
M A N N I N G

Prabhu Eshwarla

2 EPILOGUE

Our example application
(EzyTutors)

API & application (external-facing)

Rust web service
(APIs)

Tutor

Rust web
application
(WASM)

Internet
browsers

RDBMS Logging Application
configuration

Software infra / config

P
ro

du
ct

io
n

re
ad

in
es

s,
 p

ac
ka

gi
ng

,
de

pl
oy

m
en

t,
be

nc
hm

ar
ki

ng
Non-Rust web

application
(React/Angular/Vue)

User User UserUser

Mobile apps
(iOS/Android)

Not in project
scopeActivities

Legend

Web
service

Web
application Infra/configApplication

modules

Course
Rust web

application
(server-side rendering)

User auth
(email/password)

Templates and
form handling

Custom error
handling

API auth
(JWT token)

Application
state

Automated
test scripts

Application modules

Database
access library

Actix HTTP server

Actix app

Get a course

Get all courses for tutor

Post a course

Route 1

In-memory data store

Route 3

Route 2

Handler 3

Handler 2

Handler 1

Web
client

Internet

Mobile
client

EzyTutors web service

Web service API request is sent from web and mobile clients to the Actix HTTP server.
The Actix HTTP server directs the request to the respective route in the Actix application.
Each route directs the request to the corresponding handler.
Each handler stores and retrieves data from the in-memory data store and sends HTTP
responses back to web and mobile clients.

RESTful APIs with Actix

Rust Servers, Services, and Apps

Rust Servers,
Services, and Apps

PRABHU ESHWARLA

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any
usage of the information herein.

Manning Publications Co. Development editor: Elesha Hyde
20 Baldwin Road Technical development editor: Alain Couniot
PO Box 761 Review editor: Aleksandar Dragosavljevic
Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Andy Carroll
Proofreader: Melody Dolab

Technical proofreader: Jerry Kuch
Typesetter and cover designer: Marija Tudor

ISBN 9781617298608
Printed in the United States of America

brief contents
PART 1 WEB SERVERS AND SERVICES .. 1

1 ■ Why Rust for web applications? 3
2 ■ Writing a basic web server from scratch 19
3 ■ Building a RESTful web service 53
4 ■ Performing database operations 80
5 ■ Handling errors 105
6 ■ Evolving the APIs and fearless refactoring 129

PART 2 SERVER-SIDE WEB APPLICATIONS 167
7 ■ Introducing server-side web apps in Rust 169
8 ■ Working with templates for tutor registration 189
9 ■ Working with forms for course maintenance 208

PART 3 ADVANCED TOPIC: ASYNC RUST 227
10 ■ Understanding async Rust 229
11 ■ Building a P2P node with async Rust 256
12 ■ Deploying web services with Docker 271
v

contents
preface x
acknowledgments xii
about this book xiii
about the author xvii
about the cover illustration xviii

PART 1 WEB SERVERS AND SERVICES 1

1 Why Rust for web applications? 3
1.1 Introducing modern web applications 4
1.2 Choosing Rust for web applications 7

Characteristics of web applications 7 ■ Benefits of Rust for web
applications 8 ■ What does Rust not have? 13

1.3 Visualizing the example application 13
What will we build? 14 ■ Technical guidelines for the example
application 16

2 Writing a basic web server from scratch 19
2.1 The networking model 20
2.2 Writing a TCP server in Rust 22

Designing the TCP/IP communication flow 22 ■ Writing the TCP
server and client 23
vi

CONTENTS vii
2.3 Writing an HTTP server in Rust 27
Parsing HTTP request messages 29 ■ Constructing HTTP
response messages 37 ■ Writing the main() function and server
module 44 ■ Writing the router and handler modules 45
Testing the web server 50

3 Building a RESTful web service 53
3.1 Getting started with Actix 53

Writing the first REST API 54 ■ Understanding Actix concepts 56

3.2 Building web APIs with REST 59
Defining the project scope and structure 60 ■ Defining and
managing application state 63 ■ Defining the data model 66
Posting a course 70 ■ Getting all the courses for a tutor 74
Getting the details of a single course 76

4 Performing database operations 80
4.1 Setting up the project structure 81
4.2 Writing our first async connection to database

(iteration 1) 82
Selecting the database and connection library 82 ■ Setting up the
database and connecting with an async pool 83

4.3 Setting up the web service and writing unit tests
(iteration 2) 88
Setting up the dependencies and routes 89 ■ Setting up the
application state and data model 89 ■ Setting up the connection
pool using dependency injection 90 ■ Writing the unit tests 93

4.4 Creating and querying records from the database
(iteration 3) 95
Writing database access functions 95 ■ Writing handler
functions 98 ■ Writing the main() function for the database-
backed web service 101

5 Handling errors 105
5.1 Setting up the project structure 106
5.2 Basic error handling in Rust and Actix Web 109
5.3 Defining a custom error handler 115
5.4 Error handling for retrieving all courses 118
5.5 Error handling for retrieving course details 124
5.6 Error handling for posting a new course 126

CONTENTSviii
6 Evolving the APIs and fearless refactoring 129
6.1 Revamping the project structure 130
6.2 Enhancing the data model for course creation and

management 135
Making changes to the data model 136 ■ Making changes to the
course APIs 141

6.3 Enabling tutor registration and management 154
Data model and routes for tutors 154 ■ Handler functions for
tutor routes 156 ■ Database access functions for tutor routes 158
Database scripts for tutors 160 ■ Run and test the tutor
APIs 161

PART 2 SERVER-SIDE WEB APPLICATIONS 167

7 Introducing server-side web apps in Rust 169
7.1 Introducing server-side rendering 170
7.2 Serving a static web page with Actix 172
7.3 Rendering a dynamic web page with Actix and Tera 174
7.4 Adding user input with forms 176
7.5 Displaying a list with templates 179
7.6 Writing and running client-side tests 182
7.7 Connecting to the backend web service 185

8 Working with templates for tutor registration 189
8.1 Writing the initial web application 190
8.2 Displaying the registration form 196
8.3 Handling registration submission 201

9 Working with forms for course maintenance 208
9.1 Designing user authentication 209
9.2 Setting up the project structure 210
9.3 Implementing user authentication 211
9.4 Routing HTTP requests 216
9.5 Creating a resource with the HTTP POST method 219
9.6 Updating a resource with the HTTP PUT method 221
9.7 Deleting a resource with the HTTP DELETE

method 224

CONTENTS ix
PART 3 ADVANCED TOPIC: ASYNC RUST 227

10 Understanding async Rust 229
10.1 Introducing async programming concepts 230
10.2 Writing concurrent programs 236
10.3 Diving deeper into async Rust 241
10.4 Understanding futures 245
10.5 Implementing a custom future 252

11 Building a P2P node with async Rust 256
11.1 Introducing peer-to-peer networks 257

Transport 259 ■ Peer identity 259 ■ Security 259
Peer routing 259 ■ Messaging 259 ■ Stream
multiplexing 260

11.2 Understanding the core architecture of libp2p
networking 260
Peer IDs and key pairs 261 ■ Multiaddresses 263 ■ Swarm and
network behavior 264

11.3 Exchanging ping commands between peer nodes 266
11.4 Discovering peers 268

12 Deploying web services with Docker 271
12.1 Introducing production deployment of servers and

apps 272
Software deployment cycle 272 ■ Docker container basics 274

12.2 Writing the Docker container 276
Checking the Docker installation 276 ■ Writing a simple Docker
container 278 ■ Multistage Docker build 280

12.3 Building the database container 283
Packaging the Postgres database 284 ■ Creating database
tables 288

12.4 Packaging the web service with Docker 290
12.5 Orchestrating Docker containers with Docker

Compose 292

appendix Postgres installation 299

index 301

preface
Building high-performance network services remains a challenge with any program-
ming language. Rust has several unique features that significantly lower the challenge
threshold.

 Indeed, Rust has been designed from the very beginning to be a language for
highly concurrent and safe systems. Several programming languages (such as C, C++,
Go, Java, JavaScript, and Python) are used to develop highly performant and reliable
network services that can run on a single node or as part of a multi-node distributed
system, either in on-premises data centers or in the cloud, but several points make
Rust an attractive alternative:

 A small footprint (due to full control over memory and CPU usage)
 Security and reliability (due to memory and data-race safety, enforced by the

compiler)
 Low latency (there is no garbage collector)
 Modern language features

This book teaches the various tools, techniques, and technologies that can be used to
build efficient and reliable web services and applications using Rust. It also provides a
hands-on introduction to network services and web applications in Rust, all the way
from basic single-node, single-threaded servers built from standard library primitives
to advanced multithreaded, asynchronous distributed servers, cutting across different
layers of the protocol stack. You will learn about

 Networking primitives in the Rust standard library
 Basic HTTP services
 REST API servers backed by a relational database
x

PREFACE xi
 Distributed servers with P2P networking
 Highly concurrent asynchronous servers

This book is designed to teach you to develop web services and applications in Rust
using a tutorial-like approach by taking a single example and progressively enhancing
it over multiple iterations as you progress through the chapters. I hope you will find
the book interesting and the approach practical enough to apply directly to your area
of work.

acknowledgments
Writing a book of this nature in a fast-paced, deep-tech area is a significant commit-
ment of time and effort.

 I would first like to thank my family, who sacrificed a ton of time to allow me to
complete this book. There aren’t enough words to say how grateful I am to them.

 I would like to thank the many people at Manning who have assisted in various
ways to help me develop the book in a highly iterative and consultative manner. I want
to thank Mike Stephens for giving me this opportunity, as well as the various develop-
ment editors, in particular Elesha Hyde for her remarkable support, guidance, and
patience in helping take the book to the finish line, tackling numerous challenges
along the way. Many thanks also go to the production staff for creating this book in its
final form. Last, but not least, my sincere gratitude to Alain Couniot, technical devel-
opment editor, without whom this book simply would not have been completed.
Thanks, Alain, for patiently and diligently reviewing the chapters, upgrading the
code, and elevating the technical quality and relevance of the content for the readers.
You rock!

 Finally, I would also like to thank all the reviewers who provided valuable feedback
on the manuscript: Adam Wendell, Alessandro Campeis, Alex Lucas, Bojan Djurkovic,
Casey Burnett, Clifford Thurber, Dan Sheikh, David Paccoud, Gustavo Gomes, Hari
Khalsa, Helmut Reiterer, Jerome Meyer, Josh Sandeman, Kent R. Spillner, Marcos
Oliveira, Matthew Krasnick, Michal Rutka, Pethuru Raj Chelliah, Richard Vaughan,
Slavomir Furman, Stephane Negri, Tim van Deurzen, Troi Eisler, Viacheslav Koryagin,
William Wheeler, and Yves Dorfsman. Your suggestions were instrumental in making
this book even better. My gratitude also goes to the MEAP readers who contributed on
the liveBook forum with interesting questions and opinions and spotted the occa-
sional typo.
xii

about this book
This book is not a reference guide; rather, it is meant as an introduction and should
serve as an inspiring guide to the breadth of network services that can be developed
in Rust. It takes the form of a hands-on tutorial in order to maximize learning and
retention.

Who should read this book
This book is designed primarily for backend software engineers involved or interested
in server-side, web backend, and API development; distributed systems engineers who
wish to explore Rust as an alternative to Go, Java, or C++; and software engineers
working on low-latency servers and applications in areas such as machine learning,
artificial intelligence, the Internet of Things, image/video/audio processing, and
backends for real-time systems.

 To get the most from this book, you should have both backend development expe-
rience and some familiarity with Rust. Specifically, as a backend developer, you should
have proficiency in web service concepts including HTTP, JSON, database access with
ORM, and API development in any high-level language (e.g., Java, JavaScript, Python,
C#, Go, or Ruby). As an advanced beginner or intermediate-level Rust programmer,
you should understand how to replicate and modify open source tutorials and reposi-
tories and be familiar with the following aspects of Rust:

 Rust primitives (data types), user-defined data structures (structs, enums), func-
tions, expressions, and control loops (if, for, and while loops)

 Immutability, ownership, references, and borrowing
 Error handling with Result and option structures
 Basic functional constructs in Rust
xiii

ABOUT THIS BOOKxiv
 The Rust toolchain, including Cargo for build and dependency management
and code formatting, documentation, and automated testing tools

Please see “Other online resources” later in this section for recommendations for
refreshing or increasing your Rust knowledge.

How this book is organized: A road map
This book is organized as a series of practical projects, each dealing with a specific
type of networking service that can be developed in Rust. You will learn by examining
the code and by coding along. The relevant theory is explained along the way within
the context of these projects. You will also be encouraged to try some suggested cod-
ing exercises.

 This book contains 12 chapters divided among three parts. Part 1 sets the scene by
introducing the basic concepts of a web application and laying down the foundations
for the following sections. We will develop a web application backend of increasing
sophistication, finally reaching a stage close to production readiness. Part 1 consists of
the following chapters:

 Chapter 1 introduces key concepts, such as distributed architectures and web
applications. It also introduces the application that we will develop in this book.
Finally, it summarizes Rust’s strengths and provides some hints as to when to
use and not to use Rust.

 Chapter 2 is a warm-up chapter for the rest of the book. We will develop a few
TCP-based components to get acquainted with Rust’s capabilities in this
domain.

 Chapter 3 shows how to build RESTful web services using Rust and some well-
chosen crates among the rich ecosystem that already exists (and keeps grow-
ing). It also explains what application state is and how to manage it.

 Chapter 4 addresses the need to persist data in a database. We will use a simple
but efficient crate that interacts with SQL databases.

 Chapter 5 tackles the important aspect of dealing with unforeseen circum-
stances upon invoking the web services we have developed so far.

 Chapter 6 shows how easy and safe it is to refactor code when developing with
Rust as our web service API gets more powerful and sophisticated.

Part 2 deals with the other part of the web application, namely its frontend, with its
graphical user interface (GUI). In this book, I have opted for a simple approach that
relies on server-side rendering instead of sophisticated web frameworks that run in
the browser. This part consists of three chapters:

 Chapter 7 introduces the chosen server-side rendering framework and shows
how to prompt the user for input and how to deal with lists of items. It also
shows how to interact with the backend web service developed in the previous
part.

ABOUT THIS BOOK xv
 Chapter 8 focuses on the templating engine used on the server side. It shows
how to support user registration through a few forms.

 Chapter 9 addresses more advanced web application topics, such as user
authentication, routing, and effectively using RESTful web services for main-
taining data in a CRUD (create, read, update, delete) fashion.

Part 3 covers three advanced topics that are not directly related to the web service and
web app we have built so far, but that are important for anyone interested in building
complex Rust servers and preparing them for production deployment:

 Chapter 10 introduces asynchronous programming and how Rust supports this
programming paradigm. Then, async programming is illustrated with a few sim-
ple examples.

 Chapter 11 shows the power of Rust for the development of peer-to-peer (P2P)
applications using Rust and a few well-chosen crates.

 Chapter 12 demonstrates the preparation and packaging of our web applica-
tion into a Docker image that can then be deployed in a variety of environ-
ments (from a local workstation to the cloud).

About the code
The source code for this book is available on GitHub: https://github.com/pesh
war9/rust-servers-services-apps. This repository is structured by book chapter. Gener-
ally, the provided code for each chapter corresponds to the final stage of the code for
the chapter. You are invited to code along, starting with the code in its state at the end
of the previous chapter and letting it evolve incrementally as described in each chap-
ter. In the case of a problem, the source code from GitHub should show you what
went wrong or at least provide a good basis to resume your development.

 Setting up the environment should be straightforward for anybody who has
already developed a bit in Rust: all that is required is the standard Rust toolchain and
a good IDE (integrated development environment), such as VS Code, with some Rust
support extensions (the Rust Extension Pack is recommended; Rust Syntax and Rust
Doc Viewer are nice additions too). To benefit the most from GitHub and version con-
trol, Git should also be installed, but this is not mandatory as you can also download
the source code as a zip archive from GitHub.

 This book contains many examples of source code both in numbered listings and
in-line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

https://github.com/peshwar9/rust-servers-services-apps
https://github.com/peshwar9/rust-servers-services-apps
https://github.com/peshwar9/rust-servers-services-apps

ABOUT THIS BOOKxvi
 You can get executable snippets of code from the liveBook (online) version of
this book at https://livebook.manning.com/book/rust-servers-services-and-apps. The
complete code for the examples in the book is available for download from the Man-
ning website at https://www.manning.com/books/rust-servers-services-and-apps and
from GitHub at https://github.com/peshwar9/rust-servers-services-apps.

liveBook discussion forum
Purchase of Rust Servers, Services, and Apps includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can attach
comments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the author
and other users. To access the forum, go to https://livebook.manning.com/book/rust
-servers-services-and-apps/discussion. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
Rust as a programming language is supported through several excellent online
resources, managed by the Rust creators, as well as a number of independent resources,
such as on Medium. Here are some recommended resources:

 The Rust Book—The official guide from the developers of Rust (www.rust
-lang.org/learn). This online book features a section on writing network serv-
ers, but it is very basic.

 Rust by Example—A companion to The Rust Book (https://doc.rust-lang.org/rust
-by-example/index.html).

 The Cargo Book—Another book from the official Rust language site, devoted to
the Cargo package manager (https://doc.rust-lang.org/cargo/index.html).

 The Rust Users Forum (https://users.rust-lang.org/)
 Medium Rust articles (https://medium.com/tag/rust)

https://livebook.manning.com/book/rust-servers-services-and-apps
https://github.com/peshwar9/rust-servers-services-apps
https://livebook.manning.com/book/rust-servers-services-and-apps/discussion
https://livebook.manning.com/book/rust-servers-services-and-apps/discussion
https://livebook.manning.com/book/rust-servers-services-and-apps/discussion
https://livebook.manning.com/discussion
https://doc.rust-lang.org/rust-by-example/index.html
https://doc.rust-lang.org/rust-by-example/index.html
https://doc.rust-lang.org/rust-by-example/index.html
https://doc.rust-lang.org/cargo/index.html
http://www.rust-lang.org/learn
http://www.rust-lang.org/learn
http://www.rust-lang.org/learn
https://users.rust-lang.org/
https://medium.com/tag/rust
https://www.manning.com/books/rust-servers-services-and-apps

about the author
PRABHU ESHWARLA is currently the CTO of a startup building a layer-1 blockchain,
engineered using Rust. Prabhu became deeply interested in Rust as a programming
language and has been actively learning and working on it since July 2019. He has pre-
viously held several software engineering and tech leadership roles at Hewlett
Packard.
xvii

about the cover illustration
The figure on the cover of Rust Servers, Services, and Apps is “Homme Toungouse,” or
“Tungus Man,” taken from a collection by Jacques Grasset de Saint-Sauveur, published
in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

xviii

Part 1

Web servers and services

Rust is a great programming language that is trending very positively now-
adays. It was initially advertised as a systems programming language, along with
other famous languages like C or Go(lang). Indeed, it is gradually finding its way
into the Linux kernel: it is currently confined to drivers and modules, but its
intrinsic qualities—mainly expressiveness, memory safety, and performance—
will certainly open doors to more crucial parts of the operating system. At a
slower pace, Rust is also making inroads into the still-confidential realm of Web-
Assembly (WASM), in the browser or in the serverless cloud.

 Just like with Go, innovative developers have shown that Rust’s applicability
goes beyond systems programming and that it can be used, for example, to
develop efficient web application backends supported by databases.

 In this first part of the book, we will develop a simple yet representative web
application using REST web services, backed by a relational database. We won’t
address the UI aspects yet; those will be handled in the second part of the book.
In this part of the book, we will build the foundations for our web application,
thinking big but starting small. We will then address increasingly specialized top-
ics, such as database persistence, error handling, and API maintenance and
refactoring.

 After completing this part, you will be able to set up and develop robust
application backends, complete with routing and error handling, using Rust and
a handful of field-proven crates. You will then be ready to tackle part 2.

2 CHAPTER

Why Rust for
web applications?
Connected web applications that work over the internet form the backbone of
modern businesses and human digital lives. As individuals, we use consumer-
focused apps for social networking and communications, for e-commerce pur-
chases, for travel bookings, to make payments and manage finances, for education,
and to entertain ourselves, to name just a few. Likewise, business-focused applica-
tions are used across practically all functions and processes in an enterprise.

 Today’s web applications are mind-bogglingly complex distributed systems.
Users of these applications interact through web or mobile frontend user inter-
faces. But users rarely see the complex environment of backend services and soft-
ware infrastructure components that respond to the user requests made through
an app’s sleek user interfaces. Popular consumer apps have thousands of backend
services and servers distributed in data centers around the globe. Each feature of

This chapter covers
 An introduction to modern web applications

 Choosing Rust for web applications

 Visualizing the example application
3

4 CHAPTER 1 Why Rust for web applications?
an app may be executed on a different server, implemented with a different design
choice, written in a different programming language, and located in a different geo-
graphical location. The seamless in-app user experience makes things look so easy.
But developing modern web applications is anything but easy.

 We use web applications every time we tweet, watch a movie on Netflix, listen to a
song on Spotify, make a travel booking, order food, play an online game, hail a cab, or
use any of numerous online services as part of our daily lives. Without distributed web
applications, businesses and modern digital society would come to a grinding halt.

NOTE Websites provide information about your business. Web applications
provide services to your customers.

In this book, you will learn the concepts, techniques, and tools you’ll need to use Rust
to design and develop distributed web services and applications that communicate
over standard internet protocols. Along the way, you will see core Rust concepts in
action through practical working examples.

 This book is for you if you are a web backend software engineer, full stack applica-
tion developer, cloud or enterprise architect, CTO for a tech product, or simply a curi-
ous learner who is interested in building distributed web applications that are
incredibly safe, efficient, highly performant, and that do not incur exorbitant costs to
operate and maintain. By developing a working example through the course of this
book, I will show you how to build web services and traditional web application front-
ends in pure Rust.

 As you will notice throughout the chapters, Rust is a general-purpose language
that efficiently supports the development of many different kinds of applications. This
book presents a single application, but the techniques demonstrated are applicable to
many other situations using the same or other crates (a library is called a crate in Rust
terminology).

 In this chapter, we will review the key characteristics of distributed web applica-
tions, understand how and where Rust shines, and outline the example application we
will build together in this book.

1.1 Introducing modern web applications
We’ll start by looking at the structure of modern, distributed web applications. Distrib-
uted systems have components that may be distributed across several different com-
puting processors, communicate over a network, and concurrently execute workloads.
Technically, your home computer resembles a networked distributed system (given
modern multi-CPU and multi-core processors).

 Popular types of distributed systems include

 Distributed networks such as telecommunication networks and the internet.
 Distributed client-server applications. (Most web-based applications fall into

this category.)
 Distributed P2P applications such as BitTorrent and Tor.

51.1 Introducing modern web applications
 Real-time control systems such as air traffic and industrial control.
 Distributed server infrastructures such as cloud, grid, and other forms of scien-

tific computing.

Distributed systems are broadly composed of three parts: distributed applications, a
networking stack, and hardware and OS infrastructure.

 Distributed applications can use a wide array of networking protocols to communi-
cate internally between their components. However, HTTP is the overwhelming
choice today for a web service or web application communicating with the outside
world, due to its simplicity and universality.

 Web applications are programs that use HTTP as the application-layer protocol
and that provide functionality that is accessible to human users over standard internet
browsers. When web applications are not monolithic but are composed of tens or
hundreds of distributed application components that cooperate and communicate
over a network, they are called distributed web applications. Examples of large-scale dis-
tributed web applications include social media applications such as Facebook and
Twitter, e-commerce sites such as Amazon and eBay, sharing-economy apps like Uber
and Airbnb, entertainment sites such as Netflix, and even user-friendly cloud provi-
sioning applications from providers such as AWS, Google, and Azure.

 Figure 1.1 is a representative logical view of a distributed systems stack for a mod-
ern web application. In the real world, such systems can be distributed over thousands
of servers, but in the figure, you can see three servers connected through a network-
ing stack. These servers may all be within a single data center or be distributed geo-
graphically in the cloud. Within each server, a layered view of the hardware and
software components is shown.

D
is

tr
ib

ut
ed

ap
pl

ic
at

io
n

Server 1

H
ar

dw
ar

e
/ O

S
in

fr
as

tr
uc

tu
re

Networking stack (TCP/IP)

HTTP
server

L4 load
balancer RDBMS

Operating system, hypervisors,
container engines

Physical server / data
center / cloud

Tweet
API

Frontend
(server rendered)

Application components

User
auth

Distributed software infrastructure

Server 2

Redis
cache Kafka gRPC

server

Operating system, hypervisors,
container engines

Physical server / data
center / cloud

Notification
service

Frontend
(WASM)

Application components

Timeline
service

Distributed software infrastructure

Reverse
proxy

Service
discovery

Monitoring
server

Operating system, hypervisors,
container engines

Physical server / data
center / cloud

Tweet
processor

Real-time
events

Application components

URL
shortening

Distributed software infrastructure

Server 3

H
ar

dw
ar

e
/ O

S
in

fr
as

tr
uc

tu
re

D
is

tr
ib

ut
ed

ap
pl

ic
at

io
n

Figure 1.1 A simplified distributed systems stack for a social media application

6 CHAPTER 1 Why Rust for web applications?
 Hardware and OS infrastructure components—These are components such as phys-
ical servers (in a data center or cloud), operating system, and virtualization or
container runtimes. Devices such as embedded controllers, sensors, and edge
devices can also be classified in this layer (think of a futuristic case where tweets
are sent to social media followers of a supermarket chain when stocks of RFID-
labeled items are added to or removed from supermarket shelves).

 Networking stack—The networking stack comprises the four-layered Internet
Protocol suite, which forms the communication backbone for the distributed
system components, allowing them to communicate with each other across
physical hardware. The four networking layers (ordered from lowest to highest
level of abstraction) are

– Network link/access layer
– Internet layer
– Transport layer
– Application layer

The first three layers are usually implemented at the hardware or OS level. For
most distributed web applications, HTTP is the primary application layer proto-
col used. Popular API protocols such as REST, gRPC, and GraphQL use HTTP.
For more details on the Internet Protocol suite, see the documentation at
https://tools.ietf.org/id/draft-baker-ietf-core-04.html.

 Distributed applications—Distributed applications are a subset of distributed sys-
tems. Modern n-tier distributed applications are built as a combination of the
following:

– Application frontends—These can be mobile apps (running on iOS or
Android) or web frontends running in an internet browser. These app fron-
tends communicate with application backend services residing on remote
servers (usually in a data center or a cloud platform). End users interact with
application frontends.

– Application backends—These contain the application business rules, database
access logic, computation-heavy processes such as image or video processing,
and other service integrations. They are deployed as individual processes
(such as systemd processes on Unix/Linux) running on physical or virtual
machines, or as microservices in container engines (such as Docker) managed
by container orchestration environments (such as Kubernetes). Unlike appli-
cation frontends, application backends expose their functionality through
application programming interfaces (APIs). Application frontends interact
with application backend services to complete tasks on behalf of users.

– Distributed software infrastructure—This includes components that provide sup-
porting services for application backends. Examples are protocol servers,
databases, key/value stores, caching, messaging, load balancers and proxies,
service discovery platforms, and other such infrastructure components used

https://tools.ietf.org/id/draft-baker-ietf-core-04.html

71.2 Choosing Rust for web applications
for communications, operations, and security and monitoring of distributed
applications. Application backends interact with distributed software infra-
structure for service discovery, communications, lifecycle support, security,
monitoring, and so on.

Now that you’ve had an overview of distributed web applications, let’s take a look at
the benefits of using Rust to build them.

1.2 Choosing Rust for web applications
Rust can be used to build all three layers of distributed applications: frontends, back-
end services, and software infrastructure components. But each of these layers
addresses a different set of concerns and characteristics. It is important to be aware of
these while discussing the benefits of Rust.

 For example, client frontends deal with aspects such as user interface design, user
experience, tracking changes in application state and rendering updated views on
screen, and constructing and updating the Document Object Model (DOM).

 Backend services need well-designed APIs to reduce roundtrips, high throughput
(measured in requests per second), short response times under varying loads, low and
predictable latency for applications such as video streaming and online gaming, low
memory and CPU footprints, service discovery, and availability.

 The software infrastructure layer is concerned primarily with extremely low laten-
cies, low-level control of network and other operating-system resources, frugal use of
CPU and memory, efficient data structures and algorithms, built-in security, short
start-up and shut-down times, and ergonomic APIs for application backend services.

 As you can see, a single web application comprises components with at least three
sets of characteristics and requirements. While each of these could be the topic of a
book in itself, we will look at things more holistically and focus on a set of common
characteristics that broadly benefit all three layers of a web application.

1.2.1 Characteristics of web applications

Web applications can be of different types:

 Highly mission-critical applications such as autonomous control of vehicles and
smart grids, industrial automation, and high-speed trading applications in
which successful trades depend on the ability to quickly and reliably respond to
input events

 High-volume transaction and messaging infrastructure such as e-commerce plat-
forms, social networks, and retail payment systems

 Near real-time applications such as online gaming servers, video or audio process-
ing, video conferencing, and real-time collaboration tools

These applications have a common set of requirements:

 Should be safe, secure, and reliable
 Should be resource-efficient

8 CHAPTER 1 Why Rust for web applications?
 Must minimize latency
 Should support high concurrency

In addition, the following are nice-to-have requirements for such services:

 Should have quick startup and shutdown times
 Should be easy to maintain and refactor
 Must offer developer productivity

All these requirements can be addressed at the level of individual services and at the
architectural level. For example, an individual service can achieve high concurrency
by adopting multithreading or async I/O. Likewise, high concurrency can be achieved
at an architectural level by adding several instances of a service behind a load balancer
to process concurrent loads. When we talk about the benefits of Rust in this book, we
are looking at the individual service level because architectural-level options are com-
mon to all programming languages.

1.2.2 Benefits of Rust for web applications

You’ve seen that modern web applications comprise web frontends, backends, and
software infrastructure. The benefits of Rust for developing web frontends, either to
replace or supplement portions of JavaScript code, are a hot topic nowadays. How-
ever, we will not discuss them in this book as this topic is large enough for a book of its
own.

 Here, we will focus primarily on the benefits of Rust for application backends and
software infrastructure services. Rust meets all of the critical requirements that we
identified in the previous section for such services. Let’s see how.

RUST IS SAFE

When we talk about program safety, there are three distinct aspects to consider: type
safety, memory safety, and thread safety.

 Regarding type safety, Rust is a statically typed language. Type checking, which veri-
fies and enforces type constraints, happens at compile time, so the types of variables
have to be determined at compile time. If you do not specify a type for a variable, the
compiler will try to infer it. If it is unable to do so, or if it sees conflicts, it will let you
know and prevent you from proceeding. In this context, Rust is similar to Java, Scala,
C, and C++. Type safety in Rust is very strongly enforced by the compiler, but with
helpful error messages. This helps to eliminate an entire class of run-time errors.

 Memory safety is, arguably, one of the most unique aspects of the Rust programming
language. To do justice to this topic, let’s analyze this in detail.

 Mainstream programming languages can be classified into two groups based on
how they provide memory management. The first group comprises languages with
manual memory management, such as C and C++. The second group includes lan-
guages with a garbage collector, such as Java, C#, Python, Ruby, and Go.

 Since developers are not perfect, manual memory management means accepting a
degree of risk, and thus a lack of program correctness. So, for languages where low-

91.2 Choosing Rust for web applications
level control of memory is not necessary and peak performance is not the primary
goal, garbage collection has become a mainstream feature over the last 20 to 25 years.
Garbage collection has made programs safer than manually managing memory, but it
comes with limitations in terms of execution speed, the consumption of additional
compute resources, and the possible stalling of program execution. Also, garbage col-
lection only deals with memory, not other resources, such as network sockets and
database handles.

 Rust is the first popular language to propose an alternative—automatic memory
management and memory safety without garbage collection. As you are probably
aware, it achieves this through a unique ownership model. Rust enables developers to
control the memory layout of their data structures and makes ownership explicit.
Rust’s ownership model of resource management is modeled around RAII (Resource
Acquisition is Initialization)—a C++ programming concept—and smart pointers that
enable safe memory usage.

 In this model, each value declared in a Rust program is assigned an owner. Once a
value is given away to another owner, it can no longer be used by the original owner.
The value is automatically destroyed (memory is deallocated) when the owner of the
value goes out of scope.

 Rust can also grant temporary access to a value, another variable, or a function.
This is called borrowing. The Rust compiler (specifically, the borrow checker) ensures
that a reference to a value does not outlive the value being borrowed. To borrow a
value, the & operator is used (called a reference). References are of two types: immutable
references, &T, which allow sharing but not mutation, and mutable references, &mut T, which
allow mutation but not sharing. Rust ensures that whenever there is a mutable borrow
of an object, there are no other borrows of that object (either mutable or immutable).
All this is enforced at compile time, leading to the elimination of entire classes of
errors involving invalid memory access.

 To summarize, you can program in Rust without fear of invalid memory access and
without a garbage collector. Rust provides compile-time guarantees to prevent the fol-
lowing categories of memory-safety errors:

 Null pointer dereferences, where a program crashes because a pointer being
dereferenced is null.

 Segmentation faults, where programs attempt to access a restricted area of
memory.

 Dangling pointers, where a value associated with a pointer no longer exists.
 Buffer overflows, due to programs accessing elements before the start or

beyond the end of an array. Rust iterators don’t run out of bounds.

In Rust, memory safety and thread safety (which seem like two completely different con-
cerns) are solved using the same foundational principle of ownership. For type safety,
Rust, by default, ensures there is no undefined behavior due to data races. While some
web development languages may offer similar guarantees, Rust goes one step further

10 CHAPTER 1 Why Rust for web applications?
and prevents you from sharing objects that are not thread-safe between threads. Rust
marks some data types as thread-safe and enforces these for you. Most other languages
do not make this distinction between thread-safe and thread-unsafe data structures.
The Rust compiler categorically prevents all types of data races, which makes multi-
threaded programs much safer.

 Here are a couple of references for a deeper dive into safety in Rust:

 Send and Sync traits: http://mng.bz/Bmzl
 Fearless concurrency with Rust: http://mng.bz/d1W1

In addition to what we’ve discussed, there are a few other features of Rust that
improve the safety of programs:

 All variables in Rust are immutable by default, and explicit declaration is
required before mutating any variable. This forces developers to think through
how and where data gets modified and what the lifetime of each object is.

 Rust’s ownership model handles not just memory management but the man-
agement of variables owning other resources, such as network sockets, database
and file handles, and device descriptors.

 The lack of a garbage collector prevents nondeterministic behavior.
 Match clauses (which are equivalent to Switch statements in other languages)

are exhaustive, which means that the compiler forces the developer to handle
every possible variant in the match statement. This prevents developers from
inadvertently missing out on handling certain code flow paths that might result
in unexpected run-time behavior.

 The presence of algebraic data types makes it easier to represent the data
model in a concise and verifiable manner.

Rust’s statically typed system, ownership and borrowing model, lack of a garbage col-
lector, immutable-by-default values, and exhaustive pattern matching, all of which are
enforced by the compiler, provide Rust with an undeniable edge for developing safe
applications.

RUST IS RESOURCE-EFFICIENT

System resources such as CPU, memory, and disk space have progressively become
cheaper over the years. While this has proved to be very beneficial in the development
and scaling of distributed applications, it also brings a few drawbacks. First, there is a
general tendency among software teams to simply use more hardware to solve scalabil-
ity challenges—more CPU, more memory, and more disk space. This is achieved
either by adding more CPU, memory, and disk resources to the server (vertical scal-
ing, a.k.a. scaling up) or by adding more machines to the network to share the load
(horizontal scaling, a.k.a. scaling out).

 One of the reasons why these approaches have become popular is the limitations of
today’s mainstream web development languages. High-level web-development lan-
guages such as JavaScript, Java, C#, Python, and Ruby do not allow fine-grained memory

http://mng.bz/Bmzl
http://mng.bz/d1W1

111.2 Choosing Rust for web applications
control to limit memory usage. Many programming languages do not utilize the multi-
core architectures of modern CPUs well. Dynamic scripting languages do not make effi-
cient memory allocations because the types of the variables are known only at run time,
so optimizations are not possible, unlike with statically typed languages.

 Rust offers the following innate features that enable the creation of resource-
efficient services:

 Due to its ownership model of memory management, Rust makes it hard (if not
impossible) to write code that leaks memory or other resources.

 Rust allows developers to tightly control memory layout for their programs.
 Rust does not have a garbage collector that consumes additional CPU and

memory resources. Garbage-collection code generally runs in separate threads
and consumes resources.

 Rust does not have a large, complex runtime. This gives developers tremendous
flexibility in running Rust programs even on underpowered embedded systems
and microcontrollers, like home appliances and industrial machines. Rust can
run in bare metal without kernels.

 Rust discourages the deep copying of heap-allocated memory, and it provides
various types of smart pointers to optimize the memory footprint of programs.
The lack of a runtime in Rust makes it one of the few modern programming
languages appropriate for extremely low-resource environments.

Rust combines the best of static typing, fine-grained memory control, efficient use of
multi-core CPUs, and built-in asynchronous I/O semantics, all of which make it very
resource-efficient in terms of CPU and memory utilization. All this translates to lower
server costs and a lower operational burden for small and large applications alike.

RUST HAS LOW LATENCY

Latency for a round-trip network request and response depends both on network
latency and service latency. Network latency is affected by many factors, such as transmis-
sion medium, propagation distance, router efficiency, and network bandwidth. Service
latency depends on many factors, such as I/O delays in processing the request,
whether there is a garbage collector that introduces non-deterministic delays, Hyper-
visor pauses, the amount of context switching (e.g., in multithreading), serialization
and deserialization costs, etc.

 From a purely programming language perspective, Rust provides low latency due
to its low-level hardware control as a systems programming language. Rust does not
have a garbage collector or runtime, and it has native support for non-blocking I/O, a
good ecosystem of high-performance async (non-blocking) I/O libraries and run-
times, and zero-cost abstractions as a fundamental design principle of the language.
Additionally, by default, Rust variables live on the stack, which is faster to manage.

 Several different benchmarks have shown comparable performance between idi-
omatic Rust and idiomatic C++ for similar workloads, which is faster than the results
for mainstream web development languages.

12 CHAPTER 1 Why Rust for web applications?
RUST ENABLES FEARLESS CONCURRENCY

We previously looked at Rust’s concurrency features from the perspective of program
safety. Now let’s look at Rust’s concurrency from the point of view of better multi-core
CPU utilization, throughput, and performance for application and infrastructure
services.

 Rust is a concurrency-friendly language that enables developers to use the power
of multi-core processors. Rust provides two types of concurrency: classic multithread-
ing and asynchronous I/O:

 Multithreading—Rust’s traditional multithreading support provides for both
shared-memory and message-passing concurrency. Type-level guarantees are
provided for the sharing of values. Threads can borrow values, assume owner-
ship, and transition the scope of a value to a new thread. Rust also provides
data-race safety, which prevents thread-blocking, improving performance. In
order to improve memory efficiency and avoid the copying of data shared
across threads, Rust provides reference counting as a mechanism to track the use
of a variable by other processes or threads. The value is dropped when the
count reaches zero, which provides for safe memory management. Additionally,
mutexes are available in Rust for data synchronization across threads. Refer-
ences to immutable data need not use mutex.

 Async I/O—Async event-loop–based non-blocking I/O concurrency primitives
are built into the Rust language with zero-cost futures and async-await. Non-
blocking I/O ensures that code does not hang while waiting for data to be pro-
cessed.

Further, Rust’s rules of immutability provide for high levels of data concurrency.

RUST IS A PRODUCTIVE LANGUAGE

Even though Rust is first a systems-oriented programming language, it also adds the
quality-of-life features of higher-level and functional programming languages. These
are a few of the higher-level abstractions in Rust that make for a productive and
delightful developer experience:

 Closures with anonymous functions
 Iterators
 Generics and macros
 Enums such as Option and Result
 Polymorphism through traits
 Dynamic dispatch through Trait objects

Rust not only allows developers to build efficient, safe, and performant software, it
also optimizes for developer productivity with its expressiveness. It is not without rea-
son that Rust has been the most-loved programming language in the Stack Overflow
developer survey for five consecutive years: 2016–2020 (https://insights.stackover
flow.com/survey/2020).

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

131.3 Visualizing the example application
NOTE For more insight into why senior developers love Rust, see the “Why
the developers who use Rust love it so much” article on The Overflow blog:
http://mng.bz/rWZj.

So far, you have seen how Rust offers a unique combination of memory safety,
resource efficiency, low latency, high concurrency, and developer productivity. These
impart to Rust the characteristics of the low-level control and speed of a system pro-
gramming language, the developer productivity of higher-level languages, and a
unique memory model without a garbage collector. Application backends and infra-
structure services directly benefit from these characteristics, providing low-latency
responses under high loads while being highly efficient in the use of system resources,
such as multi-core CPUs and memory. Now let’s take a look at some of the limitations
of Rust.

1.2.3 What does Rust not have?

When it comes to programming languages, there is no one-size-fits-all option—no lan-
guage can be claimed to be suitable for all use cases. Further, due to the nature of pro-
gramming language design, what may be easy to do in one language can be difficult in
another. In the interest of providing you with a complete view to decide whether to
use Rust for the web, here are a few things you need to know:

 Rust has a steep learning curve. It is definitely a bigger leap for newcomers to
programming or people coming from dynamic programming or scripting lan-
guages. The syntax can at times be difficult to read, even for experienced
developers.

 Some things are harder to program in Rust compared to other languages, such
as single and double linked lists. This is due to the way the language is designed.

 The Rust compiler is currently slower than those for many other compiled lan-
guages. However, compilation speed has improved over the last few years, and
work is always underway to improve this.

 Rust’s ecosystem of libraries and its community is still maturing compared to
other mainstream languages.

 Rust developers are harder to find and hire at scale.
 The adoption of Rust in large companies and enterprises is still in its early days.

Rust does not yet have a natural home to nurture it, such as Oracle for Java,
Google for Golang, or Microsoft for C#.

You have now seen the benefits and drawbacks of using Rust to develop application
backend services. In the next section, I will introduce the example application that
we’ll build in this book.

1.3 Visualizing the example application
In the following chapters, we will use Rust to build web servers, web services, and web
applications, and we’ll demonstrate concepts through a full-length example. Note

http://mng.bz/rWZj

14 CHAPTER 1 Why Rust for web applications?
that our goal is not to develop a feature-complete or architecture-complete distributed appli-
cation, but to learn how to use Rust for the web domain.

 This is important to keep in mind: we will only explore some paths—a very limited
number of all possible paths—and we will totally disregard others that could be as
promising and interesting. This is a deliberate choice to keep our discussion focused.
For example, only REST web services will be developed, leaving SOAP services out
completely. I fully realize how arbitrary this may seem.

 This book will also not address some important aspects of modern software devel-
opment, like continuous integration/continuous delivery (CI/CD). These are very
important topics in today’s practice, but there was nothing specific to Rust to be
explained and we preferred not to address these aspects in the context of this book.

 On the other hand, because containerization is a major trend nowadays, and
because I deemed it interesting to show the deployment of a distributed application
developed in Rust as containers, I will show how easy it is to deploy and run our exam-
ple application using Docker and Docker Compose.

 Similarly, in the final chapters of the book, we will take a short trip into the realm
of peer-to-peer (P2P) networks, which are one of the most striking usages of async
capabilities. This part of the book will, however, be slightly disconnected from the
example application, as I didn’t find a compelling use case for integrating P2P with it.
Making use of P2P in our example application is therefore left as an exercise you can
explore.

 Let’s now look at our example application.

1.3.1 What will we build?

In this book, we will build a digital storefront for tutors, called EzyTutors, where tutors
can publish their course catalogs online. Tutors can be individuals or training busi-
nesses. The digital storefront will be a sales tool for tutors, not a marketplace.

We’ve defined the product vision. Let’s now talk about the scope, followed by the tech-
nical stack.

 The storefront will allow tutors to register themselves and then sign in. They can
create a course offering and associate it with a course category. A web page with their
course list will be generated for each tutor, and they can then share it on social media
with their network. There will also be a public website that will allow learners to search
for courses, browse through courses by tutor, and view course details. Figure 1.2 shows
the logical design of our example application.

EzyTutors—A digital storefront for tutors
Are you a tutor with a unique skill or knowledge that you’d like to monetize? Do you
have the necessary time and resources to set up and manage your own website?

EzyTutors is just for you. Take your training business online in just a few minutes.

151.3 Visualizing the example application
Figure 1.2 Our example EzyTutors application

Our technical stack will consist of a web service and a server-rendered web app written
in pure Rust. There are several very popular approaches, like developing the GUI
using a mature web framework such as React, Vue, or Angular, but to keep us focused
on Rust, we won’t use these approaches. There are many other good books on this
topic.

 The course data will be persisted in a relational database. We will use Actix Web for
the web framework, SQLx for database connections, and Postgres for the database.
Importantly, the design will be asynchronous all the way. Both Actix Web and SQLx
support full asynchronous I/O, which is well suited for our web application workload,
which is more I/O-heavy than computation-heavy.

 We’ll first build a web service that exposes RESTful APIs, connects to a database,
and deals with errors and failures in an application-specific manner. We’ll then simu-
late application lifecycle changes by enhancing the data model and adding additional

API & application (external-facing)

Rust web service
(APIs)

Tutor

Rust web
application
(WASM)

Internet
browsers

RDBMS Logging Application
configuration

Software infra / config

P
ro

du
ct

io
n

re
ad

in
es

s,
 p

ac
ka

gi
ng

,
de

pl
oy

m
en

t,
be

nc
hm

ar
ki

ng

Non-Rust web
application

(React/Angular/Vue)

User User UserUser

Mobile apps
(iOS/Android)

Not in project
scopeActivities

Legend

Web
service

Web
application Infra/configApplication

modules

Course
Rust web

application
(server-side rendering)

User auth
(email/password)

Templates and
forms handling

Custom error
handling

API auth
(JWT token)

Application
state

Automated
test scripts

Application modules

Database
access library

16 CHAPTER 1 Why Rust for web applications?
functionality, which will require refactoring the code and database migration. This
exercise will demonstrate one of the key strengths of Rust—the ability to fearlessly
refactor the code (and reduce technical debt) with the aid of a strongly typed system
and a strict but helpful compiler that has our back.

 In addition to the web service, our example will demonstrate how to build a front-
end in Rust; our chosen example will be a server-rendered client app. We’ll use a tem-
plate engine to render templates and forms for the server-rendered web application.
It would also be possible to implement a WebAssembly-based in-browser app, but such
an undertaking is out of the scope of this book.

 Our web application can be developed and deployed on any platform that Rust
supports: Linux, Windows, or macOS. This means that we will not use any external
library that restricts the application to any specific computing platform. Our applica-
tion will be capable of being deployed either in a traditional server-based deployment
or in any cloud platform, either as a traditional binary or in a containerized environ-
ment (such as Docker or Kubernetes).

 The chosen problem domain for our example application is a practical scenario,
but it is not difficult to understand. This will allow us to focus on the core topic of the
book—how to apply Rust to the web domain. As a bonus, we’ll also strengthen our
understanding of Rust by seeing concepts in action, such as traits, lifetimes, Result
and Option, structs and enums, collections, smart pointers, derivable traits, associated
functions and methods, modules and workspaces, unit testing, closures, and func-
tional programming.

 This book is about learning the foundations of web development in Rust. This
book will not cover how to configure and deploy additional infrastructural compo-
nents and tools, such as reverse proxy servers, load balancers, firewalls, TLS/SSL,
monitoring servers, caching servers, DevOps tools, CDNs, etc., as these are not Rust-
specific topics (though they are needed for large-scale production deployments).

 In addition to building business functionality in Rust, our example application will
demonstrate good development practices such as automated tests, code structuring
for maintainability, separating configuration from code, generating documentation,
and, of course, writing idiomatic Rust.

 Are you ready for some practical Rust on the web?

1.3.2 Technical guidelines for the example application

This isn’t a book about system architecture or software engineering theory. However, I
would like to enumerate a few foundational guidelines I’ve adopted in the book that
will help you better understand my rationale for the design choices in the code
examples:

1 Project structure—We’ll make heavy use of the Rust module system to separate
various pieces of functionality and keep things organized. We’ll use Cargo work-
spaces to group related projects together, which can include both binaries and
libraries.

17Summary
2 Single responsibility principle—Each logically separate piece of application func-
tionality should be in its own module. For example, the handlers in the web tier
should only deal with processing HTTP messages. The business and database-
access logic should be in separate modules.

3 Maintainability—The following guidelines are related to the maintainability of
code:

– Variable and function names must be self-explanatory.
– The formatting of code will be kept uniform using Rustfmt.
– We will write automated test cases to detect and prevent regressions, as the

code evolves iteratively.
– Project structure and filenames must be intuitive to understand.

4 Security—In this book, we’ll cover API authentication using JSON Web Tokens
(JWT) and password-based user authentication. Infrastructure and network-
level security will not be covered. However, it is important to remember that
Rust inherently offers memory safety without a garbage collector and thread
safety that prevents race conditions, thus preventing several classes of hard-to-
find and hard-to-fix memory, concurrency, and security bugs.

5 Application configuration—Separating configuration from the application is a
principle adopted for the example project.

6 Use of external crates—We will keep the use of external crates to a minimum. For
example, custom error-handling functionality is built from scratch in this book,
rather than using external crates that simplify and automate error handling.
This is because taking shortcuts using external libraries sometimes impedes the
learning process and deep understanding.

7 Async I/O—I made a deliberate choice to use libraries that support fully asyn-
chronous I/O in the example application, both for network communications
and for database access.

Now that we’ve covered the topics we’ll discuss in the book, the goals of the example
project, and the guidelines we’ll use to steer our design choices, we can start digging
into web servers and web services in our next chapter.

Summary
 Modern web applications are indispensable components of digital lives and

businesses, but they are complex to build, deploy, and operate.
 Distributed web applications comprise application frontends, backend services,

and distributed software infrastructure.
 Application backends and software infrastructure are composed of loosely cou-

pled, cooperative network-oriented services. These have specific run-time char-
acteristics to be satisfied, which affect the choice of tools and technologies used
to build them.

18 CHAPTER 1 Why Rust for web applications?
 Rust is a highly suitable language for developing distributed web applications
due to its safety, concurrency, low latency, and low hardware-resource footprint.

 This book is suitable for readers who are considering Rust for distributed web
application development.

 We looked at the example application we will be building in this book and
reviewed the key technical guidelines adopted for the code examples.

Writing a basic web
server from scratch
In this chapter, you will delve deep into TCP and HTTP communications using
Rust. These protocols are generally abstracted away for developers through the
higher-level libraries and frameworks that are used to build web applications. So
why is it important to discuss low-level protocols? This is a fair question.

 Learning to work with TCP and HTTP is important because they form the foun-
dation for most communications on the internet. Popular application communica-
tion protocols and techniques such as REST, gRPC, and WebSockets use HTTP and
TCP for transport. Designing and building basic TCP and HTTP servers in Rust will
give you the confidence to design, develop, and troubleshoot higher-level applica-
tion backend services.

 However, if you are eager to get started with the example application, you can
move ahead to chapter 3 and come back to this chapter when you want to under-
stand more.

This chapter covers
 Writing a TCP server in Rust

 Writing an HTTP server in Rust
19

20 CHAPTER 2 Writing a basic web server from scratch
 In this chapter, you will learn the following:

 How to write a TCP client and server.
 How to build a library to convert between TCP raw byte streams and HTTP mes-

sages.
 How to build an HTTP server that can serve static web pages (a web server) as

well as JSON data (a web service). You’ll test the server with standard HTTP cli-
ents such as the cURL (command line) tool and a web browser.

Through this exercise, you will learn how Rust data types and traits can be used to
model a real-world network protocol, and you’ll strengthen your understanding of the
fundamentals of Rust.

 The chapter is structured in three sections. In the first section, we’ll look at exactly
what we’re going to build in this chapter. In the second section, we’ll develop a basic
network server in Rust that can communicate over TCP/IP. In the third section, we’ll
build a web server that responds to GET requests for web pages and JSON data. We’ll
achieve all this using just the Rust standard library (no external crates). The HTTP
server that we are going to build is not intended to be full-featured or production-
ready, but it will serve our stated purpose.

 Let’s get started.

2.1 The networking model
We spoke about modern applications being constructed as a set of independent com-
ponents and services, some belonging to the frontend, some to the backend, and
some being part of the distributed software infrastructure. Whenever we have separate
components, the question arises as to how these components talk to each other. How
does the client (web browser or mobile app) talk to the backend service? How do the
backend services talk to the software infrastructure, such as databases? This is where
the networking model comes in.

 A networking model describes how communication takes place between the sender
of a message and its receiver. It addresses questions such as in what format the message
should be sent and received, how the message should be broken up into bytes for phys-
ical data transmission, how errors should be handled if data packets do not arrive at the
destination, and so on. The OSI model is the most popular networking model, and it is
defined in terms of a comprehensive seven-layered framework. But for the purposes of
internet communications, a simplified four-layer model called the TCP/IP model is often
adequate to describe how communications take place over the internet between the cli-
ent making a request and the server that processes that request.

NOTE The TCP/IP model is described in Henrik Frystyk’s 1994 article titled
“The Internet Protocol Stack”: www.w3.org/People/Frystyk/thesis/TcpIp
.html.

The TCP/IP model (illustrated in figure 2.1) is a simplified set of standards and pro-
tocols for communications over the internet. It is organized into four abstract layers:

www.w3.org/People/Frystyk/thesis/TcpIp.html
www.w3.org/People/Frystyk/thesis/TcpIp.html
www.w3.org/People/Frystyk/thesis/TcpIp.html

212.1 The networking model
the network access layer, the network layer, the transport layer, and the application
layer, with flexibility on networking protocols that can be used in each layer. The
model is named after the two main protocols it is built on: Transmission Control Pro-
tocol (TCP) and Internet Protocol (IP). The main thing to note is that the four layers
of the TCP/IP model complement each other in ensuring that a message is sent suc-
cessfully from the sending process to the receiving process.

Figure 2.1 TCP/IP network model

Let’s look at the role of each of these four layers of communications:

 Application layer—The application layer is the highest layer of abstraction. The
semantics of the message are understood by this layer. For example, a web
browser and web server communicate using HTTP, or an email client and email
server communicate using SMTP (Simple Mail Transfer Protocol). There are
other such protocols such as DNS (Domain Name Service) and FTP (File Trans-
fer Protocol). All these are called application-layer protocols because they deal with
specific user applications such as web browsing, emails, or file transfers. In this
book, we will focus mainly on the HTTP protocol at the application layer.

 Transport layer—The transport layer provides reliable end-to-end communica-
tion. While the application layer deals with messages that have specific seman-
tics (such as sending a GET request to get shipment details), the transport
protocols deal with sending and receiving raw bytes. (Note that all application
layer protocol messages eventually get converted into raw bytes for transmission
by the transport layer.) TCP and UDP are the two main protocols used in this
layer, with QUIC (Quick UDP Internet Connection) being a recent entrant.
TCP is a connection-oriented protocol that allows data to be partitioned for
transmission and reassembled in a reliable manner at the receiving end. UDP is
a connectionless protocol, and it does not provide guarantees of delivery,
unlike TCP. UDP is consequently faster and suitable for a certain class of appli-
cations, such as DNS lookups and voice or video applications. In this book, we
will focus on the TCP protocol for the transport layer.

Application layerProtocols: HTTP, SMTP, FTP Allows users to send and
receive data through applications

Transport layerProtocols: TCP, UDP Data transmission, validation, and
security

Network layerProtocols: IP, ICMP Packet routing; best path to
reach destination

Network access
layerProtocols: Ethernet, Wi-Fi Communication between physical

nodes with MAC addresses

22 CHAPTER 2 Writing a basic web server from scratch
 Network layer—The network layer uses IP addresses and routers to locate and
route packets of information to hosts across networks. While the transport layer
is focused on sending and receiving raw bytes between two servers identified by
their IP addresses and port numbers, the network layer determines the best
path for sending data packets from source to destination. We do not need to
work directly with the network layer—Rust’s standard library provides the inter-
face to work with TCP and sockets, and it handles the internals of network layer
communications.

 Network access layer—The network access layer is the lowest layer of the TCP/IP
network model. It is responsible for the transmission of data through a physical
link between hosts, such as by using network cards. For our purposes, it does
not matter what physical medium is used for network communications.

Now that you’ve had an overview of the TCP/IP networking model, it’s time to learn
how to use the TCP/IP protocol to send and receive messages in Rust.

2.2 Writing a TCP server in Rust
In this section, you will learn how to perform basic TCP/IP networking communica-
tions in Rust. It’s fairly easy. We’ll start by looking at how to use the TCP/IP constructs
in the Rust standard library.

2.2.1 Designing the TCP/IP communication flow

The Rust standard library provides networking primitives through the std::net mod-
ule; its documentation can be found here: https://doc.rust-lang.org/std/net/. This
module supports basic TCP and UDP communications. Two specific data structures,
TcpListener and TcpStream, contain the bulk of the methods needed to implement
our scenario.

 TcpListener is used to create a TCP socket server that binds to a specific port. A
client can send a message to a socket server at the specified socket address (a combi-
nation of the machine’s IP address and a port number). Multiple TCP socket servers
may be running on a machine, and when there is an incoming network connection on
the network card, the operating system routes the message to the right TCP socket
server using the port number.

 The following example code creates a socket server:

use std::net::TcpListener;

let listener = TcpListener::bind("127.0.0.1:3000")

After binding to a port, the socket server should start to listen for the next incoming
connection. This is achieved as follows:

listener.accept()

For listening continually (in a loop) for incoming connections, the following method
is used:

listener.incoming()

https://doc.rust-lang.org/std/net/

232.2 Writing a TCP server in Rust
The listener.incoming() method returns an iterator over the connections received
on this listener. Each connection represents a stream of bytes of type TcpStream. Data
can be transmitted or received on this TcpStream object. Note that reading and writ-
ing to TcpStream is done in raw bytes, as shown in the following snippet (error han-
dling is excluded for simplicity):

for stream in listener.incoming() {
//Read from stream into a bytes buffer
stream.read(&mut [0;1024]);
// construct a message and write to stream
let message = "Hello".as_bytes();
stream.write(message)

}

In the preceding code, we have constructed a bytes buffer (called a byte slice in Rust) for
reading from a stream. For writing to a stream, we have constructed a string slice and
converted it to a byte slice using the as_bytes() method.

 So far, we’ve seen the server side of a TCP socket server. On the client side, a con-
nection can be established with the TCP socket server:

let stream = TcpStream.connect("172.217.167.142:80")

To recap, connection management functions are available from the TcpListener
struct of the std::net module. To read and write on a connection, the TcpStream
struct is used.

 Let’s now apply this knowledge to write a working TCP client and server.

2.2.2 Writing the TCP server and client

Let’s first set up a project structure. For Rust proj-
ects, a workspace is a container project that holds
other projects. The benefit of the workspace struc-
ture is that it enables us to manage multiple proj-
ects as one unit. It also helps us to store all related
projects seamlessly within a single Git repo.

 As shown in figure 2.2, we will create a work-
space project called scenario1. Under this work-
space, we will create four new Rust projects using
Cargo, the Rust project build and dependencies
tool. The four projects are tcpclient, tcpserver,
http, and httpserver.

 To start a new Cargo project, we can use the following command:

cargo new scenario1 && cd scenario1

The scenario1 directory can also be referred to as the workspace root. Under the sce-
nario1 directory, we’ll create the following four new Rust projects:

 tcpserver will be the binary project for TCP server code.
 tcpclient will be the binary project for TCP client code.

Project 1

tcpclient

Project 2

tcpserver

Project 3

http

Project 4

httpserver

Workspace - scenario1

Figure 2.2 Cargo workspace
structure for scenario 1

24 CHAPTER 2 Writing a basic web server from scratch
 httpserver will be the binary project for HTTP server code.
 http will be the library project for HTTP protocol functionality.

You can use the following commands to create the projects:

cargo new tcpserver
cargo new tcpclient
cargo new httpserver
cargo new --lib http

Now that the projects are created, we have to declare the scenario1 project as a work-
space and specify its relationship with the four subprojects. Add the following.

[workspace]
members = [

"tcpserver","tcpclient", "http", "httpserver",
]

We will write the code for the TCP server and client in two iterations:

1 We will write the TCP server and client to do a sanity check that a connection is
being established from client to server.

2 We will send a text from client to server and have the server echo it back.

ITERATION 1
In the tcpserver folder, modify src/main.rs as follows.

use std::net::TcpListener;

fn main() {
let connection_listener = TcpListener::bind(

"127.0.0.1:3000").unwrap();
println!("Running on port 3000");
for stream in connection_listener.incoming() {

let _stream = stream.unwrap();
println!("Connection established");

}
}

Listing 2.1 scenario1/Cargo.toml

Following along with the code
Many of the code snippets shown in this chapter (and throughout the book) include
code annotations to describe the code. If you are copying and pasting code (from any
chapter in this book) into your code editor, ensure you remove the code annotations
(or the program will not compile). Also, the pasted code may sometimes be mis-
aligned, so in case of compilation errors, manual verification may be needed to com-
pare the pasted code with the code snippets in the chapter.

Listing 2.2 First iteration of TCP server (tcpserver/src/main.rs)

Initialize a socket server to
bind to IP address 127.0.0.1
(localhost) and port 3000.

The socket server waits
(listens) for incoming
connections.

When a new connection comes in, it
is of type Result<TcpStream,Error>, which,

when unwrapped, returns a TcpStream if successful, or, in the
case of a connection error, exits the program with a panic.

252.2 Writing a TCP server in Rust
From the root folder of the workspace (scenario1), run the following command:

cargo run -p tcpserver

The server will start, and the message “Running on port 3000” will be printed to the
terminal. We now have a working TCP server listening on port 3000 on localhost.

 Let’s next write a TCP client to establish a connection with the TCP server.

use std::net::TcpStream;

fn main() {
let _stream = TcpStream::connect("localhost:3000").unwrap();

}

In a new terminal, from the root folder of the workspace, run the following command:

cargo run -p tcpclient

You will see the message “Connection established” printed to the terminal where the
TCP server is running, as follows:

Running on port 3000
Connection established

We now have a TCP server running on port 3000, and we have a TCP client that can
establish a connection to it. It’s time to try sending a message from our client and
make sure the server can echo it back.

ITERATION 2
Modify the tcpserver/src/main.rs file as follows.

use std::io::{Read, Write};
use std::net::TcpListener;
fn main() {

let connection_listener = TcpListener::bind("127.0.0.1:3000").unwrap();
println!("Running on port 3000");
for stream in connection_listener.incoming() {

let mut stream = stream.unwrap();
println!("Connection established");
let mut buffer = [0; 1024];
stream.read(&mut buffer).unwrap();
stream.write(&mut buffer).unwrap();

}
}

In listing 2.4, we are echoing back to the client whatever we receive from it. Run the
TCP server with cargo run -p tcpserver from the workspace root directory.

Listing 2.3 tcpclient/src/main.rs

Listing 2.4 Completing the TCP server

The -p argument specifies which package
in the workspace you want to run.

The TCP client initiates a connection to a
remote server running on localhost:3000.

TcpStream implements Read and Write traits, so include the
std::io module to bring the Read and Write traits into scope.

Make the stream mutable so
you can read and write to it.

Read from the
incoming stream.

Echo back whatever is received to
the client on the same connection.

26 CHAPTER 2 Writing a basic web server from scratch
The next step is to modify the TCP client to send a message to the server and then
print what is received back from the server. Modify the file tcpclient/src/main.rs as
follows.

use std::io::{Read, Write};
use std::net::TcpStream;
use std::str;

fn main() {
let mut stream = TcpStream::connect("localhost:3000").unwrap();
stream.write("Hello".as_bytes()).unwrap();
let mut buffer = [0; 5];
stream.read(&mut buffer).unwrap();
println!(

"Got response from server:{:?}",
str::from_utf8(&buffer).unwrap()

);
}

Run the TCP client with cargo run -p tcpclient from the workspace root. Make sure
that the TCP server is also running in another terminal window.

 You will see the following message printed to the terminal window of the TCP
client:

Got response from server:"Hello"

Congratulations. You have written a TCP server and a TCP client that can communi-
cate with each other.

Read and Write traits
Traits in Rust define shared behavior. They are similar to interfaces in other lan-
guages, with some differences. The Rust standard library (std) defines several traits
that are implemented by data types within std. These traits can also be implemented
by user-defined data types such as structs and enums. Read and Write are two such
traits defined in the Rust standard library.

The Read trait allows for reading bytes from a source. Examples of sources that imple-
ment the Read trait include File, Stdin (standard input), and TcpStream. Imple-
menters of the Read trait are required to implement one method: read(). This allows
us to use the same read() method to read from a File, Stdin, TcpStream, or any
other type that implements the Read trait.

Similarly, the Write trait represents objects that are byte-oriented sinks. Implement-
ers of the Write trait implement two methods: write () and flush (). Examples
of types that implement the Write trait include File, Stderr, Stdout, and Tcp-
Stream. This trait allows us to write to a File, standard output, standard error, or
TcpStream using the write() method.

Listing 2.5 Completing the TCP client

Write a “Hello” message to
the TCP server connection.

Read the bytes
received from server.

Print out what is received from the
server. The server sends raw bytes, and
we have to convert them into UTF-8 str
type to print them to the terminal.

272.3 Writing an HTTP server in Rust
In this section, you have learned how to implement TCP communications in Rust. You
have also seen that TCP is a low-level protocol that only deals in byte streams. It does
not have any understanding of the semantics of the messages and data being
exchanged. For writing web applications, semantic messages are easier to deal with
than raw byte streams, so we need to work with a higher-level application protocol,
such as HTTP, rather than TCP. We will look at this in the next section.

2.3 Writing an HTTP server in Rust
In this section, we’ll build a web server in Rust that can communicate with HTTP
messages.

 Rust does not have built-in support for HTTP. There is no std::http module that
we can work with. Even though third-party HTTP crates are available, we’ll write one
from scratch. As we do so, you will learn how to use Rust to develop lower-level librar-
ies and servers that modern web applications in turn rely upon.

 Let’s first visualize the features of the web server that we are going to build. The
communication flow between the client and the various modules of the web server is
depicted in figure 2.3.

The Result type and unwrap() method
In Rust, it is idiomatic for a function or method that can fail to return a Result<T,E>
type. This means the Result type wraps another data type, T, in the case of success,
or it wraps an Error type in the case of failure, which is then returned to the calling
function. The calling function in turn inspects the Result type and unwraps it to
receive either the value of type T or type Error for further processing.

In the examples so far, we have made use of the unwrap() method in several places
to retrieve the value embedded within the Result object by the standard library meth-
ods. The unwrap() method returns the value of type T if the operation is successful,
or it panics in case of error. In a real-world application, this is not the right approach,
as the Result type in Rust is for recoverable failures, while a panic is used for unre-
coverable failures. However, we have used it here because using unwrap() simplifies
our code for learning purposes. We will cover proper error handling in later chapters.

Router

Web server message flow

Server

Http Library

Handler

Web client

Web server

Internet

Handler
Handlers

Calls to HTTP library to convert between
byte streams and HTTP messages

Web client sends an HTTP request to server

Request is passed to the router

Router determines which handler to invoke

Handler processes the incoming request and
returns an HTTP response

Figure 2.3 Web server message flow

28 CHAPTER 2 Writing a basic web server from scratch
Our web server will have four components: a server, router, handler, and HTTP
library. Each of these components has a specific purpose, in line with the single respon-
sibility principle (SRP). The server listens for incoming TCP byte streams. The HTTP
library interprets the byte stream and converts it to an HTTP request (message). The
router accepts an HTTP request and determines which handler to invoke. The handler
processes the HTTP request and constructs an HTTP response. The HTTP response
message is converted back to a byte stream using the HTTP library, and the byte
stream is then sent back to the client.

 Figure 2.4 shows another view of the HTTP client/server communications, this
time depicting how the HTTP messages flow through the TCP/IP protocol stack. The
TCP/IP communications are handled at the operating system level on both the client
and server sides, and the web application developer only works with HTTP messages.

Figure 2.4 HTTP communications with a protocol stack

We’ll build the code in the following sequence:

1 Build the http library.
2 Write the main() function for the project.
3 Write the server module.
4 Write the router module.
5 Write the handler module.

For convenience, figure 2.5 summarizes the code design, showing the key modules,
structs, and methods for the http library and httpserver project. There are two main
components in the figure:

 http—A library containing the types HttpRequest and HttpResponse. It imple-
ments the logic for converting between HTTP requests and responses and cor-
responding Rust data structures.

TCP

IP

Network adapter

Global internet

HTTP

TCP

IP

Network adapter

HTTP

HTTP request
sent

HTTP response
sent

HTTP response
received

HTTP request
received

Client desktop/
mobile

Server
hardware

TCP/IP protocol
stack

TCP/IP protocol
stack

Client browser HTTP server

292.3 Writing an HTTP server in Rust
 httpserver—The main web server, which incorporates a main() function, a
socket server, and a handler and router, manages the coordination among them.
It serves as both a web server (serving HTML) and a web service (serving JSON).

Figure 2.5 Design overview of the web server

Shall we get started?

2.3.1 Parsing HTTP request messages

In this section, we will build an HTTP library. The library will contain data structures
and methods to do the following:

 Interpret an incoming byte stream and convert it into an HTTP request
message

 Construct an HTTP response message and convert it into a byte stream for
transmitting over the wire

httpserver (binary)

fn main()

Data (dir)

orders.json

public (dir)

index.html
health.html
404.html
styles.css

Handler (module)

PageNotFoundHandler

fn handle(req: &HttpRequest) -> HttpResponse
fn load_file(file_name: &str) -> Option<String>

StaticPageHandler

fn handle(req: &HttpRequest) -> HttpResponse
fn load_file(file_name: &str) -> Option<String>

WebServiceHandler

fn handle(req: &HttpRequest) -> HttpResponse
fn load_file(file_name: &str) -> Option<String>
fn load_json() -> Vec<OrderStatus>

Router (module)

Router

fn route(req: HttpRequest,
stream: &mut impl Write) -> ()

Server (module)

Server

fn new(socket_addr: &'a str) -> Self
fn run(&self)

http (library)

HttpRequest

fn from(req: String) -> Self

HttpResponse

fn from(req: HttpResponse) -> String

30 CHAPTER 2 Writing a basic web server from scratch
We have already created a library called http under the scenario1 workspace. The
code for the HTTP library will be placed under the http/src folder.

 In http/src/lib.rs, add the following code:

pub mod httprequest;

This tells the compiler that we are creating a new publicly accessible module called
httprequest in the http library. You can also delete the test script that was automati-
cally generated by Cargo from this file. We’ll write test cases later.

 Next, we’ll create two new files, httprequest.rs and httpresponse.rs, under http/src
to contain the functionality for dealing with HTTP requests and responses
respectively.

 We will start by designing the Rust data structures to hold an HTTP request. When
a byte stream comes in over a TCP connection, we will parse it and convert it into
strongly typed Rust data structures for further processing. Our HTTP server program
can then work with these Rust data structures, rather than with the TCP streams.

 Table 2.1 summarizes the Rust data structures needed to represent an incoming
HTTP request.

