
SMART
POINTERS
IN RUST

TIM McNAMARA

The Accelerated Guide to

accelerant.dev

First published by Accelerant Press, Lower Hutt, New Zealand.

© Tim McNamara 2023

ISBN: 978-0-473-67972-9 (paperback)

ISBN: 978-0-473-67973-6 (EPUB)

ISBN: 978-0-473-67974-3 (Kindle)

ISBN: 978-0-473-67975-0 (PDF)

A catalogue record for this book is available from the National Library of
New Zealand. Kei te pātengi raraunga o Te Puna Mātauranga o Aotearoa te

whakarārangi o tēnei pukapuka.

https://accelerant.dev

The Accelerated Guide to

Smart Pointers
in Rust

Tim McNamara

A short textbook for anyone who’s interested in
understanding about Rust’s smart pointers,

including people who don’t know what smart
pointers are.

Introduction

In this guide, we embark on a journey to explore the various types
of smart pointers available in Rust, their use cases, and how they
contribute to managing memory safely and efficiently.

In some sense, they are the essence of Rust’s “zero-cost
abstraction” philosophy, whereby you only pay for what you use.

Smart pointers are powerful tools that provide additional
functionality and guarantees compared to raw pointers. If you’re
unsure what a raw pointer is, that’s okay, we’ll discuss that too.

We’ll cover the core smart pointer types in Rust, including Box<T> ,
Rc<T> , Arc<T> , RefCell<T> , and Mutex<T> . Each type will be
thoroughly explained, accompanied by practical code examples that
are linked directly in the Rust playground, so you can run them in
your web browser.

Furthermore, we will delve into best practices and common pitfalls
associated with using smart pointers in Rust. This knowledge will
empower you to write robust, efficient, and maintainable code while
avoiding potential pitfalls along the way.

Whether you are a Rust enthusiast, a curious learner, or a seasoned
developer looking to enhance your memory management skills, this
guide is here to support your journey. So let’s dive in and unlock the
power of smart pointers in Rust!

We begin by learning about what the term “smart pointer” actually
means.

3

Contents

2. Defining smart pointers .. 6
3. Understanding Rust .. 8

3.1. Ownership .. 10
3.2. Borrowing ... 12
3.3. Lifetimes .. 14

4. Defining smart pointers, again .. 19
5. Why use them? .. 21

5.1. Automatic memory management .. 22
5.2. Prevent data races ... 23
5.3. Add super powers to pointers .. 25
5.4. Simplify code .. 26

6. Stdlib’s smart pointers .. 27
6.1. Box<T> ... 28
6.2. Rc<T> ... 32
6.3. Arc<T> ... 36
6.4. RefCell<T> ... 39
6.5. Mutex<T> ... 42
6.6. RwLock<T> .. 45

7. Building your own smart pointers .. 47
7.1. Drop .. 48
7.2. Deref .. 54
7.3. DerefMut ... 58

8. Extension topics .. 62
8.1. Cyclic data structures ... 63
8.2. Rc<T> from scratch ... 64
8.3. PhantomData<T> .. 67

4

9. Recap .. 70
10. Cheat Sheet .. 71
11. Afterword .. 73
12. About Tim McNamara .. 74

5

Defining smart pointers

A smart pointer is a data structure that not only points to an object
in memory but also provides additional features, such as
dynamically allocating memory as required or reference counting.
By encapsulating these responsibilities, smart pointers can help
ensure memory safety and reduce the likelihood of programming
errors, such as memory leaks or dangling pointers. In the Rust
programming language, smart pointers are an essential tool for safe
and efficient memory management while adhering to Rust’s
ownership rules.

Even if you’re unfamiliar with the term, you have already
encountered a smart pointer. The String and its cousin Vec<T> are
both smart pointers. As well as holding references to the backing
array that’s storing the data, they both provide contain the current
length and capacity of that array.

Now let’s connect the abstract concept of a smart pointer to some
Rust-specific concepts. First, a smart pointer owns the data that it
refers to. Some raw pointers, such as Rc<T> offer shared ownership,
but that shouldn’t be conflated with the reality that the initial
pointer needs to have ownership over whatever it is counting
references about. Secondly, smart pointers typically implement
Deref<Target = U> where U is the data type that’s being pointed
at. This means – along with Rust’s auto-deref behavior – that it’s
possible for application programmers to use a smart pointer type in
place of its referent largely without fuss.

6

You may have also heard the term fat pointer being used as a
synonym for smart pointer, but for the purposes of this document
we’ll consider these two terms to be distinct. They’re often used
interchangeably because a fat pointer includes some metadata
about the referent along side the memory address. That metadata is
typically the length. This provides some extra capabilities over a raw
pointer – specifically it’s possible to deduce what a valid memory
access would be without needing to interpret any bytes. [Sidenote:
This contrasts with text strings in C, which require the application to
check whether the next byte is NULL (0x0) whenever it accesses
the data.] However, because &T and &mut T are not considered
smart pointers in the Rust ecosystem, and because they contain a
length field when referring to dynamically-sized types (DSTs), we’ll
avoid the use of the term fat pointer.

7

Understanding Rust

Rust is a modern, programming language designed with
performance, reliability, and productivity in mind.

It originated in the world of systems programming and provides
low-level control over system resources, similar to languages like C
and C++, while offering strong guarantees for memory safety and
thread safety, like managed languages such as Java and Python. Its
expressive type system is much closer to something like Haskell
than C. Its no-fuss build system has enabled a rich ecosystem of
3rd party packages.

Memory safety is a crucial aspect of Rust. The language eliminates
common programming errors at compile time, such as null pointer
dereferences, buffer overflows, and many—but not all—data races,
which can lead to security vulnerabilities and hard-to-debug issues.
Rust achieves this by introducing a unique ownership system,
coupled with borrowing and lifetime rules, which are checked at
compile-time, ensuring that your code is safe without incurring
runtime overhead.

Smart pointers are a key tool in Rust’s memory management toolkit.
They are data structures that not only hold a reference to an object
in memory but also provide additional features, such as automatic
memory management or reference counting. By using smart
pointers, developers can productively work within Rust’s strict
ownership and borrowing rules. They are considered a zero cost

8

abstraction because they are a compile-time construct that the
compiler “boils away” during the build process.

As we begin our journey, it’s essential first to grasp the concepts of
ownership, borrowing and lifetimes. If you’ve skipped these
concepts so far, please do take the time to read through the next
few sections because gaining an understanding of what is
happening will be very beneficial to you want to undesrstand how
some of the smart pointer types behave.

9

Ownership

Ownership is a core concept in Rust that allows it to guarantee
memory safety without a garbage collector.

The ownership system revolves around three primary rules:

1. Each value in Rust has a variable that’s called its owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value will be dropped.

Let’s look at some code to illustrate these rules in action:

fn main() {
 let s1 = String::from("hello");
 let s2 = s1;
 println!("{s1}");
}

We first create a String value and bind it to the variable s1 . Then,
we bind the variable s2 to the value of s1 . Lastly, we try to print
the value of s1 . If you try to compile this code, you’ll get an error
because Rust’s ownership rules prevent it.

When we assigned the value of s1 to s2 , Rust moved the
ownership of the underlying String value from s1 to s2 . As a
result, accessing s1 is no longer valid, and trying to use it will
result in a compile-time error. This behavior prevents any potential
double-free bugs or invalid memory access, ensuring memory
safety.

