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Preface to the Second Edition

While maintaining all the contents from the first edition, the updated edition pro-

vides an expanded view of the subject matter in modeling of fading, shadowing, and

shadowed fading as well as diversity techniques. In order to provide a didactic

component, more background has been provided to expand the concept of random

variables (Chap. 2), newer models in fading and shadowing (Chap. 4), and analysis

of diversity (Chap. 5). All these new sections now also provide appropriate Matlab

scripts necessary to follow and interpret the results. A new chapter on cognitive

radio (Chap. 7) has been added to complete the description of fading, shadowing,

and shadowed fading in wireless systems.

It would not have been possible to complete this book without the support and

assistance provided by my wife Raja and our daughter Raji. Their diligence and

active participation were vital for the successful and timely completion of the

project.

I thank my editor Ms. Mary James for all her support and prompt actions to keep

moving the project along. The support provided by Springer, particularly Mr. Brian

Halm and his colleagues in USA and Mr. T. Murugesan, R. Santhamurthy and their

team in India, is also gratefully acknowledged.

I extend my sincere appreciation to Drexel University for providing the sabbat-

ical leave during the current academic year.
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Preface to the First Edition

During the past two decades, there has been a substantial growth in research in

wireless communications. The number of journals published from various parts of

the world catering to the research community has grown exponentially. Despite

such a growth, the engineering community still needs more information so as to

thoroughly comprehend wireless channel characteristics. What specifically must be

understood are the effects of channel degradation brought on by statistical fluctu-

ations in the channel. This must be grasped fully and comprehensively before

successful attempts can be made to mitigate the channel impairments. Such statis-

tical fluctuations do manifest as variations in signal powers, which are observed in

the channel generally modeled using a variety of probability distributions, both in

straight forms and in compound forms. While the former might explain some of the

effects, the latter, namely, the compound models, which incorporate both short-

term and long-term power fluctuations in the channel, help explain the much more

complex nature of the signals in these channels. Often, we see newer and more

powerful models being proposed, presented, and tested to see how they fit the

observed power fluctuations.

This book addresses the needs of graduate students and instructors who are

exploring the various aspects of power fluctuations, which are generally expressed

in terms of fading, shadowing, and shadowed fading channels. This work grew out

of my studies and explorations during a two-quarter sabbatical (September 2009–

March 2010) granted by Drexel University. The chapters are based on both my

teaching and research into the statistical aspects of wireless channels. Specifically,

this work focuses on the analysis and study of several models currently available in

the literature of wireless communications (books, archival journals, and conference

proceedings). This expansive research describes the statistical characteristics of the

signals that account for the fading, shadowing, and shadowed fading seen in these

channels. The book is not intended as a catalog or encyclopedia of fading and

shadowing. Indeed, the thrust of the book is a pedagogical approach to the topics of

fading and shadowing. It provides insight into the modeling and analysis of fading

and shadowing. Starting with statistical background and digital communications,
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the chapters are formulated to follow the details of modeling of the statistical

fluctuations of signals in these channels. The degradations in the channels arising

from the statistical fluctuations are quantitatively described in terms of various

measures. This is followed by the discussion of diversity and associated signal

processing algorithms that mitigate the effects of statistical fluctuations in the

channel and the quantitative measures of improvements brought on by diversity.

The book also examines the effects of interference from other channels. It is my

expectation that this work will provide an in-depth and unique coverage of topics

for graduate-level study in wireless communications.

The book would not have been possible without the full support of my wife Raja

and our daughter Raji. Besides reading the early drafts of the chapters, they

provided insights into the chapter organization and pointed out the need for further

explanation. Their efforts made it possible to complete the project in a reasonable

period; I am proud to say that the book has been a family project.

I am very grateful to our friend Ms. Maura Curran who graciously agreed to

proofread the chapters on very short notice, despite having a full workload as a

compositor and editor.

I thank my editor Mr. Brett Kurzman. Without his enthusiastic support, this work

could not have been undertaken. The support provided by Springer, particularly

Mr. Brian Halm and his colleagues in New York and Mr. D. Raja and his team at

SPi Global, is acknowledged. I also extend my grateful appreciation to Drexel

University for their support and cooperation.

Philadelphia, PA, USA P. Mohana Shankar
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Chapter 1

Overview

1.1 Outline

Wireless communications are ubiquitous, covering all aspects of everyday life from

simple voice communication to vital transmission of critical information in battle

fields and healthcare complexes. This expansive use of wireless channels is an

important tool for fast and efficient means of data transmission. It requires a careful

study of the characteristics of the channel so that the communication can be

maintained with high fidelity and reliability. In this context, the study of the signal

transmission and deterioration in the signal quality and characteristics as they pass

through these channels assumes great significance. In this book, the signal strengths

in these channels are described using appropriate statistical models. Such modeling

and study of the models present a challenge to the instructors, graduate students,

and researchers who are in the forefront of developing techniques to improve signal

quality and to enhance overall reliability of the communication link between the

sender and the recipient. This book is an effort to address this challenge. It provides

a thorough discussion of the models used to describe signal strength fluctuations. It

also examines the diversity techniques which are developed to mitigate the effects

of these fluctuations.

The fundamental issues described in this work can be summarized in a few

simple equations that relate the transmitted and received signals. The received

signal in an ideal channel can be expressed as

r ¼ sþ n: ð1:1Þ

In (1.1), r is the received signal, s is the transmitted signal, and n is the noise.

Noise n is typically Gaussian distributed with zero mean. We expect the received

signal strength r to have a mean value of s as per (1.1). However, measurements in

wireless channels suggest that the observed fluctuations do not follow such a simple

pattern and that the representation in (1.1) is inadequate. Taking into account the
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random nature of the fluctuations observed, a more appropriate way to represent the

received signal in a wireless channel is

r ¼ Asþ n: ð1:2Þ

In (1.2), A represents the fluctuations in the channel. In terms of accurately

describing the characteristics of the channel, it is necessary to have the best fit of the

statistical distribution of A to the measured or observed data. Such an exploration

has led to the development of a number of different (statistical) models to describe

the fluctuations in the signal strengths observed, with each new model providing

better and better matches to the experimental observations. While the model

described through (1.2) provides reasonable fits to the observed data in some of

the geographical regions, it was shown to be insufficient to comprehensively

describe the signal fluctuations in all the geographical regions. To address such

anomalies, (1.2) can be modified as

r ¼ ABsþ n: ð1:3Þ

In (1.3), a new parameter B has been introduced with its own characteristic

statistical behavior. Thus, by having two different statistical distributions

representing A and B in (1.3), it might be possible to increase the accuracy of

modeling the signal fluctuations taking place in wireless channels. In terms of

standard terminology in wireless communications, (1.1) represents an ideal chan-

nel, (1.2) represents a fading channel, and (1.3) represents a shadowed fading

channel. As in the case of A, it is possible to explore various statistical distributions
for B to provide the best possible fit for the observations and make the representa-

tion in (1.3) reasonably versatile. The product concept presented in (1.3) can be

further extended to a cascaded one indicating the product of three or more param-

eters as in

r ¼
YN

k¼1

Ak

" #
sþ n: ð1:4Þ

In (1.4), N is the number of cascaded components. One can view (1.3) as a

special case of (1.4) with N ¼ 2 and (1.2) as a special case with N ¼ 1. Note that

(1.1) is another special case of (1.2) when the density function of A is a delta

function.

As illustrated through the equations above, this work provides descriptions of the

models to fit the observed signal strength fluctuations along with the rationales for

their appropriateness. Their inadequacies necessitate the need for newer models and

appropriate measures to evaluate the performance of the signal transmission

through the wireless channels. Such a detailed view is essential so that strategies

might be developed to mitigate the adverse effects of shadowed fading channels.

Mitigation is achieved through diversity implementation. The book explores the

2 1 Overview



characteristics of signals in detail with each of the models available to describe

fading and shadowing before and after the implementation of diversity.

Chapter 2 provides an advanced review of random variables with specific

emphasis on probability densities and cumulative distribution functions (CDFs)

(which are of particular interest in wireless communications). A number of densi-

ties and distributions are presented and their associations with the study of fading

channels are clearly enunciated to illustrate the relationships among various densi-

ties and their special forms.

This chapter also provides several examples of interest in wireless communica-

tions including functions of multiple random variables, derivation of their densities,

and distribution functions. Special attention has been paid to the functions of

random variables generated from variables of gamma type. This includes cascaded

ones since several models of fading and shadowing make use of gamma-related

random variables. Order statistics is also discussed in detail. Its relationship to the

selection combining as well as GSC algorithms (discussed later in the text) is

shown. Several bivariate random variables of interest in wireless communications

are introduced. Statistical decision theory is presented for the case of signal

detection in Gaussian as well as non-Gaussian noise. This chapter also includes a

presentation on Chebyshev inequality and Chernoff bounds.

An overview of the digital communications is given in Chap. 3. Starting with the

basics of pulses, pulse shapes, and their spectra, the various modems which form

the core of the wireless communications are presented. These modems include both

linear and nonlinear forms of modulation as well as binary and M-ary modulation

schemes. The specific waveforms of the modulated outputs are illustrated so as to

emphasize the differences and similarities among the modems. The calculation of

error rates, the effects of phase mismatches, problems with timing, and the overall

impact of these factors on the error rates are explored. Chapter 3 contains detailed

discussion of the spectra associated with the various modems. Orthogonal fre-

quency division multiplexing (OFDM) techniques which allow greater flexibility

in achieving higher data rates while providing some fading mitigation are

presented. All the special functions of interest such as complimentary error func-

tions, Q functions, Marcum’s Q functions, and generalized Marcum’s Q functions

are included, along with such topics of interest as noise and eye patterns.

Chapter 4 provides a complete description of all the models currently available

for the statistical characterization of the signal strengths in wireless channels.

Starting from the basic concepts of multipath propagation phenomenon, the chapter

first presents the simple Rayleigh model for the envelope of the received signal. The

importance of the phase of the received signal is demonstrated in connection with

the description of the multipath channels when a direct path between the transmitter

and receiver also exists. While these early and simple models of the short-term

fading are depicted along with the Nakagami model, other simple models based on

gamma, generalized gamma, and Weibull are presented. Establishing the differ-

ences between short-term fading and long-term fading, the simplest model for the

long-term fading or shadowing is introduced. The relationships among the simple

lognormal density for the shadowing and equivalent models for shadowing using
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the gamma and Gaussian inverse densities are illustrated. This is followed by the

discussion of the so-called compound models for shadowed fading channels to

characterize the signal when both short-term fading and shadowing are present in

the channel. The Suzuki and Nakagami-lognormals are introduced initially before

presenting equivalent models using the generalized K distribution, the Nakagami

inverse Gaussian distributions, and the generalized gamma distribution. The notion

of multiple scattering to explain short-term fading is advanced through the demon-

stration of the so-called double Rayleigh, double Nakagami, and other mixture

distributions. From there, the concept of cascaded channels as a complete means of

describing the short-term fading is explained. Then we extend the notion of

cascading to encompass shadowing leading to the Nakagami-N-gamma channels

to model shadowed fading channels. The model is compared with the Nakagami-

lognormal for shadowed fading channels.

Beginning with the simplest Rayleigh model, each model is characterized in

terms of such quantitative measures as the amount of fading, signal-to-noise ratio

(SNR), ergodic capacity, outage probability, and error rate. In this way the degra-

dation in channels from fading and shadowing with each of these models can be

understood and compared. The reader will understand the justification for more

complex models to describe the statistical characteristic of the wireless channels.

Chapter 4 introduces such complex models for fading as the η� μ, the κ � μ, and so
forth. To complete the picture of fading and shadowing this chapter concludes with

a discussion of some second-order statistical properties. Two examples of these are

the level crossing rates and average fade duration.

Chapter 5 explores the concepts of diversity. It begins with the three basic forms

of diversity combining algorithms: the selection combining (SC), equal gain com-

bining (EGC), and maximal ratio combining (MRC). It also introduces the variation

of the selection combining, specifically the switch and stay combining (SSC).

While Chap. 4 delineates all the models for fading and shadowing, Chap. 5 empha-

sizes fading and shadowing using either the Nakagami (or gamma) distribution or

densities of products of gamma variables. The density functions and distribution

functions of the SNR following diversity are derived in each case. The densities and

distribution functions are obtained using random number simulations in cases

where analytical expressions for the densities and distributions do not exist. The

effects of diversity are analyzed in terms of SNR enhancement, reduction in the

amount of fading (AF), shifts in the peaks of probability density functions of the

SNR, changes in the slopes of the CDF, reduction in error rates, and lowering of the

outage probabilities. In addition to the combining algorithms mentioned above, we

also examine the GSC algorithm to mitigate short-term fading. The use of hybrid

combining with MRC to mitigate short-term fading and SC to mitigate shadowing

is examined so as to gauge the overall improvements in performance in shadowed

fading channels. The view of diversity in terms of where and how it is physically

implemented is discussed by presenting the notion of “microdiversity” and

“macrodiversity.”

Chapter 6 covers the effect of cochannel interference in wireless systems. Once

again, the densities and distribution functions of the SNR incorporating the
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cochannel interference are obtained, with the emphasis on Nakagami-related fading

and shadowing channels. To examine the effect of cochannel interference, both the

pure short-term faded channels and shadowed fading channels are studied. The

outage probabilities and error rates in the presence of CCI are estimated in each

case so that the impact of CCI can be fully understood. The improvements gained

through diversity are evaluated using MRC in Nakagami channels in the presence

of CCI.

Each chapter contains several plots of densities, distribution functions, error

rates, outages, spectra, and so forth. Those results are obtained through two main

software packages, Matlab (Version R2009b and earlier ones) and Maple (Version
10 and later ones). Even though there was no preference for either one, Maple
(Version 10) offered a means to check and verify some of the analytical expressions

involving hypergeometric and Meijer G-functions. All the plots were generated in

Matlab even when the data sets were generated usingMaple. The Symbolic Toolbox
in Matlab with MuPad was necessary to handle functions such as the Meijer

G. Matlab was used extensively to undertake numerical integration using quadl
and associated routines performing single, double, and triple integrals. Occasion-

ally trapezoidal integration using trapz in Matlab was used for single and double

integration.

For most of the analytical manipulations, three main sources were used. Two of

them were books/monographs (Mathai 1993; Gradshteyn and Ryzhik 2007) while

the third one was the library of functions provided byMathematica (Wolfram, Inc.).

These sources are listed in the bibliography at the end of the chapter. Maple also

provided verification of some of the analytical solutions mentioned earlier.

As previously suggested, this work is intended for graduate students in wireless

communications. Even though it is expected that the student cohort has reasonable

exposure to concepts of random variables and digital communications, Chaps. 2

and 3 are written to provide the tools necessary to undertake the study of fading and

shadowing. The chapters are self-contained so that minimal cross-referencing of

equations and figures is necessary. Consequently, a few equations from Chaps. 2

and 3 are repeated in subsequent chapters to provide a continuity of the discussion

and to avoid referring to previous chapters or pages. Even though separate exercise

sets are not provided, students can be expected to work out some or most of the

derivations and demonstrations of the results.

The bibliography below provides a list of useful and relevant books, and

information on the software packages used in this work.

Second edition of the book provides an expanded and updated coverage of the

topics in fading, shadowing, and diversity. It also includes a new chapter on

cognitive radio. As a pedagogic tool, most of the Matlab and Maple scripts used

in the updated edition are provided alongside the results. Here is a summary of what

is new in Edition 2.

Chapter 2 has been updated to provide additional background necessary to

handle probability densities and their applications in wireless. Specifically, param-

eter estimation techniques are presented within the context of modeling the signal

strength fluctuations. The two main techniques for parameter estimation, method of
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moments and maximum likelihood, are described with Matlab simulations in every

case. This is followed by the study of statistical testing for the validation of models.

In light of recent interest in cognitive radio, receiver operating characteristics

analysis is discussed. A detailed exposition of Laplace and Mellin transforms for

application in wireless channel is presented with examples (along with Matlab and

Maple scripts).

While no changes are made to Chap. 3, some new models for fading and

shadowing are described in Chap. 4. Initially, the McKay model for fading is

presented and analyzed in detail. The effect of shadowing is also incorporated

into the McKay model to provide a complete description of the signal strength

fluctuations in wireless channels. The McKay model is followed by introducing a

complementary approach based on mixture densities for modeling signal strength

fluctuations in wireless channels. Using the concepts developed in updated Chap. 2,

parameter estimation and hypothesis testing are now covered for these new models

in addition to evaluation of wireless channel performance.

Diversity analysis has been undertaken in the updated version of Chap. 5. This

analysis covers the models introduced in the updated version of Chap. 4.

While there are no changes to Chap. 6, Chap. 7 is new for the Second Edition. It

is devoted to cognitive radio and is presented with a detailed exposition of perfor-

mance evaluation in an ideal channel as well as when the channel undergoes fading

and shadowing.

One of the new features of the Second Edition is the inclusion of Matlab scripts

for the results obtained. The scripts are detailed and annotated for the benefit of the

readers. They have been included on the basis of the some of the requests received

from the readers of the first edition. The Matlab scripts cover updated sections of

Chaps. 2, 4, and 5 and all of Chap. 7. In a couple of cases where Maple provides

simpler options such as in the case of Laplace and Mellin transforms, Maple scripts

are also made available. Each of the updated chapters and the new Chap. 7 also

contain sections devoted to random number simulations relevant to the topics

presented.

The Matlab version used is 2016a. The scripts rely on the following toolboxes:

Communications Systems Toolbox

Image Processing Toolbox

Optimization Toolbox

Signal Processing Toolbox

Statistics and Machine Learning Toolbox

Symbolic Math Toolbox

The Maple version used is Maple 16.

While every effort has been made to ensure that the Matlab and Maple scripts are

correct, the author and the publishers are not responsible for any errors or omissions

in the Matlab and Maple scripts.
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Chapter 2

Concepts of Probability and Statistics

2.1 Introduction

The analysis of communication systems involves the study of the effects of noise on

the ability to transmit information faithfully from one point to the other using either

wires or wireless systems (in free space), including microwave signals (Lindsey and

Simon 1973; Schwartz 1980; Schwartz et al. 1996; Middleton 1996). Thus, it is

important to understand the properties of noise, which requires the study of random

variables and random processes. Additionally, the presence of fading and

shadowing in the channel (mainly the wireless ones which are more susceptible

to uncertainty) demands an understanding of the properties of random variables,

distribution, density functions, and so on (Helstrom 1968; Rohatgi and Saleh 2001;

Papoulis and Pillai 2002).

In this chapter, we will review, among others, the concepts of random variables,

the properties of the distribution and density functions, estimation of parameters of

the densities, and moments. We will also look at characterizing two or more random

variables together so that we can exploit their properties when we examine tech-

niques such as the diversity combining algorithms employed to mitigate fading and

shadowing seen in wireless systems (Brennan 1959; Suzuki 1977; Hansen and

Meno 1977; Shepherd 1977; Jakes 1994; Sklar 1997a, b; Vatalaro 1995; Winters

1998). In very broad terms, fading and shadowing represent the random fluctuations

of signal power observed in wireless channels. Their properties are characterized in

terms of their statistical nature, mainly through the density functions (Saleh and

Valenzuela 1987; Vatalaro 1995; Yacoub 2000, 2007a, b; Cotton and Scanlon

2007; Nadarajah and Kotz 2007; da Costa and Yacoub 2008; Karadimas and

Kotsopoulos 2008, 2010; Shankar 2010; Papazafeiropoulos and Kotsopoulos

2011) and we will review all the pertinent statistical aspects to facilitate a better

understanding of signal degradation and mitigation techniques to improve the

signal quality.
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In the updated edition, parameter estimation techniques are presented within the

context of modeling the statistical fluctuations (Davenport et al. 1988; Iskander

et al. 1999). The two main techniques based on method of moments and maximum

likelihood are detailed with Matlab simulations in every case (Cheng and Beaulieu

2001; Tepedelenlioglu and Gao 2005). This is followed by the study of statistical

testing for the validation of models (Mann and Wald 1942; Papoulis and Pillai

2002). In light of recent interest in cognitive radio, receiver operating characteris-

tics are discussed (van Trees 1968; Helstrom 1968; Hanley and McNeil 1982; van

Erkel and Pattynama 1998). A detailed exposition of Laplace and Mellin transforms

for application in wireless channel is presented with examples (Epstein 1948;

Erdelyi 1953; Kilicman and Ariffin 2002; Rossberg 2008). In addition to Matlab

scripts, Maple scripts are also provided in connection with Laplace and Mellin

transforms.

2.2 Random Variables, Probability Density Functions,

and Cumulative Distribution Functions

A random variable is defined as a function that maps a set of outcomes in an

experiment to a set of values (Rohatgi and Saleh 2001; Papoulis and Pillai 2002).

For example, if one tosses a coin resulting in “heads” or “tails,” a random variable

can be created to map “heads” and “tails” into a set of numbers which will be

discrete. Similarly, temperature measurements taken to provide a continuous set of

outcomes can be mapped into a continuous random variable. Since the outcomes

(coin toss, roll of a die, temperature measurements, signal strength measurements

etc.) are random, we can characterize the random variable which maps these out-

comes to a set of numbers in terms of it taking a specific value or taking values less

than or greater than a specified value, and so forth. If we define X as the random

variable, {X� x} is an event. Note that x is a real number ranging from�1 to +1.

The probability associated with this event is the distribution function, more com-

monly identified as the cumulative distribution function (CDF) of the random

variable. The CDF, FX(x), is

FX xð Þ ¼ Prob X � xf g: ð2:1Þ

The probability density function (pdf) is defined as the derivative of the CDF as

f X xð Þ ¼ d FX xð Þ½ �
dx

: ð2:2Þ

From the definition of the CDF in (2.1), it becomes obvious that CDF is a

measure of the probability and, therefore, the CDF has the following properties:
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FX �1ð Þ ¼ 0,

FX 1ð Þ ¼ 1,

0 � FX xð Þ � 1,

FX x1ð Þ � FX x2ð Þ, x1 � x2:

ð2:3Þ

Based on (2.2) and (2.3), the probability density function has the following

properties:

0 � f X xð ÞÐ1
�1 f X xð Þdx ¼ 1,

FX x1ð Þ ¼ Ð x�1 f X αð Þdα,
Prob x1 � X � x2f g ¼ FX x2ð Þ � FX x1ð Þ ¼ Ð x2x1 f X αð Þdα:

ð2:4Þ

A few comments regarding discrete random variables and the associated CDFs

and pdfs are in order. For the discrete case, the random variable X takes discrete

values (1, 2, 3, . . ., n). The CDF can be expressed as (Helstrom 1991; Rohatgi and

Saleh 2001; Papoulis and Pillai 2002)

FX xð Þ ¼
Xn
m¼1

Prob X ¼ mf gU x� mð Þ: ð2:5Þ

In (2.5), U(.) is the unit step function. The pdf of the discrete random variable

becomes

f X xð Þ ¼
Xn
m¼1

Prob X ¼ mf gδ x� mð Þ: ð2:6Þ

In (2.6), δ(.) is the delta function (Abramowitz and Segun 1972).

It can be easily seen that for a continuous random variable there is no statistical

difference between the probabilities of outcomes where the random variable takes a

value less than (<) or less than or equal to (�) a specified outcome because the

probability that a continuous random variable takes a specified value is zero.

However, for the case of a discrete random variable, the probabilities of the two

cases would be different. We will now examine a few properties of the random

variables and density functions.

The moments of a random variable are defined as

μk ¼ Xk
� � ¼ E Xk

� � ¼ ð1
�1

xkf xð Þ dx: ð2:7Þ
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The first moment (k ¼ 1) is the mean or the expected value of the random

variable and <�> as well as E(.) represents the statistical average. The variance

(var) of the random variable is related to the second moment (k ¼ 2) and it is

defined as

var xð Þ ¼ σ2 ¼ X2
� �� Xh i2: ð2:8Þ

The quantity σ is the standard deviation. Variance is a measure of the degree of

uncertainty and

σ2 � 0: ð2:9Þ

The equality in (2.9) means that the degree of uncertainty or randomness is

absent; we have a variable that is deterministic. Existence of higher values of

variance suggests higher level of randomness. For the case of a discrete random

variable, the moments are expressed as

Xk
� � ¼Xn

m¼1

mkProb X ¼ mf g: ð2:10Þ

The survival function S(x) of a random variable is defined as the probability that

{X > x}. Thus,

S xð Þ ¼
ð1
x

f X αð Þdα ¼ 1� FX xð Þ: ð2:11Þ

The coefficient of skewness is defined as (Evans et al. 2000; Papoulis and Pillai

2002)

η3 ¼
μ3
σ3

: ð2:12Þ

The coefficient of kurtosis is defined as

η4 ¼
μ4
σ4

: ð2:13Þ

The entropy or information content of a random variable is defined as

I ¼ �
ð1
�1

f xð Þlog2 f xð Þ½ �dx: ð2:14Þ

The mode of a pdf f(x) is defined as the value x where the pdf has the maximum.

It is possible that a pdf can have multiple modes. Some of the density functions will
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not have any modes. The median xm of a random variable is defined as the point

where ðxm
�1

f xð Þdx ¼
ð1
xm

f xð Þdx: ð2:15Þ

2.3 Characteristic Functions, Moment Generating

Functions and Laplace Transforms

The characteristic function (CHF) of a random variable is a very valuable tool

because of its use in the performance analysis of wireless communication systems

(Nuttall 1969, 1970; Tellambura and Annamalai 1999; Papoulis and Pillai 2002;

Tellambura et al. 2003; Goldsmith 2005; Withers and Nadarajah 2008). This will be

demonstrated later in this chapter when we discuss the properties of the CHFs. The

CHF, ψ(x), of a random variable having a pdf f(x) is given by

ψX ωð Þ ¼ exp jωXð Þh i ¼
ð1
�1

f xð Þexp jωxð Þdx: ð2:16Þ

Equation (2.16) shows that CHF is defined as the statistical average of exp ( jωx).
Furthermore, it is also the Fourier transform of the pdf of the random variable.

Rewriting (2.16) by replacing ( jω) by s, we get the moment generating function

(MGF) of the random variable as (Alouini and Simon 2000; Papoulis and Pillai

2002)

ϕX sð Þ ¼ exp sXð Þh i ¼
ð1
�1

f xð Þexp sxð Þdx: ð2:17Þ

Defining (2.16) slightly differently, we can obtain the expression for the Laplace

transform of pdf as (Beaulieu 1990; Tellambura and Annamalai 1999, 2000;

Papoulis and Pillai 2002)

LX sð Þ ¼
ð1
�1

f xð Þexp �sxð Þdx: ð2:18Þ

Consequently, we have the relationship between the bilateral Laplace transform

and the MGF of a random variable:

LX sð Þ ¼ ϕX �sð Þ: ð2:19Þ

Going back to (2.16), we can define the inverse Fourier transform of the CHF to

obtain the pdf as
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f X xð Þ ¼ 1

2π

ð1
�1

ψ ωð Þexp �jωxð Þdω: ð2:20Þ

By virtue of the property (2.20), CHF will uniquely determine the probability

density function. We will explore the use of CHFs in diversity analysis later in this

chapter and we will use the Laplace transform, CHF, and MGF to estimate the

error rates and outage probabilities to be seen in later chapters (Tellambura and

Annamalai 1999).

2.4 Some Commonly Used Probability Density Functions

We will now look at several random variables which are commonly encountered in

wireless communication systems analysis. We will examine their properties in

terms of the pdfs, CDFs and CHFs. Within the context of wireless communications,

we will explore the relationships among some of these random variables.

2.4.1 Beta Distribution

The beta distribution is not commonly seen in wireless communications. However,

it arises in wireless system when we are studying issues related to signal-to-

interference ratio (Jakes 1994; Winters 1984, 1987). The beta random variable is

generated when the ratio of certain random variables is considered (Papoulis and

Pillai 2002). The beta density function is

f xð Þ ¼
xa�1 1� xð Þb�1

β a; bð Þ 0 < x < 1,

0 elsewhere:

8<: ð2:21Þ

In (2.21), β(a,b) is the beta function given in integral form as

β a; bð Þ ¼
ð1
0

xa�1 1� xð Þb�1dx: ð2:22Þ

Equation (2.22) can also be written in terms of gamma functions (Abramowitz

and Segun 1972):

β a; bð Þ ¼ Γ að ÞΓ bð Þ
Γ aþ bð Þ , ð2:23Þ
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where Γ(.) is the gamma function. The CDF of the beta random variable is

F xð Þ ¼

0, x � 0,Ð x
0

ya�1 1� yð Þb�1

β a; bð Þ dy, 0 < x < 1,

1, x � 1:

8>>>><>>>>: ð2:24Þ

The moments of the beta random variable are

Xk
� � ¼ Γ k þ að ÞΓ k þ bð Þ

Γ k þ aþ bð ÞΓ kð Þ : ð2:25Þ

The mean and variance of the beta variable are

Xh i ¼ a

aþ b
, ð2:26Þ

var Xh i ¼ ab

aþ bþ 1ð Þ aþ bð Þ2 : ð2:27Þ

The beta density function is shown in Fig. 2.1 for three sets of values of (a,b).
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Fig. 2.1 The density function of the beta random variable
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It can be seen that for the case of a ¼ b ¼ 1, the beta density becomes the

uniform density function as seen later in this chapter. Note that X is a beta variate

with parameters a and b; then Y ¼ 1 – X is also a beta variate with parameters

b and a.
The beta density function allows significant flexibility over the standard uniform

distribution in the range {0, 1} as one can see from Fig. 2.1. As mentioned in the

beginning if X1 and X2 are two gamma variables with parameters (a, A) and (b, A)
respectively, the ratio X1/(X1 + X2) will be a beta variate with parameters (a,b).This
aspect will be shown later in this chapter when we examine the density function of

linear and nonlinear combination of two or more random variables.

2.4.2 Binomial Distribution

The binomial distribution is sometimes used in wireless systems when estimating

the strength of the interfering signals at the receiver, with the number of interferers

contributing to the interfering signal being modeled using a binomial random

variable (Abu-Dayya and Beaulieu 1994; Shankar 2005). For example, if there

are n interfering channels, it is possible that all of them might not be contributing to

the interference. The number of actual interferers contributing to the interfering

signal can be statistically described using the binomial distribution. This distribu-

tion is characterized in terms of two parameters, with the parameter n representing

the number of Bernoulli trials and the parameter p representing the successes from

the n trials. (A Bernoulli trial is an experiment with only two possible outcomes that

have probabilities p and q such that ( p + q)¼ 1). While n is an integer, the quantity
p is bounded as 0< p< 1. The binomial probability is given by (Papoulis and Pillai

2002)

Prob X ¼ kf g ¼ n
k

� �
pk 1� pð Þn�k

, k ¼ 0, 1, :::: ð2:28Þ

In (2.28),

n
k

� �
¼ Cn

k ¼ n!

n� kð Þ!k! : ð2:29Þ

The mean of the variable is given by (np) and the variance is given by (npq)
where q ¼ (1 � p). The binomial probabilities are shown in Fig. 2.2.

The binomial variate can be approximated by a Poisson variate (discussed later

in this section) if p � 1 and n < 10. Later we will describe how the binomial

distribution approaches the normal distribution, when npq > 5 and 0.1 < p < 0.9.

The transition toward the normal behavior is seen in Fig. 2.2.
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We alluded to Bernoulli trials which had only two outcomes. We can extend

such experiments to have more than two outcomes resulting in the generalized

Bernoulli trials. Instead of two outcomes, let us consider the case of r outcomes

(mutually exclusive) such that the total probability

p1 þ p2 þ � � � þ pr ¼ 1: ð2:30Þ

Now, we repeat the experiment n times. Our interest is in finding out the

probability that outcome #1 occurs k1 times, #2 occurs k2 times, and so on. In

other words, we are interested in the Prob{#1 occurs k1 times, #2 occurs k2
times,. . ., #r occurs kr times}. Noting that the number of ways in which these

events can occur is n! ¼ (k1!k2!. . .. kr!), the required probability becomes

p k1; k2 ; ::::; krð Þ ¼ n!

k1!k2!:::kr!
pk11 p

k2
2 � � �pkrr

Xr
j¼1

kr ¼ n: ð2:31Þ

We will use some of these results when we examine the order statistics later in

this chapter.
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2.4.3 Cauchy Distribution

The Cauchy distribution arises in wireless systems when we examine the pdfs of

random variables which result from the ratio of two Gaussian random variables

(Papoulis and Pillai 2002). What is unique in terms of its properties is that its

moments do not exist. The Cauchy pdf is expressed as

f xð Þ ¼ 1

πβ 1þ x� αð Þ=βð Þ½ � , �1 < x < 1: ð2:32Þ

The associated CDF is

FX xð Þ ¼ 1

2
þ 1

π
tan �1 x� a

β

� �
: ð2:33Þ

The CHF is

ψ ωð Þ ¼ exp jαω� jωjβð Þ: ð2:34Þ

As mentioned, its moments do not exist and its mode and median are (each)

equal to α. Note that Cauchy distribution might appear similar to the normal

(Gaussian) distribution. While both the Cauchy and Gaussian distributions are

unimodal (only a single mode exists) and are symmetric (Gaussian around the

mean and Cauchy around α), the Cauchy distribution has much heavier tails than

the Gaussian pdf. The Cauchy pdf is shown in Fig. 2.3 for the case of α ¼ 0. The

heavier tails are seen as β goes up.

2.4.4 Chi-Squared Distribution

This distribution arises in statistics (and in wireless systems) when we examine the

pdf of the sum of the squares of several Gaussian random variables. It is also used in

hypothesis testing such as the χ2 goodness of fit test (Papoulis and Pillai 2002).

The chi square (or chi squared) random variable has a pdf given by

f xð Þ ¼ x n�2ð Þ=2 exp � x=2ð Þð Þ
2n=2Γ n=2ð Þ , 0 < x < 1: ð2:35Þ

The shape parameter n is designated as the degrees of freedom associated with

the distribution. This density function is also related to the Erlang distribution used

in the analysis of modeling of the grade of service (GOS) in wireless systems and

the gamma distribution used to model fading and shadowing seen in wireless

systems. The gamma and Erlang densities are described later in this section. The
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distribution is often identified as χ2(n). The density function also becomes the

exponential pdf in the limiting case (n ¼ 2).

There is no simple analytical expression for the CDF, but, it can be expressed in

terms of incomplete gamma function as

FX xð Þ ¼ 1�
Γ

n

2
;
x

2

� 	
Γ

n

2

� 	 ¼
γ

n

2
;
x

2

� 	
Γ

n

2

� 	 , ð2:36Þ

where

Γ a; bð Þ ¼
ð1
b

xa�1exp �xð Þdx, γ a; bð Þ ¼
ð b
0

xa�1exp �xð Þdx: ð2:37Þ

Γ(.,.) is the (upper) incomplete gamma function, γ(.,.) the (lower) incomplete

gamma function and Γ(.) is the gamma function (Abramowitz and Segun 1972;

Gradshteyn and Ryzhik 2007). Note that the pdf in (2.35) is a form of gamma pdf of

parameters (n/2) and 2 (as we will see later). The CHF is given by

ψ ωð Þ ¼ 1� 2jωð Þ� n=2ð Þ: ð2:38Þ

The mean of the random variable is n and the variance is 2n. The mode is (n� 2),

n > 2 and the median is (n � 2/3). The density function is plotted in Fig. 2.4. It can
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be seen that as the degrees of freedom (n) increases, the symmetry of the pdf

increases and it will approach the Gaussian pdf.

There is a related distribution called the non-central chi squared distribution

which is described later in this chapter.

An associated distribution is the chi distribution. The chi variable is the positive
square root of a chi squared variable. The chi pdf is given by

f xð Þ ¼ xn�1exp � x2=2ð Þð Þ
2 n=2ð Þ�1Γ n=2ð Þ , 0 � x � 1: ð2:39Þ

The cumulative distribution becomes

FX xð Þ ¼ 1�
Γ

n

2
;
x2

2

� �
Γ

n

2

� 	 ¼
γ

n

2
;
x2

2

� �
Γ

n

2

� 	 ð2:40Þ

When n ¼ 2, the chi pdf becomes the Rayleigh pdf, described later in this

section.
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2.4.5 Erlang Distribution

When we examine the density of a sum of exponential random variables, we get the

so-called Erlang pdf. The Erlang pdf is given by

f xð Þ ¼ x=βð Þc�1
exp � x=βð Þð Þ

β c� 1ð Þ! , 0 � x � 1: ð2:41Þ

Note that the shape parameter c is an integer. Equation (2.41) becomes the

gamma pdf if c is a non-integer. The CHF is given by

ψ ωð Þ ¼ 1� jβωð Þ�c: ð2:42Þ

The mean of the random variable is (βc) and the variance is (β2c). The mode is

β(c � 1), c � 1. The CDF can be expressed as

FX xð Þ ¼ 1� exp �x

β

� �
 � Xc�1

k¼0

x=βð Þk
k!

 !
: ð2:43Þ

Note that the Erlang density function and chi-squared pdf in (2.35) have similar

functional form with c ¼ n/2 and β ¼ 2.

2.4.6 Exponential Distribution

The exponential distribution (also known as the negative exponential distribution)

arises in communication theory in the modeling of the time interval between events

when the number of events in any time interval has a Poisson distribution. It also

arises in the modeling of the signal-to-noise ratio (SNR) in wireless systems

(Nakagami 1960; Saleh and Valenzuela 1987; Simon and Alouini 2005). Further-

more, the exponential pdf is a special case of the Erlang pdf when c ¼ 1 and a

special case of chi-squared pdf when n ¼ 2. The exponential pdf is given by

f xð Þ ¼ 1

β
exp �x

β

� �
, 0 � x � 1: ð2:44Þ

The associated CDF is given by

F xð Þ ¼ 1� exp �x

β

� �
: ð2:45Þ
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The CHF is given by

ψ ωð Þ ¼ 1

1� jωβ
: ð2:46Þ

The exponential has no mode. The mean is β and the variance is β2 and, thus, the
exponential pdf is uniquely characterized in terms of the fact that the ratio of its

mean to its standard deviation is unity. The exponential pdf is shown in Fig. 2.5 for

three values of β.
The exponential CDF is a measure of the outage probability (probability that the

signal power goes below a threshold) is shown in Fig. 2.6.

2.4.7 F (Fisher-Snedecor) Distribution

The SNR in fading is often modeled using gamma distributions (Simon and Alouini

2005; Shankar 2004). The ratio of two such variables is of interest when examining

the effects of interfering signals in wireless communications (Winters 1984). The

F distribution arises when we examine the density function of the ratio of two

chi-squared random variables of even degrees of freedom or two Erlang variables or

two gamma variables of integer orders (Lee and Holland 1979; Nadarajah 2005;
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Nadarajah and Gupta 2005; Nadarajah and Kotz 2006a, b). The F density can be

written as

f xð Þ ¼ Γ mþ nð Þ=2ð Þmm=2nn=2

Γ m=2ð ÞΓ n=2ð Þ
xm=2�1

nþ mxð Þ mþnð Þ=2½ � U xð Þ: ð2:47Þ

In (2.47), m and n are integers. The mean is given by

Xh i ¼ n

n� 2
, n > 2: ð2:48Þ

The variance is

var xð Þ ¼ 2n2
nþ m� 2ð Þ

m n� 4ð Þ n� 2ð Þ2 , n > 4: ð2:49Þ

The density function is identified as F(m,n), with (m,n) degrees of freedom. The

F distribution is shown in Fig. 2.7. The density function is sometimes referred to as

Fisher’s variance ratio distribution.
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Fig. 2.6 (CDFs) of the exponential random variables are shown
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2.4.8 Gamma Distribution

The gamma distribution is used extensively in wireless communications to model

the power in fading channels (Nakagami 1960; Abdi and Kaveh 1999; Atapattu

et al. 2010a, b). As mentioned earlier, the gamma pdf is a special case of the Erlang

distribution in (2.41). The pdf is given by

f xð Þ ¼ x=βð Þc�1
exp � x=βð Þð Þ
βΓ cð Þ , 0 < x < 1: ð2:50Þ

Comparing (2.41) and (2.50), we see that for the gamma pdf c can be any

positive number while for the Erlang pdf, c must be an integer. The CDF can be

expressed in terms of the incomplete gamma function as

FX xð Þ ¼ γ c; x=βð Þð Þ
Γ cð Þ ¼ 1� Γ c; x=βð Þð Þ

Γ cð Þ : ð2:51Þ

The moments are given by

E Xk
� � ¼ bk

Γ cþ kð Þ
Γ cð Þ : ð2:52Þ
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Fig. 2.7 The F distribution is plotted for two sets of values
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The moments are identical to that of the Erlang distribution. The exponential

distribution is a special case of the gamma pdf with c ¼ 1. The received SNR or

power is modeled using the gamma pdf. The CHF of the gamma distribution is

ψ ωð Þ ¼ 1� jβωð Þ�c: ð2:53Þ

The gamma pdf in (2.50) becomes the chi-squared pdf in (2.35) when n¼ 2c and
β¼ 2. The relationship of the gamma pdf to other distributions is given in Table 2.1.

The gamma pdf is plotted in Fig. 2.8 for three values of c, all having identical

mean of unity. One can see that as the order of the gamma pdf increases, the peaks

Table 2.1 Relationship of gamma pdf to other distributions

c β Name of the distribution Probability density function

1 – Exponential 1

β
exp �x

β

� �
Integer – Erlang x=βð Þc�1

exp � x=βð Þð Þ
β c� 1ð Þ!

c ¼ 2n 2 Chi-squared x n�2ð Þ=2exp � x=2ð Þð Þ
2n=2Γ n=2ð Þ
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Fig. 2.8 The density functions of the gamma random variables for three values of the order. All

have the identical means (unity)
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of the densities move farther to the right. This aspect will be seen later in Chap. 5

when we examine the impact of diversity in fading channels. The corresponding

CDFs are shown in Fig. 2.9.

2.4.9 Generalized Gamma Distribution

Instead of the two parameter distribution in (2.50), the three parameter gamma

distribution known as the generalized gamma distribution can be expressed as

(Stacy 1962; Stacy and Mihram 1965; Lienhard and Meyer 1967; Griffiths and

McGeehan 1982; Coulson et al. 1998a, b; Gupta and Kundu 1999; Bithas et al.

2006)

f xð Þ ¼ λxλc�1

βλcΓ cð Þ exp � x

β

� �λ
" #

, 0 < x < 1: ð2:54Þ

There is no simple expression for the CHF of the generalized gamma density

function. The generalized gamma random variable can be obtained from a gamma

random variable by scaling the random variable by (1/λ). This distribution is also

known as the Stacy distribution (Stacy 1962), which is expressed in a slightly

different form as
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Fig. 2.9 The CDFs of the gamma random variables for three values of the order. All have the

identical means (unity)
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f xð Þ ¼ p

ad

� 	
xd�1 exp � x

a

� �p� �
Γ d

p

� 	 , x � 0, a > 0, p > 0, d > 0: ð2:55Þ

Note that the generalized gamma pdf can also be expressed in yet another form

as

f xð Þ ¼ λxλc�1

βcΓ cð Þ exp �xλ

β


 �
, 0 < x < 1: ð2:56Þ

The GG pdf in (2.56) is plotted in Fig. 2.10 for the case of β ¼ 1. It can be

seen that as λ increases the density function moves to the right, indicating that

the density function will approach Gaussian as is possible with the case of Erlang

pdf. The same effect will be present when c increases as well.
The generalized gamma (GG) distribution can be used to model power (or SNR)

as well as the magnitude (or envelope) values in wireless communications (Coulson

et al. 1998a, b). This can be accomplished by varying c and λ. Also, the GG

distribution can morph into other distributions in limiting cases (Griffiths and

McGeehan 1982). The CDF can once again be represented in terms of the incom-

plete gamma functions in (2.37) and (2.52). Using the representation in (2.56), the

expression for the CDF becomes
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Fig. 2.10 The generalized gamma pdf in (2.56)
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FX xð Þ ¼ 1� Γ c; xλ=β
� �� �
Γ cð Þ : ð2:57Þ

If we express the generalized gamma pdf in (2.54) as

f xð Þ ¼ Axnexp �xm

bm

� �
, 0 � x � 1, ð2:58Þ

where b is a scaling factor and A is a normalization factor such thatð1
0

f xð Þdx ¼ 1, ð2:59Þ

we can relate the pdf in (2.58) to several density functions as described in

Table 2.2 (Griffiths and McGeehan 1982).

There are also other forms of gamma and generalized gamma distribution. Even

though they are not generally used in wireless communications, we will still

provide them so as to complete the information on the class of gamma densities.

One such gamma pdf is (Evans et al. 2000)

f xð Þ ¼ x� γð Þc�1
exp� x� γð Þ=β
βcΓ cð Þ , x > γ > 0, c > 0, β > 0: ð2:60Þ

Note that when γ ¼ 0, (2.60) becomes the standard two parameter gamma

density defined in (2.50), another form of generalized gamma density function

has four parameters and it is of the form

Table 2.2 The generalized gamma distribution and its special cases

m n b Name of the distribution Probability density function

1 – – Gamma Axnexp �x
b

� �
1 >0 (integer) – Erlang Axnexp �x

b

� �
1 >1 (integer) 2 Chi-squared Axnexp �x

b

� �
2 – – Nakagami Axnexp �x2

b2

� 	
– – – Stacy Axnexp �xm

bm
� �

– n ¼ m � 1 – Weibull Axm�1exp �xm

bm

� �
1 0 – Exponential Aexp �x

b

� �
2 0 – One sided Gaussian Aexp �x2

b2

� 	
0 – Generalized exponential Aexp �xm

bm
� �

2 1 – Rayleigh Axexp �x2

b2

� 	
– 1 – Generalized Rayleigh Axexp �xm

bm

� �
In all the expressions in the last column, A is a normalization factor
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f xð Þ ¼ λ x� γð Þλc�1

βcΓ cð Þ exp � x� γ

β

� �λ
" #

, x > γ > 0, λ > 0, c > 0, β > 0: ð2:61Þ

Note that (2.61) becomes the generalized gamma distribution (Stacy’s pdf) in
(2.54) when γ ¼ 0.

While the gamma pdf and the generalized gamma densities mentioned so far are

defined for positive values (single-sided), there also exists a double-sided general-

ized gamma density function which has been used to model noise in certain cases

(Shin et al. 2005). The two-sided generalized gamma pdf is

f xð Þ ¼ λ
��x��cλ�1

2βcΓ cð Þ exp �
��x��λ
β

� �
, �1 < x < 1: ð2:62Þ

The two-sided generalized gamma pdf is flexible enough that it can become

Gaussian, Laplace, generalized gamma or gamma.

2.4.10 Inverse Gaussian (Wald) Distribution

This pdf is sometimes used to model shadowing in wireless systems because of the

closeness of its shape to the lognormal density function (Karmeshu and Agrawal

2007; Laourine et al. 2009). The pdf is expressed as

f xð Þ ¼ λ

2πx3

� �1=2

exp � λ x� μð Þ2
2μ2x

" #
, 0 < x < 1: ð2:63Þ

Note that both λ and μ are positive numbers. There is no simple analytical

expression for the CDF. The CHF is given by

ψ ωð Þ ¼ exp
λ

μ
1� 1� 2jμ2ω

λ

� �1=2
" #( )

: ð2:64Þ

The mean is given by μ and the variance is given by μ3/λ. The density function is
shown in Fig. 2.11 for a few values of the parameters.

2.4.11 Laplace Distribution

This distribution is generally not used inwireless communication systems even though

research exists into its use in communication systems (Sijing and Beaulieu 2010).
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It is related to the exponential distribution in that it extends the range of the variable

down to�1. The pdf is expressed as

f xð Þ ¼ 1

2β
exp �

��x� α
��

β

� �
, �1 < x < 1: ð2:65Þ

The associated CDF is given by

F xð Þ ¼

1

2
exp � α� x

β

� �
, x < α,

1� 1

2
exp � x� α

β

� �
, x � α:

8>>><>>>: ð2:66Þ

The CHF is given by

ψ ωð Þ ¼ exp jωαð Þ
1þ β2ω2

: ð2:67Þ

The mean, mode, and median are all equal to α, and the variance is equal to 2β2.
The Laplace density function is shown in Fig. 2.12.
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Fig. 2.11 Inverse Gaussian distribution
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2.4.12 Lognormal Distribution

The lognormal pdf arises when central limit theorem for products of random

variables is applied (Papoulis and Pillai 2002). It is used to model long-term fading

or shadowing seen in wireless systems (Hudson 1996; Tjhung and Chai 1999;

Coulson et al. 1998a, b; Patzold 2002; Kostic 2005; Stuber 2000; Cotton and

Scanlon 2007). In certain cases, it finds applications in modeling short-term fading

as well (Cotton and Scanlon 2007). The pdf of the lognormal random variable is

given by

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2x

p exp � loge xð Þ � μð Þ2
2σ2

" #
, 0 < x < 1: ð2:68Þ

The CDF and CHF are not readily available in analytical form. The mean and

variance can be expressed as

E Xð Þ ¼ exp μþ 1

2
σ2

� �
, ð2:69Þ

var Xð Þ ¼ exp σ2 � 1
� �� �

exp 2μþ σ2
� �

: ð2:70Þ
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Fig. 2.12 The Laplace density functions
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Equation (2.68) can also be expressed in a slightly different form using the

logarithm with the base 10 as

f xð Þ ¼ 10=loge 10ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2x2

p exp � 10log10 xð Þ � μð Þ2
2σ2

" #
, 0 < x < 1: ð2:71Þ

In (2.71), μ and σ are in decibel units. Note that if the lognormal variable is

converted to decibel units, the pdf of the variable in dB will be Gaussian. This

density function (in terms of decibel units) is discussed in detail in Chap. 4.

Figure 2.13 shows the plots of the lognormal pdf in (2.68).

2.4.13 Nakagami Distribution

Even though there are several forms of the Nakagami distribution, the most

commonly known one is the “Nakagami-m distribution” with a pdf given by

(Nakagami 1960; Simon and Alouini 2005)

f xð Þ ¼ 2
m

Ω

� 	mx2m�1

Γ mð Þ exp �m
x2

Ω

� �
U xð Þ, m � 1

2
: ð2:72Þ
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Fig. 2.13 Lognormal density function in (2.68) is shown
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In (2.72), m is the Nakagami parameter, limited to values greater than or equal to

½. The moments of the Nakagami distribution can be expressed as

Xk
� � ¼ Γ mþ k=2ð Þð Þ

Γ mð Þ
Ω
m

� �1=2

: ð2:73Þ

The mean is

E Xð Þ ¼ Γ mþ 1
2

� �
Γ mð Þ

ffiffiffiffiffi
Ω
m
:

r
ð2:74Þ

The variance is

var Xð Þ ¼ Ω 1� 1

m

Γ mþ 1=2ð Þð Þ
Γ mð Þ

� �2
" #

: ð2:75Þ

Note that the Nakagami pdf becomes the Rayleigh density function when m is

equal to unity. The square of the Nakagami random variable will have a gamma pdf.

Under certain limiting conditions, the Nakagami density function can approximate

the lognormal distribution (Nakagami 1960; Coulson et al. 1998a, b). The

Nakagami pdf is plotted in Fig. 2.14.
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Fig. 2.14 The Nakagami density
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The CDF associated with the Nakagami-m pdf can be expressed in terms of

incomplete gamma functions. The Nakagami-m CDF is

FX xð Þ ¼ 1� Γ m; m=Ωð Þx2ð Þ
Γ mð Þ : ð2:76Þ

There is no simple analytical expression for the CHF. The Nakagami pdf is used

to model the magnitude or envelope of the signals in communication systems. The

density function of the square of the Nakagami random variable,

Y ¼ X2 ð2:77Þ

with X having the Nakagami pdf in (2.72) is

f Y yð Þ ¼ 2
m

Ω

� 	mym�1

Γ mð Þ exp �m

Ω
y

� 	
, y � 0,m � 1

2
: ð2:78Þ

It can be seen that there is no difference between the pdf of the power (square of

the magnitude) expressed in (2.78) and the gamma pdf in (2.50) except that the

order of the gamma pdf m must be larger than ½ for it be associated with the

Nakagami pdf for the magnitude.

The CDF associated with the Nakagami-m distribution of power is

FY yð Þ ¼ 1� Γ m; m=Ωð Þyð Þ
Γ mð Þ : ð2:79Þ

In (2.79),

Γ m;
m

Ω
y

� 	
¼
ð1

m=Ωð Þy
xm�1exp �xð Þdx ð2:80Þ

is the incomplete gamma function (Gradshteyn and Ryzhik 2007). The other

forms of the Nakagami distribution such as the Nakagami-Hoyt and Nakagami-

Rice will be discussed in Chap. 4 where specific statistical models for fading will be

presented (Okui 1981; Korn and Foneska 2001; Subadar and Sahu 2009).

It is also possible to define a generalized form of the Nakagami-m pdf called the

generalized Nakagami density function. This density function is obtained by the

exponential scaling of the Nakagami variable X as (Coulson et al. 1998a, b; Shankar

2002a, b)

Y ¼ X 1=λð Þ, λ > 0: ð2:81Þ
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The density function of Y is the generalized density function given as

f yð Þ ¼ 2λmmy2mλ�1

Γ mð ÞΩm exp �m

Ω
y2λ

� 	
U yð Þ: ð2:82Þ

The generalized Nakagami pdf in (2.82) becomes the Rayleigh density function

in (2.94) when m and λ are each equal to unity. It can be easily observed that the

generalized gamma random variable is obtained by squaring the generalized

Nakagami random variable.

2.4.14 Non-Central Chi-Squared Distribution

While we looked at chi-squared distribution which arises from the sum of the

squares of zero mean identical random variables, the non-central chi-squared

distribution arises when the Gaussian variables have non-zero means. The density

function can be expressed in several forms as (Evans et al. 2000; Papoulis and Pillai

2002; Wolfram 2011)

f xð Þ ¼
ffiffiffi
λ

p

2 λxð Þr=4
exp � xþ λ

2

� �
x r�1ð Þ=2I r=2ð Þ�1

ffiffiffiffiffi
λx

p� 	
, r > 0, ð2:83Þ

f xð Þ ¼ 1

2� r=2ð Þ exp � xþ λ

2

� �
x r�1ð Þ=2X1

k¼0

λxð Þk
22kk!Γ k þ r=2ð Þð Þ , r > 0, ð2:84Þ

f xð Þ ¼ 2� r=2ð Þexp � xþ λ

2

� �
x r�2ð Þ�1

0F1 ½�; r

2

h i
;
λx

4

� �
, r > 0: ð2:85Þ

When λ is zero, the non-central chi-squared distribution becomes the chi squared

distribution. In (2.83), I(.) is the modified Bessel function of the first kind and in

(2.85) F(.) is the hypergeometric function (Gradshteyn and Ryzhik 2007). The

mean and variance of the pdf in (2.83) are

Xh i ¼ λþ r, ð2:86Þ

var xð Þ ¼ 2 2λþ rð Þ: ð2:87Þ

This distribution in its limiting form becomes the Rician distribution (Rice 1974;

Papoulis and Pillai 2002), which is discussed later. This density function also

occurs in clustering-based modeling of short-term fading in wireless systems. The

CDF can be expressed in terms of Marcum Q functions (Helstrom 1968; Nuttall

1975; Helstrom 1992, 1998; Chiani 1999; Simon 2002; Gaur and Annamalai 2003;

Simon and Alouini 2003).
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The non-central chi-squared distribution is plotted in Fig. 2.15 for a few values

of r and λ.

2.4.15 Normal (Gaussian) Distribution

The normal pdf is expressed as

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x� μð Þ2
2σ2

" #
, �1 < x < 1: ð2:88Þ

The CDF can be expressed in terms of error functions or Q functions (Haykin

2001; Proakis 2001; Sklar 2001; Papoulis and Pillai 2002; Simon and Alouini

2005). The CDF is

F xð Þ ¼ 1� Q
x� μ

σ

� 	
: ð2:89Þ

In (2.89), the Q function is given by

Q αð Þ ¼
ð1
α

1ffiffiffiffiffi
2π

p exp �w2

2

� �
dw: ð2:90Þ
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Fig. 2.15 Non-central chi-squared density function
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The shaded area in Fig. 2.16 represents the value of theQ(.). The function and its
properties are discussed in detail in Chap. 3.

The CHF of the normal random variable is

ψ ωð Þ ¼ exp jμω� 1

2
σ2ω2

� �
: ð2:91Þ

The mean is μ and the standard deviation is σ. The mode and median are also

equal to μ. Note that the normal pdf is used in the modeling of white noise (zero

mean) in communication systems. The pdf of the sum of the squares of two

independent identically distributed (zero mean) normal random variables leads to

an exponentially distributed random variable with a pdf in (2.44). The sum of the

squares of several Gaussian random variables (zero mean) also leads to a

chi-squared distribution.

The normal distribution in (2.88) is identified in literature as N(μ,σ).

2.4.16 Poisson Distribution

The Poisson distribution is of the discrete type and is commonly used in commu-

nications to model the frequency of telephone calls being made (Stuber 2000;

Papoulis and Pillai 2002; Molisch 2005; Gallager 2008). Since the random variable

is of the discrete type, we need the probability that the number of outcomes equals a

specific non-negative integer. This can be expressed as

x

f(x)

   0                    α

Area = Q(α)

Fig. 2.16 The CDF of the Gaussian variable
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Prob X ¼ kf g ¼ Λk

k!
exp �Λð Þ, k ¼ 0, 1, 2, :::: ð2:92Þ

In (2.92), Λ is the average of the Poisson variable. It is also equal to the variance.

When Λ increases, the density function approaches the normal or Gaussian pdf

(Papoulis and Pillai 2002). This is illustrated in Fig. 2.17.

2.4.17 Rayleigh Distribution

The short-term fading observed in wireless channels is modeled by treating the

magnitude of the signal as having the Rayleigh pdf (Jakes 1994; Schwartz et al.

1996; Sklar 1997a, b; Steele and Hanzó 1999; Patzold 2002; Rappaport 2002;

Shankar 2002a, b). The density function results from the square root of the sum

of two independent and identically distributed zero mean Gaussian random vari-

ables. In other words, if X1 and X2 are independent and identically distributed zero

mean Gaussian variables, the Rayleigh variable X will be

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
1 þ X2

2

q
: ð2:93Þ
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Fig. 2.17 Poisson probabilities
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The Rayleigh pdf can be expressed as

f xð Þ ¼ x

β
exp �x2

2β

� �
, 0 < x < 1: ð2:94Þ

The CDF can be expressed as

F xð Þ ¼ 1� exp �x2

2β

� �
: ð2:95Þ

There is no simple expression for the CHF. The mean and variance can be

expressed as

E Xð Þ ¼
ffiffiffiffiffiffiffiffi
βπ

2
,

r
ð2:96Þ

var Xð Þ ¼ 2� π

2

� 	
β: ð2:97Þ

Note that the Rayleigh random variable and exponential random variable are

related, with the square of a Rayleigh random variable having an exponential

distribution. The Rayleigh density function is also the special case of the Nakagami

pdf in (2.72) when the Nakagami parameter m ¼ 1. The Rayleigh pdf is shown in

Fig. 2.18. It must be noted that the Rayleigh pdf is characterized by the fact that the
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Fig. 2.18 Plot of Rayleigh pdf for three values of β
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ratio of its mean to its standard deviation is fixed at 1.91 and has no dependence on

the parameter β. Thus, regardless of the fact that the peak of the density function

moves to the right as β increases, such a shift would have no impact on the level of

fading in Rayleigh fading channels (as we will see in Chap. 4).

There is also another density function closely related to the Rayleigh pdf. This is

the so called Generalized Rayleigh distribution with a density function (Blumenson

and Miller 1963; Kundu and Raqab 2005; Voda 2009) of

f xð Þ ¼ 2αβxexp �βx2
� �

1� exp �βx2
� �� �α�1

, 0 < x < 1: ð2:98Þ

Note that (2.98) becomes the conventional Rayleigh density function when

α ¼ 1. Another form of generalized Rayleigh is identified by the pdf

f xð Þ ¼ m

b2Γ 2=mð Þ xexp �xm

bm

� �
: ð2:99Þ

Equation (2.99) is a special case of the generalized Gamma distribution in (2.54).

It becomes the simple Rayleigh density when m ¼ 2. There is no analytical

expression for the CDF associated with the density function in (2.99). The density

function in (2.99) is shown in Fig. 2.19.
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Fig. 2.19 The plot of the generalized Rayleigh pdf in (2.99) for three values of m and b ¼ 2. The

case of m ¼ 2 corresponds to the Rayleigh pdf in (2.94)
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There is another form of generalized Rayleigh distribution (Blumenson and

Miller 1963; Kundu and Raqab 2005; Voda 2009) as follows:

f xð Þ ¼ 2αkþ1

Γ k þ 1ð Þ x
2kþ1exp �αx2

� �
, x � 0, α > 0, k � 0: ð2:100Þ

Equation (2.100) becomes the Rayleigh density function when k ¼ 0. Once

again, there is no simple analytical expression for the CDF associated with the pdf

in (2.100). It must also be noted that the generalized Rayleigh distribution in (2.100)

is a more general form of the chi distribution in (2.39). Other aspects of the

Rayleigh density function are discussed in Chap. 4.

2.4.18 Rectangular or Uniform Distribution

Uniform distribution is widely used in communication systems to model the

statistics of phase (Stuber 2000; Papoulis and Pillai 2002; Shankar 2002a, b;

Vaughn and Anderson 2003). If there are two independent normal random variables

(X and Y) with zero means and identical variances, the pdf of the random variable

Z ¼ tan � Y

X

� �
ð2:101Þ

will have a uniform distribution. The density function f(z) can be expressed as

f zð Þ ¼ 1

β � α
, α < z < β: ð2:102Þ

The CDF is given by

f zð Þ ¼ z� a

β � α
: ð2:103Þ

The CHF is given by

ψ ωð Þ ¼ exp jβωð Þ � exp jαωð Þ½ �
jω β � αð Þ : ð2:104Þ

The mean and variance are given by

E Zð Þ ¼ αþ β

2
, ð2:105Þ
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var Zð Þ ¼ β � αð Þ2
12

: ð2:106Þ

In multipath fading, the phase is uniformly distributed in the range

[0,2π]. The phase statistics can be displayed in two different ways. One is the

conventional way of sketching the pdf as shown in Fig. 2.20. The other one is using

polar plots, in which case uniformly distributed phase will appear as a circle. This is

illustrated in Fig. 2.21 which was obtained by taking the histogram of several

random numbers with the uniform pdf in the range [0,2π]. The histogram is seen

as a circle.

The latter representation using the polar plot is convenient in understanding and

interpreting the fading seen in Rician fading channels, as we will see in Chap. 4.
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Fig. 2.20 Rectangular or

uniform pdf
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2.4.19 Student’s t Distribution

The student t distribution in its shape looks very similar to the Gaussian and Cauchy

distributions, and in the limiting cases it approaches either the Gaussian or the

Cauchy distribution. Even though this density function is not directly used in

wireless communications it can arise when we examine the ratio of a normal

random variable to a normalized chi variable. This will be shown later in this

chapter when we explore the random variables generated by mixing two or more

random variables. This density function is also extensively used for testing to

validate the statistical fits to densities.

A random variable z has a Student t distribution with n degrees of freedom if the

pdf of Z is

fz zð Þ ¼ Γ nþ 1ð Þ=2ð Þffiffiffiffiffi
nπ

p
Γ n=2ð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=nð Þð Þnþ1

q , �1 < x < 1: ð2:107Þ

When n ¼ 1, the Student t pdf in (2.107) becomes the Cauchy pdf in (2.32). The

Student t density is often identified as t(n).
As n becomes large, the density function in (2.107) approaches a Gaussian pdf

since

1þ z2

n

� �� nþ1ð Þ=2ð Þ
! exp �z2

2

� �
as n ! 1: ð2:108Þ

A simple expression for the CDF is not readily available. The moments of the

Student t distribution become

Zk
� � ¼ 0, kodd,

1:3:5::: k � 1ð Þnk=2
n� 2ð Þ n� 4ð Þ::: n� kð Þ , k even,

k, k even, n > k:

8><>: ð2:109Þ

Thus, this random variable has a mean of zero and variance of n¼ (n� 2); n> 2.

The student t distribution is shown in Fig. 2.22 for three values of n. The heavier
“tails” of the pdf are clearly seen at the lower values of n, indicating that the Student
t distribution belongs to a class of density functions with “heavy tails” or heavy

tailed distributions (Bryson 1974).

The transition to the Gaussian distribution is demonstrated in Fig. 2.23 where the

CDFs of the Student t variable and the normal variable with identical variance are

plotted. As n goes from 4 to 10, the CDFs almost match, indicating that with

increasing values of n, the Student t distribution approaches the Gaussian

distribution.
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2.4.20 Weibull Distribution

In wireless communication systems, the Weibull pdf is also used to model the SNR

in short-term fading (Shepherd 1977; Cheng et al. 2004; Sahu and Chaturvedi 2005;

Alouini and Simon 2006; Ismail and Matalgah 2006). The Weibull density function

can be expressed as

f xð Þ ¼ ηxη�1

βη
exp � x

β

� �η
 �
, 0 < x < 1: ð2:110Þ

The Weibull pdf can also be written in a much simpler form as

f xð Þ ¼ αxα�1exp �xαð Þ, x � 0, α > 0: ð2:111Þ

The pdf in (2.111) is shown in Fig. 2.24. The CDF associated with the pdf in

(2.110) is given by

F xð Þ ¼ 1� exp � x

β

� �η
 �
: ð2:112Þ

There is no simple analytical expression for the CHF. The mean and variance

can be expressed as
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Fig. 2.24 The Weibull densities
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E Xð Þ ¼ βΓ 1þ 1

η

� �
, ð2:113Þ

var Xð Þ ¼ β2 Γ 1þ 2

η

� �
� Γ2 1þ 1

η

� �
 �
: ð2:114Þ

Note that the Weibull and generalized gamma (GG) random variables are

related. If we put c ¼ 1 and η ¼ λ in (2.56), the GG variable becomes a Weibull

random variable.

2.5 Joint, Marginal and Conditional Densities

If X1,. . ., Xk are a set of random variables, the joint CDF is defined as (Rohatgi and

Saleh 2001; Papoulis and Pillai 2002)

F x1; :::; xkð Þ ¼ P X1 � x1; :::;Xk � xkð Þ: ð2:115Þ

The joint pdf is obtained by differentiating (2.115) with respect to x1,. . ., xk,. We

have

f x1; :::; xkð Þ ¼ ∂k

∂x1:::∂xk
F x1; :::; xkð Þ½ �: ð2:116Þ

Marginal densities can be obtained from the joint density. The marginal density

of x1 is given as

f x1ð Þ ¼
ð1
x2¼�1

ð1
x3¼�1

� � �
ð1
xk¼�1

f x1; . . . ; xkð Þdx2dx3:::dxk: ð2:117Þ

Similarly,

f x1; x2ð Þ ¼
ð1
x3¼�1

ð1
x4¼�1

� � �
ð1
xk¼�1

f x1; . . . ; xkð Þdx3:::dxk: ð2:118Þ

If the random variables are independent, we have

f x1; :::; xkð Þ ¼ f x1ð Þf x2ð Þ:::f xkð Þ, ð2:119Þ

F x1; :::; xkð Þ ¼ F x1ð ÞF x2ð Þ:::F xkð Þ: ð2:120Þ
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We can also define conditional densities. If we have a joint pdf of two random

variables f(x,y), the conditional density function of Y, conditioned on X ¼ x is

defined as

f yjX ¼ xð Þ ¼ f yjxð Þ ¼ f x; yð Þ
f xð Þ : ð2:121Þ

It is obvious from (2.121), that if X and Y are independent, the conditional

density of Y is unaffected by the presence of X. It is given by f(y) itself. The

conditioning expressed in (2.121) can also be extended to multiple random vari-

ables. On the other hand, if X and Y are dependent, the marginal density function of

Y can be obtained as

f yð Þ ¼
ð1
�1

f yjxð Þf xð Þdx ¼
ð1
�1

f x; yð Þdx: ð2:122Þ

Equation (2.122) can be interpreted as the Bayes Theorem for continuous

random variables (Papoulis and Pillai 2002). Extending Eq. (2.121) to multiple

random variables, we can express

f xn; :::; xkþ1jxk; :::; x1ð Þ ¼ f x1; x2; :::; xk; :::xnð Þ
f x1; :::; xkð Þ : ð2:123Þ

2.6 Expectation, Covariance, Correlation, Independence,

and Orthogonality

The expected value of a function of random variables, g(x1,. . ., xk) is defined as

(Papoulis and Pillai 2002)

E g x1; :::; xkð Þ½ � ¼ g x1; :::; xkð Þh i
¼ Ð1�1 � � � Ð1�1 g x1; . . . ; xkð Þf x1; . . . ; xkð Þdx1:::dxk:

ð2:124Þ

Let us now look at the case of two random variables, X and Y. The joint expected
value of the product of the two random variables,

E XYð Þ ¼
ð1
�1

ð1
�1

xyf x; yð Þdxdy: ð2:125Þ

The covariance Cxy of two random variables is defined as

Cxy ¼ E X � ηxð Þ Y � ηy
� �� �

: ð2:126Þ
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In (2.126),

ηx ¼
ð ð

xf x; yð Þdxdy ð2:127Þ

and

ηy ¼
ð ð

yf x; yð Þdxdy: ð2:128Þ

Expanding (2.126), we have

Cxy ¼ E XYð Þ � ηxηy: ð2:129Þ

Note that if X and Y are independent random variables, using (2.119), we have

Cxy ¼ 0 ð2:130Þ

The correlation coefficient of two random variables, ρxy is defined as

ρxy ¼
Cxy

σxσy
: ð2:131Þ

It can be shown that

ρxy
�� �� � 1: ð2:132Þ

Two random variables X and Y are said to be uncorrelated if

ρxy ¼ 0 or Cxy ¼ 0 or E XYð Þ ¼ E Xð ÞE Yð Þ: ð2:133Þ

It can be easily seen that if the two random variables are independent, they will

be uncorrelated. The converse is true only for Gaussian random variables. Two

random variables are called orthogonal if

E XYð Þ ¼ 0 ð2:134Þ

2.7 Central Limit Theorem

If we have n independent random variables Xi, i ¼ 1,2,. . .,n, the pdf f(y) of their
sum Y

Y ¼
Xn
i¼1

Xi ð2:135Þ
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approaches a normal distribution,

f Y yð Þ ’ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x� ηð Þ2
2σ2

" #
: ð2:136Þ

In (2.136), η and σ are the mean and standard deviation of Y. If the random

variables are identical, a lower value of n would be adequate for the pdf to become

almost Gaussian while a higher value of n will be required if the random variables

are not identical. In fact, for the case of independent identically distributed random

variables with marginal pdfs that are smooth, a value of n of 5 or 6 would be enough
to make the pdf of the sum approach the Gaussian distribution. Note that one of the

requirements for the CLT to hold true is that none of the random variables can have

variances of infinity. This would means that CLT is not applicable if the random

variables have Cauchy densities. It can also be concluded that the chi-squared pdf in

(2.35) will also approximate the Gaussian pdf when the number of degrees of

freedom n is large.

Instead of the sum of n independent random variables, we can consider the

product of n independent random variables, i.e.,

Z ¼
Yn
i¼1

Xi: ð2:137Þ

Then the pdf of Z is approximately lognormal.

f Z zð Þ ’ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πzσ2

p exp � 1

2σ2
ln y� ηð Þ2


 �
: ð2:138Þ

In (2.138),

η ¼
Xn
i¼1

E lnXið Þ, ð2:139Þ

σ2 ¼
Xn
i¼1

var lnXið Þ: ð2:140Þ

Note that in the equations above, var is the variance and ln is the natural

logarithm. The central limit theorem for products can be restated by defining Y as

Y ¼ ln Z
Xn
i¼1

ln Xið Þ: ð2:141Þ

Now, if we use the CLT for the sum, the pdf of Y will be Gaussian. One of the

justifications for the lognormal pdf for modeling the shadowing component in
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wireless channels arises from the fact that the shadowing process resulting in the

lognormal pdf is a consequence of multiple scattering/reflections and consequent

applicability of the central limit theorem for products. This aspect will be covered

in Chap. 4 when we discuss the various models for describing, fading and

shadowing. It will be possible to determine the lower limit on the value of n such

that the central limit theorem for the products would hold.

2.8 Transformation of Random Variables

Although we examined the properties of random variables, often in wireless

communications, the signals pass through filters. We are interested in obtaining

the statistical properties of the outputs of the filters. The input to the filters may be

single variable or multiple variables. For example, in systems operating in the

diversity mode, the output might be the sum of the inputs or the strongest of the

inputs (Brennan 1959). The output might also be a scaled version of the input. The

output of interest might be the ratio of two random variables such as in the case of

the detection of desired signals in the presence of cochannel interference.

We will now look at techniques to obtain the density functions of the outputs,

knowing the density functions of the input random variables.

2.8.1 Derivation of the pdf and CDF of Y ¼ g(X)

As mentioned above, in wireless communications it is necessary to determine the

statistics of the signal when it has passed through filters, linear and nonlinear. For

example, if a signal passes through a square law device or an inverse law device, we

need to find out the density function of the output from the density function of the

input random variable. As a general case, we are interested in obtaining the pdf of Y
which is the output of a filter as shown in Fig. 2.25.

If we consider the transformation that is monotonic, i.e., dy ¼ dx is either

positive or negative, it is easy to determine the pdf of Y knowing the pdf of X. An
example of monotonic transformation is shown in Fig. 2.26. Starting with the

definition of the random variable and CDF, the probability that the variable Y lies

between y and y + Δy is

X Y= g(X)

g(.)
Fig. 2.25 Input–output

relationship
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P y < Y < yþ Δyf g ¼ P x < X < xþ Δxf g: ð2:142Þ

Equation (2.142) is possible because of the monotonic nature of the transforma-

tion. Once again, using the definition of the CDF we can rewrite (2.142) as

f Y yð ÞΔy ¼ f X xð ÞΔx: ð2:143Þ

By letting Δx and, hence, Δy ! 0, (2.143) becomes

f Y yð Þ ¼ f X xð Þ��dy=dx��
�����
x¼g�1 yð Þ

: ð2:144Þ

The absolute sign in (2.144) merely reflects inclusion of both the monotonically

increasing and decreasing nature of Y and shows that the pdf is always positive. The

CDF can be found either from (2.144) or directly from the definition of the CDF as

FY yð Þ ¼ P Y < yf g ¼ P g xð Þ < yf g ¼ FX g xð Þ½ �: ð2:145Þ

We can now consider the case of a non-monotonic transformation shown in

Fig. 2.27.

If the transformation from X to Y is not monotonic as shown in Fig. 2.7, then,

(2.144) can be modified to

f Y yð Þ ¼ f X xð Þ��dy=dx��
�����
x1¼g�1 yð Þ

þ f X xð Þ��dy=dx��
�����
x2¼g�1 yð Þ

þ :::
f X xð Þ��dy=dx��

�����
xn¼g�1 yð Þ

: ð2:146Þ

x

y

g(x) 

Δx 

Δy 

Fig. 2.26 Monotonic

transformation of the

random variable
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In (2.146), x1, x2,. . ., xn are the n roots of the non-monotonic transformation

between X and Y.
It is also possible that there may be instances where non-monotonic transforma-

tion might have infinite roots. Consider the case where X is a Gaussian random

variable with a zero mean and standard deviation of s. For example, let us consider

the case of a half wave rectifier, i.e.,

Y ¼
X, X � 0,

0, X < 0:

(
ð2:147Þ

This is shown in Fig. 2.28.

From (2.147), we have

FY yð Þ ¼
1

2
, y ¼ 0,

FX yð Þ, y > 0:

8><>: ð2:148Þ

0 
x

y

g(x) 

0

Fig. 2.28 Many-to-one

transformation. For all

negative values of X, there
is only a single solution

(Y ¼ 0)

x

y

g(x) 

Δx1 Δx3 Δx4Δx2

Δy 

Fig. 2.27 Non-monotonic

transformation. Multiple

solutions are seen
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The pdf is obtained by differentiating keeping in mind that Y¼ 0 is an event with

a probability of 0.5, resulting in

f Y yð Þ ¼ 1

2
δ yð Þ þ f X yð ÞU yð Þ: ð2:149Þ

2.8.2 Probability Density Function of Z ¼ X + Y

Let us find out the density function of the sum of two random variables

Z ¼ X þ Y: ð2:150Þ

Using the fundamental definition of the probability, we have

FZ zð Þ ¼ P Z < zf g ¼ P X þ Y < zf g ¼
ðð

xþy<z

f x; yð Þdxdy: ð2:151Þ

The region defined by (2.151) is shown in Fig. 2.29.

Rewriting (2.151),

FZ zð Þ ¼
ð1
y¼�1

ð1
x¼�1

f x; yð Þdxdy: ð2:152Þ

The pdf f(z) is obtained by differentiating (2.152) with respect to z. Using the

Leibnitz rule (Gradshteyn and Ryzhik 2007), we get

f Z zð Þ ¼
ð1
�1

f z� y; yð Þdy: ð2:153Þ

0
0 x

y 

x y z+ ≤  

Fig. 2.29 The region

defined by x + y < z
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If X and Y are independent, (2.153) becomes

f Z zð Þ ¼
ð1
�1

f X z� yð Þf Y yð Þ dy: ð2:154Þ

Equation (2.154) shows that the pdf of the sum of two independent random

variables is the convolution of the marginal density functions. If X and Y exist only

for positive values, (2.154) becomes

f Z zð Þ ¼
ð z
0

f X z� yð Þf Y yð Þ dy: ð2:155Þ

2.8.3 Joint pdf of Functions of Two or More Random
Variables

We will now look at ways of obtaining the joint pdf of two variables which are

functions of two random variables. For example, if U and V are two random

variables given expressed as

U ¼ g X; Yð Þ,
V ¼ h X; Yð Þ: ð2:156Þ

We are interested in obtaining f(u,v) given the joint pdf of X and Y, namely f(x,y).
Extending the concept used in the derivation of (2.144) and (2.146), the joint pdf of

U and V can be expressed as

f
U,V u;vð Þ ¼

f X,Y x; yð Þ��J x; yð Þ��
�����
x¼ u;v½ ��1,y¼ u;v½ ��1

: ð2:157Þ

In (2.157), J(x,y) is the Jacobian given by

J x; yð Þ ¼

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

���������

���������: ð2:158Þ

If one is interested in the pdf of U or V, it can easily be obtained as

f U uð Þ ¼
ð
f u; vð Þdv: ð2:159Þ
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We can also use (1.16) to obtain the pdf of the sum of two random variables.

Defining

Z ¼ X þ Y
V ¼ Y

�
: ð2:160Þ

The Jacobian will be

J x; yð Þ ¼ 1: ð2:161Þ

We have

f z; vð Þ ¼ f x,y z� v; vð Þ: ð2:162Þ

Using (2.159), we have

f Z zð Þ ¼
ð1
�1

f z,v z� v; vð Þdv: ð2:163Þ

Equation (2.163) is identical to (2.153) obtained earlier directly. We will now

find the density function of the sum of two-scaled random variables such as

W ¼ aX þ bY: ð2:164Þ

In (2.164), a and b are real-valued scalars. Defining an auxiliary variable

V ¼ Y, ð2:165Þ

we have the Jacobian of the transformation as

J x; yð Þ ¼ a: ð2:166Þ

Using (2.157), we have the joint pdf

f w; vð Þ ¼ f X,Y x; yð Þ��J x; yð Þ��
�����
y¼v;x¼w�by

a

¼ 1��a�� f X,Y w� by

a
; y

� �
: ð2:167Þ

The density function of the random variable in (2.164) now becomes

f wð Þ ¼ 1��a��
ð1
�1

f X,Y
w� by

a
; y

� �
dy: ð2:168Þ
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We will look at a few more cases of interest in wireless systems. For example,

one of the diversity combining algorithm uses the strongest signal from several

branches. Let us determine the density function of

Z ¼ Max X; Yf g: ð2:169Þ

The CDF of Z becomes

FZ zð Þ ¼ P Max X; Yð Þ < zf g ¼ P X < z; Y < zf g ¼ FX,Y z; zð Þ: ð2:170Þ

The CDF is the volume contained in the shaded area in Fig. 2.30.

If X and Y are independent, (2.170) becomes

FZ zð Þ ¼ FX zð ÞFY zð Þ: ð2:171Þ

The pdf of the maximum of two independent random variables is obtained by

differentiating (2.171) w.r.t. z as

f Z zð Þ ¼ f X zð ÞFY zð Þ þ f Y zð ÞFX zð Þ: ð2:172Þ

Furthermore, if X and Y are identical, (2.172) becomes

f Z zð Þ ¼ 2f X zð ÞFX zð Þ ¼ 2f Y zð ÞFY zð Þ: ð2:173Þ

We can easily find out the density function of the minimum of two random

variables. Let us define W as

y

x
X  z,Y  z 

(z,z)  

≤ ≤

Fig. 2.30 The region of

interest to obtain the pdf of

the maximum of two

random variables
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W ¼ Min X; Yf g ¼ Y, X > Y,
X, X � Y:

�
ð2:174Þ

The CDF of W will be

FW wð Þ ¼ P Min X; Yð Þ < wf g ¼ P Y < w;X > Yf g þ P X < w;X � Yf g: ð2:175Þ

The volume contained in the shaded area in Fig. 2.31 corresponds to this CDF.

Assuming X and Y to be independent, (2.175) can result in

FW wð Þ ¼ 1� P W > wf g ¼ 1� P X > w; Y > wf g
¼ 1� P X > wf gP Y > wf g: ð2:176Þ

Equation (2.176) simplifies to

FW wð Þ ¼ FX wð Þ þ FY wð Þ � FX wð ÞFY wð Þ: ð2:177Þ

We get the pdf by differentiating (2.177) w.r.t w, and we have

f wð Þ ¼ f X wð Þ þ f Y wð Þ � f X wð ÞFY wð Þ � f Y wð ÞFX wð Þ: ð2:178Þ

Another random parameter of interest is the product of two random variables.

If U is the product of the two random variables

U ¼ XY: ð2:179Þ

The density function of U might be obtained in a couple of different ways. First,

let us define a dummy variable V as X,

V ¼ Y: ð2:180Þ

x

y

(w,w)

Fig. 2.31 The region of

interest to obtain the CDF of

the minimum of two

variables
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Thus, the joint pdf of U and V can be written using (2.157) as

f u; vð Þ ¼ f X,Y u=vð Þ; vð Þ��v�� : ð2:181Þ

The density function of the product of two random variables is obtained as

f U uð Þ ¼
ð1
�1

1��v�� f X,Y u

v
; v

� 	
dv: ð2:182Þ

Assuming that both X and Y are independent and exist only for positive values,

(2.182) becomes

f U uð Þ ¼
ð1
0

1��y�� f X,Y u

y
; y

� �
dy: ð2:183Þ

One can also obtain the pdf of U from the fundamental definition of the CDF as

well. The CDF of U can be expressed as

FU uð Þ ¼ P XY < uf g ¼ P Z <
u

y

� �
¼
ð1
0

ðu=y
0

f X; Yð Þdxdy: ð2:184Þ

The region with horizontal lines in Fig. 2.32 shows the region of interest for the

calculation of the probability volume in (2.184).

The pdf is obtained by differentiating (2.184) w.r.t u and using the Leibniz’s
rule. Therefore, we have

x

y

0 

XY=U  

Fig. 2.32 The probability

(volume) contained in the

shaded region corresponds

to the CDF

58 2 Concepts of Probability and Statistics



f U uð Þ ¼
ð1
�1

1

y
f X,Y

u

y
; y

� �
dy: ð2:185Þ

Working similarly, if

Z ¼ X

Y
: ð2:186Þ

The pdf of the ratio of two random variables (X,Y > 0) becomes,

f Z zð Þ ¼
ð1
0

yf X,Y zy; yð Þdy: ð2:187Þ

It is also possible to obtain the CDF first. This was done for the case of the

product of random variables in (2.184). Differentiating the CDF is given by the

shaded region (x > 0, y > 0) in Fig. 2.33, we can also find the density function of

W ¼ X2 þ Y2: ð2:188Þ

Using the fundamental definition of CDF, we can write the CDF of the variable

W as

FW wð Þ ¼ Prob X2 þ Y2 < w
� �

: ð2:189Þ

Since X2 + Y2 � w represents a circle of radius
ffiffiffiffi
w

p
, the CDF becomes

0
x

y

X=YZ

0

Fig. 2.33 The probability

(volume) in the shaded

region corresponds to the

CDF X ¼ YZ
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FW wð Þ ¼
ð ffiffizp

y¼� ffiffi
z

p

ð ffiffiffiffiffiffiffi
z�y2

p

�
ffiffiffiffiffiffiffi
z�y2

p f x; yð Þdxdy: ð2:190Þ

The pdf is obtained by differentiating the CDF in (2.190) resulting in

f wð Þ ¼
ð ffiffiffiwp

� ffiffiffi
w

p
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� y2

p f x,y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� y2

p
; y

� 	
þ f x,y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� y2

p
; y

� 	h i
dy: ð2:191Þ

2.8.4 Use of CHF to Obtain pdf of Sum of Random Variables

One of the main uses of the CHF or the MGF is in diversity combining (Beaulieu

1990; Tellambura and Annamalai 2003; Annamalai et al. 2005). If the output of a

diversity combining algorithm is given by the sum of several outputs such as

Y ¼ X1 þ X2 þ � � � þ XM, ð2:192Þ

and if we assume that the random variables X1, . . ., XM are independent, the pdf

Y will be obtained by theM-fold convolution of the pdfs of those random variables.

If the CHFs of X’s are available, the CHF of Y can instead be expressed as

ψY ωð Þ ¼ exp jωX1 þ jωX2 þ � � �jωXMð Þh i: ð2:193Þ

Using the Fourier transform properties, we have

ψY ωð Þ ¼
YM
k¼1

ψXk
ωð Þ: ð2:194Þ

If the random variables X’s are identical, (2.194) becomes

ψY ωð Þ ¼ ψX ωð Þ½ �M: ð2:195Þ

The pdf of Y can now be obtained using the inverse Fourier transform property as

f Y yð Þ ¼ 1

2π

ð1
�1

ψX ωð Þ½ �Mexp �jωyð Þdω: ð2:196Þ

Note that (2.196) is a single integral which replaces the M-fold convolution

required if one were to use the marginal pdfs directly.
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2.8.5 Some Transformations of Interest in Wireless
Communications

We will now look at a few examples of transformations of random variables such as

the sum or difference of two random variables, the sum of the squares of random

variables, and the products and ratios of random variables.

Example #1 Let X and Y be two independent identically distributed random vari-

ables each with zero mean. The joint pdf is

f x; yð Þ ¼ f xð Þf yð Þ ¼ 1

2πσ2
exp � x2 þ y2

2σ2

� �
: ð2:197Þ

We will find the joint pdf of

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
, ð2:198Þ

Θ ¼ tan �1 Y

X

� �
: ð2:199Þ

Note that R is the envelope (or magnitude) andΘ is the phase. The Jacobian J(x,y)
defined in (2.158) for the set of these two variables

J x; yð Þ ¼

∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

���������

��������� ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

�y

x2 þ y2
x

x2 þ y2

���������

��������� ¼
1

r
: ð2:200Þ

The joint pdf now becomes

f r; θð Þ ¼ f x; yð Þ��J x; yð Þ�� ¼ r

2πσ2
exp � r2

2σ2

� �
, 0 � r � 1, 0 � θ � 2π: ð2:201Þ

The marginal density function of R is

f rð Þ ¼
ð π
�π

f r; θð Þdθ ¼ r

σ2
exp � r2

2σ2

� �
, 0 � r � 1: ð2:202Þ

The marginal density function of the phase is

f θð Þ ¼
ð1
0

f r; θð Þdr ¼ 1

2π
, 0 � θ � 2π: ð2:203Þ
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Note that R and Θ are independent with R having a Rayleigh distribution and Θ
having a uniform distribution. Often, the range of the phase is also expressed as

�π < θ< π. A discussion on the phase statistics appears in connection with the next

example.

Example #2 Another related case of interest arises when one of the Gaussian

random variables in Example #1 has a non-zero mean. Let

f x; yð Þ ¼ 1

2πσ2
exp � x� Að Þ2

2σ2

" #
exp � y2

2σ2

� �
: ð2:204Þ

Our interest is still the joint and marginal pdfs of R and Θ in (2.198) and (2.199).

The Jacobian for the transformation will be unaffected by the existence of the mean

A of the random variable X. Thus, the joint pdf becomes

f r; θð Þ ¼ r

2πσ2
exp � r2 þ A2

2σ2

� �
exp

rA cos θð Þ
σ2


 �
,

0 � r � 1, 0 � θ � 2π:

ð2:205Þ

The pdf of the magnitude R is

f rð Þ ¼ r

σ2
exp � r2 þ A2

2σ2

� �ð2π
0

1

2π
exp

rA cos θð Þ
σ2


 �
dθ: ð2:206Þ

Noting the relationship between the integral in (2.206) and the modified Bessel

function of the first kind I0(.) (Abramowitz and Segun 1972; Gradshteyn and

Ryzhik 2007)

I0 wð Þ ¼ 1

2π

ð2π
0

exp w cos θð Þ½ �dθ: ð2:207Þ

We can write (2.206) as

f rð Þ ¼ r

σ2
exp � r2 � A2

2σ2


 �
I0

rA

σ2

� �
, 0 � r � 1: ð2:208Þ

Equation (2.208) is known as the Rician distribution of the magnitude or

envelope. This pdf arises in wireless systems when a direct path exists between

the transmitter and receiver in addition to the multiple diffuse paths (Nakagami

1960; Rice 1974; Polydorou et al. 1999). When A ! 0, the Rician pdf in (2.208)

becomes the Rayleigh pdf in (2.202). Another interesting observation on the Rician

pdf is its characteristics when A becomes large. If
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A

σ2
� 1 ð2:209Þ

we can use the approximation (Abramowitz and Segun 1972)

I0 xð Þ ¼ exp xð Þffiffiffiffiffiffiffiffi
2πx

p : ð2:210Þ

The Rician pdf now becomes (strong direct path and weak multipath

component),

f rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p r

A

� 	1=2
exp � 1

2σ2
r � Að Þ2


 �
: ð2:211Þ

Equation (2.211) has an approximate Gaussian shape but for the factor of
ffiffiffiffiffiffiffiffi
r=A

p
.

This situation also arises in electrical communication systems when we examine the

sum of a strong sine wave signal and a weak narrow band additive Gaussian noise.

We can now look at the density function of the power Z,

Z ¼ R2: ð2:212Þ

The pdf can be obtained using the properties of the transformation of variables as

f zð Þ ¼ f rð Þ��dz=dr�� : ð2:213Þ

Defining the Rician factor K0 as

K0 ¼ A2

2σ2
ð2:214Þ

and

ZR ¼ 2σ2 þ A2 ð2:215Þ

(2.213) becomes

f zð Þ ¼ 1þ K0ð Þ
ZR

exp �K0 � 1þ K0ð Þ z
ZR


 �
I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 1þ K0ð Þ z

ZR

r
 �
,

0 � z � 1:

ð2:216Þ

Equation (2.216) is the Rician distribution of the power or SNR. Another point to

note is that the density function of the phase Θwill not be uniform (Goodman 1985;
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Papoulis and Pillai 2002). By observing the joint pdf of the envelope and phase in

(2.205), we can also note that the variables R and Θ are not independent.

The density functions of the phase and the changes in the densities as the Rician

factor changes can be observed in Fig. 2.34.

Example #3 Let X and Y be independent identically distributed exponential random

variables. The joint density function becomes

f x; yð Þ ¼ 1

a2
exp � xþ y

a

� 	
,U xð ÞU yð Þ: ð2:217Þ

We can find the pdf of

Z ¼ X þ Y: ð2:218Þ

Using (2.155), the pdf of Z becomes

f zð Þ ¼
ð z
0

1

a2
exp �x

a

� 	
exp � z� x

a

� 	h i
dx ¼ z

a2
exp �z

a

� 	
U zð Þ: ð2:219Þ

Note that the pdf of Z in (2.219) is the Erlang distribution in (2.41) for the case of

c ¼ 2. If we now write
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Fig. 2.34 The histogram of the phase associated with the Rician pdf
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W ¼
Xn
k¼1

Xk ð2:220Þ

where each of the random variable on the right hand side is exponentially

distributed with the parameter a, proceeding similarly we can get the pdf ofW to be

f wð Þ ¼ 1

aN
wN�1

Γ Nð Þ exp �w

a

� 	
U wð Þ: ð2:221Þ

Equation (2.221) is the Erlang pdf in (2.41).

Example #4 We will repeat Example #2 when the two random variables are

gamma distributed with a joint pdf

f x; yð Þ ¼ x=βð Þc�1
exp � x=βð Þð Þ
βΓ cð Þ

y=βð Þc�1
exp � y=βð Þð Þ
βΓ cð Þ ,

0 < x < 1, 0 < y < 1:

ð2:222Þ

Let

R ¼ X þ Y: ð2:223Þ

Using (2.155), the pdf of R becomes

f rð Þ ¼
ð r
0

x=βð Þc�1
exp � x=βð Þð Þ
βΓ cð Þ

r � xð Þ=βð Þc�1
exp � r � xð Þ=βð Þ

βΓ cð Þ dx: ð2:224Þ

Using the table of integrals (Gradshteyn and Ryzhik 2007), the pdf of the sum of

the two gamma random variable becomes

f rð Þ ¼ r2c�1

β2cΓ 2cð Þ exp �r

β

� �
, 0 � r � 1: ð2:225Þ

In arriving at (2.225), we have made use of the following identity of doubling

formula for gamma functions (Gradshteyn and Ryzhik 2007; Wolfram 2011)

Γ 2cð Þ ¼ 22c�1ffiffiffi
π

p Γ cð ÞΓ cþ 1

2

� �
: ð2:226Þ

A comparison of (2.225) and (2.50) suggests that R is also a gamma random

variable with order 2c and mean of 2βc. In other words, R is a gamma random

variable of parameters 2c and β.
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Example #5 Let us continue with the case of two independent and identically

distributed exponential random variables with a joint pdf in (2.217). We will now

find out the pdf of the product of the two variables,

U ¼ XY: ð2:227Þ

Using the approach given in (2.182), we have

f U uð Þ ¼
ð1
0

1

x
f X,Y

u

x
; x

� 	
dx ¼

ð1
0

1

a2x
exp � u

ax

� 	
exp �x

a

� 	
dx: ð2:228Þ

Using tables of integrals (Gradshteyn and Ryzhik 2007), Eq. (2.228) becomes

f uð Þ ¼ 2

a2
K0

2

a

ffiffiffi
u

p� �
, 0 � u � 1: ð2:229Þ

In (2.229), K0() is the modified Bessel function of the second kind of order zero

(Gradshteyn and Ryzhik 2007). Note that the pdf in (2.229) arises when we examine

the SNR in shadowed fading channels or cascaded channels (Shankar 2004; Bithas

et al. 2006; Andersen 2002; Nadarajah and Gupta 2005; Salo et al. 2006; Nadarajah

and Kotz 2006a, b).

If we define a new random variable as

W ¼
ffiffiffiffi
U

p
, ð2:230Þ

we can identify the pdf ofW as the double Rayleigh pdf (Salo et al. 2006). Using

the property of the monotonic transformation of random variables in (2.144), we

can write

f wð Þ ¼ f uð Þ��du=dw�� ¼ 2
ffiffiffi
u

p� � 2
a2

K0

2

a

ffiffiffi
u

p� �
¼ 4w

a2
K0

2

a
w

� �
, 0 � w � 1: ð2:231Þ

Example #6 We will repeat Example #5 for the case of two gamma random

variables, independent and identically distributed with a joint pdf in (2.222).

Using (2.182) the pdf of the product becomes

f uð Þ ¼
ð1
0

1

x

x=βð Þc�1
exp � x=βð Þð Þ
βΓ cð Þ

u=βxð Þc�1
exp � u=βxð Þð Þ
βΓ cð Þ dx: ð2:232Þ

Using the table of integrals (Gradshteyn and Ryzhik 2007), we have
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f uð Þ ¼ 2

β2cΓ cð Þ u
c�1K0

2

β

ffiffiffi
u

p� �
, 0 � u � 1: ð2:233Þ

Note that (2.233) becomes (2.229) when c ¼ 1.

If we limit the value of c> 1/2, and the pdf ofW in (2.230) is compared with the

pdf of U in (2.233) the latter is identified as the double Nakagami pdf (Wongtrairat

and Supnithi 2009; Shankar and Gentile 2010). In general, (2.233) is also known as

the double gamma pdf and we will study its properties in Chap. 4 when we examine

cascaded fading channels.

Using the procedure adopted in connection with (2.231), we get

wð Þ ¼ f uð Þ��du=dw�� ¼ 2
ffiffiffi
u

p� � 2

β2cΓ2 cð Þ u
c�1K0

2

β

ffiffiffi
u

p� �
¼ 4w2c�1

β2cΓ2 cð Þ 	 K0

2

β
w

� �
, 0 � w � 1:

ð2:234Þ

Equation (2.234) is the pdf associated with the product of two Nakagami

variables.

Example #7 Another interesting case in wireless systems is variable created from

the product of two nonidentical gamma random variables. Let X and Y be two

gamma distributed variables with pdfs

f xð Þ ¼ x=αð Þc�1
exp � x=αð Þð Þ
αΓ cð Þ , ð2:235Þ

f yð Þ ¼ y=βð Þm�1
exp � y=βð Þð Þ

βΓ mð Þ : ð2:236Þ

Let

S ¼ XY: ð2:237Þ

Once again, pdf of S can be written using (2.183) as

f sð Þ ¼
ð1
0

1

x

x=αð Þc�1
exp � x=αð Þð Þ
αΓ cð Þ

s=βxð Þm�1
exp � s=βxð Þð Þ

βΓ mð Þ dx: ð2:238Þ

Using the table of integrals (Gradshteyn and Ryzhik 2007), the pdf of S becomes

f sð Þ ¼ 2ffiffiffiffiffiffi
αβ

pð ÞmþcΓ mð ÞΓ cð Þ s
mþcð Þ=2ð Þ�1 2

ffiffiffiffiffiffi
s

αβ

r� �
, 0 � s � 1: ð2:239Þ
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The pdf in (2.239) is the gamma–gamma pdf or the generalized K distribution

(Lewinsky 1983; McDaniel 1990; Abdi and Kaveh 1998; Anastassopoulos et al.

1999; Shankar 2004). Note that if α ¼ β ¼ b and m ¼ c, (2.239) becomes (2.233).

Furthermore, if c ¼ 1, (2.233) is the so called K distribution or the K pdf (Jakeman

and Tough 1987; Abdi and Kaveh 1998; Iskander et al. 1999).

Example #8 We will now extend the Example #7 to two generalized gamma

random variables. Let

f xð Þ ¼
λxλm�1exp � x=αð Þλ

h i
αλmΓ mð Þ , 0 � x � 1, ð2:240Þ

f yð Þ ¼
λyλn�1exp � y=βð Þλ

h i
βλmΓ nð Þ , 0 � y � 1: ð2:241Þ

The pdf of S ¼ XY can be obtained using the integral in (2.183) as

f sð Þ ¼ 2λs λ=2ð Þ mþnð Þ½ ��1

αβð Þ λ=2ð Þ mþnð ÞΓ mð ÞΓ nð Þ
Km�n 2

s

αβ

� � λ=2ð Þ" #
, 0 � s � 1: ð2:242Þ

Expressing

χ ¼ αβ, ð2:243Þ

(2.242) becomes a four parameter pdf given as

f sð Þ ¼ 2λs λ=2ð Þ mþnð Þ½ ��1

χð Þ λ=2ð Þ mþnð ÞΓ mð ÞΓ nð Þ
Km�n 2

s

χ

� � λ=2ð Þ" #
, 0 � s � 1: ð2:244Þ

The pdf in (2.242) is known as the generalized Bessel K distribution (GBK)

which becomes the GK distribution in (2.239) when λ ¼ 1 and becomes the K pdf

when λ ¼ 1 and n ¼ 1 (Iskander and Zoubir 1996; Anastassopoulos et al. 1999;

Frery et al. 2002). Note that the GBK pdf is a five parameter distribution as in

(2.242) with shape parameters m, n, and λ and scaling factors α and β or a four

parameter distribution in (2.244) with shape parameters m, n, and λ and scaling

factor χ. Several density functions can be obtained from the GBK pdf by varying

some of these shape parameters and following the details in Table 2.3.

Example #9 Let us look at another case of interest in wireless communications

where the new random variable is the sum of several gamma random variables

(Moschopoulos 1985; Kotz and Adams 1964; Provost 1989; Alouini et al. 2001;

Karagiannidis et al. 2006). Let
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Z ¼
XN
k¼1

Xk: ð2:245Þ

In (2.245), there are N independent and identically distributed random variables

X’s, each with a pdf of the form in (2.50). We will use the relationship between

density functions and CHFs to obtain the pdf in this case. Since the pdf of Zwill be a

convolution of the pdfs of N identical density functions, the CHF of Z can be written

as the product of N identical CHFs, each of them of the form given in (2.53). The

CHF of Z is

ψ z ωð Þ ¼ ψX ωð Þ½ �N ¼ 1� jβωð Þ�cN : ð2:246Þ

The pdf of Z is now obtained from the Fourier relationship between CHF

and pdf.

f Z zð Þ ¼ 1

2π

ð1
�1

1

1� jβωð ÞcN exp �jωzð Þdω: ð2:247Þ

Using the Fourier integral tables (Gradshteyn and Ryzhik 2007), Eq. (2.247)

becomes

f Z zð Þ ¼ zcN�1

βcNΓ cNð Þ exp �z

β

� �
, z � 0: ð2:248Þ

From (2.248), it is seen that the sum of N identically distributed gamma random

variables with parameters c and β is another gamma random variable with param-

eters cN and β.

Example #10 Shadowing in wireless systems is modeled using the lognormal pdf.

In diversity systems, it might be necessary to obtain the density function of the sum

of several lognormal random variables, each having a pdf of the form in (2.71). If

Table 2.3 The relationship of GBK distribution to other pdfs

GBK pdf f x;m; n; χ; λð Þ ¼ 2λx λ=2ð Þ mþnð Þ½ ��1

χð Þ λ=2ð Þ mþnð ÞΓ mð ÞΓ nð ÞKm�n 2 x
χ

� 	 λ=2ð Þ
 �
Probability density

functions (special case)

f (x; 1, 1, χ, 1) Exponential

f (x; 1, 1, χ, 2) Rayleigh

f (x; m, n, χ, 1) GK distribution

f (x; m, 1, χ, 1) K distribution

f (x; m, 1, χ, 1) Gamma distribution

f (x; m, 1, χ, λ) Generalized gamma distribution

f x; 1
2
;1; χ; 2

� �
Half Gaussian
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Z ¼
XN
k¼1

Xk ð2:249Þ

7a simple analytical expression for the density function of Z is not readily

available. Several researchers have proposed approximate forms for the density

function (Beaulieu et al. 1995; Slimane 2001; Beaulieu and Xie 2004; Cardieri and

Yacoub 2005; Lam and Le-Ngoc 2006; Lam and Tho 2007; Liu et al. 2008). One

such approximation results in the pdf of N independent identically distributed

lognormal variables is expressed as a shifted gamma pdf (Lam and Le-Ngoc 2006)

f Z zð Þ ¼
10log10 zð Þ � δ½ �α�1

10=loge 10ð ÞβαΓ αð Þz½ �exp � 10log10 zð Þ � δ

β


 �
, z > 10δ=10

0, z � 10δ=10

8<: ð2:250Þ

The three parameters, namely ɑ, β, δ (all in decibel units), can be obtained by

matching the first three moments of the variable in (2.249) and the moments of the

pdf in (2.250).

Example #11 We will explore another interesting case in wireless communications

involving the product of several random variables (Karagiannidis et al. 2007;

Shankar 2010). Let Z be the product of N random variables which forms a set of

independent random variables with the same density functions but with different

parameters.

Z ¼ Π
N

k¼1
Xk ð2:251Þ

Let the density of Xk be given by a gamma pdf as

f xkð Þ ¼ xmk�1
k

bmk
k Γ mkð Þ exp �xk

bk

� �
, k ¼ 1, 2, . . . ,N: ð2:252Þ

Using MGFs and Laplace transforms, the density function of Z can be obtained

as (Kabe 1958; Stuart 1962; Podolski 1972; Mathai and Saxena 1973; Carter and

Springer 1977; Abu-Salih 1983; Nadarajah and Kotz 2006a, b; Karagiannidis et al.

2007; Mathai and Haubold 2008):

f zð Þ ¼ 1

zΠN
k¼1Γ mkð ÞG

N, 0
0,N

z

ΠN
k¼1Γ bkð Þ

���� �
m1,m2, . . . ,mN

� �
U zð Þ: ð2:253Þ

In (2.253), G () is the Meijer’s G-function. The CDF can be obtained using the

differential and integral properties of the Meijer’s G-function as (Springer and

Thompson 1966, 1970; Mathai and Saxena 1973; Mathai 1993; Adamchik 1995):
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F zð Þ ¼ 1

ΠN
k¼1Γ mkð ÞG

N, 1
1,Nþ1

z

ΠN
k¼1Γ bkð Þ

���� 1

m1,m2, . . . ,mN , 0

� �
U zð Þ: ð2:254Þ

If X’s are identical andmk¼m¼ 1 and bk¼ b, we have the pdf of the products of
exponential random variables,

f zð Þ ¼ 1

z
GN, 0

0,N

z

bN

���� �
1, 1, . . . , 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N�terms

ÞU zð Þ:
0@ ð2:255Þ

Using the relationship between the Meijer’s G-function and modified Bessel

functions (Mathai and Saxena 1973; Wolfram 2011)

G1,0
0,1

z

b

����
m

� �
¼ z

b

� 	m
exp �z

b

� 	
ð2:256Þ

(2.253) becomes the gamma pdf for N ¼ 1 and

G2,0
0,2

z

b2

���� �
m, n

� �
¼ 2

z

b2

� � 1=2ð Þ mþnð Þ
Km�n

2

b

ffiffi
z

p� �
ð2:257Þ

(2.253) becomes the GK pdf which is obtained for the pdf of the product of two

gamma random variables (Shankar 2005; Laourine et al. 2008).

It is also interesting to find out the pdf of the cascaded channels when lognormal

fading conditions exist in the channel. In this case, we take

f xkð Þ ¼ 10=loge 10ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2kx

2
k

p exp � 10log10 xkð Þ � μkð Þ2
2σ2k

" #
, 0 < x < 1, k

¼ 1, 2, . . . ,N: ð2:258Þ

The cascaded output in (2.251) can be expressed in decibel form as

W ¼ 10log10 Zð Þ ¼
XN
k¼1

10log10 Xkð Þ: ð2:259Þ

Since X’s are lognormal and each term in the summation in (2.259) is therefore a

Gaussian random variable, the density function of the random variable W will be

Gaussian,
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f wð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π
PN

k σ2k

q exp �
w�PN

k¼1 μk

� 	2
2
PN

k σ2k

264
375: ð2:260Þ

Converting back, the density function of Z will be lognormal given by

f zð Þ ¼ 10=loge 10ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

PN
k¼1 σ

2
k

� 	
z2

r exp �
10log10 zð Þ �PN

k¼1 μk

� 	2
2
PN

k¼1 σ
2
k

264
375, 0 < z < 1:

ð2:261Þ

Example #12 There is also interest in wireless communications to determine the

density function of the ratio of two random variables. For example, the received

signal generally has to be compared against an interference term which is also

random (Winters 1984; Cardieri and Rappaport 2001; Shah et al. 2000). Thus, if

X represents the signal (power) and Y represents the interference (power), we are

interested in finding out the pdf of

Z ¼ X

Y
: ð2:262Þ

In practical applications, we would want Z to be a few dB so that the signal

power will be stronger than the interference. Since we can assume that the signal

and interference are independent, the pdf of Z can be written from (2.187). If both

X and Y are gamma distributed (originating from Nakagami-m distributed envelope

values), we have

f xð Þ ¼ m

α

� 	mxm�1

Γ mð Þ exp �m
x

α

� 	
, 0 < x < 1, ð2:263Þ

f yð Þ ¼ n

β

� �mxn�1

Γ nð Þ exp �n
y

β

� �
, 0 < y < 1, ð2:264Þ

The density function of Z is written using (2.187) as

f zð Þ ¼
ð1
0

y
m

α

� 	 yzð Þm�1

Γ mð Þ exp �m
yz

α

� 	 n

β

� �nyn�1

Γ nð Þ exp �n
y

β

� �
dy: ð2:265Þ

Equation (2.265) can be solved easily. We have the pdf for the ratio of two

gamma distributed powers as
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f zð Þ ¼ Γ mþ nð Þ
Γ mð ÞΓ nð Þ αnð Þn βmð Þm zm�1

mzβ þ nαð Þmþn , 0 < z < 1: ð2:266Þ

For the special case of m¼ n (corresponds to exponential distribution of power),
we have the pdf of the ratio of the powers as

f zð Þ ¼ αβ

αþ βzð Þ2 , 0 < z < 1: ð2:267Þ

Another interesting case in wireless communications arises when both the signal

power and the interfering component power have lognormal distributions (Sowerby

and Williamson 1987; Ligeti 2000). In this case, the density function of the ratio

can be determined in a straight forward fashion. From (2.71) we have

f xð Þ ¼ 10=loge 10ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2xx

2
p exp � 10log10 xð Þ � μxð Þ2

2σ2x

" #
, 0 < x < 1: ð2:268Þ

f xð Þ ¼ 10=loge 10ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2yy

2
q exp � 10log10 yð Þ � μy

� �2
2σ2y

" #
, 0 < y < 1: ð2:269Þ

Taking the logrithm and converting into decibel units, (2.262) becomes

10log10 Zð Þ ¼ 10log10 Xð Þ � 10 log10 Yð Þ: ð2:270Þ

Since X and Y are lognormal random variables, the variables on the right-hand

side of (2.270) will be Gaussian. Thus, the density function of

W ¼ 10log10 Zð Þ ð2:271Þ

will be Gaussian with a mean equal to the difference of the means of the two

variables on the right-hand side of (2.270) and variance equal to the sum of the

variances of the two variables on the right-hand side of (2.270). The pdf of W can

now be expressed as

f wð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π σ2x þ σ2y

� 	r exp � w� μx � μy
� �� �2

2 σ2x þ σ2y

� 	
8<:

9=;: ð2:272Þ

Converting back fromW to Zwe can see that the density function of the ratio will

also be lognormal. It can be expressed as

2.8 Transformation of Random Variables 73



f zð Þ ¼ 10=loge 10ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2z2

p exp � 10log10 zð Þ � μð Þ2
2σ2

" #
, 0 < z < 1 ð2:273Þ

with

μ ¼ μx � μy,
σ2 ¼ σ2x þ σ2y :

ð2:274Þ

Example #13 In wireless communications we must also address the situation that

occurs when the receiver gets both the signal of interest (desired signal) and

unwanted cochannels in addition to the noise (Winters 1984; Shah et al. 2000;

Yacoub 2000; Aalo and Zhang 1999). The SNR at the receiver can be expressed as

Z ¼ Si
N þ Sc

: ð2:275Þ

In (2.275), Si is the signal power and Sc is the cochannel power. Both are random,

N is the noise power. Rewriting (2.275), we have

Z ¼ X

1þ Y
: ð2:276Þ

In (2.276), X is the SNR of the desired signal and Y is the SNR of the cochannel.

Defining an auxiliary variable W as

W ¼ Y: ð2:277Þ

The Jacobian for the transformation involving Z and W becomes

J x; yð Þ ¼
1

1þ y
0

� x

1þ yð Þ2 1

�������
������� ¼

1

1þ y
¼ 1

1þ w
: ð2:278Þ

The joint pdf of W and Y now becomes

f w; zð Þ ¼ 1þ wj jf X,Y z 1þ wð Þ;wð Þ: ð2:279Þ

The pdf of Z now becomes

f zð Þ ¼
ð1
�1

1þ wj jf X,Y z 1þ wð Þ;wð Þdw: ð2:280Þ

74 2 Concepts of Probability and Statistics



Since X and Y represent random variables which only take nonzero values,

(2.280) can be rewritten as

f zð Þ ¼
ð1
0

1þ wð Þf X,Y z 1þ wð Þ;wð Þdw: ð2:281Þ

Example #14 Instead of the SNR defined in (2.276), we might see cases where the

random variable might be of the form

U ¼ X

X þ Y
: ð2:282Þ

Note that the random variable U can be rewritten as

U ¼ X=Yð Þ
X=Y þ 1

¼ V

1þ V
: ð2:283Þ

Let us examine a specific case of interest in wireless systems where both X and

Y are gamma distributed, as in (2.235) and (2.236) with the special case of α ¼ β.
The CDF of the variable in (2.283) can be expressed as

FU uð Þ ¼ Prob
V

1þ V
� u


 �
¼ Prob V � u

1� u

h i
: ð2:284Þ

Rewriting, we have

FU uð Þ ¼ FV
u

1� u

� 	
: ð2:285Þ

The density function becomes

f U uð Þ ¼ 1

1� uð Þ2 f V
u

1� u

� 	
: ð2:286Þ

Using (2.266) for the density of the ratio of two gamma variables, we have

f uð Þ ¼ Γ mþ nð Þ
Γ mð ÞΓ nð Þ u

m�1 1� uð Þn�1
, 0 < u < 1: ð2:287Þ

Note that (2.287) is the beta pdf described earlier.

Example #15 We will now establish the relationship among the Gaussian,

Chi-squared and Student t distributions. Let
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Z ¼ Xffiffiffiffiffiffiffiffi
Y=n

p : ð2:288Þ

In (2.288), X is a Gaussian variable having a zero mean and unit standard

deviation identified as N(0,1) and Y is the chi squared variable identified by χ2(n).
Using the concept of an auxiliary or “dummy” variable, let us define

W ¼ Y: ð2:289Þ

The Jacobian of the transformation becomes

J x; yð Þ ¼
ffiffiffiffiffi
n

w
:

r
ð2:290Þ

The joint density function of Z and W now becomes

f Z,W z;wð Þ ¼
ffiffiffiffi
w

n

r
f x; yð Þ

¼
ffiffiffiffi
w

n

r
1ffiffiffiffiffi
2π

p exp �w

2n
z2

� 	 w n=2ð Þ�1

2 n=2ð ÞΓ n=2ð Þexp �w

2

� 	
:

ð2:291Þ

The density function of Z is obtained as

f Z zð Þ ¼
ð1
0

f z;wð Þ dw: ð2:292Þ

The limits of integration reflect the fact that χ2(n) density function in (2.35)

exists only in the range 0 to 1. Carrying out the integration, we have

f zð Þ ¼ Γ nþ 1ð Þ=2ð Þffiffiffiffiffi
nπ

p
Γ n=2ð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=nð Þð Þnþ1

q , �1 < x < 1: ð2:293Þ

Note that (2.293) is identical to the Student t-distribution seen in (2.107).