We’ll implement a few traits on these data structures to impart some behavior. Table
2.2 describes the traits we will implement on the three data structures.

Let’s now convert this design into code.

THE METHOD ENUM

The code for the Method enum is shown in the following snippet. We use an enum data
structure as we only want to allow predefined values for the HTTP method in our

Table 2.1 The data structures for incoming HTTP requests

Data structure name Rust data type Description

HttpRequest struct Represents an HTTP request

Method enum Specifies the allowed values (variants) for HTTP
methods

Version enum Specifies the allowed values for HTTP Versions

Table 2.2 Traits implemented by the data structures for HTTP requests

Rust trait implemented Description

From<&str> Enables the conversion of incoming string slices to the HttpRequest
data structure

Debug Used to print debug messages

PartialEq Used to compare values as part of parsing and automated test scripts

312.3 Writing an HTTP server in Rust
implementation. We will only support two HTTP methods in this implementation: GET
and POST requests. We’ll also add a third type, Uninitialized, to be used during the
initialization of data structures in the running program.

 Add the following code to http/src/httprequest.rs:

#[derive(Debug, PartialEq)]
pub enum Method {

Get,
Post,
Uninitialized,

}

The trait implementation for Method is shown next (also to be added to http-
request.rs):

impl From<&str> for Method {
fn from(s: &str) -> Method {

match s {
"GET" => Method::Get,
"POST" => Method::Post,
_ => Method::Uninitialized,

}
}

}

Implementing the from method in the From trait enables us to read the method string
from the HTTP request line and convert it into the Method::Get or Method::Post
variant. To understand the benefit of implementing this trait and to test if this method
works, let’s write some test code. Throughout this book, I have deliberately limited the
testing to unit tests so we can focus on Rust-specific aspects of the code.

 Add the following test to http/src/httprequest.rs:

#[cfg(test)]
mod tests {

use super::*;
#[test]
fn test_method_into() {

let m: Method = "GET".into();
assert_eq!(m, Method::Get);

}
}

From the workspace root, run the following command:

cargo test -p http

You will notice a message similar to the following, stating that the test has passed.

running 1 test
test httprequest::tests::test_method_into ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

32 CHAPTER 2 Writing a basic web server from scratch
The "GET" in the test is converted into the Method::Get variant using just the .into()
syntax. This is the benefit of implementing the From trait—it makes for clean, read-
able code.

 Let’s now look at the code for the Version enum.

THE VERSION ENUM

The definition of the Version enum is shown next. We will support two HTTP ver-
sions for illustration, though we will only be working with HTTP/1.1 for our exam-
ples. There is also a third type, Uninitialized, to be used as the default initial value.

 Add the following code to http/src/httprequest.rs:

#[derive(Debug, PartialEq)]
pub enum Version {

V1_1,
V2_0,
Uninitialized,

}

The trait implementation for Version is similar to that for the Method enum (also to
be added to httprequest.rs):

impl From<&str> for Version {
fn from(s: &str) -> Version {

match s {
"HTTP/1.1" => Version::V1_1,
_ => Version::Uninitialized,

}
}

}

Implementing the from method in the From trait enables us to read the HTTP proto-
col version from the incoming HTTP request and convert it into a Version variant.

 Let’s test if this method works. Add the following code to http/src/httprequest.rs,
inside the previously added mod tests block (after the test_method_into() func-
tion), and run the test from the workspace root with cargo test -p http:

#[test]
fn test_version_into() {

let m: Version = "HTTP/1.1".into();
assert_eq!(m, Version::V1_1);

}

You will see the following message on your terminal:

running 2 tests
test httprequest::tests::test_method_into ... ok
test httprequest::tests::test_version_into ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Both the tests now pass. The string "HTTP/1.1" is converted into the Version::V1_1
variant using just the .into() syntax—this is again the benefit of implementing the
From trait.

332.3 Writing an HTTP server in Rust
THE HTTPREQUEST STRUCT

The HttpRequest struct in the following listing represents the complete HTTP
request. Add this code to the beginning of the http/src/httprequest.rs file.

use std::collections::HashMap;

#[derive(Debug, PartialEq)]
pub enum Resource {

Path(String),
}

#[derive(Debug)]
pub struct HttpRequest {

pub method: Method,
pub version: Version,
pub resource: Resource,
pub headers: HashMap<String, String>,
pub msg_body: String,

}

The From<&str> trait implementation for the HttpRequest struct is at the core of our
exercise. This enables us to convert the incoming request into a Rust HTTP Request
data structure that is convenient to process further.

 Figure 2.6 shows the structure of a typical HTTP request, consisting of a request
line, a set of one or more header lines followed by a blank line, and then an optional
message body. We’ll have to parse all these
lines and convert them into our Http-
Request type. That is going to be the job
of the from() function as part of the From
<&str> trait implementation.

 The core logic for the From<&str> trait
implementation is listed here:

1 Read each line in the incoming
HTTP request. Each line is delim-
ited by CRLF (\r\n).

2 Evaluate each line as follows:

– If the line is a request line (we
will look for the keyword HTTP
because all request lines contain
the HTTP keyword and a version
number), we extract the
method, path, and HTTP ver-
sion from the line.

Listing 2.6 Data structures for the HTTP request

Empty line

Request line
GET /greeting HTTP/1.1

Method Path Version

Header line 1
Host: localhost:3000

Key: Value

Header line 2
User-agent: Curl/7.64.1

Key: Value

Header line 3
Accept: */*

Key: Value

Message body
(optional)

xxxxxxxxxx
Data

Figure 2.6 Structure of an HTTP request

34 CHAPTER 2 Writing a basic web server from scratch
– If the line is a header line (identified by the separator :), we extract key and
value for the header item and add them to the list of headers for the
request. Note that there can be multiple header lines in an HTTP request.
To keep things simple, we’ll make the assumption that the key and value
must be composed of printable ASCII characters (i.e., characters with values
between 33 and 126 in base 10, except for the colon).

– If a line is empty (\n\r), we treat it as a separator line. No action is needed in
this case.

– If the message body is present, we scan and store it as a String.

First, let’s look at the skeleton of the code. Don’t type this in yet—this is just to show
you the structure of the code:

impl From<String> for HttpRequest {
fn from(req: String) -> Self {}

}
fn process_req_line(s: &str) -> (Method, Resource, Version) {}
fn process_header_line(s: &str) -> (String, String) {}

We have a from() method that we should implement for the From trait. There are also
two supporting functions for parsing the request line and header lines respectively.

 Let’s first look at the from() method. Add this code to httprequest.rs.

impl From<String> for HttpRequest {
fn from(req: String) -> Self {

let mut parsed_method = Method::Uninitialized;
let mut parsed_version = Version::V1_1;
let mut parsed_resource = Resource::Path("".to_string());
let mut parsed_headers = HashMap::new();
let mut parsed_msg_body = "";

// Read each line in the incoming HTTP request
for line in req.lines() {

// If the line read is request line, call function
process_req_line()

if line.contains("HTTP") {
let (method, resource, version) = process_req_line(line);
parsed_method = method;
parsed_version = version;
parsed_resource = resource;

// If the line read is header line, call function
process_header_line()

} else if line.contains(":") {
let (key, value) = process_header_line(line);
parsed_headers.insert(key, value);

// If it is blank line, do nothing
} else if line.len() == 0 {

// If none of these, treat it as message body
} else {

Listing 2.7 Parsing incoming HTTP requests: the from() method

352.3 Writing an HTTP server in Rust
parsed_msg_body = line;
}

}
// Parse the incoming HTTP request into HttpRequest struct
HttpRequest {

method: parsed_method,
version: parsed_version,
resource: parsed_resource,
headers: parsed_headers,
msg_body: parsed_msg_body.to_string(),

}
}

}

Based on the logic described earlier, we are trying to detect the various types of lines
in the incoming HTTP Request, and then we construct an HttpRequest struct with
the parsed values.

 Now let’s look at the two supporting methods. The following listing shows the code
for processing the request line of the incoming request. Add it to httprequest.rs after
the impl From<String> for HttpRequest {} block.

fn process_req_line(s: &str) -> (Method, Resource, Version) {
// Parse the request line into individual chunks split by whitespaces.
let mut words = s.split_whitespace();
// Extract the HTTP method from first part of the request line
let method = words.next().unwrap();
// Extract the resource (URI/URL) from second part of the request line
let resource = words.next().unwrap();
// Extract the HTTP version from third part of the request line
let version = words.next().unwrap();

(
method.into(),
Resource::Path(resource.to_string()),
version.into(),

)
}

The next listing shows the code for parsing the header line. Add it to httprequest.rs
after the process_req_line() function.

fn process_header_line(s: &str) -> (String, String) {
// Parse the header line into words split by separator (':')
let mut header_items = s.split(":");
let mut key = String::from("");
let mut value = String::from("");
// Extract the key part of the header
if let Some(k) = header_items.next() {

Listing 2.8 Parsing incoming HTTP requests: the process_req_line() function

Listing 2.9 Parsing incoming HTTP requests: the process_header_line() function

36 CHAPTER 2 Writing a basic web server from scratch

pa
key = k.to_string();
}
// Extract the value part of the header
if let Some(v) = header_items.next() {

value = v.to_string()
}

(key, value)
}

This completes the code for the From trait implementation for the HttpRequest
struct.

 Let’s write a unit test for the HTTP request parsing logic in http/src/httpre-
quest.rs, inside mod tests (the tests module). Recall that we’ve already written the
test_method_into() and test_version_into() functions in the tests module. At
this point, the tests module in the httprequest.rs file should look like the following
snippet:

#[cfg(test)]
mod tests {

use super::*;
#[test]
fn test_method_into() {

let m: Method = "GET".into();
assert_eq!(m, Method::Get);

}
#[test]
fn test_version_into() {

let m: Version = "HTTP/1.1".into();
assert_eq!(m, Version::V1_1);

}
}

Now we’ll add the following test function to the same tests module after the
test_version_into() function.

#[test]
fn test_read_http() {

let s: String = String::from("GET /greeting HTTP/1.1\r\nHost:
localhost:3000\r\nUser-Agent: curl/7.64.1\r\nAccept:
/\r\n\r\n");

let mut headers_expected = HashMap::new();
headers_expected.insert("Host".into(), " localhost".into());
headers_expected.insert("Accept".into(), " */*".into());
headers_expected.insert("User-Agent".into(), " curl/7.64.1".into());
let req: HttpRequest = s.into();
assert_eq!(Method::Get, req.method);
assert_eq!(Version::V1_1, req.version);

Listing 2.10 Test scripts for parsing HTTP requests

Simulate an incoming
HTTP request.

Construct an
expected

headers list.

Parse the entire incoming
multiline HTTP request into
the HttpRequest struct.

Verify that the
method is

rsed correctly.

Verify that the HTTP
version is parsed correctly.

372.3 Writing an HTTP server in Rust
assert_eq!(Resource::Path("/greeting".to_string()), req.resource);
assert_eq!(headers_expected, req.headers);

}

Now run the test with cargo test -p http from the workspace root folder. You should
see the following message indicating that all three tests have passed:

running 3 tests
test httprequest::tests::test_method_into ... ok
test httprequest::tests::test_version_into ... ok
test httprequest::tests::test_read_http ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

We have now completed the code for HTTP request processing. This library can parse
an incoming HTTP GET or POST message and convert it into a Rust data struct. Let’s
now write the code to process HTTP responses.

2.3.2 Constructing HTTP response messages

Let’s define an HttpResponse struct,
which will represent the HTTP Response
message within our program. We will
also write a method to convert this struct
(serialize it) into a well-formed HTTP
message that can be understood by an
HTTP client (such as a web browser).

 Figure 2.7 shows the structure of a
typical HTTP response. This will help us
define our struct.

 If you didn’t already do so, create
a http/src/httpresponse.rs file. Add
httpresponse to the module exports
section of http/lib.rs so that it looks like
this:

pub mod httprequest;
pub mod httpresponse;

Add the following code to http/src/httpresponse.rs.

use std::collections::HashMap;
use std::io::{Result, Write};

#[derive(Debug, PartialEq, Clone)]
pub struct HttpResponse<'a> {

Listing 2.11 Structure of the HTTP response

Verify that the path (resource
URI) is parsed correctly.Verify that the headers

are parsed correctly.

Empty line

Status line
HTTP/1.1 200 OK

Version Status code Status text

Header line 2
Content-length 30

Key: Value

Message body
(optional)

Hello, this is a message body.

Data

Header line 1
Key: Value

Content-type: text/html

Figure 2.7 Structure of an HTTP response

38 CHAPTER 2 Writing a basic web server from scratch
version: &'a str,
status_code: &'a str,
status_text: &'a str,
headers: Option<HashMap<&'a str, &'a str>>,
body: Option<String>,

}

The HttpResponse struct contains a protocol version, status code, status description, a
list of optional headers, and an optional body. Note the use of the lifetime annotation
'a for all the member fields that are of reference types.

Also note the use of the #[derive] annotation for the Debug, PartialEq, and Clone
traits. These are called derivable traits because we are asking the compiler to derive the
implementation of these traits for our HttpResponse struct. By implementing these
traits, our struct acquires the ability to be printed out for debugging purposes, to have
its member values compared with other values, and to have itself cloned.

 We will implement the following methods for the HttpResponse struct:

 A Default trait implementation—Earlier we auto-derived a few traits using the
#[derive] annotation. We’ll now manually implement the Default trait. This
will let us specify default values for the struct members.

 A new() method—This method will create a new struct with default values for its
members.

 A send_response() method—This method will serialize the contents of the
HttpResponse struct into a valid HTTP response message for on-the-wire trans-
mission, and it will send the raw bytes over the TCP connection.

 Getter methods—We’ll also implement a set of getter methods for version,
status_code, status_text, headers, and body, which are the member fields of
the HttpResponse struct.

 A From trait implementation—Lastly, we will implement the From trait, which will
help us convert the HttpResponse struct into a String type representing a valid
HTTP response message.

Let’s add the code for all of these to http/src/httpresponse.rs.

IMPLEMENTING THE DEFAULT TRAIT

We’ll start with the Default trait implementation for the HttpResponse struct.

Lifetimes in Rust
In Rust, every reference has a lifetime, which is the scope for which the reference is
valid. Lifetimes are an important feature in Rust, aimed at preventing dangling point-
ers and use-after-free errors, which are common in languages with manually managed
memory (such as C/C++). The Rust compiler either infers (if not specified) or uses (if
specified) the lifetime annotation of a reference to verify that a reference does not
outlive the underlying value it points to.

392.3 Writing an HTTP server in Rust

impl<'a> Default for HttpResponse<'a> {
fn default() -> Self {

Self {
version: "HTTP/1.1".into(),
status_code: "200".into(),
status_text: "OK".into(),
headers: None,
body: None,

}
}

}

Implementing a Default trait allows us to create a new struct with default values as
follows:

let mut response: HttpResponse<'a> = HttpResponse::default();

IMPLEMENTING THE NEW() METHOD

The new() method accepts a few parameters, sets the defaults for the others, and
returns an HttpResponse struct. Add the following code under the impl block of the
HttpResponse struct. As this struct has a reference type for one of its members, the
impl block declaration also has to specify a lifetime parameter (shown here as 'a).

impl<'a> HttpResponse<'a> {
pub fn new(

status_code: &'a str,
headers: Option<HashMap<&'a str, &'a str>>,
body: Option<String>,

) -> HttpResponse<'a> {
let mut response: HttpResponse<'a> = HttpResponse::default();
if status_code != "200" {

response.status_code = status_code.into();
};
response.headers = match &headers {

Some(_h) => headers,
None => {

let mut h = HashMap::new();
h.insert("Content-Type", "text/html");
Some(h)

}
};
response.status_text = match response.status_code {

"200" => "OK".into(),
"400" => "Bad Request".into(),
"404" => "Not Found".into(),
"500" => "Internal Server Error".into(),
_ => "Not Found".into(),

};
response.body = body;

Listing 2.12 The Default trait implementation for the HTTP response

Listing 2.13 The new() method for HttpResponse (httpresponse.rs)

40 CHAPTER 2 Writing a basic web server from scratch
response
}

}

The new() method starts by constructing a struct with default parameters. The values
passed as parameters are then evaluated and incorporated into the struct.

IMPLEMENTING THE SEND_RESPONSE() METHOD

The send_response() method is used to convert the HttpResponse struct into a
String and transmit it over the TCP connection. This can be added within the impl
block in httpresponse.rs, after the new() method:

impl<'a> HttpResponse<'a> {
// new() method not shown here
pub fn send_response(&self, write_stream: &mut impl Write) ->

Result<()> {
let res = self.clone();
let response_string: String = String::from(res);
let _ = write!(write_stream, "{}", response_string);
Ok(())

}
}

This method accepts a TCP stream (that implements a Write trait) as input, and it
writes the well-formed HTTP response message to the stream.

IMPLEMENTING GETTER METHODS FOR THE HTTPRESPONSE STRUCT

Let’s write getter methods for each of the members of the struct. We need these to
construct the HTML response message in httpresponse.rs.

impl<'a> HttpResponse<'a> {
fn version(&self) -> &str {

self.version
}
fn status_code(&self) -> &str {

self.status_code
}
fn status_text(&self) -> &str {

self.status_text
}
fn headers(&self) -> String {

let map: HashMap<&str, &str> = self.headers.clone().unwrap();
let mut header_string: String = "".into();
for (k, v) in map.iter() {

header_string = format!("{}{}:{}\r\n", header_string, k, v);
}
header_string

}
pub fn body(&self) -> &str {

match &self.body {
Some(b) => b.as_str(),

Listing 2.14 Getter methods for HttpResponse

412.3 Writing an HTTP server in Rust
None => "",
}

}
}

The getter methods allow us to convert the data members into string types.

IMPLEMENTING THE FROM TRAIT

Lastly, let’s implement the from method in the From trait, which will be used to con-
vert (serialize) the HttpResponse struct into an HTTP response message string, in
httpresponse.rs.

impl<'a> From<HttpResponse<'a>> for String {
fn from(res: HttpResponse) -> String {

let res1 = res.clone();
format!(

"{} {} {}\r\n{}Content-Length: {}\r\n\r\n{}",
&res1.version(),
&res1.status_code(),
&res1.status_text(),
&res1.headers(),
&res.body.unwrap().len(),
&res1.body()

)
}

}

Note the use of \r\n in the format string. This inserts a newline character. Recall that
the HTTP response message consists of the following sequence: status line, headers,
blank line, and optional message body.

 Let’s write a few unit tests. In a moment, we’ll create a test module block like the
following and add each test to this block. Don’t type this in yet—this is just to show
you the structure of the test code:

#[cfg(test)]
mod tests {

use super::*;
// Add unit tests here. Each test needs to have a #[test] annotation

}

We’ll first check that the HttpResponse struct was constructed for the message with a
status code of 200 (Success). Add the following to httpresponse.rs toward the end of
the file.

#[cfg(test)]
mod tests {

use super::*;

Listing 2.15 Code to serialize a Rust struct into an HTTP response message

Listing 2.16 Test script for an HTTP success (200) message

42 CHAPTER 2 Writing a basic web server from scratch
#[test]
fn test_response_struct_creation_200() {

let response_actual = HttpResponse::new(
"200",
None,
Some("Item was shipped on 21st Dec 2020".into()),

);
let response_expected = HttpResponse {

version: "HTTP/1.1",
status_code: "200",
status_text: "OK",
headers: {

let mut h = HashMap::new();
h.insert("Content-Type", "text/html");
Some(h)

},
body: Some("Item was shipped on 21st Dec 2020".into()),

};
assert_eq!(response_actual, response_expected);

}
}

Next, we’ll test for a 404 (page not found) HTTP message. Add the following test case
within the mod tests {} block, after the test_response_struct_creation_200() test
function.

#[test]
fn test_response_struct_creation_404() {

let response_actual = HttpResponse::new(
"404",
None,
Some("Item was shipped on 21st Dec 2020".into()),

);
let response_expected = HttpResponse {

version: "HTTP/1.1",
status_code: "404",
status_text: "Not Found",
headers: {

let mut h = HashMap::new();
h.insert("Content-Type", "text/html");
Some(h)

},
body: Some("Item was shipped on 21st Dec 2020".into()),

};
assert_eq!(response_actual, response_expected);

}

Lastly, we’ll check if the HttpResponse struct is being serialized into an on-the-wire
HTTP response message in the right format. Add the following test within the mod
tests {} block, after the test_response_struct_creation_404() test function.

Listing 2.17 Test script for a 404 message

432.3 Writing an HTTP server in Rust

#[test]
fn test_http_response_creation() {

let response_expected = HttpResponse {
version: "HTTP/1.1",
status_code: "404",
status_text: "Not Found",
headers: {

let mut h = HashMap::new();
h.insert("Content-Type", "text/html");
Some(h)

},
body: Some("Item was shipped on 21st Dec 2020".into()),

};
let http_string: String = response_expected.into();
let response_actual = "HTTP/1.1 404 Not Found\r\nContent-Type:

text/html\r\nContent-Length: 33\r\n\r\nItem was
shipped on 21st Dec 2020";

assert_eq!(http_string, response_actual);
}

Let’s run the tests now. Run the following command from the workspace root:

cargo test -p http

You should see the following message showing that six tests have passed in the http
module. Note that this includes tests for both the HTTP request and HTTP response
modules:

running 6 tests
test httprequest::tests::test_method_into ... ok
test httprequest::tests::test_version_into ... ok
test httpresponse::tests::test_http_response_creation ... ok
test httpresponse::tests::test_response_struct_creation_200 ... ok
test httprequest::tests::test_read_http ... ok
test httpresponse::tests::test_response_struct_creation_404 ... ok

test result: ok. 6 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

If the test fails, check for any typos or misalignment in the code (if you copied and
pasted it). In particular, recheck the following string literal (which is quite long and
prone to mistakes):

"HTTP/1.1 404 Not Found\r\nContent-Type:text/html\r\nContent-Length:
33\r\n\r\nItem was shipped on 21st Dec 2020";

If you are still having trouble executing the tests, refer back to the Git repo. This com-
pletes the code for the http library. Recall the design of the HTTP server, shown again
in figure 2.8.

 We’ve written the http library. Now we need to write the main() function, server,
router, and handler. We will have to switch from the http project to the httpserver
project directory to write this code.

Listing 2.18 Test script to check for a well-formed HTTP response message

44 CHAPTER 2 Writing a basic web server from scratch
Figure 2.8 Web server message flow

To refer to the http library from the httpserver project, add the following code to
the Cargo.toml file of the latter:

[dependencies]
http = {path = "../http"}

2.3.3 Writing the main() function and server module

Let’s take a top-down approach. We’ll start with the main() function in httpserver/
src/main.rs.

mod handler;
mod server;
mod router;
use server::Server;
fn main() {

// Start a server
let server = Server::new("localhost:3000");
//Run the server
server.run();

}

The main function imports three modules: handler, server, and router. Now we need
to create these three files—handler.rs, server.rs, and router.rs—under httpserver/src.

 We’ll write the code for the server module in httpserver/src/server.rs.

use super::router::Router;
use http::httprequest::HttpRequest;
use std::io::prelude::*;
use std::net::TcpListener;
use std::str;

Listing 2.19 The main() function

Listing 2.20 The server module

Router

Server

Http library

Handler

Web client

Web server

Internet
Calls to HTTP library to convert between
byte streams and HTTP messages

Handler
Handlers

Web client sends an HTTP request to
the server

Request is passed to the router

Router determines which handler to invoke

Handler processes the incoming request and
returns an HTTP response

452.3 Writing an HTTP server in Rust
pub struct Server<'a> {
socket_addr: &'a str,

}
impl<'a> Server<'a> {

pub fn new(socket_addr: &'a str) -> Self {
Server { socket_addr }

}
pub fn run(&self) {

// Start a server listening on socket address
let connection_listener = TcpListener::bind(

self.socket_addr).unwrap();
println!("Running on {}", self.socket_addr);
// Listen to incoming connections in a loop
for stream in connection_listener.incoming() {

let mut stream = stream.unwrap();
println!("Connection established");
let mut read_buffer = [0; 90];
stream.read(&mut read_buffer).unwrap();
// Convert HTTP request to Rust data structure
let req: HttpRequest = String::from_utf8(

read_buffer.to_vec()).unwrap().into();
// Route request to appropriate handler
Router::route(req, &mut stream);

}
}

}

The server module has two methods. The new() method accepts a socket address (host
and port) and returns a Server instance. The run() method performs the following:

 Binds on the socket
 Listens to incoming connections
 Reads a byte stream on a valid connection
 Converts the stream into an HttpRequest struct instance
 Passes the request to Router for further processing

2.3.4 Writing the router and handler modules

The router module inspects the incoming HTTP request and determines which han-
dler to route the request to for processing. Add the following code to httpserver/src/
router.rs.

use super::handler::{Handler, PageNotFoundHandler, StaticPageHandler,
WebServiceHandler};
use http::{httprequest, httprequest::HttpRequest,
httpresponse::HttpResponse};
use std::io::prelude::*;
pub struct Router;
impl Router {

pub fn route(req: HttpRequest, stream: &mut impl Write) -> () {

Listing 2.21 The router module

46 CHAPTER 2 Writing a basic web server from scratch
match req.method {
// If GET request
httprequest::Method::Get => match &req.resource {

httprequest::Resource::Path(s) => {
// Parse the URI
let route: Vec<&str> = s.split("/").collect();
match route[1] {

// if the route begins with /api, invoke Web service
"api" => {

let resp: HttpResponse =
WebServiceHandler::handle(&req);

let _ = resp.send_response(stream);
}
// Else, invoke static page handler

_ => {
let resp: HttpResponse =

StaticPageHandler::handle(&req);
let _ = resp.send_response(stream);

}
}

}
},
// If method is not GET request, return 404 page
_ => {

let resp: HttpResponse = PageNotFoundHandler::handle(&req);
let _ = resp.send_response(stream);

}
}

}
}

The router checks if the incoming method is a GET request. If so, it performs checks
in the following order:

1 If the GET request route begins with /api, it routes the request to the Web-
ServiceHandler.

2 If the GET request is for any other resource, it assumes the request is for a static
page and routes the request to the StaticPageHandler.

3 If it is not a GET request, it sends back a 404 error page.

For the handler modules, let’s add a couple of external crates to handle JSON serial-
ization and deserialization: serde and serde_json. The Cargo.toml file for the http-
server project will look like this:

[dependencies]
http = {path = "../http"}
serde = {version = "1.0.117",features = ["derive"]}
serde_json = "1.0.59"

Let’s start with module imports. Add the following code to httpserver/src/handler.rs:

use http::{httprequest::HttpRequest, httpresponse::HttpResponse};
use serde::{Deserialize, Serialize};

472.3 Writing an HTTP server in Rust
use std::collections::HashMap;
use std::env;
use std::fs;

Now let’s define a trait called Handler as follows.

pub trait Handler {
fn handle(req: &HttpRequest) -> HttpResponse;
fn load_file(file_name: &str) -> Option<String> {

let default_path = format!("{}/public", env!("CARGO_MANIFEST_DIR"));
let public_path = env::var("PUBLIC_PATH").unwrap_or(default_path);
let full_path = format!("{}/{}", public_path, file_name);

let contents = fs::read_to_string(full_path);
contents.ok()

}
}

Note that the Handler trait contains two methods:

 handle()—This method has to be implemented for any other user data type to
implement the trait.

 load_file()—This method loads a file (non-JSON) from the public directory
in the httpserver root folder. The implementation is already provided as part of
the trait definition.

We’ll now define the following data structures:

 StaticPageHandler—To serve static web pages
 WebServiceHandler—To serve JSON data
 PageNotFoundHandler—To serve a 404 page
 OrderStatus—To load data read from a JSON file

Add the following code to httpserver/src/handler.rs.

#[derive(Serialize, Deserialize)]
pub struct OrderStatus {

order_id: i32,
order_date: String,
order_status: String,

}

pub struct StaticPageHandler;

pub struct PageNotFoundHandler;

pub struct WebServiceHandler;

Listing 2.22 Defining the Handler trait

Listing 2.23 Data structures for the handler

48 CHAPTER 2 Writing a basic web server from scratch
Now let’s implement the Handler trait for the three handler structs. We’ll start with
the PageNotFoundHandler:

impl Handler for PageNotFoundHandler {
fn handle(_req: &HttpRequest) -> HttpResponse {

HttpResponse::new("404", None, Self::load_file("404.html"))
}

}

If the handle method on the PageNotFoundHandler struct is invoked, it will return a
new HttpResponse struct instance with a status code of 404 and a body containing
some HTML loaded from the 404.html file.

 Next is the code for the StaticPageHandler.

impl Handler for StaticPageHandler {
fn handle(req: &HttpRequest) -> HttpResponse {

// Get the path of static page resource being requested
let http::httprequest::Resource::Path(s) = &req.resource;

// Parse the URI
let route: Vec<&str> = s.split("/").collect();
match route[1] {

"" => HttpResponse::new("200", None,
Self::load_file("index.html")),

"health" => HttpResponse::new("200", None,
Self::load_file("health.html")),

path => match Self::load_file(path) {
Some(contents) => {

let mut map: HashMap<&str, &str> = HashMap::new();
if path.ends_with(".css") {

map.insert("Content-Type", "text/css");
} else if path.ends_with(".js") {

map.insert("Content-Type", "text/javascript");
} else {

map.insert("Content-Type", "text/html");
}
HttpResponse::new("200", Some(map), Some(contents))

}
None => HttpResponse::new("404", None,

Self::load_file("404.html")),
},

}
}

}

If the handle() method is called on the StaticPageHandler, the following processing
is performed:

 If the incoming request is for localhost:3000/, the contents from the
index.html file are loaded, and a new HttpResponse struct is constructed.

Listing 2.24 A handler to serve static web pages

492.3 Writing an HTTP server in Rust
 If the incoming request is for localhost:3000/health, the contents from the
health.html file are loaded, and a new HttpResponse struct is constructed.

 If the incoming request is for any other file, the method tries to locate that file
in the httpserver/public folder. If the file is not found, it sends back a 404 error
page. If the file is found, the contents are loaded and embedded within an
HttpResponse struct. Note that the Content-Type header in the HTTP response
message is set according to the type of file.

Let’s now look at the last part of the code: WebServiceHandler.

impl WebServiceHandler {
fn load_json() -> Vec<OrderStatus> {

let default_path = format!("{}/data", env!("CARGO_MANIFEST_DIR"));
let data_path = env::var("DATA_PATH").unwrap_or(default_path);
let full_path = format!("{}/{}", data_path, "orders.json");
let json_contents = fs::read_to_string(full_path);
let orders: Vec<OrderStatus> =

serde_json::from_str(json_contents.unwrap().as_str()).unwrap();
orders

}
}
// Implement the Handler trait
impl Handler for WebServiceHandler {

fn handle(req: &HttpRequest) -> HttpResponse {
let http::httprequest::Resource::Path(s) = &req.resource;

// Parse the URI
let route: Vec<&str> = s.split("/").collect();
// if route if /api/shipping/orders, return json
match route[2] {

"shipping" if route.len() > 2 && route[3] == "orders" => {
let body = Some(serde_json::to_string(

&Self::load_json()).unwrap());
let mut headers: HashMap<&str, &str> = HashMap::new();
headers.insert("Content-Type", "application/json");
HttpResponse::new("200", Some(headers), body)

}
_ => HttpResponse::new("404", None, Self::load_file("404.html")),

}
}

}

If the handle() method is called on the WebServiceHandler struct, the following pro-
cessing is done:

 If the GET request is for localhost:3000/api/shipping/orders, the JSON file
with orders is loaded, and this is serialized into JSON, which is returned as part
of the body of the response.

 If it is any other route, a 404 error page is returned.

Listing 2.25 A handler to serve JSON data

Define a load_json() method to
load the orders.json file from disk.

50 CHAPTER 2 Writing a basic web server from scratch
We’re done with the code. We now have to create the HTML and JSON files to test the
web server.

2.3.5 Testing the web server

In this section, we’ll first create the test web pages and JSON data. We’ll then test the
web server for various scenarios and analyze the results.

 Create two subfolders, data and public, under the httpserver root folder. In the
public folder, create four files: index.html, health.html, 404.html, and styles.css. In the
data folder, create an orders.json file.

 Example contents for these files are shown in the following listings. You can alter
them according to your preference.

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8" />
<link rel="stylesheet" href="styles.css">
<title>Index!</title>

</head>
<body>

<h1>Hello, welcome to home page</h1>
<p>This is the index page for the web site</p>

</body>
</html>

h1 {
color: red;
margin-left: 25px;

}

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8" />
<title>Health!</title>

</head>
<body>

<h1>Hello welcome to health page!</h1>
<p>This site is perfectly fine</p>

</body>
</html>

Listing 2.26 The index web page (httpserver/public/index.html)

Listing 2.27 The style sheet for formatting the page (httpserver/public/styles.css)

Listing 2.28 The health web page (httpserver/public/health.html)

512.3 Writing an HTTP server in Rust
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8" /> <title>Not Found!</title>

</head>
<body>

<h1>404 Error</h1>
<p>Sorry the requested page does not exist</p>

</body>
</html>

[
{

"order_id": 1,
"order_date": "21 Jan 2020",
"order_status": "Delivered"

},
{

"order_id": 2,
"order_date": "2 Feb 2020",
"order_status": "Pending"

}
]

We’re ready to run the web server now. Run it from the workspace root as follows:

cargo run -p httpserver

Then, from a browser window or using the curl tool, test the following URLs:

localhost:3000/
localhost:3000/health
localhost:3000/api/shipping/orders
localhost:3000/invalid-path

If you invoke these commands on a browser, for the first URL, you should see the
heading in red font. Go to the network tab in the Chrome browser (or to equivalent
developer tools on other browsers) and view the files downloaded by the browser.
You’ll see that in addition to the index.html file, the styles.css file was also automati-
cally downloaded by the browser, which results in the styling being applied to the
index page. If you inspect further, you’ll see that the Content-Type of text/css has
been sent for the css file, and text/html has been set for the HTML file, all from our
web server to the browser.

 Likewise, if you inspect the response content-type sent for the /api/shipping/
orders path, you will see application/json received by the browser as part of the
response headers.

Listing 2.29 Page-not-found file (httpserver/public/404.html)

Listing 2.30 The JSON data file for orders (httpserver/data/orders.json)

52 CHAPTER 2 Writing a basic web server from scratch
 In this section, we have written an HTTP server and a library of HTTP messages
that can serve static pages and JSON data. While the former capability is associated
with the term web server, the latter is where we start to see web service capabilities. Our
httpserver project functions as both a static web server as well as a web service serv-
ing JSON data. Of course, a regular web service would serve more methods than just
GET requests, but this exercise was intended to demonstrate how you can use Rust to
build such a web server and web service from scratch, without using any web frame-
works or external HTTP libraries.

 I hope you enjoyed following along with the code and got to a working server. If
you had any difficulties, you can refer to the code repository for chapter 2: https://
git.manning.com/agileauthor/eshwarla/-/tree/master/code.

 You now have the foundational knowledge to understand how Rust can be used to
develop a low-level HTTP library and web server, as well as the beginnings of a web
service. In the next chapter, we will dive right into developing web services using a
production-ready web framework that is written in Rust.

Summary
 The TCP/IP model is a simplified set of standards and protocols for communi-

cation over the internet. It is organized into four abstract layers: the network
access layer, internet layer, transport layer, and application layer. TCP is the
transport-layer protocol over which other application-level protocols, such as
HTTP, operate. We built a server and client that exchanged data using the TCP
protocol.

 TCP is a stream-oriented protocol where data is exchanged as a continuous
stream of bytes.

 We built a basic TCP server and client using the Rust standard library. TCP does
not understand the semantics of messages, such as HTTP. Our TCP client and
server simply exchanged a stream of bytes without any understanding of the
data transmitted.

 HTTP is an application-layer protocol and is the foundation for most web ser-
vices. In most cases, HTTP uses TCP as the transport protocol.

 We built an HTTP library to parse incoming HTTP requests and construct
HTTP responses. The HTTP requests and responses were modeled using Rust
structs and enums.

 We built an HTTP server that serves two types of content: static web pages (with
associated files, such as stylesheets) and JSON data.

 Our web server can accept requests and send responses to standard HTTP cli-
ents, such as browsers and the curl tool.

 We added additional behavior to our custom structs by implementing several
traits. Some of them were auto-derived using Rust annotations, and others were
hand-coded. We also made use of lifetime annotations to specify the lifetimes of
references within structs.

https://git.manning.com/agileauthor/eshwarla/-/tree/master/code
https://git.manning.com/agileauthor/eshwarla/-/tree/master/code

Building a RESTful
web service
In this chapter, we will build our first real web service. It will expose a set of APIs over
HTTP, and it will use the representational state transfer (REST) architectural style.

 We’ll build the web service using Actix (https://actix.rs), a lightweight web
framework written in Rust, which is also one of the most mature in terms of code
activity, adoption, and ecosystem. We will warm up by writing some introductory
code in Actix so you can learn its foundational concepts and structure. Later in this
chapter, we will design and build a set of REST APIs using a thread-safe in-memory
data store.

 The complete code for this chapter can be found at https://git.manning.com/
agileauthor/eshwarla/-/tree/master/code.

3.1 Getting started with Actix
In this book, we are going to build a digital storefront aimed at tutors. We’ll call our
digital platform EzyTutors because we want tutors to be able to easily publish their

This chapter covers
 Getting started with Actix

 Writing a RESTful web service
53

https://actix.rs
https://git.manning.com/agileauthor/eshwarla/-/tree/master/code
https://git.manning.com/agileauthor/eshwarla/-/tree/master/code

54 CHAPTER 3 Building a RESTful web service
training catalogs online, which can in turn trigger the interest of learners and generate
sales.

 To kickstart this journey, we’ll build a set of simple APIs that allow tutors to create
courses and learners to retrieve courses.

 This introduction to Actix is organized into two parts. In the first subsection, we
will build a basic async HTTP server using Actix that demonstrates a simple health-
check API. This will help you understand the foundational concepts of Actix. In the
second subsection, we will design and build REST APIs for the tutor web service. We
will rely on an in-memory data store (rather than a database) and use test-driven
development. Along the way, you will be introduced to key Actix concepts such as
routes, handlers, HTTP requests, parameters, and HTTP responses.

 Let’s write some code, shall we?

3.1.1 Writing the first REST API

In this section, we’ll write an Actix server that can respond to an HTTP request.

First, we’ll create a new project with this command:

cargo new ezytutors && cd ezytutors

This will create a binary Cargo project.

Why Actix?
This book is about developing high-performance web services and applications in
Rust. The web frameworks I considered while writing this book were Actix, Rocket,
Warp, and Tide. Warp and Tide are relatively new, whereas Actix and Rocket lead the
pack in terms of adoption and level of activity. I chose Actix over Rocket because
Rocket does not yet have native async support, and async support is a key factor in
improving performance in I/O-heavy workloads (such as web service APIs) at scale.

A note about the project structure
There are many ways to organize the code that you will be building over the course of
this book.

The first option is to create a workspace project (similar to the one we created in
chapter 2) and create separate projects under the workspace, one per chapter.

The second option is to create a separate cargo binary project for each chapter. The
grouping options for deployment can be determined at a later time.

Either approach is fine, but in this book, we’ll adopt the first approach to keep things
organized. We’ll create a workspace project, ezytutors, which will hold the other
projects.

553.1 Getting started with Actix
 Let’s convert this into a workspace project. Under this workspace, we’ll store the
web service and applications that we will build in future chapters. Add the following to
Cargo.toml:

[workspace]
members = ["tutor-nodb"]

tutor-nodb is the name of the web service we will create in this chapter. Create
another Cargo project as follows:

cargo new tutor-nodb && cd tutor-nodb

This will create a binary Rust project called tutor-nodb under the ezytutors work-
space. For convenience, we will refer to this as the “tutor web service” henceforth. The
root folder of this Cargo project contains an src subfolder and a Cargo.toml file.

 Add the following dependencies in Cargo.toml in the tutor web service:

[dependencies]
actix-web = "4.2.1"
actix-rt = "2.7.0"

Add the following binary declaration to the same Cargo.toml file to specify the name
of the binary file:

[[bin]]
name = "basic-server"

Let’s now create a source file called basic-server.rs under the tutor-nodb/src/bin
folder. This will contain the main() function, which is the entry point for the binary.

 There are four basic steps involved in creating and starting a basic HTTP server in
Actix:

1 Configure the routes, which are paths to various resources in a web server. For
our example, we will configure a /health route to perform health checks on
the server.

2 Configure a handler. The handler is the function that processes requests for a
route. We will define a health-check handler to service the /health route.

3 Construct a web application, and register the routes and handlers with the
application.

4 Construct an HTTP server linked to the web application, and run the server.

These four steps are highlighted in listing 3.1 with annotations. Add that code to src/
bin/basic-server.rs. Don’t worry if you don’t understand all the steps and code—just
type it in for now, and it will be explained in detail later.

NOTE I highly recommend that you type in the code line by line, rather than
copying and pasting it into your editor. This will provide you with a better
return on your learning time, as you will be practicing rather than just reading.

You can use this version of actix-web
or whichever later version is available
at the time you are reading this.

The async runtime for Actix. Rust requires an
external runtime engine for executing async code.

56 CHAPTER 3 Building a RESTful web service

e,

// Module imports
use actix_web::{web, App, HttpResponse, HttpServer, Responder};
use std::io;

// Configure route
pub fn general_routes(cfg: &mut web::ServiceConfig) {

cfg.route("/health", web::get().to(health_check_handler));
}

//Configure handler
pub async fn health_check_handler() -> impl Responder {

HttpResponse::Ok().json("Hello. EzyTutors is alive and kicking")
}

// Instantiate and run the HTTP server
#[actix_rt::main]
async fn main() -> io::Result<()> {

// Construct app and configure routes
let app = move || App::new().configure(general_routes);

// Start HTTP server
HttpServer::new(app).bind("127.0.0.1:3000")?.run().await

}

You can run the server in one of two ways. If you are in the ezytutors workspace
folder root, run the following command:

cargo run -p tutor-nodb --bin basic-server

The -p flag tells Cargo to build and run the binary for the tutor-nodb project within
the workspace.

 Alternatively, you can run the command from within the tutor-nodb folder as
follows:

cargo run --bin basic-server

In a web browser, visit the following URL:

localhost:3000/health

You will see the following printed:

Hello, EzyTutors is alive and kicking

Congratulations! You have built your first REST API in Actix.

3.1.2 Understanding Actix concepts

In the previous section, we wrote a basic Actix web server (an Actix HTTP server). The
server was configured to run a web application with a single route, /health, that
returns the health status of the web application service. Figure 3.1 shows the compo-
nents of Actix that we used in the code.

Listing 3.1 Writing a basic Actix web server

For HTTP GET requests coming in on the /health route, the Actix
web server will route the request to health_check_handler().

The handler constructs an HTTP
response with a greeting.

Construct an Actix web application instanc
and register the configured routes.

Initialize a web server,
load the application,
bind it to a socket,
and run the server.

573.1 Getting started with Actix
Figure 3.1 Components of the Actix web server

Here is the sequence of steps shown in the figure:

1 When you typed localhost:3000/health in your browser, an HTTP GET
request message was constructed by the browser and sent to the Actix basic-
server listening at the localhost:3000 port.

2 The Actix basic-server inspected the GET request and determined the route
in the message to be /health. The server then routed the request to the web
application (app) that had the /health route defined.

3 The web application in turn determined the handler for the route /health to
be health_check_handler(), and it routed the message to that handler.

4 The health_check_handler() handler constructed an HTTP response with a
text message and sent it back to the browser.

You will have noticed the terms HTTP server, web application, route, and handler used
prominently. These are key concepts within Actix for building web services. Recall
that we also used the terms server, route, and handler in chapter 2. Conceptually, these
are similar, but let’s look at them in more detail in the context of Actix:

 HTTP (web) server—An HTTP server is responsible for serving HTTP requests. It
understands and implements the HTTP protocol. By default, the HTTP server
starts a number of threads (called workers) to process incoming requests.

An Actix HTTP server is built around the concept of web applications, and it
requires one for initialization. It constructs one application instance per OS
thread.

 App—An app, or Actix web application, is a grouping of the set of routes it can
handle.

Actix HTTP server

Actix app

GET /health
health_check_handler()

Actix route
Actix handler

Basic-server web service

Web
client

Internet

Mobile
client

HTTP GET request for a health check is sent from a web or mobile browser to the Actix server.

The Actix HTTP server directs the request to the /health route in the Actix application.

The /health route directs the request to the health_check_handler().

The health_check_handler() returns a response to the web or mobile browser.

58 CHAPTER 3 Building a RESTful web service
 Routes and handlers—A route in Actix tells the Actix web server how to process an
incoming request. A route is defined in terms of a route path, an HTTP method, and
a handler function. Said differently, a request handler is registered with an appli-
cation’s route on a path for a particular HTTP method. The structure of an Actix
route is illustrated in figure 3.2.

This is the route we implemented earlier for the health check:

cfg.route(
"/health",
web::get()
.to(health_check_handler));

The preceding route specifies that if an HTTP GET request arrives for the path
/health, the request should be routed to the request handler method health_
check_handler().

 A request handler is an asynchronous method that accepts zero or more parame-
ters and returns an HTTP response. The following is a request handler that we imple-
mented in the previous example:

pub async fn health_check_handler() -> impl Responder {
HttpResponse::Ok().json("Hello, EzyTutors is alive and kicking")

}

In this code, health_check_handler() is a function that implements the Responder
trait. Types that implement the Responder trait acquire the capability to send HTTP
responses. Note that this handler does not accept any input parameters, but it is possi-
ble to send data along with HTTP requests from the client, and that data will be made
available to handlers. You’ll see such an example in the next section.

Actix concurrency
Actix supports two levels of concurrency.

It supports asynchronous I/O, wherein a given OS-native thread performs other tasks
while waiting on I/O (such as listening for network connections).

It also supports multithreading for parallelism, and by default, it starts a number of
OS-native threads (called workers) equal to the number of logical CPUs in the system.

cfg.route("/tweets/", web::post.to(post))

Path

Method

Handler
Figure 3.2 Structure
of an Actix route

Path
HTTP method Request handler

method

593.2 Building web APIs with REST
Using a framework like Actix Web significantly speeds up the prototyping and devel-
opment of web APIs in Rust, as it takes care of the low-level details of dealing with
HTTP protocols and messages. It also provides several utility functions and features to
make web application development easier.

 While Actix Web has an extensive feature set, we’ll only be able to cover a subset of
the features in this book, such as HTTP methods that provide CRUD (create, read,
update, delete) functionality for resources, persistence with databases, error han-
dling, state management, JWT authentication, and configuring middleware.

 In this section, we built a basic Actix web service exposing a health-check API, and
we reviewed key features of the Actix framework. In the next section, we will build the
web service for the EzyTutors social network.

3.2 Building web APIs with REST
This section will take you through the typical steps in developing a RESTful web ser-
vice with Actix.

 A web service is a network-oriented service, which means it communicates through
messages over a network. Web services use HTTP as the primary protocol for exchang-
ing messages. Several architectural styles can be used to develop web services, such as
SOAP/XML, REST/HTTP, and gRPC/HTTP. In this chapter, we will use the REST
architectural style.

More about Actix Web
Actix Web (often referred to as just Actix) is a modern, Rust-based, lightweight and
fast web framework. Actix Web has consistently featured among the best web frame-
works in TechEmpower performance benchmarks (www.techempower.com/bench
marks/).

Actix Web is among the most mature Rust web frameworks and supports features
such as those listed here:

 Support for HTTP/1.x and HTTP/2.
 Support for request and response preprocessing.
 Middleware can be configured for features such as CORS, session manage-

ment, logging, and authentication.
 It supports asynchronous I/O. This provides the ability for the Actix server to

perform other activities while waiting on network I/O.
 Content compression.
 Can connect to multiple databases.
 Provides an additional layer of testing utilities (over the Rust testing frame-

work) to support testing of HTTP requests and responses.
 Supports static web page hosting and server-rendered templates.

More technical details about the Actix Web framework can be found here: https://
docs.rs/crate/actix-web/2.0.0.

www.techempower.com/benchmarks/
www.techempower.com/benchmarks/
www.techempower.com/benchmarks/
https://docs.rs/crate/actix-web/2.0.0
https://docs.rs/crate/actix-web/2.0.0

60 CHAPTER 3 Building a RESTful web service
A web service that exposes APIs using the REST architectural style is called a RESTful
web service. We’ll build a RESTful web service in this section for our EzyTutors digital
storefront. I’ve chosen the RESTful style for the APIs because they are intuitive, widely
used, and suited for external-facing APIs (as opposed to gRPC, which is more suited to
APIs between internal services).

 The core functionality of our web service in this chapter will be to allow a new course
to be posted, a course list for a tutor to be retrieved, and details for an individual course
to be retrieved. Our initial data model will contain just one resource: course.

 But before we get to the data model, let’s finalize the structure of the project and
code and also determine how we’ll store this data in memory in a way that is safely
accessible across multiple Actix worker threads.

3.2.1 Defining the project scope and structure

We will build three RESTful APIs for the tutor web service. These APIs will be regis-
tered on an Actix web application, which in turn will be deployed on the Actix Http-
Server.

REST APIs
REST stands for representational state transfer. It is a term used to visualize web ser-
vices as a network of resources, each having its own state. Users trigger operations
such as GET, PUT, POST, and DELETE on resources identified by URIs (for example,
https://www.google.com/search?q=weather%20berlin can be used to get the current
weather for Berlin).

Resources are application entities such as users, shipments, courses, etc. Opera-
tions on resources, such as POST and PUT, can result in state changes in the
resources. The latest state is returned to the client making the request.

The REST architecture defines a set of properties (called constraints) that a web ser-
vice must adopt:

 Client-server architecture—This architecture allows for the separation of con-
cerns. The client and server are decoupled and can evolve independently.

 Statelessness—This means there is no client context stored on the server
between consecutive requests from the same client.

 Layered system—This approach allows for the presence of intermediaries,
such as load balancers and proxies between the client and the server.

 Cacheability—This supports the caching of server responses by clients to
improve performance.

 Uniform interface—This defines uniform ways to address and manipulate
resources and to standardize messages.

 Well-defined state changes—State changes are clearly defined. For example,
GET requests do not result in state changes, but POST, PUT, and DELETE mes-
sages do.

Note that REST is not a formal standard but an architectural style. As a result, there
may be variations in the way RESTful services are implemented.

https://www.google.com/search?q=weather%20berlin

613.2 Building web APIs with REST
 The APIs will be designed to be invoked from a web frontend or mobile applica-
tion. We’ll test the GET API requests using a standard browser and the POST requests
using curl, a command-line HTTP client (you can alternatively use a tool like Post-
man, if you prefer).

 We’ll use an in-memory data structure to store the courses instead of a database.
This is just for simplicity. A relational database will be added in the next chapter.

 Figure 3.3 shows the various components of the web service that we’ll build and
how the HTTP requests from web and mobile clients are handled by the web service.
Recall figure 3.1 illustrating the basic server, which was similar.

Figure 3.3 Components of the web service

These are the steps in the request and response message flow:

1 The HTTP requests are constructed by web or mobile clients and sent to the
domain address and port number where the Actix web server is listening.

2 The Actix web server routes the request to the Actix web app.
3 The Actix web app has been configured with the routes for the three APIs. It

inspects the route configuration, determines the right handler for the specified
route, and forwards the request to the handler function.

4 The request handlers parse the request parameters, read or write to the
in-memory data store, and return an HTTP response. Any errors in processing
are also returned as HTTP responses with the appropriate status codes.

That, in brief, is how a request-response flow works in Actix Web. These are the APIs
we will build:

 POST /courses—Create a new course and save it in the web service.

Actix HTTP server

Actix app

Get a course

Get all courses for tutor

Post a course

Route 1

In-memory data store

Route 3

Route 2

Handler 3

Handler 2

Handler 1

Web
client

Internet

Mobile
client

Ezytutors web service

The web service API request is sent from web and mobile clients to the Actix HTTP server.
The Actix HTTP server directs the request to the respective route in the Actix application.
Each route directs the request to the corresponding handler.
Each handler stores and retrieves data from the in-memory data store and sends HTTP
responses back to web and mobile clients.

62 CHAPTER 3 Building a RESTful web service
 GET /courses/tutor_id—Get a list of courses
offered by a tutor.

 GET /courses/tutor_id/course_id—Get course
details.

Now that we have reviewed the scope of the project,
let’s look at how the code will be organized:

 bin/tutor-service.rs—Contains the main()

function
 models.rs—Contains the data model for the

web service
 state.rs—Application state is defined here
 routes.rs—Contains the route definitions
 handlers.rs—Contains handler functions that

respond to HTTP requests
 Cargo.toml—Configuration file and dependen-

cies specification for the project

Figure 3.4 shows the code structure.
 In this section, we will organize the project reposi-

tory so that two different binaries can be built, each
with different code. This is something that Rust’s Cargo
tool enables us to do easily.

 First, update Cargo.toml to look like the following listing.

[package]
name = "tutor-nodb"
version = "0.1.0"
authors = ["peshwar9"]
edition = "2018"
default-run="tutor-service"

[[bin]]
name = "basic-server"

[[bin]]
name = "tutor-service"

[dependencies]
#Actix web framework and run-time
actix-web = "3.0.0"
actix-rt = "1.1.1"

You will notice that we’ve defined two binaries for this project. The first one is basic-
server, which we built in the previous section. The second one is tutor-service,
which we will build now.

Listing 3.2 Configuration for the basic Actix web server

Figure 3.4 Project structure
of the EzyTutors web service

633.2 Building web APIs with REST
 We also have two dependencies to include: the actix-web framework and the
actix-rt runtime.

 Note also that under the [package] tag, we’ve added a default-run parameter with
the value tutor_service. This tells Cargo that the tutor_service binary should be
built unless otherwise specified. This allows us to build and run the tutor service with
cargo run -p tutor-nodb, rather than cargo run -p tutor-nodb --bin tutor-service.

 Finally, create a new file, tutor-nodb/src/bin/tutor-service.rs. This will contain the
code for the web service in this section.

 We’ve now covered the project scope and structure. Let’s turn our attention to
another topic—how we will store the data in the web service. I’ve already said we won’t
use a database in this chapter; we’ll store the data in memory. This is fine for a single-
threaded server, like the one we built in the last chapter, but Actix is a multithreaded
server. Each thread (Actix worker) runs a separate instance of the application. How
can we make sure that two threads are not trying to mutate the same data in-memory
simultaneously?

 Rust has features such as Arc and Mutex that we can use to address this problem.
But where in the web service should we define the shared data, and how can we make
it available to the handlers, which is where the processing will take place? The Actix
Web framework gives us an elegant way to address this. Actix allows us to define appli-
cation state of any custom type and to access it using a built-in extractor. We’ll take a
closer look at this in the next section.

3.2.2 Defining and managing application state

The term application state can be used in different contexts to mean different things.
W3C defines application state as how an application is: its configuration, attributes,
condition, or information content (www.w3.org/2001/tag/doc/state.html). State
changes happen in an application component when triggered by an event. More spe-
cifically, in the context of applications that provide a RESTful web API to manage
resources over a URI (such as the one we’re discussing in this chapter), application
state is closely related to the state of the resources that are part of the application. In
this chapter, we are specifically dealing with course as the only resource. So, it can be
said that the state of our application changes as courses are added or removed for a
tutor. In most real-world applications, the state of resources is persisted to a data store.
However, in our case, we will be storing the application state in memory.

 An Actix web server by default spawns a number of threads on startup (this is con-
figurable). Each thread runs an instance of the web application and can process
incoming requests independently. However, by design, there is no built-in sharing of
data across Actix threads. You may wonder why we would want to share data across
threads. Take the example of a database connection pool. It makes sense for multiple
threads to use a common connection pool to handle database connections. Such data
can be modeled in Actix as application state. This state is injected by the Actix frame-
work into the request handlers such that handlers can access state as parameters in
their method signatures. All routes within an Actix app can share application state.

www.w3.org/2001/tag/doc/state.html

64 CHAPTER 3 Building a RESTful web service
 In the tutor web service, we want to store a list of courses in memory as application
state. We’d like this state to be made available to all the handlers and shared safely
across different threads.

 Before we get to the courses, let’s try a simpler example to learn how we can define
and use application state with Actix. Let’s define a simple application state type with
two elements:

 A string data type (representing a static string response to a health-check request)—This
string value will be shared immutable state, accessible from all threads—the val-
ues cannot be modified after they are initially defined.

 An integer data type (representing the number of times a user has visited a particular
route)—This numeric value will be shared mutable state—the value can be
mutated from every thread. However, before a value can be modified, the
thread has to acquire control over the data. This is achieved by defining the
numeric value with the protection of Mutex, a mechanism provided in the Rust
standard library for safe cross-thread communications.

Here is what we need to do for our first iteration of the tutor service:

1 Define application state for the health-check API in src/state.rs.
2 Update the main function (of the Actix server) to initialize and register applica-

tion state in src/bin/tutor-service.rs.
3 Define the route for the health-check route in src/routes.rs.
4 Construct an HTTP response in src/handlers.rs using this application state.

DEFINING THE APPLICATION STATE

Add the following code to define application state in tutor-nodb/src/state.rs:

use std::sync::Mutex;

pub struct AppState {
pub health_check_response: String,
pub visit_count: Mutex<u32>,

}

INITIALIZING AND REGISTERING THE APPLICATION STATE

Add the following code in tutor-nodb/src/bin/tutor-service.rs.

use actix_web::{web, App, HttpServer};
use std::io;
use std::sync::Mutex;

#[path = "../handlers.rs"]
mod handlers;
#[path = "../routes.rs"]
mod routes;
#[path = "../state.rs"]
mod state;

Listing 3.3 Building an Actix web server with application state

Shared
immutable state

Shared mutable
state

653.2 Building web APIs with REST
use routes::*;
use state::AppState;

#[actix_rt::main]
async fn main() -> io::Result<()> {

let shared_data = web::Data::new(AppState {
health_check_response: "I'm good. You've already asked me ".to_string(),
visit_count: Mutex::new(0),

});
let app = move || {

App::new()
.app_data(shared_data.clone())
.configure(general_routes)

};

HttpServer::new(app).bind("127.0.0.1:3000")?.run().await
}

DEFINING THE ROUTE

Let’s define the health-check route in tutor-nodb/src/routes.rs:

use super::handlers::*;
use actix_web::web;

pub fn general_routes(cfg: &mut web::ServiceConfig) {
cfg.route("/health", web::get().to(health_check_handler));

}

UPDATING THE HEALTH-CHECK HANDLER TO USE APPLICATION STATE

Add the following code for the health-check handler in tutor-nodb/src/handlers.rs.

use super::state::AppState;
use actix_web::{web, HttpResponse};

pub async fn health_check_handler(app_state: web::Data<AppState>) ->
HttpResponse {
let health_check_response = &app_state.health_check_response;
let mut visit_count = app_state.visit_count.lock().unwrap();
let response = format!("{} {} times", health_check_response,

visit_count);
*visit_count += 1;
HttpResponse::Ok().json(&response)

}

Listing 3.4 Health-check handler using application state

Initialize the
application state.

Define the web
application.

Register the application state
with the web application.

Configure routes for
the web application.

Initialize the Actix web server with the web
application, listen on port 3000, and run the server.

Application state registered with the
Actix web application is made available
to all handler functions as an extractor
object of type web::Data<T>, where T

is the type of the custom application
state that developers have defined.

Data members of the application state struct (AppState)
can be directly accessed using standard dot notation.

A field representing shared
mutable state (visit_count) has

to be locked first before
accessing to prevent multiple

threads from updating the value
of the field simultaneously.

Construct a
response

string to send
back to the

browser client.
Update the value of the field representing shared
mutable state. Since the lock on this data has already
been acquired, the value of the field can be updated
safely. The lock on the data is automatically released
when the handler function finishes execution.

66 CHAPTER 3 Building a RESTful web service
To recap, we have done the following:

 Defined app state in src/state.rs
 Registered app state with the web application in src/bin/tutor-service.rs
 Defined the route in src/routes.rs
 Wrote a health-check handler function to read and update application state in

src/handlers.rs

From the root directory of the tutor web service (ezytutors/tutor-nodb), run the fol-
lowing command:

cargo run

Note that we previously specified the default binary in Cargo.toml as follows:

default-run="tutor-service"

Otherwise, we would have had to specify the following command to run the tutor-
service binary, because there are two binaries defined in this project.

cargo run --bin tutor-service

Go to a browser, and type in the following:

localhost:3000/health

Every time you refresh the browser window, you will find that the visit count has been
incremented. You’ll see a message similar to this:

I'm good. You've already asked me 2 times

We’ve now seen how to define and use application state. This is quite a useful feature
for sharing data and injecting dependencies across an application in a safe manner.
We’ll use this feature more in the coming chapters.

3.2.3 Defining the data model

Before we develop the individual APIs for the tutor web service, let’s first take care of
two things:

 Defining the data model for the web service
 Defining the in-memory data store

These are prerequisites for building APIs.

DEFINING THE DATA MODEL FOR COURSES

Let’s define a Rust data structure to represent a course. A course in our web applica-
tion will have the following attributes:

 Tutor ID—Denotes the tutor who offers the course.
 Course ID—This is a unique identifier for the course. In our system, a course ID

will be unique to a tutor.
 Course name—This is the name of the course offered by the tutor.

673.2 Building web APIs with REST
 Posted time—A timestamp indicating when the course was recorded by the web
service.

To create a new course, the user of the API has to specify the tutor_id and course_
name. The course_id and posted_time will be generated by the web service.

 I have kept the data model simple in order to keep our focus on the objective of
the chapter. To record posted_time, we will use a third-party crate called chrono.

 For serializing and deserializing Rust data structures to and from on-the-wire for-
mat, for transmission in HTTP messages, we will use another third-party crate, serde.

 Let’s first update the Cargo.toml file in the ezytutors/tutor-nodb folder to add the
two external crates, chrono and serde:

[dependencies]
//actix dependencies not shown here

Data serialization library
serde = { version = "1.0.110", features = ["derive"] }
Other utilities
chrono = {version = "0.4.11", features = ["serde"]}

Add the following code to tutor-nodb/src/models.rs.

use actix_web::web;
use chrono::NaiveDateTime;
use serde::{Deserialize, Serialize};

#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct Course {

pub tutor_id: i32,
pub course_id: Option<i32>,
pub course_name: String,
pub posted_time: Option<NaiveDateTime>,

}
impl From<web::Json<Course>> for Course {

fn from(course: web::Json<Course>) -> Self {
Course {

tutor_id: course.tutor_id,
course_id: course.course_id,
course_name: course.course_name.clone(),
posted_time: course.posted_time,

}
}

}

In this listing, you will notice that course_id and posted_time have been declared to
be of type Option<i32> and Option<NaiveDateTime> respectively. This means that
these two fields can either hold a valid value of type i32 and chrono::NaiveDateTime

Listing 3.5 Data model for courses

The #derive annotation derives the implementations for four traits: Deserialize,
Serialize, Debug, and Clone. The first two are part of the serde crate and help to

convert Rust data structs to and from on-the-wire formats.
Implementing the Debug trait will help us print the Course

struct values for debug purposes. The Clone trait
helps address the Rust ownership

rules during processing.

NativeDateTime is a chrono data type
for storing timestamp information.

This function will convert
data from incoming HTTP
requests to Rust structs.

68 CHAPTER 3 Building a RESTful web service
respectively, or they can both hold a value of None if no value is assigned to these
fields.

 Further, toward the end of listing 3.5, you will notice a From trait implementation.
This is a trait implementation that contains a function to convert web::Json<Course>
to the Course data type. What exactly does this mean?

 We saw earlier that application state registered with the Actix web server is made
available to handlers using the web::Data<T> extractor. Likewise, data from an incom-
ing request body is made available to handler functions through the web::Json<T>
extractor. When a POST request is sent from a web client with the tutor_id and
course_name as a data payload, these fields are automatically extracted from the
web::Json<T> Actix object and converted to the Course Rust type by this method.
This is the purpose of the From trait implementation in listing 3.5.

Derivable traits
Traits in Rust are like interfaces in other languages. They are used to define shared
behavior. Data types implementing a trait share common behavior that is defined in
the trait. For example, we could define a trait called RemoveCourse as follows:

trait RemoveCourse {
fn remove(self, course_id) -> Self;

}
struct TrainingInstitute;
struct IndividualTutor;

impl RemoveCourse for IndividualTutor {
// An individual tutor's request is enough to remove a course.

}
impl RemoveCourse for TrainingInstitute {

// There may be additional approvals needed to remove a course
offering for business customers

}

Assuming we have two types of tutors—training institutes (business customers) and
individual tutors—both types can implement the RemoveCourse trait. This means
they will share the common behavior that courses offered by both types can be
removed from our web service. However, the details of the processing needed for
removing a course may vary because business customers may require multiple levels
of approvals before the decision to remove a course is taken. This is an example of
a custom trait.

The Rust standard library defines several traits, which are implemented by the types
within Rust. Interestingly, these traits can be implemented by custom structs defined
at the application level. For example, Debug is a trait defined in the Rust standard
library to print out the value of a Rust data type for debugging. A custom struct
(defined by the application) can also choose to implement this trait to print out the
values of the custom type for debugging.

Such trait implementations can be auto-derived by the Rust compiler when we specify
the #[derive()] annotation above the type definition—these are called derivable

693.2 Building web APIs with REST
ADDING COURSE COLLECTION TO APPLICATION STATE

We have defined the data model for course, but how will we store courses as they are
added? We do not want to use a relational database or a similar persistent data store
just yet. Let’s start with a simpler option.

 We saw earlier that Actix provides a feature to share application state across multi-
ple threads of execution. Why not use this feature for our in-memory data store?

 Earlier we defined an AppState struct in tutor-nodb/src/state.rs to keep track of
visit counts. Let’s enhance that struct to also store the course collection:

use super::models::Course;
use std::sync::Mutex;
pub struct AppState {

pub health_check_response: String,
pub visit_count: Mutex<u32>,
pub courses: Mutex<Vec<Course>>,

}

Since we have altered the definition of application state, we should reflect this in the
main() function. In tutor-nodb/src/bin/tutor-service.rs, make sure that all the mod-
ule imports are correctly declared.

use actix_web::{web, App, HttpServer};
use std::io;
use std::sync::Mutex;

#[path = "../handlers.rs"]
mod handlers;
#[path = "../models.rs"]
mod models;
#[path = "../routes.rs"]
mod routes;
#[path = "../state.rs"]
mod state;
use routes::*;
use state::AppState;

Then, in the main() function, initialize the courses collection with an empty vector
collection in AppState:

async fn main() -> io::Result<()> {
let shared_data = web::Data::new(AppState {

traits. Examples of derivable traits in Rust include Eq, PartialEq, Clone, Copy, and
Debug.

Note that such trait implementations can also be manually implemented if complex
behavior is desired.

Listing 3.6 Module imports for the main() function

Courses are stored in application
state as a Vec collection
protected by a Mutex.

70 CHAPTER 3 Building a RESTful web service
health_check_response: "I'm good. You've already asked me ".to_string(),
visit_count: Mutex::new(0),
courses: Mutex::new(vec![]),
});

// other code
}

We haven’t written any new APIs yet, but we have done the following:

 Added a data model module
 Updated the main() function
 Changed the application state struct to include a course collection
 Updated routes and handlers
 Updated Cargo.toml

Let’s ensure that nothing is broken. Build and run the code with the following com-
mand from within the tutor-nodb folder:

cargo run

You should be able to test it with the following URL from the web browser:

curl localhost:3000/health

Things should work as before. If you are able to view the health page with a message
containing a visitor count, you can proceed. If not, review the code in each of the files
for oversights or typos. If you still cannot get it to work, refer to the completed code
within the code repository.

 We’re now ready to write the code for the three course-related APIs in the coming
sections. For writing the APIs, we’ll define a uniform set of steps that we can follow
(like a template). We will execute these steps to write each API. By the end of this
chapter, these steps should be ingrained in you:

1 Define the route configuration.
2 Write the handler function.
3 Write automated test scripts.
4 Build the service, and test the API.

The route configuration for all new routes will be added in tutor-nodb/src/routes.rs,
and the handler function will be added in tutor-nodb/src/handlers.rs. The auto-
mated test scripts will also be added to tutor-nodb/src/handlers.rs for our project.

3.2.4 Posting a course

Let’s now implement a REST API for posting a new course. We’ll follow the set of steps
we defined toward the end of the previous section.

STEP 1: DEFINE THE ROUTE CONFIGURATION

Let’s add the following route to tutor-nodb/src/routes.rs after the general_routes
block:

The courses field is initialized with
a Mutex-protected empty vector.

713.2 Building web APIs with REST
pub fn course_routes(cfg: &mut web::ServiceConfig) {
cfg
.service(web::scope("/courses")
.route("/", web::post().to(new_course)));

}

The service(web::scope("/courses")) expression creates a new resource scope
called courses, under which all APIs related to courses can be added.

 A scope is a set of resources with a common root path. A set of routes can be regis-
tered under a scope, and application state can be shared among routes within the
same scope. For example, we can create two separate scope declarations, one for
courses and one for tutors, and access routes registered under them as follows:

localhost:3000/courses/1 // retrieve details for course with id 1
localhost:3000/tutors/1 // retrieve details for tutor with id 1

These are only examples for illustration—don’t test them now, as we have not yet
defined these routes. What we have defined so far is one route under courses that
matches an incoming POST request with the path /courses/ and routes it to a handler
called new_course.

 Let’s look at how we could invoke the route after implementing the API. The fol-
lowing command could be used to post a new course:

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

Note that this command will not work yet—we have to do two things before it will.
First, we have to register this new route group with the web application that is initial-
ized in the main() function. Second, we have to define the new_course handler
method.

 Modify the main() function in tutor-nodb/src/bin/tutor-service.rs so that it looks
like this:

let app = move || {
App::new()

.app_data(shared_data.clone())

.configure(general_routes)

.configure(course_routes)
};

We’ve now completed the route configuration, but the code won’t compile yet. Let’s
write the handler function to post a new course.

STEP 2: WRITE THE HANDLER FUNCTION

Recall that an Actix handler function processes an incoming HTTP request using the
data payload and URL parameters sent with the request, and it sends back an HTTP
response. Let’s write the handler for processing a POST request for a new course. Once
the new course is created by the handler, it is stored as part of the AppState struct,
which is then automatically made available to the other handlers in the application.

Register the new course_routes
group with the application.

72 CHAPTER 3 Building a RESTful web service

Si

M
to
a

 Add the following code to tutor-nodb/src/handlers.rs.

