

Introducing
.NET MAUI

Build and Deploy
Cross- platform Applications

Using C# and .NET
Multi-platform App UI

Shaun Lawrence

Introducing .NET MAUI: Build and Deploy Cross-platform Applications

Using C# and .NET Multi-platform App UI

ISBN-13 (pbk): 978-1-4842-9233-4 ISBN-13 (electronic): 978-1-4842-9234-1
https://doi.org/10.1007/978-1-4842-9234-1

Copyright © 2023 by Shaun Lawrence

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Editorial Assistant: Gryffin Winkler
Copy Editor: Mary Behr

Cover image designed by mrsiraphol through Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub using this link: https://github.com/Apress/Introducing-MAUI.

Printed on acid-free paper

Shaun Lawrence
St Ives, UK

https://doi.org/10.1007/978-1-4842-9234-1

iii

Table of Contents

About the Author ��xv

About the Technical Reviewer ��xvii

Acknowledgments ���xix

Introduction ���xxi

Part I: Getting to Know �NET MAUI ���1

Chapter 1: Introduction to �NET MAUI ���3

What is .NET MAUI? ..3

Digging a Bit Deeper ..5

Where Did It Come From? ..6

How It Differs From the Competition ...7

Why Use .NET MAUI? ...8

Supported Platforms ..8

Code Sharing ...9

Developer Freedom ...10

Community ..10

Fast Development Cycle ..10

Performance ..11

Strong Commercial Offerings ..12

https://doi.org/10.1007/978-1-4842-9234-1_1
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec3
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec4
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec5
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec7
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec8
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec9
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec10
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec14

iv

Limitations of .NET MAUI...13

No Web Assembly (WASM) Support ...13

No Camera API ...13

Apps Won’t Look Identical on Each Platform ...14

Lack of Media Playback Out of the Box ...14

The Glass Is Half Full, Though ...14

How to Build .NET MAUI Applications ..15

Visual Studio ..15

Summary...17

Chapter 2: Building Our First application ���19

Setting Up Your Environment ..19

macOS ...19

Windows ..27

Visual Studio to macOS ...28

Troubleshooting Installation Issues ...32

. NET MAUI Workload Is Missing ...32

Creating Your First Application ..33

Creating in Visual Studio..33

Creating in the Command Line ..37

Building and Running Your First Application ...38

Getting to Know Your Application ..41

WidgetBoard ..41

Summary...42

Source Code ..43

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_1#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec17
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec18
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec21
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec22
https://doi.org/10.1007/978-1-4842-9234-1_1#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_2
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec8
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec9
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec10
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec14
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec17
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec18
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_2#Sec20

v

Chapter 3: The Fundamentals of �NET MAUI ���������������������������������������45

Project Structure ...45

/Platforms/ Folder ..48

/Resources/ Folder ..51

Where To Begin? ...56

Generic Host Builder ...56

What Is Dependency Injection? ...57

Registering Dependencies ...60

Application Lifecycle ...62

Application States..62

Lifecycle Events ...64

Handling Lifecycle Events ..65

Cross-Platform Mappings to Platform Lifecycle Events66

Platform-Specific Lifecycle Events ..67

Summary...72

Chapter 4: An Architecture to Suit You ���75

A Measuring Stick ...75

Prerequisites ...76

Model View ViewModel (MVVM) ..77

Model ...78

View ...79

ViewModel ...80

Model View Update (MVU) ...83

Getting Started with Comet ...84

Adding Your MVU Implementation ...84

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_3
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec9
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec14
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec21
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec22
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec23
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec24
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec25
https://doi.org/10.1007/978-1-4842-9234-1_3#Sec29
https://doi.org/10.1007/978-1-4842-9234-1_4
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec3
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec4
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec5
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec8
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec9
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec10
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec11

vi

XAML vs. C# Markup ...86

Plain C# ...87

C# Markup ...88

Chosen Architecture for This Book ..89

Adding the ViewModels ...90

Adding Views ...96

Viewing Your Widget ..99

MVVM Enhancements ..101

Summary...105

Source Code ..107

Part II: User Interface ��109

Chapter 5: User Interface Essentials ��111

Prerequisites ...111

Models ...111

Pages ...113

ViewModels ...114

App Icons ..116

Adding Your Own Icon ..116

Platform Differences ..117

Splash Screen ...118

XAML ...119

Dissecting a XAML File ..120

Building Your First XAML Page ..122

Layouts..124

AbsoluteLayout ..124

FlexLayout ...126

Grid ..128

HorizontalStackLayout ...131

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_4#Sec12
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec14
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec23
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec30
https://doi.org/10.1007/978-1-4842-9234-1_4#Sec31
https://doi.org/10.1007/978-1-4842-9234-1_5
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec9
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec14
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec18
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec21
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec22
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec23
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec24
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec25
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec26

vii

VerticalStackLayout ...132

Data Binding..135

Binding ..136

Applying the Remaining Bindings ..140

MultiBinding ..141

Command ..144

Compiled Bindings ...147

Shell ..148

ShellContent ..149

Navigation..150

Flyout ...154

Tabs ...160

Search ...160

Taking Your Application for a Spin ...161

Summary...163

Source Code ..164

Extra Assignment ..164

Chapter 6: Creating Our Own Layout ��165

Placeholder ...166

ILayoutManager ..168

BoardLayout ..169

BoardLayout.xaml ..169

BoardLayout.xaml.cs ...172

FixedLayoutManager ...177

Accepting the Number of Rows and Columns for a Board179

Providing Tap/Click Support Through a Command181

Building the Board Layout ...182

Setting the Correct Row/Column Position for Each Widget185

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_5#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec28
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec29
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec34
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec35
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec36
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec37
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec38
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec39
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec40
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec45
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec54
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec55
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec56
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec57
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec58
https://doi.org/10.1007/978-1-4842-9234-1_5#Sec59
https://doi.org/10.1007/978-1-4842-9234-1_6
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec3
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec4
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec12
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec17
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec18

viii

Using Your Layout ...187

Adding a Factory That Will Create Instances of Your Widgets187

WidgetTemplateSelector ..193

Updating FixedBoardPageViewModel ..194

Finally Using the Layout ..196

Summary...197

Source Code ..198

Extra Assignment ..198

Chapter 7: Accessibility ��199

What Is Accessibility? ...199

Why Make Your Applications Accessible? ...200

What to Consider When Making Your Applications Accessible200

How to Make Your Application Accessible...201

Screen Reader Support ...201

Suitable Contrast ...208

Dynamic Text Sizing ...210

Testing Your Application’s Accessibility ...215

Android ..215

iOS ...215

macOS ...216

Windows ..216

Accessibility Checklist ..216

Summary...218

Source Code ..219

Extra Assignment ..219

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_6#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec26
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec28
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec29
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec30
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec31
https://doi.org/10.1007/978-1-4842-9234-1_6#Sec32
https://doi.org/10.1007/978-1-4842-9234-1_7
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec3
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec4
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec5
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec14
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec21
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec22
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec23
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec24
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec25
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec26
https://doi.org/10.1007/978-1-4842-9234-1_7#Sec27

ix

Chapter 8: Advanced UI Concepts ���221

Adding the Ability to Add a Widget to a Board ...221

Possible Ways of Achieving Your Goal ...222

The Chosen Approach ..224

Styling ...230

Examining the Default Styles ...232

Creating a Style ...234

AppThemeBinding ...236

Further Reading ...236

Triggers ...237

Creating a DataTrigger ...238

EnterActions and ExitActions ...239

Creating a TriggerAction ..240

Further Reading ...242

Animations ...242

Basic Animations ...243

Combining Basic Animations ...245

Cancelling Animations ...246

Easings ..246

Complex Animations ..247

Combining Triggers and Animations ...252

Summary...254

Source Code ..255

Extra Assignment ..255

Animate the BoxView Overlay ..255

Animate the New Widget ...255

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_8
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec10
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec11
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec17
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec18
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec21
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec24
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec25
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec26
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec30
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec31
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec32
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec35
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec36
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec37
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec38
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec39
https://doi.org/10.1007/978-1-4842-9234-1_8#Sec40

x

Part III: Behind the Scenes ��257

Chapter 9: Local Data ���259

What Is Local Data? ..259

File System ...260

Cache Directory ...260

App Data Directory ..261

Database ...261

Repository Pattern ...262

SQLite ..270

LiteDB ..278

Database Summary ...285

Application Settings (Preferences) ..285

What Can Be Stored in Preferences?...286

Setting a Value in Preferences...286

Getting a Value in Preferences ..288

Checking if a Key Exists in Preferences ..290

Removing a Preference ...291

Secure Storage ...291

Storing a Value Securely ..291

Reading a Secure Value ...292

Removing a Secure Value ..292

Platform specifics ..293

Viewing the Result ..295

Summary...296

Source Code ..297

Extra Assignment ..297

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_9
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec3
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec4
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec5
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec10
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec21
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec32
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec33
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec34
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec35
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec36
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec37
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec38
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec39
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec40
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec41
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec42
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec43
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec47
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec48
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec49
https://doi.org/10.1007/978-1-4842-9234-1_9#Sec50

xi

Chapter 10: Remote Data ��299

What Is Remote Data?...299

Considerations When Handling Remote Data ..300

Webservices ..302

The Open Weather API ...302

Adding Some State ..319

Simplifying Webservice Access ..326

Prebuilt Libraries ...327

Code Generation Libraries ...327

Further Reading ..329

Polly ...329

StateContainer from CommunityToolkit.Maui ..330

Summary...330

Source Code ..331

Extra Assignment ..331

TODO Widget ..331

Quote of the Day Widget ..332

NASA Space Image of the Day Widget ...332

Part IV: Utilizing the platforms ��333

Chapter 11: Getting Specific ���335

. NET MAUI Essentials ..335

Permissions ...336

Using the Geolocation API ..341

Configuring Platform-Specific Components ..346

Platform-Specific API Access ..352

Platform-Specific Code with Compiler Directives352

Platform-Specific Code in Platform Folders ..354

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_10
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec7
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec18
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec23
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec24
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec25
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec28
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec29
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec30
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec31
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec32
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec33
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec34
https://doi.org/10.1007/978-1-4842-9234-1_10#Sec35
https://doi.org/10.1007/978-1-4842-9234-1_11
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec12
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec17
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec18

xii

Overriding the Platform-Specific UI ..355

OnPlatform...355

Handlers ..358

Summary...361

Source Code ..362

Extra Assignment ..362

Barometer Widget ..362

Geocoding Lookup ...363

Chapter 12: Testing ���365

Unit Testing ...365

Unit Testing in .NET MAUI ..366

Adding Your Own Unit Tests ...368

Testing Your View Models ..372

Testing Asynchronous Operations ...374

Testing Your Views ...380

Device Testing ...382

Creating a Device Test Project ...383

Adding a Device-Specific Test ...383

Running Device-Specific Tests ..384

Snapshot Testing ...386

Snapshot Testing Your Application ...387

Passing Thoughts ..390

Looking to the Future ..390

Summary...391

Source Code ..391

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_11#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec20
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec23
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec28
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec29
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec30
https://doi.org/10.1007/978-1-4842-9234-1_11#Sec31
https://doi.org/10.1007/978-1-4842-9234-1_12
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec7
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec12
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec19
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec22
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec23
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec24
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec25
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec26
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec28
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec29
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec30
https://doi.org/10.1007/978-1-4842-9234-1_12#Sec31

xiii

Chapter 13: Lets Get Graphical ���393

. NET MAUI Graphics ..393

Drawing on the Screen ..394

Further Reading ...397

Building a Sketch Widget ..397

Creating the SketchWidgetViewModel ..397

Representing a User Interaction ..398

Creating the SketchWidgetView ..399

Registering Your Widget ..404

Taking Your Widget for a Test Draw ...404

Summary...405

Source Code ..405

Extra Assignment ..406

Part V: Finishing Our Application ���407

Chapter 14: Releasing Our Application ���409

Distributing Your Application ...409

Android ..410

iOS ...412

macOS ...415

Windows ..416

Things to Consider ..416

Following Good Practices ..416

Performance ..418

Linking ...421

Crashes/Analytics ..422

Obfuscation ...424

Distributing Test Versions ..426

Summary...427

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_13
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec7
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec8
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec9
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec10
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec11
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec14
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec17
https://doi.org/10.1007/978-1-4842-9234-1_13#Sec18
https://doi.org/10.1007/978-1-4842-9234-1_14
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec4
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec11
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec15
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec16
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec17
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec21
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec24
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec27
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec28
https://doi.org/10.1007/978-1-4842-9234-1_14#Sec29

xiv

Chapter 15: Conclusion ���429

Looking at the Final Product ...429

Taking the Project Further ...431

Useful Resources ..432

StackOverflow ...433

GitHub ..433

YouTube ...433

Social Media ..434

Yet More Goodness ..434

Looking Forward ...434

Upgrading from Xamarin.Forms ..435

Comet ..435

Testing ...436

 Index ���437

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9234-1_15
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec1
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec2
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec3
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec4
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec5
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec6
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec9
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec10
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec11
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec12
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec13
https://doi.org/10.1007/978-1-4842-9234-1_15#Sec14

xv

About the Author

Shaun Lawrence is an experienced software

engineer who has been specializing in building

mobile and desktop applications for the past

15 years. He is a recognized Microsoft MVP in

Development Technologies; his work helps

the community learn and build with Xamarin

Forms, the predecessor to .NET MAUI. His

recent discovery of the value he can add by

sharing his experience with others has thrust

him on to the path of wanting to find any way possible to continue to do so.

Shaun actively maintains several open-source projects within the .NET

community. A key project for the scope of this book is the .NET MAUI

Community Toolkit where he predominantly focuses on building good

quality documentation for developers to consume. Shaun lives in the

United Kingdom with his wife, two children, and their dog.

Shaun can be found on Twitter @Bijington, on his blog at

https://blog.bijington.com, or on LinkedIn at www.linkedin.com/in/

shaun-lawrence-53a0099/.

https://blog.bijington.com
http://www.linkedin.com/in/shaun-lawrence-53a0099/
http://www.linkedin.com/in/shaun-lawrence-53a0099/

xvii

About the Technical Reviewer

Gerald Versluis is a Senior Software Engineer

at Microsoft working on .NET MAUI. Since

2009 Gerald has been working on a variety

of projects, ranging from front end to back

end and anything in between that involves

Azure, ASP.NET, and all kinds of other .NET

technologies. At some point he fell in love with

cross-platform and mobile development with

Xamarin. Since then he has become an active

community member, writing, tweeting, and presenting about all things

tech. Gerald can be found on Twitter @jfversluis, blogging at https://

blog.verslu.is, or on his YouTube channel at https://youtube.com/

@jfversluis.

https://blog.verslu.is/
https://blog.verslu.is/
https://youtube.com/@jfversluis
https://youtube.com/@jfversluis

xix

Acknowledgments

I have a number of people that I would like to thank for their assistance.

Firstly, Dan: Your assistance in both reviewing my content and also

talking through each of my worries and ideas definitely encouraged me

to write.

Secondly, Gerald: You have been fundamental from start to finish. You

encouraged me to accept this project, helped me with decisions, reviewed

the content, and provided fantastic guidance throughout!

Thirdly, the team at Apress: From Joan for initially reaching out to me

in order to present this opportunity, to the rest of the team of Jill, Gryffin,

and Laura for answering all of my questions and guiding me through this

process.

Finally, my family—my wife, Levinia, daughters Zoey and Hollie, and

dog, Soco: Without your encouragement I would not have taken the leap to

embark upon this writing journey. I am so grateful for all your help and the

sacrifices made to help get me over the line.

xxi

Introduction

Welcome to Introducing .NET MAUI.

This book is for developers who are new to .NET MAUI and cross- platform

development. You should have basic knowledge of C# but require no prior

knowledge of using .NET MAUI. The content ranges from beginner through

to more advanced topics and is therefore tailored to meet a wide range of

experiences.

This book provides an in-depth explanation of each key concept in

.NET MAUI, and you will use these concepts in practical examples while

building a cross-platform application. The content has been designed

to primarily flow with the building of this application; however, there

is a secondary theme that involves grouping as many related concepts

as possible. The idea behind this is to both learn as you go and also to

have content that closely resembles reference information, which makes

returning to this book as easy as possible.

All code examples in this book, unless otherwise stated, are applied

directly to the application you are building. Once key concepts have been

established, the book will offer improvements or alternatives to simplify

your life as you build production-worthy applications. The book does not

rely upon these simplifications as part of the practical examples and the

reason for this is simple: I strongly believe that you need to understand the

concepts before you start to use them.

Finally, all chapters that involve adding code into the application

project contain a link to the resulting source code. This is to show the final

product and for you to use as a comparison if anything goes wrong during

your building of the application.

3

CHAPTER 1

Introduction to .NET
MAUI
In this chapter, you will gain an understanding of what exactly .NET

MAUI is, how it differs from other frameworks, and what it offers you as a

developer wishing to build a cross-platform application that can run on

both mobile and desktop environments. I will also cover the reasons why

you should consider it for your next project by weighing the possibilities

and limitations of the framework as well as the rich array of tooling

options.

 What is .NET MAUI?
.NET Multi-platform App UI, or .NET MAUI for short, is a cross-

platform framework that allows developers to build mobile and desktop

applications written in C# and XAML. It allows developers to target both

mobile (Android and iOS) and desktop (macOS and Windows) platforms

from a single codebase. Figure 1-1 shows the platforms officially supported

by .NET MAUI and Microsoft.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_1

https://doi.org/10.1007/978-1-4842-9234-1_1#DOI

4

Figure 1-1. .NET MAUI platform support

.NET MAUI provides a single API that allows developers to write once

and run anywhere. When building a .NET MAUI application, you write

code that interacts with this single cross-platform API and .NET MAUI

provides the bridge between your code and the platform-specific layer.

If you take a look inside the prism in Figure 1-1, you can start to

understand the components that .NET MAUI both uses and offers.

Figure 1-2 shows how an Android application is compiled.

Figure 1-2. Interacting with .NET MAUI APIs

Of course, there will be times when you need to directly access a

platform feature. .NET MAUI also provides enough flexibility that you can

achieve this by interacting directly with the platform-specific APIs:

• .NET for Android

• .NET for iOS

Chapter 1 IntroduCtIon to .net MauI

5

• .NET for macOS

• Windows UI Library (WinUI) 3

Figure 1-3 shows how the code bypasses the .NET MAUI APIs and

interacts directly with the .NET for Android APIs.

Figure 1-3. Interacting with platform-specific APIs

 Digging a Bit Deeper
There are some extra steps that the tooling will perform under the hood

to get your application built and ultimately ready for use on each of the

possible platforms.

When building a .NET application, even if it is not using .NET MAUI,

you will very likely hear the term BCL, which is short for the base class

library. This is the foundation of all .NET applications, and in the same way

that .NET MAUI abstracts away the platforms you wish to build for, the BCL

abstracts away what that platform implements when your application runs.

To run your application on your desired platform, you need a .NET

runtime. For Android, iOS, and macOS, this is the Mono runtime. The

Mono runtime provides the ability to run .NET code on many different

platforms. For Windows, this is Win32. Each of these runtimes provide

the functionality required for the BCL and therefore a consistent working

environment across all supported platforms.

Chapter 1 IntroduCtIon to .net MauI

6

I like to think of the BCL as the contract between what we are

compiling against and what we are running that compiled code with.

Figure 1-4 shows all of the layers involved in compiling and running a

.NET MAUI application.

Figure 1-4. The full breakdown

To continue with the example of building for Android in the previous

diagrams and taking note of the diagram in Figure 1-4, the following can

be said:

Your code is compiled against .NET MAUI, .NET for Android and the

base class library. It then runs on the Mono runtime, which provides a

full implementation of the base class library on the Android platform.

Looking at the above statement, you can replace the parts that are

platform specific with another platform (e.g., swapping Android for iOS)

and the statement will still be true.

 Where Did It Come From?
.NET MAUI is the evolution of Xamarin.Forms, which itself has a rich

history of providing developers with a great way to build cross-platform

applications. Of course, no framework is perfect, and Xamarin.Forms

certainly had its limitations. Thankfully the team at Microsoft decided

Chapter 1 IntroduCtIon to .net MauI

7

to take the pragmatic approach of taking a step back and evaluating all

the pain points that existed for themselves as maintainers and (more

importantly) for us as developers using the framework.

Not only do we therefore gain improvements from the Xamarin

framework as part of this evolution, but we also get all the goodies that

come with .NET such as powerful built-in dependency injection, better

performance, and other topics that I will touch on throughout this book.

This makes me believe that this mature cross-platform framework has

finally become a first-class citizen of the .NET and Microsoft ecosystems. I

guess the clue is in the first part of its new name.

On the topic of its name, .NET MAUI implies that it is a UI framework,

and while this is true, this is not all that the framework has to offer.

Through the .NET and the .NET MAUI platform APIs, we are provided with

ways of achieving common application tasks such as file access, accessing

media from the device gallery, using the accelerometer, and more. The

.NET MAUI platform APIs were previously known as Xamarin Essentials,

so if you are coming in with some Xamarin Forms experience, they

should feel familiar. I will touch on much more of this functionality as you

progress through this book.

 How It Differs From the Competition
.NET MAUI provides its own controls (for example, a Button) and then

maps them to the relevant implementation on each platform. To continue

with the example of a button, this is a UIButton from UIKit on iOS and

macOS, an AppCompatButton from AndroidX.AppCompat.Widget on

Android, and a Button from Microsoft.UI.Xaml.Controls on Windows.

This gives a great level of coverage in terms of providing a common

implementation that works across all platforms. With the introduction of

the .NET MAUI handler architecture (which will we be looking at in more

detail in Chapter 11) we truly gain the power to tweak the smallest of

implementation details on a per-platform basis. This is especially useful

Chapter 1 IntroduCtIon to .net MauI

https://doi.org/10.1007/978-1-4842-9234-1_11

8

when the common API provided by .NET MAUI may be limited down to

the least amount of crossover between each platform and doesn’t provide

everything we need. It is worth noting that your application will render

differently on each platform as it utilizes the platform specific controls and

therefore their look and feel.

Other frameworks such as Flutter opt to render their own types directly

rather than mapping across to the implementations provided by each

platform. These frameworks provide a common look and feel across each

platform. This is a hotly contested topic but I personally believe that making

applications fit in with the platform they are running on is a big benefit.

 Why Use .NET MAUI?
There are several reasons why you should consider using .NET MAUI for

your next application: a large number of supported platforms, increased

code sharing capabilities, an emphasis on allowing developers to build

applications that fit their style, great performance, and many more. Let’s

take a look at them.

 Supported Platforms
.NET MAUI provides official support for all of the following platforms:

• Android 5.0 (API level 21) and above

• iOS 11.0 and above

• macOS 10.15 and above (using Mac Catalyst) **

• Windows desktop

** MacCatalyst allows native Mac apps to be built and share code with

iPad apps. This is an Apple technology that allows developers to shared code

between Mac and iPad. For further reference, go to the Apple documentation

at https://developer.apple.com/mac-catalyst/.

Chapter 1 IntroduCtIon to .net MauI

https://developer.apple.com/mac-catalyst/

9

.NET MAUI provides community-driven support for

• Tizen: The implementation is provided by Samsung.

I thoroughly recommend checking out the documented list of supported

platforms in case it has changed since the time of writing. The list can be found

at https://learn.microsoft.com/dotnet/maui/supported-platforms.

 Code Sharing
A fundamental goal of all cross-platform frameworks is to enable

developers to focus on achieving their main goals by reducing the effort

required to support multiple platforms. This is achieved by sharing

common code across all platforms. Where I believe .NET MAUI excels over

alternative frameworks is in the first four characters of its name; Microsoft

has pushed hard to produce a single .NET that can run anywhere.

Being a full stack developer myself, I typically need to work on web-

based back ends as well as mobile applications, .NET allows me to write

code that can be compiled into a single library. This library can then be

shared between the web and client applications, further increasing the

code sharing possibilities and ultimately reducing the maintenance effort.

I have given talks based on a mobile game (www.superwordsearch.

com) I built using Xamarin.Forms, where I boasted that we were able to

write 96% of our code in our shared project. I have not yet converted this

across to .NET MAUI; however, initial investigations show that this number

will only increase.

There are further possibilities for sharing code between web and client,

such as the use of .NET MAUI Blazor, which provides the use of web-based

technologies inside a .NET MAUI application. While I won’t be covering

.NET MAUI Blazor in detail in this book, Microsoft does provide some

really great documentation and guides on what it is and how to build your

first application with the technology at https://learn.microsoft.com/

aspnet/core/blazor/hybrid/tutorials/maui.

Chapter 1 IntroduCtIon to .net MauI

https://learn.microsoft.com/dotnet/maui/supported-platforms
http://www.superwordsearch.com
http://www.superwordsearch.com
https://learn.microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui
https://learn.microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui

10

 Developer Freedom
.NET MAUI offers many ways to build the same thing. Where Xamarin.

Forms was largely designed to support a specific application architecture

(such as MVVM, which I will talk all about in Chapter 4), .NET MAUI is

different. One key benefit of the rewrite by the team at Microsoft is it now

allows the use of other architectures such as MVU (Chapter 4). This allows

us as developers to build applications that suit our preferences, from

different architectural styles to different ways of building UIs and even

different ways of styling an application.

 Community
Xamarin has always had a wonderful community. From bloggers to open-

source maintainers, there is a vast amount of information and useful

packages available to help any developer build a great mobile application.

One thing that has really struck me is the number of Microsoft employees

who are part of this community; they are clearly passionate about the

technology and dedicate their own free time to contributing to this

community. The evolution to .NET MAUI brings this community with it.

 Fast Development Cycle
.NET MAUI offers two great ways to boost a developer’s productivity.

 .NET Hot Reload

.NET Hot Reload allows you to modify your managed source code while

the application is running, without the need to manually pause or hit a

breakpoint. Then, your code edits can be applied to your running app

without the need to recompile. It is worth noting that this feature is not

specific to .NET MAUI but is yet another great example of all the goodness

that comes with the framework being part of the .NET ecosystem.

Chapter 1 IntroduCtIon to .net MauI

https://doi.org/10.1007/978-1-4842-9234-1_4
https://doi.org/10.1007/978-1-4842-9234-1_4

11

 XAML Hot Reload

XAML Hot Reload allows you to edit the UI in your XAML files, save the

changes, and observe those changes in your running application without

the need to recompile. This is a fantastic feature that really shines when

you need to tweak some controls.

 Performance
.NET MAUI applications are compiled into native packages for each of the

supported platforms, which means that they can be built to perform well.

Android has always been the slowest platform when dealing with

Xamarin.Forms and the team at Microsoft has been working hard and

showing off the improvements. The team has provided some really great

resources in the form of blog posts covering the progress that has been

made to bring the start-up times of Android applications to well below

one second. These posts cover metrics plus tips on how to make your

applications really fly.

• https://devblogs.microsoft.com/dotnet/

performance-improvements-in-dotnet-maui/

• https://devblogs.microsoft.com/dotnet/dotnet-7-

performance-improvements-in-dotnet-maui/

Android apps built using .NET MAUI compile from C# into

intermediate language (IL), which is then just-in-time (JIT) compiled to a

native assembly when the app launches.

iOS and macOS apps built using .NET MAUI are fully ahead-of-time

(AOT) compiled from C# into native ARM assembly code.

Windows apps built using .NET MAUI use Windows UI Library

(WinUI) 3 to create native apps that target the Windows desktop.

Chapter 1 IntroduCtIon to .net MauI

https://devblogs.microsoft.com/dotnet/performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/dotnet/dotnet-7-performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/dotnet/dotnet-7-performance-improvements-in-dotnet-maui/

12

 Strong Commercial Offerings
There are several commercial options that provide additional UI elements

and other integrations such as Office document editing or PDF viewing in

your .NET MAUI applications. Some options (at the time of writing) are

• SyncFusion

“The feature-rich/flexible/fast .NET MAUI controls for

building cross- platform mobile and desktop apps with C#

and XAML”

www.syncfusion.com/maui-controls

• Telerik UI for .NET MAUI

“Kickstart your multiplatform application development with a

Preview version of Telerik UI for .NET MAUI controls!”

www.telerik.com/maui-ui

• DevExpress

“Our .NET Multi-platform App UI Component Library

ships with high- performance UI components for Android

and iOS mobile development (WinUI desktop support is

coming in 2022). The library includes a Data Grid, Chart,

Scheduler, Data Editors, CollectionView, Tabs, and Drawer

components.”

www.devexpress.com/maui/

Note that while these are commercial products, several of them

provide free licenses for smaller companies or independent developers so

I recommend checking out their products.

Chapter 1 IntroduCtIon to .net MauI

http://www.syncfusion.com/maui-controls
http://www.telerik.com/maui-ui
http://www.devexpress.com/maui/

13

 Limitations of .NET MAUI
I hope this doesn’t get me in too much trouble with the wonderful team

over at Microsoft ☺. This section is not aimed at slating the technology (I

wouldn’t be writing a book about something I didn’t believe in); it is purely

aimed at making clear what cannot be achieved or at least what is not

provided out of the box, to help you as a reader best decide whether this is

the right technology for your next project. Of course, I hope it is, but let’s

look at what I feel are its main limitations.

 No Web Assembly (WASM) Support
.NET MAUI does not provide support for targeting Web Assembly. This

means that you cannot target the web directly from a .NET MAUI project,

but you can still run Blazor inside your .NET MAUI application. This opens

the door for further code sharing; as discussed earlier, it is entirely possible

to build Blazor components that can be shared between .NET MAUI Blazor

and .NET Blazor applications.

If you do require direct WASM support, then a good alternative to .NET

MAUI is the Uno Platform.

 No Camera API
This has been a pain point for a lot of developers throughout the life

of Xamarin.Forms and continues to be an initial pain point for .NET

MAUI. There are some good arguments as to why it hasn’t happened.

Building a camera API against the Android Camera offering has not been

an easy task, as I am sure most developers who have embarked on that

journey can attest to. The sheer fact that Google is rewriting the entire API

for a third time shows the inherent challenges.

Chapter 1 IntroduCtIon to .net MauI

14

 Apps Won’t Look Identical on Each Platform
Controls in .NET MAUI make use of the platform implementations,

therefore an entry control on iOS will render differently to one on Android.

There are investigations into providing a way to avoid this and have

controls render exactly the same on all platforms, but this is still at an

early stage.

 Lack of Media Playback Out of the Box
Playing media has become a very common task. So many apps these days

offer the ability to play video or audio. I suspect this is also due to the vast

differences between platforms in how they provide playback support.

While this functionality is not officially provided by .net MauI, this
does not mean the functionality is not possible.

 The Glass Is Half Full, Though
I believe that limitations are not a bad thing. Doing some things well is

a far better achievement than doing everything badly! I expect the list of

limitations will reduce as .NET MAUI matures. Thanks to the fact that

.NET MAUI is open source, we as consumers have the ability to suggest

improvements and even provide them directly to further enhance this

framework. I must also add that the .NET MAUI Community Toolkit is

great (of course, I am biased because I currently help to maintain it). It

provides value for the .NET MAUI community, and it is also maintained by

that community. Another huge advantage is that concepts in this toolkit

can and have been promoted to .NET MAUI itself. This gives me hope that

one day there will be a solid choice for both camera and media playback

APIs in .NET MAUI.

Chapter 1 IntroduCtIon to .net MauI

15

 How to Build .NET MAUI Applications
There are several different ways to build an application with .NET MAUI. I

will look at each in turn, covering some details that will hopefully help you

decide which is the best fit for you.

 Visual Studio
Visual Studio is available for both Windows and macOS, but while these

operating systems are both officially supported, it is worth noting that the

Visual Studio products are separate and themselves not cross-platform.

This means that functionality and levels of support differ between the two.

Note that the Windows and macOS versions come with three different

pricing options, but I would like to draw your attention to the Community

edition, which is free for use by small teams and for educational purposes.

In fact, everything in this book can be achieved using the free Community

edition.

 Visual Studio (Windows)

Visual Studio is a comprehensive integrated development environment or

IDE that provides a great development experience. I have been using this

tool for years and I can happily say that it continues to improve with each

new version.

To build .NET MAUI apps, you must use at least Visual Studio 2022.

In Visual Studio (Windows), it is possible to build applications

that target

• Android

• iOS *

• Windows

Chapter 1 IntroduCtIon to .net MauI

16

* A networked Mac with Xcode 13.0 or above is required for iOS

development and deployment. This is due to limitations in place by Apple.

 Visual Studio for Mac

Visual Studio for Mac has only been released recently and as of 2022 it

has undergone a significant rework to provide a better experience for

developers.

To build .NET MAUI apps, you must use at least Visual Studio 2022

for Mac.

In Visual Studio for Mac, it is possible to build applications that target

• Android

• iOS

• macOS

 Rider

JetBrains Rider is an impressive cross-platform IDE that can run on

Windows, macOS, and Linux. JetBrains has a history of producing great

tools to help developers achieve their goals. One highlight is ReSharper,

which assists with inspecting and analyzing code. With Rider the

functionality provided by ReSharper is built in.

JetBrains offers Rider for free but only for educational use and open-

source projects.

 Visual Studio Code

Visual Studio Code is a very popular lightweight code editor also provided

by Microsoft. Using extensions and the dotnet CLI, it is entirely possible

to build .NET MAUI applications using no other tools. It is worth noting,

however, that the debugging experience is vastly inferior to the other

products we have discussed.

Chapter 1 IntroduCtIon to .net MauI

17

 Summary
Throughout the course of this book, you will primarily be using Visual

Studio (Windows) as the tool to build your application. I will refer to Visual

Studio for Mac in the later parts when I cover how to deploy and test

macOS applications.

In this chapter, you have learned the following:

• What .NET MAUI is

• What it offers and what it does not offer

• Reasons why you should consider using it

• The tooling options available to build a .NET MAUI

application

In the next chapter, you will

• Get to know the application we will be building

together

• Learn how to set up the environment to build the

application

Chapter 1 IntroduCtIon to .net MauI

19

CHAPTER 2

Building Our First
application
In this chapter, you will learn how to set up your development

environment across all of the required platforms. You will then use

that environment to create, build, and run your very first .NET MAUI

application. Finally, you will take a look at the application you will build as

you progress through this book.

 Setting Up Your Environment
Before you get into creating and building the application, you must make

sure you have an environment set up.

 macOS
There are several tools that you must install on macOS to allow support for

building Mac Catalyst applications and to provide the ability to build iOS

applications from a Windows environment.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_2

https://doi.org/10.1007/978-1-4842-9234-1_2#DOI

20

This is required if you wish to develop on macOS or deploy to a Mac
or iOS device (even from a Windows machine). If you are happy with
only deploying to Windows or Android from a Windows machine, then
you can skip this part or just read it for reference.

 Visual Studio for Mac

As mentioned in the previous chapter, you will be primarily focusing on

using Visual Studio on Windows. You will have a requirement to use Visual

Studio for Mac much later, but you will set it up now. Also note that while

the book does focus on using Visual Studio on Windows, quite a lot of the

concepts should still translate well enough to Visual Studio for Mac if that

is your preferred environment.

Download and install Visual Studio 2022 for Mac. This can be accessed

from https://visualstudio.microsoft.com/vs/mac/.

 1. Open the downloaded

VisualStudioForMacInstaller.dmg file.

 2. Double-click the Install Visual Studio for Mac

option. Figure 2-1 shows the Visual Studio for Mac

installer.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

https://visualstudio.microsoft.com/vs/mac/

21

Figure 2-1. Visual Studio for Mac installer

 3. You will likely be shown a security dialog making

sure that you wish to run this installer. Double check

the details and then proceed if all looks fine.

 4. Accept the terms and conditions by clicking

Continue.

 5. In the next window, select .NET, Android, iOS, and

macOS (Cocoa) and then click Install. Figure 2-2

shows the installer with the required options for

.NET MAUI checked.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

22

Figure 2-2. Visual Studio for Mac installation options

Please refer to the Microsoft documentation page at https://learn.

microsoft.com/dotnet/maui/get-started/installation?tabs=vsmac if

any of the installation options have changed.

 Xcode

Xcode is Apple’s IDE for building applications for iOS and macOS. You

don’t need to use Xcode directly, but Visual Studio needs it in order to

compile your iOS and macOS applications.

Thankfully this install is straightforward despite it being a rather large

download.

 1. Open the App Store application.

 2. Enter Xcode into the Search box and press return.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vsmac
https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vsmac

23

 3. Click Get. Figure 2-3 shows Xcode available on the

Apple App Store.

Figure 2-3. Xcode on the App Store

 4. Once downloaded, open Xcode and wait for it to

install the command line tools. Note that this is

usually required to be performed after each major

update to Xcode, too.

I suggest using caution when applying updates to the whole suite
of applications that you are installing today. Typically, when a new,
big release of .neT MAuI comes out, it likely requires an update of
Xcode. I personally like to keep these expected versions in sync so I
recommend checking for the updates within Visual Studio first and
verifying that it expects a new version of Xcode before proceeding to
update that.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

24

 Remote Access

The final step to set up the macOS environment is to enable remote login

so that Visual Studio (Windows) can communicate to the Mac to build and

run iOS and macOS applications.

 1. Open System Settings (macOS Ventura 13.0+) or

System Preferences on older macOS versions.

 2. Select General on the left-hand panel and then

Sharing, as highlighted in Figure 2-4. This image

shows the macOS System Settings dialog with the

Sharing menu option highlighted.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

25

Figure 2-4. macOS system settings

 3. Enable Remote Login. Figure 2-5 shows the Remote

Login option enabled.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

26

Figure 2-5. macOS sharing options

 4. Add your user to the list of allowed users for

Remote Login. My user is an Administrator so the

Administrators user group enables remote login

access for this user. Figure 2-6 shows the Remote

Login editor to enable access for users on macOS.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

27

Figure 2-6. macOS remote login options

 5. That’s it! Your mac should now be ready to use.

 Windows
 Visual Studio

First, you must install Visual Studio 2022. These steps will guide you

through getting it ready to build .NET MAUI applications:

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

28

 1. Download and install Visual Studio 2022. This

can be accessed from https://visualstudio.

microsoft.com/downloads/.

 2. Run the installer and you will see the workload

selection screen. Select the Mobile development
with .NET workload. Figure 2-7 shows the Visual

Studio Windows installer with the required .NET

MAUI workloads checked.

Figure 2-7. Visual Studio Windows installation options

Please refer to the Microsoft documentation page at https://learn.

microsoft.com/dotnet/maui/get-started/installation?tabs=vswin if

any of the installation options have changed.

 Visual Studio to macOS
The final item to configure in your Windows environment is to set up the

connection between Visual Studio and your macOS so that iOS and macOS

builds can be compiled.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

https://visualstudio.microsoft.com/downloads
https://visualstudio.microsoft.com/downloads
https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vswin
https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vswin

29

 1. Inside Visual Studio select the Tools menu item.

 2. Select iOS ➤ Pair to Mac.

 3. Check and confirm the firewall access. Figure 2-8

shows the firewall request dialog that is presented

when first running Visual Studio on Windows.

Figure 2-8. Windows firewall request

 4. Note that you may also see a second firewall popup

for the Xamarin Broker.

 5. Select your Mac from the list.

 6. Click Connect. Figure 2-9 shows the Pair to Mac

dialog that allows you to connect your Visual Studio

running on Windows to connect to your macOS

machine.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

30

Figure 2-9. Pair to Mac screen

 7. Enter the username and password that you use to

log into your Mac.

 8. Wait for the tooling to connect and make sure that

everything is configured on the Mac.

 9. When you see the symbol shown in Figure 2-10,

your setup is complete. Figure 2-10 shows the Pair to

Mac dialog with the connected symbol against your

macOS machine.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

31

Figure 2-10. Pair to Mac screen with confirmation

 10. Visual Studio should now connect automatically

when you open a .NET MAUI solution. Figure 2-11

shows the Pair to Mac button in Visual Studio on

Windows.

Figure 2-11. Visual Studio toolbar with Pair to Mac buttons

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

32

 Troubleshooting Installation Issues
Given that there are several moving parts in the development ecosystem

when building .NET MAUI applications, there is room for things to go

wrong. In this section, I will go over a few common issues and how to

check that things are correctly set up.

 .NET MAUI Workload Is Missing
In order to check whether the .NET MAUI workload has been installed, you

can check either in Visual Studio Installer or through the command line.

 Visual Studio Installer

This currently only works on Windows, but you can follow these steps.

 1. Open the Start menu.

 2. Type in Visual Studio Installer.

 3. Open the installer.

 4. Select Modify on the Visual Studio 2022 installation.

 5. View the workloads and check that the Mobile
development with .NET workload is ticked.

 Command Line

This has the benefit of working on both Windows and macOS.

 1. Open a Terminal session.

 2. Run the following command:

dotnet workload list

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

33

 3. Verify that the results include maui.

Installed Workload Id Manifest Version Installation Source

--

maui 7.0.49/7.0.100 SDK 7.0.100

 Creating Your First Application
You will be using the user interface in order to create your application,

build, and run it. I will also be including the dotnet command line

commands because I find they can be quite helpful when building and

debugging.

 Creating in Visual Studio

 1. Launch Visual Studio 2022. In the window that

opens, select the Create a new project option.

Figure 2-12 shows the initial starting screen in Visual

Studio running on Windows with the Create a new
project option highlighted.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

34

Figure 2-12. Creating a project in Visual Studio

 2. In the window that follows, type .NET MAUI in the

Search for templates box. Then select the .NET
MAUI App option and click Next. Figure 2-13 shows

the project creation screen with the .NET MAUI App

project selected.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

35

Figure 2-13. Selecting a .NET MAUI App project type

 3. In the next window, enter a name for your project. I

chose WidgetBoard. Choose a location if you would

like to store it somewhere different from the default

location, and click Create. Figure 2-14 shows the

Configure your new project screen in Visual Studio.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

36

Figure 2-14. The Configure your new project dialog

please bear in mind that Windows has a limitation on the length of
the location path. If the path is longer than 255 characters, then
strange behavior will follow. Visual Studio will fail to build perfectly
valid code and so on. This can be rectified by disabling the path limit
(https://learn.microsoft.com/windows/win32/fileio/
maximum-file-path-limitation?tabs=cmd#enable-long-
paths-in-windows-10-version-1607-and-later).

 4. Select the version of .NET you wish to use. At the time

of writing this book .NET 7.0 is the current version

so I am using this version. Figure 2-15 shows the

Additional information dialog where you can choose

the .NET Framework version for your application.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd#enable-long-paths-in-windows-10-version-1607-and-later

37

Figure 2-15. The .NET Framework selection dialog

 5. Wait for the project to be created and any background

restore and build tasks to be completed.

Now admire the very first .NET MAUI application that we have created

together.

 Creating in the Command Line
While the command line might feel more complicated, at times there are

actually fewer steps required than when using Visual Studio.

 1. Open a Terminal/command line session.

 2. cd to the location you want to create your

application:

cd c:\work\

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

38

 3. Create the application, giving the project a name:

dotnet new maui --name WidgetBoard

 4. cd to the new folder, WidgetBoard:

cd WidgetBoard

 5. Pull in all dependencies for the application:

dotnet restore

You now have a .NET MAUI application. Let’s proceed to learning how

to build and ultimately run it.

 Building and Running Your First Application
Now that you have your project created, let’s go ahead and build and run

it in order to get familiar with the tooling. The introduction of the single

project approach for .NET MAUI applications may bend your way of

thinking when it comes to building applications. In the past, a solution

containing .NET projects would typically have a single start-up project,

but these projects would have a single output. Now that a single project

actually has multiple outputs, you need to learn how to configure that for

your builds. In fact, this is done by clicking the down arrow, which can be

seen in Figure 2-16.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

39

Figure 2-16. Build target selection dropdown in Visual Studio

You may also notice the dropdown in the above image that currently

says WidgetBoard (net7.0-android). This allows you to show in the visible

file what applies to that specific target, but it does not affect what you are

currently compiling. Figure 2-17 shows this a little clearer.

 1. This is where you set the current target to compile

for and run.

 2. This is highlighting in the code file what will compile

for the target chosen in the dropdown. Notice here

that you are compiling for Windows but showing

what would compile for Android.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

40

Figure 2-17 highlights items 1 and 2 from the above list to highlight

what is compiled vs. what is targeted in Visual Studio.

Figure 2-17. Showing the differences between what target is being
compiled and what target is being shown in the current editor

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

41

 Getting to Know Your Application
Together we will be building an application from the very initial stages

through to deploying it to stores for public consumption. Given that the

application will play such a pivotal role in this book, I want to introduce

you to the concept first.

I want to try something a little bit different from the normal types of

apps that are built as part of a book or course. Something that requires a

fair amount of functionality that a lot of real-world applications also need.

Something that can help to make use of potentially older hardware so we

can give them a new lease on life.

 WidgetBoard
The application that we will be building together will allow users to turn

old tablets or computers into their own unique digital board. Figure 2-18

shows a sketch of how it could look once a user has configured it.

Figure 2-18. Sketch prototype of the application we will be building

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

42

We will build “widgets” that can be positioned on the screen. These

widgets will range from showing the current time to pulling weather

information from a web API to displaying images from your library. The

user will also be able to customize the color, among other options, and

ultimately save these changes so that they will be remembered when the

user next opens the application.

I am planning for this to provide a digital calendar/photo frame for our

home. I would love to hear or see what you are able to build.

 Summary
In this chapter, you have

• Set up your development environment so that you are

capable of creating, building, and ultimately running/

deploying the application.

• Created, built, and run your very first .NET MAUI

application

• Met the application that we will be building together

In the next chapter, you will

• Dissect the application you just created.

• Gain an understanding of the key components of a

.NET MAUI application.

• Learn about the lifecycle of a .NET MAUI application.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

43

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch02.

ChApTer 2 BuIldIng Our FIrST ApplICATIOn

https://github.com/Apress/Introducing-MAUI/tree/main/ch02
https://github.com/Apress/Introducing-MAUI/tree/main/ch02

45

CHAPTER 3

The Fundamentals of
.NET MAUI
In this chapter, you will dissect the project you created in Chapter 2

and dive into the details of each key area. The focus is to provide a good

overview of what a .NET MAUI single project looks like, where each of the

key components are located, and some common ways of enhancing them.

 Project Structure
.NET MAUI provides support for multiple platforms from within a single

project. The focus is to allow us as developers to share as much code and

as many resources as possible.

You will likely hear the term single project a lot during your time

working with .NET MAUI. It is a concept that is new to the .NET world as

part of .NET MAUI. Its key feature is that you can build applications for

multiple different targets from, you guessed it, a single project. If you have

ever built .NET applications that aim to share code, you will have noticed

that each application you wanted to build and deploy required its own

project. The same was true with Xamarin.Forms in that you would have

at least one project with your common code and then one project per

platform. The single project now houses both the shared code and the

platform-specific bits of code.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_3

https://doi.org/10.1007/978-1-4842-9234-1_2
https://doi.org/10.1007/978-1-4842-9234-1_3#DOI

46

Figure 3-1 shows a comparison between the old separate project

approach in Xamarin.Forms and the new .NET MAUI project format.

Figure 3-1. Comparison of Xamarin.Forms projects to a .NET
MAUI project

Let’s inspect the project you created in Chapter 2 so that you can

start to get an understanding of how .NET MAUI supports the multiple

platforms and how they relate to shared code.

The new project has the following structure:

• Platforms/: This folder contains all the platform-

specific code. Inside this folder is a set of folders, each

with a name that relates to the platform that it supports.

Thus Platforms/Android supports the Android

platform.

• Resources/: This folder is where you store all your

resources for the application. A resource is typically

anything you wish to embed in the application that

isn’t strictly code, such as an image, a font file, or even

an audio or video file.

In the past, resource management was always a pain point when

building cross-platform applications. For example, building an application

Chapter 3 the Fundamentals oF .net mauI

https://doi.org/10.1007/978-1-4842-9234-1_2

47

for both Android and iOS with Xamarin.Forms could result in needing four

or five different sizes of each image rendered in the application.

• MauiProgram.cs: This class is where you initialize your

.NET MAUI application. It makes use of the Generic

Host Builder, which is the Microsoft approach to

encapsulating the requirements of an application.

These requirements include but are not limited to

dependency injection, logging, and configuration.

• App.xaml.cs: This is the main entry point to the cross-

platform application. Note this line of code from the

MauiProgram.cs file includes our App class:

builder.UseMauiApp<App>();

• App.xaml: This file includes common UI resources

that can be used throughout the application. I will

cover these types of resources in much more detail in

Chapters 5 and 8.

• MainPage.xaml and MainPage.xaml.cs: These two files

combine to make up your application’s first page.

• AppShell.xaml and AppShell.xaml.cs: These two files

enable you to define how your application will be laid

out through the use of the .NET MAUI concept called

Shell. I will cover Shell extensively in Chapter 5.

Note that wherever you see a .xaml file, there will typically be an

associated .xaml.cs file. This is due to limitations in what XAML can

provide; it requires an associated C# file to cover the parts that XAML does

not support. I will cover XAML much more extensively in Chapter 5.

It is also worth noting that you do not have to write any XAML. Sure,

.NET MAUI and its predecessor, Xamarin.Forms, have a deep connection

to XAML but because the XAML is ultimately compiled down to C#,

Chapter 3 the Fundamentals oF .net mauI

https://doi.org/10.1007/978-1-4842-9234-1_5
https://doi.org/10.1007/978-1-4842-9234-1_8
https://doi.org/10.1007/978-1-4842-9234-1_5
https://doi.org/10.1007/978-1-4842-9234-1_5

48

anything that is possible to create in XAML is also possible in C#. You will

look through the different possibilities for architecting your applications in

the next chapter (Chapter 4).

 /Platforms/ Folder
I mentioned that the platform-specific code lives in the Platforms folder.

While cross-platform applications provide a nice abstraction from the

platforms we wish to support, I still believe it is extremely valuable to know

how these platforms behave. Let’s dive in and look at each of the platform

folders to understand what is happening.

 Android

Inside the Android platform folder you will see the following files:

• MainApplication.cs: This is the main entry point for

the Android platform. Initially you should note that

it does very little. The bit it does is rather important,

though; it is responsible for creating the MauiApp using

the MauiProgram class. This is the bridge between the

Android application and your cross-platform .NET

MAUI code.

• MainActivity.cs: An activity in Android development

is a type of app component that provides a user

interface. The MainActivity starts when your app is

loaded. This is typically done by tapping the app icon;

however, it can also be triggered by a notification or

other source.

• AndroidManifest.xml: This file is extremely important.

It is how you define the components that make up your

application, any permissions it requires, the application

Chapter 3 the Fundamentals oF .net mauI

https://doi.org/10.1007/978-1-4842-9234-1_4

49

version information, the minimum and target SDK

versions, and any hardware or software features that it

requires.

 iOS

Inside the iOS platform folder, you will see the following files:

• AppDelegate.cs: This class allows you to respond to all

platform-specific parts of the application lifecycle.

• Info.plist: This file contains configuration about

the application. It is like the AndroidManifest.xml file

discussed in the Android section. You can change the

application’s version and include reasons why your

application requires permission to use certain features.

• Program.cs: This is the main entry point.

 MacCatalyst

Inside the MacCatalyst platform folder, you will see the following files.

It is worth noting that this section is nearly identical to the previous iOS

section. It’s been kept separate to provide an easy reference to what the

platform folder consists of for MacCatalyst.

• AppDelegate.cs: This class allows you to respond to all

platform-specific parts of the application lifecycle.

• Info.plist: This file contains configuration about

the application. It is like the AndroidManifest.xml

file discussed in the Android section: you can change

the application version and include reasons why your

application requires permission to use certain features.

• Program.cs: This is the main entry point.

Chapter 3 the Fundamentals oF .net mauI

50

 Tizen

Inside the Tizen platform folder, you will see the following files:

• Main.cs: This is the main entry point for your Tizen

application.

• tizen-manifest.xml: This file is very similar to the

AndroidManifest.xml file. It is how you define the

components that make up your application, any

permissions it requires, the application version

information, the Tizen API version, and any hardware

or software features it requires.

 Windows

Inside the Windows platform folder, you will see the following files:

• app.manifest: The package manifest is an XML

document that contains the info the system needs to

deploy, display, or update a Windows app. This info

includes package identity, package dependencies,

required capabilities, visual elements, and extensibility

points. Every app package must include one package

manifest.

• App.xaml and App.xaml.cs: The main entry points for

your Windows application

• Package.appxmanifest: An application manifest is an

XML file that describes and identifies the shared and

private side-by-side assemblies that an application

should bind to at run time. They should be the

same assembly versions that were used to test the

application. Application manifests may also describe

metadata for files that are private to the application.

Chapter 3 the Fundamentals oF .net mauI

51

 Summary

Phew! That felt like a lot to take in! I think I need to take a tea break! Don’t

worry, though; while this gives an overview of what each of the files are

responsible for, you will be modifying most of them throughout this book

with some practical examples so if there are any points that aren’t clear, or

you feel you will need to revisit them, you certainly will be.

 /Resources/ Folder
The Resources folder is where you store anything you want to include in

your application that is not strictly code. Let’s look through each of the

sub-folders and key types of resource.

 Fonts

.NET MAUI allows you to embed your own custom fonts. This is especially

handy if you are building an app for a specific brand, or you want to make

sure that you render the same font on each platform. You can embed either

True Type Fonts (.ttf files) or Open Type Fonts (.otf files).

a word of warning around fonts. I strongly recommend that you
check the licensing rules around fonts before including them in your
application. While there are sites that make it possible to download
fonts freely, a very large percentage of those fonts usually require
paying to use them.

There are two parts to embedding a font so that it can be used within

your application.

 1. The font file should be place in this folder

(Resources/Fonts).

Chapter 3 the Fundamentals oF .net mauI

52

By default, the font will be automatically included

as a font file based on the following line that can be

found inside the project file (WidgetBoard.csproj):

<MauiFont Include="Resources\Fonts*" />

What the above line does is set the build action of

the file you just included to be of type MauiFont.

If you want to perform this manually, you can right-

click the file inside Visual Studio, click Properties,

and inside the Properties panel set the Build Action

to MauiFont.

 2. Configure the font.

When bootstrapping your application, you need

to specify which fonts you wish to load. This is

performed with the following lines inside your

MauiProgram.cs file:

.ConfigureFonts(fonts =>

{

 fonts.AddFont("Lobster-Regular.ttf", "Lobster");

});

In the above example, you add the font file Lobster-

Regular.ttf to the collection of fonts and give it an

alias of Lobster. This means you can just use the

name of Lobster when referring to the file in your

application.

 Images

Practically every application you build will include some images. Each

platform that you wish to support has its own rules on the image sizes that

you need to supply to make the image render as sharp and clear on the

Chapter 3 the Fundamentals oF .net mauI

53

many devices they run. Take iOS, for example. In order to supply a 24x24

pixel image in your app, you must provide three different image sizes:

24x24, 48x48, and 72x72. This is due to the different DPIs for the devices

Apple builds. Android devices follow a similar pattern but the DPIs are not

the same. This is similar for Windows.

Figure 3-2 shows an example image that would be rendered at 24x24

pixels. Note that while Windows shows the three sizes, this is just based off

recommendations for trying to cover the most common settings. In truth,

Windows devices can have their DPIs vary much more. Figure 3-2 shows

the required image sizes needed for all supported platforms in order to

render a 24x24 pixel image.

