

Are you an experienced programmer who wants to get started
quickly in JavaScript and the HTML DOM? This is your book.

Do you need encyclopedic knowledge of JavaScript and/or the
HTML DOM? This book is not for you.

Are you a novice who wants to learn to program? This book is not
for you. In fact, this language is not for you. Get a good Python
book.

This book will get you programming in JavaScript as quickly as
possible. In addition, it will provide you with a basic understand-
ing of the Document Object Model, the massive data structure
used to represent web pages. With these tools, you will be able to
build interactive web pages.

If you program in C++ or Java, there are parts of the book you can
skip over because the JavaScript statements are exactly the same.
These parts are clearly marked.

JavaScript is the language—the only language—used by browsers.
To create interactive web pages, you need to know both JavaScript
and the DOM. This book will get you started.

Quick JavaScript

https://taylorandfrancis.com

Quick JavaScript

David Matuszek

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 David Matuszek

Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this pub-
lication and apologize to copyright holders if permission to publish in this form
has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be
reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work,
access www.copyright.com or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978.750-8400. For works that
are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

Library of Congress Cataloging-in-Publication Data
Names: Matuszek, David L., author.
Title: Quick JavaScript / David Matuszek.
Description: First edition. | Boca Raton: CRC Press, [2023]
| Series: Quick programing | Includes bibliographical references and index.
Identifiers: LCCN 2022046807 | ISBN 9781032417578 (hbk)
| ISBN 9781032417561 (pbk) | ISBN 9781003359609 (ebk)
Subjects: LCSH: JavaScript (Computer program language)
| Computer programming.
Classification: LCC QA76.73.J39 M385 2023
| DDC 005.2/762--dc23/eng/20221202
LC record available at https://lccn.loc.gov/2022046807

ISBN: 978-1-032-41757-8 (hbk)
ISBN: 978-1-032-41756-1 (pbk)
ISBN: 978-1-003-35960-9 (ebk)

DOI: 10.1201/9781003359609

Typeset in Minion
by SPi Technologies India Pvt Ltd (Straive)

http://dx.doi.org/10.1201/9781003359609

To all my students
past, present, and future

https://taylorandfrancis.com

vii

Contents

Author, xiii
Preface, xv
Versions of JavaScript, xvii

 Chapter 1 ◾ Introduction 1
 1.1 Hello, World! 1

 1.2 JavaScript in the Browser 1

 1.3 Browser Consoles 2

 1.4 Running JavaScript 3

 1.5 Getting Input 4

 1.6 Producing Output 4

 Chapter 2 ◾ JavaScript: The Bare Minimum 7
 2.1 Comments 7

 2.2 Data Types 8

 2.2.1 Primitives 8
 2.2.2 User-Defined Objects 9
 2.2.3 Built-In Object Types 9
 2.2.4 Arrays 9
 2.2.5 Sets 11
 2.2.6 Maps 11

viii    ◾    Contents

 2.2.7 Dates 12
 2.2.8 Regular Expressions 14

 2.3 Identifiers 17

 2.4 let and const 17

 2.5 var 18

 2.6 Operators 19

 2.7 Equality and Identity 21

 2.8 Conversions 22

 2.9 Statements 22

 2.9.1 Semicolons 22
 2.9.2 Declarations 23
 2.9.3 Function Definitions 24
 2.9.4 Familiar Statements 25

 2.9.4.1 Assignment Statements 26
 2.9.4.2 Expressions 27
 2.9.4.3 Compound Statements 27
 2.9.4.4 If Statements 28
 2.9.4.5 While Loops 29
 2.9.4.6 Do-While Loops 30
 2.9.4.7 Traditional for Loops 31
 2.9.4.8 Scope in Loops 32
 2.9.4.9 Switch Statements 33
 2.9.4.10 Labeled Statements 35
 2.9.4.11 Break Statements 35
 2.9.4.12 Continue Statements 36
 2.9.4.13 Return Statements 37
 2.9.4.14 Empty Statements 38

 2.9.5 JavaScript-Specific Statements 38
 2.9.5.1 For/of 38

Contents    ◾    ix

 2.9.5.2 For/in 39
 2.9.5.3 Throw 39
 2.9.5.4 Try-catch-finally 40
 2.9.5.5 The with Statement 42

 2.10 Example: Prime Numbers 42

 2.11 Testing 43

 2.11.1 The Mocha Test Framework 43
 2.11.2 Testing with Chai 45
 2.11.3 Testing Example 46

 Chapter 3 ◾ JavaScript: In More Detail 49
 3.1 Strict Mode 49

 3.2 Identifiers 50

 3.3 Destructuring 51

 3.4 Data Types 53

 3.4.1 Numbers 53
 3.4.2 Strings 55
 3.4.3 Booleans 56
 3.4.4 Symbols 57
 3.4.5 Arrays 59
 3.4.6 Sparse Arrays 59
 3.4.7 Sets 60
 3.4.8 Maps 61
 3.4.9 WeakMaps 62
 3.4.10 Promises 63
 3.4.11 Conversions 65

 3.5 Math 67

 3.6 Reserved Words 68

 3.7 Good Operators 69

x    ◾    Contents

 3.8 Operator Notes 71

 3.9 Bad Operators 72

 3.10 Functions 73

 3.10.1 Defining Functions 73
 3.10.2 Parameters and Arguments 75
 3.10.3 Functions Are Data 77
 3.10.4 Functions Are Objects 78
 3.10.5 Function Methods 79
 3.10.6 Closures 80
 3.10.7 Generators 82
 3.10.8 Iterators 83

 3.11 Objects 85

 3.11.1 Definition of Objects 85
 3.11.2 Creating Objects 87
 3.11.3 Copying Objects 90
 3.11.4 Methods 91
 3.11.5 Optional Chaining 91
 3.11.6 This 92
 3.11.7 Higher-Order Functions 93
 3.11.8 Prototypes 95
 3.11.9 Descriptors 96
 3.11.10 Classes and Inheritance 98

 3.11.10.1 Classes 98
 3.11.10.2 Inheritance 102
 3.11.10.3 Overriding Methods and Fields 105
 3.11.10.4 Class Prototypes 106

 3.12 Transpilers and Polyfills 107

 3.13 JSON 108

Contents    ◾    xi

 Chapter 4 ◾ Client-Side JavaScript 109
 4.1 Essential HTML 109

 4.2 Adding JavaScript to HTML 110

 4.3 DOM Overview 111

 4.4 Graphical User Interfaces 113

 4.4.1 Events 113
 4.4.2 Widgets 113
 4.4.3 Buttons 114
 4.4.4 Finding Widgets 115
 4.4.5 Text Fields 116
 4.4.6 Buttons and Forms 117
 4.4.7 Form Verification 120
 4.4.8 Form Submission 121

 4.4.8.1 Get Requests 121
 4.4.8.2 Post Requests 122
 4.4.8.3 Other Requests 122

 4.4.9 Additional Text Widgets 122
 4.4.10 Other Input Widgets 124
 4.4.11 Events 125
 4.4.12 Bubbling 129

 4.5 Using the DOM 129

 4.5.1 The Window Object 129
 4.5.1.1 Window Properties 130
 4.5.1.2 Window Methods 131
 4.5.1.3 Window Example 132

 4.5.2 The Document Object 134
 4.5.2.1 Document Properties 134
 4.5.2.2 Finding Nodes 135
 4.5.2.3 Creating Nodes 137

xii    ◾    Contents

 4.5.3 Node Objects 138
 4.5.3.1 Node Properties 138
 4.5.3.2 Node Methods 139

 4.5.4 Elements 140
 4.5.4.1 Element Properties 140
 4.5.4.2 Element Methods 140

 4.5.5 CharacterData 142
 4.5.6 Example: ShowTree 142

◾ Afterword 147

 Appendix a: Array Methods, 149

 Appendix B: Higher-Order Methods, 151

 Appendix C: String Methods, 153

 Appendix D: Regular Expressions, 157

References, 161

Index, 163

xiii

Author

I ’m David Matuszek, known to most of my students as
“Dr. Dave.”

I wrote my first program on punched cards in 1963 and immedi-
ately got hooked.

I taught my first computer classes in 1970 as a graduate student in
computer science at the University of Texas at Austin. I eventually
earned a PhD there, and I’ve been teaching ever since. Admittedly,
I spent over a dozen years in industry, but even then I taught as an
adjunct for Villanova University.

I finally escaped from industry and joined the Villanova fac-
ulty full time for a few years, and then moved to the University
of Pennsylvania, where I directed a master’s program (MCIT,
Masters in Computer and Information Technology) for students
coming into computer science from another discipline.

Throughout my career, my main interests have been in artificial
intelligence (AI) and programming languages. I’ve used a lot of
programming languages.

I retired in 2017, but I can’t stop teaching, so I’m writing a series
of “quick start” books on programming and programming lan-
guages. I’ve also written two science fiction novels, Ice Jockey and
All True Value, and I expect to write more. Check them out!

xiv    ◾    Author

If you found this book useful, it would be wonderful if you would
post a review. Reviews, even critical ones, help to sell books.

And, hey, if you’re a former student or colleague, drop me a note at
david.matuszek@gmail.com. I’d love to hear from you!

xv

Preface

If you are a programmer who wants to get started programming
in JavaScript as quickly as possible, this book is for you.

If you are hoping to learn JavaScript as your first programming
language, this book is not for you.

If you want a comprehensive encyclopedia of JavaScript, this book
is not for you. For that, let me recommend the excellent JavaScript:
The Definitive Guide (David Flanagan, O’Reilly).

https://taylorandfrancis.com

xvii

Versions of JavaScript

JavaScript is an evolving language. It is defined by a series of
standards known as ECMAScript by Ecma International.

As a language, JavaScript looks much like Java or C++. Unlike
these languages, the original version of JavaScript is widely
regarded as a hastily written, poorly designed language. Because
of this perception, other languages have been written for use on
HTML pages (CoffeeScript, Dart, etc.), but these must be com-
piled to JavaScript in order to be used by browsers. JavaScript is
the only language understood by browsers.

In order to make significant changes to the JavaScript language
without breaking existing programs, ECMAScript 2015 intro-
duced strict mode. Strict mode eliminates or modifies the worst
parts of JavaScript. All new programming should be done in strict
mode.

To invoke strict mode for an entire program, put "use strict";
(complete with quotes) at the first line of a program. To invoke
strict mode for a single function, put that string as the first line
inside the function.

The primary use of JavaScript is to add interactivity to web pages.
Web pages are written in HTML, HyperText Markup Language.
This book is not about HTML, but it does cover the minimum
necessary.

xviii    ◾    Versions of JavaScript

When running in a browser, JavaScript cannot do arbitrary file
I/O, nor can it communicate with web servers other than the
one from which it came. This is necessary for security; you do
not want web pages to access your files without your knowledge.
Other environments, such as IDEs, may allow these operations.

1DOI: 10.1201/9781003359609-1

1.1 HELLO, WORLD!
Traditionally, the first program to be written in a new language is
one that prints out “Hello, World!” We will follow that tradition.

The one line of JavaScript needed is:

 alert("Hello, World!");

To execute this code, we have several options.

 • Put it in a web page and run it in a browser.

 • Run it in an IDE (Integrated Development Environment).

 • Run it from an editor application.

 • Run it from an online JavaScript editor.

1.2 JAVASCRIPT IN THE BROWSER
If you save the following text in a file and then open the file in a
browser, an alert dialog containing the text “Hello, World!” will
appear.

C H A P T E R 1

Introduction

http://dx.doi.org/10.1201/9781003359609-1

2    ◾    Quick JavaScript

 <!DOCTYPE html>
 <html>
 <head>
 <title>Using JavaScript</title>
 </head>
 <body>
 <script>
 alert("Hello, World!");
 </script>
 </body>
 </html>

 • The <!DOCTYPE html> tag says that this is an HTML
document.

 • The entire page is enclosed in the “container” <html> down
to </html>. Tags beginning with “</” denote the end of a
container. In this example, only the !DOCTYPE tag is not a
container.

 • The <title> tag contains the text that will be displayed in
the header bar of the page.

 • The HTML document is divided into two parts: The <head>
contains assorted information that is not displayed and the
<body> contains the part that is displayed.

 • The <script> tag contains the JavaScript code. Typically,
JavaScript functions are defined in <script> tags in the
<head> and calls to them are made in <script> tags or in
“event handlers” in the <body>.

1.3 BROWSER CONSOLES
To run JavaScript, you can use any text editor to include it in
<script> tags in an HTML page, and load the page into any
browser.

This is not the best way to write programs. Browsers are designed
to ignore errors; after all, the user doesn’t want to see them. You,

Introduction    ◾    3

on the other hand, want to see them and correct them. For this
you need to open your browser’s console. A console will display
error messages (among other things).

To open the console:

 • In most browsers: Press F12.

 • In Safari (Macintosh): Go to Preferences: Advanced and
check Show Develop menu in menu bar. Once this is done,
use cmd-opt-C to show the console.

Browser consoles have a number of features to assist in program-
ming and debugging. These vary and take some time to learn;
they are not covered in this book.

1.4 RUNNING JAVASCRIPT
There are several IDEs (Integrated Development Environments)
that can be used for JavaScript. Visual Studio Code is perhaps
the most popular; it is cross-platform and free. (Don’t confuse
this with Visual Studio, which is neither cross-platform nor free.)
NetBeans and Eclipse (with a suitable plugin) are other popular
IDEs.

Some editors can be configured to run JavaScript on command.
This can be a convenient way to run JavaScript programs that con-
sist of a single file. Sublime Text (cross-platform) and Notepad++
(Windows and Linux) are examples.

Yet another alternative is to use an online JavaScript editor. A
search for “JavaScript online” will find several of these; jsfiddle.
net is one I have used extensively. They differ in features, but most
will display both output and console. Since they run in a browser,
JavaScript code written there has limited ability to do file I/O.

Finally, all the major browsers have a “developer mode” so that
code can be written and tested directly in the browser.

https://code.visualstudio.com
https://netbeans.apache.org
https://eclipseide.org
https://www.sublimetext.com
https://notepad-plus-plus.org
http://jsfiddle.net
http://jsfiddle.net

4    ◾    Quick JavaScript

1.5 GETTING INPUT
There are two functions that will ask for input from the user:

 • result = prompt(prompt, default);

 – This displays the prompt in a modal dialog box, with a
place for the user to enter text. The second parameter is
optional; if given, it will be shown in the text field.

 – The dialog box has two buttons: OK, to return the user’s
entry as a string, and Cancel, to return null.

 • result = confirm(question);

 – This displays the question in a modal dialog box with two
buttons: OK, to return true, and Cancel, to return false.

1.6 PRODUCING OUTPUT
There are several functions to display the results of your code.
For browser use, remember to put your function calls inside
<script>…</script> tags.

 • alert(arg)

 – This is the simplest way to see a result. Calling alert
with one argument of any type will pop up a dialog box
containing the given value. There are two disadvantages:
The dialog box is modal, which means that it must be dis-
missed before computation can continue; and you only
get to see one message at a time.

 • console.log(args)

 – If you have a console open, this method will display some-
thing on it, but exactly what it displays is highly imple-
mentation dependent. It may display the args separated
by spaces or by newlines, or it may display only the first
argument. Try it to see what it does in whatever console
you prefer to use.

Introduction    ◾    5

 – Since console.log is intended primarily for debugging,
most implementations will display the actual structure of
the args, without using the toString method.

 – The console has a number of other methods, such as
clear() and trace(). Implementation varies.

 • document.write(args)

 – This will write its arguments to the body of the HTML.
If executed as the page is being loaded, it writes the argu-
ments directly in that location. But if write is called after
the body has been loaded (for example, from a function),
the call replaces the entire HTML body; this is probably
not what you want.

 • document.writeln(args)

 – This acts just like write, except that the method writes
a newline after the last argument. Since HTML ignores
newlines, this is fairly useless. To get a newline that isn’t
ignored, write the string "
".

The advantage of the alert and write methods is that they do not
require you to have a console open in order to view results.

https://taylorandfrancis.com

7DOI: 10.1201/9781003359609-2

This chapter and Chapter 3 describe JavaScript simply as a lan-
guage, without reference to Web programming. It is in two major
parts:

The Bare Minimum—This section is intended to get you started
programming in JavaScript as quickly as possible. The best way to
do that is to try things out as you go.

In More Detail—This goes over the same material again, filling in
a lot of the gaps. To some extent, it can also be used as a reference.

2.1 COMMENTS
// introduces a comment that extends to the end of the line.

Multi-line comments start with /* and end with */.

Inside a comment, // and /* have no special meaning (so you can-
not “nest” comments). Inside a quoted string or regular expres-
sion, // and /* do not start a comment.

C H A P T E R 2

JavaScript
The Bare Minimum

http://dx.doi.org/10.1201/9781003359609-2

8    ◾    Quick JavaScript

2.2 DATA TYPES
2.2.1 Primitives

There are eight data types:

 • A number may be written with or without a decimal point,
but all numbers are stored as double precision floating point.

 • A bigint is an integer with an arbitrarily large number of
digits.

 • The two boolean values are written as true and false.

 • A string may be enclosed in either single quotes, double
quotes, or backticks ()̀. There is no “character” type.

 • A symbol is a value that is guaranteed to be unique; no other
value is equal to it. A symbol is created by calling Symbol()
or Symbol(name), where name is a (not necessarily unique)
value that may be helpful in debugging.

 • The undefined type has a single value, undefined. It is the
value of a variable that has been declared but not yet given a
value.

 • The null type has a single value, null, meaning that the
value does not exist.

 • An object is any more complicated data type. Functions,
arrays, sets, maps, regular expressions, errors, and dates are
all special types of object, as are user-defined objects.

The type of a value can be determined by typeof, which can be
used as either an operator, typeof x, or as a function, typeof(x).
It will return, as a string, one of the type names given above (for
example, "number").

There are two exceptions to the above.

 • The value of typeof(null) is "object". This is generally
regarded as an error in the design of the language.

JavaScript: The Bare Minimum    ◾    9

 • For any type of object except a function, typeof will
return "object". Applied to a function, typeof will return
"function".

2.2.2 User-Defined Objects

An object is a collection of named values, called its properties. You
can define an object by putting property:value pairs inside braces
and later refer to the values with the syntax object.property. For
example,

 let friend = { givenName: "Anna",
 surname: "Lang" };
 alert("Hello, " + friend.givenName);

If the name of a property is stored in a variable or can be com-
puted, it can be accessed by the syntax object[expression], for
example, friend["given" + "Name"].

The test property in object, where property is given as a string,
will return true if and only if object has that property. A request
for a property that does not exist will get the value undefined.

2.2.3 Built-In Object Types

JavaScript comes with a number of built-in, or predefined, object
types. Among these are arrays, sets, maps, dates, and regular
expressions.

2.2.4 Arrays

An array is an ordered collection of values. An array literal can be
defined by enclosing comma-separated values in square brackets:

let ary = ["cat", "dog", "mouse"];

Commas can be used either between values or after values, so the
above assignment is exactly equivalent to:

let ary = ["cat", "dog", "mouse",];

10    ◾    Quick JavaScript

The last comma is sometimes called a trailing comma.

Array indexing is zero-based; the first element of the above array
is ary[0] and the last is ary[ary.length – 1].

Arrays of higher dimension can be created simply by nesting
array literals:

let ary2d = [[11, 12], [21, 22]];

After the above assignment, ary2d[1] is [21, 22] and ary2d[1]
[0] is 21.

A less-often used form is Array(values):

let ary = new Array("cat", "dog", "mouse");

This form is not generally recommended. One odd feature of it is
that if the argument is a single numeric value, Array(n), the result
is a sparse array of n locations, not an array containing the single
value n.

In a sparse array, no storage is allocated for the elements of the
array until they have been assigned values; unassigned locations
will appear to have the value undefined. A sparse array can be
arbitrarily large (only the actual values in it contribute to its size),
but it is slower to work with.

The length property of an array is always one more than the larg-
est index. Since an array may be sparse, length is not necessarily
a count of the number of values in the array.

Arrays can be created from iterable types (types that can be
stepped through).

 • Array.from(set) — Returns an array containing the elements
of set.

JavaScript: The Bare Minimum    ◾    11

 • Array.from(string) — Returns an array of characters from
string, each as a string.

 • Array.from(map) — Returns an array of [key, value] arrays.

 • Array.from(array) — Returns a (shallow) copy of array.

Arrays may contain a mix of different types of values.

2.2.5 Sets

A set is a collection of values, such that (1) no value appears more
than once, and (2) the order in which the values occur in the set
is irrelevant.

Operations are:

 • new Set(iter) — Creates and returns a new set containing
the values in the iterable object iter (often an array). To cre-
ate an empty set, omit iter.

 • If iter is a map, the result is a set of [key, value] arrays.

 • set.has(value) — Tests if value is a member of set.

 • set.add(value) — Adds value to set if it is not already pres-
ent, and returns set.

 • set.delete(value) — If value is in set, it is deleted. delete
does not return set; it returns true if value was in set, and
false otherwise.

 • set.clear() — Removes all values from set and returns
undefined.

 • set.size — Returns the number of elements in set.

2.2.6 Maps

Maps are lookup tables. Each entry in a map consists of a key-
value pair. Keys must be unique, but the same value may occur
multiple times.

12    ◾    Quick JavaScript

Operations are:

 • new Map() — Creates and returns a new, empty map.

 • new Map(array_or_set) — The array_or_set must consist of
[key, value] arrays; this returns a map with those keys and
values.

 • map.has(key) — Tests if map contains the given key.

 • map.set(key, value) — Sets or changes the value associ-
ated with key to value and returns the modified map.

 • map.get(key) — Returns the value associated with key, or
undefined if key is not in the map.

 • map.delete(key) — Removes key and its associated value
from map. Returns true if map was changed, false if key
wasn’t found in map.

 • map.clear() — Removes all values from map and returns
undefined.

 • map.size — Returns the number of key-value pairs in map.

Maps can use values of any type as keys.

Caution: The notations map.value and map[value] refer
to map properties, not to map entries. Use set and get to
access the entries.

2.2.7 Dates

JavaScript has a Date object, which can be created in any of the
following ways:

 • new Date() — Returns the current date and time in the
browser’s time zone.

 • new Date(ms) — Returns the date that corresponds to the
number of milliseconds since “epoch” (January 1, 1970).

JavaScript: The Bare Minimum    ◾    13

 • new Date(year, month, day, hours, minutes, seconds,
milliseconds)

 • Up to five arguments may be omitted from the right end,
for example, new Date(year, month, day).

 • You cannot supply just a year, because a single argument
will be taken as milliseconds.

 • If the year is less than 100, 1900 will be added to it.

 • new Date(string) — Converts string into a Date, if possible,
and returns it. The International Standard format is yyyy-
mm-dd, but many other formats are recognized.

Caution: Without new in front of it, Date() returns a string,
not a date, and is equivalent to String(new Date()).

To access specific components of a Date object, use the following
methods:

 • date.getFullYear() and date.setFullYear(year)

 • date.setFullYear may also be given month and day
arguments.

 • date.getMonth() and date.setMonth(n), where n is 0
(January) to 11 (December).

 • date.getDate() and date.setDate(n), where n is 1 to 31.

 • date.getHours() and date.setHours(n), where n is 0 to 23.

 • date.getMinutes() and date.setMinutes(n), where n is 0
to 59.

 • date.getSeconds() and date.setSeconds(n), where n is 0
to 59.

14    ◾    Quick JavaScript

 • date.getMilliseconds() and date.setMilli seconds(n),
where n is 0 to 999.

 • date.getTime() and date.setTime(n), where n is millisec-
onds since epoch.

 • Date.now() also returns milliseconds since epoch but is
shorter than new Date().getTime().

 • date.getDay() returns 0 to 6, where 0 means Sunday
(regardless of where you are, and despite ISO 8601 specify-
ing Monday as the first day of the week).

Internally, Dates are kept as milliseconds since epoch. This makes
arithmetic on dates very easy because the arguments to the vari-
ous set methods are not limited to the same ranges as the get
methods return. For example,

 let date = new Date();
 let day_of_month = date.getDate();
 date.setDate(day_of_month + 100);

sets date to be a Date exactly 100 days in the future, with the cor-
rect month and year.

