. The
rectangular domain is divided into equal increments in the x and y
directions. The increments in the x and y directions are denoted by
Δx and Δy, respectively. In general, they are not equal i.e.; Δx �= Δy.
Figure (5.2) illustrates the situation. We show the number of grids in
the x and y directions by N and M . Counters i and j specify the grid
numbers along the x and y directions. It is a matter of choice to start
these counters from zero or one.

5.1.3 1st order partial differential equation

Before considering the numerical schemes for solving the above second-
order PDEs, let us pause and discuss some of the first-order PDEs in
physics and engineering, which occur occasionally but are normally
ignored in textbooks. To give an example, consider the nonlinear one-

§5.2. 2nd order prototype parabolic PDE: diffusion equation 119

dimensional Burger’s equation in fluid mechanics:

∂u(x, t)

∂t
= −u

∂u(x, t)

∂x
(5.5)

or the 1D advection equation in heat transfer (Garcia, 1999):

∂u(x, t)

∂t
= −c

∂u(x, t)

∂x
(5.6)

Another important domain where PDEs are first order is fluid me-
chanics. As an example, consider the 2D motion of an inviscid and
incompressible fluid in the absence of external forces. In this case, the
Navier-Stocks (NS) equation becomes (E. Guyon and Mitescu, 2001):

ρ[
∂v

∂t
+ (v.∇)v] = −∇p(x, y) (5.7)

where v = (vx, vy) is the fluid velocity field, ρ(x, y) the local density,
p(x, y, t) is the pressure field and η is the viscosity coefficient. When
the flow is steady, the NS equation gives the following equations for
velocity components vx and vy:

ρvx
∂vx
∂x

+ ρvy
∂vx
∂y

+
∂p(x, y)

∂x
= 0 (5.8)

ρvx
∂vy
∂x

+ ρvy
∂vy
∂y

+
∂p(x, y)

∂y
= 0 (5.9)

The incompressibility condition ∇.v = 0 gives the third equation:

∂vx
∂x

+
∂vy
∂y

= 0 (5.10)

In fact, equations (5.8) to (5.10) compose a set of first-order nonlinear
PDEs. Despite their nonlinearity, numerical schemes are not crucially
sensitive to this feature, and many techniques developed for linear
PDEs can also be applied to these nonlinear PDEs.

5.2 2nd order prototype parabolic PDE:

diffusion equation

Let us begin with parabolic PDEs and apply the general numerical
scheme to this type of equation. The simplest, and perhaps the most

120 Chapter 5. Partial differential equations: parabolic type

important, parabolic equation is the heat (diffusion equation) (5.3) in
which T (x, t) is the temperature of a rod at position x and time t.
The constant α is the thermal diffusivity coefficient.

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2
(5.11)

Since one of the independent variables is time, the problem lies in the
category of initial value problems. For simplicity, suppose we have a
one- dimensional rod of length L extended from x = −L

2 to x = +L
2 .

The solution domain is a semi-infinite region in the t − x plane. To
solve the problem, the boundary conditions at x = ±L

2 should be
specified. The most general boundary condition is the Robin one:

aT (−L

2
, t) + b

∂T

∂x
(−L

2
, t) = α (5.12)

cT (+
L

2
, t) + d

∂T

∂x
(+

L

2
, t) = β (5.13)

where constants a, b, c, d, α and β are given. If at a boundary only
the temperature value is specified, we have Dirichlet boundary condi-
tion. On the other hand, if only the spatial derivative of T is specified,
we have Neumann boundary condition. If both of them are involved,
we have Robin’s (mixed) boundary condition. Besides the mentioned
boundary conditions, we also have the so-called periodic boundary con-
dition, which is very important in solid-state physics. In this boundary
condition, we have:

T (−L

2
, t) = T (

L

2
, t);

∂T

∂x
(−L

2
, t) =

∂T

∂x
(
L

2
, t) (5.14)

I normally avoid solving an equation numerically before attempting to
show some analytical calculations. Hopefully, in the present problem,
there are some cases, especially in one dimension, that we can proceed
analytically. We remind you that the heat (diffusion) equation is di-
vided into two categories. In the first type, the space is unrestricted,
and in the second type, it is restricted. Our first example lies in the
first category.

Problem: The initial condition for an infinite 1D heat flow prob-
lem is T (x, 0) = δ(x) where δ(x) is the Dirac function. Find T (x, t).

§5.2. 2nd order prototype parabolic PDE: diffusion equation 121

We solve the problem by using of Fourier transform. Let us show
the Fourier transform of T (x, t) with respect to the spatial coordinate
x by T̃ (q, t):

T̃ (q, t) =

∫ +∞

−∞
T (x, t)e−iqxdx (5.15)

The inverse Fourier transform is given by:

T (x, t) =
1

2π

∫ +∞

−∞
T̃ (q, t)eiqxdq (5.16)

Putting (5.16) in (5.11) we find:

∂T̃

∂t
= −Dq2T̃ (5.17)

Solving (5.17) gives:

T̃ (q, t) = Ce−Dq2t (5.18)

The constant C is found by taking the Fourier transform from the
initial condition. On one hand, we have from (5.18) T̃ (q, 0) = C. On
the other, we have:

T̃ (q, 0) =

∫ +∞

−∞
T (x, 0)e−iqxdx =

∫ +∞

−∞
δ(x)e−iqxdx = 1 (5.19)

A comparison gives C = 1. By the inverse Fourier relation, we have:

T (x, t) =
1

2π

∫ +∞

−∞
e−Dq2teiqxdq (5.20)

Using the identity Dtq2− iqx = (
√
Dtq− ix

2
√
Dt

)2+ x2

4Dt and a complex

variable integration we find (Arfken and Weber, 2005):

T (x, t) =
1√
4πDt

e−
x2

4Dt (5.21)

Equation (5.21) shows that for a given time t temperature profile
T (x, t) is a Gaussian packet in x which spreads in time with a width

122 Chapter 5. Partial differential equations: parabolic type

proportional to
√
t. When the initial condition T (x, 0) is an arbitrary

function we have T̃ (q, 0) =
∫ +∞
−∞ T (x, 0)e−iqxdx and we find:

T (x, t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
T (x′, 0)e−iqx′dx′e−Dq2teiqxdq (5.22)

We can write the above integral in the form

T (x, t) =

∫ +∞

−∞
T (x′, 0)TG(x− x′, t)dx′ (5.23)

where

TG =
1

2π

∫ +∞

−∞
dqei(x−x′)q−Dq2t =

1√
4πDt

e−
(x−x′)2

4Dt (5.24)

is the Green function of the problem (Hassani, 2013). Let us consider
the three-dimensional case where the heat equation takes the form:

∂T (r, t)

∂t
= D∇2T (r, t) (5.25)

Sometimes the three-dimensional diffusion equation can be effectively
mapped into a one-dimensional form when the medium has sufficient
symmetry. As an example, consider heat propagation in a medium
with spherical symmetry around the origin. We expect T (r, t) to
depend on r only. In this case the Laplacian operator ∇2 becomes
∂2

∂r2 + 2
r

∂
∂r and the three-dimensional heat equation (5.25) becomes:

∂T (r, t)

∂t
= D[

∂2T (r, t)

∂r2
+

2

r

∂T (r, t)

∂r
] (5.26)

We now change variable to S(r, t) = rT (r, t) (Arfken and Weber,
2005). We can simply verify

∂2T (r, t)

∂r2
=

1

r

∂2S(r, t)

∂r2
− 2

r2
∂S(r, t)

∂r
+

2S(r, t)

r3
(5.27)

Replacing (5.27) into (5.26) we find:

∂S(r, t)

∂t
= D

∂2S(r, t)

∂r2
(5.28)

§5.3. Numerical solution of 1D heat eq. 123

which is the desired one-dimensional heat (diffusion) equation. If we

have cylindrical symmetry, T will be only a function of ρ =
√
x2 + y2

and time. In this case, the Laplacian operator ∇2 becomes ∂2

∂ρ2 +
1
ρ

∂
∂ρ

and the heat equation become

∂T (ρ, t)

∂t
= D[

∂2T (ρ, t)

∂ρ2
+

1

ρ

∂T (ρ, t)

∂ρ
] (5.29)

It seems we have had enough analytical results. Let us try to proceed
numerically.

5.3 Numerical solution of 1D heat eq.

We shall now attempt to devise a scheme for the numerical solution of
the 1D heat (diffusion) equation. We discretise the one-dimensional
space of length L into equally spaced grids with distance Δx. Let
i = 0 denote the grid point located at the left boundary x = −L

2 and

i = N the grid point at the right boundary x = +L
2 . The location of

grid point i is at xi = iΔx − L
2 . Note that we have: Δx = L

N . Also,
let τ denote the temporal grid as usual, and counter n indicates the
temporal step tn = nτ . For notational convenience, we show T (xi, tn)
by the shorthand T n

i . The next step is to adopt a finite difference
scheme for the partial derivatives. We implement forward scheme for
time discretisation and a centered scheme for the second-order spatial
derivative as follows:

∂T

∂t
(xi, tn) ≈ T (xi, tn + τ)− T (xi, τ)

τ
=

T n+1
i − T n

i

τ
(5.30)

∂2T

∂x2
(xi, tn) ≈ T (xi +Δx, tn) + T (xi −Δx, tn)− 2T (xi, tn)

(Δx)2

=
T n
i+1 + T n

i−1 − 2T n
i

(Δx)2
(5.31)

The method is known as forward time centred space or shortly FTCS
in the literature. In this scheme, the 1D heat PDE turns into the
following finite difference equation:

T n+1
i − T n

i

τ
= D

T n
i+1 + T n

i−1 − 2T n
i

(Δx)2
(5.32)

124 Chapter 5. Partial differential equations: parabolic type

A simple algebra gives:

T n+1
i = T n

i +
Dτ

(Δx)2
[T n

i+1 + T n
i−1 − 2T n

i] (5.33)

Equation (5.33) allows us to find the temperature in the new time step
n+1 in terms of temperatures at the current step n. Note that FTCS
is an explicit method because the next step values are determined
solely by the current ones. The method is sometimes called marching
method because we march forward in time. All we need to know is
the initial temperature T (x, 0). To numerically solve the problem,
one should be able to transform T (x, 0) into a discretised form i.e.; to
determine T 0

i for i = 0, 1, · · · , N . A frequently used initial condition
is T (x, 0) = δ(x). The simplest way of discretising the Dirac delta
function is to take its value zero at all the grid points except the
central one i = N

2 which takes the value 1
Δx :

δi = 0; i = 0, · · · , N
2

− 1,
N

2
+ 1, · · · , N ; δN

2
=

1

Δx
(5.34)

With this choice, we have:

∫ ∞

−∞
δ(x)dx ≈

N∑
i=0

δiΔx = 1 (5.35)

Let us now solve a problem:

Consider a rod of length L with its left and right ends kept fixed
at temperatures TL and TR. Take the initial condition as δ(x). Find
the temperature profile at time t. Before solving the problem numeri-
cally, let us try to solve it analytically. The boundary conditions are
Dirichlet at both ends:

T (−L

2
, t) = TL; T (+

L

2
, t) = TR. (5.36)

Although we can find the explicit form of T (x, t) by the method
of separation of variables or Green’s function, we do not intend to
do so. You may refer to mathematical physics textbooks such as
(Myint-U and Debnath, 2007),(Arfken and Weber, 2005) or (Hassani,
2013) for analytic details. Here we focus our attention on the long-time

§5.3. Numerical solution of 1D heat eq. 125

Figure 5.3: A bar is in contact with two heat reserviours of constant
temperature TL and TR.

steady-state limit Ts(x). In the steady-state, limit the heat transfer
equation (5.3) becomes:

d2Ts(x)

dx2
= 0 (5.37)

It simply turns out Ts(x) = a+ bx. Implying the boundary conditions
in (5.37) we find the constants a and b as follows:

a =
TL + TR

2
; b =

TR − TL

L
(5.38)

Therefore, we find:

Ts(x) =
TL + TR

2
+

TR − TL

L
x (5.39)

Now let us see if our computer programme can reproduce this be-
haviour. The programme DiffusionFTCS (see Appendix 5.A for de-
tails) numerically solves the diffusion equation (5.3) by the FTCS
method. The Dirichlet boundary conditions imply T 0

0 = TL and
T 0
N = TR. Figure (5.4) shows the temperature profile for some chosen

time steps. We have set L and α to unity. The values of temperature
at boundaries are TL = 10, TR = 30. The evolution of the peaked delta
function into a smooth line is seen in the graph. In agreement with the
analytical results for the steady state, we see that after sufficient time
the profile becomes linear between the boundary values. Hopefully,
the FTCS has successfully managed to solve the problem. However,
care should be taken in choosing the time step τ . Figure (5.5) shows

126 Chapter 5. Partial differential equations: parabolic type

x
-0.5 -0.25 0 0.25 0.5
0

5

10

15

20

25

30

n = 10

n = 100

n = 1000

n = 5000

T(x)

Figure 5.4: Temperature profiles at some time steps. The number of
grid points is N = 61 with a time step τ = 0.67 × 10−4. The values of
temperature at boundaries are TL = 10, TR = 30.

the temperature profile at n = 100 for the same value of N but with
a double larger τ . As you see, the solution has become unstable. In
fact, the FTCS is not stable for all values of Δx and τ . It can be

shown that for τ larger than a characteristic time τ∗ = (Δx)2

2α , the
FTCS algorithm becomes unstable. We will later discuss the instabil-
ity conditions in more detail. Let us now consider the same problem,
but this time under the Neumann boundary condition. For simplicity,
consider:

∂T

∂x
(−L

2
, t) = α;

∂T

∂x
(
L

2
, t) = β (5.40)

Note that we can computed T n+1
1 , · · · , T n+1

N−1 from (5.33) but we can-

not compute T n+1
0 and T n+1

N directly from the recursion relation (5.33)
because the undefined quantities T n

−1 and T n
N+1 will appear. To com-

pute these two boundary values, we discretise the space derivatives in
the left boundary condition by the forward scheme and at the right

§5.3. Numerical solution of 1D heat eq. 127

x
-0.5 -0.25 0 0.25 0.5

-2E+08

-1.5E+08

-1E+08

-5E+07

0

5E+07

1E+08

1.5E+08

2E+08

T(x)

Figure 5.5: Temperature profiles at n = 100 for the same problem. The
number of grid points is N = 61 with a time step τ = 1.47× 10−4.

boundary condition in the backward scheme:

T n
1 − T n

0

Δx
= α;

T n
N − T n

N−1

Δx
= β (5.41)

which implies:

T n
0 = T n

1 − αΔx; T n
N = T n

N−1 + βΔx n = 0, 1, · · · (5.42)

This allows us to compute T n+1
0 and T n+1

N once T n+1
1 and T n+1

N−1 are
computed. Figure (5.6) exhibits the temperature profile at some in-
stants of time with the Neumann boundary condition. The constant
temperature gradient values have been set at α = 0 for the left bound-
ary and β = 1 for the right one. According to the Fourier law, there

is a heat influx Jin = −k
∂T (L

2 ,t)

∂x = −kβ = −k < 0 to the system
at the right boundary which causes the system temperature becomes
higher at right than its left-hand side. Figure (5.7) exhibits the same
diagram but this time for β = −2. In this case, we have a heat outflux

Jout = −k
∂T (L

2 ,t)

∂x = −kβ = +2k > 0 at the system right boundary
and it is expected that in the long-time regime, the system tempera-
ture at the left side becomes higher than its right side.

128 Chapter 5. Partial differential equations: parabolic type

x/L
-0.5 -0.25 0 0.25 0.5
0

1

2

3

4

5

6

7

8

n = 5000

n = 50000

n = 200000

n = 500000

T(x)

α = 0
β = 1

Figure 5.6: Temperature profiles at some time steps for the Neumann
boundary condition. The number of grid points is N = 1000 with a time
step τ = 0.25× 10−6. The constant temperature gradient values have been
α = 0 for the left boundary and β = 1 for the right one.

5.4 Other schemes for solving heat eq.

In previous sections, we saw that the FTCS scheme shows a satis-
factory performance in the numerical solution of the heat equation
if the temporal and spatial steps are chosen properly. Despite this
algorithm being stable and quite simple, it is inefficient for more
complicated equations. In the case of parabolic equations, there are
more feasible algorithms than there are for hyperbolic ones. One of
the best ones being highly efficient is the Crank-Nicholson algorithm
(Crank and Nicolson, 1947). This algorithm lies in the category of
implicit algorithms. Before explaining the Crank-Nicholson (CN) al-
gorithm, let us introduce an implicit scheme for solving the heat equa-
tion. If we express the second spatial derivative at time step tn+1

rather than tn we find:

T n+1
i − T n

i

τ
= α

T n+1
i+1 + T n+1

i−1 − 2T n+1
i

(Δx)2
(5.43)

§5.4. Other schemes for solving heat eq. 129

x/L
-0.5 -0.25 0 0.25 0.5
0

1

2

3

4

5

6

7

8

n = 5000

n = 50000

n = 200000

n = 500000

T(x)

α = 0
β = −2

Figure 5.7: Temperature profiles at some timesteps with Neumann bound-
ary condition. Parameters values: number of grid pointsN = 1000, timestep
τ = 0.25× 10−6, α = 0 and β = −2.

Defining a = ατ
(Δx)2 we find:

(1 + 2a)T n+1
i − aT n+1

i−1 − aT n+1
i+1 = T n

i (5.44)

Note that in (5.44) the range of i is [1, N − 1]. Introducing the vector
T n† = (T n

0 , T
n
1 , · · · , T n

N) equation (5.44) can be written in compact
matrix form as follows:

AT n+1 = T n (5.45)

Given the boundary values T n
0 and T n

N the tridiagonal matrix A turns
out to be:⎧⎪⎨

⎪⎩
a00 = aNN = 1; aii = 1 + 2a i = 1, · · · , N − 1,

a01 = 0; aii+1 = −a i = 1, · · · , N − 1,

aN,N−1 = 0; ai+1i = −a i = 0, · · · , N − 2.

(5.46)

Having T n, one can exploit standard linear equations solvers to find
T n+1 numerically. The most important aspect of an implicit algorithm
is its high degree of stability. But be careful! Stability does not always

130 Chapter 5. Partial differential equations: parabolic type

guarantee that the answer is correct. You can verify that the solution
obtained by the above implicit method is not very accurate. To in-
crease the accuracy, we replace the second spatial derivative with half
explicit and half implicit and arrive at the so-called Crank-Nicholson
algorithm.

T n+1
i − T n

i

τ
= α

T n+1
i+1 + T n+1

i−1 − 2T n+1
i + T n

i+1 + T n
i−1 − 2T n

i

(2Δx)2
(5.47)

This time we define a = ατ
2(Δx)2 and recast (5.47) as follows:

(1+2a)T n+1
i −aT n+1

i−1 −aT n+1
i+1 = (1−2a)T n

i +aT n
i−1+aT n

i+1 (5.48)

In matrix notation (5.48) becomes:

AT n+1 = BT n (5.49)

where tridiagonal matrix A is the same as in (5.45). Elements of
B are obtained from A by substitution a → −a. Having known
temperature at time step tn, we can simply evaluate the right-hand
side vector BT n and find the unknown temperature T n+1 by a stan-
dard linear solver subroutine. You may refer to Numerical Recipe
(W. H. Press and Flannery, 2002) to see various subroutines, espe-
cially those designated for tridiagonal matrices. Finally, we discuss
the Dufort-Frankel algorithm. This algorithm would be unstable when
applied without precaution to the heat equation. In this algorithm,
the first-order time derivative is discretised in a centred manner. The
second-order spatial derivative is also discretised differently than FTCS
and CN algorithms. More concisely, we have:

1

2τ
[T n+1

i − T n−1
i] =

α

(Δx)2
[T n

i+1 − (T n+1
i + T n−1

i) + T n
i−1] (5.50)

Notice the term 2T n
i in the FTCS scheme is replaced by (T n+1

i +T n−1
i).

Defining a = 2ατ
(Δx)2 equation (5.50) can be written as follows:

T n+1
i =

1− a

1 + a
T n−1
i +

a

1 + a
[T n

i+1 + T n
i−1] (5.51)

The Dufort-Frankel is a two-step implicit algorithm. In matrix nota-
tion, it can be written as:

AT n+1 = BT n−1 + CT n (5.52)

§5.5. Diffusion equation with a source 131

Matrices B and C are tridiagonal. At the current timestep n, we know
both T n−1 and T n therefore, the right-hand side of (5.52) is known.
You simply need to implement a linear equations solver to find T n+1.

5.5 Diffusion equation with a source

Let us now return to the diffusion equation and consider its extension
by adding a source term on the right-hand side of (5.3). Let n(r, t)
specify the density of a diffusive quantity at point r and at time t.
In a prototype example n(r, t) describes the neutron number density
in a nuclear reaction. See Garcia for further details (Garcia, 1999).
For simplicity, we assume there is a source term that is linearly pro-
portional to the density function n(r, t). The inhomogeneous diffusion
equation turns out to be:

∂n(r, t)

∂t
= D∇2n(r, t) + Cn(r, t) (5.53)

where the positive constantD is the diffusion constant and the positive
constant C is the creation rate for the neutrons (Garcia, 1999). To
simplify the analysis consider the 1D version of the problem where x
is restricted from −L

2 to L
2 .

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
+ Cn(x, t) (5.54)

For U235 we have D ≈ 105 m2/s and C ≈ 108 s−1. All the neutrons
reaching the boundaries will escape from the system therefore, we have
the Dirichlet boundary condition:

n(−L

2
, t) = n(

L

2
, t) = 0 (5.55)

To proceed analytically, we use the method of separation of variables
i.e.; we take n(x, t) = X(x)T (t). Putting this assumption into (5.54)
gives:

1

T

dT

dt
=

D

X

d2X

dx2
+ C (5.56)

Both sides should be equal to a constant α. Therefore we find:

T (t) = T (0)eαt;
d2X

dx2
=

α− C

D
X (5.57)

132 Chapter 5. Partial differential equations: parabolic type

According to the Dirichlet boundary conditions in (5.55) α−C should
be negative and consequently:

X(x) = E sin

√
C − α

D
x+ F cos

√
C − α

D
x (5.58)

The boundary conditions imply X(±L
2) = 0 which give:⎧⎨

⎩E sin
√

C−α
D

L
2 + F cos

√
C−α
D

L
2 = 0,

−E sin
√

C−α
D

L
2 + F cos

√
C−α
D

L
2 = 0.

(5.59)

Equation (5.59) is a linear system of homogeneous equations, and to
have a non-trivial solution, the determinant of its coefficient matrix
should be zero. This gives:

2 sin

√
C − α

D

L

2
cos

√
C − α

D

L

2
= sin

√
C − α

D
L = 0 (5.60)

This implies
√

C−α
D L = jπ with j = 0, 1, · · · which gives us the eigen-

values αj as follows:

αj = C −D(
jπ

L
)2; j = 0, 1, · · · (5.61)

Equations (5.59) also imply E sin
√

C−α
D

L
2 = F cos

√
C−α
D

L
2 = 0.

Having in mind that
√

C−α
D L = jπ, we find:

Ej sin
jπ

2
= 0; Fj cos

jπ

2
= 0. (5.62)

From (5.62) we conclude that for even j = 2k coefficient F2k should
be zero whereas for odd j = 2k + 1 coefficient E2k+1 should be zero.
In summary, we obtain:

X2k(x) = E2k sin
2kπx

L
; X2k+1(x) = F2k+1 cos

(2k + 1)πx

L
(5.63)

We can recast two equations in (5.63) into one equation as follows:

Xj(x) = Bj sin
jπ(x+ L

2)

L
(5.64)

§5.5. Diffusion equation with a source 133

Therefore, the solution becomes:

n(x, t) =

∞∑
j=1

Bje
αjt sin

jπ(x + L
2)

L
(5.65)

In a long-time limit, the contribution of αj < 0 becomes negligible.
For those positive αj > 0, the long-time behaviour is dominated by the
largest one. According to (5.61) the largest αj corresponds to j = 1.
The sufficient condition to have a nonzero density in the long-time is
that α1 is positive. From (5.61) we find α1 = C −D(πL)

2 > 0, which
gives the following condition for having a nonzero density, actually
divergent, in the long-time limit:

L > Lc (5.66)

where the critical length is Lc = π
√

D
C . In other words, if the system’s

length is smaller than Lc then the flux of neutrons at the boundaries
will dampen out the neutron density. However, if L > Lc, the density
of neutrons, and hence their energy will increase exponentially with
dramatic consequences. Let us now solve the problem numerically.
Applying FTSC to the problem, equation (5.54) is discretised in the
following manner:

nn+1
i − nn

i

τ
= D

nn
i+1 + nn

i−1 − 2nn
i

(Δx)2
+ Cnn

i (5.67)

or

nn+1
i = (1 + Cτ)nn

i +
Dτ

(Δx)2
[nn

i+1 + nn
i−1 − 2nn

i] (5.68)

The programme NeutronDiffusion (see Appendix 5.B for details) nu-
merically solves the diffusion equation (5.54) by the FTCS method. In
the programme, we use a reduced system of units in which C = D = 1.
We desire to obtain the space-averaged density of neutrons at time t

that is n̄(t) =
∫ +L

2

−L
2

n(x, t)dx. In our numerical scheme, the average

neutron density becomes:

n̄(t) =

∫ +L
2

−L
2

n(x, t)dx =
1

N + 1

N∑
i=0

nn
i (5.69)

134 Chapter 5. Partial differential equations: parabolic type

x
-1 0 1

0

0.5

1

1.5

2

2.5

3

3.5

4

t = 0.005

t = 0.05

t = 0.5

n(x,t)

L = 2.5

x
-1 0 1

0

0.5

1

1.5

2

2.5

3

3.5

4

t = 0.005

t = 0.05

t = 0.5

t = 2.5

t = 5.0

t = 7.5

n(x,t)

L = 3.5

Figure 5.8: Neutron density profiles at some time steps for a system length
L = 2.5 < Lc (left) and L = 3.5 > Lc (right). The number of grid points is
N = 61 with a timestep τ = 0.5× 10−4.

Notice our choice of spatial grids: i = 0 corresponds to x = −L
2

and i = N corresponds to x = L
2 . The initial condition has been a

delta function centred at x = 0. Figure (5.8) shows the density profile
at some instant of time for the system length L smaller and larger
than the critical length Lc = 3.14. When L < Lc the density profile
decreases with time. When L > Lc, in the early stages of evolution,
the overall density decreases, but as time increases, the density profile
overgrows.

5.6 Problems

Problem 5.1 By completing the argument in the exponent of the ex-
pression TG = 1

2π

∫ +∞
−∞ dqei(x−x′)q−Kq2t show that the Green function

of the heat conduction problem becomes:

TG =
1√

4πKt
e−

(x−x′)2

4Kt . (5.70)

Problem 5.2 Show that if the initial temperature distribution is
Gaussian with zero mean and variance σ2 then the temperature profile
T (x, t) remains Gaussian but with a linearly growing variance in time:

T (x, t) =
1√

2π(σ2 + 2Kt)
e
− x2

2(σ2+2Kt) (5.71)

§5.6. Problems 135

Problem 5.3 Defining

TG(x, t) =
1

σ(t)
√
2π

exp[
−x2

2σ2(t)
] (5.72)

with σ(t) =
√
2Kt show that:

T (x, t) =

+∞∑
n=−∞

(−1)nTG(x+ nL, t) (5.73)

is the solution of the diffusion equation with the initial condition
T (x, 0) = δ(x) and the Dirichlet boundary condition T (−L

2 , t) =

T (+L
2 , t) = 0.

Problem 5.4 Solve the 1D heat equation with a Dirichlet boundary
condition at x = −L

2 and Neumann boundary condition at x = L
2 that

is T (−L
2 , t) = TL;

∂T
∂x (

L
2 , t) = β. You may take both TL and α equal

to one.

Problem 5.5 Write a programme that solves the 1D heat equation
with the Crank, Crank-Nicholson, and the Dufort-Frankel methods.
Compare the results of these methods for the Dirichlet problem we
solved in the text.

Problem 5.6 Another scheme for solving parabolic PDEs such as
heat equation is Richardson scheme. According to this scheme, the
1D heat equation is discretised as follows:

T n+1
i − T n−1

i

2τ
= k

T n
i+1 + T n

i−1 − 2T n
i

(Δx)2
(5.74)

In other words, the Richardson scheme is centred in both time and
space. Write a programme that solves the heat equation with this
method and compare your results with those found in problem five.

Problem 5.7 Consider the neutron diffusion problem under a mixed
boundary condition. The Dirichlet condition at left: n(−L

2 , t) = 0 and

the Neumann at right: ∂
∂xn(

L
2 , t) = 0.

136 Chapter 5. Partial differential equations: parabolic type

(a) Analytically show that the critical length Lc becomes half of the
value when the Dirichlet condition is held at both ends that isLc =
π
2

√
D
C .

(b) Numerically solve the problem with one of the algorithms you wish
and verify the analytic result.

Problem 5.8 Consider a viscous fluid between two parallel infinite
plates a distance d apart in the z direction. The upper plate is kept
fixed at z = d whereas the lower one oscillates about its equilib-
rium position z = 0 such that vz(0, t) = v0 cosωt. Take the fluid
kinetic viscosity to be ν = η

ρ where ρ is the density, and η is the fluid
shear viscosity. We recall that the governing equation is the linearised

Navier-Stocks equation ∂
∂tvz(z, t) = ν d2

dz2 vz where we have ignored the
pressure variations with z.

(a) Numerically solve the problem and obtain the velocity profile
vz(z, t) at various times with a suitable algorithm (you may pro-
ceed with the FTCS scheme).

(b) Add the nonlinear inertial term (v.∇)v = vz
d
dz vz to the left-hand

side of the linearised Navier-Stocks equation and solve the problem
numerically. For numerical values you may take d = 0.5 cm, v0 =
20 m/s, ω = 50π and ρ = 0.5 gr/cm3.

(c) For what values of η we can ignore the nonlinear term?

Chapter 6

Partial differential
equations: hyperbolic
type

6.1 Advection equation

The previous chapter was devoted to parabolic-type PDEs. In this
chapter, we intend to introduce the numerical solution of another im-
portant class of PDEs i.e.; hyperbolic equations. The prototype exam-
ple is the d’Alembert wave equation (5.4). For pedagogical purposes,
we begin with first-order linear hyperbolic PDE. The simplest nontriv-
ial one which can be found in physics is the first order wave equation,
the so-called advection equation:

∂u(x, t)

∂t
= −c

∂u(x, t)

∂x
(6.1)

This equation, also known as the linear convection equation, describes
the spatial-temporal evolution of a passive scalar field u(x, t) carried
along by a flow having velocity c. The advection equation is the sim-
plest version of the more general flux-conservation equation:

∂ρ

∂t
= −∇.J(ρ) (6.2)

137

138 Chapter 6. Partial differential equations: hyperbolic type

where ρ denotes the density of a physical quantity such as energy,
mass, or charge, and J is the corresponding flux. The flux dependence
on density normally comes from a phenomenological equation. In
the particular case, J(ρ) = cρ, the one-dimensional flux-conservation
equation (6.2) reduces to the advection equation (6.1). Equation (6.1)
can simply be solved by taking u as a function of x − ct. Given the
initial condition u(x, 0) = f(x), we find u(x, t) = f(x − ct) as the
general solution, which is a right-moving travelling wave. In gen-
eral, the first-order hyperbolic PDEs can be solved by the method of
characteristics. We refer the interested readers to excellent references
(Myint-U and Debnath, 2007; Hassani, 2013, 2009) and focus our at-
tention on finite difference schemes devised for the numerical solutions
of the hyperbolic type PDEs.

6.2 Numerical solution of the advection
equation

6.2.1 Forward time Forward space algorithm

The simplest discretisation scheme seems to be the forward time for-
ward space (FTFS) method which is formulated as follows:

un+1
i − un

i

τ
= −c

un
i+1 − un

i

Δx
(6.3)

Note that we have adopted the same notation as chapter five for space
and time grids. In particular, we use the shorthand notation un

i for
u(iΔx, nτ). Unfortunately, this scheme is unconditionally unstable,
and the numerical solution diverges for any choice of time and space
grids. Replacing the spatial derivative with a centred scheme does not
remedy the problem either. In this FTCS scheme, we have:

un+1
i − un

i

τ
= −c

un
i+1 − un

i−1

2Δx
(6.4)

which gives:

un+1
i = un

i − cτ

2Δx
(un

i+1 − un
i−1) (6.5)

A conditionally stable algorithm is the forward time backward space

(FTBS) method. It is also called upwind scheme:
un+1
i −un

i

τ = −c
un
i −un

i−1

Δx .

§6.2. Numerical solution of the advection equation 139

x
-0.5 -0.25 0 0.25 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t=0

t=0.08 FTCS

t=0.24 FTCS

t=0.08 FTBS

t=0.24 FTBS

u(x,t)

Figure 6.1: Time evolution of a Gaussian wave pulse in the advection
equation using FTCS and FTBS methods. Periodic boundary condition
has been implemented. The system length and wave velocity are set to one.
The pulse width is taken σ = 0.05, and the wave vector is set to k = 0.2.
The number of grid points is N = 200. We have taken τ = 0.004.

The upwind scheme gives:

un+1
i = un

i − cτ

Δx
(un

i − un
i−1) (6.6)

Before we turn to more advanced methods, let us numerically solve the
advection equation for the Gaussian cosine-modulated initial condition
(Garcia, 1999) by FTCS and FTBS methods. We take the initial
condition u(x, 0) = f(x) as:

f(x) = cos kx e−
x2

2σ2 (6.7)

The programme Advection (see Appendix 6.A for details) numerically
solves the one-dimensional advection equation by three algorithms
FTFS, FTCS, and FTBS. Figure (6.1) shows the results. As you can
see, the solution given by the FTCS method is unstable and becomes
distorted over time. The FTBS method is stable but does not give the
correct solution. Unfortunately, it decays in time. We now discuss the
more advanced methods of Lax and Lax-Wendroff.

140 Chapter 6. Partial differential equations: hyperbolic type

6.2.2 Lax and Lax-Wendroff algorithms

In the lax scheme, the first term on the right side of (6.5) is replaced
by its spatial average over the neighbouring sites i.e.; we replace un

i

by 1
2 (u

n
i+1 + un

i−1). It can be shown that this substitution prevents
wavefunction divergence and makes the algorithm stable, at least for
certain choices of time and space grids. More specifically, in the Lax
scheme, we have:

un+1
i =

1

2
(un

i+1 + un
i−1)−

cτ

2Δx
(un

i+1 − un
i−1) (6.8)

The lax scheme is stable if the following criterion known as the Courant-
Friedrichs-Lewy (CFL) condition is satisfied (Garcia, 1999).

cτ

Δx
≤ 1 (6.9)

In other words, τ should be less than or equal to a characteristic time
scale τw = Δx

c . The derivation of the CFL condition is based on
the stability analysis, which you can find in many standard textbooks
such as (Garcia, 1999) and (Vesely, 2001). Notice that if we use the
maximum usable timestep τmax = τw in (6.8) we find:

un+1
i = un

i−1 (6.10)

which is the discretisation of the exact solution of the advection equa-
tion. Note that despite the Lax algorithm being stable for τ ≤ τw,
the solution becomes rapidly flawed when τ becomes smaller. This
example dismisses the popular belief that the smaller the time step,
the better the solution! To improve the Lax scheme, one can proceed
along the following steps, which are based on Taylor’s expansion:

u(x, t+ τ) = u(x, t) +
∂u

∂t
τ +

∂2u

∂t2
τ2

2
+O(τ3) (6.11)

By taking the time derivative from the advection equation (6.1) we
find:

∂2u(x, t)

∂t2
= −c

∂

∂t
(
∂u

∂x
) = −c

∂

∂x
(
∂u

∂t
) = c2

∂2u(x, t)

∂x2
(6.12)

Replacing the time derivatives in (6.11) with space ones (using (6.12)
and the advection equation itself), we arrive at:

u(x, t+ τ) = u(x, t)− c
∂u

∂x
τ + c2

∂2u

∂x2

τ2

2
+O(τ3) (6.13)

§6.2. Numerical solution of the advection equation 141

x
-0.5 -0.25 0 0.25 0.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t=0

t = 0.08 Lax

t = 0.24 Lax

t = 0.40 Lax

t = 0.08 LW

t = 0.24 LW

t = 0.40 LWu(x,t)

Figure 6.2: Time evolution of a Gaussian wave pulse in the advection equa-
tion using Lax and Lax-Wendroff methods. The parameters are identical to
those in figure (6.1).

