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Fundamental constants

Quantity Symbol Value Power of ten Units

Speed of light c 2.997 925 58* 108  m s–1

Elementary charge e 1.602 176 10–19  C

Boltzmann's constant k 1.380 65  10–23  J K–1

Planck constant h 6.626 08 10–34  J s
 h– = h �2p 1.054 57 10–34  J s

Avogadro's constant NA 6.022 14 1023  mol–1

Atomic mass constant mu 1.660 54 10–27  kg

Mass 
  electron me 9.109 38  10–31  kg
  proton mp 1.672 62  10–27 kg
  neutron mn 1.674 93  10–27 kg

Vacuum permittivity e0 = 1�c2μ0 8.854 19 10–12  J–1 C2 m–1

 4pe0 1.112 65 10–10  J–1 C2 m–1

Vacuum permeability μ0 4p 10–7  J s2 C–2 m–1 (= T2 J–1 m3)

Magneton 
  Bohr μB = eh– �2me 9.274 01 10–24  J T–1

  nuclear μN = eh– �2mp 5.050 78 10–27  J T–1

  g value of the electron ge 2.002 32

Bohr radius  a0 = 4pe0h–2�mee
2 5.291 77 10–11  m

Rydberg constant  R = mee
4�8h3ce2

0 1.097 37 105  cm–1

Standard acceleration of free fall  g 9.806 65*  m s–2

*Exact value
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Organizing the information

Checklist of key ideas

We summarize the principal 
concepts introduced in each 
chapter as a checklist at the 
end of the chapter. We sug-
gest checking off the box that 
precedes each entry when you 
feel confi dent about the topic.

Table of key equations  

We summarize the most 
important equations intro-
duced in each chapter as a 
checklist that follows the 
chapter’s Table of key ideas.
When appropriate, we 
describe the physical condi-
tions under which an equa-
tion applies. 

Boxes   

Where appropriate, we sepa-
rate the principles from their 
applications: the principles 
are constant; the applications 
come and go as the subject 
progresses. The Boxes, about 
one in each chapter, show 
how the principles developed 
in the chapter are currently 
being applied in a variety of modern contexts, 
especially biology and materials science.

Molecular Interpretation 
icons

Although thermo-dynamics 
is a self-contained subject, 
it is greatly enriched when 
its concepts are explained 
in terms of atoms and mol-
ecules.

This icon indicates 
where we are introducing a molecular 
interpretation.

Notes on good practice

Science is a precise activity 
and its language should be 
used accurately. We use this 
feature to help encourage 
the use of the language and 
procedures of science in 
conformity to international 
practice (as specifi ed by 
IUPAC, the International 

Union of Pure and Applied Chemistry) and to help 
avoid common mistakes.

Derivations

On fi rst reading it might be 
suffi cient simply to appreci-
ate the ’bottom line’ rather 
than work through detailed 
development of a mathemati-
cal expression. However, 
mathematical development is 
an intrinsic part of physical 
chemistry, and to achieve full 

About the book

Checklist of key ideas

You should now be familiar with the following concepts.

� 1 Physical chemistry is the branch of chemistry 
that establishes and develops the principles of
chemistry in terms of the underlying concepts 
of physics and the language of mathematics.

� 2 The states of matter are gas, liquid, and solid.

� 3 Work is done when a body is moved against an
opposing force.

� 4 Energy is the capacity to do work.

� 5 The contributions to the energy of matter are the
kinetic energy (the energy due to motion) and the
potential energy (the energy due to position).

� 6 The total energy of an isolated system is con-
served, but kinetic and potential energy may be
interchanged.

�

Box 11.2 Explosions

A thermal explosion is due to the rapid increase of reaction
rate with temperature. If the energy released in an exother-
mic reaction cannot escape, the temperature of the reaction
system rises, and the reaction goes faster. The acceleration
of the rate results in a faster rise of temperature, and 
so the reaction goes even faster... catastrophically fast. A
chain-branching explosion may occur when there are chain-
branching steps in a reaction, for then the number of chain
carriers grows exponentially and the rate of reaction may
cascade into an explosion.

An example of both types of explosion is provided by the
reaction between hydrogen and oxygen, 2 H2(g) + O2(g) →
2 H2O(g). Although the net reaction is very simple, the mech-
anism is very complex and has not yet been fully elucidated.
It is known that a chain reaction is involved, and that the chain
carriers include ·H, ·O·, ·OH, and ·O2H. Some steps are:

Initiation: H2 + ·(O2)· → ·OH + ·OH

Propagation: H2 + ·OH → ·H + H2O
·(O2)· + ·H → ·O· + ·OH (branching)
·O· + H2 → ·OH + ·H (branching)
·H + ·(O2)· + M → ·HO2 + M*

The two branching steps can lead to a chain-branching 
explosion.

a
p
t
p
t
c

T
r
h

We pay particular attention to the needs of the student, and provide many pedagogical features to make the 
learning process more enjoyable and effective. This section reviews these features. Paramount among them, 
though, is something that pervades the entire text: we try throughout to interpret the mathematical expres-
sions, for mathematics is a language, and it is crucially important to be able to recognize what it is seeking to 
convey. We pay particular attention to the level at which we introduce information, the possibility of progres-
sively deepening one’s understanding, and providing background information to support the development in 
the text. We are also very alert to the demands associated with problem solving, and provide a variety of help-
ful procedures.

In other words, the internal energy of a sample
of perfect gas at a given temperature is inde-
pendent of the volume it occupies. We can 
understand this independence by realizing 

that when a perfect gas expands isothermally the only
feature that changes is the average distance between the
molecules; their average speed and therefore total kinetic
energy remains the same. However, as there are no inter-
molecular interactions, the total energy is independent 
of the average separation, so the internal energy is un-
changed by expansion.

Example 2.2

Calculating the change in internal energy

Nutritionists are interested in the use of energy by the
human body and we can consider our own body as a
thermodynamic ‘system’. Calorimeters have been con-
structed that can accommodate a person to measure
(nondestructively!) their net energy output. Suppose in
the course of an experiment someone does 622 kJ of
work on an exercise bicycle and loses 82 kJ of energy as
heat. What is the change in internal energy of the per-
son? Disregard any matter loss by perspiration.

Strategy This example is an exercise in keeping track of
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To see more precisely what is involved in specify-
ing the state of a substance, we need to define the
terms we have used. The mass, m, of a sample is a
measure of the quantity of matter it contains. Thus,
2 kg of lead contains twice as much matter as 1 kg of
lead and indeed twice as much matter as 1 kg of any-
thing. The Système International (SI) unit of mass 
is the kilogram (kg), with 1 kg currently defined as
the mass of a certain block of platinum–iridium 
alloy preserved at Sèvres, outside Paris. For typical
laboratory-sized samples it is usually more conven-
ient to use a smaller unit and to express mass in
grams (g), where 1 kg = 103 g.

A note on good practice Be sure to distinguish mass and
weight. Mass is a measure of the quantity of matter, and is 
independent of location. Weight is the force exerted by 
an object, and depends on the pull of gravity. An astronaut
has a different weight on the Earth and the Moon, but the
same mass.

The volume, V, of a sample is the amount of 
three-dimensional space it occupies. Thus, we write 
V = 100 cm3 if the sample occupies 100 cm3 of space.
The units used to express volume (which include
cubic metres, m3; cubic decimetres, dm3, or litres, L;
millilitres, mL), and units and symbols in general, are
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So far, the perfect gas equation of state changes
from p = nRT/V to

This equation of state—it is not yet the full van der
Waals equation—should describe a gas in which re-
pulsions are important. Note that when the pressure
i l th l i l d ith th l

p
nRT

V nb
=

−

Fig. 1.16 When two molecules, each of radius r and volume
Vmol = pr 3 approach each other, the centre of one of them
cannot penetrate into a sphere of radius 2r and therefore 
volume 8Vmol surrounding the other molecule.

4
3

Derivation 1.1

The molar volume of a gas described by the 
van der Waals equation

The volume of a sphere of radius R is pR3. Figure 1.16
shows that the closest distance of two hard-sphere
molecules of radius r, and volume Vmolecule = pr 3, is 2r.
Therefore, the excluded volume is p(2r )3 = 8 × ( pr 3), or
8Vmolecule. The volume excluded per molecule is one-half
this volume, or 4Vmolecule, so b ≈ 4VmoleculeNA.
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The following table summarizes the equations that have been deve

Property

Perfect gas law

Partial pressure

Dalton’s law

Virial equation of state

Mean free path, speed, and 
collision frequency

van der Waals equation of state

Maxwell distribution of speeds

Table of key equations

Equation

pV = nRT

pJ = xJp

p = pA + pB + . . .

p = (nRT /V )(1 + nB /V +

c = lz

p = nRT /(V − nb) − a(n /V
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understanding it is important to see how a particu-
lar expression is obtained. The Derivations let you 
adjust the level of detail that you require to your 
current needs, and make it easier to review material. 
All the calculus in the book is confi ned within these 
Derivations.

Further information

In some cases, we have 
judged that a derivation is 
too long, too detailed, or 
too different in level for it 
to be included in the text. In 
these cases, the derivations 
are found less obtrusively at 
the end of the chapter.

Mathematics support 

Bubbles  

You often need to know how 
to develop a mathematical 
expression, but how do you 
go from one line to the next? 
A green ‘bubble’ is a little 
reminder about the substitu-
tion used, the approximation 
made, the terms that have 
been assumed constant, and 
so on. A red ‘bubble’ is a 
reminder of the signifi cance of an individual term in 
an expression.

A brief comment

A topic often needs to draw 
on a mathematical proce-
dure or a concept of physics; 
A brief comment is a quick 
reminder of the procedure 
or concept.

Visualizing the information

Artwork

In many instances, a concept 
is easier to understand if it is 
presented in visual, as well as 
written, form. Every piece of 
artwork in this new edition 
has been carefully rendered 
in full colour, to help you 
master the concepts presented.

Living Graphs

In some cases, the trends 
or properties presented in 
a graph are  diffi cult to in-
terpret when the graph is 
viewed as a static fi gure. In 
such cases, a dynamic Liv-
ing graph is available in the 
eBook version of the text. 
A Living graph can be used 
to explore how a property 
changes as a variety of pa-

rameters are changed.
 The fi gures in the book with associated Living
graphs are fl agged with icons in the fi gure legends as 
shown here.

Animations

In some cases, it is diffi cult 
to communicate a dynamic 
process in a static fi gure. In 
such instances, animated 
versions of selected artwork 
are available in the eBook 
version of the text. Where 
animated versions of fi gures are available, these are 
fl agged in the text as shown below.
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Further information 1.1

Kinetic molecular theory

One of the essential skills of a physical chemist is the 
ability to turn simple, qualitative ideas into rigid, testable,
quantitative theories. The kinetic model of gases is an 
excellent example of this technique, as it takes the concepts
set out in the text and turns them into precise expressions.
As usual in model building, there are a number of steps, but
each one is motivated by a clear appreciation of the under-
lying physical picture, in this case a swarm of mass points
in ceaseless random motion. The key quantitative ingredi-
ents we need are the equations of classical mechanics. So
we begin with a brief review of velocity, momentum, and
Newton’s second law of motion.

The velocity, v, is a vector, a quantity with both magni-
tude and direction. The magnitude of the velocity vector is
the speed, v, given by v = (vx

2 + vy
2 + vz

2)1/2, where vx, vy, and
vz, are the components of the vector along the x-, y-, and 
z-axes, respectively (Fig. 1.20). The magnitude of each
component, its value without a sign, is denoted |. . .|. For 
example, |vx | means the magnitude of vx. The linear 
momentum, p, of a particle of mass m is the vector p = mv
with magnitude p = mv Newton’s second law of motion

f

For a mixture of perfect gases, we can identify 
the partial pressure of J with the contribution that 
J makes to the total pressure. Thus, if we introduce 
p = nRT/V into eqn 1.7, we get

The value of nJRT/V is the pressure that an amount
nJ of J would exert in the otherwise empty container.
That is, the partial pressure of J as defined by eqn 1.7
is the pressure of J used in Dalton’s law, provided 
all the gases in the mixture behave perfectly. If the
gases are real, their partial pressures are still given by
eqn 1.7, for that definition applies to all gases, and
the sum of these partial pressures is the total pres-
sure (because the sum of all the mole fractions is 1);

p x p x
nRT

VJ J J    Jnx= = =×
RT
V Jn=

RT
V

×

p = nRT/V 

Definition

nJ

×

2 2 y
sea level, given that 100.0 g of air consists of 75.5 g of
N2, 23.2 g of O2, and 1.3 g of Ar. Hint: Begin by convert-
ing each mass to an amount in moles.

[Answer: 0.780, 0.210, 0.009]
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A brief comment Throughout this chapter we write kr for
the rate constant of a general forward reaction and k r′ for the
rate constant of the corresponding reverse reaction. When
there are several steps a, b, . . . in a mechanism, we write the
forward and reverse rate constants ka, kb, . . . and k ′a, k ′b, . . .,
respectively.

For instance, we could envisage this scheme as the 
interconversion of coiled (A) and uncoiled (B) DNA
molecules. The net rate of formation of B, the differ-
ence of its rates of formation and decomposition, is

Net rate of formation of B = kr[A] − kr′[B]

When the reaction has reached equilibrium the
concentrations of A and B are [A]eq and [B]eq and
there is no net formation of either substance. It 
follows that

kr[A]eq = kr′[B]eq

d h f h h ilib i f h

One way to measure the energy transferred as heat
in a process is to use a calorimeter (Fig. 2.14), which
consists of a container in which the reaction or phys-
ical process occurs a thermometer and a surround

Energy
as heat
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Fig. 2.14 The loss of energy into the surroundings can be 
detected by noting whether the temperature changes as the
process proceeds.
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Fig. 1.8 The Maxwell distribution of speeds and its variation
with the temperature. Note the broadening of the distribution
and the shift of the rms speed to higher values as the tem-
perature is increased.

interActivity (a) Plot different distributions by keeping
the molar mass constant at 100 g mol−1 and varying

the temperature of the sample between 200 K and 2000 K.
(b) Use mathematical software or the Living graph applet
from the text’s web site to evaluate numerically the fraction
of molecules with speeds in the range 100 m s−1 to 200 m s−1

at 300 K and 1000 K. (c) Based on your observations, provide
a molecular interpretation of temperature.

Sample Reference

Heaters

Thermocouples

A differential scanning calorimeter. The sample and a refer-
ence material are heated in separate but identical com-
partments. The output is the difference in power needed to
maintain the compartments at equal temperatures as the
temperature rises.

See an animated version of this figure in the 
interactive ebook.
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Problem solving

A brief illustration

A brief illustration is a short 
example of how to use an 
equation that has just been 
introduced in the text. In par-
ticular, we show how to use 
data and how to manipulate 
units correctly.

Worked examples

Each Worked example has 
a Strategy section to suggest 
how to set up the problem 
(another way might seem 
more natural: setting up 
problems is a highly per-
sonal business) and use or 
fi nd the necessary data. Then 
there is the worked-out 
Answer, where we empha-
size the importance of using 
units correctly.

Self-tests

Each Worked example has a Self-test with the an-
swer provided as a check that the procedure has 
been mastered. There are also a number of free-
standing Self-tests that are located where we thought 
it a good idea to provide a question to check your 
understanding. Think of Self-tests as in-chapter Ex-
ercises designed to help you monitor your progress.  

Discussion questions

The end-of-chapter mate-
rial starts with a short set of 
questions that are intended 
to encourage refl ection on the 
material and to view it in a 
broader context than is ob-
tained by solving numerical 
problems.

Exercises

The core of testing understanding is the collection of 
end-of-chapter Exercises. At the end of the Exercises
you will fi nd a small collection of Projects that bring 
together a lot of the foregoing material, may call for 
the use of calculus, and are typically based on mate-
rial introduced in the Boxes.

Questions and exercises

Discussion questions

2.1 Discuss the statement that a system and its surround-
ings are distinguished by specifying the properties of the
boundary that separates them.

2.2 What is (a) temperature, (b) heat, (c) energy?

2.3 Provide molecular interpretations for work and heat.

2.4 Are the law of conservation of energy in dynamics and
the First Law of thermodynamics identical?

2.5 Explain the difference between expansion work against
constant pressure and work of reversible expansion and their
consequences.

2.6 Explain the difference between the change in internal 
energy and the change in enthalpy of a chemical or physical
process.

2.7 Specify and explain the limitations of the following 
expressions: (a) q = nRT ln(Vf /Vi); (b) DH = DU + pDV;
(c) Cp,m − CV,m = R.

Exercises

Assume all gases are perfect unless stated otherwise.

2.1 Calculate the work done by a gas when it expands
through (a) 1.0 cm3, (b) 1.0 dm3 against an atmospheric pres-

same mass.

The volume, V, of a sample is the amount of 
three-dimensional space it occupies. Thus, we write 
V = 100 cm3 if the sample occupies 100 cm3 of space.
The units used to express volume (which include
cubic metres, m3; cubic decimetres, dm3, or litres, L;
millilitres, mL), and units and symbols in general, are
reviewed in Appendix 1.

A brief illustration Because 1 cm = 10−2 m, a volume
of 100 cm3 is the same as one expressed as 100 (10−2 m)3,
or 1.00 × 10−4 m3. To do these simple unit conversions,
simply replace the fraction of the unit (such as cm) by its
definition (in this case, 10−2 m). Thus, to convert 100 cm3

to cubic decimetres (litres), use 1 cm = 10−1 dm, in which
case 100 cm3 = 100 (10−1 dm)3, which is the same as 
1.00 × 10−1 dm3.

The other properties we have mentioned (pressure,
temperature, and amount of substance) need more
introduction, for even though they may be familiar
from everyday life, they need to be defined carefully
for use in science.
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Example 2.2

Calculating the change in internal energy

Nutritionists are interested in the use of energy by the
human body and we can consider our own body as a
thermodynamic ‘system’. Calorimeters have been con-
structed that can accommodate a person to measure
(nondestructively!) their net energy output. Suppose in
the course of an experiment someone does 622 kJ of
work on an exercise bicycle and loses 82 kJ of energy as
heat. What is the change in internal energy of the per-
son? Disregard any matter loss by perspiration.

Strategy This example is an exercise in keeping track of
signs correctly. When energy is lost from the system, w
or q is negative. When energy is gained by the system,
w or q is positive.

Solution To take note of the signs we write w = −622 kJ
(622 kJ is lost by doing work) and q = −82 kJ (82 kJ is lost
by heating the surroundings). Then eqn 2.8 gives us

DU = w + q = (−622 kJ) + (−82 kJ) = −704 kJ

We see that the person’s internal energy falls by 704 kJ.
Later, that energy will be restored by eating.

A note on good practice Always attach the correct
signs: use a positive sign when there is a flow of energy
into the system and a negative sign when there is a flow
of energy out of the system.

Self-test 2.4

An electric battery is charged by supplying 250 kJ of
energy to it as electrical work (by driving an electric
current through it), but in the process it loses 25 kJ
of energy as heat to the surroundings. What is the
change in internal energy of the battery?

[Answer: +225 kJ]
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The Book Companion Site

For students 

Answers to exercises  

The fi nal answers to most end-of-chapter exercises 
are available for you to check your work.

Web links

Links to a range of useful and relevant physical 
chemistry web sites.

For lecturers

Artwork

A lecturer may wish to use the illustrations from 
this text in a lecture. Almost all the illustrations are 
available in PowerPoint® format and can be used 
for lectures without charge (but not for commercial 
purposes without specifi c permission).

Tables of data 

All the tables of data that appear in the chapter text 
are available and may be used under the same condi-
tions as the illustrations.

On-line quizzing

New for this edition, on line quizzing available on 
the book companion site offers multiple-choice 
questions for use within a virtual learning environ-
ment, with feedback referred back to relevant sec-
tions of the book. This feature is a valuable tool for 
either formative or summative assessment.

The Book Companion Site provides teaching and 
learning resources to augment the printed book. It is 
free of charge, complements the textbook, and offers 
additional materials which can be downloaded. The 
resources it provides are fully customizable and can 
be incorporated into a virtual learning environment.

The Book Companion Site can be accessed by 
visiting
 http://www.whfreeman.com/elements5e

http://www.whfreeman.com/elements5e


Elements of Physical Chemistry eBook  

The eBook, which is a complete version of the 
textbook itself, provides a rich learning experience 
by taking full advantage of the electronic medium 
integrating all student media resources and adds 
features unique to the eBook. The eBook also offers 
lecturers unparalleled fl exibility and customization 
options. Access to the eBook is either provided in 
the form of an access code packaged with the text or 
it can be purchased at http://ebooks.bfwpub.com/
elements5e. Key features of the eBook include:

• Living Graphs

• Dynamic fi gures: animated versions of fi gures 
from the book 

• Interactive equations: extra annotations, extra 
interim steps, and explanatory comments

• Hidden answers to self tests and the questions 
from the end of the chapter

• Full text search, highlighting, and bookmarks 

• Quick navigation from key terms to glossary def-
initions, and from maths and physics comments 
to fuller explanations

Tailor the book to your own needs:

• Users are able to add, share, and print their own 
notes

• Registered adopters may add sections to custom-
ise the text to match their course

Other resources

Explorations in Physical Chemistry by Valerie Wal-
ters, Julio de Paula, and Peter Atkins.

Explorations in Physical Chemistry consists of inter-
active Mathcad® worksheets and interactive Excel®

workbooks, complete with thought-stimulating ex-
ercises. They motivate students to simulate physical, 
chemical, and biochemical phenomena with their 
personal computers. Harnessing the computational 
power of Mathcad® by Mathsoft, Inc. and Excel®

by Microsoft Corporation, students can manipulate 
over 75 graphics, alter simulation parameters, and 
solve equations to gain deeper insight into physical 
chemistry. Explorations in Physical Chemistry can 
be purchased at http://ebooks.bfwpub.com/
explorations.php.

Solutions manual

Charles Trapp and Marshall Cady have produced 
a solutions manual to accompany the book, which 
features full worked solutions to all end-of-chapter 
discussion questions and exercises, and is available 
free-of-charge to registered adopters of the text. 
(ISBN 1-4292-2400-2).
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When a book enters its fifth edition you might expect
a certain maturity and a settling down into a com-
fortable middle if not old age. We hope you will 
identify the former but not the latter. We learn enor-
mously from each new edition and like to refresh the
exposition and introduce new ideas at every oppor-
tunity. We hope that you will see maturity certainly
but also a new vibrancy in this edition.

The structure of the book remains much the same
as in the fourth edition, but with a small reorganiza-
tion of chapters, such as the reversal of the order of
the groups of chapters on Materials. We have also
brought together under various umbrella titles the 
related chapters to give a greater sense of cohesion.
Thus there is a Chemical Equilibrium family, a
Chemical Kinetics family, a Quantum Chemistry
family, a Materials family, and a Spectroscopy 
family. Throughout the text we have had in mind one
principal objective: to ensure that the coverage is 
appropriate to a single compact physical chemistry
course. As a result, we have eliminated some material
but (with our eyes alert to the dangers of expanding
the text unduly) have strengthened the discussion of
a wide range of topics. 

One aspect of the vibrancy of presentation that 
we have sought to achieve is that the entire art pro-
gramme has been redrawn in full colour. As a result,
we hope that not only will you enjoy using the book
more than earlier editions but find the illustrations
much more informative. We have paid more atten-
tion to the presentation of mathematics in this edi-
tion. We introduced ‘bubbles’ in the fourth edition:
they contain remarks about the steps being taken to

develop an equation. We have taken this popular 
feature much further in this edition, and have added
many more bubbles. The green bubbles indicate how
to proceed across an equals sign; the red bubbles 
indicate the meaning of terms in an expression. In
this edition we have introduced another new feature
that should help you with your studies: each chapter
now has a Checklist of key equations following the
Checklist of key ideas, which now summarizes only
the concepts.

A source of confusion in the fourth edition was the
use of the term Illustration: some thought it meant a
diagram; others a short example. We have renamed
all the short examples A brief illustration, so that
confusion should now be avoided. These brief illus-
trations have been joined by A brief comment and we
have retained and expanded the popular Notes on
good practice. A good proportion of the end-of-
chapter Exercises have been modified or replaced;
we have added Projects, rather involved exercises
that often call for the use of calculus. The new fea-
tures are summarized in the following About the
book section.

As always in the preparation of a new edition we
have relied heavily on advice from users throughout
the world, our numerous translators into other 
languages, and colleagues who have given their time
in the reviewing process. We are greatly indebted to
them, and have learned a lot from them. They are
identified and thanked in the Acknowledgements
section.
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Chemistry is the science of matter and the changes it
can undergo. The branch of the subject called physical
chemistry is concerned with the physical principles
that underlie chemistry. Physical chemistry seeks 
to account for the properties of matter in terms of
fundamental concepts such as atoms, electrons, and 
energy. It provides the basic framework for all other
branches of chemistry—for inorganic chemistry, 
organic chemistry, biochemistry, geochemistry, and
chemical engineering. It also provides the basis of
modern methods of analysis, the determination of
structure, and the elucidation of the manner in which
chemical reactions occur. To do all this, it draws on
two of the great foundations of modern physical 
science, thermodynamics and quantum mechanics.

This text introduces the central concepts of these
two subjects and shows how they are used in chem-
istry. This chapter reviews material fundamental to the
whole of physical chemistry, much of which will be
familiar from introductory courses. We begin by think-
ing about matter in bulk. The broadest classification
of matter is into one of three states of matter, or forms
of bulk matter, namely gas, liquid, and solid. Later
we shall see how this classification can be refined, but
these three broad classes are a good starting point.

0.1 The states of matter

We distinguish the three states of matter by noting
the behaviour of a substance enclosed in a container:

A gas is a fluid form of matter that fills the con-
tainer it occupies.

A liquid is a fluid form of matter that possesses a
well-defined surface and (in a gravitational field)
fills the lower part of the container it occupies.

A solid retains its shape regardless of the shape of
the container it occupies.
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One of the roles of physical chemistry is to estab-
lish the link between the properties of bulk matter
and the behaviour of the particles—atoms, ions, 
or molecules—of which it is composed. A physical
chemist formulates a model, a simplified description,
of each physical state and then shows how the state’s
properties can be understood in terms of this model.
The existence of different states of matter is a first 
illustration of this procedure, as the properties of the
three states suggest that they are composed of par-
ticles with different degrees of freedom of movement.
Indeed, as we work through this text, we shall gradu-
ally establish and elaborate the following models:

A gas is composed of widely separated particles 
in continuous rapid, disordered motion. A particle
travels several (often many) diameters before col-
liding with another particle. For most of the time
the particles are so far apart that they interact with
each other only very weakly.

A liquid consists of particles that are in contact but
are able to move past each other in a restricted
manner. The particles are in a continuous state 
of motion, but travel only a fraction of a diameter
before bumping into a neighbour. The overriding
image is one of movement, but with molecules
jostling one another.

A solid consists of particles that are in contact 
and only rarely able to move past one another.
Although the particles oscillate at an average loca-
tion, they are essentially trapped in their initial 
positions, and typically lie in ordered arrays.

The essential difference between the three states of
matter is the freedom of the particles to move past
one another. If the average separation of the particles
is large, there is hardly any restriction on their motion
and the substance is a gas. If the particles interact 
so strongly with one another that they are locked 
together rigidly, then the substance is a solid. If the
particles have an intermediate mobility between
these extremes, then the substance is a liquid. We can
understand the melting of a solid and the vaporiza-
tion of a liquid in terms of the progressive increase in
the liberty of the particles as a sample is heated and
the particles become able to move more freely.

0.2 Physical state

The term ‘state’ has many different meanings in
chemistry, and it is important to keep them all in
mind. We have already met one meaning in the 
expression ‘the states of matter’ and specifically ‘the
gaseous state’. Now we meet a second: by physical

state (or just ‘state’) we shall mean a specific condition
of a sample of matter that is described in terms of its
physical form (gas, liquid, or solid) and the volume,
pressure, temperature, and amount of substance 
present. (The precise meanings of these terms are 
described below.) So, 1 kg of hydrogen gas in a con-
tainer of volume 10 dm3 at a specified pressure and
temperature is in a particular state. The same mass of
gas in a container of volume 5 dm3 is in a different
state. Two samples of a given substance are in the same
state if they are the same state of matter (that is, are
both present as gas, liquid, or solid) and if they have
the same mass, volume, pressure, and temperature.

To see more precisely what is involved in specify-
ing the state of a substance, we need to define the
terms we have used. The mass, m, of a sample is a
measure of the quantity of matter it contains. Thus,
2 kg of lead contains twice as much matter as 1 kg of
lead and indeed twice as much matter as 1 kg of any-
thing. The Système International (SI) unit of mass 
is the kilogram (kg), with 1 kg currently defined as
the mass of a certain block of platinum–iridium 
alloy preserved at Sèvres, outside Paris. For typical
laboratory-sized samples it is usually more conven-
ient to use a smaller unit and to express mass in
grams (g), where 1 kg = 103 g.

A note on good practice Be sure to distinguish mass and
weight. Mass is a measure of the quantity of matter, and is 
independent of location. Weight is the force exerted by 
an object, and depends on the pull of gravity. An astronaut
has a different weight on the Earth and the Moon, but the
same mass.

The volume, V, of a sample is the amount of 
three-dimensional space it occupies. Thus, we write 
V = 100 cm3 if the sample occupies 100 cm3 of space.
The units used to express volume (which include
cubic metres, m3; cubic decimetres, dm3, or litres, L;
millilitres, mL), and units and symbols in general, are
reviewed in Appendix 1.

A brief illustration Because 1 cm = 10−2 m, a volume
of 100 cm3 is the same as one expressed as 100 (10−2 m)3,
or 1.00 × 10−4 m3. To do these simple unit conversions,
simply replace the fraction of the unit (such as cm) by its
definition (in this case, 10−2 m). Thus, to convert 100 cm3

to cubic decimetres (litres), use 1 cm = 10−1 dm, in which
case 100 cm3 = 100 (10−1 dm)3, which is the same as 
1.00 × 10−1 dm3.

The other properties we have mentioned (pressure,
temperature, and amount of substance) need more
introduction, for even though they may be familiar
from everyday life, they need to be defined carefully
for use in science.
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0.3 Force

One of the most basic concepts of physical science is
that of force, F . In classical mechanics, the mechan-
ics originally formulated by Isaac Newton at the end
of the seventeenth century, a body of mass m travels
in a straight line at constant speed until a force acts
on it. Then it undergoes an acceleration a, a rate 
of change of velocity, given by Newton’s second law
of motion:

Force = mass × acceleration F = ma

Force is actually a ‘vector’ quantity, a quantity with
direction as well as magnitude, so it could be repre-
sented by an arrow pointing in the direction in which
the force is applied. The acceleration is also a vector,
and Newton’s law captures the sense that if a force 
is applied in the direction of increasing x (in one 
dimension), then the acceleration is in that direction
too. In most instances in this text we need consider
only the magnitude explicitly, but we shall need to
keep in mind the often unstated direction in which it
is applied.

A brief illustration The acceleration of a freely falling
body at the surface of the Earth is close to 9.81 m s−2, so
the magnitude of the gravitational force acting on a mass
of 1.0 kg is

F = (1.0 kg) × (9.81 m s−2) = 9.8 kg m s−2

and directed towards the centre of mass of the Earth. The
derived unit of force is the newton, N:

1 N = 1 kg m s−2

Therefore, we can report that F = 9.8 N. It might be helpful
to note that a force of 1 N is approximately the gravitational
force exerted on a small apple (of mass 100 g).

A note on good practice A unit raised to a negative power
(such as the s−2 in m s−2) is the same as writing it after a slash
(as in m/s2). In this sense, units behave like numbers (where
10−2 is the same as 1/102). Negative powers are unambigu-
ous: thus, a combination such as kg m−1 s−2 is much easier to
interpret than when it is written kg/m/s2.

When an object is moved through a distance s
against an opposing force, we say that work is done.
The magnitude of the work is the product of the 
distance moved and the magnitude of the oppos-
ing force:

Work = force × distance

This expression applies when the force is constant; 
if it varies along the path, then we use it for each 
segment of the path and then add together the result-
ing values.

A brief illustration To raise a body of mass 1.0 kg 
on the surface of the Earth through a vertical distance
(against the direction of the force) of 1.0 m requires us to
do the following amount of work:

Work = (9.8 N) × (1.0 m) = 9.8 N m

As we see more formally in the next section, the unit 
1 N m (or, in terms of base units, 1 kg m2 s−2) is called 
1 joule (1 J). So, 9.8 J is needed to raise a mass of 1.0 kg
through 1.0 m on the surface of the Earth.

The same expression applies to electrical work, the
work associated with the motion of electrical charge,
with the force on a charge Q (in coulombs, C) equal
to Q�, where � is the strength of the electric field 
(in volts per metre, V m−1). However, it is normally
converted by using relations encountered in electro-
statics to an expression in terms of the charge and 
the ‘potential difference’ Δφ (delta phi, in volts, V)
between the initial and final locations:

Work = charge × potential difference, or Work = QΔφ

We shall need this expression—and develop it further
—when we discuss electrochemistry in Chapter 9.

0.4 Energy

A property that will occur in just about every chapter
of the following text is the energy, E. Everyone uses
the term ‘energy’ in everyday language, but in science
it has a precise meaning, a meaning that we shall
draw on throughout the text. Energy is the capacity
to do work. A fully wound spring can do more work
than a half-wound spring (that is, it can raise a
weight through a greater height, or move a greater
weight through a given height. A hot object, when 
attached to some kind of heat engine (a device for
converting heat into work) can do more work than
the same object when it is cool, and therefore a hot
object has a higher energy than the same cool object.

The SI unit of energy is the joule (J), named 
after the nineteenth-century scientist James Joule,
who helped to establish the concept of energy (see
Chapter 2). It is defined as

1 J = 1 kg m2 s−2

A joule is quite a small unit, and in chemistry we
often deal with energies of the order of kilojoules 
(1 kJ = 103 J).

There are two contributions to the total energy of
a particle. The kinetic energy, Ek, is the energy of 
a body due to its motion. For a body of mass m
moving at a speed v,

Ek = mv2 (0.1)1
2
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That is, a heavy object moving at the same speed as a
light object has a higher kinetic energy, and doubling
the speed of any object increases its kinetic energy by
a factor of 4. A ball of mass 1 kg travelling at 1 m s−1

has a kinetic energy of 0.5 J.
The potential energy, Ep, of a body is the energy it

possesses due to its position. The precise dependence
on position depends on the type of force acting on
the body. For a body of mass m on the surface of the
Earth, the potential energy depends on its height, h,
above the surface as

Ep = mgh (0.2)

where g is a constant known as the acceleration of free
fall, which is close to 9.81 m s−2 at sea level. Thus,
doubling the height, doubles the potential energy.
This expression is based on the convention of taking
the potential energy to be zero at sea level. A ball of
mass 1.0 kg at 1.0 m above the surface of the Earth
has a potential energy of 9.8 J. Another type of 
potential energy is the Coulombic potential energy of
one electric charge Q1 (typically in coulombs, C) at 
a distance r from another electric charge Q2:

(0.3)

The quantity ε0 (epsilon zero), the vacuum per-
mittivity, is a fundamental constant with the value
8.854 × 10−12 J−1 C2 m−1. As we shall see as the text
develops, most contributions to the potential energy
that we need consider in chemistry are due to this
Coulombic interaction.

The total energy, E, of a body is the sum of its 
kinetic and potential energies:

E = Ek + Ep (0.4)

Provided no external forces are acting on the body,
its total energy is constant. This remark is elevated 
to a central statement of classical physics known as
the law of the conservation of energy. Potential and
kinetic energy may be freely interchanged: for instance,
a falling ball loses potential energy but gains kinetic
energy as it accelerates), but their total remains con-
stant provided the body is isolated from external
influences.

0.5 Pressure

Pressure, p, is force, F, divided by the area, A, on
which the force is exerted:

(0.5)
 
Pressure

force
area

= =, p
F
A

E
Q Q

rp = 1 2

04πε

When you stand on ice, you generate a pressure on
the ice as a result of the gravitational force acting 
on your mass and pulling you towards the centre of
the Earth. However, the pressure is low because the
downward force of your body is spread over the area
equal to that of the soles of your shoes. When you
stand on skates, the area of the blades in contact with
the ice is much smaller, so although your downward
force is the same, the pressure you exert is much
greater (Fig. 0.1).

Pressure can arise in ways other than from the
gravitational pull of the Earth on an object. For 
example, the impact of gas molecules on a surface gives
rise to a force and hence to a pressure. If an object is
immersed in the gas, it experiences a pressure over its
entire surface because molecules collide with it from
all directions. In this way, the atmosphere exerts a
pressure on all the objects in it. We are incessantly
battered by molecules of gas in the atmosphere, and
experience this battering as the atmospheric pressure.
The pressure is greatest at sea level because the density
of air, and hence the number of colliding molecules,
is greatest there. The atmospheric pressure is very
considerable: it is the same as would be exerted by
loading 1 kg of lead (or any other material) on to a
surface of area 1 cm2. We go through our lives under
this heavy burden pressing on every square centime-
tre of our bodies. Some deep-sea creatures are built
to withstand even greater pressures: at 1000 m below
sea level the pressure is 100 times greater than at the
surface. Creatures and submarines that operate at
these depths must withstand the equivalent of 100 kg
of lead loaded on to each square centimetre of their
surfaces. The pressure of the air in our lungs helps us
withstand the relatively low but still substantial pres-
sures that we experience close to sea level.

Fig. 0.1 These two blocks of matter have the same mass.
They exert the same force on the surface on which they are
standing, but the block on the right exerts a stronger pres-
sure because it exerts the same force over a smaller area
than the block on the left.
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When a gas is confined to a cylinder fitted with 
a movable piston, the position of the piston adjusts
until the pressure of the gas inside the cylinder is
equal to that exerted by the atmosphere. When the
pressures on either side of the piston are the same, 
we say that the two regions on either side are in 
mechanical equilibrium. The pressure of the confined
gas arises from the impact of the particles: they batter
the inside surface of the piston and counter the bat-
tering of the molecules in the atmosphere that is pres-
sing on the outside surface of the piston (Fig. 0.2).
Provided the piston is weightless (that is, provided
we can neglect any gravitational pull on it), the gas 
is in mechanical equilibrium with the atmosphere
whatever the orientation of the piston and cylinder,
because the external battering is the same in all 
directions.

The SI unit of pressure is called the pascal (Pa):

1 Pa = 1 N m−2 = 1 kg m−1 s−2

The pressure of the atmosphere at sea level is about
105 Pa (100 kPa). This fact lets us imagine the magni-
tude of 1 Pa, for we have just seen that 1 kg of lead
resting on 1 cm2 on the surface of the Earth exerts
about the same pressure as the atmosphere; so 1/105

of that mass, or 10 mg (1 mg = 10−3 g), will exert
about 1 Pa, we see that the pascal is rather a small
unit of pressure. Table 0.1 lists the other units 
commonly used to report pressure. One of the most
important in modern physical chemistry is the bar,
where 1 bar = 105 Pa exactly; the bar is not an SI unit,
but it is an accepted and widely used abbreviation for
105 Pa. The atmospheric pressure that we normally
experience is close to 1 bar; meteorological informa-
tion on weather maps is commonly reported in 
millibars (1 mbar = 10−3 bar = 102 Pa). Standard

Inside

Outside

Fig. 0.2 A system is in mechanical equilibrium with its sur-
roundings if it is separated from them by a movable wall and
the external pressure is equal to the pressure of the gas in
the system.

Table 0.1

Pressure units and conversion factors*

pascal, Pa 1 Pa = 1 N m−2

bar 1 bar = 105 Pa
atmosphere, atm 1 atm = 101.325 kPa = 1.013 25 bar
torr, Torr† 760 Torr = 1 atm

1 Torr = 133.32 Pa

* Values in bold are exact.
† The name of the unit is torr, its symbol is Torr.

Example 0.1

Converting between units

A scientist was exploring the effect of atmospheric pres-
sure on the rate of growth of a lichen, and measured 
a pressure p of 1.115 bar. What is the pressure in 
atmospheres?

Strategy Write the relation between the ‘old units’ (the
units to be replaced) and the ‘new units’ (the units 
required) in the form

1 old unit = x new units

then replace the ‘old unit’ everywhere it occurs by ‘x new
units’, and multiply out the numerical expression.

Solution From Table 0.1 we have 1.013 25 bar = 1 atm,
with atm the ‘new unit’ and bar the ‘old unit’. As a first
step we write

Then we replace bar wherever it appears by 
(1/1.013 25) atm:

A note on good practice The number of significant
figures in the answer (four in this instance) is the same
as the number of significant figures in the data; the rela-
tion between old and new numbers in this case is exact.

1
1.013 25

atm = 1.100 atmp = 1.115  bar = 1.115 ×

1 bar

1
1

1.013 25
bar atm=

1 old unit
x new units

Self-test 0.1

The pressure in the eye of a hurricane was recorded
as 723 Torr. What is the pressure in kilopascals?

[Answer: 96.4 kPa]

pressure, which is used to report the values of 
pressure-sensitive properties systematically in a stand-
ard way (as we explain in later chapters), is denoted
p and defined as exactly 1 bar.
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Atmospheric pressure (a property that varies with
altitude and the weather) is measured with a baro-
meter. A mercury barometer consists of an inverted
tube of mercury that is sealed at its upper end and
stands with its lower end in a bath of mercury. The
mercury falls until the pressure it exerts at its base 
is equal to the atmospheric pressure (Fig. 0.3). As
shown in the following Derivation, we can determine
the atmospheric pressure p by measuring the height h
of the mercury column by using the relation

p = ρgh (0.6)

where ρ (rho) is the mass density (commonly just
‘density’), the mass of a sample divided by the volume
it occupies:

(0.7)

With the mass measured in kilograms and the volume
in cubic metres, density is reported in kilograms per
cubic metre (kg m−3); however, it is equally acceptable
and often more convenient to report mass density in
grams per cubic centimetre (g cm−3). The relation 
between these units is

1 g cm−3 = 103 kg m−3

Thus, the density of mercury may be reported as 
either 13.6 g cm−3 or as 1.36 × 104 kg m−3.

ρ =
m
V

A brief illustration The pressure at the foot of a col-
umn of mercury of height 760 mm (0.760 m) and density
13.6 g cm−3 (1.36 × 104 kg m−3 ) is

p = (1.36 × 104 kg m−3 ) × (9.81 m s−2 ) × (0.760 m)

= 1.01 × 105 kg m−1 s−2 = 1.01 × 105 Pa

For the last equality, we have used 1 kg m−1 s−2 = 1 Pa.
This pressure corresponds to 101 kPa or 1.01 bar (equi-
valent, with three significant figures, to 1.00 atm).

A note on good practice Write units at every stage of a
calculation and do not simply attach them to a final numerical
value. Also, it is often sensible to express all numerical quan-
tities in terms of base units when carrying out a calculation.
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Fig. 0.3 The operation of a mercury barometer. The space
above the mercury in the vertical tube is a vacuum, so no
pressure is exerted on the top of the mercury column; how-
ever, the atmosphere exerts a pressure on the mercury in the
reservoir, and pushes the column up the tube until the pres-
sure exerted by the mercury column is equal to that exerted
by the atmosphere. The height h reached by the column is
proportional to the external pressure, so the height can be
used as a measure of this pressure.

Derivation 0.1

Hydrostatic pressure

The strategy of the calculation is to relate the mass of
the column to its height, to calculate the downward
force exerted by that mass, and then to divide the force
by the area over which it is exerted.

Consider Fig. 0.4. The volume V of a cylinder of liquid
of height h and cross-sectional area A is the product of
the area and height:

V = hA

The mass m of this cylinder of liquid is the volume multi-
plied by the density r of the liquid:

m = r × V = r × hA

The downward force exerted by this mass is mg, where
g is the acceleration of free fall. Therefore, the force 
exerted by the column (its ‘weight’) is

h

Area, A

Volume,
V = hA

Mass,
m = V

Force,
F = mg

Pressure,
p = F/A

p = gh

ρ

ρ

Fig. 0.4 The calculation of the hydrostatic pressure ex-
erted by a column of height h and cross-sectional area A.
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0.6 Temperature

In everyday terms, the temperature is an indication
of how ‘hot’ or ‘cold’ a body is. In science, tempera-
ture, T, is the property of an object that determines in
which direction energy will flow when it is in contact
with another object. Energy flows from higher tem-
perature to lower temperature. When the two bodies
have the same temperature, there is no net flow of 
energy between them. In that case we say that the
bodies are in thermal equilibrium (Fig. 0.5).

A note on good practice Never confuse temperature with
heat. Everyday language comes close to confusing them, by
equating ‘high temperature’ with ‘hot’, but they are entirely
different concepts. Heat—as we shall see in detail in Chapter
2—is a mode of transfer of energy; temperature is a property
that determines the direction of flow of energy as heat.

Temperature in science is measured on either the
Celsius scale or the Kelvin scale. On the Celsius scale,

in which the temperature is expressed in degrees
Celsius (°C), the freezing point of water at 1 atm 
corresponds to 0°C and the boiling point at 1 atm
corresponds to 100°C. This scale is in widespread 
everyday use. Temperatures on the Celsius scale are
denoted by the Greek letter θ (theta) throughout this
text. However, it turns out to be much more con-
venient in many scientific applications to adopt the
Kelvin scale and to express the temperature in kelvin
(K; note that the degree sign is not used for this unit).
Whenever we use T to denote a temperature, we
mean a temperature on the Kelvin scale. The Celsius
and Kelvin scales are related by

T (in kelvin) = θ (in degrees Celsius) + 273.15

That is, to obtain the temperature in kelvins, add
273.15 to the temperature in degrees Celsius. Thus,
water at 1 atm freezes at 273 K and boils at 373 K; 
a warm day (25°C) corresponds to 298 K.

A more sophisticated way of expressing the rela-
tion between T and θ, and one that we shall use in
other contexts, is to regard the value of T as the prod-
uct of a number (such as 298) and a unit (K), so that
T / K (that is, the temperature divided by K) is a pure
number. For example, if T = 298 K, then T / K = 298.
Likewise, θ /°C is also a pure number. For example, if
θ = 25°C, then θ /°C = 25. With this convention, we
can write the relation between the two scales as

T/K = θ /°C + 273.15 (0.8)

This expression is a relation between pure numbers.
Equation 0.8, in the form θ /°C = T /K − 273.15, also
defines the Celsius scale in terms of the more funda-
mental Kelvin scale.

A note on good practice All physical quantities have the
form

physical quantity = numerical value × unit

as in T = 298 × (1 K), abbreviated to 298 K, and m = 65 × (1 kg),
abbreviated to 65 kg. Units are treated like algebraic quanti-
ties and so may be multiplied and divided. Thus, the same 
information could be reported as T /K = 298 and m /kg = 65. It
might seem unfamiliar to manipulate units in this way, but 
it is perfectly legitimate and widely used. By international
convention, all physical quantities are represented by sloping
symbols; all units are roman (upright).

F = mg = rhA × g

This force acts over the area A at the foot of the column,
so according to eqn 0.5, the pressure at the base is

which is eqn 0.6.

p
F
A

hAg
A

hg= = =
r

r

Low
temperature

High
temperature

Equal
temperatures

Energy
as heat

Fig. 0.5 The temperatures of two objects act as a signpost
showing the direction in which energy will flow as heat through
a thermally conducting wall: (a) heat always flows from high
temperature to low temperature. (b) When the two objects
have the same temperature, although there is still energy
transfer in both directions, there is no net flow of energy.

Self-test 0.2

Use eqn 0.8 to express body temperature, 37°C, in
kelvins.

[Answer: 310 K]
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0.7 Amount of substance

Mass is a measure of the quantity of matter in a 
sample regardless of its chemical identity. Thus, 1 kg
of lead is the same quantity of matter as 1 kg of but-
ter. In chemistry, where we focus on the behaviour of
atoms, it is usually more useful to know the numbers
of each specific kind of atom, molecule, or ion in a
sample rather than the quantity of matter (the mass)
itself. However, because even 10 g of water consists
of about 1023 H2O molecules, it is clearly appropriate
to define a new unit that can be used to express such
large numbers simply. As will be familiar from intro-
ductory chemistry, chemists have introduced the
mole (the abbreviation for this unit is mol; the name
is derived, ironically, from the Latin word meaning
‘massive heap’) which is defined as follows:

1 mol of specified particles is equal to the number
of atoms in exactly 12 g of carbon-12 (12C).

This number is determined experimentally by divid-
ing 12 g by the mass of one atom of carbon-12.
Because the mass of one carbon-12 atom is measured
by using a mass spectrometer as 1.992 65 × 10−23 g,
the number of atoms in exactly 12 g of carbon-12 is

This number is the number of particles in 1 mol of
any substance. For example, a sample of hydrogen
gas that contains 6.022 × 1023 hydrogen molecules
consists of 1.000 mol H2, and a sample of water that
contains 1.2 × 1024 (= 2.0 × 6.022 × 1023) water
molecules consists of 2.0 mol H2O.

A note on good practice Always specify the identity of
the particles when using the unit mole, for that avoids any
ambiguity. If, improperly, we report that a sample consisted
of 1 mol of hydrogen, it would not be clear whether it con-
sisted of 6 × 1023 hydrogen atoms (1 mol H) or 6 × 1023

hydrogen molecules (1 mol H2).

The mole is the unit used when reporting the value
of the physical property called the amount of sub-
stance, n, in a sample. Thus, we can write n = 1 mol
H2 or nH2

= 1 mol, and say that the amount of 
hydrogen molecules in a sample is 1 mol. The term
‘amount of substance’, however, has been slow to
find wide acceptance among chemists and in casual
conversation they commonly refer to ‘the number of
moles’ in a sample. The term chemical amount, how-
ever, is becoming more widely used as a convenient

=
×

= ×−
12

6 022 1023
23g

1.992 65 10 g
.

 
Number of atoms

total mass of sample
mass of

=
one atom

synonym for amount of substance, and we shall often
use it in this book.

There are various useful concepts that stem from
the introduction of the chemical amount and its 
unit the mole. One is Avogadro’s constant, NA, 
the number of particles (of any kind) per mole of 
substance:

NA = 6.022 × 1023 mol−1

Avogadro’s constant makes it very simple to convert
from the number of particles N (a pure number) in a
sample to the chemical amount n (in moles) it contains:

Number of particles = chemical amount 
× number of particles per mole

That is,

N = n × NA (0.9)

A brief illustration From eqn 0.9 in the form n = N/NA,
a sample of copper containing 8.8 × 1022 Cu atoms corres-
ponds to

Notice how much easier it is to report the amount of Cu
atoms present rather than their actual number.

A note on good practice As remarked above, always 
ensure that the use of the unit mole refers unambiguously to
the entities intended. This may be done in a variety of ways:
here we have labelled the amount n with the entities (Cu
atoms), as in nCu.

The second very important concept that should be
familiar from introductory courses is the molar mass,
M, the mass per mole of substance: that is, the mass
of a sample of the substance divided by the chemical
amount of atoms, molecules, or formula units it con-
tains. When we refer to the molar mass of an element
we always mean the mass per mole of its atoms.
When we refer to the molar mass of a compound, we
always mean the molar mass of its molecules or, in
the case of solid compounds in general, the mass per
mole of its formula units (such as NaCl for sodium
chloride and Cu2Au for a specific alloy of copper and
gold). The molar mass of a typical sample of carbon,
the mass per mole of carbon atoms (with carbon-12
and carbon-13 atoms in their typical abundances), 
is 12.01 g mol−1. The molar mass of water is the 
mass per mole of H2O molecules, with the isotopic 
abundances of hydrogen and oxygen those of typical
samples of the elements, and is 18.02 g mol−1.

The terms atomic weight (AW) or relative atomic
mass (RAM) and molecular weight (MW) or relative

n
N
NCu

A mol
mol= =

×
=−

8 8 10
6 022 10

0 15
22

23 1

.
.

.
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molar mass (RMM) are still commonly used to signify
the numerical value of the molar mass of an element
or compound, respectively. More precisely (but equi-
valently), the RAM of an element or the RMM of 
a compound is its average atomic or molecular mass
relative to the mass of an atom of carbon-12 set
equal to 12. The atomic weight (or RAM) of a nat-
ural sample of carbon is 12.01 and the molecular
weight (or RMM) of water is 18.02.

The molar mass of an element is determined by
mass spectrometric measurement of the mass of its
atoms and then multiplication of the mass of one
atom by Avogadro’s constant (the number of atoms
per mole). Care has to be taken to allow for the 
isotopic composition of an element, so we must use a
suitably weighted mean of the masses of the isotopes
present. The values obtained in this way are printed
on the periodic table inside the back cover. The
molar mass of a compound of known composition is
calculated by taking a sum of the molar masses of its
constituent atoms. The molar mass of a compound
of unknown composition is determined experimen-
tally by using mass spectrometry in a similar way to
the determination of atomic masses.

Molar mass is used to convert from the mass m
of a sample (which we can measure) to the amount 
of substance n (which, in chemistry, we often need 
to know):

Mass of sample = chemical amount × molar mass

That is,

m = n × M (0.10)

A brief illustration To find the amount of C atoms pre-
sent in 21.5 g of carbon, given the molar mass of carbon
is 12.01 g mol−1, from eqn 0.10 in the form n = m /M we
write (taking care to specify the species)

That is, the sample contains 1.79 mol C.

n
m

MC
C

g
g mol

mol= = =−
21 5

12 01
1 791

.
.

.

of substance in the sample. An intensive property
is a property that is independent of the amount of 
substance in the sample. Two examples of extensive
properties are mass and volume. Examples of inten-
sive properties are temperature and pressure.

Some intensive properties are ratios of two extensive
properties. Consider the mass density of a substance,
the ratio of two extensive properties—the mass and the
volume (eqn 0.7). The mass density of a substance is
independent of the size of the sample because doub-
ling the volume also doubles the mass, so the ratio of
mass to volume remains the same. The mass density
is therefore an intensive property. A molar quantity
is the value of a property of a sample divided by 
the amount of substance in a sample (the ‘molar con-
centration’, described below, is an exception to this
usage). Thus, the molar mass, M, of an element is 
the mass of a sample of the element divided by the
amount of atoms in the sample: M = m/n. In general,
molar quantities are denoted Xm, where X is the
property of interest. Thus, the molar volume of a
substance is denoted Vm and calculated from Vm = V/n.
Molar quantities are intensive properties.

A note on good practice Distinguish a molar quantity,
such as the molar volume, with units of cubic metres per
mole (m3 mol−1), from the quantity for 1 mole, such as the 
volume occupied by 1 mole of the substance, with units
cubic metres (m3).

0.9 Measures of concentration

There are three measures of concentration com-
monly used to describe the composition of mixtures.
One, the molar concentration, is used when we need
to know the amount of solute (the dissolved sub-
stance) in a sample of known volume of solution.
The other two, the molality and the mole fraction,
are used when we need to know the relative numbers
of solute and solvent molecules in a sample.

The molar concentration, [ J] or cJ, of a solute J in
a solution (more formally, the ‘amount of substance
concentration’) is the chemical amount of J divided
by the volume of the solution:

(0.11a)

A note on good practice Be alert to the fact that the V
in this expression is the volume of solution, not the volume 
of solvent used to make up the solution. That is, to prepare 
a solution of known molar concentration, a known amount of
solute is dissolved in some solvent (usually water), and then
more solvent is added to reach the desired total volume.

Amount of J (mol)
=[ ]J J=

n

V Volume of solution (dm3)

Self-test 0.3

What amount of H2O molecules is present in 10.0 g of
water?

[Answer : 0.555 mol H2O]

0.8 Extensive and intensive properties

A distinction is made in chemistry between extensive
properties and intensive properties. An extensive
property is a property that depends on the amount 
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Molar concentration, still commonly called ‘molarity’,
is typically reported in moles per cubic decimetre
(mol dm−3; more informally, as moles per litre, 
mol L−1). The unit 1 mol dm−3 is commonly denoted
1 m (and read ‘molar’). Once we know the molar con-
centration of a solute, we can calculate the amount 
of that substance in a given volume, V, of solution by
writing the last equation in the form

nJ = [ J]V (0.11b)

Self-test 0.4

Suppose that 0.282 g of glycine, NH2CH2COOH, is dis-
solved in enough water to make 250 cm3 of solution.
What is the molar concentration of the solution?

[Answer: 0.0150 M NH2CH2COOH(aq)]

The molality, bJ, of a solute J in a solution is the
amount of substance divided by the mass of solvent
used to prepare the solution:

(0.12)

Molality is typically reported in moles of solute per
kilogram of solvent (mol kg−1). This unit is some-
times (but unoAcially and potentially confusingly)
denoted m, with 1 m = 1 mol kg−1. An important dis-
tinction between molar concentration and molality is
that whereas the former is defined in terms of the vol-
ume of the solution, the molality is defined in terms
of the mass of solvent used to prepare the solution. A
distinction to remember is that molar concentration
varies with temperature as the solution expands and
contracts but the molality does not. For dilute solu-
tions in water, the numerical values of the molality
and molar concentration differ very little because 
1 dm3 of solution is mostly water and has a mass
close to 1 kg; for concentrated aqueous solutions and
for all nonaqueous solutions with densities different
from 1 g cm−3, the two values are very different.

As we have indicated, we use molality when we
need to emphasize the relative amounts of solute and
solvent molecules. To see why this is so, we note that
the mass of solvent is proportional to the amount of
solvent molecules present, so from eqn 0.12 we see
that the molality is proportional to the ratio of the
amounts of solute and solvent molecules. For example,
any 1.0 mol kg−1 aqueous nonelectrolyte solution
contains 1.0 mol solute particles per 55.5 mol H2O
molecules, so in each case there is 1 solute molecule
per 55.5 solvent molecules.

Amount of J (mol)

Mass of solute (kg)
b

n

mJ
J

solvent

=

Example 0.2

Relating mole fraction and molality

What is the mole fraction of glucose molecules,
C6H12O6, in 0.140 m C6H12O6(aq)?

Strategy We consider a sample that contains (exactly) 
1 kg of solvent, and hence an amount nG = bG × (1 kg) of
glucose molecules. The amount of water molecules in
exactly 1 kg of water is nW = (1 kg)/MW, where MW is the
molar mass of water. We refer to exactly 1 kg of water to
avoid problems with significant figures. Once these two
amounts are available, we can calculate the mole frac-
tion by using eqn 0.13 with n = nG + nW.

Solution It follows from the discussion in the Strategy
that the amount of glucose molecules in exactly 1 kg of
water is

nG = (0.140 mol kg−1) × (1 kg) = 0.140 mol

The amount of water molecules in exactly 1 kg (103 g) of
water is

The total amount of molecules present is

n = +0 140
10

18 02

3
.

.
mol mol

nwater
g

18.02 g mol
mol= =−

10 10
18 02

3

1

3

.

xA = 1,
xB = 0

xA = 0.5,
xB = 0.5

xA = 0,
xB = 1

Fig. 0.6 The mole fraction is an indication of the fraction of
molecules in a sample that are of the specified identity. Note
that in a binary (two-component) mixture, xA + xB = 1.

Closely related to the molality of a solute is the
mole fraction, xJ:

(0.13)

xJ = 0 corresponds to the absence of J molecules 
and xJ = 1 corresponds to pure J (Fig. 0.6). Note 
that mole fractions are pure numbers without units 
(‘dimensionless numbers’).

Amount of J (mol)

Total amount of molecules (mol)

Jn
x

nJ =
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Checklist of key ideas

You should now be familiar with the following concepts.

1 Physical chemistry is the branch of chemistry 
that establishes and develops the principles of
chemistry in terms of the underlying concepts 
of physics and the language of mathematics.

2 The states of matter are gas, liquid, and solid.

3 Work is done when a body is moved against an
opposing force.

4 Energy is the capacity to do work.

5 The contributions to the energy of matter are the
kinetic energy (the energy due to motion) and the
potential energy (the energy due to position).

6 The total energy of an isolated system is con-
served, but kinetic and potential energy may be
interchanged.

7 Two systems in contact through movable walls
are in mechanical equilibrium when their pres-
sures are equal.

8 Two systems in contact through thermally con-
ducting walls are in thermal equilibrium when
their temperatures are equal.

9 Chemical amounts, n, are expressed in moles of
specified entities.

10 An extensive property is a property that depends
on the amount of substance in the sample. An 
intensive property is a property that is independ-
ent of the amount of substance in the sample.

The mole fraction of glucose molecules is therefore

 
xG

0.140 mol
mol

=
+

= × −

0 140 10 18 02
2 52 103

3

. ( / . )
.

Self-test 0.5

Calculate the mole fraction of sucrose molecules,
C12H22O11, in 1.22 m C12H22O11(aq).

[Answer: 2.15 × 10−2]

0.10 Reaction stoichiometry

It should be familiar from elementary chemistry that
a chemical reaction is balanced, in the sense that the
same numbers of atoms of each element appear on
both sides of the arrow, as in

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)

The numbers multiplying each chemical formula are
called stoichiometric coeGcients (from the Greek
words for ‘element’ and ‘measure’). The stoichio-
metric coeAcients in this equation are 1, 2, 1, and 2,
respectively, for CH4, O2, CO2, and H2O. They indi-

cate that for each CH4 molecule that is consumed,
two O2 molecules are consumed, one CO2 molecule
is formed and two H2O molecules are formed. It 
is often convenient to multiply these numbers by
6.022 × 1023 (the number of entities in 1 mol), and to
interpret the equation as indicating that when 1 mol
CH4 is consumed, 2 mol O2 are also consumed and 
1 mol CO2 and 2 mol H2O are produced. That is, 
the stoichiometric coeAcients indicate the amount 
of each substance (in moles) that are consumed and
produced when the reaction goes to completion.

The interpretation of stoichiometric coeAcients as
amount in moles provides a simple route to the cal-
culation of yields of chemical reactions (provided the
reaction proceeds as written and goes to completion).

A brief illustration To calculate the mass of carbon
dioxide produced when 22.0 g of methane burns in a plen-
tiful supply of air, we note that the molar mass of CH4 is
16.0 g mol−1 and therefore that the amount of CH4 con-
sumed is (22.0 g)/(16.0 g mol−1) = 1.38 mol. Because 
1 mol CO2 is produced when 1 mol CH4 is consumed, when
1.38 mol CH4 is consumed, 1.38 mol CO2 is produced.
The molar mass of CO2 is 44.0 g mol−1, so the mass 
of CO2 produced is 1.38 mol × 44.0 g mol−1 = 60.7 g.
Because 2 mol H2O is produced when 1 mol CH4 burns, 
2 × 1.38 mol H2O is produced in the same reaction. The
molar mass of H2O is 18.02 g mol−1, so the mass of water
produced is (2 × 1.38 mol) × (18.02 g mol−1) = 49.7 g.
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Table of key equations

The following table summarizes the equations that have been developed in this chapter.

Description Equation Comment

Newton’s law of motion F = ma

Work Work = force × distance Constant force

Electrical work Work = qDf

Kinetic energy Ek = mV 2

Potential energy Ep = mgh Close to surface of the Earth

Coulomb potential energy Ep = Q1Q2/4pe0r Charges separated by a vacuum

Pressure p = F/A

Hydrostatic pressure p = rgh Vertical tube

Mass density r = m/V

Temperature conversion T /K = q/°C + 273.15 273.15 is exact

Number and amount N = nNA

Molar mass M = m /n

Molar concentration [J] = n /V V is the volume of solution

Molality bJ = n/m m is the mass of solvent

Mole fraction xJ = nJ /n

1
2

Questions and exercises

Discussion questions

0.1 Explain the differences between gases, liquids, and
solids.

0.2 Define the terms: force, work, energy, kinetic energy,
and potential energy.

0.3 Distinguish between mechanical and thermal equilibrium.
In what sense are these equilibria dynamic?

0.4 Identify whether the following properties are extensive
or intensive: (a) volume, (b) mass density, (c) temperature, 
(d) molar volume, (e) amount of substance.

0.5 Identify and define the various uses of the term ‘state’ in
chemistry.

Exercises

0.1 What is the gravitational force that you are currently 
experiencing?

0.2 Calculate the percentage change in your weight as you
move from the North Pole, where g = 9.832 m s−2, to the
Equator, where g = 9.789 m s−2.

0.3 Calculate the work that a person of mass 65 kg must do
to climb between two floors of a building separated by 4.0 m.

0.4 What is the kinetic energy of a tennis ball of mass 58 g
served at 35 m s−1?

0.5 A car of mass 1.5 t (1 t = 103 kg) travelling at 50 km h−1

must be brought to a stop. How much kinetic energy must be
dissipated?

0.6 Consider a region of the atmosphere of volume 25 dm3,
which at 20°C contains about 1.0 mol of molecules. Take 
the average molar mass of the molecules as 29 g mol−1 and
their average speed as about 400 m s−1. Estimate the energy
stored as molecular kinetic energy in this volume of air.

0.7 What is the difference in potential energy of a mercury
atom between the top and bottom of a column of mercury in
a barometer when the pressure is 1.0 atm?
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0.8 Calculate the minimum energy that a bird of mass 25 g
must expend in order to reach a height of 50 m.

0.9 The unit 1 electronvolt (1 eV) is defined as the energy 
acquired by an electron as it moves through a potential dif-
ference of 1 V. Express 1 eV in (a) joules, (b) kilojoules per mole.

0.10 Calculate the work done by (a) one electron, (b) 1 mol e−

as they move between the electrodes of a commercial cell
rated at 1.5 V.

0.11 You need to assess the fuel needed to send the robot
explorer Spirit, which has a mass of 185 kg, to Mars. (a) What
was the energy needed to raise the vehicle itself from the
surface of the Earth to a distant point where the Earth’s 
gravitation field was effectively zero? The mean radius of the
Earth is 6371 km and its average mass density is 5.517 g cm−3.
Hint : Use the full expression for gravitational potential energy
in Exercise 0.35.

0.12 Express (a) 108 kPa in torr, (b) 0.975 bar in atmo-
spheres, (c) 22.5 kPa in atmospheres, (d) 770 Torr in pascals.

0.13 Calculate the pressure in the Mindañao trench, near the
Philippines, the deepest region of the oceans. Take the depth
there as 11.5 km and for the average mass density of sea
water use 1.10 g cm−3.

0.14 The atmospheric pressure on the surface of Mars,
where g = 3.7 m s−2, is only 0.0060 atm. To what extent is
that low pressure due to the low gravitational attraction and
not to the thinness of the atmosphere? What pressure would
the same atmosphere exert on Earth, where g = 9.81 m s−2?

0.15 What pressure difference must be generated across
the length of a 15 cm vertical drinking straw in order to drink
a water-like liquid of mass density 1.0 g cm−3 (a) on Earth, 
(b) on Mars. For data, see Example 0.14.

0.16 The unit ‘1 millimetre of mercury’ (1 mmHg) has been
replaced by the unit 1 torr (1 Torr): 1 mmHg is defined as the
pressure at the base of a column of mercury exactly 1 mm
high when its density is 13.5951 g cm−3 and the acceleration
of free fall is 9.806 65 m s−2. What is the relation between the
two units?

0.17 Suppose that the pressure unit ‘1 millimetre of water’
(1 mmH2O) is defined as the pressure at the base of a column
of water of mass density 1000 kg m−3 in a standard gravita-
tional field. Express 1 mmH2O in (a) pascals, (b) torr.

0.18 Given that the Celsius and Fahrenheit temperature scales
are related by qCelsius /°C = (qFahrenheit / °F − 32), what is the
temperature of absolute zero (T = 0) on the Fahrenheit scale?

0.19 In his original formulation, Anders Celsius identified 0
with the boiling point of water and 100 with its freezing point.
Find a relation (expressed like eqn 0.8) between this original
scale (denote it q′/°C′ ) and (a) the current Celsius scale (q/°C),
(b) the Fahrenheit scale.

0.20 Imagine that Pluto is inhabited and that its scientists
use a temperature scale in which the freezing point of liquid
nitrogen is 0°P (degrees Plutonium) and its boiling point is

5
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100°P. The inhabitants of Earth report these temperatures 
as −209.9°C and −195.8°C, respectively. What is the relation 
between temperatures on (a) the Plutonium and Kelvin
scales, (b) the Plutonium and Fahrenheit scales?

0.21 The Rankine scale is used in some engineering applica-
tions. On it, the absolute zero of temperature is set at zero
but the size of the Rankine degree (°R) is the same as that of
the Fahrenheit degree (°F). What is the boiling point of water
on the Rankine scale?

0.22 Calculate the amount of C6H12O6 molecules in 10.0 g of
glucose.

0.23 The density of octane (which we take to model gasoline)
is 0.703 g cm−3; what amount (in moles) of octane molecules
do you get when you buy 1.00 dm3 (1.00 litre) of gasoline?

0.24 The molar mass of the oxygen-storage protein myo-
globin is 16.1 kg mol−1. How many myoglobin molecules are
present in 1.0 g of the compound?

0.25 The mass of a red blood cell is about 33 pg (where 
1 pg = 10−12 g), and it contains typically 3 × 108 haemoglobin
molecules. Each haemoglobin molecule is a tetramer of myo-
globin (see preceding exercise). What fraction of the mass of
the cell is due to haemoglobin?

0.26 Express the mass density of a compound, which is 
defined as r = m/V, in terms of its molar mass and its molar
volume.

0.27 A sugar (sucrose, C12H22O11) cube has a mass of 5.0 g.
What is the molar concentration of sucrose when one sugar
cube is dissolved in a cup of coffee of volume 200 cm3?

0.28 What mass of sodium chloride should be dissolved in
enough water to make 300 cm3 of 1.00 M NaCl(aq)?

0.29 Use the following data to calculate (a) the molar con-
centration of B in (i) water, (ii) benzene, (b) the molality of B in
(i) water, (ii) benzene.

Mass of B used to make up 100 cm3 of solution: 2.11 g
Molar mass of B: 234.01 g mol−1

Density of solution in water: 1.01 g cm−3

Density of solution in benzene: 0.881 g cm−3

0.30 Calculate the mole fractions of the molecules of a 
mixture that contains 56 g of benzene and 120 g of methyl-
benzene (toluene).

0.31 A simple model of dry air at sea level is that it consists
of 75.53 per cent (by mass) of nitrogen, 23.14 per cent of oxy-
gen, and 1.33 per cent of other substances (principally argon
and carbon dioxide). Calculate the mole fractions of the three
principal substances. Treat ‘other substances’ as argon.

0.32 Treat air (see the preceding exercise) as a solution of
oxygen in nitrogen. What is the molality of oxygen in air?

0.33 Calculate the mass of carbon dioxide produced by the
combustion of 1.00 dm3 of gasoline treated as octane of
mass density 0.703 g cm−3.
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0.34 What mass of carbon monoxide is needed to reduce
1.0 t of iron(III) oxide to the metal?

Projects

0.35 The gravitational potential energy of a body of mass m
at a distance r from the centre of the Earth is −GmmE/r,
where mE is the mass of the Earth and G is the gravitational
constant (see inside front cover). Consider the difference in
potential energy of the body when it is moved from the 

surface of the Earth (radius rE) to a height h above the sur-
face, with h << rE, and find an expression for the acceleration
of free fall, g, in terms of the mass and radius of the Earth.
Hint: Use the approximation (1 + h /rE)−1 = 1 − h /rE + . . .. See
Appendix 2 for more information on series expansions.

0.37 Use the same approach as in the preceding exercise to
find an approximate expression for moving an electric charge
Q1 through a distance h from a point r0 from another charge
Q2, with h << r0.
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FURTHER INFORMATION 1.1

QUESTIONS AND EXERCISES

Although gases are simple, both to describe and in
terms of their internal structure, they are of immense
importance. We spend our whole lives surrounded
by gas in the form of air and the local variation in its
properties is what we call the ‘weather’. To under-
stand the atmospheres of this and other planets we
need to understand gases. As we breathe, we pump
gas in and out of our lungs, where it changes com-
position and temperature. Many industrial processes
involve gases, and both the outcome of the reaction
and the design of the reaction vessels depend on a
knowledge of their properties.

Equations of state

We can specify the state of any sample of substance
by giving the values of the following properties (all of
which are defined in the Introduction):

V, the volume of the sample
p, the pressure of the sample
T, the temperature of the sample
n, the amount of substance in the sample

However, an astonishing experimental fact is that
these four quantities are not independent of one 
another. For instance, we cannot arbitrarily choose
to have a sample of 0.555 mol H2O in a volume of
100 cm3 at 100 kPa and 500 K: it is found experiment-
ally that that state simply does not exist. If we select
the amount, the volume, and the temperature, then
we find that we have to accept a particular pressure
(in this case, close to 23 MPa). The same is true of all
substances, but the pressure in general will be differ-
ent for each one. This experimental generalization is
summarized by saying the substance obeys an equa-
tion of state, an equation of the form
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p = f (n,V,T ) (1.1)

This expression tells us that the pressure is some
function of amount, volume, and temperature and
that if we know those three variables, then the pres-
sure can have only one value.

The equations of state of most substances are 
not known, so in general we cannot write down an
explicit expression for the pressure in terms of the
other variables. However, certain equations of state
are known. In particular, the equation of state of a
low-pressure gas is known, and proves to be very
simple and very useful. This equation is used to 
describe the behaviour of gases taking part in reac-
tions, the behaviour of the atmosphere, as a starting
point for problems in chemical engineering, and even
in the description of the structures of stars.

1.1 The perfect gas equation of state

The equation of state of a low-pressure gas was
among the first results to be established in physical
chemistry. The original experiments were carried 
out by Robert Boyle in the seventeenth century and
there was a resurgence in interest later in the cen-
tury when people began to fly in balloons. This tech-
nological progress demanded more knowledge about
the response of gases to changes of pressure and 
temperature and, like technological advances in
other fields today, that interest stimulated a lot of 
experiments.

The experiments of Boyle and his successors led to
the formulation of the following perfect gas equation
of state:

pV = nRT (1.2)

In this equation (which has the form of eqn 1.1 when
we rearrange it into p = nRT /V ), the gas constant, R,
is an experimentally determined quantity that turns
out to have the same value for all gases. It may be 
determined by evaluating R = pV/nRT as the pres-
sure is allowed to approach zero or by measuring the
speed of sound (which depends on R). Values of R in
different units are given in Table 1.1.

The perfect gas equation of state—more briefly,
the ‘perfect gas law’—is so-called because it is an 
idealization of the equations of state that gases actu-
ally obey. Specifically, it is found that all gases obey
the equation ever more closely as the pressure is re-
duced towards zero. That is, eqn 1.2 is an example of
a limiting law, a law that becomes increasingly valid
as the pressure is reduced and is obeyed exactly in the
limit of zero pressure.

A hypothetical substance that obeys eqn 1.2 at all
pressures is called a perfect gas. From what has just
been said, an actual gas, which is termed a real gas,
behaves more and more like a perfect gas as its 
pressure is reduced towards zero. In practice, normal
atmospheric pressure at sea level (p ≈ 100 kPa) is 
already low enough for most real gases to behave 
almost perfectly, and unless stated otherwise we 
shall always assume in this text that the gases we 
encounter behave like a perfect gas. The reason why
a real gas behaves differently from a perfect gas can
be traced to the attractions and repulsions that exist
between actual molecules and that are absent in a
perfect gas (Chapter 15).

A note on good practice A perfect gas is widely called an
‘ideal gas’ and the perfect gas equation of state is commonly
called ‘the ideal gas equation’ We use ‘perfect gas’ to imply
the absence of molecular interactions; we use ‘ideal’ in
Chapter 6 to denote mixtures in which all the molecular inter-
actions are the same but not necessarily zero.

The perfect gas law summarizes three sets of ex-
perimental observations. One is Boyle’s law:

At constant temperature, the pressure of a fixed
amount of gas is inversely proportional to its 
volume.

Mathematically:

Boyle’s law: at constant temperature, 

We can easily verify that eqn 1.2 is consistent with
Boyle’s law: by treating n and T as constants, the 
perfect gas law becomes pV = constant, and hence 
p ∝ 1/V. Boyle’s law implies that if we compress 
(reduce the volume of) a fixed amount of gas at con-
stant temperature into half its original volume, then
its pressure will double. Figure 1.1 shows the graph
obtained by plotting experimental values of p against
V for a fixed amount of gas at different temperatures

 
p

V
∝

1

Table 1.1

The gas constant in various units

R = 8.314 47 J K−1 mol−1

8.314 47 dm3 kPa K−1 mol−1

8.205 74 × 10−2 dm3 atm K−1 mol−1

62.364 dm3 Torr K−1 mol−1

1.987 21 cal K−1 mol−1

1 dm3 = 10−3 m3

The text’s website contains links to online databases of
properties of gases.
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and the curves predicted by Boyle’s law. Each curve
is called an isotherm because it depicts the variation
of a property (in this case, the pressure) at a single
constant temperature. It is hard, from this graph, 
to judge how well Boyle’s law is obeyed. However,
when we plot p against 1/V, we get straight lines, just
as we would expect from Boyle’s law (Fig. 1.2).

A note on good practice It is generally the case that a pro-
posed relation is easier to verify if the experimental data are
plotted in a form that should give a straight line. That is, the
expression being plotted should have the form y = mx + b,
where m and b are the slope and y-intercept of the line, 
respectively. For more information, see Appendix 2.

The second experimental observation summarized
by eqn 1.2 is Charles’s law:

At constant pressure, the volume of a fixed amount
of gas varies linearly with the temperature.

Mathematically:

Charles’s law: at constant pressure, V = A + Bθ

where θ (theta) is the temperature on the Celsius
scale and A and B are constants that depend on the
amount of gas and the pressure. Figure 1.3 shows
typical plots of volume against temperature for a 
series of samples of gases at different pressures and
confirms that (at low pressures, and for temperatures
that are not too low) the volume varies linearly with
the Celsius temperature. We also see that all the vol-
umes extrapolate to zero as θ approaches the same
very low temperature (−273.15°C, in fact), regard-
less of the identity of the gas. Because a volume 
cannot be negative, this common temperature must
represent the absolute zero of temperature, a temper-
ature below which it is impossible to cool an object.
Indeed, the ‘thermodynamic’ scale ascribes the value
T = 0 to this absolute zero of temperature. In terms of

1/Volume, 1/V
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Observed

Perfect gas

Fig. 1.2 A good test of Boyle’s law is to plot the pressure
against 1/V (at constant temperature), when a straight line
should be obtained. This diagram shows that the observed
pressures (the blue line) approach a straight line as the vol-
ume is increased and the pressure reduced. A perfect gas
would follow the straight line at all pressures; real gases obey
Boyle’s law in the limit of low pressures.

Increasing
temperature

Volume, V

P
re

ss
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,

p

Fig. 1.1 The volume of a gas decreases as the pressure on it
is increased. For a sample that obeys Boyle’s law and that 
is kept at constant temperature, the graph showing the 
dependence is a hyperbola, as shown here. Each curve 
corresponds to a single temperature, and hence is an iso-
therm. The isotherms are hyperbolas, graphs of xy = constant,
or y = constant/x (see Appendix 2).

interActivity Explore how the pressure of 1.5 mol
CO2(g) varies with volume as it is compressed at (a)

273 K, (b) 373 K from 30 dm3 to 15 dm3. 
Hint : To solve this and other interActivities, use either math-
ematical software or the Living graphs from the text’s web
site.

Temperature, θ/°C

Vo
lu

m
e,

V

Observed

Perfect gas

Increasing
pressure

–273.15 θ

Fig. 1.3 This diagram illustrates the content and implications
of Charles’s law, which asserts that the volume occupied 
by a gas (at constant pressure) varies linearly with the 
temperature. When plotted against Celsius temperatures 
(as here), all gases give straight lines that extrapolate to V = 0
at −273.15°C. This extrapolation suggests that −273.15°C is
the lowest attainable temperature.
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the thermodynamic temperature, therefore, Charles’s
law takes the simpler form

Charles’s law: at constant pressure, V ∝ T

It follows that doubling the temperature (such as
from 300 K to 600 K, corresponding to an increase
from 27°C to 327°C) doubles the volume, provided
the pressure remains the same. Now we can see that
eqn 1.2 is consistent with Charles’s law. First, we re-
arrange it into V = nRT/p, and then note that when
the amount n and the pressure p are both constant,
we can write V ∝ T, as required.

The third feature of gases summarized by eqn 1.2
is Avogadro’s principle:

At a given temperature and pressure, equal volumes
of gas contain the same numbers of molecules.

That is, 1.00 dm3 of oxygen at 100 kPa and 300 K
contains the same number of molecules as 1.00 dm3

of carbon dioxide, or any other gas, at the same 
temperature and pressure. The principle implies 
that if we double the number of molecules, but keep
the temperature and pressure constant, then the 
volume of the sample will double. We can therefore
write:

Avogadro’s principle: at constant temperature and
pressure, V ∝ n

This result follows easily from eqn 1.2 if we treat 
p and T as constants. Avogadro’s suggestion is a
principle rather than a law (a direct summary of 
experience), because it is based on a model of a gas,
in this case as a collection of molecules. Even though
there is no longer any doubt that molecules exist, this
relation remains a principle rather than a law.

The molar volume, Vm, of any substance (not 
just a gas) is the volume it occupies per mole of
molecules. It is calculated by dividing the volume of
the sample by the amount of molecules it contains:

(1.3)

With volume in cubic decimetres and amount in
moles, the units of molar volume are cubic decimetres
per mole (dm3 mol−1). Avogadro’s principle implies
that the molar volume of a gas should be the same 
for all gases at the same temperature and pressure.
The data in Table 1.2 show that this conclusion is 
approximately true for most gases under normal
conditions (normal atmospheric pressure of about
100 kPa and room temperature).

Volume of sample

Amount of substance in sample
V

V
nm =

1.2 Using the perfect gas law

Here we review three elementary applications of the
perfect gas equation of state. The first is the predic-
tion of the pressure of a gas given its temperature, its
chemical amount, and the volume it occupies. The
second is the prediction of the change in pressure
arising from changes in the conditions. The third is
the calculation of the molar volume of a perfect gas
under any conditions. Calculations like these under-
lie more advanced considerations, including the way
that meteorologists understand the changes in the 
atmosphere that we call the weather (Box 1.1).

Table 1.2

The molar volumes of gases at standard ambient
temperature and pressure (SATP: 298.15 K and 
1 bar)

Gas Vm/(dm3 mol−1)

Perfect gas 24.7896*
Ammonia 24.8
Argon 24.4
Carbon dioxide 24.6
Nitrogen 24.8
Oxygen 24.8
Hydrogen 24.8
Helium 24.8

* At STP (0°C, 1 atm), Vm = 24.4140 dm3 mol−1.

Example 1.1

Predicting the pressure of a sample of gas 

A chemist is investigating the conversion of atmospheric
nitrogen to usable form by the bacteria that inhabit the
root systems of certain legumes, and needs to know the
pressure in kilopascals exerted by 1.25 g of nitrogen gas
in a flask of volume 250 cm3 at 20°C.

Strategy For this calculation we need to arrange eqn 1.2
(pV = nRT ) into a form that gives the unknown (the pres-
sure, p) in terms of the information supplied:

To use this expression, we need to know the amount of
molecules (in moles) in the sample, which we can obtain
from the mass and the molar mass (by using n = m/M)
and to convert the temperature to the Kelvin scale (by
adding 273.15 to the Celsius temperature). Select the

p
nRT

V
=
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In some cases, we are given the pressure under one
set of conditions and are asked to predict the pressure
of the same sample under a different set of condi-
tions. We use the perfect gas law as follows. Suppose
the initial pressure is p1, the initial temperature is T1,
and the initial volume is V1. Then by dividing both
sides of eqn 1.2 by the temperature we can write

Suppose now that the conditions are changed to T2
and V2, and the pressure changes to p2 as a result.
Then under the new conditions eqn 1.2 tells us that

The nR on the right of these two equations is the same
in each case, because R is a constant and the amount

p V
T

nR2 2

2

=

p V
T

nR1 1

1

=

value of R from Table 1.1 using the units that match 
the data and the information required (pressure in kilo-
pascals and volume in litres).

Solution The amount of N2 molecules (of molar mass
28.02 g mol−1) present is

The temperature of the sample is

T/K = 20 + 273.15

Therefore, from p = nRT/V,

We have used the relation 1 J = 1 Pa m3 and 1 kPa = 103

Pa. Note how the units cancel like ordinary numbers.

A note on good practice It is best to postpone the 
actual numerical calculation to the last possible stage,
and carry it out in a single step. This procedure avoids
rounding errors.

 

n
m
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N

2
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g
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Self-test 1.1

Calculate the pressure exerted by 1.22 g of carbon
dioxide confined to a flask of volume 500 cm3 at 37°C.

[Answer: 143 kPa]

of gas molecules has not changed. It follows that we
can combine the two equations into a single equation:

(1.4)

This expression is known as the combined gas equa-
tion. We can rearrange it to calculate any one un-
known (such as p2, for instance) in terms of the other
variables.

p V
T

p V
T

1 1

1

2 2

2

=

Self-test 1.2

What is the final volume of a sample of gas that has been
heated from 25°C to 1000°C and its pressure increased
from 10.0 kPa to 150.0 kPa, given that its initial volume
was 15 cm3?

[Answer: 4.3 cm3]

Finally, we see how to use the perfect gas law to
calculate the molar volume of a perfect gas at any
temperature and pressure. Equation 1.3 expresses
the molar volume in terms of the volume of a sample;
eqn 1.2 in the form V = nRT/p expresses the volume
in terms of the pressure. When we combine the two,
we get

(1.5)

This expression lets us calculate the molar volume of
any gas (provided it is behaving perfectly) from its
pressure and its temperature. It also shows that, for a
given temperature and pressure, provided they are
behaving perfectly, all gases have the same molar
volume.

Chemists have found it convenient to report much
of their data at a particular set of ‘standard’ condi-
tions. By standard ambient temperature and pres-
sure (SATP) they mean a temperature of 25°C (more
precisely, 298.15 K) and a pressure of exactly 1 bar
(100 kPa). The standard pressure is denoted p , so
p = 1 bar exactly. The molar volume of a perfect gas
at SATP is 24.79 dm3 mol−1, as can be verified by
substituting the values of the temperature and pres-
sure into eqn 1.5. This value implies that at SATP, 
1 mol of perfect gas molecules occupies about 25 dm3

(a cube of about 30 cm on a side). An earlier set of
standard conditions, which is still encountered, is
standard temperature and pressure (STP), namely
0°C and 1 atm. The molar volume of a perfect gas at
STP is 22.41 dm3 mol−1.

V
V
n

nRT p
n

RT
pm    

/
= = =

V = nRT/p

Definition
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Box 1.1 The gas laws and the weather

The biggest sample of gas readily accessible to us is the 
atmosphere, a mixture of gases with the composition 
summarized in the table. The composition is maintained
moderately constant by diffusion and convection (winds,
particularly the local turbulence called eddies) but the pres-
sure and temperature vary with altitude and with the local
conditions, particularly in the troposphere (the ‘sphere of
change’), the layer extending up to about 11 km.

One of the most variable constituents of air is water
vapour, and the humidity it causes. The presence of water
vapour results in a lower density of air at a given tempera-
ture and pressure, as we may conclude from Avogadro’s
principle. The numbers of molecules in 1 m3 of moist air and
dry air are the same (at the same temperature and pres-
sure), but the mass of an H2O molecule is less than that of
all the other major constituents of air (the molar mass of
H2O is 18 g mol−1, the average molar mass of air molecules
is 29 g mol−1), so the density of the moist sample is less
than that of the dry sample.

The pressure and temperature vary with altitude. In the
troposphere the average temperature is 15°C at sea level,
falling to −57°C at the bottom of the tropopause at 11 km.
This variation is much less pronounced when expressed on
the Kelvin scale, ranging from 288 K to 216 K, an average of
268 K. If we suppose that the temperature has its average
value all the way up to the edge of the troposphere, then
the pressure varies with altitude, h, according to the baro-
metric formula:

p = p0e
−h/H

where p0 is the pressure at sea level and H is a constant 
approximately equal to 8 km. More specifically, H = RT /Mg,

where M is the average molar mass of air and T is the 
temperature. The barometric formula fits the observed
pressure distribution quite well even for regions well above
the troposphere (see the illustration). It implies that the
pressure of the air and its density fall to half their sea-level
value at h = H ln 2, or 6 km.

Local variations of pressure, temperature, and composi-
tion in the troposphere are manifest as ‘weather’. A small
region of air is termed a parcel. First, we note that a parcel
of warm air is less dense than the same parcel of cool air.
As a parcel rises, it expands without transfer of heat from
its surroundings and it cools. Cool air can absorb lower con-
centrations of water vapour than warm air, so the moisture
forms clouds. Cloudy skies can therefore be associated
with rising air and clear skies are often associated with 
descending air.

The motion of air in the upper altitudes may lead to an 
accumulation in some regions and a loss of molecules from
other regions. The former result in the formation of regions
of high pressure (‘highs’ or anticyclones) and the latter result
in regions of low pressure (‘lows’, depressions, or cyclones).
These regions are shown as H and L on the accompanying
weather map. The lines of constant pressure—differing by
4 mbar (400 Pa, about 3 Torr)—marked on it are called iso-
bars. The elongated regions of high and low pressure are
known, respectively, as ridges and troughs.

In meteorology, large-scale vertical movement is called
convection. Horizontal pressure differentials result in the
flow of air that we call wind. Because the Earth is rotating
from west to east, winds are deflected towards the right in
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The variation of atmospheric pressure with altitude as pre-
dicted by the barometric formula.

interActivity How would the graph shown in the
illustration change if the temperature variation with

altitude were taken into account? Construct a graph allowing
for a linear decrease in temperature with altitude.

The composition of the Earth’s atmosphere

Substance Percentage
By volume By mass

Nitrogen, N2 78.08 75.53
Oxygen, O2 20.95 23.14
Argon, Ar 0.93 1.28
Carbon dioxide, CO2 0.031 0.047
Hydrogen, H2 5.0 × 10−3 2.0 × 10−4

Neon, Ne 1.8 × 10−3 1.3 × 10−3

Helium, He 5.2 × 10−4 7.2 × 10−5

Methane, CH4 2.0 × 10−4 1.1 × 10−4

Krypton, Kr 1.1 × 10−4 3.2 × 10−4

Nitric oxide, NO 5.0 × 10−5 1.7 × 10−6

Xenon, Xe 8.7 × 10−6 3.9 × 10−5

Ozone, O3 Summer: 7.0 × 10−6 1.2 × 10−5

Winter: 2.0 × 10−6 3.3 × 10−6
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1.3 Mixtures of gases: partial pressures

We are often concerned with mixtures of gases, such
as when we are considering the properties of the 
atmosphere in meteorology, the composition of 
exhaled air in medicine, or the mixtures of hydrogen
and nitrogen used in the industrial synthesis of 
ammonia. We need to be able to assess the contribu-
tion that each component of a gaseous mixture
makes to the total pressure.

In the early nineteenth century, John Dalton 
carried out a series of experiments that led him to
formulate what has become known as Dalton’s law:

The pressure exerted by a mixture of perfect gases
is the sum of the pressures that each gas would

exert if it were alone in the container at the same
temperature:

p = pA + pB + . . . (1.6)

In this expression, pJ is the pressure that the gas J
would exert if it were alone in the container at the
same temperature. Dalton’s law is strictly valid only
for mixtures of perfect gases (or for real gases at such
low pressures that they are behaving perfectly), but 
it can be treated as valid under most conditions 
we encounter.

A brief illustration Suppose we were interested in
the composition of inhaled and exhaled air, and we knew
that a certain mass of carbon dioxide exerts a pressure of

The air lost from regions of high pressure is restored 
as an influx of air converges into the region and descends.
As we have seen, descending air is associated with clear
skies. It also becomes warmer by compression as it 
descends, so regions of high pressure are associated with
high surface temperatures. In winter, the cold surface air
may prevent the complete fall of air, and result in a temper-
ature inversion, with a layer of warm air over a layer of cold
air. Geographical conditions may also trap cool air, as in Los
Angeles, and the photochemical pollutants we know as
smog may be trapped under the warm layer. A less dramatic
manifestation of an inversion layer is the presence of hazy
skies, particularly in industrial areas. Hazy skies also form
over vegetation that generate aerosols of terpenes or other
plant transpiration products. These hazes give rise to the
various ‘Blue Mountains’ of the world, such as the Great
Dividing Range in New South Wales, the range in Jamaica,
and the range stretching from central Oregon into south-
eastern Washington, which are dense with eucalyptus, tree
ferns, and pine and fir, respectively. The Blue Ridge section
of the Appalachians is another example.

A typical weather map; this one for Western Europe on 
3 May 2008.

L
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Wind

Rotation

The horizontal flow of air relative to an area of low pressure
in the northern and southern hemispheres.

the northern hemisphere and towards the left in the southern
hemisphere. Winds travel nearly parallel to the isobars,
with low pressure to their left in the northern hemisphere
and to the right in the southern hemisphere. At the surface,
where wind speeds are lower, the winds tend to travel 
perpendicular to the isobars from high to low pressure. This
differential motion results in a spiral outward flow of air
clockwise in the northern hemisphere around a high and an
inward counterclockwise flow around a low.
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5 kPa when present alone in a container, and that a certain
mass of oxygen exerts 20 kPa when present alone in the
same container at the same temperature. Then, when
both gases are present in the container, the carbon diox-
ide in the mixture contributes 5 kPa to the total pressure
and oxygen contributes 20 kPa; according to Dalton’s law,
the total pressure of the mixture is the sum of these two
pressures, or 25 kPa (Fig. 1.4).

For any type of gas (real or perfect) in a mixture,
the partial pressure, pJ, of the gas J is defined as

pJ = xJ p (1.7)

where xJ is the mole fraction of the gas J in the mix-
ture. The mole fraction of J is the amount of J
molecules expressed as a fraction of the total amount
of molecules in the mixture. In a mixture that con-
sists of nA A molecules, nB B molecules, and so on
(where the nJ are amounts in moles), the mole frac-
tion of J (where J = A, B, . . .) is

(1.8a)

where n = nA + nB + . . . . Mole fractions are unitless
because the unit mole in numerator and denominator
cancels. For a binary mixture, one that consists of
two species, this general expression becomes

(1.8b)

When only A is present, xA = 1 and xB = 0. When only
B is present, xB = 1 and xA = 0. When both are present
in the same amounts, xA = and xB = .1
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For a mixture of perfect gases, we can identify 
the partial pressure of J with the contribution that 
J makes to the total pressure. Thus, if we introduce 
p = nRT/V into eqn 1.7, we get

The value of nJRT/V is the pressure that an amount
nJ of J would exert in the otherwise empty container.
That is, the partial pressure of J as defined by eqn 1.7
is the pressure of J used in Dalton’s law, provided 
all the gases in the mixture behave perfectly. If the
gases are real, their partial pressures are still given by
eqn 1.7, for that definition applies to all gases, and
the sum of these partial pressures is the total pres-
sure (because the sum of all the mole fractions is 1);

p x p x
nRT

VJ J J    Jnx= = =×
RT
V Jn=

RT
V

×

p = nRT/V 

Definition

nJ

×

kPa kPa kPa

5
20

25

A B A+B

pA pB pA + pB

Fig. 1.4 The partial pressure pA of a perfect gas A is the pres-
sure that the gas would exert if it occupied a container alone;
similarly, the partial pressure pB of a perfect gas B is the pres-
sure that the gas would exert if it occupied the same con-
tainer alone. The total pressure p when both perfect gases
simultaneously occupy the container is the sum of their par-
tial pressures.

A

B

xA = 0.708 

xB = 0.292

xA = 0.375

xB = 0.625

xA = 0.229

xB = 0.771

Fig. 1.5 A representation of the meaning of mole fraction. In
each case, a small square represents one molecule of A 
(yellow squares) or B (green squares). There are 48 squares
in each sample.

Self-test 1.3

Calculate the mole fractions of N2, O2, and Ar in dry air at
sea level, given that 100.0 g of air consists of 75.5 g of
N2, 23.2 g of O2, and 1.3 g of Ar. Hint: Begin by convert-
ing each mass to an amount in moles.

[Answer: 0.780, 0.210, 0.009]
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however, each partial pressure is no longer the pressure
that the gas would exert when alone in the container.

A brief illustration From Self-test 1.3, we have 
xN2

= 0.780, xO2
= 0.210, and xAr = 0.009 for dry air at sea

level. It then follows from eqn 1.7 that when the total 
atmospheric pressure is 100 kPa, the partial pressure of
nitrogen is

pN2
= xN2

p = 0.780 × (100 kPa) = 78.0 kPa

Similarly, for the other two components we find pO2
=

21.0 kPa and pAr = 0.9 kPa. Provided the gases are per-
fect, these partial pressures are the pressures that each
gas would exert if it were separated from the mixture and
put in the same container on its own. 

tested experimentally by making measurements and
comparing the results with predictions. Indeed, an
important component of science as a whole is its
technique of proposing a qualitative model and then
expressing that model mathematically. The ‘kinetic
model’ (or the ‘kinetic molecular theory’, KMT) of
gases is an excellent example of this procedure: the
model is very simple, and the quantitative prediction
(the perfect gas law) is experimentally verifiable.

The kinetic model of gases is based on three 
assumptions:

1. A gas consists of molecules in ceaseless random
motion.

2. The size of the molecules is negligible in the sense
that their diameters are much smaller than the 
average distance travelled between collisions.

3. The molecules do not interact, except during 
collisions.

The assumption that the molecules do not interact
unless they are in contact implies that the potential
energy of the molecules (their energy due to their 
position) is independent of their separation and may
be set equal to zero. The total energy of a sample of
gas is therefore the sum of the kinetic energies (the
energy due to motion) of all the molecules present in
it. It follows that the faster the molecules travel (and
hence the greater their kinetic energy), the greater the
total energy of the gas.

1.4 The pressure of a gas according to 
the kinetic model

The kinetic model accounts for the steady pressure
exerted by a gas in terms of the collisions the
molecules make with the walls of the container. Each
impact gives rise to a brief force on the wall, but as
billions of collisions take place every second, the
walls experience a virtually constant force, and hence
the gas exerts a steady pressure. On the basis of this
model, the pressure exerted by a gas of molar mass M
in a volume V is

(1.9)

(See Further information 1.1 for a derivation of this
equation.) Here c is the root-mean-square speed (rms
speed) of the molecules. This quantity is defined as
the square root of the mean value of the squares of
the speeds, v, of the molecules. That is, for a sample
consisting of N molecules with speeds v1, v2, . . . , vN,
we square each speed, add the squares together, 

 
p

nMc
V

=
2

3

Self-test 1.4

The partial pressure of molecular oxygen in air plays an
important role in the aeration of water, to enable aquatic
life to thrive, and in the absorption of oxygen by blood in
our lungs (see Box 6.1). Calculate the partial pressures of
a sample of gas consisting of 2.50 g of oxygen and 6.43 g
of carbon dioxide with a total pressure of 88 kPa.

[Answer: 31 kPa, 57 kPa]

The kinetic model of gases

We remarked in the Introduction that a gas may be
pictured as a collection of particles in ceaseless, ran-
dom motion (Fig. 1.6). Now we develop this model
of the gaseous state of matter to see how it accounts
for the perfect gas law. One of the most important
functions of physical chemistry is to convert qualita-
tive notions into quantitative statements that can be

Fig. 1.6 The model used for discussing the molecular basis
of the physical properties of a perfect gas. The point-like
molecules move randomly with a wide range of speeds and
in random directions, both of which change when they collide
with the walls or with other molecules.
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divide by the total number of molecules (to get the
mean, denoted by 〈. . .〉), and finally take the square
root of the result:

(1.10)

The rms speed might at first sight seem to be a rather
peculiar measure of the mean speeds of the molecules,
but its significance becomes clear when we make use
of the fact that the kinetic energy of a molecule of
mass m travelling at a speed v is Ek = mv2, which
implies that the mean kinetic energy, 〈Ek〉, is the 
average of this quantity, or mc2. It follows from the
relation mc2 = 〈Ek〉 that

(1.11)

Therefore, wherever c appears, we can think of it as
a measure of the mean kinetic energy of the molecules
of the gas. The rms speed is quite close in value 
to another and more readily visualized measure of
molecular speed, the mean speed, C, of the molecules:

(1.12)

For samples consisting of large numbers of molecules,
the mean speed is slightly smaller than the rms speed.
The precise relation is

(1.13)

For elementary purposes, and for qualitative argu-
ments, we do not need to distinguish between the
two measures of average speed, but for precise work
the distinction is important.
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1.5 The average speed of gas molecules

We now suppose that the expression for pV derived
from the kinetic model is indeed the equation of state
of a perfect gas. That being so, we can equate the 
expression on the right of eqn 1.14 to nRT,

which gives

nMc2 = nRT

The ns now cancel, to give

Mc2 = RT

The great usefulness of this expression is that we can
rearrange it into a formula for the rms speed of the
gas molecules at any temperature:

(1.15)

Substitution of the molar mass of O2 (32.0 g mol−1)
and a temperature corresponding to 25°C (that is,
298 K) gives an rms speed for these molecules of 
482 m s−1. The same calculation for nitrogen mole-
cules gives 515 m s−1. Both these values are not far off
the speed of sound in air (346 m s−1 at 25°C). That
similarity is reasonable, because sound is a wave of
pressure variation transmitted by the movement of
molecules, so the speed of propagation of a wave
should be approximately the same as the speed at
which molecules can adjust their locations.

The important conclusion to draw from eqn 1.15
is that

The rms speed of molecules in a gas is proportional
to the square root of the temperature.

Because the mean speed is proportional to the rms
speed, the same is true of the mean speed too 
(because the two quantities are proportional to 
each other). Therefore, doubling the thermodynamic
temperature (that is, doubling the temperature on the
Kelvin scale) increases the mean and the rms speed of
molecules by a factor of 21/2 = 1.414.. . .

A brief illustration Cooling a sample of air from 25°C
(298 K) to 0°C (273 K) reduces the original rms speed of
the molecules by a factor of

So, on a cold day, the average speed of air molecules
(which is changed by the same factor) is about 4 per cent
less than on a warm day.
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3

Self-test 1.5

Cars pass a point travelling at 45.00 (5), 47.00 (7), 50.00
(9), 53.00 (4), 57.00 (1) km h−1, where the number of cars
is given in parentheses. Calculate (a) the rms speed and
(b) the mean speed of the cars. (Hint : Use the definitions
directly; the relation in eqn 1.13 is unreliable for such
small samples.)

[Answer: (a) 49.06 km h−1, (b) 48.96 km h−1]

Equation 1.9 already resembles the perfect gas
equation of state, for we can rearrange it into

pV = nMc2 (1.14)

and compare it to pV = nRT. This conclusion is a
major success of the kinetic model, for the model 
implies an experimentally verified result.

1
3
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1.6 The Maxwell distribution of speeds

So far, we have dealt only with the average speed 
of molecules in a gas. Not all molecules, however,
travel at the same speed: some move more slowly
than the average (until they collide, and get acceler-
ated to a high speed, like the impact of a bat on a
ball), and others may briefly move at much higher
speeds than the average, but be brought to a sudden
stop when they collide. There is a ceaseless redistribu-
tion of speeds among molecules as they undergo 
collisions. Each molecule collides once every nano-
second (1 ns = 10−9 s) or so in a gas under normal
conditions.

The mathematical expression that tells us the frac-
tion of molecules that have a particular speed at any
instant is called the distribution of molecular speeds.
Thus, the distribution might tell us that at 20°C 19
out of 1000 O2 molecules have a speed in the range
between 300 and 310 m s−1, that 21 out of 1000 
have a speed in the range 400 to 410 m s−1, and so on.
The precise form of the distribution was worked out
by James Clerk Maxwell towards the end of the 
nineteenth century, and his expression is known 
as the Maxwell distribution of speeds. According 
to Maxwell, the fraction f of molecules that have 
a speed in a narrow range between s and s + Δs (for
example, between 300 m s−1 and 310 m s−1, corres-
ponding to s = 300 m s−1 and Δs = 10 m s−1) is

(1.16)

This formula was used to calculate the numbers
quoted above.

Although eqn 1.16 looks complicated, its features
can be picked out quite readily. One of the skills to
develop in physical chemistry is the ability to inter-
pret the message carried by equations. Equations
convey information, and it is far more important 
to be able to read that information than simply to 
remember the equation. Let’s read the information in
eqn 1.16 piece by piece.

Before we begin, and in preparation for their 
occurrence throughout the text, it will be useful to
know the shape of exponential functions. Here, we
deal with two types, e−ax and e−ax2

.

• An exponential function, a function of the form 
e−ax, starts off at 1 when x = 0 and decays toward
zero, which it reaches as x approaches infinity
(Fig. 1.7). This function approaches zero more
rapidly as a increases.
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• A Gaussian function, a function of the form e−ax2
,

also starts off at 1 when x = 0 and decays to zero
as x increases, however, its decay is initially
slower but then plunges down to zero more
rapidly than an exponential function (Fig. 1.7).

The illustration also shows the behaviour of the 
two functions for negative values of x. The exponen-
tial function e−ax rises rapidly to infinity, but the
Gaussian function falls back to zero and traces out 
a bell-shaped curve.

Now let’s consider the content of eqn 1.16.

• Because f is proportional to the range of speeds
Δs, we see that the fraction in the range Δs
increases in proportion to the width of the range.
If at a given speed we double the range of interest
(but still ensure that it is narrow), then the frac-
tion of molecules in that range doubles too.

• Equation 1.16 includes a decaying exponential func-

tion, the term 

Its presence implies that the fraction of molecules
with very high speeds will be very small because 
e−x2

becomes very small when x2 is large.

• The factor M/2RT multiplying s2 in the exponent,

is large when

the molar mass, M, is large, so the exponential
factor goes most rapidly towards zero when M
is large. That tells us that heavy molecules are 
unlikely to be found with very high speeds.

• The opposite is true when the temperature, T, is
high: then the factor M/2RT in the exponent is
small, so the exponential factor falls towards zero

F(s) = 4π(M/2πRT) s2 e−Ms2/2RT ,3/2

F(s) = 4π(M/2πRT) s2 e−Ms2/2RT .3/2
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Fig. 1.7 The exponential function, e−x, and the bell-shaped
Gaussian function, e−x2

. Note that both are equal to 1 at x = 0
but the exponential function rises to infinity as x → −∞. The
enlargement on the right shows the behaviour for x > 0 in
more detail.
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relatively slowly as s increases. This tells us that 
at high temperatures, a greater fraction of the
molecules can be expected to have high speeds
than at low temperatures.

• A factor s2

multiplies the exponential. This factor goes to
zero as s goes to zero, so the fraction of molecules
with very low speeds will also be very small.

• The remaining factors (the term 

F (s) = simply ensure

that when we add together the fractions over the
entire range of speeds from zero to infinity, then
we get 1.

Figure 1.8 is a graph of the Maxwell distribution,
and shows these features pictorially for the same gas
(the same value of M) but different temperatures. As
we deduced from the equation, we see that only small
fractions of molecules in the sample have very low or
very high speeds. However, the fraction with very
high speeds increases sharply as the temperature is
raised, as the tail of the distribution reaches up to
higher speeds. This feature plays an important role in
the rates of gas-phase chemical reactions, for (as we
shall see in Section 10.10), the rate of a reaction in

4π(M/2πRT) s2 e−Ms2/2RT )3/2

(F(s) = 4π(M/2πRT ) s2 e−Ms2/2RT)3/2

the gas phase depends on the energy with which two
molecules crash together, which in turn depends on
their speeds.

Figure 1.9 is a plot of the Maxwell distribution for
molecules with different molar masses at the same
temperature. As can be seen, not only do heavy
molecules have lower average speeds than light
molecules at a given temperature, but they also have
a significantly narrower spread of speeds. That nar-
row spread means that most molecules will be found
with speeds close to the average. In contrast, light
molecules (such as H2) have high average speeds and
a wide spread of speeds: many molecules will be
found travelling either much more slowly or much
more quickly than the average. This feature plays 
an important role in determining the composition 
of planetary atmospheres, because it means that a
significant fraction of light molecules travel at suA-
ciently high speeds to escape from the planet’s gravita-
tional attraction. The ability of light molecules to 
escape is one reason why hydrogen (molar mass 
2.02 g mol−1) and helium (4.00 g mol−1) are very rare
in the Earth’s atmosphere.

The Maxwell distribution has been verified 
experimentally by passing a beam of molecules from
an oven at a given temperature through a series of
coaxial slotted disks. The speed of rotation of the
disks brings the slots into line for molecules travel-
ling at a particular speed, so only molecules with that
speed pass through and are detected. By varying the
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Fig. 1.8 The Maxwell distribution of speeds and its variation
with the temperature. Note the broadening of the distribution
and the shift of the rms speed to higher values as the tem-
perature is increased.

interActivity (a) Plot different distributions by keeping
the molar mass constant at 100 g mol−1 and varying

the temperature of the sample between 200 K and 2000 K.
(b) Use mathematical software or the Living graph applet
from the text’s web site to evaluate numerically the fraction
of molecules with speeds in the range 100 m s−1 to 200 m s−1

at 300 K and 1000 K. (c) Based on your observations, provide
a molecular interpretation of temperature.
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Fig. 1.9 The Maxwell distribution of speeds also depends on
the molar mass of the molecules. Molecules of low molar
mass have a broad spread of speeds, and a significant frac-
tion may be found travelling much faster than the rms speed.
The distribution is much narrower for heavy molecules, and
most of them travel with speeds close to the rms value.

interActivity Plot distributions for He, air (see Box 1.1),
and Ar at 500 K.
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rotation speed, the shape of the speed distribution
can be explored and is found to match that predicted
by eqn 1.16.

1.7 Diffusion and effusion

Diffusion is the process by which the molecules of
different substances mingle with each other. The
atoms of two solids diffuse into each other when the
two solids are in contact, but the process is very slow.
The diffusion of a solid through a liquid solvent is
much faster but mixing normally needs to be encour-
aged by stirring or shaking the solid in the liquid (the
process is then no longer pure diffusion). Gaseous
diffusion is much faster. It accounts for the largely
uniform composition of the atmosphere, for if a gas
is produced by a localized source (such as carbon
dioxide from the respiration of animals, oxygen from
photosynthesis by green plants, and pollutants from
vehicles and industrial sources), then the molecules
of gas will diffuse from the source and in due course
be distributed throughout the atmosphere. In prac-
tice, the process of mixing is accelerated by winds:
such bulk motion of matter is called convection. The
process of effusion is the escape of a gas through a
small hole, as in a puncture in an inflated balloon or
tyre (Fig. 1.10).

The rates of diffusion and effusion of gases increase
with increasing temperature, as both processes 

depend on the motion of molecules, and molecular
speeds increase with temperature. The rates also 
decrease with increasing molar mass, as molecular
speeds decrease with increasing molar mass. The 
dependence on molar mass, however, is simple only
in the case of effusion. In effusion, only a single sub-
stance is in motion, not the two or more intermin-
gling gases involved in diffusion.

The experimental observations on the dependence
of the rate of effusion of a gas on its molar mass are
summarized by Graham’s law of effusion, proposed
by Thomas Graham in 1833:

At a given pressure and temperature, the rate of 
effusion of a gas is inversely proportional to the
square root of its molar mass:

(1.17)

Rate in this context means the number (or number of
moles) of molecules that escape per second.

A brief illustration The rates (in terms of amounts of
molecules) at which hydrogen (molar mass 2.02 g mol−1)
and carbon dioxide (44.01 g mol−1) effuse under the same
conditions of pressure and temperature are in the ratio

The mass of carbon dioxide that escapes in a given 
interval is greater than the mass of hydrogen, because 
although nearly 5 times as many hydrogen molecules 
escape, each carbon dioxide molecule has over 20 times
the mass of a molecule of hydrogen.

Note of good practice Always make it clear what terms
mean: in this instance ‘rate’ alone is ambiguous; you need to
specify that it is the rate in terms of amount of molecules.

The high rate of effusion of hydrogen and helium
is one reason why these two gases leak from contain-
ers and through rubber diaphragms so readily. The
different rates of effusion through a porous barrier
are employed in the separation of uranium-235 from
the more abundant and less useful uranium-238 in
the processing of nuclear fuel. The process depends
on the formation of uranium hexafluoride, a volatile
solid. However, because the ratio of the molar
masses of 238UF6 and 235UF6 is only 1.008, the ratio
of the rates of effusion is only (1.008)1/2 = 1.004.
Thousands of successive effusion stages are therefore
required to achieve a significant separation. The rate
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Fig. 1.10 (a) Diffusion is the spreading of the molecules of
one substance into the region initially occupied by another
species. Note that molecules of both substances move, and
each substance diffuses into the other. (b) Effusion is the 
escape of molecules through a small hole in a confining wall.
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of effusion of gases was once used to determine
molar mass by comparison of the rate of effusion of
a gas or vapour with that of a gas of known molar
mass. However, there are now much more precise
methods available, such as mass spectrometry.

Graham’s law is explained by noting that the rms
speed of molecules of a gas is inversely proportional
to the square root of the molar mass (eqn 1.15).
Because the rate of effusion through a hole in a con-
tainer is proportional to the rate at which molecules
pass through the hole, it follows that the rate should
be inversely proportional to M1/2, which is in accord
with Graham’s law.

1.8 Molecular collisions

The average distance that a molecule travels between
collisions is called its mean free path, λ (lambda).
The mean free path in a liquid is less than the diame-
ter of the molecules, because a molecule in a liquid
meets a neighbour even if it moves only a fraction of
a diameter. However, in gases, the mean free paths of
molecules can be several hundred molecular diame-
ters. If we think of a molecule as the size of a tennis
ball, then the mean free path in a typical gas would
be about the length of a tennis court.

The collision frequency, z, is the average rate of
collisions made by one molecule. Specifically, z is the
average number of collisions one molecule makes in
a given time interval divided by the length of the 
interval. It follows that the inverse of the collision
frequency, 1/z, is the time of flight, the average time
that a molecule spends in flight between two colli-
sions (for instance, if there are 10 collisions per 
second, so the collision frequency is 10 s−1, then the
average time between collisions is of a second and
the time of flight is s). As we shall see, the collision
frequency in a typical gas is about 109 s−1 at 1 atm
and room temperature, so the time of flight in a gas is
typically 1 ns.

Because speed is distance travelled divided by the
time taken for the journey, the rms speed c, which 
we can loosely think of as the average speed, is the
average length of the flight of a molecule between
collisions (that is, the mean free path, λ) divided by
the time of flight (1/z). It follows that the mean free
path and the collision frequency are related by

(1.18)

Therefore, if we can calculate either λ or z, then we
can find the other from this equation and the value of
c given in eqn 1.15.

c
z

z= = =
mean free path
time of flight

λ
λ

1/

1
10

1
10

To find expressions for λ and z we need a slightly
more elaborate version of the kinetic model. The
basic kinetic model supposes that the molecules are
effectively point-like; however, to obtain collisions,
we need to assume that two ‘points’ score a hit when-
ever they come within a certain range d of each other,
where d can be thought of as the diameter of the
molecules (Fig. 1.11). The collision cross-section, σ
(sigma), the target area presented by one molecule to
another, is therefore the area of a circle of radius d,
so σ = πd2. When this quantity is built into the kinetic
model, it is possible to show that

(1.19)

Table 1.3 lists the collision cross-sections of some
common atoms and molecules.

Use z = c/l/l

λ
σ

σ
= =
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Table 1.3

Collision cross-sections of atoms and molecules

Species σ /nm2

Argon, Ar 0.36
Benzene, C6H6 0.88
Carbon dioxide, CO2 0.52
Chlorine, Cl2 0.93
Ethene, C2H4 0.64
Helium, He 0.21
Hydrogen, H2 0.27
Methane, CH4 0.46
Nitrogen, N2 0.43
Oxygen, O2 0.40
Sulfur dioxide, SO2 0.58

1 nm2 = 10−18 m2.

Diameter, d

Radius, d

Fig. 1.11 To calculate features of a perfect gas that are re-
lated to collisions, a point is regarded as being surrounded by
a sphere of diameter d. A molecule will hit another molecule
if the centre of the former lies within a circle of radius d. The
collision cross-section is the target area, pd 2.
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A brief illustration From the information in Table 1.3
we can calculate that the mean free path of O2 molecules
in a sample of oxygen at SATP (25°C, 1 bar) is

We have used R in one of its SI unit forms: this form is
usually appropriate in calculations based on the kinetic
model; we have also used 1 J = 1 Pa m3 and 1 nm = 10−9 m.
Under the same conditions, the collision frequency is 
6.2 × 109 s−1, so each molecule makes 6.2 billion collisions
each second.

Once again, we should interpret the essence of the
two expressions in eqn 1.19 rather than trying to 
remember them.

Because λ ∝ 1/p, we see that the mean free path 
decreases as the pressure increases.

This decrease is a result of the increase in the number
of molecules present in a given volume as the pressure
is increased, so each molecule travels a shorter dis-
tance before it collides with a neighbour. For example,
the mean free path of an O2 molecule decreases from
73 nm to 36 nm when the pressure is increased from
1.0 bar to 2.0 bar at 25°C.

Because λ ∝ 1/σ, the mean free path is shorter for
molecules with large collision cross-sections.

For instance, the collision cross-section of a benzene
molecule (0.88 nm2) is about four times greater than
that of a helium atom (0.21 nm2), and at the same
pressure and temperature its mean free path is four
times shorter.

Because z ∝ p, the collision frequency increases
with the pressure of the gas.

This dependence follows from the fact that, provided
the temperature is the same, the molecule takes less
time to travel to its neighbour in a denser, higher-
pressure gas. For example, although the collision 
frequency for an O2 molecule in oxygen gas at SATP
is 6.2 × 109 s−1, at 2.0 bar and the same temperature
the collision frequency is doubled, to 1.2 × 1010 s−1.

R

NA s p

T

Pa m3

Pa m2

l
(8.31447 ) (298 K)= ×

=
× 6.022 × 1023 × 0.40 × 10–18 × 1.00 × 105

= 7.3 × 10–8 m = 73 nm

21/2

21/2

8.31447 × 298

–1 –1J K mol

J

Pa m2

× (6.022 × 1023 mol–1) × (0.40 × 10–18 m2) × (1.00 × 105 Pa)

10–9 m = 1 nm

Because eqn 1.19 shows that z ∝ c, and we know
that c ∝ 1/M1/2, heavy molecules have lower colli-
sion frequencies than light molecules, providing
their collision cross-sections are the same.

Heavy molecules travel more slowly on average than
light molecules do (at the same temperature), so they
collide with other molecules less frequently.

Real gases

So far, everything we have said applies to perfect gases,
in which the average separation of the molecules is so
great that they move independently of one another.
In terms of the quantities introduced in the previous
section, a perfect gas is a gas for which the mean free
path, λ, of the molecules in the sample is much
greater than d, the separation at which they are re-
garded as being in contact:

Condition for perfect-gas behaviour: λ >> d

As a result of this large average separation, a perfect
gas is a gas in which the only contribution to the 
energy comes from the kinetic energy of the motion
of the molecules and there is no contribution to the
total energy from the potential energy arising from
the interaction of the molecules with one another.
However, in fact all molecules do interact with one
another provided they are close enough together, so
the ‘kinetic energy only’ model is only an approxima-
tion. Nevertheless, under most conditions the cri-
terion λ >> d is satisfied and the gas can be treated as
though it is perfect.

1.9 Molecular interactions

There are two types of contribution to the interaction
between molecules. At relatively large separations 
(a few molecular diameters), molecules attract each
other. This attraction is responsible for the con-
densation of gases into liquids at low temperatures.
At low enough temperatures the molecules of a gas
have insuAcient kinetic energy to escape from each
other’s attraction and they stick together. Second, 
although molecules attract each other when they are
a few diameters apart, as soon as they come into con-
tact they repel each other. This repulsion is responsible
for the fact that liquids and solids have a definite
bulk and do not collapse to an infinitesimal point.

Molecular interactions—the attractions and repul-
sions between molecules—give rise to a potential 
energy that contributes to the total energy of a gas.
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Because attractions correspond to a lowering of total
energy as molecules get closer together, they make a
negative contribution to the potential energy. On the
other hand, repulsions make a positive contribution
to the total energy as the molecules squash together.
Figure 1.12 illustrates the general form of the vari-
ation of the intermolecular potential energy. At large
separations, the energy-lowering interactions are
dominant, but at short distances the energy-raising
repulsions dominate.

Molecular interactions affect the bulk properties
of a gas and, in particular, their equations of state.
For example, the isotherms of real gases have shapes
that differ from those implied by Boyle’s law, particu-
larly at high pressures and low temperatures when the
interactions are most important. Figure 1.13 shows a
set of experimental isotherms for carbon dioxide. They
should be compared with the perfect-gas isotherms
shown in Fig. 1.1. Although the experimental iso-
therms resemble the perfect-gas isotherms at high
temperatures (and at low pressures, off the scale on
the right of the graph), there are very striking differ-
ences between the two at temperatures below about
50°C and at pressures above about 1 bar.

1.10 The critical temperature

To understand the significance of the isotherms in
Fig. 1.13, let’s begin with the isotherm at 20°C. At
point A the sample of carbon dioxide is a gas. As the

sample is compressed to B by pressing in a piston, the
pressure increases broadly in agreement with Boyle’s
law, and the increase continues until the sample
reaches point C. Beyond this point, we find that the
piston can be pushed in without any further increase
in pressure, through D to E. The reduction in volume
from E to F requires a very large increase in pressure.
This variation of pressure with volume is exactly
what we expect if the gas at C condenses to a compact
liquid at E. Indeed, if we could observe the sample we
would see it begin to condense to a liquid at C, and
the condensation would be complete when the piston
was pushed in to E. At E, the piston is resting on the
surface of the liquid. The subsequent reduction in
volume, from E to F, corresponds to the very high
pressure needed to compress a liquid into a smaller
volume. In terms of intermolecular interactions, the
step from C to E corresponds to the molecules being
so close on average that they attract each other and
cohere into a liquid. The step from E to F represents
the effect of trying to force the molecules even closer
together when they are already in contact, and hence
trying to overcome the strong repulsive interactions
between them.

If we could look inside the container at point D,
we would see a liquid separated from the remaining
gas by a sharp surface (Fig. 1.14). At a slightly higher
temperature (at 30°C, for instance), a liquid forms,
but a higher pressure is needed to produce it. It might
be diAcult to make out the surface because the re-
maining gas is at such a high pressure that its density
is similar to that of the liquid. At the special temper-
ature of 31.04°C (304.19 K) the gaseous state of 
carbon dioxide appears to transform continuously
into the condensed state and at no stage is there 
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Fig. 1.12 The variation of the potential energy of two
molecules with their separation. High positive potential en-
ergy (at very small separations) indicates that the interactions
between them are strongly repulsive at these distances. At
intermediate separations, where the potential energy is neg-
ative, the attractive interactions dominate. At large separa-
tions (on the right) the potential energy is zero and there is no
interaction between the molecules.
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Fig. 1.13 The experimental isotherms of carbon dioxide at
several temperatures. The critical isotherm is at 31.04°C.
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a visible surface between the two states of matter. 
At this temperature (which is 304.19 K for carbon
dioxide but varies from substance to substance),
called the critical temperature, Tc, and at all higher
temperatures, a single form of matter fills the con-
tainer at all stages of the compression and there is 
no separation of a liquid from the gas. We have to
conclude that a gas cannot be condensed to a liquid
by the application of pressure unless the temperature
is below the critical temperature.

Figure 1.14 also shows that in the critical isotherm,
the isotherm at the critical temperature, the volumes
at each end of the horizontal part of the isotherm
have merged to a single point, the critical point of the
gas. The pressure and molar volume at the critical
point are called the critical pressure, pc, and critical
molar volume, Vc, of the substance. Collectively, pc,
Vc, and Tc are the critical constants of a substance.
Table 1.4 lists the critical temperatures of some 
common gases. The data there imply, for example,
that liquid nitrogen cannot be formed by the applica-
tion of pressure unless the temperature is below 126 K
(−147°C). The critical temperature is sometimes used
to distinguish the terms ‘vapour’ and ‘gas’: a vapour
is the gaseous phase of a substance below its critical
temperature (and which can therefore be liquefied 
by compression); a gas is the gaseous phase of a 
substance above its critical temperature (and that
cannot therefore be liquefied by compression alone).
Oxygen at room temperature is therefore a true gas;
the gaseous phase of water at room temperature is 
a vapour.

The dense fluid obtained by compressing a gas
when its temperature is higher than its critical 

temperature is not a true liquid, but it behaves like a 
liquid in many respects—it has a density similar to
that of a liquid, for instance, and can act as a solvent.
However, despite its density, the fluid is not strictly 
a liquid because it never possesses a surface that 
separates it from a vapour phase. Nor is it much 
like a gas, because it is so dense. It is an example of 
a supercritical fluid. Supercritical fluids (SCF) are 
currently being used as solvents. For example, super-
critical carbon dioxide is used to extract caffeine in
the manufacture of decaffeinated coffee where, un-
like organic solvents, it does not result in the forma-
tion of an unpleasant and possibly toxic residue.
Supercritical fluids are also currently of great interest
in industrial processes, as they can be used instead 
of chlorofluorocarbons (CFC) and hence avoid the
environmental damage that CFCs are known to cause.
Because supercritical carbon dioxide is obtained either
from the atmosphere or from renewable organic
sources (by fermentation), its use does not increase
the net load of atmospheric carbon dioxide.

Increasing temperature

Fig. 1.14 When a liquid is heated in a sealed container, the
density of the vapour phase increases and that of the liquid
phase decreases, as depicted here by the changing density
of shading. There comes a stage at which the two densities
are equal and the interface between the two fluids disap-
pears. This disappearance occurs at the critical temperature.
The container needs to be strong: the critical temperature of
water is at 373°C and the vapour pressure is then 218 atm.

Table 1.4

The critical temperatures of gases

Critical temperature/°C

Noble gases

Helium, He −268 (5.2 K)
Neon, Ne −229
Argon, Ar −123
Krypton, Kr −64
Xenon, Xe 17

Halogens

Chlorine, Cl2 144
Bromine, Br2 311

Small inorganic molecules

Ammonia, NH3 132
Carbon dioxide, CO2 31
Hydrogen, H2 −240
Nitrogen, N2 −147
Oxygen, O2 −118
Water, H2O 374

Organic compounds

Benzene, C6H6 289
Methane, CH4 −83
Tetrachloromethane, CCl4 283



CHAPTER 1: THE PROPERTIES OF GASES32

1.11 The compression factor

A useful quantity for discussing the properties of real
gases is the compression factor, Z, which is the ratio
of the actual molar volume of a gas to the molar 
volume of a perfect gas under the same conditions:

(1.20a)

The molar volume of a perfect gas is RT/p (recall 
eqn 1.3), so we can rewrite this definition as

(1.20b)

where Vm is the molar volume of the gas we are
studying. For a perfect gas, Z = 1, so deviations of 
Z from 1 are a measure of how far a real gas departs
from behaving perfectly.

When Z is measured for real gases, it is found to
vary with pressure as shown in Fig. 1.15. At low pres-
sures, some gases (methane, ethane, and ammonia,
for instance) have Z < 1. That is, their molar volumes
are smaller than that of a perfect gas, suggesting that
the molecules are pulled together slightly. We can
conclude that for these molecules and these con-
ditions, the attractive interactions are dominant. The
compression factor rises above 1 at high pressures

Definition

V o
m = RT/p

Z
V
V

V
RT/p

pV
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= = =m
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Molar volume of the gas
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Z

V
V

= m

m
o

whatever the identity of the gas, and for some gases
(hydrogen in the illustration) Z > 1 at all pressures.
The type of behaviour exhibited depends on the 
temperature. The observation that Z > 1 tells us that
the molar volume of the gas is now greater than that
expected for a perfect gas of the same temperature
and pressure, so the molecules are pushed apart
slightly. This behaviour indicates that the repulsive
forces are dominant. For hydrogen, the attractive 
interactions are so weak that the repulsive inter-
actions dominate even at low pressures.

1.12 The virial equation of state

We can use the deviation of Z from its ‘perfect’ value
of 1 to construct an empirical (observation-based)
equation of state. To do so, we suppose that, for real
gases, the relation Z = 1 is only the first term of a
lengthier expression, and write instead

.. . (1.21)

The coeAcients B, C, . . . , are called virial coeGcients;
B is the second virial coeAcient, C, the third, and so
on; the unwritten A = 1 is the first. The word ‘virial’
comes from the Latin word for force, and it reflects
the fact that intermolecular forces are now signific-
ant. The virial coeAcients, which are also denoted
B2, B3, etc. in place of B, C, etc., vary from gas to 
gas and depend on the temperature. This technique,
of taking a limiting expression (in this case, Z = 1,
which applies to gases at very large molar volumes)
and supposing that it is the first term of a more 
complicated expression, is quite common in physical
chemistry. The limiting expression is the first approx-
imation to the true expression, whatever that may
be, and the additional terms progressively take into
account the secondary effects that the limiting 
expression ignores.

The most important additional term on the right in
eqn 1.21 is the one proportional to B (because under
most conditions C/V 2

m << B/Vm and C /V 2
m can be 

neglected). From the graphs in Fig. 1.15, it follows
that, for the temperature to which the data apply, B
must be positive for hydrogen (so that Z > 1) but neg-
ative for methane, ethane, and ammonia (so that for
them Z < 1). However, regardless of the sign of B, 
the positive term C /V 2

m becomes large for highly
compressed gases (when V 2

m is very small) and the
right-hand side of eqn 1.21 becomes greater than 1,
just as in the curves for the other gases in Fig. 1.15.
The values of the virial coeAcients for many gases
are known from measurements of Z over a range of
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Fig. 1.15 The variation of the compression factor, Z, with
pressure for several gases at 0°C. A perfect gas has Z = 1 at
all pressures. Of the gases shown, hydrogen shows positive
deviations at all pressures (at this temperature); all the other
gases show negative deviations initially but positive devi-
ations at high pressures. The negative deviations are a result
of the attractive interactions between molecules and the 
positive deviations are a result of the repulsive interactions.
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molar volumes and using mathematical software to
fit the data to eqn 1.21 by varying the coeAcients
until a good match is obtained.

To convert eqn 1.21 into an equation of state, 
we combine it with eqn 1.20b (Z = pVm/RT ), 
which gives

We then multiply both sides by RT /Vm we obtain

Next, we replace Vm by V/n throughout to get p as 
a function of n, V, and T:

(1.22)

Equation 1.22 is the virial equation of state. When
the molar volume is very large, the terms B/Vm and
C /V 2

m are both very small, and only the 1 inside the
parentheses survives. In this limit, the equation of
state approaches that of a perfect gas.

1.13 The van der Waals equation of state

Although it is the most reliable equation of state, the
virial equation does not give us much immediate 
insight into the behaviour of gases and their con-
densation to liquids. The van der Waals equation,
which was proposed in 1873 by the Dutch physicist
Johannes van der Waals, is only an approximate
equation of state but it has the advantage of showing
how the intermolecular interactions contribute to the
deviations of a gas from the perfect gas law. We can
view the van der Waals equation as another example
of taking a soundly based qualitative idea and build-
ing up a mathematical expression that can be tested
quantitatively.

The repulsive interaction between two molecules
implies that they cannot come closer than a certain
distance. Therefore, instead of being free to travel
anywhere in a volume V, the actual volume in which
the molecules can travel is reduced to an extent 
proportional to the number of molecules present and 
the volume they each exclude (Fig. 1.16). We can
therefore model the effect of the repulsive, volume-
excluding forces by changing V in the perfect gas
equation to V − nb, where b is the proportionality
constant between the reduction in volume and the
amount of molecules present in the container (see
Derivation 1.1).
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So far, the perfect gas equation of state changes
from p = nRT/V to

This equation of state—it is not yet the full van der
Waals equation—should describe a gas in which re-
pulsions are important. Note that when the pressure
is low, the volume is large compared with the volume
excluded by the molecules (which we write V >> nb).
The nb can then be ignored in the denominator and
the equation reduces to the perfect gas equation of
state. It is always a good plan to verify that an 
equation reduces to a known form when a plausible
physical approximation is made.

The effect of the attractive interactions between
molecules is to reduce the pressure that the gas 
exerts. We can model the effect by supposing that the
attraction experienced by a given molecule is propor-
tional to the concentration, n/V, of molecules in the
container. Because the attractions slow the molecules
down, the molecules strike the walls less frequently and
strike it with a weaker impact. (This slowing does
not mean that the gas is cooler close to the walls: the
simple relation between T and mean speed in eqn 1.15

p
nRT

V nb
=

−

r 2r

Excluded volume

Fig. 1.16 When two molecules, each of radius r and volume
Vmol = pr 3 approach each other, the centre of one of them
cannot penetrate into a sphere of radius 2r and therefore 
volume 8Vmol surrounding the other molecule.

4
3

Derivation 1.1

The molar volume of a gas described by the 
van der Waals equation

The volume of a sphere of radius R is pR3. Figure 1.16
shows that the closest distance of two hard-sphere
molecules of radius r, and volume Vmolecule = pr 3, is 2r.
Therefore, the excluded volume is p(2r )3 = 8 × ( pr 3), or
8Vmolecule. The volume excluded per molecule is one-half
this volume, or 4Vmolecule, so b ≈ 4VmoleculeNA.
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is valid only in the absence of intermolecular forces.)
We can therefore expect the reduction in pressure to
be proportional to the square of the molar concentra-
tion, one factor of n/V reflecting the reduction in fre-
quency of collisions and the other factor the reduction
in the strength of their impulse. If the constant of
proportionality is written a, we can write

It follows that the equation of state allowing for both
repulsions and attractions is

(1.23a)

This expression is the van der Waals equation of
state. To show the resemblance of this equation to
the perfect gas equation pV = nRT, eqn 1.23a is
sometimes rearranged by bringing the term propor-
tional to a to the left and multiplying throughout by
V − nb:

(1.23b)

We have built the van der Waals equation by using
physical arguments about the volumes of molecules
and the effects of forces between them. It can be 
derived in other ways, but the present method has 
the advantage of showing how to derive the form of
an equation out of general ideas. The derivation also
has the advantage of keeping imprecise the signific-
ance of the van der Waals parameters, the constants
a and b: they are much better regarded as empirical
parameters than as precisely defined molecular 
properties. The van der Waals parameters depend on
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the gas, but are taken as independent of temperature
(Table 1.5). It follows from the way we have con-
structed the equation that a (the parameter repre-
senting the role of attractions) can be expected to be
large when the molecules attract each other strongly,
whereas b (the parameter representing the role of 
repulsions) can be expected to be large when the
molecules are large.

We can judge the reliability of the van der Waals
equation by comparing the isotherms it predicts,
which are shown in Fig. 1.17, with the experimental
isotherms already shown in Fig. 1.13. Apart from the
waves below the critical temperature they do resem-
ble experimental isotherms quite well. The waves,
which are called van der Waals’ loops, are unrealistic
because they suggest that under some conditions
compression results in a decrease of pressure. The
loops are therefore trimmed away and replaced by
horizontal lines (Fig. 1.18). The van der Waals para-
meters in Table 1.5 were found by fitting the calcu-
lated curves to experimental isotherms.

Two important features of the van der Waals
equation should be noted. First, perfect-gas isotherms
are obtained from the van der Waals equation at high
temperatures and low pressures. To confirm this 
remark, we need to note that when the temperature
is high, RT may be so large that the first term on the
right in eqn 1.23a greatly exceeds the second, so the
latter may be ignored. Furthermore, at low pressures,
the molar volume is so large that V − nb can be re-
placed by V. Hence, under these conditions (of high
temperature and low pressure), eqn 1.23a reduces to
p = nRT/V, the perfect gas equation. Second, and as
shown in Derivation 1.2, the critical constants are 
related to the van der Waals coeAcients as follows:

Table 1.5

van der Waals parameters of gases

Substance a /(atm dm6 mol−2) b /(10−2 dm3 mol−1)

Air 1.4 0.039
Ammonia, NH3 4.225 3.71
Argon, Ar 1.337 3.20
Carbon dioxide, CO2 3.610 4.29
Ethane, C2H6 5.507 6.51
Ethene, C2H4 4.552 5.82
Helium, He 0.0341 2.38
Hydrogen, H2 0.2420 2.65
Nitrogen, N2 1.352 3.87
Oxygen, O2 1.364 3.19
Xenon, Xe 4.137 5.16
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Vc = 3b (1.24)

The first of these relations shows that the critical 
volume is about three times the volume occupied by
the molecules themselves.
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Fig. 1.17 Isotherms calculated by using the van der Waals
equation of state. The axes are labelled with the ‘reduced
pressure’, p/pc, and ‘reduced volume’, V /Vc, where 
pc = a /27b2 and Vc = 3b. The individual isotherms are labelled
with the ‘reduced temperature’, T /Tc, where Tc = 8a/27Rb.
The isotherm labelled 1 is the critical isotherm (the isotherm
at the critical temperature).

interActivity (a) Show that the van der Waals equa-
tion may be written as p = RT /(Vm − b) − a /V 2

m. (b) Use
your result to show that the van der Waals equation may 
also be written as V 3

m − (b + RT /p)V 2
m + (a /p)Vm − ab /p = 0. 

(c) Calculate the molar volume of carbon dioxide gas at 500 K
and 150 kPa by using mathematical software to find the 
physically acceptable roots of the equation from part (b). 
(c) Calculate the percentage difference between the value
you calculated in part (b) and the value predicted by the per-
fect gas equation.
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Fig. 1.18 The unphysical van der Waals loops are eliminated
by drawing straight lines that divide the loops into areas of
equal size. With this procedure, the isotherms strongly re-
semble the observed isotherms.

Derivation 1.2

Relating the critical constants to the van der
Waals parameters

We see from Fig. 1.17 that, for T < Tc, the calculated
isotherms oscillate, and each one passes through a min-
imum followed by a maximum. These extrema converge
as T → Tc and coincide at T = Tc; at the critical point the
curve has a flat inflexion (1). From the properties of
curves, we know that an inflexion of this type occurs
when both the first and second derivatives are zero.
Hence, we can find the critical temperature by calculat-
ing these derivatives and setting them equal to zero.
First, we use Vm = V/n to write eqn 1.23a as

The first and second derivatives of p with respect to Vm

are, respectively:

At the critical point T = Tc, Vm = Vc, and both derivatives
are equal to zero:

Solving this pair of equations gives (as you should verify)
the expressions for Vc and Tc in eqn 1.24. When they are
inserted in the van der Waals equation itself, we find the
expression for pc given there too.
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1.14 The liquefaction of gases

A gas may be liquefied by cooling it below its boiling
point at the pressure of the experiment. For example,
chlorine at 1 atm can be liquefied by cooling it to
below −34°C in a bath cooled with dry ice (solid 
carbon dioxide). For gases with very low boiling
points (such as oxygen and nitrogen, at −183°C and
−186°C, respectively), such a simple technique is not
practicable unless an even colder bath is available.

One alternative and widely used commercial tech-
nique makes use of the forces that act between
molecules. We saw earlier that the rms speed of
molecules in a gas is proportional to the square root
of the temperature (eqn 1.15). It follows that reduc-
ing the rms speed of the molecules is equivalent to
cooling the gas. If the speed of the molecules can be
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reduced to the point that neighbours can capture
each other by their intermolecular attractions, then
the cooled gas will condense to a liquid.

To slow the gas molecules, we make use of an effect
similar to that seen when a ball is thrown into the air:
as it rises it slows in response to the gravitational 
attraction of the Earth and its kinetic energy is con-
verted into potential energy. Molecules attract each
other, as we have seen (the attraction is not gravita-
tional, but the effect is the same), and if we can cause
them to move apart from each other, like a ball rising
from a planet, then they should slow. It is very easy
to move molecules apart from each other: we simply
allow the gas to expand, which increases the average
separation of the molecules. To cool a gas, therefore,
we allow it to expand without allowing any heat to
enter from outside. As it does so, the molecules move
apart to fill the available volume, struggling as they
do so against the attraction of their neighbours.
Because some kinetic energy must be converted into
potential energy to reach greater separations, the
molecules travel more slowly as their separation 
increases. Therefore, because the average speed of
the molecules has been reduced, the gas is now cooler
than before the expansion. This process of cooling a
real gas by expansion through a narrow opening called
a ‘throttle’ is called the Joule–Thomson effect. The
effect was first observed and analysed by James Joule
(whose name is commemorated in the unit of energy)
and William Thomson (who later became Lord

Kelvin). The procedure works only for real gases in
which the attractive interactions are dominant, because
the molecules have to climb apart against the attrac-
tive force in order for them to travel more slowly. 
For molecules under conditions when repulsions 
are dominant (corresponding to Z > 1), the Joule–
Thomson effect results in the gas becoming warmer.

In practice, the gas is allowed to expand several
times by recirculating it through a device called a
Linde refrigerator (Fig. 1.19). On each successive ex-
pansion the gas becomes cooler, and as it flows past
the incoming gas, the latter is cooled further. After
several successive expansions, the gas becomes so
cold that it condenses to a liquid.

Heat
exchanger

Compressor

Throttle

Liquid

Cold
gas

Fig. 1.19 The principle of the Linde refrigerator. The gas is re-
circulated and cools the gas that is about to undergo expan-
sion through the throttle. The expanding gas cools still
further. Eventually, liquefied gas drips from the throttle.

Checklist of key ideas

You should now be familiar with the following concepts.

1 An equation of state is an equation relating 
pressure, volume, temperature, and amount of 
a substance.

2 The perfect-gas equation of state is based on
Boyle’s law (p ∝ 1/V ), Charles’ law (V ∝ T ), and
Avogadro’s principle (V ∝ n).

3 Dalton’s law states that the total pressure of a
mixture of perfect gases is the sum of the pres-
sures that each gas would exert if it were alone in
the container at the same temperature.

4 The partial pressure of any gas is defined as pJ =
xJp, where xJ is its mole fraction in a mixture and
p is the total pressure.

5 The kinetic model of gases expresses the proper-
ties of a perfect gas in terms of a collection of
mass points in ceaseless random motion.

6 The mean speed and root-mean-square speed of
molecules is proportional to the square root of 
the (absolute) temperature and inversely propor-
tional to the square root of the molar mass.

7 The properties of the Maxwell distribution of
speeds are summarized in Figs. 1.8 and 1.9.

8 Diffusion is the spreading of one substance
through another; effusion is the escape of a gas
through a small hole.

9 Graham’s law states that the rate of effusion is 
inversely proportional to the square root of the
molar mass.

10 The Joule–Thomson effect is the cooling of gas
that occurs when it expands through a throttle
without the influx of heat.
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The following table summarizes the equations that have been developed in this chapter.

Property

Perfect gas law

Partial pressure

Dalton’s law

Virial equation of state

Mean free path, speed, and 
collision frequency

van der Waals equation of state

Maxwell distribution of speeds

Table of key equations

Equation

pV = nRT

pJ = xJp

p = pA + pB + . . .

p = (nRT /V )(1 + nB /V + n2C /V 2 + . . .)

c = lz

p = nRT /(V − nb) − a(n /V )2
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Further information 1.1

Kinetic molecular theory

One of the essential skills of a physical chemist is the 
ability to turn simple, qualitative ideas into rigid, testable,
quantitative theories. The kinetic model of gases is an 
excellent example of this technique, as it takes the concepts
set out in the text and turns them into precise expressions.
As usual in model building, there are a number of steps, but
each one is motivated by a clear appreciation of the under-
lying physical picture, in this case a swarm of mass points
in ceaseless random motion. The key quantitative ingredi-
ents we need are the equations of classical mechanics. So
we begin with a brief review of velocity, momentum, and
Newton’s second law of motion.

The velocity, v, is a vector, a quantity with both magni-
tude and direction. The magnitude of the velocity vector is
the speed, v, given by v = (vx

2 + vy
2 + vz

2)1/2, where vx, vy, and
vz, are the components of the vector along the x-, y-, and 
z-axes, respectively (Fig. 1.20). The magnitude of each
component, its value without a sign, is denoted |. . .|. For 
example, |vx | means the magnitude of vx. The linear 
momentum, p, of a particle of mass m is the vector p = mv
with magnitude p = mv. Newton’s second law of motion
states that the force acting on a particle is equal to the rate
of change of the momentum, the change of momentum 
divided by the interval during which that change occurs.

Now we begin the derivation of eqn 1.9 by considering
the arrangement in Fig. 1.21. When a particle of mass m
that is travelling with a component of velocity vx parallel to
the x-axis (vx > 0 corresponding to motion to the right and
vx < 0 to motion to the left) collides with the wall on the

right and is reflected, its linear momentum changes from
+m |vx | before the collision to −m |vx | after the collision
(when it is travelling in the opposite direction at the same
speed). The x-component of the momentum therefore
changes by 2m|vx | on each collision (the y- and z-com-
ponents are unchanged). Many molecules collide with the
wall in an interval Δt, and the total change of momentum is
the product of the change in momentum of each molecule
multiplied by the number of molecules that reach the wall
during the interval.

Next, we need to calculate that number. Because a
molecule with velocity component vx can travel a distance
|vx |Δt along the x-axis in an interval Δt, all the molecules
within a distance |vx |Δt of the wall will strike it if they are
travelling towards it. It follows that if the wall has area A,
then all the particles in a volume A × |vx |Δt will reach the

v

vx
vy

vz

Fig. 1.20 A vector v and its three components on a set of
perpendicular axes.
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wall (if they are travelling towards it). The number density,
the number of particles divided by the total volume, is
nNA/V (where n is the total amount in moles of molecules
in the container of volume V and NA is Avogadro’s con-
stant), so the number of molecules in the volume A|vx |Δt is
(nNA/V ) × A|vx |Δt. At any instant, half the particles are
moving to the right and half are moving to the left.
Therefore, the average number of collisions with the wall
during the interval Δt is nNAA |vx |Δt /V.

The total momentum change in the interval Δt is the
product of the number we have just calculated and the
change 2m |vx |:

1
2

Next, to find the force, we calculate the rate of change of
momentum:

It follows that the pressure, the force divided by the area, is

Not all the molecules travel with the same velocity, so the
detected pressure, p, is the average (denoted 〈. . .〉) of the
quantity just calculated:

To write an expression of the pressure in terms of the root
mean square speed, c, we begin by writing the speed of a
single molecule, v, as v2 = vx

2 + vy
2 + vz

2. Because the root-
mean-square speed, c, is defined as c = 〈v2 〉1/2 (eqn 1.10), it
follows that

c2 = 〈v2 〉 = 〈vx
2 〉 + 〈vy

2 〉 + 〈vz
2 〉

However, because the molecules are moving randomly, all
three averages are the same. It follows that c2 = 3〈vx

2 〉.
Equation 1.9 now follows by substituting 〈vx

2 〉 = c2 into
p = nM 〈vx

2 〉 /V.

1
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Fig. 1.21 The model used for calculating the pressure of a
perfect gas according to the kinetic molecular theory. Here,
for clarity, we show only the x-component of the velocity (the
other two components are not changed when the molecule
collides with the wall). All molecules within the shaded area
will reach the wall in an interval Dt provided they are moving
towards it.

Questions and exercises

Discussion questions

1.1 Explain how the experiments of Boyle, Charles, and
Avogadro led to the formulation of the perfect gas equation
of state.

1.2 Explain the term ‘partial pressure’ and why Dalton’s law
is a limiting law.

1.3 Use the kinetic model of gases to explain why light
gases, such as H2 and He, are rare in the Earth’s atmosphere
but heavier gases, such as O2, CO2, and N2 are abundant.

1.4 Provide a molecular interpretation for the variation of the
rates of diffusion and effusion of gases with temperature.

1.5 Explain how the compression factor varies with pressure
and temperature and describe how it reveals information
about intermolecular interactions in real gases.

1.6 What is the significance of the critical constants?

1.7 Describe the formulation of the van der Waals equation
of state.

1.8 Describe the Joule–Thomson effect and its application to
the liquefaction of gases.

Exercises

Treat all gases as perfect unless instructed otherwise.

1.1 What pressure is exerted by a sample of nitrogen gas of
mass 3.055 g in a container of volume 3.00 dm3 at 32°C?

1.2 A sample of neon of mass 425 mg occupies 6.00 dm3 at
77 K. What pressure does it exert?

1.3 Much to everyone’s surprise, nitrogen monoxide (NO)
has been found to act as a neurotransmitter. To prepare to
study its effect, a sample was collected in a container of 
volume 300.0 cm3. At 14.5°C its pressure is found to be 
34.5 kPa. What amount (in moles) of NO has been collected?
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1.4 A domestic water-carbonating kit uses steel cylinders of
carbon dioxide of volume 250 cm3. They weigh 1.04 kg when
full and 0.74 kg when empty. What is the pressure of gas in
the cylinder at 20°C?

1.5 The effect of high pressure on organisms, including 
humans, is studied to gain information about deep-sea diving
and anaesthesia. A sample of air occupies 1.00 dm3 at 25°C
and 1.00 atm. What pressure is needed to compress it to 100
cm3 at this temperature?

1.6 You are warned not to dispose of pressurized cans by
throwing them on to a fire. The gas in an aerosol container 
exerts a pressure of 125 kPa at 18°C. The container is thrown
on a fire, and its temperature rises to 700°C. What is the pres-
sure at this temperature?

1.7 Until we find an economical way of extracting oxygen
from sea-water or lunar rocks, we have to carry it with us to
inhospitable places, and do so in compressed form in tanks.
A sample of oxygen at 101 kPa is compressed at constant
temperature from 7.20 dm3 to 4.21 dm3. Calculate the final
pressure of the gas.

1.8 To what temperature must a sample of helium gas be
cooled from 22.2°C to reduce its volume from 1.00 dm3 to
100 cm3?

1.9 Hot-air balloons gain their lift from the lowering of den-
sity of air that occurs when the air in the envelope is heated.
To what temperature should you heat a sample of air, initially
at 315 K, to increase its volume by 25 per cent?

1.10 At sea level, where the pressure was 104 kPa and the
temperature 21.1°C, a certain mass of air occupied 2.0 m3.
To what volume will the region expand when it has risen to an
altitude where the pressure and temperature are (a) 52 kPa,
−5.0°C, (b) 880 Pa, −52.0°C?

1.11 A diving bell has an air space of 3.0 m3 when on the
deck of a boat. What is the volume of the air space when the
bell has been lowered to a depth of 50 m? Take the mean
density of sea water to be 1.025 g cm−3 and assume that the
temperature is the same as on the surface.

1.12 Balloons were used to obtain much of the early infor-
mation about the atmosphere and continue to be used today
to obtain weather information. In 1782, Jacques Charles
used a hydrogen-filled balloon to fly from Paris 25 km into the
French countryside. What is the mass density of hydrogen
relative to air at the same temperature and pressure? What
mass of payload can be lifted by 10 kg of hydrogen, neglect-
ing the mass of the balloon?

1.13 Atmospheric pollution is a problem that has received
much attention. Not all pollution, however, is from industrial
sources. Volcanic eruptions can be a significant source of air
pollution. The Kilauea volcano in Hawaii emits 200–300 t of
SO2 per day. If this gas is emitted at 800°C and 1.0 atm, what
volume of gas is emitted?

1.14 A meteorological balloon had a radius of 1.5 m when 
released at sea level at 20°C and expanded to a radius of 3.5 m
when it had risen to its maximum altitude where the temper-
ature was −25°C. What is the pressure inside the balloon at
that altitude?

1.15 A gas mixture being used to simulate the atmosphere
of another planet consists of 320 mg of methane, 175 mg of
argon, and 225 mg of nitrogen. The partial pressure of nitro-
gen at 300 K is 15.2 kPa. Calculate (a) the volume and (b) the
total pressure of the mixture.

1.16 The vapour pressure of water at blood temperature is
47 Torr. What is the partial pressure of dry air in our lungs
when the total pressure is 760 Torr?

1.17 A determination of the density of a gas or vapour can pro-
vide a quick estimate of its molar mass even though for prac-
tical work mass spectrometry is far more precise. The density
of a gaseous compound was found to be 1.23 g dm−3 at 330 K
and 25.5 kPa. What is the molar mass of the compound?

1.18 In an experiment to measure the molar mass of a 
gas, 250 cm3 of the gas was confined in a glass vessel. The
pressure was 152 Torr at 298 K and the mass of the gas was
33.5 mg. What is the molar mass of the gas?

1.19 A vessel of volume 22.4 dm3 contains 2.0 mol H2 and
1.0 mol N2 at 273.15 K. Calculate (a) their partial pressures
and (b) the total pressure.

1.20 Calculate the mean speed of (a) He atoms, (b) CH4

molecules at (i) 79 K, (ii) 315 K, (iii) 1500 K.

1.21 A 1.0 dm3 glass bulb contains 1.0 × 1023 H2 molecules.
If the pressure exerted by the gas is 100 kPa, what is (a) the
temperature of the gas, (b) the root-mean-square speeds of
the molecules. (c) Would the temperature be different if they
were O2 molecules?

1.22 At what pressure does the mean free path of argon at
25°C become comparable to the diameter of a spherical ves-
sel of volume 1.0 dm3 that contains it? Take s = 0.36 nm2.

1.23 At what pressure does the mean free path of argon at
25°C become comparable to 10 times the diameters of the
atoms themselves? Take s = 0.36 nm2.

1.24 When we are studying the photochemical processes
that can occur in the upper atmosphere, we need to know how
often atoms and molecules collide. At an altitude of 20 km the
temperature is 217 K and the pressure is 0.050 atm. What is
the mean free path of N2 molecules? Take s = 0.43 nm2.

1.25 How many collisions does a single Ar atom make in 1.0
s when the temperature is 25°C and the pressure is (a) 10
bar, (b) 100 kPa, (c) 1.0 Pa?

1.26 Calculate the total number of collisions per second in
1.0 dm3 of argon under the same conditions as in Exercise 1.25.

1.27 How many collisions per second does an N2 molecule
make at an altitude of 20 km? (See Exercise 1.24 for data.)

1.28 The spread of pollutants through the atmosphere is
governed partly by the effects of winds but also by the natural
tendency of molecules to diffuse. The latter depends on how
far a molecule can travel before colliding with another mole-
cule. Calculate the mean free path of diatomic molecules in air
using s = 0.43 nm2 at 25°C and (a) 10 bar, (b) 103 kPa, (c) 1.0 Pa.

1.29 How does the mean free path in a sample of a gas vary
with temperature in a constant-volume container?
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1.30 Calculate the pressure exerted by 1.0 mol C2H6 behaving
as (a) a perfect gas, (b) a van der Waals gas when it is confined
under the following conditions: (i) at 273.15 K in 22.414 dm3,
(ii) at 1000 K in 100 cm3. Use the data in Table 1.5.

1.31 How reliable is the perfect gas law in comparison with
the van der Waals equation? Calculate the difference in 
pressure of 10.00 g of carbon dioxide confined to a container
of volume 100 cm3 at 25.0°C between treating it as a perfect
gas and a van der Waals gas.

1.32 Express the van der Waals equation of state as a virial
expansion in powers of 1/Vm and obtain expressions for B
and C in terms of the parameters a and b. Hint. The expansion
you will need is (1 − x )−1 = 1 + x + x 2 + . . .. Series expansions
are discussed in Appendix 2.

1.33 A certain gas obeys the van der Waals equation with 
a = 0.50 m6 Pa mol−2. Its volume is found to be 5.00 × 10− 4 m3

mol−1 at 273 K and 3.0 MPa. From this information calculate
the van der Waals constant b. What is the compression fac-
tor for this gas at the prevailing temperature and pressure?

1.34 Measurements on argon gave B = −21.7 cm3 mol−1 and
C = 1200 cm6 mol−2 for the virial coefficients at 273 K. What
are the values of a and b in the corresponding van der Waals
equation of state?

1.35 Show that there is a temperature at which the second
virial coefficient, B, is zero for a van der Waals gas, and cal-
culate its value for carbon dioxide. Hint: Use the expression
for B derived in Exercise 1.32.

1.36 The critical constants of ethane are pc = 48.20 atm, 
Vc = 148 cm3 mol−1, and Tc = 305.4 K. Calculate the van der
Waals parameters of the gas and estimate the radius of 
the molecules.

Projects

The symbol ‡ indicates that calculus is required.

1.37‡ In the following exercises you will explore the
Maxwell distribution of speeds in more detail.

(a) Confirm that the mean speed of molecules of 
molar mass M at a temperature T is equal to
(8RT/pM )1/2. Hint: You will need an integral of the
form �

∞

0
x 3e−ax2

dx = n!/2a2.

(b) Confirm that the root-mean-square speed of mole-
cules of molar mass M at a temperature T is
equal to (3RT /M )1/2 and hence confirm eqn 1.13. 
Hint: You will need an integral of the form 

�
∞

0
x 4e−ax2

dx = (3/8a2)(p /a )1/2.

(c) Find an expression for the most probable speed of
molecules of molar mass M at a temperature T. Hint:
Look for a maximum in the Maxwell distribution (the
maximum occurs as dF/ds = 0).

(d) Estimate the fraction of N2 molecules at 500 K that
have speeds in the range 290 to 300 m s−1.

1.38‡ Here we explore the van der Waals equation of state.
Using the language of calculus, the critical point of a van der

Waals gas occurs where the isotherm has a flat inflexion,
which is where dp /dVm = 0 (zero slope) and d2p /dV 2

m = 0 (zero
curvature).

(a) Evaluate these two expressions using eqn 1.23b, and
find expressions for the critical constants in terms of
the van der Waals parameters.

(b) Show that the value of the compression factor at the
critical point is .

1.39 The kinetic model of gases is valid when the size of the
particles is negligible compared with their mean free path. It
may seem absurd, therefore, to expect the kinetic theory
and, as a consequence, the perfect gas law, to be applicable
to the dense matter of stellar interiors. In the Sun, for in-
stance, the density is 150 times that of liquid water at its cen-
tre and comparable to that of water about half-way to its
surface. However, we have to realize that the state of matter
is that of a plasma, in which the electrons have been stripped
from the atoms of hydrogen and helium that make up the
bulk of the matter of stars. As a result, the particles making
up the plasma have diameters comparable to those of nuclei,
or about 10 fm. Therefore, a mean free path of only 0.1 pm
satisfies the criterion for the validity of the kinetic model and
the perfect gas law. We can therefore use pV = nRT as the
equation of state for the stellar interior.

(a) Calculate the pressure half-way to the centre of the
Sun, assuming that the interior consists of ionized 
hydrogen atoms, the temperature is 3.6 MK, and the
mass density is 1.20 g cm−3 (slightly higher than the
density of water).

(b) Combine the result from part (a) with the expression
for the pressure from kinetic model to show that the
pressure of the plasma is related to its kinetic energy
density rk = Ek /V, the kinetic energy of the molecules
in a region divided by the volume of the region, by

p = rk

(c) What is the kinetic energy density half-way to the 
centre of the Sun? Compare your result with the
(translational) kinetic energy density of the Earth’s 
atmosphere on a warm day (25°C): 1.5 × 105 J m−3

(corresponding to 0.15 J cm−3).

(d) A star eventually depletes some of the hydrogen in its
core, which contracts and results in higher tempera-
tures. The increased temperature results in an in-
crease in the rates of nuclear reaction, some of which
result in the formation of heavier nuclei, such as 
carbon. The outer part of the star expands and cools 
to produce a red giant. Assume that half-way to the
centre a red giant has a temperature of 3500 K, is 
composed primarily of fully ionized carbon atoms and
electrons, and has a mass density of 1200 kg m−3.
What is the pressure at this point?

(e) If the red giant in part (d) consisted of neutral carbon
atoms, what would be the pressure at the same point
under the same conditions?

2
3
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The branch of physical chemistry known as ther-
modynamics is concerned with the study of the 
transformations of energy and, in particular, the
transformation of heat into work and vice versa. 
That concern might seem remote from chemistry; 
indeed, thermodynamics was originally formulated by
physicists and engineers interested in the eAciency
of steam engines. However, thermodynamics has
proved to be of immense importance in chemistry.
Not only does it deal with the energy output of chem-
ical reactions but it also helps to answer questions
that lie right at the subject’s heart, such as why reac-
tions reach equilibrium, their composition at equi-
librium, and how reactions in electrochemical (and
biological) cells can be used to generate electricity.

Classical thermodynamics, the thermodynam-
ics developed during the nineteenth century,
stands aloof from any models of the internal
constitution of matter: we could develop and

use thermodynamics without ever mentioning atoms
and molecules. However, the subject is greatly enriched
by acknowledging that atoms and molecules do exist and 
interpreting thermodynamic properties and relations in
terms of them. Wherever it is appropriate, we shall cross
back and forth between thermodynamics, which pro-
vides useful relations between observable properties of
bulk matter, and the properties of atoms and molecules,
which are ultimately responsible for these bulk proper-
ties. When we call on a molecular interpretation, we shall
signal it with the icon shown here. The theory of the con-
nection between atomic and bulk thermodynamic prop-
erties is called statistical thermodynamics and is treated
in Chapter 22.

Chemical thermodynamics is a tree with many
branches. Thermochemistry is the branch that deals
with the heat output of chemical reactions. As we
elaborate the content of thermodynamics, we shall see
that we can also discuss the output of energy in the
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form of work. This connection leads us into the fields
of electrochemistry, the interaction between electri-
city and chemistry, and bioenergetics, the deployment
of energy in living organisms. The whole of equilib-
rium chemistry—the formulation of equilibrium con-
stants, and the very special case of the equilibrium
composition of solutions of acids and bases—is an
aspect of thermodynamics.

The conservation of energy

Almost every argument and explanation in chemistry
boils down to a consideration of some aspect of a 
single property: the energy. Energy determines what
molecules may form, what reactions may occur, 
how fast they may occur, and—with a refinement in
our conception of energy that we explore in Chap-
ter 4—in which direction a reaction has a tendency 
to occur.

As we saw in the Introduction:

Energy is the capacity to do work.

Work is done to achieve motion against an oppos-
ing force.

These definitions imply that a raised weight of a
given mass has more energy than one of the same
mass resting on the ground because the former has a
greater capacity to do work: it can do work as it falls
to the level of the lower weight. The definition also
implies that a gas at high temperature has more 
energy than the same gas at a low temperature: the
hot gas has a higher pressure and can do more work
in driving out a piston.

People struggled for centuries to create energy
from nothing, for they believed that if they could 
create energy, then they could produce work (and
wealth) endlessly. However, without exception, des-
pite strenuous efforts, many of which degenerated
into deceit, they failed. As a result of their failed 
efforts, we have come to recognize that energy can be
neither created nor destroyed but merely converted
from one form into another or moved from place 
to place. This ‘law of the conservation of energy’ is 
of great importance in chemistry. Most chemical 
reactions release energy or absorb it as they occur; 
so according to the law of the conservation of energy,
we can be confident that all such changes must 
result only in the conversion of energy from one form
into another or its transfer from place to place, 
not its creation or annihilation. The detailed study 
of that conversion and transfer is the domain of 
thermodynamics.

2.1 Systems and surroundings

In thermodynamics, a system is the part of the world
in which we have a special interest. The surround-
ings are where we make our observations (Fig. 2.1).
The surroundings, which can be modelled as a large
water bath, remain at constant temperature regard-
less of how much energy flows into or out of them.
They are so huge that they also have either constant
volume or constant pressure regardless of any
changes that take place to the system. Thus, even
though the system might expand, the surroundings
remain effectively the same size.

We need to distinguish three types of systems 
(Fig. 2.2):

An open system can exchange both energy and
matter with its surroundings.

A closed system can exchange energy but not 
matter with its surroundings.

An isolated system can exchange neither matter
nor energy with its surroundings.

An example of an open system is a flask that is not
stoppered and to which various substances can be
added. A biological cell is an open system because
nutrients and waste can pass through the cell wall.
You and I are open systems: we ingest, respire, per-
spire, and excrete. An example of a closed system is a
stoppered flask: energy can be exchanged with the
contents of the flask because the walls may be able 
to conduct heat. An example of an isolated system 
is a sealed flask that is thermally, mechanically, and
electrically insulated from its surroundings.

Surroundings

Universe

System

Surroundings

Universe

Fig. 2.1 The sample is the system of interest; the rest of 
the world is its surroundings. The surroundings are where 
observations are made on the system. They can often be
modelled, as here, by a large water bath. The universe con-
sists of the system and surroundings.



THE CONSERVATION OF ENERGY 43

2.2 Work and heat

Energy can be exchanged between a closed system
and its surroundings by doing work or by the process
called ‘heating’. A system does work when it causes
motion against an opposing force. We can identify
when a system does work by noting whether the 
process can be used to change the height of a weight
somewhere in the surroundings. Heating is the 
process of transferring energy as a result of a tem-
perature difference between the system and its 
surroundings. To avoid a lot of awkward circumlocu-
tion, it is common to say that ‘energy is transferred 
as work’ when the system does work, and ‘energy 
is transferred as heat’ when the system heats or 
is heated by its surroundings. However, we should 
always remember that ‘work’ and ‘heat’ are modes of
transfer of energy, not forms of energy.

Although in everyday language the terms ‘temper-
ature’ and ‘heat’ are sometimes not distinguished,
they are entirely different entities:

Heat, q, is energy in transit as a result of a temper-
ature difference.

Temperature, T, is an intensive property that is
used to define the state of a system and determines
the direction in which energy flows as heat.

Later in the text we shall discuss the molecular
interpretation of temperature. At this stage, all
we need to appreciate is that the temperature is
the single parameter that tells us the relative

populations of the available energy levels in a system.
We need to recall from introductory chemistry courses
that molecules can possess only certain energies (the 
energy is ‘quantized’). At any given temperature, the num-
bers of molecules that occupy the available energy levels

depend on the temperature: at low temperatures, most
molecules are in the lowest energy states; as the temper-
ature is raised, more molecules occupy states of higher
energy, so the population spreads into these upper states
(Fig. 2.3). Temperature is the parameter that summarizes
this spread of populations.

Walls that permit heating as a mode of transfer of
energy are called diathermic (Fig. 2.4). A metal con-
tainer is diathermic. Walls that do not permit heating
even though there is a difference in temperature are

Closed

Isolated

Open

Fig. 2.2 A system is open if it can exchange energy and mat-
ter with its surroundings, closed if it can exchange energy but
not matter, and isolated if it can exchange neither energy nor
matter.

High
temperature

Low
temperature

E
n

er
g

y

(a) (b)

Fig. 2.3 The temperature is a parameter that indicates the
extent to which the exponentially decaying Boltzmann distri-
bution reaches up into the higher energy levels of a system.
(a) When the temperature is low, only the lower energy
states are occupied (as indicated by the green rectangles). 
(b) At higher temperatures, more higher states are occupied.
In each case, the populations decay exponentially with 
increasing temperature, with the total population of all levels
a constant.

Hot

Hot

Cold

Cold

(a) Diathermic

(b) Adiabatic

Fig. 2.4 (a) A diathermic wall permits the passage of energy
as heat; (b) an adiabatic wall does not, even if there is a tem-
perature difference across the wall.
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called adiabatic (from the Greek words for ‘not pass-
ing through’). The double walls of a vacuum flask are
adiabatic to a good approximation.

As an example of the different ways of transferring
energy, consider a chemical reaction that produces
gases, such as the reaction of an acid with zinc:

Zn(s) + 2 HCl(aq) → ZnCl2(aq) + H2(g)

Suppose first that the reaction takes place inside a
cylinder fitted with a piston, then the gas produced
drives out the piston and raises a weight in the sur-
roundings (Fig. 2.5). In this case, energy has mig-
rated to the surroundings as a result of the system
doing work because a weight has been raised in the
surroundings: that weight can now do more work, so
it possesses more energy. Some energy also migrates
into the surroundings as heat. We can detect that
transfer of energy by immersing the reaction vessel 
in an ice bath and noting how much ice melts.
Alternatively, we could let the same reaction take
place in a vessel with a piston locked in position. No
work is done, because no weight is raised. However,
because it is found that more ice melts than in the
first experiment, we can conclude that more energy
has migrated to the surroundings as heat.

A process in a system that releases energy as heat is
called exothermic. A process in a system that absorbs
energy as heat is called endothermic. An example 
of an exothermic reaction is any combustion of 
an organic compound. Endothermic reactions are

much less common. The endothermic dissolution of 
ammonium nitrate in water is the basis of the instant
cold-packs that are included in some first-aid kits.
They consist of a plastic envelope containing water
dyed blue (for psychological reasons) and a small
tube of ammonium nitrate, which is broken when the
pack is to be used.

The clue to the molecular nature of work comes
from thinking about the motion of a weight in
terms of its component atoms. When a weight is
raised, all its atoms move in the same direction.

This observation suggests that work is the mode of trans-
fer of energy that achieves or utilizes uniform motion in
the surroundings (Fig. 2.6). Whenever we think of work,
we can always think of it in terms of uniform motion of
some kind. Electrical work, for instance, corresponds to
electrons being pushed in the same direction through a
circuit. Mechanical work corresponds to atoms being
pushed in the same direction against an opposing force.

Now consider the molecular nature of heat. When en-
ergy is transferred as heat to the surroundings, the atoms 
and molecules oscillate more vigorously around their 
positions or move more rapidly from place to place. The
key point is that the motion stimulated by the arrival of
energy from the system as heat is disorderly, not uniform
as in the case of doing work. This observation suggests
that heat is the mode of transfer of energy that achieves 
or utilizes disorderly motion in the surroundings (Fig. 2.7).
A fuel burning, for example, generates disorderly molecu-
lar motion in its vicinity.

An interesting historical point is that the molecular 
difference between work and heat correlates with the
chronological order of their application. The release of

Fig. 2.5 When hydrochloric acid reacts with zinc, the hydro-
gen gas produced must push back the surrounding atmo-
sphere (represented by the weight resting on the piston), and
hence must do work on its surroundings. This is an example
of energy leaving a system as work.

Surroundings

System

Energy as work

Fig. 2.6 Work is transfer of energy that causes or utilizes 
uniform motion of atoms in the surroundings. For example,
when a weight is raised, all the atoms of the weight (shown
magnified) move in unison in the same direction.
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energy when a fire burns is a relatively unsophisticated
procedure because the energy emerges in a disordered
fashion from the burning fuel. It was developed—
stumbled upon—early in the history of civilization. The
generation of work by a burning fuel, in contrast, relies 
on a carefully controlled transfer of energy so that vast
numbers of molecules move in unison. Apart from
Nature’s achievement of work through the evolution of
muscles, the large-scale transfer of energy by doing work
was achieved thousands of years later than the transfer
of energy by heating, as it had to await the development
of the steam engine.

2.3 The measurement of work

We saw in Section 0.3 that the force opposing the
raising of a mass m vertically on the surface of the
Earth is mg, where g is the acceleration of free fall
(9.81 m s−2). Therefore, the work done to raise the
mass through a height h is

Work = mgh (2.1)

It follows that we have a simple way of measuring
the work done by or on a system: we measure the
height through which a weight is raised or lowered in
the surroundings and then use eqn 2.1.

A brief illustration To raise a book like this one (of
mass about 1.0 kg) from the floor to the table 75 cm
above requires

Work = (1.0 kg) × (9.81 m s−2) × (0.75 m) 

= 7.4 kg m2 s−2 = 7.4 J

(We saw in Section 0.4 that 1 J = 1 kg m2 s−2 .)

When a system does work, such as by raising a
weight in the surroundings or forcing an electric 
current through a circuit, the energy transferred, w,
is reported as a negative quantity. For instance, if 
a system raises a weight in the surroundings and in
the process does 100 J of work (that is, 100 J of 
energy leaves the system by doing work), then we
write w = −100 J. When work is done on the sys-
tem—for example, when we wind a spring inside a
clockwork mechanism—w is reported as a positive
quantity. We write w = +100 J to signify that 100 J 
of work has been done on the system (that is, 100 J 
of energy had been transferred to the system by doing
work). The sign convention is easy to follow if we
think of changes to the energy of the system: its 
energy decreases (w is negative) if energy leaves it
and its energy increases (w is positive) if energy 
enters it (Fig. 2.8).

We use the same convention for energy transferred
as heat, q. We write q = −100 J if 100 J of energy
leaves the system as heat, so reducing the energy of
the system, and q = +100 J if 100 J of energy enters
the system as heat.

Because many chemical reactions produce gas, 
one very important type of work in chemistry is 
expansion work, the work done when a system 
expands against an opposing pressure. The action of
acid on zinc illustrated in Fig. 2.5 is an example 
of a reaction in which expansion work is done in 
the process of making room for the gaseous product,
hydrogen in this case. We show in Derivation 2.1
that when a system expands through a volume ΔV
against a constant external pressure pex the work
done is

w = −pex ΔV (2.2)

Surroundings

System

Energy as heat

Fig. 2.7 Heat is the transfer of energy that causes or utilizes
chaotic motion in the surroundings. When energy leaves the
system (the green region), it generates chaotic motion in 
the surroundings (shown magnified).

Energy

w < 0

w > 0

q < 0

q > 0

Work

Work

Heat

Heat

Fig. 2.8 The sign convention in thermodynamics: w and q
are positive if energy enters the system (as work and heat,
respectively), but negative if energy leaves the system.
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According to eqn 2.2, the external pressure deter-
mines how much work a system does when it 
expands through a given volume: the greater the 
external pressure, the greater the opposing force and
the greater the work that a system does. When the
external pressure is zero, w = 0. In this case, the sys-
tem does no work as it expands because it has noth-
ing to push against. Expansion against zero external
pressure is called free expansion.

Derivation 2.1

Expansion work

To calculate the work done when a system expands
from an initial volume Vi to a final volume Vf, a change 
DV = Vf − Vi, we consider a piston of area A moving out
through a distance h (Fig. 2.9). There need not be an 
actual piston: we can think of the piston as representing
the boundary between the expanding gas and the sur-
rounding atmosphere. However, there may be an actual
piston, such as when the expansion takes place inside
an internal combustion engine.

hArea, A

Pressure, p

External
pressure, pex

ΔV

Fig. 2.9 When a piston of area A moves out through 
a distance h, it sweeps out a volume DV = Ah. The 
external pressure pex opposes the expansion with a
force pexA.

The force opposing the expansion is the constant 
external pressure pex multiplied by the area of the piston 
(because force is pressure times area, Section 0.5), so 
F = pexA. The work done is therefore

The last equality follows from the fact that hA is the 
volume of the cylinder swept out by the piston as the
gas expands, so we can write hA = DV. That is, for ex-
pansion work,

Work done = pexDV

Now consider the sign. A system does work and thereby
loses energy (that is, w is negative) when it expands
(when DV is positive). Therefore, we need a negative
sign in the equation to ensure that w is negative when
DV is positive), so we obtain eqn 2.2.

A note on good practice Keep track of signs by 
considering whether the stored energy has decreased
when the system does work (w is then negative) or has
increased when work has been done on the system 
(w is then positive).

Opposing force

Work done = h × (pex A )= pex × hA

Distance moved Volume change

= pex × DV

Self-test 2.1

Calculate the work done by a system in which a reaction
results in the formation of 1.0 mol CO2(g) at 25°C and
100 kPa. Hint. The increase in volume will be 25 dm3

under these conditions if the gas is treated as perfect;
use the relations 1 dm3 = 10−3 m3 and 1 Pa m3 = 1 J.

[Answer: 2.5 kJ]

Equation 2.2 shows us how to get the least expan-
sion work from a system: we just reduce the external
pressure to zero. But how can we achieve the greatest
work for a given change in volume? According to 
eqn 2.2, the system does maximum work when the
external pressure has its maximum value. The force
opposing the expansion is then the greatest and the
system must exert most effort to push the piston out.
However, that external pressure cannot be greater
than the pressure, p, of the gas inside the system, for
otherwise the external pressure would compress the
gas instead of allowing it to expand. Therefore, max-
imum work is obtained when the external pressure is
only infinitesimally less than the pressure of the gas
in the system. In effect, the two pressures must be 
adjusted to be the same at all stages of the expansion.
In the Introduction we called this balance of pressures
a state of mechanical equilibrium. Therefore, we can
conclude that a system that remains in mechanical
equilibrium with its surroundings at all stages of the
expansion does maximum expansion work.

There is another way of expressing this condition.
Because the external pressure is infinitesimally less
than the pressure of the gas at some stage of the 
expansion, the piston moves out. However, suppose
we increase the external pressure so that it became
infinitesimally greater than the pressure of the gas;
now the piston moves in. That is, when a system is 
in a state of mechanical equilibrium, an infinitesimal
change in the pressure results in opposite directions
of motion. A process that can be reversed by an
infinitesimal change in a variable—in this case, the
pressure—is said to be reversible. In everyday life 
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‘reversible’ means a process that can be reversed; in
thermodynamics it has a stronger meaning—it means
that a process can be reversed by an infinitesimal
modification in some variable (such as the pressure).

We can summarize this discussion by the following
remarks:

• A system does maximum expansion work when
the external pressure is equal to that of the system
at every stage of the expansion (pex = p).

• A system does maximum expansion work when it
is in mechanical equilibrium with its surroundings
at every stage of the expansion.

• Maximum expansion work is achieved in a re-
versible change.

All three statements are equivalent, but they reflect
different degrees of sophistication in the way the
point is expressed.

We cannot write down the expression for max-
imum expansion work simply by replacing pex in 
eqn 2.2 by p (the pressure of the gas in the cylinder)
because, as the piston moves out, the pressure inside
the system falls. To make sure the entire process 
occurs reversibly, we have to adjust the external
pressure to match the changing internal pressure.
Suppose that we conduct the expansion isothermally
(that is, at constant temperature) by immersing the
system in a water bath held at a specified temper-
ature. As we show in Derivation 2.2, the work of
isothermal, reversible expansion of a perfect gas
from an initial volume Vi to a final volume Vf at a
temperature T is

(2.3)w nRT
V
V

= − ln f

i

where n is the amount of gas molecules in the system.
As explained in Derivation 2.2, this result is equal to
the area beneath a graph of p = nRT/V between the
limits Vi and Vf (Fig. 2.10).

Derivation 2.2

Reversible, isothermal expansion work

Because (to ensure reversibility) the external pressure
must be adjusted in the course of the expansion, we
have to think of the process as taking place in a series of
small steps during each one of which the external pres-
sure is constant. We calculate the work done in each
step for the prevailing external pressure, and then add all
these values together. To ensure that the overall result is
accurate, we have to make the steps as small as pos-
sible—infinitesimal, in fact—so that the pressure is truly
constant during each one. In other words, we have to
use calculus, in which case the sum over an infinite
number of infinitesimal steps becomes an integral.

When the system expands through an infinitesimal
volume dV, the infinitesimal work, dw, done is the 
infinitesimal version of eqn 2.2:

dw = −pexdV

A brief comment For a review of calculus, see Appen-
dix 2. As indicated there, the replacement of D by d 
always indicates an infinitesimal change: dV is positive
for an infinitesimal increase in volume and negative for
an infinitesimal decrease.

At each stage, we ensure that the external pressure is
the same as the current pressure, p, of the gas (Fig. 2.11).
So, we set pex = p and obtain

Volume, V
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Vi
Vf

Initial
pressure

Final
pressure

p = nRT/V

Fig. 2.10 The work of reversible isothermal expansion of a
gas is equal to the area beneath the corresponding isotherm
evaluated between the initial and final volumes (the tinted
area). The isotherm shown here is that of a perfect gas, but
the same relation holds for any gas.

p

V

Fig. 2.11 For a gas to expand reversibly, the external
pressure must be adjusted to match the internal pres-
sure at each stage of the expansion. This matching is
represented in this illustration by gradually unloading
weights from the piston as the piston is raised and 
the internal pressure falls. The procedure results in the
extraction of the maximum possible work of expansion.
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Equation 2.3 will turn up in various disguises
throughout this text. Once again, it is important to
be able to interpret it rather than just remember it:

• In an expansion Vf > Vi, so Vf /Vi > 1 and the 
logarithm is positive (ln x is positive if x > 1).

Therefore, in an expansion, w is negative. That is
what we should expect: energy leaves the system
as the system does expansion work.

• For a given change in volume, we get more work
the higher the temperature of the confined gas
(Fig. 2.12). That is also what we should expect: at
high temperatures, the pressure of the gas is high,
so we have to use a high external pressure, and
therefore a stronger opposing force, to match the
internal pressure at each stage.

dw = −pdV

The total work when the system expands from Vi to Vf

is the sum (integral) of all the infinitesimal changes 
between the limits Vi and Vf, which we write

For a reversible expansion, w = −�
Vf

V i

pdV

To evaluate the integral, we need to know how p, the
pressure of the gas in the system, changes as it ex-
pands. For this step, we suppose that the gas is perfect,
in which case we can use the perfect gas pV = nRT in the
form p = nRT/V. At this stage we have

For the reversible expansion of a perfect gas, 

w = −�
Vf

V i

In general, the temperature might change as the gas 
expands, so in general T depends on V, and T changes 
as V changes. For isothermal expansion, however, the
temperature is held constant and we can take n, R, and
T outside the integral and write

For the isothermal, reversible expansion of a perfect 

gas, w = −nRT �
Vf

V i

A standard result of calculus is

�
where ln x is the natural logarithm of x. It follows that

When we insert this result into the preceding one, we
obtain eqn 2.3. The interpretation of eqn 2.3 as an area
follows from the fact, as explained in Appendix 2, that a
definite integral is equal to the area beneath a graph of
the function lying between the two limits of the integral.

A note of good practice Introduce (and keep note of)
the restrictions (in this case, in succession: reversible
process, perfect gas, isothermal) only as they prove 
necessary, as you might be able to use an intermediate
formula without needing to restrict it in the way that was
necessary to achieve the final expression.

In x − In y = In(x/y)

�
Vf

V i

= (ln Vf + constant) − (ln Vi + constant) = ln
V
V

f

i

dV
V
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Fig. 2.12 The work of reversible, isothermal expansion
of a perfect gas. Note that for a given change of vol-

ume and fixed amount of gas, the work is greater the higher
the temperature.

Self-test 2.2

Calculate the work done when 1.0 mol Ar(g) confined in
a cylinder of volume 1.0 dm3 at 25°C expands isother-
mally and reversibly to 2.0 dm3.

[Answer: w = −1.7 kJ]

2.4 The measurement of heat

When a substance is heated, its temperature typically
rises. We say ‘typically’ because the temperature does
not always rise. The temperature of boiling water,
for instance, remains unchanged as it is heated (see
Chapter 5).

For a specified energy, q, transferred by heating,
the size of the resulting temperature change, ΔT, 
depends on the ‘heat capacity’ of the substance. The
heat capacity, C, is defined as:

(2.4a)C
q
T

=
Δ

Energy supplied as heat

Change in temperature
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It follows that we have a simple way of measuring the
heat absorbed or released by a system: we measure 
a temperature change and then use the appropriate
value of the heat capacity of the system and eqn 2.4a
rearranged into

q = CΔT (2.4b)

A brief illustration If the heat capacity of a beaker of
water is 0.50 kJ K−1, and we observe a temperature rise of
4.0 K, then we can infer that the heat transferred to the
water is

q = (0.50 kJ K−1) × (4.0 K) = 2.0 kJ

Heat capacities occur frequently in the following
sections and chapters, and we need to be aware of
their properties and how their values are reported.
First, we note that the heat capacity is an extensive
property (a property that depends on the amount of
substance in the sample, Section 0.8): 2 kg of iron has
twice the heat capacity of 1 kg of iron, so twice as
much heat is required to raise its temperature by a
given amount. It is more convenient to report the
heat capacity of a substance as an intensive property
(a property that is independent of the amount of sub-
stance in the sample). We therefore use either the
specific heat capacity, Cs, the heat capacity divided
by the mass of the sample (Cs = C/m, in joules per
kelvin per gram, J K−1 g−1) or the molar heat capa-
city, Cm, the heat capacity divided by the amount of
substance (Cm = C/n, in joules per kelvin per mole, 
J K−1 mol−1). In common usage, the specific heat cap-
acity is often called the specific heat. To obtain the
heat capacity of a sample of known mass or that con-
tains a known amount of substance, we use these defini-
tions in the form C = mCs or C = nCm, respectively.

For reasons that will be explained shortly, the heat
capacity of a substance depends on whether the sam-
ple is maintained at constant volume (like a gas in 
a sealed, rigid vessel) as it is heated, or whether the
sample is maintained at constant pressure (like water
in an open container), and free to change its volume.
The latter is a more common arrangement, and the
values given in Table 2.1 are for the heat capacity at
constant pressure, Cp. The heat capacity at constant
volume is denoted CV. The respective molar values
are denoted Cp,m and CV,m.

A brief illustration The molar heat capacity of water
at constant pressure, Cp,m, is 75 J K−1 mol−1. Suppose a
1.0 kW kettle (where 1 W = 1 J s−1) is turned on for 100 s.
The energy supplied in that interval (the product of the
power and the time) is

q = (1.0 kW) × (100 s) = (1.0 × 103 J s−1) × (100 s) 

= 1.0 × 105 J

It follows that the increase in temperature of 1.0 kg of
water (55.5 mol H2O, from n = m/M ) in the kettle is 
approximately

The reason why different substances have 
different molar heat capacities can be traced to
differences in the separations of their energy
levels. We shall understand those differences

when we get to quantum theory (in Chapter 12) but, as 
remarked earlier, from introductory chemistry courses
we know that molecules can exist with only certain ener-
gies. If those energy levels are close together, the incom-
ing energy can be accommodated with little change in
their populations. The change in temperature (which 
determines the populations) is therefore also small and
the heat capacity is correspondingly large. In other
words, closely spaced energy levels correlate with a high
heat capacity (Fig. 2.13). The translational energy levels
of molecules in a gas are very close together, and all
monatomic gases have similar molar heat capacities. The
separation of the vibrational energies of atoms bound 
together in solids depend on the stiffness of the bonds
between them and on the masses of the atoms, and
solids show a wide range of molar heat capacities. We
shall return to this topic in Chapter 22 after we learn more
about energy levels and their populations.
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Fig. 2.13 The heat capacity depends on the availability of 
levels. (a) When the levels are close together, a given amount
of energy arriving as heat can be accommodated with little
adjustment of the populations and hence the temperature
that occurs in the Boltzmann distribution. This system has a
high heat capacity. (b) When the levels are widely separated, 
the same incoming energy has to be accommodated by 
making use of higher energy levels, with a consequent
greater change in the ‘reach’ of the Boltzmann distribution,
and therefore a greater change in temperature. This system
therefore has a low heat capacity. In each case the green line
is the distribution at low temperature and the red line that at
higher temperature.
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One way to measure the energy transferred as heat
in a process is to use a calorimeter (Fig. 2.14), which
consists of a container in which the reaction or phys-
ical process occurs, a thermometer, and a surround-
ing water bath. The entire assembly is insulated from
the rest of the world. The principle of a calorimeter is
to use the rise in temperature to determine the energy
released as heat by the process occurring inside it. To
interpret the rise in temperature, we must first cali-
brate the calorimeter by comparing the observed
change in temperature with a change in temperature
brought about by the transfer of a known quantity 
of energy as heat. One procedure is to heat the
calorimeter electrically by passing a known current
for a measured time through a heater, and record 
the increase in temperature. The energy provided
electrically is

q = I�t (2.5)

where I is the current (in amperes, A), � is the poten-
tial of the supply (in volts, V), and t is the time (in 
seconds, s) for which the current flows.

A brief comment Electrical charge is measured in coulombs
(C). The motion of charge gives rise to an electric current, I,
measured in coulombs per second, or amperes (A) where 
1 A = 1 C s−1. Electrical units are discussed in Appendix 1. We
need to know that 1 A V s = 1 J.

The observed rise in temperature lets us calculate
the heat capacity of the calorimeter (which in this
context is also called the calorimeter constant) from
eqn 2.4. Then we use this heat capacity to interpret a
temperature rise due to a reaction in terms of the heat
released or absorbed. An alternative procedure is to
calibrate the calorimeter by using a reaction of known

heat output, such as the combustion of benzoic acid
(C6H5COOH), for which the heat output is 3227 kJ
per mole of C6H5COOH consumed.

Energy
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Fig. 2.14 The loss of energy into the surroundings can be 
detected by noting whether the temperature changes as the
process proceeds.

Example 2.1

Calibrating a calorimeter and measuring a 
heat transfer

In an experiment to measure the heat released by the
combustion of a sample of nutrient, the compound was
burned in a calorimeter and the temperature rose by
3.22°C. When a current of 1.23 A from a 12.0 V source
flows through a heater in the same calorimeter for 156 s,
the temperature rose by 4.47°C. What is the heat re-
leased by the combustion reaction?

Strategy We calculate the heat supplied electrically by
using eqn 2.5 and 1 A V s = 1 J. Then we use the 
observed rise in temperature to find the heat capacity of
the calorimeter. Finally, we use this heat capacity to con-
vert the temperature rise observed for the combustion
into a heat output by writing q = CDT (or q = CDq if the
temperature is given on the Celsius scale).

Solution The heat supplied during the calibration step is

q = I �t = (1.23 A) × (12.0 V) × (156 s)

= 1.23 × 12.0 × 156 A V s = 1.23 × 12.0 × 156 J

This product works out as 2.30 kJ, but to avoid rounding
errors we save the numerical work to the final stage. The
heat capacity of the calorimeter is

The numerical value of C is 515 J °C−1, but we don’t evalu-
ate it yet in the actual calculation. The heat output of the
combustion is therefore

A note on good practice As well as keeping the 
numerical evaluation to the final stage, show the units at
each stage of the calculation.
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Self-test 2.3

In an experiment to measure the heat released by
the combustion of a sample of fuel, the compound
was burned in an oxygen atmosphere inside a
calorimeter and the temperature rose by 2.78°C.
When a current of 1.12 A from an 11.5 V source
flows through a heater in the same calorimeter for
162 s, the temperature rose by 5.11°C. What is the
heat released by the combustion reaction?

[Answer: 1.1 kJ]
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2.5 Heat influx during expansion

In certain cases, we can relate the value of q to the
change in volume of a system, and so can calculate,
for instance, the flow of energy as heat into the sys-
tem when a gas expands.

The simplest case is that of a perfect gas 
undergoing isothermal expansion. We can 
use a molecular interpretation to guide our
thoughts. Because the expansion is isothermal,

the temperature of the gas is the same at the end of the
expansion as it was initially. Therefore, the mean speed
of the molecules of the gas is the same before and after
the expansion. That implies in turn that the total kinetic
energy of the molecules is the same. But for a perfect gas,
the only contribution to the energy is the kinetic energy of
the molecules (recall Section 1.4), so we have to conclude
that the total energy of the gas is the same before and
after the expansion. Energy has left the system as work;
therefore, a compensating amount of energy must have
entered the system as heat. We can therefore write:

For the isothermal expansion of a perfect gas: 
q = −w (2.6)

For instance, if we find that w = −100 J for a particu-
lar expansion (meaning that 100 J has left the system
as a result of the system doing work), then we can
conclude that q = +100 J (that is, 100 J must enter as
heat). For free expansion, w = 0, so we conclude that
q = 0 too: there is no influx of energy as heat when a
perfect gas expands against zero pressure.

If the isothermal expansion is also reversible, we
can use eqn 2.3 for the work in eqn 2.6, and write

For the isothermal, reversible expansion of 

a perfect gas: (2.7)

We interpret this expression as follows:

• When Vf > Vi, as in an expansion, the logarithm is
positive and we conclude that q > 0, as expected:
flows as heat into the system to make up for the
energy lost as work.

• The greater the ratio of the final and initial vol-
umes, the greater the influx of energy as heat.

• The higher the temperature, the greater the quan-
tity of heat that must enter for a given change in
volume: we have seen that more work is done at a
higher temperature, so more heat must enter to
make up for the energy lost.

q nRT
V
V

= ln f

i

Internal energy and enthalpy

Heat and work are equivalent ways of transferring
energy into or out of a system in the sense that once
the energy is inside, it is stored simply as ‘energy’: 
regardless of how the energy was supplied, as work
or as heat, it can be released in either form. The 
experimental evidence for this equivalence of heat
and work goes all the way back to the experiments
done by James Joule (1818–1889), who showed that
the same rise in temperature of a sample of water 
is brought about by transferring a given quantity of
energy either by heating or by doing work.

2.6 The internal energy

We need some way of keeping track of the energy
changes in a system. This is the job of the property
called the internal energy, U, of the system, the sum
of all the kinetic and potential contributions to the
energy of all the atoms, ions, and molecules in the
system. The internal energy is the grand total energy
of the system. It has a value that depends on the tem-
perature and, in general, the pressure. The internal
energy is an extensive property because 2 kg of iron
at a given temperature and pressure, for instance, 
has twice the internal energy of 1 kg of iron under 
the same conditions. The molar internal energy, 
Um = U/n, the internal energy per mole of material, 
is an intensive property.

In practice, we do not know and cannot measure
the total energy of a sample, because it includes the
kinetic and potential energies of all the electrons and
all the components of the atomic nuclei. Neverthe-
less, there is no problem with dealing with the
changes in internal energy, ΔU, because we can 
determine those changes by monitoring the energy
supplied or lost as heat or as work. All practical 
applications of thermodynamics deal with ΔU, not
with U itself. A change in internal energy is written

ΔU = w + q (2.8)

where w is the energy transferred to the system by
doing work and q the energy transferred to it by
heating. The internal energy is an accounting device,
like a country’s gold reserves for monitoring trans-
actions with the outside world (the surroundings)
using either currency (heat or work).

A note on good practice We write DU for the change in
internal energy because it is the difference between the final
and initial values. We do not write Dq or Dw because it is
meaningless to refer to a ‘difference of heat’ or a ‘difference
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of work’: q and w are the quantities of energy transferred as
heat and work, respectively, that result in the change DU.

A brief illustration When a system releases 10 kJ of
energy into the surroundings by doing work (that is, when
w = −10 kJ), the internal energy of the system decreases
by 10 kJ, and we write DU = −10 kJ. The minus sign sig-
nifies the reduction in internal energy that has occurred. If
the system loses 20 kJ of energy by heating its surround-
ings (so q = −20 kJ), we write DU = −20 kJ. If the system
loses 10 kJ as work and 20 kJ as heat, as in an inefficient
internal combustion engine, the internal energy falls by a
total of 30 kJ, and we write DU = −30 kJ. On the other
hand, if we do 10 kJ of work on the system (w = +10 kJ),
for instance, by winding a spring it contains or pushing in
a piston to compress a gas (Fig. 2.15), then the internal
energy of the system increases by 10 kJ, and we write
DU = +10 kJ. Likewise, if we supply 20 kJ of energy by
heating the system (q = +20 kJ), then the internal energy
increases by 20 kJ, and we write DU = +20 kJ.

Another note on good practice Notice that DU always
carries a sign explicitly, even if it is positive: we never write
DU = 20 kJ, for instance, but always +20 kJ.

We have seen that a feature of a perfect gas is that
for any isothermal expansion, the total energy of 
the sample remains the same, and therefore, because
ΔU = 0, that q = −w. That is, any energy lost as work 
is restored by an influx of energy as heat. We can 
express this property in terms of the internal energy,
for it implies that the internal energy remains con-
stant when a perfect gas expands isothermally: from 
eqn 2.8 we can write

Isothermal expansion of a perfect gas: ΔU = 0 (2.9)

In other words, the internal energy of a sample
of perfect gas at a given temperature is inde-
pendent of the volume it occupies. We can 
understand this independence by realizing 

that when a perfect gas expands isothermally the only
feature that changes is the average distance between the
molecules; their average speed and therefore total kinetic
energy remains the same. However, as there are no inter-
molecular interactions, the total energy is independent 
of the average separation, so the internal energy is un-
changed by expansion.

Example 2.2

Calculating the change in internal energy

Nutritionists are interested in the use of energy by the
human body and we can consider our own body as a
thermodynamic ‘system’. Calorimeters have been con-
structed that can accommodate a person to measure
(nondestructively!) their net energy output. Suppose in
the course of an experiment someone does 622 kJ of
work on an exercise bicycle and loses 82 kJ of energy as
heat. What is the change in internal energy of the per-
son? Disregard any matter loss by perspiration.

Strategy This example is an exercise in keeping track of
signs correctly. When energy is lost from the system, w
or q is negative. When energy is gained by the system,
w or q is positive.

Solution To take note of the signs we write w = −622 kJ
(622 kJ is lost by doing work) and q = −82 kJ (82 kJ is lost
by heating the surroundings). Then eqn 2.8 gives us

DU = w + q = (−622 kJ) + (−82 kJ) = −704 kJ

We see that the person’s internal energy falls by 704 kJ.
Later, that energy will be restored by eating.

A note on good practice Always attach the correct
signs: use a positive sign when there is a flow of energy
into the system and a negative sign when there is a flow
of energy out of the system.

Self-test 2.4

An electric battery is charged by supplying 250 kJ of
energy to it as electrical work (by driving an electric
current through it), but in the process it loses 25 kJ
of energy as heat to the surroundings. What is the
change in internal energy of the battery?

[Answer: +225 kJ]

(a)

(b)
Work

Heat

ΔU > 0

ΔU > 0

Fig. 2.15 Provided there are no other transfers of energy,
when work is done on a system, its internal energy rises 
(DU > 0). Likewise, provided there are no other transfers 
of energy, the internal energy also rises when energy is 
transferred into the system as heat.

2.7 Internal energy as a state function

An important characteristic of the internal energy 
is that it is a state function, a physical property that
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depends only on the present state of the system and 
is independent of the path by which that state was
reached. If we were to change the temperature of the
system, then change the pressure, then adjust the
temperature and pressure back to their original 
values, the internal energy would return to its original
value too. A state function is very much like altitude:
each point on the surface of the Earth can be speci-
fied by quoting its latitude and longitude, and (on
land areas, at least) there is a unique property, the 
altitude, that has a fixed value at that point. In ther-
modynamics, the role of latitude and longitude is
played by the pressure and temperature (and any
other variables needed to specify the state of the sys-
tem), and the internal energy plays the role of the 
altitude, with a single, fixed value for each state of
the system.

The fact that U is a state function implies that 
a change, ΔU, in the internal energy between two
states of a system is independent of the path between
them (Fig. 2.16). Once again, the altitude is a helpful
analogy. If we climb a mountain between two fixed
points, we make the same change in altitude regard-
less of the path we take between the two points.
Likewise, if we compress a sample of gas until it
reaches a certain pressure and then cool it to a certain
temperature, the change in internal energy has a par-
ticular value. If, on the other hand, we change the
temperature and then the pressure, but ensure that
the two final values are the same as in the first experi-
ment, then the overall change in internal energy is 
exactly the same as before. This path independence

of the value of ΔU is of the greatest importance in
chemistry, as we shall soon see.

Suppose we now consider an isolated system.
Because an isolated system can neither do work nor
heat its surroundings (or acquire energy by either
process), it follows that its internal energy cannot
change. That is,

The internal energy of an isolated system is 
constant.

This statement is the First Law of thermodynamics.
It is closely related to the law of conservation of 
energy, but allows for transfers of energy as heat as
well as by doing work. Unlike thermodynamics, 
mechanics does not deal with the concept of heat.

The experimental evidence for the First Law is 
the impossibility of making a ‘perpetual motion 
machine’, a device for producing work without con-
suming fuel. As we have already remarked, try as
people might, they have never succeeded. No device
has ever been made that creates internal energy to 
replace the energy drawn off as work. We cannot 
extract energy as work, leave the system isolated 
for some time, and hope that when we return the 
internal energy will have become restored to its 
original value.

The definition of ΔU in terms of w and q points 
to a very simple method for measuring the change in
internal energy of a system when a reaction takes
place. We have seen already that the work done by 
a system when it pushes against a fixed external 
pressure is proportional to the change in volume.
Therefore, if we carry out a reaction in a container of
constant volume, the system can do no expansion
work and provided it can do no other kind of work
(so-called ‘nonexpansion work’, such as electrical
work) we can set w = 0. Then eqn 2.8 simplifies to

At constant volume, no nonexpansion work:
ΔU = q (2.10a)

This relation is commonly written

ΔU = qV (2.10b)

The subscript V signifies that the volume of the sys-
tem is constant. An example of a chemical system
that can be approximated as a constant-volume con-
tainer is an individual biological cell.

To measure a change in internal energy, we should
use a calorimeter that has a fixed volume and mon-
itor the energy released as heat (q < 0) or supplied 
(q > 0). A bomb calorimeter is an example of a 
constant-volume calorimeter: it consists of a sturdy,
sealed, constant-volume vessel in which the reaction
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Fig. 2.16 The curved sheet shows how a property (for ex-
ample, the altitude) changes as two variables (for example,
latitude and longitude) are changed. The altitude is a state
property, because it depends only on the current state of the
system. The change in the value of a state property is inde-
pendent of the path between the two states. For example,
the difference in altitude between the initial and final states
shown in the diagram is the same whatever path (as depicted
by the dark and light lines) is used to travel between them.
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takes place, and a surrounding water bath (Fig. 2.17).
To ensure that no heat escapes unnoticed from the
calorimeter, it is immersed in a water bath with a
temperature adjusted to match the rising tempera-
ture of the calorimeter. The fact that the temperature
of the bath is the same as that of the calorimeter 
ensures that no heat flows from one to the other.
That is, the arrangement is adiabatic.

We can use eqn 2.10 to obtain more insight into
the heat capacity of a substance. The definition of
heat capacity is given in eqn 2.4 (C = q/ΔT). At con-
stant volume, q may be replaced by the change in 
internal energy of the substance, so

at constant volume. (2.11)

The expression on the right is the slope of the graph
of internal energy plotted against temperature, with
the volume of the system held constant, so CV tells us
how the internal energy of a constant-volume system
varies with temperature. If, as is generally the case,
the graph of internal energy against temperature is
not a straight line, we interpret CV as the slope of the
tangent to the curve at the temperature of interest
(Fig. 2.18).

A brief comment A more precise definition of heat capa-
city is constructed as follows. First, we consider an infinit-
esimal change in temperature, dT, and the accompanying 
infinitesimal change in internal energy, dU, and replace 
eqn 2.11 by

C
U
TV =

d
d

C
U
TV =

Δ
Δ

To signify that the system is constrained to have constant
volume, we attach a subscript V to the derivative, and write

The change from d to ∂ (‘curly d’) is used in mathematics to
signal that a constraint has been applied. This is the form that
you will commonly see used to define the heat capacity at
constant volume.

2.8 The enthalpy

Much of chemistry, and most of biology, takes place
in vessels that are open to the atmosphere and sub-
jected to constant pressure, not constrained to con-
stant volume in a rigid, sealed container. In general,
when a change takes place in a system open to the 
atmosphere, the volume of the system changes. For
example, the thermal decomposition of 1.0 mol
CaCO3(s) at 1 bar results in an increase in volume of
nearly 90 dm3 at 800°C on account of the carbon
dioxide gas produced. To create this large volume 
for the carbon dioxide to occupy, the surrounding
atmosphere must be pushed back. That is, the system
must perform expansion work of the kind treated in
Section 2.3. Therefore, although a certain quantity of
heat may be supplied to bring about the endothermic
decomposition, the increase in internal energy of the
system is not equal to the energy supplied as heat 
because some energy has been used to do work of 
expansion (Fig. 2.19). In other words, because the
volume has increased, some of the heat supplied 
to the system has leaked back into the surroundings
as work.

Another example is the oxidation of a fat, such as
tristearin, to carbon dioxide in the body. The overall
reaction is

C
U
TV

V

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂
∂

ThermometerOxygen
input

Firing
leads

Sample
Oxygen
under
pressure

Water

Bomb

Fig. 2.17 A constant-volume bomb calorimeter. The ‘bomb’
is the central, sturdy vessel, which is strong enough to 
withstand moderately high pressures. The calorimeter is the 
entire assembly shown here. To ensure that no heat escapes
into the surroundings, the calorimeter may be immersed in a
water bath with a temperature that is continuously adjusted
to that of the calorimeter at each stage of the combustion.
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Fig. 2.18 The constant-volume heat capacity is the slope of 
a curve showing how the internal energy varies with tem-
perature. The slope, and therefore the heat capacity, may be
different at different temperatures.
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2 C57H110O6(s) + 163 O2(g) 
→ 114 CO2(g) + 110 H2O(l)

In this exothermic reaction there is a net decrease in
volume equivalent to the elimination of (163 − 114)
mol = 49 mol of gas molecules for every 2 mol of 
tristearin molecules that react. The decrease in vol-
ume at 25°C is about 600 cm3 for the consumption
of 1 g of fat. Because the volume of the system 
decreases, the atmosphere does work on the system
as the reaction proceeds. That is, energy is transferred
to the system as it contracts. In effect, a weight has
been lowered in the surroundings, so the surround-
ings can do less work after the reaction has occurred.
Some of their energy has been transferred into the
system. For this reaction, the decrease in the internal
energy of the system is less than the energy released
as heat because some energy has been restored by
doing work.

We can avoid the complication of having to take
into account the work of expansion by introducing a
new property that will be at the centre of our atten-
tion throughout the rest of the chapter and will recur
throughout the book. The enthalpy, H, of a system is
defined as

H = U + pV (2.12)

That is, the enthalpy differs from the internal energy
by the addition of the product of the pressure, p, and
the volume, V, of the system. This expression applies
to any system or individual substance: don’t be 
mislead by the ‘pV ’ term into thinking that eqn 2.12
applies only to a perfect gas.

Enthalpy is an extensive property. The molar
enthalpy, Hm = H/n, of a substance, an intensive
property, differs from the molar internal energy by

an amount proportional to the molar volume, Vm, of
the substance:

Hm = Um + pVm (2.13a)

This relation is valid for all substances. For a perfect
gas we can go on to write pVm = RT, and obtain

For a perfect gas: Hm = Um + RT (2.13b)

At 25°C, RT = 2.5 kJ mol−1, so the molar enthalpy of
a perfect gas is greater than its molar internal energy
by 2.5 kJ mol−1. Because the molar volume of a solid
or liquid is typically about 1000 times less than that
of a gas, we can also conclude that the molar 
enthalpy of a solid or liquid is only about 2.5 J mol−1

(note: joules, not kilojoules) more than its molar inter-
nal energy, so the numerical difference is negligible.

A change in enthalpy (the only quantity we can
measure in practice) arises from a change in the 
internal energy and a change in the product pV:

ΔH = ΔU + Δ(pV) (2.14a)

where Δ(pV) = pfVf − piVi. If the change takes place 
at constant pressure p, the second term on the right
simplifies to

Δ(pV) = pVf − pVi = p(Vf − Vi ) = pΔV

and we can write

At constant pressure: ΔH = ΔU + pΔV (2.14b)

We shall often make use of this important relation
for processes occurring at constant pressure, such as
chemical reactions taking place in containers open to
the atmosphere.

Although the enthalpy and internal energy of 
a sample may have similar numerical values, the 
introduction of the enthalpy has very important con-
sequences in thermodynamics. First, notice that 
because H is defined in terms of state functions (U, p,
and V), the enthalpy is a state function. The implica-
tion is that the change in enthalpy, ΔH, when a sys-
tem changes from one state to another is independent
of the path between the two states. Secondly, we
show in Derivation 2.3 that the change in enthalpy of
a system can be identified with the heat transferred to
it at constant pressure:

At constant pressure, no nonexpansion work: 
ΔH = q (2.15a)

This relation is commonly written

ΔH = qp (2.15b)

The subscript p signifies that the pressure is held 
constant.

Heat

Work

Fig. 2.19 The change in internal energy of a system that is
free to expand or contract is not equal to the energy supplied
as heat because some energy may escape back into the sur-
roundings as work. However, the change in enthalpy of the
system under these conditions is equal to the energy sup-
plied as heat.
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The result expressed by eqn 2.15, that at constant
pressure, with no nonexpansion work, we can iden-
tify the energy transferred by heating with a change
in enthalpy of the system, is enormously powerful. It 
relates a quantity we can measure (the energy trans-
ferred as heat at constant pressure) to the change in 
a state function (the enthalpy). Dealing with state
functions greatly extends the power of thermo-
dynamic arguments, because we don’t have to worry
about how we get from one state to another: all that
matters are the initial and final states.

A brief illustration Equation 2.15 implies that if 10 kJ
of energy is supplied as heat to the system that is free 
to change its volume at constant pressure, then the 
enthalpy of the system increases by 10 kJ, regardless of
how much energy enters or leaves by doing work, and we
write DH = +10 kJ. On the other hand, if the reaction is
exothermic and releases 10 kJ of energy as heat when 
it occurs, then DH = −10 kJ regardless of how much work
is done. For the particular case of the combustion of 
tristearin mentioned at the beginning of the section, in
which 90 kJ of energy is released as heat, we would write
DH = −90 kJ.

An endothermic reaction (q > 0) taking place at
constant pressure results in an increase in enthalpy
(ΔH > 0) because energy enters the system as heat.
On the other hand, an exothermic process (q < 0)
taking place at constant pressure corresponds to a
decrease in enthalpy (ΔH < 0) because energy leaves
the system as heat. All combustion reactions, includ-
ing the controlled combustions that contribute to
respiration, are exothermic and are accompanied by
a decrease in enthalpy. These relations are consistent
with the name ‘enthalpy’, which is derived from the
Greek words meaning ‘heat inside’: the ‘heat inside’

the system is increased if the process is endothermic
and absorbs energy as heat from the surroundings; it
is decreased if the process is exothermic and releases
energy as heat into the surroundings. However,
never forget that heat does not actually ‘exist’ inside:
only energy exists in a system; heat is a means of 
recovering that energy or increasing it.

Differential scanning calorimetry, discussed in
Box 2.1, is a common technique for the measurement
of the enthalpy change that accompanies a physical
or chemical change occurring at constant pressure.

2.9 The temperature variation of 
the enthalpy

We have seen that the internal energy of a system
rises as the temperature is increased. The same is 
true of the enthalpy, which also rises when the tem-
perature is increased (Fig. 2.20). For example, the 
enthalpy of 100 g of water is greater at 80°C than at
20°C. We can measure the change by monitoring 
the energy that we must supply as heat to raise the
temperature through 60°C when the sample is open
to the atmosphere (or subjected to some other con-
stant pressure); it is found that ΔH ≈ +25 kJ in this 
instance.

Just as we saw that the constant-volume heat 
capacity tells us about the temperature dependence
of the internal energy at constant volume, so the 
constant-pressure heat capacity tells us how the 
enthalpy of a system changes as its temperature is
raised at constant pressure. To derive the relation,
we combine the definition of heat capacity in eqn 2.4
(C = q/ΔT ) with eqn 2.15 and obtain

at constant pressure (2.16)C
H
Tp =

Δ
Δ

Derivation 2.3

Heat transfers at constant pressure

Consider a system open to the atmosphere, so that its
pressure p is constant and equal to the external pressure
pex. From eqn 2.14b we can write

DH = DU + pDV = DU + pexDV

However, we know that the change in internal energy is
given by eqn 2.8 (DU = w + q) with w = −pexDV (provided
the system does no other kind of work). When we sub-
stitute that expression into this one we obtain

DH = (−pexDV + q ) + pexDV = q

which is eqn 2.15.
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Fig. 2.20 The enthalpy of a system increases as its tem-
perature is raised. Note that the enthalpy is always greater
than the internal energy of the system, and that the differ-
ence increases with temperature.
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Box 2.1 Differential scanning calorimetry

Biological samples might be very small, sometimes as small
as 0.5 mg, and a highly sensitive technique is needed to deter-
mine the heat output when a sample undergoes a physical
or chemical change. To achieve this sensitivity a differential
scanning calorimeter (DSC, see the first illustration) may be
used. A DSC is used in biochemistry laboratories to assess
the stability of proteins, nucleic acids, and membranes. Large
molecules, such as biological polymers, attain complex
three-dimensional structures due to intra- and intermolecu-
lar interactions, such as hydrogen bonding and hydrophobic
interactions. The disruption of these interactions is an endo-
thermic process that can be studied with a DSC.

A DSC consists of two small compartments that are
heated electrically at a constant rate (the ‘scanning’ part of
the technique). The temperature T at time t during a linear
scan is T = T0 + at, where T0 is the initial temperature and a
is the temperature scan rate (in kelvin per second, K s−1).
Note that the rate of increase of temperature is dT/dt = a. A
computer controls the electrical power output to each com-
partment in order to maintain the same temperature in the
two compartments throughout the analysis. The term ‘dif-
ferential’ refers to the fact that the behaviour of the sample
is compared to that of a reference material that does not 
undergo a physical or chemical change during the analysis.
The temperature of the sample would change relative to
that of the reference material if a chemical or physical pro-
cess involving heat transfer occurs in the sample during the
scan. To maintain the same temperature in both compart-
ments, excess heat is transferred to the sample during the
process.

If an endothermic process occurs in the sample at a par-
ticular temperature, we have to supply additional ‘excess’
heat, dqex, to the sample to achieve the same temperature
as the reference. We can express this excess heat in terms
of an ‘excess’ heat capacity at each stage of the scan, Cex, by
writing dqex = CexdT. It follows that, because dT = adt, then

where Pex = dqex /dt is the excess electrical power (the 
rate of supply of energy, in watts, where 1 W = 1 J s−1) 
necessary to equalize the temperature of the sample and
reference compartments at each stage of the scan. A 
thermogram is a plot of Cex (which is obtained from the
value of Pex /a and the power monitored throughout the
scan) against T. The second illustration is a thermogram
that indicates that the protein ubiquitin retains its native
structure up to about 45°C. At higher temperatures, the
protein undergoes an endothermic conformational change
that results in the loss of its three-dimensional structure.

To find the total heat transferred, we need to integrate
both sides of dqex = CexdT from an initial temperature T1 to
a final temperature T2:

qex = �
T2

T1

Cex dT

The integral is the area under the thermogram between T1

and T2. Because the apparatus is at constant pressure, we
can identify qex with the change in enthalpy accompanying
the process.

  
C

q
T

q
t

P
ex

ex ex exd
d

d
d

= = =
a a

Sample Reference

Heaters

Thermocouples

A differential scanning calorimeter. The sample and a refer-
ence material are heated in separate but identical com-
partments. The output is the difference in power needed to
maintain the compartments at equal temperatures as the
temperature rises.

See an animated version of this figure in the 
interactive ebook.
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A thermogram for the protein ubiquitin. The protein retains
its native structure up to about 45°C and then undergoes 
an endothermic conformational change. (Adapted from B.
Chowdhry and S. LeHarne, J. Chem. Educ. 74, 236 (1997).)
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A brief comment The more precise definition of the 
constant-pressure heat capacity, by analogy with the discus-
sion in Comment 2.3, is

The constant-pressure heat capacity is the slope of 
a plot of enthalpy against temperature of a system
kept at constant pressure (Fig. 2.21). In general, the
constant-pressure heat capacity depends on the tem-
perature, and some values at 298 K are given in
Table 2.1 (many more will be found in the Data sec-
tion). Values at other temperatures not too different
from room temperature are commonly estimated
from the expression

(2.17a)

with values of the constants a, b, and c obtained by
fitting this expression to experimental data. Some
values of the constants are given in Table 2.2 and a
typical temperature variation is shown in Fig. 2.22.
At very low temperatures, nonmetallic solids are
found to have heat capacities that are proportional
to T 3:

Cp,m = aT 3 (2.17b)

where a is another constant (not the same as in 
eqn 2.17a). The reason for this behaviour was unclear
until quantum mechanics provided an explanation
(see Chapter 12).

A brief illustration Provided the heat capacity is con-
stant over the range of temperatures of interest, we can
write eqn 2.16 as DH = CpDT. This relation means that

 
C a bT

c
Tp,m = + + 2

C
H
Tp

p

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂
∂

when the temperature of 100 g of liquid water (5.55 mol
H2O) is raised from 20°C to 80°C (so DT = +60 K) at con-
stant pressure, the enthalpy of the sample changes by

DH = CpDT = nCp,mDT

= (5.55 mol) × (75.29 J K−1 mol−1) × (60 K)

= +25 kJ

The calculation in the illustration is only approx-
imate, because the heat capacity depends on the 

Table 2.1

Heat capacities of common materials

Substance Heat capacity
Specific, Cp,s Molar, Cp,m
/(J K−1 g−1) /(J K−1 mol−1)*

Air 1.01 29
Benzene, C6H6(l) 1.74 136.1
Brass (Cu/Zn) 0.37
Copper, Cu(s) 0.38 24.44
Ethanol, C2H5OH(l) 2.42 111.46
Glass (Pyrex) 0.78
Granite 0.80
Marble 0.84
Polyethylene 2.3
Stainless steel 0.51
Water, H2O(s) 2.03 37

H2O(l) 4.18 75.29
H2O(g) 2.01 33.58

* Molar heat capacities are given only for air and well-defined
pure substances; see also the Data section. The text’s website
contains links to online databases of heat capacities.
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Fig. 2.21 The heat capacity at constant pressure is the slope
of the curve showing how the enthalpy varies with tempera-
ture; the heat capacity at constant volume is the correspond-
ing slope of the internal energy curve. Note that the heat
capacity varies with temperature (in general), and that Cp is
greater than CV.
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Fig. 2.22 The variation of heat capacity with temperature as
expressed by the empirical formula in eqn 2.17a. For this plot
we have used the values for carbon dioxide and nitrogen: the
circles show the measured values at 298 K.
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temperature, and we have used an average value for 
the temperature range of interest. In Exercise 2.30
you are invited to show that if we allow for the 
variation in heat capacity with temperature by using
eqn 2.17a, then

(2.18)

where Ta. mean is the ‘arithmetic mean’ of the initial
and final temperatures, Ta. mean = (Ti + Tf), and 
Tg. mean is their ‘geometrical mean’, Tg. mean = (TiTf )

1/2.
Because we know that the difference between the

enthalpy and internal energy of a perfect gas depends
in a very simple way on the temperature (eqn 2.13),
we can suspect that there is a simple relation between
the heat capacities at constant volume and constant
pressure. We show in Derivation 2.4 that, in fact,

For a perfect gas: Cp,m − CV,m = R (2.19)

1
2

 

Δ ΔH a bT
c

T
T= + +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟a. mean

g. mean
2

Equation 2.19 shows that the molar heat capacity
of a perfect gas is greater at constant pressure than at
constant volume. This difference is what we should
expect. At constant volume, all the energy supplied
as heat to the system remains inside and the temper-
ature rises accordingly. At constant pressure, though,
some of the energy supplied as heat escapes back into
the surroundings when the system expands and does
work. As less energy remains in the system, the tem-
perature does not rise as much, which corresponds to
a greater heat capacity. The difference is significant
for gases (for oxygen, CV,m = 20.8 J K−1 mol−1 and
Cp,m = 29.1 J K−1 mol−1), which undergo large
changes of volume when heated, but is negligible for
most solids and liquids under normal conditions, for
they expand much less and therefore lose less energy
to the surroundings as work.

Table 2.2

Temperature dependence of heat capacities*

Substance a/ b/ c/
(J K−1 mol−1) (J K−2 mol−1) (J K mol−1)

C(s, graphite) 16.86 4.77 × 10−3 −8.54 × 105

CO2(g) 44.22 8.79 × 10−3 −8.62 × 105

H2O(l) 75.29 0 0
N2(g) 28.58 3.77 × 10−3 −5.0 × 104

Cu(s) 22.64 6.28 × 10−3 0
NaCl(s) 45.94 16.32 × 10−3 0

* The constants are for use in the expression Cp,m = a + bT + c/T 2.

Derivation 2.4

The relation between heat capacities

The molar internal energy and enthalpy of a perfect gas
are related by eqn 2.13b (Hm = Um + RT ), which we can
write as Hm − Um = RT. When the temperature increases
by DT, the molar enthalpy increases by DHm and the
molar internal energy increases by DUm, so

DHm − DUm = RDT

Now divide both sides by DT, which gives

We recognize the first term on the left as the molar 
constant-pressure heat capacity, Cp,m and the second
term as the molar constant-volume heat capacity, CV,m.
Therefore, this relation can be written as in eqn 2.19.

 

Δ
Δ

Δ
Δ
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T
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Checklist of key ideas

You should now be familiar with the following concepts.

1 A system is classified as open, closed, or isolated.

2 The surroundings remain at constant temperature
and either constant volume or constant pressure
when processes occur in the system.

3 An exothermic process releases energy as heat, q,
an endothermic process absorbs energy as heat.

4 Maximum expansion work is achieved in a re-
versible change.

5 The First Law of thermodynamics states that the 
internal energy of an isolated system is constant.

6 Energy transferred as heat at constant volume is
equal to the change in internal energy of the sys-
tem; heat transferred at constant pressure is equal
to the change in enthalpy.
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The following table summarizes the equations developed in this chapter.

Description

Work of expansion

Change in internal energy

Enthalpy

Heat capacity

Table of key equations

Equation

w = −pexDV
w = −nRT ln(Vf /Vi )

DU = w + q
DU = qV

H = U + pV
DH = qp

C = q /DT, Cm = C/n
CV = DU/DT
more formally:
CV = (∂U/∂T )V
Cp = DH/DT
more formally:
Cp = (∂H /∂T )p
Cp,m − CV,m = R

Comment

Against constant external pressure
Reversible, isothermal expansion of a perfect gas

Definition
Constant volume, no nonexpansion work

Definition
Constant pressure, no nonexpansion work

Definition
At constant volume

At constant pressure

For perfect gases

Questions and exercises

Discussion questions

2.1 Discuss the statement that a system and its surround-
ings are distinguished by specifying the properties of the
boundary that separates them.

2.2 What is (a) temperature, (b) heat, (c) energy?

2.3 Provide molecular interpretations for work and heat.

2.4 Are the law of conservation of energy in dynamics and
the First Law of thermodynamics identical?

2.5 Explain the difference between expansion work against
constant pressure and work of reversible expansion and their
consequences.

2.6 Explain the difference between the change in internal 
energy and the change in enthalpy of a chemical or physical
process.

2.7 Specify and explain the limitations of the following 
expressions: (a) q = nRT ln(Vf /Vi); (b) DH = DU + pDV;
(c) Cp,m − CV,m = R.

Exercises

Assume all gases are perfect unless stated otherwise.

2.1 Calculate the work done by a gas when it expands
through (a) 1.0 cm3, (b) 1.0 dm3 against an atmospheric pres-

sure of 100 kPa. What work must be done to compress the
gas back to its original state in each case?

2.2 Calculate the work done by 2.0 mol of a gas when it 
expands reversibly and isothermally from 1.0 dm3 to 3.0 dm3

at 300 K.

2.3 A sample of methane of mass 4.50 g occupies 12.7 dm3

at 310 K. (a) Calculate the work done when the gas expands
isothermally against a constant external pressure of 30.0 kPa
until its volume has increased by 3.3 dm3. (b) Calculate the
work that would be done if the same expansion occurred
isothermally and reversibly.

2.4 In the isothermal reversible compression of 52.0 mmol
of a perfect gas at 260 K, the volume of the gas is reduced
from 300 cm3 to 100 cm3. Calculate w for this process.

2.5 A sample of blood plasma occupies 0.550 dm3 at 0°C and
1.03 bar, and is compressed isothermally by 0.57 per cent by
being subjected to a constant external pressure of 95.2 bar.
Calculate w.

2.6 A strip of magnesium metal of mass 12.5 g is dropped
into a beaker of dilute hydrochloric acid. Given that the mag-
nesium is the limiting reactant, calculate the work done by
the system as a result of the reaction. The atmospheric pres-
sure is 1.00 atm and the temperature is 20.2°C.

2.7 Calculate the work of expansion accompanying the com-
plete combustion of 10.0 g of sucrose (C12H22O11) to carbon
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dioxide and (a) liquid water, (b) water vapour at 20°C when
the external pressure is 1.20 atm.

2.8 We are all familiar with the general principles of opera-
tion of an internal combustion reaction: the combustion of
fuel drives out the piston. It is possible to imagine engines
that use reactions other than combustions, and we need to
assess the work they can do. A chemical reaction takes place
in a container of cross-sectional area 100 cm2; the container
has a piston at one end. As a result of the reaction, the piston
is pushed out through 10.0 cm against a constant external
pressure of 100 kPa. Calculate the work done by the system.

2.9 What is the heat capacity of a sample of liquid that rose
in temperature by 5.23°C when supplied with 124 J of energy
as heat?

2.10 A cube of iron was heated to 70°C and transferred to a
beaker containing 100 g of water at 20°C. The final temperature
of the water and the iron was 23°C. What is (a) the heat capa-
city, (b) the specific heat capacity, and (c) the molar heat capa-
city of the iron cube? Ignore heat losses from the assembly.

2.11 The high heat capacity of water is ecologically benign
because it stabilizes the temperatures of lakes and oceans: a
large quantity of energy must be lost or gained before there
is a significant change in temperature. Conversely, it means
that a lot of heat must be supplied to achieve a large rise in
temperature. The molar heat capacity of water is 75.3 J K−1

mol−1. What energy is needed to heat 250 g of water (a cup
of coffee, for instance) through 40°C?

2.12 A current of 1.55 A from a 110 V source was passed
through a heater for 8.5 min. The heater was immersed in a
water bath. What quantity of energy was transferred to the
water as heat?

2.13 When 229 J of energy is supplied as heat to 3.00 mol
Ar(g), the temperature of the sample increases by 2.55 K.
Calculate the molar heat capacities at constant volume and
constant pressure of the gas.

2.14 The heat capacity of air is much smaller than that of
water, and relatively modest amounts of heat are needed to
change its temperature. This is one of the reasons why
desert regions, though very hot during the day, are bitterly
cold at night. The heat capacity of air at room temperature
and pressure is approximately 21 J K−1 mol−1. How much en-
ergy is required to raise the temperature of a room of dimen-
sions 5.5 m × 6.5 m × 3.0 m by 10°C? If losses are neglected,
how long will it take a heater rated at 1.5 kW to achieve that
increase given that 1 W = 1 J s−1?

2.15 The transfer of energy from one region of the atmo-
sphere to another is of great importance in meteorology for it
affects the weather. Calculate the heat needed to be sup-
plied to a parcel of air containing 1.00 mol air molecules to
maintain its temperature at 300 K when it expands reversibly
and isothermally from 22 dm3 to 30.0 dm3 as it ascends.

2.16 The temperature of a block of iron (CV,m = 25.1 J K−1

mol−1) of mass 1.4 kg fell by 65°C as it cooled to room tem-
perature. What is its change in internal energy?

2.17 In an experiment to determine the calorific value of a
food, a sample of the food was burned in an oxygen atmo-
sphere and the temperature rose by 2.89°C. When a current
of 1.27 A from a 12.5 V source flowed through the same
calorimeter for 157 s, the temperature rose by 3.88°C. What
energy is released as heat by the combustion?

2.18 A laboratory animal exercised on a treadmill that,
through pulleys, raised a 250 g mass through 1.85 m. At 
the same time, the animal lost 10.0 J of energy as heat.
Disregarding all other losses, and regarding the animal as a
closed system, what is its change in internal energy?

2.19 In preparation for a study of the metabolism of an 
organism, a small, sealed calorimeter was prepared. In the
initial phase of the experiment, a current of 22.22 mA from a
11.8 V source was passed for 162 s through a heater inside
the calorimeter. What is the change in internal energy of the
calorimeter?

2.20 In a computer model of the atmosphere, 20 kJ of energy
was transferred as heat to a parcel of air of initial volume 
1.0 m3. What is the change in enthalpy of the parcel of air?

2.21 The internal energy of a perfect gas does not change
when the gas undergoes isothermal expansion. What is the
change in enthalpy?

2.22 Carbon dioxide, although only a minor component of
the atmosphere, plays an important role in determining the
weather and the composition and temperature of the atmo-
sphere. Calculate the difference between the molar enthalpy
and the molar internal energy of carbon dioxide regarded as a
real gas at 298.15 K. For this calculation treat carbon dioxide
as a van der Waals gas and use the data in Table 1.5.

2.23 A sample of a serum of mass 25 g is cooled from 290 K
to 275 K at constant pressure by the extraction of 1.2 kJ of
energy as heat. Calculate q and DH and estimate the heat 
capacity of the sample.

2.24 When 3.0 mol O2(g) is heated at a constant pressure of
3.25 atm, its temperature increases from 260 K to 285 K.
Given that the molar heat capacity of O2 at constant pressure
is 29.4 J K−1 mol−1, calculate q, DH, and DU.

2.25 The molar heat capacity at constant pressure of carbon
dioxide is 29.14 J K−1 mol−1. What is the value of its molar
heat capacity at constant volume?

2.26 Use the information in Exercise 2.25 to calculate the
change in (a) molar enthalpy, (b) molar internal energy when
carbon dioxide is heated from 15°C (the temperature when
air is inhaled) to 37°C (blood temperature, the temperature in
our lungs).

Projects

The sign ‡ indicates that calculus is required.

2.27‡ Here we explore the van der Waals equation of state
in more detail. (a) Repeat Derivation 2.2 for a gas that obeys
the equation of state p = nRT/(V − nb), which is appropriate
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when molecular repulsions are important. Does the gas do
more or less work than a perfect gas for the same change 
of volume? (b) Now repeat the preceding exercise for a gas
that obeys the equation of state p = nRT/V − n2a/V 2, which is
appropriate when molecular attractions are important. Does
the gas do more or less work than a perfect gas for the same
change of volume?

2.28‡ Derivation 2.2 showed how to calculate the work of
reversible, isothermal expansion of a perfect gas. Suppose
that the expansion is reversible but not isothermal and that
the temperature decreases as the expansion proceeds. (a)
Find an expression for the work when T = Ti − c(V − Vi ), with
c a positive constant. (b) Is the work greater or smaller than
for isothermal expansion?

2.29‡ We now explore the effect of the temperature depen-
dence of the heat capacity on the internal energy. (a) The heat
capacity of a nonmetallic solid at very low temperatures
(close to T = 0) typically varies as aT 3, where a is a constant.
How does its internal energy vary? (b) Suppose that the 
molar internal energy of a substance over a limited temper-
ature range can be expressed as a polynomial in T as Um(T ) =
a + bT + cT 2. Find an expression for the constant-volume
molar heat capacity at a temperature T.

2.30‡ Now we explore the implications of the temperature
dependence of the heat capacity for the enthalpy. (a) The

heat capacity of a substance is often reported in the form
Cp,m = a + bT + c/T 2. Use this expression to make a more 
accurate estimate of the change in molar enthalpy of carbon
dioxide when it is heated from 15°C to 37°C (as in the pre-
ceding exercise), given a = 44.22 J K−1 mol−1, b = 8.79 × 10−3

J K−2 mol−1, and c = −8.62 × 105 J K mol−1. Hint. You will need
to integrate dH = CpdT. (b) Use the expression from part (a) to
determine how the molar enthalpy of the substance changes
over that limited temperature range. Plot the molar enthalpy
as a function of temperature.

2.31‡ The exact expression for the relation between the
heat capacities at constant volume and constant pressure 
is Cp − CV = a2TV/k, where a is the expansion coefficient, 
a = (dV/dT )/V at constant pressure and k (kappa) is the isother-
mal compressibility, k = −(dV/dp)/V. Confirm that this general
expression reduces to that in eqn 2.19 for a perfect gas.

2.32 This exercise explores differential scanning calorimetry
in more detail (a) In many experimental thermograms, such
as that shown in Box 2.1, the baseline below T1 is at a differ-
ent level from that above T2. Explain this observation. (b) You
have at your disposal a sample of pure polymer P and a sam-
ple of P that has just been synthesized in a large chemical 
reactor and that might contain impurities. Describe how you
would use differential scanning calorimetry to determine the
mole percentage composition of P in the allegedly impure
sample.
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This chapter is an extended illustration of the role 
of enthalpy in chemistry. There are three properties
of enthalpy to keep in mind. One is that a change 
in enthalpy can be identified with the heat supplied 
at constant pressure (ΔH = qp). Secondly, enthalpy 
is a state function, so we can calculate the change 
in its value (ΔH = Hf − H i) between two specified 
initial and final states by selecting the most con-
venient path between them. Thirdly, the slope of a
plot of enthalpy against temperature is the constant-
pressure heat capacity of the system (Cp = ΔH/ΔT ).
All the material in this chapter is based on these three
properties.

Physical change

First, we consider physical change, such as when one
form of a substance changes into another form of the
same substance, as when ice melts to water. We shall
also include changes of a particularly simple kind,
such as the ionization of an atom or the breaking of
a bond in a molecule.

The numerical value of a thermodynamic property
depends on the conditions, such as the states of the
substances involved, the pressure, and the tempera-
ture. Chemists have therefore found it convenient to
report their data for a set of standard conditions at
the temperature of their choice:

The standard state of a substance is the pure sub-
stance at exactly 1 bar.

(Recall that 1 bar = 105 Pa.) We denote the standard
state value by the superscript on the symbol for the
property, as in Hm for the standard molar enthalpy
of a substance and p for the standard pressure of 
1 bar. For example, the standard state of hydrogen
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The conversion of one phase of a substance to 
another phase is called a phase transition. Thus, 
vaporization (liquid → gas) is a phase transition, as is
a transition between solid phases (such as rhombic
sulfur → monoclinic sulfur). Most phase transitions
are accompanied by a change of enthalpy, for the re-
arrangement of atoms or molecules usually requires
or releases energy. ‘Evaporation’ is virtually synony-
mous with vaporization, but commonly denotes 
vaporization to dryness.

The vaporization of a liquid, such as the conver-
sion of liquid water to water vapour when a pool of
water evaporates at 20°C or a kettle boils at 100°C is
an endothermic process (ΔH > 0), because heat must
be supplied to bring about the change. At a molecular
level, molecules are being driven apart from the grip
they exert on one another, and this process requires
energy. One of the body’s strategies for maintaining its
temperature at about 37°C is to use the endothermic
character of the vaporization of water, because the
evaporation of perspiration requires heat and with-
draws it from the skin.

The energy that must be supplied as heat at con-
stant pressure per mole of molecules that are vaporized
under standard conditions (that is, pure liquid at 1 bar
changing to pure vapour at 1 bar) is called the stand-
ard enthalpy of vaporization of the liquid, and is 
denoted ΔvapH (Table 3.1). For example, 44 kJ of
heat is required to vaporize 1 mol H2O(l) at 1 bar
and 25°C, so ΔvapH = 44 kJ mol−1. All enthalpies of
vaporization are positive, so the sign is not normally
given. Alternatively, we can report the same infor-
mation by writing the thermochemical equation

H2O(l) → H2O(g) ΔH = +44 kJ

A thermochemical equation shows the standard 
enthalpy change (including the sign) that accom-
panies the conversion of an amount of reactant equal
to its stoichiometric coeAcient in the accompanying
chemical equation (in this case, 1 mol H2O). If the
stoichiometric coeAcients in the chemical equation
are multiplied through by 2, then the thermochem-
ical equation would be written

2 H2O(l) → 2 H2O(g) ΔH = +88 kJ

A note on good practice The attachment of the subscript
vap to the D is the modern convention; however, the older
convention in which the subscript is attached to the H, as in
DHvap, is still widely used.

This equation signifies that 88 kJ of heat is required
to vaporize 2 mol H2O(l) at 1 bar and (recalling our
convention) at 298.15 K. Unless otherwise stated, all
data in this text are for 298.15 K.

gas is the pure gas at 1 bar and the standard state of
solid calcium carbonate is the pure solid at 1 bar,
with either the calcite or aragonite form specified.
The physical state needs to be specified because we
can speak of the standard states of the solid, liquid,
and vapour forms of water, for instance, which are
the pure solid, the pure liquid, and the pure vapour,
respectively, at 1 bar in each case.

In older texts you might come across a standard
state defined for 1 atm (101.325 kPa) in place of 
1 bar. That is the old convention. In most cases, 
data for 1 atm differ only a little from data for 1 bar.
You might also come across standard states defined
as referring to 298.15 K. That is incorrect: tempera-
ture is not a part of the definition of a standard 
state, and standard states may refer to any tempera-
ture (but it should be specified). Thus, it is possible 
to speak of the standard state of water vapour at 
100 K, 273.15 K, or any other temperature. It is 
conventional, though, for data to be reported at 
the so-called ‘conventional temperature’ of 298.15 K
(25.00°C), and from now on, unless specified other-
wise, all data will be for that temperature. For 
simplicity, we shall often refer to 298.15 K as ‘25°C’.
Finally, a standard state need not be a stable state
and need not be realizable in practice. Thus, the 
standard state of water vapour at 25°C is the vap-
our at 1 bar, but water vapour at that temperature
and pressure would immediately condense to liquid
water.

3.1 The enthalpy of phase transition

A phase is a specific state of matter that is uniform
throughout in composition and physical state. The
liquid and vapour states of water are two of its
phases. The term ‘phase’ is more specific than ‘state
of matter’ because a substance may exist in more
than one solid form, each one of which is a solid
phase. Thus, the element sulfur may exist as a solid.
However, as a solid it may be found as rhombic 
sulfur or as monoclinic sulfur; these two solid phases
differ in the manner in which the crown-like S8

molecules stack together. No substance has more
than one gaseous phase, so ‘gas phase’ and ‘gaseous
state’ are effectively synonyms. The only substance
that exists in more than one liquid phase is helium.
Most substances exist in a variety of solid phases.
Carbon, for instance, exists as graphite, diamond,
and a variety of forms based on fullerene structures;
calcium carbonate exists as calcite and aragonite;
there are at least twelve forms of ice; one more was
discovered in 2006.



PHYSICAL CHANGE 65

Table 3.1

Standard enthalpies of transition at the transition temperature*

Substance Freezing point, T f /K D fusH -/ (kJ mol−1) Boiling point, T b /K DvapH -/(kJ mol−1)

Ammonia, NH3 195.4 5.65 239.7 23.4
Argon, Ar 83.8 1.2 87.3 6.5
Benzene, C6H6 278.6 10.59 353.2 30.8
Ethanol, C2H5OH 158.7 4.60 351.5 43.5
Helium, He 3.5 0.02 4.22 0.08
Mercury, Hg 234.3 2.292 629.7 59.30
Methane, CH4 90.7 0.94 111.7 8.2
Methanol, CH3OH 175.2 3.16 337.2 35.3
Propanone, CH3COCH3 177.8 5.72 329.4 29.1
Water, H2O 273.15 6.01 373.2 40.7

* For values at 298.15 K, use the information in the Data section. The text’s website also contains links to online databases of
thermochemical data.

Because the pressure is 1 atm, not 1 bar, the enthalpy
of vaporization calculated here is not the standard value.
However, 1 atm differs only slightly from 1 bar, so we
can expect the standard enthalpy of vaporization to be
very close to the value found here. Note also that the
value calculated here is for the boiling point of ethanol,
which is 78°C (351 K): we convey this information by
writing DvapH- (351 K) = 43.5 kJ mol−1.

A note on good practice Molar quantities are ex-
pressed as a quantity per mole (as in kilojoules per mole,
kJ mol−1). Distinguish them from the magnitude of a
property for 1 mol of substance, which is expressed as
the quantity itself (as in kilojoules, kJ). All enthalpies of
transition, denoted DtrsH, are molar quantities.

Self-test 3.1

In a similar experiment, it was found that 1.36 g of
boiling benzene, C6H6, is vaporized when a current
of 0.835 A from a 12.0 V source is passed for 53.5 s.
What is the enthalpy of vaporization of benzene at
its boiling point?

[Answer: 30.8 kJ mol−1]

Example 3.1

Determining the enthalpy of vaporization of 
a liquid

Ethanol, C2H5OH, is brought to the boil at 1 atm. When an
electric current of 0.682 A from a 12.0 V supply is passed
for 500 s through a heating coil immersed in the boiling
liquid, it is found that the temperature remains constant
but 4.33 g of ethanol is vaporized. What is the enthalpy
of vaporization of ethanol at its boiling point at 1 atm?

