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for modern data scientists, but there’s still a big gap
between theory and applications. Matheus has written the
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Preface

Picture yourself as a new data scientist who’s just starting out
in a fast-growing and promising startup. Although you
haven’t mastered machine learning, you feel pretty confident
about your skills. You’ve completed dozens of online courses
on the subject and even gotten a few good ranks in prediction
competitions. You are now ready to apply all that knowledge
to the real world and you can’t wait for it. Life is good.

Then, your team leader comes with a graph that looks
something like this:

And an accompanying question: “Hey, we want you to figure
out how many additional customers paid marketing is really
bringing us. When we turned it on, we definitely saw some



customers coming from the paid marketing channel, but it
looks like we also had a drop in organic applications. We
think some of the customers from paid marketing would have
come to us even without paid marketing.” Well…you were
expecting a challenge, but this?! How could you know what
would have happened without paid marketing? I guess you
could compare the total number of applications, organic and
paid, before and after turning on the marketing campaign.
But in a fast growing and dynamic company, how would you
know that nothing else changes when they launch the
campaign (see Figure P-1)?

Figure P-1. Fast-growing company with an ever-changing product

Changing gears a bit (or not at all), place yourself in the shoes
of a brilliant risk analyst. You were just hired by a lending
company and your first task is to perfect its credit risk model.



The goal is to have a good automated decision-making system
that assesses the customers’ credit worthiness (underwrites
them) and decides how much credit the company can lend
them. Needless to say, errors in this system are incredibly
expensive, especially if the given credit line is high.

A key component of this automated decision making is
understanding the impact more credit lines have on the
likelihood of customers defaulting. Can they manage a huge
chunk of credit and pay it back or will they go down a spiral
of overspending and unmanageable debt? To model this
behavior, you start by plotting credit average default rates by
given credit lines. To your surprise, the data displays this
unexpected pattern:



The relationship between credit and defaults seems to be
negative. How come giving more credit results in lower
chances of defaults? Rightfully suspicious, you go talk to
other analysts in an attempt to understand this. It turns out
the answer is very simple: to no one’s surprise, the lending
company gives more credit to customers that have lower
chances of defaulting. So, it is not the case that high lines
reduce default risk, but rather, the other way around. Lower
risk increases the credit lines. That explains it, but you still
haven’t solved the initial problem: how to model the
relationship between credit risk and credit lines with this
data. Surely you don’t want your system to think more lines
implies lower chances of default. Also, naively randomizing



lines in an A/B test just to see what happens is pretty much
off the table, due to the high cost of wrong credit decisions.

What both of these problems have in common is that you
need to know the impact of changing something that you can
control (marketing budget and credit limit) on some business
outcome you wish to influence (customer applications and
default risk). Impact or effect estimation has been the pillar
of modern science for centuries, but only recently have we
made huge progress in systematizing the tools of this trade
into the field that is coming to be known as causal inference.
Additionally, advancements in machine learning and a
general desire to automate and inform decision-making
processes with data has brought causal inference into the
industry and public institutions. Still, the causal inference
toolkit is not yet widely known by decision makers or data
scientists.

Hoping to change that, I wrote Causal Inference for the Brave
and True, an online book that covers the traditional tools and
recent developments from causal inference, all with open
source Python software, in a rigorous, yet lighthearted way.
Now, I’m taking that one step further, reviewing all that
content from an industry perspective, with updated
examples and, hopefully, more intuitive explanations. My
goal is for this book to be a starting point for whatever
question you have about making decisions with data.



Prerequisites

This book is an introduction to causal inference in Python,
but it is not an introductory book in general. It’s introductory
because I’ll focus on application, rather than rigorous proofs
and theorems of causal inference; additionally, when forced
to choose, I’ll opt for a simpler and intuitive explanation,
rather than a complete and complex one.

It is not introductory in general because I’ll assume some
prior knowledge about machine learning, statistics, and
programming in Python. It is not too advanced either, but I
will be throwing in some terms that you should know
beforehand.

For example, here is a piece of text that might appear:

The first thing you have to deal with is the fact that
continuous variables have P(T = t) = 0 everywhere.
That’s because the probability is the area under the
density and the area of a single point is always zero. A
way around this is to use the conditional density f(T |X)

instead of the conditional probability P(T = t|X).

I won’t provide much explanation on what a density is and
why it is different from a probability. Here is another
example, this time about machine learning:



Alternatively, you can use machine learning models to
estimate the propensity score. But you have to be more
careful. First, you must ensure that your ML model
outputs a calibrated probability prediction. Second, you
need to use out-of-fold predictions to avoid bias due to
overfitting.

Here, I won’t explain what a machine learning model is, nor
what it means for it to have calibrated predictions, what
overfitting is, or out-of-fold prediction. Since those are fairly
basic data science concepts, I’ll expect you to know them
from the start.

In fact, here is a list of things I recommend you know before
reading this book:

Basic knowledge of Python, including the most commonly
used data scientist libraries: pandas, NumPy, Matplotlib,
scikit-learn. I come from an economics background, so you
don’t have to worry about me using very fancy code. Just
make sure you know the basics pretty well.

Knowledge of basic statistical concepts, like distributions,
probability, hypothesis testing, regression, noise, expected
values, standard deviation, and independence. Chapter 2
will include a statistical review, in case you need a
refresher.



Knowledge of basic data science concepts, like machine
learning model, cross-validation, overfitting, and some of
the most used machine learning models (gradient boosting,
decision trees, linear regression, logistic regression).

Knowledge of high school math, such as functions,
logarithms, roots, matrices, and vectors, and some college-
level math, such as derivatives and integrals.

The main audience of this book is data scientists working in
the industry. If you fit this description, there is a pretty good
chance that you cover the prerequisites that I’ve mentioned.
Also, keep in mind that this is a broad audience, with very
diverse skill sets. For this reason, I might include some notes,
paragraphs, or sections that are meant for the most advanced
reader. So don’t worry if you don’t understand every single
line in this book. You’ll still be able to extract a lot from it.
And maybe you’ll come back for a second read once you’ve
mastered some of the basics.

Outline

Part I covers the basics concepts on causal inference.
Chapter 1 introduces the key concepts of causal inference as
you use them to reason about the effect of cutting prices.
Chapter 2 talks about the importance of A/B testing (or
randomized control trial) not only as an instrument for



decision making, but as the gold standard you will use to
benchmark the other causal inference tools. This will also be
a great opportunity to review some statistical concepts.
Chapter 3 is mostly theoretical, covering causal identification
and graphical models, a powerful method for (literally)
drawing your assumptions about the causal process and
reasoning about what you need to do in order to untangle
association from causation. After finishing Part I, you should
have the basic foundation to think in terms of causal
inference.

In Part II you’ll be introduced to two of the workhorses for
untangling causation from correlation: linear regression and
propensity weighting. Chapter 4 covers linear regression, but
not from a perspective that most data scientists are familiar
with. Rather, you’ll learn about an important bias removal
technique: orthogonalization. Chapter 5 covers propensity
score and doubly robust estimation.

Part III takes what you saw in Part II and adds machine
learning and big data to the mix. You’ll look into causal
inference as a tool for personalized decision making.
Through the eyes of a food delivery service, you’ll try to
understand which customers should be given discount
coupons to capture their loyalty and which customers don’t
need that extra incentive. In Chapter 6, you’ll enter the world
of heterogeneous treatment effects. Chapter 7 goes into some
of the recent developments in the intersection between



machine learning and causal inference. In this chapter, you’ll
learn methods like the T-, X-, and S-learners and
Double/Debiased Machine Learning, all in the context of
treatment personalization.

Part IV adds the time dimension to causal inference. In some
situations, you’ll have records of the same customers or
markets across multiple time periods, which builds up to
what is called a panel dataset. You’ll learn how to leverage
panels to uncover the true impact of paid marketing, even
without being able to randomize who gets to see your
advertisements. Chapter 8 will walk you through difference-
in-differences, including some of the recent developments in
this literature. Chapter 9 will cover synthetic control (and
variations of it), also in the context of understanding the
impact of marketing campaigns.

Finally, Part V dives into alternative experiment designs, for
when randomization is off the table. Chapter 10 will cover
geo-experiments, where the goal is to find regions to treat
and regions to serve as controls, and switchback
experiments, for when you have very few units of analysis
and wish to figure out the treatment effect by turning the
treatment on and off for the same unit. Chapter 11 dives into
experiments with noncompliance and introduces you to
instrumental variables (IV). It also briefly covers
discontinuity design.



Conventions Used in This Book

The following typographical conventions are used in this
book:

Italic

Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed
literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.



WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at
https://github.com/matheusfacure/causal-inference-in-python-
code.

If you have a technical question or a problem using the code
examples, please email support@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in
your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a
program that uses several chunks of code from this book
does not require permission. Selling or distributing examples
from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of
example code from this book into your product’s
documentation does require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and

https://github.com/matheusfacure/causal-inference-in-python-code
mailto:support@oreilly.com


ISBN. For example: “Causal Inference in Python by Matheus
Facure (O’Reilly). Copyright 2023 Matheus Facure Alves, 978-
1-098-14025-0.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book
to the publisher:

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/


O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at https://oreil.ly/causal-inference-in-python.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-
media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.
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Part I. Fundamentals



Chapter 1. Introduction to Causal Inference

In this first chapter I’ll introduce you to a lot of the fundamental concepts of
causal inference as well as its main challenges and uses. Here, you will learn a
lot of jargon that will be used in the rest of the book. Also, I want you to
always keep in mind why you need causal inference and what you can do with
it. This chapter will not be about coding, but about very important first
concepts of causal inference.

What Is Causal Inference?

Causality is something you might know as a dangerous epistemological terrain
you must avoid going into. Your statistics teacher might have said over and
over again that “association is not causation” and that confusing the two
would cast you to academic ostracism or, at the very least, be severely
frowned upon. But you see, that is the thing: sometimes, association is
causation.

We humans know this all too well, since, apparently, we’ve been primed to
take association for causation. When you decide not to drink that fourth glass
of wine, you correctly inferred that it would mess you up on the next day. You
are drawing from past experience: from nights when you drank too much and
woke up with a headache; from nights you took just one glass of wine, or none
at all, and nothing happened. You’ve learned that there is something more to
the association between drinking and hangovers. You’ve inferred causality out
of it.

On the flip side, there is some truth to your stats teacher’s warnings. Causation
is a slippery thing. When I was a kid, I ate calamari doré twice and both times
it ended terribly, which led me to conclude I was allergic to squid (and clam,
octopus, and any other type of sea invertebrate). It took me more than 20
years to try it again. When I did, it was not only delicious, but it also caused
me no harm. In this case, I had confused association with causation. This was
a harmless confusion, as it only deprived me of delicious seafood for some



years, but mistaking association for causation can have much more severe
consequences. If you invest in the stock market, you’ve probably been through
a situation where you decided to put money in just before a steep increase in
prices, or to withdraw just before everything collapsed. This likely tempted
you to think you could time the market. If you managed to ignore that
temptation, good for you. But many fall for it, thinking that their intuition is
causally linked to the erratic movements of stocks. In some situations, this
belief leads to riskier and riskier bets until, eventually, almost everything is
lost.

In a nutshell, association is when two quantities or random variables move
together, whereas causality is when change in one variable causes change in
another. For example, you could associate the number of Nobel Prizes a
country has with the per-capita consumption of chocolate, but even though
these variables might move together, it would be foolish to think one causes
the other. It’s easy to see why association doesn’t imply causation, but
equating the two is a whole different matter. Causal inference is the science of
inferring causation from association and understanding when and why they
differ.

Why We Do Causal Inference

Causal inference can be done for the sole purpose of understanding reality.
But there is often a normative component to it. The reason you’ve inferred
that too much drinking causes headaches is that you want to change your
drinking habits to avoid the pain. The company you work for wants to know if
marketing costs cause growth in revenues because, if they do, managers can
use it as a leverage to increase profits. Generally speaking, you want to know
cause-and-effect relationships so that you can intervene on the cause to bring
upon a desired effect. If you take causal inference to the industry, it becomes
mostly a branch of the decision-making sciences.

Since this book is mostly industry focused, it will cover the part of causal
inference that is preoccupied with understanding the impact of interventions.



What would happen if you used another price instead of this price you’re
currently asking for your merchandise? What would happen if you switch
from this low-sugar diet you’re on to that low-fat diet? What will happen to the
bank’s margins if it increases the customers’ credit line? Should the
government give tablets to every kid in school to boost their reading test score
or should it build an old-fashioned library? Is marrying good for your
personal finances or are married couples wealthier just because wealthy
people are more likely to attract a partner in the first place? These questions
are all practical. They stem from a desire to change something in your
business or in your life so that you can be better off.

Machine Learning and Causal Inference

If you take a deeper look at the types of questions you want to answer with
causal inference, you will see they are mostly of the “what if” type. I’m sorry
to be the one that says it, but machine learning (ML) is just awful at those
types of questions.

ML is very good at answering prediction questions. As Ajay Agrawal, Joshua
Gans, and Avi Goldfarb put it in the book Prediction Machines (Harvard
Business Review Press), “the new wave of artificial intelligence does not
actually bring us intelligence but instead a critical component of intelligence—
prediction.” You can do all sorts of beautiful things with machine learning.
The only requirement is to frame your problems as prediction ones. Want to
translate from English to Portuguese? Then build an ML model that predicts
Portuguese sentences when given English sentences. Want to recognize faces?
Then create an ML model that predicts the presence of a face in a subsection
of a picture.

However, ML is not a panacea. It can perform wonders under rigid
boundaries and still fail miserably if its data deviates a little from what the
model is accustomed to. To give another example from Prediction Machines,
“in many industries, low prices are associated with low sales. For example, in
the hotel industry, prices are low outside the tourist season, and prices are



high when demand is highest and hotels are full. Given that data, a naive
prediction might suggest that increasing the price would lead to more rooms
sold.”

Machine learning uses associations between variables to predict one from the
other. It will work incredibly well as long as you don’t change the variables it
is using to make predictions. This completely defeats the purpose of using
predictive ML for most decision making that involves interventions.

The fact that most data scientists know a lot of ML but not much about causal
inference leads to an abundance of ML models being deployed where they are
not useful for the task at hand. One of the main goals of companies is to
increase sales or usage. Yet, an ML model that just predicts sales is oftentimes
useless—if not harmful—for this purpose. This model might even conclude
something nonsensical, as in the example where high volumes of sales are
associated with high prices. Yet, you’d be surprised by how many companies
implement predictive ML models when the goal they have in mind has
nothing to do with predictions.

This does not mean that ML is completely useless for causal inference. It just
means that, when naively applied, it often does more harm than good. But if
you approach ML from a different angle, as a toolbox of powerful models
rather than purely predictive machines, you’ll start to see how they can
connect to the goals of causal inference. In Part III I’ll show what you need to
watch out for when mixing ML and causal inference and how to repurpose
common ML algorithms, like decision trees and gradient boosting, to do causal
inference.

Association and Causation

Intuitively, you kind of know why association is not causation. If someone tells
you that top-notch consulting causes your business to improve, you are bound
to raise an eyebrow. How can you know if the consulting firm is actually
causing business to improve or if it is just that only flourishing businesses
have the luxury to hire those services?



To make things a bit more tangible, put yourself in the shoes of an online
marketplace company. Small and medium-sized businesses use your online
platform to advertise and sell their products. These businesses have complete
autonomy in stuff like setting prices and when to have sales. But it is in the
best interest of your company that these businesses flourish and prosper. So,
you decide to help them by giving guidance on how, if, and when to set up a
sales campaign where they announce a temporary price drop to consumers.
To do that, the first thing you need to know is the impact of lowering prices on
units sold. If the gains from selling more compensate for the loss of selling
cheaper, sales will be a good idea. If you hadn’t already noticed, this is a
causal question. You need to answer how many additional units a business
would have sold had they lowered prices compared to not doing anything.

Needless to say, this is a complicated question; maybe too complicated for the
beginning of this book. Different businesses operate within your platform.
Some sell food; some sell clothes. Some sell fertilizers and agricultural
products. As a result, price cuts might have different impacts depending on the
type of business. For instance, it might be a good idea for a clothing business
to announce lower prices one week prior to Father’s Day. Yet, a similar price
drop for an agribusiness will probably do very little. So, let’s simplify the
problem a bit. Let’s focus your attention on only one type of business: those
that sell kids’ toys. Also, let’s focus your attention on one period of the year:
December, before Christmas. For now, you’ll just try to answer how cutting
prices during these periods increases sales so you can pass this information
along to the businesses operating in the kids’ toy industry, allowing them to
make better decisions.

To decide if sales is a good idea, you can leverage information from multiple
kids’ toys businesses. This data is stored in a pandas data frame for you to
access. Here are the first few rows for you to get a sense of what you are
dealing with:



The first column is the store’s unique identifier (ID). You have weekly data for
each store in the month of December. You also have information about the
size of each business in terms of average products sold per week during that
year. A boolean column (0 or 1) flags the business as having a sale at the time.
The last column shows the average weekly sales of that store during that
week.

UNIT OF ANALYSIS

The unit of analysis in a causal inference study is usually the thing you wish to intervene on (treat). In
most cases, the unit of analysis will be people, as when you want to know the effect of a new product on
customer retention. But it is not uncommon to have other types of units. For instance, in this chapter’s
example, the unit of analysis is business. In this same example, you could also try to answer when is the
best moment to have sales, in which case the unit of analysis would be a time period (week, in this case).

The Treatment and the Outcome

Now that you have some data to look at, it’s time to learn our first bit of
technicality. Let’s call Ti the treatment for unit i:

Ti = {

store weeks_to_xmas avg_week_sales is_

0 1 3 12.98 1

1 1 2 12.98 1

2 1 1 12.98 1

3 1 0 12.98 0

4 2 3 19.92 0

5 2 2 19.92 0

1 if unit i received the treatment

0 otherwise



The treatment here doesn’t need to be medicine or anything from the medical
field. Instead, it is just a term I’ll use to denote some intervention for which I
want to know the effect of. In this case, the treatment is simply a price drop
for one of the businesses inside your online platform, represented by the
column is_on_sale .

TREATMENT NOTATION

In some texts and later on in this book, you’ll sometimes see D instead of T  to denote the treatment. D
will avoid much confusion when you have a time dimension to your causal problems.

Additionally, I’ll be referring to weekly_amount_sold  (the variable
that I want to influence here) as the outcome. I’ll represent the outcome for
unit i with Yi. With these two new concepts, I can restate the goal of causal
inference as the process of learning the impact T  has on Y . In our example,
this amounts to figuring out the effect of is_on_sale  on

weekly_amount_sold .

The Fundamental Problem of Causal Inference

Here is where things get interesting. The fundamental problem of causal
inference is that you can never observe the same unit with and without
treatment. It is as if you have two diverging roads and can only know what
lies ahead of the one taken. To fully appreciate this issue, let’s go back to our
example and plot the outcome by the treatment, that is,

weekly_amount_sold  by is_on_sale . You can immediately
see that the stores that dropped their price sell a lot more (see Figure 1-1).



Figure 1-1. Amount sold per week during sales (1) and without sales (0)

This also matches our intuition about how the world works: people buy more
when prices are low and sales (usually) means lower prices. This is very nice,
as causal inference goes hand in hand with expert knowledge. But you
shouldn’t be too careless. It is probably the case that giving and advertising
discounts will make customers buy more. But this much more? From the plot
in Figure 1-1, it looks like the amount sold is about 150 units higher, on
average, when a sale is going on than otherwise. This sounds suspiciously
high, since the range of units sold when there is no sale is about 0 to 50. If you
scratch your brains a bit, you can start to see that you might be mistaking
association for causation. Maybe it is the case that only larger businesses,
which are the ones that sell the most anyway, can afford to do aggressive price
drops. Maybe businesses have sales closer to Christmas and that’s when
customers buy the most anyway.

The point is, you would only be certain about the true effect of price cuts on
units sold if you could observe the same business (unit), at the same time, with
and without sales going on. Only if you compare these two counterfactual
situations will you be sure about the effect of price drops. However, as
discussed earlier, the fundamental problem of causal inference is that you
simply can’t do that. Instead, you’ll need to come up with something else.

Causal Models



You can reason about all these problems intuitively, but if you want to go
beyond simple intuition, you need some formal notation. This will be our
everyday language to speak about causality. Think of it as the common tongue
we will use with fellow practitioners of the arts of causal inference.

A causal model is a series of assignment mechanisms denoted by ←. In these
mechanisms, I’ll use u to denote variables outside the model, meaning I am
not making a statement about how they are generated. All the others are
variables I care very much about and are hence included in the model. Finally,
there are functions f that map one variable to another. Take the following
causal model as an example:

With the first equation, I’m saying that ut, a set of variables I’m not explicitly
modeling (also called exogenous variables), causes the treatment T  via the
function ft. Next, T  alongside another set of variables uy (which I’m also
choosing not to model) jointly causes the outcome Y  via the function fy. uy is
in this last equation to say that the outcome is not determined by the
treatment alone. Some other variables also play a role in it, even if I’m
choosing not to model them. Bringing this to the sales example, it would mean
that weekly_amount_sold  is caused by the treatment

is_on_sale  and other factors that are not specified, represented as u.
The point of u is to account for all the variation in the variables caused by it
that are not already accounted for by the variables included in the model—
also called endogenous variables. In our example, I could say that price drops
are caused by factors—could be business size, could be something else—that
are not inside the model:

I’m using ← instead of = to explicitly state the nonreversibility of causality.
With the equals sign, Y = T + X is equivalent to T = Y − X, but I don’t
want to say that T  causing Y  is equivalent to Y  causing T . Having said that,
I’ll often refrain from using ← just because it’s a bit cumbersome. Just keep in

T ← ft(ut)

Y ← fy(T ,uy)

IsOnSales ← ft(ut)

AmountSold ← fy(IsOnSales,uy)



mind that, due to nonreversibility of cause and effects, unlike with traditional
algebra, you can’t simply throw things around the equal sign when dealing
with causal models.

If you want to explicitly model more variables, you can take them out of u and
account for them in the model. For example, remember how I said that the
large difference you are seeing between price cuts and no price cuts could be
because larger businesses can engage in more aggressive sales? In the
previous model, BusinessSize is not explicitly included in the model.
Instead, its impact gets relegated to the side, with everything else in u. But I
could model it explicitly:

To include this extra endogenous variable, first, I’m adding another equation
to represent how that variable came to be. Next, I’m taking BusinessSize out
of ut. That is, I’m no longer treating it as a variable outside the model. I’m
explicitly saying that BusinessSize causes IsOnSales (along with some
other external factors that I’m still choosing not to model). This is just a formal
way of encoding the beliefs that bigger businesses are more likely to cut
prices. Finally, I can also add BusinessSize to the last equation. This encodes
the belief that bigger businesses also sell more. In other words, 
BusinessSize is a common cause to both the treatment IsOnSales and the
outcome AmountSold.

Since this way of modeling is probably new to you, it’s useful to link it to
something perhaps more familiar. If you come from economics or statistics,
you might be used to another way of modeling the same problem:

AmountSoldi = α + β1IsOnSalesi + β2BusinessSizei + ei

It looks very different at first, but closer inspection will reveal how the
preceding model is very similar to the one you saw earlier. First, notice how it
is just replacing the final equation in that previous model and opening up the 
fy function, stating explicitly that endogenous variables IsOnSales and 
BusinessSize are linearly and additively combined to form the outcome 

BusinessSize ← fs(us)

IsOnSales ← ft(BusinessSize,ut)

AmountSold ← fy(IsOnSales,BusinessSize,uy)



AmountSold. In this sense, this linear model assumes more than the one you
saw earlier. You can say that it imposes a functional form to how the variables
relate to each other. Second, you are not saying anything about how the
independent (endogenous) variables—IsOnSales and BusinessSize—come
to be. Finally, this model uses the equals sign, instead of the assignment
operator, but we already agreed not to stress too much about that.

Interventions

The reason I’m taking my time to talk about causal models is because, once
you have one, you can start to tinker with it in the hopes of answering a causal
question. The formal term for this is intervention. For example, you could take
that very simple causal model and force everyone to take the treatment t0.
This will eliminate the natural causes of T , replacing them by a single
constant:

This is done as a thought experiment to answer the question “what would
happen to the outcome Y  if I were to set the treatment to t0?” You don’t
actually have to intervene on the treatment (although you could and will, but
later). In the causal inference literature, you can refer to these interventions
with a do(. ) operator. If you want to reason about what would happen if you
intervene on T , you could write do(T = t0).

EXPECTATIONS

I’ll use a lot of expectations and conditional expectations from now on. You can think about expectations
as the population value that the average is trying to estimate. E[X] denotes the (marginal) expected
values of the random variable X. It can be approximated by the sample average of X. E[Y |X = x]

denotes the expected value of Y when X = x. This can be approximated by the average of Y  when 
X = x.

The do(. ) operator also gives you a first glance at why association is different
from causation. I have already argued how high sales volume for a business
having a sale, E[AmountSold|IsOnSales = 1], could overestimate the
average sales volume a business would have had if it made a price cut, 

T ← t0

Y ← fy(T ,uy)



E[AmountSold|do(IsOnSales = 1)]. In the first case, you are looking at
businesses that chose to cut prices, which are probably bigger businesses. In
contrast, the latter quantity, E[AmountSold|do(IsOnSales = 1)], refers to
what would’ve happened if you forced every business to engage in sales, not
just the big ones. Importantly, in general,

E[AmountSold|IsOnSales = 1] ≠ E[AmountSold|do(IsOnSales = 1)]

One way to think about the difference between the two is in terms of selection
and intervention. When you condition on sales, you are measuring the
amount sold on a selected subsample of business that actually cut prices.
When you condition on the intervention do(IsOnSales), you are forcing
every business to cut prices and then measuring the amount sold on the entire
sample (see Figure 1-2).

do(. ) is used to define causal quantities that are not always recoverable from
observed data. In the previous example, you can’t observe 
do(IsOnSales = 1) for every business, since you didn’t force them to do
sales. do(. ) is most useful as a theoretical concept that you can use to
explicitly state the causal quantity you are after. Since it is not directly
observable, a lot of causal inference is about eliminating it from theoretical
expression—a process called identification.

Figure 1-2. Selection filters the sample based on the treatment; intervention forces the treatment on the
entire sample

Individual Treatment Effect

The do(. ) operator also allows you to express the individual treatment effect,
or the impact of the treatment on the outcome for an individual unit i. You can
write it as the difference between two interventions:

| ( ) | ( )



τi = Yi|do(T = t1) − Yi|do(T = t0)

In words, you would read this as “the effect, τi, of going from treatment t0 to 
t1 for unit i is the difference in the outcome of that unit under t1 compared to 
t0”. You could use this to reason about our problem of figuring out the effect of
flipping IsOnSales from 0 to 1 in AmountSold:

τi = AmountSoldi|do(IsOnSales = 1) − AmountSoldi|do(IsOnSales = 0)

Due to the fundamental problem of causal inference, you can only observe
one term of the preceding equation. So, even though you can theoretically
express that quantity, it doesn’t necessarily mean you can recover it from
data.

Potential Outcomes

The other thing you can define with the do(. ) operator is perhaps the coolest
and most widely used concept in causal inference—counterfactual or potential
outcomes:

Yti = Yi|do(Ti = t)

You should read this as “unit i’s outcome would be Y  if its treatment is set to t
.” Sometimes, I’ll use function notation to define potential outcomes, since
subscripts can quickly become too crowded:

Yti = Y (t)i

When talking about a binary treatment (treated or not treated), I’ll denote Y0i

as the potential outcome for unit i without the treatment and Y1i as the
potential outcome for the same unit i with the treatment. I’ll also refer to one
potential outcome as factual, meaning I can observe it, and the other one as
counterfactual, meaning it cannot be observed. For example, if unit i is
treated, I get to see what happens to it under the treatment; that is, I get to see 
Y1i, which I’ll call the factual potential outcome. In contrast, I can’t see what
would happen if, instead, unit i wasn’t treated. That is, I can’t see Y0i, since it
is counterfactual:



You might also find the same thing written as follows:

Yi = TiY1i + (1 − Ti)Y0i = Y0i + (Y1i − Y0i)Ti

Back to our example, you can write AmountSold0i to denote the amount
business i would have sold had it not done any price cut and AmountSold1i,
the amount it would have sold had it done sales. You can also define the effect
in terms of these potential outcomes:

τi = Y1i − Y0i

ASSUMPTIONS

Throughout this book, you’ll see that causal inference is always accompanied by assumptions.
Assumptions are statements you make when expressing a belief about how the data was generated. The
catch is that they usually can’t be verified with the data; that’s why you need to assume them.
Assumptions are not always easy to spot, so I’ll do my best to make them transparent.

Consistency and Stable Unit Treatment Values

In the previous equations, there are two hidden assumptions. The first
assumption implies that the potential outcome is consistent with the
treatment: Yi(t) = Y  when Ti = t. In other words, there are no hidden
multiple versions of the treatment beyond the ones specified with T . This
assumption can be violated if the treatment comes in multiple dosages, but
you are only accounting for two of them; for example, if you care about the
effect of discount coupons on sales and you treat it as being binary—
customers received a coupon or not—but in reality you tried multiple discount
values. Inconsistency can also happen when the treatment is ill defined.
Imagine, for example, trying to figure out the effect of receiving help from a
financial planner in one’s finances. What does “help” mean here? Is it a one-
time consultation? Is it regular advice and goal tracking? Bundling up all those
flavors of financial advice into a single category also violates the consistency
assumption.

A second assumption that is implied is that of no interference, or stable unit of
treatment value (SUTVA). That is, the effect of one unit is not influenced by the

Yi = {
Y1i if unit i received the treatment

Y0i otherwise



treatment of other units: Yi(Ti) = Yi(T1,T2, . . . ,Ti, . . . ,Tn). This
assumption can be violated if there are spillovers or network effects. For
example, if you want to know the effect of vaccines on preventing a
contagious illness, vaccinating one person will make other people close to her
less likely to catch this illness, even if they themselves did not get the
treatment. Violations of this assumption usually cause us to think that the
effect is lower than it is. With spillover, control units get some treatment
effect, which in turn causes treatment and control to differ less sharply than if
there was no interference.

VIOLATIONS

Fortunately, you can often deal with violations on both assumptions. To fix violations of consistency, you
have to include all versions of the treatment in your analysis. To deal with spillovers, you can expand the
definition of a treatment effect to include the effect that comes from other units and use more flexible
models to estimate those effects.

Causal Quantities of Interest

Once you’ve learned the concept of a potential outcome, you can restate the
fundamental problem of causal inference: you can never know the individual
treatment effect because you only observe one of the potential outcomes. But not
all is lost. With all these new concepts, you are ready to make some progress
in working around this fundamental problem. Even though you can never
know the individual effects, τi, there are other interesting causal quantities
that you can learn from data. For instance, let’s define average treatment effect
(ATE) as follows:

ATE = E[τi],

or

ATE = E[Y1i − Y0i],

or even

ATE = E[Y |do(T = 1)] − E[Y |do(T = 0)],

The average treatment effect represents the impact the treatment T  would
have on average. Some units will be more impacted by it, some less, and you



can never know the individual impact on a unit. Additionally, if you wanted to
estimate the ATE from data, you could replace the expectation with sample
averages:

1
N
∑N

i=0 τi

or
1
N
∑N

i=0(Y1i − Y0i)

Of course, in reality, due to the fundamental problem of causal inference, you
can’t actually do that, as only one of the potential outcomes will be observed
for each unit. For now, don’t worry too much about how you would go about
estimating that quantity. You’ll learn it soon enough. Just focus on
understanding how to define this causal quantity in terms of potential
outcomes and why you want to estimate them.

Another group effect of interest is the average treatment effect on the treated
(ATT):

ATT = E[Y1i − Y0i|T = 1]

This is the impact of the treatment on the units that got the treatment. For
example, if you did an offline marketing campaign in a city and you want to
know how many extra customers this campaign brought you in that city, this
would be the ATT: the effect of marketing on the city where the campaign was
implemented. Here, it’s important to notice how both potential outcomes are
defined for the same treatment. In the case of the ATT, since you are
conditioning on the treated, Y0i is always unobserved, but nonetheless well
defined.

Finally, you have conditional average treatment effects (CATE),

CATE = E[Y1i − Y0i|X = x],

which is the effect in a group defined by the variables X. For example, you
might want to know the effect of an email on customers that are older than 45
years and on those that are younger than that. Conditional average treatment
effect is invaluable for personalization, since it allows you to know which type
of unit responds better to an intervention.



You can also define the previous quantities when the treatment is continuous.
In this case, you replace the difference with a partial derivative:

∂

∂t
E[Yi]

This might seem fancy, but it’s just a way to say how much you expect E[Yi] to
change given a small increase in the treatment.

Causal Quantities: An Example

Let’s see how you can define these quantities in our business problem. First,
notice that you can never know the effect price cuts (having sales) have on an
individual business, as that would require you to see both potential outcomes, 
AmountSold0i and AmountSold1i, at the same time. But you could instead
focus your attention on something that is possible to estimate, like the average
impact of price cuts on amount sold:

ATE = E[AmountSold1i − AmountSold0i],

how the business that engaged in price cuts increased its sales:

ATT = E[AmountSold1i − AmountSold0i|IsOnSales = 1],

or the impact of having sales during the week of Christmas:

CATE = E[AmountSold1i − AmountSold0i|weeksToXmas = 0]

Now, I know you can’t see both potential outcomes, but just for the sake of
argument and to make things a lot more tangible, let’s suppose you could.
Pretend for a moment that the causal inference deity is pleased with the many
statistical battles you fought and has rewarded you with godlike powers to see
the potential alternative universes, one where each outcome is realized. With
that power, say you collect data on six businesses, three of which were having
sales and three of which weren’t.

In the following table i is the unit identifier, y is the observed outcome, y0 and
y1 are the potential outcomes under the control and treatment, respectively, t
is the treatment indicator, and x is the covariate that marks time until
Christmas. Remember that being on sale is the treatment and amount sold is
the outcome. Let’s also say that, for two of these businesses, you gathered data



one week prior to Christmas, which is denoted by x = 1, while the other
observations are from the same week as Christmas:

With your godly powers, you can see both AmountSold0 and AmountSold1.
This makes calculating all the causal quantities we’ve discussed earlier
incredibly easy. For instance, the ATE here would be the mean of the last
column, that is, of the treatment effect:

ATE = (20 + 20 + 100 + 50 + 0 + 200)/6 = 65

This would mean that sales increase the amount sold, on average, by 65 units.
As for the ATT, it would just be the mean of the last column when T = 1:

ATT = (50 + 0 + 200)/3 = 83.33

In other words, for the business that chose to cut prices (where treated),
lowered prices increased the amount sold, on average, by 83.33 units. Finally,
the average effect conditioned on being one week prior to Christmas (x = 1) is
simply the average of the effect for units 3 and 6:

CATE(x = 1) = (100 + 200)/2 = 150

i y0 y1 t

0 1 200 220 0

1 2 120 140 0

2 3 300 400 0

3 4 450 500 1

4 5 600 600 1

5 6 600 800 1



And the average effect on Christmas week is the average treatment effect
when x = 0:

CATE(x = 0) = (20 + 20 + 50 + 0)/4 = 22.5

meaning that business benefited from price cuts much more one week prior to
Christmas (150 units), compared to price cuts in the same week as Christmas
(increase of 22.5 units). Hence, stores that cut prices earlier benefited more
from it than those that did it later.

Now that you have a better understanding about the causal quantities you are
usually interested in (ATE, ATT, and CATE), it’s time to leave Fantasy Island and
head back to the real world. Here things are brutal and the data you actually
have is much harder to work with. Here, you can only see one potential
outcome, which hides the individual treatment effect:

MISSING DATA PROBLEM

One way to see causal inference is as a missing data problem. To infer the causal quantities of interest,
you must impute the missing potential outcomes.

i y0 y1 t

0 1 200.0 NaN 0

1 2 120.0 NaN 0

2 3 300.0 NaN 0

3 4 NaN 500.0 1

4 5 NaN 600.0 1

5 6 NaN 800.0 1



You might look at this and ponder “This is certainly not ideal, but can’t I just
take the mean of the treated and compare it to the mean of the untreated? In
other words, can’t I just do 
ATE = (500 + 600 + 800)/3 − (200 + 120 + 300)/3 = 426.67?” No!
You’ve just committed the gravest sin of mistaking association for causation!

Notice how different the results are. The ATE you calculated earlier was less
than 100 and now you are saying it is something above 400. The issue here is
that the businesses that engaged in sales are different from those that didn’t.
In fact, those that did would probably have sold more regardless of price cut.
To see this, just go back to when you could see both potential outcomes. Then, 
Y0 for the treated units are much higher than that of the untreated units. This
difference in Y0 between treated groups makes it much harder to uncover the
treatment effect by simply comparing both groups.

Although comparing means is not the smartest of ideas, I think that your
intuition is in the right place. It’s time to apply the new concepts that you’ve
just learned to refine this intuition and finally understand why association is
not causation. It’s time to face the main enemy of causal inference.

Bias

To get right to the point, bias is what makes association different from
causation. The fact that what you estimate from data doesn’t match the causal
quantities you want to recover is the whole issue. Fortunately, this can easily
be understood with some intuition. Let’s recap our business example. When
confronted with the claim that cutting prices increases the amount sold by a
business, you can question it by saying that those businesses that did sales
would probably have sold more anyway, even with no price cuts. Maybe this is
because they are bigger and can afford to do more aggressive sales. In other
words, it is the case that treated businesses (businesses having sales) are not
comparable with untreated businesses (not having sales).

To give a more formal argument, you can translate this intuition using
potential outcome notation. First, to estimate the ATE, you need to estimate



what would have happened to the treated had they not been treated, 
E[Y0|T = 1], and what would have happened to the untreated, had they been
treated, E[Y1|T = 0]. When you compare the average outcome between
treated and untreated, you are essentially using E[Y |T = 0] to estimate E[Y0]

and E[Y |T = 1] to estimate E[Y1]. In other words, you are estimating the 
E[Y |T = t] hoping to recover E[Yt]. If they don’t match, an estimator that
recovers E[Y |T = t], like the average outcome for those that got treatment t,
will be a biased estimator of E[Yt].

TECHNICAL DEFINITION

You can say that an estimator is biased if it differs from the parameter it is trying to estimate. 

Bias = E[β̂ − β], where β̂ is the estimate and β the thing it is trying to estimate—the estimand. For

example, an estimator for the average treatment effect is biased if it’s systematically under- or
overestimating the true ATE.

Back to intuition, you can even leverage your understanding of how the world
works to go even further. You can say that, probably, Y0 of the treated
business is bigger than Y0 of the untreated business. That is because
businesses that can afford to engage in price cuts tend to sell more regardless
of those cuts. Let this sink in for a moment. It takes some time to get used to
talking about potential outcomes, as it involves reasoning about things that
would have happened but didn’t. Read this paragraph over again and make
sure you understand it.

The Bias Equation

Now that you understand why a sample average may differ from the average
potential outcome it seeks to estimate, let’s take a closer look at why
differences in averages generally do not recover the ATE. This section may be
a bit technical, so feel free to skip to the next one if you’re not a fan of math
equations.

In the sales example, the association between the treatment and the outcome
is measured by E[Y |T = 1] − E[Y |T = 0]. This is the average amount sold
for the business having sales minus the average amount sold for those that are
not having sales. On the other hand, causation is measured by E[Y1 − Y0]

(which is shorthand for E[Y |do(t = 1)] − E[Y |do(t = 0)]).



To understand why and how they differ, let’s replace the observed outcomes
with the potential outcomes in the association measure 
E[Y |T = 1] − E[Y |T = 0]. For the treated, the observed outcome is Y1, and
for the untreated, it is Y0:

E[Y |T = 1] − E[Y |T = 0] = E[Y1|T = 1] − E[Y0|T = 0]

Now let’s add and subtract E[Y0|T = 1], which is a counterfactual outcome
that tells us what would have happened to the outcome of the treated had they
not received the treatment:

E[Y |T = 1] − E[Y |T = 0] = E[Y1|T = 1] − E[Y0|T = 0] + E[Y0|T = 1] − E[Y0|T = 1]

Finally, you can reorder the terms and merge some expectations:

E[Y |T = 1] − E[Y |T = 0] = E[Y1 − Y0|T = 1]

ATT

+ {E[Y0|T = 1] − E[Y0|T = 0]}

BIAS

This simple piece of math encompasses all the problems you’ll encounter in
causal questions. To better understand it, let’s break it down into some of its
implications. First, this equation tells us why association is not causation. As
you can see, association is equal to the treatment effect on the treated plus a
bias term. The bias is given by how the treated and control group differ
regardless of the treatment, which is expressed by the difference in Y0. You can
now explain why you may be suspicious when someone tells us that price cuts
boost the amount sold by such a high number. In this sales example, you
believe that E[Y0|T = 0] < E[Y0|T = 1], meaning that businesses that can
afford to do price cuts tend to sell more, regardless of whether or not they are
having a sale.

Why does this happen? That’s an issue for Chapter 3, where you’ll examine
confounding. For now, you can think of bias arising because many things you
can’t observe are changing together with the treatment. As a result, the treated
and untreated businesses differ in more ways than just whether or not they
are having a sale. They also differ in size, location, the week they choose to
have a sale, management style, the cities they are located in, and many other
factors. To determine how much price cuts increase the amount sold, you
would need businesses with and without sales to be, on average, similar to
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each other. In other words, treated and control units would have to be
exchangeable.

RACTICAL EXAMPLE

A GLASS OF WINE A DAY KEEPS THE DOCTOR AWAY

A popular belief is that wine, in moderation, is good for your health. The
argument is that Mediterranean cultures, like Italian and Spanish, are famous
for drinking a glass of wine every day and also display high longevity.

You should be suspicious about this claim. To attribute the extended lifespan
to wine, those who drink and those who don’t would need to be exchangeable,
and we know they are not. For instance, Italy and Spain both have generous
healthcare systems and comparatively elevated Human Development Indexes.
In technical terms, 
E[Lifespan0 |WineDrinking = 1] > E[Lifespan0 |WineDrinking = 0]

, so bias might be clouding the true causal effect.

A Visual Guide to Bias

You don’t have to only use math and intuition to talk about exchangeability. In
our example, you can even check that they are not exchangeable by plotting
the relationship in outcome by variables for the different treatment groups. If
you plot the outcome ( weekly_amount_sold ) by business size, as
measured by avg_week_sales , and color each plot by the treatment,

is_on_sale , you can see that the treated—business having sales—are
more concentrated to the right of the plot, meaning that they are usually
bigger businesses. That is, treated and untreated are not balanced.



This is very strong evidence that your hypothesis 
E[Y0|T = 1] > E[Y0|T = 0] was correct. There is an upward bias, as both
the number of businesses with price cuts (T = 1) and the outcome of those
businesses, had they not done any sale (Y0 for those businesses), would go up
with business size.

If you’ve ever heard about Simpson’s Paradox, this bias is like a less extreme
version of it. In Simpson’s Paradox, the relationship between two variables is
initially positive, but, once you adjust for a third variable, it becomes negative.
In our case, bias is not so extreme as to flip the sign of the association (see
Figure 1-3). Here, you start with a situation where the association between
price cuts and amount sold is too high and controlling for a third variable
reduces the size of that association. If you zoom in inside businesses of the
same size, the relationship between price cuts and amount sold decreases, but
remains positive.

Figure 1-3. How bias relates to Simpson’s Paradox

Once again, this is so important that I think it is worth going over it again, now
with some images. They are not realistic, but they do a good job of explaining
the issue with bias. Let’s suppose you have a variable indicating the size of the



business. If you plot the amount sold against size, you’ll see an increasing
trend, where the bigger the size, the more the business sells. Next, you color
the dots according to the treatment: white dots are businesses that cut their
prices and black dots are businesses that didn’t do that. If you simply compare
the average amount sold between treated and untreated business, this is what
you’ll get:

Notice how the difference in amount sold between the two groups can (and
probably does) have two causes:

1. The treatment effect. The increase in the amount sold, which is caused by
the price cut.

2. The business size. Bigger businesses are able both to sell more and do more
price cuts. This source of difference between the treated and untreated is
not due to the price cut.

The challenge in causal inference is untangling both causes.

Contrast this with what you would see if you add both potential outcomes to
the picture (counterfactual outcomes are denoted as triangles). The individual
treatment effect is the difference between the unit’s outcome and another
theoretical outcome that the same unit would have if it got the alternative
treatment. The average treatment effect you would like to estimate is the
average difference between the potential outcomes for each individual unit, 
Y1 − Y0. These individual differences are much smaller than the difference



you saw in the previous plot, between treated and untreated groups. The
reason for this is bias, which is depicted in the right plot:

You can represent the bias by setting everyone to not receive the treatment. In
this case, you are only left with the Y0 potential outcome. Then, you can see
how the treated and untreated groups differ on those potential outcomes
under no treatment. If they do, something other than the treatment is causing
the treated and untreated to be different. This is precisely the bias I’ve been
talking about. It is what shadows the true treatment effect.

Identifying the Treatment Effect

Now that you understand the problem, it’s time to look at the (or at least one)
solution. Identification is the first step in any causal inference analysis. You’ll
see much more of it in Chapter 3, but for now, it’s worth knowing what it is.
Remember that you can’t observe the causal quantities, since only one
potential outcome is observable. You can’t directly estimate something like 
E[Y1 − Y0], since you can’t observe this difference for any data point. But
perhaps you can find some other quantity, which is observable, and can be
used to recover the causal quantity you care about. This is the process of
identification: figuring out how to recover causal quantities from observable
data. For instance, if, by some sort of miracle, E[Y |T = t] managed to recover
E[Yt] (identify E[Yt]), you would be able to get E[Y1 − Y0] by simply
estimating E[Y |T = 1] − E[Y |T = 0]. This can be done by estimating the
average outcome for the treated and untreated, which are both observed
quantities.



SEE ALSO

In the past decade (2010–2020), an entire body of knowledge on causal identification was popularized by
Judea Pearl and his team, as an attempt to unify the causal inference language. I use some of that
language in this chapter—although probably an heretical version of it—and I’ll cover more about it in
Chapter 3. If you want to learn more about it, a short yet really cool paper to check out is “Causal
Inference and Data Fusion in Econometrics,” by Paul Hünermund and Elias Bareinboim.

You can also see identification as the process of getting rid of bias. Using
potential outcomes, you can also say what would be necessary to make
association equal to causation. If E[Y0|T = 0] = E[Y0|T = 1], then,
association IS CAUSATION! Understanding this is not just remembering the
equation. There is a strong intuitive argument here. To say that 
E[Y0|T = 0] = E[Y0|T = 1] is to say that treatment and control group are
comparable regardless of the treatment. Mathematically, the bias term would
vanish, leaving only the effect on the treated:

E[Y |T = 1] − E[Y |T = 0] = E[Y1 − Y0|T = 1] = ATT

Also, if the treated and the untreated respond similarly to the treatment, that
is, E[Y1 − Y0|T = 1] = E[Y1 − Y0|T = 0], then (pay close attention),
difference in means BECOMES the average causal effect:

E[Y |T = 1] − E[Y |T = 0] = ATT = ATE = E[Y1 − Y0]

Despite the seemingly fancy-schmancy math here, all it’s saying is that once
you make treated and control group interchangeable, expressing the causal
effect in terms of observable quantities in the data becomes trivial. Applying
this to our example, if businesses that do and don’t cut prices are similar to
each other—that is, exchangeable—then, the difference in amount sold
between the ones having sales and those not having sales can be entirely
attributed to the price cut.

The Independence Assumption

This exchangeability is the key assumption in causal inference. Since it’s so
important, different scientists found different ways to state it. I’ll start with
one way, probably the most common, which is the independence assumption.
Here, I’ll say that the potential outcomes are independent of the treatment: 
(Y0,Y1) ⊥ T .



This independence means that E[Y0|T ] = E[Y0], or, in other words, that the
treatment gives you no information about the potential outcomes. The fact
that a unit was treated doesn’t mean it would have a lower or higher outcome,
had it not been treated (Y0). This is just another way of saying that 
E[Y0|T = 1] = E[Y0|T = 0]. In our business example, it simply means that
you wouldn’t be able to tell apart the businesses that chose to engage in sales
from those that didn’t, had they all not done any sales. Except for the
treatment and its effect on the outcome, they would be similar to each other.
Similarly, E[Y1|T ] = E[Y1] means that you also wouldn’t be able to tell them
apart, had they all engaged in sales. Simply put, it means that treated and
untreated groups are comparable and indistinguishable, regardless of
whether they all received the treatment or not.

Identification with Randomization

Here, you are treating independence as an assumption. That is, you know you
need to make associations equal to causation, but you have yet to learn how to
make this condition hold. Recall that a causal inference problem is often
broken down into two steps:

1. Identification, where you figure out how to express the causal quantity of
interest in terms of observable data.

2. Estimation, where you actually use data to estimate the causal quantity
identified earlier.

To illustrate this process with a very simple example, let’s suppose that you
can randomize the treatment. I know I said earlier that in the online
marketplace you work for, businesses had full autonomy on setting prices, but
you can still find a way to randomize the treatment IsOnSales. For instance,
let’s say that you negotiate with the businesses the right to force them to cut
prices, but the marketplace will pay for the price difference you’ve forced. OK,
so suppose you now have a way to randomize sales, so what? This is a huge
deal, actually!



First, randomization ties the treatment assignment to a coin flip, so variations
in it become completely unrelated to any other factors in the causal
mechanism:

Under randomization ut vanished from our model since the assignment
mechanism of the treatment became fully known. Moreover, since the
treatment is random, it becomes independent from anything, including the
potential outcomes. Randomization pretty much forces independence to hold.

To make this crystal clear, let’s see how randomization pretty much
annihilates bias, starting before the treatment assignment. The first image
shows the world of potential outcomes (triangles) yet to be realized. This is
depicted by the image on the left:

Then, at random, the treatment materializes one or the other potential
outcome.

RANDOMIZED VERSUS OBSERVATIONAL

In causal inference, we use the term randomized to talk about data where the treatment was randomized
or when the assignment mechanism is fully known and nondeterministic. In contrast to that, the term
observational is used to describe data where you can see who got what treatment, but you don’t know
how that treatment was assigned.

Next, let’s get rid of the clutter, removing the unrealized potential outcomes
(triangles). Now you can compare the treated to the untreated:

IsOnSales ← rand(t)

AmountSold ← fy(IsOnSales,uy)



In this case, the difference in the outcome between treated and untreated is
the average causal effect. This happens because there is no other source of
difference between them other than the treatment itself. Therefore, all the
differences you see must be attributed to the treatment. Or, simply put, there
is no bias. If you set everyone to not receive the treatment so that you only
observe the Y0s, you would find no difference between the treated and
untreated groups:

This is what the herculean task of causal identification is all about. It’s about
finding clever ways of removing bias and making the treated and the
untreated comparable so that all the difference you see can be attributed to
the treatment effect. Importantly, identification is only possible if you know (or
are willing to assume) something about the data-generating process. Usually,
how the treatment was distributed or assigned. This is why I said earlier that
data alone cannot answer causal questions. Sure, data is important for
estimating the causal effect. But, besides data, you’ll always require a
statement about how the data—specifically, the treatment—came to be. You



get that statement using your expert knowledge or by intervening in the
world, influencing the treatment and observing how the outcome changes in
response.

RACTICAL EXAMPLE

AN INCREDIBLE MEMBERSHIP PROGRAM

A big online retailer implemented a membership program, where members
pay an extra fee to have access to more discounts, faster deliveries, return fee
waiver, and amazing customer service. To understand the impact of the
program, the company rolled it out to a random sample of the customers,
which could opt in for paying the fee to get the membership benefits. After a
while, they saw that customers in the membership program were much more
profitable than those in the control group. Customers not only bought from
the company, but they also spent less time with customer service. Should we
then say that the membership program was a huge success in increasing sales
and decreasing time spent serving customers?

Not really. Although the eligibility to the program was randomized, the
random chunk that could opt in still self-selected into the program. In other
words, randomization of program eligibility ensures that people who were
able to get the program are comparable to those that weren’t. But, out of the
eligible, only a fraction choose to participate. This choice was not random.
Probably, only the more engaged customers chose to participate, while the
casual ones dropped out. So, even though eligibility to the program was
randomized, participation in the program was not. The result is that those that
participated are not comparable to those that didn’t.

If you think about it, out of the eligible customers, the ones that actually chose
to participate probably opted in for the program precisely because they
already spent a lot in the online company, which made the extra discounts
something worth paying for. This would imply that 
E[Revenues0|OptIn = 1] > E[Revenues0|OptIn = 0], meaning those
customers that opted in probably generated more revenues regardless of the
program.



Ultimately, causal inference is about figuring out how the world works,
stripped of all delusions and misinterpretations. And now that you understand
this, you can move forward to mastering some of the most powerful methods
to remove bias, the instruments of the brave and true, to identify the causal
effect.

Key Ideas

You’ve learned the mathematical language that we’ll use to talk about causal
inference in the rest of this book. Importantly, you’ve learned the definition of
potential outcome as the outcome you would observe for a unit had that unit
taken a specific treatment T = t:

Yti = Yi|do(Ti = t)

Potential outcomes were very useful in understanding why association is
different from causation. Namely, when treated and untreated are different
due to reasons other than the treatment, E[Y0|T = 1] ≠ E[Y0|T = 0], and
the comparison between both groups will not yield the true causal effect, but a
biased estimate. We also used potential outcomes to see what we would need
to make association equal to causation:

(Y0,Y1) ⊥ T

When treated and control groups are interchangeable or comparable, like
when we randomize the treatment, a simple comparison between the outcome
of the treated and untreated groups will yield the treatment effect:

E[Y1 − Y0] = E[Y |T = 1] − E[Y |T = 0]

You also started to understand some of the key assumptions that you need to
make when doing causal inference. For instance, in order to not have any bias
when estimating the treatment effect, you assumed independence between the
treatment assignment and the potential outcomes, T ⊥ Yt.

You’ve also assumed that the treatment of one unit does not influence the
outcome of another unit (SUTVA) and that all the versions of the treatment



were accounted for (if Yi(t) = Y , then Ti = t), when you defined the outcome
Y  as a switch function between the potential outcomes:

Yi = (1 − Ti)Y0i + TiY1i

In general, it is always good to keep in mind that causal inference always
requires assumptions. You need assumptions to go from the causal quantity
you wish to know to the statistical estimator that can recover that quantity for
you.



Chapter 2. Randomized Experiments and
Stats Review

Now that you know the basics about causality, its time to talk about
the inference part in causal inference. This chapter will first recap
some concepts from the previous chapter in the context of
randomized experiments. Randomized experiments are the gold
standard for causal inference, so it is really important that you
understand what makes them special. Even when randomization is
not an option, having it as an ideal to strive for will be immensely
helpful when thinking about causality.

Next, I’ll use randomized experiments to review some important
statistical concepts and tools, such as error, confidence interval,
hypothesis tests, power, and sample size calculations. If you know
about all of this, I’ll make it clear when the review will start so you can
skip it.

Brute-Force Independence with
Randomization

In the previous chapter, you saw why and how association is different
from causation. You also saw what is required to make association
equal to causation:

E[Y |T = 1] − E[Y |T = 0] = E[Y1 − Y0|T = 1]

ATT

+ {E[Y0|T = 1] − E[Y0|T = 0]}

BIAS

To recap, association can be described as the sum of two components:
the average treatment effect on the treated and the bias. The
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measured association is only fully attributed to causation if the bias
component is zero. There will be no bias if 
E[Yt|T = 0] = E[Yt|T = 1]. In other words, association will be
causation if the treated and control are equal or comparable, except
for their treatment. Or, in slightly more technical terms, when the
potential outcomes of the treated are equal to the potential outcomes
of the untreated, at least in expectations. Remember that potential
outcome Yti is the outcome you would see had unit i received
treatment t.

In Chapter 1, I also briefly touched on how to equate association and
causation in the case that the potential outcomes are independent
from the treatment:

(Y0,Y1) ⊥ T .

Importantly, I’m not talking about the independence between the
treatment and the outcome. If that were the case, the treatment would
have no impact on the outcome for you to measure. For example, let’s
say that the treatment is a new feature in your company’s app and the
outcome is time spent in that app. Saying that 
Feature ⊥ TimeSpent means that time spent in the app is the same
in both treated and untreated groups. In other words, the new feature
has simply no effect.

Instead, what you want is for the potential outcomes to be
independent of the treatment. There is an important distinction here.
Saying that Y1 ⊥ T  means that the outcome that would have been
observed had the subjects received the treatment is independent of
whether they actually received it or not. Analogously, Y0 ⊥ T

indicates that the outcome that would have been observed if the
subjects were untreated does not depend on the actual treatment



assignment. In summary, the outcome Y that was actually observed
still depends on the treatments actually assigned.

Another simpler way of putting this is that the independence
assumption implies that treatment and control groups are
comparable. Or that knowing the treatment assignment doesn’t give
me any information about the baseline potential outcome, Y0.
Consequently, (Y0,Y1) ⊥ T  means that the treatment is the only thing
that causes difference in outcome between treatment and control:

E[Y0|T = 0] = E[Y0|T = 1] = E[Y0]

and

E[Y1|T = 0] = E[Y1|T = 1] = E[Y1]

which, as you’ve seen, allows a simple comparison between treated
and control averages to identify the ATE:

E[Y |T = 1] − E[Y |T = 0] = E[Y1 − Y0] = ATE

Although independence is nothing more than an assumption, you can
make it a lot more plausible if you randomize the treatment T . By
doing so, you are tying the treatment assignment to the flip of a coin;
that is, a random mechanism completely known to us. This coin
doesn’t have to be fair. You could assign the treatment to just 10% of
the subjects, 1%, or even less. As long as the assignment mechanism is
random, you can get the right conditions to identify the treatment
effect.

By randomizing the treatment, you ensure that the treated and control
group are roughly (in expectation) comparable. The only systematic
difference between them is the treatment itself, which allows you to
attribute any difference in the outcome to that treatment. Essentially,



randomization brute-forces your way toward independence between
the treatment and the potential outcomes.

Let’s now take all this math and go over an example so you can see
that it is actually quite simple. In the following section, I’ll use
randomized control trials (RCT) in order to understand the impact of
cross-sell emails.

An A/B Testing Example

A common strategy among companies is to have a cheap or even free
product that isn’t profitable, but serves as the doorway to attracting
new customers. Once the company has those customers, it can then
cross-sell other products that are more profitable. Let’s suppose you
work for a coffee delivery company. Your main product is a low-cost
monthly subscription that allows the customers to have high-quality
and curated coffee delivered to them weekly. Beyond this basic and
low-cost subscription, your company provides a more premium one,
with brewing perks and the world’s finest coffee, like that from local
producers in the small town of Divinolandia, Brazil. This is by far your
most profitable service, and therefore your goal is to increase its sales
to the users who have already subscribed for your low-cost, entry
product. For that, your company has a marketing team that tries to sell
the premium coffee delivery subscription to its customers. They do
this mainly through cross-sell emails. As the causal inference expert,
your goal is to understand how effective those emails are.

When you look into the existing data (nonrandomized) to answer this
question, you can clearly see that customers who received an email
were more likely to buy the premium subscription. In technical terms,
when a customer buys the product you are trying to sell, you can say



they converted. So, you can say that the customers who received an
email converted more:

E[Conversion|Email = 1] > E[Conversion|Email = 0]

Unfortunately, you also discover that the marketing team tends to
send emails for the customers who they thought were more likely to
convert in the first place. It is not entirely clear how they did this.
Maybe they looked for customers who interacted the most with the
company, or those who answered positively in a satisfaction survey.
Regardless, this is very strong evidence that

E[Conversion0|Email = 1] > E[Conversion0|Email = 0].

In other words, customers who were actually sent the email would
convert in greater numbers than other customers, even if no email
was sent at all. As a result, a simple comparison in means is a biased
estimator of the true causal effect of the cross-sell email. To solve that,
you need to make the treated and untreated comparable: 
E[Y0|T = 1] = E[Y0|T = 0], which can be done by randomly
assigning the emails. If you manage to do that, the treated and
untreated will have, on average, the same conversion, except for the
treatment they receive. So, suppose you did just that. You selected
three random samples from your customer base. To one of them, you
didn’t send any emails. To the other, you sent a large and beautifully
written email about the premium subscription. To the last sample, you
sent a short and to-the-point email about the premium subscription.
After some time collecting data, you have something that looks like
this:

In [1]: import pandas as pd # for data manipulation

        import numpy as np # for numerical computation

        data = pd.read_csv("./data/cross_sell_email.cs



323 rows × 4 columns

You can see that you have 323 observations. It’s not exactly big data,
but something you can work with.

SIMULATED VERSUS REAL-WORLD DATA

When teaching about causal inference, it is very helpful to use simulated data. First, because
causal inference is always accompanied by a statement about how the data was generated.
Simulation allows me to talk about this assignment mechanism without any uncertainty.
Second, causal inference involves counterfactual quantities that I can choose to show in order
to give a better explanation of what is going on. However, so that the data doesn’t look too
artificial, I often take real-world data and transform it to fit the example I’m trying to give. For
instance, this example takes data from the paper “A Randomized Assessment of Online
Learning” (2016), by William T. Alpert et al., and transforms it to look like cross-sell email
data.

        data

        

gender cross_sell_email age

0 0 short 15

1 1 short 27

… … … …

321 1 no_email 16

322 1 long 24



To estimate the causal effect, you can simply compute the average
conversion for each of the treatment groups:

In [2]: (data

         .groupby(["cross_sell_email"])

         .mean())

        

Yup. It’s really that simple. You can see that the group assigned to no
email had a conversion rate of 4.2%, while the groups assigned to the
long and short email had a conversion rate of 5.5% and a whopping
12.5%, respectively. Therefore, the ATEs, measured as the difference
between each treated group and the control group, 
ATE = E[Y |T = t] − E[Y |T = 0], where 1.3 and 8.3 percentage
points increase for the long and short email, respectively.
Interestingly, sending an email that is short and to the point seems
better than an elaborated one.

gender age conversion

cross_sell_email

long 0.550459 21.752294 0.055046

no_email 0.542553 20.489362 0.042553

short 0.633333 20.991667 0.125000



The beauty of RCTs is that you no longer have to worry if the
marketing team somehow targeted customers who were likely to
convert or, for that matter, you don’t have to worry that the customers
from the distinct treatment groups are different in any systematic
way, other than the treatment they received. By design, the random
experiment is made to wipe out those differences, making 
(Y0,Y1) ⊥ T , at least in theory.

In practice, a good sanity check to see if the randomization was done
right (or if you are looking at the correct data) is to check if the treated
are equal to the untreated in pretreatment variables. For example, you
have data on gender and age and you can see whether these two
characteristics are balanced across treatment groups.

When you look at age, treatment groups seem very much alike, but
there seems to be a difference in gender (woman = 1, man = 0). It
seems that the group that received the short email had 63% men,
compared to 54% in the control group and 55% in the group that got
the long email. This is somewhat unsettling, as the treatment group in
which you found the highest impact also appears to be different from
the other groups. So, even if independence should hold in theory in
RCTs, it does not necessarily hold in practice. It could be that the large
effect you saw for the short email was due to the fact that, for
whatever reason, E[Y0|man] > E[Y0|woman].

There isn’t a clear consensus on how to evaluate balance, but one very
simple suggestion is to check the normalized differences between the
treatment groups:

μ̂tr − μ̂co

√(σ̂2
tr + σ̂2

co)/2

,



where μ̂, σ̂2 are the sample mean and variance, respectively. Since
there are three treatment groups in your example, you can just
compute this difference with respect to the control group:

gender age

cross_sell_email

long 0.015802 0.221423

no_email 0.000000 0.000000

short 0.184341 0.087370

If this difference is too small or too large, you should be worried.
Unfortunately, there isn’t a clear threshold for how much difference is
too much, but 0.5 seems to be a good rule of thumb. In this example,
you don’t have any difference that is that high, but it does seem that

In [3]: X = ["gender", "age"]

        mu = data.groupby("cross_sell_email")[X].mean(

        var = data.groupby("cross_sell_email")[X].var(

        norm_diff = ((mu - mu.loc["no_email"])/

                     np.sqrt((var + var.loc["no_email"

        norm_diff

        



the group that got the short email has a large difference in gender,
while the group that got the long email has a large difference in age.

SEE ALSO

For a more in-depth discussion of this topic, check out section 14.2 of the book Causal
Inference for Statistics, Social, and Biomedical Sciences: An Introduction, by Guido W. Imbens
and Donald B. Rubin (Cambridge University Press).

If the preceding formula seems a bit magic right now, don’t worry. It
will become clearer once you go over the statistical review part of this
chapter. For now, I just want to draw your attention to what happens
with a small dataset. Even under randomization, it could be that, by
chance, one group is different from another. In large samples, this
difference tends to disappear. It also brings forth the issue of how
much difference is enough for you to conclude that the treatments are
indeed effective and not just due to chance, which is something I’ll
address shortly.

The Ideal Experiment

Randomized experiments or randomized controlled trials are the most
reliable way to get causal effects. It’s a straightforward technique and
absurdly convincing. It is so powerful that most countries have it as a
requirement for showing the effectiveness of new drugs. Think of it
this way: if you could, RCT would be all you would ever do to uncover
causality. A well-designed RCT is the dream of any scientist and
decision maker.

Unfortunately, they tend to be either very expensive—both in money,
but more importantly, in time—or just plain unethical. Sometimes, you
simply can’t control the assignment mechanism. Imagine yourself as a
physician trying to estimate the effect of smoking during pregnancy



on baby weight at birth. You can’t simply force a random portion of
moms to smoke during pregnancy. Or say you work for a big bank,
and you need to estimate the impact of the credit line on customer
churn. It would be too expensive to give random credit lines to your
customers. Or say you want to understand the impact of increasing
the minimum wage on unemployment. You can’t simply assign
countries to have one or another minimum wage. Moreover, as you
will see in Chapter 3, there are some situations (selection biased ones)
where not even RCTs can save you.

Still, I would like you to think about random experiments beyond a
tool for uncovering causal effects. Rather, the goal here is to use it as a
benchmark. Whenever you do causal inference without RCTs, you
should always ask yourself what would be the perfect experiment to
answer your question. Even if that ideal experiment is not feasible, it
serves as a valuable benchmark. It often sheds some light on how you
can discover the causal effect even without such an experiment.

The Most Dangerous Equation

Now that you understand the value of an experiment, it’s time to
review what it means to not have infinite data. Causal inference is a
two-step process. RCTs are invaluable in helping with identification,
but if the sample size of an experiment is small, you’ll struggle with
the second step: inference. To understand this, it’s worth reviewing
some statistical concepts and tools. If you are already familiar with
them, feel free to skip to the next chapter.

In his famous article of 2007, Howard Wainer writes about very
dangerous equations:



“Some equations are dangerous if you know them, and others are
dangerous if you do not. The first category may pose danger
because the secrets within its bounds open doors behind which lies
terrible peril. The obvious winner in this is Einstein’s iconic
equation E = MC2, for it provides a measure of the enormous
energy hidden within ordinary matter. […] Instead I am interested
in equations that unleash their danger not when we know about
them, but rather when we do not. Kept close at hand, these
equations allow us to understand things clearly, but their absence
leaves us dangerously ignorant.”

The equation he talks about is Moivre’s equation:

SE =
σ

√n

where SE is the standard error of the mean, σ is the standard
deviation, and n is the sample size. This math is definitely something
you should master, so let’s get to it.

To see why not knowing this equation is very dangerous, let’s look at
some education data. I’ve compiled data on ENEM scores (Brazilian
standardized high school scores, similar to SATs) from different
schools over a three-year period. I’ve also cleaned the data to keep
only the information relevant to you in this section.

If you look at the top-performing school, something catches the eye—
those schools have a reasonably small number of students:

In [4]: df = pd.read_csv("data/enem_scores.csv")

        df.sort_values(by="avg_score", ascending=False

        



Looking at it from another angle, you can separate only the 1% of top
schools and study them. What are they like? Perhaps you can learn
something from the best and replicate it elsewhere. And sure enough,
if you look at the top 1% of schools, you’ll figure out they have, on
average, fewer students:

year school_id number_of_stude

16670 2007 33062633 68

16796 2007 33065403 172

… … … …

14636 2007 31311723 222

17318 2007 33087679 210



One natural conclusion is that small schools lead to higher academic
performance. This makes intuitive sense, since we believe that fewer
students per teacher allows the teacher to give focused attention to
each student. But what does this have to do with Moivre’s equation?
And why is it dangerous?