// previous imports not shown here
use super::models::Course;
use chrono::Utc;

pub async fn new_course(
new_course: web::Json<Course>,
app_state: web::Data<AppState>,

) -> HttpResponse {
println!("Received new course");
let course_count_for_user = app_state

.courses

.lock()

.unwrap()

.clone()

.into_iter()

.filter(|course| course.tutor_id == new_course.tutor_id)

.count();
let new_course = Course {

tutor_id: new_course.tutor_id,
course_id: Some(course_count_for_user + 1),
course_name: new_course.course_name.clone(),
posted_time: Some(Utc::now().naive_utc()),

};
app_state.courses.lock().unwrap().push(new_course);
HttpResponse::Ok().json("Added course")

}

To recap, this handler function does the following:

 Gets write access to the course collection stored in the application state
(AppState)

 Extracts the data payload from the incoming request
 Generates a new course ID by calculating the number of existing courses for the

tutor and incrementing by 1
 Creates a new course instance
 Adds the new course instance to the course collection in AppState

Let’s write the test scripts for this function, which we can use for automated testing.

STEP 3: WRITE AUTOMATED TEST SCRIPTS

Actix Web provides utilities for automated testing, over and above what Rust provides.
To write tests for Actix services, we first must start with the basic Rust testing utilities—
placing tests within the tests module and annotating it for the compiler. In addition,
Actix provides an #[actix_rt::test] annotation for async test functions, to instruct
the Actix runtime to execute these tests.

Listing 3.7 Handler function for posting a new course

The handler function takes two
parameters: data payload from HTTP
request and application state.

nce the course
collection is

protected by a
utex, we have

 lock it first to
ccess the data.

Convert the course collection (stored
within AppState) into an iterator so
that we can iterate through each
element in the collection for processing.

Review each
element in the

collection, and filter
only for the courses

corresponding to
the tutor_id

(received as part of
the HTTP request).

The number of elements in
the filtered list is retrieved.
This is used to generate the
ID for the next course.

Create a new
course instance.

Add the new course instance to
the course collection that is part

of the application state (AppState).
Send back an HTTP

response to the web client.

733.2 Building web APIs with REST

th

n
f

 Let’s create a test script for posting a new course. To do this, we’ll need to con-
struct the course details to be posted, and we’ll need to initialize the application state.
Add this code in tutor-nodb/src/handlers.rs toward the end of the source file.

#[cfg(test)]
mod tests {

use super::*;
use actix_web::http::StatusCode;
use std::sync::Mutex;

#[actix_rt::test]
async fn post_course_test() {

let course = web::Json(Course {
tutor_id: 1,
course_name: "Hello, this is test course".into(),
course_id: None,
posted_time: None,

});
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
courses: Mutex::new(vec![]),

});
let resp = new_course(course, app_state).await;
assert_eq!(resp.status(), StatusCode::OK);

}
}

Run this test from the tutor-nodb folder with the following command:

cargo test

You should see the test successfully executed with a message that looks similar to this:

running 1 test
test handlers::tests::post_course_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

STEP 4: BUILD THE SERVICE, AND TEST THE API
Build and run the server from the tutor-no-db folder with this command:

cargo run

From a command line, run the following curl command (or use a GUI tool like
Postman):

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

Listing 3.8 Test script for posting a new course

The #[cfg(test)] annotation on the tests module tells Rust to
compile and run the tests only when the Cargo test command
is run, and not for the cargo build or cargo run commands.

Tests in Rust are
written within
the tests module.

Import all handler declarations
from the parent module (which
hosts the tests module).

Normal Rust tests are annotated with
#[test], but since this is an asynchronous

test function, we have to alert the async
runtime of Actix
Web to execute

this async test function.

Construct a
web::Json<T>

object
representing

e request data
payload (the

ew course data
rom the tutor).

Construct a web::Data<T>
object representing the

application state.

Invoke the handler
function with application

state and a simulated
request data payload.

Verify whether the HTTP status
response code (returned from
the handler) indicates success.

74 CHAPTER 3 Building a RESTful web service
You should see the message “Added course” returned from server. You’ve now built an
API for posting a new course. Next, let’s retrieve all existing courses for a tutor.

3.2.5 Getting all the courses for a tutor

Now we’ll implement the handler function to retrieve all courses for a tutor. You know
the drill—there are four steps to follow.

STEP 1: DEFINE THE ROUTE CONFIGURATION

Since we have the foundation of our code established, things should be quicker from
now on.

 Let’s add a new route in src/routes.rs:

pub fn course_routes(cfg: &mut web::ServiceConfig) {
cfg.service(

web::scope("/courses")
.route("/", web::post().to(new_course))
.route("/{tutor_id}", web::get().to(get_courses_for_tutor)),

);
}

STEP 2: WRITE THE HANDLER FUNCTION

The handler function does the following:

1 Retrieves courses from AppState
2 Filters courses corresponding to the tutor_id requested
3 Returns the list

The following code should be entered in src/handlers.rs.

pub async fn get_courses_for_tutor(
app_state: web::Data<AppState>,
params: web::Path<(i32)>,

) -> HttpResponse {
let tutor_id: i32 = params.0;

let filtered_courses = app_state
.courses
.lock()
.unwrap()
.clone()
.into_iter()
.filter(|course| course.tutor_id == tutor_id)
.collect::<Vec<Course>>();

if filtered_courses.len() > 0 {
HttpResponse::Ok().json(filtered_courses)

} else {
HttpResponse::Ok().json("No courses found for tutor".to_string())

}
}

Listing 3.9 Handler function to get all courses for a tutor

Add a new route for
getting courses for a

tutor (represented by
the tutor_id variable).

Filter for courses
corresponding to the
tutor requested by
the web client.

 If courses are found for the tutor, return a
success response with the course list.

If courses are not found for the
tutor, send an error message.

753.2 Building web APIs with REST
STEP 3: WRITE AUTOMATED TEST SCRIPTS

In this test script, we will invoke the get_courses_for_tutor handler function. This
function takes two arguments: application state and a URL path parameter (denoting
the tutor ID). For example, if the user types the following in the browser, it means
they want to see a list of all courses with a tutor_id of 1:

localhost:3000/courses/1

Recall that this maps to the route definition in src/routes.rs, shown here for refer-
ence:

.route("/{tutor_id}", web::get().to(get_courses_for_tutor))

The Actix framework automatically passes the application state and the URL path
parameter to the handler function, get_courses_for_tutor, in the normal course of
execution. However, for testing purposes, we have to manually simulate the function
arguments by constructing an application state object and URL path parameter. You
will see these steps annotated in the next listing.

 Enter the following test script in the tests module in src/handlers.rs.

#[actix_rt::test]
async fn get_all_courses_success() {

let app_state: web::Data<AppState> = web::Data::new(AppState {
health_check_response: "".to_string(),
visit_count: Mutex::new(0),
courses: Mutex::new(vec![]),

});
let tutor_id: web::Path<(i32)> = web::Path::from((1));
let resp = get_courses_for_tutor(app_state, tutor_id).await;
assert_eq!(resp.status(), StatusCode::OK);

}

STEP 4: BUILD THE SERVICE, AND TEST THE API
Build and run the server from the tutor-nodb folder with this command:

cargo run

Post a few courses from the command line as shown here (or use a GUI tool like Post-
man):

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my second course !"}'

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my third course !"}'

From a web browser, go to the following URL:

localhost:3000/courses/1

Listing 3.10 Test script for retrieving courses for a tutor

Construct
the app state.

Simulate a request
parameter.

Invoke the
handler.Check the

response.

76 CHAPTER 3 Building a RESTful web service
You should see the courses displayed as follows:

[{"tutor_id":1,"course_id":1,"course_name":"Hello , my first course !",
"posted_time":"2020-09-05T06:26:51.866230"},{"tutor_id":1,"course_id":2,
"course_name":"Hello , my second course !","posted_time":
"2020-09-05T06:27:22.284195"},{"tutor_id":1,"course_id":3,
"course_name":"Hello , my third course !",
"posted_time":"2020-09-05T06:57:03.850014"}]

Try posting more courses and verify the results. Our web service is now capable of
retrieving a course list for a tutor.

3.2.6 Getting the details of a single course

Now we’ll implement a handler function to search for and retrieve details for a spe-
cific course. Let’s again go through our four-step process.

STEP 1: DEFINE THE ROUTE CONFIGURATION

Add the following new route in src/routes.rs:

pub fn course_routes(cfg: &mut web::ServiceConfig) {
cfg.service(

web::scope("/courses")
.route("/", web::post().to(new_course))
.route("/{tutor_id}", web::get().to(get_courses_for_tutor))
.route("/{tutor_id}/{course_id}", web::get().to(get_course_detail)),

);
}

STEP 2: WRITE THE HANDLER FUNCTION

The handler function is similar to the previous API (which retrieved all courses for a
tutor), except for the additional step of filtering on the course ID.

pub async fn get_course_detail(
app_state: web::Data<AppState>,
params: web::Path<(i32, i32)>,

) -> HttpResponse {
let (tutor_id, course_id) = params.0;
let selected_course = app_state

.courses

.lock()

.unwrap()

.clone()

.into_iter()

.find(|x| x.tutor_id == tutor_id && x.course_id == Some(
course_id))

.ok_or("Course not found");

if let Ok(course) = selected_course {
HttpResponse::Ok().json(course)

} else {

Listing 3.11 Handler function to retrieve details for a single course

Add a new route
to get course details.

Retrieve the course corresponding
to the tutor_id and course_id sent

as request parameters.

Convert Option<T> to Result<T,E>. If
Option<T> evaluates to Some(val), it returns
Ok(val). If None is found, it returns Err(err).

773.2 Building web APIs with REST
HttpResponse::Ok().json("Course not found".to_string())
}

}

STEP 3: WRITE AUTOMATED TEST SCRIPTS

In this test script, we will invoke the get_course_detail handler function. This func-
tion takes two arguments: application state and URL path parameters. For example,
suppose the user types the following in the browser:

localhost:3000/courses/1/1

This means the user wants to see details for the course with a user ID of 1 (the first
parameter in URL path) and a course ID of 1 (the second parameter in the URL path).

 Recall that this /1/1 portion of the URL maps to the route definition in src/
routes.rs, shown here for reference:

.route("/{tutor_id}/{course_id}", web::get().to(get_course_detail)),

The Actix framework automatically passes the application state and the URL path
parameters to the get_course_detail handler function in the normal course of exe-
cution. But for testing purposes, we have to manually simulate the function arguments
by constructing an application state object and URL path parameters. You will see
these steps annotated in the next listing.

 Add the following test function to the tests module within src/handlers.rs.

#[actix_rt::test]
async fn get_one_course_success() {

let app_state: web::Data<AppState> = web::Data::new(AppState {
health_check_response: "".to_string(),
visit_count: Mutex::new(0),
courses: Mutex::new(vec![]),

});
let params: web::Path<(i32, i32)> = web::Path::from((1, 1));
let resp = get_course_detail(app_state, params).await;
assert_eq!(resp.status(), StatusCode::OK);

}

STEP 4: BUILD THE SERVER, AND TEST THE API
Build and run the server from the tutor-nodb folder with the following command:

cargo run

Post two new courses from the command line:

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my second course !"}'

Listing 3.12 Test case to retrieve course details

Construct the
 app state.

Construct an object of type web::Path with two
parameters. This is to simulate a user typing
localhost:3000/courses/1/1 in a web browser.

Invoke the
handler.

Check the
response.

78 CHAPTER 3 Building a RESTful web service
From a web browser, go to the following URL:

localhost:3000/courses/1/1

You should see the course details displayed for tutor_id = 1 and course_id = 1, as
shown here:

{"tutor_id":1,"course_id":1,"course_name":"Hello , my first course !",
"posted_time":"2020-09-05T06:26:51.866230"}

You can add more courses and check that the correct details are displayed for the other
course IDs. Our web service is now capable of retrieving the details for a single course.

 Note that the tests shown in this chapter are only intended to demonstrate how to
write test scripts for various types of APIs with different types of data payloads and
URL parameters sent from the web client. Real-world tests would be more exhaustive,
covering various success and failure scenarios.

 In this chapter, you’ve built a set of RESTful APIs for a tutor web application from
scratch, starting with data models, routes, application state, and request handlers. You
also wrote automated test cases using Actix Web’s built-in test execution support for
web applications.

 Congratulations—you have built your first web service in Rust! What you have
learned in this chapter, namely, implementing RESTful web services, can be reused in
a large variety of applications. This is the beauty of REST: its principles are simple and
stable and can be reused in many situations.

 In the next chapter, we will continue to develop the code built here, adding a per-
sistence layer for the web service using a relational database.

Summary
 Actix is a modern, lightweight web framework written in Rust. It provides an

async HTTP server that offers safe concurrency and high performance.
 The key components of Actix Web that we used in this chapter are HttpServer,

App, routes, handlers, request extractors, HttpResponse, and application state.
These are the core components needed to build RESTful APIs in Rust using
Actix.

 A web service is a combination of one or more APIs, accessible over HTTP at a
particular domain address and port. APIs can be built using different architec-
tural styles. REST is a popular and intuitive architectural style used to build
APIs, and it aligns well with the HTTP protocol standards.

 Each RESTful API is configured as a route in Actix. A route is a combination of
a path that identifies a resource, an HTTP method, and a handler function.

 A RESTful API call sent from a web or mobile client is received over HTTP by
the Actix HttpServer listening on a specific port. The request is passed on to
the Actix web application registered with it. One or more routes are registered
with the Actix web application, which routes the incoming request to a handler
function (based on the request path and HTTP method).

79Summary
 Actix provides two types of concurrency: multithreading and async I/O. This
enables the development of high performance web services.

 The Actix HTTP server uses multithreading concurrency by starting multiple
worker threads on startup, equal to the number of logical CPUs in the system.
Each thread runs a separate instance of the Actix web application.

 In addition to multithreading, Actix uses async I/O, which is another type of
concurrency mechanism. This enables an Actix web application to perform
other tasks while waiting on I/O on a single thread. Actix has its own Async run-
time that is based on Tokio, a popular production-ready async library in Rust.

 Actix allows the web application to define custom application state, and it pro-
vides a mechanism for safely accessing this state from each handler function.
Since each application instance of Actix runs in a separate thread, Actix pro-
vides a safe mechanism for accessing and mutating this shared state without
conflicts or data races.

 At a minimum, a RESTful API implementation in Actix requires a route config-
uration and a handler function to be added.

 Actix also provides utilities for writing automated test cases.

Performing
database operations
In the previous chapter, we built a web service that uses an in-memory data store. In
this chapter, we’ll enhance that web service, replacing the in-memory data store
with a relational database.

 Our enhanced web service will expose the same set of APIs as before, but we will
now have a proper database to persist the data to disk—we do not want our data to
get lost every time we restart the web service. As there are many parts involved, we will
develop this database-backed web service iteratively over three iterations of code:

 In the first iteration, you’ll learn how to connect asynchronously to a Postgres
database, using a database connection pool, from a vanilla Rust program.

 In the second iteration, we’ll set up the project structure for the Actix-based
web service and write unit tests.

 In the third iteration, we’ll write the actual handler functions to create data-
base records and query the results.

This chapter covers
 Writing our first async connection to a database

 Setting up the web service and writing unit tests

 Creating and querying records in the database
80

814.1 Setting up the project structure
At the end of each iteration, we will have a working version of the code that can be
inspected, run, and tested independently.

4.1 Setting up the project structure
The final code structure for this chapter is shown in figure 4.1.

Figure 4.1 Project structure for chapter 4

With these goals in mind, let’s get started. Go to the root of the ezytutors work-
space root (which we created in the previous chapter), and execute the following two
steps:

1 Add the following code to Cargo.toml. Note that tutor-nodb was the project we
created in the previous chapter:

[workspace]
members = ["tutor-nodb", "tutor-db"]

2 Create a new Cargo project, tutor-db:

cargo new tutor-db
cd tutor-db

main() functions for
iterations 2 and 3

Source code for iteration 2

Source code for iteration 3

Script for creating Postgres
database tables

Environment file to store database
access credentials

Source code for iteration 1

82 CHAPTER 4 Performing database operations
Note that all subsequent command-line statements in this chapter will need to be run
from this project root folder (ezytutors/tutor-db). To make that easier, let’s set an
environment variable for the project root:

export PROJECT_ROOT=.

NOTE The dot at the end of the export statement represents the current
directory. Alternatively, you can replace it with a suitable fully qualified path
name.

The complete code for this chapter can be found at https://github.com/peshwar9/
rust-servers-services-apps/tree/master/chapter4/.

4.2 Writing our first async connection to database (iteration 1)
In this section, we’ll write a simple Rust program to connect to the Postgres database
and query the database. All the code in this section will reside in just one file: tutor-
db/src/bin/iter1.rs.

4.2.1 Selecting the database and connection library

In this chapter, we’ll use PostgreSQL (I will refer to it as simply Postgres henceforth) as
our relational database. Postgres is a popular open source relational database that is

Environment variables
In this chapter, we will use the following environment variables:

 PROJECT_ROOT—Represents the home directory of the project. For this chap-
ter, it is the tutor-db root directory, which also contains the Cargo.toml file for
the project.

 DATABASE_USER—Represents the database username that has read/write
access rights to the database (which we will create later in this chapter).

Please ensure you either set these variables manually in your shell session or add
them to your shell profile script (e.g., .bash_profile).

Software versions
This chapter has been tested with the following versions of software on Ubuntu 22.04
(LTS) x64:

 rustc 1.59.0
 actix-web 4.2.1
 actix-rt 2.7.0
 sqlx 0.6.2

If you have any difficulty in compiling or building the program, you can adjust your
development environment to develop and test with these versions.

https://github.com/peshwar9/rust-servers-services-apps/tree/master/chapter4/
https://github.com/peshwar9/rust-servers-services-apps/tree/master/chapter4/

834.2 Writing our first async connection to database (iteration 1)
known for its scalability, reliability, feature set, and ability to handle large, complicated
data workloads.

 To connect to Postgres, we’ll use the Rust sqlx crate. This crate requires us to write
queries as raw SQL statements, and it performs compile-time checking of the query,
provides a built-in connection pool, and returns an asynchronous connection to Post-
gres. Compile-time checking is very useful for detecting and preventing runtime errors.

 Having an asynchronous connection from our web service to the database means
that our tutor web service will be free to perform other tasks while waiting on a
response from the database. If we were to use a synchronous (blocking) connection to
the database (such as with the Diesel ORM), the web service would have to wait until
the database operation was completed.

Let’s start with setting up the database.

4.2.2 Setting up the database and connecting with an async pool

In this section, we’ll complete the prerequisites needed to get started with databases.
These are the steps:

1 Add the sqlx dependency to Cargo.toml.
2 Install Postgres, and verify the installation.
3 Create a new database, and set up access credentials.
4 Define the database model in Rust, and create a table in the database.
5 Write Rust code to connect to the database and perform a query.

For step 5, we won’t use the Actix web server—we’ll write a vanilla Rust program
instead. Our primary goal in this section is to eliminate database setup and configura-
tion issues, learn to use sqlx to connect to databases, and do a sanity test for database
connectivity. By the end of this section, you will have learned to query the Postgres
database using sqlx and display query results on your terminal.

 Let’s look at each step in detail.

Why use sqlx?
Using asynchronous database connections can improve transaction throughput and
the performance response time of the web service under heavy loads, all other things
being equal. Hence the use of sqlx.

The primary alternative to sqlx is to use Diesel, a pure-Rust object-relational mapper
(ORM) solution. For those who are used to ORMs from other programming languages
and web frameworks, Diesel may be a preferred option. But at the time of writing,
Diesel does not yet support asynchronous connections to databases. Given that the
Actix framework is asynchronous, the programming model is simpler if we use a
library such as sqlx to make async connections to the database too.

84 CHAPTER 4 Performing database operations

n.
STEP 1: ADD SQLX DEPENDENCIES TO CARGO.TOML

As discussed earlier, we’ll use the sqlx async client to communicate with a Postgres
database. Add the following dependencies in the Cargo.toml file of the tutor-db
project (located in $PROJECT_ROOT):

[dependencies]
#Actix web framework and run-time
actix-web = "4.1.0"
actix-rt = "2.7.0"
#Environment variable access libraries
dotenv = "0.15.0"

#Postgres access library
sqlx = {version = "0.6.2", default_features = false, features =

["postgres","runtime-tokio-native-tls", "macros","chrono"]}

Data serialization library
serde = { version = "1.0.144", features = ["derive"] }

Other utils
chrono = {version = "0.4.22", features = ["serde"]}

Openssl for build (if openssl is not already installed on the dev server)
openssl = { version = "0.10.41", features = ["vendored"] }

STEP 2: INSTALL POSTGRES AND VERIFY INSTALLATION

If you already have Postgres installed, you can move on to the next step. Otherwise,
please refer to the appendix, which covers the steps involved in installing Postgres.

STEP 3: CREATE A NEW DATABASE AND ACCESS CREDENTIALS

Switch over to the Postgres account on your development machine or server. If you
are on Linux, you can use the following command:

sudo -i -u postgres

You can now access a Postgres prompt (shell) with the following command:

psql

This will log you into the PostgreSQL prompt, and you can interact with the Postgres
database. You should now be able to see the following prompt (let’s call it the psql shell
prompt):

postgres=#

Now that we are at the psql shell prompt, we can create a new database and a new user
and associate the user with the database.

 First, let’s create a database called ezytutors with the following command:

postgres=# create database ezytutors;

Async runtime
for Actix

Used to load environment
variables into memory

The sqlx crate
will be used for

asynchronous
connections to

the Postgres
database.

serde is used for
serialization/deserializatio

chrono is used for date-time
related functions.

Needed to build
the binary

854.2 Writing our first async connection to database (iteration 1)
Next, create a new user, truuser, with the password mypassword as shown (replace the
username and password with your own):

postgres=# create user truuser with password 'mypassword';

Grant access privileges for the newly created user to the ezytutors database:

postgres=# grant all privileges on database ezytutors to truuser;

You can now quit the Postgres shell prompt with the following command:

postgres=# \q

Exit from the Postgres user account:

exit

You should now be in the prompt for the original user you used to log into the Linux
server (or development machine).

 Now let’s ensure you are able to log into the postgres database using the new user
and password. Let’s first set an environment variable for the database user as follows
(replace the value of DATABASE_USER with the user name you created in the previous
step):

export DATABASE_USER=truuser

On the command line, you can use the following command to log in to the ezytutors
database with the user name you created. The --password flag prompts for password
entry:

psql -U $DATABASE_USER -d ezytutors --password

Type the password at the prompt, and you should be logged into a psql shell with the
following prompt:

ezytutors=>

At this prompt, type the following to list the databases:

\list

You’ll see the ezytutors database listed, similar to this:

List of databases
Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+---------+---------+----------------------
ezytutors | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =Tc/postgres +

| | | | | postgres=CTc/postgres+
| | | | | truuser=CTc/postgres

If you’ve reached this far, great! If not, consult the Postgres installation and setup
instructions for your development environment at www.postgresql.org/docs/12/app
-psql.html.

www.postgresql.org/docs/12/app-psql.html
www.postgresql.org/docs/12/app-psql.html
www.postgresql.org/docs/12/app-psql.html

86 CHAPTER 4 Performing database operations
NOTE You can also perform the preceding steps from a GUI admin interface,
should you choose to install a GUI tool, such as cPanel (from a cloud pro-
vider) or pgAdmin (which is available to download for free).

STEP 4: DEFINE THE RUST DATABASE MODEL, AND CREATE A TABLE

We’re now ready to define our database model in our Rust program and create the
database table. There are a couple of ways to do this:

 Use plain database SQL scripts, which are independent of a database access
library such as sqlx.

 Use the sqlx CLI.

We will use the first approach for this chapter because the sqlx CLI is in early beta at
the time of writing. Depending on when you are reading this, a stable release of the
sqlx CLI may be available.

 Create a database.sql file under the src folder of the project root, and enter the fol-
lowing script:

/* Drop table if it already exists*/
drop table if exists ezy_course_c4;
/* Create a table. */
/* Note: Don't put a comma after last field */
create table ezy_course_c4
(

course_id serial primary key,
tutor_id INT not null,
course_name varchar(140) not null,
posted_time TIMESTAMP default now()

);

/* Load seed data for testing */
insert into ezy_course_c4

(course_id,tutor_id, course_name,posted_time)
values(1, 1, 'First course', '2020-12-17 05:40:00');
insert into ezy_course_c4

(course_id, tutor_id, course_name,posted_time)
values(2, 1, 'Second course', '2020-12-18 05:45:00');

Here we are creating a table with the name ezy_course_c4. The c4 suffix is to indicate
that this table definition is from chapter 4, as this will allow us to evolve the table defi-
nition in a future chapter.

 Run the script with the following command from your terminal command prompt.
Enter a password if prompted:

psql -U $DATABASE_USER -d ezytutors < $PROJECT_ROOT/src/database.sql

This script creates a table called ezy_course_c4 within the ezytutors database, and it
loads seed data for testing.

 From the SQL shell or admin GUI, run the following SQL statement, and verify that
the records are displayed from the ezy_course_c4 table in the ezytutors database.

874.2 Writing our first async connection to database (iteration 1)

D
qu

ro
th

pas
refe

the d
co
psql -U $DATABASE_USER -d ezytutors --password
select * from ezy_course_c4;

You should see results similar to these:

course_id | tutor_id | course_name | posted_time
-----------+----------+---------------+---------------------

1 | 1 | First course | 2020-12-17 05:40:00
2 | 1 | Second course | 2020-12-18 05:45:00

(2 rows)

STEP 5: WRITE CODE TO CONNECT TO THE DATABASE AND QUERY THE TABLE

We’re now ready to write the Rust code to connect to the database! In src/bin/
iter1.rs, under the project root, add the following code:

use dotenv::dotenv;
use std::env;
use std::io;
use sqlx::postgres::PgPool;
use chrono::NaiveDateTime;
#[derive(Debug)]
pub struct Course {

pub course_id: i32,
pub tutor_id: i32,
pub course_name: String,
pub posted_time: Option<NaiveDateTime>,

}
#[actix_rt::main]
async fn main() -> io::Result<()> {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let db_pool = PgPool::connect(&database_url).await.unwrap();
let course_rows = sqlx::query!(

r#"select course_id, tutor_id, course_name, posted_time from
ezy_course_c4 where course_id = $1"#,

1
)

.fetch_all(&db_pool)

.await

.unwrap();
let mut courses_list = vec![];
for course_row in course_rows {

courses_list.push(Course {
course_id: course_row.course_id,
tutor_id: course_row.tutor_id,
course_name: course_row.course_name,
posted_time: Some(chrono::NaiveDateTime::from(

course_row.posted_time.unwrap())),
})

}
println!("Courses = {:?}", courses_list);

Ok(())
}

Define the data structure
to represent a course.

Used to run an asynchronous
Actix web server, and to connect
to the database using sqlx

Load the environment
variables into memory.

Retrieve the value of the
DATABASE_URL environment variable.
This value should be set either using a

shell prompt or in an .env file.

Create a database connection pool with sqlx.
This helps to manage the number of database
connections efficiently across multiple threads

spawned by the Actix Web framework.

efine the
ery to be
executed.

Fetch all
ws from
e table,
sing the
rence to
atabase

nnection
pool.

88 CHAPTER 4 Performing database operations
Create an .env file in the project root directory, and make the following entry:

DATABASE_URL=postgres://<my-user>:<mypassword>@127.0.0.1:5432/ezytutors

Replace <my-user> and <mypassword> with the user name and password you used
while setting up the database. 5432 refers to the default port where the Postgres server
runs, and ezytutors is the name of the database we wish to connect to.

 Run the code with the following command:

cargo run --bin iter1

Note that by using the --bin flag, we are telling Cargo to run the main() function
located in iter1.rs from the $PROJECT_ROOT/src/bin directory.

 You should see the query results displayed to your terminal as shown here:

Courses = [Course { course_id: 1, tutor_id: 1, course_name: "First course",
posted_time: 2020-12-17T05:40:00 }]

Great! We are now able to connect to the database from a Rust program using the
sqlx crate.

4.3 Setting up the web service and writing unit tests
(iteration 2)
Now that we know how to connect to a Postgres database using sqlx, let’s get back to
writing our database-backed web service. By the end of this section, you will have a
code structure for the web service that includes routes, a database model, application
state, a main() function, unit test scripts for the three APIs, and skeletal code for the
handler functions.

 This section serves as an interim checkpoint. You will be able to compile the web
service and ensure there are no compilation errors before proceeding any further.
However, the web service won’t do anything useful until we write the handler func-
tions in the next section.

Running the program from the workspace root instead of the project root
You can also choose to run the program from the workspace root (the ezytutors direc-
tory) instead of the project root (the tutordb directory). To do so, you need to add an
additional flag to the cargo run command as shown here:

cargo run --bin iter1 -p tutordb

Since the ezytutors workspace contains many projects, we need to tell the Cargo
which project to execute. This is done by using the -p flag along with the project name
(tutordb).

Note also that if you choose to do this, the .env file containing the database access
credentials should be located within the workspace root as opposed to the project root.

In this chapter, I will follow the convention of executing the program from the project root.

894.3 Setting up the web service and writing unit tests (iteration 2)
 These are the steps we’ll perform in this section:

1 Set up dependencies and routes.
2 Set up the application state and the data model.
3 Set up the connection pool using dependency injection.
4 Write unit tests.

4.3.1 Setting up the dependencies and routes

Create a folder called iter2 under $PROJECT_ROOT/src. The code for this section
will be organized as follows:

 src/bin/iter2.rs—Contains the main() function
 src/iter2/routes.rs—Contains routes
 src/iter2/handlers.rs—Contains handler functions
 src/iter2/models.rs—Contains the data structure to represent a course and utility

methods
 src/iter2/state.rs—Application state containing the dependencies injected into

each thread of the application’s execution

Basically, the main() function will be in the iter.rs file under the src/bin folder of the
project root, and the rest of the files will be placed in the src/iter2 folder.

 We’ll reuse the same set of routes defined in the previous chapter. The code to be
placed in the $PROJECT_ROOT/src/iter2/routes.rs file is shown in the next listing.

use super::handlers::*;
use actix_web::web;

pub fn general_routes(cfg: &mut web::ServiceConfig) {
cfg.route("/health", web::get().to(health_check_handler));

}

pub fn course_routes(cfg: &mut web::ServiceConfig) {
cfg.service(

web::scope("/courses")
.route("/", web::post().to(post_new_course))
.route("/{tutor_id}", web::get().to(get_courses_for_tutor))
.route("/{tutor_id}/{course_id}", web::get().to(

get_course_details)),
);

}

4.3.2 Setting up the application state and data model

Let’s define the data model in src/iter2/models.rs under the project root. Here we’ll
define a data structure to represent a course. We’ll also write a utility method that
accepts the JSON data payload sent with the HTTP POST request and converts it into
the Rust Course data structure.

Listing 4.1 Routes for the tutor web service

A POST request to /courses
to create a new course

A GET request to /courses/
{tutor_id} to retrieve all

courses for a tutorA GET request to /courses/{tutor_id}/{course_id} to
retrieve the details for a particular course_id

90 CHAPTER 4 Performing database operations
 Place the following code in the $PROJECT_ROOT/src/iter2/models.rs file.

use actix_web::web;
use chrono::NaiveDateTime;
use serde::{Deserialize, Serialize};

#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct Course {

pub course_id: i32,
pub tutor_id: i32,
pub course_name: String,
pub posted_time: Option<NaiveDateTime>,

}
impl From<web::Json<Course>> for Course {

fn from(course: web::Json<Course>) -> Self {
Course {

course_id: course.course_id,
tutor_id: course.tutor_id,
course_name: course.course_name.clone(),
posted_time: course.posted_time,

}
}

}

To connect to Postgres, we’ll have to define a database connection pool and make it
available across worker threads. We can achieve this by defining a connection pool as
part of the application state. Add the following code to $PROJECT_ROOT/src/iter2/
state.rs:

use sqlx::postgres::PgPool;
use std::sync::Mutex;
pub struct AppState {

pub health_check_response: String,
pub visit_count: Mutex<u32>,
pub db: PgPool,

}

In the AppState struct, we have retained the two fields from the previous chapter that
we need for the health-check response, and we have added an additional field, db,
which represents the sqlx Postgres connection pool.

 With the application state definition done, it’s time to write the main() function
for the web service.

4.3.3 Setting up the connection pool using dependency injection

In the main() function for the web service, we will perform the following:

 Retrieve the DATABASE_URL environment variable to get credentials to connect
to the database.

Listing 4.2 Data model for the tutor web service

 The Course data structure contains the course ID, tutor ID,
name of the course, and posted time as fields. Of these, the
field posted_time is type Optional<T> because, for a new

course posting, this field will be auto-populated
 by the tutor web service—the user does not

need to provide this information.

The From trait will extract the data
payload sent with the POST HTTP
request (for a new course) and convert
it into the Rust Course data structure.

914.3 Setting up the web service and writing unit tests (iteration 2)
 Create a sqlx connection pool.
 Create an application state, and add the connection pool to it.
 Create a new Actix web application, and configure it with routes. Inject the

AppState struct as a dependency into the web application so it is made available
to handler functions across threads.

 Initialize the Actix web server with the web application, and run the server.

The code for the main() function in $PROJECT_ROOT/src/bin/iter2.rs is shown in
the following listing.

use actix_web::{web, App, HttpServer};
use dotenv::dotenv;
use sqlx::postgres::PgPool;
use std::env;
use std::io;
use std::sync::Mutex;

#[path = "../iter2/handlers.rs"]
mod handlers;
#[path = "../iter2/models.rs"]
mod models;
#[path = "../iter2/routes.rs"]
mod routes;
#[path = "../iter2/state.rs"]
mod state;

use routes::*;
use state::AppState;

#[actix_rt::main]
async fn main() -> io::Result<()> {

dotenv().ok();

let database_url = env::var("DATABASE_URL").expect(
"DATABASE_URL is not set in .env file");

let db_pool = PgPool::connect(&database_url).await.unwrap();
// Construct App State
let shared_data = web::Data::new(AppState {

health_check_response: "I'm good. You've already
asked me ".to_string(),

visit_count: Mutex::new(0),
db: db_pool,

});
//Construct app and configure routes
let app = move || {

App::new()
.app_data(shared_data.clone())
.configure(general_routes)
.configure(course_routes)

};

Listing 4.3 The tutor web service’s main() function

Load environment
variables.

Create a new sqlx
connection pool.

Inject the connection pool into the
Actix web application instance as a
cross-application dependency. This will
be made available to the handler
functions by the Actix Web framework.

92 CHAPTER 4 Performing database operations
//Start HTTP server

HttpServer::new(app).bind("127.0.0.1:3000")?.run().await
}

The rest of the main() function is similar to what we wrote in the previous chapter.
Let’s also write the handler functions in $PROJECT_ROOT/src/iter2/handlers.rs.

use super::models::Course;
use super::state::AppState;
use actix_web::{web, HttpResponse};

pub async fn health_check_handler(app_state: web::Data<AppState>) ->
HttpResponse {
let health_check_response = &app_state.health_check_response;
let mut visit_count = app_state.visit_count.lock().unwrap();
let response = format!("{} {} times", health_check_response,

visit_count);
*visit_count += 1;
HttpResponse::Ok().json(&response)

}

pub async fn get_courses_for_tutor(
_app_state: web::Data<AppState>,
_params: web::Path<(i32,)>,

) -> HttpResponse {
HttpResponse::Ok().json("success")

}

pub async fn get_course_details(
_app_state: web::Data<AppState>,
_params: web::Path<(i32, i32)>,

) -> HttpResponse {
HttpResponse::Ok().json("success")

}

pub async fn post_new_course(
_new_course: web::Json<Course>,
_app_state: web::Data<AppState>,

) -> HttpResponse {
HttpResponse::Ok().json("success")

}

We’ve now written skeletal code for the three tutor handler functions. These don’t do
much yet except return a success response. Our goal is to verify that the code for the
web service compiles without errors before we implement the database access logic in
the next section.

 Verify the code with the following command from the project root:

cargo check --bin iter2

Listing 4.4 Handler functions skeleton

The code for the health_check_handler function
keeps track of how many times the handler is
invoked and records that in the application state
(as defined in $PROJECT_ROOT/src/iter2/state.rs). It
returns the visit count as part of the HTTP response.

934.3 Setting up the web service and writing unit tests (iteration 2)
The code should compile without errors, and the server should start up. You may see a
few warnings related to unused variables, but we’ll ignore those for now, as this is only
an interim checkpoint. Next, we’ll write the unit tests for the three handler functions.

4.3.4 Writing the unit tests

In the previous section, we wrote dummy handler functions that simply returned a
success response. In this section, let’s write the unit tests that invoke these handler
functions. In the process, you’ll learn how to simulate HTTP request parameters
(which would otherwise come through external API calls), how to simulate applica-
tion state being passed from the Actix framework to the handler function, and how to
check for responses from the handler functions in test functions.

 We’ll write three unit test functions to test the three corresponding handler func-
tions we wrote in the previous section: to get all courses for a tutor, to get course
details for an individual course, and to post a new course.

 Let’s add the following unit test code to the $PROJECT_ROOT/src/iter2/
handlers.rs file.

#[cfg(test)]
mod tests {

use super::*;
use actix_web::http::StatusCode;
use chrono::NaiveDate;
use dotenv::dotenv;
use sqlx::postgres::PgPool;
use std::env;
use std::sync::Mutex;

#[actix_rt::test]
async fn get_all_courses_success() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});
let tutor_id: web::Path<(i32,)> = web::Path::from((1,));
let resp = get_courses_for_tutor(app_state, tutor_id).await;
assert_eq!(resp.status(), StatusCode::OK);

}

Listing 4.5 Unit tests for the handler functions

Module
imports

Read database
access credentials
from the .env file.

Create a new
connection pool to

talk to the Postgres
database.

Construct the application state that is to be
passed as a parameter to the handler function.

In an end-to-end test, the application state
would be passed by the Actix Web framework to

the handler function automatically. Here, in
unit-test code, we have to do this step manually.

Construct the HTTP request parameter to pass to the
handler function. In an end-to-end test, the Actix
framework deserializes the incoming HTTP request
parameters and passes them to the handler function.
Here, in unit-test code, we have to do this step manually.

Invoke the handler
function with the
application state

and HTTP request
parameter

constructed in the
previous steps.

Verify that the returned
HTTP response from the
handler function shows

the success status code.

94 CHAPTER 4 Performing database operations
#[actix_rt::test]
async fn get_course_detail_test() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: ...
let params: web::Path<(i32, i32)> = web::Path::from((1, 2));
let resp = get_course_details(app_state, params).await;
assert_eq!(resp.status(), StatusCode::OK);

}

#[actix_rt::test]
async fn post_course_success() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: ...
let new_course_msg = Course {

course_id: 1,
tutor_id: 1,
course_name: "This is the next course".into(),
posted_time: Some(NaiveDate::from_ymd(2020, 9, 17).and_hms(

14, 01, 11)),
};
let course_param = web::Json(new_course_msg);
let resp = post_new_course(course_param, app_state).await;
assert_eq!(resp.status(), StatusCode::OK);

}
}

The code in the preceding listing is annotated for the first of the test functions. The
same concepts also apply to the other two test functions—you should be able to read
and follow the test function code without much difficulty.

 Let’s run the unit tests with this command:

cargo test --bin iter2

You should see the three tests pass successfully with the following message:

running 3 tests
test handlers::tests::get_all_courses_success ... ok
test handlers::tests::post_course_success ... ok
test handlers::tests::get_course_detail_test ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

The tests pass even though we haven’t written any database access logic because we are
returning unconditional success responses from the handlers. We’ll fix that in the
next section, but we have built the basic project structure with all the required pieces
(routes, application state, a main() function, handlers, and unit tests), and you now
know how to tie all of them together.

An abridged section of
code—see the chapter’s
source for the full code

954.4 Creating and querying records from the database (iteration 3)
4.4 Creating and querying records from the database
(iteration 3)
In this section, we’ll write the database access code for the tutor APIs. Create a folder
named iter3 under $PROJECT_ROOT/src. The code for this section will be orga-
nized as follows:

 src/bin/iter3.rs—Contains the main() function.
 src/iter3/routes.rs—Contains the routes.
 src/iter3/handlers.rs—Contains the handler functions.
 src/iter3/models.rs—Contains the data structure to represent a course and a few

utility methods.
 src/iter3/state.rs—Application state containing the dependencies injected into

each thread of application execution.
 src/iter3/db_access.rs—To adhere to the single responsibility principle, we don’t

want the database access logic to be part of the handler function, so we’ll create
a new $PROJECT_ROOT/src/iter3/db_access.rs file for the database access
logic. Separating out database access will also be helpful if we want to switch
databases (such as from Postgres to MySQL) in the future. We will be able to
rewrite the database access functions with the new database, while retaining the
same handler functions and database access function signatures.

Of the files listed for this iteration, we can reuse the code for routes.rs, state.rs, and
models.rs from iteration 2. That leaves us to focus our efforts primarily on making the
required adjustments to the main() function and handler code and on writing the
core database access logic.

 Let’s look at the code for database access in three parts, each part corresponding
to one of the APIs.

4.4.1 Writing database access functions

The steps for using sqlx to query records from Postgres tables are as follows:

1 Construct an SQL query using the SQL query! macro.
2 Execute the query using the fetch_all() method, passing the connection

pool.
3 Extract the results, and convert them into a Rust struct that can be returned

from the function.

The code in $PROJECT_ROOT/src/iter3/db_access.rs is shown in the following listing.

use super::models::Course;
use sqlx::postgres::PgPool;

pub async fn get_courses_for_tutor_db(pool: &PgPool, tutor_id: i32) ->
Vec<Course> {

Listing 4.6 Database access code for retrieving all courses for a tutor

96 CHAPTER 4 Performing database operations
// Prepare SQL statement
let course_rows = sqlx::query!(

"SELECT tutor_id, course_id, course_name, posted_time FROM
ezy_course_c4 where tutor_id = $1",

tutor_id
)
.fetch_all(pool)
.await
.unwrap();
// Extract result
course_rows

.iter()

.map(|course_row| Course {
course_id: course_row.course_id,
tutor_id: course_row.tutor_id,
course_name: course_row.course_name.clone(),
posted_time: Some(chrono::NaiveDateTime::from(

course_row.posted_time.unwrap())),
})
.collect()

}

We’re using the fetch_all() method to retrieve all records from the database that
match the SQL query. The fetch_all() method accepts a Postgres connection pool
as a parameter. The await keyword after fetch_all() denotes that we are making an
asynchronous call to the Postgres database using the sqlx crate.

 Note the use of the iter() method to convert the retrieved database records into
a Rust iterator. The map() function then converts each database row (returned by the
iterator) into a Rust data structure of type Course.

 Finally, the results of applying the map() function on all the database records are
accumulated into a Rust Vec data type by using the collect() method. The vector of
Course struct instances is then returned from the function.

 Note also the use of the chrono module to convert the posted_time value of a
course retrieved from the database into a NaiveDateTime type from the chrono crate.

 Overall, you’ll notice that the code is quite concise due to the elegant functional
programming constructs that Rust provides.

 The code for retrieving the course details, given a course-id or tutor-id, is simi-
lar to the preceding implementation. The main difference is the use of the
fetch_one() method instead of the fetch_all() that we used previously, as here we
are retrieving the details for a single course. Place the following code in the same file
($PROJECT_ ROOT/src/iter3/db_access.rs).

pub async fn get_course_details_db(pool: &PgPool, tutor_id: i32,
course_id: i32) -> Course {
// Prepare SQL statement
let course_row = sqlx::query!(

Listing 4.7 Database access code for retrieving details for a single course

Prepare the SQL statement for
retrieving query results using the
query! macro from the sqlx crate.

Execute
the query.

Convert the query results into a Rust vector,
which is returned from the function.

Prepare the query
for execution.

974.4 Creating and querying records from the database (iteration 3)
"SELECT tutor_id, course_id, course_name, posted_time FROM
ezy_course_c4 where tutor_id = $1 and course_id = $2",

tutor_id, course_id
)
.fetch_one(pool)
.await
.unwrap();
// Execute query
Course {

course_id: course_row.course_id,
tutor_id: course_row.tutor_id,
course_name: course_row.course_name.clone(),
posted_time: Some(chrono::NaiveDateTime::from(

course_row.posted_time.unwrap())),
}

}

Lastly, we’ll look at the database access code for posting a new course. The query is
constructed and then executed. The inserted course is then retrieved, converted into
a Rust struct, and returned from the function. Place the following code in
$PROJECT_ROOT/src/iter3/db_access.rs.

pub async fn post_new_course_db(pool: &PgPool, new_course: Course) ->
Course {

let course_row = sqlx::query!("insert into ezy_course_c4 (
course_id,tutor_id, course_name) values ($1,$2,$3) returning
tutor_id, course_id,course_name, posted_time", new_course.course_id,
new_course.tutor_id, new_course.course_name)

.fetch_one(pool)

.await.unwrap();
//Retrieve result
Course {

course_id: course_row.course_id,
tutor_id: course_row.tutor_id,
course_name: course_row.course_name.clone(),
posted_time: Some(chrono::NaiveDateTime::from(

course_row.posted_time.unwrap())),
}

}

Note that we’re not passing the posted_time value to the insert query. This is
because we have set the default value of this field to the system-generated current
time. Refer to the $PROJECT_ROOT/src/database.sql file, where this default is
defined as follows:

posted_time TIMESTAMP default now()

Listing 4.8 Database access code for posting a new course

Execute the query. Note the use of the fetch_one
method instead of fetch_all, which was used in listing
4.6, as here we only want details for one course.

Return a Rust Course
data structure from
the function.

Prepare the query to
insert a new course into
the database table.

After inserting, fetch
the inserted course.

Return a Rust Course data
structure from the function.

98 CHAPTER 4 Performing database operations
This completes the code for database access. Next, let’s look at the handler functions
that invoke these database access functions.

4.4.2 Writing handler functions

We’ve looked at the code for database access. Now we need to invoke these database
functions from the corresponding handler functions. Recall that the handler functions
are invoked by the Actix framework based on the API routes (defined in routes.rs) on
which the HTTP requests arrive (POST new course, GET courses for tutor, etc.).

 The code for the handler functions, to be placed in $PROJECT_ROOT/src/iter3/
handlers.rs, is shown in the following listing.

use super::db_access::*;
use super::models::Course;
use super::state::AppState;
use std::convert::TryFrom;

use actix_web::{web, HttpResponse};

pub async fn health_check_handler(app_state: web::Data<AppState>) ->
HttpResponse {
let health_check_response = &app_state.health_check_response;
let mut visit_count = app_state.visit_count.lock().unwrap();
let response = format!("{} {} times", health_check_response, visit_count);
*visit_count += 1;
HttpResponse::Ok().json(&response)

}

pub async fn get_courses_for_tutor(
app_state: web::Data<AppState>,
params: web::Path<(i32,)>,

) -> HttpResponse {
let tuple = params.0;
let tutor_id: i32 = i32::try_from(tuple.0).unwrap();

Using MySQL instead of a Postgres database
The sql crate supports both MySQL and SQLite, in addition to Postgres. If you prefer
to follow along with this chapter using a MySQL database in place of Postgres, refer
to the instructions for the sqlx crate repository at https://github.com/launchbadge/
sqlx.

One thing to note is that the SQL syntax supported by MySQL differs from that of Post-
gres, so the query statements listed in this chapter need some modifications for use
with MySQL. For example, if you are using MySQL, the $ sign used to denote param-
eters (e.g., $1) should be replaced with a question mark (?). Also, Postgres supports
a returning clause in SQL statements that can be used to return values of columns
modified by an insert, update, or delete operation, but MySQL does not support the
returning clause directly.

Listing 4.9 Handler function for retrieving query results

web::Path is an extractor that allows you to extract
typed information from the HTTP request’s path.

The data type returned by the web::Path
extractor for the get_courses_for_tutor()

handler function is <(i32),>.

https://github.com/launchbadge/sqlx
https://github.com/launchbadge/sqlx

994.4 Creating and querying records from the database (iteration 3)
let courses = get_courses_for_tutor_db(&app_state.db, tutor_id).await;
HttpResponse::Ok().json(courses)

}

pub async fn get_course_details(
app_state: web::Data<AppState>,
params: web::Path<(i32, i32)>,

) -> HttpResponse {
let tuple = params;
let tutor_id: i32 = i32::try_from(tuple.0).unwrap();
let course_id: i32 = i32::try_from(tuple.1).unwrap();
let course = get_course_details_db(

&app_state.db, tutor_id, course_id).await;
HttpResponse::Ok().json(course)

}

pub async fn post_new_course(
new_course: web::Json<Course>,
app_state: web::Data<AppState>,

) -> HttpResponse {
let course = post_new_course_db(&app_state.db, new_course.into()).await;

HttpResponse::Ok().json(course)
}

In listing 4.9, each of the handler functions is fairly straightforward and performs
steps similar to those listed here:

1 Extract the connection pool from application state (appstate.db).
2 Extract the parameters sent as part of the HTTP request (the params

argument).
3 Invoke the corresponding database access function (the function names suf-

fixed with db)
4 Return the result from the database access function as an HTTP response.

Let’s look at these steps using the example of the get_course_details() handler
function, which is called whenever an HTTP request arrives on the route
/{tutor_id}/{course_id}. An example would be the request http:/ /localhost:3000/
courses/1/2, where the HTTP client (the internet browser) is requesting to see the
details of a course that has a tutor-id of 1 and a course-id of 2. Let’s go through the
code for this handler function in detail.

 In order to extract the course details for a given tutor-id and course-id, we need
to talk to the database. However, the handler function does not know (nor does it
need to know, in keeping with the single responsibility principle of good software
design) how to talk to the database. So it will have to rely on the get_course_
details_db() database access function, which we wrote in the $PROJECT_ROOT/
src/iter3/db_ access.rs source file.

 This is the signature of the function:

pub async fn get_course_details_db(pool: &PgPool, tutor_id: i32,
course_id: i32) -> Course

Invoke the
corresponding

database access
method to retrieve
the list of courses

for a tutor, passing
in the application

state and tutor-id.

Take the return value
(the vector containing
a list of courses) from
the database function,
convert it to JSON, and
send an HTTP success
response.

In the get_course_details()
handler function, retrieve
values for these two path

parameters from the HTTP
request: tutor-id and course-id.

100 CHAPTER 4 Performing database operations
In order to invoke the database access function, the handler function needs to pass
three parameters: a database connection pool, the tutor-id, and the course-id.

 The connection pool is available as part of the application state object. In the main()
function of iteration 2, you saw how the application state is constructed with the con-
nection pool and then injected into the Actix web application instance. Every Actix han-
dler function will then automatically have access to the application state as a parameter
(which is automatically populated by the Actix framework when the handler is invoked).

 As a result, the first parameter in this handler, app_state, represents a value of type
AppState, defined in $PROJECT_ROOT/src/iter3/state.rs and reproduced here:

pub struct AppState {
pub health_check_response: String,
pub visit_count: Mutex<u32>,
pub db: PgPool,

}

Hence app_state.db refers to the db member of the AppState struct, and it rep-
resents the connection pool that can be passed to the database function get_course_
details_db().

 The next two parameters passed to the database access function are tutor-id and
course-id. These are available as part of an incoming HTTP request of the form
http(s)://{domain}:{port}/{tutor-id}/{course-id}. In order to extract the
parameters from the request, the Actix Web framework provides utilities called
extractors. An extractor can be accessed as an argument to the handler function (simi-
lar to application state). In our case, because we are expecting two numeric parame-
ters from the HTTP request, the handler function signature has a parameter of type
web::Path<(i32, i32)>, which basically yields a tuple containing two integers of type
(i32, i32). To extract the value of the tutor-id and course-id from params, we will
have to perform a two-step process.

 The following line provides a tuple of form (i32, i32):

let tuple = params.0;

Then the next two lines are used to extract and convert the tutor-id and course-id
from i32 to i32 type (which is the type expected by the database access function):

let tutor_id: i32 = i32::try_from(tuple.0).unwrap();
let course_id: i32 = i32::try_from(tuple.1).unwrap();

Now we can invoke the database access function with the application state, tutor-id,
and course-id as shown here:

let course = get_course_details_db(&app_state.db, tutor_id,
course_id).await;

Finally, we take the return value of type Course from the database function, serialize it
to Json type, and embed it into an HTTP response with a success status code, all in a
succinct expression. (You can now see why Rust rocks!)

HttpResponse::Ok().json(course)

1014.4 Creating and querying records from the database (iteration 3)
The other two handler functions are similar in structure to what you’ve just seen.
 Recall that in the handlers.rs source file, we also had a handler function for health

checks and the unit tests. These remain unchanged from the previous iteration. I’ve
excluded error handling from this iteration so we could focus on database access.

4.4.3 Writing the main() function for the database-backed web service

We’ve written the database access and handler functions. Let’s complete the final
piece of code needed before we can test our web service. Add the following code to
the main() function in $PROJECT_ROOT/src/bin/iter3.rs.

use actix_web::{web, App, HttpServer};
use dotenv::dotenv;
use sqlx::postgres::PgPool;
use std::env;
use std::io;
use std::sync::Mutex;

#[path = "../iter3/db_access.rs"]
mod db_access;
#[path = "../iter3/handlers.rs"]
mod handlers;
#[path = "../iter3/models.rs"]
mod models;
#[path = "../iter3/routes.rs"]
mod routes;
#[path = "../iter3/state.rs"]
mod state;

use routes::*;
use state::AppState;

#[actix_rt::main]
async fn main() -> io::Result<()> {

dotenv().ok();

let database_url = env::var("DATABASE_URL").expect(
"DATABASE_URL is not set in .env file");

let db_pool = PgPool::connect(&database_url).await.unwrap();

let shared_data = web::Data::new(AppState {
health_check_response: "I'm good. You've already

asked me ".to_string(),
visit_count: Mutex::new(0),
db: db_pool,

});

let app = move || {
App::new()

.app_data(shared_data.clone())

.configure(general_routes)

.configure(course_routes)
};

Listing 4.10 The main() function for iteration 3

Construct AppState.
Note that we are storing

the connection pool as
part of the application

state in the db field.

Construct the
app instance.

Inject the app state into
the application instance.

Configure the routes.

102 CHAPTER 4 Performing database operations
//Start HTTP server

HttpServer::new(app).bind("127.0.0.1:3000")?.run().await
}

We’re now ready to test and run the web service. First, let’s run the automated tests
with this command:

cargo test --bin iter3

You should see the three test cases execute successfully as shown here:

running 3 tests
test handlers::tests::post_course_success ... ok
test handlers::tests::get_all_courses_success ... ok
test handlers::tests::get_course_detail_test ... ok

Note that if you run the cargo test command more than once, the program will exit
with an error. This is because you are trying to insert a record with the same course_id
twice. To get around this, log into the psql shell and run the following command:

delete from ezy_course_c4 where course_id=3;

You are inserting a record with a course_id value of 3 in the test function, so once you
delete this database record, you can rerun the test.

 To make this deletion step easier, the delete SQL statement can be placed within a
script file. The file $PROJECT_ROOT/iter3-test-clean.sql contains this script, if you’d
like to use it. Execute the script as follows:

psql -U $DATABASE_USER -d ezytutors --password <
$PROJECT_ROOT/iter3-test-clean.sql

You can now rerun the test:

cargo test --bin iter3

Let’s now run the server:

cargo run --bin iter3

From a browser, enter the following URL to retrieve query results for a tutor id of 1.

http://localhost:3000/courses/1

Or, if you are behind a firewall, you can use curl to run it:

curl localhost:3000/courses/1

You should see a response similar to what’s shown here:

[{"course_id":1,"tutor_id":1,"course_name":"First course",
"posted_time":"2020-12-17T05:40:00"},{"course_id":2,"tutor_id":1,
"course_name":"Second course","posted_time":"2020-12-18T05:45:00"},

Start the Actix web server, load the constructed Actix web application
instance, and bind the server running on localhost to port 3000. The

await keyword indicates the asynchronous nature of the Actix web server.

103Summary
{"course_id":3,"tutor_id":1,"course_name":"Third course",
"posted_time":"2020-12-17T11:55:56.846276"}]

You will find three query results in your list. We added two courses as part of the data-
base.sql script. We then added a new course using the unit tests.

 Let’s now test posting a new course using curl:

curl -X POST localhost:3000/courses/ \
-H "Content-Type: application/json" \
-d '{"tutor_id":1, "course_id":4, "course_name":"Fourth course"}'

You should see a response from the Actix web server similar to this:

{"course_id":4,"tutor_id":1,"course_name":"Fourth course",
"posted_time":"2021-01-12T12:58:19.668877"}

You can now try to retrieve the details for the newly posted course from a browser, as
shown here:

http://localhost:3000/courses/1/4

NOTE If you are behind a firewall, run this command with curl as previously
suggested.

You’ll see a result similar to this in the browser:

{"course_id":4,"tutor_id":1,"course_name":"Fourth course",
"posted_time":"2021-01-12T12:58:19.668877"}

This concludes iteration 3. We have now implemented three APIs for the tutor web
service, backed by a database store. We have built the functionality to post a new
course, persist it to the database, and then query the database for a list of courses and
individual course details. Congratulations!

 You now have two important tools at hand for implementing a wide spectrum of
services: RESTful web services (from the previous chapter) and database persistence
(from this chapter). Maybe you have already noticed that the vast majority of corpo-
rate applications are of the CRUD (create, read, update, delete) type. That is, they
mainly offer users the possibility of creating, updating, and possibly deleting informa-
tion. Armed with the knowledge you’ve acquired in the last two chapters, you can
already go a long way.

 You may also have noticed that this chapter covered only the happy path scenarios,
and did not account for, or handle, any errors that might occur. This is unrealistic, as
many things can go wrong in a distributed web application. We will also need to
authenticate users making API calls. We’ll discuss these topics in the next chapter.

Summary
 sqlx is a Rust crate that provides asynchronous database access to many data-

bases including Postgres and MySQL. It has built-in connection pooling.

104 CHAPTER 4 Performing database operations
 Connecting to a database from Actix using sqlx involves the following three
broad steps: in the main() function of the web service, create a sqlx connection
pool and inject it into the application state; in the handler function, access the
connection pool and pass it to the database access function; and in the database
access function, construct the query and execute it on the connection pool.

 The web service with its three APIs was built in three iterations: In iteration 1,
we configured the database, configured a sqlx connection to the database, and
tested the connection through a vanilla Rust program (not with an Actix web
server). In iteration 2, we set up the database model, routes, state, and the
main() function for the web service. In iteration 3, we wrote the database access
code for the three APIs along with the unit tests. The codebase for each of the
iterations can be built and tested independently.

Handling errors
In the previous chapter, we wrote the code to post and retrieve courses through
APIs, but what we demonstrated and tested were the happy path scenarios. In the
real world, however, many types of failures can occur. The database server may be
unavailable, the tutor ID provided in the request may be invalid, there may be a
web server error, and so on. It is important that our web service be able to detect
errors, handle them gracefully, and send a meaningful error message back to the
user or client sending the API request. This is done through error handling, which is
the focus of this chapter. Error handling is important not just for the stability of our
web service, but also to provide a good user experience.

 Figure 5.1 summarizes the error-handling approach we will adopt in this chap-
ter. We’ll add custom error handling to our web service, unifying the different types
of errors that can be encountered in the application. Whenever there is an invalid

This chapter covers
 Setting up the project structure

 Handling errors in Rust and Actix Web

 Defining a custom error handler

 Error handling for the three APIs
105

106 CHAPTER 5 Handling errors
request or unexpected malfunction in the server code, the client will receive a mean-
ingful and appropriate HTTP status code and error message. To achieve this, we will
use a combination of the core Rust features for error handling and the features pro-
vided by Actix, while also customizing the error handling for our application.

Figure 5.1 Unifying error handling in Rust

5.1 Setting up the project structure
We will use the code we built in the previous chapter as our starting point for adding
error handling. If you’ve been following along, you can start with your own code from
chapter 4. Alternatively, clone the repo from GitHub (https://github.com/peshwar9/
rust-servers-services-apps), and use the code for iteration 3 from chapter 4 as your
starting point.

 We’ll build the code in this chapter as iteration 4, so first go to the project root
(ezytutors/tutor-db), and create a new folder called iter4 under src.

 The code for this section will be organized as follows (see figure 5.2):

 src/bin/iter4.rs—The main() function
 src/iter4/routes.rs—Contains the routes
 src/iter4/handlers.rs—Handler functions
 src/iter4/models.rs—Data structure to represent a Course, and utility methods
 src/iter4/state.rs—Application state containing the dependencies that are

injected into each thread of application execution
 src/iter4/db_access.rs—Database access code separated out from the handler

function for modularity
 src/iter4/errors.rs—A custom error data structure and associated error-handling

functions

Database

Serialization

I/O operations

Actix Web libraries

Invalid user inputs

Actix-based
web service

Custom
error type

Database errors

Serde errors

I/O errors

Actix errors

Custom error converted
 to HTTP response

Invalid user
input errors

https://github.com/peshwar9/rust-servers-services-apps
https://github.com/peshwar9/rust-servers-services-apps

1075.1 Setting up the project structure
Figure 5.2 Project structure for chapter 5

We will not be changing the source code for routes.rs, models.rs, or state.rs, compared
to chapter 4. For handlers.rs and db_access.rs, we will start with the code from chapter
4, but we will modify these files to incorporate custom error handling. Errors.rs is a
new source file that we’ll add.

 Let’s also create a new version of the database tables for this chapter by following
these steps:

1 Amend the database.sql script from the previous chapter to look like this:

/* Drop table if it already exists*/
drop table if exists ezy_course_c5;
/* Create a table. */
/* Note: Don't put a comma after last field */
create table ezy_course_c5
(

course_id serial primary key,
tutor_id INT not null,

main() function for iteration 4

Source code for iteration 4

Script for creating Postgres
database tables

Environment file to store database
access and server port credentials

108 CHAPTER 5 Handling errors
course_name varchar(140) not null,
posted_time TIMESTAMP default now()

);

/* Load seed data for testing */
insert into ezy_course_c5

(course_id,tutor_id, course_name,posted_time)
values(1, 1, 'First course', '2021-03-17 05:40:00');
insert into ezy_course_c5

(course_id, tutor_id, course_name,posted_time)
values(2, 1, 'Second course', '2021-03-18 05:45:00');

Note that the main change we are making in this script, compared to the last
chapter, is to change the name of the table from ezy_course_c4 to ezy_
course_c5.

2 Run the script from the command line as follows to create the table and load
the sample data:

psql -U <user-name> -d ezytutors < database.sql

Ensure you provide the right path to the database.sql file, and enter the pass-
word if prompted.

3 Once the table is created, we need to give the database user permissions to this
new table. Run the following commands from the terminal command line:

psql -U <user-name> -d ezytutors // Login to psql shell
GRANT ALL PRIVILEGES ON TABLE __ezy_course_c5__ to <user-name>
\q // Quit the psql shell

Replace the <user-name> with your own, and execute the commands.

4 Write the main() function: from the previous chapter, copy src/bin/iter3.rs
into your project directory for this chapter under src/bin/iter4.rs, and replace
the references to iter3 with iter4. The final code for iter4.rs should look
like the following:

use actix_web::{web, App, HttpServer};
use dotenv::dotenv;
use sqlx::postgres::PgPool;
use std::env;
use std::io;
use std::sync::Mutex;

#[path = "../iter4/db_access.rs"]
mod db_access;
#[path = "../iter4/errors.rs"]
mod errors;
#[path = "../iter4/handlers.rs"]
mod handlers;
#[path = "../iter4/models.rs"]
mod models;
#[path = "../iter4/routes.rs"]
mod routes;

1095.2 Basic error handling in Rust and Actix Web
#[path = "../iter4/state.rs"]
mod state;

use routes::*;
use state::AppState;

#[actix_rt::main]
async fn main() -> io::Result<()> {

dotenv().ok();

let database_url = env::var("DATABASE_URL").expect(
"DATABASE_URL is not set in .env file");

let db_pool = PgPool::connect(&database_url).await.unwrap();
// Construct App State
let shared_data = web::Data::new(AppState {

health_check_response: "I'm good.
You've already asked me ".to_string(),

visit_count: Mutex::new(0),
db: db_pool,

});
//Construct app and configure routes
let app = move || {

App::new()
.app_data(shared_data.clone())
.configure(general_routes)
.configure(course_routes)

};

//Start HTTP server
let host_port = env::var("HOST_PORT").expect(

"HOST:PORT address is not set in .env file");
HttpServer::new(app).bind(&host_port)?.run().await

}

Ensure that the modules being referred to in the code are under the src/iter4
folder. Also, make sure you add the environment variables for database access
and server port numbers in the .env file.

Do a sanity check by running the server with this command:

cargo run --bin iter4

You now have recreated the end state of chapter 3 as the starting point for chapter 4.
 Let’s now take a quick tour of the basics of error handling in Rust, which we can

then put to use to design the custom error handling for our web service.

5.2 Basic error handling in Rust and Actix Web
Broadly, programming languages use one of two approaches for error handling: excep-
tion handling or return values. Rust uses the latter approach. This is different from lan-
guages like Java, Python, and JavaScript, where exception handling is used. In Rust,
error handling is seen as an enabler of the reliability guarantees provided by the lan-
guage, so Rust wants the programmer to handle errors explicitly rather than to throw
exceptions.

110 CHAPTER 5 Handling errors
 Toward this goal, Rust functions that might fail return a Result enum type whose
definition is shown here:

enum Result<T, E> {
Ok(T),
Err(E),

}

A Rust function signature will contain a return value of type Result<T,E>, where T is
the type of value that will be returned in the case of success, and E is the type of error
value that will be returned in the case of a failure. A Result type is basically a way of
saying that a computation or function can return one of two possible outcomes: a
value in the case of a successful computation or an error in the case of failure.

 Let’s look at an example. The following simple function parses a string into an
integer, squares it, and returns a value of type i32. If the parsing fails, it returns an
error of type ParseIntError:

fn square(val: &str) -> Result<i32, ParseIntError> {
match val.parse::<i32>() {

Ok(num) => Ok(i32::pow(num, 2)),
Err(e) => Err(e),

}
}

The parse function in the Rust standard library returns a Result type, which we are
unwrapping (i.e., extracting the value from) using a match statement. The return
value from this function is of the pattern Result<T,E>, and in this case, T is i32 and E
is ParseIntError.

 Let’s write a main() function that calls the square() function:

use std::num::ParseIntError;

fn main() {
println!("{:?}", square("2"));
println!("{:?}", square("INVALID"));

}

fn square(val: &str) -> Result<i32, ParseIntError> {
match val.parse::<i32>() {

Ok(num) => Ok(i32::pow(num, 2)),
Err(e) => Err(e),

}
}

Run this code, and you will see the following output printed to the console:

Ok(4)
Err(ParseIntError { kind: InvalidDigit })

In the first case, the square() function is able to successfully parse the number 2 from
the string, and it returns the squared value enclosed in the Ok() enum type. In the

1115.2 Basic error handling in Rust and Actix Web
second case, an error of type ParseIntError is returned, as the parse() function is
unable to extract a number from the string.

 Let’s now look at a special operator that Rust provides to make error handling less
verbose: the ? operator. In the earlier code, we used the match clause to unwrap the
Result type returned from the parse() method. We’ll now see how the ? operator
can be used to reduce boilerplate code:

use std::num::ParseIntError;

fn main() {
println!("{:?}", square("2"));
println!("{:?}", square("INVALID"));

}

fn square(val: &str) -> Result<i32, ParseIntError> {
let num = val.parse::<i32>()?;
Ok(i32::pow(num,2))

}

You’ll notice that the match statement with the associated clauses has been replaced by
the ? operator. This operator tries to unwrap the integer from the Result value and
store it in the num variable. If unsuccessful, it receives the error from the parse()
method, aborts the square function, and propagates the ParseIntError to the calling
function (which in our case is the main() function).

 We’ll now take another step in exploring Rust’s error handling by adding addi-
tional functionality to the square() function. The following code adds some lines of
code to open a file and write the calculated square value to it:

use std::fs::File;
use std::io::Write;
use std::num::ParseIntError;

fn main() {
println!("{:?}", square("2"));
println!("{:?}", square("INVALID"));

}

fn square(val: &str) -> Result<i32, ParseIntError> {
let num = val.parse::<i32>()?;
let mut f = File::open("fictionalfile.txt")?;
let string_to_write = format!("Square of {} is {}", num, i32::pow(num, 2));
f.write_all(string_to_write.as_bytes())?;
Ok(i32::pow(num, 2))

}

When you compile this code, you’ll get an error message as follows:

the trait `std::convert::From<std::io::Error>` is not implemented
for `std::num::ParseIntError`

This error message may seem confusing, but it’s trying to say that the File::open and
write_all methods return a Result type containing an error of type std::io::Error,

112 CHAPTER 5 Handling errors
which should be propagated back to the main() function, as we have used the ? oper-
ator. However, the function signature of square() specifically states that it returns an
error of type ParseIntError. We seem to have a problem, as there are two possible error
types that can be returned from the function—std::num::ParseIntError and
std::io::Error, but our function signature can only specify one error type.

 This is where custom error types come in. Let’s define a custom error type that can
be an abstraction over the ParseIntError and io::Error types. Modify the code as
follows:

use std::fmt;
use std::fs::File;
use std::io::Write;

#[derive(Debug)]
pub enum MyError {

ParseError,
IOError,

}

impl std::error::Error for MyError {}

impl fmt::Display for MyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

match self {
MyError::ParseError => write!(f, "Parse Error"),
MyError::IOError => write!(f, "IO Error"),

}
}

}

fn main() {
let result = square("INVALID");
match result {

Ok(res) => println!("Result is {:?}",res),
Err(e) => println!("Error in parsing: {:?}",e)

};
}

fn square(val: &str) -> Result<i32, MyError> {
let num = val.parse::<i32>().map_err(|_| MyError::ParseError)?;
let mut f = File::open("fictionalfile.txt").map_err(

|_| MyError::IOError)?;
let string_to_write = format!("Square of {:?} is {:?}", num, i32::pow(

num, 2));
f.write_all(string_to_write.as_bytes())

.map_err(|_| MyError::IOError)?;
Ok(i32::pow(num, 2))

}

We’re making progress. We’ve so far seen how Rust uses the Result type to return
errors, how we can use the ? operator to reduce boilerplate code to propagate errors,
and how we can define and implement custom error types to unify error handling at a
function or application level.

Define a custom error enum type
containing the set of error variants.

By convention, error types in
Rust implement the Error trait
from the Rust standard library.

The Rust Error trait
requires the
implementation of the
Debug and Display
traits. The Debug trait
is auto-derived. The
Display trait is
implemented here.

The square function is
called, and the result is
evaluated to print out
a suitable message. The map_err method

transforms parsing, file
open, and file write errors

into our MyError type,
which is propagated back

to the calling function
through the ? operator.

1135.2 Basic error handling in Rust and Actix Web
Let’s now take a look at how Actix Web builds on top of the Rust error-handling phi-
losophy to return errors for web services and applications.

 Figure 5.3 shows the error-handling primitives in Actix. Actix Web has a general-
purpose error struct, actix_web::error::Error, which, like any other Rust error
type, implements the Rust standard library’s std::error::Error error trait. Any error
type that implements this Rust standard library Error trait can be converted into an
Actix Error type with the ? operator. The Actix Error type will then automatically be
converted to an HTTP response message that goes back to the HTTP client.