Strategy Because the heat is supplied at constant pres-
sure, we can identify the heat supplied, q, with the
change in enthalpy of the ethanol when it vaporizes. 
We need to calculate the heat supplied and the amount
of ethanol molecules vaporized. Then the enthalpy of 
vaporization is the heat supplied divided by the amount.
The heat supplied is given by eqn 2.5 (q = I �t ; recall that
1 A V s = 1 J). The amount of ethanol molecules is deter-
mined by dividing the mass of ethanol vaporized by its
molar mass (n = m /M ).

Solution The energy supplied by heating is

q = I �t = (0.682 A) × (12.0 V) × (500 s) 

= 0.682 × 12.0 × 500 J

This value is the change in enthalpy of the sample. The
amount of ethanol molecules (of molar mass 46.07 g
mol−1) vaporized is

The molar enthalpy change is therefore

corresponding to 43.5 kJ mol−1.
  
D vap

J
(4.33/46.07) mol

H =
× ×

=
0 682 12 0 500

4 35
. .

. ×× −104 1J mol

n
m
M

= = =−
4 33 4 33

46 071

. .
.

g
46.07 g mol

mol There are some striking differences in standard
enthalpies of vaporization: although the value
for water is 44 kJ mol−1, that for methane, CH4,
at its boiling point is only 8 kJ mol−1. Even 

allowing for the fact that vaporization is taking place 
at different temperatures, the difference between the 
enthalpies of vaporization signifies that water molecules
are held together in the bulk liquid much more tightly
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is the negative of the enthalpy change of the forward
transition (under the same conditions of temperature
and pressure):

H2O(s) → H2O(l) ΔH = +6.01 kJ

H2O(l) → H2O(s) ΔH = −6.01 kJ

and in general

Δ forwardH = −Δ reverseH (3.1)

This relation follows directly from the fact that H
is a state property, for H must return to the same
value if a forward change is followed by the reverse
of that change (Fig. 3.2). The high standard enthalpy
of vaporization of water (44 kJ mol−1), signifying 
a strongly endothermic process, implies that the 
condensation of water (−44 kJ mol−1) is a strongly
exothermic process. That exothermicity is the origin
of the ability of steam to scald severely, because the
energy is passed on to the skin.

The direct conversion of a solid to a vapour is
called sublimation. The reverse process is called
vapour deposition. Sublimation can be observed on a
cold, frosty morning, when frost vanishes as vapour
without first melting. The frost itself forms by vapour
deposition from cold, damp air. The vaporization of
solid carbon dioxide (‘dry ice’) is another example 
of sublimation. The standard molar enthalpy change
accompanying sublimation is called the standard
enthalpy of sublimation, ΔsubH . Because enthalpy is
a state property, the same change in enthalpy must 
be obtained both in the direct conversion of solid to
vapour and in the indirect conversion, in which the
solid first melts to the liquid and then that liquid 
vaporizes (Fig. 3.3):

Δ subH = Δ fusH + ΔvapH (3.2)

The two enthalpies that are added together must be
for the same temperature, so to get the enthalpy of
sublimation of water at 0°C we must add together

than methane molecules are in liquid methane. We shall
see in Chapter 15 that the interaction responsible for the
low volatility of water is the hydrogen bond.

The high enthalpy of vaporization of water has pro-
found ecological consequences, for it is partly respons-
ible for the survival of the oceans and the generally
low humidity of the atmosphere. If only a small
amount of heat had to be supplied to vaporize the
oceans, the atmosphere would be much more heavily
saturated with water vapour than is in fact the case.

Another common phase transition is fusion, or
melting, as when ice melts to water or iron becomes
molten. The change in molar enthalpy that accom-
panies fusion under standard conditions (pure solid
at 1 bar changing to pure liquid at 1 bar) is called the
standard enthalpy of fusion, Δ fusH . Its value for
water at 0°C is 6.01 kJ mol−1 (all enthalpies of fusion
are positive, and the sign need not be given), which
signifies that 6.01 kJ of energy is needed to melt 
1 mol H2O(s) at 0°C and 1 bar. Notice that the 
enthalpy of fusion of water is much less than its 
enthalpy of vaporization. In vaporization the mole-
cules become completely separated from each other,
whereas in melting the molecules are merely loosened
without separating completely (Fig. 3.1).

The reverse of vaporization is condensation and
the reverse of fusion (melting) is freezing. The molar
enthalpy changes are, respectively, the negative of the
enthalpies of vaporization and fusion, because the heat
that is supplied to vaporize or melt the substance is
released when it condenses or freezes. It is always the
case that the enthalpy change of a reverse transition

(a) (b) (c)

Fig. 3.1 When a solid (a) melts to a liquid (b), the molecules
separate from one another only slightly, the intermolecular 
interactions are reduced only slightly, and there is only a small
change in enthalpy. When a liquid vaporizes (c), the molecules
are separated by a considerable distance, the intermolecular
forces are reduced almost to zero, and the change in enthalpy
is much greater. The text’s website contains links to anima-
tions illustrating this point.
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Fig. 3.2 An implication of the First Law is that the enthalpy
change accompanying a reverse process is the negative of
the enthalpy change for the forward process.



PHYSICAL CHANGE 67

The result expressed by eqn 3.2 is an example of a
more general statement that will prove useful time
and again during our study of thermochemistry:

The enthalpy change of an overall process is the sum
of the enthalpy changes for the steps (observed or
hypothetical) into which it may be divided.

3.2 Atomic and molecular change

A group of enthalpy changes we employ quite
often in the following pages are those accom-
panying changes to individual atoms and
molecules. Among the most important is the

standard enthalpy of ionization, DionH -, the standard
molar enthalpy change accompanying the removal of 
an electron from a gas-phase atom (or ion). For example,
because

H(g) → H+(g) + e−(g) DH = = +1312 kJ

the standard enthalpy of ionization of hydrogen atoms is
reported as 1312 kJ mol−1. This value signifies that 1312 kJ
of energy must be supplied as heat to ionize 1 mol H(g) 
at 1 bar (and 298.15 K). Table 3.2 gives values of the 
ionization enthalpies for a number of elements; note that
all enthalpies of ionization are positive.

A brief comment The enthalpy of ionization is closely 
related to—but is not identical to—the ionization energy.
Briefly, the ionization energy corresponds to the standard ion-
ization enthalpy at T = 0. The ionization enthalpy at a different
temperature can be calculated from the ionization energy by
using the concepts developed in Section 3.7.

We often need to consider a succession of ioniza-
tions, such as the conversion of magnesium atoms to
Mg+ ions, the ionization of these Mg+ ions to Mg2+

ions, and so on. The successive molar enthalpy changes
are called, respectively, the first ionization enthalpy,
the second ionization enthalpy, and so on. For mag-
nesium, these enthalpies refer to the processes

Mg(g) → Mg+(g) + e−(g) ΔH = +738 kJ

Mg+(g) → Mg2+(g) + e−(g) ΔH = +1451 kJ

Note that the second ionization enthalpy is larger
than the first: more energy is needed to separate an
electron from a positively charged ion than from the
neutral atom. Note also that enthalpies of ionization
refer to the ionization of the gas phase atom or ion,
not to the ionization of an atom or ion in a solid. 
To determine the latter, we need to combine two or
more enthalpy changes.

Self-test 3.2

Calculate the standard enthalpy of sublimation of ice at
0°C from its standard enthalpy of fusion at 0°C (6.01 kJ
mol−1) and the standard enthalpy of vaporization of water
at 0°C (45.07 kJ mol−1).

[Answer: 51.08 kJ mol−1]
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Fig. 3.3 The enthalpy of sublimation at a given temperature
is the sum of the enthalpies of fusion and vaporization at that
temperature. Another implication of the First Law is that 
the enthalpy change of an overall process is the sum of the
enthalpy changes for the possibly hypothetical steps into
which it may be divided.

the enthalpies of fusion and vaporization for this
temperature. Adding together enthalpies of transition
for different temperatures gives a meaningless result.

Example 3.2

Combining enthalpy changes

The standard enthalpy of sublimation of magnesium 
at 25°C is 148 kJ mol−1. How much energy as heat (at
constant temperature and pressure) must be supplied 
to 1.00 g of solid magnesium metal to produce a gas
composed of Mg2+ ions and electrons?

Strategy The enthalpy change for the overall process is
a sum of the steps, sublimation followed by the two
stages of ionization, into which it can be divided. Then,
the heat required for the specified process is the product
of the overall molar enthalpy change and the amount of
atoms; the latter is calculated from the given mass and
the molar mass of the substance.

Solution The overall process is

Mg(s) → Mg2+(g) + 2 e−(g)

The thermochemical equation for this process is the
sum of the following thermochemical equations:

DH -/kJ

Sublimation: Mg(s) → Mg(g) +148

First ionization: Mg(g) → Mg+(g) + e−(g) +738

Second ionization: Mg+(g) → Mg2+(g) + e−(g) +1451

Overall (sum): Mg(s) → Mg2+(g) + 2 e−(g) +2337
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the electron aAnity, as we shall see in Section 13.16.
For example, because experiments show that

Cl(g) + e−(g) → Cl−(g) ΔH = −349 kJ

it follows that the electron gain enthalpy of Cl atoms
is −349 kJ mol−1. Notice that electron gain by Cl is 
an exothermic process, so heat is released when a Cl
atom captures an electron and forms an ion. It can be
seen from Table 3.3, which lists a number of electron
gain enthalpies, that some electron gains are exo-
thermic and others are endothermic, so we need to
include their sign. For example, electron gain by an
O− ion is strongly endothermic because it takes 
energy to push an electron on to an already nega-
tively charged species:

O−(g) + e−(g) → O2−(g) ΔH = +844 kJ

The final atomic and molecular process to consider
at this stage is the dissociation, or breaking, of a
chemical bond, as in the process

HCl(g) → H(g) + Cl(g) ΔH = +431 kJ

The corresponding standard molar enthalpy change
is called the bond enthalpy, so we would report the
H—Cl bond enthalpy as 431 kJ mol−1. All bond 
enthalpies are positive.

Some bond enthalpies are given in Table 3.4. Note
that the nitrogen–nitrogen bond in molecular nitrogen,
N2, is very strong, at 945 kJ mol−1, which helps to 
account for the chemical inertness of nitrogen and its
ability to dilute the oxygen in the atmosphere without
reacting with it. In contrast, the fluorine–fluorine
bond in molecular fluorine, F2, is relatively weak, at
155 kJ mol−1; the weakness of this bond contributes
to the high reactivity of elemental fluorine. However,
bond enthalpies alone do not account for reactivity
because, although the bond in molecular iodine is
even weaker, I2 is less reactive than F2, and the bond
in CO is stronger than the bond in N2, but CO forms
many carbonyl compounds, such as Ni(CO)4. The
types and strengths of the bonds that the elements
can make to other elements are additional factors.

A complication when dealing with bond en-
thalpies is that their values depend on the molecule in
which the two linked atoms occur. For instance, the
total standard enthalpy change for the atomization
(the complete dissociation into atoms) of water

H2O(g) → 2 H(g) + O(g) ΔH = +927 kJ

is not twice the O—H bond enthalpy in H2O even
though two O—H bonds are dissociated. There are in
fact two different dissociation steps. In the first step,
an O—H bond is broken in an H2O molecule:

H2O(g) → HO(g) + H(g) ΔH = +499 kJ

These processes are illustrated diagrammatically in 
Fig. 3.4. It follows that the overall enthalpy change per
mole of Mg is 2337 kJ mol−1. Because the molar mass 
of magnesium is 24.31 g mol−1, 1.0 g of magnesium 
corresponds to

Therefore, the energy that must be supplied as heat (at
constant pressure) to ionize 1.00 g of magnesium metal is

This quantity of energy is approximately the same as
that needed to vaporize about 43 g of boiling water.

qp = DH and DH = nDHm DHm
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Fig. 3.4 The contributions to the enthalpy change
treated in Example 3.2.

Self-test 3.3

The enthalpy of sublimation of aluminium is 326 kJ
mol−1. Use this information and the ionization 
enthalpies in Table 3.2 to calculate the energy that
must be supplied as heat (at constant pressure) to
convert 1.00 g of solid aluminium metal to a gas of
Al3+ ions and electrons at 25°C.

[Answer: +202 kJ]

The reverse of ionization is electron gain, and the
corresponding molar enthalpy change under stand-
ard conditions is called the standard electron gain 
enthalpy, ΔegH . This quantity is closely related to



Table 3.2

First and second (and some higher) standard enthalpies of ionization, DionH /(kJ mol−1)

1 2 13 15 15 16 17 18

H He

1312 2370
5250

Li Be B C N O F Ne

519 900 799 1090 1400 1310 1680 2080
7300 1760 2420 2350 2860 3390 3370 3950

14 800 3660
25 000

Na Mg Al Si P S Cl Ar

494 738 577 786 1060 1000 1260 1520
4560 1451 1820

7740 2740
11 600

K Ca Ga Ge As Se Br Kr

418 590 577 762 966 941 1140 1350
3070 1150

4940

Rb Sr In Sn Sb Te I Xe

402 548 556 707 833 870 1010 1170
2650 1060

4120

Cs Ba Tl Pb Bi Po At Rn

376 502 812 920 1040 812 920 1040
2420 966
3300 3390

Strictly, these are the values of D ionU(0). For more precise work, use D ionH (T ) = DionU(0) + 5–2RT, with 5–2RT = 6.20 J mol−1 at 298 K.

Table 3.3

Electron gain enthalpies of the main-group elements, DegH / (kJ mol −1)*

1 2 13 14 15 16 17 18

H He

−73 +21

Li Be B C N O F Ne

−60 +18 −27 −122 +7 −141 −328 +29
+844

Na Mg Al Si P S Cl Ar

−53 +232 −43 −134 −44 −200 −349 +35
+532

K Ca Ga Ge As Se Br Kr

−48 +186 −29 −116 −78 −195 −325 +39

Rb Sr In Sn Sb Te I Xe

−47 +146 −29 −116 −103 −190 −295 +41

Cs Ba Tl Pb Bi Po At Ra

−46 +46 −19 −35 −91 −183 −270

* Where two values are given, the first refers to the formation of the ion X− from the neutral atom X; the second, to the formation of 
X2− from X−.
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enthalpies for the molecule in question and its suc-
cessive fragments, when such data are not available
there is no choice but to make estimates by using
mean bond enthalpies, ΔHB, which are the averages
of bond enthalpies over a related series of compounds
(Table 3.5). For example, the mean HO bond 
enthalpy, ΔHB(H—O) = 463 kJ mol−1, is the mean of
the O—H bond enthalpies in H2O and several other
similar compounds, including methanol, CH3OH.

In the second step, the O—H bond is broken in an
OH radical:

HO(g) → H(g) + O(g) ΔH = +428 kJ

The sum of the two steps is the atomization of the
molecule. As can be seen from this example, the 
O—H bonds in H2O and HO have similar but not
identical bond enthalpies.

Although accurate calculations must use bond 

Table 3.4

Selected bond enthalpies, DH (A–B)/(kJ mol−1)

Diatomic molecules
H—H 436 OlO 497 F—F 155 H—F 565

NyN 945 Cl—Cl 242 H—Cl 431
O—H 428 Br—Br 193 H—Br 366
CyO 1074 I—I 151 H—I 299

Polyatomic molecules
H—CH3 435 H—NH2 460 H—OH 492
H—C6H5 469 O2N—NO2 54 HO—OH 213
H3C—CH3 368 OlCO 531 HO—CH3 377
H2ClCH2 720 Cl—CH3 352
HCyCH 962 Br—CH3 293

I—CH3 237

Table 3.5

Mean bond enthalpies, DHB /(kJ mol −1)

H C N O F Cl Br I S P Si

H 436

C 412 348(1)
612(2)
838(3)
518 (a)

N 388 305(1) 163 (1)
613 (2) 409 (2)
890 (3) 945 (3)

O 463 360 (1) 157 146(1)
743 (2) 497(2)

F 565 484 270 185 155

Cl 431 338 200 203 254 242

Br 366 276 219 193

I 299 238 210 178 151

S 338 259 496 250 212 264

P 322 200

Si 318 374 466 226

Values are for single bonds except where otherwise stated (in parentheses).
(a) Denotes aromatic.



of dissociation) is the negative of the mean bond 
enthalpy (obtained from Table 3.5):

DH - /kJ
Formation of 3 C—H bonds: −1236

Formation of 1 C—O bond: −360

Formation of 1 O—H bond: −463

Overall, in this step: −2059

C(g) + 4 H(g) + O(g) → CH3OH(g)

These values are estimates. The final stage of the reac-
tion is the condensation of methanol vapour:

CH3OH(g) → CH3OH(l) DH - = −38.00 kJ

The sum of the enthalpy changes is

DH - = (+1837.73 kJ) + (−2059 kJ) + (−38.00 kJ) = −259 kJ

The experimental value is −239.00 kJ.

Chemical change

In the remainder of this chapter we concentrate on
enthalpy changes accompanying chemical reactions,
such as the hydrogenation of ethene:

CH2lCH2(g) + H2(g) → CH3CH3(g)

ΔH = −137 kJ

The value of ΔH given here signifies that the en-
thalpy of the system decreases by 137 kJ (and, if the
reaction takes place at constant pressure, that 137 kJ
of energy is released by heating the surroundings)
when 1 mol CH2lCH2(g) at 1 bar combines with 
1 mol H2(g) at 1 bar to give 1 mol CH3CH3(g) at 
1 bar, all at 25°C.

3.3 Enthalpies of combustion

One commonly encountered reaction is combustion,
the complete reaction of a compound, most com-
monly an organic compound, with oxygen, as in the
combustion of methane in a natural gas flame:

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)

ΔH = −890 kJ

Example 3.3

Using mean bond enthalpies

Estimate the standard enthalpy change for the reaction

C(s, graphite) + 2 H2(g) + O2(g) → CH3OH(l)

in which liquid methanol is formed from its elements at
25°C. Use information from the Data section and bond
enthalpy data from Tables 3.4 and 3.5.

Strategy In calculations of this kind, the procedure is to
break the overall process down into a sequence of steps
such that their sum is the chemical equation required.
Always ensure, when using bond enthalpies, that all the
species are in the gas phase. That may mean including
the appropriate enthalpies of vaporization or sublimation.
One approach is to atomize all the reactants and then 
to build the products from the atoms so produced. When
explicit bond enthalpies are available (that is, data are
given in the tables available), use them; otherwise, use
mean bond enthalpies to obtain estimates. It is often
helpful to display the enthalpy changes diagrammatically.

Solution The following steps are required (Fig. 3.5):

DH - / kJ
Atomization C(s, graphite) → C(g) +716.68
of graphite:

Dissociation of 2 H2(g) → 4 H(g) +871.88
2 mol H2(g):

Dissociation 1–2 O2(g) → O(g) +249.17
of 1–2 O2(g):

Overall, so far: C(s) + 2 H2(g) + 1–2 O2(g) +1837.73
→ C(g) + 4 H(g) + O(g)

These values are accurate. In the second step, three CH
bonds, one CO bond, and one OH bond are formed, and
we estimate their enthalpies from mean values. The
standard enthalpy change for bond formation (the reverse
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Fig. 3.5 The enthalpy changes used to estimate the 
enthalpy change accompanying the formation of liquid
methanol from its elements. The bond enthalpies are
mean values, so the final value is only approximate.

Self-test 3.4

Estimate the enthalpy change for the combustion of
liquid ethanol to carbon dioxide and liquid water
under standard conditions by using the bond en-
thalpies, mean bond enthalpies, and the appropriate
standard enthalpies of vaporization.

[Answer: −1348 kJ; the experimental value is −1368 kJ]
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pVm = (1.0 × 105 Pa) × (18 × 10−6 m3 mol−1)

= 1.8 Pa m3 mol−1 = 1.8 J mol−1

= 1.8 × 10−3 kJ mol−1

However, the molar volume of a gas, and therefore
the value of pVm, is about 1000 times greater and
cannot be ignored. For gases treated as perfect, pVm

may be replaced by RT. Therefore, if in the chemical
equation the difference (products – reactants) in the
stoichiometric coeAcients of gas phase species is
Δvgas, we can write

ΔcH = ΔcU + ΔvgasRT (3.3)

Note that Δvgas (where v is nu) is a dimensionless
quantity.

A brief illustration The energy released as heat when
glycine is burned in a bomb calorimeter is 969.6 kJ mol−1

at 298.15 K, so DcU = −969.6 kJ mol−1. From the chemical
equation

NH2CH2COOH(s) + O2(g) → 2 CO2(g) + H2O(l) + N2(g)

we find that Dvgas = (2 + ) − = . Therefore, assuming that
the difference between DcU and DcH is due to contribu-
tions from reactants and products in the gas phase, we
use eqn 3.3 to obtain

DcH = DcU + RT

= −969.6 kJ mol−1 + × (8.3145 × 10−3 kJ K−1 mol−1) 
× (298.15 K)

= −969.6 kJ mol−1 + 0.62 kJ mol−1

= −969.0 kJ mol−1

3.4 The combination of reaction enthalpies

The reaction enthalpy (or the ‘enthalpy of reaction’),
ΔrH, is the change in enthalpy that accompanies a
chemical reaction: the enthalpy of combustion is just
a special case. The reaction enthalpy is the difference
between the molar enthalpies of the reactants and the
products, with each term weighted by the stoichio-
metric coeAcient, v (nu), in the chemical equation:

ΔrH = ∑vHm(products) − ∑vHm(reactants) (3.4a)

The standard reaction enthalpy (the ‘standard en-
thalpy of reaction’), Δ rH , is the value of the reac-
tion enthalpy when all the reactants and products are
in their standard states:

ΔrH = ∑vHm
 (products) − ∑vHm

-(reactants) (3.4b)

Because the Hm are molar quantities and the stoi-
chiometric coeAcients are pure numbers, the units of
ΔrH- are kilojoules per mole. The standard reaction
enthalpy is the change in enthalpy of the system when
the reactants in their standard states (pure, 1 bar) are
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By convention, combustion of an organic compound
results in the formation of carbon dioxide gas, liquid
water, and—if the compound contains nitrogen—
nitrogen gas. The standard enthalpy of combustion,
ΔcH , is the change in standard enthalpy per mole of
combustible substance. In this example, we would
write Δ cH (CH4, g) = −890 kJ mol−1. Some typical
values are given in Table 3.6. Note that Δ cH is a
molar quantity, and is obtained from the value of
ΔH by dividing by the amount of organic reactant
consumed (in this case, by 1 mol CH4). We see in 
Box 3.1 that the enthalpy of combustion is a useful
measure of the eAciency of fuels.

Enthalpies of combustion are commonly measured
by using a bomb calorimeter, a device in which 
energy is transferred as heat at constant volume.
According to the discussion in Section 2.7 and the 
relation ΔU = qV, the energy transferred as heat at
constant volume is equal to the change in internal 
energy, ΔU, not ΔH. To convert from ΔU, to ΔH we
need to note that the molar enthalpy of a substance is
related to its molar internal energy by Hm = Um + pVm

(eqn 2.13a). For condensed phases, pVm is so small it
may be ignored. For example, the molar volume of
liquid water is 18 cm3 mol−1 = 18 × 10−6 m3 mol−1,
and at 1.0 bar

Table 3.6

Standard enthalpies of combustion

Substance DcH -/(kJ mol−1)

Benzene, C6H6(l) −3268
Carbon monoxide, CO(g) −394
Carbon, C(s,graphite) −394
Ethanol, C2H5OH(l) −1368
Ethyne, C2H2(g) −1300
Glucose, C6H12O6(s) −2808
Hydrogen, H2(g) −286
iso-Octane, *C8H18(l) −5461
Methane, CH4(g) −890
Methanol, CH3OH(l) −726
Methylbenzene, C6H5CH3(l) −3910
Octane, C8H18(l) −5471
Propane, C3H8(g) −2220
Sucrose, C12H22O11(s) −5645
Urea, CO(NH2)2(s) −632

* 2,2,4-Trimethylpentane.
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Box 3.1 Fuels, food and energy reserves

We shall see in Chapter 4 that the best assessment of 
the ability of a compound to act as a fuel to drive many of
the processes occurring in the body makes use of the
‘Gibbs energy’. However, a useful guide to the resources
provided by a fuel, and the only one that matters when its
heat output is being considered, is the enthalpy, particularly
the enthalpy of combustion. The thermochemical proper-
ties of fuels and foods are commonly discussed in terms of
their specific enthalpy, the enthalpy of combustion divided
by the mass of material (typically in kilojoules per gram), or
the enthalpy density, the magnitude of the enthalpy of com-
bustion divided by the volume of material (typically in kilo-
joules per cubic decimetre). Thus, if the standard enthalpy
of combustion is DcH - and the molar mass of the com-
pound is M, then the specific enthalpy is DcH -/M. Similarly,
the enthalpy density is DcH -/Vm, where Vm is the molar 
volume of the material.

The table lists the specific enthalpies and enthalpy densi-
ties of several fuels. The most suitable fuels are those with
high specific enthalpies, as the advantage of a high molar
enthalpy of combustion may be eliminated if a large mass of
fuel is to be transported. We see that H2 gas compares very
well with more traditional fuels such as methane (natural
gas), iso-octane (gasoline), and methanol. Furthermore, the
combustion of H2 gas does not generate CO2 gas, a pollut-
ant implicated in the mechanism of global warming. As 
a result, H2 gas has been proposed as an efficient, clean 
alternative to fossil fuels, such as natural gas and petroleum.
However, we also see that H2 gas has a very low enthalpy
density, which arises from the fact that hydrogen is a very
light gas. So, the advantage of a high specific enthalpy is 
undermined by the large volume of fuel to be transported
and stored. Strategies are being developed to solve the
storage problem. For example, the small H2 molecules can
travel through holes in the crystalline lattice of a sample of

metal, such as titanium, where they bind as metal hydrides.
In this way it is possible to increase the effective density of
hydrogen atoms to a value that is higher than that of liquid
H2. Then the fuel can be released on demand by heating 
the metal.

We now assess the factors that optimize the heat output
of carbon-based fuels, with an eye toward understanding
such biological fuels as carbohydrates, fats, and proteins.
Let’s consider the combustion of 1 mol CH4(g), the main
constituent of natural gas. The reaction involves changes in
the oxidation numbers of carbon from −4 to +4, an oxida-
tion, and of oxygen from 0 to −2, a reduction (see Appendix
4 for a review of oxidation numbers and oxidation–reduction
reactions). From the thermochemical equation, we see 
that 890 kJ of energy is released as heat per mole of carbon
that is oxidized. Now consider the oxidation of 1 mol
CH3OH(g):

CH3OH(g) + O2(g) → CO2(g) + 2 H2O(l) DH - = −764 kJ

This reaction is also exothermic, but now only 764 kJ of 
energy is released as heat per mole of carbon that under-
goes oxidation. Much of the observed change in energy
output between the reactions can be explained by noting
that the carbon in methanol has an oxidation number of −2,
and not −4 as in methane. That is, the replacement of a 
C—H bond by a C—O bond renders the carbon in methanol
more oxidized than the carbon in methane, so it is reason-
able to expect that less energy is released to complete the
oxidation of carbon to CO2 in methanol. In general, we find
that the presence of partially oxidized carbon atoms (that is,
carbon atoms bonded to oxygen atoms) in a material makes
it a less suitable fuel than a similar material containing more
highly reduced carbon atoms.

Another factor that determines the heat output of 
combustion reactions is the number of carbon atoms in 

3
2

Box 3.1

Thermochemical properties of some fuels

Fuel Combustion equation DcH -/ Specific Enthalpy 
(kJ mol−1) enthalpy/ density*/

(kJ g−1) (kJ dm−3)

Hydrogen 2 H2(g) + O2(g) → 2 H2O(l) −286 142 13
Methane CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l) −890 55 40
iso-Octane 2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(l) −5471 48 3.8 × 104

Methanol 2 CH3OH(l) + 3 O2(g) → 2 CO2(g) + 4 H2O(l) −726 23 1.8 × 104

* At atmospheric pressures and room temperature.
† 2,2,4-Trimethylpentane.
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the technique to a sequence of chemical reactions.
The procedure is summarized by Hess’s law:

The standard enthalpy of a reaction is the sum of
the standard enthalpies of the reactions into which
the overall reaction may be divided.

Although the procedure is given the status of a law, it
hardly deserves the title because it is nothing more
than a consequence of enthalpy being a state func-
tion, which implies that an overall enthalpy change
can be expressed as a sum of enthalpy changes for
each step in an indirect path. The individual steps
need not be actual reactions that can be carried out in
the laboratory—they may be entirely hypothetical
reactions, the only requirement being that their equa-
tions should balance. Each step must correspond to
the same temperature.

completely converted into products in their standard
states (pure, 1 bar), with the change expressed in
kilojoules per mole of reaction as written. Thus, if for
the reaction 2 H2(g) + O2(g) → 2 H2O(l) we report
that ΔrH- = −572 kJ mol−1, then the ‘per mole’
means that the reaction releases 572 kJ of heat per
mole of O2 consumed or per 2 mol H2O formed (and
therefore 286 kJ per mole of H2O formed).

It is often the case that a reaction enthalpy is
needed but is not available in tables of data. Now the
fact that enthalpy is a state function comes in handy,
because it implies that we can construct the required
reaction enthalpy from the reaction enthalpies of
known reactions. We have already seen a primitive
example when we calculated the enthalpy of sublima-
tion from the sum of the enthalpies of fusion and 
vaporization. The only difference is that we now apply

hydrocarbon compounds. For example, from the value of
the standard enthalpy of combustion for methane we know
that for each mole of CH4 supplied to a furnace, 890 kJ of
heat can be released, whereas for each mole of iso-octane
molecules (C8H18, 2,2,4-trimethylpentane, a typical compon-
ent of gasoline) supplied to an internal combustion engine,
5461 kJ of heat is released (see the table). The much larger
value for iso-octane is a consequence of each molecule
having eight C atoms to contribute to the formation of car-
bon dioxide, whereas methane has only one.

Now we turn our attention to biological fuels, the foods
we ingest to meet the energy requirements of daily life. 
A typical 18–20 year old man requires a daily input of about
12 MJ (1 MJ = 106 J); a woman of the same age needs
about 9 MJ. If the entire consumption were in the form of
glucose, which has a specific enthalpy of 16 kJ g−1, meeting
energy needs would require the consumption of 750 g 
of glucose by a man and 560 g by a woman. In fact, the
complex carbohydrates (polymers of carbohydrate units,
such as starch) more commonly found in our diets have
slightly higher specific enthalpies (17 kJ g−1) than glucose 
itself, so a carbohydrate diet is slightly less daunting than a
pure glucose diet, as well as being more appropriate in the
form of fibre, the indigestible cellulose that helps move 
digestion products through the intestine.

The specific enthalpy of fats, which are long-chain 
esters like tristearin (beef fat), is much greater than that of
carbohydrates, at around 38 kJ g−1, slightly less than the
value for the hydrocarbon oils used as fuel (48 kJ g−1). 
The reason for this lies in the fact that many of the carbon
atoms in carbohydrates are bonded to oxygen atoms and
are already partially oxidized, whereas most of the carbon
atoms in fats are bonded to hydrogen and other carbon

atoms and hence have lower oxidation numbers. As we
saw above, the presence of partially oxidized carbons 
lowers the heat output of a fuel.

Fats are commonly used as an energy store, to be used
only when the more readily accessible carbohydrates have
fallen into short supply. In Arctic species, the stored fat also
acts as a layer of insulation; in desert species (such as the
camel), the fat is also a source of water, one of its oxidation
products.

Proteins are also used as a source of energy, but their
components, the amino acids, are often too valuable to
squander in this way, and are used to construct other 
proteins instead. When proteins are oxidized (to urea,
CO(NH2)2), the equivalent enthalpy density is comparable
to that of carbohydrates.

We have already remarked that not all the energy 
released by the oxidation of foods is converted to work. The
heat that is also released needs to be discarded in order to
maintain body temperature within its typical range of 35.6–
37.8°C. A variety of mechanisms contribute to this aspect
of homeostasis, the ability of an organism to counteract 
environmental changes with physiological responses. The
general uniformity of temperature throughout the body is
maintained largely by the flow of blood. When heat needs
to be dissipated rapidly, warm blood is allowed to flow
through the capillaries of the skin, so producing flushing.
Radiation is one means of discarding heat; another is evap-
oration and the energy demands of the enthalpy of vaporiza-
tion of water. Evaporation removes about 2.4 kJ per gram
of water perspired. When vigorous exercise promotes
sweating (through the influence of heat selectors on the 
hypothalamus), 1–2 dm3 of perspired water can be produced
per hour, corresponding to a heat loss of 2.4–5.0 MJ h−1.



CHEMICAL CHANGE 75

3.5 Standard enthalpies of formation

The problem with eqn 3.4 is that we have no way of
knowing the absolute enthalpies of the substances.
To avoid this problem, we can imagine the reaction
as taking place by an indirect route, in which the 
reactants are first broken down into the elements 
and then the products are formed from the elements
(Fig. 3.7). Specifically, the standard enthalpy of forma-
tion, ΔfH , of a substance is the standard enthalpy
(per mole of the substance) for its formation from its
elements in their reference states. The reference state
of an element is its most stable form under the pre-
vailing conditions (Table 3.7). Don’t confuse ‘refer-
ence state’ with ‘standard state’: the reference state of
carbon at 25°C is graphite; the standard state of 
carbon is any specified phase of the element at 1 bar.
For example, the standard enthalpy of formation 
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Fig. 3.6 The enthalpy changes used in Example 3.4 to 
illustrate Hess’s law.

Self-test 3.5

Calculate the standard enthalpy of the reaction
C6H6(l) + 3 H2(g) → C6H12(l) from the standard 
enthalpies of combustion of benzene (Table 3.6)
and cyclohexane (−3930 kJ mol−1).

[Answer: −196 kJ]

Example 3.4

Using Hess’s law

Given the thermochemical equations

C3H6(g) + H2(g) → C3H8(g) DH - = −124 kJ

C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(l) DH - = −2220 kJ

where C3H6 is propene and C3H8 is propane, calculate
the standard enthalpy of combustion of propene.

Strategy We need to add or subtract the thermochem-
ical equations, together with any others that are needed
(from the Data section), so as to reproduce the thermo-
chemical equation for the reaction required. In calculations
of this type, it is often necessary to use the synthesis 
of water to balance the hydrogen or oxygen atoms in 
the overall equation. Once again, it may be helpful to 
express the changes diagrammatically.

Solution The overall reaction is

C3H6(g) + 9–2 O2(g) → 3 CO2(g) + 3 H2O(l) DH -

We can recreate this thermochemical equation from the
following sum (Fig. 3.6):

DH -/kJ
C3H6(g) + H2(g) → C3H8(g) −124
C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(l) −2220

H2O(l) → H2(g) + 1–2 O2(g) +286

Overall: C3H6(g) + 9–2 O2(g) → −2058

3 CO2(g) + 3 H2O(l)

It follows that the standard enthalpy of combustion of
propene is −2058 kJ mol−1.

Table 3.7

Reference states of some elements

Element Reference state

Arsenic grey arsenic
Bromine liquid
Carbon graphite
Hydrogen gas
Iodine solid
Mercury liquid
Nitrogen gas
Oxygen gas
Phosphorus white phosphorus
Sulfur rhombic sulfur
Tin white tin, a -tin
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Fig. 3.7 An enthalpy of reaction may be expressed as the dif-
ference between the enthalpies of formation of the products
and the reactants.
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The reference states of the elements define a ther-
mochemical ‘sea level’, and enthalpies of formation
can be regarded as thermochemical ‘altitudes’ above
or below sea level (Fig. 3.8). Compounds that have
negative standard enthalpies of formation (such as
water) are classified as exothermic compounds, for
they lie at a lower enthalpy than their component 
elements (they lie below thermochemical sea level).
Compounds that have positive standard enthalpies
of formation (such as carbon disulfide) are classified
as endothermic compounds, and possess a higher 
enthalpy than their component elements (they lie
above sea level).

3.6 Enthalpies of formation and 
molecular modelling

It is diAcult to estimate standard enthalpies of forma-
tion of different conformations of molecules. For 
example, we obtain the same enthalpy of formation
for the equatorial (1) and axial (2) conformations of
methylcyclohexane if we proceed as in Example 3.3.
However, it has been observed experimentally that

of liquid water (at 25°C, as always in this text) is 
obtained from the thermochemical equation

H2(g) + O2(g) → H2O(l) ΔH = −286 kJ

and is Δf H (H2O, l) = −286 kJ mol−1. Note that 
enthalpies of formation are molar quantities, so to go
from ΔH- in a thermochemical equation to Δf H-

for that substance, divide by the amount of substance
formed (in this instance, by 1 mol H2O).

With the introduction of standard enthalpies of
formation, we can write

ΔrH = ∑vΔf H-(products) − ∑vΔfH-(reactants)
(3.5)

The first term on the right is the enthalpy of forma-
tion of all the products from their elements; the sec-
ond term on the right is the enthalpy of formation of
all the reactants from their elements. The fact that
the enthalpy is a state function means that a reaction
enthalpy calculated in this way is identical to the
value that would be calculated from eqn 3.4 if abso-
lute enthalpies were available.

The values of some standard enthalpies of forma-
tion at 25°C are given in Table 3.8, and a longer list
is given in the Data section. The standard enthalpies
of formation of elements in their reference states are
zero by definition (because their formation is the null
reaction: element → element). Note, however, that
the standard enthalpy of formation of an element in
a state other than its reference state is not zero:

C(s, graphite) → C(s, diamond) ΔH = +1.895 kJ

Therefore, although Δf H (C, graphite) = 0, Δf H-

(C, diamond) = +1.895 kJ mol−1.

1
2

Example 3.5

Using standard enthalpies of formation

Calculate the standard enthalpy of combustion of liquid
benzene from the standard enthalpies of formation of
the reactants and products.

Strategy We write the chemical equation, identify the
stoichiometric numbers of the reactants and products,
and then use eqn 3.5. Note that the expression has 
the form ‘products – reactants’. Numerical values of
standard enthalpies of formation are given in the Data
section. The standard enthalpy of combustion is the 
enthalpy change per mole of substance, so we need to
interpret the enthalpy change accordingly.

Solution The chemical equation is

C6H6(l) + O2(g) → 6 CO2(g) + 3 H2O(l)15
2

It follows that

DrH - = {6DfH -(CO2,g) + 3DfH -(H2O,l)} 

− {DfH -(C6H6, l) + DfH -(O2, g)}

= {6 × (−393.51 kJ mol−1) + 3 × (−285.83 kJ mol−1)} 

− {(49.0 kJ mol−1) + 0}

= −3268 kJ mol−1

Inspection of the chemical equation shows that, in this
instance, the ‘per mole’ is per mole of C6H6, which is 
exactly what we need for an enthalpy of combustion. It
follows that the standard enthalpy of combustion of liquid
benzene is −3268 kJ mol−1.

A note on good practice The standard enthalpy of
formation of an element in its reference state (oxygen
gas in this example) is written 0 not 0 kJ mol−1, because
it is zero whatever units we happen to be using.

15
2

Self-test 3.6

Use standard enthalpies of formation to calculate
the enthalpy of combustion of propane gas to car-
bon dioxide and water vapour.

[Answer: −2044 kJ mol−1]
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molecules in these two conformations have different
standard enthalpies of formation as a result of the
greater steric repulsion when the methyl group is in
an axial position than when it is equatorial.

Computer-aided molecular modelling using com-
mercially available software is now widely used to
estimate standard enthalpies of formation of mole-
cules with complex three-dimensional structures, and
can distinguish between different conformations of
the same molecule. In the case of methylcyclohexane,
for instance, the calculated difference in enthalpy of
formation ranges from 5.9 to 7.9 kJ mol−1, which
compares favourably with the experimental value of
7.5 kJ mol−1. However, good agreement between 
calculated and experimental values is relatively rare.
Computational methods almost always predict cor-
rectly which conformation of a molecule is most stable
but do not always predict the correct numerical values
of the difference in enthalpies of formation.

A calculation performed in the absence of solvent
molecules estimates the properties of the molecule of
interest in the gas phase. Computational methods are
available that allow for the inclusion of several 
solvent molecules around a solute molecule, thereby
taking into account the effect of molecular inter-
actions with the solvent on the enthalpy of formation
of the solute. Again, the numerical results are only 
estimates and the primary purpose of the calculation
is to predict whether interactions with the solvent 
increase or decrease the enthalpy of formation. 
As an example, consider the amino acid glycine,
which can exist in a neutral or zwitterionic form,
H2NHCH2COOH and +H3NCH2CO2

−, respectively,
in which in the latter the amino group is protonated
and the carboxyl group is deprotonated. Molecular
modelling shows that in the gas phase the neutral
form has a lower enthalpy of formation than the
zwitterionic form. However, in water the opposite is
true on account of the strong interactions between
the polar solvent and the charges on the zwitter ion.

Table 3.8

Standard enthalpies of formation at 298.15 K *

Substance DfH°/(kJ mol−1)

Inorganic compounds
Ammonia, NH3(g) −46.11
Ammonium nitrate, NH4NO3(s) −365.56
Carbon monoxide, CO(g) −110.53
Carbon disulfide, CS2(l) +89.70
Carbon dioxide, CO2(g) −393.51
Dinitrogen tetroxide, N2O4(g) +9.16
Dinitrogen monoxide, N2O(g) +82.05
Hydrogen chloride, HCl(g) −92.31
Hydrogen fluoride, HF(g) −271.1
Hydrogen sulfide, H2S(g) −20.63
Nitric acid, HNO3(l) −174.10
Nitrogen dioxide, NO2(g) +33.18
Nitrogen monoxide, NO(g) +90.25
Sodium chloride, NaCl(s) −411.15
Sulfur dioxide, SO2(g) −296.83
Sulfur trioxide, SO3(g) −395.72
Sulfuric acid, H2SO4(l) −813.99
Water, H2O(l) −285.83

H2O(g) −241.82

Organic compounds
Benzene, C6H6(l) +49.0
Ethane, C2H6(g) −84.68
Ethanol, C2H5OH(l) −277.69
Ethene, C2H4(g) +52.26
Ethyne, C2H2(g) +226.73
Glucose, C6H12O6(s) −1268
Methane, CH4(g) −74.81
Methanol, CH3OH(l) −238.86
Sucrose, C12H22O11(s) −2222.86

* A longer list is given in the Data section at the end of the
book. The text’s website also contains links to additional data.
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Fig. 3.8 The enthalpy of formation acts as a kind of thermo-
chemical ‘altitude’ of a compound with respect to the ‘sea level’
defined by the elements from which it is made. Endothermic
compounds have positive enthalpies of formation; exother-
mic compounds have negative energies of formation.
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As a simple example, consider the reaction

2 H2(g) + O2(g) → 2 H2O(l)

where the standard enthalpy of reaction is known at
one temperature (for example, at 25°C from the tables
in this book). According to eqn 3.5, we can write

ΔrH (T ) = 2H m (H2O, l) − {2H m(H2, g) + Hm(O2, g)}

for the reaction at a temperature T. If the reaction
takes place at a higher temperature T ′, the molar 
enthalpy of each substance is increased because it
stores more energy and the standard reaction 
enthalpy becomes

ΔrH (T ′) = 2Hm′(H2O, l) −
{2H m′(H2, g) + Hm′(O2, g)}

where the primes signify the values at the new 
temperature. Equation 2.16 (Cp = ΔH /ΔT ) implies
that the increase in molar enthalpy of a substance
when the temperature is changed from T to T ′ is
C p,m × (T ′ − T ), where C p,m is the standard molar 
constant-pressure heat capacity of the substance, the
molar heat capacity measured at 1 bar. For example,
the molar enthalpy of water changes to

H m′(H2O, l) = H m(H2O, l) + C p,m(H2O, l) × (T ′ − T)

if C p,m(H2O, l) is constant over the temperature
range. When we substitute terms like this into the 
expression above, we find

ΔrH (T ′ ) = ΔrH (T ) + Δ rC p × (T ′ − T ) (3.6)

where

Δ rCp = 2Cp,m(H2O, l) − {2Cp,m(H2, g) + Cp,m(O2, g)}

Note that this combination has the same pattern 
as the reaction enthalpy and the stoichiometric 
numbers occur in the same way. In general, ΔrC p is
the difference between the weighted sums of the 
standard molar heat capacities of the products and
the reactants:

ΔrCp = ∑vCp,m(products) − ∑vCp,m(reactants) (3.7)

Equation 3.6 is Kirchhoff’s law. We see that, just as
we anticipated, the standard reaction enthalpy at one
temperature can be calculated from the standard 
reaction enthalpy at another temperature provided
we know the standard molar constant-pressure heat
capacities of all the substances. These values are given
in the Data section. The derivation of Kirchhoff ’s
law supposes that the heat capacities are constant
over the range of temperature of interest, so the law
is best restricted to small temperature differences (of
no more than 100 K or so).

3.7 The variation of reaction enthalpy 
with temperature

It often happens that we have data at one temperature
but need it at another temperature. For example, we
might want to know the enthalpy of a particular 
reaction at body temperature, 37°C, but may have
data available for 25°C. Another type of question
that could arise might be whether the oxidation of
glucose is more exothermic when it takes place inside
an Arctic fish that inhabits water at 0°C than when 
it takes place at mammalian body temperatures.
Similarly, we may need to predict whether the 
synthesis of ammonia is more exothermic at a typical
industrial temperature of 450°C than at 25°C. In pre-
cise work, every attempt would be made to measure
the reaction enthalpy at the temperature of interest,
but it is useful to have a ‘back-of-the-envelope’ way
of estimating the direction of change and even a
moderately reliable numerical value.

Figure 3.9 illustrates the technique we use. As we
have seen, the enthalpy of a substance increases with
temperature; therefore, the total enthalpy of the 
reactants and the total enthalpy of the products in-
crease as shown in the illustration. Provided the two
total enthalpy increases are different, the standard
reaction enthalpy (their difference at a given temper-
ature) will change as the temperature is changed. The
change in the enthalpy of a substance depends on the
slope of the graph and therefore on the constant-
pressure heat capacities of the substances. We can
therefore expect the temperature dependence of the
reaction enthalpy to be related to the difference in
heat capacities of the products and the reactants.
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Fig. 3.9 The enthalpy of a substance increases with temper-
ature. Therefore, if the total enthalpy of the reactants in-
creases by a different amount from that of the products, the
reaction enthalpy will change with temperature. The change
in reaction enthalpy depends on the relative slopes of the two
lines and hence on the heat capacities of the substances.
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The calculation in Example 3.6 shows that the
standard reaction enthalpy at 100°C is only slightly
different from that at 25°C. The reason is that the
change in reaction enthalpy is proportional to the
difference between the molar heat capacities of 
the products and the reactants, which is usually not
very large. It is generally the case that, provided the
temperature range is not too wide, enthalpies of 
reactions vary only slightly with temperature. A rea-
sonable first approximation is that standard reaction
enthalpies are independent of temperature. When 
the temperature range is too wide for it to be safe 
to assume that heat capacities are constant, the 
empirical temperature dependence of each heat 
capacity given in eqn 3.6 may be used: the resulting
expression is best developed by using mathematical
software.

Self-test 3.7

Estimate the standard enthalpy of formation of
NH3(g) at 400 K from the data in the Data section.

[Answer: −48.4 kJ mol−1]

Example 3.6

Using Kirchhoff ’s law

The standard enthalpy of formation of gaseous water at
25°C is −241.82 kJ mol−1. Estimate its value at 100°C.

Strategy First, write the chemical equation and identify
the stoichiometric numbers. Then calculate the value of
DrC p

- from the data in the Data section by using eqn 3.7
and use the result in eqn 3.6.

Solution The chemical equation is

H2(g) + O2(g) → H2O(g)

and the molar constant-pressure heat capacities of H2O(g),
H2(g), and O2(g) are 33.58 J K−1 mol−1, 28.84 J K−1 mol−1,
and 29.37 J K−1 mol−1, respectively. It follows that

DrC p
- = C -

p,m(H2O, g) − {C -
p,m(H2, g) + C -

p,m(O2, g)}

= (33.58 J K−1 mol−1) − {(28.84 J K−1 mol−1) 

+ × (29.37 J K−1 mol−1)}

= −9.95 J K−1 mol−1 = −9.95 × 10−3 kJ K−1 mol−1

Then, because T ′ − T = +75 K, from eqn 3.6 we find

DrH -′ = (−241.82 kJ mol−1) +

(−9.95 × 10−3 kJ K−1 mol−1) × (75 K)

= (−241.82 kJ mol−1) − (0.75 kJ mol−1)

= −242.57 kJ mol−1

The experimental value is −242.58 kJ mol−1.

1
2

1
2

1
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Checklist of key ideas

You should now be familiar with the following concepts.

1 The standard state of a substance is the pure sub-
stance at 1 bar.

2 The standard enthalpy of transition, D trsH =, is the
change in molar enthalpy when a substance in one
phase changes into another phase, both phases
being in their standard states.

3 The standard enthalpy of the reverse of a process
is the negative of the standard enthalpy of the for-
ward process, DreverseH = = −DforwardH =.

4 The standard enthalpy of a process is the sum of
the standard enthalpies of the individual processes

into which it may be regarded as divided, as in
DsubH = = D fusH = + DvapH =.

5 Hess’s law states that the standard enthalpy of a 
reaction is the sum of the standard enthalpies of
the reactions into which the overall reaction may
be divided.

6 The standard enthalpy of formation of a com-
pound, D fH =, is the standard reaction enthalpy for
the formation of the compound from its elements
in their reference states.

7 At constant pressure, exothermic compounds are
those for which DfH = < 0; endothermic compounds
are those for which D fH = > 0.
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The following table summarizes the equations developed in this chapter.

Description

Standard reaction enthalpy 
from enthalpies of formation

Variation of the standard 
reaction enthalpy with 
temperature (Kirchhoff’s law)

Table of key equations

Equation

D rH - = ∑nDfH -(products) − ∑nD fH -(reactants)

D rH -(T ′ ) = D rH -(T ) + D rC p
- × (T ′ − T )

with
D rC p

- = ∑nC -
p,m(products) − ∑nC -

p,m(reactants)

Comment

D rC p
- constant in the

temperature range of interest

Questions and exercises

Discussion questions

3.1 Define the terms (a) standard enthalpy of vaporization,
(b) standard enthalpy of fusion; (c) standard enthalpy of 
sublimation; (d) standard enthalpy of ionization; (e) standard
electron-gain enthalpy; (f) mean bond enthalpy, and identify
an application for each one.

3.2 Define the terms (a) standard reaction enthalpy; (b) stand-
ard enthalpy of combustion; (c) standard enthalpy of forma-
tion, and identify an application for each one.

3.3 A primitive air-conditioning unit for use in places where
electrical power is not available can be made by hanging up
strips of linen soaked in water. Explain why this strategy is 
effective.

3.4 Describe at least two calculational methods by which
standard reaction enthalpies may be predicted. Discuss the
advantages and disadvantages of each method.

3.5 Why is it important to distinguish between the standard
state and the reference state of an element?

3.6 Discuss the limitations of the expressions: (a) DrH =
DrU + DVgasRT; (b) DrH -(T ′) = DrH -(T ) + DrC p

- × (T ′ − T ).

3.7 In the earlier literature, and still not uncommonly, you will
find the expressions ‘heat of combustion’ and ‘latent heat of
vaporization’. Why are the thermodynamic expressions ‘en-
thalpy of combustion’ and ‘enthalpy of vaporization’ superior?

Exercises

Assume all gases are perfect unless stated otherwise. All
thermochemical data are for 298.15 K.

3.1 Estimate the difference between the standard enthalpy
of formation of CO2(g) as currently defined (at 1 bar) and its
value using the former definition (at 1 atm).

3.2 Liquid mixtures of sodium and potassium are used in
some nuclear reactors as coolants that can survive the in-

tense radiation inside reactor cores. Calculate the energy 
required as heat to melt 250 kg of sodium metal at 371 K.

3.3 Calculate the energy that must be transferred as heat to
evaporate 1.00 kg of water at (a) 25°C, (b) 100°C.

3.4 Isopropanol (2-propanol) is commonly used as ‘rubbing
alcohol’ to relieve sprain injuries in sport: its action is due to
the cooling effect that accompanies its rapid evaporation
when applied to the skin. In an experiment to determine its
enthalpy of vaporization, a sample was brought to the boil. It
was found that when an electric current of 0.812 A from a
11.5 V supply was passed for 303 s, then 4.27 g of the alco-
hol was vaporized. What is the (molar) enthalpy of vaporiza-
tion of isopropanol at its boiling point?

3.5 Refrigerators make use of the heat absorption required
to vaporize a volatile liquid. A fluorocarbon liquid being 
investigated to replace a chlorofluorocarbon has DvapH - =
+32.0 kJ mol−1. Calculate q, w, DH, and DU when 2.50 mol is
vaporized at 250 K and 750 Torr.

3.6 Use the information in Tables 2.1 and 2.2 to calculate the
energy that must be transferred as heat to melt 100 g of ice
at 0°C, increase the sample temperature to 100°C, and then
vaporize it at that temperature. Sketch a graph of tempera-
ture against time on the assumption that the sample is
heated at a constant rate.

3.7 The enthalpy of sublimation of calcium at 25°C is 
178.2 kJ mol−1. How much energy (at constant temperature
and pressure) must be supplied as heat to 5.0 g of solid 
calcium to produce a plasma (a gas of charged particles) 
composed of Ca2+ ions and electrons?

3.8 Estimate the difference between the standard enthalpy
of ionization of Ca(g) to Ca2+(g) and the accompanying change
in internal energy at 25°C.

3.9 Estimate the difference between the standard electron-
gain enthalpy of Br(g) and the corresponding change in inter-
nal energy at 25°C.
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3.10 How much energy (at constant temperature and 
pressure) must be supplied as heat to 10.0 g of chlorine gas
(as Cl2) to produce a plasma (a gas of charged particles, in this
case ions) composed of Cl− and Cl+ ions? The enthalpy of 
ionization of Cl(g) is +1257.5 kJ mol−1 and its electron-gain 
enthalpy is −354.8 kJ mol−1.

3.11 Use the data in Exercise 3.10 to identify (a) the standard
enthalpy of ionization of Cl−(g) and (b) the accompanying
change in molar internal energy.

3.12 The enthalpy changes accompanying the dissociation of
successive bonds in NH3(g) are 460, 390, and 314 kJ mol−1,
respectively. (a) What is the mean enthalpy of an N—H bond?
(b) Do you expect the mean bond internal energy to be larger
or smaller than the mean bond enthalpy?

3.13 Use bond enthalpies and mean bond enthalpies to esti-
mate the (a) the enthalpy of the glycolysis reaction adopted
by anaerobic bacteria as a source of energy, C6H12O6(aq) →
2 CH3CH(OH)COOH(aq), lactic acid, which is produced via
the formation of pyruvic acid, CH3COCOOH, and the action
of lactate dehydrogenase and (b) the enthalpy of combustion
of glucose. Ignore the contributions of enthalpies of fusion
and vaporization.

3.14 The efficient design of chemical plants depends on the
designer’s ability to assess and use the heat output in one
process to supply another process. The standard enthalpy of
reaction for N2(g) + 3 H2(g) → 2 NH3(g) is −92.22 kJ mol−1.
What is the change in enthalpy when (a) 1.00 t of N2(g) is con-
sumed, (b) 1.00 t of NH3(g) is formed?

3.15 Ethane is flamed off in abundance from oil wells, 
because it is unreactive and difficult to use commercially. But
would it make a good fuel? The standard enthalpy of reaction
for 2 C2H6(g) + 7 O2(g) → 4 CO2(g) + 6 H2O(l) is −3120 kJ mol−1.
(a) What is the standard enthalpy of combustion of ethane?
(b) What is the specific enthalpy of combustion of ethane? 
(c) Is ethane a more or less efficient fuel than methane?

3.16 Standard enthalpies of formation are widely available,
but we might need a standard enthalpy of combustion 
instead. The standard enthalpy of formation of ethylbenzene
is −12.5 kJ mol−1. Calculate its standard enthalpy of 
combustion.

3.17 Combustion reactions are relatively easy to carry out
and study, and their data can be combined to give enthalpies
of other types of reaction. As an illustration, calculate the
standard enthalpy of hydrogenation of cyclohexene to cyclo-
hexane given that the standard enthalpies of combustion of
the two compounds are −3752 kJ mol−1 (cyclohexene) and 
−3953 kJ mol−1 (cyclohexane).

3.18 Estimate the standard internal energy of formation 
of liquid methyl acetate (methyl ethanoate, CH3COOCH3)
at 298 K from its standard enthalpy of formation, which is 
−442 kJ mol−1.

3.19 The standard enthalpy of combustion of anthracene is 
−7163 kJ mol−1. Calculate its standard enthalpy of formation.

3.20 When 320 mg of naphthalene, C10H8(s), was burned 
in a bomb calorimeter, the temperature rose by 3.05 K.
Calculate the heat capacity of the calorimeter. By how much
will the temperature rise when 100 mg of phenol, C6H5OH(s),
is burned in the calorimeter under the same conditions?

3.21 The energy resources of glucose are of major concern
for the assessment of metabolic processes. When 0.3212 g
of glucose was burned in a bomb calorimeter of heat capa-
city 641 J K−1 the temperature rose by 7.793 K. Calculate (a)
the standard molar enthalpy of combustion, (b) the standard
internal energy of combustion, and (c) the standard enthalpy
of formation of glucose.

3.22 The complete combustion of fumaric acid in a bomb
calorimeter released 1333 kJ per mole of HOOCCHl
CHCOOH(s) at 298 K. Calculate (a) the internal energy of
combustion, (b) the enthalpy of combustion, (c) the enthalpy
of formation of lactic acid.

3.23 The mean bond enthalpies of the C—C, C—H, ClO,
and O—H bonds are 348, 412, 743, and 463 kJ mol−1, respec-
tively. The combustion of a fuel such as octane is exothermic
because relatively weak bonds break to form relatively 
strong bonds. Use this information to justify why glucose 
has a lower specific enthalpy than the lipid decanoic acid
(C10H20O2) even though these compounds have similar molar
masses.

3.24 Calculate the standard enthalpy of solution of AgI(s) in
water from the standard enthalpies of formation of the solid
and the aqueous ions.

3.25 The standard enthalpy of decomposition of the yellow
complex NH3SO2 into NH3 and SO2 is +40 kJ mol−1. Calculate
the standard enthalpy of formation of NH3SO2.

3.26 Given that the enthalpy of combustion of graphite 
is −393.5 kJ mol−1 and that of diamond is −395.41 kJ mol−1,
calculate the standard enthalpy of the C(s, graphite) → C(s,
diamond) transition.

3.27 The pressures deep within the Earth are much greater
than those on the surface, and to make use of thermochemical
data in geochemical assessments we need to take the differ-
ences into account. Use the information in Exercise 3.26 
together with the densities of graphite (2.250 g cm−3) and 
diamond (3.510 g cm−3) to calculate the internal energy of the
transition when the sample is under a pressure of 150 kbar.

3.28 A typical human produces about 10 MJ of energy trans-
ferred as heat each day through metabolic activity. The main
mechanism of heat loss is through the evaporation of water.
(a) If a human body were an isolated system of mass 65 kg
with the heat capacity of water, what temperature rise would
the body experience? (b) Human bodies are actually open
systems. What mass of water should be evaporated each
day to maintain constant temperature?

3.29 Camping gas is typically propane. The standard enthalpy
of combustion of propane gas is −2220 kJ mol−1 and the stand-
ard enthalpy of vaporization of the liquid is +15 kJ mol−1.
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3.36 The molar heat capacity of liquid water is approximately
9R. Decide whether the standard enthalpy of the reactions (a)
and (c) in Exercise 3.35 will increase or decrease with a rise
in temperature if the water is produced as a liquid.

Projects

The symbol ‡ signifies that calculus is required.

3.37‡ Here we explore Kirchhoff’s law (eqn 3.6) in greater
detail. (a) Derive a version of Kirchhoff’s law for the tempera-
ture dependence of the internal energy of reaction. (b) The
formulation of Kirchhoff’s law given in eqn 3.6 is valid when
the difference in heat capacities is independent of tempera-
ture over the temperature range of interest. Suppose instead
that DrC p

- = a + bT + c /T 2. Derive a more accurate form of
Kirchhoff’s law in terms of the parameters a, b, and c. Hint:
The change in the reaction enthalpy for an infinitesimal
change in temperature is DrC p

-dT. Integrate this expression
between the two temperatures of interest.

3.38 Here we explore the thermodynamics of carbohydrates
as biological fuels. It is useful to know that glucose and fruc-
tose are simple sugars with the molecular formula C6H12O6.
Sucrose (table sugar) is a complex sugar with molecular 
formula C12H22O11 that consists of a glucose unit covalently
bound to a fructose unit (a water molecule is eliminated as 
a result of the reaction between glucose and fructose to form
sucrose). There are no dietary recommendations for con-
sumption of carbohydrates. Some nutritionists recommend
diets that are largely devoid of carbohydrates, with most of
the energy needs being met by fats. However, the most
common diets are those in which at least 65 per cent of our
food calories come from carbohydrates. (a) A -cup serving of
pasta contains 40 g of carbohydrates. What percentage of
the daily calorie requirement for a person on a 2200 Calorie
diet (1 Cal = 1 kcal) does this serving represent? (b) The mass
of a typical glucose tablet is 2.5 g. Calculate the energy 
released as heat when a glucose tablet is burned in air. (c) To
what height could you climb on the energy a glucose tablet
provides assuming 25% of the energy is available for work?
(d) Is the standard enthalpy of combustion of glucose likely 
to be higher or lower at blood temperature than at 25°C? 
(e) Calculate the energy released as heat when a typical table
sugar cube of mass 1.5 g is burned in air. (f) To what height
could you climb on the energy a table sugar cube provides 
assuming 25 per cent of the energy is available for work?

3
4

Calculate (a) the standard enthalpy and (b) the standard inter-
nal energy of combustion of the liquid.

3.30 Classify as endothermic or exothermic: (a) a combustion
reaction for which DrH - = −2020 kJ mol−1; (b) a dissolution
for which DH - = +4.0 kJ mol−1; (c) vaporization; (d) fusion;
and (e) sublimation.

3.31 Standard enthalpies of formation are of great usefulness,
as they can be used to calculate the standard enthalpies of a
very wide range of reactions of interest in chemistry, biology,
geology, and industry. Use information in the Data section to
calculate the standard enthalpies of the following reactions:

(a) 2 NO2(g) → N2O4(g)

(b) NO2(g) → N2O4(g)

(c) 3 NO2(g) + H2O(l) → 2 HNO3(aq) + NO(g)

(d) Cyclopropane(g) → propene(g)

(e) HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

3.32 Calculate the standard enthalpy of formation of N2O5

from the following data:

2 NO(g) + O2(g) → 2 NO2(g) DrH - = −114.1 kJ mol−1

4 NO2(g) + O2(g) → 2 N2O5(g) DrH - = −110.2 kJ mol−1

N2(g) + O2(g) → 2 NO(g) DrH - = +180.5 kJ mol−1

3.33 Heat capacity data can be used to estimate the reaction
enthalpy at one temperature from its value at another. Use
the information in the Data section to predict the standard 
reaction enthalpy of 2 NO2(g) → N2O4(g) at 100°C from its
value at 25°C.

3.34 Estimate the enthalpy of vaporization of water at 100°C
from its value at 25°C (44.01 kJ mol−1) given the constant-
pressure heat capacities of 75.29 J K−1 mol−1 and 33.58 J K−1

mol−1 for liquid and gas, respectively.

3.35 It is often useful to be able to anticipate, without doing
a detailed calculation, whether an increase in temperature
will result in a raising or a lowering of a reaction enthalpy. 
The constant-pressure molar heat capacity of a gas of linear
molecules is approximately R, whereas that of a gas of non-
linear molecules is approximately 4R. Decide whether the
standard enthalpies of the following reactions will increase or
decrease with increasing temperature:

(a) 2 H2(g) + O2(g) → 2 H2O(g)

(b) N2(g) + 3 H2(g) → 2 NH3(g)

(c) CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g)

7
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Some things happen; some things don’t. A gas ex-
pands to fill the vessel it occupies; a gas that already
fills a vessel does not suddenly contract into a smaller
volume. A hot object cools to the temperature of its
surroundings; a cool object does not suddenly become
hotter than its surroundings. Hydrogen and oxygen
combine explosively (once their ability to do so has
been liberated by a spark) and form water; water left
standing in oceans and lakes does not gradually 
decompose into hydrogen and oxygen. These every-
day observations suggest that changes can be divided
into two classes. A spontaneous change is a change
that has a tendency to occur without work having 
to be done to bring it about. A spontaneous change
has a natural tendency to occur. A nonspontaneous
change is a change that can be brought about only 
by doing work. A nonspontaneous change has no
natural tendency to occur. Nonspontaneous changes
can be made to occur by doing work: gas can be com-
pressed into a smaller volume by pushing in a piston,
the temperature of a cool object can be raised by
forcing an electric current through a heater attached
to it, and water can be decomposed by the passage of
an electric current. However, in each case we need to
act in some way on the system to bring about the
nonspontaneous change. There must be some feature
of the world that accounts for the distinction between
the two types of change.

Throughout the chapter we shall use the terms
‘spontaneous’ and ‘nonspontaneous’ in their thermo-
dynamic sense. That is, we use them to signify that 
a change does or does not have a natural tendency to
occur. In thermodynamics the term spontaneous has
nothing to do with speed. Some spontaneous changes
are very fast, such as the precipitation reaction that
occurs when solutions of sodium chloride and silver
nitrate are mixed. However, some spontaneous
changes are so slow that there may be no observable
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change even after millions of years. For example, 
although the decomposition of benzene into carbon
and hydrogen is spontaneous, it does not occur at a
measurable rate under normal conditions, and benzene
is a common laboratory commodity with a shelf life
of (in principle) millions of years. Thermodynamics
deals with the tendency to change; it is silent on the
rate at which that tendency is realized.

Entropy

A few moments’ thought is all that is needed to iden-
tify the reason why some changes are spontaneous
and others are not. That reason is not the tendency of
the system to move towards lower energy. This point
is easily established by identifying an example of a
spontaneous change in which there is no change in
energy. The isothermal expansion of a perfect gas
into a vacuum is spontaneous, but the total energy of
the gas does not change because the molecules con-
tinue to travel at the same average speed and so keep
their same total kinetic energy. Even in a process in
which the energy of a system does decrease (as in the
spontaneous cooling of a block of hot metal), the
First Law requires the total energy of the system and
the surroundings to be constant. Therefore, in this case
the energy of another part of the world must increase
if the energy decreases in the part that interests us.
For instance, a hot block of metal in contact with a
cool block cools and loses energy; however, the sec-
ond block becomes warmer, and increases in energy.
It is equally valid to say that the second block moves
spontaneously to higher energy as it is to say that the
first block has a tendency to go to lower energy!

4.1 The direction of spontaneous change

We shall now show that the apparent driving force of
spontaneous change is the tendency of energy and
matter to become disordered. For example, the mole-
cules of a gas may all be in one region of a container
initially, but their ceaseless disorderly motion ensures
that they spread rapidly throughout the entire vol-
ume of the container (Fig. 4.1). Because their motion
is so disorderly, there is a negligibly small probability
that all the molecules will find their way back simul-
taneously into the region of the container they occu-
pied initially. In this instance, the natural direction of
change corresponds to the dispersal of matter.

A similar explanation accounts for spontaneous
cooling, but now we need to consider the dispersal of
energy rather than that of matter. In a block of hot

metal, the atoms are oscillating vigorously and the
hotter the block the more vigorous their motion. The
cooler surroundings also consist of oscillating atoms,
but their motion is less vigorous. The vigorously 
oscillating atoms of the hot block jostle their neigh-
bours in the surroundings, and the energy of the
atoms in the block is handed on to the atoms in 
the surroundings (Fig. 4.2). The process continues
until the vigour with which the atoms in the system
are oscillating has fallen to that of the surroundings.
The opposite flow of energy is very unlikely. It is
highly improbable that there will be a net flow of 
energy into the system as a result of jostling from less
vigorously oscillating molecules in the surroundings.
In this case, the natural direction of change corres-
ponds to the dispersal of energy.

Spontaneous

Nonspontaneous

Fig. 4.1 One fundamental type of spontaneous process is
the chaotic dispersal of matter. This tendency accounts for
the spontaneous tendency of a gas to spread into and fill the
container it occupies. It is extremely unlikely that all the 
particles will collect into one small region of the container. 
(In practice, the number of particles is of the order of 1023.)

Spontaneous

Nonspontaneous

Fig. 4.2 Another fundamental type of spontaneous process
is the chaotic dispersal of energy (represented by the small
arrows). In these diagrams, the orange spheres represent the
system and the purple spheres represent the surroundings.
The double-headed arrows represent the thermal motion of
the atoms.
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The tendency toward dispersal of energy also 
explains the fact that, despite numerous attempts, it
has proved impossible to construct an engine like
that shown in Fig 4.3, in which heat, perhaps from
the combustion of a fuel, is drawn from a hot reser-
voir and completely converted into work, such as 
the work of moving an automobile. All actual heat
engines have both a hot region, the ‘source’, and a
cold region, the ‘sink’, and it has been found that
some energy must be discarded into the cold sink as
heat and not used to do work. In molecular terms,
only some of the energy stored in the atoms and
molecules of the hot source can be used to do work
and transferred to the surroundings in an orderly
way. For the engine to do work, some energy must be
transferred to the cold sink as heat, to stimulate dis-
orderly motion of its atoms and molecules.

In summary, we have identified two basic types of
spontaneous physical process:

1. Matter tends to become disordered.

2. Energy tends to become disordered.

We must now see how these two primitive types of
spontaneous physical change result in some chemical
reactions being spontaneous and others not. It may
seem very puzzling that collapse into disorder can 
account for the formation of such ordered systems 
as proteins and biological cells. Nevertheless, in due
course we shall see that organized structures can
emerge as energy and matter disperse. We shall see,
in fact, that collapse into disorder accounts for
change in all its forms.

4.2 Entropy and the Second Law

The measure of disorder used in thermodynamics is
called the entropy, S. Initially, we can take entropy to

be a synonym for the extent of disorder, but shortly
we shall see that it can be defined precisely and quan-
titatively, measured, and then applied to chemical 
reactions. At this point, all we need to know is that
when matter and energy become disordered, the 
entropy increases. That being so, we can combine the
two remarks above into a single statement known as
the Second Law of thermodynamics:

The entropy of an isolated system tends to increase.

The ‘isolated system’ may consist of a system in
which we have a special interest (a beaker containing
reagents) and that system’s surroundings: the two
components jointly form a little ‘universe’ in the
thermodynamic sense.

To make progress and turn the Second Law into 
a quantitatively useful statement, we need to define
entropy precisely. We shall use the following defini-
tion of a change in entropy for a system maintained
at constant temperature:

(4.1)

That is, the change in entropy of a substance is 
equal to the energy transferred as heat to it reversibly
divided by the temperature at which the transfer
takes place. This definition can be justified thermo-
dynamically, but we shall confine ourselves to show-
ing that it is plausible and then show how to use it 
to obtain numerical values for a range of processes.

There are three points we need to understand
about the definition in eqn 4.1: the significance of 
the term ‘reversible’, why heat (not work) appears in 
the numerator, and why temperature appears in the
denominator.

Why reversible? We met the concept of reversibility
in Section 2.3, where we saw that it refers to the abil-
ity of an infinitesimal change in a variable to change
the direction of a process. Mechanical reversibility
refers to the equality of pressure acting on either side
of a movable wall. Thermal reversibility, the type 
involved in eqn 4.1, refers to the equality of temper-
ature on either side of a thermally conducting wall.
Reversible transfer of heat is smooth, careful, 
restrained transfer between two bodies at the same
temperature. By making the transfer reversible we
ensure that there are no hot spots generated in the
object that later disperse spontaneously and hence
add to the entropy.

Why heat and not work in the numerator? Now
consider why heat and not work appears in eqn 4.1.
Recall from Section 2.2 that to transfer energy as

ΔS
q
T

= rev

Hot source

Engine

Heat

Work

Fig. 4.3 The Second Law denies the possibility of the pro-
cess illustrated here, in which heat is changed completely
into work, there being no other change. The process is not in
conflict with the First Law, because the energy is conserved.
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heat we make use of the disorderly motion of mole-
cules, whereas to transfer energy as work we make
use of orderly motion. It should be plausible that 
the change in entropy—the change in the degree 
of disorder—is proportional to the energy transfer
that takes place by making use of disorderly motion
rather than orderly motion.

Why temperature in the denominator? The presence
of the temperature in the denominator in eqn 4.1
takes into account the disorder that is already pre-
sent. If a given quantity of energy is transferred as
heat to a hot object (one in which the atoms have a
lot of disorderly thermal motion), then the additional
disorder generated is less significant than if the same
quantity of energy is transferred as heat to a cold 
object in which the atoms have less thermal motion.
The difference is like sneezing in a busy street (an 
environment analogous to a high temperature) and
sneezing in a quiet library (an environment analo-
gous to a low temperature).

A brief illustration The transfer of 100 kJ of energy as
heat to a large mass of water at 0°C (273 K) results in 
a change in entropy of

  
DS

q
T

= =
×

= + −rev J
K

J K
100 10

273
366

3
1

We use a large mass of water to ensure that the temper-
ature of the sample does not change as heat is trans-
ferred. The same transfer at 100°C (373 K) results in

The increase in entropy is greater at the lower 
temperature.

A note on good practice The units of entropy are joules
per kelvin (J K−1). Entropy is an extensive property. When we
deal with molar entropy, an intensive property, the units will
be joules per kelvin per mole (J K−1 mol−1).

The entropy (it can be proved) is a state function,
a property with a value that depends only on the pre-
sent state of the system. The entropy is a measure of
the current state of disorder of the system, and how
that disorder was achieved is not relevant to its cur-
rent value. A sample of liquid water of mass 100 g 
at 60°C and 98 kPa has exactly the same degree of
molecular disorder—the same entropy—regardless
of what has happened to it in the past. The implica-
tion of entropy being a state function is that a change
in its value when a system undergoes a change of
state is independent of how the change of state is
brought about. One practical application of entropy
is to the discussion of the eAciencies of heat engines,
refrigerators, and heat pumps (Box 4.1).

  
DS =

×
= + −100 10

373
268

3
1J

K
J K

Box 4.1 Heat engines, refrigerators, and heat pumps

One practical application of entropy is to the discussion 
of the efficiencies of heat engines, refrigerators, and heat
pumps. As remarked in the text, to achieve spontaneity—
an engine is less than useless if it has to be driven—some
energy must be discarded as heat into the cold sink. It is
quite easy to calculate the minimum energy that must be
discarded in this way by thinking about the flow of energy
and the changes in entropy of the hot source and cold sink.
To simplify the discussion, we shall express it in terms of
the magnitudes of the heat and work transactions, which
we write as |q | and |w |, respectively (so, if q = −100 J, 
|q | = 100 J). Maximum work—and therefore maximum effi-
ciency—is achieved if all energy transactions take place re-
versibly, so we assume that to be the case in the following.

Suppose that the hot source is at a temperature Thot.
Then when energy |q | is released from it reversibly as heat,
its entropy changes by −|q | /Thot. Suppose that we allow an
energy |q ′ | to flow reversibly as heat into the cold sink at 
a temperature Tcold. Then the entropy of that sink changes
by +|q′|/Tcold (see the first illustration). The total change in
entropy is therefore

Entropy

Entropy

Thot

Tcold

q

q’

w = q – q’

The flow of energy in a heat engine. For the process to be
spontaneous, the decrease in entropy of the hot source
must be offset by the increase in entropy of the cold sink.
However, because the latter is at a lower temperature, 
not all the energy removed from the hot source need be 
deposited in it, leaving the difference available as work.
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The engine will not operate spontaneously if this change 
in entropy is negative, and just becomes spontaneous as
DStotal becomes positive. This change of sign occurs when
DStotal = 0, which is achieved when

If we have to discard an energy |q ′ | into the cold sink, the
maximum energy that can be extracted as work is |q | − |q ′ |.
It follows that the efficiency, h (eta), of the engine, the ratio
of the work produced to the heat absorbed, is

This remarkable result tells us that the efficiency of a 
perfect heat engine (one working reversibly and without
mechanical defects such as friction) depends only on the
temperatures of the hot source and cold sink. It shows that
maximum efficiency (closest to h = 1) is achieved by using
a sink that is as cold as possible and a source that is as hot
as possible. For example, the maximum efficiency of an
electrical power station using steam at 200°C (473 K) and
discharging at 20°C (293 K) is

or 38.1 per cent.
A refrigerator can be analysed similarly (see the second 

illustration). The entropy change when an energy |q | is 
withdrawn reversibly as heat from the cold interior at a 
temperature Tcold is −|q | /T cold. The entropy change when
an energy |q ′ | is deposited reversibly as heat in the outside
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world at a temperature Thot is +|q ′ | /Thot. The total change in
entropy would be negative if |q ′ | = |q | , and the refrigerator
would not work. However, if we increase the flow of en-
ergy into the warm exterior by doing work on the refriger-
ator, then the entropy change of the warm exterior can be
increased to the point at which it overcomes the decrease
in entropy of the cold interior, and the refrigerator operates.
The calculation of the maximum efficiency of this process is
left as an exercise (see Project 4.35a).

A heat pump is simply a refrigerator, but in which we 
are more interested in the supply of heat to the exterior
than the cooling achieved in the interior. You are invited 
to show (see Project 4.35b), that the efficiency of a perfect
heat pump, as measured by the heat produced divided 
by the work done, also depends on the ratio of the two 
temperatures.

Entropy

Entropy

Thot

Tcold

q

w

q + w

The flow of energy as heat from a cold source to a hot sink
becomes feasible if work is provided to add to the energy
stream. Then the increase in entropy of the hot sink can be
made to cancel the entropy decrease of the hot source.

4.3 The entropy change accompanying
expansion

We can often rely on intuition to judge whether the
entropy increases or decreases when a substance 
undergoes a physical change. For instance, the 
entropy of a sample of gas increases as it expands 
because the molecules get to move in a greater volume
and so have a greater degree of disorder. However,
the advantage of eqn 4.1 is that it lets us express the 

increase quantitatively and make numerical calcula-
tions. For instance, as shown in Derivation 4.1, we
can use the definition to calculate the change in 
entropy when a perfect gas expands isothermally
from a volume Vi to a volume Vf, and obtain

(4.2)

We have already stressed the importance of reading
equations for their physical content. In this case:

ΔS nR
V
V

= ln f

i
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• If Vf > Vi, as in an expansion, then Vf /Vi > 1 and the
logarithm is positive. Consequently, eqn 4.2 pre-
dicts a positive value for ΔS, corresponding to an
increase in entropy, just as we anticipated (Fig. 4.4).

• The change in entropy is independent of the 
temperature at which the isothermal expansion
occurs. More work is done if the temperature 
is high (because the external pressure must be
matched to a higher value of the pressure of the
gas), so more energy must be supplied as heat to
maintain the temperature. The temperature in the
denominator of eqn 4.1 is higher, but the ‘sneeze’
(in terms of the analogy introduced earlier) is
greater too, and the two effects cancel.

Here is a subtle but important point. The definition
in eqn 4.1 makes use of a reversible transfer of heat,
and that is what we used in the derivation of eqn 4.2.
However, entropy is a state function, so its value is
independent of the path between the initial and final
states. This independence of path means that although
we have used a reversible path to calculate ΔS, the same
value applies to an irreversible change (for instance,
free expansion) between the same two states. We can-
not use an irreversible path to calculate ΔS, but the
value calculated for a reversible path applies however
the path is traversed in practice between the specified
initial and final states. You may have noticed that in
Self-test 4.1 we did not specify how the expansion
took place other than that it is isothermal.

4.4 The entropy change accompanying
heating

We should expect the entropy of a sample to increase
as the temperature is raised from Ti to Tf , because 
the thermal disorder of the system is greater at the
higher temperature, when the molecules move more
vigorously. To calculate the change in entropy, we 
go back to the definition in eqn 4.1 and as shown 
in Derivation 4.2, find that, provided the heat capa-
city is constant over the range of temperatures of 
interest,

(4.3)

where C is the heat capacity of the system; if the 
pressure is held constant during the heating, we use
the constant-pressure heat capacity, Cp, and if the
volume is held constant, we use the constant-volume
heat capacity, CV.

Once more, we interpret the equation:

• When Tf > T i, Tf /Ti > 1, which implies that the
logarithm is positive, that ΔS > 0, and therefore
that the entropy increases as the temperature is
raised (Fig. 4.5).

• The higher the heat capacity of the substance, the
greater the change in entropy for a given rise in
temperature. A high heat capacity implies that a

ΔS C
T
T

= ln f
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Fig. 4.4 The entropy of a perfect gas increases loga-
rithmically (as ln V ) as the volume is increased.

Derivation 4.1

The variation of the entropy of a perfect gas 
with volume

We need to know qrev, the energy transferred as heat in
the course of a reversible change at the temperature T.
From eqn 2.7 we know that the energy transferred as
heat to a perfect gas when it undergoes reversible,
isothermal expansion from a volume Vi to a volume Vf at
a temperature T is

It follows that

which is eqn 4.2.

Isothermal, reversible,
perfect gas

DS
q

T
nRT V V

T
nR

V
V

    
 ln( / )

   ln = = =rev f i f
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Definition

 
q nRT

V
Vrev

f
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Self-test 4.1

Calculate the change in molar entropy when a sample 
of hydrogen gas expands isothermally to twice its initial
volume.

[Answer: +5.8 J K−1 mol−1]



This relation also applies when the transfer of energy 
is carried out reversibly. It follows that dqrev = CdT and
therefore that

The total change in entropy, DS, when the temperature
changes from Ti to Tf is the sum (integral) of all such 
infinitesimal terms with T in general different for each of
the infinitesimal steps:

DS = �
Tf

Ti

(4.4)

For many substances and for small temperature ranges
we may take C to be constant. This assumption is strictly
true for a monatomic perfect gas. Then C may be taken
outside the integral, and the latter evaluated as follows:

We have used the same standard integral as in
Derivation 2.2, and evaluated the limits similarly.

Constant
heat capacity
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lot of heat is required to produce a given change in
temperature, so the ‘sneeze’ must be more power-
ful than for when the heat capacity is low, and the
entropy increase is correspondingly high.

When we cannot assume that the heat capacity 
is constant over the temperature range of interest,
which is the case for all solids at low temperatures,
we have to allow for the variation of C with temper-
ature. As we show in Derivation 4.3, the result is

ΔS = area under the graph of C/T plotted against
T, between Ti and Tf (4.5)

This rule is illustrated in Fig. 4.6.
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Fig. 4.5 The entropy of a sample with a heat capacity
that is independent of temperature, such as a monato-

mic perfect gas, increases logarithmically (as ln T ) as the
temperature is increased. The increase is proportional to the
heat capacity of the sample.

Derivation 4.2

The variation of entropy with temperature

Equation 4.1 refers to the transfer of heat to a system at
a temperature T. In general, the temperature changes as
we heat a system, so we cannot use eqn 4.1 directly.
Suppose, however, that we transfer only an infinitesimal
energy, dq, to the system, then there is only an infinites-
imal change in temperature and we introduce negligible
error if we keep the temperature in the denominator of
eqn 4.1 equal to T during that transfer. As a result, the
entropy increases by an infinitesimal amount dS given by

To calculate dq, we recall from Section 2.4 that the heat
capacity C is

where DT is the macroscopic change in temperature.
For the case of an infinitesimal change dT, we write

The supply
of heat

The rise in
temperature

C
qq
T

=
D

that results in

d
d revS
q
T

=

Self-test 4.2

Calculate the change in molar entropy when hydrogen
gas is heated from 20°C to 30°C at constant volume.
(CV,m = 22.44 J K−1 mol−1.)

[Answer: +0.75 J K−1 mol−1]
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To use eqn 4.5, we measure the heat capacity
throughout the range of temperatures of interest, and
make a list of values. Then we divide each one by the
corresponding temperature, to get C/T at each tem-
perature, plot these C/T against T, and evaluate the
area under the graph between the temperatures Ti
and Tf. The simplest way to evaluate the area is to
count squares on the graph paper, but a more accur-
ate way—and the only reliable way in practice—is 
to fit the data to a polynomial in T and then to use a
computer to evaluate the integral.

4.5 The entropy change accompanying a
phase transition

We can suspect that the entropy of a substance
increases when it melts and when it boils 
because its molecules become more disordered
as it changes from solid to liquid and from 

liquid to vapour.

The transfer of energy as heat occurs reversibly
when a solid is at its melting temperature. If the 
temperature of the surroundings is infinitesimally
lower than that of the system, then energy flows out
of the system as heat and the substance freezes. If 
the temperature is infinitesimally higher, then energy
flows into the system as heat and the substance melts.
Moreover, because the transition occurs at constant
pressure, we can identify the heat transferred per mole
of substance with the enthalpy of fusion (melting).
Therefore, the entropy of fusion, Δ fusS, the change of
entropy per mole of substance, at the melting tem-
perature, Tf (with f now denoting fusion), is

At the melting temperature: (4.6)

Notice how we must use the enthalpy of fusion at the
melting temperature. To get the standard entropy of
fusion, Δ fus S , at the melting temperature we use the
melting temperature at 1 bar and the corresponding
standard enthalpy of fusion at that temperature. 
All enthalpies of fusion are positive (melting is endo-
thermic: it requires heat), so all entropies of fusion
are positive too: disorder increases on melting. The 
entropy of water, for example, increases when it melts
because the orderly structure of ice collapses as the
liquid forms (Fig. 4.7).
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Fig. 4.6 The experimental determination of the change in 
entropy of a sample that has a heat capacity that varies with
temperature involves measuring the heat capacity over the
range of temperatures of interest, then plotting Cp /T against
T and determining the area under the curve (the tinted area
shown here). The heat capacity of all solids decreases toward
zero as the temperature is reduced.

Derivation 4.3

The entropy change when the heat capacity
varies with temperature

In Derivation 4.2 we found, before making the assump-
tion that the heat capacity is constant, that

DS = �
Tf

Ti

This, which is eqn 4.4, is our starting point. All we need
recognize is the standard result from calculus illustrated
in Derivation 2.2 that the integral of a function between
two limits is the area under the graph of the function 
between the two limits. In this case, the function is C/T,
the heat capacity at each temperature divided by that
temperature.

C T
T
d

Self-test 4.4

Calculate the standard entropy of fusion of ice at 0°C
from the information in Table 3.1.

[Answer: +22 J K−1 mol−1]

The entropy of other types of transition may be
discussed similarly. Thus, the entropy of vaporiza-
tion, ΔvapS, at the boiling temperature, Tb, of a liquid
is related to its enthalpy of vaporization at that tem-
perature by

At the boiling temperature: (4.7)

To use this formula, we use the enthalpy of vaporiza-
tion at the boiling temperature. For the standard
value, ΔvapS , we use data corresponding to 1 bar.
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Because vaporization is endothermic for all sub-
stances, all entropies of vaporization are positive.
The increase in entropy accompanying vaporization
is in line with what we should expect when a com-
pact liquid turns into a gas.

have approximately the same entropy of vaporiza-
tion at their boiling points. This near equality is to be
expected, because when a liquid vaporizes, the com-
pact condensed phase changes into a widely dispersed
gas that occupies approximately the same volume
whatever its identity. To a good approximation,
therefore, we expect the increase in disorder, and
therefore the entropy of vaporization, to be almost
the same for all liquids at their boiling temperatures.

The exceptions to Trouton’s rule include liquids
in which the interactions between molecules
result in the liquid being less disordered than a
random jumble of molecules. For example, the

high value for water implies that the H2O molecules 
are linked together in some kind of ordered structure 
by hydrogen bonding, with the result that the entropy
change is greater when this relatively ordered liquid
forms a disordered gas. The high value for mercury has 
a similar explanation but stems from the presence of
metallic bonding in the liquid, which organizes the atoms
into more definite patterns than would be the case if such
bonding were absent.

A brief illustration We can estimate the enthalpy of
vaporization of liquid bromine from its boiling tempera-
ture, 59.2°C. No hydrogen bonding or other kind of special
interaction is present, so we use the rule after converting
the boiling point to 332.4 K:

DvapH ≈ (332.4 K) × (85 J K−1 mol−1) = 28 kJ mol−1

The experimental value is 29 kJ mol−1.

(a) (b)

Fig. 4.7 When a solid, depicted by the orderly array of
spheres (a), melts, the molecules form a more chaotic liquid,
the disorderly array of spheres (b). As a result, the entropy of
the sample increases.

Self-test 4.6

Estimate the enthalpy of vaporization of ethane from its
boiling point, which is −88.6°C.

[Answer: 16 kJ mol−1]

Self-test 4.5

Calculate the entropy of vaporization of water at 100°C.
[Answer: +109 J K−1 mol−1]

Entropies of vaporization shed light on an empirical
relation known as Trouton’s rule. Trouton noticed
that ΔvapH(Tb)/Tb is approximately the same (and
equal to about 85 J K−1 mol−1) for all liquids except
when hydrogen bonding or some other kind of spe-
cific molecular interaction is present (see Table 4.1).
We know that the quantity ΔvapH(Tb) /Tb, however,
is the entropy of vaporization of the liquid at its boil-
ing point, so Trouton’s rule is explained if all liquids

To calculate the entropy of phase transition at a
temperature other than the transition temperature,
we have to do additional calculations, as shown in
Example 4.1.

Example 4.1

Calculating the entropy of vaporization

Calculate the entropy of vaporization of water at 25°C
from thermodynamic data and its enthalpy of vaporiza-
tion at its normal boiling point.

Strategy The most convenient way to proceed is to 
perform three calculations. First, calculate the entropy
change for heating liquid water from 25°C to 100°C
(using eqn 4.3 with data for the liquid from Table 2.1).

Table 4.1

Entropies of vaporization at 1 atm and the
normal boiling point

DvapS /(J K−1 mol−1)

Ammonia, NH3 97.4
Benzene, C6H6 87.2
Bromine, Br2 88.6
Carbon tetrachloride, CCl4 85.9
Cyclohexane, C6H12 85.1
Hydrogen sulfide, H2S 87.9
Mercury, Hg(l) 94.2
Water, H2O 109.1



Example 4.2

Estimating the entropy change of the
surroundings

A typical resting person heats the surroundings at a rate
of about 100 W. Estimate the entropy you generate in
the surroundings in the course of a day at 20°C.

Strategy We can estimate the approximate change in
entropy from eqn 4.7 once we have calculated the 
energy transferred as heat. To find this quantity, we use
1 W = 1 J s−1 and the fact that there are 86 400 s in a day.
Convert the temperature to kelvins.

Solution The heat transferred to the surroundings in the
course of a day is

qsur = (86 400 s) × (100 J s−1) = 86 400 × 100 J

The increase in entropy of the surroundings is therefore

That is, the entropy production is about 30 kJ K−1. Just to
stay alive, each person on the planet contributes about
30 kJ K−1 each day to the entropy of their surroundings.
The use of transport, machinery, and communications
generates far more in addition.

DS
q
Tsur
sur J

293 K
J K= =

×
= + × −86 400 100

2 95 104. 11

Self-test 4.7

Suppose a small reptile operates at 0.50 W. What
entropy does it generate in the course of a day in the
water in the lake that it inhabits, where the temper-
ature is 15°C?

[Answer: +150 J K−1]
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4.6 Entropy changes in the surroundings

We can use the definition of entropy in eqn 4.1 to 
calculate the entropy change of the surroundings in
contact with the system at the temperature T:

The surroundings are so extensive that they remain
at constant pressure regardless of any events taking
place in the system, so qsur,rev = ΔHsur. The enthalpy is
a state function, so a change in its value is independ-
ent of the path and we get the same value of ΔHsur

ΔS
q

Tsur
sur,rev=

regardless of how the heat is transferred. Therefore,
we can drop the label ‘rev’ from q and write

(4.8)

This formula can be used to calculate the entropy
change of the surroundings regardless of whether the
change in the system is reversible or not.

ΔS
q
Tsur
sur=

Then use eqn 4.7 and data from Table 3.1 to calculate
the entropy of transition at 100°C. Next, calculate the
change in entropy for cooling the vapour from 100°C to
25°C (using eqn 4.3 again, but now with data for the
vapour from Table 2.1). Finally, add the three contribu-
tions together. The steps may be hypothetical.

Solution From eqn 4.3 with data for the liquid from 
Table 2.1:

= +16.9 J K−1 mol−1

From eqn 4.7 and data from Table 3.1:

= +109 J K−1 mol−1

From eqn 4.3 with data for the vapour from Table 2.1:

= −7.54 J K−1 mol−1

The sum of the three entropy changes is the entropy of
transition at 25°C:

DvapS (298 K) = DS1 + DS2 + DS3 = +118 J K−1 mol−1

= ×− −( . ) ln33 58 J K mol
298 K
373 K

1 1

DS C
T
Tp3 = ,

flnm 2
i

(H O, vapour)

D
D

S
H T

T2

44 07 10
373

= =
× −

vap b

b

1J mol
K

( ) .

= ×− −( . ) ln75 29 J K mol
373 K
298 K

1 1

  
DS C

T
Tp1 = ,

flnm 2
i

(H O, liquid)

Self-test 4.1

Calculate the entropy of vaporization of benzene at
25°C from the following data: Tb = 353.2 K, DvapH

-(Tb)
= 30.8 kJ mol−1, Cp,m(l) = 136.1 J K−1 mol−1, Cp,m(g) 
= 81.6 J K−1 mol−1.

[Answer: 96.4 J K−1 mol−1]

Equation 4.8 is expressed in terms of the energy
supplied to the surroundings as heat, qsur. Normally,
we have information about the energy supplied to or
escaping from the system as heat, q. The two quantities
are related by qsur = −q. For instance, if q = +100 J, an
influx of 100 J, then qsur = −100 J, indicating that the
surroundings have lost that 100 J. Therefore, at this
stage we can replace qsur in eqn 4.8 by −q and write



ENTROPY 93

(4.9)

This expression is in terms of the properties of the
system. Moreover, it applies whether or not the pro-
cess taking place in the system is reversible.

A brief illustration Suppose a perfect gas expands
isothermally and reversibly from Vi to Vf. The entropy
change of the gas itself (the system) is given by eqn 4.2.
To calculate the entropy change in the surroundings, we
note that q, the heat required to keep the temperature
constant, is given in Derivation 4.1. Therefore,

The change of entropy in the surroundings is therefore
the negative of the change in entropy of the system, 
and the total entropy change for the reversible process 
is zero.

Now suppose that the gas expands isothermally but
freely (pex = 0) between the same two volumes. The
change in entropy of the system is the same, because 
entropy is a state function. However, because DU = 0 for
the isothermal expansion of a perfect gas and no work is
done, no heat is taken in from the surroundings. Because
q = 0, it follows from eqn 4.9 (which, remember, can be
used for either reversible or irreversible heat transfers),
that DSsur = 0. The total change in entropy is therefore
equal to the change in entropy of the system, which is
positive. We see that for this irreversible process, the 
entropy of the universe has increased, in accord with the
Second Law.

If a chemical reaction or a phase transition takes
place at constant pressure, we can identify q in
eqn 4.9 with the change in enthalpy of the system,
and obtain

(4.10)

This enormously important expression will lie at the
heart of our discussion of chemical equilibria. We see
that it is consistent with common sense: if the process
is exothermic, ΔH is negative and therefore ΔSsur is
positive. The entropy of the surroundings increases if
heat is released into them. If the process is endother-
mic (ΔH > 0), then the entropy of the surroundings
decreases.

Eqn 4.9
and qn = DH

For a process at constant pressure:

Δ
Δ

S
H
Tsur = −

Heat supplied
to system

DS
q
T

nRT V V
T

nR
V
Vsur

f i f

i
= = =− − −

 ln( / )
   ln 

Eqn 4.9

ΔS
q
Tsur = − 4.7 Absolute entropies and the Third Law

of thermodynamics

The graphical procedure summarized by Fig. 4.6 for
the determination of the difference in entropy of a
substance at two temperatures has a very important
application. If Ti = 0, then the area under the graph
between T = 0 and some temperature T gives us the
value of ΔS = S(T) − S(0). We are supposing that there
are no phase transitions below the temperature T.
If there are any phase transitions (for example, melt-
ing) in the temperature range of interest, then the 
entropy of each transition at the transition tempera-
ture is calculated using an equation like eqn 4.6. In
any case, at T = 0, all the motion of the atoms has
been eliminated, and there is no thermal disorder.
Moreover, if the substance is perfectly crystalline,
with every atom in a well-defined location, then there
is no spatial disorder either. We can therefore suspect
that at T = 0, the entropy is zero.

A brief comment When we have done some quantum 
mechanics, we shall see that molecules cannot lose all 
their vibrational energy, so they retain some motion even at 
T = 0. However, they are then all in the same state (their 
lowest energy state), and so in this sense lack any thermal
disorder.

The thermodynamic evidence for the conclusion
that S(0) = 0 is as follows. Sulfur undergoes a phase
transition from rhombic to monoclinic at 96°C (369
K) and the enthalpy of transition is +402 J mol−1.
The entropy of transition is therefore +1.09 J K−1

mol−1 at this temperature. We can also measure the
molar entropy of each phase relative to its value at 
T = 0 by determining the heat capacity from T = 0
up to the transition temperature (Fig. 4.8). At this
stage, we do not know the values of the entropies at
T = 0. However, as we see from the illustration, to
match the observed entropy of transition at 369 K,
the molar entropies of the two crystalline forms 
must be the same at T = 0. We cannot say that the 
entropies are zero at T = 0, but from the experi-
mental data we do know that they are the same. 
This observation is generalized into the Third Law of
thermodynamics:

The entropies of all perfectly crystalline substances
are the same at T = 0.

For convenience (and in accord with our understand-
ing of entropy as a measure of disorder), we take this
common value to be zero. Then, with this conven-
tion, according to the Third Law, S(0) = 0 for all 
perfectly ordered crystalline materials.
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The Third-Law entropy at any temperature, S(T),
is equal to the area under the graph of C/T between
T = 0 and the temperature T (Fig. 4.9). If there are
any phase transitions (for example, melting) in the
temperature range of interest, then the entropy of
each transition at the transition temperature is calcu-
lated like that in eqn 4.6 and its contribution added
to the contributions from each of the phases, as
shown in Fig. 4.10. The Third-Law entropy, which is
commonly called simply ‘the entropy’, of a substance
depends on the pressure; we therefore select a stand-

ard pressure (1 bar) and report the standard molar
entropy, Sm, the molar entropy of a substance in its
standard state at the temperature of interest. Some
values at 298.15 K (the conventional temperature for
reporting data) are given in Table 4.2.

It is worth spending a moment to look at the
values in Table 4.2 to see that they are con-
sistent with our understanding of entropy. All
standard molar entropies are positive, because

raising the temperature of a sample above T = 0 invari-
ably increases its entropy above the value S(0) = 0.
Another feature is that the standard molar entropy of 
diamond (2.4 J K−1 mol−1) is lower than that of graphite
(5.7 J K−1 mol−1). This difference is consistent with the
atoms being linked less rigidly in graphite than in dia-
mond and their thermal disorder being correspondingly
greater. The standard molar entropies of ice, water, 
and water vapour at 25°C are, respectively, 45, 70, and
189 J K−1 mol−1, and the increase in values corresponds to
the increasing disorder on going from a solid to a liquid
and then to a gas.

Heat capacities can be measured only with great
diAculty at very low temperatures, particularly close
to T = 0. However, as remarked in Section 2.9, it has
been found that many nonmetallic substances have a
heat capacity that obeys the Debye T3-law:

At temperatures close to T = 0, Cp,m = aT3 (4.11a)

where a is an empirical constant that depends on the
substance and is found by fitting eqn 4.11a to a series
of measurements of the heat capacity close to T = 0.
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Fig. 4.8 (a) The molar entropies of monoclinic and rhombic
sulfur vary with temperature as shown here. At this stage 
we do not know their values at T = 0. (b) When we slide 
the two curves together by matching their separation to the
measured entropy of transition at the transition temperature,
we find that the entropies of the two forms are the same at 
T = 0.
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Fig. 4.9 The absolute entropy (or Third-Law entropy) of a
substance is calculated by extending the measurement of
heat capacities down to T = 0 (or as close to that value as pos-
sible), and then determining the area of the graph of Cp /T
against T up to the temperature of interest. The area is equal
to the absolute entropy at the temperature T.
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Fig. 4.10 The determination of entropy from heat capacity
data. (a) Variation of Cp /T with the temperature of the sample.
(b) The entropy, which is equal to the area beneath the upper
curve up to the temperature of interest plus the entropy of
each phase transition between T = 0 and the temperature of
interest.
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With a determined, it is easy to deduce, as we 
show in Derivation 4.3, the molar entropy at low
temperatures:

At temperatures close to T = 0, Sm(T ) = Cp,m(T )

(4.11b)

That is, the molar entropy at the low temperature T
is equal to one-third of the constant-pressure heat 
capacity at that temperature.

A brief comment The Debye T 3-law strictly applies to CV,
but Cp and CV converge as T → 0, so we can use it for esti-
mating Cp too without significant error at low temperatures.

1
3

4.8 The statistical entropy

We have referred frequently to ‘molecular 
disorder’ and have interpreted the thermo-
dynamic quantity of entropy in terms of this so
far ill-defined concept. The concept of disorder,

Table 4.2

Standard molar entropies of some substances at
298.15 K *

Substance S =
m/J K−1 mol−1

Gases

Ammonia, NH3 192.5
Carbon dioxide, CO2 213.7
Helium, He 126.2
Hydrogen, H2 130.7
Neon, Ne 146.3
Nitrogen, N2 191.6
Oxygen, O2 205.1
Water vapour, H2O 188.8

Liquids

Benzene, C6H6 173.3
Ethanol, CH3CH2OH 160.7
Water, H2O 69.9

Solids

Calcium oxide, CaO 39.8
Calcium carbonate, CaCO3 92.9
Copper, Cu 33.2
Diamond, C 2.4
Graphite, C 5.7
Lead, Pb 64.8
Magnesium carbonate, MgCO3 65.7
Magnesium oxide, MgO 26.9
Sodium chloride, NaCl 72.1
Sucrose, C12H22O11 360.2
Tin, Sn (white) 51.6

Sn (grey) 44.1

* See the Data section for more values.

Derivation 4.3

Entropies close to T = 0

Once again, we use the general expression, eqn 4.4, for
the entropy change accompanying a change of tempera-
ture deduced in Derivation 4.2, with DS interpreted as
S(Tf) − S(Ti), taking molar values, and supposing that the
heating takes place at constant pressure:

If we set Ti = 0 and Tf some general temperature T, we
transform this expression into

According to the Third Law, S(0) = 0, and according to
the Debye T 3-law, Cp,m = aT 3, so

At this point we can use the standard integral

� x 2dx = x 3 + constant

to write

�
T

0

T 2dT = ( T 3 + constant)
T

= ( T 3 + constant) − constant

= T 3

We can conclude that

Sm(T ) = aT 3 = Cp,m(T )

as in eqn 4.11b.
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however, can be expressed precisely and used to calcu-
late entropies. The procedures required will be described
in Chapter 22, for they draw on information that we have
not yet encountered. However, it is possible to under-
stand the basis of the approach that we use there, and see
how it illuminates what we have achieved so far.

The fundamental equation that we need was ori-
ginally proposed by Ludwig Boltzmann towards the
end of the nineteenth century (and is carved as his
epitaph on his tombstone):

S = k ln W (4.12)

The constant k is Boltzmann’s constant, a funda-
mental constant with the value 1.381 × 10−23 J K−1.
This value is chosen so that the values of the entropy
calculated from Boltzmann’s formula coincide with
those calculated from heat capacity data. However,
it turns out that the gas constant R is equal to NAk,
where NA is Avogadro’s constant, and the fact that
the gas constant occurs in many contexts, even those
not involving gases, is due to it being Boltzmann’s
constant in disguise. The quantity W is the number 
of ways that the molecules of the sample can be 
arranged yet correspond to the same total energy and
formally is called the ‘weight’ of a ‘configuration’ of
the sample.

A brief illustration Suppose we had a tiny system of
four molecules A, B, C, and D that could occupy three
equally spaced levels of energies 0, e, and 2e, and we
know that the total energy is 4e. The 19 arrangements
shown in Fig. 4.11 are possible, so W = 19.

First, we can readily verify that Boltzmann’s for-
mula agrees with the Third-Law value S(0) = 0.
When T = 0, all the molecules must be in the lowest

possible energy level. Because there is just a single 
arrangement of the molecules, W = 1, and as ln 1 = 0,
eqn 4.12 gives S = 0 too.

Next, we can see that Boltzmann’s formula is con-
sistent with the entropy of a substance increasing
with temperature. When T > 0, the molecules of a
sample can occupy energy levels above the lowest
one, and now many different arrangements of the
molecules will correspond to the same total energy
(Fig. 4.12). That is, when T > 0, W > 1 and according
to eqn 4.12 the entropy rises above zero (because 
ln W > 0 when W > 1).

Boltzmann’s expression is also consistent with the
entropy of a gas increasing as the volume it occupies
is increased. When we have encountered quantum
theory (in Chapter 12), we shall see that the energy
levels of particles confined to a box-like region be-
come closer together as the box expands (Fig. 4.13).
If we take this model to represent a gas, then we can
appreciate that as the container (the box) expands,
the levels occupied by the molecules get closer 
together, and there are more ways of arranging the
molecules for a given total energy. That is, as the
container expands, W increases, and therefore S
increases too. It is no coincidence that the thermo-
dynamic expression for ΔS (eqn 4.2) is proportional
to a logarithm: the logarithm in Boltzmann’s formula
turns out to lead to the same logarithmic expression
(see Chapter 22).

4.9 Residual entropies

Boltzmann’s formula provides an explanation of a
rather startling conclusion: the entropy of some 
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Fig. 4.11 The 19 arrangements of four molecules (repre-
sented by the blocks) in a system with three energy levels
and a total energy of 4e.
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Fig. 4.12 The arrangements of molecules over the available
energy levels determines the value of the statistical entropy.
(a) At T = 0, there is only one arrangement possible: all the
molecules must be in the lowest energy state. (b) When T > 0
several arrangements may correspond to the same total 
energy. In this simple case, W = 3.
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substances is greater than zero at T = 0, apparently
contrary to the Third Law. When the entropy of 
carbon monoxide gas is measured thermodynamic-
ally (from heat capacity and boiling point data), it is
found that Sm (298 K) = 192 J K−1 mol−1. However,
when Boltzmann’s formula is used and the relevant
molecular data included, the standard molar entropy
is calculated as 198 J K−1 mol−1. One explanation
might be that the thermodynamic calculation failed
to take into account a phase transition in solid 
carbon monoxide, which could have contributed the
missing 6 J K−1 mol−1. An alternative explanation is
that the CO molecules are disordered in the solid,
even at T = 0, and that there is a contribution to the
entropy at T = 0 from positional disorder that is
frozen in. This contribution is called the residual
entropy of a solid.

We can estimate the value of the residual entropy
by using Boltzmann’s formula and supposing that at
T = 0 each CO molecule can lie in either of two ori-
entation (Fig. 4.14). Then the total number of ways
of arranging N molecules is (2 × 2 × 2 . . . .)N times = 2N.
Then

S = k ln 2N = Nk ln 2

(We used ln xa = a ln x.) The molar residual entropy
is obtained by replacing N by Avogadro’s constant:

Sm = NAk ln 2 = R ln 2

This expression evaluates to 5.8 J K−1 mol−1, in good
agreement with the value needed to bring the ther-
modynamic value into line with the statistical value,
for instead of taking Sm(0) = 0 in the thermodynamic
calculation, we should take Sm(0) = 5.8 J K−1 mol−1.

A brief illustration Ice has a residual entropy of 3.4 J
K−1 mol−1. This value can be traced to the positional dis-
order of the location of the H atoms that lie between
neighbouring molecules. Thus, although each H2O mole-
cule has two short O—H covalent bonds and two long
O...H—O bonds, there is a randomness in which bonds
are long and which are short (Fig. 4.15). When the statistics
of the disorder are analysed for a sample that contains N
molecules, it turns out that W = ( )N. It follows that the
residual entropy is expected to be S = k ln ( )N = Nk ln ,

and therefore the molar residual entropy is Sm = R ln ,
which evaluates to 3.4 J K−1 mol−1, in agreement with the
experimental value.

4.10 The standard reaction entropy

Now we move into the arena of chemistry, where re-
actants are transformed into products. When there is
a net formation of a gas in a reaction, as in a com-
bustion, we can usually anticipate that the entropy
increases. When there is a net consumption of gas, as
in photosynthesis, it is usually safe to predict that the
entropy decreases. However, for a quantitative value
of the change in entropy, and to predict the sign of
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Fig. 4.13 As a box expands, the energy levels of the particles
inside it come closer together. At a given temperature, the
number of arrangements corresponding to the same total en-
ergy is greater when the energy levels are closely spaced
than when they are far apart.

Fig. 4.14 The positional disorder of a substance that 
accounts for the residual entropy of molecules that can adopt
either of two orientations at T = 0 (in this case, CO). If there
are N molecules in the sample, there are 2N possible 
arrangements with the same energy.

Fig. 4.15 The origin of the residual entropy of ice is the 
randomness in the location of the hydrogen atom in the 
O—H...O bonds between neigbouring molecules. Note that
each molecule has two short O—H bonds and two long 
O.. .H hydrogen bonds. This schematic diagram shows one
possible arrangement.
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the change when no gases are involved, we need to
make an explicit calculation.

The difference in molar entropy between the prod-
ucts and the reactants in their standard states is
called the standard reaction entropy, ΔrS . It can be
expressed in terms of the molar entropies of the sub-
stances in much the same way as we have already
used for the standard reaction enthalpy:

Δ rS = ∑vSm(products) − ∑vSm(reactants) (4.13)

where the v are the stoichiometric coeAcients in the
chemical equation.

A brief illustration For the reaction 2 H2(g) + O2(g) →
2 H2O(l) we expect a negative entropy of reaction as
gases are consumed. To find the explicit value we use the
values in the Data section to write

DrS
- = 2S -

m(H2O, l) − {2S -
m(H2, g) + S -

m(O2, g)}

= 2(70 J K−1 mol−1) − {2(131 J K−1 mol−1) + (205 J K−1 mol−1)}

= −327 J K−1 mol−1

A note on good practice Do not make the mistake of set-
ting the standard molar entropies of elements equal to zero:
they have nonzero values (provided T > 0), as we have 
already discussed.

roundings that jointly compose the ‘isolated system’
referred to in the Second Law. It may well be the case
that the entropy of the system decreases when a
change takes place, but there may be a more than
compensating increase in entropy of the surround-
ings so that overall the entropy change is positive.
The opposite may also be true: a large decrease in 
entropy of the surroundings may occur when the 
entropy of the system increases. In that case we
would be wrong to conclude from the increase of the
system alone that the change is spontaneous.

Whenever considering the implications of entropy,
we must always consider the total change of the
system and its surroundings.

To calculate the entropy change in the surround-
ings when a reaction takes place at constant pressure,
we use eqn 4.10, interpreting the ΔH in that expres-
sion as the reaction enthalpy. ΔrH. For example, 
for the water formation reaction in the preceding 
illustration, with ΔrH = −572 kJ mol−1, the change
in entropy of the surroundings (which are main-
tained at 25°C, the same temperature as the reaction
mixture) is

Now we can see that the total entropy change is 
positive:

ΔrStotal = (−327 J K−1 mol−1) + (1.92 × 103 J K−1 mol−1)

= +1.59 × 103 J K−1 mol−1

This calculation confirms that the reaction is spon-
taneous. In this case, the spontaneity is a result of the
considerable disorder that the reaction generates in
the surroundings: water is dragged into existence,
even though H2O(l) has a lower entropy than the
gaseous reactants, by the tendency of energy to dis-
perse into the surroundings.

The Gibbs energy

One of the problems with entropy calculations is 
already apparent: we have to work out two entropy
changes, the change in the system and the change in
the surroundings, and then consider the sign of their
sum. The great American theoretician J. W. Gibbs

Use −572 kJ mol−1 = −572 × 103 J mol−1

Δ
Δ

r sur
r × 103 J mol

K

J K mol

S
H

T
= =

= + × −1 −1

−1

−−
−(   )

 .      

572
298

1 92 103 1

From (−)(−) = (+)

Self-test 4.8

(a) Calculate the standard reaction entropy for N2(g) +
3 H2(g) → 2 NH3(g) at 25°C. (b) What is the change in 
entropy when 2 mol H2 reacts?

[Answer: (a) (Using values from Table 4.2) 
−198.7 J K−1 mol−1; (b) −132.5 J K−1]

4.11 The spontaneity of chemical reactions

The result of the calculation in the illustration should
be rather surprising at first sight. We know that the
reaction between hydrogen and oxygen is spontan-
eous and, once initiated, that it proceeds with 
explosive violence. Nevertheless, the entropy change
that accompanies it is negative: the reaction results in
less disorder, yet it is spontaneous!

The resolution of this apparent paradox under-
scores a feature of entropy that recurs throughout
chemistry: it is essential to consider the entropy of
both the system and its surroundings when deciding
whether a process is spontaneous or not. The reduc-
tion in entropy by 327 J K−1 mol−1 relates only to the
system, the reaction mixture. To apply the Second
Law correctly, we need to calculate the total entropy,
the sum of the changes in the system and the sur-
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(1839–1903), who laid the foundations of chemical
thermodynamics towards the end of the nineteenth
century, discovered how to combine the two cal-
culations into one. The combination of the two 
procedures in fact turns out to be of much greater 
relevance than just saving a little labour, and
throughout this text we shall see consequences of the
procedure he developed.

4.12 Focusing on the system

The total entropy change that accompanies a process
is ΔStotal = ΔS + ΔSsur, where ΔS is the entropy change
for the system; for a spontaneous change, ΔStotal > 0.
If the process occurs at constant pressure and tem-
perature, we can use eqn 4.10 to express the change
in entropy of the surroundings in terms of the en-
thalpy change of the system, ΔH. When the resulting
expression is inserted into this one, we obtain

(4.14)

The great advantage of this formula is that it ex-
presses the total entropy change of the system and its
surroundings in terms of properties of the system
alone. The only restriction is to changes at constant
pressure and temperature.

Now we take a very important step. First, we 
introduce the Gibbs energy, G, which is defined as

G = H − TS (4.15)

The Gibbs energy is commonly referred to as the ‘free
energy’ and the ‘Gibbs free energy’. Because H, T,
and S are state functions, G is a state function too. 
A change in Gibbs energy, ΔG, at constant temper-
ature arises from changes in enthalpy and entropy,
and is

At constant temperature: ΔG = ΔH − TΔS (4.16)

By comparing eqns 4.14 and 4.16 we obtain

At constant temperature and pressure: ΔG = −TΔStotal

(4.17)

We see that at constant temperature and pressure,
the change in Gibbs energy of a system is propor-
tional to the overall change in entropy of the system
plus its surroundings.

Entropy
change of
system

+
Entropy

change of
surroundings

Use eqn 4.10

At constant temperature and pressure: 

Δ Δ
Δ

S S
H
Ttotal = −   

4.13 Properties of the Gibbs energy

The difference in sign between ΔG and ΔStotal implies
that the condition for a process being spontaneous
changes from ΔStotal > 0 in terms of the total entropy
(which is universally true) to ΔG < 0 in terms of the
Gibbs energy (for processes occurring at constant
temperature and pressure). That is, in a spontaneous
change at constant temperature and pressure, the
Gibbs energy decreases (Fig. 4.16).

It may seem more natural to think of a system as
falling to a lower value of some property. However,
it must never be forgotten that to say that a system
tends to fall to lower Gibbs energy is only a modified
way of saying that a system and its surroundings
jointly tend towards a greater total entropy. The only
criterion of spontaneous change is the total entropy
of the system and its surroundings; the Gibbs energy
merely contrives a way of expressing that total
change in terms of the properties of the system alone,
and is valid only for processes that occur at constant
temperature and pressure. Every chemical reaction
that is spontaneous under conditions of constant
temperature and pressure, including those that drive
the processes of growth, learning, and reproduction,
are reactions that change in the direction of lower
Gibbs energy, or—another way of expressing the
same thing—result in the overall entropy of the sys-
tem and its surroundings becoming greater.

A second feature of the Gibbs energy is that the
value of ΔG for a process gives the maximum nonex-
pansion work that can be extracted from the process
at constant temperature and pressure. By nonexpan-
sion work, w′, we mean any work other than that
arising from the expansion of the system. It may in-
clude electrical work, if the process takes place inside
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Fig. 4.16 The criterion of spontaneous change is the increase
in total entropy of the system and its surroundings. Provided
we accept the limitation of working at constant pressure and
temperature, we can focus entirely on properties of the sys-
tem, and express the criterion as a tendency to move to
lower Gibbs energy.
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an electrochemical or biological cell, or other kinds
of mechanical work, such as the winding of a spring
or the contraction of a muscle (we saw examples in
Section 2.2). To demonstrate this property, we need
to combine the First and Second Laws, and as shown
in Derivation 4.4 we find

At constant temperature and pressure: ΔG = w ′max

(4.18)

A brief illustration Experiments show that for the for-
mation of 1 mol H2O(l) at 25°C and 1 bar, DH = −286 kJ
and DG = −237 kJ. It follows that up to 237 kJ of nonex-
pansion work can be extracted from the reaction between
hydrogen and oxygen to produce 1 mol H2O(l) at 25°C. If
the reaction takes place in a fuel cell—a device for using 
a chemical reaction to produce an electric current, like
those used on the space shuttle—then up to 237 kJ of
electrical energy can be generated for each mole of H2O
produced. This energy is enough to keep a 60 W light 
bulb shining for about 1.1 h. If no attempt is made to 
extract any energy as work, then 286 kJ (in general, DH )
of energy will be produced as heat. If some of the energy
released is used to do work, then up to 237 kJ (in general,
DG) of nonexpansion work can be obtained.

Derivation 4.4

Maximum nonexpansion work

We need to consider infinitesimal changes, because
dealing with reversible processes is then much easier.
Our aim is to derive the relation between the infinit-
esimal change in Gibbs energy, dG, accompanying a 
process and the maximum amount of nonexpansion
work that the process can do, dw ′. We start with the 
infinitesimal form of eqn 4.16,

At constant temperature: dG = dH − TdS

where, as usual, d denotes an infinitesimal difference. A
good rule in the manipulation of thermodynamic expres-
sions is to feed in definitions of the terms that appear.
We do this twice. First, we use the expression for the
change in enthalpy at constant pressure (eqn 2.14b; 
dH = dU + pdV ), and obtain

Then we replace dU in terms of infinitesimal contribu-
tions from work and heat (dU = dw + dq):

The work done on the system consists of expansion
work, −pexdV, and nonexpansion work, dw ′. Therefore,

This derivation is valid for any process taking place at
constant temperature and pressure.

Now we specialize to a reversible change. For expan-
sion work to be reversible, we need to match p and pex,
in which case the first and fourth terms on the right 
cancel. Moreover, because the heat transfer is also 
reversible, we can replace dq by TdS, in which case the
third and fifth terms also cancel:

dG = −pdV + dw ′ + dq + pdV − T dS

We are left with

At constant temperature and pressure, for a reversible 
process: dG = dw ′rev

Maximum work is done during a reversible change
(Section 2.3), so another way of writing this expres-
sion is

At constant temperature and pressure: dG = dw ′max

Because this relation holds for each infinitesimal step
between the specified initial and final states, it applies to
the overall change too. Therefore, we obtain eqn 4.18.

dG = dw + dq + pdV − TdS

= −pexdV + dw ′ + dq + pdV − TdS

Use dw = –pexdV + dw’

Use dU = dw + dq

dG = dU + pdV − TdS = dw + dq + pdV − TdS

Use dH = dU + pdV

At constant temperature and pressure: 

dG = dH − TdS = dU + pdV − TdS
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The great importance of the Gibbs energy in chem-
istry is becoming apparent. At this stage, we see that
it is a measure of the nonexpansion work resources
of chemical reactions: if we know ΔG, then we know
the maximum nonexpansion work that we can 
obtain by harnessing the reaction in some way. In
some cases, the nonexpansion work is extracted as
electrical energy. This is the case when the reaction
takes place in an electrochemical cell, of which a 
fuel cell is a special case, as we see in Chapter 9. In
other cases, the reaction may be used to build other
molecules. This is the case in biological cells, where
the Gibbs energy available from the hydrolysis of
ATP (adenosine triphosphate) to ADP is used to
build proteins from amino acids, to power muscular
contraction, and to drive the neuronal circuits in our
brains.

Some insight into the physical significance of G
itself comes from its definition as H − TS. The
enthalpy is a measure of the energy that can 
be obtained from the system as heat. The term

TS is a measure of the quantity of energy stored in the
random motion of the molecules making up the sample.
Work, as we have seen, is energy transferred in an 
orderly way, so we cannot expect to obtain work from 
the energy stored randomly. The difference between 
the total stored energy and the energy stored randomly,
H − TS, is available for doing work, and we recognize that
difference as the Gibbs energy. In other words, the Gibbs
energy is the energy stored in the orderly motion and 
arrangement of the molecules in the system.

Self-test 4.9

A hard-working human brain, perhaps one that is
grappling with physical chemistry, operates at about
25 W (1 W = 1 J s−1). What mass of glucose must be
consumed to sustain that power output for an hour?

[Answer: 5.7 g]

Example 4.3

Estimating a change in Gibbs energy

Suppose a certain small bird has a mass of 30 g. What is
the minimum mass of glucose that it must consume to
fly to a branch 10 m above the ground? The change in
Gibbs energy that accompanies the oxidation of 1.0 mol
C6H12O6(s) to carbon dioxide and water vapour at 25°C is
−2828 kJ.

Strategy First, we need to calculate the work needed to
raise a mass m through a height h on the surface of the
Earth. As we saw in eqn 2.1, this work is equal to mgh,
where g is the acceleration of free fall. This work, which
is nonexpansion work, can be identified with DG. We
need to determine the amount of substance that corre-
sponds to the required change in Gibbs energy, and then
convert that amount to a mass by using the molar mass
of glucose.

Solution The nonexpansion work to be done is

w ′ = mgh = (30 × 10−3 kg) × (9.81 m s−2) × (10 m) 

= 3.0 × 9.81 × 1.0 × 10−1 J

(because 1 kg m2 s−2 = 1 J). The amount, n, of glucose
molecules required for oxidation to give a change in Gibbs
energy of this value given that 1 mol provides 2828 kJ is

Therefore, because the molar mass, M, of glucose is
180 g mol−1, the mass, m, of glucose that must be 
oxidized is

= 1.9 ×10−4 g

That is, the bird must consume at least 0.19 mg of 
glucose for the mechanical effort (and more if it thinks
about it).
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Checklist of key ideas

You should now be familiar with the following concepts.

1 A spontaneous change is a change that has a 
tendency to occur without work having to be done
to bring it about.

2 Matter and energy tend to disperse.

3 The Second Law states that the entropy of an iso-
lated system tends to increase.

4 In general, the entropy change accompanying the
heating of a system is equal to the area under the
graph of C /T against T between the two tempera-
tures of interest.

5 The Third Law of thermodynamics states that the
entropies of all perfectly crystalline substances are
the same at T = 0 (and may be taken to be zero).

6 The residual entropy of a substance is its entropy
at T = 0 due to any positional disorder that remains.

7 The Gibbs energy is a state function.

8 At constant temperature and pressure, a system
tends to change in the direction of decreasing
Gibbs energy.

9 At constant temperature and pressure, the change
in Gibbs energy accompanying a process is equal
to the maximum nonexpansion work the process
can do.

The following table summarizes the equations developed in this chapter.

Description

Change in entropy

Expansion of a perfect gas

Heating a system

Entropy of transition

Entropy change of surroundings

Boltzmann formula

Standard entropy of reaction

Gibbs energy

Change in Gibbs energy

Relation to nonexpansion work

Table of key equations

Equation

DS = qrev /T

DS = nRT ln(Vf /Vi )

DS = C ln(T f /T i )

DtrsS = DtrsH (T trs)/Ttrs

DSsur = −q /T

S = k ln W

D rS
- = ∑nS -

m(products) − ∑nS -
m(reactants).

G = H − TS

DG = DH − TDS

DG = w ′max

Comment

Definition

Isothermal, perfect gas

Constant heat capacity in 
the temperature range

At the transition temperature,
constant pressure

Definition

Constant temperature

At constant temperature and pressure
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Discussion questions

4.1 Explain why the entropy of a gas increases (a) with 
volume, (b) with temperature.

4.2 Why (in thermodynamic and molecular terms) should
substances with high heat capacities have high entropies?

4.3 Justify Trouton’s rule. What are the sources of 
discrepancies?

4.4 Justify the identification of the statistical entropy with
the thermodynamic entropy.

4.5 Under what circumstances may the properties of the
system alone be used to identify the direction of spontan-
eous change?

4.6 The evolution of life requires the organization of a very
large number of molecules into biological cells. Does the 
formation of living organisms violate the Second Law of 
thermodynamics? State your conclusion clearly and present
detailed arguments to support it.

Exercises

4.1 A goldfish swims in a bowl of water at 20°C. Over a 
period of time, the fish transfers 120 J to the water as a result
of its metabolism. What is the change in entropy of the
water, assuming no losses to the environment?

4.2 Suppose you put a cube of ice of mass 100 g into a glass
of water at just above 0°C. When the ice melts, about 33 kJ
of energy is absorbed from the surroundings as heat. What 
is the change in entropy of (a) the sample (the ice), (b) the 
surroundings (the glass of water)?

4.3 A sample of aluminium of mass 1.00 kg is cooled at 
constant pressure from 300 K to 250 K. Calculate the energy
that must be removed as heat and the change in entropy 
of the sample. The molar heat capacity of aluminum is 
24.35 J K−1 mol−1.

4.4 Calculate the change in entropy of 100 g of ice at 0°C as
it is melted, heated to 100°C, and then vaporized at that tem-
perature. Suppose that the changes are brought about by a
heater that supplies energy at a constant rate, and sketch a
graph showing (a) the change in temperature of the system,
(b) the enthalpy of the system, (c) the entropy of the system
as a function of time.

4.5 Calculate the change in molar entropy when a sample of
nitrogen expands isothermally from 1.0 dm3 to 5.5 dm3.

4.6 A sample of carbon dioxide that initially occupies 15.0 dm3

at 250 K and 1.00 atm is compressed isothermally. Into what
volume must the gas be compressed to reduce its entropy 
by 10.0 J K−1?

4.7 Whenever a gas expands isothermally—when we ex-
hale, when a flask is opened, and so on—the gas undergoes
an increase in entropy. A sample of methane gas of mass 
15 g at 260 K and 105 kPa expands isothermally and (a) 
reversibly, (b) irreversibly until its pressure is 1.50 kPa.
Calculate the change in entropy of the gas.

4.8 What is the change in entropy of 100 g of water when it
is heated from room temperature (20°C) to body temperature
(37°C)? Use Cp,m = 75.5 J K−1 mol−1.

4.9 Calculate the change in entropy of 1.0 kg of lead when it
cools from 500°C to 100°C. Take Cp,m = 26.44 J K−1 mol−1.

4.10 Use the result you derived in the preceding two exer-
cises to calculate the percentage error in assuming that the
heat capacity of lead is constant (as in Exercise 4.9) when 
1.0 kg cools from 500°C to 100°C.

4.11 Calculate the change in molar entropy when a sample
of argon is compressed from 2.0 dm3 to 500 cm3 and simul-
taneously heated from 300 K to 400 K. Take CV, m = R.

4.12 A monatomic perfect gas at a temperature Ti is ex-
panded isothermally to twice its initial volume. To what tem-
perature should it be cooled to restore its entropy to its initial
value? Take CV, m = R.

4.13 In a certain cyclic engine (technically, a Carnot cycle), a
perfect gas expands isothermally and reversibly, then adia-
batically (q = 0) and reversibly. In the adiabatic expansion step
the temperature falls. At the end of the expansion stage, the
sample is compressed reversibly first isothermally and then
adiabatically in such a way as to end up at the starting volume
and temperature. Draw a graph of entropy against tempera-
ture for the entire cycle.

4.14 Estimate the molar entropy of potassium chloride at 
5.0 K given that its molar heat capacity at that temperature is
1.2 mJ K−1 mol−1.

4.15 Calculate the change in entropy when 100 g of water at
80°C is poured into 100 g of water at 10°C in an insulated ves-
sel given that Cp,m = 75.5 J K−1 mol−1.

4.16 The enthalpy of the graphite → diamond phase 
transition, which under 100 kbar occurs at 2000 K, is 
+1.9 kJ mol−1. Calculate the entropy of transition.

4.17 The enthalpy of vaporization of chloroform (trichloro-
methane), CHCl3, is 29.4 kJ mol−1 at its normal boiling point
of 334.88 K. (a) Calculate the entropy of vaporization of chlo-
roform at this temperature. (b) What is the entropy change in
the surroundings?

4.18 Calculate the entropy of fusion of a compound at 25°C
given that its enthalpy of fusion is 36 kJ mol−1 at its melting
point of 151°C and the molar heat capacities (at constant
pressure) of the liquid and solid forms are 33 J K−1 mol−1 and
17 J K−1 mol−1, respectively.
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4.19 Octane is typical of the components of gasoline.
Estimate (a) the entropy of vaporization, (b) the enthalpy of
vaporization of octane, which boils at 126°C at 1 atm.

4.20 Suppose that the weight of a configuration of N
molecules in a gas of volume V is proportional to VN. Use
Boltzmann’s formula to deduce the change in entropy when
the gas expands isothermally.

4.21 An FClO3 molecule can adopt four orientations in the
solid with negligible difference in energy. What is its residual
molar entropy?

4.22 Without performing a calculation, estimate whether the
standard entropies of the following reactions are positive or
negative:

(a) Ala—Ser—Thr—Lys—Gly—Arg—Ser trypsin

Ala—Ser—Thr—Lys + Gly—Arg

(b) N2(g) + 3 H2(g) → 2 NH3(g)

(c) ATP4−(aq) + 2 H2O(l) → ADP3−(aq) + HPO4
2−(aq)

+ H3O
+(aq)

4.23 Calculate the standard reaction entropy at 298 K of

(a) 2 CH3CHO(g) + O2(g) → 2 CH3COOH(l)

(b) 2 AgCl(s) + Br2(l) → 2 AgBr(s) + Cl2(g)

(c) Hg(l) + Cl2(g) → HgCl2(s)

(d) Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

(e) C12H22O11(s) + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

4.24 Suppose that when you exercise, you consume 100 g
of glucose and that all the energy released as heat remains 
in your body at 37°C. What is the change in entropy of your
body?

4.25 Calculate the standard reaction entropy and the change
in entropy of the surroundings (at 298 K) of the reaction 
N2(g) + 3 H2(g) → 2 NH3(g).

4.26 The constant-pressure molar heat capacities of linear
gaseous molecules are approximately R and those of non-
linear gaseous molecules are approximately 4R. Estimate 
the change in standard reaction entropy of the following two
reactions when the temperature is increased by 10 K at 
constant pressure:

(a) 2 H2(g) + O2(g) → 2 H2O(g)

(b) CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g)

4.27 Use the information you deduced in Exercise 4.26 to
calculate the standard Gibbs energy of reaction of N2(g) +
3 H2(g) → 2 NH3(g).

4.28 In a particular biological reaction taking place in the
body at 37°C, the change in enthalpy was −135 kJ mol−1 and
the change in entropy was −136 J K−1 mol−1. (a) Calculate 
the change in Gibbs energy. (b) Is the reaction spontaneous?
(c) Calculate the total change in entropy of the system and
the surroundings.

7
2

4.29 The change in Gibbs energy that accompanies the 
oxidation of C6H12O6(s) to carbon dioxide and water vapour at
25°C is −2828 kJ mol−1. How much glucose does a person 
of mass 65 kg need to consume to climb through 10 m?

4.30 Fuel cells are being developed that make use of organic
fuels; in due course they might be used to power tiny intra-
veinous machines for carrying out repairs on diseased tissue.
What is the maximum nonexpansion work that can be 
obtained from the metabolism of 1.0 mg of sucrose to carbon
dioxide and water?

4.31 The formation of glutamine from glutamate and 
ammonium ions requires 14.2 kJ mol−1 of energy input. It is
driven by the hydrolysis of ATP to ADP mediated by the 
enzyme glutamine synthetase. (a) Given that the change 
in Gibbs energy for the hydrolysis of ATP corresponds to 
DrG = −31 kJ mol−1 under the conditions prevailing in a typical
cell, can the hydrolysis drive the formation of glutamine? 
(b) How many moles of ATP must be hydrolysed to form 
1 mol of glutamine?

4.32 The hydrolysis of acetyl phosphate has DrG = −42 kJ
mol−1 under typical biological conditions. If acetyl phosphate
were to be synthesized by coupling to the hydrolysis of ATP,
what is the minimum number of ATP molecules that would
need to be involved?

4.33 Suppose that the radius of a typical cell is 10 mm and
that inside it 106 ATP molecules are hydrolysed each second.
What is the power density of the cell in watts per cubic metre
(1 W = 1 J s−1). A computer battery delivers about 15 W and
has a volume of 100 cm3. Which has the greater power den-
sity, the cell or the battery? (For data, see Exercise 4.32.)

Projects

The symbol ‡ indicates that calculus is required.

4.34‡ Equation 4.3 is based on the assumption that the heat
capacity is independent of temperature. Suppose, instead,
that the heat capacity depends on temperature as C = a + bT
+ c /T 2 (as was explored in Section 2.9). Find an expression
for the change of entropy accompanying heating from Ti to Tf.
Hint: See Derivation 4.2.

4.35 Here we explore the thermodynamics of refrigerators
and heat pumps. (a) Show that the best coefficient of cooling
performance, ccool, the ratio of the energy extracted as heat
at Tcold to the energy supplied as work in a perfect refrigera-
tor, is ccool = Tcold /(Thot − Tcold). What is the maximum rate of
extraction of energy as heat in a domestic refrigerator rated
at 200 W operating at 5.0°C in a room at 22°C? (b) Show that
the best coefficient of heating performance, cwarm, the ratio
of the energy produced as heat at Thot to the energy supplied
as work in a perfect heat pump, is cwarm = Thot /(Thot − Tcold).
What is the maximum power rating of a heat pump that con-
sumes power at 2.5 kW operating at 18.0°C and warming a
room at 22°C?
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Boiling, freezing, and the conversion of graphite 
to diamond are all examples of phase transitions, or
changes of phase without change of chemical com-
position. Many phase changes are common everyday
phenomena and their description is an important
part of physical chemistry. They occur whenever a
solid changes into a liquid, as in the melting of ice, or
a liquid changes into a vapour, as in the vaporization
of water in our lungs. They also occur when one solid
phase changes into another, as in the conversion of
graphite into diamond under high pressure, or the
conversion of one phase of iron into another as it is
heated in the process of steelmaking. The tendency of
a substance to form a liquid crystal, a distinct phase
with properties intermediate between those of solid
and liquid, guides the design of displays for elec-
tronic devices. Phase changes are important geologi-
cally too; for example, calcium carbonate is typically
deposited as aragonite, but then gradually changes
into another crystal form, calcite.

The thermodynamics 

of transition

The Gibbs energy, G = H − TS, of a substance will be
at centre stage in all that follows. We need to know
how its value depends on the pressure and tempera-
ture. As we work out these dependencies, we shall 
acquire deep insight into the thermodynamic proper-
ties of matter and the transitions it can undergo.

5.1 The condition of stability

First, we need to establish the importance of the
molar Gibbs energy, Gm = G/n, in the discussion of
phase transitions of a pure substance. The molar
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Gibbs energy, an intensive property, depends on 
the phase of the substance. For instance, the molar
Gibbs energy of liquid water is in general different
from that of water vapour at the same temperature
and pressure. When an amount n of the substance
changes from phase 1 (for instance, liquid), with
molar Gibbs energy Gm(1) to phase 2 (for instance,
vapour) with molar Gibbs energy Gm(2), the change
in Gibbs energy is

ΔG = nGm(2) − nGm(1) = n{Gm(2) − Gm(1)}

We know that a spontaneous change at constant
temperature and pressure is accompanied by a nega-
tive value of ΔG. This expression shows, therefore,
that a change from phase 1 to phase 2 is spontaneous
if the molar Gibbs energy of phase 2 is lower than
that of phase 1. In other words, a substance has a
spontaneous tendency to change into the phase with
the lowest molar Gibbs energy.

If at a certain temperature and pressure the solid
phase of a substance has a lower molar Gibbs energy
than its liquid phase, then the solid phase is thermo-
dynamically more stable and the liquid will (or at
least has a tendency to) freeze. If the opposite is true,
the liquid phase is thermodynamically more stable
and the solid will melt. For example, at 1 atm, ice has
a lower molar Gibbs energy than liquid water when
the temperature is below 0°C, and under these con-
ditions water converts spontaneously into ice.

Self-test 5.1

The Gibbs energy of transition from metallic white tin 
(a-Sn) to nonmetallic grey tin ( b-Sn) is +0.13 kJ mol−1 at
298 K. Which is the reference state (Section 3.5) of tin at
this temperature?

[Answer: white tin]

5.2 The variation of Gibbs energy 
with pressure

To discuss how phase transitions depend on the pres-
sure, we need to know how the molar Gibbs energy
varies with pressure. We show in Derivation 5.1 that
when the temperature is held constant and the pres-
sure is changed by a small amount Δp, the molar
Gibbs energy of a substance changes by

ΔGm = VmΔp (5.1)

where Vm is the molar volume of the substance. This
expression is valid when the molar volume is constant
in the pressure range of interest.

Derivation 5.1

The variation of G with pressure

We start with the definition of Gibbs energy, G = H − TS,
and change the temperature, volume, and pressure 
by an infinitesimal amount. As a result, H changes to 
H + dH. T changes to T + dT, S changes to S + dS, and G
changes to G + dG. After the change

The G on the left cancels the H − TS on the right, the 
doubly infinitesimal dTdS can be neglected, and we are
left with

dG = dH − TdS − SdT

To make progress, we need to know how the enthalpy
changes. From its definition H = U + pV, in a similar way
(letting U change to U + dU, and so on, and neglecting
the doubly infinitesimal term dpdV ) we can write

dH = dU + pdV + Vdp

On substituting this expression into the previous one,
we obtain

At this point we need to know how the internal energy
changes, and write

dU = dq + dw

If initially we consider only reversible changes, we can 
replace dq by TdS (because dS = dqrev /T ) and dw by 
−pdV (because dw = −pexdV and pex = p for a reversible
change), and obtain

dU = TdS − pdV

Now we substitute this expression into the expression
for dH and that expression into the expression for dG
and obtain

We are left with the important result that

dG = Vdp − SdT (5.2)

Now here is a subtle but important point. To derive
this result we have supposed that the changes in condi-
tions have been made reversibly. However, G is a state
function, and so the change in its value is independent of
path. Therefore, eqn 5.2 is valid for any change, not just
a reversible change.

V

dU = TdS − pdV

dG = dU + pdV + Vdp − TdS − SdT

= TdS − pdV + pd + Vdp − TdS − SdT

dG = dH − TdS − SdT = dU + pdV + Vdp − TdS − SdT

dH = dU + pdV + Vdp

G + dG = H + dH − (T + dT )(S + dS )

= H + dH −TS − TdS − SdT − dTdS
G O

G changes to H changes to T changes to S changes to
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Equation 5.1 tells us that, because all molar vol-
umes are positive, the molar Gibbs energy increases
(ΔGm > 0) when the pressure increases (Δp > 0). We
also see that, for a given change in pressure, the 
resulting change in molar Gibbs energy is greatest 
for substances with large molar volumes. Therefore,
because the molar volume of a gas is much larger than
that of a condensed phase (a liquid or a solid), the 
dependence of Gm on p is much greater for a gas than
for a condensed phase. For most substances (water is
an important exception), the molar volume of the
liquid phase is greater than that of the solid phase.
Therefore, for most substances, the slope of a graph
of Gm against p is greater for a liquid than for a solid.
These characteristics are illustrated in Fig. 5.1.

As we see from Fig. 5.1, when we increase the 
pressure on a substance, the molar Gibbs energy of

At this point we decide to keep the temperature con-
stant, and set dT = 0 in eqn 5.2; this leaves

dG = Vdp

and, for molar quantities, dGm = Vmdp. This expression is
exact, but applies only to an infinitesimal change in the
pressure. For an observable change, we replace dGm

and dp by DGm and Dp, respectively, and obtain eqn 5.1,
provided the molar volume is constant over the range of
interest.

A note of good practice When confronted with 
a proof in thermodynamics, go back to fundamental 
definitions (as we did three times in succession in this
derivation: first of G, then of H, and finally of U ).
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Fig. 5.1 The variation of molar Gibbs energy with pressure.
The region where the molar Gibbs energy of a particular
phase is least is shown by a dark line and the corresponding
region of stability of each phase is indicated by the shading.
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Fig. 5.2 The variation of the molar Gibbs energy of a
perfect gas with pressure.

the gas phase rises above that of the liquid, then the
molar Gibbs energy of the liquid rises above that of
the solid. Because the system has a tendency to con-
vert into the state of lowest molar Gibbs energy, the
graphs show that at low pressures the gas phase is 
the most stable, then at higher pressures the liquid
phase becomes the most stable, followed by the solid
phase. In other words, under pressure the substance
condenses to a liquid, and then further pressure can
result in the formation of a solid.

We can use eqn 5.1 to predict the actual shape of
graphs like those in Fig. 5.1. For a solid or liquid, the
molar volume is almost independent of pressure, so
eqn 5.1 is an excellent approximation to the change
in molar Gibbs energy and with ΔGm = Gm(pf) −
Gm(pi) and Δp = pf − pi we can write

Gm(pf) = Gm(pi) + Vm(pf − pi) (5.3a)

This equation shows that the molar Gibbs energy of
a solid or liquid increases linearly with pressure.
However, because the molar volume of a condensed
phase is so small, the dependence is very weak, and
for the typical ranges of pressure normally of interest
to us we can ignore the pressure dependence of G. The
molar Gibbs energy of a gas, however, does depend
on the pressure, and because the molar volume of 
a gas is large, the dependence is significant. We show
in Derivation 5.2 that

(5.3b)

This equation shows that the molar Gibbs energy 
increases logarithmically (as ln p) with the pressure
(Fig. 5.2). The flattening of the curve at high pressures
reflects the fact that as Vm gets smaller, Gm becomes
less responsive to pressure.

G p G p RT
p
pm f m i

f

i

( ) ( ) ln= +



dGm = −SmdT

This expression is exact. If we suppose that the molar
entropy is unchanged in the range of temperatures of 
interest, we can replace the infinitesimal changes by 
observable changes, and so obtain eqn 5.4.

Derivation 5.3

The variation of the Gibbs energy with
temperature

The starting point for this short derivation is eqn 5.2, the
expression obtained in Derivation 5.1 for the change in
molar Gibbs energy when both the pressure and the
temperature are changed by infinitesimal amounts. If we
hold the pressure constant, dp = 0, and eqn 5.2 becomes
(for molar quantities)
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5.3 The variation of Gibbs energy 
with temperature

Now we consider how the molar Gibbs energy varies
with temperature. For small changes in temperature,
we show in Derivation 5.3 that the change in molar
Gibbs energy at constant pressure is

ΔGm = −SmΔT (5.4)

where ΔGm = Gm(Tf) − Gm(Ti) and ΔT = Tf − Ti. This
expression is valid provided the entropy of the sub-
stance is unchanged over the range of temperatures
of interest.

Equation 5.4 tells us that, because molar 
entropy is positive, an increase in temperature
(DT > 0) results in a decrease in Gm (DGm < 0).
We see that for a given change of temperature,

the change in molar Gibbs energy is proportional to the
molar entropy. For a given substance, there is more spa-
tial disorder in the gas phase than in a condensed phase,
so the molar entropy of the gas phase is greater than that
for a condensed phase. It follows that the molar Gibbs
energy falls more steeply with temperature for a gas than
for a condensed phase. The molar entropy of the liquid
phase of a substance is greater than that of its solid
phase, so the slope is least steep for a solid. Figure 5.3
summarizes these characteristics.

Figure 5.3 also reveals the thermodynamic reason
why substances melt and vaporize as the temperature
is raised. At low temperatures, the solid phase has the
lowest molar Gibbs energy and is therefore the most
stable. However, as the temperature is raised, the
molar Gibbs energy of the liquid phase falls below
that of the solid phase, and the substance melts. At
even higher temperatures, the molar Gibbs energy of
the gas phase plunges down below that of the liquid
phase, and the gas becomes the most stable phase. In
other words, above a certain temperature, the liquid
vaporizes to a gas.

Derivation 5.2

The pressure variation of the Gibbs energy of 
a perfect gas

We start with the exact expression for the effect of an in-
finitesimal change in pressure obtained in Derivation 5.1,
that dGm = Vmdp. For a change in pressure from pi to pf,
we need to add together (integrate) all these infinitesimal
changes, and write

DGm = �
pf

pi

Vmdp

To evaluate the integral, we must know how the molar
volume depends on the pressure. For a perfect gas Vm =
RT/p. Then

In the last line we have used the standard integral

�
Finally, with DGm = Gm(pf) − Gm(pi), we get eqn 5.3b.
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We can also start to understand why some sub-
stances, such as carbon dioxide, sublime to a vapour
without first forming a liquid. There is no fundamen-
tal requirement for the three lines to lie exactly in the
positions we have drawn them in Fig. 5.3: the liquid
line, for instance, could lie where we have drawn it 
in Fig. 5.4. Now we see that at no temperature (at  the
given pressure) does the liquid phase have the lowest
molar Gibbs energy. Such a substance converts 
spontaneously directly from the solid to the vapour.
That is, the substance sublimes.

The transition temperature, Ttrs, between two
phases, such as between liquid and solid or between
ordered and disordered states of a protein, is the 
temperature, at a given pressure, at which the molar
Gibbs energies of the two phases are equal. Above
the solid–liquid transition temperature the liquid
phase is thermodynamically more stable; below it,
the solid phase is more stable. For example, at 1 atm,
the transition temperature for ice and liquid water 
is 0°C and that for grey and white tin is 13°C. At 
the transition temperature itself, the molar Gibbs 
energies of the two phases are identical and there is
no tendency for either phase to change into the other.
At this temperature, therefore, the two phases are 
in equilibrium. At 1 atm, ice and liquid water are in
equilibrium at 0°C and the two allotropes of tin are
in equilibrium at 13°C.

As always when using thermodynamic arguments,
it is important to keep in mind the distinction between
the spontaneity of a phase transition and its rate.
Spontaneity is a tendency, not necessarily an actual-
ity. A phase transition predicted to be spontaneous

may occur so slowly as to be unimportant in practice.
For instance, at normal temperatures and pressures
the molar Gibbs energy of graphite is 3 kJ mol−1

lower than that of diamond, so there is a thermo-
dynamic tendency for diamond to convert into
graphite. However, for this transition to take place,
the carbon atoms of diamond must change their loca-
tions, and because the bonds between the atoms are
so strong and large numbers of bonds must change
simultaneously, this process is unmeasurably slow
except at high temperatures. In gases and liquids 
the mobilities of the molecules normally allow phase
transitions to occur rapidly, but in solids thermo-
dynamic instability may be frozen in and a thermo-
dynamically unstable phase may persist for thousands
of years.

Phase diagrams

The phase diagram of a substance is a map show-
ing the conditions of temperature and pressure at
which its various phases are thermodynamically most
stable (Fig. 5.5). For example, at point A in the 
illustration, the vapour phase of the substance is
thermodynamically the most stable, but at C the 
liquid phase is the most stable.

The boundaries between regions in a phase dia-
gram, which are called phase boundaries, show the
values of p and T at which the two neighbouring
phases are in equilibrium. For example, if the system
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Fig. 5.4 If the line for the Gibbs energy of the liquid phase
does not cut through the line for the solid phase (at a given
pressure) before the line for the gas phase cuts through the
line for the solid, the liquid is not stable at any temperature at
that pressure. Such a substance sublimes.
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Fig. 5.5 A typical phase diagram, showing the regions of
pressure and temperature at which each phase is the most
stable. The phase boundaries (three are shown here) show
the values of pressure and temperature at which the two
phases separated by the line are in equilibrium. The signifi-
cance of the letters A, B, C, D, and E (also referred to in 
Fig. 5.8) is explained in the text.
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is arranged to have a pressure and temperature 
represented by point B, then the liquid and its vapour
are in equilibrium (like liquid water and water
vapour at 1 atm and 100°C). If the temperature is 
reduced at constant pressure, the system moves to
point C where the liquid is stable (like water at 1 atm
and at temperatures between 0°C and 100°C). If 
the temperature is reduced still further to D, then the
solid and the liquid phases are in equilibrium (like ice
and water at 1 atm and 0°C). A further reduction in
temperature takes the system into the region where
the solid is the stable phase.

5.4 Phase boundaries

The pressure of the vapour in equilibrium with its
condensed phase is called the vapour pressure of the
substance. Vapour pressure increases with tempera-
ture because, as the temperature is raised, more
molecules have suAcient energy to leave their neigh-
bours in the liquid.

The liquid–vapour boundary in a phase diagram is
a plot of the vapour pressure against temperature. 
To determine the boundary, we can introduce a 
liquid into the near vacuum at the top of a mercury
barometer and measure by how much the column is
depressed (Fig. 5.6). To ensure that the pressure 
exerted by the vapour is truly the vapour pressure,
we have to add enough liquid for some to remain
after the vapour forms, for only then are the liquid
and vapour phases in equilibrium. We can change
the temperature and determine another point on the
curve, and so on (Fig. 5.7).

Now suppose we have a liquid in a cylinder fitted
with a piston. If we apply a pressure greater than the

vapour pressure of the liquid, the vapour is elimin-
ated, the piston rests on the surface of the liquid, and
the system moves to one of the points in the ‘liquid’
region of the phase diagram. Only a single phase is
present. If instead we reduce the pressure on the sys-
tem to a value below the vapour pressure, the system
moves to one of the points in the ‘vapour’ region of
the diagram. Reducing the pressure will involve
pulling out the piston a long way, so that all the liquid
evaporates; while any liquid is present, the pressure
in the system remains constant at the vapour pres-
sure of the liquid.

Vacuum Vapour

Vapour
pressure

(a) (b) (c)

Fig. 5.6 When a small volume of water is introduced into the
vacuum above the mercury in a barometer (a), the mercury is
depressed (b) by an amount that is proportional to the vapour
pressure of the liquid. (c) The same pressure is observed
however much liquid is present (provided some is present).
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Fig. 5.7 The experimental variation of the vapour pressure of
water with temperature.

Self-test 5.2

What phase changes would be observed when a 
pressure of 7.0 kPa is applied to a sample of water in
equilibrium with its vapour at 25°C, when its vapour
pressure is 3.2 kPa?

[Answer: The sample condenses entirely to liquid.]

The same approach can be used to plot the solid–
vapour boundary, which is a graph of the vapour
pressure of the solid against temperature. The sub-
limation vapour pressure of a solid, the pressure of
the vapour in equilibrium with a solid at a particu-
lar temperature, is usually much lower than that of 
a liquid.

A more sophisticated procedure is needed to deter-
mine the locations of solid–solid phase boundaries
like that between calcite and aragonite, for instance,
because the transition between two solid phases is
more diAcult to detect. One approach is to use 
thermal analysis, which takes advantage of the heat
released during a transition. In a typical thermal
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analysis experiment, a sample is allowed to cool and
its temperature is monitored. When the transition 
occurs, energy is released as heat and the cooling
stops until the transition is complete (Fig. 5.8). The
transition temperature is obvious from the shape of
the graph and is used to mark a point on the phase 
diagram. The pressure can then be changed, and the
corresponding transition temperature determined.

Any point lying on a phase boundary represents a
pressure and temperature at which there is a ‘dynamic
equilibrium’ between the two adjacent phases. A
state of dynamic equilibrium is one in which a 
reverse process is taking place at the same rate as 
the forward process. Although there may be a great
deal of activity at a molecular level, there is no net
change in the bulk properties or appearance of the
sample. For example, any point on the liquid–vapour
boundary represents a state of dynamic equilibrium
in which vaporization and condensation continue at
matching rates. Molecules are leaving the surface of
the liquid at a certain rate, and molecules already in
the gas phase are returning to the liquid at the same
rate; as a result, there in no net change in the number
of molecules in the vapour and hence no net change
in its pressure. Similarly, a point on the solid–liquid
curve represents conditions of pressure and tempera-
ture at which molecules are ceaselessly breaking
away from the surface of the solid and contributing
to the liquid. However, they are doing so at a rate
that exactly matches that at which molecules already
in the liquid are settling on to the surface of the solid
and contributing to the solid phase.

5.5 The location of phase boundaries

Thermodynamics provides us with a way of pre-
dicting the location of the phase boundaries. Suppose
two phases are in equilibrium at a given pressure and
temperature. Then, if we change the pressure, we
must adjust the temperature to a different value 
to ensure that the two phases remain in equilibrium.
In other words, there must be a relation between 
the change in pressure, Δp, that we exert and the
change in temperature, ΔT, we must make to ensure
that the two phases remain in equilibrium. We show
in Derivation 5.4 that the relation between the
change in temperature and the change in pressure
needed to maintain equilibrium is given by the
Clapeyron equation:

(5.5a)

where ΔtrsH is the enthalpy of transition and Δ trsV
is the volume of transition (the change in molar vol-
ume when the transition occurs). This form of the
Clapeyron equation is valid for small changes in pres-
sure and temperature, because only then can Δ trsH
and Δ trsV be taken as constant across the range.

Δ
Δ
Δ

Δp
H

T V
T= ×trs

trs

Te
m

p
er

at
u

re
, T

Time, t

B

D

E

Fig. 5.8 The cooling curve for the B–E section of the 
horizontal line in Fig. 5.5. The halt at D corresponds to the
pause in cooling while the liquid freezes and releases its 
enthalpy of transition. The halt lets us locate Tf even if the
transition cannot be observed visually.

Derivation 5.4

The Clapeyron equation

This derivation is also based on eqn 5.2, the relation 
obtained in Derivation 5.1, that for infinitesimal changes
in pressure and temperature, the molar Gibbs energy
changes by dGm = Vmdp − SmdT.

Consider two phases 1 (for instance, a liquid) and 2 
(a vapour). At a certain pressure and temperature the
two phases are in equilibrium and Gm(1) = Gm(2), where
Gm(1) is the molar Gibbs energy of phase 1 and Gm(2)
that of phase 2 (Fig. 5.9). Now change the pressure by an
infinitesimal amount dp and the temperature by dT. The
molar Gibbs energies of each phase change as follows:

Phase 1: dGm(1) = Vm(1)dp − Sm(1)dT

Phase 2: dGm(2) = Vm(2)dp − Sm(2)dT

where Vm(1) and Sm(1) are the molar volume and molar
entropy of phase 1 and Vm(2) and Sm(2) are those of
phase 2. The two phases were in equilibrium before the
change, so the two molar Gibbs energies were equal.
The two phases are still in equilibrium after the pressure
and temperature are changed, so their two molar Gibbs
energies are still equal. Therefore, the two changes in
molar Gibbs energy must be equal, dGm(1) = dGm(2), and
we can write

Vm(1)dp − Sm(1)dT = Vm(2)dp − Sm(2)dT

dGm(1) dGm(2)dGm(1) = dGm(2)



CHAPTER 5: PHYSICAL EQUILIBRIA: PURE SUBSTANCES112

The Clapeyron equation tells us the slope (the value
of Δp/ΔT ) of any phase boundary in terms of the 
enthalpy and volume of transition. For the solid–liquid
phase boundary, the enthalpy of transition is the 

enthalpy of fusion, which is positive because melting
is always endothermic. For most substances, the
molar volume increases slightly on melting, so ΔtrsV
is positive but small. It follows that the slope of the
phase boundary is large and positive (up from left to
right), and therefore that a large increase in pressure
brings about only a small increase in melting temper-
ature. Water, though, is quite different, for although
its melting is endothermic, its molar volume decreases
on melting (liquid water is denser than ice at 0°C,
which is why ice floats on water), so ΔtrsV is small but
negative. Consequently, the slope of the ice–water
phase boundary is steep but negative (down from left
to right). Now a large increase in pressure brings about
a small lowering of the melting temperature of ice.

We cannot use eqn 5.5 to discuss the liquid–vapour
phase boundary, except over very small ranges of
temperature and pressure, because we cannot assume
that the volume of the vapour, and therefore the 
volume of transition, is independent of pressure.
However, if we suppose that the vapour behaves as 
a perfect gas, then it turns out (see Derivation 5.5)
that the relation between a change in pressure and 
a change in temperature is given by the Clausius–
Clapeyron equation:

(5.6)

The Clausius–Clapeyron equation is an approximate
equation for the slope of a plot of the logarithm of
the vapor pressure against temperature (Δ ln p/ΔT,
Fig. 5.10). Moreover, it follows from eqn 5.6, as we
also show in Derivation 5.5, that the vapour pressure

Δ
Δ

Δ(ln )p
H

RT
T= ×vap

2

This equation can be rearranged to

{Vm(2) − Vm(1)}dp = {Sm(2) − Sm(1)}dT

The entropy of transition, DtrsS, is the difference 
between the two molar entropies, and the volume of 
transition, DtrsV, is the difference between the molar vol-
umes of the two phases:

DtrsV = Vm(2) − Vm(1) DtrsS = Sm(2) − Sm(1)

We can therefore write

DtrsVdp = DtrsSdT

or

We saw in Chapter 4 that the transition entropy is related
to the enthalpy of transition by DtrsS = DtrsH /Ttrs, so we
may also write

(5.5b)

We have dropped the ‘trs’ subscript from the tempera-
ture because all the points on the phase boundary—the
only points we are considering—are transition tempera-
tures. This expression is exact. For variations in pressure
and temperature small enough for DtrsH and DtrsV to be
treated as constant, the infinitesimal changes dp and dT
can be replaced by observable changes, and we obtain
eqn 5.5a.
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Fig. 5.10 The Clausius–Clapeyron equation gives the slope
of a plot of the logarithm of the vapour pressure of a sub-
stance against the temperature. That slope at a given tem-
perature is proportional to the enthalpy of vaporization of the
substance.
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Equation 5.6 shows that as the temperature of a
liquid is raised (ΔT > 0) its vapour pressure increases
(an increase in the logarithm of p, Δ ln p > 0, implies
that p increases). Equation 5.7 lets us calculate the
vapour pressure at one temperature provided we
know it at another temperature. The equation tells us
that, for a given change in temperature, the larger the
enthalpy of vaporization, the greater the change in
vapour pressure. The vapour pressure of water, for
instance, responds more sharply to a change in tem-
perature than that of benzene does. Note too that we
can write eqn 5.7 as

Then, because ln x = ln 10 × log x,

This expression has the form

(5.8)log p A
B
T

= −

log log
ln ln

p p
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RT
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Δ Δvap vap
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Derivation 5.5

The Clausius–Clapeyron equation

For the liquid–vapour boundary the ‘trs’ label in the exact
form of the Clapeyron equation, eqn 5.5b in Derivation
5.4, becomes ‘vap’ and that equation can be written

Because the molar volume of a gas is much larger than
the molar volume of a liquid, the volume of vaporization,
DvapV = Vm(g) − Vm(l), is approximately equal to the 
molar volume of the gas itself. Therefore, to a good 
approximation,

To make further progress, we can treat the vapour as 
a perfect gas and write its molar volume as Vm = RT/p.
Then

and therefore

A standard result of calculus is d ln x /dx = 1/x, and 
therefore (by multiplying both sides by dx ), dx /x = d ln x.
It follows that we may write the last equation as the
Clausius–Clapeyron equation:

Provided the range of temperature and pressure is small,
the infinitesimal changes d ln p and dT can be replaced
by measurable changes, and we obtain eqn 5.6.

To obtain the explicit expression for the vapour 
pressure at any temperature (eqn 5.7) we rearrange the
equation we have just derived into

and integrate both sides. If the vapour pressure is p at 
a temperature T and p ′ at a temperature T ′, this integra-
tion takes the form
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p′ at a temperature T ′ is related to the vapour pres-
sure p at a temperature T by
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A note on good practice When setting up an integra-
tion, make sure the limits match on each side of the 
expression. Here, the lower limits are ln p on the left 
and T on the right, and the upper limits are ln p ′ and T ′, 
respectively.

The integral on the left evaluates to ln p ′ − ln p, which
simplifies to ln(p ′/p). To evaluate the integral on the right,
we suppose that the enthalpy of vaporization is constant
over the temperature range of interest, so together with
R it can be taken outside the integral:

which is eqn 5.7. To obtain this result we have used the
standard integral
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Another note on good practice Keep a note of any
approximations made in a derivation. In this lengthy pair
of derivations we have made three: (1) the molar volume
of a gas is much greater than that of a liquid, (2) the
vapour behaves as a perfect gas, (3) the enthalpy of 
vaporization is independent of temperature in the range
of interest. Approximations limit the ways in which an
expression may be used to solve problems.
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where A and B are constants and the value of A
depends on the units adopted for p. This is the form
in which vapour pressures are commonly reported
(Table 5.1 and Fig. 5.11).

A brief illustration The vapour pressure of benzene 
in the range 0–42°C can be expressed in the form of 
eqn 5.8:

because B = 1785 K, it follows from the preceding discus-
sion that because B = DvapH/(R ln 10), then

DvapH = BR ln 10 = (1785 K) × (8.3145 J K−1 mol−1) × ln 10 
= 34.2 kJ mol−1

A note on good practice You will sometimes see eqn 5.8
written without units, or with the units in parentheses. It is

 
log ( / ) .p

T
kPa

K
= −7 0871

1785

much better practice to include the units in such a way as 
to make all the quantities unitless: p/kPa is a dimensionless
number. You will also often see ln 10 replaced by its num-
erical value, which is approximately 2.303; however, to keep
the expressions more accurate and to avoid rounding errors,
it is better to keep it as ln 10 and to enter that value into your
calculator.

Table 5.1

Vapour pressure*

Substance A B/K Temperature range (°C)

Benzene, C6H6(l) 7.0871 1785 0 to +42
6.7795 1687 42 to 100

Hexane, C6H14(l) 6.849 1655 −10 to +90
Methanol, CH3OH(l) 7.927 2002 −10 to +80
Methylbenzene, C6H5CH3(l) 7.455 2047 −92 to +15
Phosphorus, P4(s, white) 8.776 3297 20 to 44
Sulfur trioxide, SO3(l) 9.147 2269 24 to 48
Tetrachloromethane, CCl4(l) 7.129 1771 −19 to +20

* A and B are the constants in the expression log(p/kPa) = A − B /T.
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Fig. 5.11 The vapour pressures of some substances based
on the data in Table 5.1.

Self-test 5.3

For benzene in the range 42–100°C, log(p/kPa) = 6.7795
− (1687 K)/T. Estimate the normal boiling point of ben-
zene. (The normal boiling point is the temperature at
which the vapour pressure is 1 atm; see below.)

[Answer: 80.2°C; the actual value is 80.1°C]

5.6 Characteristic points

As we have seen, as the temperature of a liquid is
raised, its vapour pressure increases. First, consider
what we would observe when we heat a liquid in 
an open vessel. At a certain temperature, the vapour
pressure becomes equal to the external pressure. 
At this temperature, the vapour can drive back the
surrounding atmosphere and expand indefinitely.
Moreover, because there is no constraint on expan-
sion, bubbles of vapour can form throughout the
body of the liquid, a condition known as boiling. The
temperature at which the vapour pressure of a liquid
is equal to the external pressure is called the boiling
temperature. When the external pressure is 1 atm,
the boiling temperature is called the normal boiling
point, Tb. It follows that we can predict the normal
boiling point of a liquid by noting the temperature 
on the phase diagram at which its vapour pressure is
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1 atm. The use of 1 atm in the definition of normal
boiling point rather than 1 bar is historical: the 
boiling temperature at 1 bar is called the standard
boiling point.

Now consider what happens when we heat the 
liquid in a closed vessel. Because the vapour cannot
escape, its density increases as the vapour pressure
rises and in due course the density of the vapour 
becomes equal to that of the remaining liquid. At this
stage the surface between the two phases disappears,
as was depicted in Fig. 1.14. The temperature at which
the surface disappears is the critical temperature, 
Tc, which we first encountered in Section 1.10. The
vapour pressure at the critical temperature is called
the critical pressure, pc, and the critical temperature
and critical pressure together identify the critical point
of the substance (see Table 5.2). If we exert pressure
on a sample that is above its critical temperature, we
produce a denser fluid. However, no surface appears
to separate the two parts of the sample and a single
uniform phase, a supercritical fluid, continues to fill
the container (Box 5.1). That is, we have to conclude
that a liquid cannot be produced by the application of
pressure to a substance if it is at or above its critical
temperature. That is why the liquid–vapour bound-
ary in a phase diagram terminates at the critical point
(Fig. 5.12).

The temperature at which the liquid and solid
phases of a substance coexist in equilibrium at a
specified pressure is called the melting temperature of
the substance. Because a substance melts at the same

temperature as it freezes, ‘melting temperature’ is
synonymous with freezing temperature. The solid–
liquid boundary therefore shows how the melting
temperature of a solid varies with pressure. The melt-
ing temperature when the pressure on the sample is 
1 atm is called the normal melting point or the normal
freezing point, Tf. A liquid freezes when the energy of
the molecules in the liquid is so low that they cannot
escape from the attractive forces of their neighbours
and lose their mobility.

There is a set of conditions under which three 
different phases (typically solid, liquid, and vapour)
all simultaneously coexist in equilibrium. It is repre-
sented by the triple point, where the three phase
boundaries meet. The triple point of a pure substance
is a characteristic, unchangeable physical property 
of the substance. For water the triple point lies at
273.16 K and 611 Pa, and ice, liquid water, and water
vapour coexist in equilibrium at no other combina-
tion of pressure and temperature. At the triple point,
the rates of each forward and reverse process are
equal (but the three individual rates are not necessar-
ily the same).

The triple point and the critical point are import-
ant features of a substance because they act as fron-
tier posts for the existence of the liquid phase. As we
see from Fig. 5.13a, if the slope of the solid–liquid
phase boundary is as shown in the diagram:

The triple point marks the lowest temperature at
which the liquid can exist.

Table 5.2

Critical constants*

pc /atm Vc /(cm3 mol−1) Tc /K

Ammonia, NH3 111 73 406
Argon, Ar 48 75 151
Benzene, C6H6 49 260 563
Bromine, Br2 102 135 584
Carbon dioxide, CO2 73 94 304
Chlorine, Cl2 76 124 417
Ethane, C2H6 48 148 305
Ethene, C2H4 51 124 283
Hydrogen, H2 13 65 33
Methane, CH4 46 99 191
Oxygen, O2 50 78 155
Water, H2O 218 55 647

* The critical volume Vc is the molar volume at the critical
pressure and critical volume.
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Fig. 5.12 The significant points of a phase diagram. The 
liquid–vapour phase boundary terminates at the critical point.
At the triple point, solid, liquid, and vapour are in dynamic
equilibrium. The normal freezing point is the temperature 
at which the liquid freezes when the pressure is 1 atm; the
normal boiling point is the temperature at which the vapour
pressure of the liquid is 1 atm.
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Box 5.1 Supercritical fluids

Supercritical carbon dioxide, scCO2, is the centre of attention
for an increasing number of solvent-based processes. The
critical temperature 304.2 K (31.0°C) and pressure 72.9 atm
are readily accessible and carbon dioxide is cheap. The mass
density of scCO2 at its critical point is 0.45 g cm−3. However,
the transport properties of any supercritical fluid depend
strongly on its density, which in turn is sensitive to the pres-
sure and temperature. For instance, densities may be 
adjusted from a gas-like 0.1 g cm−3 to a liquid-like 1.2 g cm−3.
A useful rule of thumb is that the solubility of a solute is 
an exponential function of the density of the supercritical
fluid, so small increases in pressure, particularly close to
the critical point, can have very large effects on solubility.

A great advantage of scCO2 is that there are no noxious
residues once the solvent has been allowed to evaporate,
so, coupled with its low critical temperature, scCO2 is ideally
suited to food processing and the production of pharma-
ceuticals. It is used, for instance, to remove caffeine from
coffee. The supercritical fluid is also increasingly being
used for dry cleaning, which avoids the use of carcinogenic
and environmentally deleterious chlorinated hydrocarbons.

Supercritical CO2 has been used since the 1960s as a
mobile phase in supercritical fluid chromatography (SFC),
but it fell out of favour when the more convenient tech-
nique of high-performance liquid chromatography (HPLC)
was introduced. However, interest in SFC has returned,
and there are separations possible in SFC that cannot easily
be achieved by HPLC, such as the separation of lipids and of
phospholipids. Samples as small as 1 pg can be analysed.

The essential advantage of SFC is that diffusion coeffici-
ents in supercritical fluids are an order of magnitude greater
than in liquids, so there is less resistance to the transfer of
solutes through the column, with the result that separa-
tions may be effected rapidly or with high resolution.

The principal problem with scCO2, though, is that the
fluid is not a very good solvent and surfactants are needed
to induce many potentially interesting solutes to dissolve.
Indeed, scCO2-based dry cleaning depends on the availabil-
ity of cheap surfactants, so too does the use of scCO2 as 
a solvent for homogeneous catalysts, such as metal com-
plexes. There appear to be two principal approaches to
solving the solubilizing problem. One solution is to use 
fluorinated and siloxane-based polymeric stabilizers, which
allow polymerization reactions to proceed in scCO2. The
disadvantage of these stabilizers for commercial use is
their great expense. An alternative and much cheaper 
approach is poly(ether-carbonate) copolymers. The copoly-
mers can be made more soluble in scCO2 by adjusting the
ratio of ether and carbonate groups.

The critical temperature of water is 374°C and its 
pressure is 218 atm. The conditions for using scH2O are
therefore much more demanding than for scCO2 and the
properties of the fluid are highly sensitive to pressure. Thus,
as the density of scH2O decreases, the characteristics of a
solution change from those of an aqueous solution through
those of a nonaqueous solution and eventually to those of a
gaseous solution. One consequence is that reaction mech-
anisms may change from ionic to radical.

The critical point marks the highest temperature at
which the liquid can exist.

We shall see in the following section that for a few
materials (most notably water) the solid–liquid phase
boundary slopes in the opposite direction, and then
only the second of these conclusions is relevant (see
Fig. 5.13b).

5.7 The phase rule

You might wonder whether four phases of a single
substance could ever be in equilibrium (such as the
two solid forms of tin, liquid tin, and tin vapour). To
explore this question we think about the thermo-
dynamic criterion for four phases to be in equilibrium.
For equilibrium, the four molar Gibbs energies
would all have to be equal and we could write

Gm(1) = Gm(2) Gm(2) = Gm(3) Gm(3) = Gm(4)

(The other equalities Gm(1) = Gm(4), and so on, are
implied by these three equations.) Each Gibbs energy
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Fig. 5.13 (a) For substances that have phase diagrams re-
sembling the one shown here (which is common for most
substances, with the important exception of water), the triple
point and the critical point mark the range of temperatures
over which the substance may exist as a liquid. The shaded
areas show the regions of temperature in which a liquid 
cannot exist as a stable phase. (b) A liquid cannot exist as a
stable phase if the pressure is below that of the triple point
for normal or anomalous liquids.
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is a function of the pressure and temperature, so we
should think of these three relations as three equa-
tions for the two unknowns p and T. In general, three
equations for two unknowns have no solution. For
instance, the three equations 5x + 3y = 4, 2x + 6y = 5,
and x + y = 1 have no solutions (try it). Therefore, 
we have to conclude that the four molar Gibbs ener-
gies cannot all be equal. In other words, four phases
of a single substance cannot coexist in mutual 
equilibrium.

The conclusion we have reached is a special case of
one of the most elegant results of chemical thermo-
dynamics. The phase rule was derived by Gibbs and
states that, for a system at equilibrium,

F = C − P + 2 (5.9)

Here F is the number of degrees of freedom, C is the
number of components, and P is the number of
phases. The number of components, C, in a system 
is the minimum number of independent species 
necessary to define the composition of all the phases
present in the system. The definition is easy to apply
when the species present in a system do not react, for
then we simply count their number. For instance,
pure water is a one-component system (C = 1) and 
a mixture of ethanol and water is a two-component
system (C = 2). The number of degrees of freedom,
F, of a system is the number of intensive variables
(such as the pressure, temperature, or mole fractions:
they are independent of the amount of material in the
sample) that can be changed independently without
disturbing the number of phases in equilibrium.

For a one-component system, such as pure water,
we set C = 1 and the phase rule simplifies to F = 3 − P.
When only one phase is present, F = 2, which implies
that p and T can be varied independently. In other
words, a single phase is represented by an area on a
phase diagram. When two phases are in equilibrium
F = 1, which implies that pressure is not freely 
variable if we have set the temperature. That is, the
equilibrium of two phases is represented by a line in
a phase diagram: a line in a graph shows how one
variable must change if another variable is varied
(Fig. 5.14). Instead of selecting the temperature, we
can select the pressure, but having done so the two
phases come into equilibrium at a single definite 
temperature. Therefore, freezing (or any other phase
transition of a single substance) occurs at a definite
temperature at a given pressure. When three phases
are in equilibrium F = 0. This special ‘invariant con-
dition’ can therefore be established only at a definite
temperature and pressure. The equilibrium of three
phases is therefore represented by a point, the triple
point, on the phase diagram. If we set P = 4, we get

the absurd result that F is negative; that result is in
accord with the conclusion at the start of this section
that four phases cannot be in equilibrium in a one-
component system.

5.8 Phase diagrams of typical materials

We shall now see how these general features ap-
pear in the phase diagrams of a selection of pure 
substances.

Figure 5.15 is the phase diagram for water. The
liquid–vapour phase boundary shows how the vapour
pressure of liquid water varies with temperature. We
can use this curve, which is shown in more detail in
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Fig. 5.14 The features of a phase diagram represent different
degrees of freedom. When only one phase is present, F = 2
and the pressure and temperature can be varied at will. When
two phases are present in equilibrium, F = 1: now, if the tem-
perature is changed, the pressure must be changed by a spe-
cific amount. When three phases are present in equilibrium,
F = 0 and there is no freedom to change either variable.
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Fig. 5.15 The phase diagram for water showing the different
solid phases.
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Fig. 5.7, to decide how the boiling temperature varies
with changing external pressure. For example, when
the external pressure is 19.9 kPa (at an altitude of 
12 km), water boils at 60°C because that is the tem-
perature at which the vapour pressure is 19.9 kPa.

molecules adopt different arrangements. These poly-
morphs, or different solid phases, of ice may be 
responsible for the advance of glaciers, for ice at the
bottom of glaciers experiences very high pressures
where it rests on jagged rocks. The sudden apparent
explosion of Halley’s comet in 1991 may have been
due to the conversion of one form of ice into another
in its interior.

Figure 5.18 shows the phase diagram for carbon
dioxide. The features to notice include the slope of
the solid–liquid boundary: this positive slope is typical

Self-test 5.4

What is the minimum pressure at which liquid is the
thermodynamically stable phase of water at 25°C?

[Answer: 3.17 kPa (see Fig. 5.7)]

The solid–liquid boundary line in Fig. 5.15,
which is shown in more detail in Fig. 5.16,
shows how the melting temperature of 
water depends on the pressure. For example,

although ice melts at 0°C at 1 atm, it melts at −1°C when
the pressure is 130 bar. The very steep slope of the
boundary indicates that enormous pressures are needed
to bring about significant changes. Notice that the line
slopes down from left to right, which—as we anticipated
—means that the melting temperature of ice falls as 
the pressure is raised. As pointed out in Section 5.5, we
can trace the reason for this unusual behaviour to the 
decrease in volume that occurs when ice melts: it is
favourable for the solid to transform into the denser 
liquid as the pressure is raised. The decrease in volume is
a result of the very open structure of the crystal structure
of ice: as shown in Fig. 5.17, the water molecules are held
apart, as well as together, by the hydrogen bonds 
between them but the structure partially collapses on
melting and the liquid is denser than the solid.

Figure 5.15 shows that water has many different
solid phases other than ordinary ice (‘ice I’, shown in
Fig. 5.17). These solid phases differ in the arrangement
of the water molecules: under the influence of very
high pressures, hydrogen bonds buckle and the H2O
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Fig. 5.16 The solid–liquid boundary of water in more detail.
The graph is schematic, and not to scale.

Fig. 5.17 The structure of ice-I. Each O atom is at the centre
of a tetrahedron of four O atoms at a distance of 276 pm. The
central O atom is attached by two short O—H bonds to two H
atoms and by two long hydrogen bonds to the H atoms of two
of the neighboring molecules. Overall, the structure consists
of planes of puckered hexagonal rings of H2O molecules (like
the chair form of cyclohexane). This structure collapses partially
on melting, leading to a liquid that is denser than the solid.
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Fig. 5.18 The phase diagram of carbon dioxide. Note that, as
the triple point lies well above atmospheric pressure, liquid
carbon dioxide does not exist under normal conditions (a
pressure of at least 5.11 bar must be applied). The text’s
website contains links to online databases of data on phase
transitions, including phase diagrams.
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of almost all substances. The slope indicates that the
melting temperature of solid carbon dioxide rises as
the pressure is increased. As the triple point (217 K,
5.11 bar) lies well above ordinary atmospheric pres-
sure, liquid carbon dioxide does not exist at normal
atmospheric pressures whatever the temperature,
and the solid sublimes when left in the open (hence
the name ‘dry ice’). To obtain liquid carbon dioxide,
it is necessary to exert a pressure of at least 5.11 bar.

Cylinders of carbon dioxide generally contain the
liquid or compressed gas; if both gas and liquid are
present inside the cylinder, then at 20°C the pressure
must be about 65 atm. When the gas squirts through
the throttle it cools by the Joule–Thomson effect, so
when it emerges into a region where the pressure is
only 1 atm, it condenses into a finely divided snow-
like solid.

Figure 5.19 shows the phase diagram of helium.
Helium behaves unusually at low temperatures. For
instance, the solid and gas phases of helium are 
never in equilibrium however low the temperature:
the atoms are so light that they vibrate with a large-
amplitude motion even at very low temperatures and
the solid simply shakes itself apart. Solid helium can
be obtained, but only by holding the atoms together
by applying pressure. A second unique feature of 
helium is that pure helium-4 has two liquid phases.

The phase marked He-I in the diagram behaves like 
a normal liquid; the other phase, He-II, is a super-
fluid; it is so called because it flows without viscosity.
Helium is the only known substance with a liquid–
liquid boundary in its phase diagram, although recent
work has suggested that water may also have a
superfluid liquid phase.

5.9 The molecular structure of liquids

One question that should arise in your mind is
the molecular basis of the material we have
been discussing and, in particular, the molecu-
lar nature of a pure liquid phase. That is the

question we address here.

The starting point for the discussion of gases is 
the totally random distribution of the molecules of 
a perfect gas. The starting point for the discussion of
solids is the well-ordered structure of perfect crystals
(Chapter 17). The liquid state is between these 
extremes: there is some structure and some disorder.
The particles of a liquid are held together by inter-
molecular forces of the kind we discuss in Chapter
15, but their kinetic energies are comparable to their
potential energies. As a result, although the molecules
are not free to escape completely from the bulk, the
whole structure is very mobile. The flow of molecules
is like a crowd of spectators leaving a stadium.

In a crystal, particles lie at definite locations (in the
absence of defects and thermal motion). This regu-
larity continues out to large distances (to the edge of
the crystal, billions of molecules away), so we say
that crystals have long-range order. When the crystal
melts, the long-range order is lost and wherever we
look at long distances from a given particle there is
equal probability of finding a second particle. Close
to the first particle, though, there may be a remnant
of order. Its nearest neighbours might still adopt 
approximately their original positions, and even if
they are displaced by newcomers the new particles
might adopt their vacated positions. The existence 
of this short-range order is due largely to intermole-
cular forces that exert their influence over short 
distances. For example, in liquid water any given
H2O molecule is surrounded by other molecules at
the corners of a tetrahedron, similar to the arrange-
ment in ice. The intermolecular forces (in this case,
largely hydrogen bonds) are strong enough to affect
the local structure right up to the boiling point.
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the conditions under which the two liquid phases are in equi-
librium. Helium-I is a conventional liquid and helium-II is a 
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exerted before solid helium can be obtained.
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Checklist of key ideas

You should now be familiar with the following concepts.

1 The molar Gibbs energy of a liquid or a solid is 
almost independent of pressure.

2 A phase diagram of a substance shows the condi-
tions of pressure and temperature at which its
various phases are most stable.

3 A phase boundary depicts the pressures and tem-
peratures at which two phases are in equilibrium.

4 The slope of a phase boundary is given by the
Clapeyron equation, see the following table.

5 The slope of the liquid–vapour phase boundary 
is given by the Clausius–Clapeyron equation, see
the following table.

6 The vapour pressure of a liquid is the pressure 

of the vapour in equilibrium with the liquid; it 
depends on temperature as log p = A − B/T.

7 The boiling temperature is the temperature at
which the vapour pressure is equal to the external
pressure; the normal boiling point is the tempera-
ture at which the vapour pressure is 1 atm.

8 The critical temperature is the temperature above
which a substance does not form a liquid.

9 The triple point is the condition of pressure and
temperature at which three phases are in mutual
equilibrium.

10 The structure of a liquid is characterized by 
short-range order that is due largely to inter-
molecular forces that exert their influence over
short distances.

Table of key equations

Equation

DGm = VmDp
DGm = RT ln(pf /pi).

DGm = −SmDT

Dp /DT = DtrsH /TDtrsV

D(ln p)/DT = DtrsH /RT 2

F = C − P + 2

Comment

Incompressible solid or liquid
Perfect gas

Entropy constant in the temperature range

DtrsH, DtrsV constant in the temperature
and pressure range

Vapour is a perfect gas, DtrsH is constant
in the temperature and pressure range

Discussion questions

5.1 Why does the chemical potential vary with (a) tempera-
ture, (b) pressure?

5.2 Discuss the implication for phase stability of the variation
of chemical potential with temperature and pressure.

5.3 Without doing a calculation, decide whether the pres-
ence of (a) attractive, (b) repulsive interactions between gas
molecules will raise or lower the molar Gibbs energy of a gas
relative to its ‘perfect’ value.

5.4 Explain the significance of the Clapeyron equations and
of the Clausius–Clapeyron equation.

5.5 Use the phase rule to discuss the form of the phase dia-
gram of sulfur, which has two solid phases, one liquid phase,
and one vapour phase. Identify the number of degrees of
freedom for each possible combination of phase equilibrium.

5.6 Explain what is meant by the ‘structure of a liquid’.

The following table summarizes the equations developed in this chapter.

Property

Gibbs energy variation with pressure

Gibbs energy variation with temperature

Clapeyron equation 

Clausius–Clapeyron equation

Phase rule

Questions and exercises
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Exercises

5.1 The standard Gibbs energy of formation of rhombic sulfur
is zero and that of monoclinic sulfur is +0.33 kJ mol−1 at 25°C.
Which polymorph is the more stable at that temperature?

5.2 The density of rhombic sulfur is 2.070 g cm−3 and that of
monoclinic sulfur is 1.957 g cm−3. Can the application of pres-
sure be expected to make monoclinic sulfur more stable than
rhombic sulfur?

5.3 What is the difference in molar Gibbs energy due to pres-
sure alone of (a) water (density 1.03 g cm−3), at the ocean sur-
face and in the Mindañao trench (depth 11.5 km), (b) mercury
(density 13.6 g cm−3), at the top and bottom of the column 
in a barometer? (Hint: At the very top, the pressure on the
mercury is equal to the vapour pressure of mercury, which at
20°C is 160 mPa.)

5.4 The density of the fat tristearin is 0.95 g cm−3. Calculate
the change in molar Gibbs energy of tristearin when a 
deep-sea creature is brought to the surface (p = 1.0 atm) from
a depth of 1.5 km. To calculate the hydrostatic pressure, take
the mean density of water to be 1.03 g cm−3.

5.5 Calculate the change in molar Gibbs energy of carbon
dioxide (treated as a perfect gas) at 20°C when its pressure 
is changed isothermally from 1.0 bar to (a) 3.0 bar, (b) 2.7 ×
10−4 atm, its partial pressure in dry air at sea level.

5.6 A sample of water vapour at 200°C is compressed
isothermally from 350 cm3 to 120 cm3. What is the change in
its molar Gibbs energy?

5.7 The standard molar entropy of rhombic sulfur is 31.80 J
K−1 mol−1 and that of monoclinic sulfur is 32.6 J K−1 mol−1.
(a) Can an increase in temperature be expected to make 
monoclinic sulfur more stable than rhombic sulfur? (b) If so,
at what temperature will the transition occur at 1 bar? (See
Exercise 5.2 for data.)

5.8 The standard molar entropy of benzene is 173.3 J K−1

mol−1. Calculate the change in its standard molar Gibbs 
energy when benzene is heated from 25°C to 45°C.

5.9 The standard molar entropies of water ice, liquid, and
vapour are 37.99, 69.91, and 188.83 J K−1 mol−1, respectively.
On a single graph, show how the Gibbs energies of each of
these phases varies with temperature.

5.10 An open vessel containing (a) water, (b) benzene, 
(c) mercury stands in a laboratory measuring 5.0 m × 4.3 m ×
2.2 m at 25°C. What mass of each substance will be found 
in the air if there is no ventilation? (The vapour pressures are
(a) 2.3 kPa, (b) 10 kPa, (c) 0.30 Pa.)

5.11 (a) Use the Clapeyron equation to estimate the slope of
the solid–liquid phase boundary of water given the enthalpy
of fusion is 6.008 kJ mol−1 and the densities of ice and water
at 0°C are 0.916 71 and 0.999 84 g cm−3, respectively. Hint:
Express the entropy of fusion in terms of the enthalpy of 

fusion and the melting point of ice. (b) Estimate the pressure
required to lower the melting point of ice by 1°C.

5.12 Given the parametrization of the vapour pressure in 
eqn 5.7 and Table 5.1, what is (a) the enthalpy of vaporization,
(b) the normal boiling point of hexane?

5.13 Suppose we wished to express the vapour pressure in
eqn 5.7 in torr. What would be the values of A and B for
methylbenzene? See Table 5.1 for data.

5.14 The vapour pressure of mercury is at 20°C is 160 mPa;
what is its vapour pressure at 40°C given that its enthalpy of
vaporization is 59.30 kJ mol−1?

5.15 The vapour pressure of pyridine is 50.0 kPa at 365.7 K
and the normal boiling point is 388.4 K. What is the enthalpy
of vaporization of pyridine?

5.16 Estimate the boiling point of benzene given that its
vapour pressure is 20 kPa at 35°C and 50.0 kPa at 58.8°C.

5.17 A saturated solution of Na2SO4, with excess of the
solid, is present at equilibrium with its vapour in a closed 
vessel. (a) How many phases and components are present?
(b) What is the number of degrees of freedom of the system?
Identify the independent variables.

5.18 Suppose that the solution referred to in Exercise 5.17 is
not saturated. (a) How many phases and components are
present? (b) What is the number of degrees of freedom of
the system? Identify the independent variables.

5.19 On a cold, dry morning after a frost, the temperature
was −5°C and the partial pressure of water in the atmosphere
fell to 2 Torr. Will the frost sublime? What partial pressure of
water would ensure that the frost remained?

5.20 (a) Refer to Fig. 5.15 and describe the changes that
would be observed when water vapour at 1.0 bar and 400 K
is cooled at constant pressure to 260 K. (b) Suggest the 
appearance of a plot of temperature against time if energy 
is removed at a constant rate. To judge the relative slopes 
of the cooling curves, you need to know that the constant-
pressure molar heat capacities of water vapour, liquid, and
solid are approximately 4R, 9R, and 4.5R; the enthalpies of
transition are given in Table 3.1.

5.21 Refer to Fig. 5.15 and describe the changes that would
be observed when cooling takes place at the pressure of the
triple point.

5.22 Use the phase diagram in Fig. 5.18 to state what would
be observed when a sample of carbon dioxide, initially 
at 1.0 atm and 298 K is subjected to the following cycle: 
(a) constant-pressure heating to 320 K, (b) isothermal com-
pression to 100 atm, (c) constant-pressure cooling to 210 K,
(d) isothermal decompression to 1.0 atm, constant-pressure
heating to 298 K.

5.23 Infer from the phase diagram for helium in Fig. 5.19
whether helium-I is more dense or less dense than helium-II.
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Projects

The symbol ‡ indicates that calculus is required .

5.24‡ Suppose that a gas obeys the van der Waals equation
of state with the repulsive effects much greater than the 
attractive effects (that is, neglect the parameter a). (a) Find 
an expression for the change in molar Gibbs energy when the
pressure is changed from pi to pf. (b) Is the change greater or
smaller than for a perfect gas? (c) Estimate the percentage
difference between the van der Waals and perfect gas calcu-
lations for carbon dioxide undergoing a change from 1.0 atm
to 10.0 atm. (Hint: For the first part, use calculus as in
Derivation 5.2.)

5.25‡ Equation 5.6 has been derived on the assumption that
the enthalpy of vaporization is independent of temperature in
the range of interest. Derive an improved version of the equa-
tion on the basis that the enthalpy of vaporization has the
form DvapH = a + bT.

5.26‡ Here we explore supercritical behaviour in more detail.
(a) Show that a substance that is described by the equation of
state p = nRT /V − an2/V 2 + bn3/V 3 shows critical behaviour,
and express the critical constants in terms of the parameters
a and b. Hints: At the critical point, dp/dV = 0 and d2p/dV 2 = 0;
use dV n/dV = nV n−1. (b) The use of supercritical fluids for the
extraction of a component from a complicated mixture is not
restricted to the decaffeination of coffee. Consult library and
internet resources and prepare a discussion of the principles,
advantages, disadvantages, and current uses of supercritical
fluid extraction technology.
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We now leave pure materials and the limited but 
important changes they can undergo and examine
mixtures. We shall consider only homogeneous
mixtures, or solutions, in which the composition is 
uniform however small the sample. The component
in smaller abundance is called the solute and that 
in larger abundance is the solvent. These terms, 
however, are normally but not invariably reserved
for solids dissolved in liquids; one liquid mixed with
another is normally called simply a ‘mixture’ of the
two liquids. In this chapter we consider mainly non-
electrolyte solutions, where the solute is not present
as ions. Examples are sucrose dissolved in water, 
sulfur dissolved in carbon disulfide, and a mixture 
of ethanol and water. We delay until Chapter 9 the 
special problems of electrolyte solutions, in which
the solute consists of ions that interact strongly with
one another.

The thermodynamic 

description of mixtures

We need a set of concepts that enable us to apply
thermodynamics to mixtures of variable composi-
tion. We have already seen how to use the partial
pressure, the contribution of one component in a
gaseous mixture to the total pressure, to discuss the
properties of mixtures of gases. For a more general
description of the thermodynamics of mixtures we
have to introduce other ‘partial’ properties, each one
being the contribution that a particular component
makes to the mixture. Throughout this chapter we
draw on the various measures of concentration
(molar concentration, molality, and mole fraction)
introduced in the Introduction.
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6.1 Partial molar properties

A partial molar property is the contribution (per
mole) that a substance makes to an overall property
of a mixture. The easiest partial molar property to 
visualize is the partial molar volume, VJ, of a sub-
stance J, the contribution J makes to the total volume
of a mixture. Partial molar quantities are also 
commonly denoted by a bar over the symbol, as in
XJ. We have to be alert to the fact that although 
1 mol of a substance has a characteristic volume
when it is pure, 1 mol of that substance can make dif-
ferent contributions to the total volume of a mixture
because molecules pack together in different ways in
the pure substances and in mixtures.

A brief illustration Imagine a huge volume of pure
water. When a further 1 mol H2O is added, the volume 
increases by 18 cm3. However, when we add 1 mol H2O
to a huge volume of pure ethanol, the volume increases
by only 14 cm3. The quantity 18 cm3 mol−1 is the volume
occupied per mole of water molecules in pure water; 
14 cm3 mol−1 is the volume occupied per mole of water
molecules in virtually pure ethanol. In other words, the
partial molar volume of water in pure water is 18 cm3 mol−1

and the partial molar volume of water in pure ethanol is 
14 cm3 mol−1. In the latter case there is so much ethanol
present that each H2O molecule is surrounded by ethanol
molecules and the packing of the molecules results in the
water molecules occupying only 14 cm3.

The partial molar volume at an intermediate
composition of the water/ethanol mixture is 
an indication of the volume the H2O molecules
occupy when they are surrounded by a mixture

of molecules representative of the overall composition
(half water, half ethanol, for instance, when the mole frac-
tions are both 0.5). The partial molar volume of ethanol
varies as the composition of the mixture is changed, 
because the environment of an ethanol molecule changes
from pure ethanol to pure water as the proportion of
water increases and the volume occupied by the ethanol
molecules varies accordingly. Figure 6.1 shows the vari-
ation of the two partial molar volumes across the full
composition range at 25°C.

Once we know the partial molar volumes VA and
VB of the two components A and B of a mixture at
the composition (and temperature) of interest, then
we show in Derivation 6.1 that we can state the total
volume V of the mixture by using

V = nAVA + nBVB (6.1)
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Fig. 6.1 The partial molar volumes of water and ethanol at
25°C. Note the different scales (water on the left, ethanol on
the right).

Derivation 6.1

Total volume and partial molar volume

Consider a very large sample of the mixture of the 
specified composition. Then, when an amount nA of A is
added, the composition remains virtually unchanged but
the volume of the sample increases by nAVA. Similarly,
when an amount nB of B is added, the volume increases
by nBVB. The total increase in volume is nAVA + nBVB. The
mixture now occupies a larger volume but the propor-
tions of the components are still the same. Next, scoop
out of this enlarged volume a sample containing nA of A
and nB of B. Its volume is nAVA + nBVB. Because volume
is a state function, the same sample could have been
prepared simply by mixing the appropriate amounts of 
A and B.

Example 6.2

Using partial molar volumes

What is the total volume of a mixture of 50.0 g of ethanol
and 50.0 g of water at 25°C?

Strategy To use eqn 6.1, we need the mole fractions 
of each substance and the corresponding partial molar
volumes. We calculate the mole fractions in the same
way as in Self-test 1.3, by using the molar masses of 
the components to calculate the amounts by using 
nJ = mJ /MJ. We can then find the partial molar volumes
corresponding to these mole fractions by referring to
Fig. 6.1.

Solution The molar masses of CH3CH2OH and H2O are
46.07 g mol−1 and 18.02 g mol−1, respectively. Therefore
the amounts present in the mixture are
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Now we extend the concept of a partial molar
quantity to other state functions. The most important
for our purposes is the partial molar Gibbs energy,
GJ, of a substance J, which is the contribution of J
(per mole of J) to the total Gibbs energy of a mixture.
It follows in the same way as for volume, that if we
know the partial molar Gibbs energies of two sub-
stances A and B in a mixture of a given composition,
then we can calculate the total Gibbs energy of the
mixture by using an expression like eqn 6.1:

G = nAGA + nBGB (6.2a)

The partial molar Gibbs energy has exactly the 
same significance as the partial molar volume. For 
instance, ethanol has a particular partial molar
Gibbs energy when it is pure (and every molecule is
surrounded by other ethanol molecules), and it has 
a different partial molar Gibbs energy when it is in an
aqueous solution of a certain composition (because
then each ethanol molecule is surrounded by a mix-
ture of ethanol and water molecules).

The partial molar Gibbs energy is so important in
chemistry that it is given a special name and symbol.
From now on, we shall call it the chemical potential
and denote it μ (mu). Then, eqn 6.2a becomes

G = nAμA + nBμB (6.2b)

where μA is the chemical potential of A in the mixture
and μB is the chemical potential of B. In the course of
this chapter and the next we shall see that the name
‘chemical potential’ is very appropriate, for it will 
become clear that μJ is a measure of the ability of J 
to bring about physical and chemical change. A 
substance with a high chemical potential has a high
ability, in a sense we shall explore, to drive a reaction
or some other physical process forward.

A brief comment Formally, the chemical potential is the
slope of a graph of the total Gibbs energy plotted against 
the amount of substance J present in the mixture, with the
temperature, pressure, and amounts of other components
held constant. Using proper mathematical notation of the
type introduced in Section 2.7, the chemical potential is then
written mJ = (∂G /∂nJ)T,p,nB

.

To make progress, we need an explicit formula for
the variation of the chemical potential of a substance
with the composition of the mixture. Our starting
point is eqn 5.3b, which shows how the molar Gibbs
energy of a perfect gas depends on pressure:

First, we set pf = p, the pressure of interest, and 
pi = p , the standard pressure (1 bar). At the latter
pressure, the molar Gibbs energy has its standard
value, Gm, so we can write

(6.3)

Next, for a mixture of perfect gases, we interpret p
as the partial pressure of the gas, and the Gm is the
partial molar Gibbs energy, the chemical potential.
Therefore, for a mixture of perfect gases, for each
component J present at a partial pressure pJ,

(6.4a)

In this expression, μ J is the standard chemical 
potential of the gas J, which is identical to its standard
molar Gibbs energy, the value of Gm for the pure gas
at 1 bar. If we adopt the convention that, whenever
pJ appears in a formula it is to be interpreted as pJ /p
(so, if the pressure is 2.0 bar, pJ = 2.0), we can write
eqn 6.4a more simply as

μJ = μ J + RT ln pJ (6.4b)

GJ,m(pJ)
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a

aμ μJ J
J= + RT
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for a total of 3.86 mol. Hence xethanol = 0.282 and xwater =
0.718. According to Fig. 6.1, the partial molar volumes of
the two substances in a mixture of this composition are
56 cm3 mol−1 and 18 cm3 mol−1, respectively, so from
eqn 6.1 the total volume of the mixture is

Contribution of ethanol

Contribution of water

V = (1.09 mol) × (56 cm3 mol−1)
+ (2.77 mol) × (18 cm3 mol−1)

= 1.09 × 56 + 2.77 × 18 cm3 = 110 cm3

 
nwater

g
18.02 g mol

mol= =−
50 0

2 771

.
.

nethanol
g

46.07 g mol
mol= =−

50 0
1 091

.
.

Self-test 6.3

Use Fig. 6.1 to calculate the mass density of a mix-
ture of 20 g of water and 100 g of ethanol.

[Answer : 0.84 g cm−3]
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Figure 6.2 illustrates the pressure dependence of the
chemical potential of a perfect gas predicted by this
equation. The chemical potential becomes negatively
infinite as the pressure tends to zero. As the pressure
is increased from zero, the chemical potential rises 
to its standard value at 1 bar (because ln 1 = 0), and
then increases slowly (logarithmically, as ln p) as the
pressure is increased further.

As always, we can become familiar with an equa-
tion by listening to what it tells us. In this case:

• As pJ increases, so does ln pJ. Therefore, eqn 6.4
tells us that the higher the partial pressure of a
gas, the higher its chemical potential.

This conclusion is consistent with the interpretation
of the chemical potential as an indication of the 
potential of a substance to be active chemically: the
higher the partial pressure, the more active chemic-
ally the species. In this instance the chemical poten-
tial represents the tendency of the substance to react
when it is in its standard state (the significance of 
the term μ ) plus an additional tendency that reflects
whether it is at a different pressure. For a given
amount of substance, a higher partial pressure gives
that substance more chemical ‘punch’, just like wind-
ing a spring gives a spring more physical punch (that
is, enables it to do more work).

We saw in Section 5.1 that the molar Gibbs energy
of a pure substance is the same in all the phases at
equilibrium. We use the same argument in Deriva-
tion 6.2 to show that a system is at equilibrium when
the chemical potential of each substance has the
same value in every phase in which it occurs. We can
think of the chemical potential as the pushing power
of each substance, and equilibrium is reached only
when each substance pushes with the same strength
in any phase it occupies.
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Fig. 6.2 The variation with partial pressure of the
chemical potential of a perfect gas at three different

temperatures (in the ratios 0.5:1:2). Note that the chemical
potential increases with pressure and, at a given pressure,
with temperature.

Self-test 6.4

Suppose that the partial pressure of a perfect gas falls
from 100 kPa to 50 kPa as it is consumed in a reaction at
25°C. What is the change in chemical potential of the
substance?

[Answer: −1.7 kJ mol−1]

Derivation 6.2

The uniformity of chemical potential

Suppose a substance J occurs in different phases in 
different regions of a system. For instance, we might
have a liquid mixture of ethanol and water and a mixture
of their vapours. Let the substance J have chemical 
potential mJ(l) in the liquid mixture and mJ(g) in the vapour.
We could imagine an infinitesimal amount, dnJ, of J 
migrating from the liquid to the vapour. As a result, the
Gibbs energy of the liquid phase falls by mJ(l)dnJ and that
of the vapour rises by mJ(g)dnJ. The net change in Gibbs
energy is

dG = mJ(g)dnJ − mJ(l)dnJ = { mJ(g) − mJ(l)}dnJ

There is no tendency for this migration (and the reverse
process, migration from the vapour to the liquid) to occur
if dG = 0. The argument applies to each component of
the system. Therefore, for a substance to be at equilib-
rium throughout the system, its chemical potential must
be the same everywhere.

6.2 Spontaneous mixing

All gases mix spontaneously with one another 
because the molecules of one gas can mingle with the
molecules of the other gas. But how can we show
thermodynamically that mixing is spontaneous? At
constant temperature and pressure, we need to show
that ΔG < 0. The first step is therefore to find an 
expression for ΔG when two gases mix, and then to
decide whether it is negative. As we see in Deriva-
tion 6.3, when an amount nA of A and nB of B of two
gases mingle at a temperature T,

ΔG = nRT{xA ln xA + xB ln xB} (6.5)

with n = nA + nB and the xJ the mole fractions of the
components J in the mixture.
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Equation 6.5 tells us the change in Gibbs energy
when two gases mix at constant temperature and
pressure (Fig. 6.4). The crucial feature is that because
xA and xB are both less than 1, the two logarithms are
negative (ln x < 0 if x < 1), so ΔG < 0 at all composi-
tions. Therefore, perfect gases mix spontaneously in
all proportions. Furthermore, if we compare eqn 6.5
with ΔG = ΔH − TΔS,

we can conclude that:

ΔH = 0 (6.6a)

ΔS = −nR{xA ln xA + xB ln xB} (6.6b)

That is, there is no change in enthalpy when two
perfect gases mix, which reflects the fact that
there are no interactions between the mole-
cules. There is an increase in entropy, because

the mixed gas is more disordered than the unmixed
gases (Fig. 6.5). The entropy of the surroundings is 
unchanged because the enthalpy of the system is con-
stant, so no energy escapes as heat into the surround-
ings. It follows that the increase in entropy of the system
is the ‘driving force’ of the mixing.

6.3 Ideal solutions

In chemistry we are concerned with liquids as well as
gases, so we need an expression for the chemical poten-
tial of a substance in a liquid solution. We can anticip-
ate that the chemical potential of a species ought to
increase with concentration, because the higher its

ΔG = ΔH − TΔS

ΔG = nRT{xA ln xA + xB ln xB}

Derivation 6.3

The Gibbs energy of mixing

Suppose we have an amount nA of a perfect gas A at a
certain temperature T and pressure p, and an amount nB of
a perfect gas B at the same temperature and pressure.
The two gases are in separate compartments initially
(Fig. 6.3). The Gibbs energy of the system (the two un-
mixed gases) is the sum of their individual Gibbs energies:

The chemical potentials are those for the two gases,
each at a pressure p. When the partition is removed, 
the total pressure remains the same, but according to
Dalton’s law (Section 1.3), the partial pressures fall to pA

= xAp and pB = xBp, where the xJ are the mole fractions
of the two gases in the mixture (xJ = nJ /n, with n = nA +
nB). The final Gibbs energy of the system is therefore

Gf = nA{ mA
- + RT ln pA} + nB{mB

- + RT ln pB}

= nA{ mA
- + RT ln xAp} + nB{mB

- + RT ln xBp}

The difference Gf − Gi is the change in Gibbs energy that 
accompanies mixing. The standard chemical potentials
cancel, and by making use of the relation

for each gas, we obtain

which is eqn 6.5.

nA = nxA nB = nxB

DG = RT {nA ln xA + nB ln xB} = nRT {xA ln xA + xB ln xB}

Use In a − In b = In(a/b)

x p
ln   ln   ln   ln x p p

p
xJ

J
J− = =

Gi = nAmA + nBmB

= nA{m A
a + RT ln p} + nB{m B

a + RT ln p }

eqn 6.2b eqn 6.4b

eqn 6.4b

nA, p, T
nA + nB, p, T

nB, p, T

(a) (b)

Fig. 6.3 The (a) initial and (b) final states of a system in
which two perfect gases mix. The molecules do not 
interact, so the enthalpy of mixing is zero. However, 
because the final state is more disordered than the initial
state, there is an increase in entropy.
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Fig. 6.4 The variation of the Gibbs energy of mixing with
composition for two perfect gases at constant temperature
and pressure. Note that DG < 0 for all compositions, which 
indicates that two gases mix spontaneously in all proportions.
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The molecular origin of Raoult’s law is the effect
of the solute on the entropy of the solution. In
the pure solvent, the molecules have a certain
disorder and a corresponding entropy; the vap-

our pressure then represents the tendency of the system
and its surroundings to reach a higher entropy. When a
solute is present, the solution has a greater disorder than
the pure solvent because we cannot be sure that a mole-
cule chosen at random will be a solvent molecule (Fig. 6.7).
Because the entropy of the solution is higher than that of
the pure solvent, the solution has a lower tendency to 
acquire an even higher entropy by the solvent vaporizing.
In other words, the vapour pressure of the solvent in the
solution is lower than that of the pure solvent.

An ideal solution is a hypothetical solution of a 
solute B in a solvent A that obeys Raoult’s law
throughout the composition range from pure A to
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Fig. 6.5 The variation of the entropy of mixing with com-
position for two perfect gases at constant temperature and
pressure.
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Fig. 6.6 The partial vapour pressures of the two components
of an ideal binary mixture are proportional to the mole frac-
tions of the components in the liquid. The total pressure of
the vapour is the sum of the two partial vapour pressures.

Fig. 6.7 (a) In a pure liquid, we can be confident that any
molecule selected from the sample is a solvent molecule. 
(b) When a solute is present, we cannot be sure that blind 
selection will give a solvent molecule, so the entropy of the
system is greater than in the absence of the solute.

Self-test 6.5

A solution is prepared by dissolving 1.5 mol C10H8

(naphthalene) in 1.00 kg of benzene. The vapour pres-
sure of pure benzene is 12.6 kPa at 25°C. What is the
partial vapour pressure of benzene in the solution?

[Answer: 11.3 kPa]

concentration the greater its chemical ‘punch’. In the
following, we use the following notation:

J denotes a substance in general
A denotes a solvent
B denotes a solute

The key to setting up an expression for the 
chemical potential of a solute is the work done by 
the French chemist François Raoult (1830–1901),
who spent most of his life measuring the vapour pres-
sures of solutions. He measured the partial vapour
pressure, pJ, of each component in the mixture, the
partial pressure of the vapour of each component in
dynamic equilibrium with the liquid mixture, and 
established what is now called Raoult’s law:

The partial vapour pressure of a substance in a 
liquid mixture is proportional to its mole fraction
in the mixture and its vapour pressure when pure:

pJ = xJ pJ* (6.7)

In this expression, p J* is the vapour pressure of the pure
substance. For example, when the mole fraction of
water in an aqueous solution is 0.90, then, provided
Raoult’s law is obeyed, the partial vapour pressure of
the water in the solution is 90 per cent that of pure
water. This conclusion is approximately true whatever
the identity of the solute and the solvent (Fig. 6.6).
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pure B. The law is most reliable when the com-
ponents of a mixture have similar molecular shapes
and are held together in the liquid by similar types
and strengths of intermolecular forces. An example is
a mixture of two structurally similar hydrocarbons.
A mixture of benzene and methylbenzene (toluene) is
a good approximation to an ideal solution, for the
partial vapour pressure of each component satisfies
Raoult’s law reasonably well throughout the com-
position range from pure benzene to pure methyl-
benzene (Fig. 6.8).

No mixture is perfectly ideal and all real mixtures
show deviations from Raoult’s law. However, the
deviations are small for the component of the mix-
ture that is in large excess (the solvent) and become
smaller as the concentration of solute decreases 
(Fig. 6.9). We can usually be confident that Raoult’s
law is reliable for the solvent when the solution is
very dilute. More formally, Raoult’s law is a limiting
law (like the perfect gas law), and is strictly valid
only in the limit of zero concentration of solute.

The theoretical importance of Raoult’s law is that,
because it relates vapour pressure to composition,
and we know how to relate pressure to chemical 
potential, we can use the law to relate chemical 
potential to the composition of a solution. As we show
in Derivation 6.4, the chemical potential of a solvent
A present in solution at a mole fraction xA is

μA = μA* + RT ln xA (6.8)

where μA* is the chemical potential of pure A. This 
expression is valid throughout the concentration
range for either component of a binary ideal solution.

It is valid for the solvent of a real solution the closer
the composition approaches pure solvent (pure A).

A note on good practice An asterisk (*) is used to denote
a pure substance, but not one that is necessarily in its 
standard state. Only if the pressure is 1 bar would mA* be 
the standard chemical potential of A, and it would then be
written m A

-.

Figure 6.10 shows the variation of chemical poten-
tial of the solvent predicted by eqn 6.8. The essential
feature is as follows:
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Fig. 6.8 Two similar substances, in this case benzene and
methylbenzene (toluene) behave almost ideally and have
vapour pressures that closely resemble those for the ideal
case depicted in Fig. 6.6.
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Fig. 6.9 Strong deviations from ideality are shown by dissim-
ilar substances, in this case carbon disulfide and acetone
(propanone). Note, however, that Raoult’s law is obeyed by
propanone when only a small amount of carbon disulfide is
present (on the left) and by carbon disulfide when only a
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Fig. 6.10 The variation of the chemical potential of the
solvent with the composition of the solution. Note that

the chemical potential of the solvent is lower in the mixture
than for the pure liquid (for an ideal system). This behaviour is
likely to be shown by a dilute solution in which the solvent is
almost pure (and obeys Raoult’s law).
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• Because xA < 1 implies that ln xA < 0, the chemical
potential of a solvent is lower in a solution than
when it is pure (when xA = 1).

Provided the solution is almost ideal, a solvent in
which a solute is present has less chemical ‘punch’
(including a lower ability to generate a vapour pres-
sure) than when it is pure.

Is mixing to form an ideal solution spontaneous?
To answer this question, we need to discover
whether ΔG is negative for mixing. The calculation is
essentially the same as for the mixing of two perfect
gases, and we conclude that

ΔG = nRT {xA ln xA + xB ln xB} (6.9)

exactly as for two gases. As for perfect gases, the 
enthalpy and entropy of mixing are

ΔH = 0 ΔS = −nR{xA ln xA + xB ln xB} (6.10)

The value of ΔH indicates that although (unlike 
for perfect gases) there are interactions between the
molecules, the average solute–solute, solvent–solvent,
and solute–solvent interactions are all the same, so
the solute slips into solution without a change in 
enthalpy. The driving force for mixing is the increase
in entropy of the system as one component mingles
with the other (as in Fig. 6.5).

Derivation 6.4

The chemical potential of a solvent

We have seen that when a liquid A in a mixture is 
in equilibrium with its vapour at a partial pressure pA, 
the chemical potentials of the two phases are equal 
(Fig. 6.11), and we can write mA(l) = mA(g). However, we
already have an expression for the chemical potential of
a vapour, eqn 6.4b; so at equilibrium

mA(l) = m A
-(g) + RT ln pA

According to Raoult’s law, pA = xA pA*, so we can write

The first two terms on the right, m A
-(g) and RT ln pA*, are

independent of the composition of the mixture. We can
write them as the constant m A*, the chemical potential of
pure liquid A. Then eqn 6.8 follows.

pA = xApA*

Use In ab = In a + In b

mA(l) = m A
a(g) + RT ln xApA*

= m A
a(g) + RT ln pA* + RT ln xA

J vapour

J liquid

J(g)

J(l)

Equal

μ

μ

Fig. 6.11 At equilibrium, the chemical potential of a 
substance in its liquid phase is equal to the chemical 
potential of the substance in its vapour phase.

Self-test 6.6

What is the change in chemical potential of benzene at
25°C caused by a solute that is present at a mole fraction
of 0.10?

[Answer: −0.26 kJ mol−1]

Self-test 6.7

Derive eqn 6.9 by following Derivation 6.3: the initial Gibbs
energy of the unmixed components is Gi = nA mA* + nBmB*;
after mixing, use the chemical potentials in eqn 6.8.

A note on good practice ‘Ideality’ implies that the aver-
age interactions are all the same. A ‘perfect’ gas is a special
case of an ideal system in which the average intermolecular
interactions are not merely the same but are in fact zero.
Most scientists do not make this helpful distinction, and refer
to an ‘ideal gas’ rather than a ‘perfect gas’.

6.4 Ideal–dilute solutions

Raoult’s law provides a good description of the
vapour pressure of the solvent in a very dilute solu-
tion, when the solvent A is almost pure. However, we
cannot in general expect it to be a good description
of the vapour pressure of the solute B because a solute
in dilute solution is very far from being pure. In a 
dilute solution, each solute molecule is surrounded
by nearly pure solvent, so its environment is quite 
unlike that in the pure solute and except when solute
and solvent are very similar (such as benzene and
methylbenzene) it is very unlikely that its vapour
pressure will be related in a simple manner to that of
the pure solute. However, it is found experimentally
that in dilute solutions the vapour pressure of the 
solute is in fact proportional to its mole fraction, just
as for the solvent. Unlike the solvent, though, the
constant of proportionality is not in general the
vapour pressure of the pure solute. This linear but
different dependence was discovered by the English



THE THERMODYNAMIC DESCRIPTION OF MIXTURES 131

0 1
Mole fraction of B, xB

Va
p

o
u

r 
p

re
ss

u
re

,p

Ideal d
ilu

te so
lutio

n (H
enry’s l

aw)

Ideal solution (Raoult’s law)

KB

pB*

Fig. 6.12 When a component is almost pure (near xB = 1,
where B acts as a solvent), it behaves in accord with Raoult’s
law and has a vapour pressure that is proportional to the mole
fraction in the liquid mixture, and a slope p*, the vapour 
pressure of the pure substance. When the same substance
is the minor component (the solute), its vapour pressure is
still proportional to its mole fraction, but the constant of pro-
portionality is now K.

Example 6.3

Verifying Raoult’s and Henry’s laws

The partial vapour pressures of each component in a
mixture of propanone (acetone, A) and trichloromethane
(chloroform, C) were measured at 35°C with the follow-
ing results:

xC 0 0.20 0.40 0.60 0.80 1
pC / Torr 0 35 82 142 219 293
pA / Torr 347 270 185 102 37 0

Confirm that the mixture conforms to Raoult’s law for
the component in large excess and to Henry’s law for
the minor component. Find the Henry’s law constants.

Strategy The original procedure was to plot the partial
vapour pressures against mole fraction. Raoult’s law is
verified by comparing the data to the straight line pJ =

xJpJ* for each component in the region in which it is in 
excess and therefore acting as the solvent. Henry’s law
is verified by finding a straight line pJ = xJKH that is tan-
gent to each partial vapour pressure at low xJ where the
component can be treated as the solute. The modern 
approach is to fit the data to a polynomial using mathemat-
ical software and then to use the software to determine
the slope and intercept.

Solution The data are plotted in Fig. 6.13. The points fit
the following fourth-order polynomials (we have used
mathematical software to find the coefficients and
rounded the coefficients):

pC / Torr = 179xC − 86xC
2 + 474xC

3 − 273x C
4

pA/ Torr = 347 − 340xC − 271x C
2 + 264x C

3

(For pA, the coefficient of x C
4 is virtually zero.) The slope of

the pC line at xC = 0 is (once again, using mathematical soft-
ware, but you can differentiate the polynomials and then
set xC = 0 to verify the result) 179 and the slope of the pA

line at xC = 1 (corresponding to xA = 0) is −90. Straight lines
with these slopes are shown in the illustration and cor-
respond to Henry’s law. They imply that KH = 179 Torr for
chloroform and K H = 90 Torr for acetone. Notice how the
data deviate from both Raoult’s and Henry’s laws for even
quite small departures from x = 1 and x = 0, respectively.

chemist William Henry (1775–1836), and is sum-
marized as Henry’s law:

The vapour pressure of a volatile solute B 
is proportional to its mole fraction in 
a solution: pB = xBKH (6.11)

Here KH, which is called Henry’s law constant, is
characteristic of the solute and chosen so that the
straight line predicted by eqn 6.11 is tangent to the
experimental curve at xB = 0 (Fig. 6.12).

Henry’s law is usually obeyed only at low concen-
trations of the solute (close to xB = 0). Solutions that
are dilute enough for the solute to obey Henry’s law
are called ideal–dilute solutions.
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Fig. 6.13 The experimental partial vapour pressures of a
mixture of trichloromethane, CHCl3 (C), and propanone,
CH3COCH3 (acetone, A), based on the data in Example
6.3. Henry’s and Raoult’s law behaviour are denoted H
and R, respectively.

Self-test 6.8

The vapour pressure of chloromethane at various
mole fractions in a mixture at 25°C was found to be
as follows:

x 0.005 0.009 0.019 0.024
p / Torr 205 363 756 946

Estimate the Henry’s law constant.
[Answer: 4 × 104 Torr]
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Table 6.1 lists the Henry’s law constants of some
gases. The values given there are for the law written
in terms of the molar concentration

pJ = KH[ J] (6.12)

Henry’s constant, KH, is commonly reported in kilo-
pascal metre-cubed per mole (kPa m3 mol−1). This
form of the law and these units make it very easy to
calculate the molar concentration of the dissolved
gas, simply by multiplying the partial pressure of the
gas (in kilopascals) by the appropriate constant.
Equation 6.12 is used, for instance, to estimate the
concentration of O2 in natural waters or the concen-
tration of carbon dioxide in blood plasma. A know-
ledge of Henry’s law constants for gases in fats and
lipids is important for the discussion of respiration,
especially when the partial pressure of oxygen is 
abnormal, as in diving and mountaineering (Box 6.1).

A brief illustration The concentration of O2 in water
required to support aerobic aquatic life is about 4 mg dm−3.
To calculate the minimum partial pressure of oxygen in
the atmosphere that can achieve this concentration we
use eqn 6.12 to write
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Table 6.1

Henry’s law constants for gases dissolved 
in water at 25°C

KH /(kPa m3 mol−1)

Ammonia, NH3 5.69
Carbon dioxide, CO2 2.937
Helium, He 282.7
Hydrogen, H2 128
Methane, CH4 75.5
Nitrogen, N2 156
Oxygen, O2 79.2

Box 6.1 Gas solubility and breathing

We inhale about 500 cm3 of air with each breath we take.
The influx of air is a result of changes in volume of the lungs
as the diaphragm is depressed and the chest expands,
which results in a decrease in pressure of about 100 Pa 
relative to atmospheric pressure. Expiration occurs as the
diaphragm rises and the chest contracts, and gives rise to a
differential pressure of about 100 Pa above atmospheric
pressure. The total volume of air in the lungs is about 6 dm3,
and the additional volume of air that can be exhaled 
forcefully after normal expiration is about 1.5 dm3. Some air
remains in the lungs at all times to prevent the collapse of
the alveoli.

The effect of gas exchange between blood and the air 
inside the alveoli of the lungs means that the composition of
the air in the lungs changes throughout the breathing cycle.
Alveolar gas is in fact a mixture of newly inhaled air and air
about to be exhaled. The concentration of oxygen present
in arterial blood is equivalent to a partial pressure of about 
5 kPa, whereas the partial pressure of freshly inhaled air is
about 14 kPa. Arterial blood remains in the capillary passing
through the wall of an alveolus for about 0.75 s, but such is
the steepness of the pressure gradient that it becomes fully
saturated with oxygen in about 0.25 s. If the lungs collect
fluids (as in pneumonia), the respiratory membrane thickens,
diffusion is greatly slowed, and body tissues begin to suf-
fer from oxygen starvation. Carbon dioxide moves in the 
opposite direction across the respiratory tissue, but the 
partial pressure gradient is much less, corresponding to

about 700 Pa in blood and 5 kPa in air at equilibrium. How-
ever, because carbon dioxide is much more soluble in the 
alveolar fluid than oxygen is, equal amounts of oxygen and
carbon dioxide are exchanged in each breath.

A hyperbaric oxygen chamber, in which oxygen is at an
elevated partial pressure, is used to treat certain types of
disease. Carbon monoxide poisoning can be treated in this
way as can the consequences of shock. Diseases that are
caused by anaerobic bacteria, such as gas gangrene and
tetanus, can also be treated because the bacteria cannot
thrive in high oxygen concentrations.

In scuba diving (where scuba is an acronym formed from
‘self-contained underwater breathing apparatus’), air is sup-
plied at a higher pressure, so that the pressure within the 
diver’s chest matches the pressure exerted by the sur-
rounding water. The latter increases by about 1 atm for
each 10 m of descent. One unfortunate consequence of
breathing air at high pressures is that nitrogen is much
more soluble in fatty tissues than in water, so it tends to
dissolve in the central nervous system, bone marrow, and
fat reserves. The result is nitrogen narcosis, with symp-
toms like intoxication. If the diver rises too rapidly to the
surface, the nitrogen comes out of its lipid solution as 
bubbles, which causes the painful and sometimes fatal
condition known as the bends. Many cases of scuba
drowning appear to be consequences of arterial embolisms
(obstructions in arteries caused by gas bubbles) and loss of
consciousness as the air bubbles rise into the head.



THE THERMODYNAMIC DESCRIPTION OF MIXTURES 133

From Table 6.1, KH for oxygen in water is 74.68 kPa m3

mol−1; therefore the partial pressure needed to achieve
the stated concentration is

(We have used 1 dm3 = 10−3 m3.) The partial pressure of
oxygen in air at sea level is 21 kPa, which is greater than 
9 kPa, so the required concentration can be maintained
under normal conditions.

A note on good practice The number of significant figures
in the result of a calculation should not exceed the number in
the data (only 1 in this case).
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This equation is the best way to write the relation;
however, it is cumbersome, and for the rest of the
chapter we shall write [B]/c simply as [B] and—to
conform to the requirement state in the note on good
practice—interpret [B] as the molar concentration
with the units deleted (we treated pressure similarly
earlier in the chapter). Thus, if in fact [B] = 0.1 mol
dm−3, so [B]/c = 0.1, from now on we shall write 
[B] = 0.1 and use eqn 6.14a in the form

μB = μB + RT ln [B] (6.14b)

Figure 6.15 illustrates the variation of chemical poten-
tial with concentration predicted by this equation.

Self-test 6.9

What partial pressure is needed to dissolve 21 g of car-
bon dioxide in 100 g of water at 25°C?

[Answer: 14 kPa]

Henry’s law lets us write an expression for the
chemical potential of a solute in a solution. By exactly
the same reasoning as in Derivation 6.4, but with the
empirical constant KB used in place of the vapour pres-
sure of the pure solute, pB*, the chemical potential of
the solute when it is present at a mole fraction xB is

μB = μB* + RT ln xB (6.13)

This expression, which is illustrated in Fig. 6.14, 
applies when Henry’s law is valid, in very dilute solu-
tions. The chemical potential of the solute has its ‘pure’
value when it is present alone (xB = 1, ln 1 = 0) and a
smaller value when dissolved (when xB < 1, ln xB < 0).

We often need to express the composition of a 
solution in terms of the molar concentration of the
solute, [B], rather than as a mole fraction. The mole
fraction and the molar concentration are propor-
tional to each other in dilute solutions, so we write 
xB = constant × [B]/c , where c = 1 mol dm−3 is intro-
duced to ensure that the constant is dimensionless.
We shall call c the standard molar concentration.
Then eqn 6.13 becomes

μB = μB* + RT ln(constant) + RT ln ([B]/c )

A note on good practice It is meaningless to take loga-
rithms of quantities with units, so always ensure that the x of
ln x is a pure number.

We can combine the first two terms into a single con-
stant, which we denote μB , and write this relation as

μB = μB + RT ln ([B]/c ) (6.14a)
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Fig. 6.14 The variation of the chemical potential of the solute
with the composition of the solution expressed in terms of
the mole fraction of solute. Note that the chemical potential
of the solute is lower in the mixture than for the pure solute
(for an ideal system). This behaviour is likely to be shown by
a dilute solution in which the solvent is almost pure and the
solute obeys Henry’s law.
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Fig. 6.15 The variation of the chemical potential of the solute
with the composition of the solution that obeys Henry’s law
expressed in terms of the molar concentration of solute. The
chemical potential has its standard value at [B] = 1 mol dm−3.
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The chemical potential of the solute has its standard
value when the molar concentration of the solute is 
1 mol dm−3 (that is, c ).

6.5 Real solutions: activities

No actual solutions are ideal, and many solutions 
deviate from ideal-dilute behaviour as soon as the con-
centration of solute rises above a small value. In ther-
modynamics we try to preserve the form of equations
developed for ideal systems so that it becomes easy to
step between the two types of system. This is the
thought behind the introduction of the activity, aJ, of
a substance, which is a kind of effective concentra-
tion. The activity is defined so that the expression

μ J = μ J + RT ln aJ (6.15)

is true at all concentrations and for both the solvent
and the solute.

For ideal solutions, aJ = xJ, and the activity of each
component is equal to its mole fraction. For ideal-
dilute solutions using the definition in eqn 6.19, aB =
[B]/c , and the activity of the solute is equal to the
numerical value of its molar concentration. For non-
ideal solutions we write

For the solvent: aA = γAxA

For the solute: aB = γB[B]/c (6.16)

where the γ (gamma) in each case is the activity
coeGcient. Both activities and activity coeAcients
are dimensionless. Activity coeAcients depend on
the composition of the solution and we should note
the following:

Because the solvent behaves more in accord with
Raoult’s law as it becomes pure, γA → 1 as xA → 1.

Because the solute behaves more in accord with
Henry’s law as the solution becomes very dilute, 
γB → 1 as [B] → 0.

These conventions and relations are summarized in
Table 6.2.

Activities and activity coeAcients are often
branded as ‘fudge factors’. To some extent that is
true. However, their introduction does allow us to
derive thermodynamically exact expressions for the
properties of nonideal solutions. Moreover, in a
number of cases it is possible to calculate or measure
the activity coeAcient of a species in solution. In this
text we shall normally derive thermodynamic rela-
tions in terms of activities, but when we want to
make contact with actual measurements, we shall set
the activities equal to the ‘ideal’ values in Table 6.2.

Colligative properties

An ideal solute has no effect on the enthalpy of a solu-
tion in the sense that the enthalpy of mixing is zero.
However, it does affect the entropy by introducing a
degree of disorder that is not present in the pure solv-
ent, and we found in eqn 6.6b that ΔS > 0 when two
components mix to give an ideal solution. We can
therefore expect a solute to modify the physical prop-
erties of the solution. Apart from lowering the vapour
pressure of the solvent, which we have already con-
sidered, a nonvolatile solute has three main effects:

• It raises the boiling point of a solution.

• It lowers the freezing point.

• It gives rise to an osmotic pressure.

(The meaning of the last will be explained shortly.)
Because these properties all stem from changes in the
disorder of the solvent, and the increase in disorder is
independent of the identity of the species we use to
bring it about, for a given solvent all of them depend
only on the number of solute particles present, not
their chemical identity. For this reason they are
called colligative properties, with ‘colligative’ denot-
ing ‘depending on the collection’. Thus, a 0.01 mol
kg−1 aqueous solution of any nonelectrolyte should
have the same boiling point, freezing point, and 
osmotic pressure.

6.6 The modification of boiling and
freezing points

As indicated above, the effect of a solute is to raise
the boiling point of a solvent and to lower its freezing
point. It is found empirically, and is justified by the
calculation in Derivation 6.5, that the elevation of

Table 6.2

Activities and standard states*

Substance Standard state Activity, a

Solid Pure solid, 1 bar 1
Liquid Pure liquid, 1 bar 1
Gas Pure gas, 1 bar p /p-

Solute Molar concentration [J] /c-

of 1 mol dm−3

p- = 1 bar (= 105 Pa), c- = 1 mol dm−3.
* Activities are for perfect gases and ideal-dilute solutions; all
activities are dimensionless.
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boiling point, ΔTb and the depression of freezing
point, ΔTf, are both proportional to the molality, bB,
of the solute:

ΔTb = KbbB ΔTf = Kf bB (6.17)

Kb is the ebullioscopic constant and Kf is the cryo-
scopic constant of the solvent. They are also called
the ‘boiling-point constant’ and the ‘freezing-point
constant’, respectively. The two constants can be 
estimated from other properties of the solvent, 
but both are best treated as empirical constants
(Table 6.3).

molar Gibbs energy of the liquid intersects the graphs
of the molar Gibbs energy of the solid and vapour
phases, respectively. Because we are now dealing
with mixtures, we have to think about the partial
molar Gibbs energy (the chemical potential) of the
solvent. The presence of a solute lowers the chemical
potential of the liquid but, because the vapour and
solid remain pure, their chemical potentials remain
unchanged. As a result, we see from Fig. 6.16 that the
freezing point moves to lower values; likewise, from
Fig. 6.17 we see that the boiling point moves to

Table 6.3

Cryoscopic and ebullioscopic constants

Solvent K f /(K kg mol−1) Kb/(K kg mol−1)

Acetic acid 3.90 3.07
Benzene 5.12 2.53
Camphor 40
Carbon disulfide 3.8 2.37
Naphthalene 6.94 5.8
Phenol 7.27 3.04
Tetrachloromethane 30 4.95
Water 1.86 0.51

Self-test 6.10

Estimate the lowering of the freezing point of the solu-
tion made by dissolving 3.0 g (about one cube) of 
sucrose in 100 g of water.

[Answer: −0.16 K]

To understand the origin of these effects we shall
make two simplifying assumptions:

1. The solute is not volatile, and therefore does not
appear in the vapour phase.

2. The solute is insoluble in the solid solvent, and
therefore does not appear in the solid phase.

For example, a solution of sucrose in water consists
of a solute (sucrose, C12H22O11) that is not volatile
and therefore never appears in the vapour, which is
therefore pure water vapour. The sucrose is also left
behind in the liquid solvent when ice begins to form,
so the ice remains pure.

The origin of colligative properties is the lowering
of chemical potential of the solvent by the presence
of a solute, as expressed by eqn 6.8. We saw in Sec-
tion 5.3 that the freezing and boiling points corres-
pond to the temperatures at which the graph of the
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Fig. 6.16 The chemical potentials of pure solid solvent and
pure liquid solvent also decrease with temperature, and the
point of intersection, where the chemical potential of the 
liquid rises above that of the solid, marks the freezing point 
of the pure solvent. A solute lowers the chemical potential 
of the solvent but leaves that of the solid unchanged. As a 
result, the intersection point lies further to the left and the
freezing point is therefore lowered.
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Fig. 6.17 The chemical potentials of pure solvent vapour and
pure liquid solvent decrease with temperature, and the point
of intersection, where the chemical potential of the vapour
falls below that of the liquid, marks the boiling point of the
pure solvent. A solute lowers the chemical potential of the
solvent but leaves that of the vapour unchanged. As a result,
the intersection point lies further to the right, and the boiling
point is therefore raised.
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higher values. In other words, the freezing point is
depressed, the boiling point is elevated, and the 
liquid phase exists over a wider range of temperatures.
Derivation 6.5 shows how to express these changes
quantitatively.

Derivation 6.5

The modification of transition temperatures

To derive an expression for the elevation of boiling point,
we note that at the normal boiling point, T b*, of the pure
solvent A, the solvent vapour and liquid are in equilibrium
at 1 atm, so their chemical potentials are equal:

m A*(g, 1 atm, T b*) = m A*(l, 1 atm, T b*)

This equality is depicted in Fig. 6.18a. In the presence 
of a solute B, the mole fraction of A is reduced from 1 to
xA = 1 − xB and the boiling point is Tb; then, because 
the solvent vapour and liquid remain in equilibrium under
these new conditions,

According to eqn 6.8, the chemical potential of the 
solvent in the solution is related to its mole fraction by

mA(l, xA,1 atm, T b) = m A*(l, 1 atm, T b) + RT b ln xA

Therefore, the last equation becomes

m A*(g, 1 atm, Tb) = m A*(l, 1 atm, Tb) + RTb ln xA

which rearranges into

The chemical potential of a pure substance is the same
as the molar Gibbs energy of the substance, so this 
expression is the same as

  
ln

*( , , ) *( , , )
x

T T
RTA

A b A bg atm l atm
=

−m m1 1

bb

Vapour remains pure Solvent mole fraction is now xA

m A*(g, 1 atm, Tb) = mA(l, xA, 1 atm, T b)

When xA = 1 (so ln xA = 0), the pure liquid solvent, the
boiling point is T b*, and we can write

The difference between these two equations is

.
(For simplicity, we no longer specify the pressure as 
1 atm, but remember that that is its value.) Now we use
DG = DH − TDS and the approximate temperature inde-
pendence of DH and DS to turn this equation into

Now we use ln xA = ln(1 − x B) ≈ −x B to express this equa-
tion as

A brief comment The series expansion of a natural
logarithm is

ln(1 − x ) = −x − x 2 − x 3. . .

If x << 1, then the terms involving x raised to a power
greater than 1 are much smaller than x, so ln(1 − x ) ≈
−x. For example, ln(1 − 0.050) = ln 0.950 = −0.051,
which is close to −0.050.

We are almost there. First, we note that the elevation 
of boiling point is DT b = T b − T b*. Then we note that 
because the value of T b is very close to T b*, little error 
is introduced by replacing T b*T b by T b*

2. In this way we
arrive at

which we can rearrange into
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Fig. 6.18 The equilibria between phases and the corres-
ponding relation between chemical potentials of the 
solvent in solution at (a) the normal boiling point and (b)
the normal freezing point.
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The elevation of boiling point is too small to have
any practical significance. A practical consequence 
of the lowering of the freezing point, and hence the
lowering of the melting point of the pure solid, is its
employment in organic chemistry to judge the purity
of a sample, for any impurity lowers the melting
point of a substance from its accepted value. The 
salt water of the oceans freezes at temperatures lower
than that of fresh water, and salt is spread on high-
ways to delay the onset of freezing. The addition of
‘antifreeze’ to car engines and, by natural processes,
to arctic fish, is commonly held up as an example of
the lowering of freezing point, but the concentrations
are far too high for the arguments we have used here
to be applicable. The 1,2-ethanediol (‘glycol’) used as
antifreeze and the proteins present in fish body fluids
probably simply interfere with bonding between
water molecules.

6.7 Osmosis

The phenomenon of osmosis (from the Greek word
for ‘push’) is the passage of a pure solvent into a 
solution separated from it by a semipermeable 
membrane. A semipermeable membrane is a mem-
brane that is permeable to the solvent but not to the
solute. The membrane might have microscopic holes
that are large enough to allow water molecules to pass
through, but not ions or carbohydrate molecules with
their bulky coating of hydrating water molecules.
The osmotic pressure, Π (uppercase pi), is the pres-
sure that must be applied to the solution to stop the
inward flow of solvent.

In the simple arrangement shown in Fig. 6.19, 
the pressure opposing the passage of solvent into the 
solution arises from the hydrostatic pressure of the
column of solution that the osmosis itself produces.
This column is formed when the pure solvent flows
through the membrane into the solution and pushes
the column of solution higher up the tube. Equilibrium
is reached when the downward pressure exerted by
the column of solution is equal to the upward osmotic
pressure. A complication of this arrangement is that
the entry of solvent into the solution results in dilution
of the latter, so it is more diAcult to treat mathem-
atically than an arrangement in which an externally 
applied pressure opposes any flow of solvent into the
solution.

The osmotic pressure of a solution is proportional
to the concentration of solute. In fact, we show in
Derivation 6.6 that the expression for the osmotic
pressure of an ideal solution, which is called the van
’t Hoff equation, bears an uncanny resemblance to
the expression for the pressure of a perfect gas:

ΠV ≈ nBRT (6.18a)

Because nB/V = [B], the molar concentration of the
solute, a simpler form of this equation is

Π ≈ [B]RT (6.18b)

This equation applies only to solutions that are
suAciently dilute to behave as ideal-dilute solutions.

At this point, we see that the elevation of boiling point is
proportional to the mole fraction of solute B and inde-
pendent of its identity (the DvapH and Tb are properties of
the solvent). The mole fraction of the solute is propor-
tional to its molality, bB, so the equation we have derived
has the form DTb = KbbB, as in eqn 6.17.

The calculation of the depression of freezing point
starts with the equilibrium condition depicted in Fig.
6.18b, which implies

mA*(s, 1 atm, Tf ) = mA(l, xA, 1 atm, Tf)

The calculation then proceeds in exactly the same way,
and we arrive at

with DT f = T f* − T f, as in eqn 6.17.
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Fig. 6.19 In a simple osmosis experiment, a solution is sepa-
rated from the pure solvent by a semipermeable membrane.
Pure solvent passes through the membrane and the solution
rises in the inner tube. The net flow ceases when the pres-
sure exerted by the column of liquid is equal to the osmotic
pressure of the solution.



At this point we identify the difference in pressure Dp
as P , so

mA*(p + P ) = mA*(p) + VAP

When we combine this relation with mA*(p) = mA*(p + P ) +
RT ln xA we get

mA*(p) = mA*(p) + VAP + RT ln xA

and therefore

−RT ln xA = PVA

The mole fraction of the solvent is equal to 1 − xB, where
xB is the mole fraction of solute molecules. In dilute solu-
tion, ln(1 − xB) is approximately equal to −xB (recall the
comment in Derivation 6.5), so this equation becomes

RTxB ≈ PVA

When the solution is dilute, xB = nB/n ≈ nB/nA, so

which is eqn 6.18.

nAVA = V the volume of solvent

RTnB ≈ nAPVA = PV
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Osmosis helps biological cells maintain their struc-
ture. Cell membranes are semipermeable and allow
water, small molecules, and hydrated ions to pass,
while blocking the passage of biopolymers synthe-
sized inside the cell. The difference in concentrations
of solutes inside and outside the cell gives rise to an
osmotic pressure, and water passes into the more
concentrated solution in the interior of the cell, 
carrying small nutrient molecules. The influx of water
also keeps the cell swollen, whereas dehydration
causes the cell to shrink.

One of the most common applications of osmosis
is osmometry, the measurement of molar masses of
proteins and synthetic polymers from the osmotic
pressure of their solutions. As these huge molecules
dissolve to produce solutions that are far from ideal,
we assume that the van ’t Hoff equation is only the
first term of an expansion:

Π = [B]RT {1 + B[B] + . . .} (6.19a)

Exactly the same strategy was used in Section 1.12 
to extend the perfect gas equation to real gases 
and there it led to the virial equation of state. The
empirical parameter B in this expression is called 
the osmotic virial coeGcient. To use eqn 6.19a, we
rearrange it into a form that gives a straight line by
dividing both sides by [B]:

(6.19b)= RT + BRT [B] + . . .Π
[ ]B

y = intercept + slope × x

SolutionSolvent

Semipermeable
membrane

p p + Π

Fig. 6.20 The basis of the calculation of osmotic pres-
sure. The presence of a solute lowers the chemical 
potential of the solvent in the right-hand compartment,
but the application of pressure raises it. The osmotic
pressure is the pressure needed to equalize the chem-
ical potential of the solvent in the two compartments.