The next step is to approximate the spatial derivatives by finite dif-
ference. Using a centered scheme for them, we obtain (up to the third
order in τ):

un+1
i = un

i − cτ
un
i+1 − un

i−1

2Δx
+

c2τ2

2

un
i+1 + un

i−1 − 2un
i

(Δx)2
(6.14)

This formulation is known as the Lax-Wendroff method. Notice that
the last term is a discretised second derivative and gives an arti-
ficial diffusion stabilising the numerical solution. Stability analysis
shows that this method is stable when the CFL condition holds. The
programme AdvectionLax (see Appendix 6.B for details) numerically
solves the one-dimensional advection equation by the algorithms Lax
and Lax-Wendroff. Figure (6.2) exhibits the results. You observe that
both the Lax and the Lax-Wendroff are stable. However, the Lax
method does not give the correct answer, and the solution rapidly
damps in time like the FTBS method. On the other hand, the Lax-
Wendroff algorithm gives the correct solution and seems to be an ef-
ficient algorithm for hyperbolic PDEs. Before proceeding toward the

142 Chapter 6. Partial differential equations: hyperbolic type

d’Alembert wave equation, let us discuss some implicit algorithms that
can be implemented in the advection equation.

6.3 Implicit algorithms

If you substitute the wavefunction values in the right-hand sides of
(6.5) and (6.6) by their values in the updated step n+1 we will arrive
at the implicit formulation. For example, the implicit FTCS scheme
appears to be:

un+1
i = un

i − cτ

2Δx
(un+1

i+1 − un+1
i−1) (6.15)

Rearranging the terms at n + 1 on the left and those at n on the
right-hand side, we arrive at:

1

2
a[un+1

i+1 − un+1
i−1] + un+1

i = un
i (6.16)

where a = cτ
Δx . Taking care of the boundary conditions, we can write

the set of algebraic equations in (6.16) in a compact matrix form:

Cun+1 = un (6.17)

where u† = (u0, u1, · · · , uN) and the elements of the matrixC are read
from (6.16). Given the ui at the current step n, one can find them at
the next step n+ 1 by numerically solving the linear set of equations
(6.17). We leave it as an exercise for you to solve the advection problem
with this algorithm. Another widely used implicit scheme is the Crank-
Nicolson algorithm which was introduced in chapter five in the context
of parabolic PDEs. This scheme is implemented as follows for the
advection equation.

un+1
i − un

i

τ
= − c

2
[
un
i+1 − un

i−1

2Δx
+

un+1
i+1 − un+1

i−1

2Δx
] (6.18)

Rearranging the terms gives:

a

4
[un+1

i+1 − un+1
i−1] + un+1

i = un
i − a

4
[un

i+1 − un
i−1] (6.19)

where a = cτ
Δx . We can recast (6.19) in a compact matrix form as

follows:

Cun+1 = Bun (6.20)

§6.4. d’Alembert Wave equation 143

where matrices B and C are tridiagonal except for some elements
due to the boundary conditions. The set of linear equations can be
simply solved by standard numerical recipes once un is given. Care
should be taken into account when implying the boundary conditions
at sites i = 0 and i = N . So far, we have only considered periodic
boundary conditions. It is also possible to incorporate other boundary
conditions, such as fixed or semi-fixed. We leave the numerical solution
of other types of boundary conditions to exercises. In the next section,
we will discuss the second-order linear wave equation.

6.4 d’Alembert Wave equation

One of the oldest PDEs is the ubiquitous classical wave equation which
is normally called the d’Alembert wave equation after its mathemati-
cal formulation by Jean-Baptiste le Rond d’Alembert a French math-
ematician, physicist, philosopher, and music theorist in the eighteen
century. The applicability range of this classical wave equation in-
cludes acoustic, optic, and elasticity, to name a few. In one dimension,
this equation takes the form:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
(6.21)

The constant c is the velocity of wave propagation in a physical medium,
and u(x, t) denotes the displacement of the medium differential ele-
ment at x from its equilibrium at time t. Since the time derivative is
second-order, one has to specify two initial conditions to uniquely solve
the problem. These initial conditions are normally given by functions
f(x) and g(x) as follows:

u(x, 0) = f(x);
∂u

∂t
(x, 0) = g(x) (6.22)

The problem lies in the category of initial-boundary value problems.
The analytical solution crucially depends on the type of boundary
conditions. In general, there are four types of boundary conditions,
namely Dirichlet, Neumann, Robin, and mixed. The analytical solu-
tion for each type of boundary condition is discussed in many standard
mathematical physics textbooks such as (Myint-U and Debnath, 2007;
Hassani, 2013, 2009), and we avoid deriving them. Instead, we focus
our attention on numerics and only state the analytic solutions when

144 Chapter 6. Partial differential equations: hyperbolic type

needed. In the case where the boundaries are at infinity i.e.; at ±∞
the analytical solution turns out to be (Myint-U and Debnath, 2007):

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct

g(t′)dt′ (6.23)

Another analytical solution can be obtained for the semi-infinite string
in which x ∈ [0,+∞[. The most general boundary condition at the
left boundary x = 0 is:

u(0, t) = p(t) (6.24)

where p(t) is a given function. The analytical solution for 0 ≤ x < ct
becomes (Myint-U and Debnath, 2007):

u(x, t) = p(t− x

c
)+

1

2
[f(x−ct)+f(x+ct)]+

1

2c

∫ x+ct

x−ct

g(t′)dt′ (6.25)

For x > ct, the solution is identical to (6.23). Let us now solve the wave
equation with a computer. We use the method of midpoint leapfrog to
numerically solve the wave equation (6.21). In this algorithm, both the
second-order time and space derivatives are approximated by centred
schemes:

un+1
i + un−1

i − 2un
i

τ2
= c2

un
i+1 + un

i−1 − 2un
i

(Δx)2
(6.26)

As usual showing cτ
Δx by a we can recast (6.26) as follows:

un+1
i = 2un

i − un−1
i + a2[un

i+1 + un
i−1 − 2un

i] (6.27)

This algorithm is two-step in the sense that the wavefunction at time
step n + 1 depends not only on its values at the previous step n but
also on the second previous step n− 1. Therefore, a starter solution is
required to find the wavefunction values at n = 1 from the initial con-
ditions. A proposition is devised as follows. Backward discretisation
of the second initial condition i.e.; ∂u

∂t (x, 0) = g(x) gives:

u0
i − u−1

i

τ
= gi (6.28)

where gi denotes g(xi). This gives:

u−1
i = u0

i − giτ (6.29)

§6.4. d’Alembert Wave equation 145

x
-0.5 -0.25 0 0.25 0.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t = 0

t = 0.08

t = 0.20

t = 0.36

u(x,t)

Figure 6.3: Numerical solution of the d’Alembert wave equation in one
spatial dimension. The periodic boundary condition is implemented. CTCS
method is used with these parameters: c = L = 1, τ = 0.004. The number
of spatial grid points is N = 200.

Using (6.29) in (6.27), it would be possible to proceed iteratively
in time. Another choice is to use centered discretisation scheme for
∂u
∂t (x, 0) = g(x) which gives:

u−1
i = u0

i − 2giτ (6.30)

The programme Dalembert (see Appendix 6.C for details) numerically
solves the one-dimensional classical wave equation by the midpoint
leapfrog algorithm. Figure (6.3) exhibits the result for the infinite
space. The initial conditions are the same as in the advection prob-
lem i.e.; a cosine-modulated Gaussian pulse. Hopefully, we observe
that the CTCS method is not only stable but also gives the correct
answer. The emergence of two pulses is obvious. One is left moving,
whereas the other one goes towards the right. Let us now consider
a different boundary condition. Suppose our medium is semi-infinite
and extends from x = 0 to infinity. Furthermore, we adopt the Dirich-
let condition at the left boundary and take u(0, t) = 0. In other words,
the left boundary is a hard wall if the medium is assumed to be a flex-

146 Chapter 6. Partial differential equations: hyperbolic type

ible string. Let the initial wave shape be again a cosine-modulated
Gaussian centered at x0 > 0:

u(x, 0) = cos k(x− x0) exp(− (x− x0)
2

2σ2
) (6.31)

In practice, one cannot take the system length L as infinity. We know
that at t > 0 two outgoing travelling waves emerge. We are not
interested in the right-going wave because we know physically it travels
with a constant speed c to the right. The interesting part of the
problem lies in the left-moving wave. Physically we know that this
wave moves with constant phase velocity c toward the left boundary.
There it reflects and propagates towards the right. However, its phase
changes by π. Let us see if our programme can reproduce this feature.
In the programme we take a finite value L for the medium. With
no loss of generality, we put L equal to one and take x0 = L

2 . The
boundary condition implies un

0 = 0 at all time steps. Imposing this
constraint in the programme, we can simply find the solution by the
CTCS method. Figure (6.4) sketches the solution profile at various
times. The generation of a reflective wave at x = 0 is nicely produced
by our numerical solution. After reflection, the wave changes phase
by π and moves towards the right from below the horizontal axis. It
would be interesting to see the application of implicit algorithms to
the classical wave equation. We leave it as an exercise to you. Let
us now see what the solution looks like if the medium is finite. As a
physical example, consider a string of length L, which is fixed at both
sides x = 0 and x = L. In terms of boundary conditions, we have:

u(0, t) = 0; u(L, t) = 0 (6.32)

This condition can simply be implemented in the programme. We
set un

0 = un
N = 0 for all time step n. In other words, we do not up-

date the wavefunction at the first and the last grids i = 0, N . Figure
(6.5) exhibits the solution at various times. The initial condition is a
Gaussian pulse centred at x0 = L

4 . The wave is now reflected at both
boundaries, and you see the superposition principle. Before consider-
ing other hyperbolic equations, let us explain a different approach to
solving classical wave equations. Introducing auxiliary variables:

p(x, t) =
∂u(x, t)

∂t
; q(x, t) = c

∂u(x, t)

∂x
(6.33)

§6.4. d’Alembert Wave equation 147

x
0 0.1 0.2 0.3

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 0.400
t = 0.440
t = 0.460
t = 0.480
t = 0.488
t = 0.492
t = 0.496
t = 0.500
t = 0.520
t = 0.540
t = 0.560

u(x,t)

Figure 6.4: Numerical solution of the d’Alembert wave equation in
one spatial dimension. The space is semi-infinite with the left bound-
ary condition u(0, t) = 0. CTCS method is used with these parameters:
c = 1, τ = 0.004. The number of grid points is N = 200.

One can write the second-order wave equation as follows:

∂p(x, t)

∂t
= c

∂q(x, t)

∂x
(6.34)

Furthermore, the condition ∂2u(x,t)
∂t∂x = ∂2u(x,t)

∂x∂t implies:

∂q(x, t)

∂t
= c

∂p(x, t)

∂x
(6.35)

In effect, equations (6.34) and (6.35) comprise a set of first-order sys-
tem of PDSs. The initial conditions in terms of p(x, t) and q(x, t) turn
out to be:

p(x, 0) = g(x); q(x, 0) = cf ′(x) (6.36)

We leave it as an exercise to solve the set of equations (6.34) and (6.35)
and find the wave solution u(x, t).

148 Chapter 6. Partial differential equations: hyperbolic type

x
0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1 t = 0.00
t = 0.08
t = 0.28
t = 0.60
t = 0.80
t = 1.00

u(x,t)

Figure 6.5: Numerical solution of the d’Alembert wave equation in one
spatial dimension. The space is finite with fixed boundary conditions at
both boundaries i.e.; u(0, t) = u(L, 0) = 0. All the other parameters are
identical to the figure (6.4).

6.5 Nonlinear hyperbolic PDEs

So far, we have discussed the simplest first-order and second-order
hyperbolic PDEs. However, many PDEs in fluid dynamics and heat
transfer are nonlinear. The advection and d’Alembert wave equa-
tions provided some insight for approaching nonlinear equations. We
now intend to discuss a prototype nonlinear PDE the so-called in-
viscid Burgers equation. This model equation is a one-dimensional
hyperbolic equation and has found many applications in physics. The
Burgers equation is written below:

∂u(x, t)

∂t
= −u

∂u(x, t)

∂x
(6.37)

As you can see, by replacing c with u in the advection equation, we
arrive at the Burgers equation. Equation (6.37) has the interpretation
of wave propagation with a non-constant velocity equal to the wave
amplitude. In a flux conservation form, we can recast the Burgers

§6.5. Nonlinear hyperbolic PDEs 149

equation as follows:

∂u(x, t)

∂t
= −∂J(x, t)

∂x
(6.38)

with the flux J(x, t) = u2(x,t)
2 . We will later show how Burgers equa-

tion is derived from the more general Navier-Stocks equation in fluid
dynamics.

6.5.1 Solution of Burgers equation: Lax method

As we saw for the advection equation, in the Lax scheme, the time
derivative is discretised forward, whereas the space derivative is dis-
cretised in a centred manner. Therefore, we have:

un+1
i − un

i

τ
= −[

(un
i+1)

2 − (un
i−1)

2

4Δx
] (6.39)

Which in turn gives:

un+1
i = un

i − τ

4Δx
[(un

i+1)
2 − (un

i−1)
2] (6.40)

Replacing the first term on the right-hand side by the average over its
neighbours i − 1 and i+ 1 gives the Lax scheme:

un+1
i =

1

2
[un

i−1 + un
i+1]−

τ

4Δx
[(un

i+1)
2 − (un

i−1)
2] (6.41)

It is also possible to improve the Lax method with the more elaborate
Lax-Wendroff (LW) method. The details of the LW scheme are thor-
oughly explained in (Hoffmann and Chiang, 2009), and we only quote
the result here.

un+1
i = un

i − τ

2Δx
[Jn

i+1 − Jn
i−1] +

τ2

4(Δx)2
[(un

i+1 + un
i)(J

n
i+1 − Jn

i)− (un
i + un

i−1)(J
n
i − Jn

i−1)] (6.42)

The programme Burgers (see Appendix 6.D for details) numerically
solves the one-dimensional Burgers equation by Lax and Lax-Wendroff
algorithms. Figure (6.6) exhibits the numerical solution of the Burg-
ers equation obtained by the Lax method. The initial condition is a

150 Chapter 6. Partial differential equations: hyperbolic type

x
-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0.0

t = 0.2

t = 0.6

t = 1.0

t = 1.5

t = 2.0

t = 4.0

t = 5.0

t = 6.0

u(x,t)

Figure 6.6: Numerical solution of the Burgers equation in one spatial
dimension by Lax scheme with periodic boundary condition. The initial
condition is a Gaussian pulse with σ = 0.05 centred at x = 0. The parame-
ters are: system length L = 1, number of grid points N = 400, and timestep
τ = 0.001.

Gaussian pulse centred at x = 0. The system length L is taken unity,
and the periodic boundary condition is imposed. You see that after
somewhat evolution, the solution profile becomes sharp. This is remi-
niscent of the shock wave formation, theoretically predicted in Burgers’
equation. Let us see the consequences of applying the Lax-Wendroff
method to the problem. In figure (6.7), we show the numerical solu-
tion obtained by the Lax-Wendroff method. You see some instabilities
in the Lax-Wendroff method, but the overall behaviour is qualitatively
the same as in the Lax method. The formation of a shock wave is ap-
parent. Let us see the development of shock waves for another initial
condition. Instead of a Gaussian pulse, we assume the initial condi-
tion to be a step function that is u(x, 0) = 1 for −L

2 < x < 0 and

u(x, 0) = 0 for 0 < x < L
2 . Figure (6.8) exhibits the solution profiles

at various times obtained by the Lax method. The overall behaviour
is qualitatively similar to the Gaussian pulse in the initial condition.
As you see, the shock’s height depends on the initial condition.

§6.5. Nonlinear hyperbolic PDEs 151

x
-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t = 0.0

t = 0.2

t = 0.6

t = 1.0

t = 2.0

t = 3.0

t = 4.5

t = 6.0u(x,t)

Figure 6.7: Numerical solution of the Burgers equation in one spatial
dimension by Lax-Wendroff scheme with periodic boundary condition. The
parameters are identical to fig. (6.6).

6.5.2 Traffic flow equation

The flow of vehicles can be described by a partial differential equation.
You may be astonished to hear it for the first time but let me justify it.
It is well-known that the natural modeling approach for vehicular dy-
namics is to consider each vehicle as a particle and then try to write a
dynamical equation of their motion. In a naive approach, the acceler-
ation of each particle depends on the velocity difference as well as the
spatial gap to its leader vehicle. This approach is called car-following
in the literature. The other popular approach for modelling the motion
of vehicles is cellular automata in which time, space, and speed of vehi-
cles are taken as discrete variables. For a detailed explanation of these
microscopic approaches, see (Andreas Schadschneider and Nishinari,
2010). It is also possible to adopt a macroscopic continuum approach
to traffic flow. if you look at a vehicular traffic flow from above and
forget the microscopic details, you may equivalently describe its large-
scale characteristics via coarse-grained variables such as ρ(x, t) and
v(x, t) which are the traffic flow density and velocity at location x of

152 Chapter 6. Partial differential equations: hyperbolic type

x
-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0.1
t = 0.3
t = 0.7
t = 1.5
t = 2.0
t = 2.5
t = 3.0

u(x,t)

Figure 6.8: Numerical solution of the Burgers equation in one spatial
dimension by Lax scheme with periodic boundary condition. The initial
condition is a step function centred at x = 0. The parameters are identical
to fig. (6.7).

the road at time t. We shall now discuss the numerical solution of
another PDE which can describe the evolution of a density ρ. For
the sake of simplicity, we restrict ourselves to one spatial dimension.
The time evolution of density ρ(x, t) is governed by the following PDE
continuity equation:

∂ρ

∂t
= − ∂

∂x
J(ρ) (6.43)

Here J(x, t) is the associated flux to the density ρ(x, t). To solve
(6.43), we need to know the dependence of J on ρ. Normally this
dependence is given phenomenologically. We wish to apply (6.43) to a
traffic flow problem. We all know that the flow of vehicles is a granular
flow. Our grains are vehicles, and a correct description should entail
the position and the velocity of every vehicle at arbitrary time t. In
recent years vast modelling literature has emerged for writing appro-
priate differential or difference equations that govern the equation of
motion of vehicles. You may refer to comprehensive review articles

§6.5. Nonlinear hyperbolic PDEs 153

Figure 6.9: A single-lane bidirectional vehicular traffic flow.

on traffic flow for further details (L. Santen and Chowdhurry, 2000;
Helbing, 2001). In a class of models which are named car following,
a set of differential equations are written for vehicles. In the simplest
formulation, the acceleration of car k can only depend on the motion
status of its lead car k + 1. Denoting the position and velocity of car
k at time t by xk(t) and vk(t) respectively one can write the motion
equation as follows:

d

dt
vk(t) = f(xk(t), vk(t), xk+1(t), vk+1(t)) k = 1, 2, · · · (6.44)

The function f plays the force role in Newton’s equation of motion
in classical physics. Solving this set of nonlinear coupled differential
equations, even numerically, is a formidable task, and various types of
instabilities may emerge. Besides, we may neither always be interested
nor it is useful to know such microscopic details of motion for each car.
Instead, traffic engineers would like to know the average behaviour of
traffic flow quantities at certain locations on the road. Therefore it
would be wise to leave the microscopic description in favour of a more
practical but macroscopic one. In this continuum description, the
function ρ(x, t) gives the car density at location x of the road at time
t. For simplicity, we take the road to being single-lane. J(x, t) denotes
the number flux of vehicles at location x. The number flux J is defined
as the number of vehicles per unit time passing the location x of the
road. To complete our description, let v(x, t) show the average velocity
of cars at time t and location x. We can use the hydrodynamical
approximation and take J(x, t) = ρ(x, t)v(x, t). Notice that we have
assumed there is neither a source (on-ramps) nor a sink (off-ramp)
in the road. For solving (6.43) we must know the average velocity
v(x, t). Here a phenomenological approach is used. We know that in
light traffic conditions, when ρ is small, the car flux is proportional to
ρ. When the traffic condition is congested, the flux should decrease if

154 Chapter 6. Partial differential equations: hyperbolic type

the density increases. This suggests a simple form for J that is:

J(x, t) ∝ ρ(x, t)[1 − ρ(x, t)

ρm
]. (6.45)

where ρm is the maximum density. Showing the proportionality con-
stant by vm the velocity v(x, t) turns out to:

v(x, t) = c(ρ(x, t)) = vm[1− ρ(x, t)

ρm
] (6.46)

vm is the maximum velocity (speed limit) that each car can attain.
The maximum density ρm is achieved when vehicles are moving very
slowly and bumper-to-bumper. By insertion of (6.46) in (6.43), we
arrive at the generalised inviscid Burgers equation. Alternatively, this
kind of nonlinear equation appears in acoustic and nonlinear wave the-
ory as well. Equation (6.43) with (6.46) for J(x, t) can be analytically
solved by the method of characteristics. You can find the details of
this nice approach in (Garcia, 1999). We now try to solve the traf-
fic equation for a well-known problem: traffic at a stoplight. In this
problem, we assume that at t = 0 the traffic light goes green. Before
that moment, the traffic density is in the form of a step function that
is ρ(x, 0) = ρm for x < 0 and ρ(x, 0) = 0 for x > 0. In fact, before
the light turns green, the traffic behind the light is at the maximum
density ρm (bumper-to-bumper). The method of the characteristics
gives the analytical solution as follows (Garcia, 1999):

⎧⎪⎨
⎪⎩
ρ(x, t) = ρm x ≤ −vmt,

ρ(x, t) = 1
2 (1− x

vmt)ρm ≤ −vmt < x < vmt,

ρ(x, t) = 0 x ≥ vmt.

(6.47)

Let us now see how well our numerical scheme can do. The FTCS
scheme gives:

ρn+1
i = ρni − τ

2Δx
(Jn

i+1 − Jn
i−1) (6.48)

where Jn
i = J(ρni). On the other hand, the Lax scheme gives:

ρn+1
i =

1

2
[ρni+1 + ρni−1]−

τ

2Δx
(Jn

i+1 − Jn
i−1) (6.49)

§6.5. Nonlinear hyperbolic PDEs 155

x
-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t = 0.00

t = 0.08

t = 0.20

t = 0.40

t = 0.80

t = 1.20

ρ(x,t)

x
-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t = 0.4 analytic

t = 0.8 analytic

t = 1.2 analytic

t = 0.4 Lax

t = 0.8 Lax

t = 1.2 Lax
ρ(x,t)

Figure 6.10: Numerical solution of the traffic equation by the Lax scheme.
The periodic boundary condition is imposed. The initial condition is a
step function with height 0.9ρmax centred at x = 0 and extended back to
x = −L

4
.

Eventually, the Lax-Wendroff scheme gives:

ρn+1
i = ρni − τ

2Δx
(Jn

i+1 − Jn
i−1) +

τ2

2Δx
[cni+ 1

2

Jn
i+1 − Jn

i

Δx
−

cni− 1
2

Jn
i − Jn

i−1

Δx
] (6.50)

where

cni± 1
2
≡ c(ρni± 1

2
); ρni± 1

2
≡ ρni±1 + ρni

2
(6.51)

For more details see (Hoffmann and Chiang, 2009; Garcia, 1999). The
programme Traffic (see Appendix 6.E for details) numerically solves
the one-dimensional traffic equation by FTCS, Lax, and Lax-Wendroff
algorithms. Figure (6.10) shows the density profile’s time evolution
for the stoplight initial condition. The periodic boundary condition is
taken into account. We remark that the FTCS scheme is unstable, and
the solution diverges after a few timesteps. The evolution of the shock
profile is obvious. This is a consequence of the problem’s nonlinearity.
For comparison, we show the analytical result (6.47). Despite there
are deviations with respect to the analytic result the overall agreement
is satisfactory.

156 Chapter 6. Partial differential equations: hyperbolic type

6.6 Problems

Problem 6.1 The leapfrog scheme for solving the advection equation
uses centred derivatives for both time and space variables:

un+1
i − un−1

i

2τ
= −c

un
i+1 − un

i−1

2Δx

. Notice that this algorithm is a two-level scheme. It uses u(x, t) at
the current step n and the previous step n − 1 to find the updated
u(x, t). You need a starter sub-step to get it started. Modify the
Advect to numerically solve the 1D advection problem by the leap-frog
method and compare your findings with other algorithms discussed in
the chapter. For what value of τ is the algorithm stable?

Problem 6.2 Numerically solve the 1D advection problem by the
implicit FTCS method and compare your findings with other explicit
algorithms discussed in the chapter.

Problem 6.3 Numerically solve the 1D advection problem by the
implicit Crank-Nicolson method and compare your findings with other
explicit algorithms discussed in the chapter.

Problem 6.4 Numerically solve the 1D d’Alembert wave equation by
the implicit Crank-Nicolson method and compare your findings with
the explicit algorithm discussed in the chapter.

Problem 6.5 Numerically solve the 1D d’Alembert wave equation
by the method of the decomposition of a second-order PDE into two
first-order ones (6.34) and (6.35). Compare your solution with the one
obtained in the chapter.

Problem 6.6 Modify the programme AdvectLax to numerically solve
the advection equation for the fixed u(x = −L

2 , t) = u(L2 , t) = 0 and

the semi-fixed boundary conditions: u(x = −L
2 , t) = sinωt; u(x =

L
2 , t) = 0. Use N = 200 grid points and test various frequencies.
Apply both Lax and Lax-Wendroff algorithms.

Problem 6.7 Numerically solve the traffic PDE equation by the Lax-
Wendroff method and compare your findings with the Lax method.
Use the same parameters of the figure (6.10).

§6.6. Problems 157

Problem 6.8 After a time t, the total number of vehicles that have
passed the intersection traffic light is N(t) =

∫∞
0

ρ(x, t)dx. Show that

N(t) =
∫ t

0 J(0, t)dt in which J(x, t) is the traffic flow.

Problem 6.9 Movement of a congested region in a traffic flow is an
important issue. As a simple example that exhibits some aspects of the
problem, we model the congested region by a Gaussian perturbation

pulse as follows: ρ(x, 0) = ρ0[1 + αe−x2

2σ2]. Taking σ = L
10 and α = 1

5
numerically solve the traffic PDE for various values of ρ0 and follow
the traffic congestion motion. Does it move forward or backward?
Show that for ρ0 = ρm

2 the perturbation is almost stationary.

Chapter 7

Partial differential
equations: elliptic type

7.1 Laplace equations

The previous two chapters were devoted to the parabolic and hyper-
bolic types of PDEs. In this chapter, we intend to discuss the numeri-
cal techniques for solving the third type of PDEs i.e.; elliptic equations.
The elliptic PDE is associated with boundary values. The most im-
portant elliptic PDE in physics is undoubtedly the Laplace (Poisson)
equation in electrostatic. Besides electrostatic, the governing equa-
tions in heat transfer and fluid dynamics reduce to elliptic equations
in the steady state. For example in the heat transfer equation (5.3) the
left-hand side term ∂T

∂t becomes zero in the stationary state and the

diffusion equation reduces to ∂2T
∂x2 = 0 which is an elliptical equation.

This chapter explores a completely different numerical methodology
for solving an elliptical PDE. In particular, we discuss relaxation and
spectral methods. The domain solution of an elliptic PDE is a closed
region R in space. On the boundary of R, the function value or its
normal derivative or a combination of them should be prescribed if
one wants to find the solution within the domain. Here also there
is no general existence/uniqueness theorem and there may not exist
a solution for a general boundary condition. Let us start with the
Laplace equation the paradigm of the elliptic PDEs. For simplicity,

159

160 Chapter 7. Partial differential equations: elliptic type

Figure 7.1: Schematic representation for a boundary value problem in
two-dimension with a rectangular boundary.

we consider a two-dimensional case with a rectangular domain R and
the Dirichlet boundary condition. The Laplace equation reads:

∂2Φ(x, y)

∂x2
+

∂2Φ(x, y)

∂y2
= 0. (7.1)

We take the rectangle’s sides lengths as Lx and Ly respectively and
adopt the following boundary values:

Φ(x, 0) = a1; Φ(Lx, y) = a2; Φ(x, Ly) = a3; Φ(0, y) = a4 (7.2)

The constants a1, · · · , a4 are given. See figure (7.1) for illustration.

7.2 Numerical solution of Laplace equa-

tion

Replacing the second-order spatial derivatives by centred finite differ-
ences we arrive at:

Φi+1,j +Φi−1,j − 2Φi,j

(Δx)2
+

Φi,j+1 +Φi,j−1 − 2Φi,j

(Δy)2
= 0 (7.3)

§7.2. Numerical solution of Laplace equation 161

Figure 7.2: Schematic representation for space discretisation of a rectan-
gular value problem in two dimensions.

As usual, Δx and Δy denote spatial grid lengths in x and y directions
respectively. Notice that in general, they differ from each other. The
ranges of the grid counters are i = 0, · · · , Nx and i = 0, · · · , Ny corre-

spondingly. Note that Δx = Lx

Nx
and Δy =

Ly

Ny
. See figure (7.2) for an

illustration in which Nx = 6 and Ny = 4 give rise to a total of thirty-
five grid points twenty of which lie on the boundary. Be aware that we
cannot apply (7.3) to the boundary grids. For example if i = Nx then
ΦNx+1,j is undefined for any j. In practice, we use (7.3) only for the
interior points. When the grid point lies on the boundary, we directly
use the given boundary value for the grid value. For clarification let
us explicitly write (7.3) for all the interior points of our rectangular
region with Nx = 4 and Ny = 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ2,1 + a4 − 2(1 + β2)Φ1,1 + β2Φ1,2 + a1β
2 = 0,

Φ2,2 + a4 − 2(1 + β2)Φ1,2 + a3β
2 + β2Φ1,1 = 0,

Φ3,1 +Φ1,1 − 2(1 + β2)Φ2,1 + β2Φ2,2 + a1β
2 = 0,

Φ3,2 +Φ1,2 − 2(1 + β2)Φ2,2 + β2Φ2,1 + a3β
2 = 0,

a2 +Φ2,1 − 2(1 + β2)Φ3,1 + β2Φ3,2 + a1β
2 = 0,

a2 +Φ2,2 − 2(1 + β2)Φ3,2 + β2Φ3,1 + a3β
2 = 0.

(7.4)

where β = Δx
Δy . Taking the six Φ values at the interior grids i.e.;

Φ1,1,Φ2,1,Φ3,1,Φ1,2,Φ2,2 and Φ3,2, as the independent unknowns, the
six linear equations (7.4) comprise a set of linear equations in a matrix
form:

AΦ = b (7.5)

162 Chapter 7. Partial differential equations: elliptic type

Note that matrix A is tridiagonal. We know from linear algebra that
provided the determinant of A is non zero we have a unique solution.
Of course for a special choice of β the determinant of A becomes zero.
In this case, our numerical scheme fails. We leave it as an exercise to
find the zero determinant condition. Theoretically, we know that for
the Laplace equation, we have a uniqueness theorem that asserts that
the solution of the Laplace equation with the Dirichlet boundary con-
dition is unique. Our numerical scheme confirms this theorem in the
sense that the solution of the matrix equation is unique. Before pro-
ceeding, let us pause a bit and make some additional comments. Sup-
pose on some segments of the rectangular box, the Neumann boundary
condition holds. For example, assume that on the upper segment, we
have ∂Φ

∂n = a3. More concisely, we have ∂Φ
∂y = a3 on the upper bound-

ary segment. In this case, we do not have directly the function values
at the upper grid points. Implementing a backward finite difference
scheme, for Nx = 4, Ny = 3 we have:

Φi,3 − Φi,2

Δy
= a3 i = 1, 2, 3 (7.6)

This gives:

Φi,3 = Φi,2 + a3Δy i = 1, 2, 3 (7.7)

This implies that whenever we encounter a function value in the upper
segment of the boundary we can replace it with its southward interior
unknown function value. The second point I would like to mention is
the structure of matrix A. This structure depends on the finite differ-
ence scheme we use for the discretisation of spatial derivatives. Instead
of a five-point approximation, we can use higher-order approximations
such as nine-point formula (Hoffmann and Chiang, 2009):

−Φi−2,j + 16Φi−1,j − 30Φi,j + 16Φi+1,j − Φi+2,j

12(Δx)2
+

−Φi,j−2 + 16Φi,j−1 − 30Φi,j + 16Φi,j+1 − Φi,j+2

12(Δy)2
= 0 (7.8)

Note that we cannot apply (7.8) to the grid points adjacent to bound-
ary grids and should use a five-point formula for these points to prevent
encountering undefined quantities such as Φ−1,j , etc! You should be

§7.2. Numerical solution of Laplace equation 163

now convinced that implementing a higher-order formula changes the
structure of matrix A. Let us now discuss non-Cartesian boundaries.
A prototype example is the Dirichlet problem for the circle. Here the
region within which we wish to solve the Laplace equation is the inte-
rior of a circle of radius R. The appropriate system of coordinates is
the polar system. The potential Φ is a function of polar coordinates
ρ and θ with the boundary condition Φ(R, θ) = f(θ). The analytical
solution turns out to be (Myint-U and Debnath, 2007):

Φ(ρ, θ) =
1

2π

∫ 2π

0

1− ρ2

1− 2ρ cos(θ − η) + ρ2
f(η)dη (7.9)

The integral is called Poisson integral formula for a circle. Let us now
try to solve the Dirichlet problem for a circle numerically. Showing
the circular grids by Δρ and Δθ and using the shorthand notation
Φ(pΔρ, qΔθ) by Φp,q and noting that the Laplacian operator in circu-
lar coordinate becomes:

∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
(7.10)

We can turn the Laplace equation into a finite difference form:

Φp+1,q +Φp−1,q − 2Φp,q

(Δρ)2
+

1

pΔρ

Φp+1,q − Φp,q

Δρ
+

1

p2(Δρ)2
Φp,q+1 +Φp,q−1 − 2Φp,q

(Δθ)2
= 0 (7.11)

Multiplying both sides of (7.11) by (Δρ)2 we arrive at the following
recursive equation:

(1 +
1

p
)Φp+1,q +Φp−1,q − 2[1 +

1

2p
+

1

p2(Δθ)2
]Φp,q+

1

p2(Δθ)2
[Φp,q+1 +Φp,q−1] = 0 (7.12)

Denoting the number of radial and angular grids by Np+1 and Nq+1
respectively the implementation of boundary condition gives:

ΦNp,q = fq := f(qΔθ) (7.13)

Note that there are Nq +1 boundary grids. We leave it as an exercise
to solve the corresponding linear set of equations and find the solution
to the Dirichlet problem for a circle.

164 Chapter 7. Partial differential equations: elliptic type

7.3 Relaxation methods

Returning now to our matrix method, one can use the numeric ma-
chinery of solving the set of linear equations to find the solution of the
Laplace equation. Among the various methods, people often prefer
to use the relaxation method. The method is based on iteration. We
guess a solution Φ

(0)
i,j and improve it iteratively. Let us briefly explain

the procedure. Suppose we do not know the exact solution of a linear
system of equations AX = b. Let us show the exact solution by X
and assume that we have managed to find an approximate solution
X ′. The relaxation idea is to improve the approximate solution X ′

iteratively and approach the exact but unknown solution X step by
step. Expressing the difference between the approximate answer X ′

and the exact answer by δX we have:

X ′ = X + δX (7.14)

Multiplication of (7.14) by A gives:

AX ′ = A(X + δX) = AX +AδX = b+AδX (7.15)

This gives the following equation for the unknown vector δX :

AδX = AX ′ − b (7.16)

Note that the right-hand side of (7.16) is a known vector and by solving
(7.16) one can find δX . Therefore the improved solution becomes:

X = X ′ − δX (7.17)

In practice we can repeat this procedure and iteratively improve the
solution:

X(k+1) = X(k) − δX(k) (7.18)

We iterate (7.18) until a specified convergence criterion is met. In
practice, we stop (7.18) if the criterion |X(k+1)−X(k)| < ε is satisfied.
The desired precision ε is at our will. It should be noted that the
convergence of (7.18) crucially depends on the initial choice X(0). If it
is not properly chosen the series diverges. Unfortunately, there is not
a routine prescription for X(0). People normally choose it on physical
grounds and intuition.