Well, it becomes dangerous once people start to make important and
expensive decisions based on this information. In his article, Howard
continues:

In the 1990s, it became popular to champion reductions in the size
of schools. Numerous philanthropic organizations and government
agencies funded the division of larger schools because students at
small schools are overrepresented in groups with high test scores.

What people forgot to do was to also look at the bottom 1% of schools:
they also have very few students!

What you see in Figure 2-1 is precisely what’s expected according to
Moivre’s equation. As the number of students grows, the average score
becomes more and more precise. Schools with very few students (low
sample size) can have very high and low scores simply due to chance.
This is less likely to occur in large schools. Moivre’s equation talks
about a fundamental fact regarding the reality of information and
records in the form of data: it is always imprecise. The question then
becomes: how imprecise? And what can you do to take those
inaccuracies into account?



Figure 2-1. A typical triangular plot showing how variance decreases with sample size

One way to quantify our uncertainty is the variance of our estimates.
Variance tells you how much observation deviates from its central
(expected) value. As Moivre’s equation indicates, this uncertainty
shrinks as the amount of data you observe increases. This makes
sense, right? If you see many students performing excellently at a
school, you can be more confident that this is indeed a good school.
However, if you see a school with only 10 students and 8 of them
perform well, you need to be more suspicious. By chance, it could be
that the school got some above-average students.

The beautiful triangular plot you see in Figure 2-1 tells precisely this
story. It shows you how your estimate of the school performance has a
huge variance when the sample size is small. It also indicates that
variance shrinks as the sample size increases. This is true for the
average score in a school, but it is also true about any summary
statistics you might have, including the ATE you often want to
estimate. Back to our cross-sell email application, if you had thousands
of customers in each treatment group, instead of hundreds, you would



be much more confident that the difference in conversion you saw
between treated and control groups are not simply due to chance.

RANDOM AND SYSTEMATIC ERROR

Another way to think about this uncertainty in the data is to contrast systematic error with
random error. Systematic errors are consistent biases that affect all measurements in the
same way, while random errors are unpredictable fluctuations in data due to chance.
Systematic error, or bias, doesn’t diminish as you gather more data, as it pushes all
measurements to the same direction, away from the quantity you want to estimate. In
contrast, random error decreases as the sample size increases, as seen in Moivre’s equation.
Statistics is the science that deals with these imprecisions due to random error, so they don’t
catch you off-guard. It’s a way to take uncertainty into account.

The Standard Error of Our Estimates

Since this is just a review of statistics, I’ll take the liberty to go a bit
faster. If you are not familiar with distributions, variance, and
standard errors, please read on, but keep in mind that you might need
some additional resources. I suggest you google any MIT course on
introduction to statistics. They are usually quite good and you can
watch them for free on YouTube.

In “The Most Dangerous Equation”, you estimated the average
treatment effect E[Y1 − Y0] as the difference in the means between
the treated and the untreated E[Y |T = 1] − E[Y |T = 0].
Specifically, you figured out the ATE for two types of cross-sell emails
on conversion. You then saw that the short email had a very
impressive lift, of more than 8 percentage points, while the long email
had a smaller impact, of just 1.3 percentage points increase. But there
is still a lingering question: are those effects large enough so you can
be confident they are not due to chance? In technical terms, do you
know if they are statistically significant?



To do so, you first need to estimate the SE, according to the equation
I’ve shown earlier. n is pretty easy to get. You just need the len

of each treatment. Or, you can use pandas groupby  followed
by a size  aggregation:

Out[5]: cross_sell_email 

        long        109 

        no_email     94 

        short       120 

        dtype: int64 

        

To get the estimate for the standard deviation, you can apply the
following equation:

σ̂ = √ 1
N−1 ∑

N
i=0 (x − x̄)2

where x̄ is the mean of x.

HATS

In this book, I’ll use hats to denote the sample estimate of parameters and predictions.

Fortunately for you, most programming software already implements
this. In pandas, you can use the method std. Putting it all together, you

In [5]: data = pd.read_csv("./data/cross_sell_email.cs

        short_email = data.query("cross_sell_email=='s

        long_email = data.query("cross_sell_email=='lo

        email = data.query("cross_sell_email!='no_emai

        no_email = data.query("cross_sell_email=='no_e

        data.groupby("cross_sell_email").size()

        

https://oreil.ly/kCUZc


have the following function for the standard error:

Out[6]: SE for Long Email: 0.021946024609185506 

        SE for Short Email: 0.030316953129541618 

        

Knowing this formula is incredibly handy (we’ll come back to it
multiple times, trust me), but know that pandas also has a built-in
method for calculating the standard error, .sem()  (as in
standard error of the mean):

Out[7]: SE for Long Email: 0.021946024609185506 

        SE for Short Email: 0.030316953129541618 

        

Confidence Intervals

In [6]: def se(y: pd.Series):

            return y.std() / np.sqrt(len(y))

        print("SE for Long Email:", se(long_email))

        print("SE for Short Email:", se(short_email))

        

In [7]: print("SE for Long Email:", long_email.sem())

        print("SE for Short Email:", short_email.sem()

        



The standard error of your estimate is a measure of confidence. You
need to go into turbulent and polemical statistical waters to
understand precisely what it means. For one view of statistics, the
frequentist view, we would say that our data is nothing more than a
manifestation of an underlying data-generating process. This process
is abstract and ideal. It is governed by true parameters that are
unchanging but also unknown to us. In the context of cross-sell email,
if you could run multiple experiments and calculate the conversion
rate for each of them, they would fall around the true underlying
conversion rate, even though not being exactly equal to it. This is very
much like Plato’s writing on the Forms:

Each [of the essential forms] manifests itself in a great variety of
combinations, with actions, with material things, and with one
another, and each seems to be many.

To understand this, let’s suppose you have the true abstract
distribution of conversion for the short cross-sell email. Because
conversion is either zero or one, it follows a Bernoulli distribution and
let’s say that the probability of success in this distribution is 0.08. That
is, whenever a customer receives the short email, it has an 8% chance
of converting. Next, let’s pretend you can run 10,000 experiments. On
each one, you collect a sample of 100 customers, send them the short
email and observe the average conversion, giving you a total of 10,000
conversion rates. The 10,000 conversion rates from those experiments
will be distributed around the true mean of 0.08 (see Figure 2-2). Some
experiments will have a conversion rate lower than the true one, and
some will be higher, but the mean of the 10,000 conversion rate will
be pretty close to the true mean.



LIST COMPREHENSION

I tend to use a lot of list comprehension instead of for  loops
whenever I want to apply a function to every item in a sequence. A list
comprehension is just a syntactic sugar for a mapping for  loop:

table_2 = []

for n in range(11): 

    table_2.append(n*2) 

         

             

table_2 = [n*2 for n in range(11)]

In [8]: n = 100

        conv_rate = 0.08

        def run_experiment(): 

            return np.random.binomial(1, conv_rate, si

        np.random.seed(42)

        experiments = [run_experiment().mean() for _ i

        



Figure 2-2. The distribution of conversion rate (average conversion) of 10,000 experiments,
each with 100 units

This is to say that you can never be sure that the mean of your
experiment matches the true platonic and ideal mean. However, with
the standard error, you can create an interval that will contain the true
mean in 95% of the experiments you run.

In real life, you don’t have the luxury of simulating the same
experiment with multiple datasets. You often only have one. But you
can draw from the idea of simulating multiple experiments to
construct a confidence interval. Confidence intervals come with a
probability attached to them. The most common one is 95%. This
probability tells you that if you were to run multiple experiments and
construct the 95% confidence interval in each one of them, the true
mean would fall inside the interval 95% of the time.

To calculate the confidence interval, you’ll use what is perhaps the
most mind-blowing result in statistics: the Central Limit Theorem.
Take a closer look at the distribution of conversion rates you’ve just
plotted. Now, remember that conversion is either zero or one and
hence follows a Bernoulli distribution. If you plot this Bernoulli
distribution in a histogram, it will have a huge bar at 0 and small bar
at 1, since the success rate is only 8%. This looks nothing like a normal
distribution, right?



This is where that mind-blowing result comes into play. Even though
the distribution of the data is not normally distributed (like in the
conversion case, which follows a Bernoulli distribution), the average
of the data is always normally distributed. If you collect data on
conversion multiple times and calculate the average conversion each
time, those averages will follow a normal distribution. This is very
neat, because normal distribution is well known and you can do all
sorts of interesting things with it. For example, for the purpose of
calculating the confidence interval, you can leverage knowledge from
statistical theory that 95% of the mass of a normal distribution falls
between 2 standard deviations (see Figure 2-3) above and below the
mean (technically, 1.96, but 2 is a good approximation that is easier to
remember).

Figure 2-3. Standard normal distribution



Back to your cross-sell experiments, you now know that the
conversion rate would follow a normal distribution, if you could run
multiple similar experiments. The best estimate you have for the
mean of that (unknown) distribution is the mean from your small
experiment. Moreover, the standard error serves as your estimate of
the standard deviation of that unknown distribution for the sample
mean. So, if you multiply the standard error by 2 and add and subtract
it from the mean of your experiments, you will construct a 95%
confidence interval for the true mean:

In [9]: exp_se = short_email.sem()

        exp_mu = short_email.mean()

        ci = (exp_mu - 2 * exp_se, exp_mu + 2 * exp_se

        print("95% CI for Short Email: ", ci)

        

Out[9]: 95% CI for Short Email:  (0.06436609374091676,

        



Of course, you don’t need to restrict yourself to the 95% confidence
interval. If you want to be more careful you could generate the 99%
interval instead. You just need to multiply the standard deviation by
the factor that will contain 99% of the mass of a normal distribution.

To find that factor, you can use the ppf  function from
scipy . This function gives you the inverse of cumulative

distribution function (CDF) of a standard normal distribution. For
example, ppf(0.5)  will return 0.0, saying that 50% of the mass
of the standard normal distribution is below 0.0. So, for any
significance level α, the factor you need to multiply the SE by in
order to get a 1 − α confidence interval is given by |ppf((1 − α)/2)|:

Out[10]: 2.5758293035489004 

         

Out[10]: (0.04690870373460816, 0.20309129626539185) 

         

In [11]: stats.norm.ppf((1-.99)/2)

         

In [10]: from scipy import stats

         z = np.abs(stats.norm.ppf((1-.99)/2))

         print(z)

         ci = (exp_mu - z * exp_se, exp_mu + z * exp_s

         ci

         



Out[11]: -2.5758293035489004 

         

That is for the short email. You could also show the 95% CI for the
conversion rate associated with the other treatment groups:

In [12]: def ci(y: pd.Series):

             return (y.mean() - 2 * y.sem(), y.mean() 

         print("95% CI for Short Email:", ci(short_ema

         print("95% CI for Long Email:", ci(long_email

         print("95% CI for No Email:", ci(no_email))

         

Out[12]: 95% CI for Short Email: (0.06436609374091676,

         95% CI for Long Email: (0.01115382234126202, 

         95% CI for No Email: (0.0006919679286838468, 

         



Here, you can see that the 95% CI of the three groups overlap with
each other. If they didn’t, you would be able to conclude that the
difference in conversion between the groups is not simply by chance.
In other words, you would be able to say that sending a cross-sell
email causes a statistically significant difference in conversion rates.
But since the intervals do overlap, you can’t say that. At least not yet.
Importantly, overlapping confidence intervals is not enough to say
that the difference between the groups is not statistically significant,
however, if they didn’t overlap, that would mean they are statistically
different. In other words, nonoverlapping confidence intervals is
conservative evidence for statistical significance.

To recap, confidence intervals are a way to place uncertainty around
your estimates. The smaller the sample size, the larger the standard
error, and hence, the wider the confidence interval. Since they are
super easy to compute, lack of confidence intervals signals either
some bad intentions or simply lack of knowledge, which is equally
concerning. Finally, you should always be suspicious of measurements
without any uncertainty metric.



RACTICAL EXAMPLE

THE EFFECTIVENESS OF COVID-19 VACCINES

Randomized control trials are incredibly important for the
pharmaceutical industry. Perhaps the most widely known examples
are the tests conducted to determine the effectiveness of COVID-19
vaccines, given the tremendous impact those had on almost everyone
on the planet. Here is the result section from the study Efficacy and
Safety of the mRNA-1273 SARS-CoV-2 Vaccine, published in 2020:

The trial enrolled 30,420 volunteers who were randomly assigned
in a 1:1 ratio to receive either vaccine or placebo (15,210
participants in each group). More than 96% of participants
received both injections, and 2.2% had evidence (serologic,
virologic, or both) of SARS-CoV-2 infection at baseline.
Symptomatic COVID-19 illness was confirmed in 185 participants
in the placebo group (56.5 per 1,000 person-years; 95% confidence
interval (CI), 48.7 to 65.3) and in 11 participants in the mRNA-1273
group (3.3 per 1,000 person-years; 95% CI, 1.7 to 6.0); vaccine
efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001).

Here is my take on how to interpret these results in the light of the
concepts you’ve been learning. Keep in mind that I’m no health expert
and my commentary is purely about the statistical and causal
inference concepts.

First, they defined the treatment and control (placebo) groups, saying
that the treatment was randomly assigned, which ensures
independence of the treatment from the potential outcomes. This
would allow them to identify the causal effect of the vaccine from
statistical the quantities E[Y |T = 0] and E[Y |T = 1]. Next, they
define the outcome as being the presence of symptomatic COVID-19
per 1,000 person-years. Finally, they report the 95% CI for the estimate



of E[Y |T = 0] and E[Y |T = 1] as being 48.7 to 65.3 and 1.7 to 6.0,
respectively. This tells you that symptomatic COVID-19 was detected
far less in those with the vaccine, compared to those that got the
placebo. They report the efficacy of the vaccine, 
E[Y |T = 0]/E[Y |T = 1], as well as the 95% confidence interval
around it, 89.3 to 96.8%.

One final word of caution here. Confidence intervals are trickier to
interpret than at first glance. For instance, I shouldn’t say that a
particular 95% confidence interval contains the true mean with 95%
chance. In frequentist statistics, the population mean is regarded as a
true population constant. This constant is either inside or outside a
particular confidence interval. In other words, a specific confidence
interval either contains or doesn’t contain the true mean. If it does, the
chance of containing it would be 100%, not 95%. If it doesn’t, the
chance would be 0%. Instead, in confidence intervals, the 95% refers
to the frequency that such confidence intervals, computed in many
studies, contains the true mean. The 95% is our confidence in the
algorithm used to calculate the 95% CI, not on the particular interval
itself.

Now, having said that, as an economist (statisticians, please look away
now), I think this purism is not very useful. In practice, you will see
people saying that the particular confidence interval contains the true
mean 95% of the time. Although wrong, this is not very harmful, as it
still places a visual degree of uncertainty in your estimates. What I
mean by this is that I would rather you have a confidence interval
around your estimate and interpret it wrong than avoid the
confidence interval in fear of misinterpretation. I don’t care if you say



they contain the true mean 95% of the time. Just, please, never forget
to place them around your estimates; otherwise, you will look silly.

CREDIBLE INTERVALS

If you really want to attach a probability statement to a parameter estimate being inside an
interval, you should check Bayesian credible intervals. However, from my experience, in most
situations (especially when the sample size is relatively large) they tend to yield something
similar to the frequentists confidence interval. This is also why I tend to be more forgiving of
misinterpretation of the confidence interval.

Hypothesis Testing

Another way to incorporate uncertainty is to state a hypothesis test: is
the difference in means between two groups statistically different
from zero (or any other value)? To answer these types of questions,
you need to recall that the sum or difference of two independent
normal distributions is also a normal distribution. The resulting mean
will be the sum or difference between the two distributions, while the
variance will always be the sum of the variances:

N(μ1,σ2
1) − N(μ2,σ2

2) = N(μ1 − μ2,σ2
1 + σ2

2)

N(μ1,σ2
1) + N(μ2,σ2

2) = N(μ1 + μ2,σ2
1 + σ2

2)

If you don’t remember, it’s OK. You can always use code and simulated
data to check it for yourself:

In [13]: import seaborn as sns

         from matplotlib import pyplot as plt

         np.random.seed(123)

         n1 = np.random.normal(4, 3, 30000)

         n2 = np.random.normal(1, 4, 30000)

         n_diff = n2 - n1



If you take two groups, each with a distribution attached to it, and
subtract one from the other, you’ll end up with a third distribution.
The mean of this final distribution will be the difference in the means,
and the standard deviation will be the square root of the sum of the
variances. Since you are talking about the distributions of experiment
averages, you can think about the standard deviation of these as the
standard error of the mean:
μdiff = μ1 − μ2

SEdiff = √SE2
1 + SE2

2

You can use this idea in the problem of comparing the conversion
from your cross-sell email experiment. If you take the estimated
distribution of two groups—let’s say, the short email and the no email
group—and subtract one from the other, you get the distribution of

         plt.figure(figsize=(10,4))

         sns.distplot(n1, hist=False, label="$N(4,3^2)

         sns.distplot(n2, hist=False, label="$N(1,4^2)

         sns.distplot(n_diff, hist=False,

                      label=f"$N(-3, 5^2) = N(1,4^2) -

         plt.legend();

         



the difference. With this distribution, you can easily construct a 95%
confidence interval for the difference in means:

Null Hypothesis

With this interval, you can answer questions about what is called a
null hypothesis. For example, you can state the hypothesis that there is
no difference in conversion rate between a short email and no email
at all. You’ll usually use H0 to talk about the null hypothesis:

H0 : Conversionno_email = Conversionshort_email

In [14]: diff_mu = short_email.mean() - no_email.mean(

         diff_se = np.sqrt(no_email.sem()**2 + short_e

         ci = (diff_mu - 1.96*diff_se, diff_mu + 1.96*

         print(f"95% CI for the difference (short emai

         

Out[14]: 95% CI for the difference (short email - no e

         (0.01023980847439844, 0.15465380854687816) 

         



Once you have this hypothesis, it’s time to ask yourself, “Is it likely that
I would observe such a difference if the null hypothesis were true?”
You’ll look at the data and see if it conforms to your null hypothesis. If
it doesn’t, you’ll say that seeing such data would be too weird, if the
null hypothesis were true, and hence you should reject it. One way to
do this is with the confidence intervals you have just constructed.

Notice how the preceding 95% confidence interval does not contain
zero. Also, recall that this is the CI of the difference between
conversion rates. Since the null hypothesis states that this difference is
zero, but you can see that the confidence interval is entirely outside
zero, you can say that the probability of seeing such a result would be
too low, if the null hypothesis were true. Hence, you can reject the null
hypothesis with 95% confidence.

SIGNIFICANCE LEVEL

The significance level, α, is the chance of rejecting the null when it is true—committing a Type
I error. Significance is set prior to gathering or analyzing the data. To achieve a certain
significance level, say, 5%, you would construct a 1 − α confidence interval, say 95%, around
your estimate during the analysis.

Of course you can also formulate other null hypotheses, besides the
one that states no difference at all. For example, let’s say there is some
cost to sending emails, which is very realistic. Even if there is no
significant monetary cost, if you send too many emails to customers,
eventually they will flag you as spammers, which will shut down this
communication channel with them, leading to lower sales in the
future. Under this situation, perhaps the marketing team is only
willing to roll out the cross-sell email if the lift in conversion rate is
higher than 1%. Then, you can state the null hypothesis as follows:
“the difference in conversion rate is 1%.” To test this hypothesis, all
you need to do is shift the confidence interval by subtracting 1% from
the difference in means:



Since this 95% CI is also above zero, you can also reject this other null
hypothesis. However, now the 95% CI is very close to zero, meaning
you would not be able to reject the null hypothesis of the effect being
equal to something like 2%, at least not with a 95% confidence.

In [15]: # shifting the CI

         diff_mu_shifted =  short_email.mean() - no_em

         diff_se = np.sqrt(no_email.sem()**2 + short_e

         ci = (diff_mu_shifted - 1.96*diff_se, diff_mu

         print(f"95% CI 1% difference between (short e

         

Out[15]: 95% CI 1% difference between (short email - n

         (0.00023980847439844521, 0.14465380854687815)

         



NONINFERIORITY TESTING

In this book, most null hypotheses will be stated as an equality
(usually to zero). This type of null is motivated by the desire to treat
only if an effect is found to be significantly different from zero.
However, in some situations, you want to act only if a treatment effect
is equal to zero. Consider, for instance, the case where you want to
shut down a marketing campaign. You only want to do that if its effect
is negligible (or not high enough to compensate its costs). In these
situations, you want to state the null in terms of a parameter being
different from some value.

That’s because not being able to reject a null like H0 = 0 is not the
same thing as accepting it as true. This is known as the famous adage
that “absence of evidence is not evidence of absence.” The H0 = 0

could be rejected simply because the sample size is too small, yielding
a large confidence interval. This, however, doesn’t point in the
direction of it being true.

To work around this issue, statisticians created noninferiority testing,
which is a way to test for a treatment being equal to another (or
having a zero treatment effect). The basic idea is to see if the
confidence interval contains zero, while also making sure it is small
enough.

Test Statistic

Besides confidence intervals, sometimes it is useful to think about
rejecting the null hypothesis in terms of a test statistic. These statistics
are often constructed such that higher values point toward rejection
of the null. One of the most commonly used test statistics is the t-



statistic. It can be defined by normalizing the distribution that gives
rise to the confidence interval:

tΔ =
μΔ − H0

SEΔ

=
(μ1 − μ2) − H0

√σ2
1/n1 + σ2

2/n2

,

where H0 is the value defined by your null hypothesis.

Notice how the numerator is simply the difference between the
observed average difference and the null hypothesis. If the null were
true, the expected value of this numerator would be zero: 
E[μΔ − H0] = 0. The denominator is simply the standard error,
which normalizes the statistic to have unit variance. It ensures that tΔ
follows a standard normal distribution—N(0, 1)—if the null is true.
Since tΔ is centered around zero under the null, values above or
below the 1.96 would be extremely unlikely (appear less than 95% of
the time). This means you can also reject the null hypothesis if you see
such an extreme t-statistics. In our running example, the statistics
associated with H0 of no effect is greater than 2, meaning you can
reject it at a 95% confidence level:

In [16]: t_stat = (diff_mu - 0) / diff_se

         t_stat

         

Out[16]: 2.2379512318715364 

         

Additionally, since t-statistic is normally distributed under the null,
you can use it to easily compute p-values.



T VERSUS NORMAL

Technically speaking using the normal distribution here is not accurate. Instead, you should
use the T distribution with degrees of freedom equal to the sample size minus the number of
parameters you’ve estimated (2, since you are comparing two means). However, with samples
above 100, the distinction between the two is of little practical importance.

p-values

Previously, I’ve said that there is less than a 5% chance you would
observe such an extreme difference if the conversion of customers
that received no email and short email were the same. But can you
precisely estimate what that chance is? How likely are you to observe
such an extreme value? Enter p-values!

Like with confidence intervals (and most frequentist statistics, as a
matter of fact), the true definition of p-values can be very confusing.
So, to not take any risks, I’ll copy the definition from Wikipedia: “the p-
value is the probability of obtaining test results at least as extreme as
the results actually observed during the test, assuming that the null
hypothesis is correct.”

To put it more succinctly, the p-value is the probability of seeing such
data, if the null hypothesis were true (see Figure 2-4). It measures how
unlikely that measurement you are seeing is, considering that the null
hypothesis is true. Naturally, this often gets confused with the
probability of the null hypothesis being true. Note the difference here.
The p-value is not P(H0|data), but rather P(data|H0).



Figure 2-4. p-value is the probability of seeing a extreme statistic, given that the null
hypothesis is true

To get the p-value, all you need to do is compute the area under the
standard normal distribution before the test-statistic for a one-sided
null hypothesis (“the difference is greater than x” or “the difference is
smaller than x”) and multiply the result by 2 for a two-sided null
hypothesis (“the difference is x”):

Out[17]: P-value: 0.025224235562152142 

         

The p-value is interesting because it frees you from having to specify a
confidence level, like 95% or 99%. But, if you wish to report one, from
the p-value, you know precisely at which confidence your test will
pass or fail. For instance, with a p-value of 0.025, you’ll have
significance up to the 2.5% level. So, while the 95% CI for the
difference will not contain zero, the 99% CI will. This p-value also
means that there is only a 2.5% chance of observing this extreme test
statistic, if the difference was truly zero.

In [17]: print("p-value:", (1 - stats.norm.cdf(t_stat)

         



RACTICAL EXAMPLE

FACE-TO-FACE VERSUS ONLINE LEARNING

Besides the direct impact of the virus, the 2020 pandemic brought
other important issues with it. Chief among those was the fact that
kids could not go to school, so learning was taken to the online
environment for as much as two years. It’s hard to estimate the
generational impact this will have, since the decision to come back
from the online environment to a face-to-face one was not
randomized. In Brazil, for example, public schools took longer to open
up, compared to private schools.

However, although certainly not trivial, one can design an experiment
to test the impact of online versus face-to-face learning, as Figlio, Rush,
and Yin did in “Is It Live or Is It Internet? Experimental Estimates of
the Effects of Online Instruction on Student Learning” (2013). Here is
the abstract:

Students in a large introductory microeconomics course at a major
research university were randomly assigned to live lectures versus
watching these same lectures in an internet setting, where all other
factors (e.g., instruction, supplemental materials) were the same.
Counter to the conclusions drawn by a recent U.S. Department of
Education meta-analysis of nonexperimental analyses of internet
instruction in higher education, we find modest evidence that live-
only instruction dominates internet instruction. These results are
particularly strong for Hispanic students, male students, and
lower-achieving students. We also provide suggestions for future
experimentation in other settings.

Notice that this study was conducted at a university in the US; it’s hard
to say those results will generalize to basic education and to other
countries. In technical terms, we say that the study has internal



validity, as treatment and control groups are comparable due to
randomization. But this study might not have external validity in
terms of generalizing its results to other settings, since the people in it
were not a random sample of the population, but rather economics
students from a US university.

Power

So far, you’ve been looking into these statistical concepts from the
perspective of a data analyst who’s been presented with the data from
an existing test. You are treating the data as given. But what if you are
asked to design an experiment, instead of just reading one that was
already designed? In this case, you need to decide the sample you
would like to have for each variant. For example, what if you haven’t
yet run the cross-sell email experiment, but, instead, need to decide
how many customers you should send the long email and how many,
the short email and no email at all? From this perspective, the goal is
to have a big enough sample so that you can correctly reject the null
hypothesis of no effect, if it is indeed false. The probability that a test
correctly rejects the null hypothesis is called the power of the test. It’s
not only a useful concept if you want to figure out the sample size you
need for an experiment, but also for detecting issues in poorly run
experiments.

Power is closely related to statistical significance. While α is the
chance of rejecting the null hypothesis when it is actually true, power
(1 − β) is the chance of rejecting the null when it is false. In some
sense, power is also defined in terms of α as in order to correctly
reject the null, you need to specify how much evidence you need for
rejection.



Recall how the 95% confidence interval means that 95% of the
experiments will contain the true parameter you are trying to
estimate. This also means that 5% of them won’t, which will cause you
to falsely reject the null hypothesis 5% of the time. With α = 0.05, you
need δ, the difference between the parameter estimate and the null
hypothesis, to be at least 1.96SE away from zero in order to conclude
that it is statistically significant. That’s because δ − 1.96SE is the
lower end of the 95% confidence interval.

OK, so you need δ − 1.96SE > 0 to claim the result as significant.
But how likely are you to see this significant difference? This is where
you need to think about power. Power is the chance of correctly
rejecting the null, or 1 − β, with β being the probability of not
rejecting the null when it is false (probability of false negative). The



industry standard for power is 80%, meaning that you’ll only have a
20% (β = 0.2) chance of not rejecting the null, when it is indeed false.
To achieve 80% power, you need to reject the null hypothesis 80% of
the time when it is false. Since rejecting the null means that 
δ − 1.96SE > 0 , you need to get this big difference 80% of the time.
In other words, you need to get the lower end of the 95% CI above
zero, 80% of the time.

What is striking (or not) is that the lower end of the 95% confidence
interval also follows a normal distribution. Just like the distribution of
the sample average, the distribution of the lower end of the 95% CI has
variance equal to the SE, but now the mean is δ − 1.96SE. It is just
the distribution of the sample average, shifted by 1.96SE. Therefore,
in order to have δ − 1.96SE > 0 80% of the time (80% power), you
need the difference to be 1.96 + 0.84SE away from zero: 1.96 to give
you the 95% CI and 0.84 so that the lower end of that interval falls
above zero 80% of the time.



In [18]: stats.norm.cdf(0.84)

         

Out[18]: 0.7995458067395503 

         

Sample Size Calculation

Another way to look at this is to realize that δ—the difference between
the null hypothesis and the observed estimate—must be detectable if
the null is false. With α = 5% and 1 − β = 80%, the detectable effect
is given by 2.8SE = (1.96SE +0.84SE). So, if you want to craft a
cross-sell email experiment where you want to detect a 1% difference,
you must have a sample size that gives you at least 1% = 2.8SE. If
you open up the SE formula for the difference, you have 

SEΔ = √SE2
1 + SE2

2 . But recall that you are now speaking from the

perspective of an analyst who has not seen the experiment, but is
actually trying to design it. In this case, you don’t have the SE of the
treated group, but you can assume that the variance in both treated
and control will be the same and hence 
SEΔ = √2SE2 = √2σ2/n = σ√2/n. Plugging this in the
detectable difference, you end up with a pretty simple formula for
determining the sample size of each variant in a test if you want 80%
power and 95% significance:

δ = 2. 8σ√2/n

n = 2 * 2. 82σ2/δ2 ≈ 16σ2/δ2



where δ is the detectable difference and I’ve rounded 2 * 2.82 to be
conservative. Applying this formula to your data, using the variance of
the control group as our best guess for σ2, you end up with the
following required sample size:

In [19]: np.ceil(16 * no_email.std()**2/0.01)

         

Out[19]: 66.0 

         

In [20]: data.groupby("cross_sell_email").size()

         

Out[20]: cross_sell_email 

         long        109 

         no_email     94 

         short       120 

         dtype: int64 

         

This is of course invaluable in terms of experiment design, but is also
good news for the cross-sell experiment we currently have. In it, we
have more than 100 samples for both treatment groups and 94
samples for the control, which indicates a properly powered test.

SEE ALSO

This very simple way of calculating sample size was taken from “A/B Testing Intuition Busters:
Common Misunderstandings in Online Controlled Experiments” (2022), by Ron Kohavi et al.
This sample size formula is only one of the many very interesting and useful things presented
in the article, so I definitely recommend you check it out.



Key Ideas

The idea of this chapter was to link causal identification with
estimation (and also review some important statistical concepts).
Recall that the goal of causal inference is to learn about causal
quantities from data. The first step in the process is identification,
where you use key assumptions to go from unobservable causal
quantities to observable statistical quantities you can estimate from
data.

For example, the ATE is a causal quantity; it is defined by the
unobservable potential outcomes ATE = E[Y1 − Y0]. To identify the
ATE, you use the independence assumption, T ⊥ (Y0,Y1), which
allows you to write it in terms of observable quantities, E[Y |T = 1],
and E[Y |T = 0]. That is, under the independence assumption:

E[Y1 − Y0] = E[Y |T = 1] − E[Y |T = 0]

You also saw how you could use randomized control trials (RCTs) to
make this assumption more plausible. If you randomize the treatment,
you are brute-forcing it to be independent from the potential
outcomes Yt.

But identification is just the first step in causal inference. Once you are
able to write the causal quantities in terms of statistical quantities, you
still need to estimate those statistical quantities. For instance, even
though you can write the ATE in terms of E[Y |T = 1] and 
E[Y |T = 0], you still need to estimate them.

The second part of this chapter covered statistical concepts used in
that estimation process. Specifically, you learned about the standard
error:

SE = σ/√n,



and how to use it to place confidence intervals around an estimate μ:

μ̂ ± z * SE,

where z is the value between which lies α% of the mass of a normal
distribution.

You also learned how to construct a confidence interval for a
difference in averages between two groups, which boiled down to
summing the variances for those groups and finding a standard error
for the difference:

SEdiff = √SE2
1 + SE2

2

Finally, you learned about power and how it can be used to calculate
the sample size for an experiment you wish to run. Specifically, for
95% confidence and 80% power, you could simplify the sample size
formula to:

N = 16 * σ2/δ

where σ2 is the variance of the outcome and δ is the detectable
difference.



Chapter 3. Graphical Causal Models

In Chapter 1 you saw how causal inference can be broken down into two
problems: identification and estimation. In this chapter, you’ll dive deeper
into the identification part, which is arguably the most challenging one. This
chapter is mostly theoretical, as you will be playing with graphical models
without necessarily estimating their parameters with data. Don’t let this fool
you. Identification is the heart of causal inference, so learning its theory is
fundamental for tackling causal problems in real life. In this chapter, you
will:

Get an introduction to graphical models, where you will learn what a
graphical model for causality is, how associations flow in a graph, and
how to query a graph using off-the-shelf software.

Revisit the concept of identification through the lens of graphical models.

Learn about two very common sources of bias that hinder identification,
their causal graph structure, and what you can do about them.

Thinking About Causality

Have you ever noticed how those cooks in YouTube videos are excellent at
describing food? “Reduce the sauce until it reaches a velvety consistency.” If
you are just learning to cook, you have no idea what this even means. Just
give me the time I should leave this thing on the stove, will you! With
causality, it’s the same thing. Suppose you walk into a bar and hear folks
discussing causality (probably a bar next to an economics department). In
that case, you will hear them say how the confounding of income made it
challenging to identify the effect of immigration on that neighborhood
unemployment rate, so they had to use an instrumental variable. And by
now, you might not understand what they are talking about. That’s OK.
You’ve only scratched the surface when it comes to understanding the



language of causal inference. You’ve learned a bit about counterfactual
outcomes and biases; enough so you could understand the key issue causal
inference is trying to solve. Enough to appreciate what’s going on behind the
most powerful tool of causal inference: randomized controlled trials. But
this tool won’t always be available or simply won’t work (as you’ll soon see
in “Selection Bias”). As you encounter more challenging causal inference
problems, you’ll also need a broader understanding of the causal inference
language, so you can properly understand what you are facing and how to
deal with it.

A well-articulated language allows you to think clearly. This chapter is about
broadening your causal inference vocabulary. You can think of graphical
models as one of the fundamental languages of causality. They are a
powerful way of structuring a causal inference problem and making
identification assumptions explicit, or even visual. Graphical models will
allow you to make your thoughts transparent to others and to yourself.

STRUCTURAL CAUSAL MODEL

Some scientists use the term structural causal model (SCM) to refer to a unifying language of causal
inference. These models are composed of graphs and causal equations. Here, I’ll mostly focus on the
graph aspect of SCMs.

As a starting point into the fantastic world of graphs, let’s take our previous
example of estimating the impact of emails on conversion. In that example,
the treatment T  is cross-sell email and the outcome Y  is if a customer
converted to a new product or not:

In [1]: import pandas as pd

        import numpy as np

        data = pd.read_csv("./data/cross_sell_email.csv")

        data

        



Let’s also recall from the previous chapter that, in this problem, T  is
randomized. Hence, you can say that the treatment is independent from the
potential outcomes, (Y0,Y1) ⊥ T , which makes association equal to
causation:

E[Y1 − Y0] = E[Y |T = 1] − E[Y |T = 0]

Importantly, there is absolutely no way of telling that the independence
assumption holds just by looking at the data. You can only say that it does
because you have information about the treatment assignment mechanism.
That is, you know that emails were randomized.

Visualizing Causal Relationships

You can encode this knowledge in a graph, which captures your beliefs
about what causes what. In this simple example, let’s say you believe that
cross-sell emails cause conversion. You also believe that the other variables

gender cross_sell_email age con

0 0 short 15 0

1 1 short 27 0

2 1 long 17 0

… … … … …

320 0 no_email 15 0

321 1 no_email 16 0

322 1 long 24 1



you measured, age and gender, also cause conversion. Moreover, you can
also add variables you didn’t measure to the graph. We usually denote them
by the letter U , since they are unobserved. There are probably many
unobserved variables that cause conversion (like customer income, social
background), and age (how your product appeals to different demographics,
the city the company is operating in). But since you don’t measure them, you
can bundle everything into a U  node that represents all those unmeasured
variables. Finally, you can add a randomization node pointing to T ,
representing your knowledge of the fact that the cross-sell email was
randomized.

DAG

You might find people referring to causal graphs as DAGs. The acronym stands for directed acyclic
graph. The directed part tells you that the edges have a direction, as opposed to undirected graphs,
like a social network, for example. The acyclic part tells you that the graph has no loops or cycles.
Causal graphs are usually directed and acyclic because causality is nonreversible.

To add those beliefs of yours to a graph and literally see them, you can use
graphviz :

In [2]: import graphviz as gr

        g_cross_sell = gr.Digraph()

        g_cross_sell.edge("U", "conversion")

        g_cross_sell.edge("U", "age")

        g_cross_sell.edge("U", "gender")

        g_cross_sell.edge("rnd", "cross_sell_email")

        g_cross_sell.edge("cross_sell_email", "conversion")

        g_cross_sell.edge("age", "conversion")

        g_cross_sell.edge("gender", "conversion")

        g_cross_sell

        



Each node in the graph is a random variable. You can use arrows, or edges,
to show if a variable causes another. In this graphical model, you are saying
that email causes conversion, that U  causes age, conversion, and gender,
and so on and so forth. This language of graphical models will help you
clarify your thinking about causality, as it makes your beliefs about how the
world works explicit. If you are pondering how impractical this is—after all,
there is no way you are going to encode all the hundreds of variables that
are commonly present in today’s data applications—rest assured you won’t
need to. In practice, you can radically simplify things, by bundling up nodes,
while also keeping the general causal story you are trying to convey. For
example, you can take the preceding graph and bundle the observable
variables into an X node. Since they both are caused by U  and cause
conversion, your causal story remains intact by joining them.

Also, when you are representing variables that have been randomized or
intervened on, you can just remove all incoming arrows from it:

In [3]: # rankdir:LR layers the graph from left to right

        g_cross_sell = gr.Digraph(graph_attr={"rankdir": "L

        g_cross_sell.edge("U", "conversion")

        g_cross_sell.edge("U", "X")



What is interesting to realize here is that perhaps the most important
information in a DAG is actually what is not in it: an edge missing from one
variable to another means there is an assumption of no direct causal link
between the two. For example, in the preceding graph, you are assuming
that nothing causes both the treatment and the outcome.

Just like with every language you learn, you are probably looking into this
and thinking it doesn’t all make complete sense. That’s normal. I could just
throw at you a bunch of rules and best practices to represent causal
relationships between variables in a graph. But that is probably the least
efficient way of learning. Instead, my plan is to simply expose you to lots and
lots of examples. With time, you will get the hang of it. For now, I just want
you to keep in mind that graphs are a very powerful tool for understanding
why association isn’t causation.

Are Consultants Worth It?

To see the power of DAGs, let’s consider a more interesting example, where
the treatment is not randomized. Let’s suppose you are the manager of a

        g_cross_sell.edge("cross_sell_email", "conversion")

        g_cross_sell.edge("X", "conversion")

        g_cross_sell

        



company contemplating the decision of whether to bring in some top-notch
consultants. You know that they are expensive, but you also know that they
have expert knowledge from working with the best companies in the
business. To make things more complicated, you are not sure if the top-notch
consultants will improve your business or if it is just the case that only very
profitable businesses can afford those consultants, which is why their
presence correlates with strong business performance. It would be awesome
if someone had randomized the presence of consultants, as this would make
answering the question trivial. But of course you don’t have that luxury, so
you will have to come up with something else. As you can probably see by
now, this is a problem of untangling causation from association. To
understand it, you can encode your beliefs about its causal mechanisms in a
graph:

Notice how I’ve added U  nodes to each of these variables to represent the
fact that there are other things we can’t measure causing them. Since graphs
usually represent random variables, it is expected that a random component
will cause all the variables, which is what those Us represent. However, they
won’t add anything to the causal story I’m going to tell, so I might just as well
omit them:



Here, I’m saying that the past performance of a company causes the
company to hire a top-notch consultant. If the company is doing great, it can
afford to pay the expensive service. If the company is not doing so great, it
can’t. Hence, past performance (measured here by past profits) is what
determines the odds of a company hiring a consultant. Remember that this
relationship is not necessarily deterministic. I’m just saying that companies
that are doing well are more likely to hire top-notch consultants.

Not only that, companies that did well in the past 6 months are very likely to
also do well in the next 6 months. Of course, this doesn’t always happen, but,
on average, it does, which is why you also have an edge from past
performance to future performance. Finally, I’ve added an edge from
consultancy to the firm’s future performance. Your goal is to know the
strengths of this connection. This is the causal relationship you care about.
Does consultancy actually cause company performance to increase?

Answering this question is not straightforward because there are two
sources of association between consultancy and future performance. One is
causal and the other is not. To understand and untangle them, you first need
to take a quick look at how association flows in causal graphs.

Crash Course in Graphical Models

Schools offer whole semesters on graphical models. By all means, if you
want to go deep in graphical models, it will be very beneficial for your
understanding of causal inference. But, for the purpose of this book, it is just
(utterly) important that you understand what kind of independence and
conditional independence assumptions a graphical model entails. As you’ll
see, associations flow through a graphical model as water flows through a
stream. You can stop this flow or enable it, depending on how you treat the
variables in the graph. To understand this, let’s examine some common
graphical structures and examples. They will be pretty straightforward, but
they are the sufficient building blocks to understand everything about the



flow of association, independence, and conditional independence on
graphical models.

Chains

First, look at this very simple graph. It’s called a chain. Here T causes M,
which causes Y. You can sometimes refer to the intermediary node as a
mediator, because it mediates the relationship between T and Y:

In this first graph, although causation only flows in the direction of the
arrows, association flows both ways. To give a more concrete example, let’s
say that knowing about causal inference improves your problem-solving
skills, and problem solving increases your chances of getting a promotion.
So causal knowledge causes your problem-solving skills to increase, which
in turn causes you to get a job promotion. You can say here that job
promotion is dependent on causal knowledge. The greater the causal
expertise, the greater your chances of getting a promotion. Also, the greater
your chances of promotion, the greater your chance of having causal
knowledge. Otherwise, it would be difficult to get a promotion. In other
words, job promotion is associated with causal inference expertise the same
way that causal inference expertise is associated with job promotion, even
though only one of the directions is causal. When two variables are
associated with each other, you can say they are dependent or not
independent:

T ⊥̸ Y

Now, let’s hold the intermediary variable fixed. You could do that by looking
only at people with the same M, or problem-solving skills in our example.



Formally, you can say you are conditioning on M. In this case, the
dependence is blocked. So, T and Y are independent given M. You can write
this mathematically as:

T ⊥ Y |M

To indicate that we are conditioning on a node, I’ll shade it:

To see what this means in our example, think about conditioning on people’s
problem-solving skills. If you look at a bunch of people with the same
problem-solving skills, knowing which ones are good at causal inference
doesn’t give any further information about their chances of getting a job
promotion. In mathematical terms:

E[Promotion|Solve problems,Causal knowledge] = E[Promotion|Solve problems]

The inverse is also true; once I know how good you are at solving problems,
knowing about your job promotion status gives me no further information
about how likely you are to know causal inference.

As a general rule, if you have a chain like in the preceding graph, association
flowing in the path from T to Y is blocked when you condition on an
intermediary variable M. Or:
T ⊥̸ Y

but

T ⊥ Y |M

Forks

Moving on, let’s consider a fork structure. In this structure, you have a
common cause: the same variable causes two other variables down the



graph. In forks, association flows backward through the arrows:

For example, let’s say your knowledge of statistics causes you to know more
about causal inference and about machine learning. However, knowing
causal inference doesn’t help you with machine learning and vice versa, so
there is no edge between those variables.

This graph is telling you that if you don’t know someone’s level of statistical
knowledge, then knowing that they are good at causal inference makes it
more likely that they are also good at machine learning, even if causal
inference doesn’t help you with machine learning. That is because even if
you don’t know someone’s level of statistical knowledge, you can infer it
from their causal inference knowledge. If they are good at causal inference,
they are probably good at statistics, making it more likely that they are also
good at machine learning. The variables at the tip of a fork move together
even if they don’t cause each other, simply because they are both caused by
the same thing. In the causal inference literature, when we have a common
cause between a treatment and the outcome, we call that common cause a
confounder.

The fork structure is so important in causal inference that it deserves
another example. Do you know how tech recruiters sometimes ask you to
solve problems that you’ll probably never find in the job you are applying
for? Like when they ask you to invert a binary tree or count duplicate
elements in Python? Well, they are essentially leveraging the fact that
association flows through a fork structure in the following graph:



The recruiter knows that good programmers tend to be top performers. But
when they interview you, they don’t know if you are a good programmer or
not. So they ask you a question that you’ll only be able to answer if you are.
That question doesn’t have to be about a problem that you’ll encounter in
the job you are applying for. It just signals whether you are a good
programmer or not. If you can answer the question, you will likely be a good
programmer, which means you will also likely be a good employee.

Now, let’s say that the recruiter already knows that you are a good
programmer. Maybe they know you from previous companies or you have
an impressive degree. In this case, knowing whether or not you can answer
the application process questions gives no further information on whether
you will be a good employee or not. In technical terms, you can say that
answering the question and being a good employee are independent, once
you condition on being a good programmer.

More generally, if you have a fork structure, two variables that share a
common cause are dependent, but independent when you condition on the
common cause. Or:
T ⊥̸ Y

but

T ⊥ Y |X

Immorality or Collider

The only structure missing is the immorality (and yes, this is a technical
term). An immorality is when two nodes share a child, but there is no direct



relationship between them. Another way of saying this is that two variables
share a common effect. This common effect is often referred to as a collider,
since two arrows collide at it:

In an immorality, the two parent nodes are independent of each other. But
they become dependent if you condition on the common effect. For example,
consider that there are two ways to get a job promotion. You can either be
good at statistics or flatter your boss. If I don’t condition on your job
promotion, that is, I don’t know if you will or won’t get it, then your level of
statistics and flattering are independent. In other words, knowing how good
you are at statistics tells me nothing about how good you are at flattering
your boss. On the other hand, if you did get a job promotion, suddenly,
knowing your level of statistics tells me about your flattering level. If you are
bad at statistics and did get a promotion, you will likely be good at flattering
your boss. Otherwise, it will be very unlikely for you to get a promotion.
Conversely, if you are good at statistics, it is more likely that you are bad at
flattering, as being good at statistics already explains your promotion. This
phenomenon is sometimes called explaining away, because one cause
already explains the effect, making the other cause less likely.

As a general rule, conditioning on a collider opens the association path,
making the variables dependent. Not conditioning on it leaves it closed. Or:
T ⊥ Y

and

T ⊥̸ Y |X

Importantly, you can open the same dependence path if instead of
conditioning on the collider, you condition on a effect (direct or not) of the



collider. Continuing with our example, let’s now say that getting a job
promotion massively increases your salary, which gives you the next graph:

In this graph, even if you don’t condition on the collider, but condition on a
cause of it, the causes of the collider become dependent. For instance, even if
I don’t know about your promotion, but I do know about your massive
salary, your knowledge about statistics and boss flattering become
dependent: having one makes it less likely that you also have the other.

The Flow of Association Cheat Sheet

Knowing these three structures—chains, forks, and immoralities—you can
derive an even more general rule about independence and the flow of
association in a graph.

A path is blocked if and only if:

1. It contains a non-collider that has been conditioned on.

2. It contains a collider that has not been conditioned on and has no
descendants that have been conditioned on.

Figure 3-1 is a cheat sheet about how dependence flows in a graph.

If these rules seem a bit opaque or hard to grasp, now is a good time for me
to tell you that, thankfully, you can use off-the-shelf algorithms to check if
two variables in a graph are associated with each other or if they are



independent. To tie everything you learned together, let’s go over a final
example so I can show you how to code it up.

Figure 3-1. Cheat sheet about how dependence flows in a graph

Querying a Graph in Python

Take the following graph:

In a moment, you’ll input this graph to a Python library that will make
answering questions about it pretty easy. But before you do that, as an



exercise to internalize the concepts you’ve just learned, try to answer the
following questions on your own:

Are D and C dependent?

Are D and C dependent given A?

Are D and C dependent given G?

Are A and B dependent?

Are A and B dependent given C?

Are G and F dependent?

Are G and F dependent given E?

Now, to see if you got them right, you can input that graph into a
DiGraph , from networkx . networkx  is a library to handle

graphical models and has a bunch of handy algorithms that will help you
inspect this graph:

In [4]: import networkx as nx

        model = nx.DiGraph([

            ("C", "A"),

            ("C", "B"),

            ("D", "A"),

            ("B", "E"),

            ("F", "E"),

            ("A", "G"),

        ])

        

As a starter, let’s take D and C. They form the immorality structure you saw
earlier, with A being a collider. From the rule about independence in an
immorality structure, you know that D and C are independent. You also
know that if you condition on the collider A, association starts to flow
between them. The method d_separated  tells you if association



flows between two variables in the graph (d-separation is another way of
expressing the independence between two variables in a graph). To
condition on a variable, you can add it to the observed set. For example, to
check if D and C are dependent given A, you can use d_separated

and pass the fourth argument z={"A"} :

Out[5]: Are D and C dependent? 

        False 

        Are D and C dependent given A? 

        True 

        Are D and C dependent given G? 

        True 

        

Next, notice that D, A, and G form a chain. You know that association flows
in a chain, so D is not independent from G. However, if you condition on the
intermediary variable A, you block the flow of association:

In [5]: print("Are D and C dependent?")

        print(not(nx.d_separated(model, {"D"}, {"C"}, {})))

        print("Are D and C dependent given A?")

        print(not(nx.d_separated(model, {"D"}, {"C"}, {"A"}

        print("Are D and C dependent given G?")

        print(not(nx.d_separated(model, {"D"}, {"C"}, {"G"}

        

In [6]: print("Are G and D dependent?")

        print(not(nx.d_separated(model, {"G"}, {"D"}, {})))

        print("Are G and D dependent given A?")

        print(not(nx.d_separated(model, {"G"}, {"D"}, {"A"}

        



Out[6]: Are G and D dependent? 

        True 

        Are G and D dependent given A? 

        False 

        

The last structure you need to review is the fork. You can see that A, B, and C
form a fork, with C being a common cause of A and B. You know that
association flows through a fork, so A and B are not independent. However,
if you condition on the common cause, the path of association is blocked:

Out[7]: Are A and B dependent? 

        True 

        Are A and B dependent given C? 

        False 

        

Finally, let’s put everything together and talk about G and F. Does association
flow between them? Let’s start at G. You know that association flows
between G and E, since they are in a fork. However, association stops at the
collider E, which means that G and F are independent. Yet if you condition
on E, association starts to flow through the collider and the path opens,
connecting G and F:

In [7]: print("Are A and B dependent?")

        print(not(nx.d_separated(model, {"A"}, {"B"}, {})))

        print("Are A and B dependent given C?")

        print(not(nx.d_separated(model, {"A"}, {"B"}, {"C"}

        



Out[8]: Are G and F dependent? 

        False 

        Are G and F dependent given E? 

        True 

        

This is great. Not only did you learn the three basics structures in graphs,
you also saw how to use off-the-shelf algorithms to check for independences
in the graph. But what does this have to do with causal inference? It’s time to
go back to the problem we were exploring at the beginning of the chapter.
Recall that we were trying to understand the impact of hiring expensive,
top-notch consultants on business performance, which we depicted as the
following graph:

You can use your newly acquired skills to see why association is not
causation in this graph. Notice that you have a fork structure in this graph.
Therefore, there are two flows of association between consultancy and
company’s future performance: a direct causal path and a noncausal path
that is confounded by a common cause. This latter one is referred to as a
backdoor path. The presence of a confounding backdoor path in this graph

In [8]: print("Are G and F dependent?")

        print(not(nx.d_separated(model, {"G"}, {"F"}, {})))

        print("Are G and F dependent given E?")

        print(not(nx.d_separated(model, {"G"}, {"F"}, {"E"}

        



demonstrates that the observed association between consultancy and
company performance cannot be solely attributed to a causal relationship.

Understanding how associations flow in a graph through noncausal paths
will allow you to be much more precise when talking about the difference
between association and causation. For this reason, it pays to revisit the
concept of identification, now under the new light of graphical models.

Identification Revisited

So far, in the absence of randomization, the argument I’ve been using to
explain why it is so hard to find the causal effect is that treated and
untreated are not comparable to each other. For example, companies that
hire consultants usually have better past performance than those that don’t
hire expensive consultants. This results in the sort of bias you’ve seen
before:

E[Y |T = 1] − E[Y |T = 0] = E[Y1 − Y0|T = 1]

ATT

+ {E[Y0|T = 1] − E[Y0|T = 0]}

BIAS

Now that you’ve learned about causal graphs, you can be more precise
about the nature of that bias and, more importantly, you can understand
what you can do to make it go away. Identification is intimately related to
independence in a graphical model. If you have a graph that depicts the
causal relationship between the treatment, the outcome, and other relevant
variables, you can think about identification as the process of isolating the
causal relationship between the treatment and the outcome in that graph.
During the identification phase, you will essentially close all undesirable
flows of association.

Take the consultancy graph. As you saw earlier, there are two association
paths between the treatment and the outcome, but only one of them is
causal. You can check for bias by creating a causal graph that is just like the
original one, but with the causal relationship removed. If treatment and

������ ������



outcome are still connected in this graph, it must be due to a noncausal path,
which indicates the presence of bias:

Out[9]: True 

        

These noncausal flows of association are referred to as backdoor paths. To
identify the causal relationship between T  and Y , you need to close them so
that only the causal path one remains. In the consultancy example, you
know that conditioning on the common cause, the company’s past
performance, closes that path:

In [9]: consultancy_model_severed = nx.DiGraph([

            ("profits_prev_6m", "profits_next_6m"),

            ("profits_prev_6m", "consultancy"),

        #     ("consultancy", "profits_next_6m"), # causal 

        ])

        not(nx.d_separated(consultancy_model_severed,

                           {"consultancy"}, {"profits_next_

        



CIA and the Adjustment Formula

You just saw that conditioning on profits_prev_6m  blocks the
noncausal association flow between the treatment, consultancy, and the
outcome—the company’s future performance. As a result, if you look at a
group of companies with similar past performance and, inside that group,
compare the future performance of those that hired consultants with those
that didn’t, the difference can be entirely attributed to the consultants. This
makes intuitive sense, right? The difference in future performance between
the treated (companies that hired consultants) and the untreated is 1) due to
the treatment itself and 2) due to the fact that companies that hire
consultants tend to be doing well to begin with. If you just compare treated
and untreated companies that are doing equally well, the second source of
difference disappears.

Of course, like with everything in causal inference, you are making an
assumption here. Specifically, you are assuming that all sources of noncausal
association between the treated and the outcome is due to the common
causes you can measure and condition on. This is very much like the
independence assumption you saw earlier, but in its weaker form:

(Y0,Y1) ⊥ T |X

This conditional independence assumption (CIA) states that, if you compare
units (i.e.,companies) with the same level of covariates X, their potential
outcomes will be, on average, the same. Another way of saying this is that
treatment seems as if it were randomized, if you look at units with the same
values of covariate X.



CIA NAMES

The CIA permeates a lot of causal inference research and it goes by many names, like ignorability,
exogeneity, or exchangeability.

The CIA also motivates a very simple way to identify the causal effect from
observable quantities in the data. If treatment looks as good as random
within groups of X, all you need to do is compare treated and untreated
inside each of the X defined groups and average the result using the size of
the group as weights:

ATE = EX[E[Y |T = 1] − E[Y |T = 0]]

This is called the adjustment formula or conditionality principle. It says that,
if you condition on or control for X, the average treatment effect can be
identified as the weighted average of in-group differences between treated
and control. Again, if conditioning on X blocks the flow of association
through the noncausal paths in the graph, a causal quantity, like the ATE,
becomes identifiable, meaning that you can compute it from observable
data. The process of closing backdoor paths by adjusting for confounders
gets the incredibly creative name of backdoor adjustment.

Positivity Assumption

The adjustment formula also highlights the importance of positivity. Since
you are averaging the difference between treatment and outcome over X,
you must ensure that, for all groups of X, there are some units in the
treatment and some in the control, otherwise the difference is undefined.
More formally, you can say that the conditional probability of the treatment
needs to be strictly positive and below 1: 1 > P(T |X) > 0. Identification is
still possible when positivity is violated, but it will require you to make
dangerous extrapolations.

ATE = ∑
x

{(E[Y |T = 1,X = x] − E[Y |T = 0,X = x])P(X = x)}

= ∑
x

{E[Y |T = 1,X = x]P(X = x) − E[Y |T = 0,X = x]P(X = x)}



POSITIVITY NAMES

Since the positivity assumption is also very popular in causal inference, it too goes by many names,
like common support or overlap.

An Identification Example with Data

Since this might be getting a bit abstract, let’s see how it all plays out with
some data. To keep our example, let’s say you’ve collected data on six
companies, three of which had low profits (1 million USD) in the past six
months and three of which had high profits. Just like you suspected, highly
profitable companies are more likely to hire consultants. Two out of the
three high-profit companies hired them, while only one out of the three low-
profit companies hired consultants (if the low sample bothers you, please
pretend that each data point here actually represents 10,000 companies):

In [10]: df = pd.DataFrame(dict(

             profits_prev_6m=[1.0, 1.0, 1.0, 5.0, 5.0, 5.0]

             consultancy=[0, 0, 1, 0, 1, 1],

             profits_next_6m=[1, 1.1, 1.2, 5.5, 5.7, 5.7],

         ))

         df

         



profits_prev_6m consultancy profits_next_6m

0 1.0 0 1.0

1 1.0 0 1.1

2 1.0 1 1.2

3 5.0 0 5.5

4 5.0 1 5.7

5 5.0 1 5.7

If you simply compare profits_next_6m  of the companies that
hired consultants with those that didn’t, you’ll get a difference of 1.66 MM in
profits:

Out[11]: 1.666666666666667 

         

But you know better. This is not the causal effect of consultancy on a
company’s performance, since the companies that performed better in the
past are overrepresented in the group that hired consultants. To get an
unbiased estimate of the effect of consultants, you need to look at companies

In [11]: (df.query("consultancy==1")["profits_next_6m"].mea

          - df.query("consultancy==0")["profits_next_6m"].m

         



with similar past performance. As you can see, this yields more modest
results:

Out[12]: profits_prev_6m 

         1.0    0.15 

         5.0    0.20 

         Name: profits_next_6m, dtype: float64 

         

If you take the weighted average of these effects, where the weights are the
size of each group, you end up with an unbiased estimate of the ATE. Here,
since the two groups are of equal size, this is just a simple average, giving
you an ATE of 175,000. Hence, if you are a manager deciding whether to hire
consultants and you are presented with the preceding data, you can
conclude that the impact of consultants on future profits is about 175k USD.
Of course, in order to do that, you have to invoke the CIA. That is, you have
to assume that past performance is the only common cause of hiring
consultants and future performance.

You just went through a whole example of encoding your beliefs about a
causal mechanism into a graph and using that graph to find out which
variables you needed to condition on in order to estimate the ATE, even
without randomizing the treatment. Then, you saw what that looked like
with some data, where you estimated the ATE, following the adjustment
formula and assuming conditional independence. The tools used here are
fairly general and will inform you of many causal problems to come. Still, I

In [12]: avg_df = (df

                   .groupby(["consultancy", "profits_prev_6

                   ["profits_next_6m"]

                   .mean())

         avg_df.loc[1] - avg_df.loc[0] 

         



don’t think we are done yet. Some graphical structures—and the bias they
entail—are much more common than others. It is worth going through them
so you can start to get a feeling for the difficulties that lie ahead in your
causal inference journey.

FRONT DOOR ADJUSTMENT

The backdoor adjustment is not the only possible strategy to identify causal
effects. One can leverage the knowledge of causal mechanisms to identify
the causal effect via a front door, even in the presence of unmeasured
common causes:

With this strategy, you must be able to identify the effect of the treatment on
a mediator and the effect of that mediator on the outcome. Then, the
identification of the effect of treatment on the outcome becomes the
combination of those two effects. However, in the tech industry, it’s hard to
find applications where such a graph is plausible, which is why the front
door adjustment is not so popular.

Confounding Bias

The first significant cause of bias is confounding. It’s the bias we’ve been
discussing so far. Now, we are just putting a name to it. Confounding happens
when there is an open backdoor path through which association flows
noncausally, usually because the treatment and the outcome share a common
cause. For example, let’s say that you work in HR and you want to know if
your new management training program is increasing employers’
engagement. However, since the training is optional, you believe only



managers that are already doing great attend the program and those who
need it the most, don’t. When you measure engagement of the teams under
the managers that took the training, it is much higher than that of the teams
under the managers who didn’t attend the training. But it’s hard to know
how much of this is causal. Since there is a common cause between
treatment and outcome, they would move together regardless of a causal
effect.

To identify that causal effect, you need to close all backdoor paths between
the treatment and the outcome. If you do so, the only effect that will be left is
the direct effect T → Y . In our example, you could somehow control for the
manager’s quality prior to taking the training. In that situation, the
difference in the outcome will be only due to the training, since manager
quality prior to the training would be held constant between treatment and
control. Simply put, to adjust for confounding bias, you need to adjust for the
common causes of the treatment and the outcome:

Unfortunately, it is not always possible to adjust for all common causes.
Sometimes, there are unknown causes or known causes that you can’t
measure. The case of manager quality is one of them. Despite all the effort,
we still haven’t yet figured out how to measure management quality. If you
can’t observe manager quality, then you can’t condition on it and the effect
of training on engagement is not identifiable.

Surrogate Confounding



In some situations, you can’t close all the backdoor paths due to unmeasured
confounders. In the following example, once again, manager quality causes
managers to opt in for the training and team’s engagement. So there is
confounding in the relationship between the treatment (training) and the
outcome (team’s engagement). But in this case, you can’t condition on the
confounder, because it is unmeasurable. In this case, the causal effect of the
treatment on the outcome is not identifiable due to confounder bias.
However, you have other measured variables that can act as proxies for the
confounder manager’s quality. Those variables are not in the backdoor path,
but controlling for them will help reduce the bias (even though it won’t
eliminate it). Those variables are sometimes referred to as surrogate
confounders.

In this example, you can’t measure manager quality, but you can measure
some of its causes, like the manager’s tenure or level of education; and some
of its effects, like the team’s attrition or performance. Controlling for those
surrogate variables is not sufficient to eliminate bias, but it sure helps:

Randomization Revisited

In many important and very relevant research questions, confounders are a
major issue, since you can never be sure that you’ve controlled for all of
them. But if you are planning to use causal inference mostly in the industry,
I have good news for you. In the industry, you are mostly interested in
learning the causal effects of things that your company can control—like
prices, customer service, and marketing budget—so that you can optimize



them. In those situations, it is fairly easy to know what the confounders are,
because the business usually knows what information it used to allocate the
treatment. Not only that, even when it doesn’t, it’s almost always an option
to intervene on the treatment variable. This is precisely the point of A/B
tests. When you randomize the treatment, you can go from a graph with
unobservable confounders to one where the only cause of the treatment is
randomness:

Consequently, besides trying to see what variables you need to condition on
in order to identify the effect, you should also be asking yourself what are
the possible interventions you could make that would change the graph into
one where the causal quantity of interest is identifiable.

Not all is lost when you have unobserved confounders. In Part IV, I’ll cover
methods that can leverage time structure in the data to deal with
unobserved confounders. Part V will cover the use of instrumental variables
for the same purpose.



SENSITIVITY ANALYSIS AND PARTIAL IDENTIFICATION

When you can’t measure all common causes, instead of simply giving up, it
is often much more fruitful to shift the discussion from “Am I measuring all
confounders?” to “How strong should the unmeasured confounders be to
change my analysis significantly?” This is the main idea behind sensitivity
analysis. For a comprehensible review on this topic, I suggest you check out
the paper “Making Sense of Sensitivity: Extending Omitted Variable Bias,” by
Cinelli and Hazlett.

Additionally, even when the causal quantity you care about can’t be point
identified, you can still use observable data to place bounds around it. This
process is called partial identification and it is an active area of research.

Selection Bias

If you think confounding bias was already a sneaky little stone in your
causal inference shoe, just wait until you hear about selection bias. While
confounding bias happens when you don’t control for common causes to the
treatment and outcome, selection bias is more related to conditioning on
common effects and mediators.

BIAS TERMINOLOGY

There isn’t a consensus in the literature on the names of biases. For instance, economists tend to refer
to all sorts of biases as selection bias. In contrast, some scientists like to further segment what I’m
calling selection bias into collider bias and mediator bias. I’ll use the same terminology as in the book
Causal Inference: What If, by Miguel A. Hernán and James M. Robins (Chapman & Hall/CRC).

Conditioning on a Collider

Consider the case where you work for a software company and want to
estimate the impact of a new feature you’ve just implemented. To avoid any
sort of confounding bias, you do a randomized rollout of the feature: 10% of
the customers are randomly chosen to get the new feature, while the rest
don’t. You want to know if this feature made your customer happier and



more satisfied. Since satisfaction isn’t directly measurable, you use Net
Promoter Score (NPS) as a proxy for it. To measure NPS, you send a survey to
the customers in the rollout (treated) and in the control groups, asking them
if they would recommend your product. When the results arrive, you see
that the customers who had the new feature and responded to the NPS
survey had higher NPS scores than the ones that didn’t have the new feature
and also responded to the NPS survey. Can you say that this difference is
entirely due to the causal effect of the new feature on NPS? To answer this
question, you should start with the graph that represents this situation:

To cut to the chase, sadly, the answer is no. The issue here is that you can
only measure NPS for those who responded to the NPS survey. You are
estimating the difference between treated and control while also
conditioning on customers who responded to the NPS survey. Even though
randomization allows you to identify the ATE as the difference in outcome
between treated and control, once you condition on the common effect, you
also introduce selection bias. To see this, you can re-create this graph and
delete the causal path from the new feature to customer satisfaction, which
also closes the direct path to NPS. Then, you can check if NPS is still
connected to the new features, once you condition on the response. You can
see that it is, meaning that association flows between the two variables via a
noncausal path, which is precisely what bias means:

In [13]: nps_model = nx.DiGraph([

            ("RND", "New Feature"),



Out[13]: True 

         

SEE ALSO

Causal identification under selection bias is very sneaky. This approach of deleting the causal path
and checking if the treatment and outcome are still connected won’t always work with selection bias.
Unfortunately, at the time of this writing, I’m not aware of any Python libraries that deal with
selection-biased graphs. But you can check DAGitty, which works on your browser and has algorithms
for identification under selection bias.

To develop your intuition about this bias, let’s get your godlike powers back
and pretend you can see into the world of counterfactual outcomes. That is,
you can see both the NPS customers would have under the control, NPS0,
and under the treatment, NPS1, for all customers, even those who didn’t
answer the survey. Let’s also simulate data in such a way that we know the
true effect. Here, the new feature increases NPS by 0.4 (which is a high
number for any business standards, but bear with me for the sake of the
example). Let’s also say that both the new feature and customer satisfaction
increases the chance of responding to the NPS survey, just like we’ve shown
in the previous graph. With the power to measure counterfactuals, this is
what you would see if you aggregated the data by the treated and control
groups:

         #     ("New Feature", "Customer Satisfaction"),

             ("Customer Satisfaction", "NPS"),

             ("Customer Satisfaction", "Response"),

             ("New Feature", "Response"),

         ])

         

         not(nx.d_separated(nps_model, {"NPS"}, {"New Featu

         

http://www.dagitty.net/


First, notice that 63% of those with the new feature responded to the NPS
survey, while only 18% of those in the control responded to it. Next, if you
look at both treated and control rows, you’ll see an increase of 0.4 by going
from NPS0 to NPS1. This simply means that the effect of the new feature
is 0.4 for both groups. Finally, notice that the difference in NPS between
treated (new_feature=1) and control (new_feature=0) is about 0.4. Again, if
you could see the NPS of those who did not respond to the NPS survey, you
could just compare treated and control groups to get the true ATE.