2.2.8 Regular Expressions

A regular expression, or regexp, defines a pattern to be applied to
a string, to determine whether the pattern matches the string, or
to search the string for substrings that do match.

Regular expressions are largely standardized, so all but the most
idiosyncratic patterns can be used in JavaScript. In this section,
we assume a knowledge of regular expressions and only describe
how to use them in JavaScript. For the reader unfamiliar with reg-
ular expressions, there is a brief discussion in Appendix D.

A regular expression is written inside forward slashes, and may
be followed by flags. For example, /[a-z]+/gi is the regular

JavaScript: The Bare Minimum    ◾    15

expression [a-z]+ with the global (g) and case-insensitive (i) flags.
([a-z]+ will match any sequence of lowercase letters.)

Parentheses are used to group parts of the regular expression.
Groups are numbered left to right, starting with 1; an easy way
to find the number of a group is to count only the left (opening)
parentheses. Group 0 is the entire matched part. For example, in
the pattern

 a = "Call 1-800-555-1212 today!"
 b = /1-800-((\d\d\d)-(\d\d\d\d))/
 // 0 12 3
 c = a.match(b)

The results will be

 c[0] = "1-800-555-1212"
 c[1] = "555-1212"
 c[2] = "555"
 c[3] = "1212"

The following methods can be used to apply regular expressions:

 • string.search(regexp) — Returns the index of the start of
the first substring in string that matches regexp, or null if
no match is found. If the global modifier g is present, it is
ignored.

 • string.replace(regexp, replacement) — Searches string
for regexp and, if found, replaces it with replacement. If the
global modifier g is present, the method replaces all occur-
rences of regexp with replacement.

 • If regexp contains parenthesized groups, then replace-
ment may use $1 to represent the first group matched, $2
to represent the second group matched, and so on.

16    ◾    Quick JavaScript

 • string.match(regexp) — Searches string for regexp and
returns an array.

 • If the g flag is set, match returns an array of matched sub-
strings, or null if no matches are found.

 • If the g flag is not set, match returns an array whose
first element is the (first) matched substring and whose
remaining elements, if any, are the substrings matched by
each parenthesized group in regex. See the example at the
beginning of this section.

 • string.matchAll(pattern) — With the g flag, matchAll returns
an iterator for each of the substrings of string that match pat-
tern. This makes it convenient for use with a for/of loop.

 • string.split(regexp) — Returns an array of substrings of
string, where each occurrence of regexp separates the sub-
strings in string.

The following are methods of regexp rather than of string.

 • regexp.exec(string) — Searches string for regexp and remem-
bers its position in string.

 • This method is designed to be used in a loop. If the g flag
is set, each call of exec will return the next matching
substring, or null when no more remain. After a null is
returned, the regex is reset and can be used again.

 • If the g flag is not set, exec behaves like match without
the g flag set.

 • regexp.test(string) — Returns true if regexp matches some-
where in string, and null otherwise. The g flag is handled
the same way that it is for exec.

JavaScript: The Bare Minimum    ◾    17

2.3 IDENTIFIERS
Identifiers consist of letters, digits, underscores, and/or dollar
signs; the first character may not be a digit.

By convention, variable and function names begin with a low-
ercase letter, while class names begin with a capital. The usual
convention is to use “camel case” for multiword names, such as
newUser. Constants are often written in all capital letters.

Keywords (if, true, class, etc.) cannot be used as identifiers.

2.4 LET AND CONST
JavaScript variables are untyped: Any variable can hold any type
of value.

Variables are declared with the keyword let, along with an
optional initial value; for example, let x or let x = 5. More
than one variable can be declared in a let statement, for example,

 let x = 5, y, z = 3; // leaves y undefined

Constants are declared with the word const and must be given a
value at the time of declaration. Often the names of constants are
written with all capital letters. For example,

 const zero = 0;
 const RED = "#FF0000";

Using a const name = object; declaration prevents any later
assignment to name, so name will always refer to the same object,
but it does not prevent changes to that object.

 const card = {suit: "clubs", pips: 2};
 card = {suit: "clubs", pips: 10}; // illegal
 card.pips = 10; // legal

18    ◾    Quick JavaScript

Variables declared with let or const at the top level of the pro-
gram, not within any block, are global to the program; they can
be accessed anywhere.

Variables and constants declared within a block have block scope.
A block is a group of statements and/or expressions enclosed in
braces, {…}. The scope of an identifier is that portion of the pro-
gram in which the variable is visible and can be used.

In other words, variables and constants declared in a block are
visible and can be used only in the innermost block in which they
are declared. Outside that block, these variables and constants do
not exist; their names can be recycled for other uses.

It is an error to attempt to get the value of a variable that has been
declared but not yet given a value.

2.5 VAR
The modern way to declare a variable is with let. The older way,
using var in place of let, or simply assigning a value to a variable,
should be avoided. Variables declared the old way follow unusual,
and generally undesirable, scope rules.

 • It is not an error to use var to declare the same variable more
than once in the same scope.

 • The parameters to a function, and any variables declared
with var inside that function, are local to the function. They
may be used anywhere inside that function, even before the
declaration. This is different from block scope.

 • If a value is assigned to a new variable without declaring
the variable with let, var or const, that variable has global
scope: It can be used anywhere in the program.

 • This can only be done in non-strict mode (sometimes
called “sloppy mode”).

JavaScript: The Bare Minimum    ◾    19

 • If a variable has been declared with var but not assigned a
value, it has the special value undefined.

2.6 OPERATORS
Here are the most common operators on numbers:

+ add

- subtract or unary minus

* multiply

/ divide, giving a floating-point result

% remainder (modulus)

** exponentiation

Common operators on booleans:

&& and

|| or

! not

Comparison operators, giving a boolean result:

< less than

<= less than or equal to

== equal to

=== strictly equal to (equal and same type)

!= not equal to

!== strictly unequal (different types or values)

>= greater than or equal to

> greater than

20    ◾    Quick JavaScript

Caution: When comparing values of different types,
JavaScript attempts to convert them to numbers. Despite the
fact that undefined is converted to NaN and null is con-
verted to 0, nevertheless undefined==null is true. Don’t
compare values if one or both of them could be null or
undefined; check first using ===, which is always safe.

Caution: As in almost all languages, it is unwise to com-
pare two floating point numbers for equality. For example,
11*(100/11) is not equal to 100, as these differ in the
14th decimal place. One potential workaround is to use the
method .toFixed(n), which will return a string with n dig-
its after the decimal point, then do string comparisons.

String concatenation:

+ concatenate (join together) two strings, or a string and any
other value.

The arithmetic comparison operators can also be used on strings,
giving lexicographic ordering. All capital letters precede all low-
ercase letters, thus "Cat" < "cat".

Assignment:

= assignment operator—can be used as an expression; the value
of the expression is the value that is assigned.

JavaScript also has the + and - unary operators. The + operator,
when applied to a non-numeric value (such as a string), attempts
to convert that value into a number, returning NaN (“not a num-
ber”) if it cannot.

?: The ternary operator: In the expression test ? valueIfTrue:
valueIfFalse, the test determines which of the two succeed-
ing values is used.

JavaScript: The Bare Minimum    ◾    21

If you are familiar with Java, most of the Java operators can also
be used in JavaScript, including all of the bit-manipulation opera-
tors. The bit-manipulation operators convert their operands to
integers, do the operation on integers, and convert the results
back to (floating-point) numbers.

Order of precedence is the same as in most languages: Unary plus
and minus are done first, then exponentiation, then multiplication
and division, then addition and subtraction, then assignment.

2.7 EQUALITY AND IDENTITY
The == and != comparison operators try to convert their operands
to the same type. The results may be surprising. For example, 123,
"123", [123], and even ["123"] are all considered equal when using
==.

The “strict” tests === and !== will regard values as unequal if
they are of different types. Unless you want the automatic conver-
sion, these operators should be preferred.

For objects (arrays, sets, etc.), the “equality” operators are actually
tests of identity. That is, an object is “equal” only to itself, not to
any other object. The comparison [1] == [1] is false because two
arrays are created, then compared.

Assignment of objects does not create new objects. After the
sequence a = [1]; b = a;, the test a == b will return true. This
is because a and b are now references to the same object. Changes
made to the object from either a or b will be visible to the other
variable.

JavaScript has no built-in equality testing for objects; to do this, the
objects need to be broken down into primitive components. This
requires significant amounts of code. The sites underscorejs.com
and lodash.com both provide large, well-tested libraries for this
and other purposes.

22    ◾    Quick JavaScript

2.8 CONVERSIONS
JavaScript performs most conversions (also called coercions)
automatically. Here are some that might require some care.

Any arithmetic performed on primitives will cause them to be
converted to numbers. Strings of digits will be converted in the
obvious way. Boolean true will be converted to 1, null and false to
0, and undefined to NaN.

Exception: The binary + operator is both addition and
string concatenation, but concatenation has priority; 2 +
"2" is "22". The unary operator + will attempt to convert
its operand to a number, so 2 + +"2" is 4.

Any value in a boolean context (such as the condition of an if
statement) will be treated as false if it is 0, undefined, null, NaN,
or the empty string. All other values, including "0", are consid-
ered to be true.

When an array is converted to a string, the result is a string of comma-
separated values; the brackets are omitted. Thus, a multidimensional
array can readily be mistaken for a one-dimensional array.

2.9 STATEMENTS
Many statements in JavaScript are almost identical to those in
Java. For the convenience of Java programmers, these statements
are described separately from statements unique to JavaScript.

2.9.1 Semicolons

Every JavaScript statement should end with a semicolon. If you
are used to programming in Java or one of the C languages, con-
tinue using semicolons the way you are used to.

Although each statement should be terminated by a semicolon,
JavaScript uses a tool called ASI (Automatic Semicolon Insertion),

JavaScript: The Bare Minimum    ◾    23

which will, up to a point, put semicolons at the ends of lines where
appropriate. If you miss a few semicolons it’s probably okay, but
it’s unwise to depend on ASI to do this for you.

When a group of statements is enclosed in braces, {}, this forms a
compound statement (or block). A semicolon is not needed after
the closing brace.

If a statement needs to extend over two lines, separate it in a place
where the first line cannot be understood as a complete statement.
Good places to break a statement are after an operator or inside a
parenthesized expression.

If a line begins with an opening parenthesis, opening bracket, or
arithmetic operator, it will be taken as a continuation of the pre-
vious line. If this is not your intent, end the previous line with a
semicolon.

Semicolons are required to separate two or more statements on
the same line.

2.9.2 Declarations

Variables in JavaScript may hold any type of value, so their type is
not a part of their declaration.

 • let x;

 • var y = 5; // old style - avoid

 • let z = 26;

 • let a = 5, b = 10, c;

It is an error to declare a variable more than once (except with
var).

24    ◾    Quick JavaScript

2.9.3 Function Definitions

A function is a block of code that can be invoked (called). The
most common way of declaring a function is with this syntax:

function name (args) {
 statements
}

Functions in HTML should normally be defined in the <head>
element to ensure that they will be defined before they are needed.
Functions may be recursive. Functions may be nested within
other functions.

Example definition:

 function average(x, y) {
 let sum = x + y; // x, y, and sum are local
 return sum / 2;
 }

Example call:

 let avg = average(5, 10); // 7.5

Any variables declared within the function body are local to the
function. The parameters are also local to the function.

Functions may access variables in the environment in which the
function occurs (unless there is a local variable with the same
name). All functions may access global variables. Functions
declared within another function may access the variables avail-
able at the point of declaration.

Function definitions are hoisted. This simply means that all func-
tion definitions are processed before any other code is executed so
that they need not lexically occur before calls to them can be made.

JavaScript: The Bare Minimum    ◾    25

2.9.4 Familiar Statements

Many of the statements in JavaScript are identical to those in Java
and C++. If you are experienced in one of those languages, feel free
to skip ahead to Section 2.9.5, JavaScript-Specific Statements.

Note 1: While the traditional for statement is the same, its
initialization part will, of course, use let rather than the
type of the control variable.

Note 2: The switch statement allows each case to specify an
expression, not just a constant value.

Here is a list of statements that are the same:

 • variable = expression;

 • expression;

 • { statements }

 • if (condition) {
 statements
}

 • if (condition) {
 statements
} else {
 statements
}

 • while (condition) {
 statements
}

 • for (initialization; condition; update) {
 statements
}

 • do {
 statements
} while (condition)

26    ◾    Quick JavaScript

 • switch (expression) {
 case expression:
 statements;
 break;
 case expression:
 statements;
 break;
 …
 default:
 statements;
}

 • label: statement;

 • break;

 • break label;

 • continue;

 • continue label;

 • return value;

 • return;

 • ; // empty statement

2.9.4.1 Assignment Statements
An assignment statement gives a value to a variable. For example,

 x = 5;

gives x the value 5.

The value of a variable may be changed. For example, the assign-
ment statement

 x = "abc";

will give x the new value "abc".

For each arithmetic operator op, the expression

variable op= expression;

JavaScript: The Bare Minimum    ◾    27

is shorthand for

variable = variable op expression;

For example, x += 1; adds 1 to x.

2.9.4.2 Expressions
Any expression can be used as a statement; the value of the expres-
sion, if any, is discarded.

Expressions are allowed to act as statements because they can have
side effects. For example, if a is an array, a.sort() sorts the array.

Expressions that return a result but do not have side effects can
be used as statements, but they don’t do anything. For example,
using 2+2 as a statement is legal but useless.

This can lead to errors. If str is the string "Hello", the expression
str.toUpperCase() returns the string "HELLO", and this can be
assigned to a variable, but using str.toUpperCase() as a state-
ment does nothing.

2.9.4.3 Compound Statements
A compound statement, or block, is some number (possibly zero)
of declarations and statements, enclosed in braces, {}. A com-
pound statement is itself considered to be a statement.

Control statements, such as if statements and loops, control the
execution of a single statement. If you want to control more than
just one statement, you must enclose those statements in braces to
make them into a (single) compound statement.

The body of a function or method must always be a compound
statement. (Exception: “arrow” functions, to be discussed later.)

Good style dictates that statements within a block be indented rel-
ative to the start of the block. The usual indentation for JavaScript
is two spaces.

28    ◾    Quick JavaScript

2.9.4.4 If Statements
An if statement tests a condition. If the condition is true, the fol-
lowing statement (typically, a compound statement) is executed.
If the condition is not true, the if statement does nothing. The
syntax is:

if (condition) {
 statements
}

For example, the following if statement resets x to zero if it has
become negative.

 if (x < 0) {
 x = 0;
 }

An if statement may also have an else clause. If the condition
is true, the statement following the condition is executed. If the
condition is not true, the statement following the word else is
executed. Both statements are typically compound statements. The
syntax is:

if (condition) {
 some statements
}
else {
 some other statements
}

For example,

 if (x % 2 == 0) {
 x = x / 2;
 }
 else {
 x = 3 * x + 1;
 }

JavaScript: The Bare Minimum    ◾    29

If either part contains only a single (non-compound) statement,
the braces may be omitted. In this case, it is good style to put the
single statement on the same line as the if or the else.

 if (x % 2 == 0) x = x / 2;
 else x = 3 * x + 1;

2.9.4.5 While Loops
A while loop is a loop with the test at the top. The syntax is:

while (condition) {
 statements
}

First, the condition is tested; if it is false, nothing more is done,
and the loop exits without ever executing the statements. If the
condition is true, the statements are executed, then the entire
loop (starting with the test) is executed again.

For example, the approximate common log (that is, log base ten)
of a number x can be computed by:

 let log = 0;
 while (x > 1) {
 x = x / 10;
 log = log + 1;
 }

The braces indicate a block of statements. If there is only one
statement, the braces may be omitted; however, it is good style to
always include the braces.

Normally, the statements controlled by the loop must affect the
condition being tested. In the above example, x is compared to 1,
and the controlled statements change the value of x. If the con-
trolled statements never make the condition false, then the loop
never exits, and the program “hangs” (stops responding). This is
a kind of error commonly, if inaccurately, called an infinite loop.

30    ◾    Quick JavaScript

Two additional statement types, break and continue, can also
control the behavior of while loops. These statements can be used
with statement labels.

2.9.4.6 Do-While Loops
A do-while loop is a loop with the test at the bottom, rather than
the more usual test at the top. The syntax is:

do {
 statements
} while (condition);

First, the statements are executed, then the condition is tested;
if it is true, then the entire loop is executed again. The loop exits
when the condition gives a false result.

This kind of loop is most often used when the test doesn’t make
any sense until the loop body has been executed at least once. For
most purposes, the while loop is preferable.

For example, suppose you want to choose a random number
between 0 and 1000 that is divisible by 7. You cannot test the
number until after you have chosen it, so do-while is appropriate.

 let x;
 do {
 x = Math.round(1000 * Math.random());
 } while (x % 7 != 0);

As with a while loop, an infinite loop will result if the exit condi-
tion is never satisfied.

The do-while loop is a little harder to think about than a while
loop. Since we want a number that is divisible by 7, the loop has to
test that the number is not divisible by 7.

Unlike other kinds of control statements, the braces in a do-while
are required, even if only a single statement is in the loop.

JavaScript: The Bare Minimum    ◾    31

The following code does not work:

 do {
 let x = Math.round(1000 * Math.random());
 } while (x % 7 != 0); // error

Variables declared within a block are local to that block. If the
variable x is declared within the braces of the do-while loop, it
cannot be used in the condition, which lies outside of the block.

Two additional statement types, break and continue, can also
control the behavior of do-while loops. These statements can be
used with statement labels.

2.9.4.7 Traditional For Loops
A for loop is a loop with the test at the top. The syntax is:

for (initialization; condition; update) {
 statements
}

The initialization is performed first, and only once. After that,
the condition is tested and, if true, the statements are executed
and the update is performed; then control returns to the condi-
tion. In other words, the for loop behaves almost exactly like the
following while loop:

initialization;
while (condition) {
 statements;
 update;
}

The initialization may have one of the following forms:

 • Assignment to a variable, for example, i = 0 or let i = 0.

 • Assignment to more than one variable, separated by commas,
for example let i = 0, j = 0; (this form is rarely used).

32    ◾    Quick JavaScript

The word let, if used, must precede the first variable in the
initialization.

The update is one of:

 • An expression, typically an assignment statement such as
i += 1. (An assignment statement is a kind of expression.)

 • A comma-separated list of expressions, such as i += 1,
j += 2.

The braces indicate a block of statements. If there is only one
statement, the braces may be omitted; however, it is good style to
always include the braces.

As an example, an array can be declared and its contents written
out by:

 let ary = [3, 1, 4, 1, 6];
 for (let i = 0; i < ary.length; i += 1) {
 console.log(ary[i]);
 }

Two additional statement types, break and continue, can also
control the behavior of for loops. These statements, which will be
described shortly, can be used with statement labels.

2.9.4.8 Scope in Loops
Consider:

for (let variable = value; condition; update) { statements }

The scope of variable is the entire for statement; it is not acces-
sible outside this statement. If the keyword let is omitted, vari-
able must have been declared previously; if let is replaced with
var, variable is global.

JavaScript: The Bare Minimum    ◾    33

When the loop body is a single statement, the braces are recom-
mended but not required. In this case, it is good style to write the
entire loop on a single line.

for (let variable = value; condition; update) statement;

The “block scope” of variable is the entire for statement, just as if
the braces were present.

2.9.4.9 Switch Statements
Just as the if statement provides a choice between two blocks of
code, based on a boolean value, the switch statement provides a
choice between several blocks of code, based on a value of any
type.

The syntax is fairly complex:

switch (expression) {
 case expression:
 statements;
 break;
 case expression:
 statements;
 break;
 …
 case expression:
 statements;
 break;
 default:
 statements;
 break;
}

Operation is as follows. The switch expression is evaluated, and
then compared against each case expression in order. When a
case expression is found that is strictly equal to the switch
expression, execution begins with the following statements and

34    ◾    Quick JavaScript

continues until either a break or a return is encountered, or until
the end of the entire switch statement.

Note: The === operator is used for the equality test. This will
return a true result only if the two values are the same type as
well as the same value.

The break statement is not required at the end of each case; if it is
omitted, control will flow into the next group of statements. This
is seldom what you want to happen. On the rare occasion that this
is the desired behavior, it is best to include a comment that the
omission is intentional, otherwise you or someone else may “cor-
rect” this apparent problem at some later date.

One case expression: may be followed immediately by another
case expression: with no intervening statements (or break). If
either expression matches the switch expression, the following
statements will be executed.

The default case is optional and usually should come last. If no
matching expression is found, the statements in the default case
are executed. If no matching expression is found and there is no
default case, the switch statement exits without doing anything.

It is good style to always include a default case, even if you believe
that all possibilities have been covered.

The statements may be any sequence of zero or more statements.
It is not necessary to use braces to group the statements (includ-
ing the following break statement) into a compound statement,
although this is sometimes done.

Here is a contrived example:

 let v = 123.0;
 let kind;

JavaScript: The Bare Minimum    ◾    35

 switch (v) {
 case 120 + 3:
 kind = "number";
 break;
 case "123":
 kind = "string";
 break;
 default:
 kind = "other";
 }
 console.log(v, "is a", kind);

This will result in the output 123 is a number, since the strict
equality test makes no distinction between integers and floating
point numbers; they are both of type number.

2.9.4.10 Labeled Statements
The syntax of a labeled statement is

identifier: statement;

Any statement may be labeled with an identifier, but it really only
makes sense to label loop statements and switch statements. Labels
are used in conjunction with the break and continue statements.

2.9.4.11 Break Statements
A break statement consists of the keyword break optionally fol-
lowed by a statement label.

A break statement can only be used within a loop or a switch
statement.

Execution of the break causes the enclosing loop or switch state-
ment to exit. If the break statement is within nested loops and/or
switch statements and does not have a label, only the immediately
enclosing loop or switch statement is exited.

36    ◾    Quick JavaScript

Execution of a break statement with a label causes the enclosing loop
or switch statement with that label to exit, regardless of nesting level.

Given an array of numbers, consider the problem of finding two
numbers such that one is exactly ten times the other. The follow-
ing code solves this problem.

 let ary = [7, 30, 9, 20, 3, 5];
 let i, j;
 id: for (i = 0; i < ary.length; i += 1) {
 for (j = 0; j < ary.length; j += 1) {
 if (ary[i] == 10 * ary[j] && ary[i] != 0) {
 break id;
 }
 }
 }
 console.log(ary[i] + ", " + ary[j]);

Some programmers dislike the break statement, and indeed,
there is usually a better way to solve a problem without using it.

2.9.4.12 Continue Statements
A continue statement consists of the keyword continue option-
ally followed by a statement label.

A continue statement can only be used within a loop. This is
unlike a break statement, which can also be used within a switch
statement.

Execution of the continue causes the enclosing loop to return to the
test, or in the case of a traditional for loop, to the increment and then
the test. Depending on the result, the loop may then continue or exit.

If the continue statement is within nested loops and does not
have a label, control returns to the innermost loop. If it does have
a label, control returns to the indicated loop.

JavaScript: The Bare Minimum    ◾    37

The following code computes the sum of the values in the array,
excluding strings.

 let ary = [3, true, 4, false, 10, "hello"];
 let sum = 0;
 for (let i = 0; i < ary.length; i += 1) {
 if (typeof(ary[i]) == "string") continue;
 sum = sum + ary[i];
 }

This code sets sum to 18, not 17, because true is counted as 1 and
false is counted as 0.

While there is nothing actually wrong with the continue state-
ment, refactoring the code to remove it almost always results in a
simpler and more understandable program.

2.9.4.13 Return Statements
When a function is called, it typically executes some code and
then returns some value to the calling location.

A function can return in one of four ways:

 • It can reach the end of the function body and return the spe-
cial value undefined;

 • It can execute a return statement that has no following
expression and return the special value undefined;

 • It can execute a return statement with an expression, evalu-
ate that expression, and return the result as the value of the
function; or

 • It can throw an exception, in which case the value is
irrelevant.