2.9 Some Bivariate Correlated Distributions of Interest

in Wireless Communications

Wewill now look at a few joint distributions that are used in the analysis of wireless

communication systems. While the joint pdf is the product of marginal pdfs, when

the variables are independent (this property was used in some or most of the

examples given above), their functional forms are unique when correlation exists

between the two variables.
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2.9.1 Bivariate Normal pdf

f x; yð Þ ¼ Aexp � 1

2 1� ρ2ð Þ
x� η1ð Þ2

σ21
� 2ρ x� η1ð Þ y� η2ð Þ

σ1σ2
þ x� η2ð Þ2

σ22

" #( )
ð2:294Þ

In (2.294),

A ¼ 1

2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p , ρj j � 1 ð2:295Þ

X and Y are Gaussian with means of η1 and η2 and standard deviations of σ1 and
σ2 respectively, and ρ is the correlation coefficient defined earlier in (2.131). Note

that when ρ is zero, (2.294) becomes the product of the marginal density functions

of X and Y. Note that for the bivariate Gaussian, uncorrelatedness also implies

independence. The joint Gaussian pdf is plotted in Figs. 2.35, 2.36, and 2.37 for two

zero mean variables each with unit variance for three values of the correlation

coefficient (ρ ¼ 0, 0.8 and �0.9). One can see that the joint pdf which is symmetric

for the independent case (ρ ¼ 0) takes on a ridge-like shape as the correlation

increases (Papoulis and Pillai 2002).
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Fig. 2.35 Joint pdf of two Gaussian variables (ρ ¼ 0)
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2.9.2 Bivariate Nakagami pdf

The bivariate Nakagami pdf can be written as (Nakagami 1960; Tan and Beaulieu

1997; Karagiannidis et al. 2003a, b)

f x; yð Þ ¼ Bexp � m

1� ρð Þ
x2

Ωx
þ y2

Ωy

� �
 �
Im�1

2mxy
ffiffiffi
ρ

p
1� ρð Þ ffiffiffiffiffiffiffiffiffiffiffi

ΩxΩy

p" #
ð2:296Þ
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with

B ¼ 4mmþ1 xyð Þm
Γ mð ÞΩxΩy 1� ρð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρΩxΩy

p� �m�1
: ð2:297Þ

In (2.296),

Ωx ¼ E X2
� �

, Ωy ¼ E Y2
� �

: ð2:298Þ

The parameter ρ is the power correlation coefficient given by

ρ ¼ cov X2; Y2
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var X2
� �

var Y2
� �q : ð2:299Þ

In (2.299), cov(,) is the covariance defined in (2.126) and var is the variance.

Note that m is the Nakagami parameter which has been considered to be identical

for the two variables, X and Y. Im�1() is the modified Bessel function of the first kind

of order (m � 1).

The bivariate Rayleigh pdf is obtained from (2.299) by putting m ¼ 1. We have

f x; yð Þ ¼ 4xy

1� ρð ÞΩxΩy
exp � 1

1� ρð Þ
x2

Ωx
þ y2

Ωy

� �
 �
I0

2xy
ffiffiffi
p

p
1� ρð Þ ffiffiffiffiffiffiffiffiffiffiffi

ΩxΩy

p" #
: ð2:300Þ

2.9.3 Bivariate Gamma pdf

There are several forms of the bivariate gamma pdf. One of these representations is

(Kotz and Adams 1964; Mathai and Moschopoulos 1991; Tan and Beaulieu 1997;

Yue et al. 2001; Holm and Alouini 2004; Nadarajah and Gupta 2006; Nadarajah and

Kotz 2006a, b)

f x; yð Þ ¼ xy=ρð Þ m�1
2ð Þ

αmþ1Γ mð Þ 1� ρð Þ exp � xþ y

α 1� ρð Þ

 �

Im�1

2
ffiffiffiffiffiffiffi
ρxy

p
α 1� ρð Þ

 �

: ð2:301Þ

Note that ρ is the correlation coefficient of X and Y (of identical order m and

parameter α), and the density function in (2.301) is identified as the Kibble’s
bivariate gamma distribution. It must be noted that a pdf similar to (2.301) can

also be obtained from (2.296) by converting to power values and replacing Ω/m by

α. The plots of the bivariate correlated gamma density functions are shown in

Figs. 2.38, 2.39, and 2.40 for three values of the correlation (m ¼ 1).
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Another form of a bivariate gamma distribution is known as McKay’s
bivariate gamma distribution (Nadarajah and Gupta 2006) and the density

function is given by

f x; yð Þ ¼ apþqxp�1

Γ pð ÞΓ qð Þ y� xð Þq�1
exp �ayð Þ,

y > x > 0, a > 0, p > 0, q > 0:

ð2:302Þ

An examination of the density function in (2.302) clearly shows that the two

random variables X and Y are not independent.
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Fig. 2.38 Bivariate gamma pdf (ρ ¼ 0.01 and α ¼ Ω ¼ 1)
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Fig. 2.39 Bivariate gamma pdf (ρ ¼ 0.3 and α ¼ Ω ¼ 1)
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A different form of bivariate gamma pdf is known as the Arnold and Strauss’s
bivariate gamma distribution. It has the joint pdf expressed as (Nadarajah 2005)

f x; yð Þ ¼ Kxα�1yβ�1exp � axþ byþ cxyð Þ½ �,
x > 0, y > 0, a > 0, b > 0, c > 0, α > 0, β > 0:

ð2:303Þ

The parameter K is the normalization factor and it can be seen that the two

random variables X and Y are not independent.

2.9.4 Bivariate Generalized Gamma pdf

The bivariate generalized gamma pdf can be obtained from the bivariate gamma pdf

using the transformation of variables (Aalo and Piboongungon 2005). We have

f z;wð Þ ¼ λ2mmþ1 zwð Þ λ mþ1ð Þð Þ=2ð Þ�1ρ 1�mð Þ=2ð Þ

ΩzΩwð Þ 1þmð Þ=2ð Þ
1� ρð ÞΓ mð Þ

	exp � m

1� ρð Þ
zλ

Ωz
þ wλ

Ωw

� �
 �
Im�1

2m

1� ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ zwð Þλ
ΩzΩw

s24 35:
ð2:304Þ
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Fig. 2.40 Bivariate gamma pdf (ρ ¼ 0.7 and α ¼ Ω ¼ 1)
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In (2.304),

Ωz ¼ E Zλ
� �

, Ωw ¼ E Wλ
� � ð2:305Þ

and ρ is the correlation coefficient between Z2 and W2. Note that by putting

m ¼ 1 in (2.305), we can obtain an expression for the bivariate Weibull pdf.

2.9.5 Bivariate Weibull pdf

The bivariate Weibull pdf can be obtained from the bivariate generalized gamma

pdf in (2.304) by putting m ¼ 1 as

f z;wð Þ ¼ λ2 zwð Þλ�1

ΩzΩwð Þ 1� ρð Þ exp � 1

1� ρð Þ
zλ

Ωz
þ wλ

Ωw

� �
 �
Im�1

2

1� ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ zwð Þλ
ΩzΩw

s24 35
ð2:306Þ

with

Ωz ¼ E Zλ
� �

, Ωw ¼ E Wλ
� �

: ð2:307Þ

2.9.6 Bivariate Rician Distribution

The bivariate Rician distribution of the SNR values Z and W can be expressed as

(Zogas and Karagiannidis 2005; Bithas et al. 2007; Panajotovic et al. 2009)

f z;wð Þ ¼ 1þ K0ð Þ2
2πZ2

R 1� ρ2ð Þ exp � 2K0

1þ ρ
� 1þ K0ð Þ zþ wð Þ

2ZR 1� ρ2ð Þ

 �

R: ð2:308Þ

In (2.308),

R ¼ Ð 2π
0

exp
2ρ 1þ K0ð Þ ffiffiffiffiffiffi

zw
p

cos θð Þ
1� ρ2ð ÞZR


 �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K0 1þ K0ð Þ zþ wþ 2

ffiffiffiffiffiffi
zw

p
cos θð Þð Þ

ZR 1þ ρð Þ2
s" #

dθ:

ð2:309Þ
The parameter ρ is correlation coefficient between the two envelope values A1

and A2 corresponding to the SNR values of Z and W respectively as

Z ¼ A2
1, W ¼ A2

2: ð2:310Þ
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The two variables (Z and W ) are considered to be identical with equal average

SNR values equal to ZR. The Rician factor is given by K0 and was defined in

(2.214).

2.10 Order Statistics

Another important and interesting statistical entity of interest in wireless systems is

the order statistics (Rohatgi and Saleh 2001; Papoulis and Pillai 2002). For exam-

ple, in selection combining (SC) algorithm, we are interested in finding the largest

of a set of outputs and in generalized selection combining (GSC), we are interested

in picking the M largest of a total of L outputs (Alouini and Simon 1999; Ma and

Chai 2000; Alouini and Simon 2006; Annamalai et al. 2006). Both of these out-

comes can be analyzed in terms of the order statistics. Let X1, X2,. . ., XL correspond

to the a set of L random variables. We will assume that the random variables are

independent and identical. Our interest is in finding out the joint pdf of the largest

M variables, i.e., in finding the joint pdf of

X1;X2; . . . ;XMf g,X1 > X2 > X3 > � � � > XM, M � L: ð2:311Þ

Even though the random variables are the same, to make matters simple and

eliminate confusion because the outputs and inputs of the selection process will

contain X’s, the output set will be identified as {Y1,Y2,. . ., YM}. The joint CDF of

{Y1,Y2,. . ., YM}can be written as

F y1; y2; . . . ; yMð Þ ¼
XL
i¼1

FXi
y1ð Þ

XL
j¼1, j 6¼i

FXj
y2ð Þ . . .

YL
n¼1, n 6¼i, j, ...

FXn yMð Þ, y1 > y2 > y3 > � � � > yM: ð2:312Þ

Since the random variables have been considered to be identical, (2.312)

becomes

F y1; y2; . . . ; yMð Þ ¼ LF y1ð Þ L� 1ð ÞF y2ð Þ . . . L�Mð ÞF yM�1ð Þ F yMð Þ½ �L�Mþ1:

ð2:313Þ

Equation (2.313) can be explained as follows. There are L different ways of

choosing the largest. Thus, this probability will be LF(y1). There are (L � 1) ways

of picking the second largest, and the probability of doing so will be (L � 1)F(y2)
and so on. There are (L � M ) ways of picking the next to the last in that order, and

the probability of doing so will be
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(L �M )F(yM�1). Since the rest of the variables (L �M + 1) will be either equal

to or smaller than yM, the probability of this event will be the last term in (2.313).

The joint pdf can be obtained by differentiating (2.313) with respect to y1,y2,. . ., yM,
and we have

f y1; y2; . . . ; yMð Þ ¼ Lf y1ð Þ L� 1ð Þf y2ð Þ . . . L�M þ 1ð Þf ymð Þ F ymð Þ½ �L�M:

ð2:314Þ

Equation (2.314) can be easily expressed as

f y1; y2; . . . ; yMð Þ ¼ Γ M þ 1ð Þ L
M

� �
F ymð Þ½ �L�M

YM
k¼1

f ykð Þ, y1 > y2

> y3 > � � � > yM: ð2:315Þ

In (2.315),

L
M

� �
¼ L!

M! L�Mð Þ! : ð2:316Þ

If we are choosing the largest output,M ¼ 1, and we have the expression for the

pdf of the maximum of L independent and identically distributed variables as

f y1ð Þ ¼ L F y1ð Þ½ �L�1f y1ð Þ: ð2:317Þ

If one puts L ¼ 2 in (2.317), we have the pdf of the largest of the two random

variables, obtained earlier in (2.173).

We can now obtain the pdf of the kth largest variable. Let Yk be the kth largest

variable. If fM(y) is the pdf of the variable Yk, we can write

f k yð Þdy ¼ Prob y � Yk � yþ dyf g: ð2:318Þ

The event {y � Yk � y + dy} occurs iff exactly (k � 1) variables less than y, one
in the interval {y,y + dy}, and (L � k) variables greater than y. If we identify these

events as I and II and III respectively,

I ¼ x � yð Þ, II ¼ y � x � yþ dyð Þ, III ¼ x > yþ dyð Þ: ð2:319Þ

The probabilities of these events are

Prob Ið Þ ¼ FX yð Þ, Prob Ið Þ ¼ f X yð Þdy, Prob IIIð Þ ¼ 1� FX yð Þ: ð2:320Þ

Note that event I occurs (k � 1) times, event II occurs once, and event III occurs
L � k times. Using the concept of generalized Bernoulli trial and (2.31), (2.318)

becomes
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f k yð Þ dy ¼ L!

k � 1ð Þ!1! L� kð Þ! FX yð Þ½ �k�1f X yð Þ dy 1� FX yð Þ½ �L�k: ð2:321Þ

Equation (2.321) simplifies to

f k yð Þ ¼ L!

k � 1ð Þ! L� kð Þ! FX yð Þ½ �k�1
1� FX yð Þ½ �L�kf X yð Þ: ð2:322Þ

When k equals L, we get the pdf of the largest variable (maximum), and (2.322)

becomes (2.317). If k ¼ 1, we get the pdf of the smallest of the random variable

(minimum) as described below.

We can also obtain the density function of the minimum of L random variables.

Let us define

Z ¼ min x1; x2; . . . ; xLf g: ð2:323Þ

Noting the probability that at least one of the variables is less than Z, we can

express the CDF as

FZ zð Þ ¼ 1� Prob x1 > z; x2 > z; . . . ; xL > zf g ¼ 1� 1� FX zð Þ½ �L: ð2:324Þ

In (2.324), FX(.) and fX(.) are the marginal CDF and pdf of the X’s which are

treated to be identical and independent. Differentiating the CDF, we have the

density function of the minimum of a set of random variables as

FZ zð Þ ¼ L 1� FX zð Þ½ �L�1f X zð Þ: ð2:325Þ

Note that (2.322) can also be used to obtain the pdf of the minimum of the

random variables by setting k ¼ 1 and (2.322) reduces to (2.325).

Before we look at the specific cases of interest in wireless communications, let

us look at the special case of the exponential pdf. If X’s are independent and

identically distributed with exponential pdf,

f xið Þ ¼ 1

α
exp �xi

α

� 	
, i ¼ 1, 2, . . . ,L ð2:326Þ

the density function of the minimum of the set can be written using (2.325) as

f zð Þ ¼ L

α
exp �L

α
z

� �
: ð2:327Þ

In other words, the minimum of a set of independent and identically distributed

exponential random variables is another exponentially distributed random variable

with a mean of (ɑ/L ), i.e., with a reduced mean.
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2.10.1 A Few Special Cases of Order Statistics in Wireless
Communications

We will now look at a few special cases of interest in wireless systems, specifically,

the cases of bivariate Nakagami (or gamma) and bivariate lognormal distributions.

We will start with the bivariate Nakagami distribution. The bivariate Nakagami pdf

given in (2.296) is

f a1; a2ð Þ ¼ 4mmþ1 a1a2ð Þm
Γ mð ÞP01P02 1� ρð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P01P02ρ
pð Þm�1

	exp � m

1� ρð Þ
a21
P01

þ a22
P02

� �
 �
Im�1 2m

a1a2
ffiffiffi
ρ

p
1� ρð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P01P02

p
� �

:

ð2:328Þ

In (2.328), m is the Nakagami parameter considered to be identical for the two

variables, a1 and a2. The other parameters are

P01 ¼ a21
� �

, P02 ¼ a22
� �

, ρ ¼ cov a21; a
2
2

� �
var a21
� �

var a22
� � : ð2:329Þ

In (2.329), cov is the covariance and var is the variance. Note that by putting

m ¼ 1 in (2.328), we get the bivariate Rayleigh pdf

f a1; a2ð Þ ¼ 4 a1a2ð Þ
P01P02 1� ρð Þ exp � 1

1� ρð Þ
a21
P01

þ a22
P02

� �
 �
I0 2

a1a2
ffiffiffi
ρ

p
1� ρð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P01P02

p
� �

:

ð2:330Þ

One of the interesting uses of the bivariate correlated pdf is in diversity com-

bining. We will obtain the pdf of the selection diversity combiner in which the

output of the diversity algorithm is the stronger of the two input signals. We will

also simplify the analysis by assuming that the signals have identical powers, i.e.,

P01 ¼ P02 ¼ P0. Since the comparison is made on the basis of power or SNR, we

will rewrite (2.328) in terms of the powers

X ¼ a21, Y ¼ a22 ð2:331Þ

as

f x; yð Þ ¼ mmþ1 xyð Þ m�1ð Þ=2ð Þρ 1�mð Þ=2ð Þ

Γ mð ÞPmþ1
0 1� ρð Þ ffiffiffi

ρ
p� �m�1

exp � m xþ yð Þ
P0 1� ρð Þ


 �
Im�1 2m

ffiffiffiffiffiffiffi
xyρ

p
P0 1� ρð Þ

� �
:

ð2:332Þ
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Note that (2.332) is identical to the Kibble’s bivariate gamma pdf given in

(2.301) with an appropriately scaled average power. If we define

Z ¼ max X; Yð Þ: ð2:333Þ

The pdf of the selection combining can be expressed as

f zð Þ ¼ d

dz
Prob X < z; Y < zð Þ½ �: ð2:334Þ

The expression for the pdf becomes

f zð Þ ¼ 2
mm

Γ mð ÞP0

z

P0

� �m�1

exp �m
z

P0

� �
1� Qm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp

1� ρ

z

P0

� �s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

1� ρ

z

P0

� �s !" #
:

ð2:335Þ

In (2.335), Qm(,) is the generalized Marcum Q function given by (Simon 2002)

Qm α; βð Þ ¼ 1

αm�1

ð1
β
wmexp �w2 þ α2

2

� �
Im�1 αwð Þ dw: ð2:336Þ

Wewill also obtain the pdf of the maximum of two correlated lognormal random

variables. As we will discuss in Chap. 3, lognormal density function is often used to

model shadowing. It has been shown that short-term fading in some of the indoor

wireless channels can be modeled using the lognormal density functions. Conse-

quently, one can find the use of bivariate lognormal densities in the analysis of

diversity algorithms (Ligeti 2000; Alouini and Simon 2003; Piboongungon and

Aalo 2004).

Using the relationship between normal pdf and lognormal pdf, it is possible to

write the expression for the joint pdf of two correlated lognormal random variables

X and Y. The pdf is given by

f x;yð Þ¼ D

xy
exp � 1

2 1�ρ2ð Þ
10log10 xð Þ�μx

σx

� �2

þ 10log10 yð Þ�μy
σy

� �2

�2ρg x;yð Þ
" #( )

:

ð2:337Þ

In (2.337),

D ¼ A2
0

2πσxσy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p , ð2:338Þ
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g x; yð Þ ¼ 10log10 xð Þ � μx
σx

� �
10log10 yð Þ � μy

σy

� �
: ð2:339Þ

Note that μ’s are the means and σ’s the standard deviations of the corresponding
Gaussian random variables in decibel units. A0 was defined earlier and it is given by

A0 ¼ 10

loge 10ð Þ : ð2:340Þ

As in the case of the Nakagami random variables, ρ is the correlation coefficient
(power). If Z represents the maximum of the two random variables, the pdf of the

maximum can be written either as in (2.334) or as

f zð Þ ¼
ð z
0

f X,Y z; yð Þdyþ
ð z
0

f X,Y x; zð Þdx: ð2:341Þ

In (2.341), f(x,y) is the joint pdf of the dual lognormal variables expressed in

(2.337). The integrations in (2.341) can be performed by transforming the variables

to Gaussian forms by defining

α ¼ 10log10 xð Þ � μx
σx

, ð2:342Þ

β ¼ 10log10 yð Þ � μy
σy

, ð2:343Þ

zdB ¼ 10log10 zð Þ: ð2:344Þ

We get

f zð Þ ¼ exp �1

2

zdB � μx
σx

� �2
" #

g1 þ exp �1

2

zdB � μy
σy

� �2
" #

g2: ð2:345Þ

In (2.345), g1 and g2 are given by

g1 ¼ Q
zdB � μy
� �

=σy � ρ zdB � μxð Þ=σxð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p" #
, ð2:346Þ

g2 ¼ Q
zdB � μxð Þ=σx � ρ zdB � μy

� �
=σy

� �ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p" #
, ð2:347Þ

In (2.346) and (2.347),
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Q λð Þ ¼
ð1
λ

1ffiffiffiffiffi
2π

p exp �ϕ2

2

� �
dϕ: ð2:348Þ

The CDF of the maximum of two lognormal random variables can now be

expressed as

F zð Þ ¼ 1� Q
α� μx
σx

� �
� Q

β � μy
σy

� �
þ Q

α� μx
σx

;
β � μy
σy

; ρ

� �
: ð2:349Þ

In (2.349), the last function is given by (Simon and Alouini 2005)

Q u; v; ρð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p ð1
u

ð1
v

exp � x2 þ y2 � 2ρxy

2 1� ρ2ð Þ

 �

dx dy: ð2:350Þ

2.11 Decision Theory and Error Rates

Digital communication mainly involves the transmission of signals with discrete

values (0’s and 1’s or any other set of M values M > 1) and reception of those

signals (Van Trees 1968; Helstrom 1968; Middleton 1996). The channel adds noise.

Noise as stated earlier is typically modeled as a Gaussian random variable with a

means of zero and a standard deviation. But, noise could also be non-Gaussian. We

will examine the two cases separately.

2.11.1 Gaussian Case

As mentioned above, the received signal consists of the transmitted signal plus

noise. Thus, the problem of identifying the received discrete values becomes one of

hypothesis testing (Fig. 2.41). This problem is shown in Fig. 2.37. We will examine

the case of a binary system where 0’s and 1’s are transmitted. Note that these two

bits are represented by the values a0 and a1. (Benedetto and Biglieri 1999; Simon

et al. 1995; Proakis 2001; Haykin 2001; Couch 2007.)

Let us first examine what happens when the signals move through the channel.

Because of the noise, “0” might be detected as a “1” or “0.” Similarly, “1” might be

detected as a “0” or “1.” This scenario points to two distinct ways of making an

error at the output. These two are the detection of “0” as a “1” and detection of “1”

as a “0.” This is shown in Fig. 2.42. We can invoke Bayes theorem in probability

theory to estimate this error (Papoulis and Pillai 2002). If we have two events, A and

B, each with probabilities of P(A) and P(B), respectively, the conditional probabil-
ity can be expressed in terms of Bayes theorem as
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P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ : ð2:351Þ

Extending this notion to multiple events A ¼ {A1,A2,. . ., AM} and B ¼ {B1,

B2,. . ., BM}, the Bayes rule becomes

P AijBj

� � ¼ P BjjAi

� �
P Aið Þ

P Bj

� � )
i ¼ 1, 2, . . . ,M
j ¼ 1, 2, . . . ,M

, ð2:352Þ

where

P Bj

� � ¼XM
i¼1

P BJjAið ÞP Aið Þ: ð2:353Þ

In our description, A’s represent the input and B’s represent the received signals.
We also identify P(Ai) as the a priori probability, P(Bj|Ai) as the conditional

probability and P(Ai|Bj) as the a posteriori probability. Equation (2.353) shows

that each output will have contributions from the complete input set. We can now

introduce the notion of errors by looking at a binary case (M ¼ 2). In the case of

binary signal transmission, we have two inputs {A1, A2} and two corresponding

Signal source
a0 
a1

Σ

Gaussian 
noise 

z = ai+n, i=0,1 
Decision rule

Fig. 2.41 Hypothesis testing problem

A2

A1

B2

B1

P(B2|A1) 

P(B1|A2) 

Fig. 2.42 The binary channel
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outputs {B1,B2}. Since there is noise in the channel, B1 could be read as A2 and B2

could be read as A1. Thus, we have two ways in which error can occur. If the error is

represented by e, the probability of error can be written using the Bayes rule as

p eð Þ ¼ P B2jA1ð ÞP A1ð Þ þ P B1jA2ð ÞP A2ð Þ: ð2:354Þ

We will now expand this notion to the transmission of digital signals through a

channel corrupted by noise. The received signal can be written as

z ¼ ai þ n, i ¼ 1, 2: ð2:355Þ

Since the noise is Gaussian, we can represent the density function of noise as

(Shanmugam 1979; Schwartz 1980; Schwartz et al. 1996; Sklar 2001)

f nð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � n2

2σ2

� �
: ð2:356Þ

Note that even though a’s only takes discrete values, z will be continuous as the
noise is not discrete. The density function of the received signal can be represented

as conditional density functions,

f zja1ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z� a1ð Þ2
2σ2

" #
, ð2:357Þ

f zja2ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z� a2ð Þ2
2σ2

" #
: ð2:358Þ

We will now identify the two hypotheses we have as H0 and H1, the former

corresponding to the transmission “0” (signal strength a0) and the latter

corresponding to the transmission of “1” (signal strength a1). We will rewrite

(2.357) and (2.358) as

f zja0ð Þ 
 f zjH0ð Þ, ð2:359Þ
f zja1ð Þ 
 f zjH1ð Þ: ð2:360Þ

These two density functions are plotted in Fig. 2.43.

Using simple logic, it would seem that we can decide on whether the received

signal belongs to hypothesis H0 or H1 as (Van Trees 1968)

f H1jzð Þ
>H1

<
H0

f H0jzð Þ: ð2:361Þ
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Using the Bayes rule in (2.351)

f zjH1ð ÞP H1ð Þ
>H1

<
H0

f zjH0ð ÞP H0ð Þ ð2:362Þ

or

f zjH1ð Þ
f zjH0ð Þ

 �

>H1

<
H0

P H0ð Þ
P H1ð Þ

 �

: ð2:363Þ

The left-hand side of (2.363) is known as the likelihood ratio; the entire equation

is identified as the likelihood ratio test. If both hypotheses are equally likely, the

right-hand side of (2.363) will be unity and take logarithms. We arrive at the log

likelihood ratio:

loge
f zjH1ð Þ
f zjH0ð Þ

 �

>H1

<
H0

0: ð2:364Þ

Substituting (2.357) and (2.358), we have the threshold for the decision as

z ¼ zthr ¼ a1 þ a2ð Þ
2

ð2:365Þ

Thus, (2.365) demonstrates that the threshold for making decision on whetherH1

is accepted for H0 is accepted is the midpoint of the two amplitude values. The

errors can occur in two ways. First, even when a “0” was transmitted, because of

noise, it can be read/detected as a “1.” This is called the probability of false alarm

(PF) and is given by the probability indicated by the shaded area in Fig. 2.12.

f(z|H0) f(z|H1)

z
a1 a2

Threshold

PM
PF

Fig. 2.43 Concept of hypothesis testing
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PF ¼
ð1
zthr

f zjH0ð Þ dz: ð2:366Þ

Second, when “1” was sent, it can be read/detected as “0.” This is called the

probability of miss (PM) and it is given by the shaded area corresponding to the

probability

PM ¼
ðzthr
�1

f zjH1ð Þ dz: ð2:367Þ

The average probability of error is given by

p eð Þ ¼ p ejH1ð ÞP H1ð Þ þ p ejH0ð ÞP H0ð Þ ð2:368Þ

or

p eð Þ ¼ PFp H1ð Þ þ PMP H0ð Þ: ð2:369Þ

If both hypotheses are equally likely (0’s and 1’s being transmitted with equal

probability), the average probability of error will be

pe ¼ PF or PM: ð2:370Þ

It can be seen that the average probability of error can be expressed in terms of

the CDF of the Gaussian random variable as well as the complimentary error

functions (Sklar 2001).

2.11.2 Non-Gaussian Case

While the detection of signals in additive white Gaussian noise is generally

encountered in communications, there are also instances when the receiver makes

decisions based on the envelope of the signal. Examples of these include envelope

detection of amplitude shift keying and frequency shift keying. It also includes

distinguishing the signals at the wireless receiver from the signal of interest and the

interference, both of which could be Rayleigh distributed when short-term fading is

present. As discussed earlier the statistics of the envelope might also be Rician

distribution. There is a need to minimize the error rate by determining the optimum

value of the threshold.

We would like to examine three separate cases, the first where both hypotheses

lead to Rayleigh densities, the second where one of the hypothesis leads to Rayleigh

while the other hypothesis results in Rician, and the third where both hypothesis

result in Rician densities. Let the two density functions be
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f zjH0ð Þ ¼ z

σ20
exp � z2

2σ20


 �
, z > 0, ð2:371Þ

f zjH1ð Þ ¼ z

σ21
exp � z2

2σ21


 �
, z > 0 ð2:372Þ

with

σ1 > σ0: ð2:373Þ

From (2.364) the log likelihood ratio test leads to a threshold of

zthr ¼ σ0σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
loge σ1=σ0ð Þ
2 σ21 � σ20
� �s

: ð2:374Þ

The decision region and the two regions for the computation of error are shown

in Fig. 2.44.

The values of σ0 and σ1 for the Fig. 2.44 are 2 and 5, respectively, and the

threshold is at 4.177.

Next we consider the case where the density function of the envelope under the

hypothesis H0 is Rayleigh distributed, as previously given in (2.371), while the pdf

of the envelope is Rician distributed for the second hypothesis, namely H1. The pdf

for the envelope under the hypothesis H1 is as in (2.208)
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Fig. 2.44 Hypothesis testing (non-Gaussian case)
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f zjH1ð Þ ¼ z

σ20
exp � z2 þ A2

2σ20


 �
I0

zA

σ20

� �
, z > 0: ð2:375Þ

Note that both the density functions in (2.371) and (2.375) come from Gaussian

random variables of identical standard deviation σ0 and A is>0. A direct solution of

(2.364) is going to be difficult because of the existence of the Bessel function in

(2.375). We will use an indirect approach for solving the threshold. Let us assume

that η is the threshold. The probability of false alarm PFwill be given by (Van Trees

1968; Cooper and McGillem 1986)

PF ¼
ð1
η
f zjH0ð Þ dz ¼ exp � η2

2σ20

� �
ð2:376Þ

The probability of miss PM will be

PM ¼
ð η
0

f zjH1ð Þ dz ¼
ð η
0

z

σ20
exp � z2 þ A2

2σ20


 �
I0

zA

σ20

� �
dz: ð2:377Þ

Since there is no analytical solution to (2.377), we will examine what happens if

we assume that the direct component A � σ0. Invoking the approximation to the

modified Bessel function of the first kind mentioned in (2.210), and rewriting

(2.304) as

PM ¼ 1�
ð1
η

z

σ20
exp � z2 þ A2

2σ20


 �
I0

zA

σ20

� �
dz ð2:378Þ

we get

PM ¼ 1�
ð1
η

ffiffiffiffiffiffiffiffi
z=A

pffiffiffiffiffiffiffiffiffiffi
2πσ20

p exp � z� Að Þ2
2σ20

" #
dz: ð2:379Þ

The integrand in (2.379) is sharply peaked at z¼ A, and the slowly varying factorffiffiffiffiffiffiffiffi
z=A

p
may be replaced with its value at the peak, i.e., unity, leading to a simpler

expression for the probability of miss as

PM ¼ 1�
ð1
η

1ffiffiffiffiffiffiffiffiffiffi
2πσ20

p exp � z� Að Þ2
2σ20

" #
dz: ð2:380Þ

Using the Q function defined in (2.90), the probability of miss becomes

PM ¼ 1� Q
η� A

σ0


 �
: ð2:381Þ
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The total error will be

p eð Þ ¼ 1

2
PF þ PM½ �: ð2:382Þ

Taking the derivative of (2.382) and setting it equal to zero, we have

d PF þ PM½ �
dη

¼ 0: ð2:383Þ

Using the derivative of the Q function as

d Q xð Þ½ �
dx

¼ � 1ffiffiffiffiffi
2π

p exp �x2

2

� �
ð2:384Þ

(2.384) becomes

� η

σ20
exp � η2

2σ20

� �
þ 1ffiffiffiffiffiffiffiffiffiffi

2πσ20
p exp � η� Að Þ2

2σ20

" #
¼ 0: ð2:385Þ

Once again, a solution to (2.385) is not straightforward. Instead, we import the

concept from the Gaussian pdfs in (2.365). At high values of the SNR, as seen in

(2.380), the envelope follows a Gaussian under the hypothesis H1. We can

argue that the threshold should be the midway point between the peaks of the two

density functions. This is shown in Fig. 2.45. This would mean that the optimum

threshold is

zthr ¼ 1

2
σ0 þ A½ �: ð2:386Þ

Note that in (2.386), A is the mode of the pdf of the envelope under hypothesis

H1 and σ0 the mode of the pdf under the hypothesis H0. Since A� σ0, the optimum

threshold is

zthr � A

2
: ð2:387Þ

We can now look at the last case where the envelopes follow Rician pdf under

both hypotheses, with direct components of A0 and A1 respectively. Using the

Gaussian approximation to Rician, the optimum threshold will be

zthr ¼ 1

2
A1 þ A0½ �: ð2:388Þ
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2.12 Upper Bounds on the Tail Probability

In wireless communications, it is often necessary to evaluate the probability that the

SNR exceeds a certain value or that SNR fails to reach a certain threshold value. In

Sect. 2.13, we saw two measures of error probabilities, a probability of false alarm,

i.e., the area under the upper tail of the pdf curve beyond a certain value, and a

probability of miss, i.e., the area under the lower tail below a certain value. Often, it

might not be possible to evaluate such areas. It might be necessary to get an

estimate of the upper bounds of such probabilities which correspond to areas

under the tails of the pdf curves. We will look at two bounds, one based on the

Chebyshev inequality and the other one called the Chernoff bound (Schwartz et al.

1996; Haykin 2001). The former one is a loose bound while the latter is much

tighter.

2.12.1 Chebyshev Inequality

Let f(x) be the pdf of a random variable X with a mean of m and standard deviation

of σ. If δ is any positive number, the Chebyshev inequality is given by (Papoulis and

Pillai 2002)

P X � mj j � δð Þ � σ2

δ2
: ð2:389Þ

In (2.389), P(.) is the probability. Eq. (2.389) can be established from the

definition of variance as
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Fig. 2.45 Hypothesis testing (Rayleigh vs. Rician)
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σ2 ¼
ð1
�1

x� mð Þ2f xð Þ dx: ð2:390Þ

Changing the lower limit in (2.390), we have

σ2 �
ð1
x�mj j�δ

x� mð Þ2f xð Þ dx ¼ δ2
ð1
x�mj j�δ

f xð Þ dx: ð2:391Þ

Equation (2.391) simplifies to

σ2 � δ2P X � mj j � δð Þ ð2:392Þ

which is the Chebyshev inequality in (2.389). The Chebyshev inequality can also

be obtained in a slightly different way that would provide more insight into its

meaning. If we assume that the random variable has a mean of zero (i.e., define a

new random variable Y ¼ X � m), we can define a new function

g Yð Þ ¼ 1, Yj j � δ,
0, Yj j � δ:

�
ð2:393Þ

The left-hand side of the Chebyshev inequality in (2.389) is related to the mean

of the new variable in (2.393)

g Yð Þh i ¼ P Yj j � δð Þ ¼ P X � mj j � δð Þ: ð2:394Þ

The concept of this approach to Chebyshev inequality is shown in Fig. 2.46.

From the figure, it is seen that the g(Y ) is bounded (upper) by the quadratic (Y/δ)2,

g Yð Þ � Y

δ

� �2

: ð2:395Þ

0

1

0-δ δ
Y

g(Y)

Upper
bound
(Y/δ)2

Fig. 2.46 Concept of

Chebyshev inequality
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Note that Y is a zero mean random variable and hence

Y2
� � ¼ X � mð Þ2

D E
¼ σ2: ð2:396Þ

Thus,

g Yð Þh i � Y2

δ2

� �
¼ Y2
� �
δ2

¼ σ2

δ2
: ð2:397Þ

Since (2.394) is the tail probability, (2.397) provides the Chebyshev inequality

in (2.389).

2.12.2 Chernoff Bound

In some of the cases we are interested in the area only under one tail. For most of the

wireless communications, SNR takes positive values only. We are often interested

in the probability that the SNR exceeds a certain value, i.e., the area under the tail

from δ to 1. Since only a single tail is involved, we could use an exponential

function instead of the quadratic function in the Chebyshev inequality (Proakis

2001; Haykin 2001). Let g(Y) be such that

g Yð Þ � exp v Y � δð Þ½ � ð2:398Þ

with

g Yð Þ ¼ 1, Y � δ,
0, Y < δ:

�
ð2:399Þ

In (2.398), the parameter v needs to be found and optimized. The exponential

upper bound is shown in Fig. 2.47.

The expected value of g(Y) is

g Yð Þh i ¼ P Y � δð Þ � exp v Y � δð Þ½ �h i: ð2:400Þ

Note that v must be positive. Its value can be obtained by minimizing the

expected value of the exponential term in (2.400). A minimum occurs when

d

dv
exp v Y � δð Þ½ �h i ¼ 0: ð2:401Þ

Changing the order of integration and differentiation in (2.401), we have
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exp �vδð Þ Yexp vYð Þh i � δ exp vYð Þh i½ � ¼ 0: ð2:402Þ

The tightest bound is obtained from

Yexp vYð Þh i � δ exp vYð Þh i ¼ 0: ð2:403Þ

If v is the solution to (2.403), the upper bound on the one sided tail probability

from (2.400) is

P Y � δð Þ � exp �bvδð Þ exp bvδð Þh i: ð2:404Þ

As it can be observed, the Chernoff bound is tighter than the tail probability

obtained from the Chebyshev inequality because of the minimization in (2.401).

2.13 Stochastic Processes

We have so far examined the randomness of observed quantities, such as the signal

amplitude or power and noise amplitude or power at a certain fixed time instant.

While the signal and noise are spread over a long period of time, the random

variable we studied constituted only a sample taken from the time domain function

associated with the signal or noise (Taub and Schilling 1986; Gagliardi 1988;

Papoulis and Pillai 2002). In other words, we need to characterize the temporal

statistical behavior of the signals. This is accomplished through the concept of

random processes. Consider a simple experiment. Take, for example, the measure-

ment of a current or voltage through a resistor. Let us now set up several such

0

1

Y
δ

Upper
bound
ev(Y-δ)

g(Y)

Fig. 2.47 Concept of the

Chernoff bound
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experiments, all of them with identical characteristics. In each of these experiments,

we measure the signal over a certain time period and we expect to see several time

functions as illustrated in Fig. 2.48.

The voltages are plotted along the X-axis for each experiment while the temporal

information is plotted along the Y-axis. For a fixed time (t1), if we take the samples

along the time line, we get different sample values which are random. In other

words, if each of the temporal functions are represented by X, we can express it as a
function of two variables, namely the “ensembles” ξ and “time” t. All such time

functions together constitute the random process which describes the noise voltage.

In other words, X(ξ,t) represents the random process and for a fixed time instant tk, X
(ξ,tk) represents a random variable, simply represented by X(tk). If the sample value

is fixed, i.e., for a fixed value of ξ, say ξn, we have a pure time function as X(ξn,t). In
other words, by fixing the time, we create a random variable from a process, and the

random process becomes a pure time function when we fix the ensemble value.

Thus, the random process provides both temporal and ensemble information on the

noise or any other noise phenomenon. For example, we can create a random process

by making the phase of a cosine wave random as

X tð Þ ¼ cos 2πf 0tþ Θð Þ: ð2:405Þ

In (2.405), Θ is a random variable. Since the random process contains both time

and ensemble information, we can obtain two different types averages, autocorre-

lation values, and so on. Let us first define the density functions. For any value of t,
X(t) is a random variable, and hence, the first-order CDF is expressed as

Time

# 1 # 2 # 3

t2

t1

t3

# 

Fig. 2.48 Concept of a random process
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F x; tð Þ ¼ P x tð Þ < x½ �: ð2:406Þ

The first order density function f(x,t) is obtained by differentiating (2.406) w.r.t

x as

f x; tð Þ ¼ ∂F x; tð Þ
∂x

: ð2:407Þ

First, if we have time at two instants, t1 and t2, we can similarly obtain the second

density function

f x1; x2; t1; t2ð Þ ¼ ∂2
F x1; x2; t1; t2ð Þ
∂x1∂x2

: ð2:408Þ

Similarly we can create higher-order density functions. Once we have the first-

order density function, we have the so called first-order statistics and we get the nth

order statistics of the random process by defining the density function for ensembles

taken at the n unique time instants, t1, t2,. . ., tn.
We define the ensemble average or statistical average η(t) as

η tð Þ ¼ X tð Þh i ¼
ð
xf x; tð Þ dx: ð2:409Þ

The autocorrelation of X(t) is the joint moment of X(t1)X(t2) defined as

R t1; t2ð Þ ¼
ð ð

x1x2f x1; x2; t1; t2ð Þ dx1dx2: ð2:410Þ

We can define the autocovariance as

C t1; t2ð Þ ¼ R t1; t2ð Þ � η t1ð Þη t2ð Þ: ð2:411Þ

Equation (2.411) provides the variance of the random process when t1 � t2 ¼ 0.

The average values defined so far have been based on the use of density functions.

Since the random process is a function of time as well, we can also define the

averages in the time domain. Let

s ¼
ð b
a

X tð Þ dt ð2:412Þ

and

s2 ¼
ð b
a

ð b
a

X t1ð ÞX t2ð Þ dt1dt2: ð2:413Þ
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The averages in (2.412) and (2.413) are random variables. To remove the

randomness and to get the true mean, we need to take a further expectation

(statistical) of the quantities.

η sð Þ ¼ sh i ¼
ð b
a

X tð Þh i dt ¼
ð b
a

η tð Þ dt, ð2:414Þ

s2
� � ¼ ð b

a

ð b
a

X t1ð ÞX t2ð Þh i dt1dt2 ¼
ð b
a

ð b
a

R t1; t2ð Þ dt1dt2: ð2:415Þ

In communications, it is easy to perform temporal averaging by observing the

signal in the time domain as in (2.412) or (2.413). If the temporal averages and

statistical averages are equal, it would be necessary for the integrals in (2.414) and

(2.415) to be equal. Such properties are associated with stationary processes. A

stochastic process X(t) is called strict sense stationary (SSS) if its statistical

properties are invariant to a shift in the origin. Thus, a process is first-order

stationary if

f x; tð Þ ¼ f x; tþ cð Þ ¼ f xð Þ, c > 0: ð2:416Þ

This would mean that the temporal average and statistical average are identical.

A process is second order stationary if the joint pdf depends only on the time

difference and not on the actual values of t1 and t2 as

f x1; x2; t1; t2ð Þ ¼ f x1; x2; τð Þ, ð2:417Þ

τ ¼ t1 � t2: ð2:418Þ

A process is called wide stationary sense (WSS) if

X tð Þh i ¼ η, ð2:419Þ

X t1ð ÞX t2ð Þh i ¼ R τð Þ ð2:420Þ

Since τ is midway point between t and t + τ, we can write

R τð Þ ¼ X t� τ

2

� 	
X∗ tþ τ

2

� 	D E
: ð2:421Þ

In (2.421), we have treated the process as complex in the most general sense.

Note that a complex process

X tð Þ ¼ Xr tð Þ þ jXi tð Þ ð2:422Þ

is specified in terms of the joint statistics of the real processes Xr(t) and Xi(t). A
process is called ergodic if the temporal averages are equal to the ensemble

2.13 Stochastic Processes 103



averages. For a random process to be ergodic, it must be SSS. Using this concept of

ergodicity, we can see that a wide sense of stationary process is ergodic in the mean

and ergodic in the autocorrelation. These two properties are sufficient for most of

the analysis of communication systems.

The power spectral density (PSD) S( f ) of a wide sense stationary process X(t) is
the Fourier transform of its autocorrelation, R(τ). As defined in (2.421) the process

may be real or complex. We have

S fð Þ ¼
ð1
�1

R τð Þexp �j2πf 0τð Þ dτ: ð2:423Þ

Note that S( f ) is real since R(�τ) ¼ R*(τ). From the Fourier inversion property,

R τð Þ ¼
ð1
�1

S fð Þexp j2πf 0τð Þ df : ð2:424Þ

Furthermore, if X(t) is real and R(τ) is real and even, then

S fð Þ ¼
ð1
�1

R τð Þ cos j2πf 0τð Þ dτ ¼ 2

ð1
0

R τð Þ cos j2πf 0τð Þ dτ, ð2:425Þ

R τð Þ ¼ 2

ð1
0

S fð Þ cos j2πf 0τð Þ df : ð2:426Þ

As discussed earlier, the noise in communication systems is modeled as a

random process. The primary characteristic of the noise in communication systems,

referred to as thermal noise, is that it is zero mean Gaussian and that it is white

(Taub and Schilling 1986). This means that the thermal noise at any given time

instant has a Gaussian distribution with zero mean. The whiteness refers to the fact

that its spectral density is constant (shown in Fig. 2.49).

The spectral density Gn( f ) of the noise n(t) has a constant value of (N0/2) over

all the frequencies. This means that its autocorrelation is a delta function as shown

f 
0 

Gn(f) 

N0

2 

Rn(τ) 

N0

2 

τ
0 

Fig. 2.49 Spectral density and the autocorrelation of noise
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R τð Þ ¼ N0

2
δ τð Þ: ð2:427Þ

Equation (2.427) suggests that any two samples of the noise taken at any

separation (however small this separation may be) will be uncorrelated. When the

noise passes through a low pass filter of bandwidth B, the noise energy will be ((N0/

2)2B) or N0B.

2.14 Parameter Estimation and Testing

In statistical modeling such as the description of signal strength fluctuations seen in

wireless channels, it is necessary to validate the underlying model. While the

models that have been in existence for a long time such as the Rayleigh, Nakagami

(or gamma), Nakagami-lognormal (or gamma-lognormal), and Rician have been

tested against the data collected, some of the newer family of models such as the

generalized K distribution, K distribution, η � μ distribution, κ � μ distribution,

McKay distribution, Meijer G family of functions, and mixture densities require

testing to validate their match to the actual data. Since all these densities contain a

number of parameters, methods to estimate these parameters need to be examined,

and the estimates have to be tested to ensure that the density functions actually fit

the data.

The parameter estimation methods primarily fall in two categories, moment

based estimates or the method of moments (MoM) and maximum likelihood

estimates (MLE). While the method of moments is simple and direct, maximum

likelihood estimation requires a more rigorous theoretical exercise and it is more

likely to result in reliable estimates (Papoulis and Pillai 2002). Along with param-

eter estimation, it is also necessary to test whether the model and its parameters fit

the measured data. This step requires hypothesis testing.

The methods of parameter estimation will be explored first before examining the

hypothesis testing approaches.

2.14.1 Method of Moments

A number of probability densities commonly seen in wireless are studied to

illustrate the concepts of parameter estimation. A detailed picture of these densities

and their properties appear in Chap. 4.

Consider the case of a gamma random variable with a density (Papoulis and

Pillai 2002)

f Z zð Þ ¼ 1

Γ αð Þβα z
α�1e�

α
βzU zð Þ: ð2:428Þ
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Note that the gamma density associated with the Nakagami fading channel is

obtained when

α ¼ m

β ¼ Ω
m
:

ð2:429Þ

In Eq. (2.429), m is the Nakagami fading parameter and Ω is the average SNR.

The moments of the gamma density are

E Zk
� � ¼ Γ k þ αð Þ

Γ αð Þ βk ¼ Γ k þ αð Þ
Γ αð Þ

Ω
m

� �k

, k ¼ 1, 2, . . . ð2:430Þ

The first two moments are

m1 ¼ E Zð Þ ¼ αβ ¼ Ω

m2 ¼ E Z2
� � ¼ α2β2 þ αβ2 ¼ mþ 1ð Þ

m

Ω2 ð2:431Þ

The parameters of the gamma density function can be obtained from the first and

second moments of the data using Eqs. (2.429) and (2.431).

The Rician density (SNR) is expressed as (Simon and Alouini 2005)

f zð Þ ¼ K0 þ 1

Ω
e�Ke�

K0þ1

Ω zI0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 K0 þ 1ð Þ

Ω
z

r !
U zð Þ ð2:432Þ

Note that K0 is the Rician factor given by the ratio of the power of the direct path

(line-of-sight or LOS) to the power of the multipath (excluding the LOS) compo-

nents. When K0 ¼ 0, the Rician density becomes the exponential density. The

moments of the Rician density are

E Zk
� � ¼ Γ k þ 1ð Þ

K0 þ 1ð Þk 1F
11 �k; 1;�K0ð ÞΩk, k ¼ 1, 2, . . . ð2:433Þ

In Eq. (2.433), 1F1(�k, 1;�K0) is the hypergeometric function (Gradshteyn and

Ryzhik 2007). The first two moments become

m1 ¼ E Zð Þ ¼ αβ ¼ Ω

m2 ¼ E Z2
� � ¼ 4K0 þ K2

0 þ 2
� �

K0 þ 1ð Þ2
Ω2 ð2:434Þ

The two parameters, Ω and K0, can be obtained by solving the set of equations

given in Eq. (2.434).

106 2 Concepts of Probability and Statistics



Now, consider the case where the SNR in a fading channel follows a generalized

gamma distribution (Aalo and Piboongungon 2005)

f zð Þ ¼ c

ba cΓ að Þ z
ac�1e�

z
bð ÞcU zð Þ: ð2:435Þ

The moments are

E Zk
� � ¼ Γ kþac

c

� �
Γ að Þ bk, k ¼ 1, 2, . . . ð2:436Þ

The first three moments are

m1 ¼ E Zð Þ ¼
Γ

1þ ac

c

� �
Γ að Þ b

m2 ¼ E Z2
� � ¼ Γ

2þ ac

c

� �
Γ að Þ b2

m3 ¼ E Z3
� � ¼ Γ

3þ ac

c

� �
Γ að Þ b2:

ð2:437Þ

The three parameters of the generalized gamma density can be obtained by

solving the set of equations in Eq. (2.437).

The three densities discussed above clearly indicate that the number of param-

eters to be determined match the number of moments needed to solve for them.

Thus, as the number of parameters increases, the order of moments also goes up and

in some cases such as in the case of the generalized gamma density in Eq. (2.435),

solving the three equations to get the parameters a, b, and c would require graphical
or numerical approaches since these equations are of the transcendental type. As the

number of parameters of the density function increase, higher and higher order

moments are needed to estimate the parameters and the reliability of the moments

becomes questionable as the order increases. Thus, MoM is less dependable when

accurate parameter estimation is necessary and other methods of parameter esti-

mation need to be explored.

2.14.2 Maximum Likelihood Estimation

The other method, maximum likelihood estimate (MLE), available for estimation

of parameter is based on the likelihood function (LF) of a random variable (Redner
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and Walker 1984; Iskander et al. 1999; Papoulis and Pillai 2002; Bowman and

Shenton 2006). Consider a random variable with a single parameter (for example,

an exponential density function with parameter θ). The density function f(z) can be

expressed as

f Z zð Þ ¼ f z; θð Þ: ð2:438Þ

If a number of observations of the variable are undertaken resulting in a vector of

observables (i.e., data) Z1, Z2,. . ., Zn, the joint density becomes

L θ; z1; z2; � � �; znð Þ ¼ f z1; θð Þf z2; θð Þ� � �f zn; θð Þ ¼
Yn
i¼1

f zi; θð Þ: ð2:439Þ

In Eq. (2.439) the number of observations is n. The observations are treated as

independent. The quantity or function on the left-hand side of Eq. (2.439), L(θ; z1,
z2, � � � , zn) is called the likelihood function associated with the density of Z in

Eq. (2.438). The principle of MLE consists of choosing an estimator that will

maximize the likelihood function.

Since the likelihood function appears in product form, the convenient option for

getting the estimator is to use the logarithm of the likelihood function which allows

the analysis to be undertaken using summation instead of the product. Note that

logarithm is a monotonic operator preserving all the properties of the likelihood

function intact. As it will be shown using a number of sample densities, θ need not

be a scalar. Indeed θ can be a vector and multi-parameter densities can be handled

using the same approach allowing the estimation of the parameters of the gamma,

Rician, generalized gamma, or other densities.

The maximization is achieved through the equation

∂
∂θ

log L θ; z1; z2; � � �; znð Þ½ � ¼ 0 ð2:440Þ

If multiple parameters exist, the maximization is achieved through the set of

equations formed from

∂
∂θj

log L ~θ; z1; z2; � � �; zn
� 	h i

¼ 0, j ¼ 1, 2, � � �, J: ð2:441Þ

Equation (2.441) consists of a set of J equations, one for each parameter

expressed in vector form as

~θ ¼

θ1
θ2
:
:
θJ

266664
377775: ð2:442Þ
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A non-trivial solution of the set of equations in Eq. (2.441) provides the

maximum likelihood estimates of the parameters contained in Eq. (2.442). A few

points are necessary to clarify the strength and weakness of the MLE approach.

While MLE generally leads to more reliable results, MLE can also lead to problems

if the non-trivial solutions are not unique. Additionally, there is no assurance that

the derivative of the log likelihood function exists. It is also possible that even if a

derivative exists, there is no simple analytical expression for the derivative, making

it necessary to invoke numerical techniques for solving the set of equations.

The strengths and weaknesses of the MLE will now be illustrated using the same

density functions presented earlier in connection with MoM along with additional

density functions.

Consider the example of an exponential density,

f zð Þ ¼ f z; θð Þ ¼ 1

θ
e�

z
θU zð Þ: ð2:443Þ

The likelihood function is

L θ; z1; z2; � � �; znð Þ ¼ 1

θ

� �nYn
i¼

e�
zi
θ ð2:444Þ

The log likelihood function is

log L θ; z1; z2; � � �; znð Þ½ � ¼ �nlog θð Þ � 1

θ

Xn
i¼1

zi ð2:445Þ

Taking the logarithm and setting it equal to zero,

∂
∂θ

log L θ; z1; z2; � � �; znð Þ½ � ¼ 0 ¼ �n

θ
þ 1

θ2
Xn
i¼1

zi: ð2:446Þ

Simplifying Eq. (2.446),

n

θ
¼ 1

θ2
Xn
i¼1

zi ) θMLE ¼ 1

n

Xn
i¼1

zi: ð2:447Þ

Equation (2.447) clearly shows the expected result. The estimate of the param-

eter θ is the sample mean itself. It is of interest to note that the MLE of the

parameter and moment based estimate match in this case.

Now, consider the case of a gamma density with two parameters (Cheng and

Beaulieu 2001)
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f zð Þ ¼ f z;m;Ωð Þ ¼ m

Ω

� 	m zm�1

Γ mð Þ e
�m

ΩzU zð Þ ð2:448Þ

The likelihood function will be

L m;Ω; zð Þ ¼ m

Ω

� 	m 1

Γ mð Þ

 �nYn

i¼1

zm�1
i e�

m
Ωzi ð2:449Þ

The log likelihood function will be

log L m;Ω; zð Þ½ � ¼ n mlog
m

Ω

� 	
� log Γ mð Þð Þ

h i
þ m� 1ð Þ

Xn
i¼1

log zið Þ � m

Ω

� 	Xn
i¼1

zi:

ð2:450Þ

Simplifying,

log L m;Ω;zð Þ½ � ¼mlog
m

Ω

� 	
� log Γ mð Þð Þþ m�1ð Þ 1

n

Xn
i¼1

log zið Þ
 !

� m

Ω

� 	 1

n

Xn
i¼1

zi

 !
ð2:451Þ

Since there are two parameters, the two equations for maximization result in

∂
∂Ω

log L m;Ω; zð Þ½ �½ � ¼ 0: ð2:452Þ
∂
∂m

log L m;Ω; zð Þ½ �½ � ¼ 0: ð2:453Þ

Equation (2.452) results in

� m

Ω

� 	
þ m

Ω2

� �
1

n

Xn
i¼1

zi

 !
¼ 0 ð2:454Þ

Equation (2.454) simplifies to

Ωmle ¼ 1

n

Xn
i¼1

zi: ð2:455Þ

Equation (2.455) is the expected result showing that the parameter Ω is the

sample mean. Thus, the MLE ofΩmatches the parameter obtained from the method

of moments. Eq. (2.453) results in
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∂
∂m

mlog
m

Ωmle

� �
� log Γ mð Þð Þ þ m� 1ð Þ1

n

Xn
i¼1

log zið Þ � m

Ωmle

� �
Ωmle

 !
¼ 0:

ð2:456Þ

In Eq. (2.456) Ω has been replaced with Ωmle obtained from Eq. (2.455).

Equation (2.456) leads to

log mð Þ � ψ mð Þ ¼ log Ωmleð Þ � log zið Þh i: ð2:457Þ

In Eq. (2.457), ψ(.) is the digamma function defined as

ψ xð Þ ¼ d

dx
logΓ xð Þ½ � ð2:458Þ

One can see the advantage and disadvantage of the MLE based estimate of the

Nakagami parameter. The advantage is that the estimation depends only on the first

moment and the first moment of the logarithm of the data. The disadvantage is that

there is no direct way to solve Eq. (2.457) to get the value of m and numerical

techniques are required to get the solution for m.

2.14.3 Comparison of MoM and MLE

To compare the approaches, a simple Matlab code was written to establish the

relationship between the actual value of m and estimates obtained using the MoM

and MLE. A number of examples on the use of MLE and MOM are presented next.

2.14.3.1 Gamma Distribution

The gamma distribution is of interest in wireless communication since the

Nakagami model is the most commonly used to describe the statistics of

the amplitude in fading channels. When the amplitude is Nakagami distributed,

the power or the signal-to-noise ratio is gamma distributed. Even though Nakagami

samples can be generated in Matlab, gamma random variables were generated for

the simulation. It should be noted that the parameter can also be estimated directly

in Matlab using gamfit(.). The simple code and the results are given below.
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% estimation_nakagami1

% p m shankar, June 2016

% compare MoM and MLE

clear;clc;close all

N=1e5; % number of samples

Z0=15; % mean

mn=0.5:.1:1.5; % values of m for simulation

for k=1:length(mn)

mm=mn(k);

x=gamrnd(mm,Z0/mm,1,N); % gamma random variable with mean Z0

X1=mean(x);            VX=var(x);            XL=mean(log(x));

m_mom(k)=X1^2/VX; % m from MoM

m=0.4:.005:2;

y=log(m)-psi(m)-log(X1)+XL; %MLE expression for m

ind=find(abs(y)<0.006); % obtain the solution examining when the EQN crosses 0

m_mle(k)=median(m(ind)); % if there is more than one value, take the median

end;

plot(mn,m_mom,'*r',mn,m_mle,'b^')

legend('MoM','MLE','location','southeast'),ylim([0.5,2])

xlabel('m parameter')

ylabel('estimate of m')

text(0.55,1.94,'     m        m_{MOM}         m_{MLE}','color','r','fontweight','bold')

text(0.6, 1.4,num2str([mn;m_mom;m_mle]'))

Figure 2.50 shows the results of the Nakagami parameter estimation using both

approaches. It clearly points to the fact that the parameter estimates obtained from

both methods are very close.

Fig. 2.50 Comparison of MoM and MLE: Nakagami parameter estimation
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2.14.3.2 Generalized Gamma Density

Another uniquely interesting case is the generalized gamma density,

f zð Þ ¼ f z; a; b; cð Þ ¼ c

baΓa
zac�1e�

zc

b U zð Þ: ð2:459Þ

There are several forms of the generalized gamma density functions and

Eq. (2.459) is one of these. The generalized gamma density becomes a gamma

density when c ¼ 1 and Weibull density when a ¼ 1. The likelihood function

associated with the density in Eq. (2.459) becomes (Papoulis and Pillai 2002;

Kumar and Shukla 2010)

L a; b; c; zð Þ ¼ c

baΓa

h inYn
i¼1

zac�1
i e�

z c
i
b ð2:460Þ

Samples of generalized gamma random variables can be generated from samples

of gamma variables using the concept of transformation of random variables. To

create a generalized gamma random variable sample, first consider a gamma

random variable Y with the density

f yð Þ ¼ f y; a; bð Þ ¼ 1

Γ að Þba z
a�1e�

z
bU zð Þ: ð2:461Þ

The generalized gamma density in Eq. (2.459) is obtained by transforming

Y to Z as

Z ¼ Y
1
c, c > 0: ð2:462Þ

Equation (2.462) thus provides a simple means to generate random numbers

which follow the density in Eq. (2.459). The log likelihood function of the gener-

alized gamma density in Eq. (2.460) becomes

log L a; b; c; zð Þð Þ ¼ nlog
c

baΓa

h i
þ ac� 1ð Þ

Xn
i¼1

log zið Þ � 1

b

Xn
i¼1

zci ð2:463Þ

The log likelihood function in Eq. (2.463) can be rewritten as

log L a; b; c; zð Þð Þ ¼ nlogc� nalogb� nlog Γ að Þð Þ þ ac� 1ð Þ
Xn
i¼1

log zið Þ

� 1

b

Xn
i¼1

zci :

ð2:464Þ

2.14 Parameter Estimation and Testing 113



The three equations for maximization become

∂
∂a

log L a; b; c; zð Þð Þ½ � ¼ �nlogb� nψ að Þ þ c
Xn
i¼1

log zið Þ ¼ 0 ð2:465Þ

∂
∂b

log L a; b; c; zð Þð Þ½ � ¼ �na

b
þ 1

b2

Xn
i¼1

zci ¼ 0 ð2:466Þ

∂
∂c

log L a; b; c; zð Þð Þ½ � ¼ n

c
þ a

Xn
i¼1

log zið Þ � 1

b

Xn
i¼1

zci log zið Þ ¼ 0 ð2:467Þ

To obtain the estimates of the three parameters, there is a need to simultaneously

solve three transcendental equations that can be obtained from Eqs. (2.465),

(2.466), and (2.467). These are

�nlog b� nψ að Þ þ c
Xn
i¼1

log zið Þ ¼ 0

�na

b
þ 1

b2

Xn
i¼1

zci ¼ 0

n

c
þ a
Xn
i¼1

log zið Þ � 1

b

Xn
i¼1

zci log zið Þ ¼ 0

: ð2:468Þ

One might also notice from Eq. (2.436) that three moments needed to solve for a,
b, and c are expressed in terms of gamma functions

E Zk
� � ¼ b

k
c
Γ acþk

c

� �
Γ að Þ : ð2:469Þ

Equation (2.469) indicates that even MoM requires the use of numerical tech-

niques. The estimation is demonstrated using the “mle” function in Matlab. It

should be noted that MLE equation set in Eq. (2.468) is not required for the

parameter estimation in Matlab directly using the “mle” command. The Matlab

script appears below.

114 2 Concepts of Probability and Statistics



function generalized_gamma_estimation_demo

close all

% estimate the parameters of the generalized gamma density

% the expression is created using symbolic toolbox and converted to the

% in-line function that is the input to mle(.)

% done in three steps:

%

% step # 1 b and c fixed, a varying: estimate a, b (mean), c (mean)

% step # 2 a and c fixed, b varying: estimate a (mean), b, c (mean)

% step # 3 a and b fixed, c varying: estimate a (mean), b (mean), c

%

% p m shankar, October 2016

syms a b c z f_Z(z)

ff=c*(z^(a*c-1))*exp(-(z^c)/b)/(gamma(a)*b^a);

pdf=[f_Z(z)==ff]; % create the pdf expression for plot display

N=1e5;

A=[0.5:.1:1.2]; % values of a for random number generation

L=length(A);

for k=1:L

aa=A(k);

cc=0.6;% value of b (fixed)

bb=5; % value of c (fixed)

[pp] = gg_estimatef(aa,bb,cc,N);

AB(k)=pp(1);

C(k)=pp(3);

B(k)=pp(2);

end;

figure,plot(A,AB,'*')

xlabel('a'),ylabel('a_{est}')

title(['$' latex(pdf) '$'],'interpreter','latex','fontsize',14)

data={['b_{input}=',num2str(bb),'; ','c_{input}=',num2str(cc)];...

['mean b_{est}=',num2str(mean(B)),', ','mean c_{est}=',num2str(mean(C))]};

text(0.55,1,data,'color','r','fontweight','bold')

text(.9,.45,'[b and c fixed input]','backgroundcolor','y')

clear A

B=[2:12]; % values of b

L=length(B);

for k=1:L

aa=0.7; % value of a fixed

cc=0.6; % value of c fixed

bb=B(k);

[ pp] = gg_estimatef(aa,bb,cc,N);

A(k)=pp(1);

C(k)=pp(3);

BB(k)=pp(2);

end;

figure,plot(B,BB,'*')

xlabel('b'),ylabel('b_{est}')

title(['$' latex(pdf) '$'],'interpreter','latex','fontsize',14)

data={['a_{input}=',num2str(aa),'; ','c_{input}=',num2str(cc)];...

['mean a_{est}=',num2str(mean(A)),', ','mean c_{est}=',num2str(mean(C))]};

text(2.55,10,data,'color','r','fontweight','bold')
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text(8,2,'[a and c fixed input]','backgroundcolor','y')

clear B

C=[0.5:.1:1.2]; % values of c

L=length(C);

for k=1:L

aa=.8; % value of a fixed

cc=C(k);

bb=8; % value of b fixed

[ pp] = gg_estimatef(aa,bb,cc,N);

A(k)=pp(1);

CK(k)=pp(3);

B(k)=pp(2);

end;

figure,plot(C,CK,'*')

xlabel('c'),ylabel('c_{est}')

title(['$' latex(pdf) '$'],'interpreter','latex','fontsize',14)

data={['a_{input}=',num2str(aa),'; ','b_{input}=',num2str(bb)];...

['mean a_{est}=',num2str(mean(A)),', ','mean b_{est}=',num2str(mean(B))]};

text(0.55,1.1,data,'color','r','fontweight','bold')

text(.9,.55,'[a and b fixed input]','backgroundcolor','y')

end

function [ pp] = gg_estimatef(aa,bb,cc,N)

X=gamrnd(aa,bb,1,N);

x=X.^(1/cc);% generalized gamma variable

syms XX w y z % x, a, b, c

myp=z*(XX^(w*z-1))*exp(-(XX^z)/y)/(gamma(w)*y^w);

mydensity=matlabFunction(myp);

clear XX w y z a b c

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',5000,'TolX',1e-5,'TolFun',1e-5,'TolBnd',1e-

4','MaxFunEvals', 1000);

a=0.45; % initial guess

b=4;  % initial guess

c=0.25;  % initial guess

pp = mle(x,'pdf',mydensity,'start',[a b c], 'options',opt); % fit mypdf to the data Y

% pp is [a,b,c]

end

Results from the generalized gamma parameter estimation are displayed in

Figs. 2.51, 2.52, and 2.53. They clearly show that the MLE approach provides

simultaneous solutions to all the three parameters and the estimates are very close to

the original input set.

The results displayed are obtained by keeping two parameters fixed and varying

the third parameter. Such a step allows the determination of the average values of

the estimates.

2.14.3.3 Generalized K Distribution

Another example is the generalized K distribution proposed as an approximate

model for describing the SNR the Nakagami-lognormal fading channel (see

Chap. 4). The generalized K distribution is the density of the product of two

independent non-identical gamma random variables (Lomnicki 1967; Springer

and Thompson 1970; Shankar 2005)
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Z ¼ XY ð2:470Þ

f xð Þ ¼
x
a

� �c�1
exp �x

a

� �
aΓ cð Þ ð2:471Þ

f yð Þ ¼
y
b

� �m�1
exp �y

b

� �
bΓ mð Þ ð2:472Þ

f zð Þ ¼ 2ffiffiffiffiffi
ab

p� �mþc
Γ mð ÞΓ cð Þ

z
mþc
2
�1Km�c 2

ffiffiffiffiffi
z

ab

r� �
U zð Þ: ð2:473Þ

The moments of the generalized K distribution are (Jouchin et al. 1993;

Dogandzic and Jin 2004)

E Zk
� � ¼ Γ mþ kð ÞΓ cþ kð Þ

Γ mð ÞΓ cð Þ abð Þk: ð2:474Þ

It is obvious that the generalized K distribution in Eq. (2.473) is a 3-parameter

distribution of m, c, and ab requiring simultaneous solution of three equations for

obtaining the estimates. TheMoM based method would require the use of numerical
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techniques and MLE using Matlab offers a simple and easy alternative to the MoM

approach. One would notice that a and b are scaling factors and one of these can be
taken to be unity while the other one is varied (for the simulation). Also, once the

parameters m and c are obtained, the product term ab can be obtained from the first

moment, completing the three parameters needed for the generalized K-density.
Results of the simulation are shown in Figs. 2.54 and 2.55. The advantage of the

“mle” command in Matlab directly is seen again from the fact that there is no need

to derive the expressions for the parameters. The only requirement is the availabil-

ity of the density function. The Matlab script is also capable of keeping track of the

time required for computation so that the two methods could be compared on the

basis of computational time.

function generalized_K_estimation_mle

close all

% estimate the parameters of the K distribution

% the expression is created using symbolic toolbox and converted to the

% in-line function that is the input to mle(.)

% done in three steps:

%

% step # 1 ab and c fixed, m varying: estimate m, c (mean), ab(mean)

% step # 2 ab and m fixed, c varying: estimate  m (mean), c, ab (mean)

%

% p m shankar, June 2016

syms m c a b z f_Z(z)

tic

ff=2*(z^((m+c)/2-1))*besselk(m-c,2*sqrt(z/(a*b)))/(gamma(m)*gamma(c)*(sqrt(a*b))^(m+c));

pdf=[f_Z(z)==ff]; % create the pdf expression for plot display

clear m c a b z f_Z(z)

N=1e5;

mm=[0.52:.1:1.2]; % values of a for random number generation

L=length(mm);

for k=1:L

m1=mm(k);

cc=4.5;% value of c (fixed)

ab=5; % value of ab or alpha*beta (fixed)

[pp] = gk_estimatef(m1,ab,cc,N);

mk(k)=pp(1);

AB(k)=pp(2); % a*b

C(k)=pp(3);

end;

figure,plot(mm,mk,'*')

ylim([0.4,1.4])

xlim([0.4,1.4])

xlabel('m'),ylabel('m_{est}')

title(['$' latex(pdf) '$'],'interpreter','latex','fontsize',14)

data={['a*b_{input}=',num2str(ab),'; ','c_{input}=',num2str(cc)];...

['mean ab_{est}=',num2str(mean(AB)),', ','mean c_{est}=',num2str(mean(C))]};

text(0.55,1.25,data,'color','r','fontweight','bold')

text(.9,.45,'[a*b and c fixed input]','backgroundcolor','y')

% clear A

CD=[3:9]; % values of a for random number generation

L=length(CD);

for k=1:L

m1=0.7;% value of m (fixed)

cc=CD(k);%

ab=8; % value of ab or alpha*beta (fixed)

[pp] = gk_estimatef(m1,ab,cc,N);

mk(k)=pp(1);

AB(k)=pp(2); % a*b

C(k)=pp(3);
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end;

figure,plot(CD,C,'*')

ylim([2,10])

xlim([2,10])

xlabel('m'),ylabel('m_{est}')

title(['$' latex(pdf) '$'],'interpreter','latex','fontsize',14)

data={['a*b_{input}=',num2str(ab),'; ','m_{input}=',num2str(m1)];...

['mean ab_{est}=',num2str(mean(AB)),', ','mean m_{est}=',num2str(mean(mk))]};

text(3,9,data,'color','r','fontweight','bold')

text(7,3,'[a*b and m fixed input]','backgroundcolor','y')

toc

end

function [ pp] = gk_estimatef(m,ab,cc,N)

X=gamrnd(m,ab,1,N);

Y=gamrnd(cc,1,1,N);

x=X.*Y; %GK variable

syms XX w y z % z, m,ab,c

myp=2*(XX^((w+z)/2-1))*besselk(w-z,2*sqrt(XX/(y)))/(gamma(w)*gamma(z)*(sqrt(y))^(w+z));

mydensity=matlabFunction(myp);

clear XX w y z a b c

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',5000,'TolX',1e-5,'TolFun',1e-5,'TolBnd',1e-

4','MaxFunEvals', 1000);

a=0.5; % initial guess

b=6;  % initial guess

c=2.2;  % initial guess

pp = mle(x,'pdf',mydensity,'start',[a b c], 'options',opt); % fit mypdf to the data Y

% pp is [a,b,c]

end

Elapsed time is 207.199643 seconds.
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An examination of the elapsed time shows that the time taken to estimate

parameter based on MLE is a little bit on the high end. It should be noted that the

computational time can be reduced by operating at a lower accuracy by setting the

tolerances to appropriate values (“mle” options).

The method of moments can be utilized to see whether it offers any quicker and

simpler way to estimate the parameters. While MoM might not always provide a

simple means of solution, the generalized K distribution offers a unique case where

it is possible to get parameter estimates more easily. The first two moments of the

generalized K distribution are (Jouchin et al. 1993; Dogandzic and Jin 2004)

E Zð Þ ¼ mcab ð2:475Þ
E Z2
� � ¼ m mþ 1ð Þc cþ 1ð Þ abð Þ2 ð2:476Þ

Instead of using the third moment and risking errors associated with higher order

moments, one can obtain the half order moment from Eq. (2.474) as

E Z
1
2

� 	
¼ Γ mþ 1

2

� �
Γ cþ 1

2

� �
Γ mð ÞΓ cð Þ abð Þ12: ð2:477Þ
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Fig. 2.55 Generalized K parameter estimation (MLE): fixed value of a, b, and m
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The scaling factors of the gamma densities αβ can be eliminated using the

normalized half and normalized second moments as

M1
2
¼

E Z
1
2

� 	
ffiffiffiffiffiffiffiffiffiffi
E Zð Þp ¼ Γ mþ 1

2

� �
Γ cþ 1

2

� �
Γ mð ÞΓ cð Þ ffiffiffiffiffiffi

mc
p ð2:478Þ

M2 ¼
E Z2
� �

E2 Zð Þ ¼ 1þ 1

m

� �
1þ 1

c

� �
ð2:479Þ

The availability of these moments of the data offers a simple way to solve for

m and c first and then, estimate αβ from Eq. (2.475). The solution can be carried out

numerically in Matlab. The results shown below clearly illustrate the level of ease

in obtaining the solution using MoM.

The results are displayed in Figs. 2.56 and 2.57. They clearly demonstrate that

MoM based methods can lead to reliable values.

% the expression is created using symbolic toolbox and converted to the

% in-line function

% the external function is used to create the two equations necessary for

% obtaining the two parameters. The third parameter can be eliminated since

% the moments are simpler.

% step # 1 ab and c fixed, m varying: estimate m, c (mean), ab(mean)

% step # 2 ab and m fixed, c varying: estimate  m (mean), c, ab (mean)

%

% p m shankar, June 2016

syms m c a b z f_Z(z)

tic

ff=2*(z^((m+c)/2-1))*besselk(m-c,2*sqrt(z/(a*b)))/(gamma(m)*gamma(c)*(sqrt(a*b))^(m+c));

pdf=[f_Z(z)==ff]; % create the pdf expression for plot display

clear m c a b z f_Z(z)

N=1e5;

mm=[0.52:.1:1.2]; % values of a for random number generation

L=length(mm);

global MH M2

for k=1:L

m1=mm(k);

cc=4.5;% value of c (fixed)

ab=5; % value of ab or alpha*beta (fixed)

X=gamrnd(m1,ab,1,N);

X=X.*gamrnd(cc,1,1,N);

M0=mean(X);

MH=mean(sqrt(X))/sqrt(M0); % normalized half moment

M2=mean(X.^2)/M0^2; % normalized second moment

options = optimset('Display','off','MaxFunEvals',5000,'TolFun',1e-4,'TolX',1e-5);%fsolve is 

function generalized_K_estimation_MoM

close all

% estimate the parameters of the K distribution using MoM
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repeated to prevent solutions not being found

x0=[0.7;4.15]; % initial guess

[x]=fsolve(@momf,x0,options);

mk(k)=min(x); % m

C(k)=max(x); % c

AB(k)=M0/(mk(k)*C(k)); % ab

end;

figure,plot(mm,mk,'*')

ylim([0.4,1.4])

xlim([0.4,1.4])

xlabel('m'),ylabel('m_{est}')

title(['$' latex(pdf) '$'],'interpreter','latex','fontsize',14)

data={['a*b_{input}=',num2str(ab),'; ','c_{input}=',num2str(cc)];...

['mean ab_{est}=',num2str(mean(AB)),', ','mean c_{est}=',num2str(mean(C))]};

text(0.55,1.25,data,'color','r','fontweight','bold')

text(.9,.45,'[a*b and c fixed input]','backgroundcolor','y')

clear A

CD=[3:9]; % values of c for random number generation

L=length(CD);

for k=1:L

m1=0.7;% value of m (fixed)

cc=CD(k);%

ab=8; % value of ab or alpha*beta (fixed)

X=gamrnd(m1,ab,1,N);

X=X.*gamrnd(cc,1,1,N);

M0=mean(X);

MH=mean(sqrt(X))/sqrt(M0);

M2=mean(X.^2)/M0^2;

options = optimset('Display','off','MaxFunEvals',5000,'TolFun',1e-4,'TolX',1e-5);%fsolve is 

repeated to prevent solutions not being found

x0=[0.7;4.15];

[x]=fsolve(@momf,x0,options);

mk(k)=min(x);

C(k)=max(x);

AB(k)=M0/(mk(k)*C(k));

end;

figure,plot(CD,C,'*')

ylim([2,10]), xlim([2,10]), xlabel('m'),ylabel('m_{est}')

title(['$' latex(pdf) '$'],'interpreter','latex','fontsize',14)

data={['a*b_{input}=',num2str(ab),'; ','m_{input}=',num2str(m1)];...

['mean ab_{est}=',num2str(mean(AB)),', ','mean m_{est}=',num2str(mean(mk))]};

text(3,9,data,'color','r','fontweight','bold')

text(7,3,'[a*b and m fixed input]','backgroundcolor','y')

toc

end

function y = momf(x)

global MH M2

xx=x(1)*x(2); % m *c

xx1=sqrt(xx); % sqrt(mc)

f1=MH-gamma(x(1)+.50)*gamma(x(2)+.50)/((gamma(x(1))*gamma(x(2)))*xx1);

f2=M2-(1+1/x(1))*(1+1/x(2));

y=[f1;f2];

end

Elapsed time is 1.571311 seconds.

Examining the elapsed times, it can be seen that the time taken with MoM is only

a few seconds compared to more than 3 min with MLE. This suggests that there is a

need to make a judicious choice of the approach to parameter estimation and each
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density function might require a different approach to get efficient estimates of the

parameters. The time taken and the accuracy of the estimates also depend on the

actual values of the parameters being estimated.

2.14.3.4 Gamma-Lognormal (Shadowed Fading Channel)

Cases also exist in the analysis of wireless channels where the pdf of the SNR is not

in analytical form. In such instances, MLE is not the best option for parameter

estimation and the method that could provide parameters within a reasonable

amount of time is based on the method of moments. An example of this exists in

the modeling of shadowed fading channels. The signal strength fluctuations in a

shadowed fading channel are modeled in terms of the gamma-lognormal density.

The gamma density represents the fading component and lognormal density repre-

sents the shadowing component. Using the method of transformation of random

variables where one random variable is gamma distributed and the other has a

lognormal density, the density of the SNR or power in a shadowed fading channel is

given in integral form as (Abdi and Kaveh 1998; Simon and Alouini 2005; Shankar

2010)

f zð Þ ¼
ð1
0

m

w

� 	m
e�

m
wz

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2w2

p e�
10log10 wð Þ�μð Þ2

2σ2 dw: ð2:480Þ

In Eq. (2.480), μ is the average SNR in dB (or average power in dBm) and σ is the
shadowing level in dB. The Nakagami parameter is m and K is the logarithmic

conversion factor

K ¼ 10

loge 10ð Þ : ð2:481Þ

The moments of the density in Eq. (2.480) are given as (Simon and Alouini

2005)

E Zk
� � ¼ Γ mþ kð Þ

Γ mð Þ e
k
Kμþ1

2
k
Kð Þ2σ2 ð2:482Þ

The normalized second and third moments, respectively, are

M2 ¼
E Z2
� �

E2 Zð Þ ¼
mþ 1ð Þ
m

e
σ2

K2 ð2:483Þ

M3 ¼
E Z3
� �

E3 Zð Þ ¼
mþ 1ð Þ mþ 2ð Þ

m2
e
3σ2

K2 : ð2:484Þ

Equations (2.483) and (2.484) can be solved for m and σ. The average signal

level μ in dB is obtained from the relationship between the levels in dB
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μest ¼ 10log10 E Zð Þ½ � � σ2

2K
: ð2:485Þ

The Matlab script is given below.

function gamma_lognormal_MoM

close all

% estimate the parameters of the gamma-lognormal density

% p m shankar, June 2016

eqn='$$ f(z)=\int_0^{\infty}\frac{m}{w}e^{-\frac{m}{w}z}\frac{K}{\sqrt{2\pi \sigma^2w^2}}e^{-

\frac{(10log_{10}w-\mu)^2}{2\sigma^2}} dw $$';

N=5e7;

mm=[0.52 0.7 0.95 1.1 1.3 2.5]; % values of m for random number generation

L=length(mm);

global M2 M3   % normalized moments

K=10/log(10);

for k=1:L

m1=mm(k);

mu=9;% dB

sig=4; % dB

Xg=gamrnd(m1,1/m1,1,N);

X2=normrnd(mu,sig,1,N);

X3=10.^(X2/10);

X=Xg.*X3; %gamma_lognormal random number

M0=mean(X);

M2=mean(X.^2)/M0^2; % normalized second moment

M3=mean(X.^3)/M0^3; % normalized second moment

options = optimset('Display','off','MaxFunEvals',6000,'TolFun',1e-5,'TolX',1e-5);

x0=[0.65;12.8]; % initial guess

[x]=fsolve(@momf,x0,options);

mk(k)=x(1); % m

C(k)=x(2) ;% sigma sq

mmu(k)=10*log10(M0)-x(2)/(2*K);

end;

figure,plot(mm,mk,'*')

ylim([0.4,1.4])

xlim([0.4,1.4])

xlabel('m'),ylabel('m_{est}')

title(eqn,'interpreter','latex','fontsize',14)

data={['\mu_{input}=',num2str(mu),' dB_m; ','\sigma_{input}=',num2str(sig),' dB'];...

['mean mu_{est}=',num2str(mean(mmu)),' dB_m, ','mean 

\sigma_{est}=',num2str(mean(sqrt(C))),' dB']};

text(0.42,1.25,data,'color','r','fontweight','bold')

text(.9,.5,'[\mu and \sigma fixed input]')

end

function y = momf(x)

global M2 M3

% m is x(1) and x(2) is sigmasq

K=10/log(10);

K2=K^2;

x1=x(1);

x2=x(2);

f1=M2-(x1+1)*exp(x2/K2)/x1;

f2=M3-(x1+1)*(x1+2)*exp(3*x2/K2)/x1^2;

y=[f1;f2];

end
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Results of the parameter estimation of the Nakagami-lognormal (gamma-log-

normal for the SNR) are shown in Fig. 2.58. Note that the procedure requires the

solution of two simultaneous equations and the optimization toolbox ( fslove) in
Matlab is required.

It is also possible to obtain the parameters using a single equation by eliminating

the shadowing level σ using Eqs. (2.483) and (2.484) resulting in a single equation

for the Nakagami parameter m as

m

mþ 1
M2 ¼ M3

m2

mþ 1ð Þ mþ 2ð Þ

 �1

3

: ð2:486Þ

The shadowing level σ can be obtained from the normalized second moment and

the average level μ is once again obtained from Eq. (2.485).

The Matlab script and results are displayed below. To get reasonably stable

estimates, a large sample set is required (in this example a sample size of N ¼ 4e7
was used). The script here does not require the use of optimization toolbox. Instead,

it uses the symbolic toolbox (solve) to find the solution.
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function gamma_lognormal_MoM_single

close all

% estimate the parameters of the gamma-lognormal density

% uses a single equation to get m first (uses symbolic solve)

% sigma square is then calcluated. Similarly mu is calculated.

% p m shankar, June 2016

eqn='$$ f(z)=\int_0^{\infty}\frac{m}{w}e^{-\frac{m}{w}z}\frac{K}{\sqrt{2\pi \sigma^2w^2}}e^{-

\frac{(10log_{10}w-\mu)^2}{2\sigma^2}} dw $$';

N=4e7;

mm=[0.52 0.62 0.7 0.8 0.94 1.2]; % values of m for random number generation

L=length(mm);

K=10/log(10);

for k=1:L

m1=mm(k);

mu=9;% dB

sig=4; % dB

Xg=gamrnd(m1,1/m1,1,N);

X2=normrnd(mu,sig,1,N);

X3=10.^(X2/10);

X=Xg.*X3; %gamma_lognormal random number

M0=mean(X);

M2=mean(X.^2)/M0^2; % normalized second moment

M3=mean(X.^3)/M0^3; % normalized second moment

syms xm yy

yy=sym(M2)*xm/(xm+1)-(sym(M3)*xm^2/((xm+1)*(xm+2)))^(1/3);

mx=double(solve(yy==0,xm));

mt(k)=max(mx); % three solutions exisit: choose the largest one

sq2(k)=K*K*log(M2*mt(k)/(mt(k)+1)); %sigma sq

% mean dB; using the relationship between the dB of the power and mu

mmu(k)=10*log10(M0)-sq2(k)/(2*K);% mu

clear Xg X2 X3 X

end;

figure,plot(mm,mt,'*')

ylim([0.4,1.4])

xlim([0.4,1.4])

xlabel('m'),ylabel('m_{est}')

title(eqn,'interpreter','latex','fontsize',14)

data={['\mu_{input}=',num2str(mu),' dB_m; ','\sigma_{input}=',num2str(sig),' dB'];...

['mean mu_{est}=',num2str(mean(mmu)),' dB_m, ','mean 

\sigma_{est}=',num2str(mean(sqrt(sq2))),' dB']};

text(0.42,1.25,data,'color','r','fontweight','bold')

text(.9,.5,'[\mu and \sigma fixed input]')

end

Matlab results are displayed in Fig. 2.59.

From all these examples it is clear that the choice of the method for estimating

parameters is a critical one and each one of these methods has its own limitations

both in terms of computational complexities and accuracy of the estimates. The

availability of a single equation (including transcendental type) is a little bit more

convenient since a single equation offers multiple options for obtaining the solution

either using a simple find(.) command in Matlab, symbolic solution or the tradi-

tional approaches using numerical methods based on fsolve(.) and fzero(.) in

Matlab.

128 2 Concepts of Probability and Statistics



Parameter estimation is only the first part of the development of a model for

appropriately describing the signal strength fluctuations observed in wireless chan-

nel. When multiple models exist, it is also necessary to determine the best (model)

fit to the data collected. Methods of finding the best fit lead to the field of hypothesis

testing. One specific form of hypothesis testing is the chi-square test. This is

described next.

2.15 Chi-Square Tests

Once the parameter estimates are obtained, it is necessary to verify that the samples

fit the presumed probability density and quantify the closeness of the fit. Chi-square

testing (sometimes also called chi-squared goodness-of-fit test) allows this task to

be undertaken (Mann and Wald 1942; Papoulis and Pillai 2002). The test can be

applied to any univariate distribution. It requires access to the cumulative distribu-

tion in analytical form. If analytical expression is unavailable, access to numerical

values of the CDF is sufficient to perform the test. The test relies on partitioning the

samples. The data samples are “binned” or “grouped” into a number of bins, groups,

or classes and the frequency of the bins is compared to expected number of

1.3

K
2s 2w

1.4

1.2

f (z) =

1.2 1.3 1.4

1.1

1.1

1

1

0.9

0.9

[m and s fixed input]

m
input

=9 dB
m

; s
input

=4 dB

w
dw

mean mu
est

=9.0425 dB
m

, mean s
est

=3.9533 dB

m

m
es

t

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.4
0.4 0.5

m∞
e

0

z e
m

2ps 2w2

(10log10 w -m)2

Fig. 2.59 Parameter estimation: gamma-lognormal channel (MoM, solving a single equation):

fixed value of μ and σ

2.15 Chi-Square Tests 129



observations based on the theoretical model (pdf). A test statistic is obtained from

this comparison first. This test statistic is then compared to a threshold and decision

is made to accept or reject the hypothesis that the samples follow the expected

density function depending on whether the test statistic falls below the threshold or

above the threshold. The various steps in the chi-square testing procedure involved

are described first. This is followed by a few examples of the test and a discussion of

the limitations of the chi-square test.

Step #1 The data set is sorted and values are arranged in ascending order. This

procedure allows an easy way to create the binned data and estimate the relative

frequencies.

Step #2 Estimate the parameters of the underlying assumed distribution from the

data. This would require the estimation of one, two, three, or more parameters as

discussed in the previous sections. While it is not necessary to use MLE, it is

expected that reliable estimates can be obtained.

Note that steps #1 and # 2 are interchangeable.

Step #3 The sorted data (Step # 1) is divided into k bins.
Even though the choice of the number of bins is rather arbitrary, the number

must be large enough to provide a reasonable distribution of the data in the bins.

The number of bins should not be made arbitrarily large since it invariably leads to

excessive computation. Higher number of bins might also lead to empty bins. Thus,

it is expected that the number of bins must be such that each bin is populated and no

bin exists with a frequency of 0. Generally, a number between 5 and 10 is sufficient

and a number below 5 is too low and a number above 20 might be too high. The

choice of the bin size is also a factor of how sparse the data set is and this aspect will

be discussed when the limitations of chi-square tests are described. Let the observed

frequency be denoted by Oi. It is expected that if the total number of samples is N,
Oi is an integer lying between 1 and N, and

Xk
i¼1

Oi ¼ N: ð2:487Þ

Step #4 Use the estimated parameters and recreate the theoretical (model) cumu-

lative distribution function and estimate the probabilities for the random variable to

stay within the corresponding bins.

If Ei is the number of observations expected using the theoretical model,

Ei ¼ Npi: ð2:488Þ

In Eq. (2.488), pi is the probability that the random variable lies in the ith bin and
is given by

pi ¼ FX xiþ1ð Þ � FX xið Þ, i ¼ 1, 2, � � �, k: ð2:489Þ
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Note that Eq. (2.489) simply implies that if k bins exist, the random variable will

have (k + 1) discrete values. The test statistic χ2 is formed as

χ2 ¼
Xk
i¼1

Oi � Eið Þ2
Ei

: ð2:490Þ

Step #5 The test statistic χ2 follows a chi-squared distribution. It is necessary to

determine the number of degrees of freedom of the chi-squared distribution. The

number of degrees of freedom is (k � c), with c to be defined.

If no parameters are estimated from the data, c ¼ 1. In this case, χ2 follows a
chi-squared distribution with (k � 1) degrees of freedom.

If the number of parameters estimated from the data is q (note that q is an

integer), the test statistic χ2 follows a chi-squared distribution with (k � q � 1)

degrees of freedom or c¼ q + 1. Thus, larger number of parameters estimated from

the data leads to a lower number of degrees of freedom of the chi-squared distri-

bution associated with the test.

The hypothesis that the data set follows a specified density which resulted in

Eq. (2.489) is rejected if the test statistic exceeds a threshold chosen on the basis of

a significance level α. The threshold value is

χthr ¼ χ21�α,k�c: ð2:491Þ

The chi-squared density with ν degrees of freedom is (Papoulis and Pillai 2002)

f λ; νð Þ ¼ 1

2
ν
2Γ ν

2

� � λν�2
2 e�

λ
2U λð Þ: ð2:492Þ

It can be easily seen that for the case of a Rayleigh random variable with a single

parameter, c ¼ 2. For a gamma distribution with two parameters c ¼ 3 and for the

case of a generalized gamma distribution with 3 parameters c¼ 4 etc. In most cases,

a value of α ¼ 0.05 is sufficient.

While Matlab provides a means to perform chi-square tests for known densities,

it is worthwhile to undertake the steps involved in chi-square testing using exam-

ples which show its use for densities that are custom made such as the generalized

K distribution, K distribution, and McKay density, arising from the various models

presented in Chap. 4.

2.15.1 Exponential Density

The first example is the case of an exponential random variable with the density

f xð Þ ¼ 1

b
e�

x
bU xð Þ: ð2:493Þ
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The parameter b of the exponential density in Eq. (2.493) is the mean of the

variable. Instead of the built in Matlab chi-square tests, a script is written to

demonstrate the chi-square testing procedure. With Rayleigh and exponential

random variable sets as inputs, the input data sets are tested to see if they follow

the exponential density. It also tests to confirm that the density of the sum of the

squares two independent and identically distributed zero mean Gaussian random

variables is also exponential. In other words, the data sets of Rayleigh, exponential,

and sums of squares of identical zero mean Gaussian random variables are tested to

explore the fit to an exponential density.

function chisquare_test_exponential_example

% shows the way to create chi square test. In this case, the exponential

% density is used.

% generate a set of Rayleigh random variables. The test should reject the

% hypothesis that the set follows an EXPONENTIAL pdf.

% also tests with exponential set.

% another set is created from two i.i.d zero mean Gaussian random variables

% and the data set is the sum of the squares of the Gaussian variables.

% Must follow the exponential density

% results display the test statistic, the degrees of freedom the threshold,

% and the thrshodl value based on alpha=0.05 and the number of degrees of

% freedom and finally statement on whether the hypothesis should be

% rejected or NOT. The test statistic and the threshold values have been

% rounded to the nearest integer.

%

% p m shankar, June 2016

x=raylrnd(20,1,1000);

mb=10;

disp('-----------------------------------------------')

disp('input is Rayleigh distributed')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

clear x mb

x=raylrnd(20,1,1000);

mb=15;

disp('-----------------------------------------------')

disp('input is Rayleigh distributed')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

clear x mb

xx=exprnd(4,1,1000); % generate exponential random variable

mb=10;

disp('-----------------------------------------------')

disp('input is Exponential distributed')

disp(' ')

display_results(xx,mb)

disp('-----------------------------------------------')

disp(' ')

clear xx mb

x1=normrnd(0,5,1,2000); % Gaussian variable of mean 0, sigma =5
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y1=normrnd(0,5,1,2000); % Gaussian variable of mean 0,sigma =5

y=x1.^2+y1.^2; % will be exponential

mb=10;

disp('-----------------------------------------------')

disp('input is Exponetial distributed: sum of squares of zero mean Gaussian i.i.d')

disp(' ')

display_results(y,mb)

disp('-----------------------------------------------')

disp(' ')

clear x1 y1 y mb

end

function [qq,QC,mq,deg ] = exponential_test(y,m)

%Tests for exponential distribution

y=sort(y); % random samples

N=length(y);%size of the sample

my=mean(y);%mean assuming exponential density

range=max(y)-min(y); %interval for chi-square test

intst=range/m; %size of sub-interval

intvl=[min(y):intst:max(y)]; %samples at the sub-intervals: should be (m+1)

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

% get the frequencies Oi

for i=1:N

for j=1:m

if y(i)<=intvl(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;

% get the CDF

p=zeros(1,m);

for i=1:m

p(i)=expcdf(intvl(i+1),my)-expcdf(intvl(i),my); %probabilities at the sub-interval samples

end;

np=p.*N; % this is Ei

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %test statistic

end;

%QC the critical value based on the number of bins (mm) and the two estimated are Z and m (2)

qq=round(q);

deg=m-1-1;

QC=chi2inv(.95, m-1-1);% 1 is the number of parameters calculated from the DATA

QC=round(QC);

if q<=QC

mq=1;

else

mq=0;

end;

end
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function display_results(x,mb)

[qq,QC,mq,deg] = exponential_test(x,mb);

disp(['The number of bins = ',num2str(mb)])

disp(['Test statistic =',num2str(qq)])

disp(['Degrees of freedom =',num2str(deg),'; Threshold value (95% confidence) =',num2str(QC)])

if mq==1

disp('PASS: DO NOt REJECT the hypothesis that the data set follows exponential density')

else

disp( 'FAIL: Reject the hypothesis that the data set follows exponential density')

end;

end

-----------------------------------------------

input is Rayleigh distributed

The number of bins = 10

Test statistic =404

Degrees of freedom =8; Threshold value (95% confidence) =16

FAIL: Reject the hypothesis that the data set follows exponential density

-----------------------------------------------

-----------------------------------------------

input is Rayleigh distributed

The number of bins = 15

Test statistic =441

Degrees of freedom =13; Threshold value (95% confidence) =22

FAIL: Reject the hypothesis that the data set follows exponential density

-----------------------------------------------

-----------------------------------------------

input is Exponential distributed

The number of bins = 10

Test statistic =10

Degrees of freedom =8; Threshold value (95% confidence) =16

PASS: DO NOt REJECT the hypothesis that the data set follows exponential density

-----------------------------------------------

-----------------------------------------------

input is Exponetial distributed: sum of squares of zero mean Gaussian i.i.d

The number of bins = 10

Test statistic =6

Degrees of freedom =8; Threshold value (95% confidence) =16

PASS: DO NOt REJECT the hypothesis that the data set follows exponential density

-----------------------------------------------

The results above demonstrate the method of chi-square testing and way of

interpreting the results. It should be noted that the chi-square testing for the

exponential density can be undertaken directly in Matlab using chi2gof (Statistics
andMachine Learning toolbox). However, the detailed outputs shown above are not

available in the built in chi-square testing command in Matlab.

As discussed earlier, parameter estimation is crucial for undertaking the

chi-square tests for the validation of the models. In the exponential density example

above, the parameter estimation was straightforward, primarily due to the fact that
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CDF calculation was straightforward. In many cases, MoM involving more than

one moment or MLE needs to be used to obtain parameter estimates. The next

example illustrates this. It also shows that if the CDF of the random variable is not

analytically available, numerical integration needs to be carried out to get the

probabilities.

2.15.2 K Distribution

Consider the case of wireless channel with fading modeled in terms of a double

gamma process (Chap. 4). This means that the SNR in the channel is the product of

two identical independent gamma random variables. The density can be obtained

from Eq. (2.473) by assuming that m ¼ c and a ¼ b ¼ X0. The density is given by

(Shankar and Gentile 2010)

f zð Þ ¼ 2

X2m
0 Γ2 mð Þ z

m�1K0

2

X0

ffiffi
z

p� �
U zð Þ: ð2:494Þ

Note that Eq. (2.494) implies the expressions for the two marginal densities and

the product of two random variables is Z,

f xð Þ ¼ xm�1

Xm
0 Γ mð Þexp � x

X0

� �
f yð Þ ¼ ym�1

Xm
0 Γ mð Þexp � y

X0

� �
Z ¼ XY:

ð2:495Þ

The moments of the double gamma variable having the density in Eq. (2.494) are

E Zk
� � ¼ Γ2 k þ mð Þ

Γ2 mð Þ X2k
0 : ð2:496Þ

The half order moment is

E Z
1
2

� 	
¼ Γ2 1

2
þ m

� �
Γ2 mð Þ X0: ð2:497Þ

The first order moment or the mean is

E Zð Þ ¼ m2X2
0 ð2:498Þ
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The normalized half moment is

Mh ¼
E

ffiffiffi
Z

p� �ffiffiffiffiffiffiffiffiffiffi
E Zð Þp ¼ Γ2 mþ 1

2

� �
mΓ2 mð Þ : ð2:499Þ

Equation (2.499) allows a simple way to obtain the estimate of m by solving a

single equation. Once the estimate of m is found, the parameter X0 can be estimated

from Eq. (2.497) or (2.498). Even though the CDF of the density is analytically

available either as a modified Bessel function or as a Meijer G-function (see the

Appendix in Chap. 4), the chi-square test will be carried out assuming that no

analytical solution is available. This would be the case with many of the custom

density functions where closed form expressions of the pdf and CDF might not be

available.

function chisquare_test_dblgamma_example

% shows the way to create chi square test. In this case, the case of a

% double gamma density is used

% The parameters are estimated and the probabilities evaulated numerically

% assuming that CDF is not available. The parameters are estimated using

% the Method of Moments. Symbolic toolbox is used to create the in-line

% function for the solution of the parameter estimates. Symbolic toolbox is

% also used to obtain the in-line function for the integrand for the

% numerical integration using integral(.) command

%

% results display the test statistic, the degrees of freedom the threshold,

% and the thrshodl value based on alpha=0.05 and the number of degrees of

% freedom and finally statement on whether the hypothesis should be

% rejected or NOT. The test statistic and the threshold values have been

% rounded to the nearest integer.

%

% p m shankar, June 2016

x=exprnd(20,1,5000);

mb=10;

disp('-----------------------------------------------')

disp('input is exponentially distributed')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

clear x mb

x1=gamrnd(2.5,4,2,5000); % generate 2 sets of gamma random variables

x=prod(x1);% one set of double gamma variable

mb=15;

disp('-----------------------------------------------')

disp('input is double gamma distributed')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

clear x1 x mb

x1=gamrnd(1.5,10,2,5000); % generate 2 sets of gamma random variables

x=prod(x1);% one set of double gamma variable

mb=10;

disp('-----------------------------------------------')

disp('input is double gamma distributed')

disp(' ')
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display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

clear x1 x mb

% % this is a mixture of gamma and exponential variables

x=[gamrnd(1.5,10,1,5000) exprnd(1,1,5000)];

mb=10;

disp('-----------------------------------------------')

disp('input is gamma_exponential mixture')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

end

function [qq,QC,mq,deg ] = double_gamma_test(y,m)

%Tests for exponential distribution

zh=mean(sqrt(y));

zm=mean(y);

zmh=zh/sqrt(zm);

% create the equation for solving for the parameter using symbolic toolbox

syms mq positive

yq=(gamma(mq+1/2))^2/(mq*gamma(mq)*gamma(mq));

% conver the equation to an in-line form

yx=matlabFunction(yq); % convert to an inline function

clear mq yq

% now solve for

mm=0.4:.02:4; % input m values to find the estimate of m

yy=yx(mm);

idx=find(abs(yy-zmh)<.005); % find where the function is less than abs(.005)

mest=median(mm(idx)); % if multiple values exist, take the median

X=sqrt(zm)/mest; % get the second variable of the double gamma density

clear mm

% now we have the estimate of m and X

y=sort(y); % random samples

N=length(y);%size of the sample

range=max(y)-min(y); %interval for chi-square test

intst=range/m; %size of sub-interval

intvl=[min(y):intst:max(y)]; %samples at the sub-intervals: should be (m+1)

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

% get the frequencies Oi

for i=1:N

for j=1:m

if y(i)<=intvl(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;

% create the pdf for computing the CDF

% create a symbolic expression for the pdf

syms x

mdf= 2*besselk(0,2*sqrt(x)/X)*x^(mest-1)/(gamma(mest)*gamma(mest)*X^(2*mest));

% convert the symbolic expression to an in-line form

myfunc=matlabFunction(mdf); % this is the integrand for the computation of the

% probabilities. This is nothing but the pdf

p=zeros(1,m);

for i=1:m

CDFm=integral(myfunc,intvl(i),intvl(i+1)); % CDF is evaluated by integration

% defined by the two bins

p(i)=CDFm; %probabilities at the sub-interval samples

end;
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np=p.*N; % this is Ei

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %test statistic

end;

%QC the critical value based on the number of bins (mm) and the two estimated are Z and m (2)

qq=round(q);

deg=m-1-2;% 2 is the number of parameters calculated from the DATA

QC=chi2inv(.95, deg);%

QC=round(QC);

if q<=QC

mq=1;

else

mq=0;

end;

end

function display_results(x,mb)

[qq,QC,mq,deg] = double_gamma_test(x,mb);

disp(['The number of bins = ',num2str(mb)])

disp(['Test statistic =',num2str(qq)])

disp(['Degrees of freedom =',num2str(deg),'; Threshold value (95% confidence) =',num2str(QC)])

if mq==1

disp('PASS: DO NOt REJECT the hypothesis that the data set follows double gamma density')

else

disp( 'FAIL: Reject the hypothesis that the data set follows double gamma density')

end;

end

-----------------------------------------------

input is exponentially distributed

The number of bins = 10

Test statistic =36

Degrees of freedom =7; Threshold value (95% confidence) =14

FAIL: Reject the hypothesis that the data set follows double gamma density

-----------------------------------------------

-----------------------------------------------

input is double gamma distributed

The number of bins = 15

Test statistic =16

Degrees of freedom =12; Threshold value (95% confidence) =21

PASS: DO NOt REJECT the hypothesis that the data set follows double gamma density

-----------------------------------------------

-----------------------------------------------

input is double gamma distributed

The number of bins = 10

Test statistic =11

Degrees of freedom =7; Threshold value (95% confidence) =14

PASS: DO NOt REJECT the hypothesis that the data set follows double gamma density

-----------------------------------------------

-----------------------------------------------

input is gamma_exponential mixture

The number of bins = 10

Test statistic =367

Degrees of freedom =7; Threshold value (95% confidence) =14

FAIL: Reject the hypothesis that the data set follows double gamma density

-----------------------------------------------
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Before the discussion on chi-square testing is concluded, the example of the

double gamma density is now carried out using the custom CDF available in place

of the numerical integration that had to be carried out. For the marginal density

given in Eq. (2.495), the density function of Z can also be expressed in terms of

Meijer G-functions as (Shankar 2013)

f zð Þ ¼ 1

zΓ2 mð ÞG
2,0
0, 2

m2z

Z0

���� �
m,m

� �
: ð2:500Þ

In Eq. (2.500), Z0 is the average SNR and it is given by Eq. (2.498) as

Z0 ¼ m2X2 ð2:501Þ

The cumulative distribution function (CDF) is

F zð Þ ¼ 1

Γ2 mð ÞG
2,1
1, 3

m2z

Z0

���� �
m,m, 0

� �
ð2:502Þ

function chisquare_test_dblgamma_example_Meijer G

% the pdf and CDF are analytically expressed in terms of the Meijer G

% functions.

% shows the way to create chi square test. In this case, the case of a

% double gamma density is used

% The parameters are estimated and the probabilities evaulated numerically

% assuming that CDF is not available. The parameters are estimated using

% the Method of Moments. Symbolic toolbox is used to create the in-line

% function for the solution of the parameter estimates.

% CDF is obtained directly using Meijer G functions

% results display the test statistic, the degrees of freedom the threshold,

% and the thrshodl value based on alpha=0.05 and the number of degrees of

% freedom and finally statement on whether the hypothesis should be

% rejected or NOT. The test statistic and the threshold values have been

% rounded to the nearest integer.

%

% p m shankar, June 2016

x=exprnd(20,1,5000);

mb=10;

disp('-----------------------------------------------')

disp('input is exponentially distributed')

disp(' ')

display_results(x,mb)
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disp('-----------------------------------------------')

disp(' ')

clear x mb

x1=gamrnd(2.5,4,2,5000); % generate 2 sets of gamma random variables

x=prod(x1);% one set of double gamma variable

mb=15;

disp('-----------------------------------------------')

disp('input is double gamma distributed')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

clear x1 x mb

x1=gamrnd(1.5,10,2,5000); % generate 2 sets of gamma random variables

x=prod(x1);% one set of double gamma variable

mb=10;

disp('-----------------------------------------------')

disp('input is double gamma distributed')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

clear x1 x mb

% % this is a mixture of gamma and exponential variables

x=[gamrnd(1.5,10,1,5000) exprnd(1,1,5000)];

mb=10;

disp('-----------------------------------------------')

disp('input is gamma_exponential mixture')

disp(' ')

display_results(x,mb)

disp('-----------------------------------------------')

disp(' ')

end

function [qq,QC,mq,deg ] = double_gamma_test(y,m)

%Tests for exponential distribution

zh=mean(sqrt(y));

zm=mean(y);

zmh=zh/sqrt(zm);

% create the equation for solving for the parameter using symbolic toolbox

syms mq positive

yq=(gamma(mq+1/2))^2/(mq*gamma(mq)*gamma(mq));

% conver the equation to an in-line form

yx=matlabFunction(yq); % convert to an inline function

clear mq yq

% now solve for

mm=0.4:.02:4; % input m values to find the estimate of m

yy=yx(mm);

idx=find(abs(yy-zmh)<.005); % find where the function is less than abs(.005)

mest=median(mm(idx)); % if multiple values exist, take the median

% the second parameter in this case is zm; the mean

clear mm

% now we have the estimate of m and mean needed for the Meijer G function
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y=sort(y); % random samples

N=length(y);%size of the sample

range=max(y)-min(y); %interval for chi-square test

intst=range/m; %size of sub-interval

intvl=[min(y):intst:max(y)]; %samples at the sub-intervals: should be (m+1)

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

% get the frequencies Oi

for i=1:N

for j=1:m

if y(i)<=intvl(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;

p=zeros(1,m);

gm=1/gamma(mest)^2;

for i=1:m

CDFUpper=gm*double(evalin(symengine,sprintf('Meijer G([[1], []], [[%e,%e], [0]], 

%e)',mest,mest,(mest^2)*intvl(i+1)/zm)));

CDFLower=gm*double(evalin(symengine,sprintf('Meijer G([[1], []], [[%e,%e], [0]], 

%e)',mest,mest,(mest^2)*intvl(i)/zm)));

p(i)=CDFUpper-CDFLower; %probabilities at the sub-interval samples

end;

np=p.*N; % this is Ei

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %test statistic

end;

%QC the critical value based on the number of bins (mm) and the two estimated are Z and m (2)

qq=round(q);

deg=m-1-2;% 2 is the number of parameters calculated from the DATA

QC=chi2inv(.95, deg);%

QC=round(QC);

if q<=QC

mq=1;

else

mq=0;

end;

end

function display_results(x,mb)

[qq,QC,mq,deg] = double_gamma_test(x,mb);

disp(['The number of bins = ',num2str(mb)])

disp(['Test statistic =',num2str(qq)])

disp(['Degrees of freedom =',num2str(deg),'; Threshold value (95% confidence) =',num2str(QC)])

if mq==1

disp('PASS: DO NOt REJECT the hypothesis that the data set follows double gamma density')

else

disp( 'FAIL: Reject the hypothesis that the data set follows double gamma density')
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end;

end

-----------------------------------------------

input is exponentially distributed

The number of bins = 10

Test statistic =51

Degrees of freedom =7; Threshold value (95% confidence) =14

FAIL: Reject the hypothesis that the data set follows double gamma density

-----------------------------------------------

-----------------------------------------------

input is double gamma distributed

The number of bins = 15

Test statistic =21

Degrees of freedom =12; Threshold value (95% confidence) =21

PASS: DO NOt REJECT the hypothesis that the data set follows double gamma density

-----------------------------------------------

-----------------------------------------------

input is double gamma distributed

The number of bins = 10

Test statistic =11

Degrees of freedom =7; Threshold value (95% confidence) =14

PASS: DO NOt REJECT the hypothesis that the data set follows double gamma density

-----------------------------------------------

-----------------------------------------------

input is gamma_exponential mixture

The number of bins = 10

Test statistic =361

Degrees of freedom =7; Threshold value (95% confidence) =14

FAIL: Reject the hypothesis that the data set follows double gamma density

-----------------------------------------------

2.16 MSE and Chi-Square Test

While the chi-square tests provide a means to achieve the goal of verifying whether

the data set fits the statistical model, one of the short comings of the chi-square

testing is its binary nature. The test provides a threshold for rejection of the

hypothesis leaving the user with some ambiguity regarding the validity of the

hypothesis. It is also possible to suggest that the value of the test statistic itself can

be used as ameans to compare two ormore hypotheses, with the hypothesis resulting

in a lower value of the test statistic appearing to be a better fit than the ones having

higher values of the test statistic. Such qualitative descriptions can also be quanti-

tatively described using mean square error (MSE) values. If fth(xk), k¼ 1,2,. . .,n are
the samples of the probability density estimated assuming a specific hypothesis and

fd(xk) are the samples of the density estimated from the histogram of the data,

MSE ¼
Xn
k¼1

f th xkð Þ � f d xkð Þ½ �2: ð2:503Þ
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The theoretical density with the lowest value of MSE is the better fit.

The following example illustrates a comparison of multiple hypotheses using

chi-square tests and MSE values. A set of data is tested to determine which one of

the three hypotheses is the best fit. The three hypotheses are the K distribution,

double gamma distribution, and the Weibull distribution, all three densities being

two parameter densities making the comparison of the test statistic fair and mean-

ingful. The K distribution is obtained from the generalized K distribution in

Eq. (2.473) by putting m ¼ 1 resulting in

f K zð Þ ¼ 2

λ1þcΓ cð Þ z
1þc
2
�1Kc�1

2

λ

ffiffi
z

p� �
U zð Þ: ð2:504Þ

The moments are

E Zk
� � ¼ Γ 1þ kð ÞΓ cþ kð Þ

Γ cð Þ λ2k ð2:505Þ

E Z
1
2

� 	
¼ Γ 3

2

� �
Γ cþ 1

2

� �
Γ cð Þ λ ð2:506Þ

E Zð Þ ¼ cλ2 ð2:507Þ

The parameters c and λ may be evaluated using the half order and first order

moments. The double gamma density was given in Eq. (2.494) and it is

f G zð Þ ¼ 2

X2m
0 Γ2 mð Þ z

m�1K0

2

X0

ffiffi
z

p� �
U zð Þ: ð2:508Þ

The parameters m and X can be determined from the half order and first order

moments given in Eqs. (2.497) and (2.498).

The Weibull density is (Papoulis and Pillai 2002)

f L zð Þ ¼ b

a


 �
z

a

� 	b�1

e�
z
að ÞbU zð Þ: ð2:509Þ

The moments of the Weibull density are

E Zk
� � ¼ akΓ

k þ b

b

� �
: ð2:510Þ

The two parameters can be estimated from the first two moments. It is also

possible to estimate the parameters directly in Matlab. The results are shown and

discussion follows the displays of the script and figures.
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function hypotheses_comparison_example

% Three hypotheses are compared. The chi-square tests are carried out and

% the MSE values estimated. The three densities are double gamma, K, and

% Weibull. All the parameters are estimated. Since Weibull is available in

% Matlab, the parameters of Weibull are estimated from Matlab.

%

% results display the test statistic, the degrees of freedom the threshold,

% and the threshold value based on alpha=0.05 and the number of degrees of

% freedom. The estimated pdfs and the data histogram (pdf) are plotted and

% MSE values are estimated. The maximum value of the difference in each case

% is also estimated.