Of course, in reality, you can’t see the columns NPS0 and NPS1. You also
also can’t see the NPS column like this, because you only have NPS for those
who responded to the survey (18% of the control rows and 63% of the
treated rows):

responded nps_0 nps_1 nps

new_feature

0 0.183715 –0.005047 0.395015 –0.0050

1 0.639342 –0.005239 0.401082 0.40108

responded nps_0 nps_1 nps

new_feature

0 0.183715 NaN NaN NaN

1 0.639342 NaN NaN NaN



If you further break down the analysis by respondents, you get to see the
NPS of those where Response = 1. But notice how the difference between
treated and control in that group is no longer 0.4, but only about half of that
(0.22). How can that be? This is all due to selection bias:

Adding back the unobservable quantities, you can see what is going on
(focus on the respondents group here):

nps_0 nps_1 nps

responded new_feature

0 0 NaN NaN NaN

1 NaN NaN NaN

1 0 NaN NaN 0.31407

1 NaN NaN 0.53610



Initially, treated and control groups were comparable, in terms of their
baseline satisfaction Y0. But once you condition on those who responded the
survey, the treatment group has lower baseline satisfaction 
E[Y0|T = 0,R = 1] > E[Y0|T = 1,R = 1]. This means that a simple
difference in averages between treated and control does not identify the
ATE, once you condition on those who responded:

That bias term won’t be zero if the outcome, customer satisfaction, affects
the response rate. Since satisfied customers are more likely to answer the
NPS survey, identification is impossible in this situation. If the treatment
increases satisfaction, then the control group will contain more customers
whose baseline satisfaction is higher than the treatment group. That’s
because the treated group will have those who were satisfied (high baseline
satisfaction) plus those who had low baseline satisfaction, but due to the
treatment, became more satisfied and answered the survey.

nps_0 nps_1 nps

responded new_feature

0 0 –0.076869 0.320616 –0.0768

1 –0.234852 0.161725 0.16172

1 0 0.314073 0.725585 0.31407

1 0.124287 0.536106 0.53610

E[Y |T = 1,R = 1] − E[Y |T = 1,R = 1] = E[Y1 − Y0|R = 1]

ATE

+E[Y0|T = 0,R = 1] − E[Y0|T = 1,R = 1]

SelectionBias

������
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SEE ALSO

Selection bias is a much more complex topic than I can give it justice in this chapter. For instance, you
can have selection bias simply by conditioning on an effect of the outcome, even if that effect isn’t
shared with the treatment. This situation is called a virtual collider. To learn more about it and much
more, I strongly recommend you check out the paper “A Crash Course in Good and Bad Controls,” by
Carlos Cinelli et al. It goes through everything covered in this chapter and more. The paper is also
written in clear language, making it easy to read.

Adjusting for Selection Bias

Unfortunately, correcting selection bias is not at all trivial. In the example
we’ve been discussing, even with a randomized control trial, the ATE is not
identifiable, simply because you can’t close the noncausal flow of association
between the new feature and customer satisfaction, once you condition on
those who responded to the survey. To make some progress, you need to
make further assumptions, and here is where the graphical model starts to
shine. It allows you to be very explicit and transparent about those
assumptions.

For instance, you need to assume that the outcome doesn’t cause selection.
In our example, this would mean that customer satisfaction doesn’t cause
customers to be more or less likely to answer the survey. Instead, you would
have some other observable variable (or variables) that cause both selection
and the outcome. For example, it could be that the only thing that causes
customers to respond to the survey is the time they spend in the app and the
new feature. In this case, the noncausal association between treatment and
control flows through time in the app:



Only expert knowledge will be able to tell how strong of an assumption that
is. But if it is correct, the effect of the new feature on satisfaction becomes
identifiable once you control for time in the app.

Once again, you are applying the adjustment formula here. You are simply
segmenting the data into groups defined by X so that treated and control
groups become comparable within those segments. Then, you can just
compute the weighted average of the in-group comparison between treated
and control, using the size of each group as the weights. Only now, you are
doing all of this while also conditioning on the selection variable:

Generally speaking, to adjust for selection bias, you have to adjust for
whatever causes selection and you also have to assume that neither the
outcome nor the treatment causes selection directly or shares a hidden
common cause with selection. For instance, in the following graph, you have
selection bias since conditioning on S opens a noncausal association path
between T and Y:

You can close two of these paths by adjusting for measurable variables that
explain selection, X3, X4, and X5. However, there are two paths you
cannot close (shown in dashed lines): Y → S ← T  and T → S ← U → Y .
That’s because the treatment causes selection directly and the outcome

ATE = ∑
x

{(E[Y |T = 1,R = 1,X] − E[Y |T = 0,R = 1,X])P(X|R = 1)}



shares a hidden common cause with selection. You can mitigate the bias
from this last path by further conditioning on X2 and X1, as they account
for some variation in U, but that will not eliminate the bias completely.

This graph reflects a more plausible situation you will encounter when it
comes to selection bias, like the response bias we’ve just used as an example.
In these situations, the best you can do is to condition on variables that
explain the selection. This will reduce the bias, but it won’t eliminate it
because, as you saw, 1) there are things that cause selection that you don’t
know or can’t measure, and 2) the outcome or the treatment might cause
selection directly.



RACTICAL EXAMPLE

THE HIDDEN BIAS IN SURVIVAL ANALYSIS

Survival analysis appears in many business applications that involve
duration or time to an event. For instance, a bank is very interested in
understanding how the size of a loan (loan amount) increases the chance of
a customer defaulting on that loan. Consider a 3-year loan. The customer can
default in the first, second, or third year, or they could not default at all. The
goal of the bank is to know how loan amount impacts P(Default | yr = 1), 
P(Default | yr = 2), and P(Default | yr = 3). Here, for simplicity’s sake,
consider that the bank has randomized the loan amount. Notice how only
customers who survived (did not default) in year 1 are observed in year 2
and only customers who survived years 1 and 2 are observed in year 3. This
selection makes it so that only the effect of loan size in the first year is
identifiable.

Intuitively, even if the loan amount was randomized, it only stays that way
in the first year. After that, if the loan amount increases the chance of
default, customers with lower risk of defaulting will be overrepresented in
the region with high loan amounts. Their risk will have to be low enough to
offset the increase caused by a bigger loan amount; otherwise, they would
have defaulted at year 1. If the bias is too extreme, it can even look like
bigger loans cause risk to decrease in a year after year 1, which doesn’t
make any sense.

A simple solution for this selection bias problem is to focus on cumulative
outcome (survival), Y |time > t, rather than yearly outcomes (hazard rates),
Y |time = t. For example, even though you can’t identify the effect of loan
amount on default at year 2, P(Default | yr = 2), you can easily identify
the effect on default up to year 2, P(Default | yr ≤ 2):



I also don’t want to give you the false idea that just controlling for
everything that causes selection is a good idea. In the following graph,
conditioning on X opens a noncausal path, Y → X ← T :

Conditioning on a Mediator

While the selection bias discussed so far is caused by unavoidable selection
into a population (you were forced to condition on the respondent
population), you can also cause selection bias inadvertently. For instance,
let’s suppose you are working in HR and you want to find out if there is
gender discrimination; that is, if equally qualified men and women are paid
differently. To do that analysis, you might consider controlling for seniority
level; after all, you want to compare employees who are equally qualified,
and seniority seems like a good proxy for that. In other words, you think
that if men and women in the same position have different salaries, you will
have evidence of a gender pay gap in your company.

The issue with this analysis is that the causal diagram probably looks
something like this:



The seniority level is a mediator in the path between the treatment (woman)
and salary. Intuitively, the difference in salary between women and men has
a direct cause (the direct path, woman → salary) and an indirect cause,
which flows through the seniority (the indirect path 
woman → seniority → salary). What this graph tells you is that one way
women can suffer from discrimination is by being less likely to be promoted
to higher seniorities. The difference in salary between men and women is
partly the difference in salary at the same seniority level, but also the
difference in seniority. Simply put, the path
woman → seniority → salary is also a causal path between the
treatment and the outcome, and you shouldn’t close it in your analysis. If
you compare salaries between men and women while controlling for
seniority, you will only identify the direct discrimination, 
woman → salary.

It is also worth mentioning that conditioning on descendants of the mediator
node also induces bias. This sort of selection doesn’t completely shut the
causal path, but it partially blocks it:



Key Ideas

In this chapter, you focused mostly on the identification part of causal
inference. The goal was to learn how to use graphical models to be
transparent about the assumptions you are making and to see what kind of
association—causal or not—those assumptions entail. To do that, you had to
learn how association flows in a graph. This cheat sheet is a good summary
of those structures, so I recommend you keep it close by:

Then, you saw that identification amounts to isolating the causal flow of
association from the noncausal ones in a graph. You could close noncausal
paths of association by adjusting (conditioning) on some variables or even
intervening on a graph, like in the case where you do a randomized
experiment. Bayesian network software, like networkx , is particularly
useful here, as it aids you when checking if two nodes are connected in a



graph. For instance, to check for confounder bias, you can simply remove
the causal path in a graph and check if the treatment and outcome nodes are
still connected, even with that path removed. If they are, you have a
backdoor path that needs to be closed.

Finally, you went through two very common structures of bias in causal
problems. Confounding bias happens when the treatment and the outcome
share a common cause. This common cause forms a fork structure, which
creates a noncausal association flow between the treatment and the
outcome:

To fix confounding bias, you need to try to adjust for the common causes,
directly or by the means of proxy variables. This motivated the idea of the
adjustment formula:

and the conditional independence assumption, which states that, if
treatment is as good as randomly assigned within groups of variables X,
then you can identify causal quantities by conditioning on X.

Alternatively, if you can intervene on the treatment node, confounding
becomes a lot easier to deal with. For instance, if you design a random
experiment, you’ll create a new graph where the arrows pointing to the
treatment are all deleted, which effectively annihilates confounding bias.

You also learned about selection bias, which appears when you condition on
a common effect (or descendant of a common effect) between the treatment

ATE = ∑
x

{(E[Y |T = 1,X = x] − E[Y |T = 0,X = x])P(X = x)},



and the outcome or when you condition on a mediator node (or a
descendant of a mediator node). Selection bias is incredibly dangerous
because it does not go away with experimentation. To make it even worse, it
can be quite counterintuitive and hard to spot:

Again, it is worth mentioning that understanding a causal graph is like
learning a new language. You’ll learn most of it by seeing it again and again
and by trying to use it.



Part II. Adjusting for Bias



Chapter 4. The Unreasonable
Effectiveness of Linear Regression

In this chapter you’ll add the first major debiasing technique in your
causal inference arsenal: linear regression or ordinary least squares
(OLS) and orthogonalization. You’ll see how linear regression can
adjust for confounders when estimating the relationship between a
treatment and an outcome. But, more than that, I hope to equip you
with the powerful concept of treatment orthogonalization. This idea,
born in linear regression, will come in handy later on when you start
to use machine learning models for causal inference.

All You Need Is Linear Regression

Before you skip to the next chapter because “oh, regression is so easy!
It’s the first model I learned as a data scientist” and yada yada, let me
assure you that no, you actually don’t know linear regression. In fact,
regression is one of the most fascinating, powerful, and dangerous
models in causal inference. Sure, it’s more than one hundred years
old. But, to this day, it frequently catches even the best causal
inference researchers off guard.

OLS RESEARCH

Don’t believe me? Just take a look at some recently published papers on the topic and you’ll
see. A good place to start is the article “Difference-in-Differences with Variation in Treatment
Timing,” by Andrew Goodman-Bacon, or the paper “Interpreting OLS Estimands When
Treatment Effects Are Heterogeneous” by Tymon Słoczyński, or even the paper
“Contamination Bias in Linear Regressions” by Goldsmith-Pinkham et al.

I assure you: not only is regression the workhorse for causal
inference, but it will be the one you’ll use the most. Regression is also



a major building block for more advanced techniques, like most of the
panel data methods (difference-in-differences and two-way fixed
effects), machine learning methods (Double/Debiased Machine
Learning), and alternative identification techniques (instrumental
variables or discontinuity design).

Why We Need Models

Now that I hopefully convinced you to stay, we can get down to
business. To motivate the use of regression, let’s consider a pretty
challenging problem in banking and the lending industry in general:
understanding the impact of loan amount or credit card limits on
default rate. Naturally, increasing someone’s credit card limit will
increase (or at least not decrease) the odds of them defaulting on the
credit card bill. But, if you look at any banking data, you will see a
negative correlation between credit lines and default rate. Obviously,
this doesn’t mean that higher lines cause customers to default less.
Rather, it simply reflects the treatment assignment mechanism: banks
and lending companies offer more credit to customers who have a
lower chance of defaulting, as perceived by their underwriting
models. The negative correlation you see is the effect of confounding
bias:

Of course the bank doesn’t know the inherent risk of default, but it
can use proxy variables X—like income or credit scores—to estimate



it. In the previous chapters, you saw how you could adjust for
variables to make the treatment look as good as randomly assigned.
Specifically, you saw how the adjustment formula:

which, together with the conditional independence assumption, 
(Y0,Y1) ⊥ T |X, allows you to identify the causal effect.

However, if you were to literally apply the adjustment formula, things
can get out of hand pretty quickly. First, you would need to partition
your data into segments defined by the feature X. This would be fine
if you had very few discrete features. But what if there are many of
them, with some being continuous? For example, let’s say you know
the bank used 10 variables, each with 3 groups, to underwrite
customers and assign credit lines. That doesn’t seem a lot, right? Well,
it will already amount to 59,049, or 310, cells. Estimating the ATE in
each of those cells and averaging the result is only possible if you have
massive amounts of data. This is the curse of dimensionality, a problem
very familiar to most data scientists. In the context of causal inference,
one implication of this curse is that a naive application of the
adjustment formula will suffer from data sparsity if you have lots of
covariates.

ATE = Ex{E[Y |T = 1,X = x] − E[Y |T = 0,X = x]},



CAUSAL INFERENCE VERSUS MACHINE LEARNING LINGO

The literature on machine learning, which is what most data scientists
are familiar with, uses different terms from the literature on causal
inference, which usually comes from econometrics or epidemiology.
So, in the event that you need to translate from one to the other, here
are some of the main equivalences you will encounter:

Feature
Covariates or independent variables
Weights
Parameters or coefficients
Target
Outcome or dependent variable

One way out of this dimensionality problem is to assume that the
potential outcome can be modeled by something like linear regression,
which can interpolate and extrapolate the many individual X defined
cells. You can think about linear regression in this context as a
dimensionality reduction algorithm. It projects all the X variables into
the outcome dimension and makes the comparison between treatment
and control on that projection. It’s quite elegant. But I’m getting ahead
of myself. To really (and I mean truly, with every fiber of your heart)
understand regression, you have to start small: regression in the
context of an A/B test.

Regression in A/B Tests

Pretend you work for an online streaming company, perfecting its
recommender system. Your team just finished a new version of this
system, with cutting-edge technology and the latest ideas from the



machine learning community. While that’s all very impressive, what
your manager really cares about is if this new system will increase the
watch time of the streaming service. To test that, you decide to do an
A/B test. First, you sample a representative but small fraction of your
customer base. Then, you deploy the new recommender to a random
1/3 of that sample, while the rest continue to have the old version of
the recommender. After a month, you collect the results in terms of
average watch time per day:

In [1]: import pandas as pd

        import numpy as np

        data = pd.read_csv("./data/rec_ab_test.csv")

        data.head()

        

recommender age tenure

0 challenger 15 1

1 challenger 27 1

2 benchmark 17 0

3 benchmark 34 1

4 benchmark 14 1



Since the version of recommender was randomized, a simple
comparison of average watch time between versions would already
give you the ATE. But then you had to go through all the hassle of
computing standard errors to get confidence intervals in order to
check for statistical significance. So, what if I told you that you can
interpret the results of an A/B test with regression, which will give
you, for free, all the inference statistics you need? The idea behind
regression is that you’ll estimate the following equation or model:

WatchTimei = β0 + β1challengeri + ei

Where challenger is 1 for customers in the group that got the new
version of the recommender and zero otherwise. If you estimate this
model, the impact of the challenger version will be captured by the

estimate of β1, β̂1 .

To run that regression model in Python, you can use
statsmodels ’ formula API. It allows you to express linear

models succinctly, using R-style formulas. For example, you can
represent the preceding model with the formula 'watch_time

~  C(recommender)' . To estimate the model, just call the
method .fit()  and to read the results, call

.summary()  on a previously fitted model:

In [2]: import statsmodels.formula.api as smf

        result = smf.ols('watch_time ~ C(recommender)'

        result.summary().tables[1]

        



In that R-style formula, the outcome variable comes first, followed by
a ~ . Then, you add the explanatory variables. In this case, you’ll
just use the recommender variable, which is categorical with two
categories (one for the challenger and one for the old version). You
can wrap that variable in C(...)  to explicitly state that the
column is categorical.

PATSY

The formula syntactic sugar is an incredibly convenient way to do feature engineering. You
can learn more about it in the patsy library.

Next, look at the results. First, you have the intercept. This is the
estimate for the β0 parameter in your model. It tells you the expected
value of the outcome when the other variables in the model are zero.
Since the only other variable here is the challenger indicator, you can
interpret the intercept as the expected watch time for those who
received the old version of the recommender system. Here, it means
that customers spend, on average, 2.04 hours per day watching your
streaming content, when with the old version of the recommender
system. Finally, looking at the parameter estimate associated with the

challenger recommender, β̂1 , you can see the increase in watch time

due to this new version. If β̂0  is the estimate for the watch time under

the old recommender, β̂0 + β̂1  tells you the expected watch time for

those who got the challenger version. In other words, β̂1  is an
estimate for the ATE. Due to randomization, you can assign causal

coef std err t P>|t| [

Intercept 2.0491 0.058 35.367 0.000 1
C(recommender)
[T.challenger]

0.1427 0.095 1.501 0.134 –

https://oreil.ly/YuQG_


meaning to that estimate: you can say that the new recommender
system increased watch time by 0.14 hours per day, on average.
However, that result is not statistically significant.

Forget the nonsignificant result for a moment, because what you just
did was quite amazing. Not only did you estimate the ATE, but also got,
for free, confidence intervals and p-values out of it! More than that,
you can see for yourself that regression is doing exactly what it
supposed to do—estimating E[Y |T ] for each treatment:

In [3]: (data

         .groupby("recommender")

         ["watch_time"]

         .mean())

        

Out[3]: recommender 

        benchmark     2.049064 

        challenger    2.191750 

        Name: watch_time, dtype: float64 

        

Just like I’ve said, the intercept is mathematically equivalent to the
average watch time for those in the control—the old version of the
recommender.

These numbers are identical because, in this case, regression is
mathematically equivalent to simply doing a comparison between

averages. This also means that β̂1  is the average difference between
the two groups: 2.191 − 2.049 = 0.1427. OK, so you managed to,
quite literally, reproduce group averages with regressions. But so



what? It’s not like you couldn’t do this earlier, so what is the real gain
here?

Adjusting with Regression

To appreciate the power of regression, let me take you back to the
initial example: estimating the effect of credit lines on default. Bank
data usually looks something like this, with a bunch of columns of
customer features that might indicate credit worthiness, like monthly
wage, lots of credit scores provided by credit bureaus, tenure at
current company and so on. Then, there is the credit line given to that
customer (the treatment in this case) and the column that tells you if a
customer defaulted or not—the outcome variable:

In [4]: risk_data = pd.read_csv("./data/risk_data.csv"

        risk_data.head()

        



SIMULATED DATA

Once again, I’m building from real-world data and changing it to fit the needs of this chapter.
This time, I’m using the wage1  data, curated by professor Jeffrey M. Wooldridge and

available in the “wooldridge” R package.

Here, the treatment, credit_limit , has way too many
categories. In this situation, it is better to treat it as a continuous
variable, rather than a categorical one. Instead of representing the
ATE as the difference between multiple levels of the treatment, you
can represent it as the derivative of the expected outcome with
respect to the treatment:

ATE =
∂

∂t
E[y|t]

Don’t worry if this sounds fancy. It simply means the amount you
expect the outcome to change given a unit increase in the treatment.
In this example, it represents how much you expect the default rate to
change given a 1 USD increase in credit lines.

wage educ exper m

0 950.0 11 16 1

1 780.0 11 7 1

2 1230.0 14 9 1

3 1040.0 15 8 1

4 1000.0 16 1 1



One way to estimate such a quantity is to run a regression. Specifically,
you can estimate the model:

Defaulti = β0 + β1 limiti +ei,

and the estimate β̂1 can be interpreted as the amount you expect risk
to change given a 1 USD increase in limit. This parameter has a causal
interpretation if the limit was randomized. But as you know very well
that is not the case, as banks tend to give higher lines to customers
who are less risky. In fact, if you run the preceding model, you’ll get a
negative estimate for β1:

That is not at all surprising, given the fact that the relationship
between risk and credit limit is negative, due to confounding. If you
plot the fitted regression line alongside the average default by credit
limit, you can clearly see the negative trend:

In [5]: model = smf.ols('default ~ credit_limit', data

        model.summary().tables[1]

        

coef std err t P>|t| [0.025
Intercept 0.2192 0.004 59.715 0.000 0.212
credit_limit–2.402e–05 1.16e–06 –20.689 0.000 –2.63e



To adjust for this bias, you could, in theory, segment your data by all
the confounders, run a regression of default on credit lines inside each
segment, extract the slope parameter, and average the results.
However, due to the curse of dimensionality, even if you try to do that
for a moderate number of confounders—both credit scores—you will
see that there are cells with only one sample, making it impossible for
you to run your regression. Not to mention the many cells that are
simply empty:

Out[6]: credit_score1  credit_score2 

        34.0           339.0            1 

                       500.0            1 

        52.0           518.0            1 

        69.0           214.0            1 

                       357.0            1 

        dtype: int64 

        

In [6]: risk_data.groupby(["credit_score1", "credit_sc

        



Thankfully, once more, regression comes to your aid here. Instead of
manually adjusting for the confounders, you can simply add them to
the model you’ll estimate with OLS:

Defaulti = β0 + β1 limiti +θXi + ei,

Here, X is a vector of confounder variables and θ is the vector of
parameters associated with those confounders. There is nothing
special about θ parameters. They behave exactly like β1. I’m
representing them differently because they are just there to help you
get an unbiased estimate for β1. That is, you don’t really care about
their causal interpretation (they are technically called nuisance
parameters).

In the credit example, you could add the credit scores and wage
confounders to the model. It would look like this:

Defaulti = β0 + β1 limiti +θ1 wagei +θ2 creditScore 1i + θ3 creditScore 2i + ei,

I’ll get into more details about how including variables in the model
will adjust for confounders, but there is a very easy way to see it right
now. The preceding model is a model for E[y|t,X]. Recall that you
want ∂

∂t E[y|t,X]. So what happens if you differentiate the model
with respect to the treatment—credit limit? Well, you simply get β1! In
a sense, β1 can be seen as the partial derivative of the expected value
of default with respect to credit limit. Or, more intuitively, it can be
viewed as how much you should expect default to change, given a
small increase in credit limit, while holding fixed all other variables in
the model. This interpretation already tells you a bit of how regression
adjusts for confounders: it holds them fixed while estimating the
relationship between the treatment and the outcome.

To see this in action, you can estimate the preceding model. Just add
some confounders and, like some kind of magic, the relationship



between credit lines and default becomes positive!

Don’t let the small estimate of β1 fool you. Recall that limit is in the
scales of 1,000s while default is either 0 or 1. So it is no surprise that
increasing lines by 1 USD will increase expected default by a very
small number. Still, that number is statistically significant and tells
you that risk increases as you increase credit limit, which is much
more in line with your intuition on how the world works.

Hold that thought because you are about to explore it more formally.
It’s finally time to learn one of the greatest causal inference tools of all:
the Frisch-Waugh-Lovell (FWL) theorem. It’s an incredible way to get
rid of bias, which is unfortunately seldom known by data scientists.
FWL is a prerequisite to understand more advanced debiasing
methods, but the reason I find it most useful is that it can be used as a
debiasing pre-processing step. To stick to the same banking example,
imagine that many data scientists and analysts in this bank are trying
to understand how credit limit impacts (causes) lots of different

In [7]: formula = 'default ~ credit_limit + wage+credi

        model = smf.ols(formula, data=risk_data).fit()

        model.summary().tables[1]

        

coef std err t P>|t| [0.02

Intercept 0.4037 0.009 46.939 0.000 0.387
credit_limit 3.063e–06 1.54e–06 1.987 0.047 4.16e
wage –8.822e-05 6.07e–06 –14.541 0.000 –0.00
credit_score1–4.175e–05 1.83e–05 –2.278 0.023 –7.77
credit_score2–0.0003 1.52e–05 –20.055 0.000 –0.00



business metrics, not just risk. However, only you have the context
about how the credit limit was assigned, which means you are the
only expert who knows what sort of biases plague the credit limit
treatment. With FWL, you can use that knowledge to debias the credit
limit data in a way that it can be used by everyone else, regardless of
what outcome variable they are interested in. The Frisch-Waugh-Lovell
theorem allows you to separate the debiasing step from the impact
estimation step. But in order to learn it, you must first quickly review a
bit of regression theory.

Regression Theory

I don’t intend to dive too deep into how linear regression is
constructed and estimated. However, a little bit of theory will go a
long way in explaining its power in causal inference. First of all,
regression solves the best linear prediction problem. Let β* be a
vector of parameters:

β* = argmin
β

E[(Yi − X
'
iβ)

2]

Linear regression finds the parameters that minimize the mean
squared error (MSE). If you differentiate it and set it to zero, you will
find that the linear solution to this problem is given by:

β* = E[Xâ�X]−1E[Xâ�Y ]

You can estimate this beta using the sample equivalent:

β̂ = (Xâ�X)−1Xâ�Y

But don’t take my word for it. If you are one of those who understand
code better than formulas, try for yourself. In the following code, I’m
using the algebraic solution to OLS to estimate the parameters of the



model you just saw (I’m adding the intercept as the final variables, so

the first parameter estimate will be β̂1 ):

If you look back a bit, you will see that these are the exact same
numbers you got earlier, when estimating the model with the

ols  function from statsmodels .

In [8]: X_cols = ["credit_limit", "wage", "credit_scor

        X = risk_data[X_cols].assign(intercep=1) 

        y = risk_data["default"] 

 

        def regress(y, X):  

            return np.linalg.inv(X.T.dot(X)).dot(X.T.d

 

        beta = regress(y, X) 

        beta 

        

Out[8]: array([ 3.062e-06, -8.821e-05, -4.174e-05, -3.

        



ASSIGN

I tend to use the method .assign()  from pandas quite a lot. If you are not familiar

with it, it just returns a new data frame with the newly created columns passed to the method:

new_df = df.assign(new_col_1 = 1,

                   new_col_2 = df["old_col"] + 1)

new_df[["old_col", "new_col_1", "new_col_2"]].head()

   old_col  new_col_1  new_col_2

0        4          1          5

1        9          1         10

2        8          1          9

3        0          1          1

4        6          1          7

Single Variable Linear Regression

The β̂ formula from the previous section is pretty general. However, it
pays off to study the case where you only have one regressor. In
causal inference, you often want to estimate the causal impact of a
variable T  on an outcome y. So, you use regression with this single
variable to estimate this effect.

With a single regressor variable T , the parameter associated to it will
be given by:

τ̂ =
Cov(Yi,Ti)

V ar(Ti)
=

E[(Ti − T )(Yi − Y )]

E[(Ti − T )
2
]

If T  is randomly assigned, β1 is the ATE. Importantly, with this simple
formula, you can see what regression is doing. It’s finding out how the
treatment and outcome move together (as expressed by the
covariance in the numerator) and scaling this by units of the
treatment, which is achieved by dividing by the variance of the
treatment.

¯̄

¯



NOTE

You can also tie this to the general formula. Covariance is intimately related to dot products,
so you can pretty much say that Xâ�X takes the role of the denominator in the
covariance/variance formula, while Xâ�y takes the role of the numerator.

Multivariate Linear Regression

Turns out there is another way to see multivariate linear regression,
beyond the general formula you saw earlier. This other way sheds
some light into what regression is doing.

If you have more than one regressor, you can extend the one variable
regression formula to accommodate that. Let’s say those other
variables are just auxiliary and that you are truly interested in
estimating the parameter τ  associated to T :
yi = β0 + τTi + β1X1i+. . . +βkXki + ui

τ  can be estimated with the following formula:

τ̂ =
Cov(Yi, T̃i)

V ar(T̃i)

where T̃i is the residual from a regression of Ti on all of the other
covariates X1i+. . . +Xki.

Now, let’s appreciate how cool this is. It means that the coefficient of a
multivariate regression is the bivariate coefficient of the same
regressor after accounting for the effect of other variables in the model.
In causal inference terms, τ  is the bivariate coefficient of T  after
having used all other variables to predict it.

This has a nice intuition behind it. If you can predict T  using other
variables, it means it’s not random. However, you can make T  look as
good as random once you control for the all the confounder variables 



X. To do so, you can use linear regression to predict it from the
confounder and then take the residuals of that regression T̃ . By
definition, T̃  cannot be predicted by the other variables X that you’ve
already used to predict T . Quite elegantly, T̃  is a version of the
treatment that is not associated (uncorrelated) with any other variable
in X.

I know this is a mouthful, but it is just amazing. In fact, it is already
the work of the FWL theorem that I promised to teach you. So don’t
worry if you didn’t quite get this multivariate regression part, as you
are about to review it in a much more intuitive and visual way.

Frisch-Waugh-Lovell Theorem and
Orthogonalization

FWL-style orthogonalization is the first major debiasing technique you
have at your disposal. It’s a simple yet powerful way to make
nonexperimental data look as if the treatment has been randomized.
FWL is mostly about linear regression; FWL-style orthogonalization
has been expanded to work in more general contexts, as you’ll see in
Part III. The Frisch-Waugh-Lovell theorem states that a multivariate
linear regression model can be estimated all at once or in three
separate steps. For example, you can regress default  on

credit_limit , wage , credit_score1 ,
credit_score2 , just like you already did:

In [9]: formula = 'default ~ credit_limit + wage+credi

        model = smf.ols(formula, data=risk_data).fit()

        model.summary().tables[1]

        



But, according to FWL, you can also break down this estimation into:

1. A debiasing step, where you regress the treatment T  on

confounders X and obtain the treatment residuals T̃ = T − T̂

2. A denoising step, where you regress the outcome Y  on the
confounder variables X and obtain the outcome residuals 

Ỹ = Y − Ŷ

3. An outcome model where you regress the outcome residual Ỹ  on
the treatment residual T̃  to obtain an estimate for the causal effect
of T  on Y

Not surprisingly, this is just a restatement of the formula you just saw
in “Multivariate Linear Regression”. The FWL theorem states an
equivalence in estimation procedures with regression models. It also
says that you can isolate the debiasing component of linear regression,
which is the first step outlined in the preceding list.

To get a better intuition on what is going on, let’s break it down step by
step.

Debiasing Step

coef std err t P>|t| [0.02

Intercept 0.4037 0.009 46.939 0.000 0.387
credit_limit 3.063e–06 1.54e–06 1.987 0.047 4.16e
wage –8.822e–05 6.07e–06 –14.541 0.000 –0.00
credit_score1–4.175e–05 1.83e–05 –2.278 0.023 -–7.7
credit_score2–0.0003 1.52e–05 –20.055 0.000 –0.00



Recall that, initially, due to confounding bias, your data looked
something like this, with default trending downward with credit line:

According to the FWL theorem, you can debias this data by fitting a
regression model to predict the treatment—the credit limit—from the
confounders. Then, you can take the residual from this model: 

l̃inei = linei − l̂inei. This residual can be viewed as a version of the
treatment that is uncorrelated with the variables used in the debiasing
model. That’s because, by definition, the residual is orthogonal to the
variables that generated the predictions.

This process will make l̃ine centered around zero. Optionally, you can
add back the average treatment, line:

l̃inei = linei − l̂inei + line

This is not necessary for debiasing, but it puts l̃ine in the same range
as the original line, which is better for visualization purposes:

In [10]: debiasing_model = smf.ols(

             'credit_limit ~ wage + credit_score1  + c

             data=risk_data

         ).fit()

¯

¯



If you now run a simple linear regression, where you regress the
outcome, risk, on the debiased or residualized version of the
treatment, l̃ine, you’ll already get the effect of credit limit on risk
while controlling for the confounders used in the debiasing model.
The parameter estimate you get for β1 here is exactly the same as the
one you got earlier by running the complete model, where you’ve
included both treatment and confounders:

         risk_data_deb = risk_data.assign(

             # for visualization, avg(T) is added to t

             credit_limit_res=(debiasing_model.resid 

                               + risk_data["credit_lim

         )

         

In [11]: model_w_deb_data = smf.ols('default ~ credit_

                                    data=risk_data_deb

         model_w_deb_data.summary().tables[1]

         

coef std err t P>|t| [0

Intercept 0.1421 0.005 30.001 0.000 0.
credit_limit_res3.063e-06 1.56e–06 1.957 0.050 –4



ALTERNATIVE COEFFICIENT FORMULA

The fact that you only need to residualize the treatment suggests a
simpler way of rewriting the regression coefficient formula. In the
single variable case, instead of using the covariance of Y  and T  over
the variance of T , you can use

β1 =
E[(Ti − T )yi]

E[(Ti − T )
2
]

.

In the multivariate case, this would be

β1 =
E[(Ti − E[T |X])yi]

E[V ar(T |X)]
.

There is a difference, though. Look at the p-value. It is a bit higher
than what you got earlier. That’s because you are not applying the
denoising step, which is responsible for reducing variance. Still, with
only the debiasing step, you can already get the unbiased estimate of
the causal impact of credit limit on risk, given that all the confounders
were included in the debiasing model.

You can also visualize what is going on by plotting the debiased
version of credit limit against default rate. You’ll see that the
relationship is no longer downward sloping, as when the data was
biased:

¯

¯



Denoising Step

While the debiasing step is crucial to estimate the correct causal effect,
the denoising step is also nice to have, although not as important. It
won’t change the value of your treatment effect estimate, but it will
reduce its variance. In this step, you’ll regress the outcome on the
covariates that are not the treatment. Then, you’ll get the residual for

the outcome ˜defaulti = defaulti − ˆdefaulti.

Once again, for better visualization, you can add the average default
rate to the denoised default variable for better visualization purposes:

˜defaulti = defaulti − ˆdefaulti + default

In [12]: denoising_model = smf.ols(

             'default ~ wage + credit_score1  + credit

             data=risk_data_deb

         ).fit()

         risk_data_denoise = risk_data_deb.assign(

             default_res=denoising_model.resid + risk_

         )

         

¯



Standard Error of the Regression Estimator

Since we are talking about noise, I think it is a good time to see how to
compute the regression standard error. The SE of the regression
parameter estimate is given by the following formula:

SE(β̂) =
σ(ϵ̂)

σ(T̃ )√n − DF
,

where ϵ̂  is the residual from the regression model and DF  is the
model’s degree of freedom (number of parameters estimated by the
model). If you prefer to see this in code, here it is:

In [13]: model_se = smf.ols( 

        'default ~ wage + credit_score1  + credit_scor

        data=risk_data 

    ).fit() 

 

    print("SE regression:", model_se.bse["wage"]) 

 

     

    model_wage_aux = smf.ols( 

        'wage ~ credit_score1 + credit_score2', 

        data=risk_data 

    ).fit() 

 

    # subtract the degrees of freedom - 4 model parame

    se_formula = (np.std(model_se.resid) 

               /(np.std(model_wage_aux.resid)*np.sqrt(

 

    print("SE formula:   ", se_formula) 

    



Out[13]: SE regression: 5.364242347548197e-06 

         SE formula:    5.364242347548201e-06 

         

This formula is nice because it gives you further intuition about
regression in general and the denoising step in particular. First, the
numerator tells you that the better you can predict the outcome, the
smaller the residuals will be and, hence, the lower the variance of the
estimate. This is very much what the denoising step is all about. It also
tells you that if the treatment explains the outcome a lot, its parameter
estimate will also have a smaller standard error.

Interestingly, the error is also inversely proportional to the variance of
the (residualized) treatment. This is also intuitive. If the treatment
varies a lot, it will be easier to measure its impact. You’ll learn more
about this in “Noise Inducing Control”.



EXPERIMENTS WITH CONTINUOUS TREATMENTS

The standard error formula can also be useful if you plan to design an
experiment where you care to measure the effect as the parameter
estimate from a regression. This is a good idea if the treatment you
want to randomize is continuous. In this case, the standard error
formula can be approximated by:

SE ≈
σ(y)

σ(T )√n − 2

This approximation is conservative in the case of a single variable
regression model, since σ(y) ≥ σ(ê), because the treatment might
explain a bit of the outcome. Then, you can take this standard error
and plug in the sample size calculation formula from Chapter 2.
Importantly, designing this test has the additional complexity of
choosing a sampling distribution from T , which can also affect the
standard error via σ(T ).

Final Outcome Model

With both residuals, Ỹ  and T̃ , you can run the final step outlined by
the FWL theorem—just regress Ỹ  on T̃ :

In [14]: model_w_orthogonal = smf.ols('default_res ~ c

                                      data=risk_data_d

         model_w_orthogonal.summary().tables[1]

         



The parameter estimate for the treatment is exactly the same as the
one you got in both the debiasing step and when running the
regression model with credit limit plus all the other covariates.
Additionally, the standard error and p-value are now also just like
when you first ran the model, with all the variables included. This is
the effect of the denoising step.

Of course, you can also plot the relationship between the debiased
treatment with the denoised outcome, alongside the predictions from
the final model to see what is going on:

FWL Summary

I don’t know if you can already tell, but I really like illustrative figures.
Even if they don’t reflect any real data, they can be quite useful to
visualize what is going on behind some fairly technical concept. It
wouldn’t be different with FWL. So to summarize, consider that you

coef std err t P>|t| [0

Intercept 0.1421 0.005 30.458 0.000 0.
credit_limit_res3.063e–06 1.54e–06 1.987 0.047 4.



want to estimate the relationship between a treatment T  and an
outcome Y  but you have some confounder X. You plot the treatment
on the x-axis, the outcome on the y-axis, and the confounder as the
color dimension. You initially see a negative slope between treatment
and outcome, but you have strong reasons (some domain knowledge)
to believe that the relationship should be positive, so you decide to
debias the data.

To do that, you first estimate E[T |X] using linear regression. Then,
you construct a debiased version of the treatment: T − E[T |X] (see
Figure 4-1). With this debiased treatment, you can already see the
positive relationship you were hoping to find. But you still have a lot
of noise.

Figure 4-1. How orthogonalization removes bias

To deal with the noise, you estimate E[Y |X], also using a regression
model. Then, you construct a denoised version of the outcome: 
Y − E[T |X] (see Figure 4-2). You can view this denoised outcome as
the outcome after you’ve accounted for all the variance in it that was
explained by X. If X explains a lot of the variance in Y , the denoised
outcome will be less noisy, making it easier to see the relationship you
really care about: that between T  and Y .



Figure 4-2. How orthogonalization removes noise

Finally, after both debiasing and denoising, you can clearly see a
positive relationship between T  and Y . All there is left to do is fit a
final model to this data:

This final regression will have the exact same slope as the one where
you regress Y  on T  and X at the same time.



DEBIASING AND THE INTERCEPT

One word of caution, though. In causal inference, you are mostly concerned with the slope of
this regression line, since the slope is a linear approximation to the effect of the continuous
treatment, ∂

∂t E[y|t]. But, if you also care about the intercept—for instance, if you are trying to
do counterfactual predictions—you should know that debiasing and denoising makes the
intercept equal to zero.

Regression as an Outcome Model

Throughout this section I emphasized how regression works mostly by
orthogonalizing the treatment. However, you can also see regression
as a potential outcome imputation technique. Suppose that the
treatment is binary. If regression of Y  on X in the control population (
T = 0) yields good approximation to E[Y0|X], then you can use that
model to impute Y0 and estimate the ATT:

ATT =
1

N1
∑𝟙(Ti = 1)(Yi − μ̂0(Xi)),

where N1 is the number of treated units.

INDICATOR FUNCTION

Throughout this book, I’ll use 𝟙(. ) to represent the indicator function. This function returns 1
when the argument inside it evaluates to true and zero otherwise.

A similar argument can be made to show that if regression on the
treated units can model E[Y1|X], you can use it to estimate the
average effect on the untreated. If you put these two arguments side
by side, you can estimate the ATE as follows:

ATE =
1

N
∑(μ̂1(Xi) − μ̂0(Xi))

This estimator will impute both potential outcomes for all units. It is
equivalent to regressing Y  on both X and T  and reading the



parameter estimate on T .

Alternatively, you can impute just the potential outcomes that are
missing:

ATE =
1

N
∑(𝟙(Ti = 1)[Yi − μ̂0(Xi)] + 𝟙(Ti = 0)[μ̂1(Xi) − Yi])

When T  is continuous, this is a bit harder to conceptualize, but you
can understand regression as imputing the whole treatment response
function, which involves imputing the potential outcomes Y (t) as if it
was a line.

The fact that regression works if it can either correctly estimate 
E[T |X] for orthogonalization or correctly estimate the potential
outcomes E[Yt|X] grants it doubly robust properties, something you’ll
explore further in Chapter 5. Seeing regression through this lens will
also be important when you learn about difference-in-differences in
Part IV.



RACTICAL EXAMPLE

PUBLIC OR PRIVATE SCHOOLS?

In the book Mastering Metrics (Princeton University Press), Angrist
and Pischke show how regression can be used to adjust for the bias
when estimating the impact of going to private schools on one’s
income. Graduates of private school often make more money than
those of public school, but it’s hard to say how much of this
relationship is causal. For instance, your parents’ income might
confound the relationship, as kids of richer families are both more
likely to go to private schools and to earn more. Similarly, since
private schools are very selective, it could be that they take in only the
students who would already be better off anyway.

So much so that a naive regression of income on a private school
dummy is almost sure to return a positive effect. In other words,
estimating the following model would give you a positive and

significant β̂1 :

incomei = δ0 + β1private + ei

What Angrist and Pischke show, however, is that if you adjust for SAT
score and parents’ income, the measured impact decreases. That is, if

you augment the model with these two variables, your β̂1  will be
smaller, compared to the one you would get with the short model:

incomei = δ0 + β1private + δ1SATi + δ2ParentInci + ei

Still, after running a regression with parent income, the effect of
private schools remained positive and significant, at least in the
dataset used by the authors. However, one final set of controls
managed to make the relationship insignificant. The authors included
the average SAT of the school the students applied to (regardless of
them being accepted). This can be interpreted as a proxy for ambition:



Once they added the ambition proxy controls, the estimated β̂1

became insignificant. Interestingly, keeping only those controls and
dropping the SAT and parents’ income controls still resulted in a
nonsignificant estimate. This indicates that, given your ambition level,
it doesn’t matter if you go to a public or private school, at least in
terms of your earnings:

Positivity and Extrapolation

Since regression models the potential outcome as a parametric
function, it allows for extrapolation outside the region where you
have data on all treatment levels. This can be a blessing or a curse. It
all depends on whether the extrapolation is reasonable. For example,
consider that you have to estimate a treatment effect in a dataset with
low overlap. Call it Dataset 1. Dataset 1 has no control units for high
values of a covariate x and no treated units for low values of that
same covariate. If you use regression to estimate the treatment effect

incomei = δ0 + β1private + δ1SATi + δ2ParentInci

+δ3AvgSATSchooli + ei



on this data, it will impute Y0 and Y1 as shown by the lines in the first
plot:

This is fine, so long as the same relationship between Y0 and x you’ve
fitted in the control for low levels of x is also valid for high values of x
and that the Y1 you’ve fitted on the treated also extrapolates well to
low levels of x. Generally, if the trends in the outcome where you do
have overlap look similar across the covariate space, a small level of
extrapolation becomes less of an issue.

However, too much extrapolation is always dangerous. Let’s suppose
you’ve estimated the effect on Dataset 1, but then you collect more
data, now randomizing the treatment. On this new data, call it Dataset
2, you see that the effect gets larger and larger for positive values of x.
Consequently, if you evaluate your previous fit on this new data, you’ll
realize that you grossly underestimated the true effect of the
treatment. This goes to show that you can never really know what will
happen to the treatment effect in a region where you don’t have
positivity. You might choose to trust your extrapolations for those
regions, but that is not without risk.



Nonlinearities in Linear Regression

Up until this point, the treatment response curve seemed pretty linear.
It looked like an increase in credit line caused a constant increase in
risk, regardless of the credit line level. Going from a line of 1,000 to
2,000 seemed to increase risk about the same as going from a line of
2,000 to 3,000. However, you are likely to encounter situations where
this won’t be the case.

As an example, consider the same data as before, but now your task is
to estimate the causal effect of credit limit on credit card spend:

In [15]: spend_data = pd.read_csv("./data/spend_data.c

         spend_data.head()

         

wage educ exper m

0 950.0 11 16 1

1 780.0 11 7 1

2 1230.0 14 9 1

3 1040.0 15 8 1

4 1000.0 16 1 1



And for the sake of simplicity, let’s consider that the only confounder
you have here is wage (assume that is the only information the bank
uses when deciding the credit limit). The causal graph of this process
looks something like this:

As a result, you have to condition on wage to identify the effect of
credit lines on spending. If you want to use orthogonalization to
estimate this effect, you can say that you need to debias credit lines by
regressing it on wage and getting the residuals. Nothing new so far.
But there is a catch. If you plot spend by credit lines for multiple wage
levels, you can clearly see that the relationship is not linear:

Rather, the treatment response curve seems to have some sort of
concavity to it: the higher the credit limit, the lower the slope of this
curve. Or, in causal inference language, since slopes and causal effects



are intimately related, you can also say that the effect of lines on
spend diminishes as you increase lines: going from a line of 1,000 to
2,000 increases spend more than going from 2,000 to 3,000.

Linearizing the Treatment

To deal with that, you first need to transform the treatment into
something that does have a linear relationship with the outcome. For
instance, you know that the relationship seems concave, so you can
try to apply some concave function to lines. Some good candidates to
try out are the log function, the square root function, or any function
that takes credit lines to the power of a fraction.

In this case, let’s try the square root:

Now we are getting somewhere! The square root of the credit line
seems to have a linear relationship with spend. It’s definitely not
perfect. If you look very closely, you can still see some curvature. But it
might just do for now.

I’m sad to say that this process is fairly manual. You have to try a
bunch of stuff and see what linearizes the treatment better. Once you
find something that you are happy with, you can apply it when



running a linear regression model. In this example, it means that you
will be estimating the model:

spendi = β0 + β1√linei + ei

and your causal parameter is β1.

This model can be estimated with statsmodels , by using the
NumPy square root function directly in the formula:

But you are not done yet. Recall that wage is confounding the
relationship between credit lines and spend. You can see this by
plotting the predictions from the preceding model against the original
data. Notice how its slope is probably upward biased. That’s because
more wage causes both spend and credit lines to increase:

In [16]: model_spend = smf.ols(

             'spend ~ np.sqrt(credit_limit)',data=spen

         ).fit()

         model_spend.summary().tables[1]

         

coef std err t P>|t|

Intercept 493.0044 6.501 75.832 0.000
np.sqrt(credit_limit)63.2525 0.122 519.268 0.000



If you include wage in the model:

spendi = β0 + β1√linei + β2wagei + ei

and estimate β1 again, you get an unbiased estimate of the effect of
lines on spend (assuming wage is the only confounder, of course). This
estimate is smaller than the one you got earlier. That is because
including wage in the model fixed the upward bias:

Nonlinear FWL and Debiasing

In [17]: model_spend = smf.ols('spend ~ np.sqrt(credit

                               data=spend_data).fit()

         model_spend.summary().tables[1]

         

coef std err t P>|t|

Intercept 383.5002 2.746 139.662 0.000
np.sqrt(credit_limit)43.8504 0.065 672.633 0.000
wage 1.0459 0.002 481.875 0.000



As to how the FWL theorem works with nonlinear data, it is exactly
like before, but now you have to apply the nonlinearity first. That is,
you can decompose the process of estimating a nonlinear model with
linear regression as follows:

1. Find a function F  that linearizes the relationship between T  and Y .

2. A debiasing step, where you regress the treatment F(T ) on
confounder variables X and obtain the treatment residuals 

F̃(T ) = F(T ) − F̂(T ).

3. A denoising step, where you regress the outcome Y  on the
confounder variables X and obtain the outcome residuals 

Ỹ = Y − Ŷ .

4. An outcome model where you regress the outcome residual Ỹ  on

the treatment residual F̃(T ) to obtain an estimate for the causal
effect of F(T ) on Y .

In the example, F  is the square root, so here is how you can apply the
FWL theorem considering the nonlinearity. (I’m also adding F(lines)

and spend to the treatment and outcome residuals, respectively. This
is optional, but it makes for better visualization):

In [18]: debias_spend_model = smf.ols(f'np.sqrt(credit

                                      data=spend_data)

         denoise_spend_model = smf.ols(f'spend ~ wage'

         

         credit_limit_sqrt_deb = (debias_spend_model.r

                                  + np.sqrt(spend_data

         spend_den = denoise_spend_model.resid + spend

         

¯

¯



Not surprisingly, the estimate you get here for β1 is the exact same as
the one you got earlier, by running the full model including both the
wage confounder and the treatment. Also, if you plot the prediction
from this model against the original data, you can see that it is not
upward biased like before. Instead, it goes right through the middle of
the wage groups:

         spend_data_deb = (spend_data

                           .assign(credit_limit_sqrt_d

                                   spend_den = spend_d

         final_model = smf.ols(f'spend_den ~ credit_li

                               data=spend_data_deb).fi

         final_model.summary().tables[1]

         

coef std err t P>|t|

Intercept 1493.6990 3.435 434.818 0.000
credit_limit_sqrt_deb43.8504 0.065 672.640 0.000



Regression for Dummies

Regression and orthogonalization are great and all, but ultimately you
have to make an independence assumption. You have to assume that
treatment looks as good as randomly assigned, when some covariates
are accounted for. This can be quite a stretch. It’s very hard to know if
all confounders have been included in the model. For this reason, it
makes a lot of sense for you to push for randomized experiments as
much as you can. For instance, in the banking example, it would be
great if the credit limit was randomized, as that would make it pretty
straightforward to estimate its effect on default rate and customer
spend. The thing is that this experiment would be incredibly
expensive. You would be giving random credit lines to very risky
customers, who would probably default and cause a huge loss.

Conditionally Random Experiments

The way around this conundrum is not the ideal randomized
controlled trial, but it is the next best thing: stratified or conditionally
random experiments. Instead of crafting an experiment where lines
are completely random and drawn from the same probability
distribution, you instead create multiple local experiments, where you
draw samples from different distributions, depending on customer
covariates. For instance, you know that the variable

credit_score1  is a proxy for customer risk. So you can use it
to create groups of customers that are more or less risky, dividing
them into buckets of similar credit_score1 . Then, for the
high-risk bucket—with low credit_score1 —you randomize
credit lines by sampling from a distribution with a lower average; for
low-risk customers—with high credit_score1 —you



randomize credit lines by sampling from a distribution with a higher
average:

Plotting the histogram of credit limit by
credit_score1_buckets , you can see that lines were

sampled from different distributions. The buckets with higher score—
low-risk customers—have a histogram skewed to the left, with higher
lines. The groups with risker customers—low score—have lines drawn
from a distribution that is skewed to the right, with lower lines. This
sort of experiment explores credit lines that are not too far from what
is probably the optimal line, which lowers the cost of the test to a
more manageable amount:

In [19]: risk_data_rnd = pd.read_csv("./data/risk_data

         risk_data_rnd.head()

         

wage educ exper m

0 890.0 11 16 1

1 670.0 11 7 1

2 1220.0 14 9 1

3 1210.0 15 8 1

4 900.0 16 1 1



BETA SAMPLING

In this experiment, credit limit was sampled from Beta distributions. The Beta distribution
can be understood as generalization of the uniform distribution, which makes it particularly
handy when you want your sample to be confined to a specific range.

This doesn’t mean that conditionally random experiments are better
than completely random experiments. They sure are cheaper, but they
add a tone of extra complexity. For this reason, if you opt for a
conditionally random experiment, for whatever reason, try to keep it
as close to a completely random experiment as possible. This means
that:

The lower the number of groups, the easier it will be to deal with
the conditionally random test. In this example you only have 5
groups, since you divided credit_score1  in buckets of 200
and the score goes from 0 to 1,000. Combining different groups with
different treatment distribution increases the complexity, so
sticking to fewer groups is a good idea.

The bigger the overlap in the treatment distributions across groups,
the easier your life will be. This has to do with the positivity
assumption. In this example, if the high-risk group had zero
probability of receiving high lines, you would have to rely on



dangerous extrapolations to know what would happen if they were
to receive those high lines.

If you crank these two rules of thumb to their maximum, you get back
a completely random experiment, which means both of them carry a
trade-off: the lower the number of groups and the higher the overlap,
the easier it will be to read the experiment, but it will also be more
expensive, and vice versa.

NOTE

Stratified experiments can also be used as a tool to minimize variance and to ensure balance
between treatment and control on the stratified variables. But in those applications, the
treatment distribution is designed to be the same across all groups or strata.

Dummy Variables

The neat thing about conditionally random experiments is that the
conditional independence assumption is much more plausible, since
you know lines were randomly assigned given a categorical variable
of your choice. The downside is that a simple regression of the
outcome on the treated will yield a biased estimate. For example, here
is what happens when you estimate the model, without the
confounder included:

defaulti = β0 + β1 linesi +ei

In [20]: model = smf.ols("default ~ credit_limit", dat

         model.summary().tables[1]

         



As you can see, the causal parameter estimate, β̂1 , is negative, which
makes no sense here. Higher credit lines probably do not decrease a
customer’s risk. What happened is that, in this data, due to the way the
experiment was designed, lower-risk customers—those with high

credit_score1 —got, on average, higher lines.

To adjust for that, you need to include in the model the group within
which the treatment is randomly assigned. In this case, you need to
control for credit_score1_buckets . Even though this group
is represented as a number, it is actually a categorical variable: it
represents a group. So, the way to control for the group itself is to
create dummy variables. A dummy is a binary column for a group. It is
1 if the customer belongs to that group and 0 otherwise. As a customer
can only be from one group, at most one dummy column will be 1,
with all the others being zero. If you come from a machine learning
background, you might know this as one-hot encoding. They are
exactly the same thing.

In pandas, you can use the pd.get_dummies  function to create
dummies. Here, I’m passing the column that represents the groups,

credit_score1_buckets , and saying that I want to create
dummy columns with the suffix sb  (for score bucket). Also, I’m
dropping the first dummy, that of the bucket 0 to 200. That’s because
one of the dummy columns is redundant. If I know that all the other
columns are zero, the one that I dropped must be 1:

coef std err t P>|t| [0.025

Intercept 0.1369 0.009 15.081 0.000 0.119
credit_limit–9.344e–06 1.85e–06 –5.048 0.000 –1.3e–



Once you have the dummy columns, you can add them to your model
and estimate β1 again:

defaulti = β0 + β1 linesi +θGi + ei

Now, you’ll get a much more reasonable estimate, which is at least
positive, indicating that more credit lines increase risk of default.

In [21]: risk_data_dummies = ( 

 risk_data_rnd 

  .join(pd.get_dummies(risk_data_rnd["cr

     prefix="sb", 

     drop_first=Tru

) 

         

wage educ exper m

0 890.0 11 16 1

1 670.0 11 7 1

2 1220.0 14 9 1

3 1210.0 15 8 1

4 900.0 16 1 1



I’m only showing you how to create dummies by hand so you know
what happens under the hood. This will be very useful if you have to
implement that sort of regression in some other framework that is not
in Python. In Python, if you are using statsmodels , the

C()  function in the formula can do all of that for you:

In [22]: model = smf.ols(

             "default ~ credit_limit + sb_200+sb_400+s

             data=risk_data_dummies

         ).fit()

         model.summary().tables[1]

         

coef std err t P>|t| [0.025

Intercept 0.2253 0.056 4.000 0.000 0.115
credit_limit4.652e–06 2.02e–06 2.305 0.021 6.97e–
sb_200 –0.0559 0.057 –0.981 0.327 –0.168
sb_400 –0.1442 0.057 –2.538 0.011 –0.256
sb_600 –0.2148 0.057 –3.756 0.000 –0.327
sb_800 –0.2489 0.060 –4.181 0.000 –0.366
sb_1000 –0.2541 0.094 –2.715 0.007 –0.438

In [23]: model = smf.ols("default ~ credit_limit + C(c

                         data=risk_data_rnd).fit()

         model.summary().tables[1]

         



Finally, here you only have one slope parameter. Adding dummies to
control for confounding gives one intercept per group, but the same
slope for all groups. We’ll discuss this shortly, but this slope will be a
variance weighted average of the regression in each group. If you plot
the model’s predictions for each group, you can clearly see that you
have one line per group, but all of them have the same slope:

coef std err t P>|t|

Intercept 0.2253 0.056 4.000 0.000
C(credit_score1_buckets)
[T.200]

–0.0559 0.057 –0.981 0.327

C(credit_score1_buckets)
[T.400]

–0.1442 0.057 –2.538 0.011

C(credit_score1_buckets)
[T.600]

–0.2148 0.057 –3.756 0.000

C(credit_score1_buckets)
[T.800]

–0.2489 0.060 –4.181 0.000

C(credit_score1_buckets)
[T.1000]

–0.2541 0.094 –2.715 0.007

credit_limit 4.652e–06 2.02e–06 2.305 0.021



Saturated Regression Model

Remember how I started the chapter highlighting the similarities
between regression and a conditional average? I showed you how
running a regression with a binary treatment is exactly the same as
comparing the average between treated and control group. Now, since
dummies are binary columns, the parallel also applies here. If you
take your conditionally random experiment data and give it to
someone that is not as versed in regression as you are, their first
instinct will probably be to simply segment the data by

credit_score1_buckets  and estimate the effect in each
group separately:

Out[24]: credit_score1_buckets 

         0      -0.000071 

         200     0.000007 

         400     0.000005 

         600     0.000003 

         800     0.000002 

         1000    0.000000 

         dtype: float64 

         

In [24]: def regress(df, t, y):

             return smf.ols(f"{y}~{t}", data=df).fit()

         effect_by_group = (risk_data_rnd

                            .groupby("credit_score1_bu

                            .apply(regress, y="default

         effect_by_group

         



This would give an effect by group, which means you also have to
decide how to average them out. A natural choice would be a weighted
average, where the weights are the size of each group:

Out[25]: 4.490445628748722e-06 

         

Of course, you can do the exact same thing with regression, by
running what is called a saturated model. You can interact the
dummies with the treatment to get an effect for each dummy defined
group. In this case, because the first dummy is removed, the
parameter associated with credit_limit  actually represents
the effect in the omitted dummy group, sb_100 . It is the exact
same number as the one estimated above for the

credit_score1_buckets earlier  group 0 to 200: –0.000071:

In [25]: group_size = risk_data_rnd.groupby("credit_sc

         ate = (effect_by_group * group_size).sum() / 

         ate

         

In [26]: model = smf.ols("default ~ credit_limit * C(c

                         data=risk_data_rnd).fit()

         model.summary().tables[1]

         



The interaction parameters are interpreted in relation to the effect in
the first (omitted) group. So, if you sum the parameter associated with

credit_limit  with other interaction terms, you can see the
effects for each group estimated with regression. They are exactly the
same as estimating one effect per group:

coef std err t

Intercept 0.3137 0.077 4.08
C(credit_score1_buckets)[T.200] –0.1521 0.079 –1.9
C(credit_score1_buckets)[T.400] –0.2339 0.078 –3.0
C(credit_score1_buckets)[T.600] –0.2957 0.080 –3.6
C(credit_score1_buckets)[T.800] –0.3227 0.111 –2.9
C(credit_score1_buckets)[T.1000] –0.3137 0.428 –0.7
credit_limit –7.072e–05 4.45e–05 –1.5
credit_limit:C(credit_score1_buckets)
[T.200]

7.769e–05 4.48e–05 1.73

credit_limit:C(credit_score1_buckets)
[T.400]

7.565e–05 4.46e–05 1.69

credit_limit:C(credit_score1_buckets)
[T.600]

7.398e–05 4.47e–05 1.65

credit_limit:C(credit_score1_buckets)
[T.800]

7.286e–05 4.65e–05 1.56

credit_limit:C(credit_score1_buckets)
[T.1000]

7.072e–05 8.05e–05 0.87

In [27]: (model.params[model.params.index.str.contains

          + model.params["credit_limit"]).round(9)

         



Plotting this model’s prediction by group will also show that, now, it is
as if you are fitting a separate regression for each group. Each line will
have not only a different intercept, but also a different slope. Besides,
the saturated model has more parameters (degrees of freedom), which
also means more variance, all else equal. If you look at the following
plot, you’ll see a line with negative slope, which doesn’t make sense in
this context. However, that slope is not statistically significant. It is
probably just noise due to a small sample in that group:

Regression as Variance Weighted Average

But if both the saturated regression and calculating the effect by group
give you the exact same thing, there is a very important question you
might be asking yourself. When you run the model default ~

Out[27]: credit_limit:C(credit_score1_buckets)[T.200] 

         credit_limit:C(credit_score1_buckets)[T.400] 

         credit_limit:C(credit_score1_buckets)[T.600] 

         credit_limit:C(credit_score1_buckets)[T.800] 

         credit_limit:C(credit_score1_buckets)[T.1000]

         dtype: float64 

         



credit_limit + C(credit_score1_buckets) , without the
interaction term, you get a single effect: only one slope parameter.
Importantly, if you look back, that effect estimate is different from the
one you got by estimating an effect per group and averaging the
results using the group size as weights. So, somehow, regression is
combining the effects from different groups. And the way it does it is
not a sample size weighted average. So what is it then?

Again, the best way to answer this question is by using some very
illustrative simulated data. Here, let’s simulate data from two different
groups. Group 1 has a size of 1,000 and an average treatment effect of
1. Group 2 has a size of 500 and an average treatment effect of 2.
Additionally, the standard deviation of the treatment in group 1 is 1
and 2 in group 2:

In [28]: np.random.seed(123)

         # std(t)=1

         t1 = np.random.normal(0, 1, size=1000)

         df1 = pd.DataFrame(dict(

             t=t1,

             y=1*t1, # ATE of 1

             g=1,

         ))

         # std(t)=2

         t2 = np.random.normal(0, 2, size=500)

         df2 = pd.DataFrame(dict(

             t=t2,

             y=2*t2, # ATE of 2

             g=2,

         ))



         df = pd.concat([df1, df2])

         df.head()

         

t y g

0 –1.085631 –1.085631 1

1 0.997345 0.997345 1

2 0.282978 0.282978 1

3 –1.506295 –1.506295 1

4 –0.578600 –0.578600 1

If you estimate the effects for each group separately and average the
results with the group size as weights, you’d get an ATE of around 1.33,
(1 * 1000 + 2 * 500)/1500:

Out[29]: 1.333333333333333 

         

In [29]: effect_by_group = df.groupby("g").apply(regre

         ate = (effect_by_group *

                df.groupby("g").size()).sum() / df.gro

         ate

         



But if you run a regression of y  on t  while controlling
for the group, you get a very different result. Now, the combined effect
is closer to the effect of group 2, even though group 2 has half the
sample of group 1:

Out[30]: Intercept    0.024758 

         C(g)[T.2]    0.019860 

         t            1.625775 

         dtype: float64 

         

The reason for this is that regression doesn’t combine the group
effects by using the sample size as weights. Instead, it uses weights
that are proportional to the variance of the treatment in each group.
Regression prefers groups where the treatment varies a lot. This might
seem odd at first, but if you think about it, it makes a lot of sense. If the
treatment doesn’t change much within a group, how can you be sure
of its effect? If the treatment changes a lot, its impact on the outcome
will be more evident.

To summarize, if you have multiple groups where the treatment is
randomized inside each group, the conditionality principle states that
the effect is a weighted average of the effect inside each group:

ATE = E{ (
∂

∂t
E[Yi|T = t,Groupi])w(Groupi) }

In [30]: model = smf.ols("y ~ t + C(g)", data=df).fit(

         model.params

         



Depending on the method, you will have different weights. With
regression, w(Groupi) ∝ σ2(T )|Group, but you can also choose to
manually weight the group effects using the sample size as the weight:
w(Groupi) = NGroup.

SEE ALSO

Knowing this difference is key to understanding what is going on behind the curtains with
regression. The fact that regression weights the group effects by variance is something that
even the best researchers need to be constantly reminded of. In 2020, the econometric field
went through a renaissance regarding the diff-in-diff method (you’ll see more about it in
Part IV). At the center of the issue was regression not weighting effects by sample size. If you
want to learn more about it, I recommend checking it out the paper “Difference-in-Differences
with Variation in Treatment Timing,” by Andrew Goodman-Bacon. Or just wait until we get to
Part IV.

De-Meaning and Fixed Effects

You just saw how to include dummy variables in your model to
account for different treatment assignments across groups. But it is
with dummies where the FWL theorem really shines. If you have a ton
of groups, adding one dummy for each is not only tedious, but also
computationally expensive. You would be creating lots and lots of
columns that are mostly zero. You can solve this easily by applying
FWL and understanding how regression orthogonalizes the treatment
when it comes to dummies.

You already know that the debiasing step in FWL involves predicting
the treatment from the covariates, in this case, the dummies:

In [31]: model_deb = smf.ols("credit_limit ~ C(credit_

                             data=risk_data_rnd).fit()

         model_deb.summary().tables[1]

         



Since dummies work basically as group averages, you can see that,
with this model, you are predicting exactly that: if

credit_score1_buckets=0 , you are predicting the average
line for the group credit_score1_buckets=0 ; if

credit_score1_buckets=1 , you are predicting the average
line for the group credit_score1_buckets=1  (which is given
by summing the intercept to the coefficient for that group 
1173.0769 + 2195.4337 = 3368.510638) and so on and so forth.
Those are exactly the group averages:

Out[32]: credit_score1_buckets 

         0       1173.076923 

         200     3368.510638 

coef std err t P>|t|

Intercept 1173.0769 278.994 4.205 0.000
C(credit_score1_buckets)
[T.200]

2195.4337 281.554 7.798 0.000

C(credit_score1_buckets)
[T.400]

3402.3796 279.642 12.167 0.000

C(credit_score1_buckets)
[T.600]

4191.3235 280.345 14.951 0.000

C(credit_score1_buckets)
[T.800]

4639.5105 291.400 15.921 0.000

C(credit_score1_buckets)
[T.1000]

5006.9231 461.255 10.855 0.000

In [32]: risk_data_rnd.groupby("credit_score1_buckets"

         



         400     4575.456498 

         600     5364.400448 

         800     5812.587413 

         1000    6180.000000 

         Name: credit_limit, dtype: float64 

         

Which means that if you want to residualize the treatment, you can do
that in a much simpler and effective way. First, calculate the average
treatment for each group:

Then, to get the residuals, subtract that group average from the
treatment. Since this approach subtracts the average treatment, it is
sometimes referred to as de-meaning the treatment. If you want to do
that inside the regression formula, you must wrap the mathematical
operation around I(...) :

In [33]: risk_data_fe = risk_data_rnd.assign( 

             credit_limit_avg = lambda d: (d 

                                           .groupby("c

                                           ["credit_li

         ) 

         

In [34]: model = smf.ols("default ~ I(credit_limit-cre

                         data=risk_data_fe).fit()

         model.summary().tables[1]

         



The parameter estimate you got here is exactly the same as the one
you got when adding dummies to your model. That’s because,
mathematically speaking, they are equivalent. This idea goes by the
name of fixed effects, since you are controlling for anything that is
fixed within a group. It comes from the literature of causal inference
with temporal structures (panel data), which you’ll explore more in
Part IV.