Figure 5.3 Converting errors to HTTP responses

Let’s look at a basic Actix handler function that returns a Result type. Create a new
Cargo project with cargo new, and add the following to the dependencies in
Cargo.toml:

[dependencies]
actix-web = "3"

Rust’s error handling makes code safe
A Rust function can belong to the Rust standard library or to an external crate, or it
can be a custom function written by the programmer. Whenever there is a possibility
of error, Rust functions return a Result data type. The calling function must then han-
dle the error in one of several ways:

 Propagating the error further to its caller using the ? operator
 Converting any errors received into another type before bubbling them up
 Handling the Result::Ok and Result::Error variants using the match block
 Simply panicking on an error with .unwrap() or .expect()

This makes programs safer because it is impossible to access invalid, null, or unini-
tialized data that’s returned from a Rust function.

ResponseError
trait

Any error type that implements the ResponseError trait can
be converted into an HTTP response message by Actix Web.

Built-in
implementations

Actix Web contains default implementations of the ResponseError
trait for many common error types, such as Rust standard I/O errors
and serde errors. Actix Web error types automatically implement
this trait (e.g., ProtocolError, Utf8Error, ParseError,
ContentTypeError, PathError, and QueryPayloadError).

Other error
types

For any error types that need to be converted to HTTP responses, and
for which default implementations (of the ResponseError trait) are
not available, custom implementations will have to be provided.

114 CHAPTER 5 Handling errors
Add the following code to src/main.rs:

use actix_web::{error::Error, web, App, HttpResponse, HttpServer};

async fn hello() -> Result<HttpResponse, Error> {
Ok(HttpResponse::Ok().body("Hello there!"))

}

#[actix_web::main]
async fn main() -> std::io::Result<()> {

HttpServer::new(|| App::new().route("/hello", web::get().to(hello)))
.bind("127.0.0.1:3000")?
.run()
.await

}

Even though the handler function signature specifies that it can return an Error type,
the handler function is so simple that there is little possibility of anything going wrong
here.

 Run the program with this command:

cargo run

From a browser, connect to the hello route:

http:/ /localhost:3000/hello

You should see the following message displayed on your browser screen:

Hello there!

Now alter the handler function to include operations that can possibly fail:

use actix_web::{error::Error, web, App, HttpResponse, HttpServer};
use std::fs::File;
use std::io::Read;

async fn hello() -> Result<HttpResponse, Error> {
let _ = File::open("fictionalfile.txt")?;
Ok(HttpResponse::Ok().body("File read successfully"))

}

#[actix_web::main]
async fn main() -> std::io::Result<()> {

HttpServer::new(|| App::new().route("/hello", web::get().to(hello)))
.bind("127.0.0.1:3000")?
.run()
.await

}

Run the program again, and connect to the hello route from the browser. You should
see something like the following message:

No such file or directory (os error 2)

The hello handler function can return one of two values:
HTTPResponse in the case of a successful computation,

or an Actix Error type in the case of failure.

The handler function returns
an HTTPResponse encapsulated
in the Ok() enum variant.

Try to open a nonexistent file in the handler function. The
? operator propagates the error to the calling function

(which is the Actix web server itself, in this case).

If the file open is successful, return an
HTTP response message with the success

status code and a text message.

1155.3 Defining a custom error handler
To a discerning reader, two immediate questions may come to mind:

1 The file operation returns an error of type std::io::Error, as seen in the ear-
lier example. How is it possible to send an error of type std::io::Error from
the handler function when the return type specified in the function signature is
actix_web::error::Error?

2 How did the browser display a text error message when we returned an Error
type from the handler function?

To answer the first question, anything that implements the std::error::Error trait
(which the std::io::Error does), can be converted to the actix_web::error::Error
type, as the Actix framework implements the std::error::Error trait for its own
actix_web::error::error type. This allows a question mark (?) to be used on the
std::io::Error type to convert it to the actix_web::error::Error type. See the Actix
Web documentation of the actix_web::error::Error type for more details: http://
mng.bz/lWXy.

 To answer the second question, anything that implements the Actix Web Response-
Error trait can be converted to an HTTP response. Interestingly, the Actix Web frame-
work contains built-in implementations of this trait for many common error types, and
std::io::Error is one of them. For more details about available default implementa-
tions, see the Actix Web documentation for the actix_web::error::ResponseError
trait: http://mng.bz/D4zE. The combination of the Actix Error type and Response-
Error trait provide the bulk of Actix’s error-handling support for web services and
applications.

 In this section, we’ve seen that when an error of type std::io::Error is raised
within the the hello() handler function, it gets converted into an HTTP response
message. We will utilize these features of Actix Web to convert a custom error type into
an HTTP response message in this chapter.

 With this background, you are now ready to start implementing error handling in
the tutor web service.

5.3 Defining a custom error handler
In this section, we’ll define a custom error type for our web service. First, though, let’s
define our overall approach. We’ll follow these steps:

1 Define a custom error enum type that encapsulates the various types of errors
that we expect to encounter within the web service.

2 Implement the From trait (from the Rust standard library) to convert the other
distinct error types into our custom error type.

3 Implement the Actix ResponseError trait for the custom error type. This
enables Actix to convert the custom error into an HTTP response.

4 In the application code (the handler functions), return the custom error type
instead of a standard Rust error type or Actix error type.

5 There is no step 5. Just sit back and watch Actix automatically convert any cus-
tom errors returned from the handler functions into valid HTTP responses that
are sent back to the client.

http://mng.bz/lWXy
http://mng.bz/lWXy
http://mng.bz/D4zE

116 CHAPTER 5 Handling errors
Figure 5.4 illustrates these steps.

Figure 5.4 Steps in writing a custom error type

That’s it. Let’s start by creating a new file, src/iter4/errors.rs. We’ll add the code for
this file in three parts. Here is the code for part 1.

use actix_web::{error, http::StatusCode, HttpResponse, Result};
use serde::Serialize;
use sqlx::error::Error as SQLxError;
use std::fmt;

#[derive(Debug, Serialize)]
pub enum EzyTutorError {

DBError(String),
ActixError(String),
NotFound(String),

}
#[derive(Debug, Serialize)]
pub struct MyErrorResponse {

error_message: String,
}

We’ve defined two data structures for error handling: EzyTutorError, which is the pri-
mary error-handling mechanism within the web service, and MyErrorResponse, which
is the user-facing message. To convert the former to the latter when an error occurs,
let’s write a method in the impl block of EzyTutorError. This code is shown in listing
5.2.

Listing 5.1 Error handling: part 1

Step 1: Declare a
custom error type.

Step 3: Implement the
ResponseError trait
for the custom error type.

Struct AppError { }
OR

enum AppError { }

impl ResponseError for
AppError { }

async fn handler() -> Result<HttpResponse,
AppError> { }

HTTP response

Actix converts AppError
into an HTTP response.

Step 2: Implement the From trait
to convert other error types into
the custom error type.

Step 4: Return the custom error type
in Actix web handlers.

impl From<OtherErrorType>
for AppError {}

Data structure to represent three types of errors that can
occur in the web service: database-related errors, Actix
server errors, and errors due to invalid client requests

Data structure to display a suitable
error message to the user or client
sending the API request.

1175.3 Defining a custom error handler
impl EzyTutorError {
fn error_response(&self) -> String {

match self {
EzyTutorError::DBError(msg) => {

println!("Database error occurred: {:?}", msg);
"Database error".into()

}
EzyTutorError::ActixError(msg) => {

println!("Server error occurred: {:?}", msg);
"Internal server error".into()

}
EzyTutorError::NotFound(msg) => {

println!("Not found error occurred: {:?}", msg);
msg.into()

}
}

}
}

We have now defined a method called error_response() on our custom EzyTutor-
Error error struct. This method will be called when we want to send a user-friendly
message to inform the user that an error has occurred. In this code, we are handling
all three types of errors, with the goal of sending back a simpler, friendly error mes-
sage to the user.

 We have so far defined error data structures and have even written a method to
convert a custom error struct to a user-friendly text message. The question that arises
now is how we can propagate an error to an HTTP client from the web service. The
only way an HTTP web service can communicate with a client is through an HTTP
response message, right?

 What’s missing is a way to convert the custom error that is generated by the server
into a corresponding HTTP response message. We saw in section 5.2 how to achieve

impl blocks
An impl block is Rust’s way of allowing developers to specify functions associated
with a data type. This is the only way in Rust to define a function that can be invoked
on an instance of the type in a method-call syntax. For example, if Foo is a data type,
foo is an instance of Foo, and bar() is the function defined within the impl block of
Foo, then the function bar() can be invoked on instance foo as follows: foo.bar().

impl blocks also serve to group together functionality associated with a user-defined
data type, which makes them easier to discover and maintain.

Further, impl blocks allow the creation of associated functions, which are functions
associated with the data type rather than an instance of the data type. For example,
to create a new instance of Foo, an associated function, new(), can be defined such
that Foo:new() creates a new instance of Foo.

Listing 5.2 Error handling: part 2

118 CHAPTER 5 Handling errors
this using the actix_web::error::ResponseError trait. If a handler returns an error
that also implements the ResponseError trait, Actix Web will convert that error into
an HTTP response, with the corresponding status code.

 In our case, this boils down to implementing the ResponseError trait on the Ezy-
TutorError struct. Implementing this trait means implementing two methods defined
on the trait: error_response() and status_code. Let’s look at the code.

impl error::ResponseError for EzyTutorError {
fn status_code(&self) -> StatusCode {

match self {
EzyTutorError::DBError(msg) | EzyTutorError::ActixError(msg) => {

StatusCode::INTERNAL_SERVER_ERROR
}

EzyTutorError::NotFound(msg) => StatusCode::NOT_FOUND,
}

}
fn error_response(&self) -> HttpResponse {

HttpResponse::build(self.status_code()).json(MyErrorResponse {
error_message: self.error_response(),

})
}

}

NOTE The supported HTTP error codes are defined in the Actix Web docu-
mentation: http://mng.bz/V185.

Now that we’ve defined our custom error type, let’s incorporate this into the handler
and database access code for the web service’s three APIs.

5.4 Error handling for retrieving all courses
In this section, we’ll incorporate error handling for the API that retrieves the course
list for a tutor. Let’s focus on the db_access.rs file, which contains functions for data-
base access.

 Add the following import to db_access.rs:

use super::errors::EzyTutorError;

The super keyword refers to the parent scope (for the db_access module), which is
where the errors module is located. Let’s now look at a chunk of the existing code in
the get_courses_for_tutor_db function:

let course_rows = sqlx::query!(
"SELECT tutor_id, course_id, course_name,

posted_time FROM ezy_course_c5 where tutor_id = $1",
tutor_id

)

Listing 5.3 Error handling: part 3

Using this method, we can specify the
HTTP status code that should be sent
as part of the HTTP response message.

This method will be used to
determine the body of the HTML

response in case of error scenarios.

http://mng.bz/V185

1195.4 Error handling for retrieving all courses
.fetch_all(pool)

.await?

.unwrap();

Note in particular the unwrap() method. This is a shortcut to handle errors in Rust.
Whenever an error occurs in the database operation, the program thread will panic
and exit. The unwrap() keyword in Rust means “If the operation is successful, return
the result, which in this case is the list of courses. In case of error, just panic and abort
the program.”

 This was fine in the previous chapter because you were just learning how to build
the web service. But this is not the behavior expected from a production service. We
cannot allow the program execution to panic and exit for every error in database
access. What we want to do instead is handle the error in some way. If we know what to
do with the error itself, we can do it there. Otherwise, we can propagate the error
from the database access code to the calling handler function, which can then figure
out what to do with the error.

 To achieve this propagation, we can use the question mark operator (?) instead of
the unwrap() keyword, as shown here:

let course_rows = sqlx::query!(
"SELECT tutor_id, course_id, course_name,

posted_time FROM ezy_course_c5 where tutor_id = $1",
tutor_id

)
.fetch_all(pool)
.await?;

Note that the .unwrap() method, which operates on the result of the database fetch
operation, has now been replaced with a question mark (?). While the earlier
unwrap() operation told the Rust compiler to panic in the case of errors, the ? tells
the Rust compiler, “In case of errors, convert the sqlx database error into another
error type and return from the function, propagating the error to the calling handler
function.” The question now is what type the question mark operator should convert
the database error to. We’d have to specify that.

 To propagate the error using ?, we need to alter the database method signature to
return a Result type. As you saw earlier, a Result type expresses the possibility of an
error. It provides a way to represent one out of two possible outcomes in any computa-
tion or function call: Ok(val) in the case of success, where val is the result of the suc-
cessful computation, or Err(err) in the case of errors, where err is the error
returned from the computation.

 In our database fetch function, let’s define these two possible outcomes as follows:

 Return a vector of courses, Vec<Course>, if the database access is successful.
 Return an error of type EzyTutorError if the database fetch fails.

If we revisit the await? expression at the end of the database fetch operation, we can
interpret it to mean that if the database access fails, we’ll convert the sqlx database

120 CHAPTER 5 Handling errors
error into an error of type EzyTutorError and return from the function. In such a
case of failure, the calling handler function would receive back an error of type Ezy-
TutorError from the database access function.

 Here is the modified code in db_access.rs. The changes are explained in the
annotations.

pub async fn get_courses_for_tutor_db(
pool: &PgPool,
tutor_id: i32,

) -> Result<Vec<Course>, EzyTutorError> {
// Prepare SQL statement
let course_rows = sqlx::query!(

"SELECT tutor_id, course_id, course_name,
posted_time FROM ezy_course_c5 where tutor_id = $1",

tutor_id
)
.fetch_all(pool)
.await?;
// Extract result

let courses: Vec<Course> = course_rows
.iter()
.map(|course_row| Course {

course_id: course_row.course_id,
tutor_id: course_row.tutor_id,
course_name: course_row.course_name.clone(),
posted_time: Some(chrono::NaiveDateTime::from(

course_row.posted_time.unwrap())),
})
.collect();

match courses.len() {
0 => Err(EzyTutorError::NotFound(

"Courses not found for tutor".into(),
)),
_ => Ok(courses),

}
}

We could debate about whether finding no courses for a valid tutor ID is really an
error. However, let’s set this argument aside for now and use this as another opportu-
nity to practice error handling in Rust.

 Let’s also alter the calling handler function (in iter4/handler.rs) to incorporate
error handling. First, add the following import:

use super::errors::EzyTutorError;

Modify the get_courses_for_tutor() function to return a Result type:

pub async fn get_courses_for_tutor(
app_state: web::Data<AppState>,
path: web::Path<i32>,

Listing 5.4 Error handling in the method to retrieve courses for a tutor

The function returns a Result<T> type
representing two possible outcomes:
Vec<Course> in the case of success, or
the EzyTutorError error type on failure.

Replace await.unwrap() with await?. This converts
the sqlx error to an EzyTutorError and
propagates it to the calling web handler function.

If there are no query results for
the tutor_id, return an error of
type EzyTutorError, which will
generate a message for the user.

1215.4 Error handling for retrieving all courses
) -> Result<HttpResponse, EzyTutorError> {
let tutor_id = path.into_inner();
get_courses_for_tutor_db(&app_state.db, tutor_id)

.await

.map(|courses| HttpResponse::Ok().json(courses))
}

It appears that we’ve completed the error-handling implementation for retrieving
course lists. Compile and run the code with this command:

cargo run --bin iter4

You will notice there are compiler errors. This is because for the ? operator to work,
each error raised in the program should be converted first to type EzyTutorError. For
example, if there is an error in database access using sqlx, sqlx returns an error of
type sqlx::error::DatabaseError, and Actix does not know how to deal with it. We
must tell Actix how to convert the sqlx error to our custom EzyTutorError error type.
Did you think Actix would do it for you? Sorry, you have to write the code.

 The code in the following listing should be added to iter4/errors.rs.

impl fmt::Display for EzyTutorError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {

write!(f, "{}", self)
}

}

impl From<actix_web::error::Error> for EzyTutorError {
fn from(err: actix_web::error::Error) -> Self {

EzyTutorError::ActixError(err.to_string())
}

}

impl From<SQLxError> for EzyTutorError {
fn from(err: SQLxError) -> Self {

EzyTutorError::DBError(err.to_string())
}

}

We have now made the necessary changes to both the database access code and the
handler code, incorporating error handling for retrieving course lists. Build and run
the code:

cargo run --bin iter4

From a browser, access the following URL:

http://localhost:3000/courses/1

Listing 5.5 Implementing From and Display traits for EzyTutorError

Change the web handler
method signature to
return a Result type.

The call is made to the database access function. Any error
returned is propagated by the handler function to the Actix Web
framework, which converts it to an HTML response message.

If the database call is successful,
the map logic is processed and the

list of query results is returned.

This enables us to print the
EzyTutorError as a string that

can be sent to the user.

This enables Actix Web
errors to be converted
to EzyTutorError using
the question mark (?)
operator.

This enables database errors from
sqlx to be converted to EzyTutorError
using the question mark (?) operator.

122 CHAPTER 5 Handling errors
You should be able to see the list of courses. Let’s test the error conditions now. Access
the API with an invalid tutor ID as shown here:

http:/ /localhost:3000/courses/10

You should see the following output displayed in the browser:

{"error_message":"Courses not found for tutor"}

This is as intended. Let’s now try simulating another type of error—we will simulate
an error in sqlx database access. In the .env file, change the database URL to an
invalid user ID. An example is shown here:

DATABASE_URL=postgres:/ /invaliduser:trupwd@127.0.0.1:5432/truwitter

Restart the web service:

cargo run --bin iter4

Access the valid URL as shown here:

http:/ /localhost:3000/courses/1

You should see the following error message in the browser:

{"error_message":"Database error"}

Let’s take a few minutes to understand what happened here. When we provided an
invalid database URL, the web service database access function tried to create a con-
nection from the connection pool and run the query. This operation failed, and an
error of type sqlx::error::DatabaseError was raised by the sqlx client. This error
was converted to our custom error type EzyTutorError due to the following From trait
implementation in errors.rs:

impl From<SQLxError> for EzyTutorError { }

The error of type EzyTutorError was then propagated from the database access func-
tion in db_access.rs to the handler function in handlers.rs. On receiving this error,
the handler function propagated it further to the Actix Web framework, which then
converted this error into an HTML response message with an appropriate error
message.

 Now, how do we check this error status code? This can be verified by accessing the
URL using a command-line HTTP client. We’ll use curl with the verbose option, as
follows:

curl -v http:/ /localhost:3000/courses/1

You should see a message in your terminal that’s similar to the one shown here:

GET /courses/1 HTTP/1.1
> Host

1235.4 Error handling for retrieving all courses
: localhost:3000
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 500 Internal Server Error

Go back to the status_code() function in iter4/errors.rs. You’ll notice that for data-
base and Actix errors, we are returning a status code of StatusCode::INTERNAL_
SERVER_ERROR, which translates to an HTML response status code of 500. This
matches the output generated by curl.

 Before we move on, make sure you correct the database URL username to the
right value in the .env file, or future tests will fail.

 We have thus implemented custom error handling for the first API. Let’s also
ensure that the test scripts are not broken. Run the tests as follows:

cargo test --bin iter4

You will find that the compiler throws errors. This is because our test script must also
be modified to receive an error response from the handler. Make changes to the test
script in handlers.rs as shown in the following listing.

#[actix_rt::test]
async fn get_all_courses_success() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});
let tutor_id: web::Path<i32> = web::Path::from(1);
let resp = get_courses_for_tutor(

app_state, tutor_id).await.unwrap();
assert_eq!(resp.status(), StatusCode::OK);

}

NOTE Actix Web does not support propagating errors using the question
mark (?) operator, so we have to use unwrap() or expect() to extract the
HTTP response from the Result type.

Rerun the following command from the command line:

cargo test get_all_courses_success --bin iter4

You should now see the tests run successfully.

Listing 5.6 Test script for getting all courses for a tutor

Note the addition of .unwrap(). A
Result type is being returned from
the handler method, but we want
an HTTP Response, so we have
to “unwrap” the result.

124 CHAPTER 5 Handling errors
 You’ll notice that, in the previous command, we ran only the get_all_courses_
success test case. If you run the entire test suite with cargo test --bin iter4, you
may get an error similar to this:

DBError("duplicate key value violates unique constraint")

This is because every time the test suite is run, a new record with a course_id of 3 is
inserted into the table. If the tests are run a second time, this record insertion will fail
because course_id is the primary key in table, and there cannot be two records with
the same course_id. In this case, simply log into the psql shell and delete the entry
with a course_id of 3 from the ezy_course_c5 table.

 There is a simpler option, though. You can tell the Cargo test executor to ignore
any specific test case in the test suite with the #[ignore] annotation. You can specify
this annotation as follows:

#[ignore]
#[actix_rt::test]
async fn post_course_success() {
}

Now you can run the entire test suite with cargo test --bin iter4, and you will see
something similar to this printed on your console:

running 3 tests
test handlers::tests::post_course_success ... ignored
test handlers::tests::get_all_courses_success ... ok
test handlers::tests::get_course_detail_test ... ok

test result: ok. 2 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out

You’ll notice that the post_course_success test case has been ignored, and the other
two tests have been run.

 We now have to perform the same steps for the other two APIs, changing the data-
base access functions, handler methods, and test scripts.

5.5 Error handling for retrieving course details
Let’s look at the changes needed to incorporate error handling for the second API for
getting course details. The following listing shows the updated database access code in
db_access.rs.

pub async fn get_course_details_db(pool: &PgPool, tutor_id: i32,
course_id: i32) -> Result<Course, EzyTutorError> {
// Prepare SQL statement
let course_row = sqlx::query!(

Listing 5.7 Error handling in the function to get course details

 The function returns a Result type such
that a course is returned from the function

on success, and an error of type
EzyTutorError is returned on failure.

1255.5 Error handling for retrieving course details
"SELECT tutor_id, course_id, course_name, posted_time
FROM ezy_course_c5 where tutor_id = $1 and course_id = $2",

tutor_id, course_id
)
.fetch_one(pool)
.await;
if let Ok(course_row) = course_row {
// Execute query
Ok(Course {

course_id: course_row.course_id,
tutor_id: course_row.tutor_id,
course_name: course_row.course_name.clone(),
posted_time: Some(chrono::NaiveDateTime::from(

course_row.posted_time.unwrap())),
})

} else {
Err(EzyTutorError::NotFound("Course id not found".into()))

}
}

Let’s update the handler function:

pub async fn get_course_details(
app_state: web::Data<AppState>,
path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> {
let (tutor_id, course_id) = path.into_inner();
get_course_details_db(&app_state.db, tutor_id, course_id)

.await

.map(|course| HttpResponse::Ok().json(course))
}

Restart the web service:

cargo run --bin iter4

Access the valid URL as follows:

http:/ /localhost:3000/courses/1/2

You will see the course details displayed as before. Now try accessing the details for an
invalid course ID:

http:/ /localhost:3000/courses/1/10

You should see the following error message in the browser:

{"error_message":"Course id not found"}

Let’s also alter the test script async fn get_course_detail_test() in handlers.rs to
accommodate errors returned from the handler function:

let resp = get_course_details(app_state, parameters).await.unwrap();

If the specified course_id is not
available in the database, it returns
a custom error message.

Change the handler function
signature to return a Result type.

 Invoke the database access function to retrieve
the course details. If it’s successful, return the

course details in the body of the HTTP response.

Note the addition of .unwrap() in the call to the database access
function to extract the HTTP Response from the Result type.

126 CHAPTER 5 Handling errors

Run the test with this command:

cargo test get_course_detail_test --bin iter4

The test should pass. Next, we’ll incorporate error handling for posting a new course.

5.6 Error handling for posting a new course
We’ll follow the same set of steps we used for the other two APIs: modify the database
access function, the handler function, and the test script. Let’s start with the database
access function in db_access.rs.

pub async fn post_new_course_db(
pool: &PgPool,
new_course: Course,

) -> Result<Course, EzyTutorError> {
let course_row = sqlx::query!("insert into ezy_course_c5 (

course_id,tutor_id, course_name) values ($1,$2,$3)
returning tutor_id, course_id,course_name, posted_time",
new_course.course_id, new_course.tutor_id, new_course.course_name)

.fetch_one(pool)

.await?;
//Retrieve result
Ok(Course {

course_id: course_row.course_id,
tutor_id: course_row.tutor_id,
course_name: course_row.course_name.clone(),
posted_time: Some(chrono::NaiveDateTime::from(

course_row.posted_time.unwrap())),
})

}

Next, update the handler function:

pub async fn post_new_course(
new_course: web::Json<Course>,
app_state: web::Data<AppState>,

) -> Result<HttpResponse, EzyTutorError> {
post_new_course_db(&app_state.db, new_course.into())

.await

.map(|course| HttpResponse::Ok().json(course))
}

Finally, update the test script async fn post_course_success() in handlers.rs to add
unwrap() on the return value from the database access function:

#[actix_rt::test]
async fn post_course_success() {

/// all code not shown here
let resp = post_new_course(course_param, app_state).await.unwrap();

Listing 5.8 Error handling in the database access function to post a new course

The function returns a Result type, wherein a
successful insert into the database returns the new
course details or an error is returned on failure.

Note the use of ? to
convert sqlx errors into
EzyTutorError types
and propagate them
back to the calling
handler function.

Return a Result type
with Ok(<Course>).

Change the return value
of the handler function
into a Result type.

If the call to the database access function is
successful, return the new course details. On failure,

propagate errors to the Actix Web framework.

127Summary
assert_eq!(resp.status(), StatusCode::OK);
}

Rebuild and restart the web service with the following command:

cargo run --bin iter4

Post a new course from the command line as follows:

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"course_id":4, "tutor_id": 1,
"course_name":"This is the fourth course!"}'

Verify that the new course has been added with the following URL on the browser:

http://localhost:3000/courses/1/4

Now run the tests:

cargo test --bin iter4

All three tests should successfully pass.
 Let’s do a quick recap. In this chapter, you have learned how to transform different

types of errors encountered in the web service to a custom error type, and how to
transform that to an HTTP response message, thus providing the client with a mean-
ingful message in the case of server errors. Along the way, you have also picked up
some of the finer concepts of error handling in Rust, which can be applied to any Rust
application. More importantly, you now know how to handle failures gracefully, pro-
vide meaningful feedback to users, and build a solid and stable web service. You have
also implemented error handling for the three APIs in the tutor web service. The web
service can handle database and Actix errors, and it can also handle invalid input
from users. Congratulations!

 Our tutor web service is now functional with a full-fledged database to persist data,
and it has a robust error-handling framework that can be customized further as the
features evolve. In the next chapter, we will deal with another real-world situation:
changes in product requirements from the management team, and additional feature
requests from users. Will Rust stand up to the test of large-scale refactoring of code?
You’ll see in the next chapter.

Summary
 Rust provides a robust and ergonomic error-handling approach with features

such as the Result type, combinator functions such as map and map_err that
operate on the Result type, quick code prototyping options with unwrap() and
expect(), the ? operator to reduce boilerplate code, and the ability to convert
errors from one error type to another using the From trait.

Add unwrap() on the result value returned by the handler
to extract the HTTP response from the Result type returned

by the post_new_course() database access function.

128 CHAPTER 5 Handling errors
 Actix Web builds on top of Rust’s error-handling features to include its own
Error type and the ResponseError trait. These enable Rust programmers to
define custom error types and have the Actix Web framework automatically
convert them into meaningful HTTP response messages at runtime for sending
back to the web client or user. Further, Actix Web provides built-in From imple-
mentations to convert Rust standard library error types to the Actix Error type,
and it also provides default ResponseError trait implementations to convert
Rust standard library error types into HTTP response messages.

 Implementing custom error handling in Actix involves the following steps:
– Define a data structure to represent a custom error type.
– Define possible values that the custom error type can take (for example,

database errors, not-found errors, etc.).
– Implement the ResponseError trait on the custom error type.
– Implement From traits to convert various types of errors (such as sqlx errors

or Actix Web errors) to the custom error type.
– Change the return values of the database access and route handler functions

to return the custom error type in the case of errors. The Actix Web frame-
work will then convert the custom error type into an appropriate HTTP
response and embed the error message within the body of the HTTP
response.

 We incorporated custom error handling for each of the three APIs in the tutor
web service.

Evolving the APIs and
fearless refactoring
In the previous chapter, we covered the basics of error handling in Rust and how
we can design custom error handling for our web service. After working through
the last few chapters, you should now have a foundational understanding of how a
web service is structured using the Actix Web framework, how you can talk to a rela-
tional database for CRUD activities, and how to handle any errors that occur while
processing incoming data and requests. In this chapter, we will step up the pace
and deal with something that we cannot avoid in the real world: changes.

This chapter covers
 Revamping the project structure

 Enhancing the data model for course creation
and management

 Enabling tutor registration and management
129

130 CHAPTER 6 Evolving the APIs and fearless refactoring
 Every actively used web service or application evolves significantly over its lifecycle,
based on user feedback or business requirements. Many of these new requirements
could mean breaking changes to the web service or application. In this chapter, you’ll
learn how Rust helps you cope with situations involving drastic design changes and
the rewriting of significant parts of your existing code. You’ll use the power of the Rust
compiler and the features of the language to come out of this challenge with a smile
on your face.

 In this chapter, you will fearlessly make several changes to the web service. You’ll
redesign the data model for courses, add course routes, modify handler and database
access functions, and update the test cases. You’ll also design and build a new module
in the application to manage tutor information and define the relationship between
tutors and courses. You’ll enhance the error-handling features of the web service to
cover edge cases. And if that wasn’t enough, you’ll also fully revamp the project code
and directory structure to neatly segregate the code across Rust modules.

 There’s no time to waste; let’s get going.

6.1 Revamping the project structure
In the previous chapter, we focused on creating and maintaining basic course data. In
this chapter, we’ll enhance the course module and add functionality to create and
maintain tutor information. As the size of the codebase will grow, this is a good time to
rethink the project structure. So, we’ll start by reorganizing the project into a struc-
ture that will aid in code development and maintenance as the application becomes
larger and more complex.

 Figure 6.1 shows two views. On the left is the project structure we’ll start with (the
structure from chapter 5). On the right is the structure that we’ll end up with.

 The main change you will notice is that in the proposed project structure, database
access, handlers, and models are not single files but folders. The database access code
for course and tutor will be organized under the dbaccess folder. Likewise for models
and handlers. This approach will reduce the length of individual files while making it
quicker to navigate to what we are looking for, though it adds some complexity to the
project structure.

 Before we begin, let’s set up the PROJECT_ROOT environment variable to point to
the full path of the project root (ezytutors/tutor_db):

export PROJECT_ROOT=<full-path-to ezytutors/tutor-db folder>

Verify that it is set correctly as follows:

echo $PROJECT_ROOT

Henceforth, the term project root will refer to the folder path stored in the $PROJECT_
ROOT environment variable. References to other files in this chapter will be made with
respect to the project root.

1316.1 Revamping the project structure
Figure 6.1 Project structure for chapters 5 and 6

The code structure is described here:

 $PROJECT_ROOT/src/bin/iter5.rs—The main() function.
 $PROJECT_ROOT/src/iter5/routes.rs—Contains routes. This will continue to be a

single file containing all the routes.
 $PROJECT_ROOT/src/iter5/state.rs—Application state containing the dependen-

cies that are injected into each thread of application execution.
 $PROJECT_ROOT/src/iter5/errors.rs—A custom error data structure and associ-

ated error-handling functions.
 $PROJECT_ROOT/.env—Environment variables containing database access cre-

dentials. This file should not be checked into the code repository.

132 CHAPTER 6 Evolving the APIs and fearless refactoring
 $PROJECT_ROOT/src/iter5/dbscripts—Database table creation scripts for
Postgres.

 $PROJECT_ROOT/src/iter5/handlers:

– $PROJECT_ROOT/src/iter5/handlers/course.rs—Course-related handler func-
tions.

– $PROJECT_ROOT/src/iter5/handlers/tutor.rs—Tutor-related handler functions.
– $PROJECT_ROOT/src/iter5/handlers/general.rs—Health-check handler func-

tion.
– $PROJECT_ROOT/src/iter5/handlers/mod.rs—Converts the directory handlers

into a Rust module so the Rust compiler knows how to find the dependent
files.

 $PROJECT_ROOT/src/iter5/models:

– $PROJECT_ROOT/src/iter5/models/course.rs—Course-related data structures
and utility methods.

– $PROJECT_ROOT/src/iter5/models/tutor.rs—Tutor-related data structures and
utility methods.

– $PROJECT_ROOT/src/iter5/models/mod.rs—Converts the directory models
into a Rust module so the Rust compiler knows how to find the dependent
files.

 $PROJECT_ROOT/src/iter5/dbaccess:

– $PROJECT_ROOT/src/iter5/dbaccess/course.rs—Course-related database-access
methods.

– $PROJECT_ROOT/src/iter5/dbaccess/tutor.rs—Tutor-related database-access
methods.

– $PROJECT_ROOT/src/iter5/dbaccess/mod.rs—Converts the dbaccess directory
into a Rust module so the Rust compiler knows how to find the dependent
files.

Copy the code from chapter 5’s iter4 folder as the starting point for this chapter.
Then, without adding any new functionality, we’ll reorganize the existing code of
chapter 5 into this new project structure.

 Follow these steps:

1 Rename $PROJECT_ROOT/src/bin/iter4.rs to $PROJECT_ROOT/src/bin/
iter5.rs.

2 Rename the $PROJECT_ROOT/src/iter4 folder to $PROJECT_ROOT/src/
iter5.

3 Under $PROJECT_ROOT/src/iter5, create three subfolders: dbaccess, models,
and handlers.

4 Move and rename $PROJECT_ROOT/src/iter5/models.rs to $PROJECT_
ROOT/src/iter5/models/course.rs.

1336.1 Revamping the project structure
5 Create two more files under the $PROJECT_ROOT/src/iter5/models folder:
tutor.rs and mod.rs. Leave both files blank for now.

6 Move and rename $PROJECT_ROOT/src/iter5/dbaccess.rs to $PROJECT_
ROOT/src/iter5/dbaccess/course.rs.

7 Create two more files under the $PROJECT_ROOT/src/iter5/dbaccess folder:
tutor.rs and mod.rs. Leave both files blank for now.

8 Move and rename $PROJECT_ROOT/src/iter5/handlers.rs to $PROJECT_
ROOT/src/iter5/handlers/course.rs.

9 Create three more files under the $PROJECT_ROOT/src/iter5/handlers
folder: tutor.rs, general.rs, and mod.rs. Leave all three files blank for now.

10 Create a folder named $PROJECT_ROOT/src/iter5/dbscripts. Move and
rename the existing database.sql file in the project folder to this directory, and
rename it as course.sql. We’ll modify this file later.

At this stage, ensure that your project structure looks similar to that shown in figure
6.1. Next, we’ll modify the existing code to align to this new structure:

1 In the mod.rs files under the $PROJECT_ROOT/src/iter5/dbaccess and
$PROJECT_ROOT/src/iter5/models folders, add the following code:

pub mod course;
pub mod tutor;

This tells the Rust compiler to consider the contents of the folders $PROJECT_
ROOT/src/iter5/models and $PROJECT_ROOT/src/iter5/dbaccess to be
Rust modules. This allows us to, for example, refer and use the Course data
structure in another source file like this:

use crate::models::course::Course;

Note the similarity between the folder structure and module organization.

2 Similarly, in the mod.rs file under $PROJECT_ROOT/src/iter5/handlers, add
the following code:

pub mod course;
pub mod tutor;
pub mod general;

3 Add the following imports to $PROJECT_ROOT/src/iter5/handlers/
general.rs:

use super::errors::EzyTutorError;
use super::state::AppState;
use actix_web::{web, HttpResponse};

Further, move the function pub async fn health_check_handler() {..} from
$PROJECT_ROOT/src/iter5/handlers/course.rs to $PROJECT_ROOT/src/
iter5/handlers/general.rs.

134 CHAPTER 6 Evolving the APIs and fearless refactoring
4 Let’s now move to the main() function. In $PROJECT_ROOT/src/bin/iter5,
adjust the module declaration paths to look like this:

#[path = "../iter5/dbaccess/mod.rs"]
mod dbaccess;
#[path = "../iter5/errors.rs"]
mod errors;
#[path = "../iter5/handlers/mod.rs"]
mod handlers;
#[path = "../iter5/models/mod.rs"]
mod models;
#[path = "../iter5/routes.rs"]
mod routes;
#[path = "../iter5/state.rs"]
mod state;

5 Adjust the module import paths in $PROJECT_ROOT/src/iter5/dbaccess/
course.rs as follows:

use crate::errors::EzyTutorError;
use crate::models::course::Course;

6 Adjust the module import paths in $PROJECT_ROOT/src/iter5/handlers/
course.rs as follows:

use crate::dbaccess::course::*;
use crate::errors::EzyTutorError;
use crate::models::course::Course;

7 Lastly, adjust the module paths in $PROJECT_ROOT/src/iter5/routes.rs as
shown here:

use crate::handlers::{course::*, general::*};

In this code refactoring exercise, ensure you do not delete any of the other existing
import statements, such as those related to Actix Web. I didn’t mention these because
there is no change to their module paths.

 Now, from the project root, check for compilation errors with the following
command:

cargo check

You can also run the test script, which should execute successfully:

cargo test

If there are any errors, revisit the steps.
 Congratulations, you’ve successfully completed the refactoring of the project code

into the new structure.
 By way of a recap, we have split the code into multiple smaller files, each perform-

ing a specific function (in line with the single responsibility principle in software engi-
neering). Also, we have grouped related files under common folders. For example,
the database access code for tutors and courses is now in separate source files, while

1356.2 Enhancing the data model for course creation and management
both the source files are placed together under a dbaccess folder. We have clearly sep-
arated the namespaces (through the use of Rust modules) for handler functions, data-
base access, the data model, routes, errors, database scripts, application state, and
error handling. This kind of intuitive project structure and file naming enables collab-
oration among the multiple developers who may be involved in reviewing and modify-
ing a code repository, it improves ramp-up time for new team members, and it reduces
the time to release for defect fixes and code enhancements.

 Note that this type of structure could be overkill for small projects. Your decisions
on refactoring your code should be based on how the code and functional complexity
evolve over time.

 We can now focus on the functionality enhancements, starting in the next section.

6.2 Enhancing the data model for course creation
and management
In this section, we’ll enhance the course-related APIs. This will involve changes to the
Rust data model, database table structure, routes, handlers, and database access
functions.

 Figure 6.2 shows the final code structure for the course-related APIs. In the figure,
the course-related API routes are listed, along with the names of the respective han-
dler and database access functions.

Figure 6.2 Code structure for the course-related APIs

Web
client

Internet

Mobile
client

Actix HTTP server

EzyTutors web service

Routes Handlers Database access

Actix app

GET /courses/{tutor-id}

GET /courses/{tutor-id}/ {course-id}

POST /courses/

get_courses_for_tutorRoute 1

Postgres database

post_new_course

get_course_details

Route 3

Route 2

get_courses_for_tutor_db

get_course_details_db

post_new_course_db

136 CHAPTER 6 Evolving the APIs and fearless refactoring
Note the general naming convention for the database access functions: they are
named by using the corresponding handler function name and suffixing it with db.

 Let’s start by looking at the current Course data model in $PROJECT_ROOT/src/
iter5/models/course.rs:

pub struct Course {
pub course_id: i32,
pub tutor_id: i32,
pub course_name: String,
pub posted_time: Option<NaiveDateTime>,

}

This data structure has served its purpose, but it is elementary. It’s time to add more
real-world attributes to describe the courses. Let’s enhance the Course struct to add
the following details:

 Description—Textual information describing the course so prospective students
can decide if the course is for them.

 Format—The course can be delivered in multiple formats, such as a self-paced
video course, an e-book format, or instructor-led in-person training.

 Structure of course—For now, we’ll allow the tutor to upload a document that
describes the course (such as a brochure in PDF format).

 Duration of course—The length of the course. This is typically described in terms
of the duration of video recordings for video-based courses, the duration of
in-person training hours, or the recommended study hours in the case of e-books.

 Price—We’ll specify the course price in US dollars.
 Language—Since we expect to have an international audience for the web app,

let’s allow courses in multiple languages.
 Level—This denotes the level of the student the course is targeted at. Possible

values include Beginner, Intermediate, and Expert.

In the next subsection, we’ll make the changes to the Rust data model.

6.2.1 Making changes to the data model

Let’s begin to make the changes, starting with file imports. Here is the original set of
imports:

use actix_web::web;
use chrono::NaiveDateTime;
use serde::{Deserialize, Serialize};

Let’s alter the Course data structure to incorporate the additional data elements that
we wish to capture. Here is the updated Course data structure in $PROJECT_ROOT/
src/iter5/models/course.rs:

#[derive(Serialize, Debug, Clone, sqlx::FromRow)]
pub struct Course {

pub course_id: i32,

1376.2 Enhancing the data model for course creation and management
pub tutor_id: i32,
pub course_name: String,
pub course_description: Option<String>,
pub course_format: Option<String>,
pub course_structure: Option<String>,
pub course_duration: Option<String>,
pub course_price: Option<i32>,
pub course_language: Option<String>,
pub course_level: Option<String>,
pub posted_time: Option<NaiveDateTime>,

}

Note that we’ve declared a struct that has three mandatory fields: course_id, tutor_
id, and course_name. The rest of the fields are optional (denoted by the Option<T>
type). This reflects the possibility that a course record in the database may not have
values for these optional fields.

 We’ve also auto-derived a few traits. Serialize enables us to send the fields of the
Course struct back to the API client. Debug enables the printing of struct values during
the development cycle. Clone will help us duplicate string values while complying with
the Rust ownership model. sqlx::FromRow enables the automatic conversion of a data-
base record into the Course struct while reading values from the database. We’ll look at
how we can implement this feature when we write the database access functions.

 If we look at the Course data structure, there are a couple of fields, posted time
and course id, which we plan to auto-generate at the database level. While we need
these fields to fully represent a Course record, we don’t need these values to be sent by
the API client. So how can we handle these different representations of a Course?.

 Let’s create a separate data structure that will only contain the fields relevant to the
frontend for the creation of a new course. Here is the new CreateCourse struct:

#[derive(Deserialize, Debug, Clone)]
pub struct CreateCourse {

pub tutor_id: i32,
pub course_name: String,
pub course_description: Option<String>,
pub course_format: Option<String>,
pub course_structure: Option<String>,
pub course_duration: Option<String>,
pub course_price: Option<i32>,
pub course_language: Option<String>,
pub course_level: Option<String>,

}

In this struct, we are specifying that for creating a new course, tutor_id and
course_id are mandatory fields; the rest are optional, as far as the API client is con-
cerned. However, for the tutor web service, both course_id and posted_time are also
mandatory fields for creating a new course—these will be auto-generated internally.

 You’ll also notice that we’ve auto-derived the Deserialize trait for CreateCourse,
whereas we auto-derived the Serialize trait for the Course struct. Why do you think
we’ve done this?

138 CHAPTER 6 Evolving the APIs and fearless refactoring
 This is because the CreateCourse struct will be used as the data structure to carry
inputs from the user to the web service as part of an HTTP request body. Hence, the
Actix Web framework needs a way to deserialize the data coming in over the wire into
the CreateCourse Rust struct.

 Note that for HTTP requests, the API client serializes the data payload for transmis-
sion, while the Actix framework at the receiving end will deserialize the data back into a
suitable form for processing by the application. To be more precise, the Actix Web
framework serializes the incoming data payload into an Actix web::Json<Create-
Course> data type, but our application does not understand this type. We’ll have to
convert this Actix type into a regular Rust struct.

 We’ll implement the Rust From trait to write the conversion function, which we can
then invoke at runtime, whenever an HTTP request is received to create a new course:

impl From<web::Json<CreateCourse>> for CreateCourse {

fn from(new_course: web::Json<CreateCourse>) -> Self {
CreateCourse {

tutor_id: new_course.tutor_id,
course_name: new_course.course_name.clone(),
course_description: new_course.course_description.clone(),
course_format: new_course.course_format.clone(),
course_structure: new_course.course_structure.clone(),
course_level: new_course.course_level.clone(),
course_duration: new_course.course_duration.clone(),
course_language: new_course.course_language.clone(),
course_price: new_course.course_price,

}
}

}

This conversion is relatively straightforward, but if there is any possibility of errors
during the conversion, we would use the TryFrom trait instead of the From trait. Errors
can occur, for example, if we call a Rust standard lib function that returns a Result
type, such as for converting a string value to an integer.

 You can import the TryFrom trait from the Rust standard library:

use std::convert::TryFrom;

Then you’ll need to implement the try_from function and declare the type for Error
that will be returned if there are problems in processing:

impl TryFrom<web::Json<CreateCourse>> for CreateCourse {
type Error = EzyTutorError;

fn try_from(new_course: web::Json<CreateCourse>) ->
Result<Self, Self::Error> {
Ok(CreateCourse {

tutor_id: new_course.tutor_id,
course_name: new_course.course_name.clone(),
course_description: new_course.course_description.clone(),
course_format: new_course.course_format.clone(),

1396.2 Enhancing the data model for course creation and management
course_structure: new_course.course_structure.clone(),
course_level: new_course.course_level.clone(),
course_duration: new_course.course_duration.clone(),
course_language: new_course.course_language.clone(),
course_price: new_course.course_price,

})
}

}

Note that Error is a type placeholder associated with the TryFrom trait. We are declar-
ing it to be of type EzyTutorError since we would like to unify all the error handling
with the EzyTutorError type. Within the function, we can then raise errors of type
EzyTutorError in the case of faults.

 However, for our purposes here, it would suffice to use the From trait, as we do not
anticipate any failure conditions during this conversion. The use of the TryFrom trait
is only shown here to demonstrate how you can use it if the need arises.

 We now have a way to receive data from an API client for creating a new course.
What about course updates? Can we use the same CreateCourse struct? We cannot.
While updating a course, we don’t want to allow the tutor_id to be modified, as we
don’t want the course created by one tutor to be switched to another tutor. Also, the
course_name field in the CreateCourse struct is mandatory. When we are updating a
course, we don’t want to force the user to update the name every time.

 Let’s create another struct that’s more suitable for updating course details:

#[derive(Deserialize, Debug, Clone)]
pub struct UpdateCourse {

pub course_name: Option<String>,
pub course_description: Option<String>,
pub course_format: Option<String>,
pub course_structure: Option<String>,
pub course_duration: Option<String>,
pub course_price: Option<i32>,
pub course_language: Option<String>,
pub course_level: Option<String>,

}

Note that all the fields here are optional, which is the way it should be for a good user
experience.

 We’ll also have to write a From trait implementation for UpdateCourse, similar to
the one for CreateCourse. Here is the code:

impl From<web::Json<UpdateCourse>> for UpdateCourse {
fn from(update_course: web::Json<UpdateCourse>) -> Self {

UpdateCourse {
course_name: update_course.course_name.clone(),
course_description: update_course.course_description.clone(),
course_format: update_course.course_format.clone(),
course_structure: update_course.course_structure.clone(),
course_level: update_course.course_level.clone(),
course_duration: update_course.course_duration.clone(),

140 CHAPTER 6 Evolving the APIs and fearless refactoring
course_language: update_course.course_language.clone(),
course_price: update_course.course_price,

}
}

}

Before we forget, in the $PROJECT_ROOT/src/iter5/models/course.rs file, delete
the From trait implementation that converts from web::Json<Course> to the Course
struct, which we wrote in the previous chapter. We now have separate structs for
receiving data from users (CreateCourse and UpdateCourse) and for sending data
back (Course).

 This concludes the data model changes for the Course data struct, but we’re not
done yet. We have to change the model of the physical database tables to add the new
fields.

 In the course.sql file, under $PROJECT_ROOT/src/iter5/dbscripts, add the fol-
lowing database scripts:

/* Drop tables if they already exist*/

drop table if exists ezy_course_c6;

/* Create tables. */
/* Note: Don't put a comma after last field */

create table ezy_course_c6
(

course_id serial primary key,
tutor_id INT not null,
course_name varchar(140) not null,
course_description varchar(2000),
course_format varchar(30),
course_structure varchar(200),
course_duration varchar(30),
course_price INT,
course_language varchar(30),
course_level varchar(30),
posted_time TIMESTAMP default now()

);

Note the main changes compared to the script we wrote in the previous chapter:

 The database table name now has the c6 suffix. This allows us to test the code
for each chapter independently.

 The additional data elements we designed in the Course data structure are
reflected in the table-creation script.

 The NOT NULL constraint is specified for tutor_id and course_name. This will
be enforced by the database, and we won’t be able to add a record without these
columns. In addition, course_id, which is marked as the primary key, and
posted_time, which is automatically set to current time by default, are also
enforced at the database level. The fields that do not have a NOT NULL constraint

1416.2 Enhancing the data model for course creation and management
are optional columns. If you refer back to the Course struct, you’ll notice that
these columns are also the ones marked as the Option<T> type in the Course
struct definition. In this way, we have aligned the database column constraints
with the Rust struct.

To test the database script, run the following command from the command line. Make
sure the right path to the script file is specified:

psql -U <user-name> -d ezytutors < <path.to.file>/course.sql

Replace <user-name> and <path.to-file> with the appropriate values, and enter the
password if prompted. You should see the scripts execute successfully.

 To verify that the tables have indeed been created according to the script specifica-
tion, log in to the psql shell with the following command:

psql -U <user-name> -d ezytutors
\d
\d+ ezy_course_c6
\q

After creating the new table, we need to give permissions to the database user. Run
the following commands from the terminal command line:

psql -U <user-name> -d ezytutors // Login to psql shell
GRANT ALL PRIVILEGES ON TABLE __ezy_course_c6__ to <user-name>
\q // Quit the psql shell

Replace <user-name> with your username, which should be the same one you config-
ured in the .env file. Note that you can also choose to execute this step directly as part
of the database scripts after creating the table.

 With this, we conclude the data model changes. In the next subsection, we’ll make
the changes to the API processing logic to accommodate the data model changes.

6.2.2 Making changes to the course APIs

In the previous section, we enhanced the data model for Course and created new
database scripts to create the new structure for the Course we designed.

 We’ll now have to modify the application logic to incorporate the data model
changes. To verify this, just run the following command from the project root:

cargo check

You’ll see that there are errors in the database access and handler functions that need
to be fixed. Let’s do that now.

 We’ll start with the routes in $PROJECT_ROOT/src/iter5/routes.rs. Modify the
code to look like this:

use crate::handlers::{course::*, general::*};
use actix_web::web;

Display the list of
relations (tables).

Display column
names in the table.Quit the

psql shell.

142 CHAPTER 6 Evolving the APIs and fearless refactoring
pub fn general_routes(cfg: &mut web::ServiceConfig) {
cfg.route("/health", web::get().to(health_check_handler));

}

pub fn course_routes(cfg: &mut web::ServiceConfig) {
cfg.service(

web::scope("/courses")
.route("", web::post().to(post_new_course))
.route("/{tutor_id}", web::get().to(get_courses_for_tutor))
.route("/{tutor_id}/{course_id}", web::get().to(get_course_details))
.route(

"/{tutor_id}/{course_id}",
web::put().to(update_course_details),

)
.route("/{tutor_id}/{course_id}", web::delete().to(delete_course)),

);
}

There are a few things you should notice in this code:

 We are importing the handler functions from two modules—crate::handlers

::course and crate::handlers::general.
 We are using the appropriate HTTP methods for the various routes—the

post() method to create a new course, the get() method to retrieve a single
course or a list of courses, the put() method to update a course, and the
delete() method to delete a course.

 We are using URL path parameters, {tutor_id} and {course_id}, to identify
specific resources on which to operate.

You may be wondering about the CreateCourse and UpdateCourse structs that we
designed as part of the data model to enable the creation and updating of course
records. Why are they not visible in the route definitions? That’s because these structs
are sent as part of the HTTP request payload, which is automatically extracted by
Actix and made available to the respective handler functions. Only the URL path
parameters, HTTP methods, and names of handler functions for a route are specified
as part of the routes declaration in Actix Web.

 Let’s next focus on the handler functions in $PROJECT_ROOT/src/iter5/
handlers/course.rs. Here are the module imports:

use crate::dbaccess::course::*;
use crate::errors::EzyTutorError;
use crate::models::course::{CreateCourse, UpdateCourse};
use crate::state::AppState;
use actix_web::{web, HttpResponse};

First, recall that the handler functions are called whenever an HTTP request arrives at
one of the routes defined in routes.rs. In the case of courses, for example, it can be a
GET request to retrieve a list of courses for a tutor or a POST request to create a new
course. The handler functions corresponding to each of the valid course routes will

Display the list of
relations (tables).

HTTP GET request to
retrieve all courses

for a given tutor

HTTP GET request to get
details for a given course

HTTP PUT
request to

update course
details

HTTP DELETE request to
delete a course entry

1436.2 Enhancing the data model for course creation and management
be stored in this file. The handler functions, in turn, make use of the Course data
models and database access functions, and these are reflected in the module imports.

 Here we’re importing the database access functions (as the handlers will invoke
them), a custom error type, data structures from the Course model, AppState (for the
database connection pool), and the Actix utilities needed for HTTP communications
with the client frontend.

 Let’s write the various handler functions corresponding to the routes, one by one.
Here is the handler method to retrieve all courses for a tutor:

pub async fn get_courses_for_tutor(
app_state: web::Data<AppState>,
path: web::Path<i32>,

) -> Result<HttpResponse, EzyTutorError> {
let tutor_id = path.into_inner();
get_courses_for_tutor_db(&app_state.db, tutor_id)

.await

.map(|courses| HttpResponse::Ok().json(courses))
}

This function accepts a URL path parameter that refers to the tutor_id, which is
encapsulated in the Actix data structure web::Path<i32>. The function returns an
HTTP response containing either the data requested or an error message.

 The handler function, in turn, invokes the get_courses_for_tutor_db database
access function to access the database and retrieve the course list. The return value
from the database access function is handled through the map construct in Rust, which
constructs a valid HTTP response message with the success code and sends the list of
courses back as part of the HTTP response body.

 If there are errors while accessing the database, the database access functions raise
an error of type EzyTutorError, which is then propagated back to the handler func-
tions, where this error is transformed into an Actix error type and sent back to the cli-
ent through a valid HTTP response message. This error translation is handled by the
Actix framework, provided the application implements the Actix ResponseError trait
on the EzyTutorError type, which we did in the previous chapter.

 Let’s next look at the code for retrieving an individual course record:

pub async fn get_course_details(
app_state: web::Data<AppState>,
path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> {
let (tutor_id, course_id) = path.into_inner();
get_course_details_db(&app_state.db, tutor_id, course_id)

.await

.map(|course| HttpResponse::Ok().json(course))
}

Similar to the previous function, this function is invoked in response to an HTTP::GET
request. The difference is that here we will receive the tutor_id and course_id as

144 CHAPTER 6 Evolving the APIs and fearless refactoring
part of the URL path parameters, which will help us uniquely identify a single course
record in the database.

 Note the use of the .await keyword in these handler functions when invoking the
corresponding database access functions. Since the database access library we use,
sqlx, uses an asynchronous connection to the database, we use the .await keyword to
denote an asynchronous call to communicate with the database.

 Moving on, here is the code for the handler function that posts a new course:

pub async fn post_new_course(
new_course: web::Json<CreateCourse>,
app_state: web::Data<AppState>,

) -> Result<HttpResponse, EzyTutorError> {
post_new_course_db(&app_state.db, new_course.into()?)

.await

.map(|course| HttpResponse::Ok().json(course))
}

This handler function is invoked for an HTTP::POST request received on the route
specified in the routes.rs file. The Actix framework deserializes the HTTP request
body of this POST request and makes the data available to the post_new_course() han-
dler function within the web::Json<CreateCourse> data structure.

 Recall that we wrote a method to convert from web::Json<CreateCourse> to the
CreateCourse struct as part of the From trait implementation in the models/course.rs
file, which we are invoking within the handler function using the expression new_
course.into()?. If we had implemented the conversion function using the TryFrom
trait instead of the From trait, we would invoke the conversion using new_course
.try_into()?, with the ? denoting the possibility of an error being returned from the
conversion function.

 In this handler function, after a new course is created, the database access function
returns the newly created course record, which is then sent back from the web service
within the body of an HTTP response message.

 Next, let’s look at the handler function to delete a course:

pub async fn delete_course(
app_state: web::Data<AppState>,
path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> {
let (tutor_id, course_id) = path.into_inner();
delete_course_db(&app_state.db, tutor_id, course_id)

.await

.map(|resp| HttpResponse::Ok().json(resp))
}

This handler function is invoked in response to an HTTP::DELETE request. The han-
dler function invokes the delete_course_db database access function to perform the
actual deletion of the course record in the database. On receiving a message confirm-
ing successful deletion, the handler function sends it back as part of the HTTP
response.

1456.2 Enhancing the data model for course creation and management
 Here is the handler function to update the details for a course:

pub async fn update_course_details(
app_state: web::Data<AppState>,
update_course: web::Json<UpdateCourse>,
path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> {
let (tutor_id, course_id) = path.into_inner();
update_course_details_db(&app_state.db, tutor_id,

course_id, update_course.into())
.await
.map(|course| HttpResponse::Ok().json(course))

}

This handler function is invoked in response to an HTTP::PUT request on the specified
route in the routes.rs file. It receives two URL path parameters, tutor_id and
course_id, which are used to uniquely identify a course in the database. The input
parameters for the course to be modified are sent from the web frontend to the Actix
web server route as part of the HTTP request body, and this is made available by Actix
to the handler function as web::Json::UpdateCourse.

 Note the use of the update_course.into() expression. This is used to convert
web::json::UpdateCourse to UpdateCourse struct. To achieve this, we previously
implemented the From trait in the models/course.rs file.

 The updated course details are then sent back as part of the HTTP response
message.

 Let’s also write unit test cases for the handler functions. In the handlers/course.rs
file, we’ll add the test cases and module imports (after the code for handler func-
tions) within the test module as shown here:

#[cfg(test)]
mod tests {

//write test cases here
}

Let’s add the module imports first:

use super::*;
use actix_web::http::StatusCode;
use actix_web::ResponseError;
use dotenv::dotenv;
use sqlx::postgres::PgPool;
use std::env;
use std::sync::Mutex;

Now let’s start with the test case for getting all courses for a tutor:

#[actix_rt::test]
async fn get_all_courses_success() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");

Load the environment
variables from the
.env file.

Retrieve the DATABASE_URL
from the environment
variable. If the variable is
not set, the code will panic
with an error message.

146 CHAPTER 6 Evolving the APIs and fearless refactoring

In
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});
let tutor_id: web::Path<i32> = web::Path::from(1);
let resp = get_courses_for_tutor(

app_state, tutor_id).await.unwrap();
assert_eq!(resp.status(), StatusCode::OK);

}

Here is the test case to retrieve an individual course:

#[actix_rt::test]
async fn get_course_detail_success_test() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});
let parameters: web::Path<(i32, i32)> = web::Path::from((1, 2));
let resp = get_course_details(app_state, parameters).await.unwrap();
assert_eq!(resp.status(), StatusCode::OK);

}

The preceding test function is mostly similar to the previous one, except that here we
are retrieving a single course from the database.

 What happens if we provide an invalid course id or tutor id? In the handler and
database access functions, we handle such a case by returning an error. Let’s see if we
can verify this scenario:

#[actix_rt::test]
async fn get_course_detail_failure_test() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});
let parameters: web::Path<(i32, i32)> = web::Path::from((1, 21));
let resp = get_course_details(app_state, parameters).await;

Construct a Postgres
database connection pool.

Construct the application state, which is injected as a
dependency by Actix Web into each of the handler functions.

The database connection pool is part of the application
state, and this is needed by the database access functions.

Simulate the URL Path parameter
tutor_id by constructing a

web::Path extractor with a value
of 1, using the from() method.

voke the
handler

function.

Check the return value of the
handler function call with
the expected status code.

Construct path parameters
representing tutor_id and course_id.

Note the call to the handler function,
which returns a Result<T,E> type.

1476.2 Enhancing the data model for course creation and management

match resp {
Ok(_) => println!("Something wrong"),
Err(err) => assert_eq!(err.status_code(),

StatusCode::NOT_FOUND),
}

}

Next, we’ll write the test case to post a new course:

#[ignore]
#[actix_rt::test]
async fn post_course_success() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::new(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});
let new_course_msg = CreateCourse {

tutor_id: 1,
course_name: "Third course".into(),
course_description: Some("This is a test course".into()),
course_format: None,
course_level: Some("Beginner".into()),
course_price: None,
course_duration: None,
course_language: Some("English".into()),
course_structure: None,

};
let course_param = web::Json(new_course_msg);
let resp = post_new_course(course_param, app_state).await.unwrap();
assert_eq!(resp.status(), StatusCode::OK);

}

The rest of the code is similar to the previous test cases. Note the use of [ignore] at
the top of the preceding test case. This ensures that the cargo test command will
ignore this test case whenever it is invoked. This is because we may not want to create
a new test case every time we run test cases for sanity checks. In such a case, we can use
the [ignore] annotation.

 Shown next is the test case to update a course:

#[actix_rt::test]
async fn update_course_success() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),

We use the match clause to check if
the handler function returns
successfully or returns an Error. In this
case, we are trying to retrieve details
for a non-existent course-id, so we’re
expecting an error to be returned.We are asserting that the error status

code returned from the handler function
is of type StatusCode::NOT_FOUND.

Construct a data structure
representing the attributes
of the course to be created.

Encapsulate the constructed
CreateCourse struct in a
web::Json object to simulate
what happens in a client API call.

148 CHAPTER 6 Evolving the APIs and fearless refactoring
db: pool,
});
let update_course_msg = UpdateCourse {

course_name: Some("Course name changed".into()),
course_description: Some(

"This is yet another test course".into()),
course_format: None,
course_level: Some("Intermediate".into()),
course_price: None,
course_duration: None,
course_language: Some("German".into()),
course_structure: None,

};
let parameters: web::Path<(i32, i32)> = web::Path::from((1, 2));
let update_param = web::Json(update_course_msg);
let resp = update_course_details(app_state,

update_param, parameters)
.await
.unwrap();

assert_eq!(resp.status(), StatusCode::OK);
}

Here is the test case to delete a course:

#[ignore]
#[actix_rt::test]
async fn delete_test_success() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});
let parameters: web::Path<(i32, i32)> = web::Path::from((1, 5));
let resp = delete_course(app_state, parameters).await.unwrap();
assert_eq!(resp.status(), StatusCode::OK);

}

What if we were to provide an invalid tutor-id or course-id? Let’s write a test case
for that:

#[actix_rt::test]
async fn delete_test_failure() {

dotenv().ok();
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let pool: PgPool = PgPool::connect(&database_url).await.unwrap();
let app_state: web::Data<AppState> = web::Data::new(AppState {

health_check_response: "".to_string(),
visit_count: Mutex::new(0),
db: pool,

});

Similar to the CreateCourse
struct in the previous test
case, we are using the
UpdateCourse struct to
provide the data elements
to modify the Course record
in the database.

Simulate the URL path
parameters to uniquely identify
a course record in the database

using tutor_id and course_id.

Ensure that a valid tutor-id and
course-id are provided in the URL path

parameters before invoking this test case.

1496.2 Enhancing the data model for course creation and management
let parameters: web::Path<(i32, i32)> = web::Path::from((1, 21));
let resp = delete_course(app_state, parameters).await;
match resp {

Ok(_) => println!("Something wrong"),
Err(err) => assert_eq!(err.status_code(),

StatusCode::NOT_FOUND),
}

}

This concludes our unit test cases for the various handler functions. However, we’re
not yet ready to run the tests, as we have not implemented the database access func-
tions. Let’s look at them now in $PROJECT_ROOT/src/iter5/dbaccess/course.rs.

 Let’s begin with the database access function to retrieve all courses for a tutor,
along with all the module imports for the file:

use crate::errors::EzyTutorError;
use crate::models::course::*;
use sqlx::postgres::PgPool;

pub async fn get_courses_for_tutor_db(
pool: &PgPool,
tutor_id: i32,

) -> Result<Vec<Course>, EzyTutorError> {
// Prepare SQL statement

let course_rows: Vec<Course> = sqlx::query_as!(
Course,
"SELECT * FROM ezy_course_c6 where tutor_id = $1",
tutor_id

)
.fetch_all(pool)
.await?;

Ok(course_rows)
}

The query_as! macro comes in handy to map the columns in the database record to
the Course data struct. This mapping is done automatically by sqlx if the sqlx::From-
Row trait is implemented for the Course struct. We did this in the models module by
auto-deriving this trait as outlined here:

#[derive(Deserialize, Serialize, Debug, Clone, sqlx::FromRow)]
pub struct Course {
// fields
}

Without the query_as! macro, we would have to manually perform the mapping of
each database column to the corresponding Course struct field.

Provide an invalid
course-id or tutor-id in

the path parameters.

Expect an error to be returned from the handler
function, and compare the error status code
returned by the handler with the expected value.

Construct a query using
the sqlx query_as!

Execute the SELECT query statement to retrieve
all rows that match the selection clause in SQL.

Indicates an async function that internally uses Rust futures.
In Rust, futures are lazily evaluated, which means that until
the .await keyword is called, the query is not executed.

The sqlx library automatically converts the database
row into a Rust Course data struct, and a vector of
these courses is returned from this function.

150 CHAPTER 6 Evolving the APIs and fearless refactoring
 Here is the next function to retrieve a single course from the database:

pub async fn get_course_details_db(
pool: &PgPool,
tutor_id: i32,
course_id: i32,

) -> Result<Course, EzyTutorError> {
// Prepare SQL statement
let course_row = sqlx::query_as!(

Course,
"SELECT * FROM ezy_course_c6 where tutor_id = $1 and course_id = $2",
tutor_id,
course_id

)
.fetch_optional(pool)
.await?;

if let Some(course) = course_row {
Ok(course)

} else {
Err(EzyTutorError::NotFound("Course id not found".into()))

}
}

The code for adding a new course to the database is shown next:

pub async fn post_new_course_db(
pool: &PgPool,
new_course: CreateCourse,

) -> Result<Course, EzyTutorError> {
let course_row= sqlx::query_as!(Course,"insert into ezy_course_c6 (

tutor_id, course_name, course_description,course_duration,
course_level, course_format, course_language, course_structure,
course_price) values ($1,$2,$3,$4,$5,$6,$7,$8,$9) returning
tutor_id, course_id,course_name, course_description,
course_duration, course_level, course_format, course_language,
course_structure, course_price, posted_time",

new_course.tutor_id, new_course.course_name,
new_course.course_description,

new_course.course_duration, new_course.course_level,
new_course.course_format, new_course.course_language,
new_course.course_structure, new_course.course_price)

.fetch_one(pool)

.await?;

Ok(course_row)
}

Note the use of the returning keyword in the SQL insert statement. This is a feature
supported by the Postgres database that enables us to retrieve the newly inserted
course details as part of the same insert query (instead of having to write a separate
SQL query).

The query_as! macro is used to
map the returned database
record into a Course struct.

fetch_optional returns an Option type,
indicating that there may not be a record in
the database for the specified SELECT clause.

If a record is found in the database,
return the course details encapsulated
in the OK(T) variant of the Result type.

If no record is found for the criteria specified, return an Err type with a suitable
error message. This error is then propagated back to the calling handler function

and sent to the API client as part of an HTTP response message.

First, a standard insert SQL statement
is constructed using the parameters

passed from the handler function.

After inserting a record, the fetch_one() method is called to
return the inserted record. The retrieved database row is

automatically converted into the Course data type due to the use
of the query_as! macro. The newly created course is returned

to the handler function in the form of the Course struct.

1516.2 Enhancing the data model for course creation and management
 Let’s look at the function to delete a course from the database:

pub async fn delete_course_db(
pool: &PgPool,
tutor_id: i32,
course_id: i32,

) -> Result<String, EzyTutorError> {
// Prepare SQL statement
let course_row = sqlx::query!(

"DELETE FROM ezy_course_c6 where tutor_id = $1 and course_id = $2",
tutor_id,
course_id,

)
.execute(pool)
.await?;
Ok(format!("Deleted {:#?} record", course_row))

}

Lastly, let’s look at the code to update the details of a course:

pub async fn update_course_details_db(
pool: &PgPool,
tutor_id: i32,
course_id: i32,
update_course: UpdateCourse,

) -> Result<Course, EzyTutorError> {
// Retrieve current record

let current_course_row = sqlx::query_as!(
Course,
"SELECT * FROM ezy_course_c6 where tutor_id = $1 and course_id = $2",
tutor_id,
course_id

)
.fetch_one(pool)
.await
.map_err(|_err| EzyTutorError::NotFound(

"Course id not found".into()))?;

// Construct the parameters for update:

let name: String = if let Some(name) = update_course.course_name {
name

} else {
current_course_row.course_name

};
let description: String = if let Some(desc) = ...
let format: String = if let Some(format) = ...
let structure: String = if let Some(structure) = ...
let duration: String = if let Some(duration) = ...
let level: String = if let Some(level) = ...
let language: String = if let Some(language) = ...
let price = if let Some(price) = ...

Construct a SQL query to
delete the specified course
from the database.

Execute the query statement. Note that because
this is an async function, the query is actually
executed only when .await() is invoked.

Return a message
confirming deletion.

Construct a SQL query to verify
if a record exists in the database
for the criteria specified.

Fetch a single
record.

If no record is found for the
specified tutor_id and course_id,
return an error message.

Construct the values to
update the database.

Abridged source
code—for the full
code, see the
GitHub source.

152 CHAPTER 6 Evolving the APIs and fearless refactoring
// Prepare SQL statement
let course_row =

sqlx::query_as!(
Course,
"UPDATE ezy_course_c6 set course_name = $1,

course_description = $2, course_format = $3,
course_structure = $4, course_duration = $5, course_price = $6,

course_language = $7,
course_level = $8 where tutor_id = $9 and course_id = $10

returning tutor_id, course_id,
course_name, course_description, course_duration, course_level,

course_format,
course_language, course_structure, course_price, posted_time ",

name, description, format,
structure, duration, price, language,level, tutor_id, course_id

)
.fetch_one(pool)
.await;

if let Ok(course) = course_row {
Ok(course)

} else {
Err(EzyTutorError::NotFound

("Course id not found".into()))
}

}

The UpdateCourse struct contains a set of optional fields, so we first need to verify
which fields have been sent by the API client. If a new value has been sent for a field,
we need to update it. Otherwise, we need to retain the value in the database. To
achieve this, we first extract the current course record, containing all the fields. Then,
if the value of a particular field is sent by the API client, we use it to update the data-
base. Otherwise, we use the existing value to update it.

 We’ve now completed the code changes to the data model, routes, handlers, test
cases, and database access functions for courses. You can now check for any compila-
tion errors by running this command from the project root:

cargo check

If it compiles successfully, you can build and run the server with this command:

cargo run

You can test the HTTP::GET related APIs from the browser:

http://localhost:3000/courses/1
http://localhost:3000/courses/1/2

The POST, PUT, and DELETE APIs can be tested with curl or from a GUI tool such as
Postman. The curl commands shown here can be executed on the command line
from the project root:

Construct the query statement
to update the database.

Retrieve the updated record.

Verify whether the update is successful.
If it is, return the updated course
record to the calling handler function.

If the update operation fails,
return an error message.

Retrieve all courses
for tutor-id=1.Retrieve course details for

tutor-id=1, course-id=2.