Derivation 6.6

The van ’t Hoff equation

The thermodynamic treatment of osmosis makes use of
the fact that, at equilibrium, the chemical potential of the
solvent A is the same on each side of the membrane
(Fig. 6.20). The starting relation is therefore

mA(pure solvent at pressure p) = mA(solvent in the solution
at pressure p + P )

The pure solvent is at atmospheric pressure, p, and the
solution is at a pressure p + P on account of the addi-
tional pressure, P, that has to be exerted on the solution
to establish equilibrium. We shall write the chemical 
potential of the pure solvent at the pressure p as mA*(p).
The chemical potential of the solvent in the solution 
is lowered by the solute but it is raised on account of 
the greater pressure, p + P, acting on the solution. We 
denote this chemical potential by mA(xA, p + P ). Our task
is to find the extra pressure P needed to balance the
lowering of chemical potential caused by the solute.

The condition for equilibrium written above is

mA*(p) = mA(xA, p + P)

We take the effect of the solute into account by using
eqn 6.8:

The effect of pressure on an (assumed incompressible)
liquid is given by eqn 5.1 (DGm = VmDp) but now ex-
pressed in terms of the chemical potential and the partial
molar volume of the solvent:

mA*(p + P ) = mA*(p) + VADp

Eqn 6.4b

mA(xA, p + P ) = mA*(p + P ) + RT ln xA
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As we illustrate in Example 6.4, we can find the
molar mass of the solute B by measuring the osmotic
pressure at a series of mass concentrations and mak-
ing a plot of Π/[B] against [B] (Fig. 6.21).

0 0
Molar concentration, [B] Mass concentration, cB

Intercept: RT
Intercept: RT/M

/[
B

]

/c
B

Slope: BRT

Slope: BRT/M 2

Π Π

Fig. 6.21 The plot and extrapolation made to analyse the re-
sults of an osmometry experiment.

Example 6.4

Using osmometry to determine molar mass

The osmotic pressures of solutions of an enzyme in
water at 298 K are given below. Determine the molar
mass of the enzyme.

c /(g dm−3) 1.00 2.00 4.00 7.00 9.00
P/Pa 27 70 197 500 785

Strategy First, we need to express eqn 6.19b in terms
of the mass concentration, c. The molar concentration
[B] of the solute is related to the mass concentration 
cB = mB/V by

where M is the molar mass of the solute (its mass, mB, 
divided by its amount in moles, nB), so [B] = cB/M. With
this substitution, eqn 6.19b becomes

Division through by M gives

It follows that, by plotting P/cB against cB, the results
should fall on a straight line with intercept RT/M on the
vertical axis at cB = 0. Therefore, by locating the intercept
by extrapolation of the data to cB = 0, we can find the
molar mass of the solute.
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Solution The following values of P/cB can be calculated
from the data:

cB/(g dm−3) 1.00 2.00 4.00 7.00 9.00
(P/ Pa)/(cB/g dm−3) 27 35 49.2 71.4 87.2

The points are plotted in Fig. 6.22. The intercept with 
the vertical axis at cB = 0 (which is best found by using
linear regression and mathematical software, as we have
done) is at

which we can rearrange into

Therefore, because this intercept is equal to RT/M, so
that M = RT/intercept, we can write

It follows that

The molar mass of the enzyme is therefore close to 
130 kDa.

A note on good practice Graphs should be plotted on
axes labelled with pure numbers. Note how the plotted 
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Fig. 6.22 The plot of the data in Example 6.5. The molar
mass is determined from the intercept at c = 0.
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When pressure greater than the osmotic pressure 
is applied to the solution, there is a thermodynamic
tendency for the solvent to flow out of the solution
and into the pure solvent. This process is called 
reverse osmosis. Reverse osmosis is of great import-
ance for the purification of sea water so that it is
potable (drinkable) and can be used for irrigation,
and many reverse osmosis plants are in operation
around the world to supply fresh water to arid or
water-deficient regions. The principal technical prob-
lem is to manufacture semipermeable membranes
that are strong enough to withstand the high pres-
sures required but still allow an economic flow.

Phase diagrams of mixtures

As in the discussion of pure substances (Chapter 5),
the phase diagram of a mixture shows which phase is
most stable for the given conditions. However, for
mixtures composition is a variable in addition to the
pressure and temperature.

It will be useful to keep in mind the implications of
the phase rule (F = C − P + 2, Section 5.7). We shall
consider only binary mixtures, which are mixtures of
two components (such as ethanol and water) and may
therefore set C = 2. Then F = 4 − P. For simplicity we
keep the pressure constant (at 1 atm, for instance),
which uses up one of the degrees of freedom, and
write F ′ = 3 − P for the number of degrees of freedom
remaining. One of these degrees of freedom is the
temperature, the other is the composition. Hence we
should be able to depict the phase equilibria of the
system on a temperature–composition diagram in
which one axis is the temperature and the other axis

is the mole fraction. In a region where there is only
one phase, F ′ = 2 and both the temperature and the
composition can be varied (Fig. 6.23). If two phases
are present at equilibrium, F ′ = 1, and only one of the
two variables may be changed at will. For example, if
we change the composition, then to maintain equi-
librium between the two phases we have to adjust the
temperature too. Such two-phase equilibria therefore
define a line in the phase diagram. If three phases are
present, F ′ = 0 and there is no degree of freedom for
the system. To establish equilibrium between three
phases we must adopt a specific temperature and
composition. Such a condition is therefore repre-
sented by a point on the phase diagram.

6.8 Mixtures of volatile liquids

First, we consider the phase diagram of a binary mix-
ture of two volatile components. This kind of system
is important for understanding fractional distilla-
tion, which is a widely used technique in industry
and the laboratory. Intuitively, we might expect the
boiling point of a mixture of two volatile liquids to
vary smoothly from the boiling point of one pure
component when only that liquid is present to the
boiling point of the other pure component when only
that liquid is present. This expectation is often borne
out in practice, and Fig. 6.24 shows a typical plot of
boiling point against composition (the lower curve).

The vapour in equilibrium with the boiling mix-
ture is also a mixture of the two components. We

quantities are divided by their units, so that cB/(g dm−3),
for instance, is a dimensionless number. By carrying the
units through every stage of the calculation, we end up
with the correct units for M.

Self-test 6.11

The osmotic pressure of a solution of poly(vinyl
chloride), PVC, in dioxane at 25°C were as follows:

c /(g dm−3) 0.50 1.00 1.50 2.00 2.50
P/c (Pa g−1 dm3) 33.6 35.2 36.8 38.4 40.0

Determine the molar mass of the polymer.
[Answer: 77 kg mol−1]
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Fig. 6.23 The interpretation of a temperature–composition
phase diagram at constant pressure. In a region, where only
one phase is present, F ′ = 2 and both composition and 
temperature can be varied. On a phase boundary, where two
phases are in equilibrium, F ′ = 1 and only one variable can be
changed independently. At a point where three phases are
present in equilibrium, F ′ = 0, and the temperature and com-
position are fixed.
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should expect the vapour to be richer than the liquid
mixture in the more volatile of the two substances.
This difference is also often found in practice, and
the upper curve in the illustration shows the composi-
tion of the vapour in equilibrium with the boiling
liquid. To identify the composition of the vapour, we
note the boiling point of the liquid mixture (point a,
for instance) and draw a horizontal tie-line, a line
joining two phases that are in equilibrium with each
other, across to the upper curve. Its point of intersec-
tion (a′) gives the composition of the vapour. In this
example, we see that the mole fraction of A in the
vapour is about 0.6. As expected, the vapour is richer
than the liquid in the more volatile component. Graphs
like these are determined empirically, by measuring
the boiling points of a series of mixtures (to plot the
lower curve of boiling point against composition), and
measuring the composition of the vapour in equilib-
rium with each boiling mixture (to plot the corres-
ponding points of the vapour-composition curve).

We can follow the changes that occur during the
fractional distillation of a mixture of volatile liquids
by following what happens when a mixture of com-
position a1 is heated (Fig. 6.25). The mixture boils at
a2 and its vapour has composition a2′ . This vapour
condenses to a liquid of the same composition when
it has risen to a cooler part of the ‘fractionating 
column’, a vertical column packed with glass rings or
beads to give a large surface area. This condensate
boils at the temperature corresponding to the point
a3 and yields a vapour of composition a3′ . This
vapour is even richer in the more volatile component.
That vapour condenses to a liquid that boils at the
temperature corresponding to the point a4. The cycle

is repeated until almost pure A emerges from the top
of the column.

Whereas many binary liquid mixtures do have
temperature–composition diagrams resembling that
shown in Fig. 6.25, in a number of important cases
there are marked differences. For example, a max-
imum in the boiling point curve is sometimes found
(Fig. 6.26). This behaviour is a sign that favourable
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Fig. 6.24 A temperature–composition diagram for a binary
mixture of volatile liquids. The tie-line connects the points
that represent the compositions of liquid and vapour that are
in equilibrium at each temperature. The lower curve is a plot
of the boiling point of the mixture against composition.

Te
m

p
er

at
u

re
, T

Mole fraction, xA

Boiling
point
of mixture

Composition
of vapour

a1

a2

a3

a4

a2’

a3’

0 1

T2

T3

Fig. 6.25 The process of fractional distillation can be repre-
sented by a series of steps on a temperature–composition 
diagram like that in Fig. 6.24. The initial liquid mixture may be
at a temperature and have a composition like that repre-
sented by point a1. It boils at the temperature T2, and the
vapour in equilibrium with the boiling liquid has composition
a2′ . If that vapour is condensed (to a3 or below), the resulting
condensate boils at T3 and gives rise to a vapour of composi-
tion represented by a 3′ . As the succession of vaporizations
and condensations is continued, the composition of the dis-
tillate moves towards pure A (the more volatile component).
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Fig. 6.26 The temperature–composition diagram for a high-
boiling azeotrope. As fractional distillation proceeds, the com-
position of the remaining liquid moves towards a4; however,
once there, the vapour in equilibrium with that liquid has 
the same composition, so the mixture evaporates with an 
unchanged composition and no further separation can be
achieved.
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interactions between the molecules of the two com-
ponents reduce the vapour pressure of the mixture
below the ideal value. Examples of this behaviour 
include trichloromethane/propanone and nitric acid/
water mixtures. Temperature–composition curves are
also found that pass through a minimum (Fig. 6.27).
This behaviour indicates that the (A,B) interactions
are unfavourable and hence that the mixture is more
volatile than expected on the basis of simple mingling
of the two species. Examples include dioxane/water
and ethanol/water.

There are important consequences for distillation
when the temperature–composition diagram has a
maximum or a minimum. Consider a liquid of com-
position a1 on the right of the maximum in Fig. 6.25.
It boils at a2 and its vapour (of composition a2′ ) is
richer in the more volatile component A. If that
vapour is removed, the composition of the remaining
liquid moves towards a3. The vapour in equilibrium
with this boiling liquid has composition a3′ : note 
that the two compositions are more similar than the
original pair (a3 and a3′ are closer together than a2
and a2′ ). If that vapour is removed, the composition
of the boiling liquid shifts towards a4 and the vapour
of that boiling mixture has a composition identical to
that of the liquid. At this stage, evaporation occurs
without change of composition. The mixture is said
to form an azeotrope (from the Greek words for
‘boiling without changing’). When the azeotropic
composition has been reached, distillation cannot
separate the two liquids because the condensate 
retains the composition of the liquid. One example

of azeotrope formation is hydrochloric acid/water,
which is azeotropic at 80 per cent water (by mass)
and boils unchanged at 108.6°C.

The system shown in Fig. 6.27 is also azeotropic,
but shows this character in a different way. Suppose
we start with a mixture of composition a1 and follow
the changes in the composition of the vapour that
rises through a fractionating column. The mixture
boils at a2 to give a vapour of composition a2′ . This
vapour condenses in the column to a liquid of the
same composition (now marked a3). That liquid
reaches equilibrium with its vapour at a3′ , which 
condenses higher up the tube to give a liquid of 
the same composition. The fractionation therefore
shifts the vapour towards the azeotropic composi-
tion at a4, but the composition cannot move beyond
a4 because now the vapour and the liquid have 
the same composition. Consequently, the azeotropic
vapour emerges from the top of the column. An 
example is ethanol/water, which boils unchanged
when the water content is 4 per cent and the temper-
ature is 78°C.

6.9 Liquid–liquid phase diagrams

Partially miscible liquids are liquids that do not mix
together in all proportions. An example is a mixture
of hexane and nitrobenzene: when the two liquids
are shaken together, the liquid consists of two liquid
phases, one is a saturated solution of hexane in 
nitrobenzene and the other is a saturated solution of
nitrobenzene in hexane. Because the two solubilities
vary with temperature, the compositions and pro-
portions of the two phases change as the temperature
is changed. We can use a temperature–composition
diagram to display the composition of the system at
each temperature.

Suppose we add a small amount of nitrobenzene to
hexane at a temperature T ′. The nitrobenzene dis-
solves completely; however, as more nitrobenzene is
added, a stage comes when no more dissolves. The
sample now consists of two phases in equilibrium
with each other, the more abundant one consisting 
of hexane saturated with nitrobenzene, the less 
abundant one a trace of nitrobenzene saturated with
hexane. In the temperature–composition diagram
drawn in Fig. 6.28, the composition of the former is
represented by the point a′ and that of the latter by
the point a″. The relative abundances of the two
phases are given by the lever rule (Fig. 6.29):

(6.20)
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Fig. 6.27 The temperature–composition diagram for a low-
boiling azeotrope. As fractional distillation proceeds, the
composition of the vapour moves towards a4; however, once
there, the vapour in equilibrium with that liquid has the same
composition, so no further separation of the distillate can be
achieved.
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Fig. 6.28 The temperature–composition diagram for hexane
and nitrobenzene at 1 atm. The upper critical solution tem-
perature, Tuc, is the temperature above which no phase 
separation occurs. For this system it lies at 293 K (when the
pressure is 1 atm).
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Fig. 6.29 The coordinates and compositions referred to by
the lever rule.

Derivation 6.7

The lever rule

We write n = n ′ + n″, where n ′ is the total amount of
molecules in the one phase, n″ is the total amount in the
other phase, and n is the total amount of molecules in
the sample. The total amount of A in the sample is nxA,
where xA is the overall mole fraction of A in the sample
(this is the quantity plotted along the horizontal axis). The
overall amount of A is also the sum of its amounts in the
two phases, where it has the mole fractions xA′ and xA″,
respectively:

nxA = n ′xA′ + n″xA″

Amount of
A in one
phase

Amount of
A in the

other phase

Total amount of A

We can also multiply each side of the relation n = n ′ + n″
by xA and obtain

nxA = n ′xA + n″xA

Then, by equating these two expressions we get first

n′xA′ + n″xA″ = n′xA + n″xA

and then after a slight rearrangement

n ′(xA′ − xA) = n″(xA − xA″ )

or (as can be seen by referring to Fig. 6.29)

n′l ′ = n″l ″

which is eqn 6.20.

Self-test 6.12

Repeat the problem for 50 g hexane and 100 g 
nitrobenzene at 273 K.

[Answer: xN = 0.07 and 0.91 in the ratio 1:1.52; 292 K]

Example 6.5

Interpreting a liquid–liquid phase diagram

A mixture of 50 g (0.59 mol) of hexane and 50 g (0.41 mol)
of nitrobenzene was prepared at 290 K. What are the
compositions of the phases, and in what proportions do
they occur? To what temperature must the sample be
heated in order to obtain a single phase?

Strategy The answer is based on Fig. 6.28. First, we need
to identify the tie-line corresponding to the temperature
specified: the points at its two ends give the compositions
of the two phases in equilibrium. Next, we identify the
location on the horizontal axis corresponding to the over-
all composition of the system and draw a vertical line.
Where that line cuts the tie-line it divides it into the two
lengths needed to use the lever rule, eqn 6.20. For the final
part, we note the temperature at which the same vertical
line cuts through the phase boundary: at that temperature
and above, the system consists of a single phase.

Solution We denote hexane by H and nitrobenzene by
N. The horizontal tie-line at 290 K cuts the phase bound-
ary at xN = 0.37 and at xN = 0.83, so those mole fractions
are the compositions of the two phases. The overall
composition of the system corresponds to xN = 0.41, so
we draw a vertical line at that mole fraction. The lever
rule then gives the ratio of amounts of each phase as

We conclude that the hexane-rich phase is ten times
more abundant than the nitrobenzene-rich phase at this
temperature. Heating the sample to 292 K takes it into
the single-phase region.
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When more nitrobenzene is added to the two-
phase mixture at the temperature T′, hexane dissolves
in it slightly. The overall composition moves to the
right in the phase diagram, but the compositions of
the two phases in equilibrium remain a′ and a″. The
difference is that the amount of the second phase 
increases at the expense of the first. A stage is reached
when so much nitrobenzene is present that it can 
dissolve all the hexane, and the system reverts to a
single phase. Now the point representing the overall
composition and temperature lies to the right of the
phase boundary in the illustration and the system is 
a single phase.

The upper critical solution temperature, Tuc
(which is also called the upper consolute tempera-
ture), is the upper limit of temperatures at which
phase separation occurs. Above the upper critical 
solution temperature the two components are fully
miscible. In molecular terms, this temperature exists
because the greater thermal motion of the molecules
leads to greater miscibility of the two components. 
In thermodynamic terms, the Gibbs energy of mix-
ing becomes negative above a certain temperature, 
regardless of the composition.

Some systems show a lower critical solution tem-
perature, Tlc (which is also called the lower consolute
temperature), below which they mix in all propor-
tions and above which they form two phases. An 
example is water and triethylamine (Fig. 6.30). In
this case, at low temperatures the two components
are more miscible because they form a weak com-
plex; at higher temperatures the complexes break up
and the two components are less miscible.

A few systems have both upper and lower critical
temperatures. The reason can be traced to the fact that
after the weak complexes have been disrupted, lead-
ing to partial miscibility, the thermal motion at higher
temperatures homogenizes the mixture again, just as
in the case of ordinary partially miscible liquids. One
example is nicotine and water, which are partially
miscible between 61°C and 210°C (Fig. 6.31).

6.10 Liquid–solid phase diagrams

Phase diagrams are also used to show the regions of
temperature and composition at which solids and
liquids exist in binary systems. Such diagrams are
useful for discussing the techniques that are used 
to prepare the high-purity materials used in the 
electronics industry and are also of great importance
in metallurgy.

Figure 6.32 shows a simple phase diagram for an
alloy of two metals that are miscible in all propor-
tions. The liquidus is the line above which the entire
sample is liquid; the solidus is the line below which
the sample is entirely solid. When a sample of com-
position and temperature a1 is cooled, at a2 it initially
deposits a solid of composition b2. As the tempera-
ture is lowered, the equilibrium composition of the
deposited solid moves towards b3 and that of the re-
maining liquid moves towards a3. Below the solidus,
only solid of the original composition is present.

Phase diagrams such as these are constructed by
monitoring the cooling curve at a series of composi-
tions (Fig. 6.33). The different slopes of the liquid-
phase and solid-phase cooling curves is due to their
different heat capacities: the rate at which energy is
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Fig. 6.30 The temperature–composition diagram for water
and triethylamine. The lower critical solution temperature, Tlc,
is the temperature below which no phase separation occurs.
For this system it lies at 292 K (when the pressure is 1 atm).
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lost as heat from a sample is proportional to the tem-
perature difference between it and its surroundings,
and the corresponding change in temperature of the
sample will be large if the heat capacity is small (from
ΔT = q/C) and small if the heat capacity is high.
Cooling to the temperature of the surroundings also
slows if the surroundings are at a constant tempera-
ture. The changing slope between the temperatures
corresponding to the liquidus and the solidus is due
to the exothermic character of the phase transition:
the progressive release of heat as the solid forms re-
tards the cooling. Figure 6.34 shows a portrayal of
the sequence of cooling curves plotted against the 
initial composition of the liquid but with the time 
dependence removed. By joining the points that 
terminate each cooling region the liquidus and
solidus can be constructed.

Figure 6.35 shows the phase diagram for a system
composed of two metals that are almost completely
immiscible right up to their melting points (such as
antimony and bismuth). Consider the molten liquid
of composition a1. When the liquid is cooled to a2,
the system enters the two-phase region labelled
‘Liquid + A’. Almost pure solid A begins to come out
of solution and the remaining liquid becomes richer
in B. On cooling to a3, more of the solid forms, and
the relative amounts of the solid and liquid (which
are in equilibrium) are given by the lever rule: at this
stage there are nearly equal amounts of each. The 
liquid phase is richer in B than before (its composi-
tion is given by b3) because A has been deposited. At
a4 there is less liquid than at a3 and its composition is
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Fig. 6.32 The phase diagram for an alloy formed from two
metals (with normal melting points T A* and T B* in their pure
form) that are miscible in all proportions in the liquid and solid
phases.
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given by e. This liquid now freezes to give a two-
phase system of almost pure A and almost pure B and
cooling down to a5 leads to no further change in
composition.

The vertical line through e in Fig. 6.35 corresponds
to the eutectic composition (from the Greek words
for ‘easily melted’). A solid with the eutectic com-
position melts, without change of composition, at
the lowest temperature of any mixture. Solutions of
composition to the right of e deposit A as they cool,
and solutions to the left deposit B: only the eutectic
mixture (apart from pure A or pure B) solidifies 
at a single definite temperature without gradually 
unloading one or other of the components from the
liquid.

One technologically important eutectic is solder,
which typically consists of about 67 per cent tin 
and 33 per cent lead by mass and melts at 183°C.
Eutectic formation occurs in the great majority of 
binary alloy systems. It is of great importance for 
the microstructure of solid materials, for although a 
eutectic solid is a two-phase system, it crystallizes out
in a nearly homogeneous mixture of microcrystals.
The two microcrystalline phases can be distinguished
by microscopy and structural techniques such as 
X-ray diffraction (Chapter 15).

Cooling curves are used to detect eutectics. We 
can see how it is used by considering the rate of 
cooling down the vertical line at a1 in Fig. 6.35. 
The liquid cools steadily until it reaches a2, when 
A begins to be deposited. Cooling is now slower 
because the solidification of A is exothermic and 
retards the cooling (Fig. 6.36). When the remaining
liquid reaches the eutectic composition, the tempera-
ture remains constant until the whole sample has 
solidified: this pause in the decrease in temperature 
is known as the eutectic halt. If the liquid has the 
eutectic composition e initially, then the liquid cools
steadily down to the freezing temperature of the 
eutectic, when there is a long eutectic halt as the 
entire sample solidifies just like the freezing of a pure
liquid.

Phase diagrams are important for representing the
process used to get ultrapure materials for use in the
semiconductor industry (Box 6.2).

6.11 The Nernst distribution law

Suppose we shake a compound up with a mixture 
of two immiscible liquids, and allow the two phases
to separate into layers. What can be said about 
the relative concentrations of the compound in the
two layers?

This question can be answered by making use of
the chemical potential, for at equilibrium the chem-
ical potential of the compound, μC, must be the same
in each phase: μC(1) = μC(2). If we suppose that each
solution is an ideal-dilute solution, it follows that

μC (1) + RT ln xC(1) = μC (2) + RT ln xC(2)

The two standard states are different because we are
using Henry’s law to define the chemical potentials
and the constants that occur in that law vary between
solvents. It follows that

The right-hand side is a constant for a given pair of
liquids, so we arrive at the Nernst distribution law:

(6.21)

That is, regardless of the overall concentration (but
providing the solutions are both behaving ideally),
the ratio of mole fractions in the two phases is the
same. For instance, suppose a certain amount of ben-
zoic acid, C6H5COOH, is shaken up with a mixture
of benzene and water; then the acid distributes itself
between the two phases such that the ratio of mole
fractions is equal to a constant. If twice that amount
of acid is shaken up in the mixture, the ratio of mole
fractions will be the same.
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Fig. 6.36 The cooling curves for the system shown in 
Fig. 6.35. For a sample of composition represented by the
vertical line through a1 to a5 in Fig. 6.35, the rate of cooling 
decreases at a2 because solid A comes out of solution until
the eutectic composition is reached, when there is a plateau.
The cooling curve at the eutectic composition e has a com-
plete halt at e when the eutectic solidifies without change of 
composition.
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Box 6.2 Ultrapurity and controlled impurity

Advances in technology have called for materials of ex-
treme purity. For example, semiconductor devices consist
of almost perfectly pure silicon or germanium doped to a
precisely controlled extent. For these materials to operate
successfully, the impurity level must be kept down to less
than 1 in 109. The technique of zone refining makes use of
the nonequilibrium properties of mixtures. It relies on the
impurities typically being more soluble in the molten sam-
ple than in the solid, and sweeps them up by passing a
molten zone repeatedly from one end to the other along a
sample (see the first illustration). In practice, a train of hot
and cold zones are swept repeatedly from one end to the
other. The zone at the end of the sample is the impurity
dump: when the heater has gone by, it cools to a dirty solid
that can be discarded.

We can use a phase diagram to discuss zone refining, but
we have to allow for the fact that the molten zone moves
along the sample and the sample is uniform in neither tem-
perature nor composition. Consider a liquid (which repre-
sents the molten zone) on the vertical line at a1 in the
second illustration, and let it cool without the entire sample

coming to overall equilibrium. If the temperature falls to a2,
a solid of composition b2 is deposited and the remaining 
liquid (the zone where the heater has moved on) is at a2′.
Cooling that liquid down a vertical line passing through a2′
deposits solid of composition b3 and leaves liquid at a3′ . The
process continues until the last drop of liquid to solidify is
heavily contaminated with A. There is plenty of everyday
evidence that impure liquids freeze in this way. For exam-
ple, an ice cube is clear near the surface but misty in the
core. The water used to make ice normally contains dis-
solved air; freezing proceeds from the outside, and air is 
accumulated in the retreating liquid phase. The air cannot
escape from the interior of the cube, so when that freezes
the air is trapped in a mist of tiny bubbles.

A modification of zone refining is zone levelling. This
technique is used to introduce controlled amounts of impur-
ity (for example, of indium into germanium). A sample rich
in the required dopant is put at the head of the main sam-
ple, and made molten. The zone is then dragged repeatedly
in alternate directions through the sample, where it 
deposits a uniform distribution of the impurity.

Heating coil

Purified material

Collected
impurities

In the zone refining procedure, a heater is used to melt a
small region of a long cylindrical sample of the impure solid,
and that zone is swept to the other end of the rod. As it
moves, it collects impurities. If a series of passes are made,
the impurities accumulate at one end of the rod and can be
discarded.
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A binary temperature–composition diagram can be used to
discuss zone refining, as explained in the text.

Checklist of key ideas

You should now be familiar with the following concepts.

1 A partial molar quantity is the contribution of a
component (per mole) to the overall property of 
a mixture.

2 The chemical potential of a component is the partial
molar Gibbs energy of that component in a mixture.

3 An ideal solution is one in which both com-
ponents obey Raoult’s law over the entire com-
position range.

4 An ideal-dilute solution is one in which the solute
obeys Henry’s law.
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5 The activity of a substance is an effective concen-
tration; see Table 6.2.

6 A colligative property is a property that depends
on the number of solute particles, not their chem-
ical identity; they arise from the effect of a solute
on the entropy of the solution.

7 Colligative properties include lowering of vapour
pressure, depression of freezing point, elevation
of boiling point, and osmotic pressure.

8 The osmotic pressure, P, of an ideal solution is
given by the van ‘t Hoff equation.

9 The equilibria between phases (at constant pres-
sure) are represented by lines on a temperature–
composition phase diagram, and the relative
abundance of phases are obtained by using the
lever rule.

10 An azeotrope is a mixture that vaporizes and con-
denses without a change of composition; a eutec-
tic is a mixture that freezes and melts without
change of composition.

Questions and exercises

Discussion questions

6.1 Explain the significance of a partial molar quantity and
how it depends on composition.

6.2 Define and describe the applications of the chemical 
potential of a substance.

6.3 State and justify the thermodynamic criterion for solution–
vapour equilibrium.

6.4 Justify Raoult’s and Henry’s laws in terms of the molec-
ular interactions in a mixture.

6.5 Explain the origin of the colligative properties.

6.6 What is meant by the activity of a solute?

6.7 Explain the origin of osmosis in terms of the thermo-
dynamic and molecular properties of a mixture.

6.8 Explain how osmotic pressure measurements can be
used to determine the molar mass of a polymer.

Exercises

6.1 The partial molar volumes of propanone and trich-
loromethane in a mixture in which the mole fraction of CHCl3
is 0.4693 are 74.166 cm3 mol−1 and 80.235 cm3 mol−1,

The following table summarizes the equations developed in this chapter.

Property

Total Gibbs energy of a mixture

Chemical potential of a gas in a mixture

Chemical potential of a solute

Raoult’s law

Henry’s law

Boiling point elevation

Freezing point depression

van ’t Hoff equation

lever rule

Nernst distribution law

Equation

G = nA mA + nB mB

mJ = mJ
- + RT ln pJ

mJ = m J* + RT ln xJ

pJ = xJpJ*

pJ = xJKJ or [J] = KHpJ

DTB = KbbB

DTf = KfbB

PV = nBRT

n′l ′ = n″l″

xC(2)/xC(1) = constant

Comment

Perfect gas

Ideal solution (*denotes pure solute)

Ideal solution

Ideal-dilute solution

Ideal solution

Ideal solution

Ideal solution

Ideal solutions

Table of key equations
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respectively. What is the volume of a solution of total mass
1.000 kg?

6.2 Use Fig. 6.1 to estimate the total volume of a solution
formed by mixing 50.0 cm3 of ethanol with 50.0 cm3 of
water. The densities of the two liquids are 0.789 and 1.000 g
cm−3, respectively.

6.3 By how much does the chemical potential of carbon
dioxide at 310 K and 2.0 bar differ from its standard value at
that temperature?

6.4 The standard state of a substance used to be defined 
as 1 atm at the specified temperature. By how much does
the current definition of standard chemical potential (at 1 bar)
differ from its former value at 298.15 K?

6.5 Calculate (a) the (molar) Gibbs energy of mixing, (b) the
(molar) entropy of mixing when the two major components
of air (nitrogen and oxygen) are mixed to form air at 298 K.
The mole fractions of N2 and O2 are 0.78 and 0.22, respec-
tively. Is the mixing spontaneous?

6.6 Suppose now that argon is added to the mixture in
Exercise 6.5 to bring the composition closer to real air, with
mole fractions 0.780, 0.210, and 0.0096, respectively. What
is the additional change in molar Gibbs energy and entropy at
298 K? Is the mixing spontaneous?

6.7 A solution is prepared by dissolving 2.33 g of C60 (buck-
minsterfullerene) in 100.0 g of toluene (methylbenzene).
Given that the vapour pressure of pure toluene is 5.00 kPa at
30°C, what is the vapour pressure of toluene in the solution?

6.8 Estimate the vapour pressure of sea water at 20°C given
that the vapour pressure of pure water is 2.338 kPa at that
temperature and the solute is largely Na+ and Cl− ions, each
present at about 0.50 mol dm−3.

6.9 At 300 K, the vapour pressure of dilute solutions of HCl in
liquid GeCl4 are as follows:

x (HCl) 0.005 0.012 0.019 

p /kPa 32.0 76.9 121.8

Show that the solution obeys Henry’s law in this range of mole
fractions and calculate the Henry’s law constant at 300 K.

6.10 Calculate the concentration of carbon dioxide in fat
given that the Henry’s law constant is 8.6 × 104 Torr and the
partial pressure of carbon dioxide is 55 kPa.

6.11 What partial pressure of hydrogen results in a molar
concentration of 1.0 mmol dm−3 in water at 25°C?

6.12 The rise in atmospheric carbon dioxide results in higher
concentrations of dissolved carbon dioxide in natural waters.
Use Henry’s law and the data in Table 6.1 to calculate the
solubility of CO2 in water at 25°C when its partial pressure is
(a) 3.8 kPa, (b) 50.0 kPa.

6.13 The mole fractions of N2 and O2 in air at sea level are 
approximately 0.78 and 0.21, respectively. Calculate the 
molalities of the solution formed in an open flask of water 
at 25°C.

6.14 A water-carbonating plant is available for use in the
home and operates by providing carbon dioxide at 1.0 atm.
Estimate the molar concentration of the CO2 in the soda
water it produces. 

6.15 At 90°C the vapour pressure of toluene (methylben-
zene) is 53 kPa and that of o-xylene (1,2-dimethylbenzene) is
20 kPa. What is the composition of the liquid mixture that
boils at 25°C when the pressure is 0.50 atm? What is the
composition of the vapour produced?

6.16 The vapour pressures of the two components A and B
of a binary mixture varied as follows:

pA / Torr = 68xA − 12x A
2 + 643x A

3 − 283x A
4

pB / Torr = 780 − 440xA − 401x A
2 + 92x A

3

Confirm that the mixture conforms to Raoult’s law for the
component in large excess and to Henry’s law for the minor
component. Find the Henry’s law constants.

6.17 The vapour pressures of the two components A and B
of a binary mixture varied as follows:

xA 0 0.20 0.40 0.60 0.80 1

pA/ Torr 0 127 246 357 457 539

pB/ Torr 701 631 526 394 234 38

Confirm that the mixture conforms to Raoult’s law for the
component in large excess and to Henry’s law for the minor
component. Find the Henry’s law constants. Hint: proceed as
in Example 6.3.

6.18 What is the change in chemical potential of glucose
when its concentration in water at 20.0°C is changed from
0.10 mol dm−3 to 1.00 mol dm−3?

6.19 The vapour pressure of a sample of benzene is 53.0 kPa
at 60.6°C, but it fell to 51.2 kPa when 0.133 g of an organic
compound was dissolved in 5.00 g of the solvent. Calculate
the molar mass of the compound. 

6.20 Estimate the freezing point of 200 cm3 of water sweet-
ened by the addition of 2.5 g of sucrose. Treat the solution 
as ideal. 

6.21 Estimate the freezing point of 200 cm3 of water to
which 2.5 g of sodium chloride has been added. Treat the 
solution as ideal. 

6.22 The addition of 28.0 g of a compound to 750 g of tetra-
chloromethane, CCl4, lowered the freezing point of the sol-
vent by 5.40 K. Calculate the molar mass of the compound. 

6.23 A compound A existed in equilibrium with its dimer, A2,
in propanone solution. Derive an expression for the equilib-
rium constant K = [A2]/[A]2 in terms of the depression in
vapour pressure caused by a given concentration of com-
pound. (Hint. Suppose that a fraction f of the A molecules are
present as the dimer. The depression of vapour pressure is
proportional to the total concentration of A and A2 molecules
regardless of their chemical identities.)
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6.24 The osmotic pressure of an aqueous solution of urea 
at 300 K is 150 kPa. Calculate the freezing point of the same
solution.

6.25 The osmotic pressure of a solution of polystyrene in
toluene (methylbenzene) was measured at 25°C with the 
following results:

c /(g dm−3) 2.042 6.613 9.521 12.602 

P/Pa 58.3 188.2 270.8 354.6

Determine the molar mass of the polymer.

6.26 The molar mass of an enzyme was determined by dis-
solving it in water, measuring the osmotic pressure at 20°C
and extrapolating the data to zero concentration. The follow-
ing data were used: 

c /(mg cm−3) 3.221 4.618 5.112 6.722 

h /cm 5.746 8.238 9.119 11.990 

What is the molar mass of the enzyme? Hint: Begin by ex-
pressing eqn 6.19 in terms of the height of the solution, by
using P = rgh; take r = 1.000 g cm−3.

6.27 The following temperature–composition data were 
obtained for a mixture of octane (O) and toluene (T) at 760
Torr, where x is the mole fraction in the liquid and y the mole
fraction in the vapour at equilibrium.

q/ °C 110.9 112.0 114.0 115.8 117.3 119.0 120.0 123.0 

xT 0.908 0.795 0.615 0.527 0.408 0.300 0.203 0.097 

yT 0.923 0.836 0.698 0.624 0.527 0.410 0.297 0.164 

The boiling points are 110.6°C for toluene and 125.6°C for 
octane. Plot the temperature–composition diagram of the mix-
ture. What is the composition of the vapour in equilibrium with
the liquid of composition (a) xT = 0.250 and (b) xO = 0.250?

6.28 Sketch the phase diagram of the system NH3/N2H4

given that the two substances do not form a compound with
each other, that NH3 freezes at −78°C and N2H4 freezes at
+2°C, and that a eutectic is formed when the mole fraction of
N2H4 is 0.07 and that the eutectic melts at −80°C.

6.29 Figure 6.37 shows the phase diagram for two partially
miscible liquids, which can be taken to be that for water (A)
and 2-methyl-1-propanol (B). Describe what will be observed
when a mixture of composition b3 is heated, at each stage
giving the number, composition, and relative amounts of the
phases present.

6.30 Figure 6.38 is the phase diagram for silver/tin. Label the
regions, and describe what will be observed when liquids of
compositions a and b are cooled to 200°C. 

6.31 Sketch the cooling curves for the compositions a and b
in Fig. 6.38.

6.32 Use the phase diagram in Fig. 6.38 to determine (a) the
solubility of silver in tin at 800°C, (b) the solubility of Ag3Sn in
silver at 460°C, and (c) the solubility of Ag3Sn in silver at 300°C.

6.33 Figure 6.39 shows a part of the phase diagram of an
alloy of copper and aluminium. Describe what you will 
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observe as a melt of composition a is cooled. What is the 
solubility of copper in aluminium at 500°C?

6.34 Figure 6.40 shows a part of the phase diagram typical of
a simple steel. Describe what you will observe as the melt at
a is allowed to cool to room temperature.

6.35 Hexane and perfluorohexane (C6F14) show partial mis-
cibility below 22.70°C. The critical concentration at the upper
critical temperature is x = 0.355, where x is the mole fraction
of C6F14. At 22.0°C the two solutions in equilibrium have 
x = 0.24 and x = 0.48, respectively, and at 21.5°C the mole
fractions are 0.22 and 0.51. Sketch the phase diagram.
Describe the phase changes that occur when perfluorohex-
ane is added to a fixed amount of hexane at (a) 23°C, (b) 25°C.

6.36 In a theoretical study of protein-like polymers, the phase
diagram shown in Fig. 6.41 was obtained. It shows three
structural regions: the native form, the unfolded form, and a
‘molten globule’ form. (a) Is the molten-globule form ever stable
when the denaturant concentration is below 0.1? (b) Describe
what happens to the polymer as the native form is heated in
the presence of denaturant at concentration 0.15. 

6.37 In an experimental study of membrane-like assemblies
of synthetic materials, a phase diagram like that shown in 
Fig. 6.42 was obtained. The two components are dielaidoyl-
phosphatidylcholine (DEL) and dipalmitoylphosphatidylcholine
(DPL). Explain what happens as a liquid mixture of composi-
tion xDEL = 0.5 is cooled from 45°C.

6.38 When 2.0 g of aspirin was shaken up in a flask contain-
ing two immiscible liquids it was found that the mole factions
in the two liquids were 0.11 and 0.18. When a further 1.0 g of
aspirin was added, it was found that the mole fraction in the
first liquid increased to 0.15. What would you expect the
mole fraction the second liquid to become?

Projects

The symbol ‡ indicates that the exercise requires calculus.

6.39‡ (a) The partial molar volume of ethanol in a mixture 
at 25°C is Vethanol /(cm3 mol−1) = 54.6664 − 0.727 88b
+ 0.084 768b2, where b is the numerical value of the molality
of ethanol. Plot this quantity as a function of b and identify the
composition at which the partial molar volume is a minimum.
Express that composition as a mole fraction. (b) Use differ-
entiation to identify the minium in part (a).

6.40‡ (a) The total volume of a water/ethanol mixture at 25°C
fits the expression V/cm3 = 1002.93 + 54.6664b − 0.363 94b2

+ 0.028 256b3, where b is the numerical value of the molality
of ethanol. With the information in Exercise 6.3, find an ex-
pression for the partial molar volume of water. Plot the curve.
Show that the partial molar volume of water has a maximum
value where the partial molar volume of ethanol is a min-
imum. (b) Use calculus to plot the partial molar volumes of
ethanol and water from the data in part (a). Hint: Convert b to
a mole fraction, then use VJ = dV/dxJ.
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6.41 Haemoglobin, the red blood protein responsible for 
oxygen transport, binds about 1.34 cm3 of oxygen per gram.
Normal blood has a haemoglobin concentration of 150 g dm−3.
Haemoglobin in the lungs is about 97 per cent saturated with
oxygen, but in the capillary is only about 75 per cent satur-
ated. (a) What volume of oxygen is given up by 100 cm3 of
blood flowing from the lungs in the capillary? Breathing air 
at high pressures, such as in scuba diving, results in an 
increased concentration of dissolved nitrogen. The Henry’s

law constant in the form c = Kp for the solubility of nitrogen is
0.18 mg/(g H2O atm). (b) What mass of nitrogen is dissolved 
in 100 g of water saturated with air at 4.0 atm and 20°C?
Compare your answer to that for 100 g of water saturated
with air at 1.0 atm. (Air is 78.08 mole per cent N2.) (c) If nitro-
gen is four times as soluble in fatty tissues as in water, what
is the increase in nitrogen concentration in fatty tissue in
going from 1 atm to 4 atm?
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Now we arrive at the point where real chemistry 
begins. Chemical thermodynamics is used to predict
whether a mixture of reactants has a spontaneous
tendency to change into products, to predict the
composition of the reaction mixture at equilibrium,
and to predict how that composition will be modified
by changing the conditions. Although reactions in 
industry are rarely allowed to reach equilibrium,
knowing whether equilibrium lies in favour of reac-
tants or products under certain conditions is a good
indication of the feasibility of a process. Much the
same is true of biochemical reactions, where the
avoidance of equilibrium is life and the attainment of
equilibrium is death.

There is one word of warning that is essential to
remember: thermodynamics is silent about the rates
of reaction. All it can do is to identify whether a 
particular reaction mixture has a tendency to form
products, it cannot say whether that tendency will
ever be realized. Chapters 10 and 11 explore what
determines the rates of chemical reactions.

Thermodynamic background

The thermodynamic criterion for spontaneous change
at constant temperature and pressure is ΔG < 0. The
principal idea behind this chapter, therefore, is that,
at constant temperature and pressure, a reaction
mixture tends to adjust its composition until its
Gibbs energy is a minimum. If the Gibbs energy of a
mixture varies as shown in Fig. 7.1a, very little of the
reactants convert into products before G has reached
its minimum value and the reaction ‘does not go’. 
If G varies as shown in Fig. 7.1c, then a high propor-
tion of products must form before G reaches its 
minimum and the reaction ‘goes’. In many cases, the
equilibrium mixture contains almost no reactants or
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almost no products. Many reactions have a Gibbs
energy that varies as shown in Fig. 7.1b, and at equi-
librium the reaction mixture contains substantial
amounts of both reactants and products. One of our
tasks is to see how to use thermodynamic data to pre-
dict the equilibrium composition and to see how that
composition depends on the conditions.

7.1 The reaction Gibbs energy

To keep our ideas in focus, we consider two import-
ant reactions. One is the isomerism of glucose-6-
phosphate (1, G6P) to fructose-6-phosphate (2, F6P),
which is an early step in the anaerobic breakdown 
of glucose:

G6P(aq) f F6P(aq) (A)

These two reactions are specific examples of a gen-
eral reaction of the form

a A + b B f c C + d D (C)

with arbitrary physical states.
First, consider reaction A. Suppose that in a short

interval while the reaction is in progress, the amount
of G6P changes by −Δn. As a result of this change in
amount, the contribution of G6P to the total Gibbs
energy of the system changes by −μG6PΔn, where
μG6P is the chemical potential (the partial molar
Gibbs energy) of G6P in the reaction mixture. In the
same interval, the amount of F6P changes by +Δn, so
its contribution to the total Gibbs energy changes by
+μF6PΔn, where μF6P is the chemical potential of F6P.
Provided Δn is small enough to leave the composi-
tion virtually unchanged, the net change in Gibbs 
energy of the system is

ΔG = μF6P × Δn − μG6P × Δn

If we divide through by Δn, we obtain the reaction
Gibbs energy, ΔrG:

(7.1a)

There are two ways to interpret ΔrG. First, it is the
difference of the chemical potentials of the products
and reactants at the composition of the reaction mix-
ture. Second, because ΔrG is the change in G divided
by the change in composition, we can think of ΔrG as
being the slope of the graph of G plotted against the
changing composition of the system (Fig. 7.2).

The synthesis of ammonia provides a slightly more
complicated example. If the amount of N2 changes
by −Δn, then from the reaction stoichiometry we
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Fig. 7.1 The variation of Gibbs energy of a reaction mixture
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pure products on the right. (a) This reaction ‘does not go’: the
minimum in the Gibbs energy occurs very close to reactants.
(b) This reaction reaches equilibrium with approximately equal
amounts of reactants and products present in the mixture. 
(c) This reaction goes almost to completion, as the minimum
in Gibbs energy lies very close to pure products.

OPO2–

O

OH

1 Glucose-6-phosphate

OHH

OH H
HO

H H

3

O

2 Fructose-6-phosphate

OH

OH H

HOH

OPO2–
3

OHH

This reaction takes place in the aqueous environment
of the cell. The second is the synthesis of ammonia,
which is of crucial importance for industry and 
agriculture:

N2(g) + 3 H2(g) f 2 NH3(g) (B)
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Fig. 7.2 The variation of Gibbs energy with progress of reac-
tion showing how the reaction Gibbs energy, DrG, is related
to the slope of the curve at a given composition.
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know that the change in the amount of H2 will be 
−3Δn and the change in the amount of NH3 will be
+2Δn. Each change contributes to the change in the
total Gibbs energy of the mixture, and the overall
change is

ΔG = μNH3
× 2Δn − μN2

× Δn − μH2
× 3Δn

= (2μNH3
− μN2

− 3μH2
)Δn

where the μJ are the chemical potentials of the species
in the reaction mixture. In this case, therefore, the 
reaction Gibbs energy is

(7.1b)

Note that each chemical potential is multiplied by
the corresponding stoichiometric coeAcient and that
reactants are subtracted from products. For the 
general reaction C,

ΔrG = (cμC + dμD) − (aμA + bμB) (7.1c)

The chemical potential of a substance depends on
the composition of the mixture in which it is present,
and is high when its concentration or partial pressure
is high. Therefore, ΔrG changes as the composition
changes (Fig. 7.3). Remember that ΔrG is the slope of
G plotted against composition. We see that ΔrG < 0
and the slope of G is negative (down from left 
to right) when the mixture is rich in the reactants A
and B because μA and μB are then high. Conversely,
ΔrG > 0 and the slope of G is positive (up from left to
right) when the mixture is rich in the products C and
D because μC and μD are then high.

At compositions corresponding to ΔrG < 0 the 
reaction tends to form more products. At composi-
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tions corresponding to ΔrG > 0, the reverse reaction
is spontaneous, and the products tend to decompose
into reactants. Where ΔrG = 0 (at the minimum of 
the graph where the slope is zero), the reaction has
no tendency to form either products or reactants. In
other words, the reaction is at equilibrium. That is,
the criterion for chemical equilibrium at constant
temperature and pressure is

ΔrG = 0 (7.2)

7.2 The variation of DrG with composition

Our next step is to find how ΔrG varies with the com-
position of the system. Once we know that, we shall
be able to identify the composition corresponding to
ΔrG = 0. Our starting point is the general expression
for the composition dependence of the chemical 
potential derived in Section 6.5:

μJ = μJ + RT ln aJ (7.3)

where aJ is the activity of the species J. When we 
are dealing with ideal systems, which will be the case
in this chapter, we use the identifications given in
Table 6.2:

For solutes in an ideal solution, aJ = [ J]/c , the
molar concentration of J relative to the standard
value c = 1 mol dm−3.

For perfect gases, aJ = pJ /p , the partial pressure of
J relative to the standard pressure p = 1 bar.

For pure solids and liquids, aJ = 1.

As in Chapter 6, to simplify the appearance of 
expressions in what follows, we shall not write c
and p explicitly.

Substitution of eqn 7.3 into eqn 7.1c gives

ΔrG = {c(μC + RT ln aC) + d(μD + RT ln aD)}

− {a(μA + RT ln aA) + b(μB + RT ln aB)}

= {(cμC + dμD) − (aμA + bμB )} 

+ RT {c ln aC + d ln aD − a ln aA − b ln aB}

The first term on the right in the second equality is
the standard reaction Gibbs energy, Δ rG :

Δ rG = {cμC + dμD} − {aμA + bμB } (7.4a)

Because the standard states refer to the pure materials,
the standard chemical potentials in this expression
are the standard molar Gibbs energies of the (pure)
species. Therefore, eqn 7.4a is the same as

Δ rG = {cGm(C) + dGm(D)} − {aGm(A) + bGm(B)}

(7.4b)
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Fig. 7.3 At the minimum of the curve, corresponding to 
equilibrium, DrG = 0. To the left of the minimum, DrG < 0, 
and the forward reaction is spontaneous. To the right of the 
minimum, DrG > 0 and the reverse reaction is spontaneous.
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We consider this important quantity in more detail
shortly. At this stage, therefore, we know that

Δ rG = Δ rG + RT {c ln aC + d ln aD − a ln aA − b ln aB}

and the expression for Δ rG is beginning to look
much simpler.

To make further progress, we rearrange the re-
maining terms on the right as follows:

At this point, we have deduced that

To simplify the appearance of this expression still
further we introduce the (dimensionless) reaction
quotient, Q, for reaction C:

(7.5)

Note that Q has the form of products divided by 
reactants, with the activity of each species raised to 
a power equal to its stoichiometric coeAcient in the
reaction. We can now write the overall expression
for the reaction Gibbs energy at any composition of
the reaction mixture as

ΔrG = ΔrG + RT ln Q (7.6)

This simple but hugely important equation will occur
several times in different disguises.

A brief illustration The reaction quotient for reaction
A is

However, our convention is not to write the standard con-
centration explicitly (in this example, it cancels anyway),
so this expression simplifies to

with [J] the numerical value of the molar concentration of
J in moles per cubic decimetre (so, if [F6P] = 2.0 mmol
dm−3, corresponding to 2.0 × 10−3 mol dm−3, we just write
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[F6P] = 2.0 × 10−3 when using this expression). For reac-
tion B, the synthesis of ammonia, a gas-phase reaction,
the reaction quotient is

When we do not write the standard pressure explicitly,
this expression simplifies to

with pJ the numerical value of the partial pressure of J in
bar (so, if pNH3

= 2 bar, we just write pNH3
= 2 when using

this expression).
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Self-test 7.1

Write the reaction quotient for the esterification reaction
CH3COOH + C2H5OH f CH3COOC2H5 + H2O. (All four
components are present in the reaction mixture as 
liquids: the mixture is not an aqueous solution.)

[Answer: Q ≈ [CH3COOC2H5][H2O]/[CH3COOH][C2H5OH]]

7.3 Reactions at equilibrium

When the reaction has reached equilibrium, the com-
position has no further tendency to change because
ΔrG = 0 and the reaction is spontaneous in neither 
direction. At equilibrium, the reaction quotient has 
a certain value called the equilibrium constant, K, of
the reaction:

(7.7)

We shall not normally write ‘equilibrium’; the 
context will always make it clear that Q refers to an
arbitrary stage of the reaction, whereas K, the value
of Q at equilibrium, is calculated from the equilib-
rium composition. It now follows from eqn 7.6, that
at equilibrium

and therefore that

Δ rG = −RT ln K (7.8)

This is one of the most important equations in the
whole of chemical thermodynamics. Its principal use
is to predict the value of the equilibrium constant of
any reaction from tables of thermodynamic data, like
those in the Data section. Alternatively, we can use it
to determine Δ rG by measuring the equilibrium
constant of a reaction.

DrG = 0 at equilibrium Q = K at equilibrium

0 = Δ rG
a + RT ln K

K
a a
a a

c d

a b=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

C D

A B equilibrium
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A brief illustration Suppose we know that DrG
- =

+3.40 kJ mol−1 for the reaction H2(g) + I2(s) → 2 HI(g) at
25°C, then to calculate the equilibrium constant we write

This expression evaluates to ln K = −1.37, but to avoid
rounding errors, we leave the evaluation until the next
step, which is to use the relation eln x = x with x = K to
write.

A note on good practice All equilibrium constants and 
reaction quotients are dimensionless numbers.
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dynamically feasible. Reactions for which ΔrG > 0
are called endergonic. Some care must be exercised
with these rules, however, because the products will
be significantly more abundant than reactants only if 
K >> 1 (more than about 103) and even a reaction
with K < 1 may have a reasonable abundance of pro-
ducts at equilibrium.

Table 7.1 summarizes the conditions under which
ΔrG < 0 and K > 1. Because ΔrG = ΔrH − TΔrS ,
the standard reaction Gibbs energy is certainly nega-
tive if both ΔrH < 0 (an exothermic reaction) and
ΔrS > 0 (a reaction system that becomes more dis-
orderly, such as by forming a gas). The standard 
reaction Gibbs energy is also negative if the reaction
is endothermic (ΔrH > 0) and TΔrS is suAciently
large and positive. Note that for an endothermic 
reaction to have ΔrG < 0, its standard reaction 
entropy must be positive. Moreover, the temperature
must be high enough for TΔrS to be greater than
ΔrH (Fig. 7.5). The switch of ΔrG from positive 

Self-test 7.3

Calculate the equilibrium constant of the reaction N2(g) +
3 H2(g) → 2 NH3(g) at 25°C, given that DrG

- = −32.90 kJ
mol−1.

[Answer: 5.8 × 105]

An important feature of eqn 7.8 is that it tells 
us that K > 1 if ΔrG < 0. Broadly speaking, K > 1 
implies that products are dominant at equilibrium,
so we can conclude that a reaction is thermodynami-
cally feasible if ΔrG < 0 (Fig. 7.4). Reactions for
which ΔrG < 0 are called exergonic. Conversely, 
because eqn 7.8 tells us that K < 1 if ΔrG > 0, then
we know that the reactants will be dominant in a 
reaction mixture at equilibrium if ΔrG > 0. In other
words, a reaction with ΔrG > 0 is not thermo-
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Fig. 7.4 The relation between standard reaction Gibbs 
energy and the equilibrium constant of the reaction.

The pale curve is magnified by a factor of 10.

Table 7.1

Thermodynamic criteria of spontaneity

(1) If the reaction is exothermic (DrH
- < 0) and DrS

- > 0

DrG
- < 0 and K > 1 at all temperatures

(2) If the reaction is exothermic (DrH
- < 0) and DrS

- < 0

DrG
- < 0 and K > 1 provided that T < DrH

-/DrS
-

(3) If the reaction is endothermic (DrH
- > 0) and DrS

- > 0

DrG
- < 0 and K > 1 provided that T > DrH

-/DrS
-

(4) If the reaction is endothermic (DrH
- > 0) and DrS

- < 0

DrG
- < 0 and K > 1 at no temperature
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Fig. 7.5 An endothermic reaction may have K > 1 provided
the temperature is high enough for TDrS

- to be large enough
that, when subtracted from DrH

- the result is negative.
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to negative, corresponding to the switch from K < 1
(the reaction ‘does not go’) to K > 1 (the reaction
‘goes’), occurs at a temperature given by equating
ΔrH − TΔrS to 0, which gives:

(7.9)

A brief illustration Consider the (endothermic) ther-
mal decomposition of calcium carbonate:

CaCO3(s) → CaO(s) + CO2(g) 

For this reaction DrH
- = +178 kJ mol−1 and DrS

- =
+161 J K−1 mol−1. The decomposition temperature, the
temperature at which the decomposition becomes spon-
taneous, is

or about 832°C. Because the entropy of decomposition is
similar for all such reactions (they all involve the decom-
position of a solid into a gas), we can conclude that the 
decomposition temperatures of solids increase as their
enthalpy of decomposition increases.

7.4 The standard reaction Gibbs energy

The standard reaction Gibbs energy, ΔrG , is central
to the discussion of chemical equilibria and the 
calculation of equilibrium constants. We have seen
that it is defined as the difference in standard molar
Gibbs energies of the products and the reactants
weighted by the stoichiometric coeAcients, v, in the
chemical equation:

Δ rG = ∑vGm(products) − ∑vGm(reactants) (7.10)

For example, the standard reaction Gibbs energy for
reaction A is the difference between the molar Gibbs
energies of fructose-6-phosphate and glucose-6-
phosphate in solution at 1 mol dm−3 and 1 bar.

We cannot calculate ΔrG from the standard molar
Gibbs energies themselves, because these quantities
are not known. One practical approach is to calcu-
late the standard reaction enthalpy from standard
enthalpies of formation (Section 3.5), the standard
reaction entropy from Third-Law entropies (Section
4.6), and then to combine the two quantities by using

Δ rG = Δ rH − TΔ rS (7.11)

A brief illustration To evaluate the standard reaction
Gibbs energy at 25°C for the reaction H2(g) + O2(g) →
H2O(l), we note that

DrH
- = DfH

-(H2O, l) = −285.83 kJ mol−1

The standard reaction entropy, calculated in Chapter 4, is
DrS

- = −163.34 J K−1 mol−1, which, because 163.34 J is

1
2
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1103 K
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=
Δ
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r

r

the same as 0.163 34 kJ, corresponds to −0.163 34 kJ K−1

mol−1. Therefore, from eqn 7.11,

DrG
- = (−285.83 kJ mol−1) − (298.15 K) 

× (−0.163 34 kJ K−1 mol−1) = −237.13 kJ mol−1

Self-test 7.4

Use the information in the Data section to determine the
standard reaction Gibbs energy for 3 O2(g) → 2 O3(g)
from standard enthalpies of formation and standard 
entropies.

[Answer: +326.4 kJ mol−1]

We saw in Section 3.5 how to use standard 
enthalpies of formation of substances to calculate
standard reaction enthalpies. We can use the same
technique for standard reaction Gibbs energies. To
do so, we list the standard Gibbs energy of forma-
tion, ΔfG , of a substance, which is the standard 
reaction Gibbs energy (per mole of the species) for its
formation from the elements in their reference states.
The concept of reference state was introduced in
Section 3.5; the temperature is arbitrary, but we 
shall almost always take it to be 25°C (298 K). For
example, the standard Gibbs energy of formation of
liquid water, ΔfG (H2O, l), is the standard reaction
Gibbs energy for

H2(g) + O2(g) → H2O(l)

and is −237 kJ mol−1 at 298 K. Some standard Gibbs
energies of formation are listed in Table 7.2 and
more can be found in the Data section. It follows
from the definition that the standard Gibbs energy of
formation of an element in its reference state is zero
because reactions such as

C(s, graphite) → C(s, graphite)

are null (that is, nothing happens). The standard
Gibbs energy of formation of an element in a phase
different from its reference state is nonzero:

C(s, graphite) → C(s, diamond) 
ΔfG (C, diamond) = +2.90 kJ mol−1

Many of the values in the tables have been compiled
by combining the standard enthalpy of formation of
the species with the standard entropies of the com-
pound and the elements, as illustrated above, but
there are other sources of data and we encounter
some of them later.

Standard Gibbs energies of formation can be com-
bined to obtain the standard Gibbs energy of almost
any reaction. We use the now familiar expression

1
2
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ΔrG = ∑vΔfG (products) − ∑vΔfG (reactants)
(7.12)

A brief illustration To determine the standard reaction
Gibbs energy for

2 CO(g) + O2(g) → 2 CO2(g)

we carry out the following calculation:

DrG
- = 2DfG

-(CO2, g) − {2DfG
-(CO, g) + DfG

-(O2, g)}

= 2 × (−394 kJ mol−1) − {2 × (−137 kJ mol−1) + 0}

= −514 kJ mol−1

below a ‘sea level’ of stability represented by the 
elements in their reference states (Fig. 7.6). If the
standard Gibbs energy of formation is positive and
the compound lies above ‘sea level’, then the com-
pound has a spontaneous tendency to sink towards
thermodynamic sea level and decompose into the 
elements. That is, K < 1 for their formation reaction.
We say that a compound with ΔfG > 0 is thermo-
dynamically unstable with respect to its elements 
or that it is an endergonic compound. Thus, ozone,
for which ΔfG = +163 kJ mol−1, has a spontaneous
tendency to decompose into oxygen under standard
conditions at 25°C. More precisely, the equilibrium
constant for the reaction O2(g) f O3(g) is less 
than 1 (much less in fact, for K = 2.7 × 10−29). How-
ever, although ozone is thermodynamically unstable,
it can survive if the reactions that convert it into 
oxygen are slow. That is the case in the upper atmo-
sphere, and the O3 molecules in the ozone layer sur-
vive for long periods. Benzene (ΔfG = +124 kJ mol−1)
is also thermodynamically unstable with respect to
its elements (K = 1.8 × 10−22). However, the fact 
that bottles of benzene are everyday laboratory com-
modities also reminds us of the point made at the
start of the chapter, that spontaneity is a thermo-
dynamic tendency that might not be realized at a
significant rate in practice.

Another useful point that can be made about stand-
ard Gibbs energies of formation is that there is no
point in searching for direct syntheses of a thermo-
dynamically unstable compound from its elements
(under standard conditions, at the temperature to

3
2

Table 7.2

Standard Gibbs energies of formation at 
298.15 K*

Substance Δ fG
=/(kJ mol−1)

Gases
Ammonia, NH3 −16.45
Carbon dioxide, CO2 −394.36
Dinitrogen tetroxide, N2O4 +97.89
Hydrogen iodide, HI +1.70
Nitrogen dioxide, NO2 +51.31
Sulfur dioxide, SO2 −300.19
Water, H2O −228.57

Liquids

Benzene, C6H6 +124.3
Ethanol, CH3CH2OH −174.78
Water, H2O −237.13

Solids

Calcium carbonate, CaCO3 −1128.8
Iron(III) oxide, Fe2O3 −742.2
Silver bromide, AgBr −96.90
Silver chloride, AgCl −109.79

* Additional values are given in the Data section and the text’s
website.

Self-test 7.5

Calculate the standard reaction Gibbs energy of the oxi-
dation of ammonia to nitric oxide according to the equa-
tion 4 NH3(g) + 5 O2(g) → 4 NO(g) + 6 H2O(g).

[Answer: −959.42 kJ mol−1]
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Fig. 7.6 The standard Gibbs energy of formation of a com-
pound is like a measure of the compound’s altitude above (or
below) sea level: compounds that lie above sea level have a
spontaneous tendency to decompose into the elements (and
to revert to sea level). Compounds that lie below sea level are
stable with respect to decomposition into the elements. The
numerical values are in kilojoules per mole.

Standard Gibbs energies of formation of com-
pounds have their own significance as well as being
useful in calculations of K. They are a measure of the
‘thermodynamic altitude’ of a compound above or
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which the data apply), because the reaction does not
occur in the required direction: the reverse reaction,
decomposition, is spontaneous. Endergonic com-
pounds must be synthesized by alternative routes or
under conditions for which their Gibbs energy of 
formation is negative and they lie beneath thermo-
dynamic sea level.

Compounds with ΔfG < 0 (corresponding to K > 1
for their formation reactions) are said to be thermo-
dynamically stable with respect to their elements or
are called exergonic compounds. Exergonic com-
pounds lie below the thermodynamic sea level of the
elements (under standard conditions). An example is
the exergonic compound ethane, with ΔfG = −33 kJ
mol−1: the negative sign shows that the formation of
ethane gas is spontaneous in the sense that K > 1 (in
fact, K = 7.1 × 105 at 25°C).

7.5 The equilibrium composition

The magnitude of an equilibrium constant is a good
qualitative indication of the feasibility of a reaction
regardless of whether the system is ideal or not.
Broadly speaking, if K >> 1 (typically K > 103, corres-
ponding to ΔrG < −17 kJ mol−1 at 25°C), then the
reaction has a strong tendency to form products. If 
K << 1 (that is, for K < 10−3, corresponding to ΔrG >
+17 kJ mol−1 at 25°C), then the equilibrium composi-
tion will consist of largely unchanged reactants. If 
K is comparable to 1 (typically lying between 10−3

and 103), then significant amounts of both reactants
and products will be present at equilibrium.

An equilibrium constant expresses the composition
of an equilibrium mixture as a ratio of products of
activities. Even if we confine our attention to ideal
systems it is still necessary to do some work to ex-
tract the actual equilibrium concentrations or partial
pressures of the reactants and products given their
initial values.

In more complicated cases it is best to organize 
the necessary work into a systematic procedure 
resembling a spreadsheet by constructing a table
with columns headed by the species and, in succes-
sive rows:

1. The initial molar concentrations of solutes or par-
tial pressures of gases.

2. The changes in these quantities that must take
place for the system to reach equilibrium.

3. The resulting equilibrium values.

In most cases, we do not know the change that 
must occur for the system to reach equilibrium, so
the change in the concentration or partial pressure 
of one species is written as x and the reaction stoi-
chiometry is used to write the corresponding changes
in the other species. When the values at equilibrium
(the last row of the table) are substituted into the 

Example 7.2

Calculating an equilibrium composition 1

Estimate the fraction f of F6P in a solution, where f is 
defined as

in which G6P and F6P are in equilibrium at 25°C given
that DrG

- = +1.7 kJ mol−1 at that temperature.

Strategy Express f in terms of K. To do so, recognize
that if the numerator and denominator in the expression

 
f =

+
[F6P]

[F6P] G6P][

for f are both divided by [G6P], then the ratios [F6P]/
[G6P] can be replaced by K. Calculate the value of K by
using eqn 7.8.

Solution Division of the numerator and denominator by
[G6P] gives

We find the equilibrium constant by using K = eln K and 
rearranging eqn 7.8 into

K = e−DrG°/RT

First, note that because +1.7 kJ mol−1 is the same as
+1.7 × 103 J mol−1,

Therefore,

and

That is, at equilibrium, 33 per cent of the solute is F6P
and 67 per cent is G6P.
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Self-test 7.6

Estimate the composition of a solution in which two
isomers A and B are in equilibrium (A f B) at 37°C
and DrG

- = −2.2 kJ mol−1.
[Answer: The fraction of B at equilibrium is f = 0.70]



and then, after multiplying both sides by and taking the
square root, to

To keep the appearance of this equation simple, we
write g = ( × 977)1/2, so it becomes

This expression can now be rearranged into

gx2 − 2.00gx + 1.00g = x

and then into

gx2 − (2.00g + 1)x + 1.00g = 0

This equation has the form ax2 + bx + c = 0 (the quadratic
equation) with a = g, b = −(2.00g + 1), and c = 1.00g. Its
solutions are given by the quadratic formula

and we find x = 1.12 and x = 0.895. Because pN2
cannot

be negative, and pN2
= 1.00 − x (from the equilibrium

table), we know that x cannot be greater than 1.00; there-
fore, we select x = 0.895 as the acceptable solution. It
then follows from the last line of the equilibrium table
that (with the units bar restored):

pN2
= 0.10 bar pH2

= 0.31 bar pNH3
= 1.8 bar

This is the composition of the reaction mixture at equilib-
rium. Note that, because K is large (of the order of 103),
the products dominate. To verify the result, we calculate

The results is close to the experimental value (the dis-
crepancy stems from rounding errors).
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expression for the equilibrium constant, we obtain
an equation for x in terms of K. This equation can be
solved for x, and hence the concentrations of all the
species at equilibrium may be found.

7.6 The equilibrium constant in terms 
of concentration

An important point to appreciate is that the equilib-
rium constant K calculated from thermodynamic data
refers to activities. For gas-phase reactions, that means

Example 7.3

Calculating an equilibrium composition 2

Suppose that in an industrial process, N2 at 1.00 bar is
mixed with H2 at 3.00 bar and the two gases are allowed
to come to equilibrium with the product ammonia in a 
reactor of constant volume (in the presence of a catalyst,
so the reaction proceeds quickly). At the temperature of
the reaction, it has been determined experimentally that
K = 977. What are the equilibrium partial pressures of the
three gases?

Strategy Proceed as set out above. Write down the
chemical equation of the reaction and the expression for
K. Set up the equilibrium table, express K in terms of x,
and solve the equation for x. Because the volume of the
reaction vessel is constant, each partial pressure is pro-
portional to the amount of its molecules present (pJ =
nJRT /V ), so the stoichiometric relations apply to the par-
tial pressures directly. In general, solution of the equation
for x results in several mathematically possible values of
x. Select the chemically acceptable solution by consider-
ing the signs of the predicted concentrations or partial
pressures: they must be positive. Confirm the accuracy
of the calculation by substituting the calculated equilib-
rium partial pressures into the expression for the equilib-
rium constant to verify that the value so calculated is
equal to the experimental value used in the calculation.

Solution The chemical equation is reaction B (N2(g) +
3 H2(g) → 2 NH3(g)), and the equilibrium constant is

with the partial pressures those at equilibrium (and, as
usual, relative to p-). The equilibrium table is

Species N2 H2 NH3

Initial partial pressure/bar 1.00 3.00 0
Change/bar −x −3x +2x
Equilibrium partial 1.00 − x 3.00 − 3x 2x
pressure/bar

The equilibrium constant for the reaction is therefore

Our task is to solve this equation for x. Because K = 977,
this equation rearranges first to
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Self-test 7.7

In an experiment to study the formation of nitrogen
oxides in jet exhausts, N2 at 0.100 bar is mixed with
O2 at 0.200 bar and the two gases are allowed to
come to equilibrium with the product NO in a reactor
of constant volume. Take K = 3.4 × 10−21 at 800 K.
What is the equilibrium partial pressure of NO?

[Answer: 8.2 pbar]
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A brief illustration For reaction b we have DVgas =
2 − (1 + 3) = −2; therefore, from eqn 7.13b,

At 298 K, K = 5.8 × 105, so at this temperature

The response of equilibria to 

the conditions

In introductory chemistry, we meet the empirical rule
of thumb known as Le Chatelier’s principle:

When a system at equilibrium is subjected to a dis-
turbance, the composition of the system adjusts so
as to tend to minimize the effect of the disturbance.

For instance, if a system is compressed, then the 
equilibrium position can be expected to shift in the
direction that leads to a reduction in the number of
molecules in the gas phase, for that tends to minimize
the effect of compression. Le Chatelier’s principle,
though, is only a rule of thumb, and to understand
why reactions respond as they do, and to calculate
the new equilibrium composition, we need to use
thermodynamics. We need to keep in mind that some
changes in conditions affect the value of ΔrG and
therefore of K (temperature is the only instance)
whereas others change the consequences of K having
a particular fixed value without changing the value
of K (the pressure, for instance).

7.7 The presence of a catalyst

A catalyst is a substance that accelerates a reaction
without itself appearing in the overall chemical equa-
tion. Enzymes are biological versions of catalysts.
We study the action of catalysts in Section 10.12, and
at this stage do not need to know in detail how they
work other than that they provide an alternative,
faster route from reactants to products.

Although the new route from reactants to products
is faster, the initial reactants and the final products
are the same. The quantity ΔrG is defined as the 
difference of the standard molar Gibbs energies of
the reactants and products, so it is independent of 
the path linking the two. It follows that an alterna-
tive pathway between reactants and products leaves
ΔrG and therefore K unchanged. That is, the pres-
ence of a catalyst does not change the equilibrium
constant of a reaction.

 
Kc = × ×

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ×5 8 10

298
3 6 105

2
8. .

K
12.027 K

 
K

K
T

K
T

c = = ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−( / . .12 027 12 0272

2

K) K

Derivation 7.1

The relation between K and Kc

In this derivation, we need to be fussy about units, and
will write the equilibrium constants of reaction C in all
their glory as

The inclusion of p- and c- ensures that the two equilib-
rium constants are dimensionless. Now we use the per-
fect gas law to replace each partial pressure by

pJ = nJRT/V = [J]RT

(because [J] = nJ /V ). This substitution turns the expres-
sion for K into

Next, we recognize that

and so conclude that

We obtain eqn 7.13 by writing (c + d ) − (a + b) = DVgas.
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partial pressures (and explicitly, pJ /p ). This require-
ment is sometimes emphasized by writing K as Kp, but
the practice is unnecessary if the thermodynamic origin
of K is remembered. In practical applications, how-
ever, we might wish to discuss gas-phase reactions in
terms of molar concentrations. The equilibrium con-
stant is then denoted Kc, and for reaction B is

with, as usual, the molar concentration [J] inter-
preted as [J] /c with c = 1 mol dm−3. To obtain the
value of Kc from thermodynamic data, we must first
calculate K and then convert K to Kc by using, as
shown in Derivation 7.1,

(7.13a)

In this expression, Δvgas is the difference in the 
stoichiometric coeAcients of the gas-phase species,
products – reactants. We get a very convenient form
of this expression by substituting the values of c ,
p , and R, which gives

(7.13b)
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7.8 The effect of temperature

According to Le Chatelier’s principle, we can expect
a reaction to respond to a lowering of temperature 
by releasing heat and to respond to an increase of
temperature by absorbing heat. That is:

When the temperature is raised, the equilibrium
composition of an exothermic reaction will tend to
shift towards reactants; the equilibrium composi-
tion of an endothermic reaction will tend to shift
towards products.

In each case, the response tends to minimize the effect
of raising the temperature. But why do reactions 
at equilibrium respond in this way? Le Chatelier’s
principle is only a rule of thumb, and gives no clue to
the reason for this behaviour. As we shall now see,
the origin of the effect is the dependence of ΔrG ,
and therefore of K, on the temperature.

First, we consider the effect of temperature on
ΔrG . We use the relation ΔrG = ΔrH − TΔrS
and make the assumption that neither the reaction 
enthalpy nor the reaction entropy varies much with
temperature (over small ranges, at least). It follows that

Change in ΔrG = −(change in T) × ΔrS (7.14)

This expression is easy to apply when there is a con-
sumption or formation of gas because, as we have
seen (Section 4.6), gas formation dominates the sign
of the reaction entropy.

A brief illustration Consider the three reactions

(i) C(s) + O2(g) → CO2(g)

(ii) C(s) + O2(g) → CO(g)

(iii) CO(g) + O2(g) → CO2(g)

all of which are important in the discussion of the extraction
of metals from their ores. In reaction (i), the amount of gas
is constant, so the reaction entropy is small and DrG

- for
this reaction changes only slightly with temperature. (Note,
however, that K changes, because −DrG

-/RT becomes
less negative as T increases, so K decreases). Because in
reaction (ii) there is a net increase in the amount of gas
molecules, from mol to 1 mol, the reaction entropy 
is large and positive; therefore, DrG

- for this reaction 
decreases sharply with increasing temperature. In reaction
(iii), there is a similar net decrease in the amount of gas
molecules, from mol to 1 mol, so DrG

- for this reaction
increases sharply with increasing temperature. These 
remarks are summarized in Fig. 7.7.

Now consider the effect of temperature on K itself.
At first, this problem looks troublesome, because
both T and ΔrG appear in the expression for K.
However, as we show in Derivation 7.2, the effect of
temperature can be expressed very simply as the van ’t
Hoff equation.
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Fig. 7.7 The variation of reaction Gibbs energy with temper-
ature depends on the reaction entropy and therefore on the
net production or consumption of gas in a reaction (as indic-
ated by the blue boxes, which show the relative amounts 
of gas on each side of the equations). The Gibbs energy of a
reaction that produces gas decreases with increasing tem-
perature. The Gibbs energy of a reaction that results in a net
consumption of gas increases with temperature.

Derivation 7.2

The van ’t Hoff equation

As before, we use the approximation that the stand-
ard reaction enthalpy and entropy are independent of
temperature over the range of interest, so the entire
temperature dependence of DrG

- stems from the T in
DrG

- = DrH
- − TDrS

-. At a temperature T,

At another temperature T ′, when DrG
-′ = DrH

- −
T ′DrS

- and the equilibrium constant is K ′, a similar ex-
pression holds:

The difference between the two is

which is the van ’t Hoff equation, eqn 7.15.
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where K is the equilibrium constant at the tempera-
ture T and K′ is its value when the temperature is T ′.
All we need to know to calculate the temperature 
dependence of an equilibrium constant, therefore, is
the standard reaction enthalpy.
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Box 7.1 Coupled reactions in biochemical processes

A reaction that is not spontaneous may be driven forward
by coupling it to a reaction that is spontaneous. A simple
mechanical analogy is a pair of weights joined by a string
(see the illustration): the lighter of the pair of weights will be
pulled up as the heavier weight falls. Although the lighter
weight has a natural tendency to move downwards, its 
coupling to the heavier weight results in it being raised. The
thermodynamic analogue is an endergonic reaction (the
analogue of the lighter weight) being forced to occur by
coupling it to an exergonic reaction (the analogue of the
heavier weight falling to the ground). The overall reaction is
spontaneous because the sum DrG + DrG ′ is negative. The
whole of life’s activities depend on coupling of this kind, for
the oxidation reactions of food act as the heavy weights
that drive other reactions forward and result in the forma-
tion of proteins from amino acids, the actions of muscles
for propulsion, and even the activities of the brain for reflec-
tion, learning, and imagination.

glucose(aq) + ATP(aq) → G6P(aq) + ADP(aq)

is exergonic and initiates glycolysis.
Before discussing the hydrolysis of ATP quantitatively,

we need to note that the conventional standard state of 
hydrogen ions (a = 1, corresponding to pH = 0, a strongly
acidic solution; recall from introductory chemistry that 
pH = −log aH3O+ ≈ −log [H3O

+]) is not appropriate to normal 
biological conditions inside cells, where the pH = log aH3O+ is
close to 7. Therefore, in biochemistry it is common to adopt
the biological standard state, in which pH = 7, a neutral 
solution. We shall adopt this convention in this section, and
label the corresponding standard quantities as G⊕, H ⊕, and
S ⊕. Another convention to denote the biological standard
state is to write X °′ or X -′.

The biological standard values for the hydrolysis of ATP at
37°C (310 K, body temperature) are

DrG
⊕ = −31 kJ mol−1 DrH

⊕ = −20 kJ mol−1

DrS
⊕ = +34 kJ mol−1

The hydrolysis is therefore exergonic (DrG < 0) under these
conditions, and 31 kJ mol−1 is available for driving other 
reactions. On account of its exergonic character, the ADP–
phosphate bond has been called a ‘high-energy phosphate
bond’. The name is intended to signify a high tendency to
undergo reaction and should not be confused with ‘strong’
bond in its normal chemical sense (that of a high bond en-
thalpy). In fact, even in the biological sense it is not of very
‘high energy’. The action of ATP depends on the bond being
intermediate in strength. Thus ATP acts as a phosphate
donor to a number of acceptors (such as glucose), but is
recharged with a new phosphate group by more power-
ful phosphate donors in the phosphorylation steps in the
respiration cycle.

If two weights are coupled as shown here, then the heavier
weight will move the lighter weight in its nonspontaneous
direction: overall, the process is still spontaneous. The
weights are the analogues of two chemical reactions: a re-
action with a large negative DG can force another reaction
with a smaller DG to run in its nonspontaneous direction.
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The function of adenosine triphosphate, ATP (3), for in-
stance, is to store the energy made available when food is
oxidized and then to supply it on demand to a wide variety
of processes, including muscular contraction, reproduction,
and vision. The essence of ATP’s action is its ability to lose
its terminal phosphate group by hydrolysis and to form
adenosine diphosphate, ADP (4):

ATP(aq) + H2O(l) → ADP(aq) + P i
−(aq) + H+(aq)

where P i
− denotes an inorganic phosphate group, such as

H2PO4
−. This reaction is exergonic under the conditions pre-

vailing in cells and can drive an endergonic reaction forward
if suitable enzymes are available to couple the reactions.
For example, the endergonic phosphorylation of glucose
(Example 7.1) is coupled to the hydrolysis of ATP in the cell,
so the net reaction
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Box 7.2 Binding of oxygen to myoglobin and haemoglobin

The protein myoglobin (Mb) stores O2 in muscle and the
protein haemoglobin (Hb) transports O2 in blood; haemo-
globin is composed of four myoglobin-like molecules. In
each protein, the O2 molecule attaches to an iron ion in 
a haem group, and each myoglobin-like component of
haemoglobin responds to the change in shape of the others
when O2 binds to them.

First, consider the equilibrium between Mb and O2:

Mb(aq) + O2(g) f MbO2(aq)

where p is the numerical value of the partial pressure (in
bar) of O2 gas. It follows that the fractional saturation, s, the
fraction of Mb molecules that are oxygenated, is

The dependence of s on p is shown in the illustration.
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The variation of the fractional saturation of myoglobin
and haemoglobin molecules with the partial pres-

sure of oxygen. The different shapes of the curves account
for the different biological functions of the two proteins.

Let’s explore the information in the van ’t Hoff
equation. Consider the case when T ′ > T. Then 
the term in parentheses in eqn 7.15 is positive. If
ΔrH > 0, corresponding to an endothermic reaction,
the entire term on the right is positive. In this case,
therefore, ln K′ > ln K. That being so, we conclude
that K′ > K for an endothermic reaction. In general,
the equilibrium constant of an endothermic reaction
increases with temperature. The opposite is true
when ΔrH < 0, so we can conclude that the equilib-
rium constant of an exothermic reaction decreases
with an increase in temperature.

The conclusions we have outlined are of consider-
able commercial and environmental significance. For
example, the synthesis of ammonia is exothermic, so
its equilibrium constant decreases as the temperature
is increased; in fact, K falls below 1 when the tem-
perature is raised to above 200°C. Unfortunately, 
the reaction is slow at low temperatures and is com-
mercially feasible only if the temperature exceeds
about 750°C even in the presence of a catalyst; but
then K is very small. We shall see shortly how Fritz
Haber, the inventor of the Haber process for the
commercial synthesis of ammonia, was able to over-
come this diAculty. Another example is the oxida-
tion of nitrogen:

N2(g) + O2(g) → 2 NO(g)

This reaction is endothermic (ΔrH = +180 kJ mol−1)
largely as a consequence of the very high bond 
enthalpy of N2, so its equilibrium constant increases
with temperature. It is for this reason that nitrogen

monoxide (nitric oxide) is formed in significant
quantities in the hot exhausts of jet engines and in 
the hot exhaust manifolds of internal combustion 
engines, and then goes on to contribute to the prob-
lems caused by acid rain.

A final point in this connection is that to use the
van ’t Hoff equation for the temperature dependence
of Kc, we first convert Kc to K by using eqn 7.13 at
the temperature to which it applies, use eqn 7.15 
to convert K to the new temperature, and then use
eqn 7.13 again, but with the new temperature, to con-
vert the new K to Kc. As you might appreciate, on the
whole it is better to stick to using K.

7.9 The effect of compression

We have seen that Le Chatelier’s principle suggests
that the effect of compression (decrease in volume)
on a gas-phase reaction at equilibrium is as follows:

When a system at equilibrium is compressed, the
composition of a gas-phase equilibrium adjusts so as
to reduce the number of molecules in the gas phase.

For example, in the synthesis of ammonia, reaction
B, four reactant molecules give two product mole-
cules, so compression favours the formation of 
ammonia. Indeed, this is the key to resolving Haber’s
dilemma, for by working with highly compressed
gases he was able to increase the yield of ammonia.
Pressure plays an important role in governing the 
uptake and release of oxygen from oxygen transport
and storage proteins (Box 7.2).
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Let’s explore the thermodynamic basis of this 
dependence. First, we note that ΔrG is defined as the
difference between the Gibbs energies of substances

in their standard states and therefore at 1 bar. It 
follows that ΔrG has the same value whatever the
actual pressure used for the reaction. Therefore, 
because ln K is proportional to ΔrG , K is independent
of the pressure at which the reaction is carried out.
Thus, if the reaction mixture in which ammonia is
being synthesized is compressed isothermally, the
equilibrium constant remains unchanged.

This rather startling conclusion should not be 
misinterpreted. The value of K is independent of the

Now consider the equilibria between Hb and O2:

Hb(aq) + O2(g) f HbO2(aq)

HbO2(aq) + O2(g) f Hb(O2)2(aq)

Hb(O2)2(aq) + O2(g) f Hb(O2)3(aq)

Hb(O2)3(aq) + O2(g) f Hb(O2)4(aq)

To develop an expression for s, we express [Hb(O2)2] in
terms of [HbO2] by using K2, then express [HbO2] in terms
of [Hb] by using K1, and likewise for all the other concentra-
tions of Hb(O2)3 and Hb(O2)4. It follows that

[HbO2] = K1p[Hb] [Hb(O2)2] = K1K2p2[Hb]

[Hb(O2)3] = K1K2K3p3[Hb] [Hb(O2)4] = K1K2K3K4p4[Hb]

The total concentration of bound O2 is

[O2]bound = [HbO2] + 2[Hb(O2)2] + 3[Hb(O2)3] + 4[Hb(O2)4]

= (1 + 2K2p + 3K2K3p2 + 4K2K3K4p3)K1p[Hb]

and the total concentration of haemoglobin is

[Hb]total = (1 + K1p + K1K2p2 + K1K2K3p3 + K1K2K3K4p4)[Hb]

Because each Hb molecule has four sites at which O2 can
attach, the fractional saturation is

A reasonable fit of the experimental data can be obtained
with K1 = 0.01, K2 = 0.02, K3 = 0.04, and K4 = 0.08 when p
is expressed in torr. The binding of O2 to haemoglobin is 
an example of cooperative binding, in which the binding of
a ligand (in this case O2) to a biopolymer (in this case Hb) 
becomes more favourable thermodynamically (that is, the
equilibrium constant increases) as the number of bound 
ligands increases up to the maximum number of binding
sites. We see the effect of cooperativity in the illustration.
Unlike the myoglobin saturation curve, the haemoglobin
saturation curve is sigmoidal (S-shaped): the fractional 
saturation is small at low ligand concentrations, increases
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sharply at intermediate ligand concentrations, and then 
levels off at high ligand concentrations. Cooperative binding
of O2 by haemoglobin is explained by an allosteric effect, in
which an adjustment of the conformation of a molecule
when one substrate binds affects the ease with which a
subsequent substrate molecule binds.

The differing shapes of the saturation curves for myo-
globin and haemoglobin have important consequences for
the way O2 is made available in the body: in particular, the
greater sharpness of the Hb saturation curve means that
Hb can load O2 more fully in the lungs and unload it more
fully in different regions of the organism. In the lungs,
where p ≈ 14 kPa, s ≈ 0.98, representing almost complete
saturation. In resting muscular tissue, p is equivalent to
about 5 kPa, corresponding to s ≈ 0.75, implying that suffi-
cient O2 is still available should a sudden surge of activity
take place. If the local partial pressure falls to 3 kPa, s falls
to about 0.1. Note that the steepest part of the curve falls 
in the range of typical tissue oxygen partial pressure.
Myoglobin, on the other hand, begins to release O2 only
when p has fallen below about 3 kPa, so it acts as a reserve
to be drawn on only when the Hb oxygen has been used up.
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haemoglobin molecules with the partial pressure of oxy-
gen. The different shapes of the curves account for the 
different biological functions of the two proteins.

Self-test 7.9

Is the formation of products in the reaction 4 NH3(g) +
5 O2(g) f 4 NO(g) + 6 H2O(g) favoured by compression
or expansion of the reaction vessel?

[Answer: expansion]
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pressure to which the system is subjected, but because
partial pressures occur in the expression for K in a
rather complicated way, that does not mean that the
individual partial pressures or concentrations are 
unchanged. Suppose, for example, the volume of the
reaction vessel in which the reaction H2(g) + I2(s) f
2 HI(g) has reached equilibrium is reduced by a factor
of 2 and the system is allowed to reach equilibrium
again. If the partial pressures were simply to double
(that is, there is no adjustment of composition by 
further reaction), the equilibrium constant would
change from

However, we have seen that compression leaves K
unchanged. Therefore, the two partial pressures
must adjust by different amounts. In this instance, K′
will remain equal to K if the partial pressure of HI
changes by a factor of less than 2 and the partial pres-
sure of H2 increases by more than a factor of 2. In
other words, the equilibrium composition must shift
in the direction of the reactants in order to preserve
the equilibrium constant.

We can express this effect quantitatively by ex-
pressing the partial pressures in terms of the mole
fractions and the total pressure. For the reaction
above, we find

For K to remain constant as the pressure is increases,
the ratio of mole fractions must decrease, implying
that the proportion of HI in the mixture must in-
crease. Because xHI + xH2

= 1, the explicit dependence
of the mole fractions can be found by substituting
xH2

= 1 − xHI, which gives

and solving the resulting quadratic equation

for xHI:
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Fig. 7.8 The mole fraction of HI molecules in a gas-phase 
reaction mixture of H2 and HI as a function of pressure 
(expressed as 4p /K ); the I2 is present as a solid throughout.

Derivation 7.3

Taking a limit

To show that xHI approaches 1 as p becomes zero, we
cannot simply substitute p = 0 in eqn 7.16, because the
first factor gives infinity and the second factor gives
zero, and infinity times zero is not defined. Instead, we
have to allow p to become very small and use the fol-
lowing expansion (see Appendix 2):

(1 + x)1/2 = 1 + x + . . . .

In this case, with x = 4p/K,

and xHI becomes 1 (the first of the unwritten terms 
is proportional to p, so all the other terms are zero when
p = 0).

A note on good practice When one factor increases
and another decreases, always evaluate the limit of 
an expression in this way: never rely on simply setting a
term equal to zero.
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Because a mole fraction must be positive, we select
the following solution:

(7.16)

The dependence of the mole fractions implied by this
expression is shown in Fig. 7.8. Notice that as p
becomes zero, xHI approaches 1; this limit is derived
in Derivation 7.3.
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Compression has no effect on the composition
when the number of gas-phase molecules is the same
in the reactants as in the products. An example is the
synthesis of hydrogen iodide in which all three sub-
stances are present in the gas phase and the chemical
equation is H2(g) + I2(g) f 2 HI(g).

A more subtle example is the effect of the addition
of an inert gas to a reaction mixture contained inside
a vessel of constant volume. The overall pressure 
increases as the gas (such as argon) is added, but the

addition of a foreign gas does not affect the partial
pressures of the other gases present: the partial pres-
sure of a perfect gas (Section 1.3), the pressure a gas
would exert if it alone occupied the vessel, is inde-
pendent of the presence or absence of any other
gases. Therefore, under these circumstances, not
only does the equilibrium constant remain un-
changed, but the partial pressures of the reactants
and products remain the same whatever the stoi-
chiometry of the reaction.

Checklist of key ideas

You should now be familiar with the following concepts.

1 The reaction Gibbs energy, DrG, is the slope of a
plot of Gibbs energy against composition.

2 The condition of chemical equilibrium at constant
temperature and pressure is DrG = 0.

3 The equilibrium constant is the value of the reac-
tion quotient at equilibrium.

4 A compound is thermodynamically stable with re-
spect to its elements if DfG

= < 0.

5 The equilibrium constant of a reaction is independ-
ent of the presence of a catalysts and independent
of the pressure.

6 The variation of an equilibrium constant with tem-
perature is expressed by the van ’t Hoff equation.

7 The equilibrium constant K increases with temper-
ature if DrH

= > 0 (an endothermic reaction), and
decreases if DrH

= < 0 (an exothermic reaction).

8 When a system at equilibrium is compressed, the
composition of a gas-phase equilibrium adjusts 
so as to reduce the number of molecules in the gas
phase.

The following table summarizes the equations developed in this chapter.

Property

Gibbs energy of reaction

Gibbs energy of reaction and composition

Standard Gibbs energy of reaction

Equilibrium constant

Relation between equilibrium constants

van ’t Hoff equation

Equation

DrG = (cmC + dmD) − (amA + bmB)

DrG = DrG
- + RT ln Q, Q = ac

C ad
D /a a

Aab
B

DrG
- = ∑VDfG

-(products)
− ∑VDfG

-(reactants)

DrG
- = −RT ln K, K = Qequilibrium

K = (c -RT /p-)DVgasKc

ln K ′ − ln K = (DrH
-/R )(1/T − 1/T ′ )

Comment

For the reaction a A + b B → c C + d D

For the reaction a A + b B → c C + d D

Perfect gas

DrH
- constant in the temperature

range

Table of key equations
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Questions and exercises

Discussion questions

7.1 Explain how the mixing of reactants and products affects
the position of chemical equilibrium.

7.2 Explain how a reaction that is not spontaneous may be
driven forward by coupling it to a spontaneous reaction.

7.3 State and explain Le Chatelier’s principle in terms of
thermodynamic quantities. Could there be exceptions to 
Le Chatelier’s principle?

7.4 Suggest how the thermodynamic equilibrium constant
and the equilibrium constant expressed in terms of partial
pressures may respond differently to changes in pressure
and temperature.

7.5 Identify and justify the approximations made in the
derivation of the van ’t Hoff equation, eqn 7.15.

Exercises

7.1 Write the reaction quotients for the following reactions
making the approximation of replacing activities by molar
concentrations or partial pressures:

(a) 2 CH3COCOOH(aq) + 5 O2(g) → 6 CO2(g) + 4 H2O(l)

(b) Fe(s) + PbSO4(aq) f FeSO4(aq) + Pb(s)

(c) Hg2Cl2(s) + H2(g) f 2 HCl(aq) + 2 Hg(l)

(d) 2 CuCl(aq) f Cu(s) + CuCl2(aq)

7.2 Write the expressions for the equilibrium constants of
the following reactions:

(a) CO(g) + Cl2(g) f COCl(g) + Cl(g)

(b) 2 SO2(g) + O2(g) f 2 SO3(g)

(c) H2(g) + Br2(g) f 2 HBr(g)

(d) 2 O3(g) f 3 O2(g)

7.3 One of the most extensively studied reactions of industrial
chemistry is the synthesis of ammonia, as its successful opera-
tion helps to govern the efficiency of the entire economy. The
standard Gibbs energy of formation of NH3(g) is −16.5 kJ mol−1

at 298 K. What is the reaction Gibbs energy when the partial
pressure of the N2, H2, and NH3 (treated as perfect gases) are
3.0 bar, 1.0 bar, and 4.0 bar, respectively? What is the spon-
taneous direction of the reaction in this case?

7.4 If the equilibrium constant for the reaction A + B f C is
reported as 0.432, what would be the equilibrium constant
for the reaction written as C f A + B? 

7.5 The equilibrium constant for the reaction A + B f 2 C is
reported as 7.2 × 105. What would it be for the reaction writ-
ten as (a) 2 A + 2 B f 4 C, (b) A + B f C?1

2
1
2

7.6 The equilibrium constant for the isomerization of cis-2-
butene to trans-2-butene is K = 2.07 at 400 K. Calculate the
standard reaction Gibbs energy for the isomerization.

7.7 The standard reaction Gibbs energy of the isomerization
of cis-2-pentene to trans-2-pentene at 400 K is −3.67 kJ mol−1.
Calculate the equilibrium constant of the isomerization.

7.8 One reaction has a standard Gibbs energy of −320 kJ
mol−1 and a second reaction has a standard Gibbs energy of 
−55 kJ mol−1. What is the ratio of their equilibrium constants
at 300 K?

7.9 One enzyme-catalysed reaction in a biochemical cycle
has an equilibrium constant that is 8.4 times the equilibrium
constant of a second reaction. If the standard Gibbs energy 
of the former reaction is −250 kJ mol−1, what is the standard 
reaction Gibbs energy of the second reaction? 

7.10 What is the value of the equilibrium constant of a reac-
tion for which DrG

- = 0? 

7.11 The standard reaction Gibbs energies (at pH = 7) for the
hydrolysis of glucose-1-phosphate, glucose-6-phosphate, and
glucose-3-phosphate are −21, −14, and −9.2 kJ mol−1. Calculate
the equilibrium constants for the hydrolyses at 37°C.

7.12 The standard Gibbs energy for the hydrolysis of ATP to
ADP is −30.5 kJ mol−1; what is the Gibbs energy of reaction in
an environment at 37°C in which the ATP, ADP, and Pi con-
centrations are all (a) 1.0 mmol dm−3, (b) 1.0 mmol dm−3?

7.13 The standard reaction Gibbs energy for the hydrolysis
of ATP (given in Exercise 7.12) is +10 kJ mol−1 at 298 K. What
is the biological standard state value (see Box 7.1)?

7.14 The overall reaction for the glycolysis reaction is
C6H12O6(aq) + 2 NAD+(aq) + 2 ADP(aq) + 2 P i

−(aq) + 2 H2O(l) →
2 CH3COCO2

−(aq) + 2 NADH(aq) + 2 ATP(aq) + 2 H3O
+(aq). For

this reaction, DrG
⊕ = −80.6 kJ mol−1 at 298 K. What is the value

of DrG
-? Hint: See Box 7.1. Use the relation DrG = DrG° +

RT ln Q with the appropriate value of Q for the presence of
H3O

+ at pH = 7.

7.15 The distribution of Na+ ions across a typical biological
membrane is 10 mmol dm−3 inside the cell and 140 mmol
dm−3 outside the cell. At equilibrium the concentrations are
equal. What is the Gibbs energy difference across the mem-
brane at 37°C?

7.16 Use the information in the Data section to estimate the
temperature at which (a) CaCO3 decomposes spontaneously
and (b) CuSO4·5H2O undergoes dehydration.

7.17 The standard reaction enthalpy of Zn(s) + H2O(g) →
ZnO(s) + H2(g) is approximately constant at +224 kJ mol−1

from 920 K up to 1280 K. The standard reaction Gibbs energy
is +33 kJ mol−1 at 1280 K. Assuming that both quantities 
remain constant, estimate the temperature at which the
equilibrium constant becomes greater than 1.
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7.18 The equilibrium constant for the reaction I2(g) → 2 I(g) is
0.26 at 1000 K. What is the corresponding value of Kc?

7.19 The second step in glycolysis is the isomerization of
glucose-6-phosphate (G6P to fructose-6-phosphate (F6P).
Example 7.2 considered the equilibrium between F6P and G6P.
Draw a graph to show how the reaction Gibbs energy varies
with the fraction f of F6P in solution. Label the regions of the
graph that correspond to the formation of F6P and G6P being
spontaneous, respectively.

7.20 Classify the following compounds as endergonic or 
exergonic: (a) glucose, (b) methylamine, (c) octane, (d) ethanol.

7.21 Combine the reaction entropies calculated in the follow-
ing reactions with the reaction enthalpies and calculate the
standard reaction Gibbs energies at 298 K:

(a) HCl(g) + NH3(g) → NH4Cl(s)

(b) 2 Al2O3(s) + 3 Si(s) → 3 SiO2(s) + 4 Al(s)

(c) Fe(s) + H2S(g) → FeS(s) + H2(g)

(d) FeS2(s) + 2 H2(g) → Fe(s) + 2 H2S(g)

(e) 2 H2O2(l) + H2S(g) → H2SO4(l) + 2 H2(g)

7.22 Use the Gibbs energies of formation in the Data section
to decide which of the following reactions have K > 1 at 298 K.

(a) 2 CH3CHO(g) + O2(g) f 2 CH3COOH(l)

(b) 2 AgCl(s) + Br2(l) f 2 AgBr(s) + Cl2(g)

(c) Hg(l) + Cl2(g) f HgCl2(s)

(d) Zn(s) + Cu2+(aq) f Zn2+(aq) + Cu(s)

(e) C12H22O11(s) + 12 O2(g) f 12 CO2(g) + 11 H2O(l)

7.23 Recall from Chapter 6 that the change in Gibbs energy
can be identified with the maximum nonexpansion work that
can be extracted from a process. What is the maximum en-
ergy that can be extracted as (a) heat, (b) nonexpansion work
when 2.0 kg of natural gas (taken to be pure methane) is
burned under standard conditions at 25°C? Take the reaction
to be CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l).

7.24 In assessing metabolic processes we are usually more
interested in the work that may be performed for the con-
sumption of a given mass of compound than the heat it can
produce (which merely keeps the body warm). What is the
maximum energy that can be extracted as (a) heat, (b) non-
expansion work when 2.0 kg of glucose is burned under stand-
ard conditions at 25°C with the production of water vapour?
The reaction is C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(g).

7.25 Is it more energy effective to ingest sucrose or glucose?
Calculate the nonexpansion work, the expansion work, and
the total work that can be obtained from the combustion of
2.0 kg of sucrose under standard conditions at 25°C when
the product includes (a) water vapour, (b) liquid water. 

7.26 The standard enthalpy of combustion of solid phenol,
C6H5OH, is −3054 kJ mol−1 at 298 K and its standard molar
entropy is 144.0 J K−1 mol−1. Calculate the standard Gibbs 
energy of formation of phenol at 298 K.

7.27 Calculate the maximum nonexpansion work per mole
that may be obtained from a fuel cell in which the chemical
reaction is the combustion of methane at 298 K.

7.28 Calculate the standard biological Gibbs energy for the
reaction

Pyruvate−(aq) + NADH(aq) + H+(aq) → lactate−(aq) + NAD+(aq)

at 310 K given that DrG
- = −66.6 kJ mol−1. (NAD+ is the 

oxidized form of nicotinamide dinucleotide.) This reaction 
occurs in muscle cells deprived of oxygen during strenuous
exercise and can lead to cramp.

7.29 The standard biological reaction Gibbs energy for the 
removal of the phosphate group from adenosine monophos-
phate is −14 kJ mol−1 at 298 K. What is the value of the 
thermodynamic standard reaction Gibbs energy? Hint: See
Box 7.1.

7.30 Show that if the logarithm of an equilibrium constant is
plotted against the reciprocal of the temperature, then the
standard reaction enthalpy may be determined.

7.31 Use the following data on the reaction H2(g) + Cl2(g) 
→ 2 HCl(g) to determine the standard reaction enthalpy:

T/K 300 500 1000

K 4.0 × 1031 4.0 × 1018 5.1 × 108

7.32 The equilibrium constant of the reaction 2 C3H6(g) f
C2H4(g) + C4H8(g) is found to fit the expression

between 300 K and 600 K. Calculate the standard reaction 
enthalpy and standard reaction entropy at 400 K. Hint. Begin
by calculating ln K at 390 K and 410 K; then use eqn 7.14.

7.33 Borneol is a pungent compound obtained from the cam-
phorwood tree of Borneo and Sumatra. The standard reaction
Gibbs energy of the isomerization of borneol (5) to isoborneol
(6) in the gas phase at 503 K is +9.4 kJ mol−1. Calculate the 
reaction Gibbs energy in a mixture consisting of 0.15 mol of
borneol and 0.30 mol of isoborneol when the total pressure is
600 Torr.
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7.34 The equilibrium constant for the gas-phase isomerization
of borneol, C10H17OH, to isoborneol (see Exercise 7.33) at
503 K is 0.106. A mixture consisting of 6.70 g of borneol and
12.5 g of isoborneol in a container of volume 5.0 dm3 is heated
to 503 K and allowed to come to equilibrium. Calculate the
mole fractions of the two substances at equilibrium.
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7.35 Calculate the composition of a system in which nitrogen
and hydrogen are mixed at partial pressures of 1.00 bar and
4.00 bar and allowed to reach equilibrium with their product,
ammonia, under conditions when K = 89.8.

7.36 In a gas-phase equilibrium mixture of SbCl5, SbCl3, and
Cl2 at 500 K, pSbCl5

= 0.17 bar and pSbCl3
= 0.22 bar. Calculate

the equilibrium partial pressure of Cl2 given that K = 3.5 × 10−4

for the reaction SbCl5(g) f SbCl3(g) + Cl2(g).

7.37 The equilibrium constant K = 0.36 for the reaction PCl5(g)
f PCl3(g) + Cl2(g) at 400 K. (a) Given that 1.5 g of PCl5 was 
initially placed in a reaction vessel of volume 250 cm3, deter-
mine the molar concentrations in the mixture at equilibrium.
(b) What is the percentage of PCl5 decomposed at 400 K? 

7.38 In the Haber process for ammonia, K = 0.036 for the 
reaction N2(g) + 3 H2(g) f 2 NH3(g) at 500 K. If a reactor is
charged with partial pressures of 0.020 bar of N2 and 0.020
bar of H2, what will be the equilibrium partial pressure of the
components? 

7.39 Express the equilibrium constant for N2O4(g) f 2 NO2(g)
in terms of the fraction a of N2O4 that has dissociated and the
total pressure p of the reaction mixture, and show that when
the extent of dissociation is small (a << 1), a is inversely pro-
portional to the square root of the total pressure (a ∝ p−1/2).

7.40 The equilibrium pressure of H2 over a mixture of solid
uranium and solid uranium hydride at 500 K is 1.04 Torr.
Calculate the standard Gibbs energy of formation of UH3(s) 
at 500 K.

7.41 What is the standard enthalpy of a reaction for which
the equilibrium constant is (a) doubled, (b) halved when the
temperature is increased by 10 K at 298 K?

7.42 The dissociation vapour pressure (the pressure of
gaseous products in equilibrium with the solid reactant) of
NH4Cl at 427°C is 608 kPa but at 459°C it has risen to 1115 kPa.
Calculate (a) the equilibrium constant, (b) the standard reac-
tion Gibbs energy, (c) the standard enthalpy, (d) the standard

entropy of dissociation, all at 427°C. Assume that the vapour
behaves as a perfect gas and that DH - and DS - are inde-
pendent of temperature in the range given.

Projects

The symbol ‡ indicates that calculus is required.

7.43‡ Here we explore the van’t Hoff equation in more 
detail. (a) The bond in molecular iodine is weak, and hot iodine
vapour contains a proportion of iodine atoms. When 1.00 g of
I2 is heated to 1000 K in a sealed container of volume 1.00 dm3,
the resulting equilibrium mixture contains 0.830 g of I2.
Calculate K for the dissociation equilibrium I2(g) f 2 I(g). (b)
The thermodynamically exact form of the van ’t Hoff equation
(eqn 7.15) is d(ln K ) /dT = −DrH

-/RT 2. Use the data in part (a)
to deduce an expression for the temperature dependence of
the standard reaction enthalpy for the reaction treated there,
and draw a graph to show the variation. (c) The van ’t Hoff
equation (eqn 7.15) applies to K, not to Kc. Find the corres-
ponding expression for Kc.

7.44 The saturation curves shown in Box 7.2 may also be
modelled mathematically by the equation

where s is the saturation, p is the partial pressure of O2

(specifically, p /p-), K is a constant (not the binding constant
for one ligand), and V is the Hill coefficient, which varies from
1, for no cooperativity, to N for all-or-none binding of N ligands
(N = 4 in Hb). The Hill coefficient for myoglobin is 1, and for
haemoglobin it is 2.8. (a) Determine the constant K for both
Mb and Hb from the graph of fractional saturation (at s = 0.5)
and then calculate the fractional saturation of Mb and Hb for
the following values of p/kPa: 1.0, 1.5, 2.5, 4.0, 8.0. (b) Use
the information from part (a) to calculate the value of s at the
same p values assuming that V has the theoretical maximum
value of 4.
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In this chapter we examine some consequences of 
dynamic chemical equilibria. We concentrate on the
equilibria that exist in solutions of acids, bases, and
their salts in water, where rapid proton transfer 
between species ensures that equilibrium is maintained
at all times. The link between Chapter 7 and the dis-
cussion here is that, provided the temperature is held
constant, an equilibrium constant retains its value
even though the individual activities may change. So,
if one substance is added to a mixture at equilibrium,
the other substances adjust their abundances to re-
store the value of K.

Proton transfer equilibria

The reaction of acids and bases are central to chem-
istry and its applications, such as chemical analysis
and synthesis. One particularly important applica-
tion of proton transfer equilibrium is in living cells,
for even small drifts in the equilibrium concentration
of hydrogen ions can result in disease, cell damage,
and death. Throughout this chapter, keep in mind
that a free hydrogen ion (H+, a proton) does not exist
in water: it is always attached to a water molecule
and exists as H3O

+, a hydronium ion.

8.1 Brønsted–Lowry theory

According to the Brønsted–Lowry theory of acids
and bases, an acid is a proton donor and a base is a
proton acceptor. The proton, which in this context
means a hydrogen ion, H+, is highly mobile and acids
and bases in water are always in equilibrium with
their deprotonated and protonated counterparts and
hydronium ions (H3O

+). Thus, an acid HA, such as
HCN, immediately establishes the equilibrium
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8.2 Protonation and deprotonation

All the solutions we consider are so dilute that we can
regard the water present as being a nearly pure liquid
and therefore as having unit activity (see Table 6.2).
When we set aH2O

= 1 for all the solutions we con-
sider, the resulting equilibrium constant is called the
acidity constant, Ka, of the acid HA:

(8.4a)

This rather cumbersome expression is normally 
written

(8.4b)

with ‘[J]’ interpreted as [J]/c (that is, as the numer-
ical value of the molar concentration of J with the
units mol dm−3 struck out). Acidity constants are
also called acid ionization constants and, less appro-
priately (because deprotonation is not a simple frag-
mentation into atoms), dissociation constants. Data
are widely reported in terms of the negative common
logarithm of this quantity:

pKa = −log Ka (8.5)

It follows from eqn 7.8 (ΔrG = −RT ln K) that pKa
is proportional to ΔrG for the proton transfer reac-
tion. More explicitly, pKa = ΔrG /(RT ln 10), with 
ln 10 = 2.303.. . . Therefore, manipulations of pKa
and related quantities are actually manipulations of
standard reaction Gibbs energies in disguise.

Ka
3H O A

HA
=

+ −[ ][ ]
[ ]

  
K

a a

a
c c

ca
H O A

HA

33
H O A
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Self-test 8.1

Death is likely if the pH of human blood plasma changes
by more than ±0.4 from its normal value of 7.4. What is
the approximate range of molar concentrations of hydro-
gen ions for which life can be sustained?

[Answer: 16 nmol dm−3 to 100 nmol dm−3 (1 nmol = 10−9 mol)]

HA(aq) + H2O(l) f H3O
+(aq) + A−(aq)

(8.1a)

A base B (such as NH3) immediately establishes the
equilibrium

B(aq) + H2O(l) f BH+(aq) + OH−(aq)

(8.1b)

In these equilibria, A− is the conjugate base of the
acid HA and BH+ is the conjugate acid of the base B.
Even in the absence of added acids and bases, proton
transfer occurs between water molecules and the auto-
protolysis equilibrium

2 H2O(l) f H3O
+(aq) + OH−(aq)

(8.2)

is always present. Autoprotolysis is also called 
autoionization.

As will be familiar from introductory chemistry, the
hydronium ion concentration is commonly expressed
in terms of the pH, which is defined formally as

pH = −log aH3O
+ (8.3)

where the logarithm is to base 10. In elementary work,
the hydronium ion activity is replaced by the numer-
ical value of its molar concentration, [H3O

+], which is
equivalent to setting the activity coeAcient γ equal to 1
and writing aH3O

+ = [H3O
+]/c with c = 1 mol dm−3.

For example, if the molar concentration of H3O
+ is

2.0 mmol dm−3 (where 1 mmol = 10−3 mol), then

pH ≈ −log(2.0 × 10−3) = 2.70

If the molar concentration were ten times less, at
0.20 mmol dm−3, then the pH would be 3.70. Notice
that the higher the pH, the lower the concentration
of hydronium ions in the solution and that a change
in pH by 1 unit corresponds to a 10-fold change in
their molar concentration. However, it should never
be forgotten that the replacement of activities by molar
concentration is invariably hazardous. Because ions
interact over long distances, the replacement is unre-
liable for all but the most dilute solutions (less than
about 10−3 mol dm−3).
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Self-test 8.2

Show that pKa = DrG
-/(RT ln 10). Hint: ln x = ln 10 × log x.

The value of the acidity constant indicates the 
extent to which proton transfer occurs at equilibrium
in aqueous solution. The smaller the value of Ka, and
therefore the larger the value of pKa, the lower is the
concentration of deprotonated molecules. In short,
the higher the value of pKa, the weaker the acid. Most
acids have Ka < 1 (and usually much less than 1), with
pKa > 0, indicating only a small extent of deprotona-
tion in water. These acids are classified as weak acids.
A few acids, most notably, in aqueous solution, HCl,
HBr, HI, HNO3, H2SO4 and HClO4, are classified as
strong acids, and are commonly regarded as being
completely deprotonated in aqueous solution.

A brief comment Sulfuric acid, H2SO4, is strong with re-
spect only to its first deprotonation; HSO4

− is weak.
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The corresponding expression for a base is called
the basicity constant, Kb:

pKb = −log Kb

(8.6)

where we have used the same convention for inter-
preting ‘[J]’ as in eqn 8.5. A strong base is fully pro-
tonated in solution in the sense that Kb > 1. One
example is the oxide ion, O2−, which cannot survive
in water but is immediately and fully converted into
its conjugate acid OH−. A weak base is not fully pro-
tonated in water in the sense that Kb < 1 (and usually
much less than 1). Ammonia, NH3, and its organic
derivatives the amines are all weak bases in water,
and only a small proportion of their molecules exist
as the conjugate acid (NH4

+ or RNH3
+).

The autoprotolysis constant for water, Kw, is

Kw = aH3O
+aOH− pKw = −log Kw (8.7)

At 25°C, the only temperature we consider in this
chapter, Kw = 1.0 × 10−14 and pKw = 14.00. As may
be confirmed by multiplying the two constants 
together, the acidity constant of the conjugate acid,
BH+, of a base B (the equilibrium constant for the 
reaction BH+ + H2O f H3O

+ + B) is related to the 
basicity constant of B (the equilibrium constant for
the reaction B + H2O f BH+ + OH−) by

(8.8a)

The implication of this relation is that Ka increases as
Kb decreases to maintain a product equal to the con-
stant Kw. That is, as the strength of a base decreases,
the strength of its conjugate acid increases, and vice
versa. On taking the negative common logarithm of
both sides of eqn 8.8a, we obtain

−log KaKb = −(log Ka + log Kb) = −log Ka − log Kb

= − log Kw

and therefore

pKa + pKb = pKw (8.8b)

The great advantage of this relation is that the pKb
values of bases may be expressed as the pKa of their
conjugate acids, so the strengths of all weak acids
and bases may be listed in a single table (Table 8.1).

A brief illustration If the acidity constant of the con-
jugate acid (CH3NH3

+) of the base methylamine (CH3NH2)
is reported as pKa = 10.56,

CH3NH3
+(aq) + H2O(l) f H3O

+(aq) + CH3NH2(aq) pKa = 10.56

= aH3O
+aOH = KwK K

a a
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we can infer that the basicity constant of methylamine 
itself, the equilibrium constant for

CH3NH2(aq) + H2O(l) f CH3NH3
+(aq) + OH−(aq)

is

pKb = pKw − pKa = 14.00 − 10.56 = 3.44

Another useful relation is obtained by taking the
negative common logarithm of both sides of the
definition of Kw in eqn 8.5, which gives

−log aH3O
+aOH− = −(log aH3O

+ + log aOH−)

= −log aH3O
+ − log aOH− = −log Kw

and therefore

pH + pOH = pKw (8.9)

where pOH = −log aOH−. This enormously important
relation means that the activities (in elementary
work, the molar concentrations) of hydronium and
hydroxide ions are related by a seesaw relation: as
one goes up, the other goes down to preserve the
value of pKw.

Self-test 8.3

The molar concentration of OH− ions in a certain solution
is 0.010 mmol dm−3. What is the pH of the solution?

[Answer: 9.00]

The extent of deprotonation of a weak acid in 
solution depends on the acidity constant and the for-
mal concentration of the acid, F, its concentration as
prepared. The fraction deprotonated, α, the fraction
of acid molecules HA that have donated a proton, is

Fraction deprotonated

(8.10a)

The extent to which a weak base B is protonated is
reported in terms of the fraction protonated:

Fraction protonated

(8.10b)

We can estimate the pH of a solution of a weak acid
or a weak base and calculate either of these fractions
by using the equilibrium-table technique described in
Section 7.5.

α =
+[BH

(B)
equilibrium]

F

=
equilibrium molar concentration of conjugatte acid

formal concentration of base

α =
−[A

(HA)
equilibrium]

F
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equilibrium molar concentration of conjugatte base

formal concentration of acid



PROTON TRANSFER EQUILIBRIA 175

Table 8.1

Acidity and basicity constants at 298.15 K

Acid/Base Kb pKb Ka pKa

Strongest weak acids
Trichloroacetic acid, CCl3COOH 3.3 × 10−14 13.48 3.0 × 10−1 0.52

Benzenesulfonic acid, C6H5SO3H 5.0 × 10−14 13.30 2 × 10−1 0.70

Iodic acid, HIO3 5.9 × 10−14 13.23 1.7 × 10−1 0.77

Sulfurous acid, H2SO3 6.3 × 10−13 12.19 1.6 × 10−2 1.81

Chlorous acid, HClO2 1.0 × 10−12 12.00 1.0 × 10−2 2.00

Phosphoric acid, H3PO4 1.3 × 10−12 11.88 7.6 × 10−3 2.12

Chloroacetic acid, CH2ClCOOH 7.1 × 10−12 11.15 1.4 × 10−3 2.85

Lactic acid, CH3CH(OH)COOH 1.2 × 10−11 10.92 8.4 × 10− 4 3.08

Nitrous acid, HNO2 2.3 × 10−11 10.63 4.3 × 10− 4 3.37

Hydrofluoric acid, HF 2.9 × 10−11 10.55 3.5 × 10− 4 3.45

Formic acid, HCOOH 5.6 × 10−11 10.25 1.8 × 10− 4 3.75

Benzoic acid, C6H5COOH 1.5 × 10−10 9.81 6.5 × 10−5 4.19

Acetic acid, CH3COOH 5.6 × 10−10 9.25 5.6 × 10−5 4.75

Carbonic acid, H2CO3 2.3 × 10− 8 7.63 4.3 × 10−7 6.37

Hypochlorous acid, HClO 3.3 × 10−7 6.47 3.0 × 10− 8 7.53

Hypobromous acid, HBrO 5.0 × 10− 6 5.31 2.0 × 10−9 8.69

Boric acid, B(OH)3† 1.4 × 10−5 4.86 7.2 × 10−10 9.14

Hydrocyanic acid, HCN 2.0 × 10−5 4.69 4.9 × 10−10 9.31

Phenol, C6H5OH 7.7 × 10−5 4.11 1.3 × 10−10 9.89

Hypoiodous acid, HIO 4.3 × 10− 4 3.36 2.3 × 10−11 10.64

Weakest weak acids

Weakest weak bases
Urea, CO(NH2)2 1.3 × 10−14 13.90 7.7 × 10−1 0.10

Aniline, C6H5NH2 4.3 × 10−10 9.37 2.3 × 10−5 4.63

Pyridine, C5H5N 1.8 × 10−9 8.75 5.6 × 10− 6 5.35

Hydroxylamine, NH2OH 1.1 × 10− 8 7.97 9.1 × 10−7 6.03

Nicotine, C10H11N2 1.0 × 10− 6 5.98 1.0 × 10− 8 8.02

Morphine, C17H19O3N 1.6 × 10− 6 5.79 6.3 × 10−9 8.21

Hydrazine, NH2NH2 1.7 × 10− 6 5.77 5.9 × 10−9 8.23

Ammonia, NH3 1.8 × 10−5 4.75 5.6 × 10−10 9.25

Trimethylamine, (CH3)3N 6.5 × 10−5 4.19 1.5 × 10−10 9.81

Methylamine, CH3NH2 3.6 × 10− 4 3.44 2.8 × 10−11 10.56

Dimethylamine, (CH3)2NH 5.4 × 10− 4 3.27 1.9 × 10−11 10.73

Ethylamine, C2H5NH2 6.5 × 10− 4 3.19 1.5 × 10−11 10.81

Triethylamine, (C2H5)3N 1.0 × 10−3 2.99 1.0 × 10−11 11.01

Strongest weak bases

* Values for polyprotic acids—those capable of donating more than one proton—refer to the first deprotonation.
† The proton-transfer equilibrium is B(OH)3(aq) + 2 H2O(l) f H3O

+(aq) + B(OH)4
−(aq).



Example 8.2

Assessing the extent of protonation of 
a weak base

The conjugate acid of the base quinoline (1) has pKa =
4.88. Estimate the pH and the fraction of molecules pro-
tonated in a 0.010 M aqueous solution of quinoline.

A note on good practice When an approximation has
been assumed, verify at the end of the calculation that
the approximation is consistent with the result obtained.
In this case, we assumed that x << 0.15 and have found
that x = 0.011, which is consistent.

Another note on good practice Acetic acid (ethanoic
acid) is written CH3COOH because the two O atoms 
are inequivalent; its conjugate base, the acetate ion
(ethanoate ion) is written CH3CO2

− because the two O
atoms are now equivalent (by resonance).
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Example 8.1

Assessing the extent of deprotonation of 
a weak acid

Estimate the pH and the fraction of CH3COOH mole-
cules deprotonated in 0.15 M CH3COOH(aq).

Strategy The aim is to calculate the equilibrium com-
position of the solution. To do so, we use the technique
illustrated in Example 7.3, with x the change in molar
concentration of H3O

+ ions required to reach equilibrium.
We ignore the tiny concentration of hydronium ions 
present in pure water. Once x has been found, calculate
pH = −log x. Because we can anticipate that the extent of
deprotonation is small (the acid is weak), use the appro-
ximation that x is very small to simplify the equations.

Solution We draw up the following equilibrium table:

Species CH3COOH H3O
+ CH3CO2

−

Initial concentration/ 0.15 0 0
(mol dm−3)
Change to reach −x +x +x
equilibrium/
(mol dm−3)
Equilibrium 0.15 − x x x
concentration/
(mol dm−3)

The value of x is found by inserting the equilibrium con-
centrations into the expression for the acidity constant:

We could arrange the expression into a quadratic equa-
tion and use the solution in Example 7.4. However, it is
more instructive to make use of the smallness of x to re-
place 0.15 − x by 0.15 (this approximation is valid if x <<
0.15, which is likely because the acid is weak, but should
be verified at the end of the calculation once x has been
calculated). Then the simplified equation Ka = x2/0.15
rearranges first to 0.15 × Ka = x2 and then to

x = (0.15 × Ka)
1/2 = (0.15 × 1.8 × 10−5)1/2 = 1.6 × 10−3

Therefore,

pH = −log(1.6 × 10−3) = 2.80

Calculations of this kind are rarely accurate to more than
one decimal place in the pH (and even that may be too
optimistic) because the effects of ion–ion interactions
have been ignored, so this answer would be reported as
pH = 2.8. The fraction deprotonated, a, is

That is, only 1.1 per cent of the acetic acid molecules
have donated a proton.

a = = =
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Self-test 8.4

Estimate the pH of 0.010 M CH3CH(OH)COOH(aq)
(lactic acid) from the data in Table 8.1. Before carry-
ing out the numerical calculation, decide whether you
expect the pH to be higher or lower than that calcu-
lated for the same concentration of acetic acid.

[Answer: 2.5]

Quinoline

N

Strategy The calculation of the pH of a solution of a base
involves one more step than that for the pH of a solution
of an acid. The first step is to calculate the concentration
of OH− ions in the solution by using the equilibrium-table
technique, and to express it as the pOH of the solution.
The additional step is to convert that pOH into a pH by
using the water autoprotolysis equilibrium, eqn 8.6, in
the form pH = pKw − pOH, with pKw = 14.00 at 25°C. 
We also need to compute pKb = pKw − pKa.

Solution First, we write

pKb = 14.00 − 4.88 = 9.12, corresponding to

Kb = 10−9.12 = 7.6 × 10−10

Now draw up the following equilibrium table, denoting
quinoline by Q and its conjugate acid by QH+:
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Species Q OH− QH+

Initial concentration/(mol dm−3) 0.010 0 0
Change to reach equilibrium/
(mol dm−3) −x +x +x
Equilibrium concentration/
(mol dm−3) 0.010 − x x x

The value of x is found by inserting the equilibrium con-
centrations into the expression for the basicity constant:

We suppose that x << 0.010. Then the simplified equa-
tion Kb = x2/0.010 rearranges to

x = (0.010 × Kb)
1/2 = (0.010 × 7.6 × 10−10)1/2 = 2.8 × 10−6

This value is consistent with the assumption that x <<
0.010. Therefore,

pOH = −log(2.8 × 10−6) = 5.55

and consequently pH = 14.00 − 5.55 = 8.45, or about 8.4.
The fraction protonated, a, is

or 1 molecule in about 3500.
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Self-test 8.5

The pKa for the first protonation of nicotine (2) is 8.02.
What is the pH and the fraction of molecules proto-
nated in a 0.015 M aqueous solution of nicotine?

[Answer: 10.1; 1/120]

Nicotine

N

N

CH3

Table 8.2

Successive acidity constants of polyprotic acids at 298.15 K

Acid Ka1 pKa1 Ka2 pKa2 Ka3 pKa3

Carbonic acid, H2CO3 4.3 × 10−7 6.37 5.6 × 10−11 10.25
Hydrosulfuric acid, H2S 1.3 × 10−7 6.88 7.1 × 10−15 14.15
Oxalic acid, (COOH)2 5.9 × 10−2 1.23 6.5 × 10−5 4.19
Phosphoric acid, H3PO4 7.6 × 10−3 2.12 6.2 × 10− 8 7.21 2.1 × 10−13 12.67
Phosphorous acid, H2PO3 1.0 × 10−2 2.00 2.6 × 10−7 6.59
Sulfuric acid, H2SO4 Strong 1.2 × 10−2 1.92
Sulfurous acid, H2SO3 1.5 × 10−2 1.81 1.2 × 10−7 6.91
Tartaric acid, C2H4O2(COOH)2 6.0 × 10− 4 3.22 1.5 × 10−5 4.82

8.3 Polyprotic acids

A polyprotic acid is a molecular compound that can
donate more than one proton. Two examples are 
sulfuric acid, H2SO4, which can donate up to two
protons, and phosphoric acid, H3PO4, which can 
donate up to three. A polyprotic acid is best con-
sidered to be a molecular species that can give rise to
a series of Brønsted acids as it donates its succession
of protons. Thus, sulfuric acid is the parent of two
Brønsted acids, H2SO4 itself and HSO4

−, and phos-
phoric acid is the parent of three Brønsted acids,
namely H3PO4, H2PO4

−, and HPO4
2 −.

For a species H2A with two acidic protons (such 
as H2SO4), the successive equilibria we need to con-
sider are

H2A(aq) + H2O(l) f H3O
+(aq) + HA−(aq)

HA−(aq) + H2O(l) f H3O
+(aq) + A2−(aq)

In the first of these equilibria, HA− is the conjugate
base of H2A. In the second, HA− acts as the acid and
A2− is its conjugate base. Values are given in Table 8.2.
In all cases, Ka2 is smaller than Ka1, typically by three
orders of magnitude for small molecular species, 
because the second proton is more diAcult to 
remove, partly on account of the negative charge on
HA−. Enzymes are polyprotic acids, for they possess
many protons that can be donated to a substrate
molecule or to the surrounding aqueous medium of
the cell. For them, successive acidity constants vary
much less because the molecules are so large that the
loss of a proton from one part of the molecule has 
little effect on the ease with which another some 
distance away may be lost.

K
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aa2
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Example 8.4

Calculating the fractional composition of 
a solution

Oxalic acid, H2C2O4 (ethandioic acid, HOOC—COOH),
exists in solution in equilibrium with HC2O4

− and C2O4
2−.

Show how the composition of an aqueous solution that
contains 0.010 mol dm−3 of oxalic acid varies with pH.

Strategy We expect the fully protonated species
(H2C2O4) at low pH, the partially protonated species
(HC2O4

−) at intermediate pH, and the fully deprotonated
species (C2O4

2−) at high pH. Set up the expressions for
the two acidity constants, treating H2C2O4 as the parent
acid, and an expression for the total concentration of 
oxalic acid. Solve the resulting expressions for the frac-
tion of each species in terms of the hydronium ion 
concentration.

Solution The two acidity constants are

H2C2O4(aq) + H2O(l) f H3O
+(aq) + HC2O4

−(aq)

HC2O4
−(aq) + H2O(l) f H3O

+(aq) + C2O4
2−(aq)

We also know that the total concentration of oxalic acid
in all its forms, its formal concentration F(H2C2O4), is

[H2C2O4] + [HC2O4
−] + [C2O4

2−] = F(H2C2O4)

We now have three equations for three unknown 
concentrations. To solve the equations, we proceed 
systematically by using Ka2 to express [C2O4

2−] in terms
of [HC2O4

−], then Ka1 to express [HC2O4
−] in terms of

[H2C2O4]:
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equilibrium has in fact been achieved, that the molar
concentration of CO3

2− ions is 5.6 × 10−11 mol dm−3 and
(within the approximations we have made) independent
of the concentration of H2CO3 present initially.
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Example 8.3

Calculating the concentration of carbonate ion 
in carbonic acid

Ground water contains dissolved carbon dioxide, carbonic
acid, hydrogencarbonate ions, and a very low concentra-
tion of carbonate ions. Estimate the molar concentration
of CO3

2− ions in a solution in which water and CO2(g) are
in equilibrium.

Strategy We must be very cautious in the interpretation
of calculations involving carbonic acid because equilib-
rium between dissolved CO2 and H2CO3 is achieved only
very slowly. In organisms, attainment of equilibrium is
facilitated by the enzyme carbonic anhydrase. We start
with the equilibrium that produces the ion of interest
(such as A2−) and write its activity in terms of the acidity
constant for its formation (Ka2). That expression will con-
tain the activity of the conjugate acid (HA−), which we
can express in terms of the activity of its conjugate acid
(H2A) by using the appropriate acidity constant (Ka1). This
equilibrium dominates all the rest provided the molecule
is small and there are marked differences between 
its acidity constants, so it may be possible to make an
approximation at this stage.

Solution The CO3
2− ion, the conjugate base of the acid

HCO3
−, is produced in the equilibrium

HCO3
−(aq) + H2O(l) f H3O

+(aq) + CO3
2−(aq)

Hence,

The HCO3
− ions are produced in the equilibrium

H2CO3(aq) + H2O(l) f H3O
+(aq) + HCO3

−(aq)

One H3O
+ ion is produced for each HCO3

− ion produced.
These two concentrations are not exactly the same, 
because a little HCO3

− is lost in the second deprotonation
and the amount of H3O

+ has been increased by it. Also,
HCO3

− is a weak base and abstracts a proton from water
to generate H2CO3 (see Section 8.4). However, those
secondary changes can safely be ignored in an approxi-
mate calculation. Because the molar concentrations of
HCO3

− and H3O
+ are approximately the same, we can

suppose that their activities are also approximately 
the same, and set aHCO3

− ≈ aH3O+. When this equality is 
substituted into the expression for aCO3

2− and we make
the approximation that aCO3

2− = [CO3
2−] /c -, then we 

obtain

[CO3
2−] ≈ Ka2c

-

Because we know from Table 8.2 that pKa2 = 10.25, it 
follows that [CO3

2−] = 5.6 × 10−11 c-, and therefore, if
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Self-test 8.6

Calculate the molar concentration of S2− ions in
H2S(aq).

[Answer: 7.1 × 10−15 mol dm−3]



A note on good practice Be ready to take advantage
of symmetries in the expressions: inspection of the
three expressions for the fractions of the species pre-
sent shows a symmetry in the appearance of [H3O

+] and
the Ks. By noting this symmetry, it is possible to write
down the expression for the species present in a solu-
tion of a triprotic acid without further calculation (see
Self-test 8.7).
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We can summarize the behaviour found in
Example 8.4 and illustrated in Figs. 8.1 and 8.2 
as follows. Consider each conjugate acid–base pair,
with acidity constant Ka; then:

• The acid form is dominant for pH < pKa

• The conjugate pair have equal concentrations at
pH = pKa

• The base form is dominant for pH > pKa

In each case, the other possible forms of a polyprotic
system can be ignored, provided the pKa values are
not too close together.

8.4 Amphiprotic systems

An amphiprotic species is a molecule or ion that can
both accept and donate protons. For instance, HCO3

−

can act as an acid (to form CO3
2−) and as a base (to

The expression for the total concentration F(H2C2O4) can
now be written in terms of [H2C2O4] and [H3O

+]:

It follows that the fractions of each species present in
the solution are

(8.11a)

and similarly

(8.11b)

(8.11c)

These fractions are plotted against pH = −log[H3O
+] in

Fig. 8.1. Note how H2C2O4 is dominant for pH < pKa1,
that H2C2O4 and HC2O4

− have the same concentration at
pH = pKa1, and that HC2O4

− is dominant for pH > pKa1,
until C2O4

2− becomes dominant.
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Fig. 8.1 The fractional composition of the pro-
tonated and deprotonated forms of oxalic acid in

aqueous solution as a function of pH. Note that con-
jugate pairs are present at equal concentrations when
the pH is equal to the pKa of the acid member of the pair.

0
0

2 4 6 8 10 12 14
pH

0.2

0.4

0.6

0.8

1

Fr
ac

ti
o

n
 o

f 
sp

ec
ie

s,
 f 2.

12

7.
21

12
.6

8

H3PO4 H2PO4
– HPO4

2– PO4
3–

Fig. 8.2 The fractional composition of the pro-
tonated and deprotonated forms of phosphoric

acid in aqueous solution as a function of pH.

Self-test 8.7

Construct the diagram for the fraction of protonated
species in an aqueous solution of phosphoric acid.

[Answer: Fig. 8.2]
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Salts in water

The ions present when a salt is added to water may
themselves be either acids or bases and consequently
affect the pH of the solution. For example, when 
ammonium chloride is added to water, it provides
both an acid (NH4

+) and a base (Cl−). The solution
consists of a weak acid (NH4

+) and a very weak base 
(Cl−). The net effect is that the solution is acidic.
Similarly, a solution of sodium acetate consists of a
neutral ion (the Na+ ion) and a base (CH3CO2

−). The
net effect is that the solution is basic, and its pH is
greater than 7.

Derivation 8.1

The pH of an amphiprotic salt solution

Let’s suppose that we make up a solution of the salt
MHA with formal concentration F, where HA− is the 
amphiprotic anion (such as HCO3

−) and M+ is a cation
(such as Na+). The equilibrium table is as follows:

Species H2A HA− A2− H3O
+

Initial molar 0 F 0 0
concentration/
(mol dm−3)
Change to reach +x −(x + y) +y +(y − x)
equilibrium/(mol dm−3)
Equilibrium x F − x − y y y − x
concentration/
(mol dm−3)

The two acidity constants are
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Multiplication of these two expressions, noting from the
equilibrium table that at equilibrium y − x = [H3O

+], gives

Next, we show that, to a good approximation, y/x ≈ 1 
and therefore that [H3O

+] = (Ka1Ka2)
1/2. For this step we

rearrange the expression for Ka1 as follows:

xKa1 = Fy − y 2 − Fx + x2

Because xKa1, x
2, and y 2 are all very small compared

with terms that have F in them, and for typical (but by 
no means all) formal concentrations F/c- >> Kw/Ka2 and
F/c- >> Ka1, this expression reduces to

0 ≈ Fy − Fx

We conclude that x ≈ y, and therefore that y/x ≈ 1, as re-
quired. Equation 8.12 now follows by taking the negative
common logarithm of both sides of [H3O

+] = (Ka1Ka2)
1/2.
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form H2CO3). The question we need to tackle is the 
pH of a solution of a salt with an amphiprotic anion,
such as a solution of NaHCO3. Is the solution acidic
on account of the acid character of HCO3

−, or is it
basic on account of the anion’s basic character? As
we show in Derivation 8.1, the pH of such a solution
is given by

pH = (pKa1 + pKa2) (8.12)

This expression is valid provided the molar concentra-
tion of the salt is high in the sense (using the notation
in Derivation 8.1) that F /c >> Kw /Ka2 and F/c >>
Ka1, where F is the formal concentration of the salt. If
these conditions are not satisfied, a much more com-
plicated expression must be used (see the website).

A brief illustration If the dissolved salt is sodium 
hydrogencarbonate, we can immediately conclude that
the pH of the solution of any concentration (provided the
approximations remain valid) is

pH = (6.37 + 10.25) = 8.31

The solution is basic. This result is reliable provided F/c-

>> 2 × 10−4. We can treat a solution of potassium dihydro-
genphosphate in the same way, taking into account only
the second and third acidity constants of H3PO4 because
protonation as far as H3PO4 is negligible:

pH = (7.21 + 12.67) = 9.94

This expression is reliable provided F/c- >> 0.05.

1
2

1
2

1
2

Self-test 8.8

Is an aqueous solution of potassium lactate likely to be
acidic or basic?

[Answer: basic]

To estimate the pH of the solution, we proceed in
exactly the same way as for the addition of a ‘con-
ventional’ acid or base, for in the Brønsted–Lowry
theory, there is no distinction between ‘conventional’
acids like acetic acid and the conjugate acids of bases
(like NH4

+). For example, to calculate the pH of
0.010 m NH4Cl(aq) at 25°C, we proceed exactly as
in Example 8.1, taking the initial concentration of
the acid (NH4

+) to be 0.010 mol dm−3. The Ka to use
is the acidity constant of the acid NH4

+, which is
listed in Table 8.1. Alternatively, we use Kb for the
conjugate base (NH3) of the acid and convert that
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quantity to Ka by using eqn 8.6 (KaKb = Kw). We find
pH = 5.63, which is on the acid side of neutral.
Exactly the same procedure is used to find the pH of
a solution of a salt of a weak acid, such as sodium 
acetate. The equilibrium table is set up by treating
the anion CH3CO2

− as a base (which it is), and using
for Kb the value obtained from the value of Ka for its
conjugate acid (CH3COOH).

base (such as NH3) and a strong acid (HCl), the 
solution contains NH4

+ ions and Cl− ions at the 
stoichiometric point. Because Cl− is only a very weak
Brønsted base and NH4

+ is a weak Brønsted acid the
solution is acidic and its pH will be less than 7.

Now we consider the shape of the pH curve in 
Fig. 8.4 in terms of the acidity constants of the species
involved. The approximations we make are based on
the fact that the acid is weak, and therefore that HA
is more abundant than any A− ions in the solution.
Furthermore, when HA is present, it provides so many
H3O

+ ions, even though it is a weak acid, that they
greatly outnumber any H3O

+ ions that come from

Self-test 8.9

Estimate the pH of 0.0025 M NH(CH3)3Cl(aq) at 25°C.
[Answer: 6.2]

8.5 Acid–base titrations

Acidity constants play an important role in acid–base
titrations, for we can use them to decide the value of
the pH that signals the stoichiometric point, the stage
at which a stoichiometrically equivalent amount of
acid has been added to a given amount of base. The
plot of the pH of the analyte, the solution being ana-
lysed, against the volume of titrant, the solution in
the burette, added is called the pH curve. It shows 
a number of features that are still of interest even
nowadays when many titrations are carried out in
automatic titrators with the pH monitored electronic-
ally: automatic titration equipment is built to make
use of the concepts we describe here.

A brief comment For historical reasons, the stoichiometric
point is widely called the equivalence point of a titration. The
meaning of end point is explained in Section 8.6.

First, consider the titration of a strong acid with a
strong base, such as the titration of hydrochloric acid
with aqueous sodium hydroxide. The reaction is

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

Initially, the analyte (hydrochloric acid) has a low
pH. The ions present at the stoichiometric point (the
Na+ ions from the strong base and the Cl− ions from
the strong acid) barely affect the pH, so the pH is that
of almost pure water, namely pH = 7. After the stoi-
chiometric point, when base is added to a neutral 
solution, the pH rises sharply to a high value. The pH
curve for such a titration is shown in Fig. 8.3.

Figure 8.4 shows the pH curve for the titration of
a weak acid (such as CH3COOH) with a strong base
(NaOH). At the stoichiometric point the solution
contains CH3CO2

− ions and Na+ ions together with
any ions stemming from autoprotolysis. The presence
of the Brønsted base CH3CO2

− in the solution means
that we can expect pH > 7. In a titration of a weak
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Fig. 8.3 The pH curve for the titration of a strong acid
(SA, the analyte) with a strong base (SB, the titrant).

There is an abrupt change in pH near the stoichiometric point
at pH = 7. The final pH of the medium approaches that of the
titrant.
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Fig. 8.4 The pH curve for the titration of a weak acid
(WA, the analyte) with a strong base (WB, the titrant).

Note that the stoichiometric point occurs at pH > 7 and that
the change in pH near the stoichiometric point is less abrupt
than in Fig. 8.3. The pKa of the acid is equal to the pH half-way
to the stoichiometric point.
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Half-way to the stoichiometric point, when enough
base has been added to neutralize half the acid, the
concentrations of acid and base are equal and 
because log 1 = 0 the Henderson–Hasselbalch equa-
tion gives

pH ≈ pKa (8.14)

In the present titration, we see that at this stage of 
the titration, pH ≈ 4.75. Note from the pH curve in
Fig. 8.4 how much more slowly the pH is changing
compared with initially: this point will prove import-
ant shortly. Equation 8.14 implies that we can deter-
mine the pKa of the acid directly from the pH of 
the mixture. Indeed, an approximate value of the pKa

Example 8.5

Estimating the pH at an intermediate stage in 
a titration

Calculate the pH of the solution after the addition of 
5.00 cm3 of the titrant to the analyte in the titration 
described above.

Strategy The first step involves deciding the amount of
OH− ions added in the titrant, and then to use that amount
to calculate the amount of CH3COOH remaining. Notice

the very feeble autoprotolysis of water. Finally, when
excess base is present after the stoichiometric point
has been passed, the OH− ions it provides dominate
any that come from the water autoprotolysis.

To be specific, let’s suppose that we are titrating
25.00 cm3 of 0.10 m CH3COOH(aq) with 0.20 m
NaOH(aq) at 25°C. We can calculate the pH at the
start of a titration of a weak acid with a strong base
as explained in Example 8.1, and find pH = 2.9. The
addition of titrant converts some of the acid to its
conjugate base in the reaction

CH3COOH(aq) + OH−(aq) → H2O(l) + CH3CO2
−(aq)

Suppose we add enough titrant to produce a concen-
tration [base] of the conjugate base and simultan-
eously reduce the concentration of acid to [acid].
Then, because the acid and its conjugate base remain
at equilibrium:

CH3COOH(aq) + H2O(l) 

f H3O
+(aq) + CH3CO2

−(aq)

we can write

This expression rearranges first to

and then, by taking negative common logarithms, we
obtain

which can be written as the Henderson–Hasselbalch
equation

(8.13)
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that because the ratio of acid to base molar concentra-
tions occurs in eqn 8.13, the volume of solution cancels,
and we can equate the ratio of concentrations to the
ratio of amounts:

Solution The addition of 5.00 cm3, or 5.00 × 10−3 dm3

(because 1 cm3 = 10−3 dm3), of titrant corresponds to the
addition of

nOH− = (5.00 × 10−3 dm3) × (0.200 mol dm−3) 
= 1.00 × 10−3 mol

This amount of OH− (1.00 mmol) converts 1.00 mmol
CH3COOH to the base CH3CO2

−. The initial amount of
CH3COOH in the analyte is

nCH3COOH = (25.00 × 10−3 dm3) × (0.200 mol dm−3) 

= 2.50 × 10−3 mol

so the amount remaining after the addition of titrant 
is 1.50 mmol. It then follows from the Henderson–
Hasselbalch equation that

As expected, the addition of base has resulted in an 
increase in pH from 2.9. You should not take the value
4.6 too seriously because we have already pointed out
that such calculations are approximate. However, it is
important to note that the pH has increased from its 
initial acidic value.
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Self-test 8.10

Calculate the pH after the addition of a further 
5.00 cm3 of titrant.

[Answer: 5.4]
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may be calculated by recording the pH during a 
titration and then examining the record for the pH
half-way to the stoichiometric point.

At the stoichiometric point, enough base has been
added to convert all the acid to its base, so the solu-
tion consists—nominally—only of CH3CO2

− ions.
These ions are Brønsted bases, so we can expect the
solution to be basic with a pH of well above 7. We
have already seen how to estimate the pH of a solu-
tion of a weak base in terms of its concentration B
(Example 8.2), so all that remains to be done is to
calculate the concentration of CH3CO2

− at the stoi-
chiometric point.

A brief illustration Because the analyte initially con-
tained 2.50 mmol CH3COOH, the volume of titrant
needed to neutralize it is the volume that contains the
same amount of base:

or 12.5 cm3. The total volume of the solution at this stage
is therefore 37.5 cm3, so the concentration of base is

It then follows from a calculation similar to that in
Example 8.2 (with pKb = 9.25 for CH3CO2

−) that the pH of
the solution at the stoichiometric point is 8.8.

It is very important to note that the pH at the
stoichiometric point of a weak-acid–strong-base
titration is on the basic side of neutrality (pH > 7). 
At the stoichiometric point, the solution consists of 
a weak base (the conjugate base of the weak acid,
here the CH3CO2

− ions) and neutral cations (the Na+

ions from the titrant).
The general form of the pH curve suggested by

these estimates throughout a weak-acid–strong-base
titration is illustrated in Fig. 8.4. The pH rises slowly
from its initial value, passing through the values
given by the Henderson–Hasselbalch equation when
the acid and its conjugate base are both present, until
the stoichiometric point is approached. It then changes
rapidly to and through the value characteristic of a
solution of a salt, which takes into account the effect
on the pH of a solution of a weak base, the conjugate
base of the original acid. The pH then climbs less
rapidly towards the value corresponding to a solu-
tion consisting of excess base, and finally approaches
the pH of the original base solution when so much
titrant has been added that the solution is virtually
the same as the titrant itself. The stoichiometric point
is detected by observing where the pH changes
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rapidly through the value calculated in the illustra-
tion at the beginning of this section.

A similar sequence of changes occurs when the 
analyte is a weak base (such as ammonia) and the
titrant is a strong acid (such as hydrochloric acid). In
this case the pH curve is like that shown in Fig. 8.5:
the pH falls as acid is added, plunges through the pH
corresponding to a solution of a weak acid (the con-
jugate acid of the original base, such as NH4

+), and
then slowly approaches the pH of the original strong
acid. The pH of the stoichiometric point is that of a
solution of a weak acid, and is calculated as illus-
trated in Example 8.2.

8.6 Buffer action

The slow variation of the pH when the concentrations
of the conjugate acid and base are nearly equal, when
pH ≈ pKa, is the basis of buffer action, the ability 
of a solution to oppose changes in pH when small
amounts of strong acids and bases are added (Fig. 8.6).
An acid buffer solution, one that stabilizes the solu-
tion at a pH below 7, is typically prepared by making
a solution of a weak acid (such as acetic acid) and a
salt that supplies its conjugate base (such as sodium
acetate). A base buffer, one that stabilizes a solution
at a pH above 7, is prepared by making a solution of
a weak base (such as ammonia) and a salt that supplies
its conjugate acid (such as ammonium chloride).
Physiological buffers are responsible for maintaining
the pH of blood within a narrow range of 7.37 to
7.43, thereby stabilizing the active conformations of
biological macromolecules and optimizing the rates
of biochemical reactions (Box 8.1).
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Fig. 8.5 The pH curve for the titration of a weak base (the 
analyte) with a strong acid (the titrant). The stoichiometric
point occurs at pH < 7. The final pH of the solution 
approaches that of the titrant.
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A brief illustration Suppose we need to estimate the
pH of a buffer formed from equal amounts of KH2PO4(aq)
and K2HPO4(aq). We note that the two anions present 
are H2PO4

− and HPO4
2−. The former is the conjugate acid of

the latter:

H2PO4
−(aq) + H2O(l) f H3O

+(aq) + HPO4
2−(aq)

so we need the pKa of the acid form, H2PO4
−. In this case

we can take it from Table 8.1, or recognize it as the pKa2

of phosphoric acid, and take it from Table 8.2 instead. In
either case, pKa = 7.21. Hence, the solution should buffer
close to pH = 7.

Box 8.1 Buffer action in blood

The pH of blood in a healthy human being varies from 7.37
to 7.43. There are two buffer systems that help maintain
the pH of blood relatively constant: one arising from a car-
bonic acid/bicarbonate (hydrogencarbonate) ion equilibrium
and another involving protonated and deprotonated forms
of haemoglobin, the protein responsible for the transport of
O2 in blood (Box 7.1).

Carbonic acid forms in blood from the reaction between
water and CO2 gas, which comes from inhaled air and is
also a by-product of metabolism:

CO2(g) + H2O(l) f H2CO3(aq)

In red blood cells, this reaction is catalysed by the enzyme
carbonic anhydrase. Aqueous carbonic acid then deproto-
nates to form a bicarbonate (hydrogencarbonate) ion:

H2CO3(aq) f H+(aq) + HCO3
−(aq)

The fact that the pH of normal blood is approximately 7.4
implies that [HCO3

−]/[H2CO3] ≈ 20. The body’s control of 
the pH of blood is an example of homeostasis, the ability 
of an organism to counteract environmental changes with
physiological responses. For instance, the concentration of
carbonic acid can be controlled by respiration: exhaling air
depletes the system of CO2(g) and H2CO3(aq) so the pH of
blood rises when air is exhaled. Conversely, inhalation 
increases the concentration of carbonic acid in blood and
lowers its pH. The kidneys also play a role in the control 
of the concentration of hydronium ions. There, ammonia
formed by the release of nitrogen from some aminoacids
(such as glutamine) combines with excess hydronium ions
and the ammonium ion is excreted through urine.

The condition known as alkalosis occurs when the pH of
blood rises above about 7.45. Respiratory alkalosis is caused

by hyperventilation, or excessive respiration. The simplest
remedy consists of breathing into a paper bag in order to 
increase the levels of inhaled CO2. Metabolic alkalosis may
result from illness, poisoning, repeated vomiting, and overuse
of diuretics. The body may compensate for the increase in
the pH of blood by decreasing the rate of respiration.

Acidosis occurs when the pH of blood falls below about
7.35. In respiratory acidosis, impaired respiration increases
the concentration of dissolved CO2 and lowers the blood’s
pH. The condition is common in victims of smoke inhalation
and patients with asthma, pneumonia, and emphysema.
The most efficient treatment consists of placing the patient
in a ventilator. Metabolic acidosis is caused by the release
of large amounts of lactic acid or other acidic by-products 
of metabolism, which react with hydrogencarbonate ion 
to form carbonic acid, thus lowering the blood’s pH. The
condition is common in patients with diabetes and severe
burns.

The concentration of hydronium ions in blood is also con-
trolled by haemoglobin, which can exist in deprotonated
(basic) or protonated (acidic) forms, depending on the state
of protonation of several amino acid residues on the protein’s
surface. The carbonic acid/bicarbonate ion equilibrium and
proton equilibria in haemoglobin also regulate the oxygena-
tion of blood. The key to this regulatory mechanism is the
Bohr effect, the observation that haemoglobin binds O2

strongly when it is deprotonated and releases O2 when it is
protonated. It follows that when dissolved CO2 levels 
are high and the pH of blood falls slightly, haemoglobin 
becomes protonated and releases bound O2 to tissue.
Conversely, when CO2 is exhaled and the pH rises slightly,
haemoglobin becomes deprotonated and binds O2.
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Fig. 8.6 The pH of a solution changes only slowly in the 
region of half-way to the stoichiometric point (SP). In this re-
gion the solution is buffered to a pH close to pKa.

Self-test 8.11

Calculate the pH of an aqueous buffer solution that con-
tains equal amounts of NH3 and NH4Cl.

[Answer: 9.25; more realistically: 9]



concentrations become 0.032 mol dm−3 NaCH3CO2(aq)
and 0.088 mol dm−3 CH3COOH(aq). It then follows from
the Henderson–Hasselbalch equation that

The change in pH is from 4.45 to 4.31, far smaller than in
the absence of the buffer.
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An acid buffer stabilizes the pH of a solution 
because the abundant supply of A− ions (from the
salt) can remove any H3O

+ ions brought by additional
acid; furthermore, the abundant supply of HA
molecules can provide H3O

+ ions to react with any
base that is added. Similarly, in a base buffer the
weak base B can accept protons when an acid is
added and its conjugate acid BH+ can supply protons
if a base is added.

These abilities can be expressed quantitatively by
considering the changes in equilibrium composi-
tion of hydronium ions in the presence of a buffer.
This behaviour is best illustrated with a specific 
example.

8.7 Indicators

The rapid change of pH near the stoichiometric point
of an acid–base titration is the basis of indicator 
detection. An acid–base indicator is a water-soluble
organic molecule with acid (HIn) and conjugate base
(In−) forms that differ in colour. The two forms are in
equilibrium in solution:

HIn(aq) + H2O(l) f H3O
+(aq) + In−(aq)

The pKIn of some indicators are listed in Table 8.3.
The ratio of the concentrations of the conjugate acid
and base forms of the indicator is

This expression can be rearranged (after taking com-
mon logarithms) to

and written as

(8.15)

We see that as the pH swings from higher than pKIn
to lower than pKIn as acid is added to the solution,
the ratio of In− to HIn swings from well above 1 to
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Example 8.6

Illustrating the effect of a buffer

When 1 drop (0.20 cm3, say) of 1.0 mol dm−3 HCl(aq) is
added to 25 cm3 of pure water, the resulting hydronium
ion concentration rises to 0.0080 mol dm−3 and so the
pH changes from 7.0 to 2.1, a big change. Now suppose
the drop is added to 25 cm3 of an acetate buffer solution
that is 0.040 mol dm−3 NaCH3CO2(aq) and 0.080 mol
dm−3 CH3COOH(aq). What will be the change in pH?

Strategy The presence of the acid tells us that this 
mixture will be an acid buffer. Use the Henderson–
Hasselbalch equation (or, better, first principles), to 
estimate the initial pH. Then calculate the amount of
H3O

+ added in the drop and the consequent changes 
to the amounts of acetic acid and acetate ions in the 
solution. Use the Henderson–Hasselbalch equation to
estimate the pH of the resulting solution.

Solution The initial pH of the buffer solution is

The drop of HCl(aq) contains

n(H3O
+) = (0.20 × 10−3 dm3) × (1.0 mol dm−3) 

= 0.20 mmol

The buffer solution contains

n(CH3CO2
−) = (25 × 10−3 dm3) × (0.040 mol dm−3) 

= 1.0 mmol

n(CH3COOH) = (25 × 10−3 dm3) × (0.080 mol dm−3) 

= 2.0 mmol

The acetate ion is protonated by the incoming acid, and
so its amount is reduced to 0.8 mmol. As a result, the
amount of CH3COOH rises from 2.0 mmol to 2.2 mmol.
The volume of the solution barely changes, so the two
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Self-test 8.12

Estimate the change in pH when 0.20 cm3 of 1.5 mol
dm−3 NaOH(aq) is added to 30 cm3 of (a) pure water
and (b) a phosphate buffer that is 0.20 mol dm−3

KH2PO4(aq) and 0.30 mol dm−3 K2HPO4(aq).
[Answer: (a) 7.00 to 9.00; (b) 7.39 to 4.42]
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At the stoichiometric point, the pH changes
sharply through several pH units, so the molar con-
centration of H3O

+ changes through several orders
of magnitude. The indicator equilibrium changes so
as to accommodate the change of pH, with HIn the
dominant species on the acid side of the stoichio-
metric point, when H3O

+ ions are abundant, and In−

dominant on the basic side, when the base can re-
move protons from HIn. The accompanying colour
change signals the stoichiometric point of the titra-
tion. The colour in fact changes over a range of pH,
typically from pH ≈ pKIn − 1, when HIn is ten times
as abundant as In−, to pH ≈ pKIn + 1, when In− is ten
times as abundant as HIn. The pH half-way through
a colour change, when pH ≈ pKIn and the two forms,
HIn and In−, are in equal abundance, is the end point
of the indicator. With a well-chosen indicator, the
end point of the indicator coincides with the stoi-
chiometric point of the titration.

Care must be taken to use an indicator that
changes colour at the pH appropriate to the type of
titration. Specifically, we need to match the end point
to the stoichiometric point, and therefore select an
indicator for which pKIn is close to the pH of the stoi-
chiometric point. Thus, in a weak-acid–strong-base
titration, the stoichiometric point lies at pH > 7, and
we should select an indicator that changes at that pH
(Fig. 8.8). Similarly, in a strong-acid–weak-base
titration, we need to select an indicator with an end
point at pH < 7. Qualitatively, we should choose an
indicator with pKIn ≈ 7 for strong-acid–strong-base
titrations, one with pKIn < 7 for strong-acid–weak-
base titrations, and one with pKIn > 7 for weak-
acid–strong-base titrations.

Table 8.3

Indicator colour changes

Indicator Acid colour pH range of colour change pKIn Base colour

Thymol blue Red 1.2 to 2.8 1.7 Yellow
Methyl orange Red 3.2 to 4.4 3.4 Yellow
Bromophenol blue Yellow 3.0 to 4.6 3.9 Blue
Bromocresol green Yellow 4.0 to 5.6 4.7 Blue
Methyl red Red 4.8 to 6.0 5.0 Yellow
Bromothymol blue Yellow 6.0 to 7.6 7.1 Blue
Litmus Red 5.0 to 8.0 6.5 Blue
Phenol red Yellow 6.6 to 8.0 7.9 Red
Thymol blue Yellow 9.0 to 9.6 8.9 Blue
Phenolphthalein Colorless 8.2 to 10.0 9.4 Pink
Alizarin yellow Yellow 10.1 to 12.0 11.2 Red
Alizarin Red 11.0 to 12.4 11.7 Purple
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Fig. 8.7 The range of pH over which an indicator changes
colour is depicted by the tinted band. For a strong acid–strong
base titration, the stoichiometric point is indicated accurately
by an indicator that changes colour at pH = 7 (such as bro-
mothymol blue). However, the change in pH is so sharp that
accurate results are also obtained even if the indicator changes
colour in neighbouring values. Thus, phenolphthalein (which
has pKIn = 9.4, see Table 8.3) is also often used.

Self-test 8.13

What is the ratio of the yellow and blue forms of
bromocresol green in solution of pH (a) 3.7, (b) 4.7, and
(c) 5.7?

[Answer: (a) 10:1, (b) 1:1, (c) 1:10]

well below 1 (Fig. 8.7). For instance, if pH = pKIn − 1,
then [In−]/[HIn] = 10, but if pH = pKIn + 1, then 
[In−]/[HIn] = 10−1, a decrease of two orders of 
magnitude.
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Solubility equilibria

A solid dissolves in a solvent until the solution and
the solid solute are in equilibrium. At this stage, the
solution is said to be saturated, and its molar con-
centration is the molar solubility of the solid. That
the two phases—the solid solute and the solution—
are in dynamic equilibrium implies that we can use
equilibrium concepts to discuss the composition of
the saturated solution. You should note that a solu-
bility equilibrium is an example of a heterogeneous
equilibrium in which the species are in different
phases (the solid solute and the solution). The prop-
erties of aqueous solutions of electrolytes are com-
monly treated in terms of equilibrium constants, and
in this section we shall confine our attention to them.
We shall also limit our attention to sparingly soluble
compounds, which are compounds that dissolve only
slightly in water. This restriction is applied because
the effects of ion–ion interactions are a complicating
feature of more concentrated solutions and more 
advanced techniques are then needed before the 

calculations are reliable. Once again, we shall con-
centrate on general trends and properties rather than
expecting to obtain numerically precise results and
confine numerical calculations to systems at 298 K.

8.8 The solubility constant

The heterogeneous equilibrium between a sparingly
soluble ionic compound, such as calcium hydroxide,
Ca(OH)2, and its ions in aqueous solution is

Ca(OH)2(s) f Ca2+(aq) + 2 OH−(aq)

The equilibrium constant for an ionic equilibrium
such as this, bearing in mind that the solid does not
appear in the equilibrium expression because its 
activity is 1, is called the solubility constant (which is
also called the solubility product constant or simply
the solubility product). As usual, for very dilute 
solutions, we can replace the activity aJ of a species 
J by the numerical value of its molar concentration.
Experimental values for solubility constants are
given in Table 8.4.

We can interpret the solubility constant in terms of
the numerical value of the molar solubility, S, of a
sparingly soluble substance. For instance, it follows
from the stoichiometry of the equilibrium equation
written above that the molar concentration of Ca2+

ions in solution is equal to that of the Ca(OH)2 dis-
solved in solution, so S = [Ca2+]. Likewise, because
the concentration of OH− ions is twice that of
Ca(OH)2 formula units, it follows that S = [OH−].
Therefore, provided it is permissible to replace activ-
ities by molar concentrations,

Ks ≈ S × (2S)2 = 4S3

from which it follows that

S ≈ ( Ks)
1/3 (8.16)

This expression is only approximate because ion–ion
interactions have been ignored. However, because
the solid is sparingly soluble, the concentrations 
of the ions are low and the inaccuracy is moder-
ately low. Thus, from Table 8.4, Ks = 5.5 × 10−6, so 
S ≈ 1 × 10−2 and the molar solubility is 1 × 10−2 mol
dm−3. Solubility constants (which are determined by
electrochemical measurements of the kind described
in Chapter 9) provide a more accurate way of meas-
uring solubilities of very sparingly soluble compounds
than the direct measurement of the mass that dissolves.
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Fig. 8.8 In a weak acid–strong base titration, an indicator
with pKIn ≈ 7 (the lower band, like bromothymol blue) would
give a false indication of the stoichiometric point; it is neces-
sary to use an indicator that changes colour close to the pH of
the stoichiometric point. If that lies at about pH = 9, then phe-
nolphthalein would be appropriate.

Self-test 8.14

Vitamin C is a weak acid (ascorbic acid), and the amount
in a sample may be determined by titration with sodium
hydroxide solution. Should you use methyl red or phe-
nolphthalein as the indicator?

[Answer: phenolphthalein]
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Because solubility products are equilibrium con-
stants, they may be calculated from thermodynamic
data, particularly the standard Gibbs energies of 
formation of ions in solution and the relation ΔrG =
−RT ln K). The direct determination of solubilities 
is very diAcult for almost insoluble salts. Another
application is to the discussion of qualitative ana-
lysis, where judicious choice of concentrations guided
by the values of Ks can result in the successive pre-
cipitation of compounds (sulfides, for instance) and
the recognition of the heavy elements (barium, for 
instance), present in a mixture.

8.9 The common-ion effect

The principle that an equilibrium constant remains
unchanged whereas the individual concentrations of
species may change is applicable to solubility con-
stants, and may be used to assess the effect of the 
addition of species to solutions. An example of par-
ticular importance is the effect on the solubility of 
a compound of the presence of another freely soluble
solute that provides an ion in common with the spar-
ingly soluble compound already present. For example,
we may consider the effect on the solubility of adding
sodium chloride to a saturated solution of silver
chloride, the common ion in this case being Cl−.

We know what to expect from Le Chatelier’s prin-
ciple: when the concentration of the common ion is
increased, we can expect the equilibrium to respond
by tending to minimize that increase. As a result, the
solubility of the original salt can be expected to 
decrease. To treat the effect quantitatively, we note
that the molar solubility of silver chloride in pure
water is related to its solubility constant by S ≈ Ks

1/2.
To assess the effect of the common ion, we suppose
that Cl− ions are added to a concentration C mol dm−3,
which greatly exceeds the concentration of the same
ion that stems from the presence of the silver chlo-
ride. Therefore, we can write

Ks = aAg+aCl− ≈ [Ag+]C

It is very dangerous to neglect deviations from ideal
behaviour in ionic solutions, so from now on the 
calculation will only be indicative of the kinds of
changes that occur when a common ion is added to 
a solution of a sparingly soluble salt: the qualitative
trends are reproduced, but the quantitative calcula-
tions are unreliable. With these remarks in mind, it
follows that the solubility S′ of silver chloride in the
presence of added chloride ions is

 
′ ≈S

K
C

s

Self-test 8.15

Copper occurs in many minerals, one of which is chalco-
cite, Cu2S. What is the approximate solubility of this com-
pound in water at 25°C? Use the data for Cu2S in Table 8.4.

[Answer: 1.7 × 10−16 mol dm−3]

Table 8.4

Solubility constants at 298.15 K

Compound Formula Ks

Aluminium hydroxide Al(OH)3 1.0 × 10−33

Antimony sulfide Sb2S3 1.7 × 10−93

Barium carbonate BaCO3 8.1 × 10−9 

fluoride BaF2 1.7 × 10− 6 

sulfate BaSO4 1.1 × 10−10

Bismuth sulfide Bi2S3 1.0 × 10−97

Calcium carbonate CaCO3 8.7 × 10−9 

fluoride CaF2 4.0 × 10−11

hydroxide Ca(OH)2 5.5 × 10− 6 

sulfate CaSO4 2.4 × 10−5 

Copper(I) bromide CuBr 4.2 × 10− 8 

chloride CuCl 1.0 × 10−6 

iodide CuI 5.1 × 10−12

sulfide Cu2S 2.0 × 10− 47

Copper(II) iodate Cu(IO3)2 1.4 × 10−7

oxalate CuC2O4 2.9 × 10− 8 

sulfide CuS 8.5 × 10− 45

Iron(II) hydroxide Fe(OH)2 1.6 × 10−14

sulfide FeS 6.3 × 10−18

Iron(III) hydroxide Fe(OH)3 2.0 × 10−39

Lead(II) bromide PbBr2 7.9 × 10−5 

chloride PbCl2 1.6 × 10−5 

fluoride PbF2 3.7 × 10− 8 

iodate Pb(IO3)2 2.6 × 10−13

iodide PbI2 1.4 × 10− 8 

sulfate PbSO4 1.6 × 10− 8 

sulfide PbS 3.4 × 10−28

Magnesium ammonium
phosphate MgNH4PO4 2.5 × 10−13

carbonate MgCO3 1.0 × 10−5 

fluoride MgF2 6.4 × 10−9 

hydroxide Mg(OH)2 1.1 × 10−11

Mercury(I) chloride Hg2Cl2 1.3 × 10−18

iodide Hg2I2 1.2 × 10−28

Mercury(II) sulfide HgS black: 1.6 × 10−52

red: 1.4 × 10−53

Nickel(II) hydroxide Ni(OH)2 6.5 × 10−18

Silver bromide AgBr 7.7 × 10−13

carbonate Ag2CO3 6.2 × 10−12

chloride AgCl 1.6 × 10−10

hydroxide AgOH 1.5 × 10− 8 

iodide AgI 1.5 × 10−16

sulfide Ag2S 6.3 × 10−51

Zinc hydroxide Zn(OH)2 2.0 × 10−17

sulfide ZnS 1.6 × 10−24
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The solubility is greatly reduced by the presence of
the common ion. For example, whereas the solubility
of silver chloride in water is 1.3 × 10−5 mol dm−3, in
the presence of 0.10 m NaCl(aq) it is only 2 × 10−9 mol
dm−3, which is nearly ten thousand times less. The 
reduction of the solubility of a sparingly soluble 
salt by the presence of a common ion is called the
common-ion effect.

energy that results, the sparingly soluble salt has a
greater tendency to go into solution. That is, the
presence of the added salt raises the solubility of the
sparingly soluble salt.

To estimate the effect of an added salt MX on 
a sparingly soluble salt AB, we write the solubility
constant for AB in terms of activities:

Ks = aAaB = γAγB[A][B] = γAγBS2

It follows that S = (Ks /γAγB)1/2 and therefore that

log S = log(Ks /γAγB) = log Ks − log γAγB

We shall see in Chapter 9 that the logarithm of the
product of activity coeAcients is proportional to the
square root of the concentration, C, of the added
salt; with log γAγB = −2AC1/2 where A is a constant
that depends on the identity of the solvent and the
temperature; for water at 25°C, A = 0.51. It follows
that

log S = log Ks + AC1/2 (8.17)

Note that AC1/2 increases with increasing concentra-
tion of added salt, so log S, and therefore S itself, also
increases, as we anticipated. The linear dependence
of log S on C1/2 is observed, but only for low concen-
trations of added salt.

A brief illustration The solubility of AgCl in water at
25°C is S = K s

1/2; because Ks = 1.6 × 10−10, it follows that 
S = 1.3 × 10−5 mol dm−3. In the presence of 0.10 mol dm−3

KNO3(aq) its solubility increases to

log S = × log(1.6 × 10−10) + 0.51 × (0.10)1/2 = −4.74

corresponding to S = 1.8 × 10−5 mol dm−3.

1
2

1
2

1
2

1
2

1
2

Self-test 8.16

Estimate the molar solubility of calcium fluoride, CaF2, in
(a) water, (b) 0.010 M NaF(aq).

[Answer: (a) 2.2 × 10− 4 mol dm−3; (b) 4.0 × 10−7 mol dm−3]

8.10 The effect of added salts on solubility

Even a salt that has no ion in common with the 
sparingly soluble salt can affect the latter’s solubility.
At low concentrations of the added salt, the solubil-
ity of the sparingly soluble salt is increased. The 
explanation lies in a phenomenon that will move to
centre stage in Chapter 9, where we shall see that in
aqueous solution, cations tend to be found near 
anions and anions tend to be found near cations.
That is, each ion is in an environment, called an ‘ionic
atmosphere’, of opposite charge. The charge imbal-
ance is not great, because the ions are ceaselessly
churned around by thermal motion, but it is enough
to lower the energy of the central ion slightly.

When a soluble salt is added to the solution of a
sparingly soluble salt, the abundant ions of the latter
form ionic atmospheres around the ions of the spar-
ingly soluble salt. As a result of the lowering of 

Checklist of key ideas

You should now be familiar with the following concepts.

1 The strength of an acid HA is reported in terms of
its acidity constant and that of a base B in terms of
its basicity constant.

2 The acid form of a species is dominant if pH < pKa

and the base form is dominant if pH > pKa.

3 The pH of a mixed solution of a weak acid and 
its conjugate base is given by the Henderson–
Hasselbalch equation.

4 The pH of a buffer solution containing equal con-
centrations of a weak acid and its conjugate base is
pH = pKa.

5 The end-point of the colour change of an indicator
occurs at pH = pKIn; in a titration, choose an indica-
tor with an end-point that coincides with the stoi-
chiometric point.

6 The common-ion effect is the reduction in solubil-
ity of a sparingly soluble salt by the presence of a
common ion.
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Questions and exercises

Discussion questions

8.1 Describe the changes in pH that take place during the
titration of: (a) a weak acid with a strong base, (b) a weak base
with a strong acid.

8.2 Describe the basis of buffer action and indicator detection.

8.3 Explain the difference between ‘stoichiometric (equi-
valence) point’ and ‘end-point’ in the context of a titration.

8.4 Outline the change in composition of a solution of the
salt of a triprotic acid as the pH is changed from 1 to 14.

8.5 State the limits to the generality of the expression for 
estimating the pH of an amphiprotic salt solution. Suggest
reasons for why these limitations exist.

8.6 Describe and justify the approximations used in the
derivation of the Henderson–Hasselbalch equation.

8.7 Explain the common-ion effect.

Exercises

8.1 Write the proton-transfer equilibria for the following acids
in aqueous solution and identify the conjugate acid–base
pairs in each one: (a) H2SO4, (b) HF (hydrofluoric acid), (c)
C6H5NH3

+ (anilinium ion), (d) H2PO4
− (dihydrogenphosphate

ion), (e) HCOOH (formic acid), (f) NH2NH3
+ (hydrazinium ion).

8.2 Numerous acidic species are found in living systems.
Write the proton-transfer equilibria for the following 
biochemically important acids in aqueous solution: 
(a) lactic acid (CH3CHOHCOOH), (b) glutamic acid

(HOOCCH2CH2CH(NH2)COOH), (c) glycine (NH2CH2COOH),
(d) oxalic acid (HOOCCOOH).

8.3 For biological and medical applications we often need to
consider proton transfer equilibria at body temperature (37°C).
The value of Kw for water at body temperature is 2.5 × 10−14.
(a) What is the value of [H3O

+] and the pH of neutral water at
37°C? (b) What is the molar concentration of OH− ions and
the pOH of neutral water at 37°C?

8.4 Suppose that something had gone wrong in the Big
Bang, and instead of ordinary hydrogen there was an abund-
ance of deuterium in the universe. There would be many 
subtle changes in equilibria, particularly the deuteron transfer
equilibria of heavy atoms and bases. The Kw for D2O, heavy
water, at 25°C is 1.35 × 10−15. (a) Write the chemical equation
for the autoprotolysis (more precisely, autodeuterolysis) of
D2O. (b) Evaluate pKw for D2O at 25°C. (c) Calculate the molar
concentrations of D3O

+ and OD− in neutral heavy water at 25°C.
(d) Evaluate the pD and pOD of neutral heavy water at 25°C.
(e) Formulate the relation between pD, pOD, and pKw(D2O).

8.5 Estimate the pH of a solution of 0.50 M HCl(aq). The
mean activity coefficient at this concentration is 0.769. What
is a more reliable value of the pH?

8.6 Use the van ’t Hoff equation (eqn 7.15) to derive an 
expression for the slope of a plot of pKa against temperature.

8.7 The pKw of water varies with temperature as follows:

q/°C 10 15 20 25 30 35
pKw 14.5346 14.3463 14.1669 13.9965 13.8330 13.6801

Determine the standard enthalpy of deprotonation of water.

The following table summarizes the equations developed in this chapter.

Property

Acidity constant

Basicity constant

Autoprotolysis constant of water

Relation between pH and pOH

Conjugate relation

pH of the solution of an amphiprotic 
salt of concentration A

Henderson–Hasselbalch equation

Solubility constant

Equation

Ka = aH3O+aA−/aHA

Kb = aBH+aOH−/aB

Kw = aH3O+aOH−

pH + pOH = pKw

KaKb = Kw and pKa + pKb = pKw

pH = (pKa1 + pKa2)

pH = pKa − log([acid]/[base])

Ks = aM+aA−

1
2

Comment

Definition

Definition

Definition

F >> Kw/Ka2 and F >> Ka1

Weak acid and base

Sparingly soluble salt M+A−

Table of key equations
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8.8 The pKb of ammonia in water varies with temperature as
follows:

q/°C 10 15 20 25 30 35
pKb 4.804 4.782 4.767 4.751 4.740 4.733

Deduce as much information as you can from these values.

8.9 The pKb of the organic base nicotine (denoted Nic) is
5.98. Write the corresponding protonation reaction, the 
deprotonation reaction of the conjugate acid, and the value of
pKa for nicotine.

8.10 The molar concentration of H3O
+ ions in the follow-

ing solutions was measured at 25°C. Calculate the pH and
pOH of the solution: (a) 1.5 × 10−5 mol dm−3 (a sample 
of rain water), (b) 1.5 mmol dm−3, (c) 5.1 × 10−14 mol dm−3,
(d) 5.01 × 10−5 mol dm−3.

8.11 Calculate the molar concentration of H3O
+ ions and the

pH of the following solutions: (a) 25.0 cm3 of 0.144 M HCl(aq)
was added to 25.0 cm3 of 0.125 M NaOH(aq), (b) 25.0 cm3

of 0.15 M HCl(aq) was added to 35.0 cm3 of 0.15 M KOH(aq),
(c) 21.2 cm3 of 0.22 M HNO3(aq) was added to 10.0 cm3 of
0.30 M NaOH(aq).

8.12 Determine whether aqueous solutions of the following
salts have a pH equal to, greater than, or less than 7; if pH > 7
or pH < 7, write a chemical equation to justify your answer. 
(a) NH4Br, (b) Na2CO3, (c) KF, (d) KBr, (e) AlCl3, (f ) Co(NO3)2.

8.13 Sodium acetate, NaCH3CO2, of mass 7.4 g is used to
prepare 250 cm3 of aqueous solution. What is the pH of the
solution?

8.14 What is the pH of a solution when 2.75 g of ammonium
chloride, NH4Cl, is used to make 100 cm3 of aqueous solution? 

8.15 An aqueous solution of volume 1.0 dm3 contains 10.0 g
of potassium bromide. What is the percentage of Br− ions
that are protonated?

8.16 There are many organic acids and bases in our cells, and
their presence modifies the pH of the fluids inside them. It is
useful to be able to assess the pH of solutions of acids and
bases and to make inferences from measured values of the
pH. A solution of equal concentrations of lactic acid and
sodium lactate was found to have pH = 3.08. (a) What are the
values of pKa and Ka of lactic acid? (b) What would the pH be
if the acid had twice the concentration of the salt?

8.17 Sketch reasonably accurately the pH curve for the titra-
tion of 25.0 cm3 of 0.15 M Ba(OH)2(aq) with 0.22 M HCl(aq).
Mark on the curve (a) the initial pH, (b) the pH at the stoichio-
metric point.

8.18 Determine the fraction of solute deprotonated or proto-
nated in (a) 0.25 M C6H5COOH(aq), (b) 0.150 M NH2NH2(aq)
(hydrazine), (c) 0.112 M (CH3)3N(aq) (trimethylamine). 

8.19 Calculate the pH, pOH, and fraction of solute proto-
nated or deprotonated in the following aqueous solutions: 
(a) 0.150 M CH3CH(OH)COOH(aq) (lactic acid), (b) 2.4 × 10−4 M

CH3CH(OH)COOH(aq), (c) 0.25 M C6H5SO3H(aq) (benzenesul-
fonic acid). 

8.20 Show how the composition of an aqueous solution that
contains 20 mmol dm−3 glycine varies with pH.

8.21 Show how the composition of an aqueous solution that
contains 30 mmol dm−3 tyrosine varies with pH.

8.22 Estimate the pH of an aqueous solution of sodium 
hydrogenoxalate. Under what conditions is this estimate reas-
onably reliable?

8.23 Calculate the pH of the following acid solutions at 25°C;
ignore second deprotonations only when that approximation
is justified. (a) 1.0 × 10−4 M H3BO3(aq) (boric acid acts as a
monoprotic acid), (b) 0.015 M H3PO4(aq), (c) 0.10 M H2SO3(aq).

8.24 The weak base colloquially known as Tris, and more
precisely as tris(hydroxymethyl)aminomethane (3), has pKa =
8.3 at 20°C and is commonly used to produce a buffer for bio-
chemical applications. At what pH would you expect Tris to
act as a buffer in a solution that has equal molar concentra-
tions of Tris and its conjugate acid?

H2N

HO
OH

HO

3 tris(hydroxymethyl)aminomethane

8.25 The amino acid tyrosine has pKa = 2.20 for deprotona-
tion of its carboxylic acid group. What are the relative con-
centrations of tyrosine and its conjugate base at a pH of (a) 7,
(b) 2.2, (c) 1.5?

8.26 (a) Calculate the molar concentrations of (COOH)2,
HOOCCO2

−, (CO2)2
2−, H3O

+, and OH− in 0.15 M (COOH)2(aq).
(b) Calculate the molar concentrations of H2S, HS−, S2−, H3O

+,
and OH− in 0.065 M H2S(aq).

8.27 A sample of 0.10 M CH3COOH(aq) of volume 25.0 cm3

is titrated with 0.10 M NaOH(aq). The Ka for CH3COOH is 1.8
× 10−5. (a) What is the pH of 0.10 M CH3COOH(aq)? (b) What
is the pH after the addition of 10.0 cm3 of 0.10 M NaOH(aq)?
(c) What volume of 0.10 M NaOH(aq) is required to reach half-
way to the stoichiometric point? (d) Calculate the pH at that
half-way point. (e) What volume of 0.10 M NaOH(aq) is 
required to reach the stoichiometric point? (f) Calculate the
pH at the stoichiometric point.

8.28 A buffer solution of volume 100 cm3 consists of 0.10 M
CH3COOH(aq) and 0.10 M Na(CH3CO2)(aq). (a) What is its pH?
(b) What is the pH after the addition of 3.3 mmol NaOH to the
buffer solution? (c) What is the pH after the addition of 6.0
mmol HNO3 to the initial buffer solution? 

8.29 Predict the pH region in which each of the following
buffers will be effective, assuming equal molar concentrations
of the acid and its conjugate base: (a) sodium lactate and lactic
acid, (b) sodium benzoate and benzoic acid, (c) potassium 
hydrogenphosphate and potassium phosphate, (d) potassium
hydrogenphosphate and potassium dihydrogenphosphate,
(e) hydroxylamine and hydroxylammonium chloride.
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8.30 At the half-way point in the titration of a weak acid with
a strong base the pH was measured as 5.16. What is the 
acidity constant and the pKa of the acid? What is the pH of the
solution that is 0.025 M in the acid? 

8.31 Calculate the pH of (a) 0.10 M NH4Cl(aq), (b) 0.25 M

NaCH3CO2(aq), (c) 0.200 M CH3COOH(aq).

8.32 Calculate the pH at the stoichiometric point of the 
titration of 25.00 cm3 of 0.150 M lactic acid with 0.188 M

NaOH(aq).

8.33 Sketch the pH curve of a solution containing 0.10 M

NaCH3CO2(aq) and a variable amount of acetic acid.

8.34 From the information in Tables 8.1 and 8.2, select 
suitable buffers for (a) pH = 2.2 and (b) pH = 7.0.

8.35 Write the expression for the solubility constants of 
the following compounds: (a) AgI, (b) Hg2S, (c) Fe(OH)3,
(d) Ag2CrO4.

8.36 Use the data in Table 8.4 to estimate the molar solu-
bilities of (a) BaSO4, (b) Ag2CO3, (c) Fe(OH)3, (d) Hg2Cl2 in
water.

8.37 Use the data in Table 8.4 to estimate the solubility in
water of each sparingly soluble substance in its respective
solution: (a) silver bromide in 1.4 × 10−3 M NaBr(aq), (b) mag-
nesium carbonate in 1.1 × 10−5 M Na2CO3(aq), (c) lead(II) 
sulfate in a 0.10 M CaSO4(aq), (d) nickel(II) hydroxide in 2.7 ×
10−5 M NiSO4(aq).

8.38 The solubility of mercury(I) iodide is 5.5 fmol dm−3

(1 fmol = 10−15 mol) in water at 25°C. What is the standard
Gibbs energy of dissolution of the salt?

8.39 Thermodynamic data can be used to predict the solubil-
ities of compounds that would be very difficult to measure 
directly. Calculate the solubility of mercury(II) chloride in water
at 25°C from standard Gibbs energies of formation.

8.40 (a) Derive an expression for the ratio of solubilities of
AgCl at two different temperatures; assume that the standard
enthalpy of solution of AgCl is independent of temperature in
the range of interest. (b) Do you expect the solubility of AgCl
to increase or decrease as the temperature is raised?

Projects

8.41 Deduce expressions for the fractions of each type of
species present in an aqueous solution of lysine (4) as a 
function of pH and plot the appropriate speciation diagram.
Use the following values of the acidity constants: pKa(H3Lys2+)
= 2.18, pKa(H2Lys+) = 8.95, pKa(HLys) = 10.53. Hint: Although
it is instructive to rework Example 8.4 for a triprotic species,
the expressions for the fraction can easily be written down by
analogy with those in the example.

8.42 Using the insights gained through your work on Exer-
cise 8.41, and without doing a calculation, sketch the speci-
ation diagram for histidine (5) in water and label the axes with
the significant values of pH. Use pKa(H3His2+) = 1.77,
pKa(H2His+) = 6.10, pKa(HHis) = 9.18.

NH2 NH2O

HO

4 Lysine (Lys)

8.43 Here we explore buffer action in blood more quantita-
tively. (a) What are the values of the ratio [HCO3

−]/[H2CO3] at
the onset of acidosis and alkalosis? (b) The Bohr effect may
be understood in terms of a dependence on pH of the degree
of cooperativity in the binding of O2 by haemoglobin. Based
on the description of the Bohr effect given here and the in-
formation provided in Exercise 7.44, does the Hill coefficient
of haemoglobin increase or decrease with pH?

NH2HN

N

O

OH

5 Histidine (His)



Chapter 9

Chemical equilibrium:
electrochemistry

Ions in solution

9.1 The Debye–Hückel theory

9.2 The migration of ions

Box 9.1 Ion channels and pumps

Electrochemical cells

9.3 Half-reactions and electrodes

Box 9.2 Fuel cells

9.4 Reactions at electrodes

9.5 Varieties of cell

9.6 The cell reaction

9.7 The cell potential

9.8 Cells at equilibrium

9.9 Standard potentials

9.10 The variation of potential with pH

9.11 The determination of pH

Applications of standard potentials

9.12 The electrochemical series

9.13 The determination of thermodynamic functions

CHECKLIST OF KEY IDEAS

TABLE OF KEY EQUATIONS

QUESTIONS AND EXERCISES

Such apparently unrelated processes as combustion,
respiration, photosynthesis, and corrosion are actu-
ally all closely related, for in each of them an elec-
tron, sometimes accompanied by a group of atoms, 
is transferred from one species to another. Indeed, 
together with the proton transfer typical of acid–base
reactions, processes in which electrons are trans-
ferred, the so-called redox reactions, account for
many of the reactions encountered in chemistry.
Redox reactions—the principal topic of this chapter
—are of immense practical significance, not only 
because they underlie many biochemical and indus-
trial processes, but also because they are the basis of
the generation of electricity by chemical reactions
and the investigation of reactions by making elec-
trical measurements.

Measurements like the ones we describe in this
chapter lead to a collection of data that are very 
useful for discussing the characteristics of electrolyte
solutions and of a wide range of different types of
equilibria in solution. They are also used throughout
inorganic chemistry to assess the thermodynamic
feasibility of reactions and the stabilities of com-
pounds. They are used in physiology to discuss the
details of the propagation of signals in neurons.

Before getting down to business, a word about 
notation. Throughout this chapter (and book) we use
ln x for the natural logarithm of x (to the base e); this
logarithm is sometimes written loge x. We use log x
for the common logarithm of x (to the base 10); this
logarithm is sometimes denoted log10 x. The two 
logarithms are related by

ln x = ln 10 × log x ≈ 2.303 log x
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the first part of this chapter we use the molality, bJ,
and write

aJ = γJbJ /b (9.1a)

where b = 1 mol kg−1. For notational simplicity, we
shall replace bJ /b by bJ itself, treat b as the numer-
ical value of the molality, and write

aJ = γJbJ (9.1b)

Because the solution becomes more ideal as the 
molality approaches zero, we know that γJ → 1 as 
bJ → 0. Once we know the activity of the species J,
we can write its chemical potential by using

μJ = μJ + RT ln aJ (9.2)

The thermodynamic properties of the solution—such
as the equilibrium constants of reactions involving
ions—can then be derived in the same way as for
ideal solutions but with activities in place of con-
centrations. However, when we want to relate the 
results we derive to observations, we need to know
how to relate activities to concentrations. We 
ignored that problem when discussing acids and
bases, and simply assumed that all activity coeA-
cients were 1. In this chapter, we see how to improve
that approximation.

One problem that confronts us from the outset is
that cations and anions always occur together in 
solution. Therefore, there is no experimental pro-
cedure for distinguishing the deviations from ideal 
behaviour due to the cations from those of the 
anions: we cannot measure the activity coeAcients 
of cations and anions separately. The best we can do
experimentally is to ascribe deviations from ideal 
behaviour equally to each kind of ion and to talk in
terms of a mean activity coeGcient, γ±. For a salt
MX, such as NaCl, we show in Derivation 9.1 that
the mean activity coeAcient is related to the activity
coeAcients of the individual ions as follows:

γ± = (γ+γ−)
1/2 (9.3a)

For a salt MpXq, such as Mg3(PO4)2 where p = 3 and
q = 2, the mean activity coeAcient is related to the 
activity coeAcients of the individual ions as follows:

γ± = (γ +
pγ −

q )1/s s = p + q (9.3b)

Thus, for Mg3(PO4)2, s = 5 and the mean activity
coeAcient for each type of ion is

γ± = (γ +
3γ −

2)1/5

A brief illustration Suppose we found a way to calcu-
late the actual activity coefficients of Na+ and SO4

2− ions in
0.010 m Na2SO4(aq) and found them to be 0.98 and 0.84,

Ions in solution

The most significant difference between the solution
of an electrolyte and a nonelectrolyte is that there are
long-range Coulombic interactions between the ions
in the former. As a result, electrolyte solutions exhibit
nonideal behaviour even at very low concentrations
because the solute particles, the ions, do not move 
independently of one another. Some idea of the 
importance of ion–ion interactions is obtained by
noting their average separations in solutions of differ-
ent molar concentration c and, to appreciate the
scale, the typical number of H2O molecules that can
fit between them:

c /(mol dm−3) 0.001 0.01 0.1 1 10

Separation/nm 90 40 20 9 4

Number of H2O 30 14 6 3 1
molecules

We see how to take the interactions between ions
into account—which become very important for
concentrations of 0.01 mol dm−3 and more—in the
first part of this chapter. A second difference is that
an ion in solution responds to the presence of an elec-
tric field, migrates through the solution, and carries
charge from one location to another. Our bodies 
are electric conductors and some of the thoughts you
are currently having as you read this sentence can 
be traced to the migration of ions through mem-
branes in the enormously complex electrical circuits
of your brain.

A brief comment The Coulomb interaction between two
charges Q1 and Q2 separated by a distance r is described by
the Coulombic potential energy:

where e0 = 8.854 × 10−12 J−1 C2 m−1 is the vacuum permittiv-
ity. Note that the interaction is attractive (Ep < 0) when Q1 and
Q2 have opposite signs and repulsive (Ep > 0) when their
signs are the same. The potential energy of a charge is zero
when it is at an infinite distance from the other charge.
Concepts related to electricity are reviewed in Appendix 3.

9.1 The Debye–Hückel theory

We have seen that the thermodynamic properties of
solutes are expressed in terms of their activities, aJ,
which is a kind of dimensionless effective concentra-
tion, and that activities are related to concentrations
by multiplication by an activity coeAcient, γJ. There
are various ways of expressing concentration; in 
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respectively (these values are invented), the mean activ-
ity coefficient would be

g± = {(0.98)2 × (0.84)}1/3 = 0.93

because p = 2 and q = 1 and s = 3. We would then write
the activities of the two ions as

a+ = g±b+ = 0.93 × (2 × 0.010) = 0.019

a− = g±b− = 0.93 × (0.010) = 0.0093

The question still remains, however, about how
the mean activity coeAcients may be estimated. A
theory that accounts for their values in very dilute 
solutions was developed by Peter Debye and Erich
Hückel in 1923. They supposed that each ion in solu-
tion is surrounded by an ionic atmosphere of counter
charge. This ‘atmosphere’ is actually the slight imbal-
ance of charge arising from the competition between
thermal motion, which tends to keep all the ions dis-
tributed uniformly throughout the solution, and the
Coulombic interaction between ions, which tends to
attract counterions (ions of opposite charge) into
each other’s vicinity and repel ions of like charge
(Fig. 9.1). As a result of this competition, there is a
slight excess of cations near any anion, giving a posi-
tively charged ionic atmosphere around the anion, and
a slight excess of anions near any cation, giving a
negatively charged ionic atmosphere around the
cation. Because each ion is in an atmosphere of oppo-
site charge, its energy is lower than in a uniform, ideal
solution, and therefore its chemical potential is lower
than in an ideal solution. A lowering of the chemical
potential of an ion below its ideal solution value is
equivalent to the activity coeAcient of the ion being
less than 1 (because ln γ is negative when γ < 1). Debye
and Hückel were able to derive an expression that is
a limiting law in the sense that it becomes increas-
ingly valid as the concentration of ions approaches
zero. The Debye–Hückel limiting law2 is

log γ± = −A|z+z− |I1/2 (9.4)

(Note the common logarithm.) In this expression, 
A is a constant that for water at 25°C works out as
0.509. The zJ are the charge numbers of the ions (so
z+ = +1 for Na+ and z− = −2 for SO4

2−); the vertical bars

Derivation 9.1

Mean activity coefficients

In this derivation, we use the relation ln xy = ln x + ln y
several times (sometimes as ln x + ln y = ln xy), and its
implication (by setting y = x ) that ln x2 = 2 ln x. For a salt
MX that dissociates completely in solution, the molar
Gibbs energy of the ions is

Gm = m+ + m−

where m+ and m− are the chemical potentials of the
cations and anions, respectively. Each chemical potential
can be expressed in terms of a molality b and an activity
coefficient g by using eqn 9.2 (m = m- + RT ln a) and then
eqn 9.1 (a = gb) together with ln gb = ln g + ln b, which gives

We now use ln x + ln y = ln xy again to combine the two
terms involving the activity coefficients as

We now write the term inside the logarithm as g±
2, and

use ln x2 = 2 ln x to obtain

We see that, with the mean activity coefficient defined
as in eqn 9.3a, the deviation from ideal behaviour (as ex-
pressed by the activity coefficient) is now shared equally
between the two types of ion. In exactly the same way,
the Gibbs energy of a salt Mp Xq can be written

Gm = p(m +
- + RT ln g±b+) + q(m −

- + RT ln g±b−)

with the mean activity coefficient defined as in eqn 9.3b.1

Gm = (m+ + RT ln b+) + (m− + RT ln b−) + 2RT ln g±

= (m+ + RT ln b+ + RT ln g± ) + (m− + RT ln b− + RT ln g± )

= (m+ + RT ln g±b+ ) + (m− + RT ln g±b− )

Gm = (m+ + RT ln g+ + RT ln b+) + (m− + RT ln g− + RT ln b−)

= (m+ + RT ln b+) + (m− + RT ln b−) + RT ln g+g−

Gm = (m+ + RT ln g+b+ ) + (m− + RT ln g−b− )

= (m+ + RT ln g+ + RT ln b+) + (m− + RT ln g− + RT ln b−)

Fig. 9.1 The ionic atmosphere surrounding an ion consists of
a slight excess of opposite charge as ions move through the
vicinity of the central ion, with counterions lingering longer
than ions of the same charge. The ionic atmosphere lowers
the energy of the central ion.

1 For the details of this general case, see our Physical chemistry
(2006); see also Exercise 9.3.

2 For a derivation of the Debye–Hückel limiting law, see our
Physical chemistry (2006).
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the type of motion they undergo. The migration of
ions in solution is studied by measuring the electrical
resistance of a solution of known concentration in a
cell like that in Fig. 9.3. The resistance, R (in ohms,
Ω), of the solution is related to the current, I (in 
amperes, A), that flows when a potential difference,
V (in volts, V), is applied between the two electrodes,
by Ohm’s law: V = IR (see Appendix 3 for additional
concepts of electrostatics). Certain technicalities must
be dealt with in practice, such as using an alternating
current to minimize the effects of electrolysis, but the
essential point is the determination of R.

means that we ignore the sign of the product. The
quantity I is the ionic strength of the solution, which
is defined in terms of the molalities of the ions as

I = (z+
2b+ + z−

2b−)/b (9.5a)

A brief illustration To estimate the mean activity 
coefficient for the ions in 0.0010 m Na2SO4(aq) at 25°C,
we first evaluate the ionic strength of the solution from
eqn 9.5 using b+ /b- = 2 × 0.0010 and z+ = +1 for Na+ and
b− /b - = 0.0010 and z− for SO4

2−:

I = {(+1)2 × (2 × 0.0010) + (−2)2 × (0.0010)} = 0.0030

Then we use the Debye–Hückel limiting law, eqn 9.4, to
write

log g± = −0.509 × | (+1)(−2) | × (0.0030)1/2

= −2 × 0.509 × (0.0030)1/2

(This expression evaluates to −0.056.) On taking anti-
logarithms (x = 10log x ), we conclude that g± = 0.88.

When using eqn 9.5, make sure to include all the
ions present in the solution, not just those of interest.
For instance, if you are calculating the ionic strength
of a solution of silver chloride and potassium nitrate,
there are contributions to the ionic strength from all
four types of ion. When more than two ions con-
tribute to the ionic strength, we write:

(9.5b)

where the symbol ∑ denotes a sum (in this case of all
terms of the form zi

2bi), zi is the charge number of an
ion i (positive for cations and negative for anions)
and bi is its molality.

As we have stressed, eqn 9.4 is a limiting law and
is reliable only in very dilute solutions. For solutions
more concentrated than about 10−3 mol dm−3 ion–ion
interactions become even more important and it is
better to use an empirical modification known as the
extended Debye–Hückel law:

(9.6)

where B and C are dimensionless constants (Fig. 9.2).
Although B can be interpreted as a measure of the
closest approach of the ions, it (like C) is best 
regarded as an adjustable empirical parameter.

9.2 The migration of ions

Ions are mobile in solution, and the study of their
motion down a potential gradient gives an indication
of their size, the effect of solvation, and details of 
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Fig. 9.2 The variation of the activity coefficient with ionic
strength according to the extended Debye–Hückel theory. 
(a) The limiting law for a 1,1-electrolyte. (b) The extended 
law with B = 0.5. (c) The extended law, extended further by
the addition of a term CI; in this case with C = 0.2. The last
form of the law reproduces the observed behaviour reason-
ably well.

Conductivity
bridge

Sample

Fig. 9.3 A typical conductivity cell. The cell is made part of a
‘bridge’ and its resistance is measured. The conductivity is
normally determined by comparison of its resistance to that
of a solution of known conductivity. An alternating current is
used to avoid the formation of decomposition products at 
the electrodes.
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It is found empirically that the resistance of a 
sample is proportional to its length, L, and inversely
proportional to its cross-sectional area, A. The 
constant of proportionality is called the resistivity, ρ
(rho), and we write R = ρL/A. The units of resistivity
are ohm metre (Ω m). The reciprocal of the resistiv-
ity is called the conductivity, κ (kappa), which is 
expressed in Ω−1 m−1. Reciprocal ohms appear so
widely in electrochemistry that they are given their
own name, siemens (S, 1 S = 1 Ω−1); then conductivit-
ies are expressed in siemens per metre (S m−1).

A brief comment The ampere (A) is one of the SI base
units. Charge is reported in coulombs, with 1 C = 1 A s. 
For potential and potential difference the volt, V, is defined 
as 1 V = 1 J C−1 (or, in base units, 1 V = 1 kg m2 A−1 s−3) and
for resistance the ohm (X) is defined as 1 X = 1 V A−1 (in base
units, 1 X = 1 kg m2 A−2 s−3), so the siemens is 1 S = 1 A V−1.
For most applications, it is possible to work in amperes, 
volts, and coulombs.

Once we have determined κ (in practice, by 
calibrating the cell with a solution of known con-
ductivity), we find the molar conductivity, Λm (u.c.
lambda), when the solute molar concentration is c by
forming

(9.7)

With molar concentration in moles per cubic decime-
tre, molar conductivity is expressed in siemens per
metre per (moles per cubic decimetre), or S m−1 (mol
dm−3)−1. These awkward units are useful in practical
applications but can be simplified to siemens metre-
squared per mole (S m2 mol−1). Specifically, the rela-
tion between units is 1 S m−1 (mol dm−3)−1 = 1 mS m2

mol−1, where 1 mS = 10−3 S.
The molar conductivity of a strong electrolyte (one

that is fully dissociated into ions in solution, such as
the solution of a salt) varies with molar concentra-
tion in accord with the empirical law discovered by
Friedrich Kohlrausch in 1876:

Λm = Λ°m − K c1/2 (9.8)

The constant Λ°m, the limiting molar conductivity, 
is the molar conductivity in the limit of such low 
concentration that the ions no longer interact with
one another. The constant K takes into account the
effect of these interactions when the concentration is
nonzero. The fact that the interactions give rise to a
square-root dependence on the concentration suggests
that they arise from effects like those responsible for
activity coeAcients in the Debye–Hückel theory, and

 
Λm =

κ
c

in particular the effect of an ionic atmosphere on the
mobilities of ions. The fact that the molar conductiv-
ity decreases with increasing concentration can be
traced to the retarding effect of the ions on the 
motion of one another. We shall concentrate on 
the limiting conductivity.

When the ions are so far apart that their inter-
actions can be ignored, we can suspect that the molar
conductivity is due to the independent migration of
cations in one direction and of anions in the opposite
direction, and write

Λ°m = λ+ + λ− (9.9)

where λ+ and λ− are the ionic conductivities of the 
individual cations and anions (Table 9.1).

The molar conductivity of a weak electrolyte
varies in a more complex way with concentration.
This variation reflects the fact that the degree of ion-
ization (or, in the case of weak acids and bases, the
degree of deprotonation or protonation) varies with
the concentration, with relatively more ions present
at low concentrations than at high. Because we can
use simple equilibrium-table techniques to relate the
ion concentrations to the nominal (initial) concentra-
tion, we can use measurements of molar conductivity
to determine acidity constants. The same kind of
measurements can also be used to monitor the
progress of reactions in solution, provided that they
involve ions.

Table 9.1

Ionic conductivities, l /(mS m2 mol−1)*

Cations Anions

H+ (H3O
+) 34.96 OH− 19.91

Li+ 3.87 F− 5.54
Na+ 5.01 Cl− 7.64
K+ 7.35 Br− 7.81
Rb+ 7.78 I− 7.68
Cs+ 7.72 CO3

2− 13.86
Mg2+ 10.60 NO3

− 7.15
Ca2+ 11.90 SO4

2− 16.00
Sr2+ 11.89 CH3CO2

− 4.09
NH4

+ 7.35 HCO2
− 5.46

[N(CH3)4]
+ 4.49

[N(CH2CH3)4]
+ 3.26

* The same numerical values apply when the units are S m−1

(mol dm−3)−1.



Derivation 9.2

The ionic mobility

An electric field is an influence that accelerates a charged
particle. An ion of charge ze in an electric field E (typic-
ally, in volts per metre, V m−1) experiences a force of
magnitude zeE, which accelerates it. However, the ion
experiences a frictional force due to its motion through
the medium, which increases the faster the ion travels.
The retarding force due to the viscosity on a spherical
particle of radius a travelling at a speed s is given by
‘Stokes’ law’:

F = 6phas

When the particle has reached its drift speed, the accel-
erating and viscous retarding forces are equal, so we can
write

ezE = 6phas

and solve this expression for s:

At this point we can compare this expression for the drift
speed with eqn 9.10, and hence find the the expression
for mobility given in eqn 9.11.
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The ability of an ion to conduct electricity depends
on its ability to move through the solution. When an
ion is subjected to an electric field E , it accelerates.
However, the faster it travels through the solution,
the greater the retarding force it experiences from the
viscosity of the medium. As a result, it settles down
into a limiting velocity called its drift velocity, s, which
is proportional to the strength of the applied field:

s = uE (9.10)

The mobility, u, depends on the radius, a, of the ion
and the viscosity, η (eta), of the solution:

(9.11)

where ez is the charge of the moving ion.
 
u

ez
a

=
6πη

Example 9.1

Determining the acidity constant from the
conductivity of a weak acid

The molar conductivity of 0.010 M CH3COOH(aq) is 
1.65 mS m2 mol−1. What is the acidity constant of the acid?

Strategy Because acetic acid is weak, it is only partly 
deprotonated in aqueous solution. Only the fraction of acid
molecules present as ions contributes to the conduction,
so we need to express Lm in terms of the fraction depro-
tonated. To do so, we set up an equilibrium table, find the
molar concentration of H3O

+ and CH3CO2
− ions, and relate

those concentrations to the observed molar conductivity.

Solution The equilibrium table for CH3COOH(aq) + H2O(l)
f H3O

+(aq) + CH3CO2
−(aq) is

Species

CH3COOH H3O
+ CH3CO2

−

Initial molar 0.010 0 0
concentration/
(mol dm−3)
Change/(mol dm−3) −x +x +x
Equilibrium molar 0.010 − x x x
concentration/
(mol dm−3)

The value of x is found by substituting the entries in the
last line into the expression for Ka:

On the assumption that x is small, we replace 0.010 − x
by 0.010 and find that x = (0.010Ka)

1/2. The fraction, a, 
of CH3COOH molecules present as ions is therefore
x /0.010, or a = (Ka /0.010)1/2. The molar conductivity of
the solution is therefore this fraction multiplied by the
molar conductivity of acetic acid calculated on the 
assumption that deprotonation is complete:

Lm = aL°m = a(lH3O+ + lCH3CO2
−

where L°m = lH3O+ + lCH3CO2
−. Because

lH3O+ + lCH3CO2
− = 34.96 mS m2 mol−1 + 4.09 mS m2 mol−1

= 39.05 mS m2 mol−1

it follows that a = (1.65 mS m2 mol−1)/(39.05 mS m2 mol−1)
= 0.0423. Therefore,

Ka = 0.010a2 = 0.010 × (0.0423)2 = 1.8 × 10−5

This value corresponds to pKa = 4.75.
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Self-test 9.1

The molar conductivity of 0.0250 M HCOOH(aq) is
4.61 mS m2 mol−1. What is the pKa of formic acid?

[Answer: 3.49]

Equation 9.11 tells us that the mobility of an ion 
is high if it is highly charged, is small, and if it is in 
a solution with low viscosity. These features appear
to contradict the trends in Table 9.2, which lists 
the mobilities of a number of ions. For instance, the 
mobilities of the Group 1 cations increase down 
the group despite their increasing radii. The explana-
tion is that the radius to use in eqn 9.11 is the 
hydrodynamic radius, the effective radius for the 
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migration of the ions taking into account the entire
object that moves. When an ion migrates, it carries
its hydrating water molecules with it, and as small
ions are more extensively hydrated than large ions
(because they give rise to a stronger electric field in
their vicinity), ions of small radius actually have a
large hydrodynamic radius. Thus, hydrodynamic 
radius decreases down Group 1 because the extent of
hydration decreases with increasing ionic radius.

One significant deviation from this trend is the
very high mobility of the proton in water. It is 
believed that this high mobility reflects an entirely
different mechanism for conduction, the Grotthus
mechanism, in which the proton on one H2O mole-
cule migrates to its neighbour, the proton on that
H2O molecule migrates to its neighbour, and so on
along a chain (Fig. 9.4). The motion is therefore an
effective motion of a proton, not the actual motion of
a single proton.3 The motion of protons and other
ions across biological membranes is even more com-
plicated and makes use of special proteins called ion
channels and ion pumps (Box 9.1).

Table 9.2

Ionic mobilities in water at 298 K, u/(10−8 m2 s−1 V−1)

Cations Anions

H+ (H3O
+) 36.23 OH− 20.64

Li+ 4.01 F− 5.74
Na+ 5.19 Cl− 7.92
K+ 7.62 Br− 8.09
Rb+ 8.06 I− 7.96
Cs+ 8.00 CO3

2− 7.18
Mg2+ 5.50 NO3

− 7.41
Ca2+ 6.17 SO4

2− 8.29
Sr2+ 6.16
NH4

+ 7.62
[N(CH3)4]

+ 4.65
[N(CH2CH3)4]

+ 3.38

Fig. 9.4 A simplified version of the ‘Grotthus mechanism’ of
proton conduction through water. The proton leaving the
chain on the right is not the same as the proton entering the
chain on the left.

Box 9.1 Ion channels and pumps

Controlled transport of molecules and ions across biological
membranes is at the heart of a number of key cellular pro-
cesses, such as the transmission of nerve impulses, the
transfer of glucose into red blood cells, and the synthesis of
ATP. Here, we examine in some detail the various ways in
which ions cross the alien environment of the lipid bilayer.

Suppose that a membrane provides a barrier that slows
down the transfer of molecules or ions into or out of the
cell. The thermodynamic tendency to transport a species A
through the membrane is partially determined by a concen-
tration gradient (more precisely, an activity gradient) across
the membrane, which results in a difference in molar Gibbs
energy between the inside and the outside of the cell

The equation implies that transport into the cell of either
neutral or charged species is thermodynamically favourable
if ain < aout or, if we set the activity coefficients to 1, if [A]in <
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[A]out. If A is an ion, there is a second contribution to DGm

that is due to the different potential energy of the ions on
each side of the bilayer, where the difference in electro-
static potential is Df = fin − fout. The final expression for 
DG is then

where z is the ion charge number and F is Faraday’s con-
stant. This equation implies that there is a tendency, called
passive transport, for a species to move down concentra-
tion and membrane potential gradients. It is also possible to
move a species against these gradients, but now the flow
must be driven by an exergonic process, such as the 
hydrolysis of ATP. This process is called active transport.

The transport of ions into or out of a cell needs to be 
mediated (that is, facilitated by other species) because the
hydrophobic environment of the membrane is inhospit-
able to ions. There are two mechanisms for ion transport: 
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3 For a detailed account of the modern version of this mechanism,
see our Physical chemistry (2006).

See an animated version of this figure in the 
interactive ebook.
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electrode compartment. The two electrodes may
share the same compartment (Fig. 9.5). If the elec-
trolytes are different, then the two compartments
may be joined by a salt bridge, which is an electrolyte
solution that completes the electrical circuit by per-
mitting ions to move between the compartments
(Fig. 9.6). Alternatively, the two solutions may be 
in direct physical contact (for example, through 
a porous membrane) and form a liquid junction.

Electrochemical cells

An electrochemical cell consists of two electronic
conductors (metal or graphite, for instance) dipping
into an electrolyte (an ionic conductor), which may
be a solution, a liquid, or a solid. The electronic con-
ductor and its surrounding electrolyte is an electrode.
The physical structure containing them is called an

mediation by a carrier molecule and transport through a
channel former, a protein that creates a hydrophilic pore
through which the ion can pass. An example of a channel
former is the polypeptide gramicidin A, which increases the
membrane permeability to cations such as H+, K+, and Na+.

Ion channels are proteins that effect the movement of
specific ions down a membrane potential gradient. They
are highly selective, so there is a channel protein for Ca2+,
another for Cl−, and so on. The opening of the gate may be
triggered by potential differences between the two sides of
the membrane or by the binding of an effector molecule to
a specific receptor site on the channel.

The patch clamp technique can be used to measure the
transport of ions across cell membranes. One of many 
possible experimental arrangements is shown in the illus-
tration. With mild suction, a ‘patch’ of membrane from a
whole cell or a small section of a broken cell can be attached
tightly to the tip of a micropipette filled with an electrolyte
solution and containing an electrode, the patch electrode. 
A potential difference (the ‘clamp’) is applied between the
patch electrode and an intracellular electrode in contact
with the cytosol of the cell. If the membrane is permeable
to ions at the applied potential difference, a current flows
through the completed circuit. Using sufficiently narrow 
micropipette tips with diameters of less than 1 mm, ion 
currents of a few picoamperes (1 pA = 10−12 A) have been
measured across sections of membranes containing only
one ion-channel protein.

A striking example of the importance of ion channels is
their role in the propagation of impulses by neurons, the
fundamental units of the nervous system. The cell mem-
brane of a neuron is more permeable to K+ ions than to 
either Na+ or Cl− ions. The key to the mechanism of action
of a nerve cell is its use of Na+ and K+ channels to move ions
across the membrane, modulating its potential. For example,
the concentration of K+ inside an inactive nerve cell is about
20 times that on the outside, whereas the concentration of
Na+ outside the cell is about 10 times that on the inside. The
difference in concentrations of ions results in a transmem-
brane potential difference of about −62 mV, with the nega-
tive sign denoting that the inside has a lower potential. This
potential difference is also called the resting potential of the
cell membrane.

The transmembrane potential difference plays a particu-
larly interesting role in the transmission of nerve impulses.
Upon receiving an impulse, which is called an action poten-
tial, a site in the nerve cell membrane becomes transi-
ently permeable to Na+ and the transmembrane potential
changes. To propagate along a nerve cell, the action poten-
tial must change the transmembrane potential by at least
20 mV, to values that are less negative than −40 mV. Pro-
pagation occurs when an action potential in one site of the
membrane triggers an action potential in an adjacent site,
with sites behind the moving action potential returning to
the resting potential.

Ions such as H+, Na+, K+, and Ca2+ are often transported
actively across membranes by integral proteins called ion
pumps. Ion pumps are molecular machines that work by
adopting conformations that are permeable to one ion but
not others, depending on the state of phosphorylation 
of the protein. Because protein phosphorylation requires
dephosphorylation of ATP, the conformational change that
opens or closes the pump is endergonic and requires the
use of energy stored during metabolism.

Cytosol

Ion channel

Micropipette

Patch electrode

Intracellular
electrode

Monitor

A representation of the patch clamp technique for the meas-
urement of ionic currents through membranes in intact
cells. A section of membrane containing an ion channel is 
in tight contact with the tip of a micropipette containing an
electrolyte solution and the patch electrode. An intracellular
electrode is inserted into the cytosol of the cell and the two
electrodes are connected to a power supply and current-
measuring device.
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However, a liquid junction introduces complications
into the interpretation of measurements, and we
shall not consider it further.

A galvanic cell (also called a voltaic cell) is an elec-
trochemical cell that produces electricity as a result
of the spontaneous reaction occurring inside it. An
electrolytic cell is an electrochemical cell in which a
nonspontaneous reaction is driven by an external
source of direct current. The commercially available
dry cells, mercury cells, nickel–cadmium (‘nicad’),
and lithium ion cells used to power electrical equip-
ment are all galvanic cells and produce electricity as
a result of the spontaneous chemical reaction be-
tween the substances built into them at manufacture.
A fuel cell is a galvanic cell in which the reagents,
such as hydrogen and oxygen or methane and oxy-
gen, are supplied continuously from outside. Fuel
cells are used on manned spacecraft, are beginning to
be considered for use in automobiles, and gas supply
companies hope that one day they may be used as a
convenient, compact source of electricity in homes
(Box 9.2). Electric eels and electric catfish are biolo-

gical versions of fuel cells in which the fuel is food and
the cells are adaptations of muscle cells. Electrolytic
cells include the arrangement used to electrolyse
water into hydrogen and oxygen and to obtain alu-
minium from its oxide in the Hall–Hérault process.
Electrolysis is the only commercially viable means
for the production of fluorine. The electron-transfer
processes that occur in respiration and photosynthe-
sis can be modelled by electrochemical cells in which
electrons are transferred between proteins.

9.3 Half-reactions and electrodes

A redox reaction is the outcome of the loss of elec-
trons, and perhaps atoms, from one species and 
their gain by another species. It will be familiar from
introductory chemistry that we identify the loss of
electrons (oxidation) by noting whether an element
has undergone an increase in oxidation number (see
Appendix 4 for a review of oxidation numbers). We
identify the gain of electrons (reduction) by noting
whether an element has undergone a decrease in oxi-
dation number. The requirement to break and form
covalent bonds in some redox reactions, as in the
conversion of PCl3 to PCl5 or of NO2

− to NO3
−, is one

of the reasons why redox reactions often achieve
equilibrium quite slowly, often much more slowly
than acid–base proton-transfer reactions.

Electrolyte

Electrodes

Fig. 9.5 The arrangement for an electrochemical cell in which
the two electrodes share a common electrolyte.

Salt
bridge

Fig. 9.6 When the electrolytes in the electrode compartments
of a cell are different, they need to be joined so that ions can
travel from one compartment to another. One device for join-
ing the two compartments is a salt bridge.

Self-test 9.2

Identify the species that have undergone oxidation and
reduction in the reaction CuS(s) + O2(g) → Cu(s) + SO2(g).

[Answer: Cu(+2) reduced to Cu(0), S(−2) oxidized 
to S(+4), O(0) reduced to O(−2)]

Any redox reaction may be expressed as the 
difference of two reduction half-reactions. Two ex-
amples are

Reduction of Cu2+: Cu2+(aq) + 2 e− → Cu(s)

Reduction of Zn2+: Zn2+(aq) + 2 e− → Zn(s)

Difference: Cu2+(aq) + Zn(s) 
→ Cu(s) + Zn2+(aq) (A)

A half-reaction in which atom transfer accompanies
electron transfer is

Reduction of MnO4
−: MnO4

−(aq) + 8 H+(aq) + 5 e−

→ Mn2+(aq) + 4 H2O(l) (B)

where oxygen atoms are lost from MnO4
−(aq) and

form H2O(l). In the discussion of redox reactions,
the hydrogen ion is commonly denoted simply
H+(aq) rather than treated as a hydronium ion,
H3O

+(aq), as proton transfer is less of an issue and
the chemical equations are simplified.
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Half-reactions are conceptual. Redox reactions
normally proceed by a much more complex mechan-
ism in which the electron is never free. The electrons
in these conceptual reactions are regarded as being
‘in transit’ and are not ascribed a state. The oxidized
and reduced species in a half-reaction form a redox
couple, denoted Ox/Red. Thus, the redox couples men-
tioned so far are Cu2+/Cu, Zn2+/Zn, and MnO4

−, H+/
Mn2+,H2O. In general, we adopt the notation

Couple: Ox/Red Half-reaction: Ox + v e− → Red

Box 9.2 Fuel cells

A fuel cell operates like a conventional galvanic cell with 
the exception that the reactants are supplied from outside
rather than forming an integral part of its construction. A
fundamental and important example of a fuel cell is the 
hydrogen/oxygen cell, such as the ones used in the Apollo
Moon missions. One of the electrolytes used is concen-
trated aqueous potassium hydroxide maintained at 200°C
and 20–40 atm; the electrodes may be porous nickel in the
form of sheets of compressed powder. The cathode reac-
tion is the reduction

O2(g) + 2 H2O(l) + 4e− → 4 OH−(aq) E - = +0.40 V

and the anode reaction is the oxidation

H2(g) + 2 OH−(aq) → 2 H2O(l) + 2 e−

For the corresponding reduction, E - = −0.83 V. Because
the overall reaction

2 H2(g) + O2(g) → 2 H2O(l) E -
cell = +1.23 V

is exothermic as well as spontaneous, it is less favour-
able thermodynamically at 200°C than at 25°C, so the cell
potential is lower at the higher temperature. However, the
increased pressure compensates for the increased temper-
ature, and at 200°C and 40 atm Ecell ≈ +1.2 V.

A property that determines the efficiency of an electrode
is the current density, the electric current flowing through 
a region of an electrode divided by the area of the region.
One advantage of the hydrogen/oxygen system is the large
exchange current density, the magnitude of the equal but
opposite current densities when the electrode is at equilib-
rium, of the hydrogen reaction. Unfortunately, the oxygen
reaction has an exchange current density of only about 
0.1 nA cm−2, which limits the current available from the cell.
One way round the difficulty is to use a catalytic surface
with a large surface area. One type of highly developed fuel
cell has phosphoric acid as the electrolyte and operates
with hydrogen and air at about 200°C; the hydrogen is 
obtained from a reforming reaction on natural gas

Anode: 2 H2(g) → 4 H+(aq) + 4 e−

Cathode: O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)

This fuel cell has shown promise for combined heat and
power systems (CHP systems). In such systems, the waste
heat is used to heat buildings or to do work. Efficiency in 
a CHP plant can reach 80 per cent. The power output of 
batteries of such cells has reached the order of 10 MW.
Although hydrogen gas is an attractive fuel, it has disadvant-
ages for mobile applications: it is difficult to store and 
dangerous to handle. One possibility for portable fuel cells
is to store the hydrogen in carbon nanotubes. It has been
shown that carbon nanofibres in herringbone patterns can
store huge amounts of hydrogen and result in energy den-
sities twice that of gasoline.

Cells with molten carbonate electrolytes at about 600°C
can make use of natural gas directly. Until these materials
have been developed, one attractive fuel is methanol,
which is easy to handle and is rich in hydrogen atoms:

Anode: CH3OH(l) + 6 OH−(aq) → 5 H2O(l) + CO2(g) + 6 e−

Cathode: O2(g) + 2 H2O(l) + 4 e− → 4 OH−(aq)

One disadvantage of methanol, however, is the phenomenon
of ‘electro-osmotic drag’ in which protons moving through
the polymer electrolyte membrane separating the anode
and cathode carry water and methanol with them into the
cathode compartment where the potential is sufficient to
oxidize CH3OH to CO2, so reducing the efficiency of the
cell. Solid ionic conducting oxide cells operate at about
1000°C and can use hydrocarbons directly as fuel.

A biofuel cell is like a conventional fuel cell but in place 
of a platinum catalyst it uses enzymes or even whole 
organisms. The electricity will be extracted through organic
molecules that can support the transfer of electrons. One
application will be as the power source for medical 
implants, such as pacemakers, perhaps using the glucose
present in the bloodstream as the fuel.

Example 9.2

Expressing a reaction in terms of half-reactions

Express the oxidation of NADH (nicotinamide adenine
dinucleotide, 1), which participates in the chain of oxida-
tions that constitutes respiration, to NAD+ (2) by oxygen,
when the latter is reduced to H2O2, in aqueous solution
as the difference of two reduction half-reactions. The
overall reaction is NADH(aq) + O2(g) + H+(aq) → NAD+(aq)
+ H2O2(aq).
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A chemical reaction need not be a redox reaction
for it to be expressed in terms of reduction half-
reactions. For instance, the expansion of a gas

H2(g, pi) → H2(g, pf)

can be expressed as the difference of two reductions:

2 H+(aq) + 2 e− → H2(g, pf) 

2 H+(aq) + 2 e− → H2(g, pi)

The two couples are both H+/H2 with the gas at a dif-
ferent pressure in each case. Similarly, the dissolution
of the sparingly soluble salt silver chloride

AgCl(s) → Ag+(aq) + Cl−(aq)

can be expressed as the difference of the following
two reduction half-reactions:

AgCl(s) + e− → Ag(s) + Cl−(aq)

Ag+(aq) + e− → Ag(s)

We saw in Chapter 7 that a natural way to express
the composition of a system is in terms of the reac-
tion quotient, Q. The quotient for a half-reaction is
defined like the quotient for the overall reaction, but
with the electrons ignored. Thus, for the half-reaction
of the NAD+/NADH couple in Example 9.2 we
would write

NAD+(aq) + H+(aq) + 2 e− → NADH(aq)

In elementary work, and provided the solution is very
dilute, the activities are interpreted as the numerical
values of the molar concentrations (see Table 6.2).
The replacement of activities by molar concentrations
is very hazardous for ionic solutions, as we have seen,
so wherever possible we delay taking that final step.

9.4 Reactions at electrodes

In an electrochemical cell, the anode is where oxida-
tion takes place and the cathode is where reduction
takes place. As the reaction proceeds in a galvanic
cell, the electrons released at the anode travel through
the external circuit (Fig. 9.7). They re-enter the cell at
the cathode, where they bring about reduction.
Because negatively charged electrons tend to travel to
regions of higher (more positive) potential, this flow
of current in the external circuit, from anode to 
cathode, corresponds to the cathode having a higher
potential than the anode. In an electrolytic cell, the
anode is also the location of oxidation (by definition).
Now, though, electrons must be withdrawn from the
species in the anode compartment, so the anode must
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Strategy To express a reaction as the difference of two
reduction half-reactions, identify one reactant species
that undergoes reduction, its corresponding reduction
product, and write the half-reaction for this process. 
To find the second half-reaction, subtract the first half-
reaction from the overall reaction and rearrange the spe-
cies so that all the stoichiometric coefficients are positive
and the equation is written as a reduction.

Solution Oxygen is reduced to H2O2, so one half- 
reaction is

O2(g) + 2 H+(aq) + 2 e− → H2O2(aq)

Subtraction of this half-reaction from the overall equa-
tion gives

NADH(aq) − H+(aq) − 2 e− → NAD+(aq)

Addition of H+(aq) + 2 e− to both sides gives

NADH(aq) → NAD+(aq) + H+(aq) + 2 e−

This is an oxidation half-reaction. We reverse it to find
the corresponding reduction half-reaction:

NAD+(aq) + H+(aq) + 2 e− → NADH(aq)

Self-test 9.3

Express the formation of H2O from H2 and O2 in
acidic solution as the difference of two reduction
half-reactions.

[Answer: 4 H+(aq) + 4 e− → 2 H2(g), 
O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)]
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Electrons

Ions

Ions

Anode

Cathode

Oxidation

Reduction

–

+

Fig. 9.7 The flow of electrons in the external circuit is from
the anode of a galvanic cell, where they have been lost in the
oxidation reaction, to the cathode, where they are used in 
the reduction reaction. Electrical neutrality is preserved in 
the electrolytes by the flow of cations and anions in opposite
directions through the salt bridge.

Electrons
Electrons

Cathode

Oxidation Reduction

Anode

+ –

Fig. 9.8 The flow of electrons and ions in an electrolytic cell.
An external supply forces electrons into the cathode, where
they are used to bring about a reduction, and withdraws 
them from the anode, which results in an oxidation reaction
at that electrode. Cations migrate towards the negatively
charged cathode and anions migrate towards the positively
charged anode. An electrolytic cell usually consists of a single
compartment, but a number of industrial versions have two
compartments.

H+

H+

H+H+

H2

H2

e–

Fig. 9.9 The schematic structure of a hydrogen electrode,
which is like other gas electrodes. Hydrogen is bubbled over
a black (that is, finely divided) platinum surface that is in con-
tact with a solution containing hydrogen ions. The platinum,
as well as acting as a source or sink for electrons speeds the
electrode reaction because hydrogen attaches to (adsorbs
on) the surface as atoms.

Example 9.3

Writing the half-reaction for a gas electrode

Write the half-reaction and the reaction quotient for the
reduction of oxygen to water in acidic solution.

Strategy Write the chemical equation for the half-
reaction. Then express the reaction quotient in terms of
the activities and the corresponding stoichiometric coeffi-
cients, with products in the numerator and reactants 
in the denominator. Pure (and nearly pure) solids and 
liquids do not appear in Q; nor does the electron. The 
activity of a gas is set equal to the numerical value of its
partial pressure in bar (more formally: aJ = pJ /p-).

Solution The equation for the reduction of O2 in acidic
solution is

O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)

The reaction quotient for the half-reaction is therefore

Note the very strong dependence of Q on the hydrogen
ion activity.

Q
p a

=
+

1
4

O H2

Self-test 9.4

Write the half-reaction and the reaction quotient for
a chlorine gas electrode.

[Answer: Cl2(g) + 2 e− → 2 Cl−(aq), Q = a2
Cl− /pCl2

]

hydrogen is bubbled through an aqueous solution of
hydrogen ions and the redox couple is H+/H2. This
electrode is denoted Pt(s)|H2(g)|H+(aq). The vertical
lines denote junctions between phases. In this elec-
trode, the junctions are between the platinum and
the gas and between the gas and the liquid containing
its ions.

be connected to the positive terminal of an external
supply. Similarly, electrons must pass from the 
cathode to the species undergoing reduction, so the
cathode must be connected to the negative terminal
of a supply (Fig. 9.8).

In a gas electrode (Fig. 9.9), a gas is in equilibrium
with a solution of its ions in the presence of an inert
metal. The inert metal, which is often platinum, acts
as a source or sink of electrons but takes no other part
in the reaction except perhaps acting as a catalyst. One
important example is the hydrogen electrode, in which
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A metal–insoluble-salt electrode consists of a
metal M covered by a porous layer of insoluble salt
MX, the whole being immersed in a solution con-
taining X− ions (Fig. 9.10). The electrode is denoted
M|MX |X−, where the vertical line denotes a bound-
ary across which electron transfer takes place. 
An example is the silver–silver-chloride electrode,
Ag(s)|AgCl(s)|Cl−(aq), for which the reduction half-
reaction is

AgCl(s) + e− → Ag(s) + Cl−(aq) Q = aCl− ≈ [Cl−]

The activities of both solids are 1. Note that the 
reaction quotient (and therefore, as we see later, the
potential of the electrode) depends on the activity of
chloride ions in the electrolyte solution.

The term redox electrode is normally reserved for
an electrode in which the couple consists of the same
element in two nonzero oxidation states (Fig. 9.11).
An example is an electrode in which the couple is
Fe3+/Fe2+. In general, the equilibrium is

Ox + v e− → Red

A redox electrode is denoted M |Red,Ox, where M is
an inert metal (typically platinum) making electrical
contact with the solution. The electrode correspond-
ing to the Fe3+/Fe2+ couple is therefore denoted
Pt(s) |Fe2+(aq),Fe3+(aq) and the reduction half-
reaction and reaction quotient are

Fe3+(aq) + e− → Fe2+(aq)

Another example of a similar kind is the electrode
Pt(s) | NADH(aq),NAD+(aq),H+(aq) used to study the
NAD+/NADH couple.

9.5 Varieties of cell

The simplest type of galvanic cell has a single elec-
trolyte common to both electrodes (as in Fig. 9.5). In
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Fig. 9.10 The schematic structure of a silver–silver-chloride
electrode (as an example of an insoluble-salt electrode). The
electrode consists of metallic silver coated with a layer of 
silver chloride in contact with a solution containing Cl− ions.

Example 9.4

Writing the half-reaction for a metal–insoluble-
salt electrode

Write the half-reaction and the reaction quotient for the
lead–lead-sulfate electrode of the lead–acid battery, in
which Pb(II), as lead(II) sulfate, is reduced to metallic
lead in the presence of hydrogensulfate ions in the 
electrolyte.

Strategy Begin by identifying the species that is reduced,
and writing the half-reaction. Balance that half-reaction
by using H2O molecules if O atoms are required, hydro-
gen ions (because the solution is acidic) if H atoms are
needed, and electrons for the charge. Then write the 
reaction quotient in terms of the stoichiometric numbers
and activities of the species present. Products appear in
the numerator, reactants in the denominator.

Solution The electrode is

Pb(s)|PbSO4(s)|HSO4
−(aq)

in which Pb(II) is reduced to metallic lead. The equation
for the reduction half-reaction is therefore

PbSO4(s) + H+(aq) + 2 e− → Pb(s) + HSO4
−(aq)

and the reaction quotient is
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Self-test 9.5

Write the half-reaction and the reaction quotient 
for the calomel electrode, Hg(l)|Hg2Cl2(s)|Cl−(aq), in
which mercury(I) chloride (calomel) is reduced to
mercury metal in the presence of chloride ions. This
electrode is a component of instruments used to
measure pH, as explained later.

[Answer: Hg2Cl2(s) + 2 e− → 2 Hg(l) + 2 Cl−(aq), Q = a2
Cl−]

e–

Pt

Fe2+
Fe2+

Fe3+

Fe3+

Fig. 9.11 The schematic structure of a redox electrode. The
platinum metal acts as a source or sink for electrons required
for the interconversion of (in this case) Fe2+ and Fe3+ ions in
the surrounding solution.
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trode is copper in contact with aqueous copper(II)
sulfate is denoted

Zn(s)|ZnSO4(aq)||CuSO4(aq)|Cu(s)

9.6 The cell reaction

The current produced by a galvanic cell arises from 
the spontaneous reaction taking place inside it. The
cell reaction is the reaction in the cell written on 
the assumption that the right-hand electrode is the 
cathode, and hence that reduction is taking place in
the right-hand compartment. Later we see how to pre-
dict if the right-hand electrode is in fact the cathode;
if it is, then the cell reaction is spontaneous as written.
If the left-hand electrode turns out to be the cathode,
then the reverse of the cell reaction is spontaneous.

To write the cell reaction corresponding to the cell
diagram, we first write the half-reactions at both elec-
trodes as reductions, and then subtract the equation
for the left-hand electrode from the equation for the
right-hand electrode. Thus, we saw in Example 9.2
that for the cell used to study the reaction between
NADH and O2,

Pt(s)|NADH(aq),NAD+(aq),H+(aq)||
H2O2(aq), H+(aq)|O2(g)|Pt(s)

the two reduction half-reactions are

Right (R): O2(g) + 2 H+(aq) + 2 e− → H2O2(aq)

Left (L): NAD+(aq) + H+(aq) + 2 e− → NADH(aq)

The equation for the cell reaction is the difference:

Overall (R − L): NADH(aq) + O2(g) + H+(aq) 

→ NAD+(aq) + H2O2(aq)

In other cases, it may be necessary to match the num-
bers of electrons in the two half-reactions by multi-
plying one of the equations through by a numerical
factor: there should be no spare electrons showing in
the overall equation.

some cases it is necessary to immerse the electrodes in
different electrolytes, as in the Daniell cell (Fig. 9.12),
in which the redox couple at one electrode is Cu2+/Cu
and at the other is Zn2+/Zn. In an electrolyte concen-
tration cell, which would be constructed like the cell
in Fig. 9.6, the electrode compartments are of iden-
tical composition except for the concentrations of
the electrolytes. In an electrode concentration cell the
electrodes themselves have different concentrations,
either because they are gas electrodes operating at
different pressures or because they are amalgams 
(solutions in mercury) with different concentrations.

In a cell with two different electrolyte solutions 
in contact, as in the Daniell cell or an electrolyte 
concentration cell, the liquid junction potential, Ej, 
the potential difference across the interface of the
two electrolytes, contributes to the overall potential 
difference generated by the cell. The contribution of
the liquid junction to the potential can be decreased
(to about 1 to 2 mV) by joining the electrolyte com-
partments through a salt bridge consisting of a satur-
ated electrolyte solution (usually KCl) in agar jelly
(as in Fig. 9.6). The reason for the success of the salt
bridge is that the mobilities of the K+ and Cl− ions are
very similar and the liquid junctions at each end of
the bridge are minimized.

In the notation for cells, an interface between
phases is denoted by a vertical bar, |. For example, a
cell in which the left-hand electrode is a hydrogen
electrode and the right-hand electrode is a silver–
silver-chloride electrode is denoted

Pt(s)|H2(g)|HCl(aq)|AgCl(s)|Ag(s)

A double vertical line || denotes an interface for
which the junction potential has been eliminated.
Thus a cell in which the left-hand electrode, in an 
arrangement like that in Fig. 9.6, is zinc in contact
with aqueous zinc sulfate and the right-hand elec-

+–

ZnSO4(aq)

CuSO4(aq)
Zn

Cu

Fig. 9.12 A Daniell cell consists of copper in contact with
copper(II) sulfate solution and zinc in contact with zinc sulfate
solution; the two compartments are in contact through the
porous pot that contains the zinc sulfate solution. The copper
electrode is the cathode and the zinc electrode is the anode.

Self-test 9.6

Write the chemical equation for the reaction in the cell
Ag(s)|AgBr(s)|NaBr(aq)||NaCl(aq)|Cl2(g)|Pt(s).

[Answer: 2 Ag(s) + 2 Br−(aq) + Cl2(g) → 2 AgBr(s) + 2 Cl−(aq)]

9.7 The cell potential

A galvanic cell does electrical work as the reaction
drives electrons through an external circuit. The work
done by a given transfer of electrons depends on the
potential difference between the two electrodes. This
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potential difference is measured in volts (V, where 
1 V = 1 J C−1). When the potential difference is large
(for instance, 2 V), a given number of electrons travel-
ling between the electrodes can do a lot of electrical
work. When the potential difference is small (such as
2 mV), the same number of electrons can do only a
little work. A cell in which the reaction is at equilib-
rium can do no work and the potential difference 
between its electrodes is zero.

According to the discussion in Section 4.12, we
know that the maximum nonexpansion work, w ′max,
that a system (in this context, the cell) can do is given
by the value of ΔG, and in particular that

At constant temperature and pressure: w ′max = ΔG

(9.12)

Therefore, by measuring the potential difference 
and converting it to the electrical work done by the
reaction, we have a means of determining a thermo-
dynamic quantity, the reaction Gibbs energy. Con-
versely, if we know ΔG for a reaction, then we have
a route to the prediction of the potential difference
between the electrodes of a cell. However, to use 
eqn 9.12 we need to recall that maximum work is
achieved only when a process occurs reversibly. We
saw in Section 2.3 that the criterion of thermo-
dynamic reversibility is the reversal of a process by
an infinitesimal change in the external conditions. In 
the present context, reversibility means that the cell
should be connected to an external source of poten-
tial difference that opposes and exactly matches the
potential difference generated by the cell. Then an
infinitesimal change of the external potential differ-
ence will allow the reaction to proceed in its spontan-
eous direction and an opposite infinitesimal change
will drive the reaction in its reverse direction. The 
potential difference measured when a cell is balanced
against an external source of potential is called the
cell potential and denoted Ecell (Fig. 9.13). An altern-
ative name for this quantity, which formerly was
called the electromotive force (emf) of the cell, is the
zero-current cell potential. In practice, all we need 
do is to measure the potential difference with a volt-
meter that draws negligible current.

As we show in Derivation 9.3, the relation between
the cell potential and the Gibbs energy of the cell 
reaction is

−vFEcell = Δ rG (9.13)

where F is Faraday’s constant, the magnitude of elec-
tric charge per mole of electrons:

F = eNA = 96.485 kC mol−1

Equation 9.13 shows that the sign of the cell poten-
tial is opposite to that of the reaction Gibbs energy,
which we should recall is the slope of a graph of G
plotted against the composition of the reaction mix-
ture (Section 7.1). When the reaction is spontaneous
in the forward direction, ΔrG < 0 and Ecell > 0. When
ΔrG > 0, the reverse reaction is spontaneous and Ecell
< 0. At equilibrium ΔrG = 0 and therefore Ecell = 0 too.

Equation 9.13 provides an electrical method for
measuring a reaction Gibbs energy at any composi-
tion of the reaction mixture: we simply measure the
cell potential and convert it to ΔrG. Conversely, if we
know the value of ΔrG at a particular composition,
then we can predict the cell potential.

–

+

+–

Opposing source

Fig. 9.13 The potential of a cell is measured by balancing the
cell against an external potential that opposes the reaction in
the cell. When there is no current flow, the external potential
difference is equal to the cell potential.

Derivation 9.3

The cell potential

Suppose the cell reaction can be broken down into half-
reactions of the form A + V e− → B. Then, when the re-
action takes place, VNA electrons are transferred from
the reducing agent to the oxidizing agent per mole of 
reaction events, so the charge transferred between the
electrodes is VNA × (−e), or −VF. The electrical work w ′
done when this charge travels from the anode to the
cathode is equal to the product of the charge and the 
potential difference Ecell:

w ′ = −VF × Ecell

Provided the work is done reversibly at constant tem-
perature and pressure, we can equate this electrical
work to the reaction Gibbs energy and obtain eqn 9.13.
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or approximately 25.7 mV. It follows from the
Nernst equation that for a reaction in which v = 1, 
if Q is decreased by a factor of 10, then the cell 
potential becomes more positive by (25.7 mV) ×
ln 10 = 59.2 mV. The reaction has a greater tendency
to form products. If Q is increased by a factor of 10,
then the cell potential falls by 59.2 mV and the reac-
tion has a lower tendency to form products.

9.8 Cells at equilibrium

A special case of the Nernst equation has great import-
ance in chemistry. Suppose the reaction has reached
equilibrium; then Q = K, where K is the equilibrium
constant of the cell reaction. However, because a
chemical reaction at equilibrium cannot do work, 
it generates zero potential difference between the 
electrodes. Setting Q = K and Ecell = 0 in the Nernst
equation gives

and therefore

(9.16)

This very important equation lets us predict equilib-
rium constants from the standard cell potential.
Equation 9.16, of course, is simply eqn 7.8 expressed
electrochemically. Note that

If Ecell > 0, then K > 1 and at equilibrium the cell 
reaction lies in favour of products.

If Ecell < 0, then K < 1 and at equilibrium the cell 
reaction lies in favour of reactants.

A brief illustration Because the standard potential of
the Daniell cell is +1.10 V, the equilibrium constant for the
cell reaction (reaction A) is

(we have used 1 C V = 1 J to cancel units) and therefore 
K = 1.5 × 1037. Hence, the displacement of copper by 
zinc goes virtually to completion in the sense that the ratio
of concentrations of Zn2+ ions to Cu2+ ions at equilibrium
is about 1037. This value is far too large to be measured 
by classical analytical techniques but its electrochemical
measurement is straightforward. Note that a standard 
cell potential of +1 V corresponds to a very large equilib-
rium constant (and −1 V would correspond to a very 
small one).
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A brief illustration Suppose DrG ≈ −1 × 102 kJ mol−1

and V = 1, then

Most electrochemical cells bought commercially are in-
deed rated at between 1 and 2 V.

Our next step is to see how Ecell varies with 
composition by combining eqn 9.13 and eqn 7.6
showing how the reaction Gibbs energy varies with
composition:

ΔrG = ΔrG + RT ln Q

In this expression, ΔrG is the standard reaction
Gibbs energy and Q is the reaction quotient for the
cell reaction. When we substitute this relation into
eqn 9.13 written Ecell = −ΔrG/vF we obtain the Nernst
equation:

(9.14)

Ecell is the standard cell potential:

(9.15)

The standard cell potential is often interpreted as the
cell potential when all the reactants and products are
in their standard states (unit activity for all solutes,
pure gases and solids, a pressure of 1 bar). However,
because such a cell is not in general attainable, it is
better to regard Ecell simply as the standard Gibbs 
energy of the reaction expressed as a potential. Note
that if all the stoichiometric coeAcients in the equa-
tion for a cell reaction are multiplied by a factor, then
ΔrG is increased by the same factor; but so too is ν,
so the standard cell potential is unchanged. Likewise,
Q is raised to a power equal to the factor (so if the
factor is 2, Q is replaced by Q2) and because ln Q2 =
2 ln Q, and likewise for other factors, the second term
on the right-hand side of the Nernst equation is also
unchanged. That is, Ecell is independent of how we
write the balanced equation for the cell reaction.