Another idea from the same literature is to include the average
treatment by group in the regression model (from Mundlak’s, 1978).
Regression will residualize the treatment from the additional
variables included, so the effect here is about the same:

coef std err t P>|t| [

Intercept 0.0935 0.003 32.121 0.000 0
I(credit_limit –
credit_limit_avg)

4.652e–06 2.05e–06 2.273 0.023 6

In [35]: model = smf.ols("default ~ credit_limit + cre

                         data=risk_data_fe).fit()

         model.summary().tables[1]

         

coef std err t P>|t| [0

Intercept 0.4325 0.020 21.418 0.000 0
credit_limit 4.652e–06 2.02e–06 2.305 0.021 6
credit_limit_avg-7.763e–05 4.75e–06 –16.334 0.000 –8



RACTICAL EXAMPLE

MARKETING MIX MODELING

Measuring the impact of advertising on sales is very hard, since you
usually can’t randomize who gets to see your ads. One popular
alternative to randomization in the advertising industry is the
technique called marketing mix modeling (MMM). Despite the fancy
name, MMMs are just regressions of sales on marketing strategies
indicators and some confounders. For example, let’s say you want to
know the effect of your budget on TV, social media, and search
advertising on your product’s sales. You can run a regression model
where each unit i is a day:

To account for the fact that you might have increased your marketing
budget on a good month, you can adjust for this confounder by
including additional controls in your regression. For example, you can
include your competitor’s sales, a dummy for each month, and a trend
variable.

Omitted Variable Bias: Confounding
Through the Lens of Regression

I hope I made myself very clear in Chapter 3 when I said that common
causes—confounders—will bias the estimated relationship between
the treated and the outcome. That is why you need to account for them
by, for example, including them in a regression model. However,
regression has its own particular take on confounding bias. Sure,
everything said up until now still holds. But regression allows you to

Salesi = δ0 + β1TVi + β2Sociali + β3Searchi

+δ1CompetitorSalesi + δ2Monthi + δ3Trendi + ei



be more precise about the confounding bias. For example, let’s say you
want to estimate the effect of credit lines on default and that wage is
the only confounder:

In this case, you know you should be estimating the model that
includes the confounder:

defaulti = β0 + β1 linesi +β2 > wagei +ei,

But if you instead estimate a shorter model, where the confounder is
omitted:

defaulti = β0 + β1 linesi +ei,

the resulting estimate becomes biased:

Out[36]: -2.401961992596885e-05 

         

As you can see, it looks like higher credit lines cause default to go
down, which is nonsense. But you know that already. What you don’t

In [36]: short_model = smf.ols("default ~ credit_limit

         short_model.params["credit_limit"]

         



know is that you can be precise about the size of that bias. With
regression, you can say that the bias due to an omitted variable is
equal to the effect in the model where it is included plus the effect of the
omitted variable on the outcome times the regression of omitted on
included. Don’t worry. I know this is a mouthful, so let’s digest it little
by little. First, it means that simple regression of Y  on T  will be the
true causal parameter τ , plus a bias term:

Cov(T ,Y )

V ar(T )
= τ + β

'

omittedδomitted

This bias term is the coefficient of the omitted confounder on the
outcome, βomitted, times the coefficient of regressing the omitted
variable on the treatment, δomitted. To check that, you can obtain the
biased parameter estimate you got earlier with the following code,
which reproduces the omitted variable bias formula:

Out[37]: -2.4019619925968762e-05 

         

Neutral Controls

In [37]: long_model = smf.ols("default ~ credit_limit 

                              data=risk_data).fit()

         omitted_model = smf.ols("wage ~ credit_limit"

         (long_model.params["credit_limit"] 

          + long_model.params["wage"]*omitted_model.pa

         



By now, you probably have a good idea about how regression adjusts
for confounder variables. If you want to know the effect of the
treatment T  on Y  while adjusting for confounders X, all you have to
do is include X in the model. Alternatively, to get the exact same
result, you can predict T  from X, get the residuals, and use that as a
debiased version of the treatment. Regressing Y  on those residuals
will give you the relationship of T  and Y  while holding X fixed.

But what kind of variables should you include in X? Again, it’s not
because adding variables adjusts for them that you want to include
everything in your regression model. As seen in the previous chapters,
you don’t want to include common effects (colliders) or mediators, as
those would induce selection bias. But in the context of regression,
there are more types of controls you should know about. Controls that,
at first, seem like they are innocuous, but are actually quite harmful.
These controls are named neutral because they don’t influence the
bias in your regression estimate. But they can have severe
implications in terms of variance. As you’ll see, there is a bias–
variance trade-off when it comes to including certain variables in your
regression. Consider, for instance, the following DAG:

Should you include credit_score2  in your model? If you
don’t include it, you’ll get the same result you’ve been seeing all along.



That result is unbiased, as you are adjusting for
credit_score1_buckets . But, although you don’t need to,

look at what happens when you do include credit_score2 .
Compare the following results to the one you got earlier, which didn’t
include credit_score2 . What changed?

First, the parameter estimate on credit_limit  became a bit
higher. But, more importantly, the standard error decreases. That’s
because credit_score2  is a good predictor of the outcome Y

In [38]: formula = "default~credit_limit+C(credit_scor

         model = smf.ols(formula, data=risk_data_rnd).

         model.summary().tables[1]

         

coef std err t P>|t|

Intercept 0.5576 0.055 10.132 0.000
C(credit_score1_buckets)
[T.200]

–0.0387 0.055 –0.710 0.478

C(credit_score1_buckets)
[T.400]

–0.1032 0.054 –1.898 0.058

C(credit_score1_buckets)
[T.600]

–0.1410 0.055 –2.574 0.010

C(credit_score1_buckets)
[T.800]

–0.1161 0.057 –2.031 0.042

C(credit_score1_buckets)
[T.1000]

–0.0430 0.090 –0.479 0.632

credit_limit 4.928e–06 1.93e–06 2.551 0.011
credit_score2 –0.0007 2.34e–05 –30.225 0.000



and it will contribute to the denoising step of linear regression. In the
final step of FWL, because credit_score2  was included, the
variance in Ỹ  will be reduced, and regressing it on T̃  will yield more
precise results.

This is a very interesting property of linear regression. It shows that it
can be used not only to adjust for confounders, but also to reduce
noise. For example, if you have data from a properly randomized A/B
test, you don’t need to worry about bias. But you can still use
regression as a noise reduction tool. Just include variables that are
highly predictive of the outcome (and that don’t induce selection bias).

NOISE REDUCTION TECHNIQUES

There are other noise reduction techniques out there. The most famous one is CUPED, which
was developed by Microsoft researchers and is widely used in tech companies. CUPED is very
similar to just doing the denoising part of the FWL theorem.

Noise Inducing Control

Just like controls can reduce noise, they can also increase it. For
example, consider again the case of a conditionally random
experiment. But this time, you are interested in the effect of credit
limit on spend, rather than on risk. Just like in the previous example,
credit limit was randomly assigned, given credit_score1 . But
this time, let’s say that credit_score1  is not a confounder. It
causes the treatment, but not the outcome. The causal graph for this
data-generating process looks like this:



This means that you don’t need to adjust for credit_score1

to get the causal effect of credit limit on spend. A single variable
regression model would do. Here, I’m keeping the square root
function to account for the concavity in the treatment response
function:

But, what happens if you do include
credit_score1_buckets ?

In [39]: spend_data_rnd = pd.read_csv("data/spend_data

         model = smf.ols("spend ~ np.sqrt(credit_limit

                         data=spend_data_rnd).fit()

         model.summary().tables[1]

         

coef std err t P>|t|

Intercept 2153.2154 218.600 9.850 0.000
np.sqrt(credit_limit)16.2915 2.988 5.452 0.000

In [40]: model = smf.ols("spend~np.sqrt(credit_limit)+

                         data=spend_data_rnd).fit()

         model.summary().tables[1]

         



You can see that it increases the standard error, widening the
confidence interval of the causal parameter. That is because, like you
saw in “Regression as Variance Weighted Average”, OLS likes when the
treatment has a high variance. But if you control for a covariate that
explains the treatment, you are effectively reducing its variance.

Feature Selection: A Bias-Variance Trade-Off

In reality, it’s really hard to have a situation where a covariate causes
the treatment but not the outcome. Most likely, you will have a bunch
of confounders that cause both T  and Y , but to different degrees. In
Figure 4-3, X1 is a strong cause of T  but a weak cause of Y , X3 is a
strong cause of Y  but a weak cause of T , and X2 is somewhere in the
middle, as denoted by the thickness of each arrow.

coef std err t P>|t|

Intercept 2367.4867 556.273 4.256 0.000
C(credit_score1_buckets)
[T.200]

–144.7921 591.613 –0.245 0.807

C(credit_score1_buckets)
[T.400]

–118.3923 565.364 –0.209 0.834

C(credit_score1_buckets)
[T.600]

–111.5738 570.471 –0.196 0.845

C(credit_score1_buckets)
[T.800]

–89.7366 574.645 –0.156 0.876

C(credit_score1_buckets)
[T.1000]

363.8990 608.014 0.599 0.550

np.sqrt(credit_limit) 14.5953 3.523 4.142 0.000



Figure 4-3. A confounder like X1, which explains away the variance in the treatment more
than it removes bias, might be causing more harm than good to your estimator

In these situations, you can quickly be caught between a rock and a
hard place. On one hand, if you want to get rid of all the biases, you
must include all the covariates; after all, they are confounders that
need to be adjusted. On the other hand, adjusting for causes of the
treatment will increase the variance of your estimator.

To see that, let’s simulate data according to the causal graph in
Figure 4-3. Here, the true ATE is 0.5. If you try to estimate this effect
while controlling for all of the confounders, the standard error of your
estimate will be too high to conclude anything:

In [41]: np.random.seed(123)

         n = 100

         (x1, x2, x3) = (np.random.normal(0, 1, n) for

         t = np.random.normal(10*x1 + 5*x2 + x3)

         # ate = 0.05

         y = np.random.normal(0.05*t + x1 + 5*x2 + 10*

         df = pd.DataFrame(dict(y=y, t=t, x1=x1, x2=x2



If you know that one of the confounders is a strong predictor of the
treatment and a weak predictor of the outcome, you can choose to
drop it from the model. In this example, that would be X1. Now, be
warned! This will bias your estimate. But maybe this is a price worth
paying if it also decreases variance significantly:

The bottom line is that the more confounders you include (adjust for)
in your model, the lower the bias in your causal estimate. However, if

         smf.ols("y~t+x1+x2+x3", data=df).fit().summar

         

coef std err t P>|t| [0.025

Intercept 0.2707 0.527 0.514 0.608 –0.775
t 0.8664 0.607 1.427 0.157 –0.339
x1 –7.0628 6.038 –1.170 0.245 –19.04
x2 0.0143 3.128 0.005 0.996 –6.195
x3 9.6292 0.887 10.861 0.000 7.869

In [42]: smf.ols("y~t+x2+x3", data=df).fit().summary()

         

coef std err t P>|t| [0.025

Intercept 0.1889 0.523 0.361 0.719 –0.849
t 0.1585 0.046 3.410 0.001 0.066
x2 3.6095 0.582 6.197 0.000 2.453
x3 10.4549 0.537 19.453 0.000 9.388



you include variables that are weak predictors of the outcome but
strong predictors of the treatment, this bias reduction will come at a
steep cost in terms of variance increase. Saying the same thing but
differently, sometimes it is worth accepting a bit of bias in order to
reduce variance. Also, you should be very aware that not all
confounders are equal. Sure, all of them are common because of both 
T  and Y . But if they explain the treatment too much and almost
nothing about the outcome, you should really consider dropping it
from your adjustment. This is valid for regression, but it will also be
true for other adjustment strategies, like propensity score weighting
(see Chapter 5).

Unfortunately, how weak the confounder should be in terms of
explaining the treatment to justify removing it is still an open question
in causal inference. Still, it is worth knowing that this bias-variance
trade-off exists, as it will help you understand and explain what is
going on with your linear regression.

Key Ideas

This chapter was about regression, but from a very different
perspective than the one you usually see in machine learning books.
Regression here is not a prediction tool. Notice how I didn’t talk about 
R2 even once! Rather, regression is used here as a way to primarily
adjust for confounders and, sometimes, as a variance reduction
technique.

The core of this chapter was orthogonalization as a means to make
treatment look as good as randomly assigned if conditional
independence holds. Formally, if Yt ⊥ T |X, you can adjust for the
confounding bias due to X by regressing T  on X and obtaining the



residuals. Those residuals can be seen as a debiased version of the
treatment.

This approach was further developed using the Frisch-Waugh-Lovell
theorem, which states that a multivariate regression can be
decomposed into the following steps:

1. A debiasing step, where you regress the treatment T  on

confounders X and obtain the treatment residuals T̃ = T − T̂

2. A denoising step, where you regress the outcome Y  on the
confounder variables X and obtain the outcome residuals 

Ỹ = Y − Ŷ

3. An outcome model where you regress the outcome residual Ỹ  on
the treatment residual T̃  to obtain an estimate for the causal effect
of T  on Y

Everything else in the chapter follows from this theorem—be it
nonlinear treatment response functions, understanding how
regression with categorical variables implements a weighted average,
or the role of good and bad controls in regression.



Chapter 5. Propensity Score

In Chapter 4, you learned how to adjust for confounders using
linear regression. In addition to that, you were introduced to
the concept of debiasing through orthogonalization, which is
one of the most useful bias-adjusting techniques available.
However, there is another technique that you need to learn—
propensity weighting. This technique involves modeling the
treatment assignment mechanism and using the model’s
prediction to reweight the data, instead of building residuals
like in orthogonalization. In this chapter, you will also learn
how to combine the principles of Chapter 4 with propensity
weighting to achieve what is known as double robustness.

The content of this chapter is better suited for when you have
binary or discrete treatments. Still, I’ll show an extension that
allows you to use propensity weighting for continuous
treatment.

The Impact of Management Training

A common phenomenon in tech companies is for talented
individual contributors (ICs) to branch out to a management
track. But because management often requires a very
different skill set than the ones that made them talented ICs,
this transition is often far from easy. It comes at a high



personal cost, not only for the new managers, but for those
they manage.

Hoping to make this transition less painful, a big multinational
company decided to invest in manager training for its new
managers. Also, to measure the effectiveness of the training,
the company tried to randomly select managers into this
program. The idea was to compare an engagement score for
the employees whose managers got enrolled in the program
with the engagement of those whose managers didn’t. With
proper randomization, this simple comparison would give the
average treatment effect of the training.

Unfortunately, things are not that simple. Some managers
didn’t want to go to the training, so they simply didn’t show
up. Others managed to get the training even without being
assigned to receive it. The result is that what was to be a
randomized study ended up looking a lot like an observational
one.

NONCOMPLIANCE

People not getting the treatment they are intended to is called noncompliance. You
will see more about this when we talk about instrumental variables in Chapter 11.

Now, as an analyst who has to read this data, you’ll have to
make treated and untreated comparable by adjusting for
confounders. To do that, you are given data on the company
managers along with some covariates that describe them:



The treatment variable is intervention  and your
outcome of interest is engagement_score , which is
the average standardized engagement score for that
manager’s employees. Beyond the treatment and the outcome,
the covariates in this data are:

In [1]: import pandas as pd

        import numpy as np

        df = pd.read_csv("data/management_traini

        df.head()

        

department_id intervention engag

0 76 1 0.2773

1 76 1 –0.449

2 76 1 0.7697

3 76 1 –0.121

4 76 1 1.5261



department_id

A unique identifier for the department
tenure

The number of years the manager has been with the
company (as an employee, not necessarily as a manager)
n_of_reports

The number of reports the manager has
gender

Categorical variable for manager identified gender
role

Job category inside the company
department_size

The number of employees in that same department
department_score

The average engagement score in that same department
last_engagement_score

The average engagement score for that manager in the
previous iteration of the engagement survey

You hope that, by controlling for some or all of these variables,
you might manage to reduce or even eliminate the bias when
estimating the causal relationship between management
training and employee engagement.

SIMULATED DATA

This dataset was adapted from the one used in the study “Estimating Treatment
Effects with Causal Forests: An Application,” by Susan Athey and Stefan Wager.

Adjusting with Regression



Before moving on to propensity weighting, let’s use regression
to adjust for the confounders. In general, when learning
something new, its always a good idea to have some
benchmark that you trust to compare to. Here the idea is to
check if the propensity weighting estimate is at least inline
with the regression one. Now, let’s get to it.

For starters, if you simply compare treated and control
groups, this is what you’ll get:

But then again, this result is probably biased, since the
treatment was not entirely random. To reduce this bias, you
can adjust for the covariates you have in your data, estimating
the following model:

engagementi = τTi + θXi + ei,

In [2]: import statsmodels.formula.api as smf

        smf.ols("engagement_score ~ intervention

                data=df).fit().summary().tables

        

coef std err t P>|t|

Intercept –0.2347 0.014 –16.619 0.000
intervention0.4346 0.019 22.616 0.000



where X is all the confounders you have plus a constant
column for the intercept. Additionally, gender and role are
both categorical variables, so you have to wrap them in

C()  inside your OLS formula:

Out[3]: ATE: 0.2677908576676856 

        95% CI: [0.23357751 0.30200421] 

        

Notice that the effect estimate here is considerably smaller
than the one you got earlier. This is some indication of positive
bias, which means that managers whose employees were
already more engaged are more likely to have participated in
the manager training program. OK, enough with the
preamble. Let’s see what propensity weighting is all about.

Propensity Score

In [3]: model = smf.ols("""engagement_score ~ in

        + tenure + last_engagement_score + depar

        + n_of_reports + C(gender) + C(role)""",

        print("ATE:", model.params["intervention

        print("95% CI:", model.conf_int().loc["i

        



Propensity weighting revolves around the concept of a
propensity score, which itself comes from the realization that
you don’t need to directly control for confounders X to
achieve conditional independence (Y1, Y0) ⊥ T |X. Instead, it
is sufficient to control for a balancing score that estimates 
E[T |X]. This balancing score is often the conditional
probability of the treatment, P(T |X), also called the
propensity score, e(x).

The propensity score can be viewed as a dimensionality
reduction technique. Instead of conditioning on X, which can
be very high dimensional, you can simply condition on the
propensity score in order to block the backdoor paths that
flow through X: (Y1, Y0) ⊥ T |P(x).

There is a formal proof for why this is. It’s not complicated,
but a bit beyond the scope of this book. Here, you can
approach the matter in a more intuitive way. The propensity
score is the conditional probability of receiving the treatment,
right? So you can think of it as some sort of function that
converts X into the treatment T . The propensity score makes
this middle ground between the variable X and the treatment 
T . This is what it would look like in a causal graph:

https://oreil.ly/LkYaz


In this graph, if you know what e(x) is, X alone gives you no
further information about T . Which means that controlling
for e(x) works the same way as controlling for X directly.

Think of it in terms of the manager training program. Treated
and nontreated are initially not comparable because the
managers with more engaged direct reports are more likely to
participate in the training. However, if you take two
managers, one from the treated and one from the control
group, but with the same probability of receiving the
treatment, they are comparable. Think about it. If they have
the exact same probability of receiving the treatment, the only
reason one of them did it and the other didn’t is by pure
chance. Given the same propensity score, treatment is as good
as random.

Propensity Score Estimation

In an ideal world, you would have the true propensity score 
e(x). You might have this in the case of conditionally random
experiment, where the assignment mechanism is



nondeterministic, but known. However, in most cases, the
mechanism that assigns the treatment is unknown and you’ll
need to replace the true propensity score by an estimation of 
e(x).

Since you have a binary treatment, a good candidate for
estimating e(x) is using logistic regression. To fit a logistic
regression with statsmodels , you can simply change
the method ols  to logit :

Save your estimated propensity score in a data frame; you’ll
use it a lot in the following sections, where I’ll show you how
to use it and what it is doing:

In [4]: ps_model = smf.logit("""intervention ~ 

        tenure + last_engagement_score + departm

        + C(n_of_reports) + C(gender) + C(role)"

        

In [5]: data_ps = df.assign(

            propensity_score = ps_model.predict

        )

        data_ps[["intervention", "engagement_sco

        



PROPENSITY SCORE AND ML

Alternatively, you can use machine learning models to estimate the propensity
score. But they require you to be more careful. First, you must ensure that your ML
model outputs a calibrated probability prediction. Second, you need to use out-of-
fold predictions to avoid bias due to overfitting. You can use sklearn ’s

calibration module for the first task and the cross_val_predict  function,

from the model selection module, for the latter.

Propensity Score and Orthogonalization

If you recall from the previous chapter, according to the FLW
theorem, linear regression also does something very similar to
estimating a propensity score. In the debiasing step, it
estimates E[T |X]. So, very much like the propensity score

intervention engagement_score pr

0 1 0.277359 0.5

1 1 –0.449646 0.3

2 1 0.769703 0.6

3 1 –0.121763 0.5

4 1 1.526147 0.6



estimation, OLS is also modeling the treatment assignment
mechanism. This means you can also use propensity score 
ê(X) inside a linear regression in order to adjust for the
confounders X:

Out[6]: 0.26331267490277066 

        

The estimated ATE you get with this approach is remarkably
similar to the one you got earlier, fitting a linear model with
the treatment and confounder X. This is not at all surprising,
as both approaches are simply orthogonalizing the treatment.
The only difference is that OLS uses linear regression to model
T , while this propensity score estimate was obtained from a
logistic regression.

Propensity Score Matching

Another popular approach to control for the propensity score
is the matching estimator. This method searches for pairs of
units with similar observable characteristics and compares

In [6]: model = smf.ols("engagement_score ~ inte

                        data=data_ps).fit()

        model.params["intervention"]

        



the outcomes of those who received the treatment to those
who did not. If you have a background in data science, you
can think of matching as a simple K-Nearest-Neighbors (KNN)
algorithm, where K=1. To start, you fit a KNN model on the
treated units, using the propensity score as the only feature,
and use it to impute Y1 for the control group. Next, you fit a
KNN model on the untreated units and use it to impute Y0 for
the treated units. In both cases, the imputed value is simply
the outcome of the matched unit, where the match is based on
the propensity score:

In [7]: from sklearn.neighbors import KNeighbors

        T = "intervention"

        X = "propensity_score"

        Y = "engagement_score"

        treated = data_ps.query(f"{T}==1")

        untreated = data_ps.query(f"{T}==0")

        mt0 = KNeighborsRegressor(n_neighbors=1)

                                                

        mt1 = KNeighborsRegressor(n_neighbors=1)

        predicted = pd.concat([

            # find matches for the treated looki

            treated.assign(match=mt0.predict(tre

            



Once you have a match for each unit, you can estimate the
ATE:

ÂTE =
1

N
∑{(Yi − Yjm(i))Ti + (Yjm(i) − Yi)(1 − Ti)},

where Yjm(i) is the match of unit i from the treatment group
different from i’s:

            # find matches for the untreated loo

            untreated.assign(match=mt1.predict(u

        ])

        predicted.head()

        

department_id intervention engag

0 76 1 0.2773

1 76 1 –0.449

2 76 1 0.7697

3 76 1 –0.121

4 76 1 1.5261



Out[8]: 0.28777443474045966 

        

In [8]: np.mean((predicted[Y] - predicted["match

                + (predicted["match"] - predicte

        



BIAS OF THE MATCHING ESTIMATOR

You don’t need to use matching only with the propensity score.
Instead, you could directly match on the raw features X used

to construct the propensity score estimate P̂ (T |X). However,
the matching estimator is biased, and that bias increases with
the dimension of X. With a high dimensionality, the data
becomes sparse, and the matching becomes poorer. Say 
μ0(X) and μ1(X) are the expected outcome function in the
control and treated group, respectively. The bias is the
discrepancy between the expected outcome and the match’s
outcome: μ0(Xi) − μ0(Xjm) for the treated units and 
μ1(Xjm) − μ1(Xi) for the control units, where Xjm are the
covariates for the match.

This means that, if you want to use matching, but avoid its
bias, you have to apply a bias correction term:

where μ̂1  and μ̂0  can be estimated with something like linear
regression.

To be completely honest, I’m not a huge fan of this estimator,
first, because it is biased, second, because it is difficult to
derive its variance, and third, because my experience in data
science has led me to be suspicious of KNN, mostly because it

ÂTE =
1

N
∑{(Yi − Yjm(i) − (μ̂0(Xi) − μ̂0(Xjm)))Ti

+(Yjm(i) − Yi − (μ̂1(Xjm) − μ̂1(Xi)))(1 − Ti)},



is very inefficient with high dimensional X. This last problem
is not an issue if you only match on the propensity score, but
the first two problems remain. I’m teaching this method here
mostly because it is very famous and you might see it here and
there.

SEE ALSO

The paper “Why Propensity Scores Should Not Be Used for Matching,” by King and
Nielsen, provides a more technical discussion on the issue with propensity score
matching.

Inverse Propensity Weighting

There is another widely used approach for utilizing
propensity scores that I find preferable—inverse propensity
weighting (IPW). By reweighting the data based on the inverse
probability of treatment, this method can make the treatment
appear to have been randomly assigned in the reweighted
data. To do this, we reweight the sample by 1/P(T = t|X) in
order to create a pseudo-population that approximates what
would have happened if everyone had received the treatment 
t:

E[Yt] = E[
𝟙(T = t)Y

P(T = t|X)
]

Once again, the proof for this is not complicated, but beside
the point here. So let’s stick with intuition. Suppose you want
to know the expectation of Y1, that is, of what would be the



average engagement had all managers taken the training. To
get that, you take all those who are treated and scale them by
the inverse probability of getting the treatment. This puts a
high weight on those with very low probability of treatment,
but that nonetheless got it. You are essentially up-weighting
rare treatment examples.

This makes sense, right? If a treated individual has a low
probability of treatment, that individual looks a lot like the
untreated. This must be interesting! This treated unit that
looks like the untreated will probably be very informative of
what would happen to the untreated, had they been treated, 
Y1|T = 0. That is why you give a high weight to that unit.
Same thing for the control. If a control unit looks a lot like the
treated group, it is probably a good estimate for Y0|T = 1, so
you give it more weight.

Here is what this process looks like with the management
training data, with weights depicted as the size of each dot:



Notice how those managers who got the training, T = 1, have
a high weight when ê(X) is low. You are giving high
importance to the treated that look like the untreated.
Conversely, the untreated have a high weight when ê(X) is

high, or when P̂ (T = 0|X) is low. Here you are giving high
importance to the untreated that look like the treated.

If you can use the propensity score to recover the average
potential outcome, it also means you can use it to recover the
ATE:

ATE = E[
𝟙(T = 1)Y

P(T = 1|X)
] − E[

𝟙(T = 0)Y

P(T = 0|X)
]

Both expectations can be estimated from data with very
simple code:

In [9]: weight_t = 1/data_ps.query("intervention

        weight_nt = 1/(1-data_ps.query("interven



Out[9]: E[Y1]: 0.11656317232946772 

        E[Y0]: -0.1494155364781444 

        ATE 0.2659787088076121 

        

Using this approach, the ATE is once again smaller than the
one you got naively, not adjusting for X. Moreover, this result
looks pretty similar to the one you got by using OLS, which is a
good check to make sure you didn’t do anything wrong. It is
also worth noticing that the ATE expression can be simplified
to the following:

ATE = E[Y
T − e(x)

e(x)(1 − e(x))
]

Sure enough, it produces the exact same result as before:

        t1 = data_ps.query("intervention==1")["e

        t0 = data_ps.query("intervention==0")["e

        y1 = sum(t1*weight_t)/len(data_ps)

        y0 = sum(t0*weight_nt)/len(data_ps)

        print("E[Y1]:", y1)

        print("E[Y0]:", y0)

        print("ATE", y1 - y0)

        



Out[10]: 0.26597870880761226 

         

In [10]: np.mean(data_ps["engagement_score"] 

                 * (data_ps["intervention"] - da

                 / (data_ps["propensity_score"]*

         



REGRESSION AND IPW

The preceding formula is very neat because it also gives you
some insight into how IPW compares to regression. With
regression, you are recovering the treatment effect with

τols =
E[Y (T − E[T |X])]

E[V ar(T |X)]
.

With that in mind, recall that the variance of a Bernoulli
variable with probability p is simply p(1 − p). Hence, the IPW
is recovering the treatment effect with

τipw = E[
Y (T − E[T |X])

V ar(T |X)
].

Notice the similarity? To make it more transparent, since 
1/E[V ar(X|T )] is a constant, you can move it inside the
expectation and rewrite the regression estimator as follows:

τols = E[
Y (T − E[T |X])

E[V ar(T |X)]
] = E[

Y (T − E[T |X])

V ar(T |X)
* W]



with W = V ar(T |X)/E[V ar(T |X)].

Now, the thing inside the expectation in the IPW estimator
identifies the effect (CATE) in the groups defined by X. So, the
difference between IPW and OLS is the first weights each
sample by 1, while regression weights the group effects by the
conditional treatment variance. This is in line with what you
learned in the previous chapter, about regression upweighting
effects where the treatment varies a lot. So, even though
regression and IPW look different, they are doing almost same
thing, up to the weighting point.

Variance of IPW

Unfortunately, computing the standard error for IPW is not as
straightforward as with linear regression. The most
straightforward way to obtain a confidence interval around
your IPW estimate is by using the bootstrap method. With this
method, you will repeatedly resample the data with
replacement to obtain multiple IPW estimators. You can then
calculate the 2.5th and 97.5th percentiles of these estimates to
obtain a 95% confidence interval.

To code that, let’s first wrap your IPW estimation into a
reusable function. Notice how I’m replacing

statsmodels  with sklearn . The logit

function in statsmodels  is slower than the logistic
regression model from sklearn , so this change will



save you some time. Also, since you probably don’t want to
lose the convenience of formulas you get from

statsmodels , I’m using patsy ’s
dmatrix  function. This function engineers a feature

matrix based on an R-style formula, like the ones you’ve been
using so far:

PROBABILITY PREDICTION

By default, sklearn ’s classifiers output 0 or 1 predictions following the logic

P̂ (Y |X) > 0.5. Since you want your model to output a probability, you’ll have to
use the predict_proba  method. This method outputs a two column matrix,

where the first column is P̂ (Y = 0|X) and the second column, P̂ (Y = 1|X). You

only want the second one, which in this case is P̂ (T = 1|X). Hence, the indexing
[:,  1] .

In [11]: from sklearn.linear_model import Logist

         from patsy import dmatrix

         # define function that computes the IPW

         def est_ate_with_ps(df, ps_formula, T, 

             

             X = dmatrix(ps_formula, df)

             ps_model = LogisticRegression(penal

                                           max_i

             ps = ps_model.predict_proba(X)[:, 1

             

             # compute the ATE

             return np.mean((df[T]-ps) / (ps*(1-

         



Here is how you would use this function:

Out[12]: 0.2659755621752663 

         

Now that you have the code to compute ATE inside a neat
function, you can apply it inside a bootstrap procedure. To
speed things up, I’m also going to run the resampling in
parallel. All you have to do is call the data frame method
.sample(frac=1, replace=True)  to get a bootstrap
sample. Then, pass this sample to the function you created
earlier. To make the bootstrap code more generic, one of its
arguments is an estimator function, est_fn , which takes a
data frame and returns a single number as an estimate. I’m
using four jobs, but feel free to set this to the number of cores
in your computer.

Run this estimator multiple times, one in each bootstrap
sample, and you’ll end up with an array of estimates. Finally,

In [12]: formula = """tenure + last_engagement_s

         + C(n_of_reports) + C(gender) + C(role)

         T = "intervention"

         Y = "engagement_score"

         est_ate_with_ps(df, formula, T, Y)

         



to get the 95% CI, just take the 2.5 and 97.5 percentiles of that
array:

I tend to lean toward functional programming in my code,
which might not be familiar to everyone. For this reason, I’ll
add notes explaining some of the functional patterns that I’m
using, starting with the partial  function.

In [13]: from joblib import Parallel, delayed # 

         def bootstrap(data, est_fn, rounds=200,

             np.random.seed(seed)

             

             stats = Parallel(n_jobs=4)(

                 delayed(est_fn)(data.sample(fra

                 for _ in range(rounds)

             )

             

             return np.percentile(stats, pcts)

         



PARTIAL

partial  takes in a function and some of its arguments and
returns another function just like the input one, but with the
arguments that you passed already applied:

def addNumber(x, number): 

    return x + number 

  

add2 = partial(addNumber, number=2)

add4 = partial(addNumber, number=4) 

  

add2(3)

>>> 5 

  

add4(3)

>>> 7

I’ll use partial  to take the est_ate_with_ps  function and
partially apply the formula, the treatment, and the outcome
arguments. This will give me a function that has a data frame
as its only input and that outputs the $ATE$  estimate. I can
then pass this function as the est_fn  argument to the
bootstrap function I created earlier:

In [14]: from toolz import partial

         print(f"ATE: {est_ate_with_ps(df, formu



Out[14]: ATE: 0.2659755621752663 

         95% C.I.:  [0.22654315 0.30072595] 

         

This 95% is about as wide as the one you got earlier, with
linear regression. It’s important to realize that the variance in
the propensity score estimator will be large if you have big
weights. Big weights means that some units have a big impact
in the final estimate. A few units having a big impact in the
final estimate is precisely what causes the variance.

You’ll have big weights if you have few control units in the
region with high propensity score or a few treated units in the
region with low propensity score. This will cause you to have
few units to estimate the counterfactuals Y0|T = 1 and 
Y1|T = 0, which might give you a very noisy result.

         est_fn = partial(est_ate_with_ps, ps_fo

         print(f"95% C.I.: ", bootstrap(df, est_

         



RACTICAL EXAMPLE

CAUSAL CONTEXTUAL BANDITS

Contextual bandits is a flavor of reinforcement learning
where the goal is to learn an optional decision-making policy.
It merges a sampling component, which balances gathering
data in unexplored regions with allocating the best treatment,
and an estimation component, which tries to figure out the
best treatment with the available data.

The estimation component can be easily framed as a causal
inference problem, where you wish to learn the best
treatment assignment mechanism, where best is defined in
terms of the expected value of a desired outcome Y  you wish
to optimize. Since the algorithm goal is to allocate the
treatment in an optimal manner, the data it gathers is
confounded (not random). This is why a causal approach to
contextual bandits can yield significant improvements.

If the decision-making process is probabilistic, you can store
the probability of assigning each treatment, which is exactly
the propensity score e(x). Then, you can use this propensity
score to reweight the past data, where the treatment has
already been selected and the outcome is already observed.
This reweighted data should be unconfounded and hence
much easier to learn what is the optimal treatment.

Stabilized Propensity Weights



Weighting the treated samples by 1/P(T = 1|X) creates a
pseudo-population the same size as the original one, but as
though everyone was treated. This means that the sum of the
weights is about the same as the original sample size.
Likewise, weighting the control by 1/P(T = 0|X) creates a
pseudo-population that behaves as though everyone had the
control.

If you come from a machine learning background, you might
recognize IPW as an application of importance sampling. With
importance sampling, you have data from an origin
distribution q(x) but want to sample from a target
distribution p(x). To do that, you can reweight the data from 
q(x) by p(x)/q(x). Bringing this to an IPW context, weighting
the treated by 1/P(T = 1|X) essentially means you are
taking data that came from P(T = 1|X)—which is biased if 
X also causes Y—and reconstructing P(T = 1) = 1, where
the treatment probability does not depend on X, since it is
just 1. This also explains why the resulting re-weighted sample
behaves as if everyone in the original sample was treated.

Another way to see that is to notice how the sum of the
weights for both the treatment and the untreated are pretty
close to the original sample size:

In [15]: print("Original Sample Size", data_ps.s

         print("Treated Pseudo-Population Sample



This is fine, as long as you don’t have weights that are too
large. But if a treatment is very unlikely, P(T |X) can be tiny,
which might cause you some computational issues. A simple
solution is to stabilize the weights using the marginal
probability of treatment, P(T = t):

w =
P(T = t)

P(T = t|X)

With these weights, a treatment with low probability won’t
have massive weights because the small denominator will be
balanced by the also small numerator. This won’t change the
results you got earlier, but it is more computationally stable.

Moreover, the stabilized weights reconstruct a pseudo-
population where the effective size (sum of the weights) of
both treated and control matches that of the original treated
and control groups, respectively. Again, making a parallel with
importance sampling, with stabilized weights, you are coming

         print("Untreated Pseudo-Population Samp

         

Out[15]: Original Sample Size 10391 

         Treated Pseudo-Population Sample Size 1

         Untreated Pseudo-Population Sample Size

         



from a distribution where the treatment depends on X, 
P(T = t|X), but reconstructing the marginal P(T = t):

Out[16]: Treat size: 5611 

         W treat 5634.807508745978 

         Control size: 4780 

         W treat 4763.116999421415 

         

Again, this stabilization keeps the same balancing properties
of the original propensity score. You can verify that it yields
the exact same ATE estimate as you had before:

In [16]: p_of_t = data_ps["intervention"].mean()

         t1 = data_ps.query("intervention==1")

         t0 = data_ps.query("intervention==0")

         weight_t_stable = p_of_t/t1["propensity

         weight_nt_stable = (1-p_of_t)/(1-t0["pr

         print("Treat size:", len(t1))

         print("W treat", sum(weight_t_stable))

         print("Control size:", len(t0))

         print("W treat", sum(weight_nt_stable))

         



Out[17]: ATE:  0.26597870880761176 

         

Pseudo-Populations

I’ve mentioned pseudo-populations already, but
understanding them better will help you appreciate how IPW
removes bias. Let’s first think about what bias means from the
perspective of P(T |X). If the treatment was randomly
assigned with probability, say, 10%, you know that the
treatment would not depend on X, or that 
P(T |X) = P(T ) = 10%. So, if the treatment is independent
from X, you would not have confounding bias flowing
through X and no adjustment would be needed. If you do
have this sort of bias, then some units have a higher chance of
getting the treatment. For example, it could be that very
passionate managers, who already have a very engaged team,

In [17]: nt = len(t1)

         nc = len(t0)

         y1 = sum(t1["engagement_score"]*weight_

         y0 = sum(t0["engagement_score"]*weight_

         print("ATE: ", y1 - y0)

         



are more likely to take the training (have higher e(T )) than
the managers whose teams are not so engaged.

If you plot the distribution of ê(x) by treatment status, since
managers don’t have the same chance of taking the training
(treatment is not random), treated individuals will have
higher ê(x). You can see that in the plot on the left in the
following figure, where the treated distribution for ê(x) is a
bit shifted to the right:

Contrast this with the plot on the right. Here, in the low ê(X)

region, treated are up-weighted and control, down-weighted.
Similarly, when ê(X) is high, treated units are down-weighted
and control, up-weighted. These movements make the two
distributions overlap. The fact that they do means that, on the
weighted data, treated and control have the same chance of
getting both the treatment or the control. In other words,
treatment assignment looks as good as random (assuming no
unobserved confounders, of course).



This also sheds some light on what IPW is doing. By taking the
treated’s outcome, Y |T = 1, and up-weighting those where 
ê(X) is low and down-weighting those where ê(X), you are
trying to figure out what Y1|T = 0 would look like. A similar
argument can be made to show how you are also trying to
learn Y0|T = 1 by reweighting the control sample by 
1/(1 − P(T = 1)).

Selection Bias

The example used here is meant to show how propensity score
weighting can be used to adjust for common causes, making
the treatment similar to the control and vice versa. That is,
you saw how to use propensity score weighting as a way to
account and control for confounding bias. However, IPW can
also be used to adjust for selection issues. In fact, the IPW
estimator was initially used in this context, as presented by
Horvitz and Thompson in 1952. For this reason, you might see
the IPW estimator as the Horvitz-Thompson estimator.

To give an example, suppose you want to know the
satisfaction of your customers with your app. So you send out
a survey asking them to rate your product on a 1-to-5 scale.
Naturally, some customers don’t respond. But the issue with
this is that it can bias your analysis. If the nonrespondents are
mostly unsatisfied customers, the result you’ll get back from
the survey will be an artificially inflated rate.



To adjust for that you can estimate the probability of
responding, R, given customer’s covariates (like age, income,
app usage, etc.), P(R = 1|X). Then, you can reweight those

who responded by 1/P̂ (R = 1). This will up-weight the
respondents that look like the nonrespondents (have low 

P̂ (R = 1)). With this, an individual who answered the survey
will not only account for himself, but for other individuals like
him, creating a pseudo-population that should behave like the
original one, but as if everyone responded to the survey.

Sometimes (but hopefully not many), you’ll have to face both
confounding and selection bias together. In this case, you can
use the product of the weights for both selection and
confounding. Since this product can be quite small, I
recommend stabilizing the confounding bias weights with the
marginal probability P(T = t):

W =
P̂ (T = t)

P̂ (R = 1|X)P̂ (T = t|X)

Bias-Variance Trade-Off

As the naive data scientist that I was, when I learned about
propensity scores I thought “Oh boy! This is huge! I can
transform a causal inference problem into a prediction
problem. If I can just predict e(x), I’m golden!” Unfortunately,
it is not that simple. In my defense, that is an easy mistake to
make. At first glance, it does seem that the better your



estimate of the treatment assignment mechanism, the better
your causal estimates will be. But that is simply not the case.

Remember when you learned about noise-inducing controls,
in Chapter 4? The same logic applies here. If you have a
covariate Xk that is a very good predictor of T , this variable
will give you a very accurate model of e(x). But if that same
variable does not cause Y , it is not a confounder and it will
only increase the variance of your IPW estimate. To see this,
think about what would happen if you have a very good
model of T . This model would output a very high ê(x) for all
treated units (as it correctly predicts that they are treated) and
a very low ê(x) for all the control units (as it correctly
predicts that they are untreated). This would leave you no
treated units with low ê(x) to estimate Y1|T = 0 and no
control units with high ê(x) to estimate Y0|T = 1.

In contrast, think about what would happen if the treatment
was randomized. In this case, the predictive power of ê(x)

should be zero! In the managers training example, under
randomization, managers with higher ê(x) would not be
more likely to participate in the training than those with lower
ê(x). Still, even with no predictive power, this is the best
situation you’ll get in terms of estimating the treatment effect.

As you can see, there is also a bias-variance trade-off when it
comes to IPW. In general, the more precise the propensity
score model, the lower the bias. However, a very precise
model for e(x) will generate a very imprecise effect estimate.



This means you have to make your model precise enough to
control for the bias, but not too much, or you’ll run into
variance issues.

TRIMMING

One way to lower the variance of the IPW estimator is to trim the propensity score
to be always above a certain number—say, 1%—to avoid weights that are too big—
say, above 100. Equivalently, you can directly clip the weights to never be too large.
The IPW with clipped weights is no longer unbiased, but it might have lower mean
square error if the variance reduction is expressive.

Positivity

The bias–variance trade-off can also be viewed in the light of
two causal inference assumptions: conditional independence
(unconfoundedness) and positivity. The more precise you
make your model for e(x), say, by adding more variables to it,
the more you go in the direction of making the CIA hold.
However, you also make positivity less plausible for the
reasons you already saw: you’ll concentrate the treatment in a
low ê(x) region, far away from the controls and vice versa.

The IPW reconstruction is only possible if you have samples to
reweight. If there are no treated samples in the region with
low propensity score (high chance of being the control), there
is no amount of reweight you can do to reconstruct Y1 in that
region. This is what positivity violations look like in terms of
IPW. Also, even if positivity is not entirely violated, but some



units have very small or large propensity scores, IPW will
suffer from high variance.

To see this on a more intuitive level, consider the following
simulated data. Here, the true ATE is 1. However, x confounds
the relationship between T  and Y . The higher the X, the
smaller the Y , but the higher the chance of receiving the
treatment. Hence, a naive comparison in the average outcome
between treated and control will be downward biased and can
even be negative:

In [18]: np.random.seed(1)

         n = 1000

         x = np.random.normal(0, 1, n)

         t = np.random.normal(x, 0.5, n) > 0

         y0 = -x

         y1 = y0 + t  # ate of 1

         y = np.random.normal((1-t)*y0 + t*y1, 0

         df_no_pos = pd.DataFrame(dict(x=x,t=t.a

         df_no_pos.head()

         



If you estimate the propensity score in this data, some units
(with high x) have a propensity score very close to 1, meaning
it is almost impossible for them to get the control. In a similar
manner, some units have almost zero chance of getting the
treatment (those with low x). You can see this in the following
image’s middle plot. Notice the lack of overlap between the
treated and untreated propensity score distribution. This is
very troublesome, as it means that a huge chunk of the control
distribution is condensed where e(x) is close to zero, but you
have no treated unit to reconstruct that region. As a
consequence, you end up lacking a good estimate for 
Y1|T = 0 for a good portion of the data:

x t y

0 1.624345 1 –0.526442

1 –0.611756 0 0.659516

2 –0.528172 0 0.438549

3 –1.072969 0 0.950810

4 0.865408 1 –0.271397



Additionally, as you can see in the third plot, the control units
to the right (high e(x)) have massive weights. A similar thing
can be said about the treated units to the left (small e(x)). As
you know by now, these huge weights will generally increase
the variance of the IPW estimator.

Combine these two problems—high variance and positivity
violation—and you’ll see how the IPW estimator fails to
recover the ATE of 1 in this data:

Out[19]: ATE: 0.6478011810615735 

         95% C.I.:  [0.41710504 0.88840195] 

         

In [19]: est_fn = partial(est_ate_with_ps, ps_fo

         print("ATE:",  est_fn(df_no_pos))

         print(f"95% C.I.: ", bootstrap(df_no_po

         



It’s important to note that this isn’t simply a problem of high
variance. Sure, the 95% CI of this estimator is large, but it is
more than that. Specifically, the upper end of the confidence
interval still appears to be significantly lower than the true
ATE of 1.

Lack of positivity is a problem not only for the IPW estimator.
However, IPW can be more transparent about positivity
issues. For instance, if you plot the distribution of the
propensity score (the plot in the middle of the preceding
image) for the treatment variants, you can visually check if
you have decent levels of positivity.

In fact, let’s contrast the IPW estimator with linear regression.
You know that regression will not be very transparent about
positivity violations. Instead, it will extrapolate to the regions
where you have no data whatsoever. In some very lucky
situations, this might even work. For instance, in this very
simple simulated data, regression manages to recover the ATE
of 1, but only because it correctly extrapolates both Y0 and Y1

to the treated and control region where there is no actual
data:

In [20]: smf.ols("y ~ x + t", data=df_no_pos).fi

         



Out[20]: 1.0165855487679483 

         

In a sense, regression can replace the positivity assumption
for a parametric assumption on E[Y |T , X], which is
essentially an assumption about smoothness in the potential
outcomes. If the linear model has a good fit to the conditional
expectation, it will manage to recover the ATE even in regions
where positivity doesn’t hold. In contrast, IPW makes no
assumptions on the shape of the potential outcome. As a
result, it fails when extrapolation is needed.

Design- Versus Model-Based
Identification

You’ve just learned how to use propensity score weighting to
estimate the treatment effect. Along with regression, this
already gives two—and the most important—methods to
debias nonexperimental data. But which one should you use
and when? Regression or IPW?

Implicit in this choice is the discussion of model-based versus
design-based identification. Model-based identification
involves making assumptions in the form of a model of the
potential outcomes conditioned on the treatment and
additional covariates. From this perspective, the goal is to



impute the missing potential outcomes required for
estimation. In contrast, design-based identification is all about
making assumptions about the treatment assignment
mechanism. In Chapter 4, you saw how regression fits both
kinds of strategy: from the perspective of orthogonalization, it
is design-based; from the perspective of an estimator for the
potential outcome model, it is model-based. In this chapter,
you learned about IPW, which is purely design-based, and in
later chapters, you’ll learn about Synthetic Control, which is
purely model-based.

So, in order to choose between a design- or model-based
identification, you need to ask yourself which type of
assumption you are more comfortable with. Do you have a
good understanding of how the treatment was assigned? Or do
you have a better chance in correctly specifying a potential
outcome model?

Doubly Robust Estimation

The good news is that, when in doubt, you can just choose
both! Doubly robust (DR) estimation is a way of combining
both model- and design-based identification, hoping that at
least one of them is correct. Here, let’s see how to combine
propensity score and linear regression in a way that only one
of them needs to be rightly specified. Let me show you a
popular DR estimator and tell you why it is awesome.



Quite generally, a doubly robust estimator for the
counterfactual Yt can be written as follows:

μ̂
DR
t (m̂, ê) =

1

N
∑ m̂(X) +

1

N
∑[

T

ê(x)
(Y − m̂(X))]

where m̂(X) is a model for E[Yt|X] (linear regression, for
example) and ê(X) is a propensity score model for P(T |X).
Now, the reason why this is amazing—and why it is called
doubly robust—is that it only requires one of the models, 
m̂(X) or ê(X), to be correctly specified.

For example, suppose that the propensity score model was
wrong, but the outcome model m̂(X) was correct. In this case,
the second term would converge to zero, since 
E[Y = m̂(X)] = 0. You would be left with the first term,
which is just the outcome model, which is correct.

Next, let’s consider a scenario where the outcome model is
incorrect, but the propensity score model is accurate. To
explore this possibility, you can perform some algebraic
manipulation on the preceding formula and rewrite it as
follows:

μ̂
DR
t (m̂, ê) =

1

N
∑

TY

ê(X)
+

1

N
∑[

T − ê(X)

ê(X)
m̂(X)]

I hope this makes it more clear. If the propensity model is
correct, T − ê(X) would converge to zero. That would leave
you only the first term, which is the IPW estimator. And since
the propensity model is correct, this estimator would be too.



That’s the beauty of this doubly robust estimator: it converges
to whichever model is correct.

The preceding estimator would estimate the average
counterfactual outcome Yt. If you want to estimate the
average treatment effect, all you have to do is put two of those
estimators together, one for E[Y0] and one for E[Y1], and take
the difference:

ATE = μ̂
DR
1 (m̂, ê) − μ̂

DR
0 (m̂, ê)

Having understood the theory behind DR, it’s time to code it
up. The models ê  and m̂ don’t have to be a logistic and linear
regression, respectively, but I think those are very good
candidates for a starter. Once again, I’ll begin by using the R-
style formula from patsy ’s dmatrix  to
engineer my covariate matrix X. Next, I’m using logistic
regression to fit the propensity model and get ê(X). Then
comes the output model part. I’m fitting one linear regression
per treatment variant, giving me two of them—one for the
treated and one for the control. Each model is fitted on the
subset of the data of its treatment variant, but makes
predictions for the entire dataset. For example, the control
model fits only in the data where T = 0, but it predicts
everything. This prediction is an estimate for Y0.

Finally, I’m combining the two models to form the DR
estimator for both E[Y0] and E[Y1]. This is simply the
translation of the formula you just saw into code:



Let’s see how it performs in the manager training data. You
can also pass it to your bootstrap function to construct a
confidence interval for the DR ATE estimate:

In [21]: from sklearn.linear_model import Linear

         def doubly_robust(df, formula, T, Y):

             X = dmatrix(formula, df)

             

             ps_model = LogisticRegression(penal

                                           max_i

             ps = ps_model.predict_proba(X)[:, 1

             

             m0 = LinearRegression().fit(X[df[T]

             m1 = LinearRegression().fit(X[df[T]

             

             m0_hat = m0.predict(X)

             m1_hat = m1.predict(X)

             return (

                 np.mean(df[T]*(df[Y] - m1_hat)/

                 np.mean((1-df[T])*(df[Y] - m0_h

             )

         

In [22]: formula = """tenure + last_engagement_s

         + C(n_of_reports) + C(gender) + C(role)

         T = "intervention"

         Y = "engagement_score"



Out[22]: DR ATE: 0.27115831057931455 

         95% CI [0.23012681 0.30524944] 

         

As you can see, the result is pretty in line with both the IPW
and the regression estimator you saw earlier. This is good
news, as it means the DR estimator is not doing anything
crazy. But honestly, it is kind of boring and it doesn’t exactly
show the power of DR. So, to better understand why DR is so
interesting, let’s craft two new examples. They will be fairly
simple, but very illustrative.

Treatment Is Easy to Model

The first example is one where the treatment assignment is
fairly easy to model, but the outcome model is a bit more
complicated. Specifically, the treatment follows a Bernoulli
distribution with probability given by the following
propensity score:

e(x) =
1

1 + e−(1+1.5x)

         print("DR ATE:", doubly_robust(df, form

         est_fn = partial(doubly_robust, formula

         print("95% CI", bootstrap(df, est_fn))

         



In case you didn’t recognize, this is exactly the kind of form
the logistic regression assumes, so it should be pretty easy to
estimate it. Moreover, since P(T |X) is easy to model, the IPW
score should have no problem finding the true ATE here,
which is close to 2. In contrast, since the outcome Y  is a bit
trickier, a regression model might run into some trouble:

Out[23]: True ATE: 2.0056243152 

         

The following two plots show what this data looks like. It is
interesting to notice the effect heterogeneity in the data, which

In [23]: np.random.seed(123)

         n = 10000

         x = np.random.beta(1,1, n).round(2)*2

         e = 1/(1+np.exp(-(1+1.5*x)))

         t = np.random.binomial(1, e)

         y1 = 1

         y0 = 1 - 1*x**3

         y = t*(y1) + (1-t)*y0 + np.random.norma

         df_easy_t = pd.DataFrame(dict(y=y, x=x,

         print("True ATE:", np.mean(y1-y0))

         



is easy to see in the second plot. Notice how the effect is 0 for
low values of x and it increases nonlinearly as x increases.
This sort of heterogeneity is oftentimes hard for regression to
get it right:

Now, let’s see how regression does in this data. Here I’m once
again fitting m̂1 and m̂0 separately and estimating the ATE as
the average of the different predictions in the entire dataset, 
N −1 ∑(m̂1(x) − m̂0(X)):

In [24]: m0 = smf.ols("y~x", data=df_easy_t.quer

         m1 = smf.ols("y~x", data=df_easy_t.quer

         regr_ate = (m1.predict(df_easy_t) - m0

         print("Regression ATE:", regr_ate)

         



Out[24]: Regression ATE: 1.786678396833022 

         

As expected, the regression model fails to recover the true ATE
of 2. If you plot the predicted values against the original data
you can see why. Regression fails to capture the curvature in
the control group:

To be clear, this doesn’t mean it is not possible to correctly
estimate the ATE with regression. If you knew about the true
curvature of the data, you could pretty much model it
correctly:

In [25]: m = smf.ols("y~t*(x + np.power(x, 3))",

         regr_ate = (m.predict(df_easy_t.assign

                     - m.predict(df_easy_t.assig



Out[25]: Regression ATE: 1.9970999747190072 

         

But, of course, in reality, you don’t really know how the data
was generated. So, more likely than not, regression would
have failed you here. In contrast, let’s see how IPW does.
Again, since it is pretty easy to model the treatment
assignment, you should expect IPW to perform quite well on
this data:

Notice how IPW pretty much nails the correct ATE.

Finally, the moment you’ve been waiting for, let’s see the DR
estimate in action. Remember, DR requires one of the models

         print("Regression ATE:", regr_ate)

         

In [26]: est_fn = partial(est_ate_with_ps, ps_fo

         print("Propensity Score ATE:", est_fn(d

         print("95% CI", bootstrap(df_easy_t, es

         

Out[26]: Propensity Score ATE: 2.002350388474011

         95% CI [1.80802227 2.22565667] 

         



—P(T |X) or E[Yt|X]—to be correct, but not necessarily
both. In this data, the model for P(T |X) will be correct, but
the model for E[Yt|X] will be wrong:

Out[27]: DR ATE: 2.001617934263116 

         95% CI [1.87088771 2.145382] 

         

As expected, the DR performs quite well here, also recovering
the true ATE. But there is more. Notice how the 95% CI is
smaller than that of pure IPW estimate, meaning the DR
estimator is more precise here. This simple example shows
how DR can perform well when P(T |X) is easy to model even
if it gets E[Yt|X] wrong. But what about the other way
around?

Outcome Is Easy to Model

In this next simple yet illustrative example, the complexity is
in P(T |X) rather than E[Yt|X]. Notice the nonlinearity in 
P(T |X), while the outcome function is simply linear. Here,
the true ATE is –1:

In [27]: est_fn = partial(doubly_robust, formula

         print("DR ATE:", est_fn(df_easy_t))

         print("95% CI", bootstrap(df_easy_t, es

         



Out[28]: True ATE: -1.0 

         

The same kind of plot from before can be used to show the
complex functional form for P(T |X) and the simplicity of 
E[Yt|X]:

In [28]: np.random.seed(123)

         n = 10000

         x = np.random.beta(1,1, n).round(2)*2

         e = 1/(1+np.exp(-(2*x - x**3)))

         t = np.random.binomial(1, e)

         y1 = x

         y0 = y1 + 1 # ate of -1

         y = t*(y1) + (1-t)*y0 + np.random.norma

         df_easy_y = pd.DataFrame(dict(y=y, x=x,

         print("True ATE:", np.mean(y1-y0))

         



With this data, since the propensity score is relatively complex
to model, IPW does not manage to recover the true ATE:

But regression manages to get it precisely right:

In [29]: est_fn = partial(est_ate_with_ps, ps_fo

         print("Propensity Score ATE:", est_fn(d

         print("95% CI", bootstrap(df_easy_y, es

         

Out[29]: Propensity Score ATE: -1.10429002786808

         95% CI [-1.14326893 -1.06576358] 

         

In [30]: m0 = smf.ols("y~x", data=df_easy_y.quer

         m1 = smf.ols("y~x", data=df_easy_y.quer

         regr_ate = (m1.predict(df_easy_y) - m0



Out[30]: Regression ATE: -1.0008783612504342 

         

Once again, because DR only needs one of the models to be
correctly specified, it also manages to recover the true ATE
here:

Out[31]: DR ATE: -1.0028459347805823 

         95% CI [-1.04156952 -0.96353366] 

         

I hope these two examples made it more clear why doubly
robust estimation can be very interesting. The bottom line is
that it gives you two shots at being correct. In some cases, it’s
hard to model P(T |X), but easy to model E[Yt|X]. In others,
the reverse might be true. Regardless, as long as you can
model one of them correctly, you can combine a model for 
P(T |X) and a model for E[Yt|X] in a way that only one of

         print("Regression ATE:", regr_ate)

         

In [31]: est_fn = partial(doubly_robust, formula

         print("DR ATE:", est_fn(df_easy_y))

         print("95% CI", bootstrap(df_easy_y, es

         



them needs to be correct. This is the true power of the doubly
robust estimator.

SEE ALSO

The DR estimator covered here is only one of the many out there. Just to give some
examples, you could take the DR estimator covered in this chapter but fit the
regression model with weights set to ê(x). Or, you could add ê(x) to the regression
model. Interestingly, linear regression alone is a DR estimator that models the
treatment as e(x) = βX. It is not a very good DR estimator, since βX is not
bounded between 0 and 1, as a probability model should be, but it is nonetheless a
DR estimator. To learn more about other DR estimators, check out the excellent
discussion in “Comment: Performance of Double-Robust Estimators When ‘Inverse
Probability’ Weights Are Highly Variable,” 2008, by Robins et al.

Generalized Propensity Score for
Continuous Treatment

Until now, this chapter has only shown how to use propensity
scores for discrete treatment. There is a pretty good reason for
that. Continuous treatments are way more complicated to deal
with. So much so that I would say that causal inference as a
science doesn’t have a very good answer on how to deal with
them.

In Chapter 4, you managed to get away with continuous
treatment by assuming a functional form for the treatment
response. Something like y = a + bt (linear form) or 
y = a + b√t (square root form), which you could then
estimate with OLS. But when it comes to propensity weighting,



there is no such thing as a parametric response function. The
potential outcomes are estimated nonparametrically, by
reweighting and taking averages. When T  is continuous, there
exist infinitely many potential outcomes Yt. Furthermore,
since the probability of a continuous variable is always zero, it
is not feasible to estimate P(T = t|X) in this scenario.

The simplest way out of these issues is to discretize the
continuous treatment into a coarser version that can then be
treated as discrete. But there is another way out, which is to
use the generalized propensity score. If you make some
changes to the traditional propensity score, you’ll be able to
accommodate any type of treatment. To see how this would
work, consider the following example.

A bank wants to know how a loan’s interest rates affect the
duration (in months) that the customer chooses to pay back
that loan. Intuitively speaking, the effect of interest on the
duration should be negative, since people like to pay back
high-rate loans as fast as possible to avoid paying too much on
interest.

To answer this question, the bank could randomize the
interest rate, but this would be costly, both in money and in
time. Instead, it wants to use the data it already has. The bank
knows that interest rates were assigned by two machine
learning models: ml_1  and ml_2 . Additionally,
since the bank’s data scientists were very smart, they added a
random Gaussian noise to the interest rate decision-making



process. This ensures that the policy is nondeterministic and
that the positivity assumption is not violated. The
observational (nonrandomized) interest data, along with
information on the confounders ml_1  and ml_2

and the outcome duration  is stored in the
df_cont_t  data frame:

In [32]: df_cont_t = pd.read_csv("./data/interes

         df_cont_t.head()

         

ml_1 ml_2 interest

0 0.392938 0.326285 7.1

1 –0.427721 0.679573 5.6

2 –0.546297 0.647309 11.1

3 0.102630 –0.264776 7.2

4 0.438938 –0.648818 9.5



Your task is to unbias the relationship between interest rate
and duration, adjusting for ml_1  and ml_2 .
Notice that, if you estimate the treatment effect naively, not
adjusting for anything, you’ll find a positive treatment effect.
As discussed already, this makes no business sense, so this
result is probably biased:

To adjust for ml_1  and ml_2 , you could just
include them in your model, but let’s see how to manage the
same thing with reweighting. The first challenge that needs to
be addressed is the fact that continuous variables have a
probability of zero everywhere, i.e., P(T = t) = 0. This
occurs because the probability is represented by the area
under the density, and the area of a single point is always zero.
One possible solution is to work with the conditional density
function f(T |X) instead of the conditional probability 

In [33]: m_naive = smf.ols("duration ~ interest"

         m_naive.summary().tables[1]

         

coef std err t P>|t|

Intercept 14.5033 0.226 64.283 0.000
interest 0.3393 0.029 11.697 0.000



P(T = t|X). However, this approach presents another issue,
which is specifying the distribution of the treatment.

Here, for simplicity’s sake, let’s assume it is drawn from a
normal distribution T ∼ N(μi, σ2). This is a fairly
reasonable simplification, especially since the normal
distribution can be used to approximate other distributions.
Moreover, let’s assume constant variance σ2, instead of one
that changes for each individual.

Recall that the density of the normal distribution is given by
the following function:

f(ti) =

exp(−
1

2
(

ti − μi

σ
)

2

)

σ√2π

Now you need to estimate the parameters of this conditional
Gaussian, that is, the mean and standard deviation. The
simplest way to do that is using OLS to fit the treatment
variable:

Then, the fitted values will be used as μi and the standard
deviation of the residual will be σ. With this, you have an
estimate for the conditional density. Next, you’ll need to
evaluate that conditional density at the given treatment,

In [34]: model_t = smf.ols("interest~ml_1+ml_2",

         



which is why I’m passing T  to the x  argument in the
density function in the following code:

Alternatively, you can (and probably should) import the
normal distribution from scipy  and use that instead:

In [35]: def conditional_density(x, mean, std):

             denom = std*np.sqrt(2*np.pi)

             num = np.exp(-((1/2)*((x-mean)/std)

             return (num/denom).ravel()

             

         gps = conditional_density(df_cont_t["in

                                   model_t.fitte

                                   np.std(model_

         gps

         

Out[35]: array([0.1989118, 0.14524168, 0.0333842

                0.15732008]) 

         

In [36]: from scipy.stats import norm

         gps = norm(loc=model_t.fittedvalues,

                    scale=np.std(model_t.resid))

         gps

         



BEYOND THE NORMAL

If the treatment follows another distribution other than the normal, you can use
generalized linear models ( glm ) to fit it. For example, if T  was assigned

according to a Poisson distribution, you could build the GPS weights with
something like the following code:

import statsmodels.api as sm

from scipy.stats import poisson

 

mt = smf.glm("t~x1+x2",

             data=df, family=sm.families.Poisson()).fit()

 

gps = poisson(mu=m_pois.fittedvalues).pmf(df["t"])

 

w = 1/gps

Using the inverse of the GPS as weights in a regression model
can adjust for the bias. You can see that now you’ll find a
negative effect of interest on duration, which makes more
business sense:

Out[36]: array([0.1989118, 0.14524168, 0.0333842

                0.15732008]) 

         

In [37]: final_model = smf.wls("duration~interes

                               data=df_cont_t, w



Out[37]: -0.6673977919925854 

         

There is still one more improvement that can be made, which
will provide a more intuitive understanding of GPS. Using this
score to construct weights will assign greater importance to
points with unlikely treatments. Specifically, you will assign
high weights to units with high residuals in the treatment
model that you have fitted. Additionally, due to the
exponential nature of the normal density, the weights will
increase exponentially with the size of the residual.

To illustrate this point, suppose you fit the interest rate using
only ml_1 , instead of both ml_1  and

ml_2 . This simplification enables presenting
everything in a single plot. The resulting weights are displayed
in the next figure. The first plot shows the original data, color-
coded by the confounder ml_1 . Customers with low
scores on ml_1  typically select longer durations to
repay their loan. Furthermore, customers with low

ml_1  scores are assigned higher interest rates.
Consequently, an upward bias exists in the relationship
between interest rate and duration.

         final_model.params["interest"]

         



The second plot shows the fitted values of the treatment model
and the weights constructed by the GPS, obtained from that
model. They are larger the farther you go from the fitted line.
This makes sense, as the GPS gives more weight to unlikely
treatments. But look how big the weights can get. Some are
bigger than 1,000!

The last plot shows the same weights, but in the relationship
between interest and duration. Since both low interest rates at
low values of ml_1  and high interest at high values of

ml_1  are unlikely, inverse GPS weight gives high
importance to those points. This manages to reverse the
positive (and biased) relationship between interest and
duration. But this estimator will have huge variance, as it is
practically just using a few data points—those with very high
weights. Moreover, because this data was simulated, I know
for a fact that the true ATE is –0.8, but the preceding estimate
is only –0.66.



To improve upon it, you can stabilize the weights by the
marginal density f(t). Unlike with discrete treatment, where
weight stabilization was just nice to have, with the GPS, I
would say it is a must. To estimate f(t), you can simply use
the average treatment value. Then, evaluate the resulting
density at the given treatments.

Notice how this produces weights that sum to (almost) the
original sample size. Thinking about this in the light of
importance sampling, these weights take you from f(t|x) to 
f(t), a density where the treatment does not depend on x:

In [38]: stabilizer = norm(

             loc=df_cont_t["interest"].mean(),

             scale=np.std(df_cont_t["interest"] 

         ).pdf(df_cont_t["interest"])

         gipw =  stabilizer/gps

         print("Original Sample Size:", len(df_c

         print("Effective Stable Weights Sample 

         

Out[38]: Original Sample Size: 10000 

         Effective Stable Weights Sample Size: 9

         



Again, to understand what is going on, suppose you fit f(t|x)

using only ml_1 . Once again, inverse propensity
weighting gives high importance to points that are far from
the fitted values of the treatment model, as they fall in a low-
density region of f(t|x). But additionally, the stabilization also
gives low importance to points that are far away from f(t),
that is, points far from the mean. The result is twofold. First,
the stabilized weights are much smaller, which gives you
lower variance. Second, it becomes clearer that you are now
giving more importance to points with both low values of

ml_1  and low interest rate (and vice versa). You can
see this by the change in the color pattern between the first
and third plots:

Also, these stabilized weights give you an estimate that is
much closer to the true ATE of –0.8:



Out[39]: -0.7787046278134069 

         

As you can see, even though weight stabilization didn’t have
an impact in the case where T  was discrete, it is very relevant
for continuous treatments. It gets you closer to the true value
of the parameter you are trying to estimate and it also
significantly reduces the variance. Since it is a bit repetitive,
I’m omitting the code to compute the 95% CI of the estimates,
but it is pretty much what you did before: just wrap the whole
thing in a function and bootstrap it. But just so you can see it
for yourself, here are the 95% CI with and without
stabilization:

Notice how both contain the true value of –0.8, but the one
with stabilization is much narrower.

In [39]: final_model = smf.wls("duration ~ inter

                               data=df_cont_t, w

         final_model.params["interest"]

         

95% CI, non-stable:  [-0.81074164 -0.52605933] 

95% CI, stable:  [-0.85834311 -0.71001914] 



CONTINUOUS TREATMENT LITERATURE

There are other ways to estimate the treatment effect with
models that predict the treatment. One idea (by Hirano and
Imbens) is to include the GPS as a covariate in a regression
function. Another option (by Imai and van Dyk) is fit T ,

segment the data based on the predictions T̂ , regress the

treatment on the outcome on each segment defined by T̂ , and
combine the results using a weighted average, where the
weights are the size of each group.

For a more comprehensive survey of the available options, I
recommend checking out Douglas Galagate’s PhD thesis,
“Causal Inference with a Continuous Treatment and
Outcome.”