§7.3. Relaxation methods 165

7.3.1 Jacobi method

Another frequent way of developing a relaxation scheme is to consider
the Laplace equation as the steady-state solution of the heat equation.
In two dimensions we have:

∂T (x, y, t)

∂t
= D[

∂2T (x, y, t)

∂x2
+

∂2T (x, y, t)

∂y2
] (7.19)

Restricting ourselves to closed geometries with a stationary boundary
condition we physically know that the solution relaxes to a steady
state Ts(x, y). Setting the time derivative in the steady state to zero
∂Ts(x,y)

∂t = 0 the heat equation reduces to:

∂2Ts(x, y, t)

∂x2
+

∂2Ts(x, y, t)

∂y2
= 0 (7.20)

Which is the Laplace equation. In other words, we have

limt→∞T (x, y, t) = Ts(x, y) (7.21)

The above procedure suggests that the solution of the Laplace equation
is the long time limit of an artificial heat equation. For the moment
we take this equation as follows:

∂Φ(x, y, t)

∂t
= λ[

∂2Φ(x, y, t)

∂x2
+

∂2Φ(x, y, t)

∂y2
] (7.22)

The constant λ has no physical interpretation and can be absorbed in
the time step τ . We already know how to numerically solve equation
the (7.22). The FTCS scheme implies:

Φn+1
i,j = Φn

i,j +
λτ

(Δx)2
[Φn

i+1,j +Φn
i−1,j − 2Φn

i,j]+

λτ

(Δy)2
[Φn

i,j+1 +Φn
i,j−1 − 2Φn

i,j] (7.23)

where Φn
i,j is a shorthand notation for Φ(iΔx, jΔy, nτ). As a matter of

fact, Φn
i,j can be interpreted as the n−th guess for the potential value

at grid (i, j). The stability analysis implies that our FTCS algorithm
is stable provided the following condition holds:

λτ

(Δx)2
+

λτ

(Δy)2
≤ 1

2
(7.24)

166 Chapter 7. Partial differential equations: elliptic type

We leave it an exercise to you to verify (7.24). Taking Δx = Δy =
2
√
λτ the algorithm (7.23) takes the simple form:

Φn+1
i,j =

1

4
[Φn

i+1,j +Φn
i−1,j +Φn

i,j+1 +Φn
i,j−1] (7.25)

This formula is the so-called Jacobi method which is our first practical
relaxation scheme in solving elliptical PDEs (Garcia, 1999). The Ja-
cobi method resembles the mean-value theorem in electrostatic which
states that the potential value at each point is the mean value of po-
tential for every closed counter that encompasses the point. In the
Jacobi method, the updated value of the potential at a grid is the
average over its four nearest neighbours. Before programming the Ja-
cobi method, I would like to mention that one can develop the Jacobi
method without resorting to the heat equation. Starting with the dis-
crete version of Laplace equation (7.3) and introducing β = Δx

Δy we
obtain:

2(1 + β2)Φi,j = Φi+1,j +Φi−1,j + β2Φi,j+1 + β2Φi,j−1 (7.26)

This gives us a clue to write the following iterative relation:

Φn+1
i,j =

1

2(1 + β2)
[Φn

i+1,j +Φn
i−1,j + β2Φn

i,j+1 + β2Φn
i,j−1] (7.27)

where n denotes the iteration number. The above formulation resem-
bles the implicit formalism in which some variables are replaced by
their unknown values at the updated time. It is very easy to make
a programme that evaluates the potential according to the Jacobi
method. The programme Jacobi (see Appendix 7.A for details) nu-
merically solves the two-dimensional Laplace equation by the Jacobi
method. Let us now solve some simple examples. As the first one,
consider a rectangle of side lengths Lx and Ly within which we wish
to obtain the potential. The boundary condition is assumed to be of
Dirichlet type:

Φ(x, 0) = a1; Φ(Lx, y) = a2; Φ(x, Ly) = a3; Φ(0, y) = a4 (7.28)

For simplicity, we take a1 = a2 = a4 = 0 and a3 = Φ0. This problem
is solved by the method of separation of variables in (Garcia, 1999).
We only quote the result:

Φ(x, y) = Φ0

∑
n=1,3,5,···

4

nπ
sin(

nπx

Lx
)
sinh(nπyLx

)

sinh(
nπLy

Lx
)

(7.29)

§7.3. Relaxation methods 167

x
0 0.25 0.5 0.75 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

n = 10
n = 300
n = 500
n = 1000
n = 3000
n = 7000
n = 9000
n = 12000

φ

Figure 7.3: Horizontal profile of potential obtained by the Jacobi method.
Dirichlet boundary condition is used. All sides have zero potential except
the top one (y = Ly) at which the potential is one. Side lengths are Lx = 1
and Ly = 2. The slow rate of convergence is evident. The number of grid
points in x and y directions are Nx = 100, Ny = 200 respectively. n denotes
the iteration number.

Figure (7.2) exhibits the numerical result obtained by the Jacobi
method. We have taken Lx = 1, Ly = 2 and Φ0 = 1. As for the
initial condition, the function value at all the interior points was set
to 0.1Φ0. You see the system comes to a steady-state after a large
number of iterations around 5000. Remember that you can always
speed up the convergence rate by a wiser choice of initial guess of the
potential values. See exercises for details. To get a deeper insight, let
us now change the boundary conditions and solve the same problem
with the only difference that on the top side, the normal derivative
of the potential is given. In other words, we consider the Neumann
boundary condition in which ∂Φ

∂y (x, Ly) is given as the constant a3.

168 Chapter 7. Partial differential equations: elliptic type

In this type of boundary condition, we cannot use (7.3) when we are
updating the row j = Ny − 1 because we do not know a priori the
potential at the top side y = Ly(j = Ny). However, we can relate the
potential values at the top side row in terms of the potential values at
its lower row. This is achieved by using a backward finite difference
for the Neumann boundary condition:

∂Φ

∂y
(x = iΔx, Ly) =

Φi,Ny
− Φi,Ny−1

Δy
(7.30)

Which gives:

Φi,Ny
= Φi,Ny−1 + a3Δy (7.31)

Replacing Φi,Ny
by the right-hand side of (7.31) we can now use (7.25)

for the grid row corresponding to j = Ny − 1. The results turn out to
be:

Φn+1
i,Ny−1 =

1

3
[Φn

i,Ny−2 +Φn
i−1,Ny−1 +Φn

i+1,Ny−1 + a3Δy] (7.32)

The algorithm is in our hands now. We iteratively update the grids
row by row up to the row Ny − 1. After the system becomes sta-
tionary the last row (corresponding to j = Ny) is updated from its
bottom row j = Ny − 1 from (7.31). The programme JacobiNeumann
(see Appendix 7.B for details) implements our explanations to solve
the Laplace equation with the Neumann boundary condition. Figure
(7.3) exhibits the results of our computations. You see the potential
correctly starts from zero at the bottom side to the value with the
given normal derivative. I hope that now you can write a programme
for a general type of boundary condition. Some exercises are desig-
nated for you.

7.3.2 Gauss-Seidel method

We noticed that the convergence rate of the Jacobi method is quite
slow. To improve it, we make a little change in the algorithm and use
the updated values of potential whenever they become available. This
modification, known as the Gauss-Seidel method has proven to make
notable improvements to the Jacobi method. One way of implement-
ing the Gauss-Seidel (GS) algorithm is the following (Garcia, 1999):

Φn+1
i,j =

1

4
[Φn

i+1,j +Φn+1
i−1,j +Φn

i,j+1 +Φn+1
i,j−1] (7.33)

§7.3. Relaxation methods 169

y
0 0.5 1 1.5 2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

n = 10

n = 300

n = 1000

n = 3000

n = 5000

n = 7000

φ(y)

x=Lx/2

Figure 7.4: Vertical profile of potential obtained by the Jacobi method
with Neumann boundary condition. All sides have zero potential except
the top one (y = Ly) at which the potential gradient in y direction is set to
0.1. The slow rate of convergence is evident. Number of grid points in x and
y directions are Nx = 100, Ny = 200 respectively. n denotes the iteration
number.

The implementation of the Gauss-Seidel method has the storage ad-
vantage and we no longer need to store both Φn and Φn+1 matrices.
This gives rise to significant memory saving. When Δx �= Δy the GS
method takes its general form:

Φn+1
i,j =

1

2(1 + β2)
[Φn

i+1,j +Φn+1
i−1,j + β2Φn

i,j+1 + β2Φn+1
i,j−1] (7.34)

The programme GaussSeidel (see Appendix 7.C for details) numeri-
cally solves the Laplace equation by the GS method for the Dirichlet
boundary condition. In figure (7.5) we have sketched the same diagram
as in figure (7.3) by the GS algorithm. You see that the GS method
is faster than the Jacobi method. We can improve the efficiency of
the GS method. For this purpose, we start from (7.26) and apply an
implicit formulation as follows (Hoffmann and Chiang, 2009):

2(1 + β2)Φn+1
i,j − Φn+1

i+1,j − Φn+1
i−1,j = β2[Φn

i,j+1 +Φn
i,j−1] (7.35)

170 Chapter 7. Partial differential equations: elliptic type

x
0.25 0.5 0.75 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

n = 10
n = 100
n = 300
n = 500
n = 1000
n = 2000
n = 3000
n = 5000
n = 11000φ

Figure 7.5: horizontal profile of potential obtained by the Gauss-Seidel
method. Dirichlet boundary condition is used. All the sides have zero
potential except the top one (y = Ly) at which the potential is one. Side
lengths are Lx = 1 and Ly = 2. Number grid points in x and y directions
are Nx = 100, Ny = 50 respectively. n denotes the iteration number. The
steady-state appears after n = 5000 iterations.

This algorithm is known as the Line Gauss-Seidel method. As usual
we can recast (7.35) in a compact matrix form:

AΦn+1 = Φn (7.36)

where A is a tridiagonal matrix. By solving the set of linear algebraic
equations (7.36) we can find the updated value of potential Φn+1. We
leave it as an exercise for you to solve the Laplace equation by this
implicit GS method. The merit of the implicit GS is two-fold. First,
it is more stable, and second, its convergence rate is faster than the
explicit GS method. Note that since at each timestep, you solve a set
of linear equations, more computation time is needed per iteration.

§7.4. Poisson equation 171

7.3.3 Simultaneous over relaxation method

It is yet possible to significantly speed up our relaxation algorithm by
over-correcting the potential value at each iteration of the GS method.
The new method is named simultaneous over relaxation or SOR in the
literature. Some people use successive instead of simultaneous. The
SOR algorithm is implemented as follows:

Φn+1
i,j = (1−ω)Φn

i,j +
ω

4
[Φn

i+1,j +Φn+1
i−1,j +Φn

i,j+1 +Φn+1
i,j−1] (7.37)

The constant ω is called the over-relaxation parameter. The choice
of ω is central to the SOR method. Notice that ω = 1 corresponds
to the GS method. It can be shown that for ω > 2 the method
becomes unstable (Garcia, 1999). Moreover, for ω < 1 the convergence
becomes slow. Thus the acceptable value of ω lies between one and
two. The optimal choice depends on the problem geometry. The
general formulation of SOR (when Δx �= Δy) turns out to be (see
(Hoffmann and Chiang, 2009) for details):

Φn+1
i,j = (1− ω)Φn

i,j +
ω

2(1 + β2)
[Φn

i+1,j +Φn+1
i−1,j+

β2Φn
i,j+1 + β2Φn+1

i,j−1] (7.38)

you are asked in exercises to solve the Laplace equation with the SOR
method. Analogous to the GS method, we can formulate an implicit
version of the SOR algorithm. The implicit SOR (line SOR) is formu-
lated as follows:

2(1 + β2)Φn+1
i,j − ωΦn+1

i+1,j − ωΦn+1
i−1,j = ωβ2[Φn

i,j+1 +Φn+1
i,j−1]+

2(1− ω)(1 + β2)Φn
i,j (7.39)

7.4 Poisson equation

So far we have looked at the solution of the Laplace equation which
is also equivalent to the steady-state equation for heat. Despite re-
stricting ourselves to two dimensions many techniques we introduced
can be generalised in a straightforward manner to higher dimensions.
The next equation we intend to consider is the inhomogeneous Laplace

172 Chapter 7. Partial differential equations: elliptic type

equation. In electrostatic we call it Poisson equation. In the context
of heat transfer, we can regard it as the steady-state equation of a
heat transfer problem with a source or sink. For simplicity, we restrict
ourselves to two dimensions. The two-dimensional Poisson equation
takes the following form in the SI unit:

∂2Φ(x, y)

∂x2
+

∂2Φ(x, y)

∂y2
= − 1

ε0
ρ(x, y) (7.40)

ρ(x, y) is the charged density and ε0 is the free space permittivity.
The equation is to be solved within a domain R and must be endowed
with appropriate boundary conditions if we want to have a unique
solution. Analogous to the Laplace equation there is no existence
theorem which means that you may not find a solution for an arbitrary
boundary condition. By employing the centred space discretisation
scheme for the spatial derivatives the equation takes the following
discretised form:

Φi+1,j +Φi−1,j − 2Φi,j

(Δx)2
+
Φi,j+1 +Φi,j−1 − 2Φi,j

(Δy)2
= −ρ(i, j)

ε0
(7.41)

where ρi,j = ρ(iΔx, jΔy). We can simply devise a Jacobi relaxation
scheme to solve the Poisson equation numerically:

Φn+1
i,j =

1

4
[Φn

i+1,j +Φn
i−1,j +Φn

i,j+1 +Φn
i,j−1 +

(Δx)2

ε0
ρi,j]. (7.42)

Note we have taken Δx = Δy. We can simply generalise the Gauss-
Seidel method to the Poisson equation. You should only replace the
current iteration number n by n + 1 in the second and fourth term
in the bracket of Eq. (7.42). By a simple change in the programme
Jacobi, we can numerically solve the Poisson equation. Let us now
solve a problem.

Imagine we put a point charge q at the centre of an square of side
length L. The potential is zero on three sides located at x = 0, x = L
and y = 0 and Φ0 at the top side (y = L). Find the potential every-
where inside the square.

For simplicity, we work in a reduced unit in which ε0 = 1. Fur-
thermore, we take L = Φ0 = 1. According to our notation intro-
duced in (7.28) we have a1 = a2 = a4 = 0 and a3 = 1. Moreover,

§7.4. Poisson equation 173

x
0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

n = 100

n = 500

n = 1000

n = 3000

n = 5000

n = 7000

n = 10000

φ(x)

q=1

Figure 7.6: Horizontal profile of potential obtained by the Jacobi method
within a square of side length L = 1 with a charge q = 1 at its centre.
Dirichlet boundary condition is used. All the sides have zero potential
except the top one (y = Ly) at which the potential is one. Grid lengths are
Δx = Δy = 0.01. The iteration number is denoted by n. The steady-state
appears after n = 10000 iterations.

ρi,j = 0 except for the middle grid (N2 ,
N
2). Notice that N should be

an even number. In order to find ρN
2 ,N2

we make use of the normali-

sation integral
∫ ∫

R dxdyρ(x, y) = q. Discretising the integral we find:
ρN

2 ,N2
ΔxΔy = q which gives:

ρN
2 ,N2

=
q

ΔxΔy
(7.43)

The programme Poisson (see appendix 7.D for details) numerically
solves the Poisson equation by the Jacobi relaxation scheme. Figure
(7.6) exhibits the results for q = 1. You see the convergence rate has
decreased in comparison with the Laplace equation. In figure (7.7) we
have shown the vertical potential profile in the steady state for various
values of q. In exercises, you are asked to solve the Poisson equation
with the Neumann boundary condition.

174 Chapter 7. Partial differential equations: elliptic type

y
0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

q = 1

q = 3

q = 5

φ(y)

Figure 7.7: Vertical profile of potential obtained at x = 0.1L by the Jacobi
method within a square of side L = 1 having a charge q at its centre. All
the parameters are the same as in figure (7.6)

.

7.5 Multiple Fourier transform method

In the last section of this chapter, we discuss a different method that is
quite frequently used for solving elliptical PDEs. The method is known
as the multiple Fourier transform (MFT) and as the name suggests it
employs discrete Fourier transform. You may remember the discrete
Fourier transform from chapter four. Here we generalise this concept
into higher dimensions. In particular, in two dimensions the discrete
Fourier transform of a set of 2D data xj,k j, k = 1, · · · ,M becomes:

Xm,n =
1

M

M∑
j,k=1

xj,ke
− 2πi

M
(jm+kn) (7.44)

The inverse Fourier transform becomes:

xj,k =
1

M

M∑
m,n=1

Xm,ne
2πi
M

(jm+kn). (7.45)

§7.5. Multiple Fourier transform method 175

Note that for real-valued xj,k the corresponding Xm,n are complex
numbers and hence half of them are independent numbers. Having de-
fined the two- dimensional DFT, we now explain the multiple Fourier
transform method for a two-dimensional problem. Consider the finite
difference form of the Poisson equation (7.41) for a square of side L.
For simplicity, we adopt the periodic boundary condition and start
our grid numbers from zero as usual. Therefore our unknowns are
Φj,k j, k = 0, 1, · · · , N − 1. According to this boundary condition we
have:

ΦN,k = Φ0,k; Φj,N = Φj,0 (7.46)

Showing the DFT of the potential by Fm,n and that of charge density
by Rm,n we have:

Rm,n =
1

N

N−1∑
j,k=0

ρj,ke
− 2πi

N
(jm+kn) (7.47)

Fm,n =
1

N

N−1∑
j,k=0

Φj,ke
− 2πi

N
(jm+kn) (7.48)

We rewrite (7.41) with i replaced by j and j replaced by k (to save i
for the imaginary unit number) and then multiply both sides of (7.41)

by e−
2πi
N

(jm+kn) and then sum over j, k. We therefore find:

1

N

N−1∑
j,k=0

e−
2πi
N

(jm+kn)[
Φj+1,k +Φj−1,k − 2Φj,k

(Δx)2
+

Φj,k+1 +Φj,k−1 − 2Φj,k

(Δy)2
] =

− 1

N

N−1∑
j,k=0

e−
2πi
N

(jm+kn) ρj,k
ε0

(7.49)

[
e

2πim
N + e

−2πim
N − 2

(Δx)2
+

e
2πin
N + e

−2πin
N − 2

(Δy)2
]Fm,n = − 1

ε0
Rm,n (7.50)

Taking Δx = Δy gives:

[e
2πim

N +e
−2πim

N +e
2πin
N +e

−2πin
N −4]Fm,n = − 1

ε0
(Δx)2Rm,n (7.51)

176 Chapter 7. Partial differential equations: elliptic type

Solving for Fm,n gives Fm,n = Pm,nRm,n where:

Pm,n =
−(Δx)2

2ε0[cos(
2πm
N) + cos(2πnN)− 2]

(7.52)

Having found the DFT transform of the potential Fm,n the potential
itself is found via taking the inverse DFT:

Φj,k =
1

N

N−1∑
m,n=0

Fm,ne
2πi
N

(jm+kn) (7.53)

In exercises, you are asked to solve the Poisson equation that we solved
above by the method of MFT.

7.6 Problems

Problem 7.1 a) Explicitly obtain the matrix A corresponding to set
of linear equations (7.4). b) Obtain the determinant of matrix A. c)
For what value of β do we have |A| = 0?.

Problem 7.2 Numerically solve the Laplace equation for the circle
using circular griding and compare your findings to the analytic solu-
tion (7.9). Take the boundary value f(θ) = 1 for ≤ θ ≤ π and zero
otherwise.

Problem 7.3 By using stability analysis verify the condition (7.24).

Problem 7.4 Using the Jacobi method, obtain the solution of the
Laplace equation for a rectangle of sides Lx = 2 and Ly = 1 with the
following mixed boundary condition:

Φ(x, 0) = 1; Φ(Lx, y) = 0;
∂Φ

∂y
(x, Ly) = 0.1; Φ(0, y) = 0

Sketch the vertical and horizontal profiles.

Problem 7.5 Instead of an initial guess 0.1Φ0 for the potential at
the interior grids try other values and compare the convergence speed
for various choices. Consider the same Dirichlet we solved in the text.

§7.6. Problems 177

Problem 7.6 Solve the Laplace equations that we solved in the text
when β = Δx

Δy �= 1. Test different values of β and find the choice which
has the fastest convergence rate

Problem 7.7 Solve the Laplace equation with the Dirichlet bound-
ary condition by the implicit Gauss-Seidel algorithm and compare its
convergence rate with the explicit Gauss-Seidel and SOR methods.
Use the same parameters we used in the text.

Problem 7.8 a) Solve the Laplace equation with the Dirichlet bound-
ary condition by the SOR algorithm and compare its convergence rate
with the Gauss-Seidel method. b) What is the optimal value of the
relaxation parameter ω? c) Draw the dependence of the convergence
time versus ω. d) Use another algorithm to find the steady-state so-
lution so that you can find the convergence iteration number. Use the
same parameters as in the text.

Problem 7.9 Solve the Poisson equation for a square of side length
L with the Neumann boundary condition by both Jacobi and Gauss-
Seidel methods. Suppose there is a point charge q in the centre of the
square. Take the electric field E0 on the top edge y = L. On all the
other sides take it Φ = 0.

Problem 7.10 Solve the Poisson equation for a square of sides L
with the periodic boundary condition by the MFT method. Suppose
there is a point charge q in the centre of the square. Take the potential
φ0 = 1 on the top side y = L. On all the other sides take it Φ = 0.
Compare your finding for the same problem with the Dirichlet and
Neumann boundary conditions.

Chapter 8

Quantum mechanics

8.1 Introduction

Up to now, we have dealt with classical systems either in discrete or in
continuum nature. In this chapter, we turn our attention to quantum
systems and will learn how to explore these systems on numerical
grounds. For simplicity, we restrict ourselves to one dimension but
many of the techniques that will be discussed can be generalised to
higher dimensions in a straightforward manner. I assume you have a
theoretical quantum mechanics background at the graduate level. We
begin our discussion with the milestone of quantum mechanics the so-
called Schrödinger equation (C. Cohen-Tannoudji and Laloe, 1992).

i�
∂

∂t
Ψ(x, t) = − �

2

2m

∂2

∂x2
Ψ(x, t) + V (x, t)Ψ(x, t) (8.1)

Equation (8.1) seems to be a partial differential equation because it
involves partial time and space derivatives. Indeed, it is but take care!
The wavefunction Ψ is a complex number. This is the first time in
this book we encounter a PDE which involves complex numbers. In
fact, the Schrödinger equation does not lie in our classification scheme.
We express the complex wavefunction Ψ(x, t) in terms of its real and
imaginary part

Ψ(x, t) = ΨR(x, t) + iΨI(x, t) (8.2)

179

180 Chapter 8. Quantum mechanics

and replace (8.2) in the Schrödinger equation (8.1). After setting the
real and imaginary parts of both sides equal to each other we find:

�
∂

∂t
ΨR(x, t) = − �

2

2m

∂2

∂x2
ΨI(x, t) + V (x, t)ΨI(x, t) (8.3)

�
∂

∂t
ΨI(x, t) =

�
2

2m

∂2

∂x2
ΨR(x, t)− V (x, t)ΨR(x, t) (8.4)

As you see the Schrödinger equation for the complex function Ψ(x, t)
is equivalent to a set of two coupled second-order real-valued PDSs.
In equations (8.3) and (8.4) everything is real and we should be able
to solve them at least numerically. Technically speaking, the coupled
set of equations are initial-boundary value problems and we should
specify the initial condition Ψ(x, 0) together with the boundary values
of the wavefunction Ψ if we want to uniquely solve the problem. To
solve the problem numerically, we must replace the partial derivatives
with finite difference forms in spatial and temporal grids. We may be
tempted to use the explicit FTCS scheme. Let us see if it works.

8.2 Numerical algorithms for Schrödinger

equation

8.2.1 FTCS method

We shall begin with the FTCS algorithm. Throughout the chapter,
we work in atomic units in which � = m = 1. FTCS scheme gives:

Ψn+1
R,i −Ψn

R,i

τ
= −Ψn

I,i+1 +Ψn
I,i−1 − 2Ψn

I,i

2(Δx)2
+ V n

i Ψn
I,i (8.5)

Ψn+1
I,i −Ψn

I,i

τ
=

Ψn
R,i+1 +Ψn

R,i−1 − 2Ψn
R,i

2(Δx)2
− V n

i Ψn
R,i (8.6)

where as usual Ψn
i = Ψ(iΔx, nτ) and V n

i = V (iΔx, nτ). It turns out
that:

Ψn+1
R,i = Ψn

R,i −
τ

2(Δx)2
[Ψn

I,i+1 +Ψn
I,i−1 − 2Ψn

I,i] + τV n
i Ψn

I,i (8.7)

Ψn+1
I,i = Ψn

I,i+
τ

2(Δx)2
[Ψn

R,i+1 +Ψn
R,i−1− 2Ψn

R,i]− τV n
i Ψn

R,i (8.8)

§8.2. Numerical algorithms for Schrödinger equation 181

Let us see if the FTCS works for the simplest case of a free particle for
which V (x, t) = 0. Setting V n

i = 0 in (8.7) and (8.8) and specifying
the initial condition Ψ0

I,i and Ψ0
R,i we can find the wavefunction at the

updated timestep n+1 in terms of its value at the current timestep n.
For the initial condition, we take a cosine modulated Gaussian wave
packet centred at the origin (Liboff, 2002):

Ψ(x, 0) =
1√

σ0

√
2π

eik0xe−x2/4σ2
0 (8.9)

where σ0 denotes the packet width. Note that this wavefunction gives
a normalised probability density function i.e.;

∫∞
−∞Ψ∗(x, 0)Ψ(x, 0)dx =

1. Moreover, you can verify that the expectation value of the particle’s
velocity becomes 〈v〉 = 〈 p

m 〉 = �k0

m . This nonzero initial expectation
value of the momentum is sometimes called momentum boost (Liboff,
2002). Due to the momentum boost, it can be shown that even in
free space the wave packet spreads in time and widens. At time t the
evolved wavefunction becomes (C. Cohen-Tannoudji and Laloe, 1992;
Liboff, 2002):

Ψ(x, t) =
1√

σ0

√
2π(1 + i tτ)

1/2
e
i t
τ
(x
2σ0

)2
exp[

−iτ(x− p0t/m)2

4σ2
0t(1 + i tτ)

] (8.10)

in which τ =
2mσ2

0

�
and p0 = �k0. You can verify that 〈x〉 = �k0t

m .
Since Ψ itself is a complex number and cannot be shown on a graph,
we draw the probability density P (x, t) = |Ψ(x, t)|2. From (8.10) we
find (Liboff, 2002; Garcia, 1999):

P (x, t) = |Ψ(x, t)|2 =
1

σ0

√
2π(1 + t2

τ2)1/2
exp[− (x− p0t/m)2

2σ2
0(1 +

t2

τ2)
] (8.11)

The packet spreads in time with a time-dependent standard deviation
σ(t):

σ(t) = σ0

√
1 +

t2

τ2
(8.12)

For large time t � τ we have σ(t) → σ0t
τ . As you see the wavepacket

variance increases linearly with time at large times. The programme
SchroFTCS (see Appendix 8.A for details) numerically solves the time-
dependent Schrödinger equation with the explicit FTCS method. The

182 Chapter 8. Quantum mechanics

x
-0.5 -0.25 0 0.25 0.5
0

1

2

3

4

5

6

7

8

9

10

n=0

n=1

n=2Ψ(x,t)

V(x)=0

Figure 8.1: Time evolution of a Gaussian wave packet. FTCS method is
used with Δx = 0.005 and τ = 0.005.

results are shown in figure (8.1) for a Gaussian wave packet initially
at x = 0. We have taken σ0 = 0.05 and k0 = 0.2 which gives rise to a
momentum p0 = �k0 = 0.2. As you can see the wavefunction dramat-
ically grows and distorts in time. You can imagine the catastrophe for
larger time steps. In fact, the explicit FTCS scheme is highly unsta-
ble. We will see in short that if we use the implicit FTCS algorithm
it becomes stable but before that, we would like to discuss an alterna-
tive approach to solve the time-dependent Schrödinger equation. The
method is called Visscher.

8.2.2 Visscher method

In this method, the real part of the wavefunction updates at in-
teger timesteps n = 1, 2, · · · whereas its imaginary part gets up-
dated at half steps n = 1

2 ,
3
2 , · · · . The algorithm turns out to be

(H. Gould and Chriastian, 2006):

Ψn+1
R,i = Ψn

R,i−
τ

2(Δx)2
[Ψ

n+ 1
2

I,i+1+Ψ
n+ 1

2

I,i−1−2Ψ
n+ 1

2

I,i]+τV n
i Ψ

n+ 1
2

I,i (8.13)

§8.2. Numerical algorithms for Schrödinger equation 183

Ψ
n+ 3

2

I,i = Ψ
n+ 1

2

I,i +
τ

2(Δx)2
[Ψn

R,i+1+Ψn
R,i−1−2Ψn

R,i]−τV n
i Ψn

R,i (8.14)

In order to run the iteration we need to know Ψ0
R,i and Ψ

1
2

I,i. Visscher
has shown that the stability condition for his algorithm is:

−2�

τ
≤ V (x, t) ≤ 2�

τ
− 2�2

(mΔx)2
(8.15)

For the particular case of a free particle V (x, t) = 0 the stability
condition reduces to:

τ ≤ (mΔx)2

�
(8.16)

To obtain Ψ
1
2

I,i we use Taylor expansion:

Ψ
1
2

I,i = ΨI,i(
τ

2
) = ΨI,i(0) +

τ

2

∂Ψ0
I,i

∂t
= ΨI,i(0)+

τ�

4m(Δx)2
[Ψ0

R,i+1 +Ψ0
R,i−1 − 2Ψ0

R,i]−
τ

2�
V 0
i Ψ

0
R,i (8.17)

Now we can march forward in time according to equations (8.13) and
(8.14). Figure (8.2) shows the time evolution of the real and imaginary
parts of the wavefunction. The parameters are k0 = 2, σ0 = 1,Δx =
0.04, τ = 0.1. The wavefunction is initially at x0 = −15. As you see
the algorithm is not stable. Let us implement a stable scheme. The
scheme we wish to use is the Crank algorithm that you are well familiar
with it from previous chapters.

8.2.3 Crank method

Now we discuss the application of Crank’s method to Schrödinger
equation. According to Crank’s algorithm we have:

i�
[Ψn+1

i −Ψn
i]

τ
= − �

2

2m(Δx)2
[Ψn+1

i+1 +Ψn+1
i−1 −2Ψn+1

i]+V n
i Ψn+1

i (8.18)

Note that the right-hand side is evaluated in timestep n + 1. Let us
Ψ(n) store the value of the wavefunction Ψ at spatial grids in timestep

184 Chapter 8. Quantum mechanics

x
-20 -10 0 10

-0.5

0

0.5

1

n=0

n=1

n=2

ψ
real

Figure 8.2: The real part of a Gaussian packet in free space after the first
and the second timesteps. Visscher’s method has been used.

n i.e.; Ψ†(n) = (Ψn
0 ,Ψ

n
1 , · · · ,Ψn

N) where N + 1 is the the number of
spatial grids. The Schrödinger equation in Crank algorithm becomes:

i� [Ψ(n+1)−Ψ(n)]
τ = HΨ(n+1) . This equation can be recast in the fol-

lowing form:

(I +
iτH

�
)Ψ(n+1) = Ψ(n) (8.19)

Given the initial condition at n = 0, we can march forward in time to
obtain the wavefunction. Notice that (8.19) is formal because it is not
a real set of linear equations. In fact (8.19) is a complex set of linear
equations or in other words, a complex linear system of equations (see
(W. H. Press and Flannery, 2002) chapter two for more details). To
solve it we should separate the real and imaginary parts. After the
separation we obtain:

Ψ
(n+1)
R − τH

�
Ψ

(n+1)
I = Ψ

(n)
R (8.20)

Ψ
(n+1)
I +

τH

�
Ψ

(n+1)
R = Ψ

(n)
I (8.21)

§8.2. Numerical algorithms for Schrödinger equation 185

x
-20 -10 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t = 0

t = 0.1

t = 0.5

t= 1.0

t = 1.5

t = 2.0

t = 2.5

t = 3.0

P(x)

Figure 8.3: The time evolution of a cosine-modulated Gaussian wave
packet by the implicit Crank algorithm. The parameters are: N = 200, σ0 =
1, k0 = 2, τ = 0.01, L = 40. The algorithm is stable and we see the spreading
phenomenon.

To solve this 2 by 2 set of linear equations we substitute Ψ
(n+1)
I from

(8.21) into (8.20) and arrive at this equation:

(I +
τ2H2

�2
)Ψ

(n+1)
R = Ψ

(n)
R +

τH

�
Ψ

(n)
I (8.22)

Once we know the wavefunction at timestep n we can solve the lin-
ear set of equations (8.22) to find the real part of the waverfunction at

timestep n+1. After finding Ψ
(n+1)
R from (8.22) we replace it in (8.21)

and find Ψ
(n+1)
I by solving the equation Ψ

(n+1)
I = Ψ

(n)
I − τH

�
Ψ

(n+1)
R .

The programme SchroCrank (see Appendix 8.B for details) numeri-
cally solves the time-dependent Schrödinger equation with the Crank
method for a system of length L which has N + 1 grid points. We
have set Ψ(x−1) and Ψ(xN+1) to zero (whenever encountered) to
be able to run the iterations. Figure (8.3) shows the evolution of
a cosine-modulated Gaussian wave packet in a potential-free space by
the Crank method. As you can see the algorithm is stable. The wave
packet spreads during the time evolution. Let us look into the problem

186 Chapter 8. Quantum mechanics

from a different viewpoint. We try to solve the initial value problem
of Schrödinger equation i�∂Ψ

∂t = HΨ for a free particle (V (x, t) = 0).
When the potential is zero we can proceed analytically to solve the
coupled partial differential equations (8.3) and (8.4). Taking another

time derivative from (8.3) and replacing ∂ΨI(x,t)
∂t from (8.4) we arrive

at:

∂2ΨR(x, t)

∂t2
= − �

2

4m2

∂4ΨR(x, t)

∂x4
(8.23)

analogously we find:

∂2ΨI(x, t)

∂t2
= − �

2

4m2

∂4ΨI(x, t)

∂x4
(8.24)

Let ΦR(k, t) = denote the Fourier integral of ΨR(x, t) that is ΨR(x, t) =
1√
2π

∫ +∞
−∞ dkΦR(k, t)e

ikx. With this Fourier transformation (8.23) be-
comes:

∂2ΦR(k, t)

∂t2
= −�

2k4

4m2
ΦR(k, t) (8.25)

The same equation holds for ΦI(k, t). Introducing Φ(k, t) = ΦR(k, t)+
iΦI(k, t) gives:

∂2Φ(k, t)

∂t2
= −�

2k4

4m2
Φ(k, t) (8.26)

An integration gives:

Φ(k, t) = Φ(k, 0)ei�k
2t/2m (8.27)

The constant Φ(k, 0) turns out to be:

Φ(k, 0) =
1√
2π

∫ +∞

−∞
dxΨ(x, 0)e−ikx (8.28)

Replacing Ψ(x, 0) from (8.9) into (8.28) gives:

Φ(k, 0) =
1√
2π

∫ +∞

−∞
dx

1√
σ0

√
2π

eik0xe−x2/4σ2
0e−ikx (8.29)

If you remember we had a similar integral in chapter (5). The inte-
gration gives:

Φ(k, 0) =

√
σ0√√
2π

e−σ2
0(k−k0)

2

(8.30)

§8.2. Numerical algorithms for Schrödinger equation 187

Putting (8.30) into (8.27) gives:

Φ(k, t) =

√
2σ0√√
2π

e−σ2
0(k−k0)

2

ei�k
2t/2m (8.31)

The inverse Fourier integral transform gives:

Ψ(x, t) =
1√
2π

∫ +∞

−∞
dkΦ(k, t)eikx (8.32)

By replacing (8.31) into (8.32) we find:

Ψ(x, t) =

√
2σ0√√
2π

1√
2π

∫ +∞

−∞
dke−σ2

0(k−k0)
2

ei�k
2t/2meikx (8.33)

A few more changes of variables and a Gaussian integration should
reproduce the analytic result in (8.10). We leave the details as an
exercise to you.

8.2.4 Crank-Nicolson Algorithm

The Crank algorithm can be improved to give more accurate results.
We implement the Crank-Nicolson for this purpose. One simply re-
places the term HΨ(n+1) in the Crank algorithm by 1

2 [HΨ(n+1) +

HΨ(n)]. In other words, we find:

i�(
Ψ(n+1) − Ψ(n)

τ
) =

1

2
(HΨ(n+1) +HΨ(n)) (8.34)

A simplification gives the Crank-Nicolson algorithm in the following
form:

(I +
iτH

2�
)Ψ(n+1) = (I − iτH

2�
)Ψ(n) (8.35)

The separation of real and imaginary parts gives the following set of
linear equations:

Ψ
(n+1)
R − τH

2�
Ψ

(n+1)
I = Ψ

(n)
R +

τH

2�
Ψ

(n)
I (8.36)

Ψ
(n+1)
I +

τH

2�
Ψ

(n+1)
R = Ψ

(n)
I − τH

2�
Ψ

(n)
R (8.37)

188 Chapter 8. Quantum mechanics

x
-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t = 0.5

t = 1.0

t = 1.5

t = 2.0

t = 2.5

t = 3.0

P(x)

Figure 8.4: The time evolution of a cosine-modulated Gaussian wave
packet in the Crank-Nicolson algorithm. The algorithm is stable and we
see the spreading phenomenon. The parameters are identical to those in
figure (8.3).