Now let’s look at another example where ownership is transferred
through a function call:

10

fn main() {
 let s1 = String::from("hello");
 takes_ownership(s1);
 println!("{s1}");
}

fn takes_ownership(text: String) {
 println!("I have taken ownership of: {text}");
}

Here, we first create a String value and bind it to the variable s1 .
We then call the takes_ownership() function, passing s1 as an
argument. The ownership of the String value is moved from s1 to
the text parameter in the function. As before, trying to print the
value of s1 after transferring ownership produces a compile-time
error.

11

Borrowing

Rust provides a mechanism to temporarily “borrow” ownership of a
value, allowing it to be used without transferring ownership
permanently. There are two types of borrowing in Rust: immutable
(also known as a shared borrow) and mutable (also known as a
unique borrow).

Let’s first see how immutable borrowing works:

fn main() {
 let s1 = String::from("hello");
 let only_ascii_bytes = only_ascii_bytes(&s1);
 if only_ascii_bytes {
 println!("Thank goodness for Unicode!");
 }
 println!("{s1}");
}

fn only_ascii_bytes(s: &String) ‑> bool {
 s.is_ascii()
}

In this example, we pass a reference to s1 to the
only_ascii_bytes() function using the & symbol, known as the
reference operator. This creates an immutable borrow of s1 , which
means the function can use the value without taking ownership. This
allows us to print the value of s1 after the function call without any
issues.

Mutable borrowing is similar but allows the borrowed value to be
modified. Here’s an example:

12

fn main() {
 let mut s1 = String::from("hello");
 append_world(&mut s1);
 println!("{s1}");
}

fn append_world(s: &mut String) {
 s.push_str(" world");
}

In this example, we first create a mutable String value – notice the
mut keyword – and bind it to the variable s1 . We then call the
append_world() function, passing a mutable reference to s1 using
the &mut operator. This creates a mutable borrow of s1 , which
allows the function to modify the value without taking ownership.
Inside the append_world() function, we use the push_str() method
String to append “ world” – string literals are of type “string slice”,
&str , rather than String – to the original String . After the
function call, we can print the modified value of s1 without
triggering a compiler error about a moved value.

It’s important to note that Rust enforces certain restrictions when it
comes to borrowing:

1. Multiple immutable borrows can coexist: This is why they are also
known as shared borrows.

2. Either one or the other, but not both, type of borrow can exist at
the same time: You can have one or more immutable borrows, or
one mutable borrow, but not both. This is sometimes referred to
as the XOR rule.

13

Lifetimes

Now that we have a solid understanding of ownership and
borrowing, let’s dive into the concept of lifetimes and their
annotations in Rust. Lifetimes are used to express the scope of a
reference and ensure that references are valid for the duration of
their use.

Rust’s borrow checker uses lifetimes to prevent dangling references,
which occur when a reference outlives the data it refers to. By
default, Rust can infer lifetimes in most cases, so you don’t need to
explicitly annotate them. However, there are situations where you
need to provide lifetime annotations to help the compiler
understand how references relate to each other.

Let’s look at a small code example to understand the need for
lifetime annotations:

fn main() {
 let s1 = String::from("hello");
 let s2 = String::from("world");
 let result = find_longest(&s1, &s2);
 println!("{result}");
}

fn find_longest(t1: &str, t2: &str) ‑> &str {
 use std::cmp::Ordering::*;

 match t1.len().cmp(&t2.len()) {
 Greater => &t1,
 Equal => "",
 Less => &t2,
 }
}

14

In this example, we have a function, find_longest() that takes
references to two String values and returns a reference to the
longest one. The fragment t1.len().cmp(&t2.len()) compares the
lengths of t1 and t2 , returning a std::cmp::Ordering , which is
then matched against.

If you try to compile this code, you’ll get an error because Rust
cannot determine whether the lifetime of the returned reference,
which is itself a borrow, should be tied to s1 and s2 . To fix this,
can add lifetime annotations to indicate that s1 and s2 have the
same lifetime.

Here’s the modified code with lifetime annotations:

fn main() {
 let s1 = String::from("hello");
 let s2 = String::from("world");
 let result = find_longest(&s1, &s2);
 println!("{result}");
}

fn find_longest<'a>(t1: &'a str, t2: &'a str) ‑> &'a str
{
 use std::cmp::Ordering::*;

 match t1.len().cmp(&t2.len()) {
 Greater => &t1,
 Equal => "",
 Less => &t2,
 }
}

In this updated code, we’ve added a lifetime parameter 'a to the
find_longest() function. This parameter is used to annotate the
input references and the return type. The lifetime annotation 'a
tells Rust that the returned reference will live at least as long as the
shortest of the input references.

You may have noticed that the empty string literal doesn’t play a
large role in this process. String literals have the special 'static
lifetime that indicates their lifetime will remain for the rest of the
program.

15

Adding lifetime annotations does not change the lifetimes of the
references. They are a way to express the relationships between the
lifetimes of different references, helping the compiler verify that
your code doesn’t create any dangling references.

Let’s look at another example to understand how lifetimes work, this
time using structs:

struct Person<'a> {
 name: &'a str,
}

impl<'a> Person<'a> {
 fn new(name: &'a str) ‑> Person<'a> {
 Person { name }
 }

 fn greet(&self) {
 println!("Hello, my name is {}.", self.name);
 }
}

fn main() {
 let name = String::from("Alice");
 let person = Person::new(&name);
 person.greet();
}

In this example, we have a Person struct with a lifetime parameter
'a . The struct contains a name field, which is a reference to a
string with the same lifetime as the struct. The new method and the
greet() method in the impl block also use the same lifetime
parameter to ensure that the Person instance and the name field
have compatible lifetimes. In the main() function, we create a
String value name and then create a Person instance using the
new() static method. Since the lifetime of the name variable is the
same as the Person instance, the code compiles and runs
successfully, printing the greeting as intended.

Let’s create a slightly more complicated example to try to bring
everything together. We’ll create a simple program that

16

demonstrates ownership, borrowing, and lifetimes through a Book
and Author types in a library.

struct Author<'a> {
 name: &'a str,
}

struct Book<'a> {
 title: &'a str,
 author: Author<'a>,
 publication_year: i32,
}

impl<'a> Author<'a> {
 fn new(name: &'a str) ‑> Author<'a> {
 Author { name }
 }
}

impl<'a> Book<'a> {
 fn new(
 title: &'a str,
 author: Author<'a>,
 publication_year: i32
) ‑> Book<'a> {
 Book {
 title,
 author,
 publication_year,
 }
 }

 fn display(&self) {
 println!(
 "{} ({}) by {}",
 self.title, self.publication_year,
self.author.name
);
 }
}

fn main() {
 let author_name = "Maya Angelou";
 let author = Author::new(&author_name);

 let book_title = "I Know Why the Caged Bird Sings";

17

 let book = Book::new(&book_title, author, 1969);

 book.display();

 let author_name2 = "Chimamanda Ngozi Adichie";
 let author2 = Author::new(&author_name2);

 let book_title2 = "Americanah";
 let book2 = Book::new(&book_title2, author2, 2013);

 book2.display();
}

[playground]

In our library example, we define two structs, Author and Book ,
both with a lifetime parameter 'a . Re-using lifetime parameter
names, particularly 'a , is common and does not imply that that the
lifetimes are necessarily shared between the contexts using that
name. Think of it being similar to a variable, but for lifetimes.