38    ◾    Quick JavaScript

The syntax of the return statement is either simply

 return;

or

 return expression;

Functions that are called for their side effects rather than for their
value are sometimes called procedures.

2.9.4.14 Empty Statements
Although of very limited use, JavaScript does allow the use of an
empty statement consisting of a semicolon by itself. The following
statements are equivalent:

 for (n = 1; n < 1000; n = 2 * n) {}

and

 for (n = 1; n < 1000; n = 2 * n);

Either statement results in n being set to 1024.

2.9.5 JavaScript-Specific Statements
2.9.5.1 For/of
The for/of loop can be used for arrays, sets, maps, and strings. It
has the syntax

for (let element of object) {
 statement;
}

 • For arrays, the elements are the values in the array.

 • For sets, the elements are the elements of the set.

 • For maps, each element is an array of [key, value] arrays.

 • For strings, the elements are the individual characters in the
string.

JavaScript: The Bare Minimum    ◾    39

The for/of loop can only be used to loop over iterable objects.
User-defined objects are not iterable unless code is added to make
them iterable.

2.9.5.2 For/in
The for/in loop can be used for user-defined objects, arrays, and
strings. It has the syntax:

for (let element in object) {
 statement;
}

 • For objects, the elements are the (enumerable) prop-
erty names; the value of a property can be accessed with
object[element].

 • For arrays, the elements are the indices, along with any
properties that may have been assigned to the array; the
value can be accessed with object[element].

 • The for/in loop treats arrays like any other object. It is
much slower than a for/of loop.

 • For strings, the elements are the indices; the individual
characters can be accessed with object[element].

An object may have non-enumerable, “hidden” properties, and a
sparse array may have “missing” elements. These are skipped over
by the for/in loop.

2.9.5.3 Throw
The programmer can use the throw statement to deliberately
cause an exception. There is no “Exception” type—any type of
value may be “thrown.”

Note: JavaScript makes no distinction between “errors” and
“exceptions.”

40    ◾    Quick JavaScript

The throw statement “throws” the exception to somewhere else,
so as not to clutter up the normal execution of the program with
code to handle (hopefully rare) exceptional conditions. The pur-
pose of the try/catch statement (described in Section 2.9.5.4) is to
catch a thrown exception.

The throw statement has the syntax:

throw expression;

where expression can be any type, but is typically an error num-
ber, an error message, or (as is the case with predefined excep-
tions), an object with name and message properties.

What happens to the thrown exception?

 • If an exception occurs in the try portion of a try-catch-
finally statement, the catch part handles the exception.

 • Otherwise, if an exception occurs in a function, the func-
tion will return immediately to the point at which the func-
tion was called. Execution continues as if the exception
was thrown at that point (which may involve returning up
another level in a nest of function calls).

 • Otherwise, if an exception occurs in top-level code, or hasn’t
been handled by the time the exception reaches the top level,
it is up to the system to do something about it. In an IDE, the
exception will be reported to the programmer. In a browser,
the exception will probably be ignored.

2.9.5.4 Try-catch-finally
The try-catch-finally statement is used to separate error handling
code from code that handles the “normal” case. This statement
works exactly like the corresponding statement in Java, but with
two minor syntactic differences.

JavaScript: The Bare Minimum    ◾    41

 • The try-catch-finally statement can have only one catch
clause.

 • The (variable) after the word catch does not have a declared
type, and may be omitted.

In more detail, here is the syntax:

try {
 statements
}
catch (variable) {
 statements
}
finally {
 statements
}

Either the catch part or the finally part, but not both, may be
omitted.

Execution is as follows:

 1. The code in the try block is executed.

 • If no exception occurs, the catch block is skipped.

 • If an exception occurs, control goes immediately to the
catch part. The optional variable holds a value supplied
by the exception; it is a local variable of the catch part.

 2. Whether or not an exception occurred, the finally part is
executed.

For example, the following code will put up an alert box contain-
ing the words “I am an exception”:

 try {
 throw "I am an exception";

42    ◾    Quick JavaScript

 }
 catch (v) {
 alert(v);
 }

Many things that would throw an exception in other languages
do not throw an exception in JavaScript. In particular, arithmetic
expressions never throw an exception.

A minor complexity arises because JavaScript guarantees that the
finally part, if present, will always be executed. If the code in the
try or catch part tries to execute a return, break, or continue
statement, control will pass immediately to finally part, and the
return, break, or continue statement will be postponed until
after the finally part has finished.

It is also possible for an exception to occur in either the catch or
the finally parts of a try-catch-finally statement. The new
exception will replace the one being handled and will be treated as
a new exception.

2.9.5.5 The with Statement
The with statement is not allowed in strict mode, but you may see
it in older code.

with object {
 statements
}

This uses the object as the default prefix for variables; that is, any
variable var within the statements is treated as object.var, wher-
ever this makes sense.

2.10 EXAMPLE: PRIME NUMBERS
Here is a simple program to print all the prime numbers from 2 to
100, properly embedded in an HTML page. This can be saved in a
file with the .html extension and viewed in a browser.

JavaScript: The Bare Minimum    ◾    43

 <!DOCTYPE html>
 <html>
 <title>Using JavaScript</title>
 <head>
 <script>
 function isPrime(n) {
 let divisor = 2;
 while (divisor * divisor <= n) {
 if (n % divisor == 0) {
 return false;
 }
 divisor += 1;
 }
 return true;
 }
 </script>
 </head>

 <body>
 Here are some prime numbers:
 <script>
 for (let n = 2; n <= 100; n = n + 1) {
 if (isPrime(n)) {
 console(n);
 }
 }
 </script>
 </body>
 </html>

There is a problem with the above code; if called with 1, the
isPrime function returns true, indicating that 1 is a prime num-
ber (it is not). Correcting this is left as an exercise for the reader.

2.11 TESTING
2.11.1 The Mocha Test Framework

Thorough testing results in better code and a good testing frame-
work can make testing relatively painless. Together, Mocha and

44    ◾    Quick JavaScript

Chai provide a useful testing framework for JavaScript. Here we
present a very brief introduction for using these tools in testing
code on an HTML page.

In the <head> section, use the following to load Mocha:

<script src="https://cdnjs.cloudflare.com/ajax/libs/
mocha/8.0.1/mocha.js"></script>

The following line isn’t absolutely necessary, but will provide
much neater output:

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/
ajax/libs/mocha/8.0.1/mocha.css">

The following is one simple way to initialize Mocha:

 <script> mocha.setup('bdd'); </script>

Use the following to load Chai:

<script src="https://cdnjs.cloudflare.com/ajax/libs/
chai/4.2.0/chai.js"></script>

The above URLs are long and don’t fit on a single line in this book,
but you should write them in a single line in your code. Also, these
are current versions of Mocha and Chai as I write this, but you
may wish to use more recent versions.

We’ll talk about the actual tests in the next section. The tests can
be put anywhere on the page, or they can be on a separate .js file.
We will use the latter approach.

There are two things to put in the body. First, you need the follow-
ing line to specify where on the page to put the test results:

<div id="mocha"></div>

https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com

JavaScript: The Bare Minimum    ◾    45

The final step, which should be at or near the bottom of the HTML
body, is code to run the tests:

<script> mocha.run(); </script>

2.11.2 Testing with Chai

Very roughly, Mocha is the testing framework, while Chai provides
the actual tests. If you are familiar with testing styles, Chai supports
the assert, should, and expect styles. We will use the assert style.

A test looks like this:

describe(title, function() {
 it("English_description_of_what_it_does", function() {
 // tests go here
 });
});

Here are a few of the most useful tests in the chai object. They
should be relatively self-explanatory.

 • assert(expression)

 • assert.isTrue(expression)

 • Same as assert(expression)

 • assert.isFalse(expression)

 • assert.equal(actual, expected)

 • Usually the actual is a function call, and the expected is
what the function should return.

 • assert.notEqual(actual, expected)

 • assert.strictEqual(actual, expected)

 • assert.notStrictEqual(actual, expected)

 • assert.approximately(actual, expected, delta)

46    ◾    Quick JavaScript

 • The delta is how close two numbers should be, for exam-
ple, 0.001.

 • assert.deepEqual(actual, expected)

 • Checks the contents of objects, not just identity

All of the above may take a message as an additional parameter.
This is useful only if there is helpful information to provide.

2.11.3 Testing Example

We previously showed an example JavaScript function to test
whether a number is prime. We repeat that example here. For
brevity, the code used to print results has been removed. HTML
comments, using the <!-- comment --> syntax, are used to point
out the relevant portions.

 <!DOCTYPE html>
 <html>
 <head>
 <t itle>Testing primes with Mocha and Chai</title>

 <! -- Load Mocha, Chai, and some CSS formatting -->
 <l ink rel="stylesheet" href="https://cdnjs.

cloudflare.com/ajax/libs/mocha/8.0.1/mocha.css">
 <s cript src="https://cdnjs.cloudflare.com/ajax/

libs/mocha/8.0.1/mocha.js">
</script>

 <script>mocha.setup('bdd');</script>
 <s cript src="https://cdnjs.cloudflare.com/ajax/

libs/chai/4.2.0/chai.js">
</script>

 <!-- The function to be tested -->
 <script>
 function isPrime(n) {
 let divisor = 2;
 while (divisor <= n / divisor) {

https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com

JavaScript: The Bare Minimum    ◾    47

 if (n % divisor == 0) {
 return false;
 }
 divisor += 1;
 }
 return true;
 }
 </script>

 <! -- The test code; here we load it from a file

-->
 <script
 src='isPrimeMochaTest.js'>
 </script>

 </head>
 <body>
 This text goes before the results.

 <! -- The test results will be displayed here -->
 <div id="mocha"></div>

 This text goes after the results.

 <! -- Run the tests and put the result in the

"mocha" div -->
 <script>
 mocha.run();
 </script>

 </body>
 </html>

The test code can be put directly in the HTML page or loaded
from a file. In the above, the test code is on a file named isPrime-
MochaTest.js. The contents of that file are as follows:

 describe("isPrime", function() {
 let assert = chai.assert;

48    ◾    Quick JavaScript

 it ("Tests if n is a prime number", function() {
 assert(isPrime(2));
 assert.isTrue(isPrime(3));
 let x = 4;
 assert.isFalse(isPrime(x));
 assert.equal(isPrime(5), true);
 });
 });

(Remember that <script> tags are not used in a .js file.). For the
sake of example, several of the possible assert tests are used, and
an extra let statement is thrown in to demonstrate that ordinary
JavaScript code, not just assertions, can be included.

If all goes well, two results are expected. In the top right corner of
the HTML page (put there by the CSS file) should be something
like

passes: 1 failures: 0 duration: 0.00s 100%

and at the location of the “mocha” div you should see

 isPrime
 √ Tests if n is a prime number

49DOI: 10.1201/9781003359609-3

JavaScript is a large, complex, and constantly evolving language.
The preceding sections have been a whirlwind tour of its main
features. What is missing, however, is anything about making
interactive web pages—and that, after all, is the main reason to
use JavaScript.

If you are eager to get to client-side JavaScript programming, you
should now know enough to jump ahead to Chapter 4. If you pre-
fer to deepen your knowledge of JavaScript, continue reading.

3.1 STRICT MODE
No language is perfect. JavaScript allows some things that, in ret-
rospect, should not have been allowed. JavaScript now has a strict
mode to disallow those features and to modify others. To turn
strict mode on globally, put the string

"use strict";

as the first thing in a script; to turn strict mode on for just one
function, put that string as the first line inside the function.

C H A P T E R 3

JavaScript
In More Detail

http://dx.doi.org/10.1201/9781003359609-3

50    ◾    Quick JavaScript

Turning on strict mode makes the following things illegal:

 • Assigning to a variable that has not been declared with var,
let, or const.

 • The with statement.

 • Defining a function within a conditional or a loop statement.

 • Using eval to create variables.

 • Using delete to delete a variable, object, function, or an
undeletable property (such as prototype).

 • Modifying a read-only or get-only property.

 • Using eval, with, or any of the reserved keywords as vari-
able names.

 • Writing a number with a leading 0 to make it octal, for
example, 077.

 • Octal escape sequences (other than "\0" to represent the
NUL character, which is still allowed).

 • Duplicate parameter names in a function, for instance,
function foo(a, a).

 • Accessing the caller, callee, and arguments properties of
functions.

In strict mode, the keyword this inside a function refers to the
object that called the function.

Caution: Turning on strict mode within a function makes
it illegal for that function to have default parameters, a rest
parameter, or parameter destructuring.

3.2 IDENTIFIERS
Identifiers consist of letters (as defined by Unicode), digits,
underscores, and/or dollar signs; the first character may not be

JavaScript: In More Detail    ◾    51

a digit. By convention, the names of variables, properties, func-
tions, and methods should begin with a lowercase letter; names
of constructors should begin with a capital letter. Names may be
any length.

Case is significant in JavaScript but not in HTML. Since JavaScript
names are frequently used in HTML, this can lead to some strange
errors if you are not careful about case.

As in most other languages, you cannot use a reserved word as an
identifier.

3.3 DESTRUCTURING
Destructuring is a way to assign the parts of an object or array
into several different variables.

As an example, we use the following object:

 let p = { givenName: "Sally",
 familyName: "Willis",
 occupation: "doctor" };

We may wish to assign the parts of this object into separate vari-
ables, as

 let givenName = p.givenName;
 let familyName = p.familyName;
 let occupation = p.occupation;

Destructuring is a shorter way to do exactly the same thing:

 let {givenName, familyName, occupation} = p;

Property names need not be given in order, and not every
name has to be mentioned. Property names that are not actu-
ally part of the object may be given; they will receive the value
undefined.

52    ◾    Quick JavaScript

To work with a similar object of the same type, say p2, you cannot
use let again because variables may only be declared once.

 let {givenName, familyName, occupation} = p2;
 // SyntaxError: Identifier 'givenName' has
 // already been declared

Neither can you simply omit the word let because starting with
an open brace, {, indicates a block.

 {givenName, familyName, occupation} = p2;
 // SyntaxError: Unexpected token '='

The solution is to enclose the entire statement, up the semicolon,
in parentheses.

 ({givenName, familyName, occupation} = p2);

An object may be destructured into different variable names.

 let {familyName: name, occupation: occ} = p;
 // name = "Willis", occ = "doctor"

Default values may be given, in case the object lacks the given
properties.

 ({givenName: name, country = "USA"} = p);
 // name = "Sally", country = "USA"

Renaming and giving default values may be combined.

 ({givenName: name="Joe", age=40} = p);
 // name = "Sally", age = 40

When a function is called, values are assigned to its parameters,
and these act like assignment statements; therefore, destructuring
may also be used in the parameter list.

 function f({familyName, occupation: occ,
 age=40, gender: g="male"}) {

JavaScript: In More Detail    ◾    53

 // When called with f(p), familyName =
 // "Willis", occ = "doctor", age = 40,
 // and g = "male"
 }

Destructuring may also be used with arrays. Commas are used to
indicate array elements that are skipped over.

 let a = [11, 22, 33, 44];
 let [, x, , y] = a;
 // x = 22, y = 44

3.4 DATA TYPES
3.4.1 Numbers

A number may be written as an integer or as a real number.
However written, numbers (other than bigints) are stored as
double precision floating point numbers and follow the IEEE
Standard for Floating-Point Arithmetic (IEEE 754).

To improve readability, numbers may include underscores, for
example, one million may be written as 1_000_000.

Caution: The methods to convert strings to numbers
(Number, parseInt, and parseFloat) cannot yet recognize
underscores in numbers.

There are some special predefined “numbers”:

 • NaN (“Not a Number”) is the result of expressions such as 0/0
and "one"/"two".

 • You can write this as Number.NaN, or just NaN.

 • Despite the name, NaN is a number, and typeof(NaN) will
return "number".

 • Arithmetic involving NaN results in NaN.

54    ◾    Quick JavaScript

 • Infinity is the result of expressions such as 1/0.

 • -Infinity is the result of expressions such as -1/0.

 • isFinite(x) will return false for -Infinity, Infinity,
and NaN.

 • Number.MIN_VALUE is the smallest number that can be repre-
sented, approximately 5e-324.

 • Number.EPSILON is approximately 2.220446049250313e-16.
It is the smallest number that, when added to one, gives a
result different from one.

 • Number.MAX_VALUE is the largest number that can be repre-
sented, approximately 1.7976931348623157e+308.

 • Number.MAX_SAFE_INTEGER is 9007199254740991 ; it is the
largest integer that can be uniquely represented as a double
precision floating point number.

 • Number.MIN_SAFE_INTEGER is -9007199254740991.

All of the above are considered to be numbers. No arithmetic
expression will ever cause an exception.

Caution: The function isNaN(value) returns true if value
is NaN, but it also returns true for any value that cannot be
converted to a number. To test if the value of variable v really
is NaN, use the test v != v. This works because NaN is the only
value that is not equal to itself.

Some additional methods are Number.isInteger(n), Number.
isSafeInteger(n), and Number.isFinite(n).

A bigint is an integer written with an n suffix, for example, 123n.
Bigints can have an arbitrary number of digits. All the usual
numeric operations are available on bigints, except for unary plus:
+123n is illegal.

JavaScript: In More Detail    ◾    55

Bigints and (ordinary) numbers cannot be mixed in an arithmetic
expression, but bigints and numbers can be compared (using <,
<=, etc.). To convert between the two types, use BigInt(number)
and Number(bigint).

A hexadecimal literal begins with 0x or 0X. An octal literal
begins with 0o or 0O.

In strict mode, it is illegal to write a number with a leading zero
(e.g. 0123), except for zero itself. In nonstrict mode, some imple-
mentations will treat such numbers as octal and others will treat
them as decimal.

3.4.2 Strings

A string is a sequence of zero or more UTF-16 characters enclosed
in either single quotes ('hello'), double quotes ("hello"), or back-
ticks (`hellò). UTF-32 is not supported.

Quote marks of one type may be used within a string enclosed by a
different type of quote mark, for example, "Don't go.". Quote marks
of the same type as the enclosing type must be escaped (see below).

Strings enclosed in backticks are special. They may span several
lines, and anywhere in the string that ${expression} occurs, the
expression is evaluated and becomes part of the string. Strings
like this are called template literals.

There is no “character” data type. Some characters that cannot be
written directly in a string can be “escaped,” that is, specified by a
backslash followed by a letter or hex number. Characters written
in this way still count as single characters.

Escaped characters are:

 • \0 NUL

 • \b backspace

56    ◾    Quick JavaScript

 • \f form feed

 • \n newline

 • \r carriage return

 • \t horizontal tab

 • \v vertical tab

 • \\ backslash

 • \' single quote

 • \" double quote

 • \̀ backtick

 • \xDD Unicode hex DD

 • \xDDDD Unicode hex DDDD

The length property of a string is the number of characters in it.
Escaped characters, although written with more than one charac-
ter, still count as a single character; so "abc\n".length is 4.

Strings can be indexed, so string[n] is the nth character in string.
However, strings are immutable, so you cannot assign a new value
to string[n].

The comparisons <, <=, ==, !=, ===, !==, >=, > can be used with
strings. The comparison is according to the Unicode values of the
letters, with all uppercase letters preceding (less than) all lower-
case letters.

A number of string methods are given in Appendix C.

3.4.3 Booleans

A boolean has one of two values: true or false.

JavaScript also has “truthy” and “falsy” values. When used as a
test, the following values are considered false:

JavaScript: In More Detail    ◾    57

 • 0 and 0.0

 • The empty string, "" or " or `̀

 • undefined

 • null

 • NaN

While this feature can be convenient, it makes code less readable.

Older code may use ~n as a test; it is equivalent to n != −1.

3.4.4 Symbols

A symbol can be created with or without a description:

 let sym1 = Symbol();
 let sym2 = Symbol("secret");

A symbol is a unique identifier; it cannot be confused with any
other identifier. Two symbols created with the same description
are still different from each other.

Objects have properties, and those properties can be modified or
added to. Suppose you have an object that is not one you created—
it may be a built-in object, or one from someone else’s code—and
you want to add a property to it. The property is strictly for your
own use; its existence should not affect anyone else’s code. The
solution is to use a symbol as the property name.

Alternatively, suppose you have an object, and you want to add
meta-information to the object—that is, information that is about
the object, but isn’t part of the object. Again, use a symbol as the
property name.

Here is a short map of distances from the sun for various planets:

 le t sun_dist = {"Venus": 108.2, "Earth": 149.6, "Mars":
227.9};

58    ◾    Quick JavaScript

The distances happen to be in millions of kilometers, but that may
not be obvious. Let’s add that information.

 let unit = Symbol("mkm");
 sun_dist[unit] = "millions of kilometers";

We can recover that information by asking for sun_dist[unit],
but it is not visible to most code. In particular, the for/in loop will
skip right over it.

 for (let e in sun_dist) {
 console.log(e + " = " + sun_dist[e]);
 }

will print
 Venus = 108.2
 Earth = 149.6
 Mars = 227.9

When a string is needed, for example for printing, JavaScript will
automatically convert almost anything into its string representa-
tion. It does not do this for symbols. To get a string representation
of a symbol, you have to explicitly call the toString() method.

 console.log(unit.toString());

will print
 "Symbol(mkm)"

If a symbol is defined with a description, that description is saved
in a field named description. For example,

 console.log(sym2.description);

will print
 "secret"

JavaScript: In More Detail    ◾    59

3.4.5 Arrays

Arrays in JavaScript do not have a fixed size; elements may be
added to or removed from either end of the array.

 • array.push(elems)—Returns the new length of array after
adding elems to the end.

 • array.pop()—Removes and returns the last element in
array and updates its length.

 • array.unshift(elems)—Returns the new length of array
after adding elems to the beginning of array.

 • array.shift()—Removes and returns the first element in
array and updates the array’s length.

The push and pop operations may be used to implement stacks
efficiently.

The pairs push and shift, or pop and unshift, may be used to
implement queues; all four methods together may be used to
implement deques.

Because the unshift and shift methods actually move the elements
in the array, they are much less efficient than push and pop.

Several additional array methods are described in Appendix A.

3.4.6 Sparse Arrays

In most languages, arrays are dense: an array of size n takes up n
consecutive memory locations. Arrays in JavaScript may be either
dense or sparse.

A sparse array is one in which only locations containing actual
values take up memory in the computer; all other locations appear
to contain the special value undefined. Sparse arrays occupy less
memory but take more time to process.

60    ◾    Quick JavaScript

Here are some ways to make a sparse array:

 • Use the form Array(length) to create the array.

 • Use delete array[i] to delete some existing element of array.

 • Assign a value to array[i], where i > array.length.

 • Assigning a value to array[array.length] does not force
the array to be sparse.

 • Set the length property of an array to a larger value.

 • If you set length to a smaller value, array elements at that
index and beyond are discarded.

 • Write a literal array using consecutive commas, for example,
["cat",, "dog",,,].

 • The length of this array is five (not six); the last comma is
taken as a trailing comma.

To better understand sparse arrays, it helps to remember that
undefined is an actual value in JavaScript, and as such takes up
actual space in memory. But if we ask for the value in some loca-
tion of a sparse array and get undefined, this could mean either
(1) there is nothing in that location, or (2) the location really does
contain the value undefined.

This has some practical implications. The for/in loop will loop
through all indices of an array, whether there is something at that
location or not. The for/of loop will only loop through actual val-
ues (some of which may be undefined).

The method array.hasOwnProperty(i) will return true if
array[i] contains an actual value, false if it doesn’t.

3.4.7 Sets

JavaScript does not supply the usual operations on sets (union,
intersection, difference, symmetric difference). Using the spread

JavaScript: In More Detail    ◾    61

operator (...), which turns an array into a sequence of values, these
operations can be implemented as follows.

 function union(a, b) {
 return new Set([...a, ...b]);
 }

 function intersection(a, b) {
 return new Set([...a].filter(x => b.has(x)));
 }

 function difference(a, b) {
 return new Set([...a].filter(x => !b.has(x)));
 }

 function symmetricDifference(a, b) {
 return difference(union(a, b), intersection(a, b));
 }

3.4.8 Maps

In many languages, it is undesirable to use mutable objects as
keys. This is not an issue in JavaScript, which compares keys for
identity rather than equality. No matter what changes are made to
an object used as a key, it retains its identity; a different “equal”
object cannot be used to recover the associated value.