% P M Shankar, July 2016

% use a bin size of 10

close all

global nam % identification for display

mbin=10;

x1=gamrnd(1.2,1,2,1e6); %generate 2 sets of identical gamma variables

x1=prod(x1);%take the product

nam='double gamma input';

display_results(x1,mbin)

clear x1

%generate 2 sets of non-identical gamma variables and take the product

x1=gamrnd(.7,2,1,1e6).*gamrnd(1,1,1,1e6);

nam='gamma product input';

display_results(x1,mbin)

clear x1

x1=gamrnd(0.4,1,1,1e6); % a single set of single gamma variable

nam='gamma input';

display_results(x1,mbin)

end

function [X,mest,qq] = double_gamma_test(y,m)

%Tests for double gamma distribution

zh=mean(sqrt(y));

zm=mean(y);

zmh=zh/sqrt(zm);

% create the equation for solving for the parameter using symbolic toolbox

syms mq positive

yq=(gamma(mq+1/2))^2/(mq*gamma(mq)*gamma(mq));

% conver the equation to an in-line form

yx=matlabFunction(yq); % convert to an inline function

clear mq yq

% now solve for

mm=0.4:.02:4; % input m values to find the estimate of m

yy=yx(mm);

idx=find(abs(yy-zmh)<.005); % find where the function is less than abs(.005)

mest=median(mm(idx)); % if multiple values exist, take the median

X=sqrt(zm)/mest; % get the second variable of the double gamma density

clear mm

% now we have the estimate of m and X

y=sort(y); % random samples

N=length(y);%size of the sample

range=max(y)-min(y); %interval for chi-square test

intst=range/m; %size of sub-interval

intvl=[min(y):intst:max(y)]; %samples at the sub-intervals: should be (m+1)

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

% get the frequencies Oi
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for i=1:N

for j=1:m

if y(i)<=intvl(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;

% create the pdf for computing the CDF

% create a symbolic expression for the pdf

syms x

mdf= 2*besselk(0,2*sqrt(x)/X)*x^(mest-1)/(gamma(mest)*gamma(mest)*X^(2*mest));

% convert the symbolic expression to an in-line form

myfunc=matlabFunction(mdf); % this is the integrand for the computation of the

% probabilities. This is nothing but the pdf

p=zeros(1,m);

for i=1:m

CDFm=integral(myfunc,intvl(i),intvl(i+1)); % CDF is evaluated by integration

% defined by the two bins

p(i)=CDFm; %probabilities at the sub-interval samples

end;

np=p.*N; % this is Ei

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %test statistic

end;

qq=round(q);

end

function [lam,Cest,qq] = K_test(y,m)

%Tests for K distribution distribution

zh=mean(sqrt(y));

zm=mean(y);

zmh=zh/sqrt(zm);

% create the equation for solving for the parameter using symbolic toolbox

syms cq positive

yq=gamma(sym(3/2))*gamma(cq+1/2)/(gamma(cq)*sqrt(cq));

% conver the equation to an in-line form

yx=matlabFunction(yq); % convert to an inline function

clear mq yq

% now solve for

cm=0.4:.02:4; % input m values to find the estimate of m

yy=yx(cm);

idx=find(abs(yy-zmh)<.005); % find where the function is less than abs(.005)

Cest=median(cm(idx)); % if multiple values exist, take the median

lam=sqrt(zm)/sqrt(Cest); % get the second variable of the double gamma density

clear cm

% now we have the estimate of m and X

y=sort(y); % random samples

N=length(y);%size of the sample

range=max(y)-min(y); %interval for chi-square test

intst=range/m; %size of sub-interval

intvl=[min(y):intst:max(y)]; %samples at the sub-intervals: should be (m+1)

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

% get the frequencies Oi

for i=1:N

for j=1:m

if y(i)<=intvl(j+1)

k(j)=k(j)+1;

break;

2.16 MSE and Chi-Square Test 145



end;

end;

end;

% create the pdf for computing the CDF

% create a symbolic expression for the pdf

syms x

mdf= 2*besselk(Cest-1,2*sqrt(x)/lam)*x^(Cest/2-1/2)/(gamma(Cest)*lam^(1+Cest));

% convert the symbolic expression to an in-line form

myfunc=matlabFunction(mdf); % this is the integrand for the computation of the

% probabilities. This is nothing but the pdf

p=zeros(1,m);

for i=1:m

CDFm=integral(myfunc,intvl(i),intvl(i+1)); % CDF is evaluated by integration

% defined by the two bins

p(i)=CDFm; %probabilities at the sub-interval samples

end;

np=p.*N; % this is Ei

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %test statistic

end;

qq=round(q);

end

function [aest,best,qq] = weibull_test(y,m)

%Tests for weibull

[par]=wblfit(y);

aest=par(1);

best=par(2);

y=sort(y); % random samples

N=length(y);%size of the sample

range=max(y)-min(y); %interval for chi-square test

intst=range/m; %size of sub-interval

intvl=[min(y):intst:max(y)]; %samples at the sub-intervals: should be (m+1)

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

% get the frequencies Oi

for i=1:N

for j=1:m

if y(i)<=intvl(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;

p=zeros(1,m);

for i=1:m

CDFm=wblcdf(intvl(i+1),aest,best)-wblcdf(intvl(i),aest,best);

% defined by the two bins

p(i)=CDFm; %probabilities at the sub-interval samples

end;

np=p.*N; % this is Ei

q=0;
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for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %test statistic

end;

qq=round(q);

end

function display_results(x1,mbin)

global nam

[X,m,qq_D] = double_gamma_test(x1,mbin) ;

[LAM,c,qq_K] = K_test(x1,mbin);

[aest,best,qq_W] = weibull_test(x1,mbin);

% get the histogram or the data pdf

[fi,xr]=ksdensity(x1);

% ksdensity might give negative values of xr because of the fitting

% technique used by Matlab; eliminate them for getting nice plots

idr=find(xr<0);

z=xr(idr+1:end);

fr=fi(idr+1:end);

m2=2*m;

fG=2*(z.^(m-1)).*besselk(0,2*sqrt(z)/X)/(X^(m2)*gamma(m)^2);

fG=real(fG);% Bessel function might give very small imaginary values

fK=2*(z.^(c/2-1/2)).*besselk(c-1,2*sqrt(z)/LAM)/(gamma(m)*LAM^(c+1));

fK=real(fK);

fW=wblpdf(z,aest,best);

figure,plot(z,fr,'r-',z,real(fG),'k*',z,fK,'bo',z,fW,'g^')

text(0.03*median(z),0.9*max(fG),'[PDF     MSE         \chi^2 test Statistic]','color','b')

text(0.03*median(z),0.975*max(fG),nam,'backgroundcolor','y')

legend('data-histogram','Dbl-gamma','K','Weibull')

xlabel('SNR z'),ylabel('estimated pdf')

xlim([0,0.75*median(z)])

disp('---------------------------------------')

disp('Parameters of the double gamma density fit')

disp(['m = ',num2str(m),'; X =',num2str(X)])

disp('---------------------------------------')

disp('Parameters of the K-density fit')

disp(['c = ',num2str(c),'; lambda =',num2str(LAM)])

disp('---------------------------------------')

disp('Parameters of the Weibull density fit')

disp(['a = ',num2str(aest),'; lambda =',num2str(best)])

disp('---------------------------------------')

frG=fr-fG;

fgM=max(abs(frG));

frK=fr-fK;

fkM=max(abs(frK));

frW=fr-fW;
fwM=max(abs(frW));

disp('Absolute Maximum of the difference between pdf(theory) and pdf (fit)')

disp(['Double gamma -->',num2str(fgM),'; K-density -->',num2str(fkM),'; Weibull-density --

>',num2str(fwM)])

MSED=sum(frG.^2)/length(fr);

MSEK=sum(frK.^2)/length(fr);

MSEW=sum(frW.^2)/length(fr);

text(0.03*median(z),0.75*max(fG),{'DG';'K ';'W '},'color','b','fontweight','bold')
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text(0.1*median(z),0.75*max(fG),{num2str(MSED);num2str(MSEK);num2str(MSEW)},'color','b','fontweig

ht','bold')

text(0.25*median(z),0.75*max(fG),{num2str(qq_D);num2str(qq_K);num2str(qq_W)},'color','b','fontwei

ght','bold')

% text(0.06*median(z),0.75*max(fG),{['DG     ',num2str(MSED),'             ',num2str(qq_D)];...

%   ['K      ',num2str(MSEK),'            ',num2str(qq_K)]; ['W      ',num2str(MSEW),'          

',num2str(qq_W)]})

deg=mbin-1-2;% 2 is the number of parameters calculated from the DATA

QC=chi2inv(.95, deg);%

QC=round(QC);

title(['Threshold \chi^2 statistic: ',num2str(mbin), ' bins = ',num2str(QC)])

end

---------------------------------------

Parameters of the double gamma density fit

m = 1.21; X =0.99088

---------------------------------------

Parameters of the K-density fit

c = 1.51; lambda =0.97571

---------------------------------------

Parameters of the Weibull density fit

a = 1.1819; lambda =0.74346

---------------------------------------

Absolute Maximum of the difference between pdf(theory) and pdf (fit)

Double gamma -->0.0045621; K-density -->0.024841; Weibull-density -->0.043244

---------------------------------------

Parameters of the double gamma density fit

m = 0.83; X =1.4264

---------------------------------------

Parameters of the K-density fit

c = 0.7; lambda =1.415

---------------------------------------

Parameters of the Weibull density fit

a = 0.87629; lambda =0.58199

---------------------------------------

Absolute Maximum of the difference between pdf(theory) and pdf (fit)

Double gamma -->0.00073196; K-density -->0.033058; Weibull-density -->0.0034453

---------------------------------------

Parameters of the double gamma density fit

m = 0.88; X =0.71927

---------------------------------------

Parameters of the K-density fit

c = 0.79; lambda =0.71213

---------------------------------------

Parameters of the Weibull density fit

a = 0.24403; lambda =0.53493

---------------------------------------

Absolute Maximum of the difference between pdf(theory) and pdf (fit)

Double gamma -->0.34346; K-density -->0.50335; Weibull-density -->0.12894

The results are shown in Figs. 2.60, 2.61, and 2.62, respectively, for double

gamma, gamma product (non-identical), and gamma random variables. Three data

sets were tested to determine the fits to three different fading models described

earlier. The results demonstrate a means to compare multiple hypotheses to test

whether a specific model for fading in wireless is better than the others. While

chi-square tests provide a binary marker, the actual chi-square test statistic value

presents a quantitative measure to judge the proximity of the density to the actual

density. Since the test statistic value goes up when the actual density and fit move

farther and farther, a lower value of the chi-square test statistic is a clear indicator of
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Fig. 2.60 Density validation (double gamma input)

Fig. 2.61 Density validation (non-identical gamma product input)
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the best fit of the multiple models being tested. While the Weibull model clearly

results in the highest value of the test statistic in all three sample data sets, in the last

example, all the values of the test statistic are above the threshold value. However,

the K distribution (and the double gamma) has the lowest value of the test statistic,

so in the absence of any other models, the K-density is a reasonable way to model

the data. One can also see that there is a high degree of correlation between MSE

values and chi-square test statistic, in most cases, the values are very small and

MSE only provides a simple way of seeing how the densities match graphically.

2.17 Mixture Densities in Wireless Channel Modeling

The various densities normally used to describe the statistical fluctuations of signal

strengths or SNR in wireless channels can be termed as “pure” or “standard”

densities. These densities are formed either from direct examinations of the funda-

mental physical processes resulting in the observed statistical fluctuations or

through secondary modeling process such as those that generate the Nakagami-

lognormal or Rician-lognormal densities that might also explain the observed

statistical fluctuations. Thus, the Rayleigh, Rician, Nakagami, Hoyt, lognormal

densities can be categorized as “pure” or “standard” densities. Improved modeling

Fig. 2.62 Density validation (gamma input)
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of the statistical fluctuations leads to Suzuki, Nakagami-lognormal, η � μ, McKay,

Meijer G, etc., densities which are also in standard forms. Standard forms of

densities also arise when we examine diversity combining algorithms employed

to mitigate the effects of fading or shadowing. On the other hand, observations can

be used to model the statistical fluctuations by examining whether multiple classes

of target regions exist in wireless channels and explore efficient ways of modeling

such situations. These approaches are extensively used in pattern recognition,

image analysis, boundary detection, etc., where the signal from any region of

interest (ROI) is treated as having created from two or more distinct “species”

which allows the combination of densities to provide an overall model of the

statistical fluctuations. Such approaches are also used in modeling the lifetimes of

chemical and biochemical phenomena. A simple description of this modeling effort

is to express the probability density as the sum of weighted densities (Papoulis and

Pillai 2002; Liu et al. 2007; Atappatu et al. 2011; Jung et al. 2014; Büyükçorak et al.
2015; Selim et al. 2015). If f(z) is the density of the SNR,

f zð Þ ¼ p1f 1 zð Þ þ p2f 2 zð Þ þ � � � þ pnf n zð Þ: ð2:511Þ

Total probability theorem requires that

p1 þ p2 þ � � � þ pn ¼ 1, 0 < pi < 1, i ¼ 1, 2, � � �, n: ð2:512Þ

The number of component densities in the mixture is n and each f(.) on the right-
hand side of Eq. (2.511) is a valid density function,

1 ¼
ð1
0

f i zð Þdz, i ¼ 1, 2, � � �, n ð2:513Þ

The lower limit of 0 in Eq. (2.513) merely is an acceptance of the fact that all the

densities are used for modeling the SNR and therefore, the lowest value of the

variable is 0. It should be noted that results are also available in literature where the

lower limit of integration is �1. An example of this case would be a mixture of

Gaussian densities. The mixture model in Eq. (2.511) also is flexible such that one

does not require that fi(z) be of identical type (such as gamma, exponential, and

Rician). It can easily be seen that if n ¼ 1, the mixture model reverts to the pure or

standard model of fading. While specific mixture models for fading, shadowing,

and shadowed fading are described in later chapters, statistical aspects of the

mixture models can be understood from basic principles of probability and random

variables. We will make use of the method of moments (MoM), maximum likeli-

hood estimation (MLE), chi-square testing, etc., presented in previous sections for

this purpose (Redner and Walker 1984; Davenport et al. 1988; Bowman and

Shenton 2006).

A simple example of mixture density is described next. A mixture of exponential

densities (with two component densities) is considered. The density is expressed as
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f zð Þ ¼ 1� pð Þ1
a
e�

z
a þ p

1

b
e�

z
b, 0 < p < 1; a, b, z > 0: ð2:514Þ

The mixture requires the estimation of three parameters, namely a, b, and p with
the limitation on p being 0 < p < 1. The parameters can be estimated using the

method of moments (MoM) or MLE as discussed in previous sections. Since both

approaches require the use of numerical techniques, the MoM is described first by

examining the moments while the MLE is implemented in Matlab. The moments of

the exponential mixture are

E Zk
� � ¼ p bk � ak

� �þ ak
� �

Γ 1þ kð Þ: ð2:515Þ

Since there are three unknown, three moments are required for the parameter

estimation. Instead of using the first three integer moments, the third moment can be

avoided by using the half order moment and the first and second moments,

providing the three equations to solve for a, b, and p. These moments are

Eh ¼ E
ffiffiffi
Z

p� 	
¼ p b

1
2 � a

1
2

� 	
þ a

1
2

h i
Γ 1þ 1

2

� �
¼

ffiffiffi
π

p
2

p b
1
2 � a

1
2

� 	
þ a

1
2

h i
ð2:516Þ

E1 ¼ E Zð Þ ¼ p b� að Þ þ a ð2:517Þ

E2 ¼ E Z2
� � ¼ 2 p b2 � a2

� �þ a2
� � ð2:518Þ

Using these moments,

p ¼ E1 � a

b� a
¼ E2 � 2a2

2b2 � 2a2
ð2:519Þ

p ¼ E1 � a

b� a
¼ Eh �

ffiffi
π

p
2

ffiffiffi
a

pffiffi
π

p
2

ffiffiffi
b

p �
ffiffi
π

p
2

ffiffiffi
a

p ð2:520Þ

Using Eqs. (2.519) and (2.520), an equation connecting a and b can be written as

E1 � affiffiffi
b

p þ ffiffiffi
a

p ¼ Eh �
ffiffi
π

p
2

ffiffiffi
a

pffiffi
π

p
2

: ð2:521Þ

Using the first and second moments,

b ¼
E2

2
� E1a

E1 � a
: ð2:522Þ

Combining Eqs. (2.521) and (2.522), one can get an equation in a single variable

a that can be solved easily. The MLE can be implemented directly in Matlab as

shown earlier.
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The validity of the parameters and the mixture model were examined using a

chi-square test and MSE. Starting with a mixture of exponential densities, the

process of the mixture density modeling is given in the Matlab script containing

the complete set of steps including MoM, MLE, chi-square testing, and plots of the

data histogram and pdf estimates and MSE.

The Matlab script and the results are given below. The discussion on the results

is provided following the Matlab work.

function exponential_mixture_example

% Mixture density demonstration using a mixture two exponential densities.

% Two sets of exp random variables are created with different means, each

% set containing different number of samples to mimic the weights. If N1

% and N2 are the respective number of samples, then the weights or

% probabilities are N1/(N1+N2) and N2/(N1+N2). First the MoM is used to

% estimate the three parameters.  The equations are reduced to a simngle

% variable one in 'a' and then, values of 'b' and 'a' are obtained. These

% values are then used to test the hypothesis that the mixture is indeed

% one comprised of two exponentials through the chi-square test.

%

% next, MLE is used to estimate the parameters and the chi square test is

% repeated. Ksdensity is used to get the data histogram and estimated

% densities are plotted alongside the actual data histogram in each case.

%

% p m shankar, July 2016

close all

global best aest pest

x=[exprnd(3,1,45000) exprnd(5,1,25000)]; % create two sets of exp random numbers

% with different number of samples in each set. 

% 

N=length(x);

xx=x';

clust=kmeans(xx,2); % get an initial estimate of the two populations by clustering

Ns=hist(clust,2);%

% Ns(1) and Ns(2) are the number of samples in two clusters and Ns/N will

% be the approximate probabilities if an iterative procedure is used. NOT

% used here

[fx,xr]=ksdensity(x);

idr=find(xr<=0);% for removing any -ve values of the xr that arise from ksdensity

xrr=xr(idr+1:end);

fr=fx(idr+1:end);

[a1,b1,p1] =parameter_est_MOM(x);

fsim1=(1-p1)*exppdf(xrr,a1)+p1*exppdf(xrr,b1); % pdf from MoM

pest=p1;aest=a1;best=b1;

mb1=10; % number of bis for the chi square test

[qq1] =chiexp_demo(x,mb1);

QC=chi2inv(0.95,10-1-2);

state1={['Chi square test statistic (MoM) = ',num2str(round(qq1))];...

['Chi-Square Threshold (number of bins=10) =',num2str(round(QC))]};

disp(state1)

figure,plot(xrr,fr,'ro',xrr,fsim1,'*')

xlim([.01,0.8*max(xrr)])

xlabel('SNR z'),ylabel('pdf estimate')

legend('data histogram','mixture pdf estimate (MoM)')

title(state1,'color','b')

MSE2=sum((fr-fsim1).^2)/length(xrr);

text(0.1*max(xrr),0.8*max(fsim1),['MSE_{MoM} = ',num2str(MSE2)])

vals1={['a = ',num2str(round(a1*100)/100)];['b = ',num2str(round(b1*100)/100)];...

['p = ',num2str(round(p1*100)/100)]};

text(0.5*max(xrr),0.35*max(fsim1),vals1)

% now get the parameter estimates using MLE
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[ a2,b2,p2 ] =parameter_est_MLE(x);

pest=p2;aest=a2;best=b2;

[qq2] =chiexp_demo(x,mb1);

state2={['Chi square test statistic (MLE) = ',num2str(round(qq2))];...

['Chi-Square Threshold (number of bins=10) =',num2str(round(QC))]};

disp(state2)

fsim2=(1-p2)*exppdf(xrr,a2)+p2*exppdf(xrr,b2); % pdf from MLE

figure,plot(xrr,fr,'ro',xrr,fsim2,'*')

xlim([.01,0.8*max(xrr)])

xlabel('SNR z'),ylabel('pdf estimate')

legend('data histogram','mixture pdf estimate (MLE)')

title(state2,'color','b')

MSE2=sum((fr-fsim2).^2)/length(xrr);

text(0.1*max(xrr),0.8*max(fsim2),['MSE_{MLE} = ',num2str(MSE2)])

vals2={['a = ',num2str(round(a2*100)/100)];['b = ',num2str(round(b2*100)/100)];...

['p = ',num2str(round(p2*100)/100)]};

text(0.5*max(xrr),0.35*max(fsim2),vals2)

end

function [ a1,b1,p1 ] =parameter_est_MOM(x)

% parameter estimation using method of Moments

Mh=mean(sqrt(x)); % half order mean

M1=mean(x);% mean

M2=mean(x.^2); %second moment

syms a b positive

y=(sym(Mh)-sym(sqrt(pi))*sqrt(a)/2)/(sqrt(sym(pi))/2);

yy=(sym(M1)-a)/(sqrt(b)+sqrt(a));

b1=(0.5*sym(M2)-sym(M1)*a)/(sym(M1)-a);

y3=subs(yy,b,b1);

ys=y-y3; % get a single equation in a that can be easily solved

ab=0.1*M1:.1:M1; % initial value of a

yys=matlabFunction(ys); % convert the equation to  inline form

idx=find(abs(yys(ab))<.002);% find the index where values are less than .002

a1=median(ab(idx));% estimate of a; there might be more than values of a

b1=(0.5*M2-M1*a1)/(M1-a1);% estimate of b

p1=(M1-a1)/(b1-a1);% estimate of p

end

function [ q] =chiexp_demo(yy,m)

global aest best pest

y=sort(yy); % sort samples

N=length(y);

inter=max(y)-min(y); %interval for chi-square test

intstep=inter/m; %size of sub-interval

intv=[min(y):intstep:max(y)]; %samples at the sub-intervals

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

for i=1:N

for j=1:m

if y(i)<=intv(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;

p=zeros(1,m);

for i=1:m

CDF1=(1-pest)*expcdf(intv(i+1),aest)+pest*expcdf(intv(i+1),best);

CDF2=(1-pest)*expcdf(intv(i),aest)+pest*expcdf(intv(i),best);

p(i)=CDF1-CDF2; %probabilities at the sub-interval samples

end;
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np=p.*N;

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %chi-square test

end;

end

function [a1,b1,p1 ] =parameter_est_MLE(x)

% parameter estimation using MLE

M1=mean(x);

syms a b p XX

myfun=(1-p)*(1/a)*exp(-XX/a)+p*(1/b)*exp(-XX/b);

mydensity=matlabFunction(myfun);

clear XX a b p

aa=0.4*M1;

bb=0.3*M1;

pp=0.2;

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',3000,'TolX',1e-4,'TolFun',1e-5,'TolBnd',1e-

5','MaxFunEvals', 1000);

pq = mle(x,'pdf',mydensity,'start',[aa bb pp], 'options',opt); % fit mydensity to the data

a1=pq(1); b1=pq(2); p1=pq(3);

end

'Chi square test statistic (MoM) = 9'

'Chi-Square Threshold (number of bins=10) =14'

'Chi square test statistic (MLE) = 8'

'Chi-Square Threshold (number of bins=10) =14'

Results are displayed in Figs. 2.63 (MoM) and Fig. 2.64 (MLE).

It can be seen that both approaches lead to acceptable levels of statistical match

based on chi-square testing. Note that the identification of a and b is arbitrary and

what matters is the nature of the fit. The MoM becomes less convenient and more

time consuming when the number of components in the mixture goes up and the

mixture requires larger and larger number of parameters. The MoM also is difficult

when non-identical types of density functions constitute the mixture. Consider the

case of a pdf mixture with two different types of densities,

f zð Þ ¼ 1� pð Þ 1

a

� �
e�

z
a þ p

zm�1

bm
e�

z
b: ð2:523Þ

The mixture consists of exponential and gamma densities and it requires the

estimation of four parameters a, m, b, and p making MoM inconvenient and error

prone since higher order moments would be necessary. In the example, MLE was

used. The Matlab script appears below. Figure 2.65 shows the results on the

mixture of exponential and gamma variables.
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function general_mixture_example

% Mixture density demonstration using a mixture of exponential and gamma

% densities. MLE is used to estimate the parameters

%

% p m shankar, July 2016

close all

global best aest pest mest

x=[gamrnd(1.5,3,1,5000) gamrnd(1,2,1,2000)];

% create two sets of gamma  random numbers: second one is an exponential

% random variable

% with different number of samples in each set. The ratio of the number of

% samples to the total number of samples gives the weights or probabilities

N=length(x);

[fx,xr]=ksdensity(x);

idr=find(xr<=0);% for removing any -ve values of the xr that arise from ksdensity

xrr=xr(idr+1:end);

fr=fx(idr+1:end);

mb1=10; % number of bis for the chi square test

% now get the parameter estimates using MLE

pq =parameter_mix_MLE(x);

pest=pq(1);aest=pq(2);mest=pq(3);best=pq(4);

[qq] =chimix_demo(x,mb1); % get the results of the chi square test

QC=chi2inv(0.95,mb1-1-4);

state2={['Chi square test statistic (MLE) = ',num2str(round(qq))];...

['Chi-Square Threshold (number of bins=10) =',num2str(round(QC))]};

disp(state2)

fsim=(1-pest)*exppdf(xrr,aest)+pest*gampdf(xrr,mest,best); % pdf from MLE

figure,plot(xrr,fr,'ro',xrr,fsim,'*')

xlim([.01,0.8*max(xrr)])

xlabel('SNR z'),ylabel('pdf estimate')

legend('data histogram','mixture pdf estimate (MLE)')

title(state2,'color','b')

MSE=sum((fr-fsim).^2)/length(xrr);

text(0.1*max(xrr),0.8*max(fsim),['MSE_{MLE} = ',num2str(MSE)])

vals={['a = ',num2str(round(aest*100)/100)];['m = ',num2str(round(mest*100)/100)];...

[' b= ',num2str(round(best*100)/100)];['p = ',num2str(round(pest*100)/100)]};

text(0.5*max(xrr),0.35*max(fsim),vals)

% create the equation for display

syms a b m p f(z)

eqn=(1-p)*(1/a)*exp(-z/a)+p*z^(m-1)*exp(-z/b)/(b^m*gamma(m));

ff=[f(z)==eqn];

text(0.3*max(xrr),0.65*max(fsim),['$' latex(ff) '$'],...

'interpreter','latex','fontsize',14)

end

function [ q] =chimix_demo(yy,m)

global aest pest mest best

y=sort(yy); % sort samples

N=length(y);

inter=max(y)-min(y); %interval for chi-square test

intstep=inter/m; %size of sub-interval

intv=[min(y):intstep:max(y)]; %samples at the sub-intervals

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

for i=1:N

for j=1:m

if y(i)<=intv(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;
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p=zeros(1,m);

for i=1:m

% estimate the CDF using the mixture density

CDF1=(1-pest)*expcdf(intv(i+1),aest)+pest*gamcdf(intv(i+1),mest,best);

CDF2=(1-pest)*expcdf(intv(i),aest)+pest*gamcdf(intv(i),mest,best);

p(i)=CDF1-CDF2; %probabilities at the sub-interval samples

end;

np=p.*N;

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %chi-square test

end;

end

function pq =parameter_mix_MLE(x)

% parameter estimation using MLE

N=length(x);

[Ns]=hist(x,2);

pinit=Ns(1)/N; % initial guess of the weight

[pha]=gamfit(x); % initial estimate of the parameters of the gamma dist

M1=mean(x); % initial estimate of the parameter of the exp density

mypdf = @(x,pq1,aq,mq,bq) (1-pq1)*exppdf(x,aq) + pq1*gampdf(x,mq,bq);

PQ=[pinit,0.8*M1,pha(1),pha(2)];

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',6000,'TolX',1e-4,'TolFun',1e-3,'TolBnd',1e-

3','MaxFunEvals', 4000);

pq = mle(x,'pdf',mypdf,'start',PQ, 'options',opt); % fit mypdf to the data

% pq=[p1,a1,m1,b1];

end

'Chi square test statistic (MLE) = 2'

'Chi-Square Threshold (number of bins=10) =11'

Fig. 2.63 Exponential mixture (MoM)
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Fig. 2.65 Mixture of exponential and gamma (MoM)

Fig. 2.64 Exponential mixture (MLE)

158 2 Concepts of Probability and Statistics



It should be noted while MoM might give unacceptable results because of the

uncertainty in higher order moments, MLE might also provide unreliable parameter

estimates since MLE depends heavily on the initial guesses chosen for the param-

eters. It is therefore recommended that appropriate choice be made on some “a

priori” information on the parameter as it was done in the case of the exponential

gamma mixture above. The initial guesses were chosen on the basis of putting the

data in two categories (for the initial weight) and the parameter guesses were made

on the assumption of the particular density. There is yet another method, namely the

expectation maximization (EM), also available for the estimation of parameters of

density mixtures (Redner and Walker 1984; da Silva and Yongacoglu 2015).

Additional analysis of the mixture densities will be provided when specific

models for fading and shadowing using density mixtures are discussed (Chaps. 4

and 5). In general, one also needs to determine the best fit to the data by varying the

number of mixture of components (n). As n goes up, chi-square testing is of limited

use and one has to explore other means of finding the best fits based on Bayes

Information Criterion (Kass and Raftery 1995; Neath and Cavanaugh 2012). Details

on BIC will be provided in Chap. 5.

2.18 Receiver Operating Characteristics

Receiver operating characteristics (ROC), originally being used in radar detection

theory, is now extensively being used in medical and behavioral statistics (Van

Trees 1968; Helstrom 1968; Hanley and McNeil 1982). Recent research in cogni-

tive radio and the need to quantify the energy detection schemes in wireless fading

channels have spawned a new interest in undertaking the ROC analysis in fading

channels (Atapattu et al. 2010a, b; Shankar 2016). The performances of the various

energy detection schemes can be compared in terms of quantitative measures

obtained through the ROC studies.

In simple terms, ROC analysis examines a system with binary outputs using some

form of a detector. Consider the case of a radar detector or the case of a specific cancer

detection algorithmwhichmakes a positive identification of a target or of the presence

of cancer on the basis of some observed ormeasurable quantity. In the case of radar, it

might be the amplitude of the backscattered signal and in the case of clinical

diagnostics, it might be a numeric value assigned to a particular set of data based on

some criteria used by the clinicians. These steps can be broken down into two simple

hypotheses and one of the hypotheses will be accepted based on the numerical values

assigned. For the case of radar, the two hypotheses are the following:

Hypothesis H0 The detected voltage or signal arose out of noise only.

Hypothesis H1 The detected voltage is the result of a target existing in the region

along with noise.

Often, the first hypothesis H0 is also called the null hypothesis. In order to decide

which hypothesis will be accepted, the observed quantity is compared against a
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threshold. If the observed quantity is below the threshold the null hypothesis H0 is

accepted. Otherwise, it is rejected and hypothesis H1 is accepted. If the observed

quantity is represented by Z, the two hypotheses correspond to two density functions

f Z zjH0ð Þ : Hypothesis H0

f Z zjH1ð Þ : Hypothesis H1

: ð2:524Þ

The major issues in hypothesis testing are the development and access to the

probability densities required for modeling the observed quantity and an optimum

way to design a threshold so that the user will have the most favorable detection

performance. The “most favorable detection performance” needs to be quantified for

practical applications. There are a number of ways to achieve quantification of the

performance of the detectors and depending on the nature of its use, these quantifica-

tion metrics could be different. These include the probabilities of detection and false

alarm, probability of error, area under the ROC, etc. The probabilities of false alarm

and detection were discussed earlier in Sect. 2.11. These will be discussed briefly first.

Assuming that additive white Gaussian noise is present in the system, the

probability densities associated with the hypotheses can be expressed as

f zjH0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z2

2σ2

� �
ð2:525Þ

f zjH1ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z� μð Þ2
2σ2

 !
: ð2:526Þ

In Eqs. (2.525) and (2.526),μ is the mean voltage and σ2 is the variance of the

noise. If a threshold is chosen at ZT, the probabilities of false alarm (PF) and miss

(PM) are given as

PF ¼
ð1
ZT

f zjH0ð Þdz ¼
ð1
ZT

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z2

2σ2

� �
dz ð2:527Þ

PM ¼
ðZT

�1
f zjH1ð Þdz ¼

ðZT

�1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z� μð Þ2
2σ2

 !
dz: ð2:528Þ

The probability of error p(e) is

p eð Þ ¼ PFp H0ð Þ þ PMp H1ð Þ: ð2:529Þ

As described in Sect. 2.11, p(H0) and p(H1) are the probabilities associated with

the respective hypotheses.Methods to choose the thresholdwere also described there.

For applications in communication theory, the probability of error is accepted as

sufficient metric regarding the performance of the detector. It should also be noted
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that in communication theory related applications, the hypotheses are considered to

be equiprobable. In radar as well as in clinical applications, the hypotheses do not

exist with equal probability and the metric of the error rate or probability of error is

not a sufficient indicator of the performance. In most of the non-communication

theory applications, the interest is in finding a critical threshold that will provide a

specific probability of false alarm or probability of detection. This will also be the

case with energy detectors in cognitive radio (Chap. 7).

The goal of finding such a threshold is accomplished through plots known as the

receiver operating characteristic (ROC) curves (Hanley and McNeil 1982; Metz

2006). These are created by plotting the probabilities of false alarm against prob-

abilities of detection as the threshold is varied. Consider the case when μ ¼ 0,

2, 4,. . ., and σ2¼ 4, providing plots for each set of values of μ¼ and σ2. To generate
these plots, the probabilities of detection are varied and the corresponding threshold

values are calculated. The probabilities of false alarm are then calculated for these

thresholds. For the two hypotheses in Eqs. (2.527) and (2.528), the probabilities of

detection (PD) and probabilities of false alarm are

PD ¼
ð1
ZT

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z� μð Þ2
2σ2

 !
dz ð2:530Þ

PF ¼
ð1
ZT

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � z2

2σ2

� �
dz ð2:531Þ

Note that both PF and PD can be expressed in terms of erfc(.) or Gaussian Q(.)
functions. For the plots, the SNR is defined as

Z0 ¼ 20log10
μ

σ

� 	
dB ð2:532Þ

A Matlab script written to demonstrate several aspects associated with ROC is

given below.

function ROC_analysis_f

% ROC_Analysis

% ROC_analysis for the Gaussian channel and an energy detector in Rayleigh

% channel. For the Gaussian channel, three figures are displayed starting

% from the simple ROC plot to the one in logarithmic scale (for X-axis) and

% the ROC curve with areas calculated. The values of Az are indicated along

% with the SNR values. Note that for the Gaussian channel the lowest value

% of -INF dB while for the Rayleigh channel it will be 0 dB. For the

% Rayleigh channel, only the plots with the areas computed is shown.

%

% P M Shankar, October 2016

clear;clc;close all

PD=0:.005:1; % probability of detection values chosen to get threshold

sig=2;% sigma

mu=0:5;

SNR=round(20*log10(mu/sig));% SNR

PF=zeros(length(mu),length(PD));

for k=1:6
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% norminv(.) is the CDF while PD is 1-CDF.

% PD=1-normcdf(thr,mu,sig)-->[1-PD]=normcdf(thr,mu,sig)-->

% thr=norminv(1-PD,mu,sig)

ZT=norminv(1-PD,mu(k),sig); % calculate threshold based on the detection probability

PF(k,:)=1-normcdf(ZT,0,sig); % probability of false alarm

end;

figure

for k=1:length(mu)

plot(PF(k,:),PD,'linewidth',1.5)

mu1=mu(k);

hold on

ZT1=norminv(0.8,0,sig);% obtain threshold for PF=0.2 for indicating plots

PDT=1-normcdf(ZT1,mu1,sig);% this is PD for PF=.2 for indicating the SNR

if mu1==0

text(0.15,PDT,'Z_0 = -\infty dB','fontweight','bold')

else

text(0.15,PDT,['Z_0 = ',num2str(SNR(k)),' dB'],'fontweight','bold')

end;

hold on

Az1(k)=0.5+polyarea(PF(k,:),PD);

end;

xlabel('Probability of False Alarm')

ylabel('Probability of Detection')

clear PF

% % change mu and plot the data with PF in logarithmic scale

mu=[5,7,9,11,4];

SNR=round(20*log10(mu/sig));% SNR

PF=zeros(length(mu),length(PD));

for k=1:length(mu)

ZT=norminv(1-PD,mu(k),sig); % calculate threshold based on the detection probability

PF(k,:)=1-normcdf(ZT,0,sig); % probability of false alarm

end;

figure

for k=1:length(mu)

semilogx(PF(k,:),PD,'linewidth',1.5)

mu1=mu(k);

SN=20*log(mu1/sig);

hold on

PFT=1e-3;

ZT1=norminv(1-1e-4,0,sig);% obtain threshold for PF=1e-4 for indicating plots

PDT=1-normcdf(ZT1,mu1,sig);% this is PD for PF=1e-4 for indicating the SNR

text(.5e-4,PDT,[num2str(SNR(k)),' dB'],'fontweight','bold')

hold on

Az1(k)=0.5+polyarea(PF(k,:),PD);

end;

xlim([1e-15,1])

xlabel('Probability of False Alarm')

ylabel('Probability of Detection')

%

mu=[0,2,4,6];

SNR=round(20*log10(mu/sig));% SNR
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PF=zeros(length(mu),length(PD));

for k=1:length(mu)

ZT=norminv(1-PD,mu(k),sig); % calculate threshold based on the detection probability

PF(k,:)=1-normcdf(ZT,0,sig); % probability of false alarm

end;

% change mu and show the areas

figure

for k=1:length(mu)

subplot(2,2,k),plot(PF(k,:),PD,'linewidth',1.5)

xlabel('P_F')

ylabel('P_D')

mu1=mu(k);

SN=round(20*log(mu1/sig));

Az1(k)=0.5+polyarea(PF(k,:),PD);

hold on

PFF=PF(k,:);

% to fill the areas properly supply the missing values

PFF=[PFF,ones(1,10)];

PDF=[PD,ones(1,10)];

fill(PFF,PDF,'b') % this only fills the upper region below the plots

fill([0,.5,1,1,1,.5,0],[0,0,0,.5,1,.5,0],'b')

aqz=round(Az1(k)*1000)/1000;% just keep only three decimal places

text(.5,.6,['A_z = ',num2str(aqz)],'backgroundcolor','w')

if mu1==0

text(.5,0.3,['Z_0 = -\infty dB'],'backgroundcolor','y')

else

text(.5,0.3,['Z_0 = ',num2str(SN),' dB'],'backgroundcolor','y')

end;

hold off

end;

% Rayleigh channel

BA=[1,2,4,6]; % this B/A

SN=round(10*log10(BA));% SNR

PD=0:.005:1; % probability of detection values chosen to get threshold

PF=zeros(length(BA),length(PD));

for k=1:length(BA)

ZT=BA(k)*(-log(PD));% calculate threshold based on the detection probability

PF(k,:)=exp(-ZT*BA(k)); % probability of false alarm

end;

figure

for k=1:length(BA)

subplot(2,2,k),plot(PF(k,:),PD,'linewidth',1.5)

xlabel('P_F')

ylabel('P_D')

AB1=BA(k);

Az1(k)=0.5+polyarea(PF(k,:),PD);

hold on

PFF=PF(k,:);

% to fill the areas properly supply the missing values

PFF=[PFF,ones(1,10)];

PDF=[PD,ones(1,10)];
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fill(PFF,PDF,'b') % this only fills the upper region below the plots

fill([0,.5,1,1,1,.5,0],[0,0,0,.5,1,.5,0],'b')

aqz=round(Az1(k)*1000)/1000;% just keep only three decimal places

text(.5,.6,['A_z = ',num2str(aqz)],'backgroundcolor','w')

if AB1==0

text(.5,0.3,['Z_0 = -\infty dB'],'backgroundcolor','y')

else

text(.5,0.3,['Z_0 = ',num2str(SN(k)),' dB'],'backgroundcolor','y')

end;

hold off

end;

end

Results are displayed in Figs. 2.66, 2.67, 2.68, and 2.69.

For the case of the mean equal to the standard deviation (Z0 ¼ �1 dB), the

diagonal line clearly informs that the chance of detection is 50%. As the ratio of the

mean to standard deviation increases, it is clear that the probabilities of detection

for a fixed value of probability of false alarm increase clearly demonstrating the

improving detection performance with the increase in mean μ. The information in

Fig. 2.66 might still be insufficient to pick an appropriate threshold since the

interest is to have probabilities of false alarm <1e�5. Changing the X-axis to

logarithmic units, it is possible to get a better grasp of the PF vs PD as seen in

Fig. 2.67.
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Fig. 2.66 Receiver operating characteristics (Gaussian)
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While the plot of ROC with logarithmic scale is an improvement, quantification

of the performance of the detector is still not fully accomplished. The quantification

of the detector performance is carried out by calculating the area enclosed by the

plots keeping in mind that the best detector will have an area of unity. From a plot of

PF vs. PD, the area under the ROC curve, typically represented by Az (called the Az

value), is (Hanley and McNeil 1982; McClish 1989; Obuchowski 2003)

Az ¼
ð1
0

PD yð Þd PF yð Þð Þ: ð2:533Þ

By examining the probabilities associated with the two hypotheses, Eq. (2.533)

can be expressed as

Az ¼ 1�
ð1

�1
f yjH0ð ÞF yjH1ð Þdy: ð2:534Þ

In Eq. (2.534), F(.) is the CDF. It is therefore obvious that in the Gaussian model

described in connection with the densities in Eqs. (2.525) and (2.526), when the

μ¼ σ, Z0 ¼ 0 dB, the ROC plot is the diagonal line and the area under the ROC will

be 0.5. This means that the success or failure is equally likely, a very unacceptable

outcome. As the value of SNR increases, the Az values increase, providing a clearer

means of quantification of the performance of the detector. Note that the area under
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Fig. 2.67 Receiver operating characteristics (Gaussian) with X-axis in logarithmic format
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the ROC curve can be estimated in Matlab using the command polyarea(.). The
results are displayed in Fig. 2.68. The value of the area under the ROC curve (also

expressed as AUC) continues to increase with increasing value of the ratio of the

mean to standard deviation, providing a quantitative measure of the performance

compared to the qualitative measure seen in ROC plots.

While the previous example dealt with the detection performance based on

Gaussian densities, the energy detection schemes discussed in Chap. 7 would

have densities that only take positive values. A typical example will be the case

of an energy detector which attempts to make a decision to determine whether the

hypothesis H0 or H1 can be accepted in Rayleigh fading channel conditions. In a

Rayleigh channel,

f zjH0ð Þ ¼ 1

A
exp � z

A

� 	
ð2:535Þ

f zjH1ð Þ ¼ 1

B
exp � z

B

� 	
,B � A ð2:536Þ

In this case,

Z0 ¼ 10log10
B

A

� �
dB: ð2:537Þ

The results on the area under the ROC curve are shown in Fig. 2.69. Notice that

the plots are not symmetric for the Rayleigh channel while they were symmetric for

the Gaussian channel.

Fig. 2.68 Area under the ROC curve (Gaussian)
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2.19 Laplace and Mellin Transforms

While almost all books in probability and random variables describe characteristic

functions of random variables and its relationship to Fourier transforms, there is

little discussion of Laplace transforms and even less discussion of Mellin trans-

forms (Epstein 1948; Erdelyi 1953; Rossberg 2008). For wireless systems operating

in fading and shadowed fading channels, the fading models evolve out of summa-

tion of random variables as well as products of random variables (Wells et al. 1962;

Lomnicki 1967; Springer and Thompson 1970; Block and Savits 1980; Shankar

2013). The summation arises when diversity techniques are employed to mitigate

the effects of fading. There are also a few instances of summation of random

variables in the modeling of fading such as those leading to η � μ, κ � μ, and
McKay densities. The products of random variables arise in double, triple, quadru-

ple, etc., types of scattering channels resulting in densities that are expressed in

terms of Meijer G-functions. The shadowed fading channels are also modeled in

terms of SNR evolving from the product of two random variables. Since almost all

these cases arise from random variables which only take positive values, Laplace

and Mellin transforms are likely to offer some interesting possibilities for the

statistical analysis undertaken in wireless communications (Wells et al. 1962;

Subrahmanaim 1970; Block and Savits 1980; Park 1986; Abate 1995; Tellambura

et al. 2003; Ahmed et al. 2011) The Laplace transform was defined earlier in Sect.

2.8 of a random variable X with a pdf fX(x) is

Fig. 2.69 Area under the ROC curve (Rayleigh)
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L f xð Þ½ � ¼ LX sð Þ ¼
ð1
0

f xð Þe�xsdx ¼ E e�sX
� �

: ð2:538Þ

The Mellin transform of the random variable X is

M f xð Þ½ � ¼ MX sð Þ ¼
ð1
0

f xð Þxs�1dx: ð2:539Þ

The inverse Laplace transform and the inverse Mellin transforms generate the

density f(x) as

f xð Þ ¼ L�1 LX sð Þ½ � ¼ 1

2πj

ðλþj1

λ�j1
LX sð Þexsds ð2:540Þ

f xð Þ ¼ M�1 MX sð Þ½ � ¼ 1

2πj

ðλþj1

λ�j1
MX sð Þx�sds ð2:541Þ

In general Eqs. (2.540) and (2.541) may be useful in gaining considerable insight

into derivation of density functions of sums or products of random variables. One

rarely takes the inverse transforms by performing integrations and they are usually

obtained from the tables of Laplace and Mellin transforms. Even thoughMatlab can

provide both Laplace and inverse Laplace transforms, Matlab does not provide

Mellin transforms presently. In general, Mellin transforms can be generated using

the integral in Eq. (2.539). The inverse Mellin transforms are available in Maple

and Mathematica.

Without getting into the details of deriving the convolution relationships, it can

be stated that the Laplace transform of the convolution of two densities fX(x) and
fY(y) is the product of Laplace transforms LX(s) and LY(s),

LX sð ÞLY sð Þ ¼ L f xð Þ∗f yð Þ½ �: ð2:542Þ

Equation (2.542) shows that if X and Y are independent random variables, the

density of

Z ¼ X þ Y ð2:543Þ

is

f Z zð Þ ¼
ðz
0

f X xð Þf Y z� xð Þdx ¼ f X xð Þ∗f Y yð Þ: ð2:544Þ
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The density of the sum of X and Y can be obtained from the inverse Laplace

transform of the product of the two marginal Laplace transforms,

f Z zð Þ ¼ L�1 LX sð ÞLY sð Þ½ �: ð2:545Þ

The concept the product of Laplace transforms can be extended to obtain the

probability density of the sum of a number of independent random variables

(positive).

The convolution property of the Mellin transforms takes a different form

(Epstein 1948; Kilicman and Ariffin 2002). While the convolution integral in

Eq. (2.544) has an integrand of the form fX(x)fY(z� x) with the limit of integration

of 0 to z, the “convolution integral” in the Mellin transform domain is

f wð Þ ¼
ð1
0

f X xð Þ1
x
f Y

w

x

� 	
dx: ð2:546Þ

The convolution theorem in the Mellin domain is

MW sð Þ ¼ MW f wð Þ½ � ¼ MW

ð1
0

f X xð Þ1
x
f Y

w

x

� 	
dx

24 35 ¼ MX sð ÞMY sð Þ ð2:547Þ

Note that Eq. (2.546) gives the density of the product of two independent random

variables (each taking only positive values)

W ¼ XY: ð2:548Þ

In other words, the pdf ofW is obtained by taking the inverse Mellin transform of

the product of the Mellin transforms of X and Y,

f W wð Þ ¼ M�1 MX sð ÞMY sð Þ½ �: ð2:549Þ

Mellin transforms are also useful in obtaining the density of the ratio of two

independent random variables U,

U ¼ X

Y
: ð2:550Þ

Using the concept of transformation of random variables,

f U uð Þ ¼
ð1
0

yf X uyð Þf Y yð Þdy: ð2:551Þ
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The Mellin convolution result now takes a different form

MU sð Þ ¼ MU f uð Þ½ � ¼ MW

ð1
0

yf X uyð Þf Y yð Þdy
24 35 ¼ MX sð ÞMY 2� sð Þ: ð2:552Þ

Thus, the density is obtained by taking the inverse Mellin transform of MU(s) as

f U uð Þ ¼ M�1 MX sð ÞMY 2� sð Þ½ �: ð2:553Þ

The specific applications of Laplace and Mellin transforms to problems in

wireless channels will now be examined starting with the Laplace and inverse

Laplace transforms.

2.19.1 Laplace Transforms and Sums of Random Variables

Some of the results on the probability density of sum of independent variables were

presented in Sect. 2.8 earlier. These densities will be revisited now through the

application of the transforms. Before specific problems are studied, it is necessary

to have access to the properties of Laplace transforms and Laplace transforms of

known functions as well as Laplace transforms of specific probability densities. The

table of Laplace transforms is given in Table 2.4

Table 2.4 Laplace transform
y(t) Y sð Þ ¼ Ð1

0
f tð Þdt

1 1

s
eat � 1

a� s
tn Γ nþ 1ð Þ

snþ1

sin(at) a

a2 þ s2

cos(at) s

a2 þ s2

ebt cos (at) � b� s

a2 þ b� sð Þ2
ebt sin (at) a

a2 þ b� sð Þ2
tneat Γ nþ 1ð Þ

s� að Þnþ1

t2 cos (at) 8s3

a2 þ s2ð Þ3 �
6s

a2 þ s2ð Þ2
s > 0; a, b, c > s; n ¼ 0, 1, 2, 3, . . .
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A few additional properties pertaining to derivatives and integrals are listed in

Table 2.5. The Laplace transforms of some of the common density functions are

given in Table 2.6.

The first example considered is the sum of two exponential variables. This case

represents the density of the maximal ratio combining algorithm (See Chap. 5) in a

Rayleigh channel. Treating the two variables X and to be independent and identi-

cally distributed, the pdf of Z ¼ X + Y is

f zð Þ ¼ f X xð Þ∗f Y yð Þ: ð2:554Þ

The density function of X (or Y ) is

f X xð Þ ¼ 1

a
e�

x
a: ð2:555Þ

Using the principle of convolution, the Laplace transform of f(z) will be the

square of the Laplace transform of X,

FX sð Þ ¼ 1

asþ 1
ð2:556Þ

Table 2.5 Laplace

transforms (properties)
g(t)

G sð Þ ¼
ð1
0

f tð Þdt

bh(t) + ay(t) bH(s) + aY(s)

y
0
(t) sY(s)� y(0)

y
00
(t) s2Y(s)� sy(0)� y

0
(0)

y
000
(t) s3Y(s)� sy

0
(0)� s2y(0)� y

00
(0)ð t

0

h τð Þy t� τð Þdt H(s)Y(s)

Table 2.6 Laplace

transforms (densities)
Probability density function Laplace transform

f X xð Þ ¼ xm�1 e
�mx

a m
a

� �m
Γ mð Þ

mm

mþ asð Þm

f Y yð Þ ¼ xm�1 e
�mx

b m
b

� �m
Γ mð Þ

mm

mþ bsð Þmð z
0

f X xð Þf Y z� xð Þdx m2m

mþ bsð Þm mþ asð Þm

f W wð Þ ¼ wn�1
e�

nw
b n

b

� �n
Γ nð Þ

nn

nþ bsð Þnð z
0

f X xð Þf W z� xð Þdx mmnn

nþ bsð Þn mþ asð Þm

f X xð Þ ¼ xe�
x2

2b2

b2
1�

ffiffiffi
2

p
bs

ffiffiffi
π

p
e
b2 s2

2 erfc
ffiffi
2

p
bs
2

� 	
2
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Equation (2.556) is obtained by putting m ¼ 1 in the first equation in Table 2.6.

The pdf of Z will be

f zð Þ ¼ L�1 1

asþ 1ð Þ2
" #

¼ z

a2
e�

z
aU zð Þ ð2:557Þ

Consider the case of two independent and identically distributed gamma vari-

ables with densities of the form for X (or Y )

f X xð Þ ¼ 1

amΓ mð Þ x
m�1e�

x
a: ð2:558Þ

The Laplace transform of X (or Y) will be

LX sð Þ ¼ LY sð Þ ¼ 1

asþ 1ð Þm ð2:559Þ

The pdf of Z ¼ X + Y will be

f zð Þ ¼ L�1 1

asþ 1ð Þ2m
" #

¼ z2m�1

a2Γ 2mð Þ e
�z

aU zð Þ: ð2:560Þ

Consider the case of X and Y being independent gamma variables with different

orders, and different scaling factors or averages such as

f X xð Þ ¼ 1

amΓ mð Þ x
m�1e�

x
a ð2:561Þ

f Y yð Þ ¼ 1

anΓ nð Þ x
n�1e�

y
a ð2:562Þ

The Laplace transforms of these densities are

LX sð Þ ¼ 1

asþ 1ð Þm ð2:563Þ

LY sð Þ ¼ 1

asþ 1ð Þn ð2:564Þ

The density of Z is

f zð Þ ¼ L�1 1

asþ 1ð Þmþn


 �
¼ zmþn�1

amþnΓ mþ nð Þ e
�z

aU zð Þ ð2:565Þ
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The Matlab work relating to these transformations is included below (following

the next example). It can be seen that the Laplace based approach is simple to

implement. Matlab might not provide a solution using the traditional integral

approach of convolution as in the case of two gamma random variables with

identical orders with non-identical scaling parameters

f X xð Þ ¼ 1

amΓ mð Þ x
m�1e�

x
a ð2:566Þ

f Y yð Þ ¼ 1

bmΓ mð Þ y
m�1e�

y
b ð2:567Þ

The expression for density of the sum using the Laplace transform is

f zð Þ ¼ L�1 1

asþ að Þm bsþ 1ð Þm

 �

: ð2:568Þ

For reasons unknown, Matlab does not provide a solution for the density as seen

from the Matlab script below. On the other hand, Maple does provide a solution and

the density of z is

f zð Þ ¼ 1

Γ mð Þ
ffiffiffiffiffi
π

ab

r
z

a� bj j
� �m�1

2

e�
z
2

1
aþ1

bð ÞIm�1
2

1

2

a� bj j
ab

z

� �
: ð2:569Þ

Note that the density in Eq. (2.569) is known as the McKay density and this

density and its properties are discussed in Chap. 5.

% laplace examples % July 2016 P M Shankar

% four cases; two IID exponential variables, two IID gamma variables, two

% independent gamma variables of different orders and identical scaling

% factors, two independent gamma variables of identical orders and

% different scaling factors
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2.19.1.1 Two Exponential Variables

clear;clc

syms a x y z s positive

fx=(1/a)*exp(-x/a);

fy=(1/a)*exp(-y/a);

fxL=laplace(fx,x,s);

fyL=laplace(fy,y,s);

disp(['Laplace transform of Z=X+Y-->',char(fxL*fyL)])

fzL=ilaplace(fxL*fyL,s,z);

% verify using convolution

fy=subs(fx,x,y); % create fy using substitution

fyz=subs(fy,y,z-x);% created the shifted density

fzdirect=int(fx*fyz,x,0,z);

fzdirect=simplify(fzdirect,'steps',100);

% verify that the pdf of Z is correct

pr=simplify(int(fzL,z,0,inf));

disp([' Verification: Integral of f(z)-->',num2str(double(pr))])

disp(['density of Z=X+Y directly-->',char(fzdirect)])

disp(['density of Z=X+Y using Laplace-->',char(fzL)])

Laplace transform of Z=X+Y-->1/(a^2*(s + 1/a)^2)

Verification: Integral of f(z)-->1

density of Z=X+Y directly-->(z*exp(-z/a))/a^2

density of Z=X+Y using Laplace-->(z*exp(-z/a))/a^2

2.19.1.2 Two Identical Gamma Variable: G(m,a) and G(m,a)

syms a x y m z s positive

clear fx fy

fx=(1/a)^m*exp(-x/a)*x^(m-1)/gamma(m);

fy=(1/a)^m*exp(-y/a)*y^(m-1)/gamma(m);

fxL=laplace(fx,x,s);

fyL=laplace(fy,y,s);

disp(['Laplace transform of Z=X+Y-->',char(fxL*fyL)])

fz=ilaplace(fxL*fyL,s,z); %pdf using Laplace

disp(['density of Z=X+Y using Laplace-->',char(fz)])

disp('verify that the density obtained using Laplace transform is valid')

disp(int(fz,z,0,inf))

Laplace transform of Z=X+Y-->1/(a^(2*m)*(s + 1/a)^(2*m))

density of Z=X+Y using Laplace-->(z^(2*m - 1)*exp(-z/a))/(a^(2*m)*gamma(2*m))

verify that the density obtained using Laplace transform is valid

1
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2.19.1.3 Two Non-Identical Gamma Variables (Different

Orders): G(m,a) and G(n,a).

syms a b x y m n z s positive

clear fx fy

fx=(1/a)^m*exp(-x/a)*x^(m-1)/gamma(m);

fy=(1/a)^n*exp(-y/a)*y^(n-1)/gamma(n);

fxL=laplace(fx,x,s);

fyL=laplace(fy,y,s);

disp(['Laplace transform of Z=X+Y-->',char(fxL*fyL)])

fz=ilaplace(fxL*fyL,s,z); %pdf using Laplace

disp(['density of Z=X+Y using Laplace-->',char(fz)])

disp('verify that the density is valid')

disp(int(fz,z,0,inf))

Laplace transform of Z=X+Y-->1/(a^m*a^n*(s + 1/a)^m*(s + 1/a)^n)

density of Z=X+Y using Laplace-->(z^(m + n - 1)*exp(-z/a))/(a^m*a^n*gamma(m + n))

verify that the density is valid

1

2.19.1.4 Two Non-Identical Gamma Variables (Identical

Order): G(m,a) and G(m,b).

syms a b x y m z s positive

clear fx fy

fx=(1/a)^m*exp(-x/a)*x^(m-1)/gamma(m);

fy=(1/b)^m*exp(-y/b)*y^(m-1)/gamma(m);

fxL=laplace(fx,x,s);

fyL=laplace(fy,y,s);

disp(['Laplace transform of Z=X+Y-->',char(fxL*fyL)])

fz=ilaplace(fxL*fyL,s,z); %pdf using Laplace

disp(['density of Z=X+Y using Laplace-->',char(fz)])

disp('verify that the density is valid')

disp(int(fz,z,0,inf))

Laplace transform of Z=X+Y-->1/(a^m*b^m*(s + 1/a)^m*(s + 1/b)^m)

density of Z=X+Y using Laplace-->ilaplace(1/((s + 1/a)*(s + 1/b))^m, s, z)/(a^m*b^m)

verify that the density is valid

int(ilaplace(1/((s + 1/a)*(s + 1/b))^m, s, z)/(a^m*b^m), z, 0, Inf)

While Matlab had some difficulties in providing solutions to a few of these cases,

Maple provides solutions to all of these problems including matching results with

Laplace/inverse Laplace and convolution.
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The following segment (Maple 16) shows the results of convolution in

Eq. (2.565).

• #pdf of Z¼X + Y ,X¼G(m, a) andX¼G(n, a) ,X and Y independent

• fx :¼
1
a

� �m 	 xm�1 	 exp �1
ax

� �
Γ mð Þ ; #pdf ofX

fx :¼
1
a

� �m
xm�1e�

x
a

Γ mð Þ

• fy :¼
1
a

� �n 	 yn�1 	 exp �1
ay

� �
Γ nð Þ ; #pdf of Y

fy :¼
1
a

� �n
yn�1e�

y
a

Γ nð Þ

• fyy : ¼ subs(y¼ z – x, fy) ; # shifted pdf of Y

fyy :¼
1
a

� �n
z� xð Þn�1e�

z�x
a

Γ nð Þ

• fz :¼ Ð z
0
fx � fyydx; #convolution togetpdf of Z ¼ X þ Y

fz :¼
ð z
0

1
a

� �m
xm�1e�

x
a 1

a

� �n
z� xð Þn�1e�

z�x
a

Γ mð ÞΓ nð Þ dx

• fzz : ¼ simplify( fz, assume¼ positive);

fzz :¼ znþm�1a�m�ne�
z
a

Γ mþ nð Þ

• with(inttrans):

• fL : ¼ laplace( fzz, z, s) ; # find the laplace transform of the pdf

fL :¼ a�m�nlaplace znþm�1e�
z
a; z; sð Þ

Γ mþ nð Þ

• fLs : ¼ simplify( fL, assume¼ positive) ; # Laplace transform of the pdfX+ Y

fLs :¼ asþ 1ð Þ�m�n
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• flX : ¼ simplify(laplace( fx, x, s), assume¼ positive);

flX :¼ asþ 1ð Þ�m

• flY : ¼ simplify(laplace( fy, y, s), assume¼ positive);

flY :¼ asþ 1ð Þ�n

The segment below shows the results of the convolution to obtain the density of

Z in Eq. (2.568).

• #pdf of Z¼X + Y , X¼G(m, a) andX¼G(m, b) , X and Y independent

• fx :¼
1
a

� �m 	 xm�1 	 exp �1
ax

� �
Γ mð Þ ; #pdf ofX

fx :¼
1
a

� �m
xm�1e�

x
a

Γ mð Þ

• fy :¼
1
bð Þm	ym�1	exp �1

byð Þ
Γ mð Þ ; #pdf of Y

fy :¼
1
b

� �m
ym�1e�

y
b

Γ mð Þ

• fyy : ¼ subs(y¼ z� x, fy) ; # shifted pdf of Y

fyy :¼
1
b

� �m
z� xð Þm�1e�

z�x
b

Γ mð Þ

• fz :¼ Ð z
0
fx	 fyydx; #convolution togetpdf of Z ¼ X þ Y

fz :¼ 1

Γ mð Þ
1

a

� �m
1

b

� �m

z2m�1e�
1
2

z aþbð Þ
ba

ffiffiffi
π

p a�bð Þz
ba

� ��mþ1
2

BesselI m�1

2
;
1

2

a�bð Þz
ba

� � !

• with(inttrans):

• fL : ¼ laplace( fz, z, s) ; # find the laplace transform of the pdf

fL :¼ 1

Γ mð Þ
1

a

� �m
1

b

� �m ffiffiffi
π

p a�b

ba

� ��mþ1
2

laplace e�
1
2

1
bþ1

að ÞzBesselI m�1

2
;
1

2

1

b
�1

a

� �
z

� �
zm�

1
2;z;s

� � !
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• fLz : ¼ simplify( fL, assume¼ positive) ; # Laplace transform ofX + Y;

fLz :¼ abs2 þ asþ bsþ 1
� ��m

• fLx : ¼ simplify(laplace( fx, x, s), assume¼ positive) ; # Laplace transform ofX

fLx :¼ asþ 1ð Þ�m

• fLy : ¼ simplify(laplace( fy, y, s), assume¼ positive) ; # Laplace transform of Y

fLy :¼ bsþ 1ð Þ�m

The segment below shows the use of inverse Laplace transform to confirm the

results of the pdf (Maple 16).

• restart;

• assume(a> 0);

• assume(m> 0);

• assume(n> 0);

• assume(b> 0);

• flz1 : ¼ (a s+ 1)–2m ; # Laplace transform of Z¼X+ YwithX ,Y are IID

flz1 :¼ a � sþ 1ð Þ�2m�

• with(MTM);

[ElementwiseAnd, ElementwiseNot, ElementwiseOr,Map,Minus,Mod, Zip, abs,
acos, acosh, acot, acoth, acsc, acsch, array_dims, asec, asech, asin, asinh, atan,
atanh, besseli, besselij, besselk, bessely, ccode, ceil, char, coeffs, collect, colspace,
compose, conj, cos, cosh, cosint, cot, coth, csc, csch, ctranspose, det, diag, diff,
digits, dirac, disp, double, dsolve, eig, end, eq, erf, exp, expand, expm, ezcontour,
ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc, factor,
findsym, finverse, fix, floor, fortran, fourier, frac, γ, gcd, ge, gt, heaviside, horner,
horzcat, hypergeom, ifourier, ilaplace, imag, int, int16, int32, int64, int8, inv,
isreal, iztrans, jacobian, jordan, lambertw, laplace, latex, lcm, ldivide, le, limit,
log, log10, log2, lt, mfun, mldivide, mpower, mrdivide, mtimes, ne, null, numden,
numel, plus, poly, poly2sym, power, pretty, procread, prod, quorem, rank, rdivide,
real, round, rref, sec, sech, simple, simplify, sin, single, sinh, sinint, size, solve, sort,
sqrt, struct, subs, subsagn, subsref, sum, svd, sym2poly, symsum, tan, tanh, taylor,
times, transpose, tril, triu, uint16, unit32, unit64, unit8, vertcat, vpa, ζ, ztrans]

• fz1¼ ilaplace( flz1, s, z) ; # pdf of Z¼X+ Y ,G(m, a) , Y :G(m, a)

fz1 ¼ e�
z
a�a��2m�z2m��1

Γ 2m �ð Þ
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• flz2 :¼ (a s+1)–m – n ; # Laplace transformofZ¼X+YwithX :G(m, a) ,Y :G(n, a)

flz2 :¼ a � sþ 1ð Þ�m��n�

• fz2¼ ilaplace( flz2, s, z) ; # Laplace pdf of Z¼X + YwithX :G(m, a) ,Y :G(n, a)

fz2 ¼ e�
z
a�a��m��n�zm�þn��1

Γ m � þn �ð Þ

• flz3 :¼ (a b s2 + a s+ b s+ 1)–m ; # Laplace transform of Z¼X+ YwithX :

G(m, a) ,Y :G(m, b)

flz3 :¼ a � b � s2 þ a � sþ b � sþ 1
� ��m�

• fz3¼ ilaplace( flz3, s, z) ; # pdf of Z¼X + YwithX :G(m, a) ,Y :G(m, b)

fz3¼ 1

Γ m�ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
a� b�

r
z

a��b�j j
� �m��1

2

e�
1
2

1
b�þ 1

a�
� �

z

0@
BesselI m��1

2
;
1

2
signum a��b�ð Þ 1

b�� 1

a�
� �

z

� �!

These results are summarized in Tables 2.7, 2.8, 2.9, and 2.10.

Even though the results are shown only for the case of sum of two gamma

random variables, the concept of Laplace transforms can be extended to a number

of random variables (Karagiannidis et al. 2006). These results show that the sum of

a number of independent and identically distributed random variables is another

gamma random variable as seen in Eq. (2.560). The same property is applicable to a

Table 2.7 Densities of sums of gamma variables (gamma density from Nakagami)

f X xð Þ ¼ xm�1
e�

mx
q m

q

� 	m
Γ mð Þ pdf of X

f Y yð Þ ¼ ym�1
e�

mx
q m

q

� 	m
Γ mð Þ

pdf of Y

LX sð Þ ¼ mm

mþ qsð Þm
Laplace transform of fX(X)

LY sð Þ ¼ mm

mþ qsð Þm
Laplace transform of fY(Y )

LZ sð Þ ¼ m2m

mþ qsð Þ2m
Laplace transform of fZ(z)¼ LX(s)	 LY(s)

f Z zð Þ ¼ m2mz2m�1 e�
mz
q

q2mΓ 2mð Þ
pdf of Z ¼ X þ Y ) G 2m; 2q

2m

� �

2.19 Laplace and Mellin Transforms 179



set of gamma variables of non-identical orders having identical scaling factors as

seen in Eq. (2.565).

The example of the sum of two random variables in Eq. (2.568) with identical

orders having different means cannot be easily extended to multiple variables.

While Laplace transforms play a crucial role in obtaining the density of sum of

independent random variables, Mellin transforms are useful in obtaining the density

of the products of random variables.

Table 2.8 Densities of sums of gamma variables (gamma density)

f X xð Þ ¼ xm�1 e�
x
b

bmΓ mð Þ pdf of X

f Y yð Þ ¼ ym�1 e�
y
b

bmΓ mð Þ
pdf of Y

LX(s)¼ (bs+ 1)�m Laplace transform of fX(x)

LY(s)¼ (bs+ 1)�m Laplace transform of fY( y)

LZ(s)¼ (bs+ 1)�2m Laplace transform of fZ(z)¼ LX(s)	 LY(s)

f Z zð Þz2m�1 e�
z
b

b2mΓ 2mð Þ
pdf ofZ¼X+ Y)G[2m, b]

Table 2.9 Densities of sums of gamma variables (non-identical orders)

f X xð Þ ¼ xm�1 e�
x
a

amΓ mð Þ pdf of X

f Y yð Þ ¼ yn�1 e�
y
a

anΓ nð Þ
pdf of Y

LX(s)¼ (as+ 1)�m Laplace transform of fX(x)

LY(s)¼ (as+ 1)�n Laplace transform of fY( y)

LZ(s)¼ (as+ 1)�m� n Laplace transform of fZ(z)¼ LX(s)	 LY(s)

f Z zð Þ ¼ zmþn�1 e�
z
a

amþnΓ mþ nð Þ
pdf ofZ¼X+ Y)G[a + c, b]

Table 2.10 Densities of sums of gamma variables (identical orders)

f X xð Þ ¼ xm�1 e�
x
a

amΓ mð Þ pdf of X

f Y yð Þ ¼ ym�1 e�
y
b

bmΓ mð Þ
pdf of Y

LX(s)¼ (a s+ 1)�m Laplace transform of fX(x)

LY(s)¼ (b s+ 1)�m Laplace transform of fY( y)

LZ(s)¼ ((a s+ 1)(b s+ 1))�m Laplace transform of fZ(z)¼ LX(s)	 LY(s)

f Z zð Þ ¼ zm�
1
2
ffiffiffi
π

p
e�

z a
2
þb
2ð Þ

ab a� bj j12�m
Im�1

2

z a�bj jð Þ
2abð Þ

� 	
ffiffiffi
a

p ffiffiffi
b

p
Γ mð Þ
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2.19.2 Mellin Transforms and Products of Random
Variables

As mentioned earlier, Mellin transforms allow the derivation of the density of

products or ratios of Rayleigh, gamma, gamma variables, or any other random

variable which exists for positive values (Epstein 1948; Lomnicki 1967;

Subrahmanaim 1970; Park 1986; Abate 1995; Ahmed et al. 2011). While the

conceptual approach is relatively simple, the practical implementation of Mellin

transforms for obtaining the densities is less straightforward because of the limited

availability and access to information on Mellin transforms in books. Another

limiting factor is the limited options in Matlab even though (as stated earlier),

Mellin transforms can be found by using the integral directly. Finding the inverse

Mellin is still a daunting task. Before examining examples of transformation, it is

appropriate to look at the properties of Mellin transforms and the Table of Mellin

transforms (Epstein 1948; Erdelyi 1953).

The properties of Mellon transforms are shown in Table 2.11.

Mellin transforms of common densities are given in Tables 2.12 and 2.13. One of

the interesting aspects of Mellin transform is the fact that the transform integral in

Table 2.11 Mellin

transforms f(x)
Mf sð Þ ¼

ð1
0

xs�1f xð Þdx
xvf(x) Mf(s + v)

f(bx) b�sMf sð Þ, b > 0

f(xρ) 1

ρ
Mf

1

ρ

� �
, ρ > 0

d
dx f xð Þ �(s� 1)Mf(s� 1)Ð x
0
f wð Þdw �1

s
Mf sþ 1ð Þ

Af(αx) +Bh(βx) Aα�sMf(s) +Bβ
�sMh(s)

Table 2.12 Mellin

transforms of probability

densities

Probability density function Mellin transform

xc�1 e�
x
b

bcΓ cð Þ
bs�1Γ cþ s� 1ð Þ

Γ cð Þ

xm�1 e
�mx

b m
b

� �m
Γ mð Þ

bs�1m1�sΓ mþ s� 1ð Þ
Γ mð Þ

e�
x
b

b

bs� 1Γ(s)

e�x Γ(s)

axac�1e�
x
bð Þa

bacΓ cð Þ
bs�1Γ sþac�1

a

� �
Γ cð Þ

xe�
x2

2a2

a2
2

s
2
�1

2
as�1Γ s

2
þ1

2ð Þ
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Eq. (2.539) appears to be similar to the integral representation of a gamma function

if f(x) is exponential. In that case, it can be easily concluded that the Mellin

transforms are likely to be expressed in terms of gamma functions. Since this

section is devoted to a discussion of probability densities and transformations, it

is necessary to look at the transforms of some of the common and not-so-common

density functions that are likely to be observed in the study of fading and shadowing

in wireless channels. Three separate tables are given below. Table 2.12 contains the

Mellin transforms of some of the simple densities while Table 2.13 contains the

transforms of densities that are observed in doubly scattering fading channels.

Table 2.14 lists the Mellin transforms of densities expressed in terms of Meijer

G-functions.
The procedure used to create these tables is described next. One of the most

important properties utilized pertaining to the convolution in the Mellin domain in

Table 2.14 Mellin transforms of probability densities expressed in terms of Meijer G-functions

Probability density function Mellin transform

1

xΓ mð ÞG
1,0
0,1

mx

Z0

�����m
� �

m1�sZs�1
0 Γ m� 1þ sð Þ

Γ mð Þ
1

xΓ2 mð ÞG
2,0
0,2

m2x

Z0

���� �
m,m

� �
m2�2sZs�1

0 Γ2 m� 1þ sð Þ
Γ2 mð Þ

1

xΓ3 mð ÞG
3,0
0,3

m3x

Z0

���� �
m,m,m

� �
m1�sZs�1

0 Γ m� 1þ sð Þ
Γ mð Þ


 �3
1

xΓN mð ÞG
N, 0
0,N

mNx

Z0

���� �
m,m, . . . ,m

N�terms

 !
m1�sZs�1

0 Γ m� 1þ sð Þ
Γ mð Þ


 �N
1

xΓ mð ÞΓ nð ÞG
2,0
0,2

mnx

ab

��� �
m, n

� �
mnð Þ1�s abð Þs�1Γ m� 1þ sð ÞΓ n� 1þ sð Þ

Γ mð ÞΓ nð Þ
1ffiffiffiffi

2π
p

ab
G3,0

0,3
x2

8a2b2

��� �
0,
1

2
,
1

2

 ! ffiffiffiffiffiffiffiffiffi
2s�1

p
abð Þs�1Γ sð ÞΓ sþ 1

2

� �

Table 2.13 Mellin

transforms of probability

densities

Probability density

function Mellin transform

2xc�1K0
2
ffiffi
x

pð Þ
b

� 	
b2cΓ cð Þ2

b2s�2Γ cþ s� 1ð Þ2
Γ cð Þ2

2x

a
2
þb
2
�1Ka�b

2
ffiffi
x

pð Þffiffiffi
AB

p

� 	
Γ að ÞΓ bð Þ ABð Þ

a
2
þb
2

As�1Bs�1Γ aþ s� 1ð ÞΓ bþ s� 1ð Þ
Γ að ÞΓ bð Þ

zK0

ffiffiffiffi
1
a2

q ffiffiffiffi
z2

b2

q� 	� 	
a2b2

2s�1as�1bs�1Γ
s

2
þ 1

2

� �2

2K0 2
ffiffiffiffi
z
ab

p� 	� 	
ab

as� 1bs� 1Γ(s)2
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Eqs. (2.547) and (2.553) was established using combinations of Rayleigh, expo-

nential, and gamma densities. The Maple script (with annotation) is reproduced

below. The Mellin transforms were obtained using the integral form in Eq. (2.539)

and compared to the result obtained directly using the mellin(.) command in Maple.

The density functions of the products and ratios were obtained using the concepts of

transformation of random variables with the appropriate integrals evaluated in

Maple, with the probability densities verified every time by checking that the

total probability is unity.

Example # 1 Product of two independent and identically distributed gamma

variables

• #pdf of Z¼XY ,X and Y are IID gamma distributed

• fx :¼ xc�1exp �x
b

� �
bc 	 Γ cð Þ ; #inputGamma density fx

fx :¼ xc�1e�
x
b

bcΓ cð Þ

• fyz :¼ subs x ¼ z
x; fx

� �
; #input density fy following substitution

fyz :¼
z
x

� �c�1
e�

z
x b

bcΓ cð Þ

• intG :¼ 1
x

� �	 fx	 fyz; #Create integrand for the Transformation

intG :¼ xc�1e�
x
b
z

x

� 	c�1 e�
z
xb

x bcð Þ2Γ cð Þ

• fz :¼ simplify
Ð1
0

intGdx; assume ¼ positive
� �

; #pdf of Z ¼ XY

fz :¼
2b�2czc�1BesselK 0; 2

ffiffi
z

p
b

� 	
Γ cð Þ2

• simplify
Ð1
0

fz dz; assume ¼ positive
� �

; #verify thepdf

1

• with(inttrans):
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•
Mxs :¼ simplify mellin fx; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fxusing builtin command

Mxs :¼ bs�1Γ sþ c� 1ð Þ
Γ cð Þ

•
Mxs1 :¼ simplify

Ð1
0

fx	 xs�1dx; assume ¼ positive
� �

;
#Mellin transform of fxusing the integral representation

Mxs1 :¼ bs�1Γ sþ c� 1ð Þ
Γ cð Þ

•
Mxz :¼ simplify mellin fz; z; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fzusing the builtin command

Mxz :¼ b2s�2Γ sþ c� 1ð Þ2
Γ cð Þ2

•
Mxz1 :¼ simplify

Ð1
0

fz	 zs�1dz; assume ¼ positive
� �

;
#Mellin transform of fzusing the integral representation

Mxz1 :¼ b2s�2Γ sþ c� 1ð Þ2
Γ cð Þ2

•
#Mellin transform of Z ¼ XY is the product of Mellin transforms ofX

andY

The results show that the Mellin transform of the density of the product of two

independent and identically distributed gamma variables is the square of the Mellin

transform of the marginal density as seen in Eq. (2.547).

Example # 2 Product of two independent non-identical gamma variables

• #pdf of Z¼XY ,X and Y are non ‐ identical gamma distributions

• fx :¼ xc�1exp �x
b

� �
bc 	 Γ cð Þ ; #inputGamma density fx

fx :¼ xc�1e�
x
b

bcΓ cð Þ
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• fy :¼
ym�1exp �y

q

� 	
qm 	 Γ mð Þ ; #input Gamma density fy

fy :¼ ym�1e�
y
q

qmΓ mð Þ

• fyz:¼ subs y ¼ z

x
; fy

� 	
; #input densityfy following substitution

fyz :¼
z
x

� �m�1
e�

z
xq

qmΓ mð Þ

• intG :¼ 1
x

� �	 fx	 fyz; #Create integrand for the Transformation

intG :¼ xc�1 e�
x
b z

x

� �m�1
e�

z
xq

bcΓ cð ÞqmΓ mð Þx

• fz :¼ simplify
Ð1
0

intGdx; assume ¼ positive
� �

; #pdf of Z ¼ XY

fz :¼
1

Γ cð ÞΓ mð Þ 2z
1
2
c� 1þ 1

2
mq�

1
2
c� 1

2
mb�

1
2
c� 1

2
m

�
BesselK c� m;

2
ffiffi
z

pffiffiffi
b

p ffiffiffi
q

p
 !!

• simplify
Ð1
0

fz dz; assume ¼ positive
� �

; #verify thepdf

1

• with(inttrans):

•
Mxs :¼ simplify mellin fx; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fxusing the builtin command

Mxs :¼ bs�1Γ sþ c� 1ð Þ
Γ cð Þ

•
Mxs :¼ simplify mellin fy; y; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fyusing builtin command

Mxs :¼ qs�1Γ sþ m� 1ð Þ
Γ mð Þ
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•
Mxs1 :¼ simplify

Ð1
0

fx	 xs�1dx; assume ¼ positive
� �

;
#Mellin transform of fxusing the integral representation

Mxs1 :¼ bs�1Γ sþ c� 1ð Þ
Γ cð Þ

•
Mys1 :¼ simplify

Ð1
0

fy	 ys�1dy; assume ¼ positive
� �

;
#Mellin transform of fyusing the integral representation

Mys1 :¼ qs�1Γ sþ m� 1ð Þ
Γ mð Þ

•
Mxz :¼ simplify mellin fz; z; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fzusing builtin command

Mxz :¼ qs�1bs�1Γ sþ c� 1ð ÞΓ sþ m� 1ð Þ
Γ cð ÞΓ mð Þ

•
Mzs1 :¼ simplify

Ð1
0

fz	 zs�1dz; assume ¼ positive
� �

;
#Mellin transform of fzusing the integral representation

Mzs1 :¼ qs�1bs�1Γ sþ c� 1ð ÞΓ sþ m� 1ð Þ
Γ cð ÞΓ mð Þ

•
#Mellin transform of Z ¼ XY is the product of Mellin transforms ofX

andY

The results show that the Mellin transform of the density of the product of two

independent distributed gamma variables is the product of the Mellin transform of

the marginal densities as seen in Eq. (2.547).

The next example shows the extension to the case of the product of three

identically distributed (and independent) gamma variables. The pdf of the product

of two is obtained from first and then the product of the three.

Example # 3 Product of three independent identical gamma variables

• #pdf ofW¼X1 .X2 .X3 . . . . Products of IID gamma

• fx1 :¼ x1m�1	exp �x1
bð Þ

bm	Γ mð Þ ; #input Gamma density fx1

fx1 :¼ x1m�1e�
x1
b

bmΓ mð Þ

• #Z¼X1 .X2 # products of two
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• fx2z :¼ subs x1 ¼ z
x1; fx1

� �
; #input density fx2following substitution

fx2z :¼ z

x1

� 	m�1 e�
z

x1b

bmΓ mð Þ

• intG1 :¼ 1
x1

� �	 fx1	 fx2z; #Create integrand for the Transformation

intG1 :¼ x1m�1e�
x1
b

z

x1

� 	m�1 e�
z

x1b

x1 bmð Þ2Γ mð Þ2

• fz :¼ simplify
Ð1
0

intG1dx1; assume ¼ positive
� �

; #pdf of Z ¼ X1	 X2

fz :¼
2b�2mzm�1BesselK 0; 2

ffiffi
z

p
b

� 	
Γ mð Þ2

• simplify
Ð1
0

fz dz; assume ¼ positive
� �

; #verify thepdf

1

• #W¼X1 .X2 .X3¼ Z	X3

• fx3z :¼ subs x1 ¼ w
z ; fx1

� �
; #density ofX3following substitution

fx3z :¼
w
z

� �m�1
e�

w
zb

bmΓ mð Þ

• intG2 :¼ 1
z

� �	 fz	 fx3z; #Create integrand for the Transformation

intG2 :
2b�2mzm�1BesselK 0; 2

ffiffi
z

p
b

� 	
w
z

� �m�1
e�

w
zb

zΓ mð Þ3bm

• fw :¼ simplify
Ð1
0

intG2dz; assume ¼ positive
� �

; #pdf ofW ¼ X1	 X2	 X3

fw :
b3�3 mw�2þmMeijerG

�½ �; ½ ��; ��1; 1; 1�; ½ ��; w
b3

� 	
Γ mð Þ3

• simplify
Ð1
0

fwdw; assume ¼ positive
� �

; #verify thepdf

1

• with(inttrans):
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•
Mxs :¼ simplify mellin fx1; x1; sð Þ; assume ¼ positiveð Þ;
#Mellin transform of fx1 using builtin command

Mxs :¼ bs�1Γ sþ m� 1ð Þ
Γ mð Þ

•
Mxs1 :¼ simplify

Ð1
0

fx1	 x1s�1dx1; assume ¼ positive
� �

;
#Mellin transform of fx using the integral representation

Mxs1 :¼ bs�1Γ sþ m� 1ð Þ
Γ mð Þ

•
Mws :¼ simplify mellin fw;w; sð Þ; assume ¼ positiveð Þ;
#Mellin transform of fz using builtin command

Mws :¼ b�3þ3sΓ sþ m� 1ð Þ3
Γ mð Þ3

•
#Mellin transform ofW ¼ X1:X2:X3 is the product of Mellin transform

of individual ones:In this case power of 3

•

#In generalMellin transform of thepdf of the product ofN IID

variables is theMellin transform of asingle variable raised to the

power ofN

The results show that the Mellin transform of the density of the product inde-

pendent gamma variables is the product of the Mellin transform of the marginal

densities as seen in Eq. (2.547). One can see the benefit of the use of Mellin

transforms in obtaining the densities of products of random variables that exist

only for positive values provided the Mellin transform is available. This is shown in

the next example which displays the relationship between the Mellin transform of

the densities expressed in Meijer G-functions and the Mellin transforms of the

marginal densities.

Example # 4 Mellin transforms of densities expressed as Meijer G-functions

• #Mellin transform of densities expressed asMeijerG functions:

•
#eachmarginal density is gamma arising from the amplitude being in

theNakagami formal

• fx4 :¼
MeijerG

�½ �; ½ ��; ��m;m;m;m�; ½ ��;m4x

Z

� �
x	 Γ mð Þð Þ4 ;

#density of quadruple gamma prod
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fx4 :¼
MeijerG

�½ �; ½ ��; ��m;m;m;m�; ½ ��; m4x
Z

� 	
xΓ mð Þ4

• simplify
Ð1
0

fx4 dx; assume ¼ positive

� �
;

1

•
Mz4 :¼ simplify

Ð1
0

fx4	 xs�1dx; assume ¼ positive
� �

;
#Mellin transform

Mz4 :¼ m4�4sZs�1Γ m� 1þ sð Þ4
Γ mð Þ4

• with(inttrans):

•
Mz41 :¼ simplify mellin fx4; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fx4using builtin command

Mz41 :¼ m4�4sZs�1Γ m� 1þ sð Þ4
Γ mð Þ4

• fx3 :¼
MeijerG

�½ �; ½ ��; ��m;m;m�; ½ ��;m3x

Z

� �
x	 Γ mð Þð Þ3 ;

#density of triple gamma prod

fx3 :¼
MeijerG

�½ �; ½ ��; ��m;m;m�; ½ ��; m3x
Z

� 	
xΓ mð Þ3

• simplify
Ð1
0

fx3dx; assume ¼ positive
� �

;

1

• Mz3 :¼ simplify
Ð1
0

fx3	 xs�1 dx; assume ¼ positive
� �

;

Mz3 :¼ Zs�1m3�3sΓ m� 1þ sð Þ3
Γ mð Þ3

•
Mz31 :¼ simplify mellin fx3; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fx3using builtin command
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Mz31 :¼ Zs�1m3�3sΓ m� 1þ sð Þ3
Γ mð Þ3

• fx2 :¼
MeijerG

�½ �; ½ ��; ��m;m�; ½ ��;m2x

Z

� �
x	 Γ mð Þð Þ2 ;

#density of double gamma prod

fx2 :¼
MeijerG

�½ �; ½ ��; ��m;m�; ½ ��; m2x
Z

� 	
xΓ mð Þ2

• simplify
Ð1
0

fx2dx; assume ¼ positive
� �

;

1

• Mz2 :¼ simplify
Ð1
0

fx2	 xs�1 dx; assume ¼ positive
� �

;

Mz2 :¼ m2�2sZs�1Γ m� 1þ sð Þ2
Γ mð Þ2

•
Mz21 :¼ simplify mellin fx2; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fx2using builtin command

Mz21 :¼ m2�2sZs�1Γ m� 1þ sð Þ2
Γ mð Þ2

• fx1 :¼
MeijerG

�½ �; ½ ��; � m½ �; ½ ��;m	 x

Z

� 	
x	 Γ mð Þð Þ ;

#density of single gamma

fx1 :¼ MeijerG
�½ �; ½ ��; � m½ �; ½ ��; mxZ� �
xΓ mð Þ

• simplify
Ð1
0

fx1dx; assume ¼ positive
� �

;

1

• Mz1 :¼ simplify
Ð1
0

fx1	 xs�1 dx; assume ¼ positive
� �

;

Mz1 :¼ m1�sZs�1Γ m� 1þ sð Þ
Γ mð Þ
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•
Mz11 :¼ simplify mellin fx1; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fx1using builtin command

Mz11 :¼ m1�sZs�1Γ m� 1þ sð Þ
Γ mð Þ

•
#Mellin transform of thepdf of the product of gamma random

variables is the product of individualMellin transforms identicalð Þ
• #now examine the pdf of the product of non ‐ identical gamma variables

•
fz :¼

MeijerG
�½ �; ½ ��; ��m; n�; ½ ��;m	 n	 z

a	 b

� 	
z	 Γ mð Þð Þ 	 Γ nð Þ ;

#Z is the product of two independent non-identical gamma

variables

fz :¼ MeijerG
�½ �; ½ ��; ��n;m�; ½ ��; mn z

a b

� �
zΓ mð ÞΓ nð Þ

• simplify
Ð1
0

fz dz; assume ¼ positive
� �

; #verify thepdf

1

•
MZ :¼ simplify

Ð1
0

fz	 zs�1 dz; assume ¼ positive
� �

;
#Mellin transform of fzusing integral

fnxy :¼ m1�sas�1bs�1n1�sΓ m� 1þ sð ÞΓ n� 1þ sð Þ
Γ mð ÞΓ nð Þ

•
MZ1 :¼ simplify mellin fz; z; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fzusing builtin command

MZ1 :¼ m1�sas�1bs�1n1�sΓ m� 1þ sð ÞΓ n� 1þ sð Þ
Γ mð ÞΓ nð Þ

•
fw :¼

MeijerG
�½ �; ½ ��; ��m; n; q�; ½ ��;m	 n	 q	 w

a	 b	 c

� 	
w	 Γ mð Þð Þ 	 Γ nð Þ 	 Γ qð Þ ;

#W is the product of three independent non-identical gamma

variables

fw :¼ MeijerG
�½ �; ½ ��; ��q; n;m�; ½ ��; mn qw

a b c

� �
wΓ mð ÞΓ nð ÞΓ qð Þ
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• simplify
Ð1
0

fwdw; assume ¼ positive
� �

; #verify thepdf

1

•
MW :¼ simplify

Ð1
0

fw	 ws�1 dw; assume ¼ positive
� �

;
#Mellin transform of fwusing integral

MW :¼ 1

Γ mð ÞΓ nð ÞΓ qð Þ m1�sn1�sq1�sas�1bs�1cs�1Γ m�1þ sð ÞΓ n�1þ sð ÞΓ q�1þ sð Þ� �
•

MW1 :¼ simplify mellin fw;w; sð Þ; assume ¼ positiveð Þ;
#Mellin transform of fwusing builtin command

MW1 :¼ 1

Γ mð ÞΓ nð ÞΓ qð Þ m1�sn1�sq1�sas�1bs�1cs�1Γ m�1þ sð ÞΓ n�1þ sð ÞΓ q�1þ sð Þ� �

The next two examples extend the results to products of identical Rayleigh

variables and product of Rayleigh and exponential variables expanding the

possibilities.

Example # 5 Mellin transform of the density of the product of two Rayleigh

variables

• #pdf of Z¼XY ,X and Y are non ‐ identical Rayleigh

• fx :¼
x	 exp � x2

2	a2

� 	
a2

; #input Rayleigh density ofX

fx :¼ xe�
1
2
x2

a2

a2

• fy :¼
y	 exp �y2

2	b2

� 	
b2

; #input Rayleigh density of Y

fy :¼ ye�
1
2
y2

b2

b2

• fyz :¼ subs y ¼ z
x; fy

� �
; #input density fy following substitution

fyz :¼ ze�
1
2
z2

b2

xb2
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• intG :¼ 1
x

� �	 fx	 fyz, #Create integrand for the Transformation

intG :¼ e�
1
2
x2

a2
ze�

1
2

z2

x2b2

xa2b2

• fz :¼ simplify
Ð1
0

intGdx; assume ¼ positive
� �

; #pdf of Z ¼ XY

fz :¼ zBesslK 0; z
ab

� �
b2a2

• simplify
Ð1
0

fz dz; assume ¼ positive
� �

; #verifyf thepdf

1

• with(inttrans):

•
Mxs :¼ simplify mellin fx; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fxusing builtin command

Mxs :¼ 2
1
2
s�1

2
as�1Γ 1

2
sþ1

2ð Þ

•
Mxs :¼ simplify mellin fy; y; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fyusing builtin command

Mxs :¼ 2
1
2
s�1

2
bs�1Γ 1

2
sþ1

2ð Þ

•
Mxs1 :¼ simplify

Ð1
0

fx	 xs�1dx; assume ¼ positive
� �

;
#Mellin transform of fxusing the integral representation

Mxs1 :¼ 2
1
2
s�1

2
as�1Γ 1

2
sþ1

2ð Þ

•
Mxs1 :¼ simplify

Ð1
0

fy	 ys�1dy; assume ¼ positive
� �

;
#Mellin transform of fyusing the integral representation

Mxs1 :¼ 2
1
2
s�1

2
bs�1Γ 1

2
sþ1

2ð Þ

•
Mxz :¼ simplify mellin fz; z; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fzusing builtin command

Mxz :¼ as�1bs�12s�1Γ
1

2
sþ 1

2

� �2

•
Mzs1 :¼ simplify

Ð1
0

fz	 zs�1dz; assume ¼ positive
� �

;
#Mellin transform of fzusing the integral representation
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Mxs1 :¼ as�1bs�12s�1Γ
1

2
sþ 1

2

� �2

• #Mellin transform of Z¼XY is the product ofMellin transforms ofX and Y

Example # 6 Mellin transform of the density of the product of a Rayleigh and an

exponential variables

• #pdf of Z¼XY ,X and Y are non ‐ identical gammaRayleigh different

• fx :¼
x	 exp � x2

2	a2

� 	
a2

; #input Rayleigh desity ofX

fx :¼ xe�
1
2
x2

a2

a2

• fy :¼ 1
b 	 exp �y

b

� �
; #input exponential density of Y

fy :¼ e�
y
b

b

• fyz :¼ subs y ¼ z
x; fy

� �
; #input density fy following subsititution

fyz :¼ e�
z
xb

b

• intG :¼ 1
x

� �	 fx	 fyz; #Create integrand for the Transformation

intG :¼ e�
1
2
x2

a2
e�

z
x b

a2b

• fz :¼ simplify
Ð1
0

intGdx; assume ¼ positive
� �

; #pdf of Z ¼ XY

fz :¼ 1

2

ffiffiffi
2

p
MeijerG

�½ �; ½ �� 1
2
; 1
2
; 0

� �
; ½ �� �

; 1
8

z2

a2b2

� 	
b a

ffiffiffi
π

p

• simplify
Ð1
0

fz dz; assume ¼ positive
� �

; #verify thepdf

1

• with(inttrans):

•
Mxs :¼ simplify mellin fx; x; sð Þ; assume ¼ positiveð Þ;

#Mellin trasnform of fxusing builtin command
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Mxs :¼ 2
1
2
s�1

2
as�1Γ 1

2
sþ1

2ð Þ

•
Mxs :¼ simplify mellin fy; y; sð Þ; assume ¼ positiveð Þ;

#Mellin trasnform of fyusing builtin command

Mxs :¼ bs�1Γ sð Þ

•
Mxs1 :¼ simplify

Ð1
0

fx	 xs�1dx; assume ¼ positive
� �

;
#Mellin transform of fxusing the integral representation

Mxz :¼ 2
1
2
s�1

2
bs�1as�1Γ sð ÞΓ 1

2
sþ1

2ð Þ

•
Mys1 :¼ simplify

Ð1
0

fy	 ys�1dy; assume ¼ positive
� �

;
#Mellin transform of fyusing the integral representation

Mys1 :¼ bs�1Γ sð Þ

•
Mxz :¼ simplify mellin fz; z; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fzusing builtin command

Mxz :¼ 2
1
2
s�1

2
bs�1as�1Γ sð ÞΓ 1

2
sþ1

2ð Þ

•
Mzs1 :¼ simplify

Ð1
0

fz	 zs�1dz; assume ¼ positive
� �

;
#Mellin transform of fzusing the integral representation

Mzs1 :¼ 2
1
2
s�1

2
bs�1as�1Γ sð ÞΓ 1

2
sþ1

2ð Þ

•
#Mellin transform of Z ¼ XY is the product of Mellin transforms ofX

andY

In the next example, the concept of Mellin convolution is demonstrated to obtain

the density of the ratio of two gamma variables.

Example # 7 The Mellin transform of the density of the ratio of two independent

and identically distributed gamma variables

• #pdf of Z¼X by Y ,X and Y are IID gamma

• fy:¼ yc�1exp �y
b

� �
bc 	 Γ cð Þ ; #input Gamma density fy

fy :¼ yc�1 e�
y
b

bcΓ cð Þ
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• fx : ¼ subs (y¼ x, fy) ; # input density fx

fx :¼ xc�1 e�
x
b

bcΓ cð Þ
• fxz : ¼ subs (x¼ y	 z, fx) ; # create the pdf with z

fxz :¼ yzð Þc�1 e�
yz
b

bcΓ cð Þ

• intG : ¼ y	 fy	 fxz ; # Create integrand for the Transformation

intG :¼ yyc�1 e
�y

b yzð Þc�1e�
yz
b

bcð Þ2Γ cð Þ2

•
fz :¼ simplify

Ð Ë
0
intGdy; assume ¼ positive

� 	
;

#density of Z equal toXbyY

fz :¼ 1

2

4czc�1 1þ 2zþ z2ð Þ�cΓ cþ 1
2

� �ffiffiffi
π

p
Γ cð Þ

•
simplify

Ð1
0

fzdz; assume ¼ positive
� �

;
#veritf total probability equal toone

1

•
Mz :¼ simplify

Ð1
0

fz	 zs�1 dz; assume ¼ positive
� �

;
#Mellin transform of fz the integral

Mz :¼ Γ 1þ c� sð ÞΓ c� 1þ sð Þ
Γ cð Þ2

• with inttransð Þ:
•

Mz1 :¼ simplify mellin fz; z; sð Þ; assume ¼ positiveð Þ;
#Mellin transform of fzusing builtin command

Mz1 :¼ Γ 1þ c� 1þ sð ÞΓ c� 1þ sð Þ
Γ cð Þ2

•
Mx :¼ simplify mellin fx; x; sð Þ; assume ¼ positiveð Þ;
#Mellin transform of fxusing builtin command

Mx :¼ bs�1Γ c� 1þ sð Þ
Γ cð Þ
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•
Mxy :¼ subs s ¼ w;Mxð Þ;
#first step tocreate the shiftedMellin transform togetMY 2-sð Þ

Mxy :¼ bw�1Γ c� 1þ wð Þ
Γ cð Þ

•
#Mellin transform of Ywith s replacedby 2-sð Þ toobtain theMellin

convolution of ratio

• Mq¼ subs (w¼ 2� s,Mxy)

Mq :¼ b�sþ1Γ 1þ c� sð Þ
Γ cð Þ

•
##TheMellin transformMZ of thepdf ofXbyY is the product of the
MX sð ÞandMY 2� sð Þ
The results demonstrate the validity of Eq. (2.553) which show that the Mellin

transform of the ratio is the product of the Mellin transform of the density of the

variable in the numerator and the shifted version of the Mellin transform of the

density of the variable in the denominator.

Example # 8 The case of ratio of two non-identical gamma variables

#pdf of Z ¼ XbyY,X andY are IIDgamma

• fy :¼ yc�1exp �y
b

� �
bc 	 Γ cð Þ ; #inputGamma density fy

fy :¼ yc�1e�
y
b

bcΓ cð Þ

• fx :¼ xm�1exp �x
a

� �
am 	 Γ mð Þ ; #input gamma density of x, fx

fx :¼ xm�1e�
x
a

amΓ mð Þ

• fxz : ¼ subs(x¼ z, fx) ; # create the pdf with z

fxz :¼ yzð Þm�1e�
yz
a

amΓ mð Þ

• intG : ¼ y	 fy	 fxz ; # Create integrand for the Transformation

intG :¼ yyc�1 e
�y

b yzð Þm�1e�
yz
a

bcΓ cð ÞamΓ mð Þ
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•
fz :¼ simplify

Ð1
0

intGdy; assume ¼ positive
� �

;
#denity of Zequal toXbyY

fz :¼ zm�1ac aþ zbð Þ�c�mbmΓ cþ mð Þ
Γ cð ÞΓ mð Þ

•
simplify

Ð1
0

fzdz; assume ¼ positive
� �

;
#verify total probability equal toone

1

•
Mz :¼ simplify

Ð1
0

fz	 zs�1 dz; assume ¼ positive
� �

;
#Mellin transform of fzusing the integrat

Mz :¼ b�sþ1as�1Γ 1þ c� sð ÞΓ s� 1þ mð Þ
Γ cð ÞΓ mð Þ

• with(inttrans):

•
Mz1 :¼ simplify mellin fz; z; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fzunsing builtin command

Mz1 :¼ as�1b�s�1Γ c� mð ÞB s� 1þ m; 1þ c� sð Þ
Γ cð ÞΓ mð Þ

•
My :¼ simplify mellin fy; y; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fxunsing builtin command

My :¼ bs�1Γ sþ c� 1ð Þ
Γ cð Þ

•
Mx :¼ simplify mellin fx; x; sð Þ; assume ¼ positiveð Þ;

#Mellin transform of fxunsing builtin command

Mx :¼ as�1Γ s� 1þ mð Þ
Γ mð Þ

•
My1 :¼ subs s ¼ w;Myð Þ;
#first step tocreate the shiftedMellin transformtogetMY 2� sð Þ

Mx1 :¼ bw�1Γ wþ c� 1ð Þ
Γ cð Þ
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•
Mellin transform of Ywith s replacedby 2� sð Þ toobtain theMellin

convolution of ratio

• My2¼ subs(w¼ 2� s,My1);

My2 :¼ b�sþ1Γ 1þ c� sð Þ
Γ cð Þ

•
TheMellin transformMZ of thepdf ofXbyY is the product of the

MX sð ÞandMY 2� sð Þ

2.20 Properties of Densities Revisited

Several densities seen earlier are now presented in a concise format (Fig. 2.70).

CDF,pdf, moments and Characteristic Function

CDF →

CDF →

pdf →

Probability →

nth moment →

Laplace Transform →

Mean →

Characteristic Function →

Variance →

fX(x), x>0

Fx (x) = P(X £ x), Fx (-¥) = 0, Fx (¥) = 1

P [x1 £ X £ x2] =         ƒ(x)dx = Fx (x2)- Fx (x1)

P [X £ x] º P [ X < x] =         ƒ(a)da

P [X ³ x] º P [ X > x] =  1 – Fx (x) =        ƒ(x)dx

ƒx (x) = 
dFx (x) 

,  0 £  ƒx (x) £ ¥
dx

Fx (x) =   ƒ(y)dy,  0 £  Fx (x) £ 1
x

x2

x1

-¥

-¥

¥
E [Xn] =          xn ƒ(x)dx

-¥

¥

-¥

x
0

¥

-¥

¥
x

¥

φx (w) = E [eixw] =          eixwƒ(x)dx

Lx (s) = E [e-xs] = = φx (w)ç(–jw=s) =       e-xs ƒ(x)dx

P [X = x] = 0,      Continuous density

E[X] =          xƒ(x)dx

var[X] = E [X2] – (E [X])2

Fig. 2.70 CDF, pdf, and characteristic functions
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2.21 Summary

In this chapter, we examined some theoretical aspects of probability density

functions and distributions encountered in the study of fading and shadowing in

wireless channels. We started with the basic definition of probability, then

discussed density functions and properties relating to the analysis of fading and

shadowing. We also examined the transformations of random variables in
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conjunction with relationships of different types of random variables. This is

important in the study of diversity and modeling of specific statistical behavior of

the wireless channels. The density functions of some of the functions of two or more

random variables were derived. We examined order statistics, placing emphasis on

the density functions of interest in diversity analysis. Concepts of stochastic

processes and their properties were outlined. Similarly, the characteristics of

noise were delineated within the context of signal detection. In addition, this

study included an exploration of ways of expressing some of the densities in

more compact forms using the hypergeometric functions and Meijer’s G-function.
In the updated sections, readers are exposed to parameter estimation and statis-

tical testing methods that are necessary in understanding the statistical models of

fading and shadowing. Two methods, one based on maximum likelihood and the

other one based on moments for parameter estimation are detailed and compared

using a number of examples. The statistical approaches to appreciate the mixture

densities for modeling signal strength fluctuations are provided. The receiver

operating characteristics, essential for the understanding of cognitive radio, are

introduced. To facilitate a better understanding of the statistics of sums and

products of random variables, detailed discussion of Laplace and Mellin transforms

is provided along with several examples. In addition, an overview of properties of

all the key random variables is once again given. The pedagogy of each of these

topics has been enhanced through detailed exposition of Matlab scripts. In specific

instances where Matlab is deficient, Maple scripts are provided to support the study

of Mellin transforms.
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Chapter 3

Modems for Wireless Communications

3.1 Introduction

Digital modulation and demodulation techniques together (modem) form the

fundamental building block of data transmission in communication systems in

general and wireless communication systems in particular (Lucky et al. 1968;

Oetting 1979; Amoroso 1980; Feher 1995; Benedetto and Biglieri 1999; Proakis

2001; Simon and Alouini 2005; Schwartz 2005; Couch 2007). The modems can be

classified in a multitude of ways (Simon et al. 1995; Sklar 1993, 2001; Haykin

2001). They can be identified in terms of the signal property that is modulated such

as amplitude, phase, or frequency. They can also be classified in terms of

the number of levels of values (binary, quaternary, or in generalM-ary) attributable

to the property. Detection methods such as coherent or noncoherent ones can also

be used for the classification. We can, in addition, use terms such as “linear” and

“nonlinear” modulation to classify the modulation types (Sundberg 1986;

Anderson et al. 1986; Gagliardi 1988; Gallager 2008). The output of the frequency

modulated system has a constant envelope while the output of the amplitude or

phase modulated system has a constant frequency with time varying amplitudes.

This makes the amplitude and phase modulation a form of “linear” modulation

and the frequency modulation a form of “nonlinear” modulation. Even for a specific

modulation type such as phase modulation (phase shift keying, for example), it

is possible to have a coherent or a noncoherent detector or receiver. Modems cover

a wide range of possibilities with some common themes such as the initial

building blocks of the “signal space.” The concepts of signal space make it possible

to analyze modems, design them so that they meet certain criteria, provide a

uniform framework, and make it possible to compare and contrast the different

modems.

We also look at efficient ways of managing the most precious commodity, the

spectrum, through appropriate schemes of pulse shaping (Helstrom 1960, 1968;

Amoroso 1980; Sklar 1993; Aghvami 1993; Sundberg 1986; Anderson 2005).
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We compare the efficiencies of these modems with appropriate trade-off charac-

teristics so that an optimum choice of a modem can be made for a specific

application.

3.2 Optimum Receiver, Pulse Shaping, and Nyquist’s
Criteria

Let us look at a basic model of the digital communication system depicted in

Fig. 3.1. Note that most of the information is in analog form, we start with an

A/D converter. This is followed by transforming the digitized information into bits

(0’s and 1’s) and combining a few of them into a sequence of bits, and so on. The

digital source puts out the bits which are encoded into symbols.

The encoding is generally done using gray coding (discussed later), which

reduces the errors during the detection process (Schwartz 1980; Simon et al.

1995; Schwartz et al. 1996). If we combine “k” bits into a sequence, we get a

“symbol.” Thus, a symbol size of M corresponds to 2k bits. For k ¼ 1, we have a

binary system and for k¼ 2, we have a quaternary system, and for k¼ 3 we have an

8-ary system and, in general, we have an M-ary system. If Tb represents the bit

duration, the symbol duration Ts will be kTb, with the symbol and bit duration being

identical for the binary case.

Once the bit values have been picked, such a step needs to be followed by the

choice of appropriate functions to represent these bits. This means that the shapes of

the functions, such as rectangular, Gaussian, raised cosine, and others, also become

part of the fabric and language of the digital communication (Haykin 2001; Proakis

2001). Between the transmitter and receiver, noise gets into the system and the

received signal is corrupted by this noise. The channel through which the signal

moves can also impact the shape of these functions as the signal passes through the

wireless channel, distorting them, making it necessary to reconstruct and reshape

the pulse before it is detected. This detection will be affected by the noise in the

system. Before we expand the discussion to the concept of signal space and M-ary

Digital 
Source 

Encoder Modulator Wireless 
channel 

Demodulator 

Carrier frequency 

Decoder 

Bits 

Bits 

Symbols 

Fig. 3.1 Concept of digital data transmission

214 3 Modems for Wireless Communications



signaling (Taub and Schilling 1986; Sklar 1993, 2001), we discuss the detection of

binary signals.

A generic block diagram of digital transmission is shown in Fig. 3.2. No carrier

wave is present. Consider the transmission of two “bits,” a “1” represented by a

waveform s1(t) and a zero represented by a waveform s0(t). We shall examine the

appropriate waveshapes later. Over a symbol period (Ts ¼ Tb ¼ T ), the transmitted

signal s(t) is given by

s tð Þ ¼ s1, 0 � t � T 010,
s0, 0 � t � T 000:

�
ð3:1Þ

The channel,wired orwireless, ismodeled as a linear filter of impulse response h(t).
As shown in Fig. 3.2, the channel adds noise n(t) to the signal and the received

signal r(t) can be expressed as

r tð Þ ¼ si tð Þ þ n tð Þ, i ¼ 0, 1, 0 � t � T: ð3:2Þ

We will treat the noise as a zero mean Gaussian white noise (Papoulis and Pillai

2002). We will also assume that pulse has not been distorted or modified by the

channel. For us to determine whether the transmitted bit is a “1” or “0,” we need to

have a single value at the receiver so as to compare it with a threshold value to

determine whether the bit is a 1 or 0. This transformation of the information in (3.2)

to a single value (known as the test statistic in literature) can take place if we have a

filter of impulse response h(t) followed by sampling at the end of the bit duration T.

s1(t)

s0(t)
si(t) or

AWGN n(t)

=

coDecision

Σ

r(t) = si(t) + n(t) x(t) = ai(t) + nh(t) x(T) = ai(T) + nh(T)

Linear filter
h(t)

Sample at t = T

Threshold
comparison

Fig. 3.2 Generic block diagram of a receiver
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If this sampled value is represented by x(T ), we can write

x Tð Þ ¼ ai Tð Þ þ nh Tð Þ i ¼ 0, 1: ð3:3Þ

In (3.3), the first term on the right-hand side is the signal component and the

second term is the noise component, with both components arising out of the

filtering and sampling indicated in Fig. 3.2. Since we have assumed that the noise

is Gaussian, the probability density function (pdf) of the noise component can be

written as

f nhð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � n2h
2σ2

� �
: ð3:4Þ

In (3.4), s2 is the noise variance. The density function of the sampled output can

now be written as two conditional pdfs as

f xjs1ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x� a1ð Þ2
2σ2

" #
: ð3:5Þ

f xjs0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x� a0ð Þ2
2σ2

" #
: ð3:6Þ

If we assume that 0’s and 1’s are equally likely, it can be easily shown (Chap. 2)
that the optimal threshold X0 that minimizes the error in the channel is given by

(Taub and Schilling 1986)

X0 ¼ 1

2
a1 þ a0ð Þ: ð3:7Þ

The average error p(e) can be expressed as

p eð Þ ¼ p ejs0ð Þp s0ð Þ þ p ejs1ð Þp s1ð Þ: ð3:8Þ

Since the bits are equally likely, (3.8) becomes

p eð Þ ¼ 1

2
p ejs0ð Þ þ p ejs1ð Þ½ �: ð3:9Þ

Furthermore, because of symmetry, we have (Helstrom 1968; Haykin 2001)

p eð Þ ¼ p ejs0ð Þ ¼ p ejs1ð Þ
ð1
X0

f xjs0ð Þdx ¼
ðX0

�1
f xjs1ð Þdx ¼ Q

a1 � a2
2σ

h i
: ð3:10Þ
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In (3.10), Q(.) is the Gaussian Q function (Chap. 2) defined as (Borjesson and

Sundberg 1979; Sklar 2001; Simon and Alouini 2005)

Q zð Þ ¼ 1ffiffiffiffiffi
2π

p
ð1
z

exp �u2

2

� �
du: ð3:11Þ

To obtain the error expressed in (3.10), we need the characteristics of the

appropriate filter, indicated in Fig. 3.2. If H( f ) is the transfer function of the filter,

we can write the expression for the signal-to-noise ratio of the sampled output as

S

N

� �
¼

Ð1
�1 H fð ÞS fð Þexp j2πfTð Þdf�� ��2

N0=2ð Þ Ð1�1 H fð Þj j2df : ð3:12Þ

In (3.12), the two-sided power spectral density of the noise is given by (N0/2)

Watts/Hz. The remaining issue is the determination of the transfer function of the

filter which maximizes the signal-to-noise ratio. We invoke the Schwarz inequality

given by (Van Trees 1968; Taub and Schilling 1986; Gagliardi 1988; Haykin 2001)ð1
�1

g xð Þh xð Þdx
���� ����2 � ð1

�1
g xð Þj j2dx

ð1
�1

h xð Þj j2dx ð3:13Þ

with the equality existing when

g xð Þ ¼ k0h
∗ xð Þ: ð3:14Þ

Note that in (3.14), * represents the complex conjugate and k0 is a constant.

Using (3.13) and (3.14), (3.12) for the maximum SNR becomes

S

N

� �
max

¼ 2E

N0

, ð3:15Þ

where

E ¼
ð1
�1

S fð Þj j2df : ð3:16Þ

Equation (3.15) shows that the maximum SNR depends only on the signal

energy; the input pulse shape is immaterial. Equations (3.12) and (3.14) lead to

an expression for the optimum transfer function as

H fð Þ ¼ k0h
∗ fð Þexp �j2πfTð Þ: ð3:17Þ

The corresponding impulse response is

h tð Þ ¼ k0s T � tð Þ, 0 � t � T
0 elsewhere

�
: ð3:18Þ
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Equation (3.18) means that the impulse response of the optimum filter is a mirror

image of the message signal delayed by the bit or symbol duration. The optimum

filter is also known as the matched filter (Taub and Schilling 1986; Haykin 2001). If

we now have a filter matched to the difference signal as shown in Fig. 3.3 with

h tð Þ ¼ s1 T � tð Þ � s0 T � tð Þ, ð3:19Þ

the maximum signal-to-noise ratio now becomes

S

N

� �
max

¼ a1 � a0ð Þ2
σ2

¼ 2E

N0

ð3:20Þ

with

E0 ¼
ð T

0

s1 tð Þ � s0 tð Þ½ �2dt: ð3:21Þ

Using (3.21), the error in (3.10) becomes

p eð Þ ¼ Q

ffiffiffiffiffiffiffiffi
E0

2N0

r� �
: ð3:22Þ

The matched filter is often replaced by the so-called correlator or a product

integrator. All these signal processing elements behave the same way (Taub and

Schilling 1986; Sklar 2001). The correlator or product integrator is shown in

Fig. 3.4. Besides the incoming signal, the input to the correlator is the difference

between the two signals, s1(t) � s2(t).
We have so far used two signals s1(t) and s0(t) without specifying the shape of

the pulses that represent the signals. The most common pulse shape is rectangular as

shown in Fig. 3.5. But such a pulse when transmitted through any finite bandwidth

channel will be broadened and possibly distorted. Broadened pulses lead to

intersymbol interference (ISI) from the overlap of adjoining symbols which can

lead to problems in correctly reconstructing the bits. Therefore, it is necessary to

r(t) = si(t) + n(t) h(T-t) x(T)

Matched to s1(t)-s2(t)

Fig. 3.3 Matched filter

r(t) = si(t) + n(t) x(T)

s1(t)-s2(t)

T

0

Fig. 3.4 Correlator
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look at other pulse shapes along with the rectangular one to determine the optimum

pulse shape with the least amount of distortion. Such a choice can be made on the

basis of the so-called Nyquist’s criteria (Lucky et al. 1968; Franks 1968; Lindsey

and Simon 1973; Nyquist 2002; Anderson 2005). We will consider four pulse

shapes: rectangular, sinc, raised cosine, and Gaussian. These are shown in

Fig. 3.5. The shapes can be expressed in mathematical form as

s tð Þ ¼

1

2T
0 � t � T, rectangular,

sin π=Tð Þtð Þ
π=Tð Þt , sin c,

sin π=Tð Þtð Þ
π=Tð Þt

cos π=Tð Þαtð Þ
1� 4α=2Tð Þt½ �2 < 0 < α < 1, raised cosine,ffiffiffi

π
p
β

exp � π2t2

β2

� �
, β ¼ 0:5887

B
, Gaussian:

8>>>>>>>>>><>>>>>>>>>>:
ð3:23Þ

The corresponding spectra are shown in Fig. 3.6. For the Gaussian pulse, the

parameter B is the 3 dB bandwidth of the baseband Gaussian shaping filter.