Chapter 3 the Fundamentals oF .net mauI

54

Figure 3-2. Required image sizes across the various platforms

You can see from the figure above that it can become painful very

quickly if you have lots of images in your application each requiring at least

five different sizes to be maintained. Thankfully .NET MAUI gives us the

ability to provide a single Scalable Vector Graphic (SVG) image and it will

generate the required images for all the platforms when the application is

compiled. I cannot tell you how happy all of us Xamarin.Forms old timers

are at this new piece of functionality!

Chapter 3 the Fundamentals oF .net mauI

55

As it currently stands, if the SVG image is of the correct original size,

you can simply drop the image into the /Resources/Images/ folder and it

will just begin to work in your application. In a similar way to how the fonts

are automatically picked up, you can see how the images are also handled

by looking inside your project file and observing the line <MauiImage

Include="Resources\Images*" />

.net mauI doesn’t render sVGs directly but generates pnG images
from the sVGs at compile time. this means that when you are
referring to the image you wish, it needs to have the .png extension.
For example, when embedding an image called image.svg, in code
you refer to it as image.png.

If the contents of the SVG are not of the desired size, then you can add

some configuration to tell the tooling what size the image should be. For

this the image should not be added to the /Resources/Images/ folder as

the tooling will end up generating duplicates and there is no telling which

one will win. Instead, you can simply add the image to the /Resources/

folder and then add the following line to your project file:

<MauiImage Include="Resources\image.svg" BaseSize="24,24" />

The above code will treat the contents of the image.svg file as being

24x24 pixels and then scale for each platform based on that size.

 Raw

Your final type of resource to embed is raw files. This essentially means

that what is embedded can be loaded at runtime. A typical example of this

is to provide some data to preload into the application when first starting.

Chapter 3 the Fundamentals oF .net mauI

56

 Where To Begin?
.NET MAUI applications have a single main entry point that is common

across all platforms. This provides us with a way to centralize much of the

initialization process for our applications and therefore only write it once.

You will have noticed that in each of the platform-specific main

entry points covered in the previous section they all called MauiProgram.

CreateMauiApp();. This is the main entry point into your .NET MAUI and

shared application.

The CreateMauiApp method allows you to bootstrap your application.

Bootstrapping refers to a self-starting process that is supposed to continue

or grow without external input (Wikipedia quote). This means that

your implementation in this method is responsible for configuring the

application from setting up logging, general application configuration, and

registering implementations to be handled with dependency injection.

This is one of the big improvements in .NET MAUI over Xamarin.Forms.

This is done through the Generic Host Builder.

 Generic Host Builder
I mentioned back in Chapter 1 that one of the benefits that comes with the

evolution to .NET MAUI is powerful dependency injection. The Generic

Host Builder is tried and tested through other .NET frameworks such as

ASP .NET Core and it has thankfully become available to all application

types now.

Before we jump in to how the Generic Host Builder works, let’s look at

what exactly dependency injection is and why you should use it.

Chapter 3 the Fundamentals oF .net mauI

https://doi.org/10.1007/978-1-4842-9234-1_1

57

 What Is Dependency Injection?
Dependency injection (DI) is a software design pattern aimed at reducing

hard-coded dependencies in a software application. A dependency is

an object that another object depends on. This hard-coded dependency

approach is referred to as being tightly coupled. Let’s work through an

example to show how and why it’s named so and how you can remove the

need for the hard-coded dependencies thus making your design loosely

coupled.

So, my wife is a fantastic baker. She bakes these beautiful, delicious

cakes and this is the main reason I have gained so much weight recently.

I am going to use the process of her baking a cake to show this concept of

dependencies.

public class Baker

{

 public Cake Bake()

 {

 }

}

The above code looks relatively straightforward, right? She bakes a

cake. Now let’s consider how she might go about making the cake. She

needs a way of sourcing the ingredients, weighing them, mixing them, and

finally baking them. We end up with something like

public class Baker

{

 private readonly WeighingScale weighingScale = new

WeighingScale();

 private readonly Oven oven = new Oven();

 private readonly MixingMachine mixingMachine = new

MixingMachine();

Chapter 3 the Fundamentals oF .net mauI

58

 private readonly IngredientsProvider ingredientsProvider =

new IngredientsProvider();

 public Cake Bake()

 {

 Ingredient ingredient = ingredientsProvider.Provide();

 weighingScale.Weigh(ingredient);

 }

}

We can see that for the Baker to do their job, they need to know

about all these different pieces of equipment. Now imagine that the

WeighingScale breaks, and a replacement is provided. Baker will still need

to weigh the ingredients but won’t care how that weighing is performed.

Imagine that the new WeighingScale is digital and now requires batteries.

There are a few reasons why we want to move away from having hard-

coded dependencies as in our Baker example.

• If we did replace the WeighingScale with a different

implementation, we would have to modify the

Baker class.

• If the WeighingScale has dependencies (e.g., batteries

in our new digital scale), they must also be configured

in the Baker class.

• This becomes more difficult to unit test because the

Baker is creating dependencies and therefore a unit test

would result in having to test far more than a unit test is

designed to.

Dependency injection can help us to address the above issues by

allowing us to achieve Inversion of Control (IoC). Inversion of Control

essentially means that we are inverting the knowledge of the dependency

Chapter 3 the Fundamentals oF .net mauI

59

from the Baker knowing about a WeighingScale to them knowing about

something that can weigh ingredients but not an actual implementation.

This is done through the introduction of an interface which we will call

IWeighingScale.

public class Baker

{

 private readonly IWeighingScale weighingScale;

 private readonly Oven oven = new Oven();

 private readonly MixingMachine mixingMachine = new

MixingMachine();

 private readonly IngredientsProvider ingredientsProvider =

new IngredientsProvider();

 public Baker(

 IWeighingScale weighingScale)

 {

 this.weighingScale = weighingScale;

 }

 public Cake Bake()

 {

 Ingredient ingredient = ingredientsProvider.Provide();

 this.weighingScale.Weigh(ingredient);

 }

}

Now our Baker knows about an interface for something that can weigh

their ingredients but not the actual thing that does the weighing. This

means that in the scenario where the weighing scale breaks and a new

one is supplied, there is no change to the Baker class in order to handle

this new scale. Instead, it is registered as part of the application start-up

Chapter 3 the Fundamentals oF .net mauI

60

or bootstrapping process. Of course, we could and should follow the same

approach for our other dependencies.

One additional concept I have introduced here is the use of constructor

injection. Constructor injection is the process of providing the registered

dependencies when creating an instance of our Baker. So, when our Baker

is created, it is passed an instance of WeighingScale.

If you have a background with Xamarin.Forms, you will have come

across the DependencyService. This provided a mechanism for managing

dependency injection within an application; however, it received criticism

in the past for not supporting constructor injection. This doesn’t mean

it wasn’t possible to achieve constructor injection in Xamarin.Forms

applications but it required the use of a third-party package and there are a

lot of great packages out there! Now it is all baked into .NET MAUI.

 Registering Dependencies
In the previous section, I discussed how to minimize concrete

dependencies in your code base. Now let’s look through how to configure

those dependencies so that the dependents are given the correct

implementations.

Implementations that you register in the generic host builder are

referred to as services and the work of providing the implementations out

to dependents is referred to as the ServiceProvider. You can register your

services using the following.

 AddSingleton

A singleton registration means that there will only ever be one instance

of the object. So, based on the example of our Baker needing to use an

IWeighingScale, we register it as follows:

builder.Services.AddSingleton<IWeighingScale, WeighingScale>();

Chapter 3 the Fundamentals oF .net mauI

61

Then every time that an IWeighingScale is resolved, we will be

provided with the same instance. This suits the weighing scale example

because we use the same one throughout our baking process.

It is extremely unlikely that you will ever need to register a view
model as a singleton. doing so can introduce bits of behavior that you
are most likely not expecting on top of the fact that you can run the
risk of leaking memory.

 AddTransient

A transient registration is the opposite of a singleton. Every time an

implementation is resolved, a new instance is created and provided. So

based on the example of our Baker needing to use an IWeighingScale, we

register it as follows:

builder.Services.AddTransient<IWeighingScale, WeighingScale>();

As mentioned, every time an IWeighingScale is resolved, we will

be provided with a new instance. A better example here might be the

greaseproof paper that lines the cake tins. They are used once and

thrown away.

 AddScoped

A scoped registration is somewhere in the middle of a singleton and

transient. A single instance will be provided for a “scope,” and then when

a new scope is created, a new instance will be provided for the life of

that scope.

builder.Services.AddScoped<IWeighingScale, WeighingScale>();

Chapter 3 the Fundamentals oF .net mauI

62

This type of registration feels much better suited to a web application

where requests come in and a scope will represent a single request. In the

mobile and desktop world, your application typically has a single state and

therefore is less likely to need scoped registrations. Currently .NET MAUI

does not provide any automatic creations of scopes, but you have the

power to create your own using the IServiceScopeFactory interface and

ultimately its implementation.

 Application Lifecycle
Sadly, no two platforms provide the same set of behaviors or lifecycle

events such as when an application is started, backgrounded, or closed.

This is where cross-platform frameworks provide us with a solid set

of encapsulated events to cover most scenarios. There are four main

application states in a .NET MAUI application.

 Application States
These are the application states:

• Not running: This means that the application has

not been started and is not loaded into memory. This

is typically when the application has been installed,

the device has been powered on, the application

was closed by the user, or the operating system has

terminated the application to free up some resources.

• Running: This means that the application is visible and

is focused.

• Deactivated: This means that the application is no

longer focused but may still be visible. On mobile, this

could mean that the operating system is showing a

Chapter 3 the Fundamentals oF .net mauI

63

permission request alert (e.g., an application asking for

permission to use the camera) or similar.

• Stopped: This means that the application is no longer

visible.

You can now see how a .NET MAUI application moves between the

above four states and the events that are triggered to an application.

Figure 3-3 shows the possible states that a .NET MAUI application can take

during its lifetime and how it transitions between those states.

Figure 3-3. Application state lifecycle chart

Before we dive into the details of each of the events that are fired

between the state transitions, I need to give you some background on

how they can be accessed and why. In order to access these events, you

must access the Window class. It certainly isn’t a common concept to have

a window in a mobile application, but you must appreciate that you are

dealing with a cross-platform framework and therefore an approach that

fits desktop as well as mobile. I see it as follows: a mobile application is a

single window application, and a desktop is likely to be multi-window.

Chapter 3 the Fundamentals oF .net mauI

64

 Lifecycle Events
Now on to the events that move an application between states.

• Created: This event is raised after the platform window

has been created. Note that the window may not be

visible yet.

• Activated: This event is raised when the window is the

focused window.

• Deactivated: This event is raised when the window is

no longer the focused window. Note that the window

may still be visible.

• Stopped: This event is raised when the window is no

longer visible. The application may resume from this

state but it is not guaranteed, so it is recommended that

you cancel any long-running processes or anything

that may consume resources on the device. Mobile

operating systems are much stricter on what can

happen in the background.

• Resumed: This event is raised when an application

resumes from the Stopped state. It is recommended

to prepare your application for full use again (e.g.,

subscribe to events or messages, refresh any visible

content).

• Destroying: This event is raised when the platform

window is being destroyed and removed from memory.

It is recommended that you unsubscribe from events or

messages.

Chapter 3 the Fundamentals oF .net mauI

65

 Handling Lifecycle Events
By default, a .NET MAUI application won’t give you access to the lifecycle

events; this is something you must opt in for. In order to opt in, you must

modify your App class.

Open Visual Studio. You need to add a new class to your project and

call it StateAwareWindow. Your new class will need to be modified so it

looks as follows:

public class StateAwareWindow: Window

{

 public StateAwareWindow() : base()

 {

 }

 public StateAwareWindow(Page page) : base(page)

 {

 }

 protected override void OnCreated()

 {

 // Initialise our application

 }

}

Inside of your application, you can override all methods that will

be executed when the specific event occurs. Each override method

follows the naming of the events, as described previously, with a prefix

of On. Therefore, to handle the Activated event, you override the

OnActivated method.

The final step is to make use of the new class, so inside your App.xaml.

cs file, add the following:

Chapter 3 the Fundamentals oF .net mauI

66

protected override Window CreateWindow(IActivationState

activationState)

{

 return new StateAwareWindow(MainPage);

}

This will create a new instance of StateAwareWindow and pass it a

reference to the application’s MainPage. If you do not pass in a reference

to a Page to the Window implementation, you will experience exceptions

being thrown.

 Cross-Platform Mappings to Platform
Lifecycle Events
I strongly believe that despite the fact that .NET MAUI provides us with

these events, you should understand how they map to the underlying

platforms. If you understand what is being called on the platform-specific

side, it can really help to diagnose things when they go wrong or perhaps

point you in the direction of a better approach for your scenarios.

Let’s break down how the .NET MAUI lifecycle events map to the

platform-specific events and then show off the bits that are not mapped if

you ever need to use them. See Table 3-1.

Chapter 3 the Fundamentals oF .net mauI

67

Table 3-1. Cross-Platform Lifecycle Events Mapped to the Platform-

Specific Events

Event Android iOS/MacCatalyst Windows

Created OnPostCreate FinishedLaunching Created

Activated OnResume OnActivated Activated(Code

Activated and

Pointer

Activated)

Deactivated OnPause OnResignActivation Activated

(Deactivated)

Stopped OnStop DidEnterBackground Visibility

Changed

Resumed OnRestart WillEnterForeground Resumed

Destroying OnDestroy WillTerminate Closed

This list may not provide too much meaning right now and I wouldn’t

worry yourself with needing to know this. The aim here is to provide you

with a quick look-up to be able to then research if any lifecycle events are

going wrong or possibly not the right fit for your solution.

 Platform-Specific Lifecycle Events
There are actually many platform-specific lifecycle events that .NET MAUI

does not map to. What .NET MAUI does provide is a set of lifecycle events

that map consistently across all platforms. The rest in this section are really

specific to each individual platform. I won’t be covering all of the details of

each individual event; however, I will cover how to make use of one so that

you will know how to make use of an event that better suits your use case.

Chapter 3 the Fundamentals oF .net mauI

68

When searching for information around a platform-specific
event, don’t feel constrained to searching for .net mauI-specific
documentation. You have the power to leverage the platform apIs. You
should be able to search for information in the context of android or
ios and the code should be relatively easy to translate into C#.

In order to register for a platform-specific event, you need to make use

of the ConfigureLifecycleEvents method on the MauiAppBuilder class.

Let’s look at a concrete example for each platform. The code in each of the

following examples is largely the same but the duplication has been kept to

show the bigger picture. I have highlighted the differences in bold to show

the key differences.

 Android

To receive a notification for an Android lifecycle event, you call the

ConfigureLifecycleEvents method on the MauiAppBuilder object. You

can then make use of the AddAndroid method and specify the events you

wish to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;

namespace WidgetBoard;

public static class MauiProgram

{

 public static MauiApp CreateMauiApp()

 {

 var builder = MauiApp.CreateBuilder();

 builder

 .UseMauiApp<App>()

 .ConfigureLifecycleEvents(events =>

Chapter 3 the Fundamentals oF .net mauI

69

 {

#if ANDROID

 events.AddAndroid(lifecycle=>

 lifecycle.OnStart((activity) =>

OnStart(activity)));

 static void OnStart(Activity activity)

 {

 // Perform your OnStart logic

 }

#endif

 });

 return builder.Build();

 }

}

For more information on the available lifecycle events, I recommend

checking out the following documentation pages:

Microsoft: https://learn.microsoft.com/dotnet/maui/

fundamentals/app-lifecycle#android

Android: https://developer.android.com/guide/components/

activities/activity-lifecycle

 iOS and MacCatalyst

To receive a notification for an iOS lifecycle event, you call the

ConfigureLifecycleEvents method on the MauiAppBuilder object. You

can then make use of the AddiOS method and specify the events you wish

to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;

namespace WidgetBoard;

public static class MauiProgram

Chapter 3 the Fundamentals oF .net mauI

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#android
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#android
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle

70

{

 public static MauiApp CreateMauiApp()

 {

 var builder = MauiApp.CreateBuilder();

 builder

 .UseMauiApp<App>()

 .ConfigureLifecycleEvents(events =>

 {

#if IOS || MACCATALYST

 events.AddiOS(lifecycle =>

 lifecycle.OnActivated((app) =>

OnActivated(app)));

 static void OnActivated(UIKit.UIApplication

application)

 {

 // Perform your OnActivated logic

 }

#endif

 });

 return builder.Build();

 }

}

For more information on the available lifecycle events, I recommend

checking out the following documentation pages:

Microsoft: https://learn.microsoft.com/dotnet/maui/

fundamentals/app-lifecycle#ios

iOS: https://developer.apple.com/documentation/uikit/app_and_

environment/managing_your_app_s_life_cycle?language=objc

Chapter 3 the Fundamentals oF .net mauI

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#ios
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#ios
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle?language=objc
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle?language=objc

71

 Windows

To receive a notification for a Windows lifecycle event, you call the

ConfigureLifecycleEvents method on the MauiAppBuilder object. You

can then make use of the AddWindows method and specify the events you

wish to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;

namespace WidgetBoard;

public static class MauiProgram

{

 public static MauiApp CreateMauiApp()

 {

 var builder = MauiApp.CreateBuilder();

 builder

 .UseMauiApp<App>()

 .ConfigureLifecycleEvents(events =>

 {

#if WINDOWS

 events.AddWindows(lifecycle =>

 lifecycle.OnActivated((window, args) =>

OnActivated(window, args)));

 static void OnActivated(Microsoft.

UI.Xaml.Window window, Microsoft.UI.Xaml.

WindowActivatedEventArgs args)

 {

 // Perform your OnActivated logic

 }

#endif

 });

Chapter 3 the Fundamentals oF .net mauI

72

 return builder.Build();

 }

}

For more information on the available lifecycle events, I recommend

checking out the following documentation page:

Microsoft: https://learn.microsoft.com/dotnet/maui/

fundamentals/app-lifecycle#windows

You may have noticed the usage of #if statements. due to the
nature of compiling for multiple platforms in a single project, you
will need to write platform-specific code. If, like me, you do not like
the #if statement or at would like to keep its usage to a minimum,
then fear not: we will be taking a closer look at minimizing it in
Chapter 13.

 Summary
In this chapter, you have

• Walked through the main components of a .NET MAUI

application

• Earned a tea break

• Learned about the start-up process

• Learned about the life of a .NET MAUI application

Chapter 3 the Fundamentals oF .net mauI

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle
https://doi.org/10.1007/978-1-4842-9234-1_13

73

In the next chapter, you will

• Learn about the different possibilities you have to

architect your applications

• Decide on what architecture to use

• Walk through a concrete example by creating your

ClockWidget

• Learn how to further optimize your implementation

using NuGet packages

Chapter 3 the Fundamentals oF .net mauI

75

CHAPTER 4

An Architecture
to Suit You
In this chapter, you will look through some possible architectural patterns

that can be used to build .NET MAUI applications. The objective is to

provide you with enough detail to help you find the architecture that best

fits you. I want to point out that there are no right answers concerning

which architecture to choose. The best option is to go with one that you

feel will benefit you and your team.

I aim to quash the following myths throughout the course of this

chapter:

“You are forced to use XAML.”

“You are forced to use MVVM.”

There seems to be a common misconception that Xamarin.Forms and

.NET MAUI are built largely around using only XAML and MVVM. While

this is the most common approach taken by developers, it is not forced

upon us.

 A Measuring Stick
You will build the same control with each of the options to provide a way to

compare the differences. The control you will be building is a ClockWidget.

The purpose of this control is to do the following:

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_4

https://doi.org/10.1007/978-1-4842-9234-1_4#DOI

76

• Display the current time in your app.

• Update the time every minute.

Figure 4-1 shows a very rough layout of the control with the current

date and time. You will tidy this up later with the ability to format the date

and time information in Chapter 5, but for now let’s just focus on a limited

example to highlight the differences in options. Figure 4-1 shows how the

ClockWidget will render in your application when you have finished with

this chapter.

Figure 4-1. Sketch of how the ClockWidget control will render

 Prerequisites
Before you get started with each of the architectures you will be reviewing

in this chapter, you need to do a little bit of background setup to prepare.

You need to add a single new class. This implementation will allow

your widgets to schedule an action of work to be performed after a specific

period of time. In your scenario of the ClockWidget, you can schedule an

update of the UI. Let’s add this Scheduler class into your project.

• Right-click the WidgetBoard project.

• Select Add ➤ Class.

• Give it the name of Scheduler.

• Click Add.

Chapter 4 an arChiteCture to Suit You

https://doi.org/10.1007/978-1-4842-9234-1_5

77

You want to modify the contents of the file to look as follows:

using System.Threading.Tasks;

public class Scheduler

{

 public void ScheduleAction(TimeSpan timeSpan,

Action action)

 {

 Task.Run(async () =>

 {

 await Task.Delay(timeSpan);

 action.Invoke();

 });

 }

}

In the following sections you will be looking at code examples rather

than implementing them directly. This is aimed at providing some

comparisons to allow you to find out what will be a good fit for you as you

build your applications and grow as a cross-platform developer. At the end

of the chapter, you will take your chosen approach and add it into your

application so you can see the final result of your ClockWidget.

 Model View ViewModel (MVVM)
Model View ViewModel is a software design pattern that focuses on

separating the user interface (View) from the business logic (Model). It

achieves this with the use of a layer in between (ViewModel). MVVM

allows a clean separation of presentation and business logic. Figure 4-2

shows the clean separation between the components of the MVVM

architecture.

Chapter 4 an arChiteCture to Suit You

78

Figure 4-2. An overview of the MVVM pattern

The result of creating this separation between UI and business logic

brings several benefits:

• Makes unit testing easier

• Allows for Views to be swapped out or even rewritten

without impacting the other parts

• Encourages code reuse

• Provides the ability to separate UI development from

the business logic development

A key part to any design pattern is knowing where to locate parts of

your code to make it fit and abide by the rules. Let’s take a deeper look at

each of the three key parts of this pattern.

 Model
The Model is where you keep your business logic. It is typically loaded

from a database/webservice among many other things.

For your business logic, you are going to rely on the Scheduler class

that you created earlier in the “Prerequisites” section of this chapter.

Chapter 4 an arChiteCture to Suit You

79

 View
The View defines the layout and appearance of the application. It is what

the user will see and interact with. In .NET MAUI, a View is typically

written in XAML where possible, but there will be occasions when logic

in the code-behind will need to be written. You will learn this later in this

chapter; you don’t have to use XAML at all so if you don’t feel XAML is

right for you, fear not.

A View in .NET MAUI is typically a ContentPage or an implementation

that will inherit from ContentPage or ContentView. You use a ContentPage if

you want to render a full page in your application (basically a view that will fill

the application). You use a ContentView for something smaller (like a widget!).

For your implementation you will be inheriting from a ContentView.

I discussed in Chapter 2 that the majority of XAML files come with an

associated C# file. A XAML-based view is no exception to this rule. With this

in mind, let’s take a look at the contents you need to place in each of the files.

 XAML

<?xml version="1.0" encoding="utf-8" ?>

<ContentView xmlns="http://schemas.microsoft.com/

dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/

winfx/2009/xaml"

 xmlns:viewmodels="clr-namespace:WidgetBoard.

ViewModels"

 x:Class="WidgetBoard.ClockWidget">

 <ContentView.BindingContext>

 <viewmodels:ClockWidgetViewModel />

 </ContentView.BindingContext>

 <Label Text="{Binding Time}"

Chapter 4 an arChiteCture to Suit You

https://doi.org/10.1007/978-1-4842-9234-1_2

80

 FontSize="80"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

</ContentView>

 C# (Code-Behind)

The following code will have already been created for you by the .NET

MAUI template. It is included for reference.

namespace WidgetBoard;

public partial class ClockWidget : ContentView

{

 public ClockWidget()

 {

 InitializeComponent();

 }

}

The InitializeComponent method call above is essential when

building XAML-based views. It results in the XAML being loaded and

parsed into an instance of the controls that have been defined in the

XAML file.

 ViewModel
The ViewModel acts as the bridge between the View and the Model. You

expose properties and commands on the ViewModel that the View will

bind to. To make a comparison to building applications with just code-

behind, we could state that properties basically map to references of

controls and commands are events. A binding provides a mechanism for

both the View and ViewModel to send and receive updates.

Chapter 4 an arChiteCture to Suit You

81

For your ViewModel to notify the View that a property has changed

and therefore the View will refresh the value displayed on screen, you

need to make use of the INotifyPropertyChanged interface. This offers

a single PropertyChanged event that you must implement and ultimately

raise when your data-bound value has changed. This is all handled by the

XAML binding engine, which you will look at in much more detail in the

next chapter. Let’s create your ViewModel class and then break down what

is going on.

public class ClockWidgetViewModel : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 private readonly Scheduler scheduler = new();

 private DateTime time;

 public DateTime Time

 {

 get

 {

 return time;

 }

 set

 {

 if (time != value)

 {

 time = value;

 PropertyChanged?.Invoke(this, new PropertyChang

edEventArgs(nameof(Time)));

 }

 }

Chapter 4 an arChiteCture to Suit You

82

 }

 public ClockWigetViewModel()

 {

 SetTime(DateTime.Now);

 }

 public void SetTime(DateTime dateTime)

 {

 Time = dateTime;

 scheduler.ScheduleAction(

 TimeSpan.FromSeconds(1),

 () => SetTime(DateTime.Now));

 }

}

You have

• Created a class called ClockWidgetViewModel

• Implemented the INotifyPropertyChanged interface

• Added a property that when set will check whether

it’s value really has changed, and if it has, raise the

PropertyChanged event with the name of the property

that has changed

• Added a method to set the Time property and repeat

every second so that the widget looks like a clock

counting.

Chapter 4 an arChiteCture to Suit You

83

 Model View Update (MVU)
Model View Update is a software design pattern for building interactive

applications. The concept originates from the Elm programming language.

As the name suggests, there are three key parts to MVU:

• Model: This is the state of your application.

• View: This is a visual representation of your state.

• Update: This is a mechanism to update your state.

Figure 4-3 shows how each of these components relate and interact

with each other.

Figure 4-3. An overview of the MVU pattern

This pattern offers several benefits:

• Clearly defined rules around where state is allowed to

be updated

• Ease of testing

A key part to any design pattern is knowing where to locate parts of

your code to make it fit and abide by the rules. Let’s take a deeper look at

each of the three key parts of this pattern.

Chapter 4 an arChiteCture to Suit You

84

 Getting Started with Comet
First, you must install the Comet project templates. To do this, open a

terminal window and run the following command:

dotnet new –install Clancey.Comet.Templates.Multiplatform

This will install the template so that you can create a new project.

Sadly, this is different enough to the WidgetBoard project that you have

been working with so far.

Next, you need to create the project. This is again done via the terminal

for now:

dotnet new comet -–name WidgetBoard.Mvu

This will create a new project that you can start modifying.

 Adding Your MVU Implementation
Go ahead and open the project you just created.

The first thing you need to do is make use of the same Scheduler

class that you created in the MVVM Model example for your MVU

implementation. Here it is again to make life easier:

public class Scheduler

{

 public void ScheduleAction(TimeSpan timeSpan,

Action action)

 {

 Task.Run(async () =>

 {

 await Task.Delay(timeSpan);

 action.Invoke();

 }

Chapter 4 an arChiteCture to Suit You

85

 }

}

Finally, go ahead and create your ClockWidget class:

public class ClockWidget : View

{

 [State]

 readonly Clock clock = new();

 [Body]

 View body()

 => new Text(() => $"{clock.Time}")

 .FontSize(80)

 .HorizontalLayoutAlignment(LayoutAlignment.Center)

 .VerticalLayoutAlignment(LayoutAlignment.Center);

 public class Clock : BindingObject

 {

 readonly Scheduler scheduler = new();

 public DateTime Time

 {

 get => GetProperty<DateTime>();

 set => SetProperty(value);

 }

 public Clock()

 {

 SetTime(DateTime.Now);

 }

 void SetTime(DateTime dateTime)

 {

 Time = dateTime;

Chapter 4 an arChiteCture to Suit You

86

 scheduler.ScheduleAction(

 TimeSpan.FromSeconds(1),

 () =>

 {

 SetTime(DateTime.Now);

 });

 }

 }

}

Now that you have added a load of code, let’s summarize what you

have done.

• You have created a new class named ClockWidget.

• You have defined your state type as Clock.

• You have initialized (known as init in the MVU

pattern) your model field clock.

• You have defined your view with the body() function.

• You have defined your update function in the form of

the SetTime method.

Note that there are two common scenarios when an update is called:

when there is user interaction (e.g., a click/tap of a button) and around

asynchronous background work. Your example here applies to the second

scenario.

 XAML vs. C# Markup
XAML has proven to be a big part of building application UIs in Xamarin.

Forms and it will likely continue in .NET MAUI, but I want to make it clear

that you do not have to use it. So, if like some friends and colleagues, the

verbosity of XAML makes you feel queasy, there is a solution!

Chapter 4 an arChiteCture to Suit You

87

Anything that you can create in XAML can ultimately be created in

C#. Furthermore, there are ways to improve on the readability of the C#

required to build UIs.

Some benefits of building user interfaces solely with C# are

• A single file for a view. No pairing of .xaml.cs and

.xaml files.

• Better refactoring options so renaming properties or

commands in XAML won’t update the C#.

Let’s work through how you can build your ClockWidget in C# in all its

verbosity and then I will show how you can simplify it using C# Markup. (I

must add this is an open-source package that you need to bring in). Also,

these examples are still built using MVVM.

 Plain C#
As mentioned, anything you can build in XAML can also be built in C#.

The following code shows how the exact same XAML definition of your

ClockWidget can be built using just C#:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public class ClockWidget : ContentView

{

 public ClockWidget()

 {

 BindingContext = new ClockWidgetViewModel();

 var label = new Label

 {

 FontSize = 80,

Chapter 4 an arChiteCture to Suit You

88

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 label.SetBinding(

 Label.TextProperty,

 nameof(ClockWidgetViewModel.Time));

 Content = label;

 }

}

The code above does the following things:

• Creates a single file representing your ClockWidget

• Points your widget’s BindingContext to the

ClockWidgetViewModel

• Creates a label and set its Text property to be bound to

the view models Time property

• Assigns the label to the content of the view

 C# Markup
I have recently come to appreciate the value of being able to fluently

build UIs. I don’t tend to do it often because I personally feel comfortable

building with XAML or perhaps it is Stockholm Syndrome kicking in ☺

(I’ve been working with XAML for well over 10 years now). When I do, it

needs to be as easy to read and build as possible given it is not something I

do often.

Chapter 4 an arChiteCture to Suit You

89

As a maintainer on the .NET MAUI Community Toolkit, one of the

packages we provide is CommunityToolkit.Maui.Markup. It provides a set

of extension methods and helpers to build UIs fluently.

using CommunityToolkit.Maui.Markup;

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public class ClockWidget : ContentView

{

 public ClockWidget()

 {

 BindingContext = new ClockWidgetViewModel();

 Content = new Label()

 .Font(size: 80)

 .CenterHorizontal()

 .CenterVertical()

 .Bind(Label.TextProperty,

nameof(ClockWidgetViewModel.Time));

 }

}

This code performs the same steps as the plain C# example; however,

the code is much easier to read. I am sure you can imagine that when the

complexity of the UI increases, this fluent approach can really start to

benefit you.

 Chosen Architecture for This Book
Throughout this book, we will be using the MVVM-based architecture

while building the UI through XAML.

Chapter 4 an arChiteCture to Suit You

90

My reasons for choosing MVVM are as follows:

• I have spent the last 10+ years using this architecture so

it certainly feels natural to me.

• It has been a very common way of building applications

over the past decade so there is an abundance of

resources online to assist in overcoming issues

around it.

• It is a common pattern in all Microsoft products and

has a proven track record.

Now that I have covered the various architecture options and

decided on using MVVM, let’s proceed to adding in the specific Views

and ViewModels so that it can be used inside the application. Then I will

show how to start simplifying the implementation so that the code really

only needs to include the core logic by avoiding having to add a lot of the

boilerplate code.

 Adding the ViewModels
First, add a new folder to your project.

• Right-click the WidgetBoard project.

• Select Add ➤ New Folder.

• Enter the name ViewModels.

• Click Add.

This folder will house your application’s view models. Let’s proceed to

adding the first one.

Chapter 4 an arChiteCture to Suit You

91

 Adding IWidgetViewModel

The first item you need to add is an interface. It will represent all widget

view models that you create in your application.

• Right-click the ViewModels folder.

• Select Add ➤ New Item.

• Select the Interface type.

• Enter the name IWidgetViewModel.

• Click Add.

Modify this file to the following:

namespace WidgetBoard.ViewModels;

public interface IWidgetViewModel

{

 int Position { get; set; }

 string Type { get; }

}

 Adding BaseViewModel

This will serve as the base class for all of your view models so that you only

have to write some boilerplate code once. Don’t worry; you will see how to

optimize this even further!

• Right-click the ViewModels folder.

• Select Add ➤ Class.

• Enter the name BaseViewModel.

• Click Add.

Chapter 4 an arChiteCture to Suit You

92

You can replace the contents of the class file with the following code:

using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace WidgetBoard.ViewModels;

public abstract class BaseViewModel : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 protected void OnPropertyChanged([CallerMemberName] string

propertyName = "")

 {

 PropertyChanged?.Invoke(this, new PropertyChangedEventA

rgs(propertyName));

 }

 protected bool SetProperty<TValue>(ref TValue backingField,

TValue value, [CallerMemberName] string propertyName = "")

 {

 if (Comparer<TValue>.Default.Compare(backingField,

value) == 0)

 {

 return false;

 }

 backingField = value;

 OnPropertyChanged(propertyName);

 return true;

 }

}

Chapter 4 an arChiteCture to Suit You

93

You should be familiar with the first line inside the class:

public event PropertyChangedEventHandler PropertyChanged;

This is the event definition that you must add as part of implementing

the INotifyPropertyChanged interface and it serves as the mechanism for

your view model to update the view.

The next method provides a mechanism to easily raise the

PropertyChanged event:

protected void OnPropertyChanged([CallerMemberName] string

propertyName = "")

{

 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(

propertyName));

}

The OnPropertyChanged method can be called with or without passing

in a value for propertyName. By passing a value in, you are indicating

which property name on your view model has changed. If you do not, then

the [CallerMemberName] attribute indicates that the name of caller will be

used. Don’t worry if this is a little unclear right now; it will become much

clearer when you add your property into your ClockWidgetViewModel so

just bear with me.

The final method adds a lot of value:

protected bool SetProperty<TValue>(

 ref TValue backingField,

 TValue value,

 [CallerMemberName] string propertyName = "")

{

 if (Comparer<TValue>.Default.Compare(backingField,

value) == 0)

 {

Chapter 4 an arChiteCture to Suit You

94

 return false;

 }

 backingField = value;

 OnPropertyChanged(propertyName);

 return true;

}

The SetProperty method does the following:

• Allows you to call it from a property setter, passing in

the field and value being set

• Checks whether the value is different from the backing

field, basically determining whether the property has

really changed

• If it has changed, it fires the PropertyChanged event

using your new OnPropertyChanged method

• Returns a Boolean indicating whether the value did

really change. This can be really useful when needing

to update other properties or commands!

This concludes the base view model implementation. Let’s proceed to

using it as the base for the ClockWidgetViewModel to really appreciate the

value it is providing.

 Adding ClockWidgetViewModel

Let’s add a new class file into your ViewModels folder as you did for the

BaseViewModel.cs file. Call this file ClockWidgetViewModel and modify

the contents to the following:

using System;

Chapter 4 an arChiteCture to Suit You

95

using System.ComponentModel;

namespace WidgetBoard.ViewModels;

public class ClockWidgetViewModel : BaseViewModel,

IWidgetViewModel

{

 private readonly Scheduler scheduler = new();

 private DateTime time;

 public DateTime Time

 {

 get => time;

 set => SetProperty(ref time, value);

 }

 public int Position { get; set; }

 public string Type => "Clock";

 public ClockWidgetViewModel()

 {

 SetTime(DateTime.Now);

 }

 public void SetTime(DateTime dateTime)

 {

 Time = dateTime;

 scheduler.ScheduleAction(

 TimeSpan.FromSeconds(1),

 () => SetTime(DateTime.Now));

 }

}

Chapter 4 an arChiteCture to Suit You

96

The above code should be familiar. You saw it when reviewing

MVVM. The optimization made here is to reduce the size of the Time

property down to just 5 lines where the original example was 16 lines

of code.

 Adding Views
First, add a new folder to your project.

• Right-click the WidgetBoard project.

• Select Add ➤ New Folder.

• Enter the name Views.

• Click Add.

This folder will house your application’s views. Let’s proceed to adding

your first one.

 Adding IWidgetView

The first item you need to add is an interface to represent all widget view

models that you create in your application.

• Right-click the Views folder.

• Select Add ➤ New Item.

• Select the Interface type.

• Enter the name IWidgetView.

• Click Add.

Chapter 4 an arChiteCture to Suit You

97

Modify the contents of this file to the following:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public interface IWidgetView

{

 int Position { get => WidgetViewModel.Position; set =>

WidgetViewModel.Position = value; }

 IWidgetViewModel WidgetViewModel { get; set; }

}

 Adding ClockWidgetView

The next item you need to add is a ContentView. This is the first time you

are doing this, so use the following steps:

• Right-click the Views folder.

• Select Add ➤ New Item.

• Select the .NET MAUI tab.

• Select the .NET MAUI ContentView (XAML) option.

• Enter the name ClockWidgetView.

• Click Add.

Observe that two new files have been added to your project:

ClockWidgetView.xaml and ClockWidgetView.xaml.cs. You may

notice that the ClockWidgetView.xaml.cs file is hidden in the Solution

Explorer panel and that you need to expand the arrow to the left of the

ClockWidgetView.xaml file.

Let’s update both files to match what was in the original examples.

Chapter 4 an arChiteCture to Suit You

98

Open the ClockWidgetView.xaml file and modify the contents to the

following:

<?xml version="1.0" encoding="utf-8" ?>

<Label

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"

 x:Class="WidgetBoard.Views.ClockWidgetView"

 FontSize="60"

 VerticalOptions="Center"

 HorizontalOptions="Center"

 x:DataType="viewmodels:ClockWidgetViewModel"

 Text="{Binding Time}">

</Label>

Open the ClockWidgetView.xaml.cs file and modify the contents to

the following:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class ClockWidgetView : Label, IWidgetView

{

 public ClockWidgetView()

 {

 InitializeComponent();

 WidgetViewModel = new ClockWidgetViewModel();

 BindingContext = WidgetViewModel;

 }

 public IWidgetViewModel WidgetViewModel { get; set; }

}

Chapter 4 an arChiteCture to Suit You

99

This completes the work to add the ClockWidget into your codebase.

Now you need modify your application so that you can see this widget

in action!

 Viewing Your Widget
In order to view your widget in your application, you need to make some

changes to the MainPage.xaml and MainPage.xaml.cs files that were

generated when you first created your project.

 Modifying MainPage.xaml

Simply replace the contents of the file with the following.

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/

dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/

winfx/2009/xaml"

 xmlns:views="clr-namespace:WidgetBoard.Views"

 x:Class="WidgetBoard.MainPage">

 <views:ClockWidgetView />

</ContentPage>

The original file had a basic example that ships with the .NET MAUI

template, but it wasn’t of much use in this application.

 Modifying MainPage.xaml.cs

You need to modify the contents of this file because you deleted some

controls from the MainPage.xaml file. If you don’t update this file, Visual

Studio will report compilation errors. You can replace the entire contents

Chapter 4 an arChiteCture to Suit You

100

of the MainPage.xaml.cs file with the following to remove references to the

controls you deleted from XAML file:

namespace WidgetBoard;

public partial class MainPage : ContentPage

{

 public MainPage()

 {

 InitializeComponent();

 }

}

This concludes the changes that you need to make in your application.

Let’s see what your application looks like now!

 Taking the Application for a Spin

If you build and run your application just like you learned to in Chapter 2,

you can see that it renders the ClockWidget just as I originally designed.

Figure 4-4 shows the clock widget rendered in the application running

on macOS.

Chapter 4 an arChiteCture to Suit You

https://doi.org/10.1007/978-1-4842-9234-1_2

101

Figure 4-4. The clock widget rendered in the application running
on macOS

You have looked at ways to optimize your codebase when using MVVM

but I would like to provide some further details on how you can leverage

the power of the community in order to further improve your experience.

 MVVM Enhancements
There are two key parts I will cover regarding how you can utilize existing

packages to reduce the amount of code you are required to write.

 MVVM Frameworks

There are several MVVM frameworks that can expand on this by providing

a base class implementation for you with varying levels of other extra

features. To list a few,

• CommunityToolkit.Mvvm

• MVVMLight

• FreshMVVM

• Prism

Chapter 4 an arChiteCture to Suit You

102

• Refractored.MVVMHelpers

• ReactiveUI

These packages will ultimately provide you with a base class very

similar to the BaseViewModel class that you created earlier. For example,

the Prism library provides the BindableBase class that you could use. It

offers yet another optimization in terms of less code that you need to write

and ultimately maintain.

You can go a step further, but you need to believe…

 Magic

Yes, that’s right: magic is real! These approaches involve auto generating

the required boilerplate code so that we as developers do not have to do it.

There are two main packages that offer this functionality. They provide it

through different mechanisms, but they work equally well.

• Fody: IL generation, https://github.com/Fody/Home

• CommunityToolkit.Mvvm: Source generators (yes, this

gets a second mention), https://learn.microsoft.

com/dotnet/communitytoolkit/mvvm/

In the past, I was skeptical of using such packages. I felt like I was

losing control of parts that I needed to hold on to. Now I can appreciate

that I was naïve, and this is impressive.

Let’s look at how these packages can help to further reduce the

code. This example uses CommunityToolkit.Mvvm, which provides the

ObservableObject base class and a wonderful way of adding attributes

([ObservableProperty]) to the fields you wish to trigger PropertyChanged

events when their value changes. This will then generate a property with

the same name as the field but with a capitalized first character, so time

becomes Time.

Chapter 4 an arChiteCture to Suit You

https://github.com/Fody/Home
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/

103

public partial class ClockWidgetViewModel : ObservableObject

{

 [ObservableProperty]

 private DateTime time;

 public ClockWigetViewModel()

 {

 SetTime(DateTime.Now);

 }

 public void SetTime(DateTime dateTime)

 {

 Time = dateTime;

 scheduler.ScheduleAction(

 TimeSpan.FromSeconds(1),

 () => SetTime(DateTime.Now));

 }

}

That’s 17 lines down to 2 from the original example! The part that I

really like is that it reduces all the noise of the boilerplate code so there is a

bigger emphasis on the code that we need to write as developers.

You may have noticed that you are still referring to the Time property

in the code but you haven’t supplied the definition for this property. This

is where the magic comes in! If you right-click the Time property and select

Go to Definition… it will open the following source code so you can view

what the toolkit has created for you:

// <auto-generated/>

#pragma warning disable

#nullable enable

namespace WidgetBoard.ViewModels

Chapter 4 an arChiteCture to Suit You

104

{

 partial class ClockWidgetViewModel

 {

 /// <inheritdoc cref="time"/>

 [global::System.CodeDom.Compiler.

GeneratedCode("CommunityToolkit.Mvvm.SourceGenerators.

ObservablePropertyGenerator", "8.0.0.0")]

 [global::System.Diagnostics.CodeAnalysis.

ExcludeFromCodeCoverage]

 public global::System.DateTime Time

 {

 get => time;

 set

 {

 if (!global::System.Collections.Generic.

EqualityComparer<global::System.DateTime>.

Default.Equals(time, value))

 {

 OnTimeChanging(value);

 OnPropertyChanging(global::CommunityToo

lkit.Mvvm.ComponentModel.__Internals.__

KnownINotifyPropertyChangingArgs.Time);

 time = value;

 OnTimeChanged(value);

 OnPropertyChanged(global::CommunityTool

kit.Mvvm.ComponentModel.__Internals.__

KnownINotifyPropertyChangedArgs.Time);

 }

 }

 }

Chapter 4 an arChiteCture to Suit You

105

 /// <summary>Executes the logic for when <see

cref="Time"/> is changing.</summary>

 [global::System.CodeDom.Compiler.

GeneratedCode("CommunityToolkit.Mvvm.SourceGenerators.

ObservablePropertyGenerator", "8.0.0.0")]

 partial void OnTimeChanging(global::System.

DateTime value);

 /// <summary>Executes the logic for when <see

cref="Time"/> just changed.</summary>

 [global::System.CodeDom.Compiler.

GeneratedCode("CommunityToolkit.Mvvm.SourceGenerators.

ObservablePropertyGenerator", "8.0.0.0")]

 partial void OnTimeChanged(global::System.

DateTime value);

 }

}

You can see that the generated source code looks a little noisy, but it

does in fact generate the property you need. View the section highlighted

in bold above.

I have only really scratched the surface regarding the functionality

that the CommunityToolkit.Mvvm offers. I strongly urge you to refer

to the documentation at https://learn.microsoft.com/dotnet/

communitytoolkit/mvvm/ to learn how it can further aid your application

development.

 Summary
I hope I have made it clear that there is no single right way to do things or

build applications. You should pick and choose what approaches will best

suit your environment. With this point in mind, the goal of this chapter was

to give you a good overview of several different approaches to architecting

Chapter 4 an arChiteCture to Suit You

https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/

106

your application. There are always a lot of opinions floating around to

indicate which architectures people prefer but I strongly urge you to

evaluate which will help you to achieve your goals best.

In this chapter, you have

• Learned about the different possibilities you have to

architect your applications

• Decided on what architecture to use

• Walked through a concrete example by creating the

ClockWidget

• Learned how to further optimize your implementation

using NuGet packages

In the next chapter, you will

• Create and apply an icon in your application

• Add some placeholder pages and view models

• Fill your first page with some UI and set up bindings to

the view model

• Explore data binding and its many uses

• Gain an understanding of XAML

• Learn about the possible layouts you can use to group

other controls

• Gain an understanding of Shell and apply this to

building your application’s structure

• Apply the Shell navigation to allow you to navigate

• Build your flyout menu

Chapter 4 an arChiteCture to Suit You

107

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch04.

Chapter 4 an arChiteCture to Suit You

https://github.com/Apress/Introducing-MAUI/tree/main/ch04
https://github.com/Apress/Introducing-MAUI/tree/main/ch04

111

CHAPTER 5

User Interface
Essentials
In this chapter, you are going to investigate the fundamental parts of

building a .NET MAUI application. You are going to apply an icon and

splash screen, add in some pages and their associated view models, and

configure some bindings between your page and the view model. You will

also gain an understanding of what XAML is and what it has to offer as you

build the pages and the Shell of your application. You will also learn how

Shell allows you to navigate between pages in your application.

 Prerequisites
You need to do some setup before you can jump into using Shell. If Shell is

still feeling like an unknown concept, fear not. I will be covering it a little

bit later in this chapter under the “Shell” section.

Let’s go ahead and add the following folders to your project.

 Models
This will house all of your Model classes. If you recall from Chapter 4, these

are where some of your business logic is located. In your Models folder, you

need to create three classes.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_5

https://doi.org/10.1007/978-1-4842-9234-1_4
https://doi.org/10.1007/978-1-4842-9234-1_5#DOI

112

 BaseLayout.cs

This will serve as a base class for the layout options you provide. During

this book you will only be building fixed layout boards, but I wanted to

lay some groundwork so if you are feeling adventurous you can go off

and build alternative layout options without having to restructure the

application. In fact, I would love to hear where you take it!

namespace WidgetBoard.Models;

public abstract class BaseLayout

{

}

 FixedLayout.cs

This will represent the fixed layout, as I mentioned in the previous section.

Your fixed layout will offer the user of the app the ability to choose a

number of rows and columns and then position their widgets in them.

namespace WidgetBoard.Models;

public class FixedLayout : BaseLayout

{

 public int NumberOfColumns { get; init; }

 public int NumberOfRows { get; init; }

}

 Board.cs

Your final model represents the overall board.

namespace WidgetBoard.Models;

public class Board

Chapter 5 User InterfaCe essentIals

113

{

 public string Name { get; init; }

 public BaseLayout Layout { get; init; }

}

 Pages
This will house the pages in your application. I am distinguishing between

a page and a view because they do behave differently in .NET MAUI. You

can think of a page as a screen that you are seeing whereas a view is a

smaller component. A page can contain multiple views.

Let’s go ahead and create the following files under the Pages folder.

The following steps show how to add the new pages.

• Right-click the Pages folder.

• Select Add ➤ New Item.

• Select the .NET MAUI tab.

• Select .NET MAUI ContentPage (XAML).

• Click Add.

 BoardDetailsPage

This is the page that lets you both create and edit your boards. For now,

you will not touch the contents of this file. Note that you should see

BoardDetailsPage.xaml and BoardDetailsPage.xaml.cs files created.

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<BoardDetailsPage>();

Chapter 5 User InterfaCe essentIals

114

 FixedBoardPage

This is the page that will render the boards you create in the previous page.

For now, you will not touch the contents of this file. Note that you should

see FixedBoardPage.xaml and FixedBoardPage.xaml.cs files created.

You will also need to jump over to the MauiProgram.cs file and register

this page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<FixedBoardPage>();

 ViewModels
This houses your ViewModels that are the backing for both your Pages and

Views. You created this folder in the previous chapter, but you need to add a

number of classes. The following steps show how to add the new pages.

• Right-click the ViewModels folder.

• Select Add ➤ New Class.

• Click Add.

 AppShellViewModel

This serves as the view model for the AppShell file that is created for you

by the tooling.

namespace WidgetBoard.ViewModels;

public class AppShellViewModel : BaseViewModel

{

}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<AppShellViewModel>();

Chapter 5 User InterfaCe essentIals

115

 BoardDetailsPageViewModel

This serves as the view model for the BoardDetailsPage file you created.

namespace WidgetBoard.ViewModels;

public class BoardDetailsPageViewModel : BaseViewModel

{

}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<BoardDetailsPageViewModel>();

 FixedBoardPageViewModel

This serves as the view model for the FixedBoardPage file you created.

namespace WidgetBoard.ViewModels;

public class FixedBoardPageViewModel : BaseViewModel

{

}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<FixedBoardPageViewModel>();

You should have noticed a common pattern with the creation of these
files and the need to add them to the MauiProgram.cs file. this is
to allow you to fully utilize the dependency injection provided by the
framework, which you learned about in Chapter 3.

Chapter 5 User InterfaCe essentIals

https://doi.org/10.1007/978-1-4842-9234-1_3

116

 App Icons
Every application needs an icon, and for many people this will be how they

obtain their first impression. Thankfully these days device screens allow

for bigger icon sizes and therefore more detail to be included in them.

As with general image resources, each platform requires different sizes

and many more combinations to be provided. For example, iOS expects

the following:

• Five different sizes of the app icon

• Three different sizes for the Spotlight feature

• Three different sizes for Notifications

• Three different sizes for Settings

That’s up to 14 different image sizes required just for your application

icon on iOS alone. See https://developer.apple.com/design/human-

interface-guidelines/ios/icons-and-images/app-icon/.

.NET MAUI manages the process of generating all the required images

for you. All you need to do is provide an SVG image file. Since SVGs are

vector-based, they can scale to each required size.

 Adding Your Own Icon
Figure 5-1 shows the icon that you will be using for your application. You

can grab a copy of the files that you will be using from https://github.

com/bijington/introducing-dotnet-maui/tree/main/chapter05 and

place them in the Resources/AppIcon folder. You should notice that they

replace two existing files.

Chapter 5 User InterfaCe essentIals

https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/
https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/
https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05
https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05

117

Figure 5-1. Your application icon

If you look in the contents of your project file, you will see the

following entry:

<MauiIcon Include="Resources\AppIcon\appicon.svg" />

This tells the tooling to use the file appicon.svg and convert it into all

the required sizes for each platform when building. Note you only want

one MauiIcon in your project file. If you have multiple, the first one will

be used.

You do not need to replace the above entry as the file you should

have downloaded should have the name appicon.svg. If the file name is

different, either rename it or update the name in the project file.

 Platform Differences
It is worth noting that some platforms apply different rules to app icons

and also can provide rather different outputs.

Chapter 5 User InterfaCe essentIals

118

 Android

App icons on Android can take many different shapes due to the different

device manufacturers and their own flavor of the Android operating

system. To cater for this, Google introduced the adaptive icon. This allows

a developer to define two layers in their icon:

• The background: This is typically a single color or

consistent pattern.

• The foreground: This includes the main detail.

.NET MAUI allows you to support the adaptive icon using the

IncludeFile and the ForegroundFile properties on the MauiIcon

element. You can see the IncludeFile is already defined in your project.

This represents the background. You can split your application icon into

two parts and then provide the detail to the ForegroundFile. Note that this

can be applied to all platforms and is my recommended way to ship an

application icon.

 iOS and macOS

Apple does not allow for any transparency in an app icon. You can either

make sure that you supply an image with no transparent pixels or you can

use the Color property on the MauiIcon element, which will fill in any

transparent pixels with that defined color.

 Splash Screen
A splash screen is the first thing a user sees when they start your

application. It gives you as a developer a way of showing the user

something while the application is launching. Once everything has

finished loading, the splash screen will be hidden and your main page will

be shown.

Chapter 5 User InterfaCe essentIals

119

In a similar manner to how the app icon is managed, the splash screen

also has an entry in the project file and can generate a screen based on an

SVG file. In fact, you will be using the same image to save effort.

<MauiSplashScreen Include="Resources\Splash\splash.svg"

Color="#512BD4" BaseSize="128,128" />

Note that splash screens built in this manner must be static. You can’t

have any animations running to show progress.

The Color property enables you to define a background color for the

splash screen.

 XAML
As a .NET MAUI developer, you will hear XAML be mentioned many times,

XAML stands for eXtensible Application Markup Language. It is an XML-

based language used for defining user interfaces. It originates from WPF

and Silverlight, but the .NET MAUI version has its differences.

There are two different types of XAML files that you will encounter

when building your application:

• A ResourceDictionary: This is a single file that

contains resources that can easily be used throughout

your application. Resources/Styles/Styles.xaml

is a perfect example of this. The Styles.xaml file is a

default set of styles that is provided when you create

a new .NET MAUI application. If you wish to modify

some in-built styling, this is a very good place to do so.

• A View-based file: This contains both a .xaml and

.xaml.cs file. They are paired together using the

partial class keyword.

Chapter 5 User InterfaCe essentIals

120

When dealing with this second item, you have to make sure that
the InitializeComponent line is called inside the constructor;
otherwise the XaMl will not be interpreted correctly, and you will see
an exception thrown.

It is worth noting that XAML does not provide a rich set of features like

C# does and for this reason there is almost always a xaml.cs file that goes

alongside the XAML file. This C# file provides the ability to use the rich-

feature set of the C# language when XAML does not. For example, handling

a button interaction event would have to be done within the C# code file.

 Dissecting a XAML File
In the prerequisites section of this chapter, you created the

BoardDetailsPage.xaml file. Now you are going to modify it and add some

meaningful content so you can start to see your application take shape.

The code you should see in this file is shown below.

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/

dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WidgetBoard.Pages.BoardDetailsPage"

 Title="BoardDetailsPage">

 <VerticalStackLayout>

 <Label

 Text="Welcome to .NET MAUI!"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 </VerticalStackLayout>

</ContentPage>

Chapter 5 User InterfaCe essentIals

121

If you break this down into small chunks, you can start to understand

not only what makes up the UI of your application but also some of the

fundamentals of how XAML represents it.

The root element is a ContentPage. As mentioned, a typical view in

.NET MAUI is either a ContentPage or ContentView. As the name implies,

it is a page that presents its content, and this will be a single view as its

content.