To solve this 2 by 2 system of linear equations we substitute Ψ
(n+1)
I

from (8.37) into (8.36) and arrive at this equation:

(I +
τ2H2

4�2
)Ψ

(n+1)
R = (I − τ2H2

4�2
)Ψ

(n)
R +

τH

�
Ψ

(n)
I (8.38)

Once we know the wave function at timestep n we can solve the lin-
ear set of equations (8.38) to find the real part of the wave function

at timestep n + 1. After finding Ψ
(n+1)
R from (8.38) we replace it in

(8.37) and find Ψ
(n+1)
I by solving Ψ

(n+1)
I = Ψ

(n)
I − τH

2� Ψ
(n+1)
R − τH

2� Ψ
(n)
R .

The programme SchroCrankNicol (see Appendix 8.C for details) nu-
merically solves the time-dependent Schrödinger equation with the
Crank-Nicolson method for a system of length L with N + 1 grid
points. We set Ψ(x−1) and Ψ(xN+1) (whenever encountered) to zero
to be able to run the iteration. Figure (8.4) shows the evolution of a
cosine-modulated Gaussian wave packet in a potential-free space by
the Crank-Nicolson algorithm. We end this section by noting that the
Crank-Nicolson algorithm resembles the P àde approximation for the

§8.3. Expectation values 189

exponential e−z:

e−z ≈ 1− z

1 + z
(8.39)

The Crank-Nicolson algorithm can be alternatively written as follows
(see Eq. (8.35)):

Ψ(n+1) = (I +
iτH

2�
)−1(I − iτH

2�
)Ψ(n) (8.40)

On the other hand, we know that in quantum mechanics the time evo-

lution operator is U(t, 0) = e
−iHt

� . Applying the P àde approximation
for short times formally gives:

U(t, 0) =
I − iHt

�

I + iHt
�

(8.41)

You see the correspondence. Moreover, only the Crank-Nicolson pre-
serves the unitary property of the evolution operator. Neither the
FTCS nor the Crank algorithms preserve this property.

8.3 Expectation values

So far we have managed to compute the evolution of wavefunction
provided that its value is given at t = 0. However, the main task
of quantum mechanics i.e.; the evaluation of operators’ expectation
values is not fulfilled yet. Here we wish to discuss this point from a
numerical viewpoint. For a general operator Â that is a function of
coordinate x and momentum p the expectation value is given:

〈Â(x, p)〉 = 〈Â(x,
�

i

∂

∂x
)〉 =

∫
Ψ∗(x, t)A(x, �

i
∂
∂x)Ψ(x, t)dx∫

Ψ∗(x, t)Ψ(x, t)dx
(8.42)

Once we compute the wave function at time and space grids we can
numerically compute the integrals in (8.42). Let us do it for a simple
case when Â = p̂. The denominator integral is simply approximated
by:

∫
Ψ∗(x, t)Ψ(x, t)dx =

N∑
j=0

Δx[(Ψn
R,j)

2 + (Ψn
I,j)

2] (8.43)

190 Chapter 8. Quantum mechanics

in which t = nτ and x = jΔx as usual. For Â = p̂ the numerator
integral becomes:

〈p̂〉 =
∫

Ψ∗(x, t)
�

i

∂

∂x
Ψ(x, t)dx (8.44)

After expressing Ψ by its real and imaginary parts, (8.44) becomes:

〈p̂〉 = �

i

∫
[ΨR

∂ΨR

∂x
+ΨI

∂ΨI

∂x
+ i(ΨR

∂ΨI

∂x
−ΨI

∂ΨR

∂x
)]dx (8.45)

The integrals of the first two terms vanish because it equals [Ψ2
R(x, t)+

Ψ2
I(x, t)]

+∞
−∞ and all the wave functions vanish at x = ±∞. The re-

maining integral becomes:

〈p̂〉 = �

∫
[ΨR

∂ΨI

∂x
−ΨI

∂ΨR

∂x
]dx (8.46)

We approximate this integral by a rectangular method:

〈p̂〉 = �

N∑
j=0

Δx[Ψn
R,j(

Ψn
I,j+1 −Ψn

I,j

Δx
)−Ψn

I,j(
Ψn

R,j+1 −Ψn
R,j

Δx
)] (8.47)

It is simplified as follows:

〈p̂〉 = �

N∑
j=0

[Ψn
R,jΨ

n
I,j+1 −Ψn

I,jΨ
n
R,j+1] (8.48)

Do not forget to replace Ψn
R,N+1 with Ψn

R,0 and Ψn
I,N+1 with Ψn

I,0that
if you have periodic boundary condition. Otherwise, for nonperiodic
boundary conditions, you can use a backward finite difference scheme
(when necessary) to avoid dealing with variables at non-existing grids
i = −1 and i = N + 1.

8.4 Wavepacket evolution in a potential

In this section, we shall consider the solution of wave packet propaga-
tion in a nonzero potential region. As our first example let us solve
the incidence of a wavepacket on a potential step. Consider a step
potential of height V0 which begins at x = 0. See figure (8.5) for illus-
tration. We take Ψ(x, 0) a Gaussian wavepacket centred at x0 = −10.

§8.4. Wavepacket evolution in a potential 191

Figure 8.5: A cosine-modulated Gaussian wave packet is incident from the
left onto a step potential.

The other parameters are L = 40, k0 = 2, σ0 = 1. Moreover, we have
taken N = 200 and τ = 0.01 and used Crank’s algorithm. Figure (8.6)
shows the evolution of a Gaussian cosine modulated wave packet inci-
dent on a step potential of height V0 = 2. As you see the packet shape
drastically deviates from Gaussian when it reaches the vicinity of the
step i.e.; x = 0. At x = 0 the packet becomes distorted and undergoes
fluctuations. Let us see the packet evolution for longer times. Figure
(8.7) shows this evolution. The separation of the wave packet on both
sides of the step indicates the passage possibility of the particle from
the step potential. The time the peak of the reflected wave reaches the
initial position of the incident packet is roughly tr ≈ 19 (in reduced
units). As can be seen from the figure (8.6) it almost takes ti ≈ 7
units of time for the incident wave packet to reach the barrier. Our
simulation shows that ti �= tr. The reason is the absence of symmetry
in potential. We recall that when the initial wavefunction is a cosine
travelling wave with energy E > V0 the transmission and reflectance
coefficients T and R become (Eisberg and Resnick, 1974):

R = 1− T = (
1−

√
1− V0/E

1 +
√
1− V0/E

)2 (8.49)

Note the wavepacket energy is roughly 〈E〉 =
�
2k2

0

2m . In our atomic
unit, we have 〈E〉 ≈ 2. This value is of the order of step energy V0

therefore we have a notable reflection probability. We have repeated
the analysis for a higher step potential. Figure (8.8) shows the evolu-
tion of wave packet for a step of height V0 = 10. The parameters of

192 Chapter 8. Quantum mechanics

x
-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t = 0.0

t = 1.5

t = 3.5

t = 5.5

t = 7.5P(x)

Figure 8.6: The time evolution of a cosine-modulated Gaussian wave
packet incident on a step potential of height V0 = 2.

the incident Gaussian packet remain the same. As you see almost all
of the wave packet is reflected. The transmission probability is very
small. The reason is due to the large height of the step potential.
The correspondence to classical mechanics is more evident. Note the

wavepacket energy is roughly 〈E〉 = �
2k2

0

2m = 2. This value is less than
the step height and therefore the transmission probability becomes
small. In exercises, you are asked to obtain the energy expectation
value of the initial wavepacket.

8.5 Time independent Schrödinger eq.

So far we have been considering time-dependent Schrödinger equation.
You know well that notable information can be obtained by solving
the time-independent Schrödinger equation. It should not be forgot-
ten that this equation can only be considered if the potential does not
depend on time. In this case, we can use the method of separation of
variables and write the wave function as Ψ(x, t) = φ(x)ψ(t). Inserting

this in the Schrödinger equation (8.1) implies ψ(t) = Ce−
iEt
� where

§8.5. Time independent Schrödinger eq. 193

x
-30 -20 -10 0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t = 9.5

t = 14.5

t = 15.5

t = 19.5

P(x)

Figure 8.7: The time evolution of a cosine-modulated Gaussian wave
packet incident on a step potential of height V0 = 2 for a longer time.
Reflected and transmitted waves are apparent.

the energy E is the separation constant. Constant C will be deter-
mined by the normalisation condition and can be set to one at the
moment. Furthermore, the differential equation governing the wave-
function φ(x) becomes:

− �
2

2m

d2φ(x)

dx2
+ V (x)φ(x) = Eφ(x) (8.50)

The function φ(x) and energy E are called eigenfunction, or inter-
changeably eigenstate, and eigenvalue respectively. Note that both
the eigenfunction and eigenvalue are unknown. We should be able to
find them by solving (8.50) provided appropriate boundary conditions
are given. Equation (8.50) with the given boundary conditions on
φ(x) is in effect an eigenvalue-boundary problem and is mathemati-
cally classified as the Sturm-Liouville problem. For the existence and
uniqueness of the problem consult mathematical physics textbooks.
An excellent one that I can suggest is (Myint-U and Debnath, 2007).
In principle, there are many (actually infinite) eigenstates/eigenvalues
for a Sturm-Liouville problem. Once you find all the eigenvalues En

194 Chapter 8. Quantum mechanics

x
-30 -20 -10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

t = 1

t = 3

t = 5

t = 8

t = 10

t = 12

t = 15

P(x)

V0 = 10

Figure 8.8: The time evolution of a cosine-modulated Gaussian wave
packet incident on a step potential of height V0 = 10. The transmitted
wave has a tiny amplitude.

and their associated eigenfunctions φn(x), the wavefunction Ψ(x, t)
can be written as follows (thanks to the superposition principle).

Ψ(x, t) =
∑
n

cnφn(x)e
− iEnt

� (8.51)

The sum sign is formal and may take an integral form if the eigen-
functions/values are continuous in nature. Coefficients cn are given
by the orthogonality property of the Sturm-Liouville eigenfunctions.

cn =

∫
φ∗n(x)Ψ(x, 0)dx (8.52)

8.5.1 Step function potential

In this section, we discuss the numerical solution of the Schrödinger
equation for some well-known potentials. Let us begin with the step
function potential. Assume the step is located at x = 0 with height
V0 > 0. More concisely, we have:

V (x) = 0 x < 0; V (x) = V0 x ≥ 0 (8.53)

§8.5. Time independent Schrödinger eq. 195

First, we prove there exist no negative eigenvalues E < 0. To see
this, suppose there is an eigenstate with a negative eigenvalue. In
the left region x < L we have: φL(x) = Aeκx + Be−κx in which

κ =

√
2m|E|
�

. In the right region we have: φR(x) = Ceξx + De−ξx

where ξ =

√
2m(V0+|E|)

�
. The finiteness of the wavefunction at ±∞

implies B = C = 0. Continuity of the wavefunction and its derivative
at x = 0 gives:

A = D; κA = −ξD (8.54)

Equation (8.54) gives κ = −ξ. This implies that a positive quantity κ
is equal to a negative quantity −ξ which is an inconsistency. Therefore
we conclude there is no negative energy eigenvalue for this problem.
For positive values of E, three cases can be identified: E < V0, E > V0,
and E = V0. For the first case i.e.; when the energy eigenvalue is less
than the step height the analytical solution becomes (see reference
(Eisberg and Resnick, 1974) for details):

φ(x) = D cos kx−D
K

k
sinkx x ≤ 0 (8.55)

φ(x) = De−Kx x ≥ 0 (8.56)

in which k =
√
2mE
�

andK =

√
2m(V0−E)

�
. Note that the wave function

is real. In the second case where E > V0 the wavefunction turns out
to be:

φ(x) = Aeikx +A
k −K

k +K
e−ikx x < 0 (8.57)

φ(x) = A
2k

k +K
eiKx x ≥ 0 (8.58)

Here K =

√
2m(E−V0)

�
. Notice the wave function does not seem to be

real and includes an imaginary part. This is true but do not forget
that we have put the amplitude of the left coming wave e−iKx equal
to zero. If we had not done this then it would be possible to choose
the unimportant complex constant A in such a way that the whole
wavefunction becomes real. Finally, we consider the third case which
is E = V0. In this case, the Schrödinger equation in the right region

196 Chapter 8. Quantum mechanics

reduces to φ′′(x) = 0. The solution is linear in x : φR(x) = Cx +D.
The finiteness of the wavefunction at x → +∞ implies C = 0. In the
left region we have: φL(x) = Aeikx +Be−ikx. Continuity of φ and its
derivative at x = 0 gives:

A+B = D; ik(A−B) = 0 (8.59)

Equation (8.59) gives A = B. Consequently, the wave function be-
comes:

φL(x) = 2A coskx; φR(x) = 2A (8.60)

We have managed to find all the eigenfunctions and their associated
eigenvalues. In some books, you see that the unspecified constants
are obtained from the normalisation of the wave function. This task
cannot be fulfilled if the space is infinite. Hopefully, the unspecified
constants do not appear in the expectation values because they cancel
out from the numerator and the denominator of any quantity expec-
tation values. As you see, since the potential is extended in the entire
space we have a continuum of energy eigenvalues. Let us now see if
we can reproduce these analytical results by computer or not. The
answer is yes and the algorithm is very simple: Select a value for E
and then turn the time-independent equation (8.50) into a discretised
form and then march towards left and right to find the eigenfunctions.
More precisely, we recast (8.50) in a finite difference form:

− �
2

2m

φi+1 + φi−1 − 2φi

(Δx)2
+ Viφi = Eφi (8.61)

where as usual φi = φ(iΔx) and Vi = V (iΔx). Equation (8.61) gives:

φi+1 = 2φi[1− m(Δx)2

�2
(E − Vi)]− φi−1 i = 1, 2, · · · (8.62)

Equation (8.62) is a two-step algorithm and we should specify both
φ0 and φ1 to iterate. Let i = 0 correspond to the origin x = 0.
The grid numbers i = 1, 2, · · · give the right region x > 0 whereas
i = −1,−2, · · · gives the left region x < 0. Actually (8.62) is suitable
for obtaining the eigenvalues in the right region. For the left region
we change i into i− 1 in (8.61). Expressing φi−2 in terms of φi−1 and
φi gives:

φi−2 = 2[1− m(Δx)2

�2
(E − Vi−1)]φi−1 − φi i = 0,−1, · · · (8.63)

§8.5. Time independent Schrödinger eq. 197

x
-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

φ(x)

E=4

Figure 8.9: Wave function for the step function potential of height V0 = 3.
The energy is set to E = 4. The wavefunction is sinusoidal in both left and
right regions. The wavelength is larger in the right region x > 0. The space
grid is set to Δ = 0.04.

You see that if we want to iterate backward, we need to know φ0

and φ−1. We can assign arbitrary values to φ0 and φ1. Continuity of
wave function derivative at x = 0 gives φ−1 in terms of φ+1. Setting

the forward finite difference of dφ(0+)
dx = φ1−φ0

Δx equal to the backward

finite difference of dφ(0−)
dx = φ0−φ−1

Δx gives:

φ−1 = 2φ0 − φ1 (8.64)

The numerical result is shown in figure (8.9). The step height is V0 = 3
and the energy has been set at E = 4. We have chosen φ0 = 1 and
dφ(0)
dx = 0.1. The wave numbers k and K are 2.83 and 1.41 respec-

tively. They give the wavelengths λL = 2π
k = 2.22 and λR = 2π

K = 4.45
respectively. The agreement between theoretical results and compu-

tational ones is very appealing. In fact, dφ(0)
dx determines the wave-

function amplitude. Figure (8.10) shows the wavefunction for some

different choices of the wavefunction’s derivative dφ(0)
dx . Now let us

see what happens to the wavefunction if the energy eignvalue E is

198 Chapter 8. Quantum mechanics

x
0 2 4 6 8 10

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

=0.5

=10

φ(x)

φ(0)’
φ(0)’

E=4

Figure 8.10: Computed wave function for two different values of φ′(0).
The energy is set to E = 4 and other parameters are identical to those in
figure (8.9). As you see the wave number is the same for the two values.

smaller than V0. Figure (8.11) shows the computed wavefunctions
for eigenenergies E = 2 and E = 2.5 respectively. You can see the
substantial difference with the case E > V0. In fact, in the classi-
cally forbidden region (x > 0) we have seemingly exponential growing
wavefunctions! Our expectation from physics is to have exponentially
decreasing wavefunctions but do not be disappointed! The reason is
that we have theoretically learnt, in our quantum mechanic course, to
set, by hand, the coefficient of the growing term eκx to zero on phys-
ical grounds. However, a computer does not understand physics and
simply computes both eκx and e−κx terms. The computed wavefunc-
tion contains both exponentially increasing and decreasing solutions.
As you see from the figure (8.11) when E approaches V0 from below,
the wavefunction in the classically forbidden region decreases, and in
the limit E → V0 the solution becomes linear in x which is in good
agreement with the analytical result. Figure (8.12) illustrates this
behaviour.

§8.5. Time independent Schrödinger eq. 199

x
-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

15

20

25

30

E=2.0

E=2.0

E=2.5

E=2.5φ(x)

Figure 8.11: Computed wavefunctions in a step potential of height V0 = 3
for E = 2 and E = 2.5.

8.5.2 Infinite square well

The potentials we have considered so far cannot confine the particle.
In other words, the particle wavefunction is an extended function, and
the particle can be found at any location of the space with any pos-
itive continuum energy eigenvalue E. We now consider the confining
potentials under which the particle can only be found in a finite region
of space. These states are called bound states in quantum mechan-
ics. The typical example is an infinite square well with the following
potential:

{
V (x) = 0 for |x| < a,

V (x) = +∞ for |x| ≥ a.
(8.65)

The well’s width is 2a. See the schematic in figure (8.13). The wave-
function should be zero outside the well’s region |x| ≥ a. Inside the
well the potential is zero and we have:

φ(x) = Aeikx +Be−ikx (8.66)

200 Chapter 8. Quantum mechanics

x
-4 -3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

6

7

8

9

10

E=2.8

E=2.8

E=2.9

E=2.9

E=3.0

E=3.0
φ(x)

Figure 8.12: Computed wave functions for a step potential of height V0 = 3
for some eigenvalues E close to V0.

where k =
√
2mE
�

. The continuity of wavefunction at the well’s bound-
aries x = ±a gives φ(−a) = φ(a) = 0 therefore we have:

Ae−ika +Beika = 0; Aeika +Be−ika = 0 (8.67)

Equations (8.67) comprise a set of homogeneous linear equations in
terms of unknowns A and B. The determinant of the 2× 2 matrix of
coefficients turns out to be e−2ika−e2ika. To have a nontrivial solution,
we must set the determinant equal to zero. This gives e−2ika = e2ika

or in other words eika = ±e−ika. Two distinctive cases arise. For
the positive sign, we have e2ika = 1 which implies that 2ka should be
an integer multiple of 2π i.e.; kn = nπ

a n = 0, 1, 2, · · · . The quan-

tised energy eigenvalues become En =
k2
n�

2

2m = n2 �
2π2

2ma2 = (2n)2 �
2π2

8ma2 .
Moreover, e−ika = eika gives A + B = 0 (see Eq. (8.67)). Equation
(8.66) in turn gives φn(x) = A sin knx = A sin 2nπx

2a . You see that the
eigenfunction has odd parity. Remind you from quantum mechanics
that when the potential is symmetric (like the present case), its eigen-
functions have a definite parity. The normalisation of this odd parity
eigenstate gives the normalisation coefficient A = 1√

a
. In the second

§8.5. Time independent Schrödinger eq. 201

Figure 8.13: Schematic representation of a symmetric infinite well of width
2a.

case we have eika = −e−ika or equivalently e2ika = −1. This implies
2ka must be an odd integer multiple of π i.e.; 2ka = (2n + 1)π or
kn = (2n + 1) π

2a n = 0, 1, 2, · · · . The quantised energy eigenvalues

become En =
k2
n�

2

2m = (2n + 1)2 �
2π2

8ma2 . Furthermore, eika = −e−ika

gives A = B (see Eq. (8.67)). Equation (8.66) gives the even eigen-

state φn(x) = A cos knx = A cos (2n+1)πx
2a . This eigenfunction has even

parity. Normalisation gives the coefficient A = 1√
a
. To summarize,

the eigenstates are either odd or even. They have well-defined par-
ity because the potential is symmetric. The odd parity eigenstates
(normalised) are:

φn(x) =
1√
a
sin

nπx

2a
n = 2, 4, · · · (8.68)

The even parity eigenstates (normalised) are:

φn(x) =
1√
a
cos

nπx

2a
n = 1, 3, · · · (8.69)

Remind you that we can write the eigenvalue as:

Ek =
k2�2π2

8ma2
(8.70)

202 Chapter 8. Quantum mechanics

where k = 2n for the even states and k = 2n + 1 for the odd ones.
Eventually, we draw your attention to the intricate point that the
wavefunction derivatives are not continuous at the wall positions i.e.;
at x = ±a. Despite we see a contradiction to the quantum mechanics
postulate but we should not worry. In fact, this discrepancy roots in
our unphysical assumption of allowing infinities in the potential. Let
us now solve the problem numerically. We will develop three different
numerical methods. First, we introduce the shooting method.

Method one: shooting method

In this method, the first thing that attracts your attention is prob-
ably its name. The name roots in the projectile motion. If you re-
quire a cannonball to hit a target on the ground, you have to properly
adjust the firing velocity vector. In a mathematical sense, the time-
independent Schrödinger equation is a linear second-order differential
equation and one needs two initial conditions φ(0) and φ′(0) to find
the solution. These two quantities play the role of cannonball ini-
tial position and velocity. The unknown energy E must be found (by
try and error) with the requirement that the wavefunction becomes
zero at the right boundary i.e.; φ(+a) = 0. We provisionally take
φ(0) = φ0 = 1 for the even eigenstates. Of course, after obtaining the
eigenstate (unnormalised) we will normalise it by multiplication at a
constant factor. Even parity allows us to determine φ1. To see this
note that the iteration rule (8.62) gives:

φ1 = 2φ0 − φ−1 − 2m

�2
(Δx)2(E − V0)φ0 (8.71)

Even parity implies φ−1 = φ(−Δx) = φ(Δx) = φ1. Putting this into

(8.71) we obtain φ1 = φ(0)[1 − m(Δx)2

�2 (E − V0)] and consequently we
can iterate. The essence of the shooting method is to make an ini-
tial guess for E and construct the wavefunction up to the last grid
i = N . If φN is zero then our choice is the energy. Otherwise, which
is normally the case, we have to increase or decrease E and repeat
the procedure until the condition φN = 0 is satisfied within a given
tolerance. The main issue is how to adjust E. Here the best strat-
egy is to define a trend. In our problem, E should be varied in such
a direction to decrease the wavefunction deviation from its bound-
ary value. Suppose |φ(k)

N − φ(a)| denotes the absolute value of differ-

§8.5. Time independent Schrödinger eq. 203

ence between the computed wavefunction at the last grid φ
(k)
N with

its desired one φ(a) in the kth step of energy adjustment. The new
energy guess E(k+1) should decrease this difference. Having defined

an energy increment δE we obtain |φ(k+1)
N − φ(a)| for both new en-

ergy trials E(k+1) = E(k) ± δE. The one which give a smaller value

|φ(k+1)
N − φ(a)| with respect to |φ(k)

N − φ(a)| is chosen as or new en-
ergy guess. Two more comments are in order. First, to verify the
condition φcomputed

N = 0 and hence to find a criterion for stopping
the energy variation procedure you should define a tolerance param-
eter ε. We stop the procedure at kth step whenever the condition

0 < |φ(k)
N − φ(a)| < ε is fulfilled. The second point governs the diver-

gence of wave function before the wavefunction evaluation reaches the
last grid i = N . If the energy E is not sufficiently close to an eigen-
value then the wavefunction φi may become too large at intermediate
grids i < N . To avoid such divergence, we define a cutoff quantity
maxsize. If we encounter a grid i for which |φi| > maxsize then we
terminate the wavefunction evaluation and store φi−1 as our φN in the
energy variation trend. The programme Shooting (see appendix 8.D
for details) numerically solves the time-dependent Schrödinger equa-
tion for given boundary values in a finite region of space. In particular,
the programme solves the infinite square well. The first nine energy
eigenvalues in the reduced units obtained by the Shooting method are
E1 = 1.233, E2 = 4.932, E3 = 11.097, E4 = 19.728, E5 = 30.825, E6 =
44.388, E7 = 60.413, E8 = 78.912, and E9 = 99.873. The theoretical
values are: E1 = 1.233, E2 = 4.934, E3 = 11.097, E4 = 19.726, E5 =
30.825, E6 = 44.388, E7 = 60.417, E8 = 78.912, and E9 = 99.873. You
see the excellent agreement between theoretical and computational
results. Figure (8.14) shows the computed wave functions for some
values of E. We have taken our initial guess as E(0) = 1.4. The calcu-
lated ground state is EG = 1.236. The exact value is EG = 1.233. The
difference is related to the tolerance parameter ε which is set to 0.01.
If we consider a smaller ε an improved answer should be obtained. You
will be asked in exercises to investigate the role of ε on the problem.

Method two: Matrix method

In the second method, the time-independent Schrödinger equation
is turned into a matrix eigenvalue problem. To this end, we utilise
the potential symmetry and consider first the even parity solutions

204 Chapter 8. Quantum mechanics

x
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

E=1.236

E=1.250

E=1.300

E=1.350

E=1.450

E=1.550

φ(x)

Figure 8.14: Computed ground state wave function for a symmetric infi-
nite square well potential calculated by shooting method for several values
of energyE. The spatial grid size was Δx = 0.02. We sat φ(0) = 1 and
φ′(0) = 0.

which have the property φ(−x) = φ(x). This property implies φ′(0) =
0. We discretise our half space [0, a] with N + 1 grid points such
that x0 = 0 and xN = a. In this region the potential is zero and

hence the Schrödinger equation becomes −�
2

2m φ′′(x) = Eφ(x). The
boundary condition φ(a) = 0 gives φN = 0 so the unknowns are
φ0, φ1, φ2, · · · , φN−1 and of course the energy E respectively. Note
there are N + 1 unknowns. For the middle points i = 1, 2, · · · , N − 2
the finite-difference version of the Schrödinger equation in the reduced
units will be:

2φi − φi−1 − φi+1

2(Δx)2
= Eφi (8.72)

The points x0 and xN−1 need special attention. At x = x0 we have:
2φ0−φ−1−φ1

2(Δx)2 = Eφ0. To proceed further, we exploit the evenness of

the wave function and replace φ−1 by φ1. This gives:

φ0 − φ1

(Δx)2
= Eφ0 (8.73)

§8.5. Time independent Schrödinger eq. 205

Analogously at xN−1 we have: 2φN−1−φN−2−φN

2(Δx)2 = EφN−1. Putting

φN = 0 we obtain:

2φN−1 − φN−2

2(Δx)2
= EφN−1 (8.74)

The Schrödinger equation at grid points gives N equations. Now ev-
erything is ready for writing the finite-difference Schrödinger equa-
tion in the form of a matrix eigenvalue problem: AΦ = EΦ in which
Φ† = (φ0, φ1, · · · , φN−1). Unfortunately, the matrix A is not sym-
metric! It differs from a diagonal matrix by the a01 entry. In fact,
(8.73) gives a01 = − 1

(Δx)2 . If it was − 1
2(Δx)2 the matrix of coeffi-

cients would be symmetric and we could analytically find the eigen-
values/eigenvectors (see (Thornton and Marion, 2003) or (Goldstein,
2001)). Incidentally, we have to resort to numerical computations. Al-
though we may use a special subroutine for obtaining the spectrum of
non-symmetric matrices (such as the routine hqr in Numerical Recipe
(W. H. Press and Flannery, 2002)) we prefer to work with symmetric
matrices because it is much more reliable to computationally obtain
their spectra. To this end, we separate φ0 from our unknowns, and
after finding the rest of unknowns i.e.; φ1, φ2, · · · , φN−1 and E we find
φ0 from the finite difference form of φ′(0) = 0. The Schrödinger equa-
tion at x = x1 gives: 2φ1−φ0−φ2

2(Δx)2 = Eφ1. The easiest discretised form

of φ′(0) = 0 is a forward difference: φ1−φ0

Δx = 0 which implies φ1 = φ0.
Therefore the Schrödinger gives:

φ1 − φ2

2(Δx)2
= Eφ1 (8.75)

The other equations remain unchanged. You see that we have man-
aged to make matrix A symmetric. The price we paid is that a11 is no
longer equal to 1

(Δx)2 . In fact it is 1
2(Δx)2 now. The merit of working

numerically with symmetric matrices is priceless. We implement the
routine tqli (see chapter 11 of Numerical Recipe) to find the eigen-
values/eigenvectors. The first five eigenvalues for N = 200 grid points
are as follows:E1 = 1.225, E2 = 11.05, E3 = 30.70, E4 = 60.14, E5 =
99.40. Interestingly you see the even eigenvalues (corresponding to
even eigenvectors) are nicely computed (thanks to tqli algorithm).
Note the eigenvalues depend drastically on the number of grid points
N . The same computed eigenvalues for N = 1000 are as follows:

206 Chapter 8. Quantum mechanics

E1 = 1.15, E2 = 10.97, E3 = 30.62, E4 = 60.26, E5 = 99.58. You see
that by increasing N some eigenvalues have improved but others have
not. Now we consider the odd parity solutions. In this case, we have
φ(−x) = −φ(x) which implies φ(0) = φ(x0) = φ0 = 0. Here we have
one less unknown. All the equations of the even parity solutions remain
unchanged except this one: Hφ(x1) = Eφ(x1). Centred space discreti-
sation gives: 2φ1−φ0−φ2

2(Δx)2 = Eφ1. Setting φ0 = 0 gives 2φ1−φ2

2(Δx)2 = Eφ1.

Hopefully, the matrix A is not only symmetric but also all the di-
agonal elements are equal to two. As you know from undergraduate
physics the eigenvalues of this matrix are given by γr = 4 sin2 rπ

2N (see
(Thornton and Marion, 2003) chapter 12). Note that in our finite-
difference form, the diagonal elements of matrix A is 2

(Δx)2 whereas

its off-diagonal ones are − 1
(Δx)2 . The matrix eigenvalue equations

turn out to be AΦ = 2(Δx)2EΦ. This gives Er = 2
(Δx)2 sin

2(rπN).

Replacing the spatial grid Δx = a
N we have:

Er = 2(
N

a
)2 sin2(

rπ

N
) (8.76)

The first four analytical eigenvalues for N = 200 are E1 = 4.93, E2 =
19.74, E3 = 44.40, and E4 = 78.93. The computed ones by the tqli

subroutine are E1 = 4.88, E2 = 19.54, E3 = 43.96, E4 = 78.15 re-
spectively. As you see the analytical eigenvalues given by the exact
diagonalisation of matrix A coincide, with two decimal point approxi-

mation, with the exact solution En = n2π2
�
2

8ma2 . I would like to mention
that contrary to the public belief which overlooks the matrix eigen-
value method, our results show, at least in the context of a simple
quantum mechanical problem, that this method is worth further at-
tention.

Method three: Root finding

We now discuss the third numerical method for finding the spec-
trum of the time-independent Schrödinger equation. The desired E is
the one for which the wave function φ becomes zero at the right wall
boundary. In the finite-difference form, we have φN = 0. Actually,
φN is a function of energy E. So what we should do is simply find
the roots of the algebraic equation φN (E) = 0. There are numerous
root-finding schemes in the literature. We refer the readers to chapter
nine of Numerical Recipe for more details.

§8.5. Time independent Schrödinger eq. 207

Figure 8.15: Schematic representation of a symmetric perturbed infinite
well of width a.

8.5.3 Perturbation of the infinite square well

Let us consider the effect of a small perturbation on the eigenstates and
eigenvalues of the symmetric infinite square well. Suppose we place a
small rectangular bump of half-width b < a and height Vb symmetri-
cally about x = 0. See figure (8.15) for a schematic representation. We
wish to see how the ground state energy and eigenstate change with
Vb and b. As in the infinite square well take a = 1. We first proceed
analytically. Because the potential is symmetric the eigenfunctions
are even or odd. We first consider the even parity solutions. It can be
proved that there exists no negative eigenvalue. Suppose the contrary
is true i.e.; there is a negative eigenvalue E = −|E|. In the region

b < x < a we have φ(x) = Aeκx + Be−κx with κ =

√
2m|E|
�

. Within
the bump region 0 < x < b we have: φbump(x) = Ceξx +De−ξx with

ξ =

√
2m(Vb+|E|)

�
. Boundary condition φ(a) = 0 implies:

Aeκa +Be−κa = 0 (8.77)

Continuity of wavefunction at x = b implies:

Aeκb +Be−κb = Ceξb +De−ξb (8.78)

208 Chapter 8. Quantum mechanics

Continuity of wavefunction derivative at x = b implies:

κ(Aeκb −Be−κb) = ξ(Ceξb −De−ξb) (8.79)

The even parity implies φ′(0) = 0 which gives ξ(C −D) = 0. Accord-
ingly, we have C = D. Putting this into (8.78) and (8.79) we arrive
at:

Aeκb +Be−κb − C(eξb + e−ξb) = 0 (8.80)

κ(Aeκb −Be−κb)− Cξ(eξb − e−ξb) = 0 (8.81)

Equations (8.77), (8.80) and (8.81) comprise a linear set of equa-
tions for unknown coefficients A,B and C. To have a nontrivial solu-
tion, the determinant of the coefficient matrix should be set to zero.
The determinant, after some straightforward algebra, turns out to be
−2κ(eξb + e−ξb). As you see it is always negative and cannot be zero.
This means that our assumption of having a negative eigenvalue has
been incorrect. As in the infinite square well problem, we consider
three distinct cases: 0 < E < Vb, E > Vb, and E = Vb. When E > Vb

we have sinusoidal forms in the bump and outside regions:

φ(x) = Aeikx +Be−ikx b ≤ x ≤ a (8.82)

φ(x) = CeiKx +De−iKx 0 ≤ x ≤ b (8.83)

with k =
√
2mE
�

and K =

√
2m(E−Vb)

�
. Note that K is smaller than

k. Because the potential is symmetric its eigenstates have definite
parity. Consider the even eigenstates first. For the even eigenstates
their derivative φ′(x) is an odd function that is φ′(−x) = −φ′(x).
Therefore at x = 0 we should have φ′(0) = 0. Substituting φ(x) from
(8.83) gives:

φ′(0) = iK(CeiKx −De−iKx)|x=0 = iK(C −D) = 0 (8.84)

Therefore we have C = D. Continuity of the wavefunction at x = b
gives:

C(eiKb + e−iKb) = Aeikb +Be−ikb (8.85)

§8.5. Time independent Schrödinger eq. 209

Continuity of the wavefunction derivative at x = b gives:

CK(eiKb − e−iKb) = k(Aeikb −Be−ikb) (8.86)

Moreover, the wavefunction should be zero at x = a which gives:

Aeika +Be−ika = 0 (8.87)

Equations (8.85)-(8.87) form a homogeneous system of linear equations
for the unknowns A,B, and C. The necessary condition for having
a nontrivial solution is that the determinant of the coefficient matrix
should be zero. Some algebra gives us the determinant as follows:

K sin(Kb) sink(a− b)− k cos(Kb) cosk(a− b) (8.88)

Setting (8.88) to zero gives us the required equation for the unknown
even eigenvalues. Note k and K are functions of E. You can verify
that in the limit of b → 0 equation (8.88) reduces to k cos ka = 0 which
is exactly the equation we encountered for the even parity solutions
of the symmetric infinite square well. We remark that (8.88) is a
transcendental equation. Before considering the odd eigenstates let
us argue that (8.88) gives a set of discrete eigenvalues. To see this it
would be more suitable to recast (8.88) as follows:

k

K
=

√
E

E − Vb
= tan(Kb) tank(a− b) (8.89)

The intersection of the left-hand side with the periodic function on
the right-hand side gives an infinite discrete number of eigenvalues.
In the exercises, you are asked to find the corresponding eigenvalues
numerically. Let us now consider odd eigenstates. Here we have φ(0) =
0. This time (8.83) gives C = −D. Similar calculations give the
determinant as follows:

K cos(Kb) sink(a− b) + k sin(Kb) cosk(a− b) (8.90)

In the limit, b → 0 equation (8.90) reduces to K sin ka = 0 which is the
same equation we obtained for the odd parity solutions of the symmet-
ric infinite square well. We can recast (8.90) into a more appropriate
form as follows:

k

K
=

√
E

E − Vb
= − tank(a− b) cotKb (8.91)

210 Chapter 8. Quantum mechanics

You can qualitatively see that there is an infinite number of odd eigen-
values. I leave it as an exercise for you to investigate the solution of
(8.91). So far we have discussed the case E > Vb. Similarly, you can
find the eigenvalue equation for the other two cases 0 < E < Vb and
E = Vb. when E < Vb equation (8.83) becomes:

φ(x) = Ceκx +De−κx (8.92)

where κ =

√
2m(Vb−E)

�
. This means that all the results obtained for

the case E > Vb are the same provided K is substituted by −iκ. Using
sin ix = i sinhx and cos ix = coshx equations (8.88) and (8.90) turn
into the following equations:

κ sinh(κb) sin k(a− b)− k cosh(κb) cos k(a− b) (8.93)

−κ cosh(κb) sin k(a− b) + k sinh(κb) cos k(a− b) (8.94)

We leave it as an exercise to find the eigenvalues form (8.93) and
(8.94). Also the third case i.e.; E = Vb is left for the exercises. Now
we try to solve the problem numerically. The method we choose is the
shooting method. The only difference is the potential form. We take
the total number of grid points N and assume M grids of them specify
the bump region. In particular, we have b = MΔx. More technically,
we take M = int(ba)N . Figure (8.16) shows the dependence of the
ground state energy on bump region half width b. As you see the
ground state energy increases with increasing b. Next, we investigate
the dependence of E0 on the bump region height Vb for some values
of b. Figure (8.17) depicts such behaviour. We have also computed
the ground state energy for very large values of Vb. The results for
Vb = 10 and Vb = 20 are E0 = 2.76 and E0 = 3.61 respectively. The
computed ground state and the lowest excited state for Vb = 10 and
b = 0.1a are shown in figure (8.18).