A pulse that satisfies Nyquist’s first criterion must pass through zero t ¼ kT,
k ¼ �1, �2, ... except at t ¼ 0. By this requirement, the Gaussian pulse shape does
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Fig. 3.5 Four common pulse shapes (rectangular, sin c, raised cosine, and Gaussian)
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not satisfy this criterion and the other three pulse shapes do. This does not mean that

Gaussian pulses shapes are not used in wireless communication. Indeed, they are

used in constant envelope modulation schemes, as we will see later. Of the three

pulses that meet this criterion, the rectangular pulse has no crossover to the next bit

interval. In fact, the ISI would vanish if the overall impulse response of the system

was to match these pulse shapes. Note that the sin c pulse and raised cosine pulses

become identical when the roll-off factor α is zero.

If one examines the pulse shapes using the frequency domain properties, one can

see that the rectangular pulse has sidelobes that do not decay at a sufficiently high

rate and leave a significant amount of energy in the sideband. This poses a problem.

The bandwidth of the channel will be limited and the sidelobes will reappear since

the filters used to limit the bandwidth do not have sharp cut-offs leading to

interchannel cross stalk from the sidelobes of the next user occupying the next

bit. Thus, the lack of tightness of the spectrum of the rectangular pulse makes it a

less-than-ideal pulse. The sin c pulse, on the other hand, has the most limited

bandwidth making it an ideal candidate on the basis of the “tight” spectrum.

However, its sidelobes in the time domain decay very slowly and any synchroni-

zation problems will lead to increased ISI levels in the presence of timing jitter (i.e.,

if the sampling instants are not exactly at t ¼ �kT). Thus, the raised cosine pulse is
the most preferred pulse shape since it is possible to control both the temporal
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Fig. 3.6 Spectra of pulse shapes
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behavior of the pulse and the spectral characteristics using the roll-off factor α, even
though use of α> 0 will cause an increase in the bandwidth required to transmit the

pulse (Kisel 1999; Nyquist 2002).

Nyquist’s second criterion refers to the bandwidth associated with the pulse.

The Nyquist’s pulse must have a bandwidth of at least 1/2T Hz. This statement is

also known as the Nyquist’s sampling theorem. From Fig. 3.4 it is seen that the sin

c pulse occupies the lowest bandwidth of all the pulses and still satisfies the

Nyquist’s bandwidth criterion. Since the data rate R¼ 1/T, the Nyquist’s bandwidth
corresponds to R/2 Hz, the lowest possible bandwidth that will be required for

transmission (Sayar and Pasupathy 1986; Nyquist 2002; Beaulieu and Damen

2004).

These two Nyquist’s criteria might not be sufficient to improve the performance

of digital receivers. When multiple symbols are sent, correlation type receivers are

used and, in this case, it is essential that the pulse shapes also satisfy the criterion

that they are orthogonal under a shift of T’s, i.e.,ð1
�1

s tð Þs t� kTð Þdt ¼ 0, k ¼ �1, � 2, . . . : ð3:24Þ

From (3.24) it is clear that if the pulses satisfy Nyquist’s criteria, including the

orthogonality criterion, there will be less ISI (zero values from other pulses at

sampling instants) and minimal or no effect of overlap integral (orthogonality).

3.3 Efficiency of Digital Modulation Techniques

Before we look at signal representation and modulation/demodulation techniques,

let us also examine ways of quantifying the modems so that it will be possible to

compare among them (Cahn 1959; Helstrom 1960, 1968; Salz 1970; Prabhu 1976a,

b; Oetting 1979; Amoroso 1980; Sklar 1993, 2001). The two most important

quantities (or qualities) are the power efficiency and bandwidth or spectral effi-

ciency. Power efficiency is a measure of a modem to achieve a certain quality or

fidelity in terms of a minimum value of probability of error. A particular modem

which requires a lower level of SNR to maintain a fixed error rate has a better power

efficiency than another modem which requires a higher level of SNR. The band-

width or spectral efficiency is the ability of a modem to transmit more data in bits/s

at a given bandwidth. Thus, a particular modem capable of transmitting data at a

rate or R bps (bit/se) and B is the bandwidth occupied by the signal; the BW

efficiency is defined as R/B. It will not be possible to have high spectral efficiency

and high power efficiency at the same time; trade-offs will have to be made in

practical situations. Furthermore, use of nonlinear amplifiers in communication

systems may also force us to examine the out-of-band power since inadequate

filtering followed by nonlinear amplifiers results in spectral regrowth, that can

cause problems in linear modulation schemes such as phase shift keying systems.
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All these considerations—the power efficiency, spectral efficiency, and out of band

power—must be taken into account for the proper choice of the modem.

3.4 Geometric Representation of Signals and Orthonormal
Functions

As discussed in the introduction, when we use an M-ary transmission system, we

must have appropriate functional forms for the waveforms representing the signals.

It will be convenient to study the behavior of these M-ary modulation formats and

the effects of noise on these and compare the performance of the multiple M-ary

level as well as different types of modulation formats. One of the ways in which this

can be accomplished is through the use of signal space concepts (Proakis 2001;

Sklar 2001; Haykin and Moher 2005; Shankar 2002). Let us define an N-dimen-

sional orthogonal space as consisting of N linearly independent functions, called

basis functions represented by the set {ci(t)} which satisfy the orthogonality

conditions ð T

0

ψ i tð Þψ∗
k tð Þdt ¼ Kiδik: ð3:25Þ

In (3.25), K is a constant and d is the Kroenecker delta function (Abramowitz

and Segun 1965). If K is unity, the space becomes orthonormal, and it can be easily

seen that K is related to the energy Ek since

Ek ¼
ð T

0

ψ2
k tð Þdt: ð3:26Þ

The waveforms of interest used in the previous analysis (for example, s0(t) and
s1(t)) can be expressed as linear combination of these orthogonal (orthonormal) set

of functions:

si tð Þ ¼
XN
k¼1

aikψ k tð Þ, k ¼ 1, 2, . . . ,M,N < M: ð3:27Þ

Using the orthogonality property, we have (Davenport and Root 1958; Cooper

and McGillem 1986; Papoulis and Pillai 2002)

aik ¼ 1

Kk

ð T

0

si tð Þψ ik tð Þdt: ð3:28Þ

Let us look at the earlier case pertaining to s0(t) and s1(t). We now have only two

waveforms. Looking at the two simplest examples of orthogonal functions, namely

cos() and sine() functions, we have
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ψ tð Þ ¼

ffiffiffi
2

T

r
cos 2πf 0tð Þ, 0 � t � T orffiffiffi

2

T

r
sin 2πf 0tð Þ, 0 � t � T:

8>><>>: ð3:29Þ

In (3.29), f0 is the carrier frequency. Using (3.29), we have

s1 tð Þ ¼

ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tð Þ, 0 � t � T orffiffiffiffiffiffi

2E

T

r
sin 2πf 0tð Þ, 0 � t � T

8>><>>: ð3:30Þ

s2 tð Þ ¼
�

ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tð Þ, 0 � t � T or

�
ffiffiffiffiffiffi
2E

T

r
sin 2πf 0tð Þ, 0 � t � T:

8>><>>: ð3:31Þ

In (3.30) and (3.31), E is the energy. We can now go back to (3.22) and express

the error in terms of the energy obtained through the orthogonal representations.

Consider the case where we treat the two waveforms as orthogonal. In this case, we

have

s1 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tð Þ, 0 � t � T ð3:32Þ

s2 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
sin 2πf 0tð Þ, 0 � t � T: ð3:33Þ

Using (3.21), we have

E0 ¼
ð T

0

s21 tð Þdtþ
ð T

0

s22 tð Þdt� 2

ð T

0

s1 tð Þs2 tð Þdt ¼ 2E: ð3:34Þ

The third integral in (3.34) is zero (by virtue of the orthogonality). The proba-

bility of error expressed in (3.22) now becomes

p eð Þ ¼ Q

ffiffiffiffiffiffi
E

N0

r� �
: ð3:35Þ

If we now take the case where s1(t) and s0(t) are not orthogonal and treat them in

bipolar form, we have

s1 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tð Þ, 0 � t � T ð3:36Þ
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s2 tð Þ � s1 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tð Þ, 0 � t � T: ð3:37Þ

In this case, using (3.21), we have

E0 ¼
ð T

0

s21 tð Þ dtþ
ð T

0

s21 tð Þdtþ 2

ð T

0

s21 tð Þdt ¼ 4E: ð3:38Þ

The probability of error now becomes

p eð Þ ¼ Q

ffiffiffiffiffiffi
2E

N0

r� �
: ð3:39Þ

We can now express (3.35) and (3.39) together in one equation using the

Euclidian distance between the waveforms as (Proakis 2001; Haykin 2001)

p eð Þ ¼ Q

ffiffiffiffiffiffiffiffiffi
d2min

2N0

s0@ 1A: ð3:40Þ

In (3.40), dmin is the Euclidian distance between the two waveforms (shown in

Fig. 3.7). When we have a set of orthogonal waveforms, we have the example of

binary orthogonal signaling; when we have the case of two identical waveforms of

opposite signs, we have the case of bipolar signaling. If we had taken one of the two

d

0

E

min E=
a

0

E

E

dmin

min

2E=
0

E− E

2d E=
cb

Fig. 3.7 Euclidian distance
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signals to be zero, we would have the case of a unipolar signaling and the

probability of error would be

p eð Þ ¼ Q

ffiffiffiffiffiffiffiffi
E

2N0

r� �
: ð3:41Þ

Thus, we see that the signal space representation makes it possible to represent

the waveforms as well as estimate the error probabilities using the Euclidian

distance between the signals. We will later extend this to M-ary signaling schemes.

3.5 Modulation Techniques

We will examine several digital modulation schemes (Lindsey and Simon 1973;

Oetting 1979; Shanmugam 1979; Akaiwa and Nagata 1987; Akaiwa 1997; Sklar

2001; Proakis 2001; Stuber 2002). As mentioned in the introduction, the schemes

include both linear and nonlinear modulations. They use amplitude, phase, ampli-

tude and phase, and frequency. The demodulation techniques include those based

on coherent techniques which require frequency and phase matching at the receiver

as well as noncoherent techniques which constitute a wide variety of approaches.

We will start with the linear ones first.

3.5.1 Amplitude Shift Keying

As the name suggests, this modulation technique involves the transmission of

varying amplitudes of the carrier wave. The M-ary ASK signal can be expressed as

s tð Þ ¼
ffiffiffiffiffiffiffi
2Ei

T

r
cos 2πf0tð Þm 0 � t � T, i ¼ 1, 2, . . . ,M: ð3:42Þ

If M ¼ 2, we have a binary ASK, and if E2 ¼ 0, we have an on–off-keying

(OOK). In this case, when one uses a matched filter, the Euclidian distance will beffiffiffi
E

p
and the error at the output of the receiver will be given by

p eð Þ ¼ Q

ffiffiffiffiffiffiffiffi
E

2N0

r� �
: ð3:43Þ

If, however, we have a binary ASK and the two amplitudes are equal and take

positive and negative values, þ ffiffiffi
E

p
or � ffiffiffi

E
p

, the Euclidian distance is 2
ffiffiffi
E

p
and we

have a bipolar ASK and the error becomes
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p eð Þ ¼ Q

ffiffiffiffiffiffi
2E

N0

r� �
: ð3:44Þ

As the value ofM goes above 2, the error rate increases sharply and M-ary ASK

is not used in wireless communications. Note that the error rate in (3.43) for OOK

(unipolar ASK) is obtained under the assumption that the matched filter function is

cos (2πf0t) as required by (3.19). If instead, the matched filter function is 2 cos

(2πf0t), the error rate becomes

p eð Þ ¼ Q

ffiffiffiffiffiffi
E

N0

r� �
: ð3:45Þ

Use of this doubling ensures that the error rate comparison to binary phase shift

keying (BPSK) can be made with identical powers of the local oscillator since

BPSK needs a signal of 2 cos (2πf0t) as required in (3.19). This is discussed in the

next section on binary phase shift keying. One can also argue that in the OOK

scheme, since one of the signals is zero, the average energy is Eav ¼ E/2, therefore
replacing E by the average energy. Equation (3.43) becomes

p eð Þ ¼ Q

ffiffiffiffiffiffiffi
Eav

N0

r� �
: ð3:46Þ

3.5.2 Phase Shift Keying

This modulation technique involves the transmission of a carrier wave with varying

values of the phase (Prabhu 1969, 1973, 1976a, b; Prabhu and Salz 1981). The

M-ary PSK (MPSK) waveform can be expressed as

s tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tþ ϕi tð Þ½ �, 0 � t � T, i ¼ 1, 2, . . . ,M: ð3:47Þ

In (3.47), the phase term ϕi(t) will have M discrete values given by

ϕi tð Þ ¼
2π

M
i, i ¼ 1, 2, . . . ,M: ð3:48Þ

Note that T is the symbol duration and E is the symbol energy. For the case of

M ¼ 2, we have

s tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0t½ �, 0 � t � T, “1”:

s tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tþ π½ �, 0 � t � T, “0

ð3:49Þ
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As we can see, the bit “0” actually corresponds to “�1”. Because of this, in PSK,

“0” and “�1” are interchangeably used. One can also notice that the binary PSK is

identical to bipolar ASK. Furthermore, we can use sin() instead of the cosine() term

for BPSK and get

s tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
sin 2πf 0tð Þ, 0 � t � T; “1”:

s tð Þ ¼ �
ffiffiffiffiffiffi
2E

T

r
sin 2πf 0tð Þ, 0 � t � T, “0”:

ð3:50Þ

Thus, the BPSK involves the transmission of two phases, either 2π or π
representing the two bits. This transmission is also referred to as antipodal because

the two vectors representing the bits are in the opposite direction, regardless of

whether one uses sine or cosine carrier waves. The generic forms of a BPSK

transmitter and coherent BPSK receiver are shown in Fig. 3.8.

The binary data is encoded with either one of the two phase values in the

transmitter. The receiver shown in Fig. 3.8 is of a coherent type and requires

phase and frequency match. Assuming that the matches with the phase and fre-

quency of the incoming BPSK signal are perfect, the multiplier followed by the

integrator acts as the coherent detector. While a bandpass filter at the transmitter

prevents any spectral overlap with signals from adjoining channels, if any, the low

pass filter at the receiver eliminates any high frequencies that might come through.

Phase shift       
(0 or π) 

Binary 
data 

2 cos(2πf0t) 

2 cos(2πf0t) 

     BPF BPSK 
waveform 

BPSK 
waveform 

Threshold 
Data out T 

0
  LPF ∫

Fig. 3.8 BPSK modulator (top), BPSK demodulator (bottom)
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Since the two waveforms are antipodal or bipolar, the error rate becomes

p eð Þ ¼ Q

ffiffiffiffiffiffi
2E

N0

r� �
: ð3:51Þ

A typical BPSK waveform is shown in Fig. 3.9. It shows the abrupt changes in

phase that can take place. As we shall see later when we discuss M-ary PSK, BPSK

suffers from poor spectral efficiency and, therefore, it is not well suited for data

transmission systems when there is premium on the bandwidth. Because of this,

while BPSK offers a simple modulation format, it is generally not used in wireless

communications (Feher 1991; Rappaport 2002; Molisch 2005; Goldsmith 2005;

Schwartz 2005).

3.5.3 Frequency Shift Keying

The general expression for the FSK waveform can be expressed as

s tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf itþ ϕ tð Þ½ �, 0 � t � T, i ¼ 1, 2, . . . ,M: ð3:52Þ

The frequency, ϕi, takes onM discrete values and ϕ is an arbitrary constant value

of the phase (Aulin and Sundberg 1981; Sklar 2001; Proakis 2001). The binary FSK

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

pl
itu

de

Time

x T

1    1    -1    -1    -1    1    1    1

Fig. 3.9 A typical BPSK waveform
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waveform is sketched in Fig. 3.10. One can see that there is an abrupt change in the

frequency when bits change. If the frequencies are chosen so that the M signals are

mutually orthogonal, we have the case of an orthogonal FSK. The requirement on

the frequency separation to create FSK is discussed later in the description of M-ary

FSK where it is shown that the minimum separation is (1/2T ).
For an orthogonal BFSK, the error rate in coherent reception can be written from

the results in (3.35) as

p eð Þ ¼ Q

ffiffiffiffiffiffi
E

N0

r� �
: ð3:53Þ

The coherent receiver can be constructed similarly to the one for the BPSK, with

two different modulators in parallel, each tuned to the appropriate carrier

frequency.

It is seen that BFSK will have a poorer error rate performance than BPSK. But,

the error rate is identical to that of OOK in (3.45). Since we are using two

frequencies, intuitively we can see that the bandwidth efficiency will be poorer

than BPSK. We will compare the efficiencies of all the modems later.

An example of orthogonal BFSK is shown in Fig. 3.11. One can see that BFSK

can also result in undesirable discontinuities in the signal waveform. This binary

form of FSK is also known as discontinuous FSK. This existence of discontinuities

can be eliminated using a different form of FSK known as the continuous phase

FSK (CPFSK) (discussed later).

The bit error rates for BPSK and BFSK are plotted in Fig. 3.12. For a bit error

rate of 1e–6, the BPSK requires an SNR of about 10.5 dB while BFSK requires

about 13.5 dB. This shows that the power efficiency of BFSK is 3 dB worse than

that of BPSK.
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Fig. 3.10 Block diagram of a BFSK modulator
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3.5.4 Amplitude and Phase Shift Keying

There is another form of digital modulation which combines amplitude and phase

shift keying schemes for values of M > 2. This modulation format is called the

M-ary Quadrature Amplitude Modulation (MQAM) and we will examine this

modulation scheme along with rest of the M-ary modulation schemes (Campopiano

and Glazer 1962; Cahn 1960; Thomas et al. 1974; Prabhu 1980; Sklar 1983a, b;

Webb 1992; Proakis 2001).

3.5.5 Limitations of BPSK and Justification for MPSK

While the BPSK scheme is rather simple to implement (modulation and detection),

its bandwidth efficiency is poor. Since there is a premium on available bandwidth,

wireless systems require schemes that have high bandwidth efficiencies. The

bandwidth efficiency can be understood by plotting the spectrum of BPSK

(Fig. 3.13). The spectra are shifted so as to be centered around the zero frequency.

They are all normalized to the value at ϕ ¼ 0. On the basis of a null-to-null

criterion, BPSK requires a bandwidth of B Hz for a data rate of B bits/s. This

high bandwidth requirement of BPSK can be compared with the bandwidth

required for a 4-level PSK (QPSK), which has two bits/symbol. Based on the

null-to-null criterion, QPSK requires a bandwidth of (B/2) Hz, thus doubling the
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spectral efficiency (Helstrom 1960; Amoroso 1980; Forney et al. 1984; Kim and

Polydoros 1988; Feher 1991). The QPSK modulation scheme (and possibly other

higher level modulation schemes) offers a more bandwidth efficient scheme in

wireless systems. The spectrum of minimum shift keying (MSK) modem is also

shown. The MSKmodem will be discussed later in this section and we will return to

this Fig. 3.13 later.

The power in the sidebands is also a crucial factor in the choice of the modems.

The integrated power up to a certain frequency band is shown in Fig. 3.14.

The considerable amount of power in the sidebands for the BPSK and QPSK is

clearly seen. On the other hand, for MSK, significant amount of power resides

within a narrow band of frequencies and point out the spectral characteristic typical

of linear (PSK) and nonlinear (MSK) modulation schemes. We will revisit this issue

later when we compare the modems.

3.5.5.1 M-ary Signals

One of the reasons for using M-ary signaling schemes (M > 2) is the spectral

efficiencies that can be gained over the binary schemes (specifically BPSK). This

was seen in Fig. 3.13. One can see that as M goes up from 2 to 4 (BPSK to QPSK),

the bandwidth requirement will proportionately decrease in the case of PSK. But

bandwidth efficiency and power efficiency cannot improve simultaneously and we

need to take a close look at the symbol error rates in M-ary schemes to understand

the trade-off between these two important characteristics of digital modems.
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In a typical M-ary signaling, sequence of bits are grouped into k bits at a time

such that we have M ¼ 2k waveforms, with the binary case occurring when k ¼ 1.

For M ¼ 4 in PSK, the receiver is supposed to detect correctly one of the four

phases, 0, π/2, π, 3π/2 which differ only by π/2 (Proakis 2001; Gagliardi 1988;

Haykin 2001). Thus, even under the best case scenario, the detection experiments

will be less reliable compared with a BPSK case where the two phase values differ

by double the difference in QPSK, namely π. Intuitively, this suggests that the

symbol error in QPSK is likely to be higher than that in BPSK. If we extend this

notion of declining difference between adjoining symbols as M increases, we can

see that the power efficiencies decline as M increases.

If we extend the arguments for MPSK to MFSK, we will come to a different

conclusion. When M increases, the bandwidth required to transmit M waveforms

goes up since we expect them to be orthogonal. Therefore, a minimum spectral

separation between adjoining signals needs to be established. Thus, for MFSK, the

bandwidth efficiency goes down as k (M ¼ 2k) increases and, consequently, we

expect that the power efficiency will improve as k increases. Thus, M-ary signaling

permits us to transmit data efficiently with a trade-off between power and spectral

efficiencies. If bandwidth is a premium, PSK is likely to be a preferred choice. If

power efficiency is a must, then FSK is the choice. We will now concentrate on

MPSK and explore such a trade-off in greater detail.

3.5.5.2 Signal Space Picture of MPSK

We had seen earlier that the signal space view of unipolar, bipolar, and orthogonal

waveforms can represent binary ASK, PSK, and FSK. We had also seen that the

optimum threshold is the midway point between the two energy levels. Keeping

that in mind, Fig. 3.15 shows the signal space for MPSK with k ¼ 1, 2, and 3.

k=1, M=2

k=2, M=4 k=3, M=8

DL

DL

DL

Fig. 3.15 Signal space aspects of BPSK, QPSK, and 8-PSK
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The length of the vectors (the arrows from the origin) is all identical. The

decision line (DL) is shown as the midway point between the vectors (only a single

DL is shown for k > 1). Note that each symbol consists of k bits. The dotted lines

show the boundary of the decision line (mid point between adjoining vectors).

It can easily be seen that as k increases, we have more and more signals vectors

occupying the limited space, decreasing the separation between the adjoining ones,

and leading to increased errors in detection. While this is happening, each symbol

carries more bits with increasing k allowing a reduction in bandwidth and, hence, a

gain in spectral efficiency. The only means to reduce the error while maintaining

the gain spectral efficiency is to increase the length of the vectors. This will lead to

an increase in the energy, point to a decline in power efficiencies, and place an

upper limit on k based on the maximum power that can be transmitted. Let us now

look at the case of a 4-level PSK or QPSK.

Since for MPSK schemes where k > 1, we have more than one bit/symbol, we

resort to gray encoding (Schwartz 1980; Simon et al. 1995). The pairing of bits

based on gray encoding is also shown in Table 3.1.

If b’s represent the binary code values and g’s represent the corresponding gray

code values, we can obtain the gray encoding as

g1 ¼ b1 ð3:54Þ
gm ¼ bm � bm�1, m > 1: ð3:55Þ

In (3.55), � represents modulo-2 addition of binary numbers. As one can see,

gray encoding ensures that adjacent symbols differ only by a single bit out of the

Table 3.1 Gray encoding

(k ¼ 2, 3, 4)
Binary code Gray code

Digit b1 b2 b3 b4 g1 g2 g3 g4

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0
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log2 M bits. This ensures that if noise causes errors, the error in the adjoining

symbol will be accompanied by one and only one bit error.

3.5.5.3 Quaternary Phase Shift Keying

The waveforms for QPSK can be expressed as

si tð Þ ¼
ffiffiffiffiffiffi
2E

Ts

r
cos 2πf 0tþ φi½ �, i ¼ 1, 2, 3, 4: ð3:56Þ

In (3.56), Ts, the symbol duration is equal to twice the bit duration (Tb) and the

phase ϕi will take one of the four values. Rewriting (3.56), we have the familiar

representation of QPSK as

si tð Þ ¼
ffiffiffiffiffiffi
2E

Ts

r
cos 2πf0t½ � cos ϕið Þ �

ffiffiffiffiffiffi
2E

Ts

r
sin 2πf 0t½ � sin ϕið Þ: ð3:57Þ

The phase constellation corresponding to this waveform is shown in Fig. 3.16. It

is easy to see that a different constellation can be obtained by shifting the phase of

the carrier by π/4 as

1 -1

1 1

-1 1

-1 -1

1 1-1 1

-1 -1 1 -1

Symbols 

Phase

1 1 -1 1 -1 -1 1 -1

π/4 3π/4 5π/4 7π/4

π/4 -π/4 -3π/4 3π/4

Fig. 3.16 The QPSK constellations, symbols, and corresponding phases
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si tð Þ ¼
ffiffiffiffiffiffi
2E

Ts

r
cos 2πf 0tþ π=4½ � cos ϕið Þ

�
ffiffiffiffiffiffi
2E

Ts

r
sin 2πf 0tþ π=4½ � sin ϕið Þ:

ð3:58Þ

One can choose either one of the two sets of phases given in the two rows. We

can also observe that QPSK is a combination of two BPSK signals in quadrature,

with the first being identified as the inphase term and the second one as the

quadrature term. The phase encoding associated with the two constellations is

given in Table 3.1.

A block diagram of the QPSK modulator is shown in Fig. 3.17.

It shows that the input data is split into the I stream (even) and Q stream (odd)

and the duration changing from Tb to Ts (2Tb). The carrier frequency components

could be either (2πf0t) or (2πf0t + π/4).
Typical time domain waveforms based on both constellations are shown in

Fig. 3.18. While the linear aspect of the modulation is seen, one can also observe

that the waveforms have discontinuities with phase jumps of 0, �π/2, �π. This
discontinuity can lead to problems of regrowth of sidelobes after filtering; it will be

ideal if these phase jumps can be reduced. Note that the significant amount of

spectral power in the sidebands was observed in Fig. 3.14 for the case of QPSK.
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Fig. 3.17 QPSK modulator

236 3 Modems for Wireless Communications



3.5.5.4 Offset QPSK

One of the ways in which the issue of phase discontinuity can be reduced is through

the use of an offset-QPSK scheme (OQPSK). In this case, the I and Q streams are

delayed/offset by one bit period (Gronemeyer and McBride 1976; Sampei 1997;

Sklar 2001; Proakis 2001). A block diagram to implement OQPSK is shown in

Fig. 3.19 and a typical waveform associated with OQPSK corresponding to the

same bit stream in QPSK is shown in Fig. 3.20. It can be seen that the phase jumps

are now limited to 0, �π/2 even though the phase jumps happen more often than in

QPSK.

3.5.5.5 π/4-QPSK

These phase discontinuities are still unacceptable and efforts can be made to reduce

them by choosing the scheme known as the π/4-QPSK which utilizes both the

constellations of QPSK, one with and without the phase shift of π/4 in (3.57) and

(3.58). The constellations alternate between the two for the consecutive symbols

and this can be expressed as
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s2 tð Þ¼
cos 2πf 0tð Þcos ϕnð Þ� sin 2πf 0tð Þsin ϕnð Þ! nthsymbol

cos 2πf 0tþ
π

4

� �
cos ϕnð Þ� sin 2πf 0tþ

π

4

� �
sin ϕnð Þ! nþ1ð Þthsymbol:

(
ð3:59Þ

Note that in (3.59), ϕn is the phase value for the nth symbol in Fig. 3.16.

The complete phase constellation associated with π/4-QPSK is shown in Fig. 3.21.

Since the waveforms alternate between the two, there will be no phase jumps of

0, π, and π/2 in the π/4 QPSK waveform reducing the sharp jumps seen with QPSK

and OQPSK waveforms. A waveform of the π/4 QPSK signal is shown in Fig. 3.22.

It is seen from the waveform that the phase difference between successive symbols

is now limited to an odd multiple of π/4, and the jumps of π/2 and π have been

eliminated. A slightly modified version of π/4-QPSK is called π/4-DQPSK (Dif-

ferential QPSK) which uses the accumulated phases so that the waveform can be

written as

s tð Þ ¼ cos 2πf 0tþ
π

4

� �
cos θnð Þ � sin 2πf 0tþ

π

4

� �
sin θnð Þ, ð3:60Þ

where

θn ¼ θn�1 þ ϕn: ð3:61Þ

The waveform corresponding to π/4-DQPSK is shown in Fig. 3.23 and identical

to the one for π/4-QPSK. The advantage of π/4-DQPSK is the fact that differential

encoding (accumulated phases) is used, permitting an easy differential detection as

well.
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Fig. 3.21 π/4 QPSK
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3.5.5.6 Symbol Error in M-ary PSK

When a sequence of bits (i.e.,) symbols is transmitted as in the case with M-ary

systems, the calculation of error rates is not as straightforward as in the case of a

binary case which only has one bit/symbol. Since it is possible to encode or map the

k bits into M symbols in many ways, we need to ensure that mapping is done to

minimize errors. For example, if the mapping is done such that adjacent symbols

differ only by a single bit, then, if and when an error occurs, that symbol will be

misidentified as the one above it or below it. This form of mapping is known as the

gray encoding shown in Table 3.1, and in this case only a single bit error in a

sequence exists (Cahn 1959; Prabhu 1969; Schwartz 1980; Gagliardi 1988; Simon

et al. 1995; Haykin 2001; Anderson 2005).

For the M-ary PSK, we will assume that we have a gray level encoding. A

constellation of an M-ary PSK is shown in Fig. 3.24.

We assume that M is large and just as in the case of the BPSK and QPSK, the

length of the vector is
ffiffiffiffiffiffi
2E

p
, which is the radius of the circle. Since the angular

separation between the adjacent vectors 2π/M rad, we can calculate the separation

between the adjoining symbols vectors, dmin, as it was defined for the case of

binary modulation schemes. Using the law of cosines, we have (Gagliardi 1988;

Taub and Schilling 1986)

d2min ¼ 4Esin 2 π

M

� �
: ð3:62Þ

EE

Fig. 3.24 A generic MPSK

constellation
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We can now obtain an approximate expression for the symbol error rate without

undertaking a rigorous analysis. If we have gray encoding, the error results from

misidentifying the symbol either as the one above it or below it. Since the separa-

tions are equal, these two errors will also be equal. Thus, the symbol error rate will

be twice the error in misidentifying the symbol. The expression for the symbol error

can now be written using (3.40) as

ps eð Þ � 2Q

ffiffiffiffiffiffiffiffiffi
d2min

2N0

s0@ 1A ¼ 2Q

ffiffiffiffiffiffiffiffi
2E

2N0

r
sin

π

M

� �	 

: ð3:63Þ

Specifying E as the symbol energy and identifying it as Es and the bit energy as

Eb, (3.63) becomes

ps eð Þ � 2Q

ffiffiffiffiffiffiffiffi
2Es

2N0

r
sin

π

M

� �	 

¼ 2Q

ffiffiffiffiffiffiffiffiffiffi
2kEb

N0

r
sin

π

M

� �	 

: ð3:64Þ

The equivalent bit error rate for M-ary PSK can be obtained from (3.64).

Consider the case of QPSK. A symbol error occurs when either the first bit or the

second bit, or both bits are in error. Therefore,

ps eð Þ ¼ pb eð Þ þ pb eð Þ � pb eð Þpb eð Þ � 2pb eð Þ: ð3:65Þ

Extending this argument, we can write that in general for MPSK

ps eð Þ � kpb eð Þ: ð3:66Þ

The symbol error rates for coherent MPSK are plotted in Fig. 3.25. One can see

that the error rates increase as M increases, and for M ¼ 2 and 4 there is very little

difference between the values of the error rates. This suggests the advantage of

using QPSK over BPSK without incurring the need for additional SNR to maintain

a required error rate, yet taking advantage of the lower bandwidth requirement of

QPSK. From (3.64) and (3.66), it is clear that the bit error rates of coherent BPSK

and QPSK are identical (Sklar 2001; Proakis 2001). Since QPSK, OQPSK, and π/4
QPSK are simply different versions of the 4-level PSK schemes, they all have the

same bit error rates.

We can now revisit the earlier discussion on spectral efficiencies. We have seen

that QPSK requires half as much bandwidth as BPSK (Fig. 3.13). As M increases,

the symbol duration T ¼ Ts increases. Since Tb is identified as the bit duration, we

have Ts ¼ kTb. Thus, as M increases, the null-to-null bandwidth is reduced by k.
This means that for the M-ary PSK system, the spectral efficiency goes up with M.

On the other hand, we see that the symbol error continues to increase with

k and, therefore, the power efficiency of M-ary PSK starts going down as

M increases. Beyond a certain point, the increase in the minimum SNR required

to maintain an error rate overwhelms any advantage gained through an
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improvement in bandwidth efficiency; M-ary PSK ceases to be a viable option. This

is given in Table 3.2 which shows the spectral efficiencies and the minimum SNR

required to maintain a specified BER.

Both 8-level PSK and π/4 DQPSK are used in traditional wireless systems. The

former is the modem used in the third generation GSM systems (EDGE) while the

latter was the modem for the American Digital Cellular and Japanese Digital

Cellular systems, before the providers decided to switch to CDMA based systems

which use QPSK (Winters 2000; Olivier et al. 2003).

Prior to looking at nonlinear modulation schemes, we will look at a hybrid

amplitude phase shift keying scheme, mentioned earlier (Prabhu 1980; Sklar

1983a, b; Webb 1992; Proakis 2001).

Even though this scheme is not used in wireless communications, modems based

on this scheme offer a few advantages over MPSK. This scheme is more commonly

known as M-ary Quadrature Amplitude Modulation (MQAM). The details of this

scheme appear next.
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Fig. 3.25 Symbol error rates for coherent MPSK

Table 3.2 Spectral

efficiencies of MPSK and the

SNR required to maintain a

BER of 1e–6

M Eb/No dB η bits/s/Hz

2 10.5 0.5

4 10.5 1

8 14 1.5

16 18.5 2

32 23.4 2.5

64 28.5 3
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3.5.5.7 M-ary QAM

A quadrature modulation scheme is also used in analog modulation. It is a means by

which two channel amplitude modulation can be achieved requiring only the

bandwidth required to transmit one channel, thus providing a significant bandwidth

saving over transmitting two messages using frequency division multiplexing two

carrier frequencies. The modulated signal in an analog QAM can be written as

s tð Þ ¼ m1 tð Þ cos 2πf 0tð Þ � m2 tð Þ sin 2πf 0tð Þ: ð3:67Þ

In (3.67), m1(t) and m2(t) are two analog baseband signals. It can be seen that the
QPSK waveform in (3.57) and the QAM signal in (3.67) are same. Thus, it can be

seen that the inphase and quadrature representation in (3.67) also represent a digital

signal. If m1(t) and m2(t) are allowed to take only �1, we have the 4-level QAM.

The difference between MQAM and MPSK is that in the former the information

bits are encoded in both amplitude and phase while in the latter, the information bits

are encoded in phase only (Thomas et al. 1974; Webb 1992; Proakis 2001). Thus, if

we replace (3.57) as given below,

s tð Þ ¼ Ai cos ϕið Þ cos 2πf 0tð Þ � Ai sin ϕið Þ sin 2πf 0tð Þ: ð3:68Þ

We get the MQAM waveform. Note that for a 4-QAM, Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Es=Ts

p
, we see

that 4-QAM and 4-PSK are exactly identical. Both of them have identical vector

lengths. However, for M > 4, the vectors can take different lengths. The case of

M ¼ 8 is shown in Fig. 3.26 with four possible ways of generating 8-QAM.

All the constellations shown are “rectangular” indicating that there are unique

phases and vector lengths. It is clear that the symbol error rates will be a function of

the particular signal constellations used. As M increases, the multiplicity of con-

stellations makes it difficult to derive a single expression for the symbol error.

However, it can be easily seen from Fig. 3.26 that while for MPSK each symbol

only has phase encoding, for MQAM there are two pieces of information for each

symbol, the length of the vector and the phase. Thus, for M > 4, we intuitively

expect that in a given average symbol energy (or SNR), the symbol error rates for

MQAM will be less than the error rates for MPSK. In other words, while the

spectral efficiency of MQAM and MPSK are identical, MQAM provides a higher

power efficiency. A quantitative measure of this improvement b has been shown to

be (Gagliardi 1988; Simon et al. 1995; Proakis 2001; Sklar 2001)

β ¼ 1

2 sin 2 π=Mð Þ
3

M � 1

� �
: ð3:69Þ

As mentioned earlier, for M ¼ 4, the power efficiency of PSK and QAM are

identical. For M ¼ 4, a few values of β are given in Table 3.3

Comparing QPSK and 4-QAM, for the trade-off with a slightly complex

receiver, the power efficiency can be increased with QAM.
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3.6 General Nonlinear Modulation Schemes

One of the problems with linear modulation schemes is the presence of phase

discontinuities and the consequences arising from it such as the regeneration of

the sidelobes resulting in cross talk (Amoroso 1980; Prabhu 1981; Proakis 2001;

Anderson 2005). This brings up the examination of the nonlinear modulation

schemes which result in constant envelopes. One such modulation scheme

discussed earlier was the frequency shift keying scheme with orthogonal functions

or orthogonal FSK. There are variations of this theme of constant envelope mod-

ulations through the use of different pulse shapes, which can lead to modulation

schemes different from FSK, e.g., the minimum shift keying (MSK) or the Gaussian

Table 3.3 Improvement in

power efficiency of MQAM

over MPSK

M β (dB)

4 1

8 1.65

16 4.2

32 7.02

64 9.95

Fig. 3.26 MQAM signal space
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minimum shift keying (GMSK). Before we look at those schemes, let us determine

the minimum frequency separation required to make the FSK orthogonal.

3.6.1 Frequency Shift Keying

We take the example of a binary FSK, we have the two signals

s1 tð Þ ¼ cos 2πf 1tþ θð Þ
s2 tð Þ ¼ cos 2πf 2tð Þ: ð3:70Þ

In (3.70), f1 and f2 are the two carrier frequencies and y is a constant phase. Use

of this constant phase of arbitrary angle will allow us to separate the coherent FSK

and noncoherent FSK. For the two signals to be orthogonal, we must haveð T

0

s1 tð Þs2 tð Þdt ¼
ð T

0

cos 2πf 1tþ θð Þ sin 2πf 2tð Þdt ¼ 0: ð3:71Þ

Equation (3.71) simplifies to

cos θð Þ sin 2πΔf Tð Þ þ sin θð Þ cos 2πΔf Tð Þ � 1½ � ¼ 0, ð3:72Þ

where

Δf ¼ f 1 � f 2: ð3:73Þ

For a coherent FSK, there will be no arbitrary phase and hence for orthogonal

FSK,

sin 2πΔf Tð Þ ¼ 0: ð3:74Þ

This leads to

Δf ¼ 1

2T
ð3:75Þ

On the other hand, for noncoherent FSK, the arbitrary phase θ 6¼ 0 and, therefore,

the only solution to (3.72), exists when simultaneously

sin 2πΔf Tð Þ ¼ 0

cos 2πΔf Tð Þ � 1½ � ¼ 0:
ð3:76Þ

This happens only when

2πΔf T ¼ 2π: ð3:77Þ
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This leads to

Δf ¼ 1

T
: ð3:78Þ

Comparing (3.75) and (3.78) we see that the minimum separation of frequencies

for coherent orthogonal FSK is only half as much as the value for noncoherent FSK,

suggesting that coherent FSK is more bandwidth efficient than noncoherent FSK.

We had already argued that the error rate in binary orthogonal FSK can be obtained

from the earlier results.

We can now look at a form of FSK which does not lead to discontinuities in the

waveform.

3.6.2 Digital Frequency Modulation and Minimum Shift
Keying

But, the FSK still does not have a smooth waveform since there are sudden jumps in

frequency as bits alter between 1 and 0. This can be overcome using the technique

of continuous phase frequency shift keying (CPSFK) (Nuttall and Amoroso 1965;

Miyagaki et al. 1978; Sundberg 1986). This method is also sometimes referred to as

Digital Frequency Modulation (DFM) because the approach is similar to an analog

frequency modulation, shown in Fig. 3.27 (Aulin and Sundberg 1982; Noguchi

et al. 1986; Proakis 2001; Shankar 2002).

Instead of applying an analog signal to a frequency modulator (FM), the bit

stream is the input. If b’s represent the bit stream, the input to a frequency

modulator is expressed as

v tð Þ ¼
X1

m¼�1
bng t� nTð Þ: ð3:79Þ

In (3.79), b’s take values of� and g(t) is a rectangular pulse with unit area of 1/2

g tð Þ ¼ 1

2T
, 0 � t � T,

¼ 0 otherwise:
ð3:80Þ

The pulse shape g(t) is shown in Fig. 3.28.

The output of the FM is given by

Frequency
Modulator   
(index h)ν(t) 

DFM signal

Fig. 3.27 Block diagram of

a digital frequency

modulator (DFM)
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s tð Þ ¼ A0 cos 2πf 0tþ 2πh

ð t

�1
v tð Þdτ þ ϕ0

	 

: ð3:81Þ

In (3.81), ϕ0 a constant phase (can be zero) and h is the FM index given by

h ¼ 2f dT, ð3:82Þ

where fd is the frequency deviation. The DFM signal can be expressed as

s tð Þ ¼ A0 cos 2πf 0tþ θ tð Þ½ �, ð3:83Þ

where

θ tð Þ ¼ 2πh

ð t

�1
v τð Þdτ: ð3:84Þ

The continuous nature of the phase term in (3.84) makes this modulation format

CPFSK. Defining q(t) as

q tð Þ ¼
ð t

0

v τð Þdτ, 0 � t � T ð3:85Þ

the DFM signal in (3.81) becomes

s tð Þ ¼ A0 cos 2πf 0tþ πh
Xn�1

k¼�1
bk þ bnhq t0ð Þ

" #
, n� 1ð ÞT � t � nT: ð3:86Þ

With t0 ¼ t � (n � 1)T. If h ¼ 0.5, (3.86) becomes

s tð Þ ¼ A0 cos 2πf 0tþ bn
πt0

2T
þ π

2

Xn�1

k¼�1
bk

" #
, n� 1ð ÞT � t � nT: ð3:87Þ

For the two bits represented by�1, the two frequencies corresponding to the two

bits become ( f0 � (1/4T )) and ( f0 + (1/4T )), which makes the difference equal to

1/2T giving the case of orthogonal FSK. For the value of h ¼ 0.5, (3.87) is also a

Time t

g(t)

1

2T

T

Fig. 3.28 DFM pulse shape
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form of minimum shift keying (MSK). Thus, one way to create MSK is to use

CPFSK with a modulation index h ¼ 0.5 as shown in Fig. 3.27.

A typical MSK waveform is shown in Fig. 3.29. One can see that there is a

smooth transition between the symbols/bits which provides a constant envelope.

A more common means of generating MSK is to modify the arrangement used

for OQPSK (Pasupathy 1979). The diagram of the MSK modulator is shown in

Fig. 3.30. An additional multiplication with a second carrier is introduced in the

OQPSK modulator to realize the MSK. This second carrier has a frequency of 1/4T
which produces the same effect as that seen in CPFSK, where T is once again the bit

duration to generate the orthogonal modulation format (Simon 1976; Prabhu 1981;

Ziemer and Ryan 1983; Svensson and Sundberg 1985; Sadr and Omura 1988;

Klymyshyn et al. 1999).

The MSK waveform generated is shown in Fig. 3.31 which appears to be

different from the one obtained using the DFM. Both forms are MSK waveforms.

They differ because of the direct nature of generation from CPFSK in one case and

staggered nature from OQPSK in the other case (Amoroso and Kivett 1977; Akaiwa

1997; Pasupathy 1979; Hambley and Tanaka 1984). The power spectrum of MSK is

shown together with that of BPSK and QPSK. One can see the disadvantage of

MSK. It has a higher bandwidth based on the first zero crossing. However, MSK has

a much lower bandwidth if we measure 35 dB bandwidth, suggesting that, com-

pared with QPSK or BPSK (Amoroso 1980), MSK will result in negligible prob-

lems from power amplifier nonlinearities.

0 1 2 3 4 5 6 7 8
-1.5

-1

-0.5
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A
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Fig. 3.29 MSK waveform
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While MSK is interpreted as a form of FSK using a half sinusoidal pulse shape,

other pulse shapes can also be used. One of the pulse shapes that was discussed

earlier was the Gaussian, which did not meet the Nyquist’s criterion of the required
zero crossing in the time domain. But the Gaussian pulse shape does offer an easy

Input data

Tb

E
ve

n

O
dd

+

-
MSK signal

I

Q

Delay Tb X

X

X

cos[2πfmt]

sin[2πfmt]

cos(2πf0t)

sin(2πf0t)

m

b

1
4T

X
Ts=2Tb

Ts=2Tb

∑

Fig. 3.30 MSK modulator using the OQPSK modulator approach
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Fig. 3.31 MSK waveform generated using the OQPSK type modulator
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means of controlling the bandwidth requirement for transmission. Combined with

DFM it becomes an ideal means of generating modulated signals in wireless.

This leads to the so-called Gaussian Minimum Shift Keying (GMSK) which is

the modulation format in the second generation GSM systems (Amoroso 1976,

1979; Linz and Hendrickson 1996).

3.6.3 Gaussian Minimum Shift Keying

AGMSK signal can be created by introducing a Gaussian low pass filter prior to the

frequency modulator in the DFM setup shown in Fig. 3.32.

If h(t) is given by

h tð Þ ¼
ffiffiffi
π

p
α

exp � π2t2

α2

� �
ð3:88Þ

the input to the modulator, v(t), is given by

v tð Þ ¼
X1
k¼�1

bnh tð Þ∗g t� nTð Þ ¼
X1
k¼�1

bnc t� nTð Þ: ð3:89Þ

where c(t) is h(t) * g(t). The parameter α is related to the 3 dB bandwidth (B) of
the low pass filter and expressed earlier in (3.23) as

α ¼ 0:5887

B
ð3:90Þ

and the GMSK modulation is characterized by the parameter BT. The GMSK

pulse shapes are shown in Fig. 3.33. The corresponding spectra are shown in

Fig. 3.34.

After some algebra, the pulse shape at the input to the FM modulator can be

written as

c tð Þ ¼ 1

4T
erf

nT � tffiffiffi
2

p
σ

� �
� erf

n� 1ð ÞT � tffiffiffi
2

p
σ

� �	 

: ð3:91Þ

A typical GMSK signal (BT ¼ 0.3) is plotted in Fig. 3.35. The GMSK spectrum

is plotted in Fig. 3.36 (Rowe and Prabhu 1975; Murota and Hirade 1981; Kuchi and

Prabhu 1999; Murota 2006; Elnoubi 2006).

Frequency Modulator
(modulation index = 0.5)ν(t)

GMSK signalGaussian LPF
h(t) c(t)

Fig. 3.32 A typical GMSK modulator using the concepts of DFM
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3.6.4 Orthogonal M-ary FSK

We can obtain the symbol error rates in MFSKmodems using the approach that was

used in connection with MPSK. Typical BFSK and 3-level FSK constellations are

shown in Fig. 3.37.

Since all the M vectors are orthogonal, the separation between any one symbol

and any other remaining symbol will be the same as dmin given by
ffiffiffiffiffiffiffi
2Es

p
(Simon

et al. 1995; Sklar 2001). Also, when a symbol is received, an error can occur such
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Fig. 3.34 Spectra of the GMSK pulse shapes for various values of BT
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T

Fig. 3.33 GMSK pulse

shapes for various values

of BT
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Fig. 3.35 GMSK signal for BT ¼ 0.3
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that it can be identified as any one of the remaining (M � 1) symbols. Since all of

them are separated equally, the symbol error rate will be (M � 1) times the error in

detecting one. In terms of (3.40), the symbol error in coherent orthogonal MFSK

becomes

ps eð Þ � M � 1ð ÞQ
ffiffiffiffiffiffi
Es

N0

r� �
: ð3:92Þ

The symbol error rate for MFSK is plotted in Fig. 3.38.
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Fig. 3.37 Orthogonality of the signals results in identical separation between the signals regard-

less of the value of M, namely
ffiffiffiffiffiffiffi
2Es
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We can also determine the relationship between the symbol error and bit error in

MFSK. Consider the case ofM¼ 8. In this case, an error in detecting any one symbol

will lead to an incorrect decision of any one of the remaining (M � 1) or 7 signals.

Thus, the error might occur with equal probability in any one of the (2k � 1)

symbols. If we examine the first bit of M symbols, there will be equal number of

0’s and 1’s. Thus, if there was a symbol error (one of the bits incorrectly identified), it

could happen in (M/2 ¼ 2k�1) ways since there are (M/2) bits of the other type.

Therefore, the ratio of the bit error to symbol error can be expressed as

pb eð Þ
ps eð Þ ¼

M=2ð Þ
M � 1

¼ 2k�1

2k � 1
: ð3:93Þ

When the number of bits in a sequence is large (largeM and large k), the ratio of
the error rates becomes

pb eð Þ
ps eð Þ �

1

2
: ð3:94Þ

Combining the MFSK and MPSK schemes, we can write that

ps eð Þ
k

� pb eð Þ � 2k�1

2k � 1
ps eð Þ: ð3:95Þ

The relationship between the two error rates can also be expressed in terms of

M as

ps eð Þ
log2M

� pb eð Þ � M=2ð Þ
M � 1ð Þ ps eð Þ: ð3:96Þ

Note that the quantity on the left is the bit error rate (best case) for MPSK.

3.6.5 Error Rates for MSK, OQPSK, π/4 QPSK, and GMSK

As mentioned earlier, OQPSK and π/4 QPSK are forms of QPSK. The error rates

for those modulation schemes are all identical. Since MSK is a form of OQPSK

with a different form of pulse shaping, the error rates for MSK are identical to those

of QPSK when a coherent receiver is used. Since GMSK and MSK are similar

except for the pulse shape (of limited bandwidth), the bit error rate for GMSK can

be written as (Rappaport 2002; Shankar 2002)
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p eð Þ ¼ Q

ffiffiffiffiffiffiffiffiffi
ε
2E

N0

r� �
: ð3:97Þ

The parameter ε accounts for the limited bandwidth and is

ε ¼ 0:68 BT ¼ 0:3,
0:85 BT ! 1:

�
ð3:98Þ

3.7 Error Rates for Differentially Encoded Signals

So far we have discussed coherent detection schemes. It is also possible to detect

the signals noncoherently. There exist differential encoding schemes such as

differentially encoded BPSK as well as differentially encoded QPSK, π/4 QPSK,

and so on. Such differentially encoded signals can be detected using a coherent

receiver. But often, these differentially encoded signals are also detected using a

variety of noncoherent receivers and, hence, the error rates will vary depending on

the specific detection scheme used (Edbauer 1992; Simon and Divsalar 1997;

Miller and Lee 1998; Gagliardi 1988; Proakis 2001; Haykin 2001). We will look

at the example of noncoherent receiver for orthogonal FSK and extend the results to

noncoherent BPSK. We will start with the signals for orthogonal FSK as

si tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf itþ ϕð Þ, 0 � t � T, i ¼ 1, 2: ð3:99Þ

Note that the two frequencies are chosen so that the two signals form an

orthogonal set. The receiver structure is shown in Fig. 3.39.

While the outputs of the coherent detectors were Gaussian variables, the pres-

ence of the envelope detectors leads to non-Gaussian statistics for the outputs.

If ri is the received signal, we have

ri tð Þ ¼ si tð Þ þ n tð Þ: ð3:100Þ

Note that n(t) is the same additive white Gaussian noise considered earlier.

If x1 and x2 are the sampled outputs, error probability is given by

p eð Þ ¼ 1

2
Prob the correct channel 1ð Þsample < the incorrect channel 2ð Þsample½ �

1

2
Prob the correct channel 2ð Þsample < the incorrect channel 1ð Þsample½ �:

ð3:101Þ
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Since the two channels are identical, we have

p eð Þ ¼ Prob the correct channel sample < the incorrect channel sample½ �:
ð3:102Þ

Thus,

p eð Þ ¼
ð1
0

ð1
x1

f x1; x2ð Þdx1 dx2: ð3:103Þ

Since the two signals are uncorrelated,

p eð Þ ¼
ð1
0

f x1ð Þ
ð1
x1

f x2ð Þdx1 dx2: ð3:104Þ

Because of the BPF and matched filter, there will only be noise in the incorrect

channel; in the correct channel there will be signal and noise. The noise is modeled in

inphase and quadrature form, with each components having zero mean Gaussian

statistics, the density function of x2 (incorrect channel) will be Rayleigh distributed as

f x2ð Þ ¼ x2
σ2c

exp � x22
2σ2c

� �
U x2ð Þ: ð3:105Þ

The noise variance is

σ2c ¼ 2
N0

2

� �
Wf , ð3:106Þ

where N0 was defined earlier in connection with (3.12). In the channel, the presence

of the signal makes the envelope arising out of two Gaussian random variables with

one of them nonzero because of the presence of the signal. This leads to Rician

BPF
f1

BPF
f2

ri(t)

Envelope
detector

Envelope
detector

Envelope
Matched
filter

Envelope
Matched
filter

Compare

Fig. 3.39 Noncoherent detection of orthogonal BFSK. The bandpass filters have a bandwidth of

(Wf ¼ 1/T ). The outputs are sampled every T s
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statistics for the envelope (Davenport and Root 1958; Gagliardi 1988; Cooper and

McGillem 1986; Haykin 2001)

f x1ð Þ ¼ x1
σ2

exp � x21 þ A2

2σ2c

� �
I0

x1A

σ2c

� �
U x1ð Þ: ð3:107Þ

In (3.107), I0(.) is the modified Bessel function of the first kind and A is the signal

amplitude (envelope). The error rate becomes

p eð Þ ¼
ð1
0

x1
σ2

exp � x21 þ A2

2σ2c

� �
I0

x1A

σ2c

� �ð1
x1

x2
σ2

exp � x22
2σ2c

� �
dx2 dx1: ð3:108Þ

Solving (3.108), we have

p eð Þ ¼ 1

2
exp � A2

4σ2c

� �
¼ 1

2
exp � A2

4N0Wf

� �
¼ 1

2
exp �A2T

4N0

� �
: ð3:109Þ

The envelope of the signal is related to energy/bit as

E ¼ A2T

2
: ð3:110Þ

The error rate now becomes

p eð Þ ¼ 1

2
exp � E

2N0

� �
: ð3:111Þ

The noncoherent receiver for BFSK is easier to implement since it does not

require the use of two separate local oscillators with each matched to the respective

frequencies of the BFSK signals.

We will now look at noncoherent reception of BPSK, specifically what is known

as differential phase shift keying (DPSK). Let the two signals be (Gagliardi 1988;

Haykin 2001)

s1 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tþ ϕð Þ, 0 � t � T, ð3:112Þ

s2 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tþ ϕþ πð Þ, 0 � t � T: ð3:113Þ

There is a unique difference between the noncoherent receiver for BPSK and the

one for BFSK. While there are two unique envelopes for BFSK, for BPSK the

envelopes are the same. Thus, there is no fixed decision region. The decision will

be based on the successively received signal. For the case of DPSK, we can view the
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transmitted signals or received signals as if each bit transmitted as a binary signal

pair as

x1 tð Þ ¼ s1; s1ð Þ or s2; s2ð Þ 0 � t � 2T,
x2 tð Þ ¼ s1; s2ð Þ or s2; s1ð Þ 0 � t � 2T:

ð3:114Þ

In (3.114), (si; sj)(i; j ¼ 1; 2) denotes that si(t) is followed by sj(t). Note that the
first T s of the waveform of one of the signals in (3.114) will be the last T s of the

previous waveform, and so on. Also, from (3.114), it is clear that x1 and x2 will be

orthogonal (over a period of 2T s) as

z 2Tð Þ ¼
ð2T
0

x1 tð Þx2 tð Þdt ¼
ð T

0

s1 tð Þ½ �2dt�
ð T

0

s2 tð Þ½ �2dt ¼ 0: ð3:115Þ

Now that we have seen that we can create orthogonal signals, we can use (3.111)

to obtain an expression of the error rate of the noncoherent binary PSK receiver as

p eð Þ ¼ 1

2
exp � E

N0

� �
: ð3:116Þ

In (3.116), the energy is double because of the duration of the orthogonal signal

“2T.” A receiver structure for detection is shown in Fig. 3.40

An optimal noncoherent receiver has been shown to be one that uses a local

oscillator without the need for a phase match (Fig. 3.41).

The differentially encoded BPSK can be easily generated from the binary data.

Instead of transmitting a phase of “0” and “π,” differentially encoded phases are

transmitted by comparing the data with an arbitrary bit (for example, a “1”).

s1,s1

Σ

s2,s2

s1,s2

s2,s1

Σ

Decision
Input

Fig. 3.40 A noncoherent receiver
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Table 3.4 Phase encoding for DPSK

Let bk denote the raw data and ck denote the encoded data. An example of the

data encoding is given in Table 3.4. The relationship between the raw data and

encoded data is expressed as

ck ¼ bk � ck�1 ð3:117Þ

or

ck ¼ bk � ck�1 : ð3:118Þ

In (3.117) and (3.118), � represents the modulo-2 addition and the overbar

represents the complement. Equation (3.118) is used for encoding data in Table 3.4.

The transmitted bits (symbols) are

sk tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tþ ϕkð Þ, k ¼ 0, 1, 2, . . . : ð3:119Þ

The error rates for binary phase and frequency shift keying modems are com-

pared for the case of coherent and noncoherent receivers in Fig. 3.42.

We will also examine the 8-level PSK scheme used in EDGE offered by GSM.

The simple approach, very similar to the differential encoding employed with

BPSK, can be extended (with some modifications) to differential 8PSK. First, we

can write the 8PSK signal as

sk tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Es

Ts
cos 2πf 0tþ ϕkð Þ, k � 1ð ÞTs � t � kTs:

r
ð3:120Þ

In (3.120), Es is the symbol energy and Ts is the symbol duration, equal to three

times the bit duration. The phase fk will be a multiple of (2π/8) chosen from the

X
0

T

∫ X

Delay
T

Decision
Input Output

Fig. 3.41 Optimal noncoherent receiver

Table 3.4 Phase encoding

for DPSK
k 0 1 2 3 4 5 6 7

bk 1 �1 �1 1 1 �1 1

ck 1 1 �1 1 1 1 �1 �1

ϕk 0 0 π 0 0 0 π π
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constellation shown in Fig. 3.43. The constellation is based on the gray level

encoding discussed earlier.

The complete gray code is given in Table 3.1 and the phase encoding for the

8-PSK is given in Table 3.5. Note that for each symbol (kth), we have three bits, xk,
yk, and zk.

Instead of transmitting the kth symbol with the phases listed in table, we will use

the differential encoding so that the transmitted phase of the kth symbol is
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θk ¼ ϕk þ θk�1: ð3:121Þ

For the first symbol,

θk ¼ ϕk: ð3:122Þ

The transmitted signal can now be written as

sk tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2πf 0tþ ϕkð Þ

¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2πf 0tð Þ cos θkð Þ � sin 2πf 0tð Þ sin θkð Þ½ �:

ð3:123Þ

Rewriting (3.123) in quadrature form, we have

sk tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
pkx cos 2πf 0tð Þ � pky sin 2πf 0tð Þ� �

, ð3:124Þ

where the first term in (3.124) is the inphase term and the second one is the

quadrature term. Thus, an 8-PSK, differential, or otherwise can be generated

using a quadrature modulator geometry as shown in Fig. 3.44.

Thus, QPSK as well as other higher order phase modulation schemes can be

implemented using two BPSK modulators in quadrature. A simple demodulator

operating in quadrature can estimate pkx and pky, namely cpkx and cpky (as shown in

Fig. 3.45), and decode the symbols.

A typical 8-level PSK signal is shown in Fig. 3.46.

There are other ways of detecting differentially modulated signals. These

include differential detection, intermediate frequency (IF), differential detection,

as well as FM discriminator (Taub and Schilling 1986; Makrakis and Feher 1990;

Haykin 2001). These approaches result in slightly different error rates. As in the

case of the BPSK, the power efficiencies will be slightly lower than the coherent

schemes. But noncoherent approaches offer an advantage in terms of not requiring

perfect phase match.

Table 3.5 Phase encoding

for 8-PSK
xk yk zk ϕk

0 0 0 0

0 0 1 π/4

0 1 1 2π/4

0 1 0 3π/4

1 1 0 4π/4

1 1 1 5π/4

1 0 1 6π/4

1 0 0 7π/4
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We will now examine one of the multiplexing techniques being used to transmit

data at very high rates, namely orthogonal frequency division multiplexing.

3.8 Orthogonal Frequency Division Multiplexing

As discussed in Chap. 2, the chances of frequency selective fading go up with

increased data rates. One can develop an alternate strategy to transmit a large

volume of data by dividing the data into smaller segments and transmitting them

in parallel by modulating individual carriers with these data segments. By keeping

the bandwidth of these data segments low enough, we can alleviate the problems of

frequency selective fading. While in a conventional frequency division

multiplexing, each channel occupies a large bandwidth and adjoining channels do

not overlap. Typically, these bandwidths are also high. Use of nonoverlapping

Encoder
xk, yk, zk

Binary data

X
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Σ D8PSK
+

-

cos(2πf0t)

sin(2πf0t)

Fig. 3.44 Modulator for 8-PSK
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Fig. 3.45 8-PSK

demodulator
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channels is very inefficient in terms of frequency use. Instead, if we allow the

channels to overlap and still maintain orthogonality of adjoining channels, the

overall transmission capability could be enhanced (Bingham 1990, 2000). In this

case, the individual carriers form an orthogonal set and, hence, the scheme is

identified as orthogonal frequency division multiplexing (OFDM). The concepts

of a conventional frequency division multiplexing (FDM) and OFDM are illus-

trated in Fig. 3.47. In the FDM schemes, guard bands are inserted between the

multiplexed channels to prevent any spillover among adjacent channels. This

results in a waste of spectrum (Cimini 1985; Prasad 2004; Goldsmith 2005; Molisch

2005; Gao et al. 2006). In OFDM, we see that the spectra do overlap, and this

overlapping of the spectra is made possible by choosing an appropriate spectrum for

the individual channels so that inter channel interference (in this case, inter carrier

interference) does not occur.

Block diagram in Fig. 3.48 shows the elementary principle of the OFDM system.

The input serial data stream is broken into smaller streams or symbols. Let us

assume that there are N serial data elements and each of these is used to modulate

N subcarrier frequencies. Each subcarrier frequency is

f k ¼ f 0 þ kΔf , ð3:125Þ
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Fig. 3.46 Waveform of 8-PSK and D8-PSK
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Δf ¼ 1

NΔf
: ð3:126Þ

In (3.126), Δt is the inverse of symbol rate. One can view the arrangement as

akin to the transition from BPSK to QPSK. The signaling interval now has gone up

N times the signaling interval of the input. The subcarrier frequencies are also now

spaced 1/NΔt apart from each other with little or no signal distortion. Because of

this spacing and consequent orthogonality, interchannel interference does not

Frequency

Frequency

FDM

OFDM

Fig. 3.47 Frequency domain representations of FDM and OFDM
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occur. This assumes ideal carrier regeneration as shown in Fig. 3.49. Later we will

examine the departure from this ideal situation and the subsequent problem.

If one examines the transmitter and receiver for OFDM, it is clear that one

requires the necessary equipment to generate multiple carrier frequencies, making

the practical implementation of the OFDM system difficult. One also would require

appropriate filters in addition to the multiple carrier frequencies. This complexity

can be solved using the principle of digital Fourier transforms. Let us rewrite the

transmitted OFDM signal as seen in Fig. 3.48 as

S tð Þ ¼ Re
XN�1

k¼0

ak þ jbk½ �exp �j2πf ktð Þ
( )

: ð3:127Þ

If express t ¼ mΔt, (3.127) can be expressed in terms of discrete set as

S mð Þ ¼ DFT S tð Þ½ � ¼
XN�1

k¼0

ak þ jbk½ �exp �j
2π

N
mk

� �( )
: ð3:128Þ

Comparison of (3.127) and (3.128) shows that we can avoid the use of multiple

carrier frequencies through the use of discrete Fourier transform. We can therefore

replace the transmitter shown in Fig. 3.48 by a DFT based one shown in Fig. 3.50.

Note that in Fig. 3.50 the DFT is accomplished through Fast Fourier Transforms

(FFT) algorithm. Note that the simplicity gained through the use of a DFT is

coming at the cost of truncating the signal in the computer to be in (0, NΔt)
which would lead to interchannel interference. It is possible to use the Inverse

Fast Fourier Transform (IFFT) approach at the receiver to recover the data (Sari

et al. 1994; Wu and Zou 1995; Cimini 1985; Liu and Tureli 1998).

Decoder

Parallel

To

Serial

Converter

OFDM signal ak + jbk, k =1,.., N

.

.

.

cos (2 f1t)

cos (2 fNt)

sin (2 fNt)

sin (2 f1t)

∫

∫

∫

∫
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Output of the coherent receiver for the kth symbol can be expressed as

yk ¼ xkd0 þ
XN�1

l¼0, l 6¼k

dl�kxl þ n, k ¼ 0, 1, . . . ,N � 1: ð3:129Þ

In (3.129), n is the additive white noise, and the first term is the contribution

from the kth symbol with x’s representing the symbols values and d0 representing
the energy. The term in the middle represents the interchannel interference (ICI), if

any. Thus, in the absence of any, (3.129) is no different from the output of the

coherent receiver in a typical signal detection problem in additive white Gaussian

noise. We will examine the effects of ICI later in this chapter (Russell and Stuber

1995; Armada 2001; Sathananthan and Tellambura 2001).

3.9 Summary

A review of various modems of interest in wireless communications is presented.

We begin with the basics of pulses and pulse shapes typically used in different

digital modulation schemes. Their properties and the differences in terms of

spectral characteristics are introduced. Particular modulation formats are empha-

sized. We discuss in detail the different linear and nonlinear digital modulation

schemes. We obtain the error rates in ideal channels, and then compare the power

efficiencies of the modems. In addition, we provide details on several special

functions generally encountered in the analysis of digital communications.

Appendix

We will now explore a few topics of interest that were mentioned in passing earlier

in this chapter. These include the difference between signal-to-noise ratio and

energy-to-noise ratio, bandwidth concepts as they pertain to digital signals,
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synchronization, intersymbol interference, and so on. We will examine the effects

of phase mismatch in coherence detection and also problems with timing.

Noise, Signal-to-Noise Ratio, Symbol Energy, Bit Energy

We had introduced the notion of noise at the beginning of this chapter by stating

that the noise in wireless systems is assumed to be additive white Gaussian

noise (Taub and Schilling 1986; Sklar 1993, 2001; Proakis 2001). Typically signal-

to-noise ratio (SNR) is defined as the ratio of the signal power (Pr) to the noise

power (Nr)

SNR ¼ Pr

Nr
: ð3:130Þ

The noise power is given by the product of 2B and the spectral density of noise is

given by (N0/2) where B is the message bandwidth. Since we are dealing with

signals of finite energy (bit or symbol), the SNR can be written in terms of the

energy as

SNR ¼ Es

N0BTs

¼ Eb

N0BTb

: ð3:131Þ

However, in most of the analysis of wireless systems, the SNR is expressed as

either (Es/N0) or (Eb/N0) for the SNR per symbol or SNR per bit. The performance

is generally measured using the average bit error rate. Thus, if one uses MPSK or

MFSK, the symbol error rate must be converted to bit error rate for the purpose of

comparison.

Bandwidth of Digital Signals

While the notion of bandwidth is reasonably clear in analog systems, the bandwidth

of digital signals has several definitions, often leading to problems in understanding

the spectral content (Amoroso 1980; Aghvami 1993; Sklar 2001; Haykin 2001).

There are several ways of defining the bandwidth, each with different meanings.

Primarily this is because the basic shape of the message signal is a time limited one

and, thus, ideally the bandwidth is infinite. We will now look at the multiple

definitions of bandwidth and understand the relationships among them. We will

choose the example of a binary ASK or PSK. The modulated output can be

represented as
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p tð Þ ¼ pT tð Þ cos 2πf 0tð Þ, 0 � t � T: ð3:132Þ

In (3.132), the pulse train is represented by

pT tð Þ ¼
X1
n¼�1

m t� nTð Þ ð3:133Þ

with

m tð Þ ¼ �1, NT � t � N þ Tð ÞT: ð3:134Þ

The data rate R ¼ (1/T ). The spectrum of p(t) is given as

P fð Þ ¼ T

4

sin πT f � f 0ð Þ
πT f � f 0ð Þ

	 
2
þ T

4

sin πT f þ f 0ð Þ
πT f þ f 0ð Þ

	 
2
: ð3:135Þ

The spectrum of the modulated signal is shown along with the spectrum of the

basic pulse, as seen in Fig. 3.51.

We will use Fig. 3.51 to define and compare the multiple definitions.
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Fig. 3.51 Spectra of signals
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Absolute Bandwidth

Absolute bandwidth of a signal is defined as the frequency range outside (positive

frequencies) of which the power is zero. This is infinite both for the bandpass signal

p(t) and baseband signal m(t). Thus, this absolute bandwidth is not useful in

comparing digital signals in terms of bandwidth since both baseband and bandpass

signals have infinite bandwidth.

3 dB Bandwidth

The 3 dB bandwidth or half power bandwidth is the frequency range (positive

frequencies, f1, f2 with f2 > f1), where the power drops to 50% of the peak value.

The bandwidth is given by ( f2 � f1). It will have a different value for baseband
and bandpass signals.

Equivalent Bandwidth

This is the extent of the positive frequencies occupied by a rectangular window

such that it has a height equal to the peak value of the positive spectrum and a power

equal to the power contained within the positive frequencies. This is shown by the

rectangular window in Fig. 3.51 (top), and has a value of R.

Null-to-Null Bandwidth

This corresponds to the frequency band between two “nulls” on either side of the

peak. For the bandpass spectrum, this corresponds to 2R.

Bounded Spectrum Bandwidth

This is the value of ( f2 � f1) such that outside the band f1 < f < f2, the power

spectrum is down by at least a significant amount (about 50 dB) below the peak

value.

270 3 Modems for Wireless Communications



Power (99%) Bandwidth

This is the range of frequencies ( f2 � f1) such that 99% of the power resides in that

frequency band.

For the BPSK signal, these values are given in Tables 3.6 and 3.7.

Carrier Regeneration and Synchronization

For the matched filter for both BPSK and QPSK, we require a carrier wave of

matching frequency and phase at the receiver. There are two ways of accomplishing

this (Gagliardi 1988; Haykin 2001; Anderson 2005). One is to transmit a pilot tone

along with the modulated signal. This leads to the waste of transmit power since the

pilot tone also carries some power. The second method involves the regeneration of

the carrier wave from the BPSK or QPSK signal. Since the carrier recovery

Table 3.6 Definition of

bandwidths of BPSK
Definition Bandwidth

Absolute bandwidth 1
3 dB bandwidth 0.88R

Equivalent bandwidth 1.0R

Null-to-null bandwidth 2.0R

Bounded spectrum bandwidth 201.5R

Power (99%) bandwidth 20.5R

Table 3.7 Bandwidths comparison

Modulation technique 99% bandwidth

BPSK 20.5R

QPSK 10.3R

MSK 1.2R

Modulation technique Null-to-null bandwidth

BPSK 2Ρ
QPSK R

MSK 1.5R

Modulation technique 35 dB bandwidth 50 dB bandwidth

BPSK 35.12R 201R

QPSK 17.56R 100.5R

MSK 3.24R 8.18R

Modulation technique Noise bandwidth Half power bandwidth

BPSK 1.0R 0.88R

QPSK 0.5R 0.44R

MSK 0.62R 0.59R
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approaches are different for BPSK and QPSK (as we will see), we will start with the

carrier recovery system for BPSK first.

A block diagram of the carrier recovery system for BPSK is shown in Fig. 3.52.

It is based on the squaring operation on the received signal. If x(t) represents the
BPSK signal we have

x tð Þ ¼ Am tð Þ cos 2πf 0tþ ϕ tð Þ½ � þ n tð Þ: ð3:136Þ

In (3.136), m(t) represents the bipolar amplitude values of �1. The noise is n(t)
and the phase of the signal which must also be tracked along with the carrier

frequency of f0. The output of the squarer is

y tð Þ ¼ x2 tð Þ ¼ A2

2
þ A2

2
sin 2π 2f 0ð Þtþ 2ϕ tð Þ½ � þ n2 tð Þ þ � � �: ð3:137Þ

Note that the second term does not depend on m(t) at all and contains the double
frequency term. A phase locked loop with a voltage controlled oscillator (VCO) at

2f0 tracks this double frequency term. The VCO output will give a signal at a

frequency of 2f0 and phase of 2f(t). This is fed through a frequency divider

providing a signal at frequency of f0 and an approximate phase of f(t), the required
signal. We will later examine the problems arising out of phase mismatching which

can pose serious problems.

For the case of QPSK modulation, a squarer will not suffice since there are four

symbols and, therefore, four possible combinations of the bit pairs. Thus, instead of

the squarer, one must use an mth law device where m¼ 4, i.e., one needs to take the

fourth power of the incoming QPSK signal and use a frequency division by 4 to get

the matching phase and frequency as shown in Fig. 3.53. Note that even in this case,

the phase mismatch will create problems. We will explore those problems in the

next section.

x(t) y(t)

BPSK signal

Squarer

Frequency divider

1

2

VCO (2f0)

Loop

Filter

Fig. 3.52 Block diagram of carrier recovery
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For higher order phase shift keying, the concept of the QPSK carrier phase

reference generation can be extended by replacing the mth law device with theMth

law device and using a (1/M ) frequency divider.

The same approach needs to be used with the binary and M-ary FSK with the

phase and carrier frequency circuits for each of the carrier frequencies of the

incoming modulated signal at the receiver.

Digital reception also requires timing information so that the symbols and bit can

be correctly recovered at the receiver. The output is sampled at regular intervals of

T plus a small time delay that can account for the traverse of the data from the

transmitter to the receiver. This requires the need for a clock signal at the receiver.

The procedure of generating this clock signal is called symbol synchronization or

timing recovery.

Symbol synchronization can be accomplished in several ways. Often, the trans-

mitter and receiver clocks are synchronized to a master clock which takes care of

the clock recovery issues. The receiver can estimate the transit time delay and

generate the complete information necessary. The other option is to transmit a clock

frequency (1/T ). The receiver can use a very narrow bandpass signal and receive

this information. However, such a step will apportion a part of the transmit power

for the clock signal. This signal will also occupy a small fraction of a bandwidth as

well. Thus, other techniques using the received data must be used for the timing

recovery. One such technique uses the symmetry properties of the signal at the

output of the matched filter. This gives a peak at t ¼ T for a rectangular pulse.

Similar characteristics can be used with other pulse shapes as well. As in the case of

carrier phase recovery, there can be timing errors.

There are also techniques that allow the simultaneous estimation of carrier phase

and symbol timing. But the purpose of this brief discussion is to indicate that while

the carrier phase and symbol timing are critical in demodulation of digitally

modulated signals, errors in the estimation of these two will impact the overall

performance of the wireless system since such errors can lead to increased error

rates. We will explore such effects in the following section.

Problems of Phase Mismatch: Deterministic and Random,
Timing Error, etc.

In reference to phase and frequency, the coherent detector requires a perfect match

of the local oscillator. A common problem is the phase mismatch (Prabhu 1969,

Bandpass
Filter ( )4 PLL (4f0) 1

4

Frequency divider
QPSK
signal 

VCO
output

Carrier
reference

Fig. 3.53 QPSK carrier reference generator

Appendix 273



1976b; Gagliardi 1988; Shankar 2002). If the phase mismatch is ψm, the error rate

for BPSK becomes

p e;ψmð Þ ¼ Q

ffiffiffiffiffiffi
2E

N0

r
cos ψmð Þ

	 

: ð3:138Þ

Often, because of the instabilities in the local oscillator, the phase mismatch

becomes a random variable. If the pdf of the phase mismatch is Gaussian,

f ψð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2ψ

q exp � ψ � ψ0ð Þ2
2σ2ψ

" #
: ð3:139Þ

The error rate becomes

p eð Þ ¼
ð1
�1

Q

ffiffiffiffiffiffi
2E

N0

r
cos ψmð Þ

	 

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2ψ

q exp � ψ � ψ0ð Þ2
2σ2ψ

" #
dψ : ð3:140Þ

The error rate in (3.140) is plotted in Fig. 3.54 for two values of fixed phase

mismatch.

Figure 3.55 shows the effects of angular mismatch for a fixed SNR.

The error rate in the presence of random phase mismatch is shown in Fig. 3.56

for a few of the average phase mismatch (ψ0 ¼ 0) and standard deviation (σψ).
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Note that as the standard deviation of the mismatch increases, the error curves

flatten out and one sees that beyond a certain SNR, the error rate does not come

down, signifying the existence of an error floor. It is also possible to see that even
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when the mismatch is deterministic, as the mismatch approaches π/2, the argument

of theQ function in (3.138) approaches zero, suggesting a significant increase in the

error rate.

The importance of maintaining phase matching is seen from these results. The

performance of a BPSK system is ultimately determined by the integrity of the local

oscillator and its ability to provide a perfect match.

Another problem in BPSK is assumed from the assumption of perfect timing and

absence of any timing “jitter” (Cooper and McGillem 1986; Gagliardi 1988). This

means that there is some imprecision in the location of the timing instant. The signal

correlation which produces the output of the matched filter does not result in the

ideal value because the deviation from the ideal timing instant is t (timing offset)

(Fig. 3.57). We can quantify the effect of timing errors on the error probability by

considering the receiver structure of the matched filter discussed earlier.

The output of the matched filter is

x T; τð Þ ¼ �
ðT�τ

0

s tþ τð Þs tð Þdt�
ð T

T�τ
s tþ τ � Tð Þs tð Þdt: ð3:141Þ

In (3.141), s(t) is the signal. The first integral arises from the symbol/bit being

considered (0,T), and the next integral comes from the adjoining symbol/bit (T,
2T ).

The � accounts for the bipolar nature, with the first � depending on the bit in

(0,T ) and the second � depending on the adjoining window. In an ideal case of no

timing errors, t ¼ 0 and the second term vanishes and the first term provides the

maximum overlap and will be a scaled version of the energy in the bit. The integrals

are forms of correlation and the correlation function can be written as

ρ αð Þ ¼ 1

E

ð T

0

s tþ αð Þs tð Þdt: ð3:142Þ
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Fig. 3.57 Timing offset
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For the BPSK case

s tð Þ ¼ �
ffiffiffiffiffiffi
2E

T

r
cos 2πf 0tð Þ: ð3:143Þ

Using (3.143), (3.142) becomes

ρ αð Þ ¼ cos 2πf 0αð Þ: ð3:144Þ

Thus, if the bits are same, (3.141) yields

x T; τð Þ ¼ �Eρ τð Þ ¼ �E cos 2πf 0τð Þ: ð3:145Þ

If the bits are different, we have

x T; τð Þ ¼ � E cos 2πf 0τð Þ � 2

ð T

T�τ
s tþ τ � Tð Þs tð Þdt

���� ����� 
: ð3:146Þ

Simplifying,

x T; τð Þ ¼ � E cos 2πf 0τð Þ � 2E
τ

T
cos 2πf 0τð Þ

��� ���n o
: ð3:147Þ

Note that when t is equal to zero, both (3.145) and (3.147) yield the same value,

namely E. The error rate in the presence of the timing error now becomes

p e; τð Þ ¼ 1

2
Q

ffiffiffiffiffiffi
2E

N0

r� �
þ 1

2
Q

ffiffiffiffiffiffi
2E

N0

r
1� 2 εj jð Þ

	 

: ð3:148Þ

In (3.148), the normalized timing offset is

ε ¼ τ

T
: ð3:149Þ

It has been assumed that the carrier frequency is high and that

cos 2πf 0τð Þ � 1: ð3:150Þ

Just as in the case of the phase mismatch, if the timing offset is also random, the

error rate will increase further. It is essential that timing offset be reduced to a small

fraction of the bit duration. If there are problems of phase mismatch and timing

offset simultaneously, the error rate can be written as

p e; τ;ψð Þ ¼ 1

2
Q

ffiffiffiffiffiffi
2E

N0

r
cos ψð Þ

	 

þ 1

2
Q

ffiffiffiffiffiffi
2E

N0

r
cos ψð Þ 1� 2 τj j

T

� �	 

: ð3:151Þ
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In (3.148) and (3.151), E is the bit energy. The error rates in the presence of

timing mismatch are plotted in Fig. 3.58.

A similar analysis for phase mismatch in coherent QPSK can be carried out

(Gagliardi 1988). Noting that the bit error rate for QPSK is half of the symbol error

rate, the bit error rate with no phase mismatch from (3.63) is

pb eð Þ ¼ Q

ffiffiffiffiffiffi
2E

N0

r
sin

π

4

� �	 

¼ Q

ffiffiffiffiffiffi
E

N0

r	 

: ð3:152Þ

The bit error rate for coherent QPSK when phase mismatch exists becomes

pb eð Þ ¼ 1

2
Q

ffiffiffiffiffiffi
E

N0

r
cos ψð Þ þ sin ψð Þ½ �

� 
þ 1

2
Q

ffiffiffiffiffiffi
E

N0

r
cos ψð Þ � sin ψð Þ½ �

� 
:

ð3:153Þ

Note that E is the symbol energy equal to twice the bit energy in (3.152) and

(3.153).

For the case of OQPSK, a slightly different result is obtained as
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pb eð Þ ¼ 1

4
Q

ffiffiffiffiffiffi
E

N0

r
cos ψð Þ þ sin ψð Þ½ �

� 
þ 1

4
Q

ffiffiffiffiffiffi
E

N0

r
cos ψð Þ � sin ψð Þ½ �

� 
,

þ 1

2
Q

ffiffiffiffiffiffi
E

N0

r
cos ψð Þ½ �

� 
ð3:154Þ

Comparison of Digital Modems

We explored several linear and nonlinear modulation schemes, all with coherent

detection. While MPSK and MQAM are examples of linear modulation formats,

orthogonal MFSK is an example of a nonlinear modulation scheme. The other

modulation schemes discussed such as OQPSK and π/4-QPSK are similar to QPSK

while GMSK, a nonlinear scheme, uses a different pulse shape. MSK can be treated

as a derived form of OQPSK, albeit with a different pulse shape and, therefore, the

error rates and bandwidth capabilities of MSK and GMSK will depend on the pulse

shape. Hence, we will exclude them from this discussion and devote our attention to

MPSK, MQAM, and MFSK, all using the same pulse shape, e.g., a rectangular one.

Let T be the pulse duration. Because of the rectangular shape of the pulse, the null-

to-null bandwidth required for transmission will be 2(1/T ). Since MPSK and

MQAM are identical in their pulse shape/symbol shape characteristics, with

MPSK having identical vector lengths and MQAM having non-identical vector

lengths, the bandwidth for these two schemes can be written as

W ¼ 2
1

Tb

� �
1

log2M
¼ 2Rb

log2M
: ð3:155Þ

In (3.155) Rb is the data (bit) rate equal to (1/Tb). If we now define the spectral

efficiency r as

ρ ¼ Rb

W
, ð3:156Þ

using (3.155), the spectral efficiency becomes

ρ ¼ log2M

2
¼ k

2
: ð3:157Þ

Thus, we see that the spectral or bandwidth efficiency of the linear modulation

schemes such as MPSK and MQAM go up with M and since M ¼ 2k, spectral

efficiency is directly proportional to k/2.
The bandwidth requirement of MFSK is different from MPSK since the

M signals are created from carrier frequencies that are orthogonal. This requires
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that they be separated by 1/2T. Thus, the bandwidth required for the transmission of

M orthogonal FSK signals is

W ¼ M
1

2T

� �
¼ M

2 k
Rb

� � ¼ M

2log2M
Rb: ð3:158Þ

The spectral efficiency for MSFK is

Rb

W
¼ 2log2M

M
¼ 2k

2k
¼ k

2k�1
: ð3:159Þ

We see from (3.159) that the spectral efficiency decreases as M or k increases,

clearly demonstrating that MFSK is inferior to MFSK and MQAM in terms of

bandwidth utilization.

While spectral efficiency allows us to compare the modems, we also need to

examine the power or energy efficiency of the modems so that the minimum SNR

required to maintain a certain bit error rate can be used for comparison. We have

discussed the fact that the minimum SNR required to have a certain error rate

increases with M > 4 for MPSK and MQAM. However, since MQAM has dual

encoding (amplitude and phase), the SNR required for MQAMwill be less than that

for MPSK. On the other hand, the SNR required to achieve an acceptable error rate

in MFSK decreases asM increases. The values are tabulated in Table 3.8. Note that

the spectral efficiency is redefined in terms of the two-sided spectra such that the

newly defined efficiency η ¼ ρ/2 where r is defined in (3.156).

A more general way of showing the power and spectral efficiencies of the

modems is through the use of Shannon’s channel capacity theorem. The channel

capacity C can be written as

C ¼ W log2 1þ Pav

WN0

� �
: ð3:160Þ

In (3.160), Pav is the average power. Converting to energy units, (3.160)

becomes

Table 3.8 Comparison of spectral (η) and power efficiencies

MPSK MQAM MFSK

M η (bits/s/Hz) Eb/No (dB) η bits/s/Hz Eb/No dB η bits/s/Hz Eb/No dB

2 0.5 10.5 0.5 10.5 1 13.5

4 1 10.5 1 10.5 1 10.8

8 1.5 14 1.5 12.35 0.75 9.3

16 2 18.5 2 14.3 0.5 8.2

32 2.5 23.4 2.5 16.38 0.3125 7.5

64 3 28.5 3 18.55 0.1875 6.9

280 3 Modems for Wireless Communications



C ¼ Wlog2 1þ REb

WN0

� �
: ð3:161Þ

In an ideal system, C ¼ R and (3.161) becomes

R

W
¼ log2 1þ REb

WN0

� �
: ð3:162Þ

Rewriting, we have

Eb

N0

¼ 2R=W � 1

R=Wð Þ : ð3:163Þ

The plot of the spectral efficiency vs. the average energy-to-noise ratio is shown

in Fig. 3.59. The values for MPSK, MQAM, and MFSK are shown as individual

points on the plot. These values are indicated in terms of the improvement over the

respective binary modulation schemes (BPSK and BFSK). We can clearly see the

trade-off between power and spectral efficiencies of the linear and nonlinear

modulation schemes. The region above the X-axis is the bandwidth limited region;

the region below the X-axis is the power limited region. If bandwidth is available

and power is at a premium, one would use MFSK. If power constraints are absent

and bandwidth is limited, one would use the linear modulation scheme such as
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MPSK and MQAM. Furthermore, in the bandwidth limited region, we can trade-off

between the SNR complexity by choosing MQAM, which saves power but uses a

complicated transmitter/receiver.

A few additional comments are in order. Even though we had discussed several

modems, the error rates were not compared as a group. For the case of noncoherent

differential phase shift keying (DPSK), the error rate is given by

pe ¼
1

2
exp �Eb

N0

� �
: ð3:164Þ

For noncoherent binary FSK, the error rate is

pe ¼
1

2
exp �1

2

Eb

N0

� �
ð3:165Þ

For noncoherent MFSK, the (symbol) error rate (upper limit) is

p sð Þe <
M � 1

2
exp �1

2

Es

N0

� �
: ð3:166Þ

Q Function, Complementary Error Function, and Gamma
Function

We had seen that the error rate is conveniently expressed in terms of Q functions

defined as (Helstrom 1968; Sklar 2001; Papoulis and Pillai 2002; Gradshteyn and

Ryzhik 2007)

Q xð Þ ¼ 1ffiffiffiffiffi
2π

p
ð1
x

exp �z2

2

� �
dz: ð3:167Þ

The error function erf(.) is defined as

erf xð Þ ¼ 2ffiffiffi
π

p
ð x

0

exp �z2
� �

dz: ð3:168Þ

The complementary error erfc(.) function is defined as

erfc xð Þ ¼ 2ffiffiffi
π

p
ð1
x

exp �z2
� �

dz ¼ 1� erf xð Þ: ð3:169Þ
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Thus, there is also a relationship between the Q function and the complementary

error function

erfc xð Þ ¼ 2Q x
ffiffiffi
2

p� �
: ð3:170Þ

Inversely,

Q xð Þ ¼ 1

2
erfc

xffiffiffi
2

p
� �

: ð3:171Þ

The three functions, erf(.), erfc(.), and Q(.), are plotted in Fig. 3.60.

The error rate can also be expressed in terms of gamma functions (Wojnar 1986).

We had seen that the error rates are functions of the SNR (or energy-to-noise ratio)

E/N0. If we represent the error rate that can be expressed as

z ¼ E

N0

, ð3:172Þ

where

pe zð Þ ¼ Γ b; azð Þ
2Γ bð Þ , ð3:173Þ
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Γ b; azð Þ ¼
ð1
az

tb�1exp �tð Þdt ð3:174Þ

Γ bð Þ ¼
ð1
0

tbexp �tð Þdt ð3:175Þ

b ¼
1

2
, coherent detection

1, noncoherent=differential detection

(
ð3:176Þ

a ¼
1

2
, Orthoganal FSK

1, bipolar=bipodal PSK

(
: ð3:177Þ

Since

Γ
1

2

� �
¼ ffiffiffi

π
p ð3:178Þ

Γ
1

2
; x

� �
¼ ffiffiffi

π
p

erfc
ffiffiffi
x

p� �
, ð3:179Þ

we have for coherent BPSK,

pe zð Þ ¼ Γ 1=2ð Þ; zð Þ
2Γ 1=2ð Þ ¼ 1

2
erfc

ffiffi
z

p� � ¼ Q
ffiffiffiffiffi
2z

p� �
: ð3:180Þ

The error probability in (3.173) is plotted in Fig. 3.61 for the four sets of values

of (a,b).
In some of the analysis involving bit error rates in fading channels, we would

also require the use of the derivative of the complimentary error function. We have

∂
∂z

erfc zð Þ½ � ¼ � 2ffiffiffi
π

p exp �z2
� � ð3:181Þ

∂
∂z

Q zð Þ½ � ¼ � 1ffiffiffiffiffi
2π

p exp �z2

2

� �
: ð3:182Þ

Specifically,

∂
∂z

pe zð Þ½ � ¼ � 1

2
ffiffiffiffiffi
πz

p exp �zð Þ: ð3:183Þ
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There are several approximations to the Q function (Chiani et al. 2003;

Karagiannidis and Lioumpas 2007; Yunfei and Beaulieu 2007; Isukapalli and

Rao 2008). The two bounds of the Q functions are

1� 1

α2

� �
1ffiffiffiffiffiffiffiffiffiffi
2πα2

p exp �α2

2

� �
� Q αð Þ � 1ffiffiffiffiffiffiffiffiffiffi

2πα2
p exp �α2

2

� �
: ð3:184Þ

An upper bound for large values of the argument for the Q function is

Q αð Þ � 1

2
exp �α2

2

� �
: ð3:185Þ

Marcum Q Function

While the Q function defined in (3.167) is seen in error rate calculations involving

additive white noise, another form of Q function is seen in equations involving

integrals such as the ones associated with the Rician density function mentioned in

Chap. 2. One such form is the Marcum Q function defined as (Nuttall 1975; Simon

1998, 2002; Helstrom 1998; Corazza and Ferrari 2002; Simon and Alouini 2003,

2005)
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Q a; bð Þ ¼
ð1
b

x exp � x2 þ a2

2

� �
I0 axð Þdx: ð3:186Þ

Equation (3.186) can also be expressed as an infinite summation,

Q a; bð Þ ¼ exp � x2 þ a2

2

� �X1
k¼0

a

b

� �k
Ik abð Þ: ð3:187Þ

The limiting cases of the Marcum Q function lead to

Q a; að Þ ¼ 1þ exp �a2ð ÞI0 a2ð Þ
2

ð3:188Þ

Q 0; bð Þ ¼ exp �b2

2

� �
ð3:189Þ

Q a; 0ð Þ ¼ 1: ð3:190Þ

The Marcum Q function is shown in Fig. 3.62 for three values of b. The

generalized Marcum Q function is defined as
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Qm a; bð Þ ¼
ð1
b

xmexp � x2 þ a2

2

� �
Im�1 axð Þdx: ð3:191Þ

It is obvious that when m ¼ 1, the generalized Marcum function reduces to the

Q function in (3.186) as

Q1 a; bð Þ ¼ Q a; bð Þ: ð3:192Þ

The generalized Marcum Q function is shown in Fig. 3.63.

The recursion relation for the generalized Marcum Q function is

Qm a; bð Þ ¼ b

a

� �
exp � a2 þ b2

2

� �
Im�1 abð Þ þ Qm�1 a; bð Þ: ð3:193Þ

For the integer values of m the generalized Marcum Q function can be expressed

as

Qm a; bð Þ ¼ exp � a2 þ b2

2

� � X1
k¼1�m

a

b

� �k
Ik abð Þ: ð3:194Þ
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For integer values of m, (3.194) becomes

Qm a; að Þ ¼ 1

2
þ exp �að Þ I0 a2ð Þ

2
þ
Xm�1

k¼1

Ik a2
� �" #

: ð3:195Þ

One limiting case of the generalized Marcum Q function is

Qm 0; bð Þ ¼ Γ m; b2=2
� �� �

Γ mð Þ : ð3:196Þ

Equation (3.196) can be simplified for the case of integer values of m as

Qm 0; bð Þ ¼
Xm�1

k¼0

1

k!

b2

2

� �k

exp �b2

2

� �
: ð3:197Þ

A further generalization of the Marcum Q function (Nuttall 1975), which will be

useful in integrals involving fading distributions such as the ’T � m or k � m, is

Qm,n a; bð Þ ¼
ð1
b

xmexp � x2 þ a2

2

� �
In�1 axð Þdx: ð3:198Þ

Note that m and n can take any positive values including zero, and a and b lie

between 0 and 1. For the special case of m ¼ n + 1, (3.198) can be expressed in

terms of the generalized Marcum Q function of (3.191) as

Qnþ1,n a; bð Þ ¼ anQnþ1 a; bð Þ, ð3:199Þ

with a further special case of

Q1,0 a; bð Þ ¼ Q1 a; bð Þ ¼ Q a; bð Þ: ð3:200Þ

Intersymbol Interference

The issue of intersymbol interference was brought up earlier in connection with the

choice of the appropriate pulse shapes (Sklar 2001; Haykin 2001). We will now

briefly review the concepts behind intersymbol interference and the way to char-

acterize problems arising from it. Consider an ideal low pass filter with a transfer

function as shown in Fig. 3.64. It has a bandwidth of (1/2T ), and if one looks at the
corresponding time function in Fig. 3.65 we see that the impulse response is a sin

c function.
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Two other sin c functions are also plotted, one delayed by +T and the other

delayed by �T. We can see that the pulse shapes are such that at every T s interval,

the maximum of any given pulse has zero contributions from the other pulses since

the sin c function goes through zero. In other words, for transmission of data

occupying a duration of Ts, there will be no contribution from adjoining bits

(or symbols) if we can choose the sin c pulse. Since the bandwidth of such a

pulse is (1/2T ), use of such pulses will lead to transmission with the best spectral

efficiency because this BW is only equal to (R/2) where R is the data rate given by

(1/T ).
However, such a condition is not ideal for two major reasons. First, the filter

response is far from ideal and real filters would have a gradual fall off beyond

f ¼ (1/2T ). This would mean that the pulses after passage through filters will be

distorted leading to overlaps at sampling instants resulting in intersymbol interfer-

ence (ISI). Second, ideal sampling at exact multiples of T is also not practical since

timing errors would be present leading to contributions from adjoining symbols and

resulting in ISI which leads to increase in error rates.

One of the ways to mitigate ISI is to use a raised cosine pulse shape as discussed

earlier. The raised cosine pulse shape can be expressed as

f

|H(f)|

T

(-1/2T) (1/2T)0

Fig. 3.64 Ideal LPF

transfer function

-T 0

t

h(t)

T

Fig. 3.65 Impulse response

(s) of ideal LPF
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h tð Þ ¼ sin c 2Wtð Þ cos 2παWtð Þ
1� 16α2W2t2

	 

: ð3:201Þ

In (3.201), α is the roll-off factor and W is the bandwidth of the ideal low pass

filter shown in Fig. 3.66 and corresponding to the ideal pulse for the highest data

rate transmission, i.e.,

W ¼ 1

2T
: ð3:202Þ

Pulse shapes corresponding to three values of α ¼ 0, 0.5, and 0.9 are shown in

Fig. 3.66. The corresponding spectra are shown in Fig. 3.67. As can be seen, α ¼ 0

corresponds to the case of a sin c pulse and an increase in values demonstrates the

shrinking of the sidelobes which can reduce the chances of ISI. The value of α ¼ 1

corresponds to the full roll-off raised cosine pulse. One can see that the bandwidths

of the pulses increase with α. The BW of theWR raised cosine pulse can be written

in terms of W as

WR ¼ W 1þ αð Þ: ð3:203Þ

Thus, for a full raised cosine pulse with α ¼ 1 requires twice the BW of a sin

c pulse. Defining

f 1 ¼ W 1� αð Þ, ð3:204Þ

the spectrum of the raised cosine pulse shapes are

t

h(t)

α = 0.9

α = 0.5

α = 0

0 T-T

Fig. 3.66 Raised cosine

pulses
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H fð Þ ¼

1

2W
, 0 � fj j < f 1

1

4W
1� sin

π fj j �Wð Þ
2W � 2f 1

	 
� 
, f 1 � fj j2W � f 1

0, fj j 	 2W � f 1

8>>>><>>>>: : ð3:205Þ

For ɑ ¼ 1, we have

1

4W
1� sin

π fj j �Wð Þ
2W � 2f 1

	 
� 
, 0 � fj j < 2W

0, fj j 	 2W

8><>: ð3:206Þ

and, the corresponding pulse shape becomes

h tð Þ ¼ sin c 4Wtð Þ
1� 16W2 � t2

: ð3:207Þ

At the receiver, pulse shaping is employed to make the pulse shapes to be of a

raised cosine type so that ISI will be minimum. We will now look at eye patterns

which show the effects of ISI.

Eye patterns allow us to study the effect of dispersion (pulse broadening) and

noise in digital transmission. An eye pattern is a synchronized superposition of all

possible realizations of the signal by the various bit patterns. We can easily create

them using Matlab by considering the transmission of rectangular pulse (width T)
passing through a low pass filter of bandwidth B. For a given pulse width, increas-

ing values of BT means less and less distortion. Two eye patterns are shown in

Figs. 3.68 and 3.69. The one for a low value of BT appears in Fig. 3.68. In both

f
(1/2T) (3/4T)

|H(f)|

0
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Fig. 3.67 Spectra of the

raised cosine pulses
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cases, additive white noise has also been added. The one with a higher value of BT

appears in Fig. 3.69.

The width of the eye opening provides information on the time interval over

which the received signal can be sampled without being impacted by ISI. One can

see that a higher value of BT results in a wider eye, while a lower value of BT

results in a narrow eye.

T 2T 3T

Fig. 3.68 Eye pattern (low value of BT)

T3T2T

Fig. 3.69 Eye pattern (high value of BT)
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Chapter 4

Modeling of Fading and Shadowing

4.1 Introduction

In this chapter, we will review the statistics of signal degradation in wireless

channels. This degradation arises from fading and shadowing individually as well

the simultaneous existence of fading and shadowing. Several models are available

in literature for the description of the random variations in signal power (Clark

1968; Bullington 1977; Aulin 1979; Loo 1985; Jakes 1994). Simple fading models

will be reviewed first and then the models for shadowing. This will be followed by

models which describe cases where fading and shadowing are present simulta-

neously (Hansen and Meno 1977; Suzuki 1977; Shankar 2004, 2010a, b). Most of

the simple models fail to account for the signal fluctuations fully and accurately,

and modifications to these models, or new ones, are necessary to achieve a better

description of the randomness in signal strength. A different generation of models is

also necessary in light of the fact that developments on wireless data communica-

tions have taken us from the traditional communications involving a single trans-

mitter site and a receiver site to a more complex one involving relay stations,

multiple input and multiple output arrangements, and so on (Andersen 2002a; Salo

et al. 2006a, b; Karagiannidis et al. 2006a, 2007; Shankar 2011a, b). This makes it

necessary to include cascaded approaches to modeling of the signal strengths.

Toward the end of the chapter, we will study special models which encompass

most if not all of the simple models described earlier. We will use unified

approaches which will permit us to describe the newer generation of wireless

systems (Yacoub 2007a, b; Karadimas and Kotsopoulos 2008, 2010;

Papazafeiropoulos and Kotsopoulos 2011a).

While models are important in expanding the understanding of wireless chan-

nels, they must also be characterized in terms of known quantities. This allows us to

compare several of them to see which one offers the best fit for a specific wireless

environment. This means examining both the first order and second order statistics

of the density functions of the power and comparing the different quantitative
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measures available to contrast these models. Furthermore, we also need to establish

the association and relationships among the various models making it possible to

choose a simpler analytical model over a complex one. The quantitative measures

of the statistical characteristics of these models include the amount of fading,

average bit error rates, outage probabilities, and entropies (Simon and Alouini

2005).

Three new sections have been added in the updated edition. These cover

descriptions and analysis of some of the newer models for fading and shadowing.

For the benefit of the readers, one of the new sections is devoted to random number

simulations pertaining to all the models described in this chapter. This covers

simulation of densities, distributions, error rates, and outage probabilities.

We begin with a description of the McKay model for fading (McKay 1932;

Holm 2002; Holm and Alouini 2004; Shankar 2015). The effect of shadowing is

also incorporated to provide a complete description of the signal strength fluctua-

tions in wireless channels. A complementary approach based on mixture densities

for modeling signal strength fluctuations in wireless channel is also presented

(Atapattu et al. 2011). For each analysis undertaken, Matlab scripts are presented

with full annotations to illustrate the analytical concepts described in this chapter.

These Matlab scripts only cover the new sections.

4.2 Background

In wireless communications, the transmitted signals often do not reach the receiver

directly. As the power is lost due to attenuation and absorption by the intervening

medium, the signals reach the receiver after undergoing scattering, diffraction,

reflection, etc., from the buildings, trees, and other structures in the medium

(channel) between the transmitter and the receiver (Gilbert 1965; Clark 1968;

Stein 1987; Braun and Dersch 1991; Jakes 1994). Thus, there exist multiple paths

for the signal to reach the receiver and the signals arriving through these paths add

inphase. Since the amplitude and phase of the signal from each of these paths can be

treated as random variables, the received power will also be random. This random

fluctuation of power is identified as “fading” in wireless systems (Hansen and Meno

1977; Loo 1985; Shankar 2002a, b; Simon and Alouini 2005). These power

fluctuations have a very short period and hence, the fading is referred to as

“short-term fading.” The geometry of the transmission and reception of signals is

sketched in Fig. 4.1.

It shows four different paths (the actual number of paths may be higher) between

the transmitter and the receiver. These paths are independent and do not encounter

other objects or obstructions. Instead of the simple scenario drawn in Fig. 4.1,

signals might be reaching the receiver after multiple scattering in the channel: the

signal in a path encounters more than one object in its path. This is shown in

Fig. 4.2.
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This phenomenon causes fluctuations in the received signal that have a period

longer than those associated with short-term fading. These fluctuations are identi-

fied as “long-term fading” or “shadowing” (Suzuki 1977; Hansen and Meno 1977;

Loo 1985; Coulson et al. 1998a; Kim and Li 1999; Fraile et al. 2007). Figure 4.3

shows the typical received signal profiles. The thick line represents the attenuated

signal reaching the receiver. The heavy dotted line with a slow variation is

the shadowing are long-term fading and the “short-term fluctuations” seen riding

on the heavy dotted line represent the short-term fading. Thus, the realistic case of

the received signal consists of the transmitted signal that reaches the receiver as it

undergoes attenuation and passes through the “shadowed fading channel” resulting

in randomly varying and attenuated signals.

Transmitter
Receiver

path # 1

path # 2

path # 3

path # 4 

(LOS)

Fig. 4.1 The concept of multipath transmission. While path # 4 is the line-of-sight (LOS) path, the

other paths take either reflection, refraction, scattering, or diffraction as the mechanism to reach

the receiver

Transmitter Receiver

Fig. 4.2 The concept of multiple scattering. Each of the multiple paths depicted in Fig. 4.1 could

take multiple bounces to reach the receiver (path shown with a continuous line on the top)

4.2 Background 301



It must be noted that the short-term fading might be accompanied by frequency

dependent effects, which limit the bandwidth capability of the channel. In this

work, our discussion will not address such “frequency selective fading” channels;

we will only examine channels that are considered as “flat,” implying that the short-

term fading does not alter the frequency characteristics or bandwidth capability of

the channel (Jakes 1994; Steele and Hanzó 1999; Simon and Alouini 2005). We

also assume that neither the transmitter nor the receiver is in motion; we exclude the

effects of any frequency modulation caused by the Doppler effect, commonly

labeled as “Doppler fading.” In other words, we will only be considering channels

that are considered as “slow” (relative speed of the transmitter/receiver negligible)

instead of the “fast” (relative speed of the transmitter/receiver high) channels. Thus,

the analysis below deals with wireless channels for which fading can be described

as “slow” and “flat.” We will briefly discuss the effects of motion of the transmitter/

receiver when we examine the second order statistics of a few selected cases toward

the end of this chapter.

We will now explore different ways to describe the statistical fluctuations of the

received signal arising from fading and shadowing occurring separately as well as

concurrently. We will also examine the effects of fading on the transmission of

information through the channel using several quantitative measures so that we can

compare the different models in terms of their ability to take all the possible channel

conditions.

4.3 Models for Short-Term Fading

Short-term fading in wireless channels has been described using several models.

These include the simple models such as Rayleigh as well as complex models such

as the κ � or η� μ ones and the cascaded ones (Jakes 1994; Andersen 2002b; Uysal
2005; Karagiannidis et al. 2007; Sagias and Tombras 2007; Papazafeiropoulos and

attenuation
fading
shadowing

Distance

P
ow

er

Fig. 4.3 The attenuation,

short-term fading and

shadowing in wireless

channels
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Kotsopoulos 2011b). The primary difference among these models is the flexibility

in modeling the statistical characteristics of the channels that can accommodate

mild, moderate, and severe fading conditions existing in the channel. These models

also differ on the number of parameters necessary to completely define them: the

Rayleigh model with a single parameter contrasted to the complex models with 2, 3,

and more parameters. These models also come with varying degrees of analytical

complexities, making the application of these models to the study of wireless

channels often difficult.

We will now look at all these models starting with the Rayleigh fading model

and followed by the other ones.

4.3.1 Rayleigh Fading

To understand fading, we have to examine the manner in which the signals from the

transmitter reach the receiver. The simplest way to visualize this situation is

through the use of the multipath phenomenon (Jakes 1994; Pahlavan and Levesque

1995, 2005; Steele and Hanzó 1999; Shankar 2002a, b; Prabhu and Shankar 2002).

A typical multipath scenario is shown in Fig. 4.1 where the transmitter sends a

simple sinusoidal signal at a carrier frequency of f0. Use of a sinusoidal signal is a
reasonable approach since we are only dealing with a “flat” channel that does not

introduce any frequency dependent changes. The received signal er(t) arising from

the propagation of the signal via multiple paths in the channel can be expressed as

er tð Þ
XN
i¼1

ai cos 2πf 0tþ ϕið Þ: ð4:1Þ

The number of multiple paths is N, which can be treated as equivalent to the

number of scattering/reflecting/diffracting centers or objects in the channel. The ith
multipath signal component has an amplitude ai and a phase ɸi. Equation (4.1) can

be rewritten in terms of inphase and quadrature notation as

er tð Þ cos 2πf 0tð Þ
XN
i¼1

ai cos ϕið Þ � sin 2πf 0tð Þ
XN
i¼1

ai sin ϕið Þ ð4:2Þ

where the first summation (associated with the cosine term) is identified as the

inphase term and the second summation (associated with the sine term) is identified

as the quadrature term. If the locations of the structures are completely random, one

can safely assume that the phase ɸ’s will be uniformly distributed in the range

{0,2π}. The amplitude of the received signal can then be expressed as

er tð Þ ¼ X cos 2πf 0tð Þ � Y sin 2πf 0tð Þ, ð4:3Þ
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where

X ¼
XN
i¼1

ai cos ϕið Þ, Y ¼
XN
i¼1

ai sin ϕið Þ: ð4:4Þ

Under conditions of large N, X, and Y will be independent identically distributed

(i.i.d) Gaussian random variables of zero mean by virtue of the central limit

theorem (Papoulis and Pillai 2002a, b). This Gaussianity of X and Y also leads to

the envelope of the received signal,

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
ð4:5Þ

to be Rayleigh distributed (Papoulis and Pillai 2002a, b). The probability density

function (pdf) of the received signal envelope, fR(a), will be given by

f R að Þ ¼ a

σ2
exp � a2

2σ2

� �
U að Þ: ð4:6Þ

In (4.6), σ2 is the variance of the random variables X (or Y) and U(.) is the unit

step function. The subscript (R) of the pdf in (4.6) and subscripts in all the other pdfs
later in this chapter merely indicate the nature of the statistics associated with

fading, i.e., in this case, Rayleigh. Note that if the envelope of the signal is Rayleigh

distributed, the power, P ¼ A2, will have an exponential pdf, given by

f R pð Þ ¼ 1

P0

exp � P

P0

� �
U pð Þ: ð4:7Þ

Once again, the subscript R relates to the nature of the statistics, which in this

case is classified as Rayleigh. In (4.7), 2σ2 has been replaced by the average power

P0 of the received signal.

The phase y of the received signal is also random and one can obtain the pdf of

the phase as well. The phase y is given by

Θ ¼ tan �1 Y

X

� �
ð4:8Þ

and the pdf of the phase can easily be obtained from the fact that X and Y are zero

mean and i.i.d Gaussian random variables. It can be expressed as

f R θð Þ ¼ 1

2π
, 0 � θ � 2π: ð4:9Þ

In other words, the phase is uniformly distributed in the range {0,2π} and it can

also be seen that the phase and the envelope are independent, i.e.,
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f R a; θð Þ ¼ f R að Þf R θð Þ ð4:10Þ

Among other characteristics pertaining to fluctuations in signal power, the

unique feature of the Rayleigh fading is the independence of the phase and envelope

statistics as expressed in (4.10). The phase becomes much more important when we

examine the fading conditions which depart from Rayleigh, a special case that will

be discussed in Sect. 4.2. Figure 4.4 shows the Rayleigh pdf for several values of the

average power. The corresponding exponential densities are also shown.

A typical faded signal generated through simulation (N ¼ 10) is shown in

Fig. 4.5.

The histogram of the envelope and the Rayleigh fit corresponding to the data

used in Fig. 4.5 are shown in Fig. 4.6.

Rayleigh density function is not the only pdf that can be used to model the

statistics of short-term fading. It has limited application in a broader context

because of its inability to model fading conditions that result in significant degra-

dation in performance of wireless systems. It also cannot model fading conditions

where the level of fading is not as severe as it is in a Rayleigh channel (Nakagami

1960; Coulson et al. 1998b). From (4.7) it is seen that the pdf of the power is a

single parameter distribution and that the parameter is the average power, limiting

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

f(
p)

Power p

0 1 2 3 4 5 6 7 8 9 10
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0.5
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Envelope a

2σ2=1

2σ2=3

2σ2=5

P0=1

P0=3

P0=5

Rayleigh pdf

Exponential pdf

Fig. 4.4 Rayleigh and exponential densities. Note that the average power has no impact on the

level of fading
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Fig. 4.5 The short-term fading signal (power) for ten multiple paths. The simulation was

undertaken for a carrier frequency of 900 MHz
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the flexibility of the model. In other words, the Rayleigh model does not allow

modeling of channels having the same average power, but exhibits different fading

characteristics which can lead to variation in error rates and outage rates (the

received power falling below a fixed threshold power, etc.). To understand these

issues, it is necessary to quantify the level of fading. The parameter used to measure

levels of fading is the amount of fading (AF) defined as (Nakagami 1960; Simon

and Alouini 2005)

AF ¼ P2
� �� Ph i2

Ph i2 : ð4:11Þ

Note that in (4.11), h.i represents the statistical average. Making use of the kth
moment of the exponential pdf in (4.7), given by

Pk
� �

R
¼ Pm

0

Γ k þ 1ð Þ
Γ kð Þ ð4:12Þ

where г(.)is the gamma function, (4.11) becomes

AFR ¼ 1: ð4:13Þ

Thus, the amount of fading in a channel that has Rayleigh pdf for the envelope is

equal to unity. If the amount of fading is larger than unity we have severe fading

conditions. We will classify that channel as a pre-Rayleigh, and if the fading

conditions are better than Rayleigh, AF will be less than one, and we identify

such a channel as post-Rayleigh. Thus, it is obvious that Rayleigh pdf is inadequate

to model all fading conditions that exist in wireless channels, and other models need

to be explored. One such model is based on the Nakagami-m pdf, but before we look

at the Nakagami-m pdf, let us go back to the multipath model described earlier and

make minor modifications to it by considering a direct path or a line-of-sight (LOS)

between the transmitter and receiver. Such a multipath scenario results in the Rician

fading channel as described below (Nakagami 1960; Jakes 1994).