The new() methods for both the Author and Book structs both
make use of a lifetime parameter to ensure that the instances and
their respective fields have compatible lifetimes.

In the Book struct’s impl block, we also define a display()
method to print out the book’s information. The display() method
borrows the Book instance immutably, which is itself borrowing an
Author immutably, which is also borrowing a String immutably.
The original instances remain accessible after the method call.

One consideration with borrowing is that adding a borrow places a
constraint on an owner. The value’s owner, that is the variable that is
bound to the value, is not able to become invalid to access until
after the lifetimes of all of the references to the value have ended.

18

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=b600bd45c2e3ff5bf51b177692395ae6

Defining smart pointers,
again

So, what are smart pointers? Smart pointers are data structures
that act like pointers but have additional features, such as
automatic memory management, enabling shared ownership and
interior mutability. Unlike raw pointers, smart pointers implement
traits that allow them to provide these extra features, making them
safer and more convenient to use.

To explain why they exist, it might be worthwhile to consider writing
Rust without smart pointers. The following example shows how easy
it is to avoid Rust’s ownership system.

fn main() {
 let x = 42;
 let ptr = &x as *const _;
 drop(x);

 let y = unsafe { *ptr };
 println!("{y}");
}

In this example, we create an immutable reference to the variable
x , then immediately cast it as a raw pointer as ptr . The syntax
*const _ creates a “const pointer”, one that does not modify what
is being referred to and asks Rust to infer the correct type. x is

19

then deleted with drop() , which is shorthand for std::mem::drop()
and made available in local scope via the implicit prelude in all Rust
code. ptr now points to invalid memory. That is, according to
Rust’s lifetime rules, the value assigned to x has been dropped.
However, when we go to dereference ptr later on within the
unsafe block and then print the result, it’s surprising to notice this
doesn’t generate an error at runtime. Instead, 42 is printed to the
terminal. This ability to circumvent Rust’s ownersip system makes
raw pointers very dangerous, which is why the unsafe keyword is
necessary to dereference them.

20

Why use them?

Smart pointers are useful for various tasks, including managing
heap-allocated memory, sharing references across multiple owners,
or providing interior mutability within immutable contexts. Although
they come in several forms, each point type helps to enforce Rust’s
ownership and borrowing rules, which ensures memory safety and
prevents data races, also known as thread safety.

21

Automatic memory management

Smart pointers automatically deallocate memory—or release
resources, such as file handles or network connections—when they
go out of scope, thanks to Rust’s Drop trait. The trait is somewhat
magical, in the sense that it works implicitly by calls to drop() that
are inserted by the compiler during lifetime analysis. This behavior
assists to prevent memory leaks and ensure proper resource
management. [Sidebar: While it is a useful mental model to have
while you are learning, there is more precision needed than
thinking of Drop trait as equivalent to when an object “[goes] out of
scope".]

Let’s look at how Box<T> helps to manage memory:

fn main() {
 {
 // Heap‑allocate an i32 value
 let x = Box::new(42);
 } // x goes out of scope when its block ends,
 // and the memory is deallocated
}

In this example, when x goes out of scope, the memory allocated
on the heap is automatically deallocated, ensuring that no memory
leaks occur.

22

Prevent data races

The second advantage of smart pointers is preventing data races
and improving concurrency safety. Some smart pointers, like
Arc<T> and Mutex<T> , provide thread-safe mechanisms to share
data across multiple threads while preventing data races.

For instance, let’s see how Arc<T> and Mutex<T> can be used to
share data safely across threads:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
 let counter = Arc::new(Mutex::new(0));
 let mut handles = vec![];

 for _ in 0..10 {
 let counter = Arc::clone(&counter);
 let handle = thread::spawn(move || {
 let mut num = counter.lock().unwrap();
 *num += 1;
 });
 handles.push(handle);
 }

 for handle in handles {
 handle.join().unwrap();
 }

 println!("Result: {}", *counter.lock().unwrap());
}

[playground]

23

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=50bd4e13f0d1d78bf3cf06d3db02a2b7

In this example, we use Arc<T> for shared ownership across
multiple threads and Mutex<T> to ensure exclusive access to the
data, preventing data races.

24

Add super powers to pointers

The third advantage of smart pointers is that they provide
additional functionality beyond raw pointers. For example, the smart
pointer types Rc<T> and Arc<T> provide shared ownership through
reference counting at runtime. This allows multiple owners to share
the same data without having to worry about manual memory
management or synchronization.

Here’s an example of using Rc<T> for shared ownership:

use std::rc::Rc;

struct Secret(u32);

fn main() {
 let data = Rc::new(Secret(1234));
 let data_clone = Rc::clone(&data);

 println!("Original: {}", data);
 println!("Clone: {}", data_clone);
}

In this example, data and data_clone share ownership of the
same Secret , and reference counting ensures that the memory is
deallocated when the last reference goes out of scope. Or, to be
more precise, when Drop is invoked.

25

Simplify code

The fourth advantage of smart pointers is that they simplify
complex memory management patterns. By abstracting away low-
level memory operations and providing safe, high-level interfaces,
smart pointers reduce the likelihood of human error and make
memory management more ergonomic and efficient.

To sum up, smart pointers provide a safe and convenient way to
manage memory and resources in Rust, helping developers avoid
common memory-related pitfalls and write more reliable code.

26

Stdlib’s smart pointers

This section provides the bulk of the book’s material. It describes
what most commonly used smart pointers are, why they were
created and touches on how to use them.

27

Box<T>

Let’s start with Box<T> . Box<T> is a smart pointer that allocates
memory on the heap and allows you to move ownership of a value
from the stack to the heap. It’s useful in situations where you want
to store large data structures or transfer ownership of a value
between different parts of your code.

If you have never heard of the term “box” before in relation to
computer science, then think of it as a reference to some value that
can be shared between function calls. Essentially, it’s a reference to
something that exists outside of the scope of a specific function,
but it’s still not a global variable. I personally find the analogy, box,
to be too stretched. Perhaps a better word would actually be
“portal”.

Use cases and scenarios for Box<T> :

• Storing large data structures that would otherwise cause stack
overflows

• Transferring ownership between different parts of your code
• Making enum representations more uniform
• Creating recursive data structures, such as linked lists and trees

Heap allocation and ownership transfer

Allocating very large objects on the stack can cause stack overflow.
Box<T> is the mechanism that Rust provides to allocate objects on
the heap. Here’s an example of doing so:

28

fn main() {
 // Allocate a large array on the heap
 let data = Box::new([0; 1024 * 1024]);

 // Print out its length
 println!("Length: {}", data.len());
}

In this example, we use Box::new to allocate a large array on the
heap. The Box<T> takes ownership of the array, and when it goes
out of scope, the memory is automatically deallocated. This pattern
is common when an inner function wants to create some data
structure but then pass the data structure back to the parent.
Sending data back in a box will avoid the “this variable does not live
long enough” error message that appears when you attempt to
return a reference to a local variable.