8.6 finite square well

The next potential we wish to consider is the symmetric finite square
well. See figure (8.19) for a schematic representation. The finite square
well potential is given by: V (x) = 0 |x| ≤ a and V (x) = V0 |x| > a.

§8.6. finite square well 211

b
0 0.1 0.2 0.3 0.4 0.5

1.25

1.3

1.35

1.4

1.45

1.5

Vb = 0.1

Vb = 0.2

Vb = 0.3

E0

Figure 8.16: Dependence of E0 on b for various values of Vb. The shooting
method has been used with Δx = 0.01.. The well half width a is set to one.

The input parameters are the well’s depth, V0, and a the well’s half-
width. Because the potential is symmetric the eigenfunctions have
definite parity. Consider the even parity first. We prove there is
no negative eigenvalue. Suppose the contrary and assume there is
a negative eigenvalue E = −|E|. In the region 0 ≤ x ≤ a we have

φI(x) = Aeκx+Be−κx with κ =

√
2m|E|
�

. In the region x > a we have:

φII(x) = Ceξx + De−ξx with ξ =

√
2m(V0+|E|)

�
. The wavefuction’s

finiteness at infinity implies C = 0. Continuity of the wavefunction at
x = a implies:

Aeκa +Be−κa = De−ξa (8.95)

Continuity of the wavefunction derivative at x = a implies:

κ(Aeκa −Be−κa) = −ξDe−ξa (8.96)

The even parity implies φ′(0) = 0 which gives κ(A − B) = 0. Ac-
cordingly we have A = B and therefore equations (8.95) and (8.96)
simplify as follows:

A(eκa + e−κa) = De−ξa (8.97)

212 Chapter 8. Quantum mechanics

V
0 0.5 1 1.5 2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

b = 0.1L

b = 0.2L

b = 0.3L

b

E0

Figure 8.17: Dependence of E0 on Vb for various values of b.

κA(eκa − e−κa) = −ξDe−ξa (8.98)

Dividing (8.98) by (8.97) gives: tanh(κa) = − ξ
κ . This is an inconsis-

tent equation because | tanh(κa)| is less than one whereas ξ
κ is greater

than one. This inconsistency implies no negative eigenvalue is allowed.
In exercises, you are asked to show the inconsistency condition holds
for odd states if there are negative eigenvalues. As in the preceding
problems we consider three distinct cases of 0 ≤ E < V0, E = V0 and
E > V0. Let us first consider the case E > V0. In the region 0 ≤ x ≤ a
we have:

φI(x) = Aeikx +Be−ikx (8.99)

In the region x > a we have:

φII(x) = CeiKx +De−iKx (8.100)

With k =
√
2mE
�

and K =

√
2m(E−V0)

�
. Note that K is smaller than

k. Continuity of wavefunction at x = a implies:

Aeika +Be−ika = CeiKa +De−iKa (8.101)

§8.6. finite square well 213

x
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

Ground state

First excited state

φ

Vb = 10

b = 0.1L

Figure 8.18: The ground and the first excited state for a perturbed sym-
metric infinite potential well. The bump region specifications are Vb = 10
and b = 0.1a. The grid spacing was taken as Δx = 0.01.

Continuity of wavefunction derivative at x = a implies:

k(Aeika −Be−ika) = K(CeiKa −De−iKa) (8.102)

We consider the even wavefunction first. For these functions we have
φ′(0) = 0 which gives ik(A − B) = 0. Accordingly, we have A =
B. Setting A = B in (8.101) and (8.102) gives two equations for
four unknowns A,C,D and energy E. We can add another equation
by requiring the normalisation condition but still, we have one more
unknown. This means that we can freely choose E. In other words,
there is a continuum of energy states for E > V0. Once you specify E
the constants A,C, and D will be determined. For odd eigenfunctions
we have φ(0) = 0 which gives A = −B. Putting this into (8.101)
and (8.102) gives two equations for four unknowns A,C,D and energy
E. Again we conclude there is a continuum of energy E. Next, we
consider the second case i.e.; E < V0. In this situation φI(x) remains
unchanged but φII(x) modifies as:

φII(x) = De−κx (8.103)

214 Chapter 8. Quantum mechanics

Figure 8.19: A finite symmetric quantum square well with width 2a and
depth V0. In figure a = 2 and V0 = 1.

Where κ =

√
2m(V0−E)

�
. Note that we have set the coefficient of the

term eκx equal to zero to avoid divergence at large x. Continuity of
wave function and its derivative at x = a give:

Aeika +Be−ika = De−κa (8.104)

ik(Aeika −Be−ika) = −κDe−κa (8.105)

Consider even eigenfunctions first. The even parity implies φ′(0) = 0
which gives ik(A − B) = 0. Accordingly, we have A = B. Dividing
(8.105) by (8.104) gives:

κ

k
= tan ka (8.106)

This is a nonlinear equation for E. We can solve it graphically. Two

curves κ
k =

√
V0−E

E and tan a
√
2mE
�

should be intersected. The number

of times these two curves intersect each other (number of eigenvalues)

crucially depends on the well’s depth V0. For V0 < π2
�
2

2ma2 we have one

solution, for π2
�
2

2ma2 < V0 < 2π2
�
2

ma2 we have two solutions etc. Figure

(8.20) shows the intersection of two curves f(E) = κ(E)
k(E) and f(E) =

tan k(E)a for V0 = 1 and V0 = 13. As you see for V0 = 1 there is one

§8.6. finite square well 215

E
0 5 10

-8

-6

-4

-2

0

2

4

6

8

tg(ka)

v0=1.0

V0=13

f(E)

Figure 8.20: Intersection of two curves f(E) = κ(E)
k(E)

and f(E) =

tan k(E)a. For the well’s depth V0 = 1, we have one intersection whereas
for V0 = 13 we have two intersections.

solution which means there is a single bound state. From the figure,
we find its eigenvalue EG = 0.365. If we increase the well’s depth to
V0 = 13 two solutions appear. The energy eigenvalues turn out to be
E1 = 0.637 and E2 = 7.553. You see that by increasing V0 the ground
state energy increase. We leave it as an exercise for you to check in the
limit V0 → ∞ the ground state EG approaches to that of an infinite
well that is 1.233. Before considering odd states, let us consider the
special case E = V0. In this case, the Schrödinger equation in region

x > a becomes −�
2φ
′′

II

2m = 0. The solution is: φII(x) = Cx + D.
The finiteness of the wavefunction at infinity implies C = 0 therefore
the wavefunction is constant for x > a. As usual, the even parity
implies A = B. Continuity of wave function and its derivative at
x = a give: Ae(ika+e−ika) = D and ikA(eika − e−ika) = 0. The latter
equation implies sin ka = 0 or A = 0 or k = 0. But none of these
equations are consistent. A cannot be zero because the wavefunction
would be zero in region |x| ≤ a. k cannot be zero because now we

216 Chapter 8. Quantum mechanics

E
0 5 10 15

-10

-8

-6

-4

-2

0

2

4

6

8

10

-cot(ka)

V0=4.0

V0=14

f(E)

Figure 8.21: Intersection of two curves f(E) = κ(E)
k(E)

and f(E) =

− cot k(E)a. For the well’s depth V0 = 4, we have one intersection whereas
for V0 = 14 we have two intersections.

have k =
√
2mV0

�
�= 0. Eventually, sin ka cannot be zero because ka

cannot be an integer multiple of π for otherwise we have a
√
2mV0

�
= nπ

and this violates the independency of a and V0. In conclusion, there
is no eigenvalue E = V0. Now let us consider the odd states. In the
case E < V0. Hopefully, many of the steps done for the even states
remain unchanged especially, (8.103)-(8.105). For odd states φ(0) = 0
implies A = −B. Substitution of B by −A and then dividing (8.105)
by (8.104) gives:

κ

k
= − cotka (8.107)

Figure (8.21) shows the intersection of two curves f(E) = κ(E)
k(E) and

f(E) = − cotk(E)a for V0 = 4 and V0 = 14. For V0 = 4 the single
energy solution becomes E1 = 2.596. For V0 = 14 there are two
solutions E1 = 3.15 and E2 = 13.3.

§8.6. finite square well 217

8.6.1 Numerical solution

Now we try to solve the problem numerically. We sketch the wavefunc-
tion up to xmax (an approximation to infinity) which is taken to be
xmax = 5a. The interval [0, xmax] is discretise by N grids and we take
M as the grid number at x = a (M < N). Let us consider even states
first. Without loss of generality, we can assign an arbitrary value say
one to φ0. Later after we obtain the solution we will multiply all φi

by a normalising factor. To find φ1 we set i = 0 in (8.62) which gives:

φ1 = 2φ0[1− m(Δx)2

�2
(E − V0)]− φ−1 (8.108)

For even parity solutions we have φ−1 = φ(−Δx) = φ(Δx) = φ1.
Replacing φ−1 by φ1 in (8.108) gives φ1 as follows:

φ1 = φ0[1− m(Δx)2

�2
(E − V0)] (8.109)

We can now iterate (8.62) once E is specified. For E > V0 we have
analytically shown that every value of E can be an eigenvalue. Figure
(8.22) shows two even wavefunctions corresponding to E = 12 and E =
25. The well’s depth is V0 = 10. As you see we have a sinusoidal form
for both regions. Of course, the wave vectors differ in regions |x| ≤ a
and |x| > a. To evaluate odd eigenfunctions we process differently.
First, we note that φ(0) = 0 for odd functions which gives φ0 = 0.
To find φ1 we arbitrary set φ′(0) = 1 which gives: φ1 = Δx + φ0 =
Δx. Note that replacing φ−1 by −φ1 in (8.108) gives you a trivial
result 0 = 0. Having specified φ1 we can iterate (8.62) to find the
eigenstates once E is given. Figure (8.23) shows two odd eigenstates
corresponding to E = 12 and E = 25. It is worth mentioning that any
eigenvalue E > V0 is doubly degenerate (one even eigenstate and one
odd eigenstate). To numerically find the eigenvalue for the caseE < V0

we proceed as follows: we set E to a small number slightly above zero
and numerically evaluate φ from (8.62) and check whether it decreases
at large distances. If the wavefunction’s magnitude increases then we
increase E by the amount ΔE and the procedure is repeated until φ
converges at a large distance say xmax. We record E as the bound
state eigenvalue. Remind you that if we are looking for an even (odd)
state we set φ0 = 0 (φ1 = Δx). Figure (8.24) shows the ground state
wave function obtained by this method. The eigenvalue turns out to

218 Chapter 8. Quantum mechanics

x
-4 -2 0 2 4

-3

-2

-1

0

1

2

3

E = 12

E = 25

φ()x

Figure 8.22: Two even eigenstates (unnormalised) corresponding to E =
12 and E = 25 which are larger than V0 = 10 in a finite symmetric quantum
well of half-width a = 1.

be E0 = 0.528 which is quite in good agreement with the analytical
solution found graphically in figure (8.20).

8.7 Harmonic oscillator potential

Our next example is devoted to the harmonic oscillator. Consider the
symmetric potential V (x) = 1

2kx
2 for a harmonic oscillator. In this

problem, the space is unlimited and the boundary condition on the
wavefunction is lim|x|→∞φ(x) = 0. We solve the problem by turning
the Schrödinger equation into a matrix eigenvalue problem. Noting the
potential symmetry V (−x) = V (x) we consider first the even parity
solutions: φ(−x) = φ(x). From the physics of the problem, we know
φ(x) → 0 when |x| → ∞. We approximate the mathematical infinity
by a large but finite number xmax. Let us take this large number

xmax = 5 in the atomic unit in which our length scale
√

�

mω0
is set

to one. Moreover, we have taken the spring constant k = 1 which

§8.7. Harmonic oscillator potential 219

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
E=12

E=25

φ(x)

Figure 8.23: Two odd eigenstates (unnormalised) for two values of
E=12,25 which are larger than V0 = 10 in a finite symmetric quantum
well of half-width a = 1.

gives ω0 =
√

k
m = 1. We discretise the interval [0, xmax] with N + 1

grids x0, x1, · · · , xN such that x0 = 0 and xN = xmax. As usual φ(xi)
and V (xi) are denoted by φi and Vi respectively. Furthermore, we set
φN = 0 as an approximation to the condition φ(x) → 0 at x → ∞. We
separate φ0 from our unknowns and after finding the rest of them i.e.;
φ1, φ2, · · · , φN−1 and E we find φ0 from the finite difference form of
φ′(0) = 0. You will shortly see the reason why we separate φ0 from the
rest of the unknowns. The Schrödinger equation at x = x1 becomes:
2φ1−φ0−φ2

2(Δx)2 + V1φ1 = Eφ1. The easiest discretised form of φ′(0) = 0 is

forward difference: φ1−φ0

Δx = 0 which implies φ1 = φ0. Therefore the
Schrödinger equation at x = x1 becomes:

φ1 − φ2

2(Δx)2
+ V1φ1 = Eφ1 (8.110)

The other equations for grids i = 2, · · · , N − 2 become:

2φi − φi−1 − φi+1

2(Δx)2
+ Viφi = Eφi (8.111)

220 Chapter 8. Quantum mechanics

x
-4 -2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ()x
0

V0 = 2

a = 1

Figure 8.24: Ground state wave function φ(x) for a finite symmetric
quantum square well. The well’s depth is V0 = 2. The eigenvalue is
E0 = 0.528. The number of grids is N = 100 and energy increment ΔE is
taken 0.0000001.

The Schrödinger equation at the grid i = N − 1 turn out to be:

2φN−1 − φN−2

2(Δx)2
+ VN−1φN−1 = EφN−1 (8.112)

We can write the above linear set of N − 1 equations in the matrix
form : AΦ = 2(Δx)2EΦ where Φ† = (φ1, · · · , φN−1). The diagonal
elements are read as:

a11 = 1+2(Δx)2V1; aii = 2[1+(Δx)2Vi] i = 2, · · · , N−1 (8.113)

The off-diagonal elements are −1. For the particular case of harmonic
oscillator we have V (x) = 1

2kx
2 which gives Vi =

1
2kx

2
i = 1

2ki
2(Δx)2.

You see that we have managed to make matrix A symmetric and can
benefit from the matrix-solver canned routines. I use my favourite one
which is tqli (see chapter 11 of (W. H. Press and Flannery, 2002)) to
find the eigenvalues. Before showing our numerical results we draw
your attention to the fact why we separated φ0 from other unknowns.

§8.7. Harmonic oscillator potential 221

If we had treated φ0 on an equal footing with other unknowns then the
matrix A would not be symmetric. You may argue why not assign φ0

an arbitrary value as we did for the even eigenstates in the shooting
method. Well, we could do that but a constant term −φ0

2(Δx)2 would

appear in the Schrödinger equation at x = x1 which would not allow
us to write the equations as AΦ = 2(Δx)2Φ. Employing the eigen-
value solver routine tqli in the programme HarmonicOscillator (for
details see Appendix 8.E) gives you the even eigenvalues. The first
five eigenvalues (for N = 200) are as follows: E1 = 0.507, E2 =
2.517, E3 = 4.523, E4 = 6.528, E5 = 8.542. They become improved
if we increase N to 700: E1 = 0.500, E2 = 2.503, E3 = 4.506, E4 =
6.511, E5 = 8.520. Higher values of N do not lead to better re-
sults. In fact, increasing the dimension of matrix A increases the
numerical errors as well. Let us see what happens if we increase
xmax to 10. The results for N = 400 and N = 1400 grid points
are as follows (Δx is the same as for the case xmax = 5): E1 =
0.507, E2 = 2.517, E3 = 4.523, E4 = 6.526, E5 = 8.530 and E1 =
0.503, E2 = 2.506, E3 = 4.507, E4 = 6.512, E5 = 8.509 respectively.
You see the larger eigenvalues are improved when xmax is increased.
We know from quantum mechanics that the exact eigenvalues are

En = (n + 1
2)�ω0 (ω0 =

√
k
m) which in our reduced units become

= n+ 1
2 . The first five exact eigenvalues corresponding to even eigen-

functions are :E0 = 0.5, E2 = 2.5, E4 = 4.5, E6 = 6.5, and E8 = 8.5.
You see that the computed eigenvalues (corresponding to even eigen-
functions) are quite close to exact values. Unfortunately, the com-
puted eigenfunctions are not as good as the computed eigenvalues.
It would be better to compute the eigenfunctions by replacing the
computed eigenvalue E in the Schrödinger equation. Then we as-
sign an arbitrary value to φ0 and set φ1 = φ0. It would then be
possible to compute φi for i = 2, 3, · · · , N − 1 by marching equation
(8.62). The analytical eigenfunctions of the harmonic oscillator are:

φn(x) = (2nn!
√
π)−

1
2Hn(ξ)e

− ξ2

2 with dimensionless ξ =
√

mω0

�
x. In

reduced units we have:

φn(x) = (2nn!
√
π)−

1
2Hn(x)e

− x2

2 (8.114)

Hn are Hermite polynomials. The first three polynomials are: H0(x) =
1, H1(x) = 2x and H2(x) = 4x2 − 2. Some computed eigenfunctions
are shown in figure (8.25). As you can see the agreement is very good

222 Chapter 8. Quantum mechanics

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n=0 computed

n=0 analytic

n=2 computed

n=2 computed

n=2 analytic

φ(x)

Figure 8.25: The first two even eigenfunctions of a harmonic oscillator
computed by the matrix method for N = 200 grid points. Comparison to
exact analytical wavefunctions is done.

except at large distances. Now we consider the odd-parity solutions
for eigenfuctions. In this case we have φ(0) = φ(x0) = 0 which implies
φ0 = 0. This time, we have one less unknown. All the equations of
the even parity solutions remain unchanged except this one: Hφ(x1) =
Eφ(x1). Centred space discretisation gives: 2φ1−φ0−φ2

2(Δx)2 + V1φ1 = Eφ1

which becomes 2φ1−φ2

2Δx2 + V1φ1 = Eφ1. Hopefully, the matrix A is not
only symmetric but also all the diagonal elements are equal to each
other. Note that in our finite-difference form, the diagonal elements
of matrix A are 2+ 2(Δx)2Vi whereas its off-diagonals are minus one.
The matrix eigenvalue equation becomes AΦ = 2(Δx)2EΦ. The first
three computed eigenvalues by the tqli subroutine for N = 200 grid
points are E1 = 1.499, E2 = 3.499, E3 = 5.498. You see the agreement
with exact results 1.5, 3.5 and 5.5 are much better than the even-parity
eigenvalues. The reason is that here the condition φ0 = 0 is exact but
in even-parity the condition φ0 = φ1 is only an approximation to
φ′(0) = 0. Figure (8.26) shows the computed first odd-parity eigen-
function: As you see in both even and dd parity eigenfunctions, there
are deviations from the exact analytical solution near xmax. This de-

§8.8. Variational method 223

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

computed

analytic

φ (x)
1

Figure 8.26: The first odd parity eigenfunctions of a harmonic oscillator
computed by the matrix method. Comparison to analytical eigenfunction
is done.

viation is more enhanced for the even-parity eigenfunctions. In the
problems, you are asked to test other values of N and xmax to see if
the numerical solution is improved.

8.8 Variational method

The ground state is the most important eigenstate in any quantum
mechanical system. Some special approaches have been developed for
obtaining ground state energy. Among them perhaps the variational
method is the most practical one. You are familiar with this fasci-
nating method in your quantum mechanics course. This approach has
numerous applications in chemistry, atomic and molecular physics, nu-
clear physics, and condensed matter physics. The variational scheme
is based on the variation principle in quantum mechanics. According
to this principle, the expectation value of the Hamiltonian for an arbi-
trary trial wave function Φ(x) is greater than or equal to the ground

224 Chapter 8. Quantum mechanics

state energy E0. More concisely we have (in one dimension for sim-
plicity):

ET [Φ] = 〈H〉 =
∫
Ψ∗(x)HΨ(x)dx∫
Ψ∗(x)Ψ(x)dx

≥ E0 (8.115)

In fact, the trial energy functional ET [Φ] can be regarded as an up-
per limit for the ground state energy E0. By minimisation of ET [Φ]
we approach the unknown true ground state. If you want to proceed
analytically then you should include some parameters a1, a2, · · · in
the trial wave function Ψ and then analytically find the dependence
of trial energy ET on them. The next step is to find the absolute
minimum of ET (a1, a2, · · ·) in the parameter space a1, a2, · · · . For
simple Hamiltonians, you may follow this procedure but it would be
a formidable task if the system becomes more complicated. Another
difficulty of this approach is that even if you manage to analytically
evaluate the integrals in (8.115) its minimisation remains a sophis-
ticated mathematical problem because in general ET (a1, a2, · · ·) is a
nonlinear function of parameters and you should solve a set of non-
linear equations ∂ET

∂aj
= 0 for j = 1, 2, · · · which are normally not

amenable to exact solutions. We will not follow this scheme and turn
our attention to a numerical approach. This time we employ some
elements from stochasticity. We search the space of functions stochas-
tically! First, we restrict the space between xmin and xmax. The
values of these two limits depend on the problem. For example, if we
are considering a symmetric infinite quantum well of width 2a then
xmin = −a and xmax = +a. Second, we discretise the space between
xmin and xmax with grid points separated from each other by Δx.
Any trial wavefunction ΨT is specified by its values on grid points:
Ψ0,Ψ1, · · · ,ΨN . Next, we look for the minimising trial wavefunction.
For simplicity, we assume the trial wave function is real. As a matter
of fact, we only search a subspace of the space of functions. The trial
energy (8.115) will be approximated by:

ET (Ψ1, · · · ,ΨN) =

∑
j ΔxΨj [

−�
2

2m
Ψj+1+Ψj−1−2Ψj

(Δx)2 + VjΨj]∑
j Δx(Ψj)2

(8.116)

The algorithms is simple: we first make a guess Ψ
(0)
0 ,Ψ

(0)
1 , · · · ,Ψ(0)

N

for the minimised trial function. Next, we randomly select one of the
grids say grid k, and change its wavefunction value by a small amount

§8.9. Problems 225

δΨ. More concisely, we evaluate (8.116) for Ψ
(0)
k → Ψ

(0)
k + δΨ. If

the energy is reduced we accept this change otherwise we reject our
change and choose another grid. After repeating this procedure for a
sufficient number of updates, we will arrive in the vicinity of a min-
imised wavefunction. We recall that this stochastic search method
is quite similar to the Monte Carlo method in statistical mechanics.
You may even accept those changes in which the energy is increased
locally. But remember that you should accept those changes proba-
bilistically. The larger the energy change the less probable the change
acceptance. The programme Variational (for details see appendix
8.F) finds the ground state energy based on the variational principle
for a given potential.

8.9 Problems

Problem 8.1 Obtain equations (8.10) and (8.11).

Problem 8.2 Do the remainder calculations to reach from (PsiFouri-
erInt) to (8.10).

Problem 8.3 Verify that the average position of a particle at ar-
bitrary time t (associated with the initial Gaussian wave packet) is

〈x〉 = ∫ +∞
−∞ xP (x, t)dx = �k0t

m .

Problem 8.4

(a) Modify the programme SchroCrankNicol such that it can eval-
uate the particle’s energy expectation value. Note that theoreti-

cally we have 〈E〉 =
∫
Ψ∗(x,t)HΨ(x,t)dx∫
Ψ∗(x,t)Ψ(x,t)dx

. Repeat the steps we did

and obtain 〈p̂〉.
(b) Plot the time series of 〈E〉 for various values of space and time

grids Δx and τ . Is the computed 〈E〉 conserved?
(c) Which choice gives the best result?

Problem 8.5

(a) Numerically obtain the momentum expectation value of a particle
moving in a free space.

226 Chapter 8. Quantum mechanics

(b) Obtain the time series of 〈E〉. Is it conserved? Discuss your results
for various values of the system’s length L.

Problem 8.6 Analytically obtain the energy expectation value of
the initial Gaussian wave packet. Does it remain constant in time?
Explain why.

Problem 8.7 In the numerical solution of the symmetric infinite
quantum well investigate the effect of varying ε on the solution (the
ground state in particular). Which choice of ε gives the best ground
state energy?

Problem 8.8 In the problem of perturbation in the infinite square
well, obtain the wavefunction form in the well’s region for the partic-
ular case when E = Vb.

Problem 8.9 Try other values of grid number N and xmax in the
first odd eigenstate of the harmonic oscillator. Which choice gives the
best eigenstate solution?

Problem 8.10

(a) Numerically find the first three eigenvalues of the perturbed infi-
nite square well from equation (8.88) for various values of b and
Vb.

(b) Verify that in the limit b → 0 the energies approach the infinite
well values.

(c) send b → 0 and Vb → ∞ such that bVb = 1. Find the first few
eigenvalues. Note that this limit corresponds to the Dirac delta
function potential at x = 0. d) Solve the problem analytically
in this limit and compare your numerical energies with analytical
ones.

Problem 8.11 In the finite square well suppose we have a negative
energy eigenvalue for an odd state. Prove that an inconsistency will
arise. Obtain the inconsistent condition.

Chapter 9

Molecular dynamics

9.1 Introduction

After practicing numerical techniques for solving quantum problems,
we return again to classical systems. This time, we intend to deal
with systems that include many particles. Newton’s equation of mo-
tion governs the multi-particle system dynamics. For each system’s
particle, we can write a differential equation of motion once the inter-
action among particles is specified. The numerical method of solving
these equations of motion is known as molecular dynamics. The name
molecule interchangeably applies to system particles. Our molecules
need not necessarily be atomic-sized particles but can be micron-sized
colloids or even larger up to stars. In fact, by adopting a force field
among particles, we simulate the system motion, which makes the
molecular dynamics simulation an appropriate name for this approach.
The basic idea of molecular dynamics is to integrate the equations of
motion in discrete steps of time τ . We have already done this for
simple systems comprising N = 1 or N = 2 particles in previous chap-
ters. In this chapter, we shall do this job systematically for a system
having a large number of particles, say N = 104. For simplicity, we
assume our particles are point-like. Knowing the trajectory of every
particle in the system is the most detailed information we can gain
from a classical system. It enables us to perform averages, extracts
macroscopic quantities, and provides a deep insight into its physical
characteristics.

227

228 Chapter 9. Molecular dynamics

9.2 Inter-particle forces

The basic ingredient in molecular dynamics is intermolecular forces.
For simplicity, we assume our particles are point-like, and their in-
ternal structure can be ignored. The particles positions and velocities
are shown by r1(t), r2(t), · · · , rN (t) and v1(t),v2(t), · · · , rN (t) respec-
tively. For notational convenience, we drop the explicit time depen-
dence from these variables afterward. Furthermore, we assume the
inter-particle forces do not depend on particles’ velocities, hence a
potential function U(r1, r2, · · · , rN) describes the interaction among
particles. The force Fi on particle i is given by the gradient of U with
respect to the coordinates of particle i:

Fi = −∇iU(r1, r2, · · · , rN) (9.1)

In many systems, the force between any two particles i and i solely de-
pends on their distance rij = |ri− rj |. In this case, the total potential
energy U is the sum of pairwise potentials:

U(r1, r2, · · · , rN) =

N−1∑
i=1

N∑
j=i+1

u(rij) (9.2)

You can verify that this way of writing the limits includes all the pairs.
Let us verify it for a N = 4 particle system. We have six independent
pairs (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). Performing first the sum
over i in (9.2) gives:

U(r1, r2, r3, r4) =
4∑

j=2

u(r1j) +
4∑

j=3

u(r2j) +
4∑

j=4

u(r3j) (9.3)

Performing the sums over j gives:

U = u(r12) + u(r13) + u(r14) + u(r23) + u(r24) + u(r34) (9.4)

The pairwise approximation to the total potential energy is appropri-
ate for simple liquids such as liquid Argon. The quantitative form of
u(r) for electrically neutral molecules can be constructed by quantum
mechanical calculations. Such calculations are complicated, and it is
usually sufficient to choose a simple phenomenological form for u(r).
Two essential features of u(r) are a strong repulsion for small r, and a

§9.2. Inter-particle forces 229

weak attraction at large r (Allen and Tildesley, 1986; Frenkel and Smit,
2002). The repulsion at small r is a consequence of the Pauli exclu-
sion principle, which implies that the electron wave functions of two
molecules must distort to avoid overlap, causing some of the elec-
trons to be in different quantum states. The net effect is an increase
in kinetic energy, and the effective repulsive interaction between the
electrons, known as core repulsion. The dominant weak attraction at
larger r is due to the transient mutual polarization of each molecule;
the resultant attractive potential is called the van der Waals potential.
For quantum mechanical details, you may see the textbook (Schiff,
1968). The simplest model potential which captures these basic fea-
tures is the one introduced by J. E. Lennard-Jones (Jones, 1924).

u(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (9.5)

The first (second) term models the repulsion at small r (weak attrac-
tion at large r). Note that both terms are short-range. The weak
attractive potential is sometimes called van der Waals potential. The
parameters ε and σ have energy and length dimensions. Their values
depend on the type of atoms. A plot of the Lennard-Jones potential
is given in figure (9.1). Moreover, for convenience, we use the abbre-
viation LJ for Lennard-Jones. To find the inter-molecular distance
at which the potential is minimum, we take the derivative of the LJ
potential with respect to variable r:

du(r)

dr
=

24ε

r
[(
σ

r
)6 − 2(

σ

r
)12] (9.6)

Putting u′(r) = 0 gives us r = 21/6σ. We can achieve considerable
savings in computer time by neglecting pair interactions beyond some
distance rc. A common choice for rc is 2.5σ. We can effectively take
u(r) = 0 for r > rcσ. In other words, we have truncated the LJ
potential beyond rc. Suppose a particle is located at the origin and
another particle is located at r. The force exerted on the particle in the
origin by the other particle located at the r is given by the potential
gradient F(r) = −∇u(r) = −u′(r)r̂. Using (9.6) we have:

F(r) =
24ε

r
[2(

σ

r
)12 − (

σ

r
)6]r̂ (9.7)

In a general situation, let us evaluate the force on an arbitrary particle
i by an arbitrary particle j �= i. These two particles interact, in a

230 Chapter 9. Molecular dynamics

r
0.5 1 1.5 2 2.5

-1

0

1

2

3

4

5

u(r)

Figure 9.1: Plot of the Lennard-Jones potential in reduced units.

pairwise manner, via the term u(rij) in the total potential. Showing
this force by Fj→i we have:

Fj→i = −∇iu(rij) (9.8)

By ∇i we mean the gradient is taken with respect to the coordinates of
particle i i.e.; ∇i = (∂

∂xi
, ∂
∂yi

, ∂
∂zi

). Let us evaluate the first component

that is
∂u(rij)
∂xi

. Noting that rij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

and applying the chain rule gives:

∂u(rij)

∂xi
=

du(rij)

drij

∂rij
∂xi

= u′(rij)
xi − xj

rij
(9.9)

Changing x into y and z gives the other two components. Collecting
everything together, we find:

Fj→i =
u′(rij)
rij

(xj − xi, yj − yi, zj − zi) =
u′(rij)
rij

(rj − ri) (9.10)

It is customary to introduce the vector rij = ri − rj and write (9.10)
as follows:

Fj→i = −u′(rij)
rij

rij = −u′(rij)r̂ij (9.11)

§9.3. Integration from equations of motion 231

Vector rij connects particle j to particle i. Note that the force exerted
on particle i is along the direction joining this particle to particle
j. Depending on the value of u′(rij), this force can be attractive or
repulsive. According to (9.10) the x component of the force exerted
on particle i by particle j turns out to be:

Fx,j→i =
u′(rij)
rij

(xj − xi) (9.12)

Similar expressions apply to y and z components. We remark that
in some cases, people use a shifted-force potential (Haile, 1992). For
inferring the philosophy of using this potential, you may refer to ad-
vanced books such as (Haile, 1992). Here we only quote the form of
the shifted-force LJ potential us(r):

us(r) = u(r)− u(rc)− (r − rc)
du

dr
|rc (9.13)

Note that us(r) and its derivative are continuous at the truncation
point rc.

9.3 Integration from equations of motion

If the inter-particle potential is specified, we can write down the New-
ton equations of motion for each particle:

mi
d2ri
dt2

= Fi i = 1, 2, · · · , N (9.14)

In what follows, we assume the particles are identical and take their
mass to be m. We all know from classical mechanics that it is impos-
sible to find the analytic solution of differential equations (9.14) for a
large value of N . Even for N = 3, the exact solution is limited to a
few special potentials. However, you might be tempted to solve the
set of equations numerically by one of the well-known algorithms, such
as Runge-Kutta or Verlet. Despite their simple form, the numerical
solution does not give a satisfying answer. The inclusion of a repul-
sive term makes the system disintegrate (particles escape from each
other if time is elapsed sufficiently). Even if the inter-particle forces
are entirely attractive, but not strong enough, the numerical solution
may lead to system disintegration. Of course, if N is as large as the

232 Chapter 9. Molecular dynamics

Figure 9.2: Periodic boundary condition imposed on a two-dimensional
system of particles.