At 25.00°C,

= 2.5693 × 10−2 J C−1

Because 1 J = 1 V C, 1 J C−1 = 1 V, and 10−3 V = 1 mV,
we can write this result as
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9.9 Standard potentials

Each electrode in a galvanic cell makes a characteristic
contribution to the overall cell potential. Although it
is not possible to measure the contribution of a single
electrode, one electrode can be assigned a value zero
and the others assigned relative values on that basis.
The specially selected electrode is the standard
hydrogen electrode (SHE):

Pt(s)|H2(g)|H+(aq) E = 0 at all temperatures

The standard potential, E (Ox/Red), of a couple
Ox/Red is then measured by constructing a cell in
which the couple of interest forms the right-hand

electrode and the standard hydrogen electrode is on
the left. For example, the standard potential of the
Ag+/Ag couple is the standard potential of the cell

Pt(s)|H2(g)|H+(aq)||Ag+(aq)|Ag(s)

and is +0.80 V. Table 9.3 lists a selection of standard
potentials; a longer list will be found in the Data 
section.

A brief comment Standard potentials are also called stand-
ard electrode potentials and standard reduction potentials. 
If in an older source of data you come across a ‘standard 
oxidation potential’, reverse its sign and use it as a standard
reduction potential.

Table 9.3

Standard potentials at 25°C

Reduction half-reaction E=/V

Oxidizing agent Reducing agent

Strongly oxidizing
F2 + 2 e− → 2 F− +2.87
S2O8

2− + 2 e− → 2 SO4
2− +2.05

Au+ + e− → Au +1.69
Pb4+ + 2 e− → Pb2+ +1.67
Ce4+ + e− → Ce3+ +1.61
MnO4

− + 8 H+ + 5 e− → Mn2+ + 4 H2O +1.51
Cl2 + 2 e− → 2 Cl− +1.36
Cr2O7

2− + 14 H+ + 6 e− → 2 Cr3+ + 7 H2O +1.33
O2 + 4 H+ + 4 e− → 2 H2O +1.23, +0.81 at pH = 7
Br2 + 2 e− → 2 Br− +1.09
Ag+ + e− → Ag +0.80
Hg2

2+ + 2 e− → 2 Hg +0.79
Fe3+ + e− → Fe2+ +0.77
I2 + e− → 2 I− +0.54
O2 + 2 H2O + 4 e− → 4 OH− +0.40, +0.81 at pH = 7
Cu2+ + 2 e− → Cu +0.34
AgCl + e− → Ag + Cl− +0.22
2 H+ + 2 e− → H2 0, by definition
Fe3+ + 3 e− → Fe −0.04
O2 + H2O + 2 e− → HO2

− + OH− −0.08
Pb2+ + 2 e− → Pb −0.13
Sn2+ + 2 e− → Sn −0.14
Fe2+ + 2 e− → Fe −0.44
Zn2+ + 2 e− → Zn −0.76
2 H2O + 2 e− → H2 + 2 OH− −0.83, −0.42 at pH = 7
Al3+ + 3 e− → Al −1.66
Mg2+ + 2 e− → Mg −2.36
Na+ + e− → Na −2.71
Ca2+ + 2 e− → Ca −2.87
K+ + e− → K −2.93
Li+ + e− → Li −3.05

Strongly reducing

For a more extensive table, see the Data section.
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9.10 The variation of potential with pH

The half-reactions of many redox couples involve 
hydrogen ions. For example, the fumaric acid/
succinic acid couple (HOOCCHlCHCOOH/
HOOCCH2CH2COOH), which plays a role in the
aerobic breakdown of glucose in biological cells, is

HOOCCHlCHCOOH(aq) + 2 H+(aq) + 2 e−

→ HOOCCH2CH2COOH(aq)

Half-reactions of this kind have potentials that 
depend on the pH of the medium. In this example, 
in which the hydrogen ions occur as reactants, an in-
crease in pH, corresponding to a decrease in hydro-
gen ion activity, favours the formation of reactants,
so the fumaric acid has a lower thermodynamic 
tendency to become reduced. We expect, therefore,
that the potential of the fumaric/succinic acid couple
should decrease as the pH is increased.

We can establish the quantitative variation of 
reduction potential with pH for a reaction by using
the Nernst equation for the half-reaction and noting
that (see the note at the beginning of the chapter
pointing out the relation between ln x and log x)

ln aH+ = ln 10 × log aH+ = −ln 10 × pH

with ln 10 = 2.303.. . . If we suppose that fumaric
acid and succinic acid have fixed concentrations, the
potential of the fumaric/succinic redox couple is

which, by using ln x = ln 10 × log x and log aH+ =
−pH, is easily rearranged into

At 25°C,

E = E ′ − (59.2 mV) × pH

We see that each increase of 1 unit in pH decreases
the potential by 59.2 mV, which is in agreement with
the remark above, that the reduction of fumaric acid
is discouraged by an increase in pH.
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To calculate the standard potential of a cell formed
from any pair of electrodes we take the difference of
their standard potentials:

Ecell = ER − EL (9.17)

Here, ER is the standard potential of the right-hand
electrode and EL is that of the left. Once we have 
the numerical value of Ecell we can use it in eqn 9.16
to calculate the equilibrium constant of the cell 
reaction.

Self-test 9.7

Calculate the equilibrium constant for the reaction
Sn2+(aq) + Pb(s) f Sn(s) + Pb2+(aq) at 298 K.

[Answer: 0.46]

Example 9.5

Calculating an equilibrium constant

Calculate the equilibrium constant for the disproportion-
ation reaction 2 Cu+(aq) f Cu(s) + Cu2+(aq) at 298 K.

Strategy The aim is to find the values of E -
cell and V

corresponding to the reaction, for then we can use 
eqn 9.16. To do so, we express the equation as the 
difference of two reduction half-reactions. The stoichio-
metric number of the electron in these matching half- 
reactions is the value of V we require. We then look up
the standard potentials for the couples corresponding to
the half-reactions and calculate their difference to find
E -

cell. Use RT/F = 25.69 mV (written as 2.569 × 10−2 V).

Solution The two half-reactions are

Right: Cu+(aq) + e− → Cu(aq) E -(Cu+,Cu) = +0.52 V

Left: Cu2+(aq) + e− → Cu+(aq) E -(Cu2+,Cu+) = +0.15 V

The difference is

E -
cell = E R

- − E L
- = (0.52 V) − (0.15 V) = +0.37 V

It then follows from eqn 9.16 with V = 1, that

Therefore, because K = elnK,

K = e37/2.569 = 1.8 × 106

Because the value of K is so large, the equilibrium lies
strongly in favour of products, and Cu+ disproportionates
almost totally in aqueous solution.

A note on good practice Evaluate antilogarithms
right at the end of the calculation, because ex is very 
sensitive to the value of x and rounding an earlier 
numerical result can have a significant effect on the final
answer.

ln
.

. .
K =

×
=−

0 37
2 569 10
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2 5692
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We use the same approach to convert standard 
potentials to biological standard potentials, E⊕, which
correspond to neutral solution (pH = 7) (see Box 7.1
for a discussion of biological standard states). If the
hydrogen ions appear as reactants in the reduction
half-reaction, then the potential is decreased below
its standard value (for the fumaric/succinic couple,
by 7 × 59.2 mV = 414 mV, or about 0.4 V). If the 
hydrogen ions appear as products, then the biological
standard potential is higher than the thermodynamic
standard potential. The precise change depends on
the number of electrons and protons participating in
the half-reaction.

Silver–silver-chloride
electrode (Ag/AgCl/Cl–)

Buffer solution
(H2PO4

–/HPO4
2–)

Glass membrane

Fig. 9.14 A glass electrode has a potential that varies with
the hydrogen ion concentration in the medium in which it is
immersed. It consists of a thin glass membrane containing an
electrolyte and a silver chloride electrode. The electrode is
used in conjunction with a calomel (Hg2Cl2) electrode that
makes contact with the test solution through a salt bridge;
the electrodes are normally combined into a single unit.

9.11 The determination of pH

The potential of a hydrogen electrode is directly pro-
portional to the pH of the solution. However, in
practice, indirect methods are much more convenient
to use than one based on the standard hydrogen elec-
trode, and the hydrogen electrode is replaced by a
glass electrode (Fig. 9.14). This electrode is sensitive
to hydrogen ion activity and has a potential that de-
pends linearly on the pH. It is filled with a phosphate
buffer containing Cl− ions, and conveniently has E ≈ 0
when the external medium is at pH = 7. The glass
electrode is much more convenient to handle than
the gas electrode itself, and can be calibrated using
solutions of known pH (for example, one of the
buffer solutions described in Section 8.5).

Self-test 9.8

Calculate the biological standard potential of the
half-reaction O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l) at 
25 °C given its value +1.23 V under thermodynamic
standard conditions.

[Answer: +0.82 V]

Example 9.6

Converting a standard potential to a biological
standard value

Estimate the biological standard potential of the NAD+/
NADH couple at 25°C (Example 9.2). The reduction half-
reaction is

NAD+(aq) + H+(aq) + 2 e− → NADH(aq) E -
cell = −0.11 V

Strategy The Nernst equation applies not only to a com-
plete cell but also to an individual electrode. Therefore,
here too we write the Nernst equation for the potential,
and express the reaction quotient in terms of the activities
of the species. All species except H+ are in their standard
states, so their activities are all equal to 1. The remaining
task is to express the hydrogen ion activity in terms of
the pH, exactly as was done in the text, and set pH = 7.

Solution The Nernst equation for the half-reaction, with 
V = 2, is

We rearrange this expression by using ln x = ln 10 × log x
and log aH+ = −pH into

= E - − (29.58 mV) × pH

The biological standard potential (at pH = 7) is therefore

E ⊕ = (−0.11 V) − (29.58 × 10−3 V) × 7 = −0.32 V
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Self-test 9.9

What range should a voltmeter have (in volts) to display
changes of pH from 1 to 14 at 25°C if it is arranged to
give a reading of zero when pH = 7?

[Answer: from −0.42 V to +0.35 V, a range of 0.77 V]

Finally, it should be noted that we now have a
method for measuring the pKa of an acid electrically.
As we saw in Section 8.5, the pH of a solution con-
taining equal amounts of the acid and its conjugate
base is pH = pKa. We now know how to determine
pH and hence can determine pKa in the same way.
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expression but with the standard cell potential at 
pH = 7 (ΔrG

⊕ = −vFE⊕
cell).

The relation between the standard cell potential
and the standard reaction Gibbs energy is a con-
venient route for the calculation of the standard 
potential of a couple from two others. We make use
of the fact that G is a state function, and that the
Gibbs energy of an overall reaction is the sum of the
Gibbs energies of the reactions into which it can be
divided. In general, we cannot combine the E values
directly because they depend on the value of ν, which
may be different for the two couples.

Applications of standard

potentials

The measurement of cell potentials is a convenient
source of data on the Gibbs energies, enthalpies, and
entropies of reactions. In practice the standard values
(and the biological standard values) of these quanti-
ties are the ones normally determined.

9.12 The electrochemical series

We have seen that a cell reaction has K > 1 if E cell > 0,
and that Ecell > 0 corresponds to reduction at the right-
hand electrode (using the conventions explained pre-
viously). We have also seen that E cell may be written
as the difference of the standard potentials of the
redox couples in the right and left electrodes (eqn
9.20, E cell = ER − EL ). A reaction corresponding to
reduction at the right-hand electrode therefore has 
K > 1 if EL < ER, and we can conclude that

A couple with a low standard potential has a ther-
modynamic tendency to reduce a couple with a
high standard potential.

More briefly: low reduces high and, equivalently,
high oxidizes low. For example,

E (Zn2+,Zn) = −0.76 V < E (Cu2+,Cu) = +0.34 V

and Zn(s) has a thermodynamic tendency to reduce
Cu2+(aq) under standard conditions. Hence, the 
reaction

Zn(s) + CuSO4(aq) f ZnSO4(aq) + Cu(s)

can be expected to have K > 1 (in fact, as we have
seen, K = 1.5 × 1037 at 298 K).

Self-test 9.10

Does acidified dichromate (Cr2O7
2−) have a thermody-

namic tendency to oxidize mercury metal to mercury(I)?
[Answer: yes]

9.13 The determination of 
thermodynamic functions

We have seen that the standard potential of a cell 
is related to the standard Gibbs energy of the cell 
reaction by eqn 9.18 (ΔrG = −vFE cell). Therefore, by
measuring the standard potential of a cell driven by
the reaction of interest we can obtain the standard 
reaction Gibbs energy. If we were interested in the
biological standard state, we would use the same 

Example 9.7

Calculating a standard potential from two others

Given the standard potentials E -(Cu2+,Cu) = +0.340 V
and E -(Cu+,Cu) = +0.522 V, calculate E -(Cu2+,Cu+).

Strategy We need to convert the two E - to DrG
- by

using eqn 9.18, add them appropriately, and then con-
vert the overall DrG

- so obtained to the required E - by
using eqn 9.18 again. Because the Fs cancel at the end
of the calculation, carry them through.

Solution The electrode reactions are as follows:

(a) Cu2+(aq) + 2 e− → Cu(s) E - = +0.340 V

DrG
-(a) = −2F × (0.340 V) = (−0.680 V) × F

(b) Cu+(aq) + e− → Cu(s) E - = +0.522 V

DrG
-(b) = −F × (0.522 V) = (−0.522 V) × F

The required reaction is

(c) Cu2+(aq) + e− → Cu+(aq) DrG
-(c) = −FE-

Because (c) = (a) − (b), it follows that

DrG
-(c) = DrG

-(a) − DrG
-(b)

Therefore, from eqn 9.18,

FE -(c) = −{(−0.680 V)F − (−0.522 V)F }

The Fs cancel, and we are left with E -(c) = +0.158 V.

A note on good practice Whenever combining stand-
ard potentials to obtain the standard potential of a third
couple, always work via the Gibbs energies because they
are additive, whereas, in general, standard potentials 
are not.

Self-test 9.11

Given the standard potentials E -(Fe3+,Fe) = −0.04 V
and E-(Fe2+,Fe) = −0.44 V, calculate E -(Fe3+,Fe2+).

[Answer: +0.76 V]



Example 9.8

Using the temperature dependence of the cell
potential

The standard potential of the cell

Pt(s) |H2(g) |HCl(aq) |Hg2Cl2(s) |Hg(l)

was found to be +0.2699 V at 293 K and +0.2669 V at 
303 K. Evaluate the standard Gibbs energy, enthalpy, and
entropy at 298 K of the reaction

Hg2Cl2(s) + H2(g) → 2 Hg(l) + 2 HCl(aq)

Strategy We find the standard reaction Gibbs energy
from the standard cell potential by using eqn 9.4 and
making a linear interpolation between the two tempera-
tures (in this case, we take the mean E -

cell because 298 K
lies midway between 293 K and 303 K). The standard 
reaction entropy is obtained by substituting the data into
eqn 9.18. Then, the standard reaction enthalpy is obtained
by combining these two quantities by using eqn 9.19.
Use 1 C V = 1 J.

Solution Because the mean standard cell potential is
+0.2684 V and V = 2 for the reaction,

DrG
- = −VFE -

cell = −2 × (9.6485 × 104 C mol−1) 

× (0.2684 V) = −51.79 kJ mol−1

Then, from eqn 9.19, the standard reaction entropy is

DrS
- = 2 × (9.6485 × 104 C mol−1)

= −57.9 J K−1 mol−1

For the next stage of the calculation it is convenient to
write the last value as −5.79 × 10−2 kJ K−1 mol−1. Then,
from eqn 9.19 we find

DrH
- = (−51.79 kJ mol−1) + (298 K) 

× (−5.79 × 10−2 kJ K−1 mol−1) = −69.0 J k mol−1

One difficulty with this procedure lies in the accurate
measurement of small temperature variations of cell 
potential. Nevertheless, it is another example of the strik-
ing ability of thermodynamics to relate the apparently
unrelated, in this case to relate electrical measurements
to thermal properties.
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Once we have measured ΔrG we can use thermo-
dynamic relations to determine other properties. For in-
stance, the entropy of the cell reaction can be obtained
from the change in the cell potential with temperature:

(9.18)
  
Δr

cell cellS
F E E

T T
=

−
−

ν ( )′
′

with ΔrG determined from the cell potential and
ΔrS from its temperature variation. Thus, we now
have a noncalorimetric method of measuring a reac-
tion enthalpy.

S
ta

n
d

ar
d

 c
el

l p
o

te
n

ti
al

, E
ce

ll

ΔrS° < 0

ΔrS° > 0

Temperature, T

°

Fig. 9.15 The variation of the standard potential of a cell with
temperature depends on the standard entropy of the cell 
reaction.

Derivation 9.4

The reaction entropy from the cell potential

The definition of the Gibbs energy is G = H − TS. This for-
mula applies to all substances involved in a reaction, so
at a given temperature DrG

-(T ) = DrH
- − TDrS

-. If we
can ignore the weak temperature dependence of DrH

-

and DrS
-, at a temperature T ′ we can write DrG

-(T ′) =
DrH

- − T ′DrS
-. Therefore,

DrG
-(T ′) − DrG

-(T ) = −(T ′ − T )DrS
-

Substitution of DrG
- = −VFE -

cell then gives

−VFE -′cell + VFE -
cell = −(T ′ − T )DrS

-

which is easily rearranged into eqn 9.18.

We see from eqn 9.18 that the standard cell poten-
tial increases with temperature if the standard reac-
tion entropy is positive, and that the slope of a plot of
potential against temperature is proportional to the
reaction entropy (Fig. 9.15). An implication is that if
the cell reaction produces a lot of gas, then its poten-
tial will increase with temperature. The opposite is
true for a reaction that consumes gas.

Finally, we can combine the results obtained so far
by using G = H − TS in the form H = G + TS to 
obtain the standard reaction enthalpy:

ΔrH = ΔrG + TΔrS (9.19)

Self-test 9.12

Predict the standard potential of the Harned cell

Pt(s) |H2(g) |HCl(aq) |AgCl(s) |Ag(s)

at 303 K from tables of thermodynamic data for 298 K.
[Answer: +0.2168 V]
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Checklist of key ideas

You should now be familiar with the following concepts.

1 Deviations from ideal behaviour in ionic solutions
are ascribed to the interaction of an ion with its
ionic atmosphere.

2 The Debye–Hückel limiting law relates the mean
activity of ions in a solution to the ionic strength.

3 The molar conductivity of a strong electrolyte fol-
lows the Kohlrausch law.

4 The rate at which an ion migrates through a solu-
tion is determined by its mobility, which depends
on its charge, its hydrodynamic radius, and the
viscosity of the solution.

5 Protons migrate by the Grotthus mechanism, 
Fig. 9.4.

6 A galvanic cell is an electrochemical cell in which
a spontaneous chemical reaction produces a 
potential difference.

7 An electrolytic cell is an electrochemical cell in
which an external source of current is used to
drive a nonspontaneous chemical reaction.

8 A redox reaction is expressed as the difference of
two reduction half-reactions.

9 A cathode is the site of reduction; an anode is the
site of oxidation.

10 The cell potential is the potential difference it pro-
duces when operating reversibly.

11 The Nernst equation relates the cell potential to
the composition of the reaction mixture.

12 The standard potential of a couple is the standard
cell potential in which it forms the right-hand elec-
trode and a hydrogen electrode is on the left.

13 The pH of a solution is determined by measuring
the potential of a glass electrode.

14 A couple with a low standard potential has a ther-
modynamic tendency (in the sense K > 1) to re-
duce a couple with a high standard potential.

15 The entropy and enthalpy of a cell reaction are
measured from the temperature dependence of
the cell potential.

The following table summarizes the equations developed in this chapter.

Property

Mean activity coefficient

Debye–Hückel limiting law

Ionic strength

Kohlrausch law

Independent migration of ions

Stokes law

Ionic mobility

Cell potential

Standard cell potential

Nernst equation

Equilibrium constant of a cell reaction

Standard cell potential from standard 
electrode potentials

Entropy of a cell reaction

Equation

g± = (g+
p g−

q )1/s, s = p + q

log g± = −A |z+z− |I1/2

I = (z +
2b+ + z −

2b−)/b
-

Lm = L°m − Kc1/2

L°m = l+ + l−

F = 6pha

u = ez /6pha

Ecell = −DrG/VF

E -
cell = −DrG

-/VF

Ecell = E -
cell − (RT/VF ) ln Q

ln K = VFE -
cell /RT

E -
cell = E R

- − E L
-

DrS° = VF(E °cell − E °′cell)/(T − T ′)

1
2

Comment

For fully dissociated salt Mp Xq

Concentration of ions approaches zero

Numerical values of b; I is dimensionless

At low concentrations

Infinite dilution

Continuous fluid

Ion in a continuous fluid

Cell of the form L||R

Table of key equations
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Questions and exercises

Discussion questions

9.1 Describe the general features of the Debye–Hückel the-
ory of electrolyte solutions. Which approximations limit its 
reliability to very low concentrations?

9.2 Describe the mechanism of proton conduction in water.
Could a similar mechanism apply to proton conduction in 
liquid ammonia?

9.3 Distinguish between galvanic, electrolytic, and fuel cells.
Explain why salt bridges are routinely used in electrochemical
cell measurements.

9.4 Discuss how the electrochemical series can be used to
determine if a redox reaction is spontaneous.

9.5 Describe an electrochemical method for the determina-
tion of thermodynamic properties of a chemical reaction.

Exercises

9.1 Calculate the ionic strength of a solution that is 0.15 mol
kg−l in KCl(aq) and 0.30 mol kg−1 in CuSO4(aq). 

9.2 Calculate the masses of (a) Ca(NO3)2 and, separately, 
(b) NaCl to add to a 0.150 mol kg−1 solution of KNO3(aq) con-
taining 500 g of solvent to raise its ionic strength to 0.250.

9.3 Express the mean activity coefficient of the ions in a 
solution of MgF2 in terms of the activity coefficients of the 
individual ions. 

9.4 Estimate the mean ionic activity coefficient and activity
of a solution that is 0.015 mol kg−1 MgF2(aq) and 0.025 mol
kg−1 NaCl(aq). 

9.5 The mean activity coefficients of HBr in three dilute
aqueous solutions at 25°C are 0.930 (at 5.0 mmol kg−1), 0.907
(at 10.0 mmol kg−1), and 0.879 (at 20.0 mmol kg−1). Estimate
the value of B in the extended Debye–Hückel law.

9.6 The limiting molar conductivities of KCl, KNO3, and
AgNO3 are 14.99 mS m2 mol−1, 14.50 mS m2 mol−1 and 13.34
mS m2 mol−1, respectively (all at 25°C). What is the limiting
molar conductivity of AgCl at this temperature?

9.7 The mobility of a chloride ion in aqueous solution at 25°C
is 7.91 × 10−8 m2 s−1 V−1. Calculate its molar ionic conductivity.

9.8 The mobility of a Rb+ ion in aqueous solution is 7.92 × 10−8

m2 s−1 V−1 at 25°C. The potential difference between two
electrodes placed in the solution is 35.0 V. If the electrodes
are 8.00 mm apart, what is the drift speed of the Rb+ ion?

9.9 The resistances of a series of aqueous NaCl solutions,
formed by successive dilution of a sample, were measured in
a cell with cell constant (the constant C in the relation k = C/R)
equal to 0.2063 cm−1. The following values were found:

c /(mol dm−3) 0.000 50 0.0010 0.0050 0.010 0.020 0.050

R /X 3314 1669 342.1 174.1 89.08 37.14

(a) Verify that the molar conductivity follows the Kohlrausch
law and find the limiting molar conductivity. (b) Determine
the coefficient K. (c) Use the value of K (which should 
depend only on the nature, not the identity of the ions) and
the information that l(Na+) = 5.01 mS m2 mol−1 and l(I−) =
7.68 mS m2 mol−1 to predict (i) the molar conductivity, (ii) the
conductivity, (iii) the resistance it would show in the cell, of
0.010 mol dm−3 NaI(aq) at 25°C.

9.10 After correction for the water conductivity, the conduc-
tivity of a saturated aqueous solution of AgCl at 25°C was
found to be 0.1887 mS m−1. What is the solubility of silver
chloride at this temperature?

9.11 The molar conductivity of 0.020 M HCOOH(aq) is 
3.83 mS m2 mol−1. What is the value of pKa for formic acid?

9.12 The mobility of an ion depends on its charge and if a
large molecule, such as a protein, can be contrived to have
zero net charge, then it does not respond to an electric field.
This ‘isoelectric point’ can be reached by varying the pH of
the medium. The speed with which bovine serum albumin
(BSA) moves through water under the influence of an electric
field was monitored at several values of pH, and the data are
listed below. What is the isoelectric point of the protein?

pH 4.20 4.56 5.20 5.65 6.30 7.00

Velocity/(mm s−1) 0.50 0.18 −0.25 −0.65 −0.90 −1.25

Hint: Use a plot of speed against pH to find the pH at which
the speed is zero, which is the pH at which the molecule has
zero net charge.

9.13 Express the oxidation of cysteine (HSCH2CH(NH2)COOH)
to cystine (HOOCCH(NH2)CH2SSCH2CH(NH2)COOH) as the
difference of two half-reactions, one of which is O2(g) + 4
H+(aq) + 4 e− → 2 H2O(l).

9.14 From the biological standard half-cell potentials
E ⊕(O2,H

+,H2O) = +0.82 V and E⊕(NADH+,H+,NADH) = −0.32 V,
calculate the standard potential arising from the reaction in
which NADH is oxidized to NAD+ and the corresponding 
biological standard reaction Gibbs energy.

9.15 Consider a hydrogen electrode in HBr(aq) at 25°C 
operating at 1.45 bar. Estimate the change in the electrode
potential when the solution is changed from 5.0 mmol dm−3

to 15.0 mmol dm−3.

9.16 Devise a cell in which the cell reaction is Mn(s) + Cl2(g)
→ MnCl2(aq). Give the half-reactions for the electrodes and
from the standard cell potential of +2.54 V deduce the stand-
ard potential of the Mn2+/Mn couple.

9.17 Write the cell reactions and electrode half-reactions for
the following cells:
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9.26 State what you would expect to happen to the cell 
potential when the following changes are made to the 
corresponding cells devised in Exercise 9.19. Confirm your
prediction by using the Nernst equation in each case.

(a) The molar concentration of FeSO4 is increased.

(b) Some nitric acid is added to both cell compartments.

(c) The pressure of oxygen is increased.

(d) The pressure of hydrogen is increased.

(e) Some (i) hydrochloric acid, (ii) hydroiodic acid is added
to both compartments.

(f) Hydrochloric acid is added to both compartments.

9.27 (a) Calculate the standard potential of the cell
Hg(l) |HgCl2(aq) ||TlNO3(aq) |Tl(s) at 25°C. (b) Calculate the cell
potential when the molar concentration of the Hg2+ ion is
0.230 mol dm−3 and that of the Tl+ ion is 0.720 mol dm−3.

9.28 (a) Can mercury produce zinc metal from aqueous zinc
sulfate under standard conditions? (b) Can chlorine gas 
oxidize water to oxygen gas under standard conditions in
basic solution?

9.29 Calculate the standard Gibbs energies at 25°C of the
following reactions from the standard potential data in the
Data section.

(a) Ca(s) + 2 H2O(l) → Ca(OH)2(aq) + H2(g)

(b) 2 Ca(s) + 4 H2O(l) → 2 Ca(OH)2(aq) + 2 H2(g)

(c) Fe(s) + 2 H2O(l) → Fe(OH)2(aq) + H2(g)

(d) Na2S2O8(aq) + 2 NaI(aq) → I2(s) + 2 Na2SO4(aq)

(e) Na2S2O8(aq) + 2 KI(aq) → I2(s) + Na2SO4(aq) + K2SO4(aq)

(f) Pb(s) + Na2CO3(aq) → PbCO3(aq) + 2 Na(s)

9.30 Calculate the biological standard Gibbs energies of re-
actions of the following reactions and half-reactions:

(a) 2 NADH(aq) + O2(g) + 2 H+(aq) → 2 NAD+(aq) + 2 H2O(l)
E⊕ = +1.14 V

(b) Malate(aq) + NAD+(aq) → oxaloacetate(aq) +
NADH(aq) + H+(aq) E ⊕ = −0.154 V

(c) O2(g) + 4H+(aq) + 4 e− → 2 H2O(l) E ⊕ = +0.81 V

9.31 Tabulated thermodynamic data can be used to predict
the standard potential of a cell even if it cannot be meas-
ured directly. The standard Gibbs energy of the reaction
K2CrO4(aq) + 2 Ag(s) + 2 FeCl3(aq) → Ag2CrO4(s) + 2 FeCl2(aq)
+ 2 KCl(aq) is −62.5 kJ mol−1 at 298 K. (a) Calculate the stand-
ard potential of the corresponding galvanic cell and (b) the
standard potential of the Ag2CrO4/Ag,CrO4

2− couple.

9.32 Estimate the potential at 25°C of the cell

Ag(s) |AgCl(s) |KCl(aq, 0.025 mol kg−1)

||AgNO3(aq, 0.010 mol kg−1)|Ag(s)

9.33 (a) Use the information in the Data section to calcu-
late the standard potential of the cell Ag(s)|AgNO3(aq)||
Cu(NO3)2(aq)|Cu(s) and the standard Gibbs energy and 

(a) Ag(s)|AgNO3(aq,bL) ||AgNO3(aq,bR)|Ag(s)

(b) Pt(s)|H2(g,pL) |HCl(aq) |H2(g,pR) |Pt(s)

(c) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||Mn2+(aq),H+(aq)|
MnO2(s)|Pt(s)

(d) Pt(s)|Cl2(g)|HCl(aq)||HBr(aq)|Br2(l)|Pt(s)

(e) Pt(s)|Fe3+(aq),Fe2+(aq)||Sn4+(aq),Sn2+(aq)|Pt(s)

(f) Fe(s)|Fe2+(aq)||Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

9.18 Write the Nernst equations for the cells in the preced-
ing exercise. 

9.19 Devise cells in which the following are the reactions. In
each case state the value for V to use in the Nernst equation.

(a) Fe(s) + PbSO4(aq) → FeSO4(aq) + Pb(s)

(b) Hg2Cl2(s) + H2(g) → 2 HCl(aq) + 2 Hg(l)

(c) 2 H2(g) + O2(g) → 2 H2O(l)

(d) H2(g) + O2(g) → H2O2(aq)

(e) H2(g) + I2(g) → 2 HI(aq)

(f) 2 CuCl(aq) → Cu(s) + CuCl2(aq)

9.20 Use the standard potentials of the electrodes to calcu-
late the standard potentials of the cells in Exercise 9.17.

9.21 Use the standard potentials of the electrodes to calculate
the standard potentials of the cells devised in Exercise 9.19.

9.22 A fuel cell develops an electric potential from the chem-
ical reaction between reagents supplied from an outside
source. What is the potential of a cell fuelled by (a) hydrogen
and oxygen, (b) the complete oxidation of benzene at 1.0 bar
and 298 K?

9.23 A fuel cell is constructed in which both electrodes make
use of the oxidation of methane. The left-hand electrode
makes use of the complete oxidation of methane to carbon
dioxide and water; the right-hand electrode makes use of the
partial oxidation of methane to carbon monoxide and water.
(a) Which electrode is the cathode? (b) What is the cell poten-
tial at 25°C when all gases are at 1 bar?

9.24 The permanganate ion is a common oxidizing agent.
What is the standard potential of the MnO4

−,H+/Mn2+ couple
at (a) pH = 6.00, (b) general pH? 

9.25 State what you would expect to happen to the cell 
potential when the following changes are made to the corres-
ponding cells in Exercise 9.17. Confirm your prediction by
using the Nernst equation in each case.

(a) The molar concentration of silver nitrate in the left-
hand compartment is increased.

(b) The pressure of hydrogen in the left-hand compart-
ment is increased.

(c) The pH of the right-hand compartment is decreased.

(d) The concentration of HCl is increased.

(e) Some iron(III) chloride is added to both compartments.

(f) Acid is added to both compartments.
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enthalpy of the cell reaction at 25°C. (b) Estimate the value of
DrG

- at 35°C.

9.34 (a) Calculate the standard potential of the cell Pt(s)|
cystine(aq), cysteine(aq) ||H+(aq)|O2(g)|Pt(s) and the standard
Gibbs energy and enthalpy of the cell reaction at 25°C. (b)
Estimate the value of DrG

- at 35°C. Use E- = −0.34 V for the
cysteine/cystine couple.

9.35 The biological standard potential of the couple pyruvic
acid/lactic acid is −0.19 V at 25°C. What is the thermo-
dynamic standard potential of the couple? Pyruvic acid is
CH3COCOOH and lactic acid is CH3CH(OH)COOH.

9.36 One ecologically important equilibrium is that between
carbonate and hydrogencarbonate (bicarbonate) ions in nat-
ural water. (a) The standard Gibbs energies of formation of
CO3

2−(aq) and HCO3
−(aq) are −527.81 kJ mol−1 and −586.77 kJ

mol−1, respectively. What is the standard potential of the
HCO3

−/CO3
2−,H2 couple? (b) Calculate the standard potential of

a cell in which the cell reaction is Na2CO3(aq) + H2O(l) →
NaHCO3(aq) + NaOH(aq). (c) Write the Nernst equation for
the cell, and (d) predict and calculate the change in potential
when the pH is changed to 7.0. (e) Calculate the value of pKa

for HCO3
−(aq).

9.37 Calculate the equilibrium constants of the following re-
actions at 25°C from standard potential data:

(a) Sn(s) + Sn4+(aq) f 2 Sn2+(aq)

(b) Sn(s) + 2 AgBr(s) f SnBr2(aq) + 2 Ag(s)

(c) Fe(s) + Hg(NO3)2(aq) f Hg(l) + Fe(NO3)2(aq)

(d) Cd(s) + CuSO4(aq) f Cu(s) + CdSO4(aq)

(e) Cu2+(aq) + Cu(s) f 2 Cu+(aq)

(f) 3 Au2+(aq) f Au(s) + 2 Au3+(aq)

9.38 The dichromate ion in acidic solution is a common oxid-
izing agent for organic compounds. Derive an expression for
the potential of an electrode for which the half-reaction is the
reduction of Cr2O7

2− ions to Cr3+ ions in acidic solution.

9.39 The molar solubilities of AgCl and BaSO4 in water are
1.34 × 10−5 mol dm−3 and 9.51 × 10−4 mol dm−3, respectively,
at 25°C. Calculate their solubility constants from the appro-
priate standard potentials.

9.40 The potential of the cell Pt(s)|H2(g)|HCl(aq)|AgCl(s)|Ag(s)
is 0.312 V at 25°C. What is the pH of the electrolyte solution? 

9.41 The molar solubility of AgBr is 2.6 mmol dm−3 at 25°C.
What is the potential of the cell Ag(s)|AgBr(aq)|AgBr(s)|Ag(s)
at that temperature?

9.42 The standard potential of the cell Ag(s) |AgI(s) |
AgI(aq) |Ag(s) is +0.9509 V at 25°C. Calculate (a) the molar sol-
ubility of AgI and (b) its solubility constant.

Projects

9.43 Consider the Harned cell Pt(s)|H2(g, 1 bar)|HCl(aq,
b)|AgCl(s)|Ag(s). Show that the standard potential of the 

silver–silver-chloride electrode may be determined by plot-
ting E − (RT/F ) ln b against b1/2. Hint: Express the cell 
potential in terms of activities, and use the Debye–Hückel
law to estimate the mean activity coefficient. (b) Use the 
procedure you devised in part (a) and the following data 
at 25°C to determine the standard potential of the silver–
silver-chloride electrode

b /(10−3 b-) 3.215 5.619 9.138 25.63

E / V 0.520 53 0.492 57 0.468 60 0.418 24

9.44 The standard potentials of proteins are not commonly
measured by the methods described in this chapter because
proteins often lose their native structure and their function
when they react on the surfaces of electrodes. In an alterna-
tive method, the oxidized protein is allowed to react with 
an appropriate electron donor in solution. The standard 
potential of the protein is then determined from the Nernst
equation, the equilibrium concentrations of all species in 
solution, and the known standard potential of the electron
donor. We illustrate this method with the protein cytochrome
c. (a) The one-electron reaction between cytochrome c, cyt,
and 2,6-dichloroindophenol, D, can be written as

cytox + Dred f cytred + Dox

Consider E -
cyt and E D

- to be the standard potentials of 
cytochrome c and D, respectively. Show that, at equilibrium
(eq), a plot of ln([Dox]eq /[Dred]eq) against ln([cytox]eq /[cytred]eq)
is linear with slope of one and y-intercept F(E -

cyt − E D
-)/RT,

where equilibrium activities are replaced by the numerical
values of equilibrium molar concentrations. (b) The following
data were obtained for the reaction between oxidized 
cytochrome c and reduced D at pH = 6.5 buffer and 298 K.
The ratios [Dox]eq/[Dred]eq and [cytox]eq/[cytred]eq were adjusted
by adding known volumes of a solution of sodium ascorbate,
a reducing agent, to a solution containing oxidized cyto-
chrome c and reduced D. From the data and the standard 
potential of D of 0.237 V, determine the standard potential of
cytochrome c at pH = 6.5 and 298 K.

[Dox]eq / [Dred]eq 0.002 79 0.008 43 0.0257 0.0497

[cytox]eq / [cytred]eq 0.0106 0.0230 0.0894 0.197

[Dox]eq / [Dred]eq 0.0748 0.238 0.534

[cytox]eq / [cytred]eq 0.335 0.809 1.39

9.45 Here we explore ion channels in more quantitative 
detail. (a) Estimate the resting potential, the membrane poten-
tial at equilibrium, of a neuron at 298 K by using the fact that
the concentration of K+ inside an inactive nerve cell is about
20 times that on the outside. Now repeat the calculation, this
time using the fact that the concentration of Na+ outside the
inactive cell is about 10 times that on the inside. Are the two
values the same or different? How do each of the calculated
values compare with the observed resting potential of 
−62 mV? (b) Your estimates of the resting potential from part
(a) did not agree with the experimental value because the cell
is never at equilibrium and ions continually cross the mem-
brane, which is more permeable to some ions than others. 
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[K+]in = 400 mmol dm−3, [Cl−]in = 50 mmol dm−3, [Na+]out = 440
mmol dm−3, [K+]out = 20 mmol dm−3, and [Cl−]in = 560 mmol
dm−3. Use the Goldman equation and the relative permeabili-
ties PK+ = 1.0, PNa+ = 0.04, and PCl− = 0.45 to estimate the 
resting potential at 298 K under the stated conditions. How
does your calculated value agree with the experimental value
of −62 mV?

To take into account membrane permeability, we use the
Goldman equation to calculate the resting potential:

where the salts present on each side of the membrane are
MX and M′X ′ and the Ps are the relative permeabilities of the
ions. Consider an experiment in which [Na+]in = 50 mmol dm−3,
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Chapter 10

Chemical kinetics: 
the rates of reactions

The branch of physical chemistry called chemical
kinetics is concerned with the rates of chemical 
reactions. Chemical kinetics deals with how rapidly
reactants are consumed and products formed, how
reaction rates respond to changes in the conditions
or the presence of a catalyst, and the identification of
the steps by which a reaction takes place.

One reason for studying the rates of reactions is
the practical importance of being able to predict how
quickly a reaction mixture approaches equilibrium.
The rate might depend on variables under our control,
such as the pressure, the temperature, and the presence
of a catalyst, and we might be able to optimize it by
the appropriate choice of conditions. Another reason
is that the study of reaction rates leads to an under-
standing of the mechanism of a reaction, its analysis
into a sequence of elementary steps. For example, we
might discover that the reaction of hydrogen and
bromine to form hydrogen bromide proceeds by the
dissociation of a Br2 molecule, the attack of a Br atom
on an H2 molecule, and several subsequent steps. By
analysing the rate of a biochemical reaction we may
discover how an enzyme, a biological catalyst, acts.
Enzyme kinetics, the study of the effect of enzymes
on the rates of reactions, is also an important win-
dow on how these macromolecules work.

We need to cope with a wide variety of different
rates and a process that appears to be slow may be
the outcome of many faster steps. That is particularly
true in the chemical reactions that underlie life.
Photobiological processes like those responsible for
photosynthesis and the slow growth of a plant may
take place in about 1 ps. The binding of a neurotrans-
mitter can have an effect after about 1 μs. Once a gene
has been activated, a protein may emerge in about
100 s; but even that timescale incorporates many
others, including the wriggling of a newly formed
polypeptide chain into its working conformation,
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each step of which may take about 1 ps. On a grander
view, some of the equations of chemical kinetics 
are applicable to the behaviour of whole populations
of organisms; such societies change on timescales 
of 107–109 s.

Empirical chemical kinetics

The first step in the investigation of the rate and
mechanism of a reaction is the determination of the
overall stoichiometry of the reaction and the iden-
tification of any side reactions. The next step is to 
determine how the concentrations of the reactants
and products change with time after the reaction has
been initiated. Because the rates of chemical reactions
are sensitive to temperature, the temperature of the
reaction mixture must be held constant throughout
the course of the reaction, for otherwise the observed
rate would be a meaningless average of the rates for
different temperatures.

The method used to monitor the concentrations of
reactants and products and their variation with time
depends on the substances involved and the rapidity
with which their concentrations change (Table 10.1).
We shall see that spectrophotometry, the measurement
of the absorption of light by a material, is used
widely to monitor concentration. If a reaction changes
the number or type of ions present in a solution, then
concentrations may be followed by monitoring the
conductivity of the solution. Reactions that change

the concentration of hydrogen ions may be studied by
monitoring the pH of the solution with a glass elec-
trode. Other methods of monitoring the composition
include the detection of light emission, titration,
mass spectrometry, gas chromatography, and mag-
netic resonance (both EPR and NMR, Chapter 19).
Polarimetry, the observation of the optical activity of
a reaction mixture, is occasionally applicable.

10.1 Spectrophotometry

The key result for using the intensity of absorption 
of radiation at a particular wavelength to determine
the concentration [J] of the absorbing species is the
empirical Beer–Lambert law (Fig. 10.1):

(10.1a)

I = I010−ε[J]L (10.1b)

(Note: common logarithms, to the base 10.) In this
expression, I0 and I are the incident and transmitted
intensities, respectively, and L is the length of the
sample. The ratio of the transmitted intensity, I, to
the incident intensity, I0, is called the transmittance,
T, of the sample:

(10.2)

The quantity ε (epsilon) is called the molar absorption
coeGcient (formerly, and still widely, the extinction
coeDcient): it depends on the wavelength of the 
incident radiation and is greatest where the absorp-
tion is most intense; the units of ε are typically cubic
decimetres per mole per centimetre (dm3 mol−1 cm−1;

  
T

I
I

=
0

  
log [ ]

I
I

L0 = ε J

Table 10.1

Kinetic techniques for fast reactions

Technique Range of timescales/s

Femtochemistry >10−15

Flash photolysis >10−12

Fluorescence decay 10−10–10− 6

Ultrasonic absorption 10−10–10− 4

EPR* 10−9–10− 4

Electric field jump 10−7–1
Temperature jump 10− 6–1
Phosphorescence 10− 6–10
NMR* 10−5–1
Pressure jump >10−5

Stopped flow >10−3

* EPR is electron paramagnetic resonance (or electron spin
resonance); NMR is nuclear magnetic resonance; see 
Chapter 21.
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Fig. 10.1 The intensity of light transmitted by an absorbing
sample decreases exponentially with the path length through
the sample.
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developed in connection with the study of the rate at
which oxygen combined with haemoglobin. Its dis-
advantage is that a large volume of reactant solution is
necessary, because the mixture must flow continuously
through the apparatus. This disadvantage is particu-
larly important for reactions that take place very
rapidly, because the flow must be rapid if it is to spread
the reaction over an appreciable length of tube.

The stopped-flow technique avoids this disadvant-
age (Fig. 10.3). The two solutions are mixed very
rapidly (in less than 1 ms) by injecting them into 
a mixing chamber designed to ensure that the flow 
is turbulent and that complete mixing occurs very
quickly. Behind the reaction chamber there is an 
observation cell fitted with a plunger that moves back
as the liquids flood in, but that comes up against 
a stop after a certain volume has been admitted. The
filling of that chamber corresponds to the sudden
creation of an initial sample of the reaction mixture.
The reaction then continues in the thoroughly mixed
solution and is monitored spectrophotometrically.
Because only a small, single charge of the reaction
chamber is prepared, the technique is much more
economical than the flow method. The suitability of
the stopped-flow technique to the study of small
samples means that it is appropriate for biochemical
reactions, and it has been widely used to study the 
kinetics of enzyme action. Modern techniques of
monitoring composition spectrophotometrically can
span repetitively a wavelength range of 300 nm at
1 ms intervals.

Very fast reactions can be studied by flash pho-
tolysis, in which the sample is exposed to a brief flash
of light that initiates the reaction, and then the 
contents of the reaction chamber are monitored spec-
trophotometrically. Lasers can be used to generate
nanosecond flashes routinely, picosecond flashes quite
readily, and flashes as brief as a few femtoseconds in

which are sensible when [J] is expressed in moles per
cubic decimetre and L is in centimetres). The dimen-
sionless expression on the right of eqn 10.2, ε[ J]L, is
called the absorbance, A, of the sample (formerly,
the optical density). We measure the absorbance of 
a sample by selecting an appropriate wavelength,
measuring the incident and final intensities of a light
beam, and using eqn 10.1a in the form

(10.3)

Once we know the absorbance of a sample we can
determine the concentration of the absorbing species,
and follow its change with time, by using A = ε[J]L
in the form

(10.4)

10.2 Experimental techniques

In a real-time analysis, the composition of a system is
analysed while the reaction is in progress by direct
spectroscopic observation of the reaction mixture. In
the flow method, the reactants are mixed as they flow
together in a chamber (Fig. 10.2). The reaction con-
tinues as the thoroughly mixed solutions flow through
a capillary outlet tube at about 10 m s−1, and different
points along the tube correspond to different times
after the start of the reaction. Spectrophotometric
determination of the composition at different positions
along the tube is equivalent to the determination of
the composition of the reaction mixture at different
times after mixing. This technique was originally 
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Fig. 10.2 The arrangement used in the flow technique for
studying reaction rates. The reactants are squirted into the
mixing chamber at a steady rate from the syringes or by using
peristaltic pumps (pumps that squeeze the fluid through flex-
ible tubes, like in our intestines). The location of the spec-
trometer corresponds to different times after initiation.

See an animated version of this figure in the 
interactive ebook.
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Spectrometer Stopping
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Fig. 10.3 In the stopped-flow technique the reagents are
driven quickly into the mixing chamber and then the time de-
pendence of the concentrations is monitored.

See an animated version of this figure in the 
interactive ebook.



CHAPTER 10: CHEMICAL KINETICS: THE RATES OF REACTIONS222

special arrangements. Fast reactions are also studied
by pulse radiolysis in which the flash of electro-
magnetic radiation is replaced by a short burst of
high-velocity electrons.

In contrast to real-time analysis, quenching
methods are based on stopping, or quenching, the 
reaction after it has been allowed to proceed for a
certain time and the composition is analysed at leisure.
The quenching (of the entire mixture or of a sample
drawn from it) can be achieved either by cooling 
suddenly, by adding the mixture to a large volume of
solvent, or by rapid neutralization of an acid reagent.
This method is suitable only for reactions that are
slow enough for there to be little reaction during the
time it takes to quench the mixture.

Reaction rates

The raw data from experiments to measure reaction
rates are quantities (such as the absorbance of a 
sample) that are proportional to the concentrations
or partial pressures of reactants and products at a 
series of times after the reaction is initiated. Ideally,
information on any intermediates should also be 
obtained, but often they cannot be studied because
their existence is so fleeting or their concentration so
low. More information about the reaction can be 
extracted if data are obtained at a series of different
temperatures. The next few sections look at these 
observations in more detail.

10.3 The definition of rate

The rate of a reaction taking place in a container of
fixed volume is defined in terms of the rate of change
of the concentration of a designated species:

(10.5a)

where Δ[J] is the change in the molar concentration
of the species J that occurs during the time interval
Δt. We have put the change in concentration between
modulus signs (|. . .|) to ensure that all rates are posi-
tive: if J is a reactant, its concentration will decrease
and Δ[J] will be negative, but |Δ[J] | is positive.

Because the rates at which reactants are consumed
and products are formed change in the course of a 
reaction, it is necessary to consider the instantaneous

Rate
J[ ]

=
| |

t

Time interval of interest

I. . .I means ignore any
negative sign

Change in [J]

rate of the reaction, its rate at a specific instant. The
instantaneous rate of consumption of a reactant is
the slope of a graph of its molar concentration 
plotted against the time, with the slope evaluated 
as the tangent to the graph at the instant of interest
(Fig. 10.4) and reported as a positive quantity. The
instantaneous rate of formation of a product is also
the slope if the tangent to the graph of its molar 
concentration plotted, and also reported as a positive
quantity. The steeper the slope in either case, the
greater the rate of the reaction. With the concentra-
tion measured in moles per cubic decimetre and the
time in seconds, the reaction rate is reported in moles
per cubic decimetre litre per second (mol dm−3 s−1).
From now on, we shall denote the instantaneous rate
v (for ‘velocity’).

A brief comment The slope of the tangent to a plot of [J]
against time curve at any instant is expressed mathematic-
ally as the magnitude of the derivative, |d[J]/dt |, where the 
interval Dt (and consequently the change in concentration
D[J]) in eqn 10.5a has been allowed to become infinitesimal.
Therefore, the precise definition of reaction rate is

(10.5b)

The rate defined in eqn 10.5a is the average of this quantity
over a range of times.

In general, the various reactants in a given reaction
are consumed at different rates, and the various
products are also formed at different rates. However,
these rates are related by the stoichiometry of the re-
action. For example, in the decomposition of urea,
(NH2)2CO, in acidic solution

v =
| |d[J]

dt

Initial rate
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later times
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Fig. 10.4 The rate of a chemical reaction is the slope of the
tangent to the curve showing the variation of concentration
of a species with time. This graph is a plot of the concentra-
tion of a reactant, which is consumed as the reaction pro-
gresses. The rate of consumption decreases in the course of
the reaction as the concentration of reactant decreases.
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The coeAcient kr, which is characteristic of the 
reaction being studied, is called the rate constant (or
rate coeDcient). The rate constant is independent of
the concentrations of the species taking part in the 
reaction but depends on the temperature. An experi-
mentally determined equation of this kind is called
the ‘rate law’ of the reaction. More formally, a rate
law is an equation that expresses the rate of reaction
in terms of the molar concentrations (or partial pres-
sures) of the species in the overall reaction (including,
possibly, the products and any catalysts that might
be present).

The units of kr are always such as to convert the
product of concentrations into a rate expressed as a
change in concentration divided by time. For example,
if the rate law is the one shown above, with concen-
trations expressed in mol dm3, then the units of kr
will be dm3 mol−1 s−1 because

In gas-phase studies, including studies of the pro-
cesses taking place in the atmosphere, concentrations
are commonly expressed in molecules cm−3, so the rate
constant for the reaction above would be expressed
in cm3 molecule−1 s−1. We can use the approach just
developed to determine the units of the rate constant
from rate laws of any form. For example, the rate
constant for a reaction with rate law of the form
kr[A] is commonly expressed in s−1.

A brief illustration The rate constant for the reaction
O(g) + O3(g) → 2 O2(g) is 8.0 × 10−15 cm3 molecule−1 s−1 at
298 K. To express this rate constant in dm3 mol−1 s−1, we
make use of

1 cm = 10−2 m = 10−2 × 10 dm = 10−1 dm =

1 mol = 6.022 × 1023, so 

It follows from the procedure described in Example 0.1 that

Note that, as should be expected (but is a good point to
check), the rate per mole is much greater than the rate per
molecule.

= 8.0 × 10−15 cm3 molecule−1 s−1

= 4.8 × 106 dm3 mol−1 s−1

=
× × ×−
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V

(NH2)2CO(aq) + 2 H2O(l) → 2 NH4
+(aq) + CO3

2−(aq)

the rate of formation of NH4
+ is twice the rate of 

disappearance of (NH2)2CO, because for 1 mol
(NH2)2CO consumed, 2 mol NH4

+ is formed. Once
we know the rate of formation or consumption of
one substance, we can use the reaction stoichiometry
to deduce the rates of formation or consumption of
the other participants in the reaction. In this example,
for instance,

Rate of formation of NH4
+

= 2 × rate of consumption of (NH2)2CO

One consequence of this kind of relation is that we
have to be careful to specify exactly what species we
mean when we report a reaction rate.

A brief comment In terms of the preceding comment, 
the most sophisticated definition of rate is in terms of the 
stoichiometric numbers, VJ, that appear in the chemical equa-
tion, the stoichiometric coefficients with sign: positive for
products and negative for reactants. Then

(10.5c)v =
1

V J

d[J]
dt

Self-test 10.1

The rate of formation of NH3 in the reaction N2(g) +
3 H2(g) → 2 NH3(g) was reported as 1.2 mmol dm−3 s−1

under a certain set of conditions. What is the rate of 
consumption of H2? 

[Answer: 1.8 mmol dm−3 s−1]

There is a complication: if the reactants form a
slowly decaying intermediate (we see examples later),
then the products do not form at the same rate as the
reactants turn into the intermediate. In such cases,
we have to be very careful about the interpretation of
the measured rate of reaction. This complication can
be turned to advantage: the observation that the 
consumption and formation rates are not related by
the reaction stoichiometry is a good sign that a long-
lived intermediate is involved in the reaction.

10.4 Rate laws and rate constants

An empirical observation of the greatest importance
is that the rate of reaction is often found to be pro-
portional to the molar concentrations of the reac-
tants raised to a simple power. For example, it may
be found that the rate is directly proportional to the
concentrations of the reactants A and B, so

v = kr[A][B] (10.6)
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Once we know the rate law and the rate constant
of the reaction, we can predict the rate of the reaction
for any given composition of the reaction mixture.
We shall also see that we can use a rate law to predict
the concentrations of the reactants and products at
any time after the start of the reaction. Furthermore,
a rate law is also an important guide to the mechan-
ism of the reaction, for any proposed mechanism
must be consistent with the observed rate law.

10.5 Reaction order

A rate law provides a basis for the classification of
reactions according to their kinetics. The advantage
of having such a classification is that reactions 
belonging to the same class have similar kinetic 
behaviour—their rates and the concentrations of the
reactants and products vary with composition in a
similar way. The classification of reactions is based
on their order, the power to which the concentration
of a species is raised in the rate law. For example, a
reaction with the rate law in eqn 10.6 (v = kr[A][B]) is
first-order in A and first-order in B. A reaction with
the rate law

v = kr[A]2 (10.7)

is second-order in A.
The overall order of a reaction with a rate law of

the form v = kr[A]a[B]b[C]c. . . is the sum, a + b + c + . . .,
of the orders of all the components. The two rate
laws just quoted both correspond to reactions that
are second-order overall. An example of the first type
of reaction is the reformation of a DNA double helix
after the double helix has been separated into two
strands by raising the temperature or the pH:

Strand + complementary strand → double helix 

v = kr[strand][complementary strand]

This reaction is first-order in each strand and second-
order overall. An example of the second type is the
reduction of nitrogen dioxide by carbon monoxide,

NO2(g) + CO(g) → NO(g) + CO2(g) v = kr[NO2]
2

which is second-order in NO2 and, because no other
species occurs in the rate law, second-order overall.

The rate of the latter reaction is independent of the
concentration of CO provided that some CO is 
present. This independence of concentration is 
expressed by saying that the reaction is zeroth-order
in CO, because a concentration raised to the power
zero is 1 ([CO]0 = 1, just as x0 = 1 in algebra).

A reaction need not have an integral order, and
many gas-phase reactions do not. For example, if a
reaction is found to have the rate law

v = kr[A]1/2[B] (10.8)

then it is half-order in A, first-order in B, and three-
halves-order overall.

If a rate law is not of the form v = kr[A]a[B]b[C]c. . .
then the reaction does not have an overall order.
Thus, the experimentally determined rate law for the
gas-phase reaction H2(g) + Br2(g) → 2 HBr(g) is

(10.9)

Although the reaction is first-order in H2, it has an
indefinite order with respect to both Br2 and HBr and
an indefinite order overall. Similarly, a typical rate
law for the action of an enzyme E on a substrate S is
(see Chapter 11)

(10.10)

where KM is a constant. This rate law is first-order 
in the enzyme but does not have a specific order with
respect to the substrate.

Under certain circumstances a complicated rate
law without an overall order may simplify into a law
with a definite order. For example, if the substrate
concentration in the enzyme-catalysed reaction is 
so low that [S] << KM, then we can ignore [S] in the
denominator of eqn 10.10, which simplifies to

which is first-order in S, first-order in E, and second-
order overall.

It is very important to note that a rate law is estab-
lished experimentally, and cannot in general be 
inferred from the chemical equation for the reaction.
The reaction of hydrogen and bromine, for example,
has a very simple stoichiometry, but its rate law (eqn
10.9) is very complicated. In some cases, however, the
rate law does happen to reflect the reaction stoichio-
metry. This is the case with the reaction of hydrogen
and iodine, which has the same stoichiometry as the
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Self-test 10.2

A reaction has a rate law of the form kr[A]2[B]. What are
the units of the rate constant k if the reaction rate was
measured in mol dm−3 s−1?

[Answer: dm6 mol−2 s−1]
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first- or second-order are actually pseudofirst- or
pseudosecond-order: the solvent water participates
in the reaction but it is in such large excess that its
concentration remains constant.

In the method of initial rates, which is often used
in conjunction with the isolation method, the instan-
taneous rate is measured at the beginning of the 
reaction for several different initial concentrations of
reactants. For example, suppose the rate law for a 
reaction with A isolated is

v = kr[A]a

Then the initial rate of the reaction, v0, is given by the
initial concentration of A:

v0 = kr[A]0
a

Taking logarithms gives

(10.11)

This equation has the form of the equation for a
straight line:

It follows that, for a series of initial concentrations, a
plot of the logarithms of the initial rates against the
logarithms of the initial concentrations of A should
be a straight line, and that the slope of the graph will
be a, the order of the reaction with respect to the
species A (Fig. 10.5).

y =
log v0 = log kr,eff + a log[A]0

intercept + slope  x

Use log xy = log x + log y

Use log x a = a  log x

log v0 = log (kr,eff [A]0
a ) = logkr,eff + log [A]0

a

= logkr,eff + a log [A]0

reaction of hydrogen with bromine but a much 
simpler rate law:

H2(g) + I2(g) → 2 HI(g) v = kr[H2][I2]

10.6 The determination of the rate law

The determination of a rate law is simplified by the
isolation method, in which all the reactants except one
are present in large excess. We can find the depend-
ence of the rate on each of the reactants by isolating
each of them in turn—by having all the other sub-
stances present in large excess—and piecing together
a picture of the overall rate law. For instance, we
might use CH3I in solution at a concentration of 
0.2 mol dm−3 and an attacking nucleophile at only
0.01 mol dm−3.

If a reactant B is in large excess, for example, it is 
a good approximation to take its concentration as
constant throughout the reaction. Then, although
the true rate law might be

v = kr[A][B]2

we can approximate [B] by its initial value [B]0 (from
which it hardly changes in the course of the reaction)
and write

v = kr,eff[A], with kr,eff = kr[B]0
2

Because the true rate law has been forced into first-
order form by assuming a constant B concentration,
the effective rate law is classified as pseudofirst-order
and kr,eff is called the effective rate constant for a
given, fixed concentration of B. If, instead, the con-
centration of A were in large excess, and hence effec-
tively constant, then the rate law would simplify to

v = kr,eff[B]2, now with kr,eff = kr[A]0

This pseudosecond-order rate law is also much easier
to analyse and identify than the complete law. Note
that the order of the reaction and the form of the 
effective rate constant change according to whether
A or B is in excess.

In a similar manner, a reaction may even appear 
to be zeroth-order. For instance, the oxidation of
ethanol to acetaldehyde by NAD+ in the liver in the
presence of the enzyme liver alcohol dehydrogenase

CH3CH2OH(aq) + NAD+(aq) + H2O(l) →
CH3CHO(aq) + NADH(aq) + H3O

+(aq)

is zeroth-order overall as the ethanol is in excess and
the concentration of the NAD+ is maintained at a
constant level by normal metabolic processes. Many
reactions in aqueous solution that are reported as
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Fig. 10.5 The plot of log v0 (and, as shown here, of log v0 −
log kr,eff) against log[A]0 gives straight lines with slopes equal
to the order of the reaction.



A note on good practice When taking the common
logarithm of a number of the form x.xx × 10n, there are
four significant figures in the answer: the figure before
the decimal point is simply the power of 10. Strictly, the
logarithms are of the quantity divided by its units.
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Example 10.1

Using the method of initial rates

The recombination of I atoms in the gas phase in the
presence of argon (which removes the energy released
by the formation of an I–I bond, and so prevents the 
immediate dissociation of a newly formed I2 molecule)
was investigated and the order of the reaction was 
determined by the method of initial rates. The initial
rates of reaction of 2 I(g) + Ar(g) → I2(g) + Ar(g) were 
as follows:

[I]0/(10−5 mol dm−3)

1.0 2.0 4.0 6.0

v0/(mol dm−3 s−1)

(a) 8.70 × 10− 4 3.48 × 10−3 1.39 × 10−2 3.13 × 10−2

(b) 4.35 × 10−3 1.74 × 10−2 6.96 × 10−2 1.57 × 10−1

(c) 8.69 × 10−3 3.47 × 10−2 1.38 × 10−1 3.13 × 10−1

The Ar concentrations are (a) 1.0 × 10−3 mol dm−3, 
(b) 5.0 × 10−3 mol dm−3, and (c) 1.0 × 10−2 mol dm−3. Find
the orders of reaction with respect to I and Ar and the
rate constant.

Strategy For constant [Ar]0, the initial rate law has the
form v0 = kr,eff[I]0

a, with kr,eff = kr[Ar]0
b, so

log v0 = log kr,eff + a log [I]0

We need to make a plot of log v0 against log [I]0 for a
given [Ar]0 and find the order from the slope and the
value of kr,eff from the intercept at log [I]0 = 0. Then, 
because

log kr,eff = log kr + b log [Ar]0

plot log kr,eff against log [Ar]0 to find log kr from the inter-
cept and b from the slope.

Solution The data give the following points for the graph:

log([I]0/mol dm−3)

−5.00 −4.70 −4.40 −4.22

log(v0/mol dm−3 s−1)

(a) −2.971 −2.458 −1.857 −1.504

(b) −2.362 −1.760 −1.157 −0.804

(c) −1.971 −1.460 −0.860 −0.504

The graph of the data is shown in Fig. 10.6. The slopes of
the lines are 2 and the effective rate constants kr,eff are
as follows:

[Ar]0 /(mol dm−3) 1.0 × 10−3 5.0 × 10−3 1.0 × 10−2

log([Ar]0 /mol dm−3) −3.00 −2.30 −2.00

log(kr,eff /mol−1 dm3 s−1) 6.94 7.64 7.93

Figure 10.7 is the plot of log kr,eff against log [Ar]0. The
slope is 1, so b = 1. The intercept at log [Ar]0 = 0 is 
log kr,eff = 9.91, so k = 8.6 × 109 mol−2 dm6 s−1. The over-
all (initial) rate law is

v = kr[I]0
2[Ar]0
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Fig. 10.6 The plots of the data in Example 10.1 for find-
ing the order with respect to I.
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Fig. 10.7 The plots of the data in Example 10.1 for find-
ing the order with respect to Ar.

Self-test 10.3

The initial rate of a certain reaction depended on
concentration of a substance J as follows:

[J]0/(10−3 mol dm−3) 5.0 10.2 17 30

v0/(10−7 mol dm−3 s−1) 3.6 9.6 41 130

Find the order of the reaction with respect to J and
the rate constant.

[Answer: 2, 1.6 × 10−2 mol−1 dm3 s−1]
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Fig. 10.8 The exponential decay of the reactant in a first-
order reaction. The greater the rate constant, the more rapid
is the decay.

Derivation 10.2

First-order integrated rate laws

Our first step is to express the rate of consumption of a
reactant A mathematically. As remarked in Comment
10.1, the rate of a reaction is |d[A] | /dt. Because A is a 
reactant, the change d[A] is negative (the concentration
of A decreases with time), so −d[A] is positive. We can
therefore interpret the rate as −d[A]/dt. It follows that 
a first-order rate equation has the form

This expression is an example of a ‘differential equation’
(see Appendix 2 for a review of the concepts of calculus).
Because the terms d[A] and dt may be manipulated like
any algebraic quantity, we rearrange the differential equa-
tion into

and then integrate both sides. Integration from t = 0, when
the concentration of A is [A]0, to the time of interest, t,
when the molar concentration of A is [A], is written as

�
[A]

[A]0

= −kr �
t

0

dt

We now use the standard integrals

� f �dx = x + constant

and obtain the expression

ln[A] − ln[A]0 = −krt

which rearranges into eqn 10.13a.

 

d
constant

x
x

x= +ln

 

d[A]
[A]

 

d[A]
[A]

dr= −k t

 
− =

d[A
d

Ar
]

[ ]
t

k

Equation 10.13c has the form of an exponential
decay (Fig. 10.8). A common feature of all first-order
reactions, therefore, is that the concentration of the
reactant decays exponentially with time.

The method of initial rates might not reveal the 
entire rate law, as in a complex reaction the products
themselves might affect the rate. That is the case for
the synthesis of HBr, for eqn 10.4 shows that the rate
law depends on the concentration of HBr, none of
which is present initially.

10.7 Integrated rate laws

A rate law tells us the rate of the reaction at a given
instant (when the reaction mixture has a particular
composition). That is rather like being given the speed
of a car at each point of its journey. For a car journey,
we may want to know the distance that a car has
travelled at a certain time given its varying speed.
Similarly, for a chemical reaction, we may want to
know the composition of the reaction mixture at 
a given time given the varying rate of the reaction. An
integrated rate law is an expression that gives the
concentration of a species as a function of the time.

Integrated rate laws have two principal uses. One
is to predict the concentration of a species at any time
after the start of the reaction. Another is to help find
the rate constant and order of the reaction. Indeed,
although we have introduced rate laws through a dis-
cussion of the determination of reaction rates, these
rates are rarely measured directly because slopes 
are so diAcult to determine accurately. Almost all
experimental work in chemical kinetics deals with 
integrated rate laws; their great advantage being that
they are expressed in terms of the experimental 
observables of concentration and time. Computers
can be used to find the integrated form of even the
most complex rate laws numerically and in some
cases can be used to obtain closed, algebraic expres-
sions. However, in a number of simple cases solu-
tions can be obtained by elementary techniques and
prove to be very useful.

For a chemical reaction and first-order rate law of
the form

A → products, Rate of consumption of A = kr[A]

(10.12)

we show in Derivation 10.2 that the integrated rate
law is

(10.13a)

where [A]0 is the initial concentration of A. Two 
alternative forms of this expression are

ln[A] = ln[A]0 − kr t (10.13b)

[A] = [A]0e
−krt (10.13c)

  
ln

[A]
[A]

0
r= k t
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Equation 10.13c lets us predict the concentration
of A at any time after the start of the reaction. Equa-
tion 10.13b shows that if we plot ln[A] against t,
then we will get a straight line if the reaction is first-
order. If the experimental data do not give a straight
line when plotted in this way, then the reaction is not
first-order. If the line is straight, then it follows from
eqn 10.13b that its slope is −kr, so we can also deter-
mine the rate constant from the graph. Some rate con-
stants determined in this way are given in Table 10.2.

Now we need to see how the concentration varies
with time for a reaction and second-order rate law if
the form

A → products, Rate of consumption of A = kr[A]2

(10.14)

Table 10.2

Kinetic data for first-order reactions

Reaction Phase q /°C kr /s
−1 t1/2

2 N2O5 → 4 NO2 + O2 g 25 3.38 × 10−5 2.85 h
2 N2O5 → 4 NO2 + O2 Br2(l) 25 4.27 × 10−5 2.25 h
C2H6 → 2 CH3 g 700 5.46 × 10− 4 21.2 m
Cyclopropane → propene g 500 6.17 × 10− 4 17.2 min

The rate constant is for the rate of formation or consumption of the species in bold type. The rate
laws for the other species may be obtained from the reaction stoichiometry.

Example 10.2

Analysing a first-order reaction

The variation in the partial pressure pA of azomethane
with time was followed at 460 K, with the results given
below. Confirm that the decomposition CH3N2CH3(g) →
CH3CH3(g) + N2(g) is first-order in CH3N2CH3, and find
the rate constant at this temperature.

t/s 0 1000 2000 3000 4000

pA/(10−2 Torr) 10.20 5.72 3.99 2.78 1.94

Strategy The easiest procedure is to plot ln(p / Torr)
against t /s and expect to obtain a straight line. If the
graph is straight, then the slope is −kr. To determine the
slope use mathematical software, which automatically
determines the best straight line through the data points
and calculates the slope. (The text’s website features 
interactive applets for data analysis.)

Solution We draw up the following table:

t/s 0 1000 2000 3000 4000

pA/(10−2 Torr) 10.20 5.72 3.99 2.78 1.94

ln(pA/Torr) −2.28 −2.86 −3.22 −3.58 −3.94

The graph of the data is shown in Fig. 10.9. The plot is
straight, confirming a first-order reaction. Its least-squares
best-fit slope is −4.04 × 10− 4, so kr = 4.04 × 10−4 s−1.
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Fig. 10.9 The determination of the rate constant of a
first-order reaction. A straight line is obtained when ln[A]
(or ln p, where p is the partial pressure of the species of
interest) is plotted against t; the slope is −kr. The data are
from Example 10.2.

Self-test 10.4

The concentration of N2O5 in liquid bromine varied
with time as follows:

t/s 0 200 400 600 1000

[N2O5]/(mol dm−3) 0.110 0.073 0.048 0.032 0.014

Confirm that the reaction is first-order in N2O5 and
determine the rate constant.

[Answer: 2.1 × 10−3 s−1]
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with the same initial rate (Fig. 10.12). That is, 
reactants that decay by a second-order process die
away more slowly at low concentrations than would
be expected if the decay was first-order. A point of 
interest in this connection is that pollutants commonly
disappear by second-order processes, so it takes a very
long time for them to decline to acceptable levels.

Table 10.4 summarizes the integrated rate laws for
a variety of simple reaction types.

10.8 Half-lives and time constants

A useful indication of the rate of a first-order chemi-
cal reaction is the half-life, t1/2, of a reactant, which is
the time it takes for the concentration of the species
to fall to half its initial value. We can find the half-life
of a species A that decays in a first-order reaction

As before, we suppose that the concentration of A at
t = 0 is [A]0 and, as shown in Derivation 10.3, find that

(10.15a)

that may also be written

(10.15b)
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Derivation 10.3

Second-order integrated rate laws

As before, the rate of consumption of the reactant A is 
−d[A]/dt, so the differential equation for the rate law is

To solve this equation, we rearrange it into

and integrate it between t = 0, when the concentration of
A is [A]0, and the time of interest t, when the concentra-
tion of A is [A]:

�
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t
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The term on the right is −krt. We evaluate the integral on
the left by using the standard form

�
which implies that
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Equation 10.15a shows that to test for a second-
order reaction we should plot 1/[A] against t and 
expect a straight line. If the line is straight, then 
the reaction is second-order in A and the slope of the
line is equal to the rate constant (Fig. 10.10). Some
rate constants determined in this way are given in
Table 10.3. Equation 10.15b enables us to predict
the concentration of A at any time after the start of
the reaction (Fig. 10.11).

From plots of [A] against t, we see that the 
concentration of A approaches zero more slowly in a
second-order reaction than in a first-order reaction
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Fig. 10.10 The variation with time of the concentration of a
reactant in a second-order reaction.
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Fig. 10.11 The determination of the rate constant of a sec-
ond-order reaction. A straight line is obtained when 1/[A] (or
1/p, where p is the partial pressure of the species of interest)
is plotted against t; the slope is kr.
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(eqn 10.14) by substituting [A] = [A]0 and t = t1/2
into eqn 10.15a:

It follows that

(10.16)

A brief illustration Because the rate constant for the
first-order reaction

N2O5(g) → 2 NO2(g) + O2(g)

Rate of consumption of N2O5 = kr[N2O5]

is equal to 6.76 × 10−5 s−1 at 25°C, the half-life of N2O5 is
2.85 h. Hence, the concentration of N2O5 falls to half its
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Table 10.3

Kinetic data for second-order reactions

Reaction Phase q/°C kr /(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80
2 NO2 → 2 NO + O2 g 300 0.54
H2 + I2 → 2 HI g 400 2.42 × 10−2

D2 + HCl → DH + DCl g 600 0.141
2 I → I2 g 23 7 × 109

hexane 50 1.8 × 1010

CH3Cl + CH3O
− CH3OH(l) 20 2.29 × 10− 6

CH3Br + CH3O
− CH3OH(l) 20 9.23 × 10− 6

H+ + OH− → H2O water 25 1.5 × 1011

The rate constant is for the rate of formation or consumption of the species 
in bold type. The rate laws for the other species may be obtained from the reaction
stoichiometry.
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Fig. 10.12 Although the initial decay of a second-order reac-
tion may be rapid, later the concentration approaches zero
more slowly than in a first-order reaction with the same initial
rate (compare Fig. 10.10).

Table 10.4

Integrated rate laws

Order Reaction type Rate law Integrated rate law

0 A → P V = kr [P] = krt for krt ≤ [A]0
1 A → P V = kr[A] [P] = [A]0(1 − e−krt)

2 A → P V = kr[A]2

A + B → P V = kr[A][B] [ ]
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A brief illustration In acidic solution, the disaccharide
sucrose (cane sugar) is converted to a mixture of the
monosaccharides glucose and fructose in a pseudofirst-
order reaction. Under certain conditions of pH, the half-life
of sucrose is 28.4 min. To calculate how long it takes for
the concentration of a sample to fall from 8.0 mmol dm−3

to 1.0 mmol dm−3 we note that

Molar concentration/(mmol dm−3): 

8.0 28.4 min 4.0 28.4 min 2.0 28.4 min 1.0

The total time required is 3 × 28.4 min = 85.2 min.

initial value in 2.85 h, and then to half that concentration
again in a further 2.85 h, and so on (Fig. 10.13). This 
procedure is commonly used in reverse: the half-life 
is measured and then eqn 10.16 is used to determine 
kr from kr = (ln 2)/t1/2.

The main point to note about eqn 10.16 is that for
a first-order reaction, the half-life of a reactant is 
independent of its concentration. It follows that if
the concentration of A at some arbitrary stage of the
reaction is [A], then the concentration will fall to 

[A] after an interval of (ln 2)/kr whatever the actual
value of [A] (Fig. 10.14). Some half-lives are given in
Table 10.2.
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Fig. 10.13 The molar concentration of N2O5 after a succes-
sion of half-lives.
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Fig. 10.14 In each successive period of duration t1/2, the con-
centration of a reactant in a first-order reaction decays to half
its value at the start of that period. After n such periods, the
concentration is ( )n of its initial concentration.1

2

Self-test 10.5

The half-life of a substrate in a certain enzyme-catalysed
first-order reaction is 138 s. How long is required for the
concentration of substrate to fall from 1.28 mmol dm−3

to 0.040 mmol dm−3?
[Answer: 690 s]

Self-test 10.6

Derive an expression for the half-life of a second-order
reaction in terms of the rate constant k.

[Answer: t1/2 = 1/kr[A]0]

In contrast to first-order reactions, the half-life of
a second-order reaction does depend on the concen-
tration of the reactant (see the answer to Self-test
10.6), and lengthens as the concentration of reactant
falls. It is therefore not characteristic of the reaction
itself, and for that reason is rarely used.

We can use the half-life of a substance to recognize
first-order reactions. All we need do is inspect a set of
data of composition against time. If we see that the
initial concentration falls to half its value in a certain
time, and that another concentration falls to half its
value in the same time, then we can infer that the 
reaction is first-order. The first-order character can
then be confirmed by plotting ln[A] against t and 
obtaining a straight line, as indicated earlier.

Another indication of the rate of a first-order reac-
tion is the time constant, τ, the time required for the
concentration of a reactant to fall to 1/e of its initial
value. From eqn 10.15a it follows that 

Hence, the time constant is the reciprocal of the rate
constant:

(10.17)
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k
A

Ar
e

e
eτ ln

[ ] /
[ ]

ln ln= −
⎛

⎝⎜
⎞

⎠⎟
= − =0

0

1
== 1



CHAPTER 10: CHEMICAL KINETICS: THE RATES OF REACTIONS232

The temperature dependence 

of reaction rates

The rates of most chemical reactions increase as the
temperature is raised. Many organic reactions in 
solution lie somewhere in the range spanned by the
hydrolysis of methyl ethanoate (for which the rate
constant at 35°C is 1.8 times that at 25°C) and the
hydrolysis of sucrose (for which the factor is 4.1).
Enzyme-catalysed reactions may show a more com-
plex temperature dependence because raising the
temperature may provoke conformational changes
that lower the effectiveness of the enzyme. Indeed,
one of the reasons why we fight infection with a fever
is to upset the balance of reaction rates in the infect-
ing organism, and hence destroy it, by the increase in
temperature. There is a fine line, though, between
killing an invader and killing the invaded!

10.9 The Arrhenius parameters

As data on reaction rates were accumulated towards
the end of the nineteenth century, the Swedish

chemist Svante Arrhenius noted that almost all of
them showed a similar dependence on the tempera-
ture. In particular, he noted that a graph of ln kr,
where kr is the rate constant for the reaction, against
1/T, where T is the (absolute) temperature at which
kr is measured, gives a straight line with a slope that
is characteristic of the reaction (Fig. 10.15). The
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Intercept = ln A

Fig. 10.15 The general form of an Arrhenius plot of ln kr
against 1/T. The slope is equal to −Ea /R and the intercept at
1/T = 0 is equal to ln A.

Table 10.5

Arrhenius parameters

First-order reactions A /s−1 Ea/(kJ mol−1)

Cyclopropene → propane 1.58 × 1015 272
CH3NC → CH3CN 3.98 × 1013 160
cis-CHDlCHD → trans-CHDlCHD 3.16 × 1012 256
cyclobutane → 2 C2H4 3.98 × 1015 261
2 N2O5 → 4 NO2 + O2 4.94 × 1013 103
N2O → N2 + O 7.94 × 1011 250

Second-order, gas phase A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

O + N2 → NO + H 1 × 1011 315
OH + H2 → H2 + H 8 × 1010 42
Cl + H2 → HCl + H 8 × 1010 23
CH3 + CH3 → C2H6 2 × 1010 0
NO + Cl2 → NOCl + Cl 4 × 109 85

Second order, solution A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

NaC2H5O + CH3I in ethanol 2.42 × 1011 81.6
C2H5Br + OH− in water 4.30 × 1011 89.5
CH3I + S2O3

2− in water 2.19 × 1012 78.7
Sucrose + H2O in acidic water 1.50 × 1015 107.9
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mathematical expression of this conclusion is that
the rate constant varies with temperature as

This expression is normally written as the Arrhenius
equation

(10.18)

or alternatively (by using ln kr − ln A = ln(kr /A) and
taking antilogarithms, ex, of both sides) as

kr = Ae−Ea /RT (10.19)

The parameter A (which has the same units as kr) is
called the pre-exponential factor, and Ea (which is a
molar energy and normally expressed as kilojoules
per mole) is called the activation energy. Collectively,
A and Ea are called the Arrhenius parameters of the
reaction (Table 10.5).

A practical point to note from eqn 10.19 and illus-
trated in Fig. 10.16 is that a high activation energy
corresponds to a reaction rate that is very sensitive to
temperature (the Arrhenius plot has a steep slope).
Conversely, a small activation energy indicates a re-
action rate that varies only slightly with temperature
(the slope is shallow). A reaction with zero activation
energy, such as for some radical recombination reac-
tions in the gas phase, has a rate that is largely inde-
pendent of temperature.
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Fig. 10.16 These three Arrhenius plots correspond to three
different activation energies. Note that the plot correspond-
ing to the higher activation energy indicates that the rate of
that reaction is more sensitive to temperature.
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Fig. 10.17 The Arrhenius plot for the decomposition of
CH3CHO, and the best (least-squares) straight line fitted
to the data points. The data are from Example 10.3.

Example 10.3

Determining the Arrhenius parameters

The rate of the second-order decomposition of acetalde-
hyde (ethanal, CH3CHO) was measured over the range
700–1000 K, and the rate constants that were found are
reported below. Determine the activation energy and
the pre-exponential factor.

T/K 700 730 760 790

kr /(mol−1 dm3 s−1) 0.011 0.035 0.105 0.343

T/K 810 840 910 1000

kr /(mol−1 dm3 s−1) 0.789 2.17 20.0 145

Strategy We plot ln k against 1/T and expect a straight
line. The slope is −Ea /R and the intercept of the extra-
polation to 1/T = 0 is ln A. More precisely, we plot the 
dimensionless quantity ln(kr /(mol−1 dm3 s−1)) against the
dimensionless quantity T/K. Then from

identify the dimensionless slope with −(Ea/R ) K−1, implying
that Ea = −R × slope × K. It is best to use mathematical
software to do a least-squares fit of the data to a straight
line. Note (from eqn 10.19) that A has the same units as kr.

Solution The Arrhenius plot is shown in Fig. 10.17. The
least-squares best fit of the line has slope −2.265 × 104

and intercept at 1/T = 0 (which is well off the graph) 27.7.
Therefore,

Ea = −R × slope × K

= −(8.3145 J K−1 mol−1) × (−2.265 × 104 K) = 188 kJ mol−1

and from ln(A /(mol−1 dm3 s−1)) = 27.7,

A = e27.7 mol−1 dm3 s−1 = 1.1 × 1012 mol−1 dm3 s−1

 
= − × ×− −ln( / )A
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gas-phase reactions in which reaction occurs when
two molecules meet. That is, in the terminology to 
be introduced in Section 11.3, we are considering 
bimolecular gas-phase reactions. In this collision
theory of reaction rates it is supposed that reaction
occurs only if two molecules collide with a certain
minimum kinetic energy along their line of approach
(Fig. 10.18). In collision theory, a reaction resembles
the collision of two defective billiard balls: the balls
bounce apart if they collide with only a small energy,
but might smash each other into fragments (prod-
ucts) if they collide with more than a certain min-
imum kinetic energy. This model of a reaction is a
reasonable first approximation to the types of pro-
cess that take place in planetary atmospheres and
govern their compositions and temperature profiles.

A reaction profile in collision theory is a graph
showing the variation in potential energy as one re-
actant molecule approaches another and the prod-
ucts then separate (Fig. 10.19). On the left, the
horizontal line represents the potential energy of the
two reactant molecules that are far apart from one
another. The potential energy rises from this value
only when the separation of the molecules is so small
that they are in contact, when it rises as bonds bend
and start to break. The potential energy reaches a
peak when the two molecules are highly distorted.
Then it starts to decrease as new bonds are formed.
At separations to the right of the maximum, the 
potential energy rapidly falls to a low value as the
product molecules separate. For the reaction to be
successful, the reactant molecules must approach
with suAcient kinetic energy along their line of 
approach to carry them over the activation barrier,
the peak in the reaction profile. As we shall see, we
can identify the height of the activation barrier with
the activation energy of the reaction.

Self-test 10.7

Determine A and Ea from the following data:

T /K 300 350 400

kr /(mol−1 dm3 s−1) 7.9 × 106 3.0 × 107 7.9 × 107

T /K 450 500

kr /(mol−1 dm3 s−1) 1.7 × 108 3.2 × 108

[Answer: 8 × 1010 mol−1 dm3 s−1, 23 kJ mol−1]

Self-test 10.8

The activation energy of one of the reactions in a 
biochemical process is 87 kJ mol−1. What is the change
in rate constant when the temperature falls from 37°C 
to 15°C?

[Answer: kr(15°C) = 0.076kr(37°C)]

Once the activation energy of a reaction is known,
it is a simple matter to predict the value of a rate con-
stant kr(T ′) at a temperature T ′ from its value kr(T)
at another temperature T. To do so, we write

and

and then subtract the second from the first to obtain

We can rearrange this expression to

(10.20)

A brief illustration For a reaction with an activation
energy of 50 kJ mol−1, an increase in the temperature
from 25°C to 37°C (body temperature) corresponds to

(The right-hand side evaluates to 0.7812.. . , but we take
the next step before evaluating the answer.) By taking
natural antilogarithms (that is, by forming ex ), kr(310 K) =
2.18kr(298 K). This result corresponds to slightly more
than a doubling of the rate constant.
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10.10 Collision theory

We can understand the origin of the Arrhenius 
parameters most simply by considering a class of 

(a) (b)

Fig. 10.18 In the collision theory of gas-phase chemical reac-
tions, reaction occurs when two molecules collide, but only 
if the collision is sufficiently vigorous. (a) An insufficiently 
vigorous collision: the reactant molecules collide but bounce
apart unchanged. (b) A sufficiently vigorous collision results
in a reaction.
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that occur with at least a kinetic energy Ea can be 
calculated from general arguments developed in
Chapter 21 concerning the probability that a mole-
cule has a specified energy. The result is

f = e−Ea/RT (10.21)

This fraction increases from 0 when T = 0 to 1 when
T is infinite.

With the reaction profile in mind, it is quite easy to
establish that collision theory accounts for Arrhenius
behaviour. Thus, collision frequency, the rate of col-
lisions between species A and B, is proportional to
both their concentrations: if the concentration of B is
doubled, then the rate at which A molecules collide
with B molecules is doubled, and if the concentration
of A is doubled, then the rate at which B molecules
collide with A molecules is also doubled. It follows
that the collision frequency of A and B molecules is
directly proportional to the concentrations of A and
B, and we can write

Collision frequency ∝ [A][B]

Next, we need to multiply the collision frequency
by a factor f that represents the fraction of colli-
sions that occur with at least a kinetic energy Ea
along the line of approach (Fig. 10.20), for only these
collisions will lead to the formation of products.
Molecules that approach with less than a kinetic 
energy Ea will behave like a ball that rolls toward the
activation barrier, fails to surmount it, and rolls
back. We saw in Section 1.6 that only small fractions
of molecules in the gas phase have very high speeds
and that the fraction with very high speeds increases
sharply as the temperature is raised. Because the 
kinetic energy increases as the square of the speed
(for a body of mass m moving at a speed v, the kinetic
energy is Ek = mv2), we expect that, at higher tem-
peratures, a larger fraction of molecules will have a
speed and kinetic energy that exceed the minimum
values required for collisions that lead to formation
of products (Fig. 10.21). The fraction of collisions
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Fig. 10.19 A reaction profile. The graph depicts schem-
atically the changing potential energy of two species that 
approach, collide, and then go on to form products. The 
activation energy is the height of the barrier above the poten-
tial energy of the reactants.

(a)

(b)

Fig. 10.20 The criterion for a successful collision is that the
two reactant species should collide with a kinetic energy
along their line of approach that exceeds a certain minimum
value Ea that is characteristic of the reaction. The two
molecules might also have components of velocity (and an
associated kinetic energy) in directions other than those
shown here (for example, the two molecules depicted here
as (a) and (b) might be moving up the page as well as towards
each other); but only the energy associated with their mutual
approach can be used to overcome the activation energy.
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Fig. 10.21 According to the Maxwell distribution of speeds
(Section 1.6), as the temperature increases, so does the frac-
tion of gas-phase molecules with a speed that exceeds a min-
imum value smin. Because the kinetic energy is proportional
to the square of the speed, it follows that more molecules
can collide with a minimum kinetic energy Ea (the activation
energy) at higher temperatures.
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At this stage we can conclude that the rate of reac-
tion, which is proportional to the collision frequency
multiplied by the fraction of successful collisions, is

v ∝ [A][B]e−Ea/RT

If we compare this expression with a second-order
rate law,

v = kr[A][B]

it follows that

kr ∝ e−Ea/RT

This expression has exactly the Arrhenius form (eqn
10.19) if we identify the constant of proportionality
with A. Collision theory therefore suggests the fol-
lowing interpretations:

The pre-exponential factor, A, is the constant 
of proportionality between the concentrations of
the reactants and the rate at which the reactant
molecules collide.

The activation energy, Ea, is the minimum kinetic
energy required for a collision to result in reaction.

The value of A can be calculated from the kinetic
theory of gases (Chapter 1):

(10.22)

where mA and mB are the masses of the molecules A
and B and σ is the collision cross-section (Section
1.8). However, it is often found that the experimen-
tal value of A is smaller than that calculated from 
the kinetic theory. One possible explanation is that
not only must the molecules collide with suAcient 
kinetic energy, but they must also come together in 
a specific relative orientation (Fig. 10.22). It follows
that the reaction rate is proportional to the probabil-
ity that the encounter occurs in the correct relative
orientation. The pre-exponential factor A should
therefore include a steric factor, P, which usually lies
between 0 (no relative orientations lead to reaction)
and 1 (all relative orientations lead to reaction). As
an example, for the reactive collision

NOCl + NOCl → NO + NO + Cl2
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in which two NOCl molecules collide and break
apart into two NO molecules and a Cl2 molecule, 
P ≈ 0.16. For the hydrogen addition reaction

H2 + H2ClCH2 → H3C—CH3

in which a hydrogen molecule attaches directly to 
an ethene molecule to form an ethane molecule, P is
only 1.7 × 10−6, which suggests that the reaction has
very stringent orientational requirements.

Some reactions have P > 1. Such a value may seem
absurd, because it appears to suggest that the reac-
tion occurs more often than the molecules meet! An
example of a reaction of this kind is

K + Br2 → KBr + Br

in which a K atom plucks a Br atom out of a Br2
molecule; for this reaction the experimental value of
P is 4.10. In this reaction, the distance of approach at
which reaction can occur seems to be considerably
larger than the distance needed for deflection of the
path of the approaching molecules in a nonreactive
collision! To explain this surprising conclusion, it
has been proposed that the reaction proceeds by a
‘harpoon mechanism’. This brilliant name is based
on a model of the reaction that pictures the K atom
as approaching the Br2 molecules, and when the two
are close enough an electron (the harpoon) flips
across to the Br2 molecule. In place of two neutral
particles there are now two ions, and so there is a
Coulombic attraction between them: this attraction
is the line on the harpoon. Under its influence the ions
move together (the line is wound in), the reaction
takes place, and KBr and Br emerge. The harpoon 
extends the cross-section for the reactive encounter
and we would greatly underestimate the reaction rate

Self-test 10.9

What is the fraction of collisions that have sufficient 
energy for reaction if the activation energy is 50 kJ mol−1

and the temperature is (a) 25°C, (b) 500°C?
[Answer: (a) 1.7 × 10−9, (b) 4.2 × 10−4] (a)

(b)

Fig. 10.22 Energy is not the only criterion of a successful re-
active encounter, for relative orientation may also play a role.
(a) In this collision, the reactants approach in an inappropriate
relative orientation, and no reaction occurs even though their
energy is sufficient. (b) In this encounter, both the energy and
the orientation are suitable for reaction.



THE TEMPERATURE DEPENDENCE OF REACTION RATES 237

the direction of products. This crucial configuration
is called the transition state of the reaction. Although
some molecules entering the transition state might
revert to reactants, if they pass through this configu-
ration it is probable that products will emerge from
the encounter.

The reaction coordinate is an indication of the
stage reached in this process. On the left, we have
undistorted, widely separated reactants. On the right
are the products. Somewhere in the middle is the
stage of the reaction corresponding to the formation
of the activated complex. The principal goal of tran-
sition state theory is to write an expression for the
rate constant by tracking the history of the activated
complex from its formation by encounters between
the reactants to its decay into product. Here, we out-
line the steps involved in the calculation, with an eye
toward gaining insight into the molecular events that
optimize the rate constant.

The activated complex C‡ is formed from the reac-
tants A and B and it is supposed—without much
justification—that there is an equilibrium between
the concentrations of A, B, and C‡:

A + B f C‡

At the transition state, motion along the reaction 
coordinate corresponds to some complicated collec-
tive vibration-like motion of all the atoms in the
complex (and the motion of the solvent molecules if
they are involved too). However, it is possible that
not every motion along the reaction coordinate takes
the complex through the transition state and to the
product P. By taking into account the equilibrium 

  
K* =

[C ]
[A][B]

‡

if we used for the collision cross-section the value for
simple mechanical contact between K and Br2.

10.11 Transition-state theory

There is a more sophisticated theory of reaction rates
that can be applied to reactions taking place in solu-
tion as well as in the gas phase. In the transition-state
theory (also called the activated-complex theory)
of reactions, it is supposed that as two reactants 
approach, their potential energy rises and reaches a
maximum, as illustrated by the reaction profile in
Fig. 10.23. This maximum corresponds to the for-
mation of an activated complex, a cluster of atoms
that is poised to pass on to products or to collapse
back into the reactants from which it was formed
(Fig. 10.24). An activated complex is not a reaction
intermediate that can be isolated and studied like or-
dinary molecules (Box 10.1). The concept of an activ-
ated complex is applicable to reactions in solutions
as well as to the gas phase, because we can think of
the activated complex as perhaps involving any sol-
vent molecules that may be present.

Initially only the reactants A and B are present. As
the reaction event proceeds, A and B come into con-
tact, distort, and begin to exchange or discard atoms.
The potential energy rises to a maximum, and the
cluster of atoms that corresponds to the region 
close to the maximum is the activated complex. 
The potential energy falls as the atoms rearrange in 
the cluster, and reaches a value characteristic of the
products. The climax of the reaction is at the peak of
the potential energy. Here, two reactant molecules
have come to such a degree of closeness and distor-
tion that a further small distortion will send them in
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Fig. 10.23 The same type of graph as in Fig. 10.21 represents
the reaction profile that is considered in activated complex
theory. The activation energy is the potential energy of the
activated complex relative to that of the reactants.

Reactants

Activated complex

Fig. 10.24 In the activated-complex theory of chemical 
reactions, two reactants encounter each other (either in a
gas-phase collision or as a result of diffusing together
through a solvent), and if they have sufficient energy, form 
an activated complex. The activated complex is depicted
here by a relatively loose cluster of atoms that may undergo
rearrangement into products. In an actual reaction, only some
atoms—those at the actual reaction site—might be signific-
antly loosened in the complex, the bonding of the others 
remaining almost unchanged. This would be the case for CH3
groups attached to a carbon atom that was undergoing 
substitution.
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Box 10.1 Femtochemistry

Until recently, activated complexes were not observed 
directly, as they have a very fleeting existence and often
survive for only a few picoseconds. However, the develop-
ment of femtosecond pulsed lasers (1 fs = 10−15 s) and their
application to chemistry in the form of femtochemistry
has made it possible to make observations on species that
have such short lifetimes that in a number of respects they
resemble activated complexes. Further developments have
even brought attosecond investigations (1 as = 10−18 s)
within reach.

In a typical experiment, energy from a femtosecond
pulse is used to dissociate a molecule, and then a second
femtosecond pulse is fired at an interval after the pulse.
The frequency of the second pulse is set at an absorption of
one of the free fragmentation products, so its absorption is
a measure of the abundance of the dissociation product.
For example, when ICN is dissociated by the first pulse, 
the emergence of CN can be monitored by watching the
growth of the free CN absorption. In this way it has been
found that the CN signal remains zero until the fragments
have separated by about 600 pm, which takes about 205 fs.

Some sense of the progress that has been made in the
study of the intimate mechanism of chemical reactions can
be obtained by considering the decay of the ion pair Na+I−.
Absorption of energy from the femtosecond laser by the
ionic species leads to redistribution of electrons and forms
a state that corresponds to a covalently bonded NaI
molecule. The probe pulse examines the system at an 
absorption frequency either of the free Na atom or at a fre-
quency at which the atom absorbs when it is a part of the
complex. The latter frequency depends on the Na–I dis-
tance, so an absorption is obtained each time the vibration
of the complex returns it to that separation.

A typical set of results is shown in the illustration. The
bound Na absorption intensity shows up as a series of
pulses that recur in about 1 ps, showing that the complex
vibrates with about that period. The decline in intensity
shows the rate at which the complex can dissociate as 
the two atoms swing away from each other. The free Na 
absorption also grows in an oscillating manner, showing
the periodicity of the vibration of the complex, each swing
of which gives it a chance to dissociate. The precise period
of the oscillation in NaI is 1.25 ps. The complex survives for
about ten oscillations. In contrast, although the oscillation
frequency of NaBr is similar, it barely survives one oscillation.

Femtochemistry techniques have also been used to 
examine analogues of the activated complex involved in 
bimolecular reactions. As an example, consider the weakly
bound complex (also called a ‘van der Waals molecule’),
IH.. .OCO. The HI bond can be dissociated by a femtosec-
ond pulse, and the H atom is ejected towards the O atom of
the neighbouring CO2 molecule to form HOCO. Hence, the
complex is a source of a species that resembles the activ-
ated complex of the reaction

H + CO2 → [HOCO]‡ → HO + CO

The probe pulse is tuned to the OH radical, which enables
the evolution of [HOCO]‡ to be studied in real time. Femto-
second techniques have also been used to study more
complex reactions, such as the Diels–Alder reaction, nucle-
ophilic substitution reactions, and pericyclic addition and
cleavage reactions. Biological processes that are open to
study by femtochemistry include the photostimulated pro-
cesses of vision (Box 20.1) and the energy-converting pro-
cesses of photosynthesis (Box 20.2). In other experiments,
the photoejection of carbon monoxide from myoglobin and
the attachment of O2 to the exposed site have been studied
to obtain rate constants for the two processes.
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The absorption spectra of the species NaI and Na immedi-
ately after a femtosecond flash. The oscillations show how
the species incipiently form then reform their precursors
before finally forming products. (Adapted from A. H. Zewail,
Science, 242, 1645 (1988).)
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Δ‡G = −RT ln K‡ and K‡ = e−Δ‡G/RT

Therefore, by writing

Δ‡G = Δ‡H − TΔ‡S (10.24)

we conclude that (with κ = 1)

(10.25)

This expression has the form of the Arrhenius 
expression, eqn 10.19, if we identify the enthalpy of
activation, Δ‡H, with the activation energy and the
term in parentheses, which depends on the entropy
of activation, Δ‡S, with the pre-exponential factor.

The advantage of transition state theory over 
collision theory is that it is applicable to reactions in
solution as well as in the gas phase. It also gives some
clue to the calculation of the steric factor P, for the
orientation requirements are carried in the entropy
of activation. Thus, if there are strict orientation 
requirements (for example, in the approach of a 
substrate molecule to an enzyme), then the entropy
of activation will be strongly negative (representing 
a decrease in disorder when the activated complex
forms), and the pre-exponential factor will be small.
In practice, it is occasionally possible to estimate the
sign and magnitude of the entropy of activation and
hence to estimate the rate constant. The general 
importance of transition state theory is that it shows
that even a complex series of events—not only a 
collisional encounter in the gas phase—displays
Arrhenius-like behaviour, and that the concept of 
activation energy is applicable.
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between A, B, and C‡ and the rate of successful pas-
sage of C‡ through the transition state, it is possible
to derive the Eyring equation for the rate constant:

(10.23)

where k = R/NA = 1.381 × 10−23 J K−1 is Boltzmann’s
constant and h = 6.626 × 10−34 J s is Planck’s con-
stant (which we meet in Chapter 12). The factor κ
is the transmission coeGcient, which takes into 
account the fact that the activated complex does not
always pass through to the transition state. In the 
absence of information to the contrary, κ is assumed
to be about 1.

A note on good practice Be very careful to distinguish the
Boltzmann constant k from the symbol for a rate constant, kr.
In some expositions, you will see Boltzmann’s constant 
denoted kB to emphasize its significance (and sometimes,
confusingly, the rate constant denoted k).

The term kT/h in eqn 10.23 (which has the 
dimensions of a frequency, as kT is an energy, and 
division by Planck’s constant turns an energy into a
frequency; with kT in joules, kT/h has the units s−1)
arises from consideration of the motions of atoms
that lead to the decay of C‡ into products, as specific
bonds are broken and formed. It follows that one
way in which an increase in temperature enhances
the rate is by causing more vigorous motion in the 
activated complex, facilitating the rearrangement of
atoms and the formation of new bonds.

Calculation of the equilibrium constant K‡ is very
diAcult, except in certain simple model cases. For
example, if we suppose that the reactants are two
structureless atoms and that the activated complex 
is a diatomic molecule of bond length R, then kr
turns out to be the same as for collision theory pro-
vided we interpret the collision cross-section in eqn
10.23 as πR2.

It is more useful to express the Eyring equation in
terms of thermodynamic parameters and to discuss
reactions in terms of their empirical values. Thus, we
saw in Section 7.3 that an equilibrium constant may
be expressed in terms of the standard reaction Gibbs
energy (−RT ln K = ΔrG ). In this context, the Gibbs
energy is called the activation Gibbs energy, and
written Δ‡G. It follows that

  
k

kT
h

Kr
‡= × ×κ

Self-test 10.10

In a particular reaction in water, it is proposed that two
ions of opposite charge come together to form an elec-
trically neutral activated complex. Is the contribution of
the solvent to the entropy of activation likely to be posi-
tive or negative?

[Answer: positive, as H2O is less organized 
around the neutral species]
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Checklist of key ideas

You should now be familiar with the following concepts.

1 The rates of chemical reactions are measured 
by using techniques that monitor the concentra-
tions of species present in the reaction mixture
(Table 10.1).

2 Spectrophotometry is the measurement of the
absorption of light by a material.

3 The Beer–Lambert law relates the absorbance of 
a sample to the concentration of an absorbing
species.

4 Techniques include real-time and quenching pro-
cedures, flow and stopped-flow techniques, and
flash photolysis.

5 The instantaneous rate of a reaction is the slope of
the tangent to the graph of concentration against
time (expressed as a positive quantity).

6 A rate law is an expression for the reaction rate in
terms of the concentrations of the species that
occur in the overall chemical reaction.

7 For a rate law of the form V = kr[A]a[B]b. . ., the
order with respect to A is a and the overall order is
a + b + . . . .

8 An integrated rate law is an expression for the
rate of a reaction as a function of time.

9 The half-life of a first-order reaction is the time it
takes for the concentration of a species to fall to
half its initial value.

10 The temperature dependence of the rate constant
of a reaction typically follows the Arrhenius law.

11 The larger the activation energy, the more sensi-
tive the rate constant is to the temperature.

12 In collision theory, it is supposed that the rate is
proportional to the collision frequency, a steric
factor, and the fraction of collision that occur with
at least the kinetic energy Ea along their lines of
centres.

13 In transition-state theory, it is supposed that 
an activated complex is in equilibrium with the 
reactants, and that the rate at which that complex
forms products depends on the rate at which it
passes through a transition state. The result is the
Eyring equation.

The following table summarizes the equations developed in this chapter.

Property

Beer–Lambert law

Integrated rate law for a first-order 
reaction, A → products

Half-life of a first-order reaction

Integrated rate law for a second-order 
reaction, A → products

Arrhenius law

Eyring equation

Equation

A = log(I0/I ) = e[J]L

ln[A] = ln[A]0 − krt
[A] = [A]0e

−krt

t1/2 = (ln 2)/kr

ln kr = ln A − Ea/RT

kr = k(kT/h)K ‡ = (kT/h)eD‡S/Re−D‡H/RT

1 1
[A] [A]0

r= + k t

Comment

Uniform concentration

Empirical

Pre-equilibrium between reactants
and activated complex

Table of key equations
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Questions and exercises

Discussion questions

10.1 Consult literature sources and list the observed ranges
of timescales during which the following processes occur:
proton transfer reactions, electron transfer events between
complex ions in solution, harpoon reactions, and collisions 
in liquids.

10.2 What information can be extracted from the deter-
mination of the rate of a chemical reaction under different
conditions?

10.3 Describe the main features, including advantages and
disadvantages, of the following experimental methods for
determining the rate law of a reaction: the isolation method,
the method of initial rates, and fitting data to integrated rate
law expressions.

10.4 Distinguish between zeroth-order, first-order, second-
order, and pseudofirst-order reactions; under what conditions
can the apparent order of a reaction change?

10.5 Define the terms in and limit the generality of the 
expression ln k r = ln A − Ea /RT; why might there be deviations
from the Arrhenius expression?

10.6 State, explain, and justify the quasisteady-state 
approximation.

10.7 Describe the formulation of the Eyring equation; in what
sense is it superior to the collision theory of reaction rates?

Exercises

10.1 The molar absorption coefficient of cytochrome P450,
an enzyme involved in the breakdown of harmful substances
in the liver and small intestine, at 522 nm is 291 dm3 mol−1

cm−1. When light of that wavelength passes through a cell of
length 6.5 mm containing a solution of the solute, 39.8 per
cent of the light was absorbed. What is the molar concentra-
tion of the solute?

10.2 The rate of formation of C in the reaction 2 A + B → 4 C
+ 3 D is 3.2 mol dm−3 s−1. State the rates of formation and
consumption of A, B, and D. 

10.3 Equation 10.5c defines the unique rate of a reaction.
Write expressions for v for each of the species in the reaction
2 A + B → 4 C + 3 D. What is the value of v given the infor-
mation in the preceding exercise?

10.4 The rate law for the reaction in Exercise 10.2 was re-
ported as v = kr[A][B][C] with the molar concentrations in
moles per cubic decimetre and the time in seconds. What are
the units of kr?

10.5 What are the units of the rate constants in the rate law
v = kr1[A][B]/(1 + kr2[B]) when the concentrations are in moles
per cubic decimetre?

10.6 What are the units of the rate constants in the rate law
v = kr1pBp A

3/2/(pA + kr2pB) when the partial pressures are in kilo-
pascals and the rate is expressed in kilopascals per second?

10.7 The rate constant for a gas-phase reaction was reported
as 6.2 × 10−14 cm3 molecule−1 s−1 at 298 K. What would its
value be in cubic decimetres per mole per second?

10.8 The following rate law was established in a series of 
experiments:

Identify the conditions under which the reaction can be 
classified by its order.

10.9 The following initial-rate data were obtained on the rate
of binding of glucose with the enzyme hexokinase (obtained
from yeast) present at a concentration of 1.34 mmol dm−3.
What is (a) the order of reaction with respect to glucose, (b)
the rate constant?

[C6H12O6]/(mmol dm−3) 1.00 1.54 3.12 4.02

v0/(mol dm−3 s−1) 5.0 7.6 15.5 20.0

10.10 The following data were obtained on the initial rates of
a reaction of a d-metal complex in aqueous solution. What is
(a) the order of reaction with respect to the complex and the
reactant Y, (b) the rate constant? For the experiments (a), [Y] =
2.7 mmol dm−3 and for experiments (b) [Y] = 6.1 mmol dm−3.

[complex]/(mmol dm−3) 8.01 9.22 12.11

v/(mol dm−3 s−1) (a) 125 144 190

(b) 640 730 960

10.11 The rate constant for the first-order decomposition 
of N2O5 in the reaction 2 N2O5(g) → 4 NO2(g) + O2(g) with 
r = kr[N2O5] is kr = 3.38 × 10−5 s−1 at 25°C. What is the half-life
of N2O5? What will be the total pressure, initially 78.4 kPa for
the pure N2O5 vapour, (a) 5.0 s, (b) 5.0 min after initiation of
the reaction?

10.12 In a study of the alcohol dehydrogenase-catalysed 
oxidation of ethanol, the molar concentration of ethanol 
decreased in a first-order reaction from 220 mmol dm−3 to
56.0 mmol dm−3 in 1.22 × 104 s. What is the rate constant of
the reaction? 

10.13 The elimination of carbon dioxide from pyruvate ions
by a decarboxylase enzyme was monitored by measuring the
partial pressure of the gas as it was formed. In one experiment,
the partial pressure increased from zero to 100 Pa in 422 s in
a first-order reaction. What is the rate constant of the reaction? 

10.14 In the study of a second-order gas phase reaction, it
was found that the molar concentration of a reactant fell from
220 mmol mol−1 to 56.0 mmol mol−1 in 1.22 × 104 s. What is
the rate constant of the reaction? 
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10.15 Carbonic anhydrase is a zinc-based enzyme that 
catalyses the conversion of carbon dioxide to carbonic acid.
In an experiment to study its effect, it was found that the
molar concentration of carbon dioxide in solution decreased
from 220 mmol dm−3 to 56.0 mmol dm−3 in 1.22 × 104 s.
What is the rate constant of the reaction? 

10.16 The formation of NOCl from NO in the presence of a
large excess of chlorine is pseudosecond-order in NO. In 
an experiment to study the reaction, the partial pressure of
NOCl increased from zero to 100 Pa in 522 s. What is the rate
constant of the reaction?

10.17 A number of reactions that take place on the surfaces
of catalysts are zero-order in the reactant. One example is 
the decomposition of ammonia on hot tungsten. In one 
experiment, the partial pressure of ammonia decreased from
21 kPa to 10 kPa in 770 s. (a) What is the rate constant for 
the zero-order reaction? (b) How long will it take for all the
ammonia to disappear?

10.18 The following kinetic data (v0 is the initial rate) were 
obtained for the reaction 2 ICl(g) + H2(g) → I2(g) + 2 HCl(g): 

Experiment [ICl]0/ [H2]0/ V0/(mol
(mmol dm−3) (mmol dm−3) dm−3 s−1)

1 1.5 1.5 3.7 × 10−7

2 3.0 1.5 7.4 × 10−7

3 3.0 4.5 22 × 10−7

4 4.7 2.7 ?

(a) Write the rate law for the reaction. (b) From the data, 
determine the value of the rate constant. (c) Use the data to
predict the reaction rate for Experiment 4.

10.19 The variation in the partial pressure p of mercury
dimethyl with time was followed at 800 K, with the results
given below. Confirm that the decomposition Hg(CH3)2(g) →
Hg(g) + 2 CH3(g) is first-order in Hg(CH3)2 and find the rate
constant at this temperature.

t /s 0 1.0 2.0 3.0 4.0

p/kPa 15.1 11.8 9.21 7.2 5.6

10.20 The following data were collected for the reaction 
2 HI(g) → H2(g) + I2(g) at 580 K:

t /s 0 1000 2000 3000 4000

[HI]/(mol dm−3) 1.00 0.112 0.061 0.041 0.031

(a) Plot the data in an appropriate fashion to determine the
order of the reaction. (b) From the graph, determine the rate
constant.

10.21 The following data were collected for the reaction
H2(g) + I2(g) → 2 HI(g) at 780 K:

t /s 0 1 2 3 4

[HI]/(mol dm−3) 1 0.43 0.27 0.2 0.16

(a) Plot the data in an appropriate fashion to determine the
order of the reaction. (b) From the graph, determine the rate
constant.

10.22 Laser flash photolysis is often used to measure the
binding rate of CO to haem proteins, such as myoglobin (Mb),
because CO dissociates from the bound state relatively easily
upon absorption of energy from an intense and narrow pulse
of light. The reaction is usually run under pseudofirst-order
conditions. For a reaction in which [Mb]0 = 10 mmol dm−3,
[CO] = 400 mmol dm−3, and the rate constant is 5.8 × 105 dm3

mol−1 s−1, plot a curve of [Mb] against time. The observed 
reaction is Mb + CO → MbCO.

10.23 The integrated rate law of a second-order reaction of
the form 3 A → B is [A] = [A]0 /(1 + krt [A]0). How does the con-
centration of B change with time?

10.24 The composition of a liquid-phase reaction 2 A → B
was followed spectrophotometrically with the following 
results:

t /min 0 10 20 30 40 ∞

[B]/(mol dm−3) 0 0.372 0.426 0.448 0.460 0.500

Determine the order of the reaction and its rate constant
(written in the form of eqn 10.5c).

10.25 Example 10.2 provided data on a first-order gas-phase
reaction. How does the total pressure of the sample change
with time?

10.26 The half-life of pyruvic acid in the presence of an
aminotransferase enzyme (which converts it to alanine) was
found to be 221 s. How long will it take for the concentration
of pyruvic acid to fall to of its initial value in this first-order
reaction?

10.27 The half-life for the (first-order) radioactive decay of
14C is 5730 a (1 a is the SI unit 1 annum, for 1 year; the nuclide
emits b particles, high-energy electrons, with an energy of
0.16 MeV). An archaeological sample contained wood that
had only 69 per cent of the 14C found in living trees. What is
its age? 

10.28 One of the hazards of nuclear explosions is the gen-
eration of 90Sr and its subsequent incorporation in place of
calcium in bones. This nuclide emits b particles of energy
0.55 MeV, and has a half-life of 28.1 a (1 a is the SI unit
annum, for 1 year). Suppose 1.00 mg was absorbed by a
newly born child. How much will remain after (a) 19 a, (b) 75
a, if none is lost metabolically? 

10.29 The half-life of a first-order reaction was found to be
439 s; what is the time constant for the reaction?

10.30 The second-order rate constant for the reaction
CH3COOC2H5(aq) + OH−(aq) → CH3CO2

−(aq) + CH3CH2OH(aq)
is 0.11 dm3 mol−1 s−1. What is the concentration of ester after
(a) 15 s, (b) 15 min, when ethyl acetate is added to sodium 
hydroxide so that the initial concentrations are [NaOH] =
0.055 mol dm−3 and [CH3COOC2H5] = 0.150 mol dm−3?

1
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before an electron can flip across from one to the other (as in
the harpoon mechanism). Estimate the reaction cross-section.

10.44 Estimate the activation Gibbs energy for the decom-
position of urea in the reaction CO(NH2)(aq) + 2 H2O(l) →
2 NH4

+(aq) + CO3
2−(aq) for which the pseudofirst-order rate

constant is 1.2 × 10−7 s−1 at 60°C and 4.6 × 10−7 s−1 at 70°C.

10.45 Calculate the entropy of activation of the reaction in
Exercise 10.44 at the two temperatures. 

Projects

The symbol ‡ indicates that calculus is required.

10.46‡ Here we explore integrated rate laws in more detail.
(a) Establish the integrated form of a third-order rate law of
the form V = kr[A]3. What would be appropriate to plot to con-
firm that a reaction is third-order? (b) Establish the integrated
form of a second-order rate law of the form V = kr[A][B] for a
reaction A + B → products (i) with different initial concentra-
tions of A and B, (ii) with the same concentrations of the two
reactants. Hints: Note that when the concentration of A falls
to [A]0 − x, the concentration of B falls to [B]0 − x. Use these
relations to show that the rate law may be written as

To make progress with integration of the rate law, use the form:

�
10.47 Prebiotic reactions are reactions that might have 
occurred under the conditions prevalent on the Earth before
the first living creatures emerged and that can lead to 
analogues of molecules necessary for life as we now know 
it. To qualify, a reaction must proceed with a favourable rate
and have a reasonable value for the equilibrium constant. 
An example of a prebiotic reaction is the formation of 5-
hydroxymethyluracil (HMU) from uracil and formaldehyde
(HCHO). Amino acid analogues can be formed from HMU
under prebiotic conditions by reaction with various nucle-
ophiles, such as H2S, HCN, indole, imidazole, etc. For the
synthesis of HMU at pH = 7, the temperature dependence of
the rate constant is given by

log kr /(dm3 mol−1 s−1) = 11.75 − 5488/(T /K)

and the temperature dependence of the equilibrium constant
is given by

log K = −1.36 + 1794/(T/K)

(a) Calculate the rate constants and equilibrium constants
over a range of temperatures corresponding to possible 
prebiotic conditions, such as 0–50°C, and plot them against
temperature. (b) Calculate the activation energy and the stand-
ard reaction Gibbs energy and enthalpy at 25°C. (c) Prebiotic
conditions are not likely to be standard conditions. Speculate
about how the actual values of the reaction Gibbs energy 
and enthalpy might differ from the standard values. Do you 
expect that the reaction would still be favourable?
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10.31 A reaction 2 A → P has a second-order rate law with 
kr = 1.44 dm3 mol−1 s−1. Calculate the time required for 
the concentration of A to change from 0.460 mol dm−3 to
0.046 mol dm−3.

10.32 The Arrhenius parameters for the reaction C4H8(g) →
2 C2H4(g), where C4H8 is cyclo-butane are log(A /s−1) = 15.6
and Ea = 261 kJ mol−1. What is the half-life of cyclo-butane
at (a) 20°C, (b) 500°C?

10.33 A rate constant is 2.78 × 10−4 dm3 mol−1 s−1 at 19°C
and 3.38 × 10−3 dm3 mol−1 s−1 at 37°C. Evaluate the Arrhenius
parameters of the reaction. 

10.34 The activation energy for the decomposition of benzene
diazonium chloride is 99.1 kJ mol−1. At what temperature will
the rate be 10 per cent greater than its rate at 25°C? 

10.35 Which reaction responds more strongly to changes 
of temperature, one with an activation energy of 52 kJ mol−1

or one with an activation energy of 25 kJ mol−1?

10.36 The rate constant of a reaction increases by a factor of
1.41 when the temperature is increased from 20°C to 27°C.
What is the activation energy of the reaction? 

10.37 Make an appropriate Arrhenius plot of the following
data for the conversion of cyclo-propane to propene and 
calculate the activation energy for the reaction.

T/K 750 800 850 900

kr /s
−1 1.8 × 10− 4 2.7 × 10−3 3.0 × 10−2 0.26

10.38 Food rots about 40 times more rapidly at 25°C than
when it is stored at 4°C. Estimate the overall activation 
energy for the processes responsible for its decomposition.

10.39 Suppose that the rate constant of a reaction decreases
by a factor of 1.23 when the temperature is increased from
20°C to 27°C. How should you report the activation energy of
the reaction? 

10.40 The enzyme urease catalyses the reaction in which
urea is hydrolysed to ammonia and carbon dioxide. The half-
life of urea in the pseudofirst-order reaction for a certain
amount of urease doubles when the temperature is lowered
from 20°C to 10°C and the Michaelis constant is largely 
unchanged. What is the activation energy of the reaction?

10.41 What proportion of the collisions between NO2 mole-
cules have enough energy to result in reaction when the 
temperature is (a) 20°C, (b) 200°C, given that the activa-
tion energy for the reaction 2 NO2(g) → 2 NO(g) + O2(g) is 
111 kJ mol−1?

10.42 Use collision theory to estimate the pre-exponential
factor for the reaction in the preceding exercise. The experi-
mental value is 2 × 109 dm3 mol−1 s−1. Suggest a reason for
any discrepancy.

10.43 Suppose an electronegative reactant needs to come
to within 500 pm of a reactant with low ionization energy 
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Even quite simple rate laws can give rise to com-
plicated behaviour. The fact that the heart maintains
a steady pulse throughout a lifetime, but may break
into fibrillation during a heart attack, is one sign of
that complexity. On a less personal scale, reaction 
intermediates come and go, and all reactions approach
equilibrium. However, the complexity of the behavi-
our of reaction rates means that the study of reaction
rates can give deep insight into the way that reactions
actually take place. As remarked in Chapter 10, 
a rate law is a window on to the mechanism, the 
sequence of elementary molecular events that lead
from the reactants to the products, of the reaction it
summarizes.

Reaction schemes

So far, we have considered very simple rate laws, in
which reactants are consumed or products formed.
However, all reactions actually proceed towards a
state of equilibrium in which the reverse reaction 
becomes increasingly important. Moreover, many
reactions proceed to products through a series of 
intermediates. In industry, one of the intermediates
may be of crucial importance and the ultimate prod-
ucts may represent waste.

11.1 The approach to equilibrium

All forward reactions are accompanied by their 
reverse reactions. At the start of a reaction, when little
or no product is present, the rate of the reverse reac-
tion is negligible. However, as the concentration of
products increases, the rate at which they decompose
into reactants becomes greater. At equilibrium, the
reverse rate matches the forward rate and the reac-
tants and products are present in abundances given
by the equilibrium constant for the reaction.
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We can analyse this behaviour by thinking of a
very simple reaction of the form

Forward: A → B Rate of formation of B = kr[A]

Reverse: B → A Rate of decomposition of 
B = kr′[B]

A brief comment Throughout this chapter we write kr for
the rate constant of a general forward reaction and k r′ for the
rate constant of the corresponding reverse reaction. When
there are several steps a, b, . . . in a mechanism, we write the
forward and reverse rate constants ka, kb, . . . and k ′a, k ′b, . . .,
respectively.

For instance, we could envisage this scheme as the 
interconversion of coiled (A) and uncoiled (B) DNA
molecules. The net rate of formation of B, the differ-
ence of its rates of formation and decomposition, is

Net rate of formation of B = kr[A] − kr′[B]

When the reaction has reached equilibrium the
concentrations of A and B are [A]eq and [B]eq and
there is no net formation of either substance. It 
follows that

kr[A]eq = kr′[B]eq

and therefore that the equilibrium constant for the
reaction is related to the rate constants by

(11.1)

If the forward rate constant is much larger than the
reverse rate constant, then K >> 1. If the opposite is
true, then K << 1. This result is a crucial connection
between the kinetics of a reaction and its equilibrium
properties. It is also very useful in practice, for we
may be able to measure the equilibrium constant and
one of the rate constants, and can then calculate the
missing rate constant from eqn 11.1. Alternatively,
we can use the relation to calculate the equilibrium
constant from kinetic measurements. This relation is
valid even if the forward and reverse reactions have
different orders. In that case we need to be careful
with units. For instance, if the reaction A + B → C is
second-order forward and first-order in reverse, the
condition for equilibrium is kr[A]eq[B]eq = kr′[C]eq and
the dimensionless equilibrium constant in full dress is

The presence of c = 1 mol dm−3 in the last term 
ensures that the ratio of a second-order to first-order
rate constants, with their different units, is turned
into a dimensionless quantity.
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Fig. 11.1 The reaction profile for an exothermic reaction. The
activation energy is greater for the reverse reaction than for the
forward reaction, so the rate of the forward reaction increases
less sharply with temperature. As a result, the equilibrium
constant shifts in favour of the products as the temperature
is raised.

A brief illustration The rates of the forward and reverse
reactions for the dimerization of an antibacterial agent
were found to be 8.1 × 108 dm3 mol−1 s−1 (second-order)
and 2.0 × 106 s−1 (first-order), respectively. The equilibrium
constant for the dimerization is therefore

Equation 11.1 also gives us insight into the temper-
ature dependence of equilibrium constants. First, we
suppose that both the forward and reverse reactions
show Arrhenius behaviour (Section 10.9). As we see
from Fig. 11.1, for an exothermic reaction the activa-
tion energy of the forward reaction is smaller than that
of the reverse reaction. Therefore, the forward rate
constant increases less sharply with temperature than
the reverse reaction does. Consequently, when we 
increase the temperature of a system at equilibrium, k′r
increases more steeply than kr does, and the ratio kr /k′r,
and therefore K, decreases. This is exactly the conclu-
sion we drew from the van ’t Hoff equation (eqn 7.15),
which was based on thermodynamic arguments.

Equation 11.1 tells us the ratio of concentrations
after a long time has passed and the reaction has
reached equilibrium. To find the concentrations at 
an intermediate stage, we need the integrated rate
equation. If no B is present initially, we show in
Derivation 11.1 that

(11.2a)

(11.2b)

where [A]0 is the initial concentration of A.
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As we see in Fig. 11.2, the concentrations start
from their initial values and move gradually towards
their final equilibrium values as t approaches infinity.
We find the latter by setting t equal to infinity in eqn
11.2 and using e−x = 0 at x = ∞:

(11.3)
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As may be verified, the ratio of these two expressions
is the equilibrium constant in eqn 11.1 (that is, [B]eq /
[A]eq = kr /kr′).

11.2 Relaxation methods

The term relaxation denotes the return of a system 
to equilibrium. It is used in chemical kinetics to indi-
cate that an externally applied influence has shifted
the equilibrium position of a reaction, normally
abruptly, and that the reaction is adjusting to 
the equilibrium composition characteristic of the
new conditions (Fig. 11.3). We shall consider the 
response of reaction rates to a temperature jump, 
a sudden change in temperature. We know from
Section 7.8 that the equilibrium composition of a 
reaction depends on the temperature (provided ΔrH
is nonzero), so a shift in temperature acts as a per-
turbation on the system. One way of achieving a 
temperature jump is to discharge a capacitor through
a sample made conducting by the addition of ions,
but laser or microwave discharges can also be used.
Temperature jumps of between 5 and 10 K can be
achieved in about 1 μs with electrical discharges. The
high energy output of pulsed lasers (Section 20.8) is
suAcient to generate temperature jumps of between
10 and 30 K within nanoseconds in aqueous samples,
making the technique suitable for the study of the
events involved in protein folding (Box 11.1).
Equilibria for which there is a change in volume 
between reactants and products are also sensitive to
pressure, and pressure-jump techniques may then
also be used.

We show in Derivation 11.2 that when a sudden
temperature increase is applied to a simple A f B

Derivation 11.1

The approach to equilibrium

The concentration of A is reduced by the forward reaction
(at a rate kr[A]) but it is increased by the reverse reaction
(at a rate k r′[B]). Therefore, the net rate of change is

If the initial concentration of A is [A]0, and no B is present
initially, then at all times [A] + [B] = [A]0. Therefore, by 
replacing [B] with [A]0 − [A], we obtain

= −kr[A] + kr′([A]0 − [A]) = −(kr + kr′)[A] + kr′[A]0

The solution of this differential equation is eqn 11.2a. 
To verify the result, differentiate eqn 11.2a by using the
general relation

To obtain eqn 11.2b, we use eqn 11.2a and [B] = [A]0 − [A]
again.
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Box 11.1 Kinetics of protein unfolding

Proteins are polymers that attain well-defined three- 
dimensional structures both in solution and in biological
cells. They are polypeptides formed from different amino
acids strung together by the peptide link, —CONH—.
Hydrogen bonds between amino acids of a polypeptide
give rise to stable helical or sheet structures, which may
collapse into a random coil when certain conditions are
changed. For example, the synthetic polypeptide poly-
g-benzyl-glutamate is helical in a nonhydrogen-bonding 
solvent, but in a hydrogen-bonding solvent it forms a 
random coil. The unwinding, or denaturation, of a helix into
a random coil is a cooperative transition, in which the poly-
mer becomes increasingly more susceptible to structural
changes once the process has begun. Denaturation can be
brought about by changes in temperature or pH, and by 
reaction with certain compounds, such as urea or guani-
dinium hydrochloride, known as denaturants. Here we 
examine the kinetics of the helix–coil transition, focusing
primarily on experimental strategies and some recent 
results.

Earlier work on folding and unfolding of small polypep-
tides and large proteins relied primarily on rapid mixing and
stopped-flow techniques. In a typical stopped-flow experi-
ment, a sample of the protein with a high concentration of
a chemical denaturant is mixed with a solution containing a
much lower concentration of the same denaturant. Upon
entering the mixing chamber, the denaturant is diluted and
the protein refolds. Unfolding is observed by mixing a sample
of folded protein with a solution containing a high concen-
tration of denaturant. These experiments are ideal for sorting
out events in the millisecond timescale, such as the forma-
tion of contacts between helical segments in a large protein.
However, the available data also indicate that, in a number
of proteins, a significant portion of the folding process 
occurs in less than 1 ms, a time range not accessible by the
stopped-flow technique. More recent temperature-jump
and flash-photolysis experiments have uncovered faster
events. For example, at room temperature the formation of
a loop between helical or sheet segments may be as fast as
1 ms and the formation of tightly packed cores with signifi-
cant tertiary structure occurs in 10–100 ms. Among the
fastest events are the formation of helices and sheets from
fully unfolded peptide chains and we examine how the
laser-induced temperature-jump technique has been used
in the study of the helix–coil transition.

The laser-induced temperature-jump technique takes 
advantage of the fact that proteins unfold, or ‘melt’, at high
temperatures and each protein has a characteristic melting
temperature. Proteins also lose their native structures at
very low temperatures, a process known as cold denatura-
tion, and refold when the temperature in increased but kept
significantly below the melting temperature. Hence, a tem-

perature-jump experiment can be configured to monitor 
either folding or unfolding of a polypeptide, depending on
the initial and final temperatures of the sample. The chal-
lenge of using melting or cold denaturation as the basis of
kinetic measurements lies in increasing the temperature of
the sample very quickly so fast relaxation processes can 
be monitored. A number of clever strategies have been 
employed. In one, a pulsed laser excites dissolved dye
molecules that discard the extra energy largely by heat
transfer to the solution. Another variation makes use of 
direct excitation of H2O or D2O with a pulsed infrared laser.
The latter strategy leads to temperature jumps in a small 
irradiated volume of about 20 K in less than 100 ps.
Relaxation of the sample can then be probed by a variety of
spectroscopic techniques.

Much of the kinetic work on the helix–coil transition has
been conducted in small synthetic polypeptides rich in 
alanine, an aminoacid that is known to stabilize helical struc-
tures. Both experimental and theoretical results suggest
that the mechanism of unfolding consists of at least two
steps: a very fast step in which aminoacids at either end of
a helical segment undergo transitions to coil regions and 
a slower rate-determining step that corresponds to the 
cooperative melting of the rest of the chain and loss of 
helical content. Using h and c to denote an amino acid
residue belonging to a helical and coil region, respectively,
the mechanism may be summarized as follows:

hhhh. . . → chhh. . . very fast

chhh. . . → cccc. . . rate-determining step

The rate-determining step is thought to account for the 
relaxation time of 160 ns measured with a laser-induced
temperature jump between 282.5 K and 300.6 K in an 
alanine-rich polypeptide containing 21 aminoacids. It is
thought that the limitation on the rate of the helix–coil 
transition in this peptide arises from an activation energy
barrier of 1.7 kJ mol−1 associated with initial events of the
form.. . hhhh. . . → . . . hhch. . . in the middle of the chain.
Therefore, initiation is not only thermodynamically un-
favourable but also kinetically slow. Theoretical models also
suggest that a hhhh. . . → chhh. . . transition at either end of
a helical segment has a significantly lower activation energy
on account of the converting amino acid not being flanked
by h regions.

The time constant for the helix–coil transition has also
been measured in proteins. In apomyoglobin (myoglobin
lacking the haem cofactor), the unfolding of the helices 
appears to have a relaxation time of about 50 ns, even shorter
than in synthetic peptides. It is difficult to interpret these 
results because we do not yet know how the amino acid 
sequence or interactions between helices in a folded protein
affect the helix–coil relaxation time.



Now integrate both sides. When t = 0, x = x0, its initial
value, so the integrated equation has the form

The integrated equation is therefore

When antilogarithms are taken of both sides, the result
is eqn 11.4.
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equilibrium that is first-order in each direction, the
composition relaxes exponentially to the new equi-
librium composition:

x = x0e
−t/τ = kr + kr′ (11.4)

where x is the departure from equilibrium at the new
temperature, x0 is the departure from equilibrium
immediately after the temperature jump, and τ is the
relaxation time.

 

1
τ

Equation 11.4 shows that the concentrations of A
and B relax into the new equilibrium at a rate deter-
mined by the sum of the two new rate constants.
Because the equilibrium constant under the new 
conditions is K ≈ kr/kr′, its value may be combined
with the relaxation time measurement to find the 
individual kr and kr′.

11.3 Consecutive reactions

It is commonly the case that a reactant produces 
an intermediate, which subsequently decays into a
product. Radioactive decay is often of this type, with
one nuclide decaying into another, and then that 
nuclide decaying into a third:

The times are half-lives. Biochemical processes are
often elaborate versions of this simple model. For 
instance, the restriction enzyme EcoRI catalyses the
cleavage of DNA and brings about the sequence of
reactions

Supercoiled DNA → open-circle DNA → linear DNA

To illustrate the kinds of considerations involved,
we suppose that the reaction takes place in two steps.
First, the intermediate I (the open-circle DNA, for 
instance) is formed from the reactant A (the super-
coiled DNA) in a first-order reaction. Then I decays
in a first-order reaction to form the product P (the
linear DNA):

A → I Rate of formation of I = ka[A]

I → P Rate of formation of P = kb[I]

For simplicity, we are ignoring the reverse reactions,
which is valid if they are slow. The first of these rate
laws implies that the decay of A is first-order, and
therefore that

239 2 35 239 2 35 239U Np Pumin d. .⎯ →⎯⎯⎯ ⎯ →⎯⎯⎯

Derivation 11.2

Relaxation to equilibrium

We need to keep track of the fact that rate constants 
depend on temperature. At the initial temperature, when
the rate constants are kinitial and k ′initial, the net rate of
change of [A] is

= −kr,initial[A] + k ′r,initial[B]

At equilibrium under these conditions, we write the 
concentrations as [A]eq,initial and [B]eq,initial and because
d[A]/dt is then zero,

kr,initial[A]eq,initial = k ′r,initial[B]eq,initial

When the temperature is increased suddenly, the rate
constants change to k r and k r′, but the concentrations 
of A and B remain for an instant at their old equilibrium
values. As the system is no longer at equilibrium, it read-
justs to the new equilibrium concentrations, which are
now given by

kr[A]eq = k r′ [B]eq

and it does so at a rate that depends on the new rate
constants.

We write the deviation of [A] from its new equilibrium
value as x, so [A] = x + [A]eq and [B] = [B]eq − x. The con-
centration of A then changes as follows:

From [A] = x + [A]eq it follows that d[A]/dt = dx/dt and
therefore that

.
To solve this equation we divide both sides by x and 
multiply by dt:
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[A] = [A]0e
−kat (11.5a)

The net rate of formation of I is the difference 
between its rate of formation and its rate of con-
sumption, so we can write

Net rate of formation of I = ka[A] − kb[I]

with [A] given by eqn 11.5a. This equation is more
diAcult to solve, but it is a standard form with the
following solution:

(11.5b)

Finally, because [A] + [I] + [P] = [A]0 at all stages of
the reaction, the concentration of P is

(11.5c)

These solutions are illustrated in Fig. 11.4. We see
that the intermediate grows in concentration ini-
tially, then decays as A is exhausted. Meanwhile, the
concentration of P rises smoothly to its final value.
As we see in Derivation 11.3, the intermediate
reaches its maximum concentration at

(11.6)

This is the optimum time for a manufacturer trying
to make the intermediate in a batch process to extract
it. For instance, if ka = 0.120 h−1 and kb = 0.012 h−1,
then the intermediate is at a maximum at t = 21 h
after the start of the process.
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Reaction mechanisms

We have seen how two simple types of reaction—
approach to equilibrium and consecutive reactions
—result in a characteristic dependence of the con-
centration on the time. We can suspect that other
variations with time will act as the signatures of
other reaction mechanisms.

11.4 Elementary reactions

Many reactions occur in a series of steps called 
elementary reactions, each of which involves only
one or two molecules. We shall denote an elementary
reaction by writing its chemical equation without
displaying the physical state of the species, as in

H + Br2 → HBr + Br

We have already used this convention without com-
ment in some of the reactions discussed in Chapter
10. This equation signifies that a specific H atom 
attacks a specific Br2 molecule to produce a molecule
of HBr and a Br atom. Ordinary chemical equations
summarize the overall stoichiometry of the reaction
and do not imply any specific mechanism.

The molecularity of an elementary reaction is the
number of molecules coming together to react. In a
unimolecular reaction a single molecule shakes itself
apart or its atoms into a new arrangement (Fig. 11.5).
An example is the isomerization of cyclopropane
into propene. The radioactive decay of nuclei (for 
example, the emission of a β particle from the nucleus
of a tritium atom, which is used in mechanistic studies
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Fig. 11.4 The concentrations of the substances in-
volved in a consecutive reaction of the form A → I → P,

where I is an intermediate and P a product. We have used 
ka = 5kb. Note how, at each time the sum of the three con-
centrations is a constant.

Derivation 11.3

The time of maximum concentration

To find the time corresponding to the maximum concen-
tration of intermediate, we differentiate eqn 11.5b and
look for the time at which d[I]/dt = 0. First, because
deat/dt = aeat, we obtain

This equation is satisfied if

kae
−kat = kbe

−kbt

Because exey = ex+y, this relation becomes

Taking logarithms of both sides leads to eqn 11.6.
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to follow the course of particular groups of atoms) is
‘unimolecular’ in the sense that a single nucleus shakes
itself apart. In a bimolecular reaction, two molecules
collide and exchange energy, atoms, or groups of
atoms, or undergo some other kind of change, as in
the reaction between H and F2 or between H and Br2
(Fig. 11.6).

It is important to distinguish molecularity from
order: the order of a reaction is an empirical quantity,
and is obtained by inspection of the experimentally
determined rate law; the molecularity of a reaction
refers to an individual elementary reaction that has
been postulated as a step in a proposed mechanism.
Many substitution reactions in organic chemistry
(for instance, SN2 nucleophilic substitutions) are 
bimolecular and involve an activated complex that is
formed from two reactant species. Enzyme-catalysed
reactions (Section 11.13) can be regarded, to a good
approximation, as bimolecular in the sense that they
depend on the encounter of a substrate molecule and
an enzyme molecule.

We can write down the rate law of an elementary
reaction from its chemical equation. First, consider a
unimolecular reaction. In a given interval, ten times
as many A molecules decay when there are initially

1000 A molecules as when there are only 100 A
molecules present. Therefore, the rate of decomposi-
tion of A is proportional to its concentration and 
we can conclude that a unimolecular reaction is 
first-order:

A → products k = kr[A] (11.7)

The rate of a bimolecular reaction is proportional to
the rate at which the reactants meet, which in turn is
proportional to both their concentrations. Therefore,
the rate of the reaction is proportional to the pro-
duct of the two concentrations and an elementary 
bimolecular reaction is second-order overall:

A + B → products k = kr[A][B] (11.8)

We must now explore how to string simple steps 
together into a mechanism and how to arrive at 
the corresponding overall rate law. For the present
we emphasize that if the reaction is an element-
ary bimolecular process, then it has second-order 
kinetics; however, if the kinetics are second-order,
then the reaction could be bimolecular but might be
complex.

11.5 The formulation of rate laws

Suppose we propose that a particular reaction is the
outcome of a sequence of elementary steps. How do
we arrive at the rate law implied by the mechanism?
We introduce the technique by considering the rate
law for the gas-phase oxidation of nitric oxide 
(nitrogen monoxide, NO):

2 NO(g) + O2(g) → 2 NO2(g)

Nitric oxide is a very important component of pol-
luted atmospheres. It is formed in the hot exhausts 
of vehicles and the jet engines of aircraft and its 
oxidation is a step in the formation of acid rain. The
compound is also a neurotransmitter involved in the
physiological changes taking place during sexual
arousal. Experimentally, the reaction is found to be
third-order overall:

k = kr[NO]2[O2] 

One explanation of the observed reaction order
might be that the reaction is a single termolecular
(three-molecule) elementary step involving the simul-
taneous collision of two NO molecules and one O2
molecule. However, such collisions occur very infre-
quently. Therefore, although termolecular collisions
may contribute, the rate of reaction by this mechan-
ism is so slow that another mechanism usually 
dominates.

Fig. 11.5 In a unimolecular elementary reaction, an energetic-
ally excited species decomposes into products: it simply
shakes itself apart.

Fig. 11.6 In a bimolecular elementary reaction, two species
are involved in the process.
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The following mechanism has been proposed:

Step 1. Two NO molecules combine to form a dimer:

(a) NO + NO → N2O2

Rate of formation of N2O2 = ka[NO]2

This step is plausible, because NO is an odd-electron
species, a radical, and two radicals can pair their
electrons and form a covalent bond when they meet.
That the N2O2 dimer is also known in the solid
makes the suggestion plausible: it is often a good
strategy to decide whether a proposed intermediate is
the analogue of a known compound.

Step 2. The N2O2 dimer decomposes into NO
molecules:

N2O2 → NO + NO,

Rate of decomposition of N2O2 = k′a[N2O2]

This step, the reverse of Step 1, is a unimolecular
decay: the dimer shakes itself apart. We adopt the
convention in which the rate constant of a reverse 
reaction is marked with a prime (as in ka for the for-
ward reaction and ka′ for its reverse).

Step 3. Alternatively, an O2 molecule collides with
the dimer and results in the formation of NO2:

N2O2 + O2 → NO2 + NO2,

Rate of consumption of N2O2 = kb[N2O2][O2]

Now we proceed to derive the rate law on the basis
of this proposed mechanism. The rate of formation
of product comes directly from Step 3:

Rate of formation of NO2 = 2kb[N2O2][O2]

The 2 appears in the rate law because two NO2
molecules are formed in each reaction event, so the
concentration of NO2 increases at twice the rate that
the concentration of N2O2 decays. However, this 
expression is not an acceptable overall rate law 
because it is expressed in terms of the concentration
of the intermediate N2O2: an acceptable rate law for
an overall reaction is expressed solely in terms of the
species that appear in the overall reaction. Therefore,
we need to find an expression for the concentration
of N2O2. To do so, we consider the net rate of for-
mation of the intermediate, the difference between 
its rates of formation and decay. Because N2O2 is
formed by Step 1 but decays by Steps 2 and 3, its net
rate of formation is

Net rate of formation of N2O2

= ka[NO]2 − k′a[N2O2] − kb[N2O2][O2]

Notice that formation terms occur with a positive sign
and decay terms occur with a negative sign because
they reduce the net rate of formation.

If we could solve this equation for the concentra-
tion of N2O2 in terms of the concentrations of NO
and O2, we could substitute the result into the pre-
ceding expression and obtain the overall rate law.
However, this involves solving a very diAcult differ-
ential equation, and will give an enormously com-
plex expression. In fact, even in this relatively simple
case, we can obtain only a numerical solution using 
a computer. To make progress towards obtaining a
simple formula, we must make an approximation.

11.6 The steady-state approximation

It is common at this stage of formulating a rate law to
introduce the steady-state approximation, in which
we suppose that the concentrations of all intermediates
remain constant and small throughout the reaction
(except right at the beginning and right at the end).
An intermediate is any species that does not appear
in the overall reaction but that has been invoked in
the mechanism. For our mechanism the intermediate
is N2O2, so we write

Net rate of formation of N2O2 = 0

which implies that

ka[NO]2 − k′a[N2O2] − kb[N2O2][O2] = 0

We can rearrange this equation into an expression
for the concentration of N2O2:

It follows that the rate of formation of NO2 is

(11.9)

At this stage, the rate law is more complex than 
the observed law, but the numerator resembles it.
The two expressions become identical if we suppose
that the rate of decomposition of the dimer is much
greater than its rate of reaction with oxygen, for then
ka′[N2O2] >> kb[N2O2][O2], or, after cancelling the
[N2O2], ka′ >> kb[O2]. When this condition is satisfied,
we can approximate the denominator in the overall
rate law by ka′ alone and conclude that

From step 3

Rate of formation of NO2 = 2kb[N2O2][O2]

=
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(11.10)

This expression has the observed overall third-order
form. Moreover, we can identify the observed rate
constant as the following combination of rate con-
stants for the elementary reactions:

(11.11)
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(11.12)

Now the reaction is second-order in NO and the 
concentration of O2 does not appear in the rate law.
The physical explanation is that the rate of reaction
of N2O2 is so great on account of the high concen-
tration of O2 in the system, that N2O2 reacts as soon
as it is formed. Therefore, under these conditions, the
rate of formation of NO2 is determined by the rate 
at which N2O2 is formed. This step is an example of
a rate-determining step, the slowest step in a reaction
mechanism, which controls the rate of the overall 
reaction.

The rate-determining step is not just the slowest
step: it must be slow and be a crucial gateway for the
formation of products. If a faster reaction can also
lead to products, then the slowest step is irrelevant
because the slow reaction can then be side-stepped
(Fig. 11.7). The rate-determining step is like a slow
ferry crossing between two fast highways: the overall
rate at which traAc can reach its destination is deter-
mined by the rate at which it can make the ferry
crossing. If a bridge is built that circumvents the
ferry, the ferry remains the slowest step but it is no
longer rate-determining.

The rate law of a reaction that has a rate- 
determining step can often be written down almost
by inspection. If the first step in a mechanism is rate
determining, then the rate of the overall reaction is
equal to the rate of the first step because all subsequent
steps are so fast that once the first intermediate is

= 2ka[NO]2

Rate of formation of NO
NO O

2
a b

b

[ ] [ ]
=

2 2
2k k

k [[ ]O2

Self-test 11.1

An alternative mechanism that may apply when the con-
centration of O2 is high and that of NO is low is one in
which the first step is NO + O2 → NO...O2 and its re-
verse, followed by NO.. .O2 + NO → NO2 + NO2. Confirm
that this mechanism also leads to the observed rate law
when the concentration of NO is low.
[Answer: V = 2kakb[NO]2[O2]/(k ′a + kb[NO]) ≈ (2kakb/k ′a)[NO]2[O2]]

One feature to note is that although each of the
rate constants in eqn 11.11 increases with tempera-
ture, that might not be true of kr itself. Thus, if 
the rate constant ka′ increases more rapidly than the
product kakb increases, then kr will decrease with 
increasing temperature and the reaction will go more
slowly as the temperature is raised. The physical 
reason is that the dimer N2O2 shakes itself apart so
quickly at the higher temperature that its reaction
with O2 is less able to take place, and products are
formed more slowly. Mathematically, we would say
that the composite reaction had a ‘negative activation
energy’. We have to be very cautious about making
predictions about the effect of temperature on reac-
tions that are the outcome of several steps.

Self-test 11.2

Suppose that each rate constant in eqn 11.11 exhibits an
Arrhenius temperature dependence. Show that kr is also
Arrhenius-like with the possibility that the overall activa-
tion energy is negative.
[Answer: A = 2AaAb/A′a, Ea = Ea,a + Ea,b − Ea,a’ < 0 if Ea,a’ > Ea,a + Ea,b]

11.7 The rate-determining step

The oxidation of nitrogen monoxide introduces 
another important concept. Let’s suppose that Step 3
is very fast, so k′a may be neglected relative to kb[O2]
in eqn 11.9. One way to achieve this condition is 
to increase the concentration of O2 in the reaction
mixture. Then the rate law simplifies to

RDS

Not RDS

Reactants Products

(a)

(b)

Fig. 11.7 The rate-determining step is the slowest step of a
reaction and acts as a bottleneck. In this schematic diagram,
fast reactions are represented by heavy lines (freeways) and
slow reactions by thin lines (country lanes). Circles represent
substances. (a) The first step is rate determining; (b) Although
the second step is the slowest, it is not rate-determining 
because it does not act as a bottleneck (there is a faster route
that circumvents it).
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formed it results immediately in the formation of
products. Figure 11.8 shows the reaction profile for 
a mechanism of this kind in which the slowest step 
is the one with the highest activation energy. Once
over the initial barrier, the intermediates cascade into
products.

11.8 Kinetic control

In some cases reactants can give rise to a variety of
products, as in nitrations of monosubstituted benzene,
when various proportions of the ortho-, meta-, and
para-substituted products are obtained, depending
on the directing power of the original substituent.
Suppose two products, P1 and P2, are produced by
the following competing reactions:

A + B → P1 Rate of formation of P1 = kr,1[A][B]

A + B → P2 Rate of formation of P2 = kr,2[A][B]

The relative proportion in which the two products
have been produced at a given stage of the reaction
(before it has reached equilibrium) is given by the
ratio of the two rates, and therefore to the two rate
constants:

(11.13)

This ratio represents the kinetic control over the pro-
portions of products, and is a common feature of the
reactions encountered in organic chemistry where 
reactants are chosen that facilitate pathways favour-
ing the formation of a desired product. If a reaction is
allowed to reach equilibrium, then the proportion of
products is determined by thermodynamic rather than
kinetic considerations and the ratio of concentrations
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is controlled by considerations of the standard Gibbs
energies of all the reactants and products.

11.9 Unimolecular reactions

A number of gas-phase reactions follow first-order
kinetics, as in the isomerization of cyclopropane
mentioned earlier, in which the strained triangular
molecule bursts open into an acyclic alkene:

cyclo-C3H6 → CH3CHlCH2 k = kr[cyclo-C3H6]

The problem with reactions like this is that the 
reactant molecule presumably acquires the energy 
it needs to react by collisions with other molecules.
Collisions, though, are simple bimolecular events, 
so how can they result in a first-order rate law? 
First-order gas-phase reactions are widely called
‘unimolecular reactions’ because (as we shall see) the
rate-determining step is an elementary unimolecular
reaction in which the reactant molecule changes into
the product. This term must be used with caution,
however, because the composite mechanism has 
bimolecular as well as unimolecular steps.

The first successful explanation of unimolecular
reactions is ascribed to Frederick Lindemann in
1921. The Lindemann mechanism is as follows:

Step 1. A reactant molecule A becomes energetically
excited (denoted A*) by collision with another A
molecule:

A + A → A* + A Rate of formation of A* = ka[A]2

Step 2. The energized molecule might lose its excess
energy by collision with another molecule:

A* + A → A + A

Rate of deactivation of A* = k′a[A*][A]

Step 3. Alternatively, the excited molecule might
shake itself apart and form products P. That is, it
might undergo the unimolecular decay

A* → P Rate of formation of P = kb[A*]

Rate of consumption of A* = kb[A*]

If the unimolecular step, Step 3, is slow enough to be
the rate-determining step, then the overall reaction
will have first-order kinetics, as observed. We can
demonstrate this conclusion explicitly by applying
the steady-state approximation to the net rate of for-
mation of the intermediate A* and find that

Rate of formation of P = kr[A], with 

(11.14)

This rate law is first-order, as we set out to show.
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Fig. 11.8 The reaction profile for a mechanism in which the
first step is rate determining.
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Reactions in solution

We now turn specifically to reactions in solution,
where the reactant molecules do not fly freely through
a gaseous medium and collide with each other, but
wriggle past their closely packed neighbours as gaps
open up in the structure.

11.10 Activation control and 
diffusion control

The concept of the rate-determining step plays an 
important role for reactions in solution where it leads
to the distinction between ‘diffusion control’ and ‘acti-
vation control’. To develop this point, let’s suppose
that a reaction between two solute molecules A and B
occurs by the following mechanism. First, we assume
that A and B drift into each other’s vicinity by the
process of diffusion, and form an encounter pair, AB,
at a rate proportional to each of their concentrations:

A + B → AB Rate of formation of AB = kr,d[A][B]

The ‘d’ subscript reminds us that this process is 
diffusional. The encounter pair may persist for some
time as a result of the cage effect, the trapping of A
and B near each other by their inability to escape
rapidly through the surrounding solvent molecules.
However, the encounter pair can break up when A
and B have the opportunity to diffuse apart, so we
must allow for the following process:

AB → A + B Rate of loss of AB = k′r,d[AB]

We suppose that this process is first-order in AB.
Competing with this process is the reaction between
A and B while they exist as an encounter pair. This
process depends on their ability to acquire suAcient
energy to react. That energy might come from the
jostling of the thermal motion of the solvent mole-
cules. We assume that this step is first-order in AB,
but if the solvent molecules are involved it is more 
accurate to regard it as pseudofirst-order with the
solvent molecules in great and constant excess. In
any event, we can suppose that the reaction is

AB → products Rate of reactive loss of AB = kr,a[AB]

The ‘a’ subscript reminds us that this process is activ-
ated in the sense that it depends on the acquisition 
by AB of at least a minimum energy.

Now we use the steady-state approximation to set
up the rate law for the formation of products. As
shown in Derivation 11.5, we find

Rate of formation of products = kr[A][B]

(11.15)k
k k

k kr
r,a r,d

r,a r,d

=
+ ′

Derivation 11.4

The Lindemann mechanism

First, we write down the expression for the net rate of
formation of A*, and set this rate equal to zero:

The solution of this equation is

It follows that the rate law for the formation of products is

At this stage the rate law is not first-order in A. However,
we can suppose that the rate of deactivation of A* by
(A*,A) collisions is much greater than the rate of uni-
molecular decay of A* to products. That is, we suppose
that the unimolecular decay of A* is the rate-determining
step. Then ka′ [A*][A] >> kb[A*], which corresponds to
k ′a[A] >> kb. If that is the case, we can neglect kb in the 
denominator of the rate law and obtain eqn 11.14.
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Net rate of formation of A*

= ka[A]2 − k ′a [A*][A] − kb[A*] = 0

Self-test 11.3

Suppose that an inert gas M is present and dominates
the excitation of A and de-excitation of A*. Devise the
rate law for the formation of products.

[Answer: V = kakb[A][M]/(kb + ka′ [M])]

Derivation 11.5

Diffusion control

The net rate of formation of AB is

Net rate of formation of AB = kr,d[A][B] − k ′r,d[AB] − kr,a[AB]

In a steady state, this rate is zero, so we can write

kr,d[A][B] − k ′r,d[AB] − kr,a[AB] = 0

which we can rearrange to find [AB]:

The rate of formation of products (which is the same as
the rate of reactive loss of AB) is therefore

Rate of formation of products = ka[AB] 

which is eqn 11.15.
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Now we distinguish two limits. Suppose the rate 
of reaction is much faster than the rate at which the
encounter pair breaks up. In this case, kr,a >> k′r,d and
we can neglect kd′ in the denominator of the expres-
sion for kr in eqn 11.15. The kr,a in the numerator
and denominator then cancel and we are left with

Rate of formation of products = kr,d[A][B]

In this diffusion-controlled limit, the rate of the reac-
tion is controlled by the rate at which the reactants
diffuse together (as expressed by kr,d), for once they
have encountered the reaction is so fast that they will
certainly go on to form products rather than diffuse
apart before reacting. Alternatively, we may suppose
that the rate at which the encounter pair accumu-
lated enough energy to react is so low that it is highly
likely that the pair will break up. In this case, we can
set kr,a << k′r,d in the expression for kr, and obtain

Rate of formation of products (11.16)

In this activation-controlled limit, the reaction rate
depends on the rate at which energy accumulates in
the encounter pair (as expressed by kr,a).

A lesson to learn from this analysis is that the con-
cept of the rate-determining stage is rather subtle.
Thus, in the diffusion-controlled limit, the condition
for the encounter rate to be rate determining is not
that it is the slowest step, but that the reaction rate of
the encounter pair is much greater than the rate at
which the pair breaks up. In the activation-controlled
limit, the condition for the rate of energy accumula-
tion to be rate determining is likewise a competition
between the rate of reaction of the pair and the rate
at which it breaks up, and all three rate constants
control the overall rate. The best way to analyse
competing rates is to do as we have done here: to set
up the overall rate law, and then to analyse how it
simplifies as we allow particular elementary processes
to dominate others.

A detailed analysis of the rates of diffusion of
molecules in liquids shows that the rate constant kr,d
is related to the coeGcient of viscosity, η (eta), of the
medium by

(11.17)

We see that the higher the viscosity, then the smaller
the diffusional rate constant, and therefore the slower
the rate of a diffusion-controlled reaction.

A brief illustration For a diffusion-controlled reac-
tion in water, for which h = 8.9 × 10−4 kg m−1 s−1 at 25°C,
we find
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Because 1 m3 = 103 dm3, this result can be written kr,d =
7.4 × 109 dm3 mol−1 s−1, which is a useful approximate 
estimate to keep in mind for such reactions.

11.11 Diffusion

Diffusion plays such a central role in the processes 
involved in reactions in solution that we need to 
examine it more closely. The picture to hold in mind
is that a molecule in a liquid is surrounded by other
molecules and can move only a fraction of a diameter,
perhaps because its neighbours move aside momen-
tarily, before colliding. Molecular motion in liquids
is a series of short steps, with incessantly changing 
directions, like people in an aimless, milling crowd.

The process of migration by means of a random
jostling motion through a fluid (a gas as well as a 
liquid; even atoms in solids can migrate very slowly)
is called diffusion. We can think of the motion of the
molecule as a series of short jumps in random direc-
tions, a so-called random walk. If there is an initial
concentration gradient in the liquid—for instance, a
solution may have a high concentration of solute in
one region—then the rate at which the molecules
spread out is proportional to the concentration 
gradient, Δc/Δx, and we write

Rate of diffusion ∝ concentration gradient

To express this relation mathematically, we intro-
duce the flux, J, which is the number of particles
passing through an imaginary window in a given
time interval, divided by the area of the window and
the duration of the interval:

(11.18a)

Then,

J = −D × concentration gradient (11.18b)

A brief comment Equation 11.18b is a verbal interpretation
of the equation

where dc/dx is the gradient of the number concentration c.
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Equation 11.18b is called Fick’s first law of diffusion
(see Further information 11.1 for a derivation and
the precise mathematical form). The coeAcient D,
which has the dimensions of area divided by time
(with units m2 s−1), is called the diffusion coeGcient:
if D is large, molecules diffuse rapidly. Some values
are given in Table 11.1. The negative sign in eqn
11.18b simply means that if the concentration gradi-
ent is negative (down from left to right, Fig. 11.9),
then the flux is positive (flowing from left to right).
To get the number of molecules passing through a
given window in a given time interval, we multiply
the flux by the area of the window and the time in-
terval. If the concentration in eqn 11.18b is a molar
concentration, then the flux is expressed in moles
rather than numbers of molecules.

A brief illustration Suppose that in a region of an un-
stirred aqueous solution of sucrose the molar concentra-
tion gradient is −0.10 mol dm−3 cm−1, then the flux arising
from this gradient is

The amount of sucrose molecules passing through a 
10-cm square window in 10 minutes is therefore

n = JADt

= (5.2 × 10−6 mol m−2 s−1) × (1.0 × 10−2 m)2 × (10 × 60 s)

= 3.1 × 10−7 mol

The diffusion of molecules may be assisted—and
normally greatly dominated—by bulk motion of the
fluid as a whole (as when a wind blows in the atmo-
sphere and currents flow in lakes). This motion is called
convection. Because diffusion is so slow, we speed up
the spread of solute molecules by inducing convection
by stirring a fluid, turning on an extractor fan, or rely-
ing on natural phenomena such as winds and storms.

One of the most important equations in the 
physical chemistry of fluids is the diffusion equation,
which enables us to predict the rate at which the 
concentration of a solute changes in a nonuniform
solution. In essence, the diffusion equation expresses
the fact that wrinkles in the concentration tend to
disperse. The formal (but still verbal) statement of
the diffusion equation, which is also known as Fick’s
second law of diffusion, is:

Rate of change of concentration in a region 
= D × (curvature of the concentration 

in the region) (11.19)

The ‘curvature’ is a measure of the wrinkliness of 
the concentration (see below). The derivation of this 
expression is given in Further information 11.1, which
shows how to derive this law from Fick’s first law.
The concentrations on the left and right of this 
equation may be either number concentration (mole-
cules m−3, for instance) or molar concentration.

A brief comment The mathematical form of the diffusion
equation is

We are interpreting the second derivative d2c/dx2 as a meas-
ure of the curvature of the concentration c. Because the 
concentration is a function of both time and location, the
derivatives are in fact partial derivatives and you will normally
see it written ∂c/∂t = D∂2c /∂x2.
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Table 11.1

Diffusion coefficients at 25°C, D/(10−9 m2 s−1)

Ar in tetrachloromethane 3.63
C12H22O11 (sucrose) in water 0.522
CH3OH in water 1.58
H2O in water 2.26
NH2CH2COOH in water 0.673
O2 in tetrachloromethane 3.82
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Fig. 11.9 The flux of solute particles is proportional to the
concentration gradient. Here we see a solution in which 
the concentration falls from left to right (as depicted by the
shaded band and the curve). The gradient is negative (down
from left to right) and the flux is positive (towards the right).
The greatest flux is found where the gradient is steepest 
(towards the left).
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The diffusion equation tells us the following:

• If the concentration is uniform or its profile has a
constant slope, there is no net change in concen-
tration in the region.

In this case the rate of influx through one wall of 
the region is equal to the rate of eBux through 
the opposite wall. Only if the slope of the concentra-
tion varies through region—only if the concentra-
tion is wrinkled—is there a change in concentration.
Then:

• Where the curvature is positive (a dip, Fig. 11.10)
the change in concentration is positive: the dip
tends to fill.

• Where the curvature is negative (a heap), the
change in concentration is negative: the heap
tends to spread.

We can understand the nature of diffusion more
deeply by considering it as the outcome of a random
walk, a series of steps in random directions and (in
general) through random distances. Although a
molecule undergoing a random walk may take many
steps in a given time, it has only a small probability
of being found far from its starting point because
some of the steps lead it away from the starting point
but others lead it back. The net distance travelled in
a time t from the starting point is measured by the
root mean square distance, d = 〈x2〉1/2 where 〈...〉
denotes an average value and x is the distance from
the origin, and for a random walk in one dimension,

d = (2Dt)1/2 (11.20)

Thus, the net distance increases only as the square
root of the time, so for a particle to be found twice as
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Fig. 11.10 Nature abhors a wrinkle. The diffusion equation
tells us that peaks in a distribution (regions of negative curva-
ture) spread and troughs (regions of positive curvature) fill in.

Self-test 11.4

The diffusion coefficient of H2O in water is 
2.26 × 10−9 m2 s−1 at 25°C. How long does it take for 
an H2O molecule to travel along a single dimension 
(a) 1.0 cm, (b) 2.0 cm from its starting point in a sample
of unstirred water?

[Answer: (a) 6.1 h, (b) 25 h]

The relation between the diffusion coeAcient and
the rate at which the molecule takes its steps and 
the distance of each step is called the Einstein–
Smoluchowski equation:

(11.21)

where λ (lambda) is the length of each step (which in
the model is assumed to be the same for each step) and
τ (tau) is the time each step takes. This equation tells
us that a molecule that takes rapid, long steps has a
high diffusion coeAcient. We can interpret τ as the
average lifetime of a molecule near another molecule
before it makes a sudden jump to its next position.

 
D =

λ
τ

2

2

Self-test 11.5

Suppose an H2O molecule moves through one molecu-
lar diameter (about 200 pm) each time it takes a step in a
random walk. What is the time for each step at 25°C?

[Answer: 9 ps]

The diffusion coeAcient increases with tempera-
ture (the molecule becomes more mobile) because an
increase in temperature enables a molecule to escape
more easily from the attractive forces exerted by its
neighbours. If we suppose that the rate (1/τ) of the
random walk follows an Arrhenius temperature 
dependence with an activation energy Ea, then the
diffusion coeAcient will follow the relation

D = D0e
−Ea/RT (11.22)

The rate at which particles diffuse through a liquid is
related to the viscosity, and we should expect a high
diffusion coeAcient to be found for fluids that have a
low viscosity. That is, we can suspect that η ∝ 1/D,
where η is the coeAcient of viscosity. In fact, the
Einstein relation states that

(11.23)
 
D

kT
a

=
6πη

far (on average) from its starting point, we must wait
four times as long.
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where a is the radius of the molecule. It follows that

η = η0e
Ea/RT (11.24)

Note the change in sign of the exponent: viscosity 
decreases as the temperature is raised. We are sup-
posing that the strong temperature dependence of 
the exponential term dominates the weak linear 
dependence on T in the numerator of eqn 11.23. The
temperature dependence described by eqn 11.24 is
observed, at least over reasonably small temperature
ranges (Fig. 11.11). The forces acting between the
molecules govern the magnitude of Ea, but the prob-
lem of calculating it is immensely diAcult and still
largely unsolved.

of hydrogen peroxide in solution is 76 kJ mol−1, and
the reaction is slow at room temperature. When a 
little iodide ion is added, the activation energy falls 
to 57 kJ mol−1 and the rate constant increases by a
factor of 2000. Enzymes, which are biological cata-
lysts, are very selective and can have a dramatic effect
on the reactions they control. For example, the 
enzyme catalase reduces the activation energy for the
decomposition of hydrogen peroxide to 8 kJ mol−1,
corresponding to an acceleration of the reaction by 
a factor of 1015 at 298 K.

11.12 Homogeneous catalysis

A homogeneous catalyst is a catalyst in the same
phase as the reaction mixture. For example, the 
decomposition of hydrogen peroxide in aqueous 
solution is catalysed by bromide ion or catalase. A
heterogeneous catalyst is a catalyst in a different
phase from the reaction mixture. For example, the
hydrogenation of ethene to ethane, a gas-phase reac-
tion, is accelerated in the presence of a solid catalyst
such as palladium, platinum, or nickel. The metal
provides a surface upon which the reactants bind;
this binding facilitates encounters between reactants
and increases the rate of the reaction. We examine
heterogeneous catalysis in Chapter 16 and consider
only homogeneous catalysis here.

In acid catalysis the crucial step is the transfer of a
proton to the substrate:

X + HA → HX+ + A− HX+ → products

Acid catalysis is the primary process in keto–enol
tautomerism:

CH3COCH2CH3
H+

CH3C(OH)lCHCH3
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Fig. 11.11 The experimental temperature dependence of
the viscosity of water. As the temperature is increased, more
molecules are able to escape from the potential wells pro-
vided by their neighbours, so the liquid becomes more fluid.

Self-test 11.6

Estimate the activation energy for the viscosity of water
from the graph in Fig. 11.11, by using the viscosities at
40°C and 80°C. Hint: Use an equation like eqn 11.24 to
formulate an expression for the logarithm of the ratio of
the two viscosities.

[Answer: 13 kJ mol−1]

Catalysis

A catalyst is a substance that accelerates a reaction
but undergoes no net chemical change. The catalyst
lowers the activation energy of the reaction by 
providing an alternative path that avoids the slow,
rate-determining step of the uncatalysed reaction
(Fig. 11.12). Catalysts can be very effective; for in-
stance, the activation energy for the decomposition
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activation
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Fig. 11.12 A catalyst acts by providing a new reaction path-
way between reactants and products, with a lower activation
energy than the original pathway.
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In base catalysis, a proton is transferred from the
substrate to a base, as in the hydrolysis of esters:

CH3COOCH2CH3 + H2O
OH−

CH3COOH (as CH3CO2
−) + CH3CH2OH

11.13 Enzymes

One of the earliest descriptions of the action of 
enzymes is the Michaelis–Menten mechanism. The
proposed mechanism, with all species in an aqueous
environment, is as follows.

Step 1: The bimolecular formation of a combination,
ES, of the enzyme E and the substrate S:

E + S → ES Rate of formation of ES = ka[E][S]

Step 2: The unimolecular decomposition of the 
complex:

ES → E + S Rate of decomposition of ES = ka′[ES]

Step 3: The unimolecular formation of products P
and the release of the enzyme from its combination
with the substrate:

ES → P + E Rate of formation of P = kb[ES]

Rate of consumption of ES = kb[ES]

As shown in Derivation 11.6, the rate law for the rate
of formation of product in terms of the concentra-
tions of enzyme and substrate turns out to be

Rate of formation of P = kr[E]0,

with (11.25)

where the Michaelis constant, KM (which has the 
dimensions of a concentration), is

(11.26)

and [E]0 is the total concentration of enzyme (both
bound and unbound).
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According to eqn 11.25, the rate of enzymolysis is

first-order in the added enzyme concentration, but the
effective rate constant k depends on the concentration
of substrate. We can infer from eqn 11.25 that:

• When [S] << KM, the effective rate constant is
equal to kb[S]/KM. Therefore, the rate increases
linearly with [S] at low concentrations.

• When [S] >> KM, the effective rate constant is equal
to kb, and the rate law in eqn 11.25 reduces to

Rate of formation of P = kb[E]0 (11.27)

When [S] >> KM, the rate is independent of the con-
centration of S because there is so much substrate
present that it remains at effectively the same con-
centration even though products are being formed.
Under these conditions, the rate of formation of
product is a maximum, and kb[E]0 is called the max-
imum velocity, vmax, of the enzymolysis:

vmax = kb[E]0 (11.28)

Derivation 11.6

The Michaelis–Menten rate law

Michaelis and Menten derived their rate law in 1913 in a
more restrictive way, by assuming a rapid pre-equilibrium.
The approach we take is a generalization using the steady-
state approximation made by Briggs and Haldane in 1925.

The product is formed (irreversibly) in Step 3, so we
begin by writing

Rate of formation of P = kb[ES]

To calculate the concentration [ES] we set up an expres-
sion for the net rate of formation of ES allowing for its
formation in Step 1 and its removal in Steps 2 and 3.
Then we set that net rate equal to zero:

Net rate of formation of ES = ka[E][S] − k ′a[ES] − kb[ES]

= 0

It follows that

However, [E] and [S] are the molar concentrations of the
free enzyme and free substrate. If [E]0 is the total con-
centration of enzyme, then [E] + [ES] = [E]0 and we can
replace [E] in this expression by [E]0 − [ES]. Therefore,

Multiplication by k ′a + kb gives first

k ′a[ES] + kb[ES] = ka[E]0[S] − ka[ES][S]

and then

(k ′a + kb + ka[S])[ES] = ka[E]0[S]

Division by ka turns this expression into

We recognize the first term inside the parentheses as
KM, so this expression rearranges to

It follows from the first equation in this derivation that
the rate of formation of product is given by eqn 11.25.
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The rate-determining step is Step 3, because there is
ample ES present (because S is so abundant), and the
rate is determined by the rate at which ES reacts to
form the product.

It follows from eqns 11.25 and 11.28 that the 
reaction rate v at a general substrate composition is
related to the maximum velocity by

(11.29)

This relation is illustrated in Fig. 11.13. Equation
11.29 is the basis of the analysis of enzyme kinetic
data by using a Lineweaver–Burk plot, a graph of 1/v
(the reciprocal of the reaction rate) against 1/[S] (the
reciprocal of the substrate concentration). If we take
the reciprocal of both sides of eqn 11.29 it becomes

(11.30)

Because this expression has the form

with y = 1/v and x = 1/[S], we should obtain a straight
line when we plot 1/v against 1/[S]. The slope of 
the straight line is KM/vmax and the extrapolated 
intercept at 1/[S] = 0 is equal to 1/vmax (Fig. 11.14).
Therefore, the intercept can be used to find vmax, and
then that value combined with the slope to find the
value of KM. Alternatively, note that the extrapolated
intercept with the horizontal axis (where 1/v = 0) 
occurs at 1/[S] = −1/KM.
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We can calculate further parameters from those
derived from a Lineweaver–Burk plot that allow 
us to compare the catalytic properties of different 
enzymes. The turnover frequency, or catalytic con-
stant, of an enzyme, kcat, is the number of catalytic
cycles (turnovers) performed by the active site in a
given interval divided by the duration of the interval.
This quantity has units of a first-order rate constant
and, in terms of the Michaelis–Menten mechanism,
is numerically equivalent to kb, the rate constant for
release of product from the enzyme–substrate com-
plex. It follows from the identification of kcat with kb
and from eqn 11.28 that

(11.31)

The catalytic eGciency, η (eta), of an enzyme is the
ratio kcat /KM. The higher the value of η, the more
eAcient is the enzyme. We can think of the catalytic
activity as the effective rate constant of the enzymatic
reaction. From KM = (ka′ + kb)/ka and eqn 11.31, it
follows that

(11.32)

The eAciency reaches its maximum value of ka when
kb >> ka′. Because ka is the rate constant for the forma-
tion of a complex from two species that are diffusing
freely in solution, the maximum eAciency is related to
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Fig. 11.13 The variation of the rate of an enzyme- 
catalysed reaction with concentration of the substrate

according to the Michaelis–Menten model. When [S] << KM,
the rate is proportional to [S]; when [S] >> KM, the rate is 
independent of [S].
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Fig. 11.14 A Lineweaver–Burk plot is used to analyse kinetic
data on enzyme-catalysed reactions. The reciprocal of the
rate of formation of products (1/v) is plotted against the 
reciprocal of the substrate concentration (1/[S]). All the data
points (which typically lie in the full region of the line) corres-
pond to the same overall enzyme concentration, [E]0. The 
intercept of the extrapolated (dotted) straight line with the
horizontal axis is used to obtain the Michaelis constant, KM.
The intercept with the vertical axis, is used to determine vmax
= kb[E]0, and hence kb. The slope may also be used, as it is
equal to KM/vmax.



A note on good practice The slope and the intercept
are unitless: we have remarked previously, that all graphs
should be plotted as pure numbers.
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the maximum rate of diffusion of E and S in solution,
as we saw in Section 11.11. In this limit, rate constants
are about 108–109 dm3 mol−1 s−1 for molecules as large
as enzymes at room temperature. The enzyme catalase
has η = 4.0 × 108 dm3 mol−1 s−1 and is said to have 
attained ‘catalytic perfection’, in the sense that the rate
of the reaction it catalyses is controlled only by diffu-
sion: it acts as soon as a substrate makes contact.

The action of an enzyme may be partially sup-
pressed by the presence of a foreign substance, which
is called an inhibitor. An inhibitor may be a poison
that has been administered to the organism, or it may
be a substance that is naturally present in a cell and
involved in its regulatory mechanism. In competitive
inhibition the inhibitor competes for the active site
and reduces the ability of the enzyme to bind the sub-
strate (Fig. 11.16). In noncompetitive inhibition the

Example 11.1

Determining the catalytic efficiency of an enzyme

The enzyme carbonic anhydrase catalyses the hydration
of CO2 in red blood cells to give bicarbonate (hydrogen-
carbonate) ion:

CO2(g) + H2O(l) → HCO3
− (aq) + H+ (aq)

The following data were obtained for the reaction at 
pH = 7.1, 273.5 K, and an enzyme concentration of 
2.3 nmol dm−3:

[CO2]/(mmol dm−3) 1.25 2.5
v/(mmol dm−3 s−1) 2.78 × 10−2 5.00 × 10−2

[CO2]/(mmol dm−3) 5 20
v/(mmol dm−3 s−1) 8.33 × 10−2 1.67 × 10−1

Determine the catalytic efficiency of carbonic anhydrase
at 273.5 K.

Strategy We construct a Lineweaver–Burk plot by draw-
ing up a table of 1/[S] and 1/V. The intercept at 1/[S] = 0 is
vmax and the slope of the line through the points is KM/
vmax, so KM is found from the slope divided by the inter-
cept. From eqn 11.30 and the enzyme concentration, we
calculate kcat and the catalytic efficiency from eqn 11.31.

Solution We draw up the following table:

1/([CO2]/(mmol dm−3)) 0.8 0.4 0.2 0.05

1/(v/(mmol dm−3 s−1)) 36 20 12 5.99

The data are plotted in Fig. 11.15. A least squares ana-
lysis gives an intercept at 4.00 and a slope of 40.0. It 
follows that
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Fig. 11.15 The Lineweaver–Burke plot based on the
data in Example 11.1.

Self-test 11.7

The enzyme a-chymotrypsin is secreted in the pan-
creas of mammals and cleaves peptide bonds made
between certain amino acids. Several solutions con-
taining the small peptide N-glutaryl-L-phenylalanine-p-
nitroanilide at different concentrations were prepared
and the same small amount of a-chymotrypsin was
added to each one. The following data were obtained
on the initial rates of the formation of product:

[S]/(mmol dm−3) 0.334 0.450 0.667
V/(mmol dm−3 s−1) 0.152 0.201 0.269

[S]/(mmol dm−3) 1.00 1.33 1.67
V/(mmol dm−3 s−1) 0.417 0.505 0.667

Determine the maximum velocity and the Michaelis
constant for the reaction.

[Answer: vmax = 2.80 mmol dm−3 s−1, 
KM = 5.89 mmol dm−3]
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inhibitor attaches to another part of the enzyme
molecule, thereby distorting it and reducing its abil-
ity to bind the substrate (Fig. 11.17).

Chain reactions

Many gas-phase reactions and liquid-phase poly-
merization reactions are chain reactions, reactions in
which an intermediate produced in one step generates
a reactive intermediate in a subsequent step, then
that intermediate generates another reactive inter-
mediate, and so on.

11.14 The structure of chain reactions

The intermediates responsible for the propagation of
a chain reaction are called chain carriers. In a radical
chain reaction the chain carriers are radicals. Ions
may also propagate chains, and in nuclear fission the
chain carriers are neutrons.

The first chain carriers are formed in the initiation
step of the reaction. For example, Cl atoms are
formed by the dissociation of Cl2 molecules either as
a result of vigorous intermolecular collisions in a
thermolysis reaction or as a result of absorption of 

a photon in a photolysis reaction. The chain carriers
produced in the initiation step attack other reactant
molecules in the propagation steps, and each attack
gives rise to a new chain carrier. An example is the 
attack of a methyl radical on ethane:

·CH3 + CH3CH3 → CH4 + ·CH2CH3

The dot signifies the unpaired electron and marks the
radical, which in this section we need to emphasize.
In some cases the attack results in the production of
more than one chain carrier. An example of such a
branching step is

·O· + H2O → HO· + HO·

where the attack of one O atom on an H2O molecule
forms two ·OH radicals (Box 11.2).

A brief comment In the notation to be introduced in
Section 13.11, an O atom has the configuration [He]2s22p4,
with two unpaired electrons.

The chain carrier might attack a product molecule
formed earlier in the reaction. Because this attack 
decreases the net rate of formation of product, it is
called a retardation step. For example, in a light- 
initiated reaction in which HBr is formed from H2
and Br2, an H atom might attack an HBr molecule,
leading to H2 and Br:

·H + HBr → H2 + ·Br

Retardation does not end the chain, because one 
radical (·H) gives rise to another (·Br), but it does 
deplete the concentration of the product. Elementary
reactions in which radicals combine and end the
chain are called termination steps, as in

CH3CH2· + ·CH2CH3 → CH3CH2CH2CH3

In an inhibition step, radicals are removed other than
by chain termination, such as by reaction with the
walls of the vessel or with foreign radicals:

CH3CH2· + ·R → CH3CH2R

The NO molecule has an unpaired electron and is a
very eAcient chain inhibitor. The observation that 
a gas-phase reaction is quenched when NO is intro-
duced is a good indication that a radical chain mech-
anism is in operation.

11.15 The rate laws of chain reactions

A chain reaction often leads to a complicated rate
law (but not always). As a first example, consider the
thermal reaction of H2 with Br2. The overall reaction
and the observed rate law are

Active site Substrate

Inhibitor

Enzyme

Fig. 11.16 In competitive inhibition, both the substrate (the
egg shape) and the inhibitor compete for the active site, and
reaction ensues only if the substrate is successful in attach-
ing there.

Active site Substrate

Inhibitor

Enzyme

Fig. 11.17 In one version of noncompetitive inhibition, the
substrate and the inhibitor attach to distant sites of the 
enzyme molecule, and a complex in which they are both 
attached (IES) does not lead to the formation of product.



CHAIN REACTIONS 263

Box 11.2 Explosions

A thermal explosion is due to the rapid increase of reaction
rate with temperature. If the energy released in an exother-
mic reaction cannot escape, the temperature of the reaction
system rises, and the reaction goes faster. The acceleration
of the rate results in a faster rise of temperature, and 
so the reaction goes even faster... catastrophically fast. A
chain-branching explosion may occur when there are chain-
branching steps in a reaction, for then the number of chain
carriers grows exponentially and the rate of reaction may
cascade into an explosion.

An example of both types of explosion is provided by the
reaction between hydrogen and oxygen, 2 H2(g) + O2(g) →
2 H2O(g). Although the net reaction is very simple, the mech-
anism is very complex and has not yet been fully elucidated.
It is known that a chain reaction is involved, and that the chain
carriers include ·H, ·O·, ·OH, and ·O2H. Some steps are:

Initiation: H2 + ·(O2)· → ·OH + ·OH

Propagation: H2 + ·OH → ·H + H2O
·(O2)· + ·H → ·O· + ·OH (branching)
·O· + H2 → ·OH + ·H (branching)
·H + ·(O2)· + M → ·HO2 + M*

The two branching steps can lead to a chain-branching 
explosion.

The occurrence of an explosion depends on the tempera-
ture and pressure of the system, and the explosion regions
for the reaction are shown in the illustration. At very low
pressures, the system is outside the explosion region and
the mixture reacts smoothly. At these pressures the chain
carriers produced in the branching steps can reach the walls
of the container where they combine (with an efficiency
that depends on the composition of the walls). Increasing
the pressure of the mixture along the broken line in the 
illustration takes the system through the lower explosion
limit (provided that the temperature is greater than about
730 K). The mixture then explodes because the chain carriers
react before reaching the walls and the branching reactions

are explosively efficient. The reaction is smooth when the
pressure is above the upper explosion limit. The concentra-
tion of molecules in the gas is then so great that the radicals
produced in the branching reaction combine in the body of
the gas, and gas-phase reactions such as ·(O2)· + ·H → ·O2H
can occur. Recombination reactions like this are facilitated
by three-body collisions, because the third body (M) can re-
move the excess energy and allow the formation of a bond:

·(O2)· + ·H + M → ·O2H + M*

The radical ·OH2 is relatively unreactive and can reach the
walls, where it is removed. At low pressures three-particle
collisions are unimportant and recombination is much slower.
At higher pressures, when three-particle collisions are 
important, the explosive propagation of the chain by the
radicals produced in the branching step is partially quenched
because ·O2H is formed in place of ·O· and ·OH. If the pres-
sure is increased to above the third explosion limit the reac-
tion rate increases so much that a thermal explosion occurs.
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H2(g) + Br2(g) → 2 HBr(g)

(11.33)

The complexity of the rate law suggests that a 
complicated mechanism is involved. The following
radical chain mechanism has been proposed:

Step 1. Initiation: Br2 → Br· + Br·

Rate of consumption of Br2 = ka[Br2]

Step 2. Propagation: 

Br· + H2 → HBr + H· v = kb[Br][H2]

H· + Br2 → HBr + Br· v = kc[H][Br2]

Rate of formation of HBr
[H ][Br ]

[Br
r1 2 2

3/2

=
k

22 r2]+ [HBr]k

In this and the following steps, ‘rate’ k means either
the rate of formation of one of the products or the
rate of consumption of one of the reactants. We shall
specify the species only if the rates differ.

Step 3. Retardation: 

H· + HBr → H2 + Br· v = kd[H][HBr]

Step 4. Termination: Br· + ·Br + M → Br2 + M

Rate of formation of Br2 = ke[Br]2

The ‘third body’, M, a molecule of an inert gas, 
removes the energy of recombination; the constant
concentration of M has been absorbed into the rate
constant kd. Other possible termination steps include
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the recombination of H atoms to form H2 and the
combination of H and Br atoms; however, it turns
out that only Br atom recombination is important.

Now we establish the rate law for the reaction.
The experimental rate law is expressed in terms of
the rate of formation of product, HBr, so we start by
writing an expression for its net rate of formation.
Because HBr is formed in Step 2 (by both reactions)
and consumed in Step 3,

Net rate of formation of HBr 

= kb[Br][H2] + kc[H][Br2] − kd[H][HBr] (11.34)

To make progress, we need the concentrations of 
the intermediates Br and H. Therefore, we set up the
expressions for their net rate of formation and apply
the steady-state assumption to both:

Net rate of formation of H 

= kb[Br][H2] − kc[H][Br2] − kd[H][HBr] = 0

Net rate of formation of Br = 2ka[Br2] − kb[Br][H2] 

+ kc[H][Br2] + kd[H][HBr] − 2ke[Br]2 = 0

The steady-state concentrations of the intermediates
are found by solving these two equations and are

When we substitute these concentrations into eqn
11.34 we obtain

Rate of formation of HBr

(11.35)

This equation has the same form as the empirical rate
law, and we can identify the two empirical rate
coeAcients as

(11.36)

We can conclude that the proposed mechanism is at
least consistent with the observed rate law. Addi-
tional support for the mechanism would come from
the detection of the proposed intermediates (by spec-
troscopy), and the measurement of individual rate
constants for the elementary steps and confirming
that they correctly reproduced the observed com-
posite rate constants.
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Checklist of key ideas

You should now be familiar with the following concepts.

1 In relaxation methods of kinetic analysis, the equi-
librium position of a reaction is first shifted sud-
denly and then allowed to readjust the equilibrium
composition characteristic of the new conditions.

2 The molecularity of an elementary reaction is the
number of molecules coming together to react.

3 An elementary unimolecular reaction has first-
order kinetics; and an elementary bimolecular re-
action has second-order kinetics.

4 In the steady-state approximation, it is assumed
that the concentrations of all reaction intermediates
remain constant and small throughout the reaction.

5 The rate-determining step is the slowest step in a
reaction mechanism that controls the rate of the
overall reaction.

6 Provided a reaction has not reached equilibrium,
the products of competing reactions are con-
trolled by kinetics.

7 The Lindemann mechanism of ‘unimolecular’ re-
actions is a theory that accounts for the first-order
kinetics of gas-phase reactions.

8 A reaction in solution may be diffusion-controlled
or activation-controlled.

9 Diffusion takes place in a random walk.

10 Catalysts are substances that accelerate reactions
but undergo no net chemical change.

11 A homogeneous catalyst is a catalyst in the same
phase as the reaction mixture.

12 Enzymes are homogeneous, biological catalysts.

13 The Michaelis–Menten mechanism of enzyme 
kinetics accounts for the dependence of rate on
the concentration of the substrate.

14 In a chain reaction, an intermediate (the chain 
carrier) produced in one step generates a reactive
intermediate in a subsequent step.
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Further information 11.1

Fick’s laws of diffusion

1. Fick’s first law of diffusion. Consider the arrangement
in Fig. 11.18. Let’s suppose that in an interval Δt the 
number of molecules passing through the window of area
A from the left is proportional to the number in the slab of
thickness l and area A, and therefore volume lA, just to the
left of the window where the average (number) concentra-
tion is c(x − l) and to the length of the interval Δt:

Number coming from left ∝ c(x − l)lAΔt1
2

1
2

Likewise, the number coming from the right in the same 
interval is

Number coming from right ∝ c(x + l)lAΔt

The net flux is therefore the difference in these numbers 
divided by the area and the time interval:

= − − +{ ( ) ( )}c x l c x l l1
2

1
2

 
J

c x l lA t c x l lA t

A t
∝

− − +( ) ( )1
2

1
2Δ Δ

Δ

1
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The following table summarizes the equations developed in this chapter.

Property

Relation between rate constants and equilibrium 
constants

Relaxation time of a temperature jump applied to 
a reaction A f B at equilibrium

Ratio of product concentrations for a reaction under 
kinetic control

Relation between the rate constant of a diffusion-
controlled reaction and the viscosity

Fick’s first law of diffusion

Fick’s second law of diffusion

Root mean square distance d travelled by a diffusing 
molecule in a time t

Einstein–Smoluchowski equation for the diffusion 
coefficient

Einstein relation for the temperature dependence 
of the diffusion coefficient

Rate of enzymolysis according to the Michaelis–
Menten mechanism

Equation for the analysis of enzyme kinetics with a 
Lineweaver–Burk plot

Turnover frequency or catalytic constant of an enzyme

Catalytic efficiency of an enzyme

Equation

K = [B]eq /[A]eq = kr /kr′

1/τ = kr + kr′, with K = kr /kr′

[P2]/[P1] = kr,2/kr,1

kr,d = 8RT/3h

J = −D × concentration gradient

Rate of change of concentration
in a region = D × (curvature of
the concentration in the region)

d = (2Dt)1/2

D = l2/2τ

D = kT/6pha with h = h0e
Ea /RT

v = [S]vmax/([S] + KM)

1/v = 1/vmax + (KM/vmax)/[S]

kcat = vmax/[E]0

h = kcat /KM

Comment

First-order forward and reverse
reactions (but applies generally
with inclusion of c-)

First-order forward and reverse
reactions

Overall second-order reactions
leading to products P1 and P2

Stokes law applies

Molecular random walk

Random walk with l the length
of each step and t the time
between steps

Diffusion with activation 
energy Ea

vmax = kb[E]0 and KM = (ka′ + kb)/ka

The Michaelis–Menten
mechanism applies

The Michaelis–Menten
mechanism applies

The Michaelis–Menten
mechanism applies

Table of key equations
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We now express the two concentrations in terms of the
concentration at the window itself, c(x), and the concentra-
tion gradient, Δc/Δx, as follows:

From which it follows that

On writing the constant of proportionality as D (and ab-
sorbing l2 into it), we obtain eqn 11.18b.

2. Fick’s second law. Consider the arrangement in Fig. 11.19.
The number of solute particles passing through the window
of area A located at x in an interval Δt is J(x)AΔt, where J(x)
is the flux at the location x. The number of particles pass-
ing out of the region through a window of area A at a short
distance away, at x + Δx, is J(x + Δx)AΔt, where J(x + Δx) is
the flux at the location of this window. The flux in and the
flux out will be different if the concentration gradients are
different at the two windows. The net change in the num-
ber of solute particles in the region between the two win-
dows is

Net change in number = J(x)AΔt − J(x + Δx)AΔt
= {J(x) − J(x + Δx)}AΔt

Now we express the flux at x + Δx in terms of the flux at x
and the gradient of the flux, ΔJ/Δx:

It follows that
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Δxx The change in concentration inside the region between the

two windows is the net change in number divided by the
volume of the region (which is AΔx), and the net rate of
change is obtained by dividing that change in concentration
by the time interval Δt. Therefore, on dividing by both Aδx
and Δt we obtain

Finally, we express the flux by using Fick’s first law:

Rate of change of concentration

The ‘gradient of the gradient’ of the concentration is what
we have called the ‘curvature’ of the concentration, and
thus we obtain eqn 11.19.

Slightly more formally, on writing the concentration as
Δc/Δx and the rate of change of concentration as Δc/Δt, the
last expression becomes

This expression becomes more exact as the intervals Δx and
Δt become smaller, and in the limit of them becoming
infinitesimal it becomes

which is the mathematical statement of eqn 11.19.
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Fig. 11.18 The calculation of the rate of diffusion considers
the net flux of molecules through a plane of area A as a result
of arrivals from on average a distance l in each direction.1
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Fig. 11.19 To calculate the change in concentration in the 
region between the two walls, we need to consider the net
effect of the influx or particles from the left and their efflux 
towards the right. Only if the slope of the concentrations is
different at the two walls will there be a net change.
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Questions and exercises

Discussion questions

11.1 Sketch, without carrying out the calculation, the variation
of concentration with time for the approach to equilibrium
when both forward and reverse reactions are second-order.
How does your graph differ from that in Fig. 11.1?

11.2 Assess the validity of the following statement: the 
rate-determining step is the slowest step in a reaction 
mechanism.

11.3 Specify the pre-equilibrium and steady-state approxima-
tions and explain why they might lead to different conclusions.

11.4 Distinguish between kinetic and thermodynamic con-
trol of a reaction. Suggest criteria for expecting one rather
than the other.

11.5 Why may some gas-phase reactions show first-order 
kinetics?

11.6 Discuss the features, applications, and limitations of
the Michaelis–Menten mechanism of enzyme action.

11.7 Prepare a report on the application of the experimental
strategies described in Chapter 10 to the study of enzyme-
catalysed reactions. Devote some attention to the following
topics: (a) the determination of reaction rates over a large
timescale; (b) the determination of the rate constants and
equilibrium constant of binding of substrate to an enzyme,
and (c) the characterization of intermediates in a catalytic
cycle. Your report should be similar in content and extent to
one of the Boxes found throughout this text.

Exercises

11.1 The equilibrium constant for the attachment of a sub-
strate to the active site of an enzyme was measured as 200.
In a separate experiment, the rate constant for the second-
order attachment was found to be 1.5 × 108 dm3 mol−1 s−1.
What is the rate constant for the loss of the unreacted sub-
strate from the active site.

11.2 The equilibrium NH3(aq) + H2O(l) f NH4
+(aq) + OH−(aq)

at 25°C is subjected to a temperature jump that slightly 
increased the concentration of NH4

+(aq) and OH−(aq). The
measured relaxation time is 7.61 ns. The equilibrium constant
for the system is 1.78 × 10−5 at 25°C, and the equilibrium con-
centration of NH3(aq) is 0.15 mol dm−3. Calculate the rate
constants for the forward and reverse steps.

11.3 Two radioactive nuclides decay by successive first-order
processes:

X 22.5 d Y 33.0 d Z

The times are half-lives in days. Suppose that Y is an isotope
that is required for medical applications. At what time after X
is first formed will Y be most abundant?

11.4 The reaction 2 H2O2(aq) → 2 H2O(l) + O2(g) is catalysed
by Br− ions. If the mechanism is

H2O2 + Br− → H2O + BrO− (slow)

BrO− + H2O2 → H2O + O2 + Br− (fast)

give the predicted order of the reaction with respect to the
various participants.

11.5 The reaction mechanism

A2 f A + A (fast)

A + B → P (slow)

involves an intermediate A. Deduce the rate law for the for-
mation of P.

11.6 Consider the following mechanism for formation of a
double helix from its strands A and B:

A + B f unstable helix (fast)

unstable helix → stable double helix (slow)

Derive the rate equation for the formation of the double helix
and express the rate constant of the reaction in terms of the
rate constants of the individual steps. What would be your
conclusion if the pre-equilibrium assumption was replaced by
the steady-state approximation?

11.7 The following mechanism has been proposed for the
decomposition of ozone in the atmosphere:

(1) O3 → O2 + O and its reverse (k1, k1′)

(2) O + O3 → O2 + O2 (k2; the reverse reaction is neg-
ligibly slow)

Use the steady-state approximation, with O treated as the 
intermediate, to find an expression for the rate of decomposi-
tion of O3. Show that if step 2 is slow, then the rate is second
order in O3 and −1 order in O2.

11.8 Deduce the rate law for a reaction with the following
mechanism, where M is an inert species, and identify any 
approximations you make. Suggest an experimental proced-
ure that may either support or refute the mechanism.

A + M → A* + M Rate of formation of A* = ka[A][M]

A* + M → A + M Rate of deactivation of A* = ka′ [A*][M]

A* → P Rate of formation of P = kb[A*]

11.9 Deduce the rate law for a reaction with the mechanism
specified in the preceding exercise but in which A can also
participate in the activation of A and the deactivation of A*.
Suggest an experimental procedure that may either support
or refute the mechanism.

11.10 Two products are formed in reactions in which there is
kinetic control of the ratio of products. The activation energy
for the reaction leading to Product 1 is greater than that lead-
ing to Product 2. Will the ratio of product concentrations
[P1]/[P2] increase or decrease if the temperature is raised?
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11.11 The effective rate constant for a gaseous reaction that
has a Lindemann–Hinshelwood mechanism is 2.50 × 10−4 s−1

at 1.30 kPa and 2.10 × 10−5 s−1 at 12 Pa. Calculate the rate
constant for the activation step in the mechanism.

11.12 Calculate the magnitude of the diffusion-controlled
rate constant at 298 K for a species in (a) water, (b) pentane.
The viscosities are 1.00 × 10−3 kg m−1 s−1, and 2.2 × 10−4 kg
m−1 s−1, respectively. 

11.13 What is (a) the flux of nutrient molecules down a 
concentration gradient of 0.10 mol dm−3 m−1, (b) the amount
of molecules (in moles) passing through an area of 5.0 mm2

in 1.0 min? Take for the diffusion coefficient the value for 
sucrose in water (5.22 × 10−10 m2 s−1).

11.14 How long does it take a sucrose molecule in water 
at 25°C to diffuse along a single dimension by (a) 10 mm, 
(b) 10 cm, (d) 10 m from its starting point? 

11.15 The mobility of species through fluids is of the greatest
importance for nutritional processes. (a) Estimate the diffusion
coefficient for a molecule that leaps along a single dimension
by 150 pm each 1.8 ps. (b) What would be the diffusion coeffi-
cient if the molecule travelled only half as far on each step?

11.16 Is diffusion important in lakes? How long would it take
a small pollutant molecule about the size of H2O to diffuse
across a lake of width 100 m?

11.17 Pollutants spread through the environment by convec-
tion (winds and currents) and by diffusion. How many steps
must a molecule take to be likely to be found 1000 step
lengths away from its origin if it undergoes a one-dimensional
random walk?

11.18 The viscosity of water at 20°C is 1.0019 mN s m−2 and
at 30°C it is 0.7982 mN s m−2. What is the activation energy
for the motion of water molecules?

11.19 Calculate the ratio of rates of catalysed to noncata-
lysed reactions at 37°C given that the Gibbs energy of activa-
tion for a particular reaction is reduced from 150 kJ mol−1 to
15 kJ mol−1.

11.20 The condensation reaction of acetone, (CH3)2CO (pro-
panone), in aqueous solution is catalysed by bases, B, which
react reversibly with acetone to form the carbanion C3H5O

−.
The carbanion then reacts with a molecule of acetone to give
the product. A simplified version of the mechanism is

(1) AH + B → BH+ + A−

(2) A− + BH+ → AH + B

(3) A− + HA → product

where AH stands for acetone and A− its carbanion. Use the
steady-state approximation to find the concentration of the
carbanion and derive the rate equation for the formation of
the product.

11.21 Consider the acid-catalysed reaction

HA + H+ g HAH+ (fast)

HAH+ + B → BH+ + AH (slow)

Deduce the rate law and show that it can be made independ-
ent of the specific term [H+].

11.22 As remarked in Derivation 11.6, Michaelis and Menten
derived their rate law by assuming a rapid pre-equilibrium of
E, S, and ES. Derive the rate law in this manner, and identify
the conditions under which it becomes the same as that
based on the steady-state approximation (eqn 11.25).

11.23 The enzyme-catalysed conversion of a substrate at
25°C has a Michaelis constant of 0.045 mol dm−3. The rate of
the reaction is 1.15 mmol dm−3 s−1 when the substrate con-
centration is 0.110 mol dm−3. What is the maximum velocity
of this reaction? 

11.24 The enzyme-catalysed conversion of a substrate at
25°C has a Michaelis constant of 0.015 mol dm−3 and a max-
imum velocity of 4.25 × 10−4 mol dm−3 s−1 when the enzyme
concentration is 3.60 × 10−9 mol dm−3. Calculate kcat and the
catalytic efficiency h. Is the enzyme ‘catalytically perfect’?

11.25 The following results were obtained for the action of
an ATPase on ATP at 20°C, when the concentration of the
ATPase is 20 nmol dm−3:

[ATP]/(mmol dm−3) 0.60 0.80 1.4 2.0 3.0

v/(mmol dm−3 s−1) 0.81 0.97 1.30 1.47 1.69

Determine the Michaelis–Menten constant, the maximum
velocity of the reaction, and the maximum turnover number
of the enzyme.

11.26 There are different ways to represent and analyse data
for enzyme catalysed reactions. For example, in the Eadie–
Hofstee plot, V/[S]0 is plotted against V. Alternatively, in the
Hanes plot V/[S]0 is plotted against [S]0. (a) Use the simple
Michaelis–Menten mechanism to derive relations between
V/[S]0 and V and between V/[S]0 and [S]0. (b) Discuss how 
the values of KM and Vmax are obtained from analysis of the
Eadie–Hofstee and Hanes plots. (c) Determine the Michaelis
constant and the maximum velocity of the reaction from
Problem 11.25 by using Eadie–Hofstee and Hanes plots to
analyse the data.

11.27 Consider the following chain mechanism:

(1) AH → A· + H·

(2) A· → B· + C

(3) AH + B· → A· + D

(4) A· + B· → P

Identify the initiation, propagation, and termination steps,
and use the steady-state approximation to deduce that the
decomposition of AH is first order in AH.

11.28 Consider the following mechanism for the thermal 
decomposition of R2:

(1) R2 → R + R

(2) R + R2 → PB + R′

(3) R′ → PA + R

(4) R + R → PA + PB
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where R2, PA, and PB are stable hydrocarbons and R and R′
are radicals. Find the dependence of the rate of decomposi-
tion of R2 on the concentration of R2.

11.29 (a) Confirm eqn 11.35 for the rate of formation of HBr.
(b) What are the orders of the reaction (with respect to each
species) when the concentration of HBr is (i) very low, (ii) very
high. Suggest an interpretation in each case.

Projects

The symbol ‡ indicates that calculus is required.

11.30‡ Here we explore more quantitatively the kinetic ana-
lysis of a reaction approaching equilibrium. (a) Confirm (by dif-
ferentiation) that the expressions in eqn 11.2 are the correct
solutions of the rate laws for approach to equilibrium. (b) Find
the solutions of the same rate laws that led to eqn 11.2, but
for some B present initially. Go on to confirm that the solu-
tions you find reduce to those in eqn 11.2 when [B]0 = 0.

11.31‡ Complete the kinetic analysis of consecutive reac-
tions by confirming that the three expressions in eqn 11.5 are
correct solutions of the rate laws for consecutive first-order
reactions.

11.32 Consider a mechanism for the helix–coil transition of 
a polymeric chain in which initiation occurs in the middle of
the chain:

hhhh. . . g hchh. . .

hchh. . . g cccc. . .

We saw in Box 11.1 that this type of initiation is relatively
slow, so neither step may be rate-determining. (a) Set up the
rate equations for this alternative mechanism. (b) Apply the
steady-state approximation and show that, under these 
circumstances, the mechanism is equivalent to hhhh. . . g
cccc. . . (c) Use your knowledge of experimental techniques
and your results from the previous exercise to support or 
refute the following statement: It is very difficult to obtain 
experimental evidence for intermediates in protein folding by
performing simple rate measurements and one must resort
to special time-resolved or trapping techniques to detect 
intermediates directly.

11.33 Here we explore chain reactions in more detail. (a) Refer
to the illustration in Box 11.2 and determine the pressure range
for a chain-branching explosion in the hydrogen–oxygen re-
action at (i) 700 K and (ii) 900 K. (b) Suppose that a reaction
mechanism (such as that for the reaction of hydrogen and
oxygen) gives the following expressions for the time depend-
ence of the concentration of H atoms:

Low O2 concentration:

High O2 concentration:

where Vinitiation is the rate at which H atoms are formed in an
initiation step. Plot graphs of these functions and identify the
conditions for an explosion.
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The phenomena of chemistry cannot be understood
thoroughly without a firm understanding of the prin-
cipal concepts of quantum mechanics, the most fun-
damental description of matter that we currently
possess. The same is true of virtually all the spectro-
scopic techniques that are now so central to investi-
gations of composition and structure. Present-day
techniques for studying chemical reactions have 
progressed to the point where the information is so
detailed that quantum mechanics has to be used in 
its interpretation. And, of course, the very currency
of chemistry—the electronic structures of atoms and
molecules—cannot be discussed without making use
of quantum-mechanical concepts.

The role—indeed, the existence—of quantum 
mechanics was appreciated only during the twentieth
century. Until then it was thought that the motion of
atomic and subatomic particles could be expressed in
terms of the laws of classical mechanics introduced
in the seventeenth century by Isaac Newton (see
Appendix 3), as these laws were very successful at 
explaining the motion of planets and everyday 
objects such as pendulums and projectiles. However,
towards the end of the nineteenth century, experi-
mental evidence accumulated showing that classical
mechanics failed when it was applied to very small
particles, such as individual atoms, nuclei, and 
electrons, and when the transfers of energy were very
small. It took until 1926 to identify the appropriate
concepts and equations for describing them.

Three crucial experiments

Quantum theory emerged from a series of observa-
tions made during the late nineteenth century. As far
as we are concerned, there are three crucially import-
ant experiments. One shows—contrary to what had
been supposed for two centuries—that energy can be
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transferred between systems only in discrete amounts.
Another showed that electromagnetic radiation
(light), which had long been considered to be a wave,
in fact behaved like a stream of particles. A third
showed that electrons, which since their discovery 
in 1897 had been supposed to be particles, in fact 
behaved like waves. In this section we review these
three experiments and establish the properties that a
valid system of mechanics must accommodate.

12.1 Atomic and molecular spectra:
discrete energies

A spectrum is a display of the frequencies or wave-
lengths (which are related by λ = c/k) of electro-
magnetic radiation that are absorbed or emitted by
an atom or molecule. Figure 12.1 shows a typical
atomic emission spectrum and Fig. 12.2 shows a 
typical molecular absorption spectrum. The obvious

feature of both is that radiation is absorbed or emitted
at a series of discrete frequencies. The emission of
light at discrete frequencies can be understood if we
suppose that

• The energy of the atoms or molecules is confined
to discrete values, as then energy can be discarded
or absorbed only in packets as the atom or mole-
cule jumps between its allowed states (Fig. 12.3).

• The frequency of the radiation is related to the 
energy difference between the initial and final states.

The simplest assumption is the Bohr frequency rela-
tion, that the frequency k (nu) is directly proportional
to the difference in energy ΔE, and that we can write

ΔE = hk (12.1)

where h is the constant of proportionality. The 
additional evidence that we describe below confirms
this simple relation and gives the value h = 6.626 ×
10−34 J s. This constant is now known as Planck’s
constant, for it arose in a context that had been sug-
gested by the German physicist Max Planck.

A brief illustration The bright yellow light emitted 
by sodium atoms in some street lamps has wavelength
590 nm. Wavelength and frequency are related by V = c /l,
so the light is emitted when an atom loses an energy 
DE = hc/l. In this case,

= 3.4 × 10−19 J

or 0.34 aJ (corresponding to 2.1 eV).

At this point we can conclude that one feature of
nature that any system of mechanics must accommod-
ate is that the internal modes of atoms and mole-
cules can possess only certain energies; that is, these
modes are quantized.
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Fig. 12.1 A region of the spectrum of radiation emitted by 
excited iron atoms consists of radiation at a series of discrete
wavelengths (or frequencies).
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Fig. 12.2 When a molecule changes its state, it does so by
absorbing radiation at definite frequencies. This spectrum is
part of that due to sulfur dioxide (SO2) molecules. This observa-
tion suggests that molecules can possess only discrete 
energies, not a continuously variable energy. Later we shall
see that the shape of this curve is due to a combination of
electronic and vibrational transitions of the molecule.
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Fig. 12.3 Spectral lines can be accounted for if we assume
that a molecule emits a photon as it changes between 
discrete energy levels. High-frequency radiation is emitted
when the two states involved in the transition are widely sep-
arated in energy; low-frequency radiation is emitted when
the two states are close in energy.
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12.2 The photoelectric effect: 
light as particles

By the middle of the nineteenth century, the generally
acceptable view was that electromagnetic radiation
is a wave (see Appendix 3). There was a great deal of
compelling information that supported this view,
specifically that light underwent diffraction, the 
interference between waves caused by an object in
their path, and that results in a series of bright and
dark fringes where the waves are detected. However,
evidence emerged that suggested that radiation can
be interpreted as a stream of particles. The crucial 
experimental information came from the photoelec-
tric effect, the ejection of electrons from metals when
they are exposed to ultraviolet radiation (Fig. 12.4).
The characteristics of the photoelectric effect are as
follows:

1. No electrons are ejected, regardless of the inten-
sity of the radiation, unless the frequency exceeds
a threshold value characteristic of the metal.

2. The kinetic energy of the ejected electrons varies
linearly with the frequency of the incident radi-
ation but is independent of its intensity.

3. Even at low light intensities, electrons are ejected
immediately if the frequency is above the thresh-
old value.

A brief comment We say that y varies linearly with x if the
relation between them is y = a + bx; we say that y is propor-
tional to x if the relation is y = bx.

These observations strongly suggest an interpretation
of the photoelectric effect in which an electron is
ejected in a collision with a particle-like projectile,
provided the projectile carries enough energy to

expel the electron from the metal. If we suppose that
the projectile is a photon of energy hk, where k is 
the frequency of the radiation, then the conservation
of energy requires that the kinetic energy, Ek, of the
electron (which is equal to mev

2, when the speed 
of the electron is v) should be equal to the energy sup-
plied by the photon less the energy Φ (uppercase phi)
required to remove the electron from the metal 
(Fig. 12.5):

Ek = hk − Φ (12.2)

The quantity Φ is called the work function of the metal,
the analogue of the ionization energy of an atom.
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Photoelectrons

UV
radiation

Metal

Fig. 12.4 The experimental arrangement to demonstrate the
photoelectric effect. A beam of ultraviolet radiation is used to
irradiate a patch of the surface of a metal, and electrons are
ejected from the surface if the frequency of the radiation is
above a threshold value that depends on the metal.
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Fig. 12.5 In the photoelectric effect, an incoming photon
brings a definite quantity of energy, hV. It collides with an
electron close to the surface of the metal target, and trans-
fers its energy to it. The difference between the work func-
tion, F, and the energy hV appears as the kinetic energy of
the ejected electron.

Self-test 12.1

The work function of rubidium is 2.09 eV (1 eV = 1.60 ×
10−19 J). Can blue (470 nm) light eject electrons from the
metal?

[Answer: yes]

When hk < Φ, photoejection (the ejection of 
electrons by light) cannot occur because the photon
supplies insuAcient energy to expel the electron: this
conclusion is consistent with observation 1. Equa-
tion 12.2 predicts that the kinetic energy of an ejected
electron should increase linearly with the frequency,
in agreement with observation 2. When a photon col-
lides with an electron, it gives up all its energy, so we
should expect electrons to appear as soon as the col-
lisions begin, provided the photons carry suAcient
energy: this conclusion agrees with observation 3.

Thus, the photoelectric effect is strong evidence for
the particle-like nature of light and the existence of
photons. Moreover, it provides a route to the deter-
mination of h, for a plot of Ek against k is a straight
line of slope h.
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12.3 Electron diffraction: 
electrons as waves

The photoelectric effect shows that light has certain
properties of particles. Although contrary to the
long-established wave theory of light, a similar view
had been held before, but discarded. No significant
scientist, however, had taken the view that matter is
wave-like. Nevertheless, experiments carried out in
the early 1920s forced people to question even that
conclusion. The crucial experiment was performed
by the American physicists Clinton Davisson and
Lester Germer, who observed the diffraction of elec-
trons by a crystal (Fig. 12.6).

There was an understandable confusion—which
continues to this day—about how to combine both
aspects of matter into a single description. Some
progress was made by Louis de Broglie when, in
1924, he suggested that any particle travelling with a
linear momentum, p = mv, should have (in some
sense) a wavelength λ given by what we now call the
de Broglie relation:

(12.3)

The wave corresponding to this wavelength, what de
Broglie called a ‘matter wave’, has the mathematical
form sin(2πx/λ). The de Broglie relation implies that
the wavelength of a ‘matter wave’ should decrease as
the particle’s speed increases (Fig. 12.7). Equation
12.3 was confirmed by the Davisson–Germer experi-
ment, as the wavelength it predicts for the electrons
they used in their experiment agrees with the details
of the diffraction pattern they observed.

λ =
h
p

Metal

Electron
beam

Diffracted
electrons

Fig. 12.6 In the Davisson–Germer experiment, a beam of
electrons was directed on a single crystal of nickel, and the
scattered electrons showed a variation in intensity with angle
that corresponded to the pattern that would be expected if
the electrons had a wave character and were diffracted by
the layers of atoms in the solid.

λ

λ
Short wavelength,
high momentum

Long wavelength,
low momentum

Fig. 12.7 According to the de Broglie relation, a particle 
with low momentum has a long wavelength, whereas a 
particle with high momentum has a short wavelength. A high 
momentum can result either from a high mass or from a high
velocity (because p = mv). Macroscopic objects have such
large masses that, even if they are travelling very slowly, their
wavelengths are undetectably short.

Example 12.1

Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been 
accelerated from rest through a potential difference of
1.00 kV.

Strategy We need to establish a string of relations: from
the potential difference we can deduce the kinetic en-
ergy acquired by the accelerated electron; then we need
to find the electron’s linear momentum from its kinetic
energy; finally, we use that linear momentum in the de
Broglie relation to calculate the wavelength.

Solution The kinetic energy acquired by an electron of
charge −e accelerated from rest by falling through a 
potential difference V is

Ek = eV

Because Ek = mev2 and p = mev the linear momentum is
related to the kinetic energy by p = (2meEk)

1/2 and therefore

p = (2meeV )1/2

This is the expression we use in the de Broglie relation,
which becomes

At this stage, all we need do is to substitute the data and
use the relations 1 C V = 1 J and 1 J = 1 kg m2 s−2:

l =

=

= 3.88 × 10−11 m

J s

(kg C V)1/2

6.626 × 10−34

{2 × (9.110 × 10−31) × (1.602 × 10−19) × (1.00 × 103)}1/2

6.626 × 10−34 J s

{2 × (9.110 × 10−31 kg) × (1.602 × 10−19 C) × (1.00 × 103 V)}1/2

  
l =

h
m eV( ) /2 1 2

e

1
2
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The Davisson–Germer experiment, which has
since been repeated with other particles (including
molecular hydrogen and C60), shows clearly that
‘particles’ have wave-like properties. We have also
seen that ‘waves’ have particle-like properties. Thus,
we are brought to the heart of modern physics. When
examined on an atomic scale, the concepts of particle
and wave melt together, particles taking on the char-
acteristics of waves, and waves the characteristics of
particles. This joint wave–particle character of mat-
ter and radiation is called wave–particle duality. It
will be central to all that follows.

The dynamics of microscopic

systems

How can we accommodate the fact that atoms and
molecules exist with only certain energies, waves ex-
hibit the properties of particles, and particles exhibit
the properties of waves?

We shall take the de Broglie relation as our starting
point, and abandon the classical concept of particles
moving along ‘trajectories’, precise paths at definite
speeds. From now on, we adopt the quantum- 
mechanical view that a particle is spread through
space like a wave. To describe this distribution, we
introduce the concept of a wavefunction, ψ (psi), in
place of the precise path, and then set up a scheme for
calculating and interpreting ψ. A ‘wavefunction’ is
the modern term for de Broglie’s ‘matter wave’. To 
a very crude first approximation, we can visualize 
a wavefunction as a blurred version of a path 
(Fig. 12.8); however, we refine this picture consider-
ably in the following sections.

12.4 The Schrödinger equation

In 1926, the Austrian physicist Erwin Schrödinger
proposed an equation for calculating wavefunc-
tions. The Schrödinger equation, specifically the time-
independent Schrödinger equation, for a single particle
of mass m moving with energy E in one dimension is

(12.4a)

In this expression V(x) is the potential energy; H
(which is read h-bar) is a convenient modification of
Planck’s constant:

The term proportional to d2ψ /dx2 is closely related to
the kinetic energy (so that its sum with V is the total
energy, E). Mathematically, it can be interpreted as
the way of measuring the curvature of the wavefunc-
tion at each point. Thus, if the wavefunction is sharply
curved, then d2ψ /dx2 is large; if it is only slightly
curved, then d2ψ /dx2 is small. We shall develop this
interpretation later: just keep it in mind for now.

You will often see eqn 12.4 written in the very
compact form

Ĥψ = Eψ (12.4b)

where ‘ Ĥψ ’ stands for everything on the left of eqn
12.4a. The quantity  ̂H is called the hamiltonian of the
system after the mathematician William Hamilton
who had formulated a version of classical mechanics
that used the concept. It is written with a ^ to signify
that it is an ‘operator’, something that acts in a par-
ticular way on ψ rather than just multiplying it (as E

  
H = = × −h
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The wavelength of 38.8 pm is comparable to typical
bond lengths in molecules (about 100 pm). Electrons 
accelerated in this way are used in the technique of 
electron diffraction, in which the diffraction pattern 
generated by interference when a beam of electrons
passes through a sample is interpreted in terms of the 
locations of the atoms.

Self-test 12.2

Calculate the wavelength of an electron in a 10 MeV
particle accelerator (1 MeV = 106 eV; 1 eV (electron-
volt) = 1.602 × 10−19 J; energy units are described in
Appendix 1).

[Answer: 0.39 pm]

Trajectory

Wavefunction

Fig. 12.8 According to classical mechanics, a particle may
have a well-defined trajectory, with a precisely specified posi-
tion and momentum at each instant (as represented by the
precise path in the diagram). According to quantum mechanics,
a particle cannot have a precise trajectory; instead, there is
only a probability that it may be found at a specific location at
any instant. The wavefunction that determines its probability
distribution is a kind of blurred version of the trajectory. Here,
the wavefunction is represented by areas of shading: the
darker the area, the greater the probability of finding the par-
ticle there.
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multiplies ψ in Eψ); see Derivation 12.1. You should
be aware that a lot of quantum mechanics is formu-
lated in terms of various operators, but we shall not
encounter them again in this text.1

For a justification of the form of the Schrödinger
equation, see Derivation 12.1. The fact that the
Schrödinger equation is a ‘differential equation’, an
equation in terms of the derivatives of a function,
should not cause too much consternation for we
shall simply quote the solutions and not go into the
details of how they are found. The rare cases where
we need to see the explicit forms of its solution will
involve very simple functions.

A brief illustration Three simple but important cases,
but not putting in various constants are as follows:

• The wavefunction for a freely moving particle is sin x,
exactly as for de Broglie’s matter wave.

• The wavefunction for a particle free to oscillate to-and-
fro near a point is e−x2, where x is the displacement
from the point.

• The wavefunction for an electron in the lowest energy
state of a hydrogen atom is e−r, where r is the distance
from the nucleus.

As can be seen, none of these wavefunctions is particu-
larly complicated mathematically.

12.5 The Born interpretation

Before going any further, it will be helpful to under-
stand the physical significance of a wavefunction.
The interpretation that is widely used is based on a
suggestion made by the German physicist Max Born.
He made use of an analogy with the wave theory of
light, in which the square of the amplitude of an elec-
tromagnetic wave is interpreted as its intensity and
therefore (in quantum terms) as the number of photons
present. He argued that, by analogy, the square of a
wavefunction gives an indication of the probability
of finding a particle in a particular region of space.
To be precise, the Born interpretation asserts that:

Derivation 12.1

A justification of the Schrödinger equation

We can justify the form of the Schrödinger equation to a
certain extent by showing that it implies the de Broglie
relation for a freely moving particle. By free motion we
mean motion in a region where the potential energy is
zero (V = 0 everywhere). Then, eqn 12.4a simplifies to

(12.5a)

A solution of this equation is

y = sin(kx)

as may be verified by substitution of the solution into
both sides of the equation and using
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1 See, for instance, our Physical chemistry (2006).

Thus:

The final term is equal (according to the Schrödinger
equation) to Ey, so we can recognize that E = k222/2m
and therefore that k = (2mE )1/2/2.

The function sin(kx) is a wave of wavelength l = 2p/k,
as we can see by comparing sin(kx) with sin(2px /l), the
standard form of a harmonic wave with wavelength l
(Fig. 12.9). Next, we note that the energy of the particle
is entirely kinetic (because V = 0 everywhere), so the
total energy of the particle is just its kinetic energy:

Because E is related to k by E = k222/2m, it follows 
from a comparison of the two equations that p = k2.
Therefore, the linear momentum is related to the wave-
length of the wavefunction by

which is the de Broglie relation. We see, in the case of a
freely moving particle, that the Schrödinger equation has
led to an experimentally verified conclusion.
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Fig. 12.9 The wavelength of a harmonic wave of the
form sin(2px /l). The amplitude of the wave is the maxi-
mum height above the centre line.
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The probability of finding a particle in a small 
region of space of volume δV is proportional to
ψ 2δV, where ψ is the value of the wavefunction in
the region.

In other words, ψ 2 is a probability density. As for
other kinds of density, such as mass density (ordinary
‘density’), we get the probability itself by multiplying
the probability density ψ 2 by the volume δV of the 
region of interest.

A note on good practice The symbol d is used to indicate
a small (and, in the limit, infinitesimal) change in a parameter,
as in x changing to x + dx. The symbol D is used to indicate a
finite (measurable) difference between two quantities, as in
DX = Xfinal − Xinitial.

A brief comment We are supposing throughout that y is 
a real function (that is, one that does not depend on i, the
square-root of −1). In general, y is complex (has both real and
imaginary components); in such cases y2 is replaced by y*y,
where y* is the complex conjugate of y. We do not consider
complex functions in this book.2

For a small ‘inspection volume’ δV of given size,
the Born interpretation implies that wherever ψ2 is
large, there is a high probability of finding the par-
ticle. Wherever ψ2 is small, there is only a small chance
of finding the particle. The density of shading in 
Fig. 12.10 represents this probabilistic interpretation,
an interpretation that accepts that we can make 
predictions only about the probability of finding a
particle somewhere. This interpretation is in contrast
to classical physics, which claims to be able to predict
precisely that a particle will be at a given point on its
path at a given instant.
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Fig. 12.10 (a) A wavefunction does not have a direct physical
interpretation. However, (b) its square tells us the probability
of finding a particle at each point. The probability density 
implied by the wavefunction shown here is depicted by the
density of shading in (c).

2 For the role, properties, and interpretation of complex wave-
functions, see our Physical chemistry (2006).

Example 12.2

Interpreting a wavefunction

The wavefunction of an electron in the lowest energy
state of a hydrogen atom is proportional to e−r/a0, with 
a0 = 52.9 pm and r the distance from the nucleus 
(Fig. 12.11). Calculate the relative probabilities of finding
the electron inside a small cubic volume located at (a) the
nucleus, (b) a distance a0 from the nucleus.
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Fig. 12.11 The wavefunction for an electron in the ground
state of a hydrogen atom is an exponentially decaying
function of the form e−r /a0, where a0 is the Bohr radius.

Self-test 12.3

The wavefunction for the lowest energy state in the
ion He+ is proportional to e−2r /a0. Repeat the calcula-
tion for this ion. Any comment?

[Answer: 55; a more compact wavefunction on
account of the higher nuclear charge]

Strategy The probability is proportional to y2dV evaluated
at the specified location. The volume of interest is so
small (even on the scale of the atom) that we can ignore
the variation of y within it and write

Probability ∝ y2dV

with y evaluated at the point in question.

Solution (a) At the nucleus, r = 0, so there y2 ∝ 1.0 
(because e0 = 1) and the probability is proportional to 
1.0 × dV. (b) At a distance r = a0 in an arbitrary direction,
y2 ∝ e−2 × dV = 0.14 × dV. Therefore, the ratio of prob-
abilities is 1.0/0.14 = 7.1. It is more probable (by a factor 
of 7.1) that the electron will be found at the nucleus than
in the same tiny volume located at a distance a0 from 
the nucleus.
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There is more information embedded in ψ than the
probability that a particle will be found at a location.
We saw a hint of that in the discussion of eqn 12.4
when we identified the first term as an indication of
the relation between the kinetic energy of the particle
and the curvature of the wavefunction: if the wave-
function is sharply curved, then the particle it de-
scribes has a high kinetic energy; if the wavefunction
has only a low curvature, then the particle has only a
low kinetic energy. This interpretation is consistent
with the de Broglie relation, as a short wavelength
corresponds to both a sharply curved wavefunction
and a high linear momentum and therefore a high 
kinetic energy (Fig. 12.12). For more complicated
wavefunctions, the curvature changes from point to
point, and the total contribution to the kinetic energy
is an average over the entire region of space.

The central point to remember is that the wave-
function contains all the dynamical information
about the particle it describes. By ‘dynamical’ we
mean all aspects of the particle’s motion. Its ampli-
tude at any point tells us the probability density of
the particle at that point and other details of its shape
tells us all that it is possible to know about other 
aspects of its motion, such as its momentum and its
kinetic energy.

The Born interpretation has a further important
implication: it helps us identify the conditions that a
wavefunction must satisfy for it to be acceptable:

1. It must be single valued (that is, have only a single
value at each point): there cannot be more than
one probability density at each point.

2. It cannot become infinite over a finite region of
space: the total probability of finding a particle in
a region cannot exceed 1.

These conditions turn out to be satisfied if the wave-
function takes on particular values at various points,
such as at a nucleus, at the edge of a region, or at
infinity. That is, the wavefunction must satisfy cer-
tain boundary conditions, values that the wavefunc-
tion must adopt at certain positions. We shall see
plenty of examples later. Two further conditions
stem from the Schrödinger equation itself, which
could not be written unless:

3. The wavefunction is continuous everywhere.

4. It has a continuous slope everywhere.

These last two conditions mean that the ‘curvature’
term, the first term in eqn 12.4, is well defined 
everywhere. All four conditions are summarized in
Fig. 12.13.

These requirements have a profound implication.
One feature of the solution of any given Schrödinger
equation, a feature common to all differential equa-
tions, is that an infinite number of possible solutions
are allowed mathematically. For instance, if sin x is 
a solution of the equation, then so too is a sin(bx),
where a and b are arbitrary constants, with each 
solution corresponding to a particular value of E.
However, it turns out that only some of these solu-
tions fulfill the requirements stated above. Suddenly,
we are at the heart of quantum mechanics: the fact
that only some solutions are acceptable, together with
the fact that each solution corresponds to a character-
istic value of E, implies that only certain values of the
energy are acceptable. That is, when the Schrödinger
equation is solved subject to the boundary conditions
that the solutions must satisfy, we find that the energy
of the system is quantized (Fig. 12.14).
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Fig. 12.12 The observed kinetic energy of a particle is the 
average of contributions from the entire space covered by
the wavefunction. Sharply curved regions contribute a high
kinetic energy to the average; slightly curved regions con-
tribute only a small kinetic energy.
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Fig. 12.13 These wavefunctions are unacceptable because
(a) it is not single-valued, (b) it is infinite over a finite range, 
(c) it is not continuous, (d) its slope is not continuous.
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12.6 The uncertainty principle

We have seen that, according to the de Broglie relation,
a wave of constant wavelength, the wavefunction
sin(2πx/λ), corresponds to a particle with a definite
linear momentum p = h/λ. However, a wave does not
have a definite location at a single point in space, so
we cannot speak of the precise position of the particle
if it has a definite momentum. Indeed, because a sine
wave spreads throughout the whole of space we can-
not say anything about the location of the particle:
because the wave spreads everywhere, the particle
may be found anywhere in the whole of space. This
statement is one half of the uncertainty principle pro-
posed by Werner Heisenberg in 1927, in one of the
most celebrated results of quantum mechanics:

It is impossible to specify simultaneously, with 
arbitrary precision, both the momentum and the
position of a particle.

More precisely, this is the position–momentum
uncertainty principle: there are many other pairs of
observables with simultaneous values that are re-
stricted in a similar way; we meet some later.

Before discussing the principle further, we must 
establish the other half: that if we know the position
of a particle exactly, then we can say nothing about
its momentum. If the particle is at a definite location,
then its wavefunction must be nonzero there and
zero everywhere else (Fig. 12.15). We can simulate
such a wavefunction by forming a superposition of
many wavefunctions; that is, by adding together 
the amplitudes of a large number of sine functions
(Fig. 12.16). This procedure is successful because the

amplitudes of the waves add together at one location
to give a nonzero total amplitude, but cancel every-
where else. In other words, we can create a sharply
localized wavefunction by adding together wave-
functions corresponding to many different wave-
lengths, and therefore, by the de Broglie relation, of
many different linear momenta.

The superposition of a few sine functions gives 
a broad, ill-defined wavefunction. As the number of
functions increases, the wavefunction becomes sharper

Acceptable
Unacceptable

Fig. 12.14 Although an infinite number of solutions of the
Schrödinger equation exist, not all of them are physically 
acceptable. In the example shown here, where the particle is
confined between two impenetrable walls, the only accept-
able wavefunctions are those that fit between the walls 
(like the vibrations of a stretched string). Because each 
wavefunction corresponds to a characteristic energy, and the
boundary conditions rule out many solutions, only certain 
energies are permissible.
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Fig. 12.15 The wavefunction for a particle with a well-
defined position is a sharply spiked function that has zero 
amplitude everywhere except at the particle’s position.
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Fig. 12.16 The wavefunction for a particle with an 
ill-defined location can be regarded as the sum (super-

position) of several wavefunctions of different wavelengths
that interfere constructively in one place but destructively
elsewhere. As more waves are used in the superposition, the
location becomes more precise at the expense of greater 
uncertainty in the particle’s momentum. An infinite number
of waves are needed to construct the wavefunction of a 
perfectly localized particle. The numbers against each curve
are the number of sine waves used in the superpositions.
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because of the more complete interference between
the positive and negative regions of the components.
When an infinite number of components are used,
the wavefunction is a sharp, infinitely narrow spike
like that in Fig. 12.15, which corresponds to perfect
localization of the particle. Now the particle is per-
fectly localized, but at the expense of discarding all
information about its momentum.

The quantitative version of the position–momentum
uncertainty relation is

ΔpΔx ≥ H (12.6)

The quantity Δp is the ‘uncertainty’ in the linear 
momentum and Δx is the uncertainty in position
(which is proportional to the width of the peak in
Fig. 12.16). Equation 12.6 expresses quantitatively
the fact that the more closely the location of a particle
is specified (the smaller the value of Δx), then the
greater the uncertainty in its momentum (the larger
the value of Δp) parallel to that coordinate, and vice
versa (Fig. 12.17). The position–momentum uncer-
tainty principle applies to location and momentum
along the same axis. It does not limit our ability to
specify location on one axis and momentum along a
perpendicular axis.

1
2

The uncertainty principle captures one of the 
principal differences between classical and quantum
mechanics. Classical mechanics supposed, falsely as
we now know, that the position and momentum of a
particle can be specified simultaneously with arbitrary
precision. However, quantum mechanics shows that
position and momentum are complementary, that is,
not simultaneously specifiable. Quantum mechanics
requires us to make a choice: we can specify position
at the expense of momentum, or momentum at the
expense of position. As we shall see, there are many
other complementary observables, and if any one is
known precisely, the other is completely unknown.

The uncertainty principle has profound implica-
tions for the description of electrons in atoms and
molecules and therefore for chemistry as a whole.
When the nuclear model of the atom was first pro-
posed it was supposed that the motion of an electron
around the nucleus could be described by classical
mechanics and that it would move in some kind of
orbit. But to specify an orbit, we need to specify the
position and momentum of the electron at each point
of its path. The possibility of doing so is ruled out by
the uncertainty principle. The properties of electrons
in atoms, and therefore the foundations of chemistry,
have had to be formulated (as we shall see) in a com-
pletely different way.

(a)

(b)

Fig. 12.17 A representation of the content of the uncertainty
principle. The range of locations of a particle is shown by the
circles, and the range of momenta by the arrows. In (a), the
position is quite uncertain, and the range of momenta is
small. In (b), the location is much better defined, and now the
momentum of the particle is quite uncertain.

Example 12.3

Using the uncertainty principle

The speed of a certain projectile of mass 1.0 g is known
to within 1.0 mm s−1. What is the minimum uncertainty in
its position along its line of flight?

Strategy Estimate Dp from mDv, where Dv is the uncer-
tainty in the speed; then use eqn 12.6 to estimate the
minimum uncertainty in position, Dx, where x is the 
direction in which the projectile is travelling.

Solution From DpDx ≥ 2, the uncertainty in position is

= 5.3 × 10−26 m

This degree of uncertainty is completely negligible for all
practical purposes, which is why the need for quantum
mechanics was not recognized for over 200 years after
Newton had proposed his system of mechanics and why
in daily life we are completely unaware of the restrictions
it implies. However, when the mass is that of an electron,
the same uncertainty in speed implies an uncertainty in
position far larger than the diameter of an atom, so the
concept of a trajectory—the simultaneous possession of
a precise position and momentum—is untenable.
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Self-test 12.4

Estimate the minimum uncertainty in the speed of
an electron in a hydrogen atom (taking its diameter
as 100 pm).

[Answer: 580 km s−1]
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Applications of 

quantum mechanics

To prepare for applying quantum mechanics to
chemistry we need to understand three basic types 
of motion: translation (motion through space), rota-
tion, and vibration. It turns out that the wavefunc-
tions for free translational and rotational motion in a
plane can be constructed directly from the de Broglie
relation, without solving the Schrödinger equation
itself, and we shall take that simple route. That is not
possible for rotation in three dimensions and vibra-
tional motion where the motion is more complicated,
so there we shall have to use the Schrödinger equa-
tion to find the wavefunctions.

12.7 Translational motion

The simplest type of motion is translation in one 
dimension. When the motion is confined between
two infinitely high walls, the appropriate boundary
conditions imply that only certain wavefunctions
and their corresponding energies are acceptable.
That is, the motion is quantized. When the walls are
of finite height, the solutions of the Schrödinger
equation reveal surprising features of particles, espe-
cially their ability to penetrate into and through 
regions where classical physics would forbid them to
be found.

(a) Motion in one dimension

First, we consider the translational motion of a ‘par-
ticle in a box’, a particle of mass m that can travel 
in a straight line in one dimension (along the x-axis)
but is confined between two walls separated by a dis-
tance L. The potential energy of the particle is zero
inside the box but rises abruptly to infinity at the
walls (Fig. 12.18). The particle might be a bead free
to slide along a horizontal wire between two stops.
Although this problem is very elementary, there has
been a resurgence of research interest in it now that
nanometre-scale structures are used to trap electrons
in cavities resembling square wells.

The boundary conditions for this system are the
requirement that each acceptable wavefunction of
the particle must fit inside the box exactly, like the 
vibrations of a violin string (as in Fig. 12.10). It fol-
lows that the wavelength, λ, of the permitted wave-
functions must be one of the values
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A brief comment More precisely, the boundary conditions
stem from the requirement that the wavefunction is continu-
ous everywhere: because the wavefunction is zero outside
the box, it must therefore be zero at x = 0 and at x = L. This re-
quirement rules out n = 0, which would be a line of constant,
zero amplitude. Wavelengths are positive, so negative values
of n do not exist.

Each wavefunction is a sine wave with one of these
wavelengths; therefore, because a sine wave of wave-
length λ has the form sin(2πx/λ), the permitted wave-
functions are

(12.7)

The constant N is called the normalization constant.
It is chosen so that the total probability of finding the
particle inside the box is 1, and as we show in
Derivation 12.2, has the value N = (2/L)1/2.
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Fig. 12.18 A particle in a one-dimensional region with 
impenetrable walls at either end. Its potential energy is zero
between x = 0 and x = L and rises abruptly to infinity as soon
as the particle touches either wall.

Derivation 12.2

The normalization constant

According to the Born interpretation, the probability of
finding a particle in the infinitesimal region of length dx at
the point x given that its normalized wavefunction has
the value y at that point, is equal to y2dx. Therefore, the
total probability of finding the particle between x = 0 and
x = L is the sum (integral) of all the probabilities of its
being in each infinitesimal region. That total probability is
1 (the particle is certainly in the range somewhere), so
we know that

�
L

0

y2dx = 1

Substitution of the form of the wavefunction turns this
expression into
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It is now a simple matter to find the permitted 
energy levels because the only contribution to the 
energy is the kinetic energy of the particle: the poten-
tial energy is zero everywhere inside the box, and the
particle is never outside the box. First, we note that 
it follows from the de Broglie relation that the only
acceptable values of the linear momentum are

n = 1, 2, . . .

Then, because the kinetic energy of a particle of 
momentum p and mass m is E = p2/2m, it follows
that the permitted energies of the particle are

(12.8)

As we see in eqns 12.7 and 12.8, the wavefunc-
tions and energies of a particle in a box are labelled
with the number n. A quantum number, of which n is
an example, is an integer (or in certain cases, as we
shall see in Chapter 13, a half-integer) that labels the
state of the system. As well as acting as a label, a
quantum number specifies certain physical proper-
ties of the system: in the present example, n specifies
the energy of the particle through eqn 12.8.

The permitted energies of the particle are shown in
Fig. 12.19 together with the shapes of the wavefunc-
tions for n = 1 to 6. All the wavefunctions except the
one of lowest energy (n = 1) possess points called nodes
where the function passes through zero. Passing
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through zero is an essential part of the definition: just
becoming zero is not suAcient. The points at the
edges of the box where ψ = 0 are not nodes, because
the wavefunction does not pass through zero there.
The number of nodes in the wavefunctions shown in
the illustration increases from 0 (for n = 1) to 5 (for 
n = 6), and is n − 1 for a particle in a box in general.
It is a general feature of quantum mechanics that the
wavefunction corresponding to the state of lowest
energy has no nodes, and as the number of nodes in
the wavefunctions increases, the energy increases too.

The solutions of a particle in a box introduce 
another important general feature of quantum 
mechanics. Because the quantum number n cannot
be zero (for this system), the lowest energy that the
particle may possess is not zero, as would be allowed
by classical mechanics, but h2/8mL2 (the energy when
n = 1). This lowest, irremovable energy is called the
zero-point energy. The existence of a zero-point 
energy is consistent with the uncertainty principle. 
If a particle is confined to a finite region, its location
is not completely indefinite; consequently its momen-
tum cannot be specified precisely as zero, and there-
fore its kinetic energy cannot be precisely zero either.
The zero-point energy is not a special, mysterious
kind of energy. It is simply the last remnant of energy
that a particle cannot give up. For a particle in a box
it can be interpreted as the energy arising from a
ceaseless fluctuating motion of the particle between
the two confining walls of the box.

N2�
L

0

Our task is to find N. To do so, we use the standard 
integral

�
It follows that, because the sine term in this expression
is zero at x = 0 and x = L,

�
L

0

Therefore,

N2 × L = 1

and hence N = (2/L)1/2. Note that, in this case but not in
general, the same normalization factor applies to all the
wavefunctions regardless of the value of n.
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Fig. 12.19 The allowed energy levels and the correspond-
ing (sine wave) wavefunctions for a particle in a box. Note
that the energy levels increase as n2, and so their spacing 
increases as n increases. Each wavefunction is a standing
wave, and successive functions possess one more half-wave
and a correspondingly shorter wavelength.
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The energy difference between adjacent levels is

(12.9)

This expression shows that the difference decreases
as the length L of the box increases, and that it 
becomes zero when the walls are infinitely far apart
(Fig. 12.20). Atoms and molecules free to move in
laboratory-sized vessels may therefore be treated as
though their translational energy is not quantized,
because L is so large. The expression also shows that
the separation decreases as the mass of the particle
increases. Particles of macroscopic mass (like balls
sand planets, and even minute specks of dust) behave
as though their translational motion is unquantized.
Both the following conclusions are true in general:

• The greater the extent of the confining region, 
the less important are the effects of quantization.
Quantization is very important for highly confin-
ing regions.

• The greater the mass of the particle, the less 
important are the effects of quantization. Quan-
tization is very important for particles of very
small mass.

This chapter opened with the remark that the 
correct description of Nature must account for the
observation of transitions at discrete frequencies.
This is exactly what is predicted for a system that can
be modelled as a particle in a box, as it follows that
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when a particle makes a transition from a state with
quantum number ninitial to one with quantum num-
ber nfinal, the change in energy is

(12.10)

Because the two quantum numbers can take only 
integer values, only certain energy changes are 
allowed, and therefore, through v = ΔE/h, only 
certain frequencies will appear in the spectrum of
transitions.

A brief illustration Suppose we can treat the p elec-
trons of a long polyene, such as b-carotene (1), as a 
collection of electrons in a box of length 2.94 nm. Then for
an electron to be excited from the level with n = 11 to the
next higher level requires light of frequency
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Fig. 12.20 (a) A narrow box has widely spaced energy levels;
(b) a wide box has closely spaced energy levels. (In each case,
the separations depend on the mass of the particle too.)

This frequency (which we could report as 242 THz) corre-
sponds to a wavelength of 1240 nm. The first absorption
of b-carotene actually occurs at 497 nm, so although the
numerical result of this very crude model is unreliable, the
order-of-magnitude agreement is satisfactory. Why did
we set n = 11? You should recall from introductory chem-
istry that only two electrons can occupy any state (the
Pauli exclusion principle, Section 13.9); then, because
each of the 22 carbon atoms in the polyene provides one
p electron, the uppermost occupied state is the one with
n = 11. The excitation of lowest energy is then from this
state to the one above.

A note on good practice The ability to make such quick
‘back-of-the-envelope’ estimates of orders of magnitude 
of physical properties should be a part of every scientist’s
toolkit.

(b) Tunnelling

If the potential energy of a particle does not rise to
infinity when it is in the walls of the container, and 
E < V (so that the total energy is less than the poten-
tial energy and classically the particle cannot escape

1 -Caroteneβ
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from the container), the wavefunction does not
decay abruptly to zero. The wavefunction oscillates
inside the box (eqn 12.6), decays exponentially inside
the region representing the wall, and oscillates again
on the other side of the wall outside the box 
(Fig. 12.21). Hence, if the walls are so thin and the
particle is so light that the exponential decay of the
wavefunction has not brought it to zero by the time
it emerges on the right, the particle might be found
on the outside of a container even though according
to classical mechanics it has insuAcient energy to 
escape. Such leakage by penetration into or through
classically forbidden zones is called tunnelling.