Making enum representations more uniform

Consider the case of an enum that has variants of wildly different
sizes. Using values of the smaller-sized variants will be wasteful, as
Rust always allocates enough memory for every variable to be able
to be every variant.

enum Sizes {
 S,
 M,
 L,
 XL([0; 1024]),
 XXL([0; 1024 * 1024])
}

In this example, the XL and XXL variants are significantly larger
than the S , M and L variants. You can reduce this variance by
storing a reference

29

enum Sizes {
 S,
 M,
 L,
 XL(Box<[0; 1024]>),
 XXL(Box<[0; 1024 * 1024]>)
}

Recursive data structures

Box<T> is also useful for creating recursive data structures. Let’s
take a look at an example of a singly-linked list implementation
using Box<T> . In our code, we’ll be using a List struct to
conceptually represent the whole list as a collection type. Using a
type to encapsulate the entire collection like this allows items to be
stored uniformly, avoiding difficulties with ownership and means
that there will be fewer problems if we want to refer to a specific
Item as a local variable. Every Item is accessed via a
Option<Box<Item>> , where None implies that we’ve reached the end
of the list.

struct List(Option<Box<Item>>);

struct Item(i32, Option<Box<Item>>);

To see these two types in action, let’s expand the code out into a
fully working example. In the next code example, you’ll see an
append() method implemented, which traverses the list and
updates the last item to point to whatever’s being appended.

#[derive(Debug)]
struct List(Option<Box<Item>>);

30

#[derive(Debug)]
struct Item(i32, Option<Box<Item>>);

impl List {
 fn append(&mut self, value: i32) {
 let mut current = &mut self.0;

 while let Some(ref mut next_item) = current {
 current = &mut next_item.1;
 }

 let item = Item(value, None);
 *current = Some(Box::new(item));
 }
}

fn main() {
 let mut l = List(None);
 l.append(1);
 l.append(2);

 println!("{l:?}")
}

[playground]

By using Box<T> , we can create a recursive data structure that
stores its elements on the heap, allowing us to build linked lists of
arbitrary length.

31

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=932eec17cbe7dc80bd183bf193da4630

Rc<T>

Another commonly used smart pointer is Rc<T> , which stands for
reference counted. Rc<T> enables shared ownership of a value,
allowing multiple parts of your code to have read-only access to the
same data without having to clone it. It uses reference counting to
keep track of the number of references to the data, and deallocates
the memory when the last reference goes out of scope.

Shared ownership and reference counting

Here’s an example demonstrating shared ownership with Rc<T> :

use std::rc::Rc;

fn main() {
 let data = Rc::new("Hello, world!");
 let data_clone1 = Rc::clone(&data);
 let data_clone2 = Rc::clone(&data);

 println!("Original: {}", data);
 println!("Clone 1: {}", data_clone1);
 println!("Clone 2: {}", data_clone2);
 println!("Reference count: {}",
Rc::strong_count(&data));
}

Original: Hello, world!
Clone 1: Hello, world!

32

Clone 2: Hello, world!
Reference count: 3

In this example, we create an Rc<T> to manage a string, and then
create two clones of it. The Rc::clone function doesn’t actually
clone the underlying data; it merely increments the reference count.
When the last reference (data , data_clone1 , and data_clone2)
goes out of scope, the memory is deallocated.

And to see what happens when one of the clones is dropped, here’s
an example where one of the clones is passed to a function that
takes ownership:

use std::rc::Rc;

fn main() {
 let data = Rc::new("Hello, world!");
 let data_clone1 = Rc::clone(&data);
 let data_clone2 = Rc::clone(&data);

 println!("Original: {}", data);
 println!("Clone 1: {}", data_clone1);
 println!("Clone 2: {}", data_clone2);
 println!("Reference count (before): {}",
Rc::strong_count(&data));

 take_ownership(data_clone2);

 println!("Reference count (after): {}",
Rc::strong_count(&data));
}

fn take_ownership(data: Rc<&str>) {
 println!("Data in function: {}", data);
}

In this example, we create an Rc<T> to manage a string and then
create two clones of it. We pass data_clone2 to the take_ownership
function, which takes ownership of the Rc<T> instance.

33

When we run this code, the output shows the reference count before
and after passing data_clone2 to the function:

Original: Hello, world!
Clone 1: Hello, world!
Clone 2: Hello, world!
Reference count (before): 3
Data in function: Hello, world!
Reference count (after): 2

As you can see, the reference count is decremented after the
function call because the take_ownership() function takes
ownership of data_clone2 , and it goes out of scope at the end of
the function.

Creating a tree-like data structure

Here’s an example of using Rc<T> to create a tree:

use std::rc::Rc;

struct Node {
 value: i32,
 next: Option<Rc<Node>>,
}

fn main() {
 let node1 = Rc::new(Node { value: 1, next: None });
 let node2 = Rc::new(Node { value: 2, next:
Some(Rc::clone(&node1)) });
 let node3 = Rc::new(Node { value: 3, next:
Some(Rc::clone(&node2)) });

 println!("Node 1: {:?}", node1);
 println!("Node 2: {:?}", node2);
 println!("Node 3: {:?}", node3);
}

34

We create three nodes that reference each other using Rc. The
next field of each node is an Option<Rc<Node>> , which allows for
the possibility of no next node (i.e., None). This is similar to
implementing a linked list in Section 6.1.3, except that there can
now be much richer networks expressed than what is available with
references and Box<T> .

When to use Rc<T> (and when to use
something else)

Rc<T> is well-suited for situations where you want to share read-
only data among multiple parts of your code, without the overhead
of cloning the data.

Here are a few ideas for areas that might suit reference counting:

• Implementing tree-like data structures, such as a file system or a
DOM tree.

• Storing shared configuration data, such as command-line
arguments or environment variables.

• Sharing large, immutable data structures, such as lookup tables
or dictionaries.

However, there are some limitations:

• Rc<T> is not thread-safe, meaning it should only be used in
single-threaded environments. For multi-threaded scenarios, you
can use Arc<T> instead, which provides atomic reference
counting.

• Rc<T> doesn’t support interior mutability out of the box. If you
need mutable access to the underlying data, you can use
RefCell<T> in combination with Rc<T> to achieve interior
mutability.

Despite these limitations, Rc<T> is a valuable tool for efficient
memory management and sharing data in single-threaded Rust
applications.

35

Arc<T>

In a multithreaded application, sharing ownership of data between
threads can be a bit more challenging than in single-threaded
applications. This is where the Arc<T> smart pointer comes in
handy. Arc<T> stands for “atomic reference counting”, which means
it’s designed for use in concurrent environments where it needs to
be safe to share ownership of a value across multiple threads.

The word atomic has special meaning within the context of
computer science. It derives from the original sense of the word
atom, indivisible, rather than implying something about the type’s
size (tiny, miniscule) that might be mentally closer to modern
readers. Within the context of computing, an atomic operation has
no intermediate states. It either succeeds or fails. This is
guaranteed by the CPU.

Arc<T> enables you to share data structures between threads, at
the cost of some runtime performance. Arc<T> will also that the
data is deallocated when there are no more references to it, while
also preventing race conditions and other thread safety issues.

Atomic reference counting for thread-safe
shared ownership

Here’s an example demonstrating how Arc<T> can be used for
shared ownership across multiple threads:

36

use std::sync::Arc;
use std::thread;

fn main() {
 let data = Arc::new("Hello, world!");
 let mut handles = vec![];

 for _ in 0..3 {
 let data_clone = Arc::clone(&data);
 let handle = thread::spawn(move || {
 println!("Data in thread: {}", data_clone);
 });
 handles.push(handle);
 }

 for handle in handles {
 handle.join().unwrap();
 }
}

In this example, we create an Arc<T> to manage a string and then
spawn three threads, each with a clone of the Arc<T> . Each thread
can safely read the shared data without data races or other
concurrency-related issues. When the last reference to the data
goes out of scope, the memory is deallocated.