There is also a Python package named causal-curve

that provides a scikit-learn–like API for modeling continuous
treatment with GPS, if you don’t want to code all of this by
hand.

Key Ideas

Along with regression—and orthogonalization in general—
inverse propensity weighting is the second workhorse for bias
adjustment in your causal inference toolbox. Both techniques
require you to model the treatment. This should serve as a
reminder of how important it is to think about the treatment

https://oreil.ly/8CteT


assignment mechanism in any causal inference problem.
However, each technique makes use of that treatment model
in a very unique way. Orthogonalization residualized the
treatment, projecting it to a new space where it becomes
linearly independent (orthogonal) to the covariates X that
were used to model the treatment. IPW keeps the same
treatment dimension, but reweights the data by the inverse of
the treatment propensity:

w =
P(T )

P(T |X)

This makes it look like the treatment was drawn from a
distribution P(T ), which does not depend on the covariates 
X that were used to create the propensity model.

Figure 5-1 shows a simple comparison between the two
approaches. In this data, treatment effect is positive, but
confounded by x, which is depicted in the color schema of the
data points. The first plot contains the original data along a
regression line of y on y. The negative slope is due to the bias
that comes from x. The next two plots show how
orthogonalization and IPW debias this data using very distinct
ideas. Both manage to recover a positive causal effect of t on y,
as shown by their respective regression lines.



Figure 5-1. How orthogonalization and IPW remove bias

If both procedures manage to debias the data, a natural
question that arises is which one should you choose. This is a
bit personal, but here is my take on it. I really like IPW for
when the treatment is discrete, especially if you pair it with
outcome modeling in a doubly robust approach. However,
when the treatment is continuous, I tend to gravitate toward
regression modeling of the kind you saw in Chapter 4. With
continuous treatment, you’ll have very few data points around
any specific treatment. As a result, a method like IPW, which
doesn’t pose a parametric assumption on the treatment
response function, becomes less appealing. For me, it is more
productive to assume some smoothness in the treatment
response function, allowing you to pool information from
neighboring points around a particular treatment to infer its
response.

Sure, I think it is very much worth understanding approaches
like the Generalized Propensity Score, as it gives you further
intuition into IPW in general. That is why I’ve included it in



this chapter. Also, as the continuous treatment literature
advances, I want you to be able to keep up with it, if you wish
to. But, day-to-day, when T  is continuous, I think you’ll be
better off with outcome models like linear regression.



Part III. Effect Heterogeneity and
Personalization



Chapter 6. Effect Heterogeneity

This chapter introduces what is perhaps the most interesting
development of causal inference applied to the industry: effect
heterogeneity. Up until this point, you understood the general
impact of a treatment. Now, you’ll focus on finding how it can
affect people differently. The idea that the treatment effect is
not constant is simple, yet incredibly powerful. Knowing
which units respond better to a certain treatment is key in
deciding who gets it. Effect heterogeneity offers a causal
inference approach to the cherished idea of personalization.

You’ll start by understanding effect heterogeneity on a
theoretical level, what the challenges are in estimating effect
heterogeneity, and how you can expand what you already
learned to work around those challenges. Next, you’ll see that
estimating heterogeneous effects is closely related to
predictive problems, which are already very familiar to data
scientists. Consequently, you’ll see how the idea of cross-
validation and model selection still applies in treatment
heterogeneity models. However, validating your effect
estimate is much more challenging than evaluating a simple
predictive model, which is why you’ll see some novel ideas on
how to do it.

The chapter closes with some guidelines and examples on how
to use effect heterogeneity to guide decision making. Although



not exhaustive, I hope those examples will inform you on how
to use these ideas on your own business problems.

From ATE to CATE

So far, every time you’ve estimated the causal impact of a
treatment, it was mostly the average treatment effect:

τ = E[Y1 − Y0]

or the continuous treatment equivalent:

τ = E[y'(t)]

where y'(t) is the derivative of the treatment response
function. That is, you’ve learned techniques to uncover the
general effectiveness of a treatment. ATE estimation is the
bedrock of causal inference. It’s a super useful tool for the
decision-making problem that is referred to as program
evaluation: when you want to know if you should roll out a
treatment to the entire population or not.

Now, it’s time to learn how to inform another type of decision:
which unit should you treat? For that, you’ll need to allow the
decision to change from one unit to another. For example, it
might be beneficial to give a discount coupon to one customer
but not to another, since one customer might be more
sensitive to discounts. Or, it might make sense to prioritize a
vaccine to one group over another, as those would benefit



more from such treatment. In this type of situation,
personalization is key.

One way to achieve this personalization is by taking effect
heterogeneity into account, which involves estimating the
conditional average treatment effect (CATE). By considering
the unique characteristics of each unit, you can determine the
most effective treatment for that particular case:

E[Y1 − Y0|X] or E[y'(t) X]

The conditioning on X means that you now allow the
treatment effect to be different depending on the
characteristics, as defined by the covariates X of each unit.
Again, here, you believe that not all entities respond equally
well to the treatment and you want to leverage that
heterogeneity. You want to treat only the right units (in the
binary case) or figure out the optimal treatment dosage for
each unit (in the continuous case).

For instance, if you are a bank that has to decide the loan each
customer is eligible for, you can be sure that it’s not a good
idea to give loads of money to everyone, although it might be
reasonable for some. You will have to be smart with your
treatment (loan amount). Perhaps, depending on the customer
credit score, you can figure out what the proper loan amount
is. Of course, you don’t need to be a big institution to leverage
personalization. There’s no shortage of examples where it
applies. What days of the year should you do sales? How much∣



should you charge for a product? How much exercise is too
much exercise for each person?

Why Prediction Is Not the Answer

Think of it this way. You have a bunch of customers and a
treatment (price, discount, loan…) and you want to
personalize the treatment—for example, give different
discounts to different customers. And say you can organize
your customers in the following treatment by outcome plot:

You can think about the personalization task as problem of
customer segmentation. You want to create groups of
customers based on how they respond to your treatment. For



example, say you want to find customers who respond well to
discounts and customers who respond poorly to them. Well,
the customer’s response to a treatment is given by the
conditional treatment effect δY

δT
. So, if you could somehow

estimate that for each customer, you would be able to group
those who respond great to the treatment (high treatment
effect) and those who don’t respond very well to it. If you did
that, you would split the customer space somewhat like the
following image:

That would be wonderful because now you would be able to
estimate different treatment effects on each group. Again,
since the effect is just the slope of the treatment response
function, if you can produce groups where that slope differs,



entities on those partitions will have different responsiveness
to the treatment:

Now, contrast this with what you would get with a traditional
machine learning approach. You would probably try to predict
Y , rather than the derivative δYδT  for each unit. This would
essentially partition the space on the y-axis, assuming that
your predictive model can approximate the target well.
However, this wouldn’t necessarily lead to groups with
different treatment effects. Which is why simply predicting
the outcome is not always useful for decision making:



OK, you might say, I get that I have to estimate the effect,
instead of just predict the outcome, but it’s kind of tricky. How
can I predict the slope δSales

δDiscount  if I can’t see it?

That’s a good point. Unlike the raw outcome Y , slopes (or rate
of changes) are essentially nonobservable on a unit level. For
you to see the individual slopes, you would have to observe
each unit under different treatment levels and calculate how
the outcome changes for each of those treatments:

δYi

δTi
≈

Y (Ti) − Y (Ti + ϵ)

Ti − (Ti + ϵ)

This is the fundamental problem of causal inference all over
again. You can’t ever see the same unit under different
treatment conditions. So, what can you do?



CATE AND ITE

Keep in mind that the CATE is different from the individual treatment effect (ITE).
For instance, suppose you have two groups, x = 1 and x = 2, each with 4 units,
and you want to know the effect of a new drug on an illness that usually kills 50%
of those with it. For group x = 1, the medicine is detrimental to one patient, killing
it, but it saves another. For the group x = 2, the effect of the drug is null, and 1 of
them dies (remember that the illness kills 50%). In both groups, the CATE is 0.5, but
the ITE of no single unit is 0.5.

CATE with Regression

I think you probably saw it coming: as with most things in
applied causal inference, the answer tends to start with linear
regression. But before going that route, let’s make things a bit
more tangible. Pretend that you work for a chain of
restaurants that operate across the country. A key component
of this business is understanding when it should give discounts
to its customers. For this reason, the company ran a
nationwide experiment that lasted three years, where it
randomized discounts in six different restaurants in the chain.
The data is stored in the following data frame:

In [1]: data = pd.read_csv("./data/daily_restaur

        data.head()

        



Your goal here is to understand when it is the best time to give
discounts. In this data, you have one row per restaurant and
day combination. This is a bit different from most of the
examples used in this book, where the unit was customers.
Now, the unit is a day–restaurant combination. Even so, you
can still apply the same reasoning from before, only instead of
treating customers, you’ll “treat” (give a discount) days instead
of customers. You could also have a different price at each
restaurant at each day, but let’s simplify the problem to
keeping prices consistent across restaurants.

You can frame this business problem as a CATE estimation
problem. If you can create a model that outputs the sales

rest_id day month

0 0 2016-01-01 1

1 0 2016-01-02 1

2 0 2016-01-03 1

3 0 2016-01-04 1

4 0 2016-01-05 1



sensitivity to discount for each day and covariate, that is:

∂

∂t
E[Sales(t)|X],

then, you can use that model to decide when to give a discount
and how much discount to give.

CATE IDENTIFICATION

Throughout this chapter, you won’t have to worry too much about identification,
since the treatment is randomized in the evaluation set. However, the whole idea of
estimating the CATE is based on making E[Sales(t)|X] = E[Sales|T = t,X].

Now that you have something more tangible to work with,
let’s see how regression can help you. Recall that you were left
in a complicated situation. You need to predict δYiδTi

, which is

sadly not observable. So it’s not like you could simply use an
ML algorithm and plug that as its target. But maybe you don’t
need to observe δYi

δTi
 in order to predict it.

For instance, let’s say you fit the following linear model to
your data:

yi = β0 + β1ti + β2Xi + ei

If you differentiate it on the treatment, you will end up with
the following:

δyi

δti
= β1

which is the ATE, in the case of a randomized treatment.



Since you can estimate the preceding model to get β̂1 , you
might even go ahead to say that you can predict slopes even
though you can’t observe them. In the example, it is a rather

simple prediction. You are predicting the constant value β̂1

for everyone. That’s something, but not quite what you want.
That’s the ATE, not the CATE. This doesn’t help you in your
task of figuring out when to give discounts, simply because
every unit (day and restaurant combination) gets the same
slope prediction.

To improve upon it, you can do the following simple change:

yi = β0 + β1ti + β2Xi + β3tiXi + ei

which would, in turn, give you the following slope prediction:

δ̂yi

δti
= β̂1 + β̂3Xi

where β3 is a vector coefficient for the features in X. Now you
are getting somewhere! Each entity defined by a different Xi

will have a different slope prediction. In other words, the
slope prediction will change as X changes. Intuitively
speaking, including the interaction between the treatment and
the covariates allows the model to learn how the effect
changes by those same covariates. This is how regression can
give you a way of estimating the CATE, even though you can’t
predict it directly.



Enough of theory for now. Let’s see how to code this up. First,
you need to define the covariates. In this example, the
covariates are basically date-specific features, like the month,
the day of the week, and if it is a holiday. I’m also including the
average competitor’s price, as this will probably affect how
customers respond to discounts in each restaurant.

Once you have the covariates, you need to interact them with
the treatment. The *  operator does exactly that. It
creates an additive term for the left and right side plus an
interaction term. For example, a*b  will include the
terms a , b  and a  *  b  in
your regression. In your example, this would result in the
following:

salesi = β0 + β1discounti + β2Xi * discounti + β3Xi + ei

* AND : OPERATORS

If you only want the multiplicative term, you can use the :  operator inside

the formula.

In [2]: import statsmodels.formula.api as smf

        X = ["C(month)", "C(weekday)", "is_holid

        regr_cate = smf.ols(f"sales ~ discounts*

                            data=data).fit()

        



Once you’ve estimated the model, the predicted slope can be
extracted from the parameter estimates:

ˆδsalesi

δdiscountsi
= β̂1 + β̂3Xi

where β1 is the discount coefficient and β3 is the vector for
the interaction coefficients. You could just extract those
parameters from the fitted model, but an easier way to get the
slope predictions is to use the definition of the derivative:

δy

δt
=

y(t + ϵ) − y(t)

(t + ϵ) − t

with ϵ going to zero. You can approximate this definition by
replacing ϵ with 1:

δy

δt
≈ ŷ(t + 1) − ŷ(t)

where ŷ is given by your model’s predictions. Since this is a
linear model, the approximation is exact.

In other words, you’ll make two predictions with your models:
one passing the original data and another passing the original
data but with the treatment incremented by one unit. The
difference between those predictions is your CATE prediction.
Here is what this looks like with some code:

In [3]: ols_cate_pred = (

            regr_cate.predict(data.assign(discou

            -regr_cate.predict(data)



OK, you have your CATE model and its predictions. But there
is still a lurking question: how good is it? In other words, how
can you evaluate this model? As you can probably tell,
comparing actuals and predicted values won’t do here, since
the actual treatment effect is not observed at a unit level.

        )

        



RACTICAL EXAMPLE

PRICE DISCRIMINATION

In the microeconomic literature, the example used in this
chapter is what’s called price discrimination. Despite the bad-
sounding name, it simply means that firms can discriminate
consumers into those who are willing to pay more and charge
them more. A very well known example of price
discrimination is when an airline company changes the
airfare depending on how far in advance the ticket is bought:
customers who need to book a flight for next week can expect
to pay much more than those booking one for next year. This
is called intertemporal price discrimination, since the company
manages to distinguish the price sensitivity of customers
based on time. It is a very similar situation to the restaurant
example you saw in this chapter.

A more infamous example would be when a wine company
sells the same exact wine in two different bottles, one
marketed as premium at a much steeper price and one market
as average, sold at a more modest value. Yet a third way of
price discriminating is when you have half-price entry tickets
for students. In this case, the company knows that students
make less money on average, meaning they have less to spend.

Evaluating CATE Predictions



If you come from a traditional data science background, you
can probably see that this sort of CATE prediction looks a lot
like regular machine learning prediction, but with a sneaky
target that is not observed at a unit level. This means that a lot
of the model evaluation techniques used in traditional
machine learning—like cross-validation—still apply here,
while others will need some adaptation.

So, to keep with tradition, let’s split the data into a train and a
test set. Since you have a time dimension, let’s use that. The
train will contain data from 2016 and 2017 and the test, from
2018 onward:

Now, let’s refit the regression model for CATE from before, but
using only the training data for estimation and making
predictions on the test set:

In [4]: train = data.query("day<'2018-01-01'")

        test = data.query("day>='2018-01-01'")

        

In [5]: X = ["C(month)", "C(weekday)", "is_holid

        regr_model = smf.ols(f"sales ~ discounts

                             data=train).fit()

        cate_pred = (

            regr_model.predict(test.assign(disco

            -regr_model.predict(test)



To make things interesting, let’s benchmark this regression
model with a purely predictive machine learning model. This
ML model simply tries to predict the outcome Y :

Finally, let’s also include a very bad model in our comparisons.
This model simply outputs random numbers between –1 and
1. It is obviously nonsense, but an interesting benchmark to
keep an eye on. Ultimately, you want to know if allocating the
treatment by a CATE model will be better than simply at
random, which is what this last model does.

For convenience, I’m storing everything in a new data frame,
test_pred :

        )

        

In [6]: from sklearn.ensemble import GradientBoo

        X = ["month", "weekday", "is_holiday", "

        y = "sales"

        np.random.seed(1)

        ml_model = GradientBoostingRegressor(n_e

                                                

        ml_pred = ml_model.predict(test[X])

        



Once you have your models, it’s time to figure out how to
evaluate and compare them. Namely, you’ll have to deal with
the fact that the ground truth is non-observable. As you’ll soon
see, the trick is to realize that even though you can’t measure

In [7]: np.random.seed(123)

        test_pred = test.assign(

            ml_pred=ml_pred,

            cate_pred=cate_pred,

            rand_m_pred=np.random.uniform(-1, 1,

        )

        

rest_id day sales

731 0 2018-01-01 251.5

732 0 2018-01-02 541.0

733 0 2018-01-03 431.0

734 0 2018-01-04 760.0

735 0 2018-01-05 78.0



the treatment effect for a single individual, you can estimate it
for very small groups. Hence, if you wish to come up with a
way to evaluate your model in terms of CATE, you’ll have to
rely on group-level metrics.

Effect by Model Quantile

The idea of making CATE models came from the necessity of
finding which units are more sensitive to the treatment with
the goal of allocating the treatment more efficiently. It came
from a desire for personalization. If that is the goal, it would
be very useful if you could somehow order units from more
sensitive to less sensitive. And since you have the predicted
CATE, you can order units by that prediction and hope it also
orders them by the real CATE. Sadly, you can’t evaluate that
ordering on a unit level. But, what if you don’t need to? What
if, instead, you evaluate groups defined by the ordering?

First, recall that if the treatment is randomly assigned, you
don’t have to worry about confounding bias here. Estimating
the effect for a group of units is easy. All you need is to
compare the outcome between the treated and untreated. Or,
more generally, run a simple regression of Y  on T  inside that
group:

yi = β0 + β1ti + ei|X = x

From the theory on simple linear regression, you know that:

( )



β̂1 =
∑(ti − t̄ )yi

∑(ti − t̄ )
2

where t̄  is the group sample average for the treatment and ȳ
is the group sample average for the outcome.

CURRY

The curry decorator is a way to create functions that can be
partially applied:

@curry

def addN(x, N): 

    return x+N 

  

ad5 = addN(N=5)

ad13 = addN(N=13) 

  

print(ad5(5))

>>> 10 

  

print(ad13(5))

>>> 18

To code the slope parameter estimate of a single variable
regression, you can use curry . It’s very useful when you
need to create functions that accept a data frame as its only
argument:



Applying this function to the entire test set yields the ATE:

In [9]: effect(test, "sales", "discounts")

        

Out[9]: 32.16196368039615 

        

But that is not what you want. Instead, you want to know if
the models you’ve just fitted can create partitions in the data
that separate units into those that are more sensitive to the
treatment from those that are less sensitive. For that, you can
segment the data by quantiles of your model’s prediction and
estimate the effect for each quantile. If the estimated effect in
each quantile is ordered, you know that the model is also good
at ordering the true CATE.

In [8]: from toolz import curry

        @curry

        def effect(data, y, t):

                return (np.sum((data[t] - data[t

                        np.sum((data[t] - data[t

        



RESPONSE CURVE SHAPE

Here the effect is defined as estimated slope of regressing Y
on T . If you think this is not a good effect metric, you could
use others. For instance, if you think the response function is
concave, you could define the effect as the slope of regressing 
Y  on log(T ) or √T . If you have a binary outcome, it might
make sense to use the parameter estimate of a logistic
regression, instead of the one from a linear regression. The
key thing here is to see that, if T  is continuous, you have to
summarize the entire treatment response function into a
single effect number.

Let’s code a function to calculate the effect by quantile. It first
uses pd.qcut  to segment the data by q

quantiles (10, by default). I’m wrapping it in
pd.IntervalIndex  to extract the midpoint of each

group returned by pd.qcut . The rounding is just so the
results look prettier.

Then, I’m creating a column in the data with these groups,
partitioning the data by them and estimating the effect in each
partition. For this last step, I’m using the .apply(...)

method from pandas. This method takes a function that has a
data frame as an input and outputs a number:

f(DataFrame)  ->  float . Here is where
the effect  function you created earlier comes into
play. You can call it passing just the outcome and treatment



arguments. This will return a partially applied effect

function that has the data frame as the only missing
argument. It is the type of function .apply(...)

expects.

The result of using this function in the test_pred  data
frame is a column where the indexes are the quantiles of your
model’s prediction and the values, the treatment effect in that
quantile:

Out[10]: cate_pred_quantile 

         17.50    20.494153 

         23.93    24.782101 

         26.85    27.494156 

In [10]: def effect_by_quantile(df, pred, y, t, 

             

             # makes quantile partitions

             groups = np.round(pd.IntervalIndex

             

             return (df

                     .assign(**{f"{pred}_quantil

                     .groupby(f"{pred}_quantile"

                     # estimate the effect on ea

                     .apply(effect(y=y, t=t))) 

         

         effect_by_quantile(test_pred, "cate_pre

         



         28.95    28.833993 

         30.81    29.604257 

         32.68    32.216500 

         34.65    35.889459 

         36.75    36.846889 

         39.40    39.125449 

         47.36    44.272549 

         dtype: float64 

         

Notice how the estimated effect in the first quantile is lower
than the estimated effect in the second quantile, which is
lower than the estimated effect in the third quantile, and so
on. This is evidence that your CATE prediction is indeed
ordering the effect: days with lower predictive value also have
low sensitivity to discount and vice versa. Also, the midpoint
prediction in each quantile (the index in the preceding
column) is very close to the estimated effect for the same
quantile. This means that your CATE model not only orders
the true CATE quite well, but it also manages to predict it
correctly. In other words, you have a calibrated model for the
CATE.

Next, so you have other models to compare against, you can
apply the same function, but passing the predictive ML model
and the random model. The following plot shows the effect by
quantile for the three models defined earlier:



First, look at the random model ( rand_m_pred ). It has
roughly the same estimated effect in each of its partitions. You
can already see just by looking at the plot that it won’t help
you with personalization since it can’t distinguish between
days with high and low discount sensitivity. The effect in all of
its partitions is just the ATE. Next, consider the ML predictive
model, ml_pred . That model is a bit more interesting.
It looks like groups with high sales predictions and low sales
predictions are both more sensitive to discounts. It doesn’t
exactly produce an ordering score, though, but you could use
it for personalization, maybe giving more discounts when
sales predictions are either very high or very low, as those
indicate high treatment sensitivity.

Finally, look at the CATE model you got from regression,
cate_pred . The group with low CATE prediction has

indeed lower CATE than the groups with high CATE
predictions. It looks like this model can distinguish high from
low effects pretty well. You can tell by the staircase shape of its



effect by a quantile plot. In general, the steeper the staircase
shape, the better the model in terms of ordering CATE.

In this example, it is pretty clear which model is better in
terms of ordering sensitivity to discount. But if you have two
decent models, the comparison might not be that clear cut.
Also, visual validations are nice, but not ideal if you want to
do model selection (like hyperparameter tuning or feature
selection). Ideally, you should be able to summarize the
quality of your model in a single number. We’ll get there, but
to do so, you first need to learn about the cumulative effect
curve.

Cumulative Effect

If you understood the effect by quantile plot, this next one will
be pretty easy. Once again, the idea is to use your model to
define groups and estimate effects inside those groups.
However, instead of estimating the effect by group, you will
accumulate one group on top of the other.

First, you need to sort your data by a score—usually a CATE
model, but it can be anything really. Then, you’ll estimate the
effect on the top 1%, according to that ordering. Next, you’ll
add the following 1% and calculate the effect on the top 2%,
and then on the top 3% and so on and so forth. The result will
be a curve of effect by cumulative sample. Here is a simple
code to do that:



If the score you used to sort the data is also good for ordering
the true CATE, the resulting curve will start very high and
gradually decrease to the ATE. In contrast, a bad model will
either quickly converge to the ATE or simply fluctuate around
it all the time. To better understand this, here is the
cumulative effect curve for the three models you’ve created:

In [11]: def cumulative_effect_curve(dataset, pr

                                     ascending=F

             size = len(dataset)

             ordered_df = (dataset

                           .sort_values(predicti

                           .reset_index(drop=Tru

             

             steps = np.linspace(size/steps, siz

             

             return np.array([effect(ordered_df

                              for row in steps])

         cumulative_effect_curve(test_pred, "cat

         

Out[11]: array([49.65116279, 49.37712454, 46.203

         32.46981935, 32.33428884, 32.16196368])



First, notice how the regression CATE model starts very high
and gradually converges to the ATE. For instance, if you sort
your data by this model, the ATE in the top 20% will be around
42, the ATE of the top 50% would be something like 37, and the
ATE of the top 100% will simply be the global effect of the
treatment (ATE). In contrast, a model that simply outputs
random numbers will just gravitate around the ATE and a
model that reverse orders the effect will start below the ATE.

ORDER ASYMMETRY

It’s important to mention that this ordering is not symmetric. That is, taking a score
and reversing it won’t simply flip the curve around the ATE line.

The cumulative effect curve is somewhat nicer than the effect
by the quantile curve because it allows a summarization into a
single number. For instance, you could compute the area
between the curve and the ATE and use that to compare
different models. The bigger the area, the better the model.
But there is still a downside. If you do this, the beginning of



the curve will have the biggest area. But that is exactly where
the uncertainty is the largest, due to the smaller sample size.
Fortunately, there is a very easy fix: the cumulative gain curve.

Cumulative Gain

If you take the exact same logic from the cumulative effect
curve, but multiply each point by the cumulative sample, 
Ncum/N , you get the cumulative gain curve. Now, even
though the beginning of the curve will have the highest effect
(for a good model, that is), it will get downscaled by the small
relative size.

Taking a look at the code, what changes is that I’m now
multiplying the effect by (row/size)  at each iteration.
Additionally, I can choose to normalize this curve by the ATE,
which is why I’m also subtracting a normalizer from the effect
at each iteration:

In [12]: def cumulative_gain_curve(df, predictio

                                   ascending=Fal

             

             effect_fn = effect(t=t, y=y)

             normalizer = effect_fn(df) if norma

             

             size = len(df)

             ordered_df = (df

                           .sort_values(predicti



SEE ALSO

If you don’t want to bother implementing all these functions, I’ve been working
along with some colleagues on a Python library to handle that for you. You can
simply import all the curves and their AUC from fklearn  causal module:

from fklearn.causal.validation.auc import *

from fklearn.causal.validation.curves import *

Both the cumulative gain and normalized cumulative gain for
the three models are shown in the following image. Here, the
better model in terms of ordering CATE is the one that has the

                           .reset_index(drop=Tru

             

             steps = np.linspace(size/steps, siz

             effects = [(effect_fn(ordered_df.qu

                         -normalizer)*(row/size)

                        for row in steps]

             return np.array([0] + effects)

         

         cumulative_gain_curve(test_pred, "cate_

         

Out[12]: array([ 0.        ,  0.50387597,  0.982

         32.00615008, 32.16196368])

https://oreil.ly/mgYoJ


biggest area between the curve and the dashed line
representing the ATE:

To summarize the model performance into a single number,
you can just sum the values from the normalized cumulative
gain curve. The model with the biggest value will be the best
one in terms of ordering CATE. Here is the area under the
curve (AUC) for the three models you’ve been evaluating so
far. Notice that the area for the ML model is negative because
it reverse-orders CATE:

AUC for rand_m_pred: 6.0745233598544495 

AUC for ml_pred: -45.44063124684 

AUC for cate_pred: 181.74573239200615 

Again, the fact that you can condense your model’s
performance into a single number is amazing, as it allows for
automated model selection. Still, as much as I like this last



curve, there are some caveats you need to be aware of when
using them.

First, in all the curves that you saw, it’s important to keep in
mind that each point in this curve is an estimate, not a ground
truth value. It is the estimate of the regression slope on a
particular—and sometimes very small—group. And since it is
a regression estimate, it depends on the relationship between 
T  and Y  being correctly specified. Even with randomization,
if the relationship between the treatment and the outcome is,
let’s say, a log function, estimating the effect as if it were a line
will yield wrong results. If you know the shape of the
treatment response function, you can adjust your effect
function to be the slope of y~log(t)  instead of

y~t . But you need to know the correct shape in order
to do that.

Second, these curves don’t really care if you get the CATE
right. All they care about is if the ordering is correct. For
example, if you take any of your models and subtract –1,000
from their predictions, their cumulative gain curve will
remain unchanged. Hence, even if you have a biased
estimator for the CATE, this bias won’t show up in these
curves. Now, this might not be a problem, if all you care about
is prioritizing the treatment. In this case, ordering is enough.
But if you do care about precisely estimating the CATE, these
curves might be misleading. If you come from a data science
background, you can draw a parallel between the cumulative



gain curve and the ROC curve. Similarly, a model with good
ROC-AUC won’t necessarily be calibrated.

Third, and perhaps most importantly, all of the preceding
methods require unconfounded data. If you have any bias, the
effects you’ll estimate—in the subgroups or the ATE—will be
wrong. If the treatment is not randomized, in theory, you can
still use these evaluation techniques, provided you debiased
the data before, by using something like orthogonalization of
IPW. However, I’m a bit skeptical of this. Instead, I strongly
recommend you invest in some experimental data, even if it is
just a little, only for the purpose of evaluation. That way you
can focus on effect heterogeneity without having to worry
about confounding creeping in.

SEE ALSO

All the curves presented here are an attempt to generalize the curves traditionally
used for uplift modeling, when the treatment is binary. If you want to review that
literature, I recommend the papers “Causal Inference and Uplift Modeling a Review
of the Literature,” by Pierre Gutierrez and Jean-Yves Gérardy and “Empirical
Analysis of Model Selection for Heterogeneous Causal Effect Estimation,” by Divyat
Mahajan et al.

Evaluation of causal models is an area of research that is still
developing. As such, it still has many blindspots. For instance,
the curves presented so far only tell you how good a model is
in terms of ordering the CATE. I haven’t found a good solution
to checking if your model correctly predicts CATE. One thing
that I like to do is to use the effect by quantile plot alongside
the cumulative gain curve, since the first one gives me some



idea on how calibrated the model is while the second gives me
an idea how well it orders the CATE. As for the normalized
cumulative gain, it is just a zoom-in that makes visualization
easier.

But I’ll admit that this is not ideal. If you are looking for a
summary metric like the R2 or the MSE—both commonly used
in predictive models—I’m sad to say I haven’t found any good
parallel to those in the causal modeling world. Here is what I
did find, though—target transformation.

Target Transformation

It turns out that even though you can’t observe the true
treatment effect τ(xi), you can create a target variable that
approximates it in expectation:

Y
*
i =

(Yi − μ̂y(Xi))(Ti − μ̂t(Xi))

(Ti − μ̂t(Xi))
2

=
Yi − μ̂y(Xi)

Ti − μ̂t(Xi)

where μy is a model for the outcome and μt is a model for the

treatment. This target is interesting because E[Y
*
i ] = τi.

Notice how it looks a lot like the formula for the regression
coefficient, with the numerator being the covariance between 
Y  and T  and the denominator, the variance of T . However,
instead of using expectations to define those, it is computed on
a unit level.



Since this target approximates the true treatment effect, you
can use it to compute deviance metrics, like the mean squared
error (MSE). If your model for CATE is good in terms of
predicting the individual level effect τi, then the MSE of its
prediction with respect to this target should be small.

There is a catch, though. This target will be incredibly noisy
when close to the treatment average, where the denominator
will tend toward zero. To fix that, you can apply weights that
assign low importance to points where Ti − μ̂t(Xi) is small.
For instance, you can weight the units by (Ti − μ̂t(Xi))

2.

FORESHADOWING THE R-LOSS

There is a good theoretical reason for using those weights. You’ll learn more about
it when we talk about nonparametric Double/Debiased Machine Learning in
Chapter 7. For now, you’ll have to take my word for it.

To code this target, you can simply divide the residuals of an
outcome and a treatment model:

In [13]: X = ["C(month)", "C(weekday)", "is_holi

         y_res = smf.ols(f"sales ~ {'+'.join(X)

         t_res = smf.ols(f"discounts ~ {'+'.join

         tau_hat = y_res/t_res

         



Next, you can use it to compute the MSE of all your models.
Notice how I’m also using weights like discussed previously:

According to this weighted MSE, once again, the regression
model used to estimate the CATE performs better than the
other two. Also, there is something interesting here. The ML
model performs worse than the random model. This is not
surprising, as the ML model is trying to predict Y  not τi.

In [14]: from sklearn.metrics import mean_square

         for m in ["rand_m_pred", "ml_pred", "ca

             wmse = mean_squared_error(tau_hat, 

                                       sample_we

             print(f"MSE for {m}:", wmse)

         

Out[14]: MSE for rand_m_pred: 1115.803515760459 

         MSE for ml_pred: 576256.7425385397 

         MSE for cate_pred: 42.90447405550281 

         



SEE ALSO

Like I said before, the literature on evaluating causal models is still in its infancy.
It’s quite an exciting problem, where new methods are being proposed all the time.
For example, in the paper “Intelligent Credit Limit Management in Consumer
Loans Based on Causal Inference,” the scientists from Ant Financial Services Group
propose partitioning the units into groups that have similar covariates (they use
over 6,000 groups!), pretending that outcome is the treatment effect plus some
Gaussian random noise ŷi = τ̂ (xi) + ei, computing outcome MSE in each group 
N−1 ∑(yi − ŷi) and averaging the results using the sample size in each group.

Predicting Y  will only be good in terms of ordering or
predicting τi when the effect is correlated with the outcome.
This won’t generally be the case, but there are some situations
in which it might happen. Some of those are fairly common in
business, so it is worth taking a look at them.

When Prediction Models Are Good
for Effect Ordering

Like I said before, for a model that predicts Y  to also be good
at ordering the CATE, it must be the case that Y  and the CATE 
τ(xi) are also correlated. For instance, in the context of
finding days where customers are more responsive to
discounts in a restaurant, if the days when sales are high
coincide with the days when people are more sensitive to
discounts, then a model that predicts Y  will also be good at
ordering the effect of T  on Y . More generally, this can happen
when the treatment response function is nonlinear.



Marginal Decreasing Returns

When the treatment response function is concave, additional
units of the treatment will have less and less effect. This is a
very common phenomenon in business, as things tend to have
a saturation point. For example, the number of sales can only
go so high, even if you set a discount to 100%, as there are
factors that limit the amount you can produce. Or, the effect of
your marketing budget will eventually flatten out, since there
are only so many customers you can advertise to.

A marginally decreasing treatment response function looks
something like this:

It is easy to see why, in this case, a model that is good at
predicting the outcome Y  can also be good at ordering the
CATE: the higher the outcome, the lower the effect. Hence, if
you take the model that predicts Y  and sort your units by the



inverse of these predictions, you’ll probably manage to get a
decent CATE ordering.

Binary Outcomes

Another common situation where a model that predicts Y  can
be good for ordering the CATE is when the outcome is binary.
In this case, E[Y |T ] has an S shape, flattening out at 0 and 1:

In most business applications, the data will be concentrated at
one or the other end of this S-shaped function. For example, in
banking, only a small fraction of customers will default on
their loans, which means you would be mostly to the left side
of this curve, where it looks exponential. As a result, if you
have a model that predicts customer default, there is a good
chance that customers with higher predictions will also be
more sensitive to the treatment. Intuitively speaking, those are
customers close to the tipping point between not defaulting
and defaulting. For them, a small change in the treatment can
make all the difference.



In contrast, let’s say you work at an online shopping business
where most of the customers that enter your site do buy
something (convert). In this case, you are more to the right of
the S-shaped curve. Hence, if you have a model that predicts
conversion, there is a good chance that the same model can
also order the effect of something like discounts. The higher
the chances of conversion, the lower the effect size. That’s
because at the right side, the S curve looks a bit like the
marginally diminishing returns case you saw before.

In general, when the outcome is binary, the closer you are to
the middle—that is, to E[Y |X] = 50%—the higher the effect
will be.



RACTICAL EXAMPLE

PRIORITIZING VACCINES

You saw how binary outcome induces a nonlinearity in the
treatment response function, which allows you to use the
predictive value of the outcome to allocate the treatment. A
very interesting application of this principle was seen in the
COVID-19 pandemic. In 2021, the world managed to deliver its
first batch of approved COVID-19 vaccines to the general
public. Back then, a crucial question was who should receive
the vaccine first. This is, not surprisingly, a heterogeneous
treatment effect problem. Policymakers would like to
vaccinate those who would benefit the most first. In this
situation, the treatment effect is avoiding death or
hospitalization. So, whose death or hospitalization decreased
the most when given a shot? In most countries, they were the
elderly and those with prior health conditions (comorbidities).
Now, these are the people that are more likely to die when
getting COVID-19. Also COVID-19 mortality rate is thankfully
much lower than 50%, which puts you to the left of logistic
function. In this region, by the same context we made for
default rates, it would make sense to treat those with a high
baseline probability of death when getting COVID-19, which
are precisely the groups mentioned earlier. Is this a
coincidence? Maybe. Keep in mind that I’m not a health
expert, so I might be very wrong here. But the logic makes a
lot of sense to me.



When the treatment response function is nonlinear, like in the
binary outcome or in the case where the outcome is
marginally decreasing, a predictive model might yield a good
ordering of the CATE. Still, this doesn’t mean that it will be the
best model nor that it can’t be outperformed by a model that
aims at directly predicting the CATE. Moreover, even though
such a model might order the treatment effect, it does not
predict that treatment effect. This is only OK if all you care
about is sorting units by their sensitivity to the treatment. But
in case your decision making depends on correctly estimating
the CATE, additional effect by group estimation will be
required.

SEE ALSO

Sometimes outcome prediction can outperform CATE prediction because CATE
tends to be very noisy. Fernández-Loría and Provost discuss this further in their
paper, “Causal Classification: Treatment Effect Estimation vs. Outcome Prediction.”

Speaking of that, I think it is worth spelling out how you could
use the CATE for decision making. You probably already have
a good idea how to do that, but maybe I have some piece of
advice you haven’t thought about.

CATE for Decision Making

When the treatment is binary, the decision-making process is
pretty straightforward. You essentially care about who
responds positively to the treatment. If you have an unlimited



supply of treatments, then all you have to do is treat everyone
whose CATE is positive. If you don’t have a model that predicts
the CATE, but you do have one that orders it—as in the case of
the predictive models discussed in the previous section—you
can use the effect by model quantile plot. Just partition your
data by quantiles of your model, estimate the treatment effect
in each quantile, and treat everyone up to the point where the
effect is still positive.

If you don’t have an unlimited supply of the treatment, then
you need to add a second rule. Not only will you treat only
those with positive effect, but also those with the highest
CATE. For example, if you only have 1,000 units of the
treatment, you probably want to treat the top 1,000 units,
according to some CATE ordering model, provided that they all
have positive effect.

If the treatment is continuous or ordered, things get a bit more
complicated. You now have to decide not only who to treat,
but also how much to treat. This is very business specific. Each
problem will have its own treatment response function to
optimize. This means I can’t give you very detailed guidelines
on how to do it, but I can walk you through a typical example.

Consider once again the problem of deciding how much
discount to give each day on a chain of restaurants. Since
deciding how much discount to give is just another way of
deciding what price to charge (
Price = Pricebase * (1 − Discount)), let’s reframe that



problem as a price optimization one. In all business problems
there is a cost (even if not monetary) and a revenues function.
Let’s say that the revenue of the restaurant is given by the
following equations:

Demandi = 50 − τ(Xi)Pricei

Revenuei = DemandiPricei

Revenue on a day i is just the price times the number of meals
(demand) the restaurant serves. However, the number of
meals people are willing to buy on a particular day is
inversely proportional to the price charged on that day. That
is, it has a component −τ(Xi)Pricei, where τ(Xi) is how
sensitive customers are to price increases on that day (notice
that this depends on the date-specific features, Xi). In other
words, that sensitivity is the conditional average treatment
effect of price on demand.

If you plot the demand curve for different values of τ , you will
see that τ  is nothing more than the slope of the demand curve.
If you take the demand curve and multiply it by the revenues
curve, you would get a quadratic shape. In this curve, the day
in which customers are less sensitive to price (τ = 1) peak at a
latter price value:



Next, suppose that you spend 3 dollars in order to produce
your meal. This means that the cost is simply the quantity you
produce, q, times 3:

Costs(qi) = 3qi

Keep in mind that the cost equation doesn’t depend on the
treatment effect directly, but if you recall that the quantity
produced is just the quantity of customer orders—that is, the
demand—then, the higher the price, the lower the cost, as
customers will demand fewer meals.

Finally, once you have both revenues and costs, you can
combine them to get the amount of profit as a function price:

Profiti = Demandi *Pricei − Cost(Demandi)

If you plot the profits by price for different values of τi, you’ll
see that each yields a different optimal price. The lower τi, the
less sensitive customers are to price increase, which allows
the restaurant to increase prices in order to make more
profits:



Economists will quickly realize that this is the famous
problem of the firm. Setting the marginal cost equal to the
marginal revenue and isolating price gives a numerical
solution to the profit maximizing price:

(P(50 − τ(X)P))' = (3(50 − τ(X)P))'

P * =
3τ(X) + 50

2τ(X)

Notice that, in this case, the only unknown is the effect of price
on demand, τ(X). So, if you can estimate it using a model that
predicts CATE, you can convert that CATE prediction to the
optimal price.

Again, this is highly dependent on the form of the revenue and
cost curve, which in turn depends a lot on your business. But,
in general, almost any treatment you care to optimize has an
upside—revenues, in this example—and a downside—costs, in
this example. To use CATE for deciding the level of a
continuous treatment you have to understand how it impacts
both of those sides.



CORNER SOLUTION

In some rare situations, the treatment level that optimizes a
business is none at all or the maximum allowed level. For
instance, let’s say that your local government sets a price cap
on the product you are selling. That cap is below the price that
would maximize your profits. In this case, the optimal price
would simply be the maximum allowed by the government.
This situation is rare, however. In most cases, corner solutions
arise when hidden prices are not taken into account. For
example, if you are trying to optimize cross-sell emails, you
can argue that the cost of sending an email is negligible, so
you should just go ahead and send it to everyone. But I would
argue back saying that you are not taking into account the
costs in terms of customer attention: if you spam your
customers, eventually they will get tired of you and
unsubscribe to your emails, which will cost you future sales
that would come through the email channel. These hidden
costs are much harder to take into account, but it doesn’t
mean that they aren’t there. In fact, finding good proxies for
those costs tend to be an invaluable data science task.

Key Ideas

This chapter introduces the idea of treatment heterogeneity.
The key insight is that each unit i can have a different



treatment effect τi. If you knew this effect, you could use it to
better allocate the treatment among units. Sadly, due to the
fundamental problem of causal inference, this effect is
unobservable. Still, if you assume that it depends on
observable features of the units, τ(xi), then you can make
some progress; namely, you can go from estimating the
average treatment effect to estimating the conditional average
treatment effect (CATE):

CATE =
∂

∂t
E[Y (t)|X]

So, even though the treatment effect is not observed at a unit
level, you can still estimate group effects. A simple way of
doing that is with linear regression, by including an
interaction term between the treatment and the covariates:

yi = β0 + τ0Ti + τXiTi + βXi + ei

Estimating this model would give you the following CATE
estimate:

ĈATE = τ0 + τXi

Next, you saw some ideas on how to pair cross-validation with
CATE evaluation techniques in order to evaluate your CATE
estimates. Since the CATE is not defined for a single unit, you
had to rely on group-specific metrics, like the effect by
quantile curve or the cumulative gain curve. If that is not
enough, you could also define a target that approximates the



individual-level treatment effect and use that to calculate
deviance metrics, like the MSE.

Finally, it’s worth emphasizing that everything discussed in
this chapter hinges on the fact that the CATE, a causal quantity,
can be identified from the conditional expectation, a statistical
quantity recoverable from data:

∂

∂t
E[Y (t)|X] =

∂

∂t
E[Y |X,T = t].

Without that, the idea of CATE as a group effect you can
estimate no longer holds, which is why randomized data is so
important for CATE estimation problems, even if just for
evaluating your treatment heterogeneity models.



Chapter 7. Metalearners

Just to recap, in Part III you’re focusing on treatment effect
heterogeneity, that is, identifying how units respond
differently to the treatment. In this framework, you want to
estimate:

τi(x) = E[Yi(1) − Yi(0)|X] = E[τi|X]

or, E[δYi(t)|X] in the continuous case. In other words, you
want to know how sensitive the units are to the treatment.
This is super useful in the case where you can’t treat
everyone and need to do some prioritization of the
treatment; for example, when you want to give discounts but
have a limited budget. Or when the treatment effect is
positive for some units but negative for others.

Previously, you saw how you could use regression with
interaction terms to get conditional average treatment effect
(CATE) estimates. Now, it’s time to throw some machine
learning algorithms into the mix.

Metalearners are an effortless way to leverage off-the-shelf
predictive machine learning algorithms for approximating
treatment effects. They can be used to estimate the ATE, but,
in general, they are mostly used for CATE estimation, since
they can deal pretty well with high-dimensional data.
Metalearners serve to recycle predictive models for causal



inference. All predictive models, such as linear regression,
boosted decision trees, neural networks, or Gaussian
processes, can be repurposed for causal inference using the
approaches described in this chapter. Therefore, the success
of the metalearner is highly contingent on the machine
learning technique it uses under the hood. Oftentimes you’ll
just have to try out many different things and see what works
best.

Metalearners for Discrete
Treatments

Suppose you work for the marketing team at an online
retailer. Your goal is to figure out which customers are
receptive to a marketing email. You know this email has the
potential of making customers spend more, but you also
know that some customers don’t really like to receive
marketing emails. To solve this problem, you intend to
estimate the conditional average treatment effect of the email
on customers’ future purchase volume. That way, your team
can use this estimate to decide who to send it to.

As with most business applications, you have a bunch of
historical data where you’ve sent marketing emails to
customers. You can use that abundant data to fit your CATE
model. On top of that, you also have a few data points from
an experiment where the marketing email was randomized.



You plan on using this precious data only for evaluating your
model, as you have so little of it:

Out[1]: 300000 10000 

        

In [1]: import pandas as pd

        import numpy as np

        data_biased = pd.read_csv("./data/email

        data_rnd = pd.read_csv("./data/email_rn

        print(len(data_biased), len(data_rnd))

        data_rnd.head()

        



Both random and observational data have the exact same
columns. The treatment variable is mkt_email  and
the outcome you care about is the purchase volume 1 month
after receiving the email— next_mnth_pv . In addition
to these columns, the data also contains a bunch of covariates
such as customer’s age, time since first purchase on your
website (tenure), and also a bunch of data on how much they
bought in each category. These covariates will dictate the
treatment heterogeneity you plan on fitting.

To streamline the development of your CATE models, you can
create variables to store the treatment, outcome, and
covariates, as well as the training and testing set. Once you

mkt_email next_mnth_pv age

0 0 244.26 61.0

1 0 29.67 36.0

2 0 11.73 64.0

3 0 41.41 74.0

4 0 447.89 59.0



have all of that, constructing pretty much all the
metalearners will be straightforward:

Now that you have everything set, let’s see our first
metalearner.

CAUSAL INFERENCE LIBRARIES

All of the following metalearners are implemented in most
causal inference packages. However, since they are very
simple to code, I’ll not rely on external libraries, but instead
teach you how to build them from the ground up. Also, at the
time of this writing, all the causal inference packages are in
their early stage, making it hard to predict which one will
attain dominance in the industry. This doesn’t mean you
shouldn’t check them out for yourself, of course. Two that I
particularly like are Microsoft’s econml  and Uber’s

causalml .

In [2]: y = "next_mnth_pv"

        T = "mkt_email"

        X = list(data_rnd.drop(columns=[y, T]).

        train, test = data_biased, data_rnd

        



T-Learner

If you have a categorical treatment, the first learner you
should try is the T-learner. It is pretty straightforward and
I’m guessing it is something you thought about already. It fits
one outcome model μt(x) for every treatment in order to
estimate the potential outcome Yt. In the binary case, there
are only two models that you need to estimate (hence the
name T):

μ0(x) = E[Y |T = 0, X]

μ1(x) = E[Y |T = 1, X]

Once you have those models, you can make counterfactual
predictions for each treatment and get the CATE as follows:

τ̂ (x)i = μ̂1(Xi) − μ̂0(Xi)

Figure 7-1 shows a diagram of this learner.



Figure 7-1. A T-learner trains an ML model on T = 1 and another at T = 0; at
prediction time, it uses both models to estimate the difference between treatment

and control

To code it, I’ll use boosted regression trees for the outcome
models. Specifically, I’ll use LGBMRegressor , which is
a very popular regression model. I’m also using the default
parameters, but feel free to optimize this if you wish too:

In [3]: from lightgbm import LGBMRegressor

        np.random.seed(123)

        m0 = LGBMRegressor()

        m1 = LGBMRegressor()

        m0.fit(train.query(f"{T}==0")[X], train



Now that I have the two models, making CATE predictions on
the test set is pretty easy:

To evaluate this model, I’m using the relative cumulative gain
curve and the area under that curve, both concepts that you
learned in Chapter 6. Recall that this evaluation method only
cares if you sort customers correctly, from the one with the
highest treatment effect to the one with the lowest:

        m1.fit(train.query(f"{T}==1")[X], train

        

In [4]: t_learner_cate_test = test.assign(

            cate=m1.predict(test[X]) - m0.predi

        )

        



The T-learner works just fine in this dataset. It looks like it
can produce a pretty good ordering of customers by CATE, as
you can see by the curved cumulative gain curve.

In general, the T-learner tends to be a reasonable first choice,
mainly owing to its simplicity. But it has a potential issue that
might manifest depending on the situation: it is prone to
regularization bias.

Consider a situation where you have lots of data for the
untreated and very little data for the treated. This is pretty
common in many applications where the treatment is
expensive. Now suppose you have some nonlinearity in the
outcome Y, but the treatment effect is constant. This is
depicted on the first plot in the following image:



If the data looks like this, with very few treated observations
compared to untreated ones, there’s a good chance the μ̂1

model will end up being simple to avoid overfitting. In
contrast, μ̂0 will be more complicated, but that’s OK because
the abundance of data prevents overfitting. Importantly, this
can happen even if you use the same hyperparameters for
both models. For instance, to generate the preceding figures, I
used an LGBM Regressor with



min_child_samples=25  and everything else set to
the default. A lot of ML algorithms self-regularize when
dealing with fewer data points, as is the case of

min_child_samples . It forces the tree in the LGBM
to have at least 25 samples in each leaf node, causing the tree
to be smaller if the sample size is also small.

Self-regularization makes a lot of sense from a machine
learning standpoint. If you have little data, you should use
simpler models. So much so that both models in the
preceding image have pretty decent predictive performance,
as they are each optimized for the sample size they have.
However, if you use these models to compute the CATE 
τ̂ = μ1(X) − μ0(X), the nonlinearity of μ0(X) minus the
linearity of μ1(X) will result in a nonlinear CATE (dashed
line minus the solid line), which is wrong, since the CATE is
constant and equal to 1 in this case. You can see this
happening in the second plot in the preceding image.

What happens here is that the model for the untreated can
pick up the nonlinearity, but the model for the treated
cannot, because it is regularized to deal with a small sample
size. Of course, you could use less regularization on that
model, but then it runs into the risk of overfitting. Seems like
you are caught between a rock and a hard place here. How
can you deal with this? Here is where the X-learner comes in.



SEE ALSO

The issue outlined here is further explored in the paper “Meta-learners for
Estimating Heterogeneous Treatment Effects using Machine Learning,” by Kunzel
et al.

X-Learner

The X-learner is significantly more complex to explain than
the previous learner, but its implementation is quite simple,
so don’t worry if you don’t understand it at first. The X-
learner has two stages and a propensity score model. The
first one is identical to the T-learner. First, you split the
samples into treated and untreated and fit a model for each
group:

μ̂0(X) ≈ E[Y |T = 0, X]

μ̂1(X) ≈ E[Y |T = 1, X]

Now, things start to take a turn. For the second stage, you’ll
first need to impute the missing potential outcomes, using the
models you’ve fitted earlier:

τ̂ (X, T = 0) = μ̂1(X, T = 0) − YT=0

τ̂ (X, T = 1) = YT=1 − μ̂0(X, T = 1)

Then, you’ll fit two more models to predict those estimated
effects. The idea is that this second stage of models will
approximate the CATE on the control and treated
populations:



μ̂(X)τ0 ≈ E[τ(X)|T = 0]

μ̂(X)τ1 ≈ E[τ(X)|T = 1]

In the illustrative data from before, the τ̂ (X, T = 0) and
τ̂ (X, T = 1) are the data points in the second plot. In the
following image, I’m reproducing that same data, alongside
the predictive models models, μ̂(X)τ0 and μ̂(X)τ1. Notice
that even though you have more control data, τ̂ (X, T = 0) is
wrong. That is because it was constructed using μ̂1 , which
was fitted in a very small sample. Consequently, because 
τ̂ (X, T = 0) is wrong, μ̂(X)τ0 will also be misleading. In
contrast, μ̂(X)τ1 will probably be correct, since τ̂ (X, T = 1)

is also correct, as it was generated using the μ̂0  model:

In summary, you have one model that is wrong because
you’ve imputed the treatment effects incorrectly and another
model that is correct because you’ve correctly imputed those
values. Now, you need a way to combine the two in a way



that gives more weight to the correct model. For that, you can
use a propensity score model. With it, you can combine the
two second stage models as follows:

τ̂(x) = μ̂(X)τ0ê(x) + μ̂(X)τ1(1 − ê(x))

In this example, since there are very few treated units, ê(x)

is very small, which gives a very small weight to the wrong
CATE model, μ̂(X)τ0. In contrast, 1 − ê(x) is close to 1, so
you will give more weight to the correct CATE model μ̂(X)τ1.
More generally, this weighted average using the propensity
score will favor the treatment effect estimates that were
obtained from the μ̂t  model that was trained using more
data.

The following image shows the estimated CATE given by the
X-learner, as well as the weights assigned to each data point.
Notice how it practically discards the wrong data:



As you can see, compared to the T-learner, the X-learner does
a much better job in correcting the wrong CATE estimated at
the nonlinearity. In general the X-learner performs better
when a treatment group is much larger than the other.

I know this might be a lot to digest, but hopefully it will be
clearer when you look at the code. Figure 7-2 summarizes
this learner.

Another thing you can try is the domain adaptation learner. It
is the X-learner, but using the propensity score model to

estimate μ̂t(X) with weights set to 1/P̂ (T = t).

Figure 7-2. An X-learner trains two stages of ML models plus a propensity score
model; at prediction time, it uses only the models from the second stage and the

propensity score model



Let’s see how to code all of this. Here, you have the first stage,
which is exactly the same as the T-learner. If you plan on
using the propensity score for domain adaptation, you need
to reweight the training sample by 1/P(T = t), so now is
also the time to fit that propensity score:

In [5]: from sklearn.linear_model import Logist

        from lightgbm import LGBMRegressor

        # propensity score model

        ps_model = LogisticRegression(penalty='

        ps_model.fit(train[X], train[T])

        

        # first stage models

        train_t0 = train.query(f"{T}==0")

        train_t1 = train.query(f"{T}==1")

        m0 = LGBMRegressor()

        m1 = LGBMRegressor()

        np.random.seed(123)

        m0.fit(train_t0[X], train_t0[y],

               sample_weight=1/ps_model.predict

        m1.fit(train_t1[X], train_t1[y],

               sample_weight=1/ps_model.predict

        



Next, you need to predict the treatment effect and fit the
second stage models on those predicted effects:

Finally, once you have all of that, you can combine the
predictions from the second-stage models using the
propensity score model to obtain the CATE. All of which can
be estimated on the test set:

In [6]: # second stage

        tau_hat_0 = m1.predict(train_t0[X]) - t

        tau_hat_1 = train_t1[y] - m0.predict(tr

        m_tau_0 = LGBMRegressor()

        m_tau_1 = LGBMRegressor()

        np.random.seed(123)

        m_tau_0.fit(train_t0[X], tau_hat_0)

        m_tau_1.fit(train_t1[X], tau_hat_1);

        

In [7]: # estimate the CATE

        ps_test = ps_model.predict_proba(test[X

        x_cate_test = test.assign(

            cate=(ps_test*m_tau_0.predict(test

                  (1-ps_test)*m_tau_1.predict(t



Let’s see how the X-learner does in terms of the cumulative
gain. In this data set, the treatment and control are almost
the same size, so don’t expect a huge difference. The issue the
X-learner tries to correct probably does not manifest here:

As expected, the X-learner performance is not very different
from what you got with the T-learner. In fact, it slightly
underperforms it, in terms of the area under the curve. Keep
in mind that the quality of these learners is situation-
dependent. Like I said earlier, in this specific data, both the
treatment and control have a decent enough sample size so
as to not run into the type of problem that the X-learner tries

                 )

        )

        



to solve. This might explain the similar performance between
the two models.

Metalearners for Continuous
Treatments

As always, when the treatment is continuous, things can get a
bit complicated. It is no different with the metalearners. As a
running example, let’s use the data from the previous
chapter. Recall that it has three years’ worth of data from a
chain of restaurants. The chain randomized discounts on six
of its restaurants and it now wants to know which are the
best days to give more discounts. To answer this question,
you need to understand on which days customers are more
sensitive to discounts (more sensitive to prices). If the
restaurant chain can learn this, they will be better equipped
to decide when to give more or fewer discounts.

As you can see, this is a problem where you need to estimate
the CATE. If you manage to do so, the company can use your
CATE predictions to decide on a discount policy—the higher
the predicted CATE, the more customers are sensitive to
discounts, so the higher the discounts should be:

In [8]: data_cont = pd.read_csv("./data/discoun

        data_cont.head()



In this data, discounts is the treatment and sales is the
outcome. You also have some engineered date features, like
the month, the day of the week, if it is a holiday and so on.
Since the goal here is CATE prediction, it is probably best to
split your dataset into a training and a test set. Here, you can
take advantage of the time dimension and use it to create
those sets:

        

rest_id day month

0 0 2016-01-01 1

1 0 2016-01-02 1

2 0 2016-01-03 1

3 0 2016-01-04 1

4 0 2016-01-05 1

In [9]: train = data_cont.query("day<'2018-01-0

        test = data_cont.query("day>='2018-01-0



Now that you are familiar with the data, let’s see which of the
metalearners can deal with this continuous treatment.

S-Learner

The first learner you should try is the S-learner. This is the
simplest learner there is. You’ll use a single (hence the S)
machine learning model μ̂s to estimate:

μ(x) = E[Y |T , X]

To do so, you will include the treatment as a feature in the
model that tries to predict the outcome Y . That’s pretty much
it:

But this model does not output a treatment effect directly.
Rather, it outputs counterfactual predictions. That is, it can
make predictions under different treatment regimes. If the

        

In [10]: X = ["month", "weekday", "is_holiday",

         T = "discounts"

         y = "sales"

         np.random.seed(123)

         s_learner = LGBMRegressor()

         s_learner.fit(train[X+[T]], train[y]);

         



treatment were binary, this model would still work and the
difference in predictions between the test and control will be
the CATE estimate:

τ̂ (x)i = Ms(Xi, T = 1) − Ms(Xi, T = 0)

Figure 7-3 contains a diagram that explain what it would look
like.

Figure 7-3. An S-learner is simply an ML model that has the treatment as one of its
features

In the continuous case, you have to do a bit of extra work.
First, you need to define a grid of treatments. In the example,
the discounts go from zero to about 40%, so you can try a



[0,  10,  20,  30,  40]  grid.
Next, you need to expand the data you want to make
predictions on so that each line gets one copy for each
treatment value in the grid. The easiest way I can find to do
that is to cross-join a data frame with the grid values into the
data where I want to make predictions—the test set. In
pandas, you can do a cross-join by using a constant key. This
will replicate each line in the original data, changing only the
treatment value. Finally, you can use your fitted S-learner to
make counterfactual predictions in this expanded data. Here
is a simple piece of code to do all of that:

In [11]: t_grid = pd.DataFrame(dict(key=1,

                                    discounts=n

         test_cf = (test

                    .drop(columns=["discounts"]

                    .assign(key=1)

                    .merge(t_grid)

                    # make predictions after ex

                    .assign(sales_hat = lambda 

         test_cf.head(8)

         



In the previous step, you’ve essentially estimated a coarse
version of the treatment response function Y (t) for each
unit. You can even plot this curve for a handful of units (days,
in our case) to see what they look like. In the following plot,
you can see that the estimated response function for 2018-12-
25—that is, Christmas—is steeper than the one for a day like

rest_id day month

0 0 2018-01-01 1

1 0 2018-01-01 1

2 0 2018-01-01 1

3 0 2018-01-01 1

4 0 2018-01-01 1

5 0 2018-01-02 1

6 0 2018-01-02 1

7 0 2018-01-02 1



2018-06-18. This means that your model learned that
customers are more sensitive to discounts on Christmas,
compared to that particular day in June:

Whether those counterfactual predictions are correct is a
whole other issue. To evaluate this model, you first need to
realize that you still don’t have a CATE prediction. This
means that the evaluation methods you learned in Chapter 6
can’t be used here. In order to get a CATE prediction, you
have to somehow summarize the unit level curves into a
single number that represents the treatment effect.
Surprisingly—or not that much—linear regression is a good
way of doing that. Simply put, you can run a regression for
each unit and extract the slope parameter on the treatment
as your CATE estimate.

Since all you care about is the slope parameter, you can do
this much more efficiently, using the formula for the slope of



the single variable linear regression:

β̂ = Cov(t, y)/V ar(t)

Let’s see the code to do that. First, I’m defining a function that
summarizes each individual curve into a slope parameter.
Then, I’m grouping the expanded test data by the restaurant
ID and day and applying the slope function to each of those
units. This gives me a pandas series, with indexes

rest_id  and day . I’m naming this series
cate . Finally, I’m joining the series into the original

test set (not the expanded one) to get a CATE prediction for
each day and restaurant in the testing set:

In [12]: from toolz import curry

         @curry

         def linear_effect(df, y, t):

             return np.cov(df[y], df[t])[0, 1]/

         

         cate = (test_cf

                 .groupby(["rest_id", "day"])

                 .apply(linear_effect(t="discou

                 .rename("cate"))

         test_s_learner_pred = test.set_index(



Now that you have a CATE prediction, you can use the
methods you learned from the previous chapter to validate
your model. Here, let’s stick with the cumulative gain:

         test_s_learner_pred.head()

         

month weekday

rest_id day

0 2018-01-01 1 0

2018-01-02 1 1

2018-01-03 1 2

2018-01-04 1 3

2018-01-05 1 4



As you can see from the cumulative gain, the S-learner,
although simple, can perform OK on this dataset. Again, keep
in mind that this performance is highly particular to this
dataset. This is a particularly easy dataset, as you have lots of
random data, which you can use even to train your learner.
In practice, I find that the S-learner is a good first bet for any
causal problem, mostly due to its simplicity. It also tends to
perform OK, even if it doesn’t have random data to train.
Moreover, the S-learner supports both binary and continuous
treatment, making it an excellent default choice.

The major disadvantage of the S-learner is that it tends to
bias the treatment effect toward zero. Since the S-learner
employs what is usually a regularized machine learning
model, that regularization can restrict the estimated
treatment effect.

The following plot replicates a result from the paper,
“Double/Debiased/Neyman Machine Learning of Treatment



Effects,” by  Chernozhukov  et al. To make this plot, I simulated
data with 20 covariates and a binary treatment with a true
ATE of 1. I then tried to estimate that ATE using an S-learner.
I repeated this simulation and estimation steps 500 times and
plotted the distribution of the estimated ATE alongside the
true ATE:

You can see that the distribution of estimated ATEs is
concentrated to the left of the true ATE, being biased toward
zero. In other words, the true causal effect is frequently
bigger than the estimated one.

Even worse, if the treatment is very weak relative to the
impact other covariates play in explaining the outcome, the
S-learner can discard the treatment variable completely.
Notice that this is highly related to the chosen ML model you
employ. The greater the regularization, the greater the



problem. A way around this, proposed in the same paper by
Chernozhukov  et al., is Double/Debiased Machine Learning,
or the R-learner.

Double/Debiased Machine Learning

Double/Debiased ML or the R-learner can be seen as a buffed
version of the Frisch-Waugh-Lovell theorem. The idea is very
simple—use ML models when constructing the outcome and
treatment residuals:

Yi − μ̂y(Xi) = τ ⋅ (Ti − μ̂t(Xi)) + ϵi

where μ̂y(Xi) is estimating E[Y |X] and μ̂t(Xi) is estimating

E[T |X].

Since the ML models can be super flexible, they are better
suited to capture interactions and nonlinearities when
estimating the Y  and T  residuals while still maintaining an
FWL-style orthogonalization. This means you don’t have to
make any parametric assumption about the relationship
between the covariates X and the outcome Y  nor between
the covariates and the treatment in order to get the correct
treatment effect. Provided you don’t have unobserved
confounders, you can recover the ATE with the following
orthogonalization procedure:



1. Estimate the outcome Y  with features X using a flexible
ML regression model μy.

2. Estimate the treatment T  with features X using a flexible
ML regression model μt.

3. Obtain the residuals Ỹ = Y − μy(X) and 
T̃ = T − μt(X).

4. Regress the residuals of the outcome on the residuals of
the treatment Ỹ = α + τT̃ , where τ  is the causal
parameter ATE, which you can estimate, for example, with
OLS.

The power you gain with ML is flexibility. ML is so powerful
that it can capture complicated functional forms in the
nuisance relationships. But that flexibility is also
troublesome, because it means you now have to take into
account the possibility of overfitting. The paper by
Chernozhukov et al. has a much more in-depth and rigorous
explanation about how overfitting can be troublesome and I
definitely recommend you check it out. But here, I’ll go on
with a more intuition-based explanation.

To see the issue, suppose that your μy model is overfitting.
The result is that the residual Ỹ  will be smaller than it should
be. It also means that μy is capturing more than only the
relationship between X and Y . Part of that something more
is the relationship between T  and Y , and if μy is capturing



some of that, the residual regression will be biased toward
zero. In other words, μy is capturing the causal relationship
and not leaving it to the final residual regression.

Now, to see the problem in overfitting μt, notice that it will
explain more of the variance in T  than it should. As a result,
the treatment residual will have less variance than it should.
If there is less variance in the treatment, the variance of the
final estimator will be high. It is as if the treatment is the
same for almost everyone, or if the positivity assumption was
violated. If everyone has almost the same treatment level, it
becomes very difficult to estimate what would happen under
different treatment.

Those are the problems you have when using ML models. But
how can you work around them? The answer lies in cross
predictions and out-of-fold residuals. Instead of getting the
residuals in the same data used to fit the model, you’ll
partition your data into K folds, estimating the model in K–1
of those folds and getting the residuals in the fold that was
left out. Repeat the same procedure K times to get the
residuals for the entire dataset. With this approach, even if
the model does overfit, it won’t drive the residuals to zero
artificially.

This looks complicated in theory but it is actually very easy to
code. You can use the cross_val_predict  function
from sklearn  to get out-of-fold predictions from any



machine learning model. Here is how you can get those
residuals with just a few lines of code:

If you only cared about the ATE, you could simply regress the
residual of the outcome on the residual of the treatment (just
don’t trust those standard errors, as they don’t account for
the variance in estimating the residuals):

In [13]: from sklearn.model_selection import cr

         X = ["month", "weekday", "is_holiday",

         T = "discounts"

         y = "sales"

         debias_m = LGBMRegressor()

         denoise_m = LGBMRegressor()

         t_res =  train[T] - cross_val_predict

         y_res =  train[y] - cross_val_predict

         

In [14]: import statsmodels.api as sm

         sm.OLS(y_res, t_res).fit().summary().t

         



But in this chapter, we are focusing on CATE. So how exactly
do you get that with Double-ML?

Double-ML for CATE estimation

To get CATE predictions from your Double-ML model, you’ll
need a few adaptations. Essentially, you need to allow the
causal parameter τ  to change depending on the unit’s
covariates:

Yi = μ̂y(Xi) + τ(Xi)(Ti − μ̂t(X)) + ϵ̂ i

where μ̂y and μ̂t are models that, respectively, predict the

outcome and treatment from the features X. If you
rearrange the terms, you can isolate the error:

ϵ̂ i = (Yi − μ̂y(Xi)) − τ(Xi)(Ti − μ̂t(X))

This is nothing short of awesome, because now you can call
this a causal loss function. Which means that, if you minimize
the square of this loss, you’ll be estimating the expected value
of τ(Xi), which is the CATE you wanted:

L̂n(τ(x)) =
1

n

n

∑
i=1

((Yi − M̂ y(Xi))− τ(Xi)(Ti − M̂ t(X)))
2

coef std err t P>|t|

discounts 31.4615 0.151 208.990 0.000



This loss is also called the R-Loss, since it’s what the R-learner
minimizes. OK, but how do you minimize this loss function?
There are multiple ways, actually, but here you’ll see the
simplest one. First, to declutter the technical notation, let’s
rewrite the loss function using the residualized version of
treatment and outcome:

L̂n(τ(x)) = 1
n ∑n

i=1 (Ỹ i − τ(Xi)T̃ i)
2

Finally, you can do some algebraic parkour to take T̃ i out of
the parentheses and isolate τ(Xi) in the square part of the
loss function:

L̂n(τ(x)) =
1

n

n

∑
i=1

T̃
2

i(
Ỹ i

T̃ i

− τ(Xi))

2

Minimizing the preceding loss is equivalent to minimizing
what is inside the parentheses, but weighting each term by 

T̃
2

i . Any predictive ML model can do that.