The Schrödinger equation can be used to determine
the probability of tunnelling of a particle incident on
a barrier.3 It turns out that the tunnelling probability
decreases sharply with the thickness of the wall and
with the mass of the particle. Hence, tunnelling is
very important for electrons, moderately important
for protons, and less important for heavier particles.
The very rapid equilibration of proton-transfer reac-
tions (Chapter 8) is also a manifestation of the ability
of protons to tunnel through barriers and transfer
quickly from an acid to a base. Tunnelling of protons
between acidic and basic groups is also an important
feature of the mechanism of some enzyme-catalysed
reactions. Electron tunnelling is one of the factors
that determine the rates of electron-transfer reactions
at electrodes in electrochemical cells and in biological
systems, and is of the greatest importance in the
semiconductor industry. The important technique of
‘scanning tunnelling microscopy’ relies on the depend-
ence of electron tunnelling on the thickness of the 
region between a point and a surface (Section 18.2).

(c) Motion in two dimensions

Once we have dealt with translation in one dimen-
sion it is quite easy to step into higher dimension. In
doing so, we encounter two very important features
of quantum mechanics that will occur many times in
what follows. One feature is the simplification of the
Schrödinger equation by the technique known as
‘separation of variables’; the other is the existence of
‘degeneracy’.

The arrangement we shall consider is like a particle
—a marble—confined to the floor of a rectangular box
(Fig. 12.22). The box is of side LX in the x-direction
and LY in the y-direction. The wavefunction varies
from place to place across the floor of the box, so it is
a function of both the x- and y-coordinates; we write
it ψ(x,y). We show in Derivation 12.3 that for this
problem, according to the separation of variables
procedure, the wavefunction can be expressed as a
product of wavefunctions for each direction:

ψ(x,y) = X(x)Y(y) (12.11)

with each wavefunction satisfying its ‘own’
Schrödinger equation like that in eqn 12.5, and that
the solutions are

ψnX,nY
(x,y) = XnX

(x)YnY
(y) (12.12a)

with energies

EnXnY
= EnX

+ EnY
(12.12b)
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Fig. 12.21 A particle incident on a barrier from the left has 
an oscillating wavefunction, but inside the barrier there are
no oscillations (for E < V ). If the barrier is not too thick, the
wavefunction is nonzero at its opposite face, and so oscilla-
tion begins again there.

3 For details of the calculation, see our Physical chemistry (2006).
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Fig. 12.22 A two-dimensional square well. The particle is
confined to a rectangular plane bounded by impenetrable
walls. As soon as the particle touches a wall, its potential 
energy rises to infinity.



term depends only on y. Therefore, if x changes, only the
first term can change. But its sum with the unchanging
second term is the constant E. Therefore, the first term
cannot in fact change when x changes. That is, the first
term is equal to a constant, which we write EX. The same
argument applies to the second term when y is changed;
so it too is equal to a constant, which we write EY, and
the sum of these two constants is E. That is, we have
shown that

with EX + EY = E. These two equations are easily turned into

ĤX X (x) = EX X (x) ĤYY(y) = EYY(y)

which we should recognize as the Schrödinger equa-
tions for one-dimensional motion, one along the x-axis
and the other along the y-axis. Thus, the variables have
been separated, and because the boundary conditions
are essentially the same for each axis (the only differ-
ence being the actual values of the lengths LX and LY ),
the individual wavefunctions are essentially the same as
those already found for the one-dimensional case.
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There are two quantum numbers (nX and nY), each
allowed the values 1, 2, . . . independently. The separa-
tion of variables procedure is very important and 
occurs (sometimes without its use being acknow-
ledged) throughout chemistry, as it underlies the fact
that energies of independent systems are additive and
that their wavefunctions are products of simpler
component wavefunctions. We shall encounter it
several times in later chapters.

Figure 12.23 shows some wavefunctions for the
two-dimensional case: in one dimension the wave-
functions are like the vibrations of a violin string
clamped at each end; in two dimensions the wave-
funcitions are like the vibrations of a rectangular
sheet clamped at its edges.

A specially interesting case arises when the rectan-
gular region is square with LX = LY = L. The allowed
energies are then

(12.13a)

This expression is interesting because it shows that
different wavefunctions may correspond to the same
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Derivation 12.3

The separation of variables procedure

The Schrödinger equation for the problem is

For simplicity, we can write this expression as

ĤXy(x,y) + ĤXy(x,y) = Ey(x,y)

where ĤX affects—mathematicians say ‘operates on’—
only functions of x and ĤY operates only on functions of y.
Thus, generalizing slightly from Derivation 12.1, ĤX just
means ‘take the second derivative with respect to x’ and
ĤY means the same for y. To see if y(x,y ) = X(x )Y(y ) is 
indeed a solution, we substitute this product on both
sides of the last equation,

ĤXX(x)Y(y) + ĤXX(x)Y(y) = EX(x)Y(y)

and note that ĤX acts on only X(x), with Y(y) being treated
as a constant, and ĤY acts on only Y(y), with X(x) being
treated as a constant. Therefore, this equation becomes

When we divide both sides by X(x)Y(y), we obtain

Now we come to the crucial part of the argument. The
first term on the left depends only on x and the second
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Fig. 12.23 Three wavefunctions of a particle confined to a rectangular surface.
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energy. For example, the wavefunctions with nX = 1,
nY = 2 and nX = 2, nY = 1 are different:

(12.13b)

but both have the energy 5h2/8mL2. Different states
with the same energy are said to be degenerate.
Degeneracy is always associated with an aspect of
symmetry. In this case, it is easy to understand, 
because the confining region is square, and can be 
rotated through 90°, which takes the nX = 1, nY = 2
wavefunction into the nX = 2, nY = 1 wavefunction.
In other cases the symmetry might be harder to iden-
tify, but it is always there.

The separation of variables will appear again when
we discuss rotational motion and the structures of
atoms. Degeneracy is very important in atoms, and 
is a feature that underlies the structure of the periodic
table.

12.8 Rotational motion

Rotational motion is important in chemistry for 
a number of reasons. First, molecules rotate in the
gas phase, and transitions between their allowed 
rotational states give rise to a variety of spectro-
scopic methods for determining their shapes and the
lengths of their bonds. Perhaps even more important
is the fact that electrons circulate around nuclei in
atoms, and an understanding of their orbital rota-
tional behaviour is essential for understanding the
structure of the periodic table and the properties it
summarizes. In fact, ‘angular momenta’, the momenta
associated with rotational motion, are related to 
all manner of directional effects in chemistry and
physics, including the shapes of electron distribu-
tions in atoms and hence the directions along which
atoms can form chemical bonds.

(a) Rotation in two dimensions

The discussion of translational motion focused on
linear momentum, p. When we turn to rotational
motion we have to focus instead on the analogous
angular momentum, J. The angular momentum of a
particle that is travelling on a circular path of radius
r in the xy-plane is defined as

Jz = pr (12.14)

where p is its linear momentum (p = mv) at any 
instant. A particle that is travelling at high speed in 
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a circle has a higher angular momentum than a par-
ticle of the same mass travelling more slowly. An 
object with a high angular momentum (like a flywheel)
requires a strong braking force (more precisely, a
strong ‘torque’) to bring it to a standstill.

To see what quantum mechanics tells us about 
rotational motion, we consider a particle of mass m
moving in a horizontal circular path of radius r. The
energy of the particle is entirely kinetic because the
potential energy is constant and can be set equal to
zero everywhere. We can therefore write E = p2/2m.
By using eqn 12.14 in the form p = Jz /r, we can 
express this energy in terms of the angular momen-
tum as

The quantity mr2 is the moment of inertia of the 
particle about the z-axis, and denoted I: a heavy par-
ticle in a path of large radius has a large moment of
inertia (Fig. 12.24). It follows that the energy of the
particle is

(12.15)

Now we use the de Broglie relation (λ = h/p) to see
that the energy of rotation is quantized. To do so, we
express the angular momentum in terms of the wave-
length of the particle:

Suppose for the moment that λ can take an arbitrary
value. In that case, the amplitude of the wavefunc-
tion depends on the angle as shown in Fig. 12.25.
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Fig. 12.24 A particle travelling on a circular path has a 
moment of inertia I that is given by mr 2. (a) This heavy particle
has a large moment of inertia about the central point; (b) this
light particle is travelling on a path of the same radius, but it
has a smaller moment of inertia. The moment of inertia plays
a role in circular motion that is the analogue of the mass for
linear motion: a particle with a high moment of inertia is diffi-
cult to accelerate into a given state of rotation, and requires a
strong braking force to stop its rotation.
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When the angle increases beyond 2π (that is, beyond
360°), the wavefunction continues to change on its
next circuit. For an arbitrary wavelength it gives rise
to a different amplitude at each point and the wave-
function will not be single-valued (a requirement 
for acceptable wavefunctions, Section 12.5). Thus,
this particular arbitrary wave is not acceptable. An
acceptable solution is obtained if the wavefunction
reproduces itself on successive circuits in the sense
that the wavefunction at φ = 2π (after a complete 
revolution) must be the same as the wavefunction 
at φ = 0: we say that the wavefunction must satisfy
cyclic boundary conditions. Specifically, the accept-
able wavefunctions that match after each circuit have
wavelengths that are given by the expression

where the value n = 0, which gives an infinite wave-
length, corresponds to a uniform nonzero amplitude.
It follows that the permitted energies are

with n = 0, ±1, ±2, . . .
In the discussion of rotational motion it is 

conventional—for reasons that will become clear—
to denote the quantum number by ml in place of n.
Therefore, the final expression for the energy levels is

(12.16)
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These energy levels are drawn in Fig. 12.26. The 
occurrence of ml

2 in the expression for the energy
means that two states of motion with opposite values
of ml, such as those with ml = +1 and ml = −1, corres-
pond to the same energy. This degeneracy arises from
the fact that the energy is independent of the direction
of travel. The state with ml = 0 is nondegenerate. A
further point is that the particle does not have a zero-
point energy: ml may take the value 0, and E0 = 0.

An important additional conclusion is that the
angular momentum of the particle is quantized. We
can use the relation between angular momentum 
and linear momentum (Jz = pr), and between linear
momentum and the allowed wavelengths of the 
particle (λ = 2πr/ml), to conclude that the angular
momentum of a particle around the z-axis is confined
to the values

That is, the angular momentum of the particle
around the axis is confined to the values

Jz = mlH (12.17)

with ml = 0, ±1, ±2, . . . Positive values of ml corre-
spond to clockwise rotation (as seen from below)
and negative values correspond to counterclockwise
rotation (Fig. 12.27). The quantized motion can be
thought of in terms of the rotation of a bicycle wheel
that can rotate only with a discrete series of angular
momenta, so that as the wheel is accelerated, the 
angular momentum jerks from the values 0 (when
the wheel is stationary) to H, 2H, . . . but can have no
intermediate value.
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Fig. 12.25 Three solutions of the Schrödinger equation for a
particle on a ring. The circumference has been opened out
into a straight line; the points at f = 0 and 2p are identical. The
waves shown in red are unacceptable because they have dif-
ferent values after each circuit and so interfere destructively
with themselves. The solution shown in green is acceptable
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Fig. 12.26 The energy levels of a particle that can move on a
circular path. Classical physics allowed the particle to travel
with any energy (as represented by the continuous tinted
band); quantum mechanics, however, allows only discrete
energies. Each energy level, other than the one with ml = 0,
is doubly degenerate, because the particle may rotate either
clockwise or counterclockwise with the same energy.
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(b) Rotation in three dimensions

Rotational motion in three dimensions includes the
motion of electrons around nuclei in atoms. Con-
sequently, understanding rotational motion in three
dimensions is crucial to understanding the electronic
structures of atoms. Gas-phase molecules also rotate
freely in three dimensions and by studying their 
allowed energies (using the spectroscopic techniques
described in Chapter 19) we can infer bond lengths,
bond angles, and dipole moments.

Just as the location of a city on the surface of 
the Earth is specified by giving its latitude and longi-
tude, the location of a particle free to move at a 
constant distance from a point is specified by two 
angles, the colatitude θ (theta) and the azimuth φ
(phi) (Fig. 12.28). The wavefunction for the particle
is therefore a function of both angles and is written
ψ(θ,φ). It turns out that this wavefunction factorizes
by the separation of variables procedure into the
product of a function of θ and a function of φ, and
that the latter are exactly the same as those we have
already found for a particle on a ring. In other words,
motion of a particle over the surface of a sphere is like
the motion of the particle over a stack of rings, with
the additional freedom to migrate between rings.

There are two sets of cyclic boundary conditions
that limit the selection of solutions of the Schrödinger
equation. One is that the wavefunctions must match

as we travel round the equator (just like the particle
on a ring); as we have seen, that boundary condition
introduces the quantum number ml. The other con-
dition is that the wavefunction must match as we travel
over the poles. This constraint introduces a second
quantum number, which is called the orbital angular
momentum quantum number and denoted l. We shall
not go into the details of the solution, but just quote
the results. It turns out that the quantum numbers
are allowed the following values:

l = 0, 1, 2, . . . ml = l, l − 1, . . . , −l

Note that there are 2l + 1 values of ml for a given
value of l. The energy of the particle is given by the
expression

(12.18)

where r is the radius of the surface of the sphere on
which the particle moves. Note that, for reasons that
will become clear in a moment, the energy depends
on l and is independent of the value of ml. The wave-
functions appear in a number of applications, and
are called spherical harmonics. They are commonly
denoted Yl,ml(θ,φ) and can be imagined as wave-like
distortions of a spherical shell (Fig. 12.29).

We can draw a very important additional con-
clusion by comparing the expression for the energy
in eqn 12.18 with the classical expression for the 
energy:

Classical Quantum mechanical

where J is the magnitude of the angular momentum
of the particle. We can conclude that the magnitude
of the angular momentum is quantized and limited to
the values

J = {l(l + 1)}1/2H (12.19)
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Fig. 12.27 The significance of the sign of ml. When ml. < 0,
the particle travels in a counterclockwise direction as viewed
from below; then ml. > 0, the motion is clockwise.
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Fig. 12.28 The spherical polar coordinates r (the radius), q
(the colatitude), and f (the azimuth).

Self-test 12.5

Consider an electron that is part of a cyclic, aromatic
molecule (such as benzene). Treat the molecule as a 
ring of diameter 280 pm and the electron as a particle
that moves only along the perimeter of the ring. What 
is the energy in electronvolts (1 eV = 1.602 × 10−19 J) 
required to excite the electron from the level with ml = ±1
(according to the Pauli exclusion principle, one of the 
uppermost filled levels for this six-electron system) to
the next higher level?

[Answer: 5.83 eV, corresponding to l = 220 nm 
(the first absorption in fact lies close to 260 nm)]
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Thus, the allowed values of the magnitude of the 
angular momentum are 0, 21/2H, 61/2H, . . . We have 
already seen that ml tells us the value, as mlH, of the
angular momentum around the z-axis (the polar axis
of a sphere). In summary:

• The orbital angular momentum quantum number
l can have the non-negative integral values 0, 1, 
2, ...; it tells us (through eqn 12.19) the magnitude
of the orbital angular momentum of the particle.

• The magnetic quantum number ml is limited to
the 2l + 1 values l, l − 1, . . . , −l; it tells us, through
mlH, the z-component of the orbital angular 
momentum.

Several features now fall into place. First, we can
now see why ml is confined to a range of values that
depend on l: the angular momentum around a single
axis (as expressed by ml) cannot exceed the magnitude
of the angular momentum (as expressed by l). Second,
for a given magnitude to correspond to different 
values of the angular momentum around the z-axis,
the angular momentum must lie at different angles
(Fig. 12.30). The value of ml therefore indicates the
angle to the z-axis of the motion of the particle.

Providing the particle has a given amount of angular
momentum, its kinetic energy (its only source of 
energy) is independent of the orientation of its path:
hence, the energy is independent of ml, as asserted
above.

What can we say about the component of angular
momentum about the x- and y-axes? Almost nothing.
We know that these components cannot exceed the
magnitude of the angular momentum, but there is no
quantum number that tells us their precise values. In
fact, Jx, Jy, and Jz, the three components of angular
momentum, are complementary observables in the
sense described in Section 12.8 in connection with
the uncertainty principle, and if one is known exactly
(the value of Jz, for instance, as mlH), then the values
of the other two cannot be specified. For this reason,
the angular momentum is often represented as lying
anywhere on a cone with a given z-component (indi-
cating the value of ml) and side (indicating the value
of {l(l + 1)}1/2, but with indefinite projection on the x-
and y-axes (Fig. 12.31). This vector model of angular
momentum is intended to be only a representation of
the quantum-mechanical aspects of angular momen-
tum, expressing the fact that the magnitude is well
defined, one component is well defined, and the two
other components are indeterminate.

A brief illustration Suppose that a particle is in a state
with l = 3. We would know that the magnitude of its 
angular momentum is 121/22 (or 3.65 × 10−34 J s). The 
angular momentum could have any of seven orientations
with z-components ml2, with ml = +3, +2, +1, 0, −1, −2, or
−3. The kinetic energy of rotation in any of these states is
1222/mr 2.

12.9 Vibrational motion

One very important type of motion of a molecule 
is the vibration of its atoms—bonds stretching, 

l = 0, ml = 0 l = 1, ml = 0 l = 2, ml = 0

Fig. 12.29 The wavefunctions of a particle on a sphere can
be imagined as having the shapes that the surface would
have when the sphere is distorted. Three of these ‘spherical
harmonics’ are shown here: amplitudes above the surface of
the sphere represent positive regions of the functions and
amplitudes below the surface represent negative regions.

l = 2, ml = 0

l = 2, ml = +2

l = 2, ml = +1

l = 2, ml = –1

l = 2, ml = –2

Fig. 12.30 The significance of the quantum numbers l and
ml shown for l = 2: l determines the magnitude of the angular
momentum (as represented by the length of the arrow), 
and ml the component of that angular momentum about 
the z-axis.

l = 2, ml = 0

l = 2, ml = +2

l = 2, ml = +1

l = 2, ml = –1

l = 2, ml = –2

Fig. 12.31 The vector model of angular momentum acknow-
ledges that nothing can be said about the x- and y-components
of angular momentum if the z-component is known, by 
representing the states of angular momentum by cones.
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compressing, and bending. A molecule is not just a
frozen, static array of atoms: all of them are in con-
stant motion relative to one another. In the type of
vibrational motion known as harmonic oscillation, a
particle vibrates backwards and forwards restrained
by a spring that obeys Hooke’s law of force. Hooke’s
law states that the restoring force is proportional to
the displacement, x:

Restoring force = −kx (12.20a)

The constant of proportionality k is called the force
constant: a stiff spring has a high force constant (the
restoring force is strong even for a small displace-
ment) and a weak spring has a low force constant.
The units of k are newtons per metre (N m−1). The
negative sign in eqn 12.20a is included because a dis-
placement to the right (to positive x) corresponds 
to a force directed to the left (towards negative x).
The potential energy of a particle subjected to this
force increases as the square of the displacement, and
specifically

V(x) = kx2 (12.20b)

A brief comment This result is easy to verify, because
force is the negative gradient of the potential energy (F =
−dV/dx), and differentiating V(x) with respect to x gives 
eqn 12.20a.

The variation of V with x is shown in Fig. 12.32: it has
the shape of a parabola (a curve of the form y = ax2),
and we say that a particle undergoing harmonic 
motion has a ‘parabolic potential energy’.

Unlike the earlier cases we considered, the potential
energy varies with position in the regions where the
particle may be found, so we have to use V(x) in the

1
2

Schrödinger equation. Then we have to select the 
solutions that satisfy the boundary equations, which
in this case means that they must fit into the parabola
representing the potential energy. More precisely, the
wavefunctions must all go to zero for large displace-
ments in either direction from x = 0: they do not have
to go abruptly to zero at the edges of the parabola.

The solutions of the equation are quite hard to
find, but once found they turn out to be very simple.
For instance, the energies of the solutions that satisfy
the boundary conditions are

Ev = (v + )hk v = 0, 1, 2, . . . (12.21)

where m is the mass of the particle and v is the vibra-
tional quantum number. These energies form a uni-
form ladder of values separated by hk (Fig. 12.33).
The quantity k is a frequency (in cycles per second, or
hertz, Hz), and is in fact the frequency that a classical
oscillator of mass m and force constant k would be
calculated to have. In quantum mechanics, though, 
k tells us (through hk) the separation of any pair of
adjacent energy levels. The separation is large for stiff
springs and low masses.

A brief illustration The force constant for an H—Cl
bond is 516 N m−1, where the newton (N) is the SI unit of
force (1 N = 1 kg m s−2). If we suppose that, because the
chlorine atom is relatively very heavy, only the hydrogen
atom moves, we take m as the mass of the H atom 
(1.67 × 10−27 kg for 1H). We find

The separation between adjacent levels is h times this
frequency, or 5.86 × 10−20 J (58.6 zJ). Be very careful to
distinguish the quantum number v (italic vee) from the 
frequency V (Greek nu).
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Fig. 12.32 The parabolic potential energy characteristic of an
harmonic oscillator. Positive displacements correspond to
extension of the spring; negative displacements correspond
to compression of the spring.
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Figure 12.34 shows the shapes of the first few wave-
functions of a harmonic oscillator. The ground-state
wavefunction (corresponding to v = 0 and having the
zero-point energy hk) is a bell-shaped curve, a curve
of the form e−x2 (a Gaussian function; see Section 1.6),
with no nodes. This shape shows that the particle is
most likely to be found at x = 0 (zero displacement),
but may be found at greater displacements with 
decreasing probability. The first excited wavefunc-
tion has a node at x = 0 and positive and negative
peaks on either side. Therefore, in this state, the par-
ticle will be found most probably with the ‘spring’
stretched or compressed to the same amount. How-
ever, the wavefunctions extend beyond the limits 
of motion of a classical oscillator (Fig. 12.35), 
which is another example of quantum-mechanical
tunnelling.
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Fig. 12.34 (a) The wavefunctions and (b) the probability densities of the first three states of an harmonic oscillator. Note
how the probability of finding the oscillator at large displacements increases as the state of excitation increases. The

wavefunctions and displacements are expressed in terms of the parameter a = (22/mk)1/4.
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Fig. 12.35 A schematic illustration of the probability density for
finding an harmonic oscillator at a given displacement. Classic-
ally, the oscillator cannot be found at displacements at which
its total energy is less than its potential energy (because the
kinetic energy cannot be negative). A quantum oscillator,
though, may tunnel into regions that are classically forbidden.

Checklist of key ideas

You should now be familiar with the following concepts.

1 Atomic and molecular spectra show that the ener-
gies of atoms and molecules are quantized.

2 The photoelectric effect is the ejection of elec-
trons when radiation of greater than a threshold
frequency is incident on a metal.

3 The wave-like character of electrons was 
demonstrated by the Davisson–Germer diffraction
experiment.

4 The joint wave–particle character of matter and
radiation is called wave–particle duality.

5 A wavefunction, y, contains all the dynamical in-
formation about a system and is found by solving
the appropriate Schrödinger equation subject to
the constraints on the solutions known as bound-
ary conditions.

6 According to the Born interpretation, the probabil-
ity of finding a particle in a small region of space



TABLE OF KEY EQUATIONS 291

of volume dV is proportional to y2dV, where y is
the value of the wavefunction in the region.

7 According to the Heisenberg uncertainty principle,
it is impossible to specify simultaneously, with 
arbitrary precision, both the momentum and the
position of a particle.

8 The energy levels of a particle of mass m in a box
of length L are quantized and the wavefunctions
are sine functions (see the following table).

9 The zero-point energy is the lowest permissible
energy of a system.

10 Different states with the same energy are said to
be degenerate.

11 Because wavefunctions do not, in general, decay
abruptly to zero, particles may tunnel into classi-
cally forbidden regions.

12 The angular momentum and the kinetic energy of
a particle free to move on a circular ring are quan-
tized; the quantum number is denoted ml.

13 A particle on a ring and on a sphere must satisfy
cyclic boundary conditions (the wavefunctions
must repeat on successive cycles).

14 The angular momentum and the kinetic energy of
a particle on a sphere are quantized with values
determined by the quantum numbers l and ml

(see the following table); the wavefunctions are
the spherical harmonics.

15 A particle undergoes harmonic motion if it is sub-
jected to a Hooke’s-law restoring force (a force
proportional to the displacement).

16 The energy levels of a harmonic oscillator are
equally spaced and specified by the quantum
number v = 0, 1, 2, . . . .

The following table summarizes the equations developed in this chapter.

Property

Relation between the energy change and 
the frequency of radiation

Photoelectric effect

de Broglie relation

Schrödinger equation

Heisenberg uncertainty relation

Particle in a box energies

Particle in a box wavefunctions

Energy of a particle on a ring

Angular momentum of a particle on a ring

Energy of a particle on a sphere

Magnitude of angular momentum of a particle on a sphere

z-Component of angular momentum

Hooke’s law

Potential energy of a particle undergoing harmonic motion

Energy of a harmonic oscillator

Equation

DE = hV

Ek = hV − F

l = h/p

Ĥy = Ey

DpDx ≥ 2.

En = n2h2/8mL2

yn(x) = (2/L)1/2 sin(2pnx /L)

Eml
= ml

222/2I, I = mr 2

Jz = ml2

El = l(l + 1)22/2I

J = {l(l + 1)}1/22

Jz = ml2

F = −kx

V = kx2

Ev = (v + )hV, with V = ( )(k/m)1/21
2p

1
2

1
2

1
2

Comment

n = 1, 2, . . .

ml = 0, ±1, ±2 . . .

ml = 0, ±1, ±2 . . .

l = 0, 1, 2, . . .

l = 0, 1, 2, . . .

ml = l, l − 1, . . . , −l

v = 0, 1, 2, . . .

Table of key equations



CHAPTER 12: QUANTUM THEORY292

Questions and exercises

Discussion questions

12.1 Summarize the evidence that led to the introduction of
quantum theory.

12.2 Discuss the physical origin of quantization energy for a
particle confined to moving inside a one-dimensional box or
on a ring.

12.3 Define, justify, and provide examples of zero-point 
energy.

12.4 Describe and justify the Born interpretation of the
wavefunction.

12.5 What are the implications of the uncertainty principle?

12.6 Discuss the physical origins of quantum-mechanical
tunnelling. How does tunnelling appear in chemistry?

12.7 Explain how the technique of separation of variables is
used to simplify the discussion of three-dimensional prob-
lems. When cannot it be used?

Exercises

12.1 The wavelength of the bright red line in the spectrum of
atomic hydrogen is 652 nm. What is the energy of the photon
generated in the transition?

12.2 What is the wavenumber of the radiation emitted when
a hydrogen atom makes a transition corresponding to a change
in energy of 1.634 aJ?

12.3 A photodetector produces 0.68 mW when exposed to
radiation of wavelength 245 nm. How many photons does it
detect per second?

12.4 Calculate the size of the quantum involved in the exci-
tation of (a) an electronic motion of frequency 1.0 × 1015 Hz,
(b) a molecular vibration of period 20 fs, (c) a pendulum of 
period 0.50 s. Express the results in joules and in kilojoules
per mole.

12.5 A certain lamp emits blue light of wavelength 380 nm.
How many photons does it emit each second if its power is
(a) 1.00 W, (b) 100 W? 

12.6 For how long must a sodium lamp rated at 100 W operate
to generate 1.00 mol of photons of wavelength 590 nm?
Assume all the power is used to generate those photons.

12.7 An FM radio transmitter broadcasts at 98.4 MHz with 
a power of 45 kW. How many photons does it generate 
per second? 

12.8 The work function for metallic caesium is 2.14 eV.
Calculate the kinetic energy and the speed of the electrons
ejected by light of wavelength (a) 750 nm, (b) 250 nm. 

12.9 Use the following data on the kinetic energy of photo-
electrons ejected by radiation of different wavelengths from

a metal to determine the value of Planck’s constant and the
work function of the metal.

l/nm 300 350 400 450

Ek /eV 1.613 1.022 0.579 0.235

12.10 A diffraction experiment requires the use of elec-
trons of wavelength 550 pm. Calculate the velocity of the
electrons.

12.11 Calculate the de Broglie wavelength of (a) a mass of
1.0 g travelling at 1.0 m s−1, (b) the same, travelling at 1.00 ×
105 km s−1, (c) a He atom travelling at 1000 m s−1 (a typical
speed at room temperature). 

12.12 Calculate the de Broglie wavelength of an electron 
accelerated from rest through a potential difference, V, of 
(a) 1.00 V, (b) 1.00 kV, (c) 100 kV. Hint: The electron is accel-
erated to a kinetic energy equal to eV.

12.13 Calculate the de Broglie wavelength of yourself travel-
ling at 8 km h−1. What does your wavelength become when
you stop?

12.14 Calculate the linear momentum of photons of wave-
length (a) 600 nm, (b) 70 pm, (c) 200 m.

12.15 Calculate the energy per photon and the energy per
mole of photons for radiation of wavelength (a) 600 nm (red),
(b) 550 nm (yellow), (c) 400 nm (violet), (d) 200 nm (ultraviolet),
(e) 150 pm (X-ray), (f) 1.0 cm (microwave).

12.16 How fast would a particle of mass 1.0 g need to travel
to have the same linear momentum as a photon of radiation
of wavelength 300 nm? 

12.17 Suppose that you designed a spacecraft to work by
photon pressure. The sail was a completely absorbing fabric
of area 1.0 km2 and you directed a red laser beam of wave-
length 650 nm on to it from a base on the Moon. What is 
(a) the force, (b) the pressure exerted by the radiation on the
sail? (c) Suppose the mass of the spacecraft was 1.0 kg.
Given that, after a period of acceleration from standstill,
speed = (force/mass) × time, how long would it take for the
craft to accelerate to a speed of 1.0 m s−1?

12.18 The energy required for the ionization of a certain
atom is 3.44 aJ (1 aJ = 10−18 J). The absorption of a photon of
unknown wavelength ionizes the atom and ejects an electron
with velocity 1.03 × 106 m s−1. Calculate the wavelength of
the incident radiation.

12.19 In an X-ray photoelectron experiment, a photon of
wavelength 100 pm ejects an electron from the inner shell of
an atom and it emerges with a speed of 2.34 × 104 km s−1.
Calculate the binding energy of the electron. 

12.20 Suppose a particle of mass m is in a region where its
potential energy varies as ax 4, where a is a constant. Write
down the corresponding Schrödinger equation.
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12.21 Suppose a particle has a wavefunction y(x) = Ne−ax2
.

Sketch the form of this wavefunction. Where is the particle
most likely to be found? At what values of x is the probability
of finding the particle reduced by 50 per cent from its max-
imum value?

12.22 Calculate the probability that an electron will be found
(a) between x = 0.1 and 0.2 nm, (b) between 4.9 and 5.2 nm
in a box of length L = 10 nm when its wavefunction is y =
(2/L)1/2 sin(2px/L). Hint: Treat the wavefunction as a constant
in the small region of interest and interpret dV as dx.

12.23 The speed of a certain proton is 350 km s−1. If the 
uncertainty in its momentum is 0.0100 per cent, what 
uncertainty in its location must be tolerated? 

12.24 Calculate the minimum uncertainty in the speed of 
a ball of mass 500 g that is known to be within 5.0 mm of a 
certain point on a bat. 

12.25 What is the minimum uncertainty in the position of a
bullet of mass 5.0 g that is known to have a speed some-
where between 350.00 000 1 m s−1 and 350.00 000 0 m s−1?

12.26 An electron is confined to a linear region with a length
of the same order as the diameter of an atom (take that to be
100 pm). Calculate the minimum uncertainties in its position
and speed.

12.27 Write the explicit numerical form of the wavefunction
in eqn 12.7 and the corresponding probability density for n = 1
and L = 100 pm at x = (a) 10 pm, (b) 50 pm, and (c) 100 pm.

12.28 A hydrogen atom, treated as a point mass, is confined
to a one-dimensional square well of width 1.0 nm. How much
energy does it have to give up to fall from the level with n = 2
to the lowest energy level? 

12.29 The pores in zeolite catalysts are so small that quantum-
mechanical effects on the distribution of atoms and mole-
cules within them can be significant. Calculate the location in
a box of length L at which the probability of a particle being
found is 50 per cent of its maximum probability when n = 1.

12.30 The blue solution formed when an alkali metal dis-
solves in liquid ammonia consists of the metal cations and
electrons trapped in a cavity formed by ammonia molecules.
(a) Calculate the spacing between the levels with n = 4 and 
n = 5 of an electron in a one-dimensional box of length 5.0 nm.
(b) What is the wavelength of the radiation emitted when the
electron makes a transition between the two levels? 

12.31 A certain wavefunction is zero everywhere except 
between x = 0 and x = L, where it has the constant value A.
Normalize the wavefunction.

12.32 As indicated in the text, a particle in a box is a crude
model of the distribution and energy of electrons in con-
jugated polyenes, such as carotene and related molecules.
Carotene itself is a molecule in which 22 single and double
bonds alternate (11 of each) along a chain of carbon atoms.
Take each CC bond length to be about 140 pm and suppose

that the first possible upward transition (for reasons related
to the Pauli principle, Section 13.9) is from n = 11 to n = 12.
Estimate the wavelength of this transition.

12.33 Suppose a particle has zero potential energy for x < 0,
a constant value V, for 0 ≤ x ≤ L, and then zero for x > L. Sketch
the potential. Now suppose that wavefunction is a sine wave
on the left of the barrier, declines exponentially inside the 
barrier, and then becomes a sine wave on the right, being
continuous everywhere. Sketch the wavefunction on your
sketch of the potential energy.

12.34 Degeneracy is normally associated with symmetry 
but there are cases where it seems to arise accidentally.
Consider a rectangular area of sides L and 2L. Are there any
degenerate states? If there are, identify the two lowest.

12.35 Treat a rotating HI molecule as a stationary I atom
around which an H atom circulates in a plane at a distance of
161 pm. Calculate (a) the moment of inertia of the molecule,
(b) the greatest wavelength of the radiation that can excite
the molecule into rotation.

12.36 The moment of inertia of an H2O molecule about 
an axis bisecting the HOH angle is 1.91 × 10−47 kg m2. Its 
minimum angular momentum about that axis (other than
zero) is 2. In classical terms, how many revolutions per sec-
ond do the H atoms make about the axis when in that state?

12.37 What is the minimum energy needed to excite the 
rotation of an H2O molecule about the axis described in the
preceding exercise?

12.38 The moment of inertia of CH4 can be calculated from
the expression I = mHR2 where R is the CH bond length
(take R = 109 pm). Calculate the minimum rotational energy
(other than zero) of the molecule and the degeneracy of that
rotational state.

12.39 A bee of mass 1 g lands on the end of a horizontal
twig, which starts to oscillate up and down with a period of 
1 s. Treat the twig as a massless spring, and estimate its
force constant. 

12.40 Treat a vibrating HI molecule as a stationary I atom
with the H atom oscillating towards and away from the I atom.
Given the force constant of the HI bond is 314 N m−1, calcu-
late (a) the vibrational frequency of the molecule, (b) the
wavelength required to excite the molecule into vibration.

12.41 By what factor will the vibrational frequency of HI
change when H is replaced by deuterium?

Projects

The symbol ‡ indicates that calculus is required.

12.42‡ Now we use calculus to carry out more accurate cal-
culations of probabilities. (a) Repeat Exercise 12.22, but allow
for the variation of the wavefunction in the region of interest.
What are the percentage errors in the procedure used in

8
3
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Exercise 12.22? What is the probability of finding a particle of
mass m in (a) the left-hand one-third, (b) the central one-third,
(c) the right-hand one-third of a box of length L when it is in
the state with n = 1? Hint: You will need to integrate y2dx
between the limits of interest. The indefinite integral you 
require is given in Derivation 12.2.

12.43‡ Here we explore the quantum-mechanical harmonic
oscillator in more quantitative detail. (a) The ground-state
wavefunction of an harmonic oscillator is proportional to e−ax2/2,
where a depends on the mass and force constant. (i) Normalize
this wavefunction. (ii) At what displacement is the oscillator
most likely to be found in its ground state? Hint: For (i), you

will need the integral �
∞

−∞
e−ax 2

dx = (p/a)1/2. For (ii), recall that

the maximum (or minimum) of a function f (x) occurs at the
value of x for which df/dx = 0. (b) Repeat part (a) for the first
excited state of a harmonic oscillator, for which the wave-
function is proportional to xe−ax 2/2.

12.44 The solutions of the Schrödinger equation for a har-
monic oscillator also apply to diatomic molecules. The only
complication is that both atoms joined by the bond move, so
the ‘mass’ of the oscillator has to be interpreted carefully.
Detailed calculation shows that for two atoms of masses mA

and mB joined by a bond of force constant k, the energy levels
are given by eqn 12.20 but with m replaced by the ‘effective
mass’ m = mAmB/(mA + mB). Consider the vibration of carbon
monoxide, a poison that prevents the transport and storage
of O2. The bond in a 12C16O molecule has a force constant of
1860 N m−1. (a) Calculate the vibrational frequency, V, of the
molecule. (b) In infrared spectroscopy it is common to con-
vert the vibrational frequency of a molecule to its vibrational
wavenumber, J, given by J = V/c. What is the vibrational 
number of a 12C16O molecule? (c) Assuming that isotopic
substitution does not affect the force constant of the CyO
bond, calculate the vibrational wavenumbers of the following
molecules: 12C16O, 13C16O, 12C18O, 13C18O.



Chapter 13

Quantum chemistry: 
atomic structure

Hydrogenic atoms

13.1 The spectra of hydrogenic atoms 

13.2 The permitted energies of hydrogenic atoms

13.3 Quantum numbers

13.4 The wavefunctions: s orbitals

13.5 The wavefunctions: p and d orbitals

13.6 Electron spin

13.7 Spectral transitions and selection rules

The structures of many-electron atoms

13.8 The orbital approximation

13.9 The Pauli principle

13.10 Penetration and shielding

13.11 The building-up principle

13.12 The occupation of d orbitals

13.13 The configurations of cations and anions

13.14 Self-consistent field orbitals

Periodic trends in atomic properties

13.15 Atomic radius

13.16 Ionization energy and electron affinity

The spectra of complex atoms

13.17 Term symbols

Box 13.1 Spectroscopy of stars

13.18 Spin–orbit coupling

13.19 Selection rules

CHECKLIST OF KEY IDEAS

TABLE OF KEY EQUATIONS

FURTHER INFORMATION 13.1: THE PAULI PRINCIPLE

QUESTIONS AND EXERCISES

Chapter 12 provided enough background for us to
be able to move on to the discussion of the atomic
structure. Atomic structure—the description of the
arrangement of electrons in atoms—is an essential
part of chemistry because it is the basis for under-
standing molecular and solid structures and all the
physical and chemical properties of elements and
their compounds.

A hydrogenic atom is a one-electron atom or ion of
general atomic number Z. Hydrogenic atoms include
H, He+, Li2+, C5+, and even U91+. Such very highly
ionized atoms may be found in the outer regions of
stars. A many-electron atom is an atom or ion that
has more than one electron. Many-electron atoms 
include all neutral atoms other than H. For instance,
helium, with its two electrons, is a many-electron
atom in this sense. Hydrogenic atoms, and H in 
particular, are important because the Schrödinger
equation can be solved for them and their structures
can be discussed exactly. They provide a set of 
concepts that are used to describe the structures of
many-electron atoms and (as we shall see in the next
chapter) the structures of molecules too.

Hydrogenic atoms

Energetically excited atoms are produced when an
electric discharge is passed through a gas or vapour
or when an element is exposed to a hot flame. These
atoms emit electromagnetic radiation of discrete 
frequencies as they discard energy and return to the
ground state, their state of lowest energy (Fig. 13.1).
The record of frequencies (k, typically in hertz, Hz),
wavenumbers (j = k/c, typically in reciprocal cen-
timetres, cm−1), or wavelengths (λ = c/k, typically in
nanometres, nm), of the radiation emitted is called
the emission spectrum of the atom. In its earliest
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form, the radiation was detected photographically 
as a series of lines (the focused image of the slit that
the light was sampled through), and the components
of radiation present in a spectrum are still widely 
referred to as spectroscopic ‘lines’.

13.1 The spectra of hydrogenic atoms

The first important contribution to understanding
the spectrum of atomic hydrogen, which is observed
when an electric discharge is passed through hydro-
gen gas, was made by the Swiss schoolteacher Johann
Balmer. In 1885 he pointed out that (in modern terms)
the wavenumbers of the light in the visible region of
the electromagnetic spectrum fit the expression

with n = 3, 4, . . . . The lines described by this formula
are now called the Balmer series of the spectrum.
Later, another set of lines was discovered in the 
ultraviolet region of the spectrum, and is called the
Lyman series. Yet another set was discovered in 
the infrared region when detectors became available
for that region, and is called the Paschen series. With
this additional information available, the Swedish
spectroscopist Johannes Rydberg noted (in 1890)
that all the lines are described by the expression

(13.1)

with n1 = 1, 2, . . . , n2 = n1 + 1, n1 + 2, . . . , and RH =
109 677 cm−1. The constant RH is now called the
Rydberg constant for hydrogen. The first five series
of lines then correspond to n1 taking the values 
1 (Lyman), 2 (Balmer), 3 (Paschen), 4 (Brackett), and
5 (Pfund).
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As we saw in Section 12.1, the existence of discrete
spectroscopic lines strongly suggests that the energy
of atoms is quantized and that when an atom changes
its energy by ΔE, this difference is carried away as a
photon of frequency k related to ΔE by the Bohr fre-
quency condition (eqn 12.1):

ΔE = hk (13.2)

In terms of the wavenumber j of the radiation the
Bohr frequency condition is ΔE = hcj. It follows that
we can expect to observe discrete lines if an electron
in an atom can exist only in certain energy states and
electromagnetic radiation induces transitions between
them.

13.2 The permitted energies of 
hydrogenic atoms

The quantum-mechanical description of the structure
of a hydrogenic atom is based on Rutherford’s nuclear
model, in which the atom is pictured as consisting of
an electron outside a central nucleus of charge Ze. To
derive the details of the structure of this type of atom,
we have to set up and solve the Schrödinger equation
in which the potential energy, V, is the Coulomb 
potential energy for the interaction between the 
nucleus of charge +Ze and the electron of charge −e.
In general the Coulombic potential energy of a
charge Q1 at a distance r from another charge Q2 is:

(13.3a)

The fundamental constant ε0 = 8.854 × 10−12 J−1

C2 m−1 is called the vacuum permittivity. When the
charges are expressed in coulombs (C) and their 
separation in metres (m), the energy is expressed in
joules. Note that according to this expression, the
potential energy of a charge is zero when it is at an
infinite distance from the other charge. On setting 
Q1 = +Ze and Q2 = −e

(13.3b)

The negative sign indicates that the potential energy
falls (becomes more negative) as the distance between
the nucleus and the electron decreases. It follows that
the Schrödinger equation for the hydrogen atom 
has the following form:

where the symbol ∇2 is the three-dimensional version
of the quantity d2/dx2 that we encountered in our
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Fig. 13.1 The spectrum of atomic hydrogen. The spectrum is
shown at the top, and is analysed into overlapping series
below. The Balmer series lies largely in the visible region.
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first encounter with the Schrödinger equation (eqn
12.4) and μ (mu) is the reduced mass. For all except
the most precise considerations, the mass of the 
nucleus is so much greater than the mass of the elec-
tron that the latter may be neglected in the denom-
inator of μ, and then μ ≈ me.

A brief comment The explicit form of ∇2 is the sum of
three terms like d2/dx2, with one for each dimension:

We have used the notation of partial derivatives. You can
think of the expression ∇2y as an indication of the total 
curvature in all three dimensions of the wavefunction y.

We also need to identify the appropriate con-
ditions that the wavefunctions must satisfy in order
to be acceptable. For the hydrogen atom, these con-
ditions are that the wavefunction must not become
infinite anywhere and that it must repeat itself (just
like the particle on the surface of a sphere) on circling
the nucleus either over the poles or round the equa-
tor. We should expect that, with three conditions to
satisfy, three quantum numbers will emerge.

With a lot of work, the Schrödinger equation with
this potential energy and these conditions can be
solved, and we shall summarize the results. As usual,
the need to satisfy conditions leads to the conclusion
that the electron can have only certain energies,
which is qualitatively in accord with the spectro-
scopic evidence. Schrödinger himself found that for a
hydrogenic atom of atomic number Z with a nucleus
of mass mN, the allowed energy levels are given by
the expression

(13.4a)

where

(13.4b)

and n = 1, 2, . . . . The constant R (not the gas con-
stant!) is numerically identical to the experimental
Rydberg constant RH when mN is set equal to the
mass of the proton. Schrödinger must have been
thrilled to find that when he calculated RH, the value
he obtained was in almost exact agreement with the
experimental value.

Here we shall focus on eqn 13.4a, and unpack 
its significance. We shall examine (1) the role of n, 
(2) the significance of the negative sign, and (3) the
appearance in the equation of Z2.

The quantum number n is called the principal
quantum number. We use it to calculate the energy of
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the electron in the atom by substituting its value into
eqn 13.4a. The resulting energy levels are depicted 
in Fig. 13.2. Note how they are widely separated at
low values of n, but then converge as n increases. 
At low values of n the electron is confined close to the
nucleus by the attraction of opposite charges and 
the energy levels are widely spaced like those of a
particle in a narrow box. At high values of n, when
the electron has such a high energy that it can travel
out to large distances, the energy levels are close 
together, like those of a particle in a large box.

Now for the sign in eqn 13.4a. All the energies are
negative, which signifies that an electron in an atom
has a lower energy than when it is free. The zero of
energy (which occurs at n = ∞) corresponds to the
infinitely widely separated (so that the Coulomb 
potential energy is zero) and stationary (so that the
kinetic energy is zero) electron and nucleus. The state
of lowest, most negative, energy, the ground state of
the atom, is the one with n = 1 (the lowest permitted
value of n and hence the most negative value of the
energy). The energy of this state is E1 = −hcRZ2: the
negative sign means that the ground state lies hcRZ2

below the energy of the infinitely separated station-
ary electron and nucleus. The first excited state of the
atom, the state with n = 2, lies at E2 = − hcRZ2. This
energy level is hcRZ2 above the ground state.

These results allow us to explain the empirical 
expression for the spectroscopic lines observed in 
the spectrum of atomic hydrogen (for which R = RH
and Z = 1). In a transition, an electron jumps from an
energy level with one quantum number (n2) to a level
with a lower energy (with quantum number n1). As 
a result, its energy changes by

ΔE
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Fig. 13.2 The energy levels of the hydrogen atom. The ener-
gies are relative to a proton and an infinitely distant, station-
ary electron.
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This energy is carried away by a photon of energy
hcj. By equating this energy to ΔE, we immediately
obtain eqn 13.1.

Now consider the significance of Z2 in eqn 13.4a.
The fact that the energy levels are proportional to Z2

stems from two effects. First, an electron at a given
distance from a nucleus of charge Ze has a potential
energy that is Z times more negative than an electron
at the same distance from a proton (for which Z = 1).
However, the electron is drawn in to the vicinity of
the nucleus by the greater nuclear charge, so it is
more likely to be found closer to the nucleus of
charge Z than the proton. This effect is also propor-
tional to Z, so overall the energy of an electron can
be expected to be proportional to the square of Z,
one factor representing the Z times greater strength
of the nuclear field and the second factor represent-
ing the fact that the electron is Z times more likely to
be found closer to the nucleus.

orbital. So, in the ground state of the atom, the electron
occupies the orbital of lowest energy (that with n = 1).

We have remarked that there are three mathemat-
ical conditions on the orbitals: that the wavefunc-
tions must decay to zero as they extend to infinity,
that they must match as we encircle the equator, and
that they must match as we encircle the poles. Each
condition gives rise to a quantum number, so each
orbital is specified by three quantum numbers that
act as a kind of ‘address’ of the electron in the atom.
We can suspect that the values allowed to the three
quantum numbers are linked because, as we saw in
the discussion of a particle on a sphere, to get the
right shape on a polar journey we also have to note
how the wavefunction changes shape as we travel
round the equator. It turns out that the relations 
between the allowed values are very simple.

We saw in Chapter 12 that in certain cases a wave-
function can be separated into factors that depend on
different coordinates and that the Schrödinger equa-
tion separates into simpler versions for each variable.
As may be expected for a system like a hydrogen
atom, by using the separation of variables procedure,
its Schrödinger equation separates into one equation
for the electron moving around the nucleus (the 
analogue of the particle on a sphere treated in Sec-
tion 12.10) and an equation for the radial depend-
ence. The wavefunction correspondingly factorizes,
and is written

ψn,l,ml
(r,θ,φ) = Rn,l(r)Yl,ml

(θ,φ) (13.5)

The factor Rn,l(r) is called the radial wavefunction
and the factor Yl,ml

(θ,φ) is called the angular wave-
function; the latter is exactly the wavefunction we
found for a particle on a sphere. As can be seen from
this expression, the wavefunction is specified by three
quantum numbers, all of which we have already met
in different guises (Section 13.2 and Chapter 12):

Self-test 13.1

The shortest wavelength transition in the Paschen 
series in hydrogen occurs at 821 nm; at what wavelength
does it occur in Li2+? Hint: Think about the variation of 
energies with atomic number Z.

[Answer: × 821 nm = 91.2 nm]1
9

The minimum energy needed to remove an elec-
tron completely from an atom is called the ionization
energy, I. For a hydrogen atom, the ionization energy
is the energy required to raise the electron from the
ground state (with n = 1 and energy E1 = −hcRH) to
the state corresponding to complete removal of the
electron (the state with n = ∞ and zero energy).
Therefore, the energy that must be supplied is I =
hcRH = 2.180 × 10−18 J, which corresponds to 1312
kJ mol−1 or 13.59 eV.

Self-test 13.2

Predict the ionization energy of He+ given that the ion-
ization energy of H is 13.59 eV. Hint: Decide how the 
energy of the ground state varies with Z.

[Answer: IHe+ = 4IH = 54.36 eV]

13.3 Quantum numbers

The wavefunction of the electron in a hydrogenic
atom is called an atomic orbital. The name is intended
to express something less definite than the ‘orbit’ of
classical mechanics. An electron that is described by
a particular wavefunction is said to ‘occupy’ that 

Quantum
number

n

l

ml

Allowed
values

1, 2, . . . ,

0, 1, . . . n − 1

l, l − 1, 
l − 2, . . . , −l

Determines

Energy, through
En = −hcRZ 2/n2

Orbital angular
momentum,
through 
J = {l(l + 1)}1/22
z-Component of
orbital angular
momentum,
through
Jz = ml2

Name

principal

orbital
angular
momentum

magnetic
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Note that the radial wavefunction Rnl(r) depends
only on n and l, so all wavefunctions of a given n and
l have the same radial shape regardless of the value 
of ml. Similarly, the angular wavefunction Yl,ml

(θ,φ)
depends only on l and ml, so all wavefunctions of a
given l and ml have the same angular shape regard-
less of the value of n.

A brief illustration It follows from the restrictions on
the values of the quantum numbers that there is only one
orbital with n = 1, because when n = 1 the only value that
l can have is 0, and that in turn implies that ml can have
only the value 0. Likewise, there are four orbitals with 
n = 2, because l can take the values 0 and 1, and in the 
latter case ml can have the three values +1, 0, and −1. In
general, there are n2 orbitals with a given value of n.

A note on good practice Always give the sign of ml, even
when it is positive. So, write ml = +1, not ml = 1.

Although we need all three quantum numbers to
specify a given orbital, eqn 13.4 reveals that for 
hydrogenic atoms—and, as we shall see, only for 
hydrogenic atoms—the energy depends only on the
principal quantum number, n. Therefore, in hydro-
genic atoms, and only in hydrogenic atoms, all
orbitals of the same value of n but different values of
l and ml have the same energy. Recall from Section
12.9 that when we have more than one wavefunction
corresponding to the same energy, we say that the
wavefunctions are ‘degenerate’; so, now we can say
that in hydrogenic atoms all orbitals with the same
value of n are degenerate.

The degeneracy of all orbitals with the same value
of n (remember from the preceding illustration
that there are n2 of them) and, as we shall see, their
similar mean radii, is the basis of saying that they all
belong to the same shell of the atom. It is common to
refer to successive shells by letters:

n 1 2 3 4 .. .

K L M N ...

Thus, all four orbitals of the shell with n = 2 form the
L shell of the atom.

Orbitals with the same value of n but different 
values of l belong to different subshells of a given
shell. These subshells are denoted by the letters s, 
p, . . . using the following correspondence:

l 0 1 2 3 .. .

s p d f . . .

Only these four types of subshell are important in
practice. For the shell with n = 1, there is only one
subshell, the one with l = 0. For the shell with n = 2

(which allows l = 0, 1), there are two subshells,
namely the 2s subshell (with l = 0) and the 2p sub-
shell (with l = 1). The general pattern of the first three
shells and their subshells is shown in Fig. 13.3. In a
hydrogenic atom, all the subshells of a given shell
correspond to the same energy (because, as we have
seen, the energy depends on n and not on l).

We have seen that if the orbital angular momen-
tum quantum number is l, then ml can take the 2l + 1
values ml = 0, ±1, . . . , ±l. Therefore, each subshell
contains 2l + 1 individual orbitals (corresponding to
the 2l + 1 values of ml for each value of l). It follows
that in any given subshell, the number of orbitals is

s p d f . . .

1 3 5 7 .. .

An orbital with l = 0 (and necessarily ml = 0) is called
an s orbital. A p subshell (l = 1) consists of three p
orbitals (corresponding to ml = +1, 0, −1). An electron
that occupies an s orbital is called an s electron.
Similarly, we can speak of p, d, . . . electrons accord-
ing to the orbitals they occupy.

0
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Fig. 13.3 The structures of atoms are described in terms of
shells of electrons that are labelled by the principal quantum
number n, and a series of n subshells of these shells, with
each subshell of a shell being labelled by the quantum num-
ber l. Each subshell consists of 2l + 1 orbitals.

Self-test 13.3

How many orbitals are there in a shell with n = 5 and
what is their designation?

[Answer: 25; one s, three p, five d, seven f, nine g]

13.4 The wavefunctions: s orbitals

The mathematical form of a 1s orbital (the wave-
function with n = 1, l = 0, and ml = 0) for a hydrogen
atom is
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(13.6)

In this case the angular wavefunction, Y0,0 = 1/(4π)1/2,
is a constant, independent of the angles θ and φ. You
should recall that in Example 12.2 we anticipated
that a wavefunction for an electron in a hydrogen
atom is proportional to e−r: this is its precise form.
The constant a0 is called the Bohr radius (because 
it occurred in Bohr’s calculation of the properties of
the hydrogen atom) and has the value 52.9177 pm.
The wavefunction in eqn 13.6 is normalized to 1
(Section 12.9), so the probability of finding the elec-
tron in a small volume of magnitude δV at a given
point is equal to ψ2δV, with ψ evaluated at a point 
in the region of interest. We are supposing that the
volume δV is so small that the wavefunction does not
vary inside it.

The general form of the wavefunction can be 
understood by considering the contributions of the
potential and kinetic energies to the total energy of
the atom. The closer the electron is to the nucleus on
average, the lower its average potential energy. This
dependence suggests that the lowest potential energy
should be obtained with a sharply peaked wavefunc-
tion that has a large amplitude at the nucleus and is
zero everywhere else (Fig. 13.4). However, this shape
implies a high kinetic energy, because such a wave-

R1,0(r) Y0,0(q, f)

m e
0

2

2

4
=

ε H

e

ψ
π π( ) ( )

/
/

/=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =−4 1

4
1

0
3

1 2

1 2
0
3

0

a
e

a
r a

11 2
0

/
/e r a−

a0
π

function has a very high average curvature. The 
electron would have very low kinetic energy if its
wavefunction had only a very low average curvature.
However, such a wavefunction spreads to great dis-
tances from the nucleus and the average potential 
energy of the electron will be correspondingly high.
The actual wavefunction is a compromise between
these two extremes: the wavefunction spreads away
from the nucleus (so the potential energy is not as
low as in the first example, but nor is it very high)
and has a reasonably low average curvature (so the
kinetic energy is not very low, but nor is it as high as
in the first example).

A 1s orbital depends only on the radius, r, of 
the point of interest and is independent of angle 
(the latitude and longitude of the point). Therefore,
the orbital has the same amplitude at all points at the
same distance from the nucleus regardless of direc-
tion. Because the probability of finding an electron is
proportional to the square of the wavefunction, we
now know that the electron will be found with the
same probability in any direction (for a given dis-
tance from the nucleus). We summarize this angular
independence by saying that a 1s orbital is spheric-
ally symmetrical. Because the same factor Y occurs in
all orbitals with l = 0, all s orbitals have the same
spherical symmetry.

The wavefunction in eqn 13.6 decays exponen-
tially towards zero from a maximum value at the 
nucleus (Fig. 13.5). It follows that the most probable
point at which the electron will be found is at the 
nucleus itself. A method of depicting the probability
of finding the electron at each point in space is to 
represent ψ2 by the density of shading in a diagram
(Fig. 13.6). A simpler procedure is to show only the
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Fig. 13.4 The balance of kinetic and potential energies that
accounts for the structure of the ground state of hydrogen
(and similar atoms). (a) The sharply curved but localized orbital
has high mean kinetic energy, but low mean potential energy;
(b) the mean kinetic energy is low, but the potential energy is
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energy and moderately favourable potential energy.
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boundary surface, the shape that captures about 
90 per cent of the electron probability. For the 1s 
orbital, the boundary surface is a sphere centred on
the nucleus (Fig. 13.7).

A brief illustration We can calculate the probability of
finding the electron in a volume of 1.0 pm3 centred on the
nucleus in a hydrogen atom by setting r = 0 in the expres-
sion for y, using e0 = 1, and taking dV = 1.0 pm3. The value
of y at the nucleus is 1/(pa0

3)1/2. Therefore, y2 = 1/pa0
3 at

the nucleus, and we can write

This result means that the electron will be found in the
volume on one observation in 455 000.
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We often need to know the probability that an
electron will be found at a given distance from a 
nucleus regardless of its angular position (Fig. 13.8).
We can calculate this probability by combining the
wavefunction in eqn 13.5 with the Born interpreta-
tion and, as shown in Derivation 13.1, find that, for
an s orbital, the answer can be expressed as

Probability = P(r)δr with P(r) = 4πr2ψ2 (13.7a)

The function P is called the radial distribution func-
tion. The more general form, which also applies to
orbitals that depend on angle, is

P(r) = r2R(r)2 (13.7b)

where R(r) is the radial wavefunction.

A brief illustration To calculate the probability that the
electron will be found anywhere between a shell of radius
a0 and a shell of radius 1.0 pm greater, we first substitute
the wavefunction in eqn 13.7 into the expression for P in
eqn 13.8:

Now we substitute dr = 1.0 pm and r = a0:

or about 1 inspection in 100.
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Fig. 13.6 Representations of the first two hydrogenic s orbitals,
(a) 1s, (b) 2s, in terms of the electron densities in a slice through
the centre of the atom (as represented by the density of
shading) shown at the origin of the two green arrows.
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Fig. 13.7 The boundary surface of an s orbital within which
there is a high probability of finding the electron.

Self-test 13.4

Repeat the calculation for finding the electron in the
same volume located at the Bohr radius.

[Answer: 3.0 × 10−7, 1 in 3 300 000 observations]

0

0.2

0.4

0.6

0 1 2 3 4
Radius, r/a0

R
ad

ia
l d

is
tr

ib
u

ti
o

n
 f

u
n

ct
io

n
, P

/(
Z

/a
0)

3

r

δr

Fig. 13.8 The radial distribution function gives the probability
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and thickness Dr regardless of angle. The graph shows the
output from an imaginary shell-like detector of variable radius
and fixed thickness Dr.
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The radial distribution function tells us the prob-
ability of finding an electron at a distance r from the
nucleus regardless of its direction. Because r2 increases
from 0 as r increases but ψ2 decreases towards 0 
exponentially, P starts at 0, goes through a maximum,
and declines to 0 again. The location of the maximum
marks the most probable radius (not point) at which
the electron will be found. For a 1s orbital of hydro-
gen, the maximum occurs at a0, the Bohr radius. An
analogy that might help to fix the significance of 
the radial distribution function for an electron is the
corresponding distribution for the population of the
Earth regarded as a perfect sphere. The radial dis-
tribution function is zero at the centre of the Earth and
for the next 6400 km (to the surface of the planet),
when it peaks sharply and then rapidly decays again
to zero. It remains virtually zero for all radii more
than about 10 km above the surface. Almost all the
population will be found very close to r = 6400 km,
and it is not relevant that people are dispersed
nonuniformly over a very wide range of latitudes and
longitudes. The small probabilities of finding people
above and below 6400 km anywhere in the world
corresponds to the population that happens to be
down mines or living in places as high as Denver or
Tibet at the time.

A 2s orbital (an orbital with n = 2, l = 0, and ml = 0)
is also spherical, so its boundary surface is a sphere.
Because a 2s orbital spreads further out from the 

nucleus than a 1s orbital—because the electron it 
describes has more energy to climb away from the
nucleus—its boundary surface is a sphere of larger
radius. The orbital also differs from a 1s orbital in its
radial dependence (Fig. 13.9), for although the wave-
function has a nonzero value at the nucleus (like all s
orbitals), it passes through zero before commencing
its exponential decay towards zero at large distances.
We summarize the fact that the wavefunction passes
through zero everywhere at a certain radius by say-
ing that the orbital has a radial node. A 3s orbital has
two radial nodes, a 4s orbital has three radial nodes.
In general, an ns orbital has n − 1 radial nodes.

A general feature of orbitals is that their mean
radii increase with n, as more radial nodes have to 
be fitted into the wavefunction, with the result that it
spreads out to greater radii. All orbitals of the same
principal quantum number have similar mean radii,
which reinforces the notion of the shell structure of
the atom. Mean radii decrease with increasing Z, 

Derivation 13.1

The radial distribution function

Consider two spherical shells centred on the nucleus,
one of radius r and the other of radius r + dr. The prob-
ability of finding the electron at a radius r regardless of its
direction is equal to the probability of finding it between
these two spherical surfaces. The volume of the region
of space between the surfaces is equal to the surface
area of the inner shell, 4pr2, multiplied by the thickness,
dr, of the region, and is therefore 4pr2dr. According to
the Born interpretation, the probability of finding an elec-
tron inside a small volume of magnitude dV is given, for
a normalized wavefunction that is constant throughout
the region, by the value of y2dV. An s orbital has the
same value at all angles at a given distance from the 
nucleus, so it is constant throughout the shell (provided
dr is very small). Therefore, interpreting dV as the volume
of the shell, we obtain

Probability = y2 × (4pr2dr )

as in eqn 13.8a. The result we have derived applies only
to s orbitals.

0

0

Radius, r/a0

4 8 12 16 20
–0.5

0.5

1

1.5

2

R
ad

ia
l w

av
ef

u
n

ct
io

n
, R

/(
Z

/a
0)

3/
2

× 10

× 2

× 1
1s

2s

3s

0

0

Radius, r/a0

4 8 12 16 20

R
ad

ia
l w

av
ef

u
n

ct
io

n
, R

/(
Z

/a
0)

3/
2

0.15

0.20

0.1

0.05

–0.05

2p

3p

3d

Fig. 13.9 The radial wavefunctions of some hydro-
genic s, p, and d orbitals. Note that the s orbitals have

a nonzero and finite value at the nucleus. The vertical scales
are different in each case.
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because the increased nuclear charge attracts the
electron more strongly and it is confined more closely
to the nucleus.

13.5 The wavefunctions: p and d orbitals

All p orbitals (orbitals with l = 1) have a double-
lobed appearance like that shown in Fig. 13.10. The
two lobes are separated by a nodal plane that cuts
through the nucleus and arises from the angular
wavefunction Y(θ,φ). There is zero probability den-
sity for an electron on this plane. Here, for instance,
is the explicit form of the 2pz orbital:

Note that because ψ is proportional to r, it is zero at
the nucleus, so there is zero probability density of the
electron at the nucleus. The orbital is also zero every-
where on the plane with cos θ = 0, corresponding to
θ = 90°. The px and py orbitals are similar, but have
nodal planes perpendicular to this one.

The exclusion of the electron from the nucleus is 
a common feature of all atomic orbitals except s
orbitals. To understand its origin, we need to note
that the value of the quantum number l tells us the
magnitude of the angular momentum of the electron
around the nucleus (in classical terms, how rapidly it
is circulating around the nucleus). For an s orbital,
the orbital angular momentum is zero (because l = 0),
and in classical terms the electron does not circulate
around the nucleus. Because l = 1 for a p orbital, the
magnitude of the angular momentum of a p electron
is 21/2H. As a result, a p electron—in classical terms—
is flung away from the nucleus by the centrifugal
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force arising from its motion, but an s electron is not.
The same centrifugal effect appears in all orbitals
with angular momentum (those for which l > 0), such
as d orbitals and f orbitals, and all such orbitals have
nodal planes that cut through the nucleus.

Each p subshell consists of three orbitals (ml = +1,
0, −1). The three orbitals are normally represented
by their boundary surfaces, as depicted in Fig. 13.10.
The px orbital has a symmetrical double-lobed shape
directed along the x-axis, and similarly the py and pz
orbitals are directed along the y- and z-axes, respec-
tively. As n increases, the p orbitals become bigger
(for the same reason as s orbitals) and have n − 2 radial
nodes. However, their boundary surfaces retain the
double-lobed shape shown in the illustration. Each d
subshell consists of five orbitals (ml = +2, +1, 0, −1, 
−2). These five orbitals are normally represented 
by the boundary surfaces shown in Fig. 13.11 and 
labelled as shown there.

A brief comment The radial wavefunction is zero at r = 0,
but that is not a radial node because the wavefunction does
not pass through zero there because r does not extend to
negative values.

The quantum number ml indicates, through the ex-
pression mlH, the component of the electron’s orbital
angular momentum around an arbitrary axis passing
through the nucleus. As explained in Section 12.10,
positive values of ml correspond to clockwise motion
seen from below and negative values correspond to
anticlockwise motion. An s electron has ml = 0, and
has no orbital angular momentum about any axis. A

z z z

xxx
y y y

pxpypz

+
+ +

–

– –

Fig. 13.10 The boundary surfaces of p orbitals. A nodal plane
passes through the nucleus and separates the two lobes of
each orbital. The light and dark tones denote regions of op-
posite sign of the wavefunction.
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Fig. 13.11 The boundary surfaces of d orbitals. Two nodal
planes in each orbital intersect at the nucleus and separate
the four lobes of each orbital. (For a dz2 orbital the planes are
replaced by conical surfaces.) The light and dark tones 
denote regions of opposite sign of the wavefunction.
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An electron with ms = + is called an α electron and
commonly denoted α or ↑; an electron with ms = −
is called a β electron and denoted β or ↓.

A note on good practice The quantum number s is equal
to for electrons. You will occasionally see its value written
incorrectly as s = + or s = − . For the projection, use ms.

The existence of the electron spin was demon-
strated by an experiment performed by Otto Stern
and Walther Gerlach in 1921, who shot a beam of
silver atoms through a strong, inhomogeneous 
magnetic field (Fig. 13.13). A silver atom has 47 elec-
trons, and (as will be familiar from introductory
chemistry and will be reviewed later in this chapter)
23 of the spins are ↑ and 23 spins are ↓; the one 
remaining spin may be either ↑ or ↓. Because the spin
angular momenta of the ↑ and ↓ electrons cancel
each other, the atom behaves as if it had the spin of a
single electron. The idea behind the Stern–Gerlach
experiment was that a rotating, charged body—in
this case an electron—behaves like a magnet and 
interacts with the applied field. Because the magnetic
field pushes or pulls the electron according to the 
orientation of the electron’s spin, the initial beam of
atoms should split into two beams, one correspond-
ing to atoms with ↑ spin and the other to atoms with
↓ spin. This result was observed.

Other fundamental particles also have charac-
teristic spins. For example, protons and neutrons are
spin- particles (that is, for them s = ) so invariably
spin with a single, irremovable angular momentum.
Because the masses of a proton and a neutron are so
much greater than the mass of an electron, yet they
all have the same spin angular momentum, the clas-
sical picture of proton and neutron spin would be of
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Fig. 13.12 A classical representation of the two allowed 
spin states of an electron. The magnitude of the spin angular
momentum is (31/2/2)2 in each case, but the directions of spin
are opposite.

p electron can circulate clockwise about an axis as
seen from below (ml = +1). Of its total orbital angu-
lar momentum of 21/2H = 1.414H, an amount H is due
to motion around the selected axis (the rest is due to
motion around the other two axes). A p electron can
also circulate counterclockwise as seen from below
(ml = −1), or not at all (ml = 0) about that selected
axis. An electron in the d subshell can circulate with
five different amounts of orbital angular momentum
about an arbitrary axis (+2H, +H, 0, −H, −2H).

Except for orbitals with ml = 0, there is not a one-
to-one correspondence between the value of ml and
the orbitals shown in the illustrations: we cannot say,
for instance, that a px orbital has ml = +1. For tech-
nical reasons, the orbitals we draw are combinations
of orbitals with opposite values of ml (px, for instance,
is the sum—a superposition—of the orbitals with 
ml = +1 and −1).

13.6 Electron spin

To complete the description of the state of a hydro-
genic atom, we need to introduce one more concept,
that of electron spin. The spin of an electron is an 
intrinsic angular momentum that every electron pos-
sesses and that cannot be changed or eliminated (just
like its mass or its charge). The name ‘spin’ is evoca-
tive of a ball spinning on its axis, and (so long as it is
treated with caution) this classical interpretation can
be used to help to visualize the motion. However, 
in fact spin is a purely quantum-mechanical phe-
nomenon and has no classical counterpart, so the
analogy must be used with care.

We shall make use of two properties of electron
spin (Fig. 13.12):

1. Electron spin is described by a spin quantum
number, s (the analogue of l for orbital angular
momentum), with s fixed at the single (positive)
value of for all electrons at all times.

2. The spin can be clockwise or anticlockwise; these
two states are distinguished by the spin magnetic
quantum number, ms, which can take the values
+ or − but no other values.1
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Fig. 13.13 (a) The experimental arrangement for the Stern–
Gerlach experiment: the magnet is the source of an inhomo-
geneous field. (b) The classically expected result, when the
orientations of the electron spins can take all angles. (c) The
observed outcome using silver atoms, when the electron
spins can adopt only two orientations (↑ and ↓).
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particles spinning much more slowly than an electron.
Some elementary particles have s = 1 and therefore
have a higher intrinsic angular momentum than an
electron. For our purposes the most important spin-1
particle is the photon. It is a very deep feature of 
nature, that the fundamental particles from which
matter is built have half-integral spin (such as electrons
and quarks, all of which have s = ). The particles
that transmit forces between these particles, so bind-
ing them together into entities like nuclei, atoms, and
planets, all have integral spin (such as s = 1 for the
photon, which transmits the electromagnetic inter-
action between charged particles). Fundamental par-
ticles with half-integral spin are called fermions; those
with integral spin are called bosons. Matter therefore
consists of fermions bound together by bosons.

13.7 Spectral transitions and selection rules

We can think of the sudden change in the distribution
of the electron as it changes its spatial distribution
from one orbital to another orbital as jolting the elec-
tromagnetic field into oscillation, and that oscillation
corresponds to the generation of a photon of light. It
turns out, however, that not all transitions between all
available orbitals are possible. For example, it is not
possible for an electron in a 3d orbital to make a transi-
tion to a 1s orbital. Transitions are classified as either
allowed, if they can contribute to the spectrum, or
forbidden, if they cannot. The allowed or forbidden
character of a transition can be traced to the role of
the photon spin, which we mentioned above. When 
a photon, with its one unit of angular momentum, is
generated in a transition, the angular momentum of
the electron must change by one unit to compen-
sate for the angular momentum carried away by 
the photon. That is, the angular momentum must be
conserved—neither created nor destroyed—just as
linear momentum is conserved in collisions. Thus, an
electron in a d orbital (with l = 2) cannot make a
transition into an s orbital (with l = 0) because the
photon cannot carry away enough angular momen-
tum. Similarly, an s electron cannot make a transition
to another s orbital, because then there is no change
in the electron’s angular momentum to make up for
the angular momentum carried away by the photon.

A selection rule is a statement about which spectro-
scopic transitions are allowed. They are derived (for
atoms) by identifying the transitions that conserve
angular momentum when a photon is emitted or 
absorbed. The selection rules for hydrogenic atoms are

Δl = ±1 Δml = 0, ±1

1
2

The principal quantum number n can change by 
any amount consistent with the Δl for the transition
because it does not relate directly to the angular 
momentum.

A brief illustration To identify the orbitals to which an
electron in a 4d orbital may make spectroscopic transitions
we apply the selection rules, principally the rule concern-
ing l. Because l = 2, the final orbital must have l = 1 or 3.
Thus, an electron may make a transition from a 4d orbital
to any np orbital (subject to Dml = 0, ±1) and to any nf 
orbital (subject to the same rule). However, it cannot 
undergo a transition to any other orbital, so a transition to
any ns orbital or another nd orbital is forbidden.

Self-test 13.5

To what orbitals may a 4s electron make spectroscopic
transitions?

[Answer: np orbitals only]

Selection rules enable us to construct a Grotrian
diagram (Fig. 13.14), which is a diagram that sum-
marizes the energies of the states and the allowed
transitions between them. The thickness of a transi-
tion line in the diagram is sometimes used to indicate
in a general way its relative intensity in the spectrum.

The structures of 

many-electron atoms

The Schrödinger equation for a many-electron 
atom is highly complicated because all the electrons
interact with one another. Even for a He atom, with
its two electrons, no mathematical expression for 
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Fig. 13.14 A Grotrian diagram that summarizes the appear-
ance and analysis of the spectrum of atomic hydrogen.
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the orbitals and energies can be given and we are
forced to make approximations. Modern com-
putational techniques, though, are able to refine the
approximations we are about to make, and permit
highly accurate numerical calculations of energies
and wavefunctions.

13.8 The orbital approximation

We show in Derivation 13.2 that it is a general rule 
in quantum mechanics that the wavefunction for 
several noninteracting particles is the product of 
the wavefunctions for each particle. This rule justifies
the orbital approximation, in which we suppose that
a reasonable first approximation to the exact wave-
function is obtained by letting each electron occupy
its ‘own’ orbital, and writing

ψ = ψ(1)ψ(2) . . . (13.8)

where ψ(1) is the wavefunction of electron 1, ψ(2)
that of electron 2, and so on.

We can think of the individual orbitals as re-
sembling the hydrogenic orbitals, but with nuclear
charges that are modified by the presence of all the
other electrons in the atom. This description is only
approximate, but it is a useful model for discussing
the properties of atoms, and is the starting point for
more sophisticated descriptions of atomic structure.

A brief illustration If both electrons occupy the same
1s orbital, the wavefunction for each electron in helium is
y = (8/pa0

3)1/2e−2r/a0. If electron 1 is at a radius r1 and elec-
tron 2 is at a radius r2 (and at any angle), then the overall
wavefunction for the two-electron atom is

The orbital approximation allows us to express
the electronic structure of an atom by reporting its
configuration, a statement of the orbitals that are 
occupied (usually, but not necessarily, in its ground
state). For example, because the ground state of a 
hydrogen atom consists of a single electron in a 1s 
orbital, we report its configuration as 1s1 (read ‘one 
s one’). A helium atom has two electrons. We can
imagine forming the atom by adding the electrons in
succession to the orbitals of the bare nucleus (of
charge 2e). The first electron occupies a hydrogenic
1s orbital, but because Z = 2, the orbital is more com-
pact than in H itself. The second electron joins the
first in the same 1s orbital, and so the electron
configuration of the ground state of He is 1s2 (read
‘one s two’).

13.9 The Pauli principle

Lithium, with Z = 3, has three electrons. Two of its
electrons occupy a 1s orbital drawn even more
closely than in He around the more highly charged
nucleus. The third electron, however, does not join
the first two in the 1s orbital because a 1s3 configura-
tion is forbidden by a fundamental feature of nature
summarized by the Pauli exclusion principle:

No more than two electrons may occupy any given
orbital, and if two electrons do occupy one orbital,
then their spins must be paired.

Electrons with paired spins, denoted ↑↓, have zero
net spin angular momentum because the spin angular
momentum of one electron is cancelled by the spin 
of the other. The exclusion principle is the key to 
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Derivation 13.2

Many-particle wavefunctions

Consider a two-particle system. If the particles do not 
interact with one another, the total hamiltonian that 
appears in the Schrödinger equation is the sum of con-
tributions from each particle, and the equation itself is

{Ĥ(1) + Ĥ(2)}y(1,2) = Ey(1,2)

We need to verify that y(1,2) = y(1)y(2) is a solution,
where each individual wavefunction is a solution of its
‘own’ Schrödinger equation:

Ĥ(1)y(1) = E(1)y(1) Ĥ(2)y(2) = E(2)y(2)

To do so, we substitute y(1,2) = y(1)y(2) into the full
equation, then let Ĥ(1) operate on y(1) and Ĥ(2) operate
on y(2):

This expression has the form of the original Schrödinger
equation, so y(1,2) = y(1)y(2) is indeed a solution, and we
can identify the total energy as E = E(1) + E(2). Note that
this argument fails if the particles interact with one 
another, because then there is an additonal term in 
the hamiltonian and the variables cannot be separated.
For electrons, therefore, writing y(1,2) = y(1)y(2) is an 
approximation.

{H(1) + H(2)}y(1)y(2) = H(1)y(1)y(2) + H(2)y(1)y(2)
= y(2)H(1)y(2) + y(1)H(2)y(2)

= y(2)E(1)y(2) + y(1)E(2)y(2)

= {E(1) + E(2)}y(1)y(2)

ˆ
ˆ ˆ

ˆ ˆ ˆ
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understanding the structures of complex atoms, to
chemical periodicity, and to molecular structure. 
It was proposed by the Austrian Wolfgang Pauli in
1924 when he was trying to account for the absence
of some lines in the spectrum of helium. In Further
information 13.1 we see that the exclusion principle
is a consequence of an even deeper statement about
wavefunctions.

Lithium’s third electron cannot enter the 1s orbital
because that orbital is already full: we say the K shell
is complete and that the two electrons form a closed
shell. Because a similar closed shell occurs in the 
He atom, we denote it [He]. The third electron is 
excluded from the K shell (n = 1) and must occupy
the next available orbital, which is one with n = 2 and
hence belonging to the L shell. However, we now
have to decide whether the next available orbital is
the 2s orbital or a 2p orbital, and therefore whether
the lowest energy configuration of the atom is [He]2s1

or [He]2p1.

13.10 Penetration and shielding

Unlike in hydrogenic atoms, in many-electron atoms
the 2s and 2p orbitals (and, in general, all the sub-
shells of a given shell) are not degenerate. For reasons
we shall now explain, s electrons generally lie lower
in energy than p electrons of a given shell, and p elec-
trons lie lower than d electrons.

An electron in a many-electron atom experiences a
Coulombic repulsion from all the other electrons
present. When the electron is at a distance r from the
nucleus, the repulsion it experiences from the other
electrons can be modelled by a point negative charge
located on the nucleus and having a magnitude equal
to the charge of the electrons within a sphere of radius
r (Fig. 13.15). The effect of the point negative charge
is to lower the full charge of the nucleus from Ze to

Zeffe, the effective nuclear charge. To express the fact
that an electron experiences a nuclear charge that 
has been modified by the other electrons present, we
say that the electron experiences a shielded nuclear
charge. The electrons do not actually ‘block’ the full
Coulombic attraction of the nucleus: the effective
charge is simply a way of expressing the net outcome
of the nuclear attraction and the electronic repulsions
in terms of a single equivalent charge at the centre of
the atom.

A note on good practice Commonly, Zeff itself is referred
to as the ‘effective nuclear charge’, although strictly that
quantity is Zeffe.

The effective nuclear charges experienced by s and
p electrons are different because the electrons have
different wavefunctions and therefore different distri-
butions around the nucleus (Fig. 13.16). An s electron
has a greater penetration through inner shells than a
p electron of the same shell in the sense that an s elec-
tron is more likely to be found close to the nucleus
than a p electron of the same shell (Fig. 13.17). As 
a result of this greater penetration, an s electron 
experiences less shielding than a p electron of the
same shell and therefore experiences a larger Zeff. Con-
sequently, by the combined effects of penetration
and shielding, an s electron is more tightly bound
than a p electron of the same shell. Similarly, a d elec-
tron penetrates less than a p electron of the same
shell, and it therefore experiences more shielding and
an even smaller Zeff.

The consequence of penetration and shielding is
that, in general, the energies of orbitals in the same
shell of a many-electron atom lie in the order s < p <
d < f. The individual orbitals of a given subshell 

r

No net effect
of these electrons

Net effect equivalent
to a point charge
at the nucleus

Fig. 13.15 An electron at a distance r from the nucleus experi-
ences a Coulombic repulsion from all the electrons within a
sphere of radius r and that is equivalent to a point negative
charge located on the nucleus. The effect of the point charge
is to reduce the apparent nuclear charge of the nucleus from
Ze to Zeffe.
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Fig. 13.16 An electron in an s orbital (here a 3s orbital) is
more likely to be found close to the nucleus than an electron
in a p orbital of the same shell. Hence it experiences less
shielding and is more tightly bound.
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(such as the three p orbitals of the p subshell) remain
degenerate because they all have the same radial
characteristics and so experience the same effective
nuclear charge.

We can now complete the Li story. Because the
shell with n = 2 has two nondegenerate subshells,
with the 2s orbital lower in energy than the three 2p
orbitals, the third electron occupies the 2s orbital.
This arrangement results in the ground state con-
figuration 1s22s1, or [He]2s1. It follows that we can
think of the structure of the atom as consisting of 
a central nucleus surrounded by a complete helium-
like shell of two 1s electrons, and around that a more
diffuse 2s electron. The electrons in the outermost
shell of an atom in its ground state are called the 
valence electrons because they are largely responsible
for the chemical bonds that the atom forms (and, as
we shall see, the extent to which an atom can form
bonds is called its ‘valence’). Thus, the valence 
electron in Li is a 2s electron, and lithium’s other two
electrons belong to its core, where they take little
part in bond formation.

13.11 The building-up principle

The extension of the procedure used for H, He, 
and Li to other atoms is called the building-up prin-
ciple. The building-up principle, which is still widely
called the Aufbau principle (from the German word
for building up), specifies an order of occupation of
atomic orbitals that reproduces the experimentally
determined ground state configurations of neutral
atoms.

We imagine the bare nucleus of atomic number Z,
and then feed into the available orbitals Z electrons
one after the other. The first two rules of the building-
up principle are:

1. The order of occupation of orbitals is

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s

5d 4f 6p .. .

2. According to the Pauli exclusion principle, each
orbital may accommodate up to two electrons.

The order of occupation is approximately the order
of energies of the individual orbitals, because in gen-
eral the lower the energy of the orbital, the lower the
total energy of the atom as a whole when that orbital
is occupied. An s subshell is complete as soon as two
electrons are present in it. Each of the three p orbitals
of a shell can accommodate two electrons, so a p sub-
shell is complete as soon as six electrons are present
in it. A d subshell, which consists of five orbitals, can
accommodate up to ten electrons.

As an example, consider a carbon atom. Because 
Z = 6 for carbon, there are six electrons to accom-
modate. Two enter and fill the 1s orbital, two enter
and fill the 2s orbital, leaving two electrons to occupy
the orbitals of the 2p subshell. Hence its ground con-
figuration is 1s22s22p2, or more succinctly [He]2s22p2,
with [He] the helium-like 1s2 core. However, it is
possible to be more specific. On electrostatic grounds,
we can expect the last two electrons to occupy differ-
ent 2p orbitals, for they will then be farther apart on
average and repel each other less than if they were in
the same orbital. Thus, one electron can be thought
of as occupying the 2px orbital and the other the 2py
orbital, and the lowest energy configuration of the
atom is [He]2s22p1

x 2p1
y . The same rule applies when-

ever degenerate orbitals of a subshell are available for
occupation. Therefore, another rule of the building-
up principle is:

3. Electrons occupy different orbitals of a given sub-
shell before doubly occupying any one of them.

It follows that a nitrogen atom (Z = 7) has the con-
figuration [He]2s22p1

x 2p1
y 2p1

z . Only when we get to
oxygen (Z = 8) is a 2p orbital doubly occupied, giving
the configuration [He]2s22p2

x2p1
y 2p1

z .
An additional point arises when electrons occupy

degenerate orbitals (such as the three 2p orbitals)
singly, as they do in C, N, and O, for there is then no
requirement that their spins should be paired. We
need to know whether the lowest energy is achieved
when the electron spins are the same (both ↑, for 
instance, denoted ↑↑, if there are two electrons in
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Fig. 13.17 The radial distribution function of an ns orbital
(here, n = 3) shows that the electron that occupies it 
penetrates through the core electron density more than an
electron in an np orbital (see the highlighted region) with the
result that it experiences a less shielded nuclear charge.
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question, as in C) or when they are paired (↑↓). This
question is resolved by Hund’s rule:

4. In its ground state, an atom adopts a configuration
with the greatest number of unpaired electrons.

The explanation of Hund’s rule is complicated, but 
it reflects the quantum-mechanical property of spin
correlation, that electrons in different orbitals with
parallel spins have a quantum-mechanical tendency
to stay well apart (a tendency that has nothing to 
do with their charge: even two ‘uncharged electrons’
would behave in the same way). Their mutual avoid-
ance allows the atom to shrink slightly, so the 
electron–nucleus interaction is improved when the
spins are parallel. We can now conclude that in 
the ground state of a C atom, the two 2p electrons
have the same spin, that all three 2p electrons in an N
atom have the same spin, and that the two electrons
that singly occupy different 2p orbitals in an O atom
have the same spin (the two in the 2px orbital are 
necessarily paired).

Neon, with Z = 10, has the configuration
[He]2s22p6, which completes the L (n = 2) shell. This
closed-shell configuration is denoted [Ne], and acts
as a core for subsequent elements. The next electron
must enter the 3s orbital and begin a new shell, and
so a Na atom, with Z = 11, has the configuration
[Ne]3s1. Like lithium with the configuration [He]2s1,
sodium has a single s electron outside a complete core.

tion [Ar]4s2, resembling that of its partner in the
same group, Mg, which is [Ne]3s2.

Ten electrons can be accommodated in the five 3d
orbitals, which accounts for the electron configura-
tions of scandium to zinc. The building-up principle
has less clear-cut predictions about the ground-state
configurations of these elements and a simple analysis
no longer works. Calculations show that for these
atoms the energies of the 3d orbitals are always lower
than the energy of the 4s orbital. However, spectro-
scopic results show that Sc has the configuration
[Ar]3d14s2, instead of [Ar]3d3 or [Ar]3d24s1. To 
understand this observation, we have to consider the
nature of electron–electron repulsions in 3d and 4s
orbitals. The most probable distance of a 3d electron
from the nucleus is less than that for a 4s electron, so
two 3d electrons repel each other more strongly than
two 4s electrons. As a result, Sc has the configuration
[Ar]3d14s2 rather than the two alternatives, for then
the strong electron–electron repulsions in the 3d 
orbitals are minimized. The total energy of the atom
is least despite the cost of allowing electrons to 
populate the high energy 4s orbital (Fig. 13.18). The
effect just described is generally true for scandium
through zinc, so their electron configurations are of
the form [Ar]3dn4s2, where n = 1 for scandium and 
n = 10 for zinc.

At gallium, the energy of the 3d orbitals has fallen
so far below those of the 4s and 4p orbitals that they
(the full 3d orbitals) can be largely ignored, and the
building-up principle can be used in the same way as
in preceding periods. Now, the 4s and 4p subshells
constitute the valence shell, and the period terminates
with krypton. Because 18 electrons have intervened
since argon, this period is the first long period of the
periodic table. The existence of the d block (the ‘transi-
tion metals’) reflects the stepwise occupation of the 3d
orbitals, and the subtle shades of energy differences
along this series gives rise to the rich complexity of

Self-test 13.6

Predict the ground-state electron configuration of sulfur.
[Answer: [Ne]3s23px

23py
13pz

1]

This analysis has brought us to the origin of chem-
ical periodicity. The L shell is completed by eight
electrons, and so the element with Z = 3 (Li) should
have similar properties to the element with Z = 11
(Na). Likewise, Be (Z = 4) should be similar to Mg 
(Z = 12), and so on up to the noble gases He (Z = 2),
Ne (Z = 10), and Ar (Z = 18).

13.12 The occupation of d orbitals

Argon has complete 3s and 3p subshells, and as the
3d orbitals are high in energy, the atom effectively
has a closed-shell configuration. Indeed, the 4s 
orbitals are so lowered in energy by their ability to
penetrate close to the nucleus that the next electron
(for potassium) occupies a 4s orbital rather than a 3d
orbital and the K atom resembles a Na atom. The
same is true of a Ca atom, which has the configura-
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Fig. 13.18 Strong electron–electron repulsions in the 3d 
orbitals are minimized in the ground state of a scandium atom
if (a) the atom has the configuration [Ar]3d14s2 instead of (b)
[Ar]3d24s1. The total energy of the atom is lower when it has
the configuration [Ar]3d1s2 despite the cost of populating the
high-energy 4s orbital.
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inorganic (and bioinorganic) d-metal chemistry. A
similar intrusion of the f orbitals in Periods 6 and 7
accounts for the existence of the f block of the 
periodic table (the lanthanoids and actinoids).

13.13 The configurations of cations 
and anions

The configurations of cations of elements in the s, 
p, and d blocks of the periodic table are derived by
removing electrons from the ground-state configura-
tion of the neutral atom in a specific order. First, we
remove any valence p electrons, then the valence 
s electrons, and then as many d electrons as are 
necessary to achieve the stated charge. For instance,
because the configuration of Fe is [Ar]3d64s2, an Fe3+

cation has the configuration [Ar]3d5.
The configurations of anions are derived by con-

tinuing the building-up procedure and adding elec-
trons to the neutral atom until the configuration of
the next noble gas has been reached. Thus, the
configuration of an O2− ion is achieved by adding
two electrons to [He]2s22p4, giving [He]2s22p6, the
configuration of Ne.

by ascribing to it a potential energy due to the nuclear
attraction and the repulsion from the other electrons.
Although the equation is for the 2p orbital, it de-
pends on the wavefunctions of all the other occupied
orbitals in the atom. To solve the equation, we guess
an approximate form of the wavefunctions of all the
orbitals except 2p and then solve the Schrödinger
equation for the 2p orbital. The procedure is then 
repeated for the 1s and 2s orbitals. This sequence of
calculations gives the form of the 2p, 2s, and 1s 
orbitals, and in general they will differ from the set
used initially to start the calculation. These improved
orbitals can be used in another cycle of calculation,
and a second improved set of orbitals and a better 
energy are obtained. The recycling continues until
the orbitals and energies obtained are insignificantly
different from those used at the start of the current
cycle. The solutions are then self-consistent and 
accepted as solutions of the problem.

Figure 13.19 shows plots of some of the HF-SCF
radial distribution functions for sodium. They show
the grouping of electron density into shells, as was
anticipated by the early chemists, and the differences
of penetration as discussed above. These SCF calcu-
lations therefore support the qualitative discussions
that are used to explain chemical periodicity. They
also considerably extend that discussion by provid-
ing detailed wavefunctions and precise energies.

Periodic trends in atomic

properties

The periodic recurrence of analogous ground-state
electron configurations as the atomic number 
increases accounts for the periodic variation in the
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Fig. 13.19 The radial distribution functions for the orbitals of
Na based on SCF calculations. Note the shell-like structure,
with the 3s orbital outside the inner K and L shells.

Self-test 13.7

Predict the electron configurations of (a) a Cu2+ ion and
(b) an S2− ion.

[Answer: (a) [Ar]3d9, (b) [Ne]3s23p6]

13.14 Self-consistent field orbitals

The treatment we have given to the electronic con-
figuration of many-electron species is only approxim-
ate because it is hopeless to expect to find exact 
solutions of a Schrödinger equation that takes into
account the interaction of all the electrons with one
another. However, computational techniques are
available that give very detailed and reliable approx-
imate solutions for the wavefunctions and energies.
The techniques were originally introduced by D.R.
Hartree (before computers were available) and then
modified by V. Fock to take into account the Pauli
principle correctly. In broad outline, the  Hartree–
Fock self-consistent field (HF-SCF) procedure is as
follows.

Imagine that we have a rough idea of the structure
of the atom. In the Ne atom, for instance, the orbital
approximation suggests the configuration 1s22s22p6

with the orbitals approximated by hydrogenic atomic
orbitals. Now consider one of the 2p electrons. A
Schrödinger equation can be written for this electron
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properties of atoms. Here we concentrate on two 
aspects of atomic periodicity: atomic radius and 
ionization energy. Both can be correlated with the 
effective nuclear charge, and Fig. 13.20 shows how
this quantity varies through the first three periods.

13.15 Atomic radius

The atomic radius of an element is half the distance
between the centres of neighbouring atoms in a solid
(such as Cu) or, for nonmetals, in a homonuclear
molecule (such as H2 or S8). It is of great significance
in chemistry, for the size of an atom is one of the
most important controls on the number of chemical
bonds the atom can form. Moreover, the size and
shape of a molecule depend on the sizes of the atoms
of which it is composed, and molecular shape and
size are crucial aspects of a molecule’s biological
function. Atomic radius also has an important tech-
nological aspect, because the similarity of the atomic
radii of the d-block elements is the main reason why
they can be blended together to form so many differ-
ent alloys, particularly varieties of steel.

In general, atomic radii decrease from left to 
right across a period and increase down each group
(Table 13.1 and Fig. 13.21). The decrease across a
period can be traced to the increase in nuclear charge,
which draws the electrons in closer to the nucleus.
The increase in nuclear charge is partly cancelled by
the increase in the number of electrons, but because
electrons are spread over a region of space, one elec-
tron does not fully shield one nuclear charge, so the
increase in nuclear charge dominates. The increase 

in atomic radius down a group (despite the increase
in nuclear charge) is explained by the fact that the 
valence shells of successive periods correspond to
higher principal quantum numbers. That is, succes-
sive periods correspond to the start and then com-
pletion of successive (and more distant) shells of the
atom that surround each other like the successive
layers of an onion. The need to occupy a more dis-
tant shell leads to a larger atom despite the increased
nuclear charge.

A modification of the increase down a group is 
encountered in Period 6, for the radii of the atoms
late in the d block and in the following regions of 
the p block are not as large as would be expected by
simple extrapolation down the group. The reason
can be traced to the fact that in Period 6 the f orbitals
are in the process of being occupied. An f electron 
is a very ineAcient shielder of nuclear charge (for
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Fig. 13.20 The variation of the effective atomic number 
with actual atomic number for the elements of the first three
periods. The value of Zeff depends on the identity of the orbital
occupied by the electron: we show the values only for the 
valence electrons.

Table 13.1

Atomic radii of main-group elements, r /pm

Li Be B C N O F
157 112 88 77 74 66 64

Na Mg Al Si P S Cl
191 160 143 118 110 104 99

K Ca Ga Ge As Se Br
235 197 153 122 121 117 114

Rb Sr In Sn Sb Te I
250 215 167 158 141 137 133

Cs Ba Tl Pb Bi Po
272 224 171 175 182 167
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Fig. 13.21 The variation of atomic radius through the periodic
table. Note the contraction of radius following the lan-
thanoids in Period 6 (following Yb, ytterbium).
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reasons connected with its radial extension), and as
the atomic number increases from La to Yb, there is
a considerable contraction in radius. By the time 
the d block resumes (at lutetium, Lu), the poorly
shielded but considerably increased nuclear charge
has drawn in the surrounding electrons, and the
atoms are compact. They are so compact, that the
metals in this region of the periodic table (iridium to
lead) are very dense. The reduction in radius below
that expected by extrapolation from preceding 
periods is called the lanthanide contraction.

13.16 Ionization energy and 
electron affinity

The minimum energy necessary to remove an elec-
tron from a many-electron atom is its first ionization
energy, I1. The second ionization energy, I2, is the
minimum energy needed to remove a second electron
(from the singly charged cation):

X(g) → X+(g) + e−(g) I1 = E(X+) − E(X) (13.9)

X+(g) → X2+(g) + e−(g) I2 = E(X2+) − E(X+)

The variation of the first ionization energy through
the periodic table is shown in Fig. 13.22 and some
numerical values are given in Table 13.2. The ioniza-
tion energy of an element plays a central role in deter-
mining the ability of its atoms to participate in bond
formation (for bond formation, as we shall see in
Chapter 14, is a consequence of the relocation of
electrons from one atom to another). After atomic
radius, it is the most important property for deter-
mining an element’s chemical characteristics.

The following trends are noteworthy:

• Lithium has a low first ionization energy: its out-
ermost electron is well shielded from the weakly
charged nucleus by the core (Zeff = 1.3 compared
with Z = 3) and it is easily removed.

• Beryllium has a higher nuclear charge than lithium,
and its outermost electron (one of the two 2s elec-
trons) is more diAcult to remove: its ionization
energy is larger.

• The ionization energy decreases between beryllium
and boron because in the latter the outermost
electron occupies a 2p orbital and is less strongly
bound than if it had been a 2s electron.

• The ionization energy increases between boron
and carbon because the latter’s outermost 
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Fig. 13.22 The periodic variation of the first ionization ener-
gies of the elements.

Table 13.2

First ionization energies of main-group elements, I /eV*

H He
13.60 24.59
Li Be B C N O F Ne
5.32 9.32 8.30 11.26 14.53 13.62 17.42 21.56

Na Mg Al Si P S Cl Ar
5.14 7.65 5.98 8.15 10.49 10.36 12.97 15.76

K Ca Ga Ge As Se Br Kr
4.34 6.11 6.00 7.90 9.81 9.75 11.81 14.00

Rb Sr In Sn Sb Te I Xe
4.18 5.70 5.79 7.34 8.64 9.01 10.45 12.13

Cs Ba Tl Pb Bi Po At Rn
3.89 5.21 6.11 7.42 7.29 8.42 9.64 10.78

* 1 eV = 96.485 kJ mol−1. See also Table 3.2.
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electron is also 2p and the nuclear charge has 
increased.

• Nitrogen has a still higher ionization energy 
because of the further increase in nuclear charge.

• There is now a kink in the curve because the 
ionization energy of oxygen is lower than would
be expected by simple extrapolation.

• At oxygen, a 2p orbital must become doubly 
occupied, and the electron–electron repulsions are
increased above what would be expected by simple
extrapolation along the row. (The kink is less pro-
nounced in the next row, between phosphorus and
sulfur, because their orbitals are more diffuse.)

• The values for oxygen, fluorine, and neon fall
roughly on the same line, the increase of their ion-
ization energies reflecting the increasing attrac-
tion of the nucleus for the outermost electrons.

• The outermost electron in sodium is 3s. It is far
from the nucleus, and the latter’s charge is
shielded by the compact, complete neon-like core.
As a result, the ionization energy of sodium is sub-
stantially lower than that of neon.

• The periodic cycle starts again along this row, 
and the variation of the ionization energy can be
traced to similar reasons.

The electron aGnity, Eea, is the difference in energy
between a neutral atom and its anion. It is the energy
released in the process

X(g) + e−(g) → X−(g)

Eea = E(X) − E(X−)
(13.10a)

The electron aAnity is positive if the anion has a
lower energy than the neutral atom. Care should be
taken to distinguish the electron aAnity from the
electron-gain enthalpy (Section 3.2): they have very
similar numerical values but differ in sign:

X(g) + e−(g) → X−(g)

ΔeaH = Hm(X−) − Hm(X)
(13.10b)

Electron aAnities (Table 13.3) vary much less 
systematically through the periodic table than 
ionization energies. However, the following general
observations are important:

• Broadly speaking the highest electron aAnities
are found close to fluorine. In the halogens, the 
incoming electron enters the valence shell and 
experiences a strong attraction from the nucleus.

• The electron aAnities of the noble gases are 
negative—which means that the anion has a
higher energy than the neutral atom—because 
the incoming electron occupies an orbital outside
the closed valence shell. It is then far from the 
nucleus and repelled by the electrons of the 
closed shells.

• The first electron aAnity of oxygen is positive for
the same reason as for the halogens. However, the
second electron aAnity (for the formation of O2−

from O−) is strongly negative because although
the incoming electron enters the valence shell, it
experiences a strong repulsion from the net nega-
tive charge of the O− ion.

Table 13.3

Electron affinities of main-group elements, Eea/eV*

H He
+0.75 <0†

Li Be B C N O F Ne
+0.62 −0.19 +0.28 +1.26 −0.07 +1.46 +3.40 −0.30†

Na Mg Al Si P S Cl Ar
+0.55 −0.22 +0.46 +1.38 +0.46 +2.08 +3.62 −0.36†

K Ca Ga Ge As Se Br Kr
+0.50 −1.99 +0.3 +1.20 +0.81 +2.02 +3.37 −0.40†

Rb Sr In Sn Sb Te I Xe
+0.49 +1.51 +0.3 +1.20 +1.05 +1.97 +3.06 −0.42†

Cs Ba Tl Pb Bi Po At Rn
+0.47 −0.48 +0.2 +0.36 +0.95 +1.90 +2.80 −0.42†

* 1 eV = 96.485 kJ mol−1. See also Table 3.3.
† Calculated.
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The spectra of complex atoms

The spectra of many-electron atoms can be very
complicated, yet that complexity contains a great
deal of detailed information about the interactions
between electrons. Here we consider the notation
used to specify the states of atoms. Chemists need 
to know how to designate the states of atoms when
they are describing photochemical events in the 
atmosphere and the chemical composition of stars
(Box 13.1). We also describe an interaction that has
important consequences in molecular spectroscopy
and magnetism.

13.17 Term symbols

For historical reasons, the energy level of an atom is
called a term and the notation used to specify the
term is called a term symbol. A term symbol looks
like 3D2, with each component (the 3, the D, and the
2) telling us something about the angular momentum
of the electrons in the atom. The scheme we shall 
use to arrive at the term symbols of atoms is called
Russell–Saunders coupling and is based on the notion
that the orbital and spin angular momenta of each
electron couple together, and then all these resultants
couple together to give an overall total angular 
momentum. The calculations focus on the valence

Box 13.1 Spectroscopy of stars

The bulk of stellar material consists of neutral and ionized
forms of hydrogen and helium atoms, with helium being
the product of ‘hydrogen burning’ by nuclear fusion. How-
ever, nuclear fusion also makes heavier elements. It is gen-
erally accepted that the outer layers of stars are composed
of lighter elements, such as H, He, C, N, O, and Ne in both
neutral and ionized forms. Heavier elements, including neu-
tral and ionized forms of Si, Mg, Ca, S, and Ar, are found
closer to the stellar core. The core itself contains the heavi-
est elements and 56Fe is particularly abundant because it is
very stable. All of these elements are in the gas phase on
account of the very high temperatures in stellar interiors.
For example, the temperature is estimated to be 3.6 MK 
(1 MK = 106 K) half-way to the centre of the Sun.

Astronomers use spectroscopic techniques to deter-
mine the chemical composition of stars because each 
element, and indeed each isotope of an element, has a
characteristic spectral signature that is transmitted through
space by the star’s light. To understand the spectra of stars,
we must first know why they shine. Nuclear reactions in
the dense stellar interior generate radiation that travels 
to less dense outer layers. Absorption and re-emission of
photons by the atoms and ions in the interior give rise to 
a quasicontinuum of radiation energy that is emitted into
space by a thin layer of gas called the photosphere. To a
good approximation, the distribution of energy emitted
from a star’s photosphere resembles that for a very hot 
object. For example, the energy distribution of our Sun’s
photosphere is like that of an object heated to a tempera-
ture of 5800 K. Superimposed on the radiation continuum
are sharp absorption and emission lines from neutral atoms
and ions present in the photosphere. Analysis of stellar 
radiation with a spectrometer mounted onto a telescope,

such as the Hubble Space Telescope, yields the chemical
composition of the star’s photosphere by comparison with
known spectra of the elements. The data can also reveal
the presence of small molecules, such as CN, C2, TiO, and
ZrO, in certain ‘cold’ stars, which are stars with relatively
low effective temperatures.

The two outermost layers of a star are the chromo-
sphere, a region just above the photosphere, and the
corona, a region above the chromosphere that can be seen
(with proper care) during eclipses. The photosphere, chro-
mosphere, and corona comprise a star’s ‘atmosphere’. Our
Sun’s chromosphere is much less dense than its photo-
sphere and its temperature is much higher, rising to about
10 kK (1 kK = 103 K). The reasons for this increase in tem-
perature are not fully understood. The temperature of our
Sun’s corona is very high, rising up to 1.5 MK, so black-body
emission is strong from the X-ray to the radio-frequency 
region of the spectrum. The spectrum of the Sun’s corona
is dominated by emission lines from electronically excited
species, such as neutral atoms and a number of highly ion-
ized species. The most intense emission lines in the visible
range are from the Fe13+ ion at 530.3 nm, the Fe9+ ion at
637.4 nm, and the Ca4+ ion at 569.4 nm.

Because our telescopes detect only light from the outer
layers of stars, their overall chemical composition must be
inferred from theoretical work on their interiors and from
spectral analysis of their atmospheres. Data on our Sun 
indicate that it is 92 per cent hydrogen and 7.8 per cent 
helium. The remaining 0.2 per cent are due to heavier 
elements, among which C, N, O, Ne, and Fe are the most
abundant. More advanced analysis of spectra also permit
the determination of other properties of stars, such as their
relative speeds and their effective temperatures.
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electrons, for core electrons do not contribute to the
overall angular momentum of an atom.

The letter (D, for instance) tells us the total orbital
angular momentum of the electrons in the atom. To
find it, we work out the total orbital angular momen-
tum quantum number, L, in the manner described
below, and then we use the following code:

L 0 1 2 3 . . .

S P D F . . .

Note that the code is the same as for orbitals, but 
we use upper-case Roman letters. To find L we 
identify the orbital angular momentum quantum
numbers (l1 and l2 for instance) of the electrons in the
valence shell of the atom, and then form the follow-
ing series:

L = l1 + l2, l1 + l2 − 1, . . . , | l1 − l2 |

This and the analogous series introduced later are
called Clebsch–Gordan series. The modulus signs 
(| . . . |) simply mean that the series terminates at a posi-
tive value. The highest total orbital angular momen-
tum occurs when the two electrons are orbiting in the
same direction (in classical terms, like the planets
round the Sun); the lowest occurs when they are 
orbiting in opposite directions.

A brief illustration Suppose we are considering the
excited-state configuration of carbon [He]2s22p13p1 in
which a 2p electron has been promoted to a 3p orbital
(though not by electromagnetic radiation; see Section
13.19). We concentrate on the p electrons because the s
electrons have no orbital angular momentum. For each
electron l = 1 (that is, l1 = 1 and l2 = 1 for the two electrons
we are considering). It follows that

L = 1 + 1, 1 + 1 − 1, . . . |1 − 1| = 2, 1, 0

This result is shown pictorially in Fig. 13.23. It follows that
the configuration gives rise to D, P, and S terms, corres-
ponding to the three allowed values of the total orbital 
angular momentum.

Another brief illustration Consider the configuration
p3. When there are more than two electrons to couple 
together, we use two Clebsch–Gordan series in succes-
sion: first we couple two electrons, and then we couple
the third to each combined state, and so on. Coupling two
electrons with orbital angular momentum quantum num-
bers l1 = l2 = 1 gives a minimum value of |1 − 1| = 0.
Therefore, using L′ to denote the total orbital angular 
momentum quantum number for these two electrons
only, we obtain

L′ = 1 + 1, 1 + 1 − 1, . . . , 0 = 2, 1, 0

Now we go on to calculate the values of L, the total orbital
angular momentum quantum number for the three-
electron system. We couple l3 with L′ = 2, to give L = 3, 
2, 1; with L′ = 1, to give L = 2, 1, 0; and with L′ = 0, to give
L = 1. The overall result is

L = 3, 2, 2, 1, 1, 1, 0

giving one F, two D, three P, and one S terms.

Next, we consider the total spin angular momen-
tum quantum number, S. This quantum number is
obtained in the same way as L, by adding together
the individual spin angular momentum quantum
numbers:

S = s1 + s2, s1 + s2 − 1, . . . , |s1 − s2|

For electrons, s = , so for two electrons

S = + , + − 1, . . . , | − | = 1, 0

Then the value of S is represented in the term symbol
by writing the multiplicity of the term, the value of
2S + 1, as a left superscript. The higher the multipli-
city of a term, the more electrons there are in the atom
that are spinning in the same direction.

A brief illustration For the excited configuration of
carbon, [He]2s22p13p1, that we are considering, the two p
electrons each have s = , so S = 1,0. The corresponding
multiplicities are 2 × 1 + 1 = 3 (a ‘triplet’ term) and 2 × 0 + 1
= 1 (a ‘singlet’ term). The corresponding term symbols are

Triplet terms: 3D, 3P, 3S Singlet terms: 1D, 1P, 1S

A note on good practice Except in casual conversation, the
name ‘state’ should not be used in place of ‘term’. As we shall
see, in general a term consists of a number of different states.

Finally, we come to the right subscript. This label
is the total angular momentum quantum number, J,
the total angular momentum being the sum of the 
orbital angular momentum and the spin angular 
momentum. We find J (a positive number) by form-
ing the series

J = L + S, L + S − 1, . . . , |L − S |
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Fig. 13.23 A depiction of the rules for coupling two 
angular momenta into a resultant. In this case, l1 = l2 = 1 to
give resultants with L = 2, 1, and 0. The lengths of the 
vectors are proportional to {l(l + 1)}1/2 in each case.
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If there are many electrons having spins in the same
direction as their orbital motion, then J is large. If the
spins are aligned against the orbital motion, then J is
small. Each value of J corresponds to a particular
level of a term.

A brief illustration The levels that occur in the 3D
term are found by setting L = 2 and S = 1; then

J = 2 + 1, 2 + 1 − 1, . . . , |2 − 1 | = 3, 2, 1

That is, the levels of the 3D term are 3D3, 
3D2, and 3D1 (note

that there are three levels for this triplet term). In the 3D3

level, not only are the two p electrons orbiting in the same
sense, the two spins are spinning in the same direction 
as each other, and the total spin is in the same direction
as the orbital angular momentum. In 3D1 the total spin is
aligned oppositely to the total orbital momentum and the
overall total angular momentum is relatively low.

A note on good practice ‘Levels’ are still not ‘states’.
Each level with a quantum number J consists of 2J + 1 indi-
vidual states distinguished by the quantum number MJ.

therefore predict that the 3D term will lie lowest of all
the terms arising from the [He]2s22p13p1 configura-
tion. To find which of the three levels of this term lies
lowest, we need another concept.

13.18 Spin–orbit coupling

An electron is a charged particle, so its orbital angu-
lar momentum gives rise to a magnetic field, just as
an electric current in a loop gives rise to a magnetic
field in an electromagnet. That is, an electron with
orbital angular momentum acts like a tiny bar mag-
net. An electron also has a spin angular momentum,
and this intrinsic ‘spinning motion’ means that it also
acts as a tiny bar magnet. The magnet arising from
the spin interacts with the magnet arising from the
orbital motion and gives rise to the interaction called
spin–orbit coupling.

The two magnets have a higher energy when 
they are parallel than when they are antiparallel 
(Fig. 13.24). Therefore, because the relative orienta-
tion of the magnets reflects the relative orientation of
the orbital and spin angular momenta, the energy of
the atom depends on the total angular momentum
quantum number J (because its value also reflects the
relative orientation of the two kinds of momentum).
A low energy is obtained when the angular momenta,
and therefore the bar magnets, are antiparallel to
each other. That arrangement of angular momenta
corresponds to a low value of J. Therefore, we can
predict that the level with the lowest value of J will lie
lowest in energy. In our current example, we predict
that the lowest level of the 3D term is 3D1. A more

Self-test 13.8

What terms and levels can arise from the configuration
. . .4p13d1?

[Answer: 1F3, 
1D2, 

1P1, 
3F4,3,2, 

3D3,2,1, 
3P2,1,0]

The terms of a configuration in general have differ-
ent energies because they correspond to the occupa-
tion of different orbitals and to different numbers of
electrons with parallel spins. Typically, Hund’s rule
enables us to identify the term of lowest energy as 
the one with the greatest number of parallel spins
(Section 13.11), for parallel spins tend to stay apart
and that allows the atom to shrink slightly. In other
words,

The term with the greatest multiplicity lies lowest
in energy.

In the excited configuration of carbon in the illustra-
tion above, the triplet terms lie lower than the singlet
terms, so one of the terms 3D, 3P, 3S lies lowest. It is
also commonly found that, having sorted the terms
by multiplicity,

The term with the greatest orbital angular momen-
tum lies lowest in energy.

Classically, we can think of the term with the greatest
orbital angular momentum as having electrons cir-
culating in the same direction, like cars on a traAc
circle, and therefore being able to stay far apart. We
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Fig. 13.24 The magnetic interaction responsible for spin–orbit
coupling. (a) A high total angular momentum corresponds to
a parallel arrangements of magnetic moments (represented
by the bar magnets), and hence a high energy. (b) A low total
angular momentum corresponds to an antiparallel arrange-
ments of magnetic moments, and hence a low energy. Note
that the difference in energy is not due directly to the differ-
ences in total angular momentum: the total simply tells us
the relative orientations of the two magnetic moments.
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general statement, which applies to many-electron
systems, is as follows:

For atoms with shells that are less than half full,
the level with lowest J lies lowest in energy; for
atoms with shells that are more than half full, the
level with highest J lies lowest.

The strength of the spin–orbit coupling increases
sharply with atomic number. In Period 2 atoms it
gives rise to splittings between levels of the order of
102 cm−1, but in Period 3 the difference approaches
103 cm−1. We can understand this increase by think-
ing about the source of the orbital magnetic field. To
do so, imagine that we are riding on the electron as it
orbits the nucleus. From our viewpoint, the nucleus
appears to orbit around us (rather as the pre-
Copernicans thought the Sun revolved around the
Earth). If the nucleus has a high atomic number it
will have a high charge, we shall be at the centre of a
strong electric current, and we experience a strong
magnetic field. If the nucleus has a low atomic num-
ber, we experience a feeble magnetic field arising
from the low current that encircles us.

Spin–orbit coupling has important consequences
in photochemistry and in particular for the existence
of the property of ‘phosphorescence’, which we dis-
cuss in Chapter 18.

13.19 Selection rules

Now that we have described the energy levels of
complex atoms, we can decide which spectroscopic
transitions are allowed or forbidden. We have seen
that spectroscopic selection rules arise from the con-
servation of angular momentum during a transition
and from the fact that a photon has a spin of 1. They
can therefore be expressed in terms of the term sym-
bols, because the latter carry information about 
angular momentum. A detailed analysis leads to the
following rules:

ΔS = 0 ΔL = 0, ±1 Δl = ±1
ΔJ = 0, ±1, but J = 0 ↔ J = 0 is forbidden

The rule about ΔS (no change of overall spin) stems
from the fact that the light does not affect the spin 
directly. The rules about ΔL and Δl express the fact
that the orbital angular momentum of an individual
electron must change (so Δl = ±1), but whether or not
this results in an overall change of orbital momen-
tum depends on the coupling of angular momenta.
These selection rules apply strictly for relatively light
atoms, those near the top of the periodic table. As the
atomic number increases, the rules progressively fail
on account of significant spin–orbit coupling. So, 
for example, transitions between singlet and triplet
states are allowed in heavy atoms.

Checklist of key ideas

You should now be familiar with the following concepts.

1 Hydrogenic atoms are atoms with a single electron.

2 The wavefunctions of hydrogenic atoms are 
labelled with three quantum numbers, the prin-
cipal quantum number n = 1, 2, . . . , the orbital 
angular momentum quantum number l = 0, 1, . . . ,
n − 1, and the magnetic quantum number ml = l,
l − 1, . . . , −l.

3 s Orbitals are spherically symmetrical and have
nonzero amplitude at the nucleus.

4 A radial distribution function, P(r ), is the probabil-
ity density for finding an electron at a radius r ; the
probability of finding the electron between r and
r + dr is P(r )dr.

5 The magnitude of the orbital angular momentum
of an electron is {l(l + 1)}1/24 and the component of
angular momentum about an axis is ml4.

6 An electron possesses an intrinsic angular 
momentum, its spin, which is described by the
quantum numbers s = and ms = ± .

7 A selection rule is a statement about which spec-
troscopic transitions are allowed.

8 In the orbital approximation, each electron in a
many-electron atom is supposed to occupy its
own orbital.

9 The Pauli exclusion principle states that no more
than two electrons may occupy any given orbital
and if two electrons do occupy one orbital, then
their spins must be paired.

10 In a many-electron atom, the orbitals of a given
shell lie in the order s < p < d < f as a result of the
effects of penetration and shielding.

11 Atomic radii decrease from left to right across a
period and increase down a group.

1
2

1
2
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12 Ionization energies increase from left to right
across a period and decrease down a group.

13 Electron affinities are highest towards the top
right of the periodic table (near fluorine).

14 A term symbol has the form 2S +1{L}J, where 2S + 1
is the multiplicity and {L} is a letter denoting the
value of L, the total orbital angular momentum
quantum number.

15 For a given configuration (and most reliably for
the ground-state configuration) the term with the
greatest multiplicity lies lowest in energy, that
with the highest value of L lies lowest, and for
atoms with shells that are less than half-full, the
level with the lowest J lies lowest.

16 Different levels of a term have different energies
on account of spin–orbit coupling, and the
strength of spin–orbit coupling increases sharply
with increasing atomic number.

The following table summarizes the equations developed in this chapter.

Property

Wavenumbers of spectroscopic 
transitions for the hydrogen atom

Energies of hydrogenic atoms

Atomic orbitals

Radial distribution function

Clebsch–Gordan series

Selection rules for atomic spectra

Equation

En = −hcRZ 2/n2

yn,l,ml
(r,q,f) = Rn,l(r )Yl,ml

(q,f)

P(r ) = 4pr 2y2

P(r ) = r2R(r )2

J = j1 + j2, j1 + j2 − 1, . . . , | j1 − j2 |

Dl = ±1 and Dml = 0, ±1
DS = 0, DL = 0, ±1, Dl = ±1, 
DJ = 0, ±1, but J = 0 ↔ J = 0 is
forbidden

J = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟R

n nH
1 1

1
2

2
2

Comment

n1 = 1, 2, . . . and n2 = n1 + 1, n1 + 2, . . .

n = 1, 2, . . .

Rn,l (r ) and Yl,ml
(q,f) and are the radial

and angular wavefunctions, respectively

s Orbitals
General form

Russell–Saunders coupling scheme; 
j = l or s

Hydrogenic atoms
Many-electron atoms

Table of key equations

Further information 13.1

The Pauli principle

The Pauli exclusion principle is a special case of a general
statement called the Pauli principle:

When the labels of any two identical fermions are 
exchanged, the total wavefunction changes sign. When
the labels of any two identical bosons are exchanged, the
total wavefunction retains the same sign.

As remarked in the text, a fermion is a particle with half-
integral spin (such as electrons, protons, and neutrons); a
boson is a particle with integral spin (such as photons,
which have spin 1). The Pauli exclusion principle applies
only to fermions. By ‘total wavefunction’ is meant the 
entire wavefunction, including the spin of the particles.

Consider the wavefunction for two electrons Ψ (1,2).
The Pauli principle implies that it is a fact of nature that the
wavefunction must change sign if we interchange the labels
1 and 2 wherever they occur in the function: Ψ (2,1) =
−Ψ (1,2). Suppose the two electrons in an atom occupy an
orbital ψ , then in the orbital approximation the overall
wavefunction is ψ(1)ψ(2). To apply the Pauli principle, we
must deal with the total wavefunction, the wavefunction
including spin. There are four possibilities for two spins:

α(1)α (2) α(1)β (2) β(1)α(2) β (1)β(2)

Let’s consider two of these possibilities: the state α(1)α(2)
corresponds to parallel spins, whereas (for technical reasons
related to the cancellation of each spin’s angular momentum
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by the other) the combination α (1)β(2) − β(1)α(2) corres-
ponds to paired spins. The total wavefunction of the 
system is one of the following:

Parallel spins: ψ(1)ψ(2)α (1)α(2)

Paired spins: ψ(1)ψ(2){α(1)β(2) − β(1)α(2)}

The Pauli principle, however, asserts that for a wavefunction
to be acceptable (for electrons), it must change sign when
the electrons are exchanged. In each case, exchanging the
labels 1 and 2 converts the factor ψ(1)ψ(2) into ψ(2)ψ(1),
which is the same, because the order of multiplying the
functions does not change the value of the product. The
same is true of α(1)α(2). Therefore, the first combination is
not allowed, because it does not change sign. The second
combination, however, changes to

ψ(2)ψ(1){α(1)β(2) − β(1)α (2)

= −ψ(1)ψ(2){α(1)β (2) − β(1)α(2)}

This combination does change sign (it is ‘antisymmetric’),
and is therefore acceptable.

Now we see that the only possible state of two electrons
in the same orbital allowed by the Pauli principle is the one
that has paired spins. This is the content of the Pauli exclu-
sion principle. The exclusion principle is irrelevant when
the orbitals occupied by the electrons are different, and
both electrons may then have (but need not have) the same
spin state. Nevertheless, even then the overall wavefunc-
tion must still be antisymmetric overall, and must still 
satisfy the Pauli principle itself.

Questions and exercises

Discussion questions

13.1 List and describe the significance of the quantum num-
bers needed to specify the internal state of a hydrogenic atom.

13.2 Explain the significance of (a) a boundary surface and (b)
the radial distribution function for hydrogenic orbitals.

13.3 Describe the orbital approximation for the wavefunc-
tion of a many-electron atom. What are the limitations of the
approximation?

13.4 Discuss the relationship between the location of a
many-electron atom in the periodic table and its electron 
configuration.

13.5 Describe and account for the variation of first ionization
energies along Period 2 of the periodic table. Would you 
expect the same variation in Period 3?

13.6 Explain the origin of spin–orbit coupling and how it 
affects the appearance of a spectrum.

13.7 Specify and account for the selections rules for spec-
troscopic transitions in (a) hydrogenic atoms and (b) many-
electron atoms.

Exercises

13.1 Calculate the wavelength of the line with n = 6 in the
Balmer series of the spectrum of atomic hydrogen.

13.2 The frequency of one of the lines in the Paschen series
of the spectrum of atomic hydrogen is 2.7415 × 1015 Hz.
Identify the principal quantum number of the upper state in
the transition.

13.3 One of the terms of the H atom is at 27 414 cm−1. What
is (a) the wavenumber, (b) the energy of the term with which
it combines to produce light of wavelength 486.1 nm? 

13.4 The Rydberg constant, eqn 13.4, depends on the mass
of the nucleus. What is the difference in wavenumbers of the
3p → 1s transition in hydrogen and deuterium?

13.5 What transition in He+ has the same frequency (dis-
regarding mass differences) as the 2p → 1s transition in H?

13.6 Hydrogen is the most abundant element in all stars.
However, neither absorption nor emission lines due to 
neutral hydrogen are found in the spectra of stars with 
effective temperatures higher than 25 000 K. Account for this
observation.

13.7 The distribution of isotopes of an element may yield
clues about the nuclear reactions that occur in the interior of
a star. Show that it is possible to use spectroscopy to confirm
the presence of both 4He+ and 3He+ in a star by calculating the
wavenumbers of the n = 3 → n = 2 and of the n = 2 → n = 1
transitions for each isotope.

13.8 Predict the ionization energy of Li2+ given that the 
ionization energy of He+ is 54.36 eV.

13.9 How many orbitals are present in the N shell of an atom?

13.10 The ‘Humphreys series’ is another group of lines in
the spectrum of atomic hydrogen. It begins at 12 368 nm and
has been traced to 3281.4 nm. (a) What are the transitions 
involved? (b) What are the wavelengths of the intermediate
transitions?

13.11 At what wavelength would you expect the longest-
wavelength transition of the Humphreys series to occur in
He+? Hint: The energy levels of hydrogenic atoms and ions
are proportional to Z 2. 

13.12 A series of lines in the spectrum of atomic hydrogen
lies at 656.46, 486.27, 434.17, and 410.29 nm. (a) What is the
wavelength of the next line in the series? (b) What is the ion-
ization energy of the atom when it is in the lower state of the
transitions?
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13.13 The Li2+ ion is hydrogenic and has a Lyman series 
of lines at 740 747 cm−1, 877 924 cm−1, 925 933 cm−1, and 
beyond. (a) Show that the energy levels are of the form 
−hcRLi /n

2 and find the value of RLi for this ion. (b) Go on to 
predict the wavenumbers of the two longest-wavelength
transitions of the Balmer series of the ion and (c) find the 
ionization energy of the ion.

13.14 At what radius does the probability of finding an elec-
tron in a small volume located at a point in the ground state of
an H atom fall to 30 per cent of its maximum value? 

13.15 At what radius in the H atom does the radial distribu-
tion function of the ground state have (a) 30 per cent, (b) 5 per
cent of its maximum value? 

13.16 What is the probability of finding an electron anywhere
in one lobe of a p orbital given that it occupies the orbital? 

13.17 What is the probability of finding the electron in a 
volume of 6.5 pm3 centred on the nucleus in (a) a hydrogen
atom, (b) a He+ ion?

13.18 Locate the radial nodes in (a) the 3s orbital, (b) the 4s
orbital of an H atom. 

13.19 The wavefunction of one of the d orbitals is propor-
tional to sin q cos q. At what angles does it have nodal
planes? 

13.20 What is the orbital angular momentum (as multiples 
of 2) of an electron in the orbitals (a) 1s, (b) 3s, (c) 3d, (d) 2p,
(e) 3p? Give the numbers of angular and radial nodes in 
each case.

13.21 State the orbital degeneracy of the levels in the 
hydrogen atom that have energy (a) −hcRH, (b) − hcRH, and
(c) − hcRH. 

13.22 How many electrons can occupy subshells with the
following values of l: (a) 0, (b) 3, (c) 5?

13.23 How is the ionization energy of an anion related to the
electron affinity of the parent atom?

13.24 When ultraviolet radiation of wavelength 58.4 nm
from a helium lamp is directed on to a sample of krypton,
electrons are ejected with a speed of 1.59 × 106 m s−1.
Calculate the ionization energy of krypton.

13.25 One important function of atomic and ionic radius is 
in regulating the uptake of oxygen by haemoglobin, for the
change in ionic radius that accompanies the conversion of
Fe(II) to Fe(III) when O2 attaches triggers a conformational
change in the protein. Which do you expect to be larger: Fe2+

or Fe3+? Why?

13.26 What terms (expressed as S, D, etc.) can arise from
the [He]2s22p13d1 excited configuration of carbon?

13.27 What are the total spin angular momenta (reported 
as the value of S ) that can arise from four electrons? Hint:
Use the Clebsch–Gordan series successively.

1
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13.28 What levels can the following terms possess: (a) 1S,
(b) 3F, (c) 5S, (d) 5P?

13.29 The ground configuration of a Ti2+ ion is [Ar]3d2. 
(a) What is the term of lowest energy and which level of 
that term lies lowest? (b) How many states belong to that
lowest level?

13.30 Which of the following transitions are allowed in the
normal electronic emission spectrum of an atom: (a) 2s → 1s;
(b) 2p → 1s; (c) 3d → 2p; (d) 5d → 2s; (e) 5p → 3s; (f) 6f → 4p?

13.31 To what orbitals may a 5f electron make spectroscopic
transitions?

13.32 Which of the following transitions between terms are
allowed in the normal electronic emission spectrum of a many-
electron atom: (a) 3D2 → 3P1; (b) 3P2 → 1S0; (c) 3F4 → 3D3?

Projects

The symbol ‡ indicates that calculus is required.

13.33‡ Here we explore hydrogenic wavefunctions in more
quantitative detail. (a) What is the most probable distance of
an electron from the nucleus in a hydrogen atom in its ground
sate? Hint: Look for a maximum in the radial distribution func-
tion of a hydrogenic 1s electron). (b) The (normalized) wave-
function for a 2s orbital in hydrogen is

Calculate the probability of finding an electron that is 
described by this wavefunction in a volume of 1.0 pm3 (i) cen-
tred on the nucleus, (ii) at the Bohr radius, (iii) at twice the
Bohr radius. (c) Construct an expression for the radial dis-
tribution function of a hydrogenic 2s electron (see part (b) for
the form of the orbital), and plot the function against r. What
is the most probable radius at which the electron will be
found? (d) For a more accurate determination of the most
probable radius at which an electron will be found in an H2s
orbital, differentiate the radial distribution function to find
where it is a maximum.

13.34 Thallium, a neurotoxin, is the heaviest member of
Group 13 of the periodic table and is found most usually in the
+1 oxidation state. Aluminium, which causes anaemia and
dementia, is also a member of the group but its chemical
properties are dominated by the +3 oxidation state. Examine
this issue by plotting the first, second, and third ionization
energies for the Group 13 elements against atomic number.
Explain the trends you observe. Hints: The third ionization 
energy, I3, is the minimum energy needed to remove an elec-
tron from the doubly charged cation: E2+(g) → E3+(g) + e−(g), 
I3 = E(E3+) − E(E2+). For data, see the links to databases of
atomic properties provided in the text’s web site.

13.35 The spectrum of a star is used to measure its radial
velocity with respect to the Sun, the component of the star’s
velocity vector that is parallel to a vector connecting the star’s
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centre to the centre of the Sun. The measurement relies on
the Doppler effect, in which radiation is shifted in frequency
when the source is moving towards or away from the 
observer. When a star emitting electromagnetic radiation 
of frequency V moves with a speed s relative to an observer,
the observer detects radiation of frequency Vreceding = Vf or 
Vapproaching = V/ f, where f = {(1 − s/c)/(1 + s/c)}1/2 and c is the
speed of light. (a) Three Fe I lines of the star HDE 271 182,

which belongs to the Large Magellanic Cloud, occur at
438.882 nm, 441.000 nm, and 442.020 nm. The same lines
occur at 438.392 nm, 440.510 nm, and 441.510 nm in the
spectrum of an Earth-bound iron arc. Determine whether
HDE 271 182 is receding from or approaching the Earth and
estimate the star’s radial speed with respect to the Earth. (b)
What additional information would you need to calculate the
radial velocity of HDE 271 182 with respect to the Sun?
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The chemical bond, a link between atoms, is central
to all aspects of chemistry. Reactions make them and
break them, and the structures of solids and individual
molecules depend on them. The physical properties of
individual molecules and of bulk samples of matter
also stem in large part from the shifts in electron 
density that take place when atoms form bonds. The
theory of the origin of the numbers, strengths, and
three-dimensional arrangements of chemical bonds
between atoms is called valence theory. (The name
comes from a Latin word for strength.)

Valence theory is an attempt to explain the proper-
ties of molecules ranging from the smallest to the
largest. For instance, it explains why N2 is so inert
that it dilutes the aggressive oxidizing power of 
atmospheric oxygen. At the other end of the scale,
valence theory deals with the structural origins of 
the function of protein molecules and the molecular
biology of DNA. The description of chemical bond-
ing has become highly developed through the use of
computers, and it is now possible to compute details
of the electron distribution in molecules of almost
any complexity. However, much can also be achieved
in terms of a simple qualitative understanding of bond
formation, and that is the initial focus of this chapter.

There are two major approaches to the calculation
of molecular structure, valence bond theory (VB
theory) and molecular orbital theory (MO theory).
Almost all modern computational work makes use of
MO theory, and we concentrate on it in this chapter.
Valence bond theory, though, has left its imprint on
the language of chemistry, and it is important to know
the significance of terms that chemists use every day.
The structure of this chapter is therefore as follows.
First, we set out a few concepts common to all levels
of description. Then we present the concepts of VB
theory that continue to be used in chemistry (such as
hybridization and resonance). Next, we present the
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basic ideas of MO theory, and finally we see how
computational techniques pervade all current discus-
sions of molecular structure.

Introductory concepts

Certain ideas of valence theory will be well known
from introductory chemistry. This section reviews
this background.

14.1 The classification of bonds

We distinguish between two types of bond:

An ionic bond is formed by the transfer of electrons
from one atom to another and the consequent 
attraction between the ions so formed.

A covalent bond is formed when two atoms share
a pair of electrons.

The character of a covalent bond, on which we 
concentrate in this chapter, was identified by G. N.
Lewis in 1916, before quantum mechanics was fully
developed. We shall assume that Lewis’s ideas are 
familiar, but for convenience they are reviewed in
Appendix 4.2. In this chapter we develop the modern
theory of chemical bond formation in terms of the
quantum-mechanical properties of electrons and set
Lewis’s ideas in a modern context. We shall see that
ionic and covalent bonds are two extremes of a single
type of bond. However, because there are certain 
aspects of ionic solids that require special attention,
we treat them separately in Chapter 15.

Lewis’s original theory was unable to account for
the shapes adopted by molecules. The most element-
ary but qualitatively quite successful explanation of
the shapes adopted by molecules is the valence-shell
electron pair repulsion model (VSEPR model) in
which we suppose that the shape of a molecule is 
determined by the repulsions between electron pairs
in the valence shell. This model is fully discussed in
introductory chemistry texts, but we give a brief 
review of it in Appendix 4.3. Once again, the purpose
of this chapter is to extend these elementary argu-
ments and to indicate some of the contributions that
quantum theory has made to understanding why a
molecule adopts its characteristic shape.

14.2 Potential-energy curves

All theories of molecular structure adopt the Born–
Oppenheimer approximation. In this approximation,
it is supposed that the nuclei, being so much heavier

than an electron, move relatively slowly and may be
treated as stationary while the electrons move around
them. We can therefore think of the nuclei as being
fixed at arbitrary locations, and then solve the
Schrödinger equation for the electrons alone. The 
approximation is quite good for molecules in their
electronic ground states, for calculations suggest that
(in classical terms) the nuclei in H2 move through only
about 1 pm while the electron speeds through 1000 pm.

By invoking the Born–Oppenheimer approximation,
we can select an internuclear separation in a diatomic
molecule and solve the Schrödinger equation for the
electrons for that nuclear separation. Then we can
choose a different separation and repeat the calcula-
tion, and so on. In this way we can explore how the
energy of the molecule varies with bond length and
obtain a molecular potential energy curve, a graph
showing how the molecular energy depends on the
internuclear separation (Fig. 14.1). The graph is
called a potential energy curve because the nuclei are 
stationary and contribute no kinetic energy. Once
the curve has been calculated, we can identify the
equilibrium bond length, Re, the internuclear separa-
tion at the minimum of the curve, and De, the depth
of the minimum below the energy of the infinitely
widely separated atoms. In Chapter 19 we shall also
see that the narrowness of the potential well is an 
indication of the stiffness of the bond. Similar con-
siderations apply to polyatomic molecules, where
bond angles as well as bond lengths may be varied.

Valence bond theory

In valence bond theory, a bond is regarded as forming
when an electron in an atomic orbital on one atom
pairs its spin with that of an electron in an atomic 
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Fig. 14.1 A molecular potential energy curve. The equilibrium
bond length Re corresponds to the energy minimum (at −De).
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orbital on another atom (Fig. 14.2). To understand
why this pairing leads to bonding, we have to exam-
ine the wavefunction for the two electrons that form
the bond.

14.3 Diatomic molecules

We begin by considering the simplest possible chem-
ical bond, the one in molecular hydrogen, H—H.
When the two ground-state H atoms are far apart,
we can be confident that electron 1 is in the 1s orbital
of atom A that we denote ψA(1), and electron 2 is the
1s orbital of atom B, which we denote ψB(2). We saw
in Section 13.1 that it is a general rule in quantum
mechanics that the wavefunction for several non-
interacting particles is the product of the wave-
functions for each particle (this is the separation of
variables argument), so providing we can ignore the
interactions between the electrons we can write

ψ(1,2) = ψA(1)ψB(2)

When the two atoms are at their bonding distance,
it may still be true that electron 1 is on A and electron
2 is on B. However, an equally likely arrangement is
for electron 1 to escape from A and be found on B
and for electron 2 to be on A. In this case the wave-
function is

ψ(1,2) = ψA(2)ψB(1)

Whenever two outcomes are equally likely, the rules
of quantum mechanics tell us to add together, formally
to superimpose, the two corresponding wavefunc-
tions. Therefore, the (unnormalized) wavefunction
for the two electrons in a hydrogen molecule is

ψH—H(1,2) = ψA(1)ψB(2) + ψA(2)ψB(1) (14.1)

This expression is the VB wavefunction for the bond
in molecular hydrogen. It expresses the idea that 
we cannot keep track of either electron and their dis-
tributions blend together. The wavefunction is only
an approximation, because when the two atoms are
close together it is not true that the electrons do not

interact. However, this approximate wavefunction is
a reasonable starting point for all discussions of the
VB theory of bonding.

We show in Derivation 14.1 that for technical 
reasons related to the Pauli exclusion principle, the
wavefunction in eqn 14.1 can exist only if the two
electrons it describes have opposite spins. It follows
that the merging of orbitals that gives rise to a bond
is accompanied by the pairing of the two electrons
that contribute to it. Bonds do not form because elec-
trons tend to pair: bonds are allowed to form by the
electrons pairing their spins.

(a) (b)

Fig. 14.2 In the valence bond theory, a s bond is formed
when two electrons in orbitals on neighbouring atoms, as in
(a), pair and the orbitals merge to form a cylindrical electron
cloud, as in (b).

Because ψ is built from the merging of H1s 
orbitals, we can expect the overall distribution of the
electrons in the molecule to be sausage-shaped (as in
Fig. 14.2). A VB wavefunction with cylindrical sym-
metry around the internuclear axis is called a σ bond.
The bond is so called because, when viewed along the
internuclear axis it resembles a pair of electrons in an
s orbital (and σ, sigma, is the Greek equivalent of s).
All VB wavefunctions are constructed in a similar
way, by using the atomic orbitals available on the
participating atoms. In general, therefore, the (un-
normalized) VB wavefunction for an A—B bond is

ψA—B(1,2) = ψA(1)ψB(2) + ψA(2)ψB(1) (14.2)

To calculate the energy of a molecule for a series 
of internuclear separations R, we substitute the VB
wavefunction into the Schrödinger equation for the
molecule and carry out the necessary mathematical
manipulations to calculate the corresponding values
of the energy. When this energy is plotted against R,

Derivation 14.1

The Pauli principle and bond formation

The VB wavefunction in eqn 14.1 does not change sign
when the labels 1 and 2 are interchanged. To formulate
a wavefunction that obeys the Pauli principle (Further 
information 13.1) and does change sign when the labels
1 and 2 are interchanged, we must combine this symme-
tric spatial wavefunction y(1)y(2) with the antisymmetric
spin function a(1)b(2) − b(1)a(2) and write

yA—B(2,1) 

= {yA(1)yB(2) + yA(2)yB(1)} × {a(1)b(2) − b(1)a(2)}

This is the only permitted combination of space and spin
functions. Because a(1)b(2) − b(1)a(2) represents a spin-
paired state of the two electrons, we see that the Pauli
principle requires the two electrons in the bond to be
paired (↑↓).
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we get a curve like that shown in Fig. 14.1. As R
decreases from infinity, the energy falls below that of
two separated H atoms as each electron becomes free
to migrate to the other atom. This decrease in energy
is the outcome of several effects:

• As the two atoms approach each other, there is an
accumulation of electron density between the two
nuclei (Fig. 14.3). The electrons attract the two
nuclei, and the potential energy is lowered.

• This accumulation between the nuclei is at the 
expense of removing electron density from close
to the nuclei, which contributes an increase in 
potential energy.

• The freedom of the electrons to migrate between
the atoms is like the transfer of an electron from 
a small box to a bigger box, which (as we saw in
the discussion of a particle in a box) results in a
lowering of their kinetic energy.

In H2 the last is the dominant effect, but the relative
importance of changes in potential and kinetic energy
is still unclear in more complex molecules.

The overall decrease in energy due to the redistribu-
tion of electrons is counteracted by an increase in 
energy from the Coulombic repulsion between the
two positively charged nuclei of charges ZAe and
ZBe, which has the form

(14.3)

(For H2, ZA = ZB = 1.) This positive contribution to
the energy becomes large as R becomes small (and
the decrease in electronic kinetic energy becomes less
significant as the ‘big box’ is no longer much bigger
than the initial two ‘little boxes’). As a result, the
total energy curve passes through a minimum and
then climbs to a strongly positive value as the two
nuclei are pressed together.

V
Z Z e

Rnuc,nuc
A B=
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A similar description is used for molecules built
from atoms that contribute more than one electron
to the bonding. For example, to construct the VB 
description of N2, we consider the valence-electron
configuration of each atom, which is 2s22p1

x 2p1
y 2p1

z.
It is conventional to take the z-axis to be the inter-
nuclear axis, so we can imagine each atom as having a
2pz orbital pointing towards a 2pz orbital on the other
atom, with the 2px and 2py orbitals perpendicular to
the axis (Fig. 14.4). Each of these p orbitals is occu-
pied by one electron, so we can think of bonds as
being formed by the merging of matching orbitals on
neighbouring atoms and the pairing of the electrons
that occupy them. We get a cylindrically symmetric σ
bond from the merging of the two 2pz orbitals and
the pairing of the electrons they contain. However,
the remaining p orbitals cannot merge to give σ bonds
because they do not have cylindrical symmetry around
the internuclear axis. Instead, the 2px orbitals merge
and the two electrons pair to form a π bond. A π
bond is so called because, viewed along the inter-
nuclear axis, it resembles a pair of electrons in a p 
orbital (and π is the Greek equivalent of p). Similarly,
the 2py orbitals merge and their electrons pair to
form another π bond. In general, a π bond arises
from the merging of two p orbitals that approach
side-by-side and the pairing of the electrons that they
contain. It follows that the overall bonding pattern in
N2 is a σ bond plus two π bonds, which is consistent
with the Lewis structure :NyN: in which the atoms
are linked by a triple bond.

   A
2

B
2

2ψ

ψ ψ

Fig. 14.3 The (normalized) electron density in H2 according
to the valence-bond model of the chemical bond and the 
electron densities corresponding to the contributing atomic
orbitals. The nuclei are denoted by large dots on the horizon-
tal line. Note the accumulation of electron density in the 
internuclear region.

σ
π

π

Fig. 14.4 The bonds in N2 are built by allowing the electrons
in the N2p orbitals to pair. However, only one orbital on each
atom can form a s bond: the orbitals perpendicular to the axis
form p-bonds.

Self-test 14.1

Describe the VB ground state of a Cl2 molecule.
[Answer: one s(Cl3pz,Cl3pz) bond]
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14.4 Polyatomic molecules

Each σ bond in a polyatomic molecule is formed by
the merging of orbitals with cylindrical symmetry
about the relevant internuclear axis and the pairing
of the spins of the electrons they contain. Likewise, π
bonds are formed by pairing electrons that occupy
atomic orbitals of the appropriate symmetry (broadly
speaking, of the appropriate shape).

A brief illustration The valence electron configuration
of an O atom is 2s22p2

x 2p1
y 2p1

z. The two unpaired electrons
in the O2p orbitals can each pair with an electron in a H1s
orbital, and each combination results in the formation of 
a s bond (each bond has cylindrical symmetry about the
respective O—H internuclear distance). Because the 2py

and 2pz orbitals lie at 90° to each other, the two s bonds
they form also lie at 90° to each other (Fig. 14.5). We pre-
dict, therefore, that H2O should be an angular molecule,
which it is. However, the model predicts a bond angle of
90°, whereas the actual bond angle is 104°.

form, and in particular the tetravalence of carbon.
To appreciate the latter problem, we note that the
ground-state valence configuration of a carbon atom
is 2s22p1

x 2p1
y , which suggests that it should be cap-

able of forming only two bonds, not four.

14.5 Promotion and hybridization

Two modifications solve all these problems. First, we
allow a valence electron to be promoted from a full
atomic orbital to an empty atomic orbital as a bond
is formed: that results in two unpaired electrons 
instead of two paired electrons, and each unpaired
electron can participate in bond formation. In car-
bon, for example, the promotion of a 2s electron to a
2p orbital leads to the configuration 2s12p1

x 2p1
y 2p1

z,
with four unpaired electrons in separate orbitals.
These electrons may pair with four electrons in 
orbitals provided by four other atoms (such as four
H1s orbitals if the molecule is CH4), and as a result
the atom can form four σ bonds. Promotion is
worthwhile if the energy it requires can be more than
recovered in the greater strength or number of bonds
that can be formed.

We can now see why tetravalent carbon is so 
common. The promotion energy of carbon is small
because the promoted electron leaves a doubly occu-
pied 2s orbital and enters a vacant 2p orbital, hence
significantly relieving the electron–electron repulsion
it experiences in the former. Furthermore, the energy
required for promotion is more than recovered by
the atom’s ability to form four bonds in place of the
two bonds of the unpromoted atom.

Promotion, however, appears to imply the presence
of three σ bonds of one type (in CH4, from the merg-
ing of H1s and C2p orbitals) and a fourth σ bond of
a distinctly different type (formed from the merging
of H1s and C2s). It is well known, however, that all
four bonds in methane are exactly equivalent both in
terms of their chemical properties and their physical
properties (their lengths, strengths, and stiffnesses).

This problem is overcome in VB theory by drawing
on another technical feature of quantum mechanics
that allows the same electron distribution to be 
described in different ways. In this case, we can 
describe the electron distribution in the promoted
atom either as arising from four electrons in one s
and three p orbitals, or as arising from four electrons
in four different mixtures of these orbitals. Mixtures
(more formally, linear combinations) of atomic 
orbitals on the same atom are called hybrid orbitals.
These wavefunctions interfere destructively or con-
structively in different regions and give rise to four

z

y

Fig. 14.5 The bonding in an H2O molecule can be pictured in
terms of the pairing of an electron belonging to one H atom
with an electron in an O2p orbital; the other bond is formed
likewise, but using a perpendicular O2p orbital. The predicted
bond angle is 90°, which is in poor agreement with the 
experimental bond angle (104°).

Self-test 14.2

Give a VB description of NH3, and predict the bond angle
of the molecule on the basis of this description.

[Answer: three s(N2p,H1s) bonds; 90°; 
the experimental bond angle is 107°.]

While broadly correct, VB theory seems to have two
deficiencies. One is the poor estimate it provides for
the bond angle in H2O and other molecules, such as
NH3. Indeed, the theory appears to make worse pre-
dictions than the qualitative VSEPR model, which
predicts HOH and HNH bond angles of slightly less
than 109° in H2O and NH3, respectively. The second
major deficiency is the apparent inability of VB theory
to account for the number of bonds that atoms can
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new shapes (we saw in Section 12.3 that interference
is a characteristic of waves). The specific linear com-
binations that give rise to four equivalent hybrid 
orbitals are

h1 = s + px + py + pz h2 = s − px − py + pz

h3 = s − px + py − pz h4 = s + px − py − pz

(14.4)

A brief comment In general, a linear combination of two
functions f and g is c1f + c2g, where c1 and c2 are numerical
coefficients, so a linear combination is a more general term
than ‘sum’. In a sum, c1 = c2 = 1.

As a result of the constructive and destructive inter-
ference between the positive and negative regions of
the component orbitals, each hybrid orbital has a
large lobe pointing towards one corner of a regular
tetrahedron (Fig. 14.6). Because each hybrid is built
from one s orbital and three p orbitals, it is called an
sp3 hybrid orbital.

It is now easy to see how the valence bond descrip-
tion of the methane molecule leads to a tetrahedral
molecule containing four equivalent C—H bonds. It
is energetically favourable (in the end, after bonding
has been taken into account) for the carbon atom 
to undergo promotion. The promoted configuration
has a distribution of electrons that is equivalent to
one electron occupying each of four tetrahedral 
hybrid orbitals. Each hybrid orbital of the promoted
atom contains a single unpaired electron; a hydrogen
1s electron can pair with each one, giving rise to a 
σ bond pointing in a tetrahedral direction. Because
each sp3 hybrid orbital has the same composition, all
four σ bonds are identical apart from their orienta-
tion in space.

Hybridization is also used in the VB description of
alkenes. An ethene molecule is planar, with HCH
and HCC bond angles close to 120°. To reproduce

this σ-bonding structure, we think of each C atom as
being promoted to a 2s12p1

x 2p1
y 2p1

z configuration.
However, instead of using all four orbitals to form
hybrids, we form sp2 hybrid orbitals by allowing the
s orbital and two of the p orbitals to interfere. As
shown in Fig. 14.7, the three hybrid orbitals

h1 = s + 21/2 px

h2 = s + ( )1/2px − ( )1/2py (14.5)

h3 = s − ( )1/2px − ( )1/2py

lie in a plane and point towards the corners of an
equilateral triangle. The third 2p orbital (2pz) is not
included in the hybridization, and its axis is per-
pendicular to the plane in which the hybrids lie. The
coeAcients 21/2, etc in the hybrids have been chosen
to give the correct directional properties of the hybrids.
The squares of the coeAcients give the proportion of
each atomic orbital in the hybrid. All three hybrids
have s and p orbitals in the ratio 1:2, as indicated by
the label sp2.

The sp2-hybridized C atoms each form three σ
bonds with either the h1 hybrid of the other C atom
or with the H1s orbitals. The σ framework therefore
consists of bonds at 120° to each other. Moreover,
provided the two CH2 groups lie in the same plane,
the two electrons in the unhybridized C2pz orbitals
can pair and form a π bond (Fig. 14.8). The forma-
tion of this π bond locks the framework into the 
planar arrangement, for any rotation of one CH2
group relative to the other leads to a weakening of
the π bond (and consequently an increase in energy
of the molecule).

A similar description applies to a linear ethyne
(acetylene) molecule, H—CyC—H. Now the carbon
atoms are sp hybridized, and the σ bonds are built
from hybrid atomic orbitals of the form

h1 = s + pz h2 = s − pz (14.6)

Note that the s and p orbitals contribute in equal
proportions. The two hybrids lie along the z-axis.

1
2

3
2

1
2

3
2

σ bond

sp3 hybrid

Fig. 14.6 The 2s and three 2p orbitals of a carbon atom 
hybridize, and the resulting hybrid orbitals point towards the
corners of a regular tetrahedron. Each s bond is formed by
the pairing of an electron in an H1s orbital with an electron in
one of the hybrid orbitals. The resulting molecule is regular
tetrahedral.

(a) (b)

Fig. 14.7 (a) Trigonal planar hybridization is obtained when 
an s and two p orbitals are hybridized. The three lobes lie in 
a plane and make an angle of 120° to each other. (b) The 
remaining p orbital in the valence shell of an sp2-hybridized
atom lies perpendicular to the plane of the three hybrids.
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The electrons in them pair either with an electron in
the corresponding hybrid orbital on the other C atom
or with an electron in the H1s orbitals. Electrons in
the two remaining p orbitals on each atom, which are
perpendicular to the molecular axis, pair to form two
perpendicular π bonds (as in Fig. 14.9).

Other hybridization schemes, particularly those
involving d orbitals, are often invoked to account for
(or at least be consistent with) other molecular geo-
metries (Table 14.1). An important point to note is
that the hybridization of N atomic orbitals always
results in the formation of N hybrid orbitals. For 
example, sp3d2 hybridization results in six equivalent
hybrid orbitals pointing towards the corners of a 
regular octahedron. This octahedral hybridization
scheme is sometimes invoked to account for the
structure of octahedral molecules, such as SF6.

The ‘pure’ schemes in Table 14.1 are not the only
possibilities: it is possible to form hybrid orbitals
with intermediate proportions of atomic orbitals. For
example, as more p-orbital character is included in
an sp-hybridization scheme, the hybridization changes
towards sp2 and the angle between the hybrids changes
continuously from 180° for pure sp hybridization to
120° for pure sp2 hybridization. If the proportion of
p character continues to be increased (by reducing
the proportion of s orbital), then the hybrids eventu-
ally become pure p orbitals at an angle of 90° to each
other (Fig. 14.10). Figure 14.11 shows contour plots
of hybrid orbitals as the ratio of 2p character to 2s
character increases. Now we can account for the
structure of H2O, with its bond angle of 104°. Each
O—H σ bond is formed from an O atom hybrid 
orbital with a composition that lies between pure p

σ
σ

σ

σ

σ

π

Fig. 14.8 The valence-bond description of the structure of a
carbon–carbon double bond, as in ethene. The electrons in
the two sp2 hybrids that point towards each other pair and
form a s bond. Electrons in the two p orbitals that are per-
pendicular to the plane of the hybrids pair, and form a p bond.
The electrons in the remaining hybrid orbitals are used to
form bonds to other atoms (in ethene itelf, to H atoms).
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Fig. 14.9 The electronic structure of ethyne (acetylene). The
electrons in the two sp hybrids on each atom pair to form s
bonds either with the other C atom or with an H atom. The re-
maining two unhybridized 2p orbitals on each atom are per-
pendicular to the axis: the electrons in corresponding orbitals
on each atom pair to form two p bonds. The overall electron
distribution is cylindrical.

Self-test 14.3

Describe the bonding in a PCl5 molecule in VB terms.
[Answer: Five s bonds formed from sp3d hybrids on

the central P atom.]

Table 14.1

Hybrid orbitals

Number Shape Hybridization*

2 Linear sp
3 Trigonal planar sp2

4 Tetrahedral sp3

5 Trigonal bipyramidal sp3d
6 Octahedral sp3d2

* Other combinations are possible.
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Fig. 14.10 The variation of hybridization with bond angle in
(a) angular, (b) trigonal pyramidal molecules. The vertical axis
gives the ratio of p to s character, so high values indicate
mostly p character.
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(which would lead to a bond angle of 90°) and pure
sp2 (which would lead to a bond angle of 120°). The
actual bond angle and hybridization adopted are
found by calculating the energy of the molecule as
the bond angle is varied, and looking for the angle at
which the energy is a minimum.

14.6 Resonance

Another term introduced into chemistry by VB 
theory is resonance, the superposition of the wave-
functions representing different electron distribu-
tions in the same nuclear framework. To understand
what this means, consider the VB description of a
purely covalently bonded HCl molecule, which
could be written

ψH—Cl(1,2) = ψH(1)ψCl(2) + ψH(2)ψCl(1)

We have supposed that the bond is formed by the
spin pairing of electrons in the H1s orbital, ψH, and
the Cl2pz orbital, ψCl. However, there is something
wrong with this description: it allows electron 1 to be
on the H atom when electron 2 is on the Cl atom, and
vice versa, but it does not allow for unequal sharing
of electron density between the atoms. On physical
grounds, we should expect the purely covalent char-
acter of HCl to be an incomplete description of the
molecule: because the Cl atom has higher ionization
energy and electron aAnity than the H atom, we can
expect the ionic form H+Cl− to play a role. The wave-
function for this ionic structure, in which both elec-
trons are in the Cl2pz orbital, is

ψH+Cl−(1,2) = ψCl(1)ψCl(2)

However, this wavefunction alone is unrealistic, 
because HCl is not an ionic species. A better descrip-
tion of the wavefunction for the molecule is as a 
superposition of the covalent and ionic descriptions,
and we write (with a slightly simplified notation)

ψHCl = ψH—Cl + λψH+Cl−

with λ (lambda) some numerical coeAcient. In gen-
eral, we write

ψ = ψcovalent + λψionic (14.7)

where ψcovalent is the wavefunction for the purely 
covalent form of the bond and ψionic is the wavefunc-
tion for the ionic form of the bond. According to the
general rules of quantum mechanics, in which prob-
abilities are related to squares of wavefunctions, we
interpret the square of λ as the relative proportion of
the ionic contribution. If λ2 is very small, the cova-
lent description is dominant. If λ2 is very large, the
ionic description is dominant.

We find the numerical value of λ by using the 
variation theorem. First, we write down a plausible
wavefunction, a trial wavefunction, for the molecule,
such as the wavefunction in eqn 14.7 where λ is
a variable parameter. The variation theorem then
states that:

The energy of a trial wavefunction is never less
than the true energy.

The theorem implies that if we vary λ until we
achieve the lowest energy, then the wavefunction
with that value of λ is the best available of that par-
ticular kind.

The approach summarized by eqn 14.7, in which
we express a wavefunction as the superposition of
wavefunctions corresponding to a variety of struc-
tures with the nuclei in the same locations, is called
resonance. In this case, where one structure is pure
covalent and the other pure ionic, it is called
ionic–covalent resonance. The interpretation of the
wavefunction, which is called a resonance hybrid, is
that if we were to inspect the molecule, then the
probability that it would be found with an ionic
structure is proportional to λ2. For instance, we
might find that the lowest energy is reached when 
λ = 0.1, so the best description of the bond in the
molecule in terms of a wavefunction like that in eqn
14.7 is a resonance structure described by the wave-
function ψ = ψcovalent + 0.1ψionic. This wavefunction
implies that the probabilities of finding the molecule
in its covalent and ionic forms are in the ratio 100:1
(because 0.12 = 0.01).

sp sp2

sp3 p

Fig. 14.11 Contour plots showing the amplitudes of spn

hybrid orbitals. To construct these plots, we have used 
hydrogenic 2s and 2p orbitals.
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One of the most famous examples of resonance is
in the VB description of benzene, where the wave-
function of the molecule is written as a superposition
of the wavefunctions of the two covalent Kekulé
structures (1) and (2):

ψ = ψKek1 + ψKek2 (14.8)

The two contributing structures have identical ener-
gies, so they contribute equally to the superposition.
The effect of resonance (which is represented by a
double-headed arrow) in this case is to distribute
double-bond character around the ring and to make
the lengths and strengths of all the carbon–carbon
bonds identical. The wavefunction is improved by 
allowing resonance because it allows for a more 
accurate description of the location of the electrons,
and in particular the distribution can adjust into a state
of lower energy. This lowering is called the resonance
stabilization of the molecule and, in the context of VB
theory, is largely responsible for the unusual stability
of aromatic rings. Resonance always lowers the energy,
and the lowering is greatest when the contributing
structures have similar energies. The wavefunction of
benzene is improved still further, and the calculated
energy of the molecule is lowered further
still, if we allow ionic–covalent resonance
too, by allowing a small admixture of struc-
tures such as that shown in (3).

Resonance is not a flickering between the con-
tributing states: it is a blending of their character-
istics, much as a mule is a blend of a horse and a 
donkey. It is only a mathematical device for achiev-
ing a closer approximation to the true wavefunction
of the molecule than that represented by any single
contributing structure alone.

Molecular orbitals

In molecular orbital theory, electrons are treated as
spreading throughout the entire molecule: every elec-
tron contributes to the strength of every bond. This
theory has been more fully developed than valence
bond theory and provides the language that is widely
used in modern discussions of bonding in small 
inorganic molecules, d-metal complexes, and solids.
To introduce it, we follow the same strategy as in
Chapter 13, where the one-electron hydrogen atom

1 2

was taken as the fundamental species for discussing
atomic structure, and then developed into a descrip-
tion of many-electron atoms. In this section we use
the simplest molecule of all, the one-electron hydro-
gen molecule–ion, H+

2, to introduce the essential 
features of bonding, and then use it as a guide to the
structures of more complex systems.

14.7 Linear combinations of 
atomic orbitals

A molecular orbital is a one-electron wavefunction
that spreads throughout the molecule. The mathem-
atical forms of such orbitals are highly complicated,
even for such a simple species as H2

+, and they are 
unknown in general. All modern work builds appro-
ximations to the true molecular orbital by formulat-
ing models based on linear combinations of the atomic
orbitals on the atoms in the molecule.

First, we recall the general principle of quantum
mechanics—which we used earlier to construct VB
wavefunctions—that if there are several possible 
outcomes, then we superimpose—add together—the
wavefunctions that represent those outcomes. In H+

2,
there are two possible outcomes: because an electron
spreads throughout the molecule, it may be found 
either in an atomic orbital centred on A, ψA, or in an
orbital centred on B, ψB. Therefore, we write

ψ = cAψA + cBψB (14.9a)

where cA and cB are numerical coeAcients. A wave-
function constructed in this way is called a linear
combination of atomic orbitals (LCAO) and the 
corresponding molecular orbital is called an LCAO-
MO. The squares of the coeAcients tell us the rela-
tive proportions of the atomic orbitals contributing
to the molecular orbital. In a homonuclear diatomic
molecule an electron can be found with equal prob-
ability in orbital A or orbital B, so the squares of
the coeAcients must be equal, which implies that 
cB = ±cA. The two possible (unnormalized) wave-
functions are therefore

ψ = ψA ± ψB (14.9b)

First, we consider the LCAO with the plus sign, 
ψ = ψA + ψB, as this molecular orbital will turn out to
have the lower energy of the two. The form of this 
orbital is shown in Fig. 14.12. It is called a σ orbital
because it resembles an s orbital when viewed along
the axis. More precisely, it is so called because an
electron that occupies a σ orbital has zero orbital 
angular momentum around the internuclear axis, just

3

+

−
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as an s electron has zero orbital angular momentum
around an axis passing through the nucleus. Because,
as we shall see, it is the σ orbital of lowest energy, it
is labelled 1σ. An electron that occupies a σ orbital is
called a σ electron. In the ground state of the H+

2 ion,
there is a single 1σ electron, so we report the ground-
state configuration of H+

2 as 1σ1.
We can see the origin of the lowering of energy

that is responsible for the formation of the bond by
examining the LCAO-MO. The two atomic orbitals
are like waves centred on adjacent nuclei. In the 
internuclear region, the amplitudes interfere con-
structively and the wavefunction has an enhanced
amplitude there (Fig. 14.13). The three contributions
that we listed for bonding in VB theory (Section 14.3)
apply here too: there is an accumulation of electron
density between the two nuclei, a removal of electron
density from close to the nuclei, and a lowering of 

A1s B1s

Region of 
constructive interference

ψ ψ

Fig. 14.12 The formation of a bonding molecular orbital (a s
orbital). (a) Two H1s orbitals come together. (b) The atomic
orbitals overlap, interfere constructively, and give rise to an
enhanced amplitude in the internuclear region. The resulting
orbital has cylindrical symmetry about the internuclear axis.
When it is occupied by two paired electrons, to give the con-
figuration s2, we have a s bond.
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Fig. 14.13 The (normalized) bonding molecular orbital wave-
function along the internuclear axis. Note that there is an 
enhancement of amplitude between the nuclei, so there is an
increased probability of finding the bonding electrons in that
region.

A A
B

B

(a) (b) (c)

ψ ψ ψ ψ

Fig. 14.14 A schematic representation of the contributions
to the overlap integral. (a) S ≈ 0 because the orbitals are far
apart and their product is always small. (b) S is large (but less
than 1) because the product yAyB is large over a substantial
region. (c) S = 0 because the positive region of overlap is 
exactly cancelled by the negative region.

Derivation 14.2

Overlap integrals

An overlap integral is calculated by dividing space up into
a large number of small regions, multiplying together the
values of yA and yB in each region, then adding together
(integrating) the resulting products for all the regions.
Formally, we express this rule by writing

S = �yAyBdt (14.10)

where dt (dee tau) is an infinitesimal volume element
(for instance, dt = dxdydz in three-dimensional Cartesian
coordinates). If yB is small wherever yA is large, and vice
versa (such as when two hydrogen nuclei are far apart),
the products are all small and the integral is also small:
this corresponds to a small value of S. At typical bonding
distances, yA and yB are both large in the internuclear re-
gion, so their products there are large, and the integral is
also large: this corresponds to a value of S approaching 1
(typically, about 0.4). If the two nuclei are coincident, the
two atomic orbitals have identical values everywhere,
and the integral of their products gives S = 1.

It is possible, but not easy, to evaluate the overlap 
integral for hydrogenic orbitals, and for two 1s-orbitals on
hydrogen nuclei separated by a distance R, the result is

(14.11)
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kinetic energy as a result of the electron spreading
over both nuclei.

The accumulation of probability density in the 
internuclear region is measured by the overlap integ-
ral, S. As we show in Derivation 14.2, when S = 1,
there is perfect overlap between two atomic orbitals;
when S = 0, there is no overlap at all (Fig. 14.14).
Broadly speaking, the greater the overlap integral,
the stronger is the bonding effect of electrons in the
molecular orbital they form.
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14.8 Bonding and antibonding orbitals

A 1σ orbital is an example of a bonding orbital, a
molecular orbital that, if occupied, contributes to 
the strength of a bond between two atoms. As in VB
theory, we can substitute the wavefunction ψ = ψA + ψB
into the Schrödinger equation for the molecule–ion
with the nuclei at a fixed separation R and solve the
equation for the energy. The molecular potential 
energy curve obtained by plotting the energy against
R is very similar to the one drawn in Fig. 14.1. The
energy of the molecule falls as R is decreased from
large values because the electron is increasingly likely
to be found in the internuclear region as the two
atomic orbitals interfere more effectively. However,
at small separations, there is too little space between
the nuclei for significant accumulation of electron
density there. In addition, the nucleus–nucleus repul-
sion Vnuc,nuc (given in eqn 14.3) becomes large and
the kinetic energy of the electron is not lowered by
very much. As a result, after an initial decrease, at
small internuclear separations the potential energy
curve passes through a minimum and then rises
sharply to high values. Calculations on H2

+ give the
equilibrium bond length as 130 pm and the bond dis-
sociation energy as 171 kJ mol−1; the experimental
values are 106 pm and 250 kJ mol−1, so this simple
LCAO-MO description of the molecule, while inac-
curate, is not absurdly wrong.

Now consider the alternative LCAO, the one with
a minus sign: ψ = ψA − ψB. Because this wavefunction

is also cylindrically symmetrical around the inter-
nuclear axis it is also a σ orbital, which we denote 1σ*
(Fig. 14.16). When substituted into the Schrödinger
equation, we find that it has a higher energy than the
bonding 1σ orbital and, indeed, it has a higher 
energy than either of the two atomic orbitals.

This function is plotted in Fig. 14.15. The exponential 
factor guarantees that the overlap integral goes to zero
at large separations.

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

Internuclear separation, R/a0

O
ve

rl
ap

 in
te

g
ra

l, 
S

Fig. 14.15 The variation of the overlap integral with 
internuclear distance for two H1s orbitals.

A1s B1s

Region of 
destructive interference

Node

ψ ψ

Fig. 14.16 The formation of an antibonding molecular orbital
(a s* orbital). (a) Two H1s orbitals come together. (b) The
atomic orbtials overlap with opposite signs (as depicted by
different shades of grey), interfere destructively, and give rise
to a decreased amplitude in the internuclear region. There is
a nodal plane exactly half-way between the nuclei, on which
any electrons that occupy the orbital will not be found.

Self-test 14.4

Show that the molecular orbital written above is zero on
a plane cutting through the internuclear axis at its mid-
point. Take each atomic orbital to be of the form e−r/a0,
with rA measured from nucleus A and rB measured from
nucleus B.

[Answer: The atomic orbitals cancel for values
equidistant from the two nuclei.]

We can trace the origin of the high energy of the
1σ* orbital to the existence of a nodal plane, a plane
on which the wavefunction passes through zero. This
plane lies half-way between the nuclei and cuts
through the internuclear axis. The two atomic orbitals
cancel on this plane as a result of their destructive 
interference, because they have opposite signs. In
drawings like those in Figs 14.13 and 14.16, we 
represent overlap of orbitals with the same sign (as in
the formation of 1σ) by shading of the same tint; the
overlap of orbitals of opposite sign (as in the forma-
tion of 1σ*) is represented by one orbital of a light
tint and another orbital of a dark tint.

The 1σ* orbital is an example of an antibonding
orbital, an orbital that, if occupied, decreases the
strength of a bond between two atoms. The anti-
bonding character of the 1σ* orbital is partly a result
of the exclusion of the electron from the internuclear
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region and its relocation outside the bonding region
where it helps to pull the nuclei apart rather than
pulling them together (Fig. 14.17). An antibonding
orbital is often slightly more strongly antibonding
than the corresponding bonding orbital is bonding:
although the ‘gluing’ effect of a bonding electron and
the ‘antigluing’ effect of an antibonding electron are
similar, the nuclei repel each other in both cases, and
this repulsion pushes both levels up in energy.

We need to be aware of a few points regarding 
notation. For homonuclear diatomic molecules, it is
helpful to identify the inversion symmetry of a
molecular orbital, especially when discussing elec-
tronic transitions (Chapter 18). By ‘inversion sym-
metry’ is meant the behaviour of a wavefunction
when it is inverted through the centre (more form-
ally, the centre of inversion) of the molecule. Thus, if
we consider any point of the σ bonding orbital, and
then project it through the centre of the molecule and
out an equal distance on the other side, then we 
arrive at an identical value of the wavefunction 
(Fig. 14.18). This so-called gerade symmetry (from the
German word for ‘even’) is denoted by a subscript g,
as in σg. On the other hand, the same procedure 
applied to the antibonding σ* orbital results in the
same size but opposite sign of the wavefunction. This
ungerade symmetry (‘odd symmetry’) is denoted by 
a subscript u, as in σu. This inversion symmetry

classification (or ‘parity’) is not applicable to hetero-
nuclear diatomic molecules (like CO) as they do not
have a centre of inversion.

14.9 The structures of diatomic molecules

In Chapter 13 we used the hydrogenic atomic orbitals
and the building-up principle to deduce the ground
electronic configurations of many-electron atoms.
Here we use the same procedure for many-electron
diatomic molecules (such as H2 with two electrons and
even Br2 with 70), but using the H2

+ molecular orbitals
as a basis. The general procedure is as follows:

1. Construct molecular orbitals by forming linear
combinations of all suitable valence atomic 
orbitals supplied by the atoms (the meaning of 
‘suitable’ will be explained shortly); N atomic
orbitals result in N molecular orbitals.

2. Accommodate the valence electrons supplied by
the atoms so as to achieve the lowest overall 
energy subject to the constraint of the Pauli exclu-
sion principle, that no more than two electrons may
occupy a single orbital (and then must be paired).

3. If more than one molecular orbital of the same 
energy is available, add the electrons to each 
individual orbital before doubly occupying any
one orbital (because that minimizes electron– 
electron repulsions).

4. Take note of Hund’s rule (Section 13.11), that 
if electrons occupy different degenerate orbitals,
then they do so with parallel spins.

The following sections show how these rules are used
in practice.
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Fig. 14.17 The (normalized) antibonding molecular orbital
wavefunction along the internuclear axis. Note that there is 
a decrease in amplitude between the nuclei, so there is a 
decreased probability of finding the bonding electrons in that
region.

Self-test 14.5

How many molecular orbitals can be built from the 
valence shell orbitals in O2?

[Answer: 8]

14.10 Hydrogen and helium molecules

The first step in the discussion of H2, the simplest
many-electron diatomic molecule, is to build the
molecular orbitals. Because each H atom of H2 con-
tributes a 1s orbital (as in H2

+), we can form the 1σ
(more precisely, 1σg) and 1σ* (that is, 1σu) bonding
and antibonding orbitals from them, as we have seen
already. At the equilibrium internuclear separation
these orbitals will have the energies represented by
the horizontal lines in Fig. 14.19.

+

+

+

–

σg σu

Fig. 14.18 The gerade/ungerade character of s bonding and
antibonding orbitals.
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There are two electrons to accommodate (one
from each atom). Both can enter the 1σg orbital by
pairing their spins (Fig. 14.20). The ground-state
configuration is therefore 1σg

2, and the atoms are
joined by a bond consisting of an electron pair in a
bonding σ orbital. These two electrons bind the two
nuclei together more strongly and closely than the
single electron in H2

+, and the bond length is reduced
from 106 pm to 74 pm. A pair of electrons in a σ
orbital is called a σ bond, and is very similar to the σ
bond of VB theory. The two differ in certain details
of the electron distribution between the two atoms
joined by the bond, but both have an accumulation
of density between the nuclei.

We can conclude that the importance of an elec-
tron pair in bonding stems from the fact that two is
the maximum number of electrons that can enter
each bonding molecular orbital. Electrons do not
‘want’ to pair: they pair because in that way they are
able to occupy a low-energy orbital.

A similar argument shows why helium is a mona-
tomic gas. Consider a hypothetical He2 molecule.
Each He atom contributes a 1s orbital to the linear
combination used to form the molecular orbitals, and
so we can construct 1σg and 1σu molecular orbitals.
They differ in detail from those in H2 because the
He1s orbitals are more compact, but the general
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Fig. 14.19 A molecular orbital energy level diagram for 
orbitals constructed from (1s,1s)-overlap, the separation of
the levels corresponding to the equilibrium bond length.

1σ

1σ*

E
n

er
g

y

H1sA H1sB

Fig. 14.20 The ground electronic configuration of H2 is 
obtained by accommodating the two electrons in the lowest
available orbital (the bonding orbital).
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Fig. 14.21 The ground electronic configuration of the four-
electron molecule He2 has two bonding electrons and two
antibonding electrons. It has a higher energy than the separ-
ated atoms, and so He2 is unstable relative to two He atoms.

Example 14.1

Judging the stability of diatomic molecules

Decide whether Li2 is likely to exist on the assumption
that only the valence s orbitals contribute to its molecular
orbitals.

Strategy Decide what molecular orbitals can be formed
from the available valence orbitals, rank them in order of
energy, then feed in the electrons supplied by the val-
ence orbitals of the atoms. Judge whether there is a net
bonding or net antibonding effect between the atoms.

Solution Each molecular orbital is built from 2s atomic
orbitals, which give one bonding and one antibonding com-
bination (1sg and 1su, respectively). Each Li atom supplies
one valence electron; the two electrons fill the 1sg orbital,
to give the configuration 1s2

g, which is bonding.

shape is the same, and for qualitative discussions 
we can use the same molecular orbital energy-level
diagram as for H2. Because each atom provides two
electrons, there are four electrons to accommodate.
Two can enter the 1σg orbital, but then it is full (by
the Pauli exclusion principle). The next two electrons
must enter the antibonding 1σu orbital (Fig. 14.21).
The ground electronic configuration of He2 is
therefore 1σg

21σ2
u. Because an antibonding orbital is

slightly more antibonding than a bonding orbital is
bonding, the He2 molecule has a higher energy than
the separated atoms and is unstable. Hence, two
ground-state He atoms do not form bonds to each
other, and helium is a monatomic gas.

Self-test 14.6

Is LiH likely to exist if the Li atom uses only its 2s 
orbital for bonding

[Answer: Yes, s(Li2s,H1s)2]
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14.11 Period 2 diatomic molecules

We shall now see how the concepts we have intro-
duced apply to other homonuclear diatomic mole-
cules, such as N2 and Cl2, and diatomic ions such as
O2

2−. In line with the building-up procedure, we first
consider the molecular orbitals that may be formed
from the valence orbitals and do not (at this stage)
trouble about how many electrons are available.

In Period 2, the valence orbitals are 2s and 2p.
Suppose first that we consider these two types of 
orbital separately. Then the 2s orbitals on each atom
overlap to form bonding and antibonding com-
binations that we denote 1σg and 1σu, respectively.
Likewise, the two 2pz orbitals (by convention, the 
internuclear axis is the z-axis) have cylindrical sym-
metry around the internuclear axis. They may there-
fore participate in σ-orbital formation to give the
bonding and antibonding combinations 2σg and 2σu,
respectively (Fig. 14.22). The resulting energy levels
of the σ orbitals are shown in the MO energy level 
diagram in Fig. 14.23. Note that we number the σg
orbitals in sequence (1σg, 2σg, . . . ) and the σu orbitals
likewise.

Strictly, we should not consider the 2s and 2pz
orbitals separately, because both of them can con-
tribute to the formation of σ orbitals. Therefore, in a
more advanced treatment, we should combine all
four orbitals together to form four σ molecular
orbitals, each one of the form

ψ = c1ψA2s + c2ψB2s + c3ψA2pz
+ c4ψB2pz

We find the four coeAcients, which represent the 
different contributions that each atomic orbital
makes to the overall molecular orbital, by using 
the variation theorem. However, in practice, the two
lowest-energy combinations of this kind are very
similar to the combination 1σg and 1σu of 2s orbitals
that we have described, and the two highest energy
combinations are very similar to the 2σg and 2σu

combinations of 2pz orbitals. In each case there 
will be small differences: the 1σg orbital, for instance,
will be contaminated by some 2pz character and the
2σg orbital will be contaminated by some 2s charac-
ter, and their energies will be slightly shifted from
where they would be if we considered only the ‘pure’
combinations. Nevertheless, the changes are not
great, and we can continue to think of 1σ and 1σ* as
being one bonding and antibonding pair, and of 2σg
and 2σu as being another pair. The four orbitals are
shown in the centre column of Fig. 14.24. There is 
no guarantee that 1σu and 2σg will be in the exact 
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(b)

Fig. 14.22 (a) The interference leading to the formation of 
a s bonding orbital and (b) the corresponding antibonding 
orbital when two p orbitals overlap along an internuclear axis.
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Fig. 14.23 A typical molecular orbital energy level diagram
for Period 2 homonuclear diatomic molecules. the valence
atomic orbitals are drawn in the columns on the left and 
the right; the molecular orbitals are shown in the middle.
Note that the p orbitals form doubly degenerate pairs (the
closely spaced lines denote orbitals lying at exactly the same
energy). The sloping lines joining the molecular orbitals to the
atomic orbitals show the principal composition of the molec-
ular orbitals. This diagram is suitable for O2 and F2; the con-
figuration of O2 is shown.
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Fig. 14.24 A typical molecular orbital energy level diagram
for Period 2 homonuclear diatomic molecules up to and 
including N2.
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location shown in the illustration and the locations
shown in Fig. 14.23 are found in some molecules 
(see below).

There is one further point in this connection. As
soon as we allow all four atomic orbitals to con-
tribute to an LCAO it is no longer clear—except by
appealing to the form of the simple pairwise LCAOs
that each one resembles—whether a particular com-
bination is bonding or antibonding: all we can say is
that the four linear combinations have successively
increasing energies. However, the parity classification
is unaffected, and the orbitals can still be classified as
g or u; in homonuclear diatomic molecules, inversion
symmetry is a more fundamental classification scheme
than bonding and antibonding.

Now consider the 2px and 2py orbitals of each
atom, which are perpendicular to the internuclear
axis and may overlap side-by-side. This overlap may
be constructive or destructive and results in a bond-
ing and an antibonding π orbital, which initially we
label 1π and 1π*, respectively. The notation π is the
analogue of p in atoms, for when viewed along the
axis of the molecule, a π orbital looks like a p 
orbital (Fig. 14.25). More precisely, an electron in a
π orbital has one unit of orbital angular momentum
about the internuclear axis. The two 2px orbitals
overlap to give a bonding and an antibonding π
orbital, as do the two 2py orbitals too. The two bond-
ing combinations have the same energy; likewise, the
two antibonding combinations have the same energy.
Hence, each π energy level is doubly degenerate and
consists of two distinct orbitals. Typically (but not
universally) the bonding effect of electrons in a π
orbital is less than for a σ orbital in the same mole-
cule because the electron density it represents does
not lie between the nuclei so completely. Likewise,

the antibonding effect of electrons in a π* orbital is
typically less than when they occupy a σ* orbital in
the same molecule. Two electrons in a π orbital con-
stitute a π bond: such a bond resembles a π bond of
valence bond theory, but the details of the electron
distribution are slightly different.

The inversion-symmetry classification also applies
to π orbitals. As we see from Fig. 14.26, a bonding π
orbital changes sign on inversion, and is therefore
classified as u. On the other hand, the antibonding π*
orbital does not change sign, and is therefore g. The
bonding and antibonding combinations will hence-
forth be denoted 1πu and 1πg. The relative order of
the σ and π orbitals in a molecule cannot be predicted
without detailed calculation and varies with the 
energy separation between the 2s and 2p orbitals of
the atoms; in some molecules the order shown in 
Fig. 14.23 applies, whereas others have the order
shown in Fig. 14.24. The change in order can be seen
in Fig. 14.27, which shows the calculated energy 
levels for the Period 2 homonuclear diatomic mole-
cules. A useful rule is that, for neutral molecules, the

π π*

(a) (b)

Fig. 14.25 (a) The interference leading to the formation of 
a p bonding orbital and (b) the corresponding antibonding 
orbital.
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Fig. 14.26 The gerade/ungerade character of p bonding and
antibonding orbitals.
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Fig. 14.27 The variation of the orbital energies of Period 2
homonuclear diatomic molecules. Only the valence-shell 
orbitals are shown.
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order shown in Fig. 14.23 is valid for O2 and F2,
whereas the order shown in Fig. 14.24 is valid for the
preceding elements of the period.

14.12 Symmetry and overlap

One central feature of molecular orbital theory can
now be addressed. We have seen that s and pz orbitals
may contribute to the formation of σ orbitals, and
that px and py orbitals may contribute to π orbitals.
However, we never have to consider orbitals formed
by the overlap of s and px orbitals (or py orbitals).
When building molecular orbitals, we need consider
linear combinations only of atomic orbitals of the
same symmetry with respect to the internuclear axis.
Because an s orbital has cylindrical symmetry around
the internuclear axis, but a px orbital does not, the
two atomic orbitals cannot contribute to the same
molecular orbital. The reason for this distinction
based on symmetry can be understood by considering
the interference between an s orbital and a px orbital
(Fig. 14.28): although there is constructive interfer-
ence between the two orbitals on one side of the axis,
there is an exactly compensating amount of destruc-
tive interference on the other side of the axis, and the
net bonding or antibonding effect is zero.

Consistent with this interpretation, the overlap of
a 1s orbital on one atom and a 2px orbital on another
atom (with z the internuclear axis) is zero. In terms of
the discussion in Derivation 14.2, we see in Fig. 14.28
that at some point the product ψAψB may be large.
However, there is a matching point in the lower half
of the figure point where ψAψB has exactly the same
magnitude but an opposite sign. When the integral 
is evaluated, these two contributions are added 
together and cancel. For every point in the upper half
of the diagram, there is a point in the lower half that
cancels it, so S = 0. Therefore, for symmetry reasons,
there is no net overlap between the s and p orbitals in
this arrangement.

We now have the criteria for selecting atomic 
orbitals from which molecular orbitals are to be built:

1. Use all available valence orbitals from both atoms.

2. Classify the atomic orbitals as having σ and π
symmetry with respect to the internuclear axis,
and build σ and π orbitals from all atomic orbitals
of a given symmetry.

3. From Nσ atomic orbitals of σ symmetry, Nσ σ
orbitals can be built with progressively higher 
energy from strongly bonding to strongly 
antibonding.

4. From Nπ atomic orbitals of π symmetry, Nπ π
orbitals can be built with progressively higher 
energy from strongly bonding to strongly anti-
bonding. The π orbitals occur in doubly degener-
ate pairs.

As a general rule, the energy of each type of orbital 
(σ or π) increases with the number of internuclear
nodes. The lowest energy orbital of a given species
has no internuclear nodes and the highest energy 
orbital has a nodal plane between each pair of adja-
cent atoms (Fig. 14.29).

A brief illustration A dz 2 orbital has cylindrical sym-
metry around z and so can contribute to s orbitals. The dzx

and dyz orbitals have p symmetry with respect to the axis
(Fig. 14.30), so they can contribute to p orbitals.

(a) (b)

Fig. 14.28 Overlapping s and p orbitals. (a) End-on overlap
leads to nonzero overlap and to the formation of an axially
symmetric s orbital. (b) Broadside overlap leads to no net ac-
cumulation or reduction of electron density and does not con-
tribute to bonding.
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Fig. 14.29 A schematic representation of the four molecular
orbitals that can be formed from four s orbitals in a chain 
of four atoms. The lowest energy combination (the bottom
diagram) is formed from atomic orbitals with the same sign,
and there are no internuclear nodes. The next higher orbital
has one node (at the centre of the molecule. The next higher
orbital has two internuclear nodes, and the uppermost, 
highest energy orbital, has three internuclear nodes, one 
between each neighbouring pair of atoms, and is fully anti-
bonding. The sizes of the spheres reflect the contributions of
each atom to the molecular orbital; the shading represents
different signs.
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14.13 The electronic structures of
homonuclear diatomic molecules

Figures 14.23 and 14.24 show the general layout of
the valence-shell atomic orbitals of Period 2 atoms
on the left and right. The lines in the middle are an 
indication of the energies of the molecular orbitals
that can be formed by overlap of atomic orbitals.
From the eight valence shell orbitals (four from each
atom), we can form eight molecular orbitals: four are
σ orbitals and four, in two pairs, are doubly degenerate
π orbitals. With the orbitals established, we derive the
ground-state electron configurations of the molecules
by adding the appropriate number of electrons to the
orbitals and following the building-up rules. Charged
species (such as the peroxide ion, O2

2−, and C2
+) need

either more or fewer electrons (for anions and cations,
respectively) than the neutral molecules.

We illustrate the procedure with N2, which has ten
valence electrons; for this molecule we use Fig. 14.24.
The first two electrons pair, enter, and fill the 1σg
orbital. The next two electrons enter and fill the 1σu
orbital. Six electrons remain. There are two 1πu
orbitals, so four electrons can be accommodated 

in them. The two remaining electrons enter the 2σg
orbital. The ground-state configuration of N2 is
therefore 1σg

21σ2
u1π4

u2σg
2. This configuration is also

depicted in Fig. 14.24.
The strength of a bond in a molecule is the net 

outcome of the bonding and antibonding effects of
the electrons in the orbitals. The bond order, b, in a
diatomic molecule is defined as

b = (N − N*) (14.12)

where N is the number of electrons in bonding 
orbitals and N* is the number of electrons in anti-
bonding orbitals (as judged by their resemblance to
the simple pairwise LCAOs). Each electron pair in a
bonding orbital increases the bond order by 1 and
each pair in an antibonding orbital decreases it by 1.
For H2, b = 1, corresponding to a single bond 
between the two atoms: this bond order is consistent
with the Lewis structure H—H for the molecule. In
He2, which has equal numbers of bonding and anti-
bonding electrons (with N = 2 and N* = 2), the bond
order is b = 0, and there is no bond. In N2, 1σg, 2σg,
and 1πu are bonding orbitals, and n = 2 + 2 + 4 = 8;
however, 1σu (the antibonding partner of 1σg) is 
antibonding, so N* = 2 and the bond order of N2 is
b = (8 − 2) = 3. This value is consistent with the Lewis
structure :NyN:, in which there is a triple bond 
between the two atoms.

The bond order is a useful parameter for discussing
the characteristics of bonds, because it correlates
with bond length, and the greater the bond order 
between atoms of a given pair of atoms, the shorter
the bond. The bond order also correlates with bond
strength, and the greater the bond order, the greater
the strength. The high bond order of N2 is consistent
with its high dissociation energy (942 kJ mol−1).

1
2

1
2

σ π

δ δ

Fig. 14.30 The types of molecular orbital to which d orbitals
can contribute. The s and p combinations can be formed with
s, p, and d orbitals of the appropriate symmetry, but the d
orbitals can be formed only by the d orbitals of the two atoms.

Self-test 14.7

Sketch the ‘d orbitals’ (orbitals that resemble four-lobed
d orbitals when viewed along the internuclear axis) that
may be formed by the remaining two d orbitals (and
which contribute to bonding in some d-metal cluster com-
pounds). Give their inversion-symmetry classification.

[Answer: see Fig. 14.30: bonding are g, antibonding are u]

Example 14.3

Writing the electron configuration of a diatomic
molecule

Write the ground-state electron configuration of O2 and
calculate the bond order.

Strategy Decide which MO energy level diagram to use
(Fig. 14.23 or Fig. 14.24). Count the valence electrons and
accommodate them by using the building-up principle.

Solution Figure 14.23 is appropriate for oxygen. There
are 12 valence electrons to accommodate. The first 10
electrons recreate the N2 configuration (with a reversal
of the order of the 2sg and 1pu orbitals); the remaining
two electrons must occupy the 1pg orbitals. The config-
uration and bond order are therefore 1sg

21su
22sg

21pu
41pg

2.



Example 14.4

Judging the relative bond strengths of molecules
and ions

The superoxide ion, O2
−, plays an important role in the

ageing processes that take place in organisms. Judge
whether O2

− is likely to have a larger or smaller dissoci-
ation energy than O2.

Strategy Because a species with the larger bond order
is likely to have the larger dissociation energy, we should
compare their electronic configurations, and assess their
bond orders.

Solution From Fig. 14.23,

O2 1sg
21su

22sg
21pu

41pg
2 b = 2

O2
− 1sg

21su
22sg

21pu
41pg

3 b = 1.5

Because the anion has the smaller bond order, we 
expect it to have the smaller dissociation energy.

Self-test 14.9

Which can be expected to have the higher dissoci-
ation energy, F2 or F2

+?
[Answer: F2

+ ]
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We see from Example 14.3 that the electron con-
figuration of O2 is 1σg

21σu
22σg

21πu
41πg

2. According to the
building-up principle, the two 1πg electrons in O2 will
occupy different orbitals. One enters the 1πg orbital
formed by overlap of 2px. The other enters its degen-
erate partner, the 1πg orbital formed from overlap of
the 2py orbitals. Because the two electrons occupy
different orbitals, by Hund’s rule they will have 
parallel spins (↑↑). Consequently, an O2 molecule is
sometimes regarded as a biradical, a species with two
unpaired electrons. (A true biradical has two electron
spins with random relative orientations; in O2 the two
spins are parallel.) Molecular orbital theory therefore
suggests—correctly—that O2 is a reactive component
of the Earth’s atmosphere; its most important bio-
logical role is as an oxidizing agent. By contrast, N2,
the major component of the air we breathe, is so 
unreactive that nitrogen fixation, the reduction of 
atmospheric N2 to NH3 by certain microorganisms,
is among the most thermodynamically demanding of
biological processes in the sense that it requires a great
deal of energy derived from metabolic processes.

The electronic configuration of O2 also suggests that
it will be magnetic because the magnetic fields gener-
ated by the two unpaired spins do not cancel. Specific-
ally, O2 is predicted to be a paramagnetic substance,
a substance that is drawn into a magnetic field. Most
substances (those with paired electron spins) are 
diamagnetic, and are pushed out of a magnetic field.
That O2 is in fact a paramagnetic gas is a striking
confirmation of the superiority of the molecular 
orbital description of the molecule over the Lewis
and VB descriptions (which require all the electrons
to be paired). The property of paramagnetism is util-
ized to monitor the oxygen content of incubators by
measuring the magnetism of the gases they contain.

An F2 molecule has two more electrons than an O2
molecule, so its configuration is 1σg

21σu
22σg

21πu
41πg

4

and its bond order is 1. We conclude that F2 is
a singly bonded molecule, in agreement with its 
Lewis structure :

..
f..—

..
f..:. The low bond order is con-

sistent with the low dissociation energy of F2 (154 kJ
mol−1). A hypothetical Ne2 molecule would have 
two further electrons: its configuration would be
1σg

21σu
22σg

21πu
41πg

42σu
2 and its bond order 0. The

bond order of zero—which implies that two neon
atoms do not bond together—is consistent with the
monatomic character of neon.

This configuration is also depicted in Fig. 14.23. Because
1sg, 2sg, and 1pu are regarded as bonding and 1su and
1pg as antibonding, the bond order is b = (8 − 4) = 2. This
bond order accords with the classical view that oxygen
has a double bond.

1
2

Self-test 14.8

Write the electron configuration of F2 and deduce its
bond order.

[Answer: 1sg
21su

22sg
21pu

41pg
4, b = 1]

14.14 Heteronuclear diatomic molecules

A heteronuclear diatomic molecule is a diatomic mole-
cule formed from atoms of two different elements;
two examples are CO and HCl. The electron distri-
bution in the covalent bond between the atoms is not
symmetrical between the atoms because it is energet-
ically favourable for a bonding electron pair to be
found closer to one atom rather than the other. This
imbalance results in a polar bond, which is a covalent
bond in which the electron pair is shared unequally
by the two atoms. The electronegativity, χ (chi), of
an element is the power of its atoms to draw electrons
to itself when it is part of a compound, so we can 



CHAPTER 14: QUANTUM CHEMISTRY: THE CHEMICAL BOND340

expect the polarity of a bond to depend on the rela-
tive electronegativities of the elements.

Linus Pauling formulated a numerical scale of 
electronegativity based on considerations of bond
dissociation energies, E(A—B):

|χA − χB | = 0.102 × (ΔE/kJ mol−1)1/2 (14.13a)

with

ΔE = E(A—B) − {E(A—A) + E(B—B)} (14.13b)

Table 14.2 lists values for the main-group elements.
Robert Mulliken proposed an alternative definition
in terms of the ionization energy, I, and the electron
aAnity, Eea, of the element expressed in electronvolts:

χ = (I + Eea) (14.14)

This relation is plausible, because an atom that has 
a high electronegativity is likely to be one that has 
a high ionization energy (so that it is unlikely to lose
electrons to another atom in the molecule) and a high
electron aAnity (so that it is energetically favourable
for an electron to move towards it). The Mulliken
electronegativities are broadly in line with the Pauling
electronegativities. Electronegativities show a periodi-
city, and the elements with the highest electronega-
tivities are those close to fluorine in the periodic table.

The location of the bonding electron pair close to
one atom in a heteronuclear molecule results in that
atom having a net negative charge, which is called 
a partial negative charge and denoted δ−. There is 
a compensating partial positive charge, δ+, on the
other atom. In a typical heteronuclear diatomic
molecule, the more electronegative element has the
partial negative charge and the more electropositive
element has the partial positive charge.

1
2

1
2

Table 14.2

Electronegativities of the main-group elements

H
2.1

Li Be B C N O F
1.01 1.5 2.0 2.5 3.0 3.5 4.0

Na Mg Al Si P S Cl
0.9 1.2 1.5 1.8 2.1 2.5 3.0

K Ca Ga Ge As Se Br
0.8 1.0 1.6 1.8 2.0 2.4 2.8

Rb Sr In Sn Sb Te I
0.8 1.0 1.7 1.8 1.9 2.1 2.5

Cs Ba Tl Pb Bi Po
0.7 0.9 1.8 1.8 1.9 2.0

Self-test 14.10

Predict the signs of the charge distribution of a C—H
bond.

[Answer: d−C—Hd+]

Molecular orbital theory takes polar bonds into its
stride. A polar bond consists of two electrons in an
orbital of the form

ψ = cAψA + cBψB (14.15)

with cB
2 no longer equal to cA

2. If cB
2 > cA

2, the electrons
have a greater probability of being found on B than
on A and the molecule is polar in the sense δ+A—Bδ−.
A nonpolar bond, a covalent bond in which the 
electron pair is shared equally between the two
atoms and there are zero partial charges on each
atom, has cA

2 = cB
2. A pure ionic bond, in which one

atom has obtained virtually sole possession of the
electron pair (as in Cs+F−, to a first approximation),
has one coeAcient zero (so that A+B− would have 
cA

2 = 0 and cB
2 = 1).

A general feature of molecular orbitals between dis-
similar atoms is that the atomic orbital with the lower
energy (that belonging to the more electronegative
atom) makes the larger contribution to the lowest-
energy molecular orbital. The opposite is true of the
highest (most antibonding) orbital, for which the prin-
cipal contribution comes from the atomic orbital
with higher energy (the less electronegative atom):

Bonding orbitals: for χA > χB, cA
2 > cB

2

Antibonding orbitals: for χA > χB, cA
2 < cB

2

Figure 14.31 shows a schematic representation of
this point.

These features of polar bonds can be illustrated by
considering HF. The general form of the molecular
orbitals of HF is ψ = cHψH + cFψF, where ψH is an H1s
orbital and ψF is an F2pz orbital. Because the ioniza-
tion energy of a hydrogen atom is 13.6 eV, we know
that the energy of the H1s orbital is −13.6 eV. As usual,
the zero of energy is the infinitely separated electron
and proton (Fig. 14.32). Similarly, from the ionization
energy of fluorine, which is 18.6 eV, we know that the
energy of the F2pz orbital is approximately −18.6 eV,
about 5 eV lower than the H1s orbital. It follows that
the bonding σ orbital in HF is mainly F2pz and the
antibonding σ orbital is mainly H1s orbital in char-
acter. The two electrons in the bonding orbital are
most likely to be found in the F2pz orbital, so there is
a partial negative charge on the F atom and a partial
positive charge on the H atom.



MOLECULAR ORBITALS 341

A systematic way of finding the coeAcients in the
linear combinations is to use the variation theorem and
to look for the values of the coeAcients that result 
in the lowest energy (Section 14.2). For example, when
the variation principle is applied to an H2 molecule,
the calculated energy is lowest when the two H1s 
orbitals contribute equally to a bonding orbital. How-
ever, when we apply the principle to HF, the lowest
energy is obtained for the orbital ψ = 0.24ψH + 0.97ψF.
We see that indeed the F2pz orbital does make the
greater contribution to the bonding σ orbital. An
even lower energy is obtained—with a lot more 
calculation—if even more orbitals are included in the
linear combination (such as F2s and F3pz orbitals)
but the principal lowering of energy is achieved from
atomic orbitals of similar energies.
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Less
electronegative
atom

More
electronegative
atom

Fig. 14.31 A schematic representation of the relative con-
tributions of atoms of different electronegativities to bonding
and antibonding molecular orbitals. In the bonding orbital, the
more electronegative atom makes the greater contribution
(represented by the larger sphere), and the electrons of the
bond are more likely to be found on that atom. The opposite
is true of an antibonding orbital. A part of the reason why 
an antibonding orbital is of high energy is that the electrons
that occupy it are likely to be found on the more electroposi-
tive atom.
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Ionization limit

H1s

F2p

13.60 13.35 17.65 17.40

0.97 H – 0.24 F

0.24 H + 0.97 F

ψ ψ

ψ ψ

Fig. 14.32 The atomic orbital energy levels of H and F atoms
and the molecular orbitals they form. The bonding orbital 
has predominantly F atom character and the antibonding 
orbital has predominantly H atom character. Energies are in 
electronvolts.

Self-test 14.11

What is the probability of finding a s electron in HF in a
F2pz orbital?

[Answer: 88 per cent = (0.94)2 × 100 per cent)]

Figure 14.33 shows the bonding scheme in CO
and illustrates a number of points we have made. 
The ground configuration is 1σ22σ21π43σ2. (The g,u
designation is inapplicable because the molecule is
heteronuclear and the σ orbitals are simply numbered
in sequence, 1σ, 2σ, . . . , and the π orbitals likewise.)
The lowest-energy orbitals are predominantly of O
character as that is the more electronegative element.
The highest occupied molecular orbital (HOMO) is
3σ, which is a largely nonbonding orbital centred on
C, so the two electrons that occupy it can be regarded
as a lone pair on the C atom. The lowest unoccupied
molecular orbital (LUMO) is 2π, which is largely a
doubly degenerate orbital of 2p character on carbon.
This combination of a lone-pair orbital on C and 
a pair of empty π orbitals also largely on C is at 
the root of the importance of carbon monoxide in 
d-block chemistry, because it enables it to form an
extensive series of carbonyl complexes by a com-
bination of electron donation from the 3σ orbital
and electron acceptance into the 2π orbitals. The
HOMO and the LUMO jointly form the frontier
orbitals of the molecule, and are of great importance
for assessing its reactions.

14.15 The structures of polyatomic
molecules

The bonds in polyatomic molecules are built in the
same way as in diatomic molecules, the only difference
being that we use more atomic orbitals to construct
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C2s

O2s

C2p

O2p

1σ

1π
3σ

2σ

2π

4σ

Fig. 14.33 The molecular orbital energy-level diagram for CO.
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the molecular orbitals, and these molecular orbitals
spread over the entire molecule, not just the adjacent
atoms of the bond. In general, a molecular orbital is
a linear combination of all the atomic orbitals of all
the atoms in the molecule. In H2O, for instance, the
atomic orbitals are the two H1s orbitals, the O2s 
orbital, and the three O2p orbitals (if we consider
only the valence shell). From these six atomic 
orbitals we can construct six molecular orbitals that
spread over all three atoms. The molecular orbitals
differ in energy. The lowest energy, most strongly
bonding orbital has the least number of nodes 
between adjacent atoms. The highest energy, most
strongly antibonding orbital has the greatest num-
bers of nodes between neighbouring atoms.

According to MO theory, the bonding influence 
of a single electron pair is distributed over all the
atoms, and each electron pair (the maximum number
of electrons that can occupy any single molecular 
orbital) helps to bind all the atoms together. In 
the LCAO approximation, each molecular orbital is
modelled as a sum of atomic orbitals, with atomic
orbitals contributed by all the atoms in the molecule.
Thus, a typical molecular orbital in H2O constructed
from H1s orbitals (denoted ψA and ψB) and O2s and
O2pz orbitals (denoted ψOs and ψOpz

) will have the
composition

ψ = c1ψA + c2ψOs + c3ψOpz
+ c4ψB (14.16)

Because four atomic orbitals are being used to form
the LCAO, there will be four possible molecular 
orbitals of this kind: the lowest energy (most bond-
ing) orbital will have no internuclear nodes and the
highest energy (most antibonding) orbital will have 
a node between each pair of neighbouring nuclei
(Fig. 14.34).

An important example of the application of MO
theory is to the orbitals that may be formed from the
p orbitals perpendicular to the molecular plane of
benzene, C6H6. Because there are six such atomic 
orbitals, it is possible to form six molecular orbitals
of the form

ψ = c1ψ1 + c2ψ2 + c3ψ3 + c4ψ4 + c5ψ5 + c6ψ6 (14.17)

The lowest energy, most strongly bonding orbital has
no internuclear nodes, and has the form

ψ = ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6

A brief comment We are ignoring normalization factors,
for clarity. In this and the following case it would be 1/61/2 if
we ignore overlap.

This orbital is illustrated at the bottom of Fig. 14.35.
It is strongly bonding because the constructive inter-

ference between neighbouring p orbitals results in a
good accumulation of electron density between the
nuclei (but slightly off the internuclear axis, as in the
π bonds of diatomic molecules). The most antibond-
ing orbital has the form

ψ = ψ1 − ψ2 + ψ3 − ψ4 + ψ5 − ψ6

The alternation of signs in the linear combination res-
ults in destructive interference between neighbours,
and the molecular orbital has a nodal plane between
each pair of neighbours, as shown in the illustration.
The remaining four molecular orbitals are more
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1a1

1b2

2a1

1b1

3a1

2b2

Fig. 14.34 Schematic form of the molecular orbitals of H2O.
The blue denotes s orbitals, the yellow p orbitals, and the
green hybrids of s and p character. Dark and light tones 
denote positive and negative phases, respectively.
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1a2u

1e1g

1e2u

1b2g

0

Fig. 14.35 The p orbitals and the p molecular orbital energy
level diagram of benzene. The lowest-energy orbital is fully
bonding between neighbouring atoms but the uppermost 
orbital is fully antibonding. The two pairs of doubly degenerate
molecular orbitals have an intermediate number of inter-
nuclear nodes. As usual, light and dark shading represents dif-
ferent signs of the wavefunction. The orbitals have opposite
signs below the plane of the ring. The symmetry designa-
tions are those appropriate to a hexagonal molecule.
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diAcult to establish by qualitative arguments, but
they have the form shown in Fig. 14.35, and lie in 
energy between the most bonding and most antibond-
ing orbitals. Note that the four intermediate orbitals
form two doubly degenerate pairs, one net bonding
and the other net antibonding.

We find the energies of the six π molecular orbitals
in benzene by solving the Schrödinger equation (see
the following section); they are also shown in the
molecular orbital energy-level diagram. There are six
electrons to be accommodated (one is supplied by
each C atom), and they occupy the lowest three 
orbitals. The resulting electron distribution is like a
double doughnut. It is an important feature of the
configuration that the only molecular orbitals occu-
pied have a net bonding character, as this is one con-
tribution to the stability (in the sense of low energy)
of the benzene molecule. It may be helpful to note the
similarity between the molecular orbital energy-level
diagram for benzene and that for N2 (see Fig. 14.24):
the strong bonding in benzene is echoed in the strong
bonding in nitrogen.

A feature of the molecular orbital description of
benzene is that each molecular orbital spreads either
all round or partially round the C6 ring. That is, π
bonding is delocalized, and each electron pair helps
to bind together several or all of the C atoms. The de-
localization of bonding influence is a primary feature
of molecular orbital theory and we shall encounter it
in its extreme form when we come to consider the
electronic structures of solids.

A final point is that the σ, π classification of 
molecular orbitals is not strictly applicable to non-
linear polyatomic molecules. Instead, a classification
scheme based on the actual symmetry of the mole-
cule is used, and you will see symbols such as a1, e,
and t2g in place of σ and π1. However, the σ, π
classification is relevant locally, in the sense that we
can speak of the σ bond between the O and an H
atom in H2O and the π orbitals between a pair of 
C atoms in benzene. In benzene, and other planar
molecules, the term ‘π orbital’ is extended to mean
the delocalized molecular orbitals constructed from
the p orbitals perpendicular to the ring.

14.16 The Hückel method

One of the earliest and simplest attempts to express
these concepts quantitatively was introduced by Erich

1 The symmetry classification of orbitals in polyatomic molecules
is described in our Physical chemistry (2006).

Derivation 14.3

The secular equations

When y = cAyA + cByB is substituted into Ĥy = Ey, we get

cAĤyA + cBĤyB = cAEyA + cBEyB

Now multiply through by yA:

cAyAĤyA + cByAĤyB = cAEyAyA + cBEyAyB

A common ‘trick’ in quantum chemistry is to turn products
of functions (such as yAyB) into quantities with a particu-
lar numerical value by integrating them over all space
(yAyB, for instance, then becomes the overlap integral S
with a numerical value such as 0.2). When we integrate
all four terms in this expression we get

HAA HAB

SAB1

cA� yAĤyAdt + cB� yAĤyBdt

= cAE� y2
Adt + cBE � yAyBdt

Hückel in 1931. A point to bear in mind throughout
is that a linear combination of N atomic orbitals 
results in N molecular orbitals: the Hückel method
provides an approximate procedure for putting these
molecular orbitals in order of increasing energy. We
shall introduce the method by considering ethene,
CH2lCH2, and then consider larger molecules.

The first step that Hückel took was to ignore the 
σ-bonding framework and focus solely on the π elec-
trons. That is, he assumed that the atoms had taken
up the positions they have in the actual molecule,
then calculated the properties of the π orbitals that
matched that framework. The partial justification
for this approximation is that atomic orbitals that
contribute to σ molecular orbitals have a different
symmetry from the atomic orbitals that contribute to
π molecular orbitals and have zero net overlap with
them. For ethene that meant that he wrote ψ = cAψA
+ cBψB, where ψA and ψB are the C2px orbitals (with
x perpendicular to the molecular plane). We show in
Derivation 14.3 that the Schrödinger equation for
the orbitals, Ĥψ = Eψ, then becomes the following
pair of simultaneous equations for the coeAcients:

(HAA − E)cA + (HAB − ES)cB = 0
(14.18)

(HBA − ES)cA + (HBB − E)cB = 0

with the various terms defined and interpreted in 
the derivation. These equations are called the secular
equations.
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Hückel then made further approximations. First,
he neglected all overlap integrals and set S = 0 wher-
ever it appears. This approximation turns the secular
equations into

(HAA − E)cA + HABcB = 0
(14.19)

HBAcA + (HBB − E)cB = 0

Then, as explained in the preceding derivation, like
him we suppose that the terms HAA and HBB, which
represent the energy of an electron when it is on atom
A and B, respectively, are equal (that is true in ethene
and any molecule with equivalent carbon atoms) and
replaced them by an empirical constant α. This para-
meter is approximately equal to (the negative of) the
ionization energy of the atom. At this point, the
equations are

(α − E)cA + HABcB = 0
(14.20)

HBAcA + (α − E)cB = 0

Finally, as explained in the derivation, he also sup-
posed that the terms HAB and HBA, which represent
the energy of the interaction of the two nuclei with
the accumulation of electron density in the inter-
nuclear region and the effect on the kinetic energy of 
the electrons of spreading over both nuclei can be 

replaced by the empirical parameter β (which, like α,
is also a negative quantity as it represents a lowering
of energy):

(α − E)cA + βcB = 0
(14.21)

βcA + (α − E)cB = 0

These are the Hückel equations for ethene. They are
two simultaneous equations for the coeAcients cA
and cB.

We solve the Hückel equations like solving any
pair of simultaneous equations. In this case we 
multiply the first by β and the second by α − E:

β(α − E)cA + β2cB = 0

β(α − E)cA + (α − E)2cB = 0

and then subtract the second from the first, to obtain

{β2 − (α − E)2}cB = 0

We know that the coeAcient cB cannot be zero (for if
it were, there would be no overlap and bonding), so
the expression multiplying cB must be zero:

β2 − (α − E)2 = 0 (14.22)

The parameters α and β are fixed, so this is an equa-
tion for E. We rearrange it into (α − E)2 = β2 and then
take the square root of each side (allowing for two
possible signs), to obtain α − E = ±β. That is, the 
energies of the orbitals are given by

E = α ± β (14.23)

This is essentially the end of the calculation, for 
we see that there are two energy levels, one at α + β
and the other at α − β, corresponding, respectively
(because β is negative), to the bonding and antibond-
ing orbitals (Fig. 14.36). Because two electrons can 
occupy the bonding orbital, the π-electron binding
energy, Eπ, of the molecule, the energy due to the π
electrons, is

Eπ = 2α + 2β (14.24a)

If one electron is excited into the antibonding orbital,
the π-electron energy changes to

E ′π = α + β + (α − β) = 2α (14.24b)

The difference E ′π − Eπ = −2β is therefore the energy
needed to excite a π electron in ethene. From spectro-
scopy it is known that that excitation energy is equal
to about 7.7 eV, so we now know that β is approxim-
ately −3.8 eV (corresponding to −370 kJ mol−1).

The Hückel method is relatively easy to extend to
more complicated hydrocarbons, but more advanced
techniques—now universally implemented on math-
ematical software—are needed to solve the secular

That is,

cAHAA + cBHAB = cAE + cBESAB

which is the first of the two secular equations. The sec-
ond equation is generated similarly but by multiplying
with yB instead of yA and then integrating.

In anticipation of the next step, we can interpret some
of the integrals. The overlap integral S will be familiar. The
integral we have called HAA is the ‘expectation value’ of
the hamiltonian calculated by using the wavefunction yA

centred on atom A: that means it is a kind of average of
the hamiltonian, with the contribution to the total energy
weighted by the probability, yA

2dt, that the electron is at
each point; thus it can be interpreted as the energy of
the electron in that orbital. The same is true of HBB,
which we interpret as the energy of an electron in the 
orbital yB centred on atom B. If both atoms are the same,
these integrals are the same, and we denote them a.
The integral HAB depends on both yA and yB, and we can
interpret it as the contribution to the energy due to the
accumulation of electron density where the two atomic
orbitals overlap, including, for instance, the Coulombic
attraction between the extra accumulation of electron
density and both nuclei. This term also includes the con-
tribution to the lowering of kinetic energy that stems
from the spread of the electron over both nuclei. This 
integral (and HBA, to which it is equal) is denoted b.
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equations for the energy levels (and the coeAcients
of the orbitals). In addition to the approximations 
already mentioned, the method also supposes that
the only interactions between immediate neighbours
are included. In summary, the method is as follows:

• Focus solely on the π orbitals of the system.

• Set all overlap integrals equal to zero.

• Set all terms of the form HAA equal to α (a nega-
tive quantity)

• Set all terms of the form HAB equal to β (a negative
quantity) if the atoms are neighbours and to zero
otherwise.

• Solve the Hückel equations for the energies.

In practice, this means that for N carbon atoms there
are N Hückel equations; the coeAcients are multi-
plied by α − E, β, or zero depending on whether they
refer to a single atom, involve neighbours, or involve
atoms that are not neighbours, respectively.

A brief illustration The Hückel equations for butadiene
(1) are

(a − E )cA + bcB = 0

bcA + (a − E )cB + bcC = 0

bcB + (a − E )cC + bcD = 0

bcC + (a − E )cD = 0

The π-electron binding energy of butadiene is 
Eπ = 4α + 4.48β. If we had treated the molecule as two
isolated π bonds between atoms A and B and atoms
C and D, we would have calculated Eπ = 4α + 4β
(as for two ethene molecules). The difference, 0.48β
(about −180 kJ mol−1) is called the delocalization
energy, Edeloc. The delocalization energy is the addi-
tional lowering of energy of the molecule due to 
the spreading of the π electrons throughout the
molecule instead of being localized in discrete bond-
ing regions.

A brief illustration The p electron energy levels of 
benzene (see Problem 14.36) according to the Hückel
method are

E = a ± 2b, a ± b, a ± b

(Note the double degeneracy of levels with energy a ± b.)
These levels are illustrated in Fig. 14.35. The p-electron
binding energy of benzene is

Ep = 2(a + 2b) + 2(a + b) + 2(a + b) = 6a + 8b

The p-electron binding energy of three localized ethene
molecules is 3(2a + 2b) = 6a + 6b. Therefore, the delocal-
ization energy of benzene is

Edeloc = 6a + 8b − (6a + 6b) = 2b

or about 740 kJ mol−1. This considerable lowering of 
energy due to delocalization is a major contribution to the
stability of the benzene ring and of aromatic compounds
in general.

Computational chemistry

Computational chemistry is now a standard part 
of chemical research. One major application is in 
pharmaceutical chemistry, where the likely pharma-
cological activity of a molecule can be assessed com-
putationally from its shape and electron density
distribution before expensive in-vivo trials are started.
Commercial software is now widely available for
calculating the electronic structures of molecules and
displaying the results graphically. All such calcula-
tions work within the Born–Oppenheimer approxi-
mation and express the molecular orbitals as linear
combinations of atomic orbitals.

E
n
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g

y C2p C2p

π

π*

α + β

α – β

α

Fig. 14.36 The results of a Hückel calculation of the p orbital
energies of ethene.

Self-test 14.12

Calculate the p-electron energy of butadiene in its
ground state.

[Answer: 4a + 4.48b]

4 Butadiene

The solutions (which are best found by using mathemat-
ical software but in this simple case can also be found
manually) are

E = a ± 1.62b, a ± 0.62b

Because a and b are both negative quantities, the order of
increasing energy, from most bonding to most antibond-
ing, is a + 1.62b, a + 0.62b, a − 0.62b, a − 1.62b.
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14.17 Techniques

There are two principal approaches to solving the
Schrödinger equation for many-electron polyatomic
molecules. In the semiempirical methods, certain 
expressions that occur in the Schrödinger equation
are set equal to parameters that have been chosen to
lead to the best fit to experimental quantities, such as
enthalpies of formation. Semiempirical methods are
applicable to a wide range of molecules with a virtu-
ally limitless number of atoms, and are widely pop-
ular. In the more fundamental abinitio methods,
an attempt is made to calculate structures from first
principles, using only the atomic numbers of the atoms
present. Such an approach is intrinsically more reli-
able than a semiempirical procedure but is much
more demanding computationally.

Both types of procedure typically adopt a self-
consistent field (SCF) procedure, in which an initial
guess about the composition of the LCAO is succes-
sively refined until the solution remains unchanged in
a cycle of calculation. First, we guess the values of the
coeAcients in the LCAO used to build the molecular
orbitals—and solve the Schrödinger equation for the
coeAcients of one LCAO on the basis of that guess
for the coeAcients of all the other occupied orbitals.
Now we have a first approximation to the coeAci-
ents of one LCAO. We then repeat the procedure for
all the other occupied molecular orbitals. At the end
of that stage we have a new set of LCAO coeAcients
that differ from our first guess, and we also have an
estimate of the energy of the molecule. We use that
refined set of coeAcients to repeat the calculation
and calculate a new set of coeAcients and a new 
energy. In general, these will differ from the new
starting point. However, there comes a stage when
repetition of the calculation leaves the coeAcients
and energy unchanged. The orbitals are now said to
be ‘self-consistent’, and we accept them as a descrip-
tion of the molecule.

The severe approximations of the Hückel method
have been removed over the years in a succession 
of better approximations. Each has given rise to 
an acronym, such as CNDO (‘complete neglect of 
differential overlap’), INDO (‘intermediate neglect
of differential overlap’), MINDO (‘modified neglect
of differential overlap’), and AM1 (‘Austin Model 1’,
version 2 of MINDO). Software for all these pro-
cedures are now readily available, and reasonably 
sophisticated calculations can now be run even on
hand-held computers. A semiepirical technique that
has gained considerable ground in recent years to 
become one of the most widely used techniques for

the calculation of molecular structure is density
functional theory (DFT). Its advantages include less
demanding computational effort, less computer time,
and—in some cases, particularly d-metal complexes
—better agreement with experimental values than is
obtained from other procedures.

The abinitio methods also simplify the calcula-
tions, but they do so by setting up the problem in 
a different manner, avoiding the need to estimate 
parameters by appeal to experimental data. In these
methods, sophisticated techniques are used to solve
the Schrödinger equation numerically. The diAculty
with this procedure is the enormous time it takes to
carry out the detailed calculation. That time can be
reduced by replacing the hydrogenic atomic orbitals
used to form the LCAO by a gaussian-type orbital
(GTO) in which the exponential function e−r charac-
teristic of actual orbitals is replaced by a sum of gaus-
sian functions of the form e−r2.

14.18 Graphical output

One of the most significant developments in com-
putational chemistry has been the introduction of
graphical representations of molecular orbitals and
electron densities. The raw output of a molecular
structure calculation is a list of the coeAcients of the
atomic orbitals in each molecular orbital and the 
energies of these orbitals. The graphical representa-
tion of a molecular orbital uses stylized shapes to
represent the basis set, and then scales their size to 
indicate the value of the coeAcient in the LCAO.
Different signs of the wavefunctions are represented
by different colours (Fig. 14.37).

Once the coeAcients are known, we can build up 
a representation of the electron density in the mole-
cule by noting which orbitals are occupied and then
forming the squares of those orbitals. The total 
electron density at any point is then the sum of the
squares of the wavefunctions evaluated at that point.
The outcome is commonly represented by an iso-
density surface, a surface of constant total electron 
density (Fig. 14.38). There are several styles of 
representing an isodensity surface, as a solid form, as
a transparent form with a ball-and-stick representa-
tion of the molecule within, or as a mesh.

One of the most important aspects of a molecule
other than its geometrical shape is the distribution 
of electric potential over its surface. A common pro-
cedure begins with calculation of the net potential at
each point on an isodensity surface by subtracting
the potential due to the electron density at that point
from the potential due to the nuclei. The result is an
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electrostatic potential surface (an ‘elpot surface’) in
which net positive potential is shown in one colour
and net negative potential is shown in another, with
intermediate gradations of colour (Fig. 14.39).

14.19 Applications

One goal of computational chemistry—at least when
applied to large molecules—is to gain insight into
trends in molecular properties without necessarily
striving for ultimate accuracy. We have already 
encountered one example of this approach in Section
3.6, where we saw that they may be used to estimate
enthalpies of formation of molecules. Molecular 
orbital calculations may also be used to predict trends
in electrochemical properties, such as standard poten-
tials (Chapter 9). Several experimental and computa-
tional studies of aromatic hydrocarbons indicate that

decreasing the energy of the LUMO enhances the
ability of a molecule to accept an electron into the
LUMO, with an attendant increase in the value of 
the molecule’s standard potential.

We remarked in Chapter 12 that a molecule can
absorb or emit a photon of energy hc/λ, resulting 
in a transition between two quantized molecular 
energy levels. The transition of lowest energy (and
longest wavelength) occurs between the HOMO and
LUMO. We can use calculations to correlate the
HOMO–LUMO energy gap with the wavelength of
absorption. For example, consider the linear polyenes
shown in Table 14.3, all of which absorb in the ultra-
violet region of the spectrum. The table also shows
that, as expected, the wavelength of the lowest-energy
electronic transition decreases as the energy separation
between the HOMO and LUMO increases. We also
see that the smallest HOMO–LUMO gap and longest
wavelength of absorption correspond to octatetraene,
the longest polyene in the group. It follows that the
wavelength of the transition increases with increasing

b2g

a2u

e2u

e1g

Fig. 14.37 The output of a computation of the p orbitals of
benzene: opposite signs of the wavefunctions are represented
by different colours. Compare these molecular orbitals with
the more diagrammatic representation in Fig. 14.35.

Fig. 14.38 The isodensity surface of benzene obtained by
using the same software as in Fig. 14.37.

(a)

(b)

N

Fig. 14.39 The electrostatic potential surfaces of (a) benzene
and (b) pyridine. Note the accumulation of electron density 
on the nitrogen atom of pyridine at the expense of the other
atoms.

Table 14.3

Summary of ab-initio calculations and
spectroscopic data for four linear polyenes

DEHOMO–LUMO/eV l transition /nm

l 18.1 163
ll–ll 14.5 217
l–l–l 12.7 252
l–l–l–l 11.6 304

1 eV = 1.602 × 10−19 J
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number of conjugated double bonds in linear
polyenes. Extrapolation of the trend suggests that a
suAciently long linear polyene should absorb light in
the visible region of the electromagnetic spectrum.
This is indeed the case for β-carotene (structure 1 in
Section 12.9), which absorbs light with λ ≈ 450 nm.
The ability of β-carotene to absorb visible light is
part of the strategy employed by plants to harvest
solar energy for use in photosynthesis (Box 20.2).

There are several ways in which molecular orbital
calculations lend insight into reactivity. For example,

electrostatic potential surfaces may be used to reveal
an electron-poor region of a molecule, a region that
is susceptible to association with or chemical attack
by an electron-rich region of another molecule. Such
considerations are important for assessing the phar-
macological activity of potential drugs. Computa-
tional chemistry may also be used to model species
that may be too unstable or short-lived to be studied
experimentally. For this reason, it is often used to
study the transition state, with an eye toward 
describing factors that increase the reaction rate.

Checklist of key ideas

You should now be familiar with the following concepts.

1 The classification of bonds as covalent and ionic.

2 The Born–Oppenheimer approximation and mole-
cular potential energy curves.

3 Valence bond theory and the concepts of s and p

bonds, promotion, hybridization, and resonance.

4 Molecular orbital theory and the construction 
of molecular orbitals as linear combinations of
atomic orbitals.

5 Bonding and antibonding atomic orbitals and 
inversion (g,u) symmetry.

6 The building-up principle for constructing the
electron configuration of molecules on the basis
of their molecular orbital energy-level diagram.

7 The concepts of s and p orbitals and the role of
symmetry and the similarity of energy in the con-
struction of molecular orbitals.

8 The concept of electronegativity and the Pauling
and Mulliken definitions.

9 The concept of self-consistent field and the 
distinction between semiempirical and ab-initio
methods of computation.

10 The Hückel method for the estimation of the ener-
gies of molecular orbitals.

11 Applications of molecular orbital calculations to
the prediction of reactivity and thermochemical,
electrochemical, and spectroscopic properties.

The following table summarizes the equations developed in this chapter.

Property

Bond order

Mulliken electronegativity

Molecular orbital

Valence bond wavefunction

Ionic–covalent resonance

Overlap integral

Equation

b = (N − N*)

c = (I + Eea)

y = cAyA + cByB

yA—B(1,2) = yA(1)yB(2) + yA(2)yB(1)

y = ycovalent + lyionic

S = �yAyBdt

1
2

1
2

Comment

Definition

Definition

LCAO approximation

Definition

Table of key equations
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Questions and exercises

Discussion questions

14.1 Compare the approximations built into valence bond
theory and molecular orbital theory.

14.2 Discuss the steps involved in the construction of sp3,
sp2, and sp hybrid orbitals.

14.3 Describe how molecular orbital theory accommodates
all the conventional types of bonding.

14.4 Why is the electron pair such a central concept in 
theories of the chemical bond?

14.5 Distinguish between the Pauling and Mulliken elec-
tronegativity scales.

14.6 Why is orbital overlap a guide to assessing the
strengths of chemical bonds? Why, sometimes, is it not?

14.7 Identify and justify the approximations used in the
Hückel theory of hydrocarbons.

14.8 Explain the differences between semiempirical and 
ab-initio methods of electronic structure determination.

Exercises

14.1 Give the valence-bond description of a C—H group in a
molecule.

14.2 Give the valence-bond description of a P2 molecule.
Why is P4 a more stable form of molecular phosphorus?

14.3 Write down the valence-bond wavefunction for a nitro-
gen molecule.

14.4 Calculate the molar energy of repulsion between two
hydrogen nuclei at the separation in H2 (74.1 pm). The result
is the energy that must be overcome by the attraction from
the electrons that form the bond.

14.5 Write down the valence-bond description of CH4 based
on hybrid orbitals h on the carbon atom.

14.6 The structure of the visual pigment retinal is shown 
in (5). Label each atom with its state of hybridization and
specify the composition of each of the different type of bond.

that, in 1000 inspections of the molecule, both electrons of
the bond will be found on one atom?

14.9 Benzene is commonly regarded as a resonance hybrid
of the two Kekulé structures, but other possible structures
can also contribute. Draw three other structures in which
there are only covalent p bonds (allowing for bonding 
between some non-adjacent C atoms) and two structures in
which there is one ionic bond. Why may these structures be
ignored in simple descriptions of the molecule?

14.10‡ Show, if overlap is ignored, (a) that any molecular 
orbital expressed as a linear combination of two atomic orbitals
may be written in the form y = yA cos q + yB sin q, where q is
a parameter that varies between 0 and p, and (b) that if yA and
yB are orthogonal and normalized to 1, then y is also normalized
to 1. (c) To what values of q do the bonding and antibonding
orbitals in a homonuclear diatomic molecule correspond?

14.11 Draw diagrams to show the various orientations in
which a p orbital and a d orbital on adjacent atoms may form
bonding and antibonding molecular orbitals.

14.12 Give the ground-state electron configurations of 
(a) Li2, (b) Be2, and (c) C2.

14.13 Give the ground-state electron configurations of (a) H2
−,

(b) N2, and (c) O2.

14.14 Three biologically important diatomic species, either
because they promote or inhibit life, are (a) CO, (b) NO, 
and (c) CN−. The first binds to haemoglobin, the second is a
neurotransmitter, and the third interrupts the respiratory
electron-transfer chain. Their biochemical action is a reflec-
tion of their orbital structure. Deduce their ground-state elec-
tron configurations. (For heteronuclear diatomic molecules, a
good first approximation is that the energy-level diagram is
much the same as for homonuclear diatomic molecules.)

14.15 From the ground-state electron configurations of B2

and C2, predict which molecule should have the greater dis-
sociation energy.

14.16 Some chemical reactions proceed by the initial loss or
transfer of an electron to a diatomic species. Which of the
molecules N2, NO, O2, C2, F2, and CN would you expect to be
stabilized by (a) the addition of an electron to form AB−, (b) the
removal of an electron to form AB+?

14.17 From the ground-state electron configurations of B2

and C2, predict which molecule should have the greater bond
dissociation energy.

14.18 The existence of compounds of the noble gases was
once a great surprise and stimulated a great deal of theoret-
ical work. Sketch the molecular orbital energy level diagram
for XeF and deduce its ground-state electron configurations.
Is XeF likely to have a shorter bond length than XeF+?

14.19 Where it is appropriate, give the parity of (a) 1p* in F2,
(b) 2s in NO, (c) 1d in Tl2, (d) 1d* in Fe2.

1
2

5 11-cis-Retinal
O

14.7 Write down three contributions to the resonance struc-
ture of naphthalene, C10H8.

14.8 A normalized valence-bond wavefunction turned out to
have the form y = 0.889ycov + 0.458yion. What is the chance
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14.20 Give the (g,u) parities of the first four levels of a particle-
in-a-box wavefunction.

14.21 (a) Give the parities of the wavefunctions for the first
four levels of a harmonic oscillator. (b) How may the parity be
expressed in terms of the quantum number v?

14.22 State the parities of the six p-orbitals of benzene (see
Fig. 14.35).

14.23 Two important diatomic molecules for the welfare of
humanity are NO and N2: the former is both a pollutant and a
neurotransmitter, and the latter is the ultimate source of the
nitrogen of proteins and other biomolecules. Use the elec-
tron configurations of NO and N2 to predict which is likely to
have the shorter bond length.

14.24 Put the following species in order of increasing bond
length: F2

−, F2, F2
+.

14.25 Identify the bond order of each of the species in the
preceding exercise.

14.26 Arrange the species O2
+, O2, O2

−, O2
2− in order of 

increasing bond length.

14.27 Identify the bond order of each of the species in the
preceding exercise.

14.28 Construct the molecular orbital energy level diagrams of
(a) ethene and (b) ethyne on the basis that the molecules are
formed from the appropriately hybridized CH2 or CH fragments.

14.29 Try to anticipate the form that the bonding and 
antibonding ‘f orbitals’ that could be constructed from two
neighbouring f orbitals. What are their parities?

14.30 Predict the polarities of the bonds (a) P—H, (b) B—H.

14.31 Predict the electronic configurations of (a) the benzene
anion, (b) the benzene cation. Estimate the p-bond energy in
each case.

14.32 Many of the colours of vegetation are due to electronic
transitions in conjugated p-electron systems. In the free-
electron molecular orbital (FEMO) theory, the electrons in 
a conjugated molecule are treated as independent particles 
in a box of length L. Sketch the form of the two occupied 
orbitals in butadiene predicted by this model and predict 
the minium excitation energy of the molecule. The tetraene
CH2lCHCHlCHCHlCHCHlCH2 can be treated as a box of
length 8R, where R = 140 pm (as in this case, an extra half
bond length is often added at each end of the box). Calculate
the minimum excitation energy of the molecule and sketch
the HOMO and LUMO.

14.33 Suppose that the p-electron molecular orbitals of
naphthalene can be represented by the wavefunctions of a
particle in a rectangular box. What are the parities of the 
occupied orbitals?

14.34 How many molecular orbitals can be constructed from
a diatomic molecule in which s, p, d, and f orbitals are all 
important for bonding?

14.35 The FEMO theory (Exercise 14.32) of conjugated mole-
cules is rather crude and better results are obtained with simple
Hückel theory. (a) For a linear conjugated polyene with each

of N carbon atoms contributing an electron in a 2p orbital, the
energies Ek of the resulting p molecular orbitals are given by:

Use this expression to determine a reasonable empirical 
estimate of the resonance integral b for the series consisting
of ethene, butadiene, hexatriene, and octatetraene given that
p←p ultraviolet absorptions from the HOMO to the LUMO
occur at 61 500, 46 080, 39 750, and 32 900 cm−1, respec-
tively. (b) Calculate the p-electron delocalization energy, Edeloc =
Ep − n(a + b), of octatetraene, where Ep is the total p-electron
binding energy and n is the total number of p-electrons.

14.36 For monocyclic conjugated polyenes (such as cyclobu-
tadiene and benzene) with each of N carbon atoms contribut-
ing an electron in a 2p orbital, simple Hückel theory gives the
following expression for the energies Ek of the resulting p
molecular orbitals:

(a) Calculate the energies of the p molecular orbitals of 
benzene and cyclooctaene. Comment on the presence or 
absence of degenerate energy levels. (b) Calculate and 
compare the delocalization energies of benzene (using the
expression above) and hexatriene (see Exercise 14.35). What
do you conclude from your results? (c) Calculate and com-
pare the delocalization energies of cyclooctaene and octate-
traene. Are your conclusions for this pair of molecules the
same as for the pair of molecules investigated in part (b)?

Projects

The symbol ‡ indicates that calculus is required.

14.37‡ Here we explore hydrid orbitals in more quantita-
tive detail. (a) Show that the orbitals h1 = s + px + py + pz and
h2 = s − px − py + pz are orthogonal. Hint: Each atomic orbital
individually normalized to 1. Also, note that: (i) s and p orbitals
are orthogonal and, (ii) p orbitals with perpendicular orienta-
tions are orthogonal. (b) Show that the sp2 hybrid orbital 
(s + 21/2p)/31/2 is normalized to 1 if the s and p orbitals are each
normalized to 1. (c) Find another sp2 hybrid orbital that is 
orthogonal to the hybrid orbital in par (b).

14.38‡ Now we explore orbital overlap and overlap integrals
in detail. (a) Without doing a calculation, sketch how the over-
lap between an H1s orbital and a 2p orbital can be expected
to depend on their separation. (b) The overlap integral be-
tween an H1s orbital and a H2p orbital on nuclei separated by
a distance R is S = (R/a0){1 + (R/a0) + (R/a0)

2}e−R/a0. Plot this
function, and find the separation for which the overlap is a
maximum. (c) Suppose that a molecular orbital has the form
N(0.245A + 0.644B). Find a linear combination of the orbitals
A and B that does not overlap with (that is, is orthogonal to)
this combination. (d) Normalize the wavefunction y = ycov +
lyion in terms of the parameter l and the overlap integral S
between the covalent and ionic wavefunctions.
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Chapter 15

Molecular interactions

van der Waals interactions
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Atoms and molecules with complete valence shells
are still able to interact with one another even though
all their valences are satisfied. They attract one 
another over the range of several atomic diameters
and they repel one another when pressed together.
These residual interactions are highly important.
They account, for instance, for the condensation of
gases to liquids and the structures of molecular solids.
All organic liquids and solids, ranging from small
molecules like benzene to virtually infinite cellulose
and the polymers from which fabrics are made, are
bound together by the cohesive interactions we 
explore in this chapter. These interactions are also
responsible for the structural organization of biolo-
gical macromolecules, for they pin molecular building
blocks—such as polypeptides, polynucleotides, and
lipids—together in the arrangement essential to their
proper physiological function.

In this chapter we present the basic theory of mole-
cular interactions and then explore how they play a
role in the properties of liquids. In the following
chapter we explore how the same interactions con-
tribute to the properties of macromolecules and
molecular aggregates.

van der Waals interactions

The interactions between or within molecules (for
example, within macromolecules) include the attrac-
tive and repulsive interactions involving partial 
electric charges and electron clouds of polar and
nonpolar molecules or functional groups and the 
repulsive interactions that prevent the complete 
collapse of matter to densities as high as those char-
acteristic of atomic nuclei. The repulsive interactions
arise from the exclusion of electrons from regions 
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of space where the orbitals of closed-shell species
overlap. These interactions are called van der Waals
interactions; the term excludes interactions that 
result in the formation of covalent or ionic bonds.
We shall see that the potential energy arising from an
attractive van der Waals interaction is commonly
proportional to the inverse sixth power of the sepa-
ration between molecules or functional groups. The
intermolecular force depends inversely on one higher
power of the separation, so a van der Waals inter-
action for which the potential energy is proportional
to the inverse sixth power of the separation corres-
ponds to a force that is proportional to the inverse
seventh power.

A brief comment If the potential energy is denoted V, then
the force is −dV/dr (see Appendix 3). So, if V = −C/r6, the 
magnitude of the force is

15.1 Interactions between partial charges

Atoms in molecules in general have partial charges.
Table 15.1 gives the partial charges typically found
on the atoms in peptides. If these charges were 
separated by a vacuum, they would attract or repel
each other in accord with Coulomb’s law (see the
Introduction) and we would write

(15.1a)

where Q1 and Q2 are the partial charges and r is their
separation. However, we need to take into account
the possibility that other parts of the molecule, or
other molecules, lie between the charges, and decrease
the strength of the interaction. The simplest pro-
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6C cedure for taking into account these very compli-
cated effects is to treat the medium as a uniform sub-
stance and to write

(15.1b)

where ε is the permittivity of the medium: a high per-
mittivity means that the medium reduces the strength
of the interaction between the two charges. The per-
mittivity is usually expressed as a multiple of the 
vacuum permittivity by writing ε = εrε0, where the 
dimensionless quantity εr is the relative permittivity
(which is still widely called the dielectric constant).
The effect of the medium can be very large: for water
at 25°C, εr = 78, so the potential energy of two
charges separated by bulk water is reduced by nearly
two orders of magnitude compared to the value it
would have if the charges were separated by a 
vacuum (Fig. 15.1). The problem is made worse in
calculations on polypeptides and nucleic acids by the
fact that two partial charges may have water and 
a biopolymer chain lying between them. Various
models have been proposed to take this awkward 
effect into account, the simplest being to set εr = 3.5
and to hope for the best.

15.2 Electric dipole moments

When the molecules or groups that we are consider-
ing are widely separated, it turns out to be simpler 
to express the principal features of their interaction
in terms of the dipole moments associated with the
charge distributions rather than with each individual
partial charge. At its simplest, an electric dipole 
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Table 15.1

Partial charges in polypeptides

Atom Partial charge/e

C(lO) +0.45
C(—CO) +0.06
H(—C) +0.02
H(—N) +0.18
H(—O) +0.42
N −0.36
O −0.38
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Fig. 15.1 The Coulomb potential for two charges 
and its dependence on their separation. The curves

correspond to different relative permittivities (1 for a vacuum,
3 for a typical organic fluid).
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and the difference Δχ of Pauling electronegativities
(Table 14.2) χA and χB of two atoms A and B, is

μ /D ≈ χA − χB = Δχ (15.2)

A brief illustration The electronegativities of hydrogen
and bromine are 2.1 and 2.8, respectively. The difference
is 0.7, so we predict an electric dipole moment of about
0.7 D for HBr. The experimental value is 0.80 D.

Because it attracts the electrons more strongly, the
more electronegative atom is usually the negative end
of the dipole. However, there are exceptions, particu-
larly when antibonding orbitals are occupied. Thus,
the dipole moment of CO is very small (0.12 D) but
the negative end of the dipole is on the C atom even
though the O atom is more electronegative. This 
apparent paradox is resolved as soon as we realize
that antibonding orbitals are occupied in CO (see
Fig. 14.33) and, because electrons in antibonding 
orbitals tend to be found closer to the less elec-
tronegative atom, they contribute a negative partial
charge to that atom. If this contribution is larger than
the opposite contribution from the electrons in bond-
ing orbitals, then the net effect will be a small negative
partial charge on the less electronegative atom.

Molecular symmetry is of the greatest importance
in deciding whether a polyatomic molecule is polar or
not. Indeed, molecular symmetry is more important
than the question of whether or not the atoms in the
molecule belong to the same element. Homonuclear
polyatomic molecules may be polar if they have low
symmetry and the atoms are in inequivalent positions.
For instance, the angular molecule ozone, O3 (2), is
homonuclear. However, it is polar because the central
O atom is different from the outer two (it is bonded to
two atoms, they are bonded only to one); moreover,
the dipole moments associated with each bond make
an angle to each other and do not cancel. Heteronu-
clear polyatomic molecules may be nonpolar if they
have high symmetry, because individual bond dipoles
may then cancel. The heteronuclear linear triatomic
molecule CO2, for example, is nonpolar because, 
although there are partial charges on all three atoms,
the dipole moment associated with the OC bond
points in the opposite direction to the dipole moment
associated with the CO bond, and the two cancel (3).

consists of two charges Q and −Q separated by a dis-
tance l. The product Ql is called the electric dipole
moment, μ. We represent dipole moments by an arrow
with a length proportional to μ and pointing from
the negative charge to the positive
charge (1). (Be careful with this
convention: for historical reasons
the opposite convention is still
widely adopted.) Because a dipole
moment is the product of a charge (in coulombs, C)
and a length (in metres, m), the SI unit of dipole 
moment is the coulomb metre (C m). However, it is
often much more convenient to report a dipole 
moment in debye, D, where

1 D = 3.335 64 × 10−30 C m

because then experimental values for molecules are
close to 1 D (Table 15.2). The unit is named after
Peter Debye, the Dutch pioneer of the study of dipole
moments of molecules. The dipole moment of charges
e and −e separated by 100 pm is 1.6 × 10−29 C m, 
corresponding to 4.8 D. Dipole moments of small
molecules are typically smaller than that, at about 
1 D, confirming that the charge separation in simple
molecules is only partial.