Use cases for Arc<T>

Arc<T> is well-suited for situations where you need to share read-
only data across multiple threads, such as:

• Sharing large read-only data structures, like configuration
settings or lookup tables, across worker threads.

• Implementing shared state in concurrent algorithms or data
structures, where multiple threads need to coordinate their work
based on common information.

It’s important to note that Arc<T> only provides shared ownership
and doesn’t allow multiple threads to mutate the underlying data

37

simultaneously. To achieve thread-safe mutation, you can use
Arc<T> in combination with other concurrency primitives like
Mutex<T> or RwLock<T> .

Arc<T> is a powerful tool for managing shared data in concurrent
Rust programs, allowing for efficient and safe data sharing across
multiple threads.

38

RefCell<T>

RefCell<T> is another smart pointer in Rust that provides interior
mutability. Interior mutability means that you can mutate the data
stored in a RefCell<T> even if the RefCell<T> itself is not mutable.
It enforces Rust’s borrowing rules at runtime, which allows for
greater flexibility in certain situations, albeit with some
performance overhead and the risk of panics if the rules are
violated.

Using RefCell<T> to provide interior mutability

Perhaps the best way to explain interior mutability is by example.
Note that in the following example, the variable data is marked as
immutable when it is initialized with let :

use std::cell::RefCell;

fn main() {
 let data = RefCell::new(42);

 {
 let mut data_ref_mut = data.borrow_mut();
 *data_ref_mut += 1;
 }

 let data_ref = data.borrow();
 println!("Data: {}", data_ref);
}

39

In this example, we create a RefCell<T> to manage an integer
value. We then borrow a mutable reference to the data using the
borrow_mut method, modify the data, and release the mutable
reference when it goes out of scope. Finally, we borrow an
immutable reference to the data using the borrow method and
print the value.

Aside: Interior mutability in more detail

Interior mutability is a concept in Rust that allows you to mutate data
through an immutable reference. It essentially enables you to bypass
Rust’s compile-time immutability and borrowing rules, allowing for
greater flexibility in certain situations.

In Rust, variables are immutable by default, which means that once
they are initialized, their values cannot be changed. You can make a
variable mutable using the mut keyword. However, Rust enforces
strict borrowing rules at compile-time to guarantee memory safety:

1. You can have multiple immutable references to a piece of data, but
no mutable references.

2. You can have exactly one mutable reference to a piece of data, but
no immutable references.

These rules ensure that no part of the code can accidentally mutate
data that is being read by another part, preventing data races and
other concurrency issues.

However, in some cases, these rules can be too restrictive, and you
may need more flexibility. This is where the concept of interior
mutability comes into play. It allows you to mutate data even if the
reference to the data is immutable. This is achieved by moving the
borrowing rules enforcement from compile-time to runtime, using
special smart pointers like RefCell<T> , and Cell<T> . In turn, all types
offering interior mutability are built upon UnsafeCell<T> .

40

Runtime borrow checking and the potential
for panics

RefCell<T> enforces Rust’s borrowing rules at runtime, which
means that if you violate the rules, your program will panic. Here’s
an example that demonstrates a panic due to a violation of the
borrowing rules:

use std::cell::RefCell;

fn main() {
 let data = RefCell::new(42);

 let data_ref = data.borrow();
 let mut data_ref_mut = data.borrow_mut(); // This
will panic!

 println!("Data: {}", data_ref);
}

In this example, we first borrow an immutable reference to the data
using the borrow method. Then, we attempt to borrow a mutable
reference to the same data using the borrow_mut method. Since
Rust’s borrowing rules don’t allow mutable and immutable
references to coexist, the program panics at runtime.

RefCell<T> is a useful tool for providing interior mutability in
situations where you need more flexibility than the compile-time
borrow checking offers. However, it’s essential to use it with caution,
as violating the borrowing rules can lead to runtime panics.

41

Mutex<T>

Mutex<T> is a smart pointer in Rust that provides exclusive,
mutable access to data in a multi-threaded environment. Mutex is
short for mutual exclusion and is used to protect shared data from
data races and other concurrency-related issues.

Utilizing Mutex<T> to protect shared data in a
multithreaded environment

The standard case for a mutex is when you wish to enable multiple
threads to be able to modify and/or read some value. Here’s an
example demonstrating how that works with Rust’s Mutex<T> type:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
 let counter = Arc::new(Mutex::new(0));
 let mut handles = vec![];

 for _ in 0..10 {
 let counter_clone = Arc::clone(&counter);
 let handle = thread::spawn(move || {
 let mut num = counter_clone.lock().unwrap();
 *num += 1;
 });
 handles.push(handle);
 }

 for handle in handles {

42

 handle.join().unwrap();
 }

 println!("count: {}", *counter.lock().unwrap());
}

[playground]

In this example, we create a Mutex<T> to protect an integer value,
which is wrapped in an Arc<T> to allow for shared ownership across
multiple threads. We then spawn 10 threads, each incrementing the
counter by 1. By using the lock() method, we ensure that each
thread has exclusive access to the counter when incrementing its
value.

Locking and unlocking a Mutex<T> to ensure
exclusive access and prevent data races

When using a Mutex<T> , it’s important to understand the concepts
of locking and unlocking. Locking a mutex grants exclusive access
to the data it protects, and unlocking releases that access. In Rust,
this is typically done using the lock() method, which returns a
Result containing a mutable reference to the data.

In the example above, we use the lock().unwrap() method to lock
the mutex and obtain a mutable reference to the data. The
unwrap() call is used to handle any potential errors (e.g., if the
mutex is poisoned due to a panic in another thread). Once the
mutex is locked, the thread has exclusive access to the data,
ensuring that no data races can occur.

When the mutable reference goes out of scope, the mutex is
automatically unlocked, releasing the exclusive access and allowing
other threads to lock the mutex.

Mutex<T> is an useful tool for protecting shared data in multi-
threaded Rust programs, ensuring that only one thread can access

43

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=b373a097928ce4e4f9269d339966cb7c

the data at a time and preventing data races. However, mutual
exclusion can be heavy-handed. If you have a read-heavy workflow,
you may wish to consider using RwLock<T> .

44

RwLock<T>

RwLock\<T\> is conceptually very similar to Mutex<T> , but there is
more book keeping to do as a programmer. You are given two locks
to interact with in your code, one for reading and the other for
writing.

Both Mutex<T> and RwLock<T> are concurrency primitives in Rust
designed to protect shared data in multi-threaded environments.
The choice between using Mutex<T> and RwLock<T> depends on the
specific use case and access pattern of the shared data.

• Mutex<T> :

Mutex<T> provides exclusive access to the data it protects,
meaning that only one thread can access the data at a time,
whether it is for reading or writing. This can be suitable for
situations where:

• The data is frequently updated, and exclusive access is
necessary to maintain data consistency.

• The overhead of managing separate read and write locks is not
worth the added complexity or performance gain.

• RwLock<T> :

RwLock<T> (Read-Write Lock) allows multiple threads to read the
data simultaneously but requires exclusive access for writing. This
can be more efficient in scenarios where:

• The data is read more frequently than it is updated.
• The cost of contention for read access is higher, and allowing

multiple concurrent readers can improve performance.