But wait a minute! You saw this already! This is the
transformed target you used to compute the mean square
error in Chapter 6! Indeed it is. Then, I asked you to trust my
word for it, but now I offer you the reason why it works.
Again, coding this up is very simple:

In [15]: y_star = y_res/t_res

         w = t_res**2



What I really like about this learner is that it directly outputs
CATE estimates. There is no need for all those extra steps you
had to take with the S-learner. Also, as you can see in the
following plot, it does a pretty decent job in terms of ordering
the CATE, as measured by the cumulative gain:

In this example, Double/Debiased-ML has a pretty similar
performance to the S-learner. That is probably because the
treatment is strong enough so that the ML model in S-learner
assigns high importance to it. Also, the treatment is
randomized, which means that the μt model in Double-ML is
not doing anything really. So, in order to get a better

         cate_model = LGBMRegressor().fit(train

         test_r_learner_pred = test.assign(cate

         



understanding of the true power of Double-ML, let’s go
through a more illustrative example.

Visual intuition for Double-ML

Consider the following simulated data. In it, you have two
covariates: xc is a confounder and xh is not. Also, xh drives
effect heterogeneity. There are only three values for xh: 1, 2,
and 3. The CATE for each of them is 2, 3, and 4, respectively,
since the treatment effect is given by t + txh. Also, since xh is
uniformly distributed, the ATE is just a simple average of the
CATEs—that is, 3. Finally, notice how the confounder xc

affects both treatment and outcome nonlinearly:

In [16]: np.random.seed(123)

         n = 5000

         x_h = np.random.randint(1, 4, n)

         x_c = np.random.uniform(-1, 1, n)

         t = np.random.normal(10 + 1*x_c + 3*x_

         y = np.random.normal(t + x_h*t - 5*x_c

         df_sim = pd.DataFrame(dict(x_h=x_h, x_

         



Here is a plot for this data. Each blob of points is a group
defined by xh. The color coding represents the value of the
confounder xc. Notice the nonlinear shape in it:

Now, let’s see how Double-ML processes this data. First, let’s
get the residuals T̃  and Ỹ . Since you don’t have a lot of data
here, constrain your ML models to have trees with

max_depth=3 . I’m including only xc in the debiasing
model, since that is the only confounder. The denoise model
has both covariates, as both cause the outcome and including
them will reduce noise:

In [17]: debias_m = LGBMRegressor(max_depth=3)

         denoise_m = LGBMRegressor(max_depth=3)

         t_res = cross_val_predict(debias_m, df

                                   cv=10)



Once you have those residuals, the confounding bias due to 
xc should be gone. Even though it is nonlinear, our ML model
should be able to capture that nonlinearity and get rid of all
the bias. So much so that if you run a simple regression of Ỹ
on T̃ , it should give you the correct ATE:

Out[18]: 3.045230146006292 

         

Next, let’s turn our attention to CATE estimation. The left plot
in the following figure shows the relationship between the

         y_res = cross_val_predict(denoise_m, d

                                   cv=10)

         df_res = df_sim.assign(

             t_res =  df_sim["t"] - t_res,

             y_res =  df_sim["y"] - y_res

         )

         

In [18]: import statsmodels.formula.api as smf

         smf.ols("y_res~t_res", data=df_res).fi

         



residuals and color codes each point by the confounder xc.
Notice that there are no patterns in the color of this plot. This
shows that all confounding due to xc was removed. The data
looks as if the treatment was randomly assigned.

The next plot color codes the same relationship by the xh, the
feature that drives treatment heterogeneity. The darkest
points (xh = 1) seem to be less sensitive to the treatment, as
shown by the lower slope. In contrast, the lighter ones (
xh = 3) seem to be more sensitive to the treatment. Looking
at this plot, can you think of a way to extract those
sensitivities?

To answer this question, notice that both residuals are
centered around zero. This means that the lines that dictate
the slope of all the groups defined by xh should cross zero.
Now, recall that the slope of a line can be estimated from two
points as Δy/Δt. But, since the intercept of this line should
be zero, this simplifies to y/t. Hence, you can see the Y *



target from Double-ML as the slope of the line that goes
through the point and has zero as its intercept.

But there is a catch. Both T̃  and Ỹ  have a mean close to zero.
You know what happens when you divide by a number close
to zero? That’s right, it can be very unstable, giving you

tremendous amounts of noise. Here is where the weights T̃
2

come into play. By giving more importance to points with
high values of T̃ , you are essentially focusing on the region
where the variance is low. To see that this works, you can

compute the average of Y *, weighted by T̃
2
, for each value

of xh. This will get you pretty close to the true CATE of 2, 3,
and 4, for xh = 1, 2, 3, respectively:

In [19]: df_star = df_res.assign(

             y_star = df_res["y_res"]/df_res["t

             weight = df_res["t_res"]**2,

         )

         for x in range(1, 4):

             cate = np.average(df_star.query(f"

                               weights=df_star.

             

             print(f"CATE x_h={x}", cate)

         



Out[19]: CATE x_h=1 2.019759619990067 

         CATE x_h=2 2.974967932350952 

         CATE x_h=3 3.9962382855476957 

         

You can also see what I’m talking about in the plot of Ỹ
*
 by 

T̃ . Here, I’m again color coding by xh, but now I’m adding

weights equal to T̃
2
. I’ve also included the average estimated

CATE for each group as a horizontal line:

I like this plot because it clearly shows the role of the weights.

The variance of Ỹ
*
 increases a lot as you approach the

center of the plot. You can’t see it because I’ve limited the
range of the y-axis, but you actually have points that go all



the way to both –2,000 and 2,000! Fortunately, those are all
close to T̃ = 0, so they have very small weights. And now
you know on a more intuitive level what is going on with
Double-ML.



TREE-BASED LEARNERS AND NEURAL NET LEARNERS

This chapter doesn’t intend to be an exhaustive list of all the
meta-learners there currently are. I’ve only included the ones
that I personally find most useful. However, beyond the four
learners presented here, there are some others that are
worth mentioning.

First, Susan Athey and Stefan Wager did a lot of pioneering
work on effect heterogeneity using modified decision trees.
You can find tree-based CATE learners in causal inference
libraries such as econml  and causalml . I did
not include them in this chapter because, at the time of this
writing, I’ve never managed to use them successfully. Mostly
because the implementations currently available are in pure
Python, which makes them quite slow to fit on large datasets.
I do expect that sometime soon a faster implementation will
arise, making tree-based learners an interesting option to try
out. If you want to learn more about tree-based learners, I
suggest the documentation of the causal inference packages
that implement them. There is also a fantastic online series of
videos from Stanford Business School, by Athey and Wager,
called Machine Learning & Causal Inference: A Short Course.

Second, there are neural network–based algorithms you can
try. However, I think those are still in their infancy and the
amount of complexity they bring is not worth the potential
gain. At least not yet. Still, if you want to venture yourself in



this literature, I recommend you check the papers
“Nonparametric Estimation of Heterogeneous Treatment
Effects: From Theory to Learning Algorithms”, by Curth and
Schaar, and “Learning Representations for Counterfactual
Inference,” by Shalit et al.

Key Ideas

This chapter expands on the idea of learning group-level
treatment effects τ(xi). Instead of just interacting the
treatment variable with the covariates X in a regression
model, you learned how to repurpose generic machine
learning models for conditional average treatment effect
(CATE) estimation: the so-called metalearners. Specifically,
you learned about four meta-learners, two that work only
with categorical treatments and two that work with any type
of treatment.

First, the T-learner fits a machine learning model to predict
the Y  for each treatment T . Then, the resulting outcome
models μ̂t  can be used to estimate the treatment effect. For
instance, in the case of a binary treatment:

τ̂ (Xi) = μ̂1(Xi) − μ̂0(Xi)

the T-learner works fine if you have lots of observations for
all treatment levels. Otherwise, the model estimated in a



small dataset can suffer from regularization bias. The next
learner you saw, the X-learner, tried to address this issue by
using a propensity score model to lower the importance of
any μ̂t  trained on a small sample.

To handle continuous treatment, you learned about the S-
learner, which simply estimates E[Y |T , X]. That is, it
predicts the outcome with the treatment included as a
feature. This model can be used to make counterfactual
predictions of Yt, given a grid of treatment values. This
results in a unit-specific coarse treatment response function,
which later needs to be summarized into a single slope
parameter.

Last, but not least, you learned about Double-ML. The idea
was to use generic ML models and out-of-fold prediction to
get treatment and outcome residuals, T − E[T |X] and 
T − E[Y |X], respectively. This can be understood as a
buffed version of FWL orthogonalization. Once you have
those residuals—call them T̃  and Ỹ —you could construct a
target that approximates τ(xi):

Y * = Ỹ /T̃

Using any ML model to predict that target while also using

weights T̃
2
 resulted in a ML model that could output CATE

predictions directly.



Finally, it’s worth remembering that all these methods rely on
the unconfoundedness assumptions. It doesn’t matter how
cool-sounding the algorithm you are trying to use for CATE
estimation is; for them to be able to remove bias, you need to
have in your data all the relevant confounders. Specifically,
unconfoundedness allows you to interpret rates of change on
the conditional expectation as if it was the slope of the
treatment response function:

∂

∂t
E[Y (t)|X] =

∂

∂t
E[Y |T = t, X]



Part IV. Panel Data



Chapter 8. Difference-in-Differences

After discussing treatment effect heterogeneity, it’s time to switch
gears a bit, back into average treatment effects. Over the next few
chapters, you’ll learn how to leverage panel data for causal inference.

A panel is a data structure that has repeated observations across
time. The fact that you observe the same unit in multiple time periods
allows you to see, for the same unit, what happens before and after a
treatment takes place. This makes panel data a promising alternative
to identifying the causal effects when randomization is not possible.
When you have observational (nonrandomized) data and the likely
presence of unobserved confounders, panel data methods are as good
as it gets in terms of properly identifying the treatment effect.

In this chapter, you’ll see why panel data is so interesting for causal
inference. Then, you’ll learn the most famous causal inference
estimator for panel data: difference-in-differences—and many
variations of it. To keep things interesting, you’ll do all of this in the
context of figuring out the effect of an offline marketing campaign.

DATA REGIMES

In contrast to panel data or longitudinal design, cross-sectional data is characterized by each
unit appearing only once. A third category, which falls between the two, is known as repeated
cross-sectional data. This type of data involves multiple time entries, but the units in each
entry are not necessarily the same. Up until this point, you have worked with data that
includes repeated observations of the same unit over time (for example, when trying to
determine the effect of discounts on restaurant sales), but for the sake of simplicity, we
treated that data as cross-sectional. This is sometimes referred to as pooled cross-section.

Panel Data



To motivate the use of panel data, I’ll mostly talk about causal
inference applications to marketing. Marketing is particularly
interesting for its notorious difficulty in running randomized
experiments. In marketing, you often can’t control who receives the
treatment, that is, who sees your advertisements. When a new user
comes to your site or downloads your app, you have no good way of
knowing if that user came because they saw one of your campaigns
or due to some other reason. Even if you know that the customer
clicked one of your marketing links, it’s hard to tell if they wouldn’t
have gotten your product regardless. For example, if the customer
clicked your sponsored Google link, they might just as well have
scrolled down a bit and clicked the unpaid link, if they were really
looking for your product.

The problem is even bigger with offline marketing. How can you
know if placing some billboards in a city brings value in excess of its
costs? Because of that, a common practice in marketing is to run geo-
experiments: you can deploy a marketing campaign to some
geographical region but not others and compare them. In this design,
panel data methods are particularly interesting: you can collect data
on an entire geography (unit) across multiple periods of time.

Like I’ve said, panel data is when you have multiple units i over
multiple periods of time t. In some marketplace websites, units might
be the person and t the days or months. But the unit doesn’t need to
be a single customer. For example, in the context of an offline
marketing campaign, i could be cities where you can place a
billboard for your product.

So you can follow along with something more tangible, the following
data frame, mkt_data , has marketing data in a panel format.
Each line is a (day, city) combination:



This data frame is sorted by date and city. The outcome variable you
care about is number of downloads. Since t will be used to represent
time, to avoid confusion, from now on, I’ll use D to denote the
treatment. Also, in the panel data literature, the treatment is often
referred to as an intervention. I’ll use both terms interchangeably. In
this example, the marketing team launched an offline campaign on
the cities with Di = 1. As for the time dimension, let’s establish that 

In [1]: import pandas as pd

        import numpy as np

        mkt_data = (pd.read_csv("./data/short_offline

                    .astype({"date":"datetime64[ns]"}

        mkt_data.head()

        

date city region tr

0 2021-05-01 5 S 0

1 2021-05-02 5 S 0

2 2021-05-03 5 S 0

3 2021-05-04 5 S 0

4 2021-05-05 5 S 0



T  will be the number of periods, with Tpre being the periods before
the intervention. You can think about the time vector as 
t = {1, 2, . . . ,Tpre,Tpre + 1, . . . ,T}. Periods after the treatment, 
Tpre, . . . ,T , are conveniently called post intervention. To simplify the
notation, I’ll often use a Post dummy, which is 1 when t > Tpre and 0
otherwise.

The intervention only happens to treated units, D = 1, at the post-
intervention period, t > Tpre. The combination of treatment and post
intervention will be denoted by W = D * 𝟙(t > Tpre) or 
W = D * Post. Here is an example of what this looks like in the
marketing data:

date

min max

w

0 2021-05-01 2021-06-01

1 2021-05-15 2021-06-01

In [2]: (mkt_data

         .assign(w = lambda d: d["treated"]*d["post"]

         .groupby(["w"])

         .agg({"date":[min, max]}))

        



As you can see, the pre-intervention period is from 2021-05-01 to
2021-05-15 and the post-intervention period, from 2021-05-15 to 2021-
06-01.

This dataset also has a τ  variable to denote the treatment effect. Since
this data is simulated, I know exactly what that effect is. I’ve included
it in this dataset just for you to check if the methods you’ll learn
about are doing a good job in identifying the causal effect. But don’t
get used to it. In real life, you won’t have this luxury.

Now that you understand the data better and have learned a new bit
of technical notation, you can restate your goal more precisely. You
want to understand the effect of the offline marketing campaign on
the cities that got treated, after the treatment takes place:

ATT = E[Yit(1) − Yit(0)|D = 1, t > Tpre]

This is the ATT since you are only focusing on understanding the
impact the campaign had on the cities with D = 1, after the
campaign was launched t > Tpre. Since Yit(1) is observable, you can
achieve this goal by imputing the missing potential outcome 
E[Y (0)|D = 1,Post = 1].

Figure 8-1 shows why panel data becomes particularly interesting
when you represent the observed outcomes in a unit-by-time matrix.
This matrix highlights the fact that Y (1) is only observable for
treated units during the post-treatment period, while for all other
cells, you can observe Y (0). Despite this, these cells can still be useful
for estimating the missing potential outcome 
E[Y (0)|D = 1, t > Tpre]. You can leverage the correlation between
units by using the outcome of the control units in the post-
intervention period, and you can also leverage correlation across
time by using the treated units’ outcome in the pre-treatment period.



Figure 8-1. By observing the same units across multiple time periods, panel data allows you
to leverage the correlation between units and across time to impute the missing potential

outcome T (1)

Figure 8-1 also shows why you should focus on ATT in most
applications with panel data: it’s much easier to impute Y (0) for the
treated units. If instead you wanted the ATC (average effect on the
control), you would have to impute Y (1). However, you would only
have one cell where that potential outcome is observable.

Now that you had your brief introduction to panel data, it’s time to
explore some of the machinery that leverages it to identify and
estimate the treatment effect.

Canonical Difference-in-Differences

The basic idea behind difference-in-differences is to impute the
missing potential outcome E[Y (0)|D = 1,Post = 1] by using the



baseline from the treated units, but applying the evolution of the
outcome (growth) from the control units:

where you can estimate E[Y (0)|D = 1,Post = 1] by replacing the
righthand side expectations with sample averages. The reason this is
called the difference-in-differences (DID) estimator is because, if you
substitute the preceding expression for E[Y (0)|D = 1,Post = 1] in
the ATT, you get, quite literally, the difference in differences:

Don’t let all those expectations scare you. In its canonical form, you
can get the DID estimate quite easily. First, you divide the time
periods in your data into pre- and post-intervention. Then, you divide
the units in a treated and control group. Finally, you can simply
compute the averages of all the four cells: pre-treatment and control,
pre-treatment and treated, post-treatment and control, and post-
treatment and treated:

In [3]: did_data = (mkt_data

                    .groupby(["treated", "post"])

                    .agg({"downloads":"mean", "date":

        did_data

        

E[Y (0)|D = 1,Post = 1] = E[Y |D = 1,Post = 0]

+(E[Y |D = 0,Post = 1] − E[Y |D = 0,Post = 0])

ATT = (E[Y |D = 1,Post = 1] − E[Y |D = 1,Post = 0])

−(E[Y |D = 0,Post = 1] − E[Y |D = 0,Post = 0])



downloads date

treated post

0 0 50.335034 2021-05-01

1 50.556878 2021-05-15

1 0 50.944444 2021-05-01

1 51.858025 2021-05-15

Those are all the numbers you need to get the DID estimate. For the
treatment baseline, E[Y |D = 1,Post = 0], you can index into the
treatment with did_data.loc[1]  and then into the pre-
treatment period with a follow up .loc[0] . To get the
evolution in the outcome for the control, 
E[Y |D = 0,Post = 1] − E[Y |D = 0,Post = 0], you can index
into the control with did_data.loc[0] , compute the
difference with .diff() , and index into the last row with a
follow-up .loc[1] . Adding the control trend into the treated
baseline gives you an estimate for the counterfactual 
E[Y (0)|D = 1,Post = 1]. To get the ATT, you can subtract that from
the average outcome of the treated in the post-intervention period:

In [4]: y0_est = (did_data.loc[1].loc[0, "downloads"]

                  # control evolution

                  + did_data.loc[0].diff().loc[1, "do



Out[4]: 0.6917359536407233 

        

If you compare this number with the true ATT (filtering the treated
units and the post-treatment period), you can see that the DID
estimate is quite close to what it tries to estimate:

Out[5]: 0.7660316402518457 

        

        att = did_data.loc[1].loc[1, "downloads"] - y

        att

        

In [5]: mkt_data.query("post==1").query("treated==1")

        



RACTICAL EXAMPLE

MINIMUM WAGES AND EMPLOYMENT

In the ’90s, David Card and Alan Krueger used a 2 × 2 DID to
challenge the conventional economic theory that states that a rise in
minimum wage leads to a decrease in employment. They looked at
data from fast-food restaurants in New Jersey and Pennsylvania,
before and after an increase in New Jersey’s minimum wage. The
study found no evidence of reduced employment due to the
minimum wage increase. This paper was incredibly influential and
got revisited many times and that result proved to be very robust.
Eventually, due to its influence and for helping to popularize DID,
Card was awarded the Nobel Prize in 2021.

Diff-in-Diff with Outcome Growth

Another very interesting take on DID is to realize it is differentiating
the data in the time dimension. Let’s define the difference in the
outcome across time for unit i as 
Δyi = E[yi|t > Tpre] − E[yi|t ≤ Tpre]. Now, let’s convert your
original data, which was by time and unit, into a data frame with Δyi

, where the time dimension has been differentiated out:

In [6]: pre = mkt_data.query("post==0").groupby("city

        post = mkt_data.query("post==1").groupby("cit

        delta_y = ((post - pre)

                   .rename("delta_y")

                   .to_frame()

                   # add the treatment dummy

                   .join(mkt_data.groupby("city")["tr



delta_y treated

city

192 0.555556 0

193 0.166667 0

195 0.420635 0

196 0.119048 0

197 1.595238 1

Next, you can use potential outcome notation to define the ATT in
terms of Δy:

ATT = E[Δy1 − Δy0],

which DID tries to identify by replacing Δy0 with the average of the
control units:

ATT = E[Δy|D = 1] − E[Δy|D = 0]

If you replace those expectations with sample averages, you’ll see
that you get back the same DID estimate you got before:

        delta_y.tail()

        



Out[7]: 0.6917359536407155 

        

This is an interesting take on DID because it makes very clear what it
is assuming, that is, E[Δy0] = E[Δy|D = 0], but we’ll talk more
about this later.

Since this has all been very technical and full of math, I wanted to
give you a more visual understanding of DID by plotting the observed
outcomes of the treated and control group over time, alongside the
estimated counterfactual outcome for the treated unit. In the
following image, the DID estimate for E[Y (0)|D = 1] is shown as a
dashed line. It was obtained by applying the trajectory from the
control into the treatment baseline. The estimated ATT would then be
the difference between the estimated counterfactual outcome Y (0)

and the observed outcome Y (1), both in the post-treatment period
(difference between the dot and the cross):

In [7]: (delta_y.query("treated==1")["delta_y"].mean(

         - delta_y.query("treated==0")["delta_y"].mea

        



Diff-in-Diff with OLS

Even though you can implement DID by hand, computing averages or
taking deltas, this wouldn’t be a respectable causal inference chapter
if it didn’t include a fair amount of linear regression. Not surprisingly,
you can get the exact same DID estimator with a saturated regression
model. First, let’s group your daily data by city and period—post- and
pre-treatment. Then, for each city and period combination, you can
get the average number of daily downloads. I’m also getting the start
date for each period and the treatment status for each city. The start
date isn’t used in the estimator, but it’s good for understanding when
the treatment takes place:

In [8]: did_data = (mkt_data

                    .groupby(["city", "post"])

                    .agg({"downloads":"mean", "date":

                    .reset_index())

        did_data.head()

        



With this city by period dataset, you can estimate the following linear
model:

Yit = β0 + β1Di + β2Postt + β3DiPostt + eit

and the parameter estimate β̂3  will be the DID estimate. To see why
that is, notice that β0 is the baseline of the control. In this case, β0 is
the level of downloads in control cities, prior to 2021-05-15. If you
turn on the treated city dummy, you get β0 + β1. So β0 + β1 is the
baseline of treated cities, also before the intervention. β1 is simply
the difference in baseline between treated and control cities. If you
turn the treatment dummy off and turn the post-treatment dummy
on, you get β0 + β2, which is the level of the control cities after the
intervention. β2 is then the trend of the control. It’s how much the
control grows from the pre- to the post-intervention period.

city post downloads d

0 5 0 50.642857 2

1 5 1 50.166667 2

2 15 0 49.142857 2

3 15 1 49.166667 2

4 20 0 48.785714 2



As a recap, β1 is the increment you get by going from the control to
the treated, β2 is the increment you get by going from the pre- to the
post-treatment period. Finally, if you turn both treated and post
dummies on, you get β0 + β1 + β2 + β3. This is the level of the
treated cities after the intervention, which means that β3 is the
increment in the outcome that you get by going from treated to
control cities and from pre- to post-intervention period. In other
words, it is the difference-in-differences estimator:

Out[9]: 0.691735953640 

        

Diff-in-Diff with Fixed Effects

Yet another way to understand DID is with time- and unit-fixed effect
model (two-way fixed effects or TWFE). In this model, you have
treatment effect τ , unit- and time-fixed effects, αi and γt,
respectively:

Yit = τWit + αi + γt + eit.

In order to declutter, I’m using Wit = DiPostt here.

In [9]: import statsmodels.formula.api as smf

        smf.ols(

            'downloads ~ treated*post', data=did_data

        ).fit().params["treated:post"]

        



If you estimate this model, the parameter estimate associated with W
will match the DID estimate you got earlier and recover the ATT. To
do so, recall from Chapter 4 that you can estimate fixed effects by
using dummies or by de-meaning the data. Here, for the sake of
simplicity, let’s just use the dummies approach. That is, let’s include
city and period dummies with C(city)  and C(post) .
Also, you need to create W  by multiplying the treated and the post
dummies. Just remember that the *  operator creates the
interaction between two terms and the terms by themselves. Since
you only want the interaction, you need the :  operator:

Out[10]: 0.691735953640 

         

Once again, you get the exact same parameter estimate.

Multiple Time Periods

The canonical DID setting requires you to have only four data cells:
pre- and post-intervention, treated and control groups. But it doesn’t
require that the pre and post time periods be aggregated into a single
block. Canonical DID only requires that you have what is called a
block design: a group of units that are never treated and a group of
units that are eventually treated at the same time period. That is, you

In [10]: m = smf.ols('downloads ~ treated:post + C(ci

                     data=did_data).fit()

         m.params["treated:post"]

         



can’t have the treatment rolling out to units at different moments
(you’ll learn about that shortly). The marketing example you are
working with has exactly this format, which means you don’t have to
aggregate it by a pre- and a post-treatment period. You can just use it
as is.

You can visualize this block design in the following figure, which
plots the treatment assignment for each city over time. It also shows
the evolution of the outcome across time so that you can get a better
feeling of what DID is looking at. Namely, it is trying to see if the
difference between treated and control groups increases after the
intervention takes place:



To get the DID estimate with this disaggregated data, you can use the
exact same formulas as before. That is, you can either regress the
outcome on a treated and post dummies and the interaction between
them:



Out[11]: 0.6917359536407226 

         

or you can use the fixed effect specification:

Out[12]: 0.691735953640 

         

I’ve just shown a bunch of ways to get the exact same DID estimate.
By doing so, I hope you can pool insights from all of them, increasing
your chances of understanding what is going on. But if you look
carefully, I’ve deliberately hidden the confidence intervals from the
regressions you just ran. That’s because the confidence intervals from
those regressions are probably wrong.

Inference

In [11]: m = smf.ols('downloads ~ treated*post', data

         m.params["treated:post"]

         

In [12]: m = smf.ols('downloads ~ treated:post + C(ci

                     data=mkt_data).fit()

         m.params["treated:post"]

         



I said probably wrong because, in all honesty, doing inference with
panel data is incredibly tricky. There has been a lot of recent research
on the topic, which is of course nice, but it also highlights that it is
something we as a field are still learning how to do. The issue here is
that you have N ⋅ T  data points, but they are not independent and
identically distributed, since the same unit appears multiple times. In
fact, the treatment is assigned to the unit, not to the time period, so
you can argue that your sample size is actually just N , not N ⋅ T ,
even though this last one is what your regression will consider when
computing standard errors.

To correct the overly optimistic standard errors from your regression,
you can cluster the standard errors by the unit (cities, in our
example):

Out[13]: ATT: 0.6917359536407017 

         

Out[13]: 0    0.296101 

         1    1.087370 

         Name: treated:post, dtype: float64 

         

In [13]: m = smf.ols(

             'downloads ~ treated:post + C(city) + C(

         ).fit(cov_type='cluster', cov_kwds={'groups'

         print("ATT:", m.params["treated:post"])

         m.conf_int().loc["treated:post"]

         



Clustering the errors will give you wider confidence intervals than no
clustering at all:

Out[14]: ATT: 0.6917359536407017 

         

Out[14]: 0    0.478014 

         1    0.905457 

         Name: treated:post, dtype: float64 

         

Additionally, look what happens when you replace the daily data
frame, mkt_data , from the one that you’ve aggregated by unit
and pre- and post-treatment periods:

In [14]: m = smf.ols('downloads ~ treated:post + C(ci

                     data=mkt_data).fit()

         print("ATT:", m.params["treated:post"])

         m.conf_int().loc["treated:post"]

         

In [15]: m = smf.ols(

             'downloads ~ treated:post + C(city) + C(

         ).fit(cov_type='cluster', cov_kwds={'groups'

         print("ATT:", m.params["treated:post"])

         m.conf_int().loc["treated:post"]

         



Out[15]: ATT: 0.6917359536407091 

         

Out[15]: 0    0.138188 

         1    1.245284 

         Name: treated:post, dtype: float64 

         

The confidence interval gets even wider! This just shows that, even
though the sample size should come from the units and not from the
time periods, having more time periods per unit clusters can
decrease the variance.

As you’ll see later in this chapter, some noncanonical flavors of DID
won’t have a standard way to compute confidence intervals. In those
situations, you can choose to bootstrap the entire estimation
procedure. You just need to be a bit careful here. Since you have
repeated units, the model’s error for the same unit will be correlated.
Hence, you need to sample (with replacement) the entire unit. This
procedure is called block bootstrap. To implement it, you first need to
write a function that samples units with replacement:

In [16]: def block_sample(df, unit_col):

             

             units = df[unit_col].unique()

             sample = np.random.choice(units, size=le

             

             return (df

                     .set_index(unit_col)

                     .loc[sample]



Once you have this function, you can adapt the bootstrap code from
Chapter 5 to implement the block bootstrap:

Finally, just to check if everything is working as expected, you can use
this function to calculate the 95% CI for the DID estimator applied to
the marketing data. The resulting CI is pretty similar to the one you
got earlier, with standard errors clustered by units. This is a good
indicator that your block bootstrap function is working:

                     .reset_index(level=[unit_col]))

         

In [17]: from joblib import Parallel, delayed

         def block_bootstrap(data, est_fn, unit_col,

                             rounds=200, seed=123, pc

             np.random.seed(seed)

             

             stats = Parallel(n_jobs=4)(

                 delayed(est_fn)(block_sample(data, u

                 for _ in range(rounds))

             

             return np.percentile(stats, pcts)

         

In [18]: def est_fn(df):

             m = smf.ols('downloads ~ treated:post + 

                         data=df).fit()

             return m.params["treated:post"]



Out[18]: array([0.23162214, 1.14002646]) 

         

Before ending this section, I want to warn you that, although very
convenient, there are some issues with block bootstrap. For instance,
if the number of treated units is small, you might end up with a
sample with no treated units. Again, inference with panel data is a
complex topic that I feel we don’t have a clear answer to yet.

SEE ALSO

If you want to learn more about it, you can check out the paper “When Should You Adjust
Standard Errors for Clustering” (2022-09) from Abadie, Athey, Imbens, and Wooldridge, four
fantastic researchers in the causal inference field. I also recommend you check some
alternative ways to do inference, like the one outlined in the paper “An Exact and Robust
Conformal Inference Method for Counterfactual and Synthetic Controls,” by Victor
Chernozhukov et al.

Identification Assumptions

As you probably know by now, causal inference is a constant
interaction between statistical tools and assumptions. In this chapter,
I chose to begin with the statistical tool, showing how DID could
leverage unit and time relationships to estimate the treatment effect.
That gave you a concrete example to hold on to. Now, it’s time to dig a
little deeper into what kind of assumptions you were making when
using DID, sometimes even without realizing it.

Parallel Trends

         block_bootstrap(mkt_data, est_fn, "city")

         



Previously in this book, when working with cross-sectional data, a
key identification assumption was that the treatment was
independent of the potential outcomes, conditioned on observed
covariates. DID makes a similar, but weaker assumption: parallel
trends.

If you think about it, the DID estimator is quite intuitive when it
comes to leveraging time and unit correlations. If all you had was
units (no time dimension), you would have to use the control to
estimate Y (0) for the treated group. On the other hand, if you had a
time dimension, but no control group (all units were treated at some
point in time), you would have to use past Y (0) from the treated
units in a sort of before and after comparison. Both approaches
require pretty strong assumptions. You either have to assume that the
outcome of the control can identify E[Y (0)|D = 1,Post = 1],
which is only plausible if treated and control are comparable (like in
a RCT), or if the outcome of the treated unit is a flat line across time,
in which case you could use the past outcome of the treated units to
identify E[Y (0)|D = 1,Post = 1]. In contrast, difference-in-
differences makes a weaker assumption: that the trajectory of
outcomes across time would be the same, on average, for treatment
and control groups, in the absence of the treatment. It assumes that the
trends in Y (0) are parallel:

E[Y (0)it=1 − Y (0)it=0 D = 1] = E[Y (0)it=1 − Y (0)it=0 D = 0]

This assumption is untestable because it contains a term that is
nonobservable: E[Y (0)it=1 D = 1]. Still, for the sake of
understanding it, let’s pretend for a moment you could observe the 
Y (0) potential outcome for all time periods. In the following plots,
I’m representing them as dashed lines. Here you can see the potential∣ ∣∣



outcome Y (0) for four periods, for both treatment and control.
Additionally, each plot has four points representing the observed data
for the treated and control groups and the DID estimated trajectory of
the treated under the control, represented as a dotted line. The
difference between this dotted line and the post-treatment outcome
for the treated group is the DID estimate for the ATT.

The true ATT, however, is the difference between the post-treatment
outcome for the treated group, but with respect to the dashed gray
line, which represents the unobserved Y (0) for the treated group:

In the first plot, the estimated and actual Y (0)|D = 1 coincide. In
this case, the parallel trend assumption is satisfied and the DID
estimator recovers the true ATT. In the second plot, the trends
converge. The estimated trend is steeper than the actual trend for 
Y (0)|D = 1. As a result, the DID estimate would be downward
biased: the difference between E[Y (1)|D = 1,Post = 1] and the
estimated trend is smaller than the difference between 
E[Y (1)|D = 1,Post = 1] and the actual, but unobservable, 
E[Y (0)|D = 1,Post = 1].

Finally, the last plot shows how the parallel trends assumption is not
scale invariant. This plot simply takes the data from the first plot and



applies the log transformation to the outcome. This transformation
takes a trend that was parallel and makes it convergent. I’m showing
this to warn you to be very careful with DID. For instance, if you have
level data, but want to measure the effect as a percent change,
converting the outcome to a percentage can mess up your trends.

SEE ALSO

In the paper “When Is Parallel Trends Sensitive to Functional Form?” Jonathan Roth and
Pedro Sant’Anna derive a more strict version of parallel trends that is invariant to monotonic
transformation of the outcome and discuss in which situation that assumption is plausible.

An alternative way to think about the parallel trends assumption is in
relation to the conditional independence assumption (CIA). While the
CIA states that the level of Y (0) is the same, on average, in the
treated and control groups, parallel trends states that the growth of 
Y (0) is the same between treated and control groups. This can be
expressed in terms of the ΔY s you saw earlier:

(Δy0,Δy1) ⊥ T

Here lies the power of panel data: even if the treatment is not
randomly assigned, so long as the treated and control groups have
the same counterfactual growth, the ATT can be identified.

Just like with the independence assumption, you can relax the
parallel trend assumption to be conditioned on covariates. That is,
given a set of pre-treatment covariates X, the trend in Y (0) is the
same between treated and control group. You’ll see later in this
chapter how to incorporate covariates in DID.

No Anticipation Assumption and SUTVA

If the parallel trend assumption can be seen as a panel data version
of the independence assumption, the no anticipation assumption is



more related to the stable unit of treatment value assumption
(SUTVA). Recall that SUTVA violations happen when the effect spills
over from treatment into the control units (or vice versa)? Well, here
it is the same thing, but across time periods: you don’t want the effect
to spill over to periods when the treatment hasn’t yet taken place.

If you think there is no way this can happen, consider you are trying
to estimate the effect of Black Friday on sales of cell phones. If you try
this, you’ll see that many businesses anticipate the Black Friday
discount, knowing that the period prior to Black Friday is one where
customers are already shopping for products. This will likely cause
you to see a spike in sales before the treatment (Black Friday) even
takes place.

The fact that you have to worry about time spillover doesn’t mean
you don’t have to worry about unit spillover. Good old SUTVA is still a
big issue in panel data analysis, especially when the unit is a
geographic region. That’s because people are constantly moving
across the geographic borders, which makes the treatment likely to
spill out of the treated units.



SPATIAL SPILLOVER

Much like with everything in the panel data literature, dealing with
spatial spillover is something the causal inference community is still
learning about. A very good paper on this subject is “Difference-in-
Differences Estimation with Spatial Spillovers,” by Kyle Butts. The
paper is not hard to read and the proposed solution is easy to
implement. The basic idea is to expand the two-way fixed effect
formulation of DID with a dummy, S which is 1 if a control unit is
deemed close enough to a treated unit:

Yit = τitWit + η0Si(1 − Wit) + η1SiWit + αi + γt + eit

Strict Exogeneity

The strict exogeneity assumption is a pretty technical assumption
that is usually stated in terms of the fixed effect model’s residuals:

Yit = αi + Xitβ + ϵit

Strict exogeneity states that:

E[ϵit|Xit,αi] = 0

This assumption is stronger and implies parallel trends. It is also
fairly obscure, so I think it is best if we talk about it in terms of what
it implies:

1. No time varying confounders

2. No feedback

3. No carryover effect



You can also make this assumption more palpable by showing it in a
DAG:

Now, let’s walk through what it really means.

No Time Varying Confounders

Let me start with some good news. Do you remember how I
mentioned that panel data can utilize time and unit correlations? It’s
worth noting that having repeated observations over time can help
you identify the causal effect even when unobserved confounders are
present. This is true as long as those confounders are constant over



time or across all units. To understand this better, let’s revisit the
marketing example. Each city has its unique culture, laws, and
population, all of which can significantly influence both the
treatment and outcome variables. Some of these variables, such as
culture and laws, are challenging to quantify, making them
unobserved confounders that you need to account for. However, how
can you do that when you can’t measure them?

The trick is to see that, by zooming in on a unit and tracking how it
evolves over time, you are already controlling for anything that is
fixed over time. That includes any time-fixed confounders, even those
that are unmeasured. In the marketing example, if downloads
increase over time in a particular city, you know it cannot be due to
any change in the city culture (at least not in a short time frame),
simply because that confounder is fixed over time. The bottom line is
that even though you can’t control for time-fixed confounders, since
you can’t measure it, you can still block the backdoor path that goes
through it, if you control for the unit itself.

If you are more of a math person, you can also see how the process of
demeaning the data wipes out any time-fixed covariate. Recall that
adding unit-fixed effects can be achieved by adding unit dummies,
but also by computing the average of both outcome and treatment by
unit and subtracting that from the original variables:

Ÿ it = Yit − Y i

Ẅ it = Wit − W i

Here, I’m using Wit = DiPostt to denote the treatment, since Di is
time fixed. With de-meaning, any unobserved Ui vanishes. Since Ui is
constant across time, you have that Ui = Ui, which makes Ü it = 0



everywhere. In plain terms, unit-fixed effects wipe out any variable
that is constant across time.

I’m focusing on unit-fixed effects, but a similar argument can be used
to show how time-fixed effects can wipe out any variable that is fixed
across units, but changes in time. In our example, those could be the
country’s exchange rate or inflation. Since those are nationwide
variables, they are the same for all the cities.

Of course, if the unobserved confounder changes over time and unit,
there is not much you can do here.

No Feedback

You might have noticed that the previous graph has another vital
assumption in it. Specifically, there are no arrows extending from
past outcomes, Yit−1, toward current treatment, Wit. In other words,
there is no feedback. This implies that the treatment cannot be
decided based on the outcome trajectory. To illustrate, imagine the
treatment was a vector indexed by time W = (w0,w1, . . . ,wT ). In
this scenario, the entire vector would have to be decided on one go.
This is plausible in block designs like the one you saw before, where
the treatment turns on at a particular time period and continues
indefinitely. However, even then the no feedback assumption could
be violated. For instance, suppose that the marketing team decided
that they would do an offline marketing campaign whenever a city
reached 1,000 downloads. This would violate the no feedback
assumption.



SEQUENTIAL IGNORABILITY

If you want to be able to condition on past outcomes, you need to look into methods that
work under sequential ignorability. Sadly, you can either control for past outcomes or time-
fixed confounders, but not both. For more about this topic, I suggest you check out the paper
“Causal Inference with Time-Series Cross-Sectional Data: A Reflection,” by Yiqing Xu, or the
book Causal Inference by M.A. Hernán and J.M. Robins.

No Carryover and No Lagged Dependent
Variable

Beyond no feedback, you might observe that the graph also assumes
no carryover effect, since there are no arrows from past treatment to
current outcomes. Fortunately, this assumption can be relaxed if you
expand the model, including lagged versions of the treatment. For
example, if you believe that treatment at period t − 1 impacts the
outcome at time t, you can use the following model:

Yit = τitWit + θWit−1 + αi + γt + eit.

Finally, the graph also assumes no lagged dependent variable,
meaning that past outcome doesn’t directly cause current outcome.
Lucky for you, this assumption is not really necessary; adding arrows
from past Y s to future Y s doesn’t hinder identification.

SEE ALSO

Representing panel data in DAG is not something trivial, but there are two great papers that
try to do so. They really helped me understand what strict exogeneity implied. First, the
paper “When Should We Use Unit Fixed Effects Regression Models for Causal Inference with
Longitudinal Data?” by Imai and Kim. Second, the paper “Causal Inference with Time-Series
Cross-Sectional Data: A Reflection,” by Yiqing Xu.

Effect Dynamics over Time



By now you probably have a pretty decent understanding about
canonical DID, which means you can now try to diverge from it into
its more apocryphal flavors. A slightly more complicated approach is
when you want to incorporate effect dynamics over time. If you look
back at the plot that shows outcome evolution, you can see that the
difference between treated and control group doesn’t increase right
after the treatment takes place. Instead, it takes some time for the
treatment to reach its full effect. In other words, the treatment effect
is not instantaneous. This is a fairly common phenomenon not only
in marketing, but with any sort of intervention on entire geographies.
It also means that you might be underestimating the final treatment
effect, because you are including periods where it hasn’t fully
matured yet.

One simple way around this problem is to estimate the ATT over time.
If you are really clever, you can achieve this by creating dummies for
each post-treatment period, but my favorite way of getting effects
over time involves using a bit of brute force: iterating over all the
time periods and running DID as if only that period was the post-
treatment one.

In order to do that, let’s create a function that takes a data frame and
a date and runs DID as if that date was the post treatment period:

In [19]: def did_date(df, date):

             df_date = (df

                        .query("date==@date | post==0

                        .query("date <= @date")

                        .assign(post = lambda d: (d["

             

             m = smf.ols(

                 'downloads ~ I(treated*post) + C(cit



First, this function filters only the pre-treatment period and the
passed date. Next, it filters the dates equal to or before the passed
date. If the passed date is from the post-treatment period, this filter is
innocuous. If the date is from the pre-treatment period, it tosses away
the dates after it. This allows you to run DID even for the period
before the treatment. Actually, to do that, you need the next line of
code, where the function reassigns the post-treatment period to be
the specified date. Now, if you pass a date from the pre-treatment, the
function will pretend that it comes from the post-treatment period, in
what is sort of a placebo test in the time dimension. Finally, the
function estimates a DID model, extracting the ATT and the
confidence interval around it. It then stores everything in a data
frame with a single line.

This function works for a single date. To get the effect for all possible
dates, you can iterate over them, getting the DID estimate each time.
Just keep in mind that you need to skip the first date, as you need at
least two time periods for DID to run. If you store all the results in a
list, you can call pd.concat  on that list to merge all the results
into a single data frame:

             ).fit(cov_type='cluster', cov_kwds={'gro

             

             att = m.params["I(treated * post)"]

             ci = m.conf_int().loc["I(treated * post)

             

             return pd.DataFrame({"att": att, "ci_low

                                 index=[date])

         



att ci_low ci_up

2021-05-02 0.325397 -0.491741 1.142534

2021-05-03 0.384921 -0.388389 1.158231

2021-05-04 -0.156085 -1.247491 0.935321

2021-05-05 -0.299603 -0.949935 0.350729

2021-05-06 0.347619 0.013115 0.682123

You can then plot the effect over time alongside its confidence
interval. This plot shows that the effect doesn’t climb after the
treatment takes place. It also seems like the ATT is a bit higher if you
discard the early periods, where it hasn’t fully matured yet. I’m also
plotting the true effect τ  so you can see how this approach manages
to recover it pretty well:

In [20]: post_dates = sorted(mkt_data["date"].unique(

         atts = pd.concat([did_date(mkt_data, date)

                           for date in post_dates])

         atts.head()

         



The pre-treatment part of this plot also deserves your attention.
During this period, all estimated effects are indistinguishable from
zero, which indicates that the effect does not occur prior to
treatment. This provides strong evidence that the no-anticipation
assumption may be valid in this case.

Diff-in-Diff with Covariates

Another variation of DID you need to learn is how to include pre-
treatment covariates in your model. This is useful in case you suspect
that parallel trend doesn’t hold, but conditional parallel trend does:

E[Y (0)it=1 − Y (0)it=0 D = 1,X] = E[Y (0)it=1 − Y (0)it=0 D = 0,X]

Consider this situation: you have the same marketing data as before,
but now, you have data on multiple regions of the country. If you plot
the treatment and control outcome for each region, you’ll see
something interesting: ∣ ∣



The pre-treatment trends seem to be parallel within a region, but not
across regions. As a result, if you simply run the two-way fixed effect
specification of DID here, you’ll get a biased estimate for the ATT:

Out[22]: True ATT:  1.7208921056102682 

         Estimated ATT: 2.068391984256296 

         

In [21]: mkt_data_all = (pd.read_csv("./data/short_of

                         .astype({"date":"datetime64[

         

In [22]: print("True ATT: ", mkt_data_all.query("trea

         m = smf.ols('downloads ~ treated:post + C(ci

                     data=mkt_data_all).fit()

         print("Estimated ATT:", m.params["treated:po

         



Somehow, you need to account for the different trends in each region.
You might think that simply adding the region as an extra covariate
in the regression will solve the problem. But think again! Remember
how using unit-fixed effects wipes out the effect of any time-fixed
covariate? This is true not only for unobservable confounders, but
also for the region covariate, which is constant across time. The end
result is that naively adding it to the regression is innocuous. You’ll
get the same result as before:

Out[23]: 2.071153674125536 

         

To properly include pre-treatment covariates in your DID model, you
need to recall that DID works by estimating two important pieces: the
treated baseline and the control trend. It then projects the control
trend into the treated baseline. This means you have to estimate the
control trend for each region separately. The overkill way of doing
this is to simply run a separate difference-in-differences regression
for each region. You could literally loop through the regions or
interact the entire DID model with region dummies:

In [23]: m = smf.ols('downloads ~ treated:post + C(ci

                     data=mkt_data_all).fit()

         m.params["treated:post"] 

         

In [24]: m_saturated = smf.ols('downloads ~ (post*tre

        data=mkt_data_all).fit() 

 

atts = m_saturated.params[ 



Out[24]: post:treated          1.676808 

post:treated:C(region)[T.N]   -0.343667 

post:treated:C(region)[T.S]   -0.985072 

post:treated:C(region)[T.W]    1.369363 

dtype: float64 

Just keep in mind that the ATT estimates should be interpreted with
respect to the baseline group, which in this case is the East region. So,
the effect on the North region is 1.67–0.34, the effect on the South
region is 1.67–0.98, and so on. Next, you can aggregate the different
ATTs using a weighted average, where the number of cities in a
region is the weight:

Out[25]: 1.6940400451471818 

         

       m_saturated.params.index.str.contains("post:tr

       ]atts

In [25]: reg_size = (mkt_data_all.groupby("region").s

                     /len(mkt_data_all["date"].unique

         base = atts[0]

         np.array([reg_size[0]*base]+

                  [(att+base)*size

                   for att, size in zip(atts[1:], reg

                 ).sum()/sum(reg_size)

         



Even though I said this is overkill, it is actually a pretty good idea. It is
very easy to implement and hard to get it wrong. Still, it has some
problems. For instance, if you have many covariates or a continuous
covariate, this approach will be impractical. Which is why I think you
should know that there is another way. Instead of interacting the
region with both post and treated dummies, you can interact with the
post dummy alone. This model will estimate the trend (pre- and post-
outcome levels) for the treated in each region separately, but it will fit
a single intercept shift to the treated and post period:

In [26]: m = smf.ols('downloads ~ post*(treated + C(r

                     data=mkt_data_all).fit()

         m.summary().tables[1]

         



The parameter associated with post:treated  can be
interpreted as the ATT. It is not exactly the same ATT that you got
before, but it is pretty close. The difference appears because—as you
should know by now—regression averages the regions ATT by
variance, while before, you averaged them by region size. This means
that regression will overweight regions where the treatment is more
evenly distributed (has higher variance).

This second approach is much faster to run, but the downside is that
it requires careful thinking on how you go about doing the
interactions. For this reason, I recommend you use it only if you
really know what you are doing. Or, before you use it, try to build
some simulated data where you know the true ATT and see if you can

coef std err t P>|t| [0.0

Intercept 17.3522 0.101 172.218 0.000 17
C(region)[T.N]26.2770 0.137 191.739 0.000 26
C(region)[T.S] 33.0815 0.135 245.772 0.000 32
C(region)
[T.W]

10.7118 0.135 79.581 0.000 10

post 4.9807 0.134 37.074 0.000 4.7
post:C(region)
[T.N]

-3.3458 0.183 -18.310 0.000 -3.

post:C(region)
[T.S]

-4.9334 0.179 -27.489 0.000 -5.

post:C(region)
[T.W]

-1.5408 0.179 -8.585 0.000 -1.

treated 0.0503 0.117 0.429 0.668 -0.
post:treated 1.6811 0.156 10.758 0.000 1.3



recover it with your model. And remember: there is no shame in just
running a DID model for each region and averaging the results. In
fact, it is a particularly clever idea.

Doubly Robust Diff-in-Diff

Another way of incorporating pre-treatment and time invariant
covariates to allow for conditionally parallel trends is by making a
doubly robust version of difference-in-differences (DRDID). To do this,
you can take a lot of the ideas from Chapter 5, when you learned how
to craft a doubly robust estimator. However, you’ll need to make
some adjustments. First, instead of having a raw outcome model,
since DID works with Δy, you’ll also need a model for the delta
outcome over time. Second, since you only care about the ATT, you
just need to reconstruct the treated population from the control units.
All of this will make more sense as I show you the steps to build
DRDID.

Propensity Score Model

The first step in DRDID is a propensity score model ê(X) that uses
the pre-treatment covariates to estimate the probability that a unit
comes from the treated group. This model doesn’t care about the time
dimension, which means you only need one period worth of data to
estimate it:

In [27]: unit_df = (mkt_data_all

                    # keep only the first date

                    .astype({"date": str})

                    .query(f"date=='{mkt_data_all['da

                    .drop(columns=["date"])) # just t



Delta Outcome Model

Next, you need the outcome model for Δy, which means that first
you need to construct the delta outcome data. To do that you need to
take the difference between the average outcome at the pre- and post-
treatment periods. Once you do that, you’ll again end up with one
row for each unit, since the time dimension has been differentiated
out:

Now that you have Δy, you can join it back into the unit dataset and
fit the outcome model in it:

         ps_model = smf.logit("treated~C(region)", da

         

In [28]: delta_y = (

             mkt_data_all.query("post==1").groupby("c

             - mkt_data_all.query("post==0").groupby(

         )

         

In [29]: df_delta_y = (unit_df

                       .set_index("city")

                       .join(delta_y.rename("delta_y"

         outcome_model = smf.ols("delta_y ~ C(region)

         



All Together Now

It’s time to join all the pieces. Let’s start by gathering all the data you
need into a single data frame. For the final estimator, you’ll need the
actual Δy, the propensity score, and the delta outcome prediction.
For that, you can start from the df_delta_y  you used to build
your outcome model and make predictions using both the propensity
score model, ê(x), and the outcome model, m̂(x). The result is, once
more, a unit-level data frame:

In [30]: df_dr = (df_delta_y

                  .assign(y_hat = lambda d: outcome_m

                  .assign(ps = lambda d: ps_model.pre

         df_dr.head()

         



With that, let’s think about what a doubly robust DID would look like.
As with all DID, the ATT estimate is the difference between the trend,
had the units been treated, from the trend they would have under the
control. Since those are counterfactual quantities, I’ll represent them
with Δy1 and Δy0, respectively. So, to summarize, the ATT would be
given by:

τ̂DRDID = Δ̂y
DR

1 − Δ̂y
DR

0

It’s not much, I’ll admit, but it’s a nice start. From there, you need to
think how to estimate the ΔyDs in a doubly robust manner.

Let’s focus on Δy1. To estimate the treated counterfactual you would
weight y − m̂(x) by the inverse of the propensity score, which would
reconstruct y1 for the entire population (see Chapter 5). Here, since

region treated tau d

city

1 W 0 0.0 2

2 N 0 0.0 4

3 W 0 0.0 3

4 W 0 0.0 2

5 S 0 0.0 5



you only care about the ATT, you don’t need that; you already got the
treatment population. Hence, the first term becomes:

Δ̂y
DR

1 = 1/Ntr∑
i∈tr

(Δy − m̂(X))

For the other term, you would use weights 1/(1 − ê(x)) to
reconstruct the general population under the control. But again, since
you care about the ATT, you need to reconstruct the treatment
population under the control. To do that, you can simply multiply the
weights by the chance of being a treated unit, which, conveniently, is
just the propensity score:

wco = ê(X)
1

1 − ê(X)

Having defined the weight, you can use it to obtain the estimate for 
Δy0:

Δ̂y
DR

0 =∑
i∈co

wco(Δy − m̂(X))/∑wco

That is pretty much it. As (almost) always, it looks a lot simpler in
code than in math:

In [31]: tr = df_dr.query("treated==1")

         co = df_dr.query("treated==0")

         dy1_treat = (tr["delta_y"] - tr["y_hat"]).me

         w_cont = co["ps"]/(1-co["ps"])

         dy0_treat = np.average(co["delta_y"] - co["y

         print("ATT:", dy1_treat - dy0_treat)

         



Out[31]: ATT: 1.6773180394442853 

         

It is remarkably close to the true ATT and to the ATT you got earlier
when you added covariates to DID. The advantage here is that you get
two shots at getting the estimation right. The DRDID will work if
either (but not necessarily both) the propensity score model or the
outcome model are correct. I won’t do it here to avoid making this
chapter too long, but I encourage you to try replacing either the

ps  columns or the y_hat  column by a randomly
generated column and recompute the preceding estimate. You’ll see
that the end result will still be close to the actual one.

SEE ALSO

This method was proposed in the paper “Doubly Robust Difference-in-Differences
Estimators,” by Sant’Anna and Zhao. The paper has a lot more content, including how to do
inference on this estimator and how to achieve double robustness when you have repeated
cross-sectional data (when units can change at each time period) as opposed to a panel data
(when all units are the same).

Just like when you did doubly robust estimation with cross-sectional
data, to get confidence intervals for DRDID, you would need to use the
block bootstrap function you implemented earlier, wrapping the
entire procedure—outcome model, propensity score model, and
putting it all together—in a single estimation function.

Staggered Adoption

Up until this point, the type of data you’ve been looking at followed a
block design, with only two periods: a pre- and post-treatment. Even



though each period had multiple dates, at the end of the day, all that
mattered was that you had a group of units that were all treated at
the same point in time and a group of units that were never treated.
This block design is the poster child to difference-in-differences
analysis since it keeps things extremely simple, allowing you to
estimate the baselines and trends nonparametrically—that is, by
simply computing a bunch of sample averages and comparing them.
But it can also be fairly limited. What if the treatment gets rolled out
to the units at different points in time?

A much more common situation with panel data is the staggered
adoption design, where you have multiple groups of units, which I’ll
call G, and each group gets treated at a different point in time (or
never). Since the timing of the treatment is what defines a group, it’s
common to refer to them as a cohort: the group G that gets the
treatment at time t is the cohort Gt.

Bringing this to the marketing data you’ve been looking at, you had
two cohorts: a never treated cohort, or G∞, and a group that got the
treatment at 2021-05-15, or G15/05. But that’s only because I’ve hidden
what happens after 2021-06-01. Now that you’re ready for a more
complex situation, look at the mkt_data_cohorts  data frame,
which also contains data on cities from all the regions, but now up
until 2021-07-31:

In [32]: mkt_data_cohorts = (pd.read_csv("./data/offl

                             .astype({

                                 "date":"datetime64[n

                                 "cohort":"datetime64

         mkt_data_cohorts.head()

         



It’s hard to see all the data by just looking at the top rows, but
Figure 8-2 shows the treatment status across time. There you can see
what a staggered adoption design looks like.

date city region c

0 2021-05-01 1 W 2

1 2021-05-02 1 W 2

2 2021-05-03 1 W 2

3 2021-05-04 1 W 2

4 2021-05-05 1 W 2



Figure 8-2. In a staggered adoption design, the treatment gets gradually rolled out to more
and more units

Previously, you had data up until 2021-06-01, so it looked like you had
a small treatment group and a huge never treated group. But once
you expand your data, you can see that the offline marketing
campaign got rolled out to other cities later on. Now, you have four
different cohorts, three of which are treated and a never treated
group (which has cohort 2100-01-01 in this dataset).

WARNING

Just like with the block design, with staggered adoption you’ll assume that once the
treatment turns on, it stays that way forever. This is important to keep things tractable. In
panel data analysis, the potential outcomes are defined by vectors representing the
trajectory of outcome at each time period, D = (Yd1,Yd2, . . . ,YdT ), and the treatment effect
is defined by contrasting two of those trajectories. This means there are about 2T  ways to
define the treatment effect if you allow the treatment to turn on and off.

To take things one bite at a time, let’s forget about covariates for now,
focusing only on the West region. I’ll show how to handle covariates
later. For now, just focus on the staggered adoption component of the
problem:



If you plot the average downloads over time for each cohort, you can
see a clear picture. The outcome of G = 05/15 shows an increase
right after the date 2021-15-05. The same is true for the cohorts 
G = 06/04 and G = 06/20. Meanwhile, the group that was never
treated follows what appears to be a beautifully parallel trend to the
treated groups prior to the treatment. Another thing to pay attention
to is that the effect takes some time to mature, something you’ve seen
before. This becomes even clearer if you plot the outcome after
aligning the cohorts, which you can see in the second image:

In [33]: mkt_data_cohorts_w = mkt_data_cohorts.query(

         mkt_data_cohorts_w.head()

         

date city region c

0 2021-05-01 1 W 2

1 2021-05-02 1 W 2

2 2021-05-03 1 W 2

3 2021-05-04 1 W 2

4 2021-05-05 1 W 2



You might argue that the preceding data is extraordinarily well
behaved, which makes it obvious it was simulated. You might even be
tempted to conclude that diff-in-diff will have no problem recovering
the true ATT. Well, let’s try it out:

In [34]: twfe_model = smf.ols(

             "downloads ~ treated:post + C(date) + C(

             data=mkt_data_cohorts_w

         ).fit()

         true_tau = mkt_data_cohorts_w.query("post==1

         print("True Effect: ", true_tau)

         print("Estimated ATT:", twfe_model.params["t

         



Out[34]: True Effect:  2.2625252108176266 

         Estimated ATT: 1.7599504780633743 

         

As you can see, something is off. The effects seems downward biased!
What is going on here?

This issue has been at the center of the very recent literature on
panel data. Unfortunately, this chapter would be too long if I tried to
give you a full explanation. What I can do is give you a glimpse and, if
you are interested, point you to further resources. The root of this
problem lies in the fact that, when you have staggered adoption,
beyond the traditional DID assumptions you saw earlier, you also
need to assume that effects are homogeneous across time. As discussed
earlier, this is not the case with this data. The effect takes some time
to mature, meaning it is lower just after the treatment takes place
and gradually climbs up afterward. This effect change over time
causes bias in your ATT estimate.

Let’s examine two groups of cities to understand why. The first group,
which I’ll call the early treated cohort, received treatment on 06/04.
The second group, which I’ll refer to as the late treated cohort,
received treatment on 06/20. The two-way fixed effect model you just
estimated actually uses a series of 2 × 2 diff-in-diff runs and combines
them into a final estimate. In one of these runs, the model estimates
the effect of treatment on the early treated cohort using the late
treated group as a control. This is valid since the late treated cohort
can be considered a not-yet-treated group. However, the model is also
estimating the effect on the late treated cohort by using the early
treated cohort as a control. This approach is acceptable, but only if
the treatment effect is not variable across time. You can see why in



the following image. The picture shows both comparisons as well as
the estimated counterfactual, Y0. It’s worth noting that the role
played by each cohort reverses from one plot to the next:

As you can see, the early versus late comparison seems fine. The issue
is on the late versus early. The control group (cohort 06/04) is already
treated, even though it serves as a control here. Moreover, since the
effect is heterogeneous, gradually climbing up, the trend in the
control (early treated) is steeper than it would be, had the cohort not
yet been treated. This extra steepness from the gradually increasing
effect causes an overestimate in the control trend, which in turns
translates to a downward-biased ATT estimate. This is why using the
already treated as a control will bias your results if the treatment
effect is heterogeneous across time.



SEE ALSO

Like I said, there is a bunch of recent literature on this limitation of the two-way fixed effect
model. If you want to learn more, I strongly recommend the paper “Difference-in-Differences
with Variation in Treatment Timing,” by Andrew Goodman-Bacon. His diagnosis of the
problem is very neat and intuitive. Not to mention it comes with nice pictures to help with
the general understanding of the paper.

Now that you know the problem, it’s time to look at the solution.
Since the issue lies on effect heterogeneity, the remedy will be to use
a more flexible model, one that fully takes into account those
heterogeneities.

RACTICAL EXAMPLE

HIGHER EDUCATION AND GROWTH IN DEVELOPING COUNTRIES

In a more recent paper, “Higher Education Expansion, Labor Market,
and Firm Productivity in Vietnam,” Khoa Vu and Tu-Anh Vu-Thanh
looked at the rapid increase at the number of universities in Vietnam
to figure out the impact of higher education on wage. They took
advantage that the higher education expansion was different for each
province, which allowed them to identify the effect of universities
using difference-in-differences.

We collect a dataset on the timing and location of university
openings and estimate that individuals’ exposure to a university
opening increases their chances of completing college by over
30%. It also raises their wage by 3.9% and household expenditure
by 14%.

Heterogeneous Effect over Time



There is good news and bad news. First, the good news: you’ve
identified the problem. Namely, you know that TWFE is biased when
applied to staggered adoption data that has time-heterogeneous
effects. In a more technical notation, your data generating process
has different effect parameters:

Yit = τitWit + αi + γt + eit,

but you were assuming that the effect was constant:

Yit = τWit + αi + γt + eit.

If that is the problem, an easy fix would be to simply allow for a
different effect for each time and unit. You could, in theory, achieve
something like that with the following formula:

That’s it right? Problem solved? Well, not quite. Now for the bad
news: this model would have more parameters than there are data
points. Since you are interacting date and unit, you would have one
treatment effect parameter for each unit for each time period. But
this is exactly the number of samples you have! OLS wouldn’t even
run here.

OK, so you need to reduce the number of treatment effect parameters
of the model. To achieve that, can you think of a way of somehow
grouping units? If you scratch your head a little, you can see a very
natural way to group units: by cohort! You know that the effect in an
entire cohort follows the same pattern over time. So, a natural
improvement on that impractical model is to allow the effect to
change by cohort, instead of by units:

downloads ~ treated:post:C(date):C(city) + C(date) + 



Yit = τgtWit + αi + γt + eit.

That model has a more reasonable number of treatment effect
parameters, since the number of cohorts is usually much smaller
than the number of units. Now, you can finally run the model:

This will give you multiple ATT estimates: one for each cohort and
date. So, to see if you got it right, you can compute the estimated
individual treatment effect implied by your model and average out
the result. To do that, just compare the actual outcome at the post-
treatment period from the treated units with what your models
predict for ŷ0:

In [35]: formula = "downloads ~ treated:post:C(cohort

         twfe_model = smf.ols(formula, data=mkt_data_

         

In [36]: df_pred = (

             mkt_data_cohorts_w

             .query("post==1 & treated==1")

             .assign(y_hat_0=lambda d: twfe_model.pre

             .assign(effect_hat=lambda d: d["download

         )

         print("Number of param.:", len(twfe_model.pa

         print("True Effect: ", df_pred["tau"].mean()

         print("Pred. Effect: ", df_pred["effect_hat"

         



Out[36]: Number of param.: 510 

         True Effect:  2.2625252108176266 

         Pred. Effect:  2.259766144685074 

         

Finally! This gives you a model with a bunch of parameters (510!), but
it does manage to recover the true ATT. You can even extract those
ATTs and plot them:

The nice thing about this plot is that it’s in accordance with your
intuition of how the effect should behave: it gradually climbs up and
it stays constant after a while. Also, it shows you that the effect is zero
for all the pre-treatment periods and, consequently, for the never
treated cohort. This might give you some idea on how to reduce the
number of parameters from this model. For instance, you could only
consider effects from time periods that are greater than the cohort:

Yit = τg,t≥gWit + αi + γt + eit.

This would involve a nontrivial amount of feature engineering,
though, as you would have to group the dates prior to the treatment,
but it’s good to know it is possible.



SEE ALSO

This solution to the treatment effect heterogeneity problem was inspired by the papers
“Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment
Effects,” by Sun and Abraham, and the paper “Two-Way Fixed Effects, the Two-Way Mundlak
Regression, and Difference-in-Differences Estimators,” by Jeffrey Wooldridge.

Just like when you approached the problem of including covariates in
the diff-in-diff model, there are two types of solutions for this TWFE
bias. The one you just saw involves cleverly interacting dummies
when running the two-way fixed effect model. Another approach
involves breaking the problem into multiple 2 × 2 diff-in-diffs, solving
each one individually and combining the results. One way to do this
is by estimating one diff-in-diff model for each cohort, using the
never treated group as a control:

In [37]: cohorts = sorted(mkt_data_cohorts_w["cohort"

         treated_G = cohorts[:-1]

         nvr_treated = cohorts[-1]

         def did_g_vs_nvr_treated(df: pd.DataFrame,

                                  cohort: str,

                                  nvr_treated: str,

                                  cohort_col: str = "

                                  date_col: str = "da

                                  y_col: str = "downl

             did_g = (

                 df

                 .loc[lambda d:(d[cohort_col] == coho

                               (d[cohort_col] == nvr_

                 .assign(treated = lambda d: (d[cohor

                 .assign(post = lambda d:(pd.to_datet

             )

             



att_g size

0 3.455535 702

1 1.659068 1044

2 1.573687 420

Then, you can combine the result with a weighted average, where the
weights are the sample size (T * N ) of each cohort. The resulting
estimate is remarkably similar to what you estimated before:

             att_g = smf.ols(f"{y_col} ~ treated*post

                             data=did_g).fit().params

             size = len(did_g.query("treated==1 & pos

             return {"att_g": att_g, "size": size}

         

         atts = pd.DataFrame(

             [did_g_vs_nvr_treated(mkt_data_cohorts_w

              for cohort in treated_G]

         )

             

         atts

         

In [38]: (atts["att_g"]*atts["size"]).sum()/atts["siz

         



Out[38]: 2.2247467740558697 

         

Alternatively, instead of using the never treated as the control, you
could use the not yet treated, which increases the sample size of the
control. This is a bit more cumbersome, as you would have to run
diff-in-diff multiple times for the same cohort.

SEE ALSO

This second solution to the effect heterogeneity problem was inspired by the paper
“Difference-in-Differences with Multiple Time Periods,” by Pedro H. C. Sant’Anna and Brantly
Callaway. In the paper, they also cover how to use the not-yet treated as a control group and
how to use doubly robust difference-in-differences.

Covariates

Having gotten the TWFE bias issue out the way, all there is left to do is
see how to use the entire dataset, all time periods, with staggered
adoption design, and all regions, which will require you to include
covariates in your model.

Fortunately, there is nothing particularly new here. All you have to do
is remember how you’ve added covariates to the diff-in-diff model
earlier. In that case, you’ve interacted the covariates with the post
treatment dummy. Here, analogous to the post-treatment dummy is
the date column, which marks the passage of time. Hence, all you
have to do is interact the covariates with that column:

In [39]: formula = """

         downloads ~ treated:post:C(cohort):C(date)

         + C(date):C(region) + C(city) + C(date)"""



Once more, since this model will give you a bunch of parameter
estimates, you can get the ATT by computing the individual effects
and averaging them out:

Out[40]: Number of param.: 935 

         True Effect:  2.078397729895905 

         Pred. Effect:  2.0426262863584568 

         

If you choose to break down staggered adoption into multiple 2 × 2
blocks, you could also add covariates in each DID model individually,
pretty much like you did earlier.