As mentioned, XAML is an XML-based language and there are the

following key parts to understanding XAML:

 1. Properties are set by attributes on your element, so

<Label Text="Welcome to .NET MAUI!" />

is effectively the same as writing

new Label

{

 Text ="Welcome to .NET MAUI!"

};

 2. XAML represents the visual hierarchy in the file

structure. You can work out that ContentPage has

a child of VerticalStackLayout and it has a child

of Label. This can be especially helpful. A complex

XAML file will result in a complex visual tree and

you want to try your best to avoid this.

 3. The xmlns tag works like a using statement in C#. This

allows you to refer to other functionality that might not

be available out of the box. For example, you can add

the line xmlns:views="clr-namespace:WidgetBoard.

Views" and it is the equivalent of adding using

WidgetBoard.Views; in a C# file. This allows you to

refer to the views in your codebase.

Chapter 5 User InterfaCe essentIals

122

The content of your ContentPage in your XAML is a

VerticalStackLayout. I will cover layouts a little bit later in this chapter

but as a very brief overview they allow you to have multiple child views as

content and therefore open up the possibilities of creating your UIs. It is

worth noting that a ContentPage can only have a single child, which makes

layouts really important controls for use when building user interfaces.

Now that you have covered some of the key concepts around XAML,

let’s go ahead and start building your application’s first page.

 Building Your First XAML Page
I always like to work with a clear definition of what needs to be achieved so

let’s define what your page needs to do. It needs to do the following:

• Allow the user to create a new board.

• Fit on a variety of screen sizes.

• Allow the user to provide a name for the board.

• Allow the user to choose the layout type.

• Apply any valid properties for the specific layout

type chosen.

Now that you know what needs to be achieved, let’s go ahead and do

it. You need to delete the existing contents of the page and replace them

with a Border. A Border is similar to a ContentView in that it can only have

a single child, but it offers you some extra properties that allow you to

provide a nice looking UI. In particular, you care about the StrokeShape

and Stroke properties. You may notice that you are not actually setting

these properties in the XAML and you would be correct! There are two

main reasons for this:

Chapter 5 User InterfaCe essentIals

123

• You have suitable defaults defined in the Resources/

Styles/Styles.xaml file that was created for you. Note

that if you want to override these, it’s perfectly fine. I

will be covering this a little bit later in this chapter in

the “Styling” section.

• It is considered good practice to only define the

properties that you need to supply, which is basically

anything that changes from the defaults. While the

XAML compiler does a decent job of generating a

UI that is defined at compile time, some bits are still

potentially interpreted at runtime and this has a

performance impact.

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 xmlns="http://schemas.microsoft.com/

dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/

winfx/2009/xaml"

 x:Class="WidgetBoard.Pages.BoardDetailsPage">

 <Border

 MinimumWidthRequest="300"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Padding="0">

 </Border>

</ContentPage>

The most important part of the properties that you are setting are the

HorizontalOptions and VerticalOptions. They allow you to define where

in the parent this view will be displayed. By default, a view will Fill its

Chapter 5 User InterfaCe essentIals

124

parents content, but you are going to make it float in the Center. The main

reason is so it will stay there regardless of the screen size it is running on.

Of course, there are more in-depth ways of handling different screen sizes

and you will explore them in the coming chapters.

While you have much more content to add to this XAML, file you

are going to do so in the context of the following topics. Your next step is

to add multiple child views. For this, you are going to need to choose a

suitable Layout.

 Layouts
.NET MAUI provides you with a set of prebuilt layout classes that allow you

to group and arrange views in your application. The aim of this section is to

explore each layout control and how it might be used for your application.

I strongly recommend playing around with each of the layouts to see what

will fit best for each individual use case and always remember to keep the

visual tree as simple as possible.

 AbsoluteLayout
As the name suggests, the AbsoluteLayout allows the positioning of its

children with absolute values. The x, y, width, and height of a child is

controlled through the LayoutBounds attached property. This means you

use as follows:

<AbsoluteLayout>

 <Label

 AbsoluteLayout.LayoutBounds="0,0,600,200"/>

</AbsoluteLayout>

Figure 5-2 shows how a control is positioned inside an

AbsoluteLayout.

Chapter 5 User InterfaCe essentIals

125

Figure 5-2. Absolute layout overview

There is also the option to define layout bounds that are

proportional to the AbsoluteLayout itself. You can control this with the

AbsoluteLayout.LayoutFlags attached property.

<AbsoluteLayout>

 <Label

 AbsoluteLayout.LayoutBounds="0,0,0.5,0.2"

 AbsoluteLayout.LayoutFlags="All"/>

</AbsoluteLayout>

This will result in the Label being positioned at 0,0 but the width will

be 50% of the AbsoluteLayout and the height will be 20%,. This provides

a lot of power when defining a user interface that can grow as the size of a

device also increases.

The LayoutFlags option provides you with a lot of power. You can

choose which part of the LayoutBounds are applied absolutely and which

are applied proportionally. Here are the possible values for LayoutFlags

and what they impact:

Chapter 5 User InterfaCe essentIals

126

Value Description

None all values are absolute.

XProportional the X property is proportional to the

AbsoluteLayout dimensions.

YProportional the Y property is proportional to the

AbsoluteLayout dimensions.

WidthProportional the Width property is proportional to the

AbsoluteLayout dimensions.

HeightProportional the Height property is proportional to the

AbsoluteLayout dimensions.

PositionProportional the X and Y properties are proportional to the

AbsoluteLayout dimensions.

SizeProportional the Width and Height properties are proportional

to the AbsoluteLayout dimensions.

All all properties are proportional to the

AbsoluteLayout dimensions.

The AbsoluteLayout can be an incredibly powerful layout when used

in the right scenario. For your scenario, it offers more complexities than I

really think you need to handle.

 FlexLayout
The FlexLayout comes with a large number of properties to configure

how its children are positioned. If you want your controls to wrap, this is

the control for you! A good example for using the FlexLayout is a media

gallery.

Figure 5-3 shows how controls can be positioned inside a FlexLayout.

Chapter 5 User InterfaCe essentIals

127

Figure 5-3. FlexLayout overview

The above layout can be achieved with the following code example:

<FlexLayout

 AlignItems="Start"

 Wrap="Wrap"

 Margin="30"

 JustifyContent="SpaceEvenly">

 <Border

 BackgroundColor="LightGray"

 WidthRequest="100"

 HeightRequest="100" />

 <Border

 BackgroundColor="LightGray"

 WidthRequest="100"

 HeightRequest="100" />

 <Border

 BackgroundColor="LightGray"

 WidthRequest="100"

 HeightRequest="100" />

Chapter 5 User InterfaCe essentIals

128

 <Border

 BackgroundColor="LightGray"

 WidthRequest="100"

 HeightRequest="100" />

</FlexLayout>

Each of the properties you are using allows you to customize where

each item is positioned during the rendering process and how they will

move around in the application if it is resized. For further information

on the possible ways of configuring the FlexLayout, read the Microsoft

documentation at https://learn.microsoft.com/dotnet/maui/user-

interface/layouts/flexlayout.

Your BoardDetailsPage only needs controls positioned vertically so a

FlexLayout feels like an overly complicated layout for this purpose.

 Grid
I love Grids. They are usually my go-to layout option, mainly because

I have become used to thinking about how they lay out controls and

because they tend to allow you to keep your visual tree depth shallow.

The layout essentially works by allowing you to define a set of rows and

columns and then define which control should be displayed in which row/

column combination.

Figure 5-4 shows how controls can be positioned inside a Grid.

Chapter 5 User InterfaCe essentIals

https://learn.microsoft.com/dotnet/maui/user-interface/layouts/flexlayout
https://learn.microsoft.com/dotnet/maui/user-interface/layouts/flexlayout

129

Figure 5-4. Grid layout overview

Controls inside a Grid are allowed to overlay each other, which can

provide an extra tool in a developers toolbelt when needing to show/

hide controls. Controls in the Grid are arranged by first defining the

ColumnDefinitions and RowDefinitions. Let’s take a look at how to create

the above layout with a Grid.

<Grid

 ColumnDefinitions ="*,2*,250,Auto"

 ColumnSpacing="20"

 Margin="30"

 RowDefinitions="*,*"

 RowSpacing="20">

 <Border

 BackgroundColor="LightGray"

 Grid.Column="0"

 Grid.Row="0" />

 <Border

Chapter 5 User InterfaCe essentIals

130

 BackgroundColor="LightGray"

 Grid.Column="1"

 Grid.Row="1" />

 <Border

 BackgroundColor="LightGray"

 Grid.Column="2"

 Grid.Row="0" />

 <Border

 BackgroundColor="LightGray"

 Grid.Column="3"

 Grid.Row="1"

 WidthRequest="30"

 HeightRequest="30" />

</Grid>

You can see that you have created columns using a variety of different

options:

• 250: This is a fixed width of 250

• Auto: This means that the column will grow in width

based on its contents. It is recommended to use this

option sparingly as it will result in the Grid control

having to measure its children and force a rerender of

itself and the other children

• *: This is proportional and will result in the leftover

space being allocated out. In this example, two

columns use the * notation. This results in those two

columns being allocated 1/3 and 2/3 of the remaining

width respectively. This is because * is actually

considered 1*.

Chapter 5 User InterfaCe essentIals

131

In your scenario, you are going to need multiple groups of controls.

For this reason, I believe grids will just make it slightly more complicated

for you.

 HorizontalStackLayout
The name really gives this away. It positions its children horizontally.

The HorizontalStackLayout is not responsible for providing sizing

information to its children, so the children are responsible for calculating

their own size.

Figure 5-5 shows how controls can be positioned inside a

HorizontalStackLayout.

Figure 5-5. HorizontalStackLayout overview

The above layout can be achieved with the following code example:

<HorizontalStackLayout

 Spacing="20"

 Margin="30">

 <Border

 BackgroundColor="LightGray"

Chapter 5 User InterfaCe essentIals

132

 WidthRequest="100" />

 <Border

 BackgroundColor="LightGray"

 WidthRequest="100" />

 <Border

 BackgroundColor="LightGray"

 WidthRequest="100" />

</HorizontalStackLayout>

You wish to layout your controls vertically so you can guess where this

is going, although you will actually use one to group some of your inner

controls.

 VerticalStackLayout
The name really gives this away. It positions its children vertically.

The VerticalStackLayout follows the same sizing rules as the

HorizontalStackLayout, so the children are responsible for calculating

their own size.

And there you have it: something that arranges its children vertically,

which is exactly what you need!

Figure 5-6 shows how controls can be positioned inside a

VerticalStackLayout.

Chapter 5 User InterfaCe essentIals

133

Figure 5-6. VerticalStackLayout overview

The above layout can be achieved with the following code example:

<VerticalStackLayout

 Spacing="20"

 Margin="30">

 <Border

 BackgroundColor="LightGray"

 HeightRequest="100" />

 <Border

 BackgroundColor="LightGray"

 HeightRequest="100" />

 <Border

 BackgroundColor="LightGray"

 HeightRequest="100" />

</VerticalStackLayout>

Chapter 5 User InterfaCe essentIals

134

Let’s go ahead and create it. Inside the Border you added earlier, add

the following to your BoardDetailsPage.xaml file.

<VerticalStackLayout>

 <VerticalStackLayout

 Padding="20">

 <Label

 Text="Name"

 FontAttributes="Bold" />

 <Entry />

 <Label

 Text="Layout"

 FontAttributes="Bold" />

 <HorizontalStackLayout>

 <RadioButton

 x:Name="FixedRadioButton"

 Content="Fixed" />

 <!--<RadioButton

 Content="Freeform" />-->

 </HorizontalStackLayout>

 <VerticalStackLayout>

 <Label

 Text="Number of Columns"

 FontAttributes="Bold" />

 <Entry Keyboard="Numeric" />

 <Label

 Text="Number of Rows"

Chapter 5 User InterfaCe essentIals

135

 FontAttributes="Bold" />

 <Entry Keyboard="Numeric" />

 </VerticalStackLayout>

 </VerticalStackLayout>

 <Button

 Text="Save"

 HorizontalOptions="End" />

</VerticalStackLayout>

Yes, I know! I spoke about keeping the visual tree simple and here

you are nesting quite a few layouts. I find there is typically some level of

pragmatism that needs to be applied. This page is still relatively simple in

terms of what is being rendered on screen so I will argue that it is fine. If

you were to repeat this layout multiple times, you would need to be a little

more strict and find the best way to lay it all out. Quite often you will find

that there can be a balancing act between defining something to give the

best performance vs. making it easier to maintain as a developer.

So you have now built your UI but you will notice that it doesn’t do

anything other than let the user type in the entry fields. You need to bind

the view up to your view model.

This is not strictly part of layouts but it is worth noting how you apply

the Keyboard property to your Entry controls. This allows you to inform

the operating system what soft keyboard to display and therefore limit

the type of data the user can enter. Note that this only applies to mobile

applications.

 Data Binding
UI-based applications, as their name suggests, involve presenting

an interface to the users. This UI is rarely ever just a static view and

therefore needs to be updated, drive updates into the application, or

Chapter 5 User InterfaCe essentIals

136

both. This process is typically an event-driven one as either side of this

synchronization needs to be notified when the other side changes. .NET

MAUI wraps this process up for you through a concept called data binding.

Data binding provides the ability to link the properties from two objects so

that changes in one property are automatically updated in the second.

 Binding
The most common type of bindings that you create are between a single

value at source and a single value at the target. The target is the owner

of the bindable property. I use the terms target and source because you

do not have to solely bind between a view and a view model. There are

scenarios where you may wish to bind one control to another.

Before you jump in to creating your first binding, you need to first

create something to bind to. Open your BoardDetailsPageViewModel

class, which is the view model for your view, and add the following:

private string boardName;

public string BoardName

{

 get => boardName;

 set => SetProperty(ref boardName, value);

}

It is worth noting that a Binding must be created against a property

(e.g., the BoardName definition from the code above). Binding to a field

(e.g., boardName) will not work.

 BindingContext

And finally the crucial step is to set the BindingContext of your page to this

view model. In Chapter 4, you did this by setting it in the XAML directly,

Chapter 5 User InterfaCe essentIals

https://doi.org/10.1007/978-1-4842-9234-1_4

137

but because you have registered your view model with the DI layer,

you can make the most of that and have it create the view model and

whatever dependencies it has for you. Open your BoardDetailsPage.

xaml.cs file and change the constructor to

public BoardDetailsPage(BoardDetailsPageViewModel

boardDetailsPageViewModel)

{

 InitializeComponent();

 BindingContext = boardDetailsPageViewModel;

}

The above code allows you to rely on the constructor injection

functionality that .NET MAUI and Shell provides.

The act of setting the BindingContext property means that any

bindings created in the page/view and any child views will be by default

against this BindingContext.

Now if you jump into the BoardDetailsPage.xaml file, you can apply

the binding to your new BoardName property in your view model. You want

to modify the first Entry that you added to look like

<Entry

 Text="{Binding BoardName}" />

This is a relatively small change and will look like the bindings you

created back in Chapter 4 when exploring the MVVM pattern. There isn’t

much detail to this but there is a fair amount of implicit behavior that I feel

I must highlight. Let’s cover what it tells you first and then what it doesn’t.

You are creating a binding between the BoardName property (which

exists on your BoardDetailsPageViewModel) and the Text property on the

Entry control.

Now on to what this code doesn’t tell you.

Chapter 5 User InterfaCe essentIals

https://doi.org/10.1007/978-1-4842-9234-1_4

138

 Path

The binding could also be written as

Text="{Binding Path=BoardName}"

The Path element of the binding is implied if you do not explicitly

provide it but only as the first part of the binding definition. Why am

I telling you this? There are times when you will need to supply the

Path= part.

 Mode

I mentioned that bindings keep two properties in sync with each other.

When you create a binding, you can define which direction the updates

flow. In your example, you have not provided one, which then relies on

the default Mode for the bindable property that you are binding to. In this

case, it is the Text property of the Entry, which has a default binding

mode of TwoWay. I strongly urge you to make sure you are aware of both

these defaults and your expectation when creating a binding. Choosing

the correct Mode can also boost performance. For example, the OneTime

binding mode means that no updates need to be monitored for. In your

scenario, you don’t currently need to allow the view model to update the

Entry Text property; however, as you progress, this page will also allow

for the editing of a board so you will leave it alone. If you didn’t need

to edit, you could in theory modify your binding to be Text="{Binding

Path=BoardName, Mode=OneWay}".

There are several variations for binding modes:

• Default: As the name suggests, it uses the default,

which is defined in the target property.

• TwoWay: It allows for updates to flow both ways

between source and target. A typical example is

binding to the Text property of an Entry where you

Chapter 5 User InterfaCe essentIals

139

want to both receive input from the user and update

the UI, such as your scenario that you just added with

the Entry and its Text property as Text="{Binding

Path=BoardName}".

• OneWay: It allows for updates to flow from the source

to the target. An example of this is your ClockWidget

where you only want updates to flow from your source

to your target.

• OneWayToSource: It allows for updates to flow from

the target to the source. An example of this is binding

the SelectedItem property on the ListView to a value

in your view model.

• OneTime: It only updates the target once when the

binding context changes.

 Source

As mentioned, a binding does not have to be created against something

defined in your code (e.g., a property on a view model). It can, in fact, be

created against another control. If you look back at the XAML you created

for this page, you will notice that you gave one of the RadioButtons a name

of FixedRadioButton. This was actually setting you up for this moment:

you can now bind your innermost VerticalStackLayouts visibility to the

value of this RadioButton.

If you just wanted to allow the user to optionally turn a setting on
in your UI, you could use a Switch control instead. I opted for the
RadioButton as this will play very well with your extra assignment
at the end of this chapter.

Chapter 5 User InterfaCe essentIals

140

<VerticalStackLayout

 IsVisible="{Binding IsChecked, Source={x:Reference

FixedRadioButton}}">

Bindings can start to look complicated quickly and this is a good
example, but if you break it down, it can become much easier to follow.
You are binding the IsVisible property on your VerticalStack
Layout to the IsChecked property from the Source, which is a
Reference to the radioButton called FixedRadioButton.

 Applying the Remaining Bindings
Let’s apply the remaining bindings to your page and view model so that all

fields now update your view model.

In your BoardDetailsPageViewModel class, you need to add the

backing fields and properties to bind to

private bool isFixed = true;

private int numberOfColumns = 3;

private int numberOfRows = 2;

public bool IsFixed

{

 get => isFixed;

 set => SetProperty(ref isFixed, value);

}

public int NumberOfColumns

{

 get => numberOfColumns;

 set => SetProperty(ref numberOfColumns, value);

}

Chapter 5 User InterfaCe essentIals

141

public int NumberOfRows

{

 get => numberOfRows;

 set => SetProperty(ref numberOfRows, value);

}

Then in your BoardDetailsPage.xaml file you need to bind to those

new properties with the bold sections below highlighting your additions.

Change the first RadioButton to be

<RadioButton

 Content="Fixed"

 x:Name="FixedRadioButton"

 IsChecked="{Binding IsFixed}" />

Then change the Entry that follows after the RadioButton to be

<Entry

 Text="{Binding NumberOfColumns}"

 Keyboard="Numeric" />

And finally change the Entry that follows that to be

<Entry

 Text="{Binding NumberOfRows}"

 Keyboard="Numeric" />

 MultiBinding
There can be occasions when you wish to bind multiple source properties

to a single target property in a view. To take a minor detour, let’s rework

your ClockWidgetViewModel to have two properties: one with the date and

one with the time. You should end up with the following code (the bold

highlights the new parts):

Chapter 5 User InterfaCe essentIals

142

namespace WidgetBoard.ViewModels;

public class ClockWidgetViewModel : ViewModelBase

{

 private readonly Scheduler scheduler = new();

 private DateOnly date;

 private TimeOnly time;

 public ClockWidgetViewModel()

 {

 SetTime(DateTime.Now);

 }

 public DateOnly Date

 {

 get => date;

 set => SetProperty(ref date, value);

 }

 public TimeOnly Time

 {

 get => time;

 set => SetProperty(ref time, value);

 }

 private void SetTime(DateTime dateTime)

 {

 Date = DateOnly.FromDateTime(dateTime);

 Time = TimeOnly.FromDateTime(dateTime);

 scheduler.ScheduleAction(

 TimeSpan.FromSeconds(1),

 () =>

 {

Chapter 5 User InterfaCe essentIals

143

 SetTime(DateTime.Now);

 });

 }

}

The change in the view model actually opens up a number of

possibilities for you. You could

• Add separate Labels to render the information in

different locations.

• Make use of a MultiBinding and render both pieces of

information in a single Label.

It is the latter you will be using here. Open your ClockWidgetView.

xaml file and make the changes you see in bold.

<?xml version="1.0" encoding="utf-8" ?>

<Label

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"

 x:Class="WidgetBoard.Views.ClockWidgetView"

 FontSize="80"

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <Label.BindingContext>

 <viewmodels:ClockWidgetViewModel />

 </Label.BindingContext>

 <Label.Text>

 <MultiBinding StringFormat="{}{0} {1}">

 <Binding Path="Date" />

 <Binding Path="Time" />

Chapter 5 User InterfaCe essentIals

144

 </MultiBinding>

 </Label.Text>

</Label>

To list what you have done here, you have

• Removed the Text="{Binding Time}" line

• Moved the above functionality into the

MultiBinding section

You should notice a slightly different syntax to the single binding

approach. In fact, you can write a single binding in a similar way, such as

<Label.Text>

 <Binding Path="Time" />

</Label.Text>

However, I am sure you can appreciate that the original

Text="{Binding Time}" is a lot more concise and easier to read. Each of

the properties that you covered under the “Binding” section apply to each

of the Binding elements under MultiBinding.

You must supply either a StringFormat or a Converter in a
MultiBinding or an exception will be thrown. the reason for this
is to allow for the multiple values to be mapped down to the single
value on the target.

 Command
Very often you will need your applications to respond to user interaction.

This can be by tapping or clicking on a button or selecting something in

a list. This interaction is recorded in your view, but you usually require

Chapter 5 User InterfaCe essentIals

145

that the logic to handle this interaction to be performed in the view

model. This comes in the form of a Command and an optional associated

CommandParameter set of properties. The Command property itself can be

bound from the view to the view model and allows the view model to not

only handle the interaction but also to determine whether the interaction

can be performed in the first place. You already added a Button to your

BoardDetailsPage.xaml file but you didn’t hook it, so let’s do exactly that!

You just need to modify your button to be (changes in bold)

<Button

 Text="Save"

 HorizontalOptions="End"

 Command="{Binding SaveCommand}" />

Based on the binding content that you have explored, you can say that

this Buttons Command property is now bound to a property on your view

model called SaveCommand. You haven’t actually created this property

yet. If you are thinking it would be great if the tooling could know this

and report it to me, then the next section has got you covered. “Compiled

Bindings” will show you how to inform the tooling of how to report it to

you. First, though, open your BoardDetailsPageViewModel.cs file and add

your command implementation.

Your implementation comes in multiple parts.

 1. You define the property itself:

public Command SaveCommand { get; }

You typically define a command as a read-only property

as you rarely want it to change. You will likely come across

commands being defined with the use of the ICommand

interface rather than the Command class. The reason you are

using the latter is so that you can make use of a specific

method (see part 3) to update some of your view.

Chapter 5 User InterfaCe essentIals

146

 2. You define what action will be performed when the

command is executed (basically when the Button is

tapped/clicked in this scenario).

public BoardDetailsPageViewModel()

{

 SaveCommand = new Command(

 () => Save(),

 () => !string.IsNullOrWhiteSpace(BoardName));

}

private void Save()

{

 var board = new Board

 {

 Name = BoardName,

 Layout = new FixedLayout

 {

 NumberOfColumns = NumberOfColumns,

 NumberOfRows = NumberOfRows

 }

 };

}

The Command class takes two parameters. The first

is the action to perform when the command is

executed and the second, which is optional, is

a way of defining whether the command can be

executed. A good use case for this is if you wish to

make sure that the user has entered all the required

information. In your scenario, you will make sure

that the user has entered a name for the board.

Chapter 5 User InterfaCe essentIals

147

 3. You notify the view when the status of whether the

command can be executed changes. To be clear, you

don’t have to know that the status has changed; you

can simply inform the view that it should requery

the status. This is where the Command class and

its ChangeCanExecute method come in. For this,

you need to tweak your BoardName property to the

following:

public string BoardName

{

 get => boardName;

 set

 {

 SetProperty(ref boardName, value);

 SaveCommand.ChangeCanExecute();

 }

}

This change means that every time the BoardName property changes

(and this will be done via the binding from the view), the Button that is

bound to the SaveCommand will requery to check whether the command

can be executed. If it can, the Button will be enabled and the user can

interact with it; if not, it will be disabled.

 Compiled Bindings
Compiled bindings are a great feature that you should in almost all cases

turn on! They help to speed up your applications because they help the

compiler know what the bindings will be set to and reduce the amount of

reflection that is required. Reflection is notoriously bad for performance

so wherever possible it is highly recommended to avoid using it. Bindings

Chapter 5 User InterfaCe essentIals

148

by default do use an amount of reflection in order to handle the value

changes between source and target. Compiled bindings, as just discussed,

help to reduce this so let’s learn how to turn them on.

Compiled bindings also provide design-time validation. If you set a

binding to a property on your view model that doesn’t exist (imagine you

made a typo, which I do a lot!), without compiled bindings the application

would still build but your binding won’t do anything. With a compiled

binding, the application will fail to build and the tooling will report that the

property you mistyped doesn’t exist.

<ContentPage

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"

 x:Class="WidgetBoard.Pages.BoardDetailsPage"

 x:DataType="viewmodels:BoardDetailsPageViewModel">

Now that you have set up your BoardDetailsPage to allow user entry

and even perform an action when the Save button is interacted with, you

need to structure your application so that you can see this happen.

 Shell
Shell in .NET MAUI enables you to define how your application will be

laid out, not in terms of actual visuals but by defining things like whether

you want your pages viewed in tabs or just a single page at a time. It also

enables you to define a flyout, which is a side menu in your application.

You can choose to have it always visible or toggle it to slide in/out, and this

can also vary based on the type of device you are running on. Typically

a desktop has more visual real estate so you may wish to keep the flyout

always open then.

Chapter 5 User InterfaCe essentIals

149

For your application, you are going to make use of the flyout to allow

you to define multiple boards that you can configure and load. I really

like the idea of having one board for when I work and then swapping to

something else when working on a side project or even for gaming.

To save having to return to this area and change bits, you are going to

jump straight into the more in-depth option and feature-rich outcome.

Don’t worry, though; as you discover each new concept, you will dive

into some detail to cover what it is and why you are using along with then

applying that concept to your application.

 ShellContent
If you take a look at your AppShell.xaml file, you should see very little

inside. Currently it has the following line:

<ShellContent

 Title="Home"

 ContentTemplate="{DataTemplate local:MainPage}"

 Route="MainPage" />

This code sets the main content on the application to be an instance of

the MainPage. In fact, you want to delete this line and replace it with

<ShellContent

 ContentTemplate="{DataTemplate pages:BoardDetailsPage}" />

There isn’t too much difference here but you should explore what

it means.

Your application’s main content will now be an instance of your

recently created BoardDetailsPage. You don’t need the Title or Route

options anymore as you will be controlling them in different ways.

The Title property will be set based on the page that is shown so you

will learn about this a little later on.

Chapter 5 User InterfaCe essentIals

150

The Route property you will control as part of the next section,

“Navigation.”

Finally, you will need to add xmlns:pages="clr-

namespace:WidgetBoard.Pages" to the top of the file.

 Navigation
I am personally a fan of simplifying the code I write so long as it continues

to make it easy to read. With this in mind I would like to suggest you

improve on the registration of your pages and their view models already.

 Registering Pages for Navigation

Therefore I suggest that you create a new method into your MauiProgram.

cs file.

private static IServiceCollection AddPage<TPage, TViewModel>(

 IServiceCollection services,

 string route)

 where TPage : Page

 where TViewModel : BaseViewModel

{

 services

 .AddTransient(typeof(TPage))

 .AddTransient(typeof(TViewModel));

 Routing.RegisterRoute(route, typeof(TPage));

 return services;

}

Notice the line Routing.RegisterRoute(route, typeof(TView));.

This serves as a very important part in this topic of navigation. It means

that when you tell Shell to navigate to a specific route, it will create a new

Chapter 5 User InterfaCe essentIals

151

instance of the TPage type you passed in and navigate to it. Of course,

because you have registered these types with the dependency injection

layer, it means that any dependencies that are defined as parameters to the

constructor will be created and passed in for you.

The above then means that rather than writing

services.AddTransient<BoardDetailsPage>()

services.AddTransient<BoardDetailsPageViewModel>()

Routing.RegisterRoute(route, typeof(TPage));

you can now write

AddPage<BoardDetailsPage, BoardDetailsViewModel>(builder.

Services, "boarddetails");

with the added change that you now define this route. So let’s go and

delete your old registrations and replace with

AddPage<BoardDetailsPage, BoardDetailsPageViewModel>(builder.

Services, "boarddetails");

AddPage<FixedBoardPage, FixedBoardPageViewModel>(builder.

Services, "fixedboard");

I also recommend defining the routes as constant strings somewhere

in your codebase to avoid typos when wanting to navigate to them.

This means you can save one line of code per page and view model

pair that you had registered as well as the code to register the route for

navigation.

Now that you have registered your pages, let’s take a look at how you

can actually perform navigation.

 Performing Navigation

There are multiple ways to specify the route for navigation but they all use

the Shell.Current.GoToAsync method.

Chapter 5 User InterfaCe essentIals

152

So, for example, you could navigate to your FixedBoardPage with the

following:

await Shell.Current.GoToAsync(“fixedboard”);

This will result in a FixedBoardPage being created and pushed onto the

navigation stack. This is precisely the behavior that you need at the end of

your SaveCommand execution in your BoardDetailsPagesViewModel class.

 Navigating Backwards

You can also pop pages off the navigation stack by navigating backward.

This can be achieved by the following:

await Shell.Current.GoToAsync("..");

with the .. component telling Shell that it needs to go backward. In fact,

backwards and forwards navigation can be performed together:

await Shell.Current.GoToAsync("../board");

 Passing Data When Navigating

One key thing that you really need to do as part of creating your board

and navigating to the page that will render the board is to pass the context

across to that page so it knows what to render. There are multiple ways to

both send the data and also to receive it.

Let’s start with sending.

• You can pass primitive data through the query string

itself, for example

await Shell.Current.GoToAsync("fixedboard?board

id=1234");

Chapter 5 User InterfaCe essentIals

153

By providing the boardid, you put the responsibility on

the receiving page (or page view model) to retrieve the

right board by using the specified ID.

• More complex data can be sent as an

IDictionary<string, object> parameter in the

GoToAsync method, such as

await Shell.Current.GoToAsync(

 "fixedboard",

 new Dictionary<string, object>

 {

 { "Board", board}

 });

You can also send a complex object like the above, which means the

originating page (or page view model) is responsible for retrieving or

constructing the board and you send the whole thing to the receiving page.

Then, to receive data, you can implement the IQueryAttributable

interface provided with .NET MAUI. Shell will either call this on

the page you are navigating to, or if the BindingContext (your view

model) implements the interface, it will call it there. Add this to your

FixedBoardPageViewModel class because you are going to need to process

the data. You will be going with the complex object option because you

have already loaded the Board in your AppShellViewModel class.

public void ApplyQueryAttributes(IDictionary<string,

object> query)

{

 var board = query["Board"] as Board;

}

Chapter 5 User InterfaCe essentIals

154

You aren’t going to do anything with this data just yet but it is ready

for when you start to build your board layout view in the next chapter.

For now, you will continue on with the theme of Shell and define your

flyout menu.

You will also need to make your FixedBoardPageViewModel implement

the IQueryAttributable interface. Change the class definition from

public class FixedBoardPageViewModel : BaseViewModel

to the following (changes in bold):

public class FixedBoardPageViewModel : BaseViewModel,

IQueryAttributable

 Flyout
A flyout is a menu for a Shell application that is accessible through an

icon or by swiping from the side of the screen. The flyout can consist of an

optional header, flyout items, optional menu items, and an optional footer.

For your application, you are going to provide a basic header and then

the main content will be a dynamic list of all the boards your user creates.

This means that you are going to have to override the main content but

thankfully Shell makes this an easy task.

The first thing I like to do when working on a new XAML file is to turn

on compiled bindings, which I covered earlier. If you recall, this is by

specifying the x:DataType attribute to tell the compiler the type that your

view will be binding to. Let’s do that now (in bold):

<?xml version="1.0" encoding="UTF-8" ?>

<Shell

 x:Class="WidgetBoard.AppShell"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:DataType="viewmodels:AppShellViewModel">

Chapter 5 User InterfaCe essentIals

155

This helps you as you build the view to see what doesn’t exist in your

view model. Of course, if you prefer to build the view model first then this

also helps.

Finally, you need to add xmlns:viewmodels="clr-

namespace:WidgetBoard.ViewModels" to the top of the file.

 FlyoutHeader

The FlyoutHeader can be given any control or layout and therefore you

can build a really good looking header option. For your application, you

are just going to add a title Label.

Below your ShellContent element you want to add the following:

<Shell.FlyoutHeader>

 <Label

 Text="My boards"

 FontSize="20"

 HorizontalTextAlignment="Center" />

</Shell.FlyoutHeader>

Hopefully the above is self-explanatory but to cover the parts I

haven’t already covered, you have the ability to specify different layout

information in a Label so you can make the text centered. It is usually

recommended that you use the HorizontrolOptions property over the

HorizontalTextAlignment property; however, if you try that here, you will

see that it doesn’t center the Label.

Now let’s add in the main part of your menu.

 FlyoutContent

First, if you want to use a static set of items in your menu, you can simply

add FlyoutItems to the content. This can work well when you have a fixed

set of pages such as Settings, Home, and so on. You will be showing the

Chapter 5 User InterfaCe essentIals

156

boards that the user creates, so you will need something dynamic. For this

you need to supply the FlyoutContent. More importantly, it’s your first

introduction to the CollectionView control.

The CollectionView allows you to define how an item will look and

then have it repeated for each item in a collection that is bound to it.

Additionally, the CollectionView provides the ability to allow the user

to select items in the collection and you can define behavior that will

be performed when that selection happens. Let’s add the following to

your Shell:

<Shell.FlyoutContent>

 <CollectionView

 ItemsSource="{Binding Boards}"

 SelectionMode="Single"

 SelectedItem="{Binding CurrentBoard}">

 <CollectionView.ItemTemplate>

 <DataTemplate x:DataType="models:Board">

 <Label

 Text="{Binding Name}"

 FontSize="20"

 Padding="10,0,0,0" />

 </DataTemplate>

 </CollectionView.ItemTemplate>

 </CollectionView>

</Shell.FlyoutContent>

You also need to add xmlns:models="clr-namespace:WidgetBoard.

Models" to the top of the file.

Your FlyoutContent will display a Label set to the Name of each Board

instance in the collection of Boards in your view model. Additionally, the

CurrentBoard property on your view model will be updated when the user

selects one of the Labels in this collection.

Chapter 5 User InterfaCe essentIals

157

If you have added all of the parts I have discussed, you will likely notice

that the tooling is reporting that you haven’t added any of the properties

that you are binding to over in your view model. Let’s jump over to your

AppShellViewModel.cs file and add the following

 Collection of Boards

public ObservableCollection<Board> Boards { get; } = new

ObservableCollection<Board>();

The ObservableCollection is a special type of collection that

implements INotifyCollectionChanged. This means that anything

bound to it will monitor changes to the collection and update its contents

on screen.

Additionally, for now you will add a fixed entry into this Boards

collection to make it possible to interact with. Later you will be saving to

and loading from a database.

public AppShellViewModel()

{

 Boards.Add(

 new Board

 {

 Name = "My first board",

 Layout = new FixedLayout

 {

 NumberOfColumns = 3,

 NumberOfRows = 2

 }

 });

}

Chapter 5 User InterfaCe essentIals

158

 Selected Board

You bind the SelectedItem property from the CollectionView to your

CurrentBoard property. When your property changes, you can navigate to

the board that was selected.

private Board currentBoard;

public Board CurrentBoard

{

 get => currentBoard;

 set

 {

 if (SetProperty(ref currentBoard, value))

 {

 BoardSelected(value);

 }

 }

}

You may recall that I discussed in Chapter 4 the potential value of

SetProperty returning a Boolean value. You have finally found a use for

it! You only want to handle a board selection change if the CurrentBoard

property really has changed.

 Navigation to the Selected Board

Following on from the “Navigation” section earlier, you will navigate to the

route “fixedboard” which your FixedBoardPage is configured to. You will

also pass in the selected board so that it can be presented on screen.

private async void BoardSelected(Board board)

{

 await Shell.Current.GoToAsync(

Chapter 5 User InterfaCe essentIals

https://doi.org/10.1007/978-1-4842-9234-1_4

159

 "fixedboard",

 new Dictionary<string, object>

 {

 { "Board", board}

 });

}

Before your bindings will work you, need to make some further

changes.

 Setting the BindingContext of Your AppShell

Let’s change the constructor of your AppShell.xaml.cs file to set the

BindingContext.

public AppShell(AppShellViewModel appShellViewModel)

{

 InitializeComponent();

 BindingContext = appShellViewModel;

}

You should recall that you added the AppShellViewModel as a transient

in the MauiProgram.cs file, meaning that you will be provided with a new

instance when your AppShell class is created for you.

 Register AppShell with the MAUI App Builder

Let’s register AppShell in your MauiProgram.cs file.

builder.Services.AddTransient<AppShell>();

 Resolve the AppShell Instead of Creating It

Change the constructor in your App.xaml.cs file to be as follows:

Chapter 5 User InterfaCe essentIals

160

public App(AppShell appShell)

{

 InitializeComponent();

 MainPage = appShell;

}

All of the above changes allow you to use AppShell just like any other

page and not have to create an instance manually.

 Tabs
It is worth noting that Shell offers you more functionality than you really

need in building this application.

Shell allows you to design tab bars into your application. You can have

bottom, top, or both to give flexibility on how you lay out your content. You

have control over the styling and navigation within each of the tabs also.

I won’t be covering tabs but I thoroughly recommend checking out the

documentation provided by Microsoft at https://learn.microsoft.com/

dotnet/maui/fundamentals/shell/tabs.

 Search
Search is another useful feature that comes as part of Shell but again it is

not something that you need in this application. Shell allows you to create

your own SearchHandler, which means you can define how the results

are met with the values entered in the search box that is automatically

provided. You can even define the layout of the search results and the

behavior for when an item in the search results is selected.

I won’t be covering search but I thoroughly recommend checking out

the documentation provided by Microsoft at https://learn.microsoft.

com/dotnet/maui/fundamentals/shell/search.

Chapter 5 User InterfaCe essentIals

https://learn.microsoft.com/dotnet/maui/fundamentals/shell/tabs
https://learn.microsoft.com/dotnet/maui/fundamentals/shell/tabs
https://learn.microsoft.com/dotnet/maui/fundamentals/shell/search
https://learn.microsoft.com/dotnet/maui/fundamentals/shell/search

161

 Taking Your Application for a Spin
If you run the application, you will see that you are first presented with the

screen to create a new board. You can enter the details and press Save.

Figure 5-7 shows how your application looks when it is first loaded.

Figure 5-7. The application home page

Or you can slide out the menu from the left-hand side. Figure 5-8

shows the flyout menu in your application.

Chapter 5 User InterfaCe essentIals

162

Figure 5-8. The application flyout menu

By either selecting the board or pressing Save you will be navigated to

your FixedBoardPage. Figure 5-9 shows your FixedBoardPage displaying

with the default content. This is because you haven’t wired up the board

object that you are receiving but it proves that your navigation and Shell

setup is working.

Chapter 5 User InterfaCe essentIals

163

Figure 5-9. The fixed board page after navigating

 Summary
In this chapter, you

• Created and applied an icon for your application

• Added some placeholder pages and view models

• Filled your first page with some UI and setup bindings

to the view model

• Covered data binding and its many uses

• Gained an understanding of XAML

• Learned about the possible layouts you can use to

group other controls

• Gained an understanding of Shell and applied this to

building your applications structure

Chapter 5 User InterfaCe essentIals

164

• Applied the Shell navigation to allow you to navigate to

your next page and the next chapter

• Built your flyout menu using all the learnings in

this chapter

In the next chapter, you will

• Create your own layout.

• Make use of a variety of options when adding bindable

properties.

• Provide command support from your layout.

• Use your layout in your application.

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch05.

 Extra Assignment
As an extra assignment, I would like you to consider how you might add a

second layout type given that you

• Have a single layout type on your BoardDetailsPage

• Have options displayed when this type is selected

• Pass a FixedLayout instance over as data to your

FixedBoardPage

I would love to see what concepts you come up with.

Chapter 5 User InterfaCe essentIals

https://github.com/Apress/Introducing-MAUI/tree/main/ch05
https://github.com/Apress/Introducing-MAUI/tree/main/ch05

165

CHAPTER 6

Creating Our Own
Layout
In the previous chapter, you learned a lot of the fundamentals of building

and binding your user interfaces. In this chapter, you will create your own

layout, make use of a variety of options when adding bindable properties,

provide command support from your layout, and make use of your layout

in your application. This will serve as the basis for adding much more

functionality as we cover a variety of different topics in future chapters.

Let’s recap what you achieved in the last chapter: you provided the

ability for a user to create a board and supply a number of columns and

rows. You now need to lay out your board with the number of columns

and rows the user has configured and populate widgets onto the board.

Figure 6-1 is a mock-up of what you will achieve by the end of this chapter.

Figure 6-1. Mockup of a board

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_6

https://doi.org/10.1007/978-1-4842-9234-1_6#DOI

166

At the end of the last chapter, I discussed the idea of having a second

type of layout in the “Extra Assignment” section. To continue with this

theme, I have structured the architecture of the layout to aid in this

journey. I am a fan of taking an approach like this because it allows you

to potentially replace one part of the implementation without impacting

the others.

BoardLayout will be responsible for displaying the widgets. It will be

assigned an ILayoutManager implementation, which will decide where

to place the widgets. You will be adding a FixedLayoutManager to decide

this part.

 Placeholder
The first item that you need to create is the placeholder to show where a

widget will be placed. There isn’t too much to this control but creating it

allows you to group all of the related bits and pieces together. Figure 6-2

shows what your Placeholder control will look like when rendered inside

the application.

Figure 6-2. Mockup of the Placeholder control

In order to achieve the above look, you are going to make use of the

Border control. This is a really useful control. It allows you to provide

Chapter 6 Creating Our Own LayOut

167

borders, custom corner radius, shadows, and other styling options. It also

behaves much like the ContentView in that it can contain a single child

control.

Create a folder called Controls in your main project. It will house the

Placeholder control and potentially more as you build your application.

Next, add a new class to the folder and call it Placeholder. Note that

you are opting to create the control purely in C# without XAML; the main

reason is that it results in less code. I always find there is never a single

way to build things, and even if you like XAML, at times it doesn’t add any

value, just like in this scenario. Of course, if you prefer to build your UI with

XAML, you can do so.

namespace WidgetBoard.Controls;

public class Placeholder : Border

{

 public Placeholder()

 {

 Content = new Label

 {

 Text = "Tap to add widget",

 FontAttributes = FontAttributes.Italic,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

 public int Position { get; set; }

}

As discussed, there isn’t too much to this implementation but let’s still

break it down. Here you have

• Created a control that inherits from Border

Chapter 6 Creating Our Own LayOut

168

• Set the content of your control to be a Label showing

fixed text in an italic font and the text is centered both

horizontally and vertically

• Added a Position property to know where in the layout

it will be positioned

Now you can start building the layout that will display the placeholders

and ultimately your widgets.

 ILayoutManager
You have a slight chicken-and-egg scenario here. You need to create a

board and a layout manager, both of which need to know about the other;

therefore, let’s add in the LayoutManager parts first.

The purpose of the ILayoutManager interface is to define how the

BoardLayout will interact with a layout manager implementation.

Create a folder called Layouts in your main project. It will house the

ILayoutManager interface and more as you build your application.

Next, add a new class to the folder and call it ILayoutManager.

namespace WidgetBoard.Layouts;

public interface ILayoutManager

{

 object BindingContext { get; set; }

 BoardLayout Board { get; set; }

 void SetPosition(BindableObject bindableObject, int

position);

}

Chapter 6 Creating Our Own LayOut

169

Let’s break it down so you have a clear definition of what you just

created:

• The BindingContext property allows you to pass

the context down from the BoardLayout later. This is

important for allowing bindings on the layout manager.

• The Board property allows the manager to interact

directly with the board it is intended to assist.

• The SetPosition method allows the manager to use

the position parameter and set the appropriate layout

settings on the widget/placeholder.

 BoardLayout
Your BoardLayout will be the parent of your widgets. Create the layout

inside your Layouts folder.

• Right-click the Layouts folder.

• Select Add ➤ New Item.

• Select the .NET MAUI tab.

• Select the .NET MAUI ContentView (XAML) option.

• Enter the name BoardLayout.

• Click Add.

This will give you two files. You’ll modify each one individually.

 BoardLayout.xaml
Modify the existing contents to the following:

<?xml version="1.0" encoding="utf-8" ?>

Chapter 6 Creating Our Own LayOut

170

<Grid

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WidgetBoard.Layouts.BoardLayout"

 x:Name="self">

 <Grid

 x:Name="PlaceholderGrid" />

 <Grid

 x:Name="WidgetGrid"

 ChildAdded="Widgets_ChildAdded"

 BindableLayout.ItemsSource="{Binding ItemsSource,

Source={x:Reference self}}"

 BindableLayout.ItemTemplateSelector="{Binding

ItemTemplateSelector, Source={x:Reference self}}"

 InputTransparent="True"

 CascadeInputTransparent="False" />

</Grid>

You have added quite a bit to this that might not feel familiar, so again

let’s break it down.

Your main layout is a Grid and inside of it are two more Grids.

The first inner Grid (PlaceholderGrid) is where you add the

Placeholder control you created earlier in this chapter.

The second inner Grid (WidgetGrid) is where you add widgets. The

reason you have built the control this way is mainly so you can utilize a

really impressive piece of functionality that drastically reduces the amount

of code you have to write: BindableLayout.

Chapter 6 Creating Our Own LayOut

171

you have not supplied a Grid.Row or Grid.Column to either of
your inner Grids. this results in both controls filling the space of the
parent Grid and the second one overlapping the first. this behavior
can provide some real power when building rather complex uis.

 BindableLayout

BindableLayout allows you to turn a layout control into a control that

can be populated by a collection of data. BindableLayout is not a control

itself, but it provides the ability to enhance layout controls by adding an

ItemsSource property for bindings. This means that all of the layouts

you learned about in the previous chapter (e.g., Grid, AbsoluteLayout,

FlexLayout, HorizontalStackLayout, VerticalStackLayout) can be

turned into a layout that can show a specific set of controls for each item

that is provided. For this, you need to set two properties:

• BindableLayout.ItemsSource: This is the collection of

items that you wish to represent in the UI.

• BindableLayout.ItemTemplate or BindableLayout.

ItemTemplateSelector: This allows you to define

how the item will be represented. In most scenarios,

ItemTemplate is enough but this only works when you

have one type of item to display in your collection. If

you have multiple types, each widget will be a separate

type in your application, so you need to use the

ItemTemplateSelector.

I won’t actually be providing the source for these bindings just yet; this

will be done in Chapter 8. For now, you just need to make it possible to

bind them.

Chapter 6 Creating Our Own LayOut

https://doi.org/10.1007/978-1-4842-9234-1_8

172

 BoardLayout.xaml.cs
Now that you have created your XAML representation, you need to add in

the code-behind, which will work with it. We are going to follow a slightly

different approach for this and the next section; you have a lot of code

to add now so you will add it in stages and we will talk around what you

are adding.

The initial code should look as follows:

namespace WidgetBoard.Layouts;

public partial class BoardLayout

{

 public BoardLayout()

 {

 InitializeComponent();

 }

}

 Adding the LayoutManager Property

You want to allow the consumer of your BoardLayout control to be able to

supply a LayoutManager that will control where the widgets are placed. For

this, you need to add the following:

private ILayoutManager layoutManager;

public ILayoutManager LayoutManager

{

 get => layoutManager;

 set

 {

 layoutManager = value;

Chapter 6 Creating Our Own LayOut

173

 layoutManager.Board = this;

 }

}

The key detail of this implementation is how it assigns the Board

property on the LayoutManager to your BoardLayout control. This is to

allow the manager to interact with the layout.

One very important thing to consider is that when you create

properties that can be set in XAML, their setters can be called before your

control has its BindingContext property set. Therefore, you usually need

to handle both scenarios when relying on both pieces of functionality. To

give a concrete example of this, you have your LayoutManager property

that you have added. It will allow you to set bindings on it also, but it won’t

have a BindingContext passed down. For this, you need to override the

OnBindingContextChanged method in your BoardLayout class and assign

the value to your LayoutManager.

protected override void OnBindingContextChanged()

{

 base.OnBindingContextChanged();

 layoutManager.BindingContext = this.BindingContext;

}

In the past, I have found when building controls in this way, even if

you do not need to use this method for an actual implementation, it can

be really handy to debug what is going on when things don’t behave as

expected. For example, you can stick a breakpoint in to make sure that you

are being assigned a BindingContext and that it is of the correct type.

 Adding the ItemsSource Property

Your BoardLayout also needs to accept a collection of widgets that

will ultimately be displayed on screen. For controls that support

Chapter 6 Creating Our Own LayOut

174

displaying multiple items, the common name used for such a property is

ItemsSource. So, add a property with that name. You will need to add the

following to the top of the file:

using System.Collections;

This is to allow you to use the IEnumerable type.

public static readonly BindableProperty ItemsSourceProperty =

 BindableProperty.Create(

 nameof(ItemsSource),

 typeof(IEnumerable),

 typeof(BoardLayout));

 public IEnumerable ItemsSource

{

 get => (IEnumerable)GetValue(ItemsSourceProperty);

 set => SetValue(ItemsSourceProperty, value);

}

In the majority of scenarios, you bind an ObservableCollection to

an ItemsSource property, which is of a different type to IEnumerable. By

choosing to use IEnumerable, it allows the consumers of your layout to

provide any type that supports holding multiple items. This means that

you can supply an ObservableCollection or you can supply a List.

Finally, you need to add the using statement into your BoardLayout.

xaml.cs file at the top.

using System.Collections;

 Adding the ItemTemplateSelector Property

Now that you have a collection of items to display on screen, you

need to know how to display them. It can be common to see controls

that have an ItemsSource property also have an ItemTemplate or an

Chapter 6 Creating Our Own LayOut

175

ItemTemplateSelector or even both properties. An ItemTemplate allows

a developer to define how each item in the ItemsSource will be rendered

on screen. The reason you aren’t using this approach is because you can

only define one template for all items. You will be binding your widget

view models to the ItemsSource property, which means you will have

several different views that you will want to display. This is where the

ItemTemplateSelector property comes in.

public static readonly BindableProperty

ItemTemplateSelectorProperty =

 BindableProperty.Create(

 nameof(ItemTemplateSelector),

 typeof(DataTemplateSelector),

 typeof(BoardLayout));

public DataTemplateSelector ItemTemplateSelector

{

 get => (DataTemplateSelector)GetValue(ItemTemplateSelector

Property);

 set => SetValue(ItemTemplateSelectorProperty, value);

}

You make use of the DataTemplateSelector type for your property

here. You will create an implementation a little later in this chapter but for

now it allows you to override the OnSelectTemplate method and provide a

suitable template for the item that is passed in.

 Handling the ChildAdded Event

I discussed earlier how the BindableLayout feature allows you to populate

a control with multiple views based on bindings. You need to hook into

the ChildAdded event so that your LayoutManager implementation can

determine where the new child should be positioned.

Chapter 6 Creating Our Own LayOut

176

private void Widgets_ChildAdded(object sender,

ElementEventArgs e)

{

 if (e.Element is IWidgetView widgetView)

 {

 LayoutManager.SetPosition(e.Element, widgetView.

Position);

 }

}

This handler checks to see if the new child being added is of the

IWidgetView type, and if it is, it delegates out to the LayoutManager

implementation to set the widget’s position.

 Adding Remaining Bits

You have a few extra methods and properties to add in that will be used

by the FixedLayoutManager. Let’s add them and discuss their purpose

as you go.

Add the using statement at the top of the file.

using WidgetBoard.Controls;

Then add the first new method.

public void AddPlaceholder(Placeholder placeholder) =>

PlaceholderGrid.Children.Add(placeholder);

This method allows the caller to pass a placeholder that will be added

to PlaceholderGrid. This is useful when first loading a board or when

dealing with a widget being removed from a specific position.

public void RemovePlaceholder(Placeholder placeholder) =>

PlaceholderGrid.Children.Remove(placeholder);

Chapter 6 Creating Our Own LayOut

177

This method allows the caller to pass a placeholder that will be

removed from the PlaceholderGrid. This is useful for when dealing with a

widget being added to a specific position.

public void AddColumn(ColumnDefinition columnDefinition)

{

 PlaceholderGrid.ColumnDefinitions.Add(columnDefinition);

 WidgetGrid.ColumnDefinitions.Add(columnDefinition);

}

This method allows for the board’s columns to be defined on both the

PlaceholderGrid and WidgetGrid.

public void AddRow(RowDefinition rowDefinition)

{

 PlaceholderGrid.RowDefinitions.Add(rowDefinition);

 WidgetGrid.RowDefinitions.Add(rowDefinition);

}

This method allows for the board’s rows to be defined on both the

PlaceholderGrid and WidgetGrid.

public IReadOnlyList<Placeholder> Placeholders =>

PlaceholderGrid.Children.OfType<Placeholder>().ToList();

This property provides all children from the PlaceholderGrid that are

of type Placeholder. This is to allow for determining which placeholder

needs to be removed when adding a widget.

 FixedLayoutManager
The final part for you to create is the FixedLayoutManager class. This will

provide the logic to

• Accept the number of rows and columns for a board.

Chapter 6 Creating Our Own LayOut

178

• Provide tap/click support through a command.

• Build the board layout.

• Set the correct row/column position for each widget.

Create the file and then you can work through adding each of

the above pieces of functionality. Let’s add a new class file and call it

FixedLayoutManager.cs. Add the following content:

namespace WidgetBoard.Layouts;

public class FixedLayoutManager

{

}

To start, you are going to want to add the following using statements:

using System.Windows.Input;

using WidgetBoard.Controls;

And also make your class inherit from BindableObject and implement

your ILayoutManager interface. Your class should now look as follows:

using System.Windows.Input;

using WidgetBoard.Controls;

namespace WidgetBoard.Layouts;

public class FixedLayoutManager : BindableObject,

ILayoutManager

{

}

The reason for inheriting from BindableObject is down to the fact

that you need to add some bindable properties onto this class so that

developers using this implementation can bind values to the properties.

Chapter 6 Creating Our Own LayOut

179

 Accepting the Number of Rows and Columns
for a Board
You need to add the ability to set the number of rows and columns to be

displayed in your fixed layout board. For this, you are going to add two

bindable properties to your FixedLayoutManager class.

 Adding the NumberOfColumns Property

public static readonly BindableProperty

NumberOfColumnsProperty =

 BindableProperty.Create(

 nameof(NumberOfColumns),

 typeof(int),

 typeof(FixedLayoutManager),

 defaultBindingMode: BindingMode.OneWay,

 propertyChanged: OnNumberOfColumnsChanged);

public int NumberOfColumns

{

 get => (int)GetValue(NumberOfColumnsProperty);

 set => SetValue(NumberOfColumnsProperty, value);

}

static void OnNumberOfColumnsChanged(BindableObject bindable,

object oldValue, object newValue)

{

 var manager = (FixedLayoutManager)bindable;

 manager.InitialiseGrid();

}

Chapter 6 Creating Our Own LayOut

180

The key difference with this implementation over the previous bindable

properties that you created is the use of the propertyChanged parameter. It

allows you to define a method (see OnNumberOfColumnsChanged) that will be

called whenever the property value changes.

the property changed method will only be called when the value
changes. this means that it may not be called initially if the value
does not change from the default value.