Caution: Every object literal is a unique object. If you use an
object literal as a key, you will never be able to “recreate” that
key. You can, however, iterate over the map.

Three new methods have recently been added to Maps:

 • map.keys()—Returns an iterator for the keys of map.

 • map.values()—Returns an iterator for the values in map.

 • map.entries()—Returns an iterator for the entries of map,
where each entry is returned as a [key, value] array.

62    ◾    Quick JavaScript

The for (let var of iterator) {…} loop is the easiest way to use an
iterator.

3.4.9 WeakMaps

JavaScript uses automatic garbage collection: Space is allocated
for objects when needed, and reclaimed when those objects
become inaccessible. Objects become inaccessible when the pro-
gram no longer has any way to refer to them.

As a trivial example,

 let car = {make: "Suburu", year: 2018};
 car = {make: "Toyota", color: "white"};

After the second assignment, there is no longer any way to access
the object {make: "Suburu", year: 2018}, therefore it can be
garbage collected.

A WeakMap is like a Map—it matches keys to values. Here are the
differences:

 • The constructor is WeakMap().

 • Only objects, not primitives, can be used as keys.

 • Only the methods get(key), set(key, value), has(key), and
delete(value) are provided.

 • WeakMaps are not iterable, so you cannot use for/of with
them.

A key that is in a Map can never be garbage collected; but a key in
a WeakMap can be garbage collected (and the entry deleted from
the WeakMap) if there are no other references to it.

This last is the most important point. Objects that have only a
temporary existence can be used as keys in a WeakMap, thus allow-
ing garbage collection to do its job.

JavaScript: In More Detail    ◾    63

Garbage collection can happen at unpredictable times.
Consequently, the state of a WeakMap at any given time may be
nondeterministic. The only allowable methods on a WeakMap are
those for which this will not be an issue.

3.4.10 Promises

If you have a long-running task whose results are not needed
immediately, such as a file transfer, you may wish to start it run-
ning asynchronously while your code continues to do other
things. A promise is code that runs asynchronously and “prom-
ises” to complete a task at some later time.

The following assignment statement creates a Promise object,
saves it in promise, and starts the function executing:

let promise = new Promise(function);

Caution: Keep in mind the distinction between a function
and a function call. If we define function f(){}, then f is
the function itself, while f() is a call to that function. The
argument to the Promise constructor must be a function.

There are three ways a promise can terminate: By reporting
“success,” by reporting “failure,” or by throwing an excep-
tion. To deal with this, the function used by the promise
should have two parameters, each of which is also a function
(sometimes called a callback). The promise code should call
the first function to report success, or the second to report
failure.

It is often convenient to use arrow functions (described later) to
write the callback functions of a promise. Like this:

new Promise((onSuccess, onFailure) => {code});

In this syntax, code is the (possibly long-running) code to be
executed, onSuccess is a function to execute if code is successful,

64    ◾    Quick JavaScript

and onFailure is a function to execute if the code fails. Note espe-
cially that the arguments given to the parameters onSuccess and
onFailure must be functions; each of these functions may take
one argument, or none.

The promise’s then method supplies the functions for the promise
to use.

 • promise.then(successFunction, failureFunction)—Tells
the promise which function to call upon success or failure.

 • Calling either successFunction or failureFunction will
terminate the promise.

 • If an unhandled exception occurs, the failureFunction is
called.

The following example uses three functions: yes and no just print
their argument, while doSomething chooses a random number
and “succeeds” if the number is greater than 0.5, or throws an
exception if the number is smaller. (For simplicity, the example
uses Math.random instead of some task that might actually take a
long time.)

 function yes(r) {
 console.log("yes, " + r);
 }

 function no(e) {
 console.log("no, " + e);
 }

 function doSomething(resolve, reject) {
 let r = Math.random();
 if (r > 0.50) resolve(r); // succeed
 throw r + " is too low"; // fail
 }

JavaScript: In More Detail    ◾    65

Here we make use of those functions:

 let promise = new Promise(doSomething);
 // other work
 promise.then(yes, no);
 console.log("END");

Example results:

 "END"
 "no, 0.18252962330109224 is too low"

 "END"
 "yes, 0.938714265780423"

The result returned by then is a Promise. This allows promises to
be “chained,” so that the value returned by then can be fed into
another then. The following example will create a random num-
ber, then multiply it by 100, then add 1000, then display the result.

 let promise2 = new Promise(
 someFun => { return someFun(Math.random());
 }).then(function(result) { return 100 * result;
 }).then(function(result) { return 1000 + result;
 }).then(function(result) { console.log(result);
 });

The syntax does not allow extra arguments to be passed to a
Promise; any additional information it needs must be taken from
the environment.

3.4.11 Conversions

JavaScript performs most conversions (coercions) automati-
cally. You can also do explicit conversions with the functions
Number(x), String(x), Boolean(x), BigInt(x), parseInt(x,
base), and parseFloat(x).

66    ◾    Quick JavaScript

Caution: If you use the word new with one of the functions
Number, String, or Boolean, the result will be a “wrap-
per object,” that is, an object containing the value, not a
value of the named type. This will mostly continue to work
(except for a Boolean object, which is always “truthy”).

All objects have a toString method, which can be called as object.
toString(). It is usually a good idea to override this method for
your own objects.

The following functions convert between strings and numbers:

 • Number(string)—Converts the entire string into a number,
if possible, otherwise it returns NaN (Not a Number).

 • parseInt(string)—Converts the initial characters of string
into a number, if possible, otherwise it returns NaN. ParseInt
ignores any following characters that do not belong in an
integer, such as a decimal point.

 • parseFloat(string)—Converts the initial characters of
string into a number, if possible, otherwise it returns NaN.
parseFloat ignores any following characters that do not
belong in a number.

 • variable.toFixed(d)—Converts the number in variable to
a string with d digits after the decimal point.

 • variable.toString(base)—Converts the number in vari-
able to a string representation of that number in the given
base (2 to 36).

For both toFixed and toString, if a literal integer is used in
place of the variable, two dots are required—one as part of the
number, the second to indicate a method call (for example, 123..
toString(8) or 123.0.toString(8)).

JavaScript: In More Detail    ◾    67

Conversions can be made between plain objects, maps, and arrays
of two-element arrays.

 • array = Array.from(map);

 • array = Object.entries(object);

 • map = new Map(array);

 • map = new Map(Object.entries(object));

 • object = Object.fromEntries(map);

 • object = Object.fromEntries(array);

3.5 MATH
The Math class supplies the constants Math.E (e), Math.PI (π),
Math.LN2 (loge2), and Math.LN10 (loge10), among others.

Some of the methods supplied by the Math class are:

 • Math.abs(x) — Returns the absolute value of x.

 • Math.sign(x) — Returns the one of -1, 0, or 1 that has the
same sign as x.

 • Math.trunc(x) — Returns the integer portion of x.

 • Math.round(x) — Returns the integer nearest to x.

 • Math.floor(x) — Returns the largest integer less than or
equal to x.

 • Math.ceil(x) — Returns the smallest integer greater than
or equal to x.

 • Math.max(x1, x2, ..., xN) — Returns the largest of its
arguments.

 • Math.min(x1, x2, ..., xN) — Returns the smallest of its
arguments.

68    ◾    Quick JavaScript

 • Math.sqrt(x) — Returns the positive square root of x.

 • Math.cbrt(x) — Returns the cube root of x.

 • Math.random() — Returns a pseudo-random number r in
the range 0 <= r < 1.

The Math class also supplies the standard logarithmic and trigno-
metric functions exp, log, log10, log2, sin, cos, tan, asin, acos,
atan, as well as the hyperbolic functions sinh, cosh, tanh, asinh,
acosh, and atanh. All angles are in radians.

3.6 RESERVED WORDS
Most languages have a set of reserved words, or keywords, that
have special meaning and that cannot be used for identifiers.

JavaScript is unusual in that the set of reserved words keeps
changing. It was defined with more reserved words than were
actually used, to allow for future expansion. Subsequently some
new words were reserved, and some were unreserved. Table 3.1
should be a reasonably current list.

TABLE 3.1 JavaScript Keywords

arguments else in super
await enum instanceof switch
break eval interface this
case export let throw
catch extends new true
class false null try
const finally package typeof
continue for private var
debugger function protected void
default if public while
delete implements return with
do import static yield

JavaScript: In More Detail    ◾    69

You should avoid using the following as identifiers:

 • Words that are no longer reserved: abstract, boolean, byte,
char, double, final, float, goto, int, long, native, short,
synchronized, throws, transient, and volatile.

 • The names of JavaScript objects, properties, and methods,
such as Array.

 • The names of HTML objects and properties, such as button.

 • The names of HTML event handlers, such as onkeypress.

3.7 GOOD OPERATORS
An expression is any JavaScript code that results in a value.
Expressions may be as simple as a single constant or single
variable.

Operators with higher precedence (indicated by larger numbers)
are performed before those with lower precedence. For example,
in the expression 2 * 3 + 4 * 5, the multiplications are done
before the addition because multiplication has higher prece-
dence than addition. A number of things not often thought of as
operators, for example parentheses and array indexing, also have
precedence.

When operators have equal precedence, their associativity (“left
to right” or “right to left”) determines which operations are done
first. For example, subtraction is left associative, so 10 - 5 - 3
means (10 - 5) - 3 rather than 10 - (5 - 3). Almost all binary
operators (except exponentiation) are left associative; the assign-
ment operators are right associative, so a = b = c + 5 means
a = (b = c + 5) rather than (a = b) = c + 5.

Parentheses can be used to override the above rules and specify an
explicit order of evaluation. Parentheses are also used to show the
order of evaluation when it might not be obvious.

70    ◾    Quick JavaScript

Table 3.2 lists the most important operators. The meaning of
many of them should be obvious; the less common operators will
be explained as needed.

TABLE 3.2 JavaScript’s “Good” Operators

Operator Purpose Associativity Precedence

() Grouping n/a 21
obj . prop Property access Left 20
ary[index] Index into array Left 20
new type(args) Object creation n/a 20
fun(args) Function call Left 20
obj ?. prop Optional chaining Left 20
new type Object creation Right 19
! value Logical NOT Right 17
+ value Unary plus Right 17
- value Unary minus Right 17
typeof value Type (as string) Right 17
void value Treat as undefined Right 17
delete obj.prop Remove property Right 17
expr ** expr Exponentiation Right 16
expr * expr Multiplication Left 15
expr / expr Division Left 15
expr % expr Remainder Left 15
expr + expr Addition Left 14
expr - expr Subtraction Left 14
expr < expr Less than Left 12
expr <= expr Less or equal Left 12
expr > expr Greater than Left 12
expr >= expr Greater or equal Left 12
expr in expr Object has property Left 12
expr instanceof type Object is type Left 12
expr == expr Is equal to Left 11
expr != expr Is not equal to Left 11
expr === expr Strictly equal Left 11
expr !== expr Not strictly equal Left 11
expr && expr Logical AND Left 6

(Continued)

JavaScript: In More Detail    ◾    71

3.8 OPERATOR NOTES
The && operator means “and.” The || operator means “or.”

The logical operators && and || are short-circuit operators. That is,
if the result is known from the first (left-hand) expression, the sec-
ond (right-hand) expression is not evaluated. Because JavaScript
has “truthy” and “falsy” values, the && and || operators don’t
necessarily return either true or false, but may instead return a
truthy or falsy value.

 • expr1 && expr2—If expr1 is falsy, the result is expr1, else the
result is expr2.

 • expr1 || expr2—If expr1 is truthy, the result is expr1, else the
result is expr2.

Given a sequence of values connected with &&, the result is
either the first falsy value encountered, or the final truthy value.
Similarly, given a sequence of values connected with ||, the result
is either the first truthy value encountered, or the final falsy value.
This fact is sometimes used in a “clever” way; for example, the
expression x || 5 has the value 5 if x is zero (or some other falsy
value), otherwise it has the value of x.

The various assignment operators are operators; that is, they have
a value and may be embedded in a larger expression, for example,
y = 3 + (x += 5).

Operator Purpose Associativity Precedence

expr || expr Logical OR Left 5
test ? expr : expr If-then-else Right 4
id = expr Simple assignment Right 3
id op expr, where op is one of**=
*= /= %= += -=&&= ||= ??=

Stands for id = id op
expr

Right 3

yield expr Coroutine exit Right 2
expr , expr Multiple evaluation Left 1

TABLE 3.2 (Continued) JavaScript’s “Good” Operators

72    ◾    Quick JavaScript

The void expression operator evaluates expression but returns the
value undefined.

The nullish coalescing operator, ??, has the value of its left oper-
and if that operand is not null or undefined, otherwise it has the
value of its right operand. It behaves a lot like ||—given a sequence
of values connected with ??, the result is either the first “defined”
(neither null nor undefined) value, or the final value.

&& has a higher precedence than ||, and both have a higher prece-
dence than ??.

Note: When ?? is used in an expression with either && or
||, parentheses must be used to show the desired order of
operations.

3.9 BAD OPERATORS
In his excellent book JavaScript: The Good Parts, Douglas
Crockford made the case that there are features of JavaScript that
should not be used. We mention a number of these, with brief
explanations, in Table 3.3.

When used as a prefix, ++ adds one to its operand before using the
value of the operand in an expression. When used as a suffix, ++
uses the original value of the operand in the enclosing expression,
and adds one to the operand afterward. Similar remarks hold for
the -- operator. These operators should only be used as complete
statements, or as the increment part of a for loop; other expres-
sions are too confusing. For example, the statement x = x++ does
nothing. As complete statements, x += 1 is at least as clear as x++
and doesn’t require that many more keystrokes.

The bitwise operators (&, |, ,̂ ~, >>, >>>, <<) convert their oper-
ands to 32-bit integers—a data type that JavaScript supposedly
does not have—perform the operation, and convert back. This
works, but is slow.

JavaScript: In More Detail    ◾    73

The reader may have noticed that the comparison operators ==
and != are in both the “good” and the “bad” tables. It is fine to
use these operators with values of the same type. If the operands
of == or != are of different types, JavaScript first tries to convert
them to the same type. In most cases this works, but the rules are
complex and confusing. The operators === and !== do no type
conversion, so values of different types are unequal.

3.10 FUNCTIONS
3.10.1 Defining Functions

JavaScript provides several ways to define functions. As an exam-
ple, the function square may be defined in any of these ways:

 • function square(x) { return x * x; }

 • This is a function statement.

 • let square = new Function("x", "return x * x");

TABLE 3.3 JavaScript’s “Bad” Operators

Operator Purpose Associativity Precedence

id ++ Postfix increment n/a 18
id -- Postfix decrement n/a 18
++ id Prefix increment Right 17
-- id Prefix decrement Right 17
expr << shift Left shift zero fill Left 13
expr >> shift Right shift sign fill Left 13
expr >>> shift Right shift zero fill Left 13
expr == expr Is equal to Left 11
expr != expr Is not equal to Left 11
expo & expr Bitwise AND Left 10
expr ^ expr Bitwise exclusive OR Left 9
expr | expr Bitwise OR Left 8
id op expr,
where op is one of &= ^= |=
<<= >>= >>>=

id = id op expr Right 3

74    ◾    Quick JavaScript

 • This uses the Function() constructor. The arguments to
the function are given as strings, and the final string is the
function body.

 • let square = function(x) { return x * x; }

 • The part following the equals sign is a function literal.

 • let square = function sqr(x) { return x * x; }

 • This is a named function literal. The scope of the name
sqr is the function block, so it is available only within the
function body, where it can be used to invoke the func-
tion recursively.

 • let square = (x) => x * x;

 • This is an arrow function. If there is only one parameter,
the parentheses may be omitted. The single expression
after the arrow is the result.

 • let square = (x) => { return x * x; }

 • This is another arrow function, showing that braces may
be used, in which case the return statement is needed.

All functions have a name property.

 • If the function is created using the Function constructor,
the name is "anonymous".

 • If a name immediately follows the word function, that is the
name of the function.

 • If an unnamed function is immediately assigned to a vari-
able, that variable becomes the name of the function.

 • Otherwise, the name of the function is the empty string.

Function statements may be defined within other functions, but
they should be at the top level of the function, not within another

JavaScript: In More Detail    ◾    75

statement such as a loop or if statement. Such functions are local
to the enclosing function:

 function hypotenuse(x, y) {
 function square(x) { return x * x }
 return Math.sqrt(square(x) + square(y));
 }

Primitive values (number, string, boolean) are passed to a func-
tion by value; objects are passed by reference. What this means
is that functions receive a copy of primitive values, so there is
nothing that can be done to them that will be seen by the calling
program. For objects, functions receive a reference to the actual
object; any changes made to the interior of the object will be seen
by the calling program.

In other words, changing the value of a parameter within a func-
tion does not change the value outside the function, but chang-
ing the properties of an object passed as a parameter does change
their values outside the function.

3.10.2 Parameters and Arguments

We use the following terminology: A parameter is a variable in
the head of a function definition; an argument is an expression in
a call to that function.

JavaScript does not require that a function be called with the same
number of arguments as it has parameters. Excess arguments are
ignored, while missing arguments have the value undefined.

In a function, the special variable arguments is an array-like
object that holds all the arguments the function was called with,
regardless of how many parameters were used in the function
definition. It can be indexed like an array, or looped over with
for loops, but lacks most of the other capabilities of an array. The
arguments variable is used mostly in older code; it isn’t allowed

76    ◾    Quick JavaScript

in strict mode. Modern code is more likely to use rest parameters
(see below).

Parameters may be given default values; if the argument is miss-
ing, the default value is used. Default values have the form of
assignments, and previous parameters may be used in the expres-
sion. For example,

 function foo(a, b = 10, c = a * b) {
 return a + b + c;
 }
 console.log(foo(3)); // result is 43

Because arguments are matched to parameters by position (first
argument goes to first parameter, etc.), all parameters without
default values must precede all parameters with default values.

A rest parameter is a parameter that collects all the remaining
arguments into an array. A rest parameter is designated by preced-
ing it with three dots (...). For example, if a function is defined with

 function foo(x, y, ...z) {
 console.log(`x is ${x}`);
 console.log(`y is ${y}`);
 console.log(`z is ${z}`);
 }

and called with

 foo(1, 2, 3, 4, 5);

then the following is written to the console:

 "x is 1"
 "y is 2"
 "z is 3,4,5"

Since the ... collects all the remaining arguments, it can only be
used as the last parameter.

JavaScript: In More Detail    ◾    77

The dots can also be used in reverse, in the arguments to a
function. When placed before an array in a function call, the
values in the array are separated into individual arguments.
This is useful for functions that take an arbitrary number of
arguments.

 let ary = [2, 7, 1, 3];
 let m = Math.max(...ary);

Used in this way, the dots are called a spread. Spreads can also be
applied to sets and maps.

Spreads can be used to make shallow copies of arrays.

 let ary2 = [...ary];

3.10.3 Functions Are Data

The name of a function, not followed by an argument list, refers to
the function itself. Functions may be assigned to variables:

 function square(x) {
 return x * x;
 }

 let square2 = square;
 let result = square2(5); // 25

 let myArray = new Array();
 myArray[10] = square;
 result = myArray[10](7); // 49

Functions can be printed. The call square.toString() will return
a listing of the function, much as it appears above.

Functions may be assigned to properties. A function assigned to
a property is called a method. Within a method, this refers to the
call object, that is, to the object that holds the property.

78    ◾    Quick JavaScript

Functions may be passed as arguments to another function:

 myArray.sort(function(a,b) { return a - b });

In this example, the sort method uses the function to determine
how to compare elements of myArray.

3.10.4 Functions Are Objects

Functions are objects, and objects have properties.

The length property of a function is the number of parameters
in its definition. A rest parameter (one preceded by ...) is not
included in the count.

The name property of a function is, of course, its name. JavaScript
is quite clever at determining the name of a function. For exam-
ple, given the definition

 let square = (x) => x * x;

the function is defined as an anonymous literal function, but
the assignment to the variable square is enough to let JavaScript
decide that the function is named "square".

Functions may be recursive; that is, they may call themselves. A
simple example is computing the factorial function:

 let factorial = function f(n) {
 if (n == 0) return 1;
 return n * f(n - 1);
 };

This example uses a named function literal. With this defini-
tion, the name f can be used only within the function definition,
while the name factorial can be used both inside and outside the
function.

JavaScript: In More Detail    ◾    79

Function properties are often a good alternative to global vari-
ables. For example,

 nextInt.counter = 0;
 function nextInt() {
 nextInt.counter += 1;
 return nextInt.counter;
 }

The first call to nextInt will return 1, the second will return 2,
and so on because the function changes the value of its counter
property. Also, note that because functions are hoisted (processed
first), the assignment to a function property can occur lexically
before the function definition.

3.10.5 Function Methods

A method is a function that belongs to an object. But functions
themselves are objects, and have methods. Consider:

 let car = { make: "Subaru", year: 2018,
 age(now) { return now - this.year; } };
 let fn = car.age;

At this point fn is a function, specifically the function age()
{return year - this.year}. It is no longer attached to an object,
therefore it is no longer a method. Unfortunately, it still refers to
this, which has also lost its attachment to the original object.

There are three methods that can help solve the problem with this.

 • f.call(obj, arg1, ..., argN) — Calls the function or method
f with the given arguments, using obj as the value of this. If
no object is required, obj may be null.

 • fn.call(car, 2021) — Returns 3. Note that the function
fn can be applied to any object with a year property.

80    ◾    Quick JavaScript

 • f.apply(obj, args) — Does the same as call, but expects an
array of arguments.

 • fn.apply(car, [2021]) — Returns 3.

 • let g = f.bind(obj, arg1, ..., argN) — Returns a new func-
tion g that uses obj as the value of this, and with the first N
arguments filled in.

 • let g = fn.bind(car) — Assigns to g a function that
expects an argument for the year parameter.

 • let h = bind(car, 2021) — Assigns to h a function that
expects no arguments and returns 3.

3.10.6 Closures

Suppose one function is defined inside another; call them the
“outer function” and the “inner function.” The outer func-
tion forms the environment of the inner function, so the inner
function can use the local variables of the outer function. If the
outer function returns, all its local variables will (normally) be
recycled.

But what if the inner function continues to exist after the outer
function vanishes? That can happen—the (previously) inner func-
tion could be stored in a variable, or perhaps returned as a result
of the outer function. If the inner function is executed, it still
needs access to the local variables of the outer function.

The solution is that those local variables don’t get recycled—
they are “closed over” and kept for use of the (previously) inner
function.

 function make_counter() {
 let n = 0;
 let count = function() {
 n += 1;

JavaScript: In More Detail    ◾    81

 return n;
 }
 return count;
 }

 let counter = make_counter();
 console.log(counter()); // 1
 console.log(counter()); // 2

Here the make_counter function declares a local variable n, which
is used in the count function. The count function is then returned
as a result of make_counter, but it still has access to the storage
location used by variable n, which is “closed over” by count. This
is termed a closure. (The name n is recycled and no longer acces-
sible, but the storage it used is not released.)

Each time make_counter is called it creates a new local variable n,
independent of any previous ones. In this way, multiple indepen-
dent counters can be created.

It isn’t necessary to use nested functions to create closures. A
function created in a block, using variables of that block, can be
put in a variable with a scope larger than the block. The result is
still a closure.

 let v; // outside the block
 { let n = 0;
 let count = function() {
 n += 1;
 return n;
 }
 v = count;
 }

 console.log(v()); // 1
 console.log(v()); // 2

82    ◾    Quick JavaScript

3.10.7 Generators

A generator is a special kind of function that remembers where it is at
in the function, and when used again, resumes from where it left off.
This is useful for producing a (possibly infinite) sequence of values.

To define a generator:

 • Begin with function* rather than function.

 • Use yield value instead of return value. When yield is
executed, it returns an object {value: value, done: false}.

 • The next use of the generator will resume execution right
after the yield statement.

 • Using a return statement, or reaching the end of the
function, will terminate the generator; the value returned
is the object {value: undefined, done: true}.