1536.2 Enhancing the data model for course creation and management
curl -X POST localhost:3000/courses -H "Content-Type: application/json" \
-d '{"tutor_id":1, "course_name":"This is a culinary course",

"course_level":"Beginner"}'

curl -X PUT localhost:3000/courses/1/5 -H "Content-Type: application/json"
-d '{"course_name":"This is a master culinary course",
"course_duration":"8 hours of training", course_format:"online"}'

curl -X DELETE http://localhost:3000/courses/1/6

Ensure you change the course_id and tutor_id values based on your database data
setup.

 Further, you can run the test cases with this command:

cargo test

You can selectively disable the tests to be ignored with the #[ignore] annotation at
the beginning of a test case function declaration.

 With this, we have come to the end of the changes for the course-related function-
ality. We’ve covered a lot of ground:

 We made changes to the Course data model to add additional fields, some of
which are optional values requiring the use of the Option<> type in the struct
member declaration.

 We added data structures for creating and updating a course.
 We implemented conversion methods from Actix JSON data structs to the

CreateCourse and UpdateCourse structs. We saw how to use both the TryFrom
and From traits.

 We modified the routes to cover create, retrieve, update, and delete functions
for course data.

 We wrote the handler functions for each of these routes.
 We wrote the unit test cases for the handler functions. We wrote a couple of test

cases where errors are returned from the handler functions, instead of a success
response.

 We wrote database access functions corresponding to each handler method. We
used the query_as! macro to significantly reduce the boilerplate code for map-
ping columns from a database record into Rust struct fields.

Are you exhausted already? Writing real-world web services and applications involves
considerable work, for sure. In the next section, we’ll add functionality for maintain-
ing tutor data.

Post a new course for tutor-id=1. Note
that the JSON field names must correspond
to the CreateCourse struct, where
tutor_id and course_name are mandatory,
and the rest are optional fields.

Update the course
corresponding to tutor

-id=1 and course-id=5.
The JSON field names

should correspond to the
UpdateCourse struct.

Delete the course record
identified by tutor-id=1

and course-id=6.

154 CHAPTER 6 Evolving the APIs and fearless refactoring
6.3 Enabling tutor registration and management
In this section, we’ll design and write the code for the tutor-related APIs, which will
include the Rust data models for tutors, the database table structure, routes, handlers,
and database access functions for managing the tutor data.

 Figure 6.3 shows the overall code structure for tutor-related APIs. You’ll notice that
we have five routes. There is also a handler function and a database access function
corresponding to each route.

Figure 6.3 Code structure for tutor-related APIs

Let’s first look at the data model and routes.

6.3.1 Data model and routes for tutors

Let’s first add a new Tutor struct to the data model in the $PROJECT_ROOT/src/
iter5/models/tutor.rs file.

Actix HTTP server

Web
client

Mobile
client

EzyTutors web service

HttpServer

Actix app

GET /tutors/

GET /tutors/{tutor-id}

POST /tutors/

get_all_tutorsRoute 1

Postgres database

post_new_tutor

get_tutor_details

Route 3

Route 2

PUT /tutors/ {tutor-id} update_tutor_details

DELETE /tutors/ {tutor-id} delete_tutor

Routes Handlers Database access

Internet

Route 5

Route 4

get_all_tutors_db

get_tutor_details_db

post_new_tutor_db

update_tutor_details_db

delete_tutor_db

1556.3 Enabling tutor registration and management
 We’ll start with the module imports:

use actix_web::web;
use serde::{Deserialize, Serialize};

Define the struct as shown next:

#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct Tutor {

tutor_id: i32,
tutor_name: String,
tutor_pic_url: String,
tutor_profile: String

}

We’ve defined a Tutor struct that contains the following information:

 Tutor ID—This will be a unique ID to represent a tutor, and it will be autogene-
rated by the database.

 Tutor name—The full name of the tutor.
 Tutor picture URL—The URL of the tutor image.
 Tutor profile—A brief profile of the tutor.

Let’s create two more structs—one to define the fields needed to create a new course,
and another for updating it:

#[derive(Deserialize, Debug, Clone)]
pub struct NewTutor {

pub tutor_name: String,
pub tutor_pic_url: String,
pub tutor_profile: String,

}
#[derive(Deserialize, Debug, Clone)]
pub struct UpdateTutor {

pub tutor_name: Option<String>,
pub tutor_pic_url: Option<String>,
pub tutor_profile: Option<String>,

}

We need two separate structs because when we are creating a tutor, we will require all
the fields, but for updating, all fields are optional.

 And much like for the Course data struct, here are the functions to convert from
web::Json<NewTutor> to NewTutor and from web::Json<UpdateTutor> to Update-
Tutor:

impl From<web::Json<NewTutor>> for NewTutor {
fn from(new_tutor: web::Json<NewTutor>) -> Self {

NewTutor {
tutor_name: new_tutor.tutor_name.clone(),
tutor_pic_url: new_tutor.tutor_pic_url.clone(),
tutor_profile: new_tutor.tutor_profile.clone(),

}
}

}

156 CHAPTER 6 Evolving the APIs and fearless refactoring
impl From<web::Json<UpdateTutor>> for UpdateTutor {
fn from(new_tutor: web::Json<UpdateTutor>) -> Self {

UpdateTutor {
tutor_name: new_tutor.tutor_name.clone(),
tutor_pic_url: new_tutor.tutor_pic_url.clone(),
tutor_profile: new_tutor.tutor_profile.clone(),

}
}

}

This completes the data model changes for Tutor. Next, let’s add the tutor-related
routes in $PROJECT_ROOT/src/iter5/routes.rs:

pub fn tutor_routes(cfg: &mut web::ServiceConfig) {
cfg.service(

web::scope("/tutors")
.route("/", web::post().to(post_new_tutor))
.route("/", web::get().to(get_all_tutors))
.route("/{tutor_id}", web::get().to(get_tutor_details))
.route("/{tutor_id}", web::put().to(update_tutor_details))
.route("/{tutor_id}", web::delete().to(delete_tutor)),

);
}

Don’t forget to update the module imports to import the handler functions for tutors,
which we will shortly write, in the $PROJECT_ROOT/src/iter5/routes.rs file:

use crate::handlers::{course::*, general::*, tutor::*};

We’ll have to register the new tutor routes in the main() function. Otherwise, the
Actix framework will not recognize requests coming in on the tutor routes and will
not know how to route them to their handlers.

 In $PROJECT_ROOT/src/bin/iter5.rs, add the tutor routes after the course
routes while constructing the Actix app, as shown here:

.configure(course_routes)

.configure(tutor_routes)

We can now move on to the handler functions.

6.3.2 Handler functions for tutor routes

You’ve already seen how to write the handler functions for Course. Let’s move quickly
through the tutor routes, only slowing down to look at any differences.

 Here is the first handler method to retrieve all tutors, along with the module
imports. Add this code to the $PROJECT_ROOT/src/iter5/handlers/tutor.rs file:

use crate::dbaccess::tutor::*;
use crate::errors::EzyTutorError;
use crate::models::tutor::{NewTutor, UpdateTutor};
use crate::state::AppState;

Route to create a
new tutor with an
HTTP::POST request

Route to retrieve
a list of all tutors
using HTTP::GET

Route to get details for an
individual tutor using HTTP::GET

Route to update tutor
details using HTTP::PUT

Route to delete a tutor
entry using HTTP::DELETE

1576.3 Enabling tutor registration and management
use actix_web::{web, HttpResponse};

pub async fn get_all_tutors(app_state: web::Data<AppState>) ->
Result<HttpResponse, EzyTutorError> {
get_all_tutors_db(&app_state.db)

.await

.map(|tutors| HttpResponse::Ok().json(tutors))
}

pub async fn get_tutor_details(
app_state: web::Data<AppState>,
web::Path(tutor_id): web::Path<i32>,

) -> Result<HttpResponse, EzyTutorError> {
get_tutor_details_db(&app_state.db, tutor_id)

.await

.map(|tutor| HttpResponse::Ok().json(tutor))
}

The two functions linked to the HTTP::GET request are shown here: get_all_
tutors() takes no parameters, while get_tutor_details() takes a tutor_id as a path
parameter. Both invoke database access functions with the same names as the handler
functions, but with a db suffix. The return value from the database access function is
returned to the web client in the body of an HttpResponse message.

 Here are the handler functions for posting a new tutor entry, updating tutor
details, and deleting a tutor from the database:

pub async fn post_new_tutor(
new_tutor: web::Json<NewTutor>,
app_state: web::Data<AppState>,

) -> Result<HttpResponse, EzyTutorError> {
post_new_tutor_db(&app_state.db, NewTutor::from(new_tutor))

.await

.map(|tutor| HttpResponse::Ok().json(tutor))
}

pub async fn update_tutor_details(
app_state: web::Data<AppState>,
web::Path(tutor_id): web::Path<i32>,
update_tutor: web::Json<UpdateTutor>,

) -> Result<HttpResponse, EzyTutorError> {
update_tutor_details_db(&app_state.db, tutor_id,

UpdateTutor::from(update_tutor))
.await
.map(|tutor| HttpResponse::Ok().json(tutor))

}

pub async fn delete_tutor(
app_state: web::Data<AppState>,
web::Path(tutor_id): web::Path<i32>,

) -> Result<HttpResponse, EzyTutorError> {
delete_tutor_db(&app_state.db, tutor_id)

.await

.map(|tutor| HttpResponse::Ok().json(tutor))
}

158 CHAPTER 6 Evolving the APIs and fearless refactoring
These three functions are similar to the ones for courses. The functional syntax of
Rust makes the code crisp and pleasant to read.

 As an exercise, you can write the test cases for these handler methods. Refer back
to the test cases for courses if you have any doubts. Also, the test cases are available as
part of the Git repo for the chapter.

 Next, we’ll address the database access layer.

6.3.3 Database access functions for tutor routes

We’ll now look at the database access functions for tutors. These should be placed in
the $PROJECT_ROOT/src/iter5/dbaccess/tutor.rs file.

 Here is the database access function to get the list of tutors, along with the module
imports:

use crate::errors::EzyTutorError;
use crate::models::tutor::{NewTutor, Tutor, UpdateTutor};
use sqlx::postgres::PgPool;

pub async fn get_all_tutors_db(pool: &PgPool) ->
Result<Vec<Tutor>, EzyTutorError> {
// Prepare SQL statement
let tutor_rows =

sqlx::query!("SELECT tutor_id, tutor_name, tutor_pic_url,
tutor_profile FROM ezy_tutor_c6")
.fetch_all(pool)
.await?;

// Extract result

let tutors: Vec<Tutor> = tutor_rows
.iter()
.map(|tutor_row| Tutor {

tutor_id: tutor_row.tutor_id,
tutor_name: tutor_row.tutor_name.clone(),
tutor_pic_url: tutor_row.tutor_pic_url.clone(),
tutor_profile: tutor_row.tutor_profile.clone(),

})
.collect();

match tutors.len() {
0 => Err(EzyTutorError::NotFound("No tutors found".into())),
_ => Ok(tutors),

}
}

Note that we’re not using the query_as! macro to map the retrieved database records
into the Tutor struct. Instead, we are manually performing this mapping within the
map method. You may wonder why we are taking this more tedious approach, com-
pared to having the mapping automatically done by sqlx using the query_as! macro.
There are two main reasons for this:

 The query_as! macro works as long as the field names in the struct match the
database column names. However, there may be situations where this may not
be feasible.

1596.3 Enabling tutor registration and management
 You may have additional fields in the struct compared to the database columns.
For example, you may want to have a derived or computed field, or you may
want a Rust struct to represent a tutor along with the list of their courses. In
such cases, you’ll need to know how to perform this database-to-struct mapping
manually. We are taking this approach as a learning exercise, as it is always use-
ful to have a wider repertoire of tools.

Here is the database function to retrieve details for an individual tutor:

pub async fn get_tutor_details_db(pool: &PgPool, tutor_id: i32) ->
Result<Tutor, EzyTutorError> {
// Prepare SQL statement
let tutor_row = sqlx::query!(

"SELECT tutor_id, tutor_name, tutor_pic_url,
tutor_profile FROM ezy_tutor_c6 where tutor_id = $1",

tutor_id
)
.fetch_one(pool)
.await
.map(|tutor_row|

Tutor {
tutor_id: tutor_row.tutor_id,
tutor_name: tutor_row.tutor_name,
tutor_pic_url: tutor_row.tutor_pic_url,
tutor_profile: tutor_row.tutor_profile,

}
)
.map_err(|_err| EzyTutorError::NotFound("Tutor id not found".into()))?;

Ok(tutor_row)

}

Note the use of map_err here. If no record is found in the database, a sqlx error is
returned, which we are converting to an EzyTutorError type using map_err before
propagating the error back to the calling handler function using the ? operator.

 Here is the function to post a new tutor:

pub async fn post_new_tutor_db(pool: &PgPool, new_tutor: NewTutor) ->
Result<Tutor, EzyTutorError> {
let tutor_row = sqlx::query!("insert into ezy_tutor_c6 (

tutor_name, tutor_pic_url, tutor_profile) values ($1,$2,$3)
returning tutor_id, tutor_name, tutor_pic_url, tutor_profile",
new_tutor.tutor_name, new_tutor.tutor_pic_url,
new_tutor.tutor_profile)

.fetch_one(pool)

.await?;
//Retrieve result
Ok(Tutor {

tutor_id: tutor_row.tutor_id,
tutor_name: tutor_row.tutor_name,
tutor_pic_url: tutor_row.tutor_pic_url,

160 CHAPTER 6 Evolving the APIs and fearless refactoring
tutor_profile: tutor_row.tutor_profile,
})

}

Here we’re constructing a query to insert a new tutor record in the ezy_tutor_c6
table. Then we’re fetching the inserted row and mapping it to the Rust tutor struct,
which is returned to the handler function.

 The code for updating and deleting a tutor is not shown here. I suggest you write it
as an exercise. The complete code is available in the code repo for this chapter, which
you can refer to if necessary.

6.3.4 Database scripts for tutors

We’re done with the application logic for the APIs. We now have to create a new table
in the database for tutors before we can compile this code. sqlx performs compile-
time checking of database table names and columns, so the compilation will fail if any
of these don’t exist or if the table description does not match the SQL statements.

 Place the following database script under $PROJECT_ROOT/src/iter5/dbscripts/
tutor-course.sql:

/* Drop tables if they already exist*/

drop table if exists ezy_course_c6 cascade;
drop table if exists ezy_tutor_c6;

/* Create tables. */

create table ezy_tutor_c6 (
tutor_id serial primary key,
tutor_name varchar(200) not null,
tutor_pic_url varchar(200) not null,
tutor_profile varchar(2000) not null

);

create table ezy_course_c6
(

course_id serial primary key,
tutor_id INT not null,
course_name varchar(140) not null,
course_description varchar(2000),
course_format varchar(30),
course_structure varchar(200),
course_duration varchar(30),
course_price INT,
course_language varchar(30),
course_level varchar(30),
posted_time TIMESTAMP default now(),
CONSTRAINT fk_tutor
FOREIGN KEY(tutor_id)

REFERENCES ezy_tutor_c6(tutor_id)
ON DELETE cascade

);

Delete old versions of the tables.
This is convenient in the
development cycle, but if the
database is in production, the tables
will have to be migrated to a new
schema to protect any existing data.

Create the
tutor table.

Create the
course table.

Mark the tutor_id column of
ezy_course_c6 as a foreign key of the
tutor_id column in the ezy_tutor_c6 table.

1616.3 Enabling tutor registration and management
grant all privileges on table ezy_tutor_c6 to <username>;
grant all privileges on table ezy_course_c6 to <username>;
grant all privileges on all sequences in schema public to <username>;;

/* Load seed data for testing */
insert into ezy_tutor_c6(tutor_id, tutor_name, tutor_pic_url,tutor_profile)
values(1,'Merlene','http://s3.amazon.aws.com/pic1',

'Merlene is an experienced finance professional');

insert into ezy_tutor_c6(tutor_id, tutor_name, tutor_pic_url,tutor_profile)
values(2,'Frank','http://s3.amazon.aws.com/pic2',

'Frank is an expert nuclear engineer');

insert into ezy_course_c6
(course_id,tutor_id, course_name,course_level, posted_time)

values(1, 1, 'First course', 'Beginner' , '2021-04-12 05:40:00');
insert into ezy_course_c6

(course_id, tutor_id, course_name, course_format, posted_time)
values(2, 1, 'Second course', 'ebook', '2021-04-12 05:45:00');

6.3.5 Run and test the tutor APIs

Run the following command from the command line to execute the database script:

psql -U <user-name> -d ezytutors < <path.to.file>/tutor-course.sql

Replace <user-name> and <path.to-file> with your own values, and enter the pass-
word when prompted. You should see the scripts execute successfully. To verify that
the tables have indeed been created according to the script specification, log in to the
psql shell:

psql -U <user-name> -d ezytutors
\d
\d+ ezy_tutor_c6
\d+ ezy_course_c6
\q

Compile the program to check for errors. After resolving any errors, build and run
the web server with these commands:

cargo check
cargo run --bin iter5

You can then run the automated tests:

cargo test

Before running the test scripts, ensure the data being queried for in the test cases is
present in the database, or prepare the data appropriately.

 You can also manually execute the tutor-related CRUD APIs from curl as follows:

Grant privileges to the database user for the newly
created tables. Replace <user-name> with your own.

Load seed data for testing
the HTTP::GET based APIs.

Display the list of
relations (tables).

Display column names in the table.

Quit the
psql shell.

162 CHAPTER 6 Evolving the APIs and fearless refactoring
curl -X POST localhost:3000/tutors/ -H "Content-Type: application/json"
-d '{ "tutor_name":"Jessica", "tutor_pic_url":
"http://tutor1.com/tutor1.pic", "tutor_profile":
"Experienced professional"}'

curl -X PUT localhost:3000/tutors/8 -H "Content-Type: application/json"
-d '{"tutor_name":"James", "tutor_pic_url":"http://james.com/pic",
"tutor_profile":"Expert in thermodynamics"}'

curl -X DELETE http://localhost0/tutors/8

From a browser, you can execute the HTTP::GET APIs as follows:

http://localhost:3000/tutors/
http://localhost:3000/tutors/2

As an exercise, you can also try deleting a tutor for which course records exist. You
should receive an error message. This is because courses and tutors are linked by a
foreign-key constraint in the database. Once you delete all courses for a tutor-id,
that tutor can be deleted from the database.

 Another exercise you can try is to provide invalid JSON as part of creating or
updating a tutor or course (for example, remove a double quote or a curly brace from
the JSON data for creating or updating a tutor). You’ll find that neither does the com-
mand get executed on the server nor do you get any error message stating that the
JSON is invalid. This is not user-friendly. To fix this, let’s make a few changes.

 In the ezytutors/tutor-db/src/iter5/errors.rs file, add a new Invalid-

Input(String) entry in the EzyTutorError enum, which will then look like this:

#[derive(Debug, Serialize)]
pub enum EzyTutorError {

DBError(String),
ActixError(String),
NotFound(String),
InvalidInput(String),

}

InvalidInput(String) denotes that the EzytutorError enum can take a new invari-
ant, InvalidInput, that in turn can accept a string value as a parameter. For all
errors arising from invalid parameters sent by the API client, we’ll use this new variant.

 Also, in the same errors.rs file, make the following additional changes, required by
the addition of the new enum variant. First, in the error_response() function, add
code to deal with the EzyTutorError::InvalidInput type:

fn error_response(&self) -> String {
match self {

EzyTutorError::DBError(msg) => {
println!("Database error occurred: {:?}", msg);
"Database error".into()

Create a new
tutor record.

Update a tutor record for
tutor-id=8 (assuming this
exists in the database).

Delete the tutor with tutor-id=8
(assuming this exists in the database).

Retrieve the list of all
tutors in the database.Retrieve the details

for tutor-id 2.

1636.3 Enabling tutor registration and management
}
EzyTutorError::ActixError(msg) => {

println!("Server error occurred: {:?}", msg);
"Internal server error".into()

}
EzyTutorError::NotFound(msg) => {

println!("Not found error occurred: {:?}", msg);
msg.into()

}
EzyTutorError::InvalidInput(msg) => {

println!("Invalid parameters received: {:?}", msg);
msg.into()

}
}

}

In the ResponseError trait implementation, add code to deal with the new enum
variant:

fn status_code(&self) -> StatusCode {
match self {

EzyTutorError::DBError(_msg) | EzyTutorError::ActixError(_msg) => {
StatusCode::INTERNAL_SERVER_ERROR

}
EzyTutorError::InvalidInput(_msg) => StatusCode::BAD_REQUEST,
EzyTutorError::NotFound(_msg) => StatusCode::NOT_FOUND,

}
}

We’re now ready to make use of this new error variant in our code. Add the following
code in $PROJECT_ROOT/src/bin/iter5.rs, while creating an Actix app instance, to
raise an error if the JSON data received at the server is invalid:

let app = move || {
App::new()

.app_data(shared_data.clone())

.app_data(web::JsonConfig::default().error_handler(|_err, _req| {
EzyTutorError::InvalidInput(

"Please provide valid Json input".to_string()).into()
}))
.configure(general_routes)
.configure(course_routes)
.configure(tutor_routes)

};

Now, whenever you provide invalid JSON data, you’ll receive the specified error
message.

 With that, we’ll conclude this chapter on refactoring code in Rust and Actix Web
and adding functionality while you, as the developer, retain complete control over the
entire process. For refactoring, there isn’t a specific sequence of steps that can be pre-
scribed, but it generally helps to start from the outside (the user interface), and work
your way through the various layers of the application. For example, if some new infor-
mation is requested from the web service, start by defining the new route, define the

164 CHAPTER 6 Evolving the APIs and fearless refactoring
handler function, and then define the data model and database access function. If this
necessitates changes to the database schema, modify the database creation and update
scripts along with any associated migration scripts. The database access functions pro-
vide a layer of abstraction if you need to switch to a different database as part of your
refactoring.

 Our tutor web service is now more complex and aligned to the real world, rather
than being just an academic example. It has two types of entities (tutors and courses)
that have a defined relationship between them at the database level, and eleven API
endpoints. It can handle five broad classes of errors: database-related errors, Actix-
related errors, bad user-input parameters, requests on resources that do not exist (not
found errors), and badly formatted JSON in input requests. It can seamlessly process
concurrent requests, as it uses async calls both in the Actix layer and database access
layer without any bottlenecks. The project code is well organized, which will enable
further evolution of the web service over time, and more importantly, it will be easily
understandable as newer developers take charge of the existing codebase. The project
code and configuration are separated by using the .env file, which contains database
access credentials and other such config information. Dependency injection is built
into the project through application state (in the state.rs file), which serves as a place-
holder in which we can add any dependencies that need to be propagated to the vari-
ous handler functions. The project itself does not use too many external crates and
eschews shortcuts and magical crates (such as crates that automate code generation
for error handling or database functions). However, you are encouraged to experi-
ment with other third-party crates now that you have the foundational knowledge of
doing things the hard way.

 You’ll observe that, throughout this process, the Rust compiler has been a great
friend and guide to help you achieve your goals. Your next best friend will be the auto-
mated test scripts, which will help to ensure there is no regression of functionality.

 If you have been able to follow this chapter successfully, I applaud your persever-
ance. I hope this chapter has given you the confidence to fearlessly enhance any Rust
web codebase, even if you were not the original author of the code.

 With this, we also conclude the first part of the book, which focused on develop-
ing a web service using Rust. We will revisit a few related topics in the last part of the
book when we discuss how to prepare web services and applications for production
deployment.

 In the next part of the book, we’ll move on to the client side, where we’ll discuss
how to develop server-rendered web frontends using Rust and Actix Web.

Summary
 In this chapter, we enhanced the data model for courses, added more course

API routes, and evolved the code for handlers and database access along with
the test cases.

 We also added functionality to allow for the creation, updating, deletion, and
querying of tutor records. We created a database model and scripts to store

165Summary
tutor data, and we defined the relationship between tutors and courses with
foreign-key constraints. We created new routes for tutor-related CRUD APIs and
wrote the handler functions, database access code, and test cases.

 In the handler code, you saw how to create separate data structures for the cre-
ation and updating of tutor and course data, as well as how to use the From and
TryFrom traits to write functions for converting between data types. You also saw
how to mark fields in data structures as optional using the Option<T> type and
how to map this to the corresponding column definitions in the database.

 In the database code, we used the query_as! macro to simplify and reduce boil-
erplate code by auto-deriving sqlx::FromRow for the Course struct, where the
mapping between database columns and the fields of the Course struct is
defined. We also performed this mapping from database records to Rust structs
manually, which is useful when using the query_as! macro is not possible or
desirable.

 We wrote code in the handler and database access layers in a concise but highly
readable manner using Rust’s functional constructs.

 We explored error-handling concepts, revisiting the entire error-management
workflow and fine-tuning the error handling to make the user experience more
interactive and meaningful.

 We restructured the project code’s organization to better support projects as
they get larger and more complex, with separate and clearly marked areas for
code for handlers, database access functions, data models, and database scripts.
We also separated the source files that contain tutor- and course-related func-
tionality by organizing them into Rust modules.

 We looked at testing code using automated test scripts that can automatically
handle both success and error conditions. We also tested the API scenarios
using both curl commands and commands from the browser.

166 CHAPTER 6 Evolving the APIs and fearless refactoring

Part 2

Server-side web applications

Part 1 focused on the business logic of our web application. It set the founda-
tions on which a user-friendly user interface (UI) can be built. In line with best
practices, the various concerns were separated: HTTP processing, route defini-
tions, application logic, and database logic.

 In this part, we will tackle the interaction with users. In a web application,
this interaction takes place in the user’s browser, using the combined power of
HTML, CSS, and JavaScript (or TypeScript). There are currently several ways to
implement a web user interface.

 At one end of the spectrum are the popular single-page application (SPA)
frameworks, like React, Angular, and Vue. Such frameworks provide for a very
rich user experience (UX)—in many cases as rich as the ones provided by desk-
top applications. At the other end of the spectrum, there is server-side render-
ing. In a typical SPA, the UI is built dynamically in the browser as the user starts
to interact with the application. With server-side rendering, the UI’s HTML
pages are delivered “fully baked” by the server. This does not mean that these
pages cannot exhibit some dynamic behavior (such as showing or hiding sec-
tions), but each page’s structure is defined on the server and does not change in
the browser. Both SPAs and server-side rendering have their pros and cons. In
this book, we’ll use server-side rendering based on templates because that is the
most straightforward path for a Rust-exclusive approach.

 Once you have completed part 2, you will have gained a solid foundation for
developing web application UIs using server-side rendering. You will also have
gained more insight into the merits of server-side rendering as an approach to
web application development.

168 CHAPTER

Introducing server-side
web apps in Rust
In chapters 3 to 6 of the book, we built the tutor web service from scratch using
Rust and the Actix Web framework. In this section, we’ll focus on learning the
basics of building a web application in Rust. It may sound strange to use a system
programming language to create a web application, but that’s the power of Rust. It
can straddle the worlds of system and application programming with ease.

 In this chapter, you will be introduced to concepts and tools you can use with
Rust to build web applications. At this point, it is important to recall that there are
two broad techniques for building web applications—server-side rendering (SSR) and
single-page application (SPA)—each possibly taking the form of a progressive web

This chapter covers
 Serving a static web page with Actix

 Rendering a dynamic web page with Actix and Tera

 Adding user input with forms

 Displaying a list with templates

 Writing and running client-side tests

 Connecting to the backend web service
169

170 CHAPTER 7 Introducing server-side web apps in Rust
application (PWA). In this section, we’ll focus on the former technique, and in later
chapters, we’ll cover the latter. We will not cover PWAs in this book.

 More specifically, our focus for chapters 7 to 9 is to learn how develop a simple web
application that can be used to register and log in to a web application, view lists and
detail views, and perform standard CRUD (create, read, update, and delete) opera-
tions on data using web-based forms. Along the way, you will learn how to render
dynamic web pages using the Actix Web framework along with a template engine.
While we can use any Rust web framework to achieve the same goal (Actix Web,
Rocket, or Warp, to name a few), staying with Actix Web will help us use what you’ve
learned in previous chapters.

7.1 Introducing server-side rendering
SSR is a web development technique where web pages are rendered on the server and
then sent to the client (such as a web browser). In this approach, a web application
running on the server combines static HTML pages (such as those from a web
designer) with data (fetched from a database or from other web services) and sends a
fully rendered web page to the user’s browser for display. Web applications that use
such a technique are called server-rendered or server-side web apps. With this approach,
websites load faster, and the web page content reflects the latest data, as every request
typically involves fetching the latest copy of the user data (an exception is when cach-
ing techniques are adopted on the server). To keep such data specific to the user, web-
sites either require users to log in to identify themselves, or they use cookies to
personalize the content for a user.

 Web pages can either be static or dynamic:

 An example of a static web page is the home page of your bank’s website, which
typically serves as a marketing tool for the bank and also provides useful links to
the bank’s services. This page is the same for whoever accesses the bank’s home
page. In this sense, it is a static web page.

 A dynamic web page is what you see when you log in to your bank with your
authorized credentials (such as a username and password) and view your
account balances and statements. This page is dynamic in the sense that each
customer views their own balance, but the page may also contain static compo-
nents, such as the bank’s logo and other common styling (such as colors, fonts,
layout, etc.), which are shown to all customers viewing account balances.

We know how to create a static web page. A web designer can do this either by writing
the HTML and CSS scripts by hand or by using one of the many available tools for this
purpose. But how does one convert a static web page to a dynamic web page? This is
where a template engine comes in. (Figure 7.1 shows the various components that go
into rendering a dynamic web page.)

 A template engine is one of the primary tools for converting a static web page into a
dynamic web page. It expects a template file as input and generates an HTML file as out-
put. In the process, it embeds data (passed to it by the web application) into the

1717.1 Introducing server-side rendering
template file to generate an HTML file. This process is dynamic in two ways: the data is
loaded on demand, and the data is tailored to the individual user requesting the data.

 In this chapter, we’ll explore SSR with Rust by writing some example code. If a pic-
ture is worth a thousand words, a few lines of code are worth several times that. We will
look at small snippets of code and see how the various pieces fit together to construct
a web application. In the next chapter, we will actually design and build the tutor web
application.

 Here is a outline of the examples we will be building in this chapter. These exam-
ples represent the most common tasks in any web application where users can view
and maintain data from a browser-based user interface:

 Section 7.2 will show you how to serve static web pages with Actix Web.
 Section 7.3 will cover the generation of dynamic web pages using Tera, a popu-

lar template engine in the web development world.
 In section 7.4, you’ll learn to capture user input with an HTML form.
 Section 7.5 will display lists of information using Tera HTML templates.
 You learned earlier how to write automated tests for the server-side web service,

and in section 7.6, you’ll learn to write client-side tests.
 Section 7.7 will connect the frontend web application with the backend web ser-

vice using an HTTP client.

To develop server-side web apps in Rust, we will use the following tools and
components:

 Actix web server—This will host a web application running at a specific port on
the server, and it will route requests to the handler functions provided by the
web application.

Web server
Web application

Template
engine

DB

Template

User

The user (through a
web browser) sends
a web page request
to the web server.

The route handler retrieves and
passes data to the template engine.

The template engine injects
data into the template for
the web page.

The fully rendered HTML
is returned to the user.

Figure 7.1 Server-side rendering of web pages

172 CHAPTER 7 Introducing server-side web apps in Rust
 A web application—This will serve content in response to requests from a
browser. It will be written in Rust and deployed on the Actix web server. It will
contain the core handler logic that knows how to respond to various types of
HTTP requests.

 Tera—This is a template engine that’s popular in the Python world, and it has
been ported to Rust.

 Our backend tutor web service—This is the tutor web service we developed in the
previous chapters. It will fetch data from the database and manage database
interactions. The web application will talk to the tutor web service to retrieve
data and perform transactions, rather than deal with the database itself.

 A built-in HTTP client from the Actix Web framework—This will talk to the tutor web
service.

With this background, let’s get to our first example.

7.2 Serving a static web page with Actix
In the previous chapters, we used the Actix web server to host our tutor web service. In
this section, we’ll use Actix to serve a static web page. Consider this the “Hello World”
program for web application development.

 Let’s first set up the project structure:

1 Make a copy of the ezytutors workspace repo from chapter 6 to work with in
this chapter.

2 Create a new Rust cargo project with cargo new tutor-web-app-ssr
3 Rename the tutor-db folder under the ezytutors workspace to tutor-web-

service. This way, the two repos under the workspace can be referred to unam-
biguously as “web service” and “web app”.

4 In the Cargo.toml file of the workspace folder, edit the workspace section to
look like this:

[workspace]
members = ["tutor-web-service","tutor-web-app-ssr"]

We now have two projects in the workspace: one for the tutor web service
(which we developed earlier) and another for the tutor web app, which is ren-
dered on the server side (and which we have yet to develop).

5 Switch to the tutor-web-app-ssr folder: cd tutor-web-app-ssr. That’s where we’ll
write the code for this section. Henceforth, let’s refer to this folder as the project
root folder. To avoid confusion, set this as an environment variable in each of the
terminal sessions you will be working with for this project, as shown here:

export $PROJECT_ROOT=.

6 Update Cargo.toml to add the following dependencies:

[dependencies]
actix-web = "4.2.1"
actix-files="0.6.2"

1737.2 Serving a static web page with Actix
actix-web is the core Actix Web framework, and actix-files helps in serving
static files from the web server.

7 Create a folder named static under $PROJECT_ROOT. Create a static-web-
page.html file under $PROJECT_ROOT/static with the following HTML code:

<!DOCTYPE html>
<html>
<head>

<title>XYZ Bank Website</title>
</head>
<body>

<h1>Welcome to XYZ bank home page!</h1>
<p>This is an example of a static web page served from Actix

Web server.</p>
</body>
</html>

This is a simple static web page. You’ll see how to serve this page with the Actix
server.

8 Create a bin folder under $PROJECT_ROOT/src. Create a new source file,
static.rs, under $PROJECT_ROOT/src/bin, and add the following code:

use actix_files as fs;
use actix_web::{error, web, App, Error, HttpResponse, HttpServer, Result};

#[actix_web::main]
async fn main() -> std::io::Result<()> {

let addr = env::var("SERVER_ADDR").unwrap_or_else(|_|
"127.0.0.1:8080".to_string());

println!("Listening on: {}, open browser and visit have a try!",addr);
HttpServer::new(|| {

App::new().service(fs::Files::new(
"/static", "./static").show_files_listing())

})
.bind(addr)?
.run()
.await

}

The Result type is needed as a return value of the main() function because any
function that uses a ? operator within its code to propagate errors must return a
Result type. The return value of Result<()> indicates that successful execution
returns a unit type, (); in the case of errors, an Error type is returned.

Also note in the preceding code that the route /static indicates that resource
requests starting with the /static route have to be served from the ./static subfolder
in the project root folder.

 In summary, the preceding program creates a new web application and registers a
service with the application. The service serves files from the filesystem (on disk)

Import actix_files, which provides a
service to serve static files from a disk.

The main function
returns a Result type.

Register the actix_files service
with the web application.

show_files_listing() allows
subdirectory listings to be

shown to users.

The web server
binds to a port. Run the

web server.

The await keyword triggers an async
operation and keeps polling until a
future is successfully completed.

174 CHAPTER 7 Introducing server-side web apps in Rust
when a GET request on a route starting with /static is made to the web server. The
web application is then deployed on the web server, and the web server is started:

1 Run the web server with cargo run --bin static.
2 From a browser, visit the following URL:

http://localhost:8080/static/static-web-page.html

You should see the web page appear in your browser.

Let’s try to understand what we just did. We wrote a program to serve a static web page
from an Actix web server. When we requested a particular static file, the actix_files
service looked for it within the /static folder and returned it to the browser, and it
was then displayed to the user.

 This is an example of a static page because the content of this page does not
change depending on which user requests this page. In the next section, we’ll look at
how to build dynamic web pages with Actix.

7.3 Rendering a dynamic web page with Actix and Tera
What if we want to show custom content for each user? How would you write an
HTML page that presents content dynamically? Displaying a dynamic web page does
not mean everything in the page changes for every user, but that the web page has both
static and dynamic parts to it.

 Figure 7.1 showed a generic view of SSR, but figure 7.2 shows how dynamic web
pages can be implemented using Actix Web and the Tera template engine. The figure
shows a local database as the source of data for the dynamic web page, but it is also
possible to retrieve data from an external web service. In fact, that is the design
approach that we will use in this book.

Figure 7.2 Dynamic web pages with Actix and Tera

Actix web server
Actix web application

Tera template
engine

DB

Template

User

The user (through a
web browser) sends
a web page request to
the Actix web server.

The route handler retrieves and
passes data to the template engine.

The Tera template engine
injects data into the template
for the web page.

The fully rendered HTML
is returned to the user.

1757.3 Rendering a dynamic web page with Actix and Tera
We will define the HTML file in a specific Tera template format—a simple example is
shown here. Add this to $PROJECT_ROOT/static/iter1/index.html:

<!DOCTYPE html>
<html>

<head>
<title>XYZ Bank Website</title>

</head>

<body>
<h1>Welcome {{ name }}, to XYZ bank home page!</h1>
<p>This is an example of a dynamic web page served with Actix and

Tera templates.</p>
</body>
</html>

Note the use of the {{name}} tag. At runtime, when the web page is requested by the
browser, Tera replaces this tag with the actual name of the user. Tera can retrieve this
value from wherever you want it to—from a file, a database, or hardcoded values.

NOTE For more details on the Tera template format, see the Tera documen-
tation: https://tera.netlify.app/docs/.

Let’s modify the program we wrote earlier to cater to dynamic web page requests
using Tera. In $PROJECT_ROOT/Cargo.toml, add the following dependencies:

tera = "1.17.0"
serde = { version = "1.0.144", features = ["derive"] }

We’re adding the tera crate for templating support and the serde crate to enable cus-
tom data structures to be serialized and deserialized between the web browser and
web server.

 In $PROJECT_ROOT/src/bin, copy the contents of the static.rs file we wrote ear-
lier into a new file called iter1.rs, and modify the code to look like this:

use tera::Tera;

#[actix_web::main]
async fn main() -> std::io::Result<()> {

println!("Listening on: 127.0.0.1:8080, open browser and visit
have a try!");

HttpServer::new(|| {
let tera = Tera::new(concat!(

env!("CARGO_MANIFEST_DIR"),
"/static/iter1/**/*"

))
.unwrap();

App::new()
.data(tera)
.service(fs::Files::new(

"/static", "./static").show_files_listing())

Create a new Tera instance. The Tera
templates are under the /static/iter1/ folder
where we earlier placed the index.html file
containing the Tera {{name}} tag.

Inject the Tera instance as a dependency
into the application. This will allow Tera to
be accessed within all route handlers. Serve static

files from the
/static route.

https://tera.netlify.app/docs/

176 CHAPTER 7 Introducing server-side web apps in Rust
.service(web::resource("/").route(web::get().to(index)))
})
.bind("127.0.0.1:8080")?
.run()
.await

}

Let’s now write the index handler:

async fn index(tmpl: web::Data<tera::Tera>) -> Result<HttpResponse, Error> {
let mut ctx = tera::Context::new();
ctx.insert("name", "Bob");
let s = tmpl

.render("index.html", &ctx)

.map_err(|_| error::ErrorInternalServerError("Template error"))?;

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}

Run the server with cargo run --bin iter1. Then, from a web browser, access the fol-
lowing URL:

http:/ /localhost:8080/

You should see the following message displayed on the web page:

Welcome Bob, to XYZ bank home page!

This is a trivial example, but it serves to illustrate how dynamic web pages can be con-
structed using Actix. Tera has a lot of features that can be used in templates, including
control statements, such as if and for loops, which you can explore at leisure.

 So far, we’ve seen how to render both static and dynamic HTML pages, but the
examples have dealt with displaying information to a user. Does Actix also support
writing HTML pages that accept user input? You’ll find out in the next section.

7.4 Adding user input with forms
In this section, we’ll create a web page that accepts user input through a form. This
form is as simple as it can get.

 Create a $PROJECT_ROOT/static/iter2 folder, and place the following HTML in
a new form.html file in this folder. This HTML code contains a form that accepts a
tutor name, and then it submits a POST request, containing the tutor name, to the
Actix web server:

<!doctype html>
<html>

<head>
<meta charset=utf-8>

Serve a dynamic web page
from the / route, which

invokes the index handler.

Access the Tera instance as part of the arguments passed
to the index handler. Create a new Tera Context object,

which will be used to inject data into the web page.
In the index handler, assign a
value to the name variable.

Invoke Tera’s web page rendering
function, passing the context object.

Return an HTTP response from the index handler
function, passing the constructed dynamic web

page as part of the HTTP response body.

1777.4 Adding user input with forms
<title>Forms with Actix & Rust</title>
</head>

<body>
<h3>Enter name of tutor</h3>
<form action=/tutors method=POST>

<label>
Tutor name:
<input name="name">

</label>
<button type=submit>Submit form</button>

</form>

<hr>
</html>

Note the <input> HTML element that is used to accept user input for a tutor name.
The <button> tag is used to submit the form to the web server. This form is encapsu-
lated in an HTTP POST request sent to the web server on the route /tutors, which is
specified in the <form action=""> attribute.

 Let’s create a second HTML file under the $PROJECT_ROOT/static/iter2 folder
called user.html. This will display the name submitted by the user in the previous
form:

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<title>Actix web</title>

</head>

<body>
<h1>Hi, {{ name }}!</h1>
<p>

{{ text }}
</p>

</body>

</html>

This HTML file has a template variable, {{name}}. When this page is shown to the
user, the value of the {{name}} template variable is replaced with the actual tutor
name that was entered by the user in the previous form.

 Let’s now add the route and a handler to deal with this POST request. In
$PROJECT_ROOT/src/bin, create a new iter2.rs file, and add the following code to it:

... // imports removed for concision; see full source code from GitHub

// store tera template in application state
async fn index(

tmpl: web::Data<tera::Tera>
) -> Result<HttpResponse, Error> {

The Index handler function is invoked for HTTP
requests coming on route /. This shows the form
where the user can enter a tutor name.

178 CHAPTER 7 Introducing server-side web apps in Rust
let s = tmpl
.render("form.html", &tera::Context::new())
.map_err(|_| error::ErrorInternalServerError("Template error"))?;

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}

#[derive(Serialize, Deserialize)]
pub struct Tutor {

name: String,
}

async fn handle_post_tutor(
tmpl: web::Data<tera::Tera>,
params: web::Form<Tutor>,

) -> Result<HttpResponse, Error> {
let mut ctx = tera::Context::new();
ctx.insert("name", ¶ms.name);
ctx.insert("text", "Welcome!");
let s = tmpl

.render("user.html", &ctx)

.map_err(|_| error::ErrorInternalServerError("Template error"))?;

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {

println!("Listening on: 127.0.0.1:8080");
HttpServer::new(|| {

let tera = Tera::new(concat!(
env!("CARGO_MANIFEST_DIR"),
"/static/iter2/**/*"

))
.unwrap();

App::new()
.data(tera)
.configure(app_config)

})
.bind("127.0.0.1:8080")?
.run()
.await

}

fn app_config(config: &mut web::ServiceConfig) {
config.service(

web::scope("")
.service(web::resource("/").route(web::get().to(index)))
.service(web::resource("/tutors").route(web::post().to(

handle_post_tutor)))
);

}

Render the form.html file with a new Tera Context object.
We are not inserting any data into the context because the

form.html file does not have any template variables.

The Tutor serializable struct represents the data
to be captured in the form. This is a custom data
structure, and you can define it any way you
want. We just define a tutor name in the struct.

This second handler function is invoked
when the user enters the tutor name
and presses the Submit Form button.

The form data (tutor name) submitted by
the user is made available to this handler
function by Actix in the web::Form<T>
extractor; T is the Tutor struct in this case.

The main function to
set up and run an
Actix web server

The Tera template is injected into the
web application and made available as a
parameter to the web handler functions.

Web application routes
aggregated into an app_config
object. This is another way of
organizing routes.

1797.5 Displaying a list with templates
We used an Actix extractor in the preceding code. Extractors are utility functions that
let handler functions extract the parameters sent with the HTTP request. Recall that
earlier we defined an input field called name in the form.html template. When the
user fills out the form and presses the Submit Form button, an HTTP POST request
that contains the value entered by the user is generated by the browser. The value for
this name parameter is accessible to the handler function using the Actix extractor
web::Form<T>.

 To recap, in the preceding code, when a user visits the / route, form.html is dis-
played, which contains a form. When the user enters a name in the form and presses
the Submit Form button, a POST request is generated on the route /tutors, which
invokes a handle_post_tutor handler function. In this handler, the name entered by
the user is accessible through the web::Form extractor. The handler injects this name
into a new Tera Context object. The Tera render function is then invoked with the
context object to show the user.html page to the user.

 Run the web server with this command:

cargo run --bin iter2

Access this URL from a browser:

http:/ /localhost:8080/

You should first see the form displayed. Enter a name, and click the Submit Form but-
ton. You should see the second HTML page displayed, containing the name you
entered.

 That concludes this section on accepting user input and processing it. In the next
section, we’ll cover another common feature of the template engine—the ability to
display lists.

7.5 Displaying a list with templates
In this section, we’ll display a list of data elements dynamically on a web page. In the
tutor web app, one of the things a user will want to see is a list of tutors or courses.
This list is dynamic because the user may want to see a list of all tutors in the system or
a subset of tutors based on some criteria. Likewise, the user may want to see a listing of
all courses available on the site or the courses for a particular tutor. How can we use
Actix and Tera to show such information? Let’s find out.

 Create an iter3 folder under $PROJECT_ROOT/static. Create a new list.html file
here, and add the following HTML:

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<title>Actix web</title>

</head>

180 CHAPTER 7 Introducing server-side web apps in Rust

int
<body>
<h1>Tutors list</h1>

{% for tutor in tutors %}

<h5>{{tutor.name}}</h5>

{% endfor %}

</body>

</html>

The preceding code includes an example of a Tera template control statement using a
for loop. The tutors object containing a list of tutors will be passed into the template
by the handler function. This template control statement loops through each item in
the list of tutors and performs some actions. See the Tera documentation for a list of
other template control statements: https://tera.netlify.app/docs/#control-structures.

 We have now written an HTML file that contains a template control statement
(using a for loop) that loops through each tutor in a list and displays the tutor name
on the web page. Next, let’s write the handler function to implement this logic, as well
as the main function for the web server.

 Create a new iter3.rs file under $PROJECT_ROOT/src/bin, and add the following
code:

use actix_files as fs;
use actix_web::{error, web, App, Error, HttpResponse, HttpServer, Result};
use serde::{Deserialize, Serialize};
use tera::Tera;

#[derive(Serialize, Deserialize)]
pub struct Tutor {

name: String,
}

async fn handle_get_tutors(tmpl: web::Data<tera::Tera>) ->
Result<HttpResponse, Error> {
let tutors: Vec<Tutor> = vec![

Tutor {
name: String::from("Tutor 1"),

},
...

];
let mut ctx = tera::Context::new();
ctx.insert("tutors", &tutors);
let rendered_html = tmpl

.render("list.html", &ctx))

.map_err(|_| error::ErrorInternalServerError("Template error"))?;

Ok(HttpResponse::Ok().content_type("text/html").body(rendered_html))
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {

Display an
ordered list.

A Tera template control
statement using a for loop to
go through each item in the
list of tutors. The tutors object
containing a list of tutors will
be passed into the template
by the handler function.

Display each
tutor as an
HTML list
item.

Display the name
 of the tutor.

End of for
loop block

Create a serializable custom data struct to define
the structure of the tutor data. The tutor struct
will contain only the tutor name for simplicity.

The handle_get_tutors handler function will be called when
an HTTP GET request is made on the route /tutors.

Load a list of tutors as mock data
(hardcoded for convenience).

Abridged source code for concision—see the
GitHub source for the unabridged version.

 Create a
new Tera
Context
object.

Inject the
tutors list
o the Tera

Context
j

Render list.html along with the Context
object containing the mock tutor data.

https://tera.netlify.app/docs/#control-structures

1817.5 Displaying a list with templates
println!("Listening on: 127.0.0.1:8080");
HttpServer::new(|| {

let tera = Tera::new(concat!(
env!("CARGO_MANIFEST_DIR"),
"/static/iter3/**/*"

))
.unwrap();

App::new()
.data(tera)
.service(fs::Files::new(

"/static", "./static").show_files_listing())
.service(web::resource("/tutors").route(web::get().to(

handle_get_tutors)))

})
.bind("127.0.0.1:8080")?
.run()
.await

}

In the preceding code, we used hardcoded tutor data. In a future section of this chap-
ter, we’ll replace this mock data with actual data retrieved from the web service.

 Run the web server with this command:

cargo run --bin iter3

From a web browser, access the following URL:

http://localhost:8080/tutors

You should see the list of tutors displayed. After the initial euphoria of seeing the tutor
list displayed has waned, you will start to notice that the web page isn’t particularly
impressive or aesthetic. You will most certainly want to add some CSS to the web page.
Here is some example CSS for illustration purposes. Place this code in styles.css under
the /static folder, which we already declared in the main function to be the source of
static assets:

/* css */
ul {

list-style: none;
padding: 0;

}
li {

padding: 5px 7px;
background-color: #FFEBCD;
border: 2px solid #DEB887;

}

In list.html under $PROJECT_ROOT/iter3, add the CSS file to the head block of
HTML as follows:

<head>
<meta charset="utf-8" />

The route to invoke the
handle_get_tutors handler

182 CHAPTER 7 Introducing server-side web apps in Rust
<link rel="stylesheet" type="text/css" href="/static/styles.css" />
<title>Actix web</title>

</head>

Run the web server again, and visit the /tutors route from a web browser. You should
now see the CSS styles reflected on the web page. This still may not be the prettiest of
pages, but you now understand how you can add your own styling to the web page.

 But if you’re like me, and you don’t want to write your own custom CSS, you can
import one of your preferred CSS frameworks. Change the head section of the list.html
file to import tailwind.css, a popular modern CSSS library. You can alternatively import
Bootstrap, Foundation, Bulma, or any other CSS framework of your choice:

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<title>Actix web</title>
<link href="https://unpkg.com/tailwindcss@^1.0/dist/tailwind.min.css"

rel="stylesheet">
</head>

<body>
<h1 class="text-2xl font-bold mt-8 mb-5">Tutors list</h1>
<ul class="list-disc list-inside my-5 pl-2">

{% for tutor in tutors %}
<ol class="list-decimal list-inside my-5 pl-2">

<h5 class="text-1xl font-bold mb-4 mt-0">{{tutor.name}}</h5>

{% endfor %}

</body>

</html>

Compile and run the server again, and this time you should see something a little
more appealing to your eye.

 We will not spend much time on CSS styles in this book, but CSS is an integral part
of web pages, so it is important for you to know how to use it with Actix and templates.

 We’ve seen different ways to show dynamic content in web pages using Actix and
Tera. Let’s now shift gears and focus on one more important aspect of developing
frontend web apps: automated unit and integration tests. We were able to write test
cases for the backend tutor web service, but is it also possible to write test cases for the
frontend web app in Rust with Actix and Tera? Let’s find out.

7.6 Writing and running client-side tests
In this section, we won’t be writing any new application code. Instead, we’ll reuse one
of the handler functions we’ve previously written and write unit test cases for the handler.

 Let’s use the code we wrote in iter2.rs. This is the handler function we’ll focus on:

1837.6 Writing and running client-side tests
async fn handle_post_tutor(
tmpl: web::Data<tera::Tera>,
params: web::Form<Tutor>,

) -> Result<HttpResponse, Error> {
let mut ctx = tera::Context::new();
ctx.insert("name", ¶ms.name);
ctx.insert("text", "Welcome!");
let s = tmpl

.render("user.html", &ctx)

.map_err(|_| error::ErrorInternalServerError("Template error"))?;

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}

This handler can be invoked from the command line using a curl POST request as
follows:

curl -X POST localhost:8080/tutors -d "name=Terry"

Let’s write a unit test case for this handler function. In $PROJECT_ROOT/Cargo
.toml, add the following section:

[dev-dependencies]
actix-rt = "2.2.0"

actix-rt is the Actix async runtime, which is needed to execute the asynchronous test
functions.

 In $PROJECT_ROOT/src/bin/iter2.rs, add the following test code toward the
end of the file (as a convention, Rust unit test cases are located toward the end of the
source file).

#[cfg(test)]
mod tests {

use super::*;
use actix_web::http::{header::CONTENT_TYPE, HeaderValue, StatusCode};
use actix_web::web::Form;

#[actix_rt::test]
async fn handle_post_1_unit_test() {

let params = Form(Tutor {
name: "Terry".to_string(),

});
let tera = Tera::new(concat!(

env!("CARGO_MANIFEST_DIR"),
"/static/iter2/**/*"

))
.unwrap();
let webdata_tera = web::Data::new(tera);
let resp = handle_post_tutor(

webdata_tera, params).await.unwrap();

Standard Rust
annotation for test cases Start of the standard

Rust tests module

This annotation indicates to the Actix runtime
that the function following it is a test function
that must be executed by the Actix runtime.

Simulate user entry by creating a
Tutor object and embedding it in
the Actix web::Form extractor.

Create a
new Tera
instance.

Inject the Tera instance
as a dependency in the
web application.

Invoke the handler function with the Tera
instance and form parameters. This simulates

what happens when a user submits a form.

184 CHAPTER 7 Introducing server-side web apps in Rust

to
assert_eq!(resp.status(), StatusCode::OK);
assert_eq!(

resp.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("text/html")

);
}

}

Run the tests from $PROJECT_ROOT with this command:

cargo test --bin iter2

You should see that the test passes.
 We’ve just written a unit test by invoking the handler function directly. We were

able to do this because we knew the handler function signature. This is OK for a unit
test case, but how would we simulate a web client posting an HTTP request with the
form data?

 That’s the domain of integration testing. Let’s write an integration test to simulate
a user’s form submission. Add the following to the tests module in $PROJECT_
ROOT/src/bin/iter2.rs:

use actix_web::dev::{HttpResponseBuilder, Service, ServiceResponse};
use actix_web::test::{self, TestRequest};

// Integration test case
#[actix_rt::test]
async fn handle_post_1_integration_test() {

let tera = Tera::new(concat!(
env!("CARGO_MANIFEST_DIR"),
"/static/iter2/**/*"

))
.unwrap();
let mut app = test::init_service(App::new().data(tera).configure(

app_config)).await;

let req = test::TestRequest::post()
.uri("/tutors")
.set_form(&Tutor {

name: "Terry".to_string(),
})
.to_request();

let resp: ServiceResponse = app.call(req).await.unwrap();
assert_eq!(resp.status(), StatusCode::OK);
assert_eq!(

resp.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("text/html")

);
}

You’ll notice that Actix provides rich support for testing in the form of built-in ser-
vices, modules, and functions, which we can use to write unit or integration tests.

 Run the tests from $PROJECT_ROOT:

cargo test --bin iter2

Check
the return

status code. Check the return
content type.

init_service() creates an Actix Service
for testing. We can post HTTP

messages to this service to simulate
a web client sending a request to the

web server. It takes a regular app
builder as a parameter, so we can

pass the Tera instance and
application routes to it, like we do

for a regular Actix web application.

The HTTP request message is
constructed using TestRequest::post(),
which can be used to send regular
POST requests to the test server.

_request() converts
the parameters

passed to the
TestRequest::post()
builder to a regular

formatted HTTP
request message.

The test server is
called with the HTTP

request message.

Check for the
expected

status code.

Check for the
expected content type.

1857.7 Connecting to the backend web service
You should see both unit and integration tests pass.
 That concludes this section on writing unit and integration test cases for frontend

web apps built with Actix and Tera. We’ll use what you have learned here to write the
actual test cases for the tutor web application.

7.7 Connecting to the backend web service
In section 7.5, we displayed a list of tutors on a web page using mock data. In this sec-
tion, we’ll fetch data from the backend tutor web service to display on the web page,
instead of using mock data. Technically, we can directly talk to a database from the
Actix web application, but that’s not what we want to do, mainly because we do not
want to duplicate database access logic that is already present in the web service.
Another reason is that we do not want to expose the database access credentials in
both the web service and web application, which could increase the surface area of
any security or hacking attacks.

 We know that the backend tutor web service exposes various REST APIs. To talk to
the web service from the web application, we need an HTTP client that can be embed-
ded within the web application. While there are external crates available for this, let’s
use the built-in HTTP client in the Actix Web framework. We also need a way to parse
and interpret the JSON data that is returned from the web service. For this, we’ll use
the serde_json crate.

 Add the following to $PROJECT_ROOT/Cargo.toml:

serde_json = "1.0.64"

Let’s now write the code to connect, make a GET request to the tutor web service, and
retrieve the list of tutors. Create a new file called iter4.rs under $PROJECT_ROOT/
src/bin, and copy the contents of iter3.rs to it to get a head start.

 Using the serde_json crate, we can deserialize the incoming JSON payload in the
HTTP response into a strongly typed data structure. In our case, we want to convert
the JSON sent by the tutor web service into a Vec<Tutor> type. We also want to define
the structure of the Tutor struct to match the incoming JSON data. Remove the old
definition of the Tutor struct in the $PROJECT_ROOT/src/bin/iter4.rs file, and
replace it with the following:

#[derive(Serialize, Deserialize, Debug)]
pub struct Tutor {

pub tutor_id: i32,
pub tutor_name: String,
pub tutor_pic_url: String,
pub tutor_profile: String,

}

Within the same source file, in the handle_get_tutors handler function, we’ll con-
nect to the tutor web service to retrieve the tutor list. That means we can remove the
hardcoded values. Import the actix_web client module, and modify the code for the
handle_get_tutors handler function as follows:

186 CHAPTER 7 Introducing server-side web apps in Rust

rite

, but
t.

re
th
use actix_web::client::Client;

async fn handle_get_tutors(tmpl: web::Data<tera::Tera>) ->
Result<HttpResponse, Error> {
let client = Client::default();

// Create request builder and send request

let response = client
.get("http://localhost:3000/tutors/")
.send()
.await
.unwrap()
.body()
.await
.unwrap();

let str_list = std::str::from_utf8(&response.as_ref()).unwrap();
let tutor_list: Vec<Tutor> = serde_json::from_str(str_list).unwrap();
let mut ctx = tera::Context::new();

ctx.insert("tutors", &tutor_list);
let rendered_html = tmpl

.render("list.html", &ctx)

.map_err(|_| error::ErrorInternalServerError("Template error"))?;

Ok(HttpResponse::Ok().content_type("text/html").body(rendered_html))
}

The rest of the code related to rendering Tera templates is similar to what you’ve seen
before.

 Next, create a new $PROJECT_ROOT/static/iter4 folder. Under this folder, place
a copy of the list.html file from $PROJECT_ROOT/static/iter3. Alter the list.html file
to change the template variable {{tutor.name}} to {{tutor.tutor_name}} because
that’s the structure of the data sent back from the tutor web service.

 Here is the updated list.html listing from the iter4 folder:

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<title>Actix web</title>
<link href="https://unpkg.com/tailwindcss@^1.0/dist/tailwind.min.css"

rel="stylesheet">
</head>

<body>
<h1 class="text-2xl font-bold mt-8 mb-5">Tutors list</h1>
<ul class="list-disc list-inside my-5 pl-2">

{% for tutor in tutors %}
<ol class="list-decimal list-inside my-5 pl-2">

Construct an instance of
the Actix Web HTTP client
to talk to the web service.

Construct a GET request with
the URL endpoint. Adjust your
URL endpoint as appropriate.

Send the
HTTP request
to the server.

Asynchronous
network requests
require the await
keyword.

We’re unwrapping the result of the network response
using the unwrap() keyword as a shortcut. When we w
the tutor web application, we’ll deal with errors in a
production-compliant manner. Unwrap terminates the
current process and is not suitable for production use
it simplifies the earlier stages of software developmen

From the HTTP
sponse, extract
e body() of the
response. This

contains the
tutor list.

The body() of the response is received as
bytes. Convert it to a str slice.

Deserialize the str slice into a vector of
Tutor objects using the serde_json crate.

Pass the deserialized tutor list
into the Tera Context object.

1877.7 Connecting to the backend web service
<h5 class="text-1xl font-bold mb-4 mt-0">{{tutor.tutor_name}}</h5>

{% endfor %}

</body>

</html>

We also need to alter the main() function in iter4.rs to look for Tera templates in the
$PROJCT_ROOT/static/iter4 folder. Here is the updated main() function:

#[actix_web::main]
async fn main() -> std::io::Result<()> {

println!("Listening on: 127.0.0.1:8080!");
HttpServer::new(|| {

let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),
"/static/iter4/**/*")).unwrap();

App::new()
.data(tera)
.service(fs::Files::new("/static", "./static").show_files_listing())
.service(web::resource("/tutors").route(web::get().to(

handle_get_tutors)))
})
.bind("127.0.0.1:8080")?
.run()
.await

}

What we have done so far is fetch the tutor list from the tutor web service instead of
using the hardcoded values as in iteration 3. We use it to display the tutor list in the
list.html file, which is rendered when an HTTP request arrives from a client at route
/tutors.

 To test this, go to the tutor_web_service folder under the ezytutors workspace,
and run the server in a separate terminal. This server should now be listening on
localhost:3000. Test the server with the following command:

cargo run --bin iter6

iter6 was the last iteration we built for the tutor web service.
 Then, from another terminal, run the tutor_ssr_app web server from

$PROJECT_ROOT with the following command:

cargo run --bin iter4

We now have the tutor web service running on port 3000, and the tutor web app run-
ning on port 8080, both on localhost. Here’s what should happen: When the user vis-
its the /tutors route on port 8080, the request will go to the web handler of the web
app, which will then call out to the tutor web service to retrieve the tutor list. The
tutor web app handler will then inject this data into the Tera template and display the
web page to the user.

188 CHAPTER 7 Introducing server-side web apps in Rust
 To test this from a browser, visit this URL:

localhost:8080/tutors

You should see the list of tutor names, retrieved from our tutor web service, populated
in the web page. If you have reached this point, congratulations! If you encounter any
errors, just retrace the code back to the last point when you had it working, and reap-
ply the changes in again.

 You have now learned the critical aspects of developing a client-side application
with Actix. In the next chapter, we will use the knowledge and skills gained in this
chapter to write the code for the frontend tutor web application.

Summary
 Rust can be used to not just build backend web services, but also frontend web

applications.
 Server-side rendering (SSR) is a web architectural pattern that involves creating

a fully rendered web page on the server and sending it to the browser for dis-
play. SSR typically involves serving a mix of static and dynamic content on a web
page.

 Actix Web and the Tera template engine are powerful tools for implementing
SSR in Rust-based web applications.

 The Tera template engine is instantiated and injected into the web application
in the main() function. The Tera instance is made available to all the handler
functions by the Actix Web framework. The route handler functions, in turn,
can use Tera templates to construct dynamic web pages that are sent back to the
browser client as part of the HTTP response body.

 HTML forms are used to capture user input and post that input to a route on
the Actix web application. The corresponding route handler then processes the
HTTP request and sends back an HTTP response containing the dynamic web
page.

 The control flow features of Tera templates can be used to display lists of infor-
mation on a web page. The contents of the list can be retrieved either from a
local database or an external web service and then be injected into the web
page template.

 An Actix Web client can be used as an HTTP client to communicate between
the Actix web application frontend and Actix web service backend.

Working with templates
for tutor registration
In the previous chapter, we covered the basics of working with Actix to develop a
server-side web application. In this chapter, you’ll more about how to work with
templates as we create a tutor registration form using Actix and Tera.

 Templates and forms are an important feature of web applications. They are
commonly used for registration, signing in, capturing user profiles, providing pay-
ment information or know-your-customer details for regulatory purposes, and per-
forming CRUD (create, read. update, and delete) operations on data. While
capturing user input, it is also necessary to validate that data and provide feedback
to the user in the case of errors. If the forms involve data updates, existing informa-
tion has to be presented to the user allowing the user to change it. Elements of
styling must also be added for aesthetic appeal. When forms are submitted, the form
data needs to be serialized into an HTTP request, which should then invoke the

This chapter covers
 Designing a tutor registration feature

 Setting up the project structure

 Displaying the registration form

 Handling registration submission
189

190 CHAPTER 8 Working with templates for tutor registration
right handler functions for processing
and storing the form data. Finally, the
user needs to be given feedback on
the success of the form submission and
then optionally be taken to the next
screen. You’ll learn how to do all that in
this chapter using Actix Web, the Tera
template engine, and a few other
components.
 In this chapter, we’ll write an HTML
template and associated code to allow
tutors to register. Figure 8.1 shows the
tutor registration form.
 For registration, we’ll accept six
fields: username, password, password
confirmation, tutor name, tutor image
URL, and a brief tutor profile. The first
three are needed for user management
functions, and the others will be used to
send a request to the tutor web service
and create a new tutor in the database.
We’ll first set up the project code struc-
ture and basic scaffolding.

8.1 Writing the initial web application
First, copy the code from chapter 7. We’ll build on this code structure.

 The tutor-web-app-ssr folder represents the project root, so we can set the
PROJECT_ROOT environment variable to /path-to-folder/ezytutors/tutor-web-app-ssr.
Henceforth, we’ll refer to this folder as $PROJECT_ROOT.

 Let’s organize the code under the project root as follows:

1 Create an iter5 folder under $PROJECT_ROOT/src. This will contain the data
model, routes, handler functions, definitions for custom error types and appli-
cation state, and database SQL scripts.

2 Create an iter5 folder under $PROJECT_ROOT/static. This folder will contain
the HTML and Tera templates.

3 Create an iter5-ssr.rs file under $PROJECT_ROOT/bin. This is the main func-
tion that will configure and start up the Actix web server (to serve the web appli-
cation we are building).

4 Under $PROJECT_ROOT/src/iter5, create the following files:

– routes.rs—Stores the routes for the web application on which HTTP requests
can be received.

– model.rs—Contains the data model definitions.

Figure 8.1 Tutor registration form

1918.1 Writing the initial web application

n
– handler.rs—Contains the handler functions associated with the various routes
to process the incoming HTTP requests.

– state.rs—Stores the data structure representing the application state, which
will be injected into the handlers (a process known as dependency injection).

– errors.rs—Contains the custom error type and associated functions to con-
struct suitable error messages for users.

– dbaccess.rs—Contains the functions that access the database for reading and
writing tutor data.

– dbscripts/user.sql—Create a dbscripts folder under $PROJECT_ROOT/src/
iter5, and create a user.sql file under it. This will contain the SQL scripts to
create a database table.

– mod.rs—Configures the $PROJECT_ROOT/src/iter5 directory as a Rust
module that can be imported into other files.

We’re now ready to start coding. Let’s begin with the routes definition in $PROJECT_
ROOT/src/iter5/routes.rs:

use crate::handler::{handle_register, show_register_form};
use actix_files as fs;
use actix_web::web;

pub fn app_config(config: &mut web::ServiceConfig) {
config.service(

web::scope("")
.service(fs::Files::new(

"/static", "./static").show_files_listing())
.service(web::resource("/").route(web::get().to(

show_register_form)))
.service(web::resource("/register").route(web::post().to(

handle_register))),
);

}

We can now move on to the model definition in $PROJECT_ROOT/src/iter5/
model.rs. Add the following data structures to model.rs.

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
pub struct TutorRegisterForm {

pub username: String,
pub password: String,
pub confirmation: String,
pub name: String,

Listing 8.1 Data model

Import the handler functions that display the
registration form and handle form submission.

We’ll write the code for these functions shortly.

actix-files is used to
serve static files. Create a service configuratio

to specify routes and
associated handlers.

HTTP requests for static resources on routes
with the /static prefix will be served from
the /static folder under $PROJECT_ROOT.

The index route
displays the
registration form
in response to a
GET request.

This route handles a POST request
for a registration form submission.

Struct to hold the details
that will be captured in the
tutor registration form

192 CHAPTER 8 Working with templates for tutor registration
pub imageurl: String,
pub profile: String,

}

#[derive(Serialize, Deserialize, Debug)]
pub struct TutorResponse {

pub tutor_id: i32,
pub tutor_name: String,
pub tutor_pic_url: String,
pub tutor_profile: String,

}

#[derive(Serialize, Deserialize, Debug, sqlx::FromRow)]
pub struct User {

pub username: String,
pub tutor_id: Option<i32>,
pub user_password: String,

}

Let’s next define the application state in $PROJECT_ROOT/src/iter5/state.rs:

use sqlx::postgres::PgPool;

pub struct AppState {
pub db: PgPool,

}

AppState will hold the Postgres connection pool object, which will be used by the
database access functions. AppState will be injected into each handler function by
Actix Web, and you’ll see later how to configure this while creating the Actix applica-
tion instance.

 Let’s also create an error.rs file under $PROJECT_ROOT/src/iter5 to define a
custom error type. This is similar to the error definition we earlier created for the
tutor web service, but with some minor changes.

use ...

#[derive(Debug, Serialize)]
pub enum EzyTutorError {

DBError(String),
ActixError(String),
NotFound(String),
TeraError(String),

}
#[derive(Debug, Serialize)]
pub struct MyErrorResponse {

error_message: String,
}
impl std::error::Error for EzyTutorError {}

Listing 8.2 Custom error type

Struct to store the response from
the tutor web service, received in
response to creating a new tutor

Struct to store user credentials
for authentication purposes

Code elided for concision; see the GitHub
source files for the complete code.

Define a custom error
type, EzyTutorError.

Define a MyErrorResponse
error type to send the
response back to the user.

Implement Rust’s standard
error trait for our custom
error type. This allows for
the custom error type to
be converted to an HTTP
response by Actix.

1938.1 Writing the initial web application
impl EzyTutorError {
fn error_response(&self) -> String {

match self {
EzyTutorError::DBError(msg) => {

println!("Database error occurred: {:?}", msg);
"Database error".into()

}
EzyTutorError::ActixError(msg) => { ... }
EzyTutorError::TeraError(msg) => { ... }
EzyTutorError::NotFound(msg) => { ... }

}
}

}

impl error::ResponseError for EzyTutorError {
fn status_code(&self) -> StatusCode {

match self {
EzyTutorError::DBError(_msg)
| EzyTutorError::ActixError(_msg)
| EzyTutorError::TeraError(_msg) =>

StatusCode::INTERNAL_SERVER_ERROR,
EzyTutorError::NotFound(_msg) => StatusCode::NOT_FOUND,

}
}
fn error_response(&self) -> HttpResponse {

HttpResponse::build(self.status_code()).json(MyErrorResponse {
error_message: self.error_response(),

})
}

}

impl fmt::Display for EzyTutorError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {

write!(f, "{}", self)
}

}

impl From<actix_web::error::Error> for EzyTutorError {
fn from(err: actix_web::error::Error) -> Self {

EzyTutorError::ActixError(err.to_string())
}

}

impl From<SQLxError> for EzyTutorError { ... }

We’ve so far defined the routes, data model, application state, and error type. Let’s
next write the scaffolding for the various handler functions. These won’t do much,
but they will establish the code structure, which we can build on in future sections.