 Adding the NumberOfRows Property

public static readonly BindableProperty NumberOfRowsProperty =

 BindableProperty.Create(

 nameof(NumberOfRows),

 typeof(int),

 typeof(FixedLayoutManager),

 defaultBindingMode: BindingMode.OneWay,

 propertyChanged: OnNumberOfRowsChanged);

public int NumberOfRows

{

 get => (int)GetValue(NumberOfRowsProperty);

 set => SetValue(NumberOfRowsProperty, value);

}

static void OnNumberOfRowsChanged(BindableObject bindable,

object oldValue, object newValue)

{

 var manager = (FixedLayoutManager)bindable;

 manager.InitialiseGrid();

}

Chapter 6 Creating Our Own LayOut

181

This is virtually identical to the NumberOfColumns property that you just

added, except for the NumberOfRows value.

 Providing Tap/Click Support Through
a Command
The next item on your list is to provide the ability to handle tap/click

support. This is your first time providing command support; you used

commands in your bindings, but that was on the source side rather than

the target side like here.

First, you need to add the bindable property, which should start to feel

rather familiar.

public static readonly BindableProperty

PlaceholderTappedCommandProperty =

 BindableProperty.Create(

 nameof(PlaceholderTappedCommand),

 typeof(ICommand),

 typeof(FixedLayoutManager));

public ICommand PlaceholderTappedCommand

{

 get => (ICommand)GetValue(PlaceholderTappedCommand

Property);

 set => SetValue(PlaceholderTappedCommandProperty, value);

}

Next, you need to add the code that will execute the command. You

will be relying on the use of a TapGestureRecognizer by adding one to

your Placeholder control inside your InitialiseGrid method that you

will be adding in the next section. For now, you can add the method that

will be used so that you can focus on how to execute the command. Let’s

add the code and then look over the details.

Chapter 6 Creating Our Own LayOut

182

private void TapGestureRecognizer_Tapped(object sender,

EventArgs e)

{

 if (sender is Placeholder placeholder)

 {

 if (PlaceholderTappedCommand?.CanExecute(placeholder.

Position) == true)

 {

 PlaceholderTappedCommand.Execute(placeholder.

Position);

 }

 }

}

You can see from the implementation that there are three main parts to

the command execution logic:

• First, you make sure that command has a value.

• Second, you check that you can execute the command.

If you recall back in Chapter 5 you provided a method

to prevent the command from executing if the user

hadn’t entered a BoardName.

• Finally, you execute the command and pass in the

command parameter. For this scenario, you will be

passing in the current position of the placeholder so

when a widget is added, it can be placed in the same

position.

 Building the Board Layout
Now you can focus on laying out the underlying Grids so that they display

as per the user’s entered values for rows and columns.

Chapter 6 Creating Our Own LayOut

https://doi.org/10.1007/978-1-4842-9234-1_5

183

First, add in a property to store the current Board because you need to use

it when building the layout. You also need to record whether you have built the

layout to prevent any unnecessary updates rebuilding the user interface.

private BoardLayout board;

private bool isInitialised;

public BoardLayout Board

{

 get => board;

 set

 {

 board = value;

 InitialiseGrid();

 }

}

Your method to build the grid layout has several parts, so let’s add

them as you go and discuss their value. You initially need to make sure that

you have valid values for the Board, NumberOfRows and NumberOfColumns

properties plus you haven’t already built the UI.

private void InitialiseGrid()

{

 if (Board is null ||

 NumberOfColumns == 0 ||

 NumberOfRows == 0 ||

 isInitialised == true)

 {

 return;

 }

 isInitialised = true;

}

Chapter 6 Creating Our Own LayOut

184

The next step is to use the NumberOfColumns value and add them to

your Board. Let’s add this to the end of the InitialiseGrid method.

for (int i = 0; i < NumberOfColumns; i++)

{

 Board.AddColumn(new ColumnDefinition(new GridLength(1,

GridUnitType.Star)));

}

The GridUnitType.Star value means that each column will have an

even share of the width of the grid. So, if the Grid is 300 pixels wide and

you have 3 columns, then each column has a resulting width of 100 pixels.

The next step is to use the NumberOfRows value and add them to your

Board. Let’s add this to the end of the InitialiseGrid method.

for (int i = 0; i < NumberOfRows; i++)

{

 Board.AddRow(new RowDefinition(new GridLength(1,

GridUnitType.Star)));

}

The final step in your InitialiseGrid method is to populate each cell

(row and column) combination with a Placeholder control.

for (int column = 0; column < NumberOfColumns; column++)

{

 for (int row = 0; row < NumberOfRows; row++)

 {

 var placeholder = new Placeholder();

 placeholder.Position = row * NumberOfColumns + column;

 var tapGestureRecognizer = new TapGestureRecognizer();

Chapter 6 Creating Our Own LayOut

185

 tapGestureRecognizer.Tapped += TapGestureRecognizer_Tapped;

 placeholder.GestureRecognizers.Add(tapGesture

Recognizer);

 Board.AddPlaceholder(placeholder);

 Grid.SetColumn(placeholder, column);

 Grid.SetRow(placeholder, row);

 }

}

In the above code, you

• Looped through the combinations of rows/columns

• Created a Placeholder control

• Set its position for use later

• Added a TapGestureRecognizer to handle user

interaction

• Added the Placeholder to the Board

• Positioned the Placeholder to the correct column and

row position

 Setting the Correct Row/Column Position
for Each Widget
The final part in building the board layout is to provide the method

required by the ILayoutManager interface that your FixedLayoutManager

is implementing. This method will

• Calculate the column/row value based on the position

parameter passed in.

Chapter 6 Creating Our Own LayOut

186

• Position the bindableObject parameter passed into the

calculated column and row position.

• Remove any existing Placeholder in the position.

public void SetPosition(BindableObject bindableObject, int

position)

{

 if (NumberOfColumns == 0)

 {

 return;

 }

 int column = position % NumberOfColumns;

 int row = position / NumberOfColumns;

 Grid.SetColumn(bindableObject, column);

 Grid.SetRow(bindableObject, row);

 var placeholder = Board.Placeholders.Where(p => p.Position

== position).FirstOrDefault();

 if (placeholder is not null)

 {

 Board.RemovePlaceholder(placeholder);

 }

}

Now that you have completed the work of providing a BoardLayout

and managing its layout with your FixedLayoutManager class, you should

go ahead and use it in your application.

Chapter 6 Creating Our Own LayOut

187

 Using Your Layout
Before you can jump in and start using the BoardLayout you have created,

there is a little bit more work to be done. You need to

• Add a factory that will create instances of your widgets.

• Add in the DataTemplateSelector that I referred to

earlier on.

• Update your FixedBoardPageViewModel so your

bindings will work.

 Adding a Factory That Will Create Instances
of Your Widgets
For this, you are going to create a new class called WidgetFactory in the

root of your project.

using WidgetBoard.ViewModels;

using WidgetBoard.Views;

namespace WidgetBoard;

public class WidgetFactory

{

}

There are three main purposes for this factory:

• Allows for the registration of widget views and

view models

• Creation of a widget view

• Creation of a widget view model

So, let’s support these three requirements.

Chapter 6 Creating Our Own LayOut

188

 Allowing for the Registration of Widget Views
and View Models

You need to add the following code:

private static IDictionary<Type, Type> widgetRegistrations =

new Dictionary<Type, Type>();

private static IDictionary<string, Type>

widgetNameRegistrations = new Dictionary<string, Type>();

public static void RegisterWidget<TWidgetView,

TWidgetViewModel>(string displayName) where TWidgetView :

IWidgetView where TWidgetViewModel : IWidgetViewModel

{

 widgetRegistrations.Add(typeof(TWidgetViewModel),

typeof(TWidgetView));

 widgetNameRegistrations.Add(displayName,

typeof(TWidgetViewModel));

}

public IList<string> AvailableWidgets =>

widgetNameRegistrations.Keys.ToList();

The above may look a little complicated but if you break it down,

hopefully it should become clear. You have added two fields that will store

the type information and name information needed for when you create

the instances of widgets.

The RegisterWidget method takes a display name parameter and

two types:

• TWidgetView: This must implement your IWidgetView

interface.

• TWidgetViewModel: This must implement your

IWidgetViewModel interface.

Chapter 6 Creating Our Own LayOut

189

You then store a mapping between the view model type and the view

type (widgetRegistrations). This allows you to create a view when you

pass in a view model. This really helps you to keep a clean separation

between your view and view model.

You also store a mapping between the display name and the view

model type (widgetNameRegistrations). This will allow you to present an

option on screen to the user. Once they choose the name of the widget they

would like to add, the factory will create an instance of it.

 Creation of a Widget View

You first need to add a dependency to your constructor.

private readonly IServiceProvider serviceProvider;

public WidgetFactory(IServiceProvider serviceProvider)

{

 this.serviceProvider = serviceProvider;

}

The IServiceProvider will allow you to create a new instance

of your widgets and make sure that they are provided with all of

their dependencies. Don’t worry about needing to register the

IServiceProvider implementation with your MauiAppBuilder as you

have done with other dependencies that you require. This is automatically

provided by .NET MAUI.

Now let’s add the ability to create the widget view.

public IWidgetView CreateWidget(IWidgetViewModel

widgetViewModel)

{

 if (widgetRegistrations.TryGetValue(widgetViewModel.

GetType(), out var widgetViewType))

 {

Chapter 6 Creating Our Own LayOut

190

 var widgetView = (IWidgetView)serviceProvider.GetRequir

edService(widgetViewType);

 widgetView.WidgetViewModel = widgetViewModel;

 return widgetView;

 }

 return null;

}

Breaking this down,

• You check whether the supplied widgetViewModels

type has been registered with the factory.

• If it has, you use the IServiceProvider to get an

instance of the associated widget view.

• You assign the widgetViewModel parameter value to the

WidgetViewModel property on the widget view. This is

to allow for the setting of the widgets BindingContext

property.

 Creation of a Widget View Model

You also need to provide the ability to create the widget view model

because this is required in your view model.

public IWidgetViewModel CreateWidgetViewModel(string

displayname)

{

 if (widgetNameRegistrations.TryGetValue(displayname, out

var widgetViewModelType))

 {

Chapter 6 Creating Our Own LayOut

191

 return (IWidgetViewModel)serviceProvider.GetRequiredSer

vice(widgetViewModelType);

 }

 return null;

}

Breaking this down,

• You check whether the supplied displayname has been

registered with the factory.

• If it has, you use the IServiceProvider to get an

instance of the associated widget view model.

 Registering the Factory with MauiAppBuilder

Inside your MauiProgram.cs file, you need to register your WidgetFactory

with the MauiAppBuilder to make sure any dependencies can resolve it.

Open that file and add the following line into the CreateMauiApp method:

builder.Services.AddSingleton<WidgetFactory>();

 Registering Your ClockWidget with the Factory

Now that you have your WidgetFactory, you need to modify it so that the

factory can create the widget for you. This requires a number of steps, so

let’s walk through it.

First, open the ClockWidgetView.xaml.cs file and change it to the

following:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class ClockWidgetView : Label, IWidgetView

{

Chapter 6 Creating Our Own LayOut

192

 public ClockWidgetView(ClockWidgetViewModel

clockWidgetViewModel)

 {

 InitializeComponent();

 WidgetViewModel = clockWidgetViewModel;

 BindingContext = clockWidgetViewModel;

 }

 public IWidgetViewModel WidgetViewModel { get; set; }

}

This results in your ClockWidgetView taking a dependency on

ClockWidgetViewModel.

Next, you need to register your widget with the factory. Open

your MauiProgram.cs file and add the following lines to the

CreateMauiApp method:

WidgetFactory.RegisterWidget<ClockWidgetView, ClockWidgetView

Model>("Clock");

builder.Services.AddTransient<ClockWidgetView>();

builder.Services.AddTransient<ClockWidgetViewModel>();

This will enable the WidgetFactory to return the clock widget as an

option when presented in your overlay.

Chapter 6 Creating Our Own LayOut

193

 WidgetTemplateSelector
The main purpose of this implementation is to provide a conversion

between the widget view models that you will be storing on your

FixedBoardPageViewModel and something that can actually be rendered

on the screen. You are going to depend on the WidgetFactory you have

just created. Create the class under the root project folder.

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public class WidgetTemplateSelector : DataTemplateSelector

{

 private readonly WidgetFactory widgetFactory;

 public WidgetTemplateSelector(WidgetFactory widgetFactory)

 {

 this.widgetFactory = widgetFactory;

 }

 protected override DataTemplate OnSelectTemplate(object

item, BindableObject container)

 {

 if (item is IWidgetViewModel widgetViewModel)

 {

 return new DataTemplate(() => widgetFactory.Create

Widget(widgetViewModel));

 }

 return null;

 }

}

Chapter 6 Creating Our Own LayOut

194

The main part you need to focus on here is the OnSelectTemplate

method. I did discuss the purpose of this method briefly earlier on; let’s

take a deeper look now. Its main purpose is to provide a DataTemplate and

something that can be rendered on screen. This is a great way to keep the

separation between view and view model.

In your implementation, you can see that

• You check whether the item passed in implements your

IWidgetViewModel interface.

• If so, then you create a new DataTemplate and rely on

the WidgetFactory to return the widget view that is

mapped to the view models type.

 Registering the Template Selector
with MauiAppBuilder

Inside your MauiProgram.cs file you need to register your

WidgetTemplateSelector with the MauiAppBuilder to make sure any

dependencies can resolve it. Open that file and add the following line into

the CreateMauiApp method:

builder.Services.AddSingleton<WidgetTemplateSelector>();

 Updating FixedBoardPageViewModel
You need to add in the properties that you can bind to in your view.

private string boardName;

private int numberOfColumns;

private int numberOfRows;

public string BoardName

{

 get => boardName;

Chapter 6 Creating Our Own LayOut

195

 set => SetProperty(ref boardName, value);

}

public int NumberOfColumns

{

 get => numberOfColumns;

 set => SetProperty(ref numberOfColumns, value);

}

public int NumberOfRows

{

 get => numberOfRows;

 set => SetProperty(ref numberOfRows, value);

}

public ObservableCollection<IWidgetViewModel> Widgets { get; }

public WidgetTemplateSelector WidgetTemplateSelector { get; }

Notice that the Widgets and WidgetTemplateSelector properties

do not call the SetProperty method to notify the UI of changes. This

is a perfectly valid scenario. You know that the value will be set in the

constructor and therefore the value will be set before the binding is

applied.

You also need to add in the remaining code to your

ApplyQueryAttributes method that you added in the last chapter. It

should now look like the following:

public void ApplyQueryAttributes(IDictionary<string,

object> query)

{

 var board = query["Board"] as Board;

 BoardName = board.Name;

Chapter 6 Creating Our Own LayOut

196

 NumberOfColumns = ((FixedLayout)board.Layout).

NumberOfColumns;

 NumberOfRows = ((FixedLayout)board.Layout).NumberOfRows;

}

Finally, you need to add the WidgetTemplateSelector as a

dependency in your constructor. It should now look like the following:

public FixedBoardPageViewModel(

 WidgetTemplateSelector widgetTemplateSelector

)

{

 WidgetTemplateSelector = widgetTemplateSelector;

 Widgets = new ObservableCollection<IWidgetViewModel>();

}

You are now ready to add the layout to your page.

 Finally Using the Layout
Now that you have built your layout, you should go ahead and use it. You

previously added the FixedBoardPage so you can go ahead and change it

to the following:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:layouts="clr-namespace:WidgetBoard.Layouts"

 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"

 x:Class="WidgetBoard.Pages.FixedBoardPage"

 Title="FixedBoardPage"

 x:DataType="viewmodels:FixedBoardPageViewModel">

Chapter 6 Creating Our Own LayOut

197

 <layouts:BoardLayout

 ItemsSource="{Binding Widgets}"

 ItemTemplateSelector="{Binding Widget

TemplateSelector}">

 <layouts:BoardLayout.LayoutManager>

 <layouts:FixedLayoutManager

 NumberOfColumns="{Binding NumberOfColumns}"

 NumberOfRows="{Binding NumberOfRows}" />

 </layouts:BoardLayout.LayoutManager>

 </layouts:BoardLayout>

</ContentPage>

This now includes your shiny new BoardLayout complete with all the

bindings you have created to make it functional.

 Summary
In this chapter, you

• Created your own layout

• Made use of a variety of options when adding bindable

properties

• Provided command support from your layout

• Used your layout in your application

In the next chapter, you will

• Gain an understanding of what accessibility is

• Learn why it is important to build inclusive

applications

Chapter 6 Creating Our Own LayOut

198

• Look at how you can make use of .NET MAUI

functionality

• Consider other scenarios and how to support them

• Look over some testing options to support your journey

to building accessible applications

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch06.

 Extra Assignment
You will have noticed how a lot of the naming includes the word Fixed.

Let’s continue the extra assignment from the previous chapter and build

a board that is a variation of this approach. I really like the idea of a

freeform board where the user can position their widgets wherever they

like. This is a little more involved but if you consider how the BoardLayout

can use AbsoluteLayouts rather than Grids, then a new ILayoutManager

implementation should hopefully be where the alternative logic will need

to be applied. If you do embark on this journey, please feel free to share

your experience and findings.

Chapter 6 Creating Our Own LayOut

https://github.com/Apress/Introducing-MAUI/tree/main/ch06
https://github.com/Apress/Introducing-MAUI/tree/main/ch06

199

CHAPTER 7

Accessibility
In this chapter, you will be taking a break from adding new parts to the

user interface in order to gain an understanding of what accessibility is,

why you should make your applications accessible, and how .NET MAUI

makes this easier. You will also cover some testing options to support your

journey to building accessible applications.

I wanted this chapter to appear earlier on in this book. I feel it is such

an important topic and one that you really do need to consider early on

in your projects. It has come to settle nicely in the middle of the book now

because you needed some UI to apply the concepts to.

 What Is Accessibility?
The definition of accessibility according to the Cambridge Dictionary

(https://dictionary.cambridge.org/dictionary/english/

accessibility) is

“the quality of being easy to understand.”

By considering the scenarios where your application might be less easy

to understand for a large percentage of the world’s population that have

some form of disability, you can learn to provide ways to break down the

complexities in understanding the content. This might be through the use

of assistive technologies such as voice-over assistants or screen readers,

or even providing the ability to increase the font size to make the content

easier to read.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_7

https://dictionary.cambridge.org/dictionary/english/accessibility
https://dictionary.cambridge.org/dictionary/english/accessibility
https://doi.org/10.1007/978-1-4842-9234-1_7#DOI

200

All of this can help you as a developer learn how to build applications

that are much more inclusive of the entire population of the world.

 Why Make Your Applications Accessible?
I heard an excellent quote recently and sadly I have been unable to

discover the original author of the quote, but it is “if you don’t know

whether your application is accessible, then you can safely say that is it not.”

Essentially, if you are not putting any effort into making it accessible, then

you can almost guarantee that it is not.

According to the World Health Organization, globally at least 2.2 billion

people have a near or distance vision impairment (www.who.int/news-

room/fact-sheets/detail/blindness-and-visual-impairment).

You want to build your applications and make them as successful

as possible. Imagine immediately ruling out up to 27% of your potential

market purely based on not making your application more inclusive for

that population.

 What to Consider When Making Your
Applications Accessible
There is a whole heap of things you can do in order to make your

applications more inclusive. To aid you on your journey to building

accessible applications, there is a fantastic set of guidelines known as

the Web Content Accessibility Guidelines (WCAG). There are four main

principles to consider:

• Perceivable: Making sure that you provide information

that can be perceived by the user. This can be by

providing text-based alternatives to images, suitable

contrast ratios, adaptive text sizing, and much more.

Chapter 7 aCCessibility

http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

201

• Operable: Making sure that you provide the user

with the ability to use the application. This can be

by providing keyboard navigation, making sure they

have enough time to read and use the content, and

much more.

• Understandable: Making sure that you provide a user

interface that is understandable to the user. This can be

making sure that the content is readable, predictable

(appear and behave as expected), and helps the user

avoid making mistakes.

• Robust: Making sure the content is robust enough

that it can be interpreted by a wide variety of user

agents, including assistive technologies. This can be by

providing suitable support for assistive technologies.

To read more on these guidelines, I thoroughly recommend checking

out the Quick Reference Guide at www.w3.org/WAI/WCAG21/quickref/.

 How to Make Your Application Accessible
There are several things to consider when building an application that is

inclusive. This section will not provide a complete set of tools for building

applications inclusive for all. However, it will provide some insights to what

.NET MAUI offers and some other concepts to consider to set you off on a

journey of discovery to building much more accessible applications.

 Screen Reader Support
.NET MAUI provides great tools to provide explicit support for the screen

readers on each of the supported platforms. I feel it is worth highlighting

that point again: .NET MAUI utilizes the screen readers on each
platform. This means that they will need to be enabled by the user for the

Chapter 7 aCCessibility

http://www.w3.org/WAI/WCAG21/quickref/

202

settings to take effect. You will dive into each concept and how it enables

you to expose information to those screen readers so you can provide a

much more informative experience for your users.

As a starting exercise, pick up your phone and turn on your screen

reader assistant. Try navigating around to get an understanding of what

the experience is like and, most importantly, try an application you built.

Does it provide a good experience?

Let’s see how you can make the WidgetBoard application more

accessible with the screen readers available. Thankfully you haven’t built

too much UI already, so you are in a good position to start. I urge you to

consider applying concepts like this as early on in the development phase

as possible.

 SemanticProperties

The SemanticProperties class offers a set of attached properties that can

be applied to any visual element. .NET MAUI applies these property values

on the platform-specific APIs that provide accessibility.

Let’s look through each of the properties and apply them to your

BoardDetailsPage.

 SemanticProperties.Description

The SemanticProperties.Description property allows you to define a

short string that will be used by the screen reader to announce the element

to the user when it gains focus.

As I type this chapter, I am testing the application. The first Entry

added on the BoardDetailsPage currently results in the macOS VoiceOver

assistant announcing “edit text, is editing, blank.”

You can change the Entry to the following:

<Entry

Chapter 7 aCCessibility

203

 Text="{Binding BoardName}"

 SemanticProperties.Description="Enter the board name"/>

This now results in “Enter the board name, is editing, blank” being

announced, which is much more useful to the user.

You can take this a step further. You have a label above that just has the

Text of “Name.” If you change this to use your new descriptive text, then

you can set the SemanticProperties.Description value to its text. Let’s

do that now; the changes are highlighted in bold:

<Label

 Text="Enter the board name"

 x:Name="EnterBoardNameLabel"

 FontAttributes="Bold" />

<Entry

 Text="{Binding BoardName}"

 SemanticProperties.Description="{Binding Text,

Source={x:Reference EnterBoardNameLabel}}" />

The resulting code may look less appealing but it provides a number of

benefits:

• The text description is more informative on the Label.

• When you add in localization support, you will have

only one text field to update.

The macOS screen reader does provide a second announcement

following the announcement you have been improving. This follow-up is

“You are currently on a text field. To enter text in this field, type.” This isn’t

the most informative, so let’s provide a better hint to the user.

Chapter 7 aCCessibility

204

the act of setting the SemanticProperties.Description
property will automatically make a visual element be announced by
the screen reader. by default, an Image control is not announced but
by setting this property, the text will be announced when the control
gains semantic focus.

 SemanticProperties.Hint

The SemanticProperties.Hint property allows you to provide a string

that the screen reader will announce to the user so that they have a better

understanding of the purpose of the control.

Let’s add a hint to Entry with the addition in bold:

<Entry

 Text="{Binding BoardName}"

 SemanticProperties.Description="{Binding Text,

Source={x:Reference EnterBoardNameLabel}}"

 SemanticProperties.Hint="Provides a name that will be

used to identify your widget board. This is a required

field." />

This change results in “Provides a name that will be used to identify

your widget board. This is a required field. You are currently on a text field.

To enter text in this field, type” being announced. I think you can agree that

this adds yet more context to the user and this is a good thing.

 SemanticProperties.HeadingLevel

The SemanticProperties.HeadingLevel property allows you to mark an

element as a heading to help organize the UI and make it easier for users

to navigate. Some screen readers enable users to quickly jump between

Chapter 7 aCCessibility

205

headings and thus providing a far more friendly navigation for those users

that rely on screen readers. Headings have a level from 1 to 9 and are

represented by the SemanticHeadingLevel enumeration.

 SemanticScreenReader

.NET MAUI provides the SemanticScreenReader that enables you to

instruct a screen reader to announce some text to the user. This can work

especially well if you wish to present instructions to a user or to prompt

them if they have paused their interaction.

The SemanticScreenReader provides a static Announce method

to perform the announcements, it also provides a Default instance. I

personally like to make use of the scenarios where .NET MAUI provides

you with a Current or a Default instance and register this with the app

builder to make full use of the dependency injection support. To do this,

write the following line of code in your MauiProgram.cs file:

builder.Services.AddSingleton(SemanticScreenReader.Default);

With the screen reader registered, you can announce that the new

board was created successfully once the user has tapped on the Save

button. You need to open the BoardDetailsPageViewModel.cs file and

make the following changes.

Add the read-only field.

private readonly ISemanticScreenReader semanticScreenReader;

Assign a value in your constructor, just applying the bold code to your

existing content.

public BoardDetailsPageViewModel(ISemanticScreenReader

semanticScreenReader)

{

 this.semanticScreenReader = semanticScreenReader;

Chapter 7 aCCessibility

206

 SaveCommand = new Command(

 () => Save(),

 () => !string.IsNullOrWhiteSpace(BoardName));

}

Call Announce in your Save method, just applying the bold code to

your existing content.

private async void Save()

{

 var board = new Board

 {

 Name = BoardName,

 Layout = new FixedLayout

 {

 NumberOfColumns = NumberOfColumns,

 NumberOfRows = NumberOfRows

 }

 };

 semanticScreenReader.Announce($"A new board with the name

{BoardName} was created successfully.");

 await Shell.Current.GoToAsync(

 "fixedboard",

 new Dictionary<string, object>

 {

 { "Board", board}

 });

}

Chapter 7 aCCessibility

207

If you run your application and save a new board called “My work

board,” you will observe that the screen reader will announce “A new

board with the name My work board was created successfully.” This gives

the user some valuable audible feedback. If you expect the save process to

take some time, you can also perform an announcement at the start of the

process to keep the user informed.

 AutomationProperties

AutomationProperties are the old Xamarin.Forms way of exposing

information to the screen readers on each platform. I won’t cover all of the

options because some have been replaced by the SemanticProperties

section that you just learned about. The following are the important ones

that provide a different set of functionality.

 AutomationProperties.ExcludedWithChildren

The AutomationProperties.ExcludeWithChildren property allows

developers to exclude the element supplied and all its children from the

accessibility tree. Setting this property to true will exclude the element and

all of its children from the accessibility tree.

 AutomationProperties.IsInAccessibleTree

The AutomationProperties.IsInAccessibleTree property allows

developers to decide whether the element is visible to screen readers.

A common scenario for this feature is to hide controls such as Label or

Image controls that serve a purely decorative purpose (e.g., a background

image). Setting this property to true will exclude the element from the

accessibility tree.

Chapter 7 aCCessibility

208

 Suitable Contrast
WCAG states in guideline 1.4.3 Contrast (Minimum) – Level AA that the

visual presentation of text and images of text has a contrast ratio of at least

4.5:1, except for the following:

• Large Text: Large-scale text and images of large-scale

text have a contrast ratio of at least 3:1.

• Incidental: Text or images of text that are part of

an inactive user interface component, that are pure

decoration, that are not visible to anyone, or that are

part of a picture that contains significant other visual

content, have no contrast requirement.

• Logotypes: Text that is part of a logo or brand name

has no contrast requirement.

This all boils down to calculating the difference between the lighter

and darker colors in your application when displaying text. If that contrast

ratio is 4.5:1 or higher, it’s suitable. Let’s look at how this is calculated:

(L1 + 0.05) / (L2 + 0.05)

where L1 is the relative luminance of the lighter color and L2 is the

relative luminance of the darker color. Relative luminance is defined as

the relative brightness of any point in a colorspace, normalized to 0 for

darkest black and 1 for lightest white. Relative luminance can be further be

calculated as

For the sRGB colorspace, the relative luminance of a color is

defined as L = 0.2126 * R + 0.7152 * G + 0.0722 * B where R, G

and B are defined as:

if RsRGB <= 0.03928 then R = RsRGB/12.92 else R =

((RsRGB+0.055)/1.055) ^ 2.4

Chapter 7 aCCessibility

209

if GsRGB <= 0.03928 then G = GsRGB/12.92 else G =

((GsRGB+0.055)/1.055) ^ 2.4

if BsRGB <= 0.03928 then B = BsRGB/12.92 else B =

((BsRGB+0.055)/1.055) ^ 2.4

and RsRGB, GsRGB, and BsRGB are defined as:

RsRGB = R8bit/255

GsRGB = G8bit/255

BsRGB = B8bit/255

The "^" character is the exponentiation operator.

These formulas are taken from www.w3.org/TR/WCAG21/#dfn-

relative-luminance. Let’s turn this into some C# to make it a little easier

to follow and something that you can use to test your color choices.

private static double GetContrastRatio(Color lighterColor,

Color darkerColor)

{

 var l1 = GetRelativeLuminance(lighterColor);

 var l2 = GetRelativeLuminance(darkerColor);

 return (l1 + 0.05) / (l2 + 0.05);

}

private static double GetRelativeLuminance(Color color)

{

 var r = GetRelativeComponent(color.Red);

 var g = GetRelativeComponent(color.Green);

 var b = GetRelativeComponent(color.Blue);

 return

 0.2126 * r +

 0.7152 * g +

 0.0722 * b;

}

Chapter 7 aCCessibility

http://www.w3.org/TR/WCAG21/#dfn-relative-luminance
http://www.w3.org/TR/WCAG21/#dfn-relative-luminance

210

private static double GetRelativeComponent(float component)

{

 if (component <= 0.03928)

 {

 return component / 12.92;

 }

 return Math.Pow(((component + 0.055) / 1.055), 2.4);

}

If you take a look at the colors you are using for your text controls and

the background colors, you can work out whether you need to improve on

the contrast ratio. You can see by checking in your Styles.xaml file that

your Label control uses Gray900 for the text color. Checking in the Colors.

xaml file, you can see that this Gray900 color has a value of #212121.

Therefore, you can use your methods to calculate the contrast ratio with

GetContrastRatio(Colors.White, Color.FromArgb("#212121");

This gives you a contrast ratio of 16.10:1, which means this is providing

a very good contrast ratio. The best possible contrast is black on white,

which gives a contrast ratio of 21:1. Therefore, you do not need to make

any changes to your color scheme, which shows that .NET MAUI ships

with default color options that are suitable for building accessible

applications.

 Dynamic Text Sizing
WCAG states in guideline 1.4.4 Resize text – Level AA that except for

captions and images of text, text can be resized without assistive

technology up to 200 percent without loss of content or functionality.

Chapter 7 aCCessibility

211

This guideline mainly focuses on highlighting the fact that there is still

a large percentage of users that do not rely on accessibility features such

as screen readers or screen magnification when they could benefit from

them. The guideline further states that, as a developer, you should provide

the ability to scale the text in your application up to 200% without relying

on the operating system to perform the scaling.

In this section, I am not going to focus on adding that specific feature;

however, I will be discussing some approaches that will aid this feature as

well as using the assistive technology options.

 Avoiding Fixed Sizes

Wherever possible you want to avoid setting the WidthRequest and

HeightRequest properties for any control that can contain text.

Imagine you set WidthRequest="200" and HeightRequest="30" on

the Label controls in your BoardDetailsPage.xaml file. What you would

initially see is that the text fits nicely using the standard font scaling

options. Figure 7-1 shows your application with fixed size controls and a

small font size.

Chapter 7 aCCessibility

212

Figure 7-1. Your application with fixed sizing and a small font size

However, if you up the scaling to 200%, you will see a rather unpleasant

screen. Figure 7-2 shows your application with fixed size controls and a

large font size, highlighting that the text becomes clipped and unreadable.

Chapter 7 aCCessibility

213

Figure 7-2. Your application with fixed sizing and a large font size

It actually appears that your initial changes without the WidthRequest

and HeightRequest values on the Label controls gives the best experience.

Figure 7-3 shows your application responding to font size changes when

control sizes are not fixed.

Chapter 7 aCCessibility

214

Figure 7-3. Your application showing responsiveness to font scaling

 Preferring Minimum Sizing

Where possible, you should use MinimumWidthRequest and

MinimumHeightRequest over WidthRequest and HeightRequest,

respectively. This allows for controls to grow. There may be scenarios

where a combination of Minimum and Maximum property values will give

a good experience when scaling is introduced.

 Font Auto Scaling

By default, all controls that render text in a .NET MAUI application have

the FontAutoScalingEnabled property set to true. This means that the

controls automatically scale their font size accordingly when the operating

systems font scaling settings are changed.

Chapter 7 aCCessibility

215

There can be scenarios when disabling this feature can provide a

more accessible experience. One example is in a wordsearch application

I built. The application made the letters appear as big as possible, so any

additional scaling by the operating system would result in parts of the text

being cut off. I advise using this option sparingly.

 Testing Your Application’s Accessibility
Each platform supported by .NET MAUI has its own set of guidelines

around testing for accessibility and even tools to aid that journey. In

this section, you are going to take a brief look at what each platform

provider offers.

 Android
Google, much like each of the other platform providers, does recommend

that you perform a manual test, such as turning on TalkBack and verifying

that the user experience is as you have designed.

Google also offers some analysis tools to detect whether any

accessibility guidelines are not being met. There is a good list provided

by Google with a breakdown of the functionality provided by each tool at

https://developer.android.com/guide/topics/ui/accessibility/

testing#analysis.

 iOS
Apple doesn’t offer as much as Google on this front. There is the

Accessibility Inspector but it only focuses on allowing you to view

the information that the screen reader will be provided. I don’t

feel this is as good as taking a dry run through your application

with the VoiceOver assistant turned on. Further information on

Chapter 7 aCCessibility

https://developer.android.com/guide/topics/ui/accessibility/testing#analysis
https://developer.android.com/guide/topics/ui/accessibility/testing#analysis

216

Apple’s offering can be found at https://developer.apple.com/

library/archive/technotes/TestingAccessibilityOfiOSApps/

TestAccessibilityiniOSSimulatorwithAccessibilityInspector/

TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html.

 macOS
Apple provides a little extra functionality when testing on macOS. It

does provide the Accessibility Inspector as per iOS and well as the

Accessibility Verifier. This tool allows you to run tests against your

application to verify items like the accessibility description have been

defined on all required elements. Further information on these features

can be found at https://developer.apple.com/library/archive/

documentation/Accessibility/Conceptual/AccessibilityMacOSX/

OSXAXTestingApps.html.

 Windows
Microsoft offers the biggest amount of options when it comes to testing the

accessibility of your applications. The Windows Software Development Kit

(SDK) provides several tools such as the ability to inspect an application

and view all related properties as plus automation tests that verify the

state of accessibility. All details of the tools can be found at https://docs.

microsoft.com/windows/apps/design/accessibility/accessibility-

testing.

 Accessibility Checklist
The following checklist is provided by Microsoft on their documentation

site at https://docs.microsoft.com/dotnet/maui/fundamentals/

accessibility#accessibility-checklist. I haven’t added to it or

Chapter 7 aCCessibility

https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://docs.microsoft.com/windows/apps/design/accessibility/accessibility-testing
https://docs.microsoft.com/windows/apps/design/accessibility/accessibility-testing
https://docs.microsoft.com/windows/apps/design/accessibility/accessibility-testing
https://docs.microsoft.com/dotnet/maui/fundamentals/accessibility#accessibility-checklist
https://docs.microsoft.com/dotnet/maui/fundamentals/accessibility#accessibility-checklist

217

reworded because I believe it provides an excellent breakdown of the

possible ways to provide accessible support.

Follow these tips to ensure that your .NET MAUI apps are accessible to

the widest audience possible:

• Ensure your app is perceivable, operable,

understandable, and robust for all by following the Web

Content Accessibility Guidelines (WCAG). WCAG is

the global accessibility standard and legal benchmark

for web and mobile. For more information, see Web

Content Accessibility Guidelines (WCAG) Overview.

• Make sure the user interface is self-describing. Test

that all the elements of your user interface are screen

reader accessible. Add descriptive text and hints when

necessary.

• Ensure that images and icons have alternate text

descriptions.

• Support large fonts and high contrast. Avoid

hardcoding control dimensions, and instead prefer

layouts that resize to accommodate larger font sizes.

Test color schemes in high-contrast mode to ensure

they are readable.

• Design the visual tree with navigation in mind. Use

appropriate layout controls so that navigating between

controls using alternate input methods follows the

same logical flow as using touch. In addition, exclude

unnecessary elements from screen readers (for

example, decorative images or labels for fields that are

already accessible).

Chapter 7 aCCessibility

218

• Don't rely on audio or color cues alone. Avoid

situations where the sole indication of progress,

completion, or some other state is a sound or color

change. Either design the user interface to include clear

visual cues, with sound and color for reinforcement

only, or add specific accessibility indicators. When

choosing colors, try to avoid a palette that is hard to

distinguish for users with color blindness.

• Provide captions for video content and a readable

script for audio content. It's also helpful to provide

controls that adjust the speed of audio or video content,

and ensure that volume and transport controls are easy

to find and use.

• Localize your accessibility descriptions when the app

supports multiple languages.

• Test the accessibility features of your app on each

platform it targets. For more information, see Testing

accessibility.

 Summary
In this chapter, you have

• Gained an understanding of what accessibility is

• Learned why it is important to build inclusive

applications

• Looked at how you can make use of .NET MAUI

functionality

• Considered other scenarios and how to support them

Chapter 7 aCCessibility

219

• Looked over some testing options to support your

journey to building accessible applications

In the next chapter, you will

• Add a widget to a board.

• Explore the different options available when showing

an overlay.

• Explore how you can define styling information for

your application.

• Learn how to handle devices running in light and

dark modes.

• Learn how to apply triggers to enhance your UI.

• Explore how to animate parts of your application.

• Explore what happens when you combine triggers and

animations together.

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch07.

 Extra Assignment
Take one of your favorite applications that you are completely familiar with

because you know the layout and how to use it. Then proceed to

• Turn on the screen reading assistant on your phone.

• Try to navigate your way around this application.

Chapter 7 aCCessibility

https://github.com/Apress/Introducing-MAUI/tree/main/ch07
https://github.com/Apress/Introducing-MAUI/tree/main/ch07

220

• Better still, try to impact your vision with a blindfold or

remove any glasses if you use them. Try to rely entirely

on the screen reader.

• Perhaps try the same but modify the device font scaling

and see if the application is able to handle increases in

text size, or if it even allow this option.

The objective is to gain a sense of the experience users with limited

vision have when using the same application. Take notes on how well

applications do things and how poorly they do other things. This can be a

really great learning exercise for you all!

Chapter 7 aCCessibility

221

CHAPTER 8

Advanced UI
Concepts
In this chapter, you will provide the user of your application with the ability

to add a widget to the boards they create through the use of an overlay. You

will further enhance this overlay by defining common styling techniques

and handling the differences between light and dark mode devices.

You will then take a journey into discovering how you can build an

application that feels natural and organic to your human user base. Finally,

you will look at how you can keep the animations driving the organic look

and feel cleanly separated from your business logic code.

 Adding the Ability to Add a Widget
to a Board
In Chapter 6, you created your own BoardLayout and the associated

FixedLayoutManager that enabled you to show a board and added in

the ability to handle interaction events by the user. In this section, you

are going to expand on that to handle the user tapping on a widget

Placeholder and letting the user choose a widget to add to the board.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_8

https://doi.org/10.1007/978-1-4842-9234-1_6
https://doi.org/10.1007/978-1-4842-9234-1_8#DOI

222

 Possible Ways of Achieving Your Goal
There are several ways you can go about adding in this piece of

functionality. Some are better suited to different scenarios and some

simply come down to a personal preference. I encourage you to

understand your goal before you embark on this journey of working out

which option will best suit your need. If you only wish to report a message

to the user or capture a choice or even a single piece of input, then you can

utilize some underlying functionality provided by .NET MAUI. The Page

class provides the ability to do each of the three items discussed; it doesn’t

solve your needs, but it really does have value in many applications. The

Microsoft documentation provides a good set of reference examples on

how to use these options at https://learn.microsoft.com/dotnet/maui/

user-interface/pop-ups.

Let’s discuss some of these options that do solve your needs and

then make a decision on which you feel is the best candidate for your

application.

 Showing a Modal Page

So far in this book you have only considered how Shell offers the

ability to navigate between ContentPages. This is the default and most

common scenario. There can be times when you wish to show a page

that is blocking and will require the user to engage with it to return to the

previous page. This type of page or display is referred to as modal. The

scenario of showing something to the user and requiring them to engage

with it could be a perfect scenario.

In order to enable this functionality in .NET MAUI, you need to set the

Shell.PresentationMode property on the ContentPage that you wish to

display. For example,

Chapter 8 advanCed UI ConCepts

https://learn.microsoft.com/dotnet/maui/user-interface/pop-ups
https://learn.microsoft.com/dotnet/maui/user-interface/pop-ups

223

<ContentPage ...

 Shell.PresentationMode="Modal">

 ...

</ContentPage>

You can then call the Shell.Current.GoToAsync method with the

routing options configured for this page and it will be presented modally

instead of being navigated to.

Pro

• Keeps specific code contained

Con

• Complicates flow of code when handling a return result

 Overlaying a View

Sometimes the most straightforward way to achieve this approach is to add

another view to your page and programmatically change its visibility to

give the impression you have a modal page displaying.

Pro

• Reduces effort of page creation

Con

• Requires specific code in calling view/view model

 Showing a Popup

There is currently no explicit support in .NET MAUI for displaying popups;

however, the functionality does exist on the each of the platforms that .NET

MAUI runs on. You can go to the lengths of implementing your own ability

to display a popup but it would be rather involved. Instead, the .NET MAUI

Community Toolkit provides a Popup class that makes it straightforward for

you to display a popup in your application.

Chapter 8 advanCed UI ConCepts

224

Pros

• Keeps specific code contained

• Provides easy return result handling

For further reading on how to use the toolkit and its Popup class, please

refer to the documentation at https://learn.microsoft.com/dotnet/

communitytoolkit/maui/views/popup.

 The Chosen Approach
Given the pros and cons outlined above, you might guess that you will be

using the Popup class. Nope. Let’s use the overlaying-a-view approach. This

is mainly because it will help to expose you to more .NET MAUI-specific

concepts that I believe will be extremely valuable in building applications.

However, for your own work, use the approach that best fits your scenario.

I would like to emphasize that each of the above options will achieve the

results needed. In fact, there could well be more options that I haven’t

covered, and if you find one, I would love to hear about it.

 Adding Your Overlay View

You need to add a view to your FixedBoardPage.xaml file that will present

the option to the user to add a new widget to the board. Let’s open that file

and add the following code inside the Grid and below the

</layouts:BoardLayout> line:

<BoxView

 BackgroundColor="Black"

 Opacity="0.5"

 IsVisible="{Binding IsAddingWidget}" />

<Border

 IsVisible="{Binding IsAddingWidget}"

Chapter 8 advanCed UI ConCepts

https://learn.microsoft.com/dotnet/communitytoolkit/maui/views/popup
https://learn.microsoft.com/dotnet/communitytoolkit/maui/views/popup

225

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Padding="10">

 <VerticalStackLayout>

 <Label

 Text="Add widget"

 FontSize="20" />

 <Label

 Text="Widget" />

 <Picker

 ItemsSource="{Binding AvailableWidgets}"

 SelectedItem="{Binding SelectedWidget}"

 SemanticProperties.Description="{Binding Text,

Source={x:Reference SelectTheWidgetLabel}}"

 SemanticProperties.Hint="Picker containing the

possible widget types that can be added to the

board. This is a required field." />

 <Label

 Text="Preview" />

 <ContentView

 WidthRequest="250"

 HeightRequest="250" />

 <Button

 Text="Add widget"

 Command="{Binding AddWidgetCommand}"

 SemanticProperties.Hint="Adds the selected widget

to the board. Requires the 'Select the widget'

field to be set." />

 </VerticalStackLayout>

</Border>

Chapter 8 advanCed UI ConCepts

226

The code addition results in two new controls added to the parent

Grids children collection: a BoxView and a Border. The BoxView is added to

provide a semi-transparent overlay on top of the rest of the application and

the Border presents the content for selecting a new widget. Adding them

after the BoardLayout means it will be rendered on top of the BoardLayout.

This ordering is referred to as Z-index and in the majority of .NET MAUI

applications, layouts are determined by the order in which the children

are added to their parent. This means that the later the controls are added,

the higher they will appear visually. You can modify this default behavior

by using the ZIndex property where the higher the value, the higher they

will appear visually. With this knowledge, you can add a binding between

the IsVisible property of your new controls and a property on your view

model, so your view model can control whether you are adding a widget to

the board.

Let’s update your view model.

 Updating Your View Model

Since you turned on compiled bindings in a previous chapter, you will

now see that your code will not compile because you have not defined the

properties you are binding to. So open the FixedBoardPageViewModel.cs

file and make the following additions.

Add the new properties and associated backing fields into your

FixedBoardPageViewModel class.

private int addingPosition;

private string selectedWidget;

private bool isAddingWidget;

private readonly WidgetFactory widgetFactory;

public IList<string> AvailableWidgets => widgetFactory.

AvailableWidgets;

Chapter 8 advanCed UI ConCepts

227

public ICommand AddWidgetCommand { get; }

public ICommand AddNewWidgetCommand { get; }

public bool IsAddingWidget

{

 get => isAddingWidget;

 set => SetProperty(ref isAddingWidget, value);

}

public string SelectedWidget

{

 get => selectedWidget;

 set => SetProperty(ref selectedWidget, value);

}

Update the constructor with the new WidgetFactory dependency and

set the new commands that you have added; changes are in bold.

public FixedBoardPageViewModel(

 WidgetTemplateSelector widgetTemplateSelector,

 WidgetFactory widgetFactory)

{

 WidgetTemplateSelector = widgetTemplateSelector;

 this.widgetFactory = widgetFactory;

 Widgets = new ObservableCollection<IWidgetViewModel>();

 AddWidgetCommand = new Command(OnAddWidget);

 AddNewWidgetCommand = new Command<int>(index =>

 {

 IsAddingWidget = true;

 addingPosition = index;

 });

}

Chapter 8 advanCed UI ConCepts

228

In the previous code section, you set the IsAddingWidget property to

true in order to show the overlay view and you also keep a record of the

index variable, which is the Position property from the Placeholder that

was tapped.

Provide the method implementation for the AddWidgetCommand.

private void OnAddWidget()

{

 if (SelectedWidget is null)

 {

 return;

 }

 var widgetViewModel = widgetFactory.CreateWidgetViewModel

(SelectedWidget);

 widgetViewModel.Position = addingPosition;

 Widgets.Add(widgetViewModel);

 IsAddingWidget = false;

}

Hopefully the majority of what you just added should feel familiar. The

part that most likely doesn’t is the final OnAddWidget method. Let’s take a

deeper look at this implementation.

The SelectedWidget property is bound to your Picker in the view. You

do some initial input validation to make sure that the user has chosen a

type of widget to add; otherwise, you return out of the method.

Next, you use the new dependency (widgetFactory) to create a view

model for you.

Then you set its Position based on which placeholder was tapped

initially.

Chapter 8 advanCed UI ConCepts

229

Then you add your newly created widgetViewModel to the collection of

Widgets so that it can update the UI.

Finally, you set the IsAddingWidget property to false in order to hide

the overlay view again.

 Showing the Overlay View

Now you can add the ability to programmatically show the Border that

allows your users to pick a widget and add it to the board. You already

provided a large amount of this functionality inside your Placeholder and

FixedLayoutManager classes, so you just need to hook up your view model

to this functionality. You have also just set the groundwork in your view

model, so let’s hook the components up. Open the FixedBoardPage.xaml

file again and add the following bold line:

<layouts:BoardLayout

 ItemsSource="{Binding Widgets}"

 ItemTemplateSelector="{Binding WidgetTemplateSelector}">

 <layouts:BoardLayout.LayoutManager>

 <layouts:FixedLayoutManager

 NumberOfColumns="{Binding NumberOfColumns}"

 NumberOfRows="{Binding NumberOfRows}"

 PlaceholderTappedCommand="{Binding

AddNewWidgetCommand}" />

 </layouts:BoardLayout.LayoutManager>

</layouts:BoardLayout>

If you build and run your application, you can see that once you have

created a board, you can now tap or click on the Placeholder and observe

that your overlay displays. You will notice that there is no background

to your overlay, though, so it is really difficult for a user to understand

what to do. You can just set the BackgroundColor of your Border control;

however, this can lead to a number of issues. For example, if you fixed

Chapter 8 advanCed UI ConCepts

230

the BackgroundColor to white and a user switches on dark mode on their

device, they would have a rather unpleasant experience. Figure 8-1 shows

how the application currently looks and highlights the issue.

Figure 8-1. The application showing the overlay with a poor user
experience

Let’s look at how .NET MAUI provides the ability to style your

applications, which includes supporting light and dark modes.

 Styling
.NET MAUI provides the ability to style your applications. Styling in .NET

MAUI offers many advantages:

• Central definition of look and feel

• Less verbosity in your XAML/code

Chapter 8 advanCed UI ConCepts

231

• Style inheritance

Styles in .NET MAUI can be defined at many different

levels and where they are defined is extremely important

when understanding what impact they will have. The two

key distinctions between where they are defined can be

considered as

• Globally : These styles are added to the application’s

resources. You can see an example of this if you open

the App.xaml file. The line in bold shows that another

file (Styles.xaml) containing the styles is loaded into

the Application.Resources property. These styles

apply to all controls in the application unless otherwise

explicitly overridden.

<Application xmlns="http://schemas.microsoft.com/
dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/

winfx/2009/xaml"

 xmlns:local="clr-namespace:WidgetBoard"

 x:Class="WidgetBoard.App">

 <Application.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary

Source="Resources/Styles/Colors.

xaml" />

 <ResourceDictionary Source="Resources/

Styles/Styles.xaml" />

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

 </Application.Resources>

</Application>

Chapter 8 advanCed UI ConCepts

http://schemas.microsoft.com/dotnet/2021/maui
http://schemas.microsoft.com/dotnet/2021/maui

232

• Locally: These styles are added to a view or page

resources property. Styles defined in this way will apply

to all controls that are children of the view or page they

are defined in.

Your global example refers to the Styles.xaml file. This is a file that

comes with a new .NET MAUI project.

 Examining the Default Styles
You can view this file under Resources/styles.xaml. Let’s take a look at

the style for Border in this file:

<Style TargetType="Border">

 <Setter Property="Stroke" Value="{AppThemeBinding

Light={StaticResource Gray200}, Dark={StaticResource

Gray500}}" />

 <Setter Property="StrokeShape" Value="Rectangle"/>

 <Setter Property="StrokeThickness" Value="1"/>

</Style>

The XAML syntax used to define a style looks rather different to

the XAML you have written so far. Let’s break it down to gain a better

understanding of what it all means.

 TargetType

To start, when defining a Style, you must define the TargetType. This

property defines which type of control the style definition targets and

therefore applies to. Defining a Style with only the TargetType property

set will apply to all controls of that type within the scope it is defined. This

is referred to as implicit styling.

Chapter 8 advanCed UI ConCepts

233

If you wish to explicitly style a control, you can also add the x:Key

property. This is referred to as explicit styling. You are then required to set

the Style property on any control that wishes to use this explicit style that

you have created. You will be creating an explicit style in the “Creating a

style” section following shortly.

 ApplyToDerivedTypes

By default, styles created explicitly apply to the type defined in the

TargetType property I just covered. If you wish to allow derived classes to

also inherit this style, you need to set the ApplyToDerivedTypes property

to true.

 Setter

This is the part that looks and feels quite a bit different to the previous

XAML you have written. Since you are not creating controls but defining

how they will look, you must follow this syntax. Let’s look at the following

example:

<Style TargetType="Label">

 <Setter Property="TextColor" Value="Black" />

</Style>

The above is not a style you would include in an application; however,

as an example it allows you to say

The Style for Label controls will set the TextColor property to Black.

Now that you have had a look at some of the key concepts that make up

a style in .NET MAUI, let’s create your own style for your overlay.

Chapter 8 advanCed UI ConCepts

234

 Creating a Style
Let’s view this in action by adding the following to the Styles.xaml file.

Add this just below the existing <Style TargetType=="Border"> entry.

<Style TargetType="Border" x:Key="OverlayBorderStyle">

 <Setter Property="BackgroundColor" Value="White"

/> <Setter Property="Stroke" Value="{AppThemeBinding

Light={StaticResource Gray200}, Dark={StaticResource

Gray500}}" />

 <Setter Property="StrokeShape" Value="Rectangle"/>

 <Setter Property="StrokeThickness" Value="1"/>

</Style>

The above looks very similar to the default Border style already defined

with the addition of the BackgroundColor setter.

It is also worth noting that you only need to set the values that you

wish to change from the implicit style. Therefore, your explicit style can be

reduced down to

<Style TargetType="Border" x:Key="OverlayBorderStyle">

 <Setter Property="BackgroundColor" Value="White" />

</Style>

The Stroke, StrokeShape, and StrokeThickness properties will all be

inherited from the implicit global style. This provides yet another great way

to reduce the amount of code you need to write.

Now you can use this style in your application. Open the

FixedBoardPage.xaml file and add the following line to your Border

element (change in bold):

<Border

 IsVisible="{Binding IsAddingWidget}"

 HorizontalOptions="Center"

Chapter 8 advanCed UI ConCepts

235

 VerticalOptions="Center"

 Padding="10"

 Style="{StaticResource OverlayBorderStyle}">

This will result in your overlay looking far better to the user

now because it is no longer transparent. Also, consider moving the

HorizontalOptions, VerticalOptions, and Padding properties over to the

style definition. Figure 8-2 shows how much better the overlay now looks.

Figure 8-2. The overlay with a much clearer background

What you have done here is considered bad practice, though! You

have hardcoded the BackgroundColor of your Border control in the style

definition so your application will look great on a device running in light

mode. However, as soon as the user switches to dark mode, they will have a

glaring white border showing.

Chapter 8 advanCed UI ConCepts

236

the repercussions of using fixed values can include text or content
disappearing entirely from the application. Imagine that the text color
switches to white in dark mode, with you having hardcoded to a
white background of the overlay view, so the user would see no text
on screen. this would result in a terrible user experience.

.NET MAUI provides the ability to handle the different modes that a

device can run under.

 AppThemeBinding
This is an extremely valuable concept. It allows you to define different

values based on whether the device your application is running on is set

to light or dark mode. Taking the example of the OverlayBorderStyle you

previously created, you can modify the Setter for BackgroundColor to

<Setter Property="BackgroundColor" Value="{AppThemeBinding

Light={StaticResource White}, Dark={StaticResource Black}}" />

Now if a user is running in dark mode, the border overlay will be black

and the text will be visible.

You only need to apply AppThemeBinding to properties that require a

visual distinction between light and dark mode. This typically applies to all

Brush/Color properties; however, you could conceivably decide to change

the StrokeThickness of your Border control, for example.

 Further Reading
It is worth noting that this book is limited to covering the styling options

in XAML. However, .NET MAUI does provide support for CSS-based

stylesheets. Go to https://docs.microsoft.com/dotnet/maui/user-

interface/styles/css.