Avogadro number, we can be hopeful that numerical solutions repro-
duce the correct behaviour of matter in bulk. Unfortunately, even by
supercomputers, we can typically simulate 1010 particles which are yet
too small to model a bulk piece of matter. Actually, we need a surface
potential to sustain the system, but it is pretty challenging to model
such forces properly. Physicists have adopted an alternative method.
According to this method, fictitious particles act on the system par-
ticles especially, those located near the boundaries. Their role is to
prevent the system from disintegrating. They provide confinement for
the system particles to remain in a limited region of space. We call
this region the simulation box and normally take it to be a square. A
conventional choice is to take the imaginary particles as the periodic
images of the system particles in neigbouring image boxes. Each image
box contains the original particles in the same relative positions as the
central box. In figure (9.2) we have shown some of these image boxes
and their image particles for a two-dimensional system of particles con-
fined in a rectangular box of edge lengths Lx and Ly. The simulation
box is surrounded by similar space-filling boxes, which are duplicates
of the main box (central box). Each duplicated box is specified by the
coordinates of its left bottom corner (nxLx, nyLy) in which nx and ny

are integer numbers. Note that the case nx = ny = 0 corresponds to
the simulation box itself. For simplicity, we use the shorthand notation
(nx, ny) for the neighbouring box coordinates. Each system particle

§9.3. Integration from equations of motion 233

not only interacts with the remaining N−1 particles but also interacts
with their imaginary particles located in the neighbouring boxes if we
want to prevent the system from being disintegrated. Note that each
system particle possesses eight images. The coordination of particle i
images turns out to be (xi + nxLx, yi + nyLy) with the exclusion of
nx = ny = 0. Evidently, we cannot consider the interaction with all
the boxes’ particles (there are infinite boxes actually!). At this stage,
an approximative scheme should be devised. This approximation is
called minimal image approximation. According to this approxima-
tion, Since the length of the simulation box edge is normally much
larger than the interaction range between particles, at each instant of
time, every system particle i can only interact with particle j �= i or
one of its images. Consider a pair of particles i and j. Clearly, among
particle j and its neighbours, one of them is nearest to particle i. We
call this particle the minimal j neighbour to particle i and show the
corresponding box number by (n∗x, n

∗
y). Note the x-distance between

particle i and the its minimal j image is less than Lx

2 . Similarly, the

y-distance between particle i and its minimal j image is less than
Ly

2 .
We can now devise a method for evaluating the instantaneous force ex-
erted on every particle i in the simulation box at timestep t. For each
particle j �= i determine its minimal image with respect to particle i.
Calculate the force on particle i by this image particle and then sum
over all particles j (N −1 term). Once the total force is computed, we
can use a numerical algorithm to update the positions and velocities of
system particles. Note that after updating the positions and velocities
of the system particles, the positions of each particle’s images in other
boxes will be correspondingly updated. As a particle moves in the
simulation box, its periodic images move in their own image boxes.
Hence only the motion of the particles in the central box needs to be
followed. When a particle enters or leaves the central box, the move is
accompanied by an image of that particle leaving or entering a neigh-
boring box through the opposite face. In order to simulate this effect,
we bring back the exited particle inside the box by adding/subtracting
an appropriate integer multiple of Lx or Ly to/from its relevant co-
ordinate. For example, if the updated y coordinate of a particle is
1.0001Ly we reupdate its y coordinate to value 0.0001Ly. Sometimes
people call this procedure the periodic boundary condition (PBC). Im-
plementing PBC allows you to deal with only N particles inside the
central box i.e., the simulation box. We would like to emphasize that

234 Chapter 9. Molecular dynamics

the validity of the minimal image approximation crucially depends on
the interaction range among particles. For short-range potentials such
as Lennard-Jonnes, this approximation remains valid. However, if the
potential includes long-range terms such as a Coulomb interaction, the
interaction with other images particle beyond the minimal one should
be considered. This is performed by a special method and includes a
sum over all the image particles. The technique is known as the Ewald
sum in the literature (Allen and Tildesley, 1986).

9.3.1 The numerical algorithm

Now that we can compute the total force on every system particle
i = 1, 2, · · · , N , we need a numerical method for computing the trajec-
tory of each particle. This algorithm should conserve the phase-space
volume and be consistent with the known conservation laws. One of
the most adopted and commonly used algorithms in molecular dynam-
ics simulations is velocity Verlet algorithm (Verlet, 1967), which was
explained in chapter three. We recall that the positions and velocities
of particles are updated according to the following scheme:

xn+1
i = xn

i + vnxiτ +
1

2
anxiτ

2 i = 1, 2, · · · , N (9.15)

vn+1
xi = vnxi +

1

2
(anxi + an+1

xi)τ i = 1, 2, · · · , N (9.16)

Analogous expressions apply to y and z components. Note the im-
plementation order of the above commands in programming. First,
the positions should be updated, and then from the updated posi-
tions, you should compute the updated acceleration an+1

i in order to
compute the updated velocities.

9.3.2 Reduced units

Before discussing the structure of a molecular dynamics programme,
we should give our final remark. Since our particles have atomic scale,
their mass, length, and other potential parameters have very tiny val-
ues compared to the macroscopic values we are familiar with. For
instance, the parameter values of the LJ potential for argon are as fol-
lows: σ = 3.4×10−10 m, ε = 1.65×10−21 J and m = 6.69×10−26 kg.
If we adopt the conventional SI unit, we have to deal with very small

§9.4. A molecular dynamics programme 235

or very huge quantities. This causes dramatic systematic and round-
off errors which lead to incorrect answers. In order to circumvent
the problem, it is convenient to choose an appropriate unit so that
the computed quantities are neither too small nor too large. Peo-
ple frequently use a unit where mass, energy, and length are the
basic quantities. The natural choice of unit is to take the particle
mass m as the mass unit, σ as the length unit, and ε as the en-
ergy unit. We can thus express the other quantities in terms of these
units. Let us express four important quantities that are time, veloc-
ity, force and pressure. In terms of m,σ and ε we have: σ(mε)

1
2 =

2.17 × 10−12 s, (ε
m)

1
2 = 1.57 × 102 m/s, ε

σ = 4.85 × 10−12 N and
ε
σ2 = 1.43 × 10−2 Pa as the time, velocity, force and pressure units
respectively (H. Gould and Chriastian, 2006). As a clarification, if we
take τ = 0.01 in our MD programme, it means that in SI units, the
timestep is τ = 0.01× 2.17× 10−12 = 2.17× 10−14 s.

9.4 A molecular dynamics programme

We now develop a molecular dynamics (MD) programme to simulate
a system of particles interacting via a short-range potential so that
we can use minimal image approximation. For simplicity, we work in
two dimensions because the calculations are not so time-consuming,
and all the techniques we shall discuss can be applied to three dimen-
sions straightforwardly. Moreover, we assume our point-like particles
interact via Lennard-Jones’ potential. To update the system status
in time, we should determine the initial conditions specified by 6N
constants r1(0), r2(0), · · · , rN (0),v1(0),v2(0), · · · , rN (0) respectively.
An appropriate choice of the initial conditions is more challenging than
might first appear. If you naively give initial positions and velocities
to particles, the programme fails to produce reasonable trajectories,
and normally, after some timesteps, the particles’ velocities become
extremely large. In an MD programme, the initial positions are nor-
mally determined according to the system’s state we wish to simulate.
For example, if the system is a dilute gas, we can choose the initial
positions of the particles by placing them at random, making sure that
no two particles are too close to one another. If two particles were too
close, they would exert a very large repulsive force F on each other.
Any simple finite difference integration method would break down be-
cause the condition (F/m)(τ)2 � σ would not be fulfilled. In a ran-

236 Chapter 9. Molecular dynamics

dom setting of particles, you can simply verify that if the separation
between two particles is greater than 21/6σ, this condition is satisfied.
Unfortunately, there is no general method for the initial placement of
particles, and every problem should be treated particularly. If you are
investigating the properties of a solid phase, then you can place the
particles initially on a regular lattice that corresponds to the system’s
solid phase structure. Contrary to the initial placement of particles,
for the initial velocity assignment, there is a general procedure. Usu-
ally, the temperature of the system under consideration is constant,
and the velocity components distribution would be Gaussian. There-
fore, a plausible scheme for initial velocities assignments would be to
extract them from a Gaussian distribution function having a width
proportional to kBT . Later we will discuss this method in more de-
tail. I have explained all the necessary ingredients for constructing a
molecular dynamics programme. From the programming viewpoint,
we need some arrays to store the values of particles’ positions and
velocities. As far as elementary quantities need to be computed, we
do not need to store the system configurations at all timesteps. Many
macroscopic quantities such as temperature and pressure, can be ob-
tained by time averaging over their instantaneous values. Hence, we
only need to store the system configuration (particles’ positions and
velocities) at the current timestep. From a computational point of
view, we need six arrays X,Y Z, Vx, Vy, and Vz for this storage. Of
course, three more arrays Ax, Ay, and Az are needed to store the ac-
celeration components. All these arrays have a dimension equal to the
number of particles N . For example, Y [i] denotes the y component
of particle i at the current time step t. In appendix 9.A we will ex-
plain the detailed structure of a molecular dynamics programme. In
the next section, we will discuss the physical properties that can be
investigated via molecular dynamics simulations.

9.5 Macroscopic quantities

Relating the information at the microscopic level to macroscopic quan-
tities such as temperature and pressure is one of the fundamental goals
of physics. For almost more than a century, statistical mechanics
provided such bridging for us, thanks mainly to the efforts of Lud-
wig Boltzmann. With the advent of computers, molecular dynamics
opened a novel stride. The main goal of a molecular dynamics pro-

§9.5. Macroscopic quantities 237

gramme is to extract macroscopic quantities by averaging over simu-
lated microscopic trajectories of system particles. For centuries this
has been a great dream for statistical physicists. Computers made this
long-lived dream fulfilled in the late 1950th through the pioneering
work of Alder and Wainwright (Alder and Wainwright, 1959). From
statistical physics, we know that macroscopic quantities of interest are
time averaged over certain collective microscopic behaviour of system
particles. Molecular dynamics enables us to obtain the phase space
trajectory of each system particle and hence, provides us a framework
to describe the system from a macroscopic point of view. One practical
question is whether our time intervals are sufficiently long to allow the
system to explore the whole accessible phase space and give meaningful
averages. Calculations in statistical mechanics are done by replacing
time averages with ensemble averages over all possible configurations.
The quasi-ergodic hypothesis asserts that these two types of averages
give equivalent results if the same quantities are held fixed. In statisti-
cal mechanics, we work in ensembles. Each ensemble is specified with
some constraints. For example, if E, V , and N are held fixed we have a
microcanonical ensemble. At first, you may infer that there will be no
ensemble in molecular dynamics simulations because N, V , and E are
constant. However, we will see that to simulate realistic situations, we
will have to deal with cases in which other variables remain constant.
For example, if we want to simulate a melting phenomenon, we have
to keep the pressure constant instead of the volume. Therefore, the
ensemble concept will appear in molecular dynamics simulation in a
similar sense as in statistical mechanics. For the sake of simplicity, it
is natural to start with the NVE ensemble. We shall now try to see
how we can obtain macroscopic quantities from microscopic details
provided by MD simulations in a microcanonical ensemble.

9.5.1 Temperature

Temperature is the system’s average kinetic energy. According to the
equipartition theorem, the system temperature at time t is given by
the following relation:

T (t) =
2K(t)

dNkB
=

1

dNkB

N∑
i=1

mivi(t).vi(t) (9.17)

238 Chapter 9. Molecular dynamics

where kB is the Boltzmann constant, d is the spatial dimension, and
K(t) is the system instantaneous total kinetic energy. Note that the
particles’ masses can be different in principle. The temperature that
we measure in a laboratory experiment is the mean temperature, which
corresponds to the time average of T (t) over many configurations of
the particles:

T =
1

dNkB

N∑
i=1

mivi(t).vi(t) (9.18)

Overline denotes time averaging.

9.5.2 Pressure

Another macroscopic quantity of interest is the mean pressure. The
pressure is related to the force per unit area normal to an imaginary
surface of an isotropic fluid system. In a solid system, the pressure
concept is replaced with the stress tensor. Coming back to a fluid
system and according to Newton’s second law, this force is related to
the momentum exchange per unit time that crosses the surface. For
simple gases, with no interaction among particles, we can use kinetic
energy arguments to obtain the pressure. In a general situation, when
there are interactions among particles, use should be made of other
relations. This relation involves the concept of virial. It can be shown
that virial is related to pressure. In general, the momentum flux across
a surface has two contributions. The kinetic contribution, NkT/V ,
where V is the system volume, is due to the motion of particles and
is derived in many texts using simple kinetic theory arguments. The
other contribution arises from the momentum transferred across the
surface due to the forces between particles on different surface sides.
It can be shown that the instantaneous pressure at time t, including
both contributions to the momentum flux, is given by:

p(t)V = NkBT (t) +
1

d

∑
i<j

rij .Fij (9.19)

Recall that rij = ri − rj and Fij is the force exerted on particle i due

to particle j. The mean pressure, p = p(t), is found by computing the
time average of the instantaneous pressure p(t). We introduce other
macroscopic quantities later. Let us see the results of a molecular
dynamics simulation.

§9.6. A molecular dynamics simulation 239

9.6 A molecular dynamics simulation

In this section, the results of a molecular dynamics simulation pro-
gramme are shown for a system of interacting particles. The inter-
actions among particles are assumed to be short-range. For simplic-
ity, we work in two dimensions and consider a system consisting of
N = 64 particles interacting via Lennard-Jones (LJ) potential in a
square simulation box with length L = 10 in reduced units. The re-
duced density turns out to be ρ∗ = 64

100 = 0.64. The particles are
initially placed on a regular square lattice points. For initial veloc-
ities, we choose the velocity modulus of all particles identical i.e.;

vi = v =
√

2kBTinit

m in which Tinit is the initial system temperature.

In our problem, we take Tinit = 1. The velocities directions are ran-
domly chosen from the interval [0, 2π]. As mentioned, we rescale the
velocities so that the system’s total linear momentum becomes zero.
The programme 2DLJverlet (see Appendix 9.A for details) numer-
ically solves the Newton equations of motion for a two-dimensional
system of particles interacting via LJ inter-molecular potential un-
der periodic boundary conditions with the velocity Verlet algorithm.
In figure (9.3), the evolution of the potential energy per particle is
depicted. The velocity Verlet algorithm with τ = 0.01 has been im-
plemented to integrate Newton’s equations of motion. Figure (9.4) ex-
hibits the trajectory of particle 9 during T = 10000 timesteps which,
corresponds to t∗ = 10 time units. Note the complicated structure of
the trajectory. The initial position of particle 9 is (1.11, 2.22) (bot-
tom left corner). You see that this particle considerably deviates from
its initial position, which means that the system cannot be in a solid
phase despite initially it had a regular solid-like structure. Figure (9.5)
shows the time series of potential, kinetic and total energies per parti-
cle. After some transient timesteps, the system comes to equilibrium
in which macroscopic collective quantities are in a steady-state and
fluctuate about a mean value. The mean values are −2.17, 0.38, and
−1.78 for potential, kinetic, and total energy correspondingly. Note
that the equilibrium temperature is 0.38 in our reduced unit. In fact,
the system temperature has fallen from the initial value kBT = 1. to
kBT = 0.38. The interaction among particles has caused this effect.
Moreover, note that despite the total energy per particle E/N should
be constant, it undergoes fluctuations which should be a computa-
tional error. Try to see if fluctuations are reduced if you decrease τ .

240 Chapter 9. Molecular dynamics

time step
0 1000 2000

-2

-1

0

1

2

EP

Figure 9.3: Time evolution of the potential energy per particle Ep/N
for a N = 64 particle system in two dimensions with the reduced density
ρ∗ = 0.64. The particles interact with each other via the Lennard-Jones
potential. The system has been prepared with an initial temperature of
Tinit = 1.

9.6.1 Velocity distribution

One of the tests for the accuracy and validity of our MD programme is
its capability of reproducing the correct velocity distribution of parti-
cles. From statistical physics, we know that in equilibrium, the veloc-
ity distribution of each velocity component is Gaussian with zero mean
and a standard deviation proportional to system temperature. Let us
see the predictions of our MD programme for a three-dimensional sys-
tem. The programme 3DLJverlet (see Appendix 9.B for details) nu-
merically solves Newton’s equations of motion for a three-dimensional
system of particles interacting via LJ inter-molecular potential under
periodic boundary conditions with the velocity Verlet algorithm. The
number of particles is taken N = 108, and the system box (cube)

§9.6. A molecular dynamics simulation 241

X
0 0.5 1 1.5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Y

T = 10000 steps

Figure 9.4: Trajectory of 9-th particle in a 2D system with ρ∗ = 0.64
during T = 104 timesteps.

size is Lx = Ly = Lz = 8.94. The system evolves for Teq = 104

timesteps to ensure it has reached its equilibrium. Then we evalu-
ate the average system temperature kBT̄ . Particles are initially set
on a 3D FCC lattice with an initial Gaussian velocity distribution
corresponding to initial temperature kTinit = 2.. After equilibration,
the system temperature becomes Teq = 2.6. Next, we let the system
evolve for further timesteps for averaging the velocities distributions.
In principle, each component of velocities can take very large values
in magnitude. However, in practice, each component lies with a very

high probability in the interval [−4
√

kBT
m , 4

√
kBT
m] in which T is the

average system temperature. Remind you that after equilibrium, each
component of particles velocity should have the following normalised
Gaussian distribution function (Haile, 1992):

f(vx) =

√
m

2πkBT
exp(− mv2x

2kBT
) (9.20)

As you see, the standard deviation is σ =
√

kBT
m . To compute the ve-

locity component distribution function, we divide each velocity compo-

242 Chapter 9. Molecular dynamics

Timestep

E
ne

rg
y

0 5000 10000 15000 20000
-2.5

-2

-1.5

-1

-0.5

0

0.5

Potential

Kinetic

Total

Figure 9.5: Time evolution of potential, kinetic and total energies per
particle for t∗ = 200 time units for a N = 64 particle LJ system in two
dimensions with ρ∗ = 0.64.

nent interval into Nbin = 50 bins. Then for each particle, we evaluate
the bin number of its velocities components and increase the associ-
ated bin counter. In other words, we build up velocity components
histograms. Figure (9.6) shows f(vx) for various average tempera-
tures. You see, there is a good agreement between numerical and
theoretical results. From the graph, the most probable and the mean
value of the velocity component is zero.

9.6.2 Equation of state

Molecular dynamics simulation allows us to obtain the equation of
state i.e.; the relationship between temperature, pressure, and density.
Let us find this relation for a two-dimensional LJ system. The number
of particles is taken as N = 64 initially set on a regular lattice square.
The square box size is L = 12, and the initial temperature is kBT = 2
in reduced units. We let the system evolve for Teq = 104 timesteps
to ensure it has reached equilibrium. Figure (9.7) shows the temporal

§9.6. A molecular dynamics simulation 243

vx

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3 T=1.7 simulation

T=2.6 simulation

T=1.7 analytic

T=2.6 analytic

f(vx)

Figure 9.6: Velocity component distribution function f(vx) for a 3D
Lennard-Jones system having N = 108 particles. A comparison to the
theoretical result is shown.

evolution of pressure.

p(t) =
NkBT (t)

2A
+

1

2A

∑
i,j

rij .Fij (9.21)

Mass density in reduced units is ρ∗ = Nm∗

L2 = 0.444. As you see,
the pressure time series soon reaches a steady state. The fluctuation
remains large, which is due to the smallness of particle number N . The
time-average pressure is p̄ = 1.05, and the system average temperature
turns out to be kBT̄ = 1.78 in reduced units which is less than the
initial temperature kBTinit = 2. The ideal gas pressure associated
with these values of density and temperature is pid = NkBT

A = 0.79.

The relative excess pressure is pex,rel =
p̄−pid

pid
= 0.32 which is quite

large. The difference comes from the nature of interaction among
particles. Let us look at the variation of compressibility factor Z =

pA
NkBT versus reduced density ρ∗. For the ideal gas, one has Z = 1.
Any difference from unity comes from the interaction among particles.
Figure (9.8) shows the dependence of Z on ρ∗. We initially set the

244 Chapter 9. Molecular dynamics

time step
0 1000 2000 3000 4000 5000

-0.5

0

0.5

1

1.5

2

2.5

3

P

Figure 9.7: Instantaneous pressure for a 2D Lennard-Jones system of
reduced mass density ρ∗ = 0.444 initially prepared at kBTinit = 2.

box size at L = 20 and gradually reduced it by 2 percent in each size
reduction step. There is no singularity or cusp in the Z − ρ diagram.
This suggests that no phase transition can occur in this 2D system.
The well-known Mermin-Wagner theorem confirms this statement.

9.6.3 Heat capacity

Another quantity of interest is the thermal capacity. This notion, to-
gether with latent heat, was first introduced by Scottish physician,
physicist, and chemist Joseph black in the nineteen century. Exper-
imentally it is much easier to measure the heat capacity in constant
pressure, because, in most of the situations where heat is transferred,
the pressure is constant or can be quite easily held constant. On the
contrary, it is not easy to keep volume constant when we heat an
object. In simulations, the converse is true, because it is not straight-
forward to keep the pressure constant in an MD programme. Heat
capacity at constant volume CV = (∂E∂T)V is an example of a linear re-
sponse function, that is, the response of the system energy to a change
in its temperature. It can be quite easily computed in an MD simu-

§9.6. A molecular dynamics simulation 245

ρ
0.4 0.5 0.6 0.7 0.8

1

1.5

2

2.5

3

3.5

4

4.5

Z

Figure 9.8: Compressibility factor Z vs density for a 2D Lennard-Jones
system of N = 144 particles.

lation. For this purpose, we should know the dependence of system
energy E on temperature E(T). Although, a molecular dynamics sim-
ulation gives T as a function of E, but once we obtain E(T) we can
simply converse it and find E(T). We learnt that the total energy E
is determined by the initial conditions, and the temperature is a de-
rived quantity that is found only after the system has reached thermal
equilibrium. The temperature can be changed to a desired value by
adjusting the energyE. This is normally achieved by rescaling the par-
ticle velocities. To obtain the curve T (E) we rescale the velocities by
an appropriate factor λ that is vα[j] = λvα[j] j = 1, · · · , N α = x, y, z.
This changes the system’s energy. Then we let the system evolve until
it reaches its new equilibrium, with a new temperature. We repeat this
procedure, and for each rescaling, we find a new point in the E − T
plane.The collection of these points gives us the desired E(T) curve.
Once this curve is obtained, we can implement a numerical differen-
tiation scheme to numerically evaluate CV = (∂E∂T)V . Let us see the
result for a 3D system of particles with Lennard-Jones’ potential. Af-
ter each velocity rescaling, the system evolves for Teq = 104 timesteps
to ensure it has reached its new equilibrium then we evaluate the av-

246 Chapter 9. Molecular dynamics

kT
1 2 3 4 5

-3

-2

-1

0

1

2

3

4

5

E--
N

Figure 9.9: Energy per particle vs temperature for a 3D Lennard-Jones
system with ρ = 0.74. The simulation has been performed with N = 256
particles.

erage system temperature kB T̄ . Figure (9.9) exhibits the energy per
particle curve versus T . Figure (9.10) shows a similar diagram for a
different density ρ = 1.45. As you can see, for these densities, the
specific heat capacity in constant volume equals the curve slope. For
ρ∗ = 0.74 and ρ∗ = 0.1.45 the specific heat capacities turn out to
be 2.11 and 3.19, respectively. You see that there is a strong density
dependence. Remind you that the ideal gas specific heat capacity is
1.5 in our reduced units.

9.7 Triangular lattice in two dimensions

In this section, we show how to put particles on a two-dimensional tri-
angular lattice. Triangular lattice is important in solid-state physics
because it is the 2D analogue of the ubiquitous fcc structure in 3D.
Generally speaking, to simulate a solid, we need to choose the shape
of the simulation box to be commensurate with the symmetry of the
solid phase of the system. This choice is necessary even though we

§9.7. Triangular lattice in two dimensions 247

kT
0.5 1 1.5 2

0

1

2

3

4

5

6

E/ N

ρ = 1.45

Figure 9.10: Energy per particle vs temperature for a 3D Lennard-Jones
system with the reduced ρ∗ = 1.45. The simulation has been performed
with N = 500 particles. Random initial conditions have been used.

have used periodic boundary conditions to minimize surface effects. If
the box does not match the correct crystalline structure, the particles
cannot form a perfect crystal, and some of them will wander around in
an endless effort for their correct positions. Consequently, the simula-
tion of a small system would lead to spurious results. In a triangular
lattice, each particle has six neighbours. The commensurate box is a

rectangle having side lengths Lx and Ly =
√
3
2 Lx. Showing the nearest

neighbour distance by a, first, we relate the number density ρ = N
A

to lattice constant a. First note that ρ = N
LxLy

= 2N√
3L2

x

. In order to

construct a triangular lattice with a given density ρ and N points, you

should first determine Lx. This is simply achieved: Lx = 3−1/4
√

2N
ρ .

The other length Ly is determined from Ly =
√
3
2 Lx. On the other

hand, we know that each lattice point is connected to six triangles.
Each triangle has three vertices therefore, every two triangles con-

tain one lattice point. Triangle area is s =
√
3a2

4 hence we have:

248 Chapter 9. Molecular dynamics

ρ = 1
2s = 2√

3a2
. This gives a in terms of ρ as follows:

a = 3−1/4

√
2

ρ
(9.22)

Once the lattice constant a is found, it would be an easy task to
put N points on a triangular structure. Let us now evaluate the
potential energy per particle for a 2D gas with LJ interaction ini-
tially placed statically on points of a triangular lattice with periodic
boundary conditions. Performing the sums with a computer, we find
〈EP 〉 = −0.1418 in the LJ energy unit. For ρ = 1.1547 we obtain
〈EP 〉 = −2.905 in the LJ energy unit. Note the high sensitivity of EP

to density ρ. For LJ interaction among particles, a triangular lattice
has lower energy. In exercises, you will compute the potential energy
(per particle) for a square lattice and see that it is higher than in a
triangular one. In other words, the square lattice is unstable, and if
you give a slight velocity to particles, they will evolve into a stable
triangular lattice. Figure (9.11) shows the LJ system’s snapshot ini-
tially prepared on a square lattice. As you see, the unstable square
structure is substituted by the stable triangular one. The vacancies
correspond to the incommensurate state of the square box.

9.8 Structural and static properties

Specification and quantification of structural properties of a many-
body system are of prime importance in physics. The ordering degree
in a system can be expressed in terms of its structural characteris-
tics. They provide useful statistical information about how the system
particles are spatially and orientationally organised. Insight into the
structure of a many-body system can be gained by looking at how the
positions of the particles are correlated with one another due to their
interactions. Suppose there are N point-like particles in a volume V .
We denote the global particle number density with n = N

V . Some use-
ful definitions are in order. The n-particle probability density function
ρn(r1, r2, · · · , rn) gives the probability ρn(r1, r2, · · · , rn)dr1dr2 · · · drn
that the volumes dr1 around r1, dr2 around r2, etc. contain precisely
one atom each. The n particle probability distribution function is
defined to be:

gn(r1, r2, · · · , rn) = ρn(r1, r2, · · · , rn)
ρ1(r1)ρ1(r2) · · · ρ1(rn) (9.23)

§9.8. Structural and static properties 249

X
0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

Y

Figure 9.11: A simulated snapshot with τ = 0.01 at t = 1 for a N = 64
LJ system initially placed on a square lattice of side L = 9 with assigned
velocity components randomly chosen from the interval [−0.01,+0.01].

It can be shown (Sólyom, 2007) that it is sufficient to know the one
and two-particle distribution functions for the description of struc-
tural properties. These distribution functions can be determined from
experiments. Denoting the position of particle i by Ri It turns out:

ρ1(r) = 〈
N∑
i=1

δ(r −Ri)〉 (9.24)

in which 〈 〉 denotes configurational or thermal averaging. Similarly
the two-particle density ρ2(r1, r2) is given by:

ρ2(r1, r2) = 〈
N∑
i=1

N∑
j=1,j �=i

δ(r1 −Ri)δ(r2 −Rj)〉 (9.25)

From these definitions, we find:∫
V

ρ1(r)dr = N (9.26)

250 Chapter 9. Molecular dynamics

∫
V

ρ2(r1, r2)dr2 = (N − 1)ρ1(r1) (9.27)

If long-range order is present, the positions of the two atoms are cor-
related even if the separation between r1 and r2 is very large. If,
however, there is no long-range order, then the correlation between
atomic positions is washed out at large separations, and we have:

ρ2(r1, r2) → ρ1(r1)ρ2(r2), if |r1 − r2| → ∞ (9.28)

Pair correlation function C(r1, r2) measures the degree of spatial cor-
relation and is defined as follows:

C(r1, r2) = ρ2(r1, r2)− ρ1(r1)ρ2(r2) (9.29)

This correlation function indicates whether the presence of an atom at
r1 affects the probability of finding another atom at r2. For perfectly
random atomic arrangements, the correlation function is identically
zero. For amorphous systems with short-range order, the function
takes finite values at small separations and drops off exponentially
at large distances. On the other hand, for crystalline samples, the
function shows the same periodicity of the underlying structure even
at large separations. If the system is homogeneous then ρ1(r1) does
not depend on r1. Moreover, the two-point particle density ρ2(r1, r2)
depends only on the difference r1 − r2. It can be shown that (Sólyom,
2007)

ρ2(r1 − r2) =
1

V
〈

N∑
i=1

N∑
j=1,j �=i

δ(r1 − r2 −Ri +Rj)〉 (9.30)

Denoting r1 − r2 by r for homogeneous systems we have g2(r) =
1
n2 ρ2(r). In isotropic systems g2(r) is only a function of r = |r|:
g2(r) = g2(r). Normally the subscript ”2” is dropped. The quantity
g(r) is called radial distribution function and provides valuable struc-
tural information for us. It measures the degree of spatial correlation
among particles. A meaningful question regarding the distribution
of particles in an isotropic system is how many particles are within
the differential volume element dr about the point r from a typical
particle on average? This number is proportional to n and dr. The
proportionality constant is g(r). Integration gives:∫

ng(r)dr = N − 1 ≈ N (9.31)

§9.8. Structural and static properties 251

For an ideal gas, there are no correlations between the particles, and
the normalization condition implies that g(r) = 1 for all r. For the
Lennard-Jones interaction, we expect that g(r) → 0 as r → 0, because
the repulsive force between particles increases rapidly as r → ∞. We
also expect that g(r) → 1 as r → ∞, because the correlation of a given
particle with the other particles decreases as their separation increases.
Lastly, we note that for an isotropic system, we have C(r) = g(r)− 1.
For a general system, the computational algorithm for obtaining g(r)
is that at each timestep, you perform a loop on all the particles, and
for each particle j = 1, · · ·N count the number of particles inside a
small volume element ΔV about rj . Let us denote this number by
nj [t]. The radial distribution function g(r) turns out to be:

g(r) = limΔV→0
1

N(T − Teq)

N,T∑
j=1,t=Teq

nj [t] (9.32)

In fact (9.32) is a double averaging over particles and time where time
averaging has been computed after the system has reached equilibrium
after a transient Teq timesteps. If the system is homogeneous and
isotropic, you need not change the volume element orientation ΔV .
Any direction gives the same results. Let us compute the radial distri-
bution function for a Lennard-Jones system. The subroutine RDF (see
Appendix 9.C for details) computes the radial distribution function
for a 2D LJ system. For simplicity, we consider a system of N = 64
particles that are fixed on the nodes of a triangular lattice with Lx = 8

and Ly =
√
3
2 Lx. From the structure of a 2D triangular lattice, we

know that the next nearest neighbour (NN) distance is
√
3a = 1.73a,

the third nearest neighbour distance is 2a etc where a is the lattice
constant (nearest neighbour distance). Figure (9.12) shows the radial
distribution function g(r). Note that a = 1, and ρ = 1.156 in this
problem. As you see, the first peak is located at r = 1. Others are
located at integer-valued r and the distance of the second NN, third
NN, etc. Let us increase the density from ρ = 1.1556 to ρ = 1.314
by decreasing Lx to 7.5 while N is kept fixed at 64. Moreover, the
system temperature is raised from zero by giving initial random veloc-
ities leading to the initial temperature kBT = 2. After equilibration,
the system temperature becomes kBT = 1.003. Figure (9.13) shows
the corresponding g(r). As you see, the sharp peaks have survived,
which means the solid structure has been preserved. The peak loca-

252 Chapter 9. Molecular dynamics

r
1 2 3

0

100

200

300

400

500

g(r)

N = 64

Lx= 8

Figure 9.12: Radial distribution function (RDF) for a zero temperature
LJ fluid at ρ = 1.156.

tions are displaced a bit as a consequence of density increment. In
figure (9.14) we show g(r) for three different densities. Note that the
higher the density, the sharper the peaks. When the density is de-
creased, the sharpness of peaks diminishes. This signifies that the
system is approaching a liquid phase. The first computational result
for the structure factor of a three-dimensional Lennard-Jones system
was carried out by Rahman (Rahman, 1964) in 1964.

9.9 Dynamical properties

9.9.1 Mean-squared displacement

In this section, we focus on the dynamical aspects of an interacting sys-
tem in the framework of molecular dynamics. We also discuss how the
transport of particles in a system near equilibrium is related to its equi-
librium properties. One important dynamical quantity which is related
to the transport of particles is the average distance 〈r(t)〉 of a parti-
cle from itself after a given time t. Alternatively, the mean-squared
displacement 〈(Δr)2〉 = 〈|r(t) − r(0)|2〉 gives the average square of

§9.9. Dynamical properties 253

r
1 2 3 4

0

50

100

150

200

250

300

350

400

450

500

g(r)

Figure 9.13: Radial distribution function for a denser LJ fluid at ρ = 1.314
and kBT = 1.

this distance. Here 0 symbolizes the time origin and t refers to the
time amount elapsed after the time origin. In fluid phases, the mean-
squared displacement (MSD) shows a scaling behaviour 〈(Δr)2〉 = Ctα

at sufficiently large times. If α = 1
2 we say that the particles exhibit

a diffusive behaviour. For α > 1
2 we have a super-diffusive behaviour

whereas α < 1
2 is termed sub-diffusive behaviour. The value of the

scaling exponent depends on dimensionality, density, nature of the in-
teractions, etc. When we have normal diffusion (α = 1

2) the MSD will
be:

〈(Δr)2〉 = 2dDt (9.33)

where d is the space dimension. The coefficientD is known as diffusion
or self-diffusion constant. In a solid phase, the MSD asymptotically
approaches a constant value at large times and there will be no diffu-
sion. Instead, the particles perform a random fluctuation about their
equilibrium position. To compute the MSD, we save the position of
a particle at regular time intervals in a file after equilibrium is estab-
lished. The mean-squared displacement is computed by the following

254 Chapter 9. Molecular dynamics

r
1 2 3 4

0

50

100

150

200

250

300

350

400

450

500

g(r)

ρ = 0.873
ρ = 0.913
ρ = 1.154

Figure 9.14: Radial distribution function for a two-dimensional Lennard-
Jones system for various densities.

double summation over particles and their trajectories:

MSD[t] =
1

(T − Teq)N

N,T−t∑
j=1,n=Teq

[(Xj [t+ n]−Xj [n])
2+

(Yj [t+ n]− Yj [n])
2 + (Zj [t+ n]− Zj [n])

2] (9.34)

where T is the number of timesteps, and Teq is the number of timesteps
until the system reaches equilibrium. Xj [m] shows the x component of
particle j at timestep m etc. The subroutine MSD (see Appendix 9.D
for details) evaluates the MSD of particles in an MD programme.
Figure (9.15) exhibits the trajectory of a tagged particle (here 7th
particle) in a two-dimensional LJ system, consisting of 256 particles,
at ρ = 0.819 and kBT = 1.06. The trajectory qualitatively looks
like a Brownian motion. Note the trajectory is not restricted to lying
in the simulation box. It belongs to the main particle’s motion and
its periodic images in other cells. The length of simulation box is

Lx = 20 and Ly =
√
3
2 Lx. Figure (9.16) shows 〈(Δr)2〉 versus time for

a 2D LJ system having N = 256 atoms. In liquid or gaseous phases,

§9.9. Dynamical properties 255

X
4 5 6 7 8 9 10

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Y

ρ = 0.819
kT= 1.06

Figure 9.15: Trajectory of particle 7 in a LJ system of ρ = 0.819 and
kBT = 1.06 from the time interval [8000, 20000].

〈(Δr)2〉 is unbounded. On the other hand, in a solid phase, it reaches
an asymptotic value. As you see, in the solid phase (ρ = 1.15 and
kBT = 0.50), the MSD becomes saturated in time, whereas in a fluid-
like structure corresponding to ρ = 0.91 and kBT = 0.52 the MSD
is notably increased with time. In the gaseous phase corresponding
to ρ = 0.73, and kBT = 0.63 the MSD increases linearly with time
for large times. A linear curve was fitted to the linear part of the
MSD curve to find the diffusion coefficient D. Figure (9.17) shows
the dependence of D on ρ for two values of initial temperature. D is
larger for a higher initial temperature.

9.9.2 velocity autocorrelation

Velocity autocorrelation C(t) is another important dynamical quan-
tity. Suppose a particle has velocity v at an instant which we choose
it to be as the time origin t = 0. Without a net force on this parti-
cle, its velocity would remain constant. However, its interactions with
other particles in the system will change its velocity, and we expect
that after a sufficient time t, its velocity will not be strongly corre-
lated with its velocity at the initial time t = 0. To measure the degree
of correlation, we define the so-called velocity auto correlation C(t)

256 Chapter 9. Molecular dynamics

t (LJ unit)
0 0.05 0.1 0.15 0.2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

<R (t)>
2

ρ = 0.73; kT = 0.63
ρ = 0.91; kT = 0.52
ρ = 1.15; kT = 0.50

Figure 9.16: Mean-squared displacement versus time for a 2D LJ gas at
three distinctive densities.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

Initial kT = 1.0

Initial kT = 1.5

ρ

D

Figure 9.17: Dependence of the diffusion constant D on the density ρ for
a 2D LJ system.