4.3.2 Rician Fading

By including a direct path between the transmitter and receiver as shown in Fig. 4.1,

represented by a0 cos(2πf0t), where a0 is a constant, (4.3) becomes

eRice tð Þ ¼ X cos 2πf 0tð Þ � Y sin 2πf 0tð Þ þ a0 cos 2πf 0tð Þ
¼ X þ a0ð Þ cos 2πf 0tð Þ � Y sin 2πf 0tð Þ

ð4:14Þ
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The received power will now be given by

P ¼ X þ a0ð Þ2 þ Y2 ¼ X02 þ Y2 ð4:15Þ

where X’ is a Gaussian random variable with a nonzero mean equal to a0. The
pdf of the power will be given by

f Ri pð Þ ¼ 1

2σ2
exp � pþ a20

2σ2

� �
I0

a0
2σ2

ffiffiffi
p

p� �
U pð Þ, ð4:16Þ

where I0(.) is the modified Bessel function of the first kind (Abramowitz and

Segun 1972; Gradshteyn and Ryzhik 2007). The corresponding density function for

the envelope was given in Chap. 2. Equation (4.16) is the pdf of the received signal

power in a Rician fading channel, which differs from the Rayleigh channel because

of the existence of an LOS path in addition to multiple indirect paths. In light of the

presence of this direct path, the amount of fading will be less than what is observed

in Rayleigh fading as will be indicated later.

The mean and the second moment associated with the pdf in (4.16) is

Ph i ¼ 220 þ a20,

Ph i ¼ 8σ40 þ a40 þ 8a20 þ σ20:
ð4:17Þ

The Rician factor K0 is defined as

K0 ¼ a20
2σ2

: ð4:18Þ

The quantity K0 is a measure of the strength of the LOS component, and when K0

! 0, we have Rayleigh fading. As K0 increases, the fading in the channel declines

(Simon and Alouini 2005). If the average received power is PRi, it can be expressed
as

PRi ¼ Ph iRi ¼ 2σ2 þ a20: ð4:19Þ

We now have, and

2σ2
1

K0 þ 1
PRi ð4:20Þ

and

a20 ¼
K0

K0 þ 1
PRi: ð4:21Þ

308 4 Modeling of Fading and Shadowing

http://dx.doi.org/10.1007/978-3-319-53198-4_2


Using (4.19)–(4.21), the pdf of the received power in Rician fading becomes

f Ri pð Þ ¼ K0 þ 1

PRi

exp �K0 K0 þ 1ð Þ p

PRi

	 

I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 K0 þ 1ð Þ

PRi

s
p

 !
U pð Þ: ð4:22Þ

The density function of the amplitude or envelope is

f Ri að Þ ¼ K0 þ 1

PRi

� �
exp �K0 K0 þ 1ð Þ a

2

PRi

	 

I0 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 K0 þ 1ð Þ

PRi

s
p

 !
U að Þ: ð4:23Þ

The mean and the second moments of a Rician envelope are

Ah i ¼
ffiffiffiffiffiffiffiffiffi
πPRi

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 þ 1

p K0I0
K0

2

� �
þ I0

K0

2

� �
þ K0I1

K0

2

� �	 

exp �1

2
K0

� �
: ð4:24Þ

A2
� � ¼ PRi ð4:25Þ

Note that when K0 ¼ 0, (4.22) becomes (4.7) and (4.23) becomes the Rayleigh

pdf in (4.6), the CDF associated with the Rician distributed envelope can be

expressed as

FRi að Þ ¼
ða
0

2x
K0 þ 1

PRi

� �
exp �K0 � K0 þ 1ð Þ x

2

PRi

	 

I0 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 K0 þ 1ð Þ

PRi

s !
dx:

ð4:26Þ

Simplifying, we have

FRi að Þ ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 K0þ1ð Þ=PRið Þa
p

0

xexp �K0 � x2

2

	 

I0 x

ffiffiffiffiffiffiffiffi
2K0

p� �
dx: ð4:27Þ

Equation (4.27) can be simplified using the Marcum Q function Q(α,β)

Q α; βð Þ ¼
ð1
β
xexp � x2 þ α2

2

� �
I0 αxð Þdx: ð4:28Þ

And the CDF in (4.27) becomes

FRi að Þ ¼ 1� Q
ffiffiffiffiffiffiffiffiffiffi
2K0,

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

K0 þ 1

PRi

� �s
a

" #
: ð4:29Þ
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It can be easily seen that as K0 increases, the amount of fading decreases and, as

K0 ! 1, the amount of fading becomes zero. In other words, the existence of the

direct path can reduce the levels of fading in wireless channels. When K0 becomes

zero, (4.30) becomes unity, the amount of fading in a Rayleigh channel. The Rician

pdf in (4.22) is plotted in Fig. 4.7 for several values of K0.

The amount of fading in a Rician channel can be obtained from the moments of

the pdf in (4.22) and can be expressed as

AFRi ¼ 1þ 2K0

1þ K0ð Þ2 : ð4:30Þ

The amount of fading in a Rician channel is plotted in Fig. 4.8, clearly demon-

strating the reduction in the level of fading as the Rician factor increases, thus

justifying its classification as an example of a post-Rayleigh channel.

Another aspect of the Rician pdf is that as the value of K0 increases, the density

function becomes more symmetric. Indeed, it can be shown that the Rician pdf for

the envelope approaches the Gaussian statistics. This aspect has practical implica-

tions since the received signal amplitude R in a wireless communication system can

be written as

r tð Þ ¼ As tð Þ þ n: ð4:31Þ
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Fig. 4.7 Rician pdf. The average power PRi has been taken to be unity
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In (4.31), s is the deterministic transmitted signal amplitude and n is the additive
white Gaussian noise. The parameter A represents the fading as that modeled as

having a Rayleigh, Nakagami, or Rician pdf for the envelope. In (4.31) its useful-

ness in the analysis of wireless systems will be discussed in greater detail in

Chap. 4. As K0 increases, the density function of A approaches Gaussian and the

signal detection problem in (4.31) then becomes a simple matter of estimating the

mean of a Gaussian variable. This is shown in Fig. 4.9. The Gaussian pdf has a

mean and variance equal to the mean and variance of the Rician envelope,

respectively.

At low values of the Rician factor K0, the two density functions are different.

But, as the value of K0 increases, the curves start overlapping more and more. For

K0 values of 5 dB and beyond, it is impossible to see the difference between the two

densities.

There is another interesting aspect of the Rician fading channel. While it was

noted that the phase of the received signal is uniform in the range {0,2π} in a

Rayleigh channel, the phase in a Rician channel will be neither independent of the

envelope nor uniformly distributed in the range {0,2π} (as mentioned in Chap. 2).

The pdf of the phase (Goodman 1985)

f Ri θð Þ ¼ exp �K0ð Þ
2π

þ
ffiffiffiffiffiffi
K0

π

r
cos θð Þexp �K0sin

2 θð Þ� � 1

2
þ 1

2
erf

ffiffiffiffiffiffi
K0

p
cos θð Þ

� �	 

,

�0 � θ � 2π:

ð4:32Þ
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In (4.32), erf() is the error function. When K0 goes to zero, (4.32) reverts back to

a uniform distribution as in (4.9). The density function of the phase is plotted in

Fig. 4.10, which shows that the pdf becomes narrower as K0 increases, and it will

cease to be random when K0! a. When K0 is zero, the phase has a uniform density.

We will now look at the most commonly used model to describe short-term

fading in wireless channels, namely the Nakagami model (Nakagami 1960).

4.3.3 Nakagami Fading

Based on the original work by Nakagami, the pdf of the received signal envelope in

short-term fading can be expressed as (Nakagami 1960)

f N að Þ ¼ 2mma2m�1

Pm
0 Γ mð Þ exp �m

a2

P0

� �
U að Þ, m � 1

2
, ð4:33Þ

where m is called the Nakagami parameter and г(.) is the gamma function. The

average power is P0. The moments of the Nakagami density in (4.33) are
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Ak
� � ¼ Γ mþ k=2ð Þð Þ

Γ mð Þ
P0

m

� �k=2

: ð4:34Þ

The corresponding density function of the power is

f N pð Þ ¼ mmpm�1

Pm
0 Γ mð Þ exp �m

p2

P0

� �
U pð Þ, m � 1

2
: ð4:35Þ

Equation (4.33) is commonly identified as the Nakagami-m type pdf and often

(4.35) is identified as the Nakagami-m pdf of the power or signal-to-noise ration in a

short-term fading channel. There are other types of Nakagami density functions

used in the analysis of fading channels and we will examine them later. The

Nakagami-m pdf for the envelope in (4.33) is plotted in Fig. 4.11 for a few values

of m, all having the same average power. Comparing the Nakagami-m pdf to

Rayleigh, one can see that for the same average power, the peak of the pdf moves

farther and farther to the right as m increases, allowing more flexibility to model

short-term fading since the dependence on the average power has been removed and

(4.33) only depends on m.
The cumulative distribution of the power associated with the Nakagami-m

model for short-term fading is obtained as
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Fig. 4.10 The density function of the phase associated with the Rician channel. The pdf of the

phase becomes narrower as K0 increases and becomes a delta function as K0 ! 1
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FN pð Þ ¼
ð p
0

f N αð Þdα ¼
ð p
0

mmαm�1

Pm
0 Γ mð Þ exp �m

α

P0

� �
dα

¼ γ m;
mp

P0

� �
T mð Þ½ ��1: ð4:36Þ

In (4.36), γ(,) is the incomplete gamma function defined in Chap. 2. We will

come back to the use of the cumulative distribution function (CDF) when we

examine the performance of wireless channels in terms of outage probability.

Using the moments of the Nakagami-m pdf in (4.35) given as

Pk
� �

N
¼ Γ mþ kð Þ

Γ mð Þmk
Pk
0 , ð4:37Þ

the amount of fading in a Nakagami channel becomes,

AFN ¼ 1

m
: ð4:38Þ

Equation (4.38) also provides a rationale for calling “m” the fading parameter

since the amount of fading depends entirely on it.

Even though the Nakagami-m pdf has shown to be a good fit based on experi-

mental observation, we can also provide a simple semi-analytical means to justify

its use. The approach is based on the concept of “clustering” or “bunching” of
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Fig. 4.11 Nakagami-m envelope densities with equal average powers
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scatterers. Consider the case of a wireless channel which contains a large number of

scattering centers (buildings, trees, and so forth, which reflect, scatter, diffract,

refract) as described earlier. However, instead of all of them being located in a

purely random way in the channel, they are now clustered together. Let us assume

that there are n such clusters of scatterers within the channel, with each cluster

having sufficiently large number of scatterers. We will also assume that these

clusters are located randomly within the confines of the channel, with the received

signal coming from these clusters or groups. Since we assumed that each of these

groups has sufficiently large number of scatterers, without any loss of generality,

the inphase X and quadrature Y components from them would be Gaussian distrib-

uted (Yacoub 2007c, d). Let us define Z as

Z ¼
Xn
i¼1

X2
1, ð4:39Þ

where n is an even number�2. This means that for n¼ 2, I¼ 1 represents X and

i ¼ 2 represents Y, and no information is lost in expressing Z in terms of X alone.

Note also that Z represents the power. We will now extend (4.39) to include the

cases of n being an odd number as well since (4.39) is simply the sum of the squares

of Gaussian random numbers. The pdf of Z will be a chi-square density function

given by

f zð Þ ¼ z n=2ð Þ�1

z
n=2ð Þ
0 Γ n=2ð Þ

exp � z

z0

� �
U zð Þ, ð4:40Þ

where Z0 is a constant. If we replace (n/2) by m, and z by p, the density function

will be identical to the Nakagami-m pdf for the power in (4.35) with the require-

ment that m > 1/2 since the smallest value of n ¼ 1 (except for scaling factors).

Rayleigh fading (exponential pdf for the power) is still possible with m ¼ 1, so that

n ¼ 2 and Z will be equal to

Z ¼
X2
i¼1

X2
i ¼ X2

1 þ X2
2 ¼ X2

1 þ Y2
1 ð4:41Þ

since X1 and Y1 are identically distributed. The pdf can now be generalized to

have m take non-integer values in which case (4.40) will be identical to (4.35).

Please note that treating the collection of scatterers as individual ones or treating

them as “clusters” is not in conflict since we can have a case of a single cluster with

a large number of scatterers giving rise to the Rayleigh case described in connection

with (4.7).

Two important aspects of the Nakagami-m pdf can be easily seen. First, when

m ¼ 1, (4.35) becomes identical to the exponential pdf in (4.7). Second, choice of

different values of m permits the amount of fading to vary from zero (m ¼ 1) to

2 (m ¼ 1/2). This means that at very high values of m (m! 1), the fading vanishes
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and the channel becomes a pure Gaussian channel suggesting that the channel

suffers only from additive white Gaussian noise (and possibly other forms of

noise such as impulsive noise if such exist in the channel). This comparison

between Gaussian (G) and Nakagami-m densities is shown in Fig. 4.12. As

m goes from 2 to 8, the densities overlap very well.

It is also possible to relate the Nakagami and Rician distributions (Nakagami

1960). As mentioned, Nakagami fading channel is classified as a post-Rayleigh

fading channel when m is greater than unity. This suggests that we can establish a

relationship between the Rician density and Nakagami-m density when m> 1 since

Rician is also a form of post-Rayleigh statistics. We can obtain such a relationship

by equating the expressions for the amount of fading. From (4.30), we can write

1

m
¼ 1þ 2K0

1þ K0ð Þ2 , m � 1: ð4:42Þ

Rewriting, we have

m ¼ 1þ K2
0

1þ 2K0

: ð4:43Þ
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Fig. 4.12 Nakagami (N ) and Gaussian (G) densities. As the value of the Nakagami parameter

m increases, the Nakagami density starts matching the Gaussian pdf
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Figure 4.13 shows the Nakagami-m (N ) and Rician (Ri) envelope densities. The

remarkable match between the two is clearly seen suggesting that in complicated

analysis involving Rician densities, it might be easier to work with the equivalent

Nakagami-m densities and get the results that are reasonably close.

Even though the Nakagami-m pdf allows modeling of fading conditions

better than Rayleigh fading conditions, the Nakagami-m pdf in (4.35) cannot

account for fading conditions that might lead to values of AF > 2. Note that it is

possible to know the amount of fading present in the channel (if so required) by

conducting measurements over a long period and evaluating AF in (4.11) from

the observed signal powers and estimating the moments. Thus, it is necessary to

have models which allow descriptions of fading channels which exhibit fading

levels far more severe than what are observed in the description using the

Nakagami-m pdf.

A wide range of fading conditions can be modeled using other pdfs. We will now

examine the use of gamma and Weibull distributions in this context.
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4.3.4 Gamma, Generalized Gamma, and Weibull Fading

There are several pdfs that have been used to model such channels where fading is

worse than in a Nakagami channel. The first and simplest approach to undertake

such a modeling is to rename (19). Note that (4.35) is a gamma pdf. The only

difference between the Nakagami-m pdf in (4.35) and the gamma pdf is that for the

latter values of m less than 1/2 are allowed. So, we can use the gamma pdf

straightforward for the power and the pdf of the power as per the gamma model

for short-term fading can be expressed as (Aalo et al. 2005; Yacoub 2007a, b;

Shankar 2011a, b)

fG pð Þ ¼ pm�1

Pm
g mð Þ exp � p

pg

 !
U pð Þ, m > 0, ð4:44Þ

where Pg is related to the average power. Equations (4.35) and (4.44) have

identical forms except for two factors, namely m is allowed to take any positive

values and the average powers corresponding to the pdf in (4.35) and (4.44) are

different. Thus, use of (4.44) permits us to include conditions where the fading

could be worse than what is observed in a Nakagami channel. The average power

can be obtained from the moments of the gamma pdf as

Ph iG ¼ mPg: ð4:45Þ

The amount of fading AFG in a gamma fading channel is identical to that in a

Nakagami-m channel,

AFG ¼ 1

m
: ð4:46Þ

Even removing the restriction on m and consequently changing the Nakagami

fading to gamma fading might be insufficient to model the fading observed in

wireless channels. To accommodate such channels, a generalized Nakagami or

generalized gamma channel (Coulson et al. 1998; Shankar 2002; Aalo et al. 2005;

Shankar 2010) can be defined by scaling the power by (1/s), where s is a positive

number. Let us define Pgg as

Pgg ¼ P1=s, s > 0: ð4:47Þ

The pdf of the power in (4.47) can be obtained and is expressed as

f pgg

� �
¼ spms�1

gg

Γ mð ÞPm
g

exp �ps
gg

pg

 !
U pgg

� �
, 0 < s < 1 ð4:48Þ
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Without any loss of generality, we can replace Pgg by p and we have

the expression for the pdf of the received power in a generalized gamma fading

channel as

fGG pð Þ ¼ spms�1

Γ mð ÞPm
g

exp �ps

pg

 !
U pð Þ, 0 < s < 1: ð4:49Þ

Equation (4.49) will be pdf of the power associated with the generalized

Nakagami pdf if m is restricted to values larger than 1/2. The moments of the pdf

in (4.49) are given by

Pk
� �

GG
¼ Γ mþ k=sð Þð Þ

Γ mð Þ P k=sð Þ
g ð4:50Þ

resulting in

Ph iGG ¼ Γ mþ 1=sð Þð Þ
Γ mð Þ

	 

P 1=sð Þ
g : ð4:51Þ

Equation (4.51) reduces to (4.45) when s ¼ 1. Thus, the parameter s permits an

additional level of flexibility in modeling fading channels. Using the moments of

the generalized gamma pdf given in (4.50), the amount of fading in a generalized

gamma fading channel becomes

AFGG ¼ Γ mþ 2=sð Þð ÞΓ mð Þ
Γ mþ 1=sð Þð Þ½ �2 � 1 ð4:52Þ

Note that when s becomes unity,

AFGG ¼ AFG ¼ AFN: ð4:53Þ

We can obtain the expression for the CDF of the power or SNR associated with

the generalized gamma fading channel. The CDF becomes

FGG pð Þ ¼
ð p
0

sαms�1

Γ mð ÞPm
g

exp �αs

Pg

� �
dα ¼ γ m;

ps

Pg

� �
Γ mð Þ½ ��1: ð4:54Þ

Note that the average power hPi in a GG channel is related to the parameter Pg

through (4.51) as

Pg ¼ Ph i Γ mð Þ
Γ mþ 1=sð Þð Þ

	 
s
: ð4:55Þ
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One can easily see that when s ¼ 1, the CDF in (4.54) reverts to the CDF of the

power in the Nakagami-m channel expressed in (4.36).

It is also possible to redefine the generalized gamma distribution so that instead

of the dependence of fading on two parameters, namely m and s, a new fading

parameter mw can be used. This leads to the Weibull fading model (Shepherd 1977;

Alouini and Simon 2006). The simplest way to generate the Weibull fading

conditions is to start from the Rayleigh fading or the associated exponential pdf

of the power in (4.7). Let us define a new variable W

W ¼ P1=mw , ð4:56Þ

where P is exponentially distributed with a pdf of the form in (4.7). Equation

(4.56) suggests that the power observed in this fading channel is best described in

terms of a scaled version of the power received in a typical Rayleigh channel. Using

the concept of transformation of the variables, the pdf of W can be obtained as [5]

f wð Þ ¼ mw

P0

wmw�1exp �wmw

P0

� �
U wð Þ: ð4:57Þ

Without any loss of generality, we can replace w with the variable p and, hence,

the pdf of the power in a Weibull fading channel becomes

fW pð Þ ¼ mw

P0

pmw�1exp �pmw

P0

� �
U pð Þ: ð4:58Þ

Certainly, (4.58) is much simpler than (4.49) for the generalized gamma fading

channel and more complicated than the Nakagami-m (or gamma) channels. The

fading parameter is identified as mw. It must be noted that (4.58) can also be

obtained as a special case of the generalized gamma pdf by putting m ¼ 1 and

s ¼ mw, pointing to Weibull fading being simpler than the generalized gamma

fading and justifying the scaling employed in (4.56).

The moments of the pdf in (4.58) can be expressed as

Pk
� � ¼ Γ 1þ k

mw

� �
P

k=mwð Þ
0 : ð4:59Þ

The average power in a Weibull channel becomes

Ph i ¼ Γ 1þ k

mw

� �
P

1=mwð Þ
0 : ð4:60Þ

The amount of fading in a Weibull channel, AFW, now becomes
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AFW ¼ Γ 1þ 2=mwð Þð Þ
Γ 1þ 1=mwð Þð Þ½ �2 � 1: ð4:61Þ

One can now compare the amount of fading existing in the channels by com-

paring (4.7), (4.44), and (4.49). Note that m in (4.35) and (4.44) is identical. The

CDF of the power in a Weibull fading channel can be expressed as

FW pð Þ ¼
ð p
0

mw

P0

αmw�1exp �αmw

P0

� �
dα ¼ 1� exp �pmw=P0ð Þ: ð4:62Þ

The average power in a Weibull channel with a CDF in (4.62) is related to the

quantity P0 from (4.60) as

P0 ¼ Ph i
T 1þ 1=mwð Þð Þ
	 
mw

: ð4:63Þ

The Weibull, gamma, and generalized gamma channels are compared in terms

of the amount of fading. The results are shown in Fig. 4.14.

It is clear that the generalized gamma channel offers a means to model fading

channels with widely varying levels of fading. For values of s > 1, the generalized

fading channel has less fading than the gamma channel, and for values of s < 1 the

generalized fading channel has higher levels of fading. Comparing the gamma

channel and Weibull channel, it is clear that each of them offers a different way
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of looking at the fading taking place in the channel. Note that simplicity is offered

by the Nakagami pdf with m taking values equal to and beyond 1/2 (or gamma pdf

with m taking values less than 1/2).

Now that we have looked at a few fading models, we will now examine the

models to describe shadowing in wireless systems. We will then come back to other

complex fading models such as the cascading models, κ � μ and η � μ models.

4.4 Models for Shadowing

As mentioned earlier, in wireless systems it is often observed that local average

power varies randomly from location to location within a given geographical region

(Fig. 4.2). This has been attributed to the existence of shadowing by terrain,

buildings, structures, and so on. Measurements have suggested that the density

function of the average power can be modeled in terms of a lognormal pdf or a

Gaussian pdf if the power is expressed in decibel (dB) units. The simplest way to

argue for the case of a Gaussian pdf for shadowing (expressed in dB) is to invoke the

central limit theorem for products mentioned in Chap. 2 (Coulson et al. 1998a, b;

Jakes 1994; Rappaport 2002; Laourine et al. 2007).

Shadowing can be described in terms of multiple scattering and the received

signal power can be expressed as the product of powers. The received power Z can

be expressed as

Z ¼
YJ
i¼1

Pi, ð4:64Þ

where J is the number of multiple scattering elements and Pi is the fraction of the

power scattered at each instance. Converting (4.64) into decibels (dB), we have

10log10 Zð Þ ¼ ZdBm ¼
XJ
i¼1

10log10 Pið Þ: ð4:65Þ

If J is sufficiently large, the pdf of the power on the left-hand side of equation

will be Gaussian and it can be written as

f zdBmð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2dB

p exp � zdBm � μð Þ2
2πσ2dB

" #
, ð4:66Þ

where m is the average power in dBm and σdB is the standard deviation of

shadowing. Converting back to power units in Watts or milliWatts, the pdf of

shadowing becomes
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f L zð Þ ¼ A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2dBz

2
p exp � 10log10z� μð Þ2

2σ2dB

" #
U zð Þ, ð4:67Þ

where

A0 ¼ 10

loge 10ð Þ : ð4:68Þ

Equation (4.67) is the well-known lognormal distribution. The notion of the

amount of fading defined in (4.11) is still valid when shadowing is present by itself

or concurrently with short-term fading. Using the moments of the pdf of (4.67)

given as

Zh iL ¼ exp
k

A0

μþ 1

2

k

A0

� �2

σ2dB

" #
: ð4:69Þ

the amount of fading in a shadowing channel can be obtained as

AFL ¼ exp
σ2dB
A2
0

� �
� 1: ð4:70Þ

Note that z and hZi in (4.67) and (4.69) are in watts or milliwatts. The lognormal

density functions are plotted for a few values of the shadowing parameter σdB in

Fig. 4.15. A value of m ¼ 0 dB has been assumed for these plots.
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Lognormal pdf in (4.67) is not the only pdf that has been proposed for modeling

the shadowing seen in wireless systems. Based on the analysis of terrestrial data, it

was argued that a simple gamma distribution can also be used as model shadowing

(Abdi and Kaveh 1998, 2000; Shankar 2004). The pdf of the shadowing power

Z can be expressed as

fG zð Þ ¼ zc�1

yc0Γ cð Þ exp � z

y0

� �
U zð Þ, c > 0: ð4:71Þ

Since the severity of shadowing is expressed in terms of the standard deviation

of shadowing σdB, it is necessary to establish the relationship between (m, σdB) in
(4.66) and (c and y0) in (4.71). This can be done by comparing the moments of the

lognormal pdf in (4.66) and the moments of the pdf in (4.71) after conversion into

decibel units. These parameters are related as (Abdi and Kaveh 1998; Shankar

2005)

σ2dB ¼ A2
0ψ

0 cð Þ, ð4:72Þ
μ ¼ A0 log y0ð Þ þ cð Þ½ �, ð4:73Þ

where ψ(.) and ψ 0(.) are the digamma and trigamma functions (Gradshteyn and

Ryzhik 2000, 2007). A plot of σdB vs. c is plotted in Fig. 4.16. An inverse

relationship exists between the shadowing parameter σdB and the gamma parameter

c. A shadowing level of σdB of 2 corresponds to a value of c ¼ 5 (approximately)

and σdB 8 corresponds to a value of c ¼ 0.62 (approximately).
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Even though short-term fading and shadowing are two different effects, often,

the wireless signal is subject to both at the same time (as seen in Fig. 4.2). We will

now look at ways of modeling the statistical characteristics of signals in such

shadowed fading channels.

4.5 Models for Shadowed Fading Channels

When evaluating the performance of wireless systems, it is necessary to consider

the simultaneous effect of fading and shadowing on the received signal. Such

co-existence of fading and shadowing also points to higher values of the amount

of fading that is a simple measure of fluctuations in the channel.

4.5.1 Nakagami-Lognormal Models

As mentioned earlier, the consequence of shadowing is the loss of the deterministic

nature of the mean power of the short-term faded signal. Indeed, the average power

becomes random, and, for the case of a Nakagami faded signal, (4.35) needs to be

rewritten as

f pjzð Þ ¼ mmpm�1

zmΓ mð Þ exp �m
p

z

� �
U pð Þ: ð4:74Þ

The average power P0 in (4.35) has been replaced by a random variable z. The
pdf in (4.74) is conditioned on Z ¼ z (Suzuki 1977; Hansen and Meno 1977; Simon

and Alouini 2005). Taking fading and shadowing simultaneously, the pdf of the

received signal power can now be expressed as

f pð Þ ¼
ð1
0

f pjzð Þf zð Þdz, ð4:75Þ

where f(z) is the pdf of the mean power. If we treat f(z) to be lognormal as

discussed earlier in connection with shadowing, the Nakagami-lognormal pdf for

the received power becomes

fNLN pð Þ ¼
ð1
0

mmpm�1

zmΓ mð Þ exp �m
p

z

� � A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2dBz

2
p exp � 10log10z� μð Þ2

2σ2dB

" #
dz: ð4:76Þ

Equation (4.76) is plotted in Figs. 4.17 and 4.18. For comparison, the pdf of the

power under pure Nakagami-m fading conditions are also shown. At low values of

the shadowing parameter, the density functions of the power under pure short-term
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fading and Nakagami-lognormal shadowed fading conditions are very close. How-

ever, as the severity of shadowing increases, the density functions of the power in

shadowed fading channels move to the left, indicating an increase in randomness in

the channel and potential for increased error rates. In Fig. 4.18, one can see the

worsening conditions (for a fixed value of m ¼ 1.5) with increasing value of σdB.

4.5.2 Nakagami-Gamma or Generalized K Models

The Nakagami-lognormal pdf in (4.76) is in integral form; no closed solution exists

for this pdf. Therefore, the evaluation of performance of wireless systems in

shadowed fading channels (shadowing and fading concurrently present) using

(4.76) is very cumbersome. Since it was argued that a gamma shadowing is an

excellent match to the lognormal shadowing seen in wireless systems, (4.76) can be

rewritten using the gamma pdf in (4.71) for z as
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lognormal power)

326 4 Modeling of Fading and Shadowing



fNG pð Þ ¼
ð1
0

mmpm�1

zmΓ mð Þ exp �m
p

z

� � zc�1

yc0Γ cð Þ exp � z

y0

� �
dz: ð4:77Þ

The subscript (NG) on the left-hand side identifies the pdf as Nakagami-gamma.

An analytical solution exists for (4.77) and the resulting pdf is known as the

generalized K distribution given as (Shankar 2004; Bithas et al. 2006)

fGK pð Þ ¼ 2

Γ mð ÞΓ cð Þ
b

2

� �cþm

p cþmð Þ=2ð Þ�1Kc�m b
ffiffiffi
p

p �
U pð Þ, ð4:78Þ

where b is a parameter related to the average power and Kc�m(.) is the modified

Bessel function of the second kind of order (c � m). Using the moments of the pdf

in (4.78) (Gradshteyn and Ryzhik 2007)

pk
� �

GK
¼ 2

b

� �2k Γ mþ kð ÞΓ cþ kð Þ
Γ mð ÞΓ cð Þ ð4:79Þ
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we have

ph iGK ¼ PjZh iZ ¼ cy0 ¼ mc
2

b

� �2

: ð4:80Þ

Note that if m ¼ 1, (4.76) is the pdf for the Rayleigh-lognormal channel and

(4.78) becomes the K distribution (or K-fading) as (Abdi and Kaveh 1998)

f K pð Þ ¼ 2

Γ cð Þ
b

2

� �cþ1

p cþ1ð Þ=2ð Þ�1Kc�1 b
ffiffiffi
p

p �
U pð Þ, ð4:81Þ

where the average power is given by

Ph iK ¼ c
2

b

� �2

: ð4:82Þ

The generalized K pdf is shown in Fig. 4.19a for the case of m ¼ 1 and in

Fig. 4.19b for the case of m ¼ 2. Four levels of shadowing are shown ranging from

heavy shadowing (9 dB) to weak shadowing (2 dB).

The effect of shadowed fading channels is clear from the plots of the density

functions. As the shadowing levels increase, the peaks of the density function move

toward lower values of the power, hinting that the amount of fading will be higher.

4.5.3 Nakagami-Inverse-Gaussian Model

Another model for shadowed fading channels makes use of the similarity between

the lognormal pdf and the inverse Gaussian pdf (Karmeshu and Agrawal 2007;

Laourine et al. 2009). The density function of the average power is considered to be

given by the inverse Gaussian pdf,

f IG zð Þ ¼
ffiffiffiffiffiffiffiffiffi
λ

2πz3

r
exp

λ z� θð Þ2
2θ2z

 !
U zð Þ, ð4:83Þ

where the two parameters θ and λ can be related to μ and σdB. Using the first and
second moments of the pdf in (4.83), we have

θ ¼ Zh iIG ¼ exp
μ

A0

þ 1

2

σ2dB
A2
0

� �
, ð4:84Þ
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θ2
θ

λ
þ 1

� �
¼ exp

2μ

A0

þ 2σ2dB
A2
0

� �
: ð4:85Þ

The pdf of the received signal power when the shadowing is treated in terms of

an inverse Gaussian distribution is obtained by putting (4.83) into (4.75) resulting in

fNIG pð Þ ¼ 4mm
ffiffiffiffiffiffiffiffiffiffi
λ=2π

p
λ=θ2
 �mþ 1=2ð Þ

Γ mð Þ ffiffiffiffiffiffiffiffiffi
g pð Þp� �mþ 1=2ð Þ exp

λ

θ

� �
p2m�1Kmþ 1=2ð Þ

ffiffiffiffiffiffiffiffiffi
g pð Þ

p� �
U pð Þ,

ð4:86Þ

where

g pð Þ ¼ 2λ

θ2
mp2 þ λ

2

� �
: ð4:87Þ

4.5.4 Generalized Gamma Model

Yet another model for shadowed fading channels can be created by taking a

different look at the generalized gamma pdf for short-term fading. It was suggested

that the generalized gamma pdf can also model the received power in shadowed

fading channels (Coulson et al. 1998a). Let us go back to the pdf in (4.49). This was

arrived on the basis of a simple scaling of the power so that the scaled power v is

given by

v ¼ p1=s, s > 0: ð4:88Þ

It is possible to treat the scaling in (4.88) as akin to an exponential multiplica-

tion, similar to what was described in the section on lognormal fading. Thus, scaling

should produce a shadowed fading channel. In other words, (4.88) is a case where a

short-term faded signal is scaled to produce a shadowed fading case. While s could
take any positive value in the absence of shadowing, we will now see that treating

(4.49) as the case of a shadowed fading channel will lead to limits on the value of s.
Note that v in (4.88) is a dummy variable and we can go back and replace v with

p so that the pdf of the signal power under the shadowed fading channel using the

generalized gamma model becomes

fGG pð Þ ¼ spms�1

Γ mð ÞPm
g

exp �ps

Pg

� �
U pð Þ, 0 < s < ?: ð4:89Þ

Equation (4.89) is identical to (4.49) except for the change in the condition on

s indicating that the upper limit is yet to be determined as shown by the question

mark(?) in (4.89). To obtain the relationship between the parameters of the
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generalized gamma pdf for shadowed fading channels and those of the Nakagami-

lognormal pdf, we can proceed as we had done in the case of the GK distribution.

Comparing the moments of the generalized gamma pdf and Nakagami-lognormal,

we get the relationship among the parameters of the Nakagami-lognormal and the

generalized gamma as (Shankar 2011a, b)

A2
0ψ

0 mð Þ þ σ2dB ¼ A2
0

s2
ψ 0 mð Þ: ð4:90Þ

In (4.90), ψ 0() is the trigamma function (Abramowitz and Segun 1972). Thus, the

scaling factor s is related to both the Nakagami parameter m and the standard

deviation of shadowing σdB. Examining (4.90), it is clear that if σdB ¼ 0

(no shadowing), the scaling parameter s is equal to unity and the GG pdf becomes

the Nakagami pdf. If σdB goes to 1 (extreme shadowing), s approaches zero. Thus,
the scaling parameter s must be in the range 0–1 in shadowed fading channels for

the GG pdf. This is illustrated in Fig. 4.20.

When used to describe the shadowed fading channels, the generalized gamma

distribution in (4.89) takes the form

fGG pð Þ ¼ spms�1

Γ mð ÞPm
g

exp �ps

Pg

� �
U pð Þ, 0 < s < 1: ð4:91Þ
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4.5.5 Amount of Fading in Shadowed Fading Channels

Now that we have a few pdfs for the received signal power in shadowed fading

channels, we can now use the quantitative measure of AF to compare the power

fluctuations that would be observed in those channels. Using the moments of the pdf

in (4.76) for the Nakagami-lognormal shadowing, the amount of fading is

AFNLN ¼ mþ 1

m

� �
exp

σ2dB
A2
0

� �
� 1: ð4:92Þ

Using the moments of the GK distribution given in (4.79), the amount of fading

is

AFGK ¼ 1

m
þ 1

c
þ 1

mc
: ð4:93Þ

The amount of fading in a GK channel is shown in Fig. 4.21.

Using the moments of the Nakagami-inverse Gaussian distribution in (4.86), the

amount of fading becomes
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AFNIG ¼ mþ 1

m

	 

θ þ λ

λ

	 

� 1

¼ mþ 1

m

	 

2 sin h

σ2dB
2A2

0

� �
exp

σ2dB
2A2

0

� �	 

� 1: ð4:94Þ

The amount of fading in shadowed fading channels having the generalized

gamma pdf for the power is still given by (4.52) with s < 1. The upper limit of

1 of s is also intuitively obvious if we examine the plot of AF given in Fig. 4.14.

Since the amount of fading in shadowed fading channels is worse than in channels

with fading alone, the amount of fading in shadowed fading channels with the

generalized gamma pdf will be above the curve for the gamma fading alone. This

limits the value of s to lie in the range of 0–1.

Note that while exponential (Rayleigh envelope), gamma (Nakagami envelope),

Weibull (which can be obtained from gamma pdf), and lognormal densities for the

received power are supported by theoretical and experimental observations, the

other distributions such as the inverse Gaussian are based on pure empirical

matching. This also suggests that the Nakagami-lognormal and the generalized

K distribution can also be justified on the basis of experimental and theoretical

observations. A strong case of GK distribution is based on a very general model

which can describe short-term fading, long-term fading, and concurrent instances of

both (shadowed fading channels). This is discussed in the next section where we go

back to the clustering model used earlier to justify the Nakagami distribution for

fading and take it a few steps in a different direction.

4.6 Composite Model for Fading, Shadowing,
and Shadowed Fading

Let us go back to the case of a wireless channel which is modeled so as to consist of

a number of clusters of scattering (or reflecting, diffracting, etc.) centers. The

concept is illustrated in Fig. 4.2 which shows three clusters, with each cluster

having a number of scattering/reflecting/diffracting centers consisting of buildings,

trees, people, vehicles, and other such artifacts. In the Nakagami or Rayleigh pdf,

we assumed that the clusters were separated so that the signal from each of these

clusters arrived at the receiver independently and made up the total signal at the

receiver (Andersen 2002a, b; Salo et al. 2006a, b). Now, let us make the channel a

bit more closely packed so that there is a likelihood that the signals from the

clusters could only reach the receiver after multiple scattering among them instead

of arriving independently. The transmitted signal is shown to reach the receiver

after passing through two clusters (solid line in Fig. 4.2). Let the signal power from

each of the cluster be Ci, i ¼ 1, 2, . . .. The received signal power P can now be

expressed as
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P ¼ C0 þ α1C1 þ α12C1C2 þ α123C1C2C3 þ � � �: ð4:95Þ

Equation (4.95) needs some explanation. If there is a possibility that a direct path

can exist between the transmitter and receiver, the power contributed to that

component is C0. If there is only a single cluster and, hence, no chance of multiple

scattering, the received power will come from the second term, α1C1 (dotted line in

Fig. 4.2). If there are at least two clusters and the chance of multiple scattering

exists, the received signal will come from the third term, α12C1C2, and so on. Note

that α’s are scaling factors and can be made equal to unity. Equation (4.95) further

assumes that each of those processes (i.e., power from each term) is independent of

the other.

Let us first look at the second term, α1C1. If there is no multiple scattering and

there is only a single cluster, we will now treat the scatterers within that single

cluster acting as miniclusters. This case is similar to the cluster model used to

explain the Nakagami or Rayleigh fading in connection with the pdf in (4.40).

Therefore, the second term in (4.95) will lead to pure short-term fading with a

Nakagami or Rayleigh pdf.

Now consider the third term α12C1C2. There are two clusters and the received

power is expressed as the product of the powers from the two clusters. If each

cluster power can be described in terms of a gamma pdf (Nakagami pdf for the

envelope), the received power becomes (treating α12 to be unity)

P ¼ C1 � C2, ð4:96Þ

where C1 and C2 are gamma distributed. We will now look at a few special cases

of (4.96).

If we assume that both clusters result in Rayleigh pdf for the envelopes, pdf of

the received power in (4.96) can be achieved using transformation techniques for

obtaining density functions of products. This leads to

fDR pð Þ ¼ 2
u

2

� �2
K0 u

ffiffiffi
p

p �
U pð Þ: ð4:97Þ

The parameter u is related to the average power through

ph i ¼ 2

u

� �2

: ð4:98Þ

In terms of the average power, the double Rayleigh pdf for the power in (4.97)

becomes

fDR pð Þ ¼ 2

ph iK0 2

ffiffiffiffiffiffiffi
p

ph i
r� �

U pð Þ: ð4:99Þ
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This model for shadowed fading channels is often referred to as the double

Rayleigh model and is identified by the subscript (DR). Estimating the moments of

the pdf one can see that the amount of fading (AF) is equal to 3, a fading level three

times worse than what is seen in a Rayleigh faded channel (Salo et al. 2006a, b;

Shankar and Gentile 2010). The density function of the power is shown in Fig. 4.22.

The plot of the density functions in Fig. 4.22 clearly illustrates the problem of

increased fading level in a double Rayleigh channel. The double Rayleigh pdf is

closer to the low power values than to the Rayleigh pdf, indicating that statistically

one has a higher probability of seeing lower powers in the former than in the latter.

If we assume that both clusters result in identical Nakagami-m pdf for the

envelopes, pdf of the received power in (4.96) can once again be obtained using

transformation techniques. This leads to

fDN pð Þ ¼ 2

Γ mð Þ½ �2
v

2

� �2m
pm�1K0 c

ffiffiffi
p

p �
U pð Þ, ð4:100Þ

where

ph i ¼ 2m

v

� �2

: ð4:101Þ
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Fig. 4.22 Double Rayleigh and Rayleigh densities for the power are plotted for two values of the

average power
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In terms of the average power P0, (4.100) becomes

fDM pð Þ ¼ 2

Γ mð Þ½ �2
mffiffiffiffiffiffiffi
ph ip

 !2m

pm�1K0 2m

ffiffiffiffiffiffiffi
p

ph i
r� �

U pð Þ: ð4:102Þ

The pdf in (4.102) is called the double Nakagami (DN) or double gamma

distribution. The double Nakagami pdf is compared with the Nakagami-m pdf for

power in Fig. 4.23. As it was in the case of the plot of the double Rayleigh pdf and

Rayleigh pdf in Fig. 4.22, we see that the peaks of the double Nakagami densities

are closer to the lower end of the power in contrast to the Nakagami densities.

We now consider the most general case where C1 and C2 are Nakagami-m pdfs

for envelopes with non-identical values of the Nakagami-m parameters, let us say

m1 and m2. We can use (4.78) if we replace m by m1 and c by m2. We get,

fNdN pð Þ ¼ 2

Γ m1ð ÞΓ m2ð Þ
w

2

� � m1þm2ð Þ
p m1þm2ð Þ=2ð Þ�1Km1�m2

w
ffiffiffi
p

p �
U pð Þ, ð4:103Þ

where

Ph i ¼ m1m2

2

w

� �2

: ð4:104Þ
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Fig. 4.23 Double Nakagami fading and Nakagami-m fading
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Equation (4.103) can now be expressed in terms of the average power as

fNdN pð Þ ¼ 2

Γ m1ð ÞΓ m2ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
m1m2

Ph i
r� � m1þm2ð Þ

p m1þm2ð Þ=2ð Þ�1Km1�m2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

Ph i p

r� �
U pð Þ:

ð4:105Þ

In (4.103) and (4.105) the pdf has a subscript (NdN) indicating that the two

Nakagami pdfs have identical powers but different levels of fading through m1 and

m2. It can be seen that (4.103) is identical to the GK pdf in (4.78). The K distribution

of (4.81) is a special case of (4.103) when C1 comes from an exponential pdf and C2

comes from a gamma pdf.

Note that shadowing occurs generally in conjunction with short-term fading and,

therefore, there is no need to look for modeling shadowing as a stand-alone process.

It is possible to create and analyze more complex shadowed fading channels by

considering the received power as rising out of the product of three or more clusters.

We can assume that the condition under which only a direct path exists is not

realistic and C0 can be put equal to zero. This raises the issue of the case of Rician

fading channels. To understand how Rician conditions can be included in this

model we can go back to the case of a single cluster which gave rise to a Rayleigh

or Nakagami fading channel where we assumed that the single cluster can be

considered to be made up of several miniclusters. Once that premise is accepted,

a single cluster can give rise to Rayleigh, Nakagami, or Rician when one of the

“miniclusters” is treated as contributing to the direct path. Another way to visualize

pure Rayleigh or Nakagami fading is to reclassify the third term C1C2 in (4.96) by

arguing that C2 is a deterministic scalar quantity and C1 corresponds to the case of

an exponential or gamma pdf. Thus, even multiple scattering can result in Rayleigh

or Nakagami channels if all but one of the multiple scattering components is

deterministic and thus only providing a scaling factor. This notion can now be

extended to the other terms in (4.95) so that regardless of the number of product

terms, we can always get the case of Rayleigh, Nakagami, double Rayleigh, double

Nakagami, or K or generalized K channels.

The representation of the channel in terms of (4.96) permits us to create any

number of different short-term fading or shadowed fading channels such as those

based on the generalized gamma pdf and Weibull pdf. Each of these separately

gives rise to other pdfs described as gamma–Weibull or Weibull–Weibull channels

for modeling shadowed fading channels. The representation of fading in this

manner also makes it unnecessary even to consider the lognormal shadowing

since the random variations in the channel can be described in terms of a single

cluster (Rayleigh or Nakagami fading) or two clusters (double Rayleigh, double

Nakagami, or generalized K fading). Since the evidence of Rayleigh and Nakagami

fading in wireless channels is overwhelming, use of double Rayleigh, double

Nakagami, generalized K fading, and K fading is well justified to characterize the

statistical fluctuations observed in wireless channels.
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But, before examining additional models (general models) for fading,

shadowing, and shadowed fading channels, a few comments regarding the signal

power and signal-to-noise ratio (SNR) are in order. In communications systems, the

primary contribution to the uncertainty in the received signal comes from the

additive white Gaussian noise in the channel even though it is possible that other

forms of noise such as impulse noise may also be present. Since the noise is

primarily additive and independent of the signal, we can define signal-to-noise

ratio Z as

Z ¼ P

Np
: ð4:106Þ

In (4.106), P is the signal power and Np is the noise power. Since noise power is
fixed, the density function of Z will be of the same form as the pdf of P, with
appropriate scaling from the scaling factor Np. In other words, we can say that in a

Rayleigh channel, the SNR is exponentially distributed, and in a gamma channel

the SNR is gamma distributed, and so on. Because of this, we can safely inter-

change the pdf of the power and pdf of the SNR without losing the statistical

meaning and interpretation.

4.7 General Cascaded Models

So far, we have assumed that a simple Nakagami-m pdf is a reasonable model to

describe the short-term fading in wireless systems. We also examined the case of a

double Nakagami and double Rayleigh channel to expand the range of fading

values that we can accommodate. But, for the most part, such models assume that

there is little or no multiple scattering in the channel (except when shadowing was

specifically considered). Often that is not the case; the signal leaving the transmitter

reaches the receiver after multiple scattering (Andersen 2002a, b; Chizhik et al.

2002; Shin and Lee 2004; Salo et al. 2006a, b; Karagiannidis et al. 2007). However,

it has been shown by several researchers that a more suitable way to model realistic

fading conditions when multiple scattering exists is through the use of a cascaded

approach. In this model, the received signal is treated as the product of a number of

scattering components, each with its own statistical characteristics (Salo et al.

2006a, b; Karagiannidis et al. 2007; Sagias and Tombras 2007; Yilmaz and Alouini

2009). This approach is also consistent with the notion of amplify-and-forward

relay wireless systems where there are multiple terminals between the transmitter

and receiver, offering the advantage of using several low power transmitters spread

throughout a region instead of a single transmitter operating at a high power

(Karagiannidis et al. 2006b; Trigui et al. 2009). Such an approach is characteristic

of the cooperative diversity where different users cooperate with one another to use

the notion of spatial diversity. It has also been suggested that a cascaded channel

approach is well suited to model the wireless channel propagation taking place
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through several keyholes (Chizhik et al. 2002; Uysal 2005; Shin and Lee 2004). We

will examine the modeling of such cascaded channels with a view toward charac-

terizing short-term fading in wireless.

4.7.1 Statistical Background of Cascaded Fading Channels

When the transmission between two stations (transmitter and receiver) involves

multiple interactions among the “obstructions” in the channel, the received signal

can generally be expressed in several ways. If there is no multiple scattering in the

channel the received signal-to-noise ratio (SNR) Z will be gamma distributed,

considering the channel to be a Nakagami-m type. The pdf of Z can be expressed

as (Karagiannidis et al. 2006a, b; Shankar 2011a, b)

f 1 zð Þ ¼ zm�1

bmΓ mð Þ exp �z

b

h i
, m >

1

2
: ð4:107Þ

In (4.107), m is the Nakagami parameter and г(.) is the gamma function. Note

that (4.107) is expressed in a slightly different form from (4.35) and therefore, the

average SNR in the Nakagami-m channel equal to Z01 is given by

Z01 ¼ mb: ð4:108Þ

The subscript of the pdf in (4.107) identifies the absence of any multiple

scattering in the channel. If the overall fading in the channel is the result of multiple

scattering components (N cascades), the received SNR Z of the cascaded channel

can be expressed as the product of N gamma distributed variables

Z ¼
YN
k¼1

Zk: ð4:109Þ

We will assume that these random variables are independent and identically

distributed, each with a density function of the form given in (4.107). The pdf of the

SNR expressed in (4.109) a cascaded Nakagami-m channel has been derived by

several researchers. It is obtained from the concept of the pdf of a product of

multiple random variables. This pdf can be expressed in terms of Meijer G-func-

tion, shown in Chap. 2 as (Galambos and Simonelli 2004; Nadarajah and Kotz

2006b; Mathai and Haubold 2008)

f N zð Þ ¼ 1

ΓN mð Þ b
�NGN, 0

0,N

z

bN
m� 1,m� 1, . . . ,m� 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N�terms

:

������
1
A, N ¼ 1, 2, . . . :

0
@

ð4:110Þ
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In (4.110), the subscript N identifies the pdf as one arising in an N*cascaded
channel and the pdf itself is expressed in terms of the Meijer G-function. Equation

(4.110) can also be rewritten in a slightly different form using the transformational

relationship among Meijer G-functions expressed as (Springer and Thompson

1966, 1970; Gradshteyn and Ryzhik 2007)

wkGmn
pq z

ap
bq

���� �
¼ Gmn

pq w
apþk
bqþk

���� �
: ð4:111Þ

Using (4.111), the pdf in (4.110) becomes

f N zð Þ ¼ 1

zΓN mð ÞG
N, 0
0,N

z

bN
m,m, . . . ,m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

N�terms

:

������
1
A, N ¼ 1, 2, . . . :

0
@ ð4:112Þ

The density function of the SNR in a cascaded Nakagami channel or a cascaded

gamma channel often appears in the form expressed in (4.112). Since we have

considered the gamma random variables to be independent, the average SNR Z0N in
the cascaded channel can easily be written as the product of the averages of the

individual gamma variables as,

Z0N ¼ Z0 ¼ mbð ÞN: ð4:113Þ

In writing down the expression for the average SNR in (4.113), we have dropped

the second subscript N and the average SNR is Z0.
Equation (4.112) can now be rewritten in terms of the average SNR as

f N zð Þ ¼ 1

zΓN mð ÞG
N, 0
0,N

mN

Z0

m,m, . . . ,m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N�terms

:

������
1
A, N ¼ 1, 2, . . . :

0
@ ð4:114Þ

Using the moments of the gamma random variable, the amount of fading (AF) in

a cascaded Nakagami channel (or a cascaded gamma channel) becomes

AF ¼ mþ 1

m

� �N

� 1

" #
: ð4:115Þ

The density function in (4.114) is plotted in Figs. 4.24 and 4.25. The severe

fading resulting from cascading is seen in these figures. As N increases, the density

functions are more skewed and move toward the Y-axis or toward lower values of

the SNR.

The amount fading is plotted in Fig. 4.26 and also shows the rapidly increasing

levels of fading as N increases.
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Fig. 4.24 Plot of the density function of the SNR in a cascading channel for m ¼ 1.5 for N ¼ 1

(no cascading) and N ¼ 3, 5
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Fig. 4.25 Plot of the density function of the power in a cascading channel for m ¼ 3 for N ¼ 1

(no cascading) and N ¼ 3, 5
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We can clearly see that the cascading approach allows us to model conditions

that cover wide range fading scenarios that would not have been possible with a

simple Nakagami-m model or a double Nakagami model (Nakagami 1960; Yuan

et al. 2008; Wongtrairat and Supnithi 2009). Still, the cascading model includes

those two as well and retains the ability to model all types of fading. The cascaded

approach also makes it possible to support the hypothesis of the Nakagami-gamma

model for the shadowed fading channels, whereby, we can treat the case of a

shadowed fading channel to be a form of short-term fading with a much higher

value of amount of fading over a traditional short-term faded channel modeled

using the Nakagami-m pdf (Shankar 2004; Bithas et al. 2006).

We will now look at the cumulative distributions of the SNR in an N*Nakagami

channel. The CDF can be obtained using the differential and integral properties of

the Meijer G-functions as (Gradshteyn and Ryzhik 2007)

FN zð Þ ¼
ð z
0

f N ξð Þdξ ¼ 1

ΓN mð ÞG
N, 1
1,Nþ1

mN

Z0

m,m, . . . ,m, 0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N�terms :

1

������
1
A, N ¼ 1, 2, . . . :

0
@

ð4:116Þ

The CDF is shown for m ¼ 0.5 in Fig. 4.27.

The CDF for m ¼ 1.5 is plotted in Fig. 4.28.

The problems associated with the cascading channels seen with the help of the

density functions are also supported by the CDF plots. As N increases, the CDF
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Fig. 4.26 Amount of fading in a cascaded channel
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curves move up indicating that the probability of the SNR staying below a certain

threshold goes up with increasing values of N. This is a sign that cascading leads to
fading conditions that are far more severe than what is seen in the absence of

cascading, an observation that was made earlier on the basis of the shift of the peaks

to the lower SNR values for the density functions as N increases.

The description of the cascading so far examined its use in modeling the short-

term fading seen in wireless channels. However, as we discussed, short-term fading

and shadowing coexist and we will now explore the cascading as a means to model

the shadowing in wireless channels. For this, we will treat the short-term fading as a

simple Nakagami-m type. This approach is described in the next section.

4.7.2 Cascaded Approach to Shadowed Fading Channels

It was argued earlier that the Nakagami-lognormal density function for shadowed

fading channels can be replaced by the Nakagami-gamma pdf in (4.78). This

approach produced the so-called GK distribution for the SNR in shadowed fading

channels (Abdi and Kaveh 1998; Shankar 2004; Bithas et al. 2006). Another

approach to overcome the analytical short coming of the Nakagami-lognormal

model was suggested through the use of the inverse Gaussian distribution for the

lognormal pdf (Karmeshu and Agrawal 2007; Laourine et al. 2009). While both the

Nakagami-gamma (Generalized K ) and Nakagami-inverse Gaussian (NiG)

approaches provided a simpler means to model shadowed fading, neither of them

provide the match over the whole range of fading and shadowing values. Neither of

those approximation takes into account the origin of the lognormal pdf as explained

in connection with (4.66), namely the product nature of the shadowing which

results in the lognormal pdf from the central limit theorem for products (Rohatgi

and Saleh 2001; Papoulis and Pillai 2002a, b; Andersen 2002a, b).

Shadowing can be treated as a form of cascading as suggested by some

researchers (Coulson et al. 1998a, b; Salo et al. 2006a, b; Andersen 2002a, b). It

can be treated as arising out of the product of N independent and identically

distributed gamma variables, with N equal to unity resulting in the Nakagami-

gamma (GK distribution) distribution for the shadowed fading channels (Shankar

2004; Bithas et al. 2006; Laourine et al. 2008). We can extend this notion of the

Nakagami-gamma distribution to a case of Nakagami-N-gamma distribution

whereby we replace the lognormal pdf, not with a single gamma pdf, but with a

cascaded gamma density with N cascades (Shankar 2010b).

In a shadowed fading channel, the pdf f(z) of the signal-to-noise ratio Z was

rewritten earlier as

f zð Þ ¼
ð1
0

f zjyð Þf yð Þdy: ð4:117Þ
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In (4.117), the conditionality demonstrates the effect of shadowing and for the

Nakagami short-term faded channel, we can express the conditional density in

(4.117) as

f zjyð Þ ¼ m

y

� �m zm�1

Γ mð Þ exp �mz

y

� �
, z > 0, y > 0: ð4:118Þ

Modeling shadowing as a cascading process, the average SNR in a short-term

faded signal can be expressed as the product of several components as

Y ¼
YN
k¼1

Wi: ð4:119Þ

In (4.119), N is the number of cascades and Wi is the ith element. Since it was

shown that Nakagami-gamma was a reasonable approximation to the Nakagami-

lognormal, we will treatW’s to be gamma distributed so that when N¼ 1, we obtain

the Nakagami-gamma pdf in (4.117) as discussed in (4.78). When N becomes large,

applying the central limit theorem for products, the density function of log10(Y ) in
Eq. (4.119) will be Gaussian, and we have the lognormal pdf in (4.67). Thus, by

varying Nwe expect that the pdf of N-Gamma product will tend toward a lognormal

pdf and the density function of the SNR in the shadowed fading channel will move

toward the Nakagami-lognormal density function (Tjhung and Chai 1999; Vaughn

and Andersen 2003; Simon and Alouini 2005; Cotton and Scanlon 2007).

We make the assumption that all W’s are independent and identically distributed
gamma random variables, each with parameters c and y0 such that

f wið Þ ¼ wi

y0

� �c
1

wiΓ cð Þ exp
wi

y0

� �
, wi > 0: ð4:120Þ

The density function of Y in (4.119) can be obtained from the results on products

of random variables, namely those of gamma type as shown earlier in (4.112)

f N yð Þ ¼ 1

yΓN cð ÞG
N, 0
0,N

y

yN0
c, c, . . . , c|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N�terms

:1

������
1
A, y ¼ 0:

0
@ ð4:121Þ

In (4.121), G() is the Meijer G-function and the relationships of c and y0 in

(4.121) to the parameters m and σdB of the lognormal pdf are yet to be established

(Mathai and Saxena 1973; Gradshteyn and Ryzhik 2007).

As mentioned earlier, (4.121) reduces to the gamma pdf when N is unity. We can

now establish the relationship between the parameters of the lognormal pdf and the

pdf in (4.121) by taking the logarithm in (4.119) and comparing the moments

(Nakagami 1960; Clark and Karp 1965; Ohta and Koizumi 1969). We get,
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μ ¼ NA0 Psi cNð Þ þ loge y0Nð Þ½ �, ð4:122Þ

σ2dB ¼ NA2
0Psi 1; cNð Þ: ð4:123Þ

The parameter A0 was defined earlier in Eq. (4.68). Psi(.) is the digamma

function ψ(.) and Psi(1,.) is the trigamma function c’(.) (Abramowitz and Segun

1972; Gradshteyn and Ryzhik 2007). The subscript N associated with the two

parameters of the gamma pdf merely reflects the fact that as N varies, these two

parameters take on different values. Inverting (4.122) and (4.123), we can write

cN ¼ InvPsi 1;
σ2

NA2
0

� �
, ð4:124Þ

y0N ¼ exp
μ

NA0

� Psi cNð Þ
	 


, ð4:125Þ

In (4.124), InvPsi(1,.) is the inverse of the Psi(1,.) function. Thus, from the

values of shadowing parameters (m, σdB), it is possible to estimate the

corresponding values of the gamma parameters of the pdf in (4.121) for each

value of N. The relationship between the values of c (for different number of

cascaded gamma densities) and the shadowing level sigma is shown in Fig. 4.29

N ¼ 1,2,3,4. Since the shadowing has been shown to be in the range of 3–9 dB for

most wireless systems, we will limit ourselves to that range. Equation (4.124) was

used to get the values of the order of the gamma pdf (cN). The order of the gamma
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pdf, cN, increases as the shadowing levels decrease. The values of cN are also higher
with increasing values of N.

The next step is the derivation of the pdf of the SNR in the shadowed fading

channel. Inserting (4.121) in (4.117), we have the pdf of the SNR in a shadowed

fading channel as

f xð Þ ¼
ð1
0

m

y

� �mxm�1

Γ mð Þ exp �mx

y

� �
1

yΓN cNð ÞG
N, 0
0,N

y

y0Nð ÞN cN , cN , . . . , cN|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N�terms

:

������
1
CAdy:

0
B@

ð4:126Þ

In (4.126), the values of the gamma parameters are identified for each

N separately as cN and y0N (mentioned earlier). Noting that the pdf in (4.126) is

the pdf of the product of (N + 1) gamma random variables consisting of N identical

gamma variables (parameters cN and y0N) and one other gamma variable (param-

eters m and 1/m), the pdf becomes (Podolski 1972; Adamchik 1995; Gradshteyn

and Ryzhik 2007)

f xð Þ ¼ 1

zΓ mð ÞΓN cNð ÞG
Nþ1,0
0,Nþ1

mz

y0Nð ÞN m, cN , cN , . . . , cN|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N�terms

:

������
1
A, z > 0:

0
@ ð4:127Þ

In terms of the average SNR Z0, (4.127) becomes

f zð Þ ¼ 1

zΓ mð ÞΓN cNð ÞG
Nþ1,0
0,Nþ1

m cNð ÞNz
Z0ð ÞN m, cN , cN , . . . , cN|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nþ1�terms

:

������
1
A, z > 0:

0
@ ð4:128Þ

For N ¼ 1, (4.127) becomes the familiar GK pdf based on the relationship

between the Meijer G-function and Bessel functions. The density function in

(4.127) is plotted in Fig. 4.30 for m ¼ 0.5 and very low levels of shadowing. It

shows that at low levels of shadowing, a value of N ¼ 2 is sufficient to produce a

match with the Nakagami-lognormal pdf. Note that the notation of NNG

(Nakagami-N-gamma with varying integer values of N) is used to indicate the

number of cascades N used. The average SNR has been assumed to be unity in all

these plots.

Figure 4.31 examines the match at a moderate level of shadowing (5 dB). One

can see that the match with the Nakagami-lognormal improves as N increases. The

match at a higher level of shadowing (σdB ¼ 8) is examined in Fig. 4.32. These

figures show that at low values of the shadowing, a single gamma variable is

sufficient to model the lognormal which results in the Nakagami-gamma pdf for

shadowing or the GK pdf for shadowing. As the value of shadowing increases, more

and more gamma products are necessary to provide a better match with the

lognormal. Thus, the use of the N-gamma pdf or a cascaded gamma model for
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shadowing provides a means to match the lognormal at any level of shadowing.

The nature of the match and mismatch will be clearer in later sections when we

examine the outage probabilities and error rates in shadowed fading channels.

Taking the moments, the amount of fading in the shadowed fading channel

becomes

AF ¼ mþ 1

m

� �
cN þ 1

cN

� �N

� 1: ð4:129Þ

For N ¼ 1, the amount of fading in (4.129) becomes equal to the AF in a

generalized K fading channel. The amount of fading in a shadowed fading channel

with N ¼ 2 is plotted in Figs. 4.33, 4.34, and 4.35.

The CDF of the SNR in a shadowed fading channel can be obtained using the

differential/integral properties of the Meijer G-function as (Gradshteyn and Ryzhik

2007)

F zð Þ ¼ 1

Γ mð ÞΓN cNð ÞG
Nþ1,1
1,Nþ2

m cNð ÞNz
Z0

m, cN , cN, . . . , cN , 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nterms

2
64

3
75

0
B@

1
CA: ð4:130Þ

Equations (4.127) and (4.130) clearly show that the use of cascaded approach to

shadowing results in closed form solutions to the pdf and CDF of the SNR in a
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shadowed fading channel. Note that for N ¼ 1, (4.130) can be expressed in terms of

hypergeometric functions which one obtains as the CDF associated with the GK pdf

(Mathai and Saxena 1973; Mathai and Haubold 2008).

The CDFs of the signal-to-noise ratio in shadowed fading channels were eval-

uated next. The NL pdf in (4.67) can be used to obtain the corresponding CDF. The

CDF associated with the Nakagami-N-gamma model is obtained directly using the

expression in (4.130). For the average SNR of the NL channel, the corresponding

value of y0 is calculated from Eq. (4.125) using the values of cN obtained earlier in

connection with Fig. 4.29. CDF was estimated assuming an average SNR of 5 dB.

Figure 4.36 shows the case of m ¼ 1. The match between the Nakagami-lognormal

CDF and the Nakagami-N-gamma CDF is very good even with N ¼ 1 for moderate

(σdB ¼ 5) and high levels (σdB ¼ 8) of shadowing, with an excellent match with

N ¼ 4. Figure 4.37 shows the case for m ¼ 1.5. As the value of m goes to 1.5 in

Fig. 4.37, the mismatch becomes a little bit more pronounced for high levels of

shadowing (σdB ¼ 8). Still, the mismatch between the Nakagami-lognormal CDF

and the Nakagami-N-gamma CDF exists only at the very low values of signal-to-

noise ratio and such a mismatch will have very little impact in practical situations.

However, the CDF plots do not show the levels of matching at higher values of the

SNR where wireless systems operate. To observe how closely the two models

match, we need to look at the outage probabilities and average bit error rates

(Shankar 2010b).
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4.7.3 N*Weibull Channels

While N*gamma models are reasonably good descriptors of fading, it is possible to

reexamine the concepts that led to the lognormal distribution to model long-term

fading. It has been suggested that the notion of the cascaded channels can be

extended to include those where each channel is best described using a Weibull

pdf and that the cascaded Weibull channel can approximate the lognormal channel

associated with long-term fading conditions (Sagias and Tombras 2007).

4.7.4 Double Rician Channels

Performance of wireless networks can be enhanced through amplify-and-forward

relay systems. In a simple example of such a system, a relay amplifies the signal

received and retransmits it to the destination receiver (Patzold 2002; Zogas and

Karagiannidis 2005; Talha and Patzold 2007; Wongtrairat et al. 2008; Mendes and

Yacoub 2007). A simple diagram of the concept is shown in Fig. 4.38. Note that this

principle can be extended to multiple relaying stations and we have the equivalent

of multihop systems described earlier. If we look at the specific case of amplify-

and-forward relay, the signal at the receiver can be expressed as the product of the

two channel signals resulting in a double Rician channel if LOS conditions exist in

both channels.

Results are also available where double Hoyt channels have been explored to

model the behavior of amplify-and-forward relay fading channels (Hajri et al. 2009;

de Souza and Yacoub 2009).

Mobile Relay Station
Base Station

Mobile Unit

Fig. 4.38 Concept of a relay station possibly resulting in double Rician fading
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4.8 Comparison of Different Models

A broad overview of the pdfs in the study of wireless channels was presented. The

list of the pdfs for fading is summarized in Table 4.1. It also contains the expres-

sions for the amount of fading (AF). Table 4.2 lists the expressions for pdfs in

shadowed fading channels and the amount of fading (AF).

As mentioned earlier, the amount of fading provides a quantitative measure of

fading present in wireless channels. Note that the definition of the amount of fading

depends only on two moments, namely the first and the second moments of the

power. Thus, it is conceivable to get the same value of AF from several other pdfs as

well. In other words, the quantification of the level of fading in (4.11) does not

completely provide the characteristics of the channel or the impairments caused by

the existence of fading or shadowing in the channel. To provide a better quality

measure of the degradation of the channel in terms of its ability to carry information

and deliver it to the receiver with high confidence, one needs to look at the error

rates in fading channels and outage probabilities.

Table 4.1 The probability density functions (pdfs) of the received power in fading channels and

the amount of fading

Probability density function

( p � 0) Amount of fading (AF) Additional information

f R xð Þ 1
P0
exp � p

P0

� �
1

fN pð Þ ¼ mmpm�1

Pm
0 Γ mð Þ exp �m p

P0

� �
1
m m � 1

2

fG pð Þ ¼ pm�1

Pm
g Γ mð Þ exp � p

Pg

� �
1
m

m> 0 , hPiG¼mPg

fGG pð Þ ¼ spms�1

Γ mð ÞPm
g
exp �ps

Pg

� �
Γ mþ 2=sð Þð ÞΓ mð Þ
Γ mþ 1=sð Þð Þ½ �2 � 1

m > 0, 0 < s < 1
Ph iGG ¼ Γ mþ 1=sð Þð Þ

Γ mð Þ P 1=2ð Þ
g

fW pð Þ ¼ mw

Pm
g
pmw�1exp �pmw

Pg

� �
Γ 1þ 2=mwð Þð ÞΓ mð Þ
Γ mþ 1=mwð Þð Þ½ �2 � 1

Ph iw ¼ Γ 1þ 1=mwð Þð ÞP 1=mwð Þ
g

Special conditions on the parameters are also provided. Note that all the pdfs exist only for p � 0

The subscripts with the pdfs and the moments indicate the names associated with the pdfs:

Rayleigh (R), Nakagami (N ), gamma (G), generalized gamma (GG), Weibull (W)

Table 4.2 The pdf of the received power in shadowing channels and the amount of fading

Probability density function ( p � 0) Amount of fading (AF) Additional information

f L pð Þ ¼ A0ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

dB
p2

p exp � 10log10p�μð Þ2
2σ2

dB

h i
exp �σ2

dB

A2
0

� �
� 1 A0 ¼ 10

loge10

fG pð Þ ¼ pc�1

y c
0
cð Þ exp � p

y0

� �
1
c σ2dB ¼ A2

0ψ
0 cð Þ

Note that all the pdfs exist only for p � 0. The subscripts with the pdfs and the moments indicate

the names associated with the pdfs: Lognormal (L ), gamma (G). The trigamma function is

represented by c0(.)

354 4 Modeling of Fading and Shadowing



4.8.1 Average Probability of Error

Comparison of the error rates in an ideal channel and a channel undergoing fading

or shadowing will allow the “cost” of departing from an ideal channel. We will

explain the notion of such a cost or “power penalty” by examining the error rates in

an ideal (Gaussian) channel and a Rayleigh channel. As suggested in (4.106), one of

the consequences of fading or shadowing is that the signal-to-noise ratio in the

channel becomes random and acquires the density function of the SNR. We will

consider the example of a coherent binary shift keying scheme discussed in Chap. 3.

The error rate in an ideal Gaussian channel is a function of the signal-to-noise ratio

Z0 and can be expressed as (Proakis 2001; Simon and Alouini 2005)

pe Z0ð Þ ¼ Q
ffiffiffiffiffiffiffiffi
2Z0

p� �
: ð4:131Þ

Note that the error rate can also be written in terms of complementary error

functions as

pe Z0ð Þ ¼ 1

2
erfc

ffiffiffiffiffi
Z0

p� �
: ð4:132Þ

However, when short-term fading is present, the SNR is a random variable and

the error rates need to be averaged as (Alouini and Simon 1998; Proakis 2001)

pe Z0ð Þ ¼
ð1
0

pe zð Þf zð Þ dz: ð4:133Þ

In (4.133), Z0 is the average signal-to-noise ratio and f(z) is the density function

of the SNR in a fading channel. In Rayleigh fading, the error rate in a fading

channel becomes

pe Z0ð Þ ¼
ð1
0

Q
ffiffiffiffiffi
2z

p� � 1

Z0

� �
exp � z

Z0

� �
dz ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0

1þ Z0

r	 

: ð4:134Þ

The two error rates are plotted in Fig. 4.39.

The plot shows that while the error rates drop fast for an ideal channel, the rate of

decline in error rates as a function of the average SNR is much slower in a Rayleigh

faded channel. For example, if we pick an error rate of 1e-4, one can see that the

fading channel requires a higher SNR to achieve the error rate of 1e-4 compared

with the ideal channel. This difference in SNR needed to maintain a certain error

rate is called “excess SNR” required or “the power penalty.” This quantity in fading

channels typically expressed in decibels. Going back to our discussion on power or

energy efficiencies of digital modems, it is clear that one important consequence of

the existence of fading is the reduction in the energy efficiency of the modem. One

can also see from Fig. 4.39 that the penalty values are not fixed and that they vary
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with the error rate chosen or required. This is shown in Fig. 4.40 which is obtained

by inverting (4.131) and (4.134). We have the expressions for the signal-to-noise

ratio values as a function of the error rates as

Z0ideal ¼ erfcinv 2peminð Þ½ �2, ð4:135Þ

Z0fad ¼ 1� 2peminð Þ2
4pemin 1þ peminð Þ : ð4:136Þ

In (4.135) and (4.136), pemin is the minimum acceptable error rate to have a

satisfactory performance and erfcinv the inverse of the complementary error func-

tion. The excess SNR required is

zex ¼ Z0fad � Z0ideal: ð4:137Þ

As the error rate goes down, the excess SNR required to mitigate the presence of

fading in the channel increases. This is an important adverse consequence of fading.

The quantity, excess SNR, provides more quantitative information on fading than

what is available with the amount of fading (AF) defined earlier.

We will now compare the error rate performance in Nakagami channels and

examine the effect of increasing values of m (Annamalai and Tellambura 2001;

Simon and Alouini 2005). The average probability of error in a Nakagami-m faded

channel becomes
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Fig. 4.39 Error rates in an ideal channel and Rayleigh channel are shown. For a fixed error rate of

1e-4, the difference in SNR corresponds to the penalty
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dz
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ð4:138Þ

In (4.138), 2F1 is the hypergeometric function (Abramowitz and Segun 1972;

Gradshteyn and Ryzhik 2007). The result in (4.138) can be obtained using the

relationships among hypergeometric functions, Meijer G-functions, and comple-

mentary error functions (Wolfram 2011) (http://functions.wolfram.com/

HypergeometricFunctions/). The results are shown in Fig. 4.41.

One can see that as the Nakagami parameter m increases, the error rates are

falling steeper and approach the ideal channel case. This was also evident in

Fig. 4.11, shown earlier, where the movement of the Nakagami-m pdf toward the

Gaussian pdf with increasing values of m was discussed.

It is also possible to see the consequence of fading by examining the SNR

required to maintain a fixed value of the probability of error. For example, for a

probability of error of 1/1000, in an ideal channel one only requires a signal-to-

noise ratio of about 6 dB. To achieve the same error rate, one would require more

than 30 dB of SNR for a Nakagami channel with an m value of 0.5, and about 14 dB

for the case of a Nakagami channel with an m value of 2.0. This decline in the

sensitivity (minimum power needed to maintain an acceptable probability of error)

is a major consequence of fading as suggested earlier. It is easy to see that for an
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error rate of 1/1000, a user will pay a power penalty of about 8 dB in a Nakagami

channel with m ¼ 2 and more than 24 dB in a Nakagami channel with an m value

of 0.5.

Figure 4.41 supports the notion that increasing values of the Nakagami param-

eter reduces the fading in the channel. One can obtain the values of the excess SNR

or power penalty required to mitigate the effects of fading. It is obvious that with

increasing values of m, the excess SNR goes down.

The error rates in a Rician channel mirror the rates in the Nakagami channels for

m > 1. As the Rician factor K0 increases, the error rates drop faster with SNR and

the error rates will approach those of an ideal Gaussian channel.

We will now look at the case of error rates in channels degraded by lognormal

shadowing (Stuber 2002). It will also be noted that lognormal pdf has been

suggested as a means to model short-term fading. There also exists a relationship

between the Nakagami pdf and the lognormal pdf as discussed by the original work

by Nakagami. It is thus reasonable to estimate the error rates in a lognormal channel

along with other ones in short-term fading channels. A few points must be made

here as we compare the error rates in an ideal white noise limited Gaussian channel

to that in a lognormal channel. Note that the quantity m in decibels in (4.67) is the

average of the power or SNR measured in decibels, i.e.,

μ ¼ 10log10 Zð Þh i: ð4:139Þ
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However, in the absence of shadowing, the power is measured and then aver-

aged. Thus, when we discuss the average SNR in the absence of shadowing, what

we have is

Z0 ¼ dBð Þ ¼ 10log10 Zh i: ð4:140Þ

Note that (4.139) and (4.140) lead to different values. Thus, if one is comparing

any channel performances where in one case (in a Gaussian channel) the power or

SNR is measured in terms of (4.140) and results compared to the case of a

lognormal shadowing case, then the values need to be the same. The relationship

between the two averages can be derived as follows: For the lognormal case, taking

the mean of the lognormal random variable, we have from (4.69)

Zh i � exp
μ

A0

þ σ2dB
2A2

0

� �
: ð4:141Þ

Converting (4.141) into decibels, we have

Z0 dBð Þ ¼ 10log10 Zh ið Þ ¼ 10log10 Zh ið Þ
log10 10ð Þ ¼ A0

μ

A0

þ σ2dB
2A2

0

	 
� �
¼ μþ σ2dB

2A2
0

:

ð4:142Þ

Thus,

μdB ¼ Z0 dBð Þ � σ2dB
2A2

0

: ð4:143Þ

It can be seen that in the absence of shadowing (σdB ¼ 0), both averages are

equal. If σdB > 0, a correction factor, m0, needs to be applied to the average SNR in

shadowing such that

μdB ¼ Z0 dBð Þ � σ2dB
2A2

0

¼ Z0 dBð Þ � μ0: ð4:144Þ

A plot of the correction factor is shown in Fig. 4.42.

As in the case of Nakagami fading one can see the need to have an excess SNR to

mitigate the effects of shadowing. As the shadowing parameter decreases, the error

rate curves move closer to the ideal, i.e., Gaussian channel. The error rates in a

lognormal channel are shown in Fig. 4.43.

We can also examine the error rates in a generalized gamma channel. The error

rates in a generalized gamma fading channel become (Aalo et al. 2005; Nadarajah

and Kotz 2006a, c; Malhotra et al. 2009)
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pe Z0ð Þ ¼
ð1
0

1

2
erfc

ffiffi
z

p � szms�1

Γ mð ÞZm
g

exp � zs

Zg

� �
dz, ð4:145Þ

where

Zg ¼ Z0

Γ mð Þ
Γ mþ 1=sð Þð Þ

	 
s
: ð4:146Þ

The results are shown in Fig. 4.44. As expected, higher values of s along with

higher values of m result in lower error rates.

Error rates in a Weibull channel are shown in Fig. 4.45. The trends in error rates

in Weibull channels follow the patterns observed with the Nakagami and general-

ized gamma fading channels.

4.8.1.1 Error Rates in Cascaded Channels

As discussed earlier, short-term fading is also modeled using cascaded channels.

The average error probability in a cascaded channel can be expressed using (4.133).

The average error probability becomes

5 10 15 20 25 30
10-12

10-10

10-8

10-6

10-4

10-2

100

Average SNR (dB)

A
ve

ra
ge

 p
ro

ba
bi

lit
y 

of
 e

rr
or

 

 

s=0.5

s=1

s=2

m = 2

m = 1

Fig. 4.44 Error rates in a generalized gamma channel
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Using the table of integrals (Gradshteyn and Ryzhik 2007; Wolfram 2011),

(4.147) becomes

pe Z0ð Þ ¼ 1

2
� 1

2ΓN mð Þ ffiffiffi
π

p GNþ1,1
2,Nþ1

mN

Z0N
0,m,m, . . . ,m|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

N�terms

��������

1

2
, 1

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð4:148Þ

The error rates in cascaded channels are plotted in Figs. 4.46, 4.47, and 4.48. In

Fig. 4.46, we see the effect of increasing values of the cascading components N for

m ¼ 1.

The error rates go up as N increases, leading to higher and higher values of

excess SNR needed to mitigate the effects of short-term fading. Slight improvement

is seen in Fig. 4.47 for m ¼ 2.5 which is expected since the value of the Nakagami

parameter m has gone up. The effect of increasing values of m on error rates is

depicted in Fig. 4.48 for the case of N ¼ 4. The error rates move lower and lower as

m increases.
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4.8.1.2 Error Rates in Shadowed Fading Channels

Note that shadowing never occurs alone; it occurs concurrently with fading. We

need to examine the effects of shadowed fading channels (Patzold 2002; Kostic

2005), and will now undertake this task by looking at the shadowed fading channels

modeled using the cascaded approach. We can now look at the estimation of the

average bit error rate in shadowed fading channels. First, we will examine the error

rates in shadowed fading channels using the exact models. From (4.76), we can

write the expression for the error rate as

pe μð Þ ¼ 0
Ð1
0

Ð1
0

mmzm�1

xmΓ mð Þ exp �m
z

x

� � A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2σ2dBx

2
p exp � 10log10x� μð Þ2

2σ2dB

" #

�1

2
erfc

ffiffi
z

p �
dx dz:

ð4:149Þ

The average error rate in (4.149) must be evaluated using numerical integration.

The bit error rates for BPSK in shadowed fading channels are shown in Figs. 4.49,

4.50, and 4.52.
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The deleterious effects of the presence of shadowing are seen in all these figures.

The error rates stay at unusually high values. The error rates appear high enough

rendering transmission of signals difficult since the excess SNR required to mitigate

the effects of both fading and shadowing will be high. As the shadowing levels

become weak, the error rates curves approach those of the pure short-term fading

channels. However, as seen in Fig. 4.51 when the value of m is large (m ¼ 3), even

weak shadowing shows up at substantially higher error rates compared to those in a

pure short-term faded channels. A composite picture of the error rates is shown in

Fig. 4.52 where the error rates are plotted for a fixed value of the average SNR as a

function of the shadowing levels. The error rates stay at reasonably high values

which points to the need for fading and shadowing mitigation techniques such as

diversity combining (discussed in Chap. 5).

We can also examine the error rates in shadowed fading channels using the GK

model or the Nakagami-N-gamma model discussed earlier in this chapter.

We had showed that we can replace the lognormal pdf with the gamma pdf. In a

more general approach, it was shown that a cascaded gamma pdf allows a better

match with the Nakagami-lognormal model for the shadowed fading channel. We

will now use the Nakagami-N-gammamodel to estimate the error rates in shadowed

fading channels and examine the fit to the Nakagami-lognormal, varying the

number of cascaded components from N to 1 through higher integer values.

As discussed earlier, the average BER in a shadowed fading channel can be

expressed either using the pdf or CDF. We will reproduce the error rate estimation

in fading channel as
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pe Z0ð Þ ¼
ð1
0

f xð Þpe xð Þ dx ¼ �
ð1
0

F xð Þ d pe xð Þ½ �
dx

dx: ð4:150Þ

Using the CDF in Eq. (4.130) and the derivative of erfc(), (4.150) becomes
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As mentioned earlier, using the table of integrals (Gradshteyn and Ryzhik 2007),

a closed form solution to (4.151) can be obtained and the average error probability

becomes
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2
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π
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1
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@ ð4:152Þ

For the case of N ¼ 1, the average bit error rate can be expressed in terms of

hypergeometric functions as (Gradshteyn and Ryzhik 2007)
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Fig. 4.52 BER in a Nakagami-lognormal for m ¼ 10 dB as a function of shadowing levels for

three levels of fading

4.8 Comparison of Different Models 367



Pe Z0ð Þ ¼ 1

2
� 1

2

π2csc πmð Þcsc πc1ð Þ
Γ 1� mð ÞΓ 1� c1ð ÞΓ mð ÞΓ c1ð Þ

þ 1

2
ffiffiffi
π

p
Γ m� c1ð ÞΓ c1 þ 1=2ð Þ mc1

Z0

� �
c1

Γ mð ÞΓ c1 þ 1ð Þ

�2F2 c1; c1 þ 1

2

	 

; 1þ c1; 1� mþ c1½ �;mc1

Z0

� �

þ 1

2
ffiffiffi
π

p Γ c1 � mð ÞΓ mþ 1=2ð Þ mc1=Z0ð Þm
Γ mð ÞΓ c1ð Þ

�2F2 m;mþ 1

2

	 

; 1þ m; 1� c1 þ m½ �;mc1

Z0

� �
:

ð4:153Þ

In (4.153), F(.) is the hypergeometric function and csc(.) is the trigonometric

function cosecant(.). Note also that N ¼ 1 corresponds to the Nakagami-gamma

model which results in the generalized K distribution for the shadowed fading

channels. The average bit error rates are plotted in Fig. 4.53 for the case of moderate

level of shadowing (5 dB). For low values ofm (0.5 and 1), the error rates estimated

using the Nakagami-lognormal match very well with the Nakagami-N-gamma

model for all values of N; there is no need to use higher values of N. The error

rates are plotted in Fig. 4.54 for the case of a higher level of shadowing (8 dB). In

this case, for the low value of m, there is very little difference between the error
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Fig. 4.53 Bit error rates in shadowed fading channels. For m ¼ 0.5, 1 and 1.5 for the case of a

moderately shadowed channel (σdB ¼ 5)
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rates. On the other hand, as the value of m goes to 1.5, the case of N¼ 1 is a weaker

match and the match with the Nakagami-lognormal error rates improves as N goes

up to 9.

One can also observe the match of the Nakagami-lognormal pdf and the

Nakagami-N-gamma pdf based error rates as one looks at higher values of the

Nakagami parameter. The error rates form¼ 2 andm¼ 3 are shown in Fig. 4.55 for

the case of moderate shadowing (σdB ¼ 5). It can be seen that the fit of the

Nakagami-gamma pdf (N ¼ 1) is very poor.

Error probabilities offer one quantitative measure of the performance in wireless

fading channels including shadowed fading channels. Even though only the case of

a coherent BPSK modem was used, the study could be extended to other modems as

well. This would simply mean replacing the error rate in the ideal Gaussian channel

with the appropriate equation for the error rate for a particular modem. Even though

individual performance would depend on the modem, the general trends seen with

coherent BPSK here will be exhibited by all types of modems such as the increase

in error rates with increasing levels of fading. The existence of shadowing leads to

further erosion in the performance in the wireless channel.

4.8.2 Outage Probability

While error rate performance provides us with a means to compare the models in

terms of the excess SNR required to maintain a specific bit error rate, there is yet

5 10 15 20 25 30
10-4

10-3

10-2

10-1

100

Average SNR µ(dB) 

A
ve

ra
ge

 p
ro

ba
bi

lit
y 

of
 e

rr
or

NL
G1
G3
G5
G9   m = 0.5

m = 1.5

Fig. 4.54 Bit error rates in shadowed fading channels for a severely shadowed channel (σdB ¼ 8)
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another means to quantify the performance of the wireless communication systems

in different channels as mentioned earlier (Simon and Alouini 2005; Tellambura

and Annamalai 1999). The models can be compared in terms of the outage

probability. This is the probability that the signal-to-noise ratio fails to reach a

certain threshold to maintain a specific error rate. One can see the difference in

measures obtained through error rates and outage probabilities. The former pro-

vides a means to see how much additional SNR is required to maintain the specific

error rate as the fading conditions change; the latter provides a measure of the

ability to keep the error rate at a specified value (Abu-Dayya and Beaulieu 1994;

Annamalai et al. 2001, 2005; Shankar 2005).

Whenever the signal power goes below a set threshold, which depends on the

data rate, coding, modulation, demodulation, and so forth, the channel goes into

outage. The outage probability associated with fading, shadowing, or shadowed

fading can be expressed as (Simon and Alouini 2005; Shankar 2005)

Pout ¼
ðZT

0

f zð Þ dz ¼ F ZTð Þ, ð4:154Þ

where ZT is the threshold SNR. The density function of the SNR is f(z) and F(.)
is the CDF of the SNR evaluated at z ¼ ZT. We will use coherent BPSK as an

example and we will assume a required performance level of error rates no larger

than 1e-4. The threshold SNR now becomes
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10�4 ¼ 1

2
erfc

ffiffiffiffiffiffi
ZT

p �
: ð4:155Þ

Taking the inverse, we have

ZT ¼ erfc inv 2:10�4
 �� �2 ¼ 6:9155: ð4:156Þ

In this chapter, we will use (4.156) as our standard to compare the outage

probabilities even though we could use any other modem as an example to

determine the threshold SNR for acceptable operation.

We first look at the outage probabilities in a Nakagami-m faded channel. The

outage probability can be expressed using the CDF obtained in a Chap. 2 equation

as

Pout ¼ 1� Γ m; m=Z0ð ÞZTð Þ
T mð Þ : ð4:157Þ

The outage probabilities are plotted against the average SNR in Fig. 4.56. One

can see the unacceptably high values of the outage probabilities at low values of the

average SNR, a consequence of the fading, low values resulting in the highest

values of the outage probabilities. Figure 4.57 shows the outage probabilities as a

function of the Nakagami parameter for three values of the average signal-to-noise

ratio.
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Fig. 4.56 Outage probabilities in a Nakagami-m faded channel
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The outage probabilities in a generalized gamma channel can be obtained from

the CDF of the SNR given in (4.54). The outage probabilities corresponding to an

error rate of 1e-4 in a coherent BPSKmodem are shown in Fig. 4.58. As the value of

s increases, the effect of fading declines as seen from declining values of the outage

probabilities.

The outage probabilities in a generalized Gaussian channel are shown as a

function of the shape parameter s in Fig. 4.59. It can be seen that low values of

s correspond to high values of outage probabilities; the outage probabilities come

down with increasing values of the shape parameter.

The outage probabilities in a Weibull channel are obtained from the CDF of the

Weibull variable in (4.62). Figure 4.60 shows the outage probabilities in a Weibull

channel. The outage probabilities as a function of the Weibull parameter are shown

in Fig. 4.61 for an average SNR of 20 dB.

The outage probabilities in a channel that undergo lognormal shadowing can be

expressed in terms of the Gaussian CDF. They will not be discussed here. The

properties of the Gaussian CDF are very well understood; the outage probabilities

will increase with the shadowing levels and decrease with increasing values of the

mean SNR.

Outage probabilities in channels modeled using a cascaded approach can be

estimated from the CDF of the SNR in a cascaded channel. The CDF given in

(4.116) and the outage probability becomes
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The outage probabilities have been evaluated for a few values of N and are

shown in Figs. 4.62, 4.63, and 4.64, respectively, for m ¼ 0.5, 1, and 2.

One can see that the outage probabilities rise with increasing values of N and

decline with increasing values of m.

4.8.2.1 Outage Probabilities in Shadowed Fading Channels

The presence of both fading and shadowing simultaneously (i.e., existence of the

shadowed fading channels) will have serious adverse consequences in communi-

cations. We will first examine the outage probabilities in a Nakagami-lognormal

channel before we examine the outage probabilities. We will use approximate

models of the shadowed fading channels which employ the cascaded approach

(with N¼ 1 giving rise to the GK channels). The outage probability in a Nakagami-

lognormal channel is

Pout ¼
ðZT

z¼0

ð1
0

mmzm�1

xmΓ mð Þ exp �m
z

x
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ð4:159Þ
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Fig. 4.62 Outage probability in cascaded N*Nakagami channels for m ¼ 0.5
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Fig. 4.63 Outage probability in cascaded N*Nakagami channels for m ¼ 1
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Fig. 4.64 Outage probability in cascaded N*Nakagami channels for m ¼ 2
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This integral needs to be evaluated numerically. The results are shown in

Figs. 4.65 and 4.66. In Fig. 4.65, the outage probabilities are plotted as a function

of the average SNR; in Fig. 4.66, the outage probabilities are plotted as a function of

the shadowing levels. In both figures, one can easily observe the deleterious effects

of shadowing leading to increased values of outage, therefore, making it necessary

to explore diversity implementation.

4.8.2.2 Outage Probabilities in Shadowed Fading Channels Using
the Cascaded Model

We can now examine the outage probabilities in shadowed fading channels

modeled using the cascaded approach. The outage probability can be obtained

from the CDF in a Nakagami cascaded gamma channel as (Shankar 2011a, b)

Pout ¼ 1

Γ mð ÞΓN cNð ÞG
Nþ1,1
1,Nþ2

mN
N z

Z0
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Fig. 4.65 Outage probabilities as a function of the average SNR for two values of the Nakagami

parameter and three values of the shadowing levels
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The outage probability is

Pout ¼ 1

Γ mð ÞΓN cNð ÞG
Nþ1,1
1,Nþ2

mcNN ZT

Z0

m, cN, cN , . . . , cN , 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N trrms

1

2
4

3
5

0
@

1
A: ð4:161Þ

Some of the results are shown in Figs. 4.67 and 4.68. Figure 4.67 shows the

outage probabilities at a moderate level of fading (5 dB) at three values of the

Nakagami parameter. As the value of the Nakagami parameter m increases, higher

values of N are required to match the Nakagami-lognormal results to those of the

Nakagami-N-gamma model. Similar observations can be made by observing the

results in Fig. 4.68 for a higher level of shadowing.

Regardless of whether one uses the exact Nakagami-lognormal or the approxi-

mate Nakagami-N-gamma model for the shadowed fading channel, it is clear that

the effect of shadowing is to increase the outage probabilities making it necessary

that mitigation approaches to overcome both fading and shadowing need to be

implemented to facilitate efficient wireless data transmission.

Table 4.1 provides earlier summaries of the most commonly used density

functions for modeling short-term fading while Table 4.2 listed earlier provides

the list of density functions used for modeling shadowing. Table 4.3 lists the density

function used for modeling shadowed fading channels. Table 4.4 provides a list of

the CDF associated with these models (only when analytical expression is avail-

able) and the expressions for the outage probabilities for the different density
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Fig. 4.66 Outage probabilities in Nakagami-lognormal channels as a function of sigma for two

values of the average SNR
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functions which describe the fading and shadowed fading channels. It is seen that

neither the Nakagami-lognormal nor the Nakagami-inverse Gaussian distribution

leads to a closed form expression for the outage probability while all the other

density functions possess an analytical expressions for the outage probabilities. The

outage probability in a Nakagami-inverse Gaussian channel can be expressed as an
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Fig. 4.67 Outage probabilities in a Nakagami-lognormal channel where the lognormal shadowing

is modeled using the cascaded approach (moderate level of shadowing)
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Fig. 4.68 Outage probabilities in a Nakagami-lognormal channel where the lognormal shadowing

is modeled using the cascaded approach (higher level of shadowing)
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infinite sum. For the case of the pdfs containing the modified Bessel function K(),
the outage probabilities are in terms of the modified Bessel, Meijer G, and

hypergeometric functions.

The models described in the previous sections do not constitute the whole

ensemble of models available in literature to describe the statistical fluctuations

in signals in fading or shadowed fading channels. Such models include α – λ � μ
and α � η � μ distributions for fading. They provide yet another way to look at the

characteristics of the signals in wireless channels (Yacoub 2000, 2007a, b; Filho

and Yacoub 2005a; Papazafeiropoulos and Kotsopoulos 2011a, b).

Table 4.4 The outage probabilities in fading and shadowed fading channels are tabulated

Probability

density function Outage probability (PT is the threshold) Additional information

Fading channels

Rayleigh 1 – exp.(�PT ¼ P)

Nakagami γ m; mPT

P0

� �
Γ mð Þ½ ��1

, m � 1
2

γ(.,.) is the incomplete

gamma function

Gamma γ m; mPT

Pg

� �
Γ mð Þ½ ��1

, m > 0 γ(.,.) is the incomplete

gamma function

Generalized

gamma
γ m;

P S
T

Pg

� �
Γ mð Þ½ ��1 γ(.,.) is the incomplete

gamma function

Weibull 1� exp �Pmw

T =Pg

 �
, mw > 0

Shadowed fading channels

Nakagami-

lognormal

. . . No analytical expression

Generalized K Γ m� cð Þ
Γ mð ÞΓ cþ 1ð Þ
�1F2 c; 1� mþ c; 1þ c½ �;PTb

2

4

� �
PTb

2

4

� �c
þ Γ m� cð Þ
Γ mð ÞΓ cþ 1ð Þ

�1F2 m; 1� cþ m; 1þ m½ �;PTb
2

4

� �
PTb

2

4

� �m

1F2(., [.,.],.) is the

hypergeometric function

Generalized

gamma
γ m;

P S
T

Pg

� �
Γ mð Þ½ ��1

Double

Rayleigh
1� 2u

ffiffiffiffi
PT

P0

q
K1 u

ffiffiffiffi
PT

P0

q� �h i
K1() is the modified Bessel

function of order 1

Double

Nakagami
Γ mð Þ½ ��2G2,1

1,3
1
4
PTv

2 m,m, 0
1

����
� �

G is the Meijer G-function

K distribution
1� 2

Γ cð Þ a
ffiffiffiffi
PT

2

q� �c
Kc a

ffiffiffiffiffiffi
PT

p � Kc() is the modified Bessel

function of order c

Additional information on the special functions is also provided
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4.9 Other General Fading Models

We have examined some of the most commonly used statistical descriptions of

fading as described in the previous sections. However, there are still a few other

models that researchers have proposed which encompass almost all the common

models for small scale fading or short-term fading. The so-called unified model for

small scale fading includes the α � λ � μ and α � η � μ distributions or the κ � μ
and η � μ distributions (Yacoub 2007a, b; Papazafeiropoulos and Kotsopoulos

2011a, b). The fundamental basis for these models is a different interpretation of the

phenomenon of fading itself. While traditional Rayleigh and Rician and other such

models assume that the received radio frequency signal can be expressed as a vector

sum of scattered/reflected/refracted components coming from individual obstacles,

the unified models assume that the received signal power arises from the obstacles

which are modeled as scattering clusters. Thus in the former case, a direct applica-

tion of the central limit theorem is possible to get the inphase and quadrature

components to be independent and identically distributed Gaussian random vari-

ables if sufficient numbers of individual obstacles exist in the channel (between the

transmitter and receiver resulting in the multipath scenario). The latter case of

clustered scattering can lead to more complicated and diverse statistical description

of the short-term fading in the channel. In other words, a homogenous and diffuse

scattering from randomly distributed point-like scatterers is essential for the suc-

cessful modeling leading to Rayleigh and other related fading channels. In reality,

the channel is more likely to be heterogeneous with finite size scatterers (buildings).

The number of such obstacles is likely to be much smaller in number than what is

required for the central limit theorem to be met. It is also possible that each of these

non-point like obstacles themselves is made up of several randomly located scat-

terers. Thus, we can consider a scenario where central limit theorem might be

applicable within each cluster. Because of the distribution of these non-point

targets, the received signal power can be written as the sum of the powers of the

components coming from each of these objects or clusters. The addition of powers

is a reasonable assumption considering the fact that the differential delays among

these clusters might be large enough to make them completely uncorrelated even

though the differential delays within a cluster among the scatters within a cluster

might be very small and vectorial addition is likely within each cluster. In other

words, a form of nonlinear behavior exists along with the heterogeneity in the

wireless channel. Since the traditional models of short-term fading were explored in

detail, we will now look at this different paradigm of clustered scattering and the

ensuing statistical models for fading. As we will demonstrate, the new approach

will provide the Rayleigh, Rician, and Nakagami channels and more as special

cases. Thus, the clustered scattering based modeling can expand the descriptions of

scattering, allowing a very wide range of fading conditions to be accurately

modeled (Yacoub 2007a, b; Karadimas and Kotsopoulos 2010; Papazafeiropoulos

and Kotsopoulos 2011a, b).
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The cluster based scattering model is shown in Fig. 4.69 (Yacoub 2007a, b). A

few clusters from which the scattering/reflection, refraction, and so forth can take

place are shown.

It is assumed that each cluster has enough scatterers so that the inphase and

quadrature component of the RF signal can be treated as Gaussian random variables

X and Y. We also assume that they are independent. If A is the envelope of the

signal, the power or SNR at the receiver is Z, we can write

Z ¼ A2 ¼
Xu
k¼0

X2
k þ

Xu
k¼0

Y2
k : ð4:162Þ

In (4.162), u is the number of scattering clusters between the transmitter and

receiver. From this stage onward, there are a couple of different ways of proceed-

ing. We will take two separate steps and then provide a much more general way of

looking at (4.162). First, we assume that X and Y are zero mean variables but have

unequal variances, with σx and σy as the respective standard deviations. Defining the
ratio of variances of the inphase and quadrature components as

η ¼ σ2x
σ2y

, ð4:163Þ

Fig. 4.69 Cluster model of scattering for a generalized model
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the pdf of the power at the receiver can be expressed as

f zð Þ ¼ 2
ffiffiffi
π

p

Γ μð Þϑμ� 1=2ð Þ μ
μ� 1=2ð Þυμzμ� 1=2ð Þexp �2μυzð ÞIμ� 1=2ð Þ 2μϑzð ÞU zð Þ: ð4:164Þ

In (4.164),

υ ¼ 1

4
2þ ηþ 1

η

� �
ð4:165Þ

ϑ ¼ 1

4

1

η
� η

� �
ð4:166Þ

and

μ ¼ Zh i2

2 Z2
� �� Zh i2
h i 1þ ϑ

υ

� �2
" #

: ð4:167Þ

Note that 0 < η < 1. The pdf in (4.164) is often identified as the η � μ density

function (Yacoub 2007a, b). This density function was also obtained by Nakagami.

It is often referred to as the Nakagami–Hoyt distribution when m ¼ 1/2. We will

return to this definition later. The η � μ densities are plotted in Figs. 4.70 and 4.71.
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It is clearly seen that by varying values of η and μ, we can cover the whole range
of density functions that are available for modeling fading.

Let us now consider a case where the inphase and quadrature components are

identically distributed, suggesting that η ¼ 1. This would mean that

μ ¼ Zh i2

2 Z2
� �� Zh i2
h i : ð4:168Þ

Noting that the Nakagami parameter m in fading channels is defined as

m ¼ Zh i2
Z2
� �� Zh i2 , ð4:169Þ

we can obtain a relationship between m and μ as

μ ¼ m

2
, ð4:170Þ

Making use of the approximation that the modified Bessel function Iν (x) for x «
1 can be approximated to (Abramowitz and Segun 1972)

Iv xð Þ � x=2ð Þv
Γ vð Þ ð4:171Þ
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(4.164) becomes

f zð Þ ¼ 2μð Þ2μ
Γ 2μð Þ z

2μ�1exp �2μð ÞU zð Þ: ð4:172Þ

Note that (4.172) is the pdf of the SNR in Nakagami-m fading with an average

SNR of unity. If Z0 is the average SNR, (4.172) becomes

f zð Þ ¼ 2μð Þ2μ
Z0

z2μ�1

Γ 2μð Þ exp �2μ
z

Z0

� �
U zð Þ: ð4:173Þ

With the relationship between m and μ in (4.170), (4.173) matches exactly to the

pdf of the SNR in Nakagami-m fading channels defined in (4.35). For different

values of m ¼ 2μ, (4.173) can also provide matching to Rayleigh (m ¼ 1), single

[_ sided Gaussian (m ¼ 1/2), and other fading conditions derived directly from the

Nakagami-m fading conditions.

To understand and appreciate the flexibility offered by the pdf in (4.164), let us

go back to (4.167). It can be rewritten using (4.169) as

μ ¼ m

2
1þ ϑ

υ

� �2
" #

: ð4:174Þ

Since r J > 1, (4.174) at high values of η can be rewritten as

μ ¼ m

2
1þ 1½ � ¼ m ð4:175Þ

since

ϑ

υ

� �2

η!1
�� ¼ 0: ð4:176Þ

Thus, in terms of the Nakagami parameter m, the values of μ will be limited to

m

2
< μ < m: ð4:177Þ

It is interesting to note that for a fixed value ofm, (4.174) and (4.177) show that μ
can take a range of values determined by the values of the ratio of variances of the

inphase and quadrature parts with

ϑ

υ

� �2

¼ 2
μ

m
� 1: ð4:178Þ
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Note that m can take multiple values indicating that the pdf in (4.173) offers the

flexibility of modeling a wide range of fading conditions. Going back to (4.164) and

(4.177), we obtain the Hoyt distribution by choosing a value of m ¼ 0.5. The pdf

now becomes,

f zð Þ ¼ 1þ q2

2qZ0

exp � 1þ q2ð Þ2z
4q2Z2

0

" #
I0

1� q4ð Þz
4q2Z0

	 

: ð4:179Þ

In (4.179), q has replaced m and the density function in Eq. (4.179) is identified

as the Nakagami-q density function or the Hoyt pdf of the SNR in short-term fading

channels (Simon and Alouini 2005; Paris 2009a, b). Taking note of (4.177), the

value of qwill be limited to a positive quantity less than unity. Thus, the Nakagami-

q distribution models fading conditions far more severe than Rayleigh (q ¼ m ¼ 1)

or Nakagami-m channels (m > 1/2).

The CDF of the SNR in a Hoyt fading channel has been obtained in an analytical

form (Paris 2009a, b) and it is given by

F zð Þ ¼ Q A qð Þ
ffiffiffiffiffiffiffiffi
z

4Z0

r
;B qð Þ

ffiffiffiffiffiffiffiffi
z

4Z0

r	 

� Q B qð Þ

ffiffiffiffiffiffiffiffiffiffi
z

4Z0

,

r
A qð Þ

ffiffiffiffiffiffiffiffi
z

4Z0

r	 

, ð4:180Þ

where

A qð Þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

1� q

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q4

2q

s
ð4:181Þ

B qð Þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

1� q

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q4

2q

s
ð4:182Þ

and Q is the Marcum’s Q function defined in Chap. 3.

Note that we had obtained (4.164) and all the other density functions from

(4.164) by assuming that the inphase and quadrature components are independent

with identical means of zero but with different variances. It is also possible to arrive

at (4.164) and the other density functions by treating the inphase and quadrature

components to be identical and of zero mean, but, treat them as two correlated

random variables with a correlation coefficient η such that �1 < η < 1. Thus,

whether one looks at the inphase and quadrature components as independent with

non-identical variances or correlated with identical variances, the Hoyt pdf will

result. We will now look at (4.162) differently and rewrite it as

Z ¼ A2 ¼
Xu
k¼0

Xk þ μxð Þ2 þ
Xu
k¼0

Yk þ μy
 �2

: ð4:183Þ
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In (4.183), X’s and Y’s are still zero mean, independent, and identically distrib-

uted Gaussian random variables. However, now the inphase and quadrature com-

ponents each has a constant mean of mx and my, respectively. This suggests that

within each cluster, the possibility exists that there is power in the dominant path of

some strength over and beyond the power in the diffuse components. Expressing

(4.184) in terms of the sum of independent identical variables, we have

Z ¼
Xu
k¼1

Zk ¼
Xu
k¼1

A2
k : ð4:184Þ

Note that the pdf of Zk is the well-known Rice distribution given by

f zkð Þ ¼ 1

2σ2
exp � zk þ d2k

2σ2

� �
I0

dk
ffiffiffiffi
zk

p
σ2

� �
: ð4:185Þ

In (4.185), σ2 is the variance of the inphase and quadrature components and

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2x þ μ2y

q
: ð4:186Þ

The pdf of Z can now be obtained using the concept of the pdf of sum of

independent random variables as

f zð Þ ¼ 1

σ2
z

d2

� � u�1ð Þ=2
exp � zk þ d2

2σ2

� �
Iu�1

d
ffiffi
z

p
σ2

� �
ð4:187Þ

with

d2 ¼
Xu
k¼0

d2k : ð4:188Þ

Defining the ratio of the total power in the dominant paths to diffuse power

(or SNR) as

κ ¼ d2

2uσ2
ð4:189Þ

we have

Zh i2
Z2
� �� Zh i2 ¼ u

1þ κð Þ2
1þ 2κð Þ : ð4:190Þ

Equations (4.189) and (4.190) suggest to us that depending on the values of κ and
the moments, the quantity u might not always be integer. Recognizing this, we will
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replace u with μ taking a value larger than or equal to 1. Equation (4.187) can now

be rewritten in terms of κ and μ as

f zð Þ ¼ μ

κ μ�1ð Þ=2ð Þexp μκð Þ 1þ κð Þ μ�1ð Þ=2ð Þz μ�1ð Þ=2ð Þ

�exp �μ 1þ κð Þz½ �Iμ�1 2μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ 1þ κð Þzp� �

:

ð4:191Þ

The pdf in (4.191) is often identified as the κ � μ distribution. For m¼ 1, (4.191)

is the pdf of SNR in the traditional Rician fading channels if m ¼ 1 and κ ¼ 0,

Eq. (4.191) becomes the exponential distribution for the SNR associated with the

Rayleigh fading channels. The κ � μ density is plotted in Fig. 4.72 for a fixed value

of m and in Fig. 4.73 for a fixed value of κ.
Redefining Eq. (4.191) for the case of m ¼ 1, we have

κ ¼ d2

2σ2
¼ n2: ð4:192Þ

In Eq. (4.192) n is a positive number and we can rewrite Eq. (4.191) as

f zð Þ ¼ 1þ n2
 �

exp n2
 �

exp �μ 1þ n2
 �

z
� �

I0 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2ð Þ

p
z

h i
: ð4:193Þ
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Scaling by the average SNR Z0, we get

f zð Þ ¼ 1þ n2ð Þ
Z0

exp n2
 �

exp �μ
1þ n2ð Þ
Z0

z

	 

I0 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2ð Þ

p z

Z0

	 

: ð4:194Þ

Equation (4.194) is the well-known Nakagami–Rice or Nakagami-n distribution
for the SNR where n is the Nakagami-n fading parameter. Note that the parameter κ
in (4.192) is identical to the Rician factor K0 in (4.18) expressed earlier.

We can also look at the relationships among the three Nakagami distributions,

namely Nakagami-m, Nakagami-q, and Nakagami-n. Comparing the moments of

the pdf, the relationships become

m ¼ 1þ q2ð Þ2
2 1þ q4ð Þ , m � 1 ð4:195Þ

and

m ¼ 1þ n2ð Þ2
1þ 2n2

, m � 1, n � 0: ð4:196Þ

It is now possible to look at yet another generalization of the fading models

described above. Instead of the η � μ and κ � μ distributions, it is possible to

introduce another parameter α leading to the so-called α � η � μ and α � κ – μ
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distributions (Papazafeiropoulos and Kotsopoulos 2011a). Let us go back to (4.162)

and rewrite it by scaling the power as

Zα ¼
Xu
k¼0

X2
k þ Y2

k

 �" #
: ð4:197Þ

The density functions of the appropriate α � η � μ and α � κ � μ variables can

be obtained using the transformation of variables discussed in Chap. 2. It is also

worth mentioning that (4.197) can lead to the generalized Nakagami pdf or the

generalized gamma distribution. Thus, use of an exponential scaling makes it

possible to take the η� μ and κ � μ distributions, and with the additional parameter

α, the generalized gamma pdf could be incorporated into the mix of the densities

that are encompassed in a single density function (Papazafeiropoulos and

Kotsopoulos 2011b).

The performance of wireless channels undergoing η� μ and κ � μ fading can be
studied in the same manner as was done with the other fading channels. Since the

Rayleigh, Rician, Nakagami, generalized gamma, and Weibull channels have been

studied, we will look at the remaining one from the class of η � μ and κ – μ
distributions, namely the Hoyt channels or the Nakagami–Hoyt channels. The

Nakagami–Hoyt pdf is shown in Fig. 4.74.
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The moments of the Hoyt density in (4.179) are

Zk
� � ¼ Γ 1þ kð Þ2F1 � k � 1

2
;�k

2
; 1;

1� q2

1� q2

� �2
 !

Z k
0 : ð4:198Þ

In Eq. (4.198), 2F1 is the hypergeometric function (Gradshteyn and Ryzhik

2007). The amount of fading becomes

AF ¼ 2
1þ q4ð Þ
1þ q2ð Þ2 , 0 � q � 1: ð4:199Þ

Thus, the amount of fading ranges from 2 at the high end (same value

corresponding to m ¼ 1/2 for the Nakagami-m case) to 1 at the low end, the same

as the value in Rayleigh channels. The error rates in Hoyt channels can now be

estimated using (4.133). The results are shown in Fig. 4.75.

The outage probabilities in Hoyt channels are plotted in Fig. 4.76.

4.10 A Few Additional Quantitative Measures of Fading
and Shadowing

We will also discuss two additional quantitative measures. (We will not undertake a

detailed analysis which was already carried out with the other measures above.)

First of these is the Ergodic Channel capacity which can be estimated using the
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density functions obtained earlier (Lee 1990; Sagias et al. 2004, 2005; Simon and

Alouini 2005; Laourine et al. 2007; Di Renzo et al. 2010). The second measure is

the average fade duration which requires the second order statistics of the envelope

and takes into account the relative motion of the transmitter/receiver (Jakes 1994).

4.10.1 Ergodic Channel Capacity

Channel capacity provides a measure of the amount of information that can be

reliably transmitted over a communications channel. In an ideal channel corrupted

by additive white Gaussian noise, the channel capacity C is given by (Haykin 2001;

Sklar 2001)

C ¼ BWð Þlog2 1þ Zð Þb=s: ð4:200Þ

In (4.200), BW is the channel bandwidth (Hz) and Z is the signal-to-noise ratio

(SNR). When fading, shadowing, or shadowed and fading are present, the SNR Z is

a random variable (described earlier) and (4.200) needs to be rewritten to obtain the

mean channel capacity as (Lee 1990)

Ch i ¼ BWð Þ
ð1
0

log2 1þ zð Þf zð Þdz b=s, ð4:201Þ
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where f(z) is the pdf of the SNR in the channel undergoing random fluctuations.

Normalized average channel capacity in b/s/Hz can be written as

Ch in ¼
Ch i
BWð Þ

ð1
0

log2 1þ zð Þf zð Þdz b=s=Hz: ð4:202Þ

We will first look at the case of a pure short-term faded channel undergoing

Nakagami fading. In a Nakagami faded channel, (4.202) becomes

Ch in ¼
ð1
0

log2 1þ zð Þ m

Z0

� �m zm�1

Γ mð Þ exp �m
z

Z0

� �
dz: ð4:203Þ

For m ¼ 1, (4.203), provides the normalized average capacity in a Rayleigh

channel and Z0 is the average SNR. It is possible to solve (4.203) by representing its
different factors in terms of other functions. Using the relationship between Meijer

G-function and simple functions, we have (Gradshteyn and Ryzhik 2007)

log 1þ zð Þ ¼ G1,2
2,2 z 1,1

1, 0

��h i
ð4:204Þ

exp �m
z

Z0

� �
¼ G1,0

0, 1 m
z

Z0

�
0

��	 

: ð4:205Þ

Equation (4.203) now becomes

Ch in ¼
1

log 2ð ÞΓ mð Þ
m

Z0

� �m ð1
0

G1,2
2, 2 z 1,1

1, 0

��h i
G1,0

0,1 m
z

Z0

�
0

��	 

zm�1 dz: ð4:206Þ

Equation (4.206) can be solved using the integral properties of Meijer

G-functions. The normalized average channel capacity becomes

Ch in ¼
1

log 2ð ÞΓ mð Þ
m

Z0

� �m ð1
0

G3,1
2,3

m

Z0

�m, 1�m
0,�m,�m

��	 

: ð4:207Þ

For the case of Rayleigh fading, the normalized average channel capacity

becomes (by putting m ¼ 1 in (4.207))

Ch in ¼
1

log 2ð Þ
1

Z0

� �
G3,1

2, 3

1

Z0

�1, 0

0, � 1, � 1

����
	 


: ð4:208Þ

The channel capacity is plotted in Fig. 4.77 for Nakagami channels.

Proceeding in a similar way, we can obtain the normalized average channel

capacity in a Rician faded channel as
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Ch in ¼
Ð1
0
log 1þ zð Þ 1

Z0

1þK0ð Þexp �K0� z

Z0

1þK0ð Þ
	 


I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K0 1þK0ð Þ z

Z0

r� �
dz:

ð4:209Þ

Note that Z0 is the average SNR in the Rician channel which includes the

contribution from the LOS component. The Rician factor is given by K0. The

modified Bessel function of the first kind I0 can be expanded in an infinite series.

Using the relationship between Meijer G-function and elementary functions

expressed in Eqs. (4.204) and (4.205), the channel capacity in (4.209) in the Rician

channel can be simplified to

Ch in ¼
1þ K0ð Þexp �K0ð Þ

log 2ð ÞZ0

X1
n¼0

1

n!