Chapter 8 advanCed UI ConCepts

https://docs.microsoft.com/dotnet/maui/user-interface/styles/css
https://docs.microsoft.com/dotnet/maui/user-interface/styles/css

237

 Triggers
.NET MAUI provides a concept called triggers. They enable you to further

enhance how your views react to changes in the view model. You are given

the ability to define actions that can modify the appearance of the UI

based on event or data changes. Triggers provide us with another way of

changing the visibility of our border overlay for adding a new widget. The

initial work will appear more verbose in the short term but do bear with

me - it will result in a much better outcome!

There are a number of different types of triggers that can be attached

to a control, each with a varying level of functionality. You will take a brief

look at them and then dig into the one that you need for your scenario.

• Trigger: A Trigger represents a trigger that applies

property values, or performs actions, when the

specified property meets a specified condition.

• DataTrigger: A DataTrigger represents a trigger that

applies property values, or performs actions, when the

bound data meets a specified condition. The Binding

markup extension is used to monitor for the specified

condition.

• EventTrigger: An EventTrigger represents a trigger

that applies a set of actions in response to an event.

Unlike Trigger, EventTrigger has no concept

of termination of state, so the actions will not be

undone once the condition that raised the event is no

longer true.

• MultiTrigger: A MultiTrigger represents a trigger that

applies property values, or performs actions, when a set

of conditions are satisfied. All the conditions must be

true before the Setter objects are applied.

Chapter 8 advanCed UI ConCepts

238

 Creating a DataTrigger
In this chapter, you have added your overlay Border control and are

currently changing its visibility through a binding direct to the IsVisible

property. You can write this differently with a DataTrigger. Let’s open the

FixedBoardPage.xaml file and modify the Border control to the following:

<Border

 IsVisible="False"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Padding="10"

 Style="{StaticResource OverlayBorderStyle}">

 <Border.Triggers>

 <DataTrigger

 TargetType="Border"

 Binding="{Binding IsAddingWidget}"

 Value="True">

 <Setter

 Property="IsVisible"

 Value="True" />

 </DataTrigger>

 </Border.Triggers>

Notice that the syntax for a Trigger is very similar to a Style. You

will also notice that it looks a lot more verbose than your original simple

binding approach. If you simply want to control the IsVisible property of

a control, a trigger is overkill, in my opinion. You will not be ending here,

though, so bear with me. First, let’s break down what you have added and

then look to how you can enhance it.

Chapter 8 advanCed UI ConCepts

239

First, you modify the IsVisible property binding to false. This is the

initial state of the visibility of your view.

IsVisible="False"

Next, you add the DataTrigger to the Border.Triggers property.

<DataTrigger

 TargetType="Border"

 Binding="{Binding IsAddingWidget}"

 Value="True">

Much like with styles, you define the type of control the DataTrigger

applies to. You also set the Binding property to bind to the IsAddingWidget

property on your view model. Finally, you set the Value property of true.

This all means that when the IsAddingWidget property value is set to true,

the contents of the DataTrigger will be applied.

This leads you onto the final change, which is the setter.

<Setter

 Property="IsVisible"

 Value="True" />

To repeat myself, all of this is rather verbose up until you consider

that you can define actions that can be performed when your state is

entered/exited.

 EnterActions and ExitActions
As an alternative to simply defining values for properties to be set when

the IsAddingWidget property value becomes true, like in your previous

example, you can define actions that will be performed when the value

enters or exits a specific state. What exactly does this mean? Let’s take a

look at an example. You can rewrite the trigger usage from the previous

example as

Chapter 8 advanCed UI ConCepts

240

<DataTrigger

 TargetType="Border"

 Binding="{Binding IsAddingWidget}"

 Value="True">

 <DataTrigger.EnterActions>

 <!—-action to perform-->

 </DataTrigger.EnterActions>

 <DataTrigger.ExitActions>

 <!—-action to perform-->

 </DataTrigger.ExitActions>

</DataTrigger>

Given the above, you can state the following:

When the property (IsAddingWidget) in the Binding enters the state

defined in Value (True), the EnterActions will be performed.

When the property (IsAddingWidget) in the Binding exits the state

defined in Value (False), the ExitActions will be performed.

You need to define an action to be performed for these scenarios now.

 Creating a TriggerAction
.NET MAUI provides the TriggerAction<T> base class that allows you to

define an action that will be performed in the enter or exit scenario. This

enables you to build a more complex behavior that can be performed when

a value changes. When creating a trigger action, you can use the base class

TriggerAction<T> provided by .NET MAUI and then you need to override the

Invoke method. It is this method that defines what action will be performed

when the value changes. Let’s create your own action that you can use.

Chapter 8 advanCed UI ConCepts

241

 Creating ShowOverlayTriggerAction

First, you need to find a place to locate this action. Create a new folder

in the root project called Triggers and then add a new class file called

ShowOverlayTriggerAction.cs. Then you can adding the following code:

public class ShowOverlayTriggerAction :

TriggerAction<VisualElement>

{

 public bool ShowOverlay { get; set; }

 protected override void Invoke(VisualElement sender)

 {

 sender.IsVisible = ShowOverlay;

 }

}

This code doesn’t do too much right now. It will just change the

IsVisible property of the control it is attached to when the value changes.

Now you need to attach it to your AddWidgetFrame control.

 Using ShowOverlayTriggerAction

You can now add in the action to perform sections that you left when

first adding a DataTrigger to your control. Modify your code in the

FixedBoardPage.xaml file, with the changes in bold.

<DataTrigger

 TargetType="Border"

 Binding="{Binding IsAddingWidget}"

 Value="True">

 <DataTrigger.EnterActions>

 <triggers:ShowOverlayTriggerAction ShowOverlay="True" />

 </DataTrigger.EnterActions>

Chapter 8 advanCed UI ConCepts

242

 <DataTrigger.ExitActions>

 <triggers:ShowOverlayTriggerAction ShowOverlay="False" />

 </DataTrigger.ExitActions>

</DataTrigger>

This can now be interpreted as, when the IsAddingWidget property

value changes to true, a ShowOverlayTriggerAction will be invoked with

ShowOverlay set to true. This will result in the AddWidgetFrame control

becoming visible. Then, when the IsAddingWidget property value changes to

false, a ShowOverlayTriggerAction will be invoked with ShowOverlay set to

false. This will result in the AddWidgetFrame control becoming invisible.

It is also worth noting that you can define triggers in styles, meaning

this type of functionality can be reused multiple times without having to

duplicate the code.

Let’s take a break from triggers for now to take a look at how you can

animate controls in .NET MAUI. Then you will return and combine triggers and

animations together to really show off the power of the action you just created.

 Further Reading
You have only scratched the surface on the functionality that

can be achieved with triggers. I recommend checking out the

Microsoft documentation to see more ways triggers can be useful:

https://learn.microsoft.com/dotnet/maui/fundamentals/triggers.

Animations
This feels like it could be a challenging topic to show off in printed form

given the dynamic nature of an animation but it is one of my favorite topics

so I am going to show it off as best I can. Animations provide you with the

building blocks to make your applications feel much more natural and

organic.

Chapter 8 advanCed UI ConCepts

https://learn.microsoft.com/dotnet/maui/fundamentals/triggers

243

.NET MAUI provides two main ways to perform an animation against

any VisualElement. You will take a look at each approach and how some

animations can be built using them.

 Basic Animations
.NET MAUI ships with a set of prebuilt animations available via extension

methods. These methods provide the ability to rotate, translate, scale, and

fade a VisualElement over a period of time. Each of these methods have a

To suffix, for example ScaleTo. It is worth noting that each of the methods

for animating are asynchronous and will therefore need to be awaited

if you wish to know when they have finished. The full list of animation

methods are as follows:

Method Description

FadeTo animates the Opacity property of a VisualElement

RelScaleTo applies an animated incremental increase or decrease to the

Scale property of a VisualElement

RotateTo animates the Rotation property of a VisualElement

RelRotateTo applies an animated incremental increase or decrease to the

Rotation property of a VisualElement

RotateXTo animates the RotationX property of a VisualElement

RotateYTo animates the RotationY property of a VisualElement

ScaleTo animates the Scale property of a VisualElement

ScaleXTo animates the ScaleX property of a VisualElement

ScaleYTo animates the ScaleY property of a VisualElement

TranslateTo animates the TranslationX and TranslationY properties of

a VisualElement

Chapter 8 advanCed UI ConCepts

244

The overlay view you added in the previous section just shows

immediately and disappears immediately based on the IsVisible binding

you created. What if you animate your overlay to grow from nothing up to

the required size? Don’t worry about adding this code to your application

just yet. You will look over some examples and then add it to Visual Studio

in the “Combining Triggers and Animations” section. The main reason for

not adding it immediately is because the animations API relies on direct

access to the view-related information, and this breaks the MVVM pattern.

However, once you look over how to animate, you can take this learning

and add it into your ShowOverlayTriggerAction implementation.

The code to animate a VisualElement is surprisingly small, as you can

see in the following example:

AddWidgetFrame.Scale = 0;

await AddWidgetFrame.ScaleTo(1, 500);

First, you make sure that the AddWidgetFrame has a Scale of 0 and then

you call ScaleTo, telling it to grow to a Scale of 1 (which is 100%) over a

duration of 500 milliseconds.

all of the prebuilt animation methods apart from the ones that start
with Rel perform the animation against the VisualElements
existing value (e.g., for ScaleTo it will change from the existing
Scale property value). this means that it is entirely possible that no
animation will take place if both the existing property and the value
provided to the method are the same.

Chapter 8 advanCed UI ConCepts

245

 Combining Basic Animations
It is entirely possible to combine the basic animations to provide much

more complex animations. There are two main ways of achieving this.

 Chaining Animations

You can chain animations together into a sequence. A common example

here is to provide the appearance of a tile being flipped over and giving a

3D effect to the user. The key detail when chaining animations is that you

await each animation method call to make sure that one animation has

finished before the next one begins.

await frame.RotateXTo(90, 100);

frame.Content.IsVisible = tileViewModel.IsSelected;

await frame.RotateXTo(0, 100);

 Concurrent Animations

In a similar way to chaining, you can perform multiple animations

concurrently by simply not awaiting each method call or alternatively

awaiting all of the calls.

AddWidgetFrame.Scale = 0;

AddWidgetFrame.IsVisible = true;

AddWidgetFrame.Opacity = 0;

await Task.WhenAll(

 AddWidgetFrame.FadeTo(1),

 AddWidgetFrame.ScaleTo(1, 500));

In fact, this animation looks like a very good contender for your actual

implementation in the ShowOverlayTriggerAction implementation.

Chapter 8 advanCed UI ConCepts

246

 Cancelling Animations
Providing the ability to cancel an animation can be an extremely valuable

feature for a user. Quite often in applications, and predominantly games,

an animation will show when an action completes. Animations like this if

blocking can become tiresome for users especially if the same animation

repeats frequently. Therefore, a common pattern to follow is when the user

taps on the control being animated, it cancels the animation.

If you wish to cancel an animation, you can call the CancelAnimations

extension method on the VisualElement that you are animating.

AddWidgetFrame.CancelAnimations();

 Easings
Animations in general will move mechanically as a computer changes a

value over time. Easings allow you to move away from a linear update of

those values in order to provide a much more organic and natural motion.

.NET MAUI offers a whole host of prebuilt easings, plus there is even the

ability to build your own if you really wish to do so. Let’s take a look at the

options that .NET MAUI provides out of the box:

Easing function Description

BounceIn Bounces the animation at the beginning

BounceOut Bounces the animation at the end

CubicIn slowly accelerates the animation

CubicInOut accelerates the animation at the beginning and decelerates the

animation at the end

CubicOut Quickly decelerates the animation

Linear Uses a constant velocity and is the default easing function

Chapter 8 advanCed UI ConCepts

247

Easing function Description

SinIn smoothly accelerates the animation

SinInOut smoothly accelerates the animation at the beginning and

smoothly decelerates the animation at the end

SinOut smoothly decelerates the animation

SpringIn Causes the animation to very quickly accelerate towards the end

SpringOut Causes the animation to quickly decelerate towards the end

As a general guide, an easing ending with the In suffix will start the

animation slowly and speed up as it comes to a finish. An easing ending

with the Out suffix will start off quickly and slow down towards the end.

 Complex Animations
.NET MAUI provides the Animation class. This enables you to define

complex animation sequences. In fact, the prebuilt animations that you

covered in the “Basic Animations” section are built using this class inside

the .NET MAUI code. Using this class, it is possible to animate any visual

property of a VisualElement; for example, you can animate a change in

BackgroundColor or TextColor.

The Animation class provides the ability to define simple animations

through to really quite complex animations. Take a quick look at how

the ScaleTo animation can be implemented to understand what the

class offers.

 Recreating the ScaleTo Animation

You can also animate the scale of your AddWidgetFrame control with the

following:

public void ScaleTo()

Chapter 8 advanCed UI ConCepts

248

{

 var animation = new Animation(v => AddWidgetFrame.Scale =

v, 0, 1);

 animation.Commit(AddWidgetFrame, "ScaleTo");

}

When creating an instance of the Animation class, you provide the

following parameter:

v => AddWidgetFrame.Scale = v

This is the callback parameter and it allows you to define what

property is set during the animation.

The next parameter is start. This is the starting value that will be

passed into the callback lambda you defined in the first parameter. In your

example, you set it to 0, meaning the AddWidgetFrame control will not be

visible because it has a scale of 0.

The final parameter you pass in is end. This is the resulting value that

will be passed into the callback lambda.

The animation will only begin when you call the Commit method. This

method also allows you to define how long it should take as well as how

often to call the callback parameter you defined.

animation.Commit(AddWidgetFrame, "ScaleTo", length: 2000);

This code shows the simplest type of animation you can create

within .NET MAUI. It is entirely possible to create much more complex

animations. To achieve this, you need to create an animation and then

add child animations in order to define the changes for each property and

different sequences in the animation.

Chapter 8 advanCed UI ConCepts

249

 Creating a Rubber Band Animation

As an example on how to build a complex animation, I would like to show

you one of my favorite animations, the rubber band animation. This

animation simulates the VisualElement being pulled horizontally, letting

go, and then bouncing back to its original shape just like a rubber band

would. Figure 8-3 shows what it would look like, albeit in motion.

Figure 8-3. The distinguishing frames from the animation you will
be building

Let’s build the animation with the Animation class using the

understanding you gained in the previous section.

public void Rubberband(VisualElement view)

{

 var animation = new Animation();

 animation.Add(0.00, 0.30, new Animation(v =>

view.ScaleX = v, 1.00, 1.25));

 animation.Add(0.00, 0.30, new Animation(v =>

view.ScaleY = v, 1.00, 0.75));

Chapter 8 advanCed UI ConCepts

250

 animation.Add(0.30, 0.40, new Animation(v =>

view.ScaleX = v, 1.25, 0.75));

 animation.Add(0.30, 0.40, new Animation(v =>

view.ScaleY = v, 0.75, 1.25));

 animation.Add(0.40, 0.50, new Animation(v =>

view.ScaleX = v, 0.75, 1.15));

 animation.Add(0.40, 0.50, new Animation(v =>

view.ScaleY = v, 1.25, 0.85));

 animation.Add(0.50, 0.65, new Animation(v =>

view.ScaleX = v, 1.15, 0.95));

 animation.Add(0.50, 0.65, new Animation(v =>

view.ScaleY = v, 0.85, 1.05));

 animation.Add(0.65, 0.75, new Animation(v =>

view.ScaleX = v, 0.95, 1.05));

 animation.Add(0.65, 0.75, new Animation(v =>

view.ScaleY = v, 1.05, 0.95));

 animation.Add(0.75, 1.00, new Animation(v =>

view.ScaleX = v, 1.05, 1.00));

 animation.Add(0.75, 1.00, new Animation(v =>

view.ScaleY = v, 0.95, 1.00));

 animation.Commit(view, "RubberbandAnimation",

length: 2000);

}

Yes, I know this looks quite different to the previous animation you

built. Let’s deconstruct the parts that feel unfamiliar.

animation.Add(0.00, 0.30, new Animation(v => view.ScaleX = v,

1.00, 1.25));

animation.Add(0.00, 0.30, new Animation(v => view.ScaleY = v,

1.00, 0.75));

Chapter 8 advanCed UI ConCepts

251

The two lines above define the first transition in your animation. You

see that the ScaleX property will change from 1.00 (100%) to 1.25 (125%)

and the ScaleY property will change from 1.00 (100%) to 0.75% (75%) of

the control’s current size. This provides the appearance that the view is

being stretched. The key new part for you is the use of the Add method and

the first two parameters. This allows you to add the animation defined

as the third parameter as a child of the animation it is being added to.

The result is that when you Commit the main animation, all of the child

animations will be executed based on the sequence you defined in these

two first parameters. Let’s cover what these parameters mean.

The first parameter is the beginAt parameter. This determines when

the child animation being added will begin during the overall animation

sequence. So, in the example of your first line, you define 0.00, meaning it

will begin as soon as the animation starts.

The second parameter is the finishAt parameter. This determines

when the child being added will finish during the overall animation

sequence. So, in the example of your first line, you define 0.30, meaning it

will end 30% into the animation sequence.

Both the beginAt and finishAt parameters should be supplied as
a value between 0 and 1 and considered a percentage in the overall
animation sequence. You will also notice that I tend to include the
decimal places even when they are 0; this really makes it easier to
read the animation sequence as it ensures that all of the code is
indented in the same way.

Finally, you call the Commit method as before to begin the animation

sequence.

Chapter 8 advanCed UI ConCepts

252

Now that you have covered building animations and some possible

examples of using them, let’s combine them with your trigger knowledge

to really make your AddWidgetFrame look great when it becomes visible.

 Combining Triggers and Animations
Animations are a really powerful tool but they require view knowledge.

This is where having the ability to trigger them from a trigger allows you

to keep with the MVVM approach and keep your view and view model

cleanly separated.

Now that you have covered how to apply an animation to your overlay

view and looked at separating view from view model through the use of

triggers, you can combine the two together to trigger the animation and

keep the separation.

Let’s return to the ShowOverlayTriggerAction.cs file and add in

the animation from the “Concurrent animations” section (changes are

in bold).

namespace WidgetBoard.Triggers;

public class ShowOverlayTriggerAction :

TriggerAction<VisualElement>

{

 public bool ShowOverlay { get; set; }

 protected async override void Invoke(VisualElement sender)

 {

 if (ShowOverlay)

 {

 sender.Scale = 0;

 sender.IsVisible = true;

 sender.Opacity = 0;

Chapter 8 advanCed UI ConCepts

253

 await Task.WhenAll(

 sender.FadeTo(1),

 sender.ScaleTo(1, 500, Easing.SpringOut));

 }

 else

 {

 await sender.ScaleTo(0, 500, Easing.SpringIn);

 sender.Opacity = 0;

 sender.IsVisible = false;

 }

 }

}

The trigger action now provides two key visual changes when the

ShowOverlay property value changes. When the property becomes true,

the AddWidgetFrame control will both fade in over 250ms and scale up from

0 to 1 over 500ms. You also make use of the Easing.SpringOut option to

give a slightly more fluid feel to the changes in the animation.

When ShowOverlay becomes false, you just reverse the scale

animation to show it shrink. Once the animation has completed, you then

make sure that the control is no longer visible.

This concludes the sections on triggers and animations. You have seen

how they can help to both simplify the views and view models you create

while at the same time provide some really great functionality to make

your applications feel alive. I would recommend taking the application for

a spin and observing the animations in action, sadly we can’t show that

functionality off in printed form.

Chapter 8 advanCed UI ConCepts

254

 Summary
In this chapter, you have

• Provided the ability to add a widget to a board

• Covered the different options available when showing

an overlay

• Explored how you can define styling information for

your application

• Learned how to handle devices running in light and

dark modes

• Learned how to apply triggers to enhance your UI

• Covered how to animate parts of your application

• Explored what happens when you combine triggers

and animations

In the next chapter, you will

• Learn about the different types of local data.

• Discover what .NET MAUI offers in terms of local file

storage locations and when to use each one.

• Gain an understanding of database technologies and

apply two different options.

• Modify your application to save and load the boards

your users create.

• Gain an understanding of the options for storing small

bits of data or preferences.

• Add the ability to record the last opened board.

• Gain an understanding of the options for storing small

bits of data securely or SecureStorage.

Chapter 8 advanCed UI ConCepts

255

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch08.

 Extra Assignment
I think you can take these animations to another level and really make your

application feel alive! Try the following possible extensions!

 Animate the BoxView Overlay
You’ve added an animation to present your Border with the widget

selection details inside. A nice further enhancement on this would be

to also animate the BoxView that you are using as your semi-transparent

overlay. I personally think a nice FadeTo animation would work well but I

would love to hear what works best for you.

 Animate the New Widget
To really make the application feel alive, you could consider animating

each widget as it is added onto the board. You have the Widgets_

ChildAdded method inside your BoardLayout.xaml.cs file where you set

the Position. You could consider expanding this method implementation

to also animate the new widget. Perhaps you could make the new widget

scale up similar to how your Border presents.

Chapter 8 advanCed UI ConCepts

https://github.com/Apress/Introducing-MAUI/tree/main/ch08
https://github.com/Apress/Introducing-MAUI/tree/main/ch08

259

CHAPTER 9

Local Data
In this chapter, you will learn about the different types of local data, what

they are best used for, and how to apply them in your application. The

options will include understanding when and where to store data that

needs to be kept secure.

You will modify your application to store the boards that your user

creates so that they can be displayed in the slide-out menu and also be

opened. You will also record the last opened board so that when returning

to the application this board will be presented to the user.

 What Is Local Data?
When building an application, whether it is targeted for a single or

multiple platforms, you will very likely need to store some data about the

state of the application. The types of data you will need to store can vary

between storing “simple” settings, caching files/data, or even storing a

full set of data inside a local database. These types of data are called local

data since they live on the device that your application is running on. Data

that comes from a remote endpoint is called remote data and this will be

covered in Chapter 10.

.NET MAUI provides multiple options when you want to store data

locally on a device. Each option is better suited to a specific purpose and

size of data. Here is a brief overview of those options:

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_9

https://doi.org/10.1007/978-1-4842-9234-1_10
https://doi.org/10.1007/978-1-4842-9234-1_9#DOI

260

• File system: Stores loose files directly on the device

through file system access

• Database: Stores data in a file optimized for access

• Preferences: Stores data in key-value pairs

• Secure storage: Stores data in key-value pairs like

preferences but stores them in a secure location on

the device

 File System
.NET MAUI provides some helpful abstractions over the multiple platforms

that it supports. One such abstraction is the FileSystem helper class. It

comes from the old Xamarin.Essentials library and now is a core part of

.NET MAUI. It allows you to obtain useful bits of information to help with

common tasks involving the file system.

Let’s take a look at the properties the FileSystem class offers you as it

helps to know when they should be used and for what type of data.

 Cache Directory
You have no need to cache anything as part of the application we’re

building in this book; however, I feel this is a valuable piece of information

to mention. This property enables you to get the most appropriate location

to store cache data. You can store any type of data in this directory.

Typically you store it when you want to persist it longer than just holding

it in memory. Your application should not rely on this data to function

because the operating system can and will clear this storage down.

Chapter 9 LoCaL Data

261

 App Data Directory
The AppDataDirectory property provides the app's top-level directory

for storing any files. These files are backed up with the operating system

syncing framework.

This property is precisely what you are going to need to use when

creating and opening your database files in the next section. So, let’s set up

the bits that you will need.

The FileSystem helper class provides a set of static properties,

meaning you can simply write

var appDataDirectory = FileSystem.AppDataDirectory;

However, as you have discovered already in this book, it does not

lend itself well to unit testing. Instead, you can rely on the IFileSystem

interface and register the .NET MAUI implementation with your app

builder. Let’s open up your MauiProgram.cs file and add the following line

into the CreateMauiApp method:

builder.Services.AddSingleton(FileSystem.Current);

This will register the FileSystem.Current property as the IFileSystem

interface so whenever you state that your classes depend on IFileSystem,

they will be provided with the FileSystem.Current instance.

Now that you have covered FileSystem and are ready to create your

database files, you can learn about database access in .NET MAUI.

 Database
A database is a collection of data that is organized. In a database, data

is organized or structured into tables consisting of rows and columns.

Databases are a much better approach than storing data in files. The

ability to index the data makes it easier to query and manipulate. There

Chapter 9 LoCaL Data

262

are different kinds of databases, ranging from relational databases to

distributed databases, cloud databases, and NoSQL databases. In this

chapter, you will focus on relational and NoSQL databases.

Every application I have ever built has required some form of database,

and I suspect that most of the applications that you will build will also

require one. A database really provides value when you need to link data

together or filter and sort the data in an efficient manner.

In your application, you are going to provide the ability to save a

board and return a list of boards that the user has created. To abstract this

slightly, you will be using the repository pattern. You will also provide the

ability to store where the widgets have been placed so that they will be

remembered when a user loads the board back up. Figure 9-1 shows the

entity relationship diagram for the database you will be creating.

Figure 9-1. The entity relationship diagram of your database models

 Repository Pattern
The repository pattern allows you to hide all the logic that deals with

creating, reading, updating, and deleting (also known as CRUD) entities

within your application. By using this pattern, it allows you to keep all

the knowledge around how entities are loaded, saved, and more in a

single place. This has the added benefit that if you want to completely

change where your data is loaded from, you only need to change the

implementation inside the repository. It also allows you to provide mock

implementations when wanting to perform things like unit testing and you

don’t want to have to rely on an actual database existing.

Chapter 9 LoCaL Data

263

Let’s add a new folder called Data and then add an interface for your

repository to that folder called IBoardRepository. Change the code to look

as follows:

using WidgetBoard.Models;

namespace WidgetBoard.Data;

public interface IBoardRepository

{

 void CreateBoard(Board board);

 void CreateBoardWidget(BoardWidget boardWidget);

 void DeleteBoard(Board board);

 IReadOnlyList<Board> ListBoards();

 Board LoadBoard(int boardId);

 void UpdateBoard(Board board);

}

Now that you have defined your interface, you can update your

application’s codebase to use this interface when loading and saving

your boards.

 Creating a Board

The first place to update is your BoardDetailsPageViewModel class, which

provides support for creating a new board. Open up the class and make the

following modifications.

Add a new IBoardRepository field.

private readonly IBoardRepository boardRepository;

Chapter 9 LoCaL Data

264

Assign a valid instance to the boardRepository field; the modifications

are in bold.

public BoardDetailsPageViewModel(

 ISemanticScreenReader semanticScreenReader,

 IBoardRepository boardRepository)

{

 this.semanticScreenReader = semanticScreenReader;

 this.boardRepository = boardRepository;

 SaveCommand = new Command(

 () => Save(),

 () => !string.IsNullOrWhiteSpace(BoardName));

}

Use the boardRepository field when saving; the modifications are

in bold.

private async void Save()

{

 var board = new Board

 {

 Name = BoardName,

 NumberOfColumns = NumberOfColumns,

 NumberOfRows = NumberOfRows

 };

 this.boardRepository.CreateBoard(board);

 semanticScreenReader.Announce($"A new board with the name

{BoardName} was created successfully.");

 await Shell.Current.GoToAsync(

 "fixedboard",

Chapter 9 LoCaL Data

265

 new Dictionary<string, object>

 {

 { "Board", board}

 });

}

 Listing Your Boards

In the previous chapters, you just added a fixed board and added it to the

Boards collection in your AppShellViewModel class. Now you are going to

modify it so that it can be populated by the boards the user creates and you

store in the database. Open the AppShellViewModel.cs file and make the

following changes.

Add a field for your IBoardRepository.

private readonly IBoardRepository boardRepository;

Modify your constructor to use the IBoardRepository as a

dependency.

public AppShellViewModel(

 IBoardRepository boardRepository)

{

 this.boardRepository = boardRepository;

}

Load the list of boards and populate your collection.

public void LoadBoards()

{

 var boards = this.boardRepository.ListBoards();

 foreach (var board in boards)

 {

Chapter 9 LoCaL Data

266

 Boards.Add(board);

 }

}

There is a further change that you need to make in order to allow your

AppShellViewModel class to actually load the board. You need to hook into

some of the lifecycle events that apply to Pages in .NET MAUI. AppShell

inherits from Page, which means you get full access to those lifecycle

events. The specific event you care about now is the OnAppearing event. It

is called when your page is displayed on screen.

the OnAppearing method can be called multiple times during the
lifetime of the page, so it is recommended to make your method
idempotent or check whether it has been called before in order to
prevent odd behavior when called a second time.

OnAppearing is a great choice for your scenario because it will result

in your code being executed every time the view appears; this can be

every time your flyout menu is opened. This provides you with the ability

to refresh your list of boards every time the user opens the flyout menu.

The main reason it is fine for your scenario is because you will be loading

data from a local database with a limited number of boards to load, so it

will be pretty quick. In scenarios where you are loading from an external

webservice, it can take much more time to perform it and therefore

you may wish to maintain some level of caching and prevent calling

the webservice every time the view appears. A better option under this

scenario and probably most typical scenarios in .NET MAUI applications is

to use the OnNavigatedTo method.

Let’s open your AppShell.xaml.cs file and make use of this

lifecycle method.

protected override void OnAppearing()

Chapter 9 LoCaL Data

267

{

 base.OnAppearing();

 ((AppShellViewModel)BindingContext).LoadBoards();

}

When the method gets called, you use the newly added LoadBoards

method on your view model. The main reason you hook into this lifecycle

event is when you eventually try to navigate to the last used board in the

LoadBoards method, you need to make sure the application has started

rendering; otherwise the navigation will fail.

 Loading a Board

Up until this point you have relied on passing the Board into the

FixedBoardPageViewModel and displaying the details of that. The loading

process would become rather inefficient if you were to load all boards and

the associated BoardWidgets when listing all boards in the system, so you

need to do this in a two-step process: first, list the boards as you did in the

previous section and, second, load the board in the view model. This will

be a slightly involved process so let’s walk through it step-by-step. Open

the FixedBoardPageViewModel.cs file and make the following changes

Add the following fields to store the board that is loaded and the

repository to perform the load:

private Board board;

private readonly IBoardRepository boardRepository;

In your constructor, add the board repository dependency and assign

to the newly created field. Changes are in bold.

public FixedBoardPageViewModel(

 WidgetTemplateSelector widgetTemplateSelector,

 WidgetFactory widgetFactory,

Chapter 9 LoCaL Data

268

 IBoardRepository boardRepository)

{

 WidgetTemplateSelector = widgetTemplateSelector;

 this.widgetFactory = widgetFactory;

 this.boardRepository = boardRepository;

 Widgets = new ObservableCollection<IWidgetViewModel>();

 AddWidgetCommand = new Command(OnAddWidget);

 AddNewWidgetCommand = new Command<int>(index =>

 {

 IsAddingWidget = true;

 addingPosition = index;

 });

}

Now let’s load the Board inside your ApplyQueryAttributes method.

The changes are in bold.

public void ApplyQueryAttributes(IDictionary<string,

object> query)

{

 var boardParameter = query["Board"] as Board;

 board = boardRepository.LoadBoard(boardParameter.Id);

 BoardName = board.Name;

 NumberOfColumns = board.NumberOfColumns;

 NumberOfRows = board.NumberOfRows;

 foreach (var boardWidget in board.BoardWidgets)

 {

Chapter 9 LoCaL Data

269

 var widgetViewModel = widgetFactory.CreateWidgetViewMod

el(boardWidget.WidgetType);

 widgetViewModel.Position = boardWidget.Position;

 Widgets.Add(widgetViewModel);

 }

}

Next, add the ability to save a widget’s position on the board.

private void SaveWidget(IWidgetViewModel widgetViewModel)

{

 var boardWidget = new BoardWidget

 {

 BoardId = board.Id,

 Position = widgetViewModel.Position,

 WidgetType = widgetViewModel.Type

 };

 boardRepository.CreateBoardWidget(boardWidget);

}

The above method will create a new BoardWidget model class and save

it into the database for you.

Finally, you need to call the SaveWidget method. For the purpose of

your application, you are going to provide an auto save feature, so each

time a widget is added to the board, you will save it immediately to the

database. In order to achieve this, you just need to add the bold line into

your AddWidget method.

private void OnAddWidget()

{

 if (SelectedWidget is null)

Chapter 9 LoCaL Data

270

 {

 return;

 }

 var widgetViewModel = widgetFactory.CreateWidgetViewModel(S

electedWidget);

 widgetViewModel.Position = addingPosition;

 Widgets.Add(widgetViewModel);

 SaveWidget(widgetViewModel);

 IsAddingWidget = false;

}

You can’t run your code yet because you don’t have an implementation

of your IBoardRepository interface so let’s look at two different database

options that will allow you to provide an implementation for your

IBoardRepository.

 SQLite
SQLite is a lightweight cross-platform database that has become the

go-to option for providing database support in mobile applications. The

database is stored locally in a single file on the device's file system.

SQLite is supported natively by Android and iOS; however, they require

access via C++. There are several C# wrappers around the native SQLite

engine that .NET developers can use. The most popular choice is the C#

wrapper called SQLite-net.

Chapter 9 LoCaL Data

271

 Installing SQLite-net

In order to install and use Sqlite-net, you need to install the NuGet package

called Sqlite-net-pcl. You may notice the extra -pcl suffix in the NuGet

package name and find this confusing. This is an artifact of an old piece

of technology used in Xamarin.Forms applications. The name has been

retained but don’t worry; this is the correct package for adding to a .NET

MAUI project.

You can do this by following these steps.

 1. Right-click the WidgetBoard project.

 2. Click Manage NuGet Packages.

 3. In the Search field, enter Sqlite-net-pcl.

 4. Select the Sqlite-net-pcl package and select Add
Package.

 5. A confirmation dialog will show. Review and accept

the license details if you are happy.

 6. Repeat the above steps for the following packages:

 a. SQLitePCLRaw.bundle_green

 b. SQLitePCLRaw.provider.dynamic_cdecl

 c. SQLitePCLRaw.provider.sqlite3

 Using Sqlite-net

The first step is to create your IBoardRepository implementation. Add a

new class file called SqliteBoardRepository in your Data folder, and make

it implement your IBoardRepository interface.

using SQLite;

using WidgetBoard.Models;

Chapter 9 LoCaL Data

272

namespace WidgetBoard.Data;

public class SqliteBoardRepository : IBoardRepository

{

 public void CreateBoard(Board board)

 {

 throw new NotImplementedException();

 }

 public void CreateBoardWidget(BoardWidget boardWidget)

 {

 throw new NotImplementedException();

 }

 public void DeleteBoard(Board board)

 {

 throw new NotImplementedException();

 }

 public IReadOnlyList<Board> ListBoards()

 {

 throw new NotImplementedException();

 }

 public Board LoadBoard(int boardId)

 {

 throw new NotImplementedException();

 }

 public void UpdateBoard(Board board)

 {

 throw new NotImplementedException();

 }

}

Chapter 9 LoCaL Data

273

You also need to register your implementation with the app builder in

MauiProgram.cs. You can add the following line

builder.Services.AddTransient<IBoardRepository,

SqliteBoardRepository>();

 Connecting to an SQLite database

As mentioned, an SQLite database is contained within a single file, so

when connecting to the database you need to provide the path to that file.

You can do this through the SqliteConnection class. Note that if you wish

to make use of async/await, you can use the SqliteAsyncConnection class.

Let’s edit your repository class to support opening a connection to your

database.

Add a field for the database connection.

private readonly SQLiteConnection database;

Add a constructor to open the connection.

public SqliteBoardRepository(IFileSystem fileSystem)

{

 var dbPath = Path.Combine(fileSystem.AppDataDirectory,

"widgetboard_sqlite.db");

 database = new SQLiteConnection(dbPath);

}

Here you make use of the IFileSystem implementation you registered

in the previous section. Then you make use of it to determine where to

store your database file. Finally, you open a connection using the path to

your database file. Note that if the file does not exist, one will be created

for you.

Chapter 9 LoCaL Data

274

 Mapping Your Models

Sqlite-net provides the ability to define mapping information in your

model classes that will ultimately be used to create your table definition

automatically for you. There is a rich set of options ranging from setting

a PrimaryKey through to defining if a column has a MaxLength or even if

it needs to be Unique. Open your Board.cs file and make the following

modifications in bold:

using SQLite;

namespace WidgetBoard.Models;

public class Board

{

 [PrimaryKey, AutoIncrement]

 public int Id { get; set; }

 public string Name { get; init; }

 public int NumberOfColumns { get; init; }

 public int NumberOfRows { get; init; }

}

You add a new Id column, marking it as the PrimaryKey, and state that

it will AutoIncrement, meaning that Sqlite will manage the id generation

for you.

Your second model class is in the BoardWidget.cs file. This represents

each widget that is placed on the board and where it is positioned.

using SQLite;

namespace WidgetBoard.Models;

Chapter 9 LoCaL Data

275

public class BoardWidget

{

 [PrimaryKey, AutoIncrement]

 public int Id { get; set; }

 public int BoardId { get; set; }

 public int Position { get; set; }

 public string WidgetType { get; set; }

}

 Creating Your Tables

You can inform the Sqlite-net connection to create a table for you. This

can be done by calling the CreateTable<T> method and passing the

appropriate model type. Note that CreateTable is idempotent, so unless

you change your model, calling CreateTable a second time will have

no impact. You can modify your SqliteBoardRepository to call the

CreateTable method in its constructor as follows; changes in bold.

public SqliteBoardRepository(IFileSystem fileSystem)

{

 var dbPath = Path.Combine(fileSystem.AppDataDirectory,

"widgetboard_sqlite.db");

 connection = new SQLiteConnection(dbPath);

 connection.CreateTable<Board>();

 connection.CreateTable<BoardWidget>();

}

Chapter 9 LoCaL Data

276

 Inserting into an SQLite Database

You can now add in the ability to insert a board into your database by

supplying the following implementation into the CreateBoard method:

public void CreateBoard(Board board)

{

 connection.Insert(board);

}

 Reading a Collection from an SQLite Database

You only need to return a list of the boards your user has created in the

application.

public IReadOnlyList<Board> ListBoards()

{

 return connection.Table<Board>()

 .ToList();

}

Perhaps you should consider sorting these boards alphabetically.

Sqlite-net offers a rich set of functionality when querying data in the

database. You can make use of LINQ-based expressions, which gives you

the following (the addition in bold):

public IReadOnlyList<Board> ListBoards()

{

 return connection.Table<Board>()

 .OrderBy(b => b.Name)

 .ToList();

}

Chapter 9 LoCaL Data

277

 Reading a Single Entity from an SQLite Database

When reading a Board from the database, you also need to load any

BoardWidgets that relate to it. For this you can write the following:

public Board LoadBoard(int boardId)

{

 var board = connection.Find<Board>(boardId);

 if (board is null)

 {

 return null;

 }

 var widgets = connection.Table<BoardWidget>().Where(w =>

w.BoardId == boardId).ToList();

 board.BoardWidgets = widgets;

 return board;

}

The first line calling Find allows you to find an entity with the supplied

primary key value. This retrieves the Board. Next, you need to retrieve the

collection of BoardWidgets. This is performed in a very similar manner

to loading your collection of Boards. Finally, you assign the widgets you

loaded into the board before returning it to the caller.

It is worth noting that the sqlite-net-pcl package does not provide more

complex querying operations such as joins. If this is something that you

still require, it is possible to write the SQL directly and execute against

the connection. If you wish to join your Board and BoardWidget tables

together, you can achieve this as follows:

Chapter 9 LoCaL Data

278

var board = connection.Query<Board>("SELECT B.* FROM Board B

JOIN BoardWidget BW ON BW.BoardId = B.BoardId WHERE B.BoardId =

?", boardId);

Note that the above query is purely aimed at showing how joins work,

it does not provide you with any particularly useful in the context of your

application.

 Deleting from an SQLite Database

While I haven’t focused on providing this functionality just yet, it is a very

common use case.

public void DeleteBoard(Board board)

{

 connection.Delete(board);

}

 Updating an Entity in an SQLite Database

While I haven’t focused on providing this functionality just yet, it is a very

common use case.

public void UpdateBoard(Board board)

{

 connection.Update(board);

}

 LiteDB
LiteDB is a simple, fast, and lightweight embedded .NET document

database. LiteDB was inspired by the MongoDB database and its API is

very similar to the official MongoDB .NET API.

Chapter 9 LoCaL Data

279

 Installing LiteDB

In order to install and use LiteDB, you need to install the NuGet package

called LiteDB. Don’t worry; it is perfectly fine to install both the LiteDB

and SQLite packages side by side into your project. In fact, that is precisely

what you will do here.

You can do this by following these steps.

 1. Right-click the WidgetBoard project.

 2. Click Manage NuGet Packages.

 3. In the Search field, enter LiteDB.

 4. Select the LiteDB package and select Add Package.

 5. A confirmation dialog will show. Review and accept

the license details if you are happy.

 Using LiteDB

The first step is to create your IBoardRepository implementation. Add a

new class file called LiteDBBoardRepository in your Data folder, and make

it implement your IBoardRepository interface.

using LiteDB;

using WidgetBoard.Models;

namespace WidgetBoard.Data;

public class LiteDBBoardRepository : IBoardRepository

{

 public void CreateBoard(Board board)

 {

 throw new NotImplementedException();

 }

Chapter 9 LoCaL Data

280

 public void CreateBoardWidget(BoardWidget boardWidget)

 {

 throw new NotImplementedException();

 }

 public void DeleteBoard(Board board)

 {

 throw new NotImplementedException();

 }

 public IReadOnlyList<Board> ListBoards()

 {

 throw new NotImplementedException();

 }

 public Board LoadBoard(int boardId)

 {

 throw new NotImplementedException();

 }

 public void UpdateBoard(Board board)

 {

 throw new NotImplementedException();

 }

}

You also need to register your implementation with the app

builder in MauiProgram.cs. You can add the following line. Just make

sure that you have removed or commented out the line to register the

SqliteBoardRepository implementation.

builder.Services.AddTransient<IBoardRepository,

LiteDBBoardRepository>();

Chapter 9 LoCaL Data

281

 Connecting to a LiteDB database

LiteDB stores all its data in a single file on disk, so your first task is to

specify where this file exists so that you can create and open the file for

users within your application. For this part, you will borrow a concept from

a little further ahead in this chapter (the “File System” section).

Edit your repository class to support opening a connection to your

database.

Add a field to hold the database access details.

private readonly LiteDatabase database;

Add a constructor to open the connection.

public LiteDBBoardRepository(IFileSystem fileSystem)

{

 var dbPath = Path.Combine(fileSystem.AppDataDirectory,

"widgetboard_litedb.db");

 database = new LiteDatabase(dbPath);

}

The above should look very similar to the Sqlite way of accessing the

database. Here you make use of the IFileSystem implementation you

registered in the previous section. Then you make use of that to determine

where to store your database file. Finally, you open a connection using the

path to your database file. Note that if the file does not exist, one will be

created for you.

 Mapping Your Models

First, you need to add a field to hold a collection of boards and one for the

collection of board widgets

private readonly ILiteCollection<Board> boardCollection;

Chapter 9 LoCaL Data

282

private readonly ILiteCollection<BoardWidget>

boardWidgetCollection;

Then you need to get access to that collection in order to allow you to

perform your operations against it.

boardCollection = database.GetCollection<Board>("Boards");

boardCollection = database.GetCollection<BoardWidget>("Board

Widgets");

The final part of your mapping setup is to define indexing information

about your model. For this you use the EnsureIndex method.

boardCollection.EnsureIndex(b => b.Id, true);

In LiteDB, any property that you wish to be unique or want

to query against needs to have a definition provided through the

EnsureIndex method.

 Creating Your Tables

You don’t actually need to do anything to create your tables here. The key

difference between LiteDB and other databases that you might use is that

the schema of the data is held with the data.

 Inserting into a LiteDB Database

You can now add in the ability to insert a board into your database by

supplying the following implementation into the CreateBoard method:

public void CreateBoard(Board board)

{

 boardCollection.Insert(board);

}

Chapter 9 LoCaL Data

283

 Reading a Collection from a LiteDB Database

You only need to return a list of the boards your user created in the

application.

public IReadOnlyList<Board> ListBoards()

{

 return boardCollection.Query()

 .ToList();

}

Perhaps you should consider sorting these boards alphabetically.

LiteDB offers a similar set of functionality that you looked at with Sqlite-

net. LINQ-based expressions can be used to order your boards, which

gives you the following (the addition is in bold):

public IReadOnlyList<Board> ListBoards()

{

 return connection.Table<Board>()

 .OrderBy(b => b.Name)

 .ToList();

}

You also need to add the following line to your constructor to make

sure querying is possible:

boardCollection.EnsureIndex(b => b.Name, false);

 Reading a Single Entity from a LiteDB Database

When reading a Board from the database, you also need to load any

BoardWidgets that relate to it. For this you can write the following:

public Board LoadBoard(int boardId)

{

Chapter 9 LoCaL Data

284

 var board = boardCollection.FindById(boardId);

 var boardWidgets = boardWidgetCollection.Find(w =>

w.BoardId == boardId).ToList();

 board.BoardWidgets = boardWidgets;

 return board;

}

The first line calls FindById, which allows you to find an entity with

the supplied primary key value. This retrieves the Board. Next, you need

to retrieve the collection of BoardWidgets. This is performed in a very

similar manner to loading your collection of Boards. Finally, you assign the

widgets you loaded into the board before returning it to the caller.

 Deleting from a LiteDB Database

While I haven’t focused on providing this functionality, it is a very common

use case.

public void DeleteBoard(Board board)

{

 boardCollection.Delete(board.Id);

}

 Updating an Entity in a LiteDB Database

While I haven’t focused on providing this functionality, it is a very common

use case.

public void UpdateBoard(Board board)

{

 boardCollection.Update(board);

}

Chapter 9 LoCaL Data

285

 Database Summary
There is an abundance of options when it comes to choosing not only

which database but then also the ORM layer on top of it. The aim of this

section is to give a taste of what some options offer and to encourage you

to decide which will benefit your application and team most.

Both options I covered provide support for encryption.

I strongly encourage you to evaluate which database will provide
you with the best development experience and the users of your
application with the best user experience. Some databases perform
better in different scenarios.

Moving forward with this application you will continue to use LiteDB.

 Application Settings (Preferences)
Quite often you will want to persist data about your application that you

really do not need a database for. I like to refer to these bits of data as

application settings. If you have previous experience with building .NET

applications, this would be similar to an app.config or appsettings.json

file. The .NET MAUI term is Preferences, though, and this is the API that

you will look at accessing.

An item in Preferences is stored as a key-value pair. The key is a string

and it is recommended to keep the name short in length.

As with all of the other APIs provided by .NET MAUI, you register the

Preferences implementation with the app builder in the MauiProgram.cs

file. You can add the following line into the CreateMauiApp method:

builder.Services.AddSingleton(Preferences.Default);

Chapter 9 LoCaL Data

286

 What Can Be Stored in Preferences?
There is a limitation on the type of data that can be stored in Preferences.

The API provides the ability to store the following .NET types:

• Boolean

• Double

• Int32

• Single

• Int64

• String

• DateTime

Having the ability to provide a String value surely means you could

in theory store anything in there, right? While this is technically possible

it is highly recommended that you only store small amounts of text.

Otherwise the performance of storing and retrieval can be impacted in

your applications.

 Setting a Value in Preferences
You can store a value in Preferences through the use of the Set method.

You can provide a key, the value, and also an optional sharedName. The

preferences stored in your application are only visible to that application.

You can also create a shared preference that can be used by other

extensions or a watch application.

A perfect use case for your application is to store the id of the last

accessed board and open it the next time the application loads. Let’s store

the id initially. Inside your FixedBoardPageViewModel class you can make

the following changes.

Add the preferences field.

Chapter 9 LoCaL Data

287

private readonly IPreferences preferences;

Update the constructor to set the preferences field; changes in bold.

public FixedBoardPageViewModel(

 WidgetTemplateSelector widgetTemplateSelector,

 IPreferences preferences)

{

 WidgetTemplateSelector = widgetTemplateSelector;

 this.preferences = preferences;

 Widgets = new ObservableCollection<IWidgetViewModel>();

}

Finally, record the id of the board that was supplied when

navigating to the page. You can do this by adding the bold line to your

ApplyQueryAttributes method:

public void ApplyQueryAttributes(IDictionary<string,

object> query)

{

 var board = query["Board"] as Board;

 preferences.Set("LastUsedBoardId", board.Id);

 BoardName = board.Name;

 NumberOfColumns = board.NumberOfColumns;

 NumberOfRows = board.NumberOfRows;

}

This means that every time a user opens a board to view it, the id will

be remembered in Preferences. When the application is opened again in

the future, it will use that id to open the last viewed board.

Chapter 9 LoCaL Data

288

A possible alternative way of achieving this type of functionality could

be to maintain a last opened column in the database and always find the

latest of that set.

 Getting a Value in Preferences
You can retrieve a value from Preferences using the Get method. You are

required to supply the key identifying the setting and a default value to be

returned if the key does not exist. You can optionally provide a sharedName,

much like with the Set method covered in the previous section.

You have already written the code to store your LastUsedBoardId in

Preferences so let’s read it back when loading your boards up to display.

Open up your AppShellViewModel.cs file and make the following changes

Add the preferences field.

private readonly IPreferences preferences;

Set the preferences field in the constructor; changes in bold.

public AppShellViewModel(

 IBoardRepository boardRepository,

 IPreferences preferences)

{

 this.boardRepository = boardRepository;

 this.preferences = preferences;

}

Update your LoadBoards method to support navigating to the last used

board; changes in bold.

public void LoadBoards()

{

 var boards = this.boardRepository.ListBoards();

Chapter 9 LoCaL Data

289

 var lastUsedBoardId = preferences.

Get("LastUsedBoardId", -1);

 Board lastUsedBoard = null;

 foreach (var board in boards)

 {

 Boards.Add(board);

 if (lastUsedBoardId == board.Id)

 {

 lastUsedBoard = board;

 }

 }

 if (lastUsedBoard is not null)

 {

 Dispatcher.GetForCurrentThread().Dispatch(() =>

 {

 BoardSelected(lastUsedBoard);

 });

 }

}

There are a few new concepts here, so let’s break them down in to

understandable chunks.

Use of the preferences.Get method, as you learned about before

writing the above code. You supply the key name and the default value to

be returned if the key does not exist. You use -1 for the default because it is

not a valid id for a database key.

The final new concept is the use of Dispatcher. This allows you to

trigger a deferred action and make sure that it is dispatched onto the UI

thread. Your method will be called on the UI thread, but you want the

OnAppearing logic to finish before you attempt to navigate somewhere, by

Chapter 9 LoCaL Data

290

calling Dispatcher.GetForCurrentThread().Dispatch you are queuing

up an action to be performed once the UI thread is no longer busy. .NET

MAUI does handle a lot of dispatching for you when you trigger updates

in bindings, but there are times when you need to make sure that you are

updating things on the UI thread.

If you run your code now, you can create a new board and view it once

saved. If you then close and reopen the application, you will see that the

board you created is now shown for you. Providing an experience like

this can go a long way to an enjoyable user experience (UX) as they are

returning to where they were previously.

 Checking if a Key Exists in Preferences
There can be times when you are unable to supply a suitable default

value to the Get method in order to know whether a value has been

set, for example using a Boolean. false is a valid value and therefore the

default value would not be able to distinguish whether it was set as false

or the default value of false. In this scenario, you can make use of the

ContainsKey method. So instead of writing

var lastUsedBoardId = preferences.Get("LastUsedBoardId", -1);

you could have first checked whether the key existed, like

if (preferences.ContainsKey("LastUsedBoardId"))

{

 // Perform your logic

}

Chapter 9 LoCaL Data

291

 Removing a Preference
There may be times when you need to remove an option from the

Preferences store or even remove all options. If you want to remove your

LastUsedBoardId preference, you can write

Preferences.Remove("LastUsedBoardId");

If you want to remove all options, you can write

Preferences.Clear();

 Secure Storage
When building an application, there will quite often be an occasion where

you need to store an API token or some form of data that needs to be held

securely. .NET MAUI provides another API that makes sure that the values

you supply are held securely on each of the platforms’ secure storage

locations.

As always with a new API provided by .NET MAUI, you must register it

with the MauiAppBuilder in your MauiProgram.cs file, so let’s open up that

file and add the following line into the CreateMauiApp method:

builder.Services.AddSingleton(SecureStorage.Default);

This will allow you to declare a dependency on ISecureStorage in

your class constructors and have it provided for you.

 Storing a Value Securely
You don’t currently have a need to write a secure value just yet. It will

follow in the next chapter, but to give a brief explanation of this type of

local data, you can take a look at an example.

Chapter 9 LoCaL Data

292

To save a value in secure storage with the key of apiToken and a value

of 1234567890, you can write the following:

await SecureStorage.Default.SetAsync("apiToken", "1234567890");

 Reading a Secure Value
It is also possible to retrieve the value you have stored securely by using the

GetAsync method and passing in the key. It is worth noting that if the key

does not exist, the method will return null.

To retrieve a value in secure storage with the key of apiToken, you can

write the following:

string apiToken = await SecureStorage.Default.

GetAsync("apiToken");

if (apiToken is not null)

{

}

 Removing a Secure Value
As with Preferences, you can remove and remove all secure values.

To remove a specific value, remove the key:

bool success = SecureStorage.Default.Remove("apiToken");

To remove all values, use the RemoveAll method:

SecureStorage.Default.RemoveAll();

Chapter 9 LoCaL Data

293

 Platform specifics
As mentioned, the SecureStorage API makes use of each of the platform-

specific APIs to handle the actual storage of the data you pass in. It is worth

noting that the implementations for each individual platform are different

and may change in the operating systems but SecureStorage will leverage

whatever is in the operating system and therefore will always be the most

secure option. This section explains how.

 Android

The data you pass in is encrypted with the Android

EncryptedSharedPreferences class, from the Android Security library,

which automatically encrypts keys and values using a two-scheme

approach:

 1. Keys are deterministically encrypted, so that the key

can be encrypted and properly looked up.

 2. Values are non-deterministically encrypted using

AES-256 GCM.

The Android Security library provides an implementation of the

security best practices related to reading and writing data at rest, as well as

key creation and verification.

Since Google introduced Android 6.0 (API level 23), the operating

system offers the ability to back up the user’s data. This includes the

Preferences and also the SecureStorage that .NET MAUI offers. It is

entirely possible and in fact I recommend that you disable this backup

functionality when using SecureStorage.

In order to disable the auto backup feature, you need to set the

android:allowBackup to false in the AndroidManifest.xml file under the

Platforms/Android folder. The resulting change should look something

like the following:

Chapter 9 LoCaL Data

294

<manifest ... >

 ...

 <application android:allowBackup="false" ... >

 ...

 </application>

</manifest>

 iOS and macOS

Data passed into SecureStorage on iOS and macOS is encrypted through

the Keychain API. To quote Apple,

The keychain is the best place to store small secrets, like pass-
words and cryptographic keys. You use the functions of the
keychain services API to add, retrieve, delete, or modify
keychain items.

For further reading, refer to the Apple documentation at https://

developer.apple.com/documentation/security/certificate_key_and_

trust_services/keys/storing_keys_in_the_keychain.

In some cases, keychain data is synchronized with iCloud, and
uninstalling the application may not remove the secure values from
user devices. I have certainly observed this in some applications I
have built, so it is best to plan around this possibility.

 Windows

SecureStorage on Windows uses the DataProtectionProvider class to

encrypt values securely. The .NET MAUI implementation allows for the

data to be protected against the local user or computer account.

For further reading, refer to the Microsoft documentation at

Chapter 9 LoCaL Data

https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_keychain
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_keychain
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_keychain

295

https://docs.microsoft.com/uwp/api/windows.security.

cryptography.dataprotection.dataprotectionprovider?view=wi

nrt-22621.