You should consider using Mutex<T> when exclusive access is
required for both reading and writing, or when the overhead of

45

managing separate read and write locks outweighs the potential
performance benefits. On the other hand, use RwLock<T> when you
have a read-heavy workload and allowing multiple concurrent
readers can lead to improved performance and resource utilization.

It’s important to note that the performance characteristics of
Mutex<T> and RwLock<T> can also be platform-dependent, so it’s a
good idea to benchmark and profile your specific use case to
determine the most suitable choice for your application.

46

Building your own smart
pointers

Now that you’ve taken a look at some the of the types that are
available to you, it would be helpful to understand a little more
about how they’re implemented.

47

Drop

The Drop trait is an essential concept in Rust related to resource
management and automatic cleanup when a value goes out of
scope. It plays a crucial role in smart pointers and the overall
memory safety of Rust programs.

Definition and purpose of the Drop trait

The Drop trait provides a way to run custom code when a value is
about to go out of scope, allowing you to clean up resources
associated with the value. This is particularly useful when managing
resources like file handles, sockets, or heap-allocated memory.
Implementing the Drop trait for a type allows you to define a
drop() method that will be called automatically when an instance
of the type is no longer needed.

pub trait Drop {
 fn drop(&mut self);
}

48

How it relates to resource management and
smart pointers

The Drop trait is closely related to smart pointers in Rust, as many
smart pointers implement the Drop trait to automatically manage
resources when they go out of scope. This ensures proper resource
cleanup and prevents resource leaks, contributing to the overall
memory safety of Rust programs.

The semantics of what happens during drop() are up to the type in
question. For example, when a Box<T> goes out of scope, it
automatically deallocates the heap-allocated memory it manages by
implementing the Drop trait. In contrast, Rc<T> or Arc<T> will
update their internal reference count. Only when the count reaches
zero will the memory they manage be automatically deallocated.

The following code demonstrates how the Drop trait can work with a
custom type:

struct CustomResource {
 name: String,
}

impl Drop for CustomResource {
 fn drop(&mut self) {
 println!("Releasing CustomResource: {}",
self.name);
 }
}

fn main() {
 let resource = CustomResource {
 name: String::from("Resource 1"),
 };

 let boxed_resource = Box::new(CustomResource {
 name: String::from("Resource 2"),
 });

 println!("Custom resources created.");

49

} // Both resources are automatically dropped and cleaned
up here.

In this example, we implement the Drop trait for a CustomResource
type. When instances of this type and a Box<CustomResource> go out
of scope, their drop() methods are called, ensuring proper cleanup.

Automatic call of the drop() method when a
value goes out of scope

When a value implementing the Drop trait goes out of scope, Rust
automatically calls its drop() method. This call to drop() is
implicit. It does not appear in the program’s source code unless you
wish to customize the default behavior.

Execution order of drop() in nested structures

In nested structures, Rust guarantees that drop methods are
executed in a specific order: from the innermost value to the
outermost value. This ensures proper cleanup and consistency when
dealing with complex data structures.

struct Outer {
 inner: Inner,
}

struct Inner {
 data: String,
}

impl Drop for Outer {

50

 fn drop(&mut self) {
 println!("Dropping Outer");
 }
}

impl Drop for Inner {
 fn drop(&mut self) {
 println!("Dropping Inner");
 }
}

fn main() {
 let outer = Outer {
 inner: Inner {
 data: String::from("Some data"),
 },
 };
 println!("Outer and Inner created.");
} // Inner is dropped first, followed by Outer.

Outer and Inner created.
Dropping Outer
Dropping Inner

[playground]

Manually calling drop()

In some cases, you might want to clean up a value before it
naturally goes out of scope. To do this, you can use the drop()
function from the std::mem module.

use std::mem;

struct CustomResource {

51

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=d0fefcdfdcd16c7825d9bb164bbd32bb

 name: String,
}

impl Drop for CustomResource {
 fn drop(&mut self) {
 println!("Releasing CustomResource: {}",
self.name);
 }
}

fn main() {
 let resource = CustomResource {
 name: String::from("Resource 1"),
 };
 println!("Custom resource created.");

 mem::drop(resource); // Explicitly drop the resource.

 // Accessing resource here would result in a compile‑
time error.
}

[playground]

Implementing Drop

When implementing the Drop trait, follow these best practices:

• Keep the drop method simple: Avoid complex logic in the drop
method, as you want others to be able to easily verify that it
doesn’t create double-free errors and undefined behaviour.

• Handle errors gracefully: If an error occurs during cleanup, a
common strategy is to log it at a very high warning level and
continue. You have a memory leak, which is usually not critical.
However panicking in a drop() method can lead to a double
panic and a program crash. Alternatively, your strategy can be to
“fail fast”, and panic as soon as close to the error as possible.

52

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=0df277396c6502d372de231643b5830c

• Avoid using std::mem::drop() explicitly: In most cases, you
should let Rust automatically call the drop() method when a
value goes out of scope. Only use std::mem::drop when you
absolutely need to release resources early, and be aware of
potential double-free errors and undefined behavior.

• Do not rely on the order of drop calls: Although Rust guarantees a
specific drop order for nested structures, it’s best not to rely on
this behavior, as it can make your code more fragile and harder to
refactor.

53

Deref

In some sense, the Deref trait is the thing that enables smart
pointers to exist so seamlessly within the Rust language.

When you call a method on an objet of type T that implements
Deref<Target =
U> , then your value can call methods from U directly.
[Sidebar: This functionality can actually be abused to create
something that feels a little like sub-typing in Rust. This is generally
known as an anti-pattern that will confuse your users.]

To understand its usefulness, consider how nice it is to be able to
call the methods implemented for the &str type from a String .
Without this “auto-deref” behavior, working with Rust wiould be
much more tedious.

A related characteristic of smart pointers is “deref coercion”, more
formally known as dereference coercion. Dereference coercion
makes it easier to work with smart pointers by allowing them to be
used in the same way as regular references. This reduces the need
for explicit dereferencing and thus removes some of the syntatic
noise in our programs.

Implementing the Deref trait for a custom
smart pointer type

The Deref trait has a single required method called deref() .
deref() should return a reference to the underlying data, an
associated type Target that’s defined by the implementor. You can
read the ?Sized syntax as, “is not required to be Sized”.

54

trait Deref<T> {
 type Target: ?Sized;

 fn deref(&self) ‑> &Target;
}

Consider the following example where we create a custom smart
pointer called Portal<T> (if you remember from Section 6.1, I think
that portal would be a better name than box) and implement the
Deref trait for it:

use std::ops::Deref;

struct Portal<T>(T);

impl<T> Portal<T> {
 fn new(value: T) ‑> Portal<T> {
 Portal(value)
 }
}

impl<T> Deref for Portal<T> {
 type Target = T;

 fn deref(&self) ‑> &T {
 &self.0
 }
}

fn main() {
 let p = Portal::new(5);
 assert_eq!(*p, 5);
}

[playground]

In this example, we define a custom smart pointer Portal<T> and
implement the Deref trait, allowing for easy access to the underlying
value using the dereference operator (*).

55

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=1df0143d2dd85aac2356cb014d08f6ee

Understanding dereference coercion

Dereference coercion, more commonly referred to by its informal
name “deref coercion”, is a feature in Rust that automatically
converts a reference to a type implementing the Deref trait into a
reference to its target type. This makes it convenient to work with
custom smart pointers and use them interchangeably with standard
references.