To use a generator:

 • Call the function defined with function*. This returns a
generator object, not a value computed by the generator.

 • Use the generator object in a for/of loop (not for/in, which
will do nothing); or

 • Call the generator’s next() method as many times as desired.
This returns an object as described above.

 • A generator can only be used once. Once a generator is
done, it’s done. You can always make a new one, though.

As an example, we will write a very simple generator that takes an
argument n and repeatedly cuts it in half, rounding down to the
nearest integer, until 1 is returned.

 function* half(n) {
 yield n;

JavaScript: In More Detail    ◾    83

 while (n > 1) {
 n = Math.floor(n / 2);
 yield n;
 }
 }

We can use it like this:

 let gen = half(10);
 for (i of gen) {
 console.log(i);
 }

This will produce the values 10, 5, 2, and 1.

Alternatively, we can explicitly use the generator’s next() method.

 gen = half(10);
 let obj = gen.next();
 while (! obj.done) {
 console.log(obj.value);
 obj = gen.next();
 }

This will produce the same sequence of values.

3.10.8 Iterators

An iterable is any object that can be stepped through, one ele-
ment after another. An iterator is an object that implements a
method for stepping through the elements of an iterable. Arrays,
sets, maps, and strings are all iterable objects; the for/of state-
ment uses an iterator to step through them.

You can make an iterator for objects you create. The requirements
are:

 • The object must have a property whose name is the system-
defined Symbol.iterator.

84    ◾    Quick JavaScript

 • The value of that property must be a method named next,
which takes no arguments and returns an object with the
fields value and done.

 • If done is true, the iteration ends and value is ignored.

The syntax for creating an iterator can get quite confusing. One
simplification is to define the required next() method as a gen-
erator, since generators are a kind of function and return the
required kind of value.

As an example, we define a range object:

 let range = {start:10, step: 5, end: 25};

Next we will add to this object an iterator that will produce the
values start, start+step, and so on, up to but not including end.

 range[Symbol.iterator] =
 function* next() {
 n = this.start;
 while (n < this.end) {
 yield n;
 n += this.step;
 }
 };

and test it:

 for (let e of range) {
 console.log(e);
 }

This gives the correct values 10, 15, and 20.

Notice the use of the word this. As mentioned earlier, when this is
used in a method (a function belonging to an object), it refers to
the containing object.

JavaScript: In More Detail    ◾    85

In the above, an iterator was added to an existing object. It can
also be added when an object is created.

 {start:12, step: 5, end: 30,
 [Symbol.iterator]: function* next() {…} }.

3.11 OBJECTS
3.11.1 Definition of Objects

JavaScript is an object-oriented language.

In JavaScript, you can create objects without having to first
define a class. This section is about objects; classes will be cov-
ered later.

An object is a collection of named values (called properties or
fields). Objects use dot notation, as in other object-oriented lan-
guages, but they behave more like hash tables (also called maps or
dictionaries).

You can write an object literal by enclosing key:value pairs in
braces. For example:

 let car = {make: "Subaru", year: 2018}

This defines the object car with the properties make and year.
You can refer to the fields with dot notation. For example, the
statement

 console.log(car.make + " " + car.year);

will write "Subaru 2018" to the console. If you don’t have a con-
sole open, you won’t see the result; in that case you may wish to
use

 alert(car.make + " " + car.year);

instead.

86    ◾    Quick JavaScript

We can add properties to an existing object:

 car.mileage = 25041;

or delete them:

 delete car.mileage;

Property names (the “key” part of key:value) are always either
strings (which do not need to be quoted) or symbols. It may not
look that way; the following is legal:

 let nums = {2: "two", 3.1416: "pi"}

In this code, the keys are actually the strings "2" and "3.1416".

There is a second way to access properties: You can use brackets, [],
instead of dot notation. Instead of nums.2 or nums.3.1416, which
are illegal syntax, you can say nums[2] and nums[3.1416]. Any
expression within the brackets will be evaluated and the result
converted to a string; so nums[5-3] is the same as nums["2"].

Brackets can also be used when creating or adding to an object.
Continuing the above example, either of the following two state-
ments could be used to add the property mileage to car, or update
the value of mileage if it is already a property:

 car.mileage = 25300;
 car["mileage"] = 25300;

When creating an object, brackets can be used to compute the
name of a property (the key), the value, or both.

 let property = "make";
 let make = "Subaru";
 let age = 2;
 car = {[property]: [make], year: 2020 - age}

JavaScript: In More Detail    ◾    87

If you have some variables containing values and you want to cre-
ate an object with the same names and values, there is a very con-
venient shorthand you can use. Writing just a variable name is
the same as adding a property with that name and the variable’s
value. For example, if

 let make = "Subaru";
 let year = 2018;

then

 let car = {make, year}

is shorthand for

 let car = {make: "Subaru", year: 2018}

To test whether an object has a particular property, use the in
operator. For example, "make" in car returns true.

You can use the for/in loop to step through all the properties of
an object. The code

 for (prop in car) {
 console.log(prop + " is " + car[prop])
 }

will display the following on the console:

 "make is Subaru"
 "year is 2018"

3.11.2 Creating Objects

In the previous section we made an object by writing an object
literal, {make: "Subaru", year: 2018}, which we then assigned
to the variable car.

88    ◾    Quick JavaScript

Another way to create the car object is to first create a “blank”
object, then add properties to it:

 let car = Object(); // or let car = {};
 car.make = "Subaru"; // don't use 'let' here
 car.year = 2018;

Yet another way to create this object is to write a function that
assigns values to properties of the keyword this, then explicitly
returns this as a result.

 function Car(make, year) {
 this.make = make;
 this.year = year;
 return this;
 }

We can call this function in the usual way.

 let car = Car("Subaru", 2018);

Notice that the function uses the names make and year both as
variables and as property names. This is by no means necessary;
we could have used different names for the variables as for the
properties. But it is convenient to be able to use the same names,
rather than having to think up synonyms.

There is yet another way to create a car object. Again we write a
function, but this time we do not explicitly return this as a result.

 function Car(make, year) {
 this.make = make;
 this.year = year;
 }

Because there is no explicit return statement, this function will
return undefined if called in the usual way. Nevertheless, we can

JavaScript: In More Detail    ◾    89

use it to get a car object by putting the keyword new in the func-
tion call.

 let car = new Car("Subaru", 2018);

Putting new in front of a function call does two things. It creates a
new local variable named this inside the function, and it implic-
itly returns this as a result.

A function used in this way acts as a constructor for objects. It is
conventional to capitalize the first letter of a constructor (hence,
Car rather than car). Constructors are used when it is desirable to
define a number of similar objects, for example, a number of car
objects.

Note: By default, a constructor returns the newly created
object this. A different object, but not a primitive, may be
explicitly returned by using the return statement. Attempting
to return a primitive value has no effect.

When an object is created by calling a constructor, the test object
instanceof constructor (for example, car instanceof Car) will
test whether the object was created using that constructor. This is
in contrast to typeof(car), which will return the string "object".

The Object.create(proto) method uses an existing object proto
as the prototype for a new object. The newly created object has
no properties of its own; it is “transparent,” in the sense that any
attempt to read its properties will “see through it” and read the
properties of the prototype.

 let car2 = Object.create(car);
 car2.make = "VW";
 car2.color = "blue";

Following these statements, car will be unchanged, but car2 will
have "VW" as its make, "blue" as its color, and 2018 as its year.

90    ◾    Quick JavaScript

3.11.3 Copying Objects

As is the case with most languages, a variable holds only a small
amount of information, such as a single number. Objects, includ-
ing arrays, sets, maps, and user-created objects, take up a great
deal more room. Consequently, what is actually “in” a variable is
a reference (or pointer or machine address), specifying where to
find the object.

If obj1 is a variable whose value is an object, then the assignment
obj2 = obj1 copies the reference into obj2, not the object itself.
The result is that obj1 and obj2 both point to the same object. Any
changes to that object are equally visible from both variables.

There is no way in JavaScript to directly copy an object. However,
there is a way to copy all the properties of an object, or even sev-
eral objects, into another object

let newObj = Object.assign({}, oldObj);

The Object.assign method takes an empty object {}, given as the
first parameter, and copies all the properties of the second param-
eter into it, returning the result.

In fact, the assign method is quite general. It can take any num-
ber of objects as parameters, and copy the properties of all suc-
ceeding objects into the first object. It also returns the first object
as a result.

Object.assign(newObj, oldObj1, …, oldObjN);

If there is a conflict, later values of a property overwrite earlier
ones.

This is a shallow copy: The keys and values of the properties are
copied, but if a value is itself an object, it is the reference to that
object that is copied, not the object itself.

JavaScript: In More Detail    ◾    91

3.11.4 Methods

A method is a function attached to an object.

 let now = new Date().getFullYear();
 let car = { make: "Subaru",
 year: 2018,
 age: function() {
 return now - this.year;
 }
 }

In the above, new Date() returns a Date object, and its method
getFullYear() returns a four-digit number.

The above car object has a property named year. It isn’t a variable;
you can’t just say year, you have to say which object it belongs to.
The keyword this means “this same object.”

A method inside an object literal can be abbreviated by leaving
out the colon and the word function. Within car, age could be
defined as follows:

 age() { return now - this.year; }

The parentheses after age are enough to indicate that it is a
function.

3.11.5 Optional Chaining

Objects can contain references to other objects. For example,
a Customer object might have an address property, while an
Address might have a number property.

 let cust = {
 name: "Jones",
 address: { number: 29, street: "main" }
 }

92    ◾    Quick JavaScript

With this object you might say cust.address.number. This is an
example of chaining.

Sometimes information is missing or incomplete. If either cust or
cust.address is undefined or null, then cust.address.number
will result in an error.

To avoid this error, the optional chaining operator ?. can be
used. It converts errors into the undefined value. Hence, cust?.
address?.number will either work or it will return undefined, but
it won’t cause an error.

Optional chaining can also be used when:

 • Using brackets to access a property: cust?.["address"],

 • Indexing into an array: ary?.[n], and

 • Calling a possibly undefined method: cust.getOrder?.().

 • This will result in an error if the cust.getOrder property
exists but is not a function.

3.11.6 This

You keep using that word. I do not think it means what
you think it means.

—William Goldman, The Princess Bride

In JavaScript, the keyword this has a number of meanings. The
first two given below are the most common uses.

 • In a method (a function belonging to an object), this refers
to the containing object.

 • This is similar to the use of this in Java or C++, or self
in Python.

JavaScript: In More Detail    ◾    93

 • In a constructor (a function called with new), this refers to
the object under construction.

 • At the top level of a program, this refers to the global object.

 • In a browser, the global object is the Window object.

 • In a function,

 • In nonstrict mode, this refers to the global object. In a
browser, the global object is the Window object.

 • In strict mode, this has the value undefined.

 • In a function inside a method, this has the same mean-
ing it does in a top-level function; it does not refer to the
object that owns the method.

 • In an arrow function, the meaning of this is the same as it
would be if it were in the surrounding context (not in the
arrow function).

 • In an event handler, this refers to the HTML element that
received the event.

The value of this is defined at run time, not at compile time. For
example, the word this may be used in a function, where it ini-
tially has the value undefined. Later, that function may be stored
as a method of an object, with the result that this refers to the
object.

The global object isn’t always Window. In Node.js the global object
is global, while in Web Workers it is self. For code that will
work in any of these environments, use globalThis to refer to the
global object.

3.11.7 Higher-Order Functions

A higher-order function/method is a function or method that
expects a function as one of its arguments. Arrays have a number

94    ◾    Quick JavaScript

of higher-order methods. It is common for a function used as an
agument to be defined directly in the method call, using the arrow
notation. In this section we provide a couple of examples; a more
complete list is in Appendix B.

Reminder: An arrow function has the syntax (parameters)
=> expression.

The sort method takes a function of two arguments that returns
a negative, zero, or positive value if the first argument to that
function is less than, equal to, or greater than the second argu-
ment, respectively.

 let nums = [12, 43, 115, 9, 65, 1001, 902];

 nums.sort((a, b) => a - b);
 // nums is [9, 12, 43, 65, 115, 902, 1001]

 nums.sort((a, b) => b - a);
 // nums is [1001, 902, 115, 65, 43, 12, 9]

 nums.sort((a, b) => a % 10 - b % 10);
 // nums is [1001, 902, 12, 43, 115, 65, 9]

This last example sorts numbers according to their one’s digit (the
number modulo 10).

Higher-order methods can be used to replace many kinds of loops,
resulting in shorter and more readable code. For example, the
map method will apply a function to every element of an array,
producing an array of results.

 a = [1, 2, 3, 4, 5];
 asq = a.map(e => e ** 2);
 // asq = [1, 4, 9, 16, 25]

JavaScript: In More Detail    ◾    95

The filter method removes unwanted values from an array,
returning a new, shorter array.

 a = [87, -1, 92, -1, -1, 98];
 afil = a.filter(x => x >= 0);
 // afil = [87, 92, 98]

The reduce method applies the function pairwise to all elements,
returning a single value. The next example finds the sum of the
numbers in an array.

 a = [1, 2, 3, 4, 5];
 asum = a.reduce((x, y) => x + y);
 // asum = 15

3.11.8 Prototypes

Every object has a prototype, which is another object that “stands
behind it,” or that it is “based on.” If not otherwise specified, an
object’s prototype is Object.

Here is our running example:

let myCar = {make: "Subaru", year: 2018};

If we call myCar.toString(), we get the string "[object Object]".
While this isn’t very useful, it does show that myCar has a toString
method. Where did it come from? It came from Object, which is a
prototype for all objects.

If we use a for/in loop to print myCar we will see its make and
year, but will not see the toString property of its prototype. The
for/in loop only loops through the direct properties of an object,
not the properties inherited from its prototype.

We can get the prototype of an object:

 let proto = Object.getPrototypeOf(myCar);

96    ◾    Quick JavaScript

and having gotten it, we can add features to it.

 proto.style = "sedan";

 proto.toString = function() {
 return this.year + " " + this.make; };

When we ask for a property of an object, be it a field like make or
a method like toString, JavaScript first looks at the object itself. If
it is found, that is what is used. If it isn’t a property of the object,
JavaScript looks for it in the object’s prototype. If still not found,
JavaScript looks in the prototype’s prototype, and so on all the
way up to Object. Eventually the property will be found or unde-
fined will be returned.

Setting a property of an object sets the property on that object; it
does not look at its prototype. If we set myCar.wheels = 4, the Car
object is unaffected. Getting a value from an object will look up to
its prototype if necessary, but setting a value never does.

3.11.9 Descriptors

Objects have properties and values, but the properties themselves
have descriptors. The descriptors (or boolean flags) of a property are:

 • enumerable — true if the property will be listed when we ask
for the keys of an object, or when we loop over the properties.

 • writable — true if the value can be changed.

 • configurable — true if the property can be deleted or the
flags modified.

 • Once a configurable flag is set to false, it cannot be
changed back to true.

Our running example is

 let car = {

JavaScript: In More Detail    ◾    97

 make: "Subaru", year: 2018,
 toString() { return this.year + " " + this.make; }
 }

When we loop over the properties of the car object, printing
its keys and values, all of the fields that we defined (make, year,
toString) will be processed because all three are enumerable by
default.

 for (let e in car) {
 console.log(e + "=" + car[e]);
 }

The above code prints:

 make=Subaru
 year=2018
 toString=toString() {
 return this.year + " " + this.make;
 }

These two methods operate on the descriptors:

 • Object.getOwnPropertyDescriptor(obj, property);

 • Object.defineProperty(obj, property, {flag: boolean,
…});

If we display the result of

 Object.getOwnPropertyDescriptor(car, "year");

we get

 [object Object] {
 configurable: true,
 enumerable: true,
 value: 2018,

98    ◾    Quick JavaScript

 writable: true
 }

If we don’t want the toString method to appear when we loop
over the car object, we can write

 Object.defineProperty(car, "toString",
 {enumerable: false,
 configurable: false});

Setting enumerable to false keeps toFunction from being visible
as a key of car (it still exists and can be used). Setting configurable
to false prevents enumerable from ever being changed back to
true.

3.11.10 Classes and Inheritance
3.11.10.1 Classes
A class describes a category of objects. It is a blueprint, or recipe,
for making objects of that type. Classes are a relatively new addi-
tion to JavaScript, and are always in strict mode. Classes are based
on prototypes, and provide little if any advantage over just using
prototypes.

Here is the template for a class:

class ClassName {
 fields;
 constructor(arguments) {
 code
 }
 set name(value) {
 this.someOtherName = value;
 }
 get name() {
 return this.someOtherName;
 }

JavaScript: In More Detail    ◾    99

 methodName(arguments) {
 code
 }
}

Reminder: In a method (a function belonging to an object),
this refers to the containing object. The same holds for con-
structors, setters, and getters.

A class has a constructor and may have some number of fields,
getters, setters, and methods. To describe these, we will continue
with our “car” example.

 class Car {
 fuel = "gasoline"; // note: no "let"
 constructor(make, year) {
 this.make = make;
 this.year = year;
 }
 }

 let myCar = new Car("Subaru", 2018);

The word new calls the constructor. Within the constructor, make
and year refer to the arguments of the constructor, while this.
make and this.year are new fields belonging to the object being
constructed. The constructor can be used to create other Car
objects with different values.

Technical note: An object created from a constructor gets a
constructor property, and that property has a name prop-
erty, so myCar.constructor.name is "Car".

With the above definitions, the fields fuel, make, and year of
myCar can be addressed directly, with myCar.fuel, myCar.make,
and myCar.year. Sometimes, to provide a bit more “protection,” a

100    ◾    Quick JavaScript

class can contain setters and getters. These are methods with the
special syntax

set name(value) {…} and
get name() {…}

A setter typically sets the value of a field. Setters are often used to
check the legality of a value before saving it. It may save the infor-
mation in a form other than the form provided to it (for example,
miles may be converted to kilometers).

A getter typically returns the value of an object’s field. Alternatively,
a getter may compute a value in some other way and return it, for
example, converting kilometers back to miles.

To use these setters and getters, no change in the code is involved.
If a field has a setter, any attempt to change the value of a field (for
example, myCar.make = "VW") will invoke that setter. Any attempt
to read the value of a field will invoke its getter.

When a setter is defined for a variable, every attempt to set the
value of that variable calls its setter. This can be a problem. In par-
ticular, the following code would cause an “infinite” recursion, as
the setter calls itself.

 set make(value) {
 this.make = value; // bad!
 }

The recursion can be avoided by saving the variable under some
other name. Since underscores are legal in variable names, one
convention is to make a new name by prepending an under-
score. This is only a convention; there is nothing special about
underscores.

JavaScript: In More Detail    ◾    101

 set make(value) {
 this._make = value; // okay
 }

The new variable _make must be used throughout the class defini-
tion, while the old variable make should be used outside the class
definition.

Getters and setters should normally be defined in pairs. Variables
with setters must be stored under some other name, while vari-
ables without setters are unaffected.

Caution: While the use of a setter can protect against acci-
dentally changing a value, it is no protection against mali-
cious users. With the above setter for make, the information
is actually stored in a variable _make, and this variable is
directly accessible.

A method is a function belonging to an object; and a class is a
kind of object. Inside a class, a method is written like a function,
except that the word function is omitted.

Here is an implementation of a Car class:

 class Car {
 fuel = "gasoline";

 constructor(make, year) {
 this._make = make;
 this._year = year;
 }

 set make(arg) { this._make = arg; }

 get make() { return this._make; }

102    ◾    Quick JavaScript

 set year(arg) {
 if (arg < 1903 ||
 arg > new Date().getFullYear()) {
 alert("Bad year: " + arg);
 }
 else {
 this._year = arg;
 }
 }

 get year() { return this._year; }

 age() { // method
 let now = new Date().getFullYear();
 return now - this._year;
 }

 toString() {
 return this._year + " " + this._make;
 }
 }

An assignment to myCar will create an object with the fields make
and year. After this, the test myCar instanceof Car will return
true.

Caution: The word this is evaluated at run time, and
depends on the context in which it occurs. Calling myCar.
age() directly works fine, but myCar.age is an incomplete
function with no fixed value for this. The solution is to
replace the definition age() {…} with age = () => {…},
which creates a new age function for each Car.

3.11.10.2 Inheritance
Every class except Object extends (adds information to) some
other class—its superclass. If no superclass is specified, as in
Person, it defaults to extending Object.

JavaScript: In More Detail    ◾    103

A class may have any number of subclasses. A subclass builds
upon (“extends”) its superclass by adding or replacing features.

Here is a first example:

 class Person {} // extends Object

 class Customer extends Person {}

When you ask JavaScript to create a new Customer, it starts by cre-
ating a new Object; then it then it adds to that object all the features
of Person; finally, it adds all the features of Customer. In this way,
an object of a class is built “on top of” an object of its superclass.

Every class must have a constructor, and the constructor should
begin by calling the constructor for its superclass, with super(args).
This isn’t necessarily the very first thing that must be done, but it
must happen before any use of this is attempted.

If no constructor is specified, JavaScript automatically supplies
one. JavaScript assumes that the constructor will take the same
arguments as the constructor in its superclass. If we could see it, it
would look something like this:

 constructor(...args) { super(...args); }

The spread operator (...) is used in the above both to collect an
arbitrary number of arguments into an array and to supply an
arbitrary number from an array.

Since the above classes have constructors, we can create objects
with new Person() and new Customer().

Note: Although the classes Person and Customer have
no properties or methods, they are not necessarily useless.
Features can be added to them later, by assigning to the

104    ◾    Quick JavaScript

class prototype, for example, Person.prototype.name =
"anonymous";.

An object created from a class is still just an object. You can, for
example, add properties to it.

 let friend = new Person();
 friend.name = "Sally";

Technical note: The instanceof test will test for member-
ship not only in the immediate class but also in all super-
classes, so both friend instanceof Person and friend
instanceof Object will return true.

With this in mind, let us revise the above classes so that every
Person has a name and every Customer has an id. We will also
provide a setter and a getter for a person’s name, but insist that a
name be a string.

 class Person {
 constructor(name) {
 this._name = name;
 }

 set name(value) {
 if (typeof value == "string") {
 this._name = value;
 } else {
 alert(value + " is not a string.");
 }
 }

 get name() { return this._name; }
 }

 class Customer extends Person {
 constructor(name, id) {
 super(name);

http://friend.name

JavaScript: In More Detail    ◾    105

 this.id = id;
 }
 }

We can use these classes like this:

 let person = new Person("Sally");
 let cust = new Customer("Bill", 123);
 cust.name = "William";

Note: Objects don’t have to be created from a class in order
to have getter and setter methods. The syntax, using the get
and set keywords, is the same as that shown above.

3.11.10.3 Overriding Methods and Fields
Fields and methods defined in one class may be redefined, or
overridden, in a subclass. For example, the Object class defines a
toString method. This method isn’t very useful because it always
returns "[object Object]", but it does exist.

You can override a method simply by defining a new method with
the same name. For example, we might add the following method
to the Person class:

 toString() {
 return "My name is " + this.name";
 }

Note: In most browsers, the console.log(obj) method
does not use toString; instead, it prints the structure of the
object. If this isn’t what you want, you can call toString
explicitly, or simply concatenate an empty string to the argu-
ment, console.log(obj + "").

Fields can also be overridden. However, the word this always
refers to “the object before the dot.” For example:

 class Over {
 value = 100;

http://cust.name
http://this.name

106    ◾    Quick JavaScript

 show() {
 return "value is " + this.value;
 }
 }

 class Under extends Over {
 value = 50;
 }

 let under = new Under();
 console.log(under.show());

This prints "value is 50". Although show() is defined in Over,
the variable under is of type Under, so this.value is 50, not 100.

If value were not defined in Under, then under would inherit it
from Over, and this.value would be 100.

3.11.10.4 Class Prototypes
As noted earlier, you can construct an object that uses an existing
object as its prototype.

let newObj = Object.create(oldObj);

The newObj will not initially have any properties of its own, but
properties can be added later. Any attempt to look up a property
of newObj will look first in newObj itself, but if not found there,
JavaScript will look in its prototype, oldObj.