 Viewing the Result
Now when running your application you will see that not only does the last

board that you create get loaded back up but it also shows the widgets you

previously added. Figure 9-2 shows an example of the results.

Figure 9-2. The application loads back up and shows the previously
added widgets

Chapter 9 LoCaL Data

https://docs.microsoft.com/uwp/api/windows.security.cryptography.dataprotection.dataprotectionprovider?view=winrt-22621
https://docs.microsoft.com/uwp/api/windows.security.cryptography.dataprotection.dataprotectionprovider?view=winrt-22621
https://docs.microsoft.com/uwp/api/windows.security.cryptography.dataprotection.dataprotectionprovider?view=winrt-22621

296

 Summary
In this chapter, you

• Learned about the different types of local data

• Discovered what .NET MAUI offers in terms of local file

storage locations and when to use each one

• Gained an understanding of database technologies and

applied two different options

• Modified your application to save and load the boards

your users create

• Gained an understanding of the options for storing

small bits of data or Preferences

• Added the ability to record the last opened board

• Gained an understanding of the options for storing

small bits of data securely or SecureStorage

In the next chapter, you will

• Learn about remote data.

• Learn how you can interact with it.

• Cover the common considerations.

• Look a concrete example with the Open Weather API.

• Build your own implementation to consume the Open

Weather API.

• Cover how to consume the data returned.

• Talk through scenarios where things can go wrong.

• Provide implementations to handle those scenarios.

Chapter 9 LoCaL Data

297

• Look at how you can reduce the complexity of your

implementation with Refit.

• Add in your Weather Widget.

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch09.

 Extra Assignment
You have provided the ability to users to add widgets to their boards

and automatically save them so when they next load the board it will be

remembered for them. I would like to see if you can add the ability to

remove the widgets from the board and the database.

Chapter 9 LoCaL Data

https://github.com/Apress/Introducing-MAUI/tree/main/ch09
https://github.com/Apress/Introducing-MAUI/tree/main/ch09

299

CHAPTER 10

Remote Data
In this chapter, you will be exploring the topic of remote data, learning

what exactly it is, types of it, how to interact with it, and what to consider

when doing so. You will then build upon this learning by building a new

widget:, the Weather Widget, to display the current weather. This will

be done by interacting directly with the Open Weather API. You will get

exposure to handling HTTP requests and responses with an API, how

to handle the response being in a JSON format and the varying levels of

flexibility when mapping to the JSON data. You will finish off by simplifying

the implementation with a fantastic NuGet package that generates source

code for you, simply from an interface you define to represent the web

service.

 What Is Remote Data?
Remote data is any data that is sourced from outside the device your

application is running on. This can range from querying a web API in order

to obtain data, utilizing a cloud-based database provider, images hosted

online, streaming video or audio data, and more.

The vast majority of applications will interact with some form of

remote endpoint in order to pull data. In this world of constantly changing

data, this becomes an essential part of practically any application.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_10

https://doi.org/10.1007/978-1-4842-9234-1_10#DOI

300

 Considerations When Handling Remote Data
There can be quite a few concepts to consider when interacting with

remote data. You will be explicitly addressing these as you build your new

widget, but I want to draw your attention to them before you start.

 Loading Times

One of the worst experiences for a user is to tap on a button or open a new

page/application and just see the application lock up while it is loading data.

The user will think that the application has crashed and, in fact, platforms

like Android and Windows will likely indicate that the application has

crashed/locked up if the load takes too long. Thankfully .NET offers you the

async and await keywords. They are not essential but they really do make

your life easier. There could be an entire chapter or even book on this topic;

however, my good friend Brandon Minnick has already covered a lot of this

in his AsyncAwaitBestPractices repository on GitHub. If you haven’t checked

it out before, I thoroughly recommend you do if you want to dig deeper;

https://github.com/brminnick/AsyncAwaitBestPractices.

A common use case is to display to the user that the application is busy

loading. This can be with a simple ActivityIndicator, which loads the

platform-specific spinner/loading icon users should feel familiar with, or you

can make use of the animation features I covered to show something more

involved. With this loading display you then initiate your web service call. If

you get a response, you display the result of that response in your application

(e.g., items in a shopping list or, in your scenario, the user’s current weather).

 Failures

During the building of a recent application, some of the most valuable

testing I did was to install the application and then ride the London

Underground and observe just how flaky a mobile phone’s data

connection really can be.

Chapter 10 remote Data

https://github.com/brminnick/AsyncAwaitBestPractices

301

There are two key questions to consider when dealing with network

connectivity issues:

 1. What does the user need to know?

 2. How does the application need to recover?

 Security

As a developer of applications, it is essential that you maintain the trust

that your users put in you with regard to keeping their data safe. With

this in mind, you should always choose HTTPS over HTTP. In fact, most

platforms won’t allow HTTP traffic by default to avoid it accidentally being

used. There are ways to disable the prevention of HTTP traffic; however, I

strongly advise against it, so I won’t cover how to do so in this book.

I strongly recommend that as you build your applications you consider

security as a top priority. The Open Web Application Security Project

(OWASP) is a non-profit foundation that works to improve the security

of software and it provides some really great resources and guidance

on what you should really consider when building websites and mobile

applications. As a good starting point, look at their Mobile Application

Security Testing Guide repository on GitHub at https://github.com/

OWASP/owasp-mastg/.

Quite often APIs will require levels of authentication that complicate

the flow to pulling data from them. This typically happens when your

application needs to consume data specific to a user and not just the API

itself. I won’t be covering this scenario in this book, but I recommend

reading up on OAuth2.0 with a good initial resource at www.oauth.com/

oauth2-servers/mobile-and-native-apps/. Additionally, specific APIs

such as the GitHub API will likely provide good documentation on how

to use their specific authentication mechanism. So with this in mind, I

recommend referring to the documentation for the API that you wish to

integrate with.

Chapter 10 remote Data

https://github.com/OWASP/owasp-mastg/
https://github.com/OWASP/owasp-mastg/
http://www.oauth.com/oauth2-servers/mobile-and-native-apps/
http://www.oauth.com/oauth2-servers/mobile-and-native-apps/

302

 Webservices
Webservices act as a mechanism to query or obtain data from a remote

server. They typically offer many advantages to developers building them

because they provide the ability to charge based on usage, protect the

developer’s intellectual property, and other reasons.

 The Open Weather API
You will be calling the Open Weather API and specifically version 2.5 of

the OneCall API. The API is free to use with some usage limits. You can

call it up to 60 times per minute and 1,000,000 calls per month, which will

certainly be fine for this scenario.

For the initial work, you will be using a fixed latitude and longitude of

20.7984 and -156.3319, respectively, which if you look it up represents

Maui, Hawaii. You will enabling the application to use the device’s current

location information in the next chapter.

 Creating an Open Weather Account

You will be required to create an account. To do so, navigate to the website

at https://home.openweathermap.org/users/sign_up and create the

account. Note that you do not need to enter any billing details. You can

use it entirely for free. If you breach the call limits, the API will simply fail

instead of running into accidental charges.

 Creating an Open Weather API key

Next, you need to create an API key, which can be done on the following

page at https://home.openweathermap.org/api_keys. Keep a copy of this

API key ready for when you eventually use it later in this chapter. Don’t

worry too much for now as you can return to the above web page and

access the key.

Chapter 10 remote Data

https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/api_keys

303

 Examining the Data

Before you dive into writing some code, you should take a look at the API

and the data that it returns. In fact, the API offers a lot more detail than

you really need. You can consume the details in case you want to use them

in the future; however, this does bring in some possible drawbacks. It

increases the complexity of reading through the data if you need to debug

things, and it also increases the amount of data that needs to be retrieved

by your application. In the mobile world, this can be expensive!

Given the above, you can make the following web service call which

includes following details:

• Calls version 2.5 of the OneCall API

• Supplies latitude of 20.7984

• Supplies longitude of -156.3319

• Supplies units of metric, meaning you will receive

degrees Celsius

• Supplies exclude of minutely, hourly, daily, alerts,

meaning you will only receive the current weather data

• Supplies the api key you created in the previous section

The full URL that you need to call looks as follows:

https://api.openweathermap.org/data/2.5/onecall?lat=20.7984&

lon=-156.3319&units=metric&exclude=minutely,hourly,daily,alerts

&appid=APIKEY

You can open this in any web browser to view the following response

back. You can see the key details that you will need for your application

highlighted in bold.

{

 "lat": 20.7984,

 "lon": -156.3319,

Chapter 10 remote Data

https://api.openweathermap.org/data/2.5/onecall?lat=20.7984&lon=-156.3319&units=metric&exclude=minutely,hourly,daily,alerts&appid=APIKEY
https://api.openweathermap.org/data/2.5/onecall?lat=20.7984&lon=-156.3319&units=metric&exclude=minutely,hourly,daily,alerts&appid=APIKEY
https://api.openweathermap.org/data/2.5/onecall?lat=20.7984&lon=-156.3319&units=metric&exclude=minutely,hourly,daily,alerts&appid=APIKEY

304

 "timezone": "Pacific/Honolulu",

 "timezone_offset": -36000,

 "current": {

 "dt": 1663101650,

 "sunrise": 1663085531,

 "sunset": 1663129825,

 "temp": 20.77,

 "feels_like": 21.15,

 "pressure": 1017,

 "humidity": 86,

 "dew_point": 18.34,

 "uvi": 7.89,

 "clouds": 75,

 "visibility": 10000,

 "wind_speed": 5.66,

 "wind_deg": 70,

 "weather": [

 {

 "id": 501,

 "main": "Rain",

 "description": "moderate rain",

 "icon": "10d"

 }

],

 "rain": {

 "1h": 1.78

 }

 }

}

Chapter 10 remote Data

305

 Using System.Text.Json

In order to consume and deserialize the contents of the JSON returned to

you, you need to use one of the following two options:

• Newtonsoft.Json (requires a NuGet package)

• System.Text.Json

Newtonsoft has been around for many years and is a go-to option for

many developers. System.Text.Json has become its successor and is my

recommendation for this scenario, especially as it is backed by Microsoft

and James Newton-King, the author of Newtonsoft, works for Microsoft.

Let’s go ahead and use System.Text.Json as it is the recommended way

to proceed and ships with .NET MAUI out of the box.

Now that you have seen what the data looks like, you can start to build

the model classes that will allow you to deserialize the response coming

back from the API.

 Creating Your Models

I highlighted that you really don’t need all of the information that is

returned from the API. Thankfully you only need to build your model to

cover the detail that you require and allow the rest to be ignored during the

deserialization process.

Let’s create the model classes you require. You do this in the reverse

order that they appear in the JSON due to the fact that the outer elements

need to refer to the inner elements.

First, add a new folder to keep everything organized and call it

Communications.

Now, add a new class file and call it Weather.cs.

namespace WidgetBoard.Communications;

public class Weather

Chapter 10 remote Data

306

{

 public string Main { get; set; }

 public string Icon { get; set; }

 public string IconUrl => $"https://openweathermap.org/img/

wn/{Icon}@2x.png";

}

Your Weather class maps to the weather element in the JSON returned

from the API. You can see that you are mapping to the main and icon

elements and you have added a calculated property that returns a URL

pointing to the icon provided by the Open Weather API. The last property

you are mapping, IconUrl, is yet another great example of remote data.

The API provides you with an icon that can be rendered inside your

application representing the current weather of the location. Based on

the example in your original JSON, you see the icon value of 10d. This

represents rain.

You will notice that the casing of your property names does not
match the element names in the JSoN. this will actually result in the
deserialization process to mapping as you require. When you get to
the deserialization part, you will see how to handle this scenario.

Your next model class to add should be called Current and, similarly

to the Weather class, it will map to the element that matches its name:

current. Your Current class file should have the following contents:

using System.Text.Json.Serialization;

namespace WidgetBoard.Communications;

public class Current

Chapter 10 remote Data

307

{

 [JsonPropertyName("temp")]

 public double Temperature { get; set; }

 public int Sunrise { get; set; }

 public int Sunset { get; set; }

 public Weather[] Weather { get; set; }

}

This class will contain an array of Weather, the Sunset and Sunrise

times, and the current Temperature. With the Temperature property

mapping, you can see how it is possible to map from a property in your

model to an element in JSON that has a different name. This functionality

is extremely valuable when building your own models because it allows

you to name the properties to provide better context. I personally prefer to

avoid abbreviations and stick with explicit names to make the intentions of

the code clear.

Your final model class to add should be called Forecast.cs and will

have the following contents:

namespace WidgetBoard.Communications;

public class Forecast

{

 public string Timezone { get; set; }

 public Current Current { get; set; }

}

This class maps to the top-level element in the returned JSON. You are

mapping to the Timezone element and also the Current, which will contain

your previously mapped values.

Chapter 10 remote Data

308

Now that you have created the model classes that can be mapped to

the JSON returned from the Open Weather API, you can proceed to calling

the API in order to retrieve that JSON.

 Connecting to the Open Weather API

Before you start to build the implementation for accessing the API, you

are going to create an interface to define what it should do. This has the

added benefit that when you wish to unit test any class that depends on

the IWeatherForecastService, you can supply a mock implementation

rather than requiring that the unit tests will access the real API. I will cover

why that is a bad idea in Chapter 14, but the simple answer here is that you

have a limited number of calls you are allowed to make for free and you

don’t want unit tests eating that allowance up.

namespace WidgetBoard.Communications;

public interface IWeatherForecastService

{

 Task<Forecast> GetForecast(double latitude, double

longitude);

}

A common naming approach to classes that interact with APIs is

to add the suffix Service to show that it provides a service to the user.

Therefore let’s create your service by adding a new class file and calling it

WeatherForecastService.cs. Add the following contents:

using System.Text.Json;

namespace WidgetBoard.Communications;

public class WeatherForecastService : IWeatherForecastService

{

 private readonly HttpClient httpClient;

Chapter 10 remote Data

https://doi.org/10.1007/978-1-4842-9234-1_14

309

 private const string ApiKey = "ENTER YOUR KEY";

 private const string ServerUrl = "https://api.open

weathermap.org/data/2.5/onecall?";

 public WeatherForecastService(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public async Task<Forecast> GetForecast(double latitude,

double longitude)

 {

 var response = await httpClient

 .GetAsync($"{ServerUrl}lat={latitude}&lon={longitude}

&units=metric&exclude=minutely,hourly,daily,alerts&

appid={ApiKey}")

 .ConfigureAwait(false);

 response.EnsureSuccessStatusCode();

 var stringContent = await response.Content

 .ReadAsStringAsync()

 .ConfigureAwait(false);

 var options = new JsonSerializerOptions

 {

 PropertyNameCaseInsensitive = true

 };

 return JsonSerializer.Deserialize<Forecast>(string

Content, options);

 }

}

Chapter 10 remote Data

310

You added a fair amount into this class file so let’s walk through it step

by step and cover what it does.

First is the HttpClient backing field, which is set within the

constructor and supplied by the dependency injection layer. You also have

constants representing the URL of the API and also your API key that you

generated in the earlier sections.

Next is the main piece of functionality in the GetForecast method. The

first line in this method handles connecting to the Open Weather API and

passing your latitude, longitude, and API key values. You also make sure

to set ConfigureAwait(false) because you do not need to be called back

on the initial calling thread. This helps to boost performance a little as it

avoids having to wait until the calling thread becomes free.

var response = await httpClient

 .GetAsync($"{ServerUrl}lat={latitude}&lon={longitude}

&units=metric&exclude=minutely,hourly,daily,alerts&appid=

{ApiKey}")

 .ConfigureAwait(false);

Then you make sure that the request was handled successfully

by calling

response.EnsureSuccessStatusCode();

Note that the above will throw an exception if the status code
received was not a 200 (success ok).

Then you extract the string content from the response.

var stringContent = await response.Content

 .ReadAsStringAsync()

 .ConfigureAwait(false);

Chapter 10 remote Data

311

Finally, you make use of the System.Text.Json NuGet package you

installed earlier in order to deserialize the string content into the model

classes that you created.

var options = new JsonSerializerOptions

{

 PropertyNameCaseInsensitive = true

};

return JsonSerializer.Deserialize<Forecast>(stringContent,

options);

I mentioned earlier that you had to explicitly opt-in to matching

your property names to the JSON elements case-insensitively.

You can see from the above code that you can do this through

the use of the JsonSerializerOptions class and specifically the

PropertyNameCaseInsensitive property.

Now that you have created the service, you should add your weather

widget and make use of the service.

 Creating the WeatherWidgetView

In order to create your widget, you need to add a new view. Add a

new .NET MAUI ContentView (XAML) into your Views folder and

call it WeatherWidgetView. This results in two files being created:

WeatherWidgetView.xaml and WeatherWidgetView.xaml.cs. You need to

update both files.

WeatherWidgetView.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentView

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"

Chapter 10 remote Data

312

 x:Class="WidgetBoard.Views.WeatherWidgetView"

 x:DataType="viewmodels:WeatherWidgetViewModel">

 <VerticalStackLayout>

 <Label

 Text="Today"

 FontSize="20"

 VerticalOptions="Center"

 HorizontalOptions="Start"

 TextTransform="Uppercase" />

 <Label

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <Label.FormattedText>

 <FormattedString>

 <Span

 Text="{Binding Temperature,

StringFormat='{0:F1}'}"

 FontSize="60"/>

 <Span

 Text="°C" />

 </FormattedString>

 </Label.FormattedText>

 </Label>

 <Label

 Text="{Binding Weather}"

 FontSize="20"

 VerticalOptions="Center"

Chapter 10 remote Data

313

 HorizontalOptions="Center" />

 <Image

 Source="{Binding IconUrl}"

 WidthRequest="100"

 HeightRequest="100"/>

 </VerticalStackLayout>

</ContentView>

Some of the above XAML should feel familiar based on the previous

code you have written. Some bits are new, so let’s cover them.

Label.FormattedText enables you to define text of varying formats

inside a single Label control. This can be helpful especially when parts of

the text changes dynamically in length and therefore result in the contents

moving around. In your example, you are adding a Span with a text binding

to your Temperature property in the view model and a second Span with

the degrees Celsius symbol.

The second new concept is the use of the Image control. The binding

on the Source property looks relatively straightforward; however, it is

worth noting that .NET MAUI works some magic for you here. You are

binding a string to the property. Under the hood, .NET MAUI converts

the string into something that can resemble an image source. In fact, the

underlying type is called ImageSource. Further to this, it will inspect your

string and if it contains a valid URL (e.g., starts with https://), then it will

aim to load it as a remote image rather than looking in the applications set

of compiled resources. .NET MAUI will also potentially handle caching of

images for you to help reduce the amount of requests sent in order to load

images from a remote source. In order to make use of this functionality,

you need to provide a UriImageSource property on your view model rather

than the string property.

Chapter 10 remote Data

314

The process of converting from one type to another is referred to as

TypeConverters and can be fairly common in .NET MAUI. I won’t go into

detail on how they work, so please go to the Microsoft documentation site

at https://learn.microsoft.com/dotnet/api/system.componentmodel.

typeconverter.

WeatherWidgetView.xaml.cs
You also need to make the following adjustments to the

WeatherWidgetView.xaml.cs file. This part is required because you

haven’t created a common base class for the widget views. At times there

can be good reason to create them; however, because you want to keep

the visual tree as simple as possible, there isn’t a common visual base

class to use.

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class WeatherWidgetView : ContentView,

IWidgetView

{

 public WeatherWidgetView()

 {

 InitializeComponent();

 }

 public IWidgetViewModel WidgetViewModel

 {

 get => BindingContext as IWidgetViewModel;

 set => BindingContext = value;

 }

}

Now that you have created your widget view, you should create the

view model that will be paired with it.

Chapter 10 remote Data

https://learn.microsoft.com/dotnet/api/system.componentmodel.typeconverter
https://learn.microsoft.com/dotnet/api/system.componentmodel.typeconverter

315

 Creating the WeatherWidgetViewModel

The view model that you need to create in order to represent the weather-

related data that can be bound to the UI requires some work that you

are familiar with and some that you are not as familiar with. Let’s

proceed to adding the familiar bits and then walk through the newer

concepts. First, add a new class file in the ViewModels folder and call it

WeatherWidgetViewModel.cs. The initial contents should be modified to

look as follows:

using WidgetBoard.Communications;

namespace WidgetBoard.ViewModels;

public class WeatherWidgetViewModel : BaseViewModel,

IWidgetViewModel

{

 public const string DisplayName = "Weather";

 public int Position { get; set; }

 public string Type => DisplayName;

}

The above should look familiar as it is very similar to the

ClockWidgetViewModel you created earlier on in the book. Now you need

to add in the weather-specific bits.

First, add a dependency on the IWeatherForecastService you created

a short while ago.

private readonly IWeatherForecastService

weatherForecastService;

public WeatherWidgetViewModel(IWeatherForecastService

weatherForecastService)

Chapter 10 remote Data

316

{

 this.weatherForecastService = weatherForecastService;

 Task.Run(async () => await LoadWeatherForecast());

}

private async Task LoadWeatherForecast()

{

 var forecast = await weatherForecastService.

GetForecast(20.798363, -156.331924);

 Temperature = forecast.Current.Temperature;

 Weather = forecast.Current.Weather.First().Main;

 IconUrl = forecast.Current.Weather.First().IconUrl;

}

Inside of your constructor you keep a copy of the service and you also

start a background task to fetch the forecast information. Quite often you

wouldn’t start something like this from within a constructor; however,

given that you know your view model will only be created when it is being

added to the UI, this is perfectly acceptable.

Finally, you need to add the properties that your view wants to bind to.

private string iconUrl;

private double temperature;

private string weather;

public string IconUrl

{

 get => iconUrl;

 set => SetProperty(ref iconUrl, value);

}

public double Temperature

Chapter 10 remote Data

317

{

 get => temperature;

 set => SetProperty(ref temperature, value);

}

public string Weather

{

 get => weather;

 set => SetProperty(ref weather, value);

}

That’s all you need in the view model for now. You can now register the

widget and get it ready for your first test run.

 Registering Your Widget

You first need to make use of a NuGet package in order to follow some

recommended practices for the registration and usage of the HttpClient

class. Go ahead and add the Microsoft.Extensions.Http NuGet package and

then take a look at how to use it.

• Right-click the WidgetBoard solution.

• Select Manage NuGet Packages.

• Search for Microsoft.Extensions.Http.

• Select the correct package.

• Click Add Package.

Inside your MauiProgram.cs file you need to add the following lines

into the CreateMauiApp method:

builder.Services.AddHttpClient<WeatherForecastService>();

Chapter 10 remote Data

318

builder.Services.AddSingleton<IWeatherForecastService,

WeatherForecastService>();

WidgetFactory.RegisterWidget<WeatherWidgetView, WeatherWidgetVi

ewModel>(WeatherWidgetViewModel.DisplayName);

builder.Services.AddTransient<WeatherWidgetView>();

builder.Services.AddTransient<WeatherWidgetViewModel>();

The above code registers your widget’s view and view models with the

dependency injection layer and also registers it with your WidgetFactory,

meaning it can be created from your add widget overlay.

 Testing Your Widget

If you run your application and add a weather widget, you can see the

result in Figure 10-1.

Figure 10-1. Application running and showing your weather widget
rendering correctly

Chapter 10 remote Data

319

This works fine provided you have a good network connection. The

moment you have a slow connection or even no connection, you will

notice that things don’t load quite as expected. In fact, you will likely

observe a crash. You knew this could happen based on your earlier

investigation into the things you need to consider when handling remote

data. Let’s now apply some techniques to handle these scenarios.

 Adding Some State
The first thing you want to do is to consider the different possible states

that your process can be in. There are three key scenarios that you need to

handle and provide visual feedback to your users on:

 1. The widget is loading the data.

 2. The widget has the data.

 3. The widget has encountered an issue loading

the data.

Let’s handle these three scenarios.

First, create an enum that will represent the above scenarios.

public enum State

{

 None = 0,

 Loading = 1,

 Loaded = 2,

 Error = 3

}

You also want to modify your loading code in the view model to make

use of this new State.

private async Task LoadWeatherForecast()

{

Chapter 10 remote Data

320

 try

 {

 State = State.Loading;

 var forecast = await weatherForecastService.GetForecast

(20.798363, -156.331924);

 Temperature = forecast.Current.Temperature;

 Weather = forecast.Current.Weather.First().Main;

 IconUrl = forecast.Current.Weather.First().IconUrl;

 State = State.Loaded;

 }

 catch (Exception ex)

 {

 State = State.Error;

 }

}

And you also need to add the State property and backing field.

private State state;

public State State

{

 get => state;

 set => SetProperty(ref state, value);

}

 Converting the State to UI

This section may well deserve a more prominent setting; however, to allow

the content to flow through this book, I opted to only expose parts based

on the context of the topics you are learning as you build your application.

Chapter 10 remote Data

321

Quite often in .NET MAUI there are scenarios where you wish to bind a

piece of data to the UI but that data type does not match the desired type in

the UI. To avoid having to add additional properties and potentially adding

view-related information into your view models, you can make use of a

concept called converters. A converter enables you to define how a specific

data type can be converted from its type to another type. I always find the

best way to cover something like this is to see it in action so let’s create a

converter to convert from your new State enum above into a bool value

ready for binding to the IsVisible property in your view.

Add a new folder and call it Converters and then add a new class

file and call it IsEqualToStateConverter.cs and then you can add the

following contents:

using System.Globalization;

using WidgetBoard.ViewModels;

namespace WidgetBoard.Converters;

public class IsEqualToStateConverter : IValueConverter

{

 public State State { get; set; }

 public object Convert(object value, Type targetType, object

parameter, CultureInfo culture)

 {

 if (value is State state)

 {

 return state == State;

 }

 return value;

 }

 public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

Chapter 10 remote Data

322

 {

 throw new NotImplementedException();

 }

}

The IValueConverter interface allows you to define how a value

passed in can be converted. Implementations of this interface are for use

within a binding using the Converter property.

 Displaying the Loading State

It is worth noting that at times data can be loaded very quickly and the act

of showing a spinner can provide a negative experience if it flashes very

quickly. Of course, it is impossible to know which calls will take longer

than others as there are so many factors which can affect the network. At

times like this, I like to make sure that there is always a minimum amount

of time that you display the spinner so that there isn’t this weird flash to

the user.

<?xml version="1.0" encoding="utf-8" ?>

<ContentView

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"

 xmlns:converters="clr-namespace:WidgetBoard.Converters"

 x:Class="WidgetBoard.Views.WeatherWidgetView"

 x:DataType="viewmodels:WeatherWidgetViewModel">

 <ContentView.Resources>

 <converters:IsEqualToStateConverter

 x:Key="IsLoadingConverter"

 State="Loading" />

 </ContentView.Resources>

Chapter 10 remote Data

323

 <VerticalStackLayout>

 <Label

 Text="Today"

 FontSize="20"

 VerticalOptions="Center"

 HorizontalOptions="Start"

 TextTransform="Uppercase" />

 <!-- Loading -->

 <VerticalStackLayout

 IsVisible="{Binding State, Converter={StaticResource

IsLoadingConverter}}">

 <ActivityIndicator

 IsRunning="{Binding State, Converter={Static

Resource IsLoadingConverter}}" />

 <Label

 Text="Loading weather data" />

 </VerticalStackLayout>

 </VerticalStackLayout>

</ContentView>

 Displaying the Loaded State

In order to handle the error state, you need to add another instance of

your IsEqualToStateConverter, this time with the State property set

to Loaded.

<converters:IsEqualToStateConverter

 x:Key="HasLoadedConverter"

 State="Loaded" />

Chapter 10 remote Data

324

You can then use this converter in a binding to show/hide the

following UI:

<!-- Loaded -->

<VerticalStackLayout

 IsVisible="{Binding State, Converter={StaticResource

HasLoadedConverter}}">

 <Label

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <Label.FormattedText>

 <FormattedString>

 <Span

 Text="{Binding Temperature, String

Format='{0:F1}'}"

 FontSize="60"/>

 <Span

 Text="°C" />

 </FormattedString>

 </Label.FormattedText>

 </Label>

 <Label

 Text="{Binding Weather}"

 FontSize="20"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 <Image

 Source="{Binding IconUrl}"

 WidthRequest="100"

 HeightRequest="100"/>

</VerticalStackLayout>

Chapter 10 remote Data

325

 Displaying the Error State

In order to handle the error state, you need to add another instance of your

IsEqualToStateConverter, this time with the State property set to Error.

<converters:IsEqualToStateConverter

 x:Key="HasErrorConverter"

 State="Error" />

You can then use this converter in a binding to show/hide the

following UI:

<!-- Error -->

<VerticalStackLayout

 IsVisible="{Binding State, Converter={StaticResource

HasErrorConverter}}">

 <Label

 Text="Unable to load weather data" />

 <Button

 Text="Retry"

 Command="{Binding LoadWeatherCommand}" />

</VerticalStackLayout>

You may have noticed that you have added a Button and bound its

command to the view model. You need to add this to your view model if

you wish to compile and run the application. The aim of the Button is to

allow the user to request a retry of loading the weather information if the

Error state is being shown.

Inside your WeatherWidgetViewModel.cs file you need to make the

following change:

public ICommand LoadWeatherCommand { get; }

Then you need to update the constructor with the changes in bold:

Chapter 10 remote Data

326

public WeatherWidgetViewModel(WeatherForecastService

weatherForecastService)

{

 this.weatherForecastService = weatherForecastService;

 LoadWeatherCommand = new Command(async () => await

LoadWeatherForecast());

 Task.Run(async () => await LoadWeatherForecast());

}

This means that when a load fails for whatever reason, the user will

have the option to press the retry button and the widget will attempt to

load the weather details again. It will walk through the states you added, so

the UI will show the different UI options to the user as this happens.

This type of failure handling is considered manual. There are ways to

automatically handle retries through a package called Polly.

 Simplifying Webservice Access
The previous sections covered how you can interact directly with a web

service at the most basic level. It requires a bit of setup but thankfully in

your scenario this wasn’t too complicated. Some web services can require

a lot more setup or even return a lot more data.

When building your applications, the aim is to write as little code

as possible as it reduces the amount of code you need to maintain. This

statement isn’t advocating for writing shortened code that can be difficult

for a human to understand but instead stating that you want to focus on

the details that are core to the application that you are building and not

things like consuming a web service. Sure, you want to know that you are

but having to write the underlying bits through the use of HttpClient can

become cumbersome. Thankfully there are packages out there that can

help you!

Chapter 10 remote Data

327

 Prebuilt Libraries
I first recommend that you investigate whether the web service provider

also provides a client library to make the consumption easier. Quite

often providers supply a library, especially when there is a layer of

authentication required. There are no official client libraries for the Open

Weather API; however, there are a number of NuGet packages that provide

some support for using the API.

 Code Generation Libraries
If no client library is available, you can look to using an auto generation

package to reduce the amount of code you need to write. Refit is a fantastic

package for this purpose. It allows you to define an interface representing

the web service call and then Refit will do the rest.

So why didn’t I just start here? In a new project, you probably would

do so, but I always strongly feel that you need to gain an understanding of

what packages like Refit are doing before you really start to use them. This

can be invaluable when things go wrong and you have to debug exactly

what and why things are going wrong!

 Adding the Refit NuGet Package

Let’s go ahead and add the Refit.HttpClientFactory NuGet package and

then take a look at how to use it.

• Right-click the WidgetBoard solution.

• Select Manage NuGet Packages.

• Search for Refit.HttpClientFactory.

• Select the correct package.

• Click Add Package.

Chapter 10 remote Data

328

Now that you have the NuGet package installed, you can use it.

Open your IWeatherForecastService.cs file and make the following

modifications shown in bold:

using Refit;

namespace WidgetBoard.Communications;

public interface IWeatherForecastService

{

 [Get("/onecall?lat={latitude}&lon={longitude}&units=metric&

exclude=minutely,hourly,daily,alerts&appid=APIKEY")]

 Task<Forecast> GetForecast(double latitude, double

longitude);

}

The fantastic part of the above code is that you do not need to write

the implementation. Refit uses source code generators to do it for you! In

fact, it means you can delete your WeatherForecastService class as it is no

longer required.

The final change you are required to make is to change how you

register the IWeatherForecastService with your MauiAppBuilder in the

MauiProgram.cs file. Open it up and make the following changes.

First, add the using statement.

using Refit;

Then replace

builder.Services.AddSingleton<IWeatherForecastService,

WeatherForecastService>();

with

Chapter 10 remote Data

329

builder.Services

 .AddRefitClient<IWeatherForecastService>()

 .ConfigureHttpClient(c => c.BaseAddress = new Uri("https://

api.openweathermap.org/data/2.5"));

This new line of code makes use of the Refit extension methods that

enable you to consume an implementation of IWeatherForecastService

whenever you register a dependency on that interface. It is worth

reiterating that the implementation for the IWeatherForecastService

is automatically generated for you through the Refit package. For further

reading on this package, I thoroughly recommend their website at

https://reactiveui.github.io/refit/.

 Further Reading
You have added some complexities into your application in order to

handle the scenario when webservice access doesn’t load as expected.

There are two really great libraries that can really help to reduce the

amount of code you need to write around these parts.

 Polly
To quote the about section on the GitHub repository,

Polly is a .NET resilience and transient-fault-handling library
that allows developers to express policies such as Retry, Circuit
Breaker, Timeout, Bulkhead Isolation, and Fallback in a flu-
ent and thread-safe manner.

Polly can really help to reduce writing complex code around the failure

scenarios of webservice access. I thoroughly recommend checking out the

GitHub repository at https://github.com/App-vNext/Polly.

Chapter 10 remote Data

https://reactiveui.github.io/refit/
https://github.com/App-vNext/Polly

330

 StateContainer from CommunityToolkit.Maui
You had to build in converters and apply IsVisible bindings to control

which view is being displayed when your widget is in a specific state. The

StateContainer reduces that overhead so you “just” need to define the

states and the views for those states.

If you love to write less code, I recommend checking out the

Microsoft documentation at https://learn.microsoft.com/dotnet/

communitytoolkit/maui/layouts/statecontainer.

 Summary
In this chapter, you

• Learned about remote data

• Learned how you can interact with it

• Covered the common considerations

• Looked a concrete example with the Open Weather API

• Built your own implementation to consume the Open

Weather API

• Covered how to consume the data returned

• Talked through scenarios where things can go wrong

• Provided implementations to handle those scenarios

• Looked at how you can reduce the complexity of your

implementation with Refit

• Added in your Weather Widget

In the next chapter, you will

Chapter 10 remote Data

https://learn.microsoft.com/dotnet/communitytoolkit/maui/layouts/statecontainer
https://learn.microsoft.com/dotnet/communitytoolkit/maui/layouts/statecontainer

331

• Learn about permissions on the various platforms and

how to request them.

• Learn how to use the Geolocation API.

• Cover how to write your own platform-specific

interaction when necessary.

• Discover how to tweak the UI based on the platform on

which your application is running.

• Learn to tweak the UI through the use of the handler

architecture.

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch10.

 Extra Assignment
There are so many possibilities for accessing remote data in your

application! Here are some extra widgets I would like you to consider

creating.

 TODO Widget
The go-to example application to build in tutorials is a TODO application.

I would like you to expand upon this idea and add a TodoWidget into your

application. There are several TODO APIs that you could utilize to do this.

Do you have a favorite TODO service that you use? I personally like the

Chapter 10 remote Data

https://github.com/Apress/Introducing-MAUI/tree/main/ch10
https://github.com/Apress/Introducing-MAUI/tree/main/ch10

332

Microsoft TODO option. There is some good documentation over on the

Microsoft pages to help get you started at https://learn.microsoft.com/

graph/todo-concept-overview

 Quote of the Day Widget
I know I certainly like to be inspired with a feel-good quote. Why don’t

you consider building a widget to refresh daily and show you a quote of

the day?

The They Said So Quotes API offers a good API for doing this exact job

with the documentation hosted at https://quotes.rest/.

The other concept that you will need to consider is how to trigger your

Scheduler class to trigger the refresh at midnight.

 NASA Space Image of the Day Widget
I love some of the images that come from NASA. It is so cool to be able

to see into the reaches of space! Quite handily, they have a decent set of

APIs that can enable you to build a widget and show off these images! The

documentation on the NASA website really is great and should be able to

guide you through the process of accessing the data you need. The NASA

API documentation can be found at https://api.nasa.gov/.

I really can’t wait to see these widgets in action!

Chapter 10 remote Data

https://learn.microsoft.com/en-us/graph/todo-concept-overview
https://learn.microsoft.com/en-us/graph/todo-concept-overview
https://quotes.rest/
https://api.nasa.gov/

335

CHAPTER 11

Getting Specific
In this chapter, you will be learning about .NET MAUI Essentials and how

it enables you to access platform-specific APIs without having to worry

about any of the platform-specific complexities. Two concrete examples

of are requesting permissions on each platform and accessing the

device’s geolocation information. You will explore what is required if you

really do need to interact with platform-specific APIs that have not been

abstracted for you. Finally, you will cover multiple techniques, concepts,

and architectures that enable you to tweak the UI and behavior of your

applications based on the platforms they are running on.

 .NET MAUI Essentials
In the previous chapter, you created a Weather widget. You did not finish

the job, though, as it currently only loads the weather for Maui, Hawaii.

I don’t know about you, but I am not lucky enough to live there! In this

section, you will discover what the current device’s location is in terms of

longitude and latitude, and you will then send that information up to the

Open Weather API for a much more accurate weather summary of the

user’s current location.

In order to achieve this, you need an understanding of two key

concepts: the permissions system of each operating system, and how to

access the APIs specific to GPS coordinates. Thankfully .NET MAUI has

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_11

https://doi.org/10.1007/978-1-4842-9234-1_11#DOI

336

you covered for both scenarios, but you do need to be aware of how they

work and any platform-specific differences. Let’s take a look at each to get

a better understanding.

 Permissions
A common theme I have been discussing in this book is how .NET MAUI

does a lot of the heavy lifting when it comes to dealing with each supported

platform. This continues with permissions because .NET MAUI abstracts a

large number of permissions.

It is worth noting that every operating system is different. Not all
require permissions for certain features. Refer to the Microsoft
documentation on what .NET MAUI supports and what is required
for each platform at https://learn.microsoft.com/dotnet/
maui/platform-integration/appmodel/permissions-
available-permissions.

There are two key methods that enable you to interact with the

permission system in .NET MAUI.

 Checking the Status of a Permission

In order to check whether the user has already granted permission to

your application, you can use the CheckStatusAsync method on the class.

For your Weather widget, you need access to the devices geolocation

information. You have two options in terms of the permission to use:

• LocationWhenInUse: This only allows the application

to access the geolocation information while the app is

open in the foreground.

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions-available-permissions
https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions-available-permissions
https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions-available-permissions

337

• LocationAlways: This allows the application to also

access the geolocation information even when the app

is backgrounded. This can be particularly useful for

exercise tracking applications that need to monitor the

user’s movement.

You only need the LocationWhenInUse option for your application.

PermissionStatus status = await Permissions.

CheckStatusAsync<Permissions.LocationWhenInUse>();

It is recommended that you check the status of the permission

before requesting it to gain an understanding of whether the user has

been asked before. On iOS, you are only allowed to ask once and then

you are required to prompt the user to go to the Settings app and enable

permission if they wish to change their mind. Sadly, Android provides a

different approach and will return a status of Denied even if the user has

not been prompted before. In this scenario you are then recommended

to call ShouldShowRationale to check whether the user really has been

prompted.

The possible values for PermissionStatus are as follows:

• Unknown: The permission is in an unknown state, or on

iOS, the user has never been prompted.

• Denied: The user denied the permission request.

• Disabled: The feature is disabled on the device.

• Granted: The user granted permission or it is

automatically granted.

• Restricted: In a restricted state

ChApTER 11 GETTING SpECIfIC

338

 Requesting Permission

Once you have confirmed that the user has not been prompted with a

permission request, you can proceed to prompting them by using the

Permissions.RequestAsync method along with the specific permission to

request. In your example, this will be the LocationWhenInUse permission.

PermissionStatus status = await Permissions.

RequestAsync<Permissions.LocationWhenInUse>();

It is worth noting that the RequestAsync method needs to be run on

the main or UI thread. This is needed because it can result in presenting

the built-in system UI in order to ask the user if they wish to give

permission. Therefore, whenever you call Permissions.RequestAsync you

must make sure your code is already running on the main thread with the

MainThread.IsMainThread property, or you can dispatch out to the main

thread with the MainThread.InvokeOnMainThreadAsync method.

It is considered best practice to only prompt the user for permission
to use a specific feature when they first try to use that feature. This
helps to provide context to the user around why the permission
is being requested. You may also find that the different platform
providers (e.g., Apple, Google, and Microsoft) have different rules they
apply when reviewing and approving the applications you submit to
their stores. for this, I recommend working with the most restrictive
rules to save yourself pain and effort.

ChApTER 11 GETTING SpECIfIC

339

 Handling Permissions in Your Application

The following section of code comes recommended from the Microsoft

documentation site at https://learn.microsoft.com/dotnet/maui/

platform-integration/appmodel/permissions?#example. It has been

included and left unchanged as it helps to really highlight the differences

between platforms.

First, create the new folder and class for this new piece of

functionality. Call the folder Services. Add a new interface file and call it

ILocationService.cs under the Services folder. The contents of this new

interface should be updated to the following

namespace WidgetBoard.Services;

public interface ILocationService

{

 Task<Location> GetLocationAsync();

}

This provides a definition of what a location service implementation

will provide: an asynchronous method that will ultimately return a

Location object.

Next, create an implementation. Add a new class file under the

Services folder and call it LocationService.cs. Modify the initial

contents to the following:

namespace WidgetBoard.Services;

public class LocationService : ILocationService

{

}

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions?#example
https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions?#example

340

Now that you have a blank class, you can add the method for handling

permission requests ready for use.

private async Task<PermissionStatus>

CheckAndRequestLocationPermission()

{

 PermissionStatus status = await Permissions.

CheckStatusAsync<Permissions.LocationWhenInUse>();

 if (status == PermissionStatus.Granted)

 {

 return status;

 }

 if (status == PermissionStatus.Denied && DeviceInfo.

Platform == DevicePlatform.iOS)

 {

 // Prompt the user to turn on in settings

 // On iOS once a permission has been denied it may not

be requested again from the application

 return status;

 }

 if (Permissions.ShouldShowRationale<Permissions.

LocationWhenInUse>())

 {

 // Prompt the user with additional information as to

why the permission is needed

 }

 status = await Permissions.RequestAsync<Permissions.

LocationWhenInUse>();

 return status;

}

ChApTER 11 GETTING SpECIfIC

341

Now that you have added the ability to request the user’s permission to

use the geolocation APIs on the device, you can proceed to using it.

 Using the Geolocation API
.NET MAUI provides the ability to access each platform’s geolocation APIs

in order to retrieve a longitude and latitude representing where in the

world the device running the application is currently located. Full details

of what the API provides can be found at https://learn.microsoft.com/

dotnet/maui/platform-integration/device/geolocation.

 Registering the Geolocation Service

Open the MauiProgram.cs file and register the geolocation

implementation so that you can use it via the dependency injection layer.

You need to add the following line into the CreateMauiApp method:

builder.Services.AddSingleton(Geolocation.Default);

 Using the Geolocation Service

This now means that you can add a dependency on the IGeolocation

interface and wherever .NET MAUI provides you with an instance. Let’s

use the IGeolocation implementation in your LocationService.cs file.

There are a few modifications you need to make, so I will walk through

each one.

Add a field for the IGeolocation implementation in the root of

the class.

private readonly IGeolocation geolocation;

Assign the IGeolocation implementation in the constructor.

public LocationService(IGeolocation geolocation)

{

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation

342

 this.geolocation = geolocation;

}

Provide the method to return a Location object.

public async Task<Location> GetLocationAsync()

{

 return await MainThread.InvokeOnMainThreadAsync(async () =>

 {

 var status = await CheckAndRequestLocationPermission();

 if (status != PermissionStatus.Granted)

 {

 return null;

 }

 return await this.geolocation.GetLocationAsync();

 });

}

This implementation first makes sure that you are running on the main

thread, which is required for location-based access. Then it calls your

permission handling method and, if the app has permission, it calls the

IGeolocation implementation and returns the resulting Location object.

Now you are ready to make use of the LocationService.

 Registering the LocationService

Open the MauiProgram.cs file and register the LocationService

implementation so that you can use it via the dependency injection layer.

You need to add the following line into the CreateMauiApp method:

builder.Services.AddSingleton<ILocationService,

LocationService>();

ChApTER 11 GETTING SpECIfIC

343

 Using the ILocationService

Let’s use the ILocationService implementation in your

WeatherWidgetViewModel.cs file. There are a few modifications you need

to make, so I will walk through each one

Add a field for the ILocationService implementation in the root of

the class.

private readonly ILocationService locationService;

Assign the ILocationService implementation in the constructor;

changes are in bold.

public WeatherWidgetViewModel(

 IWeatherForecastService weatherForecastService,

 ILocationService locationService)

{

 this.weatherForecastService = weatherForecastService;

 this.locationService = locationService;

 LoadWeatherCommand = new Command(async () => await

LoadWeatherForecast());

}

Modify your State enum to include a new value so that you can

handle when something goes wrong with permission access. Add a

PermissionError value, as can be seen below in bold.

public enum State

{

 None = 0,

 Loading = 1,

 Loaded = 2,

 Error = 3,

 PermissionError = 4

}

ChApTER 11 GETTING SpECIfIC

344

Modify your LoadWeatherForecast method to call your new

ILocationService implementation in order to find out the device’s

location and then use that to call the Open Weather API to find out the

weather at the device’s location.

private async Task LoadWeatherForecast()

{

 State = State.Loading;

 try

 {

 var location = await this.locationService.

GetLocationAsync();

 if (location is null)

 {

 State = State.PermissionError;

 return;

 }

 var forecast = await weatherForecastService.

GetForecast(location.Latitude, location.Longitude);

 Temperature = forecast.Current.Temperature;

 Weather = forecast.Current.Weather.First().Main;

 IconUrl = forecast.Current.Weather.First().IconUrl;

 State = State.Loaded;

 }

 catch (Exception ex)

 {

 State = State.Error;

 }

}

ChApTER 11 GETTING SpECIfIC

345

You have introduced a few changes here so let’s break them down.

First, you are calling the locationService to get the device’s location.

If it returns null, it means the application does not have permission and

you set the State to PermissionError.

If you have permission, you pass the device’s current location into the

weatherForecastService.GetForecast method.

 Displaying Permission Errors to Your User

You have added the new state value and also assigned it in your view

model when you either fail to retrieve the permission setting or the user

has denied permission to the LocationWhenInUse feature. Now you can

add in support into your UI to respond to this value and show something

appropriate to the user. Open the WeatherWidgetView.xaml file and make

the following modifications.

Add in the converter instance inside the <ContentView.Resources> tag.

<converters:IsEqualToStateConverter

 x:Key="HasPermissionErrorConverter"

 State="PermissionError" />

Then you can add a section that will render when the State

property is equal to PermissionError. You should add this into the

WeatherWidgetView.xaml file after the following section:

<!-- Error -->

<VerticalStackLayout

 IsVisible="{Binding State,

Converter={StaticResource HasErrorConverter}}">

 ...

</VerticalStackLayout>

ChApTER 11 GETTING SpECIfIC

346

The section you want to add is as follows:

<!-- PermissionError -->

<VerticalStackLayout

 IsVisible="{Binding State, Converter={StaticResource

HasPermissionErrorConverter}}">

 <Label

 Text="Unable to retrieve location data" />

 <Button

 Text="Retry"

 Command="{Binding LoadWeatherCommand}" />

</VerticalStackLayout>

Now that you have added all of the required bits of code to call into

the Permissions and Geolocation APIs, you need to configure each of your

supported platforms to enable the location permission.

 Configuring Platform-Specific Components
This is where .NET MAUI stops holding your hand and requires you to

do some work in the platform-specific folders. Many of the APIs that are

provided by .NET MAUI, as detailed in this section of the documentation

site at https://learn.microsoft.com/dotnet/maui/platform-

integration/, have the potential to require some level of platform-

specific setup. This will vary per platform. For example, for haptic support,

only Android requires some setup, whereas for the Geolocation API, all

platforms require some setup.

Thankfully .NET MAUI provides helpful exceptions and error messages

if you miss any of the platform-specific setup and they usually indicate

the action required to fix the issue. Topics like this do make it imperative

that you really test your application on each of the platforms you wish to

support to verify that it behaves as expected.

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/
https://learn.microsoft.com/dotnet/maui/platform-integration/

347

Let’s set up each platform so that your app can fully support accessing

the devices’ current location.

 Android

Android requires several permissions and features to be configured in

order for your application to use the LocationWhenInUse permission. You

can configure them inside the Platforms/Android/MainApplication.cs

file so open it and make the following additions in bold:

using Android.App;

using Android.Runtime;

[assembly: UsesPermission(Android.Manifest.Permission.

AccessCoarseLocation)]

[assembly: UsesPermission(Android.Manifest.Permission.

AccessFineLocation)]

[assembly: UsesFeature("android.hardware.location",

Required = false)]

[assembly: UsesFeature("android.hardware.location.gps",

Required = false)]

[assembly: UsesFeature("android.hardware.location.network",

Required = false)]

namespace WidgetBoard;

Note that the use of the assembly keyword requires that the attributes

are applied at the assembly level and not on the class like the current

[Application] attribute usage. For further reference on how to get started

with geolocation, refer to the Microsoft documentation at https://

learn.microsoft.com/dotnet/maui/platform-integration/device/

geolocation?tabs=android-get-started.

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=android-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=android-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=android-get-started

348

If you run the application on Android now, you will see that the first

time you add a Weather widget onto a board, the system will present the

following popup to the user asking them to allow permission for your

application to use the location feature. Figure 11-1 shows the result of

running your application on Android.

Figure 11-1. The application running on Android showing the
permission prompt when a weather widget is first added to a board

ChApTER 11 GETTING SpECIfIC

349

 iOS/Mac

Apple requires that you specify the reason your application wants to use

the Geolocation feature in the process of defining that your application

uses the feature. You can configure this by modifying the Platforms/iOS/

Info.plist and Platforms/MacCatalyst/Info.plist files for iOS and

Mac Catalyst, respectively. Both files require the same change, so let’s open

them and add the following lines in. Note that I am opting to edit the files

inside Visual Studio Code as I find it provides a better editing experience.

There is a built-in editor inside Visual Studio but I personally prefer to edit

the XML directly. Add the following lines inside the <dict> element:

<key>NSLocationWhenInUseUsageDescription</key>

<string>In order to provide accurate weather

information.</string>

For further reference on how to get started with Geolocation refer

to the Microsoft documentation at https://learn.microsoft.com/

dotnet/maui/platform-integration/device/geolocation?tabs=ios -

get-started

If you run the application on iOS and macOS now, you will see that the

first time you add a Weather widget onto a board, the system will present

the following popup to the user asking them to allow permission for your

application to use the location feature. Figure 11-2 shows the result of

running the application on iOS.

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=ios - get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=ios - get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=ios - get-started

350

Figure 11-2. The application running on iOS (left) and macOS (right)
showing the permission prompt when a weather widget is first added
to a board

 Windows

Windows applications have the concept of capabilities and it is up to

developers to declare which capabilities are required in their applications.

In order to do so for your application, you need to modify the

ChApTER 11 GETTING SpECIfIC

351

 Platforms/Windows/Package.appxmanifest file. Note that I am opting to

edit the files inside Visual Studio Code as I find it provides a better editing

experience. Add the following line inside the <Capabilities> element:

<DeviceCapability Name="location"/>

For further reference on how to get started with Geolocation refer to

the Microsoft documentation at https://learn.microsoft.com/dotnet/

maui/platform-integration/device/geolocation?tabs=windows-

get-started.

If you run the application on Windows now, you don’t see a permission

request popup. Figure 11-3 shows the result of running the application on

Windows.

Figure 11-3. The application running on Windows showing the
permission prompt when a weather widget is first added to a board

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=windows-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=windows-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=windows-get-started

352

 Platform-Specific API Access
While .NET MAUI does provide you with a lot of functionality out of the

box, there can be times when you need to write your own interaction with

the platform-specific layer to achieve your goals. Whatever functionality

can be achieved on a specific platform can also be achieved within a .NET

MAUI application. You just might have to do the heavy lifting yourself. If

your implementation is considered useful enough to other developers, you

should propose the changes back to the .NET MAUI team.

There are two main concepts you can utilize when building platform-

specific code in .NET MAUI. Let’s take a look at each one through the

simple example of building a LocationService that returns the longitude

and latitude of the headquarters for each platform provider (e.g., Google,

Apple, and Microsoft).

 Platform-Specific Code with Compiler Directives
You will most likely come across a usage of the #if compiler directive

when working on a .NET MAUI application. I am not a big fan of them but I

do accept that in some scenarios they do provide value.

namespace WidgetBoard.Services;

public class PlatformLocationService : ILocationService

{

 public Task<Location> GetLocationAsync()

 {

 Location location;

#if ANDROID

 location = new Location(37.419857, -122.078827);

#elif WINDOWS

 location = new Location(47.639722, -122.128333);

ChApTER 11 GETTING SpECIfIC

353

#else

 location = new Location(37.334722, -122.008889);

#endif

 return Task.FromResult(location);

 }

}

The above code will be compiled in different ways based on the target

platform. The resulting compiled code for the Android platform looks as

follows:

namespace WidgetBoard.Services;

public class PlatformLocationService : ILocationService

{

 public Task<Location> GetLocationAsync()

 {

 Location location;

 location = new Location(37.419857, -122.078827);

 return Task.FromResult(location);

 }

}

This means that only the code specific to the platform will be compiled

and shipped to that platform.

This approach can work well in this scenario, but as soon as you need

to use multiple classes or other platform-specific libraries, the code will

become complex very quickly. In more complex scenarios, you can use the

platform-specific folders created in your project for you.

ChApTER 11 GETTING SpECIfIC

354

 Platform-Specific Code in Platform Folders
I briefly covered these folders in Chapter 2. Each platform has a folder and

the files inside each folder (e.g., /Platforms/Android/) will only be compiled

for that platform when you are targeting it. In order to create the same

PlatformLocationService from the previous section, you first need to

create a partial class under the Services folder with the following contents:

namespace WidgetBoard.Services;

public partial class MultiPlatformLocationService :

ILocationService

{

}

The above code will not compile now because you haven’t implemented

ILocationService. This is expected until you add in your platform-specific

implementations, so don’t worry. You add the partial keyword because

this is only a partial implementation. The platform- specific files and classes

you will add shortly will complete this partial implementation.

Next, you need to create your Android platform-specific

implementation. To do this, you add a new class file under the

/Platforms/Android/ folder and call it PlatformLocationService.cs,

just like the one above. You want to modify its contents to the following:

namespace WidgetBoard.Services;

public partial class MultiPlatformLocationService

{

 public Task<Location> GetLocationAsync()

 {

 return Task.FromResult(new Location(37.419857,

-122.078827));

 }

}

ChApTER 11 GETTING SpECIfIC

https://doi.org/10.1007/978-1-4842-9234-1_2

355

This class will only be compiled when the Android platform is being

targeted and therefore you get a very similar compiled output to the one

in the “Platform-Specific Code with Compiler Directives” section. The

key difference is that you don’t need to add any of those unpleasant #if

directives.

When building platform-specific implementations this way, the
namespace of your partial classes must match! Otherwise, the
compiler won’t be able to build a single class.

 Overriding the Platform-Specific UI
One fundamental part of .NET MAUI is in the fact that it utilizes the

underlying platform controls to handle the rendering of our applications.