For example, consider the following function that takes a reference
to an i32 integer:

fn print_value(value: &i32) {
 println!("Value: {}", value);
}

Let’s say that we wanted to print a value of that’s wrapped with our
custom Portal<T> smart pointer defined at Section 7.2.1. Rust
allows us to pass it to print_value() directly—which only accepts
an &i32 —without explicitly dereferencing it:

fn main() {
 let p = Portal::new(5);
 print_value(&Portal);
}

struct Person {
 name: String,
}

impl Person {
 fn name(&self) ‑> &str {
 &self.name
 }
}

56

fn main () {
 let person = Person { name: String::from("Alice") };
 let boxed_person = Box::new(person);

 // We can call get_name directly on boxed_person,
thanks to the Deref trait.
 let name = boxed_person.get_name();
}

57

DerefMut

In addition to the Deref trait, Rust provides the DerefMut trait,
which allows for overloading dereference operations for mutable
references. It works similarly to the Deref trait but returns a mutable
reference to the target type.

Implementing the DerefMut trait

To implement the DerefMut trait for a custom pointer type, you need
to define the deref_mut() method, which returns a mutable
reference to Self::Target .

use std::ops::{Deref, DerefMut};

struct Portal<T> {
 data: T,
}

impl<T> Deref for Portal<T> {
 type Target = T;

 fn deref(&self) ‑> &T {
 &self.data
 }
}

impl<T> DerefMut for Portal<T> {
 fn deref_mut(&mut self) ‑> &mut T {
 &mut self.data
 }
}

58

fn main() {
 let mut p = Portal::<i32> {data: 42} ;
 *p = 0;
 println!("{}", 100 + *p);
}

[playground]

In this example, we implement both the Deref and DerefMut traits
for a Portal type. Within the main() function, the DerefMut type is
exercised with the expression *p = 0 , which sets the internal data
field of p to 0 .

3. How DerefMut interacts with the Deref trait (47:40 - 48:00)

The DerefMut trait builds upon the Deref trait to provide mutable
access to the inner data. When you have a mutable reference to a
type that implements both Deref and DerefMut, Rust will
automatically apply dereference coercion for mutable methods,
providing a consistent interface for working with the inner data.

fn main() {
 let mut portal = Portal { data: "Wow.
".to_string() };

 // We can call mutable methods
 // on the inner data directly,
 // thanks to the DerefMut trait.
 portal.push_str(" I'm excited to learn more.");

 println!("data: {}", portal);
}

In this example, we’re able to call the push_str() method on
portal directly, without having to explicitly dereference it. This
demonstrates how the DerefMut trait interacts with the Deref trait to
provide a consistent interface for working with the inner data.

59

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=db1763d109c08a3ca0e52d802c47c7de

DerefMut best practices

Here is some general advice for making use of DerefMut, and for
building smart pointers generally.

• Deref and DerefMut enable something to be called a “smart
pointer”: You should consider implementing the Deref and
DerefMut traits for your custom types when you want to provide a
consistent and ergonomic interface for working with the inner
data of your wrapper type. Smart pointers are dapper wrappers, if
you forgive the terrible wording. Implementing these traits allows
for dereference coercion, which simplifies code and makes it
more readable.

• Don’t confuse your users: When implementing both Deref and
DerefMut traits, it’s crucial to ensure consistent behavior between
them. This means that if your Deref implementation provides
access to a specific field of a struct, the DerefMut
implementation should also provide mutable access to the same
data. This ensures that users of your type can rely on a
predictable interface.

• Overuse is abuse: Avoid implementing the Deref and DerefMut
traits for cases where the relationship between the types is not
clear or does not represent a pointer-like behavior. Doing so may
lead to confusing and error-prone code.

• For use with genuine ownership only: Be especially cautious when
implementing the Deref trait for types with interior mutability, e.g.
using RefCell<T> or Mutex<T> . This can lead to subtle bugs or
race conditions if not handled correctly.

• Be conservative: Make sure that your Deref and DerefMut
implementations do not introduce any side effects or unexpected
behavior, as they will be implicitly called by the compiler through
dereference coercion. That means that your types users will find it
difficult to track down a specific call site where an error was
introduced.

• Testing helps: Test your Deref and DerefMut implementations
thoroughly to ensure they provide the expected behavior in

60

various situations, especially when dealing with edge cases, such
as empty or invalid data.

61

Extension topics

Many people want to know more than what’s on the surface of what
the standard libary can offer them. This section is for readers who
want to explore more.

62

Cyclic data structures

Rust—well, safe Rust—does not like cycles. It would much prefer you
to represent everything as a hierarchy.

It turns out that Arc<T> or Rc<T> are available to implement a
cyclic data structure, such as a cyclic linked list or a tree with cycles.
This is because Arc<T> and Rc<T> offer shared ownership via their
use of reference counting to keep track of the number of references
to an object. Cyclic references will not cause memory leaks as long
as all references are managed by Arc<T> or Rc<T> .

63

Rc<T> from scratch

If you’ll forgive the somewhat gnarly code, here is an
implementation of the standard library’s Rc<T> trait from scratch.

use std::cell::Cell;
use std::marker::PhantomData;
use std::ops::Deref;
use std::ptr::NonNull;

struct RcInner<T> {
 count: Cell<usize>,
 data: T,
}

pub struct Rc<T> {
 inner: NonNull<RcInner<T>>,
 _marker: PhantomData<RcInner<T>>,
}

impl<T> Rc<T> {
 pub fn new(data: T) ‑> Self {
 let inner = Box::new(RcInner {
 count: Cell::new(1),
 data,
 });

 Rc {
 inner: unsafe {

NonNull::new_unchecked(Box::into_raw(inner))
 },
 _marker: PhantomData,
 }
 }

 pub fn strong_count(&self) ‑> usize {
 let inner = unsafe { self.inner.as_ref() };

64

 inner.count.get()
 }
}

impl<T> Clone for Rc<T> {
 fn clone(&self) ‑> Self {
 let inner = unsafe { self.inner.as_ref() };

 inner.count.set(inner.count.get() + 1);

 Rc {
 inner: self.inner,
 _marker: PhantomData,
 }
 }
}

impl<T> Drop for Rc<T> {
 fn drop(&mut self) {
 let inner = unsafe { self.inner.as_ref() };

 if inner.count.get() == 1 {
 drop(inner);
 let _free = unsafe {
 Box::from_raw(self.inner.as_ptr())
 };
 } else {
 inner.count.set(inner.count.get() ‑ 1);
 }
 }
}

impl<T> Deref for Rc<T> {
 type Target = T;

 fn deref(&self) ‑> &T {
 let inner = unsafe { &self.inner.as_ref() };
 &inner.data
 }
}

fn main() {
 let a = Rc::new(123);
 let b = 456;
 let a_prime = Rc::clone(&a);

65

 println!("a + b = {}", b + *a_prime)
}

[playground]

I won’t go into much detail explaining this code. Unpicking it is half
of the fun! There is one concept that is completely new though, and
that’s PhantomData<T> .

66

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=e90d3c7764bae75b703780b291d0c49a

PhantomData<T>

In Rust, PhantomData is a marker type that doesn’t actually hold any
data but instead exists only to represent a certain type parameter.
It can be used to inform the Rust compiler about certain data that
is relevant for the type system, but isn’t actually used at runtime.