Key Ideas

         twfe_model = smf.ols(formula, data=mkt_data_

         

In [40]: df_pred = (

             mkt_data_cohorts

             .query("post==1 & treated==1")

             .assign(y_hat_0=lambda d: twfe_model.pre

             .assign(effect_hat=lambda d: d["download

         )

         print("Number of param.:", len(twfe_model.pa

         print("True Effect: ",  df_pred["tau"].mean(

         print("Pred. Effect: ", df_pred["effect_hat"

         



Panel data methods is an exciting and rapidly evolving field in causal
inference. A lot of the promises come from the fact that having an
extra time dimension allows you to estimate counterfactuals for the
treated not only from the control units, but also from the treated
units’ past.

In this chapter, you’ve explored multiple ways of applying difference-
in-differences. DID relaxes the traditional unconfoundedness
assumption, Yd ⊥ T |X to the conditional parallel assumption:

ΔYd ⊥ T |X

This gives you some hope if you have unobservable confounders.
With panel data, you can still identify the ATT, as long as those
confounders are constant across time (for the same unit) or across
units (for the same time period).

Despite its great powers, DID doesn’t come without its complexities. If
you move beyond the canonical DID formulation, you need to be very
careful with your modeling. While 2 × 2 DID has the flexibility of a
nonparametric model, the same cannot be said about the more
general staggered adoption setting, which requires you to make
additional functional form assumptions.

This chapter teaches you how to deal with many extensions beyond
the simple 2 × 2 case, adding covariates, estimating the effect
evolution over time, and allowing different treatment timing.
However, keep in mind that all of this is very new, and I wouldn’t be
surprised if the field moves beyond what’s in here in the near future.
Still, this chapter should give you a pretty solid foundation to catch
up quickly, should the necessity arise.



Chapter 9. Synthetic Control

In the previous chapter you learned about the advantages of
panel data for causal identification. Namely, the fact that you
could not only compare units with each other, but also with
their former selves, allows you to estimate counterfactuals Y0

with more plausible assumptions. You also learned about
difference-in-differences (DID)—and many variations of it—
one of the many causal inference tools that leverage panel
data. By relying on similar (parallel) growth trajectories
between treated and control, DID was able to identify the
treatment effect even if the levels of Y0 between treated and
control were different. In this chapter, you’ll learn another
popular technique for panel datasets: synthetic control (SC).

While DID works great if you have a relatively large number
of units N  compared to time periods T , it falls short when the
reverse is true. In contrast, synthetic control was designed to
work with very few, even one, treatment unit. The idea behind
it is quite simple: combine the control units in order to craft a
synthetic control that would approximate the behavior of the
treated units in the absence of treatment. By doing that, it
avoids making a parallel trend assumption as the synthetic
control, when well crafted, won’t be just parallel, but perfectly
overlapping with the counterfactual E[Y0|D = 1].



At the end of this chapter, you’ll also learn how to combine
both DID and SC. This combined estimator is not only very
powerful, but, most importantly, it will give you a whole new
perspective on difference-in-differences and synthetic control
in particular, and panel data methods in general.

Online Marketing Dataset

As a use case for synthetic control, you’ll be working with an
online marketing dataset. Online marketing allows for better
tracking than offline marketing, but it doesn’t mean it comes
without its challenges for causal inference. For instance, it is
true that online marketing allows better attribution: you know
if a customer reached your product through some paid
marketing link. But that doesn’t mean you know what would
have happened to that customer if they didn’t see your online
ad. Perhaps customers only came because they saw the ad, in
which case it is bringing in extra customers. But perhaps
customers would have come either way and the fact that they
did through the paid link was just because that link was at the
top of the page.

Since attribution is not the same as incrementality, and since
you can’t randomize who gets to see your ads, treating entire
geographies and doing some sort of panel data analysis, much
like in the previous chapter, is also a good idea for online
marketing. Hence, the data you have here is not much



different from the data you saw in the previous chapter. Once
again, you have the city as the unit and date as the time
dimension, a treated column, which marks if the city is
eventually treated, and a post-treatment column, which marks
the post-intervention period. You also have some auxiliary
columns, like the population in that city (recorded in 2013, so
fixed in time) and the state:

In [1]: import pandas as pd

        import numpy as np

        df = (pd.read_csv("./data/online_mkt.csv

              .astype({"date":"datetime64[ns]"})

        df.head()

        



Here, the outcome variable is daily app downloads and the
treatment is having the marketing campaign turned on for
that city. The treatment is implemented on the treated cities at
the same time, which means you have a simple block design.
The catch here is that you have a much smaller number of
treated units—only three cities:

app_download population city

0 3066.0 12396372 sao_pau

1 2701.0 12396372 sao_pau

2 1927.0 12396372 sao_pau

3 1451.0 12396372 sao_pau

4 1248.0 12396372 sao_pau

In [2]: treated = list(df.query("treated==1")["c

        treated

        



If you paid attention to the population column in the data
frame, you might have noticed that one of those cities, Sao
Paulo, has a massive population of over 12MM. In fact, it is
one of the biggest cities in the world! This also means that the
number of app downloads in Sao Paulo will be a lot larger
than in other cities, which poses some challenges. It is very
hard to combine other cities to make a synthetic control that
matches Sao Paulo’s downloads. This issue is exacerbated
here, but, in general, entire markets will have different sizes,
making comparison across them difficult. Hence, a common
approach is to normalize the outcome by the market size. This
means dividing the number of app downloads by the city’s
population to create a normalized version of the outcome.
This new outcome, app_download_pct , represents the
number of daily downloads as a percentage of the market size:

Out[2]: ['sao_paulo', 'porto_alegre', 'joao_pess

        

In [3]: df_norm = df.assign(

            app_download_pct = 100*df["app_downl

        )

        df_norm.head()

        



Moving forward with your exploratory analysis, you’ll find out
that an online marketing campaign was launched for those
cities in 2022-05-01. The campaign also stayed on for the
remainder of the analyzed time window:

Out[4]: Timestamp('2022-05-01 00:00:00') 

        

app_download population city

0 3066.0 12396372 sao_pau

1 2701.0 12396372 sao_pau

2 1927.0 12396372 sao_pau

3 1451.0 12396372 sao_pau

4 1248.0 12396372 sao_pau

In [4]: tr_period = df_norm.query("post==1")["da

        tr_period

        



This is a good time to review some of the panel notation you’ll
be using. Recall that, to avoid confusion, I’ll use D to denote
the treatment variable and t to denote time. T  will be the
number of periods, with Tpre being the number of periods
before the intervention and Tpost, the number of periods after
the intervention. Hence, the treatment takes place when 
D = 1 and t > Tpre. To declutter, I’ll sometimes use a post
dummy to indicate t > Tpre. The combination of both treated
and post-treatment will be represented by Wit = Di * Postt.

For you to get a sense of what this data looks like, the
following plot shows the evolution of the average outcome of
the three treated cities, and a sample of control cities, in the
background, in light gray. The beginning of the post-treatment
period is marked by a horizontal dashed line:

Looking at this plot, you can kind of see an increase in the
treated units’ outcome after the intervention, but it is not



100% clear. To be more precise, you would have to estimate
the counterfactual and compare it to the observed outcome to
get an estimate for average treatment effect on the treated
(ATT):

ATT = E[Y |D = 1,Post = 1] − E[Y0|D = 1,Post = 1]

Here is where synthetic control comes in. It is an incredibly
clever way to use (but not condition on) past outcomes in order
to estimate E[Y0|D = 1,Post = 1].

Matrix Representation

In the previous chapter, I showed you an image that
represents panel data as a matrix, where one dimension is the
time period and the other dimension denotes the units.
Synthetic control makes explicit use of that matrix, so it is
worth reviewing it. Let’s say that the rows of the matrix are
the time periods and the columns of the matrix are the cities
(units). You can represent the treatment assignment with four
blocks:

The first block in your matrix (top left) corresponds to the
control units prior to the treatment period; the second one
(top right) corresponds to the treated units prior to the
treatment period; the third block (bottom left) contains the

W = [ ]
0pre,co 0pre,tr

0post,co 1post,tr



control units after the treatment period; and the fourth block
(bottom right) is the treated unit after the treatment period.
The treatment indicator wti is zero everywhere except for the
block with the treated units after the treatment period
(bottom right).

This assignment matrix will lead to the following observed
potential outcome matrix:

Again, notice how the post-treatment period is on the bottom
and the treated units are to the right. Your goal is to estimate
the ATT = Y (1)post,tr − Y (0)post,tr. For that, you need to

somehow estimate the missing potential outcome Y (0)post,tr,

which is not observed. In words, you need to know what
would have happened to the treated units at the post-
treatment period had they not been treated. To achieve that,
you would ideally leverage all the other three blocks at your
disposal, Y (0)pre,co, Y (0)pre,tr, and Y (0)post,co. Before I show

you how synthetic control does that, let’s create a function to
represent the data in this matrix format.

The following code uses the .pivot()  method to
reshape the data frame so that you end up with one row per
time period (date) and one column per city, while the outcome
becomes the values of the matrix. Then, it partitions the

Y = [ ]
Y (0)pre,co Y (0)pre,tr

Y (0)post,co Y (1)post,tr



matrix into treated and control units. It further partitions
them into a pre- and post-intervention period:

You’ll use this four-block matrix representation throughout
the chapter. If you ever forget what you are working with, just
come back to this function. To see how it works, passing

df_norm  to reshape_sc_data  returns you the 

In [5]: def reshape_sc_data(df: pd.DataFrame,

                            geo_col: str, 

                            time_col: str,

                            y_col: str,

                            tr_geos: str,

                            tr_start: str):

            

            df_pivot = df.pivot(time_col, geo_co

            

            y_co = df_pivot.drop(columns=tr_geos

            y_tr = df_pivot[tr_geos]

            

            y_pre_co = y_co[df_pivot.index < tr_

            y_pre_tr = y_tr[df_pivot.index < tr_

            

            y_post_co = y_co[df_pivot.index >= t

            y_post_tr = y_tr[df_pivot.index >= t

            

            return y_pre_co, y_pre_tr, y_post_co

        



Y s in matrix format. Here are the first five rows of
y_pre_tr :

In [6]: y_pre_co, y_pre_tr, y_post_co, y_post_tr

            df_norm,

            geo_col="city",

            time_col="date",

            y_col="app_download_pct",

            tr_geos=treated,

            tr_start=str(tr_period)

        )

        y_pre_tr.head()

        



Synthetic Control as Horizontal
Regression

The main idea behind synthetic control is quite simple. Using
the pre-treatment period, you’ll find a way to combine the
control units to approximate the average outcome of the
treated units. In mathematical terms, this can be framed as an
optimization problem, where you’ll look for unit weights ωi

(not to be confused with wit = Postt * Di) such that, when

city sao_paulo porto_alegre joao_pess

date

2022-03-01 0.024733 0.004288 0.022039

2022-03-02 0.021789 0.008107 0.020344

2022-03-03 0.015545 0.004891 0.012352

2022-03-04 0.011705 0.002948 0.018285

2022-03-05 0.010067 0.006767 0.000000



you multiply each weight by its unit’s outcome, ωiyi, you get
something resembling the treated unit’s outcome:

Then, to estimate E[Y (0)|D = 1,Post = 1] and get the ATT
estimate, you can use the synthetic control Ypost,coωco.

If this seems a bit cryptic, perhaps a good alternative
explanation is one that compares synthetic control to a more
familiar tool: linear regression. Recall that regression could
also be represented by an optimization problem where the
goal was to minimize the (squared) difference between the
outcome and a linear combination of the covariates X:

β* = argmin
β

||Yi − X
'

iβ||2

OUTCOME MODELING

Here, you can draw a parallel between synthetic control and potential outcome
modeling, which you saw in Chapter 5, when reading about Doubly Robust
Estimation. There, you also had to build a regression model that was estimated in
the control group. Then, you used that model to impute the missing potential
outcome, Y0, for those that where treated. The idea is pretty much the same here.

As you can see, both objectives are identical! This means that
synthetic control is nothing more than a regression that uses
the outcome of the control as features to try to predict the
average outcome of the treated units. The trick is that it does
this by using only the pre-intervention period so that the
regression estimates E[Y0|D = 1].

ω̂
sc

= argmin
ω

||ȳpre,tr − Ypre,coωco||
2



In fact, to prove my point, let’s use OLS to build a synthetic
control right now. All you have to do is to use

y_pre_co  as if it was the covariate matrix X and the
column average of y_pre_tr  as the outcome y. Once
you fit this model, the weights can be extracted with

.coef_ :

As you can see, you have one weight for each control city.
Usually, regression is used when you have a bunch of units

In [7]: from sklearn.linear_model import LinearR

        model = LinearRegression(fit_intercept=F

        model.fit(y_pre_co, y_pre_tr.mean(axis=1

        # extract the weights

        weights_lr = model.coef_

        weights_lr.round(3)

        

Out[7]: array([-0.65 , -0.058, -0.239,  0.971,  

                0.102,  0.106,  0.074,  0.079,  

               -0.014,  0.132,  0.115,  0.094,  

               -0.476, -0.11 ,  0.158, -0.002,  

               -0.047,  0.089, -0.057,  0.429,  

               -0.128,  0.128, -0.205,  0.088,  

        



(large N), which allows you to use the units as the rows and
the covariates as the columns. But synthetic control is
designed to work when you have relatively few units, but a
larger time horizon Tpre. In order to do that, SC quite literally
flips the data on its head, using the units as if they were
covariates. This is why synthetic control is also called
horizontal regression (see Figure 9-1).

Figure 9-1. In traditional regression, units are the rows of the regression table; in
horizontal regression, the rows are time periods and the units are the columns

Once you’ve estimated your regression parameters (or
weights), you can use them to predict what E[Y0|D = 1]

would look like, not only on the pre-intervention period, but
on the entire time horizon:

In [8]: # same as y0_tr_hat = model.predict(y_po

        y0_tr_hat = y_post_co.dot(weights_lr)

        



Here, y0_tr_hat  can be seen as a synthetic control: a
combination of control units that come together to
approximate the behavior of the treated units’ average, had
they not been treated.

AVERAGE OF SYNTHETIC CONTROLS

Alternatively, instead of finding one synthetic control to replicate the average
outcome of the treated units, you could also fit one synthetic control for each
treatment unit individually and then average the synthetic controls:

model = LinearRegression(fit_intercept=False)

model.fit(y_pre_co, y_pre_tr)

y0_tr_hat = model.predict(y_co).mean(axis=1)

If you plot this synthetic control alongside the observed
outcome, you’ll get this:



Notice how the predicted value (the synthetic control) is below
the actual outcome of the treated units. It means that the
observed outcome was higher than you’ve estimated it to be,
had the treatment not taken place. This indicates a positive
marketing effect from the online marketing campaign. You can
compute that ATT estimate by contrasting the observed
outcome with the synthetic control:

The plot presents a couple of intriguing aspects. Firstly, it
suggests that the effect takes some time to reach its peak
before gradually declining. The gradual increase is frequently
observed in marketing since it usually requires time for
individuals to take action after seeing an advertisement.

In [9]: att = y_post_tr.mean(axis=1) - y0_tr_hat

        



Additionally, the effect wearing off can often be attributed to a
novelty effect that gradually fades over time.

The second interesting thing is the size of the ATT in the pre-
intervention period. In that time frame, the ATT can be
interpreted simply as the residual (in sample error) from your
OLS model. You might think that it being close to zero is a good
thing; after all, you don’t want to see an effect prior to the
treatment (anticipation). But there is more to it. The fact that
the pre-intervention error is incredibly low can also mean
that the OLS model is probably overfitting. As a result, the out-
of-sample prediction, which should estimate 
E[Y0|D = 1,Post = 1], might be off.

This is why simple regression is not commonly used as a
method to build synthetic controls. Because of the relatively
large number of columns (control cities), it tends to overfit,
not generalizing to the post-intervention period. For this
reason, the original synthetic control method is not a simple
regression, but one that imposes some reasonable and
intuitive constraints.

Canonical Synthetic Control

The canonical synthetic control formulation imposes two
constraints on the regression model:

1. That the weights are all positive



2. That the weights add up to one

Mathematically, the optimization objective becomes:

The idea behind the constraints is to force the synthetic
control to be a convex combination of the treated units,
avoiding extrapolation. This means that if the treated unit has
an outcome greater (or lower) than all the control units, this
canonical formulation won’t be able to craft a synthetic
control to recover E[Y0|D = 1]. You can view this as a
limitation, but it is actually meant as a guardrail. It’s a way of
saying that the treatment units you are trying to reconstruct
are very different from the ones in the control group and
therefore you shouldn’t even try.

To code the canonical version of SC, you can use convex
optimization software, like cvxpy . cvxpy  allows
you to define an optimization objective with

cp.Minimize . For SC, you want to minimize the
squared error, so cp.Minimize( cp.sum_ squares( 
y_co_pre@w - y_tr_pre)) . It also allows you to pass
optimization constraints. Here, you want all the w s to
be nonnegative and np.sum(w)==1 .

In the following code, I’m building the synthetic control model
following scikit-learn’s boilerplate. To do that, you can extend

ω̂
sc

= argmin
ω

||ȳpre,tr − Ypre,coωco||
2

s.t ∑ωi = 1 and ωi > 0 ∀ i



BaseEstimator  and RegressorMixin  and
define a .fit  and a .predict  method. The rest
of the code, like check_X_y , check_array , and

check_is_fitted  are just some standard checks you
don’t need to worry about:

In [10]: from sklearn.base import BaseEstimator,

         from sklearn.utils.validation import (c

                                               c

         import cvxpy as cp

         class SyntheticControl(BaseEstimator, R

             def __init__(self,):

                 pass

             def fit(self, y_pre_co, y_pre_tr):

                 y_pre_co, y_pre_tr = check_X_y

             

                 w = cp.Variable(y_pre_co.shape

                 

                 objective = cp.Minimize(cp.sum_

                 constraints = [cp.sum(w) == 1, 

                 

                 problem = cp.Problem(objective,

                 

                 self.loss_ = problem.solve(verb

                 self.w_ = w.value

                 



Having defined the SyntheticControl  class, you can
use it pretty much like you used LinearRegression

before. Notice that I’m storing the final loss of the estimated
model. This will come in handy if you want to incorporate
covariates in your model, as you’ll soon see. Also, after the
model is fitted, you can access the weights with .w_ :

                 self.is_fitted_ = True

                 return self

                 

                 

             def predict(self, y_co):

                 check_is_fitted(self)

                 y_co = check_array(y_co)

                 

                 return y_co @ self.w_

         

In [11]: model = SyntheticControl()

         model.fit(y_pre_co, y_pre_tr.mean(axis=

         # extrac the weights

         model.w_.round(3)

         

Out[11]: array([-0.   , -0.   , -0.   , -0.   , 

                 0.083,  0.01 , -0.   , -0.   , 



Notice another interesting thing: the convexity constraints
you’ve imposed give a sparse solution to the optimization
problem. Only a handful of cities are used to craft the final
synthetic control. From this point onward, it’s exactly the
same thing as before. You can make predictions on the entire
dataset to obtain the synthetic control estimate for 
E[Y0|D = 1] and use that to get the ATT estimate:

Compare this ATT plot with the one you got earlier, using
unconstrained regression. Now, the training (pre-treatment)

                 0.061,  0.123,  0.008,  0.074, 

                -0.   , -0.   , -0.   , -0.   , 

                -0.   , -0.   ,  0.   ,  0.046, 

                 0.   , -0.   , -0.   ,  0.088, 

         



error is a bit larger, but the ATT is less noisy. This is
regularization in action.

REGULARIZED REGRESSION

Once you realize that synthetic control is just horizontal regression, you can find
other ways to regularize it. For instance, you can use lasso or ridge regression. Still,
it makes a lot of sense to not allow negative weights, especially if the units are
geographies, as the outcome tends to be positively correlated among those.



SYNTHETIC CONTROL ASSUMPTIONS

Just like with difference-in-differences, you also have to
assume no anticipation of the treatment and no spillovers
when using synthetic control. The main difference between
the two methods is the parametric assumption about the
potential outcome model. In diff-in-diff, you had to assume
that the trend in Y0 for the treated units was parallel to the Y0

trend from the control units. Synthetic control, on the other
hand, allows a more flexible (but also more complicated)
model for that potential outcome: a vector autoregressive
model or a linear factor model. For the factor model:

Y0it = λiâ�ft + eit,

if you set λ1 = 1, f1 = βt and λ1 = αi, f1 = 1, you can see
that it becomes a generalization of the two-way-fixed-effects
model Y0it = αi + βt + eit.

In the paper “Using Synthetic Controls: Feasibility, Data
Requirements, and Methodological Aspects,” Alberto Abadie
argues that if the potential outcome follows either the vector
autoregressive or the linear factor model and the synthetic
control matches the treated unit, then the synthetic control
method produces an unbiased estimate to the ATT. In practice,
that SC can only approximate the treated unit, so some bias is
to be expected.



Synthetic Control with Covariants

Usually, synthetic control uses just the pre-treatment outcome
from the control units as features to predict Y tr. That’s
because those tend to be the most predictive feature at your
disposal. However, you might wish to include some additional
covariates in the model, if you think they have a good
predictive power. This is quite rare, though, so, if you are
short of time, you can skip this section.

Let’s say you somehow manage to get data on the daily
number of downloads from your main competitor, which
you’ve also normalized by the market size,

comp_download_pct . You think this covariate is a
good predictor of Y tr, so you want to include it in the
synthetic control model:

In [12]: df_norm_cov = (pd.read_csv("./data/onli

                        .astype({"date":"datetim

         df_norm_cov.head()

         

¯

¯



In mathematical notation, you want to construct a synthetic
control such that the weight wi is not only multiplied by yco,
but also by this extra covariate, xco, in order to approximate 
Y tr. The issue here is that xco and yco might be in completely
different scales or one can be more predictive than the other,
which is why you need to multiply each covariate, including 
yco, by a scaling factor v, before solving the SC optimization
problem. To take that into account, you can rewrite the
objective in terms of covariates X, treating yco as just another
covariate:

app_download city date

0 3066.0 sao_paulo 2022-03

1 2701.0 sao_paulo 2022-03

2 1927.0 sao_paulo 2022-03

3 1451.0 sao_paulo 2022-03

4 1248.0 sao_paulo 2022-03

¯

ŵ
sc = argmin

ω
ȳpre,tr −∑ v

*
kXk,pre,coωco

2

s.t ∑ωi = 1 and ωi > 0 ∀ i∣∣ ∣∣



However, this objective doesn’t tell you how to find the
optimal v. In order to do that, you’ll have to wrap the entire
synthetic control into yet another optimization objective. If it
sounds complicated, don’t worry. It is a lot easier to
understand it in code. First, let’s create the X matrix for both
covariates, comp_download_pct  and Ypre,co,

app_download_pct :

Next, let’s write a function which, when given a list of vs, one
for each covariate, returns the synthetic control weights and
the optimization loss. Remember that you can access the

In [13]: from toolz import partial

         reshaper = partial(reshape_sc_data,

                            df=df_norm_cov,

                            geo_col="city",

                            time_col="date",

                            tr_geos=treated,

                            tr_start=str(tr_peri

         y_pre_co, y_pre_tr, y_post_co, y_post_t

             y_col="app_download_pct"

         )

         x_pre_co, _, x_post_co, _ = reshaper(y_

         



objective loss from a fitted SyntheticControl  model
with .loss_ .

To check if this is working, you can pass [1,  0]

as the vs and [y_pre_co,  x_pre_co]  as the
covariate list. You should get back the original synthetic
control, since the extra covariate has zero weight in this case:

In [14]: def find_w_given_vs(vs, x_co_list, y_tr

             X_times_v = sum([x*v for x, v in zi

             

             model = SyntheticControl()

             model.fit(X_times_v, y_tr_pre)

             

             return {"loss": model.loss_, "w": m

         

         find_w_given_vs([1, 0],

                         [y_pre_co, x_pre_co],

                         y_pre_tr.mean(axis=1))

         

Out[14]: array([-0.   , -0.   ,  0.   , -0.   , 

                 0.085,  0.003, -0.   , -0.   , 

                 0.062,  0.121, -0.   ,  0.072, 

                -0.   , -0.   ,  0.   , -0.   , 

                 0.   , -0.   ,  0.   ,  0.022, 

                -0.   , -0.   , -0.   ,  0.088, 

         



Finally, you can wrap find_w_given_vs  in a function
that just takes the array of vs and returns the optimization
loss. Then, you can then pass this function to scipy

minimize  function, which will iteratively look for the
best vs and return them to you:

Out[15]: array([1.88034589, 0.00269853]) 

         

With the optimal vs, you can go back to
find_w_given_vs  to obtain the synthetic control

weights that take the covariates into account. One thing to
notice, though, is that the final solution is not much different
from the one without covariants. This is not surprising, since

In [15]: from scipy.optimize import minimize

         def v_loss(vs):

             return find_w_given_vs(vs,

                                    [y_pre_co, x

                                    y_pre_tr.mea

         

         v_solution = minimize(v_loss, [0, 0], m

         v_solution.x

         



the optimal v for the comp_download_pct  covariate is
a very small number and it is not on a much larger scale than

app_download_pct :

With these weights, you can make predictions for Y (0) and
obtain the final ATT estimate that considers covariates:

In [16]: w_cov = find_w_given_vs(v_solution.x,

                                 [y_pre_co, x_pr

                                 y_pre_tr.mean(a

         w_cov

         

Out[16]: array([-0.   , -0.   ,  0.   , -0.   , 

                 0.033,  0.   , -0.   ,  0.034, 

                 0.016,  0.047,  0.03 ,  0.01 , 

                -0.   ,  0.   , -0.   ,  0.   , 

                 0.078,  0.007,  0.   ,  0.   , 

                -0.   ,  0.201,  0.   ,  0.035, 

         

In [17]: y0_hat = sum([x*v for x, v 

                       in zip([y_post_co, x_post

         att = y_post_tr.mean(axis=1) - y0_hat

         



The following plot shows the resulting ATT, alongside the ATT
estimate from the canonical SC, without covariates. As you can
see, both are pretty similar:

Although not hard, including covariates requires a fair
amount of extra complexity. For this reason and due to the fact
that Ypre,co tends to be enough to predict Ytr, I usually don’t
bother with adding covariates. But maybe you can find very
predictive features that would justify it.



GENERIC HORIZONTAL REGRESSION

A simpler way to add covariates is to just concatenate any
additional time series you deem worthy as a column to Ypre,co

. This would be equivalent to adding additional covariates in
the horizontal regression:

[Ypre,co|Xpre,co]ω

This wouldn’t be a synthetic control in the strict sense of the
words, since you are now estimating E[Y (0)tr] with the
control units and those extra time series. As a result, you’ll end
up with weights not only for the units, but for each additional
column that you’ve concatenated.

Debiasing Synthetic Control

Much like with powerful machine learning models, these
prediction techniques are prone to overfitting, especially
when the number of pre-treatment periods Tpre is small. Even
the constraints imposed on the canonical synthetic control
doesn’t solve that completely. As a result, SC is known to be
biased. To understand that, let’s redefine the ATT as the
average across time in the post-intervention periods:

ATT =
1

T1

T

∑
t=T0+1

(Y 1t − Y 0t),̄̄



where T0 and T1 are the size of the pre- and post-
intervention periods, respectively, and Y dt is the average
potential outcome of the treated units. This simply averages
the ATT for each individual post-intervention period into a
single number, making it easier to work with it. Now, to check
for bias in the SC method, you can compare that single
number against its estimate. Figure 9-2 shows that bias.

I’m simulating a bunch of data following the synthetic control
specification—with the treated unit being a weighted
combination of some control units. Here, N = 16 and 
Tpre = 15, so there are more columns than rows in the
horizontal regression. Also, the true ATT is zero. Still, the
resulting distribution of ATT estimates you get with synthetic
control is not centered at zero, showing how it is indeed
biased.

Figure 9-2. Synthetic control estimator is not unbiased, as it rarely manages to
correctly specify the outcome model

¯



Fortunately, you learned how to solve for overfitting bias in
Chapter 7, when you saw Double/Debiased ML. The answer
lies in cross-fitting. The idea is to partition the pre-intervention
period into K blocks, each of size min{Tpre/K,Tpost} (the
reason for this min  function will become clear soon.
For now, just trust me). Then, you’ll treat each block as a hold-
out set and fit a synthetic control model on Y −k

pre,co and Y −k
pre,tr,

where −k means you’ll drop the block from training. This step
will give you weights ω̂−k. Next, you’ll use those weights to
make out-of-sample predictions using the held-out data Y k

pre,co.

The average difference between the predictions and the
observed values in the hold-out data is an estimate for the
bias:

B̂ias
k

= avg(Yk
pre,tr − Yk

pre,coω̂
−k),

which means you can use it to adjust the ATT estimate:

ÂTT
k

= Ypost,tr − Ypost,coω̂
−k − B̂ias

k

Notice that this will give you K different ATTs. You can
average them out to get a final ATT estimate.

Now, let’s put this into Python code. The trickiest part here is
to define the blocks. So, to make it more clear, let’s go over a
simple example, shown in Figure 9-3.



Figure 9-3. Cross-prediction can be used to estimate the bias and correct it

Suppose that you have five pre-intervention periods and three
post-intervention periods and you want to build K = 2

blocks. The block size is 2.5, which is not an integer, so you
have to floor it to two. This means you’ll take two blocks of
size two out of the pre-intervention period. 2 × 2 will give you
four time periods, but you have five. So, I’m choosing to take
the blocks from the end of the pre-intervention period, which
will cause the first time period to never be removed. This is
rather arbitrary, but doesn’t have a huge impact on the whole
procedure. You could also choose to trim the pre-intervention
period to make it divisible by K.

Then, for each of the two blocks, you’ll take it out of the
training set, and estimate an SC model to obtain ω̂−k. With
these weights, you’ll move to the removed block and estimate



the bias term. Finally, you’ll use both weights and bias
estimates to make an ATT estimate in the post-intervention
period.

Even though it is a bit complicated to describe, it is fairly easy
to get these blocks with NumPy. First, you’ll index into the end
of the pre-intervention period,

y_pre_tr.index[-K*block_size:]  to get an index
with exactly K blocks. Then, you can use np.split  to
break those indexes into K blocks. This will return an array
with K rows, each one containing the index that you want to
remove in each iteration. Once you have those blocks, you can
iterate over them, fitting an SC model, estimating the bias and
the ATT in the post-intervention period. The result can be
stored in a data frame for convenient display:

In [18]: def debiased_sc_atts(y_pre_co, y_pre_tr

                 

             block_size = int(min(np.floor(len(y

             blocks = np.split(y_pre_tr.index[-K

             

             def fold_effect(hold_out):

                 model = SyntheticControl()

                 model.fit(

                     y_pre_co.drop(hold_out),

                     y_pre_tr.drop(hold_out)

                 )

                 

                 bias_hat = np.mean(y_pre_tr.loc



To apply this function to the (already pivoted) marketing data,
you just need to remember to average the treated units. The
result is a data frame with all the ATT estimates. It has K
columns and one row for each post-intervention period:

                                    - model.pred

                 

                 y0_hat = model.predict(y_post_c

                 return (y_post_tr - y0_hat) - b

             

             

             return pd.DataFrame([fold_effect(bl

         

In [19]: deb_atts = debiased_sc_atts(y_pre_co,

                                     y_pre_tr.me

                                     y_post_co,

                                     y_post_tr.m

                                     K=3)

         deb_atts.head()

         



To get a final ATT estimate for each post-intervention period
you can average out the columns,

deb_atts.mean(axis=1) , or, if you want a single ATT
for the entire period, just average everything:

deb_atts.mean(axis=1).mean() . Plotting the
debiased ATT alongside the canonical SC ATT you got earlier
also shows that, for most parts, the debiasing increased the
ATT estimate, although not by much:

0 1 2

date

2022-05-01 0.003314 0.002475 0.003228

2022-05-02 0.003544 0.002844 0.003356

2022-05-03 0.004644 0.003698 0.004744

2022-05-04 0.004706 0.002866 0.003630

2022-05-05 0.000134 -0.000541 0.000243



It’s difficult to see a difference in your marketing data, but to
show why debiasing is important, I can redo the simulations
from before, but now using the debiasing procedure. Now, the
distribution of ATTs from the simulation has mean zero, as it
should be:

Inference



The debiasing procedure is useful on its own, but there is also
a second reason why it is interesting, which is to place a
confidence interval around the synthetic control ATT estimate.
Doing inference with synthetic control has proven to be a
daunting task, mostly because there are usually very few
control units, or even just one. The block bootstrap you
learned in Chapter 8 won’t work here because a lot of the
bootstrap samples will throw out all the treated units, making
the ATT undefined.

Inference for the synthetic control method is an active area of
research, which is rapidly changing. Over the last few years,
many approaches have been proposed. Most of them rely on
permuting the time dimension, as bootstrapping the units
seems problematic. Here, I chose one of those methods that I
find quite simple to implement and very computationally
efficient. Especially if you already dealt with the debiasing
part, because it uses it as a starting point. Just as a refresher,
recall that debiasing gave you one ATT estimate for each of the
K folds and for each post-intervention time period, which are
represented as the columns of the following data frame:

In [20]: deb_atts.head()

         



Now, let’s say that you are interested in placing a confidence
interval around the overall ATT estimate in the post-
intervention period. To do so, the first thing you need is the 

ÂTT  itself. You can average out the rows of this data frame,
which will give you a single ATT for each of the K folds. Then,
you can take the average of that:

0 1 2

date

2022-05-01 0.003314 0.002475 0.003228

2022-05-02 0.003544 0.002844 0.003356

2022-05-03 0.004644 0.003698 0.004744

2022-05-04 0.004706 0.002866 0.003630

2022-05-05 0.000134 -0.000541 0.000243

In [21]: atts_k = deb_atts.mean(axis=0).values

         att = np.mean(atts_k)

         print("atts_k:", atts_k)



Now, for the inference part. The idea here is to construct a
standard error estimate based on each of the ATT k:

σ̂ = √1 +
BlockSize * K

Tpost
* √

1

K − 1
∑

K

k=1
(ATT k − ATT )

ŜE = σ̂/√K

When coding this, you just need to be careful to use the
sample standard deviation, which means passing

ddof=1  to np.std :

         print("ATT:", att)

         

Out[21]: atts_k: [0.00414872 0.00260513 0.003185

         ATT: 0.003313226501636449 

         

In [22]: K = len(atts_k)

         T0 = len(y_pre_co)

         T1 = len(y_post_co)

         block_size = min(np.floor(T0/K), T1)

         se_hat=np.sqrt(1+((K*block_size)/T1))*n

         print("SE:", se_hat)

         



Out[22]: SE: 0.0006339596260850461 

         

With that standard error, you can construct a test statistic 

ÂTT/ŜE which, under the null hypothesis H0 : ATT = 0,
has asymptotic t-distribution with K − 1 degrees of freedom.
This means you can leverage it to construct a confidence
interval using the t-distribution. For instance, here is how you
can construct a 90% CI (α = 0.1):

You might look at that K in the denominator of the standard
error formula and be tempted to set it to a very large number.
However, there is no free lunch here. Higher values of K result
in smaller confidence intervals at the cost of lowering the
coverage of those intervals. For high Ks, the 1 − α CIs will
contain the true ATT less than 1 − α of the time, especially

In [23]: from scipy.stats import t

         alpha = 0.1

         [att - t.ppf(1-alpha/2, K-1)*se_hat,

          att + t.ppf(1-alpha/2, K-1)*se_hat]

         

Out[23]: [0.0014620735349405393, 0.0051643794683

         



when the number of pre-treatment periods is small. In this
case, a reasonable choice of K is 3. When T0 is very large,
compared to N , you can try larger values of K to decrease the
length of the confidence interval.

Another important point is that this method does not apply to
the treatment effect trajectory. That is, it can’t be used for a
per-period inference, as its theory requires both T0 and T1 to
be relatively large.

SEE ALSO

This inference methods was proposed in the paper “A T-Test for Synthetic
Controls,” by Victor Chernozhukov et al. If you want to perform per-period
inference, the same authors have a complementary paper that proposes conformal
inference for synthetic controls: “An Exact and Robust Conformal Inference Method
for Counterfactual and Synthetic Controls.”

Synthetic Difference-in-Differences

To close this chapter, I wanted to give you yet another
perspective on synthetic control, which is how it relates to
difference-in-differences. By doing so, you’ll also learn how to
combine both methods into a single synthetic difference-in-
differences (SDID) estimator. The idea here is quite simple.
First, construct a synthetic control. Then, use it as the control
unit in a DID setting. The end result is something much more
interesting than the sum of its parts. First, the parallel
assumption required for DID becomes much more plausible,
since you are crafting a synthetic control for E[Y (0)ti|D = 1]



. Second, because you are using DID, the synthetic control can
focus on capturing just the trend of the treated unit, as it can
have a different level of Y (0). But first, before going into
SDID, let’s review some DID theory.

DID Refresher

In its canonical form, with one control block (never treated)
and one treated block that gets treated all at the same time
period, you could write DID with two-way fixed effects:

τ̂
did = argmin

μ,α,β,τ
{

N

∑
n=1

T

∑
t=1

(Yit − μ + αi + βt + τWit)
2},

where τ  is the ATT you care about, αi are the unit-fixed
effects, and βt are the time-fixed effects. In this formulation,
the unit effects capture the difference in intercepts for each
unit while the time effects capture the general trend across
both treated and control units. The main assumption behind
the DID method is that the treated and untreated have the
same Y0 trend:

ΔY (d)i ⊥ D

Synthetic Controls Revisited

Next, let’s see how you can recast the synthetic control
estimator into something that resembles the preceding DID



formulation. Interestingly enough, you can write the SC
estimator as solving the following optimization problems:

τ̂
sc = argmin

β,τ
{

N

∑
n=1

T

∑
t=1

(Yit − βt − τWit)
2
ω̂
sc
i },

where the weights for the control units ω̂sc
i  are obtained by

optimizing the synthetic control objective you saw at the
beginning of the chapter. Since the preceding formulation of
the SC objective is defined for all units, not just the control,
you also need to think about the treatment units’ weight. Here,
since you care about the ATT, they are simply Ntr/N  (uniform
weighting).

To verify that this new formulation is indeed equivalent to the
one you learned earlier, let’s compare the two. First, estimate
SC as you’ve done so far and compute the ATT:

Out[24]: 0.0033467270830624114 

         

In [24]: sc_model = SyntheticControl()

         sc_model.fit(y_pre_co, y_pre_tr.mean(ax

         (y_post_tr.mean(axis=1) - sc_model.pred

         



Next, let’s add these synthetic control weights to the original
marketing data frame, before the matrix reshaping. To do that,
you can create a unit weights data frame that maps each
control city to its weight:

city unit_weight

0 ananindeua -1.649964e-19

1 aparecida_de_goiania -7.047642e-21

2 aracaju 4.150540e-19

3 belem -3.238918e-19

4 belford_roxo -5.756475e-19

Then, you can merge this unit weight data frame into the
original marketing data frame using city as the key. This will

In [25]: unit_w = pd.DataFrame(zip(y_pre_co.colu

                                  columns=["city

         unit_w.head()

         



leave the treatment unit with NaN weights. You can fill those
up with the average of the treatment dummy, which is Ntr/N .

I’ll also take this opportunity to create the Wit variable, by
multiplying Di * Postt:

In [26]: df_with_w = (df_norm

                      .assign(tr_post = lambda d

                      .merge(unit_w, on=["city"]

                      .fillna({"unit_weight": df

                      

         df_with_w.head()

         

app_download population city

0 3066.0 12396372 sao_pau

1 2701.0 12396372 sao_pau

2 1927.0 12396372 sao_pau

3 1451.0 12396372 sao_pau

4 1248.0 12396372 sao_pau



Finally, you can run weighted OLS with time-fixed effects,
following the alternative synthetic control formulation from
earlier. Just be careful to remove the rows with very small
weights, otherwise you might run into some errors while
trying to run this regression:

Out[27]: 0.00334672708306243 

         

Indeed, the ATT obtained here is exactly the same as the one
you got earlier, which shows that both synthetic control
formulations are equivalent. But more importantly, it’s easier
to compare the new SC formulation with the TWFE
formulation of DID. First, it looks like SC has time-fixed effects,
but not unit-fixed effects. Meanwhile DID has both time- and
unit-fixed effects, but no unit weights. This suggests a merger
between the two models that include elements from both SC
and DID:

In [27]: mod = smf.wls(

             "app_download_pct ~ tr_post + C(dat

             data=df_with_w.query("unit_weight>=

             weights=df_with_w.query("unit_weigh

         )

         mod.fit().params["tr_post"]

         



τ̂
sdid = argmin

μ,α,β,τ
{

N

∑
n=1

T

∑
t=1

(Yit − (μ+αi + βt + τDit)
2
ω̂i}

And while you are at it, why only weigh the units? Always
remember the end goal here: to estimate 
E[Y0|Post = 1,Tr = 1]. The purpose of unit weights is to
use the control units to approximate the treated units. But
there is also a time dimension here, which means you could
also use weights in the pre-treatment periods to better
approximate the post-treatment period. This would give you
the following SDID formulation:

τ̂ sdid = argmin
μ,α,β,τ

{
N

∑
n=1

T

∑
t=1

(Yit − (μ+αi + βt + τDit)
2ω̂iλ̂t},

where λ̂t are time weights.

Estimating Time Weights

Remember how, in order to get the unit weights, you’ve
regressed the average outcome of the treated units on the
outcome of the control units, both in the pre-treatment
period?

Well, to get time weights, you just need to transpose the 
Ypre,co and regress it on the average outcome of the control

ω̂
sc
i = argmin

ω
||ȳpre,tr − Ypre,coωco||

2

s.t ∑ωi = 1 and ωi > 0 ∀ i



on the post-treatment period:

But there is an additional catch here. Remember how SC
doesn’t allow for extrapolations? This would be a problem if
you had some kind of trend in the outcome. If that was the
case, the average post-treatment period would have a higher
or lower outcome than all the pre-treatment periods and you
would need to extrapolate in order to get a good fit. For this
reason, the SDID formulation allows for an intercept shift λ0

when finding the time weights:

Fortunately, it is fairly easy to modify the
SyntheticControl  code to optionally fit the intercept,

using a fit_intercept  parameter. First, you’ll create
an intercept column that is always 1 if

fit_intercept=True  and zero otherwise. You can
take advantage of the fact that multiplying True*1=1

in Python. Then, you’ll prepend this column into
y_pre_co  and use that in the objective function. Also,

when building the constraints, you don’t want to include the
intercept. In the end, you’ll get rid of the intercept parameter,
returning only the units’ weights.

λ̂
sc

t = argmin
w

||ȳ
'

pre,co − Y
'

pre,coλpre||
2

s.t ∑λi = 1 and λi > 0 ∀ i

λ̂
sc

t = argmin
w

||ȳ
'

pre,co − (Y
'

pre,coλpre + λ0)||2

s.t ∑λi = 1 and λi > 0 ∀ i



I won’t show the entire code because it is fairly repetitive, but
here is just the part that changes:

Once you deal with that, you can move on to estimate the time
weights:

        # add intercept

        intercept = np.ones((y_pre_co.shape[0], 

        X = np.concatenate([intercept, y_pre_co]

        w = cp.Variable(X.shape[1])

        

        objective = cp.Minimize(cp.sum_squares(X

        constraints = [cp.sum(w[1:]) == 1, w[1:]

        

        problem = cp.Problem(objective, constrai

        

        self.loss_ = problem.solve(verbose=False

        self.w_ = w.value[1:] # remove intercept

In [28]: time_sc = SyntheticControl(fit_intercep

         time_sc.fit(

             y_pre_co.T,

             y_post_co.mean(axis=0)

         )

         time_w = pd.DataFrame(zip(y_pre_co.inde

                                  columns=["date



date time_weight

56 2022-04-26 -0.000011

57
2022-04-27 0.071965

58 2022-04-28 -0.000002

59 2022-04-29 0.078350

60 2022-04-30 0.000002

I also already stored the weights in a data frame, which you’ll
use later. You can also plot these weights to see how the pre-
treatment time periods are being used to reconstruct the
average outcome of the control in the post-treatment period:

         time_w.tail()

         



Synthetic Control and DID

OK. So you have weights for the pre-intervention period and
weights for all the units. All there is left to do is join these
pieces into a final estimator. You can start from the previously
defined data frame df_with_w  and join in the time
weights data frame, using date  as the key. Since

time_w  has weights only for the pre-intervention
period, you need to fill in the post-intervention time weights
with Tpost/T  (also uniformly weighting them). Finally,
multiply both λt and ωi and you are good to go:

In [29]: scdid_df = (

             df_with_w

             .merge(time_w, on=["date"], how="le

             .fillna({"time_weight":df_norm["pos

             .assign(weight = lambda d: (d["time



You can now run DID using the scdid_df  data and weighted
regression. The parameter estimate associated with 
Wit = Di * Postt is the ATT estimate you care about:

Out[30]: 0.004098194485564245 

         

To grasp what SDID is doing, you can plot the diff-in-diff lines
for the treated units and the counterfactual trend (dashed
line) obtained by using the synthetic control’s trend and
projecting it into the treated’s baseline. The difference
between the two is the ATT estimate you just estimated. I’m
also plotting the time weights on a second plot. You can see
how SDID uses mostly time periods that are closer to the post-
intervention period:

         )

         

In [30]: did_model = smf.wls(

             "app_download_pct ~ treated*post",

             data=scdid_df.query("weight>1e-10")

             weights=scdid_df.query("weight>1e-1

         did_model.params["treated:post"]

         



This SDID estimate is a bit higher, but not much different from
the ATT of the canonical SC. So, why is SDID interesting? The
SC component of the estimator makes the DID’s parallel trend
assumption more plausible. It’s much easier to get parallel
trends if you first craft a synthetic control to mimic the treated
units. As a result, SDID tends to have lower bias, compared to
both DID and SC. Second, SDID also tends to have lower
variance than both methods. The original paper has
simulation results to show this, in case you are interested.



THE ORIGINAL SDID

This SDID estimator is a simplification on top of the original
SDID estimator, which was proposed in the paper “Synthetic
Difference in Differences,” by Dmitry Arkhangelsky et al. The
paper proposes a slightly different optimization objective for
the unit weights:

First, this objective also allows an intercept shift. The reason
here is that the synthetic control doesn’t need to exactly match
the treated unit, only its trend, since you’ll plug them in a DID
model afterward. Second, they add an L2 penalty on the unit
weights, which includes this new ζ term:

ζ = (Ntr * Tpost)
1/4

σ(Yit − Yi(t−1))

There is a complicated theoretical reason for this ζ that I won’t
go into, but the main idea behind the additional L2 penalty is
to make sure no single unit gets a disproportionately large
weight. As a result, these weights tend to be more spread out
across more units than that of the canonical synthetic control
method.

The paper also proposed a new inference procedure, designed
specifically for SDID. If that isn’t enough reasons to check it
out, I don’t know what is.

ω̂
scdid
i = argmin

ω
||ȳpre,tr − (Ypre,coωco + ω0)||22 + ζ2Tpre||ωco||

2
2

s.t ∑ωi = 1 and ωi > 0 ∀ i



Of course, there is no free lunch. By allowing intercept shifts,
SDID removes the convexity guardrail from SC. Depending on
the situation, you can view this as either good, since SDID
allows more flexibility, or bad, since it also allows dangerous
extrapolations.

Key Ideas

If there is one thing I want you to take out from this chapter is
that you can have a model-based approach to estimating 
E[Y (0)t|D = 1,Post = 1]: just fit a model to predict pre-
treatment outcome of the treated on a bunch of equally pre-
treatment time series and use that model to make predictions
on the post-treatment period. Usually, those time series are the
outcome of control units, and this approach amounts to a
horizontal regression of the treated outcome on the control
outcome, all in the pre-intervention period:

The result is a set of weights which, when multiplied by the
control units, yields a synthetic control: a combination of
control units that approximate the behavior of the treated
units, at least in the pre-intervention period. If that
approximation is good and generalizes into the post-
intervention period, you can use it to estimate the ATT:

ω̂
sc

= argmin
ω

||ȳpre,tr − Ypre,coωco||
2
2



ÂTT = Ypost,tr − Ypost,coω̂co

That is the basic idea. You can build up from it. For example,
in the canonical synthetic control setting, you would add the
constraints ∑ωi = 1 and ωi > 0 ∀ i or use something like
lasso regression. But the basic idea remains: use the pre-
intervention period to regress the pre-treatment outcome on
very predictive time series and extend those predictions to the
post-intervention period.

SEE ALSO

Yiqing Xu has a bunch of papers on generalizing synthetic control, as well as
software implementing those approaches. To name a few, the paper “Generalized
Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models”
also mixes qualities from both DID and synthetic control, generalizing this last one
to variable treatment periods (staggered adoption design). In “Bayesian Alternative
to Synthetic Control for Comparative Case Studies,” the authors also propose a
Bayesian model to estimate counterfactuals.

RACTICAL EXAMPLE

CAUSAL IMPACT

Google’s research team capitalized on the main idea behind
synthetic controls to build the causalimpact  library.
They use Bayesian structural time-series models to estimate
the counterfactual time series for E[Y (0)|D = 1] by using
other time series that are themselves not affected by the
treatment. The fact that the method is Bayesian also allows
them to give uncertainty metrics quite naturally.



Part V. Alternative Experimental
Designs



Chapter 10. Geo and Switchback
Experiments

In Part IV of this book, you learned how to use repeated
observations over time to aid in the process of causal
inference. Now, in this chapter, you will approach the same
problem from a different angle. What if, instead of having to
use panel data to identify a treatment effect, you had to
design an experiment to gather that data? Part V of this book
is dedicated to alternative experimental design when simple
A/B testing won’t work.

For example, let’s consider the marketing problem from the
previous chapter. Remember that inferring the impact of
marketing is challenging because you cannot randomize
people who are not yet your customers. Online marketing
provides you with attribution tools, but attribution is not the
same as incrementality. In this case, a promising alternative
is to conduct a geo-experiment: treat entire markets, such as
a city or a state, while leaving others as control. This
approach would provide you with panel data to which you
could apply the techniques learned in Part IV. However, in
Part IV, you took the panel data as given and did not learn
how to best select the treated and control markets in such an
experiment. In this chapter, you will cover that gap. The first
part of this chapter will teach you how to select geographical



treatment units to get an effect estimate that approximates
the effect you would have if the entire market (country, state)
were treated.

The idea is to zoom out the unit of analysis from customers to
cities or states. Of course, this comes at a price in terms of
sample size since there are far more customers than there
are cities. In some extreme cases, even randomizing cities
may not be possible. For instance, if you are a small company
operating locally, you may not have many markets in which
to conduct an experiment. In the limit, you may have only a
single unit of analysis. Fortunately, there is still a way out.
Switchback experiments involve turning a treatment on and
off multiple times. This approach can work even if you have
only a single treatment unit. For example, if you are a small
food delivery marketplace operating within a single city and
you want to know what happens if you increase the delivery
fee, you can increase and decrease prices multiple times and
conduct a series of before-and-after analyses. The remainder
of this chapter will expand on this idea and how to design a
switchback experiment.

Geo-Experiments

To motivate the use of geo-experiments, let’s take the same
data and example from the previous chapter. Again, you
have the city as the unit and date as the time dimension; a



treated column, which marks if the city is eventually treated;
and a post-treatment column, which marks the post-
intervention period. You also have some auxiliary columns,
like the population in that city (recorded in 2013, so fixed in
time) and the state. Here, you’ll work with the outcome:
number of app downloads. And since the goal is to decide
which city to treat, you’ll discard the post-intervention
period:

In [1]: import pandas as pd

        import numpy as np

        df = (pd.read_csv("./data/online_mkt.cs

              .astype({"date":"datetime64[ns]"}

              .query("post==0"))

        df.head()

        



The objective is to select a group of cities that is
representative of the total market. That way, if you treat that
group, you’ll get an idea of what would happen if the entire
market (i.e., country) was treated. Before you do anything
fancy, it’s worth trying the simple things. If you have lots of
geographical units (i.e., many cities), perhaps a simple A/B
testing would work just fine. Simply choose at random a
fraction of the cities to compose the treatment group. The
only difference here is that you would be shifting the unit of
analysis from people (potential customers) to entire cities.

Still, it’s hard to know how many cities are enough. You could
start with the sample size formula from Chapter 2 (

app_download population city

0 3066.0 12396372 sao_pa

1 2701.0 12396372 sao_pa

2 1927.0 12396372 sao_pa

3 1451.0 12396372 sao_pa

4 1248.0 12396372 sao_pa



n = 16σ2/δ2). For instance, if you wish to detect an effect of
5%, it would tell you that you need about 40k cities to run
that experiment:

Out[2]: 36663.0 

        

But that formula doesn’t take into account that each city has
a different variance of the outcome (cities with more people
have lower variance) nor that you can leverage repeated
observations of the same unit to increase the precision of
your estimate. Even so, 40k cities seems a lot more than the
50 cities that you have in this data. So what can you do if you
are short of units?

When considering different experimental options, it’s
essential to take into account how you will interpret the
results. For example, if you plan on using the difference-in-
differences method, you can identify pairs of cities that have
similar trends in the outcome variable and randomize within
each pair. One city would receive the treatment, while the

In [2]: detectable_diff = df["app_download"].me

        sigma_2 = df.groupby("city")["app_downl

        np.ceil((sigma_2*16)/(detectable_diff)*

        



other would serve as the control. However, it’s worth noting
that the diff-in-diff method estimates the average treatment
effect on the treated (ATT). If you want to know the overall
effect of the treatment, such as deploying the marketing
campaign nationwide, the ATT estimate may not recover that.
In this chapter, we will explore an idea that aims to
maximize the external validity of the experiment by
identifying a treatment group that is representative of the
entire market.

Synthetic Control Design

Finding a group of units whose time series can best
approximate the outcome of interest is exactly what you’ve
been doing with synthetic controls. So, it’s not surprising that
you can repurpose the method to find a synthetic treatment
unit that approximates the average behavior of all units. To
do so, you’ll only need the data in matrix form, where the
rows are the time periods and the columns are the cities, YT ,n

:

In [3]: df_piv = (df

                  .pivot("date", "city", "app_d

        df_piv.head()

        



Now, let’s think of what you want to achieve. First, let’s keep
in mind that each city contributes differently for the average.
To get the global average you first need to know how much
each city contributes to it. This can be represented by a city
weight vector f  where each entry i represents the size of city 
i as a share of the total market:

city ananindeua aparecida_de_goiania

date

2022-03-01 11.0 54.0

2022-03-02 5.0 20.0

2022-03-03 2.0 0.0

2022-03-04 0.0 0.0

2022-03-05 5.0 5.0

In [4]: f = (df.groupby("city")["population"].f

             /df.groupby("city")["population"].

        



Once f  is defined, you can see that your objective is first to
find a set of weights w such that:

Ypostf = Ypostw

Translating that to words, you want to find a combination of
treatment cities that, when combined with weights w, will
give you the average outcome of the market. Leaving it like
this, the obvious solution would be to set f = w, but that
would mean treating every city, which would leave you
without any control units to estimate the treatment effect, so
you have to add a constraint that the number of nonzero
elements in w must be smaller than N , the number of cities: 
|w|0 < N  (|. |0 is the L0 norm, which is the number of
nonzero elements). Moreover, the preceding objective is
impossible to solve, since you don’t observe the post-
intervention values of Y. Still, let’s keep it as an ideal and see
if you can somehow approximate it.

If the preceding objective finds the cities that you can use as
treatment, your second objective is to find another group of
cities, different from the first, that will also approximate the
market average:

Ypostf = Ypostv

s.t wivi = 0 ∀ i,



Combining both objectives, the nonzero elements in w and v
would be the treatment and control cities, respectively. Also,
this second objective introduces a constraint which states
that you can’t use the same city as a treatment and as a
control. Once again, this objective is not feasible, as it looks at
the post-treatment period.

Now, you just need to think a bit on how to swap those
impossible objectives with one that you might be able to
solve. The obvious first step is looking at the pre-intervention
period. This means that you would find two disjoint groups of
cities such that a weighted average of each approximates the
market average. That alone would be enough, but, practically
speaking, you probably want to add some extra constraints.
For instance, since your goal is to first test a marketing
campaign before rolling it out to the entire market, you
probably don’t want to choose a lot of treatment cities. A big
treatment group would treat almost everyone and kind of
defeat the purpose of the test.

Moreover, in many markets, the size of cities tends to follow
an exponential distribution, with a small number of cities
accounting for almost all of the market (see Figure 10-1). If
you use the canonical synthetic control formulation for this,
you would be forced to include the biggest cities, as you are
not allowed to extrapolate.



Figure 10-1. There are usually few big cities and many smaller ones

As a consequence, you probably want to allow for an
intercept shift in the synthetic control model. Putting these
extra requirements together, combining both objectives and
adding the synthetic control constraints, you’ll end up with
the following objective:

I know it seems complicated, but it really isn’t. First, it adds
intercept terms, α0 and β0, to both the synthetic treatment
and synthetic control objectives. Then, it adds a bunch of
constraints. The first two rows are simply the traditional
synthetic control constraints, which states that the weights

min
w,v

||Ypref − Yprewtr − α0||2 + ||Ypref − Yprevco − β0||2

s.t ∑wi = 1 and ∑ vi = 1,

wi, vi ≥ 0 ∀ i,

wivi = 0 ∀ i,

|w|0 ≤ m



must sum up to 1 and be nonnegative. Next, you have the
constraint which states that a city cannot be used for both
treatment and control. Finally, you have a constraint on the
maximum number of cities, m, you want on the treatment
set.

Before you go running to implement this objective in
cvxpy , I’m sorry to bring it to you, but it is not

convex. But don’t worry too much with it. Finding the best
possible sets of treatment and control cities is not strictly
necessary. In most cases, it’s pretty easy to find sets that are
just good enough. So, in favor of simplicity, let’s see how to
code a more modest optimization.

Trying a Random Set of Treated Units

First, let’s try something incredibly simple, which is just
selecting a random set of cities. In order to do that, let’s first
define some constants: Ypref , the market average you’ll try
to approximate, a list of all possible cities and m, the
maximum number of treatment cities. I’m setting this last
one to 5, but that depends on your business constraints. If
your budget only allows for, say, three treatment cities, feel
free to change that number:

In [5]: y_avg = df_piv.dot(f)

        geos = list(df_piv.columns)



        n_tr = 5

        

Next, let’s select a random set of five cities and see how well
they perform as a possible treatment set:

These are the possible treatment cities, but you still need to
find the weights for them. If some of those weights turns out
to be zero, you won’t need to use all five.

To get the weights, I’m using the SyntheticControl

class that allows for an intercept shift, which was
implemented in the previous chapter. The idea is to use the
synthetic control to predict y_avg  by using just these
five cities:

In [6]: np.random.seed(1)

        rand_geos = np.random.choice(geos, n_tr

        rand_geos

        

Out[6]: array(['manaus', 'recife', 'sao_bernard

              'salvador', 'aracaju'], dtype='<U

        

In [7]: def get_sc(geos, df_sc, y_mean_pre):

            



Once that is done, you can inspect the estimated weights and
select the cities with weights that are not too close to zero.
I’m wrapping all of that in a function that will allow you to
try many different samples and see which one performs
better. It is also worth storing the synthetic control loss, as
minimizing it will be your objective.

When you fit a synthetic control model using those five cities,
you can see that it chooses only two of them as treatment.
The other three can be added back to the pool of possible
cities and can compose the control group.

            model = SyntheticControl(fit_interc

            model.fit(df_sc[geos], y_mean_pre)

            

            selected_geos = geos[np.abs(model.w

            

            return {"geos": selected_geos, "los

        

        get_sc(rand_geos, df_piv, y_avg)

        

Out[7]: {'geos': array(['salvador', 'aracaju'],

         'loss': 1598616.80875266} 

        



With that, you are ready to move to the next step, which is
finding both the synthetic treatment and synthetic control:

First, you need to call get_sc  on the random sample
of cities, just like before. This will give you the treatment
cities and synthetic treatment loss. Next, you’ll figure out
what cities are not selected for the synthetic treatment units
and call get_sc  again, passing the remaining cities.
This second call to get_sc  will give you the control

In [8]: def get_sc_st_combination(treatment_geo

            

            treatment_result = get_sc(treatment

            

            remaining_geos = df_sc.drop(

                columns=treatment_result["geos"

            ).columns

            

            control_result = get_sc(remaining_g

            return {"st_geos": treatment_result

                    "sc_geos": control_result["

                    "loss": treatment_result["l

        

        resulting_geos = get_sc_st_combination

        



cities and the synthetic control loss. If you sum the two losses,
you’ll end up with the total loss you wish to minimize.

As expected, calling get_sc_st_combination  with
the same five cities will give you the same treatment units as
before:

In [9]: resulting_geos.get("st_geos")

        

Interestingly, the sum of the treatment and control cities
amount to the entire list of 50 cities. But that should not be
surprising, especially when m is small:

Out[10]: 50 

         

If m = 0 (no treatment units), the obvious solution would be
to choose all the cities as a control and set v = f . For m > 0,
but still pretty small, selecting all the cities and slightly

Out[9]: array(['salvador', 'aracaju'], dtype='<

        

In [10]: len(resulting_geos.get("st_geos")) + l

         



adjusting the weights tends to be the optimal choice. This also
means that the majority of the total loss will come from the
synthetic treatment objective, since the synthetic control will
tend to reconstruct the average market behavior pretty well
when m is small. So much so that when plotting both
synthetic treatment and control alongside the market
average you can see that, while the synthetic treatment has a
poor fit, the synthetic control matches the average almost
exactly:

Random Search

Let’s see how to improve upon the result you just got. Since
you have a way to calculate the total loss given the number of
cities, you can devise many fancy methods to minimize that
loss. But since I’m very fond of simplicity, what I suggest is



just randomly searching many combinations and picking one
that performs OK. The following code does exactly that. It
first generates 1,000 sets of 5 cities and stores everything in
the geo_samples  list. Then, it partially applies

get_sc_st_combination  to the data and average
market outcome argument. Finally, it applies that function to
the 1,000 sets of cities, all of that in parallel:

It’s worth mentioning that this approach is not optimal, but it
does tend to produce reasonable sets of treatment cities.

In [11]: from joblib import Parallel, delayed

         from toolz import partial

         np.random.seed(1)

         geo_samples = [np.random.choice(geos, 

                        for _ in range(1000)]

         est_combination = partial(get_sc_st_co

                                   df_sc=df_piv

                                   y_mean_pre=y

         results = Parallel(n_jobs=4)(delayed(e

                                      for geos 

         



OPTIMIZATION

Formulating the treatment city selection problem like you
just did is a simplification on top of the one presented in the
paper “Synthetic Controls for Experimental Design,” by
Abadie and Zhao. The paper suggests using enumeration or
converting the optimization to a constrained quadratic
programming problem. Both approaches take a significant
amount of time to run, which is why I recommend checking
if a simple random search isn’t enough to find good
treatment cities.

I myself have also experimented with genetic algorithms for
this problem and found that they tend to achieve a better
result than simple random search while using the same
number of iterations. Additionally, the paper “Designing
Experiments with Synthetic Controls,” by Doudchenko et al.,
proposes a simulated annealing procedure to select the best
set of cities. If you find that a simple random search isn’t
good enough, I recommend you try those algorithms.

Inspecting the selected treatment cities, you can see that the
model chooses only four cities. Not surprisingly, the biggest
city, Sao Paulo, is among them. This tends to happen because
the biggest cities compose a big chunk of the total market
average, so including them in the treated group tends to



reduce the loss a lot. If you wish to avoid this, you can always
exclude the largest city from the possible control units:

Plotting the synthetic control and treatment once more, you
can see how this approach, despite its simplicity, can give you
a solution that works pretty well, with both synthetic
treatment and control tracking the market average pretty
closely:

In [12]: resulting_geos = min(results, key=lamb

         resulting_geos.get("st_geos")

         

Out[12]: array(['sao_paulo', 'florianopolis', '

               dtype='<U23') 

         





OTHER EXPERIMENT OBJECTIVES

The idea of minimizing the sum of the synthetic treatment
and control objective is so that you can maximize the
external validity of the experiment. By selecting a treatment
group that closely resembles the market average, the hope is
that, with a small experiment, you can learn what would
happen if the treatment was implemented nationwide. This is
not the only possible objective, though. The paper “Designing
Experiments with Synthetic Controls,” by Doudchenko et al.,
focuses on maximizing the power of the experiment by
selecting a set of units with low out-of-sample error. A
subsequent paper, “Synthetic Design: An Optimization
Approach to Experimental Design with Synthetic Controls,“by
Doudchenko et al., casts the treatment units selection into a
mixed-integer programming formulation to find the units
that minimize the root mean squared error of the effect
estimate.

Finally, it is worth mentioning that, even though you
designed an experiment using a synthetic control design, you
don’t necessarily need to read its result with synthetic
control, although that is surely a reasonable idea. For
instance, you could use synthetic diff-in-diff, as that tends to
reduce the variance of the estimator. You do have to be
careful on how to estimate the variance of the resulting



estimator, though. Since the group of selected cities is not
random, inference procedures based on reassignment of the
treatment to different units are not valid. Fortunately, the t-
test you learned in the previous chapter doesn’t make an
assumption on how the units were selected, so you can use it
here.

Switchback Experiment

Synthetic control experiment designs are great for when you
have a small number of units and you want to select the best
set of them to compose a treatment group. However, to do
that, you still need a somewhat reasonable amount of units.
But what happens if you only have, say, four units or even
one unit? To give an example, suppose you are a small food
delivery marketplace that operates within a single city. This
company uses dynamic pricing to regulate the supply and
demand of the food delivery marketplace, and it wants to
know how an increase in delivery fee can impact delivery
time by attracting more drivers to the fleet while throttling or
postponing customer demand. Notice that traditional A/B
testing wouldn’t work here. Increasing the price for 50% of
the customers would also benefit those in the control group,
since the overall demand would fall, increasing the number
of available drivers. Also, synthetic control experiments
wouldn’t work either, because the company operates in just



one city. But there is one type of experiment design that
might just do in this situation.

If the effect of rising prices dissipates rather quickly once
they go back to the normal level, the company can turn the
price increases on and off multiple times and do a sequence
of before-and-after comparisons. This approach is named
switchback experiments, and it is great for when you have
just one or a very small number of units. But for it to work,
the order of the carryover effect must be small. That is, the
effect of the treatment cannot propagate to many periods
after the treatment. For instance, in the food delivery case,
increasing prices tend to cause an increase in supply shortly
after; when prices are back to normal, the excess supply
dissipates in a few hours. Hence, the order of the carryover
effect is small, so switchback experiments are an interesting
proposition.

Before talking about designing a switchback experiment,
since this is the first time they appear in this book, I think it’s
worth walking through one for you to grasp how they work.
The following data frame contains data from a switchback
experiment with 120 periods, where each period is 1 hour. In
this experiment, the treatment was randomized at every time
period, with a 50% chance of selecting the treatment or
control. The d  column tells you if the price increase
(treatment) was on or off at that hour and the

delivery_time  is the outcome of interest.



Additionally, I’ve added three columns that would not be
observed in reality, but should help your understanding of
what is going on. delivery_time_1  is the delivery
time you would get if the treatment was always on and

delivery_time_0 , if it was always off. The difference
between them, tau , is the total effect of the treatment
and it is usually the causal quantity of interest in a
switchback experiment. Since the treatment decreases
delivery time, the effect is negative. Also, due to carryover,
the effects on the first two periods are smaller:

In [13]: df = pd.read_csv("./data/sb_exp_every.

         df.head()

         



Figure 10-2 shows that the observed delivery time fluctuates
between the delivery time you would have with the
treatment always on and always off. Moreover, after three
consecutive equal treatments, the observed outcome matches
the one you would have with the treatment always on or
always off.

d delivery_time deliver

0 1 2.84 2.84

1 0 4.49 1.49

2 0 7.27 2.27

3 1 5.27 2.27

4 1 5.59 4.59



Figure 10-2. In a switchback experiment, the observed outcome fluctuates
between the always treat and never treat potential outcomes

Take T = 20 to T = 23, for example. At those points, due to
chance, the treatment was on for three or more consecutive
periods and the delivery time matches the delivery time you
would have under the treatment being always on.
Conversely, at around T = 32, you can see a sequence where
the treatment has been off (control) for three or more
consecutive periods. At that point, the outcome matches the
outcome you would have if the treatment was always off. If
the treatment was on or off for less than three consecutive
periods, the observed outcome is somewhere in the middle.
This tells you that, in this case, the outcome depends on the
treatment of three periods: the immediate treatment and the
treatment from two periods before:

Yt = f(dt−2, dt−1, dt)

In other words, the order of the carryover effect is 2.