This will result in our applications looking different on each of the

platforms. In the majority of scenarios, this is considered a good thing

because the application is in keeping with the platform’s look and feel.

At times, though, you will need to override some of the platform-specific

rendering or even just to tweak how controls render in your application on

a specific platform.

 OnPlatform
A common example of needing to change control properties are around

the sizing of text or spacing around controls (Margin or Padding). I always

find that the final finishing touches to get an application feeling really slick

and polished can result in needing to tweak details like this per platform.

There are two main ways to achieve this, and they depend on whether

you are a XAML or C# oriented UI builder. Let’s look over both with an

example.

ChApTER 11 GETTING SpECIfIC

356

 OnPlatform Markup Extension

XAML, as mentioned, is not as feature-rich in terms of what can be written

and achieved. Therefore, additional functionality is provided by .NET

MAUI to overcome these limitations. One such example is the OnPlatform

markup extension. XAML markup extensions help enhance the power and

flexibility of XAML by allowing element attributes to be set from a variety

of sources.

You might decide that in your ClockWidgetView.xaml file the FontSize

property is too large for iOS and Android and opt to change it only for

those platforms. Let’s take a look at the code and see how you can modify

the property based on the platform the application is running on.

<?xml version="1.0" encoding="utf-8" ?>

<Label

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"

 x:Class="WidgetBoard.Views.ClockWidgetView"

 FontSize="60"

 VerticalOptions="Center"

 HorizontalOptions="Center"

 x:DataType="viewmodels:ClockWidgetViewModel"

 Text="{Binding Time}">

 <Label.BindingContext>

 <viewmodels:ClockWidgetViewModel />

 </Label.BindingContext>

</Label>

ChApTER 11 GETTING SpECIfIC

357

The code above shows that the FontSize property is currently fixed to

a value of 60. With the OnPlatform markup extension, you can change this

value based on the platform the application is running on. The following

code example shows how you can retain the default value of 60 and then

override for the platforms that you wish:

FontSize="{OnPlatform Default=60, Android=25, iOS=30}"

The code example above states that all platforms will default to using a

FontSize of 60 unless the application is running on Android and a value of

25 will be used or if the application is running on iOS and a value of 30 will

be used.

 Conditional Statements

If you had built your UI in C# or wanted to at least modify the FontSize

property of a Label control in a similar way you could write the following

conditional C# statement:

public ClockWidgetView()

{

 if (DeviceInfo.Platform == DevicePlatform.Android)

 {

 FontSize = 25;

 }

 else if (DeviceInfo.Platform == DevicePlatform.iOS)

 {

 FontSize = 30;

 }

 else

 {

 FontSize = 60;

 }

}

ChApTER 11 GETTING SpECIfIC

358

For further information on using the OnPlatform markup extension

and other possible markup extensions that enable the customization

of your application, please refer to the Microsoft documentation at

https://learn.microsoft.com/dotnet/maui/xaml/markup-extensions/

consume#onplatform-markup-extension.

There will be times when just overriding values like this is not enough.

For the more complex scenarios, you need to consider an architecture that

is completely new to .NET MAUI and that is the handler architecture.

 Handlers
Handlers are an area where .NET MAUI really shines! If you have

come from a Xamarin.Forms background, you will appreciate the pain

that custom renderers brought. If you don’t have any Xamarin.Forms

experience, you are very lucky! I won’t dig down too deep into the details

of the old approach as this is a book on .NET MAUI and not the past;

however, I feel there is value in talking about the old issues and how they

have been overcome by the new handler architecture.

In both Xamarin.Forms and .NET MAUI, we predominantly build our

user interfaces with abstract controls: controls defined in the Microsoft

namespace and not specifically any platform controls. These controls

eventually need to be mapped down to the platform-specific layer. In the

Xamarin.Forms days, you would have a custom renderer. The renderer

would be responsible for knowing about the abstract control and also the

platform-specific control and mapping property values and event handlers

and such between the two. This is considered a tightly coupled design,

meaning that it becomes really quite difficult to enhance the controls and

their rendering. If you wanted to override a small amount of behavior,

you would have to implement a full renderer responsible for mapping all

properties/events. This was very painful!

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/xaml/markup-extensions/consume#onplatform-markup-extension
https://learn.microsoft.com/dotnet/maui/xaml/markup-extensions/consume#onplatform-markup-extension

359

In .NET MAUI, this concept of renderers has been entirely replaced

with handlers. This new architecture provides some extra layers between

the abstract controls in the .NET MAUI namespace and the underlying

platform-specific controls being rendered in our applications. This is

considered much more loosely coupled, mainly due to the fact that each

control will implement a number of interfaces and it is the handler’s

responsibility to interact with the interface rather than the specific control.

This has many benefits including the fact that multiple controls can all

implement the same interface and ultimately rely on the same single

handler. It also provides the ability to define smaller chunks of common

functionality and, as you all know, smaller classes and files are much

easier to read, follow, and ultimately maintain. Figure 11-4 shows how the

abstract Button class in .NET MAUI is mapped to the specific controls on

each platform.

Figure 11-4. The handler architecture in .NET MAUI

If you wish to create a new control that needs to map to platform-

specific implementations, you should follow the pattern shown in

Figure 11-4. For example, if you made your FixedWidgetBoard a control

in this manner, you would also create an IFixedWidgetBoard interface

and then a FixedWidgetBoardHandler and then map from the virtual view

across to a platform view. You didn’t take this approach in your scenario

because there was no benefit. In fact, it would result in more code because

ChApTER 11 GETTING SpECIfIC

360

you would need to map to each platform individually. This concept may

sound like it will always cause more effort; however, in the situation of a

Button, it makes sense because each platform already has a definition of

what a button is and how it behaves.

Quite often as application developers you will be using existing

controls rather than building your own controls, so rather than needing

to build everything you see in Figure 11-4, you can customize controls

through the use of handlers.

 Customizing Controls with Mappers

Mappers are key to the handler architecture. They define the actions that

will be performed when either a property is changed or a command is sent

between cross-platform controls and platform-specific views. This piece

of information in itself might not be that helpful, but once you gain an

understanding of how to modify these actions or provide new ones, you

can start to understand just how powerful this can be. The majority of the

.NET MAUI handlers are in the Microsoft.Maui.Handlers namespace,

which makes them relatively easy to discover. There are a few exceptions

to that rule, which are defined in their documentation at https://learn.

microsoft.com/dotnet/maui/user-interface/handlers/#handler-

based-views.

It is important to note that by modifying the mappers for handlers,
you will be overriding the behavior for all implementations of the
control it handles. You can overcome this by creating a class (e.g.
MyButton) that inherits from the control you wish to enhance
(e.g. Button) and then having your handler target the new class
(MyButton).

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/user-interface/handlers/#handler-based-views
https://learn.microsoft.com/dotnet/maui/user-interface/handlers/#handler-based-views
https://learn.microsoft.com/dotnet/maui/user-interface/handlers/#handler-based-views

361

 Scoping of Mapper Customization

All controls in .NET MAUI that utilize the handler architecture also provide

HandlerChanging and HandlerChanged events, or OnHandlerChanging

and OnHandlerChanged methods, meaning you can subscribe to them and

customize the look and feel of a specific control instance.

 Further Reading

One great example of overriding controls in such a way is a talk by Peter

Marchev, a Telerik developer, showing how you can customize individual

components in their charting control with very limited amounts of code.

The talk can be viewed at www.youtube.com/watch?v=s7WfTT-MVSg.

 Summary
In this chapter, you

• Learned about permissions on the various platforms

and how to request them

• Learned how to use the Geolocation API

• Wrote your own platform-specific interaction when

necessary

• Discovered how to tweak the UI based on the platform

upon which your application is running

• Further tweaked the UI through the use of the handler

architecture

In the next chapter, you will

• Learn what testing is and why it is important.

ChApTER 11 GETTING SpECIfIC

http://www.youtube.com/watch?v=s7WfTT-MVSg

362

• Cover what unit testing is and how you can apply it to a

.NET MAUI application.

• Learn what snapshot testing is and how you can

implement it.

• Gain an understanding of device tests and how you can

apply them to your applications.

• Look to the future for yet more testing goodness.

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch11.

 Extra Assignment
You have only scratched the surface on the platform integration APIs that

.NET MAUI offers you. I would love for you to look over the other possible

APIs and build your own widgets that would benefit from them. The

documentation for the platform integration APIs can be found at https://

learn.microsoft.com/dotnet/maui/platform-integration/.

 Barometer Widget
You can make use of the Barometer API in order to report the ambient

air pressure back to the user. In fact, this might be a good addition to the

Weather widget rather than a whole new widget. The documentation for

this API can be found at https://learn.microsoft.com/dotnet/maui/

platform-integration/device/sensors?#barometer.

ChApTER 11 GETTING SpECIfIC

https://github.com/Apress/Introducing-MAUI/tree/main/ch11
https://github.com/Apress/Introducing-MAUI/tree/main/ch11
https://learn.microsoft.com/dotnet/maui/platform-integration/
https://learn.microsoft.com/dotnet/maui/platform-integration/
https://learn.microsoft.com/dotnet/maui/platform-integration/device/sensors?#barometer
https://learn.microsoft.com/dotnet/maui/platform-integration/device/sensors?#barometer

363

 Geocoding Lookup
I am reluctant to enable permissions like location access to apps I don’t

believe really need them. Perhaps you can enhance your Weather widget

to allow the user to supply their nearest city, town, or postal code and

then use the Geocoding API to reverse lookup the longitude and latitude

information required for the Open Weather API. The documentation

for the Geocoding API can be found at https://learn.microsoft.com/

dotnet/maui/platform-integration/device/geocoding.

ChApTER 11 GETTING SpECIfIC

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geocoding
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geocoding

365

CHAPTER 12

Testing
Testing is such an important part of the software development process;

it enables you to verify that what you have delivered is what was required

and also validate that the software behaves correctly. It also provides the

safety net of catching regressions in the products that you build.

There are many different approaches for designing and writing tests

and where they fit into the software development process. This chapter

is not intended to provide full insight into those approaches, but it will

expose you to various methods of testing a .NET MAUI application, why

they can be beneficial, and pique your interest in learning to use them in

more depth.

 Unit Testing
Unit testing is the process of ensuring that small units, typically a method

or class, of an application meet their design and behave as intended. One

big benefit of testing such a small unit of the code is that it makes it easier

for you to identify where issues may lie or creep in as part of regression.

I have worked on many legacy systems throughout my career where the

teams neglected to apply unit testing and the experience when trying to

identify the cause of a bug in a large system really can be costly in terms of

time and money.

Despite unit testing featuring near the end of this book, it is a concept

that should be adopted early in the development process. Unit testing can

aid in the design and building of code that is easier to read and maintain

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_12

https://doi.org/10.1007/978-1-4842-9234-1_12#DOI

366

because it forces you to expose these small units of functionality and

ultimately follow SOLID principles.

Unit testing itself will not catch all bugs in the system and should not

be relied upon as a sole means of testing your applications. When used in

combination with other forms of testing such as integration, functional, or

end-to-end testing, you can build up confidence that your application is

stable and delivers what is required.

Let’s see how to implement unit testing with .NET MAUI.

 Unit Testing in .NET MAUI
.NET MAUI applications are, as the name suggests, .NET-based projects,

meaning that any of the existing .NET-based unit testing frameworks can

be used.

As it currently stands, the default .NET MAUI project is not compatible
with a unit test project. I will cover how to solve this in the “Adding a
Unit Test Project to Your Solution” section.

There are three well-known frameworks that come with template

support in Visual Studio, meaning you can create them with File ➤ Add

New Project option. The three frameworks are listed below.

 xUnit

xUnit appears to be the choice of the .NET MAUI team. One main reason

for this is likely the support around being able to run xUnit-based unit tests

on actual devices, meaning you can test device-specific implementations.

https://xunit.net

ChAPTEr 12 TESTINg

https://xunit.net

367

 NUnit

NUnit is an old favorite of mine. I have used it on so many projects in the

past! It has some great features like being able to run the same test case

with multiple sets of data to reduce the amount of testing code you need to

write and ultimately maintain.

https://nunit.org

 MSTest

MSTest is a testing framework that is built and supplied by Microsoft. It

doesn’t appear as feature rich as NUnit or xUnit but it still does a great job.

https://learn.microsoft.com/dotnet/core/testing/unit-

testing-with-mstest

 Your Chosen Testing Framework

We will be using xUnit for this book mainly due to the benefits it brings

with being able to also run the unit tests on devices.

Tests in xUnit are decorated with the [Fact] attribute with the

expectation that as the author of the test methods you will name them in a

way that defines a fact which the test will prove to be true.

Most of the test frameworks are quite similar and tend to differ in terms

of keywords when identifying tests. Go with whatever testing framework

you are most comfortable with. If you do not have much experience

with any, perhaps experiment with each to see which gives you the best

experience. At the end of the day, you will be building and maintaining

these tests so it needs to benefit you and your team.

ChAPTEr 12 TESTINg

https://nunit.org
https://learn.microsoft.com/dotnet/core/testing/unit-testing-with-mstest
https://learn.microsoft.com/dotnet/core/testing/unit-testing-with-mstest

368

 Adding Your Own Unit Tests
There are some steps that you need to follow in order to make sure that you

can unit test your .NET MAUI application. Let’s add a test project to the

solution and then make the necessary changes.

 Adding a Unit Test Project to Your Solution

 1. Click the File menu.

 2. Click Add.

 3. Click New Project.

 4. Enter Test in the Search for templates box.

Figure 12-1 shows the Add a new project dialog in

Visual Studio.

Figure 12-1. Add a new project dialog in Visual Studio

ChAPTEr 12 TESTINg

369

 5. Select xUnit Test Project.

 6. Click Next.

 7. Enter a name for the project. I opted for

WidgetBoard.Tests and find that appending .Tests or

.UnitTests provides a common way to distinguish

between application and test projects. This is also

a common naming convention that simplifies

searching for all unit test projects when running

in a CI pipeline. I will cover this in more detail in

Chapter 14.

 8. Click Next.

 9. Select the framework. The default should be fine;

just make sure it matches the target version of the

.NET MAUI application project.

 10. Click Create.

 Modify Your Application Project to Target net7.0

Sadly, the current .NET MAUI project template does not include the

net7.0 target framework, meaning that it is not initially compatible with

a standard unit test project. In order to correct this, you can manually

add the net7.0 target framework. Open the WidgetBoard/WidgetBoard.

csproj file in Visual Studio Code or your favorite text editor and make the

following changes.

Modify the first TargetFrameworks element to include net7.0; changes

are in bold:

<TargetFrameworks>net7.0;net7.0-android;net7.0-ios;net7.0-

maccatalyst</TargetFrameworks>

ChAPTEr 12 TESTINg

https://doi.org/10.1007/978-1-4842-9234-1_14

370

Add a Condition attribute to the OutputType element; changes are

in bold:

<OutputType Condition="'$(TargetFramework)' != 'net7.0'">Exe

</OutputType>

Without this second change you will see a compilation error reporting

that error CS5001: Program does not contain a static 'Main' method

suitable for an entry point. This is due to the fact that you are building an

application and .NET applications expect to have a static Main method

as the entry point to the application. The OutputType for .NET MAUI

applications must be Exe, which might feel slightly confusing as you rarely

end up with an exe file that will be delivered.

If you are building against a newer version of .NET MAUI, you can
replace net7.0 with the version you are using, such as net8.0.

 Adding a Reference to the Project to Test

Now you need to add a reference from your test project onto the main

application project.

 1. Right-click WidgetBoard.Tests.

 2. Click Add.

 3. Click Project Reference.

 4. Select WidgetBoard from the list. Figure 12-2 shows

the Reference Manager dialog in Visual Studio.

ChAPTEr 12 TESTINg

371

Figure 12-2. Reference Manager in Visual Studio

 5. Click OK.

 Modify Your Test Project to Use MAUI Dependencies

The final step is to make your test project bring in the .NET MAUI

dependencies just like the main application project. Open up the

WidgetBoard.Tests/WidgetBoard.Tests.csproj file in Visual Studio

Code or your favorite text editor and make the following changes

Add <UseMaui>true</UseMaui> into the top-level PropertyGroup

element, which should now look like this; the changes are in bold:

<PropertyGroup>

 <TargetFramework>net7.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 <UseMaui>true</UseMaui>

ChAPTEr 12 TESTINg

372

 <IsPackable>false</IsPackable>

</PropertyGroup>

Now you have set up everything ready to begin writing and running

your unit tests.

 Testing Your View Models
The MVVM architecture lends itself very well to unit testing each

individual component.

First, you need to create a ViewModels folder in your

WidgetBoard.Tests project and then add a new class file called

BoardDetailsPageViewModelTests.cs. It is good practice to keep folders

and tests named similarly to the code that they are testing to make it easier

to organize and locate.

Now you can add in your first set of tests.

 Testing BoardDetailsPageViewModel

Inside the class file that you just created, add the following:

[Fact]

public void SaveCommandCannotExecuteWithoutBoardName()

{

 var viewModel = new BoardDetailsPageViewModel(null, null);

 Assert.Null(viewModel.BoardName);

 Assert.False(viewModel.SaveCommand.CanExecute(null));

}

[Fact]

public void SaveCommandCanExecuteWithBoardName()

ChAPTEr 12 TESTINg

373

{

 var viewModel = new BoardDetailsPageViewModel(null, null);

 viewModel.BoardName = "Work";

 Assert.True(viewModel.SaveCommand.CanExecute(null));

}

 Testing INotifyPropertyChanged

I covered in Chapter 4 that INotifyPropertyChanged serves as the

mechanism to keep your views and view models in sync; therefore, it can

be really useful to verify that your view models are correctly implementing

INotifyPropertyChanged by ensuring that it raises the PropertyChanged

event when it should.

The following test shows how to create an instance of the

BoardDetailsPageViewModel, subscribe to the PropertyChanged event,

modify a property that you expect to fire the PropertyChanged event, and

then Assert that the event was invoked:

[Fact]

public void SettingBoardNameShouldRaisePropertyChanged()

{

 var invoked = false;

 var viewModel = new BoardDetailsPageViewModel(null, null);

 viewModel.PropertyChanged += (sender, e) =>

 {

 if (e.PropertyName.Equals(nameof(BoardDetailsPageView

Model.BoardName)))

 {

 invoked = true;

 }

ChAPTEr 12 TESTINg

https://doi.org/10.1007/978-1-4842-9234-1_4

374

 };

 viewModel.BoardName = "Work";

 Assert.True(invoked);

}

This provides you with the confidence to know that if the BoardName is

not showing in your user interface, it will probably not be an issue inside

the view model.

 Testing Asynchronous Operations
Many modern applications involve some level of asynchronous operation

and a perfect example is your use of the Open Weather API in order to load

the current location’s weather. The WeatherWidgetViewModel relies on an

implementation of the IWeatherForecastService interface you created

in Chapter 10. Unit tests against specific implementations like this can

be considered flaky. A flaky test is one that provides inconsistent results.

Web service access can exhibit this type of behavior when unit testing

given access limits on the API or other potential issues that could impact a

reliable test run.

In order to remove test flakiness, you can create a mock

implementation that will provide a set of consistent behavior.

 Creating Your ILocationService Mock

Create a new folder in your WidgetBoard.Tests project and call it Mocks. I

covered this before but organizing your code in such a way really can make

it much easier to maintain. With this new folder, you can create a new class

file inside and call it MockLocationService.cs. Modify the contents to the

following:

ChAPTEr 12 TESTINg

https://doi.org/10.1007/978-1-4842-9234-1_10

375

using WidgetBoard.Services;

namespace WidgetBoard.Tests.Mocks;

internal class MockLocationService : ILocationService

{

 private readonly Location? location;

 private readonly TimeSpan delay;

 private MockLocationService(Location? mockLocation,

TimeSpan delay)

 {

 location = mockLocation;

 this.delay = delay;

 }

 internal static ILocationService ThatReturns(Location?

location, TimeSpan after) =>

 new MockLocationService(location, after);

 internal static ILocationService

ThatReturnsNoLocation(TimeSpan after) =>

 new MockLocationService(null, after);

 public async Task<Location?> GetLocationAsync()

 {

 await Task.Delay(this.delay);

 return this.location;

 }

}

The implementation you provided for the GetLocationAsync

method forces a delay based on the supplied TimeSpan parameter in

the constructor to mimic a network delay and then return the location

supplied in the constructor.

ChAPTEr 12 TESTINg

376

One key detail I really like to use when building mocks is to make the

usage of them in my tests as easy to read as possible. You can see that the

MockLocationService cannot be instantiated because it has a private

constructor. This means that to use it you must use the ThatReturns or

ThatReturnsNoLocation methods. Look at this and see how much more

readable it is:

MockLocationService.ThatReturns(new Location(0.0, 0.0), after:

TimeSpan.FromSeconds(2));

The above is much more readable than the following because it

includes the intent:

new MockLocationService(new Location(0.0, 0.0), TimeSpan.

FromSeconds(2));

 Creating Your WeatherForecastService Mock

You can add a second file into the Mocks folder and call this class file

MockWeatherForecastService.cs. Modify the contents to the following:

using WidgetBoard.Communications;

namespace WidgetBoard.Tests.Mocks;

internal class MockWeatherForecastService :

IWeatherForecastService

{

 private readonly Forecast? forecast;

 private readonly TimeSpan delay;

 private MockWeatherForecastService(Forecast? forecast,

TimeSpan delay)

 {

 this.forecast = forecast;

 this.delay = delay;

ChAPTEr 12 TESTINg

377

 }

 internal static IWeatherForecastService

ThatReturns(Forecast? forecast, TimeSpan after) =>

 new MockWeatherForecastService(forecast, after);

 internal static IWeatherForecastService

ThatReturnsNoForecast(TimeSpan after) =>

 new MockWeatherForecastService(null, after);

 public async Task<Forecast?> GetForecast(double latitude,

double longitude)

 {

 await Task.Delay(this.delay);

 return forecast;

 }

}

The implementation you provided for the GetForecast method forces

a delay based on the supplied TimeSpan parameter in the constructor

to mimic a network delay and then return the forecast supplied in the

constructor.

 Creating Your Asynchronous Tests

With your mocks in place, you can write tests that will verify the

behavior of your application when calling asynchronous and potentially

long running operations. You need to add a new class file to your

ViewModels folder in the WidgetBoard.Tests project and call is

WeatherWidgetViewModelTests.cs and then modify the contents to the

following:

using WidgetBoard.Tests.Mocks;

using WidgetBoard.ViewModels;

ChAPTEr 12 TESTINg

378

namespace WidgetBoard.Tests.ViewModels;

public class WeatherWidgetViewModelTests

{

}

Now you can proceed to adding three tests to cover a variety of

different scenarios.

[Fact]

public async Task NullLocationResultsInPermissionErrorState()

{

 var viewModel = new WeatherWidgetViewModel(

 MockWeatherForecastService.ThatReturnsNoForecast(after:

TimeSpan.FromSeconds(5)),

 MockLocationService.ThatReturnsNoLocation(after:

TimeSpan.FromSeconds(2)));

 await viewModel.InitializeAsync();

 Assert.Equal(State.PermissionError, viewModel.State);

 Assert.Null(viewModel.Weather);

}

This first test, as the name implies, verifies that if a null location is

returned from the ILocationService implementation, the view model

State will be set to PermissionError and no Weather will be set.

[Fact]

public async Task NullForecastResultsInErrorState()

{

 var viewModel = new WeatherWidgetViewModel(

 MockWeatherForecastService.ThatReturnsNoForecast(after:

TimeSpan.FromSeconds(5)),

ChAPTEr 12 TESTINg

379

 MockLocationService.ThatReturns(new Location(0.0, 0.0),

after: TimeSpan.FromSeconds(2)));

 await viewModel.InitializeAsync();

 Assert.Equal(State.Error, viewModel.State);

 Assert.Null(viewModel.Weather);

}

This second test, as the name implies, verifies that if a null forecast is

returned from the IWeatherForecastService implementation, the view

model State will be set to Error and no Weather will be set.

[Fact]

public async Task ValidForecastResultsInSuccessfulLoad()

{

 var weatherForecastService =

 MockWeatherForecastService.ThatReturns(

 new Communications.Forecast

 {

 Current = new Communications.Current

 {

 Temperature = 18.0,

 Weather = new Communications.Weather[]

 {

 new Communications.Weather

 {

 Icon = "abc.png",

 Main = "Sunshine"

 }

 }

 }

 },

ChAPTEr 12 TESTINg

380

 after: TimeSpan.FromSeconds(5));

 var locationService = MockLocationService.ThatReturns(

 new Location(0.0, 0.0),

 after: TimeSpan.FromSeconds(2));

 var viewModel = new WeatherWidgetViewModel(

 weatherForecastService,

 locationService);

 await viewModel.InitializeAsync();

 Assert.Equal(State.Loaded, viewModel.State);

 Assert.Equal("Sunshine", viewModel.Weather);

}

This final test, as the name implies, verifies that if a valid forecast is

returned from the IWeatherForecastService implementation, the view

model State will be set to Loaded and the Weather will be correctly set.

 Testing Your Views
It is possible to write unit tests that will verify the behavior of your views.

 Creating Your ClockWidgetViewModel Mock

In order to verify your ClockWidgetView, you need to provide it with a view

model. Your ClockWidgetViewModel currently has some complexities in it

that will make it difficult to use in the test. It displays the current date/time.

Let’s create a mock to remove this potential difficulty. Inside your Mocks

folder, add a new class file called MockClockWidgetViewModel.cs and

modify the contents to match the following:

using WidgetBoard.ViewModels;

ChAPTEr 12 TESTINg

381

namespace WidgetBoard.Tests.Mocks;

public class MockClockWidgetViewModel : IWidgetViewModel

{

 public int Position { get; set; }

 public string Type => "Mock";

 public MockClockWidgetViewModel(DateTime time)

 {

 Time = time;

 }

 public DateTime Time { get; }

 public Task InitializeAsync() => Task.CompletedTask;

}

Now you can use this in your unit tests to verify that your

ClockWidgetView binds correctly to its view model.

 Creating Your View Tests

First, create a Views folder in your WidgetBoard.Tests project and then add

a new class file called ClockWidgetView.cs.

using WidgetBoard.Tests.Mocks;

using WidgetBoard.Views;

namespace WidgetBoard.Tests.Views;

public class ClockWidgetViewTests

{

 [Fact]

 public void TextIsUpdatedByTimeProperty()

 {

ChAPTEr 12 TESTINg

382

 var time = new DateTime(2022, 01, 01);

 var clockWidget = new ClockWidgetView();

 Assert.Null(clockWidget.Text);

 clockWidget.WidgetViewModel = new MockClockWidgetView

Model(time);

 Assert.Equal(time.ToString(), clockWidget.Text);

 }

}

The test TextIsUpdatedByTimeProperty creates a new

ClockWidgetView, assigns a your new MockClockWidgetViewModel, and

then verifies that that the Text property of the widget is correctly updated

to reflect the value from the Time property on your view model through its

binding.

 Device Testing
Device testing is really a form of unit testing; however, it provides some

unique abilities so it deserves its own top-level section. It essentially

enables you to write unit tests that can be run on a device and therefore

truly test any platform-specific pieces of functionality. A perfect example

of this is to test the PlatformLocationService you implemented in the

previous chapter to return the longitude and latitude coordinates of each

platform provider’s headquarters.

ChAPTEr 12 TESTINg

383

 Creating a Device Test Project
You need to create another project in order to handle the running of the

device tests. The documentation on the GitHub repository covers all that

is needed, so go to https://github.com/shinyorg/xunit-maui. Check in

the code repository called WidgetBoard.DeviceTests if you get stuck; there

is an already created project to use as a template.

 Adding a Device-Specific Test
using WidgetBoard.Services;

using Xunit;

namespace WidgetBoard.DeviceTests.Services;

public class PlatformLocationServiceTests

{

 [Fact]

 public async Task GetLocationAsyncWillReturnPlatform

SpecificLocation()

 {

 var locationService = new PlatformLocationService();

 var location = await locationService.

GetLocationAsync();

#if ANDROID

 Assert.Equal(37.419857, location.Latitude);

 Assert.Equal(-122.078827, location.Longitude);

#elif WINDOWS

 Assert.Equal(47.639722, location.Latitude);

 Assert.Equal(-122.128333, location.Longitude);

#else

 Assert.Equal(37.334722, location.Latitude);

ChAPTEr 12 TESTINg

https://github.com/shinyorg/xunit-maui

384

 Assert.Equal(-122.008889, location.Longitude);

#endif

 }

}

Now that you have written your tests, you can run them on your

devices.

 Running Device-Specific Tests
In order to run your tests on a device, you first need to set your

WidgetBoard.DeviceTests project as the startup project. You can do this as

follows:

• Right-click the WidgetBoard.DeviceTests project in

Solution Explorer.

• Select Set as Startup Project.

Now start the application from Visual Studio., Figure 12-3 shows the

device test runner screen running on Windows.

ChAPTEr 12 TESTINg

385

Figure 12-3. Device test runner on the Windows platform

You can click on a specific test and choose to run it, or you can simply

Run All Tests. This part is entirely manual so it will require a human to

perform these tasks but it can be left to run for as long as the tests need.

Finally you will see the results of the test runs and you can click them

to see more information. Figure 12-4 shows the device test runner and a

set of test results.

ChAPTEr 12 TESTINg

386

Figure 12-4. Test run result for the GetLocationAsyncWillReturn
PlatformSpecificLocation device test

You can run these tests on all the platforms that you support to make

sure that the code does what is expected.

 Snapshot Testing
Snapshot testing is similar to unit testing, but it avoids the need to write

Assert statements to manually define each expectation in the test. Instead

the result of a test is compared to a golden master. A golden master is a

snapshot of a previous test run that you as the test author accept as the

expected result for subsequent test runs. A snapshot can be anything

ranging from a screenshot of the application to a serialization of an object

in memory. If you take a look at the WeatherWidgetViewModel you unit

tested in the earlier section, you can see that a serialization of the state

of the ValidForecastResultsInSuccessfulLoad test will result in the

following golden master being created:

ChAPTEr 12 TESTINg

387

{

 LoadWeatherCommand: {},

 IconUrl: https://openweathermap.org/img/wn/abc.png@2x.png,

 State: Loaded,

 Temperature: 18.0,

 Weather: Sunshine,

 Type: Weather

}

When this test is run, each time the serialized output of the

WeatherWidgetViewModel will be compared to the above golden master.

If any of the values are different from those in the golden master, the test

will fail.

 Snapshot Testing Your Application
In order to snapshot test your application, you will make use of the

excellent library called VerifyTests. VerifyTests has some really great

documentation and examples to get you started over at https://github.

com/VerifyTests/Verify.

You will additionally need to consume the Verify.Xunit NuGet

package. I have opted to create a separate project just to keep things

clearly separated for the purpose of this example. You can repeat the steps

in sections “Adding a Unit Test Project to Your Solution” and “Adding a

Reference to the Project to Test,” except that you will name the project

WidgetBoard.SnapshotTests.

Using VerifyTests, you can take a copy of your

WeatherWidgetViewModelTests class in the WidgetBoard.Tests project

and modify it to the following. The limited changes are shown in bold to

highlight the differences from the original.

ChAPTEr 12 TESTINg

https://github.com/VerifyTests/Verify
https://github.com/VerifyTests/Verify

388

[UsesVerify]

public class WeatherWidgetViewModelTests

{

 [Fact]

 public async Task

NullLocationResultsInPermissionErrorState()

 {

 var viewModel = new WeatherWidgetViewModel(

 new MockWeatherForecastService(null),

 new MockLocationService(null));

 await viewModel.InitializeAsync();

 await Verify(viewModel);

 }

 [Fact]

 public async Task NullForecastResultsInErrorState()

 {

 var viewModel = new WeatherWidgetViewModel(

 new MockWeatherForecastService(null),

 new MockLocationService(new Location(0.0, 0.0)));

 await viewModel.InitializeAsync();

 await Verify(viewModel);

 }

 [Fact]

 public async Task ValidForecastResultsInSuccessfulLoad()

 {

 var viewModel = new WeatherWidgetViewModel(

 new MockWeatherForecastService(new Communications.

Forecast

ChAPTEr 12 TESTINg

389

 {

 Current = new Communications.Current

 {

 Temperature = 18.0,

 Weather = new Communications.Weather[]

 {

 new Communications.Weather

 {

 Icon = "abc.png",

 Main = "Sunshine"

 }

 }

 }

 }),

 new MockLocationService(new Location(0.0, 0.0)));

 await viewModel.InitializeAsync();

 await Verify(viewModel);

 }

}

You remove the Assert statements and replace them by calling the

Verify method. In your original scenario, you were only asserting a small

number of things, but you can imagine that if the number of Assert

statements were to grow, then this single method call to Verify really does

reduce the complexity of your tests.

Brand new tests will always fail until you accept the golden master.

There is tooling that can make this task easier, which is again provided by

the VerifyTests developers.

ChAPTEr 12 TESTINg

390

 Passing Thoughts
I end this snapshot testing section with the statement that it is not for

everyone. Some people really like the reduction in test case size, while

it verifies more than most typical unit tests by the sheer fact that it

verifies the whole object under test. As a counter argument, some people

dislike that the expected state or golden master is in a file separate to the

tests. I personally believe they provide great value, and I hope that this

introduction to snapshot testing will give you enough context to decide

whether it is going to be a good fit for you and your team, or at least give

you the desire to experiment with the concept.

 Looking to the Future
I really wished this chapter could cover how to write and build tests that

can test your UI via automation tests. Sadly, this is not quite ready yet. It is

certainly something that is being looked at, but there is nothing concrete

or ready.

If you are coming in with a background in Xamarin.Forms, you may

well be aware of Xamarin.UITesting. This proved to be a little difficult

to work with and it was inconsistent at times, but it did provide the

groundwork for writing automation tests for a Xamarin.Forms application.

Currently the .NET MAUI team is evaluating a number of options to enable

you to test your applications.

There is currently the ability to test through the use of Appium

(https://appium.io); however, it can be clunky and unreliable at times.

I am most excited by the work that Jonathan Dick (the .NET MAUI

lead) is doing with Maui.UITesting. This is very much in its infancy at the

time of writing but I am expecting good things to come from it. You should

check out the details over on the GitHub repository at https://github.

com/Redth/Maui.UITesting.

ChAPTEr 12 TESTINg

https://appium.io
https://github.com/Redth/Maui.UITesting
https://github.com/Redth/Maui.UITesting

391

 Summary
Now you have an overview of different testing techniques and the benefits

they bring. You may prefer snapshot over writing your own asserts. I don’t

mind either way so long as you do test your code.

In this chapter, you

• Learned what testing is and why it is important

• Explored unit testing and how you can apply it to a

.NET MAUI application

• Learned about snapshot testing and how you can

implement it

• Explored what device tests are and how you can apply

them to your applications

• Looked to the future for yet more testing goodness

In the next chapter, you will

• Learn what .NET MAUI Graphics is

• Gain an insight into some of the power provided by

.NET MAUI Graphics

• Build your own sketch widget with the .NET MAUI

GraphicsView control

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch12.

ChAPTEr 12 TESTINg

https://github.com/Apress/Introducing-MAUI/tree/main/ch12
https://github.com/Apress/Introducing-MAUI/tree/main/ch12

393

CHAPTER 13

Lets Get Graphical
In this chapter, you will learn what .NET MAUI Graphics is, how it can

be used, and some practical examples of why you would want to use it.

You will also gain insight into some of the power provided by .NET MAUI

Graphics and how you can use it to build your own sketch widget with the

.NET MAUI GraphicsView control.

 .NET MAUI Graphics
.NET MAUI Graphics is another one of my favorite topics! I am currently

exploring the idea of building a game engine on top of it given the amount

of power it already offers. If you are interested in the game engine, please

feel free to check out the repository on GitHub at https://github.com/

bijington/orbit.

It has the potential to offer the ability for so much to be achieved,

things like rendering chart controls or other fancy concepts all through a

cross-platform API, meaning you only really need to focus on the problems

you are trying to solve and not worry about each individual platform.

Essentially .NET MAUI Graphics offers a surface that can render pixel-

perfect graphics on any platform supported by .NET MAUI. Consider .NET

MAUI Graphics as an abstraction layer, like .NET MAUI itself, on top of

the platform-specific drawing libraries. So we get all the power of each

platform but with a simple unified .NET API that we as developers can

work with.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_13

https://github.com/bijington/orbit
https://github.com/bijington/orbit
https://doi.org/10.1007/978-1-4842-9234-1_13#DOI

394

 Drawing on the Screen
.NET MAUI provides GraphicsView, which you can use to draw shapes on

the screen. You need to assign the Drawable property on GraphicsView

with an implementation that knows how to draw. This implementation

must implement the IDrawable interface that defines a Draw method.

 Updating the Surface

In order to trigger the application or GraphicsView to update what

is rendered on screen, you must call the Invalidate method on

GraphicsView. This will then cause the IDrawable.Draw method to be

invoked and your code will be given the chance to update the canvas.

The way to interact with the ICanvas implementation is to first

set the values you need such as fill color (FillColor) or stroke color

(StrokeColor) and then call the draw method you are interested in

(FillSquare() or DrawSquare(), respectively).

Let’s look at some basic examples to get a better understanding of how

to use the graphics layer.

 Drawing a Line

Inside the Draw method you can interact with the ICanvas to draw a line

using the DrawLine method. The following code shows how this can be

achieved:

public void Draw(ICanvas canvas, RectF dirtyRect)

{

 canvas.StrokeColor = Colors.Red;

 canvas.StrokeSize = 6;

 canvas.DrawLine(0, 20, 100, 50);

}

Chapter 13 Lets Get GraphiCaL

395

You set StrokeColor and StrokeSize before calling the DrawLine

method. Order is important and you must set these properties before you

draw. Figure 13-1 shows the result of the Draw method from above.

Figure 13-1. Drawing a line in .NET MAUI Graphics

In addition to drawing lines, you can draw many different shapes such

as ellipse, rectangle, rounded rectangle, and arc. You can draw even more

complex shapes through paths.

 Drawing a Path

Paths are not to be confused with the Shapes API provided with .NET

MAUI. Paths in .NET MAUI Graphics enable you to build up a set of

coordinates in order to draw a more complex shape.

public void Draw(ICanvas canvas, RectF dirtyRect)

{

 PathF path = new PathF();

 path.MoveTo(40, 10);

 path.LineTo(70, 80);

 path.LineTo(10, 50);

 path.Close();

 canvas.StrokeColor = Colors.Red;

 canvas.StrokeSize = 6;

 canvas.DrawPath(path);

}

You first build up a PathF through the MoveTo, LineTo, and Close

methods. The MoveTo method moves the current location of the path to the

Chapter 13 Lets Get GraphiCaL

396

specified coordinates, and then the LineTo method draws a line from the

current location that you just set in MoveTo to the coordinates specified in

the LineTo method call. Finally, the Close method allows you to close the

path. This means that the final location will have a line added back to the

starting location. Notice that you didn’t explicitly add a LineTo(40, 10)

method call in; Close does this for you. Then you set the StrokeColor and

StrokeSize before calling the DrawPath method. Figure 13-2 shows the

result of the Draw method from above.

Figure 13-2. Drawing a path in .NET MAUI Graphics

It is this DrawPath method that you will be utilizing in the new widget

you will be building as part of this chapter.

 Maintaining the State of the Canvas

There can be times when you want to preserve some of the settings

that you apply to the canvas, such as properties like StrokeColor and

FillColor. All properties related to Stroke and Fill, plus others like

transformation properties, can be preserved. This can be done through

the SaveState method, which will save the current state. This saved state

can then be restored through the RestoreState method. It is also possible

to reset the current graphics state back to the default values with the

ResetState method. These three methods can provide a large amount

of functionality in specific scenarios. Say you have implemented a chart

rendering control where the chart is rendered and then each individual

series is rendered separately. You want to preserve the state of the charts

graphics settings but wish to reset each time you render a series (e.g., each

column in a bar chart).

Chapter 13 Lets Get GraphiCaL

397

 Further Reading
You have only scratched the surface of what is possible with the .NET

MAUI Graphics layer. I strongly recommend that you refer to the Microsoft

documentation at https://learn.microsoft.com/dotnet/maui/user-

interface/graphics/ where it shows much more complex scenarios such

as painting patterns, gradients, images, rendering text, and much more.

 Building a Sketch Widget
My daughters love to doodle and leave me little notes when I am away

from my desk, so I thought why not give them the ability to draw digital

sketches and help save some trees. Let’s create a new widget and then

piece together this new drawing mechanic

 Creating the SketchWidgetViewModel
As with all of the widgets, you want to create a view model to accompany

the view. Let’s add a new class file into the ViewModels folder and call it

SketchWidgetViewModel.cs. Modify it with the following contents:

namespace WidgetBoard.ViewModels;

public class SketchWidgetViewModel : IWidgetViewModel

{

 public const string DisplayName = "Sketch";

 public int Position { get; set; }

 public string Type => DisplayName;

 public Task InitializeAsync() => Task.CompletedTask;

}

Chapter 13 Lets Get GraphiCaL

https://learn.microsoft.com/dotnet/maui/user-interface/graphics/
https://learn.microsoft.com/dotnet/maui/user-interface/graphics/

398

The view model is relatively simple as it only really needs to implement

the basics of the IWidgetViewModel interface. If you decided to add more

functionality into your widget, you have the infrastructure in place to do so.

Let’s now deal with the view and user interaction.

 Representing a User Interaction
When a user interacts with the new widget, they will be drawing on the

screen. You will need to record this interaction so that it can be rendered

inside the Draw method that the SketchWidgetView implements through

the IDrawable interface. Add a new a new class file, call it DrawingPath.cs

in the root of the project, and modify it to have the following contents:

public class DrawingPath

{

 public DrawingPath(Color color, float thickness)

 {

 Color = color;

 Thickness = thickness;

 Path = new PathF();

 }

 public Color Color { get; }

 public PathF Path { get; }

 public float Thickness { get; }

 public void Add(PointF point) => Path.LineTo(point);

}

The class has three main properties:

• Color represents the color of the line being drawn.

• Thickness represents how thick the line is.

• Path contains the points that make up the line.

Chapter 13 Lets Get GraphiCaL

399

You also have a single method that adds a new point into the Path

property. This ties in well with the .NET MAUI Graphics layer as you

receive the point when the user interacts with the surface and then you can

also use the same type to render the line on the screen.

Let’s create the widget view that will make use of this class.

 Creating the SketchWidgetView
As with each of the widget views, you will be creating a XAML-based view.

It will be inside the view where most of the logic resides because this

widget is largely view-related.

Add a new .NET MAUI ContentView (XAML) to your Views folder and

call it SketchWidgetView.

 Modifying the SketchWidgetView.xaml

The contents of the SketchWidgetView.xaml file should be modified to

the following. Remember that you want to keep your visual tree as simple

as possible. You only need to declare the GraphicsView itself and no other

container controls.

<?xml version="1.0" encoding="utf-8" ?>

<GraphicsView

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WidgetBoard.Views.SketchWidgetView"

 StartInteraction="GraphicsView_StartInteraction"

 DragInteraction="GraphicsView_DragInteraction"

 EndInteraction="GraphicsView_EndInteraction" />

The GraphicsView provides several events that you can subscribe to

in order to handle the user’s interaction with the surface. You are only

interested in the following:

Chapter 13 Lets Get GraphiCaL

400

• StartInteraction: This is when the user first interacts,

so basically when the first touch/mouse click happens.

• DragInteraction: This follows from the start and

involves the touch/mouse moving around on the

surface.

• EndInteraction: This is when the user lifts their finger

from the screen or mouse button.

When you add these events in the XAML file, it will automatically

create some C# code in the SketchWidgetView.xaml.cs file that you will

expand on shortly.

 Modifying the SketchWidgetView.xaml.cs

Visual Studio will have created this file for you already so you need to open

it and modify it to the following:

Note that the types in the event handlers have been shortened (e.g.,
from System.Object to object). this is mainly to make it clearer
to read.

Using Microsoft.Maui.Controls;

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class SketchWidgetView : GraphicsView,

IWidgetView, IDrawable

{

 public SketchWidgetView()

 {

 InitializeComponent();

Chapter 13 Lets Get GraphiCaL

401

 this.Drawable = this;

 }

 public IWidgetViewModel WidgetViewModel

 {

 get => BindingContext as IWidgetViewModel;

 set => BindingContext = value;

 }

 private void GraphicsView_StartInteraction(object sender,

TouchEventArgs e)

 {

 }

 private void GraphicsView_DragInteraction(object sender,

TouchEventArgs e)

 {

 }

 private void GraphicsView_EndInteraction(Object sender,

TouchEventArgs e)

 {

 }

 public void Draw(Icanvas canvas, RectF dirtyRect)

 {

 throw new NotImplementedException();

 }

}

each of the event handles and the Draw method have the blank or
default implementation. Let’s build this file up slowly and discuss the
key parts as you do so.

Chapter 13 Lets Get GraphiCaL

402

First, you need to add the backing fields to store the interactions from

the user.

private DrawingPath currentPath;

private readonly IList<DrawingPath> paths = new

List<DrawingPath>();

The first event handler to modify is for the StartInteraction event.

private void GraphicsView_StartInteraction(object sender,

TouchEventArgs e)

{

 currentPath = new DrawingPath(Colors.Black, 2);

 currentPath.Add(e.Touches.First());

 paths.Add(currentPath);

 Invalidate();

}

In this method, you first create a new instance of the DrawingPath class,

assigning a color and thickness. They can, of course, be expanded to allow

selections from the user so they can have custom colors. Next, you add the

first touch into the current path so you have your first point of interaction.

Then you add the current path to the list of all paths so that they can

eventually be rendered on screen. Finally, you call Invalidate, which will

trigger the Draw method to be called and the paths can be drawn.

The next event handler to modify is for the DragInteraction event.

private void GraphicsView_DragInteraction(object sender,

TouchEventArgs e)

{

 currentPath.Add(e.Touches.First());

 Invalidate();

}

Chapter 13 Lets Get GraphiCaL

403

In this method, you add the current touch to the current path and

again call Invalidate to cause the Draw method to be called.

The final event handler to modify is for the EndInteraction event.

private void GraphicsView_EndInteraction(object sender,

TouchEventArgs e)

{

 currentPath.Add(e.Touches.First());

 Invalidate();

}

This has the exact same implementation as the DragInteraction event

handler.

The final set of changes to make is inside the Draw method so you can

actually see something on the screen.

public void Draw(ICanvas canvas, RectF dirtyRect)

{

 foreach (var path in paths)

 {

 canvas.StrokeColor = path.Color;

 canvas.StrokeSize = path.Thickness;

 canvas.StrokeLineCap = LineCap.Round;

 canvas.DrawPath(path.Path);

 }

}

This method loops through all of the paths that you have created

from the user interactions, setting the stroke color, size, and then drawing

the path that was built up by the three event handlers that you just

implemented.

Chapter 13 Lets Get GraphiCaL

404

 Registering Your Widget
The last part in your implementation of the sketch widget is to

register your view and view model with the MauiAppBuilder. Let’s

open up the MauiProgram.cs file and add the following lines into the

CreateMauiApp method:

WidgetFactory.RegisterWidget<SketchWidgetView, SketchWidgetView

Model>(SketchWidgetViewModel.DisplayName);

builder.Services.AddTransient<SketchWidgetView>();

builder.Services.AddTransient<SketchWidgetViewModel>();

 Taking Your Widget for a Test Draw
You should be able to run your application on all platforms, add a widget

of type Sketch to a board, and then interact with the widget to leave a fancy

doodle. Figure 13-3 shows the new sketch widget rendered on a board.

Figure 13-3. The sketch widget showing my terrible doodling skills
running on macOS

Chapter 13 Lets Get GraphiCaL

405

 Summary
In this chapter, you have

• Learned what .NET MAUI Graphics is

• Gained an insight into some of the power provided by

.NET MAUI Graphics

• Built your own sketch widget with the .NET MAUI

GraphicsView control

In the next chapter, you will

• Explore the concepts of distributing your application

• Learn about concepts like continuous integration and

continuous delivery to improve your development

processes

• Learn about linking, what it is, and how it can benefit/

hinder you

• Learn why it is important to collect analytical and crash

information

• Explore why you might want to consider obfuscating

your code

 Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-MAUI/tree/

main/ch13.

Chapter 13 Lets Get GraphiCaL

https://github.com/Apress/Introducing-MAUI/tree/main/ch13
https://github.com/Apress/Introducing-MAUI/tree/main/ch13

406

 Extra Assignment
Think of another concept where you can use .NET MAUI graphics. Maybe

the chart control idea I discussed or even just showing the battery level in a

widget or other device information.

Chapter 13 Lets Get GraphiCaL

409

CHAPTER 14

Releasing Our
Application
Once you have built your application, you need to get it to your users.

There are many ways to achieve this. You can publish a release build and

ship it directly to your customers or you can make use of the stores that

each platform provider offers.

Shipping directly to an end customer can sometimes be the best

option, such as when you are building an internal application and you

don’t want it to be publicly accessible.

Most often the recommended way to ship applications to users is to go

through the stores provided by each platform provider (e.g., App Store from

Apple, Play Store from Google, and Microsoft Store from Microsoft). This

does involve agreeing to terms and conditions, and these providers take a

percentage of any income you make. There are many benefits that justify

paying the fees. They provide trusted platforms for users to find and download

your applications. The store will provide a much wider reach for your intended

audience. The store also manages the ability to provide updates seamlessly.

 Distributing Your Application
The aim of this section is not to give a step-by-step guide on distributing

to each of the stores mentioned above. Initially, I wanted to provide this

information, but the details around doing so have changed numerous

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_14

https://doi.org/10.1007/978-1-4842-9234-1_14#DOI

410

times during the time it has taken to write this book. For this reason alone,

I will defer to the platform providers and Microsoft’s documentation on

how to achieve distribution. What this chapter will cover is details around

distributing applications, why you need to do it, and some of the common

issues that crop up during the process.

One very important thing to note is that apps built with .NET MAUI
follow the same rules and common issues that native applications
follow. Therefore, when encountering issues with each specific store,
sometimes a search engine will return better results if you omit the
.NET MAUI part.

 Android
Android has the biggest mobile user base. However, given the model it

follows of allowing manufacturers to customize the Android operating

system as well as providing varying sets of hardware, it can be the most

problematic.

An Android Package, or APK for short, is the resulting application file

that runs on an Android device. If you wish to provide a mechanism to

download this file (e.g., a website or file share), users can side load the

application onto their Android device. This is not recommended in the

public domain because it can be very difficult to trust the packages that are

freely downloaded from the Internet.

When you wish to distribute using the Google Play Store, you are

required to build an Android App Bundle, or AAB for short. It contains all

of the relevant files needed to compile an APK ready for installation on a

user’s device.

ChApTEr 14 rElEAsINg OUr ApplICATION

411

Essentially you build an Android App Bundle, sign it with a specific

signing key that you own, and upload the bundle to Google Play. Google

uses this bundle when a user comes to download your application and

compiles a specific APK for that device. This is the way to do things now.

If you have worked with Android apps in the past, you may recall building

the APK yourself. This runs into the issue that the APK is architecture-

specific, and in the current market where there are multiple architectures

supported by the various Android devices, you can end up with an

application size that is the sum of the number of architectures multiplied

by the actual size (for example, if there are four architectures and the

application size is 25MB, the resulting APK is 100MB).

 Additional Resources

Both Microsoft and Google provide documentation on how to distribute

applications via the Google Play Store. See the following links.

• Microsoft: How to publish an application ready for the

Play Store, https://learn.microsoft.com/dotnet/

maui/android/deployment/overview

• Google: How to upload your application to the Play

Store, https://developer.android.com/studio/

publish/upload-bundle

• It is also worth noting that other stores/platforms

provide the ability to distribute, install, and run

Android applications. Amazon devices such as the

Kindle Fire are built on top of Android and allow the

running of Android applications. Amazon provides its

own store, details of which can be found at https://

developer.amazon.com.

ChApTEr 14 rElEAsINg OUr ApplICATION

https://learn.microsoft.com/dotnet/maui/android/deployment/overview
https://learn.microsoft.com/dotnet/maui/android/deployment/overview
https://developer.android.com/studio/publish/upload-bundle
https://developer.android.com/studio/publish/upload-bundle
https://developer.amazon.com
https://developer.amazon.com

412

 iOS
iOS and macOS are considered really painful when dealing with

distributing and signing. Having spent several years going through this

pain, I want to break down the key concepts to hopefully reduce the pain

that you might experience. Thankfully the Apple tooling has come a long

way since I started building mobile apps in 2007, so you don’t have to

relive all those painful memories.

The following sections cover the development and application settings

you will need to create on the Apple developer website at https://

developer.apple.com.

 Certificate

You need to generate a certificate on the machine that will build your

application. Most documentation takes you through the complex scenarios

of creating a Certificate Signing Request and then uploading to Apple.

There is actually a far simpler way by using Xcode. The following steps can

help to achieve this:

• Click the Xcode main menu.

• Click on Settings.

• Click on the Accounts tab.

• Click the Manage Certificates button, shown in

Figure 14-1.

ChApTEr 14 rElEAsINg OUr ApplICATION

https://developer.apple.com
https://developer.apple.com

413

Figure 14-1. Apple settings screen showing how to manage
certificates

 Identifier

This represents your application. It requires you to define unique details to

identify the application that will be exposed to the public store as well as

defining what capabilities your application requires.

 Capabilities

iOS applications run under a sandboxed environment. Apple provides a

set of App Services that can be utilized by your applications and enhance

its capabilities. Capabilities include services like in-app purchasing, push

notifications, Apple Pay, and such. The use of these services needs to be

defined at compile time and the usage of them will be reviewed when you

upload your application to Apple for review. Therefore, it’s important that

you make sure you only have the ones you need. Don’t worry, though; a

ChApTEr 14 rElEAsINg OUr ApplICATION

414

failure here will give a fairly useful error message and can be a relatively

easy fix. More information can be found at https://developer.apple.

com/documentation/xcode/capabilities.

Changes to the capabilities of your application will invalidate your
provisioning profiles so they will need to be edited in the https://
developer.apple.com portal to update them with the newer
capabilities.

 Entitlements

Entitlements tie in closely with capabilities and allow you to configure

settings during compilation. You need to add an Entitlements.plist file

to your application and then add the relevant entries for the configuration.

Information on how to configure this can be found at https://learn.

microsoft.com/dotnet/maui/ios/deployment/entitlements

 Provisioning Profiles

Provisioning profiles determine how your application will be provisioned

for deployment. There are two main types:

• Development: This is what you need when running a

debug build of your application on your own device.

• Distribution: This is required for the release builds

when you ship to the App Store.

A common issue around provisioning profiles is when trying to run the

application on your device and the tooling reports back Unable to deploy

app to this device, no provisioning profiles were found. When observing

this a good starting point is to double check that you have the provisioning

profile installed and whether the profile has been invalidated by changing

any Capabilities.

ChApTEr 14 rElEAsINg OUr ApplICATION

https://developer.apple.com/documentation/xcode/capabilities
https://developer.apple.com/documentation/xcode/capabilities
https://developer.apple.com
https://developer.apple.com
https://learn.microsoft.com/dotnet/maui/ios/deployment/entitlements
https://learn.microsoft.com/dotnet/maui/ios/deployment/entitlements

415

 Additional Resources

Both Microsoft and Apple provide documentation on how to distribute

applications via the Apple App Store.

• Microsoft: How to publish an application ready for the

App Store, https://learn.microsoft.com/dotnet/

maui/ios/deployment/overview

• Apple: How to upload your application to the App

Store, https://developer.apple.com/app-store/

 macOS
When distributing your .NET MAUI application for macOS, you can

generate an .app or a .pkg file. An .app file is a self-contained app that

can be run without installation, whereas a .pkg is an app packaged in an

installer.