The method Object.getPrototypeOf(newObj) will return
oldObj, but there is also an older way to access the prototype:
newObj. __proto__ . The non-enumerable __proto__ property
should not be used in new code.

Something similar happens with classes.

 class Person {…}
 class Customer extends Person {…}
 let sally = new Customer(…);

JavaScript: In More Detail    ◾    107

The object sally has access to the methods declared in Customer
plus the methods declared in Person (unless they are overridden
by methods with the same name in Customer).

When you declare a function or create a class with a constructor,
that function or class gets a property confusingly named proto-
type. The value of this property is an object containing function
names and definitions.

Note: Do not confuse the prototype property of a class,
class.prototype, with an object’s prototype, obj.__proto__.

You can attach a method to all instances of a class by assigning to
its prototype:

 Person.prototype.initial = function() {
 return this.name[0];
 }

The method initial will return the first character of a person’s
name (assuming that Person has a name property).

3.12 TRANSPILERS AND POLYFILLS
JavaScript evolves and (hopefully) gets better. Unfortunately,
older browsers may not support some of the newest features. In
order for JavaScript code to work “everywhere,” there are two dif-
ferent approaches that may be taken:

 1. Use only well-established features that work everywhere.

 2. Use transpilers and/or polyfills.

A transpiler “compiles” newer syntactic features, such as the ??
operator, into older but equivalent syntax. Babel is a well-known
transpiler.

A polyfill is a function or a library of functions that may or may
not be currently included. A missing function can be added

http://this.name

108    ◾    Quick JavaScript

directly to the code. A library of polyfills may be loaded from a
polyfill server, although this increases load time. There is more
controversy about which polyfill library to use, if any, but polyfill.
io is reasonably popular.

3.13 JSON
JSON (JavaScript Object Notation) is a way of representing data
as text. This is useful for storing the data on a file, or transmitting
it to or from a server. JSON is human-readable and editable; it is
quite similar to data in JavaScript.

There are two methods:

 • JSON.stringify(value)—Converts a JavaScript value to a
JSON string.

 • JSON.parse(string)—Converts a JSON string to a JavaScript
object.

Both JSON methods can be given additional parameters, not
described here, to modify values as they are processed.

Limitations:

 • Functions, symbols, undefined, Infinity, and NaN cannot be
represented in JSON. They are replaced by null.

 • Dates are converted to strings, and not automatically con-
verted back into Dates.

 • Non-enumerable properties, and properties whose key is a
symbol, are ignored.

Any object can be given a toJSON() method if the default repre-
sentation is not satisfactory.

https://polyfill.io
https://polyfill.io

109DOI: 10.1201/9781003359609-4

After a few introductory sections, the remainder of the book is
divided into two parts: Graphical User Interfaces, which is all
that many JavaScript programmers need, and Using the DOM,
which describes the powerful understructure of web pages.

4.1 ESSENTIAL HTML
An HTML page is a text file, usually in Unicode, containing tags.

Most tags are containers. They consist of a start tag, some con-
tents, and an end tag. The contents are the innerHTML of the tag.
The syntax is:

<tagName> contents </tagName>

Container tags can contain text and other tags, to any level.

A few kinds of tags are empty, that is, not containers. For example,

 is a line break, and <hr> is a horizontal rule. No end tag is
needed. Such tags are sometimes written as <tagName/>.

An HTML page consists of at least four tags:

 • A document tag, which identifies the file as HTML. It is not
a container.

C H A P T E R 4

Client-Side JavaScript

http://dx.doi.org/10.1201/9781003359609-4

110    ◾    Quick JavaScript

 • An html tag, containing the head and body tags.

 • A head tag, containing meta-information about the page,
most of which is not displayed. This usually includes a
<title> tag to name the page.

 • A body tag, containing information to be displayed to the
user, and numerous other tags to specify just how it should
be displayed.

Here is a minimal HTML page.

 <!DOCTYPE html>
 <html>
 <head>
 <title>Example HTML Page</title>
 </head>
 <body>
 <p id="p1">The user sees this part.</p>
 </body>
 </html>

Start tags can contain attributes, which have the form
name="value". One such attribute is id, to assign a unique identi-
fier to an individual tag.

JavaScript is case-sensitive, but tag names and attributes in HTML
are not case sensitive.

Originally, all styling was done in the HTML itself. Today, most
styles are applied by one or more associated stylesheets, written in
CSS, Cascading Style Sheets.

4.2 ADDING JAVASCRIPT TO HTML
JavaScript can be added to an HTML page by:

 • Putting the JavaScript within <script>…</script> tags, in
either the head or the body.

Client-Side JavaScript    ◾    111

 • Putting the JavaScript in a separate file that has a .js
extension, and loading it with <script src="URL.js">
</script> in the head element. In this case, any code within
the <script> tags will be ignored.

 • Writing the JavaScript as the value of an HTML “event han-
dler” attribute.

Function definitions are best placed in the <head> of the HTML
document. Scripts in the <body> section are executed in order as
the page is loaded, and typically produce output that is displayed
at that point in the page.

Not everyone allows JavaScript to run in their browser. Text
within a <noscript>text</noscript> tag will be displayed if and
only if JavaScript is unavailable or disabled.

Large amounts of JavaScript and scripts that are used on more
than a single page should be put in a file or files, not on the HTML
page.

4.3 DOM OVERVIEW
The HTML DOM (Document Object Model) represents every-
thing on the HTML page as a tree of Nodes, even the HTML
comments and every bit of whitespace. Everything in the DOM
is accessible to JavaScript and can be changed, and every change
made by JavaScript is reflected immediately in the page as shown
to the user. This is far more power than is needed for most
applications.

Figure 4.1 shows the main subclasses of Node, not the structure
of the DOM tree. The root of the DOM tree is a Node named
document, of type Document, and it has one child, an Element
representing the <html> tag. The document node has properties
head and tail, which give access to the entire tree of nodes.

112    ◾    Quick JavaScript

Every HTML tag is represented by an Element. An Element has a
tagName, which is the name of the HTML tag. The name in the
DOM is always uppercase: HTML, HEAD, BODY, TITLE, SCRIPT, and
so on. Elements may have Attributes (another subclass of Node).

Note: An Element is just one kind of Node, but it is so per-
vasive that the two are sometimes confused. Adding to the
confusion, Element is a subclass of Node, so all the Node
properties and methods can be used with Elements.

Because the nodes are in a tree structure, there are Node prop-
erties that allow movement in the tree: parentNode, firstChild,
nextSibling, previousSibling, and lastChild.

Text and comments are represented by Text and Comment nodes,
not Element nodes, so they do not show up in properties and
methods that return only Elements. For example, an Element has
a childNodes property that is a collection of all its children, and
a children property that is a collection of only those children that
are Elements.

In addition to the web page as described by the HTML, there are
a large number of events happening all the time. Every keystroke,
every mouse movement, and many other things cause events to
occur. An interactive web page “listens for” and responds to a
small subset of these events.

FIGURE 4.1 The DOM tree.

Client-Side JavaScript    ◾    113

4.4 GRAPHICAL USER INTERFACES
A Graphical User Interface, or GUI, is a means of allowing the
program to interact with a user. It typically consists of familiar
controls, or widgets, such as buttons, text boxes, checkboxes,
menu items, and the like.

GUIs can be used to create stand-alone programs, or they can be
used to collect information to send back to a server (such as when
ordering merchandise). A form is a container for widgets whose
purpose is to collect information into a single bundle.

4.4.1 Events

GUI programs are different from other programs. Instead of one
continuous sequence of code that runs from beginning to end,
GUI programs are event-driven. When an “interesting” event
occurs, some code is triggered to handle it. The code finishes, then
nothing more happens until another “interesting” event occurs.

An “interesting” event is simply one that the programmer has
written some code to handle. Events are happening all the time;
practically anything that happens generates one or more events.
The mouse moves over an HTML element? That’s an event. The
mouse moves out of an HTML element? That’s another event.
In fact, if the mouse moves at all, that’s an event. There are over
70 kinds of events, all with names beginning with “on,” such as
onclick.

The key point is that events are happening all the time; the pro-
grammer doesn’t have to do anything to create them. If the user
clicks a button, that’s an event that (normally) should be handled.
If the user clicks a word in a paragraph, probably that event should
be ignored. The programmer gets to decide which events to handle.

4.4.2 Widgets

Widgets are GUI elements. Each is represented by a tag in HTML,
and a corresponding Element in the DOM. Typical widgets are

114    ◾    Quick JavaScript

buttons, text fields, text areas, checkboxes, radio buttons, scroll
bars, and a number of other types.

Most GUI elements can be written using an <input> tag with a
type attribute. If type is omitted, text is assumed; this is a box
allowing one line of text to be entered.

Here are the possible values for type: button, checkbox, color,
date, datetime-local, email, file, hidden, image, month, number,
password, radio, range, reset, search, submit, tel (telephone),
text, time, url, week.

There are a few widgets that have their own tag, rather than being
a value of type: button, fieldset, label, option, optgroup, output,
select.

4.4.3 Buttons

Buttons are active elements: When the user clicks a button, it
should cause something to happen. Moreover, it is only polite to
provide a visual cue that something has been done. For example,
if the user clicks a Save button to save a file, and nothing visible
occurs, the user may well get frustrated and click the button over
and over again.

There are two ways to create a button:

 <i nput type="button" value="Click me"
onclick="alert('Hello')">

 <button onclick="alert('Hello')">Click me
 </button>

Each of these will appear on the web page as a button containing
the words Click me. Each of them, when clicked, calls the alert
function with the argument 'Hello'. The <button> tag requires a

Client-Side JavaScript    ◾    115

closing tag; the <input> tag does not. The <button> tag is newer
and more flexible; for example, its innerHTML can be an image
(using the) tag, rather than just text.

 <button onclick="alert('Ouch!')">
 </button>

The value of the onclick property should be a string containing
JavaScript code, to be executed when the button is clicked—this
is an event handler. Typically an event handler is a single func-
tion call, so that all substantive JavaScript code can be kept in one
place rather than scattered throughout the HTML page. In the
above examples, the function called is the alert function.

Note: The JavaScript code in an event handler must be a
quoted string. Since the code itself may contain quoted
strings, two kinds of quotes are commonly used, such as sin-
gle quotes within double quotes.

The text on a button can be changed by JavaScript. For buttons
defined with an input tag, the button’s text is in its value attri-
bute; for buttons defined with the button tag, the button’s text is
in its innerHTML.

4.4.4 Finding Widgets

There are a number of ways to specify a particular widget. Here
are two:

 • document.getElementById("id") — Returns the one ele-
ment on the page whose tag has the attribute id="id". Ids
must be unique on the page.

 • document.getElementsByTagName("tagName") — Get an
indexable collection of all the elements on the page with the
given tagName.

116    ◾    Quick JavaScript

There are two commonly used types of collection in the DOM. The
getElementsByTagName method returns a live HTMLCollection
of elements, while the childNodes property of a node is a live
NodeList of nodes.

Both types of collection have a length property, and both can be
indexed like an array or (redundantly) by the item(index) method.
The fact that these are “live” means that they can be thought of
as a window into the DOM, rather than a snapshot. If the DOM
tree is changed, for instance by insertion or deletion of nodes, the
contents and length of these collections change correspondingly.
All HTMLCollections are live, but some NodeLists are static—they
don’t change as the DOM tree changes.

The method Array.from(collection) returns a static array of val-
ues from the collection.

4.4.5 Text Fields

A text field is a passive element. Clicking on it or entering text
into it should not cause anything to happen. Later actions, such as
button clicks, can access and use the text that was entered.

Note: Technically, any element can be made active. You can
put an onclick property in a text field, and it will work; but
there is almost no situation in which this would be a good idea.

For text fields, there isn’t a <text> tag, just a variation on the
<input> tag.

 <input type="text" size="12" value="Initial text">

The size attribute is a measure of how many characters can be
displayed in the text field; it defaults to 20. Any number of char-
acters can be entered into a text field, regardless of how many are
displayed at a time.

Client-Side JavaScript    ◾    117

Here’s how to read what the user has entered. First, find the text
field (perhaps by using document.getElementById), then read its
value entry.

 <input id='tx1' type="text">

 <input type="button"
 value="Look in text field"
 onclick="alert('You entered: ' +
 document.getElementById('tx1').value)">

This works as you might expect. Enter something in the text field,
click the button, and it shows up in an alert message.

In general, widgets should do nothing more complicated than call
a single function. The above code can be written more cleanly by
putting the function in the head of the document:

 <script>
 function showText(id) {
 var field = document.getElementById(id);
 alert('You entered: ' + field.value);
 }
 </script>

The handler for the button can then be written as a simple func-
tion call.

 <input type="button" value="Look in text field"
 onclick="showText('tx1')">

4.4.6 Buttons and Forms

A common use for JavaScript is to send information to a server.
Usually there is more than one piece of information: name,
address, credit card number, and so on. To collect multiple pieces
of information into a single submission, a form is used.

118    ◾    Quick JavaScript

A form is a container, with start tag <form> and end tag </form>.
The purpose is to contain various widgets, such as buttons and
text fields, but any valid HTML can also be included. By default,
enclosing HTML in a <form> does not make any visible difference
on the screen.

We have already described the standard button type, using either
<button> or <input type="button">. There are two other button
types particularly relevant to forms. Each has an old version (with
<input>) and a newer form (with <button>). For comparison, we
show all three kinds of buttons here. First, the old way:

 <input type="button" value="Click me">
 <input type="submit" value="Send it">
 <input type="reset" value="Forget it">

Then, the new way:

 <button type="button">Click me</button>
 <button type="submit">Send it</button>
 <button type="reset">Forget it</button>

The old way puts the text of the button in a value property, so
it can only be text. The new way puts it between <button> and
</button>, so it can be almost anything.

 • When a “plain” button (type="button") is clicked, no default
action occurs.

 • A submit button has the default text Submit, and the default
action of sending all the information on the enclosing form
to the server. (More on this shortly.)

 • A reset button has the default text Reset, and the default
action of clearing everything on the form to its original val-
ues. This action tends to annoy users.

Client-Side JavaScript    ◾    119

Note: A button without an explicit type attribute behaves
like type="button" except in a form, where it behaves like a
type="submit" button.

One very convenient feature of forms is that they define a
scope. Any widget within a form can have a name property, and
this name can be used by other widgets in the same form. For
example:

 <form>
 <input name='tx1' type="text">
 <input type="button"
 value="Look in text field"
 onclick="alert('You entered: ' + tx1.value)">
 </form>

An id must be unique on the entire HTML page and can be
accessed by calling getElementById(id) from within scripts;
a name should be unique within a form, and can be accessed
directly by other widgets in the same form. Any widget can have
a name and an id.

There is seldom any need for more than one form on a page,
so it can be referenced by document.getElementsByTag
Name("form")[0], or by its id if it has one. It is possible to have
more than one form on a page, but forms may not be nested; that
is, you cannot have a form inside a form.

A submit button within a form will, when clicked, submit that
form. Outside a form, a submit button can use the attribute
form="formId" to submit the form with that id.

Caution: If a form has a submit button, pressing Enter when
in an input field of the form will also submit the form.

120    ◾    Quick JavaScript

4.4.7 Form Verification

When a user clicks a Submit button, it usually makes sense to
check the information in the form before sending it to the server.
Not everything can be checked, of course, but many things can.
Have any required fields been left blank? Are there unexpected
characters in numeric fields? Does a credit card number have the
right number of digits?

If a tag <input type="text" …> contains the attribute required
(with no value, just the word required), attempting to submit that
form will cause the text field to be checked to make sure it is not
blank. If it is blank, a small pop-up will appear next to the text
field containing the words “Please fill in this field.”

A text field may have an attribute pattern="regexp" to specify
by a regular expression regexp exactly what may be entered
into the text field; it will be checked when the Submit but-
ton is clicked. An erroneous entry will be flagged with “Please
match the requested format.” The regexp is given as a string, not
bounded by slashes.

A text field may have a placeholder="text" attribute; the text is
displayed as a hint to the user about what should be entered. The
text will disappear when the user types into the field but reap-
pears if the field becomes blank again.

One way to do arbitrary validation testing is to put an onsub-
mit property in the <form> tag, with a value that has the syntax
return function_call; for example,

 <form onsubmit="return validate()">
 Type a number:
 <input name='num' type="text">

 <input type="submit">
 </form>

Client-Side JavaScript    ◾    121

In this example, the function validate() will be called when the
submit button is clicked. If validation fails, the function should
call event.preventDefault(), otherwise the submission will suc-
ceed. Either way, it is appropriate to inform the user.

4.4.8 Form Submission

When a form is submitted, the action attribute of the form tag
tells the program where to send the data, and the method attribute
tells how to send the data.

A form tag may contain action="URL" (Uniform Resource
Locator) specifying the URL to which the information is to be
sent. If the action property is not present, the URL of the page
containing the form is used.

The two most commonly used values of the method attribute are
"get" and "post".

4.4.8.1 Get Requests
A get request, <form method="get">, is a simple request for
information. It should not be used when sending the data might
change something on the server. For example, it should never be
used to place orders.

The form data is appended to the URL with the syntax
?name=value&name=value&…, for example, google.com/search?
q=octopus. Because the information is visible in the URL and can
remain in the browser history, a get request should never be used
for sensitive information.

If the method attribute is omitted, it defaults to get.

URLs are limited to 2048 ASCII (not Unicode) characters, so
this limits the amount of data that can be submitted. For larger
amounts of information, post must be used.

Get requests can be bookmarked.

122    ◾    Quick JavaScript

4.4.8.2 Post Requests
A post request, <form method="post">, is typically used for every-
thing except simple requests for information. Data is sent in the
body of the request, not in the URL, so large amounts of data can
be sent. In the body, it has the form name=value&name=value&… .
File uploads have a more complex structure.

A post request is more secure than a get request because it is not
visible in the URL, not cached, and does not remain in the brows-
er’s history.

4.4.8.3 Other Requests
There are a few other method request types, such as head to request
just the head of a page but not the body, and put to ask the server
to store data.

It is up to the server which method requests it will accept and
process. For example, a server might accept get requests but not
post requests.

Code on the server side may be written in almost any language.
Server-side coding is beyond the scope of this book.

4.4.9 Additional Text Widgets

A number of other widgets besides <input type="text"> allow
text input. All of the following except textarea are written as
<input type="type">.

 • password — All characters in the password field are dis-
played as bullets. This difference affects only what the
user sees; entered text is recorded and can be accessed as
usual.

 • search — This is like <input type="text"> but has a small
icon in the right end that can be clicked to select previous
entries in the field.

Client-Side JavaScript    ◾    123

 • email — A text field in which an email address can be
entered. The entry is automatically checked (when submit-
ted) to ensure that it contains the @ character. If the widget
contains the multiple flag, more than one email address can
be entered, separated by commas.

 • number — A text field in which an integer can be entered. It
is provided with up and down arrows for adding or subtract-
ing one from the displayed number. If the value attribute is
provided, it is used as the initial number displayed.

 • URL — A text field in which a URL can be entered. The field
is automatically checked (when submitted) to ensure that
the entry is a syntactically correct URL.

 • textarea — The <textarea name="name" rows="nrows"
cols="ncols"> widget provides a multiline text-entry area,
consisting of nrows rows and wide enough to display ncols
characters.

 • A closing tag </textarea> is required. Text between the
opening and closing tags (the innerHTML) is what is ini-
tially displayed in the text area.

 • Text in the text area will be displayed in a monospace
font.

 • If the name attribute is omitted, the data in the text area
will not be included when the form is submitted.

Some additional input widgets are available for choosing dates
and times, but these are not yet supported on all browsers.

 • date — For choosing a calendar date.

 • time — For choosing a time of day.

 • datetime-local — For choosing a date and time.

 • week — For choosing a week.

124    ◾    Quick JavaScript

4.4.10 Other Input Widgets

Along with button, text, submit, and password, there are a num-
ber of other values that the type attribute of an <input> tag can
take. Recall that for <input>, all the needed information is in the
start tag; no end </input> tag is used.

Many of these widgets give no indication to the user what they
are intended for, so they should always be accompanied by a label,
preferably with one that includes the for attribute.

 • radio — The widget <input type="radio" id="id"
name="group" value="value"> defines a radio button. Radio
buttons are always used in groups, where every radio button
has the same value for the name attribute. Selecting one radio
button of a group deselects all the others in that group.

 • In a form, group.value is the value of the selected radio
button. If not in a form, the radio buttons must be checked
individually.

 • If no radio button has been selected, the value of that
group is the empty string. To start with one button
checked, give it the checked flag.

 • checkbox — The <input type="checkbox" id="id"> wid-
get is displayed as a small square that can be checked or
unchecked, independently of any other checkboxes. The
checked attribute (not the value attribute) of a checkbox will
be true or false.

 • file — The <input type="file"> widget displays a rect-
angle containing the words "Choose File". When clicked,
it brings up a file chooser. The file chosen is accessible as the
value attribute of the field. If the widget contains the mul-
tiple flag, multiple files can be selected.

 • image — The <input type="image" src="path"> widget
displays the indicated image.

Client-Side JavaScript    ◾    125

 • color — The <input type="color"> widget displays
a small rectangle containing a color (black, by default).
Clicking it brings up a color chooser. The value attri-
bute sets the initial color, which must be of the form
"#RRGGBB" (six hex digits representing the amounts of
red, green, and blue).

 • <input type="hidden"> widget is not visible to, and cannot
be modified by, the user.

 • When interaction with a server occurs in a sequence of
pages, the server can collect information from one page
and store it as attributes of a hidden widget in the next
page. In this way, a server can maintain information for a
given user across a series of transactions.

 • Hidden fields are not a security device. The underlying
HTML of a page, including hidden fields, can be viewed
in any browser.

 • <input type="range"> displays a slider, to be used for
choosing a number in a given range. The default attributes
are min="0", max="100", step="1", and value="50".

Usually each checkbox and radio button has an associated label
immediately to its right. Checkboxes and radio buttons are small
and a bit difficult to click on, so each should have a label with a
for="id" attribute.

 • <label for="id">text</label> — Clicking on the label is
the same as clicking on the widget whose id is specified by
the for attribute.

4.4.11 Events

User actions (typing something, moving the mouse, clicking the
mouse, etc.) cause events to occur. One or more event handlers
will be executed when certain events occur.

126    ◾    Quick JavaScript

Each form element (“widget”) can have attributes that act as event
handlers. For example, a button may be defined as follows:

 <input type="button" onclick="save()" value="Save">

Here, onclick is an event handler that tells JavaScript what to do;
in this case, call the save() function when the button is clicked.
Event handlers should generally be implemented as function
calls.

Numerous events can occur, and not every widget can respond
to every event. Browsers differ somewhat in which form elements
will handle which events. This section describes the events and
which form elements should be able to handle them.

Event names are sometimes written in camelCase, for exam-
ple onClick instead of onclick. This works because tags are in
HTML, which is case insensitive, but does not work in the quoted
JavaScript, which is case sensitive.

The following events can be handled in <body> or <frame> ele-
ments (a frame is a separate URL file that is loaded as a part of a
page):

 • onload — the document or frame has completed loading.
This can be used to execute a function to do any initializa-
tion required.

 • onunload — the document or frame is unloaded. This can
be used to perform any final cleanup actions.

The following events can be handled by most elements.

 • onclick — the element is clicked. Buttons will almost always
handle an onclick event. Most other widgets handle all the
usual actions automatically for the given type of widget.

Client-Side JavaScript    ◾    127

 • ondblclick — the element is clicked twice in close succession.

 • onmousedown — one of the mouse buttons (or the keyboard
equivalent) is pressed while over the widget. To distinguish
which mouse button is pressed, use onmousedown instead of
onclick. The value of event.button will be 0, 1, or 2 for the
left, middle, and right mouse buttons, respectively.

 • onmouseup — the mouse button is released while over the
widget. This event is usually ignored in favor of handling the
onclick event

 • onmouseover — the mouse is moved over the widget.

 • onmouseout — the mouse is moved away from the widget.

 • onmousemove — the mouse is moved.

Modern devices may have touch screens or pens. The above
onmouse events may be replaced with onpointer events which
work equally well with both mouse and touch events.