§9.9. Dynamical properties 257

as the degree of correlation between velocities of a given particle at
the initial time and after time t. This dimensionless quantity can be
defined in principle for each particle of the system as follows:

Cj(t) =
1

v2j (0)
〈vj(t).vj(0)〉 (9.35)

where v2j (0) = 〈vj(0).vj(0)〉. The average is performed over all time
origins t = 0 after the system becomes equilibrated in the same man-
ner as we did for mean-squared displacement. From the equipartition
theorem, we know that if the fluid temperature is T then we have
v2j (0) = kTd/m where d is the space dimension. Due to normalisation
condition in (9.35) we have Cj(0) = 1. Despite Cj(t) should theoreti-
cally be the same for all particles, numerically, we would obtain more
reliable results if we define C(t) as a particle average over Cj(t):

C(t) =
1

N

N∑
j=1

Cj(t) (9.36)

Note that C(0) = 1. A more concise definition of velocity autocorre-
lation is the following:

Cj(t) ∝ 〈vj(t).vj(0)〉 − 〈vj(t)〉.〈vj(0)〉 (9.37)

When there is no drive in the system we have 〈vj(t)〉 = 〈vj(0)〉 = 0
therefore (9.37) reduces to (9.35). For large time t, we physically
expect vj(t) to be uncorrelated with vj(0), and hence C(t) → 0 for
t → ∞. It can be shown (Haile, 1992) that the self-diffusion coefficient
defined by (9.33) can be related to the integral of C(t):

D = v20

∫ ∞

0

C(t)dt. (9.38)

Diffusion constant D is an important transport coefficient. Later, we
will show that other transport coefficients, such as the shear viscos-
ity and the thermal conductivity, can also be expressed as an integral
over appropriate autocorrelation functions. This kind of approach to
transport coefficients is generally discussed in the framework of Green-
Kubo formalism (Allen and Tildesley, 1986; Frenkel and Smit, 2002;
Rapaport, 1995; Reif, 1965; Reichel, 1998). The subroutine VAC (see
Appendix 9.E for details) computes the velocity autocorrelation for an

258 Chapter 9. Molecular dynamics

t (reduced unit)
0 0.25 0.5 0.75 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C(t)

ρ = 1.54
ρ = 0.912
ρ = 0.739

Figure 9.18: Velocity autocorrelation function for various densities of a
two-dimensional LJ system. The initial temperature was kBT = 1.

t (reduced unit)
0 0.5 1 1.5 2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(t)

ρ = 1.154
ρ = 0.912
ρ = 0.739

Figure 9.19: Velocity autocorrelation function for the same parameters in
figure (9.18). The initial temperature has been kBT = 2 in all three cases.

§9.9. Dynamical properties 259

t (reduced unit)
0 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

computational

1/ t

C(t)

Figure 9.20: Velocity autocorrelation function at ρ = 0.56, for a two
dimensional LJ system. The particle number is N = 265, and the initial
temperature was kBT = 5.

LJ system of particles. Figure (9.18) shows C(t) versus t for a two-
dimensional LJ system of particles at three different densities. In each
case, the initial temperature has been set to kBT = 1 in LJ reduced
units. For large densities, C(t) becomes negative and passes through
a minimum, for short time scales. Note that we have performed aver-
aging over all particles. Next, we increase the initial temperature up
to kBT = 2 to ensure the particles deviate large enough from their
solid equilibrium positions. Figure (9.19) shows the same diagram as
in figure (9.18). Clearly, C(t) reaches zero sooner than in the previous
case. The reason is that for fixed density, the system temperature has
risen, and the atoms possess higher kinetic energy, which results in a
more irregular behaviour. This leads to a sooner forgetting of the ve-
locity memory. Let us now increase the particles number to N = 256.
Moreover, we set Lx = 23 which gives ρ = 0.56 ∼ 0.5ρmax. Figure
(9.20) compares the computed C(t) with C(t) ∼ 1

t . At long time, C(t)
decreases like t−1. Figure (9.21) shows C(t) for a 2D solid state of a
LJ gas, both with the initial temperature kBT = 0.1. The number of
particles is N = 256. We observe that in this solid-like system, the ve-
locity correlation persists over a relatively long time. The fluctuations
in autocorrelation are enhanced compared to fluid-like structures.

260 Chapter 9. Molecular dynamics

t (reduced unit)
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C(t)

ρ = 0.91
ρ = 1.15

Figure 9.21: Velocity autocorrelation functions at ρ = 1.15, kBT = 0.051
and ρ = 0.91, kBT = 0.049. N = 256 with initial temperature kBT = 0.1.

9.10 Problems

Problem 9.1 Verify the energy conservation for the simulated two-
dimensional Lennard-Jones system in the text with N = 64 particles.
Theoretically, the total energy should be conserved. In the simula-
tion, it may not be due to round-off and systematic errors such as
truncation.

(a) Plot the time series of the total energy per particle for the interval
[0, t∗ = 10] and fit a linear curve to it. Take τ = 0.01.

(b) Draw the curve slope as a function of timestep τ to see how well
the Verlet algorithm preserves the energy as a function of τ .

(c) Test the accuracy of the Verlet algorithm in preserving the total
linear momentum P (t). Draw |P (t)| versus time. Theoretically,
the total linear momentum should remain zero if you have initially
prepared the system with zero total momentum.

(d) Obtain the angular momentum time series. Prepare the system
such that initially, its total angular momentum is zero.

§9.10. Problems 261

Problem 9.2 Solve problem one by substituting the Verlet algorithm
with the fourth-order Runge-Kutta. Which algorithm shows a better
performance in energy conservation? Verify your claim for larger N .

Problem 9.3 In the velocity distribution discussed in the text, keep
the number of particles constant but vary the simulation box size and
obtain the velocity component distribution for each size. Do you see
any dependence of the distribution on the system density? Is your
observation in agreement with the theory?

Problem 9.4 Obtain the velocity magnitude distribution for the
three-dimensional LJ system discussed in the text in figure (9.6) and
compare it to the theoretical Maxwell-Boltzmann distribution. Dis-
cuss various initial conditions with the same initial kinetic energy.

Problem 9.5 Compute the potential energy per particle for a 2D LJ
solid of density ρ in two cases of triangular and square lattices. Remind
you that the square lattice side length L should be L =

√
LxLy =

(
√
3
2)1/2Lx if both lattices have identical densities. Which lattice has

lower energy?

Problem 9.6 Verify that triangular structure is the energy min-
imising structure for a two-dimensional Lennard-Jones system below
melting temperature by initially placing immobile particles on ordered
arrays such as honeycomb lattice or in a disordered arrangement.

Problem 9.7 Find the radial distribution function for a three-dimensional
Lennard-Jones system at various densities.

Problem 9.8 Find the temporal dependence of mean-squared dis-
placement for a three-dimensional Lennard-Jones system at various
densities.

Problem 9.9 Find the temporal dependence of velocity autocor-
relation for a three-dimensional LJ system for various densities at
kBT = 1. To have a system at the desired temperature kBT = 1
you should appropriately adjust the initial temperature.

Problem 9.10 Verify the Green-Kubo relation for the self-diffusion
coefficient D for a three-dimensional LJ system. Obtain D directly by
numerical evaluation of the integral and compare it to the long-time
slope of the mean squared displacement.

262 Chapter 9. Molecular dynamics

Problem 9.11 Obtain the density dependence of diffusion constant
D for a three-dimensional LJ system at T = 1.

Problem 9.12 Melting transition: If we sufficiently heat a solid
body, it will eventually melt. Although we are familiar with this ubiq-
uitous phase transition, its theoretical explanation turns out to be a
difficult task in physics. Molecular dynamics provides a framework to
tackle this problem computationally. However, as you will see, com-
puter simulation of melting transition is not straightforward. We can
naively simulate the process of heating by increasing the particles’ ki-
netic energies over time. The problem with this method is that the
system pressure will vary, which is not consistent with what we nor-
mally observe in reality. In most melting transitions, the pressure
remains constant. One way that you can simulate the melting transi-
tion is the following. Initially, prepare a system in a solid phase at the
desired pressure. At certain regular times, scale the velocities of all
particles such that the system’s kinetic energy is slightly increased by
a factor λ > 1. Then perform a simulation until the system reaches
an equilibrium state. Measure the temperature and pressure and then
adjust the system size appropriately such that the pressure returns to
its desired value. This part should be done in a loop. Note that the
temperature has changed. In the next stage, examine if the system
has met one of the melting criteria. If these criteria are not met, then
repeat the procedure. Apply the above method to find the melting
transition of a three-dimensional Argon gas and compare your results
with the experimental ones.

Problem 9.13 Another way of simulating melting transition is to
decrease the system density. Start the system with a solid status.
Gradually decrease the density by increasing the simulation box size:
Lx = λLx etc. The scaling parameter λ should be slightly above
one. We suggest λ = 1.01. After each step of rescaling, scale the
particle coordinates as well X [i] → λX [i], and let the system reach
equilibrium. Next, to keep the system pressure constant, you should
pump energy into the system by appropriately changing the particles’
energies. This part should be done in a loop. Follow the rest of the
problem in a similar manner to the previous problem.

Chapter 10

Stochastic processes

10.1 Randomness and determinism

The problems we have considered up to now have been deterministic
in nature except quantum mechanics which was discussed in chapter
eight. However, quantum mechanics is out of the classical physics
realm. Here we intend to introduce some problems in classical physics
in which randomness is of prominent importance. Most deterministic
problems we have encountered so far are associated with an equation,
mostly differential, that has to be solved given the prescribed initial
condition. These problems are classified as deterministic because the
system status is predictable in any future time at least in principle.
A distinguished class of problems involves some degrees of random-
ness which play a significant role in their character. These stochastic
systems normally consist of a very large number of constituents and
therefore have a huge degree of freedom. Randomness can thus arise in
various aspects for example the inability to solve the full equations of
motion, lack of identifying the initial or boundary conditions, determi-
nation of the system number of particles, etc. Despite, the underlying
rules which govern the physics of the system being deterministic, our
insufficient knowledge of the system’s constituents forces us to replace
statistical approach for the description of the system’s macroscopic
properties. Another reason that we have to resort to a statistical de-
scription is that even if we manage to solve the equations of motion
for every system constituent, meaningful information would be possi-

263

264 Chapter 10. Stochastic processes

ble only if we average over the constituents’ behaviour. In practice,
we model a real but non-treatable deterministic process by a stochas-
tic one that is close, if not identical, to the real system in average
properties. To find a deeper insight into the philosophy of the statis-
tical description I can recommend to you the valuable textbook (Reif,
1965). Let us leave this qualitative discussion and prepare ourselves
to deal with some stochastic problems in physics. We shall start with
simple problems which illustrate the success of a statistical approach.
To each stochastic process, we associate a random variable X . A typ-
ical realisation of X is denoted by x. The range of x depends on the
character of the problem. Principally, we divide the random processes
into two classes discrete and continuous. A prototype example of a
discrete random process is throwing a die. If we could correctly write
down the Newton equation of motion for our rigid body (the dice) we
could deterministically predict the outcome. This task seems improb-
able therefore and we should inevitably grasp a stochastic description.
The outcome of this seemingly random process can be either one of
the six faces which are realisations of the random processes. We can
assign a real-valued number to each realisation to quantify the av-
erage properties of the process. The natural assigning numbers are
those shown by the faces that are xi i = 1, · · · , 6. It is now possible to
evaluate the mean value of the process. For this purpose, we multiply
xi by the occurrence probability of ith outcome pi and sum over the
total number of outcomes: 〈X〉 =

∑6
i=1 xipi. For a normal dice, all

the outcomes are equally probable therefore pi = 1/6 and we have:

〈X〉 = 1/6
∑6

i=1 xi = 21/6 = 3.5. For a general discrete stochastic
process with M outcomes, the ith outcome occurs with probability pi.
Showing the realisation of the ith outcome by xi, the average of the
random process X will be:

〈X〉 =
M∑
i=1

xipi (10.1)

A prototype of a random process of continuous nature could be the
time difference (time headway) between the passing of two consecutive
cars at a fixed location on a road. Another example is the velocity
magnitude of an emitted electron from a metal surface in the photo-
electric experiment.

§10.2. Particles in box 265

Figure 10.1: A closed box is divided into two equal parts by a fixed
partition. A small hole is opened in the partition such that one particle can
pass through the hole per time unit.

10.2 Particles in box

A remarkable point in dealing with systems having many particles
is that in the long-time limit, many of them evolve to an equilib-
rium state. We shall illustrate this point by considering an interesting
toy model. The model was put forward in (H. Gould and Chriastian,
2006) and many of the concepts introduced in this model can sim-
ply be generalised to other problems. Consider a closed box that is
divided into two segments of equal volumes (see Fig. (10.1)). The
left segment contains a gas comprising of N identical particles and
the right segment is initially empty. Imagine we make a small hole
in the partition between the two halves such that one particle can
pass through the hole per time unit. What happens from a statis-
tical point of view? Our experience or intuition tells us that after
some time, the average number of particles in each half of the box
will become N/2, and we say that the system has reached equilib-
rium. Let us simulate this process. For this purpose, we shall model
the problem by an equivalent model. We make a simplifying assump-
tion: the probability per time unit that a particle goes through the
hole in the partition is the same for all N particles regardless of the
particle number in either half. Furthermore, we assume that the hole
size is such that only one particle can pass through at a time. This
time is considered to be the timestep of our problem. We show the

266 Chapter 10. Stochastic processes

number of particles in the left segment at timestep t by n(t). Hence,
the number of particles in the right segment will be N − n(t) corre-
spondingly. To model the motion of particles let us propose a simple
dynamical rule for updating n(t). At each timestep, one segment is
chosen at random and one of its particles is removed to the other
segment. To randomly select the halves and a particle, we need a
computational tool. This tool is random number generator. Almost
all the computational softwares possess such a tool and can give you
a random number 0 < r < 1, upon calling, which is uniformly dis-
tributed in the unit interval [0, 1]. You can consult other references
(H. Gould and Chriastian, 2006; W. H. Press and Flannery, 2002) to
see how random number generator algorithms work in detail. In this
book, we only make use of this valuable tool. Each time you call this
generator, a random number r is returned. Once you are equipped
with this valuable tool you can generate any type of random vari-
able with an arbitrary probability distribution function. We will later
come back to this point. For the present, we notify that using a ran-
dom number generator we can generate discrete random variables. For
example in our present problem, we can choose the segments by an if

command as follows: first, generate a random number r between zero
and one. If r is less than 0.5 then choose the left segment otherwise if
it is equal to or greater than 0.5 then choose the right segment. If you
want to randomly choose one of the particles in the left segment, pro-
ceed as follows: suppose there are M > 0 particles in the left segment.
Generate a random number 0 < r < 1. We know that 0 < rM < M .
This means that the integer part of rM i.e. [rM] lies between zero
and M − 1. By adding one unit to [rM] it turns out that i = 1+ [rM]
(number of the chosen particle) would be an integer number between
one and M that is i = 1, · · · ,M . We are now ready to simulate this
toy model. Initially set an arbitrary number of particles N0 > 0 in
the left segment. Let us take the extreme value N0 = N . Make a
loop over time steps. At each timestep t choose a segment at random.
Then randomly choose a particle from the present ones in the selected
segment. Next, reduce (add) the number of particles in the selected
(other) segment by one unit. The programme Box (see appendix 10.A
for details) simulates our particle in a box toy model. Figure (10.2)
shows the time evolution of n (number of particles in the left side box)
for N = 8, 16 and 64 respectively. In figure (10.3) we show the time
evolution of n for larger values N = 400, 800, 3600. You see that if

§10.2. Particles in box 267

timestep
250 500 750 1000

0

10

20

30

40

50

60
N = 8

N = 16

N = 64

n

Figure 10.2: Time evolution of particle number n in the left box for total
number of particles N = 8, 16, 64.

we wait for enough the system reaches an equilibrium state. A simple
criterion for reaching equilibrium is that the time series n(t) does not
show a trend and fluctuates around a constant mean value. In general,
the equilibration time increases with N . A better way of quantifying
equilibrium is to measure the fluctuations around the mean value of
〈n〉. The mean-squared of fluctuations Δn is defined as:

(Δn)2 = 〈[n− 〈n〉]2〉 = 〈n2〉 − 〈n〉2 (10.2)

The bracket denotes the average over simulation time. It would be
more meaningful to consider relative fluctuation Δrel =

Δn
〈n〉 . Notice

that Δn is the standard deviation from the mean number of particles
in the left side box. Note that 〈n〉 equals N

2 . The evaluated fractional
deviations from the mean are 0.088, 0.051, 0.033, 0.008, and 0.005 for
N = 8, 16, 64, 400, 800 and 3600 respectively. You see that the rela-
tive fluctuation of n appears to be a decreasing function of the total
number of particles N . This behaviour is generic in statistical physics.
It would be instructive to derive a time dependence for 〈n〉 to show
explicitly how chance can generate deterministic behavior. During a
time step Δt the average number of particles in the left segment,〈n〉,

268 Chapter 10. Stochastic processes

timestep
1 5001 10001 15001

500

1000

1500

2000

2500

3000

3500

N = 400

N = 800

N = 3600

n

Figure 10.3: Time evolution of n for N = 400, 800, 3600 particles.

undergoes a change δ〈n〉. This change is proportional to Δt. A nega-
tive contribution comes from moving a particle from the left half into
the right half. This term is proportional to the probability of finding

a particle in the left half i.e. 〈n〉(t)N . The other positive contribution is
associated with the movement of a particle from the right segment into
the left one. This term is proportional to the probability of finding a

particle in the left segment which is N−〈n〉(t)
N . Therefore we can write

the following equation:

δ〈n〉 = [−〈n〉(t)
N

+
N − 〈n〉(t)

N
]Δt (10.3)

Dividing by Δt and taking the limit Δt → 0 we arrive at the following
differential equation for 〈n〉:

d〈n〉
dt

= 1− 2
〈n〉(t)
N

(10.4)

In figure (10.4) we exhibit the dependence of 〈n〉 on t from simulation
and the following analytical solution of (10.4) for the initial condition
〈n〉(0) = N :

〈n〉(t) = N

2
(1 + e−2t/N) (10.5)

§10.3. Random walk 269

t
250 500 750

100

200

300

400

500

600

700

800

900

N = 400, simulation

N = 800, simulation

N = 400, analytical

N= 800, analytical

<n>

Figure 10.4: Time dependence of 〈n〉 for various N .

Note that 〈n〉 decays exponentially to its equilibrium value N
2 . There

is a very good agreement between simulation and analytical formula.
According to (10.5) the relaxation time is τ = N

2 which linearly grows
with the particle number N .

10.3 Random walk

We proceed by considering a well-known stochastic problem the so-
called random walk which is widely used in statistical physics. A
random walk is a mathematical formalization of a path that consists
of a succession of random steps. For example, the path traced by
a molecule as it travels in a liquid or a gas, the search path of a
foraging animal, and the price of a fluctuating stock can all be mod-
eled as random walks. The term random walk was first introduced by
Karl Pearson in 1905 (Pearson, 1905). Since then random walk and its
variants have been extensively used in physics, chemistry, ecology, eco-
nomics, psychology, computer science, and biology. The random walk
can explain the observed behaviors of many processes in these fields,
and thus serves as a fundamental model for the recorded stochastic

270 Chapter 10. Stochastic processes

activity. To have a better insight, we shall pose the problem from a
physical point of view. Consider the Brownian motion. Historically
this transport phenomenon was observed in 1827 by Robert Brown, a
botanist, who looked at the erratic and irregular motions of micron-
sized particles found in pollen grains immersed in water through a
microscope. The mathematical explanation of the Brownian motion
came less than a century later when Albert Einstein published a pa-
per in 1905 that explained, in precise detail, how the motion that
Brown had observed was a result of the pollen being moved by indi-
vidual kicks from water molecules. This explanation of the Brownian
motion served as definitive confirmation that atoms and molecules ac-
tually exist, and was further verified experimentally by Jean Perrin
in 1908 who was awarded the Nobel Prize in Physics in 1926 ”for
his work on the discontinuous structure of matter”. The directions
of the atomic bombardment forces are constantly changing, and at
different times the particle is hit more on one side than another, lead-
ing to the seemingly random nature of the motion. A year after the
pioneering explanation of Einstein, which was more qualitative, a rig-
orous mathematical theory was put forward by Polish mathematician
Smoluchowski (Smoluchowski, 1906). In a Brownian motion, a large
particle (Brownian particle) is immersed in a solvent liquid comprised
of much smaller molecules. The Brownian particle incessantly and re-
peatedly receives random kicks from collisions by its adjacent solvent
molecules. As a result, it performs an irregular and random motion
and follows a complicated zigzag trajectory. This trajectory can be
best described by a set of discrete jumps in the Brownian particle
positions or what is known as a random walk. The jumps’ directions
are random in nature and there is no preferred direction. The jump
length is not constant and can vary from small to large values. For a
detailed see (Reif, 1965). To model this random walk, it is easier to
assume that time is evolved in discrete steps. Later we will consider
other types of a random walk in continuous time. Let us now simu-
late this discrete random walk. For the sake of simplicity, we consider
the motion to be one-dimensional but many of the concepts that we
shall introduce and develop can be genralised to higher dimensions
straightforwardly.

§10.3. Random walk 271

Figure 10.5: A one-dimensional discrete time random walk on a discrete
lattice.

10.3.1 One-dimensional random walk

Let us now simulate a one-dimensional random walk. We make an-
other simplification and take the step lengths to be a constant shown
by a. Due to one-dimensionality of the problem, the ith step can ei-
ther be towards the right (+a) or left (−a). Suppose the Brownian
particle or the walker starts its walk from the origin. The walker posi-
tion (distance from the origin) after taking N steps is denoted by xN .
The random variable xN can take 2N + 1 states: xN = −Na, (−N +
1)a, · · · ,−a, 0,+a,+2a, · · · , Na. See figure (10.5) for a schematic il-
lustration. One of the fundamental questions that we wish to address
is to find the probability P (m,N) that after N steps the walker arrives
at site m. To answer this question, we introduce a random variable sn
which is the n-th step that the walker takes. Random variable sn can
be ±a. We can write xn = s1 + s2 + · · · + sn where xn is the walker
distance to the origin after taking n steps. The statistical properties
of the random variable xn are determined by the corresponding prop-
erties of random variables si. Let us take the probability of making a
right step by p and a left step by q. Evidently, we have p+ q = 1. The
discrete random variable si has the probability distribution function
pi(x) = pδ(x−a)+qδ(x+a). The average of the step variable si turns
out to be 〈si〉 =

∫
xpi(x)dx = p(a) + q(−a) = (p − q)a

√
i > 0 which

does not depend on i. Note that the direction of the walker step is
independent of the preceding steps. This is an example of a memo-
ryless or Markov random process. we can simulate a one-dimensional
walk of N steps by flipping a coin N times and increasing the walker
position x by step length a each time the coin is head and decreasing
it by a each time the coin is tail. On a computer, we replace the coin-
flipping with a random number generator. Tossing a coin is modeled
by calling the random number generator. If the generated number r is

272 Chapter 10. Stochastic processes

less than half then we adopt a head otherwise the coin is assumed to
be a tail. There is no worry for the particular case r = 0.5. Actually,
the occurrence probability of r = 0.5 is zero in practice! The average
of walker position after taking N steps will be 〈xN 〉 = ∑N

i=1〈si〉. Be-
cause the step variables are identical their averages are independent of
their numbers thus we have 〈xN 〉 = N〈s〉 = N(p − q)a. This type of
averaging is called ensemble averaging. In practice, you perform the
walk a large number of times say M times. The average position 〈xN 〉
is obtained as follows:

〈xN 〉 = 1

M

M∑
s=1

x
(s)
N (10.6)

where x
(s)
N is the walker position after N steps in the trial s. In an

unbiased random walk where p equals q, we have 〈xN 〉 = 0. Let
us proceed a bit analytically before calling a computer to help us.
A useful quantity is the mean squared displacement of the walker
〈(ΔxN)2〉 = 〈[xN − 〈xN 〉]2〉 which is defined as the average of the
displacement square with respect to the mean position. It turns out
that:

〈[xN − 〈xN 〉]2〉 = 〈[
N∑
i=1

si −
N∑
i=1

〈si〉]2〉 = 〈[
N∑
i=1

(si − 〈si〉)]2〉 (10.7)

Denoting si − 〈si〉 by Δi we have:

〈(ΔxN)2〉 = 〈[
N∑
i=1

Δi]
2〉 = 〈

N∑
i,j=1

ΔiΔj〉 (10.8)

Separating the i = j term we find

〈(ΔxN)2〉 = 〈
N∑
i=1

(Δi)
2〉+ 〈

N∑
i�=j

ΔiΔj〉 (10.9)

The first term on the right hand side of (10.9) gives N〈Δ2〉 = N〈[s−
〈s〉]2〉 = N [〈s2〉−〈s〉2]. The mean square of the step variable s is simply
found to be 〈s2〉 = p(a2)+q(a2) = (p+q)a2 = a2 thus we have: 〈Δ2〉 =
a2−(p−q)2a2 = 4pqa2 where use has been made of p+q = 1. Therefore
the first term on the right-hand side of (10.9) becomes 4pqNa2. The

§10.3. Random walk 273

second term of the right-hand side of (10.9) is zero. To verify this you
should first note that 〈Δi〉 = 〈[si − 〈si〉]〉 = 〈si〉 − 〈si〉 = 0 and that
due to independence of steps 〈ΔiΔj〉 = 〈Δi〉〈Δj〉. In conclusion, we
arrive at the ultimate result:

〈(ΔxN)2〉 = 4pqNa2 (10.10)

Note that for a given N the mean squared displacement (MSD) is
maximum for p = q = 0.5. The basic feature is that MSD is pro-
portional to the number of steps N . The root mean-squared (rms) of
the displacement i.e.;

√
〈(ΔxN)2〉 is thus proportional to √

N . If the
timestep between steps is shown by Δt, after N steps the time has
elapsed for t = NΔt. Recalling the diffusion equation from chapter 5,
in terms of the time we have:

〈(ΔxN)2〉 = 2Dt (10.11)

where the diffusion constant D turns out to be D = 2pq
Δt a

2. Before
simulating the fascinating problem of random walk let us complete
our discussion by writing P (m,N), which is the probability of finding
the walker at site m after N steps. Clearly P (m,N) = 0 for |m| > N .
If |m| ≤ N we have:

P (m,N) =
N !

[N+m
2]![N−m

2]!
p

N+m
2 q

N−m
2 (10.12)

For its derivation see chapter one of the excellent monograph (Reif,
1965). Let us now simulate our one-dimensional random walk and
see to what extent the simulation results are in agreement with an-
alytical ones. To obtain any average numerically we have to sample
an ensemble of N step walks and average over the ensemble mem-
bers (trials) to obtain meaningful averages. Each N -step walk is
called a trial or sample. The more the number of trials the less the
systematic error and the more reliable our results. The programme
RandomWalk (see Appendix 10.A for details) simulates the motion of
a one-dimensional random walker. Let us explore some general char-
acteristics of a normal random walk. In figure (10.6) we show a space-
time plot of a random walker with N = 500 steps and p = 0.5. This
plot is called random walk profile. Profiles of trials are different from
each other. The random walk of each trial begins from the origin.
The step length and timestep are both set to unity. The computed

274 Chapter 10. Stochastic processes

time step
0 100 200 300 400 500

-15

-10

-5

0

5

10

15

20

25

30

x

p = 0.5

Figure 10.6: Space-time plot for a typical random walk trial with p = 0.5
and N = 500 steps. In this trial, the walker has arrived at the site m = 25
after N = 500 steps.

value of the ensemble average 〈xN 〉 approaches (p − q)N if the num-
ber of trials, M , goes to infinity. For example for N = 100 we ob-
tain 〈xN 〉 = −0.42,−0.06, 0.0006 for runs with M = 100, 10000 and
106 trials respectively. In figure (10.7), the mean-squared displace-
ment 〈(Δx)2〉 is depicted versus the number of timestep number both
computationally and analytically from relation (10.10) where N is the
number of steps and q = 1−p denotes the probability to step backward.
The agreement between the simulation and the analytical formula is
excellent.

10.3.2 Higher dimensional random walk

Many of the features that were discussed in the context of a one-
dimensional random walk can be generalised into higher dimensions
straightforwardly. Let us discuss a two-dimensional random walk on
a two-dimensional grid of points which constitutes a square lattice.
See figure (10.8) for illustration. The probabilities of taking a step to
right, left, up, and down are shown by pr, pl, pu, and pd respectively.

§10.3. Random walk 275

time step (reduced unit)
100 200 300 400 500

100

200

300

400

Simulation
Analytic

Δx2

p = 0.5

Number of trials = 100000

Figure 10.7: Mean-squared displacement of a random walker for p = 0.5.
The number of trials has been M = 105.

In the symmetric case, we have pr = pl = pu = pd = 0.25. To simulate
a trial walk we generate a random number 0 < r < 1. If 0 < r < 0.25
we step to right, if 0.25 < r < 0.50 we step to left, if 0.50 < r < 0.75
we step upwards, and finally if 0.75 < r < 1.0 we step downwards. In
figure (10.9) we have depicted the trajectory of a trial walk of N =
1000 steps starting from the origin. As we explained earlier each trial
represents the trajectory of a walker. Suppose we plot the trajectories
of M trials in the same graph. Figures (10.10) and (10.11) exhibit the
trajectories of a collection of M = 10000 walkers each taking N = 500
steps (figure (10.10)) and N = 1000 (figure (10.11)) respectively. If
each walker represents a bee, the qualitative nature of the trajectories’
shape resembles the swarm of bees. As you can see, the surface of the
swarm looks like a circle with a jagged surface. The values of the
mean-squared displacement written inside figures have been obtained
by computation over an ensemble of M = 10000 walkers. In two
dimensions we can define 〈yN 〉 and 〈(ΔyN)2〉 analogous to 〈xN 〉 and
〈(ΔxN)2〉. It turns out that 〈xN 〉 = N(pr − pl), 〈yN 〉 = N(pu −
pd). Similarly, we have xN =

∑N
i=1 sx,i and yN =

∑N
i=1 sy,i. Each

component of the two dimensional step vector s = (sx, sy) is a random

276 Chapter 10. Stochastic processes

Figure 10.8: Two-dimensional random walk on a square lattice.

variable with a binary distribution: P (sx) = prδ(sx − a) + plδ(sx +
a); P (sy) = puδ(sy−b)+pdδ(sy+b) where a and b are lattice constants
in x and y directions. We simply find that 〈(Δx)

2〉 = 〈[sx − 〈sx〉]2〉 =
〈s2x〉 − 〈sx〉2. Noting that 〈s2x〉 = (pr + pl)a

2. We find:

〈(Δx)
2〉 = [(pr + pl)− (pr − pl)

2]a2 (10.13)

Similarly, we find the mean-squared displacement in y direction:

〈(Δy)
2〉 = [(pu + pd)− (pu − pd)

2]b2 (10.14)

For a = b the mean-squared displacement 〈(Δr)2〉 = 〈(ΔxN)2〉 +
〈(ΔyN)2〉 becomes:

〈(Δr)2〉 = N [1− (pr − pl)
2 − (pu − pd)

2]a2 (10.15)

Figure (10.12) shows ensemble averages 〈x〉, 〈y〉, 〈Δx2〉, 〈Δy2〉 as well
as 〈Δr2〉 = 〈Δx2〉 + 〈Δy2〉 dependence on step number N . Due to
symmetry in x and y directions we have 〈x〉 = 〈y〉 and 〈(Δx2)〉 =
〈(Δy2)〉. Figure (10.12) exhibits this symmetry on a computational

§10.3. Random walk 277

x
-100 -50 0

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

y

N =10000

Figure 10.9: Trajectory of a 2D symmetric random walker which has
started its walk from the origin.

ground. In general, the square root of the mean squared displacement
(rms) attains a scaling form for large N :

rms(N) =
√
〈(Δr)2〉 ∼ Nν (N >> 1) (10.16)

By computing the averages over an ensemble of M = 100000 trials we
obtain the values 〈(Δr)2〉 = 0.42, 0.59, 074, 0.90 for N = 8, 16, 32 and
64 respectively. n a logarithmic scale, we have:

rms(N) = Nν → log rms = νlogN (10.17)

A linear fitting to the above equation gives: ν = 0.58. Note that the
expected value ν = 0.5 for a normal random walk is obtained for large
N . In our cases, the discrepancy between the large N value ν = 0.5
and the computed value ν = 0.58 is associated with the smallness of
N .

278 Chapter 10. Stochastic processes

x
-100 -50 0 50 100

-100

-75

-50

-25

0

25

50

75

100

y

< Δ =500r2>

N= 500

M = 10000

Figure 10.10: Trajectories of M = 10000 random walkers each taking
N = 500 steps. The walks are symmetric and have started from the origin.

10.4 Variants of random walk

In this section, we investigate the statistical properties of various kinds
of random walk. The problems that we shall consider include persis-
tent random walk, random walk with variable step length, random
walk with trap, and self-avoiding random walk. Each of these variants
can model a physical process which will be explained. Let us start
with a persistent random walk.

10.4.1 Persistent random walk

In a persistent random walk, the walker has a memory of its preced-
ing steps. In other words, the transition or jump probability depends
on the previous step. Consider a persistent walk with N steps on a
one-dimensional lattice. Each step is made in the same direction as
its preceding step with probability α. Correspondingly a step in the
opposite direction of the previous step occurs with probability 1− α.

§10.4. Variants of random walk 279

x
-100 -50 0 50 100

-125

-100

-75

-50

-25

0

25

50

75

100

125

y

< Δr2 > = 1010

M =10000

N =1000

Figure 10.11: Trajectories of M = 10000 random walkers each taking
N = 1000 steps. The walks are symmetric and have started from the origin.

When α = 1
2 the persistent random walk becomes a normal random

walk. It would be very easy to write a programme to simulate this
type of random walk. Note that it is necessary to specify both the ini-
tial position and an initial direction for the walker. The programme
PersistWalk (see Appendix 10.B for details) simulates the motion of
a one- dimensional persistent random walk. Let us first see a typical
profile of a persistent walk of N = 500 steps in figure (10.13). You
observe the distinctive characteristics when α changes. When α �= 0.5
we see that the walker changes its direction quite often. In figure
(10.14) we have shown the dependence of 〈(Δx)2〉 on step number N
for α = 0.5 and α = 0.3. Ensemble averaging has been performed
for M = 100000 trials. As you can see, when α = 0.5, the persis-
tent walk is identical to a normal random walk where the walker loses
its short-time memory. However, when α deviates from 0.5 the walk
characteristics become substantially different from a normal walk. In
particular, the diffusion constant (slope of the MSD curve vs N) re-
duces in comparison to the normal walk. To gain more insight, let us

280 Chapter 10. Stochastic processes

N (step number)

A
ve

ra
ge

s

25 50 75

0

10

20

30

40

50

60

70

80

90

100

<Δ >x2

<Δ >y2

<Δ >r2

< >x
< >y

M = 100000

Figure 10.12: Mean positional components and mean-squared displace-
ments vs step numbers N for a symmetric two-dimensional random walk.
Ensemble averages have been performed over M = 104 trials.

see how the distribution function PN (x) behaves for a normal and per-
sistent walks in figure (10.15). In a persistent walk, when α becomes
less than 0.5, the distribution function becomes more localized com-
pared to a symmetric normal walk (α = 0.5). This is in accordance
with the reduction of the diffusion constant.

10.4.2 Random walk with steps of variable lengths

So far we have restricted our random walk to the case where the step-
length is constant. Now we want to release this assumption and al-
low the step-length to vary. For the sake of simplicity, we consider
a discrete-time random walk in one dimension. Each walking step is
made at timesteps of duration Δt. The probability that the length of
a single step is between a and a + Δa is f(a)Δa, where f(a) is the
step-length probability density. Consider f(a) in the exponential form
f(a) = Ce−a/λ for a > 0. Normalization condition

∫∞
0

p(a)da = 1 im-
plies C = 1/λ. To simulate this walk of variable step-length we need
to generate a step-length at each timestep. These step-length numbers

§10.4. Variants of random walk 281

timestep

x
(d

is
ta

nc
e

fr
om

or
ig

in
)

100 200 300 400 500

-30

-20

-10

0

10

20

persistent walk, p=0.5

persistent walk, p=0.3

Figure 10.13: Profile of a persistent random walk with N = 500 steps for
two values of α = 0.3 and 0.5.

should have an exponentially decaying distribution. For this purpose,
you first need to obtain the accumulative probability distribution func-
tion F (x) associated with f(x). For our exponential distribution, we
have F (x) = 1/λ

∫ x

−∞ e−x/λdx = 1− e−x/λ. Next, we generate a ran-
dom number r uniformly distributed between zero and one. Equating
r = F (x) gives us the random number x with the desired exponen-
tially decaying distribution function. Note that we have to obtain
the inverse function F−1(x). For the exponential function this turns
out to be F−1(x) = −λln(1 − x) and we conclude that the variable
x = F−1(r) = −λln(1− r) has the required exponential distribution.
Now we can express the algorithm. At each timestep i, generate a ran-
dom variable ai from the exponential distribution f(a) = e−a (λ is set
to one). Then randomly choose a direction sign (minus for left and plus
for right) and change the current walker position by ±ai depending on
the chosen walk direction. The main quantity of interest is PN (x)Δx,
the probability that the walker displacement is between x and x+Δx
after N steps. We assume the walk is symmetric i.e., the probability
of walking rightward equals the probability of walking leftward. Let
us see in figure (10.16) the profile of a typical walk of N = 100 steps.