� �2
1þ K0ð ÞK0

Z0

	 
n
G3,1

2,3

� 1þ K0

Z0

� � �1� n, � n
0, � 1� n, � 1� n

����
	 


:

ð4:210Þ

The channel capacities in Rician channels are plotted in Fig. 4.78 for a few

values of the Rician factor or parameter in dB.

The channel capacity in Nakagami–Hoyt channels can be estimated in a similar

fashion. The capacities are plotted in Fig. 4.79.
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The channel capacity in cascaded short-term fading channels can be obtained as

Ch i ¼ 1

log 2ð Þ
ð1
0

G1,2
2, 2 z 1,1

1,0

��h i 1

zΓN mð ÞG
N, 0
0,N

mN

Z0

z m,m, ...,mj
� �

dz: ð4:211Þ

In writing (4.211), we have expressed the relationship between log(1 + x) and
Meijer G-function in (4.204). The density function of the SNR in a cascaded

channel is described in (4.114). Using the table of integrals, (4.211) can be

simplified to

Ch i ¼ 1

log 2ð ÞmNΓN mð ÞG
1,2
2, 2

mN

Z0

z 1, 1,mþ 1,mþ 1, . . . ,mþ 1
1, 2

����
� �

: ð4:212Þ

Channel capacities are plotted in Figs. 4.80, 4.81, and 4.82.

We will now look at the case of shadowed fading channels. Given that the

Nakagami-lognormal channel leads to the unavailability of an analytical expression

for the pdf, we will use the Nakagami-gamma model which results in the GK

distribution for the SNR in a shadowed fading channel. Taking note of the fact that a

doubly cascaded channel with gamma parameters of m and c is the same as the GK

distribution, we will use the results of the cascaded channel to estimate the average

channel capacity. The density function of the SNR in a shadowed fading channel

modeled using the generalized K distribution can be written as

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Average SNR (dB)

C
ha

nn
el

 c
ap

ac
ity

 p
er

 u
ni

t B
an

dw
id

th

m=0.5

m=1

m=2
m=3

Gaussian

Fig. 4.80 Average channel capacities in double Nakagami cascaded channels

4.10 A Few Additional Quantitative Measures of Fading and Shadowing 397



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Average SNR (dB)

C
ha

nn
el

 c
ap

ac
ity

 p
er

 u
ni

t B
an

dw
id

th

m=0.5

m=1

m=2
m=3

Gaussian

Fig. 4.81 Average channel capacities in triple cascaded channels

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Average SNR (dB)

C
ha

nn
el

 c
ap

ac
ity

 p
er

 u
ni

t B
an

dw
id

th

m=0.5

m=1

m=2
m=3

Gaussian

Fig. 4.82 Average channel capacities in quadruple cascaded channels

398 4 Modeling of Fading and Shadowing



f zð Þ ¼ 1

zΓ mð ÞΓ cð ÞG
2,0
0, 2

mc

Z0

z
�
m, c

����
� �

: ð4:213Þ

Note that in (4.213), c is related to the shadowing level measured in terms of σdB
through (4.72). Equation (4.212) can now be used to obtain average channel

capacities in a shadowed fading channel as

Ch i ¼ Z0

log 2ð ÞmcΓ mð ÞΓ cð ÞG
4,1
2,4

mc

Z0

1, 2

1, 1,mþ 1, cþ 1

����
� �

: ð4:214Þ

In this case, the average channel capacities can now be estimated and plotted as a

function of the Nakagami parameter m and shadowing parameter c with high values
of c corresponding to low levels of shadowing and low values of c corresponding to
high levels of shadowing. The channel capacities are plotted for m ¼ 1, 2, and 3 for

a few levels of shadowing in Figs. 4.83, 4.84, and 4.85, respectively.

4.10.2 Second Order Statistics of Fading, Shadowing,
and Shadowed Fading Channels

As mentioned in the introduction, we have concentrated on fading channels that are

slow and flat, thereby ignoring the effects of relative motion of the transmitter and
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receiver. Still, some properties of the wireless channel in terms of the temporal

characteristics are necessary to fully comprehend the problems in wireless channels

that undergo fading, shadowing, as well as shadowing and fading simultaneously.

Thus, we will complete the overview of the fading channels by examining such

dynamic channels characteristics as the rate at which a channel goes into outage and

how long it stays, and so on. Such issues are crucial to the development of a

successful strategy which takes into account the fact that often the mobile unit is

not stationary and such motion of the mobile unit would also effect the ability to

transmit data.

The measures we reviewed so far, namely error probability and outage proba-

bility, are quantitative measures of the fading channel based on first order statistics

since the only information required is the pdf of the SNR. However, the second

order statistics, namely the joint pdf of the SNR, will provide additional information

on the fading channel such as the number of times the envelope of the received

signal will stay below or above a required threshold value, whether it goes below

the threshold, and how long it will stay there. More importantly, dynamic quanti-

tative measures provide means to manage handoff algorithms, estimate package

error rates (burst errors), and give an overall estimate of the state of the channel.

Two such measures are level crossing rates (LCR) and the average fade duration

(AFD). The former is defined as the number of times/unit duration that the envelope

crosses the threshold in the negative direction; the latter is defined as the average

duration of time the envelope stays below the threshold once it goes below. These

are generally accepted as two markers to quantify the second order statistics of the

channel. LCR and AFD can be estimated for the fading channels before and after

the implementation of diversity (Jakes 1994). Figure 4.86 illustrates the concepts of

fade duration and level crossing rates.

We will start the discussion of the second order statistical measures by looking at

the simplest case of a Rayleigh faded channel prior to looking at other models for

fading, shadowing, and shadowed fading channels before and after diversity. The

pdf in (4.6) of the envelope A in a Rayleigh faded channel can be expressed as

f að Þ ¼ 2a

P0

exp �a2

P0

� �
: ð4:215Þ

In (4.215), P0 is the average power. The level crossing rate (LCR), NA(α) is
defined as the expected rate at which the envelope crosses a specified signal level A:

NA Að Þ ¼
ð1
0

_a f A; _að Þd _a : ð4:216Þ

In Eq. (4.216), the upper period above a indicates the derivative with respect to

time and f A; _að Þ is the joint pdf of a and _a at a ¼ A. The joint pdf of the envelope
(at the fixed value of a¼ A) and its derivative can be written in terms of conditional

pdfs as
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f _aja ¼ Að Þ ¼ f _að Þ: ð4:217Þ

These pdfs can be obtained from the original work of Rice. For Rayleigh, Rician,

and Nakagami distributions, the pdf of the derivative of the magnitude is indepen-

dent of the pdf of the magnitude (Jakes 1994). This pdf has been shown to be

f _að Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � _a2

2σ2

� �
: ð4:218Þ

Furthermore, it was shown that

f _aja ¼ Að Þ ¼ f _að Þ: ð4:219Þ

Equation (4.219) leads to (4.216) becoming

NA Að Þ ¼ f Að Þ
ð1
0

_a f _að Þ d _a : ð4:220Þ

In Eq. (4.218),

σ2 ¼ π2Ωf 2d: ð4:221Þ

In (4.221), fd is the maximum Doppler frequency shift and Ω is given by (Jakes

1994; Yacoub et al. 1998, 1999, 2001; Dong and Beaulieu 2001)
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Fig. 4.86 Concepts of fade duration and level crossing rates. A is the threshold
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Ω

P0 Rayleigh

P0

m
Nakagami

P0

K0 þ 1
Rician

8>>>>><
>>>>>:

: ð4:222Þ

The average fade duration (AFD) is defined as

T að Þ ¼ F Að Þ
NA Að Þ : ð4:223Þ

In (4.223), F(A) is the probability that a is less than the fixed value A. Note that
the numerator in (4.223) is nothing but the CDF which is also the outage probabil-

ity. Thus the average fade duration provides a measure of the time that the wireless

system remains in outage.

We will now look at the Nakagami fading channel. Using (4.218) and (4.221),

the level crossing rate in (4.216) becomes

N ρð Þ ¼
ffiffiffiffiffiffiffiffiffi
2πf 2d

q
Γ mð Þ mρ2

 �m� 1=2ð Þ
exp �mρ2
 �

: ð4:224Þ

The average fade duration in (4.223) becomes

T ρð Þ ¼ Γ m;mρ2ð Þexp mρ2ð Þffiffiffiffiffiffiffiffiffi
2πf 2d

q
mρ2ð Þm� 1=2ð Þ

: ð4:225Þ

In Eqs. (4.224) and (4.225), ρ is the normalized magnitude given by

ρ ¼ Affiffiffiffi
Ω

p : ð4:226Þ

and Γ(.,.) is the incomplete gamma function defined in (2.37) in Chap. 2.

The LCR and AFD in a Rayleigh cannel can easily be obtained from (4.224) and

(4.225) by putting m ¼ 1 as

N ρð Þ ¼ ρ
ffiffiffiffiffiffiffiffiffi
2πf 2d

q
exp �ρ2
 � ð4:227Þ

and

T ρð Þ ¼ exp ρ2ð Þ � 1½ �
ρ
ffiffiffiffiffiffiffiffiffi
2πf 2d

q : ð4:228Þ
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Using the Rician pdf in (4.23), the LCR in a Rician channel becomes (Abdi et al.

2000; Abdi and Kaveh 2002; Chen 2007)

T ρð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π K0 þ 1ð Þ

p
f mρexp �K0 � K0 þ 1ð Þρ2� �

I0 2ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 � K0 þ 1ð Þ

p� �
:

ð4:229Þ

The average fade duration in a Rician fading channel can be expressed in terms

of the CDF obtained in (4.29), and it is given by

T ρð Þ ¼
1� Q

ffiffiffiffiffiffiffiffi
2K0

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 K0 þ 1ð Þρ2p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π K0 þ 1ð Þp

f mρexp �K0 � K0 þ 1ð Þρ2½ �I0 2ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 � K0 þ 1ð Þp � :

ð4:230Þ

In (4.229) and (4.230), I0(.) is the 0th modified Bessel function of the first kind

and Q(.,.) is the Marcum Q function defined in Eq. (3.186) in Chap. 3.

The level crossing rate in Weibull fading can also be obtained similarly (Sagias

et al. 2004). The Weibull pdf of the envelope can be expressed as

f að Þ ¼ mw

P0

amw�1exp �amw�1

P0

� �
: ð4:231Þ

Note that the Weibull pdf for the power and envelope looks the same and for

mw ¼ 2 (4.231) becomes the Rayleigh pdf. Note that

E amwð Þ ¼ P0 ¼ Ω: ð4:232Þ

The CDF of the envelope in Weibull fading (evaluated at a ¼ A) is

F Að Þ ¼ 1� exp �Amw

P0

� �
: ð4:233Þ

Noting that the pdf of the derivative of the envelope is given in (4.218), we can

obtain the expression for the LCR as

NA ρwð Þ ¼
ffiffiffiffiffiffiffiffiffi
2πf 2d

q
ρwffiffiffi
β

p
� �mw

2

exp � ρwffiffiffi
β

p
� �mw

	 

: ð4:234Þ

In (4.234),

β ¼ 1

Γ 1þ 2=mwð Þð Þ ð4:235Þ
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ρw ¼ A
ffiffiffi
β

p

Ω1=mw
: ð4:236Þ

The average fade duration becomes

T ρwð Þ ¼ 1� exp � ρw=
ffiffiffi
β

pð Þmw
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πf 2d ρw=

ffiffiffi
β

pð Þ
q mw=2

exp � ρw=
ffiffiffi
β

pð Þmw
� � : ð4:237Þ

When mw¼ 2, (4.234) and (4.237) become the corresponding values in Rayleigh

channels given in (4.227) and (4.228), respectively.

As mentioned earlier, in some of the indoor propagation channels, short-term

fading has been seen to be best described using a lognormal pdf (Cotton and

Scanlon 2007). This means that the pdf of the envelope expressed in decibel units

adB ¼ 20log10 að Þ ð4:238Þ

can be expressed as

f adBð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2dB

p exp � adB � μadBð Þ2
2σ2dB

" #
: ð4:239Þ

Note that in (4.239), mdB and σdB, respectively, are the mean and standard

deviation of the envelope in decibel units (Loo 1985; Tjhung and Chai 1999;

Laourine et al. 2007). Note that the pdf of the derivative of the envelope (in dB)

is independent of the envelope and Gaussian distributed as in the previous models

of fading, the expression for the LCR becomes

N AdBð Þ ¼ f AdBð Þ
ð1
0

_a dBf _adBð Þd _a dB: ð4:240Þ

In (4.240),

f _adBð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2π _σ 2

p exp � _a2dB
2 _σ2

� �
ð4:241Þ

with

Equation (4.240) now becomes

_σ ¼ 2πσdBf d: ð4:242Þ

N AdBð Þ ¼ f dexp � AdB � μdBð Þ2
2σ2dB

" #
: ð4:243Þ
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The average fade duration now becomes

T AdBð Þ ¼ 1

2N AdBð Þ 1þ erf
AdB � μadBffiffiffiffiffiffiffiffiffiffi

2σ2dB
p

" #
: ð4:244Þ

In (4.244), erf() is the error function defined in Chap. 3.

Now that we have looked at several fading models, we can examine the second

order statistics of shadowed fading channels. Shadowed fading channels are typi-

cally modeled as the result of a product of a short-term faded component (for

example, Nakagami distributed) and a long-term faded or shadowing component

(typically lognormal) as (Tjhung and Chai 1999)

A tð Þ ¼ X tð ÞY tð Þ: ð4:245Þ

In Eq. (4.245), X(t) and Y(t), respectively, are the short-term and long faded

components and A(t) is the resulting shadowed fading component (envelope). In a

typical Nakagami-lognormal shadowed fading channel, X will be Nakagami dis-

tributed while Y will be lognormal. Instead of that approach, we will follow the

simplified approach of using the shadowed fading channel modeled using the GK

distribution. This allows us to write the right-hand side of Eq. (4.245) as the product

of two Nakagami random variables (note that Nakagami distributed envelope

results in gamma distributed power (Zlatanov et al. 2008). Note that the double

Nakagami process also leads to the GK distribution as discussed earlier in Sect. 4.6.

This means that density function of the short-term fading component given as

f xð Þ ¼ 2
m

Px

� �m

x2m�1exp �m
x2

Px

� �
: ð4:246Þ

The pdf of the shadowing process is given as (Shankar 2004; Zlatanov et al.

2008)

f yð Þ ¼ 2
m

Py

� �c

y2c�1exp �c
y2

Py

� �
: ð4:247Þ

In (4.246) and (4.247) m and c are the Nakagami parameters and Px and Py,

respectively, are the average powers. It must be noted that c can take any positive

value if we identify the pdf in Eq. (4.247) as one resulting from a gamma density

function.

The densities of the derivatives of X and Y will be Gaussian with variances of the

form given in (4.221). The corresponding variances becomes

σ2_X ¼ π2f 2d
Px

m

� �
σ2_Y ¼ π2f 2d

Py

c

� �
: ð4:248Þ
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The LCR in a showed fading channel becomes

NA Að Þ ¼
ð1
0

_a f A; _að Þ d _a : ð4:249Þ

Equation (4.249) can be written in terms of the densities of X and Y as

NA Að Þ ¼
ð1
0

ð1
0

_a f _A
��AX _ajA; xð Þ d _a

� �
f
A
��X Ajxð Þf X xð Þ dx: ð4:250Þ

In (4.250), f _A
��AX :ð Þ is the conditional pdf of _A conditioned on A and X and it can

be determined from the derivative of A in (4.245) as

_A ¼ Y _X þ X _Y ¼ Z

X
_X þ X _Y : ð4:251Þ

The expression for LCR now becomes (Zlatanov et al. 2008)

NA Að Þ ¼ 1ffiffiffiffiffi
2π

p 4z2c�1

Γ mð ÞΓ cð Þ
m

Px

� �m c

Py

� �c

ð4:252Þ

The integral in Eq. (4.252) can be evaluated numerically. The average fade

duration can be expressed as the ratio of the CDF of A evaluated at a ¼ A and the

LCR in (4.252). The AFD becomes

T Að Þ ¼
1

T mð ÞT cð ÞG
2,1
1, 3 A2 mc

PxPy

1

m, c, 0

����
� �
N Að Þ : ð4:253Þ

In (4.253), G(.) is the Meijer G-function defined earlier in connection with

cascaded channels and the numerator is the CDF associated with the double

Nakagami pdf.

4.11 Sum, Product, and Mixture Models of Fading

Fading models can also be classified and identified in terms of their mathematical

origins. The product model of fading leads to densities described in terms of the

Meijer G-functions (Shankar 2013, 2015). In product models, the signal-to-noise

ratio is modeled in terms of products of several random variables. The Nakagami-

lognormal, Rayleigh-lognormal, and generalized K densities for shadowed fading

channels originate from the product approach. The genesis of the lognormal density

for shadowing can be attributed to the product model as explained earlier in this

4.11 Sum, Product, and Mixture Models of Fading 407



chapter where the SNR is best described as the product of several random variables.

The sum model, on the other hand, results in SNR values expressed as the sum of

two or more random variables. The sum model may be generalized to include the

weighted sum of random variables. One example of the sum model discussed in the

previous section is the so-called η � μ and κ – μ densities (Andersen 2002b;

Asplund et al. 2002; Yacoub 2007a, b; Shankar 2015). Thus, the key characteristic

of the sum and product models is the representation of the signal-to-noise ratio as

the sum or product of a number of component SNRs. The density functions of the

SNR in sum and product models are obtained using the approaches based on the

concept of transformation of random variables described in Chap. 2. In some cases,

these transformations do not lead to closed form solutions for the densities as in the

case of Nakagami-lognormal or Rayleigh-lognormal densities for the amplitudes of

the signal strengths (Simon and Alouini 2005). In a complementary approach to

modeling the statistical fluctuations in wireless channels, it is possible to invoke the

concept of statistical mixtures or mixtures of densities (Chap. 2). While sum and

product models might not lead to closed form solutions for densities, the densities in

mixture models are created by taking the weighted sum of component densities

resulting in analytical forms for the densities of the SNR in these models. Thus, the

mixture densities differ from the densities in the sum and product models in terms

of the availability of a closed form solutions to the densities of the mixtures. The

number of components in the mixtures, their weights, and the parameters of the

component densities are to be determined and this aspect introduces computational

complexities depending on the number of components in the mixture and basic

density used in the mixture.

Another sum model leading to the McKay density is described first. The product

model based on Meijer G-functions for the shadowed fading channels is presented

next followed by the mixture models. The McKay density has been used to describe

the statistics of the density of the SNR following diversity and the density itself was

originally proposed and derived in 1932. It will also be shown that the McKay

density and η � μ densities are similar in terms of their properties. Combining the

cascaded gamma models for fading with cascaded models for shadowing, the

product model of shadowed fading can be extended to take a more general form

and described in terms of Meijer G-functions.
Once the sum model leading to the McKay density is presented, the mixture

models proposed as an alternate form of models will be described.

4.11.1 Sum Model and McKay Density

A model constructed from the sum of random variables can be used to describe the

signal strength fluctuations seen in short-term fading in wireless channels. Such a

model is expressed in terms of the McKay distribution which was originally

proposed in 1932 in connection with the statistics of gamma random variables
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(McKay 1932). It treats the signal strength fluctuations in wireless channels as the

result of scatters in the channel being grouped into two non-identical clusters. This

description of the model differs from the one used in connection with the Nakagami

model which assumes that there is a single cluster or there exist multiple clusters of

identical scattering properties.

Consider the case of a wireless channel with no dominant scatterers. This

suggests that the channel does not support any direct path between the transmitter

and receiver (Rician fading conditions do not exist). The scatterers are grouped

together into clusters (a model that was presented in connection with the Nakagami

channel). The received signal strength in terms of the power or signal-to-noise ratio

can then be written as the sum of the powers of the signals from each of these

clusters. If there are n clusters, the SNR (or power) of the received signal is

(Shankar 2015)

Z ¼
Xn
i¼1

X2
i : ð4:254Þ

In Eq. (4.254), each term of the right-hand side is the result of the sum of the

powers of the inphase and quadrature components. Each cluster is assumed to have

sufficient number of scatterers so that the criteria of the central limit theorem

(Chap. 2) are met. This means that the inphase and quadrature components are

treated as zero mean Gaussian random variables. Under these conditions (sufficient

number of scatterers in each cluster and independent and identical clusters), the

probability density of the SNR Z becomes

f zð Þ ¼ z
n
2
�1

Γ n
2

 �
Z

n
2

0

exp � z

Z0

� �
U zð Þ: ð4:255Þ

The average SNR is denoted by Z0 in Eq. (4.255). It should be noted (as stated

earlier in connection with the discussion of Nakagami fading) that Eq. (4.254) is

valid even when there is only one cluster leading to the SNR in a Nakagami fading

channel with the Nakagami parameter m being equal to ½ as

f zð Þ ¼ m

Z0

� �
zm�1

Γ mð Þ exp �m

Z0

z

� �
U zð Þ, m � 1

2
: ð4:256Þ

Under the Nakagami model, the minimum value of m is ½ and as it will be

shown, it is possible for m to take any positive value if we treat the density in

Eq. (4.256) as the standard gamma density. In the remaining discussion, m is

considered to be a positive number.

One of the limitations of the model described above (and in connection with the

Nakagami channel) is that it treats all the clusters to be identical. The fading can be

considered to be more general if that condition is relaxed by treating the clusters to
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be non-identical. A simple case of two clusters will be considered first before

considering additional clusters. For the case of two clusters, the SNR becomes

Z ¼ X2
1 þ X2

2: ð4:257Þ

If the clusters have sufficient number of scatterers to satisfy the central limit

theorem, the densities of X’s will be Gaussian. But, since the clusters are not

identical, the average powers of the two clusters will be unequal. If the ratio of

the average powers from the two clusters is defined as q2 and σ1 and σ0 are the

standard deviations of the Gaussian variables,

q2 ¼

σ21
σ22
, σ21 < σ22, 0 < q < 1

σ22
σ21
, σ21 > σ22, 0 < q < 1

8>>><
>>>: : ð4:258Þ

Under these conditions, the density function of the variable Z is given by

(Nakagami 1960)

f zð Þ ¼ 1þ q2ð Þ
2qZ0

exp � 1þ q2ð Þ2
4q2Z0

z

" #
I0

1� q4ð Þ
4q2Z0

z

	 

: ð4:259Þ

In Eq. (4.259), I0(.) is the modified Bessel function of the first kind of order 0 and

Z0 is the average SNR. The expression in Eq. (4.259) is identified as the Nakagami–

Hoyt density.

While the Nakagami–Hoyt density and the Rician density (also referred to as the

Nakagami–Rice density) contain I0(.), the density functions differ significantly in

terms of the characteristics of the fading channel. While the Rician fading channel

has the amount of fading less than unity (note that the Rician density arises from

two independent Gaussian variables of identical variances but differing means), the

amount of fading in a Nakagami–Hoyt channel (also called the Hoyt channel)

becomes

AF ¼ Z2
� �
Zh i2 � 1 ¼ 2

1þ q4ð Þ
1þ q2ð Þ2 , 0 < q < 1: ð4:260Þ

Equation (4.260) leads to

1 � AFHoyt � 2: ð4:261Þ

This means that the amount of fading in a Hoyt channel is worse than what one

observes in a Rayleigh channel. When q approaches 1, the density function in

Eq. (4.259) becomes the exponential density
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f zð Þ ¼ 1þ q2ð Þ
2qZ0

exp � 1þ q2ð Þ2
4q2Z0

z

" #
I0

1� q4ð Þ
4q2Z0

z

	 
( )
q!1

¼ 1

Z0

e
z
Z0U zð Þ: ð4:262Þ

In other words, the Hoyt channel becomes the Rayleigh channels when the

average powers are equal. Another way to interpret the results in Eqs. (4.259) and

(4.262) is to redefine Eq. (4.257) as

Z ¼ Z1 þ Z2: ð4:263Þ

In Eq. (4.263), Z1 and Z2 are gamma random variables of order ½. If Z1 and Z2
are identical with mean values of Z0/2, it can be shown that the density function of

Z will be a gamma random variable with an order equal to (1/2 + 1/2) and mean

equal to (Z0/2 + Z0/2). The density of Zi can be expressed as

f zið Þ ¼ 1

2

2

Z0

� �1
2

z

�1
2

Γ 1
2ð Þ

i e
� 1

2ð Þ2ziZ0U zð Þ, i ¼ 1, 2: ð4:264Þ

It can easily be seen that the pdf in Eq. (4.264) is the density of the SNR in a

Nakagami channel with m ¼ 1/2. In the case of two non-identical gamma variables

Z1 and Z2 are considered with

Z1h i ¼ 1

1þ q2
Z0: ð4:265Þ

Z2h i ¼ q2

1þ q2
Z0: ð4:266Þ

The probability density functions are

f z1ð Þ ¼ 1

2

1þ q2ð Þ
Z0

	 
1
2

z

�1
2

Γ 1
2ð Þ

1 e
� 1

2ð Þ 1þq2ð Þz1
Z0 U z1ð Þ ð4:267Þ

f z2ð Þ ¼ 1

2

1þ q2ð Þ
q2Z0

	 
1
2 z

�1
2

2

Γ 1
2

 � e� 1
2ð Þ 1þq2ð Þz2

q2Z0 U z2ð Þ: ð4:268Þ

The density function of the sum becomes

f zð Þ ¼
ðz
0

f z1 z1ð Þf z2 z� z1ð Þdz1: ð4:269Þ

The integral in Eq. (4.269) leads to the same pdf as in Eq. (4.259). In other

words, the density function of two independent gamma variables of order half and
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unequal means lead to the Nakagami–Hoyt density (Nakagami 1960). Before going

back to the presentation and discussion of the McKay model, one must also explore

another way to examine the case of two clusters. This involves modeling the powers

from the two clusters to be identically distributed with the correlation ρ existing

between them. Going back to Eq. (4.263), treating Z1 and Z2 to be identically

distributed gamma random variables of order ½ and mean power Z0/2, the joint

density of the two can be expressed as (Nakagami 1960; Okui et al. 1981; Nadaraja

and Kotz 2006; Karagiannidis et al. 2006a, b; Chatelain et al. 2008;

Papazafeiropoulos and Kotsopoulos 2011a, b)

f z1; z2ð Þ ¼ 1

Z0

� �3
2

z1z2
ρ

� ��1
2

Γ 1
2

 �
1� ρð Þ exp � 1

Z0

z1 þ z2
1� ρ

� �	 

I�1

2

2
ffiffiffiffiffiffiffiffiffiffi
z1z2ρ

p
Z0 1� ρð Þ
	 


: ð4:270Þ

The density of the sum now becomes

f zð Þ ¼
ðz
0

f z1, z2 z� z2; z2ð Þdz2: ð4:271Þ

Performing the integration, the density in Eq. (4.271) becomes

f zð Þ ¼ 1

Z0

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p exp � 1

Z0 1� ρð Þz
	 


I0

ffiffiffi
ρ

p
Z0 1� ρð Þz
	 


: ð4:272Þ

It can be seen from Eqs. (4.259) and (4.272) that the density functions of the sum

of the powers from two clusters treated as independent with identical order but with

different means or the clusters being treated as identical but correlated lead to

similar forms. It is also possible to relate the parameters q2 and ρ as

ρ ¼ 1� q2ð Þ2
1þ q2ð Þ2 : ð4:273Þ

These multiple forms of the density of the SNR from the two clusters will make

it easy to understand some of the properties of the McKay fading channel.

Going back to the discussion of two clusters resulting in the Nakagami–Hoyt

distribution in Eq. (4.259), that notion will now be extended to a number of such

cluster groups. If n such groups exist in the channel, one can use the results from the

work of Nakagami and obtain the density of the resultant SNR (once again

represented by Z ) as (Radaydeh and Matalgah 2008; Shankar 2013; Shankar 2015)
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f zð Þ ¼
ffiffiffi
π

p

Γ n
2

 �
2qZ0n

n 1þq2ð Þ
h in

1�q4ð Þn
2q2Z0n

� � n�1ð Þ
2

exp � n 1þ q2ð Þ2
4q2Z0n

z

" #
z

n�1ð Þ
2 I n�1ð Þ

2

n 1� q4ð Þ
4q2Z0n

z

	 

:

ð4:274Þ

Equation (4.274) contains the average SNR expressed as Z0n and it is given by

Z0n ¼ nZ0: ð4:275Þ

In the original work by Nakagami, Eq. (4.274) is identified as the generalized

Nakagami–Hoyt density (Nakagami 1960). The interesting part of this analysis is

that there is another density that appears very similar to the one in Eq. (4.274) which

results from the sum of two correlated gamma variables of identical order and equal

means expressed as (Nakagami 1960; Holm and Alouini 2004)

f zð Þ ¼
ffiffiffi
π

p

2
2m
ffiffi
ρ

p
X 1�ρð Þ

� �m�1
2Γ mð Þ X

2m

 �2
1� ρð Þ

h im exp � 2m

X 1� ρð Þ z
	 


zm�
1
2Im�1

2

2m
ffiffiffi
ρ

p
X 1� ρð Þ z
� �

:

ð4:276Þ

In Eq. (4.276) X is the mean and ρ is the correlation coefficient making

X ¼ Zh i: ð4:277Þ

The two correlated random variables have identical mean of X/2 and each is of

order m. It can easily be seen that Eq. (4.272) can be obtained from Eq. (4.276) by

putting m ¼ 1/2 and noting that

Γ
1

2

� �
¼ ffiffiffi

π
p

: ð4:278Þ

Comparing Eqs. (4.274) and (4.276) is seen that

n ¼ 2m: ð4:279Þ

Even though the lower limit of m is 1/2 in Nakagami’s original work (Nakagami

1960), the density function of the SNR in a Nakagami model is a form of a gamma

density and therefore, m can take any positive values. This suggests that one can

entertain the possibility that (1) n does not have to be an integer and (2) the

minimum value of n can therefore be equal to 0. To remove any symbolism

associated with n being an integer, n is replaced by α and Eq. (4.274) is rewritten as
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f zð Þ ¼
ffiffiffi
π

p

Γ α
2

 �
2qZ0α

α 1þq2ð Þ
h iα

1�q4ð Þα
2q2Z0α

� � α�1ð Þ
2

exp � α 1þ q2ð Þ2
4q2Z0α

z

" #
z

α�1ð Þ
2 I α�1ð Þ

2

α 1� q4ð Þ
4q2Z0α

z

	 

:

ð4:280Þ

Noting that m ¼ α/2, Eq. (4.276) becomes

f zð Þ ¼
ffiffiffi
π

p
z
α�1
2

2
α
ffiffi
ρ

p
X 1�ρð Þ

� �α�1
2 Γ α

2

 �
X
α

 �2
1� ρð Þ

h iα
2

exp � α

X 1� ρð Þz
	 


Iα�1
2

α
ffiffiffi
ρ

p
X 1� ρð Þ z
� �

:

ð4:281Þ

Comparing Eqs. (4.280) and (4.281), it is seen that the values of ρ and q2 are

related as indicated by the Eq. (4.273). Furthermore, the mean of Z is

Zh i ¼ X ¼ Z0n: ð4:282Þ

It is clear that the relationship existing between ρ and q is such that when ρ ¼0,

q ¼ 1 and when ρ ¼1, q ¼ 0. Stated in another way, the density function in

Eq. (4.281) can be considered as arising from two independent non-identical

gamma variables of identical order or arising out of the sum of two identical

correlated gamma variables.

At this point, one can note that there is another density similar to the one in

Eq. (4.281) originally proposed by McKay in 1932 (McKay 1932). The McKay

density is given by

f zð Þ ¼ E0 zaexp �c

b
z

� �
Ia

z

b

� �
, z � 0, b > 0, c > 1, a > �1

2
: ð4:283Þ

It can be seen that

a ¼ α� 1ð Þ
2

> �1

2
: ð4:284Þ

b ¼ X 1� ρð Þ
α
ffiffiffi
ρ

p > 0: ð4:285Þ

c ¼ 1ffiffiffi
ρ

p ¼ 1þ q2ð Þ
1� q2ð Þ > 1: ð4:286Þ

It must be noted that the density in Eq. (4.281) can also be attributed to the pdf of

the SNR in maximal ratio combining with two correlated gamma branches. Thus,

whether one treats the fading channel as arising out of a number of Nakagami–Hoyt

signals, two correlated gamma clusters or two non-identical independent clusters,

the density in Eq. (4.281) represents the density of the SNR in a short-term fading
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channel. This channel is identified as the McKay fading channel. Since Eqs. (4.280)

and (4.281) represent the McKay fading channel, Eq. (4.281) will be used to

represent the SNR of the McKay fading channel for the remainder of this analysis.

It should be noted that the McKay density is similar to η � μ density except for the

simple and single definition of ρ in the McKay density (Yacoub 2007a, b; Shankar

2013, 2015).

4.11.1.1 Moments and Laplace Transform of McKay Density

The moments of the McKay density in Eq. (4.283) are (Holm and Alouini 2004;

Gradshteyn and Ryzhik 2007; Shankar 2005)

Zk
� � ¼ Γ αþ kð Þ

Γ αð Þ
c

c2 � 1

� �k
2F

21 � k � 1

2
;�k

2

	 

;

αþ 1ð Þ
2

	 

;
1

c2

� �
bk: ð4:287Þ

In Eq. (4.287), 2F1(.) is the hypergeometric function (Gradshteyn and Ryzhik

2007). Comparing the original McKay density in Eq. (4.283) and the pdf of the SNR

in a Mackay fading channel given in Eq. (4.281), the moments of SNR becomes

Zk
� � ¼ Γ αþ kð Þ

Γ αð Þ 2F
21 � k � 1

2
;�k

2

	 

;

αþ 1ð Þ
2

	 

; ρ

� �
X

α

� �k

: ð4:288Þ

The amount of fading in a McKay channel is

AF ¼ Z2
� �
Zh i2 � 1 ¼ 1þ ρ

α
: ð4:289Þ

Equation (4.289) provides the range of the amount fading existing in a McKay

fading channel. It is possible to compare AF in Eq. (4.289) to AF in a Nakagami,

Rayleigh, or a Nakagami–Hoyt channel. Since 0 � ρ �1 and α > 0, the amount of

fading in a McKay channel ranges from 0 to1, allowing the modeling of channels

that are far worse than the Nakagami or Rayleigh channels.

As seen above, the McKay density can easily be interpreted as the pdf of the sum

of two identically distributed gamma variables each having order of α/2 and mean

of X/2 with a correlation of ρ (positive). At this point, it is possible to summarize the

relationship between the density of the two correlated gamma variables with

identical orders and means resulting in the McKay distribution in Eq. (4.280) and

the density of sum of two independent gamma variables of mean Z01 and Z02 of

identical order α/2. The marginal densities of these two independent gamma vari-

ables of non-identical means are
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f Z1
z1ð Þ ¼ α

2Z01

� �α
2

z
α
2
�1e

� α
2Z01

z1
U z1ð Þ

1 ð4:290Þ

f Z2
z2ð Þ ¼ α

2Z02

� �α
2

z
α
2
�1e

� α
2Z02

z2U z2ð Þ
2 ð4:291Þ

The density of the sum of these two independent and non-identical gamma

variables can be obtained using transformation of variables as

f zð Þ ¼ ffiffiffi
π

p α

2

� �α
2
þ1

2 Z01 � Z02j j12�α
2ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p z
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Iα
2
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2

α
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Z01 � Z02j jz
	 


U zð Þ:

ð4:292Þ

The relationships between the parameters of the McKay distribution in

Eq. (4.292) and the McKay distribution in Eq. (4.280) can be expressed as

Z01 ¼ X

2
1þ ffiffiffi

ρ
p �

:

Z02 ¼ X

2
1� ffiffiffi

ρ
p � ð4:293Þ

Some of the simple short-term models of fading can be obtained from the

McKay density in Eq. (4.281). If we treat the two clusters that resulted in

Eq. (4.281) to be identical and independent, q ¼ 1 and ρ ¼ 0. To obtain the simple

form, the density in Eq. (4.281) can be expressed in series form by expanding the

modified Bessel function as (Gradshteyn and Ryzhik 2007)

Iν xð Þ ¼
X1
k¼0

1

k!Γ k þ νþ 1ð Þ
x

2

� �νþ2k
: ð4:294Þ
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ð4:295Þ

Equation (4.295) can be simplified to

f zð Þ ¼ 1

Γ
α

2

� � α

X
ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p
� �αX1

k¼0

Γ k þ α

2
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X 1� ρð Þz
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ð4:296Þ
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Note that when ρ ! 0, the only term remaining in the summation will corre-

spond to κ ¼ 0 and Eq. (4.296) now becomes

f zð Þ ¼
ffiffiffi
π

p
Γ α

2

 �
Γ 1

2
þ α

2

 �
2α�1

exp �α

X
z

h i α

X

� �α
zα�1: ð4:297Þ

Equation (4.297) is simplified using the doubling formula for the gamma func-

tions given as (Gradshteyn and Ryzhik 2007)

Γ 2xð Þ ¼ Γ xð ÞΓ xþ 1

2

� �
22x�1ffiffiffi

π
p : ð4:298Þ

Using Eq. (4.298), the density function in Eq. (4.297) of two identical and

independent gamma variables of parameter α/2 and mean X/2 becomes

f zð Þ ¼ α

X

� �α zα�1

Γ αð Þ exp �α

X
z

h i
: ð4:299Þ

Equation (4.299) is the pdf of the SNR in a gamma fading channel (α> 0) or in a

Nakagami fading channel (α � 1/2) as expected. By putting α ¼ 1, the channel

becomes a Rayleigh channel.

When α ¼ 1 and ρ > 0, the density in Eq. (4.281) becomes the Nakagami–Hoyt

density

f zð Þ ¼ 1

X
ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p exp � z

X 1� ρð Þ
	 


I0
z
ffiffiffi
ρ

p
X 1� ρð Þ
	 


: ð4:300Þ

Several short-term fading models are related to the McKay fading channel. For

reasonable values of m > 1, the Nakagami model matches the Rician model and

therefore, the McKay fading channel encompasses most of the fading scenarios

observed in wireless channels. Once the generalized McKay fading density is

derived in Sects. 4.11.1.4, the relationship of the McKay to other fading models

will be shown.

It is possible to obtain an expression for the Laplace transform of the McKay

density. The Laplace transform can be obtained using Maple directly. The Maple

script is given below.
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> 

> 

> 
> 

> 

> 

The Laplace transform of the McKay density is (Filho and Yacoub 2005b;

Ermolova 2008, 2009)

LZ sð Þ ¼ αα

α2 þ 2sαX þ X2s2 1� ρð Þ� �α
2:

ð4:301Þ

Note that Eq. (4.301) may also be obtained from the table of Laplace transforms

given in Chap. 2 for the case of two non-identical gamma variables along with using

the relationship between the correlated and uncorrelated variables in Eq. (4.293).

For the remainder of the analysis, Eq. (4.281) will be identified the density of the

SNR in a McKay fading channel.
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4.11.1.2 Plots of McKay CDF and PDF

Using Eq. (4.296), the cumulative distribution function (CDF) of the SNR in a

McKay fading channel becomes (Shankar 2013, 2015)

FZ zð Þ¼
ðz
0

f Z wð Þdw¼
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffi
1�ρ

pð Þα
Γ α

2

 � X1
k¼0

ρk

k!Γ kþ 1
2
þ α

2

 �
2αþ2k�1

γ αþ2k;
α

X 1�ρð Þz
� �

:

ð4:302Þ

In obtaining the CDF in Eq. (4.302), the density function in the form of an

infinite series in Eq. (4.296) is used. In Eq. (4.302) ( ).,.g is the lower incomplete

gamma function (Gradshteyn and Ryzhik 2007)

γ q; xð Þ ¼
ðx
0

exp �yð Þyq�1dy: ð4:303Þ

It is thus clear that the McKay distribution, originally proposed in 1932, is an

ideal candidate to model the signal strength fluctuations in short-term fading

channels. The general nature of the McKay density is evident by examining

(4.280) for different values of α and ρ. When ρ ¼ 0 and α ¼ 1, we have the

Rayleigh channel, ρ¼ 0 and α�½, we have a Nakagami channel, ρ¼ 0 and α> 0,

we have a gamma channel, and 0< ρ< 1 and α¼ 1, we have the Hoyt channel and

if α� 1 and 0< ρ< 1, we have the α–μ channel. The McKay distribution allows the

amount of fading to span the widest range (0–1), making it possible to include

channels exhibiting severe fading as well. The additional versatility of the McKay

distribution is evident from the initial steps in the derivation, illustrating the fact

that it also represents the density of the sum of a number of independent Nakagami–

Hoyt variables as well as the sum of two correlated gamma random variables with

direct applications in the study of maximal ratio combining (MRC) diversity. It can

be seen that the McKay density is also identical to the η � μ density proposed to

model short-term fading in wireless channels.

Several plots of the McKay density and cumulative distribution functions are

shown in Figs. 4.87, 4.88, 4.89, 4.90, 4.91, and 4.92 for a few values of α, ρ, and X.
All the results were generated in Matlab primarily with the aid of the symbolic

toolbox. The Matlab script used is provided. It can be seen that as the value of α
increases, the peaks of the density plots move to the right as expected. A similar

trend is expected when ρ is smaller for a set of values of α and X. The script also

performs numerical integration to verify that the pdf integrates to unity as expected.

mcKay_displays_pdf_CDF_shankarF(0.15,5)

pdf integrates to 1:  valid pdf
pdf integrates to 1:  valid pdf
pdf integrates to 1:  valid pdf
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Fig. 4.88 Plots of the McKay CDF, ρ ¼ 0.15

Fig. 4.87 Plots of the McKay density, ρ ¼ 0.15
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mcKay_displays_pdf_CDF_shankarF(0.35,5)

pdf integrates to 1:  valid pdf
pdf integrates to 1:  valid pdf
pdf integrates to 1:  valid pdf

Fig. 4.89 Plots of the McKay density, ρ ¼ 0.35

Fig. 4.90 Plots of the McKay CDF, ρ ¼ 0.35
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mcKay_displays_pdf_CDF_shankarF(0.75,10)

pdf integrates to 1:  valid pdf
pdf integrates to 1:  valid pdf
pdf integrates to 1:  valid pdf

Fig. 4.91 Plots of the McKay pdf, ρ ¼ 0.75

Fig. 4.92 Plots of the McKay CDF, ρ ¼ 0.75
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function mcKay_displays_pdf_CDF_shankarF(rho,XM)

% p m shankar, July 2016

%

% symbolic toolbox is needed

%

% display the McKay density, McKay CDF

% displays verification of pdf (total probability =1) in  command window

% The pdf is generated as an external function. CDF is also generated as an

% external function. In each case, the expression for the pdf is generated

% using the symbolic toolbox and converted to an in-line function. CDF is

% obtained using numerical integration. Integration is carried out by

% transforming the integral to one in tan(.) so that the upper limit will

% be pi/2 instead of INF. Care is taken to prevent the overflow by limiting

% the upper limit to a value slightly less than pi/2. In each case, the

% validity of the pdf is verified by checking to see if total probability

% is unity.

% the input required is rho and mean X. Three values of alpha are already

% included. One can go into the script and choose other values of alpha

% typically lying betweem 0 and 2 or 3 or more. Higher values might create

% issues with numerical integration and the numerical integration has not

% been optimized for higher values of alpha or mean.

close all

global funmckay X

syms z

X=XM;

% set # 1

alpha1=0.75;alpha2=1.25;  alpha3=1.5;

funmckay=mckaypdf1(alpha1,rho,X);

pdf1=matlabFunction(funmckay); % this is the pdf

[zzf,CDF1] = mckayCDF; % this is the CDF

[valueP] = mckaypdftestintegral; % verification of the pdf

disp(['pdf integrates to ',num2str(valueP),':  valid pdf'])

% set # 2

funmckay=mckaypdf1(alpha2,rho,X);

pdf2=matlabFunction(funmckay);

[zzf,CDF2] = mckayCDF;

[valueP] = mckaypdftestintegral;

disp(['pdf integrates to ',num2str(valueP),':  valid pdf'])

% set # 3

funmckay=mckaypdf1(alpha3,rho,X);

pdf3=matlabFunction(funmckay);

[zzf,CDF3] = mckayCDF;

[valueP] = mckaypdftestintegral;

disp(['pdf integrates to ',num2str(valueP),':  valid pdf'])

% plot the pdf

z1=0.01:.2:2*X;

plot(z1,pdf1(z1),'-',z1,pdf2(z1),'--',z1,pdf3(z1),'-.','linewidth',1.5)

legend(['\alpha = ',num2str(alpha1)],['\alpha = ',num2str(alpha2)],...

['\alpha = ',num2str(alpha3)])

title(['McKay density (\rho = ',num2str(rho),', X = ',num2str(X),')'],...

'color','b')

xlabel('SNR z'),ylabel('pdf')

% plot the CDF

figure,plot(zzf,CDF1,'-',zzf,CDF2,'--',zzf,CDF3,'-.','linewidth',1.5)

ylim([0,1])

legend(['\alpha = ',num2str(alpha1)],['\alpha = ',num2str(alpha2)],...

['\alpha = ',num2str(alpha3)])

title(['McKay CDF (\rho = ',num2str(rho),', X = ',num2str(X),')'],...

'color','b')

xlabel('SNR z'),ylabel('CDF')

end
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% create the function to generate the pdf

function [funmckay] = mckaypdf1(alpha,rho,ME)

% create the McKay density

syms z a r X positive

% get the expression for density directly from the notes

Nr=sqrt(sym(pi))*z^((1/2)*a-1/2)*exp(-a*z/(X*(1-r)))...

*besseli((1/2)*a-1/2, a*sqrt(r)*z/(X*(1-r)));

Dr=gamma((1/2)*a)*(X^2*(1-r)/a^2)^((1/2)*a)...

*(2*a*sqrt(r)/(X*(1-r)))^((1/2)*a-1/2);

fun=Nr/Dr; % pdf McKay depends on X, alpha (a) and rho(r)

funmckay=subs(fun,[a X r],[alpha,ME,rho]); % put values [alpha, X and rho]

end

% verification of the mckay density validity.. numerical integration

function [valueP] = mckaypdftestintegral

% verification of the integral

global funmckay

mckaydensityf=matlabFunction(funmckay);

syms z y

fun1=subs(mckaydensityf,z,tan(y));

fun2=fun1*(1+tan(y)*tan(y));

mckayf=matlabFunction(fun2);

valueP=integral(mckayf,0,0.9995*pi/2); % should be equal to unity

% the upper limit needs to be made close to pi/2, but less than it so that

% the result does not become infinite

end

% create the function to generate the CDF

function [zzf,CDF] = mckayCDF

% Now obtain the CDF

global funmckay X

mckaydensityf=matlabFunction(funmckay);

xx1=[1:40]*.02;

xx2=[max(xx1):20]*.1;

xx3=[round(max(xx2)):10*X];

zz=[xx1,xx2,xx3]; % create the X-axis values; uneven

KL=length(zz);

for k=1:KL;

CDF(k)=integral(mckaydensityf,0,zz(k)); % this is the CDF

end;

zzf=zz;

end

The next step was to examine the representation of the CDF as a sum and the

number of terms required to get sufficient accuracy. The results are shown in

Figs. 4.93, 4.94, 4.95, and 4.96. They show the accuracy of the summation and

the effect of the number of terms in Eq. (4.296) on the pdf and CDF. It can be seen

that the exact pdf and the pdf obtained from the summation match even when the

number of terms is about 20. The result of the integration of the pdf is shown

separately from what appears in the command window.
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mcKay_displays_pdfsum_CDFsum_shankarF(.8,.6,10)

pdf integrates to 0.98904:  valid pdf
pdf integrates to 0.99917:  valid pdf
pdf integrates to 0.99951:  valid pdf
pdf integrates to 0.99951:  valid pdf

Fig. 4.93 Plots of the McKay CDF, α ¼ 0.8, ρ ¼ 0.6, and X ¼ 10 for varying number of terms

Fig. 4.94 Plots of the McKay pdf, α ¼ 0.8, ρ ¼ 0.6, and X ¼ 10 for varying number of terms
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mcKay_displays_pdfsum_CDFsum_shankarF(1.4,.4,6)

pdf integrates to 0.99794:  valid pdf
pdf integrates to 0.99998:  valid pdf
pdf integrates to 1:  valid pdf
pdf integrates to 1:  valid pdf

Fig. 4.95 Plots of the McKay CDF, ρ ¼ 0.4, α ¼ 0.1.4, and X ¼ 6 for varying number of terms

Fig. 4.96 Plots of the McKay pdf, ρ ¼ 0.4, α ¼ 0.1.4, and X ¼ 6 for varying number of terms
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function mcKay_displays_pdfsum_CDFsum_shankarF(alpha,rho,XM)

%

% requires symbolic toolbox

% display the McKay CDF using the summation for BesselI and verify that

% integral (total probability) is unity. Four values for number of terms

% in the sum is already considered within the code. The CDF expression is

% generated symbolically and converted into an in line function.

% pdf is obtained using the summation and then compared to the direct one.

% P M Shankar July 26

close all

global funmckaysum X

X=XM;

syms z

MM=[5,10,20,30]; % number of terms in the summation

for km=1:length(MM)

M=MM(km);

[funmckaysum] = mckaypdfsum(alpha,rho,X,M);

% step # 1 verify that pdf is VALID; integrate the pdf from 0 to INF

[valueP] = mckaypdftestintegral;

disp(['pdf integrates to ',num2str(valueP),':  valid pdf'])

% Step # 2 Obtain the CDF

[zzf,FF] = mckaycdff;

subplot(2,2,km),plot(zzf,FF,'r-','linewidth',1.1)

if km==1

text(80,1.15,['\alpha = ',num2str(alpha),'  \rho = ',num2str(rho),...

'  X = ',num2str(X)]);

else

end;

xlabel('SNR z'),ylabel('McKay CDF')

legend(['No. of terms = ',num2str(M)],'location','southeast')

end;

figure

for km=1:length(MM)

M=MM(km);

[funmckaysum] = mckaypdfsum(alpha,rho,X,M);

z1=0.1:.5:4*X;

mckaydens=matlabFunction(funmckaysum);

mckaypdfd=mckaypdfdirect(alpha,rho,X);

pdfq=matlabFunction(mckaypdfd);

subplot(2,2,km)

plot(z1,mckaydens(z1),'r-',z1,pdfq(z1),'k.','linewidth',1.1)

if km==1

text(80,1.15,['\alpha = ',num2str(alpha),...

'  \rho = ',num2str(rho),'  X = ',num2str(X)]);

else

end;

xlabel('SNR z'),ylabel('McKay pdf')

legend(['No. of terms = ',num2str(M)],'pdf directly')

end;

end

% verification of the mckay density validity.. numerical integration

function [valueP] = mckaypdftestintegral

% verification of the integral

global funmckaysum

mcaydensityf=matlabFunction(funmckaysum);

syms z y
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fun1=subs(mcaydensityf,z,tan(y));

fun2=fun1*(1+tan(y)*tan(y));

mckayf=matlabFunction(fun2);

valueP=integral(mckayf,0,0.995*pi/2); % should be equal to unity

end

% create a function to check the density obtained using summation

% influence of the summation terms

function [funmckaysum] = mckaypdfsum(alpha,rho,ME,MM)

% create the McKay density as a SUM

syms z a r X positive

syms k M

a2=(a-1)/2;

r1=1-r;

rq=sqrt(r);

x1=a/(X*r1);

x2=x1*rq;

x22=2*x2;

x3=gamma(a/2)*(r1*X^2/a^2)^(a/2);

ex1=exp(-x1*z);

XX2=x2*z/2;

XX4=XX2^2;

eI=(XX2^a2)*symsum(((XX4)^k)...

/(factorial(k)*gamma(k+1+a2)),k,0,M); % M is the number of terms SUM

ez=z^a2;

con=sqrt(pi)/(x3*x22^a2);

fun2=con*ex1*eI*ez;

funmckaysum=subs(fun2,[a X r M],[alpha,ME,rho,MM]); % alpha, X, rho, M

end

function [zzf,FF] = mckaycdff

% create the CDF

global funmckaysum X

mcaydensityf2=matlabFunction(funmckaysum);

xx11=[1:40]*.02;

xx22=[max(xx11):20]*.1;

xx33=[max(xx22):10*X];

zzf=[xx11,xx22,xx33]; % create the X-axis values; uneven

KL1=length(zzf);

for kk=1:KL1;

FF(kk)=integral(mcaydensityf2,0,zzf(kk));

end;

end

function [funmckay] = mckaypdfdirect(alpha,rho,ME)

% create the McKay density direct expression instead of the summation

syms z a r X positive

% get the expression for density directly from the notes

Nr=sqrt(sym(pi))*z^((1/2)*a-1/2)*exp(-a*z/(X*(1-r)))...

*besseli((1/2)*a-1/2, a*sqrt(r)*z/(X*(1-r)));

Dr=gamma((1/2)*a)*(X^2*(1-r)/a^2)^((1/2)*a)...

*(2*a*sqrt(r)/(X*(1-r)))^((1/2)*a-1/2);

fun=Nr/Dr; % pdf McKay depends on X, alpha (a) and rho(r)

funmckay=subs(fun,[a X r],[alpha,ME,rho]); % put values [alpha, X and rho]

end
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4.11.1.3 McKay Parameter Estimation

The discussion of the McKay density for modeling short-term fading channels will

be incomplete without an examination of the approaches for estimation of its

parameters. As discussed in Chap. 2, given a set of data collected from a wireless

channel, it is essential to estimate the parameters of the McKay distribution, test

whether McKay density is an acceptable statistical fit to the data before predicting

the performance based on error rates and outage probabilities.

Two methods available for the estimation of parameters, method of moments

(MoM) and maximum likelihood estimation (MLE) were presented in Chap. 2.

Since three parameters exist, at least three moments are needed for the solution of

the parameters if MOM is used. A discussion of MLE is presented first before

offering an assessment of the MOM for the estimation of parameters of the McKay

density (Chatelain et al. 2008; Shankar 2013).

The choice of the initial guesses of the parameters is critical to the success of

MLE. These initial estimates of three parameters were made on the basis of treating

the data to fit a gamma density by testing whether the data set passes a chi-square

test for gamma. If it passes the gamma test, the initial guess of ρ is taken to be an

extremely low value (1e�5). If it fails the gamma test, the initial guess for ρ is taken
to be 0.15. This makes the computation with three parameters relatively simple.

Once the parameters are estimated, a chi-square testing is undertaken to deter-

mine whether McKay density is the appropriate fit. In addition, mean square

estimate of the error is also undertaken. Four examples are shown below. The

Matlab script (fully annotated) is also given. It must be noted that the data sets were

created within the script and therefore, the scripts need to be modified for use for a

different set of input data. (In the absence of real data, samples of McKay variables

are used as inputs for the study. The script can be easily changed slightly

by bringing in data set as the input.) In each case, the values of α, ρ, and X could

be extracted as outputs. While the chi-square test statistic appears in the

command window, the other results are displayed on a plot. The Matlab script

appears only with example # 1. The results are displayed in Figs. 4.97, 4.98, 4.99,

4.100, and 4.101.
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Example # 1

function mckayparameter_mle_symbf

% estimate parameters of mcKay density;

% October 2016

% create the pdf symbolically first

% July 10: A segment added to check if data is gamma distributed. In this

% case, correlation coefficient will be either -ve or complex. Based on the

% gamma test, the initial guesses for the three parameters are made

% a chi square test for McKay density is also undertaken. The histogram

% (ksdensity) is matched to the theoretical pdf of the mcKay density using

% the parameters of the estimate. MSE value is also estimated.

close all

syms XX aL rh av positive

% alpha (aL), mean (av) and rho (rh) XX is z, the SNR

% get the pdf expression from the notes

Nr=sqrt(sym(pi))*XX^((1/2)*aL-1/2)*exp(-aL*XX/(av*(1-rh)))...

*besseli((1/2)*aL-1/2, aL*sqrt(rh)*XX/(av*(1-rh)));

Dr=gamma((1/2)*aL)*(av^2*(1-rh)/aL^2)^((1/2)*aL)...

*(2*aL*sqrt(rh)/(av*(1-rh)))^((1/2)*aL-1/2);

fun=Nr/Dr; % pdf McKay depends on X, alpha (a) and rho(r)

mckaydensityf=matlabFunction(fun); % order the variables is important

% it should be XX (for z) followed by alpha (aL), mean (av) and rho (rh)

% choose symbolic variables such that the function is created such that the

% order of the variables pdf(x,[parameters]).... note that XX represents x

% in MLE

clear XX aL rh av

% modified July 2016; replaced the average values

% CREATE THE DATA

m=1.15; % this is alpha

m2=m/2;

XX=20; % this is X

XX2=XX/2;

rr=0.6; % this is rho

X1=XX2*(1+sqrt(rr));

x1=gamrnd(m2,X1/m2,1,15000); % gamma random variable

X2=XX2*(1-sqrt(rr));

x2=gamrnd(m2,X2/m2,1,15000); % gamma random variable

x=x1+x2; % McKay variable

% both have equal orders (alpha/2) and the ratio of the average powers is h

% h=min(X1,X2)/max(X1,X2);% ratio of the two means

%  rh_th=((1-h)/(1+h))^2 % rho from the ratio of the means

% the above segment is not used since the original data input will consist

% of a data set and there is no apriori information on the ratio of the

% average powers

% check whether the data fits gamma or Nakagami in amplitude

QC=chi2inv(.95, 7);% number of bins 10-1-2; 2 is the number of parameters

phat=gamfit(x);

% get gamma fit and these will the initial guesses for alpha and X

qq = chigammaf(x);

if qq<=QC

disp('data set is gamma distributed; correletion Coeff negligible')

% it appears that data set follows gamma; Corr. coeff must be very small

cc=1e-5;

else

% data set is not gamma distributed

cc=0.15; % starting estimate of corr coeff

end;

aa=phat(1); % starting estimate of m or alpha

bb=phat(1)*phat(2); % starting estimate of X  or the mean

[my,ny]=size(x);

L=my*ny; % length of the data

x=reshape(x,[L,1]);
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% use the MLE to estimate the parameters

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',3000,'TolX',1e-4,'TolFun',1e-5,'TolBnd',1e-

5','MaxFunEvals', 1000);

pp = mle(x,'pdf',mckaydensityf,'start',[aa bb cc], 'options',opt); % fit mypdf to the data Y

a=pp(1);% alpha

X=pp(2); % X

r=pp(3);% rho

if isreal(r)==0||r<0 % if the corr Coeff estimate is -ve

r=1e-5;%

disp('the correlation coefficient is complex or negative')

disp('Data set probably matches a gamma distribution')

disp('Corr Coeff. is taken to be a very low value, r=1e-5')

else

end;

% conduct a chi square test for McKay based on these parameters estimated

qq1=chimckay(x,a,X,r);

QC=chi2inv(.95, 6);% number of bins 10-1-3; 3 is the number of parameters

disp(['Chi square test statistic threshold (3 parameters; 10 bins) =',...

num2str(round(QC))])

disp(['Chi square test statistic (McKay) =',num2str(round(qq1))])

% test to see match of the densities

[f,xr]=ksdensity(x);

NK=[]; % eliminate negative values of xr

NK=find(xr<0);

if isempty(NK)==0

NK1=max(NK)+1;% find the largest index and add 1 to start the non-zero values

xr=xr(NK1:end);

f=f(NK1:end);

else

end;

L=length(xr);

fs=mckaydensityf(xr,a,X,r);

figure,plot(xr,f,'r-',xr,fs,'*')

xlabel('SNR z'),ylabel('probability density function')

legend('histogram','fit')

tit={ ['\alpha_{input} = ',num2str(m),'; ','X_{input} = ',...

num2str(XX),'; ','\rho_{input} = ',num2str(rr)]

['\alpha_{est} = ',num2str(a),'; ','X_{est} = ',...

num2str(X),'; ','\rho_{est} = ',num2str(r)]};

title(tit)

MSE=sum((f-fs).^2)/L;

text(0.7*max(xr),0.2*max(max(f,fs)),['MSE = ',num2str(MSE)])

end

% chi square test for gamma

function qq = chigammaf(yy)

m=10;% number of bins

y=sort(yy); % random samples

N=length(yy);%size of the sample

phat=gamfit(y);

inter=max(y)-min(y); %interval for chi-square test

intstep=inter/m; %size of sub-interval

intval=[min(y):intstep:max(y)]; %samples at the sub-intervals

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

for i=1:N

for j=1:m

if y(i)<=intval(j+1)

k(j)=k(j)+1;

break;

end;
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end;

end;

p=zeros(1,m);

for i=1:m

p(i)=gamcdf(intval(i+1),phat(1),phat(2))-gamcdf(intval(i),phat(1),phat(2)); %probabilities at 

the sub-interval samples

end;

np=p.*N;

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %chi-square test

end;

qq=q;

end

% chi square test for mcKay

function qq = chimckay(yy,a,X,r)

m=10;% number of bins

y=sort(yy); % random samples

N=length(yy);%size of the sample

inter=max(y)-min(y); %interval for chi-square test

intstep=inter/m; %size of sub-interval

intval=[min(y):intstep:max(y)]; %samples at the sub-intervals

k=[zeros(1,m)]; %number of samples in each sub-interval intialization

for i=1:N

for j=1:m

if y(i)<=intval(j+1)

k(j)=k(j)+1;

break;

end;

end;

end;

% create the CDF

syms x aL av rh

Nr=sqrt(sym(pi))*x^((1/2)*aL-1/2)*exp(-aL*x/(av*(1-rh)))...

*besseli((1/2)*aL-1/2, aL*sqrt(rh)*x/(av*(1-rh)));

Dr=gamma((1/2)*aL)*(av^2*(1-rh)/aL^2)^((1/2)*aL)...

*(2*aL*sqrt(rh)/(av*(1-rh)))^((1/2)*aL-1/2);

fun=Nr/Dr; %

funx=subs(fun,[aL,rh,av],[a,r,X]);% function of a single variable

mckaydensityf=matlabFunction(funx);

p=zeros(1,m);

for i=1:m

prob=integral(mckaydensityf,intval(i),intval(i+1)); %CDF for the range

p(i)=prob; %probabilities at the sub-interval samples

end;

np=p.*N;

q=0;

for i=1:m

q = q + ((k(i)-np(i))^2)/np(i); %chi-square test

end;

qq=q;

end

Chi square test statistic threshold (3 parameters; 10 bins) =13

Chi square test statistic (McKay) =6
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Example # 2

% CREATE THE DATA
m=0.85; % this is alpha
m2=m/2;
XX=10; % this is X
XX2=XX/2;
rr=0.2; % this is rho

Chi square test statistic threshold (3 parameters; 10 bins) =13

Chi square test statistic (McKay) =11

Fig. 4.97 Parameter estimation of McKay density (MLE): Example # 1
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Example # 3

% CREATE THE DATA
m=2.2; % this is alpha
m2=m/2;
XX=10; % this is X
XX2=XX/2;
rr=0.6; % this is rho

Chi square test statistic threshold (3 parameters; 10 bins) =13

Chi square test statistic (McKay) =7

Fig. 4.98 Parameter estimation of McKay density (MLE): Example # 2
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Example # 4

% CREATE THE DATA

m=.6; % this is alpha

m2=m/2;

XX=5; % this is X

XX2=XX/2;

rr=0.001; % this is rho

data set is gamma distributed; correletion Coeff negligible

Chi square test statistic threshold (3 parameters; 10 bins) =13

Chi square test statistic (McKay) =9

Fig. 4.99 Parameter estimation of McKay density (MLE): Example # 3
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Example # 5 In this example, the input is gamma distributed. The Matlab script is

coded to display the statement indicating that the correlation coefficient is too low

for accurate computation suggesting that the input is probably gamma distributed

% CREATE THE DATA
x=gamrnd(1.1,8,1,20000);% a single set % McKay variable

data set is gamma distributed; correletion Coeff negligible

the correlation coefficient is complex or negative

Data set probably matches a gamma distribution

Corr Coeff. is taken to be a very low value, r=1e-5

Chi square test statistic threshold (3 parameters; 10 bins) =13

Chi square test statistic (McKay) =3

.

Fig. 4.100 Parameter estimation of McKay density (MLE): Example # 4
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While MLE methods can be implemented in Matlab taking advantage of the

“mle” command, it is also possible to use the method of moments (MoM). A simple

way to implement MoM is to use a half order, first and second order moments to

solve for the parameters. These moments are obtained from Eq. (4.288)

Z
1
2

D E
¼ Γ αþ 1

2

 �
Γ αð Þ 2F1 �1

4
;
1

4

	 

;

αþ 1ð Þ
2

	 

; ρ

� �
X

α

� �1
2

: ð4:304Þ

Zh i ¼ X: ð4:305Þ

Z2
� � ¼ αþ 1þ ρ

α
X2: ð4:306Þ

Using moments normalized with respect to the first moment, a single equation in

α can be created and solved. Only the solution of αwas undertaken for the examples

mentioned above. It can be seen that MLE provides a better estimate of α and

therefore, it is likely to be more reliable means of parameter estimation. The Matlab

script and the results on the MoM based estimation are given below.

Fig. 4.101 Parameter estimation of McKay density (MLE): Example # 5
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r=M2*a-(1+a);

y=Mh-gamma(a+1/2)*hypergeom([-1/4, 1/4], [1/2+(1/2)*a], r)/(sqrt(a)*gamma(a));

yf=matlabFunction(y);

aa=0.5:.02:2.5;

idx=find(abs(yf(aa))<.002); % find where the equation changes sign

alpha_est=median(aa(idx)); % if there are multiple points, use the median

disp(['Example # ',num2str(k)])

disp(['alpha_estimate = ',num2str(alpha_est)])

clear r a idx

end;

Example # 1

alpha_estimate = 2.07

Example # 2

alpha_estimate = 0.99

Example # 3

alpha_estimate = 0.76

Example # 4

alpha_estimate = 0.7

Example # 5

alpha_estimate = 1.11

% mcKay_parameter_moments

% estimation of alpha using MoM: The half order, first and second

% order meoments are used.

% P M Shankar, July 2016

clear;clc;close all

for k=1:5

if k==1

m2=1.15; % this is alpha/2

X1=7;  x1=gamrnd(m2,X1/m2,1,15000); % gamma random variable

X2=16;  x2=gamrnd(m2,X2/m2,1,15000); % gamma random variable

x=x1+x2; % McKay variable

elseif k==2

m2=0.63; % this is alpha/2

X1=4;  x1=gamrnd(m2,X1/m2,1,15000); % gamma random variable

X2=18;  x2=gamrnd(m2,X2/m2,1,15000); % gamma random variable

x=x1+x2; % McKay variable

elseif k==3

m2=0.55; % this is alpha/2

X1=2;  x1=gamrnd(m2,X1/m2,1,15000); % gamma random variable

X2=18;  x2=gamrnd(m2,X2/m2,1,15000); % gamma random variable

x=x1+x2; % McKay variable

elseif k==4

m2=0.35; % this is alpha/2

X1=17;  x1=gamrnd(m2,X1/m2,1,15000); % gamma random variable

X2=18;  x2=gamrnd(m2,X2/m2,1,15000); % gamma random variable

x=x1+x2; % McKay variable

else

x=gamrnd(1.1,8,1,20000);% a single set % McKay variable

end;

x=x/mean(x);% normalize w.r.t mean

M2=mean(x.^2); % normalized second moment

Mh=mean(sqrt(x)); % normalized half moment

syms r a
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4.11.1.4 Performance in McKay Channels

Following the characterization of the McKay density, we can examine the error

rates and outage probabilities. In all the analysis presented below, detailed Matlab

scripts have been provided that were used in the creation of the plots.

Error Rates

The case of a coherent BPSK modem is considered as an example. The error rate in

the McKay fading channel becomes

pe Xð Þ ¼
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In Eq. (4.307), 1
2
erfc :ð Þ is the error rate in an ideal Gaussian channel and X is the

average SNR. The error rate as a function of the average SNR needs to be evaluated

numerically.

If the McKay density in summation form in Eq. (4.296) is used, it is possible to

obtain a simple expression for the error rate (as a sum),
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In Eq. (4.308),

αk ¼ αþ 2k: ð4:309Þ

Xαρ ¼ α

X 1� ρð Þ : ð4:310Þ

Note that 2F1(�) is the hypergeometric function (Gradshteyn and Ryzhik 2007).

Since an analytical expression for the Laplace transform of the McKay density is

available, it is possible to use Laplace transforms to evaluate the bit error rates.

Note that the Laplace transform, LX(s), and moment generating function MX(s) of
the density of a random variable X are expressed as (da Costa and Yacoub 2008;

Peppas et al. 2009; Yilmaz and Alouini 2012)

MX sð Þ ¼ LX �sð Þ: ð4:311Þ
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The error rate in terms of the moment generating function for BPSK is (Simon

and Alouini 2005)

pe Xð Þ ¼ 1

π

ðπ2
0

MX � 1

sin 2 θð Þ
� �

dθ: ð4:312Þ

Thus, the error rate in a McKay fading channel becomes

pe Xð Þ ¼ 1

π

ðπ2
0

LX
1
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dθ: ð4:313Þ

In terms of the Laplace transform of the McKay density given in Eq. (4.301), the

error rate becomes

pe Xð Þ ¼ 1
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αα α2 þ 2α
X

sin 2 θð Þ þ
X4

sin 4 θð Þ 1� ρð Þ
	 
�α
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dθ: ð4:314Þ

All three approaches presented above in Eqs. (4.307), (4.308), and (4.314)

require numerical methods for error rate estimation. The Matlab script used to

obtain the error rates and the results are presented next. The script only appears with

the first set of results for α ¼ 1.35. For the other values of α, only plots are shown.

For the estimation of error rates on the basis of summation in Eq. (4.308), ten

terms are used. For the case of the lowest correlation, results are compared to the

case of a Nakagami channel. They are displayed in Figs. 4.102, 4.103, 4.104, 4.105,

4.106, and 4.107.

function bercalculation_mckay

% P M Shankar, October 2016

% bit error calculations for BPSK based on three approachs

% direct integration with the pdf. converted into trigonometric form

%

% using the density expressed as a sum

%

% using the Laplace transforms.

%

% In each case, the integrands & the summation are created symbolically and

% transformed into on-line functions for evaluation. alpha needs to

% be entered manually even though the function can be modified to have

% alpha as the input upon prompt. The SNR is allowed to vary from 5 to 40

% dB, correlation coefficient [0.0001,0.1,0.4,0.6,0.8].

% Summation is created as a separate function since it takes up longer.

% The number of terms in the summation (M) has been kept at 10 and can be

% varied if necessary.

%

% for rho =0.0001, results are compared to the case of pure Nakagami

% channel

close all
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legend('direct','Laplace transform','sum')

xlabel('average SNR (dB)')

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  \rho = ',num2str(rh(3))])

xlim([5,40])

peL(k,kr)=(1/pi)*integral(mckayf2,0,0.999975*pi/2);

end;

end;

peS=berMcKay_using_sum;

% for rho=0.0001, also plot the theoretical error rate in a Nakagami

% channel

figure,semilogy(Z0,peD(:,1),'r*',Z0,peL(:,1),'kd',Z0,peS(:,1),'bo',Z0,ber1,'-m')

legend('direct','Laplace transform','sum','Nakagami')

xlabel('average SNR (dB)')

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  \rho = ',num2str(rh(1))])

xlim([5,40])

figure,semilogy(Z0,peD(:,2),'r*',Z0,peL(:,2),'kd',Z0,peS(:,2),'bo')

legend('direct','Laplace transform','sum')

xlabel('average SNR (dB)')

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  \rho = ',num2str(rh(2))])

xlim([5,40])

figure,semilogy(Z0,peD(:,3),'r*',Z0,peL(:,3),'kd',Z0,peS(:,3),'bo')

global Z alpha rh

Z0=5:3:40;

Z0=[Z0,40];

Z=10.^(Z0/10);

LK=length(Z);

alpha=0.95;

rh=[0.0001,0.1,0.4,0.6,0.8]; % rho values

ber1= bernakagami; % error rates in a Nakagami channel

LR=length(rh);

syms z a r X positive

% get the expression for density directly from the notes

Nr=sqrt(sym(pi))*z^((1/2)*a-1/2)*exp(-a*z/(X*(1-r)))...

*besseli((1/2)*a-1/2, a*sqrt(r)*z/(X*(1-r)));

Dr=gamma((1/2)*a)*(X^2*(1-r)/a^2)^((1/2)*a)...

*(2*a*sqrt(r)/(X*(1-r)))^((1/2)*a-1/2);

fun=Nr/Dr; % pdf McKay depends on X, alpha (a) and rho(r)

funer=0.5*erfc(sqrt(z))*fun;% error rate integrand

% Laplace transform

syms s

fLzer=a^a/(a^2+s^2*X^2+2*s*X*a-s^2*X^2*r)^((1/2)*a);

peD=zeros(LK,LR); % pe directly

peL=zeros(LK,LR);% pe using Laplace transforms or MGF

for kr=1:LR

rho=rh(kr);

for k=1:LK

% put values [alpha, X and rho]

funmckay=subs(funer,[a X r],[alpha,Z(k),rho]);

% convert from dz to dy with z=tan(y)

syms y

fun1m=subs(funmckay,z,tan(y));

fun2m=fun1m*(1+tan(y)*tan(y));

mckayf1=matlabFunction(fun2m); % converted integral:limit:0,pi/2

if rho>0.5 % adjust the upper limit to prevent INF

peD(k,kr)=integral(mckayf1,0,0.9975*pi/2); %

else

peD(k,kr)=integral(mckayf1,0,0.9995*pi/2); %

end;

fun1L=subs(fLzer,[a, X, r],[alpha,Z(k),rho]);

fun2L=subs(fun1L,s,1/(sin(y))^2);

mckayf2=matlabFunction(fun2L);
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% p m shankar, BER calculation using the summation

global Z alpha rh

syms a X k M r

ak=a+2*k;

Xa=a/(X*(1-r));

X2=2*X;

Nr1=(a/X2)^ak*r^k*gamma(ak+1/2);

Dr1=factorial(k)*gamma(1/2+ak/2)*gamma(a/2)*ak*(1-r)^(2*k+a/2);

NDR=Nr1/Dr1;

pes=symsum(NDR*hypergeom([ak,ak+1/2],[ak+1],(-Xa)),k,0,M);

LK=length(Z);

LR=length(rh);

peS=zeros(LK,LR);% pe using summation

for kr=1:LR

rho=rh(kr);

for kk=1:LK

MM=10;

pesk=subs(pes,[a,X,r,M],[alpha,Z(kk),rho,MM]);

peS(kk,kr)=double(pesk);

end;

end;

end

figure,semilogy(Z0,peD(:,4),'r*',Z0,peL(:,4),'kd',Z0,peS(:,4),'bo')

legend('direct','Laplace transform','sum')

xlabel('average SNR (dB)')

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  \rho = ',num2str(rh(4))])

xlim([5,40])

figure,semilogy(Z0,peD(:,5),'r*',Z0,peL(:,5),'kd',Z0,peS(:,5),'bo')

legend('direct','Laplace transform','sum')

xlabel('average SNR (dB)')

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  \rho = ',num2str(rh(5))])

xlim([5,40])

figure,semilogy(Z0,peD(:,1),'r*',Z0,peD(:,3),'bo',...

Z0,peD(:,4),'-k^',Z0,peD(:,5),'b-->')

legend(['  \rho = ',num2str(rh(1))],['  \rho = ',num2str(rh(3))],...

['  \rho = ',num2str(rh(4))],['  \rho = ',num2str(rh(5))])

xlabel('average SNR (dB)')

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha)])

xlim([5,40])

text(6,2e-6,'numerical integral results','backgroundcolor','y')

end

function ber1= bernakagami

% error rates in a Nakagami channel

global Z alpha

syms a X

F=((a/X)^a)*gamma(a+1/2)/(2*sqrt(sym(pi))*a*gamma(a));

er=F*hypergeom([a,a+1/2],[a+1],(-a/X));

for k=1:length(Z)

ber1(k)=double(subs(er,[a,X],[alpha,Z(k)]));

end;

end

function [ peS ] =berMcKay_using_sum
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Fig. 4.102 Bit error rates in a McKay channel using three different approaches for a very low

value of ρ. Bit error rate in a Nakagami channel is shown

Fig. 4.103 Bit error rates in a McKay channel using three different approaches: ρ ¼ 0.1
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Fig. 4.104 Bit error rates in a McKay channel using three different approaches: ρ ¼ 0.4

Fig. 4.105 Bit error rates in a McKay channel using three different approaches: ρ ¼ 0.6
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Fig. 4.106 Bit error rates in a McKay channel using numerical integration (α ¼ 1.35): multiple

values of ρ

Fig. 4.107 Bit error rates in a McKay channel using numerical integration (α ¼ 0.95): multiple

values of ρ
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As seen from these results, the three approaches for the evaluation of the error

rates lead to identical results. However, the approach based on Laplace transforms

takes less time (not indicated here). The error rate simulation using random

numbers will be discussed in Chap. 5 when fading mitigation using diversity is

presented.

Outage Probability

Another measure of the performance in a fading channel is the outage probability.

The system goes into outage when the instantaneous signal strength falls below a

threshold value determined by the acceptable level of performance. As defined

earlier, using the criterion of an error rate of 1e-4 for coherent BPSK, the

threshold SNR (thr) will be 6.91. Outage probability is the CDF evaluated at the

value of the threshold. Using the expression for the pdf in Eq. (4.281), the outage

probability is

Pout Xð Þ ¼
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Using the CDF expression as a sum expressed in Eq. (4.302)
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ffiffiffi
π
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: ð4:316Þ

Outage probabilities have been estimated using both equations, with the

number of terms in the summation in Eq. (4.316) set to 10. The Matlab script and

results are given below. The script appears only with the first set of results. The

other sets are obtained with two other values of α. Results are shown in Figs. 4.108,
4.109, and 4.110.
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function mckayoutageProbf

% Outage probabilities are calculated approximating the pdf as a sum. This

% leads to the CDF being the sum of incomplete gamma functions. Th enumber

% of terms in the sum is fixed at 7. The outage is also calculated by

% integrating the pdf. Threshold on power units corresponding to ber of

% 1e-4 for BPSK.

%

% symbolic toolbox is once again used. The script can updated by using a

% different value of alpha. One can also change the number of terms if

% needed.

% P M Shankar, July 2016

close all

thr=6.91;%threshold on power units corresponding to ber of 1e-4 for BPSK

Z0=[10:2:40];%average SNR

Z=10.^(Z0/10);

alpha=1.2;

rr=[0.0001,0.3,0.6,0.7];% rho values

LR=length(rr);

LZ=length(Z);

poutS=zeros(LR,LZ);

poutD=zeros(LR,LZ);

for k=1:LR

rho=rr(k);

for kk=1:LZ

outageS=double(mckaycdfsum(alpha,rho,Z(kk),7)); % outage using summation

poutS(kk,k)=outageS; % Outage using the SUM

macpdfn= mckpdf(alpha,rho,Z(kk));

funcpdf=matlabFunction(macpdfn);% integrand for the CDF integral

poutD(kk,k)=integral(funcpdf,0,thr);% Outage directly

end;

end;

semilogy(Z0,poutS(:,1),'-r',Z0,poutD(:,1),'r*',...

Z0,poutS(:,2),'-k',Z0,poutD(:,2),'ko',...

Z0,poutS(:,3),'-b',Z0,poutD(:,3),'bd',...

Z0,poutS(:,4),'m--',Z0,poutD(:,4),'m^')

xlabel('Average SNR dB'),ylabel('Outage Probability')

legend(['sum \rho = ',num2str(rr(1))],['direct \rho = ',num2str(rr(1))],...

['sum \rho = ',num2str(rr(2))],['direct \rho = ',num2str(rr(2))],...

['sum \rho = ',num2str(rr(3))],['direct \rho = ',num2str(rr(3))],...

['sum \rho = ',num2str(rr(4))],['direct \rho = ',num2str(rr(4))])

title(['\alpha = ',num2str(alpha)])

end

function mckCDF=mckaycdfsum(alpha,rho,Z,MM)

% create the McKay CDF

thr=6.91;%%threshold on power units corresponding to ber of 1e-4 for BPSK

syms a r X M

syms k

xa=a/(X*(1-r));

a2=a/2;

%symbolic toolbox igamma is upper INC GAMMA it computes igamms differently

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*thr);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,M);

mckCDF=subs(CDF,[a, X, r, M],[alpha,Z,rho,MM]); % alpha, X, rho, M

end

function macpdfn= mckpdf(alpha,rho,Z)

syms z a r X positive
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% get the expression for density directly from the notes

Nr=sqrt(sym(pi))*z^((1/2)*a-1/2)*exp(-a*z/(X*(1-r)))...

*besseli((1/2)*a-1/2, a*sqrt(r)*z/(X*(1-r)));

Dr=gamma((1/2)*a)*(X^2*(1-r)/a^2)^((1/2)*a)...

*(2*a*sqrt(r)/(X*(1-r)))^((1/2)*a-1/2);

pdf=Nr/Dr;

macpdfn=subs(pdf,[a,r,X],[alpha,rho,Z]);% this the pdf

end

Fig. 4.108 Outage probabilities in a McKay channel (α ¼ 1.2): multiple values of ρ

Fig. 4.109 Outage probabilities in a McKay channel (α ¼ 0.95): multiple values of ρ
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Results on the McKay fading channel models clearly demonstrate its potential in

modeling short-term fading channels ranging from the pre-Rayleigh fading includ-

ing Nakagami–Hoyt to Nakagami–Rician and post-Rayleigh fading conditions. For

ρ ¼ 0, post-Rayleigh channel is represented by α > 1. The three parameter

distribution offers flexibility in modeling the signal strength fluctuations. Even

though the presence of the Bessel function in the density poses some computational

difficulties in undertaking the analysis, the form of the density, and CDF as a

summation offers ways of mitigating these problems.

4.11.1.5 McKay Fading and Shadowing (Shadowed Fading Channels)

The McKay faded channel also undergoes shadowing concurrently. The effect of

shadowing can be taken into account by treating the mean SNR X of the McKay

density as a random variable with a lognormal density as it was shown earlier in

Sect. 4.5. The density of the SNR in a shadowed fading channel becomes
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f wð Þdw:

ð4:317Þ

In Eq. (4.317), McKay pdf appears having X replaced by w. The lognormal

density f(w) earlier is

Fig. 4.110 Outage probabilities in a McKay channel (α ¼ 0.75): multiple values of ρ
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f wð Þ ¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2w2

p exp � 10log10 wð Þ � μ½ �2
2σ2

 !
: ð4:318Þ

In Eq. (4.318), K is the logarithmic conversion factor (same as A0 in Eq. (4.68)),

K ¼ 10

loge10
: ð4:319Þ

The shadowing level is σ (dB) and the mean SNR is μ (dB). The relationship

between the average in a lognormal channel and the average in McKay fading

channel is related through

μ ¼ 10log10 Xð Þ � σ2

2K
¼ XdB � σ2

2K
: ð4:320Þ

Equation (4.320) allows the comparison of the performance levelswith andwithout

shadowing since the plots are displayed with SNR in terms of X and not in terms of μ.
The error rate in a shadowed McKay fading channel is

pe Xð Þ ¼
ð1
0

f zð Þ1
2
erfc

ffiffi
z

p �
dz: ð4:321Þ

In Eq. (4.321), f(z) is the density given in integral form in Eq. (4.317) resulting in

the error rate becoming a double integral. Since no analytical expression exists for

the error rate in Eq. (4.321), estimation of the error rates requires numerical

(double) integration. The double integration can be avoided by using the McKay

density as a sum. Using the density as a summation in Eq. (4.296) and the error rate

in the McKay fading channel expressed in terms of hypergeometric functions in

Eq. (4.308), the error rate becomes
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ð4:322Þ

Note that Xwas replaced by w in Eq. (4.308) to get Eq. (4.322). It should be noted

that Eq. (4.322) still requires numerical evaluation in addition to infinite summation.

The error probabilities are evaluated using both approaches numerically in

Matlab. For the case of summation in Eq. (4.322), the number of terms was limited

to six. Special care was paid to the limits to ensure that the results stayed finite. The

Matlab script and results for one set of shadowing levels for the estimation of error

rates are provided below showing that both approaches led to identical answers.

Since the double integral was substantially time consuming, the remaining results
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are limited to one using the hypergeometric function in Eq. (4.322). Results are

shown in Figs. 4.110, 4.111, and 4.112.

function ber_mckayshadowing_hypergeom_all

% bit error rate in McKay shadowing estimated by first obtaining the BER

% using the summation and then performing a single integral over the

% lognormal density. Summation uses hypergeometric functions and only

% requires a single integral

% results are verified through double integration (direct). Results for the

% case of no shadowing obtained using Laplace transforms is also plotted.

% input is alpha and rho. The number of terms in the summation is 6

% P M Shankar, October 2016

close all

global Z0 alpha rh

Z0=[10:2:30];

for krr=1:2

if krr==1

alpha=0.65; rh=0.4;

else

alpha=1.65; rh=0.5;

end;

sigv=[3,5,6];

LS=length(sigv);

LK=length(Z0);

KN=10/log(10);

MM=6;% number of terms in the summation

% create the integrand using symbolic variables

syms a x r M sigm MU K k

% the integrand

f1=gamma(a+1/2)*(a/x)^a*hypergeom([a, a+1/2], [a+1], -a/((1-r)*x))/...

(gamma((1/2)*a)*a*gamma(1)*gamma(1/2+(1/2)*a)*2^a*(1-r)^((1/2)*a));

f2=symsum(gamma(a+2*k+1/2)*(a/x)^(a+2*k)*r^k*hypergeom([a+2*k, a+2*k+1/2],...

[a+2*k+1], -a/((1-r)*x))/...

(gamma((1/2)*a)*(a+2*k)*gamma(k)*gamma(k+1/2+(1/2)*a)*2^(a+2*k)*...

(1-r)^(2*k+(1/2)*a)),k,1,M);

f=f1+f2;

ff=sym(K)*exp(-(10*log10(x)-MU)^2/(2*sigm^2))/sqrt((2*sym(pi)*x*x)*sigm^2);

fun=f*ff; % this is the integrand

pesh=zeros(LK,LS);

pedb=zeros(LK,LS);

for kr=1:length(sigv)

sig=sigv(kr);% sigma value

mu=Z0-sig^2/(2*KN); % average measured in dB

for k=1:LK

% now substitute the values

funer=subs(fun,[K,a,r,sigm,MU,M],[10/log(10),alpha,rh,sig,mu(k),MM]);

% create the in-line function

mfuner=matlabFunction(funer);

% perform the integration

pesh(k,kr)=integral(mfuner,0.,inf); % result using the summation

% get in-line function for the double integral

fdfuner = doubleintegralfun;

fdfer=subs(fdfuner,[K,a,r,MU,sigm],[10/log(10),alpha,rh,mu(k),sig]);

mfund=matlabFunction(fdfer);%order is dx dz necessary for putting limits

pedb(k,kr)=integral2(mfund,0.1,1e5,1e-4,0.995*pi/2);%second limit in tan(.)

end;

end;

[ peL] =laplace_ber;%error rate no shadowing

figure

semilogy(Z0,peL(:,1),'-',Z0,pesh(:,1),'r*',Z0,pedb(:,1),'--k',...

Z0,pesh(:,2),'kd',Z0,pedb(:,2),'-.g',Z0,pesh(:,3),'bo',...
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Z0,pedb(:,3),':')

legend('No shadowing',['\sigma = ',num2str(sigv(1)),'dB (hypergeom)'],...

['\sigma = ',num2str(sigv(1)),'dB (dblintegral)'],...

['\sigma = ',num2str(sigv(2)),'dB (hypergeom)'],...

['\sigma = ',num2str(sigv(2)),'dB (dblintegral)'],...

['\sigma = ',num2str(sigv(3)),'dB (hypergeom)'],...

['\sigma = ',num2str(sigv(3)),'dB (dblintegral)'],'location','southwest')

xlabel('Average SNR (dB)')

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  \rho = ',num2str(rh)])

end;

end

function [ peL] =laplace_ber

% p m shankar, BER calculation using Laplace when no shadowing is present

global Z0 alpha rh

Z=10.^(Z0/10);

syms a X

syms s r y

fLzer=a^a/(a^2+s^2*X^2+2*s*X*a-s^2*X^2*r)^((1/2)*a);

LK=length(Z);

peL=zeros(LK);% pe using summation

for k=1:LK

fun1L=subs(fLzer,[a, X, r],[alpha,Z(k),rh]);

fun2L=subs(fun1L,s,1/(sin(y))^2);

mckayf2=matlabFunction(fun2L);

peL(k)=(1/pi)*integral(mckayf2,0,0.999975*pi/2);

end;

end

function ffun = doubleintegralfun

% created using symbolic toolbox

syms z a x MU K r sigm y

z=tan(y); % conver to tangent(.); variable representing the snr

Nr=sqrt(sym(pi))*z^((1/2)*a-1/2)*exp(-a*z/(x*(1-r)))...

*besseli((1/2)*a-1/2, a*sqrt(r)*z/(x*(1-r)));

Dr=gamma((1/2)*a)*(x^2*(1-r)/a^2)^((1/2)*a)...

*(2*a*sqrt(r)/(x*(1-r)))^((1/2)*a-1/2);

% (1+z)^2 needed for transformation from dz to dy, z=tan(y)

fun=Nr*(1+z^2)/Dr; % pdf McKay depends on X, alpha (a) and rho(r)

fun1=0.5*erfc(sqrt(z))*fun;% error rate integrand

ff=sym(K)*exp(-(10*log10(x)-MU)^2/(2*sigm^2))/sqrt((2*sym(pi)*x*x)*sigm^2);

ffun=fun1*ff;

end
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Fig. 4.111 Error rates in McKay-lognormal channel

Fig. 4.112 Error rates in McKay-lognormal channel
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It is possible to replace the lognormal density in Eq. (4.317) by a Meijer

G-function representing the product of gamma variables. The Nakagami-N

gamma model for fading was presented earlier. A similar procedure can be under-

taken here as well. In this case, f(w) in Eq. (4.317) will consist of Meijer G-function
as shown in Eq. (4.121).

4.11.1.6 Generalized McKay Channel

The range of fading models encompassed in the McKay density can be expanded by

obtaining a generalized form of the McKay density by defining a new random

variable by power scaling the SNR Z to

P ¼ Z
1
s, s > 0: ð4:323Þ

Using the transformation of random variables, the density function of P becomes
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Examining the generalized McKay density in Eq. (4.324), it can be seen that

the density can morph into the density of the SNR in α-λ-μ, generalized gamma

(Stacy’s distribution), α � μ, η � μ along with the other models mentioned earlier.

These relationships are tabulated in Table 4.5.

Table 4.5 Relationship of the generalized McKay channel to other fading channels

s α 0 � ρ � 1 Fading channels

>0 >0 >0 α � λ � μ

>0 >0 0 Generalized gamma (Stacy’s distribution)

1 >0 >0 McKay

1 �1 >0 α � μ or η � μ (special case of McKay)

1 1 >0 Nakagami–Hoyt (special case of McKay)

1 >0 0 Gamma (special case of McKay)

1 �½ 0 Nakagami (special case of McKay)

1 1 0 Rayleigh(special case of McKay)

454 4 Modeling of Fading and Shadowing



4.11.2 Product Model for Shadowed Fading Channels

The short-term fading in wireless channels can be modeled as a cascaded process

resulting in the density of the received SNR being described in terms of a Meijer

G-function as

f Z zð Þ ¼ 1

zΓN mð ÞG
N, 0
0,N

mN

Z0

z

���� �
m, ::,m
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As explained in Sect. 4.7, N being 1 represents the Nakagami channel and for

N ¼ 1, the density in Eq. (4.325) is the gamma density. As N increases, the level of

fading increases and the performance of the channel goes down. In the presence of

shadowing, the average SNR Z0 becomes a random variable and the density

function of the SNR in a shadowed fading channel becomes
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In Eq. (4.326), y represents the shadowing component assumed to have a

lognormal density.

While short-term fading is modeled as a cascading process, it was also shown

that the shadowing is best explained in terms of a product-process (which results in

a lognormal density for the shadowing component), which can also be described by

another Meijer G-function. The probability density of the shadowing component in

the cascaded model is
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Note that whenM¼ 1, Eq. (4.327) becomes the gamma density.WhenN¼M¼ 1,

the shadowed fading channel becomes a generalized K fading channel. When N and

M exceed unity, the density function of the SNR in a shadowed fading channel

(Shankar 2012) becomes
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Using the properties of Meijer G-functions, Eq. (4.328) simplifies to
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Equation (4.329) represented the composite cascaded density for the shadowed

fading channel. It is also viewed as a product model for shadowed fading since the

density results from the products of NM independent gamma variables, N of one

type and M of another type.

Using Eq. (4.329), the error rate (Coherent BPSK) in a shadowed fading channel

modeled as a cascaded process becomes
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For a threshold SNR of ZT, the outage probability becomes
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Thus, the complete description of shadowed fading is possible through a multi-

ple scattering process. It is possible to see the advantage of using a cascaded

approach to describe the signal strength fluctuations in a shadowed fading channel.

The probability density, cumulative distribution function, error rates, and outage

probabilities can be expressed in closed forms in terms of Meijer G-functions. The
only numerical computation needed is the estimation of c. It should be noted that

c is related to the number of cascaded components M in shadowing and the severity

of shadowing (shadowing level) quantified in terms of σ (dB). This was discussed in
Sect. 4.7.
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An example of error calculations is shown in Fig. 4.113. The Matlab script is

also given.

function cascaded_shadowed_fading_channel

%  example of cascaded fading (N) and cascaded shadowing (M)

% m is the Nakagami parameter and c is the shadowing term obtained using

% the relationship between shadowing level sigma for a specific value of M

% in this example, values of m and c are chosen arbitrarily to illustrate

% the use of Matlab in obtaining error rates and outage probabilities.

% there is a need to ensure that (m-c) is not zero. To overcome this

% problem, add 1e-5 to m and or 1e-6 to c

% P M Shankar October 2016

close all

m=2.5;

m1=m+1e-5;

MN=[2,3,4]; % values of N

c=6.511; M =4;

c1=c+1e-6;

Z0=5:30; % average SNR in dB

Z=10.^(Z0/10);% average SNR in absolute units

LZ=length(Z);

ber1=zeros(3,LZ);

for kk=1:3

N=MN(kk);

gm=(m1^N)*(c1^M);

GM=sqrt(pi)*(gamma(m1)^N)*(gamma(c1)^M);

for k=1:LZ

Z1=Z(k);

if N==2

x1=double(evalin(symengine,sprintf('Meijer G([[1/2], [1]], [[0,%e,%e,%e,%e,%e,%e], []], 

%e)',m1,m1,c1,c1,c1,c1,gm/Z1)));

elseif N==3

x1=double(evalin(symengine,sprintf('Meijer G([[1/2], [1]], [[0,%e,%e,%e,%e,%e,%e,%e], []], 

%e)',m1,m1,m1,c1,c1,c1,c1,gm/Z1)));

else

x1=double(evalin(symengine,sprintf('Meijer G([[1/2], [1]], [[0,%e,%e,%e,%e,%e,%e,%e,%e], []], 

%e)',m1,m1,m1,m1,c1,c1,c1,c1,gm/Z1)));

end;

ber1(kk,k)=(1/2)-(1/2)*x1/GM;

end;

end;

semilogy(Z0,ber1(1,:),'r-',Z0,ber1(2,:),'k--',Z0,ber1(3,:),'m-.','linewidth',1.5)

legend(['N = ',num2str(MN(1))],['N = ',num2str(MN(2))],['N = ',num2str(MN(3))])

xlabel('Average SNR (dB)')

ylabel('Average probability of error')

title({'Cascaded Shadowed fading channel';['  m = ',num2str(m),'  , M = ',num2str(M),...

',  c = ',num2str(c)]})

end
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4.11.3 Mixture Models for Fading, Shadowing,
and Shadowed Fading

Another approach to modeling of the statistical fluctuations relies on the concept of

fractional or weighted contribution to the statistics of the SNR frommultiple sources.

Contrary to the densities that rely on modified Bessel functions or Meijer G-functions
(resulting from the sum or product models), the densities arising out of weighted

contributions can be built from simple densities as shown in Chap. 2. For example, it

is possible to have densities created by a weighted summation of either gamma,

Gaussian, lognormal, or any similar (Shankar et al. 2003; Atapattu et al. 2011; Jung

et al. 2014; Büyükçorak et al. 2015; Selim et al. 2015). This might allow for simpler

analytical evaluation of the performance of the channel with or without diversity

since error rates and outage probabilities can be expressed in known forms.

The mixture models have been used in image analysis and interpretation as

described in Chap. 2. If one treats the images to be formed from contributions from

several factors, it is possible to model the statistics of the image intensity to be made

up of contributions from two or more sources. For example, if a certain region of the

image is examined, the heterogeneous nature of the image can be interpreted as

resulting from multiple statistical factors contributing to the intensity in any region

of interest. Specifically, examining regions containing abnormal growths or tumors,

one can attribute the intensity to have arisen from contributions from normal tissue

regions, tissue regions containing abnormal cells, and tissue regions containing tiny

Fig. 4.113 Error rates in cascaded shadowed fading channel

458 4 Modeling of Fading and Shadowing

http://dx.doi.org/10.1007/978-3-319-53198-4_2
http://dx.doi.org/10.1007/978-3-319-53198-4_2


blood vessels, each having its own statistical signature. Depending on the relative

strengths of each form of these regions, the composite or mixture density can be

formed. If f(x) is the density of the pixels in the region of interest (Papoulis and

Pillai 2002a, b)

f xð Þ ¼ a1f 1 xð Þ þ a2f 2 xð Þ þ � � �, a1 þ a2 þ � � � ¼ 1, 0 < ak < 1: ð4:332Þ

Note that in Eq. (4.332), a’s are the weights and ( ) ( )1 2. , ,f f x �are valid density

functions. Such weighted densities can also be used to model boundaries in the

region of interest.

While it is possible to attribute the existence of mixture densities in image

analysis from a basic perspective of image formation, the efforts in wireless channel

modeling seem to be based on making channels models more accurate (analytically

simpler). It is also possible to argue for the existence of mixture models based on

scattering by treating the channel as a mixture. The concept of weighted contribu-

tions leads directly to the density f(z) of the received SNR Z as

f zð Þ ¼
Xn
k¼1

pkf k zð Þ: ð4:333Þ

In Eq. (4.333) fk(z) represent density functions that might be of the same type

(gamma, Gaussian, lognormal, etc.) each having a set of unique parameters asso-

ciated with it such as mk and Ωk for gamma, μk and σk for Gaussian, μk and σk
(in decibel units) for lognormal, etc. These density functions might also be differ-

ent. Taking note of the fact that f(z) is a valid density function and fk(z) are also valid
density functions,

Xn
k¼1

pk ¼ 1, 0 � pk � 1: ð4:334Þ

It can be seen that if n¼ 1, Eq. (4.333) becomes the density function of fading in

a Nakagami channel if we treat fk(z) to be gamma density. As the value of n goes up,
the density function is likely to be more accurate in predicting the statistical

fluctuations of the SNR. While the accuracy goes up, the mathematical analysis

of the performance will still remain simple as the density functions are of standard

type. However, modeling of Eq. (4.333) itself becomes more complex since it might

require evaluation of several parameters. As an example for n ¼ 2, if fk(z) is

considered to be a two parameter gamma density, one would require estimation

of five parameters and if n ¼ 3, estimation of 8 parameters and so on, imposing

severe burden on parameter estimation. As expected, the higher the value of n, the
better is the accuracy of the model. But any accuracy achieved is likely to come at a

heavy cost of parameter estimation.
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4.11.3.1 Gamma Mixture Models

The starting point of the discussion on the mixture densities is the gamma density

associated with the Nakagami fading channel. When the number of variables in the

mixture n ¼ 1 in Eq. (4.333), the mixture density becomes the simple gamma

density associated with the SNR in a Nakagami channel. As the fading in the

channel moves away from the simple Nakagami fading conditions and becomes

Nakagami–Hoyt, Nakagami–Rice, κ � μ or η � μ, etc., these scenarios might be

modeled by increasing the number of components (Papoulis and Pillai 2002a, b;

Venturini et al. 2008). The existence of shadowing can also be modeled similarly by

varying the number of components in the mixture. The gamma mixture density can

be expressed as (Atapattu et al. 2011)

f zð Þ ¼
Xn
k¼1

pk
1

Γ mkð Þ
mk

Ωk

� �mk

zmk�1e
� mk

Ωk

� �
z
: ð4:335Þ

In Eq. (4.335), the primary gamma density associated with a Nakagami fading

channel is

f k zð Þ ¼ 1

Γ mkð Þ
mk

Ωk

� �mk

zmk�1e
� mk

Ωk

� �
z
: ð4:336Þ

The cumulative distribution of the gamma mixture is

F zð Þ ¼
Xn
k¼1

pk
1

Γ mkð Þ γ mk;
mk

Ωk
z

� �
: ð4:337Þ

In Eq. (4.337), γ(., .) is the lower incomplete gamma function. The moment

generating function of the gamma mixture becomes

M sð Þ ¼
Xn
k¼1

pk
1

1� s Ωk

mk

� �mk
: ð4:338Þ

The moments of the gamma mixture are given by

E Zrð Þ ¼
Xn
k¼1

pk
Γ mk þ rð Þ
Γ mkð Þ

Ωk

mk

� �r

: ð4:339Þ

The mean Z0 is

E Zð Þ ¼
Xn
k¼1

pkΩk: ð4:340Þ
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The amount of fading (AF) in a fading channel modeled by the gamma mixture is

AF ¼ Z2
� �
Zh i2 � 1 ¼

Pn
k¼1

pk
mkþ1
mk

� �
Ω2

k

Pn
k¼1

pkΩk

	 
2 � 1: ð4:341Þ

The bit error of a coherent BPSK modem becomes

pe Z0ð Þ ¼
Xn
k¼1

pk
1

2
ffiffiffi
π

p
� �

Γ mk þ 1
2

 �
mkΓ mkð Þ

mk

Ωk

� �mk

2F
21 mk;

1

2
þ mk

	 

; 1þ mk½ �;�mk

Ωk

� �
:

ð4:342Þ

In Eq. (4.342), 2F1(.) is the hypergeometric function (Gradshteyn and Ryzhik

2007) and Z0 is the average SNR given by

Z0 ¼
Xn
k¼1

pkΩk: ð4:343Þ

The advantage offered by a mixture model is clearly seen from the use of well-

established expressions for the error rates [Eq. (4.342)] and outage probabilities

(in terms of CDF). The advantage of traditional models is that the associations

among the values of the Nakagami parameter, average SNR, shadowing levels

(in dB), and fading and shadowing conditions are known. The shortcoming of the

mixture model is that the parameters of the gamma mixture models have to be

evaluated for eachvalue of theNakagami parameter, shadowing levels, and the average

SNR. The parameter estimation methods often are neither simple nor straightforward.

For the efficient implementation of the gammamixture models for fading, shadowing,

and shadowed fading, one needs to investigate numerical methods for obtaining the

parameters of the model, namely (3n-1) parameters for a gamma mixture with

n components. The number of parameters is 3n-1 because of the total probability

theorem in Eq. (4.334), regardless of the number of mixtures involved or the forms

of the component densities involved. However, one also needs to determine the

minimum number of components needed to maintain acceptable levels of compatibil-

ity and matching to the exact models being replaced. This would avoid use of higher

n values to get finer matches to the actual densities without providing any extra

accuracy in error rates and outage probabilities. Two methods are described to accom-

plish the goal of estimating the parameters including the number of components n and
the criterion used for determining the optimum number of components.

Two primary methods employed to estimate the parameters of mixture densities

are the maximum likelihood estimation (MLE) and the expectation maximization

method (EM) (Davenport et al. 1988; Almhana et al. 2006). While these methods

provide the estimate of the parameters for a chosen value of n, the mean square
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error (MSE) criterion is used to determine the minimum value of the number of

components needed. These methods, namely MLE and EM, and the criterion MSE

all can be implemented in Matlab as discussed in Chap. 2. The work reported here

uses the MLE approach in Matlab. The optimum number of components can also be

determined on the basis of another criterion, namely the Bayes Information Crite-

rion (BIC). This is described in detail in Chap. 5 where mixture density is

reintroduced in connection with diversity combining algorithms.

Some of the conventional models are now explored in terms of gamma mixtures.

Gamma Mixtures and Nakagami Fading

This is a trivial case since gamma density describes the statistics of SNR in a

Nakagami fading channel. In other words, the SNR in a Nakagami fading channel is

modeled with a mixture consisting of a single gamma density.

Gamma Mixtures and Nakagami-Lognormal Shadowed Fading

As presented earlier, the shadowed fading channel leads to density function

expressed in integral form making it difficult to undertake the analysis of

performance of wireless channels. Mixture densities offer a means to overcome

this problem allowing the estimation of error rates shown in Eq. (4.342). The first

step is the determination of the number of mixture components and the appropriate

parameters of the mixture. The next step is to determine the optimum number

of components required for a satisfactory fit to the gamma-lognormal density

(of the SNR).

The detailed Matlab script written for the gamma mixture parameter estimation

for the gamma-lognormal fit is given below. As described in Chap. 2, one of the

critical needs is the choice of the initial or starting guesses for the parameters. For a

chosen value of n, kmeans(.) is to split the data into n groups and the appropriate

parameters are determined by assuming each group to follow the gamma density.

To simplify the analysis, the number of components n is reduced if the weights fall

below 10%. In other words, if pk < 0.1, the actual number of components used will

be less than n. This step is only necessary to keep the computational time low.

The plots of the densities and characteristics of the mixture densities are shown

in Figs. 4.114, 4.115, 4.116, and 4.117.
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function gammamixture_shadowedfading_sim

% P M Shankar, July 2016

% shadowed fading channels are modeled using gamma mixtures. The MSE values

% are calculated and displayed on the pdf plots (histogram vs. the

% estimated pdf from mixture density).

% parameters of the gamma mixture are estimated using mle technique

% separately in another function (below)

close all

Z0=[5 20] ;%dB

Z=10.^(Z0/10);%power units

K=10/log(10);%conversion factor

Numb=1e5; % number of samples

m=1.7; % Nakagami parameter

sig=[2,5]; % shadowing level

n=5; % starting number of components for gamma mixture

for kk=1:length(Z0);

for ks=1:length(sig);

sigm=sig(ks);

sigma2=sigm^2;

muZ=Z0(kk)-sigma2/(2*K);%convert Z0 (dB) to mu

g1=normrnd(muZ,sigm,1,Numb);%generate Gaussian

gg=10.^(g1/10);%lognormal random

hh=gamrnd(m,1/m,1,Numb).*gg;% cascaded gamma-lognormal set with mean of mu

[ff,xr]=ksdensity(hh);

% determine if any negative values of xr exist. discard them.

NK=[]; % eliminate negative values of xr

NK=find(xr<0);

if isempty(NK)==0

NK1=max(NK)+1;% find the largest index and add 1 to start the non-zero values

xr=xr(NK1:end);

ff=ff(NK1:end);

else

end;

X=hh;

[nn,w,alpha,beta] = gammamixture_MLEf(X,n);

% nn is the actual number of components

L=length(xr);

fx=zeros(1,L);

nL=length(w);% to account for the reduced number of components

for k=1:nL

fx=fx+w(k)*gampdf(xr,alpha(k),beta(k));

end;

figure, plot(xr,ff,'r-',xr,fx,'--k','linewidth',1.5)

legend('histogram','mixture fit','location','southeast')

xlabel('SNR'),ylabel('pdf')

MSE=(1/L)*sum(ff-fx).^2;

title({['  Average SNR = ',num2str(Z0(kk)),...

' dB,  \sigma = ',num2str(sig(ks)), ' dB,  m = ',num2str(m)];...

['No. of components =',num2str(nn),' , MSE=',num2str(MSE)]},'color','b')

text(0.5*max(xr),0.95*max(max(ff,fx)),...

'p                   \alpha               \beta')

val=[w;alpha;beta]';

text(0.45*max(xr),0.7*max(max(ff,fx)),num2str(val))

clear xr ff fx w alpha beta hh gg

end;

end;

end
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function [nn,p,a,b] = gammamixture_MLEf(Y,n)

% P M Shankar, JUly 2016

% this one is seto to a maximum of 9 components

% the initial guesses of the parameters needed for MLE are obtained using

% clustering. If the clustering probability is less than 10%, the kmeans is

% repetade with fewer clusters. Therefore, acutual number of components

% will be between 2 and n.

%

[my,ny]=size(Y);

L=my*ny; % length of the data

Y=reshape(Y,[L,1]);

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',6000,'TolX',1e-4,'TolFun',1e-5,'TolBnd',1e-

5','MaxFunEvals', 6000);

% chose the initial guess from kmeans

index = kmeans(Y,n);

w = zeros(1,n); aa = zeros(1,n); bb= zeros(1,n);

for k=1:n

w(k) = sum(index==k)/L;

aa(k) = (mean(Y(index==k)))^2/var(Y(index==k));

bb(k) = var(Y(index==k))/mean(Y(index==k));

end

disp('Initial weights'),disp(w),disp('set a 10% threshold and regroup if necessary')

M=sum(w<=.1); % number classes less than 10%

if M>0 && n>2 % nn must be at least 2

nn=n-M;

if nn==1 % there must be at least two classes

nn=2;

else

end;

index = kmeans(Y,nn);

w = zeros(1,nn); aa = zeros(1,nn); bb= zeros(1,nn);

for k=1:nn

w(k) = sum(index==k)/L;

aa(k) = (mean(Y(index==k)))^2/var(Y(index==k));

bb(k) = var(Y(index==k))/mean(Y(index==k));

end

disp(['Number of mixtures=',num2str(nn)])

disp('Initial weights after regrouping')

disp(w)

else

disp('Number of mixtures remain unchanged')

end;

pq=w(2:end);% the first value is not needed

pqr=[aa,bb,pq]; % initial guesses

% these are

% a's of the gamma pdf

% b's of the gamma pedf

% pq are the weights. Note that to reduce computation,

% the number of pq values will be one less since the total

% probability is unity and the remaining weight will be 1- sum of

% the (nn-1) weights

pf =@(x,a,b)  gampdf(x,a,b); % the gamma pdf as an in-line function

% Use mle to fit the mixture.

% the output if mle will be 3*nn-1 values; the first nn values will be a's

% the next nn values will be b's and the remaining nn-1 values are the

% weights and weight of the first components will be 1-sum of the (nn-1)

% weights
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[my,ny]=size(Y);

L=my*ny; % length of the data

Y=reshape(Y,[L,1]);

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',6000,'TolX',1e-4,'TolFun',1e-5,'TolBnd',1e-

5','MaxFunEvals', 6000);

% chose the initial guess from kmeans

index = kmeans(Y,n);

w = zeros(1,n); aa = zeros(1,n); bb= zeros(1,n);

for k=1:n

w(k) = sum(index==k)/L;

aa(k) = (mean(Y(index==k)))^2/var(Y(index==k));

bb(k) = var(Y(index==k))/mean(Y(index==k));

end

disp('Initial weights'),disp(w),disp('set a 10% threshold and regroup if necessary')

M=sum(w<=.1); % number classes less than 10%

if M>0 && n>2 % nn must be at least 2

nn=n-M;

if nn==1 % there must be at least two classes

nn=2;

else

end;

index = kmeans(Y,nn);

w = zeros(1,nn); aa = zeros(1,nn); bb= zeros(1,nn);

for k=1:nn

w(k) = sum(index==k)/L;

aa(k) = (mean(Y(index==k)))^2/var(Y(index==k));

bb(k) = var(Y(index==k))/mean(Y(index==k));

end

disp(['Number of mixtures=',num2str(nn)])

disp('Initial weights after regrouping')

disp(w)

else

disp('Number of mixtures remain unchanged')

end;

pq=w(2:end);% the first value is not needed

pqr=[aa,bb,pq]; % initial guesses

% these are

% a's of the gamma pdf

% b's of the gamma pedf

% pq are the weights. Note that to reduce computation,

% the number of pq values will be one less since the total

% probability is unity and the remaining weight will be 1- sum of

% the (nn-1) weights

pf =@(x,a,b)  gampdf(x,a,b); % the gamma pdf as an in-line function

% Use mle to fit the mixture.

% the output if mle will be 3*nn-1 values; the first nn values will be a's

% the next nn values will be b's and the remaining nn-1 values are the

% weights and weight of the first components will be 1-sum of the (nn-1)

% weights

if nn==2

mypdf = @(x,a1,a2,b1,b2,pq) (1-pq)*pf(x,a1,b1) + pq*pf(x,a2,b2);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

if nn==2

mypdf = @(x,a1,a2,b1,b2,pq) (1-pq)*pf(x,a1,b1) + pq*pf(x,a2,b2);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:2)];

b=[pp(3:4)];

p=[1-pp(5),pp(5)]; % all weights now
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elseif nn==3

mypdf = @(x,a1,a2,a3,b1,b2,b3,pq1,pq2) (1-pq1-pq2)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:3)];

b=[pp(4:6)];

p=[1-pp(7)-pp(8),pp(7),pp(8)];

elseif nn==4

mypdf = @(x,a1,a2,a3,a4,b1,b2,b3,b4,pq1,pq2,pq3) (1-pq1-pq2-pq3)*pf(x,a1,b1) + 

pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:4)];

b=[pp(5:8)];

p=[1-pp(9)-pp(10)-pp(11),pp(9),pp(10),pp(11)];

elseif nn==5

mypdf = @(x,a1,a2,a3,a4,a5,b1,b2,b3,b4,b5,pq1,pq2,pq3,pq4) (1-pq1-pq2-pq3)*pf(x,a1,b1) + 

pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:5)];

b=[pp(6:10)];

p=[1-pp(11)-pp(12)-pp(13)-pp(14),pp(11),pp(12),pp(13),pp(14)];

elseif nn==6

mypdf = @(x,a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,pq1,pq2,pq3,pq4,pq5) (1-pq1-pq2-pq3)*pf(x,a1,b1) 

+ pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:6)];

b=[pp(7:12)];

p=[1-pp(13)-pp(14)-pp(15)-pp(16)-pp(17),pp(13) pp(14) pp(15) pp(16) pp(17)];

elseif nn==7

mypdf = @(x,a1,a2,a3,a4,a5,a6,a7,b1,b2,b3,b4,b5,b6,b7,pq1,pq2,pq3,pq4,pq5,pq6) (1-pq1-pq2-

pq3)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6)+pq6*pf(x,a7,b7);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:7)];

b=[pp(8:14)];

p=[1-pp(15)-pp(16)-pp(17)-pp(18)-pp(19)-pp(20),pp(15) pp(16) pp(17) pp(18) pp(19) pp(20)];

elseif nn==8

mypdf = @(x,a1,a2,a3,a4,a5,a6,a7,a8,b1,b2,b3,b4,b5,b6,b7,b8,pq1,pq2,pq3,pq4,pq5,pq6,pq7) (1-pq1-

pq2-pq3)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6)+pq6*pf(x,a7,b7)+pq7*pf(x,a8,b8);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:8)];

b=[pp(9:16)];

p=[1-pp(17)-pp(18)-pp(19)-pp(20)-pp(21)-pp(22)-pp(23),pp(17) pp(18) pp(19) pp(20) pp(21) pp(22) 

pp(23)];

elseif nn==9

mypdf = 

@(x,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,b7,b8,b9,pq1,pq2,pq3,pq4,pq5,pq6,pq7,pq8) (1-

pq1-pq2-pq3)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6)+pq6*pf(x,a7,b7)+pq7*pf(x,a8,b8)+pq8*pf(x,a9,b9);

pp = mle(Y,'pdf',mypdf,'start', pqr); % fit mypdf to the data xx

a=[pp(1:9)];

b=[pp(10:18)];

p=[1-pp(19)-pp(20)-pp(21)-pp(22)-pp(23)-pp(24)-pp(25)-pp(26),pp(19) pp(20) pp(21) pp(22) pp(23) 

pp(24) pp(25) pp(26)];

else

end;

end

466 4 Modeling of Fading and Shadowing



Initial weights

0.0543    0.4746    0.0105    0.1526    0.3080

set a 10% threshold and regroup if necessary

Number of mixtures=3

Initial weights after regrouping

0.6852    0.2670    0.0478

Initial weights

0.1397    0.0005    0.0048    0.0282    0.8268

set a 10% threshold and regroup if necessary

Number of mixtures=2

Initial weights after regrouping

0.9779    0.0221

Initial weights

0.3107    0.4895    0.0078    0.0494    0.1425

set a 10% threshold and regroup if necessary

Number of mixtures=3

Initial weights after regrouping

0.6871    0.0489    0.2640

Warning: Maximum likelihood estimation did not converge.  Function evaluation

limit exceeded. 