The following events can be handled by the body element and the
input and textarea widgets.

 • onkeypress — a key is clicked while this widget has focus.

 • onkeydown — a key is depressed while this widget has focus.

 • onkeyup — a key is released while this widget has focus.

 • onfocus — the widget gains focus (for example, by the user
tabbing to it).

 • onblur — the widget loses the focus.

 • onchange — the widget loses focus with a different value
than it had when it gained focus.

128    ◾    Quick JavaScript

The following events are often handled in the enclosing <form>
tag.

 • onselect — a portion of text is selected. To retrieve the
selected text, use document.getSelection().

 • onreset — the user has clicked a Reset button. If the value of
the onreset attribute is "return false" or "return some-
Function()" where someFunction returns false, the reset is
cancelled.

 • onsubmit — the user has clicked a Submit button. If the value
of the onsubmit attribute is "return false" or "return
someFunction()" where someFunction returns false, the
submission is cancelled.

The following events are usually handled by the tag.

 • onabort — image loading has been interrupted.

 • onerror — there was an error loading the image.

Event handlers have access to an event variable. In the handler:

 • event.type is the part after "on" (e.g. for onclick, event.
type is "click").

 • event.target is the widget at which the event occurred.

 • event.currentTarget is the current widget, when, as a result
of bubbling (see next section), the immediate target does not
handle the event.

 • For mouse clicks, event.clientX and event.clientY indi-
cate the mouse position; event.button is 0, 1, or 2 for left
click, middle click, and right click, respectively.

 • For key presses, event.key holds the character typed.

Client-Side JavaScript    ◾    129

For example, the following code displays a button which, when
clicked, writes a message to console.log:

 <input type="button" value="Wow!" id="bait"
 onclick="console.log(event.type +
 event.target.id);">

4.4.12 Bubbling

When an event happens on an element, the element can either
handle it or ignore it. Either way, the element’s parent element
then gets a chance to handle the event, then the parent’s parent,
and so on, all the way up to the root (the global object). This pro-
cess is called bubbling, and is generally desirable.

For example, if a button is clicked, and the button is in a form,
and the form is in a document, and the document is in a window,
any or all of these elements can do something in response to the
button click.

 • event.target is the most deeply nested element, and the one
that first has a chance to respond.

 • event.currentTarget is the one currently handling the
event (it is equal to this).

 • event.stopPropagation() stops any further bubbling. Not
generally recommended.

 • event.preventDefault() prevents default actions from
occurring, such as form submission or following a link.

4.5 USING THE DOM
4.5.1 The Window Object

It is easy to think of document as the root of the HTML tree. In
a browser, document is actually a child of another node, window.
It is not necessary to say window.document, because window is
assumed by default.

130    ◾    Quick JavaScript

The window object is an indexable collection of frames or iframes;
it is of zero length if these features are not used.

Windows, like documents, have properties and methods.

4.5.1.1 Window Properties
Here are some of the properties of a Window object. With the
exception of location, all of these properties are read only.

 • window — A self-reference to the current window (not usu-
ally needed). Programmer-defined global variables are actu-
ally properties of this object.

 • self, frames, globalThis — On the web, these are all the
same as window.

 • length — The number of frames contained in this window.

 • parent — If in a frame, the immediately enclosing window.

 • document — The HTML document being displayed in this
window.

 • top — If in a frame, the outermost enclosing window.

 • location — The URL of the document being displayed in
this window. If you set this property to a new URL, that URL
will be loaded into this window. Calling location.reload()
will refresh the window.

 • navigator — A reference to the browser object. Some prop-
erties of navigator are:

 • appName — the name of the browser, such as Netscape.

 • platform — the computer running the browser, such as
Win32 or MacIntel.

 • userAgent — A detailed description of the platform.

Client-Side JavaScript    ◾    131

4.5.1.2 Window Methods
Here are some of the available methods on windows.

 • alert(string) — Displays an alert dialog box containing the
string and an OK button.

 • confirm(string) — Displays a confirmation box containing
the string along with Cancel and OK buttons. Returns true
if OK is pressed, false if Cancel is pressed.

 • prompt(string) — Displays a prompt box containing the
string, a text field, and Cancel and OK buttons. Returns the
string entered by the user if OK is pressed, null if Cancel is
pressed.

 • window = open(URL) — Opens a new window containing
the document specified by the URL.

 • window.close() — Closes the given window, but only if it
was opened by open.

 • timeoutId = setTimeout(function, delay, arg1, …,
argN) — Sets a timer to call the function with optional
arguments arg1 through argN after delay milliseconds.
Returns a numeric timeoutId.

 • clearTimeout(timeoutId) — Cancels a pending timeout
started by setTimeout.

 • intervalId = setInterval(code, interval) — Sets a timer to
execute the code (which may be a function or a string) every
interval milliseconds. Returns a numeric intervalId.

 • clearTimeout(intervalId) — Cancels the periodic execu-
tion of code started by setInterval. This is the same method
as the one above to clear a timeout id.

Note: To be technically correct, it should be noted that the
timeout and interval methods available to windows are not

132    ◾    Quick JavaScript

defined in the Window object, but inherited from elsewhere.
This makes little practical difference.

4.5.1.3 Window Example
Suppose we have the following JavaScript code (enclosed in
<script> tags) in the head of the HTML document:

 "use strict";
 let win2, timer;

 function display(str) {
 let e = document.getElementById("para");
 e.innerHTML = str;
 }

 function google(str) {
 console.log(window);
 win2 = window.location =
 "https://google.com" + "?q=" + str;
 }

 function googleIt() {
 display("Going to Google in 5 seconds.");
 let term =
 document.getElementById("search").value;
 timer = setTimeout(google, 5000, term);
 }

 function cancel() {
 display("");
 clearTimeout(timer);
 }

and in the body:

 <button onclick="googleIt()">Google</button>
 <input type="text" id="search">

https://google.com

Client-Side JavaScript    ◾    133

 <button onclick="cancel()">Cancel</button>

 <p id="para"></p>

When the HTML page is loaded, it shows a button labeled Google,
a text field, and a second button labeled Cancel.

When the first button is clicked, it calls the googleIt() func-
tion. That function calls display to find the Element with the id
“para,” which is an initially empty paragraph, and sets it to con-
tain the text “Going to Google in 5 seconds.” Then the googleIt()
function finds the text field with the id “search” and gets its text
into a variable named term. Finally, googleIt sets a timer that
will call the google function with the argument term after 5 sec-
onds (5000 milliseconds).

Note: This will only work if the browser permits it, which
depends on the browser’s settings.

If the Cancel button is clicked within five seconds, the cancel
method will erase the text in the paragraph whose id is "para",
then cancel the timer (whose id has been saved in the global vari-
able timer). Consequently, the timer event will not occur, and
google() will not be called.

If the Cancel button is not clicked, the google function will try to
open a browser tab to google.com, with the search term passed to
it as an argument, and will save the window id in a global variable
named win2.

Note: The ? appended to the URL provides information to
the server as name=value pairs. Multiple name=value pairs
are separated by ampersands (&). Google recognizes, among
other names, q for “query.”

https://google.com

134    ◾    Quick JavaScript

4.5.2 The Document Object

A document represents an HTML page.

The name window refers to the window displaying the HTML;
window.document refers to the HTML in that window (or more
accurately, the tree of Nodes representing that HTML). Document
properties and methods must be prefixed by document..

The constructor new Document() will return a new HTML page,
complete with an empty head and body.

4.5.2.1 Document Properties
Here are a few of the properties of document:

 • document.documentElement — An HTMLHtmlElement whose
innerHTML is the text of the <html> tag.

 • document.head — An HTMLHeadElement whose innerHTML
is the text in the document’s <head>.

 • document.body — An HTMLBodyElement whose innerHTML
is the text in the document’s <body>.

 • document.title — The document’s title, as a string.

 • document.URL — The document’s read-only URL as a string,
including the protocol (such as http://).

 • document.bgColor — The background color of the docu-
ment; may be changed by assignment. The assigned value
should be a string such as "red", "#ff0000", or "ff0000", not
a JavaScript-style hexadecimal number.

 • document.fgColor — The foreground (text) color of the
document, assignable in the same way as bgColor.

The purpose of HTML has always been to describe the structure of
a document, but from the beginning it had a number of features to

Client-Side JavaScript    ◾    135

control style. Modern HTML has deprecated many of these, with
style elements (colors, borders, fonts, etc.) being described instead
by CSS, Cascading Style Sheets. There are a huge number of style
attributes; below is a brief sampling.

 document.body.style.backgroundColor = "#EEEEEE"
 document.body.style.color = "#999999"
 document.body.style.border = "thick solid #0000FF";
 document.body.style.borderColor = "#00ff00";
 document.body.style.fontFamily = "Courier New, Impact"
 document.body.style.fontSize = "24pt"

In order, these (1) set the background color to light gray, (2)
set the text color to a hard-to-read dark gray, (3) set the border
around the entire document to a thick blue line, (4) change the
border color to green, (5) set the font to Courier New if available,
or Impact if Courier New is not available, and (6) set the font size
to 24 points.

Note: In JavaScript, a hex number is written as 0xdigits or
0Xdigits. In HTML, a hex number is written as the string
#digits. Allowable digits are 0 to 9 and A to F (or a to f).

The above examples used document.body, but any selectable
Element can be used. Again, the use of CSS is preferred.

4.5.2.2 Finding Nodes
To manipulate the DOM, it is necessary to be able to find specific
elements. For example, a button click may need to find, read, and
use the contents of a particular text field. There are several ways
this can be done.

 • document.getElementById(id) — Returns the Element with
the property id="id". Ids must be unique within the page.

 • document.getElementsByTagName(tagName) — Returns a
live collection of all the Elements with the given tagName.

136    ◾    Quick JavaScript

 • document.getElementsByClassName(className)
 — Returns an HTMLCollection of all the Elements that
have the property class="className".

Note: The class attribute of an HTML tag is used to apply a
named CSS style to the HTML element.

 • document.querySelector(selector) — Returns the first ele-
ment within the document that is matched by the CSS selec-
tor. The selector is given as a string.

 • document.querySelectorAll(selector) — Returns all ele-
ments within the document that are matched by the CSS
selector. The selector is given as a string.

Some selectors are:

 • tagName — To select all elements with the given tagName.

 • #id — To select the one specific element with the given id.

 • .className — To select all elements with the attribute
class="className". Notice the initial period.

 • tagName.className — To select all elements that have
the given tagName and also have the attribute
class="className".

 • * — To select all elements.

 • selector1, selector2 — To select all elements of type selec-
tor1 and all elements of type selector2.

 • selector1 > selector2 — To select all elements of type selec-
tor2 that are children of elements selected by selector1.

 • selector1 selector2 — To select all elements of type selector2
that are descendants (children, children of children, etc.) of
elements selected by selector1.

Client-Side JavaScript    ◾    137

 • selector1 ~ tagName2 — To select all elements of type
selector2 that are subsequent (later) siblings of selector1
elements.

 • selector1 + selector2 — To select each element of type
selector2 that immediately follows (is the next sibling of)
selector1 elements.

Some properties are returned as an HTMLCollection (list) of the
corresponding elements. Individual elements can be accessed
with brackets or with the index function, for example, document.
forms[0] or document.forms.item(0).

 • document.embeds — A list of the <object> elements.

 • document.forms — A list of all the <form> elements.

 • document.images — A list of all the elements.

 • document.links — A list of all the hyperlinks (the <a> and
<area> elements that have an href attribute).

 • document.scripts — A list of all the <script> elements.

4.5.2.3 Creating Nodes
You have already met the document methods for finding nodes.
Here are some methods for creating nodes.

 • document.createElement(tagName) — Returns a new
Element with the given tagName.

 • document.createAttribute(name) — Returns a new attri-
bute with the given name. A value can be assigned to it later.

 • document.createComment(text) — Returns a new com-
ment node with the given text.

138    ◾    Quick JavaScript

 • document.createTextNode(text) — Returns a new Text
node with the given text.

 • node.cloneNode(deep) — Returns a copy of node; if deep
is true, all ancestors (the complete subtree of node) is also
copied.

Once nodes are created, they can be added to the document with
Node methods.

4.5.3 Node Objects

As noted earlier, everything on an HTML page is represented
in the DOM, and accessible from the variable named document,
which is of type Document. The Document class is a subclass of the
Node class. Other subclasses of Node are CharacterData, Element,
and Attr.

The type hierarchy is large and complex. Fortunately, it is usually
sufficient to think of the DOM as a tree of Nodes, most of which
are Elements. Most useful is document.body, which is the root of
the entire <body> subtree.

4.5.3.1 Node Properties
Here are some of the properties of a Node:

 • parentNode, firstChild, nextSibling, previousSibling,
and lastChild are read-only properties that allow move-
ment from one Node to another.

 • ownerDocument — The Document to which the Node belongs.

 • nodeType is an integer denoting the type of node. There are
12 types; 1 for elements, 2 for attributes, 3 for text, 9 for doc-
uments, and several others.

Client-Side JavaScript    ◾    139

 • children — A live HTMLCollection of all the child nodes
of this node which are Elements. Other node types are not
included.

 • childNodes — A live NodeList of all the child nodes of this
node, regardless of type.

 • textContent — The complete text of the Node and all its
descendants, minus the HTML tags. In other words, the
unstyled text as it would be seen on the screen.

Note: Replacing the innerHTML of an Element will cause the
new text to be parsed as HTML, while replacing its textCon-
tent will result in the new text being displayed as written.

4.5.3.2 Node Methods
Nodes can be added, replaced, or deleted. Here are some of the
methods of a Node:

 • node.before(sibs) — Inserts sibs as siblings (children of the
same node) just before node.

 • node.prepend(children) — Inserts children as children of
node before any existing children.

 • node.append(children) — Inserts children as children of
node after any existing children.

 • node.after(sibs) — Inserts sibs as siblings (children of the
same node) just after node.

 • node.replaceWith(replacements) — Replaces node with
some number of replacement nodes or strings.

 • node.remove() — Removes node.

In the above, the arguments (sibs, children, replacements) may be
one or more nodes or strings. Strings will be inserted as text nodes.

140    ◾    Quick JavaScript

Removing or replacing a node also removes or replaces all the
descendants of that node.

4.5.4 Elements

Every tag in an HTML page is represented by an Element object
in the DOM tree, and every attribute in a tag is represented by an
Attribute object in the DOM. Modifications to a DOM object are
immediately reflected in the appearance of the HTML page.

4.5.4.1 Element Properties
Here are some of the properties of an Element:

 • element.tagName — The read-only name of the tag, in
uppercase (e.g. "HEAD").

 • element.innerHTML — The text between the start tag and
end tag.

 • element.outerHTML — A string consisting of the start tag,
the innerHTML, and the end tag.

 • element.attributes — A NamedNodeMap (see below) of the
attributes of element.

A NamedNodeMap is a live collection of Attr objects. (Despite the
name, this is the only kind of Node in a NamedNodeMap.) It is
array-like, but is not an array. It has a length property, and can be
indexed into like an array.

4.5.4.2 Element Methods
Here are some of the methods of an Element:

 • element.hasAttributes() — Returns true if element has
attributes.

 • element.getAttributeNames() — An array (possibly
empty) of the names of the attributes of element.

Client-Side JavaScript    ◾    141

 • element.hasAttribute(name) — Returns true if element
has the given attribute.

 • element.getAttribute(name) — Returns the value of the
named attribute as a string. If the named attribute does not
exist, the value returned is either null or the empty string,
depending on the browser.

 • element.setAttribute(name, value) — Adds or updates
the value of the named attribute.

 • element.removeAttribute(name) — Removes an attribute
from the element.

An Attr is a Node that represents the attributes of an HTML tag.
It has name and value properties.

A document is a node, but not an element; this results in some
duplication of code within the DOM. The following methods are
identical to methods of document, but search within the element
rather than within the entire document.

 • element.getElementsByTagName(tagName)

 • element.getElementsByClassName(className)

 • element.querySelector(selector)

 • element.querySelectorAll(selector)

There is no equivalent of getElementById, since ids must be
unique within the document.

HTML text can be parsed and inserted into the DOM with the
following method:

 • element.insertAdjacentHTML(where, html) — Parses the
html and inserts the result into the DOM at the location
specified by the string where, which is one of:

142    ◾    Quick JavaScript

 • "beforebegin" — Before element.

 • "afterbegin" — As the first child of element.

 • "beforeend" — As the last child of element.

 • "afterend" — After element.

4.5.5 CharacterData

There are three kinds of CharacterData: Text, Comment, and
ProcessingInstruction (not covered here). These have all the
properties and methods of Node, plus the following:

 • data — The text content.

 • length — The number of characters in the text.

 • nodeName — The string "#text".

 • appendData(data) — Adds data to the end of the text.

 • insertData(offset, data) — Inserts data into the text at the
given offset.

 • deleteData(offset, count) — Removes count characters
from the text, starting at the given offset.

 • replaceData(offset, count, data) — Replaces count char-
acters starting at offset with data.

 • substringData(offset, count) — Returns count characters
from the text, starting at offset.

 • remove() — Removes the node from the DOM tree.

4.5.6 Example: ShowTree

The following HTML page will, when the button is clicked, write out
the complete tree of Elements to the console, though with severely
abbreviated text. The console must be open to see the results.

Client-Side JavaScript    ◾    143

 1 <!DOCTYPE html>
 2 <html>
 3 <head>
 4 <title>showTree Example</title>
 5
 6 <script>
 7 function abbreviate(str) {
 8 le t oneLine = str.replaceAll(/\s+/g,

" ").trim();
 9 if (oneLine.length <= 45) return oneLine;
 10 return "'" + oneLine.substr(0, 30) +
 11 " … " + oneLine.substr(-8, 10) + "'";
 12 }
 13
 14 function onlyWhitespace (str) {
 15 return /^\s+$/.test(str);
 16 }
 17
 18 function showTree(e, indent="") {
 19 let s = indent + e.nodeName + " ";
 20 if (e instanceof CharacterData) {
 21 if (onlyWhitespace(e.textContent)) {
 22 s += "[whitespace] ";
 23 } else {
 24 s += abbreviate(e.textContent);
 25 }
 26 }
 27 if (e.hasAttributes) {
 28 let attrs = e.attributes;
 29 for (let i = 0; i < attrs.length; i += 1) {
 30 if (attrs[i].value != null) {
 31 s += attrs[i].name + ":" +
 32 attrs[i].value + " ";
 33 }
 34 }
 35 }
 36 if (e.innerHTML) {

144    ◾    Quick JavaScript

 37 s += abbreviate(e.innerHTML);
 38 }
 39 console.log(s);
 40 for (node of e.children) {
 41 showTree(node, indent + "| ");
 42 }
 43 }
 44 </script>
 45 </head>
 46
 47 <body>
 48 <!-- Steve Jobs quote -->
 49 <p><i>Everyone</i> should learn how to program
 50 a computer because it teaches you how to

think.</p>
 51 <b utton onclick="showTree(document)"> Show

Tree</button>
 52 </body>
 53 </html>

Line 51 defines a button which, when clicked, will call the
showTree method with the document node.

At line 19, showTree begins the creation of a string s, starting with
some indentation and the tagName of the parameter.

Line 20 tests if the argument is CharacterData (either Text or
Comment). If it is, either an abbreviated version of the text
is added to s, or an indication that the text consists entirely of
whitespace. As written above, with e.children in line 40, this code
will never be used (but see below).

Lines 27 through 35 check if the argument has attributes, and if
so, adds them to string s.

Lines 36 through 38 add an abbreviated version of the node’s
innerHTML, if it has one, and line 39 displays the result on the
console.

Client-Side JavaScript    ◾    145

The abbreviation of the innerHTML is done by lines 7 through 12.
This abbreviation prevents the output from being several times as
long as the original HTML.

Lines 40 to 42 get the children of the argument node e, all of which
are Elements, and recur with some added indentation.

Here is the result:

 #document
 | HTML '<head> <title>showTree Example … </body>'
 | | HEAD '<title>showTree Example</title … /script>'
 | | | TITLE showTree Example
 | | | SC RIPT 'function abbreviate(str) {

let … "); } }'
 | | BODY '<!-- Steve Jobs quote --> <p>< … /button>'
 | | | P '<i>Everyone</i> should learn h … o think.'
 | | | | I Everyone
 | | | BUTTON onclick:showTree(document) Show Tree

The duplication in the above is because elements contain other ele-
ments. For example, showTree Example is in a TITLE tag, which is
in a HEAD tag, which is in an HTML tag, so it shows up three times.
Some but not all whitespace has also been removed.

If e.children in line 40 is replaced with e.childNodes, then all
child nodes of e, not just those that are Elements, nodes will be
printed. This includes Text and Comment nodes.

https://taylorandfrancis.com

147

JavaScript was pressed into service by Netscape in 1995, dur-
ing the “browser wars.” It was initially named LiveScript, but

the name was changed after only three months, probably because
Java was quickly gaining in popularity. There is no real relation-
ship between the two languages; the resemblance is because both
languages borrowed heavily from C.

Microsoft responded in 1996 with a knock-off version called
JScript.

Netscape submitted JavaScript to ECMA International, a stan-
dards organization, for standardization. Microsoft participated
for a few years, then dropped its support. Subsequently, Firefox
and Chrome gained a large enough market share to get Microsoft
to rejoin the party. To make a long story short, standardization
finally succeeded in 2009 with ECMAScript 5, and later with
ECMAScript 6 in 2015. Subsequent versions (through 11) have
only relatively minor changes.

The Oracle Corporation currently owns the name “JavaScript,” so
the official name of the language is ECMAScript.

The history of the HTML DOM follows a similar trajectory.
Standards are currently maintained by the Web Hypertext
Application Technology Working Group, https://whatwg.org/;

Afterword

https://whatwg.org

148    ◾    Afterword

this is the ultimate source for complete, detailed information.
More approachable documentation for HTML, CSS, and
JavaScript can be found at MDN Web Docs, https://developer.
mozilla.org/en-US/.

This book has attempted to provide a reasonably simple, coherent
subset of JavaScript and the HTML DOM. Even so, the book is
half again as long as I, your author, anticipated, and a great deal
has been omitted. My hope is that it will provide a suitable start-
ing point for your future studies.

https://developer.mozilla.org
https://developer.mozilla.org

149

Appendix A:
Array Methods

Although negative array indices are not allowed, array methods
can use negative numbers as indices, with -1 denoting the last
location, -2 the next to last, and so on.

 • Array.from(iter) — Creates and returns an array of values
from an iterable object iter.

 • Array.isArray(obj) — Tests if obj is an array.

 • array.concat(arg1, …, argN) — Creates and returns a
new array with all the elements of the old array and also the
elements arg1, …, argN.

 • array.flat(depth) — Removes one level of nesting from
arrays of arrays (… of arrays).

 • array.includes(value) — Tests if value occurs in array.

 • array.join(sep) — Converts all the elements of the array
to strings and concatenates them, using sep as a separator.
If sep is omitted, commas are used. Holes, undefineds, and
nulls are converted to empty strings.

 • array.pop() — Removes and returns the last value in the
array and decrements the length of the array.

150    ◾    Appendix A: Array Methods

 • array.push(value1, …, valueN) — Adds the values to the
end of the array and returns the new length of the array.

 • array.shift() — Removes and returns the first value in the
array. Remaining elements are all shifted down one place.

 • array.slice(start, end) — Returns a new array consisting
of elements start through end - 1 of the original array.

 • array.sort() — Sorts the array in place, in alphabetical
(lexicographic) order; numbers are sorted according to their
string representations, so 200 < 5.

 • array.splice(start) — Removes all elements from index
location start to the end of the array and returns them in a
new array.

 • array.splice(start, count) — Removes count elements
from the array, starting at index location start, and returns
them in a new array.

 • array.splice(start, count, value1, …, valueN) — Removes
count elements from the array, starting at index location
start, and replaces them with new elements value1, …, val-
ueN. The removed elements are returned in a new array.

 • array.toString() — Creates and returns a comma-sep-
arated list of the string representations of each element in
the array. This method may not show brackets, so a higher-
dimensional array will appear one-dimensional.