One common use case for PhantomData is to ensure that the
generic type parameter of a struct or enum is used in a certain way,
without actually holding any values of that type. For example,
consider a struct that wraps a raw pointer:

struct ExternalData<T> {
 ptr: *const u8,
 _marker: PhantomData<T>,
}

In this case, the _marker field is an instance of PhantomData<T> . It
doesn’t actually hold any data, but its presence allows us to ensure
that T is actually used in the struct in some way. The name
_marker is commonly used to indicate that this field exists only to
mark the type parameter T .

Another common use case for PhantomData is to provide lifetime
information to the Rust compiler. For example, consider a struct
that stores a reference to an object of type T , as well as a
reference to a value of type U that is associated with T :

struct ExternalData<'a, T> {
 t_ref: &'a T,
 u_ref: &'a U,

67

 _marker: PhantomData<&'a U>,
}

In this case, the _marker field is used to tell the Rust compiler that
the lifetime of u_ref is tied to the lifetime 'a . Without this marker,
the Rust compiler might not be able to determine the correct
lifetime relationships between the different references.

Let’s revisit the definition of our custom Rc<T> implementation at
Section 8.2.

struct RcInner<T> {
 count: Cell<usize>,
 data: T,
}

pub struct Rc<T> {
 inner: NonNull<RcInner<T>>,
 _marker: PhantomData<RcInner<T>>,
}

We’ve just heard that PhantomData is a tool for providing extra
information to the Rust compiler that can help enforce certain
guarantees about how generic types are used. But what does that
mean?

When using references, or a smart pointer like Rc<T> , the lifetime
of the pointer and its data may be different. The lifetime of the
pointer is determined by how many references to it exist, while the
lifetime of the data is determined by when it is dropped. In the case
of Rc<T> , the Rust compiler must ensure that all references to the
data are dropped before the data itself is dropped.

PhantomData<T> is a type in Rust that does not actually hold any
data, but is used to inform the compiler about the relationship
between types. In the case of Rc<T> , the _marker field is used to
tell the Rust compiler that the lifetime of the reference is tied to the
lifetime of the data it points to. Without this marker, the Rust

68

compiler would have difficulty inferring the lifetime relationship
between the different references, which could lead to unsafe code
or memory leaks.

By including the _marker field with PhantomData in our Rc<T>
implementation, Rust’s borrow checker can correctly reason about
the lifetime of the reference and ensure that it does not outlive the
lifetime of the data it points to. This helps to ensure memory safety
and prevent bugs caused by incorrect lifetime assumptions.

69

Recap

First, we learned about the purpose of smart pointers, which is to
provide additional functionality and guarantees compared to raw
pointers. Rust smart pointers have ownership semantics and allow
for safer memory management, shared ownership, and interior
mutability.

We covered several types of smart pointers in Rust, including
Box<T> , which is used for allocating memory on the heap and
ensuring proper memory deallocation, and Rc<T> and Arc<T> ,
which provide shared ownership of values. We also explored
RefCell<T> and Mutex<T> , which enable interior mutability and
thread-safe shared state, respectively.

The Drop and Deref traits play a crucial role in the implementation
of smart pointers. The Drop trait allows for custom resource cleanup
upon going out of scope, while the Deref trait allows for
dereferencing smart pointers to access the underlying value.

We also delved into the concept of interior mutability and
concurrency safety, highlighting the usage of RefCell<T> and
Mutex<T> for these purposes, and demonstrated how to use them
through examples.

That’s all for this tutorial on smart pointers in Rust. We hope you
have found this informative and useful.

It’s likely that you discovered errors or omissions as you were
making your way through. Please do send them through to Tim by
email tim@accelerant.dev .

70

mailto:tim@accelerant.dev

Cheat Sheet

Box<T>

• Allocates memory on the heap
• Points to a single value of type T
• Automatically deallocates memory when it goes out of scope
• Provides ownership and move semantics

Rc<T>

• Points to a value of type T shared among multiple owners
• Keeps track of the number of owners and deallocates memory

when the count reaches 0
• Useful for scenarios where shared ownership is required in

single-threaded environments

Arc<T>

• Similar to Rc<T> , but for thread-safe shared ownership in
multithreaded environments

• Uses atomic reference counting to ensure safe sharing among
multiple threads

RefCell<T>

• Provides interior mutability, allowing mutation of immutable
values

• Uses runtime borrow checking to enforce rules for shared
mutable access

• Useful for scenarios where immutable values need to be mutated,
but ownership cannot be transferred

71

Mutex <T >

• Provides concurrency-safe shared mutable access to values of
type T

• Uses locks to enforce exclusive access, preventing race
conditions and data races

• Useful for scenarios where shared mutable access is required in
multithreaded environments

Drop trait

• Provides a method for custom cleanup when a value goes out of
scope

• Useful for scenarios where resource management is required

Deref trait

• Allows a type to be dereferenced like a pointer
• Useful for scenarios where a pointer-like interface is required for

a custom type

Interior mutability

• Allows mutation of immutable values through the use of smart
pointers like RefCell<T>

• Useful for scenarios where values need to be mutated but
ownership cannot be transferred

Common pitfalls

• Lifetime issues, including dangling pointers and use-after-free
errors

• Memory leaks and resource management issues
• Concurrency issues, including deadlocks and race conditions
• Use Rust’s static analysis and testing tools to prevent common

pitfalls

72

Afterword

One of the hardest thing about learning something new is
discovering all of the other things that need to be learned before
the first thing makes sense.

I came to Rust from Python and one of the things that I
encountered was that the Rust community seemed to have a shared
understanding of many topics that I knew nothing about. One of
those topics was “smart pointers”. I created this guide to help
others who might be feeling slightly lost.

Over time, I’m hopeful that a series of accelerated guides will
emerge. If you’ve ever felt lost and would appreciate a book to
explain a problem, then please get in touch. My email address is
tim@accelerant.dev in case you ever need it.

I wish you all the best for your career and hope to help you fulfil
your aspirations for yourself, your family and your planet.

Tim McNamara
May 2023

73

mailto:tim@accelerant.dev

About Tim McNamara

Tim—often known as timClicks online—is an experienced software
engineer with a knack for being a supportive and encouraging
communicator.

Tim draws from a diverse set of experiences. He has successfully
adapted to working in teams with just a few people, to one that has
over a million employees (AWS/Amazon). While known for his
contributions to software, his academic background is actually in
the humanities. His undergraduate degrees are in philosophy and
German. He also holds a Master in Public Policy degree from
Victoria University of Wellington Te Herenga Waka with work
focusing on the use of open data within the research sector.

Outside of his employment, he has built long-standing connections
with the open source software community. He has contributed
thousands of code and documentation fixes to open source
repositories over the course of his career. His work in the open led
to him being hired by Canonical, the developers of one of the most
widely deployed operating systems in the world, Ubuntu, as a
software developer for their cloud orchestration system.

His start with software development actually stems from
humanitarian disaster relief, specifically to support the Sahana
Disaster Management System. This area of interest continues with
Tim continuing to maintain links with the Humanitarian
OpenStreetMap project.

74

	[Cover]
	Introduction
	Contents
	Defining smart pointers
	Understanding Rust
	Defining smart pointers, again
	Why use them?
	Stdlib's smart pointers
	Building your own smart pointers
	Extension topics
	Recap
	Cheat sheet
	Afterword
	About Tim McNamara