 In $PROJECT_ROOT/src/iter5/handler.rs, add the following:

use actix_web::{Error, HttpResponse, Result};

pub async fn show_register_form() -> Result<HttpResponse, Error> {
let msg = "Hello, you are in the registration page";

Construct the error response message (to
the user) for various types of errors that
can occur in the tutor web application.

Code elided for concision;
see the GitHub source files
for the complete code.

Implement Actix’s ResponseError
trait, which specifies how to convert
EzyTutorError to an HTTP response.

Implement the Display trait from the
Rust standard library for EzyTutorError.
This allows for the printing of errors.

Implementing the Actix Web Error trait for
EzyTutorError allows for the conversion of the former

to the latter using the question mark (?) operator.

Code elided for concision;
see the GitHub source files for

the complete code. Implementing
the sqlx error trait for EzyTutorError allows for the conversion

of the former to the latter using the question mark (?) operator.

Handler function to show the
registration form to the user

194 CHAPTER 8 Working with templates for tutor registration

Ok(HttpResponse::Ok().content_type("text/html").body(msg))
}

pub async fn handle_register() -> Result<HttpResponse, Error> {
Ok(HttpResponse::Ok().body(""))

}

As you can see, the handler functions don’t really do much, but this is sufficient for us
to establish an initial code structure that we can build on.

 Lastly, let’s write the main() function that will configure the web application with
the associated routes and launch the web server. Add the following code to
$PROJECT_ROOT/bin/iter5-ssr.rs.

#[path = "../iter5/mod.rs"]
mod iter5;
use iter5::{dbaccess, errors, handler, model, routes, state::AppState};
use routes::app_config;
use actix_web::{web, App, HttpServer};
use dotenv::dotenv;
use std::env;
use sqlx::postgres::PgPool;

use tera::Tera;

#[actix_web::main]
async fn main() -> std::io::Result<()> {

dotenv().ok();
//Start HTTP server
let host_port = env::var("HOST_PORT").expect(

"HOST:PORT address is not set in .env file");
println!("Listening on: {}", &host_port);
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let db_pool = PgPool::connect(&database_url).await.unwrap();
// Construct App State
let shared_data = web::Data::new(AppState { db: db_pool });

HttpServer::new(move || {
let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),

"/static/iter5/**/*")).unwrap();

App::new()
.data(tera)
.app_data(shared_data.clone())
.configure(app_config)

})
.bind(&host_port)?
.run()
.await

}

Listing 8.3 The main() function

Handler function to handle
registration requests

Module definition to import
application-specific code

Core Actix modules to
set up a web application
and web server

Packages to work with environment variables

Import the sqlx Postgres
connection pool.

Import the env module from the
Rust standard library to read
the environment variables.

Import host, port, and
database access credentials
from the .env file.

Create a new
Postgres connection
pool and embed it in
the application state.Configure the Actix web

application with the routes,
application state, and Tera.

Bind the web server to the host and
port configuration, and run it.

1958.1 Writing the initial web application
We still have to do a couple more things. First, add the dotenv package to the
Cargo.toml file in $PROJECT_ROOT. Make sure the Cargo.toml file looks similar to this:

[dependencies]
actix-web = "4.2.1"
actix-files="0.6.2"
tera = "1.17.0"
serde = { version = "1.0.144", features = ["derive"] }
serde_json = "1.0.85"
awc = "3.0.1"
sqlx = {version = "0.6.2", default_features = false, features =

["postgres","runtime-tokio-native-tls", "macros", "chrono"]}
rust-argon2 = "1.0.0"
dotenv = "0.15.0"

[dev-dependencies]
actix-rt = "2.7.0"

Configure the host, port, and database details in the .env file in $PROJECT_ROOT as
shown:

HOST_PORT=127.0.0.1:8080
DATABASE_URL=postgres://ssruser:mypassword@127.0.0.1:5432/ezytutor_web_ssr

The DATABASE_URL specifies the username (ssruser) and password (mypassword) for
database access. It also specifies the port number at which the Postgres database pro-
cesses are running and the name of the database (ezytutor_web_ssr) to connect to.

 Lastly, add the following entries to mod.rs under $PROJECT_ROOT/src/iter5.
This will export the functions and data structures we have defined and allow them to
be imported and used elsewhere in the application:

pub mod dbaccess;
pub mod errors;
pub mod handler;
pub mod model;
pub mod routes;
pub mod state;

We’re now ready to test. Run the following from $PROJECT_ROOT:

cargo run --bin iter5-ssr

You should see the Actix web server start up and listen on the host:port combination
specified in the .env file.

 From a browser, try the following URL route (adjust the port number to the one in
your own .env file):

localhost:8080/

You should see the following message displayed on your browser screen:

Hello, you are in the registration page

196 CHAPTER 8 Working with templates for tutor registration
We have now established the basic project structure and are ready to implement the
logic to display the registration form to the user.

8.2 Displaying the registration form
In earlier chapters, we built APIs on the tutor web service for adding, updating, and
deleting tutor information. We tested these APIs using command-line tools. In this
chapter, we’re going to add the following two features:

 Provide a web user interface where tutors can register.
 Store user credentials in a local database (for user management).

Note that the user management in the second point can be done in different ways. It
can be built directly into the backend web service, or it can be handled in the front-
end web application.

 In this chapter, we’ll adopt the latter approach, mainly to demonstrate how you
can implement a separation of responsibilities between the backend web service and
frontend web application as a design choice. In this model, the backend web service
will take care of the core business and data access logic to store and apply rules on
tutor and course data, while the frontend web application will handle the user authen-
tication and session management functions. In such a design, we will have the tutor
web service running in a trusted zone behind the firewall, receiving HTTP requests
only from the trusted frontend web application.

 Figure 8.2 shows the tutor registration workflow, which involves several steps:

1 The user visits the landing page URL. The web browser will make a GET request
on the index route, /, which is routed by the Actix web server to the show_
register_form() handler function. This function will send the registration
form back to the web browser as an HTTP response. The tutor registration
form is now displayed to the user.

2 The user fills out the registration form. There may be invalid inputs from users
that need to be corrected (e.g., the password may not meet minimum length
criteria).

3 The HTML specifications allow us a few types of basic validation checks to be
made within the browser, rather than making a round trip to the server every
time. We’ll make use of this to enforce mandatory fields and field lengths, so
that for these errors, feedback can be provided to the user within the browser.

4 The user submits the registration form, and a POST request is sent to the Actix
web server on the /register route. The Actix Web framework routes the
request to the handle_register() web handler.

5 The handle_register() function checks to see if the password and password
confirmation fields match. If they don’t, the registration form is displayed back
to the user with an appropriate error message. This is a case of validating user
input on the server rather than within the browser. (Note that it would be possi-
ble to perform this validation using custom jQuery or JavaScript in the browser,

1978.2 Displaying the registration form

but we’re avoiding that approach in this book, if only to demonstrate that it is
possible to write complete web applications in Rust without JavaScript. You can
use JavaScript if you prefer.)

6 If the passwords match, the handle_register() function makes a POST request
on the backend tutor web service to create a new tutor entry in the database.

7 The username and password provided by the user in the registration form are
stored in a local database on the tutor web application (not in the tutor web ser-
vice), for the purpose of authenticating the user in the future.

8 A confirmation page is returned to the web browser by the handle_register()
function as an HTTP response.

Figure 8.2 Tutor registration flow

Now that you understand what we’re going to build, let’s start with the static assets and
templates for tutor registration.

 In #PROJECT_ROOT/static/iter5/, create a register.html file, and add the follow-
ing contents.

<!doctype html>
<html>

<head>
<meta charset=utf-8>
<title>Tutor registration</title>
<link rel="stylesheet" href="/static/tutor-styles.css">

</head>

Listing 8.4 Registration template

Validate
fields

User fills out tutor
registration form Errors?

Check for
errors

Yes

No

Route handler
function

Tutor web
service

Post form
data to Actix
web server

Add new
tutor

Display
confirmation

screen to user

DB

Passwords
match?

Display error message

No

Yes

User credentials

The <head>
section refers to an
external CSS file
tutor-styles.css.

198 CHAPTER 8 Working with templates for tutor registration

A <
to
a
va

fo

th
a

is
fo
<body>
<div class="header">

<h1>Welcome to EzyTutor</h1>
<p>Start your own online tutor business in a few minutes</p>

</div>
<div class="center">

<h2>
Tutor registration

</h2>
<form action=/register method=POST>

<label for="userid">Enter username</label>

<input type="text" name="username" value="{{current_username}}"

autocomplete="username" minlength="6"
maxlength="12" required>

<label for="password">Enter password</label>

<input type="password" name="password"

value="{{current_password}}" autocomplete="new-password"
minlength="8" maxlength="12" required>

<label for="confirm">Confirm password</label>

<input type="password" name="confirmation"

value="{{current_confirmation}}" autocomplete="new-password"
minlength="8" maxlength="12" required>

<label for="userid">Enter tutor name</label>

<input type="text" name="name" value="{{current_name}}"

maxlength="12" required>

<label for="imageurl">Enter tutor image url</label>

<input type="text" name="imageurl" value="{{current_imageurl}}"

maxlength="30">

<label for="profile">Brief tutor profile</label>

<input type="text" name="profile" value="{{current_profile}}"

maxlength="40">

<label for="error">

<p style="color:red">{{error}}</p>
</label>

<button type=submit id="button1">Register</button>

</form>
<form action=/signinhome method=GET>

<button type=submit id="button2">Sign in</button>
</form>

</div>
<p>
<div id="footer">

(c)Photo by Author
</div>
</p>

</html>

Let’s now create a tutor-styles.css file under the $PROJECT_ROOT/static folder and
add the following styling to it.

 The <body> section contains two <form> elements. The
first contains five data entry fields (<input> elements) and

a Submit button (a <button> element of type=submit). The
second <form> element takes the user to the sign-in page.

The minlength and
maxlength properties
of the <input>
elements enforce the
field lengths. Any
validation errors are
handled directly
within the browser
with suitable
messages to the user.

The required property of the
<input> element specifies that

the field is mandatory. This is
enforced by the browser.

The value property of the <input> element prepopulates
the field with values. This is useful when the form is

submitted to the web server and, in the case of errors,
redisplayed to the user with the previously entered values.
Note the use of the Tera template variable syntax with the
variable name enclosed in a pair of double braces: {{ }}.

label> element is used
 display error messages
rising out of server-side
lidation (i.e., within the

handler functions).

rm action=/register
method=POST>

indicates that when
e form is submitted,
 POST HTML request
constructed with the
rm values. This POST
request is submitted
to the web server on

the /register route.

1998.2 Displaying the registration form

.header {
padding: 20px;
text-align: center;
background: #fad980;
color: rgb(48, 40, 43);
font-size: 30px;

}

.center {
margin: auto;
width: 20%;
min-width: 150px;
border: 3px solid #ad5921;
padding: 10px;

}

body, html {
height: 100%;
margin: 0;
font-kerning: normal;

}

h1 {
text-align: center;

}

p {
text-align: center;

}

div {
text-align: center;

}

div {
background-color: rgba(241, 235, 235, 0.719);

}

body {
background-image: url('/static/background.jpg');
background-repeat: no-repeat;
background-attachment: fixed;
background-size: cover;
height: 500px;

}

#button1, #button2 {
display: inline-block;

}

#footer {
position: fixed;
padding: 10px 10px 0px 10px;

Listing 8.5 The CSS styles

200 CHAPTER 8 Working with templates for tutor registration

)
y
bottom: 0;
width: 100%;
/* Height of the footer*/
height: 20px;

}

These are pretty standard CSS constructs, and they will provide minimal styling for the
landing page that shows the tutor registration form. If you are familiar with CSS, you
are encouraged to write your own styling for the page.

 Note that the CSS file refers to a /static/background.jpg background image. You
can find this image in the Git repo for the chapter. Download the file, and place it in
the $PROJECT_ROOT/static folder. Alternatively, you can use your own background
image (or none at all).

 We’re now ready to write the code for the show_register_form() handler func-
tion. In $PROJECT_ROOT/src/iter5/handler.rs, update the code as follows.

use actix_web::{web, Error, HttpResponse, Result};
use crate::errors::EzyTutorError;

pub async fn show_register_form(tmpl: web::Data<tera::Tera>) ->
Result<HttpResponse, Error> {
let mut ctx = tera::Context::new();
ctx.insert("error", "");
ctx.insert("current_username", "");
ctx.insert("current_password", "");
ctx.insert("current_confirmation", "");
ctx.insert("current_name", "");
ctx.insert("current_imageurl", "");
ctx.insert("current_profile", "");
let s = tmpl

.render("register.html", &ctx)

.map_err(|_| EzyTutorError::TeraError(
"Template error".to_string()))?;

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}

We can do a quick test now. From $PROJECT_ROOT, run the Actix server with the
following command:

cargo run --bin iter5-ssr

Visit the following URL from a browser (replace the port number with whatever you
have configured in the .env file):

localhost:8080/

Listing 8.6 Handler function to show the registration form

Update the module imports to
include web modules from actix_
web and our custom error type.

Note the addition of the web::Data<tera::Tera> parameter to this
handler function. This is injected into the handler in the main()
function when the application instance is constructed.

Construct a new Tera Context object. This
will be used to set values for the template
variables declared in the HTML template.Initialize the

template
variables.

Render the
register.html
template.

Return the fully
constructed
register.html file
(with values
populated for
template variables
as part of the bod
of the HTML
response.

2018.3 Handling registration submission
Assuming you have followed all the steps described, you should be able to see the
landing page with the registration form. You have successfully displayed the tutor reg-
istration form. It’s now time to accept user input and post the completed form back to
the Actix web server. Let’s see how that can be done.

8.3 Handling registration submission
You’ve seen how to display the registration form. Now try to fill out the values. Specifi-
cally, try the following:

 Click the Register button without entering any values. For all fields marked as
required in the HTML template, you should see a message saying “Please fill in
this field,” or something similar, depending upon which browser you use.

 For input fields where minlength or maxlength have been specified in the
HTML template, you will see error messages displayed whenever your input
does not meet the criteria.

Note that these are in-browser validations enabled by the HTML specification itself.
We have not written any custom code for these validations.

 In-browser validations cannot be used to implement more complex validation rules.
Those will have to be implemented in the server-side handler functions. One example
of a validation rule in the tutor registration form is that the password and the password
confirmation fields must contain the same value. To validate this, we will submit the form
data to the Actix server and write validation code in the handler function. (As men-
tioned earlier, this password check validation could be performed within the browser
using jQuery or JavaScript, but we are adopting a pure-Rust approach in this book).

 As you saw in the registration workflow in figure 8.2, we also have to perform the
following key steps in the handler function:

1 Verify if the password and password confirmation fields match. If not, we’ll
return the form to the user, along with a suitable error message. The values the
user filled previously should also be returned with the form and should not be
lost or discarded.

2 If the password check is successful, a POST request needs to be made on the
backend tutor web service to create a new tutor. We’ll be using the awc crate
(from the Actix Web ecosystem) as the HTTP client that will talk to the tutor
web service.

3 The web service will return details of the newly created tutor record, which will
also include a database-generated tutor-id. This tutor id represents a unique
tutor record in the tutor web service. The web application needs to remember
this for future use (such as when requesting the user profile of the tutor or to
retrieve a course list for the tutor). We need to store this information some-
where within the web application.

4 The username and password entered by the user in the registration form also
need to be recorded within the web application so they can be used for authen-
ticating the tutor in the future.

202 CHAPTER 8 Working with templates for tutor registration
For storing tutor-id, username, and password, we will be using the Postgres database.
You could use any database (or even a lighter key/value store) for this purpose, but
we’ll use Postgres because you already learned how to use it with Actix in earlier chap-
ters. If you need a refresher on how to use and configure Postgres with sqlx and
Actix, refer back to chapter 4.

 Storing passwords in clear text in the database is an insecure approach and is
highly discouraged for production use. We’ll use a third-party crate, argon2, for stor-
ing hashes of passwords in the database, rather than storing them in clear text form.

 Recall that we added the sqlx, awc, and argon2 crates to Cargo.toml in the begin-
ning of the chapter. Here is a recap of the three crates we added:

sqlx = {version = "0.3.5", default_features = false, features =
["postgres","runtime-tokio", "macros"]}

rust-argon2 = "0.8.3"
awc = "2.0.3"

Let’s now look at the database layer. We need a database only to store registered users
with their credentials. We previously defined the User data structure in the model.rs
file as follows:

#[derive(Serialize, Deserialize, Debug, sqlx::FromRow)]
pub struct User {

pub username: String,
pub tutor_id: i32,
pub user_password: String,

}

Let’s create a table in the database to store user information. In $PROJECT_ROOT/
src/iter5, you’ve already created a dbscripts/user.sql file. Place the following code in
this file:

drop table if exists ezyweb_user;

create table ezyweb_user
(

username varchar(20) primary key,
tutor_id INT,
user_password CHAR(100) not null

);

Log in to the psql shell prompt. From the project root, run the following command:

create database __ezytutor_web_ssr__;
create user __ssruser__ with password 'mypassword';
grant all privileges on database ezytutor_web_ssr to ssruser;

Log out of psql, and log back in to see if the credentials are working:

psql -U $DATABASE_USER -d ezytutor_web_ssr -- password
\q

Drop the table if
it already exists.

Create a database table with the name ezyweb_user.
The username will be the primary key. The tutor_id
will be returned from the tutor web service on the
creation of a tutor record, and we will store it here.
The user password will be the hash of the password
entered by the user in the registration form.

Create a new
database.

Create a new user. Replace the username
and password with your own.

Grant privileges on the database
to the newly created user.

2038.3 Handling registration submission
Here $DATABASE_USER refers to the username created in the database.
 Lastly, quit the psql shell and, from the project root, run the following command

to create the database table. Before that, ensure you have set the database user in the
$DATABASE_USER environment variable so it is convenient for reuse:

psql -U $DATABASE_USER -d ezytutor_web_ssr < src/iter5/dbscripts/user.sql

Log back into the psql shell, and run the following command to check that the table
has been created correctly:

\d+ ezyweb_user

You should see the metadata for the table created. If you have any trouble following
these steps related to Postgres, refer back to chapter 4.

 We’re now ready to write the database access functions to store and read tutor
data. In $PROJECT_ROOT/src/iter5/dbaccess.rs, add the following code.

use crate::errors::EzyTutorError;
use crate::model::*;
use sqlx::postgres::PgPool;

//Return result

pub async fn get_user_record(pool: &PgPool, username: String) ->
Result<User, EzyTutorError> {
// Prepare SQL statement
let user_row = sqlx::query_as!(

User,
"SELECT * FROM ezyweb_user where username = $1",
username

)
.fetch_optional(pool)
.await?;

if let Some(user) = user_row {
Ok(user)

} else {
Err(EzyTutorError::NotFound("User name not found".into()))

}
}

pub async fn post_new_user(pool: &PgPool, new_user: User) ->
Result<User, EzyTutorError> {
let user_row= sqlx::query_as!(User,"insert into ezyweb_user (

username, tutor_id, user_password) values ($1,$2,$3)
returning username, tutor_id, user_password",

new_user.username, new_user.tutor_id, new_user.user_password)
.fetch_one(pool)
.await?;

Ok(user_row)
}

Listing 8.7 Database access function to store and read tutor data

Import custom error type, data model
structs, and sqlx Postgres connection pool.

Function to retrieve a user record from the
database. It accepts a Postgres connection pool
and a username (the primary key) as parameters.

Function to create a new user for user management
purposes. It accepts a Postgres connection pool and

a new user of type User. It creates a new user with
a username (the primary key), a tutor_id (which
is returned from the backend tutor web service),

and a user_password (a hashed password).

204 CHAPTER 8 Working with templates for tutor registration

ser, Retu
respo

th
clie

web br
or com

line
c

nit

t

Writing such database access functions should be familiar to you by now, as we have
dealt with them extensively in previous chapters. Let’s now move on to the handler
functions to perform registration.

 Which handler function should we write to handle registration form submission?
You’ll recall that when a form is submitted, the browser invokes an HTTP POST
request on the /register route, and in the routes configuration, we specified the
handler function as handle_register() for this route. Let’s head into the handler.rs
file under $PROJECT_ROOT/src/iter5 and update the handle_register() function
as follows.

use crate::dbaccess::{get_user_record, post_new_user};
...
use serde_json::json;

pub async fn handle_register(
tmpl: web::Data<tera::Tera>,
app_state: web::Data<AppState>,
params: web::Form<TutorRegisterForm>,

) -> Result<HttpResponse, Error> {
let mut ctx = tera::Context::new();
let s;
let username = params.username.clone();
let user = get_user_record(&app_state.db, username.to_string()).await;
let user_not_found: bool = user.is_err();
//If user is not found in database, proceed to verification of passwords
if user_not_found {

if params.password != params.confirmation {
ctx.insert("error", "Passwords do not match");
...
s = tmpl

.render("register.html", &ctx)

.map_err(|_| EzyTutorError::TeraError(
"Template error".to_string()))?;

} else {
let new_tutor = json!({

"tutor_name": ...
});
let awc_client = awc::Client::default();
let res = awc_client

.post("http://localhost:3000/tutors/")

.send_json(&new_tutor)

.await

.unwrap()

.body()

.await?;
let tutor_response: TutorResponse = serde_json::from_str(

&std::str::from_utf8(&res)?)?;
s = format!("Congratulations. ...);
// Hash the password

Listing 8.8 Function to handle registration form submission

Construct the hash of the
password entered by the u
using the argon2 library.

rn the
nse to
e web

nt (the
owser
mand-
 HTTP
lient).

Import the necessary modules.

The handle_register() handler function
takes three parameters—Tera templates,
application state, and form data.

Make a call to the database access
function to check if the user is

already registered in the database.

If the user is not
registered, check if the
password and password
confirmation entered by
the user match, and
process suitably.

Elided source code
for concision; see

the full source
code on GitHub. If the user is not registered, and if the

passwords match, we construct the
parameters to send in JSON format.

Multiplies a machine type’s
gigabytes of memory (RAM) by u
price and hours in the monthMake the POST request to

the tutor web service,
and await a response.

Retrieve the body of the HTTP response sent by the tutor web
service (which contains the newly created tutor details).

The body of the HTTP
response received

contains tutor data in
bytes format. Convert
his into string format.

Construct a confirmation message
that can be sent back to the user
on successful registration.

2058.3 Handling registration submission
let salt = b"somerandomsalt";
let config = Config::default();
let hash =

argon2::hash_encoded(params.password.clone().as_bytes(),
salt, &config).unwrap();

let user = User {
...

};
let _tutor_created = post_new_user(

&app_state.db, user).await?;
}

} else {
ctx.insert("error", "User Id already exists");
...
s = tmpl

.render("register.html", &ctx)

...; <2,14>
};

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}

The preceding listing has been shortened a bit to keep it concise, but we import sev-
eral modules that you’ll recognize: the data structures from the data model to capture
user input and store it in the database, AppState to store the Postgres sqlx connec-
tion pool, argon2 for password hashing and verification, and the custom error type
that we defined. We’re also importing the actix_web and serde modules for the web
server and serialization/deserialization respectively.

 One thing you haven’t seen before is the hashing of the password entered by the
user, using the argon2 library. You can specify any value as the salt, which is used to
construct the hash. The hash is a one way-function, which means that it is not possible
to reconstruct the original password from the hashed password, so it is safe to specify
the salt in plain text.

 We are now ready to test this. First, though, we have to ensure that the backend
tutor web service is running. Go to the ezytutors/tutor-web-service folder, and run the
web service as follows:

cargo run --bin iter5

Run the web application from $PROJECT_ROOT with this command:

cargo run --bin iter5-ssr

From a browser, access the URL localhost:8080/. Fill out the form and click the Reg-
ister button. If all the data is entered correctly, you should see a message like the fol-
lowing displayed on the screen:

Congratulations. You have been successfully registered with EzyTutor and your
tutor id is: __xx__. To start using EzyTutor, please login with your
credentials

Construct the hash of
the password entered
by the user, using the

argon2 library.

Store the username, password,
and tutor-id in the Postgres
database for future
authentication purposes.

Elided source code for
concision; see the full

source code on GitHub.

If the user already exists in
the database, populate the
template variables in the
register.html template,
including the error message,
and render the template.

Return the response to the web
client (the web browser or

command-line HTTP client).

206 CHAPTER 8 Working with templates for tutor registration
Try registering with the same username again. You should see the registration form
populated with the values you entered, along with the following error message:

User Id already exists

Register one more time, but this time ensure that the password and password confir-
mation fields don’t match. You should once again see the registration form populated
with the values you entered, along with the following error message:

Passwords do not match

These few tests conclude our section on tutor registration and the chapter. You’ve
seen how to define a template with template variables, display the registration form to
the user, perform in-browser and in-handler validations, send an HTTP request from
the template, make an HTTP request to a backend web service, and store the user in a
local database. We defined a custom error type to unify error handling and saw how to
hash passwords before storing them in a database for security purposes.

 If this were a real application intended for production, there are many improve-
ments that could be added to the current implementation. However, that is not the
goal of this book. We have just illustrated, in a fairly straightforward way, how such
applications can be kickstarted using the right Rust crates.

 In the next chapter, we’ll conclude the server-side web application and cover topics
including signing in a user and creating forms to maintain the course data.

Summary
 Architecturally, a server-rendered Rust web application consists of HTML tem-

plates (defined and rendered using a template library like Tera), routes on
which HTTP requests arrive, handler functions that process the HTTP requests,
and a database access layer that abstracts the details of storing and retrieving
data.

 A standard HTML form can be used to capture user inputs in an Actix web
application. Infusing Tera template variables into the HTML form provides a
better user experience and feedback to guide the user.

 User input validations in forms can be performed either within the browser or
in the server handler function. Simple validations, such as field-length checks,
are usually done by the browser, and more complex validation (such as whether

Improving the user interface
The interaction with the user is not ideal in this solution for at least two reasons.
First, in the case of errors, we end up repeating a lot of code to rebuild the form. Sec-
ond, if the user bookmarks the endpoint thinking it’s the registration endpoint, they
will actually get a blank page when the bookmark is used. Redirecting to / would be
a better option. This modification is not trivial, but it will make a good exercise to
explore.

207Summary
the username is already registered) is done in the server handler function.
When the user submits the form, a POST HTTP request, along with the form
data, is sent by the browser to the Actix web server on the specified route.

 A custom error type can be defined to unify error handling in the web applica-
tion. In case of errors in the form data entered by the user, the corresponding
Tera form template is re-rendered by the handler function and sent to the
browser, along with a suitable error message.

 Data pertaining to user management (such as username and password) is
stored within the web application in a local data store (we used a Postgres data-
base in this chapter). The passwords are stored as hashes, and not in clear text,
for security purposes.

Working with forms
for course maintenance
In the previous chapter, we looked at registering tutors. When a user registers as a
tutor, the information about the tutor is stored in two databases. The tutor’s profile
details, such as their name, image, and area of specialization, are maintained in a
database within the backend tutor web service. The registration details for the user,
such as the user ID and password, are stored locally, in a database within the web
application.

 In this chapter, we will build on top of the code from the previous chapter. We’ll
write a Rust frontend web app that allows users to sign in to the application, inter-
act with the local database, and communicate with a backend web service.

This chapter covers
 Designing and implementing user authentication

 Routing HTTP requests

 Creating a resource with the HTTP POST method

 Updating a resource with the HTTP PUT method

 Deleting a resource with the HTTP DELETE method
208

2099.1 Designing user authentication
 The primary focus of this chapter will not be on writing the HTML and JavaScript
user interface for the web application, as that is not the focus of this book. For this
reason, we will only discuss and implement two forms in this chapter: the sign-in form
and the user notification screen. Our focus will be on writing all the other compo-
nents that make up a web application in Rust, including routes, request handlers, and
data models, and you’ll learn how to invoke APIs on the backend web service. In lieu
of a user interface, we will test the web application’s APIs from a command-line HTTP
tool. The task of writing the rest of the HTML and JavaScript-based UI for the web
application using Tera templates is left for you as an exercise.

 Let’s start with the tutor sign-in (authentication) functionality.

9.1 Designing user authentication
For the tutor sign-in, we’ll accept two
fields: username and password, and
we’ll use them to authenticate tutors to
the web application. Figure 9.1 shows
the tutor sign-in form.

 Let’s look at the workflow for tutor
sign-in, shown in figure 9.2. The Actix
web server in the figure is the frontend
web application server, not the backend
tutor web service:

1 The user visits the landing page
URL, and the tutor sign-in form
is displayed.

2 Basic validation for the username
and password is performed
within the form itself, using HTML features, without requests being sent to the
Actix web server.

3 If there are errors in validation, feedback is provided to the user.
4 The user submits the sign-in form. A POST request is sent to the Actix web server

on the sign-in route, which then routes the request to the respective route han-
dler.

5 The route handler function verifies the username and password by retrieving
the user credentials from the local database.

6 If the authentication is not successful, the sign-in form is redisplayed to the user
with an appropriate error message. Examples of error messages include incor-
rect username or password.

7 If the user is authenticated successfully, they are directed to the home page of
the tutor web application.

Figure 9.1 Tutor sign-in form

210 CHAPTER 9 Working with forms for course maintenance
Figure 9.2 Tutor sign-in flow

Now that you know what we will be developing in this chapter, let’s set up the project
code structure and basic scaffolding.

9.2 Setting up the project structure
First, clone the ezytutors repo from chapter 8. Then set the PROJECT_ROOT environ-
ment variable to /path-to-folder/ezytutors/tutor-web-app-ssr. Henceforth, we’ll refer
to this folder as $PROJECT_ROOT.

 Let’s organize the code under the project root as follows:

1 Make a copy of the $PROJECT_ROOT/src/iter5 folder, and rename it
$PROJECT_ROOT/src/iter6.

2 Make a copy of the $PROJECT_ROOT/static/iter5 folder, and rename it
$PROJECT_ROOT/static/iter6. This folder will contain the HTML and Tera
templates.

3 Make a copy of the $PROJECT_ROOT/src/bin/iter5-ssr.rs file, and rename it
$PROJECT_ROOT/src/bin/iter6-ssr.rs. This file contains the main() function
that will configure and start up the Actix web server (to serve the web applica-
tion that we are building). In iter6-ssr.rs, replace all references to iter5 with
iter6.

Also, make sure that the .env file in $PROJECT_ROOT is configured correctly for
HOST_PORT and DATABASE_URL environment variables.

 We’re ready to start coding. Let’s begin with the routes definition in $PROJECT_
ROOT/src/iter6/routes.rs:

Validate
fields

User enters
username and

password
Errors?

Check for
errors

Yes

No

Route handler
function

Post form
data to Actix
web server

Display home
screen to user

DB

Credentials
match?

Display error message

No

Yes

Verify user credentials

2119.3 Implementing user authentication
use crate::handler::{handle_register, show_register_form, show_signin_form,
handle_signin};

use actix_files as fs;
use actix_web::web;

pub fn app_config(config: &mut web::ServiceConfig) {
config.service(

web::scope("")
.service(fs::Files::new("/static", "./static").show_files_listing())
.service(web::resource("/").route(web::get().to(show_register_form)))
.service(web::resource("/signinform").route(web::get().to(

show_signin_form)))
.service(web::resource("/signin").route(web::post().to(

handle_signin)))
.service(web::resource("/register").route(web::post().to(

handle_register))),
);

}

With this done, we can move on to the model definition in $PROJECT_ROOT/src/
iter6/model.rs. Add the TutorSigninForm data structure to model.rs:

// Form to enable tutors to sign in
#[derive(Serialize, Deserialize, Debug)]
pub struct TutorSigninForm {

pub username: String,
pub password: String,

}

With the basic structure of the project set up, we can now start to write code for sign-
ing in users.

9.3 Implementing user authentication
We have defined the routes and data model, so let’s now write the handler functions
for signing in users in $PROJECT_ROOT/src/iter6/handler/auth.rs.

 First, make the following change to the imports:

use crate::model::{TutorRegisterForm, TutorResponse,
TutorSigninForm, User};

Add the following handler functions, and replace references to iter5 with iter6 in
the same file:

pub async fn show_signin_form(tmpl: web::Data<tera::Tera>) ->
Result<HttpResponse, Error> {
let mut ctx = tera::Context::new();
ctx.insert("error", "");
ctx.insert("current_name", "");
ctx.insert("current_password", "");

Add imports for show_signin_form
and handle_signin. We have yet to
write this handler function.

Add a /signinform route to display the sign-in form to the user
when they visit the landing page. The show_signin-form handler
function (yet to be written) will display the HTML form to the user.

Add a /register route to process the sign-in
request from the user. A POST HTTP

request will be triggered on this route
when the user enters the username and
password and submits the sign-in form.

This is a Rust struct to capture the username and
password entered by the user and to make it
available in the handler function for processing.

Add TutorSigninForm to
the list of imports from
the data model.

This function initializes the
form fields and displays the
signin.html file to the user.

212 CHAPTER 9 Working with forms for course maintenance
let s = tmpl
.render("signin.html", &ctx)
.map_err(|_| EzyTutorError::TeraError(

"Template error".to_string()))?;

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}
pub async fn handle_signin(

tmpl: web::Data<tera::Tera>,
app_state: web::Data<AppState>,
params: web::Form<TutorSigninForm>,

) -> Result<HttpResponse, Error> {

Ok(HttpResponse::Ok().finish())
}

Recall that the show_signin_form handler function is invoked in response to a
request that arrives on the /signinform route, as defined in the routes definition.

 Let’s design the actual sign-in HTML form that will be displayed when the user
chooses to sign in to the EzyTutors web application. Create a new signin.html file
under $PROJECT_ROOT/static/iter6 folder, and add the following code to it. Note
that there should already be a register.html file present in the same folder.

<!doctype html>
<html>

<head>
<meta charset=utf-8>
<title>Tutor registration</title>

<style>
...

</style>
</head>

<body>
<div class="header">

<h1>Welcome to EzyTutor</h1>
<p>Start your own online tutor business in a few minutes</p>

</div>

<div class="center">
<h2>

Tutor sign in
</h2>
<form action=/signin method=POST>

<label for="userid">Enter username</label>

<input type="text" name="username" autocomplete="username"

value="{{current_name}}" minlength="6"
maxlength="12" required>

<label for="password">Enter password</label>

Listing 9.1 Tutor sign-in form

This is a placeholder for the function
that will handle sign-in requests.
We’ll come back to it later.

This is standard CSS; the code has been elided
for concision and won’t be explained here (see
the GitHub files for the full source code).

When the sign-in form is submitted by
the user, a POST request is made by
the browser to the Tutor SSR web
application on the /signin route.

Input field to enter
the username

Input field to enter
the password

2139.3 Implementing user authentication

A
to

reg
<input type="password" name="password"
autocomplete="new-password" value="{{current_password}}"
minlength="8" maxlength="12" required>

<label for="error">
<p style="color:red">{{error}}</p>

</label>

<button type=submit id="button2">Sign in</button>

</form>
<form action=/ method=GET>

<button type=submit id="button2">Register</button>
</form>

</div>
<p>
<div id="footer">

(c)Photo by Author
</div>

</p>

</html>

Add a user.html form to $PROJECT_ROOT/static/iter6. This will be displayed after a
successful sign-in by the user.

<!DOCTYPE html>
<html>

<head>
<meta charset=\"utf-8\" />
<title>{{title}}</title>

</head>

<body>
<h1>Hi, {{name}}!</h1>
<p>{{message}}</p>

</body>

</html>

Lastly, let’s look at the main() function in $PROJECT_ROOT/src/bin/iter6-ssr.rs.
Here are the imports:

#[path = "../iter6/mod.rs"]
mod iter6;
use actix_web::{web, App, HttpServer};
use actix_web::web::Data;
use dotenv::dotenv;
use iter6::{dbaccess, errors, handler, model, routes, state};
use routes::app_config;
use sqlx::postgres::PgPool;
use std::env;
use tera::Tera;

Listing 9.2 User notification screen

Label to display any error messages
(such as if the login is unsuccessful)

Button for user to submit the sign-in form
after entering the sign-in credentials

llows the user
 switch to the
istration form

214 CHAPTER 9 Working with forms for course maintenance
The main() function is in the following listing.

#[actix_web::main]
async fn main() -> std::io::Result<()> {

dotenv().ok();
//Start HTTP server
let host_port = env::var("HOST_PORT").expect(

"HOST:PORT address is not set in .env file");
println!("Listening on: {}", &host_port);
let database_url = env::var("DATABASE_URL").expect(

"DATABASE_URL is not set in .env file");
let db_pool = PgPool::connect(&database_url).await.unwrap();
// Construct App State
let shared_data = web::Data::new(state::AppState { db: db_pool });

HttpServer::new(move || {
let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),

"/static/iter6/**/*")).unwrap();

App::new()
.app_data(Data::new(tera))

.app_data(shared_data.clone())

.configure(app_config)
})
.bind(&host_port)?
.run()
.await

}

We can test it now. Run the following command from $PROJECT_ROOT:

cargo run --bin iter6-ssr

If you get an error saying “no implementation for u32 - usize,” run the following
command:

cargo update -p lexical-core

This will upgrade the package dependencies in the Cargo.lock file to the latest
version.

 From a browser, access the following route:

localhost:8080/signinform

You should be able to see the sign-in form. You can also invoke the sign-in form by
accessing the index route, /, which shows the registration form, and by clicking the
Sign In button.

 Once you have this working, you can implement the logic for signing in the user.
Add the following code to the $PROJECT_ROOT/src/iter6/handler.rs file. Don’t for-
get to remove the placeholder function with the same name that you created earlier.

Listing 9.3 main() function

d

e.

e
2159.3 Implementing user authentication

pub async fn handle_signin(
tmpl: web::Data<tera::Tera>,
app_state: web::Data<AppState>,
params: web::Form<TutorSigninForm>,

) -> Result<HttpResponse, Error> {
let mut ctx = tera::Context::new();
let s;
let username = params.username.clone();
let user = get_user_record(&app_state.db,

username.to_string()).await;
if let Ok(user) = user {

let does_password_match = argon2::verify_encoded(
&user.user_password.trim(),
params.password.clone().as_bytes(),

)
.unwrap();
if !does_password_match {

ctx.insert("error", "Invalid login");
ctx.insert("current_name", ¶ms.username);
ctx.insert("current_password", ¶ms.password);
s = tmpl

.render("signin.html", &ctx)

.map_err(|_| EzyTutorError::TeraError(
"Template error".to_string()))?;

} else {
ctx.insert("name", ¶ms.username);
ctx.insert("title", &"Signin confirmation!".to_owned());
ctx.insert(

"message",
&"You have successfully logged in to EzyTutor!".to_owned(),

);
s = tmpl

.render("user.html", &ctx)

.map_err(|_| EzyTutorError::TeraError(
"Template error".to_string()))?;

}
} else {

ctx.insert("error", "User id not found");
ctx.insert("current_name", ¶ms.username);
ctx.insert("current_password", ¶ms.password);
s = tmpl

.render("signin.html", &ctx)

.map_err(|_| EzyTutorError::TeraError(
"Template error".to_string()))?;

};

Ok(HttpResponse::Ok().content_type("text/html").body(s))
}

Let’s test the sign-in function now. Run the following command from $PROJECT_ROOT:

cargo run --bin iter6-ssr

Listing 9.4 Handler function for signing in

When the user submits the sign-in form,
call the database access function to check if
the user record is found in the database.

If the user record is found in the
database but the password entered by
the user does not match the one store
in the database, redisplay the sign-in
form to the user with an error messag

If the user record is found in th
database and the passwords
match, return a confirmation
message to the user.

If the username is not
found in the database,
return the sign-in form
with an error message.

216 CHAPTER 9 Working with forms for course maintenance
From a browser, access the following route:

localhost:8080/signinform

Enter the correct username and password. You should see the confirmation message.
 Load the sign-in form once again, and this time enter a valid username but the

wrong password. Verify that you get an error message.
 Try entering the form the third time, this time with an invalid username. Again,

you should see an error message.
 With this, we conclude this section. You’ve so far seen how to define templates

using the Tera template library to generate dynamic web pages and how to display the
registration and sign-in forms to the user. You’ve also implemented the code to regis-
ter and sign in a user and handle errors in user input. And you defined a custom error
type to unify error handling.

 Let’s now move on to managing the course details. We will first implement routing
and then develop the functions required for resource maintenance. From now on, we
will focus on the services and won’t look at the corresponding forms.

9.4 Routing HTTP requests
In this section, we’ll add the ability for a tutor to maintain courses. We currently have
all the handler functions in a single file, and we have to add handlers for course main-
tenance. Let’s first organize the handler functions into their own module. This will
give us the ability to split the handler functions across multiple source files.

 Start by creating a new folder named handler in the $PROJECT_ROOT/src/iter6
folder. Then move $PROJECT_ROOT/src/iter6/handler.rs into $PROJECT_
ROOT/src/iter6/handler, and rename it to auth.rs, as this file deals with the registra-
tion and login functionality.

 Create new course.rs and mod.rs files under the $PROJECT_ROOT/src/iter6/
handler folder. In mod.rs, add the following code to structure the files in the handler
folder and export them as a Rust module:

pub mod auth;
pub mod course;

Modify $PROJECT_ROOT/src/iter6/routes.rs as shown in the following listing.

use crate::handler::auth::{handle_register, handle_signin,
show_register_form, show_signin_form};

use crate::handler::course::{handle_delete_course, handle_insert_course,
handle_update_course};

use actix_files as fs;
use actix_web::web;

Listing 9.5 Adding routes for course maintenance

Contains the handler
functions for user registration
and sign-in functionality

Contains the handler
functions for course
maintenance functionality

Import handler functions for
user registration and sign-in

Import handler functions for
course maintenance (these
are yet to be created)

2179.4 Routing HTTP requests

re
f

new
a

rou
new
pub fn app_config(config: &mut web::ServiceConfig) {
config.service(

web::scope("")
.service(fs::Files::new("/static", "./static").show_files_listing())
.service(web::resource("/").route(web::get().to(show_register_form)))
.service(web::resource("/signinform").route(web::get().to(

show_signin_form)))
.service(web::resource("/signin").route(web::post().to(

handle_signin)))
.service(web::resource("/register").route(web::post().to(

handle_register))),
);

}

pub fn course_config(config: &mut web::ServiceConfig) {
config.service(

web::scope("/courses")
.service(web::resource("new/{tutor_id}").route(web::post().to(

handle_insert_course)))
.service(

web::resource("{tutor_id}/{course_id}").route(web::put().to(
handle_update_course)),

)
.service(

web::resource("delete/{tutor_id}/{course_id}")
.route(web::delete().to(handle_delete_course)),

),
);

}

Where we have specified the {tutor_id} and {course_id} as path parameters, they
can be extracted from the request’s path with help of extractors provided by the Actix
Web framework.

 Next, we’ll add the new course maintenance routes in $PROJECT_ROOT/bin/
iter6-ssr.rs. Make the following change to import the routes we defined in the previous
code listing:

use routes::{app_config, course_config};

In the main() function, make the following change to add course_config routes:

HttpServer::new(move || {
let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),

"/static/iter6/**/*")).unwrap();

App::new()
.app_data(Data::new(tera))
.app_data(shared_data.clone())
.configure(course_config)
.configure(app_config)

})
.bind(&host_port)?
.run()
.await

Original route
definition

Add a new route definition
for course maintenance.

/courses will be the
route prefix for course
maintenance routes.

The POST
quest route
or adding a
 course for

 tutor-id on
te /courses/
/{tutor_id}

The PUT request
route for updating an
existing course for a

tutor-id on route
/courses/{tutor_id}/

{course_id}
The DELETE request route to delete an

existing course for a tutor-id on route /
courses/delete/{tutor_id}/{course_id}

Add the course maintenance routes.
Note that this is placed ahead of the
app_config line. This matches all
routes with a /courses/ prefix.

The existing route for auth (registering
and signing in). This matches all routes
without the /courses/ prefix.

218 CHAPTER 9 Working with forms for course maintenance
Next, let’s add placeholder handler functions for course maintenance in $PROJECT_
ROOT/src/iter6/handler/course.rs. We’ll write the actual logic to call the backend
web service a little later.

use actix_web::{web, Error, HttpResponse, Result};
use crate::state::AppState;

pub async fn handle_insert_course(
_tmpl: web::Data<tera::Tera>,
_app_state: web::Data<AppState>,

) -> Result<HttpResponse, Error> {
println!("Got insert request");
Ok(HttpResponse::Ok().body("Got insert request"))

}

pub async fn handle_update_course(
_tmpl: web::Data<tera::Tera>,
_app_state: web::Data<AppState>,

) -> Result<HttpResponse, Error> {
Ok(HttpResponse::Ok().body("Got update request"))

}

pub async fn handle_delete_course(
_tmpl: web::Data<tera::Tera>,
_app_state: web::Data<AppState>,

) -> Result<HttpResponse, Error> {
Ok(HttpResponse::Ok().body("Got delete request"))

}

As you will note, the handler functions do nothing for now except return a message.
We will implement the intended handler functionality later in this chapter.

 Note the use of underscores (_) before the variable names. We are not going to
use these parameters within the body of the handler function yet, and adding an
underscore before the variable names will prevent compiler warnings.

 Let’s do a quick test of these four routes. Run the server with this command:

cargo run --bin iter6-ssr

To test the POST, PUT, and DELETE requests, try the following commands from the com-
mand line:

curl -H "Content-Type: application/json" -X POST -d '{}'
localhost:8080/courses/new/1

curl -H "Content-Type: application/json" -X PUT -d '{}'
localhost:8080/courses/1/2

curl -H "Content-Type: application/json" -X DELETE -d '{}'
localhost:8080/courses/delete/1/2

You should see the following messages returned from the server corresponding to the
three HTTP preceding requests:

Listing 9.6 Placeholders for course maintenance handler functions

2199.5 Creating a resource with the HTTP POST method
Got insert request
Got update request
Got delete request

We’ve now verified that the routes have been established correctly, and the HTTP
requests are being routed to the correct handler functions. In the next section, we’ll
implement the logic that adds a course for a tutor in the handler function.

9.5 Creating a resource with the HTTP POST method
We’ll now add a new course for a tutor by sending an API request to the backend tutor
web service that we wrote in chapter 6. Go to the code repo for chapter 6 (/path-to-
chapter6-folder/ezytutors/tutor-db), and start the tutor web service with the following
command:

cargo run --bin iter5

The tutor web service should now be ready to receive requests from the tutor web
application. Let’s write the code for the course handler in the web application in
$PROJECT_ROOT/src/iter6/handler/course.rs.

 Modify the $PROJECT_ROOT/src/iter6/model.rs file to add the following.

#[derive(Deserialize, Debug, Clone)]
pub struct NewCourse {

pub course_name: String,
pub course_description: String,
pub course_format: String,
pub course_duration: String,
pub course_structure: Option<String>,
pub course_price: Option<i32>,
pub course_language: Option<String>,
pub course_level: Option<String>,

}

#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct NewCourseResponse {

pub course_id: i32,
pub tutor_id: i32,
pub course_name: String,
pub course_description: String,
pub course_format: String,
pub course_structure: Option<String>,
pub course_duration: String,
pub course_price: Option<i32>,
pub course_language: Option<String>,
pub course_level: Option<String>,
pub posted_time: String,

}

impl From<web::Json<NewCourseResponse>> for NewCourseResponse {

Listing 9.7 Data model changes for course maintenance

Struct to represent user-provided
data for creating a new course

Struct to represent the response
received from the backend tutor
web service on new course creation

Trait implementation to convert JSON
data received from the tutor web

service for new course creation to the
NewCourseResponse struct. The fields

of data type String (heap-allocated)
are cloned, but those of integer type

(stack allocated) don’t need to be.

220 CHAPTER 9 Working with forms for course maintenance

A
st
fn from(new_course: web::Json<NewCourseResponse>) -> Self {
NewCourseResponse {

tutor_id: new_course.tutor_id,
course_id: new_course.course_id,
course_name: new_course.course_name.clone(),
course_description: new_course.course_description.clone(),
course_format: new_course.course_format.clone(),
course_structure: new_course.course_structure.clone(),
course_duration: new_course.course_duration.clone(),
course_price: new_course.course_price,
course_language: new_course.course_language.clone(),
course_level: new_course.course_level.clone(),
posted_time: new_course.posted_time.clone(),

}
}

}

Also, add the following module import, which is required by the From trait
implementation:

use actix_web::web;

Next, let’s rewrite the handler function to create a new course. In $PROJECT_
ROOT/src/iter6/handler/course.rs, add the following module imports:

use actix_web::{web, Error, HttpResponse, Result};
use crate::state::AppState;
use crate::model::{NewCourse, NewCourseResponse, UpdateCourse,

UpdateCourseResponse};
use serde_json::json;

use crate::state::AppState;

Next, modify the handle_insert_course handler function as shown in the following
listing.

pub async fn handle_insert_course(
_tmpl: web::Data<tera::Tera>,
_app_state: web::Data<AppState>,
path: web::Path<i32>,
params: web::Json<NewCourse>,

) -> Result<HttpResponse, Error> {
let tutor_id = path.into_inner();
let new_course = json!({

"tutor_id": tutor_id,
"course_name": ¶ms.course_name,
"course_description": ¶ms.course_description,
"course_format": ¶ms.course_format,
"course_structure": ¶ms.course_structure,
"course_duration": ¶ms.course_duration,

Listing 9.8 Handler function for inserting a new course

Actix Web-related
imports

The Rust structs that we
just created to hold the
input and output data for
the tutor web service

A package containing utilities to
serialize and deserialize data between
JSON format and Rust structs.

Handler function to add a new
course offering for a tutor

Tera template object injected
in the main() function

pplication
ate object

The parameters to create a new course (sent as
JSON data in the body of the HTTP request) can be
accessed using this Actix extractor. If you are
sending the HTTP request from an HTML form,
change this to type web::Form<NewCourse>.

The path parameter,
tutor_id, is sent as
part of the course
creation HTTP
request, and it can
be accessed with
this Actix extractor

From the HTTP request,
extract the path
parameter (tutor_id) and
JSON data parameters, and
construct a new JSON
object to pass to the
backend tutor web service.

2219.6 Updating a resource with the HTTP PUT method
"course_price": ¶ms.course_price,
"course_language": ¶ms.course_language,
"course_level": ¶ms.course_level

});
let awc_client = awc::Client::default();
let res = awc_client

.post("http://localhost:3000/courses/")

.send_json(&new_course)

.await
.unwrap()

.body()

.await?;
println!("Finished call: {:?}", res);
let course_response: NewCourseResponse = serde_json::from_str(

&std::str::from_utf8(&res)?)?;
Ok(HttpResponse::Ok().json(course_response))

}

In the preceding listing, the Tera template object is not being used, but you are
encouraged to build an HTML interface with Tera templates as an exercise. The
application state object is not being used either, but it’s shown to illustrate how appli-
cation state can be accessed within handler functions.

 Build and run the web SSR client from the $PROJECT_ROOT as follows:

cargo run --bin iter6-ssr

Let’s test the new course creation with a curl request. Ensure that the tutor web ser-
vice is running. Then, from another terminal, run the following command:

curl -X POST localhost:8080/courses/new/1 -d '{"course_name":"Rust web
development", "course_description":"Teaches how to write web apps in
Rust", "course_format":"Video", "course_duration":"3 hours",
"course_price":100}' -H "Content-Type: application/json"

Verify that the new course has been added by running a GET request on the tutor web
service:

curl localhost:3000/courses/1

You should see the new course in the list of courses retrieved for the tutor-id of 1. In
the next section, we’ll write the handler function to update a course.

9.6 Updating a resource with the HTTP PUT method
Let’s write the data structure for updating a course in the $PROJECT_ROOT/src/
iter6/model.rs file.

Instantiate the Actix web client
(HTTP client) to communicate
with the tutor web service.

Send the HTTP POST request to
the tutor web service, along with
the JSON data to create a new
course, and receive a response.

Convert the JSON data received (as part of the HTTP response)
from the tutor web service into the Rust NewCourseResponse
data struct. We implemented the From trait in the model.rs
file to specify how this conversion should be done.

Return the HTTP response data
received from the tutor web service to
the HTTP client that made the course

creation request on the tutor web app.

222 CHAPTER 9 Working with forms for course maintenance

// Update course
#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct UpdateCourse {

pub course_name: Option<String>,
pub course_description: Option<String>,
pub course_format: Option<String>,
pub course_duration: Option<String>,
pub course_structure: Option<String>,
pub course_price: Option<i32>,
pub course_language: Option<String>,
pub course_level: Option<String>,

}

#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct UpdateCourseResponse {

pub course_id: i32,
pub tutor_id: i32,
pub course_name: String,
pub course_description: String,
pub course_format: String,
pub course_structure: String,
pub course_duration: String,
pub course_price: i32,
pub course_language: String,
pub course_level: String,
pub posted_time: String,

}

impl From<web::Json<UpdateCourseResponse>> for UpdateCourseResponse {
fn from(new_course: web::Json<UpdateCourseResponse>) -> Self {

UpdateCourseResponse {
tutor_id: new_course.tutor_id,
course_id: new_course.course_id,
course_name: new_course.course_name.clone(),
course_description: new_course.course_description.clone(),
course_format: new_course.course_format.clone(),
course_structure: new_course.course_structure.clone(),
course_duration: new_course.course_duration.clone(),
course_price: new_course.course_price,
course_language: new_course.course_language.clone(),
course_level: new_course.course_level.clone(),
posted_time: new_course.posted_time.clone(),

}
}

}

You’ll notice that we have defined similar data structures for creating a course (New-
Course and NewCourseResponse) and for updating a course (UpdateCourse and
UpdateCourseResponse). Is it possible to optimize by reusing the same structs for both
the create and update operations? Some optimization might be possible in a real-world
scenario. However, for the sake of this example, we will assume that the set of manda-
tory fields needed to create a new course are different from those needed to update a

Listing 9.9 Data model changes for updating courses

Rust struct for capturing modified course
information from the user. The Option<T>
type denotes that not all course information
must be sent in the course update request.

Rust struct to store data received
from the tutor web service for
the course update request

The From trait implementation to
convert the JSON data received from the

tutor web service into the Rust
UpdateCourseResponse struct. The fields

of data type String (heap-allocated) are
cloned, but those of integer type (stack

allocated) don’t need to be.

2239.6 Updating a resource with the HTTP PUT method
course (where there are no mandatory fields). Also, separating the data structs for cre-
ate and update operations makes the code easier to understand while learning.

 Next, let’s rewrite the handler function for updating course details in $PROJECT_
ROOT/src/iter6/handler/course.rs.

pub async fn handle_update_course(
_tmpl: web::Data<tera::Tera>,
_app_state: web::Data<AppState>,
web::Path((tutor_id, course_id)): web::Path<(i32, i32)>,
params: web::Json<UpdateCourse>,

) -> Result<HttpResponse, Error> {
let update_course = json!({

"course_name": ¶ms.course_name,
"course_description": ¶ms.course_description,
"course_format": ¶ms.course_format,
"course_duration": ¶ms.course_duration,

"course_structure": ¶ms.course_structure,
"course_price": ¶ms.course_price,
"course_language": ¶ms.course_language,
"course_level": ¶ms.course_level,

});
let awc_client = awc::Client::default();
let update_url = format!("http://localhost:3000/courses/{}/{}",

tutor_id, course_id);
let res = awc_client

.put(update_url)

.send_json(&update_course)

.await
.unwrap()

.body()

.await?;
let course_response: UpdateCourseResponse = serde_json::from_str(

&std::str::from_utf8(&res)?)?;

Ok(HttpResponse::Ok().json(course_response))

}

Make sure to import the update-related structs as follows:

use crate::model::{NewCourse, NewCourseResponse, UpdateCourse,
UpdateCourseResponse};

Build and run the web SSR client from the $PROJECT_ROOT:

cargo run --bin iter6-ssr

Let’s test this with a curl request that updates the course we previously created. Ensure
that the tutor web service is running. Then, from a new terminal, run the following
command. Replace the tutor-id and course-id with those for the course that you
previously created:

Listing 9.10 Handler function for updating a course

Construct JSON data to send to the tutor
web service in the HTTP request body.

Create an instance of
the Actix HTTP client.

Construct the URL
with path parameters.Send the HTTP request to

the tutor web service to
update course details,
and receive a response.

Convert the JSON response data
received from the tutor web
service into a Rust struct.

224 CHAPTER 9 Working with forms for course maintenance

.

C

w
par
curl -X PUT -d '{"course_name":"Rust advanced web development",
"course_description":"Teaches how to write advanced web apps in Rust",
"course_format":"Video", "course_duration":"4 hours",
"course_price":100}' localhost:8080/courses/1/27 -H
"Content-Type: application/json"

Verify that the course details have been updated by running a GET request on the tutor
web service (replace the course_id of 1 with the correct value for the course you
updated):

curl localhost:3000/courses/1

You should see the updated course details in the output. Let’s move on to deleting a
course.

9.7 Deleting a resource with the HTTP DELETE method
Let’s update the handler function to delete a course in $PROJECT_ROOT/src/iter6/
handler/course.rs.

pub async fn handle_delete_course(
_tmpl: web::Data<tera::Tera>,
_app_state: web::Data<AppState>,
path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, Error> {
let (tutor_id, course_id) = path.into_inner();
let awc_client = awc::Client::default();
let delete_url = format!("http://localhost:3000/courses/{}/{}",

tutor_id, course_id);
let _res = awc_client.delete(delete_url).send().await.unwrap();
Ok(HttpResponse::Ok().body("Course deleted"))

}

Build and run the tutor web app from the $PROJECT_ROOT:

cargo run --bin iter6-ssr

Now run the delete request, replacing the tutor_id and course_id values with your
own:

curl -X DELETE localhost:8080/courses/delete/1/19

Verify that the course has been deleted by running a query on the tutor web service
(replace the tutor_id with your own):

curl localhost:3000/courses/1

You should see that the course has been deleted in the tutor web service.
 You have now seen how to add, update, and delete a course from the web client

frontend written in Rust. As an exercise, you can try the following additional tasks:

Listing 9.11 Handler function for deleting a course

Actix extractor for path
parameters tutor_id and
course_id, which uniquely
identify the course to delete Instantiate the Actix

HTTP client to
communicate with
the tutor web service

onstruct
a URL

ith path
ameters.

Send the DELETE
HTTP request to the

tutor web service.
Return a confirmation

to the caller.

225Summary
 Implement a new route to retrieve the list of courses for a tutor.
 Create HTML and Tera templates for creating, updating, and deleting a course.
 Add additional error handling for cases with invalid user input.

Once all these elements are in place, our application will be on the path to comple-
tion. We can congratulate ourselves: the hardest part of our project is done!

 We have come to the conclusion of this chapter and also this part of the book on
Rust web application development. In the next chapter, we’ll take a look at an
advanced topic relating to asynchronous servers in Rust.

Summary
 You structured and wrote a web application project in Rust that talks to a back-

end web service.
 You designed and implemented user authentication functionality that allows

the user to enter their credentials in an HTML form and then stores them in a
local database. The handling of errors in user input was also covered.

 You saw how to structure the project and modularize the code for a web front-
end application that includes HTTP request handlers, database interaction
logic, a data model, and web UI and HTML templates.

 You wrote code to create, update, and delete specific data in the database in
response to HTTP POST, PUT, and DELETE method requests. You also learned
how to extract parameters sent as part of the HTTP requests.

 You learned how to construct HTTP requests to invoke APIs on a backend web
service and to interpret the responses received, including serializing and deseri-
alizing data.

 In summary, you have learned how to build a web application in Rust that can
communicate with a backend web service, interact with a local database, and
perform basic create, update, and delete operations on data in response to
incoming HTTP requests.

226 CHAPTER 9 Working with forms for course maintenance

Part 3

Advanced topic: Async Rust

The third part of this book covers three advanced topics that are not
directly related to the tutor web service and web app that we have built so far, but
that are important topics for anyone interested in building complex Rust servers
and preparing them for production deployment.

 Chapter 10 is devoted to asynchronous programming. Although not new,
asynchronous (or async) programming remains a hot topic today because it is of
the utmost importance in modern systems. Async programming allows develop-
ers to make the best possible use of computing resources when data processing
activities vary widely in time or when there is latency in the system. Async pro-
gramming is all the more significant for distributed systems. We’ll start with a
brief overview of concurrent programming and then look at examples of how to
write multithreaded versus async programs in Rust. We’ll delve deep into Rust’s
async primitives, such as futures, and see how to write async programs in Rust
from first principles.

 In chapter 11, we’ll move on to the more complex world of peer-to-peer
(P2P) architectures, which further build on async programming. P2P is not
required for simple, low-traffic web applications, like the examples in this book,
but you should be aware of Rust’s vast potential in advanced distributed architec-
tures. P2P servers are different from the web services that we saw in the first part
of the book, and this section shows how it can be advantageous to use P2P archi-
tectures for certain classes of applications.

 In chapter 12, we will look at the deployment of Rust-based web applications.
Containers are a mature and widely accepted technology, both in the cloud and
in corporate data centers. This is no surprise given the flexibility and other ben-

228 CHAPTER
efits offered by containers (isolation, security, startup times, etc.). In complex environ-
ments, with large distributed applications, containers need to be orchestrated with
solutions like Kubernetes or, beyond pure Kubernetes, OpenShift. In this chapter,
you’ll learn how to use Docker in a simple context while still reaping its benefits. We
will build and deploy EzyTutors using Docker Compose, a basic orchestration tool for
Docker.

 Having read this part, you will be able to apply what you have learned to develop
different types of async applications in Rust and deploy any type of Rust server or
application using Docker.

Understanding
async Rust
In the previous chapters, we built a web service and a web application using Rust.
We’ve used the Actix Web framework to handle the network communications,
mostly submitting HTTP requests to the Actix web server from a single browser win-
dow or a command-line terminal. But have you thought about what happens when
tens or hundreds of users send requests concurrently to register tutors or courses?
Or, more broadly, how modern web servers handle tens of thousands of concurrent
requests? Read on to find out.

 In this part of the book, we will put our EzyTutors web application aside for a
while so we can focus on the fascinating aspects of Rust that allow us to implement
efficient, state-of-the-art services. We will come back to EzyTutors at the end of the
book, where you’ll see how to deploy it in an efficient and flexible way.

This chapter covers
 Introducing async programming concepts

 Writing concurrent programs

 Diving deeper into async Rust

 Understanding futures

 Implementing a custom future
229

230 CHAPTER 10 Understanding async Rust
 In this chapter, we will thus take a detour from our web application and look
under the hood to understand what asynchronous Rust is, why we might need to use
it, and how it works in practice. By the end of this chapter, you’ll have a better under-
standing of the magic that Actix (and other modern web frameworks) perform to
handle heavy concurrent loads while delivering swift responses to user requests.

NOTE This chapter and the next are intended as advanced topics, aimed at
those who want to get into the details of asynchronous programming in Rust.
It is not necessary to master these skills, or even read these chapters, to do
web programming in Rust. You can skip these chapters now and come back to
them later when you are ready for an async deep-dive.

Let’s get started with a few basic concepts involved in concurrent programming.

10.1 Introducing async programming concepts
In computer science, concurrency is the ability of different parts of a program to be exe-
cuted out of order, or at the same time simultaneously, without affecting the final
outcome.

 Strictly speaking, executing parts of a program out of order is concurrency, whereas
executing multiple tasks simultaneously is parallelism. Figure 10.1 illustrates this differ-
ence, but for this chapter, let’s use the term concurrency to broadly refer to both of
these aspects. In practice, both concurrency and parallelism are used in conjunction
to achieve the overall outcome of processing multiple requests that arrive at the same
time in an efficient and safe manner.

Figure 10.1 Concurrency vs. parallelism

Parallel
processing

Concurrent
processing

End of
processing

Start
processing

CPU 1 CPU 2

Task 1 Task 2

CPU 1 CPU 2

Task
2.2

Task
1.3

Task
2.3

Task
2.5

Task
1.1

Task
1.2

Task
1.4

Task
2.4

Task
1.5

Task
2.1

In concurrent processing,
each available CPU/core
allocates fractional time to
execute a portion of the
scheduled tasks. In this
figure

• There are two tasks to be
 scheduled: task 1 and
 task 2.
• There are two available
 CPUs: CPU 1 and CPU 2.
• Tasks 1.1 to 1.5 and
 tasks 2.1 to 2.5
 represent smaller
 chunks of tasks 1 and 2.
• CPU 1 and CPU 2 load
 each of these code
 chunks, one at a time,
 and execute them.

23110.1 Introducing async programming concepts
You may wonder why one would want to execute parts of a program out of order.
After all, programs are supposed to execute from top to bottom, statement by state-
ment, right?

 There are two primary drivers for using concurrent programming—one from the
demand side and another from the supply side:

 Demand side—On the user demand side, the expectation for programs to run
faster drives software developers to consider concurrent programming tech-
niques.

 Supply side—On the hardware supply side, the availability of multiple CPUs, and
multiple cores in CPUs, on computers (both at the consumer level and in high-
end servers) creates an opportunity for software developers to write programs
that can take advantage of multiple cores and processors to make the overall
execution faster and efficient.

But designing and coding concurrent programs is complex. It starts with determining
what tasks can be performed concurrently. How do developers determine this? Let’s
go back to figure 10.1. It shows two tasks, task 1 and task 2, to be executed. Let’s
assume that these tasks are two functions in a Rust program. The easiest way to visual-
ize this is to schedule task 1 on CPU 1 and task 2 on CPU 2. This is what the parallel
processing example shows. But is this the most efficient model for utilizing the avail-
able CPU time?

 It may not be. To understand this better, let’s classify all processing performed by
software programs broadly into two categories: CPU-intensive tasks and I/O-intensive
tasks, although most code in the real world involves a mix of both. Examples of CPU-
intensive tasks include genome sequencing, video encoding, graphics processing, and
computing cryptographic proofs in a blockchain. I/O-intensive tasks include access-
ing data from file systems or databases and processing network TCP/HTTP requests.

 In CPU-intensive tasks, most of the work involves accessing data in memory, load-
ing program instructions and data on the stack, and executing them. What kind of
concurrency is possible here? Let’s consider a simple program that takes a list of num-
bers and computes the square root of each number. The programmer could write a
single function that does the following:

 Takes a reference to a list of numbers loaded into memory
 Iterates through the list in a sequence
 Computes the square root for each number
 Writes the result back to memory

This is an example of sequential processing. In a computer where there are multiple
processors or cores, the programmer also has the opportunity to structure the pro-
gram in such a way that each number is read from memory and sent to the next avail-
able CPU or core for square-root processing because each number can be processed
independently of the others. This is a trivial example, but it illustrates the type of

232 CHAPTER 10 Understanding async Rust
opportunity where programmers can utilize multiple processors or cores in complex
CPU-intensive tasks.

 Let’s next look at where concurrency can be used in I/O-intensive tasks. Let’s take
the familiar example of HTTP request processing in web services and applications,
which is generally more I/O-intensive than CPU-intensive.

 In web applications, data is stored in databases, and all create, read, update, and
delete operations, corresponding to HTTP POST, GET, PUT, and DELETE requests respec-
tively, require the web application to transfer data to and from the database. This
requires the processor (CPU) to wait for the data to be read or written to disk. In spite
of advances in disk technologies, disk access is slow (in the range of milliseconds, as
opposed to memory access, which is in nanoseconds). So, if the application is trying to
retrieve 10,000 user records from a Postgres database, it makes calls to the operating
system for disk access, and the CPU waits during this time. What options does the pro-
grammer have when a part of their code makes the processor wait? The answer is that
the processor could perform another task in this time. This is an example of an
opportunity where programmers can design concurrent programs.

 Another source of “delays,” or “waiting,” in web applications is network request
handling. The HTTP model is quite simple: The client establishes a connection to the
remote server and issues a request (sent as an HTTP request message). The server
then processes the request, issues a response, and closes the connection. The chal-
lenge arises when a new request arrives while the processor is still serving the previous
request. For example, suppose a GET request arrives to retrieve a set of courses for
tutor 1, and while this is being processed, a new request arrives to POST a new course
from tutor 2. Should the second request wait in a queue until the first request is fully
processed? Or can we schedule the second request on the next available core or pro-
cessor? This is when we start to appreciate the need for concurrent programming.

NOTE HTTP/2 has introduced some improvements that minimize the num-
ber of request-response cycles and handshakes. For more details on HTTP/2,
see Barry Pollard’s HTTP/2 in Action (Manning, 2019).

We have so far looked at examples of opportunities where programmers can use con-
current programming techniques, both in CPU-intensive and I/O-intensive tasks.
Let’s now look at the tools available to programmers for writing concurrent programs.

 Figure 10.2 shows the various options programmers have to structure their code
for execution on CPUs. Specifically, it highlights the differences between synchronous
processing and the two modes of concurrent processing: multithreading and async pro-
cessing. It illustrates the differences with an example where three tasks need to be exe-
cuted: task 1, task 2, and task 3.

 Let’s also assume task 1 contains three parts:

 Part 1—Processing input data
 Part 2—A blocking operation
 Part 3—Packaging the data to be returned

23310.1 Introducing async programming concepts
Note the blocking operation. This means that the current thread of execution is
blocked, waiting for some external operation to complete, such as reading from a
large file or database. Let’s look at how we could handle these tasks in three different
programming modes: synchronous processing, multithreaded processing, and async
processing.

 In the case of synchronous processing, the processor completes part 1, waits for
the result of the blocking operation, and then proceeds to execute part 3 of the task.

 If the same task were to be executed in multithreaded mode, task 1, which con-
tains the blocking operation, could be spawned off on a separate operating system
thread and the processor could execute other tasks on another thread.

 If async processing is used, an async runtime (such as Tokio) would manage the
scheduling of tasks on the processor. In this case, it would execute task 1 until it
blocked, waiting for I/O. At this point, the async runtime would schedule task 2.
When the blocking operation in task 1 completed, task 1 would again be scheduled
for execution on the processor.

 At a high level, this is how synchronous processing differs from the two modes of
concurrent processing. Programmers need to determine the best approach for the
use case and computation involved.

 Let’s now look at a second example of a web server receiving multiple simultane-
ous network requests and see how the two concurrent processing techniques can be
applied.

 The multithreading approach to concurrency involves using native operating sys-
tem threads, as shown in figure 10.3. In this case, a new thread is started within the
web server process to handle each incoming request. The Rust standard library pro-
vides good built-in support for multithreading with the std::thread module.

Thread 1 Thread 1Thread 1 Thread 2

Synchronous
processing

AsynchronousMultithreading

Concurrent processing

Task 1

Blocking

Task 1

Task 2

Task 3

Task 1

Task 2

Task 1

Task 3

Task 1 Task 2

Task 3

Synchronous

Figure 10.2 Synchronous,
asynchronous, and
multithreading processing

234 CHAPTER 10 Understanding async Rust
In this model, we are distributing the program (web server) computation on multiple
threads. This can improve performance because the threads can run simultaneously,
but it’s not as simple as that. Multithreading adds a new layer of complexity:

 The order of execution of threads is unpredictable.
 There can be deadlocks when multiple threads are trying to access the same

piece of data in memory.
 There can be race conditions, where one thread may have read a piece of data

from memory and be performing some computation with it, and another
thread updates the value in the meantime.

Writing multithreaded programs requires careful design compared to single-threaded
programs.