 • array.unshift(value1, …, valueN) — Adds value1, …,
valueN to the beginning of the array; the return value is the
new length of the array.

The JavaScript methods Math.min and Math.max each take an arbi-
trary number of arguments; they do not take arrays. However, the
spread operator (...) will turn an array into a sequence of values,
so Math.min(...array) and Math.max(...array) work fine.

151

Appendix B:
Higher-Order Methods

There are a number of built-in array methods that take a func-
tion as a parameter. Arrow functions are often used as arguments,
though functions defined in other ways may be used. In the fol-
lowing, we use f for a function that takes one argument and f2 for
a function that takes two arguments.

 • array.sort(f2) — Sorts the array in place and also returns
the sorted array. If f2(x, y) returns a negative result, x is
considered to be less than y; if zero, equal; if positive, x is
greater than y..

 • For example, a.sort((x, y) => x - y)) sorts the array a
in ascending numeric order.

 • array.forEach(f) — Calls the function f for each element
of array. To be useful, f should have side effects, since any
values returned by f are ignored.

 • array.find(f) — Finds and returns the first value in array
for which f returns a truthy value (or undefined if none is
found)

152    ◾    Appendix B: Higher-Order Methods

 • array.findIndex(f) — Finds and returns the first index of
a value in array for which f returns a truthy value (or -1 if
none is found).

 • array.map(f) — Applies f to each element of array, return-
ing an array of the results. Holes, if any, are preserved.

 • array.flatMap(f) — Applies f to each element of array. If
the resulting array is multidimensional, one level of nesting
is removed, promoting all values to the next higher level.

 • array.filter(f) — Returns an array containing all and only
those values of array for which f returns a truthy value.

 • array.reduce(f2, initial) — Given a function f2 of two
parameters, applies f2 to initial and the first element of
array, then applies f2 to that result and the second element,
and so on, resulting in a single value.

 • If array is empty, initial is returned.

 • If array is known to be nonempty, initial may be omitted.

 • For example, array((x, y) => x + y) returns the sum of
all the elements of array.

 • array.reduceRight(f2) — Like reduce, but works right to
left instead of left to right.

 • array.some(f) — Returns true if array contains at least one
element for which f returns a truthy value.

 • array.every(f) — Returns true if f returns a truthy value
for every element of the array.

153

Appendix C:
String Methods

Here are some of the more important methods on strings. Strings
are immutable (cannot be modified), hence all string methods
return a new string.

 • string.charAt(n) — Returns the nth character of a string.
Same as string[n].

 • string.charCodeAt(n) — Returns the numeric Unicode
value of the nth character of a string.

 • string0.concat(string1, …, stringN) — Returns the con-
catenation (joining) of all the given strings.

 • string.fromCharCode(c1, …, cN) — Creates a string from
the given numeric Unicode values.

 • string.includes(substr) — returns true if substr occurs as
a substring of string, otherwise false.

 • string.includes(substr, start) — returns true if substr
occurs as a substring of string starting at or after start, oth-
erwise false.

154    ◾    Appendix C: String Methods

 • string.indexOf(substring) — Returns the position of the
first character of substring in string, or -1 if not found.

 • string.indexOf(substring, start) — Returns the position
of the first character of substring in string that begins at or
after position start, or -1 if not found.

 • string.lastIndexOf(substring) — Returns the position
of the first character of the last occurrence of substring in
string, or -1 if the substring cannot be found.

 • string.lastIndexOf(substring, start) — Returns the posi-
tion of the first character of the last occurrence of substring
in string that occurs at or before position start, or -1 if the
substring cannot be found.

 • string.match(regexp) — Returns an array containing the
results of the regular expression match, or null if no match
is found. On a successful match:

 • If the flag g is set, the array contains the matched
substrings.

 • If g is not set, array location 0 contains the matched text,
and remaining locations contain text matched by any
parenthesized subexpressions. The array index property
gives the position of the first character of the match.

 • string.padEnd(length, string2) — Adds characters from
string2 to the end of string as many times as needed to form
a new string of length length. If omitted, string2 defaults to
blanks. If string is already of length length or greater, the
result is just string.

 • string.padStart(length, string2) — Adds characters from
string2 to the beginning of string as many times as needed
to form a new string of length length. If omitted, string2
defaults to blanks. If string is already of length length or
greater, the result is just string.

Appendix C: String Methods    ◾    155

 • string.repeat(n) — Returns a string consisting of n copies
of string.

 • string.replace(target, replacement) — Returns a string
in which the first occurrence of target has been replaced by
replacement.

 • The target may be either a string or a regular expression.
If the g flag of a regular expression is set, all occurrences
of target are replaced.

 • The replacement may be the name of a one-parameter
function (not a method). The function is applied to the
matched target to get the actual replacement value.

 • string.replaceAll(target, replacement) — Like replace,
except that all occurrences of target are replaced. If target is
a regular expression, the g flag must be used (!).

 • string.search(target) — Returns the index of the first char-
acter of a string that matches the string or regular expres-
sion target, or -1 if no such string can be found.

 • string.slice(start, end) — Returns a substring of string
starting at position start and ending position end-1. If end
is omitted, all characters at and after start are returned. The
arguments start and end may be negative: -1 is the last char-
acter of string, -2 is the next to last, and so on.

 • string.split(string2) — Breaks string up into substrings
using string2 as a separator, and returns an array of the
results. If string2 is the empty string, an array of characters
is returned. A regular expression may be used in place of
string2.

 • string.substr(start, length) — Returns a substring of
at most length characters, starting from position start of
string. If there are fewer than length characters remaining,

156    ◾    Appendix C: String Methods

all remaining characters will be returned. The argument
start may be negative: -1 is the last character of string, -2 is
the next to last, and so on.

 • string.substring(start, end) — Returns a substring of
string starting at position start and ending position end-1. If
end is omitted, all characters at and after start are returned.
Negative indices are treated as zeroes.

 • string.toLowerCase() — Returns a lowercase version of
string.

 • string.toUpperCase() — Returns an uppercase version of
string.

 • string.trim() — Returns a string with initial and final
whitespace removed.

 • string.trimEnd() or string.trimRight() — Returns a string
with final whitespace removed.

 • string.trimStart() or string.trimLeft() — Returns a string
with initial whitespace removed.

157

Appendix D:
Regular Expressions

Although each language may add its own flourishes, basic regu-
lar expressions are quite standardized across languages. Inside a
regular expression there may be the following:

 • Literals are characters that stand for themselves. Examples
include letters, digits, and whitespace characters. The regu-
lar expression/cat/will try to match an occurrence of the
word “cat.”

 • Metacharacters are characters that have special meaning in
a regular expression. The metacharacters are: \ | () [{
^ $ * + . ?

 • Escaped characters are characters that are preceded by
a backslash in order to use them as literals rather than as
metacharacters or because they are difficult to represent oth-
erwise. For example, the question mark has a special mean-
ing in a regular expression so if you want it to mean just the
literal character, you have to escape it.: \?

Table A.1 lists the metacharacters and their meanings.

158    ◾    Appendix D: Regular Expressions

Table A.1
Expression Meaning Examples Explanation

a literal
character

That same character M The capital letter M

XY An X followed by a Y cat The three characters c
a t, in that order

[XYZ] Any one of the
characters X, Y, or Z.

b[aeiou]g One of the words bag,
beg, big, bog, or
bug

[X-Y] Any one character
between X and Y,
inclusive

[0-9]
[a-zA-Z]

Any decimal digit;
Any letter

[^X-Y] Any one character not
between X and Y,
inclusive

[^a-zA-Z] Any non-letter

X* Zero or more
occurrences of X

\s* Any amount of
whitespace

X+ One or more
occurrences of X

\s+ At least one whitespace
character

X? An optional X dogs? Either dog or dogs

X{n,m} From n to m
occurrences of X

his{2,4} hiss or hisss or
hissss

X{n,} n or more occurrences
of X

his{2,} hiss or hisss or
hissss, and so on

X{n} Exactly n occurrences
of X

his{2} Hiss

X|Y Either X or Y The
(boy|girl)

Either The boy or The
girl

^X X at the beginning of the
string

^[A-Z] An initial capital
letter (the ^ itself
matches the empty
string)

(Continued)

Appendix D: Regular Expressions    ◾    159

Do not include extra spaces in regular expressions! A space is a lit-
eral character and a space in a regular expression requires a space
in the string being searched.

Expression Meaning Examples Explanation

X$ X at the end of the string [\.\?!]$ Ends with a period,
question mark or
exclamation point
(the $ itself matches
the empty string)

\b The empty string
between a word
character (\w) and a
nonword character
(\W)

\bC\b The word C, as in the
language

\B An empty string that
is not between a
word character (\w)
and a nonword
character(\W)

un\B The initial part of the
words unhealthy,
undulate, etc.

(?=pat) Look ahead to make
sure that the pattern
pat will match next,
but do not count it in
the matched part

\w+(?=) A word, provided it is
followed by a space

(?!pat) Look ahead to make sure
that the pattern pat
will not match next

\w+(?!-) A word, provided it is
not followed by a
hyphen

(X) Group the expression
X into a single unit,
and remember what it
matches

(\/\/.*$) A //-style comment
(keep for later
reference)

(?:X) Group the expression
X into a single unit,
but do not remember
what it matches

(?:\/\/.*$) A //-style comment
(discard it)

Table A.1 (Continued)

160    ◾    Appendix D: Regular Expressions

A character class represents any one of the set of characters. There
are several predefined character classes:

 • \w A word character; same as [a-zA-Z0-9_]

 • \W A nonword character; same as [̂ a-zA-Z0-9_]

 • \s A whitespace character

 • \S A non-whitespace character

 • \d A digit; same as [0-9]

 • \D A nondigit; same as [̂ 0-9]

 • (A period, not escaped) Any character except a line terminator

Other character classes can be described by using brackets. For
example, the character class [aeiouAEIOU] could be used to rec-
ognize vowels.

A regular expression may be followed immediately by a flag. Two
important flags are g for “global,” meaning “do it everywhere,”
and i for “case insensitive.”

161

References

Crockford, Douglas. JavaScript: The Good Parts. O’Reilly Media; 1st edi-
tion (May 1, 2008).

Flanagan, David. JavaScript: The Definitive Guide: Master the World’s
Most-Used Programming Language. O’Reilly Media; 7th edition
(June 23, 2020).

https://taylorandfrancis.com

163

Index

!DOCTYPE, 2
&& (and operator), 71
++ (add 1 operator), 72
-- (subtract 1 operator), 72
... (rest parameter), 76
... (spread operator), 77, 103
/* multi-line comment, 7
// comment, 7
? (optional chaining operator), 92
?? (nullish coalescing operator), 72
|| (or operator), 71
~n (n != -1 test), 57
__proto__ property, 106

action attribute, 121
active element, 114
alert function, 4
apply (function method), 80
argument, 75
array, 9
array literal, 9
array methods, 149
Array.from function, 10
arrays, 59
arrow functions, 63, 74
arrow notation, 94
ASI, 22
assert methods, 45
assign (object method), 90
assignment operator, 20
assignment statement, 26

associativity, 69
ATTR, 140–141
attributes, 110
automatic garbage collection, 62
Automatic Semicolon Insertion, 22

Babel, 107
backticks, 55
bad operators, 72
bigint, 8, 54
bind (function method), 80
bitwise operators, 72
blank object, 88
block, 18, 23, 27
block scope, 18
body tag, 2, 110
boolean, 8
break statement, 35
break, omission of, 34
browser wars, 147
bubbling, 129
button, 114

call (function method), 79
call by reference, 75
call by value, 75
callback, 63
camelCase, 17, 126
Cascading Style Sheets, 110, 135
case, significance of, 51
Chai, 43, 45

164    ◾    Index

chaining, 91
chaining promises, 65
character class, 160
CharacterData, 142
characters, escaped, 55
checkbox widget, 124
class, 98
class methods, 99
class prototype, 106
closures, 80
coercions, 20, 65
CoffeeScript, xvii
color widget, 125
Comment, in DOM, 112
compound statement, 23, 27
concatenation, 20
configurable (object property), 96
confirm function, 4
console, 2
console.log function, 4
const declaration, 17
constructor, 74, 89
container tag, 109
continue statement, 36
conversions, 20, 65
create (object method), 89
Crockford, Douglas, 72
CSS, 110, 135
currentTarget (event method),

129
Customer example, 104

Dart, xvii
Date methods, 13
date widget, 123
Dates, 12
datetime-local widget, 123
declarations, 23
defineProperty (object method), 97
dense arrays, 59
descriptors, 96
destructuring, 51
developer mode, 3

difference (set function), 61
do-while loop, 30
document object, 134
document properties, 134
document tag, 109
document.write function, 5
document.writeln function, 5
DOM, 111
dot notation, 85

Eclipse, 3
ECMAScript, xvii, 147
element methods, 140
element properties, 140
Element, in DOM, 112
elements, 140
email widget, 123
empty statement, 38
end tag, 109
entries (map function), 61
entries (object method), 67
enumerable (object property), 96
EPSILON, 54
equality tests, 21
escaped characters, 55
escaped characters in regex,

157
event handler, 115, 125
event-driven, 113
events, 112, 125
expression, 69
expressions as statements, 27
extending a class, 102

falsy, 56
fields of a class, 99
fields of an object, 85
file widget, 124
filter (array method), 95
flags, 96
Flanagan, David, xv
floating point comparison, 20
for/in loop, 39

Index    ◾    165

for/of loop, 38
form, 113, 118
form submission, 121
form verification, 120
form, defining a scope, 119
frames, 130
from (array method), 67
fromEntries (object method), 67
function literal, 74
function methods, 79
function statement, 73
functions, defining, 24, 73
functions, properties of, 78

generator, 82
generator object, 82
get request, 121
getElementById (document method),

115, 135
getElementsByClassName (document

method), 135
getElementsByTagName (document

method), 115, 135
getOwnPropertyDescriptor (object

method), 97
getPrototypeOf (object method),

95, 106
getters, of a class, 100
global object, 93
global scope, 18
Goldman, William, 92
google example, 132
Graphical User Interface, 113
GUI, 113

handling an event, 113
hasOwnProperty (array method), 60
head request, 122
head tag, 2, 110
Hello World example, 1
hexadecimal literal, 55
hidden widget, 125
higher-order methods, 151

hoisting, 24
HTML, xvii
HTML DOM, 111
HTML page, 109
HTML tag, 110
HTMLCollection, 116, 137

IDE, 1, 3
Identifiers, 17, 50
identity, 21
IEEE 754, 53
if statement, 28
iframes, 130
image widget, 124
immutable, 56
in operator, 87
infinite loop, 29
Infinity, 54
inheritance, 102
innerHTML, 109, 115
input (HTML tag), 114
instanceof, 89
Integrated Development

Environment, 1
intersection (set function), 61
ISO 8601, 14
iterable, 83
iterable types, 10

Java operators, 20
JavaScript Object Notation, 108
JavaScript-specific statements, 38
JavaScript: The Definitive Guide, xv
JavaScript: The Good Parts, 72
JScript, 147
jsfiddle.net, 3
JSON, 108

key:value pairs, 85
keywords, 68

label widget, 125
labeled statement, 35

166    ◾    Index

left associative, 69
let declaration, 17
literals, in regex, 157
live collection, 116
LiveScript, 147
lodash.com, 20

machine address, 90
make_counter example, 80
map (array method), 94
Map methods, 12
Maps, 11, 61
Math constants and functions, 67
MAX_SAFE_INTEGER, 54
MAX_VALUE, 54
meta-information, 57
metacharacters, 157
method, 77, 79, 91, 99, 101
MIN_SAFE_INTEGER, 54
MIN_VALUE, 54
Mocha, 43
modulus, 18

named function literal, 74, 78
naming conventions, 16
NaN, 4
NetBeans, 3
node methods, 139
node objects, 138
node properties, 138
node selectors, 136
Node, in DOM, 111
Node.js, 93
NodeList, 116
nodes, creating, 137
nodes, finding, 135
non-strict mode, 18
noscript tag, 111
Notepad++, 3
null type, 8
nullish coalescing operator, 72
number, 53
Number function, 66

Number widget, 123
number, how stored, 8

object, 8
object literal, 85
object properties, 85
objects, copying, 90
objects, creating, 85
objects, defining, 9
octal literal, 55
onEvent, 126–128
optional chaining operator, 92
Oracle Corporation, 147
order of precedence, 20
overriding, 105

parameter, 75
parameters, with default value, 76
parse (JSON method), 108
parseFloat function, 66
parseInt function, 66
passive element, 116
password widget, 122
pattern attribute, 120
placeholder attribute, 120
pointer, 90
polyfill, 107
pop (array method), 59
post request, 122
precedence, 69
precedence, boolean operators, 72
preventDefault (event method), 129
prime number example, 42
Princess Bride, The, 92
procedures, 38
Promise, 63
Prompt function, 4
properties, 78
property:value pairs, 9
prototype, 89, 95
prototype, class, 106
push (array method), 59
put request, 122

Index    ◾    167

querySelector (document method),
135

querySelectorAll (document
method), 135

radio widget, 124
range example, 83
range widget, 125
recursive functions, 78
reduce (array method), 95
reference, 90
regexp (regular expression), 14
regexp methods, 15–16
regular expression, 14, 157
required attribute, 120
reserved words, 68
reset button, 118
rest parameter, 76
return statement, 37
right associative, 69

Safari, 3
scope, 18
scope in loops, 32
script tag, 2, 110
search widget, 122
selectors, node, 136
semicolons, 22
set, 11
set functions, 11
Sets, 60
setters, of a class, 100
shallow copy, 77, 90
shift (array method), 59
short-circuit operators, 71
showTree example, 142
slider (range) widget, 125
sloppy mode, 18
sort method, 94
sparse arrays, 10, 59
spread operator, 61, 103
stacks, 59
start tag, 109

statements, familiar, 25
static collection, 116
stopPropagation (event method),

129
strict equality, 20
strict mode, xvii, 49
strictly equal, 19
string, 8, 55
string methods, 153
stringify (JSON method), 108
stylesheets, 110
subclass, 102
Sublime Text, 3
submit button, 118
super (constructor call), 103
superclass, 103
switch statement, 33
symbol, 8, 57
Symbol.iterator, 83
symmetricDifference (set

function), 61

target (event method), 129
template literals, 55
ternary operator, 20
test framework, 43
test, in Chai, 45
test, isPrime example, 46
text field, 116
Text, in DOM, 112
textarea widget, 123
then (promise method), 64
this, 92
this, unattached, 79
throw statement, 39
time widget, 123
toFixed function, 66
toFixed method, 20
toJSON (object method), 108
toString function, 66
trailing comma, 10
transpiler, 107
truthy, 56

168    ◾    Index

try-catch-finally statement, 40
typeof function and operator, 8

undefined, 19
undefined type, 8
undefined, in sparse arrays, 60
underscore.js, 20
underscores in numbers, 53
Unicode, 50
Uniform Resource Locator, 121
union (set function), 61
unshift (array method), 59
URL, 121
URL widget, 123
use strict, xvii

var declaration, 18
Visual Studio, 3

Visual Studio Code, 3
void operator, 72

WeakMap, 62
Web Workers, 93
week widget, 123
WHATWG, 147
while loop, 29
widgets, 113
window example, 132
window methods, 131
window object, 129
window properties, 130
with statement, 50
wrapper object, 66
writable (object property), 96

yield statement, 82

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Author
	Preface
	Versions of JavaScript
	Chapter 1: Introduction
	1.1 Hello, World!
	1.2 JavaScript in the Browser
	1.3 Browser Consoles
	1.4 Running JavaScript
	1.5 Getting Input
	1.6 Producing Output

	Chapter 2: JavaScript: The Bare Minimum
	2.1 Comments
	2.2 Data Types
	2.2.1 Primitives
	2.2.2 User-Defined Objects
	2.2.3 Built-In Object Types
	2.2.4 Arrays
	2.2.5 Sets
	2.2.6 Maps
	2.2.7 Dates
	2.2.8 Regular Expressions

	2.3 Identifiers
	2.4 let and const
	2.5 var
	2.6 Operators
	2.7 Equality and Identity
	2.8 Conversions
	2.9 Statements
	2.9.1 Semicolons
	2.9.2 Declarations
	2.9.3 Function Definitions
	2.9.4 Familiar Statements
	2.9.4.1 Assignment Statements
	2.9.4.2 Expressions
	2.9.4.3 Compound Statements
	2.9.4.4 If Statements
	2.9.4.5 While Loops
	2.9.4.6 Do-While Loops
	2.9.4.7 Traditional For Loops
	2.9.4.8 Scope in Loops
	2.9.4.9 Switch Statements
	2.9.4.10 Labeled Statements
	2.9.4.11 Break Statements
	2.9.4.12 Continue Statements
	2.9.4.13 Return Statements
	2.9.4.14 Empty Statements

	2.9.5 JavaScript-Specific Statements
	2.9.5.1 For/of
	2.9.5.2 For/in
	2.9.5.3 Throw
	2.9.5.4 Try-catch-finally
	2.9.5.5 The with Statement

	2.10 Example: Prime Numbers
	2.11 Testing
	2.11.1 The Mocha Test Framework
	2.11.2 Testing with Chai
	2.11.3 Testing Example

	Chapter 3: JavaScript: In More Detail
	3.1 Strict Mode
	3.2 Identifiers
	3.3 Destructuring
	3.4 Data Types
	3.4.1 Numbers
	3.4.2 Strings
	3.4.3 Booleans
	3.4.4 Symbols
	3.4.5 Arrays
	3.4.6 Sparse Arrays
	3.4.7 Sets
	3.4.8 Maps
	3.4.9 WeakMaps
	3.4.10 Promises
	3.4.11 Conversions

	3.5 Math
	3.6 Reserved Words
	3.7 Good Operators
	3.8 Operator Notes
	3.9 Bad Operators
	3.10 Functions
	3.10.1 Defining Functions
	3.10.2 Parameters and Arguments
	3.10.3 Functions Are Data
	3.10.4 Functions Are Objects
	3.10.5 Function Methods
	3.10.6 Closures
	3.10.7 Generators
	3.10.8 Iterators

	3.11 Objects
	3.11.1 Definition of Objects
	3.11.2 Creating Objects
	3.11.3 Copying Objects
	3.11.4 Methods
	3.11.5 Optional Chaining
	3.11.6 This
	3.11.7 Higher-Order Functions
	3.11.8 Prototypes
	3.11.9 Descriptors
	3.11.10 Classes and Inheritance
	3.11.10.1 Classes
	3.11.10.2 Inheritance
	3.11.10.3 Overriding Methods and Fields
	3.11.10.4 Class Prototypes

	3.12 Transpilers and Polyfills
	3.13 JSON

	Chapter 4: Client-Side JavaScript
	4.1 Essential HTML
	4.2 Adding JavaScript to HTML
	4.3 DOM Overview
	4.4 Graphical User Interfaces
	4.4.1 Events
	4.4.2 Widgets
	4.4.3 Buttons
	4.4.4 Finding Widgets
	4.4.5 Text Fields
	4.4.6 Buttons and Forms
	4.4.7 Form Verification
	4.4.8 Form Submission
	4.4.8.1 Get Requests
	4.4.8.2 Post Requests
	4.4.8.3 Other Requests

	4.4.9 Additional Text Widgets
	4.4.10 Other Input Widgets
	4.4.11 Events
	4.4.12 Bubbling

	4.5 Using the DOM
	4.5.1 The Window Object
	4.5.1.1 Window Properties
	4.5.1.2 Window Methods
	4.5.1.3 Window Example

	4.5.2 The Document Object
	4.5.2.1 Document Properties
	4.5.2.2 Finding Nodes
	4.5.2.3 Creating Nodes

	4.5.3 Node Objects
	4.5.3.1 Node Properties
	4.5.3.2 Node Methods

	4.5.4 Elements
	4.5.4.1 Element Properties
	4.5.4.2 Element Methods

	4.5.5 CharacterData
	4.5.6 Example: ShowTree

	Afterword
	Appendix A: Array Methods
	Appendix B: Higher-Order Methods
	Appendix C: String Methods
	Appendix D: Regular Expressions
	References
	Index