 Additional Resources

Both Microsoft and Apple provide documentation on how to distribute

applications via the Apple App Store.

• Microsoft: How to publish an application ready for the

App Store, https://learn.microsoft.com/dotnet/

maui/macos/deployment/overview

• Apple: How to upload your application to the App

Store, https://developer.apple.com/macos/

distribution/

ChApTEr 14 rElEAsINg OUr ApplICATION

https://learn.microsoft.com/dotnet/maui/ios/deployment/overview
https://learn.microsoft.com/dotnet/maui/ios/deployment/overview
https://developer.apple.com/app-store/
https://learn.microsoft.com/dotnet/maui/macos/deployment/overview
https://learn.microsoft.com/dotnet/maui/macos/deployment/overview
https://developer.apple.com/macos/distribution/
https://developer.apple.com/macos/distribution/

416

 Windows
When distributing your .NET MAUI app for Windows, you can publish the

app and its dependencies to a folder for deployment to another system.

Publishing a .NET MAUI app for Windows creates an MSIX app package,

which has numerous benefits for the users installing your app.

MSIX is a Windows app package format that provides a modern

packaging experience to all Windows apps.

 Additional Resources

Microsoft provides documentation on how to distribute applications via

the Microsoft Store.

• Microsoft: How to publish an application ready for the

App Store, https://learn.microsoft.com/dotnet/

maui/windows/deployment/overview

• Microsoft: How to upload your application to the

Microsoft Store, https://developer.microsoft.com/

microsoft-store/

 Things to Consider
Many issues can crop up when you make the jump from a debug build

running on a simulator, emulator, or physical device to building a release

build ready to run on an end user’s machine.

 Following Good Practices
Each of the platform-specific sections prior to this one contained

information or links to resources that show how to deploy your

applications to each platform provider’s public store. This is all great but

ChApTEr 14 rElEAsINg OUr ApplICATION

https://learn.microsoft.com/dotnet/maui/windows/deployment/overview
https://learn.microsoft.com/dotnet/maui/windows/deployment/overview
https://developer.microsoft.com/microsoft-store/
https://developer.microsoft.com/microsoft-store/

417

one key detail that is lacking is the use of continuous integration and

continuous delivery (CI/CD) in order to provide a clean environment that

can reliably produce a build that can be deployed.

Continuous integration (CI) is the practice of merging all developers'

working copies to a shared mainline.

Continuous delivery (CD) is a software engineering approach in which

teams produce software in short cycles, ensuring that the software can be

reliably released at any time and, when releasing the software, without

doing so manually. It aims at building, testing, and releasing software with

greater speed and frequency. The approach helps reduce the cost, time,

and risk of delivering changes by allowing for more incremental updates to

applications in production. A straightforward and repeatable deployment

process is important for continuous delivery.

Both concepts are usually considered together as they help to make

it a far smoother experience when working in a team. I was there in the

early stages of learning and building apps and I neglected this part. If I

could go back and tell a much younger Shaun some advice, it would be

to get this part set up and early in the development process. Thanks to

the dotnet CLI that is available to us, the setup to provide the necessary

steps is straightforward. On top of that, tools like GitHub, Azure DevOps,

TeamCity, and others will likely provide some level of out of the box

support for this.

If you imagine that each of the applications can be built with the

dotnet CLI, for example

dotnet publish -f:net7.0-android -c:Release

ChApTEr 14 rElEAsINg OUr ApplICATION

418

I am using net7.0 here because my application is built against .NET
7.0. If you are working against a different version of .NET, replace
net7.0 with your chosen version. If you are unsure what version
you are using, open your csproj file and look at the value inside the
<TargetFrameworks></TargetFrameworks> tags.

There are more required arguments to pass to the build, which involve

signing key passwords and more, but this shows how easily this can be

added to a set of automated steps that run each time code is committed or

a merge request is opened.

You should also consider the testing that you added in Chapter 12 and

see how this can also be incorporated into a CI environment.

dotnet test

This is far simpler than the publishing step. Running the tests in a CI

environment really should be considered a critical set of criteria when

building any application. The safety net that this provides in making sure

your changes do not unintentionally break other bits of functionality alone

makes it worthwhile.

 Performance
Android has always been one of the slower platforms when building

mobile applications. Don’t get me wrong; the applications can perform

well on the higher-end devices, but Android devices come in a wide

range of specifications, and typically in the business environment it is

the cheaper devices that get bought in bulk and are expected to perform

well. There are some concepts that you should consider when publishing

your Android applications in order to boost the performance of your

applications.

ChApTEr 14 rElEAsINg OUr ApplICATION

https://doi.org/10.1007/978-1-4842-9234-1_12

419

 Startup Tracing

There are some extra steps that you can do in order to boost the startup

times of your Android applications. Startup tracing essentially profiles

an application when it starts to determine what libraries and other

initializations are required so when you release the application it will

benefit from a faster startup time. It is worth noting that boosting the

startup time can result in an increase in application size so I recommend

playing around with the settings to find the right balance for your

application.

Microsoft has published two great blog posts on how startup tracing

can be configured, the improvements it makes, and how the application

can be affected:

• https://devblogs.microsoft.com/dotnet/dotnet-7-

performance-improvements-in-dotnet-maui/

• https://devblogs.microsoft.com/xamarin/faster-

startup-times-with-startup-tracing-on-android/

 Image Sizes

One thing that can perform really poorly is the use of images that do not

match the dimensions in which they need to be rendered on screen.

For example, an image that displays at 100x100 pixels in the application

really should be that size when supplied. If you were to render an image

that was actually 300x300 pixels, it will not only look poor on the device

due to scaling, but it will slow the application down. Plus, it involves

storing an image that is bigger than really needed. Therefore, make sure

that your images are correctly sized to gain the best experience when

rendering them.

ChApTEr 14 rElEAsINg OUr ApplICATION

https://devblogs.microsoft.com/dotnet/dotnet-7-performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/dotnet/dotnet-7-performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/xamarin/faster-startup-times-with-startup-tracing-on-android/
https://devblogs.microsoft.com/xamarin/faster-startup-times-with-startup-tracing-on-android/

420

 Use of ObservableCollection

A lot of common coding examples show how to bind an

ObservableCollection to the ItemsSource property of a control. This

can have its uses, but it can have a big performance overhead. The reason

is that each time an element is added to the collection, a UI update will

be triggered because the control is monitoring for changes against the

ObservableCollection. If you do not need live updating items in a

collection, it is typically much faster to use a List and simple raise the

PropertyChanged event from INotifyPropertyChanged instead.

Let’s take a look at the code you added in Chapter 9 and see how it can

be improved:

public ObservableCollection<Board> Boards { get; } = new

ObservableCollection<Board>();

public void LoadBoards()

{

 var boards = this.boardRepository.ListBoards();

 foreach (var board in boards)

 {

 Boards.Add(board);

 }

}

You can improve the performance of the above code by implementing

it with a List as follows:

private IList<Board> boards;

public IList<Board> Boards

{

 get => this.boards;

ChApTEr 14 rElEAsINg OUr ApplICATION

https://doi.org/10.1007/978-1-4842-9234-1_9

421

 private set => SetProperty(ref this.boards, value);

}

public void LoadBoards()

{

 Boards = this.boardRepository.ListBoards();

}

This new code will result in the UI only being updated once rather than

once per each board that is added to the Boards collection.

 Linking
While devices these days do tend to offer generous amounts of storage

space, it is still considered a very good practice to minimize the amount of

memory your apps really consume, especially when considering mobile

devices that have limited data networks in order to download the apps.

 What Is Linking?

Linking is performed by the Linker to remove unused code from compiled

assemblies. This helps to reduce the size of your applications by trimming

out any unused parts of libraries that you use.

Linking is a highly complex topic and I am only really scratching the

surface. For further reference, I recommend checking out the Microsoft

documentation at https://learn.microsoft.com/xamarin/ios/deploy-

test/linker.

The Linker provides the fantastic ability to reference the full .NET base

class library so when you compile your application ready for distributing,

it will only include the parts of that BCL that you actually reference and use

within your application.

ChApTEr 14 rElEAsINg OUr ApplICATION

https://learn.microsoft.com/xamarin/ios/deploy-test/linker
https://learn.microsoft.com/xamarin/ios/deploy-test/linker

422

 Issues That Crop Up

As you can imagine, if the Linker is unable to detect that something is

really used in your application and it is removed, things can go very wrong

at runtime. Your application will most likely crash when it tries to use a

type that isn’t included in your build.

This can quite often happen when only referring to types in XAML. As

I covered in Chapter 5, the XAML compiler isn’t as powerful as the C#

compiler and it can miss scenarios.

Reflection is another option to really avoid. Not only can it trick the

compiler into not realizing APIs are used but it can also not perform well.

It is worth considering that some third-party packages that you end

up using in your applications may not be Linker safe. For this reason, the

default setting of Link SDK assemblies only is set. This means that only

the assemblies provided by Microsoft will be linked because they are built

to be Linker safe. In an ideal world, the third-party libraries would also

be Linker safe, but I can safely say that the people building these fantastic

packages are already spread thin building them, so if it is something that

you really require, I strongly urge you to investigate helping them provide it

or sponsoring the people that build it to help them.

 Crashes/Analytics
Given that I have covered how things can go wrong, I would like to cover

a way in which you can gain insight to when that happens. Each of the

platform providers do offer a way to collect crash information and report

them it to you in order to make sure that you can prevent things like

crashes from ruining the experience your applications provide.

ChApTEr 14 rElEAsINg OUr ApplICATION

https://doi.org/10.1007/978-1-4842-9234-1_5

423

There are frameworks/packages that aim to make this process easier by

collecting and collating information from each platform into a centralized

site. Further to this, you can enable the collection of analytic information

to aid your understanding of how your users like to interact with your

application and identify areas that you can improve upon.

In fact, a lot of the effort in my day job goes into finding ways to

improve products. This only truly comes to light when you learn how your

users interact with your applications. Capturing analytic information

isn’t the sole route I recommend taking. End user engagement can also

be a fantastic thing to do if you have the opportunity. I would also like

to highlight things like App Tracking Transparency by Apple and the

Google equivalent as you want to make sure that when collecting analytic

information you are not passing on information that can be used to track

your users, or you at least make them aware of it. Further to this, it is

considered good practice to allow users to opt in to enable the collection of

analytical information rather than just capturing it or making them opt out.

There are some companies that provide solutions for this already. They

are fee-based but do offer a free tier with fewer features.

 Sentry

Sentry offers a .NET MAUI package that will make it easier to collect crash

and analytical information. The website contains details on its usage and

pricing: https://sentry.io/for/dot-net/.

Sentry also has the source code open sourced on GitHub and provides

usage examples as well as assisting in understanding what the code does:

https://github.com/getsentry/sentry-dotnet/tree/main/src/

Sentry.Maui

ChApTEr 14 rElEAsINg OUr ApplICATION

https://sentry.io/for/dot-net/
https://github.com/getsentry/sentry-dotnet/tree/main/src/Sentry.Maui
https://github.com/getsentry/sentry-dotnet/tree/main/src/Sentry.Maui

424

 App Center

App Center offers a wide range of features but the main one to focus on

for here is the concept of collecting crash and analytical information. The

website contains details on its usage and pricing: https://appcenter.ms.

Andreas Nesheim has written a great article on how you can get started

with using App Center diagnostics in .NET MAUI: www.andreasnesheim.

no/using-app-center-diagnostics-analytics-with-net-maui/.

 Obfuscation
It is a very safe assumption that if you are providing a compiled

application to user’s devices that any of the code in the application can be

compromised, intellectual property (IP) can be stolen, or an attacker can

learn about vulnerabilities in your application. If you really wish to retain

your IP, then you likely want to keep it on a server-side component and

have your application call it via a web API. That being said, there is still

serious value in making use of tools that obfuscate the compiled codebase

to make it more difficult for an attacker to decipher what the application

is doing.

Let’s take a look at a simple class and how it will look when decompiled

after obfuscation.

public class SomethingSecure

{

 private string PrivateSecret { get; } = "abc";

 internal string InternalSecret { get; } = "def";

 public string PublicSecret { get; } = "ghi";

}

ChApTEr 14 rElEAsINg OUr ApplICATION

https://appcenter.ms
http://www.andreasnesheim.no/using-app-center-diagnostics-analytics-with-net-maui/
http://www.andreasnesheim.no/using-app-center-diagnostics-analytics-with-net-maui/

425

The code decompiled using ILSpy without being obfuscated first looks

as follows:

using System;

public class SomethingSecure

{

 private string PrivateSecret { get; } = "abc";

 internal string InternalSecret { get; } = "def";

 public string PublicSecret { get; } = "ghi";

}

If you run the original code through an obfuscation tool and then

decompile the source, you will end up with something like the following:

// \u0008\u0002

using System;

[\u000f\u0002(1)]

[\u000e\u0002(0)]

public sealed class \u0008\u0002

{

 private readonly string m_\u0002 = \u0002\u0003.\

u0002(-815072442);

 private readonly string m_\u0003 = \u0002\u0003.\

u0002(-815072424);

 private readonly string m_\u0005 = \u0002\u0003.\

u0002(-815072430);

 private string \u0002()

 {

 return this.m_\u0002;

ChApTEr 14 rElEAsINg OUr ApplICATION

426

 }

 internal string \u0003()

 {

 return this.m_\u0003;

 }

 public string \u0005()

 {

 return this.m_\u0005;

 }

}

It is clear from the above that it is much more difficult now to follow

what this code is doing.

Obfuscation doesn’t make it impossible for attackers to gain an
understanding of what the code does. It does, however, make that
task much more difficult.

 Distributing Test Versions
There are a lot of different tools and websites that help you ship test builds

out to people who can test your application. I have become most fond of

using the deployment options provided by Apple and Google. The main

reason I prefer to do it this way is that you do not need to change any of

your deployment processes. You can continue to publish applications

ready for releasing to the public via each store. In fact, these processes

even upload the builds to the store portals. They simply allow you to

release the application to a subset of users.

ChApTEr 14 rElEAsINg OUr ApplICATION

427

As is in keeping with this chapter, I won’t walk you through each of

these portals because the details can change from time to time. I refer you

to the documentation provided by each platform provider and strongly

urge you to investigate.

• Apple TestFlight, https://testflight.apple.com

• Google Play Internal Testing, https://play.google.

com/console/about/internal-testing/

 Summary
In this chapter, you have

• Explored the concepts of distributing your application

• Learned about continuous integration and continuous

delivery to improve your development processes

• Learned about linking, what it is, and how it can

benefit/hinder you

• Covered why it is important to collect analytical and

crash information

• Explored why you may want to consider obfuscating

your code

• Reached the end of our application-building journey

together

ChApTEr 14 rElEAsINg OUr ApplICATION

https://testflight.apple.com
https://play.google.com/console/about/internal-testing/
https://play.google.com/console/about/internal-testing/

429

CHAPTER 15

Conclusion
Wow! If you made it this far, I want to thank you so much! I really hope that

you have enjoyed reading this book as much as I enjoyed writing it. This

book was designed to give you an insight into what .NET MAUI offers and

how you can use it to build real world applications. The sample we built

together covers a lot of the key concepts. Of course I could have filled the

book with hundreds more pages, adding in so many more widgets and

features to the application. This application is a concept that is near and

dear to my heart so I can tell you that it will continue to evolve over time. I

would love to hear where you decide to take it next, and I would love to see

what you create next.

 Looking at the Final Product
The application we just finished building together has been a pet project

of mine for years, so thank you for helping me to finally reach this dream!

Let’s take a trip down memory lane to review what exactly we have built.

Figure 15-1 shows my prototype sketch.

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1_15

https://doi.org/10.1007/978-1-4842-9234-1_15#DOI

430

Figure 15-1. Sketch prototype of the application

The process of building this application has taken you through many

different concepts including

• Creating a .NET MAUI application project

• Reviewing the possible architecture patterns you can

use to build .NET MAUI applications

• Learning about the building blocks that make up your

application’s UI

• How you can further expand on the UI through styling

• How to make your application accessible

• How to create your own layout and utilize some

cool features like BindableLayout to do a lot of the

heavy lifting

• How to store data and the scenarios around where best

to store each type of data

Chapter 15 ConClusion

431

• How to access different types of remote data and the

scenarios around when things go wrong

• How to customize your application on a per-

platform basis

• How to test your application

• The concept of distributing your application

All of the items above made for a really fun journey! And the end

result is almost identical to my original plan. Figure 15-2 shows the final

application with the widgets.

Figure 15-2. The final application showing the widgets that we have
added plus the results of some of the extra assignment sections

 Taking the Project Further
One main reason I really love this project is that I believe the possibilities

of future widgets is wide open! I could provide a list as long as my arm

on ideas that we could continue to achieve together. If I could, I would

have fit them all in this book, but I would probably never have finished.

Chapter 15 ConClusion

432

Here is a short list of the things that I think we could achieve based on the

knowledge that you have gathered during the book:

• Family planning calendar

• Image widget

• Slide show from device

• Slide show from external webservice

• Shopping list

• Home assistant integration

• OctoPrint status widget

• Smart meter widget

• Social media follower count widget

I am repeating myself here, but I would really love to hear from you

about your experience reading this book and where you have decided to

take our application next.

 Useful Resources
There are so many great places to find information on either building .NET

MAUI applications or solving issues that may arise during that experience.

The following list is a collection of websites that provide some really great

content along with a few specific examples of content creators on those

platforms.

Chapter 15 ConClusion

433

 StackOverflow
StackOverflow is a question-and-answer site where you can seek

assistance for issues that you encounter. Often someone else has already

asked the question so you can find the answer you need. If you can't find a

.NET MAUI-specific question/answer, it is worth also looking for Xamarin.

Forms question/answers given that it is the predecessor to .NET MAUI.

https://stackoverflow.com

 GitHub
GitHub is where the .NET MAUI repository is hosted and the framework is

developed in the open. I strongly recommend keeping up to date with the

discussions and issues on this repository.

https://github.com/dotnet/maui

 YouTube
There are some really great content creators providing video tutorials

on how to build .NET MAUI applications. Two great creators are in fact

Microsoft employees; however, they build this content in their own free

time, which I believe goes to show just how passionate they are about the

framework.

 Gerald Versluis

www.youtube.com/c/GeraldVersluis

 James Montemagno

www.youtube.com/c/JamesMontemagno

Chapter 15 ConClusion

https://stackoverflow.com
https://github.com/dotnet/maui
http://www.youtube.com/c/GeraldVersluis
http://www.youtube.com/c/JamesMontemagno

434

 Social Media
There is a whole host of social media options such as LinkedIn, Discord,

Twitter, and Facebook. I urge you to find the platform that works best

for you and start finding and following people that work on or with the

technology.

 Yet More Goodness
It is impossible to provide a curated list of all the great content creators

or resources in printed form. It will instantly become outdated. In fact,

by the time you have finished this book you have may well have become

another name to add to this list! For that reason, here is a great resource

that provides a curated list: https://github.com/jfversluis/learn-

dotnet-maui.

 Looking Forward
While .NET MAUI offers us a lot, there is still so much more that will

evolve. I fully expect there to be some extensive work applied to improving

the ability to test the user interfaces of .NET MAUI applications along with

further enhancements in the usage of .NET MAUI graphics, which has the

potential to not only render applications identically across each platform

(which is very similar to how Flutter works) but also to boost performance

by moving away from the native controls that come with Android. Some

key areas to keep an eye on are as follows.

Chapter 15 ConClusion

https://github.com/jfversluis/learn-dotnet-maui
https://github.com/jfversluis/learn-dotnet-maui

435

 Upgrading from Xamarin.Forms
I would like to see where the dotnet upgrade assistant goes. This will likely

prove vital to any existing applications built against Xamarin.Forms. There

has been work on it so far, but at the time of writing it is in preview. There

are documented steps on how to manually migrate applications with the

following two links covering how this can be achieved:

https://learn.microsoft.com/dotnet/maui/get-started/migrate

https://learn.microsoft.com/dotnet/maui/migration/

I can confirm that I have followed through the above steps in order

to migrate a relatively simple application from Xamarin.Forms to .NET

MAUI. Of course, if your application is more involved and uses concepts

that are now obsolete (Renderers, Effects, etc.), then the migration process

could be much more involved. While I do expect the dotnet upgrade

assistant to make this task easier, I highly doubt it will get to a point where

it will do everything for us. In fact, I suggest you take this as a good exercise

to review what your Xamarin.Forms application currently does and

whether there are better ways to achieve things moving forwards.

 Comet
I have been surprised by what Comet has to offer despite it also being in

preview/proof of concept at the time of writing. David Ortinau, a Program

Manager on the .NET MAUI team, has praised the work that has come out

of the Comet investigation, stating that a lot of the evolutionary steps from

Xamarin.Forms to .NET MAUI were largely influenced by this work.

https://github.com/dotnet/Comet

Chapter 15 ConClusion

https://learn.microsoft.com/dotnet/maui/get-started/migrate
https://learn.microsoft.com/dotnet/maui/migration/
https://github.com/dotnet/Comet

436

 Testing
The topic of testing really does excite me! I have spent recent months

working with development and test teams to help build processes and

infrastructure focused heavily on testing. Having the ability to automate

testing of applications will be a huge leap forwards. As I covered in

Chapter 12, there is the Xamarin.UITest framework for testing Xamarin.

Forms applications. Like the technology it was testing, it had its failings/

challenges. Therefore, the idea of rewriting and exploring new testing

approaches is very much a good thing in my book. I won’t lie; I would have

loved it sooner–certainly before this book was published–but nonetheless

having it being worked on is positive.

I know that I will be keeping an eye on this repository, and if testing

is important to you (and it should be), you should do so also. One further

great advantage is that with the framework being developed in the

open, we as the potential consumers have the power to get involved and

influence the final result.

https://github.com/Redth/Maui.UITesting

Chapter 15 ConClusion

https://doi.org/10.1007/978-1-4842-9234-1_12
https://github.com/Redth/Maui.UITesting

437

Index

A
AbsoluteLayout.LayoutFlags

attached property, 125
Accessibility

applications, 200
AutomationProperties, 207
AutomationProperties.

ExcludeWithChildren, 207
AutomationProperties.

IsInAccessibleTree, 207
checklist, 216–218
definition, 199
features, 211
guidelines, 201
principles, 200, 201
scenarios, 199
screen readers, 202
SemanticProperties class, 202
SemanticProperties.

Description, 202, 204
SemanticProperties.

HeadingLevel, 204
SemanticProperties.Hint, 204
SemanticScreenReader,

205–207
suitable contrast, 208–210
testing

Android, 215
iOS, 215, 216
macOS, 216
Windows, 216

text size, 210
fixed sizes, 211–214
font auto scaling, 214, 215
minimum sizes, 214

ActivityIndicator, 300
Adaptive icon, 118
AddWidgetCommand, 228
AddWidgetFrame control, 241, 242,

247, 248
AddWidget method, 269
Ahead-of-time (AOT), 11
Android, 48, 53, 67–69, 293, 347,

348, 410
Android App Bundle (AAB),

410, 411
Android applications

image sizes, 419
ObservableCollection, 420
startup tracing, 419

Android devices, 53, 411, 418
AndroidManifest.xml file,

48–50, 293
Android Package (APK), 410, 411

© Shaun Lawrence 2023
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/978-1-4842-9234-1

https://doi.org/10.1007/978-1-4842-9234-1#DOI

438

Android Security library, 293
Animations

basic, 243, 244
cancelling, 246
chain, 245
complex

recreate, 247, 248
rubber band, 249–251

concurrent, 245, 246
easings, 246, 247
triggers, 252, 253

API
barometer, 362
geocoding, 363
keychain, 294
OneCall, 302, 303
Open Weather, 327
SecureStorage, 293

apiToken, 292
App Center, 424
AppDataDirectory property, 261
App icons

adding, 116–117
Android, 118
iOS, 116, 118
macOS, 118

Appium, 390
Apple, 22, 118, 215, 294, 412, 415
Apple App Store, 23, 415
Application lifecycle

application states, 62, 63
App.xaml.cs, 65
cross-platform mappings, 66
events, 64

override method, 65
platform-specific events, 67

Android, 68, 69
iOS, 69, 70
MacCatalyst, 69, 70
registering, 68
Windows, 71, 72

StateAwareWindow
class, 65

Applications
compiling, 39, 40
creation

command line, 37
Visual Studio, 33, 35–37

installation issues
command line, 32
Visual Studio installer, 32

macOS
Mac Catalyst, 19
remote access, 24, 26, 27
Visual Studio, 20–22
Xcode, 22, 23

target selection, 38, 40
WidgetBoard, 39, 41
Windows, 27, 28

ApplyQueryAttributes method,
195, 268, 287

AppShell file, 114
AppShellViewModel class, 153,

159, 265, 266
AppShellViewModel.cs, 157,

265, 288
AppShell.xaml.cs, 47, 266
AppShell.xaml file, 47

INDEX

439

App Tracking Transparency, 423
App.xaml.cs class, 47, 50, 159
App.xaml file, 47
Architectural patterns

ClockWidget, 77, 78
prerequisites, 78–79
ViewModels

BaseViewModel, 93–96
ClockWidgetViewModel,

96–98
folder, 92
IWidgetViewModel, 93

views
ClockWidgetView, 99–101
folder, 98
IWidgetView, 98–99

widget
clock widget, 102, 103
MainPage.xaml, 101
MainPage.xaml.cs, 101–102

Assistive technologies, 199,
201, 210

AsyncAwaitBestPractices
repository, 300

Asynchronous operation, 374
AutoIncrement, 274

B
BackgroundColor, 229, 230,

234–236
Base class library (BCL), 5, 6, 421
beginAt parameter, 251
BindableLayout, 170, 171, 175

BindableObject, 178, 186
Binding, 136, 239

BindingContext, 136, 137
compiled bindings, 145,

147, 148
mode, 138, 139
path, 138
properties, 140, 141
source, 139, 140

BindingContext, 136–137, 153, 159,
169, 173

Board.cs, 274
BoardDetailsPage file, 115
BoardDetailsPageViewModel, 373
BoardDetailsPageViewModel class,

136, 140, 263
BoardDetailsPageViewModel

Tests.cs, 372
BoardDetailsPage.xaml file,

134, 137, 145
BoardLayout, 166, 169

ChildAdded event, 176
initial code, 172
ItemsSource, 174
ItemTemplateSelector, 175
LayoutManager, 172, 173
remaining bits, 176, 177

BoardName property, 137, 147
Board property, 169
BoardWidget.cs, 274
Bootstrapping, 52, 56, 60
BoxView, 226, 255
Busy loading, 300
Button class, 359

INDEX

440

C
CancelAnimations extension

method, 246
Certificate Signing Request, 412
CheckStatusAsync method, 336
ChildAdded event, 175
ClockWidgetView, 380, 382
ClockWidgetView.cs, 381
ClockWidgetViewModel,

315, 380
ClockWidgetView.xaml file, 356
Comet, 86, 435
Command property, 145–147
Commit method, 248, 251
CommunityToolkit.Maui, 330
CommunityToolkit.Maui.

Markup, 91
Constructor injection, 60, 137
ContainsKey method, 290
Content creators, 432–434
Continuous delivery (CD), 417
Continuous integration (CI),

369, 417, 418
Converters, 321
CreateBoard method, 276, 282
CreateMauiApp method, 56,

113–115, 191, 194, 261, 291,
341, 342, 404

Creating, reading, updating and
deleting (CRUD), 262

Cross-platform applications, 3,
6, 46, 48

Cross-platform frameworks, 3, 7,
9, 62, 63

Current class file, 306

D
Database

collection of data, 261
entity relationship diagram, 262
repository pattern, 262, 263

boardRepository field, 264
creation, new board, 263
loading process, 267–270

SQLite (see SQLite)
types, 262

Data binding, 108, 135–136
DataTemplateSelector, 175, 187
DataTrigger, 237–239
Dependency injection (DI)

Baker class, 57, 58
definition, 57
dependencies, 58
IoC, 58
IWeighingScale, 59
WeighingScale, 58
Xamarin.Forms, 60

DevExpress, 12
Dispatcher, 289
Dispatcher.GetForCurrent

Thread(), 290
DragInteraction event, 400,

402, 403

INDEX

441

DrawingPath class, 402
DrawingPath.cs, 398
DrawLine method, 394, 395
Draw method, 394–396, 398, 403

E
Easings, 246–247
EnsureIndex method, 282
Entitlements, 414
EventTrigger, 237
eXtensible Application Markup

Language (XAML), 119, 120
building, 122
ContentPage, 122
dissecting, 120
parts, 121
properties, 122, 124

F
File System

AppDataDirectory, 261
cache directory, 260
FileSystem helper class, 260

FileSystem.Current property, 261
FileSystem helper class, 260
finishAt parameter, 251
FixedBoardPage, 115, 162, 196
FixedBoardPageViewModel class,

153, 154, 193, 194, 226
FixedBoardPageViewModel.cs,

226, 267

FixedBoardPage.xaml file,
224, 229, 238, 241

FixedLayoutManager class,
176–179, 221, 229

Board Layout, 183–185
NumberOfRows Property,

180, 181
row/column position,

185, 186
tap/click support, 181, 182

FixedWidgetBoard, 359
FixedWidgetBoardHandler, 359
Flaky test, 374
Flutter, 8, 434
Forecast.cs, 307

G
Generic Host Builder

AddScoped, 61
AddSingleton, 60
AddTransient, 61
DI, 57, 58, 60
implementations, 60

Geolocation feature, 349
GetAsync method, 292
GetForecast method, 310, 377
GetLocationAsync method, 375
GitHub repository, 43, 109, 219, 433
Golden master, 386, 387, 389, 390
Google, 13, 118, 215, 293, 411
Google Play Store, 410, 411
GraphicsView, 394, 399

INDEX

442

H
HandlerChanged events, 361
Handlers

architecture in .NET MAUI, 359
Microsoft.Maui.Handlers

namespace, 360
renderers, 359
Xamarin.Forms, 358

HttpClient, 310, 317, 326
HTTP traffic, 301

I
IBoardRepository, 263, 265,

270, 271
ICanvas implementation, 394
IconUrl, 306
IDrawable.Draw method, 394
IDrawable interface, 394, 398
IFileSystem interface, 261
IGeolocation implementation,

341, 342
ILayoutManager interface, 168,

178, 185
ILocationService implementation,

343, 354
ILocationService.cs, 339
Image control, 204, 207, 313
ImageSource, 313
InitialiseGrid method, 181, 184
INotifyPropertyChanged, 83, 95,

373–374, 420
Intellectual property (IP), 302, 424

Intermediate language (IL), 11
Inversion of Control (IoC), 58
Invoke method, 240
iOS, 47, 49, 68–70

Apple, 413
capabilities, 413
certificate, 412, 413
entitlements, 414
identifier, 413
and macOS, 412
provisioning profiles, 414

IsAddingWidget property, 228,
229, 239

ISecureStorage, 291
IsEqualToStateConverter, 323, 325
IsEqualToStateConverter.cs, 321
IsVisible property, 238, 239, 321
IValueConverter interface, 322
IWeatherForecastService, 308, 315,

328, 329, 374, 379, 380
IWidgetViewModel interface,

194, 398
IWidgetView type, 176

J, K
JetBrains, 16
Just-in-time (JIT), 11

L
Label.FormattedText, 313
LastUsedBoardId preference, 291
Layout classes

INDEX

443

AbsoluteLayout, 124–126
FlexLayout, 126–128
grids, 128–131
HorizontalStackLayout,

131, 132
LayoutFlags, 125
VerticalStackLayout, 132,

133, 135
Linking, 421, 422
LINQ-based expressions, 276, 283
LiteDB

collection, 283
connection, 281
deletion, 284
IBoardRepository

implementation, 279
insert a board, 282
installation, 279
mapping setup, 282, 283
.NET document

database, 278
single entity, 283, 284
table creation, 282
updation, 284

LiteDBBoardRepository, 279
LoadBoards method, 267, 288
LoadWeatherForecast

method, 344
Local data, 259–260
LocationAlways, 337
LocationService, 342
LocationService.cs, 341
LocationWhenInUse, 336–338,

345, 347

M
Mac, 16, 20–22, 349–350
macOS, 5, 15, 19, 25–29, 118, 216,

294, 415
MainPage.xaml.cs, 47
MainPage.xaml file, 47
MainThread.InvokeOnMainThread

Async method, 338
Mappers, 360
MauiAppBuilder, 68, 71, 194,

328, 404
MauiProgram.CreateMauiApp(), 56
MauiProgram.cs, 47, 273, 328, 341,

342, 404
Maui.UITesting, 390
Microsoft, 6, 9, 128, 160, 216, 294,

330, 339, 410, 411, 415
Microsoft.Maui.Handlers

namespace, 360
Microsoft Store, 409, 416
Mobile Application Security

Testing Guide
repository, 301

MockClockWidgetViewModel, 382
MockClockWidgetView

Model.cs, 380
MockLocationService.cs, 374
MockWeatherForecast

Service.cs, 376
Modal page, 222–223
Model classes

base layouts, 112
board, 112
fixed layouts, 112

INDEX

444

Model View Update (MVU)
benefits, 85
Comet, 86
components, 85
definition, 85
implementation, 86–88
key parts, 85

Model View ViewModel (MVVM)
benefits, 80
CommunityToolkit.Mvvm,

104, 107
components, 79, 80
definition, 79
documentation, 107
frameworks, 103–104
Model, 80
ObservableObject base class,

104, 105
packages, 104
source code, 105, 107
Time property, 105
UI, 91
View

C# (Code-Behind), 82
ContentPage, 81
ContentView, 81
XAML, 81–82

ViewModel, 82–84
MoveTo method, 395
MSIX, 416
MSTest, 367
MultiBinding, 141–144
MultiTrigger, 237

N
NASA API documentation, 332
.NET frameworks, 56
.NET MAUI applications,

410, 432
final application with

widgets, 431
macOS, 415
process of building, 429, 430
user interfaces, 434
Windows, 416

.NET MAUI Blazor, 9, 13

.NET MAUI ContentView (XAML),
311, 399

.NET MAUI essentials, 335
conditional C# statement, 357
geolocation APIs, 341

IGeolocation
implementation, 341, 342

ILocationService
implementation, 343–345

PermissionError, 345
registering, Geolocation

Service, 341
handler’s responsibility (see

Handlers)
OnPlatform markup

extension, 356
permissions, 336

checking status, 336, 337
handling

permissions, 340–342
permission request, 338

INDEX

445

platform-specific
components, 346

Android, 347, 348
iOS/Mac, 349, 350
Windows, 350, 351

.NET MAUI Graphics, 393, 434
abstraction layer, 393
Draw method, 394

canvas, 396
DrawLine method, 395
paths, 395, 396
surface updation, 394

.NET MAUI implementation,
261, 294

.NET MAUI project, 13, 46, 232, 271

.NET Multi-Platform App
UI (MAUI)

Android application, 4
APIs, 4, 5
BCL, 6
camera, 13
code sharing, 9
commercial options, 12
community, 10
competition, 7, 8
controls, 14
definition, 3
developer, 10
evolution, 6
layers, 6
media, 14
Mono runtime, 6
.NET application, 5
.NET Hot Reload, 10

.NET runtime, 5
performance, 11
platforms, 3, 4, 8, 9
toolkit, 14
Visual Studio, 15

JetBrains Rider, 16
Mac, 16
Visual Studio Code, 16
Windows, 15

WASM support, 13
XAML Hot Reload, 11

.NET 7.0, 36, 418
net7.0 target framework, 369, 370
.NET types, 286
Newtonsoft, 305
Newtonsoft.Json, 305
NuGet packages, 108, 271, 279, 311,

317, 327–329
NUnit, 367

O
OAuth2.0, 301
Obfuscation, 424–426
ObservableCollection, 157,

174, 420–421
OnAddWidget method, 228
OnAppearing method, 266, 289
OnBindingContextChanged

method, 173
OnHandlerChanged methods, 361
OnNavigatedTo method, 266
OnPlatform markup

extension, 356–358

INDEX

446

OnSelectTemplate method, 175,
194, 196

Open Web Application Security
Project (OWASP), 301

OutputType element, 370

P, Q
Pages folder

BoardDetailsPage, 113
FixedBoardPage, 114

PermissionError, 343, 345, 378
Permissions.RequestAsync

method, 338
Placeholder control, 166–168
PlaceholderGrid, 170, 176, 177
PlatformLocationService class,

354, 382
Platform providers, 215, 409,

410, 422
Platforms/Android/

MainApplication.cs, 347
Platform-specific APIs, 335, 352

compiler directive, 352, 353
in platform folders, 354, 355

Polly, 326, 329
Popup class, 223, 224
Preferences

checked, key existed, 290
CreateMauiApp method, 285
Get method, 288
as a key-value pair, 285
.NET types, 286
Set method, 286–288

preferences.Get, 289
Project structure

developers, 45
files, 47
.NET applications, 45
/Platforms/ folder, 46

Android, 48
iOS, 49
MacCatalyst, 49
Tizen, 50
Windows, 50

resource management, 46
/Resources/ folder, 46, 51

fonts, 51, 52
images, 52, 54, 55
raw, 55

Xamarin.Forms, 45–47
propertyChanged parameter, 180
propertyChanged event, 373
PropertyGroup element, 371
Provisioning profiles, 414

R
Refit, 327, 328
Refit extension methods, 329
Refit NuGet Package, 327–329
RegisterWidget method, 188
Remote data

description, 299
loading times, 300
network connectivity

issues, 301
security, 301

INDEX

447

TODO application, 331
webservices (see Webservices)

Renderers, 358, 359
RequestAsync method, 338
ResetState method, 396
Routing.RegisterRoute, 150

S
SaveState method, 396
SaveWidget method, 269
Secure storage

GetAsync method, 292
platform-specific APIs

Android Security library, 293
iOS and macOS, 294
on Windows, 294

removing, 292
secure value, 291

SelectedItem property, 139, 158
SelectedWidget property, 228
Sentry, 423
SetPosition method, 169
SetProperty method, 96, 195
Shell

flyout, 154, 155
AppShell, 159, 160
BindingContext, 159
Boards collection, 157
FlyoutContent, 156
FlyoutHeader, 155
navigation, 158, 159
SelectedItem, 158

navigation, 150

backward, 152
passing data, 152, 153
performing, 152
registering pages, 150, 151

search, 160
ShellContent, 149, 150
tabs, 160

Shell.Current.GoToAsync method,
151, 223

Shell.PresentationMode
property, 222

ShowOverlayTriggerAction,
241, 242

ShowOverlayTriggerAction.cs, 252
Sketch widget, 397, 404
SketchWidgetView, 398
SketchWidgetView.xaml, 399–400
SketchWidgetView.xaml.cs,

400–403
Snapshot testing, 386–390

golden master, 386
WeatherWidgetViewModel, 387

Social media options, 434
Software Development Kit (SDK),

49, 216
Source, 136, 139–140
Splash screen, 118–119
SQLite

collection, 276
CreateTable method, 275
C# wrappers, 270
deletion, 278
IBoardRepository

implementation, 271

INDEX

448

insertion, 276
lightweight cross-platform

database, 270
mapping information, 274
single entity, 277
SqliteConnection class, 273
updation, 278

SqliteBoardRepository, 271
Sqlite-net-pcl package, 271, 277
StackOverflow, 433
StartInteraction event, 402
StateContainer, 330
Styling

ApplyToDerivedTypes, 233
AppThemeBinding, 236
creation, 234–236
explicit styling, 233
globally, 231
implicit styling, 232
locally, 232
setter, 233
TargetType, 232

SyncFusion, 12
System.Text.Json, 305, 311

T
Target, 136
Telerik, 12, 361
Temperature property

mapping, 307
Testing, 436

device testing, 382

device-specific
tests, 384–386

device test project, 383
snapshot testing, 386–390
software development

process, 365
unit testing (see Unit testing)

TextIsUpdatedByTime
Property, 382

ThatReturns methods, 376
ThatReturnsNoLocation

methods, 376
Tizen, 9, 50
TODO application, 331
TriggerAction<T> base class, 240
Triggers, 237, 242, 252, 253
TypeConverters, 314

U
UI thread, 289, 290, 338
Unit testing

asynchronous operation
asynchronous tests, 377, 378
ILocationService Mock, 374
WeatherForecastService

Mock, 376
benefit, 365
BoardDetailsPageView

Model, 372
design and building of code, 365
INotifyPropertyChanged, 373
net7.0 target framework,

369, 370

SQLite (cont.)

INDEX

449

.NET MAUI applications
MSTest, 367
.NET-based projects, 366
NUnit, 367
testing framework, 367
xUnit, 366

.NET MAUI dependencies, 371
Reference Manager dialog,

Visual Studio, 370, 371
test project, main application

project, 370
unit test project, 368, 369
views

ClockWidgetView.cs, 381
ClockWidgetViewModel

Mock, 380
UriImageSource property, 313

V
VerifyTests, 387, 389
ViewModels

AppShell file, 114
BoardDetailsPage file, 115
FixedBoardPage file, 115
folder, 315, 372

Visual Studio
Mac, 20–22
macOS, 28–31
Windows, 27, 28

W
WeatherForecastService class, 328
WeatherForecastService.cs, 308

weatherForecastService.Get
Forecast method, 345

Weather widget, 299, 311, 318, 330,
335, 336

WeatherWidgetView, 311–315
WeatherWidgetViewModel,

315–317, 374, 386, 387
WeatherWidgetViewModel.cs, 315,

325, 343
WeatherWidgetView.xaml,

311, 345
WeatherWidgetView.xaml.cs,

311, 314
Web-based technologies, 9
Web Content Accessibility

Guidelines (WCAG), 200,
208, 210, 217

Webservices
Open Weather API, 302

API key, 302
build your model, 305
connection, 308–311
creating account, 302
examining data, 303
registering widget, 317, 318
testing, widget, 318
WeatherWidgetView,

311, 314
WeatherWidgetViewModel,

315, 316
states

error state, 325, 326
loaded state, 323
loading state, 322

INDEX

450

state to UI, 320–322
visual feedback, 319

WidgetBoard, 39, 41–42, 86, 370
WidgetBoard.DeviceTests project,

383, 384
WidgetBoard.Tests project, 369,

372, 374, 377, 381, 387
WidgetBoard/WidgetBoard.csproj

file, 369
WidgetFactory, 187, 227

ClockWidgetView, 191, 192
creation, 189, 190
MauiAppBuilder, 191
registration, 188, 189
view model, 190, 191

WidgetGrid, 170
Widgets_ChildAdded

method, 255
WidgetTemplateSelector

properties, 195, 196
widgetViewModel, 190–191, 229
Windows, 50

accessibility, 216
applications, 350, 351
platform-specific events, 71, 72
Visual Studio, 15

Windows UI Library (WinUI), 5, 11
World Health Organization, 200

X
Xamarin.Forms, 6, 9, 11, 45–47, 60,

77, 88, 271, 358, 390,
435, 436

Xamarin.UITesting, 390
XAML compiler, 123, 422
XAML markup extensions, 356
XAML vs. C# Markup

benefits, 89
ClockWidget, 89
CommunityToolkit.Maui.

Markup, 91
plain C#, 89–90

Xcode, 22–23, 412
xUnit, 366, 367

Y
YouTube, 433

Z
ZIndex property, 226

Webservices (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to .NET MAUI
	What is .NET MAUI?
	Digging a Bit Deeper
	Where Did It Come From?
	How It Differs From the Competition

	Why Use .NET MAUI?
	Supported Platforms
	Code Sharing
	Developer Freedom
	Community
	Fast Development Cycle
	.NET Hot Reload
	XAML Hot Reload

	Performance
	Strong Commercial Offerings

	Limitations of .NET MAUI
	No Web Assembly (WASM) Support
	No Camera API
	Apps Won’t Look Identical on Each Platform
	Lack of Media Playback Out of the Box

	The Glass Is Half Full, Though
	How to Build .NET MAUI Applications
	Visual Studio
	Visual Studio (Windows)
	Visual Studio for Mac
	Rider
	Visual Studio Code

	Summary

	Chapter 2: Building Our First application
	Setting Up Your Environment
	macOS
	Visual Studio for Mac
	Xcode
	Remote Access

	Windows
	Visual Studio

	Visual Studio to macOS

	Troubleshooting Installation Issues
	.NET MAUI Workload Is Missing
	Visual Studio Installer
	Command Line

	Creating Your First Application
	Creating in Visual Studio
	Creating in the Command Line

	Building and Running Your First Application
	Getting to Know Your Application
	WidgetBoard

	Summary
	Source Code

	Chapter 3: The Fundamentals of .NET MAUI
	Project Structure
	/Platforms/ Folder
	Android
	iOS
	MacCatalyst
	Tizen
	Windows
	Summary

	/Resources/ Folder
	Fonts
	Images
	Raw

	Where To Begin?
	Generic Host Builder
	What Is Dependency Injection?
	Registering Dependencies
	AddSingleton
	AddTransient
	AddScoped

	Application Lifecycle
	Application States
	Lifecycle Events
	Handling Lifecycle Events
	Cross-Platform Mappings to Platform Lifecycle Events
	Platform-Specific Lifecycle Events
	Android
	iOS and MacCatalyst
	Windows

	Summary

	Chapter 4: An Architecture to Suit You
	A Measuring Stick
	Prerequisites
	Model View ViewModel (MVVM)
	Model
	View
	XAML
	C# (Code-Behind)

	ViewModel

	Model View Update (MVU)
	Getting Started with Comet
	Adding Your MVU Implementation

	XAML vs. C# Markup
	Plain C#
	C# Markup

	Chosen Architecture for This Book
	Adding the ViewModels
	Adding IWidgetViewModel
	Adding BaseViewModel
	Adding ClockWidgetViewModel

	Adding Views
	Adding IWidgetView
	Adding ClockWidgetView

	Viewing Your Widget
	Modifying MainPage.xaml
	Modifying MainPage.xaml.cs
	Taking the Application for a Spin

	MVVM Enhancements
	MVVM Frameworks
	Magic

	Summary
	Source Code

	Chapter 5: User Interface Essentials
	Prerequisites
	Models
	BaseLayout.cs
	FixedLayout.cs
	Board.cs

	Pages
	BoardDetailsPage
	FixedBoardPage

	ViewModels
	AppShellViewModel
	BoardDetailsPageViewModel
	FixedBoardPageViewModel

	App Icons
	Adding Your Own Icon
	Platform Differences
	Android
	iOS and macOS

	Splash Screen
	XAML
	Dissecting a XAML File
	Building Your First XAML Page

	Layouts
	AbsoluteLayout
	FlexLayout
	Grid
	HorizontalStackLayout
	VerticalStackLayout

	Data Binding
	Binding
	BindingContext
	Path
	Mode
	Source

	Applying the Remaining Bindings
	MultiBinding
	Command
	Compiled Bindings

	Shell
	ShellContent
	Navigation
	Registering Pages for Navigation
	Performing Navigation
	Navigating Backwards
	Passing Data When Navigating

	Flyout
	FlyoutHeader
	FlyoutContent
	Collection of Boards
	Selected Board
	Navigation to the Selected Board
	Setting the BindingContext of Your AppShell
	Register AppShell with the MAUI App Builder
	Resolve the AppShell Instead of Creating It

	Tabs
	Search

	Taking Your Application for a Spin
	Summary
	Source Code

	Extra Assignment

	Chapter 6: Creating Our Own Layout
	Placeholder
	ILayoutManager
	BoardLayout
	BoardLayout.xaml
	BindableLayout

	BoardLayout.xaml.cs
	Adding the LayoutManager Property
	Adding the ItemsSource Property
	Adding the ItemTemplateSelector Property
	Handling the ChildAdded Event
	Adding Remaining Bits

	FixedLayoutManager
	Accepting the Number of Rows and Columns for a Board
	Adding the NumberOfColumns Property
	Adding the NumberOfRows Property

	Providing Tap/Click Support Through a Command
	Building the Board Layout
	Setting the Correct Row/Column Position for Each Widget

	Using Your Layout
	Adding a Factory That Will Create Instances of Your Widgets
	Allowing for the Registration of Widget Views and View Models
	Creation of a Widget View
	Creation of a Widget View Model
	Registering the Factory with MauiAppBuilder
	Registering Your ClockWidget with the Factory

	WidgetTemplateSelector
	Registering the Template Selector with MauiAppBuilder

	Updating FixedBoardPageViewModel
	Finally Using the Layout

	Summary
	Source Code

	Extra Assignment

	Chapter 7: Accessibility
	What Is Accessibility?
	Why Make Your Applications Accessible?
	What to Consider When Making Your Applications Accessible
	How to Make Your Application Accessible
	Screen Reader Support
	SemanticProperties
	SemanticProperties.Description
	SemanticProperties.Hint
	SemanticProperties.HeadingLevel
	SemanticScreenReader
	AutomationProperties
	AutomationProperties.ExcludedWithChildren
	AutomationProperties.IsInAccessibleTree

	Suitable Contrast
	Dynamic Text Sizing
	Avoiding Fixed Sizes
	Preferring Minimum Sizing
	Font Auto Scaling

	Testing Your Application’s Accessibility
	Android
	iOS
	macOS
	Windows

	Accessibility Checklist
	Summary
	Source Code

	Extra Assignment

	Chapter 8: Advanced UI Concepts
	Adding the Ability to Add a Widget to a Board
	Possible Ways of Achieving Your Goal
	Showing a Modal Page
	Overlaying a View
	Showing a Popup

	The Chosen Approach
	Adding Your Overlay View
	Updating Your View Model
	Showing the Overlay View

	Styling
	Examining the Default Styles
	TargetType
	ApplyToDerivedTypes
	Setter

	Creating a Style
	AppThemeBinding
	Further Reading

	Triggers
	Creating a DataTrigger
	EnterActions and ExitActions
	Creating a TriggerAction
	Creating ShowOverlayTriggerAction
	Using ShowOverlayTriggerAction

	Further Reading
	Animations
	Basic Animations
	Combining Basic Animations
	Chaining Animations
	Concurrent Animations

	Cancelling Animations
	Easings
	Complex Animations
	Recreating the ScaleTo Animation
	Creating a Rubber Band Animation

	Combining Triggers and Animations
	Summary
	Source Code

	Extra Assignment
	Animate the BoxView Overlay
	Animate the New Widget

	Chapter 9: Local Data
	What Is Local Data?
	File System
	Cache Directory
	App Data Directory

	Database
	Repository Pattern
	Creating a Board
	Listing Your Boards
	Loading a Board

	SQLite
	Installing SQLite-net
	Using Sqlite-net
	Connecting to an SQLite database
	Mapping Your Models
	Creating Your Tables
	Inserting into an SQLite Database
	Reading a Collection from an SQLite Database
	Reading a Single Entity from an SQLite Database
	Deleting from an SQLite Database
	Updating an Entity in an SQLite Database

	LiteDB
	Installing LiteDB
	Using LiteDB
	Connecting to a LiteDB database
	Mapping Your Models
	Creating Your Tables
	Inserting into a LiteDB Database
	Reading a Collection from a LiteDB Database
	Reading a Single Entity from a LiteDB Database
	Deleting from a LiteDB Database
	Updating an Entity in a LiteDB Database

	Database Summary

	Application Settings (Preferences)
	What Can Be Stored in Preferences?
	Setting a Value in Preferences
	Getting a Value in Preferences
	Checking if a Key Exists in Preferences
	Removing a Preference

	Secure Storage
	Storing a Value Securely
	Reading a Secure Value
	Removing a Secure Value
	Platform specifics
	Android
	iOS and macOS
	Windows

	Viewing the Result
	Summary
	Source Code

	Extra Assignment

	Chapter 10: Remote Data
	What Is Remote Data?
	Considerations When Handling Remote Data
	Loading Times
	Failures
	Security

	Webservices
	The Open Weather API
	Creating an Open Weather Account
	Creating an Open Weather API key
	Examining the Data
	Using System.Text.Json
	Creating Your Models
	Connecting to the Open Weather API
	Creating the WeatherWidgetView
	Creating the WeatherWidgetViewModel
	Registering Your Widget
	Testing Your Widget

	Adding Some State
	Converting the State to UI
	Displaying the Loading State
	Displaying the Loaded State
	Displaying the Error State

	Simplifying Webservice Access
	Prebuilt Libraries
	Code Generation Libraries
	Adding the Refit NuGet Package

	Further Reading
	Polly
	StateContainer from CommunityToolkit.Maui

	Summary
	Source Code

	Extra Assignment
	TODO Widget
	Quote of the Day Widget
	NASA Space Image of the Day Widget

	Chapter 11: Getting Specific
	.NET MAUI Essentials
	Permissions
	Checking the Status of a Permission
	Requesting Permission
	Handling Permissions in Your Application

	Using the Geolocation API
	Registering the Geolocation Service
	Using the Geolocation Service
	Registering the LocationService
	Using the ILocationService
	Displaying Permission Errors to Your User

	Configuring Platform-Specific Components
	Android
	iOS/Mac
	Windows

	Platform-Specific API Access
	Platform-Specific Code with Compiler Directives
	Platform-Specific Code in Platform Folders

	Overriding the Platform-Specific UI
	OnPlatform
	OnPlatform Markup Extension
	Conditional Statements

	Handlers
	Customizing Controls with Mappers
	Scoping of Mapper Customization
	Further Reading

	Summary
	Source Code

	Extra Assignment
	Barometer Widget
	Geocoding Lookup

	Chapter 12: Testing
	Unit Testing
	Unit Testing in .NET MAUI
	xUnit
	NUnit
	MSTest
	Your Chosen Testing Framework

	Adding Your Own Unit Tests
	Adding a Unit Test Project to Your Solution
	Modify Your Application Project to Target net7.0
	Adding a Reference to the Project to Test
	Modify Your Test Project to Use MAUI Dependencies

	Testing Your View Models
	Testing BoardDetailsPageViewModel
	Testing INotifyPropertyChanged

	Testing Asynchronous Operations
	Creating Your ILocationService Mock
	Creating Your WeatherForecastService Mock
	Creating Your Asynchronous Tests

	Testing Your Views
	Creating Your ClockWidgetViewModel Mock
	Creating Your View Tests

	Device Testing
	Creating a Device Test Project
	Adding a Device-Specific Test
	Running Device-Specific Tests

	Snapshot Testing
	Snapshot Testing Your Application
	Passing Thoughts

	Looking to the Future
	Summary
	Source Code

	Chapter 13: Lets Get Graphical
	.NET MAUI Graphics
	Drawing on the Screen
	Updating the Surface
	Drawing a Line
	Drawing a Path
	Maintaining the State of the Canvas

	Further Reading

	Building a Sketch Widget
	Creating the SketchWidgetViewModel
	Representing a User Interaction
	Creating the SketchWidgetView
	Modifying the SketchWidgetView.xaml
	Modifying the SketchWidgetView.xaml.cs

	Registering Your Widget
	Taking Your Widget for a Test Draw

	Summary
	Source Code

	Extra Assignment

	Chapter 14: Releasing Our Application
	Distributing Your Application
	Android
	Additional Resources

	iOS
	Certificate
	Identifier
	Capabilities
	Entitlements
	Provisioning Profiles
	Additional Resources

	macOS
	Additional Resources

	Windows
	Additional Resources

	Things to Consider
	Following Good Practices
	Performance
	Startup Tracing
	Image Sizes
	Use of ObservableCollection

	Linking
	What Is Linking?
	Issues That Crop Up

	Crashes/Analytics
	Sentry
	App Center

	Obfuscation

	Distributing Test Versions
	Summary

	Chapter 15: Conclusion
	Looking at the Final Product
	Taking the Project Further

	Useful Resources
	StackOverflow
	GitHub
	YouTube
	Gerald Versluis
	James Montemagno

	Social Media
	Yet More Goodness

	Looking Forward
	Upgrading from Xamarin.Forms
	Comet
	Testing

	Index