A polar molecule has a permanent electric dipole
moment arising from the partial charges on its atoms
(Section 14.14). A nonpolar molecule has no perman-
ent electric dipole moment. All heteronuclear diatomic
molecules are polar because the difference in elec-
tronegativities of their two atoms results in nonzero
partial charges. Typical dipole moments are 1.08 D
for HCl and 0.42 D for HI (Table 15.2). A very 
approximate relation between the dipole moment

Table 15.2

Dipole moments and mean polarizability
volumes

m/D a ′/(10−30 m3)

Ar 0 1.85
CCl4 0 11.7
C6H6 0 11.6
H2 0 0.911
H2O 1.85 1.65
NH3 1.47 2.47
HCl 1.08 2.93
HBr 0.80 4.01
HI 0.42 6.06

δ– δ–

δ+ δ+

2 Ozone, O3

μ μ
δ– δ–

δ+ δ+

μ μ

3 Carbon dioxide, CO2

δ+ δ–

μ

1
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To a first approximation, it is possible to resolve the
dipole moment of a polyatomic molecule into contri-
butions from various groups of atoms in the molecule
and the directions in which these individual con-
tributions lie (Fig. 15.2). Thus, 1,4-dichlorobenzene
is nonpolar by symmetry on account of the cancella-
tion of two equal but opposing C—Cl moments 
(exactly as in carbon dioxide). 1,2-Dichlorobenzene,
however, has a dipole moment that is approximately
the resultant of two chlorobenzene dipole moments
arranged at 60° to each other. This technique of 
‘vector addition’ (see Appendix 2) can be applied
with fair success to other series of related molecules,
and the resultant μres of two dipole moments μ1
and μ2 that make an angle θ to each other (4) is 
approximately

μres ≈ (μ1
2 + μ2

2 + 2μ1μ2 cos θ)1/2 (15.3)

A better approach to the calculation of dipole 
moments is to take into account the locations and
magnitudes of the partial charges on all the atoms.
These partial charges are included in the output 
of many molecular structure software packages. 
The programs calculate the dipole moments of the
molecules by noting that an electric dipole moment 
is actually a vector, μ, with three components, μx, μy,
and μz (5). The direction of μ shows the orientation
of the dipole in the molecule and the length of the
vector is the magnitude, μ, of the dipole moment. 
In common with all vectors, the magnitude is related
to the three components by

μ = (μx
2 + μy

2 + μz
2)1/2 (15.4a)

Self-test 15.1

Use the VSEPR model, which is reviewed in Appendix 4,
to judge whether ClF3 is polar or nonpolar. Hint. Predict
the structure first.

[Answer: polar]

(a)

obs = 1.57 D
(b)

calc = 0 

obs = 0

(c)

calc = 2.7 D 

obs = 2.25 D

(d)

calc = 1.6 D 

obs = 1.48 D
μ μ

μ
μ
μ

μ
μ

Fig. 15.2 The dipole moments of the dichlorobenzene iso-
mers can be obtained approximately by vectorial addition of
two chlorobenzene dipole moments (1.57 D).

μ1

μ2

μres

θ

4

Self-test 15.2

Estimate the ratio of the electric dipole moments of
ortho (1,2-) and meta (1,3-) disubstituted benzenes.

[Answer: m(ortho)/m(meta) = 1.7]

μx μy

μz

μ

5

To calculate μ we need to calculate the three com-
ponents and then substitute them into this expres-
sion. To calculate the x-component, for instance, 
we need to know the partial charge on each atom and
the atom’s x-coordinate relative to a point in the
molecule and form the sum

(15.4b)

Here, QJ is the partial charge of atom J, xJ is the x- 
coordinate of atom J, and the sum is over all the
atoms in the molecule. Analogous expressions are
used for the y- and z-components. For an electric-
ally neutral molecule, the origin of the coordinates 
is arbitrary, so it is best chosen to simplify the 
measurements.

 

μx Q x= ∑ J J
J



Derivation 15.1

The interaction of a charge with a dipole

When the charge and dipole are collinear, as in (8), the
potential energy is

Next, we suppose that the separation of charges in the
dipole is much smaller than the distance of the charge
Q2 in the sense that l /2r << 1. Then we can use (see
Appendix 2)

to write

Now we recognize that Q2l = m2, the dipole moment of
molecule 2, and obtain eqn 15.5a.
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15.3 Interactions between dipoles

The potential energy of a dipole μ1 in the presence of
a charge Q2 is calculated by taking into account the
interaction of the charge with the two partial charges
of the dipole, one resulting in a repulsion and the
other an attraction. The result for the arrangement
shown in (8) is:

(15.5a)
 
V

Q
r

= − 2 1

0
24

μ
επ

Example 15.1

Calculating a molecular dipole moment

Estimate the electric dipole moment of the peptide
group using the partial charges (as multiples of e) in
Table 15.1 and the locations of the atoms shown in (6).

N

H
(182,–87,0)

(132,0,0)

(–62,107,0)

+0.18

–0.36

–0.38
6

C
(0,0,0)
+0.45

O

μ

Strategy We use eqn 15.4b to calculate each of the
components of the dipole moment and then eqn 15.4a
to assemble the three components into the magnitude
of the dipole moment. Note that the partial charges are
multiples of the fundamental charge, e = 1.609 × 10−19 C
(see inside front cover).

Solution The expression for mx is

mx = (−0.36e) × (132 pm) + (0.45e) × (0 pm) +

(0.18e) × (182 pm) + (−0.38e) × (−62 pm) = 8.8e pm

= 8.8 × (1.609 × 10−19 C) × (10−12 m) 

= 1.4 × 10−30 C m

corresponding to mx = 0.42 D. The expression for my is:

my = (−0.36e) × (0 pm) + (0.45e) × (0 pm) +

(0.18e) × (−87 pm) + (−0.38e) × (107 pm)

= −56e pm = −9.1 × 10−30 C m

It follows that my = −2.7 D. Therefore, because mz = 0,

m = {(0.42 D)2 + (−2.7 D)2}1/2 = 2.7 D

We can find the orientation of the dipole moment by 
arranging an arrow of length 2.7 units of length to have 
x-, y-, and z-components of 0.42, −2.7, and 0 units; the
orientation is superimposed on (6).

H H

–0.38

+0.02+0.02

(0,118,0)

(94,– 61,0)(– 94,– 61,0)

7

C (0,0,0)
+0.45

O

Self-test 15.3

Calculate the electric dipole moment of formalde-
hyde, using the information in (7).

[Answer: −2.3 D]

+Q1 –Q1

8

l

r

+Q1

–Q1

9
l

r

θ

A similar calculation for the more general orienta-
tion shown in (9) gives

(15.5b)
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If Q2 is positive, the energy is lowest when θ = 0 (and
cos θ = 1), because then the partial negative charge of
the dipole lies closer than the partial positive charge
to the point charge and the attraction outweighs the
repulsion. This interaction energy decreases more
rapidly with distance than that between two point
charges (as 1/r2 rather than 1/r) because, from the
viewpoint of the single charge, the partial charges of
the point dipole seem to merge and cancel as the dis-
tance r increases.

We can calculate the interaction energy between
two dipoles μ1 and μ2 in the orientation shown in
(10) in a similar way, by taking into account all four
charges of the two dipoles. The outcome is1

(15.6)V
r

=
−μ μ θ
ε

1 2
2

0
3

1 3
4
( cos )

π

A brief illustration To calculate the molar potential 
energy of the dipolar interaction between two peptide links
separated by 3.0 nm in different regions of a polypeptide
chain with q = 180°, we take m1 = m2 = 2.7 D, correspond-
ing to 9.1 × 10−30 C m, and find

This value corresponds (after multiplication by Avogadro’s
constant) to −33 J mol−1.

A note on good practice We reiterate the importance of
including the units at every stage of the calculation, in part 
because the correct cancellation helps to monitor whether
the calculation has been set up and carried out correctly.

The average potential energy of interaction between
polar molecules that are freely rotating in a fluid (a
gas or liquid) is zero because the attractions and 
repulsions cancel. However, because the potential
energy of a dipole near another dipole depends on
their relative orientations, the molecules exert forces
on each other and therefore do not in fact rotate
completely freely, even in a gas. As a result, the lower
energy orientations are marginally favoured, so there
is a nonzero interaction between rotating polar
molecules (Fig. 15.3). The detailed calculation of the
average interaction energy is quite complicated, but
the final answer is very simple:
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Let us interpret this expression:

• The potential energy decreases even more rapidly
than in eqn 15.5 (as 1/r3 instead of 1/r2) because
the charges of both dipoles seem to merge as the
separation of the dipoles increases.

• The angular factor takes into account how the like
or opposite charges come closer to one another as
the relative orientation of the dipoles is changed.

• The energy is lowest when θ = 0 or 180° (when 
1 − 3 cos2 θ = −2), because opposite partial charges
then lie closer together than like partial charges.

• The potential energy is negative (attractive) in some
orientations when θ < 54.7° (the angle at which 
1 − 3 cos2 θ = 0, corresponding to cos θ = (1/3)1/2)
because opposite charges are closer than like
charges.

• The potential energy is positive (repulsive) when 
θ > 54.7° because then like charges are closer than
unlike charges.

• The potential energy is zero on
the lines at 54.7° and 180 − 54.7
= 123.3° because at those angles
the two attractions and the two
repulsions cancel (11).

1 For a derivation of eqn 15.6, see our Physical chemistry (2006).

11

54.7°
V > 0

V > 0
V < 0 V < 0

(a)

(b)

Fig. 15.3 A dipole–dipole interaction. When a pair of mole-
cules can adopt all relative orientations with equal probability,
the favourable orientations (a) and the unfavourable ones (b)
cancel, and the average interaction is zero. In an actual fluid,
the interactions in (a) predominate slightly.
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(15.7)

As before, let us ‘read’ this expression:

• The interaction between dipoles is an example 
of a van der Waals interaction that varies as the
inverse sixth power of the distance.

• The inverse temperature dependence (V ∝ 1/T )
reflects the way that at higher temperatures the
greater thermal motion overcomes the mutual 
orientating effects of the dipoles.

At 25°C the average interaction energy for pairs of
molecules with μ = 1 D is about −1.4 kJ mol−1 when
the separation is 0.3 nm. This energy should be 
compared with the average molar kinetic energy of 

RT = 3.7 kJ mol−1 at the same temperature: the two
are not very dissimilar, but they are both much less
than the energies involved in the making and breaking
of chemical bonds.

15.4 Induced dipole moments

A nonpolar molecule may acquire a temporary in-
duced dipole moment, μ*, as a result of the influence
of an electric field generated by a nearby ion or polar
molecule. The field distorts the electron distribution
of the molecule, and gives rise to an electric dipole.
The molecule is said to be polarizable. The magni-
tude of the induced dipole moment is proportional to
the strength of the electric field, E, and we write

μ* = αE (15.8)

The proportionality constant α is the polarizability
of the molecule. It is important to understand the 
following features of the polarizability:

• The larger the polarizability of the molecule, the
greater is the distortion caused by a given strength
of electric field.

• If the molecule has few electrons (such as N2),
they are tightly controlled by the nuclear charges
and the polarizability of the molecule is low. If the
molecule contains large atoms with electrons some
distance from the nucleus (such as I2), the nuclear
control is less and the polarizability of the mole-
cule is greater.

• The polarizability is inversely proportional to the
ionization energy: the more tightly the electrons
are bound, the more diAcult it is to distort the
electron distribution around the nuclei.

• The polarizability depends on the orientation of
the molecule with respect to the field unless the

3
2

V
kTr

= −
2

3 4
1
2

2
2

0
2 6

μ μ
ε( )π

molecule is tetrahedral (such as CCl4), octahedral
(such as SF6), or icosahedral (such as C60). Atoms
and tetrahedral, octahedral, and icosahedral 
molecules have isotropic (orientation-independent) 
polarizabilities; all other molecules have aniso-
tropic (orientation-dependent) polarizabilities.

The polarizabilities reported in Table 15.2 are
given as polarizability volumes, α′:

(15.9)

The polarizability volume has the dimensions of 
volume (hence its name) and is comparable in mag-
nitude to the volume of the molecule.

 
′ =α

α
ε4 0π

Self-test 15.4

What strength of electric field is required to induce an
electric dipole moment of 1.0 mD in a molecule of polar-
izability volume 1.1 × 10−31 m3 (like CCl4)?

[Answer: 2.7 kV cm−1]

(a)

(b)

Fig. 15.4 A dipole–induced-dipole interaction. The induced
dipole (light arrows) follows the changing orientation of the
permanent dipole (dark arrow).

A polar molecule with dipole moment μ1 can 
induce a dipole moment in a polarizable molecule
(which may itself be either polar or nonpolar) 
because the partial charges of the polar molecule give
rise to an electric field that distorts the second
molecule. That induced dipole interacts with the per-
manent dipole of the first molecule, and the two are
attracted together (Fig. 15.4). The formula for the
dipole–induced-dipole interaction energy is

(15.10)V
r

= −
μ α
ε
1
2

2

0
6π
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where α2 is the polarizability of molecule 2. The 
negative sign shows that the interaction is attractive.
For a molecule with μ = 1 D (such as HCl) near a
molecule of polarizability volume α′ = 1.0 × 10−31 m3

(such as benzene, Table 15.2) the average interaction
energy is about −0.8 kJ mol−1 when the separation is
0.3 nm. The interaction between a dipole and an 
induced dipole is another example of a van der Waals
interaction that varies as the inverse sixth power of
the distance.

15.5 Dispersion interactions

Finally, we consider the interactions between species
that have neither a net charge nor a permanent elec-
tric dipole moment (such as two Xe atoms in a gas or
two nonpolar groups on the peptide residues of a
protein). Despite their absence of partial charges, we
know that uncharged, nonpolar species can interact
because they form condensed phases, such as benzene,
liquid hydrogen, and liquid xenon.

The dispersion interaction, or London force, 
between nonpolar species arises from the transient
dipoles that they possess as a result of fluctuations in
the electron density distribution (Fig. 15.5). Suppose,
for instance, that the electrons in one molecule flicker
into an arrangement that results in partial positive
and negative charges and thus gives it an instantan-
eous dipole moment μ1. While it exists, this dipole
can polarize the other molecule and induce in it an
instantaneous dipole moment μ2. The two dipoles 

attract each other and the potential energy of the pair
is lowered. Although the first molecule will go on to
change the size and direction of its dipole (perhaps
within 10−16 s), the second will follow it, that is, 
the two dipoles are correlated in direction like two 
meshing gears, with a positive partial charge on one
molecule appearing close to a negative partial charge
on the other molecule and vice versa. Because of this
correlation of the relative positions of the partial
charges, and their resulting attractive interaction, the
attraction between the two instantaneous dipoles
does not average to zero. Instead, it gives rise to a net
attractive interaction. Polar molecules interact by a
dispersion interaction as well as by dipole–dipole 
interactions, with the dispersion interaction often
dominant.

The strength of the dispersion interaction depends
on the polarizability of the first molecule because the
magnitude of the instantaneous dipole moment μ1
depends on the looseness of the control that the 
nuclear charge has over the outer electrons. If that
control is loose, the electron distribution can undergo
relatively large fluctuations. Moreover, if the control
is loose, then the electron distribution can also 
respond strongly to applied electric fields and hence
have a high polarizability. It follows that a high 
polarizability is a sign of large fluctuations in local
charge density. The strength also depends on the 
polarizability of the second molecule, as that polariz-
ability determines how readily a dipole can be induced
in molecule 2 by molecule 1. We therefore expect 
V ∝ α1α2. The actual calculation of the dispersion 
interaction is quite involved, but a reasonable appro-
ximation to the interaction energy is the London
formula:

(15.11)

where I1 and I2 are the ionization energies of the two
molecules. For two CH4 molecules, V ≈ −5 kJ mol−1

when r = 0.3 nm. As usual, we should interpret math-
ematical expressions and here we see that:

• The potential energy of interaction increases with
decreasing ionization energies.

This conclusion may be puzzling at first sight, for 
the product of the ionization energies appears in 
the numerator of the right-hand side of eqn 15.11.
However, the polarizability is inversely proportional
to the ionization energy (Section 15.4), so it follows
that α1′α2′ ∝ (I1I2)

−1 and, for a constant separation r,
V ∝ (I1 + I2)

−1: the potential energy is inversely pro-
portional to the sum of the ionization energies.
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Fig. 15.5 In the dispersion interaction, an instantaneous
dipole on one molecule induces a dipole on another mole-
cule, and the two dipoles then interact to lower the energy.
The directions of the two instantaneous dipoles are correlated,
and, although they occur in different orientations at different
instants, the interaction does not average to zero.
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• The potential energy of interaction is proportional
to the inverse sixth power of the separation.

We have seen this result for the other interactions
considered thus far in this chapter. It is consistent
with our previous statement that the potential energy
of an attractive van der Waals interaction is com-
monly proportional to r−6.

The total interaction

So far we have discussed attractive interactions that
vary as the inverse sixth power of the separation.
However, there are several other types of interaction,
both attractive and repulsive, some of which domin-
ate the interactions we have explored when they 
are present.

15.6 Hydrogen bonding

The strongest intermolecular interaction arises from
the formation of a hydrogen bond, in which a hydro-
gen atom lies between two strongly electronegative
atoms and binds them together. The bond is normally
denoted X—H...Y, with X and Y being nitrogen,
oxygen, or fluorine. Unlike the other interactions we
have considered, hydrogen bonding is not universal
but is restricted to molecules that contain these
atoms. A common hydrogen bond is formed between
O—H groups and O atoms, as in liquid water and ice.
The distance dependence of the hydrogen bond is
quite different from the other interactions we have
considered, and is best regarded as a ‘contact’ inter-
action that turns on when the X—H group is in direct
contact with the Y atom.

The most elementary description of the forma-
tion of a hydrogen bond is that it is the result of a
Coulombic interaction between the partly exposed
positive charge of a proton bound to an electron-
withdrawing X atom (in the fragment X—H) and the
negative charge of a lone pair on the second atom Y,
as in δ−X—Hδ+. . .:Yδ−. In Exercise 15.22, you are 
invited to use the electrostatic model to calculate the
dependence of the molar potential energy of inter-
action on the OOH angle, denoted θ in (12), and the 
results are plotted in Fig. 15.6. We see that, at θ = 0,

when the OHO atoms lie in a straight line, the 
potential energy is −19 kJ mol−1. Note how sharply
the energy depends on angle: it is negative only
within ±12° of linearity.

Molecular orbital theory provides an alternative
description that is more in line with the concept of
delocalized bonding and the ability of an electron
pair to bind more than one pair of atoms (Section
14.18). Thus, if the X—H bond is regarded as formed
from the overlap of an orbital on X, ψX, and a hydro-
gen 1s orbital, ψH, and the lone pair on Y occupies 
an orbital on Y, ψY, then when the two molecules are
close together, we can build three molecular orbitals
from the three basis orbitals:

ψ = c1ψX + c2ψH + c3ψY

One of the molecular orbitals is bonding, one almost
nonbonding, and the third antibonding (Fig. 15.7).
These three orbitals need to accommodate four 
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Fig. 15.6 The variation of the energy of interaction 
(on the electrostatic model) of a hydrogen bond as the

angle between the O—H and :O groups is changed.
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Fig. 15.7 A schematic portrayal of the molecular orbitals that
can be formed from an X, H, and Y orbital and that gives rise
to an X—H...Y hydrogen bond. The lowest-energy combina-
tion is fully bonding, the next nonbonding, and the uppermost
is antibonding. The antibonding orbital is not occupied by the
electrons provided by the X—H bond and the :Y lone pair, so
the configuration shown may result in a net lowering of 
energy in certain cases (namely when the X and Y atoms are
N, O, or F).
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electrons (two from the original X—H bond and two
from the lone pair of Y), so two enter the bonding 
orbital and two enter the nonbonding orbital. Because
the antibonding orbital remains empty, the net effect
—depending on the precise location of the almost
nonbonding orbital—may be a lowering of energy.

Experimental evidence and theoretical arguments
have been presented in favour of both the electrostatic
and molecular orbital models. Recent experiments
suggest that the hydrogen bonds in ice have signific-
ant covalent character and are best described by a
molecular orbital treatment. However, this interpre-
tation of experimental results has been challenged by

theoretical studies, which favour the electrostatic
model. The matter has not yet been resolved.

Hydrogen-bond formation, which has a typical
strength of the order of 20 kJ mol−1, dominates the
van der Waals interactions when it can occur. It 
accounts for the rigidity of molecular solids such as
sucrose and ice, the low vapour pressure, high vis-
cosity, and surface tension of liquids such as water,
the secondary structure of proteins (the formation of
helices and sheets of polypeptide chains), the struc-
ture of DNA and hence the transmission of genetic
information, and the attachment of drugs to recep-
tors sites in proteins (Box 15.1). Hydrogen bonding

Box 15.1 Molecular recognition

Molecular interactions are responsible for the assembly of
many biological structures. Hydrogen bonding and hydro-
phobic interactions are primarily responsible for the three-
dimensional structures of biopolymers, such as proteins,
nucleic acids, and cell membranes. The binding of a ligand,
or guest, to a biopolymer, or host, is also governed by
molecular interactions. Examples of biological host–guest
complexes include enzyme–substrate complexes, antigen–
antibody complexes, and drug–receptor complexes. In all
these cases, a site on the guest contains functional groups
that can interact with complementary functional groups of
the host. For example, a hydrogen-bond donor group of the
guest must be positioned near a hydrogen bond acceptor
group of the host for tight binding to occur. It is generally
true that many specific intermolecular contacts must be
made in a biological host–guest complex and, as a result, a
guest binds only chemically similar hosts. The strict rules
governing molecular recognition of a guest by a host control
every biological process, from metabolism to immunolo-
gical response, and provide important clues for the design of
effective drugs for the treatment of disease.

Interactions between nonpolar groups can be important
in the binding of a guest to a host. For example, many active
sites of enzymes have hydrophobic pockets that bind non-
polar groups of a substrate. In addition to dispersion, repul-
sive, and hydrophobic interactions, so-called p-stacking
interactions are also possible, in which the planar p sys-
tems of aromatic macrocycles lie one on top of the other, in
a nearly parallel orientation. Such interactions are responsi-
ble for the stacking of hydrogen-bonded base pairs in DNA,
as shown in the illustration. Some drugs with planar p sys-
tems, shown as a rectangle in the illustration, are effective
because they intercalate between base pairs through p-
stacking interactions, causing the helix to unwind slightly
and altering the function of DNA.

Coulombic interactions can be important in the interior of
a biopolymer host, where the relative permittivity can be
much lower than that of the aqueous exterior. For example,
at physiological pH, amino acid side chains containing car-
boxylic acid or amine groups are negatively and positively
charged, respectively, and can attract each other. Dipole–
dipole interactions are also possible because many of the
building blocks of biopolymers are polar, including the 
peptide link, —CONH— (Example 15.1). However, hydro-
gen-bonding interactions are by far the most prevalent in 
biological host–guest complexes. Many effective drugs on
the market bind tightly and inhibit the action of enzymes
that are associated with the progress of a disease. In many
cases, a successful inhibitor will be able to form the same
hydrogen bonds with the binding site that the normal sub-
strate of the enzyme can form, except that the drug is
chemically inert toward the enzyme. This strategy has been
used in the design of drugs for the treatment of acquired
immunodeficiency syndrome (AIDS), caused by the human
immunodeficiency virus (HIV) (see Exercise 15.26).

Some drugs with planar p systems, shown by a coloured
rectangle, intercalate between the base pairs of DNA.
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also contributes to the solubility in water of species
such as ammonia and compounds containing hydroxyl
groups and to the hydration of anions. In this last
case, even ions such as Cl− and HS− can participate in
hydrogen bond formation with water, as their charge
enables them to interact with the hydroxylic protons
of H2O.

Table 15.3 summarizes the strengths and distance
dependence of the attractive interactions that we
have considered so far.

15.7 The hydrophobic effect

There is one further type of interaction that we need
to consider: it is an apparent force that influences the
shape of a macromolecule and that is mediated by
the solvent, water. First, we need to understand why
hydrocarbon molecules do not dissolve appreciably
in water. Experiments indicate that the transfer of a
hydrocarbon molecule from a nonpolar solvent into
water is often exothermic (ΔH < 0). Therefore, the
fact that dissolving is not spontaneous must mean
that entropy change is negative (ΔS < 0). For exam-
ple, the process CH4(in CCl4) → CH4(aq) has ΔG =
+12 kJ mol−1, ΔH = −10 kJ mol−1, and ΔS = −75 J K−1

mol−1 at 298 K. Substances characterized by a pos-
itive Gibbs energy of transfer from a nonpolar to a
polar solvent are classified as hydrophobic.

The origin of the decrease in entropy that prevents
hydrocarbons from dissolving in water is the forma-
tion of a solvent cage around the hydrophobic
molecule (Fig. 15.8). The formation of this cage 
decreases the entropy of the system because the water
molecules must adopt a less disordered arrangement
than in the bulk liquid. However, when many solute
molecules cluster together, fewer (though larger)
cages are required and more solvent molecules are

free to move. The net effect of formation of large
clusters of hydrophobic molecules is then a decrease
in the organization of the solvent and therefore a 
net increase in entropy of the system. This increase 
in entropy of the solvent is large enough to render
spontaneous the association of hydrophobic mole-
cules in a polar solvent.

The increase in entropy that results from the 
decrease in structural demands on the solvent is the
origin of the hydrophobic effect, which tends to 
encourage the clustering together of hydrophobic
groups in micelles and biopolymers. Thus, the presence
of hydrophobic groups in polypeptides results in an
increase in structure of the surrounding water and a
decrease in entropy. The entropy can increase if the
hydrophobic groups are twisted into the interior of
the molecule, which liberates the water molecules
and results in an increase in their disorder. The hydro-
phobic interaction is an example of an ordering pro-
cess, a kind of virtual force, that is mediated by a 
tendency toward greater disorder of the solvent.

Table 15.3

Potential energy of molecular interactions

Interaction type Distance dependence Typical energy Comment

of potential energy (kJ mol−1)

Ion–ion 1/r 250 Only between ions
Ion–dipole 1/r2 15
Dipole–dipole 1/r 3 2 Between stationary polar molecules

1/r 6 0.3 Between rotating polar molecules
London (dispersion) 1/r 6 2 Between all types of molecules and ions
Hydrogen bonding 20 The interaction is for X—H...Y and occurs 

on contact for X, Y = N, O, or F

Fig. 15.8 When a hydrocarbon molecule is surrounded by
water, the water molecules form a cage called a clathrate. As
a result of this acquisition of structure, the entropy of the
water decreases, so the dispersal of the hydrocarbon into
water is entropy-opposed; the coalescence of the hydro-
carbon into a single large blob is entropy favoured.
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15.8 Modelling the total interaction

The total attractive interaction energy between rotat-
ing molecules that cannot participate in hydrogen
bonding is the sum of the contributions from the
dipole–dipole, dipole–induced-dipole, and dispersion
interactions. Only the dispersion interaction con-
tributes if both molecules are nonpolar. All three 
interactions vary as the inverse sixth power of the
separation, so we may write the total attractive con-
tribution to the van der Waals interaction energy as

(15.12)

where C is a coeAcient that depends on the identity
of the molecules and the type of interaction between
them.

Repulsive terms become important and begin to
dominate the attractive forces when molecules are
squeezed together (Fig. 15.9), for instance, during the
impact of a collision, under the force exerted by a
weight pressing on a substance, or simply as a result of
the attractive forces drawing the molecules together.
These repulsive interactions arise in large measure
from the Pauli exclusion principle, which forbids pairs
of electrons being in the same region of space. The re-
pulsions increase steeply with decreasing separation
in a way that can be deduced only by very extensive,
complicated molecular structure calculations. In many
cases, however, progress can be made by using a
greatly simplified representation of the potential 
energy, where the details are ignored and the general
features expressed by a few adjustable parameters.
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One such approximation is the hard-sphere poten-
tial, in which it is assumed that the potential energy
rises abruptly to infinity as soon as the particles come
within a separation σ (Fig. 15.10):

(15.13)

This very simple potential is surprisingly useful for
assessing a number of properties.

Another widely used approximation is to express
the short-range repulsive potential energy as in-
versely proportional to a high power of r:

(15.14)

where C* is another constant (the star signifies re-
pulsion). Typically, n is set equal to 12, in which case
the repulsion dominates the 1/r6 attractions strongly
at short separations because then C*/r12 >> C/r6. The
sum of the repulsive interaction with n = 12 and the
attractive interaction given by eqn 15.14 is called 
the Lennard-Jones (12,6) potential. It is normally
written in the form

(15.15)

and is drawn in Fig. 15.11. The two parameters are
now ε (epsilon), the depth of the well, and σ, the sep-
aration at which V = 0. Some typical values are listed
in Table 15.4. The well minimum occurs at r = 21/6σ.
Although the (12,6)-potential has been used in many
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Fig. 15.9 The general form of an intermolecular potential 
energy curve (the graph of the potential energy of two closed-
shell species as the distance between them is changed). The
attractive (negative) contribution has a long range, but the 
repulsive (positive) interaction increases more sharply once
the molecules come into contact. The overall potential energy
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P
o

te
n

ti
al

 e
n

er
g

y,
 V

0

Separation, rσ

Fig. 15.10 The true intermolecular potential can be modelled
in a variety of ways. One of the simplest is this hard-sphere
potential, in which there is no potential energy of interaction
until the two molecules are separated by a distance s when
the potential energy rises abruptly to infinity as the impene-
trable hard spheres repel each other.
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calculations, there is plenty of evidence to show that
1/r12 is a very poor representation of the repulsive
potential, and that the exponential form e−r/σ is 
superior. An exponential function is more faithful to
the exponential decay of atomic wavefunctions at
large distances, and hence to the distance dependence
of the overlap that is responsible for repulsion. How-
ever, a disadvantage of the exponential form is that it
is slower to compute, which is important when con-
sidering the interactions between the large numbers
of atoms in liquids and macromolecules.

15.9 Molecules in motion

The intermolecular interactions we have described
govern the shapes that complicated molecules adopt

and the motion of molecules in liquids. We deal with
the structural aspects of these interaction in the next
chapter. In this section, we consider how to take 
the interactions into account to describe molecular
motion.

In a molecular dynamics simulation, the molecule
is set in motion by heating it to a specified temperature
and the possible trajectories of all atoms under the
influence of the intermolecular forces are calculated
from Newton’s laws of motion. For instance, if the
interaction is described by a Lennard-Jones potential,
eqn 15.15, the force along the line of centres of two
neighbouring molecules is

(15.16)

The equations of motion are solved numerically, 
allowing the molecules to adjust their locations 
and velocities in femtosecond steps (1 fs = 10−15 s).
The calculation is repeated for tens of thousands of
such steps.

The same technique can be used to examine the 
internal motion of macromolecules, such as the 
proteins we consider in Chapter 16, and software
packages are available that calculate the trajectories
of a large number of atoms in three dimensions. The
trajectories correspond to the conformations that the
molecule can sample at the temperature of the simu-
lation. At very low temperatures, the neighbouring
components of the molecule are trapped in wells like
that in Fig. 15.11, the atomic motion is restricted,
and only a few conformations are possible. At high
temperatures, more potential energy barriers can be
overcome and more conformations are possible.

In the Monte Carlo method, the atoms of a macro-
molecule or the molecules of a liquid are moved
through small but otherwise random distances, and
the change in potential energy is calculated. If the 
potential energy is not greater than before the change,
then the new arrangement is accepted. However, if
the potential energy is greater than before the change,
it is necessary to use a criterion for rejecting or accept-
ing it. To establish this criterion, we use the Boltzmann
distribution (Section 22.1), which states that at equi-
librium at a temperature T the ratio of populations of
two states that differ in energy by ΔE is e−ΔE/kT, where
k is Boltzmann’s constant. In the Monte Carlo method,
the exponential factor is calculated for the new atomic
arrangement and compared with a random number
between 0 and 1; if the factor is larger than the ran-
dom number, the new arrangement is accepted; if 
the factor is not larger, then the new arrangement is
rejected and another one is generated instead.
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Fig. 15.11 The Lennard-Jones potential is another ap-
proximation to the true intermolecular potential energy

curves. It models the attractive component by a contribution
that is proportional to 1/r 6, and the repulsive component by a
contribution that is proportional to 1/r12. Specifically, these
choices result in the Lennard-Jones (12,6)-potential. Although
there are good theoretical reasons for the former, there is
plenty of evidence to show that 1/r12 is only a very poor 
approximation to the repulsive part of the curve.

Table 15.4

Lennard-Jones parameters for the (12,6) potential

e /(kJ mol−1) s /pm

Ar 128 342
Br2 536 427
C6H6 454 527
Cl2 368 412
H2 34 297
He 11 258
Xe 236 406
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Checklist of key ideas

You should now be familiar with the following concepts.

1 van de Waals interactions between or within mole-
cules include the attractive and repulsive interac-
tions involving partial electric charges and electron
clouds of polar and nonpolar molecules or functional
groups, and the repulsive interactions that prevent
the complete collapse of matter to densities as
high as those characteristic of atomic nuclei.

2 A polar molecule is a molecule with a permanent
electric dipole moment; the magnitude of a dipole
moment is the product of the partial charge and the
separation.

3 Dipole moments are approximately additive (as
vectors, eqn 15.3).

4 The polarizability is a measure of the ability of 
an electric field to induce a dipole moment in a
molecule.

5 A hydrogen bond is an interaction of the form X—
H...Y, where X and Y are N, O, or F.

6 The hydrophobic interaction is an ordering process
mediated by a tendency toward greater disorder of
the solvent: it causes hydrophobic groups to clus-
ter together.

7 The Lennard–Jones (6,12) potential is a model of
the total intermolecular potential energy.

8 A molecular dynamics calculation uses Newton’s
laws of motion to calculate the motion of
molecules in a fluid (and the motion of atoms in
macromolecules).

9 A Monte Carlo simulation uses a selection criterion
for accepting or rejecting a new arrangement of
atoms or molecules.

The following table summarizes the equations developed in this chapter.

Property

Potential energy of interaction between 
two charges

The molecular dipole moment in terms of the:
(1) electronegativity difference
(2) polarizability

Potential energy of a dipole near a charge

Potential energy of interaction between 
two dipoles

Potential energy of interaction between 
two polar molecules

Potential energy of interaction between a 
dipole and an induced dipole

London formula for the dispersion interaction

Lennard-Jones (6,12) potential

Equation

V = Q1Q2/4per

m /D ≈ Dc
m = aE

V ∝ −1/r2

V ∝ −1/r 3

V ∝ −1/Tr 6

V ∝ − m2
1a2/r6

V ∝ (a ′1a ′2/r 6) × {I1I2 / (I1 + I2)}

V = 4e{(s/r)12 − (s/r)6}

Comment

Medium of permittivity e = ere0

Very approximate

Arrangement as in 9

Arrangement as in 10

Rotating molecules

Definition

Table of key equations
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Questions and exercises

Discussion questions

15.1 Explain how the permanent dipole moment and the 
polarizability of a molecule arise and explain how they 
depend on the structure of the molecule.

15.2 Account for the theoretical conclusion that many 
attractive interactions between molecules vary with their
separation as 1/r 6.

15.3 Describe how van der Waals interactions depend on
the structure of the molecules.

15.4 Describe the formation of a hydrogen bond in terms of
(a) electrostatic interactions and (b) molecular orbitals. How
would you identify the better model?

15.5 Account for the hydrophobic effect and discuss its 
manifestations.

15.6 Outline the procedures used to calculate the motion of
molecules in molecules in fluids and atoms in molecules.

Exercises

15.1 Estimate the dipole moment of an HF molecule from
the electronegativities of the elements and express the 
answer in debye and coulomb-metres.

15.2 Use the VSEPR model to judge whether PCl5 is polar.

15.3 The electric dipole moment of toluene (methylbenzene)
is 0.40 D. Estimate the dipole moments of the three xylenes
(dimethylbenzenes). Which value can you be sure about?

15.4 Calculate the resultant of two dipoles of magnitude
1.20 D and 0.60 D that make an angle 107° to each other.

15.5 From the information in Exercise 15.3, estimate the
dipole moments of (a) 1,2,3-trimethylbenzene, (b) 1,2,4-
trimethylbenzene, and (c) 1,3,5-trimethylbenzene. Which
value can you be sure about?

15.6 At low temperatures a substituted 1,2-dichloroethane
molecule can adopt the three conformations (13), (14), and (15)
with different probabilities. Suppose that the dipole moment
of each bond is 1.50 D. Calculate the mean dipole moment of
the molecule when (a) all three conformations are equally likely,
(b) only conformation (14) occurs, (c) the three conformations
occur with probabilities in the ratio 2:1:1 and (d) 1:2:2.

xy-plane: 3e at (0,0), −e at (0.32 nm, 0), and −2e at an angle of
20° from the x-axis and a distance of 0.23 nm from the origin.

15.8 Calculate the electric dipole moment of a glycine mole-
cule using the partial charges in Table 15.1 and the locations
of the atoms shown in (16).

Cl

Cl

Cl

Cl

Cl

Cl

13 14 15

15.7 Calculate the magnitude and direction of the dipole 
moment of the following arrangement of charges in the 

15.9 (a) Plot the magnitude of the electric dipole moment 
of hydrogen peroxide as the H—OO—H (azimuthal) angle f
changes. Use the dimensions shown in (17). (b) Devise a way
for depicting how the angle as well as the magnitude changes.

15.10 Calculate the molar energy required to reverse the 
direction of a water molecule located (a) 150 pm, (b) 350 pm
from a Li+ ion. Take the dipole moment of water as 1.85 D.

15.11 Show, by following the procedure in Derivation 15.1,
that eqn 15.6 describes the potential energy of two electric
dipole moments in the orientation shown in structure (10) of
the text.

15.12 What is the contribution to the total molar energy of 
(a) the kinetic energy, (b) the potential energy of interaction
between hydrogen chloride molecules in a gas at 298 K when
0.50 mol of molecules is confined to 1.0 dm3? Is the kinetic
theory of gases justifiable in this case?

15.13 (a) What are the units of the polarizability a? (b) Show
that the units of polarizability volume are cubic metres (m3).

15.14 The magnitude of the electric field at a distance r from
a point charge Q is equal to Q /4pe0r

2. How close to a water
molecule (of polarizability volume 1.48 × 10−30 m3) must a
proton approach before the dipole moment it induces is equal
to the permanent dipole moment of the molecule (1.85 D)?

15.15 Estimate the energy of the dispersion interaction (use
the London formula) for two Ar atoms separated by 1.0 nm.
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15.16 Phenylanine (Phe, 18) is a naturally occurring amino
acid with a benzene ring. What is the energy of interaction
between its benzene ring and the electric dipole moment of
a neighbouring peptide group? Take the distance between
the groups as 4.0 nm and treat the benzene ring as benzene
itself. Take the dipole moment of the peptide group as 2.7 D.

15.21 The potential energy of a CH3 group in ethane as it 
is rotated around the C—C bond can be written V = V0(1 +
cos 3f), where f is the azimuthal angle (22) and
V0 = 11.6 kJ mol−1. (a) What is the change in 
potential energy between the trans and fully
eclipsed conformations? (b) Show that for small
variations in angle, the torsional (twisting) motion
around the C—C bond can be expected to be that
of a harmonic oscillator. (d) Estimate the vibrational frequency
of this torsional oscillation.

15.22 Consider the arrangement shown in (12) for a system
consisting of an O—H group and an O atom, and then use the
electrostatic model of the hydrogen bond to calculate the 
dependence of the molar potential energy of interaction on
the angle q. Set the partial charges on H and O to 0.45e and 
−0.83e, respectively, and take R = 200 pm and r = 95.7 pm.

Projects

The symbol ‡ indicates that calculus is required.

15.23‡ Now we explore London interactions in more detail.
(a) Given that force is the negative slope of the potential, cal-
culate the distance dependence of the force acting between
two non-bonded groups of atoms in a polymeric chain that
have a London dispersion interaction with each other. What
is the separation at which the force is zero? Hint. Calculate
the slope by considering the potential energy at R and R + dR,
with dR << R, and evaluating {V (R + dR) − V(R)}/dR. You should
use the expansion in Derivation 15.1 together with

(1 ± x + . . .)6 = 1 ± 6x + . . . (1 ± x + . . .)12 = 1 ± 12x + . . .

At the end of the calculation, let dR become vanishingly
small. (b) Repeat part (a) now by noting that F = −dV/dr and
differentiating the expression for V.

15.24‡ Here we explore alternatives to the Lennard-Jones
potential. (a) Suppose you distrusted the Lennard-Jones
(12,6) potential for assessing a particular polymer conforma-
tion, and replaced the repulsive term by an exponential func-
tion of the form e−r/s. Sketch the form of the potential energy
and locate the distance at which it is a minimum. (b) Use cal-
culus to identify the distance at which the exponential-6 
potential described in part (a) is a minimum.

15.25 Molecular orbital calculations may be used to predict
structures of intermolecular complexes. Hydrogen bonds 
between purine and pyrimidine bases are responsible for the

1
2

NH2

OH

O

18 Phenylalanine

15.17 Now consider the London interaction between the
benzene rings of two Phe residues (see the preceding exer-
cise). Estimate the potential energy of attraction between
two such rings (treated as benzene molecules) separated by
4.0 nm. For the ionization energy, use I = 5.0 eV.

15.18 In a region of the oxygen-storage protein myoglobin,
the OH group of a tyrosine residue is linked by a hydrogen
bond to the N atom of a histidine residue in the geometry
shown in (19). Use the partial charges in Table 15.1 to esti-
mate the potential energy of this interaction.

OH N
NH

NH2

HO
O

OH

O

H2N

19

15.19 Acetic acid vapour contains a proportion of planar, 
hydrogen-bonded dimers (20). The apparent dipole moment
of molecules in pure gaseous acetic acid increases with 
increasing temperature. Suggest an interpretation of the 
latter observation.

O

O H

H O

O

20

15.20 The coordinates of the atoms of an acetic acid dimer
are set out in more detail in (21). Consider only the Coulombic
interactions between the partial charges indicated by the
dashed lines and their symmetry-related equivalents. At
what distance R does the attraction become attractive?

22

φ
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double-helix structure of DNA. Consider methyladenine 
(23, with R = CH3) and methylthymine (24, with R = CH3) as
models of two bases that can form hydrogen bonds in DNA.
(a) Using molecular modelling software, calculate the partial
charges of all atoms in methyladenine and methylthymine.
(b) Based on your tabulation of partial charges, identify the
atoms in methyladenine and methylthymine that are likely 
to participate in hydrogen bonds. (c) Draw all possible 
adenine–thymine pairs that can be linked by hydrogen bonds,
keeping in mind that linear arrangements of the A—H...B
fragments are preferred. For this step, you may want to use
your molecular modelling software to align the molecules
properly. (d) Consult a biochemistry textbook and determine
which of the pairs that you drew in part (c) occur naturally in
DNA molecules.

15.26 For mature HIV particles to form in cells of the host 
organism, several large proteins coded for by the viral genetic
material must be cleaved by a protease enzyme. The drug
Crixivan (25) is a competitive inhibitor of HIV protease and
has several molecular features that optimize binding to the
active site of the enzyme. Consult the literature and prepare
a brief report summarizing molecular interactions between
Crixivan and HIV protease that are thought to be responsible
for the drug’s efficacy.
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Naturally occurring macromolecules include poly-
saccharides such as cellulose, polypeptides such as
protein enzymes, and polynucleotides such as 
deoxyribonucleic acid (DNA). Synthetic macro-
molecules include polymers such as nylon and poly-
styrene that are manufactured by stringing together
and in some cases cross-linking smaller units known
as monomers (Fig. 16.1).

Macromolecules give rise to special problems that
include the shapes and the lengths of polymer chains,
the determination of their sizes, and the large devia-
tions from ideality of their solutions. Natural macro-
molecules differ in certain respects from synthetic
macromolecules, particularly in their composition and
the resulting structure, but the two share a number of
common properties. We concentrate on these com-
mon properties here. Another level of complexity
arises when small molecules group together into large
particles in a process called ‘self-assembly’ and give
rise to aggregates. One example is the assembly of
haemoglobin from four myoglobin-like polypeptides.
A similar type of aggregation gives rise to a variety 

Monomer
(a)

(b)

(c)

Fig. 16.1 Three varieties of polymer: (a) a simple linear 
polymer, (b) a cross-linked polymer, and (c) one variety of
copolymer (a ‘block copolymer’).
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of disperse phases, which include colloids. The prop-
erties of these disperse phases resemble to a certain
extent the properties of solutions of macromolecules,
and we describe their common attributes in the sec-
ond part of this chapter.

Synthetic and biological

macromolecules

Macromolecules provide an interesting and import-
ant illustration of how the interactions described in
Chapter 15 jointly determine the shape of a molecule
and its properties. The overall shape of a polypeptide,
for instance, is maintained by a variety of molecular
interactions, including van der Waals interactions,
hydrogen bonding, and the hydrophobic effect.

16.1 Determination of size and shape

X-ray diffraction, a technique discussed in detail in
Chapter 17, can reveal the position of almost every
atom, other than hydrogen, even in very large
molecules. However, there are several reasons why
other techniques must also be used. In the first place,
the sample might be a mixture of molecules with dif-
ferent chain lengths and extent of cross-linking, in
which case sharp X-ray images are not obtained.
Even if all the molecules in the sample are identical,
it might prove impossible to obtain a single crystal.
Furthermore, although X-ray information about
proteins and DNA has shown how immensely inter-
esting and motivating the data can be, it is incom-
plete. For instance, what can be said about the shape
of the molecule in its natural environment, a biolo-
gical cell? What can be said about the response of its
shape to changes in its environment?

Many proteins (and specifically protein enzymes)
are monodisperse, meaning that they have a single,
definite molar mass. There may be small variations,
such as one amino acid replacing another, depending
on the source of the sample. A synthetic polymer,
however, is polydisperse, in the sense that a sample is
a mixture of molecules with various chain lengths
and molar masses. The various techniques that are
used to measure molar masses result in different
types of mean values of polydisperse systems. The
number-average molar mass, Nn, is the value 
obtained by multiplying each molar mass by the 
numerical fraction (Ni /N) of molecules of that mass
present in the sample:

(16.1a)
  
Nn = + +N M N M

N
1 1 2 2

...

Example 16.1

Determining the heterogeneity index of a
polymer sample

Determine the heterogeneity index of a sample of
poly(vinyl chloride) from the following data:

Molar mass Average molar Mass of 
interval/ mass within sample within
(kg mol−1) interval/(kg mol−1) interval/g

5–10 7.5 9.6
10–15 12.5 8.7
15–20 17.5 8.9
20–25 22.5 5.6
25–30 27.5 3.1
30–35 32.5 1.7

Here Ni (with i = 1, 2, . . .) is the number of molecules
with molar mass Mi and there are N molecules in all.
By dividing the terms in the numerator and denomina-
tor by Avogadro’s constant NA and writing Ni /NA = ni
and N/NA = n, we can express this equation in terms of
the amounts (in moles) rather than the actual numbers:

(16.1b)

The weight-average molar mass, Nw, is the average
calculated by multiplying the molar masses of the
molecules by the mass fraction (mi /m) of each one
present in the sample:

(16.1c)

In this expression, mi is the total mass of molecules of
molar mass Mi and m is the total mass of the sample.
In general, these two averages are different and the
ratio Nw/Nn is called the heterogeneity index (or
‘polydispersity index’). In the determination of pro-
tein molar masses we expect the various averages to
be the same because unless there has been degrada-
tion the sample is monodisperse. A synthetic polymer
normally spans a range of molar masses and the 
different averages yield different values. Typical 
synthetic materials have Nw/Nn ≈ 4. The term
‘monodisperse’ is conventionally applied to synthetic
polymers in which this index is less than 1.1; com-
mercial polyethylene samples might be much more
heterogeneous, with an index of close to 30. One
consequence of a narrow molar mass distribution for
synthetic polymers is often a higher degree of crys-
tallinity in the solid and therefore higher density and
melting point. The spread of values is controlled by
the choice of catalyst and reaction conditions.

  
Nw = + +m M m M

m
1 1 2 2

...

  
Nn = + +n M n M

n
1 1 2 2

...
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Number-average molar masses may be determined
by measuring the osmotic pressure of polymer solu-
tions (Section 6.7). The upper limit for the reliabil-
ity of membrane osmometry is about 1000 kDa 
(1 kDa = 1 kg mol−1). A major problem for macro-
molecules of relatively low molar mass (less than
about 10 kDa), however, is their ability to percolate
through the membrane. One consequence of this 
partial permeability is that membrane osmometry
tends to overestimate the average molar mass of a
polydisperse mixture. Techniques for the determina-
tion of molar mass and polydispersity that are not
limited in this way include mass spectrometry, laser
light scattering, ultracentrifugation, electrophoresis,
and chromatography.

Mass spectrometry is among the most accurate
techniques for the determination of molar masses.
The procedure consists of ionizing the sample in the
gas phase and then measuring the mass-to-charge
number ratio (m/z) of all ions. Macromolecules pre-
sent a challenge because it is diAcult to produce
gaseous ions of large species without fragmentation.
However, matrix-assisted laser desorption/ionization
(MALDI) has overcome this problem. In this tech-
nique, the macromolecule is embedded in a solid 
matrix composed of an organic material and inorganic
salts, such as sodium chloride or silver trifluoro-
ethanoate, AgCF3CO2. This sample is then irradi-
ated with a pulsed laser. The laser energy, which is 
absorbed by the matrix, ejects electronically excited
matrix ions, cations, and neutral macromolecules,
thus creating a dense gas plume above the sample
surface. The macromolecule is ionized by collisions
and complexation with small cations, such as H+,
Na+, and Ag+, and the masses of the resulting ions are
determined in a mass spectrometer.

Figure 16.2 shows the MALDI mass spectrum of a
polydisperse sample of poly(butyl adipate) (1) obtained
with NaCl in the matrix. The MALDI technique pro-
duces mostly singly charged molecular ions that are
not fragmented. Therefore, the multiple peaks in the
spectrum arise from polymers of different lengths
(different ‘N-mers’, where N is the number of repeat-
ing units), with the intensity of each peak being 

Strategy Begin by calculating the number-average and
weight-average molar masses from eqns 16.1a and
16.1b, respectively. To do so, multiply the molar mass
within each interval by the number and mass fractions,
respectively, of the molecule in each interval. Obtain the
amount (in moles) in each interval by dividing the mass
of the sample in each interval by the average molar mass
for that interval and then use eqn 16.1b. Finally, use the
average molar masses to calculate the heterogeneity
index of the sample as the ratio 6w/6n.

Solution The amounts in each interval are as follows:

Interval 5–10 10–15 15–20
Molar mass/(kg mol−1) 7.5 12.5 17.5
Amount/mmol 1.30 0.70 0.51

Interval 20–25 25–30 30–35
Molar mass/(kg mol−1) 22.5 27.5 32.5
Amount/mmol 0.25 0.11 0.052

Total amount/mmol: 2.92

The number-average molar mass is therefore

The weight-average molar mass is calculated directly
from the data by first noting that adding the masses in
each interval gives the total mass of the sample, 37.6 g.
It follows that:

The heterogeneity index is 6 w /6n = 1.2.

. . . . . . .8 9 17 5 5 6 22 5 3 1 27 5 1 7× + × + × + × 332 5 16. ) =
  
6 w kg mol/( )

.
( . . . .− = × + ×1 1

37 6
9 6 7 5 8 7 12 55 +

+ × + × + × =0 25 22 5 0 11 27 5 0 052 32 5 13. . . . . . )
  
6 n kg mol/( )

.
( . . . . .− = × + × + ×1 1

2 92
1 3 7 5 0 70 12 5 0 51 117 5.

Self-test 16.1

The Z-average molar mass is defined as

Evaluate the Z-average molar mass of the sample
described in Example 16.1.

[Answer: 19 kg mol−1]
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proportional to the abundance of each N-mer in the
sample. Values of Nn, Nw, and the heterogeneity
index can be calculated from the data. It is also pos-
sible to use the mass spectrum to verify the structure
of a polymer, as shown in Example 16.2.

In a gravitational field, heavy particles settle to-
wards the foot of a column of solution by the process
called sedimentation. The rate of sedimentation de-
pends on the strength of the field and on the masses
and shapes of the particles. Spherical molecules (and
compact molecules in general) sediment faster than
rod-like or extended molecules. For example, DNA
helices sediment much faster when they are collapsed
into a random coil, so sedimentation rates can be
used to study denaturation (the loss of structure).
Sedimentation is normally very slow, but it can be 
accelerated by ultracentrifugation, a technique that
replaces the gravitational field with a centrifugal field.
The effect is achieved in an ultracentrifuge, which is
essentially a cylinder that can be rotated at high
speed about its axis with a sample in a cell near its 
periphery (Fig. 16.3). Modern ultracentrifuges can
produce accelerations equivalent to about 105 that of
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Fig. 16.2 MALDI–TOF spectrum of a sample of
poly(butylene adipate) with 6n = 4525 g mol−1. The illus-
tration and example have been adapted from Mudiman
et al., J. Chem. Educ., 74, 1288 (1997).

Example 16.2

Interpreting the mass spectrum of a polymer

The mass spectrum in Fig. 16.2 consists of peaks
spaced by 200 g mol−1. The peak at 4113 g mol−1 corre-
sponds to a polymer with N = 20 repeating units. The
matrix used contained NaCl. From these data, verify that
the sample consists of polymers with the general struc-
ture given by (1).

Strategy Because each peak corresponds to a different
value of N, the molar mass difference, DM, between
peaks corresponds to the molar mass, M, of the repeat-
ing unit (the group inside the brackets in 1). Furthermore,
the molar mass of the terminal groups (the groups out-
side the brackets in 1) may be obtained from the molar
mass of any peak, by using

M(terminal groups) = M(N-mer) − NDM − M(cation)

where the last term corresponds to the molar mass of
the cation that attaches to the macromolecule during
ionization.

Solution The value of DM is consistent with the molar
mass of the repeating unit shown in (1), which is 200 g
mol−1. The molar mass of the terminal group is calcu-
lated by noting that Na+ is the cation in the matrix:

M(terminal group) = 4113 g mol−1 − 20(200 g mol−1) 

− 23 g mol−1 = 90 g mol−1

The result is consistent with the molar mass of the 
—O(CH2)4OH terminal group (89 g mol−1) plus the molar
mass of the —H terminal group (1 g mol−1).

Self-test 16.2

What would be the molar mass of the N = 20 poly-
mer if silver trifluoroacetate were used instead of
NaCl in the preparation of the matrix?

[Answer: 4.2 kg mol−1]

Inner surface

Outer surface

Rotor

Sample
Blank (balancing)

Solution

r

ω

(a)

(b)

Fig. 16.3 (a) An ultracentrifuge head. The sample on one side
is balanced by a blank diametrically opposite. (b) Detail of 
the sample cavity: the ‘top’ surface is the inner surface, and
the centrifugal force causes sedimentation towards the outer
surface; a particle at a radius r experiences a force of magni-
tude mrw2.
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gravity (‘105 g’). Initially the sample is uniform, but
the solute molecules move towards the outer edge of
the cell at a rate that can be interpreted in terms of
the number-average molar mass. In an alternative
‘equilibrium’ version of the technique, the weight- 
average molar mass can be obtained from the ratio 
of concentrations c of the macromolecules at two 
different radii in a centrifuge operating at angular
frequency ω (in radians per second):

(16.2)

Here, b is a factor that takes into account the buoy-
ancy of the medium. The centrifuge is run more
slowly in this technique than in the sedimentation
rate method to avoid having all the solute pressed in
a thin film against the bottom of the cell. At these
slower speeds, several days may be needed for equi-
librium to be reached.

Many macromolecules, such as DNA, are charged
and move in response to an electric field. This motion
is called electrophoresis. Electrophoretic mobility is
a result of a constant drift speed reached by an ion
when the electrical driving force is matched by the
frictional drag force. Electrophoresis is a very valu-
able tool in the separation of biopolymers from 
complex mixtures, such as those resulting from frac-
tionation of biological cells. In gel electrophoresis,
migration takes place through a gel slab. In capillary
electrophoresis, the sample is dispersed in a medium
(such as methylcellulose) and held in a thin glass 
or plastic tube with diameters ranging from 20 to 
100 μm. The small size of the apparatus makes it easy
to dissipate heat when large electric fields are applied.
Excellent separations may be effected in minutes
rather than hours. Each polymer fraction emerging
from the capillary can be characterized further by
other techniques, such as MALDI.

Light scattering measurements of polymer size are
based on the observation that large particles scatter
light very eAciently. A familiar example is the light
scattered by specks of dust in a sunbeam. Analysis of
the intensity of light scattered by a sample at differ-
ent angles relative to the incident radiation from a
monochromatic laser beam yields the size and molar
mass of a polymer, large aggregate (such as a colloid;
see Section 16.6), or biological system ranging in size
from a protein to a virus.

Dynamic light scattering is used to investigate 
the diffusion of polymers in solution. Consider two
polymer molecules being irradiated by a laser beam.
Suppose that at one instant the scattered waves from
these particles interfere constructively at the detector,
leading to a large signal. However, as the molecules
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move through the solution, the scattered waves may
interfere destructively at a later instant and result in
no signal. When this behaviour is extended to a very
large number of molecules in solution, it results in
fluctuations in light intensity that can be analysed 
to reveal the molar mass and diffusion coeAcient of
the polymer.

16.2 Models of structure: random coils

The most likely conformation of a chain of identical
units not capable of forming hydrogen bonds or 
any other type of specific bond is a random coil.
Polyethylene is a simple example. The random coil
model is a helpful starting point for estimating the
orders of magnitude of the properties of polymers
and denatured proteins in solution.1

The simplest model of a random coil is a freely
jointed chain, in which any bond is free to make any
angle with respect to the preceding one (Fig. 16.4). We
assume that the residues occupy zero volume, so dif-
ferent parts of the chain can occupy the same region
of space. The model is obviously an oversimplification
because a bond is actually constrained to a cone of
angles around a direction defined by its neighbour and
has bulk. In a hypothetical one-dimensional freely
jointed chain all the residues lie in a straight line, and
the angle between neighbours is either 0° or 180°.
The residues in a three-dimensional freely jointed
chain are not restricted to lie in a line or a plane.

The contour length, Rc, of a polymer is the length
of the molecule measured along its backbone from
monomer to monomer:

Rc = Nl (16.3a)

1 For the derivation of the expressions in this section, see our
Physical chemistry (2006).

Arbitrary
angles

Fig. 16.4 A freely jointed chain is like a three-dimensional
random walk, each step being in an arbitrary direction but of
the same length.

See an animated version of this figure in the 
interactive ebook.
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The contour length is proportional to the number of
monomers, N, in the polymer and the length l occupied
by each monomer unit. The radius of the random coil
such a molecule forms, however, is proportional only
to the square-root of N because the coil consists of
steps (neighbouring bonds) that might double back
on themselves as the chain grows. Specifically, the
root mean square separation, R rms = 〈R2〉1/2, is a 
measure of the average separation of the two ends of
a random coil:

R rms = N1/2l (16.3b)

Consequently, the volume of the coil increases as
N3/2. The radius of gyration, RG, of a random coil is
the radius of a thin shell (think of a table-tennis ball)
that has the same mass as the molecule and the same
moment of inertia. The radius of gyration of a 
table-tennis ball is the same as its actual radius; that
of a solid sphere of radius r is RG = ( )1/2r. For a 
random coil

(16.3c)

A brief illustration Consider a polyethylene chain with
M = 112 kDa, corresponding to N = 4000. Because l =
154 pm for a C—C bond, we find (by using 103 pm = 1 nm)

From eqn 16.3a: Rc = 4000 × 154 pm = 616 nm

From eqn 16.3b: Rrms = (4000)1/2 × 154 pm = 9.74 nm

From eqn 16.3c: 

The random-coil model ignores the role of the 
solvent: a poor solvent will tend to cause the coil to
tighten so that solute–solvent contacts are minimized;
a good solvent does the opposite. Therefore, calcula-
tions based on this model are better regarded as
lower bounds to the dimensions for a polymer in 
a good solvent and as an upper bound for a polymer
in a poor solvent. The model is most reliable for a
polymer in a bulk solid sample, where the coil is
likely to have its natural dimensions.

A random coil is the least structured conformation
of a polymer chain in the sense that it can be achieved
in the greatest possible number of ways (in contrast,
for instance, to the straight chain conformation,
which can be achieved in only one way) and corre-
sponds to the state of greatest entropy. Any stretching
of the coil introduces order and reduces the entropy.
Conversely, the formation of a random coil from 
a more extended form is a spontaneous process 
(provided enthalpy contributions do not interfere). 
The change in conformational entropy, the entropy
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arising from the arrangement of bonds, when a 
one-dimensional coil containing N bonds of length l
is stretched or compressed by nl is

(16.4)

where k is Boltzmann’s constant. This function is
plotted in Fig. 16.5, and we see that minimum exten-
sion—fully coiled (n = 0)—corresponds to maximum
entropy. This spontaneous tendency to form a coil is
responsible for the tendency of rubber (or at least, an
ideal rubber with no intermolecular interactions) to
spring back into shape after being stretched.

16.3 Models of structure: polypeptides 
and polynucleotides

Polypeptides are almost at the opposite end of the scale
of structure from random coils, for they can become
highly ordered: they need to be, for in biology structure
is almost synonymous with function. We need to dis-
tinguish four levels of structure. The primary structure
of a biopolymer is the sequence of its monomer units:
this sequence is determined by valence forces in the
sense that the monomers are linked by covalent bonds.
For polypeptides, the primary structure is an ordered
list of the amino acid residues. The secondary structure
of a polypeptide is the spatial arrangement of the
polypeptide chain—its twisting into a specific shape
—under the influence of interactions between the
various peptide residues (the amino acid groups).

We can rationalize the secondary structures of
proteins in large part in terms of the hydrogen bonds
between the —NH— and —CO— groups of the 

  
ΔS kN

n
N

= − + − =+ −1
2

1 11 1ln{( ) ( ) }k k kk k

0

0

–0.1

–0.2

–0.4 0.4–0.8 0.8

–0.3

Extension,  = n/N

C
h

an
g

e 
in

 e
n

tr
o

p
y,

 Δ
S

/N
k

ν

Fig. 16.5 The change in molar entropy of a one-dimensional
perfect elastomer as its extension changes; V = 1 corres-
ponds to complete extension; V = 0, the conformation of
highest entropy, corresponds to the random coil.
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peptide links (Fig. 16.6). These bonds lead to two
principal structures. One, which is stabilized by 
hydrogen bonding between peptide links of the same
chain, is the α-helix. The other, which is stabilized 
by hydrogen bonding, links to different chains or
more distant parts of the same chain, is the β-sheet
(or β-pleated sheet).

The α-helix is illustrated in Fig. 16.7. Each turn of
the helix contains 3.6 amino acid residues, so there
are 18 residues in 5 turns of the helix. The pitch of a
single turn (the lateral movement corresponding to
one complete rotation) is 544 pm. The N—H...O
bonds lie parallel to the axis and link every fifth group
(so residue i is linked to residues i − 4 and i + 4).
There is freedom for the helix to be arranged as either
a right- or a left-handed screw, but the overwhelming
majority of natural polypeptides are right-handed on
account of the preponderance of the L-configuration
of the naturally occurring amino acids. It turns out,
in agreement with experience, that a right-handed 

α-helix of L-amino acids has a marginally lower energy
than a left-handed helix of the same acids. A β-sheet
is formed by hydrogen bonding between two extended
polypeptide chains. Some of the side chains lie above
the sheet and some lie below it. Two types of structures
can be distinguished from the pattern of hydrogen
bonding between the constituent chains: (a) in an 
antiparallel β-sheet (Fig. 16.8), the N—H...O atoms
of the hydrogen bonds form a straight line; (b) in a
parallel β-sheet (Fig. 16.9), the N—H...O atoms of
the hydrogen bonds are not perfectly aligned.

Helical and sheet-like polypeptide chains are folded
into a tertiary structure if there are other bonding
influences between the residues of the chain that are
strong enough to overcome the interactions respons-
ible for the secondary structure. The folding influ-
ences include —S—S— disulfide links, van der Waals
interactions, hydrophobic interactions, ionic interac-
tions (which depend on the pH), and strong hydrogen
bonds (such as O—H...O).
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Fig. 16.6 The dimensions that characterize the peptide link.
The C—NH—CO—C atoms define a plane (the C—N bond has
partial double-bond character), but there is rotational freedom
around the C—CO and N—C bonds.

Fig. 16.7 The polypeptide a-helix, with poly-L-glycine as an
example. There are 3.6 residues per turn, and a translation
along the helix of 150 pm per residue, giving a pitch of 
540 pm. The diameter (ignoring side chains) is about 600 pm.
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Fig. 16.8 An antiparallel b-sheet in which the N—H—O atoms
of the hydrogen bonds form a nearly straight line.

R
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R

Fig. 16.9 A parallel b-sheet in which the N—H—O atoms of
the hydrogen bonds are not as well aligned as in the anti-
parallel version.
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Proteins with M > 50 kDa are often found to be 
aggregates of two or more polypeptide chains. The
possibility of such quaternary structure often confuses
the determination of their molar masses because 
different techniques might give values differing by
factors of 2 or more. Haemoglobin, which consists of
four myoglobin-like chains (Fig. 16.10), is an example
of a quaternary structure. Myoglobin is an oxygen-
storage protein. The subtle differences that arise when
four such molecules coalesce to form haemoglobin
result in the latter being an oxygen transport protein,
able to load O2 cooperatively and to unload it co-
operatively too (see Box 7.2).

Deoxyribonucleic acid (DNA) and ribonucleic
acid (RNA), which are key components of the mech-
anism of storage and transfer of genetic information
in biological cells, are polynucleotides. The backbones
of these molecules consist of alternating sugar and
phosphate groups, and one of the bases adenine (A),
cytosine (C), guanine (G), and thymine (T, found in
DNA only), and uracil (U, found in RNA only) is 
attached to each sugar. In B-DNA, the most common
form of DNA in biological cells, two polynucleotide
chains held together by A—T and C—G base pairs 
(2 and 3) wind around each other to form a right-
handed double helix (Fig. 16.11). The structure is 
stabilized further by the π-stacking interactions men-
tioned in Box 15.1. In contrast, RNA exists primarily

as single chains that can fold into complex structures
by formation of A—U and G—C base pairs.

Biopolymer denaturation, or loss of structure, can
be caused by several means, and different aspects 
of structure may be affected. Denaturation at the 
secondary level is brought about by agents that 
destroy hydrogen bonds. Thermal motion may be
suAcient, in which case denaturation is a kind of 
intramolecular melting. When eggs are cooked the
albumin is denatured irreversibly, and the protein
collapses into a structure resembling a random coil.
The helix–coil transition of polypeptides is sharp,
like ordinary melting, because it is a cooperative pro-
cess in the sense that when one hydrogen bond has
been broken it is easier to break its neighbours, and
then even easier to break theirs, and so on. The dis-
ruption cascades down the helix, and the transition
occurs sharply. Denaturation may also be brought
about chemically. For instance, a solvent that forms
stronger hydrogen bonds than those within the helix
will compete successfully for the NH and CO
groups. Acids and bases can cause denaturation by
protonation or deprotonation of various groups.

In contemporary physical chemistry and molecu-
lar biophysics, a great deal of work is being done on
the rationalization and prediction of the structures of

Fig. 16.10 A haemoglobin molecule consists of four myo-
globin-like units.
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CHAPTER 16: MATERIALS: MACROMOLECULES AND AGGREGATES376

biomolecules such as the polypeptides and nucleic
acids described here, using the interactions described
in Chapter 15 (Box 15.1).

16.4 Mechanical properties of polymers

Synthetic polymers are classified broadly as elas-
tomers, fibres, and plastics, depending on their crys-
tallinity, the degree of three-dimensional long-range
order attained in the solid state.

An elastomer is a flexible polymer that can expand
or contract easily upon application of an external
force. Elastomers are polymers with numerous cross-
links that pull them back into their original shape
when a stress is removed. The weak directional con-
straints on silicon–oxygen bonds is responsible for
the high elasticity of silicones. A perfect elastomer, a
polymer in which the internal energy is independent
of the extension of the random coil, can be modelled
as a freely jointed chain.

Box 16.1 The prediction of protein structure

A polypeptide chain adopts a conformation corresponding to
a minimum Gibbs energy, which depends on the conforma-
tional energy, the energy of interaction between different
parts of the chain, and the energy of interaction between
the chain and surrounding solvent molecules. In the aque-
ous environment of biological cells, the outer surface of a
protein molecule is covered by a mobile sheath of water
molecules, and its interior contains pockets of water mole-
cules. These water molecules play an important role in 
determining the conformation that the chain adopts
through hydrophobic interactions and hydrogen bonding to
amino acids in the chain.

The simplest calculations of the conformational energy 
of a polypeptide chain ignore entropy and solvent effects
and concentrate on the total potential energy of all the 
interactions between nonbonded atoms. For example, as
remarked in the text, these calculations predict that a right-
handed a-helix of L-amino acids is marginally more stable
than a left-handed helix of the same amino acids.

To calculate the energy of a conformation, we need to
make use of many of the molecular interactions described
in Chapter 15, and also of some additional interactions:

1. Bond stretching. Bonds are not rigid, and it may be 
advantageous for some bonds to stretch and others to be
compressed slightly as parts of the chain press against
one another. If we liken the bond to a spring, then the
potential energy takes the form (see Section 12.9):

Vstretch = kstretch(R − Re)
2

where Re is the equilibrium bond length and kstretch is the
force constant, a measure of the stiffness of the bond in
question.

2. Bond bending. An O—C—H bond angle (or some other
angle) may open out or close in slightly to enable the
molecule as a whole to fit together better. If the equilib-
rium bond angle is qe, we write

Vbend = kbend(q −qe)
2

where kbend is the force constant, a measure of how 
difficult it is to change the bond angle.

1
2

1
2

3. Bond torsion. There is a barrier to internal rotation of one
bond relative to another (just like the barrier to internal
rotation in ethane). Because the planar peptide link is
relatively rigid, the geometry of a polypeptide chain can
be specified by the two angles that two neighbouring
planar peptide links make to each other. The first illus-
tration shows the two angles f and y commonly used 
to specify this relative orientation. The sign convention
is that a positive angle means that the front atom must
be rotated clockwise to bring it into an eclipsed position
relative to the rear atom. For an all-trans form of the
chain, all f and y are 180°. A helix is obtained when 
all the f are equal and when all the y are equal. For 
a right-handed a-helix, all f = −57° and all y = −47°. For 
a left-handed a-helix, both angles are positive. For an 
antiparallel b-sheet, f = −139°, y = 113°. The torsional
contribution to the total potential energy is

Vtorsion = A(1 + cos 3f) + B(1 + cos 3y)

in which A and B are constants of the order of 1 kJ mol−1.
Because only two angles are needed to specify the con-
formation of a helix, and they range from −180° to +180°,
the torsional potential energy of the entire molecule can
be represented on a Ramachandran plot, a contour 
diagram in which one axis represents f and the other
represents y.

ψ

φ

The definition of the torsional angles y and f between two
peptide units.
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4. Interaction between partial charges. If the partial charges
Qi and Qj on the atoms i and j are known, a Coulombic
contribution of the form 1/r can be included:

where e is the permittivity of the medium in which the
charges are embedded. Charges of −0.28e and +0.28e
are assigned to N and H, respectively, and −0.39e and
+0.39e to O and C, respectively. The interaction between
partial charges does away with the need to take dipole–
dipole interactions into account, for they are taken care
of by dealing with each partial charge explicitly.

5. Dispersive and repulsive interactions. The interaction
energy of two atoms separated by a distance r (which
we know once f and y are specified) can be given by
the Lennard-Jones (12,6) form (Section 15.8):

6. Hydrogen bonding. In some models of structure, the 
interaction between partial charges is judged to take
into account the effect of hydrogen bonding. In other
models, hydrogen bonding is added as another inter-
action of the form

The total potential energy of a given conformation (f,y) can
be calculated by summing the contributions given by the
preceding equations for all bond angles (including torsional
angles) and pairs of atoms in the molecule. The procedure
is known as a molecular mechanics simulation and is 
automated in commercially available molecular modelling
software. For large molecules, plots of potential energy ver-
sus bond distance or bond angle often show several local
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minima and a global minimum (see the second illustration).
The software packages include schemes for modifying 
the locations of the atoms and searching for these minima
systematically.

The third illustration shows the potential energy contours
for the helical form of polypeptide chains formed from the
nonchiral amino acid glycine (R = H) and the chiral amino
acid L-alanine (R = CH3). The contours were computed by
summing all the contributions described above for each
choice of angles, and then plotting contours of equal poten-
tial energy. The glycine map is symmetrical, with minima of
equal depth at f = −80°, y = +90° and at f = +80°, y = −90°.
In contrast, the map for L-alanine is unsymmetrical, and
there are three distinct low-energy conformations (marked
I, II, III). The minima of regions I and II lie close to the angles
typical of right- and left-handed a-helices, but the former
has a lower minimum, which is consistent with the forma-
tion of right-handed helices from the naturally occurring 
L-amino acids.

The structure corresponding to the global minimum of 
a molecular mechanics simulation is a snapshot of the
molecule at T = 0 because only the potential energy is 
included in the calculation; contributions to the total energy
from kinetic energy are excluded. In a molecular dynamics
simulation, the molecule is set in motion by heating it to 
a specified temperature. The possible trajectories of all
atoms under the influence of the intermolecular potentials
are then calculated by integration of Newton’s equations of
motion. These trajectories correspond to the conformations
that the molecule can sample at the temperature of the
simulation. At very low temperatures, the molecule cannot
overcome some of the potential energy barriers described
above, atomic motion is restricted, and only a few confor-
mations are possible. At high temperatures, more potential
energy barriers can be overcome and more conformations
are possible. Therefore, molecular dynamics calculations
are useful tools for the visualization of the flexibility of 
polymers.
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For large molecules, a plot of potential energy against the
molecular geometry often shows several local minima and
a global minimum.

(a) (b)

Contour plots of potential energy against the angles y and
f, also known as a Ramachandran diagram, for (a) a glycyl
residue of a polypeptide chain and (b) an alanyl residue.
(Hovmoller, et al., Acta Crystallogr. D58, 768 (2002).)
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We saw in Section 16.2 that the contraction of 
an extended chain to a random coil is spontaneous 
in the sense that it corresponds to an increase in 
entropy; the entropy change of the surroundings is
zero because no energy is released or absorbed when
the coil forms. The conformational entropy can be
used to deduce that the restoring force, F, of a one- 
dimensional perfect elastomer at a temperature T is2

k = n/N (16.5a)

where N is the total number of bonds of length l and
the polymer is stretched or compressed by nl (k is
Boltzmann’s constant). This function is plotted in
Fig. 16.12. At low extensions, when k << 1,

That is,

(16.5b)

and the sample obeys Hooke’s law: the restoring force
is proportional to the displacement (which is propor-
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tional to n). For small displacements, therefore, the
whole coil shakes with simple harmonic motion.

A fibre is a polymeric material with such a low 
degree of branching that the molecules can be made
to lie parallel to one another and acquire strength
from the interactions between them. One example is
nylon-66 (Fig. 16.13). In contrast to elastomers, fibres
need to have a resistance to stretching, which requires
the chains to be nearly fully extended and for there to
be strong interactions between them. Hydrogen bond-
ing between chains, as in nylon, is one way to achieve
this resistance, and side chains are undesirable as they
hinder the formation of ordered microcrystalline 
regions. Under certain conditions, nylon-66 can be
prepared in a state of high crystallinity, in which 
hydrogen bonding between the peptide links of
neighbouring chains results in an ordered array.

A plastic is a polymer that can attain only a limited
degree of crystallinity and as a result is neither as strong
as a fibre nor as resilient as an elastomer. Certain 
materials, such as nylon-66, can be prepared either
as a fibre or as a plastic. A sample of plastic nylon-66
may be visualized as consisting of crystalline hydrogen-
bonded regions of varying size interspersed amongst
amorphous, random coil regions. A single type of
polymer may exhibit more than one characteristic, as
to display fibrous character, the polymers need to be
aligned; if the chains are not aligned, then the sub-
stance may be plastic. That is the case with nylon,
poly(vinyl chloride), and the siloxanes.

The crystallinity of synthetic polymers can be 
destroyed by thermal motion at suAciently high tem-
peratures. This loss of crystallinity may be thought of
as a kind of intramolecular melting from a crystalline
solid to a more fluid-like random coil. Polymer melt-
ing also occurs at a specific melting temperature, Tm,
which increases with the strength and number of 
intermolecular interactions in the material. Thus,
polyethylene, which has chains that interact only
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Fig. 16.12 The restoring force, F, of a one-dimensional per-
fect elastomer. For small strains, F is linearly proportional to
the extension, corresponding to Hooke’s law.

2 For the derivation of this expression and its small-extension
form, see our Physical chemistry (2006).

Fig. 16.13 A fragment of two nylon-66 polymer chains show-
ing the pattern of hydrogen bonds that are responsible for the
cohesion between the chains.
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weakly in the solid, has Tm = 414 K and nylon-66
fibres, in which there are strong hydrogen bonds 
between chains, has Tm = 530 K. High melting tem-
peratures are desirable in most practical applications
involving fibres and plastics.

All synthetic polymers undergo a transition from 
a state of high to low chain mobility when they are
cooled through the glass transition temperature, Tg.
The transition is commonly detected by using differ-
ential scanning calorimetry (DSC, Box 2.1). To visu-
alize the glass transition, we consider what happens
to an elastomer as we lower its temperature. There is
suAcient energy available at normal temperatures
for limited bond rotation to occur and the flexible
chains writhe about. At lower temperatures, the 
amplitudes of the writhing motion decrease until a
specific temperature, Tg, is reached at which motion
is frozen almost completely and the sample forms 
a glass. Glass transition temperatures well below 
300 K are desirable in elastomers that are to be used
at normal temperatures.

These concepts are mirrored by natural polymers.
For instance, the ‘melting’ of biopolymers from an
ordered structure, such as a helix or sheet, to a flex-
ible random coil, also occurs at a specific temperature
that increases with the strength and number of inter-
molecular interactions in the material. The melting
temperature, and therefore the thermal stability, of
DNA increases with the number of G—C base pairs
in the sequence because each G—C base pair has
three hydrogen bonds, whereas each A—T base pair
has only two. More energy is required to unravel a
double helix that, on average, has more hydrogen
bonding interactions per base pair.

Mesophases and 

disperse systems

A mesophase is a bulk phase that is intermediate in
character between a solid and a liquid. The most 
important type of mesophase is a liquid crystal, which
is a substance having liquid-like imperfect long-range
order in some directions but some aspects of crystal-
like short-range order in other directions. Liquid cry-
stals can be used as models of biological membranes
and studied to gain insight into the process of trans-
port of molecules into and out of cells. They are also of
considerable technological importance for their use in
displays on electronic equipment. A disperse system
is a dispersion of small particles of one material in
another. The small particles are commonly called

colloids. In this context, ‘small’ means something less
than about 1 μm in diameter (about twice the wave-
length of visible light). In general, they are aggregates
of numerous atoms or molecules, but are too small to
be seen with an ordinary optical microscope. They
pass through most filter papers, but can be detected
by light scattering, sedimentation, and osmosis.

16.5 Liquid crystals

There are three important types of liquid crystal; they
differ in the type of long-range order that they retain.
One type of retained long-range order gives rise to 
a smectic phase (from the Greek word for soapy), 
in which the molecules align themselves in layers
(Fig. 16.14). Other materials, and some smectic liquid
crystals at higher temperatures, lack the layered struc-
ture but retain a nearly parallel alignment (Fig. 16.15):
this mesophase is the nematic phase (from the Greek
for thread). The strongly anisotropic optical properties
of nematic liquid crystals, and their response to elec-
tric fields, is the basis of their use as data displays
(Box 16.2). In the cholesteric phase, which is so-called

Fig. 16.14 The arrangement of molecules in the smectic
phase of a liquid crystal.

Fig. 16.15 The arrangement of molecules in the nematic
phase of a liquid crystal.



Box 16.2 Biological membranes

Some micelles at high concentrations form extended par-
allel sheets, called lamellar micelles, two molecules thick.
The individual molecules lie perpendicular to the sheets,
with hydrophilic groups on the outside in aqueous solution
and on the inside in nonpolar media. Such lamellar micelles
show a close resemblance to biological membranes, and
are often a useful model on which to base investigations of
biological structures.

Although lamellar micelles are convenient models of cell
membranes, actual membranes are highly sophisticated
structures. The basic structural element of a membrane is a
phospholipid, such as phosphatidyl choline (B1), which con-
tains long hydrocarbon chains (typically in the range C14—C24)
and a variety of polar groups, such as —CH2CH2N(CH3)3

+.
The hydrophobic chains stack together to form an extensive
bilayer about 5 nm across. The lipid molecules form layers
instead of spherical micelles because the hydrocarbon chains
are too bulky to allow packing into nearly spherical clusters.
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The bilayer is a highly mobile structure. Not only are the
hydrocarbon chains ceaselessly twisting and turning in the
region between the polar groups, but the phospholipid and
other molecules inserted into the bilayer migrate over the
surface. It is better to think of the membrane as a viscous
fluid rather than a permanent structure, with a viscosity about
100 times that of water. In common with diffusional behavi-
our in general (Section 11.11), the average distance a phos-
pholipid molecule diffuses is proportional to the square-root
of the time. Typically, a phospholipid molecule migrates
through about 1 mm (the diameter of a cell) in about 1 min.

Peripheral proteins are proteins attached to the bilayer.
Integral proteins are proteins immersed in the mobile but
viscous bilayer. These proteins may span the depth of the
bilayer and consist of tightly packed a-helices or, in some
cases, b-sheets containing hydrophobic residues that sit
comfortably within the hydrocarbon region of the bilayer.
There are two views of the motion of integral proteins in the
bilayer. In the fluid mosaic model shown in the illustration
the proteins are mobile, but their diffusion coefficients are
much smaller than those of the lipids. In the lipid raft model,
a number of lipid and cholesterol molecules form ordered
structures, or ‘rafts’, that envelope proteins and help carry
them to specific parts of the cell.

The mobility of the bilayer enables it to flow round 
a molecule close to the outer surface, to engulf it, and 
incorporate it into the cell by the process of endocytosis.
Alternatively, material from the cell interior wrapped in cell
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In the fluid mosaic model of a biological cell membrane, 
integral proteins diffuse through the lipid bilayer.

membrane may coalesce with the cell membrane itself,
which then withdraws and ejects the material in the pro-
cess of exocytosis. The function of the proteins embedded
in the bilayer, though, is to act as devices for transporting
matter into and out of the cell in a more subtle manner. By
providing hydrophilic channels through an otherwise alien
hydrophobic environment, some proteins act as ion chan-
nels and ion pumps (Box 9.1).

All lipid bilayers undergo a transition from a state of high
to low chain mobility at a temperature that depends on the
structure of the lipid. There is sufficient energy available at
normal temperatures for limited bond rotation to occur and
the flexible chains writhe about. However, the membrane still
has a great deal of order in the sense that the bilayer structure
does not come apart and the system is best described as a
liquid crystal. At lower temperatures, the amplitudes of the
writhing motion decrease until a specific temperature is
reached at which motion is largely frozen. The membrane is
then said to exist as a gel. Biological membranes exist as
liquid crystals at physiological temperatures.

Interspersed among the phospholipids of biological
membranes are sterols, such as cholesterol (B2), which is
largely hydrophobic but does contain a hydrophilic —OH
group. Sterols, which are present in different proportions 
in different types of cells, prevent the hydrophobic chains
of lipids from ‘freezing’ into a gel and, by disrupting the
packing of the chains, spread the melting point of the mem-
brane over a range of temperatures.
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because some derivatives of cholesterol form them,
the molecules lie in sheets at angles that change
slightly between neighbouring sheets (Fig. 16.16), 
so forming helical structures. The pitch of the helix
varies with temperature. As a result, the colours of
cholesteric liquid crystals, which are due to diffrac-
tion and hence vary with the pitch, depend on the
temperature. They are used for detecting tempera-
ture distributions in living material, including human
patients, and have even been incorporated into fab-
rics. Liquid crystals are models for the membranes of
biological cell walls.

Although there are many liquid crystalline 
materials, some diAculty is often experienced in
achieving a technologically useful temperature range
for the existence of the mesophase. To overcome this
diAculty, mixtures can be used. An example of the
type of phase diagram that is then obtained is shown
in Fig. 16.17. As can be seen, the mesophase exists
over a wider range of temperatures than either liquid
crystalline material alone.

16.6 Classification of disperse systems

The name given to a disperse system depends on 
the nature of the substances involved. A sol is a dis-
persion of a solid in a liquid (such as clusters of gold
atoms in water) or of a solid in a solid (such as ruby
glass, which is a gold-in-glass sol, and achieves its
colour by scattering). An aerosol is a dispersion of 
a liquid in a gas (like fog and many sprays) and of 
a solid in a gas (such as smoke): the particles are
often large enough to be seen with a microscope. An
emulsion is a dispersion of a liquid in a liquid (such
as milk and some paints). A gel is a system in which
at least one component has a low rigidity (such as 

a cross-linked polymer or a lipid bilayer) and at least
one component has a high mobility (for example, 
the solvent).

The preparation of aerosols can be as simple as
sneezing (which produces an aerosol). Laboratory and
commercial methods make use of several techniques.
Material (for example, quartz) may be ground in the
presence of the dispersion medium. Passing a heavy
electric current through a cell may lead to the crumb-
ling of an electrode into colloidal particles; arcing 
between electrodes immersed in the support medium
also produces a colloid. Chemical precipitation some-
times results in a colloid. A precipitate (for example,
silver iodide) already formed may be converted to 
a colloid by the addition of a peptizing agent, a 
substance that disperses a colloid. An example of a
peptizing agent is potassium iodide, which provides
ions that adhere to the colloidal particles and cause
them to repel one another. Clays may be peptized by
alkalis, the OH− ion being the active agent.

Emulsions are normally prepared by shaking the
two components together, although some kind of
emulsifying agent has to be used in order to stabilize
the product. This emulsifier may be a soap (a long-
chain fatty acid), a surfactant, or a lyophilic sol that
forms a protective film around the dispersed phase.
In milk, which is an emulsion of fats in water, the
emulsifying agent is casein, a protein containing pho-
sphate groups. That casein is not completely success-
ful in stabilizing milk is apparent from the formation
of cream: the dispersed fats coalesce into oily droplets
that float to the surface. This separation may be pre-
vented by ensuring that the emulsion is dispersed
very finely initially: violent agitation with ultrasonics

Fig. 16.16 The arrangement of molecules in the cholesteric
phase of a liquid crystal. Three layers are shown: the relative
orientation of these layers is repeated in successive layers to
give a helical structure.
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Fig. 16.17 The phase diagram at 1 atm of a binary system of
two liquid crystalline materials, 4,4-dimethoxyazoxybenzene
(A) and 4,4-diethoxyazoxybenzene (B).
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or extrusion through a very fine mesh brings this
about, the product being ‘homogenized’ milk.

Aerosols are formed when a spray of liquid is torn
apart by a jet of gas. The dispersal is aided if a charge
is applied to the liquid, for then the electrostatic 
repulsions blast the jet apart into droplets. This 
procedure may also be used to produce emulsions,
for the charged liquid phase may be squirted into 
another liquid.

Disperse systems are often purified by dialysis 
(recall Box 6.1). The aim is to remove much (but not
all, for reasons explained later) of the ionic material
that may have accompanied their formation. A 
membrane (for instance, cellulose) is selected that is
permeable to solvent and ions but not to the bigger
colloid particles. Dialysis is very slow, and is nor-
mally accelerated by applying an electric field and
making use of the charge carried by many colloids;
the technique is then called electrodialysis.

16.7 Surface, structure, and stability

The principal feature of colloids is the very large sur-
face area of the dispersed phase in comparison with
the same amount of ordinary material. For example,
a cube of side 1 cm has a surface area of 6 cm2. When
it is dispersed as 1018 little 10 nm cubes the total 
surface area is 6 × 106 cm2 (about the size of a tennis
court). This dramatic increase in area means that 
surface effects are of dominating importance in the
chemistry of disperse systems.

As a result of their great surface area, many col-
loids are thermodynamically unstable with respect 
to the bulk: that is, many colloids have a thermo-
dynamic tendency to reduce their surface area (like a
liquid). Their apparent stability must therefore be a
consequence of the kinetics of collapse: such disperse
systems are kinetically nonlabile (that is, the activa-
tion energy for collapse is high), not thermodynam-
ically stable. At first sight, though, even the kinetic
argument seems to fail: colloidal particles attract one
another over large distances by the dispersion inter-
action, so there is a long-range force tending to 
collapse them down into a single blob.

Several factors oppose the long-range dispersion
attraction. There may be a protective film at the sur-
face of the colloid particles that stabilizes the inter-
face and cannot be penetrated when two particles
touch. For example, the surface atoms of a platinum
sol in water react chemically, becoming coordinated
with —(OH)3H3, and this layer encases the particle
like a shell. A fat can be emulsified by a soap because
the long hydrocarbon tails penetrate the oil droplet

but the —CO2
− groups (or other hydrophilic groups 

in detergents) surround the surface, form hydrogen
bonds with water, and give rise to a shell of negative
charge that repels a possible approach from another
similarly charged particle.

By a surfactant we mean a species that accumu-
lates at the interface of two phases or substances (one
of which may be air) and modifies the properties of
the surface. An effective surfactant accumulates at
the interface between the phases and does not dissolve
well in either of the bulk phases. A typical surfactant
consists of a long hydrocarbon tail that dissolves in
hydrocarbon and other nonpolar materials, and a
hydrophilic head group that dissolves in a polar sol-
vent (typically water). Typical head groups include
the ionic species —CO2

− and —SO3
−; typical nonionic

species include —(OC2H4)6OH and —(OC2H4)8OH.
A surfactant is an amphiphilic substance, meaning
that it has both hydrophobic and hydrophilic regions
(the amphi- part of the name is from the Greek word
for both). Soaps, for example, consist of the alkali-
metal salts of long-chain carboxylic acids, and the
surfactant in detergents is typically a long-chain 
benzenesulfonic acid (R—C6H4SO3H) or its salt. The
mode of action of a surfactant in a detergent, and of
soap, is to dissolve in both the aqueous phase and the
hydrocarbon phase where their surfaces are in con-
tact, and hence to solubilize the hydrocarbon phase
so that it can be washed away (Fig. 16.18).

Surfactant molecules can group together as micelles,
colloid-sized clusters of molecules, even in the 
absence of grease droplets, for their hydrophobic
tails tend to congregate, and their hydrophilic heads
provide protection (Fig. 16.19). Micelles form only
above when the concentration of surfactant is equal
to or greater than a value called the critical micelle
concentration (CMC). Surfactants form micelles
only when the temperature is above a critical value
called the Krafft temperature, TK.

Fig. 16.18 A surfactant molecule in a detergent or soap acts
by sinking its hydrophobic hydrocarbon tail into the grease,
so leaving its hydrophilic head groups on the surface of the
grease where they can interact attractively with the sur-
rounding water.
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The thermodynamics of micelle formation account
for the existence of a critical temperature. Experiments
show that the enthalpy of formation of micelles in
aqueous systems is probably positive (that is, that
they are endothermic) with ΔH ≈ 1–2 kJ per mole of
surfactant molecules, due in large part to repulsions
between the head groups of the surfactants. That 
micelles do form above the CMC indicates that the
entropy change accompanying their formation must
be positive in order for the Gibbs energy accompany-
ing the formation process, ΔG = ΔH − TΔS, to be 
negative, and measurements suggest a value of about
+140 J K−1 mol−1 at room temperature. That the 
entropy change is positive even though the molecules
are clustering together shows that there must be a
contribution to the entropy from the solvent: the sur-
rounding solvent molecules no longer have to solvate
individual surfactant molecules and so become less
ordered, as in the hydrophobic effect (Section 15.7).
The role of entropy is magnified by the temperature
(the factor T in TΔS), and ΔG may become negative
and micelle formation spontaneous when the tem-
perature is high enough.

The self-assembly of a micelle has the character-
istics of a cooperative process in which the addition 
of a surfactant molecule to a cluster that is forming
becomes more probable the larger the size of the 
aggregate, so after a slow start there is a cascade of
formation of micelles. If we suppose that the domin-
ant micelle consists of N monomers S, then the 
dominant equilibrium we have to consider is

N S f SN (16.6a)
 
K N

N=
[ ]
[ ]
S
S

We have assumed, probably dangerously on account
of the large sizes of monomers, that the solution is
ideal and that activities can be replaced by molar
concentrations. The total concentration of surfactant
is [S]total = [S] + N[SN] because each micelle consists
of N molecules. Therefore,

(16.6b)

This expression can be solved numerically for the 
micelle concentration as a function of the total sur-
factant concentration and some results for K = 1 are
shown in Fig. 16.20. We see that for large N, there 
is a reasonably sharp transition in the relative con-
centrations of surfactant molecules that are present
in micelles, which corresponds to the existence of 
a CMC.

Ionic species tend to be disrupted by the Coulomb
repulsions between head groups and are normally
limited to groups of between 10 and 100 molecules.
Nonionic surfactants may cluster together in swarms
of 1000 or more, and as the temperature is raised
these large aggregates separate into a distinct phase
at a temperature known as the cloud point. The shapes
of the individual micelles vary with concentration.
Although spherical micelles do occur, they are more
commonly flattened spheres close to the CMC, and
rod-like at higher concentrations. The interior of a
micelle is like a droplet of oil, and magnetic resonance
spectroscopy shows that the hydrocarbon tails are
mobile, but slightly more restricted than in the bulk.

Micelles are important in industry and biology on
account of their solubilizing function: matter can be
transported by water after it has been dissolved in

K
N
N

N
N=

−( )
[ ]

[ ] [ ]

S

S Stotal

Fig. 16.19 A representation of a spherical micelle. The 
hydrophilic groups are represented by spheres and the 
hydrophobic hydrocarbon chains are represented by the stalks.
The latter are mobile.
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Fig. 16.20 The fraction of surfactant molecules present 
as micelles as a function of the total surfactant number and 
K = 1.
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their hydrocarbon interiors. For this reason, micellar
systems are used as detergents and drug carriers, and
for organic synthesis, froth flotation, and petroleum
recovery. They can be perceived as a part of a family
of similar structures formed when amphiphilic sub-
stances are present in water (Fig. 16.21). A monolayer
forms at the air/water interface, with the hydrophilic
head groups facing the water. Micelles are like mono-
layers that enclose a region. A bilayer vesicle is like a
double-micelle, with an inward pointing inner surface
of molecules surrounded by an outward pointing
outer layer. The ‘flat’ version of a bilayer vesicle is
the analogue of a cell membrane.

16.8 The electric double layer

Apart from the physical stabilization of disperse 
systems, a major source of kinetic nonlability is the
existence of an electric charge on the surfaces of the
colloidal particles. On account of this charge, ions of
opposite charge tend to cluster nearby.

Two regions of charge must be distinguished.
First, there is a fairly immobile layer of ions that stick
tightly to the surface of the colloidal particle, and that
may include water molecules (if that is the support
medium). The radius of the sphere that captures this
rigid layer is called the radius of shear, and is the
major factor determining the mobility of the particles 
(Fig. 16.22). The electric potential at the radius of
shear relative to its value in the distant, bulk medium
is called the electrokinetic potential, ζ (zeta). The
charged unit attracts an oppositely charged ionic 
atmosphere. The inner shell of charge and the outer
atmosphere jointly constitute the electric double layer.

At high concentrations of ions of high charge num-
ber, the atmosphere is dense and the potential falls to

its bulk value within a short distance. In this case
there is little electrostatic repulsion to hinder the
close approach of two colloid particles. As a result,
flocculation, the aggregation of the colloidal par-
ticles, occurs as a consequence of the van der Waals
forces (Fig. 16.23). Flocculation is often reversible,
and should be distinguished from coagulation, which
is the irreversible collapse of the colloid into a bulk
phase. When river water containing colloidal clay
flows into the sea, the brine induces coagulation and
is a major cause of silting in estuaries.

Metal oxide and sulfide sols have charges that 
depend on the pH; sulfur and the noble metals tend
to be negatively charged. Naturally occurring macro-
molecules also acquire a charge when dispersed in
water, and an important feature of proteins and other
natural macromolecules is that their overall charge
depends on the pH of the medium. For instance, in
acid environments protons attach to basic groups and
the net charge of the macromolecule is positive; in
basic media the net charge is negative as a result of

(a)

(b) (c)

Fig. 16.21 Amphiphilic molecules form a variety of related
structures in water: (a) a monolayer, (b) a spherical micelle, 
(c) a bilayer vesicle.
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of shear

Ions Colloid
particle

Fig. 16.22 The definition of the radius of shear for a colloidal
particle. The spheres are ions attached to the surface of the
particle.

P
o

te
n

ti
al

 e
n

er
g

y,
 V

Separation, R

C
o

ag
u

la
ti

o
n

Fl
o

cc
u

la
ti

o
n

Fig. 16.23 The potential energy of interaction of two colloidal
particles varies with distance as shown here. The shallow
outer well represents the van der Waals interactions between
the particles and accounts for flocculation; the deep inner well
represents the merging—the coagulation—of the particles.
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proton loss. At the isoelectric point, the pH is such
that there is no net charge on the macromolecule.

The primary role of the electric double layer is 
to render the colloid kinetically nonlabile. Colliding
colloidal particles break through the double layer and
coalesce only if the collision is suAciently energetic
to disrupt the layers of ions and solvating molecules,
or if thermal motion has stirred away the surface 
accumulation of charge. This kind of disruption of
the double layer may occur at high temperatures,
which is one reason why sols precipitate when they
are heated. The protective role of the double layer is
the reason why it is important not to remove all 
the ions (other than those needed to ensure overall
electrical neutrality) when a colloid is being purified
by dialysis, and why proteins coagulate most readily
at their isoelectric point.

The presence of charge on colloidal particles and
natural macromolecules also permits us to control
their motion, as in dialysis and electrophoresis. Apart
from its application to the determination of molar
mass, electrophoresis has several analytical and tech-
nological applications. One analytical application is
to the separation of different macromolecules, as dis-
cussed in Section 16.1. Technical applications include
silent ink-jet printers, the painting of objects by air-
borne charged paint droplets, and electrophoretic
rubber forming by deposition of charged rubber
molecules on anodes formed into the shape of the 
desired product (for example, surgical gloves).

16.9 Liquid surfaces and surfactants

Liquid surfaces are mobile interfaces where solutes
might gather and influence its properties. The smooth
surface of stationary liquids is due to the imbalance
of forces, for whereas a molecule in the interior of 
a bulk sample experiences attractions from all direc-
tions, those at the surface experience only inward
forces. A molecule at an air–liquid surface has a
higher potential energy than one in the bulk because
it interacts with fewer neighbours, so work must be
done to bring a molecule from the bulk into the 
surface layer. The work required to increase the area
of surface by Δσ is proportional to that increase and
we write w = γΔσ, where the constant of proportion-
ality γ is called the surface tension. For γΔσ to be 
expressed in joules, γ must be in newtons per metre,
N m−1 (because then N m−1 × m2 = N m = J). Some
values of the surface tension are given in Table 16.1.
Broadly speaking, surface tensions are high when
there are strong forces acting between the molecules
or atoms, as in water and mercury. Surface tensions

typically decrease as the temperature is raised and
vanish at the boiling point.

We saw in Chapter 4 that nonexpansion work
(work that does not involve volume expansion against
an external pressure) can be identified with a change
in Gibbs energy, ΔG, so we can write

ΔG = γΔσ (16.7)

This is the link between surface properties and 
thermodynamics.

One consequence of eqn 16.7 is that the pressure 
is different on either side of a curved liquid surface
(as in a droplet or a cavity in a liquid). As we show 
in Derivation 16.1, the pressure on either side of a
spherical surface of radius r is given by the Laplace
equation:

(16.8)

This equation tells us that the pressure just inside a
curved surface (on the convex side, Fig. 16.24) is lower
than that just outside the surface and that the difference
is greater the greater the surface tension of the liquid.

 
p p

rconcave convex= +
2γ

Table 16.1

Surface tensions of liquids at 293 K

g/(mN m−1)

Benzene 28.88
Carbon tetrachloride 27.0
Ethanol 22.8
Hexane 18.4
Mercury 472
Methanol 22.6
Water 72.75

72.0 at 25°C
58.0 at 100°C

r

pconcave

pconvex

Fig. 16.24 The pressure just inside a curved surface is lower
than that just outside the surface; the difference is greater
the greater the surface tension of the liquid.
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The difference in pressure across a curved interface
has a number of consequences. One is that it gives
rise to capillary action, in which a liquid climbs up
the interior of a narrow tube. As can be seen from
Fig. 16.25, the pressure just below the meniscus of 
a liquid in a narrow tube is less, by 2γ /r, than the 

atmospheric pressure so the liquid is pushed up the
tube until the hydrostatic pressure (Section 0.5),
which is equal to ρgh, where ρ is the mass density of
the liquid, g is the acceleration of free fall, and h is
the height of the column, cancels the reduction in
pressure due to the curvature. That is, the liquid rises
to a height at which ρgh = 2γ /r, and therefore

(16.9)

This expression gives a simple method for estimating
the surface tension of a liquid (by rearranging it into
γ = ρgrh).

A brief illustration If water at 25°C rises to a height of
7.36 cm in a capillary tube of internal radius 0.20 mm, the
surface tension is

This value could be reported as 72 mN m−1.

The surface tension of a liquid changes markedly if
a surfactant is present. Amphiphilic molecules accu-
mulate at the water–air surface with their hydropho-
bic tails exposed to the air to minimize interaction
with the water. Their accumulation at the surface 
relative to the bulk is reported as the surface excess,
Γ (uppercase gamma). In a simple case where no 
surfactant appears in the vapour above the surface,
this quantity is measured by noting the total amount
of surfactant in a sample of the liquid, ntotal, and sub-
tracting from that total the amount known to be in
the bulk solution, nsolution, from measurement of its
concentration. Then

(16.10)

where σ is the area of the surface. Below the critical
micelle concentration the slope of a plot of surface
tension against the logarithm of the concentration is
equal to −RTΓ, so Γ can be determined.3 Above the
CMC the surface tension is independent of the con-
centration of surfactant, so the CMC can be deter-
mined graphically (Fig. 16.26).

Pure liquids do not form foams: the Gibbs energy
increases when a surface is formed, so there is always
a spontaneous tendency for a cavity in a liquid to 
collapse. A bubble in boiling water will rise to the
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Derivation 16.1

The Laplace equation

If the pressure inside a spherical cavity is pconcave, the
total force (which is pressure × area) acting on the wall of
the cavity of area 4pr2 is 4pr2pconcave. The force tending
to compress the cavity is the sum of effects due to the
pressure outside the cavity—on the convex side of the
surface—and the surface tension. The former gives rise
to a force 4pr2pconvex. The force due to the surface ten-
sion is calculated as follows. The change in surface area
when the radius of the cavity increases from r to r + dr is

ds = 4p(r + dr)2 − 4pr2

= 4p(r2 + 2rdr + dr2) − 4pr2 ≈ 8prdr

(As usual in calculus, we neglect higher powers of 
infinitesimal quantities.) From eqn 16.7 the work done
when the cavity expands by this amount is dw = 8pgrdr.
However, because work is force × distance, it follows
that the force opposing the expansion through dr is F =
8pgr. The total inward force is therefore 4pr2pconvex +
8pgr. When the inward and outward forces are balanced,

4pr2pconcave = 4pr2pconvex + 8pgr

This relation can now be rearranged into eqn 16.8 by 
dividing both sides by 4pr2.

p

p

p
p

p – 2 /r

p – 2 /r + gh

γ

γ ρ

Fig. 16.25 When a capillary tube is first stood in a liquid the
liquid climbs up the walls, so curving the surface. It continues
to rise until the total pressure at the foot of the column (which
arises from the atmosphere, the effect of curvature, and the
hydrostatic contribution) is equal to the atmospheric pressure. 3 See our Physical chemistry (2006).
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surface and break when it arrives. If a surfactant is
present, however, there is a smaller pressure difference
between its interior and the surroundings (because the
surface tension is lower) and the surface is stabilized
by the surface excess of surfactants. A bubble in a
surfactant solution will rise to the surface after it has
been formed and will survive at the surface. It will be
joined by others, and a foam will develop. The struc-
ture of that foam is itself a highly interesting mathe-
matical problem, for the originally spherical bubbles
deform into polyhedra that minimize the total sur-
face area. The most common polyhedra are predicted
mathematically to have 13.4 sides, and indeed it is
observed that most have 14 sides, with the second
most abundant having 12.
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Fig. 16.26 The variation of surface tension with concentra-
tion of surfactant.

Checklist of key ideas

You should now be familiar with the following topics.

1 Many proteins (specifically protein enzymes) are
monodisperse, a synthetic polymer is polydisperse.

2 Techniques for the determination of the mean
molar masses of macromolecules include 
osmometry, mass spectrometry (as MALDI), 
sedimentation rates and equilibria, gel and capil-
lary electrophoresis, and laser light scattering.

3 The least structured model of a macromolecule is
as a random coil.

4 The primary primary structure of a biopolymer is
the sequence of its monomer units.

5 The secondary structure of a protein is the spa-
tial arrangement of the polypeptide chain and 
includes the a-helix and b-sheet.

6 Helical and sheet-like polypeptide chains are
folded into a tertiary structure by bonding influ-
ences between the residues of the chain.

7 Some macromolecules have a quaternary structure
as aggregates of two or more polypeptide chains.

8 Protein denaturation is loss of structure; a
helix–coil transition is a cooperative process.

9 Synthetic polymers are classified as elastomers,
fibres, and plastics.

10 A perfect elastomer is a polymer in which the 
internal energy is independent of the extension of
the random coil; for small extensions a random
coil model obeys a Hooke’s law restoring force.

11 Synthetic polymers undergo a transition from a
state of high to low chain mobility at the glass
transition temperature, Tg.

12 A mesophase is a bulk phase that is intermediate
in character between a solid and a liquid.

13 A disperse system is a dispersion of small par-
ticles of one material in another.

14 Liquid crystals are classified as smectic, nematic,
or cholesteric.

15 A surfactant is a species that accumulates at the
interface of two phases or substances and modi-
fies the properties of the surface.

16 The radius of shear is the radius of the sphere that
captures the rigid layer of charge attached to a
colloid particle.

17 The electrokinetic potential is the electric poten-
tial at the radius of shear relative to its value in the
distant, bulk medium.

18 The inner shell of charge and the outer atmo-
sphere jointly constitute the electric double layer.

19 Many colloid particles are thermodynamically 
unstable but kinetically nonlabile.

20 Surface tension is a measure of the work needed
to produce a liquid surface.

21 The pressure on the convex side of a curved sur-
face is lower than that on the concave side; the
difference gives rise to capillary action.

22 The accumulation of a surfactant at a surface 
lowers the surface tension.
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The following table summarizes the equations developed in this chapter.

Description

Number-average molar mass

Weight-average molar mass

Contour length

Root mean square separation of the ends

Radius of gyration

Restoring force

Relation between Gibbs energy and increase 
in surface area

Laplace equation

Capillary rise

Surface excess

Equation

6n = (N1M1 + N2M2 + . . .)/N

6w = (m1M1 + m2M2 + . . .)/m

Rc = Nl

Rrms = N1/2l

RG = (N/6)1/2l

F = nkT/Nl

DG = gDs

pconcave = pconvex + 2g/r

h = 2g/rgr

G = (ntotal − nsolution)/s

Comment

Definition

Definition

N units each of length l; a
freely jointed random coil

N units each of length l; a
freely jointed random coil

N units each of length l; a
freely jointed random coil

Freely jointed one-dimensional
random coil; small
displacements

Constant temperature and
pressure

Spherical surface of radius r

Capillary tube of radius r ; r is
the mass density of the liquid

Definition

Table of key equations

Questions and exercises

Discussion questions

16.1 Distinguish between number-average and weight- 
average molar masses. Why might they differ?

16.2 Distinguish between contour length, root mean square
separation, and radius of gyration of a random coil.

16.3 What are the limitations of the random coil model of 
a polymer?

16.4 Describe the methods available for the determination
of the molar masses of macromolecules and polymers.

16.5 Why does a perfect elastomer act like a coiled 
spring?

16.6 What molecular interactions contribute to the forma-
tion, thermal stability, and mechanical strength of polymeric
material?

16.7 Explain the physical origins of surface activity by surfac-
tant molecules.

16.8 Explain the formation and importance of the electric
double layer in the context of disperse systems.

Exercises

16.1 Calculate the number-average molar mass and the
mass-average molar mass of a mixture of equal amounts 
of two polymers, one having M = 82 kg mol−1 and the other 
M = 108 kg mol−1.

16.2 A solution consists of solvent, 30 per cent by mass of 
a dimer with M = 30 kg mol−1 and its monomer. What aver-
age molar mass would be obtained from measurement of (a)
osmotic pressure, (b) light scattering?

16.3 Determine the heterogeneity index of a sample of
polystyrene from the following data:

Molar mass Average molar Mass of sample 
interval/ mass within within interval/g
(kg mol−1) interval/(kg mol−1)

5–10 6.5 16.0
10–15 11.5 27.1
15–20 19.5 29.5
20–25 23.5 13.4
25–30 28.5 8.7
30–35 35.5 3.5
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16.4 Polystyrene is a synthetic polymer with the structure 
—(CH2CH(C6H5))n—. A batch of polydisperse polystyrene was
prepared by initiating the polymerization with t-butyl radicals.
As a result, the t-butyl group is expected to be covalently 
attached to the end of the final products. A sample from this
batch was embedded in an organic matrix containing silver
trifluoroacetate and the resulting MALDI-TOF spectrum con-
sisted of a large number of peaks separated by 104 g mol−1,
with the most intense peak at 25 578 g mol−1. Comment 
on the purity of this sample and determine the number of 
—CH2CH(C6H5)— units in the species that gives rise to the
most intense peak in the spectrum.

16.5 The data from a sedimentation equilibrium experiment
performed at 300 K on a macromolecular solute in aqueous
solution show that a graph of ln c against (r/cm)2 is a straight
line with a slope of 659. The rotational rate of the centrifuge
was 55 000 rpm. The specific volume of the solute is vs =
0.61 cm3 g−1. Calculate the molar mass of the solute. Hint:
Use eqn 16.2; you need to know that the buoyancy correction
is b = 1 − rvs; take r = 0.996 g cm−3.

16.6 A polymer chain consists of 800 segments, each 
1.10 nm long. If the chain were ideally flexible, what would
be (a) the contour length, (b) the rms separation of the ends
of the chain?

16.7 Calculate the contour length and the root mean square
separation of the ends of the chain for polyethylene with a
molar mass of 250 kg mol−1.

16.8 The radius of gyration of a long chain molecule is found to
be 7.3 nm. The chain consists of C—C links. Assume the chain
is randomly coiled and estimate the number of links in the chain.

16.9 Construct a two-dimensional random walk by using 
a random number generating routine with mathematical soft-
ware or electronic spreadsheet. Construct a walk of 50 and
100 steps. If there are many people working on the problem,
investigate the mean and most probable separations in the
plots by direct measurement. Do they vary as N1/2?

16.10 Use the information below and the expression for the
radius of gyration of a solid sphere to classify the species
below as globular or rod-like. The specific volume, vs, is the
reciprocal of the density.

M/(g mol−1) vs /(cm3 g−1) Rg/nm

Serum albumin 66 × 103 0.752 2.98
Bushy stunt virus 10.6 × 106 0.741 12.0
DNA 4 × 106 0.556 117.0

16.11 What is the change in conformational entropy when a
random coil is stretched from fully coiled to 10 per cent (that
is, v = 0.1 in eqn 16.4).

16.12 The following table lists the glass transition tempera-
tures, Tg, of several polymers. Discuss the reasons why the
structure of the monomer unit has an effect on the value of Tg.

Polymer Poly(oxymethylene) Polyethylene

Structure —(OCH2)n— —(CH2CH2)n—
Tg/K 198 253

Polymer Poly(vinyl chloride) Polystyrene

Structure —(CH2CHCl)n— —(CH2CH(C6H5))n—
Tg/K 354 381

16.13 Equation 6.6b is surprisingly tricky to solve. Convince
yourself of that by taking the very simple case of N = 2 and 
K = 1, and find an expression for S2. Hint: Use the fact that 
S2 < St to eliminate one of the roots of the quadratic equation.

16.14 Now extend your approach to solving eqn 6.6b by
using mathematical software, increasing N systematically
until the transition becomes sharp. Take K = 1 initially, but
once you have established the procedure, explore the con-
sequences of changing K.

16.15 Use the Laplace equation to calculate the difference in
pressure on either side of a curved surface of water (g =
72 nN m−1 at 298 K) of radius (a) 0.10 mm, (b) 1.0 mm.

16.16 To what height would you expect ethanol (g =
22.39 nN m−1 at 298 K, r = 789 kg m−3) to climb by capillary
action in a tube of internal radius 0.10 mm.

16.17 In an experiment to determine the surface tension of
methanol (r = 791 kg m−3 at 298 K) it was found that it rose to
a height of 5.8 cm in a tube of internal diameter 0.20 mm.
What is the surface tension of methanol at 298 K?

16.18 Calculate the surface excess of solute given the fol-
lowing data:

Molar concentration of bulk solution as prepared: 
0.100 mol dm−3

Molar concentration of bulk solution as determined: 
0.981 mol dm−3

Total volume of solution: 100 cm3

Radius of beaker containing the solution: 2.5 cm

Projects

The symbol ‡ indicates that calculus is required.

16.19‡ The probability that the ends of a three-dimensional
random coil of N links each of length l will be found in the
range R to R + dR is f(R)dR, where

with a = (3/2Nl2)1/2. Use this expression to deduce expres-
sions for (a) the root mean square separation of the ends of
the chain, (b) the mean separation of the ends, and (c) their
most probable separation. Evaluate these three quantities for
a fully flexible chain with N = 5000 and l = 154 pm.
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16.20‡ Here we explore elastomers in quantitative detail. (a)
Estimate the force required to expand a random coil (a per-
fect elastomer) consisting of 1000 links by 10 per cent of its
fully coiled state at 300 K. (b) The restoring force acting when
a random coil is extended by dx is related to the conforma-
tional entropy by F = −TdS/dx. Use this expression to deduce
eqn 16.5a and eqn 16.5b.

16.21 The following exercises give you a sense of the cal-
culations that must be done when predicting the structure of
a biological polymer with the techniques summarized in Box
16.1. (a) Theoretical studies have estimated that the lumi-
flavin isoalloazine ring system (4) has an energy minimum at
the bending angle of 15°, but that it requires only 8.5 kJ mol−1

to increase the angle to 30°. If there are no other compen-
sating interactions, what is the force constant for lumiflavin
bending? (b) The equilibrium bond length of a carbon–carbon
single bond is 152 pm. Given a C—C force constant of 400 N
m−1, how much energy, in kilojoules per mole, would it take
to stretch the bond to 165 pm?

16.22 Here we explore the dynamical properties of biolo-
gical membranes. (a) Lipid diffusion in a cell plasma membrane

occurs with a diffusion constant of 1.0 × 10−8 cm2 s−1 and the
same lipid in a lipid bilayer has a diffusion constant of 1.0 ×
10−7 cm2 s−1. How long will it take the lipid to diffuse 10 nm 
in a plasma membrane and a lipid bilayer? (b) Organisms are
capable of biosynthesizing lipids of different composition so
that cell membranes have melting temperatures close to the
ambient temperature. Keeping in mind that structural ele-
ments that prevent alignment of the hydrophobic chains in
the gel phase lead to low melting temperatures, explain why
bacterial and plant cells grown at low temperatures synthe-
size more phospholipids with chains containing C=C bonds
than do cells grown at higher temperatures.
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Modern chemistry is closely concerned with the prop-
erties of solids. Apart from their intrinsic usefulness
for construction, modern solids have made possible
the semiconductor revolution and recent advances in
ceramics have given rise to the hope that we may
now be on the verge of a superconductor revolution.
Advances in our understanding of electron mobility
in solids are also useful in biology, where electron
transport is responsible for many biochemical pro-
cesses, particularly photosynthesis and respiration.

The principal technique for investigating the 
arrangements of atoms in condensed phases, primarily
crystalline solids, is X-ray diffraction, but nuclear
magnetic resonance (NMR, Chapter 21) is now also
making significant contributions. Information from
X-ray diffraction and NMR is the basis of much of
molecular biology, so the material presented here is
the foundation for our discussion of biomolecular
structures in Chapter 16. In each case, the observed
crystal structure is Nature’s solution to the problem
of condensing objects of various shapes into an 
aggregate of minimum energy and, for temperatures
above zero, of minimum Gibbs energy.

Bonding in solids

The bonding within a solid may be of various kinds.
Simplest of all (in principle) is the bonding in an 
elemental metallic solid, in which electrons are de-
localized over arrays of identical cations and bind the
whole together into a rigid but malleable structure.
Because the delocalized electrons can accommodate
bonding patterns with very little directional character,
the crystal structures of metals are determined largely
by the geometrical problem of packing spherical atoms
into a dense, orderly array. In an ionic solid, the ions
(in general, of different radii, and not always spherical)
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are held together by their Coulombic interaction, and
pack together to give an electrically neutral structure.
In a covalent solid (or network solid), covalent bonds
in a definite spatial orientation link the atoms in a
network extending through the crystal. The stereo-
chemical demands of valence now override the geo-
metrical problem of packing spheres together, and
elaborate and extensive structures may be formed.
Important examples of covalent solids are diamond
and graphite (Section 17.8). Molecular solids, which
are the subject of the overwhelming majority of
modern structural determinations, consist of discrete
molecules attracted to one another by the interac-
tions described in Chapter 15.

Some solids—notably the metals—conduct elec-
tricity because they have mobile electrons. These
electronic conductors are classified on the basis of
the variation of their electrical conductivity with
temperature (Fig. 17.1):

• A metallic conductor is an electronic conductor
with a conductivity that decreases as the tempera-
ture is raised.

• A semiconductor is an electronic conductor with 
a conductivity that increases as the temperature is
raised.

Metallic conductors include the metallic elements,
their alloys, and graphite (parallel to the graphene
planes). Some organic solids are metallic conductors.
Semiconductors include silicon, diamond, and 
gallium arsenide. A semiconductor generally has a
lower conductivity than that typical of metals, but
the magnitude of the conductivity is not relevant 

to the distinction. It is conventional to classify sub-
stances with very low electrical conductivities, such
as most ionic solids, as insulators. We shall use this
term, but it is one of convenience rather than one of
fundamental significance. Superconductors are sub-
stances that conduct electricity with zero resistance.
The mechanism of superconductivity in metals at
very low (liquid helium) temperatures is well under-
stood: that of the potentially more useful high-
temperature superconductors (HTSC), which are 
ceramics mixed oxides such as YBa2Cu3O7, is still
unresolved.

17.1 The band theory of solids

Metallic and ionic solids can both be treated by
molecular orbital theory. The advantage of that 
approach is that we can then see both types of solid
as two extremes of a single kind. In each case, the
electrons responsible for the bonding are delocalized
throughout the solid (like in a benzene molecule, but
on a much bigger scale). In an elemental metal, the
electrons can be found on all the atoms with equal
probability, which matches the primitive picture of a
metal as consisting of cations embedded in a nearly
uniform electron ‘sea’. In an ionic solid the wave-
functions occupied by the delocalized electrons are
almost entirely concentrated on the anions, so the Cl
atoms in NaCl, for instance, are present as Cl− ions
and the Na atoms, which have low valence electron
density, are present as Na+ ions.

To set up the molecular orbital theory of solids we
shall consider initially a single, infinitely long line of
identical atoms, each one having one s orbital avail-
able for forming molecular orbitals (as in sodium).
One atom of the solid contributes one s orbital with
a certain energy (Fig. 17.2). When a second atom 
is brought up it forms a bonding and antibonding 
orbital. The orbital of the third atom overlaps its
nearest neighbour (and only slightly the next-nearest),
and three molecular orbitals are formed from these
three atomic orbitals. The fourth atom leads to the
formation of a fourth molecular orbital. At this 
stage we can begin to see that the general effect of
bringing up successive atoms is to spread the range of
energies covered by the molecular orbitals, and also
to fill in the range of energies with more and more 
orbitals (one more for each additional atom). When
N atoms have been added to the line, there are N
molecular orbitals covering a band of finite width.
The lowest-energy orbital of this band is fully bonding
and the highest-energy orbital is fully antibonding
between adjacent atoms (Fig. 17.3). In the Hückel
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conductor.
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approximation (Section 14.16), the energies of the
orbitals are given by

(17.1)

where α is approximately equal to (the negative of)
the ionization energy of the atom and β is a negative
quantity that represents the lowering of energy due
to interaction between the atoms. As N becomes
infinite, the separation between neighbouring levels,
Ek+1 − Ek goes to zero but, as shown in Derivation
17.1, the width of the band, EN − E1, becomes 4β, a
finite quantity.
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A band formed from overlap of s orbitals is called
an s band. If the atoms have p orbitals available, then
the same procedure leads to a p band (as in the upper
half of Fig. 17.3, with different values of α and β in
eqn 17.1). If the atomic p orbitals lie higher in energy
than the s orbitals, then the p band lies higher than
the s band, and there may be a band gap, a range of
energies for which no molecular orbitals exist. If the
separation of the atomic orbitals is not large, the two
types of band might overlap.

17.2 The occupation of bands

Now consider the electronic structure of a solid
formed from atoms each of which is able to con-
tribute one electron (for example, the alkali metals).
There are N atomic orbitals and therefore N molecu-
lar orbitals squashed into a band of finite width. There
are N electrons to accommodate; they form pairs that
occupy the lowest N molecular orbitals (Fig. 17.4).
The highest occupied molecular orbital is called the
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Fig. 17.2 The formation of a band of N molecular orbitals by
successive addition of N atoms to a line. Note that the band
remains of finite width, and although it looks continuous
when N is large, it consists of N different orbitals.
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Fig. 17.3 The overlap of s orbitals gives rise to an s band, and
the overlap of p-orbitals gives rise to a p band. In this case the
s and p orbitals of the atoms are so widely spaced that there
is a band gap. In many cases the separation is less, and the
bands overlap.

Derivation 17.1

The width of a band

The energy of the level with k = 1 is

As N becomes infinite, the cosine term becomes cos 0,
which is equal to 1. Therefore, in this limit, E1 = a + 2b.
When k has its maximum value of N,

As N approaches infinity, we can ignore the 1 in the 
denominator, and the cosine term becomes cos p,
which is equal to −1. Therefore, in this limit, EN = a − 2b.
The difference between the upper and lower energies of
the band is therefore 4b.

E
N

NN = +
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟a b2

1
cos

p

E
N1 2

1
= +

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟a bcos

p

E
n

er
g

y

Fermi level

Fig. 17.4 When N electrons occupy a band of N orbitals, it is
only half-full and the electrons near the Fermi level (the top of
the filled levels) are mobile.
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Fermi level. However, unlike in the discrete mole-
cules we considered in Chapter 14, there are empty
orbitals just above and very close in energy to the
Fermi level, so it requires hardly any energy to excite
the uppermost electrons. Some of the electrons are
therefore very mobile and give rise to electrical con-
ductivity. An unfilled band of orbitals is called a 
conduction band.

As we have remarked, metallic conductivity is
characterized by a decrease in electrical conductiv-
ity with increasing temperature. This behaviour is 
accommodated in the present model because an 
increase in temperature causes more vigorous ther-
mal motion of the atoms, with the result that there
are more collisions between the moving electrons
and the atoms. That is, at high temperatures the elec-
trons are scattered out of their paths through the
solid and are less eAcient at transporting charge.

When each atom provides two electrons, the 2N
electrons fill the N orbitals of the s band. The Fermi
level now lies at the top of the band and there is a gap
before the next band begins (Fig. 17.5a). A filled
band is called a valence band. It might be suspected
that such elements, which include members of Group
2, will be insulators. However, p orbitals also form
bands that in some cases (as in Group 2) overlap the
s bands. The bands available to the electrons are then
not full and the elements are metallic conductors.

When there is a gap between an s band and a p
band the element and the former is full, the substance
is not a metallic conductor. However, as the temper-
ature is increased, electrons can populate the empty
orbitals of the upper band (Fig. 17.5b; we shall see 
in Chapter 22 that an increase in temperature leads
to an increase in the population of excited states of 
a system). They are now mobile, and the solid has 
become an electronic conductor. In fact, it is a 

semiconductor, because the electrical conductivity
depends on the number of electrons that are pro-
moted across the gap and that number increases, 
and the electrical conductivity increases accordingly,
as the temperature is raised. This condition is 
observed for elements, such as Si and Ge, where
bands formed from valence electrons do not overlap,
so leaving a gap.

If the gap is large, very few electrons will be 
excited across it at ordinary temperatures and the
conductivity will remain close to zero, giving an in-
sulator. Thus, the conventional distinction between
an insulator and a semiconductor is related to the
size of the band gap and is not absolute like the dis-
tinction between a metal (incomplete bands at T = 0)
and a semiconductor (full bands at T = 0).

Another method of increasing the number of
charge carriers and enhancing the semiconductivity
of a solid is to implant foreign atoms into an other-
wise pure material. If these dopants can trap elec-
trons (as indium or gallium atoms can in silicon,
because In and Ga atoms have one fewer valence
electron than Si), then they withdraw electrons from
the filled band, leaving holes that allow the remain-
ing electrons to move (Fig. 17.6a). This doping pro-
cedure gives rise to p-type semiconductivity, the p
indicating that the holes are positive relative to the
electrons in the band. Alternatively, a dopant might
carry excess electrons (for example, phosphorus
atoms introduced into germanium), and these addi-
tional electrons occupy otherwise empty bands, 
giving n-type semiconductivity (Fig. 17.6b), where n
denotes the negative charge of the carriers.
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Fig. 17.5 (a) When 2N electrons are present, the band is full
and the material is an insulator at T = 0. (b) At temperatures
above T = 0, electrons populate the levels of the conduction
band at the expense of the valence band, and the solid is a
semiconductor.
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Fig. 17.6 (a) A dopant with fewer electrons than its host can
form a narrow band that accepts electrons from the valence
band. The holes in the valence band are mobile, and the sub-
stance is a p-type semiconductor. (b) A dopant with more
electrons than its host forms a narrow band that can supply
electrons to the conduction band. The electrons it supplies
are mobile, and the substance is an n-type semiconductor.
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17.3 The optical properties of junctions

The band structure of a p–n junction, the interface of
the two types of semiconductor, is shown in Fig. 17.7.
When electrons are supplied through an external cir-
cuit to the n side of the junction, the electrons in the
conduction band of that semiconductor fall into the
holes in the valence band of the p-type semiconductor.

As the electrons fall from the upper band into the
lower, they release energy. In some solids the wave-
lengths of the wavefunctions in the upper and lower
states are different, which means that the linear 
momenta (through the de Broglie relation, p = h/λ) of
the electron in the initial and final states are different.
As a result, the transition can occur only if the electron
transfers linear momentum to the lattice: the device
becomes warm as the atoms are stimulated to vibrate.
This is the case for silicon semiconductors, and is one
reason why computers need eAcient cooling systems.

In some materials, most notably gallium arsenide,
GaAs, the wavefunctions of the initial and final states
of the electron have the same wavelengths and there-
fore correspond to the same linear momentum. As 
a result, transitions can occur without the lattice
needing to participate by mopping up the difference
in linear momenta. The energy difference is therefore
emitted as light. Practical light-emitting diodes of this
kind are widely used in electronic displays. Gallium
arsenide itself emits infrared light, but the width of the
band gap is increased by incorporating phosphorus.
A material of composition approximately GaAs0.6P0.4
emits light in the red region of the spectrum, and
diodes emitting orange and amber light can also be
made with different proportions of Ga, As, and P.
The spectral region ranging from yellow to blue can
be covered by using gallium phosphide (yellow or
green light) and gallium nitride (green or blue light).
With some modification, these materials can also be
used in the fabrication of diode lasers, as we shall see
in Chapter 20.

17.4 Superconductivity

Following the discovery by the Dutch physicist Heike
Kamerlingh Onnes in 1911 that mercury is a super-
conductor below the critical temperature, Tc, of 4.2 K,
the boiling point of liquid helium, physicists and
chemists made slow but steady progress in the dis-
covery of superconductors with higher critical tem-
peratures. Metals, such as tungsten, mercury, and lead,
tend to have critical temperatures below about 10 K.
Intermetallic compounds, such as Nb3X (X = Sn, Al,
or Ge), and alloys, such as Nb/Ti and Nb/Zr, have
critical temperatures between 10 K and 23 K. In 1986,
however, an entirely new range of high-temperature
superconductors (HTSC) was discovered with critical
temperatures well above 77 K, the boiling point of the
inexpensive refrigerant liquid nitrogen. For example,
HgBa2Ca2Cu2O8 has Tc = 153 K.

The central concept of low-temperature super-
conductivity is the existence of a Cooper pair, a pair 
of electrons that exists on account of the indirect
electron–electron interactions mediated by the nuclei
of the atoms in the lattice. Thus, if one electron is in
a particular region of a solid, the nuclei there move
toward it and give rise to a distorted local structure
(Fig. 17.8). Because that local distortion is rich in
positive charge, it is favourable for a second electron
to join the first. Hence, there is a virtual attraction
between the two electrons, and they move together
as a pair. A Cooper pair undergoes less scattering
than an individual electron as it travels through the
solid because the distortion caused by one electron
can attract back the other electron should it be 
scattered out of its path in a collision. Because the
Cooper pair is stable against scattering, it can carry
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Fig. 17.7 The structure of a diode junction (a) without bias,
(b) with bias (that is, with a potential difference applied).
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Fig. 17.8 The formation of a Cooper pair. One electron dis-
torts the crystal lattice and the second electron has a lower
energy if it goes to that region. These electron–lattice inter-
actions effectively bind the two electrons into a pair.



CHAPTER 17: METALLIC, IONIC, AND COVALENT SOLIDS396

charge freely through the solid, and hence give rise to
superconductivity. The local distortion is disrupted
by thermal motion of the ions in the solid, so the vir-
tual attraction occurs only at very low temperatures.

The Cooper pairs responsible for low-temperature
superconductivity are likely to be important in HTSCs,
but the mechanism for pairing is hotly debated.
Consider YBa2Cu3O7, one of the most widely studied
superconductors, which consists of layers of square-
pyramidal CuO5 units and almost flat sheets of
square-planar CuO4 units (Fig. 17.9). It is believed
that movement of electrons along the linked CuO4
units accounts for superconductivity, whereas the
linked CuO5 units act as ‘charge reservoirs’ that
maintain an appropriate number of electrons in 
the superconducting layers.

17.5 The ionic model of bonding

Suppose we have a line of atoms with different elec-
tronegativities, such as a one-dimensional array of
sodium and chlorine atoms rather than the identical
atoms treated so far. Each sodium atom contributes
an s orbital and one electron. Each chlorine atom
contributes a p orbital and its one electron.

We use the s and p orbitals to build molecular 
orbitals that spread throughout the solid. Now,
though, there is a crucial difference. The orbitals 
on the two types of atom have markedly different 
energies, so (just as in the construction of molecular
orbitals for diatomic molecules, Section 14.12) we
consider them separately. The Cl3p orbitals interact

to form one band and the higher energy Na3s 
orbitals interact to form another band. However, 
because the sodium atoms have very little overlap
with one another (they are separated by a chlorine
atom), the Na3s band is very narrow; so is the Cl3p
band, for a similar reason. As a result, there is a big
gap between two narrow bands (Fig. 17.10).

Now consider the occupation of the bands. If there
are N sodium atoms and N chlorine atoms, there will
be 2N electrons to accommodate. These electrons 
occupy and fill the lower Cl3p band. As a result of
the big band gap, the substance is an insulator.
Moreover, because only the Cl3p band is occupied,
the electron density is almost entirely on the chlorine
atoms. In other words, we can treat the solid as com-
posed of Na+ cations and Cl− anions, just as in an 
elementary picture of ionic bonding.

Now that we know where the electron density is
largely located, we can adopt a much simpler model
of the solid. Instead of expressing the structure in
terms of molecular orbitals, we treat it as a collection
of cations and anions. This simplification is the basis
of the ionic model of bonding.

17.6 Lattice enthalpy

The strength of a covalent bond is measured by its
dissociation energy, the energy needed to separate the
two atoms joined by the bond. For thermodynamic
applications we express this energy in terms of the
bond enthalpy (Section 3.2). The strength of an ionic
bond is measured similarly, but now we have to take
into account the energy required to separate all the
ions of a solid sample from one another and, for 
thermodynamic applications, express this energy as a
change in enthalpy. The lattice enthalpy, ΔHL, is the
standard enthalpy change accompanying the separa-
tion of the species that compose the solid (such as
ions if the solid is ionic, and molecules if the solid is
molecular) per mole of formula units. For example,
the lattice enthalpy of an ionic solid such as sodium
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Y

Fig. 17.9 The structure of the YBa2Cu3O7 superconductor.
(a) Metal atom positions. (b) The polyhedra show the position
of oxygen atoms and indicate that the metal ions are in square-
planar and square-pyramidal coordination environments.
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Fig. 17.10 The bands formed from two elements of widely
different electronegativity (such as sodium and chlorine): they
are widely separated and narrow. If each atom provides one
electron, the lower band is full and the substance is an insulator.
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chloride is the standard molar enthalpy change 
accompanying the process.

NaCl(s) → Na+(g) + Cl−(g) ΔHL = 786 kJ mol−1

A brief comment Because the lattice enthalpy is invariably
a positive quantity, it is normally reported without its + sign.
The lattice enthalpy of a molecular solid, such as ice, is the
standard molar enthalpy of sublimation; the lattice enthalpy
of a metal is its enthalpy of atomization.

Lattice enthalpies of solids are determined from
other experimental data by using a Born–Haber
cycle, which is a cycle (a closed path) of steps that in-
cludes lattice formation as one stage. The value of the
lattice enthalpy—the only unknown in a well-chosen
cycle—is found from the requirement that the sum of
the enthalpy changes measured at a single tempera-
ture round a complete cycle is zero (because enthalpy
is a state property). A typical cycle for an ionic com-
pound has the form shown in Fig. 17.11. Example
17.1 illustrates how the cycle is used and Table 17.1
gives characteristic values.
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Fig. 17.11 The Born–Haber cycle for the determination of
one of the unknown enthalpies, most commonly the lattice
enthalpy. Upward pointing arrows denote positive changes 
in enthalpy; downward pointing arrows denote negative 
enthalpy changes. All the steps in the cycle correspond to the
same temperature.

Table 17.1

Lattice enthalpies, DH L
-/(kJ mol −1)

LiF 1037 LiCl 852 LiBr 815 LiI 761
NaF 926 NaCl 786 NaBr 752 NaI 705
KF 821 KCl 717 KBr 689 KI 649
MgO 3850 CaO 3461 SrO 3283 BaO 3114
MgS 3406 CaS 3119 SrS 2974 BaS 2832
Al2O3 15 900
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Fig. 17.12 The Born–Haber cycle for the calculation of
the lattice enthalpy of potassium chloride. The sum of
the enthalpy changes around the cycle is zero. The 
numerical values are in kilojoules per mole.

Example 17.1

Using a Born–Haber cycle to determine a 
lattice enthalpy

Calculate the lattice enthalpy of KCl(s) using a Born–Haber
cycle and the following data, which are all for 25°C.

Process DH=/(kJ mol−1)

Sublimation of K(s) +89
Ionization of K(g) +418
Dissociation of Cl2(g) +244
Electron attachment to Cl(g) −349
Formation of KCl(s) −437

Strategy First, draw the cycle, showing the atomization
of the elements, their ionization, and the formation of
the solid lattice; then complete the cycle (for the step
solid compound → original elements) by using the en-
thalpy of formation. The sum of enthalpy changes round
the cycle is zero, so include the numerical data and set
the sum of all the terms equal to zero; then solve the
equation for the one unknown (the lattice enthalpy).

Solution Figure 17.12 shows the cycle required. The first
step is the sublimation (atomization) of solid potassium:

DH -/(kJ mol−1)

K(s) → K(g) +89 (the enthalpy of 
sublimation or atomization 
of potassium)

Chlorine atoms are formed by dissociation of Cl2:

Cl2(g) → Cl(g) +122 (half the bond enthalpy of
Cl—Cl)

1
2
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Now, potassium ions are formed by ionization of the gas-
phase atoms:

K(g) → K+(g) + e−(g) +418 (the ionization enthalpy
of potassium)

and chloride ions are formed from the chlorine atoms:

Cl(g) + e−(g) → Cl−(g) −349 (the electron-gain
enthalpy of chlorine)

The solid is now formed:

K+(g) + Cl−(g) → KCl(s) −DHL
- (the enthalpy change

when the lattice forms is the
negative of the lattice
enthalpy)

and the cycle is completed by decomposing KCl(s) into
its elements:

KCl(s) → K(s) + Cl2(g) +437 (the negative of the
enthalpy of formation of KCl)

The sum of the enthalpy changes is −DHL
- + 717 kJ 

mol−1; however, the sum must be equal to zero, so 
DHL

- = 717 kJ mol−1.

1
2

Self-test 17.1

Calculate the lattice enthalpy of magnesium bromide
from the following data and the information in the
Data Section.

Process DH=/(kJ mol−1)

Sublimation of Mg(s) +148
Ionization of Mg(g) to Mg2+(g) +2187
Dissociation of Br2(g) +193
Electron attachment to Br(g) −325

[Answer: 2402 kJ mol−1]

+ + + + +– – – – –

Fig. 17.13 There are alternating positive and negative contri-
butions to the potential energy of a crystal lattice on account
of the repulsions between ions of like charge and attractions
of ions of opposite charge. The total potential energy is neg-
ative, but the sum might converge quite slowly.

Derivation 17.2

The lattice energy of a one-dimensional crystal

Consider a line of alternating cations and anions extend-
ing in an infinite direction to the left and right of the ion of
interest. The Coulombic potential energy of interaction
of the ions on the right is the sum of the following terms:

A brief comment The result that the sum of the series
is simply ln 2 comes from the general expansion

ln x = (x − 1) − (x − 1)2 + (x − 1)3 − (x − 1)4 + . . . .

and setting x = 2.

The interaction of the ion of interest with the ions to its
left is the same, so the total potential energy of inter-
action is twice this expression for V, which is eqn 17.3.
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where ε0 is the vacuum permittivity (see Appendix 3).
To calculate the total potential energy of all the ions
in a crystal, we have to sum this expression over all the
ions present. Nearest neighbours (which have opposite
signs) attract and contribute a large negative term,
second-nearest neighbours (which have the same sign)
repel and contribute a slightly weaker positive term,
and so on (Fig. 17.13). The overall result, however, is
that there is a net attraction between the cations and
anions and a favourable (negative) contribution to the
energy of the solid. For instance, as shown in Deriva-
tion 17.2, for a uniformly spaced line of alternating
cations and anions for which z1 = +z and z2 = −z, with
d the distance between the centres of adjacent ions,

(17.3)V
z e

d
= − ×

2 2

04
2 2

πε
ln

17.7 The origin of lattice enthalpy

Our next task is to account for the values of lattice
enthalpies. The dominant interaction in an ionic 
lattice is the Coulombic interaction between ions,
which is far stronger than any other attractive inter-
action, so we concentrate on that.

The starting point is the Coulombic potential 
energy for the interaction of two ions of charge num-
bers z1 and z2 (with cations having positive charge
numbers and anions negative charge numbers) with
centres separated by a distance r12:

(17.2)V
z e z e

r12
1 2

0 124
=

×( ) ( )
πε
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When the calculation is repeated for more realistic,
three-dimensional arrays of ions it is also found that
the potential energy depends on the charge numbers
of the ions and the value of a single parameter d,
which may be taken as the distance between the cen-
tres of nearest neighbours:

(17.4)

Here A is a number called the Madelung constant.
The value of the Madelung constant for a single line
of ions is 2 ln 2 = 1.386 .. . , as we have already seen;
Table 17.2 gives the computed values of the constant
for a variety of lattices with structures that we describe
later in the chapter. Because the charge number of
cations is positive and that of anions is negative, the
product z1z2 is negative. Therefore, V is also negative,
which corresponds to a lowering in potential energy
relative to the gas of widely separated ions.

So far, we have considered only the Coulombic 
interaction between ions. However, regardless of their
signs, the ions repel each other when they are pressed
together and their wavefunctions overlap. These addi-
tional repulsions work against the net Coulombic 
attraction between ions, so they raise the energy of
the solid. When their effect is taken into account,1 it
turns out that the lattice enthalpy is given by the
Born–Mayer equation:

(17.5)

where d* is an empirical parameter that is often
taken as 34.5 pm (simply because that value is found
to give reasonable agreement with experiment). The
modulus signs (| . . . |) mean that we should remove
any minus sign from the product of z1 and z2, which
results in a positive value for the lattice enthalpy. The
important features of this expression are:
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• Because ΔHL ∝ |z1z2|, the lattice enthalpy in-
creases with increasing charge number of the ions.

• Because ΔHL ∝ 1/d, the lattice enthalpy increases
with decreasing ionic radius.

The second conclusion follows from the fact that the
smaller the ionic radii, the smaller the value of d.
These features are in accord with the variation in the
experimental values in Table 17.1.

Table 17.2

Madelung constants

Structural type A

Caesium chloride 1.763
Fluorite 2.519
Rock salt 1.748
Rutile 2.408

1 See our Physical chemistry (2006) for a derivation.

Self-test 17.2

Which can be expected to have the greater lattice 
enthalpy, magnesium oxide or strontium oxide?

[Answer: MgO]

17.8 Covalent networks

We have already noted that covalent bonds in a
definite spatial orientation link the atoms in covalent
network solids. Covalent solids are typically hard
and often unreactive. Examples include silicon, red
phosphorus, boron nitride, and—very importantly—
diamond and graphite, which we discuss in detail.

Diamond and graphite are two allotropes of carbon.
In diamond each sp3-hybridized carbon is bonded
tetrahedrally to its four neighbours (Fig. 17.14). The
network of strong C—C bonds is repeated throughout
the crystal and, as a result, diamond is the hardest
known substance.

A note on good practice Allotropes are distinct forms of
an element that differ in the way that atoms are linked.
Whereas the term allotrope is applied only to elements (and
includes different molecular species, such as O2 and O3), the
term polymorph applies to the different solid structures that
an element or compound may adopt, such as the different
phases of iron (which are also allotropes) or of calcium car-
bonate (which are polymorphs but not allotropes).

Fig. 17.14 A fragment of the structure of diamond. Each 
carbon atom is tetrahedrally bonded to four neighbours. This
framework-like structure results in a rigid crystal with a high
thermal conductivity.
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In graphite, σ bonds between sp2-hybridized car-
bon atoms form hexagonal rings that, when repeated
throughout a plane, give rise to sheets (Fig. 17.15).
Because the sheets can slide against each other (espe-
cially when impurities are present), graphite is used
widely as a lubricant.

The electrical properties of diamond and graphite
are determined by differences in the bonding patterns

in these solids. Graphite is an electronic conductor
because electrons are free to move through bands
formed by the overlap of partially filled, unhybridized
p orbitals that are perpendicular to the hexagonal
sheets. This band model explains the experimental
observation that graphite conducts electricity well
within the sheets but less well between them. The
electrical conductivity of these ‘graphene’ (graphite-
like) sheets of carbon atoms is now being considered
in the design of nanometer-sized electronic devices
(Box 17.1). We see from Fig. 17.14 that delocalized
π networks are not possible in diamond, which—in
contrast to graphite—is an insulator (more precisely,
a large-band-gap semiconductor).

17.9 Magnetic properties of solids

The magnetic properties of solids are determined 
by interactions between the spins of its electrons.
Some materials are magnetic and others may become
magnetized when placed in an external magnetic field.
A bulk sample exposed to a magnetic field of strength
H acquires a magnetization, M, which is proportional
to H:

M = χH (17.6)

where χ is the dimensionless volume magnetic sus-
ceptibility (Table 17.3). We can think of the magne-
tization as contributing to the density of lines of force
in the material (Fig. 17.16). Materials for which χ is
negative are called diamagnetic and tend to move out
of a magnetic field; the density of lines of force within
them is lower than in a vacuum. Those for which χ is
positive are called paramagnetic; they tend to move
into a magnetic field and the density of lines of force
within them is greater than in a vacuum.

Fig. 17.15 Graphite consists of flat planes of hexagons of
carbon atoms lying above one another. (a) The arrangement
of carbon atoms in a sheet; (b) the relative arrangement of
neighbouring sheets. When impurities are present, the planes
can slide over one another easily. Graphite conducts well
within the planes but less well perpendicular to the planes.

Box 17.1 Nanowires

A great deal of research effort is now being expended in 
the fabrication of nanometre-sized assemblies of atoms
and molecules that can be used as tiny building blocks in a 
variety of technological applications. The future economic
impact of nanotechnology, the aggregate of applications
of devices built from nanometre-sized components, could
be very significant. For example, increased demand for very
small digital electronic devices has driven the design of
ever-smaller and more powerful microprocessors. However,
there is an upper limit on the density of electronic circuits

that can be incorporated into silicon-based chips with cur-
rent fabrication technologies. As the ability to process data
increases with the number of circuits in a chip, it follows
that soon chips and the devices that use them will have to
become bigger if processing power is to increase indefin-
itely. One way to circumvent this problem is to fabricate 
devices from nanometre-sized components. Another advant-
age of making nanometre-sized electronic devices, or nano-
devices, is the possibility of using quantum-mechanical 
effects. For example, electron tunnelling between two 

(b)

(a)
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conducting regions separated by a thin insulating region can 
increase the speed of electron conduction and, consequently,
the data processing speed in a digital nanoprocessor.

The study of nanodevices can also advance our basic 
understanding of chemical reactions. Nanometre-sized
chemical reactors can serve as laboratories for the study of
chemical reactions in constrained environments. Some of
these reactions could comprise the foundation for the con-
struction of nanometre-sized chemical sensors, with poten-
tial applications in medicine. For example, nanodevices with
carefully designed biochemical properties could replace
viruses and bacteria as the active species in vaccines.

A number of techniques have already been developed 
for the fabrication of nanometre-sized structures. The syn-
thesis of nanowires, nanometre-sized atomic assemblies
that conduct electricity, is a major step in the fabrication of
nanodevices. An important type of nanowire is based on
carbon nanotubes, thin cylinders of carbon atoms that are
both mechanically strong and highly conducting. In recent
years, methods for selective synthesis of nanotubes have
been developed and they consist of different ways to con-
dense a carbon plasma either in the presence or absence 
of a catalyst. The simplest structural motif is called a single-
walled nanotube (SWNT) and in shown in the first 
illustration. In a SWNT, sp2-hybridized carbon atoms form
hexagonal rings reminiscent of the structure of the carbon
sheets found in graphite (see the first illustration). The
tubes have diameters of between 1 and 2 nm and lengths
of several micrometres. The features shown in the illus-
tration have been confirmed by direct visualization with 
scanning tunneling microscopy. A multiwalled nanotube
(MWNT) consists of several concentric SWNTs and its 
diameter varies between 0.4 and 25 nm.

The origin of electrical conductivity in carbon nanotubes
is the delocalization of p electrons that occupy unhydridized

p orbitals, just as in graphite (Section 17.8). Recent studies
have shown a correlation between structure and conductiv-
ity in SWNTs. The illustration shows a SWNT that is a semi-
conductor. If the hexagons are rotated by 60°, the resulting
SWNT is a metallic conductor.

Silicon nanowires can be made by focusing a pulsed laser
beam onto a solid target composed of silicon and iron. The
laser ejects Fe and Si atoms from the surface of the target,
forming a vapour phase that can condense into liquid FeSin
nanoclusters at sufficiently low temperatures. The phase
diagram for this complex mixture shows that solid silicon
and liquid FeSin coexist at temperatures higher than 1473 K.
Hence, it is possible to precipitate solid silicon from the mix-
ture if the experimental conditions are controlled to main-
tain the FeSin nanoclusters in a liquid state that is saturated
with silicon. It is observed that the silicon precipitate con-
sists of nanowires with diameters of about 10 nm and
lengths greater than 1 mm.

Nanowires are also fabricated by molecular beam epitaxy
(MBE), in which gaseous atoms or molecules are sprayed
on to a crystalline surface in an evacuated chamber. Through
careful control of the chamber temperature and of the
spraying process, it is possible to create nanometre-sized
assemblies with specific shapes. For example, the second
illustration shows an image of germanium nanowires on 
a silicon surface. The wires are about 2 nm high, 10–32 nm
wide, and 10–600 nm long. It is also possible to deposit
quantum dots, nanometre-sized boxes or spheres of atoms,
on a surface. Semiconducting quantum dots could be 
important building blocks of nanometre-sized lasers.

Direct manipulation of atoms on a surface also leads to
the formation of nanowires. The Coulomb attraction between
an atom and the tip of a scanning tunneling microscope
(STM, Section 18.2) can be exploited to move atoms along
a surface, arranging them into patterns, such as wires.

In a single-walled nanotube (SWNT), sp2-hybridized carbon
atoms form hexagonal rings that grow as tubes with dia-
meters between 0.4 and 2 nm and lengths of several 
micrometres.

Germanium nanowires fabricated onto a silicon surface by
molecular beam epitaxy and imaged by atomic force micro-
scopy. Reproduced with permission from T. Ogino et al.
Acc. Chem. Res. 32, 447 (1999).
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A brief comment An electric field acts on charged par-
ticles, whether stationary or moving, whereas a magnetic
field acts only on moving charged particles. The strength of 
a magnetic field is denoted by H and has units of ampere per
metre (A m−1).

Diamagnetism arises from the effect of the mag-
netic field on the electrons of molecules. Specifically,
an applied magnetic field induces the circulation of
electronic currents that give rise to a magnetic field
that usually opposes the applied field and reduces 
the density of lines of force, and so the substance is
diamagnetic. The great majority of molecules with
no unpaired electron spins are diamagnetic. In these
cases, the induced electron currents occur within the
orbitals of the molecule that are occupied in its
ground state.

In a few cases the induced field augments the applied
field and increases the density of lines of force within
the material. The substance is then paramagnetic even
though it has no unpaired electrons. In these cases,
the induced electron currents arise from migration of

electrons through unoccupied orbitals, so this kind
of paramagnetism occurs only if the excited states are
low in energy (as in some d- and f-block complexes).
The much more common kind of paramagnetism
arises from unpaired electron spins, which behave
like tiny bar magnets that tend to line up with the 
applied field. The more that can line up in this way,
the greater the lowering of the energy and the sample
tends to move into the applied field. Many com-
pounds of the d-block elements are paramagnetic 
because they have various numbers of unpaired d
electrons. Molecules, specifically radicals, with un-
paired electrons are paramagnetic. Examples include
the brown gas nitrogen dioxide (NO2) and the 
peroxyl radical (HO2), which plays a role in 
atmospheric chemistry.

Table 17.3

Magnetic susceptibilities at 298 K*

c /10−6 cm/(10−5 cm3 mol−1)

Al(s) +20.7 +2.07
Cu(s) −9.7 −6.9
CuSO4.5H2O(s) +167 +1830
H2O(l) −9.02 −1.63
MnSO4.4H2O(s) +1859 +1835
NaCl(s) −16 −3.8
S(s) −12.6 −1.95

* c is the dimensionless magnetic susceptibility; cm is
the molar magnetic susceptibility. The two are related
by cm = cVm, where Vm is the molar volume of the
sample.

(a) (b) (c)

Fig. 17.16 (a) In a vacuum, the strength of a magnetic field
can be represented by the density of lines of force; (b) in a
diamagnetic material, the lines of force are reduced; (c) in a
paramagnetic material, the lines of force are increased.

Self-test 17.3

After reviewing concepts from Chapters 13 and 14, 
identify each of the following species as diamagnetic or
paramagnetic: Mg(s), Zn(s), N2(g), O2(g), NO(g).

[Answer: Mg(s), Zn(s), and N2(g) are diamagnetic; 
O2(g), and NO(g) are paramagnetic.]

At low temperatures, some paramagnetic solids
make a transition to a phase in which large regions,
called domains, of electron spins align with parallel
orientations. This cooperative alignment gives rise to
a very strong magnetization—in some cases millions
of times greater—and is called ferromagnetism
(Fig. 17.17). In other cases, the cooperative effect
leads to alternating spin orientations: the spins are
locked into a low-magnetization arrangement to give
an antiferromagnetic phase that has a zero mag-
netization because the contributions from different
spins cancel. The transition to the ferromagnetic
phase occurs at the Curie temperature, TC, and the

(a)

(b)

(c)

Fig. 17.17 (a) In a paramagnetic material, the electron spins
are aligned at random in the absence of an applied magnetic
field; (b) in a ferromagnetic material, the electron spins are
locked into a parallel alignment over large domains; (c) in an
antiferromagnetic material, the electron spins are locked into
an antiparallel arrangement. The latter two arrangements sur-
vive even in the absence of an applied field.
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transition to the antiferromagnetic occurs at the Néel
temperature, TN.

Superconductors have unique magnetic properties.
Some superconductors, classed as Type I, show abrupt
loss of superconductivity when an applied magnetic
field exceeds a critical value Hc characteristic of the
material. Type I superconductors are also completely
diamagnetic—the lines of force are completely 
excluded—below Hc. This exclusion of a magnetic
field in a material is known as the Meissner effect,
which can be demonstrated by the levitation of a 
superconductor above a magnet. Type II supercon-
ductors, which include the HTSCs, show a gradual
loss of superconductivity and diamagnetism with 
increasing magnetic field.

Crystal structure

Now we turn to the structures adopted by atoms and
ions when they stack together to give a crystalline
solid. The structures of crystals are of considerable
practical importance, for they have implications for
geology, materials, technologically advanced materials
such as semiconductors and high-temperature super-
conductors, and in biology. The first, and often very
demanding, step in an X-ray structural analysis of bio-
logical macromolecules is to form crystals in which
the large molecules lie in orderly ranks. On the other
hand, the crystallization of a virus particle would
take it out of circulation, and one of the strategies
adopted by viruses for avoiding this kind of entomb-
ment makes unconscious use of the geometry of 
crystal packing.

17.10 Unit cells

The pattern that atoms, ions, or molecules adopt in 
a crystal is expressed in terms of an array of points
making up the lattice that identify the locations of
the individual species (Fig. 17.18). A unit cell of a
crystal is the small three-dimensional figure obtained
by joining typically eight of these points, and that may
be used to construct the entire crystal lattice by purely
translational displacements, much as a wall may be
constructed from bricks (Fig. 17.19). An infinite num-
ber of different unit cells can describe the same struc-
ture, but it is conventional to choose the cell with the
greatest symmetry and the smallest dimensions.

Unit cells are classified into one of seven crystal
systems according to the symmetry they possess under
rotations about different axes. The cubic system, 
for example, has four three-fold axes (Fig. 17.20). 
A three-fold axis is an axis of a rotation that restores

the unit cell to the same appearance three times dur-
ing a complete revolution, after rotations through
120°, 240°, and 360°. The four axes of a cube make
the tetrahedral angle to each other. The monoclinic

Unit
cell

Fig. 17.18 A crystal consists of a uniform array of atoms,
molecules, or ions, as represented by these spheres. In
many cases, the components of the crystal are far from
spherical, but this diagram illustrates the general idea. The 
location of each atom, molecule, or ion can be represented by
a single point; here (for convenience only), the locations are
denoted by a point at the centre of the sphere. The unit cell,
which is shown shaded in the inset, is the smallest block
from which the entire array of points can be constructed
without rotating or otherwise modifying the block.

Unit
cell

Fig. 17.19 A unit cell, here shown in three dimensions, is like
a brick used to construct a wall. Once again, only pure trans-
lations are allowed in the construction of the crystal. (Some
bonding patterns for actual walls use rotations of bricks, so
for these patterns a single brick is not a unit cell.)

C3

C3

C3

C3

Fig. 17.20 A unit cell belonging to the cubic system has four
three-fold axes (denoted C3) arranged tetrahedrally.



CHAPTER 17: METALLIC, IONIC, AND COVALENT SOLIDS404

system has one two-fold axis (Fig. 17.21). A two-fold
axis is an axis of a rotation that leaves the cell appar-
ently unchanged twice during a complete revolution,
after rotations through 180° and 360°. The essential
symmetries, the properties that must be present for
the unit cell to belong to a particular system, are
listed in Table 17.4.

A unit cell may have lattice points other than at its
corners, so each crystal system can occur in a number
of different varieties. For example, in some cases
points may occur on the faces and in the body of the
cell without destroying the cell’s essential symmetry.
These various possibilities give rise to fourteen dis-
tinct types of unit cell, which are called the Bravais
lattices (Fig. 17.22).

17.11 The identification of crystal planes

The identification of the type of unit cell specifies the
internal symmetry of the crystal. To specify a unit
cell fully, we also need to know its size, such as the
lengths of its sides. There is a useful relation between

the spacing of the planes passing through the lattice
points, which (as we shall see) we can measure, and
the lengths we need to know.

Because two-dimensional arrays of points are 
easier to visualize than three-dimensional arrays, we
shall introduce the concepts we need by referring to
two dimensions initially and then extend the conclu-
sions to three dimensions. In particular, consider the
two-dimensional lattice formed from a rectangular
unit cell of sides a and b (Fig. 17.23). We can distin-
guish the four sets of planes shown in the illustration
by the distances at which they intersect the axes. One
way of labelling the planes would therefore be to 
denote each set by the smallest intersection distances.
For example, we could denote the four sets in the 
illustration as (1a,1b), (3a,2b), (−1a,1b), and (∞a,1b).
If, however, we agreed always to quote distances
along the axes as multiples of the lengths of the unit
cell, then we could omit the a and b and label the
planes more simply as (1,1), (3,2), (−1,1), and (∞,1).

Table 17.4

The essential symmetries of the seven crystal
systems

The systems Essential symmetries

Triclinic None
Monoclinic One two-fold axis
Orthorhombic Three perpendicular two-fold axes
Rhombohedral One three-fold axis
Tetragonal One four-fold axis
Hexagonal One six-fold axis
Cubic Four three-fold axes in a 

tetrahedral arrangement

a a

a

Cubic P Cubic I Cubic F

aa

c

Tetragonal P Tetragonal I

a b

c

Orthorhombic P Orthorhombic C Orthorhombic I Orthorhombic F

a b

c β

Monoclinic P Monoclinic C
a b

c α
β

γ 

Triclinic
a a

c

120°

Hexagonal

a

a

a

α

α α

Trigonal R

Fig. 17.22 The fourteen Bravais lattices. The letter P denotes a primitive unit cell, I a body-centred unit cell, F a face-centred unit
cell, and C (or A or B) a cell with lattice points on two opposite faces.

C2

a

a

b

Fig. 17.21 A unit cell belonging to the monoclinic system has
one two-fold (denoted C2) axis (along b).
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Now let’s suppose that the array in Fig. 17.23 
is the top view of a three-dimensional rectangular
lattice in which the unit cell has a length c in the z
direction. All four sets of planes intersect the z-axis
at infinity, so the full labels of the sets of planes of 
lattice points are (1,1,∞), (3,2,∞), (−1,1,∞), and
(∞,1,∞).

The presence of infinity in the labels is incon-
venient. We can eliminate it by taking the reciprocals
of the numbers in the labels; this step also turns out
to have further advantages, as we shall see. The res-
ulting Miller indices, (hkl), are the reciprocals of the
numbers in the parentheses with fractions cleared.
For example, the (1,1,∞) planes in Fig. 17.23 are the
(110) planes in the Miller notation (because 1/1 = 1
and 1/∞ = 0). Similarly, the (3,2,∞) planes become
first ( , ,0) when reciprocals are formed, and then
(2,3,0) when fractions are cleared by multiplication
through by 6, so they are referred to as the (230)
planes. We write negative indices with a bar over the
number: Fig. 17.23c shows the (1̄10) planes, which 
is read ‘bar-one, one, zero planes’. Figure 17.24
shows some planes in three dimensions, including an
example of a lattice with axes that are not mutually
perpendicular.

1
2

1
3

b

a

(a) (110) (b) (230)

(d) (010)(c) (110)

Fig. 17.23 Some of the planes that can be drawn through 
the points of the space lattice and their corresponding Miller
indices (hkl ). The origin of the coordinate system used for 
labelling the planes coincides with the position of the lattice
point in the lower left-hand corner of each lattice.

Self-test 17.4

A representative member of a set of planes in a crystal
intersects the axes at 3a, 2b, and 2c; what are the Miller
indices of the planes?

[Answer: (233)]

a

b

c

a b

c
(110) (100)

(111)
(111)

Fig. 17.24 Some representative planes in three dimensions
and their Miller indices. Note that a 0 indicates that a plane is
parallel to the corresponding axis, and that the indexing may
also be used for unit cells with nonorthogonal axes.

Derivation 17.2

The separation of lattice planes

Consider the (hk0) planes of a rectangular lattice built
from an orthorhombic unit cell of sides of lengths a and
b (Fig. 17.25). We can write the following trigonometric
expressions for the angle f shown in the illustration:

Because the lattice planes intersect the a-axis h times
and the b-axis k times, the length of each hypotenuse is
calculated by dividing a by h and b by k. Then, because
sin2 f + cos2 f = 1, we obtain

h d
a

k d
b

2 2

2

2 2

2 1+ =

sin2 cos2
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( / )
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f f= = = =

d
a h

hd
a

d
b k

kd
b

It is helpful to keep in mind the fact, as illustrated
in Fig. 17.23, that the smaller the value of h in the
Miller index (hkl), the more nearly parallel the plane
is to the a-axis. The same is true of k and the b-axis
and l and the c-axis. When h = 0, the planes intersect
the a-axis at infinity, so the (0kl) planes are parallel
to the a-axis. Similarly, the (h0l) planes are parallel
to b and the (hk0) planes are parallel to c.

The Miller indices are very useful for calculating
the separation of planes. For instance, we show in
Derivation 17.2 that they can be used to derive the
following very simple expression for the separation,
d, of the (hkl) planes in a rectangular lattice:

(17.7)1
2

2
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17.12 The determination of structure

One of the most important techniques for the 
determination of the structures of crystals is X-ray
diffraction. In its simplest form, the technique is used
to identify the lattice type and the separation of the
planes of lattice points (and hence the distance between
the centres of atoms and ions). In its most sophisticated
version, X-ray diffraction provides detailed informa-
tion about the location of all the atoms in a molecule,
even those as complicated as proteins. Special tech-
niques are also available for the study of structural
changes that accompany chemical reactions. The
current considerable success of modern molecular 
biology has stemmed from X-ray diffraction tech-
niques that have grown in sensitivity and scope as
computing techniques have become more powerful.
Here we concentrate on the principles of the tech-
nique and illustrate how it may be used to determine
the spacing of atoms in a crystal.

A characteristic property of waves is that they 
interfere with one another, which means that they
give a greater amplitude where their displacements
add and a smaller amplitude where their displace-
ments subtract (Fig. 17.26). The former is called
‘constructive interference’ and the latter ‘destructive
interference’. Because the intensity of electromagnetic
radiation is proportional to the square of the ampli-
tude of the waves, the regions of constructive and 
destructive interference show up as regions of en-
hanced and diminished intensities. The phenomenon
of diffraction is the interference caused by an object
in the path of waves, and the pattern of varying 
intensity that results is called the diffraction pattern
(Fig. 17.27). Diffraction occurs when the dimensions

which we can rearrange by dividing both sides by d2 into

In three dimensions, this expression generalizes to 
eqn 17.8.

 

1
2

2

2
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2d
h
a

k
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a/h

b/k
d φ

φb

Fig. 17.25 The geometrical construction used to relate
the separation of planes to the dimensions of the unit
cell.

Example 17.2

Using the Miller indices

Calculate the separation of (a) the (123) planes and (b) the
(246) planes of an orthorhombic cell with a = 0.82 nm, 
b = 0.94 nm, and c = 0.75 nm.

Strategy For the first part, we simply substitute the 
information into eqn 17.8. For the second part, instead of
repeating the calculation, we should examine how d in
eqn 17.8 changes when all three Miller indices are multi-
plied by 2 (or by a more general factor, n).

Solution Substituting the data into eqn 17.8 gives

It follows that d = 0.21 nm. When the indices are all 
increased by a factor of 2, the separation becomes

So, for these planes d = 0.11 nm. In general, increasing
the indices uniformly by a factor n decreases the separa-
tion of the planes by n.
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Self-test 17.5

Calculate the separation of the (133) and (399)
planes in the same lattice.

[Answer: 0.19 nm, 0.063 nm]

(a)

(b)

Fig. 17.26 When two waves (drawn as thin lines) are in the
same region of space they interfere. Depending on their rela-
tive phase, they may interfere (a) constructively, to give an
enhanced amplitude, or (b) destructively, to give a smaller
amplitude.
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of the diffracting object are comparable to the 
wavelength of the radiation. Sound waves, with
wavelengths of the order of 1 m, are diffracted by
macroscopic objects. Light waves, with wavelengths
of the order of 500 nm, are diffracted by narrow slits.

X-rays have wavelengths comparable to bond
lengths in molecules and the spacing of atoms in crys-
tals (about 100 pm), so they are diffracted by them.
By analysing the diffraction pattern, it is possible to
draw up a detailed picture of the location of atoms.
Electrons moving at about 2 × 104 km s−1 (after 
acceleration through about 4 kV) have wavelengths
of about 20 pm (recall Example 12.1), and may also
be diffracted by molecules. Neutrons generated in a
nuclear reactor, and then slowed to thermal velo-
cities (that is, bouncing off the nuclei of atoms until
their kinetic energy has become the same as that of
the targets), have similar wavelengths and may also
be used for diffraction studies.

The short-wavelength electromagnetic radiation
we call X-rays is produced by bombarding a metal
with high-energy electrons. The electrons decelerate
as they plunge into the metal and generate radiation
with a continuous range of wavelengths. This radi-
ation is called bremsstrahlung (Bremse is German for
brake, Strahlung for ray). Superimposed on the con-
tinuum are a few high-intensity, sharp peaks. These
peaks arise from the interaction of the incoming 
electrons with the electrons in the inner shells of the
atoms: the collision expels an electron (Fig. 17.28),
and an electron of higher energy drops into the 
vacancy, emitting the excess energy as an X-ray pho-
ton. An example of the process is the expulsion of 
an electron from the K shell (the shell with n = 1) of 

a copper atom, followed by the transition of an outer
electron into the vacancy. The energy so released
gives rise to copper’s ‘Kα radiation’ of wavelength
154 pm. Currently, however, there is a major shift in
emphasis to using synchrotron radiation as a source
of high-intensity, monochromatic X-rays. Synchrotron
radiation is produced when electrons move at high
speed in a circle, for accelerated charges generate
electromagnetic radiation, and the high speeds
achieved in the particle accelerators known as syn-
chrotrons result in the production of very high 
frequency radiation. The principal drawback is that
synchrotron sources are costly and must be built as
national facilities.

In 1923, the German physicist Max von Laue 
suggested that X-rays might be diffracted when
passed through a crystal, for the wavelengths of 
X-rays are comparable to the separation of atoms,
and diffraction occurs when the wavelength of radi-
ation is comparable to the dimensions of a target.
Laue’s suggestion was confirmed almost immediately
by Walter Friedrich and Paul Knipping, and then 
developed by William and Lawrence Bragg, who later
jointly received the Nobel Prize. It has grown since
then into a technique of extraordinary power.

17.13 Bragg’s law

The earliest approach to the analysis of X-ray
diffraction patterns treated a plane of atoms as a
semitransparent mirror and modelled the crystal as
stacks of reflecting planes of separation d (Fig. 17.29).
The model makes it easy to calculate the angle the
crystal must make to the incoming beam of X-rays
for constructive interference to occur. It has also
given rise to the name reflection to denote an intense
spot arising from constructive interference.

Fig. 17.27 A typical diffraction pattern obtained in a version
of the X-ray diffraction technique. The black dots are the 
reflections, the points of maximum constructive interference,
that are used to determine the structure of the crystal.
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Fig. 17.28 The formation of X-rays. When a metal is sub-
jected to a high-energy electron beam, an electron in an inner
shell of an atom is ejected. When an electron falls into the 
vacated orbital from an orbital of much higher energy, the 
excess energy is released as an X-ray photon.
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The path-length difference of the two rays shown
in the illustration is

AB + BC = 2d sin θ

where θ is the glancing angle. When the path-length
difference is equal to one wavelength (AB + BC = λ),
the reflected waves interfere constructively. It follows
that a reflection should be observed when the glancing
angle satisfies Bragg’s law:

λ = 2d sin θ (17.8)

The primary use of Bragg’s law is to determine the
spacing between the layers of atoms, for once the
angle θ corresponding to a reflection has been deter-
mined, d may readily be calculated.

A note on good practice You will often see Bragg’s law 
in the form nl = 2d sin q, where n, an integer, is the ‘order’ 
of the diffraction. The modern tendency is to omit n and to 
ascribe the diffraction to planes of separation d /n instead 
(recall the discussion in Example 17.2).

17.14 Experimental techniques

Laue’s original method consisted of passing a beam
of X-rays of a wide range of wavelengths into a single
crystal and recording the diffraction pattern photo-
graphically. The idea behind the approach was that 
a crystal might not be suitably orientated to act as a
diffraction grating for a single wavelength, but what-
ever its orientation Bragg’s law would be satisfied 
for at least one of the wavelengths when a range of
wavelengths is present in the beam.

An alternative technique was developed by Peter
Debye and Paul Scherrer and independently by Albert
Hull. They used monochromatic (single-frequency)
X-rays and a powdered sample. When the sample is
a powder, we can be sure that some of the randomly
distributed crystallites will be orientated so as to 
satisfy Bragg’s law. For example, some of them will
be orientated so that their (111) planes, of spacing d,
give rise to a reflection at a particular angle and others
will be orientated so that their (230) planes give rise
to a reflection at a different angle. Each set of (hkl)
planes gives rise to reflections at a different angle. In
the modern version of the technique, which uses a
powder diffractometer, the sample is spread on a flat
plate and the diffraction pattern is monitored elec-
tronically. The major application is for qualitative
analysis because the diffraction pattern is a kind of
fingerprint and may be recognizable by reference to a
library of patterns (Fig. 17.30). The technique is also
used for the characterization of substances that can-
not be crystallized or for the initial determination of
the dimensions and symmetries of unit cells.

Modern X-ray diffraction, which utilizes an X-ray
diffractometer (Fig. 17.31), is now a highly sophistic-
ated technique. By far the most detailed information

d

θθ
θ

θ
A C

B

Fig. 17.29 The derivation of Bragg’s law treats each lattice
plane as reflecting the incident radiation. The path lengths 
differ by AB + BC, which depends on the glancing angle q.
Constructive interference (a ‘reflection’) occurs when AB +
BC is equal to an integral number of wavelengths.

Example 17.3

Using Bragg’s law

A reflection from the (111) planes of a cubic crystal was
observed at a glancing angle of 11.2° when Cu Ka X-rays
of wavelength 154 pm were used. What is the length of
the side of the unit cell?

Strategy We can find the separation, d, of the lattice
planes from eqn 17.9 and the data. Then we find the length
of the side of the unit cell by using eqn 17.8. Because the
unit cell is cubic, a = b = c, so eqn 17.8 simplifies to

which rearranges to a2 = d2 × (h2 + k2 + l2) and therefore to

a = d × (h2 + k2 + l2)1/2
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Solution According to Bragg’s law, the separation of the
(111) planes responsible for the diffraction is

It then follows that with h = k = l = 1,
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q2 2 11 2sin sin .
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Self-test 17.6

Calculate the angle at which the same lattice will
give a reflection from the (123) planes.

[Answer: 24.8°]
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comes from developments of the techniques pioneered
by the Braggs, in which a single crystal is employed
as the diffracting object and a monochromatic beam
of X-rays is used to generate the diffraction pattern.
The single crystal, which may be only a fraction of a
millimetre in length, is rotated relative to the beam
and the diffraction pattern is monitored and recorded
electronically for each crystal orientation. The prim-
ary data is therefore a set of intensities arising from
the Miller planes (hkl), with each set of planes giving
a reflection of intensity Ihkl. For our purposes, we focus
on the (h00) planes and write the intensities Ih.

To derive the structure of the crystal from the 
intensities we need to convert them to the amplitude
of the wave responsible for the signal. Because the 
intensity of electromagnetic radiation is given by the
square of the amplitude, we need to form the struc-
ture factors Fh = (Ih)

1/2. Here is the first diAculty: we
do not know the sign to take. For instance, if Ih = 4,
then Fh can be either +2 or −2. This ambiguity is the

phase problem of X-ray diffraction. However, once
we have the structure factors, we can calculate the
electron density ρ(x) by forming the following sum:

(17.9)

where V is the volume of the unit cell. This expres-
sion is called a Fourier synthesis of the electron 
density: we show how it is used in Example 17.4. 
The point to note is that low values of the index h give
the major features of the structure (they correspond
to long-wavelength cosine terms) whereas the high 
values give the fine detail (short-wavelength cosine
terms). Clearly, if we do not know the sign of Fh, we
do not know whether the corresponding term in 
the sum is positive or negative and we get different
electron densities, and hence crystal structures, for
different choices of sign.
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Fig. 17.30 Typical X-ray powder diffraction patterns (for (a)
sodium chloride, (b) potassium chloride) that can be used to
identify the material and determine the size of its unit cell.
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Fig. 17.31 A four-circle diffractometer. The settings of the
orientations of the components is controlled by computer;
each reflection is monitored in turn, and their intensities are
recorded.

Example 17.4

Constructing the electron density

The following intensities were obtained in an experi-
ment on an organic solid:

h 0 1 2 3 4 5 6 7 8 9
Ih 256 100 5 1 50 100 8 10 5 10

h 10 11 12 13 14 15
Ih 40 25 9 4 4 9

Construct the electron density along the x direction.

Strategy Begin by finding the structure factors from the
corresponding values of Ih by using Fh = (Ih)

1/2. Then use
eqn 17.19 to plot the electron density as Vr(x) against x.
However, because Fh can be either positive or negative,
you will need to make guesses about the signs of Fh,
generate different plots for different guesses, and 
assess the plausibility of each guess.

Solution To find the structure factors, we take square-
roots of the intensities:

h 0 1 2 3 4 5 6 7 8 9
Fh ±16.0 ±10 ±2.2 ±1 ±7.1 ±10 ±2.8 ±3.2 ±2.2 ±3.2

h 10 11 12 13 14 15
Fh ±6.3 ±5 ±3 ±2 ±2 ±3

Suppose we guess that the signs alternate + − + − . . . ;
then according to eqn 17.19 the electron density is

Vr(x) = 16 − 20 cos(2px) + 4.4 cos(4px) − . . . − 6 cos(30px)

This function is shown in Fig. 17.32 as the green line, and
the locations of several types of atom are easy to identify
as peaks in the electron density. If we guess + signs up
to h = 5 and − signs thereafter; the electron density is

Vr(x) = 16 + 20 cos(2px) + 4.4 cos(4px) + . . . − 6 cos(30px)
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The phase problem can be overcome to some extent
by the method of isomorphous replacement, in which
heavy atoms are introduced into the crystal. The tech-
nique relies on the fact that the scattering of X-rays is

caused by the oscillations an incoming electromag-
netic wave generates in the electrons of atoms, and
heavy atoms give rise to stronger scattering than light
atoms. So heavy atoms dominate the diffraction pat-
tern and greatly simplify its interpretation. The phase
problem can also be resolved by judging whether the
calculated structure is chemically plausible, whether
the electron density is positive throughout, and by
using more refined mathematical techniques. Huge
numbers of crystal structures have been determined
in this way. In the following sections we review how
some of them can be rationalized. For metals and
monatomic ions we can model the atoms and ions as
hard spheres, and consider how such spheres can be
stacked together in a regular, electrically neutral array.

17.15 Metal crystals

Most metallic elements crystallize in one of three
simple forms, two of which can be explained in 
terms of stacking spheres to give the closest possible
packing. In such close-packed structures the spheres 
representing the atoms are packed together with least
waste of space and each sphere has the greatest pos-
sible number of nearest neighbours.

We can form a close-packed layer of identical
spheres, one with maximum utilization of space, as
shown in Fig. 17.34a. Then we can form a second
close-packed layer by placing spheres in the depres-
sions of the first layer (Fig. 17.34b). The third layer
may be added in either of two ways, both of which
result in the same degree of close packing. In one, the
spheres are placed so that they reproduce the first
layer (Fig. 17.34c), to give an ABA pattern of layers.
Alternatively, the spheres may be placed over the
gaps in the first layer (Fig. 17.34d), so giving an ABC
pattern.

Two types of structures are formed if the two stack-
ing patterns are repeated. The spheres are hexagonally
close-packed (hcp) if the ABA pattern is repeated to
give the sequence of layers ABABAB.. . . The name
reflects the symmetry of the unit cell (Fig. 17.35).
Metals with hcp structures include beryllium, cad-
mium, cobalt, manganese, titanium, and zinc. Solid
helium (which forms only under pressure) also adopts
this arrangement of atoms. Alternatively, the spheres
are cubic close-packed (ccp) if the ABC pattern is 
repeated to give the sequence of layers ABCABC.. . .
Here too, the name reflects the symmetry of the unit
cell (Fig. 17.36). Metals with this structure include
silver, aluminium, gold, calcium, copper, nickel, lead,
and platinum. The noble gases other than helium
also adopt a ccp structure.

This density is shown in Fig. 17.32 as the red line. This
structure has more regions of illegal negative electron
density, so is less plausible than the structure obtained
from the first choice of phases.
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Fig. 17.32 The Fourier synthesis of the electron density
of a one-dimensional crystal using the data in the illus-
tration. Green: using alternating signs for the structure
factors; red: using positive signs for h up to 5, then 
negative signs.
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Fig. 17.33 The electron density calculated from data
given in Self-test 17.7.

Self-test 17.7

In an X-ray investigation, the following structure 
factors were determined. Construct the electron
density along the corresponding direction.

h 0 1 2 3 4 5 6 7 8 9

Fh00 10 −10 8 −8 6 −6 4 −4 2 −2
[Answer: Fig. 17.33]
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The compactness of the ccp and hcp structures is
indicated by their coordination number, the number
of atoms immediately surrounding any selected atom,
which is 12 in both cases. Another measure of their

compactness is the packing fraction, the fraction of
space occupied by the spheres, which is 0.740. That
is, in a close-packed solid of identical hard spheres,
74.0 per cent of the available space is occupied and
only 26.0 per cent of the total volume is empty space.

The fact that many metals are close-packed accounts
for one of their common characteristics, their high
density. However, there is a difference between ccp
and hcp metals. In cubic close packing, the faces of the
cubes extend throughout the solid, and give rise to a
slip plane. Careful analysis of the ccp structure shows
that there are eight slip planes in various orientations,
whereas an hcp structure has only one set of slip
planes. When the metal is under stress, the layers of
atoms may slip past one another along a slip plane.
Because a ccp metal has more slip planes than an hcp
metal, a ccp metal is more malleable than an hcp metal.
Thus, copper, which is ccp, is highly malleable, but
zinc, which is hcp, is more brittle. It must be borne in
mind, however, that metals in real use are not single
crystals: they are polycrystalline, with numerous grain- 
like regions and defects that permeate the structure.
Much of metallurgy is associated with the control of
the density of grains and grain boundaries.

A number of common metals adopt structures that
are not close-packed, which suggests that directional
covalent bonding between neighbouring atoms is 
beginning to influence the structure and impose a
specific geometrical arrangement. One such arrange-
ment results in a body-centred cubic (bcc) lattice, with

Fig. 17.34 The close-packing of identical spheres. (a) The
first layer of close-packed spheres. (b) The second layer of
close-packed spheres occupies the dips of the first layer. 
The two layers are the AB component of the structure. (c) The
third layer of close-packed spheres might occupy the dips
lying directly above the spheres in the first layer, resulting 
in an ABA structure. (d) Alternatively, the third layer might lie
in the dips that are not above the spheres in the first layer, 
resulting in an ABC structure.

Fig. 17.35 A hexagonal close-packed structure. The tinting
of the spheres (denoting the three layers of atoms) is the
same as in Fig. 17.33.

Fig. 17.36 A cubic close-packed structure. The tinting of the
spheres is the same as in Fig. 17.33.
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one sphere at the centre of a cube formed by eight
others (Fig. 17.37). The bcc structure is adopted by 
a number of common metals, including barium, 
caesium, chromium, iron, potassium, and tungsten.
The coordination number of a bcc lattice is 8 and its
packing fraction is only 0.68, showing that only
about two-thirds of the available space is occupied.

be achieved. One common structure adopted is the 
6-coordinated rock-salt structure typified by sodium
chloride (rock salt is a mineral form of sodium 
chloride) in which each cation is surrounded by six
anions and each anion is surrounded by six cations
(Fig. 17.39). The rock-salt structure is the structure
of sodium chloride itself and of several other com-
pounds of formula MX, including potassium bromide,
silver chloride, and magnesium oxide.

The switch from the caesium-chloride structure to
the rock-salt structure (in a number of examples) can
be correlated with the radius ratio

(17.11)

The two radii are those of the smaller and larger ions
in the crystal. The radius-ratio rule, which is derived
by analysing the geometrical problem of stacking 
together spheres of different radii, then suggests the
following structural types:

γ =
r
r
smaller

larger

Fig. 17.37 A body-centred cubic unit cell. The spheres on 
the corners touch the central sphere but the packing pat-
tern leaves more empty space than in the two close-packed
structures.

Cs+

Cl–

Fig. 17.38 The caesium-chloride structure consists of two 
interpenetrating simple cubic lattices, one of cations and the
other of anions, so that each cube of ions of one kind has a
counterion at its centre. This illustration shows a single unit
cell with a Cs+ ion at the centre. By imagining eight of these
unit cells stacked together to form a bigger cube, it should be
possible to imagine an alternative form of the unit cell with
Cs+ at the corners and a Cl− ion at the centre.

Na+Cl–

Fig. 17.39 The rock-salt (NaCl) structure consists of two 
mutually interpenetrating slightly expanded face-centred cubic
lattices. The additional diagrams in this illustration show vari-
ous details of the structure.

Self-test 17.8

What is the coordination number and the packing frac-
tion of a primitive cubic lattice in which there is a lattice
point at each corner of a cube?

[Answer: 6, 0.52]

17.16 Ionic crystals

To model the structures of ionic crystals by stacks 
of spheres we must allow for the fact that the two or
more types of ion present in the compound have 
different radii (typically with the cations smaller than
the anions) and different charges.

The coordination number of an ion in an ionic
crystal is the number of nearest neighbours of oppos-
ite charge. Even if, by chance, the ions have the same
size, the problem of ensuring that the unit cells are
electrically neutral makes it impossible to achieve 
12-coordinate close-packed structures, which is one
reason why ionic solids are generally less dense than
metals. The closest packing that can be achieved is
the 8-coordination of the caesium-chloride structure
in which each cation is surrounded by eight anions and
each anion is surrounded by eight cations (Fig. 17.38).
In the caesium-chloride structure, an ion of one charge
occupies the centre of a cubic unit cell with eight ions
of opposite charge at its corners. This structure is
adopted by caesium chloride itself and by calcium
sulfide, caesium cyanide (with some distortion), and
one type of brass (CuZn).

When the radii of the ions differ by more than in
caesium chloride, even 8-coordinate packing cannot
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Sphalerite (zinc blende) is a form of zinc sulfide, ZnS
(Fig. 17.40). The radius-ratio rule is moderately well
supported by observation. The deviation of a structure
from the prediction is often taken to be an indication
of a shift from ionic towards covalent bonding.

The ionic radii used to calculate γ, and wher-
ever else it is important to know the sizes of ions, 
are derived from the distance between the centres 
of adjacent ions in a crystal. However, in a diffrac-
tion experiment we measure the distance between 
the centres of ions. It is necessary to apportion that
total distance by defining the radius of one ion and
reporting all others on that basis. One scale that 
is widely used is based on the value 140 pm for 
the radius of the O2− ion (Table 17.5). Other scales
are also available (such as one based on F− for dis-
cussing halides), and it is essential not to mix values
from different scales. Because ionic radii are so 
arbitrary, predictions based on them (such as those
made  using the radius-ratio rule) must be viewed
cautiously.

S2–

Zn2+

Fig. 17.40 The sphalerite (zinc blende, ZnS) structure. This
structure is typical of ions that have markedly different radii
and equal but opposite charges.

Radius ratio Coordination Crystal type

g > 31/2 − 1 = 0.732 (8,8) caesium chloride

21/2 − 1 = 0.414 < g < 0.732 (6,6) rock salt

g < 0.414 (4,4) sphalerite, zinc blende

Table 17.5

Ionic radii, r/pm

Li+ Be2+ B3+ N3− O2− F−

59 27 12 171 140 133

Na+ Mg2+ Al3+ P3− S2− Cl−

102 72 53 212 184 181

K+ Ca2+ Ga3+ As3− Se2− Br−

138 100 62 222 198 196

Rb+ Sr2+ I−

149 116 220

Cs+ Ba2+

167 136

17.17 Molecular crystals

X-ray diffraction studies of solids reveal a huge
amount of information, including interatomic dis-
tances, bond angles, stereochemistry, and vibrational
parameters. Molecular solids, which are the subject
of the overwhelming majority of modern structural
determinations, are held together by van der Waals
interactions and hydrogen bonds (Chapter 15). The
observed crystal structure is nature’s solution to the
problem of condensing objects of various shapes into
an aggregate of minimum energy (actually, for T > 0,
of minimum Gibbs energy). The prediction of the
structure is diAcult, especially when the molecules
are large (Box 17.2), but software specifically 
designed to explore interaction energies can now
make reasonably reliable predictions. The problem is
made more complicated by the role of hydrogen
bonds, which in some cases dominate the crystal
structure, as in ice (Fig. 17.41), but in others (for ex-
ample, in phenol) distort a structure that is deter-
mined largely by the van der Waals interactions.
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Box 17.2 X-ray crystallography of biological macromolecules

X-ray crystallography is the deployment of X-ray diffrac-
tion techniques for the determination of the location of all
the atoms in molecules as complicated as biopolymers.
The success of modern biochemistry in explaining such
processes as DNA replication, protein biosynthesis, and en-
zyme catalysis is a direct result of developments in prepara-
tory, instrumental, and computational procedures that have
led to the determination of large numbers of structures of
biological macromolecules by X-ray crystallography. Most
work is now done not on fibres but on crystals, in which the
large molecules lie in orderly ranks. A technique that works
well for charged proteins consists of adding large amounts
of a salt, such as (NH4)2SO4, to a buffer solution containing
the biopolymer. The increase in the ionic strength of the 
solution decreases the solubility of the protein to such an
extent that the protein precipitates, sometimes as crys-
tals that are amenable to analysis by X-ray diffraction. A
common strategy for inducing crystallization involves the
gradual removal of solvent from a biopolymer solution by
vapour diffusion. In one implementation of the method, a
single drop of biopolymer solution hangs above an aqueous
solution (the reservoir), as shown in the illustration. If the
reservoir solution is more concentrated in a nonvolatile 
solute (for example, a salt) than is the biopolymer solution,
then solvent will evaporate slowly from the drop. At the
same time, the concentration of biopolymer in the drop 
increases gradually until crystals begin to form.

Special techniques are used to crystallize hydrophobic
proteins, such as those spanning the bilayer of a cell 
membrane. In such cases, surfactant molecules, which like
phospholipids contain polar head groups and hydrophobic
tails, are used to encase the protein molecules and make
them soluble in aqueous buffer solutions. Vapour diffusion
may then be used to induce crystallization.

After suitable crystals are obtained, X-ray diffraction data
are collected and analyzed as described in the text. The three-
dimensional structures of a very large number of biological
polymers have been determined in this way. However, the
techniques discussed so far give only static pictures and
are not useful in studies of dynamics and reactivity. This
limitation stems from the fact that the Bragg rotation
method requires stable crystals that do not change structure
during the lengthy data acquisition times required. However,
special time-resolved X-ray diffraction techniques have 
become available in recent years and it is now possible 
to make exquisitely detailed measurements of atomic 
motions during chemical and biochemical reactions.

Time-resolved X-ray diffraction techniques make use of
synchrotron sources, which can emit intense polychromatic
pulses of X-ray radiation with pulse widths varying from 
100 ps to 200 ps (1 ps = 10−12 s). Instead of the Bragg
method, the Laue method is used because many reflections
can be collected simultaneously, rotation of the sample is
not required, and data acquisition times are short. However,
good diffraction data cannot be obtained from a single X-ray
pulse and reflections from several pulses must be aver-
aged together. In practice, this averaging dictates the time
resolution of the experiment, which is commonly tens of 
microseconds or less.

The progress of a reaction may be studied either by 
real-time analysis of the evolving system or by trapping 
intermediates by chemical or physical means. Regardless
of the strategy, all the molecules in the crystal must be made
to react at the same time, so special reaction-initiation
schemes are required. One way to initiate a reaction is to
allow a solution containing one of the reactants to diffuse
into a crystal containing the other reactant. This method 
is simple, but limited to relatively long reaction times, as 
diffusion of solutions into crystals large enough for crystal-
lographic measurements is of the order of seconds to min-
utes. Variations of the diffusion method can also be used 
to trap intermediates. One elegant example of the strategy
is a study of the mechanism of the action of the enzyme
elastase, a digestive enzyme that cleaves peptide bonds
selectively. The enzyme was rendered inactive by lowering
the temperature of the crystal. Then, a solution containing
the substrate was added to the crystal and the temperature
increased. The reaction was allowed to proceed until an 
intermediate was formed, at which point the temperature
was lowered very quickly, thus stopping the reaction and
trapping the intermediate.

Another way to initiate a reaction is to use a laser pulse 
as a trigger. After a delay that can be as short as a few
nanoseconds, an X-ray pulse probes the sample. This method
has the obvious advantage of being a tool for the study of
ultrafast reactions but is limited to processes that can be 
induced by photon absorption.

Reservoir
solution

Drop of
biopolymer
solution

In a common implementation of the vapour diffusion method
of biopolymer crystallization, a single drop of biopolymer
solution hangs above a reservoir solution that is very con-
centrated in a nonvolatile solute. Solvent evaporates from
the more dilute drop until the vapour pressure of water in
the closed container reaches a constant equilibrium value.
In the course of evaporation (denoted by the downward 
arrows), the biopolymer solution becomes more concen-
trated and, at some point, crystals may form.
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Alternative
H positions

H

H
O

Fig. 17.41 A fragment of the crystal structure of ice (ice-I).
Each O atom is at the centre of a tetrahedron of four O atoms
at a distance of 276 pm. The central O atom is attached by
two short O—H bonds to two H atoms and by two long 
hydrogen bonds to the H atoms of two of the neighbouring
molecules. Overall, the structure consists of planes of hexa-
gonal puckered rings of H2O molecules (like the chair form of
cyclohexane). The two H atoms between each O atom show
the formers’ two alternative locations.

Checklist of key ideas

You should now be familiar with the following concepts.

1 Solids are classified as metallic, ionic, covalent,
and molecular.

2 Electronic conductors are classified as metallic
conductors or semiconductors according to the
temperature dependence of their conductivities; 
a superconductor is an electronic conductor with
zero resistance.

3 According to the band theory, electrons occupy
molecular orbitals formed from the overlap of
atomic orbitals: full bands are called valence bands
and empty bands are called conduction bands.

4 Semiconductors are classified as p-type or n-type
according to whether conduction is due to holes
in the valence band or electrons in the conduction
band.

5 The lattice enthalpy is the change in enthalpy (per
mole of formula units) accompanying the complete
separation of the components of the solid.

6 A material is diamagnetic if it tends to move out of
a magnetic field, and paramagnetic if it tends to
move into a magnetic field.

7 Ferromagnetism is the cooperative alignment of
electron spins in a material and gives rise to strong
magnetization. Antiferromagnetism results from
alternating spin orientations in a material and
leads to weak magnetization.

8 Type I superconductors show abrupt loss of 
superconductivity when an applied magnetic field
exceeds a critical value Hc characteristic of the
material. They are also completely diamagnetic
below Hc. Type II superconductors show a gradual
loss of superconductivity and diamagnetism with
increasing magnetic field.

9 Unit cells are classified into seven crystal systems
according to their rotational symmetries.

10 A unit cell is the small three-dimensional figure
that may be used to construct the entire crystal
lattice by purely translational displacements.

11 A Bravais lattice is one of fourteen types of unit
cell shown in Fig. 17.22.

12 Lattice planes are specified by a set of Miller 
indices (hkl ).

13 Many elemental metals have close-packed 
structures with coordination number 12; close-
packed structures may be either cubic (ccp) or
hexagonal (hcp).

14 Representative ionic structures include the 
caesium-chloride, rock-salt, and zinc-blende
structures.

15 The radius-ratio rule may be used cautiously to
predict which of these three structures is likely.
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The following table summarizes the equations developed in this chapter.

Property

Born–Mayer equation

Magnetization of a bulk sample exposed 
to a magnetic field

Separation d of neighbouring planes

Bragg’s law

Radius ratio

Equation

DH -
L = |z1z2| × (NAe2/4pe0d ) × (1 − d*/d ) × A

M = c H

1/d2 = h2/a2 + k2/b2 + l 2/c2

l = 2d sin q

g = rsmaller /rlarger

Comment

Coulomb interactions
dominant

Orthogonal lattice

Table of key equations

Questions and exercises

Discussion questions

17.1 Explain how metallic conductors, semiconductors, and
insulators are identified and explain their properties in terms
of band theory. Why is graphite an electronic conductor and
diamond an insulator?

17.2 Explain how planes of lattice points are labelled.

17.3 Describe the consequences of the phase problem 
in determining structure factors and how the problem is 
overcome.

17.4 Describe the structures of elemental metallic solids in
terms of the packing of hard spheres.

17.5 Describe the caesium-chloride and rock-salt structures.
How does the radius-ratio rule help in the classification of a
structure into each type?

17.6 Describe the different types of magnetism that materials
can display and account for their origins.

Exercises

17.1 Classify as n-type or p-type a semiconductor formed by
doping (a) germanium with phosphorus, (b) germanium with
indium.

17.2 The electrical resistance of a sample increased from
100 X to 120 X when the temperature was changed from
0°C to 100°C. Is the substance a metallic conductor or a
semiconductor?

17.3 The energy levels of N atoms in the Hückel approxima-
tion are given by (eqn 17.1):

If the atoms are arranged in a ring, the energy levels are 
given by:

(for N even). Discuss the consequences, if any, of joining the
ends of an initially straight length of material.

17.4 The tip of a scanning tunnelling microscope can be
used to move atoms on a surface. The movement of atoms
and ions depends on their ability to leave one position and
stick to another, and therefore on the energy changes that
occur. As an illustration, consider a two-dimensional square
lattice of univalent positive and negative ions separated by
200 pm, and consider a cation on top of this array. Calculate,
by direct summation, its Coulombic interaction when it is in
an empty lattice point directly above and anion.

17.5 Describe the bonding in magnesium oxide, CaO, in
terms of bands composed of Ca and O atomic orbitals. How
does this model justify the ionic model of this compound?

17.6 Calculate the lattice enthalpy of CaO from the follow-
ing data:

DH/(kJ mol−1)

Sublimation of Ca(s) +178

Ionization of Ca(g) to Ca2+(g) +1735

Dissociation of O2(g) +249

Electron attachment to O(g) −141

Electron attachment to O−(g) +844

Formation of CaO(s) from Ca(s) and O2(g) −635
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17.7 Calculate the lattice enthalpy of SrI2 from the following
data:

DH/(kJ mol−1)

Sublimation of Sr(s) +164.4

Ionization of Sr(g) to Sr2+(g) +1626.1

Sublimation of I2(s) +62.4

Dissociation of I2(g) +75.6

Electron attachment to I(g) −303.8

Formation of SrI2(s) from Sr(s) 
and I2(s) −828.9

17.8 Calculate the potential energy of an ion at the centre 
of a diffuse ‘spherical crystal’ in which concentric spheres of
ions of opposite charge surround the ion and the numbers of
ions on the spherical surfaces fall away rapidly with distance.
Let successive spheres lie at radii d, 2d, . . . and the number
of ions (all of the same charge) on each successive sphere is
inversely proportional to the radius of the sphere. You will
need the following sum:

17.9 Estimate the ratio of the lattice enthalpies of SrO and
CaO from the Born–Meyer equation by using the ionic radii in
Table 15.4.

17.10 Type I superconductors show abrupt loss of super-
conductivity when an applied magnetic field exceeds a crit-
ical value Hc that depends on temperature and Tc as

where Hc(0) is the value of Hc as T→ 0. Lead has Tc = 7.19 K and
Hc = 63.9 kA m−1. At what temperature does lead become 
superconducting in a magnetic field of 20.0 kA m−1?

17.11 Draw a set of points as a rectangular array based on
unit cells of side a and b, and mark the planes with Miller 
indices (10), (01), (11), (12), (23), (41), (41).

17.12 Repeat Exercise 17.11 for an array of points in which
the a and b axes make 60° to each other.

17.13 In a certain unit cell, planes cut through the crystal
axes at (2a, 3b, c), (a, b, c), (6a, 3b, 3c), (2a, −3b, −3c). Identify
the Miller indices of the planes.

17.14 Draw an orthorhombic unit cell and mark on it the
(100), (010), (001), (011), (101), and (101) planes.

17.15 Draw a triclinic unit cell and mark on it the (100), (010),
(001), (011), (101), and (101) planes.

17.16 Calculate the separations of the planes (111), (211),
and (100) in a crystal in which the cubic unit cell has sides of
length 572 pm.

17.17 Calculate the separations of the planes (123) and (236)
in an orthorhombic crystal in which the unit cell has sides of
lengths 784, 633, and 454 pm.
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17.18 The glancing angle of a Bragg reflection from a set of
crystal planes separated by 97.3 pm is 19.85°. Calculate the
wavelength of the X-rays.

17.19 The separation of (100) planes of lithium metal is 350 pm
and its density is 0.53 g cm−3. Is the structure of lithium fcc 
or bcc?

17.20 Copper crystallizes in an fcc structure with unit cells 
of side 361 pm. (a) Predict the appearance of the powder
diffraction pattern using 154 pm radiation. (b) Calculate the
density of copper on the basis of this information.

17.21 Construct the electron density along the x-axis of a
crystal given the following structure factors:

h 0 1 2 3 4 5 6 7 8 9
Fh +30.0 +8.2 +6.5 +4.1 +5.5 −2.4 +5.4 +3.2 −1.0 +1.1

h 10 11 12 13 14 15
Fh +6.5 +5.2 −4.3 −1.2 +0.1 +2.1

17.22 Calculate the packing fraction of a stack of cylinders.

17.23 Calculate the packing fraction of a cubic close-packed
structure.

17.24 Suppose a virus can be regarded as a sphere and that
it stacks together in a hexagonal close-packed arrangement.
If the density of the virus is the same as that of water (1.00 g
cm−3), what is the density of the solid?

17.25 How many (a) nearest neighbours, (b) next-nearest
neighbours are there in a body-centred cubic structure? What
are their distances if the side of the cube is 600 nm?

17.26 How many (a) nearest neighbours, (b) next-nearest
neighbours are there in a cubic close-packed structure? What
are their distances if the side of the cube is 600 nm?

17.27 The thermal and mechanical processing of materials is
an important step in ensuring that they have the appropriate
physical properties for their intended application. Suppose a
metallic element underwent a phase transition in which its
crystal structure changed from cubic close-packed to body-
centred cubic. (a) Would it become more or less dense? 
(b) By what factor would its density change?

17.28 The compound Rb3TlF6 has a tetragonal unit cell with
dimensions a = 651 pm and c = 934 pm. Calculate the volume
of the unit cell and the density of the solid.

17.29 The orthorhombic unit cell of NiSO4 has the dimen-
sions a = 634 pm, b = 784 pm, and c = 516 pm, and the den-
sity of the solid is estimated as 3.9 g cm−3. Determine the
number of formula units per unit cell and calculate a more
precise value of the density.

17.30 The unit cells of SbCl3 are orthorhombic with dimen-
sions a = 812 pm, b = 947 pm, and c = 637 pm. Calculate the
spacing of (a) the (321) planes, (b) the (642) planes.

17.31 Use the radius-ratio rule to predict the kind of crystal
structure expected for magnesium oxide.
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Projects

The symbol ‡ indicates that calculus is required.

17.32‡ Here we explore the band theory of solids in more
detail. (a) Use eqn 17.1 to find an expression for the separa-
tion between neighbouring levels in a band of N atoms and
show that the separation goes to zero as N increases to 
infinity. (b) Calculate the density of states for a long line of
atoms, where the density of states is the quantity r(k) in the
expression dE = r(k)dk and draw a graph of r(k). Where is the
density of states greatest? Hint: Use eqn 17.1 and form
dE/dk. (c) The treatment in parts (a) and (b) applies only to
one-dimensional solids. In three dimensions, the variation 
of density of states is more like that shown in Fig. 17.42.
Account for the fact that in a three-dimensional solid the
greatest density of states is near the centre of the band and
the lowest density is at the edges.

17.33 A photoactive yellow protein is involved in the ‘nega-
tive phototactic response’, or movement away from light, 
of the bacterium Ectothiorhodospira halophila. Within 1 ns
after absorption of a photon with l = 446 nm, a protein-bound
phenolate ion undergoes trans–cis isomerization to form 
the intermediate shown in (1). What follows is a series of 
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Fig. 17.42 Typical densities of state in a solid.
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(1)

rearrangements that include the ejection of the chromophore
from its binding site deep in the protein, its return to the site
and reformation of the trans conformation. Consult the cur-
rent literature and prepare a brief report on the use of time-
resolved X-ray diffraction techniques in the description of
structural changes that follow electronic excitation of the
chromophore with a laser pulse.

17.34 A transistor is a semiconducting device that is 
commonly used either as a switch or an amplifier of electrical
signals. Prepare a brief report on the design of a nanometre-
sized transistor that uses a carbon nanotube as a component.
A useful starting point is the work summarized by Tans, et al.
(Nature 393, 49 (1998)).
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Processes at solid surfaces govern the viability of 
industry constructively, as in catalysis, and the per-
manence of its products destructively, as in corro-
sion. Chemical reactions at solid surfaces may differ
sharply from reactions in the bulk, as reaction 
pathways of much lower activation energy may be
provided by the surface, and hence result in catalysis.
The concept of a solid surface has been extended in 
recent years with the availability of microporous 
materials as catalysts.

Although we start the chapter with a discussion 
of clean surfaces, you should not lose sight of the 
fact that for chemists the important aspects of a 
surface are the attachment of substances to it and the
reactions that take place there. Also of interest are
surfaces immersed in solvents and in gases at high
pressure, when the concept of a ‘clean’ surface loses
much of its meaning. Moreover, the structure and
even the elemental composition at the surface may be
entirely different from that of the underlying bulk
material, as in the presence of an oxide layer on 
aluminium. Because the reactions that take place at 
a surface typically involve only a few surface layers
of atoms, the reactivity of a surface may be deter-
mined solely by this different composition and have
little to do with the composition of the bulk.

Reactions at surfaces include the processes that lie
at the heart of electrochemistry. Therefore, in the
final part of the chapter we revisit the topics treated
in Chapter 9, but focus on the dynamics of electrode
processes rather than the equilibrium properties
treated there.
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The growth and structure 

of surfaces

The attachment of molecules to a surface is called 
adsorption. The substance that adsorbs is the adsor-
bate and the underlying material that we are con-
cerned with in this section is the adsorbent or
substrate. The reverse of adsorption is desorption.

18.1 Surface growth

A simple picture of a perfect crystal surface is as 
a tray of oranges in a grocery store (Fig. 18.1). A 
gas molecule that collides with the surface can be
imagined as a table-tennis ball bouncing erratically
over the oranges. The molecule loses energy as it
bounces under the influence of intermolecular forces,
but it is likely to escape from the surface before it has
lost so much kinetic energy that is has become
trapped. The same is true, to some extent, of an ionic
crystal in contact with a solution. There is little 
energy advantage for an ion in solution to discard
some of its solvating molecules and stick at an 
exposed position on a flat surface.

The picture changes when the surface has defects,
for then there are ridges of incomplete layers of
atoms or ions. A typical type of surface defect is 
a step between two otherwise flat layers of atoms
called terraces (Fig. 18.2). A step defect might itself
have defects, including kinks. When an atom settles
on a terrace it migrates across it under the influence
of the intermolecular potential, and might come to a
step or a corner formed by a kink. Instead of inter-
acting with a single terrace atom, the molecule now
interacts with several, and the interaction may be
strong enough to trap it. Likewise, when ions deposit
from solution, the loss of the solvation interaction is
offset by a strong Coulombic interaction between the
arriving ions and several ions at the surface defect.

The rapidity of growth depends on the crystal plane
concerned and—perhaps surprisingly—the slowest
growing faces dominate the appearance of the crystal.
This feature is explained in Fig. 18.3, where we see
that although the horizontal face grows forward
most rapidly, it grows itself out of existence and the
more slowly growing faces survive.

18.2 Surface composition and structure

Under normal conditions, a surface exposed to a gas
is constantly bombarded with molecules and a freshly
prepared surface is covered very quickly. Just how
quickly can be estimated by using the kinetic theory
of gases and the following expression for the colli-
sion flux, ZW, the number of hits on a region of a 
surface during an interval divided by the area of the
region and the duration of the interval:

(18.1)

where m is the mass of the molecules. For air at 1 atm
and 25°C the collision flux is 3 × 1027 m−2 s−1.
Because 1 m2 of metal surface consists of about 1019

atoms, each atom is struck about 108 times each 
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Fig. 18.1 A schematic diagram of the flat surface of a solid.
This primitive model is largely supported by scanning tun-
nelling microscope images.

Terrace
Terrace

Kink

Adatom

Step

Fig. 18.2 Some of the kinds of defects that may occur on
otherwise perfect terraces. Defects play an important role in
surface growth and catalysis.

Fast

Slow

Fig. 18.3 The slower-growing faces of a crystal dominate its
final external appearance. Three successive stages of the
growth are shown.
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second. Even if only a few collisions leave a molecule
adsorbed to the surface, the time for which a freshly
prepared surface remains clean is very short.

A brief comment Do not jump to conclusions without
being circumspect. Equation 18.1 might suggest that the 
collision flux decreases as the temperature rises even though
molecules are moving faster! In fact, in a container of con-
stant volume the pressure is proportional to the temperature,
so the overall temperature dependence goes as T/T1/2; that
is, ZW ∝ T1/2, and the flux increases with temperature in pro-
portion to the speed of the molecules.

The obvious way to retain the cleanliness of the
surface is to reduce the pressure. When it is reduced
to 0.1 mPa (as in a simple vacuum system) the colli-
sion flux falls to about 1018 m−2 s−1, corresponding 
to one hit per surface atom in each 0.1 s. Even that is
too brief in most experiments, and in ultrahigh vac-
uum (UHV) techniques pressures as low as 0.1 μPa
(when ZW = 1015 m−2 s−1) are reached on a routine
basis and 1 nPa (when ZW = 1013 m−2 s−1) are reached
with special care. These collision fluxes correspond to
each surface atom being hit once every 105 to 106 s,
or about once a day.

The chemical composition of a surface can be 
determined by a variety of ionization techniques. The
same techniques can be used to detect any remaining
contamination after cleaning and to detect layers 
of material adsorbed later in the experiment. One
technique that may be used is photoemission spec-
troscopy, a derivative of the photoelectric effect, in
which X-rays (for XPS) or hard (short-wavelength)
ultraviolet (for UPS) ionizing radiation is used to
eject electrons from adsorbed species. The kinetic 
energies of the electrons ejected from their orbitals
are measured and the pattern of energies is used to
identify the material present (Fig. 18.4). UPS, which
examines electrons ejected from valence shells, is also
used to establish the bonding characteristics and 
the details of electronic structures of substances on
the surface. Its usefulness is its ability to reveal which
orbitals of the adsorbate are involved in the bond to
the substrate. For instance, the principal difference
between the photoemission results on free benzene
and benzene adsorbed on palladium is in the energies
of the π electrons. This difference is interpreted as
meaning that the C6H6 molecules lie parallel to the
surface and are attached to it by their π orbitals. In
contrast, pyridine (C6H5N) stands almost perpen-
dicular to the surface, and is attached by a σ bond
formed by the nitrogen lone pair.

A very important technique, which is widely used
in the microelectronics industry, is Auger electron

spectroscopy (AES). The Auger effect (pronounced
oh-zhey) is the emission of a second electron after
high-energy radiation has expelled another electron.
The first electron to depart leaves a hole in a low-
lying orbital, and an upper electron falls into it. The
energy released in this transition may result either in
the generation of radiation, which is called X-ray
fluorescence (Fig. 18.5a) or in the ejection of another
electron (Fig. 18.5b). The latter is the secondary 
electron of the Auger effect. The energies of the sec-
ondary electrons are characteristic of the material
present, so the Auger effect takes a ‘fingerprint’ of the
sample (Fig. 18.6). In practice, the Auger spectrum is
normally obtained by irradiating the sample with an
electron beam rather than electromagnetic radiation.
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Fig. 18.4 The X-ray photoelectron emission spectrum of a
sample of gold contaminated with a surface layer of mercury.
(M. W. Roberts and C. S. McKee, Chemistry of the metal–gas
interface, Oxford (1978).).
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Fig. 18.5 When an electron is expelled from a solid (a) an
electron of higher energy may fall into the vacated orbital and
emit an X-ray photon to produce X-ray fluorescence. Alterna-
tively (b) the electron falling into the orbital may give up its 
energy to another electron, which is ejected in the Auger 
effect.
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In scanning Auger electron microscopy (SAM), the
finely focused electron beam is scanned over the 
surface and a map of composition is compiled; 
the resolution can reach to below about 50 nm.

One of the most informative techniques for 
determining the arrangement of the atoms close to
and adsorbed on the surface is low-energy electron
diffraction (LEED). This technique is like X-ray
diffraction but uses the wave character of electrons.
The use of low-energy electrons (with energies in the
range 10–200 eV, corresponding to wavelengths in
the range 100–400 pm) ensures that the diffraction is
caused only by atoms on and close to the surface.
The experimental arrangement is shown in Fig. 18.7,
and typical LEED patterns, obtained by photograph-
ing the fluorescent screen through the viewing port,
are shown in Fig. 18.8.
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Fig. 18.6 An Auger spectrum of the same sample used 
for Fig. 18.4 taken before and after deposition of mercury.
(M. W. Roberts and C. S. McKee, Chemistry of the metal–gas
interface, Oxford (1978).)
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Fig. 18.7 A schematic diagram of the apparatus used for a
LEED experiment. The electrons diffracted by the surface
layers are detected by the fluorescence they cause on the
phosphor screen.

(a) (b)

Fig. 18.8 LEED photographs of (a) a clean platinum surface
and (b) after its exposure to propyne, CH3CyCH. (Photo-
graphs provided by Professor G. A. Somorjai.)

Example 18.1

Interpreting a LEED pattern

The LEED pattern from a clean unreconstructed (110) face
of palladium is shown in (a) below. The reconstructed
surface gives a LEED pattern shown as (b). What can be
inferred about the structure of the reconstructed surface?

• • • • • •
• • •

• • • • • •
(a) (b) • • •

• • • • • •
Strategy Recall from Bragg’s law (Section 17.13), l =
2d sin q, that for a given wavelength, the smaller the 
separation d of the layers, the greater the scattering
angle (so that 2d sin q remains constant and equal to the
wavelength). In terms of the LEED pattern, the farther
apart the atoms responsible for the pattern, the closer
the spots appear in the pattern. Twice the separation 
between the atoms corresponds to half the separation
between the spots, and vice versa. Therefore, inspect
the two patterns and identify how the new pattern 
relates to the old.

Solution The horizontal separation of the spots is un-
changed, which indicates that the atoms remain in the
same position in that dimension when reconstruction
occurs. However, the vertical spacing is halved, which
suggests that the atoms are twice as far apart in that 
direction as they are in the unreconstructed surface.

Self-test 18.1

Sketch the LEED pattern for a surface that was re-
constructed from that shown in (a) above by tripling
the vertical separation of the atoms.

[Answer: • • •
• • •
• • •
• • •
• • •
• • •]
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LEED experiments show that the surface of a crys-
tal rarely has exactly the same form as a hypothetical
slice through the bulk. As a general rule, it is found
that metal surfaces are often simply truncations of
the bulk lattice but the distance between the top layer
of atoms and the one below is contracted by around
5 per cent. Semiconductors generally have surfaces
reconstructed to a depth of several layers. Recon-
struction occurs in ionic solids. For example, in
lithium fluoride the Li+ and F− ions close to the 
surface are found to lie on slightly different planes.
An actual example of the detail that can now be 
obtained from refined LEED techniques is shown in
Fig. 18.9 for CH3C— adsorbed on a (111) plane of
rhodium.

The presence of terraces, steps, and kinks in a 
surface shows up in LEED patterns, and their surface
density (the number of defects in a region divided 
by the area of the region) can be estimated. Three 
examples of how steps and kinks affect the pattern
are shown in Fig. 18.10. The samples used were 
obtained by cleaving a crystal at different angles to 
a plane of atoms. Only terraces are produced when
the cut is parallel to the plane and the density of steps
increases as the angle of the cut increases. The obser-
vation of additional structure in the LEED patterns,
rather than blurring, shows that the steps are arrayed
regularly.

Terraces, steps, kinks, and dislocations on a surface
may be observed by scanning tunnelling microscopy
(STM), and atomic force microscopy (AFM), two
techniques that have revolutionized the study of sur-
faces. In scanning tunnelling microscopy a platinum–
rhodium or tungsten needle is scanned across the 
surface of a conducting solid. When the tip of the
needle is brought very close to the surface, electrons

tunnel across the intervening space (Fig. 18.11). In
the constant-current mode of operation, the stylus
moves up and down corresponding to the form of the
surface, and the topography of the surface, including
any adsorbates, can be mapped on an atomic scale.
The vertical motion of the stylus is achieved by fixing
it to a piezoelectric cylinder, which contracts or 
expands according to the potential difference it expe-
riences. In the constant-z mode, the vertical position
of the stylus is held constant and the current is 

148 pm
12 pm
130 pm

Fig. 18.9 The structure of a surface close to the point of 
attachment of CH3C— to the (110) surface of rhodium at 
300 K and the changes in positions of the metal atoms that
accompany chemisorption.

(a)

(b)

(c)

Fig. 18.10 LEED patterns may be used to assess the defect
density of a surface. The photographs correspond to a plat-
inum surface with (a) low defect density, (b) regular steps
separated by about four atoms, and (c) regular steps with
kinks. (Photographs provided by Professor G.A. Samorjai.)

Scan

Tunnelling current

Fig. 18.11 A scanning tunnelling microscope makes use of
the current of electrons that tunnel between the surface and
the tip. That current is very sensitive to the distance of the tip
above the surface.

See an animated version of this figure in the 
interactive ebook.
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monitored. Because the tunnelling probability is very
sensitive to the size of the gap, the microscope can
detect tiny, atom-scale variations in the height of the
surface. An example of the kind of image obtained
with a clean surface is shown in Fig. 18.12, where the
cliff is only one atom high. Figure 18.13 shows the
dissociation of SiH3 adsorbed onto a Si(001) surface
into adsorbed SiH2 units and H atoms. The tip of the
STM can also be used to manipulate adsorbed atoms
on a surface, making possible the fabrication of com-
plex and yet very tiny structures, such as nanometre-
sized electronic devices.

In atomic force microscopy (AFM) a sharpened
stylus attached to a beam is scanned across the sur-
face. The force exerted by the surface and any adsor-
bate pushes or pulls on the stylus and deflects the
beam (Fig. 18.14). The deflection is monitored by
using a laser beam. Because no current is needed 
between the sample and the probe, the technique can
be applied to nonconducting surfaces too. A spectacu-
lar demonstration of the power of AFM is given in
Fig. 18.15, which shows individual DNA molecules
on a solid surface.

The extent of adsorption

The extent of surface coverage is normally expressed
as the fractional coverage, θ (theta):

(18.2)

The fractional coverage can be inferred from the 
volume of adsorbate adsorbed by θ = V/V∞, where

 
θ =

number of adsorption sites occupied
number of adsorption sites available

Fig. 18.12 An STM image of caesium atoms on a gallium 
arsenide surface.

Fig. 18.13 Visualization by STM of the reaction SiH3 → SiH2 + H on a 4.7 nm × 4.7 nm area of a Si(001) surface. (a) The Si(001)
surface before exposure to Si2H6(g). (b) Adsorbed Si2H6 dissociates into SiH2(surface), on the left of the image, and SiH3(surface),
on the right. (c) After 8 min, SiH3(surface) dissociates to SiH2(surface) and H(surface). Reproduced with permission from Y. Wang,
M.J. Bronikowski, and R.J. Hamers, Surface Science 64, 311 (1994).

Laser
radiation

Cantilever

Probe
Surface

Fig. 18.14 In atomic force microscopy, a laser beam is used
to monitor the tiny changes in position of a probe as it is 
attracted to or repelled from atoms on a surface.

Fig. 18.15 An AFM image of bacterial DNA plasmids on a
mica surface. (Courtesy of Veeco Instruments.)
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V∞ is the volume of adsorbate corresponding to com-
plete monolayer coverage. In each case, the volumes
in the definition of θ are those of the free gas meas-
ured under the same conditions of temperature and
pressure, not the volume the adsorbed gas occupies
when attached to the surface. The rate of adsorption
is the rate of change of surface coverage and is meas-
ured by observing the change of fractional coverage
with time.

Among the principal techniques for measuring 
the rate of desorption are flow methods, in which 
the sample itself acts as a pump because adsorption
removes molecules from the gas. One commonly
used technique is therefore to monitor the rates of
flow of gas into and out of the system: the difference
is the rate of gas uptake by the sample. In flash de-
sorption the sample is suddenly heated (electrically)
and the resulting rise of pressure is interpreted in
terms of the amount of adsorbate originally on the
sample. The interpretation may be confused by the
desorption of a compound (for example, WO3 from
oxygen on tungsten). Surface plasmon resonance
(SPR) is a technique in which the kinetics and ther-
modynamics of surface processes, particularly of 
biological systems, are monitored by detecting the 
effect of adsorption and desorption on the refractive
index of a gold substrate. Gravimetry, in which the
sample is weighed on a microbalance during the 
experiment, can also be used. A common instrument
for gravimetric measurements is the quartz crystal
microbalance (QCM), in which the mass of a sample
adsorbed to the surface of a quartz crystal is related
to changes in the latter’s mechanical properties. The
key principle behind the operation of a QCM is 
the ability of a quartz crystal to vibrate at a charac-
teristic frequency when an oscillating electric field is
applied. The vibrational frequency decreases when
material is spread over the surface of the crystal and
the change in frequency is proportional to the mass
of material. Masses as small as a few nanograms 
(1 ng = 10−9 g) can be measured reliably in this way.

18.3 Physisorption and chemisorption

Molecules and atoms can attach to surfaces in two
ways, although there is no clear frontier between the
two types of adsorption. In physisorption (an abbre-
viation of ‘physical adsorption’), there is a van der
Waals interaction between the adsorbate and the
substrate (for example, a dispersion or a dipolar 
interaction of the kind responsible for the condensa-
tion of vapours to liquids). The energy released when

a molecule is physisorbed is of the same order of
magnitude as the enthalpy of condensation. Such
small energies can be absorbed as vibrations of the
lattice and dissipated as thermal motion, and a mole-
cule bouncing across the surface will gradually lose
its energy and finally adsorb to it in the process called
accommodation. The enthalpy of physisorption can
be measured by monitoring the rise in temperature 
of a sample of known heat capacity, and typical 
values are in the region of −20 kJ mol−1 (Table 18.1).
This small enthalpy change is insuAcient to lead to
bond breaking, so a physisorbed molecule retains 
its identity but might be distorted. Enthalpies of 
physisorption may also be measured by observing
the temperature dependence of the parameters that
occur in the adsorption isotherm (Section 18.4).

In chemisorption (an abbreviation of ‘chemical 
adsorption’), the molecules (or atoms) adsorb to the
surface by forming a chemical (usually covalent) bond
and tend to find sites that maximize their coordina-
tion number with the substrate. The enthalpy of
chemisorption is much more negative than that for
physisorption, and typical values are in the region of
−200 kJ mol−1 (Table 18.2). The distance between

Table 18.1

Maximum observed enthalpies of physisorption,
DadsH

=
ads /(kJ mol−1)

CH4 −21
CO −25
H2 −84
H2O −59
N2 −21
NH3 −38
O2 −21

Table 18.2

Enthalpies of chemisorption, DadsH
=
ads /(kJ mol−1)

Adsorbate Adsorbent (substrate)

Cr Fe Ni Pt

C2H4 −427 −285 −243
CO −192
H2 −188 −134
NH3 −188 −155
O2 −293
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the surface and the closest adsorbate atom is also
typically shorter for chemisorption than for physi-
sorption. A chemisorbed molecule may be torn apart
at the demand of the unsatisfied valencies of the sur-
face atoms and the existence of molecular fragments
on the surface as a result of chemisorption is one rea-
son why solid surfaces catalyse reactions.

A type of chemisorption that has received much 
attention recently is the formation of a self-assembled
monolayer (SAM), which is an ordered molecular 
aggregate that forms a single layer of organic material
on a surface. To understand the formation of a SAM,
consider the result of exposing molecules such as
alkyl thiols, RSH, where R represents an alkyl chain,
to a gold surface. The thiols chemisorb onto the 
surface, forming RS–Au(I) adducts. If we represent
the atoms close to the adsorption site as Aun, then we
can write the attachment as

RSH + Aun → RS–Au(I)·Aun−1 + H2(g)

If R has a suAciently long chain, van der Waals 
interactions between the adsorbed RS– units lead to
the formation of a highly ordered monolayer on the
surface (Fig. 18.16).

1
2

The simplest physically plausible adsorption iso-
therm is based on three assumptions:

1. Adsorption cannot proceed beyond monolayer
coverage.

2. All sites are equivalent and the surface is uniform
(that is, the surface is perfectly flat on a micro-
scopic scale).

3. There are no interactions between adsorbed
molecules, so the ability of a molecule to adsorb at
a given site is independent of the occupation of
neighbouring sites.

Assumptions 2 and 3 imply, respectively, that the 
enthalpy of adsorption is the same for all sites and is
independent of the extent of surface coverage. We
show in Derivation 18.1 that the relation between
the fractional coverage θ and the partial pressure of
A, p, that results from these three assumptions is the
Langmuir isotherm:

(18.3)

where ka and kb are, respectively, the rate constants
for adsorption and desorption. This expression is
plotted for various values of K (which has the dimen-
sions of 1/pressure) in Fig. 18.17. We see that as the
partial pressure of A increases, the fractional cover-
age increases towards 1. Half the surface is covered
when p = 1/K. At low pressures (in the sense that 
Kp << 1), the denominator can be replaced by 1, and
θ = Kp. Under these conditions, the surface coverage
increases linearly with pressure. At high pressure 
(in the sense that Kp >> 1), the 1 in the denominator
can be neglected, the Kp cancel, and θ = 1. Now the
surface is saturated.
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Fig. 18.16 Self-assembled monolayers of alkylthiols formed
onto a gold surface by chemisorption of the thiol groups and
aggregation of the alkyl chains.
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Fig. 18.17 The Langmuir isotherm for nondissociative
adsorption for different values of K.

18.4 Adsorption isotherms

The free gas A and the adsorbed gas are in a dynamic
equilibrium of the form

A(g) + M(surface) f AM(surface)

and the fractional coverage of the surface depends on
the pressure of the overlying gas. The enthalpy change
associated with the forward reaction (per mole of 
adsorbed species) is the enthalpy of adsorption, ΔadsH.
The variation of θ with pressure at a chosen temper-
ature is called the adsorption isotherm.



Solution The data for the plot are as follows:

p/kPa 13.3 26.7 40.0 53.3
(p/kPa)/(V/cm3) 1.30 1.44 1.57 1.69

p/kPa 66.7 80.0 93.3
(p/kPa)/(V/cm3) 1.81 1.92 2.02

The points are plotted in Fig. 18.18. The (least squares)
slope is 9.00 × 10−3, so V∞ = 111 cm3. The intercept at 
p = 0 is 1.20, so

A note on good practice To analyse data graphically,
it is usually sensible to look for a way of plotting the data
that gives a straight line (y = a + bx). The resulting graph
allows you to detect any rogue points, but use a linear 
regression (least squares) analysis to obtain the intercept
and slope.
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A further point is that because K is essentially an
equilibrium constant, then its temperature dependence
is given by the van ’t Hoff equation (eqn 7.15):

(18.4)ln lnK K
H

R T T
= ′ − −

′
⎛
⎝
⎜

⎞
⎠
⎟

Δads 1 1

Derivation 18.1

The Langmuir isotherm

To obtain the Langmuir isotherm, we suppose that 
the rate at which A adsorbs to the surface is proportional
to the partial pressure (because the rate at which
molecules strike the surface is proportional to the pres-
sure), and to the number of sites that are not occupied at
the time, which is (1 − q)N:

Rate of adsorption = kaN(1 − q)p

where ka is the adsorption rate constant. The rate at
which the adsorbed molecules leave the surface is pro-
portional to the number currently on the surface (Nq):

Rate of desorption = kdNq

where kd is the desorption rate constant. At equilibrium,
the two rates are equal, so we can write

kaN(1 − q)p = kdNq

The Ns cancel and, using K = ka /kd, we obtain

Kp(1 − q) = q

which rearranges into eqn 18.3.

Example 18.2

Using the Langmuir isotherm

The data given below are for the adsorption of CO on
charcoal at 273 K. Confirm that they fit the Langmuir
isotherm, and find the constant K and the volume corres-
ponding to complete coverage. In each case V has been
corrected to 1.00 atm.

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.2 18.6 25.5 31.5 36.9 41.6 46.1

Strategy From eqn 18.3,

Then, by substituting q = V/V∞, where V∞ is the volume
corresponding to complete coverage (as measured at
273 K and 1.00 atm)

Division of both sides by V∞ and multiplication by p then
gives

Hence, a plot of p/V against p should give a straight line
of slope 1/V∞ and intercept 1/KV∞.

y

p
V KV V

p= + ×
∞ ∞

1 1

= intercept + slope × x
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∞ = +
1

1

  

1 1 1
1

q
=

+
= +

Kp
Kp Kp

0 20 40 60 80 100
Pressure, p/kPa

1

1.2

1.4

1.6

1.8

2

2.2

(p
/k

P
a)

/(
V

/c
m

3 )

Fig. 18.18 The plot of the data in Example 18.2.
As illustrated here, the Langmuir isotherm pre-

dicts that a straight line should be obtained when p/V is
plotted against p.

Self-test 18.2

Repeat the calculation for the following data:

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.3 19.3 27.3 34.1 40.0 45.5 48.0
[Answer: 128 cm3, 6.70 × 10−3 kPa−1]



Therefore,

DadsH
- = (−0.381 × 103 K) × (8.3147 J K−1 mol−1) 

= −3.17 × 103 J mol−1

or −3.17 kJ mol−1.

A note on good practice The graph, like all graphs, is
plotted using dimensionless variables, so the slope is a
pure number. Although a graph is a good way of identify-
ing rogue points, as remarked earlier, use a least-squares
linear regression procedure to calculate the slope. Take
care in interpreting the slope, for at that stage the units
(and the appropriate power of 10) must be reinstated.

   

Dads K
H

R

-

= − ×0 381 103.
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Example 18.3

The isosteric enthalpy of adsorption

The pressure of nitrogen gas in equilibrium with a layer
of nitrogen adsorbed on rutile (TiO2) with a fractional 
coverage of q = 0.10 varied with temperature as follows:

T/K 220 240 260 280 300

p/kPa 2.8 7.7 17.0 38.0 68.0

Determine the isosteric enthalpy of adsorption at q = 0.10.

Strategy First, find the relation between K in the Langmuir
isotherm and p for a given fractional coverage. Then con-
vert the van ’t Hoff equation to an equation relating p and
T in place of K and T, and plot the data appropriately.

Solution We rearrange eqn 18.3 into

and then, on taking logarithms,

The van ’t Hoff equation then becomes

After cancellation of the constants and changing the
signs on both sides, we can rearrange this equation into

Therefore, a plot of ln p against 1/T should be a straight
line of slope DadsH

-/R. We draw up the following table:

(103 K)/T 4.55 4.17 3.85 3.57 3.33

ln(p/kPa) 1.03 2.04 2.83 3.64 4.22

The points are plotted in Fig. 18.19. The (least squares)
slope of the straight line is −0.381, so

ln lnp p
H

RT R T
= − + ×′

′
Dads

- HDads
- 1

y =  intercept

A constant

+ slope × x

constant constant adsln ln− = − −p p
H

′
D -

R T T
1 1

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟′

Use ln(1/x) = −ln x
A constant because q is fixed

ln ln lnK
p

=
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + =

q
q1

1
constant ln− p

  
K

p
=

−
×

q
q1

1

It follows that if we plot ln K against 1/T, then the
slope of the graph is equal to −ΔadsH /R, where
ΔadsH is the standard enthalpy of adsorption. How-
ever, because this quantity might vary with the 
extent of surface coverage either because the adsor-
bate molecules interact with each other or because
adsorption occurs at a sequence of different sites,
care must be taken to measure K at the same value 
of the fractional coverage. The resulting value of
ΔadsH is called the isosteric enthalpy of adsorption.
The variation of ΔadsH with θ allows us to explore
the validity of the assumptions on which the
Langmuir isotherm is based.

1

2

3

4

5

ln
(p

/k
P

a)

3 3.5 4 4.5 5
1/Temperature, (103 K)/T

Fig. 18.19 The isosteric enthalpy of adsorption
can be obtained from the slope of the plot of ln p

against 1/T, where p is the pressure needed to achieve
the specified surface coverage. The data used are from
Example 18.2.

Self-test 18.3

The data below show the pressures of CO needed
for the volume of adsorption (corrected to 1.00 atm
and 273 K) to be 10.0 cm3. Calculate the adsorption
enthalpy at this surface coverage.

T/K 200 210 220 230 240 250

p/kPa 4.00 4.95 6.03 7.20 8.47 9.85
[Answer: −7.52 kJ mol−1]

There are two modifications of the Langmuir
isotherm that should be noted. Suppose the substrate
dissociates on adsorption, as in

A2(g) + M(surface) f A–M(surface) + A–M(surface)

We show in Derivation 18.2 that the resulting
isotherm is
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follow Langmuir isotherms, and adsorb without dis-
sociation, then

(18.6)

where KJ (with J = A or B) is the ratio of adsorption
and desorption rate constants for species J, pJ is its
partial pressure in the gas phase, and θJ is the fraction
of total sites occupied by J. Coadsorption of this kind
is important in catalysis and we use these isotherms
later.

If the initial adsorbed layer can act as a substrate
for further (for example, physical) adsorption, then
instead of the isotherm levelling off to some saturated
value at high pressures, it can be expected to rise
indefinitely as more and more molecules condense on
to the surface, just like water vapour can condense
indefinitely on to the surface of liquid water. The
most widely used isotherm dealing with multilayer
adsorption was derived by Stephen Brunauer, Paul
Emmett, and Edward Teller, and is called the BET
isotherm:

with (18.7)

In this expression, p* is the vapour pressure above 
a layer of adsorbate that is more than one molecule
thick and can therefore be taken to be the vapour
pressure of the bulk liquid, Vmon is the volume corres-
ponding to monolayer coverage, and c = K0/K1,
where K0 is the equilibrium constant for adsorption
on to the substrate and K1 the equilibrium constant
for physisorption on to the overlaying layers already
present (and that are treated as the bulk liquid).
Provided the entropy of chemisorption and physi-
sorption are the same,

(18.8)

where ΔdesH is the standard enthalpy of desorp-
tion from the substrate and ΔvapH is the standard 
enthalpy of vaporization of the liquid adsorbate.

Figure 18.21 illustrates the shapes of BET isotherms.
At low pressures, the dominant effect is monolayer
adsorption, so we can expect the BET isotherm to 
resemble the Langmuir isotherm. Indeed, when 
p << p*, so z << 1, we can write

(18.9)

which has the form of the Langmuir isotherm. As the
pressure is increased, though, multilayer coverage
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Fig. 18.20 The Langmuir isotherm for dissociative 
adsorption, X2(g) → 2 X(surface), for different values 

of K.

Derivation 18.2

The effect of substrate dissociation on the
Langmuir isotherm

When the substrate dissociates on adsorption, the rate
of adsorption is proportional to the pressure and to the
probability that both atoms will find sites, which is pro-
portional to the square of the number of vacant sites:

Rate of adsorption = kap {N(1 − q)}2

The rate of desorption is proportional to the frequency of
encounters of atoms on the surface, and is therefore
second-order in the number of atoms present:

Rate of desorption = kd(Nq)2

The condition for no net change (equal rates of adsorp-
tion and desorption) is

kap {N(1 − q)}2 = kd(Nq)2

After using K = ka /kd, cancelling the Ns, and taking the
square-root of both sides of the expression, we obtain

(Kp)1/2(1 − q) = q

which rearranges into eqn 18.5.

The second modification we need to consider deals
with a mixture of two gases A and B that compete for
the same sites on the surface. It is left as an exercise
(Exercise 18.14) for you to show that if A and B both

(18.5)

The surface coverage now depends on the square
root of the pressure in place of the pressure itself 
(Fig. 18.20).
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+
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becomes important and the extent of coverage rises
without limit. A BET isotherm is not accurate at all
pressures, but it is widely used in industry to deter-
mine the surface areas of solids. When c >> 1 and 
cz >> 1, which is the case when the enthalpy of 
desorption from the substrate is very high, the BET
isotherm takes the form

(18.10)

This expression is applicable to unreactive gases on
polar surfaces, for which c ≈ 102.

The BET isotherm is reasonably reliable in the
range 0.8 < θ < 2, and so provides a reasonably 
reliable technique for measuring the surface area of
solids (corresponding to θ = 1). The adsorbate is 
typically nitrogen gas.
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Fig. 18.21 Plots of the BET isotherm for different 
values of c. The value of V/Vmon rises indefinitely be-

cause the adsorbate may condense on the covered substrate
surface.

Example 18.3

Using the BET isotherm to determine the area of
a surface

The amount of N2 adsorbed on 0.30 g of silica at 77 K
(the normal boiling point of nitrogen) was determined 
by measuring the volume adsorbed and then using the
perfect gas law to calculate the amount. The following
values were obtained:

p/Torr 100 200 300 400

n/mmol 0.90 1.10 1.40 1.90

Determine the value of c and the number of adsorption
sites on the sample.

Strategy To use the BET isotherm, we first take the re-
ciprocal of both sides of eqn 18.7a:
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Fig. 18.22 The plot of the data in Example 18.3.

The ratio Vmon/V can be set equal to nmol /n. Then we 
multiply both sides by z /nmon(1 − z), to obtain

(18.11)

Use z = p/p*, with p* = 760 Torr (because the vapour
pressure of a substance at its normal boiling point is 
1 atm). This expression is the equation of a straight 
line when the left-hand side is plotted against 1/z, with
an intercept at 1/cnmon and a slope (c − 1)/cnmon. From
the intercept and slope the values of c and nmon can be
determined.

Solution Draw up the following table:

p/Torr 100 200 300 400

z = p/p* 0.132 0.263 0.395 0.526

z /(1 − z)(n/mmol) 0.17 0.32 0.47 0.58

Figure 18.22 shows a plot of the data. The intercept is at
0.039, so 1/c(nmon/mmol) = 0.039 and therefore cnmon =
15 mmol, The slope is 1.1, so (c − 1)/c(nmon/mmol) = 1.1,
and therefore

c − 1 = 1.1 × 15 = 16

and hence c = 17 and nmon = (15 mmol)/16 = 0.94 mmol.
This amount corresponds to

Nmon = nmonNA

= (9.4 × 10− 4 mol) × (6.022 × 1023 mol−1)

= 5.7 × 1020

adsorption sites.
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18.5 The rates of surface processes

Figure 18.23 shows how the potential energy of a
molecule varies with its distance above the adsorp-
tion site. As the molecule approaches the surface its
potential energy decreases as it becomes physisorbed
into the precursor state for chemisorption. Dissoci-
ation into fragments often takes place as a molecule
moves into its chemisorbed state, and after an initial
increase of energy as the bonds stretch there is a
sharp decrease as the adsorbate–substrate bonds
reach their full strength. Even if the molecule does
not fragment, there is likely to be an initial increase
of potential energy as the bonds adjust when the
molecule approaches the surface.

In most cases, therefore, we can expect there to be
a potential energy barrier separating the precursor
and chemisorbed states. This barrier, though, might
be low and might not rise above the energy of a 
distant, stationary molecule (as in Fig. 18.23a). In
this case, chemisorption is not an activated process
and can be expected to be rapid. Many gas adsorp-

tions on clean metals appear to be nonactivated. In
some cases the barrier rises above the zero axis (as in
Fig 18.23b); such chemisorptions are activated and
slower than the nonactivated kind. An example is the
adsorption of H2 on copper, which has an activation
energy in the region of 20–40 kJ mol−1.

One point that emerges from this discussion is that
rates are not good criteria for distinguishing between
physisorption and chemisorption. Chemisorption can
be fast if the activation energy is small or zero; but it
may be slow if the activation energy is large. Physi-
sorption is usually fast, but it can appear to be slow
if adsorption is taking place on a porous medium.

The rate at which a surface is covered by adsorbate
depends on the ability of the substrate to dissipate the
energy of the incoming molecule as thermal motion
as it crashes on to the surface. If the energy is not 
dissipated quickly, the molecule migrates over the
surface until a vibration expels it into the overlying
gas or it reaches an edge. The proportion of collisions
with the surface that successfully lead to adsorption
is called the sticking probability, s:

(18.12)

The denominator can be calculated from kinetic 
theory (by using eqn 18.1), and the numerator can be
measured by observing the rate of change of pres-
sure. Values of s vary widely. For example, at room
temperature CO has s in the range 0.1–1.0 for several
d-metal surfaces, suggesting that almost every colli-
sion sticks, but for N2 on rhenium s < 10−2, indicating
that more than a hundred collisions are needed before
one molecule sticks successfully.

Desorption is always an activated process because
the molecules have to be lifted from the foot of a 
potential well. A physisorbed molecule vibrates in 
its shallow potential well, and might shake itself 
off the surface after a short time. The temperature
dependence of the first-order rate of departure can be 
expected to be Arrhenius-like,

kd = Ae−Ed/RT (18.13)

where A is a pre-exponential factor (obtained from
the intercept of an Arrhenius plot, Section 10.9, at
1/T = 0) and the activation energy for desorption, Ed,
is likely to be comparable to the enthalpy of physi-
sorption. In the discussion of half-lives of first-order
reactions (Section 10.8) we saw that t1/2 = (ln 2)/k; 
so for desorption, the half-life for remaining on the
surface has a temperature dependence given by

 
s =

rate of adsorption of particles by the surrface
rate of collision of particles with thhe surface

Self-test 18.4

Repeat the analysis using the following data for a
different sample of silica:

p/Torr 100 150 200 250 300 350

n/mmol 1.28 1.55 1.79 2.05 2.33 2.67
[Answer: nmon = 1.54 mmol, Nmon = 9.27 × 1020]
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Fig. 18.23 The potential energy profiles for the dissociative
chemisorption of an A2 molecule. In each case, P is the 
enthalpy of (nondissociative) physisorption and C that for
chemisorption (at T = 0). The relative locations of the curves
determine whether the chemisorption is (a) not activated or
(b) activated.
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(18.14)

(Note the positive sign in the exponent: the half-life
decreases as the temperature is raised.) If we suppose
that 1/τ0 is approximately the same as the vibrational
frequency of the weak molecule–surface bond (about
1012 Hz) and Ed ≈ 25 kJ mol−1, then residence 
half-lives of around 10 ns are predicted at room 
temperature. Lifetimes close to 1 s are obtained only
by lowering the temperature to about 100 K. For
chemisorption, with Ed = 100 kJ mol−1 and guessing
that τ0 = 10−14 s (because the adsorbate–substrate
bond is quite stiff), we expect a residence half-life of
about 3 × 103 s (about an hour) at room temperature,
decreasing to 1 s at about 350 K.