Initial weights

0.1492    0.8093    0.0009    0.0340    0.0066

set a 10% threshold and regroup if necessary

Number of mixtures=2

Initial weights after regrouping

0.9698    0.0302

Fig. 4.114 Gamma mixture fit for Nakagami-lognormal fading channels (values shown in the

title)
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Fig. 4.116 Gamma mixture fit for Nakagami-lognormal fading channels (values shown in the

title)

Fig. 4.115 Gamma mixture fit for Nakagami-lognormal fading channels (values shown in the

title)
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Gamma Mixtures and McKay Distribution

The McKay distribution can also be expressed using the mixture densities. Note

that the McKay density is similar to the η � μ distribution. Results are shown in

Figs. 4.118, 4.119, and 4.120.

Fig. 4.117 Gamma mixture fit for Nakagami-lognormal fading channels (values shown in the

title)
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function gammamixture_mckay

% P M Shankar, October 2016

% McKay density

close all

Numb=1e5; % number of samples

n=4;

for ks=1:3;

if ks==1

X=10;

m=1.5;rh=0.4;X1=X*(1+sqrt(rh))/2;X2=X*(1-sqrt(rh))/2;

m1=m/2;

hh=gamrnd(m1,X1/m1,1,Numb)+gamrnd(m1,X2/m1,1,Numb);

elseif ks==2

X=15;

m=0.75;rh=0.3;X1=X*(1+sqrt(rh))/2;X2=X*(1-sqrt(rh))/2;

m1=m/2;

hh=gamrnd(m1,X1/m1,1,Numb)+gamrnd(m1,X2/m1,1,Numb);

else

X=15;

m=1.01;rh=0.6;X1=X*(1+sqrt(rh))/2;X2=X*(1-sqrt(rh))/2;

m1=m/2;

hh=gamrnd(m1,X1/m1,1,Numb)+gamrnd(m1,X2/m1,1,Numb);

end;

[ff,xr]=ksdensity(hh);

% determine if any negative values of xr exist. discard them.

NK=[]; % eliminate negative values of xr

NK=find(xr<0);

if isempty(NK)==0

NK1=max(NK)+1;% find the largest index and add 1 to start the non-zero values

xr=xr(NK1:end);

ff=ff(NK1:end);

else

end;

X=hh;

[nn,w,alpha,beta] = gammamixture_MLEf(X,n);

% nn is the actual number of components

L=length(xr);

fx=zeros(1,L);

nL=length(w);% to account for the reduced number of components

for k=1:nL

fx=fx+w(k)*gampdf(xr,alpha(k),beta(k));

end;

figure, plot(xr,ff,'r-',xr,fx,'--k','linewidth',1.5)

legend('histogram','mixture fit','location','southeast')

xlabel('SNR'),ylabel('pdf')

MSE=(1/L)*sum(ff-fx).^2;

tit1={['\alpha = ',num2str(m),',  \rho = ',num2str(rh)];...

['No. of components =',num2str(nn),' , MSE=',num2str(MSE)]};

title(tit1,'color','b')

text(0.5*max(xr),0.95*max(max(ff,fx)),...

'p             \alpha               \beta')

val=[w;alpha;beta]';

text(0.45*max(xr),0.7*max(max(ff,fx)),num2str(val))

clear xr ff fx w alpha beta hh gg

end;

end
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function [nn,p,a,b] = gammamixture_MLEf(Y,n)

% P M Shankar, JUly 2016

% this one is seto to a maximum of 9 components

% the initial guesses of the parameters needed for MLE are obtained using

% clustering. If the clustering probability is less than 10%, the kmeans is

% repetade with fewer clusters. Therefore, acutual number of components

% will be between 2 and n.

%

[my,ny]=size(Y);

L=my*ny; % length of the data

Y=reshape(Y,[L,1]);

opt = statset('mlecustom');

opt = statset(opt,'FunValCheck','off','MaxIter',6000,'TolX',1e-4,'TolFun',1e-5,'TolBnd',1e-

5','MaxFunEvals', 6000);

% chose the initial guess from kmeans

index = kmeans(Y,n);

w = zeros(1,n); aa = zeros(1,n); bb= zeros(1,n);

for k=1:n

w(k) = sum(index==k)/L;

aa(k) = (mean(Y(index==k)))^2/var(Y(index==k));

bb(k) = var(Y(index==k))/mean(Y(index==k));

end

disp('Initial weights'),disp(w),disp('set a 10% threshold and regroup if necessary')

M=sum(w<=.10) ;% number classes less with probability  than 10%

if M>0 && n>2 % nn must be at least 2

nn=n-M;

if nn==1 % there must be at least two classes

nn=2;

else

end;

index = kmeans(Y,nn);

w = zeros(1,nn); aa = zeros(1,nn); bb= zeros(1,nn);

for k=1:nn

w(k) = sum(index==k)/L;

aa(k) = (mean(Y(index==k)))^2/var(Y(index==k));

bb(k) = var(Y(index==k))/mean(Y(index==k));

end

disp(['Number of mixtures=',num2str(nn)])

disp('Initial weights after regrouping')

disp(w)

else

disp('Number of mixtures remain unchanged')

end;

pq=w(2:end);% the first value is not needed

pqr=[aa,bb,pq]; % initial guesses

% these are

% a's of the gamma pdf

% b's of the gamma pedf

% pq are the weights. Note that to reduce computation,

% the number of pq values will be one less since the total

% probability is unity and the remaining weight will be 1- sum of

% the (nn-1) weights

pf =@(x,a,b)  gampdf(x,a,b); % the gamma pdf as an in-line function

% Use mle to fit the mixture.

% the output if mle will be 3*nn-1 values; the first nn values will be a's

% the next nn values will be b's and the remaining nn-1 values are the

% weights and weight of the first components will be 1-sum of the (nn-1)

% weights
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if nn==2

mypdf = @(x,a1,a2,b1,b2,pq) (1-pq)*pf(x,a1,b1) + pq*pf(x,a2,b2);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:2)];

b=[pp(3:4)];

p=[1-pp(5),pp(5)]; % all weights now

elseif nn==3

mypdf = @(x,a1,a2,a3,b1,b2,b3,pq1,pq2) (1-pq1-pq2)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:3)];

b=[pp(4:6)];

p=[1-pp(7)-pp(8),pp(7),pp(8)];

elseif nn==4

mypdf = @(x,a1,a2,a3,a4,b1,b2,b3,b4,pq1,pq2,pq3) (1-pq1-pq2-pq3)*pf(x,a1,b1) + 

pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:4)];

b=[pp(5:8)];

p=[1-pp(9)-pp(10)-pp(11),pp(9),pp(10),pp(11)];

elseif nn==5

mypdf = @(x,a1,a2,a3,a4,a5,b1,b2,b3,b4,b5,pq1,pq2,pq3,pq4) (1-pq1-pq2-pq3)*pf(x,a1,b1) + 

pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:5)];

b=[pp(6:10)];

p=[1-pp(11)-pp(12)-pp(13)-pp(14),pp(11),pp(12),pp(13),pp(14)];

elseif nn==6

mypdf = @(x,a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,pq1,pq2,pq3,pq4,pq5) (1-pq1-pq2-pq3)*pf(x,a1,b1) 

+ pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:6)];

b=[pp(7:12)];

p=[1-pp(13)-pp(14)-pp(15)-pp(16)-pp(17),pp(13) pp(14) pp(15) pp(16) pp(17)];

elseif nn==7

mypdf = @(x,a1,a2,a3,a4,a5,a6,a7,b1,b2,b3,b4,b5,b6,b7,pq1,pq2,pq3,pq4,pq5,pq6) (1-pq1-pq2-

pq3)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6)+pq6*pf(x,a7,b7);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:7)];

b=[pp(8:14)];

p=[1-pp(15)-pp(16)-pp(17)-pp(18)-pp(19)-pp(20),pp(15) pp(16) pp(17) pp(18) pp(19) pp(20)];

elseif nn==8

mypdf = @(x,a1,a2,a3,a4,a5,a6,a7,a8,b1,b2,b3,b4,b5,b6,b7,b8,pq1,pq2,pq3,pq4,pq5,pq6,pq7) (1-pq1-

pq2-pq3)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6)+pq6*pf(x,a7,b7)+pq7*pf(x,a8,b8);

pp = mle(Y,'pdf',mypdf,'start',pqr, 'options',opt); % fit mypdf to the data xx

a=[pp(1:8)];

b=[pp(9:16)];

p=[1-pp(17)-pp(18)-pp(19)-pp(20)-pp(21)-pp(22)-pp(23),pp(17) pp(18) pp(19) pp(20) pp(21) pp(22) 

pp(23)];

elseif nn==9

mypdf = 

@(x,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,b7,b8,b9,pq1,pq2,pq3,pq4,pq5,pq6,pq7,pq8) (1-

pq1-pq2-pq3)*pf(x,a1,b1) + pq1*pf(x,a2,b2)+pq2*pf(x,a3,b3)+...

pq3*pf(x,a4,b4)+pq4*pf(x,a5,b5)+pq5*pf(x,a6,b6)+pq6*pf(x,a7,b7)+pq7*pf(x,a8,b8)+pq8*pf(x,a9,b9);

pp = mle(Y,'pdf',mypdf,'start', pqr); % fit mypdf to the data xx
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a=[pp(1:9)];

b=[pp(10:18)];

p=[1-pp(19)-pp(20)-pp(21)-pp(22)-pp(23)-pp(24)-pp(25)-pp(26),pp(19) pp(20) pp(21) pp(22) pp(23) 

pp(24) pp(25) pp(26)];

else

end;

end

Initial weights

0.2995    0.0283    0.5492    0.1229

set a 10% threshold and regroup if necessary

Number of mixtures=3

Initial weights after regrouping

0.2776    0.6558    0.0666

Initial weights

0.6439    0.0196    0.0892    0.2473

set a 10% threshold and regroup if necessary

Number of mixtures=2

Initial weights after regrouping

0.8705    0.1295

Initial weights

0.0941    0.2423    0.0218    0.6417

set a 10% threshold and regroup if necessary

Number of mixtures=2

Initial weights after regrouping

0.8598    0.1402

Fig. 4.118 Gamma mixture fit for McKay channels (values shown in the title)
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Fig. 4.120 Gamma mixture fit for McKay channels (values shown in the title)

Fig. 4.119 Gamma mixture fit for McKay channels (values shown in the title)
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Gamma Mixture and Rician Density

The Rician density can also be replaced and represented by a gamma mixture.

Results are shown in Fig. 4.121, 4.122, and 4.123.

function gammamixture_rice

% P M Shankar, October  2016

% Rician

close all

Numb=1e5; % number of samples

n=4;

for ks=1:3;

if ks==1

x1=normrnd(0,2,1,Numb);

x2=normrnd(1,2,1,Numb);

hh=x1.^2+x2.^2;

K=1/(2*2^2);

elseif ks==2

x1=normrnd(0,2,1,Numb);

x2=normrnd(4,2,1,Numb);

hh=x1.^2+x2.^2;

K=16/(2*2^2);

else

x1=normrnd(0,2,1,Numb);

x2=normrnd(8,2,1,Numb);

hh=x1.^2+x2.^2;

K=64/(2*2^2);

end;

[ff,xr]=ksdensity(hh);

% determine if any negative values of xr exist. discard them.

NK=[]; % eliminate negative values of xr

NK=find(xr<0);

if isempty(NK)==0

NK1=max(NK)+1;% find the largest index and add 1 to start the non-zero values

xr=xr(NK1:end);

ff=ff(NK1:end);

else

end;

X=hh;

[nn,w,alpha,beta] = gammamixture_MLEf(X,n);

% nn is the actual number of components

L=length(xr);

fx=zeros(1,L);

nL=length(w);% to account for the reduced number of components

for k=1:nL

fx=fx+w(k)*gampdf(xr,alpha(k),beta(k));

end;

figure, plot(xr,ff,'r-',xr,fx,'--k','linewidth',1.5)

legend('histogram','mixture fit','location','southeast')

xlabel('SNR'),ylabel('pdf')

MSE=(1/L)*sum(ff-fx).^2;

tit1={['K = ',num2str(K)];...

['No. of components =',num2str(nn),' , MSE=',num2str(MSE)]};

end

title(tit1,'color','b')

text(0.5*max(xr),0.95*max(max(ff,fx)),...

'p   \alpha               \beta')

val=[w;alpha;beta]';

text(0.45*max(xr),0.7*max(max(ff,fx)),num2str(val))

clear xr ff fx w alpha beta hh gg

end;
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Initial weights

0.5221    0.2982    0.0403    0.1393

set a 10% threshold and regroup if necessary

Number of mixtures=3

Initial weights after regrouping

0.6275    0.0796    0.2929

Initial weights

0.3980    0.0613    0.1954    0.3453

set a 10% threshold and regroup if necessary

Number of mixtures=3

Initial weights after regrouping

0.3647    0.5134    0.1218

Initial weights

0.3653    0.0937    0.2827    0.2583

set a 10% threshold and regroup if necessary

Number of mixtures=3

Initial weights after regrouping

0.4226    0.4078    0.1696

Fig. 4.121 Gamma mixture fit for Rician channels (values shown in the title)
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Fig. 4.123 Gamma mixture fit for Rician channels (values shown in the title)

Fig. 4.122 Gamma mixture fit for Rician channels (values shown in the title)

4.11 Sum, Product, and Mixture Models of Fading 477



Gamma Mixtures and Cascaded Nakagami Densities

The cascaded channels resulting in densities expressed in terms of the Meijer

G-functions can be represented by gamma mixtures. Results are shown in

Figs. 4.124, 4.125, and 4.126.

function gammamixture_Meijer G

% P M Shankar, October  2016

% gamma products

close all

Numb=1e4; % number of samples

n=7;

for ks=1:3;

if ks==1

m=1.5;

x=gamrnd(m,2,3,Numb);

N=3;

hh=prod(x);

elseif ks==2

x=gamrnd(m,2,4,Numb);

hh=prod(x);

N=4;

else

x=gamrnd(m,2,5,Numb);

hh=prod(x);

N=5;

end;

[ff,xr]=ksdensity(hh);

% determine if any negative values of xr exist. discard them.

NK=[]; % eliminate negative values of xr

NK=find(xr<0);

if isempty(NK)==0

NK1=max(NK)+1;% find the largest index and add 1 to start the non-zero values

xr=xr(NK1:end);

ff=ff(NK1:end);

else

end;

X=hh;

[nn,w,alpha,beta] = gammamixture_MLEf(X,n);

% nn is the actual number of components

L=length(xr);

fx=zeros(1,L);

nL=length(w);% to account for the reduced number of components

for k=1:nL

fx=fx+w(k)*gampdf(xr,alpha(k),beta(k));

end;

figure, plot(xr,ff,'r-',xr,fx,'--k','linewidth',1.5)

legend('histogram','mixture fit','location','southeast')

xlabel('SNR'),ylabel('pdf')

MSE=(1/L)*sum(ff-fx).^2;

tit1={['m = ', num2str(m),',  N = ',num2str(N)];...

['No. of components =',num2str(nn),' , MSE=',num2str(MSE)]};

title(tit1,'color','b')

text(0.5*max(xr),0.95*max(max(ff,fx)),...

'p                   \alpha               \beta')

val=[w;alpha;beta]';

text(0.45*max(xr),0.7*max(max(ff,fx)),num2str(val))

clear xr ff fx w alpha beta hh gg

end;

end
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Initial weights

0.6777    0.2019    0.0034    0.0292  0.0115    0.0756    0.0007

set a 10% threshold and regroup if necessary

Number of mixtures=2

Initial weights after regrouping

0.9468    0.0532

Initial weights

0.8384    0.0315    0.1204    0.0011    0.0001    0.0080    0.0005

set a 10% threshold and regroup if necessary

Number of mixtures=2

Initial weights after regrouping

0.9805    0.0195

Initial weights

0.8284    0.0013    0.0002    0.0155    0.0382    0.1115    0.0049

set a 10% threshold and regroup if necessary

Number of mixtures=2

Initial weights after regrouping

0.9997    0.0003

Fig. 4.124 Gamma mixture fit for cascaded gamma or Nakagami channels (values shown in the

title)

4.11 Sum, Product, and Mixture Models of Fading 479



Fig. 4.126 Gamma mixture fit for cascaded gamma or Nakagami channels (values shown in the

title)

Fig. 4.125 Gamma mixture fit for cascaded gamma or Nakagami channels (values shown in the

title)
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4.11.3.2 Lognormal Mixtures

It has been assumed that a lognormal density is sufficient to model the shadowing in

wireless channels. The concept of density mixtures can be extended to provide a

better representation of a shadowing model based on a lognormal mixture (Liu et al.

2007; Büyükçorak et al. 2015). The lognormal density is the result of a large

number of multiple scatterers being present in the scattering volume. However, in

microcellular communication systems, there might be fewer scatterers to meet the

requirements of the central limit theorem (CLT) for products. Note that the CLT is

an essential requirement for the existence of the lognormal density. The insuffi-

ciency of the CLT for products can be mitigated through the use of a lognormal

mixture for shadowing resulting in the density of the received signal strength

(power) or SNR as

f zð Þ ¼
Xn
k¼1

pk
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2kz
2

p e
� 10log10 zð Þ�μið Þ2

2σ2
k : ð4:344Þ

Note that in Eq. (4.344), the parameters μk and σk are in decibel units.

The parameters and the weights can be obtained using MLE approaches. However,

the computation is not simple.

Taking advantage of the fact that a mixture of Gaussian densities is easier to

handle, it was suggested that the lognormal mixture could be replaced by a

Gaussian mixture. Gaussian mixtures have also been used differently in modeling

the signal strength fluctuations as described below.

4.11.3.3 Gaussian Mixtures (Mixtures of Gaussian

Distribution—MoG)

One of the basic densities is the Gaussian density and the fading channel amplitude

can be expressed as (Selim et al. 2015)

f xð Þ ¼
Xn
k¼1

pk
1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p e
� x�μkð Þ2

2σ2
k : ð4:345Þ

Since wireless channels are characterized by the density of the SNR, the density

function needs to be expressed in terms of the pdf of the SNR Z. The first step is the
transformation of the random variable X to Z as

Z ¼ X2Z0: ð4:346Þ
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In Eq. (4.346), Z0 is the average SNR. The density function of the SNR in a

channel modeled using GoM becomes

f zð Þ ¼
Xn
k¼1

pk
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πZ0σ2k
p 1ffiffi

z
p
� �

e
�
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z
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q
�μk

� �2

2σ2
k U zð Þ: ð4:347Þ

In Eq. (4.347), the values of the parameters kp , , km , and ks are to be determined.

The methods to evaluate these parameters will be described following the presen-

tation of a few mixture models that have been reported in literature.

The cumulative distribution function of the SNR associated with the GoM is

F zð Þ ¼
ðz
0

Xn
k¼1

pk
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πZ0σ2k
p 1ffiffiffiffi

w
p
� �

e
�

ffiffiffiffi
w
Z0

q
�μk

� �2

2σ2
k dw: ð4:348Þ

The CDF can be expressed using Gaussian Q functions as

F zð Þ ¼
Xn
k¼1

pk Q �μk
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The moments of the MoG distribution are given by

E Zr½ � ¼
ð1
0

Xn
k¼1

pk
zrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πZ0σ2k
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z
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The moments of the MOG distribution can be expressed in terms of the moments

of a Gaussian random variable

E X2r
� � ¼ ð1

�1
x2r

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
x�μð Þ2
2σ2 dx: ð4:351Þ

Using Eq. (4.351), the moments of the MoG distribution in Eq. (4.350) becomes

E Zr½ � ¼
Xn
k¼1

pkZ
r
0E X2r

k

� �
: ð4:352Þ
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Using the moments of the MoG distribution, the amount of fading can be

expressed as

AF ¼ E Z2
� �
E Z½ �ð Þ2 � 1 ¼

Pn
k¼1

pk μ4k þ 6μ2kσ
2
k þ 3σ4k

� �
Pn
k¼1

pk μ2k þ σ2k
� �� �2

� 1: ð4:353Þ

4.12 Random Number Simulation

The results described in the previous sections contained examples of McKay and

other densities examined using random number generation. In the first edition of the

book, results on error rates in different fading channels were presented without

providing the Matlab scripts and details on random number simulation. Before the

McKay simulation is discussed, results on random number simulation of Nakagami,

Nakagami-lognormal, generalized K, and cascaded channels are presented. In

addition, estimation of error rates (coherent BPSK) is presented. In all cases, the

simulated bit error rates are compared to the theoretical error rates obtained using

analytical expressions for the error rates (either closed form expressions for the

error rate or error rates obtained through numerical integration). The results based

on analytical expressions were presented in previous sections.

We start with the case of a simple Nakagami fading channels. This is followed

by the Nakagami-lognormal shadowed fading channels, generalized K shadowed

fading channels, cascaded Nakagami channels, and finally, the McKay fading

channels. Results of random number simulation are shown in Figs. 4.127–4.141.
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4.12.1 Nakagami Channel

function wireless_simulation_NakagamiF

% Random number simulation Nakagami fading channel. Bit error rates

% compared to those obtained from theory.

% theoretical BER is obtained from the analytical expression involving the

% hypergeometric function. Created first in symbolic toolbox

% P M Shankar, October 2016

close all

global Z mm

m=[0.75,1.5,3,4];

ML=length(m);

Z0=5:30;

Z=10.^(Z0/10);

LK=length(Z);

bertN=zeros(ML,LK);

bersN=zeros(ML,LK);

for km=1:ML

mm=m(km);

for kk=1:LK

SN=Z(kk);

samp=gamrnd(mm,SN/mm,1,1e7); % generate gamma samples

bersN(km,kk)=berest(samp);

clear samp

end;

bertN(km,:)=bernakagami; % theoretical BER

end;

figure,semilogy(Z0,bertN(1,:),'-r',Z0,bersN(1,:),'ro',...

Z0,bertN(2,:),'-k',Z0,bersN(2,:),'k*',...

Z0,bertN(3,:),'-b',Z0,bersN(3,:),'bs',...

Z0,bertN(4,:),'-m',Z0,bersN(4,:),'md')

ylim([1e-6,1]),xlabel('Average SNR (dB)')

ylabel('Average probability of error')

legend(['m = ',num2str(m(1)), '(th)'],['m = ',num2str(m(1)), '(sim)'],...

['m = ',num2str(m(2)), '(th)'],['m = ',num2str(m(2)), '(sim)'],...

['m = ',num2str(m(3)), '(th)'],['m = ',num2str(m(3)), '(sim)'],...

['m = ',num2str(m(4)), '(th)'],['m = ',num2str(m(4)), '(sim)'])

title('Nakagami fading channel')

end

function ber1= bernakagami % theoretical

% P M Shankar

% error rates in a Nakagami channel

global Z mm

syms a X

F=((a/X)^a)*gamma(a+1/2)/(2*sqrt(sym(pi))*a*gamma(a));

er=F*hypergeom([a,a+1/2],[a+1],(-a/X));

ber1=zeros(1,length(Z));

for k=1:length(Z)

ber1(k)=double(subs(er,[a,X],[mm,Z(k)]));

end;

end

function ber = berest(simdata) % get the error rate from using random samples

% P M Shankar

L=length(simdata);
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%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;

out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

Fig. 4.127 Error rates in a Nakagami channel
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4.12.2 Nakagami-Lognormal Shadowed Fading Channel

function wireless_simulation_shadowingF

% Random number simulation Nakagami-lognormal (NL) fading channel.

% Bit error ratescompared to those obtained from theory. Also compared

% to error rates a pure Nakagami fading channel (theory only)

%

% Theoretical BER in the NL channel estiamted using a double integral

%

% Nakagami theoretical BER is obtained from the analytical

% expression involving the hypergeometric function. Created first in

% symbolic toolbox

%

% Note that the average SNR Z0 needs to be converted to mu (dB) in

% shadowing. Whiel Z0 is the simply the value of expressed in dB, mu is the

% average when the power is actually measured in dB

% P M Shankar, October 2016

close all

global Z mm ss K MU

sigm=[2,4,6]; % shadowing levels dB

for ks=1:3

sig=sigm(ks); % shadowing level (dB)

ss=sig^2;

K=10/log(10);

m=[0.75,1.5,4];

ML=length(m);

Z0=5:30;

mu=Z0-ss/(2*K); % convert Z0 to mu

Z=10.^(Z0/10);

LK=length(Z);

bertNL=zeros(ML,LK);

bersNL=zeros(ML,LK);

bertN=zeros(ML,LK);

for km=1:ML

mm=m(km);

for kk=1:LK

MU=mu(kk);

samp1=gamrnd(mm,1/mm,1,1e7); % create a gamma variable of unit mean

samp2=normrnd(MU,sig,1,1e7); % normal random variable of mean mu

samp22=10.^(samp2/10); % convert into absolute power units

samp=samp1.*samp22; % gamma-lognormal samples

bersNL(km,kk)=berest(samp);

bertNL(km,kk)=integral2(@nakalognorm,1e-4,inf,1e-4,inf);

clear samp

end;

bertN(km,:)=bernakagami;

end;

figure,semilogy(Z0,bertNL(1,:),'-r',Z0,bersNL(1,:),'ro',...

Z0,bertN(1,:),'^',Z0,bertNL(2,:),'-k',Z0,bersNL(2,:),'k*',...

Z0,bertN(2,:),'v',Z0,bertNL(3,:),'-b',Z0,bersNL(3,:),'bs',...

Z0,bertN(3,:),'p')

ylim([1e-6,1]),xlabel('Average SNR (dB)')

ylabel('Average probability of error')

legend(['m = ',num2str(m(1)), '(th-NL)'],['m = ',num2str(m(1)), '(sim-NL)'],...

['m = ',num2str(m(1)), '(th-N)'],...

['m = ',num2str(m(2)), '(th-NL)'],['m = ',num2str(m(2)), '(sim-NL)'],...

['m = ',num2str(m(2)), '(th-N)'],...

['m = ',num2str(m(3)), '(th-NL)'],['m = ',num2str(m(3)), '(sim-NL)'],...

['m = ',num2str(m(3)), '(th-N)'],  'location','southwest')

title(['Shadowed fading channel \sigma = ',num2str(sig),' dB'])

end;

end
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function ber1= bernakagami % theoretical

% P M Shankar

% error rates in a Nakagami channel: expression from the book, first

% created in symbolic toolbox (Appendix Chapter 4)

global Z mm

syms a X

F=((a/X)^a)*gamma(a+1/2)/(2*sqrt(sym(pi))*a*gamma(a));

er=F*hypergeom([a,a+1/2],[a+1],(-a/X));

ber1=zeros(1,length(Z));

for k=1:length(Z)

ber1(k)=double(subs(er,[a,X],[mm,Z(k)]));

end;

end

function ber = berest(simdata) % get the error rate from using random samples

% P M Shankar

L=length(simdata);

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;

out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end

function zz = nakalognorm(x,xx) % function fo BER estimation in NL channel

% P M Shankar

global mm MU  ss K

fun1=gampdf(x,mm,xx/mm);

fun2=K*(exp(-(10*log10(xx)-MU).^2*1./(2*ss)))./sqrt(2*pi*ss*xx.^2);

zz=0.5*erfc(sqrt(x)).*fun1.*fun2;% error rate integrand

end
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Fig. 4.129 Error rates in a Nakagami-lognormal shadowed fading channel (σ¼ 4 dB). Error rates

for the Nakagami channel are also shown (theory)

Fig. 4.128 Error rates in a Nakagami-lognormal shadowed fading channel (σ¼ 2 dB). Error rates

for the Nakagami channel are also shown (theory)
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4.12.3 GK Channels

function wireless_simulation_GKF

% Random number simulation GK channel. Bit error rates

% compared to those obtained from theory.

% the GK variable is the product of two independent gamma variables

% The theoretical BER is obtained in terms of hypergeometric functions

% Created first in symbolic toolbox

%

% GK variable is created from the product of two gamma variables of orders

% m1 and m2 . In the simulation while m2 is fixed, m1 is allowed to vary

% for the three plots.

%

% P M Shankar, October 2016

close all

global SN mm m2

mm2=[1.34, 2.47, 11.2];

for kq=1:3

m2=mm2(kq);

m=[0.75,1.5,3]; % m1

ML=length(m);

Z0=5:30;

Z=10.^(Z0/10);

LK=length(Z);

bertN=zeros(ML,LK);

bersN=zeros(ML,LK);

Fig. 4.130 Error rates in a Nakagami-lognormal shadowed fading channel (σ¼ 6 dB). Error rates

for the Nakagami channel are also shown (theory)
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gamma(c1-m1)*gamma(m1+1/2)*ZZ^m1;

f33=f3/(gamma(c1)*gamma(m1+1));

f=f1+f22+f33;

be=double(subs(f,[m1,c1,Z],[mm+0.00121,m2+0.001231,SN]));

% add decimal places so that argument of the gamma(.) function is not a

% negative integer

end

function ber = berest(simdata) % get the error rate from using random samples

% P M Shankar

L=length(simdata);

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;

out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end

for km=1:ML

mm=m(km);

for kk=1:LK

SN=Z(kk);

samp=gamrnd(m2,1/m2,1,1e7).*gamrnd(mm,SN/mm,1,1e7);% GK samples

bersN(km,kk)=berest(samp);

bertN(km,kk)=gkf_ber; % theoretical BER

clear samp

end;

end;

figure,semilogy(Z0,bertN(1,:),'-r',Z0,bersN(1,:),'ro',...

Z0,bertN(2,:),'-k',Z0,bersN(2,:),'k*',...

Z0,bertN(3,:),'-b',Z0,bersN(3,:),'bs')

ylim([1e-6,1]),xlabel('Average SNR (dB)'),ylabel('Average probability of error')

legend(['m_1 = ',num2str(m(1)), '(th)'],['m_1 = ',num2str(m(1)), '(sim)'],...

['m_1 = ',num2str(m(2)), '(th)'],['m_1 = ',num2str(m(2)), '(sim)'],...

['m_1 = ',num2str(m(3)), '(th)'],['m_1 = ',num2str(m(3)), '(sim)'],...

'location','southwest')

title('GK fading channel (gamma product)')

text(6,5e-6,['m_2 = ',num2str(m2)],'backgroundcolor','y')

end;

end

function be = gkf_ber

global SN mm m2

% the analytical expression for the BER is taken from Chapter 4. It is

% created in symbolictoolbox and then converted for evaluation using

% symbolic substitution .

syms Z m1 c1

ZZ=m1*c1/Z;

p=sym(pi);

f1=1/2-(1/2)*p^2*csc(p*m1)*csc(p*c1)/...

(gamma(1-m1)*gamma(1-c1)*gamma(m1)*gamma(c1));

f2=(1/(2*sqrt(p)))*hypergeom([c1,c1+1/2],[1+c1,1-m1+c1],ZZ)*...

gamma(m1-c1)*gamma(c1+1/2)*ZZ^c1;

f22=f2/(gamma(m1)*gamma(c1+1));

f3=(1/(2*sqrt(p)))*hypergeom([m1,m1+1/2],[1+m1,1-c1+m1],ZZ)*...
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Fig. 4.131 Error rates in a GK channel (m2¼ 1.34)

Fig. 4.132 Error rates in a GK channel (m2¼ 2.47)
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4.12.4 Cascaded Nakagami Channels

function wireless_simulation_cascadedF

% Random number simulation cascaded channel Bit error rates

% compared to those obtained from theory.

%

% The theoretical BER is obtained in terms of Meijer G functions

% P M Shankar, October 2016

close all

for kn=1:5

N=kn;

m=[0.75,1.5,3]; % m1

ML=length(m);

Z0=5:30;

Z=10.^(Z0/10);

LK=length(Z);

bertN=zeros(ML,LK);

bersN=zeros(ML,LK);

for km=1:ML

mm=m(km);

for kk=1:LK

SN=Z(kk);

SNm=SN^(1/N); % the mean SNR will always be SNN regardless of N

if N==1

samp=gamrnd(mm,SNm/mm,1,1e7); % do not take the product

else

samp=prod(gamrnd(mm,SNm/mm,N,1e7));

end;

bersN(km,kk)=berest(samp);

bertN(km,kk)=Meijer G_ber(N,mm,SN); % theoretical BER

clear samp

end;

end;

Fig. 4.133 Error rates in a GK channel (m2¼ 11.2)
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figure,semilogy(Z0,bertN(1,:),'-r',Z0,bersN(1,:),'ro',...

Z0,bertN(2,:),'-k',Z0,bersN(2,:),'k*',...

Z0,bertN(3,:),'-b',Z0,bersN(3,:),'bs')

ylim([1e-6,1]),xlabel('Average SNR (dB)'),ylabel('Average probability of error')

legend(['m = ',num2str(m(1)), '(th)'],['m = ',num2str(m(1)), '(sim)'],...

['m = ',num2str(m(2)), '(th)'],['m = ',num2str(m(2)), '(sim)'],...

['m = ',num2str(m(3)), '(th)'],['m = ',num2str(m(3)), '(sim)'],...

'location','southwest')

if N>1

title('Cascaded fading channel')

text(15,5e-6,['N = ',num2str(N)],'backgroundcolor','y')

else

title('Nakagami fading channel')

end;

end;

end

function [ber]=Meijer G_ber(N,m,ZZ)

% P M Shankar, October 2016

% ber is the error for coherent BPSK

% N number of cascades, m the parameter,  ZZ is the mean SNR (absolute units)

gm=gamma(m);

gM=gm^N;

if N==1

ber=(1/2)-hypergeom([1/2, 1/2+m], [3/2], -ZZ/m)*gamma(1/2+m)/(sqrt(m/ZZ)*sqrt(pi)*gm);

elseif N==2

ber=(1/2)-(1/2)*(1/sqrt(pi))*double(evalin(symengine,...

sprintf('Meijer G([[1/2 ], [1 ]], [[0,%e,%e], []], %e)',m,m,(m^N)/ZZ)))/gM;

elseif N==3

ber=(1/2)-(1/2)*(1/sqrt(pi))*double(evalin(symengine,...

sprintf('Meijer G([[1/2 ], [1 ]], [[0,%e,%e,%e], []], %e)',m,m,m,(m^N)/ZZ)))/gM;

elseif N==4

ber=(1/2)-(1/2)*(1/sqrt(pi))*double(evalin(symengine,...

sprintf('Meijer G([[1/2 ], [1 ]], [[0,%e,%e,%e,%e], []], %e)',m,m,m,m,(m^N)/ZZ)))/gM;

elseif N==5

ber=(1/2)-(1/2)*(1/sqrt(pi))*double(evalin(symengine,...

sprintf('Meijer G([[1/2 ], [1 ]], [[0,%e,%e,%e,%e,%e], []], 

%e)',m,m,m,m,m,(m^N)/ZZ)))/gM;

end;

end

function ber = berest(simdata) % get the error rate from using random samples

% P M Shankar

L=length(simdata);

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;

out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end
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Fig. 4.134 Error rates in a Nakagami cascaded channel

Fig. 4.135 Error rates in a Nakagami cascaded channel (N¼ 2)
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Fig. 4.136 Error rates in a Nakagami cascaded channel (N¼ 3)

Fig. 4.137 Error rates in a Nakagami cascaded channel (N¼ 4)
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4.12.5 The McKay Channel

Samples of McKay variables can be created as per the discussion earlier where it

was shown that the McKay variable is the sum of two correlated identically

distributed gamma variables or the sum of two independent but non-identical

gamma variables of identical orders and different means. While simulation of

correlated random numbers is possible, it is much easier to generate McKay vari-

ables using the latter concept of sum of two non-identical gamma variables. Results

based on some of these approaches are reported in the earlier sections on McKay

density. From the previous discussion, it is known that a McKay variable with

parameters α, X, and ρ is obtained from the sum of two gamma variables, each of

order α/2 and means of

X1 ¼ X

2
1þ ffiffiffi

ρ
p � ð4:354Þ

X2 ¼ X

2
1� ffiffiffi

ρ
p �

: ð4:355Þ

The results of the simulation and appropriate match to the pdf and CDF of the

McKay density are given below along with the Matlab script.

Fig. 4.138 Error rates in a Nakagami cascaded channel (N¼ 5)
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function wireless_simulation_mckayF

% P M Shankar

% simulation of the error rates in a McKay channel. The simulated error

% rates compared to the theoretical ones obtained using Laplace transforms.

%

% McKay variable created from the summation of two independent gamma

% variables of unequal means. The means are related through the correlation

% recognizing that the sum of two correlated identical gamma variables lead

% to the same variable.

% October 2016

close all

Z0=5:3:30;

Z0=[Z0,30];

Z=10.^(Z0/10);LK=length(Z);

alpha=[0.5,0.8,1.5,2.5]; % values of alpha

LA=length(alpha);

rr=[0.1,0.4,0.7];% three values of the correlation

syms a r X positive

% Laplace transform in symbolic form: creating the in-line function for

% integration

syms s y

fLzer=a^a/(a^2+s^2*X^2+2*s*X*a-s^2*X^2*r)^((1/2)*a);

%

for kkr=1:3;

rh=rr(kkr);% correlation coefficient

pes=zeros(LK,LA); % pe simulation

peL=zeros(LK,LA);% pe using Laplace transforms or MGF

for kr=1:LA

alp=alpha(kr);

for k=1:LK

fun1L=subs(fLzer,[a, X, r],[alp,Z(k),rh]); % make substitution

fun2L=subs(fun1L,s,1/(sin(y))^2); % make substitution

mckayf2=matlabFunction(fun2L); % in-line function for integration

peL(k,kr)=(1/pi)*integral(mckayf2,0,0.999975*pi/2);

% generate random numbers

X1=Z(k)*(1+sqrt(rh))/2;      X2=Z(k)*(1-sqrt(rh))/2;

a1=alp/2;

x=gamrnd(a1,X1/a1,1,1e7)+gamrnd(a1,X2/a1,1,1e7); % McKay variable

pes(k,kr)=berest(x);

clear x

end;

end;

figure,semilogy(Z0,peL(:,1),'r-',Z0,pes(:,1),'r*',...

Z0,peL(:,2),'k--',Z0,pes(:,2),'kd',...

Z0,peL(:,3),'-.b',Z0,pes(:,3),'bo',...

Z0,peL(:,4),'-.m',Z0,pes(:,4),'mp')

xlim([5,30]),ylim([1e-6,1])

legend(['\alpha =',num2str(alpha(1)),'  Th'],...

['\alpha =',num2str(alpha(1)),'  Sim'],...

['\alpha =',num2str(alpha(2)),'  Th'],...

['\alpha =',num2str(alpha(2)),'  Sim'],...

['\alpha =',num2str(alpha(3)),'  Th'],...

['\alpha =',num2str(alpha(3)),'  Sim'],...

['\alpha =',num2str(alpha(4)),'  th'],...

['\alpha =',num2str(alpha(4)),'  Sim'], 'location','southwest')

xlabel('Average SNR (dB)')

ylabel('Average probability of error')

title(['McKay fading channel:  \rho = ',num2str(rh)])

end;

end
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function ber = berest(simdata)

% P M Shankar, October 2016

L=length(simdata);

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;

out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end

Fig. 4.139 Error rates in a McKay channel (ρ¼ 0.1)
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Fig. 4.140 Error rates in a McKay channel (ρ¼ 0.4)

Fig. 4.141 Error rates in a McKay channel (ρ¼ 0.7)
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4.13 Creation of Density Mixtures

While some examples of mixture densities are provided in previous sections, one

also needs to explore ways of generating density mixtures in a general sense. The

first approach uses a uniform random number set. Consider the case of a mixture of

two densities

f xð Þ ¼ pf 1 xð Þ þ 1� pð Þf 2 xð Þ: ð4:356Þ

If a set of uniform random numbers (N ) is generated, it can be modified to create

two sets of binary data sets, one with pN ones (with the rest remaining zeros) and

the other one with (1-p)N ones (with the rest remaining zeros). If these discrete sets

of uniform random numbers are identified as U1 and U2, N samples of the mixture

density are created as (https://www.mathworks.com/matlabcentral/answers/89318-

random-numbers-from-custom-mixture-distribution?)

X ¼ U1randnumb#1þ U2randnumb#2

¼ U1randnumb#1þ 1� U1ð Þrandnumb#2: ð4:357Þ

In Eq. (4.357), #1randnumb and #2randnumb belong to the two densities in

Eq. (4.356). This approach becomes cumbersome if the number of components

in the mixture exceeds 2.

In a general case with multiple components (n > 2), the mixture can be

generated directly by apportioning the total number of samples according to their

weights. Both approaches are demonstrated in Matlab. The script and results

(Fig. 4.142 and 4.143) are given below.

function mixture_creation_demo_shankar

% creation of mixtures of densities

% P M Shankar, October 2016 2016

% create a mixture of two densities using a Uniform random number

% generate a mixture of gamma and lognormal densities

close all

p=0.35; % weight; p and 1-p

N=1e6; % number of samples

a=1.5; b=4; % parameters of the gamma density

mu=2; sig=.5;% parameters of the lognorml density

% create the weights using a uniform random number

U = rand(1,N)<=p; % the number of 1's match p*N; remaining are 0's

% (1-U) is the number of 1's matching (1-p)*N

R = U.*gamrnd(a,b,1,N)+(1-U).*lognrnd(mu,sig,1,N);

[fx,xi]=ksdensity(R);

NK=find(xi<0); %eliminate negative values of xi generated by Matlab
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if isempty(NK)==0

NK1=max(NK)+1;% find largest index, add 1 to start non-zero values

xi=xi(NK1:end);

fx=fx(NK1:end);

else

end;

fth=p*gampdf(xi,a,b)+(1-p)*lognpdf(xi,mu,sig);

plot(xi,fth,'-r',xi,fx,'k*')

xlabel('value x'),ylabel('Estimated pdf')

legend('Theory','Simulation')

title({'Mixture of gamma & lognormal densities ';...

['pf_G(x)+(1-p)f_L(x),   p = ',num2str(p)]})

text(50,.02,{'use a uniform random number set'; 'split the samples'},...

'backgroundcolor','y')

% create a gamma mixture with more than two components  (five)

clear NK p;

p=[0.1,.3,.2,.35,.05]; % weights

a=[1.5,2.5,3.5,4.5,6];% gamma parameter a

b=[5,4,2.3,1.2,1];% gamma parameter b

np=length(p); % number of mixtures = 5

N=1e6;

% split the samples into bins to match the weights

M=round(N*p(1:np-1));% apportion the total numbers into the first np-1 bins

M=[M,N-sum(M)] ;%remaining numbers for the last bin and create the bin set;

R=[]; % place holder

for k=1:np

R=[R;gamrnd(a(k),b(k),M(k),1)];

end;

[fX,Xi]=ksdensity(R);

NK=find(xi<0);

if isempty(NK)==0

NK1=max(NK)+1;% find largest index, add 1 to start non-zero values

Xi=Xi(NK1:end);

fX=fX(NK1:end);

else

end;

fthX=zeros(1,length(Xi));

for k=1:np

fthX=fthX+p(k)*gampdf(Xi,a(k),b(k));

end

figure,plot(Xi,fthX,'-r',Xi,fX,'k*')

xlabel('value x'),ylabel('Estimated pdf')

legend('Theory','Simulation')

xlim([0,0.5*max(Xi)])

title(['Gamma mixture with ',num2str(np),' components'])

xlabel('value x'),ylabel('Estimated pdf')

end
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Fig. 4.142 Mixture of two densities created using a uniform random number set

Fig. 4.143 Mixture of two densities created by apportioning the samples
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4.14 Summary

We presented various models to describe the statistical fluctuations in wireless

channels. The models ranged from the simple Rayleigh ones, to cascaded ones, and

to complex models such as those based on κ � μ and η � μ distributions. The

models were compared in terms of their density functions, distribution functions,

and quantitative measures such as error rates and outage probabilities. The

shadowing was examined using the traditional lognormal model and approaches

based on similarities between lognormal pdf and other density functions. We

looked at the simultaneous existence of short-term fading and shadowing using

the Nakagami-lognormal density function and approximations to it using the GK

model and the Nakagami-N-gamma model. To complete the study of these models

for fading, shadowing, and shadowed fading channels, we examined some second

order statistical properties for several models.

The updated sections provide detailed analysis of the McKay fading model and

its properties. The model is also expanded to include the effects of shadowing. A

general product model to model shadowed fading channel has also been presented.

The mixture density introduced in Chap. 2 has now been expanded to see how it can

be used to replace some of the existing statistical models of fading and shadowing.

The error rates and outage probabilities have been evaluated. In all these cases,

detailed Matlab scripts are provided (with complete annotation) to supplement the

theoretical approach. A section on random number generation relevant to fading

and shadowing modeling is also given to complete the pedagogic description of

modeling.

Appendix

We have seen the flexibility offered through the use of the Meijer G-functions in

expressing the density functions, distribution functions, error rates, and outage

probabilities. They will also be used extensively in Chaps. 5 and 6 as well. Even

though they were introduced in Chap. 2, their properties and functionalities which

make them very versatile in the study of communication systems were not

discussed. In this section, we will provide an overview of the definition, properties,

and characteristics of these functions (Mathai and Saxena 1973; Gradshteyn and

Ryzhik 2007; Wolfram 2011). We will also examine the relationship among

functions commonly encountered in communications such as the incomplete

gamma functions, hypergeometric functions, Bessel functions, error functions,

complementary error functions, and the Meijer G-functions. Furthermore, closed

form expressions for the error rates in cascaded Nakagami channels will be given in

terms of Meijer G-functions.

Most of the software packages such as Maple (Maple 2011), Mathematica

(Wolfram 2011), and Matlab (Matlab 2011) provide computations involving Meijer
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G-functions. Mathematica also provides an excellent resource for understanding the

properties of these functions. Additionally, Maple can provide a means to under-

stand the relationships among Meijer G-functions and other functions.

The Meijer G-function G(x) is defined as (Gradshteyn and Ryzhik 2007)

Gm,n
p,q x

a1, . . . , an, . . . , ap

b1, . . . , bm, . . . , bq

�����
 !

¼ Gm,n
p,q x

ap

bq

�����
 !

¼ Gm,n
p,q xð Þ ¼ G xð Þ

¼ 1

2πj

ð Qm
i¼1 Γ bi � sð Þ Qm

i¼1 Γ 1� ai þ sð Þ��Qq
i¼mþ1 Γ 1� bi þ sð Þ Qp

i¼nþ1 Γ ai � sð Þ�� xsds:

ð4:358Þ

In most of the computational packages, the G(x) function is expressed as

(Maple 2011)

Gm,n
p,q x

a1, . . . , an, . . . , ap

b1, . . . , bm, . . . , bq

�����
 !

¼

MeijerG

a1, a2, . . . , an|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n terms

2
4

3
5, anþ1, anþ2, . . . , ap|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p�nð Þ terms

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p terms

2
6666664

3
7777775

0
BBBBBB@

b1, b2, . . . , bm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m terms

2
664

3
775, amþ1, amþ2, . . . , aq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q�mð Þ terms

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q terms

2
6666664

3
7777775; x
1
CCCCCCA:

ð4:359Þ

A few properties of Meijer G-functions (Mathai and Saxena 1973; Gradshteyn

and Ryzhik 2007; Wolfram 2011)

(a) Multiplication G(w) with wk:

wkGmn
pq w

ap
bq

����
� �

¼ Gmn
pq w

ap þ k
bq þ k

����
� �

: ð4:360Þ
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(b) Inversion of the argument

Gmn
pq

1

w

ap
bq

����
� �

¼ Gmn
qp w

1� bq
1� ap

����
� �

: ð4:361Þ

(c) Transformations

Gmn
pq z

a1, . . . ,an, . . . ,ap

b1,b1, . . . ,bn, . . . ,bq�1,a1

�����
 !

¼Gm,n�1
p�1,q�1

� z
a2, . . . ,an, . . . ,ap

b1,b2, . . . ,bn, . . . ,bq�1

�����
 !

, n,p,q� 1,

ð4:362Þ

Gmþ1,n
pþ1,qþ1 z

a1, . . . ,an, . . . ,ap,1� r

0,b1,b2, . . . ,bn, . . . ,bq

�����
 !

¼ �1ð ÞrGm,nþ1
pþ1,qþ1

� z
1� r,a1, . . . ,an, . . . ,ap

b1,b2, . . . ,bn, . . . ,bq,1

�����
 !

, r¼ 0,1,2, . . . :

ð4:363Þ

(d) Differentiation

∂Gm,n
p,q x

ap

bq

�����
 !
∂x

¼ 1

x
Gm,nþ1

pþ1,qþ1 x
0,a1,a2, . . . ,an,anþ1, . . . ,ap

b1,b2, . . . ,bm,1,bmþ1, . . . ,bq

�����
 !

¼Gm,nþ1
pþ1,qþ1 x

�1, a1�1ð Þ, a2�1ð Þ, . . . , an�1ð Þ, anþ1�1ð Þ, . . . , ap�1
 �

b1�1ð Þ, b2�1ð Þ, . . . , bm�1ð Þ,0, bmþ1�1ð Þ, . . . , bq�1
 �

�����
 !

,

ð4:364Þ

∂Gm,n
p,q x

ap

bq

�����
 !
∂x

¼ a1 � 1ð ÞGm,n
p,q x

a1, a2, . . . , an, anþ1, . . . , ap

b1, b2, . . . , bm, bmþ1, . . . , bq

�����
 !

¼ Gm,n
p,q x

a1 � 1ð Þ, a2, . . . , an, anþ1, . . . , ap

b1, b2, . . . , bm, bmþ1, . . . , bq

�����
 !

,

ð4:365Þ
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∂ xαGm,n
p,q x

ap
bq

����
� �� �

∂x
¼ xα�1Gm,nþ1

pþ1,qþ1 x
�α, a1, a2, . . . , an, anþ1, . . . , ap

b1, b2, . . . , bm, 1� αð Þ, bmþ1, . . . , bq

�����
 !

,

ð4:366Þ

∂v
Gm,n

p,q x
ap
bq

����
� �
∂xv

¼ 1

zv
Gm,nþ1

pþ1,qþ1 x
0, a1, a2, . . . , an, anþ1, . . . , ap

b1, b2, . . . , bm, v, bmþ1, . . . , bq

�����
 !

: ð4:367Þ

(e) Integration

ð
xβ�1Gm,n

p,q ax
ap
bq

����
� �

dx ¼ xβGm,nþ1
pþ1,qþ1 ax

1� βð Þ, ap
bq, β

����
� �

, ð4:368Þ

ð
Gm,n

p,q x
ap
bq

����
� �

dx ¼ Gm,nþ1
pþ1,qþ1 x

1, ap þ 1
 �
bq þ 1
 �

, 0

����
� �

, ð4:369Þ

ð
Gm,n

p,q λx
a1, . . . , an, . . . , ap

b1, . . . , bm, . . . , bp

�����
 !

Gr, s
u,v βx

c1, . . . , cs, . . . , cu

d1, . . . , dr, . . . , dv

�����
 !

dx

1

λ
Gnþr,mþs

qþu,pþv

β

λ
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�����
 !

:

ð4:370Þ

Relationships of Meijer G-functions to other functions.

Exponential Functions

1

a
exp �x

a

� �
¼ 1

a
G1,0

0,1

x

a

�
0

����
� �

¼ x

a

� �1
x
G1,0

0,1

x

a

�
0

����
� �

¼ 1

x
G1,0

0, 1

x

a

�
1

����
� �

: ð4:371Þ

To arrive at the result on the far right-hand side of (4.371), we have made use of

the identity in (4.360).

exp �x

a

� �
¼ G1,0

0,1

x

a

�
0

����
� �

, ð4:372Þ
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exp �x

a

� �
¼ G1,0

0,1 �x

a

�
0

����
� �

, ð4:373Þ

1� exp �x

a
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x

a

�
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����
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x
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: ð4:374Þ

Gaussian Function

1ffiffiffiffiffiffiffiffiffiffi
2πσ2
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Gaussian Integrals
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Complementary Error Functions (for Bit Error Rate
Calculations)
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Natural Logarithm
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Bessel Functions
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I0 axð Þ ¼ G1,0
0,2 �1

4
a2x2

�
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� �

: ð4:388Þ

Short-Term Fading Faded Channels

Probability density function of the amplitude (a) in a Nakagami faded channel is
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f að Þ ¼ 2
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Probability density function of the SNR in a Nakagami channel is

f xð Þ ¼ m
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ð4:390Þ

To arrive at the result on the far right-hand side of (4.390), we have made use of

the identity in (4.360). The average SNR is Z0.
The cumulative distribution function (CDF) of the SNR can take any one of the

several forms expressed below. Note that g(.,.) is the lower incomplete gamma

function and G(.,.) is the upper incomplete gamma function (Gradshteyn and

Ryzhik 2007). The hypergeometric function is represented by pFq(.).

ð x
0

m

Z0

� �mym�1

Γ mð Þ exp �m
y
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� �
dy ¼ :
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We can also express the density function of the SNR in a generalized gamma

fading channel as

f zð Þ ¼ λzλm�1

Γ mð Þβm exp �zλ

β

� �
¼ λ

Γ mð Þz G
1,0
1,0

zλ

β
�
m

����
� �

: ð4:392Þ

The density function of the SNR in a Weibull fading channel can be obtained

from (4.392) by putting m ¼ 1. The probability density function of the SNR in a

Rician faded channel (K0 is the Rician factor defined earlier) can be expressed as the

product of two Meijer G-functions as
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f zð Þ ¼ K0 þ 1
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Shadowed Fading Channel: Gamma–Gamma PDF or
Generalized K PDF

f zð Þ ¼ Ð1
0
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ð4:394Þ

In terms of Meijer G-functions, (4.394) becomes

f zð Þ ¼
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The Meijer G-functions in (4.395) can be rewritten using the identities in (4.360)

and (4.361) asð1
0

1
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Equation (4.395) now becomes

f zð Þ ¼
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Using the integral of the product of Meijer G-function given in (4.370), (4.398)

becomes
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Using the identity in (4.360), (4.399) becomes

f zð Þ ¼ 1
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Using the table of integrals (Gradshteyn and Ryzhik 2007), (4.394) becomes

f zð Þ ¼ 2

Γ mð ÞΓ cð Þ
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The right-hand side of (4.401) can also be obtained from the conversion of

Meijer G-function to Bessel functions in (4.385).

CDF of the SNR in a GK channel
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Cascaded Channels

Cascaded gamma pdf (non-identical but independent) with

f xkð Þ ¼ 1

bmk

k Γ mkð Þ x
mk�1
k exp �xk

bk

� �
, k ¼ 1, 2, . . . ,N, ð4:403Þ

Z ¼
YN
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Xk, ð4:404Þ
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mk
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bk: ð4:405Þ
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The pdf of the cascaded output (SNR) Z
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CDF of the cascaded output
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For the case of N identical gamma channels,

f zð Þ ¼ 1
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Laplace Transforms
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Using the multiplication property from (4.360), the Laplace transform becomes
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ð4:411Þ

For the special case of N ¼ 1 (gamma pdf or Nakagami channel), the Laplace

transform simplifies to
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Bit Error Rates (Coherent BPSK) for Cascaded Channels

Using the PDF
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Using the CDF
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ð4:414Þ

It can be shown through computation that (4.413) and (4.414) lead to the same

error rates. For N ¼ 1 (Nakagami channel, SNR), the bit error rate for coherent

BPSK, we have (using the CDF)
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Chapter 5

Diversity Techniques

5.1 Introduction

In Chap. 4, we examined the statistical characteristics of signals in wireless

channels. Those signals are subject to short-term fading arising from multipath

effects and long-term fading or shadowing arising from multiple scattering. While

short-term fading results in random fluctuations in power, long-term fading leads

to randomness in the average power. Both these effects lead to a worsening

performance in wireless channels in terms of higher values of error rates and outage

probabilities. Using the basic concept that with the availability of multiple inde-

pendent versions of the same signals, it is statistically unlikely that all of them

would have low signal-to-noise ratio (SNR) in all the versions at any given time

(or at any given location); strategies can be developed to exploit this aspect.

Diversity techniques constitute the means to create such multiple versions of the

signals (Hausman 1954; Brennan 1959; Parsons et al. 1975; Stein 1987; Jakes 1994;

Schwartz et al. 1996; Steele and Hanzo 1999; Karagiannidis et al. 2006; Yilmaz and

Alouini 2012). Various signal processing methods (algorithms) can then be devel-

oped and implemented to combine these multiple signals efficiently to lower the

error rates and outage probabilities to enhance the channel performance. Depending

on the physical locations where the diversity is implemented, diversity techniques

can be broadly classified into two categories, microdiversity and macrodiversity

(Bernhardt 1987; Vaughan and Andersen 1987; Jakes 1994).

Short-term fading is mitigated through microdiversity approaches using multiple

antennas at the base station (receiver). Mitigation of shadowing requires

macrodiversity approaches which rely on multiple base stations (Jakes 1994;

Abu-Dayya and Beaulieu 1994a, b; Bdira and Mermelstein 1999; Jeong and

Chung 2005; Shankar 2009). The improvement in performance obtained through

diversity techniques depends on the modulation and coding techniques used for

data transmission, the number of microdiversity channels, the number of base

stations in the macrodiversity arrangement, correlation among the microdiversity
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channels, correlation among the base stations, and so on. Performance is also

dependent on the algorithms employed to combine the signals generated through

diversity (VanWambeck and Ross 1951; Blanco and Zdunek 1979; Eng et al. 1996;

Simon and Alouini 2005).

While one can speak of generic improvement in performance through diversity,

performance improvement can be quantitatively expressed in terms of several

measures. These include SNR enhancement, reduction in the amount of fading

(AF), improvements in the sensitivity of the receiver measured through the reduc-

tion in threshold SNR required to maintain a specified bit error rate, and the

reduction in outage probabilities. Even though all these measures are related

(as we observed in Chap. 4), each of them provides a unique means to establish

the enhancement brought on by diversity.

We will first provide a detailed description of the diversity approaches and the

various signal processing approaches, i.e., algorithms, used to combine the signals.

This will be followed by a review of the different quantitative measures for

comparing the performance of the different diversity combining algorithms.

Although Chap. 4 provided an analysis and discussion of several models for the

statistical modeling of fading and shadowing, we will not be examining the

implications of diversity for all those models. While we concentrate on the most

commonly identified models for fading and shadowing, we will also look at some of

the more complicated models, specifically those involving cascaded channels

which describe the fading in terms of products of several random variables

(as explored in Chap. 4). Thus, most of the analysis and discussion in this chapter

is limited to Nakagami or gamma short-term fading models, Nakagami-lognormal

or Nakagami-gamma shadowed fading models, and cascaded gamma or Nakagami

models. We will also limit the discussion to bit error rates and outage probabilities.

Thus, we will not cover the improvements in channel capacity and second order

statistical characteristics, such as level crossings and fade duration.

In this updated edition, analysis of improvements in performance obtained

through diversity implementation in some of the newer fading models presented

in Chap. 4 is studied. The amount of fading, error rates, and outage probabilities are

obtained using analytical means and random number simulation. All the Matlab

scripts used are provided with special attention paid to simulation using random

numbers.

5.2 Concept of Diversity

As stated earlier, an important consequence of the existence of short-term fading in

wireless systems is to make the received signal random. This suggests that we can

express the received signal as

x tð Þ ¼ as tð Þ þ n tð Þ: ð5:1Þ

522 5 Diversity Techniques

http://dx.doi.org/10.1007/978-3-319-53198-4_4
http://dx.doi.org/10.1007/978-3-319-53198-4_4
http://dx.doi.org/10.1007/978-3-319-53198-4_4
http://dx.doi.org/10.1007/978-3-319-53198-4_4


In (5.1), x(t) is the received signal expressed as the sum of the white noise term

n(t) and a.s(t) where a represents the randomness (short-term fading) introduced by

the channel and s(t) is considered to be the transmitted signal of unit power. We are

assuming that besides having short-term fading that is flat (i.e., no frequency

changes are introduced by the channel), the signal s(t) is received without any

distortions and signal power greater or smaller than unity is included in the term a.
Because of the random nature of the channel, a is described only by its probability

density function (pdf)

f A að Þ ¼ 2a

P0

exp �a2

P0

� �
U að Þ, ð5:2Þ

where we have assumed that the short fading is Rayleigh (Rayleigh channel). In

(5.2), P0 is average power. We will discuss its relation to the average SNR shortly.

We will look at other short-term fading models later. Let us remember that we had

used the pdf of the envelope in a Rayleigh faded channel in Chap. 4.

The fading leads to increased outage and bit error rates (see Chap. 4). These

detrimental effects can be mitigated through diversity techniques as mentioned in

the Sect. 5.1. This would require generation of a set of “diverse” or “replicas” of the

signals as the term “diversity” implies. Creation of such “multiple” signals is

accomplished through spatial, frequency, angle, or, polarization diversity (Jakes

1994; Schwartz et al. 1996; Molisch 2005). While spatial diversity results from

multiple transmitters or (receivers) located at a site, frequency diversity is realized

by transmitting information over multiple frequency bands (White 1968; Jakes

1994; Diggavi 2001). Angular diversity corresponds to the use of directional

antennas using nonoverlapping angular beams; polarization diversity results from

transmitting the same information in two orthogonal polarizations (Giuli 1986;

Perini and Holloway 1998; Vaughan 1990). Time diversity is attainable if the same

information is transmitted repeatedly even though such a diversity approach is

impractical in wireless systems. A practical form of time diversity is achieved in

code division multiple access (CDMA) based systems when one uses a RAKE

receiver (Efthymoglou and Aalo 1995; Win et al. 2000; Rappaport 2002; Molisch

2005). Regardless of how diversity is implemented in the creation of multiple

signals, we assume that we have M such signals and that they are independent

(cases of correlated signals will be considered later). This would mean that the

diversity produces M outputs expressed as

xk tð Þ ¼ aks tð Þ þ n tð Þ, k ¼ 1, 2 . . .M: ð5:3Þ

Note that (5.3) assumes that the additive white Gaussian noise in all the diversity

branches is identical. The received signal power Pk is obtained as

Pk ¼ 1

Ts

ðTs

0

a2k s tð Þ½ �2dt ¼ a2k , ð5:4Þ
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where Ts is the symbol duration. Since a’ are Rayleigh distributed, as indicated in

(5.2), the power is exponentially distributed and the pdf of the power is given by

f pkð Þ ¼ 1

P0

exp �pk
P0

� �
U pkð Þ: ð5:5Þ

If the noise power is N0,

N0 ¼ n tð Þ2 , ð5:6Þ

the instantaneous SNR in any one of the branches can be written as

Zk ¼ Pk

N0

: ð5:7Þ

Defining the average SNR Z0 as

Z0 ¼ Pkh i
N0

ð5:8Þ

we can write the pdf of the SNR as

f zkð Þ ¼ 1

Z0

exp �zk
Z0

� �
U zkð Þ: ð5:9Þ

Note that we have assumed that all the branches are identically distributed with

equal average powers; (5.9) was also derived in Chap. 4. We will now take a

detailed look at different ways of combining the signals from the diversity branches

and we will compare the performances using several quantitative measures

(Schwartz et al. 1996). As discussed in Chap. 4, comparison of (5.5) and (5.9)

shows that the power and SNR have the same form of distribution. We can

interchange the density functions if necessary without affecting the fundamental

characteristics or nature of the pdf.

Before we examine the various approaches to combining the outputs from the

diversity branches, we will briefly view diversity techniques (methods by which

multiple versions of the signals are generated). Note that most of this chapter will be

devoted to various ways of combining the outputs, statistical analysis of the

outcome of the combining efforts, and analysis of the performance of wireless

systems after the diversity is implemented. We will be devoting our attention to

diversity at the receiver, even though it is possible to implement diversity at the

transmitter as well as simultaneous implementation of diversity at the receiver and

transmitter.

Based on the propagation mechanism and physical assemblage of the arrange-

ment, we can broadly classify the diversity techniques (receiver) as
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1. Space or spatial diversity

2. Frequency diversity

3. Polarization diversity

4. Time diversity (signal repetition)

5. Multipath or Rake diversity (a form of time diversity)

Note that in an ideal circumstance, the number of diversity branches can be

unlimited except in the case of polarization diversity where there is a limit of two

branches (Vaughan 1990; Schwartz et al. 1996). One can intuitively see that as the

number of diversity branches increase, it might become more and more difficult to

keep the branches uncorrelated. Use of uncorrelated branches will result in a

reduction in processing gain in diversity. Because of practical issues there will be

an upper limit on the number of diversity branches.

5.2.1 Space Diversity

Consider the case of a single transmitting antenna and two receiving antennas.

Figure 5.1. shows a single transmitter and two receiving antennas separated by D,
assumed to be much smaller than the separation between the transmitter and

receiver(s). We treat the receiving antennas as having identical beamwidths

(Schwartz et al. 1996; Perini and Holloway 1998). The concept behind the spatial

diversity relies on the fact that the paths coming to the receivers are sufficiently

separated and independent of each other. Thus, it is clear that if the spacing between

the receivers is reduced, the paths arriving at the two receivers will be correlated

and the signal components at the two (or if more than two receivers are present) or

more receivers will no longer be uncorrelated. The independence of signals at these

Transmitter

Receiver # 1Receiver # 2 D

R

Fig. 5.1 Space diversity

arrangement. The distance

R between the transmitter

and receivers is assumed to

be much larger than the

separation between

receivers #1 and #2

5.2 Concept of Diversity 525



receivers is essential for the improvement in performance expected from diversity.

Treating the components of the complex values signal to be Gaussian, it can be

argued that “uncorrelatedness” implies independence, thus providing independent

signals from these receivers. Based on the beam patterns of the antennas, spacing of

λ/2 (λ is the mean wavelength of the transmitted signal) between antennas is

sufficient to produce uncorrelated signals from each of them (Vaughan and Ander-

sen 1987; Schwartz et al. 1996). In practice, minimum spacing might be larger

depending on the nature of scattering medium in which the propagation is taking

place. Note also that the number of receiving antennas (M ) will be limited due to

the finite width of the transmitting beam.

5.2.2 Frequency Diversity

If signals transmitted over different carrier frequencies are sufficiently separated,

we can treat these multipath signals (i.e., fading components) as uncorrelated. The

separation between the carriers must be larger than the coherence bandwidth of the

channel. This bandwidth is the minimum frequency separation needed so that two

signals corresponding to the frequencies will be uncorrelated. Even though higher

separation between the carrier frequencies assures uncorrelated signals, increasing

separation will be at the cost of reduced bandwidth available for data transmission.

Thus, there is a tradeoff between the maximum usable bandwidth and the number of

frequency diversity branches available. The concept is illustrated in Fig. 5.2.

Time  t

Fr
eq

ue
nc

y 
 f

#1

#2

Fig. 5.2 Concept of

frequency diversity. The

same signal is transmitted

over two frequency bands

(#1 and # 2)

526 5 Diversity Techniques



5.2.3 Polarization Diversity

Polarization diversity relies on the fact that signals transmitted or received in two

orthogonal polarizations exhibit uncorrelated behavior and hence independence

(Vaughan 1990). It further relies on the fact that even when the transmitter operates

in a single (vertical or horizontal) polarization, the scattering takes place in

the propagating channel which can couple some energy from one polarization to

the other. Thus, if we have two antennas at the receiver, one for each polarization,

we can achieve a diversity of order two (M ¼ 2). Since the two polarizations are

orthogonal, the spacing requirements associated with the space diversity do not play

a role making the positioning and locating the antennas an easier task with polar-

ization diversity. The polarization diversity concept can be extended further by

using two transmitting antennas and two receiving antennas providing pairs of

orthogonal polarization at both transmitter and receiver as shown in Fig. 5.3.

It must also be noted that polarization diversity is a form of space diversity since

multiple antennas are used.

5.2.4 Time Diversity

Time diversity is based on the premise that if information is transmitted sequen-

tially through a random fading channel, the multiple replicas of the signal will be

uncorrelated if the time or temporal separation among the samples is sufficiently

Transmitter V

Receiver VReceiver H

Transmitter HFig. 5.3 Dual polarization

transmitter/receiver pair

V and H represents the

vertical and horizontal

polarizations
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large. Note the relative motion of the transmitter or receiver (i.e., if the mobile unit

is moving) plays a crucial role in achieving “decorrelation” since coherence time is

dependent on the speed of the transmitter/receiver. If there is no motion, time

diversity ideally does not produce uncorrelated replicas. In practice and with

time, even in the absence of any motion, one can treat the channel as dynamic

from motions of the scatterers from wind, change in temperature, and so on. Time

diversity also requires that information be stored at the transmitter and receiver

which makes it rather inconvenient to use time diversity. Additionally, repeated

transmission of the same information and subsequent processing produces time

delay (latency effects). Because of this, time diversity is often used sparingly;

space, frequency, and polarization diversity techniques find greater uses in wireless

communications.

5.2.5 Multipath Diversity

In Chap. 3 we had seen that fading normally results in multipath signals arriving at

the receiver such that these signals (or paths) are not resolvable. However, if the

signal bandwidth is increased well beyond the channel bandwidth (for example in

the case of CDMA schemes), the width of the transmitted temporal signal elements

(known otherwise as “chips”) is small enough that the multipath components

arriving at the receiver become resolvable. Since the chips constituting the

CDMA signals decorrelate with themselves if the delay is one chip period, these

multipath resolvable components provide a form of time diversity with uncorrelated

signals without suffering from the latency effects associated with conventional time

diversity (Wang et al. 1999; Win and Kostic 1999; Win et al. 2000; Molisch 2005).

A receiver that combines these resolvable components is referred to as the RAKE

receiver. This concept of the multipath diversity is shown in Fig. 5.4 which shows

three multipaths, each resulting in a replica of the transmitted signal. The signals are

resolvable as seen in Fig. 5.4 and make it possible to apply diversity.

5.3 Diversity Combining Algorithms

We can now look at three different ways of combining the outputs of the

M “branches” (Schwartz et al. 1996; Eng et al. 1996). The outline of the combining

algorithm is shown in Fig. 5.5. Each output from the diversity branch is multiplied

by a gain factor gk. The three algorithms differ in the manner of operation of the

gain factor on the multiple signal set. There are three primary combining algo-

rithms, Selection Combining (SC), maximal ratio combining (MRC), and equal

gain combining (EGC). We will now explore some of the details of these

algorithms.
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5.3.1 Selection Combining

The first approach for combining the signals is the selection combining

(SC) algorithm. From the view point of practical implementation this is the simplest

and easiest of the three algorithms. The algorithm can be described as the selection

of the values of gk such that

gk ¼ 1 z ¼ max Zkf gk¼1,2, ...M

0 otherwise:

�
ð5:10Þ

Equation (5.10) translates into picking the output or branch having the highest

value of the SNR expressed as

ZSC ¼ max Zkf gk¼1,2, ...M: ð5:11Þ

Transmitter

Receiver

Fig. 5.4 The concept of multipath diversity. Three different paths are shown. The received pulses

are resolvable
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To understand the performance of the SC algorithm and to compare it to the

other algorithms, it is necessary to determine the pdf of the output of the SC

algorithm (Annamalai 1997; Simon and Alouini 2005). Let us evaluate the cumu-

lative distribution function (CDF) of the output of the SC in (5.11) first. We can

write the CDF as

F zSCð Þ ¼ prob Z1 � zSC; Z2 � zSC; . . . ; ZM � zSCf g: ð5:12Þ

Since we have assumed that all the branches are independent and identically

distributed, the CDF becomes

F zSCð Þ ¼ prob Z � zSCf g½ �M ¼ 1� exp �zSC

Z0

� �� �M
: ð5:13Þ

The pdf of the output of the SC algorithm is obtained by differentiating (5.13)

which results in

f SC zð Þ ¼ M

Z0

1� exp � z

Z0

� �� �M�1

exp � z

Z0

� �
U zð Þ: ð5:14Þ

In (5.14) we have dropped the subscript (SC) from the SNR, Z, and moved it as a

subscript of the pdf, f. We will return to (5.14) after we have discussed the other

algorithms for combining the signals. Note that details on the derivation of the pdf

in (5.14) are given in Chap. 2.

X

X

X

g1

g2

gM

Σ output signal

Fig. 5.5 Concept of diversity combining is shown. The outputs of the diversity receivers are

combined. The weights for the branches are given by gk
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5.3.2 Maximal Ratio Combining

Let us go back to the sketch of the processing algorithm in Fig. 5.5. We are now

seeking a set of weights g’s so that the output SNR is maximized (Al-Hussaini and

Al-Bassiouni 1985; Aalo 1995; Schwartz et al. 1996; Annamalai et al. 1999). We

will ignore the presence of s(t) in (5.1) and express the output of the processing

algorithm as

x tð Þ ¼
XM
k¼1

gkak þ n tð Þ
XM
k¼1

gk: ð5:15Þ

Note that (5.15) recognizes the fact that when the signals from the branch are

scaled, the noise is scaled as well. The signal power P will be

P ¼
XM
k¼1

gkak

" #2
ð5:16Þ

and the noise power N will be

N ¼ N0

XM
k¼1

g2k ð5:17Þ

Equations (5.16) and (5.17) are justified by our assumption that noise in every

branch is the same, and noise and signal are uncorrelated. The instantaneous SNR

becomes

ZMRC ¼
PM

k¼0 gkak

h i2
N0

PM
k¼1 g

2
k

: ð5:18Þ

The MRC processing expects to maximize the SNR in (5.18). To perform this we

invoke the Chebyshev inequality (Schwartz et al. 1996; Haykin 2001)

XM
k¼1

gkak

" #2
�

XM
k¼1

g2k

 ! XM
k¼1

a2k

 !
: ð5:19Þ

Equality is obtained when g and a are related through a scalar factor k such that

gk ¼ kak: ð5:20Þ
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Setting

k ¼
ffiffiffiffiffiffi
N0

p
, ð5:21Þ

Equation (5.18) becomes

ZMRC ¼
PM

k¼1 a
2
k

N0

¼
XM
k¼1

a2k
N0

¼
XM
k¼1

Zk: ð5:22Þ

In other words, the out SNR of the MRC algorithm is the sum of the individual

SNRs from the M branches.

We will now look at the third algorithm for combining the signals which is a

special case of the MRC algorithm. This is described below.

5.3.3 Equal Gain Combining

If the gain factors are all equal, the output SNR of the EG combiner becomes

(Beaulieu and Abu-Dayya 1991; Schwartz et al. 1996; Annamalai et al. 2000)

ZEGC ¼
PM

k¼1 ak

h i2
MN0

¼
1=Mð Þ PM

k¼1 ak

h i2
N0

: ð5:23Þ

In (5.23), theM in the denominator arises from the addition of noise powers from

theM diversity branches in (5.17). Comparing (5.22) and (5.23), the differences and

similarities between the output SNRs in MRC and EGC are clear,

ZMRC ¼
XM
k¼1

a2k
N0

¼
XM
k¼1

Zk, ð5:24Þ

ZEGC ¼ 1

M

XM
k¼1

akffiffiffiffiffiffi
N0

p
" #2

¼ 1

M

XM
k¼1

ffiffiffiffiffi
Zk

p" #2
: ð5:25Þ

Note that ak’s represents the envelope values; consequently, they are always

positive. In writing (5.24) and (5.25), we have assumed that the noise power in each

branch is unity. If we now consider a simple case where ak’s are all equal and

deterministic, we have

ZMRC ¼ ZEGC ð5:26Þ
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and if ak’s are not all equal,

ZMRC � ZEGC ð5:27Þ

establishing that MRC is better than EGC (at least in terms of SNR). We will now

show that the same is true when fading exists by treating the short-term fading to be

Nakagami-m distributed.

5.3.4 Preliminary Comparison of the three Combining
Algorithms

We have seen the basic forms of the outputs of the three main combining algo-

rithms. It is now time to look at these algorithms in greater detail so that we can start

examining the differences among them. We will use the general form of the

statistical model for short-term fading, namely the Nakagami-m distribution.

When short-term fading is described in terms of the Nakagami m-distribution,

the pdf of the received signal power (or SNR) is given by

f zð Þ ¼ m

Z0

� �m zm�1

Γ mð Þ exp �m

Z0

z

� �
U zð Þ, m � 1

2
: ð5:28Þ

Note that if we remove the restriction on m to be always greater than 1/2, (5.28)

can be identified as the gamma pdf as discussed earlier in Chap. 2. Note that Z0 is
average SNR. Thus, for all practical purposes, we can argue that the pdf of the

signal power will have a gamma distribution when the short-term fading has the

Nakagami-m pdf for the amplitude or envelope. Before we examine the case of

MRC and EGC, let us go back and obtain the pdf of the output of the selection

combining (SC). To derive the expression for the pdf of the output, we will need the

expression for the CDF associated with the pdf in (5.28). The CDF can be written as

F zSCð Þ ¼ γ m;
mzSC
Z0

� �
Γ mð Þ½ ��1

, ð5:29Þ

where γ(,) is the incomplete gamma function.

The CDF of the output of the SC algorithm given in (5.12) now becomes

F zSCð Þ ¼ γ m;
mzSC
Z0

� �
Γ mð Þ½ ��1

� �M
: ð5:30Þ

The pdf of the output of the SC algorithm is obtained by differentiating (5.30),

leading to
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f SC zð Þ ¼ M
m

Z0

� �m zm�1

Γ mð Þ exp �m

Z0

z

� �
γ m;

mz

Z0

� �
Γ mð Þ½ ��1

� �M�1

U zð Þ, m >
1

2
:

ð5:31Þ

Note that the subscript (SC) attached to Z has been dropped. Equation (5.31)

becomes (5.14) when m ¼ 1 (Rayleigh pdf of the envelope). Figure 5.6 shows the

density of the Selection Combiner.

Let us now return to the output of the MRC algorithm when we have a Nakagami

faded channel. The pdf of the output SNR or power given in (5.24) is derived in the

original work by Nakagami (1960). The pdf of the output of the MRC algorithm

becomes

fMRC zð Þ ¼ m

Z0

� �mM zmM�1

Γ mMð Þ exp �m

Z0

z

� �
U zð Þ, m >

1

2
: ð5:32Þ

Simply put, the pdf of the MRC output is another gamma distributed random

variable with the order of mM. The average SNR of the processed output is MZ0.

These results also follow from the properties of the sum of gamma random vari-

ables described in Chap. 2. The densities of the MRC outputs are shown in Fig. 5.7.

Comparison of the plots in Figs. 5.6 and 5.7 shows that the peaks of the densities

with the MRC algorithm occur at higher SNR values than those for SC suggesting

that MRC algorithm is likely to result in better performance in fading. Association

between peak densities and peak performance was discussed in Chap. 4.
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Fig. 5.6 The density functions of the SNR in Nakagami-m channels at the output of the SC

algorithm (average SNR/branch Z0 ¼ 1)
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We will now look at the output of the EGC algorithm. Several researchers have

proposed ways of obtaining an analytical expression for the pdf of the output. All of

them are approximations. It is also possible to get an approximate expression using

the results from the original work by Nakagami (1960). If we expressW as the sum

of M independent identically distributed Nakagami variables,

W ¼
XM
k¼1

Xk, ð5:33Þ

w will be Nakagami distributed with a parameter εMm and average power M2

Z0δwhere

0:95 � ε � 1:1 ð5:34Þ

and

δ ¼ 1� 1

5m

� �
: ð5:35Þ

Equation (5.34) is valid for most practical values of m andM< 8 suggesting that

we can assume that ε� 1. The pdf of the output of the EGC algorithm in (5.25) will

be the result of the squaring of W followed by scaling by (1/M ). Thus, the pdf will

be similar to the pdf of the MRC algorithm with a slightly lower value of the

average SNR. The pdf of the SNR of EGC output can be expressed as
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Fig. 5.7 The density functions of the SNR in Nakagami-m channels at the output of the MRC

algorithm (average SNR/branch Z0 ¼ 1)
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f EGC zð Þ ¼ mε

δZ0

� �mεM zmεM�1

Γ mεMð Þ exp � mε

δZ0

z

� �
U zð Þ, m >

1

2
: ð5:36Þ

Equation (5.38) is obtained by noting that the EGC output is the scaled (1/M )

power of W in (5.33).

We can now attempt to calculate the improvement in SNR following the

diversity processing.

ZMRCh i ¼ MZ0, ð5:37Þ

ZERCh i � M 1� 1

5m

� �
Z0: ð5:38Þ

There is no simple analytical expression available for the case of SC except for

the case of m ¼ 1 (Rayleigh fading).

ZSCh i ¼ Z0

XM
k¼1

1

k
: ð5:39Þ

For M ¼ 2, an analytical expression can be obtained for the average SNR of the

SC output for all values of m as

ZSCh i ¼ Z0 1þ Γ 2mð Þ
22m�1Γ mð ÞΓ mþ 1ð Þ

� �
: ð5:40Þ

Equation (5.39) points out an interesting aspect of the SC algorithm. The largest

improvement from diversity is obtained from a two-branch receiver and any

subsequent gain from diversity becomes less and less significant as M goes above

two. In other words, selection combining leads to a waste of resources if the number

of diversity branches goes up since the gains realized go down as M increases.

We can also compare the three major algorithms for diversity in terms of the

density functions and CDFs following the diversity through random number sim-

ulations. This allows us an overview of three algorithms and how they are likely to

impact the overall performance of data transmission in wireless channels. Gamma

random numbers (Nakagami channels) can be generated using Matlab. The three

different combining algorithms can then be implemented, and the pdfs and CDFs

estimated using Matlab. Figure 5.8 shows the plots of the pdfss forM ¼ 4, 5, 6, and

7. We can see that peak of the density functions move toward increasing values of

the SNR when diversity is implemented. Note that the shift of the peaks alone might

not signify any improvement since peak shift even when average SNR changes.

This shifting is the lowest for the selection combiner and highest for the MRC

combiner, with EGC coming closer to the MRC case. One can also see that as

M increases the peak of the density functions moves farther and farther to the right,
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with the slowest movement seen with the case of SC. As discussed in Chap. 2, the

shifting of the peaks to the right shows an improvement in performance, a simple

measure of which is the increase in average SNR with diversity. For the simulation

used in Fig. 5.7, the SNR improvement over the case of no diversity is tabulated in

Table 5.1.

As we can observe, the gain in SNR for selection combining goes up at a very

slow rate while the gains for EGC and MRC go up fast. The gains of EGC andMRC

are also very close. The CDFs obtained from the simulation are shown in Fig. 5.9.

The CDFs for EGC and MRC are close to each other while the CDF for the

selection combiner is close to the case of no diversity. The plots of the CDFs allow

another means of visualizing the effect of diversity at the output. A slow rising CDF
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Fig. 5.8 Comparison of the density functions: no diversity, SC, EGC, MRC forM¼ 4, 5, 6, 7. The

value of m used was 1.5 and the average SNR/channel was 4 dB

Table 5.1 SNR

improvement following

diversity. Results from

random number simulation

M SC EGC MRC

4 1.89 3.55 4

5 2.04 4.35 5

6 2.17 5.24 6

7 2.28 6.1 7
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signifies that the outage probability defined in terms of the probability that SNR

fails to reach a set threshold will be small, while a fast rising CDF signifies the

existence of higher values of outage probabilities when compared with these of

slowly rising CDFs.

We will return later to a detailed comparison of the SNR improvement following

diversity combining. First we will examine a special case of SC, namely, switched

and stay combining (SSC).

5.3.5 Selection Combining and Switched
and Stay Combining

Ideally in selection combining, one expects to pick the branch with the highest

SNR. For the case of two-branch diversity, this would mean a continuous monitor-

ing of the two branches and decisions on which one to choose. This is practically

impossible since it puts a strain on the logic and switching circuits. So, a practical

way is to set a predetermined threshold and choose the branch that meets that
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Fig. 5.9 Comparison of the cumulative distribution functions (CDFs): no diversity, SC, EGC,

MRC for M ¼ 4, 5, 6, 7. The value of m used was 1.5 and the average SNR/channel was 4 dB
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criteria and stay with that branch regardless of whether the other branch exceeds the

threshold or not. Switching to the other branch will occur only when the current

branch fails to meet the criteria. But, this also requires the choice of an appropriate

threshold since choosing a high threshold would necessitate frequent switching.

Choice of a lower threshold would reduce the need to switch. This will come at the

cost of reduced gain from diversity since the other branch could have had a higher

SNR. Such an approach of a slightly “intelligent” choice of the output results in the

SSC. To understand this choice, let us examine the pdf of the output of this SSC

algorithm (Abu-Dayya and Beaulieu 1994b; Young-Chai et al. 2000; Tellambura

et al. 2001; Simon and Alouini 2005).

We assume that the two diversity branches are operating in identical Nakagami

channels and they are independent. Let Z1 and Z2 be the respective values of the

SNR in the two channels. First we determine the CDF of the output of the SSC

algorithm. Let Z be the output and ZT is the threshold. The expression for the CDF

has been derived (Abu-Dayya and Beaulieu 1994a, b) and it can be written as

FSSC zð Þ ¼ Prob ZT � Z1 � zf g þ Prob Z1 � zf gProb Z2 � ZTf g: ð5:41Þ

Simplifying, we have

FSSC zð Þ ¼ Prob Z1 � zf gProb Z2 � ZTf g, z � ZT

Prob Z1 � ZT � zf g þ Prob Z1 � zf gProb Z2 � ZTf g, z > ZT:

�
ð5:42Þ

Making use of the CDF of the SNR in (5.29) and (5.42) becomes

FSSC zð Þ¼
γ m;

mZT

Z0

� �
γ m;

mz

Z0

� �
Γ mð Þ½ ��2

, z� ZT

γ m;
mz

Z0

� �
� γ m;

mZT

Z0

� �� �
Γ mð Þ½ ��1þ γ m;

mZT

Z0

� �
γ m;

mz

Z0

� �
Γ mð Þ½ ��2

, z> ZT:

8>>><
>>>:

ð5:43Þ

The pdf of the output of the SSC algorithm is obtained by differentiating (5.43),

resulting in

f SSC zð Þ ¼
γ m; mZT=Z0ð Þð Þ

Γ mð Þ
m

Z0

� �m zm�1

Γ mð Þ exp �m

Z0

z

� �
, z � ZT

γ m; mZT=Z0ð Þð Þ
Γ mð Þ þ 1

� �
m
Z0

� 	m zm�1

Γ mð Þ exp �m

Z0

z

� �
, z > ZT:

8>>><
>>>: ð5:44Þ

The CDF of SSC is compared with the CDF of SC and a single branch receiver

(no diversity) in Fig. 5.10 for an average SNR/branch of unity (Z0 ¼ 0 dB).
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The density functions of the SC and SSC are compared in Fig. 5.11.

The average SNR of the output of the SSC algorithm can be obtained as

ZSSCh i ¼ Z0 1þ m

Z0

ZT

� �m
exp � m=Z0ð ÞZTð Þ

Γ mþ 1ð Þ
� �

: ð5:45Þ

Optimum value of the threshold is obtained by differentiating (5.45) and

ZT




opt ¼ Z0: ð5:46Þ

Using (5.46), the optimum value of the average SNR becomes

ZSSCh i ¼ Z0 1þ mm�1exp �mð Þ
Γ mð Þ

� �
: ð5:47Þ

Now that we have obtained expressions for the SNR following diversity, we can

compare the performances of these combining algorithms. We will first look at the

three basic algorithms, namely, SC, EGC, and MRC. In Fig. 5.9, we have already

seen the results based on simulation.

The results on average SNR enhancement obtained from the analytical expres-

sions for the pdf are shown in Fig. 5.12. The SNR enhancement is the ratio of the

SNR following the diversity to the SNR before implementing the diversity. Note

that the SNR of the SC algorithm as mentioned earlier does not lead to an analytical
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expression; the SNR was evaluated by performing the numerical integration. While

the MRC algorithm results in SNR improvement ofM regardless of the value of the

Nakagami parameter m, both the EGC and SC cases lead to SNR improvements

which depend on m.
As the value of the Nakagami parameter m increases, the SNR improvement for

EGC approaches that of MRC. The SNR improvement from SC on the other hand

declines as the Nakagami parameter increases. The rise in SNR improvement with

M is at a very slow rate for the SC algorithm. Consequently, the SC algorithm is

generally implemented with two or three branches (M ¼ 2 or 3). It can also be seen

that the SNR improvement following EGC is close to that of the MRC.

We will now compare the performance of the SC and SSC algorithms. The SNR

improvements are plotted in Fig. 5.13. Only dual diversity (M ¼ 2) is considered

here. The input SNR of each branch Z0 has been taken to be unity. Of the four

algorithms, namely, MRC, EGC, SC. and SSC, it is easily seen that SSC performs

the worst of the four algorithms. However, in terms of implementation, SSC is the

simplest of all.

5.3.6 Effects of Branch Correlation on Combining
Algorithms

In the previous analysis, it was assumed that the diversity branches are all inde-

pendent. Often, correlation exists among the diversity branches. The improvement
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following diversity is adversely impacted by this correlation. Since the performance

improvement is only slightly less with EGC compared with MRC, we will only

consider MRC systems. This is in light of the availability of exact expression for the

pdf of the diversity output (Aalo 1995; Simon and Alouini 2005). With regard to

SC, we will only consider the case of a two-branch (dual) diversity; the enhance-

ment obtained is only marginal from any further increase in the number of diversity

branches.

When the diversity branches are correlated the pdf of the MRC output can be

obtained by using the results available for correlated gamma random variables if the

correlation is exponential (Kotz and Adams 1964; Aalo 1995; Simon and Alouini

2005). Having an exponential correlation instead of equal correlation among the

branches is more realistic since the correlation with branches (for example in spatial

diversity) located farther will be less. For the case of exponential correlation, results

on gamma random variables are available in literature. It was shown that the pdf of

the output of the MRC algorithm with correlated branches could be expressed as

fMRCr zð Þ ¼ mM

rZ0

� �mM2=r z mM2=rð Þ�1

Γ mM2=r
� � exp �mM

rZ0

z

� �
U zð Þ, ð5:48Þ

where r is related to the correlation coefficient ρ through

r ¼ M þ 2ρ

1� ρ
M � 1� ρM

1� ρ

� �
: ð5:49Þ

It can be seen that (5.48) is similar to the pdf of the MRC output when the

branches are uncorrelated; the effect of the correlation is to reduce the effective

value of the order of the pdf and lower the value of the SNR. Equation (5.48) is a

gamma pdf of order (mM2/r). The effect of correlation on the MRC densities is seen

in Fig. 5.14, where the pdfs are plotted for the case ofM ¼ 3 and m ¼ 2. It has been

assumed that the average SNR per channel Z0 equals unity. It is seen that as the

correlation declines, the density function moves to the right which suggests realiz-

ing the full potential of the diversity implementation. This improvement is also

evident if one looks at the plots of the gamma densities of increasing values of m.
Note that when the order of the gamma distribution increases, the gamma pdf

moves closer and closer to a normal pdf and the channel becomes a pure Gaussian

channel or an ideal channel. To illustrate this, pdfs of a few gamma random

variables of increasing values of the order are shown in Fig. 5.15 (as seen in

previous chapters).

Comparing (5.32) and (5.48), the ratio of the order of the pdfs of the correlated

case to the uncorrelated case OMRC

OMRC ¼ mM2=r
� �

mM
¼ M

r
¼ 1

1þ 2ρ=1� ρð Þ 1� 1� ρM=M 1� ρð Þð Þ½ � < 1: ð5:50Þ
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Fig. 5.14 Plots of the density functions of the MRC output forM¼ 3 and m¼ 2 for four values of

the correlation coefficient. Average SNR/branch ¼1
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of the correlation coefficient. Average SNR/branch ¼1
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Since the SNR improvement in MRC is directly proportional to the order of the

gamma pdf after diversity, OMRC will be a measure of the decline in SNR enhance-

ment when the branches are correlated. The decline in SNR enhancement in the

presence of branch correlation is plotted in Fig. 5.16 as a function of the branch

correlation. It can be seen that for low values of correlation, the decline in SNR is

not significant.

When the number of branches is only two, specifically with the case of SC

algorithm, one can use the results from the original work by Nakagami to obtain the

expression for the pdf of the output of the SC algorithm. The joint pdf of the SNR

outputs of the two branches can be expressed as (Kotz and Adams 1964; Simon and

Alouini 2005)

f z1; z2ð Þ ¼ m
Z0

� 	mþ1 z1z2=ρð Þ m�1ð Þ=2ð Þ

Γ mð Þ 1� ρð Þ exp � m

Z0

� �
z1 þ z2ð Þ
1� ρð Þ

� �

�Im�1

m

Z0

� �
2
ffiffiffiffiffiffiffiffiffiffi
ρz1z2

p
1� ρð Þ

� �
, z1 > 0, z2 > 0,

ð5:51Þ

where Im�1() is the modified Bessel function of the first kind of order (m�1). The

pdf of the output of the SC algorithm was discussed in Chap. 2 and it can be

expressed as

fsCr zð Þ¼2
m

Z0

� �m zm�1

Γ mð Þ exp �m

Z0

z

� �
� 1�Qm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mρ

1�ρ

z

Z0

� �s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

1�ρ

z

Z0

� �s !" #
,

ð5:52Þ
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Fig. 5.16 Fractional decline in SNR as a function of the correlation coefficient for MRC
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where Qm (α,β) is the Marcum’s Q function given by (Nuttall 1975; Simon and

Alouini 2005)

Qm α; βð Þ ¼ 1

αm�1

ð1
β
xmexp � x2 þ α2

2

� �
Im�1 αxð Þdx: ð5:53Þ

The existence of correlation between the two branches reduces the SNR of the

output of the SC algorithm. The pdf of the output SNR in a dual diversity

(correlated) case is shown in Fig. 5.17.

The SNR at the output of the two branch correlated SC receiver is (Ko et al.

2000)

ZSCrh i ¼ Z0 1þ Γ 2mð Þ ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

22m�1Γ mð ÞΓ mþ 1ð Þ

� �
: ð5:54Þ

Similarly, the SNR at the output of the two branch correlated SSC receiver is

(Abu-Dayya and Beaulieu 1994a, b; Simon and Alouini 2005)

ZSSCrh i¼0 1þ 1� ρð Þmm�1e�m

Γ mð Þ
� �

: ð5:55Þ
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Fig. 5.17 Density function of the correlated dual SC output. The value of the Nakagami parameter

m is 2 and the average SNR/branch Z0 is unity
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The effect of branch correlation on the performance of a two-branch SC algo-

rithm is compared with that of a similarly correlated SSC and shown in Fig. 5.18 for

two values of the Nakagami parameter, m ¼ 1 & 2.

A little more insight into (5.51) can be gained by expanding the modified Bessel

function as (Gradshteyn and Ryzhik 2007; Shankar 2009)

In xð Þ ¼
X1
l¼0

x=2ð Þ2lþn

Γ lþ 1ð ÞΓ nþ lþ 1ð Þ : ð5:56Þ

Equation (5.51) can now be rewritten using (5.56) as

f z1; z2ð Þ ¼
X1
l¼0

Dlf l z1ð Þf l z2ð Þ, ð5:57Þ

where

Dl ¼ ρl 1� ρð ÞmΓ mþ lð Þ
Γ mð ÞΓ lþ 1ð Þ ð5:58Þ

and

f l z1ð Þ ¼ 1

Z0 1� ρð Þ
� �mþl zmþl�1

1

Γ mþ lð Þ exp � mz1
Z0 1� ρð Þ

� �
, ð5:59Þ
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of the Nakagami parameter, m ¼ 1, 2
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f l z2ð Þ ¼ m

Z0 1� ρð Þ
� �mþl zmþl�1

2

Γ mþ lð Þ exp � mz2
Z0 1� ρð Þ

� �
: ð5:60Þ

Note that when ρ ¼ 0, l ¼ 0 and (5.57) becomes the product of the marginal

density functions of the SNR of the two branches, use of the series expansion for the

modified Bessel functions allows us to write the joint pdf of the correlated outputs

as the weighted sum of the products of marginal pdfs with the weights being

decided by the correlation coefficient.

The joint CDF of (z1, z2) now becomes

F z1; z2ð Þ ¼
X1
l¼0

DlFl z1ð ÞFl z2ð Þ ¼
X1
i¼0

Dl
γ mþ l; mþ lð Þz1=Z0 1� ρð Þð Þð Þ

Γ mþ lð Þ½ �

� γ mþ l; mþ lð Þz2=Z0 1� ρð Þð Þð Þ
Γ mþ lð Þ½ � :

ð5:61Þ

Using the definition of the pdf of the maximum of two random variables, the pdf

of the SC algorithm can be expressed as (Shankar 2009)

f SCr zð Þ ¼ 2
X1
l¼0

Dl
γ mþ l; mþ lð Þz=Z0 1� ρð Þð Þð Þ

Γ mþ lð Þ½ �

� m

Z0

�
1� ρ

" #mþl
zmþl�1

Γ mþ lð Þ exp � mz

Z0 1� ρð Þ
� �

: ð5:62Þ

It is easy to see that when the two branches are independent (ρ ¼ 0), (5.62) is

identical to (5.31) for the case of M ¼ 2. Equation (5.62) is much simpler for

analytical purposes compared with (5.52) because of the absence of Marcum’s
Q function. We will use (5.62) later for the estimation of average probabilities of

error and outage.

5.4 Shadowing Mitigation and Macrodiversity

The diversity techniques described so far are classified as microdiversity

approaches, and diversity is implemented at a base station (or in rare instances at

the mobile unit). Diversity can also be implemented so that the branches involved in

the combining algorithm come from multiple base stations (Jakes 1994; Abu-Dayya

and Beaulieu 1994a, b; Bdira and Mermelstein 1999; Shankar 2002, 2009). In other

words, the branches are separated by much larger distances typically on the order of

the cell size. Uses of multiple base stations constitute what are described as the

macrodiversity techniques. While microdiversity techniques mitigate short-term
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fading commonly modeled using the Nakagami m distribution, macrodiversity

techniques mitigate long-term fading or shadowing existing in wireless channels.

The most general model to describe the shadowing is the lognormal one. In this

model, the pdf of the SNR expressed in decibel units is given by

f zdBð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2dB

p exp � zdB � μð Þ2
2σ2dB

" #
: ð5:63Þ

In (5.63),m is the SNR (dB) and σdB is the standard deviation of shadowing (dB).
Typical values of σdB fall in the range of 2–9 dB, with higher values corresponding

to levels of severe shadowing. Note that the received SNR in absolute units

(W/mW) can also be expressed as

f L zð Þ ¼ A

z
ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2dB

p exp � 10log10z� μð Þ2
2σ2dB

" #
U zð Þ: ð5:64Þ

The parameter A was defined in Chap. 4. Even though all the three diversity

combining algorithms can be used in macrodiversity, the most commonly used

algorithm is the selection combining because it is the simplest one to implement,

i.e., the base station with the highest signal power or SNR is chosen to serve the

mobile unit. Because of this, we will limit ourselves to the analysis of the SC

algorithm only. While the microdiversity might involve several antennas, the

number of base stations participating in the macrodiversity might be two or three,

even though ideally there is no limit to the number of base stations involved. The

use of two or three base stations is also reasonable since it is possible to imagine a

case where the distances from the mobile unit to the base stations are almost the

same (Jakes 1994; Alouini and Simon 2002; Piboongungon and Aalo 2004). Once

we have looked at the case of macrodiversity, we will analyze the case of combin-

ing micro- and macro-diversity approaches to mitigate fading and shadowing

simultaneously present in the channels. A typical three-base station scenario is

shown in Fig. 5.19. We will assume that correlation exists among the base stations.

We will also treat the branches to be identical. Since we will be dealing with

macrodiversity alone, it is very convenient to work with the normal pdf of the type

in (5.63) instead of the lognormal pdf in (5.64). The CDF of the output of the SC

algorithm has been derived and it is given by (Tellambura 2008; Skraparlis et al.

2009, 2010)

F zdBð Þ ¼ 3

2
ϕ zndBð Þ � 33T zndB;

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

1þ ρ

s !
� 6S zndB;

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

1þ ρ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ 2ρ

s !
,

ð5:65Þ
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where

ϕ að Þ ¼ 1ffiffiffiffiffi
2π

p
ð a
�1

exp �t2

2

� �
dt, ð5:66Þ

T a; bð Þ ¼ 1

2π

ð b
0

1

1þ x2ð Þ exp �a2

2
1� x2
� �� �

dx, ð5:67Þ

S a; b; cð Þ ¼ c

2π

ð1
0

ϕ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2 þ b2c2t2

p� 	
1þ c2t2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2 þ b2c2t2

p dt: ð5:68Þ

Note that ρ is the power correlation coefficient. The normalized Gaussian

variable ZndB is given by

zndB ¼ zdB � μ

σdB
: ð5:69Þ

For the case of two branches (i.e., base stations), the CDF of the output of the SC

algorithm is given by

FSC zdBð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p ðzndB
0

ðzndB
0

exp � x2 � 2ρxyþ y2ð Þ
2 1� ρ2ð Þ

� �
dxdy: ð5:70Þ

Using (5.65), the amount of fading can be estimated following the implementa-

tion of SC. The amount of fading in triple diversity is (Tellambura 2008)

Fig. 5.19 A 3-base station

macrodiversity arrangement
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AFSC3 ¼
exp σ2dB
� �
3

ϕ σdB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� ρð Þp� �� 2T σdB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� ρð Þp

, 1ffiffi
3

p
� 	

ϕ σdB

ffiffiffiffiffiffiffiffiffi
1�ρð Þ
2

q� �
� 2T σdB

ffiffiffiffiffiffiffiffiffi
1�ρð Þ
2

q
, 1ffiffi

3
p

� �
2
664

3
775� 1: ð5:71Þ

For the case of a two-branch diversity, the AF becomes

AFSC3 ¼
exp σ2dB
� �
3

ϕ σdB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� ρð Þp� �

ϕ σdB

ffiffiffiffiffiffiffiffiffi
1�ρð Þ
2

q� �
2
664

3
775� 1: ð5:72Þ

Since most of the macrodiversity implementations involve two base stations, we

will only look at the SNR improvement in dual diversity. The SNR following SC

can be expressed as

ZSCLNr ¼ 2Z0LNQ �σdB
A0

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

2

r !
, ð5:73Þ

where Z0LN is the average SNR/branch. Note that we are now using the average

SNR expressed in absolute units instead of decibels. For the lognormal pdf [see

Chap. 4 for the relationship between μ (dB) and the average of the SNR having the

lognormal pdf and the definition of A0], given by

Z0LN ¼ e
μ
A0
þσ2

dB

2A2
0 ð5:74Þ

and

Q hð Þ ¼ 1ffiffiffiffiffi
2π

p
ð1
h

e� x2=2ð Þdx ¼ 1� ϕ hð Þ: ð5:75Þ

Thus, the SNR improvement after selection combining becomes

SNRESCLN ¼ 2Q �σdB
A0

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

2

r !
ð5:76Þ

Proceeding in a manner similar to the case of dual correlated Nakagami chan-

nels, the SNR enhancement after SSC in dual correlated lognormal channel

becomes (Alouini and Simon 2002)

SNRESSCLN ¼ 2Q � σdB 1� ρð Þ
2A0

� �
: ð5:77Þ
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The SNR enhancement is plotted in Fig. 5.20 for two values of the correlation

coefficient ρ ¼ 0.3, 0.7. We see that the performance of the SSC is worse than that

of dual channel SC, mirroring the performance in Nakagami faded channels. SNR

enhancement also decreases with increasing branch correlation.

Even though macrodiversity can be implemented (as described above), we

seldom deal with macrodiversity alone because fading occurs along with

shadowing and microdiversity needs to be implemented simultaneously. To miti-

gate short-term fading and shadowing, microdiversity, hybrid schemes need to be

examined. These involve the implementation of diversity at base stations and

combining signals from multiple base stations. The need for this strategy was

evident in the error and outage analysis carried out in Chap. 4 where it is seen

that error rate and outage tend to be much higher when fading and shadowing are

present instead of short-term fading only.

Such hybrid approaches, especially suited to improve performance in shadowed

fading channels are described next.

5.5 Macro- and Microdiversity Systems (Hybrid Diversity)

While microdiversity techniques mitigate the effects of short-term fading and

macrodiversity techniques mitigate the effects of long-term fading or shadowing,

often wireless systems operate in channels which simultaneously suffer from fading
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Fig. 5.20 SNR enhancement lognormal shadowing (two branch)
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and shadowing. Consequently, macrodiversity and microdiversity techniques have

to be implemented in tandem (Abu-Dayya and Beaulieu 1994a; Mukherjee and

Avidor 2003; Shankar 2008a, b, 2009). In shadowed fading channels which exhibit

fading and shadowing simultaneously, the received SNR (assuming short fading to

be Nakagami distributed) was described in Chap. 4 as

f zjyð Þ ¼ m

y

� �m zm�1

Γ mð Þ exp �m

y
z

� �
: ð5:78Þ

In (5.78), the mean SNR is now a random variable Y which represents the effects

of shadowing. The pdf of the received signal SNR in shadowed fading channels is

reproduced below for the sake of immediate relevance as

f zð Þ ¼
ð1
0

f zjyð Þf yð Þdy

¼
ð1
0

m

y

� �m zm�1

Γ mð Þ exp �m

y
z

� �
A0

y
ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2dB

p exp � 10log10y� μð Þ2
2σ2dB

" #
dy, ð5:79Þ

where it is assumed that the shadowing follows lognormal statistics. Equation

(5.81) has no closed form solution and, therefore, analytical explorations of diver-

sity combining methods through (5.79) would be difficult. One of the ways in which

this complexity can be resolved is through the use of alternate models for

shadowing.

It was shown that a gamma pdf can approximate the lognormal pdf and, hence, it

would be an ideal replacement for the lognormal pdf.

Using such an approach, we saw in Chap. 4 that a closed form solution to the pdf

of the SNR in shadowed fading channels can be obtained as

fGK zð Þ ¼ 2

Γ mð ÞΓ cð Þ
b

2

� �cþm

z cþmð Þ=2ð Þ�1Kc�m b
ffiffi
z

p� �
U zð Þ: ð5:80Þ

The pdf in (5.80) was earlier identified as the generalized K distribution (GK).

The parameter b is related to the average SNR Z0 through

Z0 ¼ Zh iGK ¼ ZjYh iy ¼ cy0 ¼ mc
2

b

� �2

: ð5:81Þ

One obtains the so called K distribution for the shadowed fading channels when

the short-term fading is modeled as Rayleigh. The K distribution is obtained by

putting m ¼ 1 in (5.80). The pdf now becomes

f K zð Þ ¼ 2

Γ cð Þ
b

2

� �cþ1

z

�
cþ1=2ð Þ�1

Kc�1 b
ffiffi
z

p� �
U zð Þ: ð5:82Þ
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Thus, while (5.80) is the pdf for the received SNR in Nakagami-lognormal

shadowed fading channels, (5.82) is the pdf of the received SNR in Rayleigh

lognormal shadowed fading channels. It was shown that the GK distribution is an

excellent fit to model shadowed fading channels.

The availability of the analytical expression for the received SNR makes it

convenient to undertake the study of hybrid diversity schemes which involve the

use of microdiversity techniques to mitigate the effects of short-term fading and

macrodiversity techniques to mitigate the effects of shadowing, thus improving the

data transmission capabilities in wireless channels. We will consider the case of

M microdiversity branches and L base stations participating in macrodiversity. We

assume that the microdiversity branches are correlated (exponential correlation),

but are otherwise identical. We will limit ourselves to the case of three base stations

(L ¼ 3), which are identical but correlated as described earlier. Since the simplest

form of diversity that can be implemented at the macrolevel is the selection

diversity, we will take the case of MRC–SC (MRC at the microlevel and SC at

the macrolevel) and rewrite (5.32) to include the effects of shadowing as

f zljylð Þ ¼ m

yl

� �mM zmM�1
l

Γ mMð Þ exp � m

yl
zl

� �
, l ¼ 1, 2, 3: ð5:83Þ

In (5.83), l ¼ 1,2,3 correspond to the three base stations of the macrodiversity.

Joint pdf of the received SNRs from the three base stations will be

f z1; z2; z3ð Þ ¼
ð1
0

ð1
0

ð1
0

f z1jy1ð Þf z2jy2ð Þf z3jy3ð Þf y1; y2; y3ð Þ dy1 dy2 dy3, ð5:84Þ

where f(y1,y2,y3) is the joint pdf of the shadowing components. This joint pdf can

be expressed using the L-dimensional gamma pdf given by (Warren 1992;

Karagiannidis et al. 2003; Nomoto et al. 2004; Holm and Alouini 2004a, b; Shankar

2008a, b, 2009)

f y1; y2; . . . yLð Þ ¼ e� 1=y0 1�ρð Þð Þ y1þyL 1þρð Þ
PL�1

t¼2
yi

 �
ρ � L�1ð Þ c�1ð Þð Þ=2

yLþc�1
0 Γ cð Þ 1� ρð ÞL�1

y1yLð Þ c�1ð Þ=2ð ÞYL�1

l¼1

Ic�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρylylþ1

p
y0 1� ρð Þ
� �

:

ð5:85Þ

Using (5.85), the joint pdf f(y1,y2,y3) becomes

f y1; y2; y3ð Þ ¼
X1
k1¼0

X1
k2¼0

Ck1,k2 f y1ð Þf y2ð Þf y3ð Þ, ð5:86Þ
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Ck1,k2 ¼
ρk1þk2 1� ρð ÞcΓ k1 þ k2 þ cð Þ

1þ ρð Þk1þk2þcΓ k1 þ 1ð ÞΓ k2 þ 1ð ÞΓ cð Þ , ð5:87Þ

f y1ð Þ ¼ ycþk1
1 e� y1=χð Þ

Γ cþ k1ð Þχcþk1
, ð5:88Þ

f y2ð Þ ¼ ycþk1þk2�1
2 e� 1þρð Þy2ð Þ=χð Þ

Γ cþ k1 þ k2ð Þ χ= 1þ ρð Þð Þcþk1þk2
, ð5:89Þ

f y3ð Þ ¼ ycþk2�1
3 e� y3=χð Þ

Γ cþ k2ð Þχcþk2
, ð5:90Þ

χ ¼ y0 1� ρð Þ: ð5:91Þ

Even though correlation exists among the three base stations, (5.86) points out

the fact that it is possible to write the joint pdf f(y1,y2,y3) as the sum of product

marginal pdfs and making it possible to obtain an analytical expression for the pdf

of the output SNR of the MRC–SC scheme. Equation (5.84) can now be simplified

using (5.86), (5.87), (5.88), (5.89), (5.90), and (5.91) as

f z1; z2; z3ð Þ ¼
X1
k1¼0

X1
k2¼0

Ck1,k2 f 1 zð Þf 2 zð Þf 3 zð Þ, ð5:92Þ

where

f 1 zð Þ ¼ 2

Γ mMð ÞΓ cþ k1ð Þ
b1
2

� �cþk1þmM

z cþk1þmMð Þ=2ð Þ�1Kcþk1�mM b1
ffiffi
z

p� �
U zð Þ,

ð5:93Þ

f 2 zð Þ¼ 2

Γ mMð ÞΓ cþ k1þk2ð Þ
b2
2

� �cþk1þk2þmM

z cþk1þk2þmMð Þ=2ð Þ�1Kcþk1þk2�mM b2
ffiffi
z

p� �
U zð Þ,

ð5:94Þ

f 3 zð Þ ¼ 2

Γ mMð ÞΓ cþ k2ð Þ
b3
2

� �cþk2þmM

z cþk2þmMð Þ=2ð Þ�1Kcþk2�mM b3
ffiffi
z

p� �
U zð Þ,

ð5:95Þ

where

b1 ¼ 2

ffiffiffiffiffiffi
m

χ
,

r
ð5:96Þ
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b2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m 1þ ρð Þ

χ

s
, ð5:97Þ

b3 ¼ b1: ð5:98Þ

Note that

Z0 ¼ cy0, ð5:99Þ

the average SNR/branch of the microdiversity. The CDF of the output SNR of the

MRC–SC algorithm becomes

FMRC�SC zð Þ ¼
ð z
0

ð z
0

ð z
0

f z1; z2; z3ð Þdz1 dz2 dz3: ð5:100Þ

Using (5.92), (5.100) becomes

FMRC�SC zð Þ ¼
X1
k1¼0

X1
k2¼0

Ck1,k2F1 zð ÞF2 zð ÞF3 zð Þ, ð5:101Þ

where F1(z)–F3(z) are the CDFs corresponding to the pdfs f1(z)–f3(z), respectively.
They can easily be obtained as

F1 zð Þ¼Γ mM� c� k1ð Þ zb21=4
� �cþk1

Γ mMð ÞΓ cþ k1þ1ð Þ 1F2 cþ k1; 1�mMþ cþ k1;1þ cþ k1½ �, zb
2
1

4

� �

þΓ cþ k1�mMð Þ zb21=4
� �mM

Γ mMþ1ð ÞΓ cþ k1ð Þ 1F2 mM; 1� c� k1þmM;1þmM½ �;zb
2
1

4

� �
,

ð5:102Þ

F2 zð Þ¼Γ mM�c�k1�k2ð Þ zb22=4
� �cþk1þk2

Γ mMð ÞΓ cþk1þ k2þ1ð Þ 1F2 cþk1þk2; 1�mMþ cþk1þk2;1þcþk1þk2½ �,zb
2
2

4

� �

þΓ cþ k1þk2�mMð Þ zb22=4
� �mM

Γ mMþ1ð ÞΓ cþ k1þk2ð Þ 1F2 mM; 1�c�k1�k2þmM;1þmM½ �;zb
2
2

4

� �
,

ð5:103Þ

F3 zð Þ¼Γ mM� c� k2ð Þ zb23=4
� �cþk2

Γ mMð ÞΓ cþ k2þ1ð Þ 1F2 cþ k2; 1�mMþ cþ k2;1þ cþ k2½ �,zb
2
3

4

� �

þΓ cþ k2�mMð Þ zb23=4
� �mM

Γ mMþ1ð ÞΓ cþ k2ð Þ 1F2 mM; 1� c� k2þmM;1þmM½ �;zb
2
3

4

� �
,

ð5:104Þ
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where 1F2 is the hypergeometric function (Gradshteyn and Ryzhik 2007). The pdf

of the output SNR of the MRC–SC algorithm now becomes

fMRC�SC zð Þ¼
X1
k1¼0

X1
k2¼0

Ck1,k2 f 1 zð ÞF2 zð ÞF3 zð Þþ f 2 zð ÞF1 zð ÞF3 zð Þþ f 3 zð ÞF1 zð ÞF2 zð Þ½ �:

ð5:105Þ

The case of correlation at the microlevel can easily be incorporated since the

correlation only at the microlevel still results in a gamma pdf for the output of the

MRC algorithm, as seen in (5.48).