 Another challenge in multithreading has to do with the type of threading model
implemented by the programming language. There are two types of threading models:
a 1:1 thread model, where there is a single operating system thread per language thread,
and an M:N model, where there are M green (quasi) threads per N operating system
threads. The Rust standard library implements the 1:1 thread model, but this does not
mean that we can create an endless number of threads corresponding to new network
requests. Each operating system has a limit on the number of threads, and this is also
influenced by the stack size and amount of virtual memory available in the server. In
addition, there is a context-switching cost associated with multiple threads—when a
CPU switches from one thread to another, it needs to save the local data, program
pointer, etc., of the current thread, and load the program pointer and data for the next
thread. Overall, using operating system threads incurs these context-switching costs
along with some operating system resource costs for managing the threads.

Thread 1

Thread 2

Thread 3

Thread n

User 1

User 2

User 3
....

....
User n

GET

POST

PUT

DELETE

HTTP request handlers

Database

A number of simultaneous HTTP requests are sent from the users to
the web server.

For each incoming request, a separate operating system thread is
created to handle the incoming request.

The operating system schedules the threads for execution on the
processor/core, which make database requests and send back
responses to the users.

Web server

Figure 10.3 Multithreading in
HTTP request processing

23510.1 Introducing async programming concepts
 Thus, multithreading, while suitable for certain scenarios, is not the perfect solu-
tion for all situations that require concurrent processing. The second approach to
concurrent programming (which has become increasingly popular over the last sev-
eral years) is asynchronous programming (or async for short). In web applications,
async programming can be used on both the client side and server side. Async web
request processing on the server side is illustrated in figure 10.4.

Figure 10.4 Async programming in HTTP request processing

Figure 10.4 shows how async processing can be used by an API server or web service to
handle multiple incoming requests concurrently on the server side. Here, as each
HTTP request is received by the async web server, the server spawns a new async task
to handle it. The scheduling of various async tasks on the available CPUs is handled by
the async runtime.

 Figure 10.5 shows what async looks like on the client side. Let’s consider the exam-
ple of a JavaScript application running within a browser trying to upload a file to the
server. Without concurrency, the screen would freeze for the user until the file was
uploaded and a response was received from the server. The user wouldn’t be able to

User 1

User 2

User 3

User n

GET

POST

PUT

....

....

DELETE

HTTP request handlers

Async
task 1

Async
task 2

Async
task 1

Async
task 3

Async
task n

Async tasks scheduled
on the processor

Database

Web server

Users send HTTP requests to the web server simultaneously.

A
sy

nc
 ru

nt
im

e
 (e

.g
.,

To
ki

o)

A new async task is spawned to process each incoming request.

The async tasks are managed by the async runtime (e.g., Tokio).

The async runtime schedules the async tasks for execution on the processor/core.
When task 1 waits for a database operation to complete, the async runtime schedules
the next task for execution. When the blocking operation in task 1 completes, the async
runtime is notified, which then reschedules task 1 on the processor for completion.

Async task n

Async task 2

Async task 3

Async task 1

236 CHAPTER 10 Understanding async Rust
do anything else during this period. With async on the client side, the browser-based
UI can continue to process user inputs while waiting for the server to respond to the
previous request.

Figure 10.5 Client-side async processing

You’ve now seen the differences between synchronous, multithreaded, and async pro-
gramming in several examples. Let’s implement these different techniques in code.

10.2 Writing concurrent programs
In this section, we’ll write synchronous, multithreaded, and async programs in Rust.
We’re going to dive into some beginner code straight away, showing synchronous pro-
cessing.

 Start a new project with these commands:

cargo new --bin async-hello
cd async-hello

Add the following code to src/main.rs:

fn main() {
println!("Hello before reading file!");
let file_contents = read_from_file();
println!("{:?}", file_contents);
println!("Hello after reading file!");

}

fn read_from_file() -> String {
String::from("Hello, there")

}

Task 1 on hold until
server responds

 Continues
task 1

Server response
received

Task 1

Continues
task 1

Receive
server

response
and do

something

Client-side synchronous
processing

Client-side asynchronous
processing

Client Server

Make request to
server

Server response
received

Server

Task 1 Make request to
server

Client

23710.2 Writing concurrent programs
This is a simple Rust program. It has a read_from_file() function that simulates
reading a file and returning the contents. This function is invoked from the main()
function. Note that the call from the main() function to the read_from_file() func-
tion is synchronous, meaning that the main() function waits for the called function to
finish executing and return before continuing with the rest of the main() program.

 Run the program:

cargo run

You should see the following printed out to your terminal:

Hello before reading file!
"Hello, there"
Hello after reading file!

There’s nothing special about this program. Next, let’s simulate a delay in reading the
file by adding a timer. Modify src/main.rs to look like this:

use std::thread::sleep;
use std::time::Duration;

fn main() {
println!("Hello before reading file!");
let file_contents = read_from_file();
println!("{:?}", file_contents);
println!("Hello after reading file!");

}

// function that simulates reading from a file
fn read_from_file() -> String {

sleep(Duration::new(2, 0));
String::from("Hello, there")

}

In this code, we import the sleep function from the standard library. The sleep()
function puts the current thread to sleep for a specified amount of time, and in the
Rust standard library, it’s a blocking function, meaning that it blocks the current
thread of execution for the duration specified. This is a poor way to simulate delays in
reading a file, but it serves our purposes here.

 Note that the main() function still only synchronously calls the read_from_file()
function, meaning that it waits until the called function is complete (including the
added delay) before printing out the file contents.

 Run the program:

cargo run

You can now see the final print statement on your terminal after the specified delay
period.

 Let’s add another computation to the mix. Modify the program in src/main.rs as
follows:

Import the sleep function
from the standard library.Import the Duration data type,

which represents a span of time.

Put the current thread to
sleep for 2 seconds before
returning from the function.

238 CHAPTER 10 Understanding async Rust
use std::thread::sleep;
use std::time::Duration;

fn main() {
println!("Hello before reading file!");
let file1_contents = read_from_file1();
println!("{:?}", file1_contents);
println!("Hello after reading file1!");
let file2_contents = read_from_file2();
println!("{:?}", file2_contents);
println!("Hello after reading file2!");

}

// function that simulates reading from a file
fn read_from_file1() -> String {

sleep(Duration::new(4, 0));
String::from("Hello, there from file 1")

}

// function that simulates reading from a file
fn read_from_file2() -> String {

sleep(Duration::new(2, 0));
String::from("Hello, there from file 2")

}

Run the program again, and you’ll see that there is a 4-second delay in the execution
of the first function and a 2-second delay for the second function, amounting to a
total delay of 6 seconds. Can we not do better?

 Since the two files are distinct, why can’t we read the two files at the same time?
Can we use a concurrent programming technique here? Sure, we can use the native
operating system threads to achieve this. Modify the code in src/main.rs as shown:

use std::thread;
use std::thread::sleep;
use std::time::Duration;

fn main() {
println!("Hello before reading file!");
let handle1 = thread::spawn(|| {

let file1_contents = read_from_file1();
println!("{:?}", file1_contents);

});
let handle2 = thread::spawn(|| {

let file2_contents = read_from_file2();
println!("{:?}", file2_contents);

});
handle1.join().unwrap();
handle2.join().unwrap();

}

// function that simulates reading from a file
fn read_from_file1() -> String {

sleep(Duration::new(4, 0));
String::from("Hello, there from file 1")

}

Call the function that simulates
a delay in reading from file 1.

Call the function that simulates
a delay in reading from file 2.

Spawn a new thread
to read file 1.

Spawn a new thread
to read file 2.

Prevents the main thread from exiting
until the first thread completes execution

Prevents the main thread from exiting until
the second thread completes execution

23910.2 Writing concurrent programs

// function that simulates reading from a file
fn read_from_file2() -> String {

sleep(Duration::new(2, 0));
String::from("Hello, there from file 2")

}

Run the program again. This time, you’ll see that it does not take 6 seconds for the
two functions to complete execution, but much less, because both files are being read
concurrently in two separate operating system threads of execution. You’ve just seen
concurrency in action using multithreading.

 What if there were another way to process the two files concurrently on a single
thread? Let’s explore this further using asynchronous programming techniques.

 For writing basic multithreaded programs, the Rust standard library contains the
needed primitives (even though external libraries, such as Rayon, are available that have
additional features). However, when writing and executing async programs, only the
bare essentials are provided by the Rust standard library, which is not adequate. This
necessitates the use of external async libraries. In this chapter, we will make use of the
Tokio async runtime to illustrate how asynchronous programs can be written in Rust.

 Add the following to cargo.toml:

[dependencies]
tokio = { version = "1", features = ["full"] }

Modify the src/main.rs file as follows:

use std::thread::sleep;
use std::time::Duration;

#[tokio::main]
async fn main() {

println!("Hello before reading file!");

let h1 = tokio::spawn(async {
let _file1_contents = read_from_file1();

});

let h2 = tokio::spawn(async {
let _file2_contents = read_from_file2();

});
let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file
async fn read_from_file1() -> String {

sleep(Duration::new(4, 0));
println!("{:?}", "Processing file 1");
String::from("Hello, there from file 1")

}

// function that simulates reading from a file
async fn read_from_file2() -> String {

sleep(Duration::new(2, 0));

Instruct the compiler
to add Tokio as the
async runtime. Declare the main

function as async.

Spawn a new asynchronous task
managed by the Tokio runtime. The
task may execute on the current thread
or on a different thread, depending on
the Tokio runtime configuration.

The main() function waits on multiple concurrent
branches, and it returns when all the branches
complete. This is similar to the join statement in
the previous multithreading example.

The functions now have an
async prefix to denote that they
can be scheduled as async tasks
by the Tokio runtime and
executed concurrently.

240 CHAPTER 10 Understanding async Rust
println!("{:?}", "Processing file 2");
String::from("Hello, there from file 2")

}

You’ll see many similarities between this example and the previous multithreaded
example. New async tasks are spawned much like new threads are spawned. The join!
macro waits for all the async tasks to complete before completing execution of the
main() function.

 However, you’ll also notice a few key differences. All the functions, including
main(), have been prefixed with the async keyword. Another key difference is the
annotation #[tokio::main]. We’ll delve deeper into these concepts shortly, but let’s
first try to execute the program.

 Run the program with cargo run, and you’ll see the following message printed to
the terminal:

Hello before reading file!

The statement is printed from the main() function. However, you will notice that the
print statements from the two functions read_from_file_1() and read_from_
file_2() are not printed. This means the functions were not even executed. The rea-
son for this is that, in Rust, asynchronous functions are lazy, in that they are executed
only when activated with the .await keyword.

 Let’s try this one more time and add the .await keyword in the call to the two
functions. Change the code in src/main.rs as shown here:

use std::thread::sleep;
use std::time::Duration;

#[tokio::main]
async fn main() {

println!("Hello before reading file!");

let h1 = tokio::spawn(async {
let file1_contents = read_from_file1().await;
println!("{:?}", file1_contents);

});

let h2 = tokio::spawn(async {
let file2_contents = read_from_file2().await;
println!("{:?}", file2_contents);

});
let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file
async fn read_from_file1() -> String {

sleep(Duration::new(4, 0));
println!("{:?}", "Processing file 1");
String::from("Hello, there from file 1")

}

Add the .await
keyword while
invoking the
function.

24110.3 Diving deeper into async Rust
// function that simulates reading from a file
async fn read_from_file2() -> String {

sleep(Duration::new(2, 0));
println!("{:?}", "Processing file 2");
String::from("Hello, there from file 2")

}

Run the program again. You should see the following output on your terminal:

Hello before reading file!
"Processing file 2"
"Hello, there from file 2"
"Processing file 1"
"Hello, there from file 1"

Let’s see what just happened. Both of the functions called from main() are spawned as
separate asynchronous tasks on the Tokio runtime, which schedules the execution of
both functions concurrently (analogous to running the two functions on two separate
threads). The difference is that these two tasks can be scheduled either on the current
thread or on different threads, depending on how we configure the Tokio runtime.
You’ll also notice that the read_from_file2() function completes executing before
read_from_file1(). This is because the sleep time interval for the former is 2 sec-
onds, while for the latter it’s 4 seconds. So even though read_from_file1() was
spawned before read_from_file2() in the main() function, the async runtime exe-
cuted read_from_file2() first because it woke up from the sleep interval earlier than
read_from_file1().

 In this section, you’ve seen simple examples of how to write synchronous, multi-
threaded, and async programs in Rust. In the next section, let’s go down the async
Rust rabbit hole.

10.3 Diving deeper into async Rust
As you’ve seen, asynchronous programming allows us to process multiple tasks at the
same time on a single operating system thread. But how is this possible? A CPU can
only process one set of instructions at a time, right?

 The trick to achieving this is to exploit situations in code execution where the CPU
is waiting for some external event or action to complete. Examples could be waiting to
read or write a file to disk, waiting for bytes to arrive on a network connection, or wait-
ing for timers to complete (like you saw in the previous example). While a piece of code
or a function is waiting on a disk subsystem or network socket for data, the async run-
time (such as Tokio) can schedule other async tasks on the processor that can continue
execution. When the system interrupts arrive from the disk or I/O subsystems, the
async runtime recognizes this and schedules the original task to continue processing.

 As a general guideline, programs that are I/O bound (programs where the rate of
progress generally depends on the speed of the I/O subsystem) may be good candi-
dates for asynchronous task execution, as opposed to CPU-bound programs (pro-
grams where the rate of progress is dependent on the speed of the CPU, as in the case

242 CHAPTER 10 Understanding async Rust
of complex number-crunching). This is a broad and general guideline, and, as always,
there are exceptions.

 Since web development deals with a lot of network, file, and database I/O, asyn-
chronous programming, if done right, can speed up overall program execution and
improve response times for end users. Imagine a case where your web server has to
handle 10,000 or more concurrent connections. Using multithreading to spawn a sep-
arate OS thread per connection would be prohibitively expensive from the perspec-
tive of system resource consumption. Early web servers used this model but then hit
limitations when it came to web-scale systems. This is the reason the Actix Web frame-
work (and many other Rust frameworks) have an async runtime built into the frame-
work. As a matter of fact, Actix Web uses the Tokio library underneath for asyn-
chronous task execution (with some modifications and enhancements).

 The async and .await keywords represent the core built-in set of primitives in the
Rust standard library for asynchronous programming. They are just special parts of
Rust syntax that make it easier for Rust developers to write asynchronous code that
looks like synchronous code.

 However, at the core of Rust async is a concept called futures. Futures are single
eventual values produced by an asynchronous computation (or function). Futures
basically represent deferred computations. Async functions in Rust return a future.

Does this mean our previous program actually used futures? The short answer is yes.
Let’s rewrite the program to show the use of futures:

use std::thread::sleep;
use std::time::Duration;
use std::future::Future;

#[tokio::main]
async fn main() {

println!("Hello before reading file!");

let h1 = tokio::spawn(async {
let file1_contents = read_from_file1().await;

Promises in JavaScript
In JavaScript, the analogous concept to a Rust future is a promise. When JavaScript
code is executed within a browser, and when a user makes a request to fetch a URL
or load an image, it does not block the current thread. The user can continue to inter-
act with the web page. This is achieved by the JavaScript engine using asynchronous
processing for network fetch requests.

Note that a Rust future is a lower-level concept than a promise in JavaScript. A Rust
future is something that can be polled for readiness, whereas a JavaScript promise
has higher semantics (e.g., a promise can be rejected). However, this is a useful
analogy in the context of this discussion.

24310.3 Diving deeper into async Rust
println!("{:?}", file1_contents);
});

let h2 = tokio::spawn(async {
let file2_contents = read_from_file2().await;
println!("{:?}", file2_contents);

});
let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file
fn read_from_file1() -> impl Future<Output=String> {
async { sleep(Duration::new(4, 0));

println!("{:?}", "Processing file 1");
String::from("Hello, there from file 1")

}
}

// function that simulates reading from a file
fn read_from_file2() -> impl Future<Output=String> {

async {
sleep(Duration::new(3, 0));
println!("{:?}", "Processing file 2");
String::from("Hello, there from file 2")
}

}

Run the program. You should see the same result as earlier.

Hello before reading file!
"Processing file 2"
"Hello, there from file 2"
"Processing file 1"
"Hello, there from file 1"

The main change we’ve made to the program is within the two functions, read_
from_file1() and read_from_file2(). The first difference you’ll notice is that the
return value of the function has changed from String to impl Future<Output=
String>. This is a way of saying that the function returns a future, or more specifically,
something that implements the Future trait.

 The async keyword defines an async block or function. Specifying this keyword on
a function or a code block instructs the compiler to transform the code into some-
thing that generates a future. This is why the following function signature

async fn read_from_file1() -> String {
sleep(Duration::new(4, 0));
println!("{:?}", "Processing file 1");
String::from("Hello, there from file 1")

}

is analogous to the following one:

fn read_from_file1() -> impl Future<Output=String> {
async { sleep(Duration::new(4, 0));

The return value
of the function
implements the
Future trait.

The body of the function is
enclosed within an async block.

244 CHAPTER 10 Understanding async Rust
println!("{:?}", "Processing file 1");
String::from("Hello, there from file 1")

}
}

The async keyword in the first of these two examples is just syntactic sugar for writing
the code shown in the second example.

 Let’s see what the Future trait looks like:

pub trait Future {
type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

}

A future represents an asynchronous computation. The Output type represents the
data type returned when a future successfully completes. In our example, we are
returning a String data type from the function, so we specified the function return
value as impl Future<Output=String>.

 The poll method is critical to the functioning of the asynchronous program. This
method is called by the async runtime to check if the asynchronous computation has
completed. The poll function returns a data type that is of enum type, which can have
one of two possible values:

Poll::Pending
Poll::Ready(val)

The next question is, who calls the poll function? Rust futures are lazy, as we saw ear-
lier when the following statement did not execute:

let h1 = tokio::spawn(async {
let _file1_contents = read_from_file1();

});

Rust futures need someone to constantly follow up with them for completion, like a
project manager who micromanages! This role is performed by an async executor,
which is part of the async runtime. The future executors take a set of futures and fol-
low them to completion by calling poll on them.

 In our case, the Tokio library has a future executor that performs this function.
This is the reason we annotate the function with the async keyword:

async fn read_from_file1() -> String {
sleep(Duration::new(4, 0));
println!("{:?}", "Processing file 1");
String::from("Hello, there from file 1")

}

Or we can write an async code block within a function to achieve the same effect:

fn read_from_file1() -> String {

The poll function returns this value
if the future is not ready yet.The poll function returns this,

along with the value of this future,
if it finished successfully.

24510.4 Understanding futures
async {
sleep(Duration::new(4, 0));
println!("{:?}", "Processing file 1");
String::from("Hello, there from file 1")

}
}

The async keyword in front of a function or a code block tells the Tokio executor that
a future is returned, and it needs to be driven to completion. But how does the Tokio
executor know when the async function is ready to yield a value? Does it keep pooling
the async function repeatedly? To understand how the Tokio executor does this, let’s
take a closer look at futures.

10.4 Understanding futures
To understand futures better, let’s use the con-
crete example of the Tokio async library. Figure
10.6 shows the relationship between the Tokio
runtime, a spawned task, and a future.

 The Tokio runtime is the component that
manages the async tasks and schedules them on
the processor for execution. Several async tasks
can be spawned in a given program, and each
async task may contain one or more futures that
return a Poll::Ready when the future is ready to
be executed, or a Poll:::Pending when it is
waiting for an external event (such as a network
packet to arrive or a database to return a value).

 In the previous section, we wrote a main()
program that spawned two async tasks, which
simulated futures. In this section and the next,
we’ll write code that will help us better under-
stand how futures work. In this section, we’ll
look at the structure of a future, and in the next
section, we’ll write a custom async timer as a
future. The program structure is illustrated in
figure 10.7.

 Writing a custom future is the best way to
understand how a future works, so let’s write
one. Modify src/main.rs as follows:

use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::thread::sleep;
use std::time::Duration;

Tokio runtime

Future 1

Future 2

Future 3

Future 4

Future 5

Future 6

Spawned
task 1

Spawned
task 2

Figure 10.6 The Tokio executor

Tokio runtime

main()

Custom
future

Spawned
task 1

Dummy
future

Spawned
task 2

Figure 10.7 Implementing a custom
future

To poll futures, they should be pinned
using a special type called Pin<T>.

Context contains the context of an async task, which can
be used to wake the current task. Poll is an enum type
that indicates whether a value is available or not.

246 CHAPTER 10 Understanding async Rust

e

.

struct ReadFileFuture {}

impl Future for ReadFileFuture {
type Output = String;

fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) ->
Poll<Self::Output> {

println!("Tokio! Stop polling me");
Poll::Pending

}
}

#[tokio::main]
async fn main() {

println!("Hello before reading file!");

let h1 = tokio::spawn(async {
let future1 = ReadFileFuture {};
future1.await

});

let h2 = tokio::spawn(async {
let file2_contents = read_from_file2().await;
println!("{:?}", file2_contents);

});
let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file
fn read_from_file2() -> impl Future<Output = String> {

async {
sleep(Duration::new(2, 0));
println!("{:?}", "Processing file 2");
String::from("Hello, there from file 2")

}
}

We’ve introduced a new concept here: a Pin. Futures have to be polled repeatedly by
the async runtime, so pinning futures to a particular spot in memory is necessary for
the safe functioning of the code within the async block. This is an advanced concept,
so for now it will suffice to treat it as a technical requirement in Rust for writing
futures, even if you do not understand it fully.

 The poll() function is called by the Tokio executor in its attempt to resolve the
future into a final value (of type String, in our example). If the future value is not
available, the current task is registered with the Waker component, so that when the
value from the future becomes available, the Waker component can tell the Tokio
runtime to call the poll() function again in the future. The poll() function returns
one of two values: Poll::Pending if the future is not ready yet, or Poll::Ready
(future_value) if the future_value is available from the function. Figure 10.8 illus-
trates the sequence of steps in program execution:

Create a custom struct which will
implement the Future trait.

Implement the Future trait
on the custom struct.

Specify the data type of
the return value from th
future, when the future
value becomes available

Implement the poll()
function that’s part of
the Future trait.

Call the custom implementation of
the future in the main() function.

24710.4 Understanding futures
Figure 10.8 Spawning async tasks with futures, step 1

Notice the changes we’ve made to the main() function compared to the code in the
previous section. The main (pun intended) change is that we’ve replaced the call to
the read_from_file1() async function, which returns a future of type impl Future
<Output=String>, with a custom implementation that returns a future with the same
return type, impl Future<Output=String>.

 Run the program, and you should see the following output on your terminal:

Hello before reading file!
Tokio! Stop polling me
"Processing file 2"
"Hello, there from file 2"

You’ll also notice that the program does not terminate and continues to hang as
though it’s waiting for something.

 Referring back to figure 10.8, let’s look at what just happened here. The main()
function calls two asynchronous computations (code that returns a Future): Read-
FileFuture {} and read_from_file2(). It spawns each of these as an asynchronous
task on the Tokio runtime. The Tokio executor (part of the Tokio runtime) polls the
first future, which returns Poll::Pending. It then polls the second future, which
yields a value of Poll::Ready after the sleep timer expires, and the corresponding
statements are printed to the terminal. The Tokio runtime continues to wait for the
first future to be ready to be scheduled for execution, But this will never happen
because we are unconditionally returning Poll::Pending from the poll function.

future vs. Future
If you are confused about the difference between a future and a Future, recall that
a future is an asynchronous computation that can return a value at a future point of
time. It returns a Future type (or something that implements the Future trait). But
to return a value, the future has to be polled by the async runtime executor.

main()

The main() program spawns a first async task.

The main() program spawns a second async task.ReadFileFuture {}

Tokio runtime

Spawned
task 1

The first spawned task invokes the custom future.
It gets back Poll::Pending from the future.

The second spawned task invokes the async
function read_from_file2(). The function
returns after a timer wait of 2 seconds.read_from_file2()

Spawned
task 2

248 CHAPTER 10 Understanding async Rust
Also note that once a future has finished, the Tokio runtime will not call it again.
That’s why the second function is executed only once.

 How does the Tokio executor know when to poll the first future again? Does it
keep polling repeatedly? The answer is no, as otherwise we would have seen the print
statement within the poll function several times on the terminal, but we saw that the
poll function was executed only once.

 Tokio (and Rust async design) handle this by using a Waker component. When a
task that’s polled by the async executor is not ready to yield a value, the task is regis-
tered with a Waker, and a handle to the Waker is stored in the Context object associ-
ated with the task. The Waker has a wake() method that can be used to tell the async
executor that the associated task should be awoken. When the wake() method is
called, the Tokio executor is informed that it’s time to poll the async task again by
invoking the poll() function on the task.

 Let’s see this in action. Modify the poll() function in src/main.rs as follows:

impl Future for ReadFileFuture {
type Output = String;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->
Poll<Self::Output> {

println!("Tokio! Stop polling me");
cx.waker().wake_by_ref();
Poll::Pending

}
}

Figure 10.9 illustrates this flow.

Figure 10.9 Writing a future with a waker component, step 2

The Context object
associated with the
task is made available
to the poll function.

The wake_by_ref() function on the Waker
instance is invoked, which in turn informs the
Tokio runtime that the async task is now
ready to be scheduled for execution again.

main()

The main() program spawns a first async task.

The main() program spawns a second async task.

ReadFileFuture {

Tokio runtime

Spawned
task 1

read_from_file2()

Spawned
task 2

waker.wake() }

The first spawned task invokes the custom future.
It invokes the waker.wake() function, which in
turn tells the async runtime (Tokio) to poll the future
again. This loop repeats.

The second spawned task invokes the async
function read_from_file2(). The function
returns after a timer wait of 2 seconds.

...

24910.4 Understanding futures
Run the program again, and you should see the poll() function being invoked con-
tinually. This is because in the poll function we are calling the wake_by_ref() func-
tion on the Waker instance, which in turn tells the async executor to poll the function
again, and the cycle repeats. The wake_by_ref() function wakes up the task associ-
ated with the Waker.

 When you run the program, you should see the print statements continually being
printed to the terminal until the program is terminated:

Tokio! Stop polling me
Tokio! Stop polling me
Tokio! Stop polling me
Tokio! Stop polling me
Tokio! Stop polling me
Tokio! Stop polling me
Tokio! Stop polling me
Tokio! Stop polling me
...

Now, you may wonder, what is
the Waker component, and
how does it fit into the Tokio
ecosystem? Figure 10.10 shows
the various components of
Tokio in the context of the
underlying hardware and oper-
ating system.

 The Tokio runtime needs
to understand operating sys-
tem (kernel) methods such as
epoll to start I/O operations,
such as reading from a net-
work or writing to a file.

 The Tokio runtime regis-
ters the async handler to be
called when an event happens
as part of the I/O operation.
The component of the Tokio
runtime that listens to these events from the kernel and communicates to the rest of
the Tokio runtime is the reactor.

 The Tokio executor is the component that takes a future and drives it to completion
by calling the poll() function of the future whenever the future can make progress.

 How do the futures indicate to the executor that they are ready to make progress?
They call the wake() function of the Waker component. The Waker component
informs the executor, which then places the future back on the queue and invokes the
poll() function again, until the future has completed.

Operating system (Linux, Windows, macOS)

Tokio

Future 1 Future 2

Tokio
reactor

Tokio
executor

Tokio Waker

Hardware/CPU

Async kernel (epoll, kqueue)

Tokio Waker

Figure 10.10 Tokio components

250 CHAPTER 10 Understanding async Rust
 Here is a simplified flow that shows how the various Tokio components work
together to read from a file:

1 The main function of a program spawns async task 1 on the Tokio runtime.
2 Async task 1 has a future that reads data from a large file.
3 The request to read from the file is handed over to the kernel’s file subsystem.
4 In the meantime, async task 2 is scheduled for processing by the Tokio runtime.
5 When the file operation associated with async task 1 is complete, the file subsys-

tem triggers an operating system interrupt, which is translated into an event
that is recognized by the Tokio reactor.

6 The Tokio reactor informs async task 1 that the data from the file operation is
ready.

7 Async task 1 informs the Waker component registered with it that it is ready to
yield a value.

8 The Waker component informs the Tokio executor to call the poll() function
associated with async task 1.

9 The Tokio executor schedules async task 1 for processing and invokes the
poll() function.

10 Async task 1 yields a value.

In summary, the future, which performs an I/O operation in an async fashion, is
informed by the Tokio reactor about an I/O event. On receipt of the I/O event, the
future becomes ready to make progress and invokes the Tokio Waker component. The
Waker component then tells the Tokio executor that the future is ready to make prog-
ress, which triggers the Tokio executor to schedule the future for execution and
invoke the poll() function on the future.

 With this background, let’s continue with our coding exercise. Let’s modify the
previous program to return a valid value from the poll() function and see what hap-
pens. Modify the poll() function in src/main.rs as follows, and rerun the program:

use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::thread::sleep;
use std::time::Duration;

struct ReadFileFuture {}

impl Future for ReadFileFuture {
type Output = String;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->
Poll<Self::Output> {

println!("Tokio! Stop polling me");
cx.waker().wake_by_ref();
Poll::Ready(String::from("Hello, there from file 1"))

}
}

Instead of returning
Poll::Pending, return

Poll::Ready with a
valid string value

from the poll()
function.

25110.4 Understanding futures
#[tokio::main]
async fn main() {

println!("Hello before reading file!");

let h1 = tokio::spawn(async {
let future1 = ReadFileFuture {};
println!("{:?}", future1.await);

});

let h2 = tokio::spawn(async {
let file2_contents = read_from_file2().await;
println!("{:?}", file2_contents);

});
let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file
fn read_from_file2() -> impl Future<Output = String> {

async {
sleep(Duration::new(2, 0));
String::from("Hello, there from file 2")

}
}

Figure 10.11 illustrates the preceding code.

Figure 10.11 Custom future with Poll::Ready, step 3

You should now see the following output on your terminal:

Hello before reading file!
Tokio! Stop polling me
"Hello, there from file 1"
"Hello, there from file 2"

main()

The main() program spawns a first async task.

The main() program spawns a second async task.

ReadFileFuture {
waker.wake()

Poll::Ready() }

Tokio runtime

Spawned
task 1

read_from_file2()

Spawned
task 2

The first spawned task invokes the custom future. It
returns Poll::Ready().

The second spawned task invokes the async function
read_from_file2(). The function returns after
a timer wait of 2 seconds.

252 CHAPTER 10 Understanding async Rust
The program now does not hang; it completes successfully after executing the two
async tasks to completion.

 In the next section, we’ll take this program one step further and enhance the
future to implement an asynchronous timer. When the time elapses, the Waker will
inform the Tokio runtime that the task associated with it is ready to be polled again.
When the Tokio runtime polls the function for the second time, it will receive a value
from the function. This should help us understand even better how futures work.

10.5 Implementing a custom future
Let’s create a new future representing an async timer that does the following:

1 The timer accepts an expiration time.
2 Whenever it is polled by the runtime executor, it will do the following checks:

– If the current time is greater than the expiration time, it will return
Poll::Ready with a String value.

– If the current time is less than the expiration time, it will go to sleep until the
expiration time and then trigger the wake() call on the Waker, which will then
inform the async runtime executor to schedule and execute the task again.

Figure 10.12 illustrates the logic of this custom future.

Figure 10.12 Custom future with expiration time, step 4

Modify src/main.rs as follows:

use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};

main()

The main() program spawns a first async task.

The main() program spawns a second async task.

Tokio runtime

Spawned
task 1

read_from_file2()

Spawned
task 2

The first spawned task invokes the custom future
AsyncTimer {}, which takes a parameter
expiration_time. Every time the future is polled by
the Tokio runtime, the expiration time is checked against
the current time. If the expiration time has not elapsed,
Poll::Pending is returned. If the expiration time has
elapsed, the future returns Poll::Ready(), which
then tells the Tokio runtime to schedule the async task
for completion of the remaining execution.

The second spawned task invokes the async function
read_from_file2(). The function returns after a
timer wait of 2 seconds.

AsyncTimer {
expiration_time:

4000 ms }

25310.5 Implementing a custom future

I

re
use std::thread::sleep;
use std::time::{Duration, Instant};

struct AsyncTimer {
expiration_time: Instant,

}

impl Future for AsyncTimer {
type Output = String;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->
Poll<Self::Output> {

if Instant::now() >= self.expiration_time {
println!("Hello, it's time for Future 1");
Poll::Ready(String::from("Future 1 has completed"))

} else {
println!("Hello, it's not yet time for Future 1. Going to sleep");
let waker = cx.waker().clone();
let expiration_time = self.expiration_time;
std::thread::spawn(move || {

let current_time = Instant::now();
if current_time < expiration_time {

std::thread::sleep(expiration_time - current_time);
}
waker.wake();

});
Poll::Pending

}
}

}

#[tokio::main]
async fn main() {

let h1 = tokio::spawn(async {
let future1 = AsyncTimer {

expiration_time: Instant::now() + Duration::from_millis(4000),
};
println!("{:?}", future1.await);

});

let h2 = tokio::spawn(async {
let file2_contents = read_from_file2().await;
println!("{:?}", file2_contents);

});
let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file
fn read_from_file2() -> impl Future<Output = String> {

async {
sleep(Duration::new(2, 0));
String::from("Future 2 has completed")

}
}

Define the future type
AsyncTimer with a variable
to store the expiration time.

Implement the Future
trait on the AsyncTimer. Specify the future’s output

value as a String type.

Implement
the poll()
function.

Within the poll()
function, first check if

current_time >=
expiration_time. If so,

return Poll::Ready from
the function with the

String value.

f current_time <
expiration_time,

initiate thread
sleep for the

quired duration.
Invoke the wake()
function, which will
tell the async executor
to schedule the task
for execution again.

In the main() function, initialize
the future type with the
expiration time for the timer.

254 CHAPTER 10 Understanding async Rust
We’ve now implemented a custom future and invoked it within the main function.
We’ve also retained the call to the second future read_from_file2() from the main
function, which we implemented earlier. Note that both futures eventually implement
a timer, but the first future is a fully async way of implementing the timer functionality,
while the second future simulates an async timer (but uses a synchronous call to the
std::thread::sleep() internally).

 Run the program, and you should see the following output on your terminal:

Hello, it's not yet time for Future 1. Going to sleep
"Future 2 has completed"
Hello, it's time for Future 1
"Future 1 has completed"

Let’s analyze what just happened here. Figure 10.13 illustrates the sequence of events:

1 In the main() function, the first async computation to be scheduled on the
async runtime is the call to the future AsyncTimer, which is our custom future
implementation. Let’s call this future 1.

2 The async executor calls the poll() function on future 1. Since the expiration
time has not yet been reached, the statement “Hello, it’s not yet time for Future
1. Going to sleep” is printed to the terminal. The poll() function then spawns
a new thread and initiates a thread sleep. The poll() function returns
Poll::Pending__, which indicates to the executor that other tasks can be
scheduled for execution, as this async function is not yet ready to yield a value.

3 The async runtime, in the meantime, schedules the task read_from_file2() for
execution. This function pauses the current thread for 2 seconds and then
returns Poll::Ready with a String value. The “Future 2 has completed” state-
ment from this future is printed to the terminal.

main()

Tokio runtime

Spawned
task 1

read_from_file2()

Spawned
task 2

AsyncTimer {
expiration_time:

4000 ms }

The main() program spawns a first async task,
which contains a call to the future AsyncTimer {}

Tokio calls the poll() function on the future. Since
the expiration time is not reached, the future returns
Poll::Pending. This tells the Tokio runtime that
future 1 is not ready, and it can schedule other
async tasks for execution.

Tokio schedules the second async task for execution.
This task pauses the thread for 2 seconds (sleep
timer), and returns control back to the Tokio runtime.

After 4 seconds, the first future is ready to yield a
value. The Waker tells the Tokio runtime that the
future can now be polled. Tokio schedules the first
async task again for execution.

Figure 10.13 Custom future with expiration timer and waker component, step 5

255Summary
4 In the meantime, the first future becomes ready to yield a value. It calls the
wake() function on the Waker associated with this async task, which in turn
informs the async executor that future 1 is ready to be scheduled for execution
again. The executor calls the poll() function on future 1, which now returns
Poll::Ready with a string value. The following two print statements are printed
to the terminal: “Hello, it’s time for Future 1” and “Future 1 has completed.”

That concludes this section on writing a custom future. I hope the exercises in this
chapter have given you a better understanding of how async functions work and how
they are implemented in Rust. In many cases, you may not even implement your own
futures, but instead use the developer-friendly APIs provided by async runtimes such
as Tokio or by higher level frameworks such as Actix Web. But it helps to understand
how async and futures work under the hood.

 Futures and async programming are key mechanisms for implementing efficient
and robust distributed applications. You now have a very good foundation on which
you can build a variety of asynchronous applications or components in a standard and
very readable (and therefore maintainable) way!

 In the next chapter, we’ll implement a networking project in async Rust.

Summary
 Concurrency is the ability of different parts of a program to be executed out of

order, or at the same time, without affecting the final outcome. On the other
hand, executing multiple tasks simultaneously is parallelism.

 Multithreading and async are two concurrency programming models. The for-
mer uses native operating system threads, and the scheduling of the tasks on
the CPU is handled by the operating system. The latter uses an async runtime
(we used Tokio in this chapter), which takes care of scheduling multiple tasks
on an operating system thread. Tokio does this using its own implementation of
threads (a.k.a. green threads), which are lightweight compared to operating
system threads.

 A future is an asynchronous computation that can return a value at a future
point in time. A Future is a type that is returned by a future, and it can take
either of these two values: Poll:Pending or Poll::Ready(future_value).

 When a task that’s polled by the Tokio async executor (the Tokio runtime) is
not ready to yield a value, the task is registered with a Waker. The Waker has a
wake() method that can be used to tell the async executor that the associated
task should be awoken. When the wake() method is called, the Tokio executor
is informed that it’s time to poll the async task again by invoking the poll()
function on the task.

Building a P2P node
with async Rust
In the previous chapter, we covered the basics of async programming and how to
write async code with Rust. In this chapter, we’ll build a few simple examples of
peer-to-peer (P2P) applications using a low-level P2P networking library and asyn-
chronous programming using Rust.

 Why learn about P2P? P2P is a networking technology that enables the sharing of
various computing resources, such as CPU, network bandwidth, and storage, across
different computers. P2P is a very commonly used method for sharing files (such as
music, images, and other digital media) between users online. BitTorrent and
Gnutella are examples of popular file-sharing P2P apps. They do not rely on a central
server or an intermediary to connect multiple clients. And most importantly, they

This chapter covers
 Introducing peer-to-peer networks

 Understanding the core architecture of libp2p
networking

 Exchanging ping commands between peer
nodes

 Discovering peers in a P2P network
256

25711.1 Introducing peer-to-peer networks
make use of users’ computers as both clients and servers, thus offloading computations
from a central server.

 How do P2P networks operate, and how are they different? Let’s delve into the
foundational concepts behind peer-to-peer networks.

NOTE This chapter draws heavily on material from the libp2p documentation
at https://libp2p.io/. The code examples use the Rust implementation of the
libp2p protocol, which can be found on GitHub: https://github.com/libp2p/
rust-libp2p.

11.1 Introducing peer-to-peer networks
Traditional distributed systems deployed within enterprises or the web use the client/
server paradigm. A web browser and a web server together serve as a good example of a
client/server system, where the web browser (the client) requests information (such
as with a GET request) or a computation (POST, PUT, and DELETE requests) on a particu-
lar resource hosted on the web server (the server). The web server then checks that
the client is authorized to receive that information or perform that computation, and
if so, it fulfills the request.

 P2P networks are another type of distributed system. In P2P, a set of nodes (or peers)
interact directly with one another to collectively provide a common service, without
having a central coordinator or administrator. Examples of peer-to-peer systems
include file-sharing networks such as IPFS and BitTorrent and blockchain networks
such as Bitcoin and Ethereum. Each node (or peer) in a P2P system can act as both a
client (requesting information from other nodes) and a server (storing and retrieving
data and performing necessary computations in response to client requests). While the
nodes in a P2P network need not be identical, one key characteristic that differentiates
client/server networks from P2P networks is the absence of dedicated servers that have
unique privileges. In open, permissionless P2P networks, any node can decide to offer
a full or partial set of services associated with a P2P node.

 Compared to client/server networks, P2P networks enable a different class of
applications to be built over them that are permissionless, fault-tolerant, and
censorship-resistant.

 Permissionless—No server can cut off a client’s access to information, as the data
and state are replicated across multiple nodes.

 Fault-tolerant—There is no single point of failure, such as a central server.
 Censorship-resistant—Because data in a P2P network is replicated across nodes, it

is difficult to censor (compared to data stored on a centralized server).

P2P computing also enables better utilization of resources. Imagine all the network
bandwidth, storage, and processing power that’s available from clients at the edge of
the network. These resources are not fully utilized in client/server computing.

https://libp2p.io/
https://github.com/libp2p/rust-libp2p
https://github.com/libp2p/rust-libp2p

258 CHAPTER 11 Building a P2P node with async Rust
 Figure 11.1 illustrates the differences between client/server and P2P networks.
Note that we will use the terms node and peer interchangeably in the context of a P2P
network.

Figure 11.1 Client/server vs. peer-to-peer computing

Building P2P systems can be more complex than building traditional client/server sys-
tems. There are several technical requirements associated with building P2P systems:

 Transport—Each peer in a P2P network can speak a different protocol, such as
HTTP(s), TCP, UDP, etc.

 Peer identity—Each peer needs to know the identity of the peer to which it wants
to connect and send a message.

 Security—Each peer should be able to communicate with other peers in a secure
manner without the risk of a third party intercepting or modifying messages.

 Peer routing—Each peer can receive a message from other peers through a vari-
ety of routes (like how data packets are distributed in the IP protocol), which
means that each peer should have the ability to route the message to other
peers if the message is not intended for itself.

 Messaging—P2P networks should be able to send point-to-point messages or
group messages (in a publish/subscribe pattern).

 Stream multiplexing—P2P networks should support multiple streams of informa-
tion over a common communication link. This enables concurrent communica-
tions with multiple nodes.

Let’s take a closer look at each of these requirements.

Client

Client

Client

Client

Client

Client

Client
Client

Server

Node

Node

Node

Node

Node

Node

Node
Node

Client/server Peer-to-peer

25911.1 Introducing peer-to-peer networks
11.1.1 Transport

The TCP/IP and UDP protocols are ubiquitous and are popular for writing net-
worked applications. However, there are other higher-level protocols, such as HTTP
(layered over TCP) and QUIC (layered over UDP). Each peer in a P2P network
should have the ability to initiate a connection to another node and be able to listen
to incoming connections over multiple protocols because of the diversity of peers in
the network.

11.1.2 Peer identity

Unlike the web development domain, where a server is identified by a unique domain
name (such as www.rust-lang.org, which is then resolved to the IP address of the server
via a domain name service), nodes in a peer-to-peer network need a unique identity so
that the other nodes can reach them. Nodes in a peer-to-peer network use a public
and private key pair (asymmetric public key cryptography) to establish secure commu-
nications with other nodes. The identity of a node in a peer-to-peer network is called
the PeerId, which is a cryptographic hash of the node’s public key.

11.1.3 Security

The cryptographic key pair and PeerId enable a node to establish secure, authenti-
cated communication channels with its peers. But that’s only one aspect of security.
Nodes also need to implement frameworks for authorization, which establish rules for
what kinds of operations can be performed by which node. There are also network-level
security threats to be addressed, such as Sybil attacks (where one of the node operators
spins up a large number of nodes with distinct identities to gain an advantageous posi-
tion in the network) or eclipse attacks (where a group of malicious nodes collude to tar-
get a specific node, such that the latter cannot reach any legitimate nodes).

11.1.4 Peer routing

A node in a P2P network first needs to find other peers in order to communicate. This
is achieved by maintaining a peer routing table, which contains references to other
peers in the network. But in a P2P network that has thousands of nodes or more that
are changing dynamically (i.e., nodes frequently join and leave the network), it is diffi-
cult for any single node to maintain a complete and accurate routing table for all
nodes in the network. Peer routing enables nodes to route messages that are not
meant for them to the destination nodes.

11.1.5 Messaging

Nodes in a P2P network can send messages to specific nodes, and they can also partic-
ipate in broadcast messaging protocols. An example is publish/subscribe where nodes
register interest in a particular topic (they subscribe), and any node can send mes-
sages (publish) on that topic that are received by all nodes that subscribe to that topic.
This technique is commonly used to transmit the contents of a message to the entire

260 CHAPTER 11 Building a P2P node with async Rust
network. Publish/subscribe is a well-known architectural pattern for messaging in a
distributed system between a sender and a receiver.

11.1.6 Stream multiplexing

You previously saw (in section 11.1.1) how a node in a P2P network can support multi-
ple transports. Stream multiplexing is a way to send multiple streams of information
over a common communication link. In the case of P2P, it allows multiple independent
“logical” streams to share a common P2P transport layer. This becomes important when
a node may have multiple streams of communication with different peers or when there
can be many concurrent connections between two remote nodes. Stream multiplexing
helps us optimize the overhead of establishing connections between peers. Multiplex-
ing is common in backend services development, where a client can establish an under-
lying network connection with a server, and then multiplex different streams (each with
unique port numbers) over the underlying network connection.

 In this section, we have looked at a few foundational concepts that are involved in
the design of peer-to-peer systems. Next, we’ll take a closer look at a popular Rust
library that is used for P2P networking, as we will use this library to write some async
Rust code in later sections.

11.2 Understanding the core architecture of libp2p
networking
Writing your own networking layer for P2P applications is a mammoth task. If some-
one has already done the hard work, why reinvent the wheel? We will use a low-level
P2P networking library called libp2p, which makes it a lot easier to build P2P
applications.

 The libp2p library is a modular system of protocols, specifications, and libraries
that enable the development of peer-to-peer applications. libp2p supports three pro-
gramming languages at the time of writing: Go, JavaScript, and Rust. libp2p is used by
many popular projects such as IPFS, Filecoin, and Polkadot.

 Figure 11.2 highlights the key modules of libp2p that are used to build a robust
peer-to-peer network:

 Transport—Responsible for the actual transmission and receipt of data from
one peer node to another.

 Identity—libp2p uses public key cryptography (PKI) as the basis of peer node
identity. A unique peer ID is generated for each node using a cryptographic
algorithm.

 Security—Nodes sign messages using their private key. Also, the transport con-
nections between nodes can be upgraded to secure encrypted channels so that
the remote peers can mutually trust one another, and no third party can inter-
cept communications between them.

 Peer discovery—Enables peers to find and communicate with one another in the
libp2p network.

26111.2 Understanding the core architecture of libp2p networking
 Peer routing—Enables communication with a peer node using the knowledge of
other peers.

 Content discovery—Enables peer nodes to get a piece of content from other
peers without knowing which peer has it.

 Messaging—Enables sending messages to a group of peers that are interested in
a topic.

Figure 11.2 Components of libp2p

In this chapter, you will learn how to leverage a subset of the features of the libp2p
protocol to build P2P applications using Rust. Let’s start by taking a look at a few core
primitives of the Rust libp2p library using code examples.

11.2.1 Peer IDs and key pairs

Let’s start with generating peer IDs and key pairs for a P2P node. Cryptographic key
pairs are used by P2P nodes to sign messages, and peer IDs represent unique peer
identities that uniquely identify nodes on the P2P network, as shown in figure 11.3.

Figure 11.3 Identity of a P2P node

Transport

(e.g., TCP, QUIC)

Identity

(Peer ID)

Security

(e.g., PKI, TLS, Noise)

Peer discovery

(e.g., mDNS, DHT, DNS)

How do peer nodes
communicate?

How to secure node
communications

How to identify a node
on the P2P network

How to discover other
nodes on the network

Peer routing

(e.g., Kademlia, STUN)

Content discovery

(e.g., Kademlia, DHT)

Messaging

(e.g., floodsub, gossipsub)

How do messages get
propagated from sending

to receiving node?

How to retrieve content
from the network without

knowing its location

How to distribute messages
only to nodes that are

interested in them

P2P node

Peer ID: 12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV

A p2p node is identified by a unique peer ID that is cryptographically generated.

262 CHAPTER 11 Building a P2P node with async Rust
Start a new project with cargo new p2p-learn. Then, in Cargo.toml, add the follow-
ing entry:

libp2p = "0.42.2"
tokio = { version = "1.16.1", features = ["full"] }

Create a bin folder under the src folder. Create a new src/bin/iter1.rs file, and add
the following code to it:

use libp2p::{identity, PeerId};

#[tokio::main]
async fn main() {

let new_key = identity::Keypair::generate_ed25519();
let new_peer_id = PeerId::from(new_key.public());
println!("New peer id: {:?}", new_peer_id);

}

NOTE The ED25519 key pair type is an elliptic curve-based public key system
that is commonly used in SSH authentication to connect to a server without a
password.

What are public and private keys?
Cryptographic identity uses Public Key Infrastructure (PKI), which is widely used to
provide unique identities for users, devices, and applications, and to secure end-to-
end communications. It works by creating two different cryptographic keys, also
known as a key pair comprising a private key and a public key, which have a mathe-
matical relationship between them. Key pairs have many applications, but in a P2P
network, nodes identify and authenticate themselves to each other using key pairs.
The public key can be shared with others in a network, but the private key of a node
must never be revealed.

A good example of using a key pair is in traditional server access. For example, if you
want to connect to a remote server (using SSH) hosted in a data center or a cloud, a
key pair can be configured for access instead of using a password. In this example,
a user can generate a key pair and configure the public key on the remote server,
which grants access to the user. But how does the remote server know which user is
the owner of that public key? To enable this, when connecting (over SSH) to the
remote server, the user must specify the private key that is associated with the public
key stored on the server. The private key is never sent to the remote server, but the

Use the latest version of
the library at the time
you are reading this.

The identity module contains functions to
generate a new random key pair for the node. The
PeerId struct contains the methods to generate a
peer ID from the public key of the node.

This compiler annotation specifies
Tokio as the async runtime.

The async keyword denotes that the main()
function has async code to be executed by Tokio.

Generates a key pair of type ED25519. A key
pair consists of a private key and a public
key. The private key is never shared.

Generates a peer ID from the public key of
the key pair. In libp2p, the public key is

not directly used to identify a peer, but a
hashed version of it is used as the peer ID.

26311.2 Understanding the core architecture of libp2p networking
Run the program with cargo run --bin iter1, and you should see something similar
to this printed to your terminal:

New peer id: PeerId("12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV")

In libp2p, a peer’s identity is stable and verifiable for the entire lifetime of the peer.
However, libp2p makes a distinction between a peer’s identity and its location. As dis-
cussed before, the identity of a peer is the peer ID. The location of a peer is the net-
work address at which the peer can be reached. For example, a peer can be reached
over TCP, websockets, QUIC, or any other protocol. libp2p encodes these network
addresses in a self-describing format called multiaddresses (multiaddr). So, in libp2p,
the multiaddress represents the location of a peer. We’ll look at using multiaddresses
next.

11.2.2 Multiaddresses

When humans share contact information, they use their phone numbers, social media
profiles, or physical location addresses (when receiving delivery of goods). When
nodes on a P2P network share their contact information, they send a multiaddress
containing both the network address and their peer ID.

 The peer ID component of a multiaddress for a node is represented like this:

/p2p/12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV

The string 12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV represents
the peer ID of the node. You learned how to generate the peer ID for a node in the
previous section.

 The network address component of a multiaddress (also known as the transport
address) looks like this:

/ip4/192.158.1.23/tcp/1234

This says that IPv4 is the transport protocol used, the IP address is 192.158.1.23, and
the TCP port on which it listens is 1234.

 The complete multiaddress of a node is just a combination of the peer ID and net-
work address, and it looks like this:

/ip4/192.158.1.23/tcp/1234/p2p/
12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV

Peers exchange this multiaddress with other peers in this format.

SSH client (running on the local server) uses the user’s private key to authenticate
itself to the remote SSH server.

Private and public keys have many other uses, such as for encryption, decryption, and
digital signatures, but that is out of scope for this chapter.

264 CHAPTER 11 Building a P2P node with async Rust
 The libp2p library internally converts this “name-based” address, /ip4/

192.158.1.23, into a regular IP address using the DNS protocol, as shown in figure 11.4.

Figure 11.4 Multiaddress of a P2P node

We’ll use the multiaddress in code in the next section.

11.2.3 Swarm and network behavior

Swarm is the network manager module within a given P2P node in libp2p. It main-
tains all active and pending connections to remote nodes from a given node, and it
manages the state of all the substreams that have been opened.

 The structure and context of Swarm is depicted in figure 11.5 and is explained in
detail later in this section.

Figure 11.5 Network management for a P2P node

P2P node

Identity 12D3KooWByvE1LD4W1oaD2AgeVWAEu9eK4RtD3GuKU1jVEZUvzNm

Peer ID:

Multiaddress: /ip4/192.158.1.23/tcp/1234/p2p/12D3KooWByvE1LD4W1oaD2AgeVWAEu9eK4RtD3GuKU1jVEZUvzNm

Identity: A P2P node’s identity
is used by other peer nodes to
identify and address an
individual node in the
p2p network.

Multiaddress: Enables peer nodes to establish connection with other peers on the p2p network.
The libp2p protocol converts this multiaddress into a regular IP address.

Swarm

P2P node 1

Swarm

P2P node 2

Network
connections

Swarm acts as the network manager for a P2P node and manages
remote connections with other nodes.

Peer ID 1

Multiaddress 1

Network
behavior type

Peer ID 2

Multiaddress 2

Network
behavior type

Function of
Swarm

Structure of
Swarm

The Swarm object for a P2P node is constructed using a combination
of peer ID, multiaddress, and network behavior for that node.

26511.2 Understanding the core architecture of libp2p networking

Cr
Sw

an

c
po
Let’s now extend the previous example. Create a new src/bin/iter2.rs file, and add
the following code:

use libp2p::swarm::{DummyBehaviour, Swarm, SwarmEvent};
use libp2p::futures::StreamExt;
use libp2p::{identity, PeerId};
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {

let new_key = identity::Keypair::generate_ed25519();
let new_peer_id = PeerId::from(new_key.public());
println!("local peer id is: {:?}", new_peer_id);
let behaviour = DummyBehaviour::default();
let transport = libp2p::development_transport(new_key).await?;
let mut swarm = Swarm::new(transport, behaviour, new_peer_id);
swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;

loop {
match swarm.select_next_some().await {

SwarmEvent::NewListenAddr { address, .. } => {
println!("Listening on local address {:?}", address)

}
_ => {}

}
}

}

We need to construct a Swarm network manager before we can communicate with
other nodes. Swarm represents a low-level interface, and it provides fine-grained con-
trol over the libp2p network. Swarm is constructed using a combination of the trans-
port, network behavior, and peer ID for the node. You’ve previously seen what a
transport and a peer ID are. Let’s now look at what network behavior is.

 While the transport specifies how to send bytes over the network, the network
behavior specifies what bytes to send and to whom. Examples of network behaviors in
libp2p include ping (where nodes send and respond to ping messages), mDNS, which
is used to discover other peer nodes on the network, and Kademlia, used for peer
routing and content routing functionality. To keep this example simple, we are using
a dummy network behavior. Multiple network behaviors can be associated with a sin-
gle running node.

 Toward the end of the preceding code, we have swarm.select_next_some()
.await. The await keyword is used to schedule the asynchronous task to poll the pro-
tocols and connections, and when it’s ready, swarm events are received. When there is
nothing to process, the task will be idle, and the swarm will output Poll::Pending.
This is another example of async Rust in action.

 Note that the same code runs on all nodes of a libp2p network, unlike a client/
server model where the client and the server have different codebases.

 Let’s run the code. Create two terminal sessions on your computer. From the first
terminal, from the project root directory, run this command:

cargo run --bin iter2

Swarm is the network
manager component
associated with a
node in libp2p.

Used to exchange
streams of data
between nodes

Construct a dummy
network behavior to
associate with the swarm.

Construct a transport
with the new key pair.

eate a new
arm using
transport,

network
behavior,

d peer ID.

Listen on a multiaddress
for incoming connections.

The swarm
needs to be
ontinuously

lled to check
for events. Listen for an event that

creates a new listen address.

266 CHAPTER 11 Building a P2P node with async Rust

/ip4/
is the

th
tra

sho
You should see output similar to the following printed to your terminal for the first
node:

local peer id is: PeerId("12D3KooWByvE1LD4W1oaD2AgeVWAEu9eK4RtD3GuKU1jVEZUvzNm")
Listening on local address "/ip4/127.0.0.1/tcp/

55436"
Listening on local address "/ip4/192.168.1.74/tcp/55436"

From the second terminal, from the project root directory, run the following:

cargo run --bin iter2

You should see terminal output similar to this for the second node:

local peer id is: PeerId("12D3KooWQiQZA5zcLzhF86kuRoq9f6yAgiLtGqD5bDG516kVzW46")
Listening on local address "/ip4/127.0.0.1/tcp/55501"
Listening on local address "/ip4/192.168.1.74/tcp/55501"

Again, you can see the local address on which node2 is listening (printed out to the
terminal).

 If you got this far, it’s a good start. However, there isn’t anything interesting hap-
pening in this code. We were able to start two nodes and ask them to connect to each
other, but we don’t know whether the connection has been established correctly or if
the two can communicate. Let’s enhance this code to exchange ping commands
between nodes.

11.3 Exchanging ping commands between peer nodes
Create a new src/bin/iter3.rs file, and add the following code:

use libp2p::swarm::{Swarm, SwarmEvent};
use libp2p::futures::StreamExt;
use libp2p::ping::{Ping, PingConfig};
use libp2p::{identity, Multiaddr, PeerId};
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {

let new_key = identity::Keypair::generate_ed25519();
let new_peer_id = PeerId::from(new_key.public());
println!("local peer id is: {:?}", new_peer_id);

let transport = libp2p::development_transport(new_key).await?;
let behaviour = Ping::new(PingConfig::new().with_keep_alive(true));
let mut swarm = Swarm::new(transport, behaviour, new_peer_id);
swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;

if let Some(remote_peer) = std::env::args().nth(1) {
let remote_peer_multiaddr: Multiaddr = remote_peer.parse()?;
swarm.dial(remote_peer_multiaddr)?;
println!("Dialed remote peer: {:?}", remote_peer);

}

Prints the new peer ID
generated for the node

Prints the local address
on which this node is
listening for incoming
connections and streams

Instantiate a new
network behavior that
enables ping messages
between nodes. Ping is

a built-in network
behavior of libp2p.0.0.0.0/tcp/0

 address that
e configured
nsport (TCP)
uld listen on.

This code block shows the outgoing connection
from the local node to the remote node.

26711.3 Exchanging ping commands between peer nodes

lo
loop {
match swarm.select_next_some().await {

SwarmEvent::NewListenAddr { address, .. } => {
println!("Listening on local address {:?}", address)

}
SwarmEvent::Behaviour(event) => println!

 ("Event received from peer is {:?}", event),
_ => {}

}
}

}

In the listen_on() method, 0.0.0.0 means it will listen on all IPv4 addresses on the
local machine. For example, if a host has two IP addresses, 192.168.1.2 and 10.0.0.1,
and a server running on the host listens on 0.0.0.0, it will be reachable at both IPs.
The 0 port means that it will choose a random available port.

 Note also that the remote node multiaddress is parsed from the command-line
parameter. The local node then establishes a connection to the remote node on this
multiaddress.

 Let’s now build and test this P2P example with two nodes. Create two terminal ses-
sions on your computer. From the first terminal, from the project root directory, run
this command:

cargo run --bin iter3

You should see output similar to the following printed to your terminal for the first
node, which we’ll call node 1:

local peer id is: PeerId("12D3KooWByvE1LD4W1oaD2AgeVWAEu9eK4RtD3GuKU1jVEZUvzNm")
Listening on local address "/ip4/127.0.0.1/tcp/55872"
Listening on local address "/ip4/192.168.1.74/tcp/55872"

At this point, there is no remote node to connect to, so the local node just prints out
the listen event along with the multiaddress at which it is listening for new connec-
tions. The ping network behavior, even though it has been configured in the local
node, is not active yet. For this, we need to start the second node.

 From the second terminal, from the project root directory, run the following com-
mand. Make sure you specify the multiaddress of the first node in the command-line
parameter:

cargo run --bin iter3 /ip4/127.0.0.1/tcp/55872

Let’s call this node 2, and at this point it has started. It will similarly print out the local
address on which it is listening. Since the remote node multiaddress has been speci-
fied, node 2 establishes a connection with node 1 and starts to listen to events. On
receipt of the incoming connection from node 2, node 1 sends the ping message to
node 2, and node 2 responds with a pong message. These messages should start to
appear on the terminals of both node 1 and node 2, and they’ll continue in a loop
after a time interval (approximately every 15 seconds or so). Note also that the P2P

The swarm
is polled in a
op to trigger
the network

behavior
configured.

When a local node sends a ping message, the
remote node responds with a pong message. This
event is received and printed out to the terminal.

268 CHAPTER 11 Building a P2P node with async Rust

t

r.
node uses async Rust with the Tokio runtime to execute concurrent tasks to process
multiple data streams and events coming from remote nodes.

 In this section, you have seen how you can have two P2P nodes exchange ping mes-
sages with each other. In this example, we connected node 2 to node 1 by specifying
the multiaddress node 1 is listening on. However, in a P2P network, nodes join and
leave dynamically. In the next section, you’ll see how peer nodes can discover each
other on a P2P network.

11.4 Discovering peers
Let’s code a P2P node to automatically detect other nodes on the network on startup.
Place the following code in src/bin/iter4.rs:

use libp2p::{
futures::StreamExt,
identity,
mdns::{Mdns, MdnsConfig, MdnsEvent},
swarm::{Swarm, SwarmEvent},
PeerId,

};
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {

let id_keys = identity::Keypair::generate_ed25519();
let peer_id = PeerId::from(id_keys.public());
println!("Local peer id: {:?}", peer_id);

let transport = libp2p::development_transport(id_keys).await?;

let behaviour = Mdns::new(MdnsConfig::default()).await?;

let mut swarm = Swarm::new(transport, behaviour, peer_id);
swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;

loop {
match swarm.select_next_some().await {

SwarmEvent::NewListenAddr { address, .. } => {
println!("Listening on local address {:?}", address)

}
SwarmEvent::Behaviour(MdnsEvent::Discovered(peers)) => {

for (peer, addr) in peers {
println!("discovered {} {}", peer, addr);

}
}
SwarmEvent::Behaviour(MdnsEvent::Expired(expired)) => {

for (peer, addr) in expired {
println!("expired {} {}", peer, addr);

}
}
_ => {}

}
}

}

Generate a PeerId
for the node.

Create a
ransport.

Create an mDNS
network behavio

Create a Swarm that establishes connections through
the given transport. Note that the mDNS behavior itself

will not initiate any connections, as it only uses UDP.

26911.4 Discovering peers
Multicast DNS (mDNS) is a protocol defined by RFC 6762 (https://datatracker.ietf
.org/doc/html/rfc6762), and it resolves host names to IP addresses. The mDNS net-
work behavior implemented in libp2p will automatically discover other libp2p nodes
on the local network.

 Let’s see this working by building and running the code:

cargo run --bin iter4

Let’s call this node 1, and you’ll see something like the following printed to node 1’s
terminal window:

Local peer id: PeerId("12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt")
Listening on local address "/ip4/127.0.0.1/tcp/50960"
Listening on local address "/ip4/192.168.1.74/tcp/50960"

Note that in this example, node 1 is listening on TCP port 50960.
 From terminal 2, run the program with the same command. Note that, unlike

before, we are not specifying the multiaddress of node 1:

cargo run --bin iter4

We’ll call this node 2, and you should be able to see similar messages printed to its
terminal:

Local peer id: PeerId("12D3KooWCVVb2EyxB1WdAcLeMuyaJ7nnfUCq45YNNuFYcZPGBY1f")
Listening on local address "/ip4/127.0.0.1/tcp/50967"
Listening on local address "/ip4/192.168.1.74/tcp/50967"
discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/

192.168.1.74/tcp/50960
discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/

127.0.0.1/tcp/50960

Notice that node 2 was able to discover node 1 listening on port 50960, while node 2 is
listening to new events and messages on port 50967.

 Start a third node (node 3) from another terminal:

cargo run --bin iter4

You’ll see the following messages on the terminal of node 3:

Local peer id: PeerId("12D3KooWC95ziPjTXvKPNgoz3CSe2yp6SBtKh785eTdY5L2YK7Tc")
Listening on local address "/ip4/127.0.0.1/tcp/50996"
Listening on local address "/ip4/192.168.1.74/tcp/50996"
discovered 12D3KooWCVVb2EyxB1WdAcLeMuyaJ7nnfUCq45YNNuFYcZPGBY1f /ip4/

192.168.1.74/tcp/50967
discovered 12D3KooWCVVb2EyxB1WdAcLeMuyaJ7nnfUCq45YNNuFYcZPGBY1f /ip4/

127.0.0.1/tcp/50967
discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/

192.168.1.74/tcp/50960
discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/

127.0.0.1/tcp/50960

Notice that node 3 has discovered both node 1 listening on port 50960 and node 2 lis-
tening on port 50967.

https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc6762

270 CHAPTER 11 Building a P2P node with async Rust
 This looks trivial until you realize that we have not told node 3 where the other two
nodes are running. Using the mDNS protocol, node 3 was able to detect and connect
to other libp2p nodes on the local network.

We have come to the end of this chapter. In the next (and last) chapter, we’ll look at
preparing Rust servers and apps for production deployment.

Summary
 In the client/server model of computation, the client and server represent two

distinct pieces of software: the server is the custodian of data and associated
computation, and the client requests the server to send data or perform a com-
putation on a resource managed by the server. In P2P networks, communica-
tion occurs between peer nodes, each of which can perform the role of both
the client and the server. One key characteristic that differentiates client/server
networks from P2P networks is the absence of dedicated servers that have
unique privileges

 libp2p is a modular system of protocols, specifications, and libraries that enable
the development of peer-to-peer applications. It is used in many prominent P2P
projects. Key architectural components of libp2p include transport, identity,
security, peer discovery, peer routing, content routing, and messaging.

 Using code examples, you learned how to generate a unique peer ID for a node
that other nodes can use to uniquely identify it.

 We also delved into the basics of multiaddresses and how they represent the
complete path for communicating with a node over the P2P network. The peer
ID of a node is a part of the overall multiaddress of the node.

 You wrote a Rust program where nodes exchange simple ping-pong messages
among themselves. This example demonstrated configuring the Swarm net-
work management object for a node to listen and act on specific events on the
P2P network.

 We concluded the chapter by writing another Rust program with the libp2p
library that shows how peer nodes can use the mDNS protocol to discover each
other on a P2P network.

Exercises
If you are looking for additional code challenges, here are a suggestions of P2P appli-
cations that can be built using libp2p:

 Implement a simple P2P chat application.
 Implement a distributed P2P key/value store.
 Implement a distributed file storing network (like IPFS).

The libp2p library has several prebuilt code examples that can be referred to in
order to implement these exercises. The libp2p code repository can be found here:
https://libp2p.io/.

https://libp2p.io/

Deploying web services
with Docker
In the previous chapters, you learned how to build a web service and a web applica-
tion using Rust. We also looked into async programming and even addressed the
P2P architecture. We tested our applications in a local development environment.
But these are only the first steps. The ultimate goal is usually to deploy in a produc-
tion environment.

 In this last chapter, we will focus on packaging the software using a popular
method of production deployment called containerization. It involves packaging the
application’s components and its dependencies in a container. This container can
then be deployed on multiple environments, including the cloud. One of the

This chapter covers
 Introducing production deployment of Rust

servers and apps

 Writing a first Docker container

 Building a database container

 Packaging a web service with Docker

 Orchestrating Docker containers with Docker
Compose
271

272 CHAPTER 12 Deploying web services with Docker
advantages of using containers is that the application remains cleanly separated from
other containers, avoiding the risks of incompatible libraries.

 We’ll take a detailed look at the steps needed to containerize our Rust web service.
Once the web service is available as a Docker container, it is no different from any web
service or application written in any other programming language from a production
deployment standpoint. All the standard guidelines and options for deploying Docker
containers will apply.

NOTE Production deployment involves many aspects that are outside the
scope of this book, such as selecting an infrastructure provider, packaging the
software, configuring secrets, adding configurable logs for monitoring and
debugging, adding application-level security to the web service API end-
points, adding server-level security (with TLS and CORS), protecting secrets
such as access credentials and keys, configuring monitoring tools and alerts,
adding database backups, and a lot more. This book cannot address all the
considerations involved in preparing and deploying an application or service
into production because this is not a Rust-specific topic. There is a lot of pub-
licly available material (and other books) that cover this topic very well.

Packaging software in containers is a subject in itself, so we can only scratch the sur-
face here. For a deeper dive into the fascinating world of containers, take a look at
Docker in Action, 2nd ed. by Jeff Nickoloff and Stephen Kuenzli (Manning, 2019) and
Learn Docker in a Month of Lunches by Elton Stoneman (Manning, 2020).

 Containers are increasingly not deployed in isolation but in clusters that need to
be very well orchestrated, and Kubernetes is probably the most popular container
orchestrator nowadays. Several Manning titles will quickly bring you up to date on
Kubernetes, such as Kubernetes in Action, 2nd ed. by Marko Lukša or Kubernetes for Devel-
opers by William Denniss (both available from Manning).

 In this chapter, we won’t go as far as using Kubernetes (which would require much
explanation and is beyond our needs in this case). We will resort to a simpler (but less
powerful) solution called Docker Compose. Docker Compose is an interesting solu-
tion for development environments that don’t require all the power of a true con-
tainer orchestrator.

 Let’s get started with an overview of the production deployment lifecycle.

12.1 Introducing production deployment of servers and apps
In this section, we will cover two introductory topics that will outline where produc-
tion deployment fits in the software lifecycle and Docker’s role as a container technol-
ogy for deployment.

12.1.1 Software deployment cycle

The software deployment cycle involves multiple levels of developer unit and integra-
tion testing, followed by the preparation and deployment of the release. Once the
release is deployed and running, the system is monitored, key parameters are mea-
sured, and optimization is performed.

27312.1 Introducing production deployment of servers and apps
 While the specific steps in the production deployment lifecycle vary by team and
DevOps technologies, figure 12.1 shows a representative set of steps that are typically
performed.

Figure 12.1 The production deployment lifecycle

The actual development steps and terminology used by various organizations differ
widely, but let’s look at these stages to gain an understanding in broad strokes:

1 Build—Software is written (or modified), and the binary is locally built by the
developers. In most cases, this would be a development build (which facilitates
debugging and takes less time to build), as opposed to a production build
(which optimizes the binary size but typically takes longer to build in most pro-
gramming languages).

2 Dev test—The developers perform unit tests in a local development environment.
3 Staging—The code is merged with the other branches that are planned as part of

a software release, and it is deployed in a staging environment. Here, integration
tests involving code and modules written by other developers are performed.

4 Package for release—After successful integration tests, the final production build is
constructed. The method of packaging will depend on how the binary will be
deployed (e.g., as a standalone binary or in a container or a public cloud service).