282 Chapter 10. Stochastic processes

N
50 100 150 200

0

25

50

75

100

125

150

175

200

normal walk, p=0.5

persistent walk, p=0.5

normal walk, p=0.3

persistent walk, p=0.3

<Δx2>

Figure 10.14: Dependence of the mean squared displacement 〈(Δx)2〉 on
N for a one dimensional random walk with α = 0.3 and 0.5.

You see the profile characteristics differ substantially from each other.
In the variable step walk, one encounters long jumps which are absent
in the normal random walk. Let us see how PN (x) behaves in variable
and fixed step length walks. Figure (10.17) depicts this behaviour: A
drastic difference between distribution functions is observed. In the
step variable case, the probability of finding the walker near the origin
is notably reduced compared to a normal random walk. It would be
interesting to see how the variance of displacement 〈(Δx)2〉 behaves in
the case of step variable random walk. In figure (10.18) we compare
this quantity to its normal walk counterpart. Another frequent choice
for the step magnitude probability density function f(a) is power law
form f(a) = Ca−1−α a > 1. This type of random walk is known
as a Levy flight for α ≤ 2. As an example take α = 1 which gives
f(a) = C

a2 . Constant C is determined by the normalisation condi-

tion: C
∫∞
1

a−2da = 1. It turns out that C = 1. Let us simulate
this random walk. We use the general inverse method for generating a
random variable with power law distribution f(a) = a−2. The corre-
sponding cumulative distribution function F (a) =

∫ a

1
1
a2 da turns out

§10.4. Variants of random walk 283

x
-100 -50 0 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

normal walk, p=0.5

persistent walk, p=0.5

normal walk, p=0.3

persistent walk, p=0.3

P
N

(x
)

N = 200

M = 100000

Figure 10.15: Distribution function PN (x) for N = 200 steps. The per-
sistent walk is compared to a normal walk.

to be F (a) = 1 − 1
a . The step length variable a is thus generated as

a = P−1(r) = 1
1−r . Figure (10.19) exhibits PN (x) for a N = 50 step

walk with variable step length generated from a long-tail distribution
function p(a) = C

a2 .

10.4.3 Random walk on a continuum

In one dimension each step can have only two directions: right or left.
In higher dimensions the situation is different. For simplicity suppose
we are in dimension two and assume that the random walk occurs
in a continuum i.e.; the walker can be found at any point of the 2D
space. Suppose the magnitude of the step length a can take any value
between zero and infinity. Moreover, the step direction can be at any
angle θ uniformly distributed between zero and 2π. This random walk
was proposed by Rayleigh in 1919 (Weiss, 1994). Here the variable of
most interest is RN , the walker distance from the origin after N steps.
Let us first consider a walker in two dimensions with fixed step size a
and random angle direction. The algorithm for a programme that sim-
ulates this walk is very simple. Suppose the walker is at the location

284 Chapter 10. Stochastic processes

Step number

di
st

an
ce

fr
om

or
ig

in

0 25 50 75 100

-8

-6

-4

-2

0

2

4

6

8

10

12

step length variable

step length fixed

Figure 10.16: Profiles of a walker with N = 100 steps of variable length
in comparison to a normal random walk.

(xi, yi) at the end of ith step. Generate a random number 0 < r < 1
and multiply it by 2π. The quantity θi+1 = 2πr, which lies between
zero and 2π, will be the direction of the next step i + 1 with respect
to the direction of the preceding step θi. Then update the walker
position to (xi+1, yi+1) = (xi + a cos θi+1, yi + a sin θi+1). The pro-
gramme 2DContinuumWalk (see Appendix 10.C for details) simulates
the motion of a two-dimensional Rayleigh random walk. Let us see the
profile of a typical Rayleigh walk with N = 10000 steps of fixed length
in figure (10.20) which has started from the origin. In figures (10.21)
and (10.22) we show the N dependence of 〈R〉 and 〈(ΔR)2〉 on N re-
spectively. Ensemble averaging has been performed over M = 100000
samples. In contrast to one dimension, the dependence of 〈R〉 on
N is not linear. It turns out that this dependence takes a power law
form. To see this explicitly, let us find the fitting exponent ν from
the power law behaviour 〈R〉 ∼ Nν . By linear fitting to the equation
log〈R〉 = νlogN we obtain ν = 0.78. Another interesting quantity is
PN (R)ΔR, the probability that R is between R and R+ΔR after N
steps. In figure (10.23) we exhibits P (R) for N = 200 steps and com-

§10.4. Variants of random walk 285

x
-25 0 25

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

step length variable

step length fixed

P (x)N

N = 100

p = 0.5

Figure 10.17: Probability distribution PN(x) for walkers with variable
and fixed step lengths. We have taken M = 100000 for ensemble averaging.

pare it to the theoretical form Pth(R) = 2πRe
− (R−〈R〉)2

2(ΔR)2 . Note that
in the theoretical formula, we have used the computed values for 〈R〉
and 〈ΔR2〉 (Weiss, 1994).

10.4.4 Random walk with a trap

Up to now, our one-dimensional random walk has had no spatial re-
striction and the walker can be found at any position even indefinitely
far from its starting point. Now we wish to consider a restricted ran-
dom walk. Imagine a one-dimensional lattice with trapping sites at
x = 0 and x = L. A walker begins at site x0 (0 < x0 < L) and
takes unit steps to the left and right with equal probability. When the
walker arrives at a trapping site, the walk terminates. We want to find
the mean first passage time τ to a tapping site (Redner, 2008). See
figure (10.24) for illustration. It can be verified that the mean number
of steps for the particle to be trapped (the mean first passage time) is
given by τ = (2D)−1x0(L−x0) where D is the self-diffusion coefficient
in the absence of the traps. We note from (10.11) that in one dimension
D = 2pq = 2p(1 − p). Figure (10.25) shows the computed mean first
passage time τ and its theoretical formula τ = 1

2Dx0(L−x0) in which L

286 Chapter 10. Stochastic processes

N
25 50 75 100

25

50

75

100

125

150

175

200

variable step

fixed step

<Δx2> p = 0.5

M= 100000

Figure 10.18: Mean squared displacement 〈(Δx)2〉(N) for walkers with
variable and fixed step lengths. Ensemble averaging has been performed
over M = 105 members.

is the system length. We have taken L = 100 in our code and averaged
over an ensemble of M = 104 trials. The agreement between theory
and simulation is very good. Let us consider another type of restricted
random walk. Imagine a 1D random walk with reflecting boundary
condition at the left (right) boundary x = −L (+L). When the walker
reaches x = −L (+L) it is reflected toward −L+ 1 (L− 1). At t = 0,
the walker starts at x = 0 and steps with equal probabilities to left
or right. We have simulated this random walk and obtained PN (x)
where N denotes the number of steps. On average, after N steps the
walker has reached a distance R(N) ∼

√
〈(Δx)2〉 from its starting

point. We expect those N for which R(N) is less than the distance
to the boundaries, the probability distribution function PN (x) is not
affected by the presence of the reflecting boundaries. For R(N) ≥ L,
we expect deviations from the free random walk. Figure (10.26) com-
pares PN (x) in the presence of reflecting boundaries to the free case
for N = 2000. At this N we have R(N) =

√
2000 ∼ 44 which is less

than L = 100. The two distribution functions are almost identical to
each other because the walker cannot feel the boundary’s existence.

§10.4. Variants of random walk 287

x
-25 0 25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Variable step

Normal walk

P(x)

N = 50

M =100000

Figure 10.19: PN (x) for walkers with variable and fixed lengths.

Now let us increase N . Figure (10.27) shows the same quantity PN (x)
for N = 20000. In this case, we have R(N) =

√
20000 ∼ 141 which is

larger than L = 100. You see notable deviations from the unrestricted
random walk. The walker feels the presence of the reflecting walls and
its characteristics have undergone substantial changes.

10.4.5 Self-avoiding random walk

In most of the random walk problems we have considered so far, the
walker has had no memory of its past. Of course, an exception was
the persistence walk where the walker had a short-time local memory
of its prior step. Here we want to address the question of global mem-
ory. Actually, in some physical processes, the assumption of having a
sort of memory is appropriate. Let us introduce a prototype of such
a kind of random walk the so-called self-avoiding random walk. In
a self-avoiding walk (SAW) the walker is not allowed to pass a site
that has been passed in the preceding steps. In other words, each
site can at most be visited once by the walker. From the geometrical
viewpoint, the profile of a SAW is not self-intersecting and its path
does not cut itself. In programming a SAW, you should keep track

288 Chapter 10. Stochastic processes

X
-25 0 25 50

-70

-60

-50

-40

-30

-20

-10

0

10

20

Y

N =1000

Figure 10.20: Trajectory of a 2D Rayleigh walk with fixed (unit) step
length and N = 1000 steps.

of site occupation. For this purpose assign a binary value s = 0, 1 to
each site. At the beginning of the simulation set the array s equal
to one for all sites i.e.; s[i] = 1 i = 1, 2, · · · . Whenever a site is
visited turn its status number into s = 0. At each step n, randomly
choose one of the adjacent sites of the walker which have not been
visited and move the walker to this new site with the prescribed prob-
ability. Remember that you may reach a site that has no non-visited
adjacent sites. In this case, the walk is terminated. The basic dif-
ference of a SAW ensemble is that each trial m has its own duration
Nm. Suppose we want to compute the mean-squared displacement
after N walks. We should count the number of trials whose durations
are larger or equal to N and make an average over them. More pre-
cisely, suppose the trial m lasts for Nm steps. This trial can contribute
to those 〈(ΔrN)2〉 in which N ≤ Nm. There is an elementary algo-
rithm called growing in the context of SAWs (Giordano and Nakanishi,
2006). As compared to a normal random walk, a SAW will, on av-
erage, go farther distances for the same number of steps. It can be

§10.4. Variants of random walk 289

N
0 50 100 150 200

0

1

2

3

4

5

6

7

8

9

10

11

12

13

< R>

M = 100000

Figure 10.21: 〈R〉 versus N of a 2D Rayleigh walk with fixed (unit) step
length.

shown that for large times the mean-squared displacement of a SAW
has a power law behaviour 〈(Δr)2〉 ∼ t2ν where ν is the Flory ex-
ponent (Nakanishi, 1994). The Flory exponent has a dimensionality
dependence. For d = 2, 3 we have ν = 0.75 and 0.6 respectively which
are both higher than the normal random walk exponent 0.5. As a
matter of fact, the simulation method that we explained is subjected
to flaws. We refer interested readers to consult other books such as
(Giordano and Nakanishi, 2006) for further details where you can see
nice graphs for SAWs. Self-avoiding walk can mimic the basic in-
gredients of a physical process in polymer physics (de Gennes, 1979;
Dio and Edvards, 2001). A polymer is comprised of N repeated units
(monomers) with N >> 1. Although, the fine structure of the poly-
mer is important for many practical applications, such details can be
ignored if we are interested in its global properties. Let us now in-
troduce a random walk model that incorporates the global aspects of
dilute linear polymer chains in a solution. As an idealisation, we as-
sume the monomers can only occupy the sites of a regular lattice. An
important physical feature of a polymer chain is that no two monomers
can occupy the same spatial position. This constraint is known as the

290 Chapter 10. Stochastic processes

N
0 50 100 150 200

0

5

10

15

20

25

30

35

40

45

<Δ R2>

M = 10000

Figure 10.22: 〈(ΔR)2〉 of a 2D Rayleigh walk with fixed (unit) step length.

excluded volume condition, which is ignored in a simple random walk.
This constraint is nevertheless, satisfied by the self-avoiding random
walk. A correspondence between a SAW of N steps and a polymeric
configuration of a N -monomer polymer is now clear. The random
walk’s root mean-squared displacement

√
〈(Δr)2〉 gives its place to

end-to-end mean distance 〈RN 〉 between the first and the last sites
of a polymer consisting of N monomers. We leave the further discus-
sion on SAWs to other references such as (Rosenbluth and Rosenbluth,
1955; Wall and Mandel, 1975; Prellberg and Krawczyk, 2004).

10.5 Random walk and diffusion

You may have read in several places that random walk is connected
to diffusion. This is indeed true. Here we want to make this analogy
on quantitative grounds. Consider an ensemble of random walkers on
a 2D square lattice. They all start their walk from the origin. To
make the problem more realistic you may assume that these particles
are physical entities such as tiny coffee powder particles in water.
The question that we wish to address is how the particles’ density

§10.5. Random walk and diffusion 291

R
0 10 20 30

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

P(R)

N = 200

M = 100000

Figure 10.23: PN (R) of a 2D Rayleigh walk with a fixed (unit) step length
for N = 200 steps.

ρ(x, y, t) evolves in time. Up to now, we have focused on the individual
properties of a random walk. However, the concept of �ensemble can
have a physical interpretation as will shortly see. To obtain ρ(x, y, t)
let us again come back to our single random walker who is performing
a random walk. Let P (i, j, n) denote the probability that the walker is
at site (i, j) of a discrete 2D lattice in n-th step. The following master
equation can be written for P (i, j, n):

P (i, j, n) = prP (i− 1, j, n− 1) + plP (i + 1, j, n− 1)+

puP (i, j − 1, n− 1) + pdP (i, j + 1, n− 1) (10.18)

A rearrangement of (10.18) gives:

P (i, j, n)− P (i, j, n− 1) = pr[P (i− 1, j, n− 1)− P (i, j, n− 1)]+

pl[P (i+1, j, n−1)−P (i, j, n−1)]+pu[P (i, j−1, n−1)−P (i, j, n−1)]

+pd[P (i, j + 1, n− 1)− P (i, j, n− 1)] (10.19)

292 Chapter 10. Stochastic processes

Figure 10.24: A trapping random walk in one dimension.

Now we coarse-grain the space and time by letting both the timestep
Δt and the step length a go to zero. We can thus speak of the con-
tinuous time and space variables t = nΔt, x = ia, and y = ja. The
function P (i, j, t) will be substituted by P (x, y, t). Dividing both sides
of (10.19) by Δt and taking the continuum limit we find:

∂P (x, y, t)

∂t
=

pr
Δt

[P (x− a, y, t−Δt)− P (x, y, t−Δt)]+

pl
Δt

[P (x+ a, y, t−Δt)−P (x, y, t−Δt)]+
pu
Δt

[P (x, y− a, t−Δt)−

P (x, y, t−Δt)] +
pd
Δt

[P (x, y+ a, t−Δt)−P (x, y, t−Δt)] (10.20)

Taylor Expanding the expressions inside brackets up to the term a2

gives (we neglect the terms linear in Δt):

∂P (x, y, t)

∂t
=

(pl − pr)a

Δt

∂P (x, y, t)

∂x
+

(pd − pu)a

Δt

∂P (x, y, t)

∂y

+(pl + pr)
a2

2Δt

∂2P (x, y, t)

∂x2
+ (pu + pd)

a2

2Δt

∂2P (x, y, t)

∂y2
(10.21)

To have a diffusive behaviour we assume that the a2

Δt approaches 4D
in the continuum limit where a,Δt → 0 and D is the self-diffusion
constant. In a symmetric random walk, we have pl = pr = pd = pu =
0.25 therefore the first two terms in the right-hand side of (10.21)
vanish and we arrive at the diffusion equation:

∂P (x, y, t)

∂t
= D[

∂2P (x, y, t)

∂x2
+
∂2P (x, y, t)

∂y2
] = D∇2P (x, y, t) (10.22)

§10.5. Random walk and diffusion 293

x0

0 25 50 75 100
0

500

1000

1500

2000

2500

computed

theoretical

τ

L = 100

M= 1000000

Figure 10.25: Average trapping time τ vs x0 for a one dimensional re-
stricted random walk. The system length is L = 100.

For a non-symmetric random walk, the diffusion equation becomes

biased. Let us define the continuum limits of (pl−pr)a
Δt and (pd−pu)a

Δt by
Cx and Cy respectively. The two-dimensional biased diffusion equation
becomes:

∂P (x, y, t)

∂t
= 2D[(pl + pr)

∂2P (x, y, t)

∂x2
+ (pu + pd)

∂2P (x, y, t)

∂y2
]+

Cx
∂P (x, y, t)

∂x
+ Cy

∂P (x, y, t)

∂y
(10.23)

To see the analytical solution of the biased diffusion equation consult
(Weiss, 1994). In exercises, you are asked to solve (10.23) by a linear
transformation of coordinates. Generalization of (10.22) to higher di-
mensions is straightforward. We should not forget that a differential
equation is not completed unless the initial and boundary values are
prescribed. In our random walk problem, we took the starting point
of the walker at the origin therefore the initial condition turns out to
be: P (x, y, 0) = δ(x)δ(y). As for the boundary condition we can take

P (x, y, t) = 0 when r =
√
x2 + y2 → ∞. Coming back to our density

294 Chapter 10. Stochastic processes

x

P
(x

)

-100 -50 0 50 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

With Wall

Without Wall

L = 100

N =2000

Figure 10.26: The probability distribution function PN (x) for a one-
dimensional reflecting symmetric random walk with N = 2000 steps. The
result is compared with the non-reflecting random walk. The system length
has been taken L = 100.

evolution problem, the grain density ρ(x, y, t) is simply obtained by
multiplying P (x, y, t) by the ensemble number M . We remark that
the diffusion equation (10.22) is mathematically identical to the heat
equation we encountered in chapter (5). We interchangeably use heat
and diffusion. This is not accidental. The spread of phonon wave pack-
ets which are responsible for heat transport is a random phenomenon
and can be modeled by a diffusion equation. To reinforce the connec-
tion between the diffusion equation and random walk, we draw your
attention to P (m,N) i.e.; the probability that the walker is at site
m after taking N steps. You will prove (I hope) in exercises that in
large N limit P (m,N) becomes Gaussian with a width equal to MSD
〈(Δx)2〉. Interestingly the solution of the diffusion equation also be-
came a Gaussian with a width equal to 2Dt which is identical to the
MSD of a random walker when N is large enough (see Eq. (5.21) of
chapter (5).

§10.6. Random walk and entropy 295

x

P
(x

)

-50 0 50

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

With wall
Without wall

L = 100

N = 20000

Figure 10.27: Distribution function PN(x) for N = 20000 steps.

10.6 Random walk and entropy

Entropy is a concept that entered physics in the mid-19th via the
experimental works of French engineer Nicholas Saadi Carnot and
later more rigorously by German physicist and mathematician Rudolf
Julius Emanuel Clausius who proved the Clausius inequality named
after him. Austrian physicist Ludwig Boltzmann reconsidered entropy
from the statistical physics viewpoint in the late nineteen century and
established a firm statistical basis for the second law of thermodynam-
ics with his outstanding H-theorem. Now that we can simulate some
random processes it would illustrative and fascinating to verify one
important consequence of the second law of thermodynamics which is
the principle of entropy increase. According to this corollary of the sec-
ond law, the entropy of an isolated system increases until it reaches an
equilibrium. Entropy is a very useful quantity for non-equilibrium sys-
tems and can illustrate how a far-from-equilibrium system approaches
equilibrium. Physically speaking, entropy is an extensive thermody-
namic state variable. For simple systems such as ideal and van der
Waals gases, entropy can be obtained as a function of independent
thermodynamic variables namely T and p (W. Greiner and Stöcker,

296 Chapter 10. Stochastic processes

2001). Here we look into entropy from a statistical physics point of
view. We recall the statistical definition of entropy S (Reif, 1965):

S = −
∑
i

PilnPi (10.24)

where Pi is the probability that a system is in its i configurational
state. As a simple example (perhaps the simplest) let our system be
a random walker executing a discrete-time one-dimensional random
walk on a lattice. If the lattice is infinite the system never reaches
an equilibrium state. However, if we restrict the walker between two
reflecting walls the situation will be entirely different. Let the lattice
contain 2L+1 sites i = −L,−L+1, · · · ,−1, 0, 1, · · · , L−1, L. Suppose
a walker starts its symmetric random walk from the origin at t = 0
and let P (i, n) denote the probability that the walker is at site i after
taking n steps. Our initial condition implies P (i, 0) = δi,0. We want
to obtain the system entropy S(n) at the n−th step. According to
(10.24) we have:

S(n) = −
L∑

i=−L

P (i, n)lnP (i, n) (10.25)

To obtain P (i, n) we proceed recursively and write down a master
equation for it as follows:

P (i, n) =
1

2
P (i − 1, n− 1) +

1

2
P (i+ 1, n− 1) (10.26)

The restrictive geometry implies the boundary conditions P (−L, n) =
P (+L, n) = 0. Let us now simulate the problem. Let an ensemble of
M independent walkers execute a random walk. Each walker starts
its walk from the origin i = 0. The probability that the site i is occu-
pied at step n can simply be obtained as P (i, n) = 1

M

∑M
m=1 s

(m)(i, n)

where s(m)(i, n) is zero (one) if the m−th walker is (is not) at site
i after step n. In figure (10.28) we have shown the site occupation
profile at various times for a symmetric reflecting random walk on a
101-site chain (L = 50). As you can see for sufficiently large times the
occupation probability becomes almost uniform throughout the lat-
tice. In the problems, you are asked to obtain the temporal evolution
of the system entropy.

§10.7. Problems 297

i
-50 -25 0 25 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

n=100

n=200

n=500

n=1000

n=2000

n=2500P[i]

M=100000

p=q=0.5

Figure 10.28: Site occupation probability profile for a restricted 1D sym-
metric random walk on a 1D chain of 101 sites. Average has been performed
over M = 106 trials.

10.7 Problems

Problem 10.1 Modify the particle in a box problem in a manner that
the probability of moving a particle to the other segment depends on
the present number of particles of the chosen segment. Write down the
corresponding differential equation for the average number of particles
in the left segment.

Problem 10.2

(a) Derive the formula (10.12) for P (m,N).

(b) Choose N = 10 and draw P (m,N) as a function of m.

(c) What would be the shape of P (m,N) when N goes to a large
limit?

Problem 10.3

(a) Using the analytical form of P (m,N), obtain the mean position
of the walker after taking N steps.

298 Chapter 10. Stochastic processes

(b) Let nR be the random variable that shows the number of right
steps in the sample walk. Analytically show that its mean value
is 〈nR〉 = pN .

(c) Show its dispersion 〈(ΔnR)
2〉 is equal to Npq.

Problem 10.4

(a) Numerically compute P (m,N) forN = 10, 100 and 1000 and draw
it versus m.

(b) At which m the probability distribution function is maximised?

(c) According to the central limit theorem in statistics, for large N
the probability function P (m,N) approaches a Gaussian function
of the form:

PG(x) =
1√

2π〈(Δx)2〉e
− (x−〈x〉)2

2〈(Δx)2〉 (10.27)

(d) For each N = 10, 100, 1000 compute 〈xN 〉, 〈(Δx)2〉 and P (m,N)
numerically and plot them on the same graph. Verify that for
large N,P (m,N) approaches the Gaussian function.

Problem 10.5 An interesting quantity in a random walk is the mean
number of lattice sites 〈DN 〉 visited during a N step walk. Compute
and draw 〈DN 〉 in terms of N for various values of p.

Problem 10.6 Another interesting quantity in a random walk is the
mean first passage time 〈τm〉 which is the meantime the site m is first
visited by the walker during a course of a N step walk (Redner, 2008).
Compute and draw 〈τm〉 versus m for various values of N . Fix m and
sketch 〈τm〉 as a function of p.

Problem 10.7 Assume that 〈(Δx)2〉 ∼ N2ν for largeN in a persistent
random walk. Estimate the value of the exponent ν from a log-log plot
of MSD versus N for large N . Plot the dependence of ν on α.

Problem 10.8 Consider a one-dimensional randomwalk with variable
step length. Take the probability density function of the step length
to be uniform in the interval [−a,+a] that is f(a) = 1

2a . Note the

§10.7. Problems 299

step direction is automatically included in f(a) so you do not need to
choose the walk direction. Simulate the random walk and obtain the
MSD 〈(Δx)2〉 as a function of N . Does the MSD resembles a power
law function 〈(Δx)2〉 ∼ Nβ for large N If yes, then estimate the value
of β from a log-log plot of MSD versus N for large N .

Problem 10.9

(a) By a suitable change of variables (x, y) into (ξ, η) change the biased
diffusion equation (10.23) into an unbiased equation in the new
coordinates (ξ, η).

(b) Solve the unbiased equation and then by a reverse transformation
of coordinates obtain the desired solution in (x, y). For simplicity
take pl + pr = pu + pd.

Problem 10.10 Random walk in a disordered medium: Con-
sider a one-dimensional random walk in a disordered medium in which
the step probabilities depend on the walker’s location. Assume the
medium is a lattice and let a rightward walk probability be p = 0.5 in
all sites except at site i = d > 0. At this site, we have pd = f .

(a) simulate the problem and find the 〈xN 〉 and 〈(ΔxN)2〉 as a func-
tion of f for various values of d.

(b) take the right step probability at site i to be a random variable pi
from the probability distribution p(x). Obtain the mean and mean
squared displacement for various choices of p(x) and compare them
to their corresponding values in a normal 1D random walk.

Problem 10.11 Random walk on triangular lattice: Consider
a random walk on a two-dimensional triangular lattice with lattice
constant a (distance between nearest neighbours). Here each site has
six nearest neighbours. Take the moving probability to each of the six
nearest neighbours equal to each other.

(a) Simulate the walk and obtain the mean squared displacement as
a function of N (number of steps). Does the MSD behave linearly
in time (step numbers)?

(b) Obtain the diffusion coefficient D of this triangular lattice ran-
dom walk and compare it to a two-dimensional random walk on a
square lattice. Are they the same? which lattice has a larger D?

300 Chapter 10. Stochastic processes

(c) Try to analytically obtain the solution. Hint: show the step
variable sn at n−th step by a phasor sn = aeiθn where θn =
2πs
6 s = 1, · · · , 6. The walker distance after N step becomes

rn = s1 + s2 + · · ·+ sN .

Problem 10.12 Obtain the entropy evolution of a restrictive 1D ran-
dom walk between reflecting boundaries discussed in the text. Discuss
the system size on the steady-state value of the entropy.

Problem 10.13 Obtain the entropy evolution of other types of ran-
dom walk on a 1D lattice. Discuss persistent, and step-length vari-
able random walks. Which type of random walk reaches equilibrium
sooner?

Problem 10.14 Numerically compute the entropy of a disordered
random walk in which one of the sites is defective. Take the right
hopping probability as p = α �= 1/2 for the defective site which is
located at site 0 < d of a chain of length L+ 1.

Bibliography

J. Tobochnik H. Gould and W. Chriastian. An Introduction to Com-
puter Simulation Methods: Applications to Physical Systems. Addi-
son Wesely, third edition, 2006.

Tao Pang. An introduction to computational physics. Cambridge uni-
versity press, 1st edition, 2006.

Philipp O.J. Scherer. Computational physics. Springer, 1st edition,
2010.

Manuel José Páez Rubin H. Landau and Christian C. Bordeianu. A
Survey of Computational Physics. Princeton university press, 1st
edition, 2008.

Nicholas J. Giordano and Hisao Nakanishi. Computational physics.
Pearson Prentice Hall, 1st edition, 2006.

N. G. van Kampen. Stochastic Processes in Physics and Chemistry.
North-Holland, Amsterdam, 1st edition, 1992.

L. E. Reichel. A modern course in statistical physics. John Wiley and
sons Inc, 1st edition, 1998.

I. N. Sneddon. Elements of partial differential equations. McGraw
Hill, New York, 1st edition, 1957.

Tyn Myint-U and Lukenath Debnath. Linear partial differential equa-
tions for scientists and engineers. Birkhäuser, 1st edition, 2007.

Sadri Hassani. Mathematical physics: A modern introduction to its
foundation. Springer, 2nd edition, 2013.

301

302 Bibliography

G. Nicolis and I. Prigogine. Self-Organisation in Nonequilibrium Sys-
tems. John Wiley and sons, New York, 1st edition, 1977.

C. J. Jachimowski D. A. Mcquarrie and M. E. Russel. Kinetics of
small systems. ii. J. Chem. Phys., 40:2914, 1994.

M. E. Foulaadvand. Solution of radio active multiple decay equa-
tions. Gamma (Quartely Persian journal in educational physics:
www.gammajournal.ir), 10:40, 2006.

R. Lefever and G. Nicolis. Chemical instabilities and sustained oscil-
lations. J. Theor. Biol., 30:267, 1971.

Keith. R. Symon. Mechanics. Addison Wesley, 3rd edition, 1971.

Stephen T. Thornton and Jerry. B. Marion. Classical dynamics of
particles and systems. Brooks Cole, 5th edition, 2003.

Grant. R. Fowles and George L. Cassiday. Analytical Mechanics.
Brooks Cole, 7th edition, 2004.

Atam P. Arya. Introduction to classical mechanics. Benjamin Cum-
mings, 2nd edition, 1997.

Murray Spiegel. Schaums Mathematical Handbook of Formulas and
Tables. McGraw-Hill, 2nd edition, 1998.

A. Stepanek. The aerodynamics of tennis balls, the topspin lob. Am
.J. Physics, 56 (5):138, 1988.

A. Cromer. Stable solutions using the euler approximation. Am. J.
Phys., 49:455, 1981.

Alejandro Garcia. Numerical Methods for Physics. Benjamin Cum-
mings, 2nd edition, 1999.

D. Masoumi and M. E. Foulaadvand. Constant force simple non
harmonic oscillator. Gamma (Persian educational physics journal:
www.gammajournal.ir), 21:15, 2008.

Amir Aghamohammadi. Waves. Alzahra University Press, Tehran,
1st edition, 2021.

Symour Lipschutz. Schaum’s Outline of Linear Algebra. McGraw-Hill,
5th edition, 2012.

§Bibliography 303

M. H. Yaghoubi A. Aghamohammadi, M. E. Foulaadvand and A. H.
Mousavi. Normal modes of a defected linear system of beaded
springs. Am .J. Physics, 85 (3):193, 2017.

B. Cipra A. Kolan and B. Titus. unknown. Computer in physics, 9
(4):387, 1985.

M. L. Williams and H. J. Maris. Numerical study of phonon localiza-
tion in disordered systems. Phys. Rev. B, 31:4508, 1985.

A. S. Householder J. H. Wilkinson, C. Reinsch and F. L. Bauer.
Handbook for automatic computation: Volume 2: Linear Algebra.
Springer, 1st edition, 1986.

W. T. Vetterling W. H. Press, S. A. Teukolsky and B. P. Flannery.
Numerical Recipes in C. Oxford university press, 2nd edition, 2002.

F. J. Vesely. Computational physics. Kluwer Academic/Plenum Pub-
lishers, 2nd edition, 2001.

M. Ebrahim Foulaadvand Somayyeh Belbasi and Y. S. Joe. Anti-
resonance in a one-dimensional chain of driven coupled oscillators.
American Journal of Physics, 82(1):4508, 2014.

F. P. Incropera T. L. Bergman, A. S. Lavine and D. P. Dewitt. Fun-
damentals of Heat and Mass Transfer. 7th edition, 2011.

L. Petit E. Guyon, J-P Hulin and C. D. Mitescu. Physical hydrody-
namics. Oxford university press, 1st edition, 2001.

G. B. Arfken and H. L. Weber. Mathematical methods for Physicists.
Elsevier, 6th edition, 2005.

J. Crank and P. Nicolson. A practical method for numerical evaluation
of solutions of partial differential equations of the heat-conduction
type. Proceedings of the Cambridge Philosophical Society, 43, No.
50:50–67, 1947.

Sadri Hassani. Mathematical methods For students of physics and
related. Springer, 2nd edition, 2009.

Klaus A. Hoffmann and Steve T. Chiang. Computational fluid dynam-
ics. Engineering Education System, 4th edition, 2009.

304 Bibliography

Debashish Chowdhury Andreas Schadschneider and Katsohiro Nishi-
nari. Stochastic Transport in Complex Systems: From Molecules to
Vehicles. Elsevier Science, 1st edition, 2010.

A. Schadschneider L. Santen and D. Chowdhurry. Statistical physics
of vehicular traffic and some related systems. Physics Report, 329:
199–329, 2000.

D. Helbing. Traffic and related self-driven many-particle systems. Rev.
Mod. Physics, 73:1067, 2001.

B. Diu C. Cohen-Tannoudji and F. Laloe. Quantum mechanics. Wiley-
VCH, 1st edition, 1992.

Richard Liboff. Introductory quantum mechanics. Pearson, 4th edition,
2002.

Robert. M. Eisberg and Robert Resnick. Quantum physics of atoms,
molecules, solids, nuclei and particles. John-wiley and sons Inc., 1st
edition, 1974.

Herbert Goldstein. Classical mechannics. Addison-Wesley, 3rd edition,
2001.

M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Ox-
ford Science Publications, 1st edition, 1986.

Daan Frenkel and Berend Smit. Understanding Molecular Simula-
tion: From Algorithms to Applications. Academic Press, 2nd edi-
tion, 2002.

L. I. Schiff. Quantum Mechanics. McGraw-Hill, New York, 3rd edition,
1968.

J. E. Jones. On the determination of molecular fields. ii. from the
equation of state of a gas. Proc. Roy. Soc. (Lond.), 106A:463, 1924.

J. M. Haile. Molecular dynamics simulation. John Wiley and Sons,
Inc., 1st edition, 1992.

L. Verlet. Computer experiments on classical fluids i. Phys. Rev., 159:
98, 1967.

§Bibliography 305

B.J. Alder and T. E. Wainwright. On the determination of molecular
fields. ii. from the equation of state of a gas. J. Chem. Phys., 31:
459, 1959.

Jenő Sólyom. Fundamentals of the physics of solid. Springer, 1st
edition, 2007.

A. Rahman. On the determination of molecular fields. ii. from the
equation of state of a gas. Phys. Rev., 136:A405, 1964.

Dennis C. Rapaport. The art of molecular dynamics simulations.
Cambridge university press, 2nd edition, 1995.

F. Reif. Fundamentals of statistical and thermal physics. McGraw Hill
Inc., 1st edition, 1965.

Karl Pearson. The problem of the random walk. Nature, 72:294, 1905.

M. Smoluchowski. Zur kinetischen theorie der brownschen moleku-
larbewegung und der suspensionen. Annalen der Physik, 326 (14):
756–780, 1906.

George H. Weiss. Aspects and the applications of random walk. North-
holand, 1st edition, 1994.

Sidney Redner. A guide to first-passage processes. Cambridge Univer-
sity Press, 2nd edition, 2008.

H. Nakanishi. Random and self-avoiding walks in a disordered medium,
Annual reviews of Computational physics, Vol.1, D. Stauffer, Ed.
World Scientific, 1994.

Pierre-Gilles de Gennes. Scaling concepts in polymers. Cornell Uni-
versity, 1st edition, 1979.

M. Dio and S. F. Edvards. The theory of polymer dynamics. Clarendon
Press Oxford, 8th edition, 2001.

Marshall N. Rosenbluth and Arianna W. Rosenbluth. Monte carlo
calculation of the average extension of molecular chains. J. Chem.
Phys., 23:356, 1955.

Frederick T. Wall and Frederic Mandel. Macromolecular dimensions
obtained by an efficient monte carlo method without sample attri-
tion. J. Chem. Phys., 63:4592, 1975.

306 Bibliography

Thomas Prellberg and Jaroslaw Krawczyk. Flat histogram version of
the pruned and enriched rosenbluth method. Phys. Rev. Lett., 92:
120602, 2004.

Ludwig Neise W. Greiner and Horst Stöcker. Thermodynamics and
Statistical Mechanics. Springer-Verlag, 1st edition, 2001.

	Dedication
	Contents
	Preface
	Acknowledgement
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Bibliography