One way to measure the desorption activation 
energy is to monitor the rate of increase in pressure
when the sample is maintained at a series of temper-
atures and then to attempt to make an Arrhenius
plot. A more sophisticated technique is temperature
programmed desorption (TPD) or thermal desorp-
tion spectroscopy (TDS). The basic observation is a
surge in desorption rate (as monitored by a mass
spectrometer) when the temperature is raised linearly
to the temperature at which desorption occurs rapidly;
but once the desorption has occurred there is no more
adsorbate to escape from the surface, so the desorp-
tion flux falls again as the temperature continues to
rise. The TPD spectrum, the plot of desorption flux
against temperature, therefore shows a peak, the 
location of which depends on the desorption activa-
tion energy. There are three maxima in the example
shown in Fig. 18.24, indicating the presence of three
adsorption sites with different activation energies.

In many cases only a single desorption activation
energy (and a single peak in the TPD spectrum) is 
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e dτ τ observed. When several peaks are observed they
might correspond to adsorption on different crystal
planes or to multilayer adsorption. For instance, Cd
atoms on tungsten show two desorption activation
energies, one of 18 kJ mol−1 and the other of 90 kJ
mol−1. The explanation is that the more tightly bound
Cd atoms are attached directly to the substrate, and
the less strongly bound are in a layer (or layers) above
the primary overlayer. Another example of a system
showing two desorption activation energies is CO on
tungsten, the values being 120 kJ mol−1 and 300 kJ
mol−1. The explanation is believed to be the existence
of two types of metal–adsorbate binding site, one 
involving a simple M—CO bond, the other adsorp-
tion with dissociation into individually adsorbed C
and O atoms.

Catalytic activity at surfaces

We saw in Chapter 11 that a catalyst acts by providing
an alternative reaction path with a lower activation
energy. A catalyst does not disturb the final equilibrium
composition of the system, only the rate at which that
equilibrium is approached. In this section we shall con-
sider heterogeneous catalysis, in which the catalyst
and the reagents are in different phases. A common
example is a solid introduced as a heterogeneous 
catalyst into a gas-phase reaction. Many industrial
processes make use of heterogeneous catalysts, which
include platinum, rhodium, zeolites, and various
metal oxides, but increasingly attention is turning 
to homogeneous catalysts, partly because they are 
easier to cool. However, their use typically requires
additional separation steps, and such catalysts are
generally immobilized on a support, in which case they
become heterogeneous. In general, heterogeneous
catalysts are highly selective and to find an appropri-
ate catalyst each reaction must be investigated indi-
vidually. Computational procedures are beginning to
be a fruitful source of prediction of catalytic activity.

A metal acts as a heterogeneous catalyst for certain
gas-phase reactions by providing a surface to which
a reactant can attach by chemisorption. For example,
hydrogen molecules may attach as atoms to a nickel
surface and these atoms react much more readily
with another species (such as an alkene) than the
original molecules. The chemisorption step therefore
results in a reaction pathway with a lower activation
energy than in the absence of the catalyst. Note that
chemisorption is normally required for catalytic 
activity: physisorption might precede chemisorption
but is not itself suAcient.
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Fig. 18.24 The flash desorption spectrum of H2 on the (100)
face of tungsten. The three peaks indicate the presence of
three sites with different adsorption enthalpies and therefore
different desorption activation energies. (P. W. Tamm and L.
D. Schmidt, J. Chem. Phys., 51, 5352 (1969).)
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18.6 Mechanisms of heterogeneous
catalysis

Heterogeneous catalysis normally depends on at least
one reactant being adsorbed (usually chemisorbed)
and modified to a form in which it readily undergoes
reaction. Often this modification takes the form of 
a fragmentation of the reactant molecules. The cata-
lyst ensemble is the minimum arrangement of atoms
at the surface active site that can be used to model 
the action of the catalyst. It may be determined, for
instance, by diluting the active metal with a chemic-
ally inert metal and observing the catalytic activity of
the resulting alloy. In this way it has been found, for
instance, that as many as 12 neighbouring Ni atoms
are needed for the cleavage of the C—C bond in the
conversion of ethane to methane.

The decomposition of phosphine (PH3) on tungsten
is first-order at low pressures and zeroth-order at high
pressures. To account for these observations, we write
down a plausible rate law in terms of an adsorption
isotherm and explore its form in the limits of high and
low pressure. If the rate is supposed to be proportional
to the surface coverage and we suppose that θ is
given by the Langmuir isotherm, we would write

(18.15)

where p is the pressure of phosphine and kr is a rate
constant. When the pressure is so low that Kp << 1,
we can neglect Kp in the denominator and obtain

Rate = krKp (18.16a)

and the decomposition is first-order. When Kp >> 1,
we can neglect the 1 in the denominator, whereupon
the Kp terms cancel and we are left with

Rate = kr (18.16b)

and the decomposition is zeroth-order. Many hetero-
geneous reactions are first-order, which indicates that
the rate-determining stage is the adsorption process.
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fragments and atoms adsorbed on the surface. We
therefore expect the rate law to be overall second-
order in the extent of surface coverage:

A + B → P v = krθAθB

Insertion of the appropriate isotherms for A and B
then gives the reaction rate in terms of the partial
pressures of the reactants. For example, if A and B
follow the adsorption isotherms given in eqn 18.5,
then the rate law can be expected to be

(18.17)

The parameters K in the isotherms and the rate con-
stant kr are all temperature dependent, so the overall
temperature dependence of the rate may be strongly
non-Arrhenius, in the sense that the reaction rate is
unlikely to be proportional to e−Ea/RT. The LH mech-
anism is dominant for the catalytic oxidation of CO
to CO2 on the (111) surface of platinum.

In the Eley–Rideal mechanism (ER mechanism) of
a surface-catalysed reaction, a gas-phase molecule
collides with another molecule already adsorbed on
the surface. We can therefore expect the rate of 
formation of product to be proportional to the par-
tial pressure, pB, of the nonadsorbed gas B and the
extent of surface coverage, θA, of the adsorbed gas A.
It follows that the rate law should be

A + B → P v = krpBθA

The rate constant, kr, might be much larger than for
the uncatalysed gas-phase reaction because the reac-
tion on the surface has a low activation energy and
the adsorption itself is often not activated. If we
know the adsorption isotherm for A, we can express
the rate law in terms of its partial pressure, pA. For
example, if the adsorption of A follows a Langmuir
isotherm in the pressure range of interest, then the
rate law would be

(18.18)

If A were a diatomic molecule that adsorbed as
atoms, then we would substitute the isotherm given
in eqn 18.5 instead.

According to eqn 18.18, when the partial pressure
of A is high (in the sense KpA >> 1) there is almost
complete surface coverage, and the rate law is

(18.19a)

Now the rate-determining step is the collision of B
with the adsorbed fragments. When the pressure of A
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Self-test 18.5

Suggest the form of the rate law for the deuteration of NH3

in which D2 adsorbs dissociatively but not extensively
(that is, Kp << 1, with p the partial pressure of D2), and
NH3 (with partial pressure p′) adsorbs at different sites.

[Answer: Rate = kr(Kp)1/2K ′p′/(1 + K ′p′)]

In the Langmuir–Hinshelwood mechanism (LH
mechanism) of surface-catalysed reactions, the reac-
tion takes place by encounters between molecular
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is low (KpA << 1), perhaps because of its reaction, the
rate law becomes

(18.19b)

Now the extent of surface coverage is rate determining.
Almost all thermal surface-catalysed reactions are

thought to take place by the LH mechanism, but a
number of reactions with an ER mechanism have
also been identified from molecular beam investiga-
tions. For example, the reaction between H(g) and
D(ad) to form HD(g) is thought to be by an ER 
mechanism involving the direct collision and pick-up
of the adsorbed D atom by the incident H atom.
However, the two mechanisms should really be
thought of as ideal limits, and all reactions lie some-
where between the two and show features of both.

18.7 Examples of heterogeneous catalysis

Almost the whole of modern chemical industry 
depends on the development, selection, and applica-
tion of catalysts (Table 18.3). All we can hope to do
in this section is to give a brief indication of some 
of the problems involved. Other than the ones we
consider, these problems include the danger of the
catalyst being poisoned by by-products or impurities,
and economic considerations relating to cost, regenera-
tion, and lifetime.

The activity of a catalyst depends on the strength
of chemisorption as indicated by the ‘volcano’ curve
in Fig. 18.25 (which is so called on account of its 
general shape; but note that the vertical axis is loga-
rithmic, so the high activities are very much higher
than the low activities). To be active, the catalyst
should be extensively covered by adsorbate, which is
the case if chemisorption is strong. On the other

 
v
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hand, if the strength of the substrate–adsorbate bond
becomes too great, then the activity declines either
because the other reactant molecules cannot react
with the adsorbate or because the adsorbate mole-
cules are immobilized on the surface. This pattern of
behaviour suggests that the activity of a catalyst
should initially increase with strength of adsorption
(as measured, for instance, by the enthalpy of adsorp-
tion) and then decline, and that the most active 
catalysts should be those lying near the summit of the
volcano. Most active metals are those that lie close 
to the middle of the d block.

Because heterogeneous catalysis is a surface phe-
nomenon, it is essential to achieve high surface areas.
Thus, solid catalysts may be finely divided or structures
with internal channels and cavities (as in zeolites; see

Table 18.3

Properties of catalysts

Catalyst Function Examples

Metals Hydrogenation Fe, Ni, Pt, Ag
Dehydrogenation

Semiconducting oxides Oxidation NiO, ZnO, MgO,
and sulfides Desulfurization Bi2O3/MoO3, MoS2

Insulating oxides Dehydration Al2O3, SiO2, MgO
Acids Polymerization H3PO4, H2SO4

Isomerization SiO2/Al2O3, zeolites
Cracking
Alkylation
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Fig. 18.25 A ‘volcano curve’ of catalytic activity arises because
although the reactants must adsorb reasonably strongly, they
must not adsorb so strongly that they are immobilized. The
green and yellow rectangles correspond to the 3d and 
(4d, 5d) series of metals. The group numbers relate to the 
periodic table (see inside back cover).
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below). Inactive catalyst supports are used to stabilize
catalytic nanoparticles dispersed over them.

Many metals are suitable for adsorbing gases, and
the general order of adsorption strengths decreases
along the series O2, C2H2, C2H4, CO, H2, CO2, N2.
Some of these molecules adsorb dissociatively (for
example, H2). Elements from the d block, such as
iron, vanadium, and chromium, show a strong 
activity towards all these gases, but manganese and
copper are unable to adsorb N2 and CO2. Metals 
towards the left of the periodic table (for example,
magnesium and lithium) can adsorb (and, in fact, react
with) only the most active gas (O2). These trends are
summarized in Table 18.4.

As an example of catalytic action, consider the 
hydrogenation of alkenes. The alkene (1) adsorbs by
forming two bonds with the surface (2), and on the
same surface there may be adsorbed H atoms. When
an encounter occurs, one of the alkene–surface bonds
is broken (forming 3 or 4) and later an encounter
with a second H atom releases the fully hydrogenated
hydrocarbon, which is the thermodynamically more
stable species. The evidence for a two-stage reaction
is the appearance of different isomeric alkenes in 
the mixture. The formation of isomers comes about
because while the hydrocarbon chain is waving about
over the surface of the metal, an atom in the chain
might chemisorb again to form (5) and then desorb
to (6), an isomer of the original molecule. The new
alkene would not be formed if the two hydrogen
atoms attached simultaneously.

Catalytic oxidation is widely used in industry 
and in pollution control. Although in some cases it 
is desirable to achieve complete oxidation (as in 
the production of nitric acid from ammonia), in 
others partial oxidation is the aim. For example, the

Table 18.4

Chemisorption abilities

O2 C2H2 C2H4 CO H2 CO2 N2

Ti, Cr, Mo, Fe + + + + + + +
Ni, Co + + + + + + −
Pd, Pt + + + + + − −
Mn, Cu + + + + ± − −
Al, Au + + + + − − −
Li, Na, K + + − − − − −
Mg, Ag, Zn, Pb + − − − − − −

+, Strong chemisorption; ±, chemisorption; − no chemisorption

1

2

3

4

5

6
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complete oxidation of propene to carbon dioxide
and water is wasteful, but its partial oxidation to
propenal (acrolein, CH2lCHCHO) is the start 
of important industrial processes. Likewise, the 
controlled oxidations of ethene to ethanol, ethanal
(acetaldehyde), and (in the presence of chlorine) to
chloroethene (vinyl chloride, for the manufacture 
of PVC), are the initial stages of very important
chemical industries.

Some of these reactions are catalysed by d-metal
oxides of various kinds. The physical chemistry of
oxide surfaces is very complex, as can be appreciated
by considering what happens during the oxidation 
of propene to propenal on bismuth molybdate. The
first stage is the adsorption of the propene molecule
with loss of a hydrogen to form the propenyl (allyl)
radical, CH2lCHCH2·. An O atom in the surface
can now transfer to this radical, leading to the for-
mation of propenal and its desorption from the 
surface. The H atom also escapes with a surface O
atom, and goes on to form H2O, which leaves the
surface. The surface is left with vacancies and metal
ions in lower oxidation states. These vacancies are
attacked by O2 molecules in the overlying gas, which
then chemisorb as O2

− ions, so reforming the catalyst.
This sequence of events, which is called the Mars
van Krevelen mechanism, involves great upheavals
of the surface, and some materials break up under
the stress.

Many of the small organic molecules used in the
preparation of all kinds of chemical products come
from petroleum. These small building blocks of poly-
mers, and petrochemicals in general, are usually cut
from the long-chain hydrocarbons drawn from the
Earth as petroleum. The catalytically induced frag-
mentation of the long-chain hydrocarbons is called
cracking, and is often brought about on silica–alumina
catalysts. These catalysts act by forming unstable
carbocations, which dissociate and rearrange to
more highly branched isomers. These branched iso-
mers burn more smoothly and eAciently in internal
combustion engines, and are used to produce higher
octane fuels.

Catalytic reforming uses a dual-function catalyst,
such as a dispersion of platinum and acidic alumina.
The platinum provides the metal function, and
brings about dehydrogenation and hydrogenation.
The alumina provides the acidic function, being able
to form carbocations from alkenes. The sequence of
events in catalytic reforming shows up very clearly
the complications that must be unravelled if a reac-
tion as important as this is to be understood and 
improved. The first step is the attachment of the

long-chain hydrocarbon by chemisorption to the
platinum. In this process first one and then a second
H atom is lost, and an alkene is formed. The alkene
migrates to a Brønsted acid site, where it accepts a
proton and attaches to the surface as a carbocation.
This carbocation can undergo several different reac-
tions. It can break into two, isomerize into a more
highly branched form, or undergo varieties of ring
closure. Then, the adsorbed molecule loses a proton,
escapes from the surface, and migrates (possibly
through the gas) as an alkene to a metal part of the
catalyst where it is hydrogenated. We end up with a
rich selection of smaller molecules that can be with-
drawn, fractionated, and then used as raw materials
for other products.

The concept of a solid surface has been extended 
in recent years with the availability of micro-
porous materials, in which the surface effectively 
extends deep inside the solid. Zeolites are micro-
porous aluminosilicates with the general formula
{[Mn+]x/n·[H2O]m}{[AlO2]x[SiO2]y}

x−, where Mn+

cations and H2O molecules bind inside the cavities,
or pores, of the Al—O—Si framework (Fig. 18.26).
Small neutral molecules, such as CO2, NH3, and 
hydrocarbons (including aromatic compounds), can
also adsorb to the internal surfaces and we shall see
that this partially accounts for the utility of zeolites
as catalysts.

Some zeolites for which M = H+ are very strong
acids and catalyse a variety of reactions that are of
particular importance to the petrochemical indus-
try. Examples include the dehydration of methanol

Sodalite cage

Cubic
cage

Supercage

Fig. 18.26 A framework representation of the general layout
of the Si, Al, and O atoms in a zeolite material. Each vertex
corresponds to a Si or Al atom and each edge corresponds to
the approximate location of a O atom. Note the large central
pore, which can hold cations, water molecules, or other small
molecules.
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to form hydrocarbons such as gasoline and other
fuels:

x CH3OH zeolite (CH2)x + x H2O

and the isomerization of 1,3-dimethylbenzene 
(m-xylene) to 1,4-dimethylbenzene (p-xylene). The
catalytically important form of these acidic zeolites
may be either a Brønsted acid (7) or a Lewis acid (8).
Like enzymes, a zeolite catalyst with a specific com-
position and structure is very selective toward certain
reactants and products because only molecules of
certain sizes can enter and exit the pores in which
catalysis occurs. It is also possible that zeolites derive
their selectivity from the ability to bind and to stabilize
only transition states that fit properly in the pores.
The analysis of the mechanism of zeolite catalysis is
greatly facilitated by computer simulation of micro-
porous systems, which shows how molecules fit in
the pores, migrate through the connecting tunnels,
and react at the appropriate active sites.

factors that determine the rate of electron transfer
leads to a better understanding of power production
in batteries and of electron conduction in metals,
semiconductors, and nanometre-sized electronic 
devices. Indeed, the economic consequences of elec-
trode processes are almost incalculable. Most of the
modern methods of generating electricity are ineA-
cient, and the development of fuel cells could enhance
our production and deployment of energy, not least
by the reduction of the generation of polluting nitro-
gen oxides. Today, we produce energy ineAciently to
produce goods that then decay by corrosion. Each
step of this wasteful sequence could be improved by
discovering more about the kinetics of electrochem-
ical processes. Similarly, the techniques of organic
and inorganic electrosynthesis, where an electrode is
an active component of an industrial process, depend
on intimate understanding of the kinetics of the pro-
cesses taking place at electrodes.

18.8 The electrode–solution interface

Whereas most of the preceding discussion focused 
on the gas solid interface, we now have to turn our
attention to a metallic conductor immersed in an
aqueous solution of ions. The most primitive model
of the boundary between the solid and liquid phases
is an electrical double layer, which consists of a sheet
of positive charge at the surface of the electrode and
a sheet of negative charge next to it in the solution (or
vice versa). This arrangement creates an electrical
potential difference, called the Galvani potential 
difference, between the bulk of the electrode and the
bulk of the solution. For simplicity in the following,
we shall identify the Galvani potential difference with
what in Chapter 9 we called the electrode potential.

We can construct a more detailed picture of the 
interface by speculating about the arrangement of ions
and electric dipoles in the solution. In the Helmholtz
layer model of the interface the solvated ions arrange
themselves along the surface of the electrode but 
are held away from it by their hydration spheres 
(Fig. 18.27). The location of the sheet of ionic charge,
which is called the outer Helmholtz plane (OHP), is
identified as the plane running through the solvated
ions. In this simple model, the electrical potential
changes linearly within the layer bounded by the
electrode surface on one side and the OHP on the
other. In a refinement of this model, ions that have
discarded their solvating molecules and have become
attached to the electrode surface by chemical bonds
are regarded as forming the inner Helmholtz plane
(IHP). The Helmholtz layer model ignores the 
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Processes at electrodes

A very special kind of surface is that of an electrode
in contact with an electrolyte. Studies of processes on
electrode surfaces are of enormous importance in
electrochemistry where they give information about
the rate of electron transfer between the electrode
and electroactive species in solution, and are essential
to the improvement of the performance of batteries
and fuel cells (Box 18.1). Detailed knowledge of the
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disrupting effect of thermal motion, which tends to
break up and disperse the rigid outer plane of charge.
In the Gouy–Chapman model of the diffuse double
layer, the disordering effect of thermal motion is taken

into account in much the same way as the Debye–
Hückel model describes the ionic atmosphere of an
ion (Section 9.1) with the latter’s single central ion
replaced by an infinite, plane electrode (Fig. 18.28).

Box 18.1 Fuel cells

A fuel cell operates like a conventional galvanic cell with 
the exception that the reactants are supplied from outside
rather than forming an integral part of its construction.

A fundamental and important example of a fuel cell is the
hydrogen/oxygen cell, such as those used in the space
shuttle and in some prototype vehicles. One of the elec-
trolytes used is concentrated aqueous potassium hydrox-
ide maintained at 200°C and 20–40 atm; the electrodes
may be porous nickel in the form of sheets of compressed
powder. The cathode reaction is the reduction

O2(g) + 2 H2O(l) + 4 e− → 4 OH−(aq) E - = +0.40 V

and the anode reaction is the oxidation

H2(g) + 2 OH−(aq) → 2 H2O(l) + 2 e−

For the corresponding reduction, E - = −0.83 V. Because the
overall reaction

2 H2(g) + O2(g) → 2 H2O(l) E -
cell = +1.23 V

is exothermic as well as spontaneous, it is less favourable
thermodynamically at 200°C than at 25°C, so the cell 
potential is lower at the higher temperature. However, the
increased pressure compensates for the increased temper-
ature, and at 200°C and 40 atm Ecell ≈ +1.2 V.

One advantage of the hydrogen/oxygen system is the
large exchange-current density of the hydrogen reaction.
Unfortunately, the oxygen reaction has an exchange- 
current density of only about 0.1 nA cm−2, which limits the
current available from the cell. One way round the difficulty
is to use a catalytic surface with a large surface area. One
type of highly developed fuel cell has phosphoric acid as the
electrolyte and operates with hydrogen and air at about
200°C; the hydrogen is obtained from a reforming reaction
on natural gas

Anode: 2 H2(g) → 4 H+(aq) + 4 e−

Cathode: O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)

This fuel cell has shown promise for combined heat and
power systems (CHP systems). In such systems, the
waste heat is used to heat buildings or to do work.
Efficiency in a CHP plant can reach 80 per cent. The power
output of batteries of such cells has reached the order of 
10 MW. Although hydrogen gas is an attractive fuel, it has
disadvantages for mobile applications: it is difficult to store
and dangerous to handle. One possibility for portable fuel
cells is to store the hydrogen in carbon nanotubes. It has

been shown that carbon nanofibres in herringbone patterns
can store huge amounts of hydrogen and result in energy
densities twice that of gasoline.

Cells with molten carbonate electrolytes at about 600°C
can make use of natural gas directly. Until these materials
have been developed, one attractive fuel is methanol,
which is easy to handle and is rich in hydrogen atoms:

Anode: CH3OH(l) + 6 OH−(aq) → 5 H2O(l) + CO2(g) + 6 e−

Cathode: O2(g) + 2 H2O(l) + 4 e− → 4 OH−(aq)

One disadvantage of methanol, however, is the phenomenon
of ‘electro-osmotic drag’ in which protons moving through
the polymer electrolyte membrane separating the anode and
cathode carry water and methanol with them into the cathode
compartment where the potential is sufficient to oxidize
CH3OH to CO2, so reducing the efficiency of the cell.

Solid-state electrolytes are also used. They include one
version in which the electrolyte is a solid polymeric ionic
conductor at about 100°C (as in the illustration), but in 
current versions it requires very pure hydrogen to operate
successfully. Solid ionic conducting oxide cells operate at
about 1000°C and can use hydrocarbons directly as fuel.

A biofuel cell is like a conventional fuel cell but in place of
a platinum catalyst it uses enzymes or even whole organ-
isms. The electricity will be extracted through organic
molecules that can support the transfer of electrons. 
One application will be as the power source for medical 
implants, such as pacemakers, perhaps using the glucose
present in the bloodstream as the fuel.

Hydrogen Oxygen

Water

Porous
electrodes

Ion-exchange
membrane

– +

A single cell of a hydrogen/oxygen fuel cell. In practice, a
stack of many cells is used.
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18.9 The rate of electron transfer

We shall consider a reaction at the electrode in which
an ion is reduced by the transfer of a single electron
in the rate-determining step. The last phrase is im-
portant: in the deposition of cadmium, for instance,
only one electron is transferred in the rate-determining
step even though overall the deposition involves the
transfer of two electrons. The quantity we focus on is
the current density, j, the electric current flowing
through a region of an electrode divided by the area
of the region. An analysis of the effect of the Galvani
potential difference at the electrode on the current

density using a version of transition-state theory (Sec-
tion 10.11) leads to the Butler–Volmer equation:1

j = j0{e
(1−α)fη − e−α fη} (18.20)

We have written f = F/RT, where F is Faraday’s 
constant (Section 9.7; at 298 K, f = 38.9 V−1). The
quantity η (eta) is the overpotential:

η = E′ − E (18.21)

where E is the electrode potential at equilibrium,
when there is no net flow of current, and E′ is the
electrode potential when a current is being drawn
from the cell. The quantity α is the transfer coeGci-
ent, and is an indication of where the transition state
between the reduced and oxidized forms of the elec-
troactive species in solution is reactant-like (α = 0) or
product-like (α = 1): typical values are close to 0.5.
The quantity j0 is the exchange-current density, the
magnitude of the equal but opposite current densities
when the electrode is at equilibrium. As usual in
chemistry, equilibrium is dynamic, so even though
there may be no net flow of current at an electrode,
there are matching inward and outward flows of
electrons. Figure 18.29 shows how eqn 18.20 pre-
dicts the current density to depend on the overpoten-
tial for different values of the transfer coeAcient.

When the overpotential is so small that fη << 1 (in
practice, η less than about 0.01 V) the exponentials
in eqn 18.20 can be expanded by using ex = 1 + x + . . .
and e−x = 1 − x + . . . to give

j = j0{1 + (1 − α)fη + . . . − (1 − αfη + . . .)} ≈ j0fη
(18.22)
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Helmholtz
plane

Fig. 18.27 A simple model of the electrode solution interface
treats it as two rigid planes of charge. One plane, the outer
Helmholtz plane (OHP), is due to the ions with their solvating
molecules and the other plane is that of the electrode itself.
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Fig. 18.28 The Gouy–Chapman model of the electrical double
layer treats the outer region as an atmosphere of counter-
charge, similar to the Debye–Hückel theory of ion atmo-
spheres. The plot of electrical potential against distance from
the electrode surface shows the meaning of the diffuse 
double layer (see text for details).
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Fig. 18.29 The dependence of the current density on
the overpotential for different values of the transfer 

coefficient.

1 For a derivation of this equation, see our Physical chemistry
(2006).
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This equation shows that the current density is pro-
portional to the overpotential, so at low overpoten-
tials the interface behaves like a conductor that obeys
Ohm’s law, which states that the current is propor-
tional to the potential difference.

Some experimental values for the Butler–Volmer
parameters are given in Table 18.5. From them we
can see that exchange-current densities vary over a
very wide range. For example, the N2/N3

− couple on
platinum has j0 = 10−76 A cm−2, whereas the H+/H2
couple on platinum has j0 = 8 × 10−4 A cm−2, a differ-
ence of 73 orders of magnitude. Exchange currents
are generally large when the redox process involves

Self-test 18.6

The exchange current density of a Pt(s)|H2(g)|H+(aq) elec-
trode at 298 K is 0.79 mA cm−2. What is the current
through an electrode of total area 5.0 cm2 when the
overpotential is +5.0 mV?

[Answer: 0.77 mA]

When the overpotential is large and positive (in
practice, η ≥ 0.12 V), the second exponential in 
eqn 18.20 is much smaller than the first, and may be 
neglected. For instance, if η = 0.2 V and α = 0.5, 
e−αfη = 0.02 whereas e(1−α)fη = 49. Then (ignoring
signs, which indicate the direction of the current)

j = j0e
(1−α)fη

By taking logarithms of both sides we obtain

ln j = ln j0 + (1 − α)fη (18.23a)

If instead the overpotential is large but negative 
(in practice, η ≤ −0.12 V), the first exponential in 
eqn 18.20 may be neglected. Then

j = j0e
−αfη

so

ln j = ln j0 − αfη (18.23b)

The plot of the logarithm of the current density
against the overpotential is called a Tafel plot the
slope gives the value of α and the intercept at η = 0
gives the exchange-current density.

Example 18.4

Interpreting a Tafel plot

The data below refer to the anodic current through a 
platinum electrode of area 2.0 cm2 in contact with an
Fe3+,Fe2+ aqueous solution at 298 K. Calculate the 
exchange-current density and the transfer coefficient for
the electrode process.

h/mV 50 100 150 200 250

I/mA 8.8 25.0 58.0 131 298

Strategy The anodic process is the oxidation Fe2+(aq) →
Fe3+(aq) + e−. To analyse the data, we make a Tafel plot
(of ln j against h) using the anodic form (eqn 18.23a). The
intercept at h = 0 is ln j0 and the slope is (1 − a)f.

Solution Draw up the following table:

h/mV 50 100 150 200 250

j/(mA cm−2) 4.4 12.5 29.0 65.5 149

ln(j /(mA cm−2)) 1.48 2.53 3.37 4.18 5.00

The points are plotted in Fig. 18.30. The high-overpotential
region gives a straight line of intercept 0.88 and slope
0.0165. From the former it follows that ln( j0 /(mA cm−2))
= 0.88, so j0 = 2.4 mA cm−2. From the latter,

so a = 0.58. Note that the Tafel plot is nonlinear for h <
100 mV; in this region afh = 2.3 and the approximation
that afh >> 1 fails.
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Fig. 18.30 A Tafel plot is used to measure the exchange
current density (given by the extrapolated intercept at 
h = 0) and the transfer coefficient (from the slope). The
data are from Example 18.3.

Self-test 18.7

Repeat the analysis using the following cathodic
current data:

h/mV −50 −100 −150 −200 −250 −300

I/mA 0.3 1.5 6.4 27.6 118.6 510
[Answer: a = 0.75, j0 = 0.041 mA cm−2]
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no bond breaking (as in the [Fe(CN)6]
3−/[Fe(CN)6]

4−

couple) or if only weak bonds are broken (as in
Cl2/Cl−). They are generally small when more than one
electron needs to be transferred, or when multiple or
strong bonds are broken, as in the N2/N3

− couple and
in redox reactions of organic compounds.

Electrodes with potentials that change only slightly
when a current passes through them are classified 
as nonpolarizable. Those with strongly current- 
dependent potentials are classified as polarizable.
From the linearized equation (eqn 18.23) it is clear
that the criterion for low polarizability is high 
exchange current density (so η may be small even
though j is large). The calomel and H2|Pt electrodes
are both highly nonpolarizable, which is one reason
why they are so extensively used as reference elec-
trodes in electrochemistry.

18.10 Voltammetry

One of the assumptions in the derivation of the
Butler–Volmer equation is the negligible conversion
of the electroactive species at low current densities,
resulting in uniformity of concentration near the
electrode. This assumption fails at high current 
densities because the consumption of electroactive
species close to the electrode results in a concentra-
tion gradient. The diffusion of the species towards
the electrode from the bulk is slow and may become
rate determining; a larger overpotential is then needed
to produce a given current. This effect is called con-
centration polarization. Concentration polarization
is important in the interpretation of voltammetry,
the study of the current through an electrode as a
function of the applied potential difference.

The kind of output from linear-sweep voltam-
metry is illustrated in Fig. 18.31. Initially, the absolute
value of the potential is low, and the current is due 
to the migration of ions in the solution. However, 

as the potential approaches the reduction potential
of the reducible solute, the current grows. Soon after
the potential exceeds the reduction potential the 
current rises and reaches a maximum value. This
maximum current is proportional to the molar con-
centration of the species, so that concentration can
be determined from the peak height after subtraction
of an extrapolated baseline.

In cyclic voltammetry the potential is applied with
a triangular waveform (linearly up, then linearly
down) and the current is monitored. A typical cyclic
voltammogram is shown in Fig. 18.32. The shape of
the curve is initially like that of a linear sweep experi-
ment, but after reversal of the sweep there is a rapid

Table 18.5

Exchange current densities and transfer
coefficients at 298 K

Reaction Electrode j/(A cm−2) a

2 H+ + 2 e− → H2 Pt 7.9 × 10−4

Ni 6.3 × 10−6 0.58
Pb 5.0 × 10−12

Hg 7.9 × 10−13 0.50
Fe3+ + e− → Fe2+ Pt 2.5 × 10−3 0.58
Ce4+ + e− → Ce3+ Pt 4.0 × 10−5 0.75
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Fig. 18.31 (a) The change of potential with time and (b) the
resulting current/potential curve in a voltammetry experi-
ment. The peak value of the current density is proportional to
the concentration of electroactive species (for instance, [Ox])
in solution.
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Fig. 18.32 (a) The change of potential with time and (b) the
resulting current/potential curve in a cyclic voltammetry 
experiment.

See an animated version of this figure in the 
interactive ebook.
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change in current on account of the high concentra-
tion of oxidizable species close to the electrode that
was generated on the reductive sweep. When the 
potential is close to the value required to oxidize the
reduced species, there is a substantial current until all
the oxidation is complete, and the current returns to
zero. Cyclic voltammetry data are obtained at scan
rates of about 50 mV s−1, so a scan over a range of 
2 V takes about 80 s.

When the reduction reaction at the electrode 
can be reversed, as in the case of the [Fe(CN)6]

3/
[Fe(CN)6]

4− couple, the cyclic voltammogram is
broadly symmetric about the standard potential of the
couple (as in Fig. 18.32). The scan is initiated with
[Fe(CN)6]

3− present in solution, and as the potential
approaches E for the couple, the [Fe(CN)6]

3− near
the electrode is reduced and current begins to flow.
As the potential continues to change, the current 
begins to decline again because all the [Fe(CN)6]

3−

near the electrode has been reduced and the current
reaches its limiting value. The potential is now re-
turned linearly to its initial value, and the reverse 
series of events occurs with the [Fe(CN)6]

4− produced
during the forward scan now undergoing oxidation.
The peak of current lies on the other side of E , so
the species present and its standard potential can be
identified, as indicated in the illustration, by noting
the locations of the two peaks.

The overall shape of the curve gives details of the
kinetics of the electrode process and the change in
shape as the rate of change of potential is altered gives
information on the rates of the processes involved.
For example, the matching peak on the return phase
of the potential sweep may be missing, which indi-
cates that the oxidation (or reduction) is irreversible.
The appearance of the curve may also depend on the
timescale of the sweep, for if the sweep is too fast
some processes might not have time to occur. This
style of analysis is illustrated in Example 18.5.

Example 18.5

Analysing a cyclic voltammetry experiment

The electroreduction of p-bromonitrobenzene in 
liquid ammonia is believed to occur by the following
mechanism:

BrC6H4NO2 + e− → BrC6H4NO2
−

BrC6H4NO2
− → ·C6H4NO2 + Br−

·C6H4NO2 + e− → C6H4NO2
−

C6H4NO2
− + H+ → C6H5NO2

Suggest the likely form of the cyclic voltammogram 
expected on the basis of this mechanism.

Strategy Decide which steps are likely to be reversible
on the timescale of the potential sweep: such processes
will give symmetrical voltammograms. Irreversible pro-
cesses will give unsymmetrical shapes as reduction (or
oxidation) might not occur. However, at fast sweep
rates, an intermediate might not have time to react, and
a reversible shape will be observed.

Solution At slow sweep rates, the second reaction has
time to occur, and a curve typical of a two-electron re-
duction will be observed, but there will be no oxidation
peak on the second half of the cycle because the prod-
uct, C6H5NO2, cannot be oxidized (Fig. 18.33a). At fast
sweep rates, the second reaction does not have time 
to take place before oxidation of the BrC6H4NO2

− inter-
mediate starts to occur during the reverse scan, so 
the voltammogram will be typical of a reversible one-
electron reduction (Fig. 18.33b).
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Fig. 18.33 (a) When a nonreversible step in a reaction
mechanism has time to occur, the cyclic voltammogram
may not show the reverse oxidation or reduction peak.
(b) However, if the rate of sweep is increased, the return
step may be caused to occur before the irreversible step
has had time to intervene, and a typical ‘reversible’
voltammogram is obtained.

Self-test 18.8

Suggest an interpretation of the cyclic voltammo-
gram shown in Fig. 18.34. The electroactive mater-
ial is ClC6H4CN in acid solution; after reduction to
ClC6H4CN−, the radical anion may form C6H5CN 
irreversibly.

[Answer: ClC6H4CN + e− f ClC6H4CN−, ClC6H4CN− + H+

+ e− → C6H5CN + Cl−, C6H5CN + e− f C6H5CN−]
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18.11 Electrolysis

To induce current to flow through an electrolytic cell
and bring about a nonspontaneous cell reaction, the
applied potential difference must exceed the cell 
potential by at least the cell overpotential. The cell
overpotential is the sum of the overpotentials at the

two electrodes and the ohmic drop (IRs, where Rs is
the internal resistance of the cell) due to the current
through the electrolyte. The additional potential
needed to achieve a detectable rate of reaction may
need to be large when the exchange-current density
at the electrodes is small.

The rate of gas evolution or metal deposition 
during electrolysis can be estimated from the Butler–
Volmer equation and tables of exchange-current
densities. The exchange-current density depends
strongly on the nature of the electrode surface, and
changes in the course of the electrodeposition of one
metal on another. A very crude criterion is that
significant evolution or deposition occurs only if the
overpotential exceeds about 0.6 V.

A glance at Table 18.5 shows the wide range of 
exchange-current densities for a metal/hydrogen elec-
trode. The most sluggish exchange currents occur for
lead and mercury, and the value of 1 pA cm−2 corres-
ponds to a monolayer of atoms being replaced in
about 5 a (a is the SI symbol for annum, year). For
such systems, a high overpotential is needed to 
induce significant hydrogen evolution. In contrast,
the value for platinum (1 mA cm−2) corresponds to a
monolayer being replaced in 0.1 s, so gas evolution
occurs for a much lower overpotential.
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Fig. 18.34 The cyclic voltammogram referred to in Self-
test 18.7.

Checklist of key ideas

You should now be familiar with the following concepts.

1 Adsorption is the attachment of molecules to a
surface; the substance that adsorbs is the adsor-
bate and the underlying material is the adsorb-
ent or substrate. The reverse of adsorption is 
desorption.

2 Techniques for studying surface composition and
structure include scanning tunnelling microscopy
(STM), atomic force microscopy (AFM), photoemis-
sion spectroscopy, Auger electron spectroscopy
(AES), and low-energy electron diffraction (LEED).

3 The fractional coverage, q, is the ratio of the 
number of occupied sites to the number of avail-
able sites.

4 Techniques for studying the rates of surface pro-
cesses include flash desorption, surface plasmon
resonance (SPR), and gravimetry by using a
quartz crystal microbalance (QCM).

5 Physisorption is adsorption by a van der Waals 
interaction; chemisorption is adsorption by forma-
tion of a chemical (usually covalent) bond.

6 The isosteric enthalpy of adsorption is deter-
mined from a plot of ln K against 1/T.

7 The sticking probability, s, is the proportion of 
collisions with the surface that successfully lead
to adsorption.

8 Desorption is an activated process with half-life
t1/2 = τ0e

Ed/RT; the desorption activation energy is
measured by temperature programmed desorp-
tion (TPD) or thermal desorption spectroscopy
(TDS).

9 In the Langmuir–Hinshelwood mechanism (LH
mechanism) of surface-catalysed reactions, the
reaction takes place by encounters between
molecular fragments and atoms adsorbed on the
surface.
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10 In the Eley–Rideal mechanism (ER mechanism) 
of a surface-catalysed reaction, a gas-phase
molecule collides with another molecule already
adsorbed on the surface.

11 An electrical double layer consists of a sheet of
positive charge at the surface of the electrode and
a sheet of negative charge next to it in the solution
(or vice versa).

12 The Galvani potential difference is the potential
difference between the bulk of the metal electrode
and the bulk of the solution.

13 Models of the double layer include the Helmholtz
layer model and the Gouy–Chapman model.

14 A Tafel plot is a plot of the logarithm of the current
density against the overpotential: the slope gives
the value of a and the intercept at h = 0 gives the
exchange-current density.

15 Voltammetry is the study of the current through
an electrode as a function of the applied potential
difference.

16 To induce current to flow through an electrolytic
cell and bring about a nonspontaneous cell reac-
tion, the applied potential difference must exceed
the cell potential by at least the cell overpotential.

The following table summarizes the equations developed in this chapter.

Description

The collision flux

Langmuir isotherm

BET isotherm

Butler–Volmer equation

Equation

ZW = p/(2pmkT )1/2

q = Kp/(1 + Kp)

V /Vmon = cz /(1 − z){1 − (1 − c)z}

j = j0{e
(1−a)fh − e−afh}

Comment

Kinetic molecular theory

Monolayer; independent and equivalent sites,
K = ka/kd

z = p/p* c = e(DdesH -−DvapH -)/RT

Activated process

Table of key equations

Questions and exercises

Discussion questions

18.1 Summarize the techniques available for characterizing
the composition and structure of a surface.

18.2 Explain and justify the assumptions that are used to 
derive the Langmuir isotherm.

18.3 Demonstrate that the BET isotherm describes multi-
layer adsorption, showing that it behaves in the manner that
you would expect on physical grounds as the various para-
meters are changed.

18.4 Describe the essential features of the Langmuir–
Hinshelwood and Eley–Rideal mechanisms for surface-
catalysed reactions. How can they be tested experimentally?

18.5 Outline the steps in the Mars van Krevelen mechanism of
a catalysed reaction. How could it be tested experimentally?

18.6 Describe the various models of the structure of the
electrode–electrolyte interface.

18.7 Discuss the technique of cyclic voltammetry and 
account for the characteristic shape of a cyclic voltammogram,
such as those shown in Figs. 18.32 and 18.33.

Exercises

18.1 Calculate the frequency of molecular collisions per
square centimetre of surface in a vessel containing (a) hydro-
gen, (b) propane at 25°C when the pressure is (i) 100 Pa, 
(ii) 0.10 mTorr.

18.2 What pressure of argon gas is required to produce a 
collision rate of 8.5 × 1020 s−1 at 450 K on a circular surface of
diameter 2.5 mm?

18.3 Calculate the average rate at which He atoms strike a
Cu atom in a surface formed by exposing a (100) plane in
metallic copper to helium gas at 100 K and a pressure of 
25 Pa. Crystals of copper are face-centred cubic with a cell
edge of 361 pm.
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18.4 In an adsorption experiment, the temperature of the 
apparatus of constant volume and containing a fixed amount
of gaseous adsorbate is increased from 300 K to 400 K. By
what factor does the collision flux increase?

18.5 The rate, v, at which electrons tunnel through a poten-
tial barrier of height 2 eV, like that in a scanning tunnelling 
microscope, and thickness d can be expressed as v = Ae−d/l,
with A = 5 × 1014 s−1 and l = 70 pm. (a) Calculate the rate at
which electrons tunnel across a barrier of width 750 pm. 
(b) By what factor is the current reduced when the probe is
moved away by a further 100 pm?

18.6 A monolayer of CO molecules is adsorbed on the sur-
face of 1.00 g of an Fe/Al2O3 catalyst at 77 K, the boiling point
of liquid nitrogen. Upon warming, the carbon monoxide 
occupies 4.25 cm3 at 0°C and 1.00 bar. What is the surface
area of the catalyst?

18.7 The adsorption of a gas is described by the Langmuir
isotherm with K = 1.85 kPa−1 at 25°C. Calculate the pressure
at which the fractional surface coverage is (a) 0.10, (b) 0.90.

18.8 Derive a version of the Langmuir isotherm starting from
eqn 18.1 for the rate at which molecules strike the surface.

18.9 The data below are for the chemisorption of hydrogen
on copper powder at 25°C. Confirm that they fit the Langmuir
isotherm at low coverages. Then find the value of K for the
adsorption equilibrium and the adsorption volume corres-
ponding to complete coverage.

p/Pa 25 129 253 540 1000 1593

V/cm3 0.042 0.163 0.221 0.321 0.411 0.471

18.10 The values of K for the adsorption of CO on charcoal
are 1.0 × 10−3 Torr−1 at 273 K and 2.7 × 10−3 Torr−1 at 250 K.
Estimate the enthalpy of adsorption.

18.11 The data below show the pressures of CO needed for
the volume of adsorption (corrected to 1.00 atm and 273 K) to
be 10.0 cm3 using the same sample as in Example 18.2.
Calculate the adsorption enthalpy at this surface

T/K 200 210 220 230 240 250

p/kPa 4.32 5.59 7.07 8.80 10.67 12.80

18.12 Suppose you wanted to achieve a certain surface 
coverage of an adsorbate that dissociates. Determine from
eqn 18.5 how p depends on q.

18.13 Suppose that an ozone molecule dissociates into
three oxygen atoms when it adsorbs to a surface. Deduce
the corresponding isotherm.

18.14 Confirm that the adsorption isotherms for two reac-
tants A and B that compete for the same sites on a surface is
given by eqn 18.6.

18.15 The data for the adsorption of ammonia on barium 
fluoride at 0°C, when p* = 429.6 kPa, are reported below.
Confirm that they fit a BET isotherm and find values of c
and Vmon.

p/kPa 14.0 37.6 65.6 79.2 82.7 100.7 106.4

V/cm3 11.1 13.5 14.9 16.0 15.5 17.3 16.5

18.16 The enthalpy of adsorption of ammonia on a nickel sur-
face is found to be −155 kJ mol−1. Estimate the mean lifetime
of an NH3 molecule on the surface at 600 K.

18.17 The average time for which an oxygen atom remains
adsorbed to a tungsten surface is 0.36 s at 2548 K and 3.49 s
at 2362 K. (a) Find the activation energy for desorption. 
(b) What is the pre-exponential factor for these tightly
chemisorbed atoms?

18.18 In an experiment on the adsorption of oxygen on tung-
sten it was found that the same volume of oxygen was de-
sorbed in 27 min at 1856 K and 2.0 min at 1978 K. What is the
activation energy of desorption? How long would it take for
the same amount to desorb at (a) 298 K, (b) 3000 K?

18.19 Ammonia at 10.0 Pa and 210 K was adsorbed on a sur-
face of area 10 cm2 at the rate of 0.33 mmol s−1. What is the
sticking probability?

18.20 Hydrogen iodide is very strongly adsorbed on gold but
only slightly adsorbed on platinum. Assume the adsorption
follows the Langmuir isotherm and predict the order of the HI
decomposition reaction on each of the two metal surfaces.

18.21 According to the Langmuir–Hinshelwood mechanism
of surface-catalysed reactions, the rate of reaction between
A and B depends on the rate at which the adsorbed species
meet. (a) Write the rate law for the reaction according to this
mechanism. (b) Find the limiting form of the rate law when
the partial pressures of the reactants are low. (c) Could this
mechanism ever account for zero-order kinetics?

18.22 The transfer coefficient of a certain electrode in con-
tact with M2+ and M3+ in aqueous solution at 25°C is 0.48.
The current density is found to be 17.0 mA cm−2 when the
overpotential is 115 mV. What is the overpotential required
for a current density of 38 mA cm−2?

18.23 Determine the exchange current density from the 
information given in Exercise 18.22.

18.24 A typical exchange current density, that for H+ dis-
charge at platinum, is 0.79 mA cm−2 at 25°C. What is the 
current density at an electrode when its overpotential is 
(a) 10 mV, (b) 100 mV, (c) −5.0 V? Take a = 0.5.

18.25 How many electrons or protons are transported
through the double layer in each second when the Pt,H2|H+,
Pt|Fe3+,Fe2+, and Pb,H2|H+ electrodes are at equilibrium at
25°C? Take the area as 1.0 cm2 in each case. Estimate the
number of times each second a single atom on the surface
takes part in a electron transfer event, assuming an electrode
atom occupies about (280 pm)2 of the surface.

18.26 In an experiment on the Pt|H2|H+ electrode in dilute
H2SO4 the following current densities were observed at
25°C. Evaluate a and j0 for the electrode.

h/mV 50 100 150 200 250

j /(mA cm−2) 2.66 8.91 29.9 100 335
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How would the current density at this electrode depend on
the overpotential of the same set of magnitudes but of oppo-
site sign?

18.27 The following current–voltage data are for an indium
anode relative to a standard hydrogen electrode at 293 K:

−E/V 0.388 0.365 0.350 0.335

j /(A m−2) 0 0.590 1.438 3.507

Use the data to calculate the transfer coefficient and the 
exchange current density. What is the cathodic current den-
sity when the potential is 0.365 V?

18.28 The following data are for the overpotential for H2 evo-
lution with a mercury electrode in dilute aqueous solutions of
H2SO4 at 25°C. Determine the exchange current density and
transfer coefficient, a.

h/V 0.60 0.65 0.73 0.79
j /(mA m−2) 2.9 6.3 28 100

h/V 0.84 0.89 0.93 0.96
j /(mA m−2) 250 630 1650 3300

Explain any deviations from the result expected from the
Tafel equation.

18.29 The illustrations below are four different examples of
voltammograms. Identify the processes occurring in each
system. In each case the vertical axis is the current and the
horizontal axis is the (negative) electrode potential.

Projects

The symbol ‡ indicates that calculus is required.

18.30‡ Here we explore atomic force microscopy (AFM)
quantitatively. (a) We saw in Chapter 9 that the potential 
energy of interaction between two charges Q1 and Q2

separated by a distance r is V = Q1Q2/4pe0r. To get an idea of
the magnitudes of forces measured by AFM, calculate the
force acting between two electrons separated by 0.50 nm.
By what factor does the force drop if the distance between
the electrons increases to 0.60 nm? Hint: The relation be-
tween force and potential energy is F = −dV/dr. (b) Suppose
that the interaction probed by an AFM experiment can be 
expressed as a Lennard-Jones potential (Section 15.8): how
does the force vary with distance?

18.31‡ The differential form of the van ’t Hoff equation for
the temperature dependence of equilibrium constants is 
d(ln K )/dT = DrH

-/RT 2. Find the corresponding expression for
the temperature dependence of the pressure corresponding
to a given fractional coverage on the basis of the Langmuir
isotherm.

18.32 Here we explore further the design and operation of
fuel cells (a) Calculate the thermodynamic limit to the cell 
potential of fuel cells operating on (i) hydrogen and oxygen,
(ii) methane and air. Use the Gibbs energy information in the
Data section, and take the species to be in their standard
states at 25°C. (b) The reaction 2 H+ + 2 e− → H2 is important
for the operation of hydrogen/oxygen fuel cells. Use the data
in Table 18.5 for the exchange current density and transfer
coefficient for the reaction 2 H+ + 2 e− → H2 on nickel at 25°C
to determine what current density would be needed to obtain
an overpotential of 0.20 V as calculated from (i) the Butler–
Volmer equation and (ii) the Tafel equation? Is the validity of
the Tafel approximation affected at higher overpotentials (of
0.4 V and more)?

(a) (b)

(c) (d)
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Fig. 18.35 The cyclic voltammogram referred to in Exercise
18.29.
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FURTHER INFORMATION 19.1 THE ROTATIONAL
ENERGY LEVELS OF MOLECULES

QUESTIONS AND EXERCISES

Spectroscopy is the analysis of the electromagnetic
radiation emitted, absorbed, or scattered by molecules.
We saw in Chapter 13 that photons act as messengers
from inside atoms and that we can use atomic spectra
to obtain detailed information about electronic struc-
ture. Photons of radiation ranging from radio waves
to the ultraviolet also bring information to us about
molecules. The difference between molecular and
atomic spectroscopy, however, is that the energy of a
molecule can change not only as a result of electronic
transitions but also because it can make transitions
between its rotational and vibrational states. Mole-
cular spectra are more complicated but they contain
more information, including electronic energy levels,
bond lengths, bond angles, and bond strength. Mole-
cular spectroscopy is used to analyse materials and to
monitor changing concentrations in kinetic studies
(Section 10.1).

As in the discussion of atomic spectra, the energy
of a photon emitted or absorbed, and therefore 
the frequency, k (nu), of the radiation emitted or 
absorbed, is given by the Bohr frequency condition
(Section 13.1):

hk = |E1 − E2| (19.1)

Here, E1 and E2 are the energies of the two states 
between which the transition occurs and h is Planck’s
constant. This relation is often expressed in terms of
the wavelength, λ (lambda), of the radiation by using
the relation

(19.2a)

where c is the speed of light, or in terms of the wave-
number, j (nu tilde):

(19.2b)
  
j

k
= =

1
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The units of wavenumber are almost always chosen as
reciprocal centimetres (cm−1), so we can picture the
wavenumber of radiation as the number of complete
wavelengths per centimetre. The chart in Fig. 12.2
summarizes the frequencies, wavelengths, and wave-
numbers of the various regions of the electromag-
netic spectrum.

A note on good practice You will often hear people speak
of ‘a frequency as so many wavenumbers’. This usage is 
doubly wrong. First, frequency and wavenumber are two dis-
tinct physical observables with different units, and should be
distinguished. Second, ‘wavenumber’ is not a unit, it is an 
observable with the dimensions of 1/length and commonly
reported in reciprocal centimetres (cm−1).

In this chapter, which explores rotational and vibra-
tional spectroscopy, we first establish the allowed 
rotational and vibrational energies of molecules and
then discuss the transitions between the correspond-
ing states.

Rotational spectroscopy

Very little energy is needed to change the state of rota-
tion of a molecule, and the electromagnetic radiation
emitted or absorbed lies in the microwave region, with
wavelengths of the order of 0.1–1 cm and frequencies
close to 10 GHz. The rotational spectroscopy of gas-
phase samples is therefore also known as microwave
spectroscopy. To achieve suAcient absorption, the
path lengths of gaseous samples must be very long, of
the order of metres. Long path lengths are achieved
by multiple passage of the beam between two parallel
mirrors at each end of the sample cavity. A klystron
(which is also used in radar installations and micro-
wave ovens) or, more commonly now, a semiconduc-
tor device known as a Gunn diode, is used to generate
microwaves. A microwave detector is typically a
crystal diode consisting of a tungsten tip in contact
with a semiconductor, such as germanium, silicon, 
or gallium arsenide. The intensity of the radiation 
arriving at the detector is usually modulated, because
alternating signals are easier to amplify than a steady
signal. In most cases the beam is chopped by a rotat-
ing shutter. Gaseous samples are essential for rota-
tional (microwave) spectroscopy, for in that phase
molecules rotate freely.

19.1 The rotational energy levels 
of molecules

To a first approximation, the rotational states of
molecules are based on a model system called a rigid

rotor, a body that is not distorted by the stress of 
rotation. The simplest type of rigid rotor is called a
linear rotor, and corresponds to a linear molecule,
such as HCl, CO2, or HCyCH that is supposed not
to be able to bend or stretch under the stress of rota-
tion. When the Schrödinger equation is solved for 
a linear rotor (see Further information 19.1), the 
energies are found to be

EJ = hBJ(J + 1) J = 0, 1, 2, . . . (19.3)

where J is the rotational quantum number. The con-
stant B (a frequency, with the units hertz, Hz) is
called the rotational constant of the molecule, and is
defined as

(19.4)

where I is the moment of inertia of the molecule. The
moment of inertia of a molecule is the mass of each
atom multiplied by the square of its distance from the
axis of rotation (Fig. 19.1):

(19.5)

The moment of inertia plays a role in rotation ana-
logous to the role played by mass in translation. A
body with a high moment of inertia (like that of a
flywheel or a heavy molecule) undergoes only a small
rotational acceleration when a twisting force (a
torque) is applied, but a body with a small moment
of inertia undergoes a large acceleration when sub-
jected to the same torque. Table 19.1 gives the 
expressions for the moments of inertia of various
types of molecules in terms of the masses of their
atoms and their bond lengths and bond angles.

I m ri i
i

= ∑ 2

  
B

I
=

H
4π

mA

rA

rD

mAmA

mB

mC

mD
mD

mD

I = 3mArA
2 + 3mDrD

2

Fig. 19.1 The definition of moment of inertia. In this mole-
cule there are three identical atoms attached to the B atom
and three different but mutually identical atoms attached to
the C atom. In this example, the centre of mass lies on an axis
passing through the B and C atom, and the perpendicular 
distances are measured from this axis.



Table 19.1

Moments of inertia*

1. Diatomic molecules

I = mR2

2. Triatomic linear rotors

I = mAR2 + mCR′2 −

I = 2mAR2

3. Symmetric rotors
Im = 2mA(1 − cos q)R2

I| = mA(1 − cos q)R2 + (mB + mC)(1 + 2 cos q)R2

+ {(3mA + mB)R ′ + 6mAR [ (1 + 2 cos q)]1/2}R′

Im = 2mA(1 − cos q)R2

I| = mA(1 − cos q)R2 + (mB + mC)(1 + 2 cos q)R2

Im = 4mAR2

I| = 2mAR2 + 2mCR′2

4. Spherical rotors

I = mAR2

I = 4mAR2

* In each case, m is the total mass of the molecule.
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A brief illustration To calculate the moment of inertia
of a 12C16O2 molecule, the axis of rotation is perpendicu-
lar to the axis of the molecule and passes through the C
atom (the centre of mass of the molecule). It follows that

I = mOR2 + 0 + mOR2 = 2mOR2

where R is the CO bond length. We now use mO = 16.00mu

(where the atomic mass constant unit is mu = 1.660 54 ×
10−27 kg) and R = 116 pm, and find

I = 2 × (16.00mu) × (1.16 × 10−10 m)2

= 2 × (16.00 × 1.660 54 × 10−27 kg) × (1.16 × 10−10 m)2

= 7.15 × 10−46 kg m2

A note on good practice To calculate the moment of inertia
precisely, we need to specify the nuclide. Also, the mass to
use is the actual atomic mass, not the element’s molar mass.
Nuclide masses are reported as multiples of the atomic mass
constant (a constant, not a unit), so we write, for instance,
16.00mu not 16.00 mu. The atomic mass constant has re-
placed the atomic mass unit, u, which was treated as a unit
(with a mass written, for instance, as 16.00 u).

Figure 19.2 shows the energy levels predicted by
eqn 19.3: note that the separation of neighbouring
levels increases with J. Note also that, because J may
be 0 (Section 12.8), the lowest possible energy is 0:
there is no zero-point rotational energy for molecules.
The rotational quantum number also specifies the
angular momentum of the molecule (classically, a
measure of its rate of rotation): a molecule with J = 0
has zero angular momentum, and as J increases, so
does the molecule’s angular momentum. In general,
the rotational angular momentum is {J(J + 1)1/2H, the
same relation as that between the orbital angular
momentum of an electron and the quantum number l.

A number of nonlinear molecules can be modelled
as a symmetric rotor, a rigid rotor in which the 
moments of inertia about two axes are the same but
different from a third (and all three are nonzero). The

formal criterion of a molecule being a symmetric
rotor is that it has an axis of three-fold or higher 
symmetry.

An example of a symmetric rotor is ammonia,
NH3, and another is phosphorus pentachloride, PCl5
(Fig. 19.3). As shown in Further information 19.1,
the energy levels of a symmetric rotor are determined
by two quantum numbers, J and K, and are

EJ,K = hBJ(J + 1) + h(A − B)K2

J = 0, 1, 2, . . . K = J, J − 1, . . . , −J (19.6)

The rotational constants A and B are inversely 
proportional to the moments of inertia parallel and
perpendicular to the axis of the molecule (Fig. 19.4):

(19.7)

The quantum number K tells us, through KH, the
component of angular momentum around the
molecular axis (Fig. 19.5). When K = 0, the molecule
is rotating end-over-end and not at all around its
own axis. When K = ±J (the greatest values in its
range), the molecule is rotating mainly about its axis.
Intermediate values of K correspond to a combina-
tion of the two modes of rotation.

A special case of a symmetric rotor is a spherical
rotor, a rigid body with three equal moments of inertia
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Fig. 19.2 The energy levels of a linear rigid rotor as multiples
of hB.
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Fig. 19.3 The two different moments of inertia of (a) a trigonal
pyramidal molecule and (b) a trigonal bipyramidal molecule.
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B

B
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Fig. 19.4 The two rotational constants of a symmetric rotor,
which are inversely proportional to the moments of inertia
parallel and perpendicular to the axis of the molecule.
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(like a sphere). Tetrahedral, octahedral, and icosa-
hedral molecules (CH4, SF6, and C60, for instance) are
spherical rotors. Their energy levels are very simple:
when Im = I⊥, the rotational constants A and B are
equal and eqn 19.6 simplifies to eqn 19.3.

There is one final remark. Molecules are not really
rigid rotors: they distort under the stress of rotation.
As their bond lengths increase, their energy levels 
become slightly closer together. This effect is taken
into account by supposing that eqn 19.3 can be
modified to

EJ = hBJ(J + 1) − hDJ2(J + 1)2 (19.8)

The parameter D is the centrifugal distortion con-
stant. It is large when the bond is easily stretched,
and so its magnitude is related to the force constants
of bonds, a measure of their rigidity (Section 19.6).

19.2 The populations of rotational states

The question we now address is the relative numbers
of molecules in each rotational state, for that will 
affect the appearance of the rotational spectrum.
There are two considerations: first, whether there are
restrictions on the rotational state in which a mole-
cule can exist and second, how the molecules are 
distributed over the permitted rotational states at a
given temperature.

Not all the rotational states of symmetrical mole-
cules, like H2 and CO2, are permitted. The elimina-
tion of certain states is a consequence of the Pauli 
exclusion principle that, as we saw in Chapter 13,
also forbids the occurrence of certain atomic states
(such as those with three electrons in one orbital, or
two electrons with the same spin in the same orbital).
The restrictions on the permitted rotational states
due to the Pauli principle can be traced to the effect
of nuclear spin called nuclear statistics.

To understand how the Pauli exclusion principle
excludes certain rotational states, we need to express
the principle in a more general way than in Further

information 13.1, which referred only to electrons.
The most general form of the Pauli principle states

When any two indistinguishable fermions are 
interchanged, the wavefunction must change sign;
when any two indistinguishable bosons are inter-
changed, the wavefunction must remain the same.

(Bosons are particles with integral spin; fermions are
particles with half-integral spin; Section 13.6.) In
short, if A and B are indistinguishable particles, then

For fermions: ψ(B,A) = −ψ(A,B)

For bosons: ψ(B,A) = ψ(A,B)

The ‘fermion’ part of this principle implies the Pauli
exclusion principle, as we saw in Chapter 13. How-
ever, in this form it is more general and has wider 
implications.

Consider a CO2 molecule (more precisely, a CO2
molecule in which both O atoms are identical, as in
16OC16O), which we denote OACOB. When the 
rotates through 180°, it becomes OBCOA, with the
two O atoms interchanged. The nuclear spin of 
oxygen-16 is zero, so it is a boson, and therefore 
the wavefunction must remain unchanged by this 
interchange. However, when any molecule is rotated
through 180°, its wavefunction changes by a factor
of (−1)J. To see why that is so, we have drawn the
first few wavefunctions for a particle travelling on a
ring in Fig. 19.6, and we see that a rotation of 180°
leaves wavefunctions with J = 0, 2, ... unchanged but
changes the sign of those with J = 1, 3, .... The only
way for the two requirements (that the wavefunction
does not change sign and the fact that it changes by a
factor of (−1)J) to be consistent is for J to be restricted

K = 0 K = J

Fig. 19.5 When K = 0 for a symmetric rotor, the entire 
motion of the molecule is around an axis perpendicular to the
symmetry axis of the rotor. When the value of |K | is close to
J, almost all the motion is around the symmetry axis.

J = 0 (+)

J = 2 (+)

J = 1 (–)

(a) (b)

Fig. 19.6 The phases of the wavefunctions of a particle on a
ring for the first few states: note that the parity of the wave-
function (its behaviour under inversion through the centre of
the ring) is even, odd, even, . . . .
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to even values. That is, a CO2 molecule can exist only
in the rotational states with J = 0, 2, 4, ....

The analysis of the implications of nuclear statistics
is more complex for molecules in which the nuclei have
nonzero spin (which includes H2, with its spin-
nuclei) because the permitted rotational states de-
pend on the relative orientation of the nuclear spins.
However, the results can be expressed quite simply:

where I is the nuclear spin quantum number. For H2,
with its spin- nuclei (I = ), the ratio is 3:1. For D2
and N2, with their spin-1 nuclei (I = 1, where D is
deuterium, 2H), the ratio is 1:2.

The even-J rotational states of H2 are allowed
when the two nuclear spins are antiparallel (↑↓) and
the odd-J states are allowed when the nuclear spins are
parallel (↑↑). Different relative nuclear spin orienta-
tions change into one another only very slowly, so 
an H2 molecule with parallel nuclear spins remains
distinct from one with paired nuclear spins for long
periods. The two forms of hydrogen can be separated
by physical techniques, and stored. The form with
parallel nuclear spins is called ortho-hydrogen and the
form with paired nuclear spins is called para-hydrogen
(remember: para for paired). Because ortho-hydrogen
cannot exist in a state with J = 0, it continues to rotate
at very low temperatures and has an effective rota-
tional zero-point energy (Fig. 19.7). This energy is of
some concern to manufacturers of liquid hydrogen,
for the slow conversion of ortho-hydrogen into para-
hydrogen (which can exist with J = 0) as nuclear spins
slowly realign releases rotational energy, which vapor-
izes the liquid. Techniques are used to accelerate the
conversion of ortho-hydrogen to para-hydrogen to
avoid this problem. One such technique is to pass 
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hydrogen over a metal surface: the molecules adsorb
on the surface as atoms, which then recombine in the
lower-energy para-hydrogen form.

Next, we need to consider how the permitted rota-
tional states are populated. Because the rotational
states of molecules are close together in energy, we
can expect many states to be occupied at ordinary
temperatures. However, we have to take into account
the degeneracy of the rotational levels, because 
although a given state may have a low population,
there may be many states of the same energy, and the
total population of an energy level may be quite large.

For a linear molecule, which is the only type we
consider, the angular momentum of the molecule
may have 2J + 1 different orientations with respect 
to an external axis, each designated by the value of
the quantum number MJ = J, J − 1, . . . , −J (Fig. 19.8,
just as in atoms, there are 2l + 1 orientations of the
orbital angular momentum, one corresponding to each
permitted value of ml). The energy of the molecule is
independent of its plane of rotation, so all 2J + 1
states have the same energy, and therefore a level
with a given value of J is (2J + 1)-fold degenerate. We
shall see in Section 22.3 that each of these individual
states has a population that is proportional to the
Boltzmann factor, e−EJ /kT with EJ = hBJ(J + 1), so the
total population of a given level is

(19.9)

Figure 19.9 shows how this population varies with J.
As shown in Derivation 19.1, it passes through a
maximum at

(19.10)

For a typical linear molecule (for example, OCS,
with B = 6 GHz) at room temperature, Jmax = 22.
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Fig. 19.7 When hydrogen is cooled, the molecules with par-
allel nuclear spins accumulate in their lowest available rota-
tional state, the one with J = 0. They can enter the lowest
rotational state (J = 0) only if the spins change their relative
orientation and become antiparallel. This is a slow process
under normal circumstances, so energy is slowly released.

z

MJ = J MJ = 0MJ = J – 1

See an animated version of this figure in the 
interactive ebook.

Fig. 19.8 The significance of the quantum number MJ (in this
case, for J = 4): it indicates the orientation of the molecular
rotational angular momentum with respect to an external axis.
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19.3 Rotational transitions: 
microwave spectroscopy

Whether or not a transition can be driven by or drive
the oscillations of the surrounding electromagnetic
field depends on a quantity called the transition dipole

moment. This quantity is a measure of the dipole 
moment associated with the shift of electric charge that
accompanies a transition (Fig. 19.10). The intensity
of the transition is proportional to the square of the
associated transition dipole moment. A large transi-
tion dipole moment indicates that the transition gives
a strong ‘thump’ to the electromagnetic field, and
conversely that the electromagnetic field interacts
strongly with the molecule. A selection rule is a state-
ment about when a transition dipole may be nonzero.
There are two parts to a selection rule. A gross selec-
tion rule specifies the general features a molecule
must have if it is to have a spectrum of a given kind.
A transition that is permitted by a specific selection
rule is classified as allowed. Transitions that are dis-
allowed by a specific selection rule are called forbid-
den. Forbidden transitions sometimes occur weakly
because the selection rule is based on an approxima-
tion that turns out to be slightly invalid.

The gross selection rule for rotational transitions is
that the molecule must be polar. The classical basis
of this rule is that a stationary observer watching a
rotating polar molecule sees its partial charges mov-
ing backwards and forwards and their motion shakes
the electromagnetic field into oscillation (Fig. 19.11).
Because the molecule must be polar, it follows that
tetrahedral (CH4, for instance), octahedral (SF6),
symmetric linear (CO2), and homonuclear diatomic
(H2) molecules do not have rotational spectra. On
the other hand, heteronuclear diatomic (HCl) and
less symmetrical polar polyatomic molecules (NH3)
are polar and do have rotational spectra. We say 
that polar molecules are rotationally active whereas
nonpolar molecules are rotationally inactive.

The specific selection rules for rotational trans-
itions are

ΔJ = ±1 ΔK = 0
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Fig. 19.9 The thermal equilibrium relative populations of the
rotational energy levels of a linear rotor.

Derivation 19.1

The most populated level

Here we need to find the value of J for which PJ is a max-
imum. To proceed, we recall that to find the value of x
corresponding to the extremum (maximum or minimum)
of any function f(x), we differentiate the function, set the
result equal to zero, and solve the equation for x.
Applying this procedure to eqn 19.9, we obtain:

Therefore, after setting J in the above expression to
Jmax, we need to solve

which gives eqn 19.10.
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Fig. 19.10 The transition moment is a measure of the mag-
nitude of the shift in charge during a transition. (a) A spherical
redistribution of charge as in this transition has no associated
dipole moment, and does not give rise to electromagnetic 
radiation. (b) This redistribution of charge has an associated
dipole moment.

Broadly speaking, then, the absorption spectrum 
of the molecule should show a similar distribution 
of intensities.
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The first of these selection rules can be traced, like
the rule Δl = ±1 for atoms (Section 13.7), to the 
conservation of angular momentum when a photon
is absorbed or created. A photon is a spin-1 particle,
and when one is absorbed or created the angular 
momentum of the molecule must change by a compen-
sating amount. Because J is a measure of the angular
momentum of the molecule, J can change only by ±1
(for pure rotational transitions, ΔJ = +1 corresponds
to absorption, ΔJ = −1 to emission). The second selec-
tion rule (ΔK = 0; that is, the quantum number K may
not change) can be traced to the fact that the dipole
moment of a polar molecule does not move when 
a molecule rotates around its symmetry axis (think of
NH3 rotating around its three-fold axis). As a result,
there can be no acceleration or deceleration of the 
rotation of the molecule about that axis by the 
absorption or emission of electromagnetic radiation.

When a rigid molecule changes its rotational quan-
tum number from J to J + 1 in an absorption, the
change in rotational energy of the molecule is

ΔE = EJ+1 − EJ = hB(J + 1)(J + 2) − hBJ(J + 1)

= 2hB(J + 1)

The energies of these transitions are 2hB, 4hB, 
6hB, . . . . The frequency of the radiation absorbed in
a transition starting from the level J is therefore

kJ = 2B(J + 1) (19.11a)

and the lines occur at 2B, 4B, 6B, . . . . The intensity
distribution will be like that Fig. 19.12 with a max-
imum intensity at kJmax

, with Jmax given by eqn 19.10.
A rotational spectrum of a polar linear molecule (HCl)
and of a polar symmetric rotor (NH3), therefore con-
sists of a series of lines at frequencies separated by 2B

(Fig. 19.12). If centrifugal distortion is significant, then
we use eqn 19.8 in the same way, and find

kJ = 2B(J + 1) − 4D(J + 1)3 (19.11b)

Now the lines converge as J increases. To determine
B and D, we divide both sides by J + 1, to obtain

(19.12)

Therefore, by plotting the kJ /(J + 1) against (J + 1)2,
we should get a straight line with intercept 2B and
slope −4D (see Exercise 19.19).

A note on good practice It is often sensible to formulate
an expression that, when plotted, results in a straight line 
(a line with the equation y = b + mx). Then deviations—and
deficiencies in the model—are easiest to identify. If the
straight line looks plausible, the data should be analysed 
statistically, by doing a linear regression (least squares) 
analysis of the data.

y = b + mx

kJ

J +
= 2B − 4D (J + 1)

1
2

(a)

(b) (c)

Fig. 19.11 To an external observer, (a) a rotating polar mole-
cule has (b) an electric dipole (the arrow) that (c) appears to
oscillate. This oscillating dipole can interact with the electro-
magnetic field.
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Fig. 19.12 The allowed rotational transitions (shown as 
absorptions) for a linear molecule.

Example 19.1

Estimating the frequency of a rotational
transition

Estimate the frequency of the J = 0 → 1 transition of 
the 1H35Cl molecule. The masses of the two atoms 
are 1.008mu = 1.673 × 10−27 kg and 34.969mu = 5.807 ×
10−26 kg, respectively, and the equilibrium bond length 
is 127.4 pm.

Strategy The calculation depends on the value of B,
which we obtain by substituting the data into eqn 19.4.
The frequency of the transition is 2B.
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Once we have measured the separation between
adjacent lines in a rotational spectrum of a molecule
and converted it to B, we can use the value of B to 
obtain a value for the moment of inertia I⊥. For 
a diatomic molecule, we can convert that value to 
a value of the bond length, R, by using eqn 19.5.
Highly accurate bond lengths can be obtained in this
way. In some cases, isotopic substitution can help. A
classic case is the determination of the two bond
lengths in the molecule OCS. Analysis of the micro-
wave spectrum of this linear molecule gives a single
quantity, the rotational constant, and from this single
quantity we cannot deduce the two different bond
lengths. However, by recording the absorption of the
two isotopomers (molecules of different isotopic
composition) 16O12C33S and 16O12C34S and assum-
ing that isotopic substitution leaves the bond lengths
unchanged, we get two pieces of information, the
moment of inertia of each isotopomer, and it is now
possible to determine the two bond lengths (see
Exercise 19.34).

19.4 Linewidths

Spectral lines are not infinitely narrow. An important
broadening process in gaseous samples is the Doppler
effect, in which radiation is shifted in frequency when
the source is moving towards or away from the 
observer. Molecules reach high speeds in all directions
in a gas, and a stationary observer detects the corres-
ponding Doppler-shifted range of frequencies. Some
molecules approach the observer, some move away;
some move quickly, others slowly. The detected spec-
troscopic ‘line’ is the absorption or emission profile
arising from all the resulting Doppler shifts. The pro-
file reflects the Maxwell distribution of molecular
speeds (Section 1.6) towards or away from the 
observer, and the outcome is that we observe a bell-
shaped Gaussian curve (a curve of the form e−x2

, 
Fig. 19.13). When the temperature is T and the molar
mass of the molecule is M, the width of the line at half
its maximum height (the ‘width at half-height’) is

(19.13)

which is best remembered as δλ ∝ (T/M)1/2. The
Doppler width increases with temperature because
the molecules acquire a wider range of speeds. There-
fore, to obtain spectra of maximum sharpness, it is
best to work with cold gaseous samples.

Another source of line broadening is the finite life-
time of the states involved in the transition. When 
the Schrödinger equation is solved for a system that
is changing with time, it is found that the states of 
the system do not have precisely defined energies. If 
the time constant for the decay of a state is τ (tau),
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Solution The moment of inertia of the molecule is

Therefore, the rotational constant is

or 318.0 GHz (1 GHz = 109 Hz). It follows that the fre-
quency of the transition is

V = 2B = 636.0 GHz

This frequency corresponds to the wavelength 
0.4712 mm.
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Self-test 19.1

What is the frequency and wavelength of the same
transition in the 2H35Cl molecule? The mass of 2H is
2.014mu = 3.344 × 10−27 kg. Before commencing
the calculation, decide whether the frequency
should be higher or lower than for 1H35Cl.

[Answer: 327.0 GHz, 0.9167 mm]
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Fig. 19.13 The shape of a Doppler-broadened spectral line
reflects the Maxwell distribution of speeds in the sample 
at the temperature of the experiment. Notice that the line
broadens as the temperature is increased. The width at half-
height is given by eqn 11.7.
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which is called the lifetime of the state, then its 
energy levels are blurred by δE, with

(19.14a)

and where the decay of the state is assumed to be 
exponential and proportional to e−t/τ. We see that the
shorter the lifetime of a state, the less well defined is
its energy. The energy spread inherent to the states of
systems that have finite lifetimes is called lifetime
broadening. When we express the energy spread as 
a wavenumber by writing δE = hcδj and use the 
values of the fundamental constants, the practical
form of this relation becomes

(19.14b)

Only if τ is infinite can the energy of a state be
specified exactly (with δE = 0). However, no excited
state has an infinite lifetime; therefore, all states are
subject to some lifetime broadening, and the shorter
the lifetimes of the states involved in a transition, the
broader the spectral lines.

A note on good practice Lifetime broadening is some-
times referred to as ‘uncertainty broadening’ because eqn
19.14 can be written as tdE ≈ 2, which resembles the form 
of a Heisenberg uncertainty principle for energy and time.
However, there are technical reasons for not regarding this
expression as a true uncertainty principle and the term ‘life-
time broadening’ is to be preferred.

j ≈
−5 3 1.

/
cm
psτ

 
E ≈

H
τ

and lower states. Because the rate of spontaneous
emission cannot be changed (without changing the
molecule), it is a natural limit to the lifetime of an 
excited state. The resulting lifetime broadening is 
the natural linewidth of the transition.

The natural linewidth of a transition cannot be
changed by modifying the temperature or pressure.
Natural linewidths depend strongly on the transition
frequency k (they increase as k3), so low-frequency
transitions (such as the microwave transitions of 
rotational spectroscopy) have very small natural
linewidths; for such transitions, collisional and
Doppler line-broadening processes are dominant.

19.5 Rotational Raman spectra

In Raman spectroscopy, molecular energy levels are
explored by examining the frequencies present in the
radiation scattered by molecules. In a typical experi-
ment, a monochromatic incident laser beam is passed
through the sample and the radiation scattered from
the front face of the sample is monitored (Fig. 19.14).
About 1 in 107 of the incident photons collide with
the molecules, give up some of their energy, and
emerge with a lower energy. These scattered photons
constitute the lower-frequency Stokes radiation from
the sample. Other incident photons may collect energy
from the molecules (if they are already excited), and
emerge as higher-frequency anti-Stokes radiation.
The component of radiation scattered into the for-
ward direction without change of frequency is called
Rayleigh radiation.

Lasers are used as the radiation sources in Raman
spectrometers for two reasons. First, the shifts in fre-
quency of the scattered radiation from the incident
radiation are quite small, so highly monochromatic
radiation from a laser is required if the shifts are to be

Self-test 19.2

What is the width (expressed as a wavenumber) of a
transition from a state with a lifetime of 5.0 ps?

[Answer: 1.1 cm−1]

Two processes are principally responsible for the
finite lifetimes of excited states, and hence for the
widths of transitions to or from them. The dominant
one is collisional deactivation, which arises from 
collisions between molecules or with the walls of the
container. If the collisional lifetime is τcol, then the 
resulting collisional linewidth is δEcol ≈ H/τcol. In gases,
the collisional lifetime can be lengthened, and the
broadening—which in this case is also called pressure
broadening—minimized, by working at low pres-
sures. The second contribution is spontaneous emis-
sion (see Further information 20.1), the emission 
of radiation when an excited state collapses into 
a lower state. The rate of spontaneous emission 
depends on details of the wavefunctions of the excited
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Fig. 19.14 The transitions responsible for the Stokes and
anti-Stokes lines of a rotational Raman spectrum of a linear
molecule.
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observed. Second, the intensity of scattered radiation
is low, so intense incident beams, such as those from
a laser, are needed. Raman spectra may be examined
by using visible and ultraviolet lasers, in which case a
diffraction grating, a device that separates a beam of
electromagnetic radiation into its component wave-
numbers, is used to distinguish between Rayleigh,
Stokes, and anti-Stokes radiation.

The gross selection rule for rotational Raman
spectra is that the polarizability of the molecule must
be anisotropic. We saw in Section 15.4 that the 
polarizability of a molecule is a measure of the extent
to which an applied electric field can induce an elec-
tric dipole moment (μ = αE). The anisotropy of this
polarizability is its variation with the orientation of
the molecule. Tetrahedral (CH4), octahedral (SF6),
and icosahedral (C60) molecules, like all spherical 
rotors, have the same polarizability regardless of
their orientations, so these molecules are rotationally
Raman inactive: they do not have rotational Raman
spectra. All other molecules, including homonuclear
diatomic molecules such as H2, are rotationally
Raman active.

The specific selection rules for the rotational
Raman transitions of linear molecules (the only ones
we consider) are

ΔJ = +2 (Stokes lines) ΔJ = −2 (anti-Stokes lines)

It follows that the change in energy when a rigid
rotor makes the transition J → J + 2 is

ΔE = EJ+2 − EJ = hB(J + 2)(J + 3) − hBJ(J + 1) 

= 2hB(2J + 3) (19.15)

Therefore, when a photon scatters from molecules 
in the rotational states J = 0, 1, 2, . . . , and transfers
some of its energy to the molecule, the energy of the
photon is decreased by 6hB, 10hB, 14hB, . . . and its
frequency is reduced by 6B, 10B, 14B, . . . from the
frequency of the incident radiation. If the photon 
acquires energy during the collision, then a similar
argument shows that the anti-Stokes lines occur with
frequencies 6B, 10B, 14B, . . . higher than the inci-
dent radiation (Fig. 19.14). It follows that from a
measurement of the separation of the Raman lines, we
can determine the value of B and hence calculate the
bond length. Because homonuclear diatomic species
are rotationally Raman active, this technique can be
applied to them as well as to heteronuclear species.

There is an important qualification of these remarks
for symmetrical molecules, such as H2 and C16O2.
We saw in Section 19.2 that nuclear statistics either
rules out certain states or leads to an alternation of
populations. We saw, for instance, that C16O2 can

exist only in states with even values of J. As a result,
its rotational Raman spectrum consists of lines at 
6B, 14B, 22B, . . . and separated by 8B because the
lines starting from odd values of J are missing. For
molecules with nonzero nuclear spin, all the Raman
lines are present but they show an alternation of 
intensities: for H2, the odd-J lines are three times more
intense than the even-J lines, whereas for D2 and N2,
even-J lines are twice as intense as the odd-J lines.

Vibrational spectroscopy

All molecules are capable of vibrating, and com-
plicated molecules may do so in a large number of
different modes. Even a benzene molecule, with 12
atoms, can vibrate in 30 different modes, some of
which involve the periodic swelling and shrinking of
the ring and others its buckling into various distorted
shapes. A molecule as big as a protein can vibrate in
tens of thousands of different ways, twisting, stretch-
ing, and buckling in different regions and in different
manners. Vibrations can be excited by the absorp-
tion of electromagnetic radiation. Observing the 
frequencies at which this absorption occurs gives
very valuable information about the identity of the
molecule and provides quantitative information
about the flexibility of its bonds.

19.6 The vibrations of molecules

We base our discussion on Fig. 19.15, which shows 
a typical potential energy curve (it is a reproduction
of Fig. 14.1) of a diatomic molecule as its bond is

Internuclear separation, R

M
o

le
cu

la
r 

p
o

te
n

ti
al

 e
n

er
g

y,
 V

0

0

Parabola

Re

Fig. 19.15 A molecular potential energy curve can be appro-
ximated by a parabola near the bottom of the well. A parabolic
potential results in harmonic oscillation. At high vibrational
excitation energies the parabolic approximation is poor.
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lengthened by pulling one atom away from the other
or pressing it into the other. In regions close to the
equilibrium bond length Re (at the minimum of the
curve) we can approximate the potential energy by 
a parabola (a curve of the form y = x2), and write

V = k(R − Re)
2 (19.16)

where k is the force constant of the bond (units: 
newton per metre, N m−1), as in the discussion of 
vibrations in Section 12.11. The steeper the walls of
the potential (the stiffer the bond), the greater is the
force constant.

The potential energy in eqn 19.16 has the same form
as that for the harmonic oscillator (Section 12.9), so
we can use the solutions of the Schrödinger equation
given there. The only complication is that both
atoms joined by the bond move, so the ‘mass’ of the
oscillator has to be interpreted carefully. Detailed
calculation shows that for two atoms of masses mA
and mB joined by a bond of force constant k, the 
energy levels are

Ev = (v + )hk v = 0, 1, 2, . . . (19.17a)

where

(19.17b)

and μ is called the effective mass of the molecule, 
a measure of the quantity of matter moved during 
the vibration. The effective masses of polyatomic
molecules are complicated combinations of the
atomic masses. The reduced mass, which only for 
diatomic molecules is coincidentally the same as the
effective mass, is a quantity that occurs in the separa-
tion of the internal motion of a molecule from its
overall translation. Vibrational transitions are com-
monly expressed as a wavenumber (in reciprocal 
centimetres), so it is often convenient to write eqn
19.17a as

Ev = (v + )hcj v = 0, 1, 2, . . . (19.17c)

with j = k/c. Figure 19.16 (a repeat of Fig. 12.31) 
illustrates these energy levels: we see that they form a
uniform ladder of separation hcj between neighbours.

A note on good practice We have previously warned
about the importance of distinguishing between the quan-
tum number v (vee) and the frequency V (nu).

At first sight it might be puzzling that the effec-
tive mass appears rather than the total mass of the
two atoms. However, the presence of μ is physically
plausible. If atom A were as heavy as a brick wall, 
it would not move at all during the vibration and 
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the vibrational frequency would be determined by
the lighter, mobile atom. Indeed, if A were a brick
wall, we could neglect mB compared with mA in the
denominator of μ and find μ ≈ mB, the mass of the
lighter atom. This is approximately the case in HI, for
example, where the I atom barely moves and μ ≈ mH.
In the case of a homonuclear diatomic molecule, for
which mA = mB = m, the effective mass is half the
mass of one atom: μ = m.1
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Fig. 19.16 The energy levels of an harmonic oscillator. The
quantum number v ranges from 0 to infinity, and the permit-
ted energy levels form a uniform ladder with spacing hV.

Self-test 19.3

An 1H35Cl molecule has a force constant of 516 N m−1, a
reasonably typical value. Calculate (a) the vibrational fre-
quency, V, and (b) the wavenumber, J, of the molecule
and (c) the energy separation between any two neigh-
bouring vibrational energy levels.

[Answer: (a) 89.7 THz; (b) 2992 cm−1, (c) 59.4 zJ]

19.7 Vibrational transitions

Because a typical vibrational excitation energy is of
the order of 0.01–0.1 aJ, the frequency of the radi-
ation should be of the order of 1013–1014 Hz (from
ΔE = hk). This frequency corresponds to infrared 
radiation, so vibrational transitions are observed by
infrared spectroscopy. As we have remarked, in 
infrared spectroscopy, transitions are normally 
expressed in terms of their wavenumbers and lie 
typically in the range 300–3000 cm−1.

The gross selection rule for vibrational spectra is
that the electric dipole moment of the molecule must
change during the vibration. The basis of this rule 
is that the molecule can shake the electromagnetic
field into oscillation only if it has an electric dipole
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moment that oscillates as the molecule vibrates (Fig.
19.17). The molecule need not have a permanent
dipole: the rule requires only a change in dipole mo-
ment, possibly from zero. The stretching motion of a
homonuclear diatomic molecule does not change its
electric dipole moment from zero, so the vibrations
of such molecules neither absorb nor generate radi-
ation. We say that homonuclear diatomic molecules
are infrared inactive, because their dipole moments
remain zero however long the bond. Heteronuclear
diatomic molecules, which have a dipole moment
that changes as the bond lengthens and contracts, are
infrared active.

The specific selection rule for vibrational transi-
tions is

Δv = ±1

The change in energy for the transition from a state
with quantum number v to one with quantum num-
ber v + 1 is

ΔE = (v + )hcj − (v + )hcj = hcj (19.18)

It follows that absorption occurs when the incident
radiation provides photons with this energy, and
therefore when the incident radiation has a wave-
number given by eqn 19.17c. Molecules with stiff
bonds (large k) joining atoms with low masses (small
μ) have high vibrational wavenumbers. Bending
modes are usually less stiff than stretching modes, so
bends typically occur at lower wavenumbers than
stretches in a spectrum.

At room temperature, almost all the molecules are
in their vibrational ground states initially (the state
with v = 0). Therefore, the most important spectral
transition is from v = 0 to v = 1.

A brief illustration It follows from the calculation of
J for HCl (in Self-test 19.3), that J = 2992 cm−1, so the 
infrared spectrum of the molecule will be an absorption 
at that frequency. The corresponding frequency and
wavelength are 89.7 THz (1 THz = 1012 Hz) and 3.34 mm,
respectively.
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Fig. 19.17 The oscillation of a molecule, even if it is nonpolar,
may result in an oscillating dipole that can interact with the
electromagnetic field. Here we see a representation of a
bending mode of CO2.

Example 19.2

Using the gross selection rule

State which of the following molecules are infrared 
active: N2, CO2, OCS, H2O, CH2lCH2, C6H6.

Strategy Molecules that are infrared active (that is, have
vibrational spectra) have dipole moments that change
during the course of a vibration. Therefore, judge whether
a distortion of the molecule can change its dipole 
moment (including changing it from zero).

Solution All the molecules except N2 possess at least
one vibrational mode that results in a change of dipole
moment, so all except N2 are infrared active. It should be
noted that not all the modes of complicated molecules
are infrared active. For example, a vibration of CO2 in
which the O—C—O bonds stretch and contract symmet-
rically is inactive because it leaves the dipole moment
unchanged (at zero). A bending motion of the molecule,
however, is active and can absorb radiation.

Self-test 19.4

Repeat the question for H2, NO, and N2O.
[Answer: NO, and N2O.]

Self-test 19.5

The force constant of the bond in the CO group of a 
peptide link is approximately 1.2 kN m−1. At what wave-
number would you expect it to absorb? [Hint: For the 
effective mass, treat the group as a 12C16O molecule.]

[Answer: at approximately 1720 cm−1]

19.8 Anharmonicity

The vibrational terms in eqn 19.18 are only approx-
imate because they are based on a parabolic approx-
imation to the actual potential energy curve. A
parabola cannot be correct at all extensions because
it does not allow a molecule to dissociate. At high 
vibrational excitations the swing of the atoms (more
precisely, the spread of vibrational wavefunction) 
allows the molecule to explore regions of the poten-
tial energy curve where the parabolic approximation
is poor. The motion then becomes anharmonic, in
the sense that the restoring force is no longer propor-
tional to the displacement. Because the actual curve
is less confining than a parabola, we can anticipate
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that the energy levels become less widely spaced at
high excitation, just as the energy levels of a particle
in a box get closer together as the length of the box is
increased.

The convergence of levels at high vibrational quan-
tum numbers is expressed by replacing eqn 19.17c by

Ev = (v + )hcj − (v + )2hcjxe + . . . (19.19)

Where xe is the anharmonicity constant. Anharmoni-
city also accounts for the appearance of additional
weak absorption lines called overtones correspond-
ing to the transitions with Δv = +2, +3, . . . . These
overtones appear because the usual selection rule is
derived from the properties of harmonic oscillator
wavefunctions, which are only approximately valid
when anharmonicity is present. Overtones in a 
vibrational spectrum can appear in the near-infrared
region and overtone spectroscopy is a technique 
used by analytical chemists in the characterization 
of food.

19.9 The technique

The source in an infrared spectrometer typically pro-
duces radiation spanning a range of frequencies. For
the far infrared (35 cm−1 < j < 200 cm−1), the source
is commonly a mercury arc inside a quartz envelope,
most of the radiation being generated by the hot
quartz. A Nernst filament or globar is used to 
generate radiation in the mid-infrared (200 cm−1 < j
< 4000 cm−1): it consists of a heated ceramic filament
containing rare-earth (lanthanoid) oxides, and emits
radiation as it is heated.

Modern spectrometers, particularly those operat-
ing in the infrared and near-infrared, now almost 
always use Fourier transform techniques of spectral
detection and analysis. The heart of a Fourier trans-
form spectrometer is a Michelson interferometer, 
a device for analysing the frequencies present in a
composite signal. The total signal from a sample is
like a chord played on a piano, and the Fourier 
transform of the signal is equivalent to the separation
of the chord into its individual notes, its spectrum. A
major advantage of the Fourier transform procedure
is that all the radiation emitted by the source is 
monitored continuously. That is in contrast to a
spectrometer in which a monochromator discards
most of the generated radiation. As a result, Fourier
transform spectrometers have a higher sensitivity
than conventional spectrometers.

The most common detectors found in commer-
cial infrared spectrometers are sensitive in the mid- 
infrared region. An example is the mercury cadmium

1
2

1
2

telluride (MCT) detector, a photovoltaic device for
which the potential difference changes upon expos-
ure to infrared radiation.

19.10 Vibrational Raman spectra of
diatomic molecules

In vibrational Raman spectroscopy the incident 
photon leaves some of its energy in the vibrational
modes of the molecule it strikes, or collects addi-
tional energy from a vibration that has already been
excited.

The gross selection rule for vibrational Raman
transitions is that the molecular polarizability must
change as the molecule vibrates. The polarizability
plays a role in vibrational Raman spectroscopy 
because the molecule must be squeezed and stretched
by the incident radiation in order that a vibrational
excitation may occur during the photon–molecule
collision. Both homonuclear and heteronuclear 
diatomic molecules swell and contract during a 
vibration, and the control of the nuclei over the 
electrons, and hence the molecular polarizability,
changes too. Both types of diatomic molecule are
therefore vibrationally Raman active.

The specific selection rule for vibrational Raman
transitions is the same as for infrared transitions 
(Δv = ±1). The photons that are scattered with a
lower wavenumber than that of the incident light,
the Stokes lines, are those for which Δv = +1. The
Stokes lines are more intense than the anti-Stokes
lines (for which Δv = −1), because very few molecules
are in an excited vibrational state initially.

The information available from vibrational Raman
spectra adds to that from infrared spectroscopy 
because homonuclear diatomic molecules can also be
studied. The spectra can be interpreted in terms of
the force constants, dissociation energies, and bond
lengths, and some of the information obtained is 
included in Table 19.2.

19.11 The vibrations of polyatomic
molecules

How many modes of vibration are there in a poly-
atomic molecule? We can answer this question by
thinking about how each atom may change its loca-
tion, and we show in Derivation 19.2 that

Nonlinear molecules: Number of vibrational
modes = 3N − 6

Linear molecules: Number of vibrational 
modes = 3N − 5
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A brief illustration A water molecule, H2O, is tri-
atomic and nonlinear, and has three modes of vibration.
Naphthalene, C10H8, has 48 distinct modes of vibration.
Any diatomic molecule (N = 2) has one vibrational mode;
carbon dioxide (N = 3) has four vibrational modes.

describe two of the four vibrations of a CO2 mole-
cule as individual carbon–oxygen bond stretches, vL
and vR in Fig. 19.19, the description of the motion is
much simpler if we use two combinations of these 
vibrations. One combination is v1 in Fig. 19.20: this
combination is the symmetric stretch. The other com-
bination is v3, the antisymmetric stretch, in which the
two O atoms always move in the same directions and
opposite to the C atom. The two modes are independ-
ent in the sense that if one is excited, then its motion

Table 19.2

Properties of diatomic molecules

J/cm−1 Re/pm k /(N m−1) D/(kJ mol−1)

1H2
+ 2322 106 160 256

1H2 4401 74 575 432
2H2 3118 74 577 440
1H19F 4138 92 955 564
1H35Cl 2991 127 516 428
1H81Br 2649 141 412 363
1H127I 2308 161 314 295
14N2 2358 110 2294 942
16O2 1580 121 1177 494
19F2 892 142 445 154
35Cl2 560 199 323 239

φ

θ

φ

θ

ψ

(a) (b)

Therefore three of the 3N − 3 internal displacements
leave all bond angles and bond lengths unchanged but
change the orientation of the molecule as a whole.
These three displacements are therefore rotations. That
leaves 3N − 6 displacements that change neither the
centre of mass of the molecule nor the orientation of 
the molecule in space. These 3N − 6 displacements are
the vibrational modes. A similar calculation for a linear
molecule, which requires only two angles to specify its
orientation in space, gives 3N − 5 as the number of 
vibrational modes.

(a) (b)

Fig. 19.19 The stretching vibrations of a CO2 molecule can
be represented in a number of ways. In this representation,
(a) one OlC bond vibrates and the remaining O atom is 
stationary, and (b) the ClO bond vibrates while the other O
atom is stationary. Because the stationary atom is linked to
the C atom, it does not remain stationary for long. That is, if
one vibration begins, it rapidly stimulates the other to occur.

See an animated version of this figure in the 
interactive ebook.

Derivation 19.2

The number of normal modes

Each atom may move along any of three perpendicular
axes. Therefore, the total number of such displacements
in a molecule consisting of N atoms is 3N. Three of these
displacements correspond to movement of the centre 
of mass of the molecule, so these three displacements
correspond to the translational motion of the molecule as
a whole. The remaining 3N − 3 displacements are ‘inter-
nal’ modes of the molecule that leave its centre of mass
unchanged. Three angles are needed to specify the ori-
entation of a nonlinear molecule in space (Fig. 19.18).

Fig. 19.18 (a) The orientation of a linear molecule re-
quires the specification of two angles (the latitude and
longitude of its axis). (b) The orientation of a nonlinear
molecule requires the specification of three angles (the
latitude and longitude of its axis and the angle of twist—
the azimuthal angle—around that axis).

The description of the vibrational motion of a
polyatomic molecule is much simpler if we consider
combinations of the stretching and bending motions
of individual bonds. For example, although we could
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does not excite the other. They are two of the four
‘normal modes’ of the molecule, its independent, 
collective vibrational displacements. The two other
(degenerate) normal modes are the bending modes,
v2. In general, a normal mode is an independent, syn-
chronous motion of atoms or groups of atoms that
may be excited without leading to the excitation of
any other normal mode.

contribute to the effective mass. The force constant
also depends in a complicated way on the extent to
which bonds bend and stretch during a vibration.
Typically, a normal mode that is largely a bending
motion has a lower force constant (and hence a lower
frequency) than a normal mode that is largely a
stretching motion.

The gross selection rule for the infrared activity of
a normal mode is that the motion corresponding to 
a normal mode must give rise to a changing dipole
moment. Deciding whether this is so can sometimes
be done by inspection. For example, the symmetric
stretch of CO2 leaves the dipole moment unchanged
(at zero), so this mode is infrared inactive and makes
no contribution to the molecule’s infrared spectrum.
The antisymmetric stretch, however, changes the
dipole moment because the molecule becomes 
unsymmetrical as it vibrates, so this mode is infrared
active. The fact that the mode does absorb infrared
radiation enables carbon dioxide to act as a ‘green-
house gas’ by absorbing infrared radiation emitted
from the surface of the Earth (Box 19.1). Because the
dipole moment change is parallel to the molecular
axis in the antisymmetric stretching mode, the trans-
itions arising from this mode are classified as parallel
bands in the spectrum. Both bending modes are also
infrared active: they are accompanied by a changing
dipole perpendicular to the molecular axis (as in 
Fig. 19.20), so transitions involving them lead to a
perpendicular band in the spectrum.

(a) (b)

Fig. 19.20 Alternatively, linear combinations of the two
modes can be taken to give these two normal modes of 
the molecule. The mode in (a) is the symmetric stretch and
that in (b) is the antisymmetric stretch. The two modes are 
independent, and if either of them is stimulated, the other 
remains unexcited. Normal modes greatly simplify the 
description of the vibrations of the molecule.

See an animated version of this figure in the 
interactive ebook.

Self-test 19.6

How many normal modes of vibration are there in 
(a) ethyne (HCyCH) and (b) a protein molecule of 
4000 atoms?

[Answer: (a) 7, (b) 11 994]

The four normal modes of CO2, and the 3N − 6 
(or 3N − 5) normal modes of polyatomic molecules
in general, are the key to the description of molecular
vibrations. Each normal mode behaves like an inde-
pendent harmonic oscillator and the energies of the
vibrational levels are given by the same expression as
in eqn 19.17, but with an effective mass that depends
on the extent to which each of the atoms contributes
to the vibration. Atoms that do not move, such as 
the C atom in the symmetric stretch of CO2, do not

Self-test 19.7

State the ways in which the infrared spectrum of dinitro-
gen oxide (nitrous oxide, N2O) will differ from that of 
carbon dioxide.

[Answer: different frequencies on account of different atomic
masses and force constants; all four modes infrared active]

Some of the normal modes of organic molecules
can be regarded as motions of individual functional
groups. Others cannot be regarded as localized in
this way and are better regarded as collective motions
of the molecule as a whole. The latter are generally 
of relatively low frequency, and occur at wavenum-
bers below about 1500 cm−1 in the spectrum. The 
resulting whole-molecule region of the absorption
spectrum is called the fingerprint region of the 
spectrum, as it is characteristic of the molecule. The
matching of the fingerprint region with a spectrum 
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Box 19.1 Climate change*

Solar energy strikes the top of the Earth’s atmosphere at 
a rate of 343 W m−2. About 30 per cent of this energy is 
reflected back into space by the Earth or the atmosphere.
The Earth–atmosphere system absorbs the remaining 
energy and re-emits it into space as black-body radiation,
with most of the intensity being carried by infrared radiation
in the range 200–2500 cm−1 (4–50 mm). The Earth’s average
temperature is maintained by an energy balance between
solar radiation absorbed by the Earth and black-body radi-
ation emitted by the Earth.

The trapping of infrared radiation by certain gases in the
atmosphere is known as the greenhouse effect, so called
because it warms the Earth as if the planet were enclosed
in a huge greenhouse. The result is that the natural green-
house effect raises the average surface temperature well
above the freezing point of water and creates an environ-
ment in which life is possible. The major constituents to 
the Earth’s atmosphere, O2 and N2, do not contribute to the
greenhouse effect because homonuclear diatomic mole-
cules cannot absorb infrared radiation. However, the minor
atmospheric gases, water vapour and CO2, do absorb 
infrared radiation and hence are responsible for the green-
house effect (see the first illustration). Water vapour absorbs
strongly in the ranges 1300–1900 cm−1 (5.3–7.7 mm) and
3550–3900 cm−1 (2.6–2.8 mm), whereas CO2 shows strong
absorption in the ranges 500–725 cm−1 (14–20 mm) and
2250–2400 cm−1 (4.2–4.4 mm).

Increases in the levels of greenhouse gases, which 
also include methane, dinitrogen oxide, ozone, and certain
chlorofluorocarbons, as a result of human activity have the
potential to enhance the natural greenhouse effect, lead-

ing to significant warming of the planet. This problem is 
referred to as global warming, which we now explore in
some detail.

The concentration of water vapour in the atmosphere has
remained steady over time, but concentrations of some
other greenhouse gases are rising. From about the year
1000 until about 1750, the CO2 concentration remained
fairly stable, but, since then, it has increased by 28 per cent.
The concentration of methane, CH4, has more than doubled
during this time and is now at its highest level for 160 000
years (160 ka; a is the SI unit denoting 1 year). Studies of 
air pockets in ice cores taken from Antarctica show that 
increases in the concentration of both atmospheric CO2

and CH4 over the past 160 ka correlate well with increases
in the global surface temperature.

Human activities are primarily responsible for the rising
concentrations of atmospheric CO2 and CH4. Most of the
atmospheric CO2 comes from the burning of hydrocarbon
fuels, which began on a large scale with the Industrial
Revolution in the middle of the nineteenth century. The 
additional methane comes mainly from the petroleum 
industry and from agriculture.

The temperature of the surface of the Earth has increased
by about 0.8°C since the middle of the nineteenth century
(see the second illustration). In 2007, the Intergovernmental
Panel on Climate Change (IPCC) estimated that our continued
reliance on hydrocarbon fuels, coupled to current trends in
population growth, could result in an additional increase of
1–3°C in the temperature of the Earth by 2100, relative to

H2O

H2O

CH4

O3

CO2

Li
g

h
t 

in
te

n
si

ty

7.1 10.0 16.7
Wavelength, /μmλ

The intensity of infrared radiation that would be lost from
Earth in the absence of greenhouse gases is shown by the
smooth line. The jagged line is the intensity of the radiation
actually emitted. The maximum wavelength of radiation 
absorbed by each greenhouse gas is indicated.
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* This box is based on, but updated from, a similar contribution 
initially prepared by Loretta Jones and appearing in Chemical
Principles, Peter Atkins and Loretta Jones, W.H. Freeman and Co.,
New York (2008).
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the surface temperature in 2000. Furthermore, the rate of
temperature change is likely to be greater than at any time
in the last 10 ka. To place a temperature rise of 3°C in per-
spective, note that the average temperature of the Earth
during the last ice age was only 6°C colder than at present.
Just as cooling the planet (for example, during an ice age)
can lead to detrimental effects on ecosystems, so too can
a dramatic warming. One example of a significant change 
in the environment caused by a temperature increase of
3°C is a rise in sea level by about 0.5 m, which is sufficient
to alter weather patterns and submerge currently coastal
ecosystems.

Computer projections for the next 200 years predict further
increases in atmospheric CO2 levels and suggest that, to
maintain CO2 at its current concentration, we would have to
reduce hydrocarbon fuel consumption immediately. Clearly,
in order to reverse global warming trends, we need to develop
alternatives to fossil fuels, such as hydrogen (which can be
used in fuel cells, Box 9.2) and solar energy technologies.

(a) (b)

(c) (d)

Some of the normal modes of vibration of CH4. An arrow 
indicates the direction of motion of an atom during the 
vibration.

Table 19.3

Typical vibrational wavenumbers

Vibration type J/cm−1

C—H 2850–2960
C—H 1340–1465
C—C stretch, bend 700–1250
ClC stretch 1620–1680
CyC stretch 2100–2260
O—H stretch 3590–3650
ClO stretch 1640–1780
CyN stretch 2215–2275
N—H stretch 3200–3500
Hydrogen bonds 3200–3570

Example 19.3

Interpreting an infrared spectrum

The infrared spectrum of an organic compound is shown
in Fig. 19.21. Suggest an identification.

Strategy Some of the features at wavenumbers above
1500 cm−1 can be identified by comparison with the data
in Table 19.3.

Solution (a) C—H stretch of a benzene ring, indicating 
a substituted benzene; (b) carboxylic acid O—H stretch,
indicating a carboxylic acid; (c) the strong absorption of 
a conjugated CyC group, indicating a substituted alkyne;
(d) this strong absorption is also characteristic of a car-
boxylic acid that is conjugated to a carbon–carbon multiple
bond; (e) a characteristic vibration of a benzene ring, 

of a known compound in a library of infrared spectra
is a very powerful way of confirming the presence of
a particular substance.

The characteristic vibrations of functional groups
that occur outside the fingerprint region are very 
useful for the identification of an unknown com-
pound. Most of these vibrations can be regarded as
stretching modes, for the lower frequency bending
modes usually occur in the fingerprint region and so
are less readily identified. The characteristic wave-
numbers of some functional groups are listed in
Table 19.3.
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Fig. 19.21 A typical infrared absorption spectrum taken
by forming a sample into a disk with potassium bromide.
As explained in the example, the substance can be iden-
tified as O2NC6H4—CyC—COOH.

See an animated version of this figure in the 
interactive ebook.
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19.12 Vibration–rotation spectra

The vibrational spectra of gas-phase molecules are
more complicated than this discussion implies, 
because the excitation of a vibration also results in the
excitation of rotation. The effect is rather like what
happens when ice skaters throw out or draw in their
arms: they rotate more slowly or more rapidly. The
effect on the spectrum is to break the single line res-
ulting from a vibrational transition into a multitude
of lines with separations between neighbours that 
depend on the rotational constant of the molecule.

To establish the so-called ‘band structure’ of a 
vibrational transition, we begin by writing the 
expressions for the vibrational and rotational levels.
For a linear molecule (the only type we consider), we
combine eqns 19.3 and 19.17 and write

Ev,J = (v + )hv + hBJ(J + 1) (19.20)

(For this part of the discussion it is simpler to express
vibrational transitions as frequencies rather than
wavenumbers, but the conversion between them is

1
2

straightforward.) Next, we apply the selection rules.
Provided the molecule is polar, or at least acquires a
dipole moment in a vibrational transition (as when
CO2 bends or undergoes an asymmetric stretch), the
rotational quantum number may change by ±1 or (in
some cases, see below) 0. The absorptions then fall
into three groups called branches of the spectrum.

P branch, transitions with ΔJ = −1: vJ = v − 2BJ
Q branch, transitions with ΔJ = 0: vJ = v
R branch, transitions with ΔJ = +1: vJ = v + 2B(J + 1)

Figure 19.23 shows the resulting appearance of 
the branches of a typical spectrum. The separation
between the lines in the P and R branches of a vibra-
tional transition is 2B. Therefore, the bond length
can be deduced without needing to take a pure 
rotational microwave spectrum. However, the latter
is more precise.

A brief comment The Q branch is not always allowed. For
example, it is observed in the spectrum of NO, but not in the
spectrum of HCl: the difference can be traced to the fact that
NO, with an electron in a p orbital, has electronic angular 
momentum around its internuclear axis but HCl does not.1

19.13 Vibrational Raman spectra of
polyatomic molecules

The gross selection rule for the vibrational Raman
spectrum of a polyatomic molecule is that the normal
mode of vibration is accompanied by a changing 
polarizability. However, it is often quite diAcult to
judge by inspection when this is so. The symmetric
stretch of CO2, for example, alternately swells and
contracts the molecule: this motion changes its 
polarizability, so the mode is Raman active. The other

confirming the deduction drawn from (a); (f) a character-
istic absorption of a nitro group (—NO2) connected to 
a multiply bonded carbon–carbon system, suggesting 
a nitro-substituted benzene. The molecule contains as
components a benzene ring, an aromatic carbon–carbon
bond, a —COOH group, and a —NO2 group. The mole-
cule is in fact O2N—C6H4—CyC—COOH. A more detailed
analysis and comparison of the fingerprint region shows
it to be the 1,4-isomer.
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Fig. 19.22 The spectrum considered in Self-test 19.8.

Self-test 19.8

Suggest an identification of the organic compound
responsible for the spectrum shown in Fig. 19.22.
[Hint: The molecular formula of the compound is
C3H5ClO.]

[Answer: CH2lCClCH2OH]
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Fig. 19.23 The formation of P, Q, and R branches in a 
vibration–rotation spectrum. The intensities reflect the popula-
tions of the initial rotational levels.

1 For more information, see our Physical Chemistry (2006).
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modes of CO2 are Raman inactive because the 
polarizability does not change as the atoms move
collectively. A very simple explanation (which is 
not reliable in all cases) is that the polarizability of a
molecule depends on its size, and whereas the sym-
metric stretch changes the size of the molecule 
neither the antisymmetric stretch nor the bending
modes do—at least, to a first approximation.

In some cases it is possible to make use of a very
general rule about the infrared and Raman activity of
vibrational modes:

The exclusion rule states that if the molecule has 
a centre of inversion, then no modes can be both
infrared and Raman active.

(A mode may be inactive in both.) A molecule has a
centre of inversion if it looks unchanged when each
atom is projected through a single point and out an
equal distance on the other side (Fig. 19.24). Because
we can often judge intuitively when a mode changes
the molecular dipole moment, we can use this rule to
identify modes that are not Raman active. The rule
applies to CO2 but to neither H2O nor CH4 because
they have no centre of symmetry. Thus, both the anti-
symmetric stretch and the bending modes of CO2 are
infrared active, so we know at once that they are
Raman inactive, as we asserted above.

Centre of
inversion

Fig. 19.24 In an inversion operation, we consider every point
in a molecule, and project them all through the centre of the
molecule out to an equal distance on the other side.
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Fig. 19.25 (a) In Raman spectroscopy, an incident photon 
is scattered from a molecule with either an increase in fre-
quency (if the radiation collects energy from the molecule)
or—as shown here—with a lower frequency if it loses energy
to the molecule. The process can be regarded as taking place
by an excitation of the molecule to a wide range of states
(represented by the shaded band), and the subsequent return
of the molecule to a lower state; the net energy change is
then carried away by the photon. (b) In the resonance Raman
effect, the incident radiation has a frequency corresponding
to an actual electronic excitation of the molecule. A photon is
emitted when the excited state returns to a state close to the
ground state.
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A modification of the basic Raman effect involves
using incident radiation that nearly coincides with
the frequency of an electronic transition of the sam-
ple (Fig. 19.25). The technique is then called reson-
ance Raman spectroscopy. It is characterized by a
much greater intensity in the scattered radiation.
Furthermore, because it is often the case that only a
few vibrational modes contribute to the more in-
tense scattering, the spectrum is greatly simplified.
Resonance Raman spectroscopy is used to study bio-
logical molecules that absorb strongly in the ultra-
violet and visible regions of the spectrum. Examples
include the haem co-factors in haemoglobin and 
the cytochromes and the pigments β-carotene and
chlorophyll, which capture solar energy during plant
photosynthesis.

Self-test 19.9

One vibrational mode of benzene is a ‘breathing mode’
in which the ring alternately expands and contracts. May
it be vibrationally Raman active?

[Answer: yes]



CHECKLIST OF KEY IDEAS 467

Checklist of key ideas

You should now be familiar with the following concepts.

1 The populations of rotational energy levels are
given by the Boltzmann distribution in connection
with noting the degeneracy of each level.

2 The intensity of a transition is proportional to the
square of the transition dipole moment.

3 A selection rule is a statement about when the
transition dipole may be nonzero.

4 A gross selection rule specifies the general fea-
tures a molecule must have if it is to have a spec-
trum of a given kind.

5 A specific selection rule is a statement about
which changes in quantum number may occur in
a transition.

6 The gross selection rule for rotational transitions
is that the molecule must be polar. The specific
selection rules are in the following table.

7 The Pauli principle states for fermions y (B,A) =
−y (A,B) and for bosons y (B,A) = y (A,B). The con-
sequences of the Pauli principle for rotational
states are called nuclear statistics.

8 The rotational spectrum of a polar linear molecule
and of a polar symmetric rotor consists of a series
of lines at frequencies separated by 2B.

9 One contribution to the linewidth is the Doppler
effect; another contribution is lifetime broadening.

10 In a Raman spectrum lines shifted to lower fre-
quency than the incident radiation are called
Stokes lines and lines shifted to higher frequency
are called anti-Stokes lines.

11 The gross selection rule for rotational Raman
spectra is that the polarizability of the molecule
must be anisotropic. The specific selection rules
are in the table of key equations below.

12 The gross selection rule for vibrational spectra is
that the electric dipole moment of the molecule
must change during the vibration. The specific 
selection rules are in the table of key equations
below.

13 The number of vibrational modes of nonlinear
molecules is 3N − 6; for linear molecules the num-
ber is 3N − 5.

14 Rotational transitions accompany vibrational
transitions and split the spectrum into a P branch
(DJ = −1), a Q branch (DJ = 0), and an R branch 
(DJ = +1). A Q branch is observed only when the
molecule possesses angular momentum around
its axis.

15 The gross selection rule for the vibrational Raman
spectrum of a polyatomic molecule is that the
normal mode of vibration is accompanied by a
changing polarizability.

16 The exclusion rule states that if the molecule has
a centre of inversion, then no modes can be both
infrared and Raman active.

17 In resonance Raman spectroscopy, radiation that
nearly coincides with the frequency of an elec-
tronic transition is used to excite the sample and
the result is a much greater intensity in the scat-
tered radiation.
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The following table summarizes the equations developed in this chapter.

Property

Bohr frequency condition.

Width of a Doppler-broadened spectral line

Width of a lifetime-broadened line

Energy levels of a linear or spherical rotor

Energy levels of a symmetric rotor

Energy levels of a linear rotor 
affected by centrifugal distortion

Pure rotational selection rules

Rotational Raman selection rules

Energy levels of a harmonic 
oscillator

Vibrational selection rule

Energy levels of an anharmonic oscillator

Equation

hV = |E1 − E2|

dl ∝ (T/M )1/2

dE ≈ 2 /τ

EJ = hBJ(J + 1), B = 2 /4pI

EJ,K = hBJ(J + 1) + h(A − B)K2,
A = 2 /4pIm and B = 2 /4pI⊥

EJ = hBJ(J + 1) − hDJ2(J + 1)2

DJ = ±1, DK = 0

DJ = +2 (Stokes lines), DJ = −2
(anti-Stokes lines)

Ev = (v + )hcJ

J = ( pc)(k/m)1/2

m = mAmB/(mA + mB)

Dv = ±1

Ev = (v + )hcJ − (v + )2hcJxe + . . .1
2

1
2

1
2

1
2

Comment

J = 0, 1, 2, . . .

J = 0, 1, 2, . . .
K = J, J − 1, . . . , −J

Parabolic potential
v = 0, 1, 2, . . .

Harmonic oscillator

v = 0, 1, 2, . . .

Table of key equations

Further information 19.1

The rotational energy levels of molecules

The starting point for this derivation is the classical expres-
sion for the kinetic energy, Ek, of rotation of a body of 
moment of inertia I and angular velocity ω (in radians per
second):

Ek = Iω2

A brief comment This expression is the rotational ana-
logue of the expression for the translational kinetic enery, 
Ek = mv2, where v is the linear velocity.

When the body is able to rotate round all three perpen-
dicular axes, its total kinetic energy is the sum of three 
contributions:

Ek = Ixxωx
2 + Iyyωy

2 + Izzω z
2

(For technical reasons, moments of inertia are given two
subscripts to denote direction.) We can rewrite this expres-

1
2

1
2

1
2

1
2

1
2

sion in terms of the angular momentum Jq = Iqqωq around
each axis:

A freely rotating molecule has an unchanging potential 
energy that may be taken to be zero, so from now on we
can interpret the kinetic energy Ek as the total energy E. If
the molecule is a symmetric rotor, we can write Ixx = Iyy =
I⊥ and Izz = Im, and obtain

It is convenient to write this expression in terms of the mag-
nitude of the angular momentum J2 = Jx

2 + Jy
2 + Jz

2:

E
J
I I I
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At this point, we make the transition from classical to
quantum mechanics. According to quantum mechanics, 
the square of the magnitude of angular momentum is 
J(J + 1)H2, with J = 0, 1, 2, ... and any component (such 
as Jz) is limited to the values KH with K = J, J − 1, ... , −J.
(The quantum number K is used in place of MJ for the 
component on an internally defined axis.) It follows that
the quantum-mechanical expression for the energy of a
symmetric rotor is

For a linear rotor, only the value K = 0 is allowed because
the molecule cannot rotate around its axis, and we obtain
eqn 19.3. For a spherical rotor, the two moments of inertia
are the same, and the second term disappears to give eqn
19.3 again. For a symmetric rotor, with A and B defined as
in eqn 19.7, we obtain eqn 19.6.
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Questions and exercises

Discussion questions

19.1 Discuss the physical origins of the gross selection 
rules for microwave spectroscopy and rotational Raman
spectroscopy.

19.2 Describe the physical origins of linewidths in the 
absorption and emission spectra of gases, liquids, and solids.
How may they be reduced?

19.3 Consider a diatomic molecule that is highly susceptible
to centrifugal distortion in its ground vibrational state. Do you
expect excitation to high rotational energy levels to change the
equilibrium bond length of this molecule? Justify your answer.

19.4 Why does the vibrational state of a diatomic molecule
affect its rotational constant? Is there an effect even if the 
potential is strictly parabolic?

19.5 Account physically for the fact that a linear polyatomic
molecule composed of N atoms has one more vibrational
mode than a nonlinear molecule of N atoms.

19.6 (a) Discuss the physical origins of the gross selection
rules for infrared spectroscopy and vibrational Raman spec-
troscopy. (b) Suppose that you wish to characterize the nor-
mal modes of benzene in the gas phase. Why is it important
to obtain both infrared absorption and Raman spectra of your
sample?

19.7 Suggest a reason why the replacement of 12C by 13C in
CO2 affects some of its vibrational frequencies but not all.

19.8 Account for the appearance of P, Q, and R branches in
the vibration–rotation spectrum of a diatomic molecules.

Exercises

For these exercises, use m(1H) = 1.0078mu, m(2H) =
2.014 0mu, m(12C) = 12.000 0mu, m(13C) = 13.003 4mu,
m(16O) = 15.994 9mu, m(19F) = 18.998 4mu, m(32S) =
31.972 1mu, m(34S) = 33.967 9mu, m(35Cl) = 34.968 8mu,
m(127I) = 126.904 5mu.

19.1 Express a wavelength of 442 nm as (a) a frequency, 
(b) a wavenumber.

19.2 What is (a) the wavenumber, (b) the wavelength of the
radiation used by an FM radio transmitter broadcasting at
88.0 MHz?

19.3 The kinetic energy of a bicycle wheel rotating once per
second is about 0.2 J. To what rotational quantum number
does that correspond? For the moment of inertia, let the
mass of the wheel (which is concentrated in its rim) be 
0.75 kg and its radius be 70 cm.

19.4 Calculate the moment of inertia of (a) 1H2, (b) 2H2, (c)
12C16O2, (d) 13C16O2.

19.5 Calculate the rotational constants of the molecules in
Exercise 19.4; express your answers in hertz (Hz).

19.6 (a) Express the moment of inertia of an octahedral AB6

molecule in terms of its bond lengths and the masses of the
B atoms. (b) Calculate the rotational constant of 32S19F6, for
which the S—F bond length is 158 pm.

19.7 (a) Derive expressions for the two moments of inertia
of a square-planar AB4 molecule in terms of its bond lengths
and the masses of the B atoms.

19.8 Suppose you were seeking the presence of (planar)
SO3 molecules in the microwave spectra of interstellar gas
clouds. (a) You would need to know the rotational constants
A and B. Calculate these parameters for 32S16O3, for which
the S—O bond length is 143 pm. (b) Could you use micro-
wave spectroscopy to distinguish the relative abundances of
32S16O3 and 33S16O3?

19.9 Which of the following molecules can have a pure rota-
tional spectrum: (a) HCl; (b) N2O; (c) O3; (d) SF4; (e) XeF4?

19.10 Which of the molecules in Exercise 19.9 can have a 
rotational Raman spectrum?

19.11 A rotating methane molecule is described by the quan-
tum numbers J, MJ, and K. How many rotational states have
an energy equal to hBJ(J + 1) with J = 8?

19.12 Suppose the methane molecule in Exercise 19.11 is
replaced by chloromethane. How many rotational states now
have an energy equal to hBJ(J + 1) with J = 8?

19.13 The rotational constant of 1H35Cl is 318.0 GHz. What is
the separation of the line in its pure rotational spectrum (a) in
gigahertz, (b) in reciprocal centimetres?

19.14 The rotational constant of 127I35Cl is 0.114 2 cm−1.
Calculate the ICl bond length.
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19.15 Suppose that hydrogen is replaced by deuterium in
1H35Cl. Would you expect the J = 1 ← 0 transition to move to
higher or lower wavenumber?

19.16 The wavenumber of the incident radiation in a Raman
spectrometer is 20 623 cm−1. What is the wavenumber of the
scattered Stokes radiation for the J = 4 ← 2 transition of 16O2?

19.17 The rotational constant of 12C16O2 (from Raman 
spectroscopy) is 11.70 GHz. What is the CO bond length in
the molecule?

19.18 The microwave spectrum of 1H127I consists of a series
of lines separated by 384 GHz. Compute its bond length.
What would be the separation of the lines in 2H127I?

19.19 The following wavenumbers are observed in the rota-
tional spectrum of OCS: 1.217 105 4 cm−1, 1.1.622 800 5 cm−1,
2.028 488 3 cm−1, and 2.434 170 8 cm−1. Use the graphical
procedure implied by eqn 19.12 to infer the values of B and D
for this molecule.

19.20 The microwave spectrum of 16O12CS gave absorption
lines (in GHz) as follows:

J 1 2 3 4
32S 24.325 92 36.488 82 48.651 64 60.814 08
34S 23.732 33 47.462 40

Assume that the bond lengths are unchanged by substitution
and calculate the CO and CS bond lengths in OCS. Hint: The
moment of inertia of a linear molecule of the form ABC is

where rAB and rBC are the A—B and B—C bond lengths, 
respectively.

19.21 What is the Doppler-shifted wavelength of a red 
(660 nm) traffic light approached at 65 mph? At what speed
would it appear green (520 nm)?

19.22 A spectral line of 48Ti8+ in a distant star was found to be
shifted from 654.2 nm to 706.5 nm and to be broadened to
61.8 pm. What is the speed of recession and the surface
temperature of the star?

19.23 Estimate the lifetime of a state that gives rise to a line
of width (a) 0.10 cm−1, (b) 1.0 cm−1, (c) 1.0 GHz.

19.24 A molecule in a liquid undergoes about 1.0 × 1013 col-
lisions in each second. Suppose that (a) every collision is 
effective in deactivating the molecule vibrationally and (b) that
one collision in 200 is effective. Calculate the width (in cm−1)
of vibrational transitions in the molecule.

19.25 Suppose the ClO group in a peptide bond can be re-
garded as isolated from the rest of the molecule. Given the
force constant of the bond in a carbonyl group is 908 N m−1,
calculate the vibrational frequency of (a) 12Cl16O, (b) 13Cl16O.

19.26 The wavenumber of the fundamental vibrational tran-
sition of Cl2 is 565 cm−1. Calculate the force constant of the
bond.
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19.27 The hydrogen halides have the following fundamental
vibrational wavenumbers:

HF HCl HBr HI

J/cm−1 4141.3 2988.9 2649.7 2309.5

Calculate the force constants of the hydrogen–halogen bonds.

19.28 From the data in Exercise 19.26, predict the funda-
mental vibrational wavenumbers of the deuterium halides.

19.29 Infrared absorption by 1H81Br gives rise to an R branch
from v = 0. What is the wavenumber of the line originating
from the rotational state with J = 2?

19.30 Which of the following molecules may show infra-
red absorption spectra: (a) H2; (b) HCl; (c) CO2; (d) H2O;
(e) CH3CH3; (f) CH4; (g) CH3Cl; (h) N2?

19.31 How many normal modes of vibration are there for 
(a) NO2, (b) N2O, (c) cyclohexane, (d) hexane?

19.32 Consider the vibrational mode that corresponds to 
the uniform expansion of the benzene ring. Is it (a) Raman, 
(b) infrared active?

19.33 Suppose that three conformations are proposed for
the nonlinear molecule H2O2 (1, 2, and 3). The infrared absorp-
tion spectrum of gaseous H2O2 has bands at 870, 1370, 2869,
and 3417 cm−1. The Raman spectrum of the same sample
has bands at 877, 1408, 1435, and 3407 cm−1. All bands cor-
respond to fundamental vibrational wavenumbers and you
may assume that: (i) the 870 and 877 cm−1 bands arise from
the same normal mode, and (ii) the 3417 and 3407 cm−1

bands arise from the same normal mode. (a) If H2O2 were
linear, how many normal modes of vibration would it have?
(b) Determine which of the proposed conformations is incon-
sistent with the spectroscopic data. Explain your reasoning.

Projects

The symbol ‡ indicates that calculus is required.

19.34‡ The most populated rotational energy level of a linear
rotor is given in eqn 19.10. What is the most populated rota-
tional level of a spherical rotor, given that its degeneracy is
(2J + 1)2?

19.35 The protein haemerythrin (hemerythrin, Her) is re-
sponsible for binding and carrying O2 in some invertebrates.
Each protein molecule has two Fe2+ ions that are in very close
proximity and work together to bind one molecule of O2. The
Fe2O2 group of oxygenated haemerythrin is coloured and has
an electronic absorption band at 500 nm. (a) The resonance
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Raman spectrum of oxygenated haemerythrin obtained with
laser excitation at 500 nm has a band at 844 cm−1 that has
been attributed to the O—O stretching mode of bound 16O2.
Why is resonance Raman spectroscopy and not infrared
spectroscopy the method of choice for the study of the bind-
ing of O2 to haemerythrin? (b) Proof that the 844 cm−1 band in
the resonance Raman spectrum of oxygenated haemerythrin
arises from a bound O2 species may be obtained by conduct-
ing experiments on samples of haemerythrin that have been
mixed with 18O2, instead of 16O2. Predict the fundamental 
vibrational wavenumber of the 18O—18O stretching mode in a
sample of haemerythrin that has been treated with 18O2.
(c) The fundamental vibrational wavenumbers for the O—O
stretching modes of O2, O2

− (superoxide anion), and O2
2− (per-

oxide anion) are 1555, 1107, and 878 cm−1, respectively. (i)
Explain this trend in terms of the electronic structures of O2,
O2

−, and O2
2−. (ii) What are the bond orders of O2, O2

−, and O2
2−?

(d) Based on the data given in part (c), which of the following
species best describes the Fe2O2 group of haemerythrin:
Fe2+

2O2, Fe2+Fe3+O2
−, or Fe3+

2O2
2−? Explain your reasoning. 

(e) The resonance Raman spectrum of haemerythrin mixed
with 16O18O has two bands that can be attributed to the O—O
stretching mode of bound oxygen. Discuss how this obser-
vation may be used to exclude one or more of the four pro-
posed schemes (4–7) for binding of O2 to the Fe2 site of
haemerythrin.

19.36 We saw in Box 19.1 that water, carbon dioxide, and
methane are able to absorb some of the Earth’s infrared
emissions whereas nitrogen and oxygen cannot. The com-
putational methods discussed in Section 14.17 can also be
used to simulate vibrational spectra and from the results of
the calculation it is possible to determine the correspondence
between a vibrational frequency and the atomic displace-
ments that give rise to a normal mode. (a) Using molecular
modelling software and the computational method of your 
instructor’s choice, investigate and depict pictorially the 
vibrational normal modes of CH4, CO2, and H2O in the gas
phase. (b) Which vibrational modes of CH4, CO2, and H2O are
responsible for absorption of infrared radiation?
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The energy needed to change the occupation of 
orbitals in a molecule is of the order of several elec-
tronvolts. Consequently, the photons emitted or 
absorbed when such changes occur lie in the visible
and ultraviolet regions of the spectrum, which spread
from about 14 000 cm−1 for red light to 21 000 cm−1

for blue, and on to 50 000 cm−1 for ultraviolet radi-
ation (Table 20.1).

A brief comment The electronvolt (eV) is a convenient unit
for expressing changes in electronic energy: 1 eV = e × 1 V =
1.60 × 10−19 J (corresponding to 96.5 kJ mol−1). Think of it as
the energy needed to move an electron through a potential
difference of 1 V.

Many of the colours of the objects in the world
around us, including the green of vegetation, the
colours of flowers and of synthetic dyes, and the
colours of pigments and minerals, stem from transi-
tions in which an electron makes a transition from one
orbital of a molecule or ion into another. The change
in the distribution of probability density of an elec-
tron that takes place when chlorophyll absorbs red
and blue light (leaving green to be reflected) is the
primary energy harvesting step by which our planet
captures energy from the Sun and uses it to drive the
nonspontaneous reactions of photosynthesis. In some
cases the relocation of an electron may be so exten-
sive that it results in the breaking of a bond and the
dissociation of the molecule: such processes give rise to
the numerous reactions of photochemistry, including
the reactions that sustain or damage the atmosphere.

Ultraviolet and visible spectra

White light is a mixture of light of all different
colours. The removal, by absorption, of any one 
of these colours from white light results in the 
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complementary colour being observed. For instance,
the absorption of red light from white light by an 
object results in that object appearing green, the
complementary colour of red. Conversely, the absor-
ption of green results in the object appearing red. The
pairs of complementary colours are neatly summar-
ized by the artist’s colour wheel shown in Fig. 20.1,
where complementary colours lie opposite one another
along a diameter.

It should be stressed, however, that the perception
of colour is a very subtle phenomenon. Although 
an object may appear green because it absorbs red
light, it may also appear green because it absorbs all
colours from the incident light except green. This 
is the origin of the colour of vegetation, because
chlorophyll absorbs in two regions of the spectrum,
leaving green to be reflected (Fig. 20.2). Moreover,
an absorption band may be very broad, and although
it may be a maximum at one particular wavelength,
it may have a long tail that spreads into other regions
(Fig. 20.3). In such cases, it is very diAcult to predict
the perceived colour from the location of the absorp-
tion maximum.

Table 20.1

Colour, frequency, and energy of light

Colour l /nm W/(1014 Hz) W̃/(104 cm−1) E/eV E/(kJ mol−1)

Infrared >1000 <3.00 <1.00 <1.24 <120
Red 700 4.28 1.43 1.77 171
Orange 620 4.84 1.61 2.00 193
Yellow 580 5.17 1.72 2.14 206
Green 530 5.66 1.89 2.34 226
Blue 470 6.38 2.13 2.64 254
Violet 420 7.14 2.38 2.95 285
Near ultraviolet 300 10.0 3.3 4.15 400
Far ultraviolet 200 15.0 5.00 6.20 598
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Fig. 20.1 An artist’s colour wheel: complementary colours
are opposite one another on a diameter. The numbers corres-
pond to wavelengths of light in nm. 400 500 600 700
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Fig. 20.2 The absorption spectrum of chlorophyll in the vis-
ible region. Note that it absorbs in the red and blue regions,
and that green light is not absorbed.
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Fig. 20.3 An electronic absorption of a species in solution is
typically very broad and consists of several broad bands.
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20.1 Practical considerations

For the visible region of the spectrum, a tungsten–
iodine lamp is used as the source in an absorption
spectrometer: it gives out intense white light. A dis-
charge through deuterium gas or xenon in quartz is
still widely used for the near ultraviolet.

The simplest dispersing element is a glass or quartz
prism, but modern instruments use a diffraction 
grating. For work in the visible region of the spec-
trum, the device consists of a glass or ceramic plate
into which fine grooves have been cut about 1000 nm
apart (a spacing comparable to the wavelength of
visible light) and covered with a reflective aluminium
coating. The grating causes interference between
waves reflected from its surface, and constructive 
interference occurs at specific angles that depend on
the frequency of the radiation being used. Thus, each
wavelength of light is directed into a specific direc-
tion (Fig. 20.4). In a monochromator, a narrow exit
slit allows only a narrow range of wavelengths to
reach the detector. Turning the grating around an
axis perpendicular to the incident and diffracted
beams allows different wavelengths to be analysed;
in this way, the absorption spectrum is built up one
narrow wavelength range at a time.

Detectors may consist of a single radiation-sensing
element or of several small elements arranged in one
or two-dimensional arrays. A common detector is a
photodiode, a solid-state device that conducts elec-
tricity when struck by photons because light-induced
electron transfer reactions in the detector material
create mobile charge carriers (negatively charged
electrons and positively charged ‘holes’). Silicon is
sensitive in the visible region. A charge-coupled device
(CCD) is a two-dimensional array of several million
photodiode detectors. With a CCD, a wide range of
wavelengths that emerge from a polychromator are
detected simultaneously, thus eliminating the need to

To detector
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Fig. 20.4 A beam of light is dispersed by a diffraction grating
into three component wavelengths l1, l2, and l3. In the con-
figuration shown, only radiation with l2 passes through a 
narrow slit and reaches the detector. Rotating the diffraction
grating in the direction shown by the double arrows allows l1
and l3 to reach the detector.
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Fig. 20.5 The intensity of light transmitted by an absorbing
sample decreases exponentially with the path length through
the sample.

measure light intensity one narrow wavelength range
at a time. CCD detectors are used widely to monitor
absorption, emission, and Raman scattering.

20.2 Absorption intensities

The intensity of absorption of radiation at a particu-
lar wavelength is related to the concentration [ J] of
the absorbing species by the Beer–Lambert law:

I = I010−ε[J]L (20.1)

I0 and I are the incident and transmitted intensities,
respectively, L is the length of the sample, and ε
(epsilon) is the molar absorption coeGcient (for-
merly and still widely the ‘extinction coeAcient’),
with dimensions of l/(molar concentration × length).
Typical values of ε for strong transitions are of the
order of 104–105 dm3 mol−1 cm−1, indicating that in
a solution of molar concentration 0.01 mol dm−3 the
intensity of light (of frequency corresponding to 
the maximum absorption) falls to 10 per cent of its
initial value after passing through about 0.1 mm of
solution (Fig. 20.5). The Beer–Lambert law is an 
empirical result, but its form can be justified by con-
sidering the passage of light through a uniform, 
absorbing medium (Further information 20.1).

The absorbance A = ε[J]L of a sample is measured
by using the incident and final intensities of a light
beam and using eqn 20.1 in the form

(20.2)

(The logarithm is a common logarithm, to the base
10.) It is common to report the absorption of radi-
ation in terms of the transmittance, T, of a sample at
a given frequency, where

 
A

I
I

= log 0



Derivation 20.1

Determining concentrations in a mixture

The two equations to solve for [A] and [B] are

eA1[A]L + eB1[B]L = A1 eA2[A]L + eB2[B]L = A2

To match the two second terms, multiply the first by eB2

and the second by eB1, to obtain

eB2eA1[A]L + eB2eB1[B]L = eB2A1

eB1eA2[A]L + eB1eB2[B]L = eB1A2

When the second is subtracted from the first, we obtain

eB2eA1[A]L − eB1eA2[A]L = eB2A1 − eB1A2

which rearranges into eqn 20.5a. To obtain eqn 20.5b,
repeat the process by multiplying the first equation by
eA2 and the second by eA1 so that the [A] terms cancel
when the two equations are subtracted.
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Measurements at two wavelengths can be used 
to find the individual concentrations of two com-
ponents A and B in a mixture. For this analysis, we
write the total absorbance at a given wavelength as

A = AA + AB = εA[A]L + εB[B]L = (εA[A] + εB[B])L

Then, for two measurements of the total absorbance
at wavelengths λ1 and λ2 at which the molar absorp-
tion coeAcients are ε1 and ε2 (Fig. 20.6), we have

A1 = (εA1[A] + εB1[B])L A2 = (εA2[A] + εB2[B])L

As shown in Derivation 20.1, these two simultan-
eous equations can be solved for the two unknowns,
the molar concentrations of A and B:

(20.5a)

(20.5b)
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Self-test 20.1

The transmittance of an aqueous solution that 
contained Cu2+ ions at a molar concentration of 
0.10 mol dm−3 was measured as 0.30 at 600 nm in
a cell of length 5.0 mm. Calculate the molar absorp-
tion coefficient of Cu2+(aq) at that wavelength, and
the absorbance of the solution. What would be the
transmittance through a cell of length 1.0 mm?

[Answer: 10 dm3 mol−1 cm−1, A = 0.52, T = 0.79]

Example 20.1

Using the molar absorption coefficient

Radiation of wavelength 256 nm passed through 1.0 mm
of a solution that contained benzene at a concentration
of 0.050 mol dm−3 in a transparent solvent. The light 
intensity is reduced to 16 per cent of its initial value 
(so T = 0.16). Calculate the absorbance and the molar 
absorption coefficient of the benzene. What would be
the transmittance through a cell of thickness 2.0 mm?

Strategy With A = −log T, eqn 20.4 can be rearranged into

For the transmittance through the thicker cell, we use
the value of e calculated here and T = 10−A.

Solution The molar absorption coefficient is

These units are convenient for the rest of the calculation
(but the outcome could be reported as 1.6 × 102 dm3

mol−1 cm−1 if desired). The absorbance is

A = −log 0.16 = 0.80

The absorbance of a sample of length 2.0 mm is

A = e[J]L = (16 dm3 mol−1 mm−1) × (0.050 mol dm−3) 

× (2.0 mm) = 1.6

It follows that the transmittance is then

T = 10−A = 10−1.6 = 0.025

That is, the emergent light is reduced to 2.5 per cent of
its incident intensity.

e = −
×

=−
log .

( . ) ( .
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e = −

log
[ ]

T
LJ

(20.3)

Thus, A = −log T. From the value of A (or T ) we 
can obtain the concentration of the absorbing species
by using

(20.4)

which is obtained by taking logarithms of both sides
of eqn 20.1 and then using eqn 20.2.
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Fig. 20.6 The concentrations of two absorbing species in a
mixture can be determined from their molar absorption coeffi-
cients and the measurement of their absorbances at two dif-
ferent wavelengths lying within their joint absorption region.
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There may be a wavelength at which the molar 
absorption coeAcients of the two species are equal;
we write this common value as εiso. The total 
absorbance of the mixture at this wavelength is

Aiso = (εiso[A] + εiso[B])L = εiso([A] + [B])L (20.6)

Even if A and B are interconverted in a reaction of the
form A → B or its reverse, then because their total
concentration remains constant, so does Aiso. As a 
result, it is possible to observe one or more isosbestic
points (the name ‘isosbestic’ comes from the Greek
words for ‘the same’ and ‘extinguish’), which are 
invariant points in the absorption spectrum (Fig. 20.7).
It is very unlikely that three or more species would
have the same molar absorption coeAcients at a 
single wavelength. Therefore, the observation of an
isosbestic point, or at least not more than one such
point, is compelling evidence that a solution consists
of only two solutes in equilibrium with each other
with no intermediates.

The molar absorption coeAcient depends on the
frequency of the incident radiation and is greatest
where the absorption is most intense. The maximum
value of the molar absorption coeAcient, εmax, is an
indication of the intensity of a transition. However,
because absorption bands generally spread over a
range of wavenumbers, the absorption at a single
wavenumber might not give a true indication of the
intensity. The latter is best reported as the integrated
absorption coeGcient, A , the area under the plot of
the molar absorption coeAcient against wavenum-
ber (Fig. 20.8).

20.3 The Franck–Condon principle

Whenever an electronic transition takes place it is 
accompanied by the excitation of vibrations of 
the molecule. In the electronic ground state of a
molecule, the nuclei take up locations in response to
the Coulombic forces acting on them. These forces
arise from the electrons and the other nuclei. After an
electronic transition, when electron density has mig-
rated to a different part of the molecule, the nuclei
are subjected to different forces and the molecule
may respond by bursting into vibration. As a result,
some of the energy used to redistribute an electron is
in fact used to stimulate the vibrations of the absorb-
ing molecules. Therefore, instead of a single, sharp,
and purely electronic absorption line being observed,
the absorption spectrum consists of many lines. This
vibrational structure of an electronic transition can
be resolved if the sample is gaseous, but in a liquid or
solid the lines usually merge together and result in a
broad, almost featureless band (Fig. 20.9).

The vibrational structure of a band is explained by
the Franck–Condon principle:

Because nuclei are so much more massive than
electrons, an electronic transition takes place
faster than the nuclei can respond.

In an electronic transition, electron density is lost
rapidly from some regions of the molecule and is built
up rapidly in others. As a result, the initially station-
ary nuclei suddenly experience a new force field. They
respond by beginning to vibrate, and (in classical
terms) swing backwards and forwards from their
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Fig. 20.7 One or more isosbestic points are formed when
there are two interrelated absorbing species in solution. The
curves correspond to different stages of the reaction A → B.
(There is no significance in the colour: it serves to differenti-
ate the curves.)
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Fig. 20.8 The integrated absorption coefficient of a transition
is the area under a plot of the molar absorption coefficient
against the wavenumber of the incident radiation.
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original separation, which they maintained during
the rapid electronic excitation. The initial, station-
ary, equilibrium separation of the nuclei in the initial
electronic state therefore becomes the new, station-
ary, turning point, one of the end points of a nuclear
swing, in the final electronic state (Fig. 20.10).

To predict the most likely final vibrational state we
draw a vertical line from the minimum of the lower
curve (the starting point for the transition) up to the
point at which the line intersects the curve represent-
ing the upper electronic state (the turning point of the
newly stimulated vibration). This procedure gives
rise to the name vertical transition for a transition 
in accord with the Franck–Condon principle. In
practice, the electronically excited molecule may be

formed in one of several excited vibrational states 
all with turning points nearly vertically above the
minimum of the lower curve, so the absorption occurs
at several different frequencies. As remarked above,
in a condensed medium, the individual transitions
merge together to give a broad, largely featureless
band of absorption.

20.4 Specific types of transitions

The absorption of a photon can often be traced to the
excitation of an electron that is localized on a small
group of atoms. For example, an absorption at about
290 nm is normally observed when a carbonyl group
is present. Groups with characteristic optical absorp-
tions are called chromophores (from the Greek for
‘colour bringer’), and their presence often accounts
for the colours of many substances.

The transition responsible for absorption in 
carbonyl compounds can be traced to the lone pairs
of electrons on the O atom. One of these electrons
may be excited into an empty π* orbital of the 
carbonyl group (Fig. 20.11), which gives rise to an 
n-to-π* transition, where n denotes a nonbonding
orbital, an orbital that is neither bonding nor anti-
bonding, such as that occupied by a lone pair.
Typical absorption energies are about 4 eV.

A ClC double bond acts as a chromophore because
the absorption of a photon excites a π electron into
an antibonding π* orbital (Fig. 20.12). The chromo-
phore activity is therefore due to a π-to-π* transition.
Its energy is around 7 eV for an unconjugated double
bond, which corresponds to an absorption at 180 nm
(in the ultraviolet). When the double bond is part of
a conjugated chain, the energies of the molecular orbi-
tals lie closer together and the transition shifts into the
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Fig. 20.9 An electronic absorption band consists of many 
superimposed bands that merge together to give a single
broad band with unresolved vibrational structure.
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Fig. 20.10 According to the Franck–Condon principle, the
most intense electronic transition is from the ground vibra-
tional state to the vibrational state that lies vertically above it
in the upper electronic state. Transitions to other vibrational
levels also occur, but with lower intensity.

n

π*

Fig. 20.11 A carbonyl group acts as a chromophore primarily
on account of the excitation of a nonbonding O lone-pair elec-
tron to an antibonding CO p* orbital.
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visible region of the spectrum. Many of the reds and
yellows of vegetation are due to transitions of this
kind. For example, the carotenes that are present in
green leaves (but are concealed by the intense absorp-
tion of the chlorophyll until the latter decays) collect
some of the solar radiation incident on the leaf by a π-
to-π* transition in their long conjugated hydrocarbon
chains. A similar type of absorption is responsible for
the primary process of vision (Box 20.1).

A d-metal complex may absorb light as a result of
the transfer of an electron from the ligands into the 
d orbitals of the central atom, or vice versa. In such
charge-transfer transitions the electron moves through
a considerable distance, which means that the redis-
tribution of charge as measured by the transition
dipole moment may be large and the absorption 
correspondingly intense. This mode of chromophore 
activity is shown by the permanganate ion, MnO4

−:

π*

π

Fig. 20.12 A carbon–carbon double bond acts as a chro-
mophore. One of its important transitions is the p-to-p* tran-
sition illustrated here, in which an electron is promoted from
a p orbital to the corresponding antibonding orbital.

Box 20.1 Vision

The eye is an exquisite photochemical organ that acts as a
transducer, converting radiant energy into electrical signals
that travel along neurons. Here we concentrate on the
events taking place in the human eye, but similar processes
occur in all animals. Indeed, a single type of protein,
rhodopsin, is the primary receptor for light throughout 
the animal kingdom, which indicates that vision emerged
very early in evolutionary history, no doubt because of its
enormous value for survival.

Photons enter the eye through the cornea, pass through
the ocular fluid that fills the eye, and fall on the retina. The
ocular fluid is principally water, and passage of light through
this medium is largely responsible for the chromatic aberra-
tion of the eye, the blurring of the image as a result of differ-
ent frequencies being brought to slightly different focuses.
The chromatic aberration is reduced to some extent by the
tinted region called the macular pigment that covers part of
the retina. The pigments in this region are the carotene-like
xanthophylls (B1), which remove some of the blue light and
hence help to sharpen the image. They also protect the
photoreceptor molecules from too great a flux of potentially
dangerous high-energy photons. The xanthophylls have 
delocalized electrons that spread along the chain of con-
jugated double bonds, and the p-to-p* transition lies in the
visible.

About 57 per cent of the photons that enter the eye reach
the retina; the rest are scattered or absorbed by the ocular
fluid. Here the primary act of vision takes place, in which
the chromophore of a rhodopsin molecule absorbs a pho-
ton in another p-to-p* transition. A rhodopsin molecule con-
sists of an opsin protein molecule to which is attached a
11-cis-retinal molecule (B2). The latter resembles half a
carotene molecule, showing Nature’s economy in its use of
available materials. The attachment is by the formation of 
a Schiff’s base, utilizing the —CHO group of the chromo-
phore. The free 11-cis-retinal molecule absorbs in the ultra-
violet, but attachment to the opsin protein molecule 
shifts the absorption into the visible region. The rhodopsin
molecules are situated in the membranes of special cells
(the ‘rods’ and the ‘cones’) that cover the retina. The opsin
molecule is anchored into the cell membrane by two hydro-
phobic groups and largely surrounds the chromophore (see
the illustration).

B1 A xanthophyll
HO

OH

B2 11-cis-Retinal

CHO

Immediately after the absorption of a photon, the 11- 
cis-retinal molecule undergoes photoisomerization into all-
trans-retinal (B3). Photoisomerization takes about 200 fs
and about 67 pigment molecules isomerize for every 
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the charge redistribution that accompanies the migra-
tion of an electron from the O atoms to the central Mn
atom accounts for its intense purple colour (resulting
from absorption in the range 420–700 nm).

As a result, and if the emitted radiation is in the 
visible region of the spectrum, an observer sees the
sample glowing.

There are two principal modes of radiative decay,
fluorescence and phosphorescence (Fig. 20.13). In
fluorescence, the spontaneously emitted radiation
ceases very soon (within nanoseconds) after the ex-
citing radiation is extinguished. In phosphorescence,
the spontaneous emission may persist for long 
periods—even hours, but characteristically seconds
or fractions of seconds. The difference suggests that
fluorescence is an immediate conversion of absorbed
light into re-emitted radiant energy and that phos-
phorescence involves the storage of energy in a reser-
voir from which it slowly leaks.

Other than thermal degradation, a nonradiative
fate for an electronically excited molecule is dissoci-
ation, or fragmentation (Fig. 20.14). The onset of dis-
sociation can be detected in an absorption spectrum
by seeing that the vibrational structure of a band 
terminates at a certain energy. Absorption occurs in
a continuous band above this dissociation limit, the
highest frequency before the onset of continuous 
absorption, because the final state is unquantized

100 photons that are absorbed. The process is able to 
occur because the p-to-p* excitation of an electron loosens
one of the p bonds (the one indicated by the arrow in the 
diagram), its torsional rigidity is lost, and one part of the

molecule swings round into its new position. At that point,
the molecule returns to its ground state, but is now trapped
in its new conformation. The straightened tail of the all-
trans-retinal results in the molecule taking up more space
than 11-cis-retinal did, so the molecule presses against 
the coils of the opsin molecule that surrounds it. Thus, in
about 0.25–0.50 ms from the initial absorption event, the
rhodopsin molecule is activated.

Now a sequence of biochemical events—the biochem-
ical cascade—converts the altered configuration of the
rhodopsin molecule into a pulse of electric potential that
travels through the optical nerve into the optical cortex,
where it is interpreted as a signal and incorporated into the
web of events we call ‘vision’. At the same time, the rest-
ing state of the rhodopsin molecule is restored by a series
of nonradiative chemical events powered by ATP. The pro-
cess involves the escape of all-trans-retinal as all-trans-
retinol (in which —CHO has been reduced to —CH2OH)
from the opsin molecule by a process catalysed by the 
enzyme rhodopsin kinase and the attachment of another
protein molecule, arrestin. The free all-trans-retinol molecule
now undergoes enzyme-catalysed isomerization into 11-
cis-retinol followed by dehydrogenation to form 11-cis- 
retinal, which is then delivered back into an opsin molecule.
At this point, the cycle of excitation, photoisomerization,
and regeneration is ready to begin again.

B3 All-cis-retinal

CHO

The structure of the rhodopsin molecule.

Self-test 20.2

Estimate the wavelength of maximum absorption for a
transition of energy 4.3 eV.

[Answer: 288 nm]

Radiative and nonradiative

decay

In most cases, the excitation energy of a molecule
that has absorbed a photon is degraded into the 
disordered thermal motion of its surroundings in a
process known as internal conversion (IC). How-
ever, one process by which an electronically excited
molecule can discard its excess energy is by radiative
decay, in which an electron relaxes back into a lower
energy orbital and in the process generates a photon.
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translational motion of the fragments. Locating the
dissociation limit is a valuable way of determining
the bond dissociation energy. Dissociation may also
occur if the electronic transition takes place directly
to a purely repulsive state, one that shows no min-
imum corresponding to bonding.

20.5 Fluorescence

Figure 20.15 is a simple example of a Jablonski
diagram, a schematic portrayal of molecular elec-
tronic and vibrational energy levels, which shows the
sequence of steps involved in fluorescence. The initial
absorption takes the molecule to an excited electronic
state, and if the absorption spectrum were monitored

it would look like the one shown in Fig. 20.16a. The
excited molecule is subjected to collisions with the
surrounding molecules, and as it gives up energy it
steps down the ladder of vibrational levels. The 
surrounding molecules, however, might be unable to 
accept the larger energy needed to lower the mole-
cule to the ground electronic state. The excited state
might therefore survive long enough to generate a
photon and emit the remaining excess energy as radi-
ation. The downward electronic transition is vertical,
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Fig. 20.13 The empirical (observation-based) distinction 
between fluorescence and phosphorescence is that the for-
mer is extinguished very quickly after the exciting source is
removed, whereas the latter continues with relatively slowly
diminishing intensity.
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Fig. 20.14 When absorption occurs to unbound states of 
the upper electronic state, the molecule dissociates and the
absorption is a continuum. Below the dissociation limit the
electronic spectrum has a normal vibrational structure.
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Fig. 20.15 A Jablonski diagram showing the sequence of
steps leading to fluorescence. After the initial absorption the
upper vibrational states undergo radiationless decay—the
process of vibrational relaxation—by giving up energy to 
the surroundings. A radiative transition then occurs from 
the ground state of the upper electronic state. In practice, the
separation of the ground states of the electronic states 
(the heavy horizontal lines) is 10 to 100 times greater than 
the separation of the vibrational levels.

See an animated version of this figure in the 
interactive ebook.
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Fig. 20.16 The absorption spectrum (a) shows a vibrational
structure characteristic of the upper state. The fluorescence
spectrum (b) shows a structure characteristic of the lower
state; it is also displaced to lower frequencies and resembles
a mirror image of the absorption.
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which means in accord with the Franck–Condon
principle, and the fluorescence spectrum has a vibra-
tional structure characteristic of the lower electronic
state (Fig. 20.16b).

Fluorescence occurs at a lower frequency than that
of the incident radiation because the fluorescence 
radiation is emitted after some vibrational energy has
been lost to the surroundings. The vivid oranges and
greens of fluorescent dyes are an everyday manifesta-
tion of this effect: they absorb in the ultraviolet and
fluoresce in the visible. The mechanism also suggests
that the intensity of the fluorescence ought to depend
on the ability of the surrounding molecules, such as
those of a solvent, to accept the electronic and vibra-
tional quanta. It is indeed found that a solvent com-
posed of molecules with widely spaced vibrational
levels (such as water) may be able to accept the large
quantum of electronic energy and so decrease the 
intensity of the solute’s fluorescence.

Fluorescence is a very important for studying
molecular biology and photochemical processes in
general. We deal with it at length in Sections 20.11
and 20.12 in the context of photochemically induced
rate processes.

20.6 Phosphorescence

Figure 20.17 is a Jablonski diagram showing the
events leading to phosphorescence. The first steps are
the same as in fluorescence, but the presence of a
triplet state plays a decisive role. In a triplet state two
electrons in different orbitals have parallel spins: the

ground state of O2, which was discussed in Section
14.13 is an example. The name ‘triplet’ reflects the
(quantum-mechanical) fact that the total spin of two
parallel electron spins (↑↑) can adopt only three ori-
entations with respect to an axis. An ordinary spin-
paired state (↑↓) is called a singlet state because there
is only one orientation in space for such a pair of
spins. In the language introduced in Section 13.17, 
a triplet state has S = 1 and MS has one of the three
values +1, 0, and −1; a singlet state has S = 0 and MS
has the single value 0.

The ground state of a typical phosphorescent mole-
cule is a singlet because its electrons are all paired;
the excited state to which the absorption excites the
molecule is also a singlet. The peculiar feature of a
phosphorescent molecule, however, is that it possesses
an excited triplet state of an energy similar to that 
of the excited singlet state and into which the excited
singlet state may convert. Hence, if there is a mechan-
ism for unpairing two electron spins (and so con-
verting ↑↓ into ↑↑), then the molecule may undergo
intersystem crossing (ISC) and become a triplet state.
The unpairing of electron spins is possible if the
molecule contains a heavy atom, such as an atom of
sulfur, with strong spin–orbit coupling (Section 13.18).
Then, the angular momentum needed to convert a
singlet state into a triplet state may be acquired from
the orbital motion of the electrons.

After an excited singlet molecule crosses into a
triplet state, it continues to discard energy into the
surroundings and to step down the ladder of vibra-
tional states. However, it is now stepping down the
triplet’s ladder and at the lowest vibrational energy
level it is trapped. The surroundings cannot extract
the final, large quantum of electronic excitation 
energy. Moreover, the molecule cannot radiate its
energy because return to the ground state is forbid-
den: a triplet state cannot convert into a singlet state
because the spin of one electron cannot reverse in 
direction relative to the other electron during a tran-
sition (ΔS = 0 for electronic transition). The radiative
transition, however, is not totally forbidden because
the spin–orbit coupling responsible for the inter-
system crossing also breaks this rule. The molecules
are therefore able to emit weakly and the emission
may continue long after the original excited state was
formed.

The mechanism of phosphorescence summarized
in Fig. 20.17 accounts for the observation that the
excitation energy seems to become trapped in a
slowly leaking reservoir. It also suggests, as is con-
firmed experimentally, that phosphorescence should
be most intense from solid samples: energy transfer is
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Fig. 20.17 The sequence of steps leading to phosphores-
cence. The important step is the intersystem crossing from
an excited singlet to an excited triplet state. The triplet state
acts as a slowly radiating reservoir because the return to the
ground state is very slow.

See an animated version of this figure in the 
interactive ebook.
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then less eAcient and the intersystem crossing has
time to occur as the singlet excited state loses vibra-
tional energy. The mechanism also suggests that the
phosphorescence eAciency should depend on the
presence of a moderately heavy atom—with its abil-
ity to flip electron spins—which is in fact the case.

20.7 Lasers

The word laser is an acronym formed from light
amplification by stimulated emission of radiation. As
this name suggests, it is a process that depends on
stimulated emission as distinct from the spontaneous
emission processes characteristic of fluorescence and
phosphorescence. In stimulated emission, an excited
state is stimulated to emit a photon by the presence
of radiation of the same frequency, and the more
photons there are present, the greater the probability
of the emission (for details, see Further information
20.2). To picture the process, we can think of the 
oscillations of the electromagnetic field as periodic-
ally distorting the excited molecule at the frequency
of the transition and hence encouraging the molecule
to generate a photon of the same frequency. The 
essential feature of laser action is the strong gain, or
growth of intensity, that results: the more photons
present of the appropriate frequency, the more pho-
tons of that frequency the excited molecules will be
stimulated to form, and so the laser medium fills with
photons. These photons then escape either continu-
ously or in pulses.

One requirement for laser action is the existence of
an excited state that has a long enough lifetime for 
it to participate in stimulated emission. Another re-
quirement is the existence of a greater population in
the upper state than in the lower state where the tran-
sition terminates. Because at thermal equilibrium the
population is greater in the lower energy state, it is
necessary to achieve a population inversion in which
there are more molecules in the upper state than in
the lower.

Figure 20.18 illustrates one way to achieve popula-
tion inversion indirectly through an intermediate
state I. Thus, the molecule is excited to I, which then
gives up some of its energy nonradiatively (by pass-
ing energy on to vibrations of the surroundings) and
changes into a lower state B; the laser transition is 
the return of B to a lower state A. Because four levels
are involved overall, this arrangement leads to a
four-level laser. One advantage of this arrangement
is that the population inversion of the A and B levels
is easier to achieve than when the lower state is the
heavily populated ground state. The transition from

X to I is caused by an intense flash of light in the pro-
cess called pumping. In some cases the pumping flash
is achieved with an electric discharge through xenon
or with the radiation from another laser.

In practice, the laser medium is confined to a 
cavity that ensures that only certain photons of a 
particular frequency, direction of travel, and state 
of polarization are generated abundantly. The cavity
is essentially a region between two mirrors, which
reflect the light back and forth. This arrangement can
be regarded as a version of the particle in a box, with
the particle now being a photon. As in the treatment
of a particle in a box (Section 12.7), the only wave-
lengths that can be sustained satisfy N × λ = L,
where N is an integer and L is the length of the cavity.
That is, only an integral number of half-wavelengths
fit into the cavity; all other waves undergo destruc-
tive interference with themselves. In addition, not all
wavelengths that can be sustained by the cavity are
amplified by the laser medium (many fall outside the
range of frequencies of the laser transitions), so only
a few contribute to the laser radiation. These wave-
lengths are the resonant modes of the laser.

Photons with the correct wavelength for the reson-
ant modes of the cavity and the correct frequency to
stimulate the laser transition are highly amplified.
One photon might be generated spontaneously, and
travel through the medium. It stimulates the emission
of another photon, which in turn stimulates more
(Fig. 20.19). The cascade of energy builds up rapidly,
and soon the cavity is an intense reservoir of radi-
ation at all the resonant modes it can sustain. Some of
this radiation can be withdrawn if one of the mirrors
is partially transmitting.

The resonant modes of the cavity have various 
natural characteristics, and to some extent may be
selected. Only photons that are travelling strictly
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Fig. 20.18 The transitions involved in a four-level laser.
Because the laser transition terminates in an excited state
(A), the population inversion between A and B is much easier
to achieve than when the lower state of the laser transition is
the ground state.
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parallel to the axis of the cavity undergo more than 
a couple of reflections, so only they are amplified, 
all others simply vanishing into the surroundings.
Hence, laser light generally forms a beam with very
low divergence. It may also be polarized, with its
electric vector in a particular plane (or in some other
state of polarization), by including a polarizing filter
into the cavity or by making use of polarized trans-
itions in a solid medium.

A neodymium laser is an example of a four-level
laser (Fig. 20.20). In one form it consists of Nd3+ ions
at low concentration in yttrium aluminium garnet
(YAG, specifically Y3Al5O12), and is then known as 
a Nd-YAG laser. This laser operates at a number of
wavelengths in the infrared, the band at 1064 nm
being most common. The transition at 1064 nm is
very eAcient and the laser is capable of substantial

power output. The power is great enough that 
focusing the beam on to a material may lead to the
observation of nonlinear optical phenomena, which
arise from changes in the optical properties of the
substance in the presence of an intense electric field
from electromagnetic radiation. A useful nonlinear
optical phenomenon is frequency doubling, or second-
harmonic generation, in which an intense laser beam
is converted to radiation with twice (and in general a
multiple) of its initial frequency as it passes though 
a suitable material. Frequency doubling and tripling
of a Nd-YAG laser produce green light at 532 nm
and ultraviolet radiation at 355 nm, respectively. 
In diode lasers, of the type used in CD players and
bar-code readers, the light emission at a p–n junction
(Section 17.3) is sustained by sweeping away the
electrons that fall into the holes of the p-type semi-
conductor. This process is arranged to occur in a 
cavity formed by making use of the abrupt difference
in refractive index between the different components
of the junction, and the radiation trapped in the cav-
ity enhances the production of more radiation. One
widely used material is GaAs doped with aluminium,
which produces 780 nm red laser radiation and is
widely used in CD players. The new generation of
DVD players that use blue rather than red laser 
radiation, so allowing a greater superficial density of
information, use GaN as the active material.

Because gas lasers can be cooled by a rapid flow of
the gas through the cavity, they can be used to gener-
ate high powers. The carbon dioxide laser, which pro-
duces radiation between 9.2 μm and 10.8 μm, with
the strongest emission at 10.6 μm, in the infrared
makes use of vibrational transitions (Fig. 20.21).
Most of the working gas is nitrogen, which becomes

Pump
(a) Thermal equilibrium

(b) Population inversion

(c) Laser action

Fig. 20.19 A schematic illustration of the steps leading to
laser action. (a) At thermal equilibrium, more atoms are in the
ground state. (b) When the initial state absorbs, the popula-
tions are inverted (the atoms are pumped to the excited
state). (c) A cascade of radiation then occurs, as one emitted
photon stimulates another atom to emit, and so on. The radi-
ation is coherent (phases in step).
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Fig. 20.20 The transitions involved in a neodymium laser.
The laser action takes place between two excited states, and
the population inversion is easier to achieve than in the ruby
laser.
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Fig. 20.21 The transitions involved in a carbon dioxide laser.
The pumping also depends on the coincidental matching 
of energy separations; in this case the vibrationally excited 
N2 molecules have excess energies that correspond to a 
vibrational excitation of the antisymmetric stretch of CO2.
The laser transition is from V3 = 1 to V1 = 1.
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vibrationally excited by electronic and ionic colli-
sions in an electric discharge. The vibrational levels
happen to coincide with the ladder of antisymmetric
stretch (v3, see Fig. 19.20) levels of CO2, which pick
up the energy during a collision. Laser action then
occurs from the lowest excited level of v3 to the low-
est excited level of the symmetric stretch (v1), which
has remained unpopulated during the collisions.
Such high powers of radiation can be achieved that
carbon dioxide lasers can be used to cut steel for
ship-building.

The population inversion needed for laser action is
achieved in a more underhand way in exciplex lasers,
for in these (as we shall see) the lower state does not
effectively exist. This odd situation is achieved by
forming an exciplex, a combination of two atoms (or
molecules) that survives only in an excited state and
that dissociates as soon as the excitation energy has
been discarded. The term ‘excimer laser’ is also
widely encountered and used loosely when ‘exciplex
laser’ is more appropriate. An exciplex has the form
AB*, whereas an excimer, an excited dimer, is AA*.
An example of an exciplex laser is a mixture of xenon,
chlorine, and neon. An electric discharge through the
mixture produces excited Cl atoms, which attach 
to the Xe atoms to give the exciplex XeCl*. The 
exciplex survives for about 10 ns, which is time for it
to participate in laser action at 308 nm (in the ultra-
violet). As soon as XeCl* has discarded a photon, 
the atoms separate because the molecular potential
energy curve of the ground state is dissociative, and
the ground state of the exciplex cannot become 
populated (Fig. 20.22).

The wavelengths of lasers can be selected in a vari-
ety of ways. An early solution was to use a dye laser,
which has broad spectral characteristics because the
solvent broadens the vibrational structure of the
transitions into bands. Hence, it is possible to scan
the wavelength continuously (by rotating the diffrac-
tion grating in the cavity) and achieve laser action at
any chosen wavelength. As the gain is very high, only
a short length of the optical path need be through the
dye. The excited states of the active medium, the dye,
are sustained by another laser or a flash lamp, and
the dye solution is flowed through the laser cavity 
to avoid thermal degradation (Fig. 20.23). More
modern solutions are to use tuneable Ti:sapphire (for
wavelengths in the range 650–1100 nm) and white
light lasers.

20.8 Applications of lasers in chemistry

Laser radiation has a number of advantages for 
applications in chemistry. One advantage is its highly
monochromatic character, which enables very pre-
cise spectroscopic observations to be made. Another
advantage is the ability of laser radiation to be 
produced in very short pulses (currently, as brief as
about 1 fs): as a result, very fast chemical events,
such as the individual transfers of atoms during a
chemical reaction, can be followed (see Box 10.1).
Laser radiation is also very intense, which reduces
the time needed for spectroscopic observations.
Raman spectroscopy (Chapter 19) was revitalized by
the introduction of lasers because the intense beam
increases the intensity of scattered radiation, so the
use of laser sources increases the sensitivity of Raman
spectroscopy. A well-defined beam also implies that
the detector can be designed to collect only the 
radiation that has passed through a sample, and can
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Fig. 20.22 The molecular potential energy curves for an 
exciplex. The species can survive only as an excited state, 
because on discarding its energy it enters the lower, dissoci-
ative state. Because only the upper state can exist, there is
never any population in the lower state.
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Fig. 20.23 The configuration used for a dye laser. The dye is
flowed through the cell inside the laser cavity. The flow helps
to keep it cool and prevents degradation.
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be screened much more effectively against the stray
scattered light that can obscure the Raman signal.
Laser light can be delivered through fibre optics for
use in transportable systems and focused to such
small diameters that Raman microscopy can be used
to study submicrometre particles. The monochro-
maticity of laser radiation is also a great advantage,
for it makes possible the observation of scattered
light that differs by only fractions of reciprocal 
centimetres from the incident radiation. Such high
resolution is particularly useful for observing the 
rotational structure of Raman lines because rota-
tional transitions are of the order of a few reciprocal
centimetres.

The large number of photons in an incident beam
generated by a laser gives rise to a qualitatively differ-
ent branch of spectroscopy, for the photon density is
so high that more than one photon may be absorbed
by a single molecule and give rise to multiphoton pro-
cesses. Because the selection rules for multiphoton
processes are different, states inaccessible by conven-
tional one-photon spectroscopy become observable.

The monochromatic character of laser radiation 
allows us to excite specific states with very high pre-
cision. One consequence of state specificity is that the
illumination of a sample may be eAcient in stimulat-
ing a photochemical reaction, because its frequency
can be tuned exactly to an absorption. The specific
excitation of a particular excited state of a molecule
may greatly enhance the rate of a reaction even at
low temperatures. As we saw in Chapter 10, the rate
of a reaction is increased by raising the temperature
because the energies of the various modes of motion
of the molecule are enhanced. However, this enhance-
ment increases the energy of all the modes, even
those that do not contribute appreciably to the reac-
tion rate. With a laser we can excite the kinetically
significant mode, so rate enhancement is achieved
most eAciently. An example is the reaction

BCl3 + C6H6 → C6H5—BCl2 + HCl

which normally proceeds only above 600°C in the
presence of a catalyst; exposure to 10.6 μm CO2
laser radiation results in the formation of products at
room temperature without a catalyst. The commercial
potential of this procedure is considerable, provided
laser photons can be produced suAciently cheaply,
because heat-sensitive compounds, such as pharma-
ceuticals, may perhaps be made at lower tempera-
tures than in conventional reactions.

Laser isotope separation is possible because two
isotopomers (species that differ only in their isotopic
composition), have slightly different energy levels and

hence slightly different absorption frequencies. At
least two absorption processes are required. In the
first step, a photon excites an atom to a higher state;
in the second step, a photon achieves photoionization
from that state (Fig. 20.24). The energy separation
between the two states involved in the first step 
depends on the nuclear mass. Therefore, if the laser
radiation is tuned to the appropriate frequency, only
one of the isotopomers will undergo excitation and
hence be available for photoionization in the second
step. An example of this procedure is the photo-
ionization of uranium vapour, in which the incident
laser is tuned to excite 235U but not 238U. The 235U
atoms in the atomic beam are ionized in the two-step
process; they are then attracted to a negatively
charged electrode, and may be collected (Fig. 20.25).

The ability of lasers to produce pulses of very 
short duration is particularly useful in chemistry
when we want to monitor processes in time. In time-
resolved spectroscopy, laser pulses are used to obtain
the absorption, emission, or Raman spectrum of 
reactants, intermediates, products, and even transition
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Isotopomer 1

Ionization limit
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y

Fig. 20.24 In one method of isotope separation, one photon
excites an isotopomer to an excited state, and then a second
photon achieves photoionization. The success of the first
step depends on the nuclear mass.

+–Dye laser

Copper
vapour laser

238U235U+

Fig. 20.25 An experimental arrangement for isotope separa-
tion. The dye laser, which is pumped by a copper-vapour
laser, photoionizes the U atoms selectively according to their
mass, and the ions are deflected by the electric field applied
between the plates.
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states of reactions. Lasers that produce nanosecond
pulses are generally suitable for the observation of
reactions with rates controlled by the speed with
which reactants can move through a fluid medium.
However, femtosecond to picosecond laser pulses
are needed to study energy transfer, molecular rota-
tions, vibrations, and conversion from one mode of
motion to another. The arrangement shown in 
Fig. 20.26 is often used to study ultrafast chemical
reactions that can be initiated by light. An intense but
brief laser pulse, the pump, promotes a molecule A 
to an excited electronic state A* that can either emit
a photon (as fluorescence or phosphorescence) or
react with another species B to yield a product C. The
rates of appearance and disappearance of the various
species are determined by observing time-dependent
changes in the absorption spectrum of the sample
during the course of the reaction. This observation 
is made by passing a weak pulse of white light, the
probe, through the sample at different times after 
the laser pulse. Pulsed ‘white’ light can be generated
directly from the laser pulse by the nonlinear optical
phenomenon of continuum generation, in which 
focusing an ultrashort laser pulse on a vessel con-
taining a liquid such as water or carbon tetrachloride
results in an outgoing beam with a wide distribution
of frequencies. A time delay between the strong laser
pulse and the ‘white’ light pulse can be introduced by
allowing one of the beams to travel a longer distance
before reaching the sample. For example, a difference
in travel distance of Δd = 3 mm corresponds to a time
delay Δt = Δd/c ≈ 10 ps between two beams, where c
is the speed of light.

Photoelectron spectroscopy

The exposure of a molecule to high-frequency radi-
ation can result in the ejection of an electron. This
photoejection is the basis of another type of spec-
troscopy in which we monitor the energies of the
ejected photoelectrons. If the incident radiation has
frequency v, the photon that causes photoejection
has energy hk. If the ionization energy of the mole-
cule is I, the difference in energy, hk − I, is carried
away as kinetic energy. Because the kinetic energy of
an electron of speed v is mev

2, we can write

hk = I + mev
2 (20.7)

Therefore, by monitoring the velocity of the photo-
electron, and knowing the frequency of the incident
radiation, we can determine the ionization energy of
the molecule and hence the strength with which the
electron was bound (Fig. 20.27). In this context 
the ‘ionization energy’ of the molecule has different
values depending on the orbital that the photoelec-
tron occupied, and the slower the ejected electron,
the lower in energy the orbital from which it was
ejected. The apparatus is a modification of a mass
spectrometer (Fig. 20.28), in which the velocity of
the photoelectrons is measured by determining the
strength of the electric field required to bend their
paths on to the detector.

1
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1
2

Detector
Monochromator

Sample
cell

Beam
splitter

Lens

Lens
Continuum
generator

Prisms on
motorized
stage

Fig. 20.26 A configuration used for time-resolved absorption
spectroscopy, in which the same pulsed laser is used to 
generate a monochromatic pump pulse and, after continuum
generation in a suitable liquid, a ‘white’ light probe pulse. 
The time delay between the pump and probe pulses may be
varied.

Self-test 20.3

What is the velocity of photoelectrons that are ejected
from a molecule with radiation of energy 21 eV (from a
helium discharge lamp) and are known to come from an
orbital of ionization energy 12 eV?

[Answer: 1.8 × 103 km s−1]

Figure 20.29 shows a typical photoelectron spec-
trum (of HBr). If we disregard the fine structure, we
see that the HBr lines fall into two main groups. The
least tightly bound electrons (with the lowest ioniza-
tion energies and hence highest kinetic energies when
ejected) are those in the lone pairs of the Br atom.
The next ionization energy lies at 15.2 eV, and corres-
ponds to the removal of an electron from the H—Br σ
bond.

The HBr spectrum shows that ejection of a σ
electron is accompanied by a considerable amount of
vibrational excitation. The Franck–Condon principle
would account for this observation if ejection were
accompanied by an appreciable change of equilibrium
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bond length between HBr and HBr+: if that is so, the
ion is formed in a bond-compressed state, which is
consistent with the important bonding effect of the σ
electrons. The lack of much vibrational structure in
the other band is consistent with the nonbonding
role of the Br4px and Br4py lone-pair electrons, for
the equilibrium bond length is little changed when
one is removed.

A brief illustration The highest kinetic energy elec-
trons in the spectrum of H2O using 21.22 eV He radiation
are at about 9 eV and show a large vibrational spacing 
of 0.41 eV (1 eV = 8065.5 cm−1). Because 0.41 eV corres-
ponds to 3.3 × 103 cm−1, which is similar to the wave-
number of the symmetric stretching mode of the neutral
H2O molecule (3652 cm−1), we can suspect that the 
electron is ejected from an orbital that has little influence
on the bonding in the molecule. That is, photoejection is
from a largely nonbonding orbital.
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Fig. 20.27 The basic principle of photoelectron spectroscopy.
An incoming photon of known energy collides with an electron
in one of the orbitals and expels it with a kinetic energy that
is equal to the difference between the energy supplied by the
photon and the ionization energy from the occupied orbital.
An electron from an orbital with a low ionization energy will
emerge with a high kinetic energy (and high speed) whereas
an electron from an orbital with a high ionization energy will
be ejected with a low kinetic energy (and low speed).
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Fig. 20.28 A photoelectron spectrometer consists of a
source of ionizing radiation (such as a helium discharge lamp
for UPS and an X-ray source for XPS), an electrostatic ana-
lyser, and an electron detector. The deflection of the electron
paths caused by the analyser depends on their speed.
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Fig. 20.29 The photoelectron spectrum of HBr. The lowest
ionization energy band corresponds to the ionization of a Br
lone-pair electron. The higher ionization energy band corres-
ponds to the ionization of a bonding electron. The structure
on the latter is due to the vibrational excitation of HBr+ that 
results from the ionization.

Self-test 20.4

In the same spectrum of H2O, the band near 7.0 eV
shows a long vibrational series with spacing 0.125 eV.
The bending mode of H2O lies at 1596 cm−1. What con-
clusions can you draw about the characteristics of the 
orbital occupied by the photoelectron?

[Answer: The electron contributes to long-distance 
HH bonding across the molecule]

Photochemistry

Photochemical reactions are reactions that are initi-
ated by the absorption of light. The most important
of all are the photochemical processes that capture
the Sun’s radiant energy. Some of these reactions
lead to the heating of the atmosphere during the 
daytime by absorption in the ultraviolet region as a
result of reactions like those depicted in Fig. 20.30.
Others include the absorption of red and blue light
by chlorophyll and the subsequent use of the energy
to bring about the synthesis of carbohydrates from
carbon dioxide and water (Box 20.2). Indeed, with-
out photochemical processes the world would be
simply a warm, sterile, rock.

20.9 Quantum yield

A molecule may acquire enough energy to react by
absorbing a photon. However, not every excited mole-
cule may form a specific primary product (atoms,
radicals, or ions, for instance) because there are
many ways in which the excitation may be lost other
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Fig. 20.30 The temperature profile through the atmosphere and some of the reactions that take place in each region.

Box 20.2 Photosynthesis

Up to 1 kW m−2 of radiation from the Sun reaches the Earth’s
surface, with the exact intensity depending on latitude, time
of day, and weather. A large proportion of solar radiation
with wavelengths below 400 nm and above 1000 nm is 
absorbed by atmospheric gases such as ozone and O2,
which absorb ultraviolet radiation, and CO2 and H2O, which
absorb infrared radiation. As a result, plants, algae, and
some species of bacteria evolved photosynthetic apparatus
that captures visible and near-infrared radiation. Plants use
radiation in the wavelength range 400–700 nm to drive the
endergonic reduction of CO2 to glucose, with concomitant
oxidation of water to O2 (DrG

⊕ = +2880 kJ mol−1).
Plant photosynthesis takes place in the chloroplast, a

special organelle of the plant cell. Electrons flow from reduc-
tant to oxidant via a series of electrochemical reactions that
are coupled to the synthesis of ATP. In the chloroplast,
chlorophylls a and b and carotenoids (of which b-carotene is
an example) bind to proteins called light-harvesting com-
plexes, which absorb solar energy and transfer it to protein
complexes known as reaction centres, where light-induced
electron transfer reactions occur. The combination of a
light-harvesting complex and a reaction centre complex is
called a photosystem, and plants have two: photosystem I
and photosystem II.

In photosystems I and II, absorption of a photon raises a
chlorophyll or carotenoid molecule to an excited singlet state.
The initial energy and electron transfer events of photo-
synthesis are under tight kinetic control and the efficient
capture of solar energy stems from rapid quenching of the
excited singlet state of chlorophyll by processes that occur
with relaxation times that are much shorter than the fluo-
rescence lifetime, which is about 5 ns in diethyl ether at

room temperature. Time-resolved spectroscopic data show
that within 0.1–5 ps of absorption of light by a chlorophyll
molecule in a light-harvesting complex, the energy hops to
a nearby pigment by the Förster mechanism. About 100–
200 ps later, which corresponds to thousands of hops within
the complex, more than 90 per cent of the absorbed energy
reaches the reaction centre. The absorption of energy from
light decreases the reduction potential of special dimers of
chlorophyll a molecules known as P700 (in photosystem I)
and P680 (in photosystem II). In their excited states, P680
and P700 initiate electron-transfer reactions that culminate
in the oxidation of water to O2 and the reduction of NADP+ to
NADPH. The initial electron transfer steps are fast and com-
pete effectively with chlorophyll’s fluorescence. For example,
the transfer of an electron from the excited singlet state of
P680 occurs within 3 ps. Experiments show that for each
molecule of NADPH formed in the chloroplast of green
plants, one molecule of ATP is synthesized. Finally, the ATP
and NADPH molecules participate in the Calvin–Benson
cycle, a sequence of enzyme-controlled reactions that leads
to the reduction of CO2 to glucose in the chloroplast.

In summary, plant photosynthesis uses solar energy to
transfer electrons from a poor reductant (water) to carbon
dioxide. In the process, high-energy molecules (carbohy-
drates, such as glucose) are synthesized in the cell. Animals
feed on the carbohydrates derived from photosynthesis.
The O2 released by photosynthesis as a waste product is
used to oxidize carbohydrates to CO2. This reaction drives
biological processes, such as biosynthesis, muscle con-
traction, cell division, and nerve conduction. Hence, the
sustenance of life on Earth depends on a tightly regulated
carbon–oxygen cycle that is driven by solar energy.
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than by dissociation or ionization. We therefore speak
of the primary quantum yield, φ (phi), which is 
the number of events (physical changes or chemical
reactions) that lead to primary products (photons,
atoms or ions, for instance) divided by the number of 
photons absorbed by the molecule in the same time
interval:

(20.8)

If each molecule that absorbs a photon undergoes
dissociation (for instance), then φ = 1. If none does,
because the excitation energy is lost before the
molecule has time to dissociate, then φ = 0.

If we divide the numerator and denominator of
eqn 20.8 by the time interval during which the 
photochemical event occurs, we see that primary
quantum yield is also the rate of radiation-induced
primary events, v, divided by the rate of photon 
absorption, Iabs:

(20.9)

A molecule in an excited state must either decay to
the ground state or form a photochemical product.
Therefore, the total number of molecules deactivated
by radiative processes, nonradiative processes, and
photochemical reactions must be equal to the num-
ber of excited species produced by absorption of
light. We conclude that the sum of primary quantum
yields φi for all physical changes and photochemical
reactions i, which are referred to as channels, must 
be equal to 1, regardless of the number of reactions
involving the excited state. It follows that

(20.10)

where vi is the rate of product formation in channel i.
One successfully excited molecule might initiate the

consumption of more than one reactant molecule.
We therefore need to introduce the overall quantum
yield, Φ (upper case phi), which is the number of 
reactant molecules that react for each photon 
absorbed. In the photolysis of HI, for example, the
processes are

HI + hv → H + I

H + HI → H2 + I

I + I + M → I2 + M

where M is an inert ‘third body’ that removes the 
energy released when the I—I bond forms. The over-

φi
i

i

i

v
I

= =∑ ∑
abs

1

φ =
v

Iabs

φ =
number of events

number of photons absorbedd

all quantum yield is 2 because the absorption of one
photon leads to the destruction of two HI molecules.
In a photochemically initiated chain reaction, Φ may
be very large, and values of about 104 are common.
In such cases the chain reaction acts as a chemical
amplifier of the initial absorption step.

Example 20.2

Using the quantum yield

The overall quantum yield for the formation of ethene
from 4-heptanone with 313 nm light is 0.21. How many
molecules of 4-heptanone per second, and what chem-
ical amount per second, are destroyed when the sample
is irradiated with a 50 W, 313 nm source under con-
ditions of total absorption?

Strategy We need to determine the rate of emission of
photons of the lamp as the number of photons emitted
by the lamp per second. Because all photons are 
absorbed (by assertion), this quantity is also Iabs, which
we calculate by dividing the power ( joules per second)
by the energy of a single photon (E = hV, with V = c/l).
From eqn 20.9, with F in place of f, the rate of the 
photochemical reaction (the number of molecules des-
troyed per second) is Iabs multiplied by the overall quan-
tum yield, F.

Solution A source of power P (the rate at which energy
is supplied) generates photons at a rate given by P
divided by the energy of each photon, E. The energy of a
photon of wavelength l is E = hc/l. Therefore,

Rate of photon production =

We now substitute the data:

Rate of photon production

= 7.9 × 1019 s−1

The number of 4-heptanone molecules destroyed per
second is therefore 0.21 times this quantity, or 1.7 ×
1019 s−1, corresponding (after multiplication by NA) to 
28 mmol s−1.
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× ×
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Self-test 20.5

The overall quantum yield for another reaction at
290 nm is 0.30. For what length of time must irradi-
ation with a 100 W source continue in order to 
destroy 1.0 mol of molecules?

[Answer: 3.8 h]
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20.10 Mechanisms of photochemical
reactions

As an example of how to incorporate the photo-
chemical activation step into a mechanism, consider
the photochemical activation of the reaction

H2(g) + Br2(g) → 2 HBr(g)

which we described in Section 11.15. In place of the
first step in the thermal reaction we have

Br2 + hv → Br + Br

Rate of consumption of Br2 = Rate of photon absorption 
= Iabs

Because the thermal reaction mechanism had ka[Br2]
in place of Iabs for the equivalent of this step, it fol-
lows that Iabs should take the place of ka[Br2] in the
rate law we derived for the thermal reaction scheme.
Therefore, from eqn 11.35 we can write

Rate of formation of HBr 

(20.11)

Although the details of this expression are com-
plicated, the essential prediction is clear: the reaction
rate should depend on the square root of the 
absorbed light intensity (which is proportional to 
the rate of photon absorption). This prediction is
confirmed experimentally.

20.11 The kinetics of decay of 
excited states

In many cases, proper description of the rates and
mechanisms of photochemical reactions also requires
knowledge of such processes as fluorescence and
phosphorescence that can deactivate an excited state
before the reaction has a chance to occur. Electronic
transitions caused by absorption of ultraviolet and
visible radiation occur within 10−16–10−15 s. We 
expect, then, that the upper limit for the rate con-
stant of a first-order photochemical reaction is about
1016 s−1. Fluorescence is slower than absorption, with
typical time constants of 10−12–10−6 s. Therefore, the
excited singlet state can initiate very fast photochem-
ical reactions in the femtosecond (10−15 s) to picosec-
ond (10−12 s) timescale. Examples of such ultrafast
reactions are the initial events of vision (Box 20.1)
and photosynthesis (Box 20.2). Typical intersystem
crossing and phosphorescence time constants for large
organic molecules are 10−12–10−4 s and 10−6–10−1 s,
respectively. As a consequence, excited triplet states
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are photochemically important. Indeed, because phos-
phorescence decay is several orders of magnitude
slower than most typical reactions, species in excited
triplet states can undergo a very large number of col-
lisions with other reactants before deactivation.

We begin our exploration of the interplay between
reaction rates and excited state decay rates by con-
sidering the mechanism of deactivation of an excited
singlet state in the absence of a chemical reaction.
The following steps are involved:

Process Equation Rate

Absorption S + hVi → S* Iabs

Fluorescence S* → S + hVf kf[S*]
Intersystem crossing S* → T* kISC[S*]
Internal conversion S* → S kIC[S*]

in which S is a singlet state absorbing species, S* an
excited singlet state, T* an excited triplet state, and
hvi and hvf denote the incident and fluorescent photons,
respectively. The branching ratio is used to express
the ratio of concentrations of products when several
outcomes are possible. It follows that after the exciting
light has been turned off and S* is no longer formed,

Rate of decay of S* = kf[S*] + kISC[S*] + kIC[S*]

= (kf + kISC + kIC)[S*] (20.12)

It follows that the excited state decays by a first-order
process, so when the light is turned off, [S*] varies
with time t as

(20.13a)

where the observed fluorescence lifetime, τobs, is

(20.13b)

(Note that the observed lifetime is not simply the 
sum of the individual lifetimes, τf = 1/kf, etc.) It then
follows, as we show in Derivation 20.2, that the
quantum yield of fluorescence is

(20.14)

To measure τobs a sample is excited with a short light
pulse from a laser at a wavelength where S absorbs
strongly. Then, the exponential decay of the fluores-
cence intensity after the pulse is monitored with a fast
detector system. The rate constant kf can be deter-
mined through kf = φf /τobs, with φf measured by using
a steady-state technique that compares the fluores-
cence properties of the sample of interest with that of
a sample with known fluorescence quantum yield.
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Fig. 20.31 The format of a Stern–Volmer plot and the 
interpretation of the slope in terms of the rate constant for
quenching and the observed fluorescence lifetime in the 
absence of quenching.

PHOTOCHEMISTRY 491

20.12 Fluorescence quenching

Now we consider the kinetic information about 
photochemical processes that can be obtained by
studying the effect of a molecule that can remove the
excitation energy from the fluorescent molecule and
that therefore acts to quench the fluorescence.

Quenching may be either a desired process, such 
as energy or electron transfer, or an undesired side
reaction that can decrease the quantum yield of a de-
sired photochemical process. As shown in Derivation
20.3, the relation between the fluorescence quantum
yields φf and φ in the absence and presence, respec-
tively, of a quencher Q at a molar concentration [Q]
is given by the Stern–Volmer equation:

(20.15a)

This equation tells us that a plot of φf /φ against [Q]
should be a straight line with slope τobskQ. Such a
plot is called a Stern–Volmer plot (Fig. 20.31). The
method is quite general and may also be applied to the
quenching of phosphorescence emission. An alterna-
tive version is obtained by noting from eqn 20.14 
(φf = kfτobs) that φf /φ = τobs/τobs(Q), where τobs(Q) is
the observed fluorescence lifetime in the presence of
the quencher:

τ
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Derivation 20.2

The quantum yield of fluorescence

The rate of formation of S* when the illumination is pre-
sent is Iabs and its rate of loss is given by eqn 20.12.
When a steady state has been reached the net rate of
formation of S* is zero, so we can write

Rate of change of [S*] = Iabs − (kf + kISC + kIC)[S*] = 0

Consequently,

Iabs = (kf + kISC + kIC)[S*]

Because (from eqn 20.9)

where Vf is the rate at which fluorescence photons are
generated and Vf = kf[S*], it follows that

Equation 20.14 then follows by using eqn 20.13b.

ff
f

f ISC IC

f

f ISC IC

[S*]
S

=
+ +

=
+ +

k
k k k

k
k k k( )[ *]

ff
f

abs
=

V
I

Quencher concentration, [Fe3+]/(mmol dm–3)

In
ve

rs
e 

lif
et

im
e,

 (
10

–6
 s

)/

0
1

2

3

4

5

0.25 0.5 0.75 1

τ

Fig. 20.32 The Stern–Volmer plot of the data.

After division by τobs, this expression becomes

(20.15b)

Thus, a plot of 1/τobs(Q) against [Q] has an intercept
of 1/τobs and a slope of kQ.

A brief illustration The quenching of the complex
Ru(bpy)3

2+ fluorescence by Fe(H2O)6
3+ in acidic solution

was monitored by measuring emission lifetimes at 600 nm:

[Fe(H2O)6
3+]/(10−4 mol dm−3) 0 1.6 4.7 7 9.4

τobs(Q)/(10−7 s) 6 4.1 3.4 3 2.17

Figure 20.32 shows a plot of 1/τ against [Fe3+] and the 
results of a least-squares fit to eqn 20.15b. The slope of
the line is kQ = 2.8 × 109 dm3 mol−1 s−1. This result is 
typical of a diffusion-controlled process. In Section 11.12
we saw that a diffusion-controlled rate constant is ap-
proximately equal to 8RT/3h, where h is the viscosity of
the medium; for water at 25°C, this expression evaluates
to 7.6 × 109 dm3 mol−1 s−1.
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Three common mechanisms for quenching of an
excited singlet (or triplet) state are:

Collisional deactivation: S* + Q → S + Q

Electron transfer: S* + Q → S+ + Q− or S− + Q+

Resonance energy transfer: S* + Q → S + Q*

Collisional quenching is particularly eAcient when
Q is a heavy species, such as an iodide ion, which 
receives energy from S* and then decays nonradi-
atively to the ground state. This fact may be used to
determine the accessibility of amino acid residues of
a folded protein to solvent. For example, fluores-
cence from a tryptophan residue (λabs ≈ 290 nm, λfluor
≈ 350 nm) is quenched by an iodide ion when the
residue is on the surface of the protein and hence 

accessible to the solvent. Conversely, residues in the
hydrophobic interior of the protein are not quenched
effectively by I−.

The quenching rate constant itself does not give
much insight into the mechanism of quenching apart
from suggesting that it is diffusion controlled. How-
ever, according to the Marcus theory of electron
transfer, which was proposed by R. A. Marcus in
1965, the rates of electron transfer (from ground or
excited states) depend on:

1. The distance between the donor and acceptor, with
electron transfer becoming more effcient as the
distance between donor and acceptor decreases.

2. The reaction Gibbs energy, ΔrG, with electron
transfer becoming more eAcient as the reaction
becomes more exergonic. For example, eAcient
photooxidation of S requires that the reduction
potential of S* be lower than the reduction poten-
tial of Q.

3. The ‘reorganization energy’, the energy cost 
incurred by molecular rearrangements of donor, 
acceptor, and medium during electron transfer.
The electron transfer rate is predicted to increase
as this reorganization energy is matched more
closely by the reaction Gibbs energy.

Electron transfer can be studied by time-resolved
spectroscopy. The oxidized and reduced products
often have electronic absorption spectra distinct from
those of their neutral parent compounds. Therefore,
the rapid appearance of such known features in the
absorption spectrum after excitation by a laser pulse
may be taken as an indication of quenching by elec-
tron transfer.

To understand resonance energy transfer we note
that in an absorption process the incident electro-
magnetic radiation induces a transition electric dipole
moment in S. When that excited state collapses back
to the ground state the resulting transition dipole can
induce a corresponding transition dipole moment 
in a neighbouring Q molecule. It does so with an
eAciency, ηT, that can be expressed in terms of the
fluorescence lifetimes in the absence and the presence
of the quencher:

(20.16)

According to the Förster theory of resonance energy
transfer, which was proposed by T. Förster in 1959,
for donor–acceptor (S—Q) systems that are held rigidly
either by covalent bonds or by a protein ‘scaffold’, ηT,
increases with decreasing distance, R, according to
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Self-test 20.6

From the data above, predict the value of [Fe3+] required
to decrease the intensity of Ru(bpy)3

2+ emission to 50 per
cent of the unquenched value.

[Answer: 6.0 × 10−4 mol dm−3]

Derivation 20.3

The Stern–Volmer equation

The addition of a quencher, Q, opens an additional chan-
nel for deactivation of S*:

Quenching: S* + Q → S + Q

Rate of quenching = kQ[Q][S*]

The steady-state approximation for [S*] now gives:

Rate of change of [S*]

= Iabs − (kf + kIC + kISC + kIC + kQ[Q])[S*] = 0

and the fluorescence quantum yield in the presence of
the quencher is

It follows from this expression and eqn 20.14 that the
ratio ff/f is

After using eqn 20.13b, this expression simplifies to 
eqn 20.15.
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(20.17)

where R0 is a parameter (with dimensions of dis-
tance) that is characteristic of each donor–acceptor
pair. Equation 20.17 has been verified experiment-
ally and values of R0 are available for a number of
donor–acceptor pairs (Table 20.2). According to the
Förster theory, for a given separation, the eAciency
is greatest when the emission spectrum of the donor
molecule overlaps significantly with the absorption
spectrum of the acceptor. In the overlap region, 
photons emitted by the donor can be absorbed reson-
antly by the acceptor, as the energy gaps of the two
molecules then match (Fig. 20.33).

The dependence of ηT on R forms the basis of
fluorescence resonance energy transfer (FRET), a
technique that can be used to measure distances in 
biological systems. In a typical FRET experiment, 

ηT =
+

R
R R

0
6

0
6 6

a site on a biopolymer or membrane is labelled 
covalently with an energy donor and another site is
labelled covalently with an energy acceptor. The dis-
tance between the labels is then calculated from the
known value of R0 and eqn 20.15. Several tests have
shown that the FRET technique is useful for measur-
ing distances ranging from 1 to 9 nm.

A brief illustration The energy donor 1.5-I AEDANS
(A, 2) has a fluorescence quantum yield of 0.75 in aque-
ous solution. The visual pigment 11-cis-retinal (Box 20.1)
is a quencher of fluorescence and R0 = 5.4 nm for the A-
cis-retinal pair. When an amino acid on the surface of the
protein rhodopsin, which binds 11-cis-retinal in its interior,
was labelled covalently with A, the fluorescence quantum
yield of the label decreased to 0.68. From eqn 20.16, not-
ing that τobs(Q)/τobs = f/ff, we calculate eT = 1 − (0.68/0.75)
= 0.093 and from eqn 20.17 we then calculate R = 7.9 nm,
which is taken as the distance between the surface of the
protein and 11-cis-retinal.

Table 20.2

Values of R0 for some donor–acceptor pairs*

Donor Acceptor R0 /nm

Naphthalene Dansyl 2.2
Dansyl ODR 4.3
Pyrene Coumarin 3.9
IAEDANS FITC 4.9
Tryptophan IAEDANS 2.2
Tryptophan Haem 2.9

*Abbreviations:
Dansyl, 5-dimethylamino-l-naphthalenesulfonic
FITC fluorescein-5-isothiocyanate
IEADANS 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-

sulfonic acid
ODR octadecyl-rhodamine

Frequency,
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Fig. 20.33 According to the Förster theory, the rate of energy
transfer from a molecule S* in an excited state to a quencher
molecule Q is optimized at radiation frequencies in which the
emission spectrum of S* overlaps with the absorption spec-
trum of Q, as shown in the shaded region.

Checklist of key ideas

You should now be familiar with the following concepts.

1 An isosbestic point corresponds to a wavelength
at which the total absorbance of a binary mixture
is the same for all compositions.

2 The Franck–Condon principle states that because
nuclei are so much more massive than electrons,
an electronic transition takes place faster than the
nuclei can respond.

3 A chromophore is a group with characteristic 
optical absorption: they include d-metal complexes,
the carbonyl group, and the carbon–carbon double
bond.

4 In fluorescence, the spontaneously emitted 
radiation ceases almost immediately (within
nanoseconds) after the exciting radiation is 
extinguished.
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5 In phosphorescence, the spontaneous emission
may persist for long periods; the process involves
intersystem crossing into a triplet state.

6 Laser action depends on the achievement of 
population inversion and the stimulated emission
of radiation.

7 Applications of lasers in chemistry include Raman
spectroscopy, time-resolved spectroscopy, the
study of multiphoton and state-specific processes.

8 Photoelectron spectroscopy is based on the photo-
ejection of an electron by ultraviolet radiation or
X-rays.

9 The primary quantum yield of a photochemical
reaction is the number of reactant molecules 
producing specified primary products for each
photon absorbed; the overall quantum yield is the
number of reactant molecules that react for each
photon absorbed.

10 A Stern–Volmer plot is used to analyse the kinetics
of fluorescence quenching in solution.

11 Collisional deactivation, electron transfer, and
resonance energy transfer are common fluores-
cence quenching processes. The rate constants of
electron and resonance energy transfer decrease
with increasing separation between donor and
acceptor molecules.

x x + dx

Intensity, I

Intensity, I – dI

Length, L

Fig 20.34. (right) To establish the Beer–Lambert law, the
sample is supposed to be sliced into a large number of
planes. The reduction in intensity caused by one plane is pro-
portional to the intensity incident on it (after passing through
the preceding planes), the thickness of the plane, and the
concentration of absorbing species.

The following table summarizes the equations developed in the text.

Description

Beer–Lambert law

Absorbance

Photoelectron spectroscopy

Observed fluorescence lifetime

Fluorescence quantum yield

Stern—Volmer equation

Quenching efficiency

Förster theory

Equation

I = Ine
−e[J]L

A = log(l0/l )

hV = I + mev2

τobs = 1/(kf + kISC + kIS)

ff = kfτobs

ff /f = 1 + τobskQ[Q]

1/τobs(Q) = 1/τobs + kQ[Q]

hT = (τobs − τobs(Q))/τobs

hT = R0
6 /(R0

6 − R6)

1
2

Comment

Uniform solution

Rigid S—Q separation, R

Table of key equations

Further information 20.1

The Beer–Lambert law

The Beer–Lambert law is an empirical result. However, it is
simple to account for its form. We think of the sample as
consisting of a stack of infinitesimal slices, like sliced bread
(Fig. 20.34). The thickness of each layer is dx. The change
in intensity, dI, that occurs when electromagnetic radiation
passes through one particular slice is proportional to the
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�
I

I0

= −κ�
L

0
[J]dx

If the concentration is uniform, [J] is independent of loca-
tion and may be taken outside the integral on the right; the
expression then integrates to

Because the relation between natural and common loga-
rithms is ln x = (ln 10)log x, we can write ε = κ /ln 10 and
obtain

which, on substituting A = log(I0/I) = −log(I/I0), is the
Beer–Lambert law (eqn 20.1).

log [ ]
I
I

L
0

= −ε J

ln [ ]
I
I

L
0

= −κ J

 

dI
I

Further information 20.2

The Einstein transition probabilities

The intensity of an absorption line is related to the rate at
which energy from electromagnetic radiation at a specified
frequency is absorbed by a molecule. Einstein identified
three contributions to the rates of transitions between
states. Stimulated absorption is the transition from a low-
energy state to one of higher energy that is driven by the
electromagnetic field oscillating at the transition frequency.
He reasoned that the more intense the electromagnetic field
(the more intense the incident radiation), the greater the
rate at which transitions are induced and hence the
stronger the absorption by the sample, so he wrote the rate
of stimulated absorption as

Rate of stimulated absorption = NBρ

where N is the number of molecules in the lower state, 
the constant B is the Einstein coeDcient of stimulated 
absorption, and ρΔv is the energy density of radiation in 
the frequency range v to v + Δv, with v as the frequency of
the transition. For the time being, we can treat B as an 
empirical parameter that characterizes the transition: if B
is large, then a given intensity of incident radiation will 
induce transitions strongly and the sample will be strongly
absorbing.

Einstein considered that the radiation was also able to 
induce the molecule in the upper state to undergo a transi-
tion to the lower state, and hence to generate a photon of
frequency v. Thus, he wrote the rate of this stimulated emis-
sion as

Rate of stimulated emission = N′B′ρ

where N′ is the number of molecules in the excited state
and B′ is the Einstein coeDcient of stimulated emission.
Note that only radiation of the same frequency as the 
transition can stimulate an excited state to fall to a lower

state. However, he realized that stimulated emission was
not the only means by which the excited state could gener-
ate radiation and return to the lower state, and suggested
that an excited state could undergo spontaneous emission
at a rate that is independent of the intensity of the radiation
(of any frequency) that is already present. Einstein there-
fore wrote the total rate of transition from the upper to the
lower state as

Overall rate of emission = N′(A + B′ρ)

The constant A is the Einstein coeDcient of spontaneous
emission. It can be shown that the coeAcients of stimulated
absorption and emission are equal, and that the coeAcient
of spontaneous emission is related to them by1

The equality of the coeAcients of stimulated emission
and absorption implies that if two states happen to have
equal populations, then the rate of stimulated emission is
equal to the rate of stimulated absorption, and there is then 
no net absorption. The drop in the value of A with decreas-
ing frequency implies that spontaneous emission can be
largely ignored at the relatively low frequencies of rota-
tional and vibrational transitions, and the intensities of
these transitions can be discussed in terms of stimulated
emission and absorption. Then the net rate of absorption is
given by

Net rate of absorption = NBρ − N′B′ρ = (N − N′)Bρ

and is proportional to the population difference of the two
states involved in the transition. In Chapter 22, we shall see
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thickness of the slice, the concentration of the absorber J,
and the intensity of the incident radiation at that slice of the
sample, so dI ∝ [J]Idx. Because dI is negative (the intensity
is reduced by absorption), we can write

dI = −κ [J]Idx

where κ (kappa) is the proportionality coeAcient. Division
by I gives

This expression applies to each successive slice. To obtain
the intensity that emerges from a sample of thickness L
when the intensity incident on one face of the sample is I0,
we sum all the successive changes. Because a sum over
infinitesimally small increments is an integral, we write:

 

d
J]d

I
I

x= −κ [

1 See our Physical chemistry (2006) for the derivation.
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that the ratio of populations of states of energies E and E′
is given by:

ΔE = E′ − E
 

N
N

E kT′
= −e Δ /

It follows that for a constant energy difference ΔE, the popu-
lation difference (N – N′) and the intensity of absorption 
increase with decreasing temperature. Also, for a specified
temperature, the population difference and the intensity 
of absorption increase with increasing energy separation
between the states.

Questions and exercises

Discussion questions

20.1 Justify the form of the Beer–Lambert law. When might
deviations from it be observed?

20.2 Explain the origin of the Franck–Condon principle and
how it leads to the appearance of vibrational structure in an
electronic transition.

20.3 Explain how colour can arise from molecules.

20.4 Describe the mechanisms of fluorescence and 
phosphorescence. How could you test the proposed 
mechanisms?

20.5 Describe the principles of laser action and the features
of laser radiation that are applied to chemistry. Then, discuss
two applications of lasers in chemistry.

20.6 Why may the overall quantum yield of a reaction differ
from the primary quantum yield? Illustrate your answer with
an example.

20.7 Why is the study of fluorescence important in biology?

20.8 Summarize critically the Marcus theory of electron-
transfer reactions.

Exercises

20.1 An aqueous solution of a triphosphate derivative of
molar mass 502 g mol−1 was prepared by dissolving 17.2 mg
in 500 cm3 of water and a sample was transferred to a cell of
length 1.00 cm. The absorbance was measured as 1.011. 
(a) Calculate the molar absorption coefficient. (b) Calculate
the transmittance, expressed as a percentage, for a solution
of twice the concentration.

20.2 Radiation of wavelength 268 nm passed through 1.5 mm
of a solution that contained benzene in a transparent solvent
at a concentration of 0.080 mol dm−3. The light intensity is 
reduced to 22 per cent of its initial value (so T = 0.22).
Calculate the absorbance and the molar absorption coeffi-
cient of the benzene. What would be the transmittance
through a cell of thickness 3.0 mm?

20.3 A Dubosq colorimeter consists of a cell of fixed path
length and a cell of variable path length. By adjusting the
length of the latter until the transmission through the two
cells is the same, the concentration of the second solution
can be inferred from that of the former. Suppose that a plant

dye of concentration 25 mg dm−3 is added to the fixed cell, the
length of which is 1.55 cm. Then a solution of the same dye,
but of unknown concentration, is added to the second cell. 
It is found that the same transmittance is obtained when the
length of the second cell is adjusted to 1.18 cm. What is the
concentration of the second solution?

20.4 The molar absorption coefficients of two substances A
and B at two wavelengths (denoted 1 and 2) are as follows:
eA1 = 10.0 dm3 mol−1 cm−1, eB1 = 15.0 dm3 mol−1 cm−1, eA2 =
18.0 dm3 mol−1 cm−1, eB2 = 12.0 dm3 mol−1 cm−1. The total 
absorbances of a solution at these two wavelengths in a cell
of length 2.0 mm were measured as 1.6 and 2.4, respectively.
What are the molar concentrations of A and B in the solution?

20.5 Figure 20.35 shows the UV-visible absorption spectrum
of a derivative of haemerythrin (Her) in the presence of differ-
ent concentrations of CNS− ions. What may be inferred from
the spectrum?
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Fig. 20.35 The spectrum of haemerythrin in the presence of
thiocyanate ions.

20.6 Suppose that you are a colour chemist and had been
asked to intensify the colour of a dye without changing the
type of compound, and that the dye in question was a polyene.
Would you choose to lengthen or to shorten the chain?
Would the modification to the length shift the apparent
colour of the dye towards the red or the blue?

20.7 The compound CH3CHlCHCHO has a strong absorp-
tion in the ultraviolet at 46 950 cm−1 and a weak absorption at
30 000 cm−1. Justify these features in terms of the structure
of the compound.
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20.8 Figure 20.36 shows the UV-visible absorption spectra of
a selection of amino acids. Suggest reasons for their different
appearances in terms of the structures of the molecules.

20.9 The fluorescence spectrum of anthracene vapour
shows a series of peaks of increasing intensity with individual
maxima at 440 nm, 410 nm, 390 nm, and 370 nm followed by
a sharp cut-off at shorter wavelengths. The absorption spec-
trum rises sharply from zero to a maximum at 360 nm with 
a trail of peaks of lessening intensity at 345 nm, 330 nm, and
305 nm. Account for these observations.

20.10 The line marked A in Fig. 20.37 is the fluorescence
spectrum of benzophenone in solid solution in ethanol at low
temperatures observed when the sample is illuminated with
360 nm light. When naphthalene is illuminated with 360 nm
light it does not absorb, but the line marked B in the illustra-
tion is the phosphorescence spectrum of a solid solution 
of a mixture of naphthalene and benzophenone in ethanol.
Now a component of fluorescence from naphthalene can be 
detected. Account for this observation.

20.11 What is the kinetic energy of an electron that has been
accelerated through a potential difference of 10.0 kV?

20.12 What is (a) the energy, (b) the speed of an electron
that has been ejected from an orbital of ionization energy
10.0 eV by a photon of radiation of wavelength 110 nm?

20.13 In a particular photoelectron spectrum using 21.21 eV
photons, electrons were ejected with kinetic energies of
11.01 eV, 8.23 eV, and 5.22 eV. Sketch the molecular orbital
energy-level diagram for the species, showing the ionization
energies of the three identifiable orbitals.

20.14 In an experiment it was determined that photons were
absorbed at the rate of 0.14 mol h−1 and the primary photo-
chemical products were produced at 78 mmol s−1. What is the
primary quantum yield?

20.15 In an experiment to measure the quantum efficiency
of a photochemical reaction, the absorbing substance was
exposed to 390 nm light from a 50 W source for 35 min. The
intensity of the transmitted light was 60 per cent of the 
intensity of the incident light. As a result of irradiation, 
0.384 mol of the absorbing substance decomposed.
Determine the quantum efficiency.

20.16 The overall quantum yield for the formation of a 
product from camphor with 280 nm ultraviolet radiation was
0.26. How many molecules of camphor, and what chemical
amount per second, are destroyed when the sample is 
irradiated with a 40 W, 280 nm source under conditions of
total absorption?

20.17 Consider a unimolecular photochemical reaction with
rate constant kr = 1.7 × 104 s−1 that involves a reactant with an
observed fluorescence lifetime of 1.0 ns and an observed
phosphorescence lifetime of 1.0 ms. Is the excited singlet
state or the excited triplet state the most likely precursor of
the photochemical reaction?

20.18 Derive an expression for the rate of disappearance 
of a species A in a photochemical reaction for which the
mechanism is:

(1) initiation with light of intensity I, A → R· + R·

(2) propagation, A + R· → R· + B

(3) termination, R· + R· → R2

(Interpret the light intensity as the rate of photon absorption.)
Hence, show that rate measurements will give only a com-
bination of k2 and k3 if a steady state is reached, but that both
may be obtained if a steady state is not reached.

20.19 In a photochemical reaction A → 2 B + C, the quantum
efficiency with 500 nm light is 0.21 kmol einstein−1 (1 einstein
= 1 mol photons). After exposure of 300 mmol of A to the
light, 2.28 mmol of B is formed. How many photons were 
absorbed by A?

20.20 When benzophenone is illuminated with ultraviolet 
radiation it is excited into a singlet state. This singlet changes
rapidly into a triplet, which phosphoresces. Triethylamine acts
as a quencher for the triplet. In an experiment in methanol as
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Fig. 20.36 The absorption spectra of a selection of amino acids.
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Fig. 20.37 Fluorescence spectra of naphthalene referred to
in Exercise 20.10.
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solvent, the phosphorescence intensity varied with amine
concentration as shown below. A time-resolved laser spec-
troscopy experiment had also shown that the half-life of the
fluorescence in the absence of quencher is 29 ms. What is 
the value of kq?

[Q]/(mol dm−3) 0.0010 0.0050 0.0100

If /(arbitrary units) 0.41 0.25 0.16

20.21 The quenching of tryptophan fluorescence by dissolved
O2 gas was monitored by measuring emission lifetimes at
348 nm in aqueous solutions. Determine the quenching rate
constant for this process from the following data:

[O2]/(10−2 mol dm−3) 0 2.3 5.5 8 10.8

τ /ns 2.6 1.5 0.92 0.71 0.57

20.22 The fluorescence of a solution of a plant pigment illu-
minated by 330 nm radiation was studied in the presence of
a quenching agent, with the following results:

[Q]/(mmol dm−3) 1.0 2.0 3.0 4.0 5.0

If /Iabs 0.31 0.18 0.13 0.10 0.081

In a second series of experiments, the incident radiation was
extinguished and the lifetime of the decay of the fluores-
cence was observed:

[Q]/(mmol dm−3) 1.0 2.0 3.0 4.0 5.0

τ /ns 76 45 32 25 20

Determine the quenching rate constant and the half-life of
the fluorescence.

20.23 The fluorescence lifetime in the absence of a quen-
cher is 1.4 ns and in the presence of a quencher it is 0.8 ns.
What is the quenching efficiency?

20.24 The following data refer to a family of compounds with
the general composition A—Bn—C in which the distance R
between A and C was varied by increasing the number of 
B units in the linker:

R/nm 1.2 1.5 1.8 2.8 3.1
hT 0.99 0.94 0.97 0.82 0.74

R/nm 3.4 3.7 4.0 4.3 4.6
hT 0.65 0.40 0.28 0.24 0.16

Are the data described adequately by the Förster theory (eqn
20.17)? If so, what is the value of R0 for the A—C pair?

20.25 Light-induced degradation of molecules, also called
photobleaching, is a serious problem in fluorescence

microscopy, in which a specimen (such as a biological cell) 
labelled with a fluorescent dye is observed under an optical
microscope. A molecule of a dye commonly used to label
biopolymers can withstand about 106 excitations by photons
before light-induced reactions destroy its p system and the
molecule no longer fluoresces. For how long will a single dye
molecule fluoresce while being excited by 1.0 mW of 488 nm
radiation from an argon ion laser? You may assume that 
the dye has an absorption spectrum that peaks at 488 nm 
and that every photon delivered by the laser is absorbed by
the molecule.

Projects

20.26 Here we explore vision in more detail. (a) The flux of
visible photons reaching Earth from the North Star is about 
4 × 103 mm−2 s−1. Of these photons, 30 per cent are absorbed
or scattered by the atmosphere and 25 per cent of the sur-
viving photons are scattered by the surface of the cornea of
the eye. A further 9 per cent are absorbed inside the cornea.
The area of the pupil at night is about 40 mm2 and the 
response time of the eye is about 0.1 s. Of the photons pass-
ing through the pupil, about 43 per cent are absorbed in the
ocular medium. How many photons from the North Star are
focused on to the retina in 0.1 s? For a continuation of this
story, see R. W. Rodieck, The first steps in seeing, Sinauer
(1998). (b) In the free-electron molecular orbital theory of
electronic structure, the p electrons in a conjugated molecule
are treated as noninteracting particles in a box of length equal
to the length of the conjugated system. On the basis of this
model, at what wavelength would you expect all-trans-retinal
to absorb? Take the mean carbon–carbon bond length to be
140 pm.

20.27 Now we explore the energy and electron-transfer
events of photosynthesis. (a) In light-harvesting complexes,
the fluorescence of a chlorophyll molecule is quenched by
nearby chlorophyll molecules. Given that for a pair of chloro-
phyll a molecules R0 = 5.6 nm, by what distance should two
chlorophyll a molecules be separated to shorten the fluores-
cence lifetime from 1 ns (a typical value for monomeric
chlorophyll a in organic solvents) to 10 ps? (b) The light- 
induced electron-transfer reactions in photosynthesis occur
because chlorophyll molecules (whether in monomeric or
dimeric forms) are better reducing agents in their electronic
excited states. Justify this observation with the help of
molecular orbital theory.
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One of the most widely used and helpful forms of
spectroscopy, and a technique that has transformed
the practice of chemistry and its dependent disciplines,
makes use of an effect that is familiar from classical
physics. When two pendulums are joined by the same
slightly flexible support and one is set in motion, the
other is forced into oscillation by the motion of 
the common axle, and energy flows between the two.
The energy transfer occurs most eAciently when the
frequencies of the two oscillators are identical. The
condition of strong effective coupling when the fre-
quencies are identical is called resonance, and the 
excitation energy is said to ‘resonate’ between the
coupled oscillators.

Resonance is the basis of a number of everyday
phenomena, including the response of radios to 
the weak oscillations of the electromagnetic field
generated by a distant transmitter. In this chapter 
we explore a spectroscopic application that when
originally developed (and in some cases still) depends
on matching a set of energy levels to a source of
monochromatic radiation in the radio-frequency and
microwave ranges and observing the strong absorp-
tion by nuclei and electrons, respectively, that occurs
at resonance. All spectroscopy is a form of resonant
coupling between the electromagnetic field and the
molecules; what distinguishes magnetic resonance is
that the energy levels themselves are modified by the
application of a magnetic field.

Principles of magnetic

resonance

The application of resonance that we describe here
depends on the fact that electrons and many nuclei
possess spin angular momentum (Table 21.1). An
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electron (with spin quantum number s = ) in a mag-
netic field can take two orientations, corresponding
to ms = + (denoted α or ↑) and ms = − (denoted β
or ↓). A nucleus with nuclear spin quantum number
I (the analogue of s for electrons, and that may be an
integer or a half-integer) may take 2I + 1 different
orientations relative to an arbitrary axis. These ori-
entations are distinguished by the quantum number
mI, which may take on the values mI = I, I − 1, . . . , 
−I. A proton has I = (the same spin as an electron)
and may adopt either of two orientations (mI = +
and − ). A 14N nucleus has I = 1 and may adopt any
of three orientations (mI = +1, 0, −1). Spin- nuclei
include protons (1H), 13C, 19F, and 31P nuclei. As for
electrons, the state with mI = + (↑) is denoted α, and
that with mI = − (↓) is denoted β.

21.1 Electrons and nuclei in 
magnetic fields

An electron possesses a magnetic moment due to its
spin and this moment interacts with an external mag-
netic field. That is, an electron behaves like a tiny
magnet. The orientation of this magnet is determined
by the value of ms and in a magnetic field B the two
orientations have different energies. These energies
are given by

Ems
= −geγ HBms (21.1)

where γ is the magnetogyric ratio of the electron

(21.2)

and ge is a factor, the g-value of the electron, which is
close to 2.0023 for a free electron. The 2 comes from
Dirac’s relativistic theory of the electron; the 0.0023
comes from additional correction terms.

The energies are sometimes expressed in terms of
the Bohr magneton
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μB = 9.274 × 10−24 J T−1 (21.3)

a fundamental unit of magnetism, where the symbol
T denotes the unit tesla, which is used to express the
intensity of a magnetic field (more precisely, the mag-
netic induction, with 1 T = 1 kg s−2 A−1). Now we can
write

Ems
= geμBBms (21.4)

For an electron, the β state lies below the α state.

A brief comment Classically, the energy of a magnetic
moment m in a magnetic field [ is E = −m.[. Equation 21.1
is the quantum-mechanical version of the classical expres-
sion, with the field along the z direction and the magnetic mo-
ment equal to gegsz and sz = ms2.

A nucleus with nonzero spin also has a magnetic
moment and behaves like a tiny magnet. The orienta-
tion of this magnet is determined by the value of mI,
and in a magnetic field B the 2I + 1 orientations of the
nucleus have different energies. These energies are
given by

EmI = −γ NHBmI (21.5)

where γN is the nuclear magnetogyric ratio. For spin-
nuclei with positive magnetogyric ratios (such as 1H),
the α state lies below the β state. The energy is some-
times written in terms of the nuclear magneton, μN,

μN = 5.051 × 10−27 J T−1 (21.6)

and an empirical constant called the nuclear g-factor,
gI, when it becomes

EmI = −gIμNBmI (21.7)

Nuclear g-factors are experimentally determined 
dimensionless quantities with values typically between
−6 and +6. Positive values of γN (and gI) indicate that
the North pole of the nuclear magnet lies in the same
direction as the nuclear spin (this is the case for pro-
tons). Negative values indicate that the magnet
points in the opposite direction. A nuclear magnet is
about 2000 times weaker than the magnet associated
with electron spin. Two very common nuclei, 12C
and 16O, have zero spin and hence are not affected by
external magnetic fields.

The energy separation of the two spin states of an
electron (Fig. 21.1) is

ΔE = Eα − Eβ = ( )geμBB − (− geμBB) 

= geμBB (21.8)

We shall see in Section 22.1 in the discussion of the
Boltzmann distribution that the populations of the α

1
2

1
2

μN
p

=
e
m
H

2

1
2

μB
e

=
e
m
H

2Table 21.1

Nuclear constitution and the nuclear spin
quantum number

Number of Number of I
protons neutrons

even even 0
odd odd integer (l, 2, 3, . . .)
even odd half-integer ( , , , . . .)

odd even half-integer ( , , , . . .)5
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and β states, Nα and Nβ, are proportional to e−Eα /kT

and e−Eβ /kT, respectively, so the ratio of populations
at equilibrium is

(21.9a)

Because Eα − Eβ > 0 (for an electron the β state lies
below the α state), Nα /Nβ < 1 and there are slightly
more β spins than α spins. We show in Derivation
21.1 that

(21.9b)

In a field of 1.0 T at 300 K, (Nβ − Nα)N ≈ 0.0022, so
there is an imbalance of populations of only about 2
electrons in a thousand (see Exercise 21.5).
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If the sample is exposed to radiation of frequency
v, the energy separations come into resonance with
the radiation when the frequency satisfies the reson-
ance condition:

hv = geμBB or (21.10)

At resonance there is strong coupling between the
electron spin and the radiation, and strong absorp-
tion occurs as the spins flip from β (low energy) to α
(high energy).

The behaviour of nuclei is very similar. The energy
separation of the two states of a spin- nucleus 
(Fig. 21.2) is

ΔE = Eβ − Eα = γNHB − (− γNHB) = γNHB (21.11)1
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Fig. 21.1 The energy levels of an electron in a magnetic field.
Resonance occurs when the energy separation of the levels
matches the energy of the photons in the electromagnetic
field.

Derivation 21.1

The population difference

To write an expression for the population difference, we
begin with eqn 21.9a, written as

where we have used the fact that an exponential func-
tion used here is e−x = 1 − x + x2 − . . . . If x << 1, then e−x

≈ 1 − x. The expansion of the exponential term is appro-
priate for DE << kT, a condition usually met for electron
and nuclear spins. It follows that

Then, with Na + Nb = N, the total number of spins, we
have eqn 21.9b.
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Fig. 21.2 The energy levels of a spin- nucleus (e.g. 1H or
13C) in a magnetic field. Resonance occurs when the energy
separation of the levels matches the energy of the photons in
the electromagnetic field.
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Table 21.2

Nuclear spin properties

Nucleus Natural Spin, I gN/(107 T−1 s−1)
abundance
per cent

1H 99.98 26.752
2H (D) 0.0156 1 4.1067
12C 98.99 0 –
13C 1.11 6.7272
14N 99.64 1 1.9328
16O 99.96 0 –
17O 0.037 −3.627
19F 100 25.177
31P 100 10.840
35Cl 75.4 2.624
37Cl 24.6 2.1843
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Because for nuclei with positive γN the α state lies
below the β state, Eβ − Eα > 0 and it follows from 
eqn 21.9 that Nβ /Nα < 1: there are slightly more α
spins than β spins (the opposite of an electron) and in
the same way as in Derivation 21.1 we can write

(21.12)

For protons in a field of 10 T at 300 K, (Nα − Nβ)/N ≈
3 × 10−5, so even in such a strong field there is only a
tiny imbalance of population of about 30 in a million.

As for electrons, if the sample is exposed to radi-
ation of frequency v, the energy separations come into
resonance with the radiation when the frequency
satisfies the resonance condition:

hk = γNHB or (21.13)

At resonance there is strong coupling between the
nuclear spins and the radiation, and absorption occurs
as the spins flip from α (low energy) to β (high energy).

It is sometimes useful to compare the quantum-
mechanical and classical pictures of magnetic nuclei
pictured as tiny bar magnets. A bar magnet in an 
externally applied magnetic field undergoes the 
motion called precession as it twists round the direc-
tion of the field (Fig. 21.3). The rate of precession is
proportional to the strength of the applied field, and
is in fact equal to (γN/2π)B, which in this context is
called the Larmor precession frequency. That is, res-
onance absorption occurs when the Larmor preces-
sion frequency is the same as the frequency of the
applied electromagnetic field.

   
k =

γ NB

2π

   
N N

N
kTα β− ≈

γ NHB

2

Magnetic
field

Precession

Magnet

(a) (b)

Fig. 21.3 A bar magnet in a magnetic field undergoes the
motion called precession. A nuclear spin (and an electron
spin) has an associated magnetic moment, and behaves in
the same way. The frequency of precession is called the
Larmor precession frequency, and is proportional to the 
applied field and the magnitude of the magnetic moment.

Self-test 21.1

Calculate the frequency at which radiation comes into
resonance with proton spins in a 12 T magnetic field.

[Answer: 510 MHz]

Derivation 21.2

Intensities in NMR spectra

From the general considerations of transition intensities
in Further information 20.2, we know that the rate of 
absorption of electromagnetic radiation is proportional to
the population of the lower energy state (Na in the case
of a proton NMR transition) and the rate of stimulated
emission is proportional to the population of the upper
state (Nb). At the low frequencies typical of magnetic
resonance, we can neglect spontaneous emission as it
is very slow. Therefore, the net rate of absorption is pro-
portional to the difference in populations, and we can write

Rate of transition ∝ Na − Nb

The intensity of absorption, the rate at which energy is
absorbed, is proportional to the product of the rate of
transition (the rate at which photons are absorbed) and
the energy of each photon, and the latter is proportional
to the frequency V of the incident radiation. At resonance,
this frequency is proportional to the applied magnetic
field, so we can write

Intensity of absorption ∝ (Na − Nb)B

with the population difference proportional to the field
(eqn 21.12).

See an animated version of this figure in the 
interactive ebook.

The intensity of an NMR transition depends on a
number of factors. We show in Derivation 21.2 that

Intensity ∝ (Nα − Nβ)B ∝ B2 (21.14)

It follows that decreasing the temperature increases
the intensity by increasing the population difference.
The intensity can also be enhanced significantly by
increasing the strength of the applied magnetic 
field, making spectrometers operating at high fields 
highly desirable. Similar arguments apply to EPR
transitions.

21.2 The technique

In its simplest form, nuclear magnetic resonance
(NMR) is observation of the frequency at which
magnetic nuclei in molecules come into resonance
with an electromagnetic field when the molecule is
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exposed to a strong magnetic field. When applied to
proton spins, the technique is occasionally called
proton magnetic resonance (1H-NMR). In the early
days of the technique the only nuclei that could be
studied were protons (which behave like relatively
strong magnets because γN is large), but now a wide
variety of nuclei (especially 13C, 31P, and 15N) are 
investigated routinely.

An NMR spectrometer consists of a magnet that
can produce a uniform, intense field and the appro-
priate sources of radiofrequency radiation (Fig. 21.4).
In simple instruments the magnetic field is provided
by an electromagnet; for serious work, a supercon-
ducting magnet capable of producing fields of the
order of 10 T and more is used. (A magnetic field of
10 T is very strong: a small magnet, for example, gives
a magnetic field of only a few millitesla.) The use of
high magnetic fields has two advantages. One is that,
as we have seen, the field increases the intensities 
of transitions. Secondly, a high field simplifies the 
appearance of certain spectra. Proton resonance 
occurs at about 400 MHz in fields of 9.4 T, so NMR
is a radio-frequency technique (400 MHz corres-
ponds to a wavelength of 75 cm).

Fourier transform NMR (FT-NMR) is the most
common technique used in modern magnetic reson-
ance. The sample is held in a strong magnetic field
generated by a superconducting magnet and exposed
to one or more carefully controlled brief bursts of 
radiofrequency radiation. This radiation changes 
the orientations of the nuclear spins in a controlled
way, and the radiofrequency radiation they emit as
they return to equilibrium is monitored and analysed
mathematically (the latter is the ‘Fourier transform’
part of the technique). The detected radiation con-
tains all the information in the spectrum obtained by

the earlier technique, but it is a much more eAcient
way of obtaining the spectrum and hence is much
more sensitive. Moreover, by choosing different 
sequences of exciting pulses, the data can be analysed
much more closely.

The resonance technique for electrons in a mag-
netic field is called electron paramagnetic resonance
(EPR) or electron spin resonance (ESR). Because
electron magnetic moments are much bigger than 
nuclear magnetic moments, even quite modest fields
can require high frequencies to achieve resonance.
Much work is done using fields of about 0.3 T, when
resonance occurs at about 9 GHz, corresponding 
to 3 cm (‘X-band’) microwave radiation or at about
1 T, when resonance occurs at about 35 GHz, cor-
responding to about 9 mm (‘Q-band’) microwave 
radiation. Electron paramagnetic resonance is much
more limited than NMR because it is applicable only
to species with unpaired electrons, which include
radicals (perhaps prepared by radiation damage or
photolysis) and d-metal complexes, including such
biologically active species as haemoglobin. However,
it gives valuable information about electron distribu-
tions and can be used to monitor, for instance, the
uptake of oxygen by haemoglobin and biological
electron transfer processes.

Both Fourier-transform (FT) and continuous-wave
(CW) EPR spectrometers are available. The FT-EPR
instrument is like an FT-NMR spectrometer except
that pulses of microwaves are used to excite electron
spins in the sample. The layout of the more common
CW-EPR spectrometer is shown in Fig. 21.5. It con-
sists of a microwave source (a klystron or a Gunn 
oscillator), a cavity in which the sample is inserted in
a glass or quartz container, a microwave detector,
and an electromagnet with a field that can be varied
in the region of 0.3 T (X-band) or 1 T (Q-band).

Superconducting
magnet

Probe

Preamplifier

Transmitter

ReceiverDetector

Computer

Fig. 21.4 The layout of a typical NMR spectrometer. The link
from the transmitter to the detector indicates that the high
frequency of the transmitter is subtracted from the high- 
frequency received signal to give a low-frequency signal for
processing.

Phase-
sensitive
detector

Modulation
input

Microwave
source

Detector

Sample
cavity

Electromagnet

Fig. 21.5 The layout of a continuous-wave EPR spectrometer.
A typical magnetic field is 0.3 T, which requires microwaves
of frequency 9 GHz (wavelength 3 cm) for resonance.



CHAPTER 21: SPECTROSCOPY: MAGNETIC RESONANCE504

The information in NMR spectra

Nuclear spins interact with the local magnetic field,
the field in their immediate vicinity. The local field
may differ from the applied field either on account 
of the local electronic structure of the molecule or 
because there is another magnetic nucleus nearby.

21.3 The chemical shift

The applied magnetic field can induce a circulating
motion of the electrons in the molecule, and that 
motion gives rise to a small additional magnetic field,
Badd. This additional field is proportional to the applied
field, and it is conventional to express it as

Badd = −σB (21.15)

where the dimensionless quantity σ is the shielding
constant. The shielding constant may be positive or
negative according to whether the induced field adds
to or subtracts from the applied field. The ability of
the applied field to induce the circulation of electrons
through the nuclear framework of the molecule 
depends on the details of the electronic structure near
the magnetic nucleus of interest, so nuclei in different
chemical groups have different shielding constants.

Because the total local field is

Bloc = B + Badd = (1 − σ)B

the resonance condition is

(21.16)

Because σ varies with the environment, different nuclei
(even of the same element in different parts of a mole-
cule) come into resonance at different frequencies.

The chemical shift of a nucleus is the difference 
between its resonance frequency and that of a refer-
ence standard. The standard for protons is the proton
resonance in tetramethylsilane, Si(CH3)4, commonly
referred to as TMS, which bristles with protons and
dissolves without reaction in many solutions. Other
references are used for other nuclei. For 13C, the 
reference frequency is the 13C resonance in TMS, and
for 31P it is the 31P resonance in 85 per cent H3PO4(aq).
The separation of the resonance of a particular group
of nuclei from the standard increases with the strength
of the applied magnetic field because the induced field
is proportional to the applied field, and the stronger
the latter, the greater the shift.

Chemical shifts are reported on the δ scale, which
is defined as
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(21.17)

where v° is the resonance frequency of the standard.
The advantage of the δ scale is that shifts reported on
it are independent of the applied field (because both
numerator and denominator are proportional to the
applied field). The resonance frequencies themselves,
however, do depend on the applied field through

k = k° + (k°/106)δ (21.18)

A note on good practice In much of the literature, chemical
shifts are reported in parts per million, ppm, in recognition of
the factor of 106 in the definition; this is unnecessary. If you
see ‘d = 10 ppm’, interpret it, and use it in eqn 21.18, as d = 10.

A brief illustration A nucleus with d = 1.00 in a spec-
trometer operating at 500 MHz, a ‘500 MHz NMR spec-
trometer’, will have a shift relative to the reference equal to

V − V ° = (500 MHz/106) × 1.00 = (500 Hz) × 1.00 = 500 Hz

because 1 MHz = 106 Hz. In a spectrometer operating at
100 MHz, the shift relative to the reference would be only
100 Hz.

  
δ =

− °
°

×
k k

k
106

Self-test 21.2

What is the shift of the resonance from TMS of a group
of nuclei with d = 3.50 and an operating frequency of 
350 MHz?

[Answer: 1.23 kHz]

If δ > 0, we say that the nucleus is deshielded; if 
δ < 0, then it is shielded. A positive δ indicates that
the resonance frequency of the group of nuclei in
question is higher than that of the standard. Hence 
δ > 0 indicates that the local magnetic field is stronger
than that experienced by the nuclei in the standard
under the same conditions. Figure 21.6 shows some
typical chemical shifts.

A brief illustration The existence of a chemical shift
explains the general features of the spectrum of ethanol
shown in Fig. 21.7. The CH3 protons form one group of
nuclei with d = 1. The two CH2 are in a different part of 
the molecule, experience a different local magnetic field,
and hence resonate at d = 3. Finally, the OH proton is in 
another environment, and has a chemical shift of d = 4.

A note on good practice Traditionally, NMR spectra are
plotted with d increasing from right to left. Consequently, in a
given applied magnetic field the resonance frequency also in-
creases from right to left.

We can use the relative intensities of the signal (the
areas under the absorption lines) to help distinguish
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group contribution, σ(neighbour), is the contribu-
tion from the groups of atoms that form the rest of
the molecule. The solvent contribution, σ(solvent), is
the contribution from the solvent molecules.

The local contribution is broadly proportional to
the electron density of the atom containing the nucleus
of interest. It follows that the shielding is decreased if
the electron density on the atom is reduced by the
influence of an electronegative atom nearby. That 
reduction in shielding translates into an increase in
deshielding, and hence to an increase in the chemical
shift δ as the electronegativity of a neighbouring atom
increases (Fig. 21.8). That is, as the electronegativity
increases, δ decreases. Another contribution to σ(local)
arises from the ability of the applied field to force the
electrons to circulate through the molecule by mak-
ing use of orbitals that are unoccupied in the ground
state. This contribution is large in molecules with
low-lying excited states and is dominant for atoms
other than hydrogen. It is zero in free atoms and
around the axes of linear molecules (such as ethyne,
HCyCH) where the electrons can circulate freely,
because a field applied along the internuclear axis is
unable to force them into other orbitals.

The neighbouring group contribution arises from
the currents induced in nearby groups of atoms. The
strength of the additional magnetic field the proton
experiences is inversely proportional to the cube of
the distance r between H and X. A special case of 
a neighbouring group effect is found in aromatic
compounds. The strong anisotropy of the magnetic
susceptibility of the benzene ring is ascribed to the
ability of the field to induce a ring current, a circulation

14 12 10 8 6 4 2 0

Chemical shift,

–COOH
–CHO

Ar–H
ArOH
–C=CH–

ROH
–COOCH3

ArOCH3

RCOCH3

–CH–
R–NH2

–CH2–
RCH3

δ

Fig. 21.6 The range of typical chemical shifts for 1H 
resonances.

CH3CH2OH

CH3CH2OH

CH3CH2OH

Magnetic field strength

Fig. 21.7 The NMR spectrum of ethanol. The bold letters 
denote the protons giving rise to the resonance peak, and 
the step-like curves are the integrated signals for each group
of lines.

which group of lines corresponds to which chemical
group, and spectrometers can integrate the absorption
—that is, determine the areas under the absorption
signal—automatically (as is shown in Fig. 21.7). In
ethanol the group intensities are in the ratio 3:2:1 
because there are three CH3 protons, two CH2 pro-
tons, and one OH proton in each molecule. Counting
the number of magnetic nuclei as well as noting their
chemical shifts is valuable analytically because it
helps us identify the compound present in a sample
and to identify substances in different environments
(Box 21.1).

The observed shielding constant is the sum of three
contributions:

σ = σ(local) + σ(neighbour) + σ(solvent) (21.19)

The local contribution, σ(local), is essentially the
contribution of the electrons of the atom that 
contains the nucleus in question. The neighbouring
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Fig. 21.8 The variation of chemical shift with the electroneg-
ativity of the halogen in the haloalkanes. Note that although the
chemical shift of the immediately adjacent protons becomes
more positive (the protons are deshielded) as the electroneg-
ativity increases, that of the next-nearest protons decreases.
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In a magnetic field that varies linearly over a sample, all the
protons within a given slice (that is, at a given field value)
come into resonance and give a signal of the correspond-
ing intensity. The resulting intensity pattern is a map of the
numbers in all the slices, and portrays the shape of the sam-
ple. Changing the orientation of the field shows the shape
along the corresponding direction, and computer manipula-
tion can be used to build up the three-dimensional shape of
the sample.

Box 21.1 Magnetic resonance imaging

One of the most striking applications of nuclear magnetic
resonance is in medicine. Magnetic resonance imaging (MRI)
is a portrayal of the concentrations of protons in a solid 
object. The technique relies on the application of specific
pulse sequences to an object in an inhomogeneous mag-
netic field (a field with values that vary inside the sample).

If an object containing hydrogen nuclei (a tube of water 
or a human body) is placed in an NMR spectrometer and 
exposed to a homogeneous magnetic field (a field that has
the same value throughout the sample), then a single reson-
ance signal will be detected. Now consider a flask of water
in a magnetic field that varies linearly in the z direction 
according to B0 + Gzz, where Gz if the field gradient along
the z direction (see the first illustration). Then the water pro-
tons will be resonant at the frequencies

(Similar equations may be written for gradients along the x
and y directions.) Exposing the sample to radiation with fre-
quency V (z) will result in a signal with an intensity that is pro-
portional to the numbers of protons at the position z. This is
an example of slice selection, the use of radio-frequency 
radiation that excites nuclei in a specific region, or slice, of
the sample. It follows that the intensity of the NMR signal
will be a projection of the numbers of protons on a line par-
allel to the field gradient. The image of a three-dimensional
object such as a flask of water can be obtained if the slice
selection technique is applied at different orientations (see
the first illustration). In projection reconstruction, the projec-
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The great advantage of MRI is that it can display soft tissue,
such as in this cross-section through a patient’s head.
[Courtesy of the University of Manitoba.]

tions can be analysed on a computer to reconstruct the
three-dimensional distribution of protons in the object.