Of course, in reality, you wouldn’t know this, since you can
only see the observed outcome. But don’t worry about that
too much. I’ll show you how to estimate the size of the
carryover period. For now, I just want you to get an intuitive
understanding of switchback experiments. On top of that,
you’ll be able to develop a more formal language to describe
what is going on.

Potential Outcomes of Sequences

Since the effect of the treatment carries over to subsequent
time (2 in this case), when it comes to switchback
experiments, the potential outcome has to be defined in
terms of a vector of treatments, 
Yt(D) = Yt([d0, d1, d2, . . . , dT ]). Fortunately, you can
simplify this with two assumptions. First, if you assume no
anticipation of the treatment, the potential outcome will only
depend on current and past treatment, but not on future
ones. As a result, you can write 
Yt(D) = Yt([d0, d1, d2, . . . , dt]). If you know the size of the
carryover period m, you could write it as 
Yt(D) = Yt([dt−m, . . . , dt]). Since m = 2 here, the potential
outcome simplifies to Yt(D) = Yt([dt−2, dt−1, dt]), which is
a lot simpler than what you would have with no assumptions
at all.

Having defined those potential outcomes, you can write the
total effect of the treatment as:

( ) ( )



τm = E[Yt(1t−m, . . . , 1t) − Yt(0t−m, . . . , 0t)]

This is the effect of going from an always off treatment to an
always on treatment. In the case where m = 2, this would be
E[Yt(1, 1, 1) − Yt(0, 0, 0)]. Since all of that simplification
requires you to know m, let’s turn your attention to that now.

Estimating the Order of Carryover Effect

Let’s say that you have some business expert knowledge that
puts an upper bound on m. For instance, you know that the
effect of price increases doesn’t last for more than 6 hours. In
that case, you can regression-estimate the model:

yt = α + dt + dt−1, . . . , dt−K + et

and read the parameter estimates’ size and significance. The
order of the carryover effect will depend on which
parameters are statistically significant and also have a large
impact on the outcome.

Notice that this imposes another assumption, which is that
the effects of the lags are additive:

Yt = f(dt, dt−1, dt−2) = α + dt + dt−1 + dt−2 + et

To create lags of the treatment, you can use the
.shift(lag)  method from pandas.

To programmatically create six lags, I’m taking advantage of
the fact that the .assign(...)  method takes as



argument the name of the new column you want to create
and that, in Python, you can pass named argument with

**  and a dictionary. So, for instance,
df.assign(a=1,  b=1)  is the same as
df.assign(**{"a":1,  "b":2}) :

In [14]: df_lags = df.assign(**{

             f"d_l{l}" : df["d"].shift(l) for l

         })

         df_lags[[f"d_l{l}" for l in range(7)]]

         

d_l0 d_l1 d_l2

0 1 NaN NaN

1 0 1.0 NaN

2 0 0.0 1.0

3 1 0.0 0.0

4 1 1.0 0.0



Once you have the data with its lags, all you have to do is
regress the outcome on the lags and the current treatment
(which can be thought of as lag 0). Notice that statsmodels
will drop the rows with NaNs:

By looking at the lag parameters, you can see that they are
significant up to lag 2, which indicates a carryover effect of 2.

In [15]: import statsmodels.formula.api as smf

         model = smf.ols("delivery_time ~" + "+

                                               

                         data=df_lags).fit()

         model.summary().tables[1]

         

coef std err t P>|t|

Intercept 9.3270 0.461 20.246 0.000
d_l0 -2.9645 0.335 -8.843 0.000
d_l1 -1.8861 0.339 -5.560 0.000
d_l2 -1.0013 0.340 -2.943 0.004
d_l3 0.2594 0.341 0.762 0.448
d_l4 0.1431 0.340 0.421 0.675
d_l5 0.1388 0.340 0.408 0.684
d_l6 0.5588 0.336 1.662 0.099



Interestingly, with the regression model, you don’t need to
know the correct order of the carryover effect m to estimate
the total effect τm. As long as your regression contains more
lags than the correct m, you can just sum up all the lag
parameter estimates:

τ̂m =
lags

∑
l=0

d̂ t−l.

To get the variance, you also have to sum up the variance of
each individual lag:

Since you are using a bunch of lags, the total effect estimate
will be rather imprecise. But if you settle for two lags, you
can reduce the variance substantially:

In [16]: ## remember to remove the intercept

         tau_m_hat = model.params[1:].sum() 

         se_tau_m_hat = np.sqrt((model.bse[1:]*

         print("tau_m:", tau_m_hat)

         print("95% CI:", [tau_m_hat -1.96*se_t

                           tau_m_hat +1.96*se_t

         

Out[16]: tau_m: -4.751686115272022 

         95% CI: [-6.5087183781545574, -2.99465

         



Design-Based Estimation

The previous procedure depends on a correct specification of
the model for the potential outcome Yt(D). Since it’s a time
series, this is not a trivial task. One alternative is to estimate 
τm with something like inverse propensity weighting (IPW),
which would only require knowledge of how the treatment
was assigned. Since that is controlled by the company
designing the experiment, this second approach relies on
more plausible assumptions. It will only require you to know
the carryover effect order, m.

Remember that IPW reconstructs a potential outcome by
scaling up the observed outcome by the inverse treatment

In [17]: ## selecting lags 0, 1 and 2

         tau_m_hat = model.params[1:4].sum() 

         se_tau_m_hat = np.sqrt((model.bse[1:4]

         print("tau_m:", tau_m_hat)

         print("95% CI:", [tau_m_hat -1.96*se_t

                           tau_m_hat +1.96*se_t

         

Out[17]: tau_m: -5.8518568954422925 

         95% CI: [-7.000105171362163, -4.703608

         



probability E[Ŷ d] = N−1 ∑(Yd𝟙(D = d)/P(D = d)).

You’ll do the same thing, but now you have to take into
account that the potential outcome is defined in terms of a
vector of treatment. For instance, in the case that the effect
carries over for two periods, m = 2, you want to reconstruct 
Yt(0, 0, 0) and Yt(1, 1, 1), which requires you to calculate
the running probability of observing three equal treatments
in a row. For m = 2, that would be 
P(dt−2 = d, dt−1 = d, dt = d), or, more generally:

P(Dt−m:t = d),

where Dt−m:t is the vector of the current and last m
treatments and d is a vector of constant treatment d. Here,
you can focus on the case where the randomization
probability p is always 50%. That is, at each randomization
point, the treatment has a 50% chance of staying the same or
switching. In terms of experiment design, this will increase
the power of the experiment, as it increases the treatment
variance. From an estimation procedure, it makes it so that 
P(Dt−m:t = 1) = P(Dt−m:t = 0). However, this does not
mean that P(Dt−m:t = d) will be the same everywhere. In
fact that probability depends on the randomization points
and where you are on the sequence. In your food delivery
example, p = 50% and the treatment was randomized at
every time period. So, the running probability of observing
three consecutive treatments, like in the sequence



[1,1,1,1,1,1] , is
[na,na,.5^3,.5^3,.5^3,.5^3] . However, if you

randomize every three periods, the same sequence has a
running probability of [na,na,.5,

.5^2,.5^2,.5] . That’s because, at t = 4, 5 the lag 2
window, which contains the current time period and the
previous two, will contain two randomization points.

I hope that is easy to conceptualize, but, unfortunately, it is
not as easy to code. I’ll do my best to explain how it’s done,
but it does require some clever array manipulation. But
maybe this will teach you some new NumPy tricks. To make
things more tangible, let’s try to compute the running
probability of observing m + 1 equal consecutive treatments
in the case where the randomization happens every three
periods:

The first step is identifying the randomization windows from
the randomization points. You can take advantage of the fact

In [18]: rad_points_3 = np.array([True, False, 

         rad_points_3

         

Out[18]: array([ True, False, False,  True, Fal

         



that True  is interpreted as 1 and False , as 0. If
you compute the cumulative sum of the randomization
points, the sum will increase by 1 at each randomization
point:

In [19]: rad_points_3.cumsum()

         

Out[19]: array([1, 1, 1, 2, 2, 2]) 

         

Now, you can view each randomization window as the
sequence of equal integer numbers. You have two
randomization windows of size 3 each.

The next step is to compute the carryover window, which will
be of size m + 1. Notice that, in this case, the randomization
window is equal to the carryover window, but this is not
generally the case, so the code has to work for different ms.
One way to do that is to use the function

sliding_window_view , from NumPy, which, as the
name suggests, creates a running window array. Notice that
this function discards the first m windows, as they would not
be complete:

In [20]: from numpy.lib.stride_tricks import sl



Out[20]: array([[1, 1, 1], 

                [1, 1, 2], 

                [1, 2, 2], 

                [2, 2, 2]]) 

         

From these windows, you can calculate how many
randomization windows are contained in each carryover
window. It is simply the quantity of different numbers in
each carryover window. Unfortunately, there isn’t a NumPy
function that counts the unique elements across an axis, so
you’ll have to build one on your own. To do that, you can use
the function np.diff , which counts the difference of
subsequent entries in an array:

Out[21]: array([[0, 0], 

                [0, 1], 

                [1, 0], 

         m = 2

         sliding_window_view(rad_points_3.cumsu

         

In [21]: np.diff(sliding_window_view(rad_points

         



                [0, 0]]) 

         

Then, finally, summing up the columns and adding 1 returns
the number of randomization windows at each point of the
original array. Notice that the result starts at index 2 (T = 3),
since sliding_window_view  discards the first m
windows. In this example, at T = 3, the last three entries
contain a single randomization window, at time T = 4, it
contains two randomization windows, and so on. To avoid
any confusion, you can prepend m np.nan  at the
beginning of the array:

In [22]: n_rand_windows = np.concatenate([

             [np.nan]*m,

             np.diff(sliding_window_view(rad_po

                     axis=1).sum(axis=1)+1

         ])

         n_rand_windows

         

Out[22]: array([nan, nan,  1.,  2.,  2.,  1.]) 

         



Now, to get the probability vector, all you have to do is take
the probability of the experiment, in this case, 0.5, and
exponentiate it by the preceding array:

In [23]: p=0.5

         p**n_rand_windows

         

Here is everything wrapped up in a function. You can also
check that this logic works for other randomization
frequencies, like randomizing every period:

Out[23]: array([ nan, nan, 0.5, 0.25, 0.25, 0.5

         

In [24]: def compute_p(rand_points, m, p=0.5):

             n_windows_last_m = np.concatenate

                 [np.nan]*m,

                 np.diff(sliding_window_view(ra

                         axis=1).sum(axis=1)+1

             ])

             return p**n_windows_last_m

         compute_p(np.ones(6)==1, 2, 0.5)

         



and even for nonregular randomization intervals:

But all of that was just to compute P(Dt−m:t = d). You still
have to take a look at the rest of the estimator for the
potential outcome:

Ŷ (d) =
1

T − m

T

∑
t=m+1

Yt
𝟙(Dt−m:t = d)

P(Dt−m:t = d)

In other words, this estimator will scale up the observed
outcome by the running probability you just learned how to
compute, whenever the last m treatment and the current one
are all the same. Then, it will average those scaled-up
outcomes.

Out[24]: array([  nan, nan, 0.125, 0.125, 0.125

         

In [25]: rand_points = np.array([True, False, F

         compute_p(rand_points, 2, 0.5)

         

Out[25]: array([ nan, nan, 0.5, 0.25, 0.25, 0.2

         



To code this, the only missing piece is the indicator function
in the numerator, which evaluates to true  whenever the
last m + 1 treatments are equal to d. Fortunately, now that
you know about sliding_window_view , that is
pretty easy to do. First, create the m + 1 window view of the
treatment array. Then, check if all the elements in that
window are equal to the treatment. Here is a function to do
just that:

Out[26]: [nan nan  1.  0.  0.  0.] 

         [nan nan  0.  0.  0.  1.] 

         

Applying this function to the treatment vector
[1,1,1,0,0,0] , using m = 2 and trying to find

when the current and last two entries are treated (d = 1)
returns a 1 only at the third entry, as it should be.

In [26]: def last_m_d_equal(d_vec, d, m):

             return np.concatenate([

                 [np.nan]*m,

                 (sliding_window_view(d_vec, m+

             ])

         print(last_m_d_equal([1, 1, 1, 0, 0, 0

         print(last_m_d_equal([1, 1, 1, 0, 0, 0

         



You are finally ready to join all those pieces into the IPW
estimator for switchback experiments:

τ̂ =
1

T − m

T

∑
t=m+1

{Yt(
𝟙(Dt−m:t = 1)

P(Dt−m:t = 1)
−

𝟙(Dt−m:t = 0)

P(Dt−m:t = 0)
)}

Let’s now use this function to estimate τ  from the price
increase switchback experiment. Remember that the
treatment was randomized at each time period, so you can
pass a vector of True s,

np.ones(len(df))==1 , to the rand_points

arguments:

In [27]: def ipw_switchback(d, y, rand_points, 

             

             p_last_m_equal_1 = compute_p(rand_

             p_last_m_equal_0 = compute_p(rand_

             

             last_m_is_1 = last_m_d_equal(d,1,m

             last_m_is_0 = last_m_d_equal(d,0,m

           

             y1_rec = y*last_m_is_1/p_last_m_eq

             y0_rec = y*last_m_is_0/p_last_m_eq

             

             return np.mean((y1_rec-y0_rec)[m:]

         



In [28]: ipw_switchback(df["d"],

                        df["delivery_time"],

                        np.ones(len(df))==1,

                        m=2, p=0.5)

         

Out[28]: -7.426440677966101 

         

This estimated effect is a bit lower (meaning that prices
decrease waiting time more) than the one you got with OLS.
Also, it is worth mentioning that it has a much higher
variance. In the following plot, I’ve simulated 500 switchback
experiments just like the one you have and computed both
the OLS and IPW estimates for the total effect. As you can see,
both methods are unbiased, since the average of the
estimated τ̂  matches τ  in both cases. However, the IPW
distribution is much more spread out:



Optimal Switchback Design

I think we can all agree that more variance is undesirable
from an estimation standpoint. However, if you plan to
design a switchback experiment, you probably want to be
conservative and look at the worst possible case. Also, you
likely want to make the least amount of assumptions
possible. For this reason, taking the IPW estimator and trying
to come up with an experiment design that will reduce its
variance is an attractive proposition. First, let’s think on an
intuitive level how you might go about doing that.

From the IPW estimator formula, you know that it only keeps
the sequences with m + 1 consecutive equal treatments. This
means it throws away any m + 1 sequence that has more
than one treatment assignment. If you go back to the plot that
shows the observed and potential outcomes of your
experiment, it would mean throwing away all the data in



between the upper and lower potential outcomes. Hence, if
you want to use more data, all you have to do is make sure
you have more consecutive equal treatments. At the limit,
you would just set all the treatment sequences to either 0 or
1. This would maximize the usable data; however, it would
decrease the variance of the treatment—and, in this extreme
case, make estimation impossible. Since the variance of the
estimator can be decreased by having both more useful data
and higher treatment variance, you have to find a balance
between the two.

Intuitively speaking, one way to do that is by randomizing
every m + 1 period. So, in your example, if the order of the
carryover effect is 2, you would randomize every three
periods. This is indeed very close to the design that
minimized variance, but it is not exactly it. Turns out you can
improve it slightly if you instead randomize at every m
periods and add a gap of size m at the beginning and end of
the experiment horizon, when m > 0:

T
* = {1, 2m + 1, 3m + 1, . . . , (n − 2)m + 1},

where T* are the optimal randomization points, m is the
order of the carryover effect, and n is an integer ≥ 4 such
that T/m = n. In practice, this means that the length of the
experiment has to be divisible by the carryover order and
long enough to contain at least four blocks of size m.



TIP

When there is no carryover, (m = 0), the optimal design is just randomizing at
every period, which would maximize treatment variance while keeping all the
data.

To consolidate your understanding about this, let’s look at
some examples. First, if T = 12 and m = 2, you would
randomize at t = 1, leave a gap of size 2 at t = 3 then
randomize again at t = 5, 7, 9, and leave a final gap of size 2
at t = 11:

When m = 3 and T = 15, you again randomize at t = 1,
then leave a gap of size 3 at t = 4, randomize again at 
t = 7, 10, and leave a final gap of size 3 at t = 13:

In [29]: m = 2

         T = 12

         n = T/m

         np.isin(

             np.arange(1, T+1),

             [1] + [i*m+1 for i in range(2, int

         )*1

         

Out[29]: array([1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0

         



Now, as interesting as this is, it is worth mentioning that the
variance decrease you’ll probably get with this optimal
design is nowhere as near as the one you would get by
making a model assumption and using OLS. In the following
plots, I’ve simulated 500 experiments with T = 120 and 
m = 2 using the optimal design, the intuitive design
(randomizing every three periods), and randomizing every
period. Then, I used the IPW estimator to estimate the effect
in all of them. As you can see, there is a variance reduction,
but it’s nothing dramatic:

In [30]: m = 3

         T = 15

         n = T/m

         np.isin(

             np.arange(1, T+1),

             [1] + [i*m+1 for i in range(2, int

         )*1

         

Out[30]: array([1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0

         



Still, since the optimal design is rather simple to implement, I
don’t see any reason not to.

Robust Variance

We talked a lot about reducing variance, but I haven’t yet told
you how to estimate the variance of the IPW estimator. That’s
because it actually depends on the design of your
experiment. Now that we’ve set on an optimal design, you
can compute the variance that it entails. So, for the sake of
the example, let’s say that the food delivery company ran a
second experiment, a lot like the first one, with T = 120, 
p = 0.5, but now they decided the randomization points
based on the optimal design. The data from that experiment
is stored in the following data frame:



The IPW function from before is pretty general, so you can
use it here to estimate the treatment effect:

In [31]: df_opt = pd.read_csv("./data/sb_exp_op

         df_opt.head(6)

         

rand_points d delivery_

0 True 0 5.84

1 False 0 5.40

2 False 0 8.86

3 False 0 8.79

4 True 0 10.93

5 False 0 7.02

In [32]: tau_hat = ipw_switchback(df_opt["d"],

                                  df_opt["deliv

                                  df_opt["rand_



Out[32]: -9.921016949152545 

         

Now, for the variance. The formula is a bit ugly, but you’ll see
it’s not that complicated, once I parse it for you. First, let’s
partition your data into K = T/m blocks such that each
block has size m. Then, define the sum of the outcomes of a
block k as Y k = ∑Ykm+1:(k+1)m. For instance, if 
Y = [1, 1, 1, 2, 2, 3], for m = 2, k = {1, 2}, 
Y = [∑Y3:4,∑Y5:6] = [3, 5]. Notice that the first block is
thrown away. Having defined the sum of those blocks, a
conservative estimate to the variance is as follows:

σ̂(τ̂ ) =
1

(T − m)2
{8Y

2

1 +
K−1

∑
k=2

32Y
2

k𝟙(dkm+1 = d(k+1)m+1) + 8Y
2

K}

Now, let me parse it for you. First, the denominator is the
square of the sample size. But since you discarded the first m
entries, you have to subtract m. The numerator is composed
of three main terms. The first and the last term take into
account the gap you left at the beginning and end of the
optimal design. The term in the middle is a bit more

                                  m=2, p=0.5)

         tau_hat

         

¯

¯

¯̄̄



complicated, because it has this indicator function. That
function evaluates to 1 whenever two consecutive blocks
have the same treatment. Notice that, because of the gap at
the beginning and end, this is sure to happen for the first and
last term, which is why you don’t need the indicator function
there.

To code this formula, you’ll first need to make sure that T  is
divisible by m by a factor greater or equal to 4. Then, you’ll
make use of the functions hsplit  and vstack .
The first will partition the array into blocks and the second
will pile up the blocks vertically. Here is an example:

Out[33]: array([[1, 1], 

                [1, 2], 

                [2, 3]]) 

         

You can then sum the columns of that piled-up array to get Y
.

For the indicator function, you’ll do the same thing, but with
the treatment vector. Due to the nature of the experiment
design, the entire block of treatment will be either 1 or 0, so

In [33]: np.vstack(np.hsplit(np.array([1,1,1,2,

         

¯



you can take just the first column to know which treatment
was assigned to that block. To know if two consecutive blocks
have the same treatment, use the diff  function. This
will discard yet another block. Here is an example:

Out[34]: array([False,  True]) 

         

Now, for the entire variance function:

In [34]: np.diff(np.vstack(np.hsplit(np.array(

         

In [35]: def var_opt_design(d_opt, y_opt, T, m)

             

             assert ((T//m == T/m)

                     & (T//m >= 4)), "T must be

             

             # discard 1st block

             y_m_blocks = np.vstack(np.hsplit(y

             

             # take 1st column

             d_m_blocks = np.vstack(np.split(d_

             

             return (

                 8*y_m_blocks[0]**2 

                 + (32*y_m_blocks[1:-1]**2*(np.



Finally, with that function, you can estimate the variance and
place a confidence interval around your effect estimate:

That is a pretty wide confidence interval—a lot wider than
the earlier one, with OLS and the design that randomized
every period. Still, sometimes this extra variance is a price
worth paying, if you don’t want to make further model
assumptions. Moreover, even if you follow the optimized
design, you can still analyze it with OLS. Even though this
optimal design is not meant to minimize the OLS variance, I

                 + 8*y_m_blocks[-1]**2 

             ) / (T-m)**2

         

In [36]: se_hat = np.sqrt(var_opt_design(df_opt

                                         df_opt

                                         T=120,

         [tau_hat - 1.96*se_hat, tau_hat + 1.96

         

Out[36]: [-18.490627362048095, -1.3514065362569

         



find that it still gives more precise estimates than
randomizing at every period, for instance.



FINDING M WITH FEWER ASSUMPTIONS

The optimal switchback experiment design, the IPW
estimator and the variance estimator presented in this
chapter was taken from the paper “Design and Analysis of
Switchback Experiments,” by Bojinov, Simchi-Levi, and Zhao
(yes, it’s the same Zhao from the synthetic control design
paper). That paper contains a more generic formula for the
optimal design, which works when T  is not divisible by m.
Since that formula is a lot more complex and a company can
easily make it so that T  is divisible by m, I chose to omit it
here.

Moreover, the paper proposes another procedure to find the
order of the carryover effect m. The idea is based on running
two optimal experiments, e1 and e2, each one with a
candidate value for m, m1, and m2. Say that m1 < m2. If the
effect estimates from both experiments are the same, you
cannot reject the hypothesis H0 : m ≤ m1. That’s because, if 
m > m1, e1 would return a more biased estimate for the
effect than e2. Hence, you can search for m based on
rejecting the hypothesis that the effect estimates from two
experiments are the same, H0 : τ̂1 = τ̂2.

Honestly, I’m not sure I like that procedure. The high
variance will make it very hard to reject that null hypothesis,
unless the experiment is incredibly long (very high T ). Still,



that is an alternative to the OLS method I showed you, in case
you don’t want to make any model-based assumptions.

Key Ideas

This chapter looks at two alternative experiment designs for
when the number of experimental units at your disposal is
rather short. This can happen, for example, when you are
forced to zoom out from treating customers to treating entire
cities, as it is often the case in both online and offline
marketing.

First, you learned about synthetic control design. Here, the
goal is to find a small set of units which, when combined
together, approximate the average behavior of all units. This
can be done by maximizing the following objective:

where f  corresponds to the weight each unit contributes to
the global average, w and v are the weights of the synthetic
treatment and control units, and m is is a constraint on the
maximum number of treatment units.

min
w,v

||Ypref − Yprewtr − α0||2 + ||Ypref − Yprevco − β0||2

s.t ∑wi = 1 and ∑ vi = 1,

wi, vi ≥ 0 ∀ i,

wivi = 0 ∀ i,

|w|0 ≤ m



Synthetic control designs are great for when you have a
relatively small number of experimental units, as it allows
you to treat just the ones that are good at reproducing the
average. Moreover, synthetic control design is well suited for
when the order of the carryover effect is large, meaning that
the treatment effect takes a long time to dissipate.

If that is not the case—that is, the order of carryover effect is
small—then switchback experiments tend to offer a good
alternative. Even if you have very few or only one
experimentation unit, switchback experiments work by
turning the treatment on and off for the same unit and then
doing a bunch of before-and-after comparisons.

A switchback experiment is defined by the probability of
treatment—which, if you want to maximize power, should be
set to 50%—and the randomization points, or time periods
when randomization happens. If you know the order of the
carryover effect, m, and it is greater than 0, then the optimal
design randomizes every m + 1 time periods:

T
* = {1, 2m + 1, 3m + 1, . . . , (n − 2)m + 1},

where n = T/m. For this to work, the length of the
experiment T  has to be divisible by m by more than 4. Also,
if there is no carryover effect (m = 0), the optimal design is
one that simply randomizes at each time period.



Chapter 11. Noncompliance and
Instruments

It’s not uncommon for companies to offer products or services
to their existing customer base. For instance, a retailer can
offer a subscription-based program where customers get free
shipping. A streaming company can offer an ad-free version of
its services for an additional fee. Or a bank can offer a prime
credit card with lots of perks for customers who spend above
a certain threshold.

In all of these examples, the customer must opt in for the
additional service, which makes inferring its impact
challenging. As the choice to participate lies with the
customer, that choice often confounds the impact evaluation
of the service; after all, customers who opt in and customers
who don’t will likely have different Y0. Even if the company
randomizes the availability of the service or product, it can’t
force customers to take it. This is called noncompliance, where
not everyone that gets assigned to the treatment takes it. This
chapter will walk you through how to think about this issue
and what to consider when you want to design an experiment
that suffers from noncompliance.

Noncompliance



Noncompliance comes from pharmaceutical science (although
some of the tooling to deal with it comes from economics).
Imagine you are conducting an experiment to test the effect of
a new drug on some illness. Each subject gets assigned to a
treatment: a drug or a placebo. But those subjects are
imperfect human beings, who sometimes forget to take their
medicine. As a result, not everyone assigned to the treatment
gets it. Also, someone critically ill might figure out they were
assigned the placebo and manage to find a way to get the
treatment regardless. That is to say, if you separate the
treatment assignment from the treatment intake, you’ll end up
with four groups:

Compliers
Those who take the treatment that was assigned to them
Always takers
Those who always take the treatment, regardless of the
assignment
Never takers
Those who never take the treatment, regardless of the
assignment
Defiers
Those who take the opposite treatment from the one
assigned

The catch here is that you don’t know who belongs to each
group.



You can also represent noncompliance in a DAG (see
Figure 11-1), where Z is the treatment assignment (random in
this case), T  is the treatment, Y  is the outcome, and U  is
hidden factors that confound the treatment choice and the
outcome. Z is what is called an instrument: a variable that (1)
impacts the treatment in a nonconfounded way and (2)
doesn’t impact the outcome, unless through the treatment.

Figure 11-1. The canonical instrumental variable DAG

Since the compliance group and the treatment assignment
deterministically cause the treatment intake, you can also
think of U  as unknown factors that cause the compliance
group. As you can see from the DAG in Figure 11-1, without
further assumptions, you can’t identify the effect of the
treatment on Y  due to an open backdoor path through U . As
you’ll soon see, identification of that effect will involve clever
usage of Z.

To make things more concrete, let’s work with a typical
industry setting where a bank wants to know the impact of
offering a prime credit card to its customers. Since this prime



service is costly, the bank charges a small fee, which is not
enough to cover all its costs. But, if the purchase volume—the
total amount spent on the card—of those prime customers
increases by at least 500 USD, then it is worth it. Hence, the
bank wants to know how much the prime card increases
customers’ purchase volume.

The bank managed to run an experiment where it randomized
the availability of the prime credit card
( prime_eligible ) to 10,000 customers, with each
customer having a 50% chance of being eligible and 50% of
being in the control. Of course, the bank can’t force customers
to choose the card, making this an experiment with non-
compliance.

If you map these variables to Figure 11-1, purchase volume
would be Y , availability of the prime credit card would be Z,
and having the prime card would be T . All this information is
stored in the following data frame. The bank also has
information on the customer’s age, income, and credit score,
but let’s not worry about those variables for now. Additionally,
I’ve added information on the true effect of the prime card on
PV, τ  ( tau ), and which group a customer belongs to.
Keep in mind that the compliance category and τ  are not
available to you in real life. I’ll only use them here to make
some examples easier to understand:



Extending Potential Outcomes

To be more precise with noncompliance and to proceed with
identification, you’ll have to extend the potential outcome

In [1]: import pandas as pd

        import numpy as np

        df = pd.read_csv("./data/prime_card.csv"

        df.head()

        

age income credit_sco

0 37.7 9687.0 822.0

1 46.0 13731.0 190.0

2 43.1 2839.0 214.0

3 36.0 1206.0 318.0

4 39.7 4095.0 430.0



notation. Since Z causes T , you can now define a potential
treatment Tz. Also, the potential outcome has new
counterfactuals with respect to the instrument Z, Yz,t.

In the prime credit card example, Z is randomized, which
means that the effect of Z on Y—also called the intention-to-
treat effect (ITTE)—is pretty easy to identify:

ITTE = E[Y |Z = 1] − E[Y |Z = 0] = E[Y1,t − Y0,t],

which you can estimate with a simple linear regression:

The ITTE is a valuable metric in its own right as it measures
the impact of assigning a treatment, such as offering the prime
credit card in this scenario. For the bank, this number
indicates the additional purchase volume (PV ) per customer
it can expect by having the prime credit card available as part
of its product suite. However, it’s crucial to note that the ITTE
is not the same as the treatment effect. The bank’s primary

In [2]: m = smf.ols("pv~prime_eligible", data=df

        m.summary().tables[1]

        

coef std err t P>|t|

Intercept 2498.3618 24.327 102.701 0.000
prime_eligible321.3880 34.321 9.364 0.000



objective is to determine whether the benefits of the prime
card outweigh its costs. Therefore, the bank needs to identify
the treatment effect of choosing the card, rather than solely
relying on the ITTE.

In this particular example, the bank has full control on who
has the prime card available. As a result, you have one-sided
noncompliance, since there is no way for customers who are
not eligible for the prime card to get it, but customers who
have the card available can still choose to not have it. This
forces the always takers into compliance and the defiers into
never takers, reducing the number of compliance groups from
four to two.

Now that you understand the setting, let’s think about
identifying the effect of the prime card. An obvious idea is to
use the ITTE as a proxy for the card effect. Maybe they are not
so different after all. So, what is the ITTE anyway?

Due to randomization of treatment assignment, the ITTE can
be obtained by comparing those assigned to the treatment to
those assigned in the control. But you can quickly see that this
comparison will give you a biased toward zero estimate for the
treatment effect (see Figure 11-2). That’s because some of those
assigned to the treatment actually get the control, which
decreases the perceived difference between the two groups.



Figure 11-2. The ITTE is a biased toward zero estimate of the ATE, since some of the
units assigned to one treatment actually get the other treatment

To prove that, you can take advantage of those tau s
I’ve added to the dataset. The average treatment effect is quite
larger than the ITTE:

In [3]: df["tau"].mean()

        

Out[3]: 413.45 

        



OK, so that turned out to be a dead end. But what about a
simple average comparison between treated and control 
E[Y |T = 1] − E[Y |T = 0]? Maybe the randomization
assignment will make that a good proxy for the effect estimate
you care about. Well… let’s estimate that and see:

Now the measured effect is much larger than the true effect
(see Figure 11-3). The reason is that, in this example the bias is
upward, E[Y0|T = 1] > E[Y0|T = 0], meaning that
customers who choose the prime card spend more regardless
of the prime card. In other words, the never takers have lower
Y0 than the compliers, which artificially lowers the average
outcome of the untreated group.

In [4]: m = smf.ols("pv~prime_card", data=df).fi

        m.summary().tables[1]

        

coef std err t P>|t|

Intercept 2534.4947 19.239 131.740 0.000
prime_card 588.1388 41.676 14.112 0.000



Figure 11-3. Under noncompliance, comparing treated and untreated will not
recover the ATE, since treatment choice is not random

It seems that you are a bit stuck here. The ATE can’t be
identified and ITTE is a biased measure for it. As with much in
causal inference, in order to make some progress, you’ll need
to make additional assumptions.



Instrument Identification
Assumptions

Let’s take the DAG I showed you earlier and reproduce it here
for better readability. As you’ll see, the first few assumptions
you’ll need for identification are already spelled out in that
DAG:

Here they are:

1. The first assumption you need is independence; the lack of
unmeasured confounders between Z and T , Tz ⊥ Z|X,
and between Z and Y , Y (Z,Tz) ⊥ Z|X. This assumption
states that the instrument is as good as randomly assigned.
This assumption is not testable, but it can be made more
plausible by the experiment design. In your example, you
can probably say this assumption is satisfied, since the bank
randomized the availability of the prime card.



2. The second assumption is the exclusion restriction, Yz,t = Yt

, which is the lack of a path from Z to Y  that does not go
through the treatment T . In words, it says that the
instrument only affects the outcome through the treatment.
This one is more tricky. Even if Z is randomized, it could
impact the outcome through other channels. For example,
let’s say that customers figured out which group they were
assigned to and those in the control got very mad at the
bank and decided to close their accounts. In this case,
randomization affects the outcome through a channel that
is not the treatment.

3. The third assumption is relevance, E[T1 − T0] ≠ 0, which is
the existence of an arrow from Z to T . This assumption
states that the instrument must have an influence on the
treatment. Fortunately, this assumption is testable, since
you can estimate the effect of the instrument on the
treatment.

4. The fourth and final assumption is not stated in the DAG. It
is mostly a functional from assumption imposed on the
causal model: monotonicity, Ti1 ≥ Ti0 (or vice versa). It
might look confusing, but it simply states that the
instrument flips the treatment in only one direction. It
either increases the chance of getting the treatment for
everyone who got the instrument, which is equivalent to
assuming that there are no defiers; or it decreases that
chance, which is equivalent to assuming that there are no



compliers. In your example, this is also a plausible
assumption, as customers in the control group can’t force
their way into getting the prime credit card. As a result, the
defiers are collapsed into the never takers.

Now, let’s see how to use those assumptions for identification.
The goal here is to start with the ITTE and see if we can get
something like an average treatment effect. First, let’s expand
the outcome into the potential outcomes. Recall that you can
do this using the treatment as a switch—
Y = Y1T + Y0(1 − T ):

Now, because of the exclusion restriction, you can remove the
instrument subscript of Yz,t:

E[Y1T1 + Y0(1 − T1)|Z = 1] − E[Y1T0 + Y0(1 − T0)|Z = 0]

Next, using the independence assumption, you can merge both
expectations:

which you can simplify to

E[(Y1 − Y0)(T1 − T0)].

Next, let’s use the monotonicity assumption and expand this
expectation into the possible cases, T1 > T0 and T1 = T0:

E[Y |Z = 1] − E[Y |Z = 0] = E[Y1,1T1 + Y1,0(1 − T1)|Z = 1]

−E[Y0,1T0 + Y0,0(1 − T0)|Z = 0]

E[Y1T1 + Y0(1 − T1) − Y1T0 − Y0(1 − T0)]

( )( )| * ( )



And since T1 − T0 would be 0 if T1 = T0, you are left with
only the first term. Since Z is binary, T1 − T0 = 1 and:

E[Y |Z = 1] − E[Y |Z = 0] = E[Y1 − Y0|T1 > T0] * P(T1 > T0).

This is a good time to pause and see what you’ve
accomplished. First, notice that T1 > T0 are the compliers, the
population where the instrument shifts the treatment from 0
to 1. This means that this last equation tells you that the effect
of the instrument on the outcome is the treatment effect of the
compliers times the compliance rate. This explains why the
ITTE is a biased-toward-zero estimate for this effect: you are
multiplying it by a rate, which is between 0 and 1. If you could
only estimate P(T1 > T0), then you would be able to correct
the previous estimator…

But wait a second! Since the instrument is randomized, you
can estimate its impact on the treatment, E[T1 − T0]. And
since T1 − T0 = 1 for the compliers and 0 otherwise (due to
the monotonicity assumption), this effect is the compliance
rate:

E[T1 − T0] = P(T1 > T0)

Putting it all together, this means that you can identify the
average treatment effect on the compliers by scaling up the
effect of the instrument on the outcome by the compliance rate,
which is the effect of the instrument on the treatment:

| |

E[(Y1 − Y0)(T1 − T0)|T1 > T0] * P(T1 > T0)

+ E[(Y1 − Y0)(T1 − T0)|T1 = T0] * P(T1 = T0)



E[Y1 − Y0|T1 > T0] =
E[Y |Z = 1] − E[Y |Z = 0]

E[T |Z = 1] − E[T |Z = 0]

This is how you can use instruments to identify the effect in
noncompliance settings. The good news is that you can
identify that effect. The bad news is that it is not the ATE, but
only the effect on the compliers, which is usually called the
local average treatment effect (LATE). Unfortunately, you can’t
identify the ATE. But this might not be a problem. In your
credit card example, the LATE would be the effect on those
who choose the prime card when it is available to them. Now,
the bank wants to know if the effect in terms of extra PV
compensate for the cost of the prime card, both of which only
occur for those who choose the prime card. In this situation,
it’s enough to know the LATE. The bank doesn’t care about the
effect of those who will never opt in for the prime card.

Having gone through the theory about instrument
identification, it is now time to check how to apply it in
practice.

First Stage

The first step in instrumental variables analysis is to run what
is conveniently called a first stage regression, where you
regress the treatment on the instrument. During this step, you
can check the relevance assumption—if the parameter
estimate associated with the instrument is large and



statistically significant, you have good reason to believe that
assumption holds:

In this example, the compliance rate is estimated to be about
42%, which is also statistically significant (the 95% CI is [0.410,
0.438]). Since I’ve included the true group to which each
customer belongs, you can even check if that is indeed the
actual compliance rate:

In [6]: df.groupby("categ").size()/len(df)

        

Out[6]: categ 

        complier       0.4269 

        never-taker    0.5731 

        dtype: float64 

        

In [5]: first_stage = smf.ols("prime_card ~ prim

        first_stage.summary().tables[1]

        

coef std err t P>|t|

Intercept 6.729e–15 0.005 1.35e–12 1.000
prime_eligible0.4242 0.007 60.536 0.000



Reduced Form

The second step is called the reduced form. At this stage, you
regress the outcome on the instrument to obtain the intention
to treat the effect:

Once you’ve run the first stage and the reduced form, you can
divide the parameter estimate from the first by the parameter
estimate on the latter to obtain the estimate for the local
average treatment effect:

In [7]: red_form = smf.ols("pv ~ prime_eligible"

        red_form.summary().tables[1]

        

coef std err t P>|t|

Intercept 2498.3618 24.327 102.701 0.000
prime_eligible321.3880 34.321 9.364 0.000

In [8]: late = (red_form.params["prime_eligible"

                first_stage.params["prime_eligib

        late

        



Out[8]: 757.6973795343938 

        

As you can see, this effect is more than twice the ITTE. This is
expected, since the compliance rate is lower than 50%. It is
also larger than the ATE, but that is because the compliers
have a higher than average effect. In fact, if you compute the
effect for the compliers, you can see that your LATE estimate is
pretty close to it:

In [9]: df.groupby("categ")["tau"].mean()

        

Out[9]: categ 

        complier       700.0 

        never-taker    200.0 

        Name: tau, dtype: float64 

        

There is still some difference, though. It’s hard to tell if this is
right or not if you don’t wrap that point estimate in a
confidence interval. You could do that using bootstrap, but I
think it is worth looking into the actual formula for the
standard error of instrumental variable (IV) estimates. To do
that, you have to learn an alternate way to estimate the LATE.



Two-Stage Least Squares

If you zoom in the treatment part of the DAG, you can see that
it is caused by two components: first, there is a random
component, which is the randomized instrument. Second,
there is the U  component, which is where the confounding
bias comes from:

Recall how the first stage is a regression of the treatment on
the instrument, which essentially means you are estimating
the path Z → T . But there is more to it. Since that is what the
first stage is estimating, you can think of its predicted values, 
T̂ , as an unbiased version of the treatment. Which in turn
means that if you regress the outcome on those predicted
values, you’ll get the same IV estimate as before:

In [10]: iv_regr = smf.ols(

             "pv ~ prime_card",

             data=df.assign(prime_card=first_sta



This approach is called two-stage least squares (2SLS). OK, but
why is it useful? First, because it will allow you to properly
compute standard errors; second, because it makes adding
more instruments and covariates as easy as adding variables
in a regression model. Let’s now talk about each of those in
turn.

Standard Error

The residuals from the second stage’s prediction can be
defined as follows:

êIV = Y − β̂IV T

Notice that this is not the same residuals you would get with
the .resid  method from the second stage, since those

would be Y − β̂IV T̂ . The residual you want uses the raw
version of the treatment, not the predicted one.

         iv_regr.summary().tables[1]

         

coef std err t P>|t|

Intercept 2498.3618 24.327 102.701 0.000
prime_card 757.6974 80.914 9.364 0.000



With that residual, you can compute the standard error for
the IV estimates:

SE(β̂IV ) =
σ(ϵ̂ IV )

β̂z,1stσ(Z)√n
,

where σ(. ) stands for the standard deviation function and 

β̂z,1st is the estimated compliance rate, which you got from the
first stage:

In [11]: Z = df["prime_eligible"]

         T = df["prime_card"]

         n = len(df)

         # not the same as iv_regr.resid!

         e_iv = df["pv"] - iv_regr.predict(df)

         compliance = np.cov(T, Z)[0, 1]/Z.var()

         se = np.std(e_iv)/(compliance*np.std(Z)

         print("SE IV:", se)

         print("95% CI:", [late - 2*se, late + 2

         

Out[11]: SE IV: 80.52861026141942 

         95% CI: [596.6401590115549, 918.7546000

         



Just to double-check your results, you can use the 2SLS

module from the linearmodels ’ Python package. With
it, you can wrap the first stage, as in [T~Z] , inside the
model’s formula and fit an IV model. As you can see, using this
package gives not only the same LATE estimate as the one you
got earlier, but also the same standard error as the one you’ve
just calculated:

Regardless of the method you use, you can see that this is a
pretty huge confidence interval, even if it does contain the
true ATE for the compliers, which is 700. More importantly, I
think that the standard error formula can shed some light on
the challenges of noncompliance experiments. First, notice 
σ(Z) in the denominator. Since Z is a binary variable, the

In [12]: from linearmodels import IV2SLS

         formula = 'pv ~ 1 + [prime_card ~ prime

         iv_model = IV2SLS.from_formula(formula,

         iv_model.summary.tables[1]

         

Parameter Std. Err. T-stat P-value

Intercept 2498.4 24.211 103.19 0.0000
prime_card 757.70 80.529 9.4090 0.0000



maximum value for σ(Z) is 0.5. This is not much different
from OLS with a binary treatment. (Recall that then, the
standard error was σ(ê)/(σ(T )√n)). It simply states that
you can maximize the power of a test by randomizing the
treatment in a 50%-50% fashion.

But now you have an extra term in the denominator: the

compliance rate, β̂z,1st. Not surprisingly, if compliance is

100%, then Z = T , β̂z,1st = 1 and you get back the OLS
standard error. But with noncompliance, the standard error

increases, since β̂z,1st < 1. For instance, with 50% compliance,
the IV standard error will be twice as large as the OLS
standard error. As a result, the required sample size for an
experiment with 50% compliance is 4x the sample you would
need if you had 100% compliance.

BIAS OF IV

It turns out that the IV estimates are consistent, but not unbiased. That is, 
E[βIV ] ≠ β. This is mostly due to sampling error in the first stage. Since you don’t

have infinite data, the fitted value for the treatment, T̂ , will be a function of both Z

and U , meaning that not all the bias will go away. As you gather more data T̂  will
become less and less a function of U . This is why the estimator is consistent,
meaning that plim

n→∞
βIV = β.

The following plot compares the size of the confidence
interval for your LATE parameter estimate assuming different
estimated compliance rates (first image). It also shows how
many more samples you would need for a test with
noncompliance, considering multiple compliance rates:



Fifty percent compliance is still a lot. In most applications,
only a small fraction of customers opt in for the prime service
or product, which makes it even harder to estimate the LATE.
For instance, if compliance is as low as 30%, you’ll need a
sample 10x larger than the one you would need if compliance
weren’t an issue. Gathering a sample that big tends to be
impractical, if not impossible. But if you run into a problem
like this, not all is lost. There are still some tricks you can use
to lower the IV standard error. In order to do that, you’ll have
to include extra covariates in your analysis.

Additional Controls and Instruments

Remember how the prime credit card data had three
additional covariates, besides the treatment, the instrument,
and the outcome? They were the customer’s income, age, and
credit score. Now, suppose that the causal graph that describes
their relationship with T , Z, and Y  is as follows:



That is, income is highly predictive of the outcome, but doesn’t
predict compliance; credit score predicts compliance, but not
the outcome, and age predicts both of them (is a confounder).
If you are smart about how you use those variables, you can
decrease the standard error by using all of them.

First, let’s look at credit score. Credit score causes compliance,
but does not cause the outcome. This means that it can be
treated as an additional instrumental variable. From the DAG,
you can see that it satisfies the first three IV assumptions, just
like Z. You only have to assume positivity. Including that
variable as an extra IV in your 2SLS model will significantly
reduce the standard error of the LATE parameter:



Now, you have to be careful here. If instead of treating it as an
instrument, you condition on it, adding it to the second stage
too, the error will increase. But you know this already, from
Chapter 4, where you learned that conditioning on variables
that cause the treatment, but not the outcome, will increase
variance. The bigger issue here is that, unless you know the
instrument assignment mechanism (as you do with Z), it is
hard to know if the exclusion restriction holds. For instance,
you are assuming that credit score doesn’t cause the outcome
mostly because I told you so and you trust me since I was the
one who generated the data. But in real life, it’s hard to find
instruments like that. Most likely, a covariate affects both
compliance and the outcome, which is the case of age here.
For this reason, a much more promising approach to reducing
variance of the IV estimate is to include controls that are

In [13]: formula = 'pv ~ 1 + [prime_card ~ prime

         iv_model = IV2SLS.from_formula(formula,

         iv_model.summary.tables[1]

         

Parameter Std. Err. T-stat P-value

Intercept 2519.4 21.168 119.02 0.0000
prime_card 659.04 58.089 11.345 0.0000



highly predictive of the outcome. For instance, in this
example, customer income is very predictive of purchase
volume, so including it as an additional control will lower the
standard error quite substantially:

As for variables like age, which affect both the outcome and
compliance, the effect on the standard error will be more
nuanced. Like with the regression case, if it explains the
treatment a lot more than the outcome, it might end up
increasing the variance.

2SLS by Hand

In [14]: formula = '''pv ~ 1 

         + [prime_card ~ prime_eligible + credit

         + income + age'''

         iv_model = IV2SLS.from_formula(formula,

         iv_model.summary.tables[1]

         

Parameter Std. Err. T-stat P-value

Intercept 210.62 37.605 5.6008 0.0000
age 9.7444 0.8873 10.982 0.0000
income 0.3998 0.0008 471.04 0.0000
prime_card 693.12 12.165 56.978 0.0000



Since you won’t always have instrumental variable software
at your disposal, I think it is worth learning how to implement
2SLS by hand, especially since it is not at all complicated. If
you have more than one instrument and additional covariates,
you can include them in your model by:

1. Running the first stage, regressing the treatment on
instruments and the additional covariates, T  ~

Z  +  X .

2. Running the second stage by regressing the outcome on the
treated fitted values (from the first stage) and the additional
covariates, Y  ~  T_hat  +

X :

In [15]: formula_1st = "prime_card ~ prime_eligi

         first_stage = smf.ols(formula_1st, data

         iv_model = smf.ols(

             "pv ~ prime_card + income + age",

             data=df.assign(prime_card=first_sta

         iv_model.summary().tables[1]

         



Matrix Implementation

This will give you the exact same IV estimate as the one you
got with linearmodels , but the standard errors will
be off. If you want those, you are probably better off with the
matrix implementation of 2SLS. To do that, you have to
append the additional covariates into both the treatment and
the instrument matrix. Then, you can find the IV parameters
as follows:

When coding it up, you just have to be careful with large N . 
Z(Zâ�Z)−1

Z ' will be an huge N×N  matrix, which can be
avoided if you just first multiply (Zâ�Z)−1

Zâ�X and then pre-
multiply Z:

coef std err t P>|t|

Intercept 210.6177 40.832 5.158 0.000
prime_card 693.1207 13.209 52.474 0.000
income 0.3998 0.001 433.806 0.000
age 9.7444 0.963 10.114 0.000

In [16]: Z = df[["prime_eligible", "credit_score

         X = df[["prime_card", "income", "age"]]

X̂ = Z(Zâ�Z)−1Zâ�X

βIV = (X̂
'
X̂)

−1

X̂Y



Out[16]: array([693.12072518]) 

         

Once more, you have the exact same coefficient as before.
Once you have that, you can compute the IV residuals and the
variance:

V̂ ar(β̂IV ) = σ2(êiv)diag((X̂
'
X̂)

−1

)

         Y = df[["pv"]].values

         def add_intercept(x):

             return np.concatenate([np.ones((x.s

         Z_ = add_intercept(Z)

         X_ = add_intercept(X)

         # pre-multiplying Z_.dot(...) last is i

         # creating a huge NxN matrix

         X_hat = Z_.dot(np.linalg.inv(Z_.T.dot(Z

         b_iv = np.linalg.inv(X_hat.T.dot(X_hat)

         b_iv[1]

         

In [17]: e_hat_iv = (Y - X_.dot(b_iv))

         var = e_hat_iv.var()*np.diag(np.linalg



Out[17]: 12.164694395033125 

         

This variance formula is a bit harder to interpret, due to the
matrix notation, but you can approximate something that is
more in line with what you had before, in the case without
additional covariates:

SE(β̂IV ) ≈
σ(êIV )

σ(T̃ )√nR2
1st

Here, T̃  is the residuals of the treatment regressed on the
additional covariates, but not the instrument, and R2

1st is the 
R2 from the first stage:

Out[18]: 12.156252763192523 

         

         np.sqrt(var[1])

         

In [18]: t_tilde = smf.ols("prime_card ~ income 

         e_hat_iv.std()/(t_tilde.std()*np.sqrt(n

         



With this formula, you can see that, aside from increasing the
sample size, you have three levers to decrease the standard
error:

1. Increasing the first stage R2. This can be done by finding
strong instruments, which are variables that are good at
predicting compliance, but satisfy the exclusion restriction
(do not cause the outcome).

2. Removing variables that are highly predictive of T  in order

to increase σ(T̃ ).

3. Decreasing the size of the second stage residuals, which can
be done by finding variables that are highly predictive of
the outcome.

Of those three levers, I confess I only like the last one. As I said
before, it is very hard to find IVs in the wild. Also, there is only

so much you can remove in order to decrease σ(T̃ ). Which

leaves you with the only reliable way to decrease the variance:
finding variables that are good at predicting the outcome.

Discontinuity Design

Regression discontinuity design (RDD) is another design worth
mentioning in addition to the traditional instrumental
variable and noncompliance designs. Although RDD is widely
used in academia, its application in industry may be more



limited. RDD leverages artificial discontinuities in the
treatment assignment to identify the treatment effect. For
example, suppose a government implements a money transfer
program that offers poor families a monthly check of 200 USD
in the local currency, but only families earning less than 50
USD are eligible. This creates a discontinuity in the program’s
assignment at 50 USD, allowing researchers to compare
families just above and just below the threshold to measure
the program’s effectiveness, provided that the two groups are
similar.

RDD can be applied to many other situations besides the
money transfer program example. Discontinuities are
pervasive, making RDD very attractive to researchers. For
instance, to understand the impact of college, researchers can
compare people who scored just above and just below a
passing threshold in an admission exam. To assess the impact
of women on politics, researchers can compare cities where a
female candidate lost by a small margin to those where a
female candidate won by a small margin. The applications are
endless.

RDD can also be useful in industry, but to a lesser extent. For
example, suppose a bank offers a credit card to all its
customers, but charges a fee to those with an account balance
below 5,000 USD. This creates a discontinuity in the way the
card is offered, where customers with balances above the
threshold are more likely to choose the prime card, while



those with balances below the threshold are not. Thus, RDD
can be applied to compare the effects of having a prime card
versus a regular card, provided that customers above and
below the threshold are similar in other respects.

Regarding the relevance of discontinuity designs in the
industry, I believe that it is less applicable since firms could
easily conduct experiments to randomize eligibility, as we
have discussed earlier. However, let us suppose, for the sake
of this example, that running such experiments would be
time-consuming. Maybe because the required sample is too
big, due to low compliance.

In contrast, the bank in question already has data following
the discontinuity design described previously. Therefore, the
bank can leverage this data to determine the effect of the
prime credit card. How can the bank use the discontinuity for
this purpose? The basic idea is to recognize that the threshold
can be understood as an instrument since crossing it increases
the likelihood of receiving the treatment.

In the following image, you can see how the discontinuity
design relates to instrumental variables. The bottom part
shows the counterfactual treatment by account balance. Since
the instrument is crossing the 5,000 USD threshold, you can
observe T0 when balance < 5,000 and T1 otherwise.
Moreover, since the instrument increases the chance of
getting the treatment (the prime card), there is a jump in 
P(T = 1) once you cross the threshold. The upper part of the



plot reflects how those changes in treatment probability
impact the outcome.

Figure 11-4. Potential outcomes and potential treatment in a discontinuity design

The probability of treatment being less than one, even above
the threshold, makes the outcome you observe less than the
true potential outcome Y1. By the same token, the outcome
you observe below the threshold is higher than the true
potential outcome Y0. This makes it look like the treatment



effect at the threshold is smaller than it actually is and you
will have to use IV to correct for that.

Discontinuity Design Assumptions

Besides the IV assumptions, the discontinuity design requires
one further assumption about the smoothness of the potential
outcomes and potential treatment functions. Let’s define a
running variable R such that the treatment probability is a
discontinuous function of that variable at a threshold R = c.
In your banking example, R would be the account balance
and c = 5,000.

Now, you need to assume that:

In other words, the potential outcome Yt and potential
treatment Tz at the discontinuity R = c are the same if you
approach them from the left or from the right.

With those assumptions at hand, you can derive the local
average treatment effect estimator for a discontinuity design:

Importantly, this estimator is local in two senses. First, it is
local because it only gives the treatment effect at the threshold

lim
r→c−

E[Yt|R = r] = lim
r→c+

E[Yt|R = r]

lim
r→c−

E[Tz|R = r] = lim
r→c+

E[Tz|R = r]

LATE =
limr→c+ E[Y |R = r]− limr→c− E[Y |R = r]

limr→c+ E[T |R = r]− limr→c− E[T |R = r]

= E[Y1 − Y0|T1 > T0,R = c]



R = c. This is the discontinuity design locality. Second, it is
local because it only estimates the treatment effect for the
compliers. This is the IV locality.

Intention to Treat Effect

In the top part of Figure 11-4, the jump in the observed
outcome at the threshold is the intention-to-treat effect, since
it measures how the outcome changes as you change the
instrument. Let’s now see how you can estimate it, since this
will be the numerator of your final IV estimate. To do so, let’s
first read the data containing information on the customer’s
account balance, whether or not they choose the prime card,
and what their purchase volume is:

In [19]: df_dd = pd.read_csv("./data/prime_card_

         df_dd.head()

         



Next, you need to regress the outcome variable on the running
variable R (balance) interacted with a dummy for being above
the threshold (R > c):

yi = β0 + β1ri + β2𝟙(ri > c) + β3𝟙(ri > c)ri

The parameter estimate associated with crossing the

threshold, β̂2 , can be interpreted as the intention-to-treat
effect:

balance prime_card pv

0 12100.0 1 356.472

1 4400.0 1 268.172

2 4600.0 1 668.896

3 3500.0 1 428.094

4 12700.0 1 1619.793



Notice that this is essentially running two regression lines: one
above and one below the threshold. If compliance was not an
issue, meaning that everyone above the threshold would get
the treatment and everyone below the threshold would get the
control, you could still use this approach. If that where the
case, compliance would be 100%, the ITTE would already be
the ATE:

In [20]: m = smf.ols(f"pv~balance*I(balance>5000

         m.summary().tables[1]

         

coef std err t P>|t|

Intercept 251.1350 19.632 12.792 0.00
I(balance > 5000)
[T.True]

354.7539 22.992 15.430 0.00

balance 0.0616 0.005 11.892 0.00
balance:I(balance
> 5000)[T.True]

–0.0187 0.005 –3.488 0.00



The IV Estimate

Since compliance is not 100%, you need to divide the
intention-to-treat effect by the compliance rate. In the context
of a discontinuity design, that would be how much the
treatment probability changes as you cross the threshold. To
estimate this number, you can simply repeat the previous
procedure, replacing the outcome variable, pv , with
the treatment, prime_card . Here is a simple function
to compute the IV estimate in a discontinuity design. It
estimates the ITTE and the compliance rate and divides one by
the other:

In [21]: def rdd_iv(data, y, t, r, cutoff):

             compliance = smf.ols(f"{t}~{r}*I({r

             itte = smf.ols(f"{y}~{r}*I({r}>{cut

             

             param = f"I({r} > {cutoff})[T.True]



Out[21]: 654.3917626767736 

         

Applying this function to your data yields an estimate that is
pretty close to the true LATE. Remember that you can check
this since this dataset contains the individual level treatment
effect stored in the tau  column and the compliance
category:

Out[22]: 700.0 

         

Finally, although you could derive a formula to calculate the
confidence interval of that estimator, the easiest way is to
simply wrap the entire function in a bootstrap procedure. I’ll

             return itte.params[param]/complianc

         

         rdd_iv(df_dd, y="pv", t="prime_card", r

         

In [22]: (df_dd

          .round({"balance":-2}) # round to near

          .query("balance==5000 & categ=='compli

         



hide the code for this since it is fairly repetitive, but you can
see the resulting interval here:

array([535.49935691, 781.24156232]) 

Bunching

Before closing this chapter, I just wanted to mention a
potential issue to the discontinuity design identification. If the
units (customers in your example) can manipulate the
running variable, they can also self-select into the treatment
group. In the prime credit card example, customers could
decide to increase their deposits until it reached just 5,000 so
that they would get the prime credit card for free. This would
violate the assumption about the smoothness in the potential
outcomes, since those just above the threshold would no
longer be comparable to those just below it.

A simple and visual way to check if this is happening is to plot
the density around the threshold. If units are self-selecting
into the treatment, you would expect a huge spike in the
density at the threshold. Fortunately, it does not appear to be
the case with this data:



Key Ideas

In this chapter you learned that noncompliance becomes an
issue when people can choose not to take a treatment. This is
fairly common in the industry, as companies tend to have a
pool of optional products or services. In those situations, the
customer choice confounds the effect of the product or
service, even if the company can randomize their availability.

You also learned about the compliance groups or types:

Compliers
Those who take the treatment that was assigned to them.
Always takers
Those who always take the treatment, regardless of the
assignment.
Never takers



Those who never take the treatment, regardless of the
assignment.
Defiers
Those who take the opposite treatment from the one
assigned.

And you learned how to use instruments to deal with
noncompliance. Namely, an instrument Z is a variable that (1)
impacts the treatment in a nonconfounded way and (2)
doesn’t impact the outcome, unless through the treatment:

On top of that, if you assume that the instrument flips the
treatment in a single direction (monotonicity assumption), you
can use it to identify the average treatment effect on the
compliers:

E[Y1 − Y0|T1 > T0] =
E[Y |Z = 1] − E[Y |Z = 0]

E[T |Z = 1] − E[T |Z = 0]

In other words, all you have to do is to normalize the intention
to treat the effect by the compliance rate, both of which are
easy to identify if the instrument is randomized.



However, there is still a price to pay in terms of variance. If
compliance is low, the variance of the instrumental variable
estimate will be substantially larger than that of OLS.
Particularly, if compliance is 50%, you would need 4x more
samples to achieve the same standard errors as if compliance
was not an issue (100% compliance). There are some
additional tricks to decrease the variance, but the most
promising one seems to be finding variables that are good at
predicting the outcome, pretty much as it was the case with
OLS.

Additionally, you learned that discontinuities in your data
could also be treated as instruments. In general, you probably
won’t need to rely on them, since deploying experiments is
fairly common and easy in the industry. Still, in the case that
experiments are not available, you can leverage those
discontinuities to identify the local average treatment effect.



RACTICAL EXAMPLE

QUARTER OF BIRTH INSTRUMENT

As I said earlier, it is pretty hard to find valid instrumental
variables in the wild, but quarter of birth might be one of
those. In the US, being born in the last quarter means you’ll
probably have more school years, since you’ll join school
earlier in your life. If quarter of birth doesn’t affect income
(unless through schooling) and is as good as random,
economists can use it to identify the effect of school on
income.

By doing that, economists estimated that we should expect one
extra year of education to increase wages by 8.5%, on average:



Chapter 12. Next Steps

It has been a long way since you were first introduced to
counterfactuals. This book has taken you on a journey
through the world of causal inference, starting with the
basics and gradually building up to more advanced concepts
and techniques. You should now have a solid understanding
of how to reason about causation and how to use various
methods to untangle causation from correlation in your data.

You have learned about the importance of A/B testing as the
gold standard for causal inference, the power of graphical
models for causal identification, and the use of linear
regression and propensity weighting for bias removal. You
have explored the intersection between machine learning
and causal inference and how to use these tools for
personalized decision making.

Furthermore, you have learned how to incorporate the time
dimension into your causal inference analyses using panel
datasets and methods like difference-in-differences and
synthetic control. Finally, you have gained an understanding
of alternative experiment designs for when randomization is
not possible, such as geo and switchback experiments,
instrumental variables, and discontinuities.



With the knowledge and tools presented in this book, you are
equipped to tackle real-world problems and make informed
decisions based on causation rather than correlation. I hope
you enjoyed it and that it keeps being useful to you
throughout your career.

This being an introductory book, I intentionally left out some
of the causal inference topics that are active areas of
research, but have not yet become widespread in the
industry. This doesn’t mean they aren’t useful. Sometimes
they are simply complicated, with no easy-to-use software
that wraps them. If you enjoyed this book and you are
craving something more, I suggest you explore one of the
following topics.

Causal Discovery

Throughout this book, you used causal graphs as a starting
point for your causal inference analysis. But what if you
don’t know the causal graph and, instead, have to learn it
from data? Causal discovery is a field of study that focuses on
finding causal relationships between variables in a given
system by using data generated from that system. Causal
discovery is the process of going from data to causal
knowledge. If you want to learn more about it, a good place
to start is the paper “Causal Discovery Toolbox: Uncover



Causal Relationships in Python,” by Diviyan Kalainathan and
Olivier Goudet.

Sequential Decision Making

Although this book covered panel data structures, it did it
mostly in the context of staggered adoption, which (among
other things) means that there is no treatment-confounder
feedback, which can typically arise when the treatment
assignment is decided at each period in a sequence. To
provide a concrete example, suppose you want to study the
effect of a medical procedure (T ) on hospital discharge rates (
Y ). However, the decision to perform the procedure depends
on patient symptoms, and this decision is made on a daily
basis. Therefore, the probability of a patient receiving the
treatment on a particular day depends on whether they were
treated on previous days and their symptoms over those
days:



Although all the variables used to determine whether to treat
or not are observable, traditional methods like regression
may not be suitable for estimating the treatment effect due to
the complex time dynamics and treatment-confounder
feedback. Adjusting for confounders, such as patient
symptoms, leads to noncausal paths, such as 
T0 → Symptom1 ← U1 → Y .

Causal inference with sequential decision making has many
applications in the industry. However, it is an incredibly
intricate topic, which is why I left it out of this book. Still, if
you are faced with a situation like the one I just described, I
suggest you check out the book Causal Inference: What If, by
Hernán and Robins. The last part of the book is dedicated to
sequential decision making.

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


Causal Reinforcement Learning

Causal reinforcement learning (CRL) is an area of machine
learning that combines the principles of causal inference and
reinforcement learning. The goal of CRL is to automate the
treatment allocation process with the objective of optimizing
the outcome that the treatment influences. To achieve this
goal, the automated decision-making system needs to balance
exploiting promising treatments with exploring new
treatments or applying the same treatment to different types
of individuals. However, the use of observable variables in
the decision-making process can lead to confounding, as
there may be factors that affect both the treatment allocation
and the observed outcome. Therefore, the system must adjust
for these confounders to better understand the optimal
treatments, which is a key challenge in CRL.

A simple example of where CRL could be applied is in the
medical setting described earlier. However, instead of
understanding the impact of a medical procedure, the
objective would be to craft an agent that can recommend the
procedure to physicians in a way that optimizes the patient
outcomes. The agent would need to consider factors such as
patient symptoms and medical history to make treatment
recommendations that are tailored to each patient’s
individual needs while accounting for the causal



relationships between the treatment and the observed
outcomes.

Much of the literature in causal reinforcement learning gets
entangled with that of contextual bandits. The two are, in
fact, closely related. If you want a good place to start, I
recommend the paper “Contextual Bandits in a Survey
Experiment on Charitable Giving: Within-Experiment
Outcomes Versus Policy Learning,” by Athey et al., and the
American Economic Association Continuing Education
Webcast on “Modern Sampling Methods,” by Keisuke Hirano
and Jack Porter.

Causal Forecasting

Causal forecasting is a methodology that seeks to forecast
future outcomes by taking into account the causal
relationships between variables. Unlike traditional
forecasting methods that rely solely on statistical associations
between variables, causal forecasting aims to identify and
model the underlying causal mechanisms that drive the
relationships between variables. This approach can lead to
more accurate and reliable forecasts, especially in complex
systems where traditional statistical models may fail to
capture the true causal relationships.



Causal forecasting typically involves a bit of causal discovery,
since an important step in causal forecasting is figuring out if
a correlation between X and Y  is due to X → Y , Y → X, or
Y ← U → X. However, causal forecasting also requires
dealing with the additional complexity of traditional time-
series modeling, like nonstationarity and the data not being
independent and identically distributed. A good place to
learn more about this topic is the American Economic
Association 2019 Continuing Education Webcast on Time-
Series Econometrics, by James H. Stock and Mark W. Watson.

Domain Adaptation

Causal inference is the process of understanding what would
happen from what did happen. This involves moving from a
factual distribution, such as Y |T = 1, to a counterfactual
one, like Y1. The problem of inferring something about a
distribution while having data from another one is known as
domain adaptation, and it has many applications beyond
causal inference. For instance, consider a financial services
company that wants to detect fraudulent transactions. At first
glance, this may appear to be a purely predictive task, where
the company can train a machine learning model on its past
transactions and use it to classify future transactions.
However, the data the company has is fundamentally
different from the data it needs to classify. Specifically, the



company only has transactions that were authorized by its
previous fraud-detection system. If that system was effective,
then P(fraud) in the training data will be lower than P(fraud)
for the future transactions the company model has to classify.
In other words, the company has data on Y|filtered but wants
to build a model that is good at predicting Y without the filter.
The company wants its model to act as the filter.

This is just one example, but there are many others. For
instance, a company that is expanding into new countries
may want to use its existing data from other countries to
train predictive models that will perform well in the new
country. Alternatively, a company’s past data may behave
differently from its current and future data, indicating that
the distributions are shifting over time. In fact, since data is
rarely stationary, most businesses will have to deal with
distribution shifts in some way or another. This will require
them to learn from one distribution to apply their insights to
another. Although this problem is not strictly in the realm of
causal inference, many of the techniques used in causal
inference can be applied here. A good review on the
literature on concept drift is given by the paper “Learning
Under Concept Drift: A Review,” by Lu et al.

Closing Thoughts



I hope I have sparked your interest in continuing your
journey in causal inference. The nice thing about research is
that it never ends. I myself intend to keep writing about
causal inference for the foreseeable future and I would like
to invite you to join me. You can find me on GitHub, Twitter,
and LinkedIn, where I post regularly about causal inference.
But most of all, my wish is that I have sparked in you an
interest in this very fascinating topic. Although this book has
come to an end, your learning journey on causal inference
has just begun. I wish you all the best on the path ahead!

https://github.com/matheusfacure
https://twitter.com/MatheusFacure
https://www.linkedin.com/in/matheus-facure-7b0099117/
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