In this chapter, we will focus on how to create a Docker build for the Rust
web service.

5 Configure and deploy—The production binary file is then deployed to the target
environment (e.g., a virtual machine), and the necessary configuration and envi-
ronmental parameters are set up. This is also the stage where any connection to
additional components in the production infrastructure is performed. For exam-
ple, the binary may be required to work with load balancers or reverse proxies.

In this chapter, we will use Docker Compose to streamline the process of con-
figuring, automating builds, and starting and stopping the set of Docker con-
tainers needed to run the web service.

Build Staging
Package

for
release

Dev test

Configure
& deploy Secure

Operate
and

monitor

Continuous integration Deployment Measure and
optimize

274 CHAPTER 12 Deploying web services with Docker
6 Secure—This is where that additional security requirements are configured,
such as authentication (e.g., for user and API authentication), authorization
(setting up user and group permissions), and network and server security (e.g.,
firewalls, encryption, secrets storage, TLS termination, certificates, CORS, IP
port enabling, etc.).

7 Operate and monitor—This is where the server is started in order to receive net-
work requests, and the performance of the server is monitored using network,
server, application, and cloud-monitoring tools. Examples of such tools include
Nagios, Prometheus, Kibana, and Grafana, to name a few.

In organizations where DevOps tools are deployed, continuous integration, continuous
delivery, and continuous deployment practices and tools are used to automate many of
these steps. There is a plethora of publicly available information if you want to explore
these terms in more detail.

 In this chapter, we will focus only on a subset of these topics and show you how to
perform them in the context of the Rust programming language. We will specifically
cover steps 4 and 5: the package for release and configure and deploy steps. For the latter,
we will only focus on deploying the Docker containers on a Linux Ubuntu virtual
machine (VM), but Docker containers can be deployed to any cloud provider
(though there may be provider-specific steps needed for the deployment).

 You will specifically learn the following:

 Building the release binary and packaging—You’ll learn how to build the Rust
server as a Docker image that can be deployed to any host with a container run-
time. You’ll learn how to write Dockerfiles, create Docker volumes and net-
works, configure environment variables, do multistep Docker builds, and
reduce the size of final Docker images.

 Configuring and deploying the web service—You’ll learn how to use Docker Com-
pose to define the runtime configuration of the web service and Postgres data-
base containers, define the dependencies between them, configure runtime
environment variables, initiate Docker builds, and start and stop the Docker
containers through simple commands.

Let’s start with a brief introduction to Docker.

12.1.2 Docker container basics

Container technology has changed the way software is built, deployed, and managed,
enabling DevOps automation by bridging the gap between development and IT oper-
ation teams. Docker is both the name of the company that played a major role in popu-
larizing container technology and the name of the software product (www.docker
.com).

 Docker containers are completely isolated environments with their own processes,
networking interfaces, and volume mounts. One important aspect of Docker contain-
ers is that they all ultimately share the same operating system kernel. Traditional VMs

www.docker.com
www.docker.com
www.docker.com

27512.1 Introducing production deployment of servers and apps
are an abstraction of physical hardware, turning one physical server into multiple
“logical” servers. The hypervisor allows multiple VMs to run on a single machine, and
each VM includes a full copy of the operating system. Containers, on the other hand,
are an abstraction at the application layer that packages code and dependencies
together. Multiple containers run on the same physical machine and share the OS ker-
nel with other containers. (See the Docker site for more information: www.docker
.com/resources/what-container/.)

 Figure 12.2 shows a simple layered view of how Docker containers fit on the hard-
ware infrastructure. Docker containers can contain any software application—a web
service, a web application, a database, or a messaging system, to name a few. Docker
containers are lightweight (compared to VMs), can start up and shut down very
quickly, and are self-contained in terms of the software application and all associated
dependencies, such as third-party crates and other libraries.

One interesting aspect of Docker containers is that although the Docker host might
be running the Ubuntu operating system, the Docker container can encapsulate a
web service process running on the Debian OS. This gives us tremendous flexibility
during development and deployment.

 How does this facilitate the handshake between software developers and the oper-
ations teams? In traditional software deployment, the development team hands over
the software components and associated configuration (in our case, the web service
code repo, build instructions, instructions on prerequisites to be set up, Postgres data-
base scripts, environment files with secrets, etc.). The operations team then has to fol-
low the instructions to build and deploy the web service in the production
environment. Developers are likely to build and test code in an environment different
from the production environment. The operations team, unfamiliar with the software,
may run into issues that will require the presence of the development teams to resolve.

 Docker containers solve this problem. Developers specify the infrastructure config-
uration and instructions to set up the environment, download and link the depen-
dencies, and build the binary in a Dockerfile. The Dockerfile is a text file in YAML

Hardware
(e.g., DigitalOcean VM, AWS, Azure, Google Cloud)

Operating system
(e.g., Ubuntu, Fedora, RHEL, Debian, Windows)

Docker engine

Container 1 Container 2 Container 3 Container 4

Host server

Host OS

Container
runtime

Container
instances

Figure 12.2 Docker overview

www.docker.com/resources/what-container/
www.docker.com/resources/what-container/
www.docker.com/resources/what-container/

276 CHAPTER 12 Deploying web services with Docker
syntax. It allows you to specify parameters such as the base Docker image, environ-
ment variables to use, filesystem volumes to mount, ports to expose, and so on.

 The Dockerfile is then built into a customized Docker image based on the rules
specified in the Dockerfile. The Docker image is the template from which multiple
container runtimes can be instantiated. (The relationship between a Docker image
and a Docker container is similar to the relationship between a class and an object in
object-oriented programming languages.).

 The developers instantiate the Docker image into Docker containers and test their
software application. They then hand over the Docker image to the software opera-
tions team for a production deployment. Given that the Docker image is guaranteed
to run the same way in any Docker host, regardless of the hardware infrastructure, it is
a lot easier for the operations teams to deploy and instantiate the software application
in the production environment. Docker thus dramatically reduces the friction and
human error in production deployments of software applications. However, one
requirement for using Docker is that it requires skilled Docker engineers to configure
the build rules for an application.

 To follow along with the code in this chapter, you’ll need to install the Docker
development environment on your development machine or server (macOS, Win-
dows, or Linux). See Docker’s instructions here: https://docs.docker.com/get-
docker/. More information about Docker can be found here: https://docs.docker
.com/get-started/overview/.

 In the next section, we will write our first Docker container, and we’ll optimize its
size.

12.2 Writing the Docker container
In this section, we will check the installation of Docker, write the Dockerfile and build
it into a Docker image, and optimize the size of the final Docker image using a multi-
stage build.

 Let’s start with checking the Docker installation.

12.2.1 Checking the Docker installation

You can create a project folder in your development server to follow along with the
code in this section.

 From the terminal, check your Docker installation with this command:

docker --version

You should get a response similar to the following on your terminal:

Docker version 20.10.16, build aa7e414

Let’s test the official Docker image:

docker pull hello-world

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/

27712.2 Writing the Docker container
You should see similar output to this:

Using default tag: latest
latest: Pulling from library/hello-world
2db29710123e: Pull complete
Digest: sha256:80f31da1ac7b312ba29d65080fddf797dd76acfb870e677f390d5

acba9741b17
Status: Downloaded newer image for hello-world:latest
docker.io/library/hello-world:latest

Now check if the Docker image is available on your local dev server:

docker images

You should see the following:

REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest feb5d9fea6a5 8 months ago 13.3kB

You will see a hello-world Docker image available in your local dev server with a
Docker image ID specified. Note also the size of the Docker image. We’ll talk later in
the chapter about optimizing the size of Docker images.

 As mentioned earlier, a Docker image is a template for creating a Docker con-
tainer instance. Let’s instantiate the Docker image and see what happens:

docker run hello-world

If you see the following message, your Docker environment is good to go:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the “hello-world” image from the Docker Hub.

(amd64)
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent

it to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

This official Docker image prints out the “Hello from Docker!” message. That’s all it
does.

278 CHAPTER 12 Deploying web services with Docker
 Using a Docker image created by someone else is useful, but it is more interesting
to create your own Docker image. Let’s do that next.

12.2.2 Writing a simple Docker container

Start a new project with these commands:

cargo new --bin docker-rust
cd docker-rust

This docker-rust folder will be the project root folder. Add Actix Web to the
Cargo.toml dependencies:

[dependencies]
actix-web = "4.2.1"

Add the following to src/main.rs:

use actix_web::{get, web, App, HttpResponse, HttpServer, Responder};

#[get("/")]
async fn gm() -> impl Responder {

HttpResponse::Ok().body("Hello, Good morning!")
}

async fn hello() -> impl Responder {
HttpResponse::Ok().body("Hello there!")

}

#[actix_web::main]
async fn main() -> std::io::Result<()> {

HttpServer::new(|| {
App::new()

.service(gm)

.route("/hello", web::get().to(hello))
})
.bind(("0.0.0.0", 8080))?
.run()
.await

}

Let’s now build and run the server in the regular manner (without Docker):

cargo run

From the browser window, test the following:

localhost:8080
localhost:8080/hello

You should see the following messages (corresponding to the previous two GET
requests) in the browser window:

Hello, Good morning!
Hello there!

27912.2 Writing the Docker container
Now that we’ve confirmed that the web service is working, let’s containerize this web ser-
vice with Docker. Figure 12.3 shows what we will be building.

Create a new Dockerfile-basic file in the project root, and add the following:

Use the main rust Docker image
FROM rust

copy app into docker image
COPY . /app

Set the workdirectory
WORKDIR /app

build the app
RUN cargo build --release

start the application
CMD ["./target/release/docker-rust"]

Run the following command to build the Docker image:

docker build -f Dockerfile-basic . -t docker-rust-basic

You will see a series of messages ending with these:

=> => exporting layers 0.8s
=> => writing image
sha256:
20fe6699b10e9945a1f0072607da46f726476f82b15f9fbe3102a68becb7e1a3 0.1s

=> => naming to docker.io/library/docker-rust-basic

Actix web
server

GET /

GET /hello

Docker container

name: docker-rust-basic-
container

Docker image

name: docker-rust-basic

Linux (Debian/Alpine)

rust

actix-web

Dockerfile

name: Dockerfile-basic docker build

docker run

handler: gm()

handler: hello()

Every command in
Dockerfile (FROM,
RUN, COPY) creates
a new image layer.

FROM rust
COPY . /app

FROM
rust

FROM
rust

COPY
. /app

Figure 12.3 A first
Docker container

280 CHAPTER 12 Deploying web services with Docker
To check the Docker image that has been built, run the following command:

docker images

You should see output on your terminal similar to this:

REPOSITORY TAG IMAGE ID CREATED SIZE
docker-rust-basic latest 20fe6699b10e 9 seconds ago 1.32GB

You will notice that a Docker image with the name docker-rust-basic has been cre-
ated with a specific Docker image ID. The Docker image has a size of 1.32 GB; this is
because Docker images include all the layers along with all their dependencies. For
example, in this case, the Rust Docker image contains the Rust compiler and all the
intermediate build artifacts, which are not necessary to run the final application.

 Getting a large Docker image size in the first iteration is normal, as our initial pri-
ority is to get the Docker image defined and constructed the right way. We’ll look later
at how to reduce the size of the Docker image.

 Let’s run the web server within this Docker container as follows:

docker run -p 8080:8080 -t docker-rust-basic

From the browser window, test the following:

localhost:8080
localhost:8080/hello

You should see the respective messages displayed in the browser window.
 We have now tested the web service in two versions: the basic version with cargo

run and the Dockerized version. But we’re not done yet. The problem we still have is
that the Docker image of the web service has a size of 1.32 GB. Not exactly small.
Docker binaries are expected to have a small footprint, but the Dockerized version of
this very simple (and trivial) Rust web service is large. Can we fix it? We’ll look at that
in the next section.

12.2.3 Multistage Docker build

In this section, let’s try to reduce the size of the Docker image. Figure 12.4 shows what
we will be doing in this section.

 Create a new Dockerfile, Dockerfile-lite, in the project root, and add the following:

Use the main rust Docker image
FROM rust as build

copy app into Docker image
COPY . /app

Set the workdirectory
WORKDIR /app

build the app
RUN cargo build --release

28112.2 Writing the Docker container
use google distroless as runtime image
FROM gcr.io/distroless/cc-debian11

copy app from builder
COPY --from=build /app/target/release/docker-rust /app/docker-rust
WORKDIR /app

start the application
CMD ["./docker-rust"]

Figure 12.4 A lite Docker container

Run the following command to build the Docker image:

docker build -f Dockerfile-lite . -t docker-rust-lite

To check the Docker image that has been built, run the following command:

docker images

You should see output on your terminal similar to this:

REPOSITORY TAG IMAGE ID CREATED SIZE
docker-rust-lite latest 40103591baaf 12 seconds ago 31.8MB

Actix web
server

GET /

GET /hello
Docker container

name: docker-rust-lite-
container

Docker image

name: docker-rust-lite

gcr.io/distroless/cc-debian11

rust

actix-web

Dockerfile

name: Dockerfile-lite docker build

docker run

handler: gm()

handler: hello()

Final Docker image
only contains step 2
image layers

Step 1 Build stage: includes Rust compiler
 and intermediate build artifacts

Step 2 Production-ready stage: excludes
files not needed to run production application

 Step 1 Build stage

 Step 2 Production-ready stage

FROM gcr.io/distroless/cc-debian11

COPY --from=build /app/target/release/docker-rust /app/docker/docker-rust

...

FROM rust as build

COPY. /app

282 CHAPTER 12 Deploying web services with Docker
You’ll now notice that the size of the Docker image has been reduced to 31.8 MB.
Before we analyze it, let’s first confirm that this Docker image works. Run the Docker
image with the following command:

docker run -p 8080:8080 -t docker-rust-lite

Check the running container:

docker ps

You should see the docker-rust-lite container shown in the list.
 From the browser window, test the following:

localhost:8080
localhost:8080/hello

You should see the respective greeting messages displayed in the browser window.
 So, how did this work? We used what is called a multistage build. A multistage

Docker build is a series of steps that create a Docker image. The main benefit of a
multistage build is that you can clean up after a development build and reduce the
size of the final binary by removing extraneous files in the final Docker image. It lets
developers automate the process of creating several versions of a binary, aimed at dif-
ferent target OS environments, and it also offers security and caching benefits.

 A Docker multistage build uses several FROM statements to reference a specific
image for a particular stage. Each stage can be named using the AS keyword. In the
Dockerfile-lite example shown previously, we have two stages. The first stage builds a
release binary. The second build stage uses google distroless as a runtime image
and copies over the release binary previously created, which results in a smaller
Docker image size.

 Figure 12.5 shows an example of a Docker multistage build with a single Dockerfile
defining two build steps. The first step creates a developer build Docker image that
contains development-related artifacts. The second build step builds a production-
ready Docker image, which achieves a smaller size by excluding unwanted files. You’ll
find more details on multistage Docker builds in the documentation: https://
docs.docker.com/develop/develop-images/multistage-build/.

 To summarize, the main difference between what’s shown in figures 12.3 and 12.4
is that in the latter we built the Docker image in two steps, with the second (final) step
excluding all the development tools and artifacts in the final Docker image.

 Now that you understand how to build and optimize a basic Rust Actix program
with Docker, let’s shift our focus to the EzyTutors web service.

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/

28312.3 Building the database container
Figure 12.5 Multistage Docker builds

12.3 Building the database container
The EzyTutors web backend has two distinct components: the web service serving the
APIs and the Postgres database. Figure 12.6 shows how we want to package the two
components as Docker containers and then have mobile and web clients send
requests.

Figure 12.6 Multicontainer configuration

Step 1: Build stage

FROM rust as build
COPY . /app

Step 2: Production-ready
stage

FROM gcr.io/distroless/cc-
debian11
COPY --from=build
/app/target/release/docker-
rust/app/docker-rust

Dockerfile Result of execution of step 1

Running container

Step 1: Build stage

FROM rust as build
COPY . /app

Step 2: Production-ready
stage

FROM gcr.io/distroless/cc-
debian11
COPY --from=build
/app/target/release/docker-
rust/app/docker-rust

Dockerfile

Build
step 1

Move
to

step 2

Build
step 2

Run the
Docker
image

BUILD
IMAGE

PRODUCTION_READY
IMAGECONTAINER

Result of execution of step 2

Rust web service Postgres database

EzyTutors web service Database

A
P

I

Mobile app

Web app

284 CHAPTER 12 Deploying web services with Docker
Let’s first Dockerize the Postgres database. We’ll package the EzyTutors web service as
a container in the next section.

 Is there any real benefit to packaging the database as a Docker container? Yes,
because we want the database to be easily portable across machines and not be tied to
a specific hardware environment. We also eventually want to be able to operate (start,
stop, etc.) the database and web service together as one unit, and that is easier if the
database is also packaged as a container.

 Let’s get started.

12.3.1 Packaging the Postgres database

First, clone the Git repo for the book. Navigate to chapter6/ezytutors/tutor-db—this
is the project root folder for the web service.

 Install Docker Compose on an Ubuntu server (or any other preferred configura-
tion of virtual machine). You can refer to the Docker documentation here: https://
docs.docker.com/compose/install/.

 The command to verify your Docker Compose installation on Ubuntu is docker
compose version. You should see output similar to this:

Docker Compose version v2.5.0

Create a new Docker network to interconnect the tutor web service and the Postgres
database containers:

docker network create tutor-network
docker ls

You should see something similar to this:

6fc670fb70ba bridge bridge local
75d560b02bbe host host local
7d2c59b2f3a5 none null local
e230e1a9c55d tutor-network bridge local

Docker volumes are the preferred way to persist data generated by and used by Docker
containers. They are completely managed by Docker, they are easy to back up, and you
can use volume drivers to store data on remote hosts or cloud providers. A volume’s
contents exist outside the lifecycle of a Docker container. More details can be found
here in the Docker documentation: https://docs.docker.com/storage/volumes/.

 Let’s create a Docker volume as follows:

docker volume create tutor-data
docker volume ls

You should see output like this:

DRIVER VOLUME NAME
local tutor-data

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/storage/volumes/

28512.3 Building the database container

S
the
co
p

tutor
Stop the Postgresql database instance, if it’s running, on the Docker host:

systemctl status postgresql
systemctl stop postgresql

Create a new Docker Compose file with the name docker-compose.yml. Add the fol-
lowing code:

version: '3'
services:

db:
container_name: tutor-postgres
restart: always
image: postgres:latest
environment:

- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
- POSTGRES_DB=ezytutors

volumes:
- tutor-data:/var/lib/postgresql/data
- ./c12-data/initdb.sql:/docker-entrypoint-initdb.d/initdb.sql
- ./c12-data/init-tables.sql:/

docker-entrypoint-initdb.d/init-tables.sql
ports:

- 5432:5432
networks:

- tutor-network
volumes:

tutor-data:
networks:

tutor-network:

In the preceding code, the services: keyword represents a separate Docker con-
tainer. In this case, we’re telling Docker Compose that db is the name of the service
and that a separate Docker container should be spun up for the db service.

 Under the volumes: keyword, the tutor-data volume on the Docker host is
mapped to /var/lib/postgresql/data (the default database folder of Postgres) within
the Docker container. The initdb.sql file contains the database scripts to create the
database and users, along with the grant permissions. The init-tables.sql file contains
the database scripts to create the database tables and load initial test data.

 Now build and run the Postgres Docker image:

docker compose up -d
docker ps

You should see output similar to this:

CONTAINER ID IMAGE COMMAND CREATED |
d43b6ae99846 postgres:latest "docker-entrypoint.s…" 4 seconds ago |

List the services to be managed
by Docker Compose here. Define the Postgres

database service.
Pull the base image of Postgres
from Docker Hub, which is a central
repository of Docker images.

Specify the environmental
variables needed to start
the Postgres database
within the Docker container.

Specify the details
of the database
volume that is
mapped to the

Postgres Docker
container.

Copy the initdb.sql file
to a special docker-
entrypoint-initdb.d
directory inside the

Docker container.

Copy the init-tables.sql file to
the same docker-entrypoint-
initdb.d directory inside the
Docker container.

Port 5432 on the Docker host maps to port
5432 within the Docker container. This is
the default port on which the Postgres
database listens for incoming connections.

pecify that
 database
ntainer is
art of the
-network.

Declare the database
volume used in the
Docker Compose file.

Declare the Docker network used
in the Docker Compose file.

286 CHAPTER 12 Deploying web services with Docker
| STATUS PORTS NAMES
| Up 1 second 0.0.0.0:5432->5432/tcp, :::5432->5432/tcp tutor-postgres

The tutor-postgres Docker container has been instantiated from the postgres
:latest Docker image. Let’s check if the database and tables have been created and if
the test data has been loaded. To do so, connect to the Docker container:

docker exec -it d43b6ae99846 /bin/bash
psql postgres://postgres:postgres@localhost:5432/ezytutors
\list

You should see terminal output similar to this:

psql (12.11 (Ubuntu 12.11-0ubuntu0.20.04.1), server 14.3 (Debian 14.3-
1.pgdg110+1))

WARNING: psql major version 12, server major version 14.
Some psql features might not work.

Type "help" for help.

ezytutors=# \list
List of databases

Name | Owner | Encoding| Collate | Ctype | Access privileges
---------+---------+---------+-----------+-----------+----------------------
ezytutors| postgres| UTF8 | en_US.utf8| en_US.utf8|
postgres | postgres| UTF8 | en_US.utf8| en_US.utf8|
template0| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

| | | | | postgres=CTc/postgres
template1| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

| | | | | postgres=CTc/postgres
(4 rows)

You should see the ezytutors database listed. This is because we placed the initdb.sql
file within the Docker container in the /docker-entrypoint-initdb.d folder. Any script
placed within this folder should automatically be executed when the container starts.

 Enter \q and exit the psql shell, followed by exit in the Docker bash shell to exit
the Docker container.

 There is another way to access the database, which is to connect to the Docker con-
tainer and execute psql from within it:

docker ps
docker exec -it 0027d5c1cfaf /bin/bash
psql -U postgres
\list

You should see output like this:

bash-5.1# psql -U postgres
psql (11.16)
Type "help" for help.

Connect to the Docker
container shell.

Log in to the psql shell within
the Postgres Docker container.

Once in the psql shell,
list all the databases.

28712.3 Building the database container
postgres=# \list
List of databases

Name | Owner | Encoding| Collate | Ctype | Access privileges
---------+---------+---------+-----------+-----------+----------------------
ezytutors| postgres| UTF8 | en_US.utf8| en_US.utf8| =Tc/postgres +

| | | | | postgres=CTc/postgres+
| | | | | truuser=CTc/postgres

postgres | postgres| UTF8 | en_US.utf8| en_US.utf8|
template0| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

| | | | | postgres=CTc/postgres
template1| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

| | | | | postgres=CTc/postgres
(4 rows)

Both of these approaches are acceptable ways to access the Postgres database within
the tutor-postgres container. As you can see, the ezytutors database has been
created.

 Let’s check if the user truuser has been created and ensure privileges have been
assigned to the user. From within the Docker container, execute the following com-
mand at the command prompt:

psql -U truuser ezytutors
ezytutors=>\list

If you are able to see the ezytutors database listed, it’s good. Otherwise, execute the
following steps within the psql shell:

postgres=# drop database ezytutors
postgres=# \list

You should see output similar to this:

postgres=# drop database ezytutors;
DROP DATABASE
postgres=# \list

List of databases
Name | Owner | Encoding| Collate | Ctype | Access privileges

---------+---------+---------+-----------+-----------+----------------------
postgres | postgres| UTF8 | en_US.utf8| en_US.utf8|
template0| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

| | | | | postgres=CTc/postgres
template1| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

| | | | | postgres=CTc/postgres
(3 rows)

We have deleted the ezytutors database because we want to execute the initdb.sql
script in its entirety once again.

 Now let’s run the two initialization scripts that we stored within the Postgres
Docker container under docker-entrypoint-initdb.d. Go back to the Docker container
bash shell (not the psql shell), and execute the following commands:

postgres=# \i /docker-entrypoint-initdb.d/initdb.sql

288 CHAPTER 12 Deploying web services with Docker
You should see output like this in your terminal:

postgres=# \i /docker-entrypoint-initdb.d/initdb.sql
CREATE DATABASE
CREATE ROLE
GRANT
ALTER ROLE
ALTER ROLE

The initdb.sql script creates the database, creates a new truuser user, and grants all
permissions to this new user on the ezytutors database.

 Now quit the psql shell with \q, and log back in from the Docker container bash
shell with the truuser ID:

psql -U truuser ezytutors
ezytutors=>\list

You should see the following on your terminal:

ezytutors=> \list
List of databases

Name | Owner |Encoding| Collate | Ctype |Access privileges
--------+---------+--------+-----------+-----------+------------------

ezytutors|postgres |UTF8 |en_US.utf8 |en_US.utf8 |=Tc/postgres +
| | | | |postgres=CTc/postgres+
| | | | |truuser=CTc/postgres

postgres |postgres |UTF8 |en_US.utf8 |en_US.utf8 |
template0|postgres |UTF8 |en_US.utf8 |en_US.utf8 |=c/postgres +

| | | | |postgres=CTc/postgres
template1|postgres |UTF8 |en_US.utf8 |en_US.utf8 |=c/postgres +

| | | | |postgres=CTc/postgres
(4 rows)

The ezytutors database can now be accessed by truuser. In the next section, we’ll
look at how to create database tables within the Docker container.

12.3.2 Creating database tables

From the command prompt of the Postgres Docker container, check if the database
tables have been created:

ezytutors=> \d
Did not find any relations.

If you see the list of tables, it’s all good. But if you see the preceding error message,
“Did not find any relations,” then you’ll need to manually run the script to create the
tables and load the test data.

 Let’s create the tutor- and course-related tables in the ezytutors database and
then list the database tables (called relations in Postgres terms). We’ll do this by execut-
ing the init-tables.sql script. You should see this:

ezytutors=> \i /docker-entrypoint-initdb.d/init-tables.sql
psql:/docker-entrypoint-initdb.d/init-tables.sql:4: NOTICE:

28912.3 Building the database container
table "ezy_course_c6" does not exist, skipping
DROP TABLE
psql:/docker-entrypoint-initdb.d/init-tables.sql:5: NOTICE:

table "ezy_tutor_c6" does not exist, skipping
DROP TABLE
CREATE TABLE
CREATE TABLE
GRANT
GRANT
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
ezytutors=> \d

List of relations
Schema | Name | Type | Owner

--------+-----------------------------+----------+---------
public | ezy_course_c6 | table | truuser
public | ezy_course_c6_course_id_seq | sequence | truuser
public | ezy_tutor_c6 | table | truuser
public | ezy_tutor_c6_tutor_id_seq | sequence | truuser

(4 rows)

The tables have been created. Let’s also check if the initial test data has been loaded
into the tutor and course tables:

ezytutors=> select tutor_id, tutor_name, tutor_pic_url from ezy_tutor_c6;

tutor_id | tutor_name | tutor_pic_url
----------+------------+-----------------------------

1 | Merlene | http://s3.amazon.aws.com/pic1
2 | Frank | http://s3.amazon.aws.com/pic2

(2 rows)

ezytutors=> select course_id, tutor_id, course_name, course_format,
course_level, from ezy_course_c6;

course_id | tutor_id | course_name | course_format | course_level
-----------+----------+---------------+--------------------+---------+

1 | 1 | First course | | Beginner
2 | 2 | Second course | ebook |

(2 rows)

All good so far. It is now time to conduct a test. What happens when we stop the con-
tainer? Will the data persist between container restarts? To check this, let’s add a new
record to the tutor table, shut down the container, and restart it to check if the data
has persisted:

ezytutors=> insert into ezy_tutor_c6 values(
3,'Johnny','http://s3.amazon.aws.com/pic2',
'Johnny is an expert marriage counselor');

ezytutors=> \q
exit
root@1dfd3bd87e2c:/# exit

290 CHAPTER 12 Deploying web services with Docker
Exit the psql shell with q, and then issue the exit command on the bash shell of the
Docker Postgres container. This should take you to your project home folder.

 Now shut down the Docker container:

docker compose down
docker ps

Your Postgres container should no longer be running. Now restart the container, and
get into the running container shell:

docker compose up -d
docker ps
docker exec -it 7e7c11273911 /bin/bash

Then, in the container, log in to the database with the psql client, and check that the
tutor table has the additional entry that you added previously:

root@7e7c11273911:/# psql -U truuser ezytutors
psql (14.3 (Debian 14.3-1.pgdg110+1))
Type "help" for help.

ezytutors=> \d
List of relations

Schema | Name | Type | Owner
--------+-----------------------------+----------+---------
public | ezy_course_c6 | table | truuser
public | ezy_course_c6_course_id_seq | sequence | truuser
public | ezy_tutor_c6 | table | truuser
public | ezy_tutor_c6_tutor_id_seq | sequence | truuser

(4 rows)

ezytutors=> select * from ezy_tutor_c6;
tutor_id | tutor_name | tutor_pic_url | tutor_profile

----------+------------+-------------------------------+-------------------
1 | Merlene | http://s3.amazon.aws.com/pic1 | Merlene is an ..
2 | Frank | http://s3.amazon.aws.com/pic2 | Frank is an ..
3 | Johnny | http://s3.amazon.aws.com/pic2 | Johnny is an ..

(3 rows)

The data has indeed been persisted.
 We have now completed the task of creating a Postgres database container, initial-

izing the database, and loading test data. This concludes the setup of the Docker Post-
gres container.

 We can now move on to Dockerizing the tutor web service.

12.4 Packaging the web service with Docker
In the previous section, we packaged the EzyTutors Postgres database as a Docker con-
tainer. In this section, let’s turn our attention to packaging the tutor web service as a
Docker container.

 We will first create a Dockerfile because we want to create a custom Docker image
for the tutor web service (as opposed to using the standard Postgres image in the pre-
vious section). The custom Dockerfile is required for two reasons:

29112.4 Packaging the web service with Docker
 There is no standard Docker image available in Docker Hub for our tutor web
service. This is our custom code, and we need to give instructions in the Dock-
erfile to package it as a container.

 We want to specify instructions to create a static self-contained binary, without
the use of shared libraries. By default, the Rust standard library dynamically
links to the system libc implementation. Since we want a 100% static binary for
the web service, we will use musl libc on the Linux distribution we use within
the web service Docker container.

Let’s first create the Dockerfile for the tutor web service. Create a Dockerfile named
Dockerfile-tutor-webservice, and add the following:

Use the main rust docker image
FROM rust as build
RUN apt-get update && apt-get -y upgrade
RUN apt-get install libssl-dev
RUN apt-get -y install pkg-config musl musl-dev musl-tools
RUN rustup target add x86_64-unknown-linux-musl

copy app into Docker image
COPY . /app

Set the workdirectory
WORKDIR /app

build the app
RUN cargo build --target x86_64-unknown-linux-musl --release --bin iter5

CMD ["./target/x86_64-unknown-linux-musl/release/iter5"]

We have created the Dockerfile. We can run the Docker build command directly on
this Dockerfile. But we will do it in a different way. You’ll see how in the next section.

Why use Rust with musl?
By default, Rust statically links all Rust code. But if you use the standard library
(which we do in this book), it will dynamically link to the system libc implementation.
Unfortunately, operating system differences can cause Rust binaries to break when
run in a different environment compared to what they were compiled in. For example,
if the binary was built using a newer version of Glibc compared to the target system
(where the Rust program is deployed and run), it will fail to run. One way to avoid this
problem is to statically compile musl into the binaries.

musl is a lightweight replacement for Glibc used in Alpine Linux. When musl is stati-
cally compiled into your Rust program, you can create a self-contained executable
that will run without dependencies on Glibc. This is the approach we will use in this
book to package Rust in Docker containers. (See William Saar’s “Shipping Linux bina-
ries that don’t break with Rust” article for more information: http://mng.bz/44ra.)

Pull the official rust Docker
image from Docker Hub.

Install the prerequisites
to build a static binary
using musl libc.

Set the Rust binary
build target.Copy the ezytutors project

folder to the Docker container.
Set the working directory within the Docker
container. Subsequent commands are
executed by Docker from this directory. Make the release

build of the EzyTutors
web service.

Run the binary. This will start up the Actix web
server and listen for incoming HTTP requests.

http://mng.bz/44ra

292 CHAPTER 12 Deploying web services with Docker
12.5 Orchestrating Docker containers with Docker Compose
In this section, we will use Docker Compose to create a multicontainer configuration
for the EzyTutors application.

Let’s add the tutor web service as a service within the Docker Compose file that we cre-
ated in the previous section for the Postgres database container. In this way, we will
have a single Docker Compose file that has details for both the Docker containers
needed to build and run the tutor web service. Also, we can specify the dependencies
between the two containers and connect them through a common Docker network.
And we can specify the Docker volume to which Postgres data should be persisted
between Docker container runs.

 Figure 12.7 illustrates the key elements of the final Docker Compose file for our
application.

In docker-compose.yml, add tutor-webservice as a service. The complete docker-
compose.yml file should look like this:

version: '3'
services:

Why use Docker Compose?
Docker Compose is a client-side tool that lets you run an application stack with mul-
tiple containers. Docker has made it easy to create local development environments
for individual services, but when there are multiple Docker containers to manage for
an application (as we have in our EzyTutors example), it becomes cumbersome.
Docker Compose solves this problem by specifying the configuration of one or more
Docker containers within a single YAML configuration file.

Using Docker Compose, you can specify the build instructions, storage configuration,
environment variables, and network parameters for each Docker container that is
part of your application. Once those are defined, Docker Compose allows you to build,
start, and stop all the containers using a single set of commands.

port: 5432:5432

db

volume: tutor-data

port:3000:3000

api

dockerfile: Dockerfile-
tutor-webservice

Postgres service Tutor web service

tutor-network

docker-compose.yml

Figure 12.7 Docker Compose
configuration

29312.5 Orchestrating Docker containers with Docker Compose
db:
container_name: tutor-postgres
restart: always
image: postgres:latest
environment:
- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
- POSTGRES_DB=ezytutors

volumes:
- tutor-data:/var/lib/postgresql/data
- ./c12-data/initdb.sql:/docker-entrypoint-initdb.d/initdb.sql
- ./c12-data/init-tables.sql:/docker-entrypoint-initdb.d/init-tables.sql

ports:
- 5432:5432

networks:
- tutor-network

api:
restart: on-failure
container_name: tutor-webservice
build:

context: ./
dockerfile: Dockerfile-tutor-webservice
network: host

environment:
- DATABASE_URL=${DATABASE_URL}
- HOST_PORT=${HOST_PORT}

depends_on:
- db

ports:
- ":3000:3000"

networks:
- tutor-network

volumes:
tutor-data:

networks:
tutor-network:

We can now start the Postgres database container:

docker compose up db -d

This will start the database container alone as a background process. Before we build
and run the tutor web service container, let’s first check the environment variable
settings:

cat .env

You should see this:

DATABASE_URL=postgres://truuser:trupwd@localhost:5432/ezytutors
HOST_PORT=0.0.0.0:3000

Next, set the DATABASE_URL environment variable in the current terminal shell:

source .env
echo $DATABASE_URL

Specifies the Postgres database
as a service (this was defined in
the previous section).

A new service, api, is
defined to refer to the
tutor web service. Instructions to build the api service

are defined, including the name of the
Dockerfile to build the Docker image.

Environment variables will be passed
from the Docker host shell environment
into the Docker Compose file when
building and running the api service.

The Postgres database is defined as a
dependency for the tutor web service.

Port 3000 on the Docker
host is mapped to port 3000
on the Docker container.The api service (Docker

container) is specified to be
a part of the tutor-network.

294 CHAPTER 12 Deploying web services with Docker
You should see the value of DATABASE_URL correctly set as the environment variable.
This step is important because sqlx does compile-time checking of the database while
building the tutor web service:

postgres://truuser:trupwd@localhost:5432/ezytutors

Let’s double-check that the Postgres URL is accessible from the Docker host shell (to
avoid unwanted delays in the compilation process):

psql postgres://truuser:trupwd@localhost:5432/ezytutors
\q

If this takes you to the Postgres shell, you are ready to build the tutor web service con-
tainer, as follows:

docker compose build api

It will take a while, depending on the configuration of your machine. So go grab a cof-
fee (or another drink of your choice).

 Once the process is complete, check the built image with this command:

docker images

You should see this:

REPOSITORY TAG IMAGE ID CREATED SIZE
tutor-db_api latest 23bee1bda139 52 seconds ago 2.87GB
postgres latest 5b21e2e86aab 7 days ago 376MB

Now that you have built the web service container, you can start it up. But before that,
you will have to shut down the running Postgres container because the Docker Com-
pose file will start both the api (web service container) and db (Postgres container)
services together.

 Get the Docker image ID, and remove the running Postgres container:

docker ps
docker stop <image id>
docker rm <image id>

Before you start the containers, there is one more step to be done. Recall that the
tutor web service uses the DATABASE_URL environment variable to connect to the Post-
gres database. While building the web service container, we set the following value to
DATABASE_URL:

DATABASE_URL=postgres://truuser:trupwd@localhost:5432/ezytutors

Note that the value after the @ symbol represents the host on which the Postgres data-
base runs. During the build phase, we set it to localhost, but for the tutor webservice
container (named api in the Docker Compose file), localhost refers to itself. So how
did it connect to the Postgres container at build time? The answer is that we made a
small hack at build time. If you look back at the Docker Compose file for building the
tutor web service, you will notice the network parameter is set to host:

29512.5 Orchestrating Docker containers with Docker Compose
api:
restart: on-failure
container_name: tutor-webservice
build:

context: ./
dockerfile: Dockerfile-tutor-webservice
network: host

This parameter enabled the build process of the tutor web service container to pro-
ceed by connecting to the localhost port of the Docker host from which the Docker
container build happened. This is not suitable for a production environment, and it’s
why we have created a separate Docker network called tutor-network and specified
that both containers are to be connected to this network. You can verify that now:

docker network ls
docker inspect tutor-network

If you do not see any reference to the tutor web service or Postgres containers, add
them manually as follows:

docker network connect tutor-network tutor-webservice
docker network connect tutor-network tutor-postgres
docker inspect tutor-network

You should see output like this:

"Containers": {
"26a5fc9ac00d815cb933bf66755d1fd04f6dca1efe1ffbc96f28da50e65238ba": {

"Name": "tutor-postgres",
"EndpointID":

"e870c365731463198fbdf46ea4a7d22b3f9f497727b410852b86fe1567c8a3e6",
"MacAddress": "02:42:ac:1b:00:03",
"IPv4Address": "172.27.0.3/16",
"IPv6Address": ""

},
"af6e823821b36d13bf1b381b2b427efc6f5048386b4132925ebd1ea3ecfa5eaa": {

"Name": "tutor-webservice",
"EndpointID":

"015e1dbc36ae8e454dc4377ad9168b6a01cae978eac4e0ec8e14be98d08b4f1c",
"MacAddress": "02:42:ac:1b:00:02",
"IPv4Address": "172.27.0.2/16",
"IPv6Address": ""

}
},

The two containers, tutor-postgres and tutor-webservice, have been added to the
tutor-network.

 Within a network, the containers can access each other by their container names.
So, the tutor-webservice can access the Postgres container using the name tutor-
postgres. Let’s now modify the database URL as follows in the .env file:

DATABASE_URL=postgres://truuser:trupwd@tutor-postgres:5432/ezytutors

296 CHAPTER 12 Deploying web services with Docker
Note that the host value is now set to tutor-postgres instead of localhost. Let’s set
the environment variable in the shell and restart the containers.

source .env
echo $DATABASE_URL
echo $HOST_PORT
docker compose down
docker compose up -d
docker network connect tutor-network tutor-webservice
docker network connect tutor-network tutor-postgres
docker inspect tutor-network

Now, from your server terminal (not inside Docker), run the following command to
check the web service endpoint:

curl localhost:3000/tutors/

You should see the following result:

[{"tutor_id":1,"tutor_name":"Merlene",
"tutor_pic_url":"http://s3.amazon.aws.com/pic1",
"tutor_profile":"Merlene is an experienced finance professional"},
{"tutor_id":2,
"tutor_name":"Frank",
"tutor_pic_url":"http://s3.amazon.aws.com/pic2",
"tutor_profile":"Frank is an expert nuclear engineer"},
{"tutor_id":3,
"tutor_name":"Johnny",
"tutor_pic_url":"http://s3.amazon.aws.com/pic2",
"tutor_profile":"Johnny is an expert marriage counselor"}]

Note that the entry you added to the list of tutors is also shown, confirming that the
database changes are persisted to the local volume across container restarts. You can
also run tests on the other endpoints as an exercise.

 Congrats if you have come this far. You have successfully Dockerized the tutor web
service and the Postgres database. You have also made the task greatly simpler by
using Docker Compose to build, start, and stop all the containers together with simple
commands.

 With this, we have come to the end of this chapter, and also of this book. This book
was designed to get you started on your journey to writing web services and applica-
tions in Rust, but this is where I get off. You can now explore and enjoy the world of
Rust web development on your own. I wish you the best in your continued exploration
of Rust servers, services, and app development.

Shut down the two
Docker containers. Restart the two

Docker containers.

Since the containers have
been restarted, they have
to be added again to the
tutor-network.Inspect the tutor-network, and

verify that the two containers
are a part of the network.

297Summary
Summary
 Rust web services, applications, and databases can be packaged into Docker

containers. Docker is a popular way to build and run lightweight containers
that removes friction between the software developers and operations teams.

 Docker files contain the instructions to build the Docker image. From the
image, containers can be instantiated and can then service requests. For con-
tainerizing Rust programs, building static Rust binaries with musl helps avoid
issues with libc versions on different target environments.

 Multistage Docker builds can be used to reduce the size of final Docker images.
In the case of Rust, the first stage involves installing the Rust development envi-
ronment and associated dependencies to build the static Rust binary. The sec-
ond stage involves removing the Rust compiler and intermediate build artifacts
by creating a new base image and copying only the final (self-contained) Rust
static binary.

 Docker containers can be grouped together using Docker Compose, a tool to
build, run, and manage the life cycle of a set of Docker containers.

 Docker containers can be interconnected using a custom Docker network.
 Docker volumes can be used to persist data to disk between Docker container

runs.
 Docker Compose greatly simplifies the life cycle management of a group of

containers.
 Dockerfiles and Docker Compose files for a project can be used to deploy an

application or service on various virtual infrastructure and cloud providers.

Suggested exercises
If you are looking for additional code challenges, here are a few:

 Docker build commands can take a long time to create a Docker image.
Explore the use of cargo-chef (https://github.com/LukeMathWalker/cargo
-chef) to speed up container builds.

 Add middleware to the Actix web server to add additional functionality such as
CORS, JWT authentication of API endpoints, and logging levels. For more
details, see the Actix documentation’s discussion of middleware: https://
actix.rs/docs/middleware/.

 The size of the tutor web service’s container image in the previous section is
large—2.87 GB. As an exercise, enhance the Dockerfile-tutor
-webservice Dockerfile to include a multistage build and reduce the size of
the Docker image. More details on multistage builds can be found here in the
Docker documentation: https://docs.docker.com/develop/develop-images/
multistage-build/.

https://github.com/LukeMathWalker/cargo-chef
https://github.com/LukeMathWalker/cargo-chef
https://github.com/LukeMathWalker/cargo-chef
https://actix.rs/docs/middleware/
https://actix.rs/docs/middleware/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/

298 CHAPTER 12 Deploying web services with Docker

appendix
Postgres installation

You can choose to install Postgres in one of the following ways:

 Install locally on a macOS, Windows, or Linux/Unix development environ-
ment.

 Run a Postgres database in a Docker container.
 Connect to a hosted and managed Postgres database on the cloud, such as

AWS, Azure, Google Cloud, Heroku, or DigitalOcean.

The instructions for installing Postgres on a Linux Ubuntu server are given in this
appendix. For other configurations, there are good sources of information avail-
able publicly.

 Refresh the local package index:

sudo apt update

Install the postgres package along with a contrib package that has additional
utilities:

sudo apt install postgresql postgresql-contrib

The Postgres software is now installed. The installation also automatically starts the
postgresql server as a systemd process in Linux. To verify this, type the following:

ps aux | grep postgres

You should see the Postgres processes running in the background.
 Let’s now interact with the Postgres database management system. By default,

Postgres uses the concept of a role (which is similar to a user in Linux/Unix) to han-
dle authentication and authorization. The installation process creates a user
account called postgres. Log into the account as follows:

sudo -i -u postgres
299

300 APPENDIX Postgres installation
You should now see the shell corresponding to the postgres user. From here, you can
access the Postgres shell prompt, which allows you to interact with the Postgres data-
base management system to perform tasks such as creating a database, creating users,
etc. Simply type the following:

psql

This will log you into a psql prompt. You can exit from the prompt at any time using
this command:

\q

Now exit the Postgres user prompt:

exit

Next, we need to make a change to the Postgres configuration to allow peer authenti-
cation. Look for the pg_hba.conf file under /etc/postgres. For example, in a Postgres
version 12 installation, this file can be found at /etc/postgresql/12/main/pg_hba
.conf.

 Open the file in a text editor, such as vim or nano, and look for the following
entry:

"local" is for Unix domain socket connections only
local all all peer

Replace peer with md5 as follows:

local all all md5

Save the file, and restart the Postgres server as follows:

sudo systemctl restart postgresql

This configuration change allows you to log in to a Postgres database with a password
once you are logged in to the server.

 The following steps also need to be performed:

1 Create a database.
2 Create a user and associate a password.
3 Assign privileges for the user to the database.

Once these steps have been completed, you will be able to log in to the Postgres data-
base from the command line using this command:

psql -U <database-user> -d <database-name> --password

The database-user and database-name will need to be replaced with your own. The
--password flag will prompt you for a password.

 For more details, refer to the official Postgres documentation at www.postgresql
.org/docs/.

www.postgresql.org/docs/
www.postgresql.org/docs/
www.postgresql.org/docs/

index
Symbols

#[actix_rt::test] annotation 72
#[derive] annotation 38, 68
#[ignore] annotation 124, 153
$DATABASE_USER environment variable 203

Numerics

1:1 thread model 234

A

Actix Web
error handling in 109
for RESTful web services 53
rendering dynamic web page with 174
serving static web page with 172

actix_files service 174
actix_web client module 185, 205
actix_web::error::Error struct 113
actix_web::error::Error type 115
actix_web::error::error type 115
actix_web::error::ResponseError trait 115, 118
actix-rt runtime 63
actix-web framework 63
app_state parameter 100
application state

defined 64
defining route configuration 65
initializing and registering 64
overview 63
setting up 89

application-layer protocols 21
AppState Course model 143

AppState struct 69, 71, 91, 100
AppState type 100
argon2 crate 202
AS keyword 282
associated functions 117
async connection to database 82

adding aqlx dependencies to Cargo.toml 84
creating new database and access credentials 84
defining Rust database model and creating

tables 86
Postgres

connecting to 82
installing and verifying 84

writing code to connect to database and query
the table 87

async executor 244
async keyword 240, 242, 244–245
async processing 232
async Rust 229, 241–255, 268

futures
custom, implementing 252–255
overview 245–252

programming concepts 230–236
writing concurrent programs 236–241

asynchronous I/O 58
AsyncTimer future 254
.await keyword 144, 240, 242
await keyword 96, 265
await? expression 119
awc crate 202

B

backend web service, connecting to 185
bar() function 117
301

INDEX302
--bin flag 88
binary Cargo project 54
borrowing 9
broadcast messaging protocols 259
byte slice 23
bytes buffer 23

C

cargo run command 88
cargo test command 147
Cargo.toml 84
chrono crate 67, 96
chrono external crate 67
chrono module 96
CI/CD (continuous integration/continuous

delivery) 14
client-side tests 182
client/server paradigm 257
Clone trait 38, 69
concurrency 230
concurrent programs, writing 236
configure and deploy steps 274
containers, Docker 271, 283

database tables 288
multistage Docker build 280
Postgres database 284
simple 278
writing 276

Content-Type header 49
Context object 179, 248
continuous delivery 274
continuous deployment 274
continuous integration 274
continuous integration/continuous delivery

(CI/CD) 14
contrib package 299
Copy trait 69
Course data models 136, 143
Course data struct 89, 96, 133, 136–137, 140–141,

149, 155
{course_id} URL path parameter 142
course maintenance 208

creating resources with HTTP POST
method 219

deleting resources with HTTP DELETE
method 224

routing HTTP requests 216
setting up project structure 210
updating resources with HTTP PUT

method 221
user authentication

designing 209
implementing 211

course resource 60

Course struct definition 141
course table 289
Course type 68, 100
course_config routes 217
course_id URL path parameter 145
course-id parameter 100
courses collection 69
CPU-intensive tasks 231
—crate::handlers::course module 142
crate::handlers::general module 142
crates 4
CreateCourse struct 137–139, 142, 144, 153
CRUD (create, read, update, delete) 59, 103, 170,

189

D

data model
adding course collection to application state 69
defining 66
enhancing 135–136
setting up 89

database access functions
refactoring APIs 158
writing 95

database operations 80, 83–103
creating and querying records 95–103

writing database access functions 95–98
writing handler functions 98–101
writing main() function for database-backed

web service 101–103
setting up project structure 81–88
setting up web service

application state and data model 89–90
connection pool using dependency

injection 90–93
dependencies and routes 89
writing unit tests 88, 93–94

writing async connection to database 82–88
adding aqlx dependencies to Cargo.toml 84
creating new database and access

credentials 84–85
database and connection library 82–83
defining Rust database model and creating

tables 86–87
installing and verifying Postgres 84
setting up database and connecting with async

pool 83
writing code to connect to database and query

the table 87–88
database scripts 160
DATABASE_URL environment variables 90, 210,

293–294
Debug trait 30, 38, 68–69
Default trait 38

INDEX 303
default-run parameter 63
DELETE operation 60
DELETE requests 218, 232
delete SQL statement 102
delete_course_db database access function 144
delete() method 142
Denniss, William 272
dependencies

setting up 89
setting up connection pool using dependency

injection 90
derivable traits 38, 68
Deserialize trait 137
deserialized data 138
distributed web applications 5
Docker 271–296

checking installation 276
containers 283–290

database tables 288–290
multistage Docker build 280–282
Postgres database 284–288
simple 278–280
writing 276–282

Docker Compose 292–296
packaging web service with 290–291
production deployment of servers and

apps 272–276
container basics 274–276
software deployment cycle 272–274

Docker build command 291, 297
Docker Compose 292
Docker in Action, 2nd ed. (Nickoloff and

Kuenzli) 272
docker-rust-lite container 282
dotenv package 195
dynamic web page, rendering with Actix and

Tera 174

E

enum data structure 30
enum type 115, 244
Eq trait 69
error handling

custom error handler 115–118
for posting new course 126–127
for retrieving all courses 118–124
for retrieving course details 124–126
in Rust and Actix Web 109–115
setting up project structure 106–109

Error trait 113
Error type 27, 113–115, 173
error_response() function 117, 162
error_response() trait 118
errors module 118

exception handling 109
exit command 290
extractors 100
EzytutorError enum 162
EzyTutorError struct 117–118
EzyTutorError type 120–122, 139, 143, 159
EzyTutorError::InvalidInput type 162
EzyTutors

application state 63
defined 64
defining route configuration 65
initializing and registering 64
overview 63
updating health-check handler to use 65

course maintenance
creating resources with HTTP POST

method 219
deleting resources with HTTP DELETE

method 224
designing user authentication 209
implementing user authentication 211
routing HTTP requests 216
setting up project structure 210
updating resources with HTTP PUT

method 221
data model

adding course collection to application state 69
defining 66
enhancing 135–136

enabling tutor registration and
management 154
data model and routes for tutors 154
database access functions 158
database scripts 160
handler functions 156
running and testing tutor APIs 161

getting courses for tutor 74
building and testing API 75
defining route configuration 74
writing automated test scripts 75

overview 14
posting courses 70

buiding and testing API 73
defining route configuration 70

project scope and structure 60
revamping project structure 130
single courses 76

building and testing API 77
defining route configuration 76
writing automated test scripts 77
writing handler function 76

technical guidelines 16
templates for tutor registration 189

displaying registration form 196
handling registration submission 201

INDEX304
EzyTutors (continued)
writing initial web application 190

visualizing 13
ezytutors database 84–86, 286–288
ezytutors workspace 54–55, 81, 172, 187

F

fetch_all() method 95–96
fetch_one() method 96
flush() method 26
foo 117
for loops 176, 180
forms for course maintenance 208–225

creating resources with HTTP POST
method 219–221

deleting resources with HTTP DELETE
method 224–225

routing HTTP requests 216–219
setting up project structure 210–211
updating resources with HTTP PUT

method 221
user authentication

designing 209–210
implementing 211–216

from method 31–32, 41
From trait 31–32, 34, 36, 38, 41, 68, 115, 122,

 138–139, 144–145, 153, 220
from() method 34
From<&str> trait 30, 33
Future trait 243–244
futures 245

custom, implementing 252
defined 242

G

GET requests 20, 31, 46, 49, 52, 57–58, 60–61, 142,
174, 185, 196, 221, 232

get_all_courses_success test case 124
get_all_tutors() function 157
get_course_detail handler function 77
get_course_details_db() database function 100
get_course_details() handler function 99
get_courses_for_tutor handler function 75
get_courses_for_tutor_db function 118, 143
get_courses_for_tutor() function 120
get_tutor_details() function 157
get() method 142
getter methods, for HttpResponse struct 40

H

handle method 48
handle_get_tutors handler function 185

handle_insert_course handler function 220
handle_post_tutor handler function 179
handle_register() function 196–197, 204
handle_register() web handler 196
handle() method 48–49
handler functions 58

enabling tutor registration and
management 156

single courses 76
writing 98

handler module 44
Handler trait 47–48
handlers 28, 54, 57
happy path scenarios 103, 105
health_check_handler() 57–58
hello route 114
hello-world Docker image 277
hello() handler function 115
HTTP DELETE method 224
http library 28, 30, 43–44
HTTP method 58
HTTP POST method 219
http project 23, 43
HTTP PUT method 221
HTTP requests 54
HTTP Response message 37
HTTP responses 54
HTTP servers 27, 57

constructing response messages 37
Default trait 38
From trait 41
getter methods for HttpResponse struct 40
new () method 39
overview 37
send_response() method 40

main() function and server module 44
overiew 27
parsing request messages 29

HttpRequest struct 33
Method enum 30
overview 29
Version enum 32

router and handler modules 45
testing 50

HTTP::DELETE request 144
HTTP::GET APIs 162
HTTP::GET request 143, 157
HTTP::POST request 144
HTTP::PUT request 145
HTTP/2 in Action (Pollard) 232
HttpRequest data structure name 30
httprequest module 30
HttpRequest type 28, 33
HttpResponse message 157
HttpResponse struct 37–42, 48–49

INDEX 305
HttpResponse type 28
httpserver project 23, 28, 44, 46, 52

I

I/O-intensive tasks 231
if loop 176
[ignore] annotation 147
iHTTP library 28
images, Docker 276
immutable references 9
in-memory data store 80
index handler 176
individual service level 8
insert query 97
instances 117
interfaces 26, 68
InvalidInput invariant 162
io::Error type 112
IP (Internet Protocol) 21
iter() method 96

K

key pairs 261–262
Kubernetes for Developers (Denniss) 272
Kubernetes in Action, (Lukša) 272
Kuenzli, Stephen 272

L

Learn Docker in a Month of Lunches
(Stoneman) 272

libp2p library 260–261, 264, 270
libp2p networking

multiaddresses 263
overview 260
peer IDs and key pairs 261
Swarm network manager 264

listen_on() method 267
listener.incoming() method 23
Lukša, Marko 272

M

M:N model 234
main() function 29, 43, 55, 62, 69, 71, 88–92, 95,

100, 110–112, 156, 173, 187, 213–214, 217,
237, 240, 247, 254

server module and 44
writing for database-backed web service 101

map method 158
map() function 96
match statement 10, 110–111
mDNS (Multicast DNS) 269

memory safety 8
messaging, peer-to-peer networks 259
Method data structure name 30
Method enum 30
Method::Get or Method::Post variant 31
Method::Get variant 32
mod tests module 36
models module 149
multiaddresses 263
Multicast DNS (mDNS) 269
multistage build 282
multithreading for parallelism 58
multithreading processing 232
mutable references, &mut T 9

N

NaiveDateTime type 96
{{name}} tag 175
{{name}} template variable 177
network latency 11
network parameter 294
networking model 20
new_course handler 71
new() method 39–40, 45
Nickoloff, Jeff 272
nodes 258
NOT NULL constraint 140
num variable 111

O

Ok(val) function call 119
ORM (object-relational mapper) 83
OSI model 20
Output type 244
Overflow blog 13
ownership model 9

P

-p flag 56, 88
P2P node, building with async Rust 256–270

discovering peers 268–270
exchanging ping commands between peer

nodes 266–268
libp2p networking

multiaddresses 263–264
overview 260–261
peer IDs and key pairs 261–263
Swarm network manager 264–266

peer-to-peer networks
messaging 259–260
overview 257–258
peer identity 259

INDEX306
P2P node, building with async Rust (continued)
peer routing 259
security 259
stream multiplexing 260
transport 259

package for release steps 274
[package] tag 63
PageNotFoundHandler struct 48
parallelism 230
parameters 54
parse() function 111
ParseIntError type 110–112
PartialEq trait 30, 38, 69
--password flag 85
password flag 300
peer identity 263

libp2p networking 261
peer-to-peer networks 259

peer location 263
peer routing 259
PeerId (identity of a node in a peer-to-peer

network 259
peers 257–258
ping commands, exchanging between peer

nodes 266
PKI (Public Key Infrastructure) 260, 262
poll() function 244, 246–250, 254–255
Pollard, Barry 232
POST operation 60
POST requests 31, 61, 68, 71, 142, 144, 176–177,

183, 197, 201, 204, 209, 218, 232
post_course_success test case 124
post_new_course() handler function 144
post() method 142
Postgres database 85

connecting to 82
Docker 284
installing and verifying 84, 299–300

Postgres package 299
Postgres user 299–300
postgres:latest Docker image 286
process_req_line() function 35
project root 130
project structure

revamping 130
setting up 81, 210

PROJECT_ROOT environment variable 130, 190,
210

Public Key Infrastructure (PKI) 260, 262
PUT operation 60
PUT requests 218, 232
put() method 142

Q

query_as! macro 149, 153, 158

R

RAII (Resource Acquisition is Initialization) 9
Read trait 26
read() method 26
records, creating and querying 95

database access functions 95
handler functions 98
main() function for database-backed web

service 101
refactoring APIs 129–164

enabling tutor registration and
management 154–164
data model and routes for tutors 154–156
database access functions 158–160
database scripts 160–161
handler functions 156–158
running and testing tutor APIs 161

enhancing the data model 141–153
revamping project structure 130–135

reference counting 12
relational database 80
RemoveCourse trait 68
render function, Tera 179
Responder trait 58
ResponseError trait 115, 118, 143, 163
REST (representational state transfer) APIs 53, 60
RESTful web services 53, 60–78

Actix Web 53
overview 56–59
writing first REST API 54–56

building web APIs for EzyTutors 59–78
application state 63–66
data model 66–70
getting courses for tutor 74–76
posting courses 70–74
project scope and structure 60–63
single courses 76

overview 53
Result enum type 110
Result object 27
Result type 27, 110–113, 119, 123, 138, 173
return values 109
returning keyword 150
role database concept 299
route path 58
router module 44
routes 54, 57–58
routes configuration 204
routing HTTP requests 216
run() method 45

INDEX 307
Rust for web applications 3, 13–17, 185
benefits of 8–13

concurrency 12
low latency 11
productive language 12–13
resource-efficient 10–11
security 8–10

characteristics of web applications 7–8
choosing 7–13
error handling 109
EzyTutors

overview 14–16
technical guidelines 16–17
visualizing 13–14

general discussion 4–7
limitations of 13
overview 3–4

Rust HTTP Request data structure 33
Rust std (standard library) 26

S

scope 71
security 259
send_response() method 40
serde external crate 46, 67
serde module 205
serde_json crate 46, 185
Serialize trait 137
serialized data payload 138
server 57
server module 44
server-side web apps in Rust 169

adding user input with forms 176–179
client-side tests 182–185
connecting to backend web service 185–188
displaying lists with templates 179–182
rendering dynamic web page with Actix and

Tera 174–176
server-side rendering 170–172
serving static web page with Actix Web 172–174

service latency 11
show_register_form() handler function 196, 200
show_signin_form handler function 212
single responsibility principle (SRP) 28
sleep() function 237
software deployment cycle 272
SQL query! macro 95
sqlx connection pool 91
sqlx crate 83, 88, 202
sqlx database access library 144
sqlx database error 119–120
sqlx::error::DatabaseError type 121–122
sqlx::FromRow trait 149
square() function 110–111

SRP (single responsibility principle) 28
SSR (server-side rendering) 169
state changes 60
static web page 170, 172
status_code trait 118
status_code() function 123
std::erro::Error error trait 113
std::error::Error trait 115
std::http module 27
std::io::Error type 111, 115
std::net module 22–23
—std::num::ParseIntError function 112
std::thread module 233
Stoneman, Elton 272
stream multiplexing 260
String data type 244
string slice 23
String type 38
super keyword 118
Swarm network manager, libp2p networking 264
synchronous processing 232

T

T data type 27
TCP (Transmission Control Protocol) 21
TCP servers 22

designing TCP/IP communication flow 22
writing TCP server and client 23

TCP/IP model 20
tcpclient project 23
TcpListener struct 22–23
tcpserver project 23
TcpStream object 23
TcpStream struct 22–23
template engine 170
templates

displaying lists with 179
for tutor registration 189–206

displaying registration form 196–201
handling registration submission 201–206
writing initial web application 190–196

Tera 174, 183
tera crate 175
test module 145
test_response_struct_creation_200() test

function 42
test_response_struct_creation_404() test

function 42
test_version_into() functions 36
tests module 36, 75, 77, 184
thread safety 8–9
traits 26
Transmission Control Protocol (TCP) 21
transport 259

INDEX308
truuser 288
try_from function 138
TryFrom trait 138–139, 144, 153
{tutor_id} URL path parameter 142
{{tutor.name}} template variable 186
Tutor struct 154–155, 158, 185
tutor web application 171
tutor web service 60
tutor_id URL path parameter 145
tutor_service binary 63
tutor_ssr_app web server 187
tutor-data volume 285
tutor-db project 84
tutor-id parameter 100
tutor-network network 295
tutor-nodb project 55–56
tutor-nodb web service 55
tutor-postgres container 286–287, 295
tutor-service binary 66
tutor-webservice container 295
tutors object 180
TutorSigninForm data structure 211
type safety 8

U

Uninitialized type 31–32
.unwrap() method 119
unwrap() method 27, 119
update_course.into() expression 145
UpdateCourse struct 142, 152–153
user authentication

designing 209
implementing 211

user input, adding with forms 176

V

Vec data type 96
Vec<Tutor> type 185
Version data structure 30

Version enum 32
Version::V1_1 variant 32
volumes: keyword 285

W

wake_by_ref() function 249
wake() function 248–249, 255
Waker component 248–250
web servers 19, 52

HTTP servers 27–52
constructing response messages 37–44
main() function and server module 44–45
overiew 27–29
parsing request messages 29–37
router and handler modules 45–50
testing 50–52

networking model 20–22
overview 19–20
TCP servers 22–27

designing TCP/IP communication flow
22–23

writing TCP server and client 23–27
web services

packaging with Docker 290
setting up

application state and data model 89
connection pool using dependency

injection 90
dependencies and routes 89
writing unit tests 88, 93

web::Data<T> extractor 68
web::Form extractor 179, 183
web::Json<CreateCourse> data type 138
web::Json<T> Actix object 68
web::Path<i32> data structure 143
WebServiceHandler struct 49
workspace project 55
Write trait 26
write() method 26

3

Unifying error handling for web services

Database

Serialization

I/O operations

Actix web libraries

Invalid user inputs

Actix-based
web service

Custom
error type

Database errors

Serde errors

I/O errors

Actix errors

Custom error converted
 to HTTP response

Invalid user
input errors

Actix web server
Actix web application

Tera template
engine

DB

Template

User

The user (through a
web browser) sends
a web page request to
the Actix web server.

The route handler retrieves and
passes data to the template engine.

The Tera template engine
injects data into the template
for the web page.

The fully rendered HTML
is returned to the user.

Dynamic web pages with Actix and Tera

 Prabhu Eshwarla

ISBN-13: 978-1-61729-860-8

B
uild speedy, stable, and safe web servers in Rust! With a
unique approach to memory management and concur-
rency, Rust excels at getting the low-level details right so

your applications run fast and fl awlessly. And Rust’s incred-
ible compiler helps you avoid expensive mistakes when you’re
deploying web services and other core components in
production.

Rust Servers, Services, and Apps shows you how to create mod-
ern distributed web apps using the Rust language. You’ll start
with the basics: building a simple HTTP server and a RESTful
web service. Th en, you’ll make them production ready by
adding security, database interactivity, and error handling.
Finally, you’ll tackle a digital storefront service, create a single
page app, and dig into asynchronous programming. All
examples are fully illustrated and include annotated code
you can easily adapt to your own projects.

What’s Inside
● Craft resilient and secure RESTful APIs
● Package and deploy web services
● Refactor fearlessly thanks to Rust’s guaranteed safety
● Slash costs with Rust’s runtime and compile-time
 optimizations
● Asynchronous programming with Rust

For web developers who know the basics of Rust.

Prabhu Eshwarla is the CTO of a startup building a layer-1
blockchain using Rust. Previously, he held engineering and
leadership roles at Hewlett Packard.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Rust Servers, Services, and Apps

SOFTWARE DEVELOPMENT

M A N N I N G

“Demonstrates how to use
the unique features of Rust
to bring speed and safety
 in web development.”—David Paccoud, Clario

“Pioneering and practical.”—Pethuru Raj
Reliance Jio Platforms

“Extremely well-organized
and well-written.

Indispensable for developing
large-scale Rust web

 applications.”—Josh Sandeman
Mpathy Software

“Learn how to write fast
and safe web applications,
 and have fun doing it.”—Alessandro Campeis, Prima

See first page

	Rust Servers, Services, and Apps
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1 Web servers and services
	1 Why Rust for web applications?
	1.1 Introducing modern web applications
	1.2 Choosing Rust for web applications
	1.2.1 Characteristics of web applications
	1.2.2 Benefits of Rust for web applications
	1.2.3 What does Rust not have?

	1.3 Visualizing the example application
	1.3.1 What will we build?
	1.3.2 Technical guidelines for the example application

	Summary

	2 Writing a basic web server from scratch
	2.1 The networking model
	2.2 Writing a TCP server in Rust
	2.2.1 Designing the TCP/IP communication flow
	2.2.2 Writing the TCP server and client

	2.3 Writing an HTTP server in Rust
	2.3.1 Parsing HTTP request messages
	2.3.2 Constructing HTTP response messages
	2.3.3 Writing the main() function and server module
	2.3.4 Writing the router and handler modules
	2.3.5 Testing the web server

	Summary

	3 Building a RESTful web service
	3.1 Getting started with Actix
	3.1.1 Writing the first REST API
	3.1.2 Understanding Actix concepts

	3.2 Building web APIs with REST
	3.2.1 Defining the project scope and structure
	3.2.2 Defining and managing application state
	3.2.3 Defining the data model
	3.2.4 Posting a course
	3.2.5 Getting all the courses for a tutor
	3.2.6 Getting the details of a single course

	Summary

	4 Performing database operations
	4.1 Setting up the project structure
	4.2 Writing our first async connection to database (iteration 1)
	4.2.1 Selecting the database and connection library
	4.2.2 Setting up the database and connecting with an async pool

	4.3 Setting up the web service and writing unit tests (iteration 2)
	4.3.1 Setting up the dependencies and routes
	4.3.2 Setting up the application state and data model
	4.3.3 Setting up the connection pool using dependency injection
	4.3.4 Writing the unit tests

	4.4 Creating and querying records from the database (iteration 3)
	4.4.1 Writing database access functions
	4.4.2 Writing handler functions
	4.4.3 Writing the main() function for the database-backed web service

	Summary

	5 Handling errors
	5.1 Setting up the project structure
	5.2 Basic error handling in Rust and Actix Web
	5.3 Defining a custom error handler
	5.4 Error handling for retrieving all courses
	5.5 Error handling for retrieving course details
	5.6 Error handling for posting a new course
	Summary

	6 Evolving the APIs and fearless refactoring
	6.1 Revamping the project structure
	6.2 Enhancing the data model for course creation and management
	6.2.1 Making changes to the data model
	6.2.2 Making changes to the course APIs

	6.3 Enabling tutor registration and management
	6.3.1 Data model and routes for tutors
	6.3.2 Handler functions for tutor routes
	6.3.3 Database access functions for tutor routes
	6.3.4 Database scripts for tutors
	6.3.5 Run and test the tutor APIs

	Summary

	Part 2 Server-side web applications
	7 Introducing server-side web apps in Rust
	7.1 Introducing server-side rendering
	7.2 Serving a static web page with Actix
	7.3 Rendering a dynamic web page with Actix and Tera
	7.4 Adding user input with forms
	7.5 Displaying a list with templates
	7.6 Writing and running client-side tests
	7.7 Connecting to the backend web service
	Summary

	8 Working with templates for tutor registration
	8.1 Writing the initial web application
	8.2 Displaying the registration form
	8.3 Handling registration submission
	Summary

	9 Working with forms for course maintenance
	9.1 Designing user authentication
	9.2 Setting up the project structure
	9.3 Implementing user authentication
	9.4 Routing HTTP requests
	9.5 Creating a resource with the HTTP POST method
	9.6 Updating a resource with the HTTP PUT method
	9.7 Deleting a resource with the HTTP DELETE method
	Summary

	Part 3 Advanced topic: Async Rust
	10 Understanding async Rust
	10.1 Introducing async programming concepts
	10.2 Writing concurrent programs
	10.3 Diving deeper into async Rust
	10.4 Understanding futures
	10.5 Implementing a custom future
	Summary

	11 Building a P2P node with async Rust
	11.1 Introducing peer-to-peer networks
	11.1.1 Transport
	11.1.2 Peer identity
	11.1.3 Security
	11.1.4 Peer routing
	11.1.5 Messaging
	11.1.6 Stream multiplexing

	11.2 Understanding the core architecture of libp2p networking
	11.2.1 Peer IDs and key pairs
	11.2.2 Multiaddresses
	11.2.3 Swarm and network behavior

	11.3 Exchanging ping commands between peer nodes
	11.4 Discovering peers
	Summary

	12 Deploying web services with Docker
	12.1 Introducing production deployment of servers and apps
	12.1.1 Software deployment cycle
	12.1.2 Docker container basics

	12.2 Writing the Docker container
	12.2.1 Checking the Docker installation
	12.2.2 Writing a simple Docker container
	12.2.3 Multistage Docker build

	12.3 Building the database container
	12.3.1 Packaging the Postgres database
	12.3.2 Creating database tables

	12.4 Packaging the web service with Docker
	12.5 Orchestrating Docker containers with Docker Compose
	Summary

	appendix Postgres installation
	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Rust Servers, Services, and Apps - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