A common problem with the techniques described above
is image contrast, which must be optimized in order to show
spatial variations in water content in the sample. One strategy
for solving this problem takes advantage of the fact that the
relaxation times of water protons are shorter for water in 
biological tissues than for the pure liquid. Furthermore, 
relaxation times from water protons are also different 
in healthy and diseased tissues. A T1-weighted image is 
obtained by obtaining data before spin–lattice relaxation can
return the spins in the sample to equilibrium. Under these
conditions, differences in signal intensities are directly related
to differences in T1. A T2-weighted image is obtained by col-
lecting data after the system has relaxed extensively, though
not completely. In this way, signal intensities are strongly
dependent on variations in T2. However, allowing so much of
the decay to occur leads to weak signals even for those pro-
tons with long spin–spin relaxation times. Another strategy
involves the use of contrast agents, paramagnetic com-
pounds that shorten the relaxation times of nearby protons.
The technique is particularly useful in enhancing image con-
trast and in diagnosing disease if the contrast agent is dis-
tributed differently in healthy and diseased tissues.

The MRI technique is used widely to detect physiological
abnormalities and to observe metabolic processes. With
functional MRI, blood flow in different regions of the brain
can be studied and related to the mental activities of the
subject. The special advantage of MRI is that it can image
soft tissues (see the second illustration), whereas X-rays
are largely used for imaging hard, bony structures and 
abnormally dense regions, such as tumours. In fact, the 
invisibility of hard structures in MRI is an advantage, as it 
allows the imaging of structures encased by bone, such as
the brain and the spinal cord. X-rays are known to be dan-
gerous on account of the ionization they cause; the high
magnetic fields used in MRI may also be dangerous, but
apart from anecdotes about the extraction of loose fillings
from teeth, there is no convincing evidence of their harm-
fulness, and the technique is considered safe.
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of electrons around the ring, when it is applied perpen-
dicular to the molecular plane. Protons in the plane
are deshielded (Fig. 21.9), but any that happen to lie
above or below the plane (as members of substituents
of the ring) are shielded.

A solvent can influence the local magnetic field 
experienced by a nucleus in a variety of ways. Some of
these effects arise from specific interactions between
the solute and the solvent (such as hydrogen-bond
formation and other forms of Lewis acid–base com-
plex formation). The magnetic susceptibility of the
solvent molecules, especially if they are aromatic, can
also be the source of a local magnetic field. Moreover,
if there are steric interactions that result in a loose but
specific interaction between a solute molecule and a
solvent molecule, then protons in the solute molecule
may experience shielding or deshielding effects accord-
ing to their location relative to the solvent molecule
(Fig. 21.10). We shall see that the NMR spectra of
species that contain protons with widely different
chemical shifts are easier to interpret than those in
which the shifts are similar, so the appropriate choice
of solvent may help to simplify the appearance and
interpretation of a spectrum.

21.4 The fine structure

The splitting of the groups of resonances into indi-
vidual lines in Fig. 21.7 is called the fine structure of
the spectrum. It arises because each magnetic nucleus
contributes to the local field experienced by the other
nuclei and modifies their resonance frequencies. The
strength of the interaction is expressed in terms of 
the spin–spin coupling constant, J, and reported in
hertz (Hz). Spin coupling constants are an intrinsic

property of the molecule and independent of the
strength of the applied field.

In NMR, letters far apart in the alphabet (typically
A and X) are used to indicate nuclei with very dif-
ferent chemical shifts; letters close together (such as
A and B) are used for nuclei with similar chemical
shifts. Let’s consider first a molecule that contains
two spin- nuclei A and X. First, neglect spin–spin
coupling. The total energy of two protons in a mag-
netic field B is the sum of two terms like eqn 21.11
but with B modified to (1 − σ)B:

E = −γNH(1 − σA)BmA − γNH(1 − σX)BmX

Here σA and σX are the shielding constants of A and
X. The four energy levels predicted by this formula
are shown on the left of Fig. 21.11. The spin–spin
coupling energy is normally written

Espin–spin = hJmAmX (21.20)
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Fig. 21.9 The shielding and deshielding effects of the ring
current induced in the benzene ring by the applied field. Pro-
tons attached to the ring are deshielded but a proton attached
to a substituent that projects above the ring is shielded.

Magnetic
field due to
ring current

Fig. 21.10 An aromatic solvent (benzene here) can give rise
to local currents that shield or deshield a proton in a solvent
molecule. In this relative orientation of the solvent and 
solute, the proton on the solute molecule is shielded.
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Fig. 21.11 The energy levels of a two-proton system in the
presence of a magnetic field. The levels on the left apply in
the absence of spin–spin coupling. Those on the right are the
result of allowing for spin–spin coupling. The only allowed
transitions differ in frequency by J.
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There are four possibilities, depending on the values
of the quantum numbers mA and mX:

αAαX αAβX βAαX βAβX

Espin–spin + hJ − hJ − hJ + hJ

The resulting energy levels are shown on the right in
Fig. 21.11.

Now consider the transitions. When an A nucleus
changes its spin from α to β, the X nucleus remains in
its same spin state, which may be either α or β. The
two transitions are shown in the figure and we see
that they differ in frequency by J. Alternatively, the X
nucleus can undergo a transition from α to β; now
the A nucleus remains in its same spin state, which may
be either α or β, and again there are two transitions
differing in frequency by J. As a result, the spectrum
consists of a doublet of lines separated by a frequency
J (Fig. 21.12).

If there is another X nucleus in the molecule with
the same chemical shift as the first X (giving an AX2
species), the resonance of A is split into a doublet 
by one X, and each line of the doublet is split again
by the same amount by the second X (Fig. 21.13).
This splitting results in three lines in the intensity
ratio 1:2:1 (because the central frequency can be 
obtained in two ways). As in the AX case discussed
above, the X resonance of the AX2 species is split
into a doublet by A.

Three equivalent X nuclei (an AX3 species) split
the resonance of A into four lines of intensity ratio
1:3:3:1 (Fig. 21.14). The X resonance remains a 
doublet as a result of the splitting caused by A. In
general, N equivalent spin- nuclei split the reson-
ance of a nearby spin or group of equivalent spins

1
2

1
4

1
4

1
4

1
4

J J

A resonance X resonance

A A

XX

Fig. 21.12 The effect of spin–spin coupling on a NMR 
spectrum of two spin- nuclei with widely different chemical
shifts. Each resonance is split into two lines separated 
by J. Full circles indicate a spins, open circles indicate b
spins.
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A resonance

A A

A A AAAA

Fig. 21.14 The origin of the 1:3:3:1 quartet in the A reson-
ance of an AX3 species where A and X are spin- nuclei 
with widely different chemical shifts. There are 23 = 8 
arrangements of the spins of the three X nuclei, and their 
effects on the A nucleus give rise to four groups of 
resonances.

1
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Self-test 21.3

Complete the next line of the triangle, the pattern arising
from five equivalent protons.

[Answer: 1:5:10:10:5:1]

A resonance

A

A A

A

Fig. 21.13 The origin of the 1:2:1 triplet in the A resonance 
of an AX2 species. The two X nuclei may have the 22 = 4 spin
arrangements (↑↑); (↑↓); (↓↑); (↓↓). The middle two arrange-
ments are responsible for the coincident resonances of A.

into N + 1 lines with an intensity distribution given
by Pascal’s triangle (1). Successive rows of this 
triangle are formed by adding together the two adja-
cent numbers in the line above.

14641

1331

121

1

1

1

1 Pascal’s triangle
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The spin–spin coupling constant of two nuclei
joined by N bonds is normally denoted NJ, with sub-
scripts for the types of nuclei involved. Thus, 1JCH is
the coupling constant for a proton joined directly to
a 13C atom, and 2JCH is the coupling constant when
the two nuclei are separated by two bonds (as in
13C—C—H). A typical value of 1JCH is between 102

to 103 Hz; the value of 2JCH is about 10 times less, 
between about 10 and 102 Hz. Both 3J and 4J give 
detectable effects in a spectrum, but couplings over
larger numbers of bonds can generally be ignored.

A brief illustration Figure 21.15 shows the 1H-NMR
spectrum of diethyl ether, (CH3CH2)2O. The resonance at
d = 3.4 corresponds to CH2 in an ether; that at d = 1.2 cor-
responds to CH3 in CH3CH2. As we saw in Example 21.1,
the fine structure of the CH2 group (a 1:3:3:1 quartet) 

is characteristic of splitting caused by CH3; the fine struc-
ture of the CH3 resonance is characteristic of splitting
caused by CH2. The spin–spin coupling constant is J =
−60 Hz (the same for each group). If the spectrum had
been recorded with a spectrometer operating at five times
the magnetic field strength, the groups of lines would
have been observed to be five times further apart in fre-
quency (but the same d values). No change in spin–spin
splitting would be observed.

The magnitude of 3JHH depends on the dihedral
angle, φ, between the two C—H bonds (2). The vari-
ation is expressed quite well by the Karplus equation:

3JHH = A + B cos φ + C cos 2φ (21.21)

Self-test 21.4

What fine structure can be expected for the protons in
14NH4

+? The nuclear spin quantum number of 14N is 1.
[Answer: a 1:1:1 triplet from 14N]

Example 21.1

Accounting for the fine structure in a spectrum

Account for the fine structure in the 1H-NMR spectrum
of the C—H protons of ethanol.

Strategy Refer to Pascal’s triangle to determine the 
effect of a group of N equivalent protons on a proton, or
(equivalently) a group of protons, of interest.

Solution The three protons of the CH3 group split the
single resonance of the CH2 protons into a 1:3:3:1 quartet
with a splitting J. Likewise, the two protons of the CH2

group split the single resonance of the CH3 protons into
a 1:2:1 triplet. Each of these lines is split into a doublet to
a small extent by the OH proton.

60 Hz

4 3 2 1
Chemical shift, δ

Fig. 21.15 The NMR spectrum considered in the illustration.
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Fig. 21.16 The variation of 3JHH with angle, according
to the Karplus equation. The orange line is for H—C—

C—H and the green line for H—N—C—H.
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Typical values of A, B, and C are +7 Hz, −1 Hz, and
+5 Hz, respectively. Figure 21.16 shows the angular
variation predicted by the equation. It follows that
the measurement of 3JHH in a series of related com-
pounds can be used to determine their conformations.
The coupling constant 1JCH also depends on the 
hybridization of the C atom:

sp sp2 sp3

1JCH/Hz: 250 160 125
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Spin–spin coupling in molecules in solution can be
explained in terms of the polarization mechanism, in
which the interaction is transmitted through the bonds.
The simplest case to consider is that of 1JXY, where X
and Y are spin- nuclei joined by an electron-pair bond
(Fig. 21.17). The coupling mechanism depends on the
fact that in some atoms it is favourable for the nucleus
and a nearby electron spin to be parallel (both α or
both β), but in others it is favourable for them to be
antiparallel (one α and the other β). The electron– 
nucleus coupling is magnetic in origin, and may be 
either a dipolar interaction (Section 15.3) between
the magnetic moments of the electron and nuclear
spins or a Fermi contact interaction, an interaction
that depends on the very close approach of an elec-
tron to the nucleus and hence can occur only if the
electron occupies an s orbital. We shall suppose that
it is energetically favourable for an electron spin and
a nuclear spin to be antiparallel (as is the case for a
proton and an electron in a hydrogen atom), either
αeβN or βeαN, where we are using the labels e and N
to distinguish the electron and nucleus spins.

If the X nucleus is αX, a β electron of the bonding
pair will tend to be found nearby (because that is 
energetically favourable for it). The second electron
in the bond, which must have α spin if the other is β,
will be found mainly at the far end of the bond 
(because electrons tend to stay apart to reduce their
mutual repulsion). Because it is energetically favour-
able for the spin of Y to be antiparallel to an electron
spin, a Y nucleus with β spin has a lower energy than
a Y nucleus with α spin:

1
2

Low energy: αXβe. . .αeβY

High energy: αXβe. . .αeαY

The opposite is true when X is β, for now the α spin
of Y has the lower energy:

Low energy: βXαe. . .βeαY

High energy: βXαe. . .βeβY

In other words, antiparallel arrangements of nuclear
spins (αXβY and βXαY) lie lower in energy than par-
allel arrangements (αXαY and βXβY) as a result of
their magnetic coupling with the bond electrons.
That is, 1JHH is positive, for then hJmXmY is negative
when mX and mY have opposite signs.

To account for the value of 2JXY, as in H—C—H,
we need a mechanism that can transmit the spin
alignments through the central C atom (which may
be 12C, with no nuclear spin of its own). In this case
(Fig. 21.18), an X nucleus with α spin polarizes the
electrons in its bond, and the α electron is likely to be
found closer to the C nucleus. The more favourable
arrangement of two electrons on the same atom is
with their spins parallel (Hund’s rule, Section 13.4d),
so the more favourable arrangement is for the α elec-
tron of the neighbouring bond to be close to the C
nucleus. Consequently, the β electron of that bond is
more likely to be found close to the Y nucleus, and
therefore that nucleus will have a lower energy if it is α:

Low energy: αXβe. . .αe[C]αe. . .βeαY
High energy: αXβe. . .αe[C]αe. . .βeβY

Low energy: βXαe. . .βe[C]βe. . .αeβY
High energy: βXαe. . .βe[C]βe. . .αeαY

Hence, according to this mechanism, the energy of 
Y will be obtained if its spin is parallel (αXαY and
βXβY) to that of X. That is, 2JHH is negative for then
hJmXmY is negative when mX and mY have the same
sign.
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Fermi Pauli Fermi

Fig. 21.17 The polarization mechanism for 1JHH spin–spin
coupling. The two arrangements have slightly different 
energies. In this case, J is positive, corresponding to a lower
energy when the nuclear spins are antiparallel.

Fermi Fermi

Pauli Pauli

Hund

Fig. 21.18 The polarization mechanism for 2JHH spin–spin
coupling. The spin information is transmitted from one bond
to the next by a version of the mechanism that accounts for
the lower energy of electrons with parallel spins in different
atomic orbitals (Hund’s rule of maximum multiplicity). In this
case, J < 0, corresponding to a lower energy when the 
nuclear spins are parallel.

A brief illustration The investigation of H—N—C—H
couplings in polypeptides can help reveal their conforma-
tion. For 3JHH coupling in such a group, A = +5.1 Hz, B =
−1.4 Hz, and C = +3.2 Hz. For an a-helix, f is close to 120°,
which would give 3JHH ≈ 4 Hz. For a b-sheet, f is close to
180°, which would give 3JHH ≈ 10 Hz. Consequently, small
coupling constants indicate an a-helix, whereas large cou-
plings indicate a b-sheet.
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The coupling of nuclear spin to electron spin by
the Fermi contact interaction is most important 
for proton spins, but it is not necessarily the most 
important mechanism for other nuclei. These nuclei
may also interact by a dipolar mechanism with the
electron magnetic moments and with their orbital
motion, and there is no simple way of specifying
whether J will be positive or negative.

21.5 Spin relaxation

As resonant absorption continues, the population of
the upper state rises to match that of the lower state.
From eqn 21.14, we can expect the intensity of the
absorption signal to decrease with time as the popu-
lations of the spin states equalize. This decrease due
to the progressive equalization of populations is
called saturation.

The fact that saturation is often not observed, 
especially when the radio-frequency power is kept
low, must mean that there are nonradiative processes
by which β nuclear spins can release energy to 
become α spins again, and hence help to maintain 
the population difference between the two sites. The
nonradiative return to an equilibrium distribution 
of populations in a system (eqn 21.9a) is an aspect of
the process called relaxation. If we were to imagine
forming a system of spins in which all the nuclei were
in their β state, then the system returns exponentially
to the equilibrium distribution (a small excess of α
spins over β spins) with a time constant called the
spin–lattice relaxation time, T1 (Fig. 21.19).

However, there is another, more subtle aspect of
relaxation. Consider the classical picture of magnetic
nuclei (Section 21.1) and imagine that somehow 

we have arranged all the spins in a sample to have 
exactly the same angle around the field direction at
an instant. If each spin has a slightly different Larmor
frequency (because they experience slightly different
local magnetic fields), they will gradually fan out. At
thermal equilibrium, all the bar magnets lie at ran-
dom angles round the direction of the applied field,
and the time constant for the exponential return of
the system into this random arrangement is called the
spin–spin relaxation time, T2 (Fig. 21.20). For spins
to be truly at thermal equilibrium, not only is the ratio
of populations of the spin states given by eqn 21.9a,
but the spin orientations must be random around the
field direction.

What causes each type of relaxation? In each case the
spins are responding to local magnetic fields that act
to twist them into different orientations. However,
there is a crucial difference between the two processes.

The best kind of local magnetic field for inducing a
transition from β to α (as in spin–lattice relaxation)
is one that fluctuates at a frequency close to the 
resonance frequency. Such a field can arise from the
tumbling motion of the molecule in the fluid sample.
If the tumbling motion of the molecule is slow com-
pared to the resonance frequency, it will give rise to 
a fluctuating magnetic field that oscillates too slowly
to induce transitions, so T1 will be long. If the mole-
cule tumbles much faster than the resonance fre-
quency, then it will give rise to a fluctuating magnetic
field that oscillates too rapidly to induce transitions,
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Fig. 21.19 The spin–lattice relaxation time is the time con-
stant for the exponential return of the population of the spin
states to their equilibrium (Boltzmann) distribution.

e–t/T2

Random
phases

Fig. 21.20 The spin–spin relaxation time is the time constant
for the exponential return of the spins to a random distribu-
tion around the direction of the magnetic field. No change in
populations of the two spin states is involved in this type of
relaxation, so no energy is transferred from the spins to the
surroundings.

See an animated version of this figure in the 
interactive ebook.
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so T1 will again be long. Only if the molecule tumbles
at about the resonance frequency will the fluctuating
magnetic field be able to induce transitions effectively,
and only then will T1 be short. The rate of molecu-
lar tumbling increases with temperature and with 
reducing viscosity of the solvent, so we can expect a
dependence like that shown in Fig. 21.21.

The best kind of local magnetic field for causing
spin–spin relaxation is one that does not change very
rapidly. Then each molecule in the sample lingers in
its particular local magnetic environment for a long
time, and the orientations of the spins have time to
become randomized around the applied field direc-
tion. If the molecules move rapidly from one mag-
netic environment to another, the effects of different
magnetic fields average out, and the randomization
does not take place as quickly. In other words, slow
molecular motion corresponds to short T2 and fast
motion corresponds to long T2 (as shown in Fig.
21.21). Detailed calculation shows that when the
motion is fast, the two relaxation times are equal, as
has been drawn in the illustration.

Spin relaxation studies—using advanced techniques
that use complicated sequences of pulses of radio- 
frequency energy to stimulate the spins into special
orientations, and then monitoring their return to
equilibrium—have two main applications. First, they
reveal information about the mobility of molecules
or parts of molecules. For example, by studying spin-
relaxation times of protons in the hydrocarbon
chains of micelles and bilayers it is possible to build
up a detailed picture of the motion of these chains,
and hence come to an understanding of the dynamics
of cell membranes. Second, relaxation times depend

on the separation of the nucleus from the source of
the magnetic field that is causing its relaxation: that
source may be another magnetic nucleus in the same
molecule. By studying the relaxation times, the inter-
nuclear distances within the molecule can be deter-
mined and used to build up a model of its shape.

21.6 Proton decoupling

Nuclear magnetic resonance spectroscopy is used
widely to characterize newly synthesized organic
compounds. Consequently, in addition to proton
NMR spectra, 13C-NMR spectra are obtained rou-
tinely. Carbon-13 is a dilute spin species in the sense
that it is unlikely that more than one 13C nucleus will
be found in any given small molecule (provided the
sample has not been enriched with that isotope; the
natural abundance of 13C is only 1.1 per cent). Even
in large molecules, although more than one 13C 
nucleus may be present, it is unlikely that they will be
close enough to give an observable splitting. Hence,
it is not normally necessary to take into account
13C—13C spin–spin coupling within a molecule.

Protons are abundant-spin species in the sense that
a molecule is likely to contain many of them. If we
were observing a 13C-NMR spectrum, we would 
obtain a very complex spectrum on account of the
coupling of the one 13C nucleus with many of the
protons that are present. To avoid this diAculty,
13C-NMR spectra are normally observed using the
technique of proton decoupling. Thus, if the CH3
protons of ethanol are irradiated with a second,
strong, resonant radio-frequency pulse, they undergo
rapid spin reorientations and the 13C nucleus senses
an average orientation. As a result, its resonance is a
single line and not a 1:3:3:1 quartet. Proton decoup-
ling has the additional advantage of enhancing sen-
sitivity, because the intensity is concentrated into a
single transition frequency instead of being spread
over several transition frequencies. If care is taken 
to ensure that the other parameters on which the
strength of the signal depends are kept constant, the
intensities of proton-decoupled spectra are propor-
tional to the number of 13C nuclei present.

21.7 Conformational conversion and
chemical exchange

The appearance of an NMR spectrum is changed if
magnetic nuclei can jump rapidly between different
environments. Consider a molecule, such as N,N-
dimethylformamide, that can jump between con-
formations; in its case, the methyl shifts depend on
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Fig. 21.21 The variation of the two relaxation times with the
rate at which the molecules move (either by tumbling or mi-
grating through the solution). The horizontal axis can be inter-
preted as representing temperature or viscosity. Note that at
rapid rates of motion, the two relaxation times coincide.
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whether they are cis or trans to the carbonyl group
(Fig. 21.22). When the jumping rate is low, the 
spectrum shows two sets of lines, one each from
molecules in each conformation. When the intercon-
version is fast, the spectrum shows a single line at 
the mean of the two chemical shifts. At intermediate
inversion rates, the line is very broad. This maximum
broadening occurs when the lifetime, τ (tau), of a
conformation gives rise to a linewidth that is com-
parable to the difference of resonance frequencies, Δv,
and both broadened lines blend together into a very
broad line. Coalescence of the two lines occurs when

(21.22)
  
τ =

21 2/

πΔv

A similar explanation accounts for the loss of fine
structure in solvents able to exchange protons with
the sample. For example, hydroxyl protons are able
to exchange with water protons. When this chemical
exchange occurs, a molecule ROH with an α-spin pro-
ton (we write this ROHα) rapidly converts to ROHβ
and then perhaps to ROHα again because the protons
provided by the solvent molecules in successive 
exchanges have random spin orientations. Therefore,
instead of seeing a spectrum composed of contribu-
tions from both ROHα and ROHβ molecules (that 
is, a spectrum showing a doublet structure due to the
OH proton) we see a spectrum that shows no split-
ting caused by coupling of the OH proton (as in 
Fig. 21.7). The effect is observed when the lifetime of
a molecule due to this chemical exchange is so short
that the lifetime broadening is greater than the doub-
let splitting. Because this splitting is often very small
(a few hertz), a proton must remain attached to the
same molecule for longer than about 0.1 s for the
splitting to be observable. In water, the exchange
rate is much faster than that, so alcohols show no
splitting from the OH protons. In dry dimethylsul-
foxide (DMSO, (CH3)2SO), the exchange rate may
be slow enough for the splitting to be detected.

21.8 The nuclear Overhauser effect

An effect that makes use of spin relaxation is of 
considerable usefulness for the determination of 
the conformations of proteins and other biological
macromolecules in their natural aqueous environ-
ment. To introduce the effect, we consider a very
simple AX system in which the two spins interact by
a magnetic dipole–dipole interaction. We expect two
lines in the spectrum, one from A and the other from
X. However, when we irradiate the system with
radio-frequency radiation at the resonance frequency
of X using such a high intensity that we saturate the
transition, we find that the A resonance is modified.
It may be enhanced, diminished, or even converted
into an emission rather than an absorption. That
modification of one resonance by saturation of another
is called the nuclear Overhauser effect (NOE).

To understand the effect, we need to think about
the populations of the four levels of an AX system
(Fig. 21.23). At thermal equilibrium, the population
of the αAαX level is the greatest, and that of the βAβX
level is the least; the other two levels have the same
energy and an intermediate population. The thermal
equilibrium absorption intensities reflect these popu-
lations, as the figure shows. Now consider the com-
bined effect of saturating the X transition and spin

Fig. 21.22 When a molecule changes from one conforma-
tion to another, the positions of its protons are interchanged
and jump between magnetically distinct environments.

Self-test 21.5

What would you deduce from the observation of a
single line from the same molecule in a 300 MHz
spectrometer?

[Answer: Conformation lifetime less than 2.3 ms]

Example 21.2

Interpreting line broadening

The NO group in N,N-dimethylnitrosamine, (CH3)2N—NO,
rotates about the N—N bond and, as a result, the magnetic
environments of the two CH3 groups are interchanged.
In a 600 MHz spectrometer the two CH3 resonances are
separated by 390 Hz. At what rate of interconversion will
the resonance collapse to a single line?

Strategy Use eqn 21.22 for the average lifetimes of the
conformations. The rate of interconversion is the inverse
of their lifetime.

Solution With DV = 390 Hz,

It follows that the signal will collapse to a single line
when the interconversion rate exceeds about 830 s−1.

  
τ =

×
=−

21 2/

)p (390 s
1.2 ms1
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relaxation. When we saturate the X transition, the
populations of the X levels are equalized, but at this
stage there is no change in the populations of the A
levels. If that were all there were to happen, all we
would see would be the loss of the X resonance and
no effect on the A resonance.

Now consider the effect of spin relaxation. Relaxa-
tion can occur in a variety of ways if there is a dipolar
interaction between the A and X spins. One possibil-
ity is for the magnetic field acting between the two
spins to cause them both to flop from β to α, so the
αAαX and βAβX states regain their thermal equilib-
rium populations. However, the populations of the
αAβX and βAαX levels remain unchanged at the 
values characteristic of saturation. As we see from
Fig. 21.24, the population difference between the

states joined by transitions of A is now greater than at
equilibrium, so the resonance absorption is enhanced.
Another possibility is for the dipolar interaction 
between the two spins to cause α to flip to β and β to
flop to α. This transition equilibrates the populations
of αAβX and βAαX but leaves the αAαX and βAβX pop-
ulations unchanged (Fig. 21.25). Now we see from
the illustration that the population differences in the
states involved in the A transitions are decreased, so
the resonance absorption is diminished.

Which effect wins? Does NOE enhance the A 
absorption or does it diminish it? As in the discussion
of relaxation times in Section 21.5, the eAciency of
the intensity-enhancing βAβX ↔ αAαX relaxation is
high if the dipole field is modulated at the transition
frequency, which in this case is close to 2v; likewise,
the eAciency of the intensity-diminishing αAβX ↔
βAαX relaxation is high if the dipole field is stationary
(because there is no frequency difference between the
initial and final states). A large molecule rotates so
slowly that there is very little motion at 2v, so we 
expect intensity decrease (Fig. 21.26). A small mole-
cule rotating rapidly can be expected to have sub-
stantial motion at 2v, and a consequent enhancement
of the signal. In practice, the enhancement lies some-
where between the two extremes and is reported in
terms of the parameter η (eta), where

(21.23)

Here I0 is the normal intensity and I is NOE intensity
of a particular transition; theoretically, η lies between
−1 (diminution) and + (enhancement).1

2
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Fig. 21.23 The energy levels of an AX system and an indica-
tion of their relative populations. Each orange square above
the line represents an excess population and each white
square below the line represents a population deficit. The
transitions of A and X are marked.
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Fig. 21.24 (a) When the X transition is saturated, the populations of its two states are equalized and the population excess and
deficit become as shown (using the same symbols as in Fig. 21.23). (b) Dipole–dipole relaxation relaxes the populations of the
highest and lowest states, and they regain their original populations. (c) The A transitions reflect the difference in populations
resulting from the preceding changes, and are enhanced compared with those shown in Fig. 21.23.

See an animated version of this figure in the interactive ebook.
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The value of η depends strongly on the separation
of the two spins involved in the NOE, for the
strength of the dipolar interaction between two spins
separated by a distance r is proportional to 1/r3 and
its effect depends on the square of that strength, and
therefore on 1/r6. This sharp dependence on separa-
tion is used to build up a picture of the conformation
of a protein by using NOE to identify which nuclei
can be regarded as neighbours (Fig. 21.27). The
enormous importance of this procedure is that we
can determine the conformation of polypeptides in
an aqueous environment and do not need to try to
make the single crystals that are essential for an X-
ray diffraction investigation.

21.9 Two-dimensional NMR

An NMR spectrum contains a great deal of informa-
tion and, if many spins are present, is very complex,
for the fine structure of different groups of lines can
overlap. The complexity would be reduced if we
could use two axes to display the data, with reson-
ances belonging to different groups lying at different
locations on the second axis. This separation is essen-
tially what is achieved in two-dimensional NMR.

Much modern NMR work makes use of techniques
such as correlation spectroscopy (COSY) in which a
clever choice of pulses and Fourier transformation
techniques makes it possible to determine all spin–spin
couplings in a molecule. The COSY spectrum of an
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Fig. 21.25 (a) When the X transition is saturated, just as in Fig. 21.24 the populations of its two states are equalized and the popu-
lation excess and deficit become as shown. (b) Dipole–dipole relaxation relaxes the populations of the two intermediate states,
and they regain their original populations. (c) The A transitions reflect the difference in populations resulting from the preceding
changes, and are diminished compared with those shown in Fig. 21.23.

See an animated version of this figure in the interactive ebook.
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Fig. 21.26 The relaxation rates of the two types of relaxation
(as indicated by the small diagrams) as a function of the tum-
bling rate of the molecule.

Fig. 21.27 If a NOE experiment shows that the protons
within each of the two circles are coupled by a dipolar 
interaction, we can be confident that those protons are close
together, and therefore infer the conformation of the
polypeptide chain.
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AX system contains four groups of signals centred on
the two chemical shifts. Each group shows fine struc-
ture, consisting of a block of four signals separated
by JAX. The diagonal peaks are signals centred on
(δA,δA) and (δX,δX) and lie along the diagonal The
cross peaks (or off-diagonal peaks) are signals cen-
tred on (δA,δX) and (δX,δA) and owe their existence to
the coupling between A and X. Consequently, cross
peaks in COSY spectra allow us to map the couplings
between spins and to trace out the bonding network
in complex molecules. Figure 21.28 shows a simple
example of a proton COSY spectrum of 1-nitro-
propane, CH3CH2CH2NO2.

Although information from two-dimensional
NMR spectroscopy is trivial in an AX system, it can
be of enormous help in the interpretation of more
complex spectra. For example, a complex spectrum
from a synthetic polymer or a protein would be 
impossible to interpret in one-dimensional NMR 
but can be interpreted reasonably rapidly by two- 
dimensional NMR.

21.10 Solid-state NMR

The principal diAculty with the application of NMR
to solids is the low-resolution characteristic of solid
samples, leading to broadening and coalescence of
spectral lines into features that do not reveal useful
information. Nevertheless, there are good reasons for
seeking to overcome these diAculties. They include
the possibility that a compound of interest is unstable
in solution or that it is insoluble, so conventional 
solution NMR cannot be employed. Moreover, many
species are intrinsically interesting as solids and it is

important to determine their structural and dynamical
features. Synthetic polymers are particularly interest-
ing in this regard, and information can be obtained
about the arrangement of molecules, their conforma-
tions, and the motion of different parts of the chain.
This kind of information is crucial to an interpreta-
tion of the bulk properties of the polymer in terms 
of its molecular characteristics. Similarly, inorganic
substances, such as the zeolites that are used as
molecular sieves and shape-selective catalysts, can be
studied using solid-state NMR, and structural prob-
lems can be resolved that cannot be tackled by X-ray
diffraction.

Problems of resolution and linewidth are not the
only features that plague NMR studies of solids, but
the rewards are so great that considerable efforts
have been made to overcome them and have
achieved notable success. Because molecular rotation
has almost ceased (except in special cases, including
‘plastic crystals’ in which the molecules continue to
tumble), spin–lattice relaxation times are very long
but spin–spin relaxation times are very short. Hence,
in a pulse experiment, there is a need for lengthy 
delays—of several seconds—between successive pulses
so that the spin system has time to revert to equilib-
rium. Even gathering the murky information may
therefore be a lengthy process. Moreover, because lines
are so broad, very high powers of radio-frequency
radiation may be required to achieve saturation.
Whereas solution pulse NMR uses transmitters of 
a few tens of watts, solid-state NMR may require
transmitters rated at several hundreds of watts.

There are two principal contributions to the line-
widths of solids. One is the direct dipolar interaction
between nuclear spins. As we saw in the discussion of
spin–spin coupling, a nuclear magnetic moment will
give rise to a local magnetic field, which points in 
different directions at different locations around the
nucleus. If we are interested only in the component
parallel to the direction of the applied magnetic field
(because only this component has a significant effect),
then we can use a classical expression to write the
magnitude of the local magnetic field as

(21.24)

Unlike in solution, this field is not motionally aver-
aged to zero. Many nuclei may contribute to the 
total local field experienced by a nucleus of interest,
and different nuclei in a sample may experience a
wide range of fields. Typical dipole fields are of the
order of 10−3 T, which corresponds to splittings and
linewidths of the order of 104 Hz.

   
Bloc ( cos )= − −

γ μ
θ

H 0
3

2

4
1 3

m
R

I

π

1

1

2

2

3

3
4

4

δ

δ

Fig. 21.28 Proton COSY spectrum of 1-nitropropane. The off-
diagonal peaks show that the CH3 protons are coupled to the
central CH2 protons, which in turn are coupled to the terminal
CH2NO2 protons. (Spectrum provided by Prof. G. Morris.)
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A second source of linewidth is the anisotropy, or
dependence on orientation, of the chemical shift. We
have seen that chemical shifts arise from the ability 
of the applied field to generate electron currents in
molecules. In general, this ability depends on the 
orientation of the molecule relative to the applied
field. In solution, when the molecule is tumbling
rapidly, only the average value of the chemical shift
is relevant. However, the anisotropy is not averaged
to zero for stationary molecules in a solid, and mole-
cules in different orientations have resonances at 
different frequencies. The chemical shift anisotropy
also varies with the angle between the applied field
and the principal axis of the molecule as 1 − 3 cos2 θ.

Fortunately, there are techniques available for 
reducing the linewidths of solid samples. One tech-
nique, magic-angle spinning (MAS), takes note of 
the 1 − 3 cos2 θ dependence of both the dipole–dipole
interaction and the chemical shift anisotropy. The
‘magic angle’ is the angle at which 1 − 3 cos2 θ = 0,
and corresponds to 54.74°. In the technique, the
sample is spun at high speed at the magic angle to 
the applied field (Fig. 21.29). All the dipolar inter-
actions and the anisotropies average to the value they
would have at the magic angle; but at that angle they
are zero. The diAculty with MAS is that the spinning
frequency must not be less than the width of the spec-
trum, which is of the order of kilohertz. However,
gas-driven sample spinners that can be rotated at up
to 25 kHz are now routinely available, and a con-
siderable body of work has been done.

Pulsed techniques similar to those described in 
the previous section may also be used to reduce line-
widths. The dipolar field of protons, for instance,
may be reduced by a decoupling procedure. How-
ever, because the range of coupling strengths is so
large, radio-frequency power of the order of 1 kW is
required. Elaborate pulse sequences have also been
devised that reduce linewidths by averaging proced-

ures that make use of twisting the magnetization 
vector through an elaborate series of angles.

The information in EPR spectra

An EPR spectrum is obtained by monitoring the micro-
wave absorption as the field is changed, and a typical
spectrum (of the benzene radical anion, C6H6

−) is
shown in Fig. 21.30. The peculiar appearance of the
spectrum, which is in fact the first derivative of the
absorption, arises from the detection technique,
which is sensitive to the slope of the absorption curve
(Fig. 21.31).

21.11 The g-value

Equation 21.10 gives the resonance frequency for a
transition between the ms = − and the ms = + levels1

2
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54.74°

Spin
axis

Magnetic field

Fig. 21.29 In magic angle spinning, the sample spins at 54.74°
(that is, arccos 1/2) to the applied magnetic field. Rapid 
motion at this angle averages dipole–dipole interactions and
chemical shift anisotropies to zero.
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Fig. 21.30 The ESR spectrum of the benzene radical anion,
C6H6

−, in fluid solution. a is the hyperfine splitting of the 
spectrum; the centre of the spectrum is determined by the 
g-value of the radical.
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Fig. 21.31 When phase-sensitive detection is used, the sig-
nal is the first derivative of the absorption intensity. Note that
the peak of the absorption corresponds to the point where
the derivative passes through zero.
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of a ‘free’ electron in terms of the g-value ge ≈ 2.0023.
The magnetic moment of an unpaired electron in a
radical also interacts with an external field, but the 
g-value is different from that of a free electron on 
account of local magnetic fields induced in the mole-
cular framework of the radical. Consequently, the
resonance condition is normally written as

hv = gμBB (21.25)

where g is the g-value of the radical. Many organic
radicals have g-values close to 2.0027; inorganic 
radicals have g-values typically in the range 1.9–2.1;
paramagnetic d-metal complexes have g-values in a
wider range (for example, 0 to 6).

The deviation of g from ge = 2.0023 depends on
the ability of the applied field to induce local electron
currents in the radical, and therefore its value gives
some information about electronic structure. In that
sense, the g-value in EPR plays a similar role to the
shielding constants in NMR. However, because g-
values differ very little from ge in many radicals (for
instance, 2.003 for H, 1.999 for NO2, and 2.01 for
ClO2), its main use in chemical applications is to aid
the identification of the species present in a sample.

A brief illustration The centre of the EPR spectrum of
the methyl radical occurred at 329.40 mT in a spectrome-
ter operating at 9.2330 GHz (the so-called ‘X-band’ of the
microwave spectrum). Its g-value is therefore

= 2.0027

9.2330 GHz

= = g
hV
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hyperfine structure in EPR is the magnetic inter-
action between the electron spin and the magnetic
dipole moments of the nuclei present in the radical.

Consider the effect on the EPR spectrum of a single
H nucleus located somewhere in a radical. The pro-
ton spin is a source of magnetic field, and depending
on the orientation of the nuclear spin, the field it gen-
erates adds to or subtracts from the applied field. The
total local field is therefore

Bloc = B + amI mI = ± (21.26)

where a is the hyperfine coupling constant. Half the
radicals in a sample have mI = + , so half resonate
when the applied field satisfies the condition

hv = gμB(B + a), or (21.27a)

The other half (which have mI = − ) resonate when

hv = gμB(B − a), or (21.27b)

Therefore, instead of a single line, the spectrum
shows two lines of half the original intensity separ-
ated by a and centred on the field determined by g
(Fig. 21.32).

If the radical contains an 14N atom (I = 1), its EPR
spectrum consists of three lines of equal intensity, 
because the 14N nucleus has three possible spin orien-
tations, and each spin orientation is possessed by one
third of all the radicals in the sample. In general, a

   
B = +

h
g

a
k
μB

1
2

1
2

1
2

   
B = −

h
g

a
k
μB

1
2

1
2

1
2

1
2

Self-test 21.6

At what magnetic field would the methyl radical come into
resonance in a spectrometer operating at 34.000 GHz
(the so-called ‘Q-band’ of the microwave spectrum)?

[Answer: 1.213 T]

21.12 Hyperfine structure

The most important features of EPR spectra are their
hyperfine structure, the splitting of individual reson-
ance lines into components. In general in spectroscopy,
the term ‘hyperfine structure’ means the structure 
of a spectrum that can be traced to interactions of 
the electrons with nuclei other than as a result of 
the latter’s point electric charge. The source of the
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Fig. 21.32 The hyperfine interaction between an electron
and a spin- nucleus results in four energy levels in place of
the original two. As a result, the spectrum consists of two
lines (of equal intensity) instead of one. The intensity distribu-
tion can be summarized by a simple stick diagram. The dia-
gonal lines show the energies of the states as the applied field
is increased, and resonance occurs when the separation of
states matches the fixed energy of the microwave photon.
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Fig. 21.33 The analysis of the hyperfine structure of 
radicals containing one 14N nucleus (I = 1) and two equiv-
alent protons.

1 3 6 67 3 1

Fig. 21.34 The analysis of the hyperfine structure of rad-
icals containing three equivalent 14N nuclei.
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spin-I nucleus splits the spectrum into 2I + 1
hyperfine lines of equal intensity.

When there are several magnetic nuclei present in
the radical, each one contributes to the hyperfine
structure. In the case of equivalent protons (for 
example, the two CH2 protons in the radical
CH3CH2) some of the hyperfine lines are coincident.
It is not hard to show that if the radical contains N
equivalent protons, then there are N + 1 hyperfine
lines with an intensity distribution given by Pascal’s
triangle (Section 21.4). The spectrum of the benzene
radical anion in Fig. 21.30, which has seven lines
with intensity ratio 1:6:15:20:15:6:1, is consistent
with a radical containing six equivalent protons.
More generally, if the radical contains N equivalent
nuclei with spin quantum number I, then there are
2NI + 1 hyperfine lines with an intensity distribution
given by modified versions of Pascal’s triangle (see
the exercises).

The hyperfine structure of an EPR spectrum is a
kind of fingerprint that helps to identify the radicals
present in a sample. The interaction between the un-
paired electron and the hydrogen nucleus responsible
for hyperfine structure is either a dipolar interaction
or the Fermi contact interaction described in Section
21.4. In the case of the contact interaction, the mag-
nitude of the splitting depends on the distribution of
the unpaired electron near the magnetic nuclei pre-
sent, so the spectrum can be used to map the mole-
cular orbital occupied by the unpaired electron. For
example, because the hyperfine splitting in C6H6

− is
0.375 mT, and one proton is close to a C atom with
one-sixth the unpaired electron density (because the
electron is spread uniformly around the ring), the
hyperfine splitting caused by a proton in the electron
spin entirely confined to a single adjacent C atom

Example 21.3

Predicting the hyperfine structure of an 
EPR spectrum

A radical contains one 14N nucleus (I = 1) with hyperfine
constant 1.61 mT and two equivalent protons (I = ) with
hyperfine constant 0.35 mT. Predict the form of the EPR
spectrum.

Strategy We should consider the hyperfine structure
that arises from each type of nucleus or group of equi-
valent nuclei in succession. So, split a line with one 
nucleus, then each of those lines is split by a second 
nucleus (or group of nuclei), and so on. It is best to start
with the nucleus with the largest hyperfine splitting;
however, any choice could be made, and the order 
in which nuclei are considered does not affect the 
conclusion.

Solution The 14N nucleus gives three hyperfine lines of
equal intensity separated by 1.61 mT. Each line is split
into doublets of spacing 0.35 mT by the first proton, and
each line of these doublets is split into doublets with the
same 0.35 mT splitting (Fig. 21.33). The central lines of
each split doublet coincide, so the proton splitting gives
1:2:1 triplets of internal splitting 0.35 mT. Therefore, the
spectrum consists of three equivalent 1:2:1 triplets.

1
2

Self-test 21.7

Predict the form of the EPR spectrum of a radical
containing three equivalent 14N nuclei.

[Answer: Fig. 21.34]



CHAPTER 21: SPECTROSCOPY: MAGNETIC RESONANCE520

Checklist of key ideas

You should now be familiar with the following concepts.

1 Resonance is the condition of strong effective
coupling when the frequencies of two oscillators
are identical.

2 Nuclear magnetic resonance (NMR) is the observa-
tion of the frequency at which magnetic nuclei in
molecules come into resonance with an electro-
magnetic field when the molecule is exposed to a
strong magnetic field; NMR is a radiofrequency
technique.

3 Electron paramagnetic resonance (EPR) or elec-
tron spin resonance (ESR) is the observation of the
frequency at which an electron spin comes into
resonance with an electromagnetic field when the
molecule is exposed to a strong magnetic field;
EPR is a microwave technique.

4 The intensity of an NMR or EPR transition is in-
creases with the difference in population of a and
b states and the strength of the applied magnetic
field (as B2).

5 The chemical shift of a nucleus is the difference
between its resonance frequency and that of a 
reference standard.

6 The observed shielding constant is the sum of a
local contribution, a neighbouring group contribu-
tion, and a solvent contribution.

7 The fine structure of an NMR spectrum is the split-
ting of the groups of resonances into individual
lines; the strength of the interaction is expressed
in terms of the spin–spin coupling constant, J.

8 N equivalent spin- nuclei split the resonance of 
a nearby spin or group of equivalent spins into 
N + 1 lines with an intensity distribution given by
Pascal’s triangle.

9 Spin–spin coupling in molecules in solution can
be explained in terms of the polarization mechan-

1
2

ism, in which the interaction is transmitted
through the bonds.

10 The Fermi contact interaction is a magnetic inter-
action that depends on the very close approach of
an electron to the nucleus and can occur only if
the electron occupies an s orbital.

11 Relaxation is the nonradiative return to an equi-
librium distribution of populations in a system
with random relative spin orientations; the 
system returns exponentially to the equilibrium
distribution with a time constant called the
spin–lattice relaxation time, T1.

12 The spin–spin relaxation time, T2, is the time con-
stant for the exponential return of the system into
random relative orientations.

13 In proton decoupling of 13C-NMR spectra, protons
are made to undergo rapid spin reorientations
and the 13C nucleus senses an average orienta-
tion. As a result, its resonance is a single line and
not a group of lines.

14 Coalescence of the two lines occurs in conforma-
tional interchange or chemical exchange when
the lifetime, τ, of the states is related to their reson-
ance frequency difference, DW.

15 The nuclear Overhauser effect (NOE) is the modi-
fication of one resonance by the saturation of 
another.

16 In two-dimensional NMR, spectra are displayed in
two axes, with resonances belonging to different
groups lying at different locations on the second
axis. An example of a two-dimensional NMR 
technique is correlation spectroscopy (COSY), in
which all spin–spin couplings in a molecule are
determined.

17 In solid-state NMR, the spectra of solids are 
simplified by such techniques as magic angle
spinning.

should be 6 × 0.375 mT = 2.25 mT. If in another aro-
matic radical we find a hyperfine splitting constant a,
then the spin density, ρ (rho), the probability that an 
unpaired electron is on the atom, can be calculated
from the McConnell equation:

a = Qρ (21.28)

with Q = 2.25 mT. In this equation, ρ is the spin 
density on a C atom and a is the hyperfine splitting
observed for the H atom to which it is attached.



QUESTIONS AND EXERCISES 521

The following table summarizes the equations developed in this chapter.

Property

Energy of an electron in a magnetic field

Energy of a nucleus in a magnetic field

Resonance condition for an electron in a magnetic field

Resonance condition for a nucleus in a magnetic field

Spin–spin coupling

d scale

Coalescence lifetime

Karplus equation

McConnell equation

Equation

Ems = −gge2Bms

EmI = −gN2BmI

hV = gmBB

hV = gN2B

hJmAmX

d = (V − V °) × 106/V °

t = 21/2/pDV

3JHH = A + B cos f + C cos 2f

a = Qr with Q = 2.25 mT

Comment

ms = ± , ge = −e/2me

mI = I, I − 1, . . . , −I

No hyperfine interaction

No local interactions

AX system

H atom attached to aromatic ring
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Table of key equations

Questions and exercises

Discussion questions

21.1 Discuss the origins of the local, neighbouring group,
and solvent contributions to the shielding constant.

21.2 Suggest a reason why the relaxation times of 13C nuclei
are typically much longer than those of 1H nuclei.

21.3 Suggest a reason why the spin–lattice relaxation time
of benzene (a small molecule) in a mobile, deuterated hydro-
carbon solvent increases, whereas that of a polymer decreases.

21.4 Discuss how the Fermi contact interaction and the polar-
ization mechanism contribute to spin–spin couplings in NMR.

21.5 Discuss the origin of the nuclear Overhauser effect and
how it can be used to measure distances between protons in
a polymer.

21.6 Explain how the EPR spectrum of an organic radical can
be used to identify the molecular orbital occupied by the 
unpaired electron.

21.7 The hyperfine interaction of a p electron of an aromatic
ring with a methyl group attached to the ring varies as the
methyl group rotates. Suggest a mechanism for the interaction.

Exercises

21.1 Calculate the energy separation between the spin
states of an electron in a magnetic field of 0.250 T.

21.2 The nucleus 32S has I = and gI = 0.4289. Calculate the
energies of the nuclear spin states in a magnetic field of
6.000 T.

21.3 Equations 21.5 and 21.7 define the g-value and the
magnetogyric ratio of a nucleus. Given that g is a dimension-
less number, what are the units of gN expressed in (a) tesla
and hertz, (b) SI base units?

21.4 The magnetogyric ratio of 31P is 1.0840 × 108 T−1 s−1.
What is the g-value of the nucleus?

21.5 Calculate the value of (Nb − Na)/N for electrons in a field
of (a) 0.40 T, (b) 1.2 T.

21.6 Calculate the resonance frequency and the correspond-
ing wavelength for an electron in a magnetic field of 0.330 T,
the magnetic field commonly used in EPR.

21.7 Calculate the value of (Na − Nb)/N for (a) protons, (b) 
carbon-13 nuclei in a field of 8.5 T.

3
2

18 The EPR resonance condition is written hW = gmBB,
where g is the g-value of the radical; the deviation
of g from ge = 2.0023 depends on the ability of the
applied field to induce local electron currents in
the radical.

19 The hyperfine structure of an EPR spectrum is its
splitting of individual resonance lines into com-
ponents by the magnetic interaction of the elec-
tron and nuclei with spin.
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21.8 The magnetogyric ratio of 19F is 2.5177 × 108 T−1 s−1.
Calculate the frequency of the nuclear transition in a field of
7.500 T.

21.9 Calculate the resonance frequency of a 14N nucleus 
(I = 1, gI = 0.4036) in a 14.20 T magnetic field.

21.10 Calculate the magnetic field needed to satisfy the 
resonance condition for unshielded protons in a 800.0 MHz
radio-frequency field.

21.11 What is the shift of the resonance from TMS of a
group of protons with d = 6.33 in a polypeptide in a spec-
trometer operating at 500.0 MHz?

21.12 The chemical shift of the CH3 protons in acetaldehyde
(ethanal) is d = 2.20 and that of the CHO proton is 9.80. What
is the difference in local magnetic field between the two 
regions of the molecule when the applied field is (a) 1.2 T, 
(b) 5.0 T?

21.13 Use the information in Fig. 21.6 to state the splitting
(in hertz, Hz) between the methyl and aldehydic proton 
resonances in a spectrometer operating at (a) 300 MHz, 
(b) 750 MHz.

21.14 What would be the nuclear magnetic resonance spec-
trum for a proton resonance line that was split by interaction
with seven identical protons?

21.15 What would be the nuclear magnetic resonance spec-
trum for a proton resonance line that was split by interaction
with (a) two, (b) three equivalent nitrogen nuclei (the spin of 
a nitrogen nucleus is 1)?

21.16 Repeat the analysis in Section 21.4 for an AX2

spin- system and deduce the pattern of lines expected in
the spectrum.

21.17 Sketch the appearance of the 1H-NMR spectrum of 
acetaldehyde (ethanal) using J = 2.90 Hz and the data in 
Fig. 21.6 in a spectrometer operating at (a) 300 MHz, 
(b) 550 MHz.

21.18 Sketch the form of the 19F-NMR spectra of a natural
sample of 10BF 4

− and 11BF 4
−.

21.19 Sketch the form of an A3M2X4 spectrum, where A, M,
and X are protons with distinctly different chemical shifts and
JAM > JAX > JMX.

21.20 Formulate the version of Pascal’s triangle that you
would expect to represent the fine structure in an NMR spec-
trum for a collection of N spin-1 nuclei, with N up to 5.

21.21 Formulate the version of Pascal’s triangle that you
would expect to represent the fine structure in an NMR spec-
trum for a collection of N spin- nuclei, with N up to 5.

21.22 A proton jumps between two sites with d = 2.7 and 
d = 4.8. At what rate of interconversion will the two signals col-
lapse to a single line in a spectrometer operating at 550 MHz?

21.23 NMR spectroscopy may be used to determine the
equilibrium constant for dissociation of a complex between a

3
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small molecule, such as an enzyme inhibitor I, and a protein,
such as an enzyme E:

EI f E + I KI = [E][I]/[EI]

In the limit of slow chemical exchange, the NMR spectrum of
a proton in I would consist of two resonances: one at VI for
free I and another at VEI for bound I. When chemical exchange
is fast, the NMR spectrum of the same proton in I consists of
a single peak with a resonance frequency V given by:

V = fIVI + fEIVEI

where fI = [I]/([I] + [EI]) and fEI = [EI]/([I] + [EI]) are, respectively,
the fractions of free I and bound I. For the purposes of
analysing the data, it is also useful to define the frequency 
differences dV = V − VI and DV = VEI − VI. Show that when the
initial concentration of I, [I]0, is much greater than the initial
concentration of E, [E]0, a plot of [I]0 versus dV −1 is a straight
line with slope [E]0DV and y-intercept −KI.

21.24 The centre of the EPR spectrum of atomic hydrogen
lies at 329.12 mT in a spectrometer operating at 9.2231 GHz.
What is the g-value of the atom?

21.25 A radical containing two equivalent protons shows 
a three-line spectrum with an intensity distribution 1:2:1. The
lines occur at 330.2 mT, 332.5 mT, and 334.8 mT. What is 
the hyperfine coupling constant for each proton? What is the
g-value of the radical given that the spectrometer is operating
at 9.319 GHz?

21.26 Predict the intensity distribution in the hyperfine lines
of the EPR spectra of (a) ·CH3, (b) ·CD3.

21.27 The benzene radical anion has g = 2.0025. At what
field should you search for resonance in a spectrometer 
operating at (a) 9.302 GHz, (b) 33.67 GHz?

21.28 The EPR spectrum of a radical with two equivalent 
nuclei of a particular kind is split into five lines of intensity
ratio 1:2:3:2:1. What is the spin of the nuclei?

21.29 Formulate the version of Pascal’s triangle that you
would expect to represent the hyperfine structure in an EPR
spectrum for a collection of N spin- nuclei, with N up to 5.

21.30 The hyperfine coupling constants observed in the 
radical anions (3), (4), and (5) are shown (in millitesla, mT).
Use the McConnell equation to map the probability of finding
the unpaired electron in the p orbital on each C atom.
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NO2

NO2
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0.011

0.172 0.011
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Projects

The symbol ‡ indicates that calculus is required.

21.31‡ Show that the coupling constant as expressed by the
Karplus equation passes through a minimum when cos f =
B/4C. Hint: Use calculus: evaluate the first derivative with 
respect to f and set the result equal to 0. To confirm that the
extremum is a minimum, go on to evaluate the second
derivative and show that it is positive.

21.32 Here we explore magnetic resonance imaging in more
detail. (a) You are designing an MRI spectrometer. What field
gradient (in microtesla per metre, mT m−1) is required to pro-
duce a separation of 100 Hz between two protons separ-
ated by the long diameter of a human kidney (taken as 8 cm)
given that they are in environments with d = 3.4? The radio-
frequency field of the spectrometer is at 400 MHz and the 
applied field is 9.4 T. (b) Suppose a uniform disk-shaped organ
is in a linear field gradient, and that the MRI signal is propor-
tional to the number of protons in a slice of width dx at each
horizontal distance x from the centre of the disk. Sketch the
shape of the absorption intensity for the MRI image of the
disk before any computer manipulation has been carried out.
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There are two great rivers in physical chemistry. One
is the river of thermodynamics, which deals with the
relations between bulk properties of matter, particu-
larly properties related to the transfer of energy. The
other is the river of molecular structure, including
spectroscopy, which deals with the structures and
properties of individual atoms and molecules. These
two great rivers flow together in the part of physical
chemistry called statistical thermodynamics, which
shows how thermodynamic properties emerge from
the properties of atoms and molecules. The first half
of this book dealt with thermodynamic properties;
the second half has dealt with atomic and molecular
structure and its investigation. This is the chapter
where the two great rivers merge.

A great problem with statistical thermodynamics
is that it is highly mathematical. Many of the deriva-
tions—even the most fundamental—are beyond the
scope of this text.1 All we can hope to see is some of
the key concepts and the key results. Where possible
the treatment will be qualitative.

A brief comment In this chapter, some Examples, Self-
tests, and the brief illustrations require calculus: they are
marked with the symbol ‡.

The partition function

The key concept of quantum mechanics is the exis-
tence of a wavefunction that contains in principle all
the dynamical information about a system, such as
its energy, the electron density, the dipole moment,
and so on. Once we know the wavefunction of an
atom or molecule, we can extract from it all the 
dynamical information possible about the system—
provided we know how to manipulate it. There is a

1 See our Physical chemistry (2006), for details.
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similar concept in statistical thermodynamics. The
partition function, q, contains all the thermodynamic
information about the system, such as its internal 
energy, entropy, heat capacity, and so on. Our task
here is to see how to calculate the partition function
and how to extract the information it contains.

22.1 The Boltzmann distribution

The single most important result in the whole of 
statistical thermodynamics is the Boltzmann distribu-
tion, the formula that tells us how to calculate the
numbers of molecules in each state of a system at any
temperature:

(22.1)

Here Ni is the number of molecules in a state with 
energy Ei, N is the total number of molecules, k is
Boltzmann’s constant, a fundamental constant with
the value 1.381 × 10−23 J K−1, and T is the absolute
temperature. Boltzmann’s constant k and the gas
constant R are related by R = NAk. The term in the
denominator, q, is the partition function:

(22.2)

where the sum is over all the states of the system. We
shall have much more to say about q later, and see
how it can be calculated and given physical meaning.
At this stage it is just a kind of normalizing factor, for 

it ensures that .

The conceptual basis of the derivation of eqn 22.1
is very simple. We imagine a stack of energy levels 
arranged like bookshelves, one above the other. Then
we imagine being blindfolded and throwing balls
(the molecules) at the shelves (the energy levels) and
letting them land on the available shelves entirely at
random, apart from one condition.1 That condition
is that the total energy, E, of the final arrangement
must have the actual energy of the sample of matter
we are seeking to describe. So, provided the temper-
ature is above absolute zero, not all the balls are 
allowed to land on the bottom shelf, for that would
give a total energy of zero. Some of the balls may
land on the bottom shelf, but there must be others
ending up on higher shelves to ensure that the total
energy is E. If we imagine throwing 100 balls at a set
of shelves, then we will end up with one particular
valid distribution. If we repeated the experiment
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with the same number of balls, we would end up
with a different but still valid distribution. If we went
on repeating the experiment, we would get many 
different distributions, but some of them would
occur more often than others (Fig. 22.1).

When this game is analysed mathematically, it
turns out that the most probable distribution—the
arrangement that turns up most often—is that given
by eqn 22.1. In other words, the Boltzmann distribu-
tion is the outcome of blind chance occupation of 
energy levels, subject to the requirement that the
total energy has a particular value. When we deal
with about 1023 molecules and repeat the experiment
millions of times, the Boltzmann distribution turns
out to be very accurate, and we can use it with
confidence for all typical samples of matter.

The simplest application of the Boltzmann distribu-
tion is to calculate the relative numbers of molecules
in two states separated in energy by ΔE. Suppose the
energies of the two states are E1 and E2, then from
eqn 22.1 we can write

(22.3)
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1 Don’t press this analogy too far; it is intended just to set a visu-
alizable image and actually has little relation to the way that actual
molecules become distributed!

Fig. 22.1 The derivation of the Boltzmann distribution 
involves imagining that the molecules of a system (the
squares) are distributed at random over the available energy
levels subject to the requirements that the number of mole-
cules and the total energy is constant, and then looking 
for the most probable arrangement. Of the four shown here,
the numbers of ways of achieving each arrangement are 
(a) 181 180, (b) 858, (c) 78, (d) 12 870.2 The number of ways
of achieving (a) is by far the greatest, so this distribution is the
most probable; it corresponds to the Boltzmann distribution.

2 To calculate the number of ways, W, of arranging N molecules
with N1 in state 1, N2 in state 2, etc., use W = N!/N1!N2!. . . . , with
n! = n(n − 1)(n − 2). . .1, and 0! = 1.
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where ΔE = E2 − E1. This important result tells us
that the relative population of the upper state de-
creases exponentially with its energy above the lower
state. In this expression, the energy difference is in
joules. If the energy difference is given in joules (or
kilojoules) per mole, we simply use the gas constant
in eqn 22.3 in place of Boltzmann’s constant (because
R = kNA).

A brief illustration The boat conformation of cyclo-
hexane (1) lies 22 kJ mol−1 higher in energy than the chair
conformation (2). To find the relative populations of the
two conformations in a sample of cyclohexane at 20°C,
we set DE = 22 kJ mol−1 and T = 293 K and use eqn 22.3
with R in the exponent. We obtain:

= 1.2 × 10−4

A note on good practice Note how the units cancel in 
the exponent: as always, you will avoid serious error (for 
instance, using k instead of R) by writing the units and ensur-
ing that they cancel. Because exponentials are very sensitive
to the numerical value of the exponent, do not round the 
intermediate steps but store them in your calculator until the
last step of the calculation. Finally, note how the number of
significant figures in the answer (two) does not exceed the
number in the data.

One very important feature of the Boltzmann 
distribution is that it applies to the populations of
states. We have seen that in some cases (the hydrogen
atom and rotating molecules are examples) several
different states have the same energy. That is, some
energy levels are degenerate (Section 12.7). The
Boltzmann distribution can be used to calculate, for
instance, the number of hydrogen atoms at a tem-
perature T that have their electron in a 2px orbital.
Because a 2py orbital has exactly the same energy,
the number of atoms with an electron in a 2py orbital
is the same as the number with an electron in a 2px
orbital. The same is true of atoms with an electron in
a 2pz orbital. Therefore, if we want the total number
of atoms with electrons in 2p orbitals, we have to
multiply the number in one of them by a factor of 3.
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In general, if the degeneracy of an energy level (that
is, the number of states of that energy) is g, we use 
a factor of g to get the population of the level (as 
distinct from an individual state). It is obviously very
important to decide whether we wish to express the
population of an individual state or the population
of an entire degenerate energy level. We shall denote
levels by L, so in terms of levels the Boltzmann dis-
tribution and the partition function are

(22.4)

where NL is the total number of molecules in the level
L (the sum of populations of all the states of that
level), gL is its degeneracy, and EL is its energy.

A brief illustration We saw in Section 19.1 that the 
rotational energy of a linear rotor is hBJ (J + 1) and that the
degeneracy of each level is 2J + 1. Because the degener-
acy of the level with J = 2 (and energy 6hB) is 5 and that of
the level with J = 1 (and energy 2hB) is 3, the relative num-
bers of molecules with J = 2 and 1 is

For HCl, B = 318.0 GHz, so at 25°C (corresponding to 298 K),
this ratio works out as 1.36: there are more molecules in
the level with J = 2 than in the level with J = 1, even though
J = 2 corresponds to a higher energy. Each individual state
with J = 2 has a lower population than each state with J = 1,
but there are more states in the level with J = 2.

One important convention that we adopt (largely
for convenience) is that all energies are measured rel-
ative to the ground state. That is, we set the ground-
state energy equal to zero, even if there is a
zero-point energy. For instance, the energies of the
states of a harmonic oscillator are measured from
zero for the ground state:

Actual energies: E = hv, hv, hv, . . .

Our convention: E = 0, hv, 2hv, . . .

Likewise, the energies of the hydrogen atom are meas-
ured from zero for the 1s orbital:

Actual energies: E = −hcRH, − hcRH, − hcRH, . . .

Our convention: E = 0, hcRH, hcRH, . . .

This convention greatly simplifies our interpretation
of the significance of q.
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22.2 The interpretation of 
the partition function

When we are interested only in the relative popula-
tions of levels and states, we do not need to know the
partition function because it cancels in eqn 22.4.
However, if we want to know the actual population
of a state, then we use eqn 22.1, which requires us 
to know q. We also need to know q when we derive
thermodynamic functions, as we shall see.

The definition of q is the sum over states (not levels;
remember that there may be several states of the
same energy), as given in eqn 22.2. We can write out
the first few terms as follows:

q = 1 + e−E1/kT + e−E2/kT + e−E3/kT + . . .

The first term is 1 because the energy of the ground
state (E0) is 0, according to our convention, and e0 = 1.
In principle, we just substitute the values of the 
energies, evaluate each term for the temperature of
interest, and add them together to get q. However,
that procedure does not give much insight.

To see the physical significance of q, let’s suppose
first that T = 0. Then, because e−∞ = 0, all terms other
than the first are equal to 0, and q = 1. At T = 0 only
the ground state is occupied and (provided that state
is nondegenerate) q = 1. Now consider the other 
extreme: a temperature so high that all the Ei /kT = 0.
Then, because e0 = 1, the partition function is q ≈ 1 +
1 + 1 + 1 + . . . = Nstates, where Nstates is the total num-
ber of states of the molecule. That is, at very high
temperatures, all the states of the system are ther-
mally accessible. It follows that if the molecule has an
infinite number of states, then q rises to infinity as 
T approaches infinity. We should begin to suspect
that the partition function is telling us the number of
states that are occupied at a given temperature.

Now consider an intermediate temperature, at
which only some of the states are occupied signi-
ficantly. Suppose that the temperature is such that kT
is large compared to E1 and E2 but small compared
to E3 and all subsequent terms (Fig. 22.2). Because
E1/kT and E2/kT are both small compared to 1, and
e−x ≈ 1 when x is very small, the first three terms are
all close to 1. However, because E3/kT is large 
compared to 1, and e−x ≈ 0 when x is large, all the 
remaining terms are close to 0. Therefore,

and q ≈ 1 + 1 + 1 + 0 + . . . = 3. Once again, we see that
the partition function is telling us the number of
significantly occupied states at the temperature of 

1 1 0 0 0

q = 1 + e−E1/kT + ee−E2/kT + e−E3/kT + e−E4/kT + e−E5/kT + . . .

interest. That is the principal meaning of the parti-
tion function: q tells us the number of thermally 
accessible states at the temperature of interest.

Once we grasp the significance of q, statistical ther-
modynamics becomes much easier to understand.
We can anticipate, even before we do any calcula-
tions, that q increases with temperature, because
more states become accessible as the temperature is
raised. At low temperatures q is small, and falls to 1
as the temperature approaches absolute zero (when
only one state, the ground state, is accessible and we
are supposing that that state is nondegenerate).
Molecules with numerous, closely spaced energy 
levels (like the rotational states of bulky molecules)
can be expected to have very large partition func-
tions. Molecules with widely spaced energy levels
can be expected to have small partition functions, 
because only the few lowest states will be occupied 
at low temperatures.
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0 1/e 1
Population

Fig. 22.2 The partition function is a measure of the number
of thermally accessible states. Thus, for all states with E < kT
the exponential term is reasonably close to 1, whereas for all
states with E > kT the exponential term is close to 0. The
states with E < kT are significantly thermally accessible.

Example 22.1

Calculating a partition function

Calculate the partition function for the cyclohexane mole-
cule, confining attention to the chair and boat conforma-
tions mentioned in the preceding brief illustration. Show
how the partition function varies with temperature.

Strategy Whenever calculating a partition function, start
at the definition in eqn 22.2 and write out the individual
terms. Remember to set the ground-state energy equal
to 0. When the energies of states are given in joules 
(or kilojoules) per mole, replace the k in the definition of
q by R = NAk.
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22.3 Examples of partition functions

In a number of cases it is possible to derive simple
closed expressions for partition functions. For 
example, the energy levels of a harmonic oscillator
form a simple ladder-like array (Fig. 22.5). If we 
set the energy of the lowest state equal to zero, the 
energies of the states are

E0 = 0, E1 = hv, E2 = 2hv, E3 = 3hv, etc.

Therefore, the vibrational partition function is

The sum of the infinite series 1 + x + x2 + . . . is
1/(1 − x), so with x = e−hv/kT,

(22.5)
  
q =

− −
1

1 e h kTk /

Use enx = (ex)n

q = 1 + e−hv/kT + e−2hv/kT + e−3hv/kT + . . .

= 1 + e−hv/kT + (e−hv/kT )2 + (e−hv/kT)3 + . . .

Solution There are only two states, so the partition func-
tion has only two terms. The energy of the chair form is
set at 0 and that of the boat form is E = 22 kJ mol−1.
Therefore:

This function is plotted in Fig. 22.3. We see that it rises
from q = 1 (only the chair form is accessible at T = 0,
when (2646 K)/T = ∞ and e−∞ = 0) to q = 2 at T = ∞ (when
(2646 K)/T = 0 and e0 = 1; both states are thermally 
accessible at high temperatures). At 20°C, q = 1.0001. As
we saw earlier, the boat form is only slightly populated
and so q differs very little from 1.

A note on good practice Note how the units are
treated in the exponent: the units of E and R cancel apart
from K−1 in the denominator, which becomes K in the 
numerator (in the form 2646 K), which will cancel the units
K of T when values of the latter are introduced. You will
sometimes see an expression like ‘q = 1 + e−2646/T, with T
in kelvins’ (or, worse, ‘with T the absolute temperature’);
retention of the units, as we show, is completely unam-
biguous and therefore better practice.
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Fig. 22.3 The partition function for a two-level system
with states at the energies 0 and E. At 20°C (293 K) and
for E = 22 kJ mol−1, RT/E = 0.11, where q = 1.0001. Note
how the partition function rises from 1 and approaches 2
at high temperatures.
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Fig. 22.4 The partition function for the six-level system
treated in Self-test 22.1. Note how q rises from 4 (when
only the four states of the 3P3/2 level are occupied) and
approaches 6 (when the two states of the 3P1/2 level are
also accessible). At 20°C, kT/hcJ = 0.504, corresponding
to q = 5.21.

Self-Test 22.1

The ground configuration of a fluorine atom gives
rise to a 2P term with two levels, the J = level (of
degeneracy 4) and the J = level (of degeneracy 2)1

2

3
2

at an energy corresponding to 404.0 cm−1 above
the ground state. Write down an expression for the
partition function and plot it as a function of temper-
ature. Hint: The notation used here was introduced
in Section 13.17. Take E = hcJ for the energy of 
the upper level. In this instance, the ground state is 
degenerate.

[Answer: q = 4 + 2e−hcJ/kT; Fig. 22.4]
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Equation 22.5 is the partition function for a har-
monic oscillator or any vibrating diatomic molecule.
Figure 22.6 shows how q varies with temperature.
Note that q = 1 at T = 0, when only the lowest state is
occupied, and that as T becomes high, so q becomes
infinite because all the states of the infinite ladder are
thermally accessible. At room temperature, and for
typical molecular vibrational frequencies, q is very
close to 1 because only the vibrational ground state is
occupied (see Exercise 22.10). When the temperature
is so high that hv/kT << 1, eqn 22.4 can be simplified
considerably by writing e−x ≈ 1 − x:

(22.6)q ≈
− −

= =
1

1 1
1

( / ) /h kT h kT
kT
hk k k

This expression is consistent with the interpreta-
tion of q as the number of thermally accessible states:
the average energy of a harmonic oscillator is kT,
according to classical physics, and the separation 
of energy levels is hv, so about kT/hv states must 
be occupied. (Think of a ladder with rungs separated
by hv: to reach kT we need a ladder with kT/hv
rungs.)

We can carry out similar calculations for certain
other types of motion. For example, suppose a mole-
cule of mass m is confined in a flask of volume V at a
temperature T, then (as shown in Further information
22.1) to a good approximation for typical containers
and T > 0, the translational partition function is

(22.7)

We see that the partition function increases with
temperature, as we have come to expect. However,
notice that q also increases with the volume of the
flask. That we should expect too: the energy levels of
a particle in a box become closer together as the size
of the box increases (Section 12.9), so at a given tem-
perature, more states are thermally accessible.

A brief illustration Suppose we have an O2 molecule
(of mass 32mu) in a flask of volume 100 cm3 at 20°C. Its
translational partition function is

Note that a huge number of translational states are 
accessible at room temperature. This result is consistent
with the derivation of eqn 22.7, which assumed that the
translational energy levels form a near continuum in con-
tainers of macroscopic size.

A note on good practice All the units must cancel 
because all partition functions are dimensionless numbers.
Here, because 1 J = 1 kg m2 s−2, the units cancel as follows:

= 1

It might seem tedious to do this cancellation explicitly, but it
is a very good way of making sure that you have set up the
numerical calculation correctly.

The rotational partition function can also be 
approximated when the temperature is high enough

 
= =

−

−

−(kg m s m
(kg m s )

kg m s
kg m

3

2 3

3 6

3

1 3

1

3)
66 s−3

 

(kg J K K) m
(J s)

(kg kg m s3/2 3

3

2− −
=

1 2 3 2) / mm
(kg m s s)

3

2 3−2

m kT V

q =

= 9.67 × 1025

{2 32 × (1.661 × 10−27 kg) × (1.381 × 10−23 J K−1) × (298 K)}3/2 × (1.00 × 10−4 m3)

(6.626 × 10−34 J s)3

 
q =

( ) /2 3 2

3

πmkT V
h

E
n

er
g

y

Actual
energy

Conventional
energy

1
2

3
2

5
2

7
2

9
2

11
2

13
2 ν ν

ν ν

ν ν

ν ν

ν ν

ν ν

ν

Fig. 22.5 The energy levels of an harmonic oscillator. When
calculating a partition function, set the zero of energy at the
lowest level, as shown on the right.
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Fig. 22.6 The partition function for an harmonic oscillator.
For an oscillator with J = 1000 cm−1, at 20°C, kT/hcJ = 0.204,
corresponding to q = 1.01.
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for many rotational states to be occupied. For a linear
rotor it turns out (see Further information 22.1) that
for heavy molecules and T > 0,

(22.8)

In this expression, B is the rotational constant (Sec-
tion 19.1) and σ is the symmetry number: σ = 1 for an
unsymmetrical linear rotor (such as HCl or HCN)
and σ = 2 for a symmetrical linear rotor (such as H2
or CO2). The symmetry number reflects the fact that
an unsymmetrical molecule is distinguishable after
rotation by 180° but a symmetrical molecule is not.
When evaluating q we have to count only distinguish-
able states, and a symmetrical molecule has fewer
distinguishable states than a less symmetrical mole-
cule. The rotational partition function of HCl at
25°C works out to 19.6 (see Exercise 22.15), so
about 20 rotational states (not levels: remember 
the (2J + 1)-fold degeneracy of each rotational level;
20 states corresponds to about the first 4 levels) are
significantly occupied at that temperature.

No closed form can be given for the electronic par-
tition function, the partition function for the distribu-
tion of electrons over their available states. However,
for closed-shell molecules the excited states are so
high in energy that only the ground state is occupied,
and for them q = 1. Special care has to be taken for
atoms and molecules that do not have closed shells
(as we saw in Self-test 22.1 for a fluorine atom).

22.4 The molecular partition function

The energy of a molecule can be approximated as 
the sum of contributions from its different modes of
motion (translation, rotation, and vibration), the dis-
tribution of electrons, and the electronic and nuclear
spin. Given that the energy is a sum of independent
contributions, we show in Derivation 22.1 that the
partition function is a product of contributions:

q = qTqRqVqEqS (22.9)

where T denotes translation, R rotation, V vibration,
E the electronic contribution, and S the spin contri-
bution. The contribution from electronic spin is im-
portant in atoms or molecules containing unpaired
electrons. For example, consider the Cs atom, which
has one unpaired electron. We saw in Chapters 13
and 20 that the two spin states of this unpaired 
electron are equally occupied in the absence of any
magnetic field, so it contributes a factor of 2 to the
molecular partition function.

 
q =

kT
hBσ

Derivation 22.1

Factorization of the partition function

Suppose the energy can be expressed as the sum of
contributions from two modes A and B (such as vibration
and rotation), and that we can write Ei,j = Ei

A + Ej
B, where

i denotes a state of mode A and j denotes a state of
mode B and the sums that we will have to do are over
both i and j independently. Then, the partition function is

This argument is readily extended to three and more
modes, as in eqn 22.9.
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Thermodynamic properties

The principal reason for calculating the partition func-
tion is to use it to calculate thermodynamic properties
of systems as small as atoms and as large as biopoly-
mers. There are two fundamental relations we need.
We can deal with First Law quantities (such as heat
capacity and enthalpy) once we know how to calculate
the internal energy. We can deal with Second Law
quantities (such as the Gibbs energy and equilibrium
constants) once we know how to calculate the entropy.

22.5 The internal energy and 
the heat capacity

To calculate the total energy, E, of the system, we
note the energy of each state (Ei), multiply that 
energy by the number of molecules in the state (Ni),
and then add together all these products:

However, the Boltzmann distribution tells us the
number of molecules in each state of a system, so we
can replace the Ni in this expression by the expres-
sion in eqn 22.1:

(22.10)E
N N

E
E kT

i
iEi

E kT

i

i= =×
−

−∑ ∑e
e

i /
/

q q

Population of state i Energy of state i

 
E N E N E N E N Ei i

i

= + + + = ∑0 0 1 1 2 2
...



‡Example 22.2

Calculating the internal energy

Calculate the molar internal energy of a monatomic gas.

Strategy The only mode of motion of a monatomic gas is
translation (we ignore electronic excitation). Therefore,
substitute the translational partition function in eqn 22.7
into eqn 22.11 (using the precise mathematical form
given in Derivation 22.2, and then insert the result into
eqn 22.12. The partition function has the form q = aT 3/2,
where a is a collection of constants.

Solution First, we need the first derivative of q with
respect to T:

When we substitute this result into eqn 22.11 we get

The molar internal energy is obtained by replacing N by
Avogadro’s constant and using eqn 22.12:

Um = Um(0) + NAkT = Um(0) + RT

The term Um(0) contains all the contributions from the
binding energy of the electrons and of the nucleons in
the nucleus. The term RT is the contribution to the 
internal energy from the translational motion of the atoms
in their container.

3
2

3
2

3
2

E
NkT NkT

aT
aT= × = × =

2 2

3/2
3
2

1/2 3
2q

dq

dT
NkT

dxn/dx  = nxn−1 with n =

dq

dT
d

dT
aT aT( )/ /= =3 2 3

2
1 2

3
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If we know the individual energies of the states (from
spectroscopy, for instance), then we just substitute
their values into this expression. However, there is a
much simpler method—or at least a much more suc-
cinct formula—available when we have an expres-
sion for the partition function, such as those given in
Section 22.3. In Derivation 22.2 we show that the 
energy is related to the slope of q plotted against T:

(22.11)E
NkT

T= ×
2

q
qslope of plotted against

zero of energy at the energy of the lowest state of the
molecule. However, the internal energy of the system
might be nonzero on account of zero-point energy,
and the E in eqn 22.11 is the energy above the 
zero-point energy. That is, the internal energy at a
temperature T is

U = U(0) + E (22.12)

with E given by eqn 22.11.

Derivation 22.2

The internal energy from the partition function

The sum on the right of eqn 22.10 resembles the defini-
tion of the partition function, but differs from it by having
the Ei factor multiplying each term. However, we can
recognize (by using the rules of differentiation set out in
Appendix A2.4) that

In other words,

With this substitution, the expression for the total 
energy becomes

because the sum of derivatives is the derivative of the
sum. Magically (or, more precisely, mathematically), the
expression for the partition function has appeared, so
we can write

which, because dq /dT is the slope of a graph of q plotted
against T, is eqn 22.11.
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⎞
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Use d(1/x)/dx  = −1/x2

The remarkable feature of eqn 22.11 is that it is 
an expression for the total energy in terms of the par-
tition function alone. The partition function is start-
ing to fulfil its promise to deliver all thermodynamic
information about the system.

There is one more detail to take into account 
before we use eqn 22.11. Recall that we have set the

Self-test 22.2

Calculate the molar internal energy of a gas of dia-
tomic molecules.

[Answer: Um = Um(0) + RT ]5
2

Once we have calculated the internal energy of 
a sample of molecules, it is a simple matter to calcu-
late the heat capacity. It should be recalled that 
the heat capacity at constant volume, CV, is defined
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as the slope of the plot of internal energy against 
temperature:

Therefore, all we need do is to evaluate the slope 
of the expression for U obtained from the partition
function.

‡A brief illustration The slope of U with respect to T is
actually the first derivative:

(Remember from Section 2.7 that a more sophisticated
notation for this expression is CV = (∂U/∂T )V.) The 
constant-volume molar heat capacity of a monatomic gas
is therefore obtained by substituting the molar internal 
energy, Um = Um(0) + RT into this expression:

To calculate Cp,m, we use eqn 2.19 (Cp,m − CV,m = R ) and
obtain Cp,m = R.5

2
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22.6 The entropy and the Gibbs energy

The entry point into the calculation of properties
arising from the Second Law of thermodynamics is
the proposal made by Boltzmann that the entropy of
a system can be calculated from the expression

S = k ln W (22.13)

Here W is the number of different ways in which the
molecules of a system can be arranged yet result in
the same total energy. Its formal name is the weight
of a configuration. This expression is the Boltzmann
formula for the entropy. The entropy is zero if there
is only one way of achieving a given total energy 
(because ln 1 = 0). The entropy is high if there are
many ways of achieving the same energy.

In most cases, W = 1 at T = 0 because there is only
one way of achieving zero energy: put all the mole-
cules into the same, lowest state. Therefore, S = 0 at
T = 0, in accord with the Third Law of thermody-
namics (Section 4.7). In certain cases, though, W may
differ from 1 at T = 0. This is the case if positional or
orientational disorder survives down to absolute zero
because there is no energy advantage in adopting a
particular orientation. For instance, there may be no
energy difference between the arrangements . . . AB
AB AB . . . and . . . BA AB BA . . . , so W > 1 even at 
T = 0. If S > 0 at T = 0 we say that the substance has 
a residual entropy. Ice has a residual molar entropy
of 3.4 J K−1 mol−1. It stems from the disorder in the
hydrogen bonds between neighbouring water mole-
cules: a given O atom has two short O—H bonds and
two long O.. .H bonds to its neighbours, but there is
a degree of randomness in which two bonds are short
and two are long (see Fig. 5.17).

A brief illustration Consider a sample of solid carbon
monoxide containing N CO molecules. We saw in Section
4.9 that CO has a very small dipole moment. In fact, the
dipolar interactions between CO molecules are so weak
in a solid that even at T = 0 they lie either head-to-tail or
head-to-head with approximately equal energies to give
randomly orientated arrangements such as . . . CO CO OC
CO OC OC ... . with the same energy. Because each 
CO molecule can lie in either of two orientations (CO 
or OC) with equal energy, there are 2 × 2 × 2 × ... . = 2N

ways of achieving the same energy. The residual entropy
of the sample, its entropy at T = 0, where there is this 
orientation disorder but no motional disorder, is therefore
S = k ln 2N = Nk ln 2. The molar entropy is therefore
Sm = NAk ln 2 = R ln 2, or 5.8 J K−1 mol−1, which is close to
the experimental value of 5 J K−1 mol−1.

Boltzmann went on to show that there is a close 
relation between the entropy and the partition 

‡Self-test 22.3

Calculate the contribution to the molar constant-volume
heat capacity of a two-state system, like the chair–boat
interconversion of cyclohexane (Section 22.1) and show
how the heat capacity varies with temperature.

[Answer: CV,m = R(E/RT )2eE/RT/(1 + eE/RT)2, Fig. 22.7]
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Fig. 22.7 The variation of the heat capacity of a two-level 
system with states at energies 0 and E. Note how the heat
capacity is zero at T = 0, passes through a maximum at 
T = 0.417E/R, and approaches 0 at high temperatures.



Derivation 22.3

Calculating the Gibbs energy from the 
partition function

To set up the calculation, we go back to first principles.
The Gibbs energy is defined as G = H − TS, and the 
enthalpy, H, is defined as H = U + pV. Therefore

G = U − TS + pV

For a perfect gas we can replace pV by nRT = NkT
(because N = nNA and R = NAk), and note that at T = 0,
G(0) = U(0) (because the terms TS and NkT vanish at 
T = 0). Therefore,

G − G(0) = U − U(0) − TS + NkT

Now we substitute eqn 22.14b for S, and obtain

G − G(0) = −NkT ln q + kT (N ln N − N ) + NkT

= −NkT (ln q − ln N )

Then, because ln q − ln N = ln(q /N ), we obtain eqn 22.15.
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Fig. 22.8 The variation of the rotational contribution to the
molar entropy with temperature. Note that eqn 22.6 is
valid only for high temperatures, so the formula derived in
Example 22.3 cannot be used at low temperatures (so we
have terminated the curves before the equation becomes
invalid). The dotted lines show the correct behaviour.

Self-test 22.4

The rotational partition function of an ethene mole-
cule is 661 at 25°C. What is the contribution of 
rotation to its molar entropy?

[Answer: 7.49R ]
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function: both are measures of the number of 
arrangements available to the molecules. The pre-
cise connection for distinguishable molecules (those
locked in place in a solid) is3

(22.14a)

The analogous term for indistinguishable molecules
(identical molecules free to move, as in a gas) is

(22.14b)

Because we can calculate the first term on the right
from q, we now have a method for calculating the 
entropy of any system of noninteracting molecules
once we know its partition function.

  
S

U U
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Nk Nk N=
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+ − −
( )
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1q
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Nk=
−

+
( )
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0

q

Example 22.3

Calculating the entropy

Calculate the contribution that rotational motion makes
to the molar entropy of a gas of HCl molecules at 25°C.

Strategy We have already calculated the contribution to
the internal energy (Self-test 22.2), and we have the rota-
tional partition function in eqn 22.6 (with s = 1). We need
to combine the two parts. We use eqn 22.14a because
we are concentrating on the internal motion (the rota-
tion) of the molecules, not their translational motion.

Solution We substitute U − U(0) = RT and q = kT/hB into
eqn 22.14a, and obtain (for T > 0)

Notice that the entropy increases with temperature 
(Fig. 22.8). At a given temperature, the entropy is larger
the smaller the value of B. That is, bulky molecules
(which have large moments of inertia and therefore small
rotational constants) have a higher rotational entropy than
small molecules. Substitution of the numerical values
gives Sm = 3.98R, or 33.1 J K−1 mol−1.

S
RT
T

R
kT
hB

R
kT
hBm = + = +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ln ln1

The Gibbs energy, G, was central to most of the ther-
modynamic discussions in the early chapters of this
book, so to show that statistical thermodynamics is
really useful we have to see how to calculate G from
the partition function, q. We shall confine our attention
to a perfect gas, because it is diAcult to take molecu-
lar interactions into account, and in Derivation 22.3
we show that for a gas of N molecules

(22.15)
  
G G NkT

N
− = −( ) ln0

q

3 For a derivation, see our Physical chemistry (2006).
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We can convert eqn 22.15 into an expression for
the molar Gibbs energy. First, we write N = nNA, and
it becomes

Then we introduce the molar partition function,
qm = q /n, with units 1/mole (mol−1). On dividing both
sides of the preceding equation by n, we get

(22.16)
 
G G RT

Nm m
m

A

− = −( ) ln0
q

 
G G nN kT

nN
− = −( ) ln0 A

A

q

The only further piece of information we require is
the expression for the standard molar Gibbs energy,
for that played such an important role in the dis-
cussion of equilibrium properties. All we need to do
is to use the partition function calculated at p . For
instance, for a monatomic gas, we use p = 1 bar in
eqn 22.17 and obtain the standard value of the molar
Gibbs energy. In general, we write

(22.18)

where the standard state sign on q simply reminds 
us to calculate its value at p ; to do so, we use 
V m = RT/p wherever it appears in q m. We shall see
an example of that in the following section.

22.7 The statistical basis of chemical
equilibrium

We can obtain a deeper insight into the origin and
significance of that most chemical of quantities, the
equilibrium constant K, by considering the Boltzmann
distribution of molecules over the available states of
a system composed of reactants and products. When
atoms can exchange partners, as in a reaction, the
available states of the system include arrangements
in which the atoms are present in the form of react-
ants and in the form of products: these arrangements
have their characteristic sets of energy levels, but the
Boltzmann distribution does not distinguish between
their identities, only their energies. The atoms dis-
tribute themselves over both sets of energy levels in
accord with the Boltzmann distribution (Fig. 22.9).
At a given temperature, there will be a specific 

  
G G RT

Nm m
m

A

− = −( ) ln0
q

Example 22.4

Calculating the Gibbs energy

Calculate the molar Gibbs energy of a monatomic perfect
gas and express it in terms of the pressure of the gas.

Strategy The calculation is based on eqn 22.16 with 
qm = q /n. All we need to know is the translational partition
function, which is given in eqn 22.5. Convert from V to p
by using the perfect gas law.

Solution When we substitute qm = (2pmkT )3/2V/nh3 into
eqn 22.16 we get

Next, we replace V by nRT/p (notice that the ns cancel),
and obtain (after a little tidying up, including writing 
R = kNA)

The Gibbs energy increases logarithmically (as ln p) as p
increases, just as we saw in Section 5.2 (eqn 5.3b).
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Self-test 22.5

Ignore vibration and write the molar partition func-
tion of a diatomic molecule as q T

mqR (see eqn 22.8).
What is the molar Gibbs energy of such a gas?
[Answer: As in eqn 22.17, but with a replaced by ashB/kT ]
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Fig. 22.9 The Boltzmann distribution of populations over the
energy levels of two species A and B with similar densities 
of energy levels; the reaction A → B is endothermic in this 
example. The bulk of the population is associated with the
species A, so that species is dominant at equilibrium.

(22.17)
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distribution of populations, and hence a specific com-
position of the reaction mixture.

It can be appreciated from Fig. 22.9 that if the 
reactants and products both have similar arrays of
molecular energy levels, then the dominant species in
a reaction mixture at equilibrium will be the species
with the lower set of energy levels. However, the fact
that the equilibrium constant is related to the Gibbs
energy (ln K = −ΔrG /RT ) is a signal that entropy
plays a role as well as energy. Its role can be appreci-
ated by referring to Fig. 22.10. We see that although
the B energy levels lie higher than the A energy levels,
in this instance they are much more closely spaced.
As a result, their total population may be consider-
able and B could even dominate in the reaction 
mixture at equilibrium. Closely spaced energy levels
correlate with a high entropy (see eqn 22.14), so 
in this case we see that entropy effects dominate 
adverse energy effects. That is, a positive reaction 
enthalpy results in a lowering of the equilibrium 
constant (that is, an endothermic reaction can be 
expected to have an equilibrium composition that
favours the reactants). However, if there is positive
reaction entropy, then the equilibrium composition
may favour products, despite the endothermic char-
acter of the reaction.

Statistical principles also give us insight into the
temperature dependence of the equilibrium constant.
In Section 7.8, we saw that for a reaction that is
exothermic under standard conditions (ΔrH < 0), 
K decreases as the temperature rises. The opposite
occurs in the case of endothermic reactions. The typ-
ical arrangement of energy levels for an endothermic
reaction is shown in Fig. 22.11a. When the tempera-

ture is increased, the Boltzmann distribution adjusts
and the populations change as shown. The change
corresponds to an increased population of the higher
energy states at the expense of the population of the
lower-energy states. We see that the states that arise
from the B molecules become more populated at 
the expense of the A molecules. Therefore, the total
population of B states increases, and B becomes more
abundant in the equilibrium mixture. Conversely, 
if the reaction is exothermic (Fig. 22.11b), then an 
increase in temperature increases the population of
the A states (which start at higher energy) at the 
expense of the B states, so the reactants become more
abundant.

22.8 The calculation of the 
equilibrium constant

We can go beyond the qualitative picture developed
above by writing a statistical thermodynamic expres-
sion for the equilibrium constant. We show in
Further Information 22.2 that, for the equilibrium
A(g) + B(g) f C(g),

(22.19)

where ΔE is the difference in energy between the
ground state of the product and that of the react-
ants. This expression is easy to remember: it has the
same form as the equilibrium constant written in
terms of the activities (Section 7.6), but with q m/NA
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Fig. 22.10 Even though the reaction A → B is endothermic,
the density of energy levels in B is so much greater than that
in A, that the population associated with B is greater than that
associated with A, so B is dominant at equilibrium.
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Fig. 22.11 The effect of temperature on a chemical equilib-
rium can be interpreted in terms of the change in the
Boltzmann distribution with temperature and the effect of
that change in the population of the species. (a) In an 
endothermic reaction, the population of B increases at the
expense of A as the temperature is raised. (b) In an exother-
mic reaction, the opposite happens.



The partition function of the Cs atom has a translational
and a spin contribution, as we saw in Section 22.4:

(We are not distinguishing the masses of the atoms Cs
atom and the Cs+ ion.) Then, with DE = I, the ionization
energy of the atom, we find

When we substitute the data (only the ionization energy
is specific to the element), we find:

A note on good practice Verify that the units do in
fact all cancel (use 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1

s−2). The K calculated by the procedure described here is
the thermodynamic equilibrium constant, which for
gases is expressed in terms of the partial pressures of
the reactants and products (relative to the standard pres-
sure), K = (pCs+/p-)(pe−/p-)/(pCs/p

-) = pCs+pe−/pCsp
-

me kT

p

K =
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(105 Pa) × (6.626 × 10−34 J s)3
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Example 22.5

Calculating an equilibrium constant

Calculate the equilibrium constant for the gas-phase 
ionization Cs(g) f Cs+(g) + e−(g) at 500 K.

Strategy This is a reaction of the form A(g) f B(g) + C(g)
rather than A(g) + B(g) f C(g), so we need to modify 
eqn 22.19 slightly, but the form to use should be clear.
Analyse each species individually, and write its partition
function as the product of partition functions for each
mode of motion. Evaluate these partition functions 
at the standard pressure (1 bar), and combine them as
specified in eqn 22.19. For the difference in energy DE,
use the ionization energy of Cs(g).

Solution The equilibrium constant is

Note how, in this instance, Avogadro’s constant appears
in the denominator: its units, mol−1, ensure that K is
dimensionless. The electron has translational motion, so
we need its translational partition function. We saw in
Section 22.4 that the spin states contribute a factor of 2
to the molecular partition function. Therefore

The Cs+ ion, a closed shell species, has only translational
freedom:
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replacing each activity (and an additional exponen-
tial factor):

When we cancel the NA, we get eqn 22.19.
Equation 22.19 is quite extraordinary, for it pro-

vides a key link between partition functions, which
can be derived from spectroscopy, and the equilib-
rium constant, which is central to the analysis of
chemical reactions at equilibrium. It represents the
merging of the two rivers that have flowed through
this text.
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Self-test 22.6

Calculate the equilibrium constant for the dissoci-
ation Na2(g) f 2 Na(g) at 1000 K. You will need the
following information about Na2(g): B = 46.38 MHz,
J = 159.2 cm−1, and the dissociation energy is 70.4
kJ mol−1. The ground state of a sodium atom is 2S.

[Answer: 2.42]
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Checklist of key ideas

You should now be familiar with the following concepts.

1 The Boltzmann distribution gives the numbers 
of molecules in each state of a system at any 
temperature.

2 The partition function is an indication of the number
of thermally accessible states at the temperature of
interest.

3 The molecular partition function is the product of
contributions from translation, rotation, vibration,
electronic and spin distributions: q = qTq RqVq Eq S.

4 The electronic partition function is q E = 1 for closed-
shell molecules with high-energy excited states.

The following table summarizes the equations that have been developed in the text.

Description

Boltzmann distribution

Partition function

Vibrational partition function

Translational partition function

Rotational partition function

Internal energy

Boltzmann formula

Entropy

Standard molar

Gibbs energy

Equilibrium constant

Equation

Ni = Ne−Ei /kT/q

qV = 1/(1 − e−hV/kT)

qT = (2pmkT )3/2V/h3

qR = kT/shB

U = U(0) + E
E = (NkT 2/q)(dq /dT )

S = k ln W

S = {U − U(0)}/T + Nk ln q

S = {U − U(0)}/T + Nk ln q − Nk(ln N − 1)

Gm
- − Gm

-(0) = −RT ln(qm
-/NA)

K = {qm
-(C)NA/qm

-(A)qm
-(B)}e−DE/kT

q = −∑e E kT

i

i /

Comment

Independent molecules

Harmonic oscillator

Perfect gas, T > 0

Linear rotor, kT > shB

Independent molecules

Independent, distinguishable molecules

Independent, indistinguishable molecules

Independent, indistinguishable molecules

A(g) + B(g) f C(g), perfect gases

Table of key equations

Further information 22.1

The calculation of partition functions

1. The translational partition function

Consider a particle of mass m in a rectangular box of sides
X, Y, Z. Each direction can be treated independently and
then the total partition function obtained by multiplying
together the partition functions for each direction. The
same strategy was used to write an expression for the
molecular partition function by multiplying the contribu-
tions from (independent) modes of molecular motion.

The energy levels of a molecule of mass m in a container
of length X are given by eqn 12.8 with L = X:

The lowest level (n = 1) has energy h2/8mX2, so the energies
relative to that level are

εn = (n2 − 1)ε ε = h2/8mX2

The sum to evaluate is therefore

q X
n kT

n

= − −

=

∞

∑e ( ) /2 1

1

ε

E
n h

mX
nn = =

2 2

28
1 2, , ...
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The translational energy levels are very close together in a
container the size of a typical laboratory vessel; therefore,
the sum can be approximated by an integral:

qX = �
∞

1
e−(n2−1)ε /kTdn

The extension of the lower limit to n = 0 and the replace-
ment of n2 − 1 by n2 introduces negligible error but turns
the integral into standard form. We make the substitution
x2 = n2ε /kT, implying dn = dx/(ε /kT )1/2, and therefore that

�
∞

0
e−x2

dx =

The same expression applies to the other dimensions of a
rectangular box of sides Y and Z, so

where V = XYZ is the volume of the box.

2. The rotational partition function

The rotational partition function of a nonsymmetrical (AB)
linear rigid rotor is
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where the sum is over the rotational energy levels and the
factor 2J + 1 takes into account the degeneracy of the levels.
When many rotational states are occupied and kT is much
larger than the separation between neighbouring states, we
can approximate the sum by an integral:

qR = �
∞

0
(2J + 1)e−hBJ( J+1)/kTdJ

Although this integral looks complicated, it can be evalu-
ated without much effort by noticing that it can also be
written as

�
∞

0

Then, because the integral of a derivative of a function is
the function itself,

For a homonuclear diatomic molecule, which looks the
same after rotation by 180°, we have to divide this result by
2 to avoid double-counting of states, so in general

where σ = 1 for heteronuclear diatomic molecules and 2 for
homonuclear diatomic molecules.

q R =
kT
hBσ

q R e= − =− +
∞

kT
hB

kT
hB

hBJ J kT( )/1

0

d
d

e d
J

JhBJ J kT− +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )/1q rot =
kT
hB

Further information 22.2

The equilibrium constant from the 
partition function

We know from thermodynamics (Section 7.6) that the equi-
librium constant for a reaction is related to the standard 
reaction Gibbs energy by

ΔrG = −RT ln K

For the reaction A(g) + B(g) f C(g),

ΔrG = Gm(C) − {Gm(A) + Gm(B)}

Equation 22.16 is an expression for each of these standard
molar Gibbs energies in terms of the partition function of
each species, so we can write

The first term in each of the braces is just the difference in
ground-state energies because G = U at T = 0, so
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Gm(C,0) − {Gm(A,0) + Gm(B,0)}

= Um(C,0) − {Um(A,0) + Um(B,0)} = ΔE

The three logarithms can be combined by using ln x − ln y
− ln z = ln(x/yz), to obtain

At this stage we have reached

The ΔE can be brought inside the logarithm by writing

ΔE = −RT ln e−ΔE/RT

(Because ln ex = x). Therefore

All we have to do now is to compare this expression with
the thermodynamic expression, ΔrG = −RT ln K, and see that
the term in parentheses is the expression for K (eqn 22.19).
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Questions and exercises

Discussion questions

22.1 Outline the derivation of the Boltzmann distribution.

22.2 What is temperature?

22.3 Describe the physical significance of the molecular 
partition function.

22.4 When are particles of the same composition identical
and when are they not?

22.5 Explain how the internal energy and entropy of a system
composed of two levels vary with temperature.

22.6 Justify the identification of the statistical entropy with
the thermodynamic entropy.

22.7 Explain the origin of the residual entropy.

22.8 Use concepts of statistical thermodynamics to describe
the molecular features that determine the magnitudes of
equilibrium constants and their variation with temperature.

Exercises

22.1 Suppose polyethylene molecules in solution can exist
either as a single version of a random coil (that is, ignore the
fact that a random coil can be achieved in many different
ways) or fully stretched out, with the latter conformation 
2.4 kJ mol−1 higher in energy. What is the ratio of the two
conformations at 20°C? See Exercise 22.30 for an elaboration
of this exercise.

22.2 What is the ratio of populations of proton spin orienta-
tions in a magnetic field of (a) 1.5 T, (b) 15 T in a sample at
20°C? Hint: For the energy difference, refer to Chapter 21.

22.3 What is the ratio of populations of electron spin orienta-
tions in a magnetic field of 0.33 T in a sample at 20°C? Hint:
For the energy difference, refer to Chapter 21.

22.4 Calculate the ratio of populations of CO2 molecules
with J = 4 and J = 2 at 25°C. The rotational constant of CO2 is
11.70 GHz. Hint: Molecular rotations are discussed in Chap-
ter 19.

22.5 Calculate the ratio of populations of CH4 molecules
with J = 4 and J = 2 at 25°C. The rotational constant of CH4 is
157 GHz. Hint: The degeneracy of a spherical rotor in a state
with quantum number J is (2J + 1)2.

22.6 (a) Write down the expression for the partition function
of a molecule that has three energy levels at 0, 2e, and 5e
with degeneracies 1, 6, and 3, respectively. What are the 
values of q at (b) T = 0, (c) T = ∞?

22.7 The ground configuration of carbon gives rise to a triplet
with the three levels 3P0,

3P1, and 3P2 at wavenumbers 0,
16.4, and 43.5 cm−1, respectively. Evaluate the partition func-
tion of carbon at (a) 10 K, (b) 298 K. Hint: Remember that a
level with quantum number J has 2J + 1 states.

22.8 The ground configuration of oxygen gives rise to the
three levels 3P2,

3P1, and 3P0 at wavenumbers 0, 158.5, and
226.5 cm−1, respectively. (a) Before doing any calculation,
state the value of the partition function at T = 0. (b) Evaluate
the partition function at 298 K and confirm that its value at 
T = 0 is what you anticipated in (a).

22.9 Evaluate the vibrational partition function for HBr at 
298 K. For data, see Table 19.2. Above what temperature is
the high-temperature approximation (eqn 22.6) in error by 
10 per cent or less?

22.10 A CO2 molecule has four vibrational modes with wave-
numbers 1388 cm−1, 2349 cm−1, and 667 cm−1 (the last being
a doubly degenerate bending motion). Calculate the total 
vibrational partition function at (a) 500 K, (b) 1000 K.

22.11 Evaluate the translational partition function of (a) N2,
(b) gaseous CS2 in a flask of volume 10.0 cm3. Why is one so
much larger than the other?

22.12 Evaluate the translational partition function at 298 K of
(a) a methane molecule trapped in the pore of a zeolite cata-
lyst: take the pore to be spherical with a radius that allows the
molecule to move through 1 nm in any direction (that is, the
effective diameter is 1 nm), (b) a methane molecule in a flask
of volume 100 cm3.

22.13 Evaluate the rotational partition function of HBr 
(B̃ = 8.465 cm−1) at 298 K (a) by direct summation of the 
energy levels, (b) by using the high-temperature approximation.

22.14 Repeat the previous exercise at different tem-
peratures (use mathematical software) and determine the
temperature at which the approximate formula is 10 per cent
in error.

22.15 Evaluate the rotational partition function at 298 K of 
(a) 1H35Cl, for which the rotational constant is 318 GHz, 
(b) 12C16O2, for which the rotational constant is 11.70 GHz.

22.16 N2O and CO2 have similar rotational constants (12.6
and 11.7 GHz, respectively) but strikingly different rotational
partition functions. Why?

22.17 Derive an expression for the energy of a molecule that
has three energy levels at 0, e, and 3e with degeneracies 1, 5,
and 3, respectively.

22.18 The states arising from the ground configuration of 
a carbon atom are described in Exercise 22.7. (a) Derive 
an expression for the electronic contribution to the molar 
internal energy and plot it as a function of temperature. 
(b) Evaluate the expression at 25°C.

22.19 (a) Derive an expression for the electronic contribution
to the molar heat capacity of an oxygen atom and plot it as a
function of temperature. (b) Evaluate the expression at 25°C.
The structure of the atom is described in Exercise 22.8.
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22.20 Suppose that the FClO3 molecule can take up any of
four orientations in the solid at T = 0. What is its residual
molar entropy?

22.21 An average human DNA molecule has 5 × 108 base
pairs (rungs on the DNA ladder) of four different kinds. If each
rung were a random choice of one of these four possibilities,
what would be the residual entropy associated with this typ-
ical DNA molecule?

22.22 Calculate the molar entropy of nitrogen (N2) at 298 K.
Hint: Ignore the vibration of the molecule. Write the overall
partition function as the product of the translational and rota-
tional partition functions. For data, see Table 19.1.

22.23 Without carrying out an explicit calculation, explain the
relative values of the standard molar entropies (at 298 K) of the
following substances: (a) Ne(g) (146 J K−1 mol−1) compared
with Xe(g) (170 J K−1 mol−1); (b) H2O(g) (189 J K−1 mol−1) com-
pared with D2O(g) (198 J K−1 mol−1); (c) C(diamond) (2.4 J K−1

mol−1) compared with C(graphite) (5.7 J K−1 mol−1).

22.24 Estimate the change in molar entropy when a micelle
consisting of 100 molecules disperses. Hint: Treat the trans-
ition as the expansion of a gas-like substance that initially 
occupies a volume Vmicelle and spreads into a volume Vsolution.
What does this model neglect?

22.25 Calculate the standard molar Gibbs energy of carbon
dioxide at 298 K relative to its value at T = 0.

22.26 Write down the expression for the equilibrium con-
stant of the reaction N2(g) + 3 H2(g) f 2 NH3(g) in terms of the
molecular partition functions of the species.

22.27 Calculate the equilibrium constant for the ionization
equilibrium of sodium atoms at 1000 K.

22.28 Calculate the equilibrium constant for the dissociation
of I2(g) at 500 K.

Projects

The symbol ‡ indicates that calculus is required.

22.29‡ Here we use statistical thermodynamics to calculate
the internal energy and heat capacity of a system (such as 
the surface of an atomic solid) modelled as a collection of 
harmonic oscillators. (a) Derive an expression for the internal
energy of a collection of harmonic oscillators. Deduce from
your expression the high-temperature approximation and
identify the temperature above which it is reliable. Hint: Sub-
stitute eqn 22.5 for the partition function into eqn 22.11 for
the energy. (b) Now find an expression for the heat capacity
of the oscillators and its high-temperature limit.

22.30 The very first exercise invited you to neglect the fact
that a random coil can be achieved in many different ways.
Repeat that exercise, allowing for this feature. Explore how
the ratio of populations varies with the number of units, N, in
the polymer.



Table A1.1

The SI base units

Physical quantity Symbol for Base unit
quantity

Length l metre, m
Mass m kilogram, kg
Time t second, s
Electric current I ampere, A
Thermodynamic temperature T kelvin, K
Amount of substance n mole, mol
Luminous intensity Iv candela, cd

Table A1.2

A selection of derived units

Physical quantity Derived unit* Name of derived unt

Force 1 kg m s−2 newton, N
Pressure 1 kg m−1 s−2 pascal, Pa

1 N m−2

Energy 1 kg m2 s−2 joule, J
1 N m
1 Pa m3

Power kg m2 s−3 watt, W
1 J s−1

* Equivalent definitions in terms of derived units are given following the
definition in terms of base units.

Table A1.3

Common SI prefixes

Prefix z a f p n m m c d
Name zepto atto femto pico nano micro milli centi deci
Factor 10−21 10−18 10−15 10−12 10−9 10−6 10−3 10−2 10−1

Prefix k M G T P
Name kilo mega giga tera peta
Factor 103 106 109 1012 1015

The result of a measurement is a physical quantity (such as
mass or density) that is reported as a numerical multiple of
an agreed unit:

physical quantity = numerical value × unit

For example, the mass of an object may be reported as 
m = 2.5 kg and its density as d = 1.01 kg dm−3 where the
units are, respectively, 1 kilogram (1 kg) and 1 kilogram
per decimetre cubed (1 kg dm−3). Units are treated like 
algebraic quantities, and may be multiplied, divided, and
cancelled. Thus, the expression (physical quantity)/unit 
is simply the numerical value of the measurement in the
specified units, and hence is a dimensionless quantity. 
For instance, the mass reported above could be denoted
m/kg = 2.5 and the density as d/(kg dm−3) = 1.01.

Physical quantities are denoted by italic or Greek letters
(as in m for mass and Π for osmotic pressure). Units are 
denoted by Roman letters (as in m for metre). In the
International System of units (SI, from the French Système
International d’Unités), the units are formed from seven
base units listed in Table A1.1. All other physical quantities
may be expressed as combinations of these physical quan-
tities and reported in terms of derived units. Thus, volume
is (length)3 and may be reported as a multiple of 1 metre

cubed (1 m3), and density, which is mass/volume, may 
be reported as a multiple of 1 kilogram per metre cubed 
(1 kg m−3).

A number of derived units have special names and sym-
bols. The names of units derived from names of people are
lower case (as in torr, joule, pascal, and kelvin), but their
symbols are upper case (as in Torr, J, Pa, and K). The most
important of this kind for our purposes are listed in Table
A1.2. In all cases (both for base and derived quantities), the
units may be modified by a prefix that denotes a factor of a
power of 10. In a perfect world, Greek prefixes of units are
upright (as in μm) and sloping for physical properties (as 
in μ for chemical potential), but available typefaces are not
always so obliging. Among the most common prefixes 
are those listed in Table A1.3. Examples of the use of these
prefixes are

1 nm = 10−9 m 1 ps = 10−12 s 1 μmol = 10−6 mol

The kilogram (kg) is anomalous: although it is a base unit,
it is interpreted as 103 g, and prefixes are attached to the
gram (as in 1 mg = 10−3 g). Powers of units apply to the
prefix as well as the unit they modify:

Appendix 1 Quantities and units
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1 cm3 = 1 (cm)3 = 1 (10−2 m)3 = 10−6 m3

Note that 1 cm3 does not mean 1 c(m3). When carrying out
numerical calculations, it is usually safest to write out the
numerical value of an observable as powers of 10.

There are a number of units that are in wide use but are
not a part of the International System. Some are exactly
equal to multiples of SI units. These include the litre (L),
which is exactly 103 cm3 (or 1 dm3) and the atmosphere
(atm), which is exactly 101.325 kPa. Others rely on the 
values of fundamental constants, and hence are liable to
change when the values of the fundamental constants are
modified by more accurate or more precise measurements.
Thus, the size of the energy unit electronvolt (eV), the 
energy acquired by an electron that is accelerated through
a potential difference of exactly 1 V, depends on the value
of the charge of the electron, and the present (2009) con-
version factor is 1 eV = 1.602 176 × 10−19 J. Table A1.4
gives the conversion factors for a number of these con-
venient units.

Table A1.4

Some common units

Physical quantity Name of unit Symbol Value
for unit

Time minute min 60 s
hour h 3600 s
day d 86 400 s

Length ångström Å 10−10 m
Volume litre L, l 1 dm3

Mass tonne t 103 kg
Pressure bar bar 105 Pa

atmosphere atm 101.325 kPa
Energy electronvolt eV 1.602 176 5 × 10−19 J

96.485 31 kJ mol−1

All values in the final column are exact, except for the definition of 1 eV.



The art of doing mathematics correctly is to do nothing 
at each step of a calculation. That is, it is permissible to 
develop an equation by ensuring that the left-hand side of
an expression remains equal to the right-hand side. There
are several ways of modifying the appearance of an expres-
sion without upsetting its balance.

Basic procedures

We set the stage for the mathematical arguments in the text
by reviewing a few basic procedures, such as manipulation
of equations, graphs, logarithms, exponentials, and vectors.

A2.1 Algebraic equations and graphs

The simplest types of equation we have to deal with have
the form

y = ax + b

This expression may be modified by subtracting b from
both sides, to give

y − b = ax

It may be modified further by dividing both sides by a, to
give

This series of manipulations is called rearranging the 
expression for y in terms of x to give an expression for x in
terms of y. A short cut, as can be seen by inspecting these
two steps, is that an added term can be moved through the
equals sign provided that as it passes = it changes sign (that
happened to b in the example). Similarly, a multiplying 
factor becomes a divisor (and vice versa) when it passes
through the = sign (as happened to a).

There are several more complicated manipulations that
are required in certain cases. For example, we can find the
values of x that satisfy an equation of the form

ax2 + bx + c = 0

or any equation that can be rearranged into this form by
the steps we have already illustrated. An equation in which
x occurs as its square is called a quadratic equation. Its 
solutions are found by inserting the values of the constants
a, b, and c into the expression

(A2.1)

where the two values of x given by this expression (one by
using the + sign and the other by using the − sign) are called
the two roots of the original quadratic equation.

x
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A function, f, tells us how something changes as a variable
is changed. For example, we might write

f (x) = ax + b

to show how a property f changes as x is changed. The 
variation of f with x is best shown by drawing a graph in
which f is plotted on the vertical axis and x is plotted hor-
izontally. The graph of the function we have just written is
shown in Fig. A2.1. The important point about this graph
is that it is linear (that is, it is a straight line); its intercept
with the vertical axis (the value of f when x = 0) is b, and its
slope is a. That is, a straight line has the form

f = slope × x + intercept

A positive value of a indicates an upward slope from left to
right (increasing x); a change of sign of a results in a nega-
tive slope, down from left to right. We say that y varies lin-
early with x if the relation between them is y = ax + b; we
say that y is proportional to x if the relation is y = bx.

The solutions of the equation f(x) = 0 can be visualized
graphically: they are the values of x for which f cuts
through the horizontal axis (the axis corresponding to 
f = 0). For example, the solution of the quadratic equation
given earlier is depicted in Fig. A2.2 (see p. 544). In general,
a quadratic equation has a graph that cuts through the 
horizontal axis at two points (the equation has two roots),
a cubic equation (an equation in which x3 is the highest
power of x) cuts through it three times (the equation has
three roots), and so on.

A2.2 Logarithms, exponentials, and powers

Some equations are most readily solved by using loga-
rithms and related functions. The natural logarithm of a
number x is denoted ln x, and is defined as the power to
which a certain number designated e must be raised for 
the result to be equal to x. The number e, which is equal to
2.718 .. . may seem to be decidedly unnatural; however, it

Appendix 2 Mathematical techniques

f(x)

x0

b

Δf

Δx
a = Δf/Δ

x

–b/a

Fig. A2.1 A straight line is described the equation f (x) = ax + b,
where a is the slope and b is the intercept.
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falls out naturally from various manipulations in mathem-
atics and its use greatly simplifies calculations. On a calcu-
lator, ln x is obtained simply by entering the number x and
pressing the ‘ln’ key or its equivalent. It follows from the
definition of logarithms that

ln x + ln y = ln xy (A2.2a)

ln x − ln y = (A2.2b)

a ln x = ln xa (A2.2c)

Thus, ln 5 + ln 3 is the same as ln 15 and ln 6 − ln 2 is the
same as ln 3, as may readily be checked with a calculator.
The last of these three relations is very useful for finding an
awkward root of a number. The antilogarithm of a number
is the value of x for which the natural logarithm is the num-
ber quoted.

A brief illustration Suppose we wanted the fifth root
of 28. We write the required root as x, with x5 = 28. We
take logarithms of both sides, which gives ln x5 = ln 28,
and then rewrite the left-hand side of this equation as 
5 ln x. At this stage we see that we have to solve

5 ln x = ln 28

To do so, we divide both sides by 5, which gives

The natural antilogarithm of a number is obtained by
pressing the ‘exp’ key on a calculator (where ‘exp’ is an
abbreviation for exponential), and in this case the answer
is 1.947.. . .

There are a number of useful points to remember about
logarithms, and they are summarized in Fig. A2.3. We see
how logarithms increase only very slowly as x increases.
For instance, when x increases from 1 to 1000, ln x
increases from 0 to only 6.9. Another point is that the 
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logarithm of 1 is 0: ln 1 = 0. The logarithms of numbers 
less than 1 are negative, and in elementary mathematics the
logarithms of negative numbers are not defined.

A brief comment The logarithm of a negative number is
complex (that is, involves i, the square-root of −1): ln (−x) =
ip + ln x.

We also encounter the common logarithm of a number,
the logarithm compiled with 10 in place of e; they are 
denoted log x. For example, log 5 is the power to which 
10 must be raised to obtain 5, and is 0.698 97.. . . Common
logarithms follow the same rules of addition and subtrac-
tion as natural logarithms. They are largely of historical 
interest now that calculators are so readily available, but
they survive in the context of acid–base chemistry and pH.
Common and natural logarithms (log and ln, respectively)
are related by

ln x = ln 10 × log x = (2.303.. .) × log x (A2.3)

The exponential function, ex, plays a very special role in
the mathematics of chemistry. It is evaluated by entering x
and pressing the ‘exp’ key on a calculator. The following
properties are important:

ex × ey = ex+y (A2.4a)

(A2.4b)

(ex)a = eax (A2.4c)

(These relations are the analogues of the relations for loga-
rithms.) A graph of ex is shown in Fig. A2.4. As we see, it is
positive for all values of x. It is less than 1 for all negative
values of x, is equal to 1 when x = 0, and rises ever more
rapidly towards infinity as x increases. This sharply rising
character of ex is the origin of the colloquial expression 
‘exponentially increasing’ widely but loosely used in the
media. (Strictly, a function increases exponentially if its
rate of change is proportional to its current value.)
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Fig. A2.2 The roots of a quadratic equation are given by the
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0 200 400 600 800 1000
–4

0

4

8

ln
 x

x

0

0

–2

–4

0.2 0.4 0.6 0.8 1 1.2

Fig. A2.3 The graph of ln x. Note that ln x approaches −∞ as
x approaches 0.
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A2.3 Vectors

A vector quantity has both magnitude and direction. The
vector v shown in Fig. A2.5 has components on the x-, y-,
and z-axes with magnitudes vx, vy, and vz, respectively. 
The direction of each of the components is denoted with 
a plus sign or minus sign. For example, if vx = −1.0, the 
x-component of the vector v has a magnitude of 1.0 and
points in the −x direction. The magnitude of the vector is
denoted v or |v | and is given by

v = (vx
2 + vy

2 + vz
2)1/2 (A2.5)

Operations involving vectors are not as straightforward
as those involving numbers. Here we describe a procedure
for adding and subtracting two vectors because such vector
operations are important for the discussion of atomic struc-
ture and molecular dipole moments.

Consider two vectors v1 and v2 making an angle θ (Fig.
A2.6a). The first step in the addition of v2 to v1 consists of
joining the tail of v2 to the had of v1, as shown in Fig.
A2.6b. In the second step, we draw a vector vres, the resul-
tant vector, originating from the tail of v1 to the head of v2,
as shown in Fig. A2.6c.

To calculate the magnitude of vres, we note that v1, v2, and
vres form a triangle and that we know the magnitudes of
two of its sides (v1 and v2) and of the angle between them
(180° − θ; see Fig. A2.6c). To calculate the magnitude of 
the third side, vres, we make use of the law of cosines, which
states that:

For a triangle with sides a, b, and c, and angle C facing
side c:

c2 = a2 + b2 − 2ab cos C

This law is summarized graphically in Fig. A2.8 and its 
application to the case shown in Fig. A2.6c leads to the 
expression

v2
res = v1

2 + v2
2 − 2v1v2 cos(180° − θ)
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Fig. A2.4 The graph of ex. Note that ex approaches 0 as x
approaches −∞.
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Fig. A2.5 The vector v has components vx, vy, and vz on the
x-, y-, and z-axes, respectively.
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Fig. A2.6 (a) The vectors v1 and v2 make an angle q. (b) 
To add v2 to v1, we first join the tail of v2 to the head of v1,
making sure that the angle q between the vectors remains
unchanged. (c) To finish the process, we draw the resultant
vector vres by joining the tail of v2 to the head of v1.

Self-test A2.1

Using the same vectors shown in Fig. A2.6a, show that
reversing the order of addition leads to the same result.
That is, we obtain the same vres whether we add v2 to v1

or v1 to v2.
[Answer: See Fig. A2.6c for the result of adding v2 to v1 and

Fig. A2.7 for the result of adding v1 to v2.]

v2

v1vres

Fig. A2.7 The result of adding the vector v1 to the vector v2,
with both vectors defined in Fig. A2.7a. Comparison with the
result shown in Fig. A2.7c for the addition of v2 to v1 shows
that reversing the order of vector addition does not affect the
result.
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Because cos (180° − θ) = −cos θ, it follows after taking the
square root of both sides of the preceding expression that

vres = (v1
2 + v2

2 + 2v1v2 cos θ)1/2 (A2.6)

which is the result used in Section 15.2 for the addition of
two dipole moment vectors.

The subtraction of vectors follows the same principles
outlined above for addition. Consider again the vectors
shown in Fig. A2.6a. We note that subtraction of v2 from v1
amounts to addition of −v2 to v1. It follows that in the first
step of subtraction we draw −v2 by reversing the direction
of v2 (Fig. A2.9a). Then, the second step consists of adding
the −v2 to v1 by using the strategy shown in Fig. A2.6c: we
draw a resultant vector vres by joining the tail of −v2 to the
head of v1.

One procedure for multiplying vectors—and the only
one we shall discuss here—consists of calculating the scalar
product (or dot product) of two vectors v1 and v2 making
an angle θ:

v1 · v2 = v1v2 cos θ (A2.7)

As its name suggests, the scalar product of two vectors is 
a scalar (a number) and not a vector. Another procedure,
which we do not use in this text, involves calculation of the
cross-product of two vectors. Vector division is not defined.

Calculus

Now we turn to techniques of calculus, a branch of math-
ematics that is used to model a host of physical, chemical,
and biological phenomena.

A2.4 Differentiation

Rates of change of functions—slopes—are best discussed in
terms of the infinitesimal calculus. The slope of a function,
like the slope of a hill, is obtained by dividing the rise of 
the hill by the horizontal distance (Fig. A2.10). However,

because the slope may vary from point to point, we should
take the horizontal distance between the points as small as
possible. In fact, we let it become infinitesimally small—
hence the name infinitesimal calculus. The values of a func-
tion f at two locations x and x + δx are f(x) and f(x + δx),
respectively. Therefore, the slope of the function f at x is 
the vertical distance, which we write δf divided by the 
horizontal distance, which we write δx:

The slope exactly at x itself is obtained by letting the 
horizontal distance become zero, which we write lim δx → 0.
In this limit, the δ is replaced by a d, and we write

To work out the slope of any function, we work out the 
expression on the right: this process is called differentiation.
It leads to the following important expressions:

Most of the functions encountered in chemistry can be 
differentiated by using these relations in conjunction with
the following rules:

Rule 1. For two functions f and g:

d(f + g) = df + dg (A2.8)

Rule 2 (the product rule). For two functions f and g:

d(fg) = f dg + g df (A2.9)

Rule 3 (the quotient rule). For two functions f and g:

(A2.10)
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Fig. A2.8 The graphical representation of the law of cosines.

θ

(a) (b) (c)

Fig. A2.9 The graphical method for subtraction of (a) the 
vector v2 from the vector v1 (as shown in Fig. A2.6a) consists
of two steps: (b) reversing the direction of v2 to form −v2, and
(c) adding −v2 to v1.

x x + dx

f(x)

f(x + δx)

Fig. A2.10 The slope of f (x ) at x, df/dx, is obtained by making
a series of approximations to the value of f (x + dx ) − f (x )
divided by change in x, denoted dx, and allowing dx to ap-
proach 0 (as denoted by the vertical lines getting closer to x ).
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Rule no. 4 (the chain rule). For a function f = f (g), where
g = g(t),

(A2.11)

In the last rule, f (g) is a ‘function of a function’, as in 
ln(1 + x2) or ln(sin x).

The second derivative of a function, denoted d2f /dx2, is
calculated by taking the first derivative, df /dx, and then
taking the derivative of df /dx. For example, to calculate 
the second derivative of the function sin ax (where a is a
constant), we write

A very useful mathematical procedure involving differenti-
ation consists of finding the value of x corresponding to the
extremum (maximum or minimum) of any function f (x).
At an extremum the slope of the graph of the function is 
exactly zero (Fig. A2.11), so to find the value of x at which
a maximum or minimum occurs we differentiate the func-
tion, set the result equal to zero, and solve the equation for
x. To decide whether the function has a maximum or a
minimum at this point, we note that the second derivative
is an indication of the curvature of a function. Where
d2f /dx2 is positive, the graph of the function has a ∪ shape;
where it is negative, the graph has a ∩ shape.

A brief illustration Consider the function 4x2 + 3x − 6.
The first derivative is zero when

or

Then

It follows that the function f (x) = 4x2 + 3x − 6 has a min-
imum at x = − .3
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A2.5 Power series and Taylor expansions

A power series has the form

c0 + c1(x − a) + c2(x − a)2 + . . . + cn(x − a)n + . . . (A2.12)

where cn and a are constants. It is often useful to express 
a function f(x) in the vicinity of x = a as a special power 
series called the Taylor series, or Taylor expansion, which
has the form:

(A2.13)

where n! denotes a factorial given by

n! = n(n − 1)(n − 2) . . . 1

(By definition, 0! = 1.) The following Taylor expansions are
often useful:

ex = 1 + x + x2 + . . .

ln x = (x − 1) − (x − 1)2 + (x − 1)3 − (x − 1)4 + . . ..

ln(1 + x) = x − x2 + x3 . . .

If x << 1, then (1 + x)−1 ≈ 1 − x, ex ≈ 1 + x, and ln(1 + x) ≈ x.

A2.6 Integration

The area under a graph of any function f is found by the
techniques of integration. For instance, the area under the
graph of the function f drawn in Fig. A2.12 can be written
as the value of f evaluated at a point multiplied by the width
of the region, δx, and then all those products f (x)δx
summed over all the regions:

Area between a and b = ∑ f (x)δx

When we allow δx to become infinitesimally small, written
dx, and sum an infinite number of strips, we write
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Fig. A2.11 At an extremum, the first derivative of a function
is zero. The figure shows the case of a minimum.

x

f(x)
δx

Fig A2.12 The shaded area is equal to the definite integral of
f(x) between the limits a and b.
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Area between a and b = �
b

a

f (x)dx

The elongated S symbol on the right is called the integral of
the function f. When written as ∫ alone, it is the indefinite
integral of the function. When written with limits (as in the
expression above), it is the definite integral of the function.
The definite integral is the indefinite integral evaluated at
the upper limit (b) minus the indefinite integral evaluated 
at the lower limit (a).

Some important integrals are

�xn dx = �eax dx = � ln ax dx = x ln ax − x

�sin ax dx = �cos ax dx =

A brief comment Strictly, an indefinite integral should be
written with an arbitrary constant on the right, so ∫x dx = x2

+ constant. However, tables of integrals commonly omit the
constant. It cancels when the definite integral is evaluated.

It may be verified from these examples—and this is a very
deep result of infinitesimal calculus—that integration is the
inverse of differentiation. That is, if we integrate a function
and then differentiate the result, we get back the original
function.

A2.6 Differential equations

An ordinary differential equation is a relation between
derivatives of a function f of one variable x and various
functions of x including, perhaps, f itself. For example, if the
slope of a function increases in proportion to x, we write

where a is a constant. To solve a differential equation, we
have to look for the function f that satisfies it: the process is
called integrating the equation.

A brief illustration In this case we would multiply
each side by dx, to obtain

df = axdx

and then integrate both sides:

�df = �ax dx

The integral on the left is f (because integration is the 
inverse of differentiation) and that on the right is ax2

(plus a constant in each case). Therefore:

f (x) = ax2 + constant

The result quoted in the brief illustration is the general
solution of the equation (Fig. A2.13). To fix the value of the
constant and to find the particular solution, we take note of
the boundary conditions that the function must satisfy, the
value that we know the function has at a particular point.
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A brief illustration Thus, if we know that f (0) = 1, then
we can write

1 = a + constant, so constant = 1 − a

The particular solution that satisfies the boundary condi-
tion is therefore

f (x) = ax2 + 1 − a

In chemical kinetics, for instance, we may know that the 
reaction rate is proportional to the concentration of a 
reactant, and look for a general solution of the rate equa-
tion (a differential equation) which tells us how the con-
centration varies with time as the reaction proceeds. The
particular solution is then obtained by making sure that the
concentration has the correct value initially. A boundary
condition is called an initial condition if the variable is
time, as in a rate law.

A differential equation that is expressed in terms of first
derivatives is a first-order differential equation. Rate laws
are first-order differential equations.

A note on good practice Do not confuse this use of the
term ‘order’ with the order of the rate law: even a second-order
rate law is a first-order differential equation!

A differential equation that is expressed in terms of second
derivatives is a second-order differential equation. The
Schrödinger equation is a second-order differential equa-
tion. The solution of differential equations is a very 
powerful technique in the physical sciences, but is often
very diAcult. All the second-order differential equations
that occur in this text can be found tabulated in com-
pilations of solutions or can be solved with mathematical
software, and the specialized techniques that are needed 
to establish the form of the solutions may be found in
mathematical texts.
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Fig. A2.13 The general solution of the differential equation
df/dx = ax is any one of the parabolas shown here (and others
like them); the particular solution, which is identified by 
the boundary condition that f must satisfy, is shown by the
green line.



Throughout the text we use ideas of classical physics as the
basis for discussion of energy exchanges during chemical
reactions, atomic and molecular structure, molecular inter-
actions, and spectroscopic techniques. Here we review of
concepts of classical mechanics, electromagnetism, and
electrostatics.

Classical mechanics

Classical mechanics describes the behaviour of particles 
in terms of two equations. One expresses the fact that the
total energy is constant in the absence of external forces
and the other expresses the response of particles to the
forces acting on them.

A3.1 Energy

Kinetic energy, Ek, is the energy that a body (a block of
matter, an atom, or an electron) possesses by virtue of its
motion. The formula for calculating the kinetic energy of a
body of mass m that is travelling at a speed v is

Ek = mv2 (A3.1)

This expression shows that a body may have a high 
kinetic energy if it is heavy (m large) and is travelling
rapidly (v large). A stationary body (v = 0) has zero kinetic
energy, whatever its mass. The energy of a sample of per-
fect gas is entirely due to the kinetic energy of its molecules:
they travel more rapidly (on average) at high temperatures
than at low, so raising the temperature of a gas increases
the kinetic energy of its molecules.

Potential energy, EP or V, is the energy that a body has by
virtue of its position. A body on the surface of the Earth has
a potential energy on account of the gravitational force it
experiences: if the body is raised, then its potential energy
is increased. There is no general formula for calculating the
potential energy of a body because there are several kinds
of force. For a body of mass m at a height h above (but 
close to) the surface of the Earth, the gravitational potential
energy is

Ep = mgh

where g is the acceleration of free fall (g = 9.81 m s−2). A
heavy object at a certain height has a greater potential 
energy than a light object at the same height. One very im-
portant contribution to the potential energy is encountered
when a charged particle is brought up to another charge. In
this case the potential energy is inversely proportional to
the distance between the charges (see Section A3.3):

specifically, E
Q Q

rp = 1 2

04πε 
E

rp ∝
1

1
2

This Coulomb potential energy decreases with distance,
and two infinitely widely separated charged particles have
zero potential energy of interaction. The Coulomb poten-
tial energy plays a central role in the structures of atoms,
molecules, and solids.

The total energy, E, of a body is the sum of its kinetic and
potential energies. It is a central feature of physics that the
total energy of a body that is free from external influences
is constant. Thus, a stationary ball at a height h above the
surface of the Earth has a potential energy of magnitude
mgh; if it is released and begins to fall to the ground, it 
loses potential energy (as it loses height), but gains the same
amount of kinetic energy (and therefore accelerates). Just
before it hits the surface, it has lost all its potential energy,
and all its energy is kinetic.

The SI unit of energy is the joule (J), which is defined as

1 J = 1 kg m2 s−2 (A3.2)

Calories (cal) and kilocalories (kcal) are still encountered 
in the chemical literature: by definition, 1 cal = 4.184 J. An
energy of 1 cal is enough to raise the temperature of 1 g of
water by 1°C.

The rate of change of energy is called the power, P, ex-
pressed as joules per second, or watt, W:

1 W = 1 J s−1 (A3.3)

A3.2 Force

Classical mechanics describes the motion of a particle in
terms of its velocity, v, the rate of change of its position:

(A3.4)

The velocity is a vector, with both direction and magnitude
(see Appendix 2). The magnitude of the velocity is the
speed, v. The linear momentum, p, of a particle of mass m
is related to its velocity, v, by

p = mv (A3.5)

Like the velocity vector, the linear momentum vector
points in the direction of travel of the particle (Fig. A3.1).
In terms of the linear momentum, the kinetic energy of a
particle is

(A3.6)

The state of motion of a particle is changed by a force, 
F. According to Newton’s second law of motion, a force
changes the momentum of a particle such that the accelera-
tion, a, of the particle (its rate of change of velocity, or
dv/dt) is proportional to the strength of the force:
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Appendix 3 Concepts of physics
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force = mass × acceleration, or (A3.7)

We note that the force and acceleration, like the velocity
and momentum, are vectors. The SI unit for expressing the
magnitude of a force is the newton (N), which is defined as

1 N = 1 kg m s−2 (A3.8)

Equation A3.7 shows that a stronger force is required to 
accelerate a heavy particle by a given amount than to accel-
erate a light particle by the same amount. A force can be
used to change the kinetic energy of a body, by accelerating
the body to a higher speed. It may also be used to change
the potential energy of a body by moving it to another 
position (for example, by raising it near the surface of the
Earth). The force experienced by a particle free to move in
one dimension is related to its potential energy, V, by

(A3.9)

This relation implies that the direction of the force is 
towards decreasing potential energy (Fig. A3.2).

The work, w, done on an object is the product of the 
distance, s, moved and the force opposing the motion:

w = −Fs (A3.10a)

 
F

V
x

= −
d
d

 
F a

v
= =m m

t
d
d

It requires a lot of work to move a long distance against a
strong opposing force (think of cycling into a strong wind).
If the opposing force changes at different points on the
path, then we consider the force as a function of position,
F(s), and write

w = −�F(s) ds (A3.10b)

The integral is evaluated along the path traversed by the
particle.

Electrostatics

Electrostatics is the study of the interactions of stationary
electric charges. The elementary charge, the magnitude of
charge carried by a single electron or proton, is e ≈ 1.60 ×
10−19 C. The magnitude of the charge per mole is the
Faraday constant: F = NAe = 9.65 × 104 C mol−1.

A3.3 The Coulomb interaction

The fundamental expression in electrostatics is the
Coulomb potential energy of one charge of magnitude Q at
a distance r from another charge Q′:

(A3.11)

That is, the potential energy is inversely proportional to 
the separation of the charges. The fundamental constant 
ε0 is the vacuum permittivity; its value is ε0 = 8.854 × 10−12

J−1 C2 m−1. With r in metres and the charges in coulombs,
the potential energy is in joules. The potential energy is equal
to the work that must be done to bring up a charge Q from
infinity to a distance r from a charge Q′. The implication is
then that the magnitude of the force exerted by a charge Q
on a charge Q′ is inversely proportional to the square of
their separation:

(A3.12)

This expression is Coulomb’s inverse-square law of force.

A3.4 The Coulomb potential

We can express the potential energy of a charge Q in the
presence of another charge Q′ in terms of the Coulomb
potential, φ, due to Q′:

(A3.13)

(Note the distinction between the potential φ and the poten-
tial energy V.) The units of potential are joules per coulomb
(J C−1), so when φ is multiplied by a charge in coulombs,
the result is in joules. The combination joules per coulomb
occurs widely in electrostatics, and is called a volt, V:

1 V = 1 J C−1

(which implies that 1 V C = 1 J). If there are several charges
Q1, Q2, . . . present in the system, then the total potential
experienced by the charge Q is the sum of the potential 
generated by each charge:
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Fig. A3.1 The linear momentum of a particle is a vector 
property and points in the direction of motion.
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Fig. A3.2 The force acting on a particle is determined by the
slope of the potential energy at each point. The force points
in the direction of lower potential energy.
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φ = φ1 + φ2 + . . .

For example, the potential generated by a dipole is the sum
of the potentials of the two equal and opposite charges:
these potentials do not in general cancel because the point
of interest is at different distances from the two charges
(Fig. A3.3).

A3.5 Current, resistance, and Ohm’s law

The motion of charge gives rise to an electric current, I.
Electric current is measured in amperes, A, where

1 A = 1 C s−1

If the electric charge is that of electrons (as it is through
metals and semiconductors), then a current of 1 A repres-
ents the flow of 6 × 1018 electrons per second. If the current
flows from a region of potential φi to φf, through a potential
difference Δφ = φf − φi, then the rate of doing work is 
the current (the rate of transfer of charge) multiplied by the
potential difference, I × Δφ. The rate of doing work is called
power, P, so

P = IΔφ (A3.14)

With current in amperes and the potential difference in
volts, the power works out in joules per second, or watts,
W (Section A3.1).

The total energy supplied in a time t is the power (the 
energy per second) multiplied by the time:

E = Pt = ItΔφ

The energy is obtained in joules with the current in amperes,
the potential difference in volts, and the time in seconds.

The current flowing through a conductor is proportional
to the potential difference between the ends of the con-
ductor and inversely proportional to the resistance, R, of
the conductor:

(A3.15)

This empirical relation is called Ohm’s law. With the current
in amperes and the potential difference in volts, the resistance
is measured in ohms, Ω, with 1 Ω = 1 V A−1.

I
R

=
Δφ

Electromagnetic radiation

Waves are disturbances that travel through space with a
finite velocity. Examples of disturbances include the collec-
tive motion of water molecules in ocean waves and of gas
particles in sound waves. Waves can be characterized by 
a wave equation, a differential equation that describes the
motion of the wave in space and time. Harmonic waves
are waves with displacements that can be expressed as sine
or cosine functions. These concepts are used in classical
physics to describe the wave character of electromagnetic
radiation, which is the focus of the following discussion.

A3.6 The electromagnetic field

In classical physics, electromagnetic radiation is under-
stood in terms of the electromagnetic field, an oscillating
electric and magnetic disturbance that spreads as a har-
monic wave through empty space, the vacuum. The wave
travels at a constant speed called the speed of light, c, which
is about 3 × 108 m s−1. As its name suggests, an electromag-
netic field has two components, an electric field that acts on
charged particles (whether stationary or moving) and a
magnetic field that acts only on moving charged particles.
The electromagnetic field is characterized by a wavelength,
λ (lambda), the distance between the neighbouring peaks of
the wave, and its frequency, v (nu), the number of times per
second at which its displacement at a fixed point returns 
to its original value (Fig. A3.4). The frequency is measured
in hertz, where 1 Hz = 1 s−1. The wavelength and frequency
of an electromagnetic wave are related by

λv = c (A3.16)

Therefore, the shorter the wavelength, the higher the 
frequency. The characteristics of a wave are also reported
by giving the wavenumber, j (nu tilde), of the radiation,
where

q1 q2

φ1

φ2

φ = φ1 + φ2

Fig. A3.3 The electric potential at a point is equal to the sum
of the potentials due to each charge.

λ

(a)

(b)

Fig. A3.4 (a) The wavelength, l (lambda), of a wave is the
peak-to-peak distance. (b) The wave is shown travelling to
the right at a speed c. At a given location, the instantaneous
amplitude of the wave changes through a complete cycle
(the four dots show half a cycle) as it passes a given point.
The frequency, V (nu) is the number of cycles per second that
occur at a given point. Wavelength and frequency are related
by lV = c.
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(A3.17)

A wavenumber can be interpreted as the number of 
complete wavelengths in a given length. Wavenumbers are
normally reported in reciprocal centimetres (cm−1), so a
wavenumber of 5 cm−1 indicates that there are 5 complete
wavelengths in 1 cm. The classification of the electro-
magnetic field according to its frequency and wavelength is
summarized in Table A3.1.

A3.7 Features of electromagnetic radiation

Consider an electromagnetic disturbance travelling along
the x direction with wavelength λ and frequency k. The
functions that describe the oscillating electric field, E(x,t),
and magnetic field, B(x,t), may be written as

E(x,t) = E0cos{2πvt − (2π/λ)x + φ} (A3.18a)

B(x,t) = B0cos{2πvt − (2π/λ)x + φ} (A3.18b)

where E0 and B0 are the amplitudes of the electric and 
magnetic fields, respectively, and the parameter φ is the
phase of the wave, which varies from −π to π and gives the
relative location of the peaks of two waves. If two waves, 
in the same region of space, with the same wavelength are
shifted by φ = π or −π (so the peaks of one wave coincide
with the troughs of the other), then the resultant wave 
will have diminished amplitudes. The waves are said to 
interfere destructively. A value of φ = 0 (coincident peaks)
corresponds to constructive interference, or the enhance-
ment of the amplitudes. According to classical electromag-
netic theory, the intensity of electromagnetic radiation is
proportional to the square of the amplitude of the wave.
For example, the light detectors used in spectroscopy are
commonly based on the interaction between the electric
field of the incident radiation and the detecting element, so
light intensities are proportional to E0

2.

  
j

k
= =

c
1
λ

Equations A3.18a and A3.18b represent electromagnetic
radiation that is plane polarized; it is so called because the
electric and magnetic fields each oscillate in a single plane
(in this case the xy-plane, Fig. A3.5). The plane of polariza-
tion may be orientated in any direction around the direc-
tion of propagation (the x direction in Fig. A3.5), with the
electric and magnetic fields perpendicular to that direction
(and perpendicular to each other). An alternative mode of
polarization is circular polarization, in which the electric
and magnetic fields rotate around the direction of propaga-
tion in either a clockwise or a counterclockwise sense but
remain perpendicular to it and each other.

According to quantum theory, a ray of frequency k con-
sists of a stream of photons, each one of which has energy

E = hk (A3.19)

where h is Planck’s constant (Section 12.1). Thus, a photon
of high-frequency radiation has more energy than a photon
of low-frequency radiation. The greater the intensity of the
ray, the greater the number of photons in it. In a vacuum,
each photon travels with the speed of light. The frequency
of the radiation determines the colour of visible light 
because different visual receptors in the eye respond to
photons of different energy. The relation between colour
and frequency is shown in Table A3.2, which also gives the
energy carried by each type of photon.

Photons may also be polarized. A plane polarized ray of
light consists of plane polarized photons and a circularly
polarized ray consists of circularly polarized photons. The
latter can be regarded as spinning either clockwise (for 
left-circularly polarized radiation) or counterclockwise (for
right-circularly polarized radiation) about their direction
of propagation.

Table A3.1

The regions of the electromagnetic spectrum*

Region Wavelength Frequency/Hz

Radiofrequency >30 cm <109

Microwave 3 mm to 30 cm 109 to 1011

Infrared 1000 nm to 3 mm 1011 to 3 × 1014

Visible 400 nm to 800 nm 4 × 1014 to 8 × 1014

Ultraviolet 3 nm to 300 nm 1015 to 1017

X-rays, g-rays <3 nm >1017

* The boundaries of the regions are only approximate.

Electric field

Magnetic field

Fig. A3.5 Electromagnetic radiation consists of a wave of
electric and magnetic fields perpendicular to the direction 
of propagation (in this case the x direction), and mutually 
perpendicular to each other. This illustration shows a plane
polarized wave, with the electric and magnetic fields oscillat-
ing in the xy- and xz-planes, respectively.
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Table A3.2

Colour, frequency, and wavelength of light*

Frequency (1014 Hz) Wavelength/nm Energy of photon/10−19 aJ

X-rays and g-rays 103 and above 3 and below 660 and above
Ultraviolet 10 300 6.6
Visible light

Violet 7.1 420 4.7
Blue 6.4 470 4.2
Green 5.7 530 3.7
Yellow 5.2 580 3.4
Orange 4.8 620 3.2
Red 4.3 700 2.8

Infrared 3.0 1000 1.9
Microwaves and radiowaves 3 × 10−3 Hz and below 3 × 106 and above 2.0 × 10−22 J and below

*The values given are approximate but typical.



The concepts reviewed below are used throughout the text.
They are usually covered in introductory chemistry texts,
which should be consulted for further information.

A4.1 Oxidation numbers

A simple way of judging whether a monatomic species has
undergone oxidation or reduction is to note if the charge
number of the species has changed. For example, an 
increase in the charge number of a monatomic ion (which
corresponds to electron loss), as in the conversion of Fe2+ to
Fe3+, is an oxidation. A decrease in charge number (to a less
positive or more negative value, as a result of electron
gain), as in the conversion of Br to Br−, is a reduction.

It is possible to assign to an atom in a polyatomic species
an effective charge number, called the oxidation number,
Nox. (There is no standard symbol for this quantity.) 
The oxidation number is defined so that an increase in its
value (ΔNox > 0) corresponds to oxidation, and a decrease
(ΔNox < 0) corresponds to reduction.

An oxidation number is assigned to an element in a 
compound by supposing that it is present as an ion with a
characteristic charge; for instance, oxygen is present as 
O2− in most of its compounds, and fluorine is present as F−

(Fig. A4.1). The more electronegative element is supposed
to be present as the anion. This procedure implies that:

1. The oxidation number of an elemental substance is
zero, Nox(element) = 0.

2. The oxidation number of a monatomic ion is equal to
the charge number of that ion: Nox(E

z±) = ±z.

3. The sum of the oxidation numbers of all the atoms in a
species is equal to the overall charge number of the species.

Thus, hydrogen, oxygen, iron, and all the elements have
Nox = 0 in their elemental forms; Nox(Fe3+) = +3 and
Nox(Br−) = −1. It follows that the conversion of Fe to Fe3+ is
an oxidation (because ΔNox > 0) and the conversion of Br
to Br− is a reduction (because ΔNox < 0). The definition of
oxidation number and its relation to oxidation and reduc-
tion are consistent with the definitions in terms of electron
loss and gain.

As an illustration, consider the oxidation numbers of the
elements in SO2 and SO4

2−. The sum of oxidation numbers
of the atoms in SO2 must be 0, so we can write

Nox(S) + 2Nox(O) = 0

Each O atom has Nox = −2. Hence,

Nox(S) + 2 × (−2) = 0

which solves to Nox(S) = +4. Now consider SO4
2−. The sum

of oxidation numbers of the atoms in the ion is −2, so we
can write

Nox(S) + 4Nox(O) = −2

Because Nox(O) = −2,

Nox(S) + 4 × (−2) = −2

which solves to Nox(S) = +6. The sulfur is more highly 
oxidized in the sulfate ion than in sulfur dioxide.

Appendix 4 Review of chemical principles

Mg2+ O2– Mg2+ O2–

O2–

O2–

O2–
O2–

H+ H+

Cl5+

+2

+1 +1

+5

–2

–2

–2

–2

–2

H2O

ClO3
–

Actual structure Hypothetical structure

Fig. A4.1 To calculate the oxidation number of an element in
an oxide or oxoacid, we suppose that each O atom is present
as an O2− ion, and then identify the charge of the element 
required to give the actual overall charge of the species. The
more electronegative element plays a similar role in other
compounds.

Self-test A4.1

Calculate the oxidation numbers of the elements in 
(a) H2S, (b) PO4

3−, (c) NO3
−.
[Answer: (a) Nox(H) = +1, Nox(S) = −2; 

(b) Nox(P) = +5, Nox(O) = −2; (c) Nox(N) = +5, Nox(O) = −2]

A4.2 The Lewis theory of covalent bonding

In his original formulation of a theory of the covalent bond,
G. N. Lewis proposed that each bond consisted of one 
electron pair. Each atom in a molecule shared electrons
until it had acquired an octet characteristic of a noble gas
atom near it in the periodic table. (Hydrogen is an excep-
tion: it acquires a duplet of electrons.) Thus, to write down
a Lewis structure:

1. Arrange the atoms as they are found in the molecule.

2. Add one electron pair (represented by dots, :) between
each bonded atom.

3. Use the remaining electron pairs to complete the octets
of all the atoms present either by forming lone pairs or
by forming multiple bonds.

4. Replace bonding electron pairs by bond lines (–) but
leave lone pairs as dots (:).
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A Lewis structure does not (except in very simple cases),
portray the actual geometrical structure of the molecule; it
is a topological map of the arrangement of bonds.

As an example, consider the Lewis structure of methanol,
CH3OH, in which there are 4 × 1 + 4 + 6 = 14 electrons (and
hence seven electron pairs) to accommodate. The first 
step is to write the atoms in the arrangement (1); the pale
rectangles have been included to indicate which atoms are
linked. The next step is to add electron pairs to denote
bonds (2). The C atom now has a complete octet and all
four H atoms have complete duplets. There are two unused
electron pairs, which are used as lone pairs to complete the
octet of the O atom (3). Finally, replace the bonding pairs
by lines to indicate bonds (4). An example of a species with
a multiple bond is acetic acid (5).

(10b) of the SO4
2− ion, the second has a lower energy than

the first. The actual structure of the ion is a resonance 
hybrid of both structures (together with analogous struc-
tures with double bonds in different locations), but the 
latter structure makes the dominant contribution.

Octet completion is not always energetically appropriate.
Such is the case with boron trifluoride, BF3. Two of the 
possible Lewis structures for this molecule are (11a) and
(11b). In the former, the B atom has an incomplete octet.
Nevertheless, it has a lower energy than the other structure,
as to form the latter structure one F atom has had partially
to relinquish an electron pair, which is energetically 
demanding for such an electronegative element. The actual
molecule is a resonance hybrid of the two structures (and of
others with the double bond in different locations), but the
overwhelming contribution is from the former structure.
Consequently, we regard BF3 as a molecule with an incom-
plete octet. This feature is responsible for its ability to act as
a Lewis acid (an electron pair acceptor).

1
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In some cases, more than one structure can be written in
which the only difference is the location of multiple bonds
or lone pairs. In such cases, the molecule’s structure is 
interpreted as a resonance hybrid, a quantum-mechanical
blend, of the individual structures. Resonance is depicted
by a double-headed arrow. For example, the ozone molecule,
O3, is a resonance hybrid of two structures (6). Resonance
distributes multiple-bond character over the participating
atoms.

6

O O O OO O

Many molecules cannot be written in a way that con-
forms to the octet rule. Those classified as hypervalent
molecules require an expansion of the octet. Although it is
often stated that octet expansion requires the involvement
of d-orbitals, and is therefore confined to Period 3 and 
subsequent elements, there is good evidence to suggest that
octet expansion is a consequence of an atom’s size, not 
its intrinsic orbital structure. Whatever the reason, octet
expansion is need to account for the structures of PCl5
with expansion to ten electrons (7), SF6, expansion to 12
electrons (8), and XeO4, expansion to 16 electrons (9).
Octet expansion is also encountered in species that do 
not necessarily require it, but that, if it is permitted, may 
acquire a lower energy. Thus, of the structures (10a) and
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The Lewis approach fails for a class of electron-deficient
compounds, which are molecules that have too few elec-
trons for a Lewis structure to be written. The most famous
example is diborane, B2H6, which requires at least seven
pairs of electrons to bind the eight atoms together, but 
it has only twelve valence electrons in all. The structures 
of such molecules can be explained in terms of molecular
orbital theory and the concept of delocalized electron pairs,
in which the influence of an electron pair is distributed over
several atoms.

A4.3 The VSEPR model

In the valence-shell electron pair repulsion model (VSEPR)
we focus on a single, central atom and consider the local 
arrangement of atoms that are linked to it. For example, 
in considering the H2O molecule, we concentrate on the
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electron pairs in the valence shell of the central O atom.
This procedure can be extended to molecules in which
there is no obvious central atom, such as in benzene, C6H6,
or hydrogen peroxide, H2O2, by focusing attention on a
group of atoms, such as a C—CH—C fragment of benzene
or an H—O—O fragment of hydrogen peroxide, and con-
sidering the arrangement of electron pairs around the 
central atom of the fragment.

The basic assumption of the VSEPR model is that the
valence-shell electron pairs of the central atom adopt posi-
tions that maximize their separations. Thus, if the atom has
four electron pairs in its valence shell, then the pairs adopt
a tetrahedral arrangement around the atom; if the atom has
five pairs, then the arrangement is trigonal bipyramidal.
The arrangements adopted by electron pairs are summar-
ized in Table A4.1. Once the basic shape of the arrangement of electron

pairs has been identified, the pairs are identified as bonding
or nonbonding. For instance, in the H2O molecule, two of
the tetrahedrally arranged pairs are bonding pairs and two
are nonbonding pairs. Then, the shape of the molecule is
classified by noting the arrangement of the atoms around
the central atom. The H2O molecule, for instance, has an
underlying tetrahedral arrangement of lone pairs, but as
only two of the pairs are bonding pairs, the molecule is
classified as angular (Fig. A4.2). It is important to keep in
mind the distinction between the arrangement of electron
pairs and the shape of the resulting molecule: the latter is
identified by noting the relative locations of the atoms, not
the lone pairs (Fig. A4.3).

Lone pair

Lone pair

Bonds

Fig. A4.2 The shape of a molecule is identified by noting the
arrangement of its atoms, not its lone pairs. This molecule is
angular even though the electron-pair distribution is tetrahedral.

Linear Angular

Trigonal
planar

Trigonal
pyramidal

Tetrahedral See-saw Trigonal
bipyramidal

Square planar Square
pyramidal

Octahedral Pentagonal
bipyramidal

Fig. A4.3 The classification of molecular shapes according to the relative locations of atoms.

Table A4.1

Arrangements of electron-dense regions

Number of regions Arrangement

2 Linear
3 Trigonal planar
4 Tetrahedral
5 Trigonal bipyramidal
6 Octahedral
7 Pentagonal bipyramidal
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For example, to predict the shape of an ethane molecule
we concentrate on one of the C atoms initially. That atom
has four electron pairs in its valence shell (in the molecule),
and they adopt a tetrahedral arrangement. All four electron
pairs are bonding: three bond H atoms and the fourth bonds
the second C atom. Therefore, the arrangement of atoms 
is tetrahedral around the C atom. The second C atom has
the same environment, so we conclude that the ethane
molecule consists of two tetrahedral —CH3 groups (12).

12 Ethane, CH3CH3

The next stage in the application of the VSEPR model is
to accommodate the greater repelling effect of lone pairs
compared with that of bonding pairs. That is, bonding
pairs tend to move away from lone pairs even though that
might reduce their separation from other bonding pairs.
The NH3 molecule provides a simple example. The N atom
has four electron pairs in its valence shell and they adopt a
tetrahedral arrangement. Three of the pairs are bonding
pairs, and the fourth is a lone pair. The basic shape of the
molecule is therefore trigonal pyramidal. However, a lower
energy is achieved if the three bonding pairs move away
from the lone pair, even though they are brought slightly
closer together (13). We therefore predict an HNH bond
angle of slightly less than the tetrahedral angle of 109.5°,
which is consistent with the observed angle of 107°.

13 Ammonia, NH3

As an example, consider the shape of an SF4 molecule.
The first step is to write a Lewis (electron dot) structure for
the molecule to identify the number of lone pairs in the 
valence shell of the S atom (14). This structure shows that
there are five electron pairs on the S atom. Reference to
Table A4.1 shows that the five pairs are arranged as a trig-
onal bipyramid. Four of the pairs are bonding pairs and
one is a lone pair. The repulsions stemming from the lone
pair are minimized if the lone pair is placed in an equatorial
position: then it is close to the axial pairs (15), whereas if it
had adopted an axial position it would have been close to
three equatorial pairs (16). Finally, the four bonding pairs
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15 Sulfur
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16 17

18 Ethene, CH2=CH2

O S O

O
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2–

O S O

O

21

2−

are allowed to relax away from the single lone pair, to give
a distorted seesaw arrangement (17).

To take into account multiple bonds, each set of two 
or three electron pairs is treated as a single region of high
electron density, a kind of ‘superpair’. For example, each C
atom in an ethene molecule, CH2lCH2, is regarded as hav-
ing three pairs (one of them the superpair of two electrons
pairs of the double bond); these regions of high electron
density adopt a trigonal planar arrangement around each
atom, so the shape of the molecule is trigonal planar at each
C atom (18). Another example is the SO3

2− ion: if we adopt
the Lewis structure in (19), then we see that there are four
regions of high electron density around the S atom, indicat-
ing a tetrahedral arrangement. One region is a lone pair, so
overall the ion is trigonal pyramidal (20). We would reach
the same conclusion if we adopted the alternative Lewis
structure (21) in which there are four electron pairs (none
of them a ‘superpair’).



1 Thermodynamic data 

Table D1.1 Thermodynamic data for organic compounds (all values relate to 298.15 K)

M/ DfH / DfG / Sm / Cp,m/ DcH /
(g mol−1) (kJ mol−1) (kJ mol−1) (J K−1 mol−1) (J K−1 mol−1) (kJ mol−1)

C(s) (graphite) 12.011 0 0 5.740 8.527 −393.51
C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113 −395.40
CO2(g) 44.010 −393.51 −394.36 213.74 37.11

Hydrocarbons

CH4(g), methane 16.04 −74.81 −50.72 186.26 35.31 −890
CH3(g), methyl 15.04 +145.69 +147.92 194.2 38.70
C2H2(g), ethyne 26.04 +226.73 +209.20 200.94 43.93 −1300
C2H4(g), ethene 28.05 +52.26 +68.15 219.56 43.56 −1411
C2H6(g), ethane 30.07 −84.68 −32.82 229.60 52.63 −1560
C3H6(g), propene 42.08 +20.42 +62.78 267.05 63.89 −2058
C3H6(g), cyclopropane 42.08 +53.30 +104.45 237.55 55.94 −2091
C3H8(g), propane 42.10 −103.85 −23.49 269.91 73.5 −2220
C4H8(g), 1-butene 56.11 −0.13 +71.39 305.71 85.65 −2717
C4H8(g), cis-2-butene 56.11 −6.99 +65.95 300.94 78.91 −2710
C4H8(g), trans-2-butene 56.11 −11.17 +63.06 296.59 87.82 −2707
C4H10(g), butane 58.13 −126.15 −17.03 310.23 97.45 −2878
C5H12(g), pentane 72.15 −146.44 −8.20 348.40 120.2 −3537
C5H12(l) 72.15 −173.1
C6H6(l), benzene 78.12 +49.0 +124.3 173.3 136.1 −3268
C6H6(g) 78.12 +82.93 +129.72 269.31 81.67 −3320
C6H12(l), cyclohexane 84.16 −156 +26.8 156.5 −3902
C6H14(l), hexane 86.18 −198.7 204.3 −4163
C6H5CH3(g),

methylbenzene (toluene) 92.14 +50.0 +122.0 320.7 103.6 −3953
C7H16(l), heptane 100.21 −224.4 +1.0 328.6 224.3
C8H18(l), octane 114.23 −249.9 +6.4 361.1 −5471
C8H18(l), iso-octane 114.23 −255.1 −5461
C10H8(s), naphthalene 128.18 +78.53 −5157

Alcohols and phenols

CH3OH(l), methanol 32.04 −238.66 −166.27 126.8 81.6 −726
CH3OH(g) 32.04 −200.66 −161.96 239.81 43.89 −764
C2H5OH(l), ethanol 46.07 −277.69 −174.78 160.7 111.46 −1368
C2H5OH(g) 46.07 −235.10 −168.49 282.70 65.44 −1409
C6H5OH(s), phenol 94.12 −165.0 −50.9 146.0 −3054

Carboxylic acids, hydroxy acids, and esters

HCOOH(l), formic 46.03 −424.72 −361.35 128.95 99.04 −255
CH3COOH(l), acetic 60.05 −484.5 −389.9 159.8 124.3 −875
CH3COOH(aq) 60.05 −485.76 −396.46 178.7
CH3CO2

−(aq) 59.05 −486.01 −369.31 86.6 −6.3
(COOH)2(s), oxalic 90.04 −827.2 117 −254
C6H5COOH(s), benzoic 122.13 −385.1 −245.3 167.6 146.8 −3227
CH3CH(OH)COOH(s), lactic 90.08 −694.0 −1344
CH3COOC2H5(l), ethyl acetate 88.11 −479.0 −332.7 259.4 170.1 −2231

Data section
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Alkanals and alkanones

HCHO(g), methanal 30.03 −108.57 −102.53 218.77 35.40 −571
CH3CHO(l), ethanal 44.05 −192.30 −128.12 160.2 −1166
CH3CHO(g) 44.05 −166.19 −128.86 250.3 57.3 −1192
CH3COCH3(l), propanone 58.08 −248.1 −155.4 200.4 124.7 −1790

Sugars

C6H12O6(s), a-D-glucose 180.16 −1274 −2808
C6H12O6(s), b-D-glucose 180.16 −1268 −910 212
C6H12O6(s), b-D-fructose 180.16 −1266 −2810
C12H22O11(s), sucrose 342.30 −2222 −1543 360.2 −5645

Nitrogen compounds

CO(NH2)2(s), urea 60.06 −333.51 −197.33 104.60 93.14 −632
CH3NH2(g), methylamine 31.06 −22.97 +32.16 243.41 53.1 −1085
C6H5NH2(l), aniline 93.13 +31.1 −3393
CH2(NH2)COOH(s), glycine 75.07 −532.9 −373.4 103.5 99.2 −969

Table D1.2 Thermodynamic data (all values relate to 298.15 K)*

M/(g mol−1) DfH /(kJ mol−1) DfG /(kJ mol−1) Sm/(J K−1 mol−1) Cp,m /(J K−1 mol−1)

Aluminium (aluminum)

Al(s) 26.98 0 0 28.33 24.35
Al(l) 26.98 +10.56 +7.20 39.55 24.21
Al(g) 26.98 +326.4 +285.7 164.54 21.38
Al3+(g) 26.98 +5483.17
Al3+(aq) 26.98 −531 −485 −321.7
Al2O3(s, a) 101.96 −1675.7 −1582.3 50.92 79.04
AlCl3(s) 133.24 −704.2 −628.8 110.67 91.84

Argon

Ar(g) 39.95 0 0 154.84 20.786

Antimony

Sb(s) 121.75 0 0 45.69 25.23
SbH3(g) 153.24 +145.11 +147.75 232.78 41.05

Arsenic

As(s, a) 74.92 0 0 35.1 24.64
As(g) 74.92 +302.5 +261.0 174.21 20.79
As4(g) 299.69 +143.9 +92.4 314
AsH3(g) 77.95 +66.44 +68.93 222.78 38.07

Barium

Ba(s) 137.34 0 0 62.8 28.07
Ba(g) 137.34 +180 +146 170.24 20.79
Ba2+(aq) 137.34 −537.64 −560.77 +9.6
BaO(s) 153.34 −553.5 −525.1 70.43 47.78
BaCl2(s) 208.25 −858.6 −810.4 123.68 75.14

Table D1.1 (continued)

M/ DfH / DfG / Sm / Cp,m/ DcH /
(g mol−1) (kJ mol−1) (kJ mol−1) (J K−1 mol−1) (J K−1 mol−1) (kJ mol−1)



DATA SECTION560

Beryllium

Be(s) 9.01 0 0 9.50 16.44
Be(g) 9.01 +324.3 +286.6 136.27 20.79

Bismuth

Bi(s) 208.98 0 0 56.74 25.52
Bi(g) 208.98 +207.1 +168.2 187.00 20.79

Bromine

Br2(l) 159.82 0 0 152.23 75.689
Br2(g) 159.82 +30.907 +3.110 245.46 36.02
Br(g) 79.91 +111.88 +82.396 175.02 20.786
Br−(g) 79.91 −219.07
Br−(aq) 79.91 −121.55 −103.96 +82.4 −141.8
HBr(g) 90.92 −36.40 −53.45 198.70 29.142

Cadium

Cd(s, g) 112.40 0 0 51.76 25.98
Cd(g) 112.40 +112.01 +77.41 167.75 20.79
Cd2+(aq) 112.40 −75.90 −77.612 −73.2
CdO(s) 128.40 −258.2 −228.4 54.8 43.43
CdCO3(s) 172.41 −750.6 −669.4 92.5

Caesium (cesium)

Cs(s) 132.91 0 0 85.23 32.17
Cs(g) 132.91 +76.06 +49.12 175.60 20.79
Cs+(aq) 132.91 −258.28 −292.02 +133.05 −10.5

Calcium

Ca(s) 40.08 0 0 41.42 25.31
Ca(g) 40.08 +178.2 +144.3 154.88 20.786
Ca2+(aq) 40.08 −542.83 −553.58 −53.1
CaO(s) 56.08 −635.09 −604.03 39.75 42.80
CaCO3(s) (calcite) 100.09 −1206.9 −1128.8 92.9 81.88
CaCO3(s) (aragonite) 100.09 −1207.1 −1127.8 88.7 81.25
CaF2(s) 78.08 1219.6 −1167.3 68.87 67.03
CaCl2(s) 110.99 −795.8 −748.1 104.6 72.59
CaBr2(s) 199.90 −682.8 −663.6 130

Carbon (for ‘organic’ compounds of carbon, see Table D1.1)

C(s) (graphite) 12.011 0 0 5.740 8.527
C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.133
C(g) 12.011 +716.68 +671.26 158.10 20.838
C2(g) 24.022 +831.90 +775.89 199.42 43.21
CO(g) 28.011 −110.53 −137.17 197.67 29.14
CO2(g) 44.010 −393.51 −394.36 213.74 37.11
CO2(aq) 44.010 −413.80 −385.98 117.6
H2CO3(aq) 62.03 −699.65 −623.08 187.4
HCO3

−(aq) 61.02 −691.99 −586.77 +91.2
CO3

2−(aq) 60.01 −677.14 −527.81 −56.9
CCl4(l) 153.82 −135.44 −65.21 216.40 131.75
CS2(l) 76.14 +89.70 +65.27 151.34 75.7
HCN(g) 27.03 +135.1 +124.7 201.78 35.86
HCN(l) 27.03 +108.87 +124.97 112.84 70.63
CN−(aq) 26.02 +150.6 +172.4 +94.1
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Chlorine

Cl2(g) 70.91 0 0 223.07 33.91
Cl(g) 35.45 +121.68 +105.68 165.20 21.840
Cl−(g) 35.45 −233.13
Cl−(aq) 35.45 −167.16 −131.23 +56.5 −136.4
HCl(g) 36.46 −92.31 −95.30 186.91 29.12
HCl(aq) 36.46 −167.16 −131.23 56.5 −136.4

Chromium

Cr(s) 52.00 0 0 23.77 23.35
Cr(g) 52.00 +396.6 +351.8 174.50 20.79
CrO4

2−(aq) 115.99 −881.15 −727.75 +50.21
Cr2O77

2− (aq) 215.99 −1490.3 −1301.1 +261.9

Copper

Cu(s) 63.54 0 0 33.150 24.44
Cu(g) 63.54 +338.32 +298.58 166.38 20.79
Cu+(aq) 63.54 +71.67 +49.98 +40.6
Cu2+(aq) 63.54 +64.77 +65.49 −99.6
Cu2O(s) 143.08 −168.6 −146.0 93.14 63.64
CuO(s) 79.54 −157.3 −129.7 42.63 42.30
CuSO4(s) 159.60 −771.36 −661.8 109 100.0
CuSO4

.H2O(s) 177.62 −1085.8 −918.11 146.0 134
CuSO4

.5H2O(s) 249.68 −2279.7 −1879.7 300.4 280

Deuterium

D2(g) 4.028 0 0 144.96 29.20
HD(g) 3.022 +0.318 −1.464 143.80 29.196
D2O(g) 20.028 −249.20 −234.54 198.34 34.27
D2O(l) 20.028 −294.60 −243.44 75.94 84.35
HDO(g) 19.022 −245.30 −233.11 199.51 33.81
HDO(l) 19.022 −289.89 −241.86 79.29

Fluorine

F2(g) 38.00 0 0 202.78 31.30
F(g) 19.00 +78.99 +61.91 158.75 22.74
F−(aq) 19.00 −332.63 −278.79 −13.8 −106.7
HF(g) 20.01 −271.1 −273.2 173.78 29.13

Gold

Au(s) 196.97 0 0 47.40 25.42
Au(g) 196.97 +366.1 +326.3 180.50 20.79

Helium

He(g) 4.003 0 0 126.15 20.786

Hydrogen (see also deuterium)

H2(g) 2.016 0 0 130.684 28.824
H(g) 1.008 +217.97 +203.25 114.71 20.784
H+(aq) 1.008 0 0 0 0
H2O(l) 18.015 −285.83 −237.13 69.91 75.291
H2O(g) 18.015 −241.82 −228.57 188.83 33.58
H2O2(l) 34.015 −187.78 −120.35 109.6 89.1

Table D1.2 (continued)

M/(g mol−1) DfH /(kJ mol−1) DfG /(kJ mol−1) Sm/(J K−1 mol−1) Cp,m /(J K−1 mol−1)



DATA SECTION562

Iodine

I2(s) 253.81 0 0 116.135 54.44
I2(g) 253.81 +62.44 +19.33 260.69 36.90
I(g) 126.90 +106.84 +70.25 180.79 20.786
I−(aq) 126.90 −55.19 −51.57 +111.3 −142.3
HI(g) 127.91 +26.48 +1.70 206.59 29.158

Iron

Fe(s) 55.85 0 0 27.28 25.10
Fe(g) 55.85 +416.3 +370.7 180.49 25.68
Fe2+(aq) 55.85 −89.1 −78.90 −137.7
Fe3+(aq) 55.85 −48.5 −4.7 −315.9
Fe3O4(s) (magnetite) 231.54 −1184.4 −1015.4 146.4 143.43
Fe2O3(s) (haematite) 159.69 −824.2 −742.2 87.40 103.85
FeS(s, a) 87.91 −100.0 −100.4 60.29 50.54
FeS2(s) 119.98 −178.2 −166.9 52.93 62.17

Krypton

Kr(g) 83.80 0 0 164.08 20.786

Lead

Pb(s) 207.19 0 0 64.81 26.44
Pb(g) 207.19 +195.0 +161.9 175.37 20.79
Pb2+(aq) 207.19 −1.7 −24.43 +10.5
PbO(s, yellow) 223.19 −217.32 −187.89 68.70 45.77
PbO(s, red) 223.19 −218.99 −188.93 66.5 45.81
PbO2(s) 239.19 −277.4 −217.33 68.6 64.64

Lithium

Li(s) 6.94 0 0 29.12 24.77
Li(g) 6.94 +159.37 +126.66 138.77 20.79
Li+(aq) 6.94 −278.49 −293.31 +13.4 +68.6

Magnesium

Mg(s) 24.31 0 0 32.68 24.89
Mg(g) 24.31 +147.70 +113.10 148.65 20.786
Mg2+(aq) 24.31 −466.85 −454.8 −138.1
MgO(s) 40.31 −601.70 −569.43 26.94 37.15
MgCO3(s) 84.32 −1095.8 −1012.1 65.7 75.52
MgCI2(s) 95.22 −641.32 −591.79 89.62 71.38
MgBr2(s) 184.13 −524.3 −503.8 117.2

Mercury

Hg(l) 200.59 0 0 76.02 27.983
Hg(g) 200.59 +61.32 +31.82 174.96 20.786
Hg2+(aq) 200.59 +171.1 +164.40 −32.2
Hg2

2+(aq) 401.18 +172.4 +153.52 +84.5
HgO(s) 216.59 −90.83 −58.54 70.29 44.06
Hg2Cl2(s) 472.09 −265.22 −210.75 192.5 102
HgCl2(s) 271.50 −224.3 −178.6 146.0
HgS(s, black) 232.65 −53.6 −47.7 88.3

Neon

Ne(g) 20.18 0 0 146.33 20.786
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Nitrogen

N2(g) 28.013 0 0 191.61 29.125
N(g) 14.007 +472.70 +455.56 153.30 20.786
NO(g) 30.01 +90.25 +86.55 210.76 29.844
N2O(g) 44.01 +82.05 +104.20 219.85 38.45
NO2(g) 46.01 +33.18 +51.31 240.06 37.20
N2O4(g) 92.01 +9.16 +97.89 304.29 77.28
N2O5(s) 108.01 −43.1 +113.9 178.2 143.1
N2O5(g) 108.01 +11.3 +115.1 355.7 84.5
HNO3(l) 63.01 −174.10 −80.71 155.60 109.87
HNO3(aq) 63.01 −207.36 −111.25 146.4 −86.6
NO−

3 (aq) 62.01 −205.0 −108.74 +146.4 −86.6
NH3(g) 17.03 −46.11 −16.45 192.45 35.06
NH3(aq) 17.03 −80.29 −26.50 113.3
NH+

4 (aq) 18.04 −132.51 −79.31 +113.4 +79.9
NH2OH(s) 33.03 −114.2
HN3(l) 43.03 +264.0 +327.3 140.6 43.68
HN3(g) 43.03 +294.1 +328.1 238.97 98.87
N2H4(l) 32.05 +50.63 +149.43 121.21 139.3
NH4NO3(s) 80.04 −365.56 −183.87 151.08 84.1
NH4Cl(s) 53.49 −314.43 −202.87 94.6

Oxygen

O2(g) 31.999 0 0 205.138 29.355
O(g) 15.999 +249.17 +231.73 161.06 21.912
O3(g) 47.998 +142.7 +163.2 238.93 39.20
OH−(aq) 17.007 −229.99 −157.24 −10.75 −148.5

Phosphorus

P(s, wh) 30.97 0 0 41.09 23.840
P(g) 30.97 +314.64 +278.25 163.19 20.786
P2(g) 61.95 +144.3 +103.7 218.13 32.05
P4(g) 123.90 +58.91 +24.44 279.98 67.15
PH3(g) 34.00 +5.4 +13.4 210.23 37.11
PCl3(g) 137.33 −287.0 −267.8 311.78 71.84
PCl3(l) 137.33 −319.7 −272.3 217.1
PCl5(g) 208.24 −374.9 −305.0 364.6 112.8
PCl5(s) 208.24 −443.5
H3PO3(s) 82.00 −964.4
H3PO3(aq) 82.00 −964.8
H3PO4(s) 94.97 −1279.0 −1119.1 110.50 106.06
H3PO4(l) 94.97 −1266.9
H3PO4(aq) 94.97 −1277.4 −1018.7 −222
PO4

3−(aq) 94.97 −1277.4 −1018.7 −222
P4O10(s) 283.89 −2984.0 −2697.0 228.86 211.71
P4O6(s) 219.89 −1640.1

Potassium

K(s) 39.10 0 0 64.18 29.58
K(g) 39.10 +89.24 +60.59 160.336 20.786
K+(g) 39.10 +514.26
K+(aq) 39.10 −252.38 −283.27 +102.5 +21.8
KOH(s) 56.11 −424.76 −379.08 78.9 64.9
KF(s) 58.10 −576.27 −537.75 66.57 49.04
KCl(s) 74.56 −436.75 −409.14 82.59 51.30
KBr(s) 119.01 −393.80 −380.66 95.90 52.30
KI(s) 166.01 −327.90 −324.89 106.32 52.93
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Silicon

Si(s) 28.09 0 0 18.83 20.00
Si(g) 28.09 +455.6 +411.3 167.97 22.25
SiO2(s,a) 60.09 −910.93 −856.64 41.84 44.43

Silver

Ag(s) 107.87 0 0 42.55 25.351
Ag(g) 107.87 +284.55 +245.65 173.00 20.79
Ag+(aq) 107.87 +105.58 +77.11 +72.68 +21.8
AgBr(s) 187.78 −100.37 −96.90 107.1 52.38
AgCl(s) 143.32 −127.07 −109.79 96.2 50.79
Ag2O(s) 231.74 −31.05 −11.20 121.3 65.86
AgNO3(s) 169.88 −124.39 −33.41 140.92 93.05

Sodium

Na(s) 22.99 0 0 51.21 28.24
Na(g) 22.99 +107.32 +76.76 153.71 20.79
Na+(aq) 22.99 −240.12 −261.91 +59.0 +46.4
NaOH(s) 40.00 −425.61 −379.49 64.46 59.54
NaCI(s) 58.44 −411.15 −384.14 72.13 50.50
NaBr(s) 102.90 −361.06 −348.98 86.82 51.38
NaI(s) 149.89 −287.78 −286.06 98.53 52.09

Sulfur

S(s, a) (rhombic) 32.06 0 0 31.80 22.64
S(s, b) (monoclinic) 32.06 +0.33 +0.1 32.6 23.6
S(g) 32.06 +278.81 +238.25 167.82 23.673
S2(g) 64.13 +128.37 +79.30 228.18 32.47
S2−(aq) 32.06 +33.1 +85.8 −14.6
SO2(g) 64.06 −296.83 −300.19 248.22 39.87
SO3(g) 80.06 −395.72 −371.06 256.76 50.67
H2SO4(l) 98.08 −813.99 −690.00 156.90 138.9
H2SO4(aq) 98.08 −909.27 −744.53 20.1 −293
SO4

2−(aq) 96.06 −909.27 −744.53 +20.1 −293
HSO−

4(aq) 97.07 −887.34 −755.91 +131.8 −84
H2S(g) 34.08 −20.63 −33.56 205.79 34.23
H2S(aq) 34.08 −39.7 −27.83 121
HS−(aq) 33.072 −17.6 +12.08 +62.08
SF6(g) 146.05 −1209 −1105.3 291.82 97.28

Tin

Sn(s,b) 118.69 0 0 51.55 26.99
Sn(g) 118.69 +302.1 +267.3 168.49 20.26
Sn2+(aq) 118.69 −8.8 −27.2 −17
SnO(s) 134.69 −285.8 −256.8 56.5 44.31
SnO2(s) 150.69 −580.7 +519.6 52.3 52.59

Xenon

Xe(g) 131.30 0 0 169.68 20.786

Zinc

Zn(s) 65.37 0 0 41.63 25.40
Zn(g) 65.37 +130.73 +95.14 160.98 20.79
Zn2+(aq) 65.37 −153.89 −147.06 −112.1 +46
ZnO(s) 81.37 −348.28 −318.30 43.64 40.25

* Entropies and heat capacities of ions are relative to H+(aq) and are given with a sign.
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2 Standard potentials

Table D2.1a Standard potentials at 298.15 K in electrochemical order

Reduction half-reaction E /V Reduction half-reaction E /V

Strongly oxidizing

H4XeO6 + 2H+ + 2e− → XeO3 + 3H2O +3.0 BrO− + H2O + 2e− → Br− + 2OH− +0.76
F2 + 2e− → 2F− +2.87 Hg2SO4 + 2e− → 2Hg + SO4

2− +0.62
O3 + 2H+ + 2e− → O2 + H2O +2.07 MnO4

2− + 2H2O + 2e− → MnO2 + 4OH− +0.60
S2O8

2− + 2e− → 2SO4
2− +2.05 MnO4

− + e− → MnO4
2− +0.56

Ag2+ + e− → Ag+ +1.98 I2 + 2e− → 2I− +0.54
Co3+ + e− → Co2+ +1.81 Cu+ + e− → Cu +0.52
HO2 + 2H+ + 2e− → 2H2O +1.78 I3

− + 2e− → 3I− +0.53
Au+ + e− → Au +1.69 NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49
Pb4+ + 2e− → Pb2+ +1.67 Ag2CrO4 + 2e− → 2Ag + CrO4

2− +0.45
2HClO + 2H+ + 2e− → Cl2 + 2H2O +1.63 O2 + 2H2O + 4e− → 4OH− +0.40
Ce4+ + e− → Ce3+ +1.61 ClO4

− + H2O + 2e− → ClO3
− + 2OH− +0.36

2HBrO + 2H+ + 2e− → Br2 + 2H +1.60 [Fe(CN)6]
3− + e− → [Fe(CN)6]

4− +0.36
MnO−

4 + 8H+ + 5e− → Mn2+ + 4H2O +1.51 Cu2+ + 2e− → Cu +0.34
Mn3+ + e− → Mn2+ +1.51 Hg2Cl2 + 2e− → 2Hg + 2Cl− +0.27
Au3+ + 3e− → Au +1.40 AgCl + e− → Ag + CI− +0.22
Cl2 + 2e− → 2Cl− +1.36 Bi3+ + 3e− → Bi +0.20
Cr2O7

2− + 14H+ + 6e− → 2Cr3+ + 7H2O +1.33 Cu2+ + e− → Cu+ +0.16
O3 + H2O + 2e− → O2 + 2OH− +1.24 Sn4+ + 2e− → Sn2+ +0.15
O2 + 4H+ + 4e− → 2H2O +1.23 AgBr + e− → Ag + Br− +0.07
ClO4

− + 2H+ + 2e− → ClO3
− + H2O +1.23 Ti4+ + e− → Ti3+ 0.00

MnO2 + 4H+ + 2e− → Mn2+ + 2H2O +1.23 2H+ + 2e− → H 0, by definition
Br2 + 2e− → 2Br− +1.09 Fe3+ + 3e− → Fe −0.04
Pu4+ + e− → Pu3+ +0.97 O2 + H2O + 2e− → HO−

2 + OH− −0.08
NO3

− + 4H+ + 3e− → NO + 2H2O +0.96 Pb2+ + 2e− → Pb −0.13
2Hg2+ + 2e− → Hg2

2+ +0.92 In+ + e− → In −0.14
ClO− + H2O + 2e− → Cl− + 2OH− +0.89 Sn2+ + 2e− → Sn −0.14
Hg2+ + 2e− → Hg +0.86 AgI + e− → Ag + I− −0.15
NO3

− + 2H+ + e− → NO2 + H2O +0.80 Ni2+ + 2e− → Ni −0.23
Ag+ + e− → Ag +0.80 Co2+ + 2e− → Co −0.28
Hg2

2+ + 2e− → 2Hg +0.79 In3+ + 3e− → In −0.34
Fe3+ + e− → Fe2+ +0.77 Tl+ + e− → Tl −0.34
Ti3+ + e− → Ti2+ −0.37 PbSO4 + 2e− → Pb + SO4

2− −0.36
Cd2+ + 2e− → Cd −0.40 Ti2+ + 2e− → Ti −1.63
In2+ + e− → In+ −0.40 Al3+ + 3e− → Al −1.66
Cr3+ + e− → Cr2+ −0.41 U3+ + 3e− → U −1.79
Fe2+ + 2e− → Fe −0.44 Mg2+ + 2e− → Mg −2.36
In3+ + 2e− → In+ −0.44 Ce3+ + 3e− → Ce −2.48
S + 2e− → S2− −0.48 La3+ + 3e− → La −2.52
In3+ + e− → In2+ −0.49 Na+ + e− → Na −2.71
U4+ + e− → U3+ −0.61 Ca2+ + 2e− → Ca −2.87
Cr3+ + 3e− → Cr −0.74 Sr2+ + 2e− → Sr −2.89
Zn2+ + 2e− → Zn −0.76 Ba2+ + 2e− → Ba −2.91
Cd(OH)2 + 2e− → Cd + 2OH− −0.81 Ra2+ + 2e− → Ra −2.92
2H2O + 2e− → H2 + 2OH− −0.83 Cs+ + e− → Cs −2.92
Cr2+ + 2e− → Cr −0.91 Rb+ + e− → Rb −2.93
Mn2+ + 2e− → Mn −1.18 K+ + e− → K −2.93
V2+ + 2e− → V −1.19 Li+ + e− → Li −3.05



DATA SECTION566

Table D2.1b Standard potentials at 298.15 K in alphabetical order

Reduction half-reaction E /V Reduction half-reaction E / V

Strongly reducing

Ag+ + e− → Ag +0.80 Co2+ + 2e− → Co −0.28
Ag2+ + e− → Ag+ +1.98 Co3+ + e− → Co2+ +1.81
AgBr + e− → Ag + Br− +0.0713 Cr2+ + 2e− → Cr −0.91
AgCl + e− → Ag + Cl− +0.22 Cr2O7

2− + 14H+ + 6e− → 2Cr3+ + 7H2O +1.33
Ag2CrO4 + 2e− → 2Ag + CrO4

2− +0.45 Cr3+ + 3e− → Cr −0.74
AgF + e− → Ag + F− +0.78 Cr3+ + e− → Cr2+ −0.41
AgI + e− → Ag + I− −0.15 Cs+ + e− → Cs −2.92
Al3+ + 3e− → Al −1.66 Cu+ + e− → Cu +0.52
Au+ + e− → Au +1.69 Cu2+ + 2e− → Cu +0.34
Au3+ + 3e− → Au +1.40 Cu2+ + e− → Cu+ +0.16
Ba2+ + 2e− → Ba −2.91 F2 + 2e− → 2F− +2.87
Be2+ + 2e− → Be −1.85 Fe2+ + 2e− → Fe −0.44
Bi3+ + 3e− → Bi +0.20 Fe3+ + 3e− → Fe −0.04
Br2 + 2e− → 2Br− +1.09 Fe3+ + e− → Fe2+ +0.77
BrO− + H2O + 2e− → Br− + 2OH− +0.76 [Fe(CN)6]

3− + e− → [Fe(CN)6]
4− +0.36

Ca2+ + 2e− → Ca −2.87 2H+ + 2e− → H2 0, by definition
Cd(OH)2 + 2e− → Cd + 2OH− −0.81 2H2O + 2e− → H2 + 2OH− −0.83
Cd2+ + 2e− → Cd −0.40 2HBrO + 2H+ + 2e− → Br2 + 2H2O +1.60
Ce3+ + 3e− → Ce −2.48 2HClO + 2H+ + 2e− → Cl2 + 2H2O +1.63
Ce4+ + e− → Ce3+ +1.61 H2O2 + 2H+ + 2e− → 2H2O +1.78
Cl2 + 2e− → 2Cl− +1.36 H4XeO6 + 2H+ + 2e− → XeO3 + 3H2O +3.0
ClO− + H2O + 2e− → Cl− + 2OH− +0.89 Hg2

2+ + 2e− → 2Hg +0.79
ClO4

− + 2H+ + 2e− → ClO3
− + H2O +1.23 Hg2Cl2 + 2e− → 2Hg + 2Cl− +0.27

ClO4
− + H2O + 2e− → ClO3

− + 2OH− +0.36 Hg2+ + 2e− → Hg +0.86
2Hg2+ + 2e− → Hg2

2+ +0.92 O2 + 4H+ + 4e− → 2H2O +1.23
Hg2SO4 + 2e− → 2Hg + SO4

2− +0.62 O2 + e− → O2
− −0.56

I2 + 2e− → 2I− +0.54 O2 + H2O + 2e− → HO2
− + OH− −0.08

I3
− + 2e− → 3I− +0.53 O3 + 2H+ + 2e− → O2 + H2O +2.07

In+ + e− → In −0.14 O3 + H2O + 2e− → O2 + 2OH− +1.24
In2+ + e− → In+ −0.40 Pb2+ + 2e− → Pb −0.13
In3+ + 2e− → In+ −0.44 Pb4+ + 2e− → Pb2+ +1.67
In3+ + 3e− → In −0.34 PbSO4 + 2e− → Pb + SO4

2− −0.36
In3+ + e− → In2+ −0.49 Pt2+ + 2e− → Pt +1.20
K+ + e− → K −2.93 Pu4+ + e− → Pu3+ +0.97
La3+ + 3e− → La −2.52 Ra2+ + 2e− → Ra −2.92
Li+ + e− → Li −3.05 Rb+ + e− → Rb −2.93
Mg2+ + 2e− → Mg −2.36 S + 2e− → S2− −0.48
Mn2+ + 2e− → Mn −1.18 S2O8

2− + 2e− → 2SO4
2− +2.05

Mn3+ + e− → Mn2+ +1.51 Sn2+ + 2e− → Sn −0.14
MnO2 + 4H+ + 2e− → Mn2+ + 2H2O +1.23 Sn4+ + 2e− → Sn2+ +0.15
MnO4

− + 8H+ + 5e− → Mn2+ + 4H2O +1.51 Sr2+ + 2e− → Sr −2.89
MnO4

− + e− → MnO4
2− +0.56 Ti2+ + 2e− → Ti −1.63

MnO4
2− + 2H2O + 2e− → MnO2 + 4OH− +0.60 Ti3+ + e− → Ti2+ −0.37

Na+ + e− → Na −2.71 Ti4+ + e− → Ti3+ 0.00
Ni2+ + 2e− → Ni −0.23 Tl+ + e− → Tl −0.34
NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49 U3+ + 3e− → U −1.79
NO3

− + 2H+ + e− → NO2 + H2O +0.80 U4+ + e− → U3+ −0.61
NO3

− + 3H+ + 3e− → NO + 2H2O +0.96 V2+ + 2e− → V −1.19
NO3

− + H2O + 2e− → NO2
− + 2OH− +0.10 V3+ + e− → V2+ −0.26

O2 + 2H2O + 4e− → 4OH− +0.40 Zn2+ + 2e− → Zn −0.76
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activation-controlled limit 255
activation energy 233, 236

negative 252
activation enthalpy 239
activation entropy 239
activation Gibbs energy 239
active transport 199
activity 134, 194
activity coefficient 134, 194
adenine 375
adenosine diphosphate 164
adenosine triphosphate 164
adiabatic 44
ADP 164
adsorbate 420
adsorbent 420
adsorption 420

dissociative 428
enthalpy 426
extent 424
rate 425

adsorption isotherm 426
AEDANS 493
aerosol 381
AES 421
AFM 423
algebraic equation 543
alkalosis 184
alkylation 434
allosteric effect 166
allotrope 399
allowed transition 305, 453
α electron 304
α-helix 374
AM1 346
amount of substance 8
ampere 551

amphiphilic 382
amphiprotic species 179
analyte 181
angular (shape), 556
angular momentum 285, 303
angular momentum quantum number

287, 298
angular wavefunction 298
anharmonic vibration 459
anharmonicity constant 460
anion, configuration 310
anisotropy 517
anode 203
anti-Stokes line 456
anti-Stokes radiation 456
antibonding orbital 332
anticyclone 20
antiferromagnetic phase 402
antilogarithm 544
antiparallel β-sheet 374
antisymmetric stretch 461
antisymmetric wavefunction 319
approximation

Born–Oppenheimer 323
orbital 306
steady-state 251

aquatic life 132
array detector 474
Arrhenius, Svante 232
Arrhenius equation 233
Arrhenius parameters 232
Arrhenius temperature dependence 257
artist’s colour wheel 473
atmosphere 20, 314

temperature profile 488
atmosphere (unit) 5
atmospheric CO2 levels 463
atom, configuration 306
atomic force microscopy 423
atomic orbital 298
atomic radius 311
atomic weight 8
ATP 164
ATP hydrolysis 164
Aufbau principle 308
Auger effect 421
Auger electron spectroscopy 421
Austin Model 1 346
autoionization 173
autoprotolysis constant 174
autoprotolysis equilibrium 173
Avogadro’s constant 8
Avogadro’s principle 18
AX spectrum 507
AX2 spectrum 508
AX3 spectrum 508
azeotrope 142
azimuth 287

balanced reaction 11
Balmer, Johann 296
Balmer series 296

band gap 393
band structure 465
band theory 392
bar 5
barometer 6
barometric formula 20
base 172
base buffer 183
base catalysis 259
base unit 541
basicity constant 174
Beer–Lambert law 220, 474, 494
bending mode 462
benzene

electrostatic potential surface 347
isodensity surface 347
orbitals 342

BET isotherm 429
β electron 304
β sheet 374
bilayer vesicle 384
bimolecular reaction 250
binary mixture 22, 140
binding of O2 165
biochemical cascade 479
bioenergetics 42
biofuel cell 202, 438
biological macromolecule 414
biological membrane 380
biological standard potential 211
biological standard state 164
biopolymer, melting 379
biradical 339
black-body radiation 463
blood 132

buffer action 184
Blue Mountains 21
body-centred cubic 411
Bohr, Niels 300
Bohr effect 184
Bohr frequency condition 271, 296, 

447
Bohr magneton 500
Bohr radius 300
boiling 114
boiling point 114
boiling point elevation 134
boiling temperature 114
Boltzmann, Ludwig 96, 532
Boltzmann distribution 525

and chemical equilibrium 534
Boltzmann formula 96, 532
Boltzmann’s constant 96
bomb calorimeter 53
bond

classification 323
covalent 323
high-energy phosphate 164
ionic 323
π 325, 336
polar 339
σ 324, 334

Index
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bond angle, and hybridization 328
bond bending 376
bond enthalpy 68
bond formation, Pauli principle and 324
bond length 323
bond order 338
bond stretching 376
bond torsion 376
bonding orbital 332
Born, Max 275
Born–Haber cycle 397
Born interpretation 275
Born–Meyer equation 399
Born–Oppenheimer approximation 323
borneol 170
boson 305, 318, 451
boundary condition 277, 548

cyclic 286
boundary surface 301, 303
Boyle, Robert 16
Boyle’s law 16
Brackett series 296
Bragg, William and Lawrence 407
Bragg’s law 408
branch 465
branching ratio 490
branching step 262
Bravais lattice 404
breathing 132
bremstrahlung 407
broadening 456
Brønsted–Lowry theory 172
Brunauer, Stephen 429
buffer action 183
buffer solution 183
building-up principle 308
Butler–Volmer equation 439

C—G base pair 375
caesium-chloride structure 412
cage effect 254
calculus 546
calorie 549
calorimeter 50, 53

differential scanning 57
calorimeter constant 50
Calvin–Benson cycle 488
capillary action 386
capillary electrophoresis 372
carbohydrate 74, 82
carbon dioxide

atmospheric 463
experimental isotherms 30
phase diagram 118
supercritical 116

carbon dioxide laser 483
carbon nanotube 401
carbonic acid 178
Carnot cycle 103
carotene 348
casein 381
catalysis

examples 434
heterogeneous 432
homogeneous 258
mechanism 433

catalyst 258
and equilibrium 162
heterogeneous 258
homogeneous 258

catalyst ensemble 433
catalytic constant 260
catalytic efficiency 260
cathode 203
cation, configuration 310
cavity resonant mode 482
CCD 474
cell 200
cell membrane 200
cell notation 206
cell overpotential 443
cell potential 207

see also standard cell potential
cell reaction 206

equilibrium constant 208
Celsius scale 7
centigrade scale see Celsius scale
centrifugal distortion constant 451
cesium see caesium
chain-branching explosion 263
chain carrier 262
chain reaction 262

rate law 262
channel former 200
charge-coupled device 474
charge-transfer transition 478
Charles’s law 17
chemical amount 8
chemical bond 322
chemical equilibrium, statistical basis 

534
chemical exchange 513
chemical kinetics 219
chemical potential 125, 194

solute 133
solvent 130
standard 125
variation with concentration 133
variation with partial pressure 125

chemical shift 504
chemisorption 425
chemisorption abilities 435
chemisorption enthalpy 425
chemistry 1
chlorophyll 472
chloroplast 488
cholesteric phase 379
cholesterol 380
CHPs 202, 438
chromatic aberration 478
chromophore 477
chromosphere 314
circular polarization 552
Clapeyron equation 111
classical mechanics 270, 549

failures 270
classical thermodynamics 41
clathrate 361
Clausius–Clapeyron equation 112
Clebsch–Gordan series 315
climate change 463
close-packed structure 410
closed shell 307
closed system 42
cloud point 383
CMC 382
CNDO 346
coadsorption 429
coagulation 384
coefficient

activity 134, 194
cooling performance 104
extinction 220
heating performance 104
Hill 171
molar absorption 220, 474
osmotic virial 138
stoichiometric 11
virial 32
viscosity 255

colatitude 287
cold denaturation 247
cold-pack 44
colligative properties 134
collision cross-section 28
collision flux 420
collision frequency 28, 235
collision theory 234
collisional deactivation 456, 492
colloid 379
colour 472
colour wheel 473
combined gas equation 19
combined heat and power system 202, 438
combining standard potentials 212
combustion 71

standard enthalpy 72
common-ion effect 189
common logarithm 544
common unit 542
competitive inhibition 261
complementary 279
complete neglect of differential overlap 346
complete shell 307
components, number 117
composition of vector 545
compression, effect on K 166
compression factor 32
computational chemistry 345
concentration

formal 174
measures of 123
two absorbing species 221

concentration polarization 441
condensation 66
condition of stability 105
conduction band 394
conductivity 197
conductivity cell 196
cone (eye) 478
configuration

atom 306
cation and anion 310

conformational conversion 512
conformational energy 376
conformational entropy 373
conjugate acid 173
conjugate base 173
consecutive reactions 248
conservation of energy 4
consolute temperature 144
constant

acid ionization 173
acidity see acidity constant
anharmonicity 460
autoprotolysis 174
Avogadro’s 8
basicity 174
Boltzmann’s 96
calorimeter 50
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catalytic 260
critical 31
cryoscopic 135
dissociation 173
ebullioscopic 135
equilibrium see equilibrium constant
Faraday’s 207, 550
force 289, 458
gas 16
Henry’s law 131
hyperfine coupling 518
Madelung 399
Michaelis 259
normalization 280
Planck’s 271
rate see rate constant
rotational 448
Rydberg 296
solubility 187
solubility product 187
spin–spin coupling 507
time 231

constant-current mode 423
constant-volume heat capacity 49, 54
constant-z mode 423
contact interaction 510
continuum generation 486
contour length 372
contrast agent 506
convection 20, 27, 256
converting between units 5
cooling curve 144
cooling performance coefficient 104
Cooper pair 395
cooperative binding 166
cooperative transition 247
coordination number 411
cornea 478
corona 314
correlation spectroscopy 515
cosines, law of 545
COSY 515
Coulomb interaction 550
Coulomb potential 550
Coulombic potential energy 4, 194, 296,

324, 549
Coulomb’s inverse-square law of force 550
couple 202
coupled reactions 164
covalent bond 323
covalent bonding 554
covalent solid 392
cracking 434, 436
criteria of spontaneity 157
critical constant 31
critical isotherm 31
critical micelle concentration 382
critical molar volume 31
critical point 31, 115
critical pressure 31, 115
critical solution temperature 144
critical temperature 31, 395
crixivan 367
cross-product 546
cross-section, collision 28
cryoscopic constant 135
crystal diode 448
crystal structure 403
crystal system 403
crystallinity 376

cubic cage 436
cubic close-packed 410
cubic system 403
Curie temperature 402
current, electric 551
current density 202, 439
cyclic boundary condition 286
cyclic voltammetry 441
cytosine 375

d block 309
d-metal complex 478
d orbital 303

occupation 309
Dalton, John 21
Dalton’s law 21
Daniell cell 206
Davisson, Clinton 273
Davisson–Germer experiment 273
de Broglie, Louis 273
de Broglie relation 273
deactivation 490
Debye, Peter 195, 353, 408
debye 353
Debye–Hückel limiting law 195
Debye–Hückel theory 194
Debye T3 law 94
decay 490

exponential 227
fluorescence 220

decomposition temperature 158
defect 420
definite integral 548
degeneracy 283
degenerate 285
degrees of freedom, number 117
dehydration 434
dehydrogenation 434
delocalization energy 345
delocalized 343
δ orbital 338
δ scale 504
denaturant 247
denaturation 375

cold 247
density, kinetic energy 40
density functional theory 346
deoxyribonucleic acid 375
depression of freezing point 135
deprotonation 173
derivative 547
derived unit 541
deshielded 504
desorption 420, 425

activated process 431
desulfurization 434
detergent 382
DFT 346
dialysis 382
diamagnetic 339, 400
diamond 399
diathermic 43
diatomic molecule

heteronuclear 339
homonuclear 338
Period 2 335
properties 461
structure 333
VB theory 324

dielectric constant see relative permittivity

differential equation 548
differential overlap 346
differential scanning calorimetry 57
differentiation 546
diffraction 272, 406

electron 273
low-energy electron 422
X-ray 406

diffraction grating 474
diffraction pattern 406
diffractometer 408

four-circle 409
diffuse double layer 438
diffusion 27, 255

Fick’s laws of 256, 265
temperature dependence 257

diffusion coefficient 256
diffusion-controlled limit 255
diffusion equation 256
dilute-spin species 512
diode laser 483
dipole–dipole interaction 356
dipole–induced-dipole interaction 357
dipole interaction 355
dipole moment 353

induced 357
resolution 354
transition 453

disorder 95
disperse phase 369
disperse system 379
dispersion interaction 358, 382
dissociation 68, 479
dissociation constant 173
dissociation limit 479
dissociative adsorption 428
distribution

Boltzmann see Boltzmann distribution
Maxwell 25, 235, 455
molecular speeds 25

disulfide link 354
DNA 375
domain 402
dopant 394
Doppler-broadened spectral line 455
Doppler effect 455
dot product 546
double helix 375
drift velocity 198
DSC 57
duality 274
Dubosq colorimeter 496
dye laser 484
dynamic equilibrium 111
dynamic light scattering 372

Eadie–Hofstee plot 268
Earth

atmosphere 463
surface temperature 463

ebullioscopic constant 135
eddy 20
effect

allosteric 166
Auger 421
Bohr 184
cage 254
common-ion 189
Doppler 455
greenhouse 463
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effect (cont’d)
hydrophobic 361
Joule–Thomson 36
Meissner 403
nuclear Overhauser 513
photoelectric 272

effective atomic number 311
effective mass 458
effective nuclear charge 307
effective rate constant 225
effector molecule 200
effusion 27
Einstein, Albert 495
Einstein coefficients 495
Einstein relation 257
Einstein–Smoluchowski equation 257
elastomer 376
electric current 551
electric dipole 352
electric dipole moment 353
electric double layer 384
electric eel 201
electric field 198, 551
electric field jump 220
electrical double layer 437
electrical work 3
electrochemical cell 200
electrochemical series 212
electrochemistry 42
electrode 200
electrode compartment 200
electrode concentration cell 206
electrode process 437
electrode solution interface 437
electrodialysis 382
electrokinetic potential 384
electrolysis 443
electrolyte concentration cell 206
electrolyte solution 123, 194
electrolytic cell 201
electromagnetic field 551
electromagnetic radiation 551
electromagnetic spectrum 271, 552
electromotive force see cell potential
electron

g-value 500
promoted 326
σ 331
valence 308

electron affinity 313
electron-deficient compound 555
electron diffraction 273
electron gain 68
electron gain enthalpy 68
electron pair arrangement 556
electron paramagnetic resonance 220, 503
electron spin resonance 503
electron spin 304
electron transfer 492
electronegativity 339
electronic conductor 392
electronic partition function 530
electronvolt 472
electro-osmotic drag 202, 438
electrophoresis 372
electrostatic potential surface 347
electrostatics 550
elementary reactions 249
elevation of boiling point 134
Eley–Rideal mechanism 433

elpot surface 347
emf see cell potential
emission spectrum 295
Emmett, Paul 429
emulsifying agent 381
emulsion 381
encounter pair 254
end point 186
endergonic compound 159
endergonic reaction 157
endocytosis 380
endothermic 44
endothermic compound 76
energy 3, 42

conformational 376
conservation of 4
delocalization 345
gravitational potential 14
as heat 51
internal see internal energy
ionization 298, 312
kinetic 3, 549
potential see potential energy
quantization 271
reorganization 492
tendency to become disordered 84
total 4, 549
zero-point 281

energy density 40
energy level

harmonic oscillator 289
hydrogen atom 297
particle in a box 281
rotational 448
vibrational 458

energy reserves 73
energy transfer, resonance 492
enthalpy 55

of activation 239
of adsorption 426
chemisorption 425
mixing 127, 130
physisorption 425
reaction see reaction enthalpy
standard reaction 72, 213
temperature variation 56

enthalpy density 73
entropy 85

of activation 239
Boltzmann formula 96, 532
cell reaction 213
conformational 373
determination 93
experimental determination 90
fusion 90
mixing 127, 130
from partition function 532
perfect gas expansion 87
perfectly ordered crystal 93
phase transition 90
residual 97, 532
standard molar 94
standard reaction 98
surroundings 92
temperature variation 89
Third-Law 94
vaporization 90

enzyme 258
enzyme kinetics 219
epitaxy 401

EPR 220, 503
EPR spectra 517
EPR spectrometer 503
equation

algebraic 543
Arrhenius 233
Born–Meyer 399
Butler–Volmer 439
Clapeyron 111
Clausius–Clapeyron 112
diffusion 256
Einstein 257
Einstein–Smoluchowski 257
Eyring 239
Goldman 218
Henderson–Hasselbalch 182
Hückel 344
Karplus 509
Laplace 385
McConnell 520
Nernst 208
quadratic 543
Schrödinger see Schrödinger equation
secular 343
Stern–Volmer 491
thermochemical 64
van der Waals 33, 34
van’t Hoff 137, 163
wave 551

equation of state 15
perfect gas 16
van der Waals 33, 34
virial 33

equilibrium
autoprotolysis 173
dynamic 111
mechanical 5
proton transfer 172
solubility 187
statistical basis 534
thermal 7

equilibrium bond length 323
equilibrium composition 160
equilibrium constant 156

calculation 535
cell reaction 208
concentration 161
from partition function 538
relation to Gibbs energy 156
relation to rate constants 245

equivalence point 181
ER mechanism 433
ESR 503
essential symmetry 404
ethene, Hückel equations 344
eutectic composition 146
eutectic halt 146
exchange current density 202, 439
excimer laser 484
exciplex 484
exciplex laser 484
exclusion principle 306, 318, 333, 451
exclusion rule 466
exergonic compound 160
exergonic reaction 157, 164
exocytosis 380
exothermic 44
exothermic compound 76
expansion work 45
expectation value 344
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explosion 263
explosion limit 263
explosion region 263
exponential decay 227
exponential function 25, 544
extended Debye–Hückel law 196
extensive property 9
extinction coefficient 220
eye 478
Eyring equation 239

f block 310
factorial 547
Fahrenheit scale 13
Faraday’s constant 207, 550
fast reactions 220
fat 74
FEMO 350, 498
femtochemistry 220, 238
Fermi contact interaction 510
Fermi level 394
fermion 305, 318, 451
ferromagnetism 402
fibre 378
Fick’s first law 256, 265
Fick’s second law 256, 266
field 551
fine structure 507
fingerprint region 462
first ionization energy 312
first ionization enthalpy 67
First Law 53
first-order differential equation 548
flash desorption 425
flash photolysis 220, 221
flocculation 384
flow method 221
fluid, supercritical 31, 116
fluid mosaic model 380
fluorescence 479, 480, 490

quantum yield 491
X-ray 421

fluorescence decay 220
fluorescence lifetime 490
fluorescence microscopy 498
fluorescence quenching 491
fluorescence resonance energy 

transfer 493
flux 255
Fock, V. 310
food 74
forbidden transition 305, 453
force 3, 549

intermolecular 352
force constant 289, 458
formal concentration 174
formation

Gibbs energy 158
standard enthalpy 75

Förster, T. 492
Förster theory 492
four-circle diffractometer 409
four-level laser 482
Fourier synthesis 409
Fourier transform NMR 503
fraction deprotonated 174
fraction protonated 174
fractional composition 178
fractional coverage 424
fractional saturation 165

fractionating column 141
Franck–Condon principle 476
free-electron molecular orbital (FEMO)

theory 350, 498
free expansion 46
freely jointed chain 372
freezing 66
freezing point 115
freezing point depression 135
freezing temperature 115
frequency 448, 551
frequency condition 271, 296, 447
frequency doubling 483
FRET 493
Friedrich, Walter 407
frontier orbital 341
fructose-6-phosphate 154
FT-NMR 503
fuel 73
fuel cell 201, 438
function 543

exponential 25, 544
Gaussian 25

function of a function 547
functional 346
functional MRI 506
fusion 66

entropy 90
standard enthalpy 66

g,u classification 333
g-value 500, 517
gain 482
Galvani potential difference 437
galvanic cell 201
gas 1

kinetic model 23
liquefaction of 35
real 16, 29

gas constant 16
gas electrode 204
gas exchange 132
gas laser 483
Gaussian function 25
Gaussian-type orbital 346
gel 381
gel electrophoresis 372
gerade symmetry 333
Gerlach, Walther 304
Germer, Lester 273
Gibbs, J. W. 98
Gibbs energy 99

activation 239
equilibrium constant and 156
formation 158
mixing 127, 130, 144
partial molar 125
from partition function 533
perfect gas 108
reaction 154
standard molar 534
standard reaction 155, 158, 213
variation with pressure 106
variation with temperature 108

glacier motion 118
glancing angle 408
glass electrode 211
glass transition temperature 379
global warming 463
globar 460

glucose-6-phosphate 154
Goldman equation 218
Gouy–Chapman model 438
Graham, Thomas 27
Graham’s law of effusion 27
graph 543
graphite 399
gravimetry 425
gravitational potential energy 14
greenhouse effect 463
gross selection rule 453
Grotrian diagram 305
Grotthus mechanism 199
ground state 295
GTO 346
guanine 375
guest 360
Gunn diode 448

Haber, Fritz 165
haemerythin 470
haemoglobin 165, 184, 375

fractional saturation 165
half-life 229
half-reaction 201
Hall–Hérault process 201
Halley’s comet 118
Hanes plot 268
hard-sphere potential 362
harmonic oscillator 289

energy levels 289
wavefunctions 290

harmonic wave 551
Harned cell 213
harpoon mechanism 236
Hartree, D. R. 310
Hartree–Fock self-consistent field 310
HBr formation 224, 263, 490
head group 382
heat 43

equivalence to work 51
influx during expansion 51
molecular nature 44

heat capacity 48
at constant pressure 49, 58
at constant volume 49, 54
exact relation 62
from partition function 531
relation between 59
temperature dependence 58

heat engine 86
heat pump 87, 104
heating 43
heating performance coefficient 104
Heisenberg, Werner 278
helium, phase diagram 119
helix–coil transition 247, 375
Helmholtz layer model 437
hemoglobin see haemoglobin
Henry, William 131
Henry’s law 131
Henry’s law constant 131
hertz 551
Hess’s law 74
heterogeneity index 369
heterogeneous catalysis 432
heterogeneous catalyst 258
heteronuclear diatomic molecule 339
hexagonal system 404
hexagonally close-packed 410
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HF-SCF procedure 310
high-energy phosphate bond 164
high-temperature superconductor 392,

395
highest occupied molecular orbital 341
Hill coefficient 171
histidine 192
HIV 360, 367
homeostasis 184
HOMO 341
homogeneous catalysis 258
homogeneous catalyst 258
homogeneous mixture 123
homonuclear diatomic molecule 338
Hooke’s law 378
host 360
host–guest complex 360
HTSC 392, 395
Hückel, Erich 195, 343
Hückel equation 344
Hückel method 343
Hull, Albert 408
Humphreys series 319
Hund’s rule 309, 316
hybrid orbital 326
hybridization 326

variation with bond angle 328
hydrodynamic radius 198
hydrogen atom

energy levels 297
spectrum 296

hydrogen bond 359, 377
hydrogen burning 314
hydrogen electrode 204, 209
hydrogen molecule 333
hydrogen/oxygen fuel cell 202, 438
hydrogen–oxygen reaction 263
hydrogenation 434, 435
hydrogenic atom 295
hydrolysis of ATP 164
hydronium ion 172
hydrophilic 380
hydrophobic 361, 380
hydrophobic effect 361
hydrostatic pressure 6
hyperbaric oxygen chamber 132
hyperbola 17
hyperfine coupling constant 518
hyperfine structure 518
hypervalent molecule 555
hyperventilation 184

ice
residual entropy 532
structure 118

ideal-dilute solution 131
ideal solution 128
IHP 437
incomplete octet 555
indefinite integral 548
indicator 185
INDO 346
induced dipole moment 357
infinitesimal calculus 546
infrared active 459
infrared activity, gross selection rule 462
infrared inactive 459
infrared spectroscopy 458
inhibition step 262
inhibitor 261

initial condition 548
initial rate 225
initiation step 262
inner Helmholtz plane 437
instantaneous rate 222
insulator 392
integral 548
integral protein 380
integrated absorption coefficient 476
integrated rate law 227
integration 547
intensity, nuclear magnetic resonance

transition 502
intensive property 9
interaction

Coulomb 550
dipole–dipole 356
dipole–induced-dipole 357
dispersion 358, 382
π-stacking 360
potential energy 361
van der Waals 352

intercept 543
interference 406
Intergovernmental Panel on Climate

Change 463
intermediate 251
intermediate neglect of differential 

overlap 346
intermetallic compound 395
internal conversion 479
internal energy 51

as independent of volume 52
from partition function 531

International System of units (SI) 2, 541
intersystem crossing (ISC) 481, 490
inversion symmetry 333
ion channel 199, 380
ion–ion interaction 194
ion pump 199, 380
ionic atmosphere 195
ionic bond 323
ionic conductivity 197
ionic–covalent resonance 329
ionic crystal 412
ionic model 396
ionic radius 413
ionic solid 391
ionic strength 196
ionization energy 298, 312
ionization enthalpy 67
IPCC 463
ISC see intersystem crossing
isobar 20
isodensity surface 346
isoelectric point 215, 385
isolated system 42
isolation method 225
isomerization 434
isomorphous replacement 410
isosbestic point 476
isosteric enthalpy of adsorption 428
isotherm 17, 30

adsorption 426
BET 429
critical 31
Langmuir 426, 427

isothermal, reversible expansion 47
isotope separation 485
isotopomer 485

Jablonski diagram 480
Joule, James 3, 51
joule 3, 549
Joule–Thomson effect 36

K and Kc, relation between 162
Kamerlingh Onnes, Heike 395
Karplus equation 509
Kekulé structure 330
Kelvin scale 7, 18
kilogram 2
kinetic control 253
kinetic energy 3, 549
kinetic energy density 40
kinetic model of gases 23
kinetic molecular theory 37
kinetic techniques 220
kinetics 219
Kirchhoff’s law 78
klystron 448
Knipping, Paul 407
Kohlrausch, Friedrich 197
Krafft temperature 382

lamellar micelle 380
Langmuir–Hinshelwood mechanism 433
Langmuir isotherm 426, 427
lanthanide contraction 312
Laplace equation 385
Larmor procession frequency 502
laser 482

applications 484
lattice enthalpy 396
law

Beer–Lambert 220, 474, 494
Boyle’s 16
Charles’s 17
conservation of energy 4
of cosines 545
Coulomb’s inverse-square 550
Debye–Hückel 195
Debye T3 94
diffusion 256, 265
effusion 27
Fick’s first 256, 265
Fick’s second 256, 266
First 53
Graham’s 27
Henry’s 131
Hess’s 74
Hooke’s 378
integrated rate 227
Kirchhoff’s 78
limiting 16, 129, 195
Nernst distribution 146
Newton’s second 3, 549
Ohm’s 196, 440, 551
Raoult’s 128
rate 223
Second 85
Stokes’ 198
Third 93

LCAO 330
Le Chatelier’s principle 162
LED 395
LEED 422
Lennard-Jones (12,6)-potential 362
level 316
lever rule 142
Lewis, G. N. 554
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Lewis theory 554
LH mechanism 433
lifetime 456
lifetime broadening 456
light 472, 552

speed of 551
light-emitting diode 395
light-harvesting complex 488
limit, taking 167
limiting law 16, 129, 195
limiting molar conductivity 197
Linde refrigerator 36
Lindemann, Frederick 253
Lindemann mechanism 253
linear (shape), 556
linear combination 326

of atomic orbitals 330
linear graph 543
linear momentum 273, 549
linear rotor 448
linear-sweep voltammetry 441
Lineweaver–Burk plot 260
linewidth 455

Maxwell distribution 455
lipid raft model 380
liquefaction of gas 35
liquid 1

molecular structure 119
liquid crystal 379
liquid junction 200
liquid junction potential 206
liquid–liquid phase diagram 142
liquid–solid phase diagram 144
liquid surface 385
liquidus 144
local contribution 505
logarithm 193, 543
London force see dispersion interaction
London formula 358
long period 309
long-range dispersion attraction 382
long-range order 119
loop, van der Waals 34
low-energy electron diffraction 422
lower consolute temperature 144
lower critical solution temperature 144
lower explosion limit 263
lowest unoccupied molecular orbital 341
lumiflavin 390
LUMO 341
Lyman series 296
lyophilic 381
lysine 192

macular pigment 478
Madelung constant 399
magic-angle spinning 517
magnetic field 551
magnetic properties 400
magnetic quantum number 298
magnetic resonance 499
magnetic resonance imaging 506
magnetic susceptibility 400
magnetization 400
magnetogyric ratio 500
magneton

Bohr 500
nuclear 500

MALDI 370
MALDI-TOF spectrum 371

malleable 411
many-electron atom 295, 305
Marcus, R. A. 492
Marcus theory 492
Mars van Krevelen mechanism 436
MAS 517
mass 2
matrix-assisted laser desorption/ionization

370
matter

states of 1
tendency to become disordered 84

matter wave 273
maximum population 453
maximum velocity 259
Maxwell distribution of speeds 25, 235, 455

linewidth 455
MBE 401
McConnell equation 520
mean activity coefficient 194
mean bond enthalpy 70
mean free path 28
mean speed 24

and temperature 24
mechanical equilibrium 5
mechanism

Eley–Rideal 433
heterogeneous catalysis 433
Langmuir–Hinshelwood 433
Mars van Krevelen 436
Michaelis–Menten 259

mechanism of reaction 219, 249
bimolecular 250
unimolecular 249

Meissner effect 403
melting, biopolymer 379
melting point 115
melting temperature 115, 378
membrane

cell 200
semipermeable 137

mercury cadmium telluride (MCT) detector
460

mesophase 379
metabolic acidosis 184
metabolic alkalosis 184
metal crystal 410
metal–insoluble-salt electrode 205
metallic conductor 392
metallic solid 391
meteorology 20
methane, atmospheric 463
micelle 382
Michaelis constant 259
Michaelis–Menten mechanism 259
Michelson interferometer 460
microporous material 436
microwave spectroscopy 448
migration of ions 196
Miller indices 405
millimetre of mercury (mmHg) 13
MINDO 346
mixing

enthalpy 127, 130
entropy 127, 130
Gibbs energy 127, 130, 144

mixture
binary 22, 140
homogeneous 123
volatile liquids 140

mmHg 13
MO theory 322, 330
mobility 198
model 2, 23
modified neglect of differential 

overlap 346
molality 10, 123
molar absorption coefficient 220, 474
molar concentration 9, 123

standard 133
molar conductivity 197
molar enthalpy 55
molar heat capacity 49
molar internal energy 51
molar mass 8
molar partition function 534
molar quantity 9
molar solubility 187
molar volume 18
molarity 10, 123
mole 8
mole fraction 10, 22, 129
molecular beam epitaxy 401
molecular crystal 413
molecular dynamics simulation 363
molecular interaction 29
molecular mechanics simulation 377
molecular modelling 77
molecular orbital 330
molecular orbital (MO) theory 322, 330
molecular partition function 530
molecular potential energy curve

323, 457
molecular recognition 360
molecular solid 392, 413
molecular weight 8
molecularity 249
moment of inertia 285, 448, 468
momentum

angular 285, 303
linear 273, 549

monochromator 474
monoclinic system 403
monodisperse 369
monolayer 384
monomer 368
Monte Carlo method 363
MRI 506
Mulliken, Robert 340
multiphoton process 485
multiplicity 315
multiwalled nanotube 401
MWNT 401
myoglobin 165

fractional saturation 165

n-to-π* transition 477
n-type semiconductivity 394
NAD 203
nanodevice 400
nanometre-scale structures 280
nanotechnology 400
nanotube 401
nanowire 401
natural linewidth 456
natural logarithm 543
Nd-YAG laser 483
Néel temperature 403
neighbouring group contribution 505
nematic phase 379
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neodymium laser 483
Nernst distribution law 146
Nernst equation 208
Nernst filament 460
network solid 392
Newton, Isaac 3, 270
newton 3, 550
Newton’s second law of motion 3, 549
nicad cell 201
nickel–cadmium cell 201
nicotinamide adenine dinucleotide 203
nicotine 177
nitric oxide 250
nitrogen, fixation 339
NMR 220, 502

solid-state 516
two-dimensional 515

NMR spectrometer 503
nodal plane 303, 332
node 281, 302
NOE 513
noncompetitive inhibition 261
nondegenerate 286
nonelectrolyte solution 123
nonexpansion work 53, 99

maximum 99
nonlinear optical phenomena 483
nonpolar molecule 353
nonpolarizable 441
nonspontaneous change 83
normal boiling point 114
normal freezing point 115
normal melting point 115
normal mode 462
normalization constant 280
notation for cells 206
nuclear g-factor 500
nuclear magnetic resonance 220, 502

solid-state 516
two-dimensional 515

nuclear magnetogyric ratio 500
nuclear magneton 500
nuclear model 296
nuclear Overhauser effect 513
nuclear spin quantum number 500
nuclear statistics 451, 457
number-average molar mass 369
number of components 117
nylon-66 378

observed fluorescence lifetime 490
occupation of d orbitals 309
octahedral 556
octet expansion 555
ocular fluid 478
ohm 551
Ohm’s law 196, 440, 551
OHP 437
open system 42
optical density 221
orbital

antibonding 332
atomic 298
bonding 332
δ 338
frontier 341
hybrid 326
molecular 330
π 336
σ 330

orbital angular momentum quantum
number 287, 298

orbital approximation 306
order 224, 250
ordinary differential equation 548
ortho-hydrogen 452
orthorhombic system 404
osmometry 138
osmosis 137

reverse 140
osmotic pressure 137
osmotic virial coefficient 138
outer Helmholtz plane 437
overall order 224
overall quantum yield 489
overlap, symmetry and 337
overlap integral 331, 343
overpotential 439
oxidation 434

gas-phase 250
propene 436

oxidation number 554
oxygen

binding 165
electron configuration 339
paramagnetic 339
reaction with hydrogen 263

oxygen chamber 132

p band 393
P branch 465
p–n junction 395
p orbital 299, 303
p-type semiconductivity 394
packing fraction 411
paired spins 306
pairing, reason for 334
para-hydrogen 452
parabolic potential energy 289
parallel band 462
parallel β-sheet 374
paramagnetic 339, 400
parameters

Arrhenius 232
van der Waals 34

parcel (of air) 20
partial charge 352
partial molar Gibbs energy 125
partial molar property 124
partial molar volume 124
partial negative charge 340
partial positive charge 340
partial pressure 22
partial vapour pressure 128
partially miscible liquids 142
particle in a box 280

energy levels 281
wavefunctions 281

particle on a ring 285
particle on a sphere 287
partition function 525

electronic 530
interpretation 527
molar 534
molecular 530
rotational 529, 538
translational 529, 537
vibrational 528

pascal 5
Pascal’s triangle 508

Paschen series 296
passive transport 199
patch clamp technique 200
Pauli, Wolfgang 307
Pauli exclusion principle 306, 318, 333,

451
Pauli principle 306, 318, 451

and bond formation 324
Pauling, Linus 340
penetration 307
pentagonal bipyramidal 556
peptide link 247
peptizing agent 381
perfect elastomer 376
perfect gas 16

chemical potential 126
condition for 29
entropy 87
equation of state 16
expansion 47
internal energy 52
relation between heat capacities 59

periodic trends 310
peripheral protein 380
permittivity 352

relative 352
vacuum 4, 296, 550

perpendicular band 462
Pfund series 296
pH 173
pH curve 181
phase 64, 552
phase boundary 109
phase diagram 109, 381

carbon dioxide 118
helium 119
liquid–liquid 142
liquid–solid 144
temperature–composition 140
water 117

phase problem 409
phase rule 117
phase transition 64, 105

entropy 90
phosphatidyl choline 380
phosphine decomposition 433
phosphorescence 220, 479, 481

time constant 490
photobleaching 498
photochemical reaction 487
photochemistry 487
photodiode 474
photoejection 486
photoelectric effect 272
photoelectron spectrometer 487
photoelectron spectroscopy 486
photoelectron spectrum 486
photoemission spectroscopy 421
photoisomerization 478
photolysis

flash 220, 221
of HI 489

photon 272, 552
photosphere 314
photosynthesis 488
photosystems I and II 488
photovoltaic device 460
physical chemistry 1
physical quantity 541
physical state 2
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physisorption 425
enthalpy 425

π bond 325, 336
π-electron binding energy 344
π orbital 336
π-stacking interaction 360
π-to-π* transition 477
Planck, Max 271
Planck’s constant 271
plane polarized 552
planes, separation of 405
plastic 378
plastic crystal 516
plot

Lineweaver–Burk 260
Ramachandran 376
Stern–Volmer 491
Tafel 440

polar bond 339
polar molecule 353
polarimetry 220
polarizability 357, 457
polarizability volume 357
polarizable 357, 441
polarization mechanism 510
polyatomic molecule

structure 341
VB theory 326
vibrations 460

polychromator 474
polydisperse 369
polydispersity index 369
polyelectron atom see many-electron atom
polymer 368
polymerization 434
polymorph 118, 399
polynucleotide 375
polypeptide 247

partial charge 352
structure 373

polyprotic acid 177
population 500

maximum 453
population inversion 482
potential, variation with pH 210
potential difference 551
potential energy 4, 549

Coulombic 4, 194, 296, 324, 549
interaction 361
parabolic 289

potential energy curve 323, 457
powder diffractometer 408
power 549, 551
power series 547
precession 502
precursor state 431
pre-exponential factor 233, 236
pressure 4

critical 31, 115
hydrostatic 6
osmotic 137
partial 22
standard 5, 19
units 5
see also vapour pressure

pressure broadening 456
pressure jump 220, 246
primary quantum yield 489
primary structure, polypeptide 373
principal quantum number 297, 298

principle
Aufbau 308
Avogadro’s 18
building-up 308
exclusion 306, 318, 333, 451
Franck–Condon 476
Le Chatelier’s 162
Pauli see Pauli principle
uncertainty 278

probabilistic interpretation 276
probability density 276
probe 486
projection reconstruction 506
promoted electron 326
promotion 326
propene oxidation 436
property

colligative 134
extensive 9
intensive 9

protein 74
integral 380
peripheral 380

protein structure prediction 376
protein unfolding 247
proton decoupling 512
proton magnetic resonance 503
proton transfer 172
protonation 173
pseudofirst-order rate law 225
pseudosecond-order rate law 225
pulse radiolysis 222
pump (laser) 482
pump (spectroscopic) 486

Q-band 503
Q branch 465
QCM 425
quadratic equation 543
quantization of energy 271
quantum dot 401
quantum number 281

magnetic 298
nuclear spin 500
orbital angular momentum 287, 298
principal 297, 298
rotational 448
spin 304
spin angular momentum 315
spin magnetic 304
total angular momentum 315
total orbital angular momentum 315
vibrational 289

quantum yield 487
fluorescence 491

quartz crystal microbalance 425
quaternary structure, polypeptide 375
quenching 491
quenching method 222
quinoline 176

R branch 465
radial distribution function 301
radial node 302
radial velocity 320
radial wavefunction 298, 302
radiation, black-body 463
radiative decay 479
radical chain reaction 262
radius of gyration 373

radius ratio 412
radius-ratio rule 412
radius of shear 384
Ramachandran plot 376
Raman gross selection rule 460
Raman microscopy 485
Raman spectra

rotational 456
vibrational 460, 465

Raman spectroscopy 456, 460, 466
random coil 372
random walk 255
Rankine scale 13
Raoult, François 128
Raoult’s law 128
rate

adsorption 425
definition 222
formation of HBr 263, 490
initial 225
instantaneous 222
law 223
surface process 431
temperature dependence 232

rate constant 223
combination 252
effective 225
relation to equilibrium constant 245

rate-determining step 252
rate law formation 250
Rayleigh radiation 456
reaction

bimolecular 250
endergonic 157
exergonic 157, 164
Gibbs energy 154
hydrogen and oxygen 263
in solution 254
unimolecular 249, 253

reaction centre 488
reaction coordinate 237
reaction enthalpy 72

variation with temperature 78
reaction entropy, from cell potential 213
reaction mechanism see mechanism of

reaction
reaction profile 234
reaction quotient 156
real gas 16, 29
real solution 134
real-time analysis 221
rearranging 543
redox couple 202
redox electrode 205
redox reaction 193
reduced mass 297
reference state 75
reforming 436
refrigerator 87, 104

Linde 36
relative atomic mass 8
relative molar mass 8
relative permittivity 352
relaxation 246, 511

spin 511
relaxation time 248, 511
reorganization energy 492
residual entropy 97, 532
resistance 551
resistivity 197
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resonance 329, 499
ionic–covalent 329

resonance condition 501, 518
resonance energy transfer 492
resonance hybrid 329, 555
resonance Raman spectroscopy 466
resonance stabilization 330
resonant mode 482
respiration 184
respiratory acidosis 184
respiratory alkalosis 184
resting potential 200
resultant vector 545
retardation step 262
retina 478
retinal 349, 478
reverse osmosis 140
reversible expansion 47
reversible process 46
rhodopsin 478
rhombohedral system 404
ribonucleic acid 375
ridge 20
rigid rotor 448
ring current 505
RNA 375
rock-salt structure 412
rod (eye) 478
root 543
root mean square distance 257
root mean square separation 373
root-mean-square speed 23
rotation 285
rotational constant 448
rotational energy level 448, 468
rotational partition function 529, 538
rotational quantum number 448
rotational Raman spectra 456
rotational spectrum 453
rotational state population 451
rotational transition 453
rotationally active 453
rotationally Raman active 457
rotationally Raman inactive 457
rule

Hund’s 309, 316
lever 142
phase 117
radius-ratio 412
selection see selection rule
Trouton’s 91

Russell–Saunders coupling 314
Rydberg constant 296

s band 393
s electron 299
s orbital 299
salt, effect on solubility 189
salt bridge 200
salts in water 180
SAM see scanning Auger electron

microscopy; self-assembled monolayer
SATP 19
saturated solution 187
saturation 511

fractional 165
scalar product 546
scanning Auger electron microscopy 422
scanning tunnelling microscopy 423
scCO2 116

SCF see self-consistent field; supercritical
fluid

Scherrer, Paul 408
Schrödinger, Erwin 274
Schrödinger equation 274

justification 275
scuba diving 132
second derivative 547
second-harmonic generation 483
second ionization energy 312
second ionization enthalpy 67
Second Law 85
second-order differential equation 548
secondary structure, polypeptide 373
secular equation 343
sedimentation 371
see-saw shape 556
selection rule 306, 317, 453

Raman 460
vibrational 459

self-assembled monolayer 426
self-assembly 368
self-consistent field 310, 346
semiconductor 392
semiempirical method 346
semipermeable membrane 137
separation of planes 405
separation of variables procedure 283
series, spectroscopic line 296
SFC 116
SHE 209
shell 299

closed 307
complete 307

shielded 504
shielded nuclear charge 307
shielding 307
shielding constant 504
short-range order 119
SI 2, 541
SI prefix 541
σ bond 324, 334
σ electron 331
σ orbital 330
single-walled nanotube 401
singlet state 481
slice selection 506
slip plane 411
slope 543
slower-growing faces 420
smectic phase 379
smog 21
soap 382
sodalite cage 436
sol 381
solar energy 463
solid 1

band theory 392
molecular 392, 413

solid-state NMR 516
solidus 144
solubility 187
solubility constant 187
solubility equilibrium 187
solubility product 187
solubility product constant 187
solute 9, 123

chemical potential 133
solution

electrolyte 123, 194

ideal-dilute 131
ideal 128
nonelectrolyte 123
real 134
saturated 187

solvent 123
chemical potential 130
and local magnetic field 507

solvent contribution 505
sp hybridization 327
sp2 hybrid orbital 327
sp3 hybrid orbital 327
sparingly soluble compound 187
speciation 192
specific enthalpy 73
specific heat capacity 49
specific selection rule 453, 459
spectrometer 460
spectrophotometry 220
spectroscopic line 296
spectroscopy, general features 447
spectrum

atomic hydrogen 296
complex atom 314
electromagnetic 271, 552
rotational 453

speed 549
mean 24
root-mean-square 23

speed of light 551
spherical harmonics 287
spherical micelle 383
spherical rotor 450
spherically symmetrical 300
spin, electron 304
spin-1 particle 305
spin-1/2 particle 304
spin angular momentum quantum number

315
spin correlation 309
spin density 520
spin–lattice relaxation time 511
spin magnetic quantum number 304
spin–orbit coupling 316
spin quantum number 304
spin relaxation 511
spin–spin coupling constant 507
spin–spin relaxation time 511
spontaneity 98, 109

criteria 157
spontaneous change 83
spontaneous emission 456, 479, 495
SPR 425
square planar 556
square pyramidal 556
stability condition 105
stable, thermodynamically 160
standard ambient temperature and 

pressure 19
standard boiling point 115
standard cell potential 208, 213

Gibbs energy from 213
standard chemical potential 125
standard electrode potential 209
standard enthalpy

combustion 72
electron gain 68
formation 75
fusion 66
ionization 67
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reaction 72, 213
sublimation 66
vaporization 64

standard Gibbs energy of formation 158
standard hydrogen electrode 209
standard molar concentration 133
standard molar Gibbs energy 534
standard potential 209

biological 211
combining 212

standard pressure 5, 19
standard reaction enthalpy 72, 213
standard reaction entropy 98
standard reaction Gibbs energy 155, 158,

213
standard reduction potential 209
standard state 63, 134
standard temperature and pressure 19
star

hydrogen burning 314
spectroscopy 314

state
biological standard 164
equation of see equation of state
ground 295
physical 2
precursor 431
reference 75
standard 63, 134
thermally accessible 527
transition 237

state function 52
states of matter 1
statistical thermodynamics 41, 524
steady-state approximation 251
step defect 420
steric factor 236
Stern, Otto 304
Stern–Gerlach experiment 304
Stern–Volmer equation 491
Stern–Volmer plot 491
sticking probability 431
stimulated absorption 495
stimulated emission 482, 495
STM 423
stoichiometric coefficient 11
stoichiometric point 181
Stokes’ law 198
Stokes line 456
Stokes radiation 456
stopped flow 220
stopped-flow technique 221
STP 19
strong acid 173
strong base 174
structure factor 409
sublimation 66, 109

standard enthalpy 66
sublimation vapour pressure 110
subshell 299
substrate 420
Sun 40, 314
supercage 436
supercoiled DNA 248
superconductor 392
supercritical carbon dioxide 116
supercritical fluid 31, 116
supercritical fluid chromatography 116
superfluid 119

water 119

superimposition wavefunction 324
superpair 557
superposition 278
surface excess 386
surface plasmon resonance 425
surface process rate 431
surface structure 423
surface tension 385
surfactant 382, 386
surroundings 42

entropy changes 92
susceptibility 400
SWNT 401
symmetric rotor 450
symmetric stretch 461
symmetry, and overlap 337
symmetry number 530
synchrotron radiation 407
system 42
Système International (SI) 2, 541

T-weighted image 506
Tafel plot 440
Taylor expansion 547
Taylor series 547
TDS 432
Teller, Edward 429
temperature 7, 43, 115

boiling 114
consolute 144
critical 31, 395
critical solution 144
Curie 402
decomposition 158
effect of 163
freezing 115
glass transition 379
Krafft 382
mean speed and 24
melting 115, 378
Néel 403
transition see transition temperature

temperature–composition diagram 140
temperature dependence

diffusion 257
heat capacity 58
reaction rate 232
vapour pressure 113

temperature inversion 21
temperature jump 220, 246
temperature profile, atmosphere 488
temperature programmed desorption 432
temperature variation of enthalpy 56
term 314
term symbol 314
termination step 262
terrace defect 420
tertiary structure, polypeptide 374
tesla 500
tetragonal system 404
tetrahedral 556
theory

activated complex 237
band 392
Brønsted–Lowry 172
collision 234
covalent bonding 554
Debye–Hückel 194
density functional 346
Förster 492

free electron molecular orbital 350, 
498

Lewis 554
Marcus 492
molecular orbital (MO) 322, 330
transition state 237
valence 322
valence bond (VB) 322, 323
VSEPR 323, 555

thermal analysis 110
thermal desorption spectroscopy 432
thermal equilibrium 7
thermal explosion 263
thermally accessible state 527
thermochemical equation 64
thermochemistry 41
thermodynamically stable 160
thermodynamically unstable 159
thermodynamics 41

classical 41
First Law 53
Second Law 85
statistical 41, 524
Third Law 93

thermogram 57
third body 263
Third law 93
Third-Law entropy 94
thymine 375
time constant 231

phosphorescence 490
time of flight 28
time-resolved spectroscopy 485
titrant 181, 183
titration 181
torr 5
total angular momentum quantum 

number 315
total energy 4, 549
total orbital angular momentum 315
TPD 432
trajectory 274
transfer coefficient 439
transition 296, 305

cooperative 247
helix–coil 247, 375
rotational 453

transition dipole moment 453
transition state 237
transition state theory 237
transition temperature 109

modification 136
translation 280
translational partition function 529, 537
transmission coefficient 239
transmittance 220, 474
trial wavefunction 329
triclinic system 404
trigonal bipyramidal 556
trigonal planar 556
trigonal pyramidal 556
triple point 115
triplet state 481
trough 20
Trouton’s rule 91
tungsten–iodine lamp 474
tunnelling 283
turning point 477
turnover frequency 260
two-dimensional NMR 515
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UHV 421
ultra-high vacuum 421
ultracentrifugation 371
ultrapurity 147
ultrasonic absorption 220
uncertainty broadening 456
uncertainty principle 278
ungerade symmetry 333
unimolecular reaction 249, 253
unit cell 403
units 541

converting between 5
pressure 5

unstable, thermodynamically 159
upper consolute temperature 144
upper critical solution temperature

144
upper explosion limit 263
UPS 421
uracil 375

vacuum permittivity 4, 296, 550
valence band 394
valence bond (VB) theory 322, 323
valence electron 308
valence-shell electron pair repulsion 

model 323, 555
valence theory 322
van der Waals, Johannes 33
van der Waals equation of state 33, 34
van der Waals interaction 352
van der Waals loop 34
van der Waals molecule 238
van der Waals parameters 34
van’t Hoff equation 137, 163
vaporization

entropy 90
standard enthalpy 64

vapour deposition 66
vapour diffusion 414
vapour pressure 110

partial 128
sublimation 110
temperature dependence 113

variation theorem 329

VB theory 322, 323
vector 545

composition 545
vector model 288
velocity 549

maximum 259
vertical transition 477, 480
vibration 288, 457
vibration–rotation spectra 465
vibrational energy level 458
vibrational modes, number 460
vibrational partition function 528
vibrational quantum number 289
vibrational Raman spectra 460, 465
vibrational Raman spectroscopy 460
vibrational selection rule 459
vibrational spectra 457
vibrational structure 476
vibrational transitions 458
virial coefficient 32

osmotic 138
virial equation of state 33
viscosity 198, 255

water 258
vision 478
volcano curve 434
volt 551
voltaic cell 201
voltammetry 441
volume 2

molar 18
partial molar 124

volume magnetic susceptibility 400
von Laue, Max 407
VSEPR 323, 555

water
phase diagram 117
superfluid phase 119
VB description 326
viscosity 258

watt 549, 551
wave 551
wave equation 551
wave–particle duality 274

wavefunction 274
angular 298
antisymmetric 319
harmonic oscillator 290
particle in a box 281
radial 298, 302
superimposition 324
trial 329

wavelength 551
wavenumber 447, 464, 551
weak acid 173
weak base 174
weather 20
weather map 21
weight, configuration 532
weight-average molar mass 369
work 3, 42, 550

electrical 3
equivalence to heat 51
expansion 45
maximum 99
molecular nature 44
nonexpansion see nonexpansion

work
reversible isothermal expansion 

of a perfect gas 47
work function 272
wrinkle, Nature abhors 257

X-band 503
X-ray 407
X-ray crystallography 414
X-ray diffraction 406
X-ray diffractometer 408
X-ray fluorescence 421
xanthophyll 478
XPS 421

Z-average molar mass 370
zeolite 436
zero-current cell potential 207
zero-point energy 281
zeta potential 384
zone levelling 147
zone refining 147
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