We can now consider a few special cases of the diversity implementation in

shadowed fading channels.

If microdiversity alone is implemented in shadowed fading channels, the pdf of

the output SNR of the MRC diversity becomes (zero correlation)

fMRC zð Þ¼
ð1
0

fMRC zjyð Þf yð Þdy¼
ð1
0

m

y

� �mM zmM�1

Γ mMð Þ exp �m

y
z

� �
yc�1

yc0Γ cð Þ exp � y

y0

� �
dy

¼ 2

Γ mMð ÞΓ cð Þ
b

2

� �cþmM

z cþmMð Þ=2ð Þ�1KmM�c b
ffiffi
z

p� �
:

ð5:106Þ

In terms of the average SNR/branch of diversity Z0, we have

Z0 ¼ cy0, ð5:107Þ

Equation (5.106) now becomes

fMRC zð Þ ¼ 2

Γ mMð ÞΓ cð Þ
ffiffiffiffiffiffi
mc

Z0

r� �cþmM

z cþmMð Þ=2ð Þ�1KmM�c 2

ffiffiffiffiffiffiffi
mc

Z0

r
z

� �
: ð5:108Þ

The density function in (5.108) is plotted in Fig. 5.21.

Figure 5.22 shows the effect of diversity as M increases. As M increases the

performance certainly improves as seen by the shift of the peaks to the right. The

effect of correlated branches is shown in Fig. 5.23.

If selection combining is implemented at the microlevel, the pdf of the output

SNR (zero correlation) can be written in terms of the conditional SNR f(z/y) as

f SC zjyð Þ ¼ M
γ m; mz=yð Þð Þ

Γ mð Þ½ �
� �M�1 m

y

� �m zm�1

Γ mð Þ exp �m

y
z

� �
: ð5:109Þ

Substituting for the pdf of the shadowing, the pdf of the SNR in selection

combining becomes
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Fig. 5.21 Plot of the density functions showing the effects of microdiversity in shadowed fading

channels (average SNR/branch of unity)
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Fig. 5.22 The effect of increasing order of diversity in shadowed fading channels (average

SNR/channel is unity)
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f SC zð Þ ¼
ð1
0

f SC zjyð Þf yð Þ dy, ð5:110Þ

where

f SC zð Þ¼
ð1
0

M
γ m; mz=yð Þð Þ

Γ mð Þ½ �
� �M�1 m

y

� �m zm�1

Γ mð Þ exp �m

y
z

� �
c

Z0

� �cyc�1

Γ cð Þ exp � c

Z0

y

� �
dy:

ð5:111Þ

Once again, (5.111) has been expressed in terms of the average SNR/branch Z0
using (5.107). The pdf is shown in Fig. 5.24 for Z0 ¼ 1.

There is another hybrid combining systems (also called a hybrid diversity

system) which employs both selection combining and MRC at a given location.

We will explore the attributes of hybrid diversity systems employed to mitigate

fading and shadowing later in the next section. For the general case of MRC–SC,

with microdiversity of order of M and macrodiversity of order L with independent

and identical branches (microdiversity) and identical base stations (macro-

diversity), the pdf of the received SNR will be

fMRC�SC zð Þ ¼ L FM zð Þ½ �L�1 2

Γ mMð ÞΓ cð Þ
b

2

� �cþmM

z cþmMð Þ=2�1Kc�mM b
ffiffi
z

p� �
ð5:112Þ
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Fig. 5.23 GK pdf after correlated MRC diversity alone (average SNR of unity)
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with

FM zð Þ ¼
Γ mM � cð Þ zb2

4

� 	c
Γ mMð ÞΓ cþ 1ð Þ 1F2 c; 1� mM þ c; 1þ c½ �; zb

2

4

� �

þ Γ c� mMð Þ zb2=4
� �mM

Γ mM þ 1ð ÞΓ cð Þ 1F2 mM; 1� cþ mM; 1þ mM½ �; zb
2

4

� �
:

ð5:113Þ

Using MeijerG functions, the density function can be expressed as

fMRC�SC zð Þ¼ L
1

Γ cð ÞΓ mMð ÞG
2,1
1,3

mcz

Z0

1

Mm,c,0

� �� �� �L�1
1

zΓ cð Þ Mmð ÞG
2,0
0,2

mcz

Z0





 �
Mm,c

� �
:

ð5:114Þ

The density functions are plotted in Fig. 5.25. We will return to these density

functions when we look at the estimation of outage probabilities.

Another way to take a closer look at the effect of diversity in shadowed fading

channels is to use random number generation. The shadowed fading channel can be

simulated by generating random numbers (SNR) as

Z ¼ XY: ð5:115Þ
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Fig. 5.24 Density function of SC only at the microlevel (average SNR/branch ¼1)
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As in the case of the GK model, both X and Y are gamma random variables with

orders m and c. The diversity can then be implemented by generating several sets of

random variables, one set for one base station and the other set for a second base

station simulating macrodiversity of order two (dual). Results of such a simulation

are shown in Figs. 5.26 and 5.27. Figure 5.26 shows the plots of the CDFs of the

SNR obtained for the case of four-branch microdiversity and two-branch

macrodiversity. The CDF shifts to the right indicating expected improvement in

the channel conditions as one goes from no diversity to the case of hybrid diversity

of MRC–SC. For comparison, the case of SC–SC is shown. It refers to selection

combining at the microlevel followed by selection combining at the macrolevel.

Figure 5.27 shows the results on the comparison of the pdfs. Once again, the shift

of the peak toward higher values of the SNR is seen, with diversity with the

maximum shift occurring with MRC–SC. It is also seen that MRC alone at the

microdiversity level is better than implementing selection combining at the

microlevel followed by selection combining at the macrolevel.

We will return to the case of simultaneous implementation of micro- and

macrodiversity later when we examine additional quantitative measures of

improvement gained through diversity.
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Fig. 5.25 Plots of the MRC–SC pdf (uncorrelated); average SNR/branch ¼1
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5.6 Generalized Selection Combining

We have so far explored the straightforward diversity combining algorithms,

namely Selection Combining (including SSC as well), EGC, and MRC. These

algorithms are implemented as a part of the microdiversity techniques. A hybrid

diversity technique employing both microdiversity and macrodiversity combining

techniques are examined for mitigating short-term fading and shadowing occurring

concurrently. There is also yet another hybrid diversity combining algorithm used

to mitigate short-term fading implying that it is a microdiversity approach

implemented at a base station (or a mobile unit). This technique, known as the

generalized selection combining (GSC) technique, uses both selection combining

and MRC without using multiple base stations (Kong and Milstein 1999; Alouini

and Simon 1999; Ma and Chai 2000; Ning and Milstein 2000; Mallik and Win

2002; Annamalai and Tellambura 2003; Theofilakos et al. 2008; Malhotra et al.

2009). Since selection combining only uses a single branch from M diversity

branches, the SC algorithm wastes resources by not using the remaining (M�1)

branches. This underutilization of resources is a critical issue within the context of

CDMA systems which rely on RAKE reception to mitigate short-term fading. On

the other hand, with MRC using the complete set of M branches also poses some

problems since some of the branches might be very weak and this can lead to

problems in the estimation of channel characteristics crucial to the successful

implementation of the MRC algorithm. Thus, there is merit in pursuing a hybrid

strategy of using both selection combining of a few of the strongest branches and

following this up with the MRC (Kong and Milstein 1999; Alouini and Goldsmith

1999). This would remove the weaker branches from consideration, eliminating the

problems encountered during the channel estimation, and making use of a signif-

icant number of branches instead of a single branch mitigating the underutilization

issue. The GSC algorithm relies on this concept.

The GSC algorithm uses a certain number of strongest branches (Select the

strongest branches-SC) and then coherently combines these strongest ones in the

MRC algorithm. Based on the two combining algorithms, this technique can be

identified as SC/MRC algorithm which uses the strongest Mc branches of the

M branches (1 � Mc � M ). Without any detailed examination it is obvious that if

Mc ¼ 1, we have the traditional SC algorithm, and if Mc ¼ M, we have the MRC

algorithm, and ifMc<M, we have the SC/MRC algorithm. It must be noted that we

can also use the EGC instead of the MRC in the GSC approach, even though such an

approach is not commonly pursued.

Before we examine the case of a Nakagami channel, we will look at the case of a

Rayleigh channel (Nakagami parameter m ¼ 1) since analytical expressions for the

SNR output of the SC and MRC algorithms are readily available for any value of

M while analytical expression for the SNR of the SC algorithm in a Nakagami

channel is available only for the case of M ¼ 2. A block diagram of the GSC

algorithm is sketched in Fig. 5.28.

5.6 Generalized Selection Combining 563



The Mc signals with the strongest SNR are selected (SC) and weighted

appropriately before combining them (MRC). The pdf of the SNR at the output

of any one of the branches prior to MRC combining is given in (5.9), where Z0 is the

average SNR. The joint pdf of the Mc strongest signals of the M branches can

be expressed as

f z1; z2; . . . ; zMc
ð Þ ¼ M M � 1ð Þ . . . M �Mc þ 1ð Þ F zMc

ð Þ½ �M�McYMc

k¼1

f zkð Þ, z1 . . . � zMc
� 0:

ð5:116Þ

Thus, if z1; z2;. . .; zMc constitute the Mc strongest SNRs, the MRC combining

will result in an output of

ZSC=MRC ¼ Z1 þ Z2 þ . . . ZMc
, ð5:117Þ

the average output SNR of the GSC combing will be given by

Zh iSC=MRC ¼
ð1
0

ð1
0

� � �
ð1
zMc

z1 þ z2 þ � � � þ zMcð Þ dz1 dz2� � �dzMc|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Mc�fold

ð5:118Þ

It has been shown that (5.118) becomes

Zh iSC=MRC ¼ Z0 Mcþ Mc

Mcþ1
þ Mc

Mcþ2
þ�� �þ Mc

M�1
þMc

M

� �
,1�Mc �M: ð5:119Þ
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Fig. 5.28 Concept of generalized selection combining
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Note that (5.119) contains (M�Mc) + 1 term. We can now look at the two special

cases of (5.119) or the GSC combining algorithm. If Mc ¼ 1, GSC becomes the

traditional selection combining algorithm and (5.119) becomes

Zh iSC=MRC,Mc¼1 ¼ Z0 1þ 1

2
þ 1

3
þ � � � þ 1

M � 1
þ 1

M

� �
¼ Z0

XM
k¼1

1

k
, ð5:120Þ

which was the same result obtained for selection combining. If Mc ¼ M, we are

using all the branches in the algorithm and, hence, this case is nothing but the MRC

combining algorithm. Equation (5.119) now becomes

Zh iSC=MRC,Mc¼M ¼ MZ0: ð5:121Þ

The SNR enhancements for SC, MRC, and SC/MRC are plotted in Fig. 5.29 as a

function of the numberMc of the strongest branches selected for the case ofM ¼ 8.

It can be seen that, as expected, the SNR enhancement of GSC falls between SC

(minimum) and MRC (maximum).

We can now look at the case of a Nakagami channel, once again assuming that

the branches are independent and identical. By selecting the strongest Mc branches

out of the M branches, the joint pdf of the selected branch SNRs can be expressed

using (5.116) as (Alouini and Simon 1999)
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Fig. 5.29 SNR enhancement in Rayleigh channels (MRC, SC, and GSC)
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f z1; . . . ; zMc
ð Þ ¼ Mc!

M
Mc

� �
γ m;mzMc

=Z0ð Þ
Γ mð Þ½ �

� �M�Mc

�
YMc

k¼1

m

Z0

� �m zm�1
zk

Γ mð Þ exp � m

Z0

zk

� �" #
, z1 . . . � zMc

: ð5:122Þ

Note that (5.122) is similar to (5.116) expect for the exact expressions for the pdf

and CDF from (5.28) to (5.29), respectively. Just as in the case of selection

combining, it is difficult to obtain an analytical expression for the SNR of the

GSC algorithm. Because of this, we will consider a case of M ¼ 4 and Mc ¼ 2 and

3. For the case of MRC/SC withM¼ 4 andMc¼ 2, the joint pdf in (5.122) becomes

f z1; z2ð Þ ¼ 12
γ
�
m,mz2=Z0

Γ mð Þ½ �
� �2Y2

k¼1

m

Z0

� �m zm�1
zk

Γ mð Þ exp �m

Z0

zk

� �" #
, z1 � z2 ð5:123Þ

and for M ¼ 4 and Mc ¼ 3, the joint pdf becomes

f z1;z2;z3ð Þ¼ 24
γ
�
m,mz2=Z0

Γ mð Þ½ �
� �Y3

k¼1

m

Z0

� �m zm�1
zk

Γ mð Þ exp �m

Z0

zk

� �" #
,z1 � z2 � z3 � 0:

ð5:124Þ

The average SNR after diversity combining becomes

Zh iMc¼2,M¼4 ¼
ð1
0

ð1
0

12z24
γ
�
m,mz2=Z0
Γ mð Þ

" #2
m

Z0

� �2m zz1zz2ð Þm�1

Γ mð Þ½ �2 exp �m

Z0

z24

� �
dz2 dz1

ð5:125Þ

and

Zh iMc¼3,M¼4 ¼
ð1
0

ðz1
0

ðz2
0

24z34
γ
�
m,mz3=Z0

Γ mð Þ½ �
� �

� m
Z0

� 	3m z1z2z3ð Þm�1

Γ mð Þ½ �3 exp �m

Z0

z34

� �
dz3 dz2 dz1,

ð5:126Þ

where

z24 ¼ z1 þ z2 ð5:127Þ

and

z34 ¼ z1 þ z2 þ z3: ð5:128Þ
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We will examine the CDFs of the GSC outputs for the case of a three-branch

GSC. We will compare the CDF with the CDF of the SC as well as MRC. In this

case, the joint pdf becomes

f z1; z2ð Þ ¼ 6f z1ð Þf z2ð ÞF z2ð Þ, z2 < z1: ð5:129Þ

In (5.129), the pdf f(.) is the gamma pdf associated with the Nakagami fading

channel and F(.) is the corresponding CDF. The GSC output will be

Z ¼ Z1 þ Z2: ð5:130Þ

To obtain the CDF of the GSC output, we can use a graphical approach as shown

in Fig. 5.30.

The CDF which is the volume contained within the shaded area can be expressed

as

FGSC zð Þ ¼ F
z

2

� 	h i3
þ 3

ð z
z=2

f xð Þ F Z � xð Þ½ �2 dx: ð5:131Þ

Note that the CDF of the pure selection combining algorithm with three branches

will be

FSC zð Þ ¼ F zð Þ½ �3 ð5:132Þ

z1

z2 

z

z
z1 > z2

z1=z2 
z1 + z2< z 

Fig. 5.30 Method to

evaluate the CDF in GSC.

The region below the line

z1 ¼ z2 corresponds to

z1 > z2. Thus, the CDF is

given by the volume

contained in areas I and II as

indicated
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In (5.131) and (5.132), f() and F(.) are

f zð Þ ¼ m

Z0

� �m zm�1

Γ mð Þ exp �m

Z0

z

� �
, ð5:133Þ

F zð Þ ¼ γ m; mz=Z0ð Þð Þ
Γ mð Þ : ð5:134Þ

For the case of a three-branch MRC, the CDF will be

F zð Þ ¼ γ 3m; mz=Z0ð Þð Þ
Γ 3mð Þ : ð5:135Þ

The CDFs are plotted in Fig. 5.31.

The corresponding densities can be obtained by differentiating the CDFs. They

are shown in Fig. 5.32.

As done before, we will compare the SNR enhancement achieved through the

GSC approaches to those of the stand alone conventional SC and MRC algorithms.

The SNR enhancement after the implementation of the algorithm is obtained by

carrying out the numerical integration of the expressions in (5.125) and (5.126).

The SNR enhancements for stand alone SC and MRC were obtained earlier. They

can also be obtained by simplifying (5.125) or (5.126) by putting Mc ¼ 1 to get the

SC andMc¼ 4 to get the MRC results. Figure 5.33 shows the SNR enhancements as

a function of the Nakagami parameter m.
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As we go from pure selection combining (SC) to pure MRC, it is seen that the

SNR enhancement continues to up with Mc, the number of strongest selected

branches out of the four total branches.

As we did earlier, we can explore the behavior of the density functions and

distribution functions of the SNR following diversity including GSC through

random number simulation. Sets of gamma random variables were generated and

the diversity was implemented. The densities and distributions can be estimated

using ksdensity and ecdf in Matlab. The results of this study for the case of a five-

branch diversity are shown in Figs. 5.34 and 5.35.

Figure 5.34 shows the pdfs for the cases of No Diversity, selection combining,

MRC, and GSC(5,2), GSC(5,3), and GSC(5,4). One can see that the peaks of the

density functions lie between those of the density functions of no diversity and

MRC. The case of GSC(5,4) is very close to that of the MRC, once again demon-

strating that GSC becomes SC when only selection combining alone is carried out

and GSC approaches MRC as the number of branches (Mc) increases.

Figure 5.35 shows the corresponding CDFs. Once again, CDF of the SNR in

GSC is bounded by SC and MRC.

We will examine the effect of diversity in wireless channels modeled using a

cascaded approach later.

We will now compare the performance of all the diversity combining algorithms

using additional quantitative measures besides the SNR enhancement.
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5.7 Quantitative Comparison of Diversity Combining
Algorithms

The different diversity schemes employed to mitigate the effects of short term

fading, shadowing as well as shadowing and fading simultaneously have been

described. Even though the efforts were mainly devoted to the Nakagami-m short

term faded channels, other fading channels such as Weibull and generalized gamma

channels can be easily studied using the general expressions for the density

functions for the Selection combining, MRC, and GSC. The main model explored

for the case of stand alone shadowing was the lognormal one as it the primary

model used. For the shadowed fading channel, the effort was centered on the

Nakagami-m short term fading. Lognormal shadowing was replaced by the

gamma shadowing.

While results on independent branches and independent base stations are much

simpler, we also included the most general cases when the diversity branches are

correlated in the case of selection combining and MRC. The case of the correlation

among the base stations was also considered. There are several analytical ways to

examine the performance improvement gained through the implementation of the

diversity techniques. One of them is the straightforward estimation of the SNR

before and after the diversity. This was undertaken earlier in this work along with

the derivation and discussion of the pdfs above. However, the enhancement in SNR

after diversity does not necessarily lead to a proportionate reduction in the proba-

bility of error. This is due to the fact that the relationship between the probability of
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error and SNR is not a linear one. Similarly, the enhancement in SNR after diversity

will not result in a proportional decline in outage probability. Thus, we require

additional means to explore the effects of diversity on wireless data transmission

systems. Before we look at the probability of error and outage probability, we will

examine a few additional parameters to quantify the improvement in wireless

systems gained through the implementation of diversity techniques. These include

the AF, error rates, and outage probabilities.

5.7.1 Amount of Fading

The AF in a wireless channel was discussed in Chap. 4 and it is given by (Charesh

1979; Nakagami 1960; Simon and Alouini 2005)

AF ¼ Z2
� �
Zh i2 � 1 ð5:136Þ

For a short term faded Nakagami channel,

AF ¼ 1

m
ð5:137Þ

and for the case of MRC diversity,

AFMRC ¼ 1

mM
: ð5:138Þ

Equation (5.138) indicates that level fading goes down inversely with the

number of branches of diversity, M. For a given site, the number of independent

spatial or frequency diversity branches available is limited. Once M is increased

beyond that value, the branches become correlated. The reduction in fading gained

when correlation exists among theM branches is less than what is given in (5.138).

The AF for the SC can be evaluated numerically by computing the first and

second moments of the pdf in (5.111). The AF for the case of independent

identically distributed branches for MRC and SC are plotted in Fig. 5.36. These

results once again show that MRC is better at mitigating fading than SC.

Similarly, the AF in pure shadowing which follows lognormal pdf can be

expressed as (Stuber 2002; Simon and Alouini 2005)

AF ¼ e σdB=A0ð Þ2 � 1: ð5:139Þ
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For the case of a two channel selection combining diversity, AF becomes

AFSCLN ¼ e σdB=A0ð Þ2 Q � σdB=A0ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� ρð Þp� �

2 Q � σdB=A0

ffiffiffi
2

p� � ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p� � �2 � 1: ð5:140Þ

In the case of switch and stay combining (SSC), the AF becomes (Corazza and

Vatalaro 1994; Alouini and Simon 2002; Tellambura 2008)

AFSSCLN ¼ e σ=Að Þ2
Q 10log10 ZTð Þ�μ

σdB
�2 σdB

A0

� 	
þQ σdB

A0
2ρ� 10log10 ZTð Þ�μ

σdB

� 	
Q 10log10 ZTð Þ�μ

σ � σdB
A0

� 	
þQ σdB

A0
ρ� 10log10 ZTð Þ�μ

σdB

� 	� 	2
2
64

3
75�1:

ð5:141Þ

Note that in the absence of a simple analytical expression for the optimal

threshold that minimizes the AF, as it was in the case with selection combining,

the AF in a two-branch SSC algorithm in lognormal channels depends on the

threshold SNR ZT and the average power or SNR μ(dB). The AF for the case of

lognormal shadowing is plotted in Fig. 5.37 for SC.

The AF for the case of lognormal shadowing in the case of SSC is plotted in

Fig. 5.38 (σdB ¼ 3) and Fig. 5.39 (σdB ¼ 7), respectively.
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We will now go back to GSC and estimate the AF after the implementation of

diversity. Once again, we will use the example of four diversity branches and allow

the number of strongest branches selected to vary from one to four. The second

moment of the pdf can be evaluated similarly to the approach used in (5.125) and

(5.126), where z24 and z34 are replaced by

z24 ¼ z1 þ z2ð Þ2 ð5:142Þ

and

z34 ¼ z1 þ z2 þ z2ð Þ2, ð5:143Þ

respectively. The AF as a function of the Nakagami parameter m is plotted in

Fig. 5.40. The advantage of GSC over SC is clearly seen in the reduction of the

fading levels (AF) as one moves from stand alone SC to stand alone MRC.

A few more observations on the AF are in order. We will use a Nakagami

channel with a parameter m for this discussion. Comparing (5.137) and (5.138), it is

obvious that as the number of independent branches M increase, the deleterious

effect of fading will be less. Yet another way to see the benefits of diversity in

reducing the effects of fading is to examine the pdfs gamma variables seen earlier.

As the number of branches increases, the order of the gamma pdf increases from

m toMm, pushing the pdf further to the right. The pdf of the SNR at the output of the

diversity approaches the Gaussian pdf making the Nakagami channel approximate

to a Gaussian channel.
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5.7.2 Average Probability of Error

There are two remaining important quantitative measures to compare the perfor-

mance enhancement achieved through diversity and combining algorithms. One is

to calculate the bit error rates before diversity (Chap. 4) and after diversity and

determine the reduction in SNR achieved with diversity to maintain a specific bit

error rate. The average error rate following diversity can be expressed as

p eð Þav ¼
ð1
0

ber zð Þ f div zð Þdz: ð5:144Þ

In (5.144), ber(z) is the bit error rate (probability of error) in the absence of

fading (ideal Gaussian channel) and fdiv(z) is the pdf of the output SNR of the

diversity combining algorithms. For the case of a coherent binary phase shift keying

(CBPSK), (5.144) becomes

p eð Þav ¼
ð1
0

Q
ffiffiffiffiffi
2z

p� 	
f div zð Þdz, ð5:145Þ

where Q(.) was defined earlier in (5.75) as well as in Chap. 3. Note that there are

two key approaches of estimating the probability of error in fading channels (either

prior to the diversity combining or after diversity combining). The first approach is

to perform the integration in (5.145) analytically if possible. Otherwise, one needs

to perform the integration in (5.145) analytically. If the pdf of the SNR is
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unavailable analytically, the use of (5.145) becomes computationally tedious since

it is likely to involve multidimensional integration. If that is the case, we use the

second approach using moment generating function (MGF) approaches (Alouini

and Simon 2000; Annamalai et al. 2005; Goldsmith 2005). We will use the example

of the MRC diversity in independent Nakagami channels to illustrate both tech-

niques. Let us start with the case of the probability of error estimation using MGF

first.

One of the points to be noted in this analysis is the fact that density functions of

the SNR in fading before and after diversity is a nonnegative random variable.

Thus, we can express the MGF of the SNR Z as (Papoulis and Pillai 2002;

Annamalai et al. 2005; Goldsmith 2005)

Mz sð Þ ¼
ð1
0

f zð Þ exp szð Þdz: ð5:146Þ

Note also that we can relate the MGF and the density function through the

Laplace transform as

Mz �sð Þ ¼ L f Z zð Þ½ �: ð5:147Þ

The Laplace transform of a Nakagami random variable is given by (Annamalai

et al. 2005; Goldsmith 2005)

MZ sð Þ ¼ 1� sZ0

m

� ��m

: ð5:148Þ

Let us try to evaluate the average probability of error in (5.145) for the case of a

Nakagami channel with no diversity. For this purpose, we will use an alternate form

of the Q function instead of the one in (5.75).

Q xð Þ ¼ 1

π

ðπ=2
0

exp � x2

2sin 2 θð Þ
� �

dθ ð5:149Þ

and the expression for the probability of error for a coherent BPSK modem can be

expressed as

der zð Þ ¼ 1

π

ðπ=2
0

exp � z

sin 2 θð Þ
� �

dθ: ð5:150Þ

The average probability of error in a Nakagami channel now becomes

pe ¼
1

π

ð1
0

ðπ=2
0

exp � z

sin 2 θð Þ
� �

dθf zð Þ dz, ð5:151Þ
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where f(z) is the pdf of the SNR in (5.28). Using the Laplace transform of the pdf

given in (5.148)

pe ¼
1

π

ðπ=2
0

ð1
0

exp � z

sin 2 θð Þ
� �

f z zð Þ dz
� �

dθ

¼ 1

π

ðπ=2
0

MZ � 1

sin 2 θð Þ
� �

dθ,

ð5:152Þ

where MZ(.) is given in (5.148). Equation (5.152) now becomes

pe ¼
1

π

ðπ=2
0

1þ Z0

m sin 2 θð Þ
� ��m

dθ: ð5:153Þ

Equation (5.153) can be easily evaluated since it involves only ordinary trigo-

nometric functions. We will now look at the case of MRC diversity in Nakagami

channels.

Since the output of the MRC algorithm consists of the sum of the individual

SNRs, the MGF of the output of MRC algorithm will be the product of the MGFs.

The average probability of error at the output of the maximal ratio combiner will be

peMRC ¼
ð1
0

ð1
0

� � �
ð1
0

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 z1 þ z2 þ � � � þ zMð Þ

p� 	
f z1ð Þf z1ð Þ . . . f zMð Þ ð5:154Þ

which is an M-fold integral, and f(z1) through f(zM) are the marginal pdf’s of the
SNRS from each of theM branches, treating the branches as independent. Using the

expression for the Q function in (5.149), (5.154) becomes

peMRC ¼ 1

π

ðπ=2
0

YM
k¼1

MZk
� 1

sin 2 θð Þ
� �

dθ: ð5:155Þ

When all the branches are identically distributed, (5.155) becomes

peMRC ¼ 1

π

ðπ=2
0

Mz � 1

sin 2 θð Þ
� �� �M

dθ ¼ 1

π

ðπ=2
0

1þ Z0

msin 2 θð Þ
� ��mM

dθ: ð5:156Þ

One can now write the expression for the average probability of error by directly

using (5.156) as

peMRC ¼
ð1
0

Q
ffiffiffiffiffi
2z

p� 	 m

Z0

� �mM zmM�1

Γ mMð Þ exp �m

Z0

� �
dz, ð5:157Þ

where we have used the pdf in (5.32) for the pdf of the output of the MRC

algorithm. The analytical expression for the error rate is expressed in terms of
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hypergeometric functions 2F1(.) and the expression is obtained using the table of

integrals (Gradshteyn and Ryzhik 2007; Wolfram 2011). Note that (5.156) can be

evaluated without deriving the density function for the SNR following the diversity.

Equation (5.144) can also be modified slightly for use if the CDF is available in

analytical form. Integrating by parts, (5.144) becomes

p eð Þav ¼ �
ð1
0

d ber zð Þ½ �
dz

Fdiv zð Þdv: ð5:158Þ

In (5.158), Fdiv(.) is the CDF of the output of the diversity combiner. Using the

derivative property of the Q function defined in (5.75), (5.158) becomes

p eð Þav ¼
ð1
0

1

2
ffiffiffi
π

p exp �zð Þffiffi
z

p
� �

Fdiv zð Þ dz: ð5:159Þ

Equation (5.159) might be easier to integrate because the CDF always lies

between 0 and 1 while the pdf can lie between 0 and 1.

Equation (5.145) has been evaluated for the case of Nakagami short-term faded

channel for a few diversity combining algorithms. In Chap. 4 we had seen the effect

of increasing values of m on the error rates in fading channels. As the value of

m increased, the excess power or SNR required to achieve a certain bit error rate

went down. One can now view the diversity approaches as a means to reduce this

power penalty as we will see now. The error rate in a Nakagami channel when MRC

diversity is implemented is shown in Fig. 5.41. As M increases, the error rate
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declines. This can be viewed in terms of increasing order of the gamma pdf as the

order of the diversity M increases.

The effect of branch correlation in MRC is seen in the error rate plots shown in

Fig. 5.42 for the case of a four-branch (M ¼ 4) diversity. The error rates increase as

the correlation goes up. A more detailed picture of the effects of correlation on error

rates is shown in Fig. 5.43 for the case of m ¼ 2 and M ¼ 3.

The effect of selection combining on mitigating short-term fading is sketched in

Fig. 5.42 for two values of the Nakagami parameter m ¼ 0.5 and 1.5. As discussed

earlier, arguing that most of the gains are realized with dual branch case for SC, we

have only considered the case of a two-branch diversity where the branch correla-

tion is taken into account. As the correlation decreases, the probability of error

curves move toward the bottom left hand corner, indicating the reduction in fading

penalty described in the previous paragraph. As the correlation increases, the

probability of error plots moves toward the curves for no diversity for the respective

values of the Nakagami parameter.

It was shown through an analysis of the SNR enhancement that MRC algorithm

performs better than the SC algorithm in mitigating diversity. This aspect is shown

in Figs. 5.44 and 5.45. Figure 5.44 shows the plots of the probability of error for the

MRC algorithm for M ¼ 2 and Fig. 5.45 shows the results for a correlated dual

branch SC receiver. Comparing the curves in Figs. 5.44 and 5.45 it is seen that MRC

algorithm leads to further reduction in power penalty over the SC algorithm.
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We will explore the differences between MRC and SC algorithm and their

relationship to the GSC algorithm in Fig. 5.46. A four-branch diversity (M ¼ 4)

is considered where it is assumed that the branches are independent. For the first

case, we will also assume that the channel is Rayleigh. As discussed earlier, if all

the four branches are selected, we have the conventional MRC algorithm. The curve

identified as SC3 refers to the case where the three strongest branches are selected

for the MRC algorithm. Similarly, SC2 refers to the case where the two strongest

branches are selected for the MRC algorithm. One can see that probability of error

values for SC3 is better than those for SC2. The error rates were calculated

numerically by triple integration (SC3) and double integration (SC2) with the

appropriate density functions given in (5.122). The performance (Fig. 5.46) is

bounded by MRC at the better end and SC at the worse end, once again supporting

the argument that MRC is the better of the two algorithms between MRC and SC,

and SSC is a means to move the performance closer to that of MRC.

Figure 5.47 shows similar results for the case of a Nakagami channel with

m ¼ 1.5. Once again, the results shown here follow the trends seen in Fig. 5.24,

reinforcing the SSC technique that allows the performance to approach that of the

MRC algorithm in mitigating short-term fading.

When shadowing is present along with short-term fading, one needs to use

diversity at the microlevel (at the base station or at the MU unit as the case may

be) and macrodiversity at the macrolevel which involve the use of multiple base

stations. Thus, if one only resorts to diversity implementation at the microlevel
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(for example MRC), the diversity gain might not be sufficient to overcome the

performance degradation as discussed in connection with Fig. 5.27. To demonstrate

this, we revisit the simulation of the densities of the SNR for different sets of values

of m and c based on the GK model as an approximation to the Nakagami-lognormal

model, discussed previously. Let us remember that low values of m correspond to

severe shadowing and high values of c correspond to weak shadowing and

shadowing vanishing when c approaches infinity. The Nakagami parameter m is

taken to be unity and average SNR/channel is taken to be 0 dB. Figure 5.48 shows

the densities for the case of c ¼ 0.62 (shadowing level ~ 8 dB).

It can be seen that Selection Combining at the microlevel is likely to show only

marginal improvement in performance. MRC at the microlevel shows that we can

expect higher level of improvement. On the other hand, a hybrid diversity with both

microdiversity and macrodiversity is likely to result in the best performance for the

case of a four-branch microdiversity followed by a two-branch macrodiversity. Use

of SC at both levels certainly provide more improvement than MRC or SC alone at

the microlevel. But, it never matches the MRC–SC. Figure 5.49 shows the results

for moderate shadowing at a value of c ¼ 1.13 (shadowing level ~ 5 dB).

One can see that selection combining starts to produce some improvement as the

peaks corresponding to the densities shift to higher SNR values. But, the perfor-

mance of SC–SC is likely to be almost identical to MRC alone at the microlevel. As

expected, MRC–SC is likely to provide the maximum enhancement. The decline in

AF can be expected with diversity, with MRC–SC providing the maximum decline

as seen in the shifts of the peaks of the densities in Fig. 5.49.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal-to-Noise Ratio

P
ro

ba
ili

ty
 d

en
si

ty
 fu

nc
tio

n

No div
SC(4) only
MRC(4) only
SC(4)-SC(dual)
MRC(4)-SC(dual)

m = 1.5
c = 0.62

Fig. 5.48 Plots of the density functions following diversity m ¼ 1.5 and c ¼ 0.62 (shadowing

level ~ 8 dB)

584 5 Diversity Techniques



The density plots for the case of negligible shadowing realized with a value of

c ¼ 5.1 (shadowing level ~ 2 dB) are shown in Fig. 5.50.

The densities for MRC and MRC–SC are close. The densities for SC and SC–SC

are also very close. In addition, we also see the typical performance expected from

MRC and SC, with MRC likely to outperform SC significantly as the peak of the
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density associated with MRC is far removed to higher values of the SNR than the

peak of the SC density. The behavior of the channels under these different diversity

schemes can be observed slightly clearer with the plots of the CDFs. The CDFs

associated with the pdfs in Fig. 5.50 are shown in Fig. 5.51.

We can now look at the implementation of diversity to mitigate the problems in a

shadowed fading channel (Shankar 2006, 2008a, b; Bithas et al. 2007a, b). We will

do this in two steps, first by looking at the effects of MRC at the base station (or the

mobile unit in certain cases) and then using a hybrid diversity approach using an

MRC at the base station and SC by using diversity at the macrolevel with the notion

of involving multiple base stations. Figure 5.51 contains the plots of the average

probability of error in shadowed fading channels when only MRC is implemented

at the microlevel. Plots for the case of weak shadowing are also shown. It is clear

that in a shadowed fading channel, diversity use at the microlevel alone is not

sufficient. As explained earlier, one needs to resort to implementing the diversity at

the macrolevel as well. For the results shown here, a gamma pdf was used to model

the shadowing (discussed earlier), and shadowing levels were estimated using the

equations from Chaps. 2 and 4 which relates the parameters of the gamma pdf and

lognormal pdf. In other words, the analysis follows the GK model discussed in

Chap. 4 and Sect. 5.5. All the results shown here were obtained numerically.

Figure 5.52 shows the case of a four-branch microdiversity.

The performance of SC andMRC at the microlevel without resorting to SC at the

macrolevels can be observed in Fig. 5.53. Results are shown for the case of no

diversity. As we had discussed, with the aid of the density functions, the
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performance of SC lags behind the performance of MRC and the error rates might

still be high making it necessary to have higher power penalties unless

macrodiversity is also explored. Figure 5.54 shows the microdiversity results for

the case of m ¼ 2.5.
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Figure 5.55 shows the plots of the average probability of error when diversity is

implemented at the microlevel as well as at the macrolevel. A hybrid diversity

scheme is considered with MRC at the microlevel and a dual SC at the macrolevel.

The benefits of mitigating the degradation in shadowed fading channels are clearly

seen as the error rate curves come down.

Figure 5.56 shows the effects of shadowing levels on the error probabilities in the

absence of any diversity at the macrolevel. Let us remember that the parameter c has
an inverse relationship to the shadowing levels with small values of c corresponding
to strong shadowing and higher values of c corresponding to weak shadowing levels.
We can compare these results to those in Fig. 5.57, which shows the error rates as

functions of shadowing levels when diversity is implemented at the microlevel

(MRC) as well as macrolevel (SC). There is a significant reduction in error rates

when hybrid diversity is implemented (Fig. 5.57).

5.7.3 Outage Probability

Another approach to quantify the improvement in performance gained using the

diversity techniques involves the estimation of the outage probability before and

after the implementation of diversity (Sowerby and Williamson 1992; Tellambura
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and Annamalai 1999; Annamalai et al. 2001; Kang et al. 2002; Simon and Alouini

2005). Based on the modem used and the minimum required bit error rate, the

sensitivity (minimum SNR required to maintain an acceptable level of the average

probability of error) can be calculated. If the minimum SNR needed to maintain

acceptable levels of performance is ZT, the outage probability is given by

Pout ¼
ðZT

0

f zð Þdz: ð5:160Þ

In (5.160), f(z) is the pdf of the SNR before or after the implementation of

diversity. The expression for the outage probability in (5.160) is identical to the

CDF evaluated at z ¼ ZT,

Pout ¼ F ZTð Þ ð5:161Þ

where F(.) is the CDF of the SNR before or after the implementation of diversity.

Since the choice of ZT is dictated by the modem, minimum bit error rate tolerated,

(5.161) also provides a reasonably complete picture of the effects of fading and

shadowing and enhancements in performance obtained by implementing diversity

techniques. In a purely short-term faded channel, the outage probability was

derived in Chap. 4 and it is given by

Pout ¼ γ m;
mZT

Z0

� �
Γ mð Þ½ ��1: ð5:162Þ

The outage probabilities have been evaluated in a Nakagami channel for the case

of a BPSKmodemwith a threshold bit error rate of 1e-4 in Chap. 4 corresponding to

a threshold SNR ZT of 6.9. We use the same SNR that has been assumed in this

chapter for the evaluation of outage probabilities following diversity.

Considering microdiversity first, for the case of the output of the MRC algo-

rithm, the outage probability can be expressed as

PoutMRC ¼ γ mM;
mZT

Z0

� �
Γ mMð Þ½ ��1

, ð5:163Þ

where Z0 is the average SNR/branch at the microlevel and M is the order of

microdiversity. The outage probability for the case of the SC algorithm will be

PoutSC ¼ γ m;
mZT

Z0

� �
Γ mð Þ½ ��1

� �M
: ð5:164Þ

Figure 5.58 shows the plot of outage probabilities in a Nakagami faded channel

for the case of MRC and SC diversity algorithms. The outage is estimated as a

function of the average SNR/branch for two values of the Nakagami parameter
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m ¼ 1 and 1.5. One can see the benefits of the diversity algorithms clearly in terms

of a decline in outage probabilities with increase in Z0 as well as M. The higher

improvement obtained through MRC over SC is also seen. Comparing the outage

probabilities after diversity to the outage with no diversity, the improvements

brought on by the diversity in mitigating the effects of diversity are clear.

We will now look at the outage probabilities in shadowed fading channels. The

outage probability in a shadowed fading channel modeled using the GK pdf when

no diversity is implemented becomes

Pout1 ¼ Γ m� cð Þ
Γ mð ÞΓ cþ 1ð Þ 1F2 c; 1� mþ c; 1þ c½ �; ZTb

2

4

� �
ZTb

2

4

� �c

þ Γ c� mð Þ
Γ mþ 1ð ÞΓ cð Þ 1F2 m; 1� cþ m; 1þ m½ �; ZTb

2

4

� �
ZTb

2

4

� �m

, ð5:165Þ

In (5.165), ZT is once again the threshold SNR needed to maintain a specific

BER and 1F2(.) is the hypergeometric function (Gradshteyn and Ryzhik 2007). If

MRC is applied at the microlevel and no effort is taken to mitigate shadowing, the

outage probability conditioned on the existence of shadowing becomes

Pout ZTjyð Þ ¼ γ mM;
mZT

y

� �
Γ mMð Þ½ ��1: ð5:166Þ
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The outage probability in a shadowed fading channel when only MRC is applied

at the microlevel can now be written as

PoutMRC 1 ¼
Ð1
0

Pout ZTjyð Þf yð Þ dy

¼ Ð1
0

γ mM;
mZT

y

� �
Γ mMð Þ½ ��1 yc�1

yc0Γ cð Þ exp � y

y0

� �
dy:

ð5:167Þ

This equation can be simplified resulting in

PoutMRC 1 ¼ Γ mM � cð Þ
Γ mMð ÞΓ cþ 1ð Þ 1F2 c; 1� mM þ c; 1þ c½ �; ZTb

2

4

� �
ZTb

2

4

� �c

þ Γ c� mMð Þ
Γ mM þ 1ð ÞΓ cð Þ 1F2 mM; 1� cþ mM; 1þ mM½ �; ZTb

2

4

� �

� ZTb
2

4

� 	mM
:

ð5:168Þ

If only selection combining is applied at the microlevel and no mitigation of

shadowing is undertaken, the conditional outage probability becomes

Pout ZTjyð Þ ¼ γ m;
ZT

y

� �
Γ mð Þ½ ��1

� �M
: ð5:169Þ

As it was done for the case of MRC, the outage probability now becomes

Pout1 SC ¼
ð1
0

γ m; mZT=yð Þð Þ
Γ mð Þ½ �

� �M yc�1

yc0Γ cð Þ exp � y

y0

� �
dy: ð5:170Þ

When MRC is implemented at the microlevel (orderM ) and SC is implemented

at the macrolevel (order L ), the outage probability becomes

PoutMRC SC ¼ PoutMRC 1ð ÞL: ð5:171Þ

For a different number of diversity branches and combining algorithms, the

outage probabilities can be evaluated. The outage probabilities have been evaluated

for several cases. For all these calculations, two values of the Nakagami parameter

were considered, m ¼ 1 and m ¼ 1.5.

Figure 5.59 shows the outage probabilities in shadowed fading channels when

only microdiversity is implemented with no effort being made to mitigate the

shadowing. Two cases of shadowing is considered, moderate shadowing (σdB ¼ 5)

and heavy shadowing (σdB ¼ 9). We can also probe the effects of shadowing levels

on the outage probabilities. These results are shown in Fig. 5.60. One can clearly

see the serious impact of shadowing in wireless systems in the high outage
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probabilities even when diversity is implemented at the macrolevel. This also

supports the need for additional fading mitigation through macrodiversity, as we

had seen in connection with the error probability estimation earlier in this chapter.

The benefits of having a dual selection combining (macrolevel) along with

microdiversity are seen in Fig. 5.61.

5.8 Diversity in Generalized Gamma and Weibull
Channels

The presentation as well as discussion so far was limited primarily to short-term

faded channels that could be modeled in terms of the Nakagami-m distribution and

Rayleigh distributions which is a special case of the Nakagami-m distribution.

However, other models do exist for describing the statistical behavior of fading.

These include the generalized gamma (GG), Weibull, double Rayleigh, double

Nakagami, and Rician channels. We will briefly look at the effects of diversity in

those channels. We will assume that the branches are independent.

We will start with the generalized gamma pdf for the SNR in short-term faded

channels. While the Nakagami pdf (or the resulting‘ gamma pdf for the SNR) is a

two-parameter distribution, the generalized gamma pdf is a three-parameter
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distribution which allows more flexibility in modeling statistical changes in the

channels. The pdf of the SNR is expressed as

fGG zð Þ ¼ s
β

Z0

� �mszms�1

Γ mð Þ exp � βz

Z0

� �s� �
: ð5:172Þ

In (5.172), s is a scaling factor which can take positive values. The parameter β is
given by

β ¼ Γ mþ 1=sð Þð Þ
Γ mð Þ : ð5:173Þ

By letting s take different values, it is possible to get some of the fading

conditions described earlier. For example, if s ¼ 1, (5.172) reverts to the case of

a Nakagami faded channel and if m ¼ s ¼ 1, we have Rayleigh channel. Equation

(5.172) is also known as the Stacy’s distribution and has been extensively used in

radar system analysis for modeling clutter. Note also that (5.172) is one of the

several forms of the generalized gamma pdf as mentioned in Chaps. 2 and 4.

We can observe the flexibility of the generalized gamma fading model by

estimating the AF. Using the moments of the pdf in (5.172), the AF can be

expressed as

AFGG ¼ Γ mþ 2=sð Þð ÞΓ mð Þ
Γ mþ 1=sð Þð Þ½ �2 � 1: ð5:174Þ

By putting s ¼ 1 in (5.174), the AF becomes (1/m), the value in a Nakagami

faded channel. Equation (5.174) is plotted in Fig. 4.14. It shows that the amount

fading is substantially high for low values of s (0.25 and 0.5) and goes down as the

value of s exceeds unity (Nakagami channel). The utility of having a three-

parameter distribution to model short-term fading is obvious from Fig. 4.1.4.

One of the difficulties with the generalized gamma distribution is the analytical

complexities involved in deriving the expressions for the density functions of the

SNR at the output of the diversity combining algorithms. We can however explore

the likely improvements in the wireless channels following diversity by exploring

the densities and distribution functions through random number generators as it was

done earlier. Since the GG variable is an exponentially scaled version of the gamma

variable, it is easy to generate generalized gamma variables and implement the

algorithms.

The probability functions of the output SNR of the diversity combining algo-

rithms for the case of a generalized gamma channel are shown in Fig. 5.62. Note

that values of s less than unity make the channel characteristics worse than a

Nakagami channel with an identical value ofm. This can be observed by comparing

the pdfs in Fig. 5.62 to those of the pdfs of the output SNR in Nakagami channels

shown in Fig. 5.34. The respective CDFs are shown in Fig. 5.63.
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One can now compare the CDFs in Fig. 5.63 to the pdfs of the output SNR in a

Nakagami channel shown in Fig. 5.35. The contrast between the Nakagami channel

and the generalized gamma channel can be further examined by looking at the

values of the AF and peaks of the density functions. The corresponding values of

the AF were [1.2; 0.42; 0.3; 0.38; 0.30]. These values are higher than the

corresponding values for the Nakagami channel.

We will look at the case of a higher value of s. Figure 5.64 shows the plots of the
densities for the case of m ¼ 1.5 and s ¼ 1.2. Comparing the densities in Figs. 5.62

and 5.64, it can be seen that the peaks of the densities have shifted to right

indicating that fading mitigation will be better when s > 1 compared with the

case when s < 1. This can also be seen from the values of the peaks of the densities

in Fig. 5.64. The corresponding values of the AF were [0.47; 0.16; 0.13; 0.118;

0.116].

The CDFs for the densities in Fig. 5.64 are plotted in Fig. 5.65.

Before we look at the diversity combining techniques, we will examine the

degradation in performance in terms of the bit error rates in a generalized gamma

fading channel. This was undertaken in Chap. 4 through numerical integration.

Here we will use a slightly different approach (Aalo et al. 2005).

Instead of using the case of a coherent BPSK modem, we will now use a more

general expression for the probability of error (or the bit error rate) as a function of

the SNR z,

ber zð Þ ¼ Γ b; azð Þ
2Γ bð Þ : ð5:175Þ
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Fig. 5.64 The plots of the pdfs of the SNR for various diversity combining algorithms. Average

SNR/branch is unity and m ¼ 1.5; s ¼ 1.2
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By choosing differently specified sets of values of a and b, (5.175) gives the error
rates in both coherent and noncoherent modems as mentioned in Chap. 3 (Wojnar

1986). Of these, a accounts for the modulation type (FSK or PSK)

a ¼
1

2
, BFSK orthogonalð Þ

1, BPSK

(
ð5:176Þ

and b accounts for the detection scheme (coherent or noncoherent)

b ¼
1

2
, Coherent,

1, Non-coherent:

(
ð5:177Þ

The function, Γ(b,az) is the complimentary incomplete gamma function given by

Γ b; azð Þ ¼
ð1
az

xb�1exp �xð Þ dx, ð5:178Þ

The average probability of error in a generalized gamma-fading channel

becomes

peGG ¼
ð1
az

Γ b; azð Þ
2ΓðbÞ

� �
s

β

Z0

� �mszms�1

Γ mð Þ exp � βz
Z0

� �s� �
dz: ð5:179Þ
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Fig. 5.65 The plots of the CDFs of the SNR for various diversity combining algorithms. Average

SNR/branch is unity, m ¼ 1.5; s ¼ 1.2
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Equation (5.179) can be expressed in closed form for the special case of

s ¼ l=k ð5:180Þ

where both l and k are integers as (Aalo et al. 2005; Simon and Alouini 2005)

peGG ¼ A k; lð ÞGk, 2l
2l,kþl

lβ

aZ0k
k=l

� �l
c1, . . . , c2l
d1, . . . ckþ1






" #

: ð5:181Þ

In (5.181),

A k; lð Þ ¼ lb� 1=2ð Þkm� 1=2ð Þ 2πð Þ 2�l�kð Þ=2

2Γ bð ÞΓ mð Þ , ð5:182Þ

cn ¼
1� nþ b� 1

l
, n ¼ 1, 2, . . . l,

1� n� l� 1

l
, n ¼ lþ 1, lþ 2, . . . , 2l,

8><
>: ð5:183Þ

dn ¼
nþ m� 1

k
, n ¼ 1, 2, . . . , k,

1� n� k

l
, n ¼ k þ 1, k þ 2, . . . k þ l,

8><
>: ð5:184Þ

and G(.) is the MeijerG function (Gradshteyn and Ryzhik 2007). If (5.180) is not

met, one needs to use numerical integration to evaluate the average probability of

error as it was done earlier in Chap. 4. To demonstrate the versatility of the

generalized gamma fading, the average error probability was evaluated for a few

cases of m and s (BPSK, a ¼ 1, b ¼ 1/2). The results are shown in Fig. 5.66.

We can now explore the implementation of diversity in a generalized gamma

fading channel. We will limit ourselves to the case of independent identically

distributed diversity branches and selection combining and MRC algorithms.

Using the approach described in the previous section, the pdf of the output SNR

of an M branch selection combiner can be expressed as

f SCGG zð Þ ¼ M F zð Þ½ �M�1f zð Þ: ð5:185Þ

In (5.185), F(.) is the cumulative distribution of the SNR with a pdf of f(z) given
in (5.172). It can be easily expressed as

F zð Þ ¼ 1

Γ mð Þ γ m;
zβ

Z0

� �s� �
, ð5:186Þ
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where γ(.,.) is the incomplete gamma function (Abramowitz and Segun 1972;

Gradshteyn and Ryzhik 2007) Using (5.186), the pdf of the SNR at the output of

a selection combiner in a generalized gamma-faded channel becomes

f SCGG zð Þ ¼ M
1

Γ mð Þ
� �M�1

γ m;
zβ

Z0

� �s� �M�1

s
β

Z0

� �mszms�1

Γ mð Þ exp � βz
Z0

� �s� �
:

ð5:187Þ

The average probability of error can be evaluated using (5.144). It is also

possible to write the expression for the average probability of error by first esti-

mating the MGF and evaluating the error probability as in (5.152). The MGF can be

expressed in terms of MeijerG functions (Mathai 1993; Mathai and Saxena 1973).

Note that one would have to resort to numerical integration regardless of the

approach used. The results here were obtained using the direct evaluation done in

Maple for the case of a dual branch selection combiner in generalized gamma

channel.

We will also look at the case of a dual diversity when MRC algorithm is used.

The pdf of the SNR at the output of the MRC combiner can easily be written in

terms of the pdf (5.172), knowing that the pdf of the sum of two random variables is

the convolution of the marginal pdfs.
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Fig. 5.66 Average bit error rates in a generalized gamma fading channel form¼ 1. Four values of

s are considered
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The expression for the pdf becomes

fMRCGG zð Þ ¼
ð z
0

β

Z0

� �2ms x z� xð Þ½ �ms�1

Γ mð Þð Þ2 exp � β

Z0

� �ms

xs � z� xð Þsð Þ
� �

dx:

ð5:188Þ

Even though an analytical solution to (5.188) is unavailable, one can still

evaluate the average probability of error for a dual MRC case using this equation.

The average probability of error can be written as

peMRCGG ¼
ð1
0

1

2
erfc

ffiffiffi
2

p ð z
0

s2
β

Z0

� �2ms x z� xð Þ½ �ms�1

Γ mð Þð Þ2 exp � β

Z0

� �ms

xs� z� xð Þsð Þ
� �

dx

" #
dz:

ð5:189Þ

Equation (5.189) can be evaluated in MAPLE or MATLAB. Results obtained

using MAPLE are shown in Fig. 5.67 for two values of m (1 and 1.5) and various

values of s (0.25, 0.5, 1, 1.5). Use of (5.189) allows one to observe the effects of

lower values of s on the worsening error probabilities since (5.189) can be evaluated
for all values of (m,s). Results for the case of m ¼ 1.5 are shown in Fig. 5.68.

As indicated, one can obtain an analytical expression for the MGF of the SNR of

the MRC output (Aalo et al. 2005, 2007). The MGF for MRC diversity (M branch)

is given by
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Fig. 5.67 BER in a GG channel for m ¼ 1 for dual diversity (MRC)
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M sð Þ¼
YM
j¼1

km
j

ffiffiffiffiffiffiffiffiffi
lj=kj

p
Γ mj

� � 2πð Þ 2�lj�kjð Þ=2Glj,kj
kj,lj

sZ0

βj

 !lj

k
kj
j

1�mj

kj
,1�mjþ1

kj
, . . . ,1� kjþmjþ1

kj

0,
1

lj
, . . . ,

lj�1

lj










2
664

3
775:

ð5:190Þ

In (5.190), G[ ] is the MeijerG function. Using (5.153) the average probability of

error can be determined. One would still require the use of numerical integration

techniques to estimate the average probability of error.

The effects of dual selection combining in a generalized gamma-fading channel

are shown in Fig. 5.69 (m ¼ 1) and Fig. 5.70 (m ¼ 1.5).

The average probability of error in Weibull channels could be obtained from the

results of the generalized gamma channel. A generalized gamma channel with

m ¼ 1 is a Weibull channel and, hence, the results shown in Fig. 5.69 for the case

ofm¼ 1 for different values of s (equal to β) provides the quantitative measures of a

Weibull channel.

While generalized gamma (GG) and Weibull distributions provide a broad

approach to a description of fading channels over the simple Nakagami channels,

yet another form of modeling is coming into existence based on cascaded channels.

In this approach, the received signal can be treated as a result of multiple bounces/

scattering such that it is a product of the individual responses. Such models also

represent a more realistic condition of the present day wireless systems where low

power transmitters are used. Use of low power transmitters would require the
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stationing of several intermediate transponder stations (multihop relayed commu-

nication systems), thus, producing a multiplicative effect. Such effects are also

sometimes referred to as “keyhole” scattering where the received signal is a result

of passage through several keyholes, simulation multiplication conditions.

5.9 Diversity in Cascaded Nakagami Channels

We will now examine the implementation of diversity in cascaded N*Nakagami

channels We will briefly restate a few equations from Chap. 4 for completeness. If

the overall fading in the channel is the result of N multiple scattering components,

the received signal power Z of the cascaded channel can be expressed as the product

of N gamma distributed variables (Karagiannidis et al. 2009; Shankar 2011a, b)

Z ¼
YN
k¼1

Zk: ð5:191Þ

In the absence of any cascading effects (i.e., N ¼ 1), (5.191) suggests that

conditions still exist for fading to occur; this will be the result of multipath fading

described in Chap. 4. The density function of the SNR can now be rewritten in

terms of the average SNR as

f N zð Þ ¼ 1

zΓN mð ÞG
N, 0
0,N

mN

Z0

z m,m, . . . ,m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N�terms

:








1
A, N ¼ 1, 2, . . .

0
@ ð5:192Þ

An insight into the pdf in (5.192) and its effects on the wireless channel can be

seen from plotting the pdf in (5.192) for a few values of N as it was done in Chap. 4.

It is seen that as N increases, the pdf moves closer and closer to lower values of the

SNR; this can be interpreted as leading to degradation in performance as

N increases. This deterioration in the wireless channel performance can also be

seen if we examine the AF in a cascaded channel. The AF in a cascaded channel can

be written as

AFN
Zh i2
Zh i2 � 1 ¼ m2 þ mð ÞN

m2N
� 1 ¼ 1þ 1

m

� �N

� 1: ð5:193Þ

It is observed from (5.193) that as N increases, the AF also goes up. As the peaks

of the pdf shifts towards lower SNR values, the amount fading goes up, thus

demonstrating the serious consequences of the existence of cascaded fading in the

channel.
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The CDF was obtained in Chap. 4 as

FN zð Þ ¼
ð z
0

f N ξð Þdξ ¼ 1

ΓN mð ÞG
N, 1
1,Nþ1

mN

Z0

z

1

m,m, . . .m, 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nþ1ð Þterms

:









1
CA, N ¼ 1, 2, . . . :

0
B@

ð5:194Þ

Before we examine the analytical nature of the densities and distribution func-

tions following diversity in a cascaded channel, it is worthwhile to have a better

understanding of the expectations of mitigation that can be gained through diversity

by undertaking computer simulations using random number generators as was done

with the Nakagami-m channel. Also, the analytical expressions for the density

functions and cumulative distributions might not be available in closed form for

all the diversity combining algorithms and hence, a reasonable understanding could

be gained through simulation. The steps involved in the simulation are similar to

those described earlier. All three main diversity combining algorithms can be

implemented in Matlab. A cascaded SNR variable can be created by multiplying

N gamma variables. The study of such simulation is shown in a few figures next.

The density functions of the SNR for a dual cascaded Nakagami channel (m ¼ 1.5)

are shown in Fig. 5.71 with the number of diversity branches M ¼ 4. It has been

assumed that average SNR/branch is unity. The specific example of SC, MRC, GSC

(4,2), and GSC(4,3) are shown.
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Fig. 5.71 The pdfs of the SNR in a dual Nakagami cascaded channel (m ¼ 1.5; N ¼ 2). Average

SNR/branch is unity
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One can see that the density functions of the SNR following diversity have their

peaks shifting to the higher values of the SNR and demonstrating likely improve-

ment in channel conditions as one goes from SC to MRC, with the GSC falling in

between MRC and SC, with GSC(4,3) approaching the density function for

the MRC.

Figure 5.72 shows the plots of the CDFs corresponding to the densities in

Fig. 5.71. The proximity of the CDFs for GSC(4,3) and MRC follows the behavior

seen in Fig. 5.71. The likelihood of lower outages following diversity can be

surmised from the plots of the CDF.

The density functions for N¼ 3 are shown in Fig. 5.73. The corresponding CDFs

are shown in Fig. 5.74.

The densities for N ¼ 4 are shown in Fig. 5.75. The corresponding CDFs are

shown in Fig. 5.76.

We can now consider the simple case of a two-branch selection combining

diversity algorithm. We will look at the simple case where the branches are

independent and identical, each with the pdf and CDF of the forms expressed in

(5.192) and (5.194), respectively. Using the concepts of order statistics, the pdf of

the SNR of the dual SC algorithm is given by the product of the CDF and pdf scaled

by two. Thus, the pdf of the SNR of the output of the dual selection combining

diversity can be expressed as (Papoulis and Pillai 2002; Shankar 2011a, b)

FN SC ¼ 1

ΓN mð ÞG
N, 1
1,Nþ1

mN

Z0

z
1

m,m, . . .m, 0






� �� �2

, N ¼ 1, 2, . . . , ð5:195Þ
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Fig. 5.72 The CDFs of the SNR in a dual Nakagami cascaded channel (m¼ 1.5; N¼ 2). Average

SNR/branch is unity
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Average SNR/branch is unity
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fN SC ¼ 2

zΓN mð Þ G
N, 0
0,N

mN

Z0

z m,m, . . . ,mj
� �

1

ΓN mð Þ

� GN, 1
1,Nþ1

mN

Z0

z
1

m,m, . . . ,m, 0







 !

, N ¼ 1, 2, . . .

ð5:196Þ

With the availability of the pdf of the SNR at the output of the selection

combiner, we can examine the performance of the channel before and after the

implementation of the selection combining algorithm.

The AF can be estimated from moments. The result is shown in Fig. 5.77 where

AF is plotted as a function of the Nakagami parameter and the number of cascading

components. The reduction in the amount of fading following diversity implemen-

tation can be seen.

The CDFs obtained from (5.195) are plotted in Fig. 5.78 for m ¼ 1.5. The

improvement in performance expected to be gained from diversity can be seen from

the change in the shape of the CDFs.

The pdfs are plotted in Fig. 5.79 for the case of dual SC with m ¼ 1.5. One can

compare these plots to those from Chap. 4. It can be observed that with diversity,

the peaks of the density functions move to higher SNR values.

We can now study the error rate performances for cascaded systems with and

without diversity.

Figure 5.80 shows the results on average probabilities of error (N ¼ 4) when a

dual selection combining is implemented. The benefits of diversity are clearly seen

in terms of reduction in error rates.
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dual selection combining diversity is implemented
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The outage probabilities following diversity can now be easily estimated to

examine the level of improvement gained. For a fixed error rate (1e-4), the

threshold SNR (ZT) can be calculated in an ideal channel. Using the definition of

outage probability, the expression for the outage probability in a cascaded channel

becomes

PoutN ¼ FN ZTð Þ½ �2 ¼ 1

ΓN mð Þ G
N, 1
1,Nþ1

mN

Z0

ZT
1

m,m, . . . ,m, 0






� �� �2

: ð5:197Þ

Outage probabilities for triple and quadruple cascading are plotted in Fig. 5.81.

Comparing these results to the outage probabilities obtained in Chap. 4 in the

absence of any diversity.

The selection combining offers a simple means of improving the channel

characteristics. However, as we had seen earlier, the enhancement will show further

gains if we implement the maximal ratio combining algorithm.

We will now look at the case of MRC for fading mitigation in cascaded channels

(Malhotra et al. 2008; Wongtraitrat and Supnithi 2009; Shankar 2011a). We will

assume that there are M diversity branches and that they are independent and

identically distributed. Therefore, the SNR Z at the output of the MRC combiner

will be the sum of the individual SNRs, namely,

Z ¼
XM
q¼1

ZNq
: ð5:198Þ

5 10 15 20 25 30
10-4

10-3

10-2

10-1

100

Average signal-to-noise ratio/branch Z0

A
ve

ra
ge

 p
ro

ba
bi

lit
y 

of
 e

rr
or

m=0.5
m=1
m=1.5

No diversity

dual SC

Fig. 5.80 BER in a cascaded channel (N ¼ 4) dual SC

612 5 Diversity Techniques

http://dx.doi.org/10.1007/978-3-319-53198-4_4


As we had seen in Chap. 2, we would require an M-fold convolution of

expressions of the pdf of the form in (5.192) to obtain the pdf of Z. Even though

we could estimate the pdf through random number simulation as shown earlier,

obtaining analytical expressions for the pdf of the output of the MRC is not an easy

task because of the M-fold convolution of MeijerG function involved. Instead, we

can use the MGFs and characteristic functions (CHF) to obtain expressions for

the pdf and CDF of Z as explained earlier. Before we look at ways of estimating the

average probability of error and outage probability, we can look at the AF in a

cascaded Nakagami channel and the reduction in the AF realized through diversity,

since it can be estimated from the moments of the SNRs of the individual branches.

The AF following the implementation of MRC diversity can be obtained from

the moments of the gamma distribution and it becomes

AFMRC ¼ 1

M

mþ 1

m

� �N

� 1

" #
, ð5:199Þ

demonstrating an M-fold decline in the level of fading in cascaded channels

following the MRC algorithm.

Since we do not have an expression for the pdf of the SNR at the output of the

maximal ratio combiner, we will use the MGFs to estimate the average bit error

rate. We will consider the case of a coherent BPSK modem as an example.

MGF of the cascaded SNR has been derived, and the analytical expression for

the MGF associated with the SNR ZN in any one of the branches of diversity
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(q ¼ 1,2,. . .M ) is given by (Mathai and Saxena 1973; Mathai 1993; Adamchik

1995; Karagiannidis et al. 2007)

ψ zN sð Þ ¼ 1

ΓN mð ÞG
N, 1
1,N �mN

sZ0

1

m,m, . . . ,m






� �

: ð5:200Þ

Noting that the MGF of the sum of the random variables is the product of the

individual MGFs, the average error probability at the output of the maximal ratio

combiner in a N*Nakagami channel is given by

pe ¼
1

π

ðπ=2
0

ψ zN � 1

sin 2 xð Þ
� �� �M

dx: ð5:201Þ

Here we have made use of the relationship between MGF and average error

probability in a fading channel, discussed earlier. Equation (5.201) can now be

expressed explicitly using the MGF of each branch given in (5.200) as

pe ¼
1

π

ðπ=2
0

1

ΓNM mð ÞG
N, 1
1,N

mN

Z0

sin 2 xð Þ 1

m,m, . . . ,m






� �M

dx ð5:202Þ

Equation (5.202) can be estimated numerically.

Estimation of the outage probability requires access to the cumulative distribu-

tion function (CDF) of the output SNR following the MRC algorithm. Once again,

an analytical expression for the CDF of the output SNR following diversity is not

available. However, it is possible CHF to estimate the outage probability through

the CHF. Outage occurs when the instantaneous SNR fails to reach a threshold SNR

required to maintain an acceptable bit error rate. If the threshold SNR is ZT, the
outage probability becomes

Pout ¼ F ZTð Þ: ð5:203Þ

In (5.203), F() is the CDF of the output in (5.198) of the maximal ratio combiner.

Using the approach suggested by Gil-Pelaez, we can write an expression for the

CDF as (Gil-Pelaez 1951; Nuttall 1969; Beaulieu 1990)

FZ zð Þ � 1

2
� 1

π

ð1
0

1

ω
I ϕ �jω½ �exp �jzω½ �f gdω: ð5:204Þ

Note that in (5.204), ℑ{} denotes the imaginary component of the argument and

ϕ() is the CHF of the output SNR. Note that the CHF is nothing but the MGF in

(5.200) with s replaced by (�jω). The CDF in (5.204) can be evaluated using

trapezoidal rule (Abramowitz and Segun 1972), and the CDF becomes
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FZ zð Þ � 1

2
� 2

πΓNM mð Þ
X1
n¼0

1

u
I GMexp �juω0

z

Z0

� �� �� �
: ð5:205Þ

In (5.205), the parameter ω0 is related to Twhich is the limiting value of the SNR

beyond which the CDF is negligible (Beaulieu 1990; Tellambura et al. 2003)

ω0 ¼ 2π

T
: ð5:206Þ

The other parameters in (5.205) are

u ¼ 2nþ 1, ð5:207Þ

GM ¼ GN, 1
1,N

jmN

ω0u

1

m,m, . . . ,m






� �M

: ð5:208Þ

As shown by several researchers, even though the evaluation of (5.205) appears

to suggest the need for infinite summation, only a finite number of terms are needed.

Note that a higher value of Twould result in larger number of terms (Beaulieu 1990).

A typical CDF obtained through this approach is shown in Fig. 5.82. The slopes

of the CDF plots clearly indicate that outage probabilities will be less with the

implementation of the diversity algorithm.
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Fig. 5.82 CDFs of the output SNR for MRC in cascaded channels for m ¼ 0.5
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The performance of the cascaded N*Nakagami channel can now be explored in

terms of three measures: AF, average probability of error, and outage probability. It

is clear from (5.193) and (5.199) that the AF decreases as the number of diversity

branches, M, increases.

The error rates can be obtained from (5.202) through numerical integration. One

such result is shown in Fig. 5.83 which shows the improvement in bit error rate

performance of the cascaded channel following the MRC algorithm (m ¼ 0.5). As

one would expect, error probabilities are higher with increasing values of N, clearly
indicating worsening channel conditions with N (Shankar 2011a). As the number of

diversity branches increase, the error rates come down.

The outage probabilities can be similarly evaluated for the case of a coherent

BPSK receiver to have an acceptable error rate of 1e-4 which provided the values of

the threshold SNR ZT. To reduce the number of computations necessary, the CDF

was normalized to the average SNR. The (5.203) can therefore be written explicitly

in terms of the CDF as

Pout � 1

2
� 2

πΓNM mð Þ
X1
n¼0

1

u
I GMexp �juω0

ZT

Z0

� �� �� �
, ð5:209Þ
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The outage probabilities are shown in Fig. 5.84 for the case of m ¼ 1.5. The plot

shows the reduction in outage probabilities when one goes from the case of no

diversity (M ¼ 1) to the case of a four-branch MRC.

5.10 Generalized Selection Combining

We will now look at the GSC algorithm for fading mitigation in cascaded channels.

Since it was not possible to obtain an analytical expression for the density function

of the SNR following MRC in cascaded channel, it must be clear that we will not be

able to obtain analytical expressions for the density functions of the SNR following

generalized selection combining. We can follow the path taken earlier in Sect. 5.7

in connection with the performance analysis of GSC in Nakagami channels. The

numerical computation becomes relatively easy when we only use the two strongest

branches out of the M diversity branches. In other words, we will look at perfor-

mance represented by GSC(M,2). The density functions, distribution functions,

error rates and outage probabilities can be estimated from appropriate functions

given in (5.112).
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Fig. 5.84 Outage probabilities functions of the average SNR/branch Z0 for M ¼ 1 (no diversity)

andM¼ 4 for the case ofm¼ 1.5. Outage probabilities are higher with increasing values of N. The
improvement in performance with diversity is seen in the lower values of the outage probabilities

for M ¼ 4
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The density functions obtained for the output SNR of the GSC algorithm are

shown in Fig. 5.85. The shifts in the peaks of the density functions to higher values

of the SNR with diversity are clearly seen. The corresponding CDFs are plotted in

Fig. 5.86. The slopes of the cumulative distributions show behavior consistent with

improvements in performance achievable with generalized selection combining. A

typical plot of the average probabilities of error is shown in Fig. 5.87. A typical plot

of the outage probabilities is shown in Fig. 5.88. Comparing the results from

Chap. 4, one can clearly see the benefits of diversity in reducing the effects of

cascaded fading.

5.11 Diversity in McKay Fading Channels

The McKay fading channel was introduced in Chap. 4 (Shankar 2015). The

improvement in performance obtained through diversity in the McKay channels

can now be examined.

As seen in previous sections, the performance improvement in selection com-

bining (SC) is the lowest and the improvement in maximal ratio combining (MRC)

is the highest (Radaydeh and Matalgah 2008; Peppas et al. 2009). Because of this,

the discussion is limited to these two combining algorithms and EGC is not

considered initially. The generalized section combining (GSC) is also not treated
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in this analysis. However, both EGC and GSC are discussed later when results

based on random number simulation are presented.

5.11.1 Selection Combining

As seen earlier, the SC algorithm picks the strongest of a set ofM diverse branches

that are considered to be independent and identically distributed. The density

function of the SNR in each of these (i ¼ 1,2,. . .,M ) branches is

f zið Þ ¼
ffiffiffi
π

p

2α
ffiffi
ρ

p
X 1�ρð Þ
� 	 α�1ð Þ

2 Γ α
2

� �
X
α

� �2
1� ρð Þ

h iα
2

exp � α

X 1� ρð Þzi
� �

zi
α�1ð Þ
2 I α�1ð Þ

2

α
ffiffiffi
ρ

p
X 1� ρð Þ zi
� �

ð5:210Þ

The corresponding CDF in each of these branches is

F zið Þ ¼
ffiffiffi
π

p
1� ρð Þα2
Γ α

2

� � X1
k¼0

ρk

k!Γ k þ 1
2
þ α

2

� �
2αþ2k�1

γ αþ 2k;
α

X 1� ρð Þzi
� �

ð5:211Þ
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If Zsc is the output of the SC algorithm, the CDF of the SNR following diversity

is [Eq. (5.12)]

F zSCð Þ ¼ FZi
zscð Þ½ �M ð5:212Þ

The pdf is

f ZSC
zSCð Þ ¼ M FZi

zscð Þ½ �M�1f Zi
zscð Þ ð5:213Þ

In Eqs. (5.212) and (5.213), FZi
:ð Þ is given in Eq. (5.211) and f Zi

:ð Þis given in

Eq. (5.210).

The outage probability following diversity is

PoutSC Xð Þ ¼ FZSC
zthrð Þ: ð5:214Þ

In Eq. (5.214), zthr is the threshold SNR required to maintain an acceptable bit

error rate. While the outage probability estimation is simple and straightforward,

error rate estimation requires numerical approaches. The numerical computation

can be simplified if one uses the error rate calculations based on the CDF. For the

case of a coherent BPSK modem, the error rate expressed in terms of the pdf as

pe Xð Þ ¼
ð1
0

1

2
erfc

ffiffi
z

p� �
f zð Þdz ð5:215Þ

and it can be expressed in terms of the CDF by performing integration by parts

leading to

pe Xð Þ ¼
ð1
0

1

2

exp �zð Þffiffiffiffiffi
πz

p F zð Þdz: ð5:216Þ

Using Eq. (5.216), the error rate following SC diversity in a McKay fading

channel is

peSC Xð Þ ¼
ð1
0

1

2

exp �zð Þffiffiffiffiffi
πz

p FZ zð Þ½ �Mdz: ð5:217Þ

In Eq. (5.217), F(z) is the marginal CDF in Eq. (5.211).
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5.11.2 Maximal Ratio Combining

If the MRC output represented by ZMRC is given by

ZMRC ¼
XM
i¼1

Zi: ð5:218Þ

The pdf of the MRC output can be obtained easily from the Laplace transform of

the McKay density given in Chap. 4. The Laplace transform of the McKay density

is (Holm and Alouini 2004a, b; Filho and Yacoub 2005; Da Costa and Yacoub

2008; Ermolova 2008, Ermolova 2009; Peppas et al. 2009)

LZ sð Þ ¼ αα

α2 þ 2sαX þ X2s2 1� ρð Þ �α
2

ð5:219Þ

Assuming independence of the branches, the Laplace transform of the pdf of the

MRC output is

LZMRC
¼ LZ sð Þ½ �M ¼ αα

α2 þ 2sαX þ X2s2 1� ρð Þ �α
2

" #M
: ð5:220Þ

Equation (5.220) can be interpreted by defining a new McKay random variable

Y as having parametersMα,MX and ρ. Using Eq. (5.219), the Laplace transform of

Y will be

LY ¼ Mαð ÞMα

M2α2 þ 2sM2αX þM2X2s2 1� ρð Þ �Mα
2

¼ MMααMα

MMα α2 þ 2sαX þ X2s2 1� ρð Þ �Mα
2

ð5:221Þ

It can be seen that (5.221) and (5.220) are identical suggesting that the pdf of the

sum of the M independent McKay variables is another McKay variable with

parameters Mα, MX, and ρ. The pdf of the output of the MRC algorithm can be

written as

f ZMRC
zMRCð Þ ¼ Aexp � α

X 1� ρð ÞzMRC

� �
z

Mα�1ð Þ
2

MRC I Mα�1ð Þ
2

α
ffiffiffi
ρ

p
X 1� ρð Þ zMRC

� �
: ð5:222Þ

In Eq. (5.222), the constant A is
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A ¼
ffiffiffi
π

p

2α
ffiffi
ρ

p
X 1�ρð Þ
� 	 Mα�1ð Þ

2 Γ Mα
2

� �
X
α

� �2
1� ρð Þ

h iMα
2

ð5:223Þ

The CDF of the output of the MRC algorithm becomes

FZMRC
zMRCð Þ¼ ffiffiffi

π
p 1�ρð ÞMα

2

Γ Mα
2

� � X1
k¼0
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k!Γ kþ 1
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þMα
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X 1�ρð Þ
� �

:

ð5:224Þ

The outage probability following MRC will be

PoutMRC Xð Þ ¼ FZMRC
zthrð Þ: ð5:225Þ

The error rate following the MRC can be obtained using the Laplace transforms as

pe Xð Þ¼ 1

π

ðπ2
0

LX
1

sin2 θð Þ
� �

dθ¼¼ 1

π

ðπ2
0

αα

α2þ2 α
sin2 θð ÞXþX2 1

sin4 θð Þ 1�ρð Þ
h iα

2

2
64

3
75
M

dθ

ð5:226Þ

While outage probability and error rates provide powerful measures to compare

the performance of the diversity combining algorithms, two simple measures of

comparison are the enhancement in SNR and reduction in the amount of fading

(AF). These two parameters can be obtained from the moments.

The improvement in performance in McKay channels from MRC and SC can

now be studied. Along with evaluation based on analytical expressions, random

number simulations have also been undertaken to support analytical approaches.

5.11.3 Density Functions, Distribution Functions, SNR,
and AF

The probability density function and the CDF of the MRC output along with the

Matlab script used for the generation are given below.

Figures 5.89, 5.90, and 5.91 show the densities and distribution functions,

Figs. 5.92 and 5.93 show the amount of fading and SNR following the implemen-

tation of diversity (MRC and SC) in McKay fading channels. As expected, the

performance following MRC is expected to be better than the performance follow-

ing SC based on the peaks of the densities, AF and SNR seen in these plots.
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function Mckaydiversity_pdf_cdf_comparison

% Obtains  pdf and CDF the output SNR of SC and MRC combining algorithm in

% a McKay fading channel. The random numbers are generated and the reults

% from simulations are compred to those obtained from the analytical

% approach. Note that the CDF is obtained in terms of a summation. AS much

% as possible, symbolictoolbox is used to generate expressions including

% the summartions

%

% P M Shankar, September 2016

close all

alpha=1.25;X=15;r=0.45; M=3;

pdf_CDF_MRC(alpha,X,r,M)

pdf_CDF_SC(alpha,X,r,M)

alpha=1.25;X=15;r=0.45; M=5;

pdf_CDF_MRC(alpha,X,r,M)

pdf_CDF_SC(alpha,X,r,M)

alpha=1.4;X=15;r=0.85; M=4;

pdf_CDF_MRC(alpha,X,r,M)

pdf_CDF_SC(alpha,X,r,M)

% now compare the diversity schemes

diversity_analysis_MRC_SC

end

function pdf_CDF_MRC(alpha,X,r,M)

a=alpha;

X1=X*(1+sqrt(r))/2;

X2=X*(1-sqrt(r))/2;

a1=a/2;

x=gamrnd(a1,X1/a1,M,5e6)+gamrnd(a1,X2/a1,M,5e6);

if M>1

x=sum(x);

else

end;

[fzs,zi]=ksdensity(x);

NK=find(zi<0);

if isempty(NK)==0

NK1=max(NK)+1;% find largest index, add 1 to start non-zero values

zi=zi(NK1:end);

fzs=fzs(NK1:end);

else

end;

mckpdf = mckaypdf(a*M,r,X*M);

fzm=mckpdf(zi);

figure,subplot(2,2,1),plot(zi,fzm,'-r',zi,fzs,'*')%

xlabel('SNR z'),ylabel(['pdf (MRC), M = ',num2str(M)])

legend('Theory','sim')

title(['\alpha = ',num2str(alpha),', \rho = ',num2str(r),...

',  X = ',num2str(X)])

%better way to get CDF with fewer points: use ksdensity instead of ecdf

Fzs=ksdensity(x,zi,'function','cdf');%obtain CDF at same points used in pdf

mckCDF=mckaycdf(M*a,r,M*X,20); %at high rho values more summation terms needed

Fzm=mckCDF(zi);

subplot(2,2,2),plot(zi,Fzm,'-r',zi,Fzs,'ko')

xlabel('SNR z'),ylabel(['CDF (MRC), M = ',num2str(M)])

% title(['\alpha = ',num2str(alpha),', \rho = ',num2str(r),...

%     ',  X = ',num2str(X),', M = ',num2str(M),'(MRC)'])

ylim([0,1.1]),legend('Theory','sim','location','southEast')

grid on
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end

function pdf_CDF_SC(alpha,X,r,M)

a=alpha;

X1=X*(1+sqrt(r))/2;

X2=X*(1-sqrt(r))/2;

a1=a/2;

x=gamrnd(a1,X1/a1,M,5e6)+gamrnd(a1,X2/a1,M,5e6);

if M>1

x=max(x);

else

end;

[fzs,zi]=ksdensity(x);

NK=find(zi<0);

if isempty(NK)==0

NK1=max(NK)+1;% find largest index, add 1 to start non-zero values

zi=zi(NK1:end);

fzs=fzs(NK1:end);

else

end;

mckpdf1 = mckaypdf(a,r,X);

mckayCDF1=mckaycdf(a,r,X,20);

fzm=M*mckpdf1(zi).*mckayCDF1(zi).^(M-1);

subplot(2,2,3),plot(zi,fzm,'-r',zi,fzs,'*')%

xlabel('SNR z'),ylabel(['pdf (SC), M = ',num2str(M)])

legend('Theory','sim')

title(['\alpha = ',num2str(alpha),', \rho = ',num2str(r),...

',  X = ',num2str(X)])

%better way to get CDF with fewer points: use ksdensity instead of ecdf

Fzs=ksdensity(x,zi,'function','cdf');%obtain CDF at same points used in pdf

Fzm=mckayCDF1(zi).^M;

subplot(2,2,4),plot(zi,Fzm,'-r',zi,Fzs,'ko')

xlabel('SNR z'),ylabel(['CDF (SC), M = ',num2str(M)])

% title(['\alpha = ',num2str(alpha),', \rho = ',num2str(r),...

%     ',  X = ',num2str(X),', M = ',num2str(M),'(SC)'])

ylim([0,1.1]),legend('Theory','sim','location','southEast')

grid on

end

function diversity_analysis_MRC_SC

% unit mean is assumed

alpha=0.9;r=0.8;

[M1,meMRC,AFMRC]=MRC_analysis(alpha,r);

[M2,meSC,AFSC]=SC_analysis(alpha,r);

figure,subplot(2,1,1),plot(M1,meMRC,'linewidth',2)

xlabel('Order of diversity M'),ylabel('SNR improvement'),legend('MRC')

subplot(2,1,2),plot(M1,AFMRC,'linewidth',2)

xlabel('Order of diversity M'),ylabel('Reduction in AF'),legend('MRC')

figure,subplot(2,1,1),plot(M2,meSC,'linewidth',2)

xlabel('Order of diversity M'),ylabel('SNR improvement'),legend('SC')

subplot(2,1,2),plot(M2,AFSC,'linewidth',2)

xlabel('Order of diversity M'),ylabel('Reduction in AF'),legend('SC')

figure,subplot(2,1,1),plot(M1,meMRC,'-',M2,meSC,'--','linewidth',2)

xlabel('Order of diversity M'),ylabel('SNR improvement'),legend('MRC','SC')

subplot(2,1,2),plot(M1,AFMRC,'-',M2,AFSC,'--','linewidth',2)

xlabel('Order of diversity M'),ylabel('Reduction in AF'),legend('MRC','SC')
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end

function [MD,firstM,AFF]=MRC_analysis(alpha,r)

% deteremine mean, second moment and AF

X=1;

% deteremine mean, second moment and AF

a=alpha;

M=1:15;

a1=M*a;

X1=M*X;

firstM=X1;

secM=(X1.^2).*(1+a1+r)*1./a1;

AF=secM./firstM.^2-1;

AFF=AF/AF(1);

MD=M;

end

function [MD,firstM,AFF]=SC_analysis(alpha,r)

% deteremine mean, second moment and AF

X=1;% unit mean

a=alpha;

syms M1 z

mckpdf1 = mckaypdf(a,r,X);

mckayCDF1=mckaycdf(a,r,X,20);

fun1=z*M1*mckpdf1*mckayCDF1^(M1-1);

fun2=z^2*M1*mckpdf1*mckayCDF1^(M1-1);

MD=1:15;

firstM=zeros(1,length(MD));

secM=zeros(1,length(MD));

AF=zeros(1,length(MD));

for m=1:length(MD)

M=MD(m);

funM=subs(fun1,M1,M);

funz1=matlabFunction(funM);

firstM(m)=integral(funz1,0,100*X);

funM=subs(fun2,M1,M);

funz2=matlabFunction(funM);

secM(m)=integral(funz2,0,100*X);

AF(m)=secM(m)/firstM(m)^2-1;

end;

AFF=AF/AF(1);

end

function mckpdf = mckaypdf(alpha,rho,Z)

syms z a r X positive

% get the expression for density directly from the notes

Nr=sqrt(sym(pi))*z^((1/2)*a-1/2)*exp(-a*z/(X*(1-r)))...

*besseli((1/2)*a-1/2, a*sqrt(r)*z/(X*(1-r)));

Dr=gamma((1/2)*a)*(X^2*(1-r)/a^2)^((1/2)*a)...

*(2*a*sqrt(r)/(X*(1-r)))^((1/2)*a-1/2);

pdf=Nr/Dr;

% pdf McKay depends on X, alpha (a), rho(r) and z in order mcpdf

pdff=subs(pdf,[X,a,r],[Z,alpha,rho]);

mckpdf=matlabFunction(pdff); % function of z

end

function mckCDF=mckaycdf(alpha,rho,Z,KK)
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% create the McKay CDF

% KK is the number of terms in the summation

syms a r X K z

syms k

xa=a/(X*(1-r));

a2=a/2;

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*z);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,K);

%in order of variables @(K,X,a,r,z)

CDFF=subs(CDF,[X,a,r,K],[Z,alpha,rho,KK]);

mckCDF=matlabFunction(CDFF); % function of z only

end
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5.11.4 Outage Probability

Outage probabilities following SC can now be examined. The threshold SNR is

obtained for maintaining the error rate of 1e-4. The number of terms in the

summation in Eq. (5.211) is limited to 20. The Matlab script appears first followed

by the results. Figures 5.94 and 5.95 display the outage probabilities following SC,

Figs. 5.96 and 5.97 show the results for the MRC. Figures 5.98 and 5.99 compare

the outage probabilities seen with MRC and SC in McKay fading channels. As

expected, MRC shows larger improvement over SC.

function mckay_outage_diversitySCbook

% obtains the outage probability in SC diversity

% the threshold is 7 (not in dB) to get a BER of 1e-4;

close all

MM=20; % number of terms in the summation

Z0=10:2:30;

Z=10.^(Z0/10);

LK=length(Z);

alpha=1.2;

rho=0.85;

MN=[1,3,5];

MQ=length(MN);

pTSC=zeros(LK,MQ);

for km=1:MQ

M=MN(km);

for k=1:LK

fn=mckaycdf(alpha,rho,Z(k),MM);

pTSC(k,km)=fn(7)^M;

end;

end;

figure

semilogy(Z0,pTSC(:,1),'r-',Z0,pTSC(:,2),'k--',Z0,pTSC(:,3),'b-.',...

'linewidth',1);

xlabel('average SNR/branch (dB)')

ylabel('Outage Probability'),ylim([1e-6,1])

legend('No-diversity',...

['M = ',num2str(MN(2))],['M = ',num2str(MN(3))])

title(['\alpha = ',num2str(alpha),',   r = ',num2str(rho)])

end

function mckCDF=mckaycdf(alpha,rho,Z,KK)

% create the McKay CDF KK is the number of terms in the summation

syms a r X K z

syms k

xa=a/(X*(1-r));

a2=a/2;

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*z);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,K);

%in order of variables @(K,X,a,r,z)

CDFF=subs(CDF,[X,a,r,K],[Z,alpha,rho,KK]);

mckCDF=matlabFunction(CDFF); % function of z only

end
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function mckay_outage_diversityMRCbook

% obtains the outage probability in MRC diversity

% the threshold is 7 (not in dB) to get a BER of 1e-4;

close all

MM=20; % number of terms in the summation

Z0=10:2:30;

Z=10.^(Z0/10);

LK=length(Z);

alpha=1.2;

rho=0.85;

MN=[1,3,5];

MQ=length(MN);

pTSC=zeros(LK,MQ);

for km=1:MQ

M=MN(km);

for k=1:LK

fn=mckaycdf(M*alpha,rho,M*Z(k),MM);

pTSC(k,km)=fn(7);

end;

end;

figure

semilogy(Z0,pTSC(:,1),'r-',Z0,pTSC(:,2),'k--',Z0,pTSC(:,3),'b-.',...

'linewidth',1);

xlabel('average SNR/branch (dB)')

ylabel('Outage Probability'),ylim([1e-6,1])

legend('No-diversity',...

['M = ',num2str(MN(2))],['M = ',num2str(MN(3))])

title(['\alpha = ',num2str(alpha),',   r = ',num2str(rho)])

end

function mckCDF=mckaycdf(alpha,rho,Z,KK)

% create the McKay CDF KK is the number of terms in the summation

syms a r X K z

syms k

xa=a/(X*(1-r));

a2=a/2;

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*z);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,K);

%in order of variables @(K,X,a,r,z)

CDFF=subs(CDF,[X,a,r,K],[Z,alpha,rho,KK]);

mckCDF=matlabFunction(CDFF); % function of z only

end
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function mckay_outage_diversityMRC_SCbook

% obtains the outage probability in both MRC and SC diversity

% the threshold is 7 (not in dB) to get a BER of 1e-4;

close all

MM=20; % number of terms in the summation

Z0=10:2:30;

Z=10.^(Z0/10);

LK=length(Z);

alpha=1.1;

rho=0.45;

MN=[2,6];

MQ=length(MN);

pTSC=zeros(LK,MQ);

pTMR=zeros(LK,MQ);

pout1=zeros(1,LK);

for k=1:LK

ffn=mckaycdf(alpha,rho,Z(k),MM); % no diversity

pout1(k)=ffn(7);

end;

for km=1:MQ

M=MN(km);

for k=1:LK

fn=mckaycdf(M*alpha,rho,M*Z(k),MM);

pTMR(k,km)=fn(7);

fns=mckaycdf(alpha,rho,Z(k),MM);

pTSC(k,km)=fns(7)^M;

end;

end;

figure

semilogy(Z0,pout1,'r-',Z0,pTSC(:,1),'k--',Z0,pTMR(:,1),'b-.',...

Z0,pTSC(:,2),'g-.',Z0,pTMR(:,2),'m-.','linewidth',1)

xlabel('average SNR/branch (dB)')

ylabel('Outage Probability'),ylim([1e-6,1])

legend('No-diversity',...

['SC-M = ',num2str(MN(1))],['MRC-M = ',num2str(MN(1))],...

['SC-M = ',num2str(MN(2))],['MRC-M = ',num2str(MN(2))])

title(['\alpha = ',num2str(alpha),',   r = ',num2str(rho)])

end

function mckCDF=mckaycdf(alpha,rho,Z,KK)

% create the McKay CDF KK is the number of terms in the summation

syms a r X K z

syms k

xa=a/(X*(1-r));

a2=a/2;

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*z);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,K);

%in order of variables @(K,X,a,r,z)

CDFF=subs(CDF,[X,a,r,K],[Z,alpha,rho,KK]);

mckCDF=matlabFunction(CDFF); % function of z only

end

5.11.5 Bit Error Rates

Average error rates in a McKay channel following diversity are estimated and results

are presented. Error rate expressed as a summation is used in the case of SC algorithm.

Error rates following MRC are estimated using the Laplace based approach.
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The use of the symbolic toolbox provides a simple and convenient way to obtain

error rates. Figures 5.100 and 5.101 show the error rates following SC and

Figs. 5.102 and 5.103 display the results for MRC. Figures 5.104 and 5.105 compare

the error rates in SC andMRC. The improvements of MRC over SC are clearly seen.

function ber_mckay_SC_diversity_book

% P M Shankar

% BER in SC diversity is calculated.. use the CDF

%July 2016

close all

global Z LK Z0 MM alpha rho MN

MM=20; % number of terms in the summation

Z0=5:2:31;

Z=10.^(Z0/10);

LK=length(Z);

alpha=1.1;

rho=0.65;

MN=[1,3,4,6];

ber_mckay_M

end

function ber_mckay_M

% P M Shankar

global LK Z0 MM alpha rho MN M Z

MQ=length(MN);

peT1=zeros(LK,MQ);

for km=1:MQ

M=MN(km);

for k=1:LK

X=Z(k);

peT1(k,km)=berMcKay(alpha,rho,X,MM);

end;

end;

%

figure,semilogy(Z0,peT1(:,1),'-r',Z0,peT1(:,2),'--k',...

Z0,peT1(:,3),'-.b',Z0,peT1(:,4),'--.m','linewidth',1.5)

xlabel('average SNR/branch (dB)'),xlim([5,30]),ylim([1e-6,.1])

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),',  \rho = ',num2str(rho)])

legend('No diversity',['M = ',num2str(MN(2))],['M  = ',num2str(MN(3))],...

['M  = ',num2str(MN(4))])

end

function peTT =berMcKay(aa,rr,ZZ,KK)

% create the McKay CDF % KK is the number of terms in the summation

global M

syms a r X K z

syms k

xa=a/(X*(1-r));

a2=a/2;

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*z);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,K);

%in order of variables @(K,X,a,r,z)

CDFF=subs(CDF,[X,a,r,K],[ZZ,aa,rr,KK]);

integraN=(1/2)*1/sqrt(z*sym(pi))*exp(-z)*CDFF^M;

mckCDF=matlabFunction(integraN); % function of z only

peTT=integral(mckCDF,1e-5,inf);

end
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function ber_mckay_MRC_diversity_book

% P M Shankar, Augsut 2016

% BER in MRC diversity is calculated. Laplace

close all

global Z LK Z0 alpha rho MN

Z0=[5:2:30];

Z=10.^(Z0/10);

LK=length(Z);

alpha=1.1;

rho=0.65;

MN=[1,2,4,6];

ber_mckay_M

end

function ber_mckay_M

% P M Shankar

global Z LK Z0 alpha rho MN

MQ=length(MN);

peL1=zeros(LK,MQ); % only Laplace transform is used

for km=1:MQ

M=MN(km);

for k=1:LK

peL1(k,km)=laplace_ber_func(alpha,rho,Z(k),M);

end;

end;

%

figure,semilogy(Z0,peL1(:,1),'-r',Z0,peL1(:,2),'--k',Z0,peL1(:,3),'-.b',...

Z0,peL1(:,4),'--.m','linewidth',1.5)

xlabel('average SNR/branch (dB)'),xlim([5,25]),ylim([1e-6,.1])

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),',  \rho = ',num2str(rho)])

legend('No diversity',['M = ',num2str(MN(2))],['M = ',num2str(MN(3))],...

['M = ',num2str(MN(4))]);

end

function pe = laplace_ber_func(alpha,rho,Z,M) % Laplace based

syms s r a X y

fLr=a^a/(a^2+s^2*X^2+2*s*X*a-s^2*X^2*r)^((1/2)*a);

fLRf=subs(fLr,[a,X,r],[alpha,Z,rho]);

f1M=fLRf^M; % laplace transform MRC

fun2M=subs(f1M,s,1/(sin(y))^2);

mckayf2=matlabFunction(fun2M);

pe=(1/pi)*integral(mckayf2,0,0.999975*pi/2);

end
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Fig. 5.102 Bit error rates, α ¼ .8, ρ ¼ 0.3 (MRC)
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function ber_mckay_SC_MRC_book

% P M Shankar

% BER in SC diversity is calculated.. use the CDF

%July 2016

close all

global Z LK Z0 MM alpha rho MN

MM=20; % number of terms in the summation

Z0=5:2:31;

Z=10.^(Z0/10);

LK=length(Z);

alpha=0.85;

rho=0.6;

MN=[1,3,6];

ber_mckay

end

function ber_mckay

% P M Shankar

global LK Z0 MM alpha rho MN M Z

MQ=length(MN);

peSC=zeros(LK,MQ);

peMR=zeros(LK,MQ); % only Laplace transform is used

for km=1:MQ

M=MN(km);

for k=1:LK

X=Z(k);

peSC(k,km)=berMcKaySC(alpha,rho,X,MM);

peMR(k,km)=laplace_ber_func(alpha,rho,Z(k),M);

end;

end;

%

figure,semilogy(Z0,peMR(:,1),'r-*',Z0,peSC(:,2),'k-.+',...

Z0,peMR(:,2),'k--s',Z0,peSC(:,3),'m-.o',Z0,peMR(:,3),'k--^',...

'linewidth',1)

xlabel('average SNR/branch (dB)'),xlim([5,30]),ylim([1e-6,.1])

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),',  \rho = ',num2str(rho)])

legend('No diversity',['SC-M = ',num2str(MN(2))],...

['MRC-M  = ',num2str(MN(2))],['SC-M = ',num2str(MN(3))],...

['MRC-M  = ',num2str(MN(3))])

end
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function peTT =berMcKaySC(aa,rr,ZZ,KK)

% create the McKay CDF % KK is the number of terms in the summation

global M

syms a r X K z

syms k

xa=a/(X*(1-r));

a2=a/2;

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*z);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,K);

%in order of variables @(K,X,a,r,z)

CDFF=subs(CDF,[X,a,r,K],[ZZ,aa,rr,KK]);

integraN=(1/2)*1/sqrt(z*sym(pi))*exp(-z)*CDFF^M;

mckCDF=matlabFunction(integraN); % function of z only

peTT=integral(mckCDF,1e-5,inf);

end

function pe = laplace_ber_func(alpha,rho,Z,M) % Laplace based

syms s r a X y

fLr=a^a/(a^2+s^2*X^2+2*s*X*a-s^2*X^2*r)^((1/2)*a);

fLRf=subs(fLr,[a,X,r],[alpha,Z,rho]);

f1M=fLRf^M; % laplace transform MRC

fun2M=subs(f1M,s,1/(sin(y))^2);

mckayf2=matlabFunction(fun2M);

pe=(1/pi)*integral(mckayf2,0,0.999975*pi/2);

end

a = 1.25 r = 0.8
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Fig. 5.104 Bit error rates, α ¼ 1.25, ρ ¼ 0.8 (MRC and SC)
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5.12 Diversity in McKay Faded Shadowed Channels

Since wireless channels undergo fading and shadowing simultaneously, it is also of

interest to examine the performance of diversity combining algorithms when

McKay fading and lognormal shadowing are present (Shankar 2012a, b; Shankar

2015). The probability density function of the SNR in a shadowed fading channel

was given in Chap. 4 (Eq. 4.316) and it is given by

f zð Þ ¼
ð1
0

ffiffiffi
π

p
z
α�1
2

2
α
ffiffi
ρ

p
w 1�ρð Þ

� 	α�1
2 Γ

α

2

� 	
w
α

� �2
1� ρð Þ

h iα
2

� exp � α

w 1� ρð Þz
� �

Iα�1
2

α
ffiffiffi
ρ

p
w 1� ρð Þ z
� �

f wð Þdw:

ð5:227Þ

Assuming that the shadowing is same at all the diversity components (spatial or

frequency diversity), Eq. (5.227) can be updated to reflect the diversity implemen-

tation by replacing the McKay density with the pdf in Eq. (5.222). Replacing X by

w, Eq. (5.222) becomes

f ZMRC
zMRCjwð Þ ¼ A wð Þexp � α

w 1� ρð ÞzMRC

� �
z

Mα�1ð Þ
2

MRC I Mα�1ð Þ
2

α
ffiffiffi
ρ

p
w 1� ρð Þ zMRC

� �
:

ð5:228Þ

a = 0.85, r = 0.6

10-6

10-5

10-4

10-3

10-2

10-1

average SNR/branch (dB)

A
ve

ra
ge

 p
ro

ba
bi

lit
y 

of
 e

rr
or

105 15 20 25 30

No diversity
SC-M = 3

SC-M = 5
MRC-M = 3

MRC-M = 5

Fig. 5.105 Bit error rates, α ¼ .85, ρ ¼ 0.6 (MRC and SC)
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In Eq. (5.228), the constant A(w) can be written from Eq. (5.223) as

A wð Þ ¼
ffiffiffi
π

p

2α
ffiffi
ρ

p
w 1�ρð Þ
� 	 Mα�1ð Þ

2 Γ Mα
2

� �
w
α

� �2
1� ρð Þ

h iMα
2

:

ð5:229Þ

Note that the density function can also be represented as an infinite sum as it was

shown earlier. Using the summation, the error rate becomes

peSh Xð Þ¼
ð1
0

X1
k¼0

Ak2F
21 αþ2k;αþ2kþ1

2

� �
; αþ2kþ1½ �;� α

w 1� rð Þ
� �

f wð Þdw:

ð5:230Þ
In Eq. (5.230), the constant Ak is given by

Ak ¼
Γ αþ 2k þ 1

2

� �
α
2w

� �mþ2k
rk

Γ k þ 1
2
þ α

2

� �
Γ α

2

� �
αþ 2kð Þ 1� rð Þ2kþα

2k!:
ð5:231Þ

The error rate can also be obtained from the Laplace transform. Replacing Xwith

w in Eq. (5.226) and multiplying by f(w) and integrating, the error rate following

MRC diversity becomes

pesh Xð Þ ¼ αMα

π

ð1
0

ðπ2
0

α2 þ w2

sin 4 θð Þ þ 2s
w

sin 2 θð Þα� s2
w2

sin 4 θð Þr
� ��Mα

2

f wð Þdθdw

ð5:232Þ
InEqs. (5.230) and (5.232), note that the relationship betweenX and μ has to be used,

μ ¼ 10log10 Xð Þ � σ2

2K
: ð5:233Þ

The error rate following SC diversity can be obtained using the cumulative

distribution of the output of the SC algorithm. In terms of the error rate calculation

using the CDF, the error rate following SC diversity in McKay faded shadowing

channels will be

peSh�SC Xð Þ ¼
ð1
0

ð1
0

FZ zscjwð Þ½ �M 1

2
ffiffiffiffiffiffiffiffi
πzsc

p exp �zscð Þf wð Þdzscdw: ð5:234Þ

In Eq. (5.234),

FZ zscjwð Þ ¼ ffiffiffi
π

p 1� rð Þα2
Γ α

2

� � X1
k¼0

rk

k!Γ k þ 1
2
þ α

2

� �
2αþ2k�1

γ αþ 2k;
α

w 1� rð Þzsc
� �

ð5:235Þ
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The Matlab script used for the computation of error rates for MRC and SC

appears below. The results for MRC are displayed in Figs. 5.106 and 5.107. Results

for SC are displayed in Figs. 5.108 and 5.109.

function ber_mckayshadowing_MRC_book

% MRC to mitigate the effects of fading. (micro diversity). BER is first

% evaulated for MRC diversity keeping  SNR as a random variable. The error

% is further averaged over the lognormal density. The plots are obtained

% from a selected value of alpha, rho and sigma as a function of the order

% of diversity. Only requires a single integration.

% P M Shankar, October 2016

close all

Z0=[10:2:40];

alpha=.95;

rh=0.35;

sig=4;

MN=[1,3,5];

MQ=length(MN);

LK=length(Z0);

KN=10/log(10);

mu=Z0-sig^2/(2*KN); % average measured in dB

MM=10;% number of terms in the summation

% create the integrand using symbolic variables

syms a x r MS sigm MU K k MD

% the integrand

x1=x*MD; % scaled mean X

f1=gamma(a+1/2)*(a/x1)^a*hypergeom([a, a+1/2], [a+1], -a/((1-r)*x1))/...

(gamma((1/2)*a)*a*gamma(1)*gamma(1/2+(1/2)*a)*2^a*(1-r)^((1/2)*a));

f2=symsum(gamma(a+2*k+1/2)*(a/x1)^(a+2*k)*r^k*hypergeom([a+2*k, a+2*k+1/2],...

[a+2*k+1], -a/((1-r)*x1))/...

(gamma((1/2)*a)*(a+2*k)*gamma(k)*gamma(k+1/2+(1/2)*a)*2^(a+2*k)*...

(1-r)^(2*k+(1/2)*a)),k,1,MS);

f=f1+f2;

ff=sym(K)*exp(-(10*log10(x)-MU)^2/(2*sigm^2))/sqrt((2*sym(pi)*x*x)*sigm^2);

fun=f*ff; % this is the integrand

pesh=zeros(LK,MQ);

for kr=1:MQ

M=MN(kr);% sigma value

alphaM=alpha*M;

for k=1:LK

% substitute the values

funer=subs(fun,[K,a,r,sigm,MU,MS,MD],[KN,alphaM,rh,sig,mu(k),MM,M]);

% create the in-line function

mfuner=matlabFunction(funer);

% perform the integration

pesh(k,kr)=integral(mfuner,1e-1,inf);

% generate random numbers

clear X % clear symbolic X

end;

end;

% figure

semilogy(Z0,pesh(:,1),'-r',Z0,pesh(:,2),'--k', Z0,pesh(:,3),'-.b',...

'linewidth',1)

xlabel('average SNR (dB)'),ylim([1e-6,1])

legend(['M = ',num2str(MN(1))],...

['M = ',num2str(MN(2))],['M = ',num2str(MN(3))]);

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  r = ',num2str(rh),...

'  \sigma = ',num2str(sig),' dB'])

end
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a = 0.95 r = 0.35 s = 4 dB

10-6

10-5

10-4

10-3

10-2

10-1

100

average SNR (dB)

A
ve

ra
ge

 p
ro

ba
bi

lit
y 

of
 e

rr
or

10 15

M = 1
M = 3
M = 5

20 25 30 35 40

Fig. 5.106 Error rates α ¼ .95, ρ ¼ 0.35, σ ¼ 4 dB (MRC)

a = 1.35 r = 0.35 s = 6 dB
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Fig. 5.107 Error rates α ¼ 1.35, ρ ¼ 0.35, σ ¼ 6 dB (MRC)
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function ber_mckayshadowing_SC_book

% SC to mitigate the effects of fading. (micro diversity). The BER is first

% evaulated for SC diversity keeping SNR as a random variable. The error

% is further averaged over the lognormal density. The plots are obtained

% from a selected value of alpha, rho and sigma as a function of the order

% of diversity. Requires a double integral.

% Results are comprared to random number simulations.. with 1e7 set. the

% error rates are accurate only up to 1e-6.

% P M Shankar, July 2016

close all

Z0=[10:2:40];

alpha=1.15;

rh=0.45;

sig=4;

MN=[1,3,5];

MQ=length(MN);

LK=length(Z0);

KN=10/log(10);

mu=Z0-sig^2/(2*KN); % average measured in dB

MM=10;% number of terms in the summation

% create the integrand using symbolic variables

syms a x r sigm MU km MD z MS

% X is taken as 1 for shadowed fading

xa=a/(x*(1-r));

a2=a/2;

gamaprt=gamma(a+2*km)-igamma(a+2*km,xa*z);

Nr=gamaprt*r^km;

Dr=factorial(km)*gamma(km+1/2+a2)*2^(a+2*km-1);

CDF1=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,km,0,MS);

CDF=CDF1^MD;

fun=CDF*0.5*exp(-z)/sqrt(z*sym(pi));

ff=sym(KN)*exp(-(10*log10(x)-MU)^2/(2*sigm^2))/sqrt((2*sym(pi)*x*x)*sigm^2);

fun=fun*ff; % this is the integrand

pesh=zeros(LK,MQ);

%pesd=zeros(LK,MQ); % simulation

for kr=1:MQ

M=MN(kr);% sigma value

for k=1:LK

% substitute the values

funer=subs(fun,[a,r,sigm,MU,MS,MD],[alpha,rh,sig,mu(k),MM,M]);

% create the in-line function

mfuner=matlabFunction(funer);

% perform the integration

pesh(k,kr)=integral2(mfuner,0.1,1e5,0.1,1e5);

end;

end;

figure

semilogy(Z0,pesh(:,1),'-r',Z0,pesh(:,2),'b-',...

Z0,pesh(:,3),'--k','linewidth',1)

xlabel('average SNR (dB)'),ylim([1e-6,1])

legend(['M = ',num2str(MN(1))],['M = ',num2str(MN(2))],...

['M = ',num2str(MN(3))]);

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),'  \rho = ',num2str(rh),...

'  \sigma = ',num2str(sig),' dB'])

end
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a = 1.15 r = 0.45 s = 4 dB
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Fig. 5.109 Error rates α ¼ 1.15, ρ ¼ 0.45, σ ¼ 4 dB (SC)
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Fig. 5.108 Error rates α ¼ 1.15, ρ ¼ 0.25, σ ¼ 6 dB (SC)
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5.13 Diversity in Channels Modeled as Gamma Mixtures

Gamma mixtures provide simple ways to overcome the lack of appropriate analyt-

ical expressions for the error rates and outage probabilities in fading channels

(Atapattu et al. 2011). With equal gain combining and generalized selection

combining algorithms, the analytical expressions for the pdf of the output of the

algorithms are in integral forms making the estimation of error rates and outages

computationally tedious. Following earlier discussions in Chaps. 2 and 4, the

mixture density is expressed as (Chatelain et al. 2008; Venturini et al. 2008)

f Z zð Þ ¼
Xn
i¼1

pif i zð Þ: ð5:236Þ

In Eq. (5.236), the weights p’s satisfy the total probability criterion

Xn
i¼1

pi ¼ 1 ð5:237Þ

The components of the gamma mixture are

f i zð Þ ¼ zαi�1 e
� z

βi

βαii Γ αið Þ , i ¼ 1, 2, � � �, n ð5:238Þ

Note that n is the number of components in the mixture and density in

Eq. (5.238) has a mean of αiβi. In other words, Eq. (5.238) represents the density

of the SNR in a Nakagami channel with a parameter m¼ αi and average

SNRZ0¼ αiβi.
The success of the mixture model depends on the determination of the optimum

number of components needed to have the density in Eq. (5.236) match the density

of the output of the diversity combining algorithm. When the number of compo-

nents n becomes large, chi-square testing becomes meaningless (typical number of

bins such as 5 or 10 will be smaller than the number of parameters being estimated)

making it necessary to look for other means of determining the optimum value of

n (Papoulis and Pillai 2002). One of the simpler options was discussed in Chaps. 2

and 4 which uses the mean square error (MSE). Even though the fit improves with n,
higher and higher values of n would require more computations as the number of

parameters for an n-component gamma mixture is (3n�1). Therefore, the interest is

not only finding a better match, but having a match that is optimum in terms of

computational complexity as well. The selection or the choice of the match will be

more appropriate if a probability value can be associated with n, the most appro-

priate fit being the one with a probability nearest to unity. Such a probabilistic

measure can be obtained using the concept of the Bayes Information Criterion

(BIC). To understand BIC (Schwartz 1978; Atkinson 1981; Kim and Taylor 1995;
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Kass and Raftery 1995; Mayrose et al. 2005; Almhana et al. 2006; Claeskens 2016),

there is a need to go back to the log likelihood function defined in Chap. 2. If an

optimum set of parameters is obtained for n, the log likelihood function LLF(n) can
be written as

LLF nð Þ ¼
XN
j¼1

log f zj
� � � ¼XN

j¼1

log
Xn
i¼1

pif i zj


αi; βi� � !

: ð5:239Þ

In Eq. (5.239), N is the number of samples of the data available. The Bayes

Information Criterion takes into account the log likelihood function, the number of

mixture components n, and the number of samples N. The relationship of BIC to the

LLF, n, and N is given as (Schwartz 1978; Atkinson 1981; Neath and Cavanaugh

2012; Claeskens 2016)

BIC ¼ �2log LLFð Þ þ 3n� 1½ �log Nð Þ ð5:240Þ

It has been shown that BIC is a concave function of n and therefore, one chooses
the value of n (number of mixture components) for which BIC is minimum

(Claeskens 2016). Equation (5.240) clearly indicates that BIC values go up with

increasing values of n, displaying the risk of overfitting with higher values of n. It
also shows that the more samples are used, the greater is the value of BIC. But, the

concavity of BIC will assure the optimum value of n.
While BIC offers a reasonable option, some more refining is needed since BIC

values might fall in 1000s as seen from its dependence on N. When BIC values are

very high and the differences among the BIC values are small, the decision of

rejecting values of n is a difficult task. This problem can be overcome through the

development of a posterior probability associated with each value of n. To under-

stand this, one needs to find the minimum value of BIC and the differences between

this minimum and the other values of BIC,

BICmin ¼ minimum BIC 1ð Þ;BIC 2ð Þ; . . .BIC nð Þ½ � ð5:241Þ

Δk ¼ BIC kð Þ � BICmin, k ¼ 1, 2, . . . , n ð5:242Þ

It is clear that for the model to be selected (n ¼ k), Δkwill be zero and one needs

to justify a basis for rejecting the rest of the values of n. A threshold value proposed

to accomplish this is the following:

Δk � 2, do not reject the model withk component densities

Δk > 10, reject the model withk component densities
: ð5:243Þ

The step in Eq. (5.243) is only the first one in the quest for the best way to reject

certain values of n. Since the values of BIC are quite large, the range between

rejection and acceptance is rather broad. Therefore, there is a need to rank the
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models (corresponding to the values of n) by assigning a value of “1” for the best fit
and “0” for the least likely fit. An appropriate quantity would be the a posteriori

(posterior) probability identifying the model with a specific value of n being the

most likely fit, given the data Z. Using Bayes’ rule, the posterior probability P(k|Z)
can be expressed as (Neath and Cavanaugh 2012)

P kjZð ÞP Zð Þ ¼ P Zjkð ÞP kð Þ, k ¼ 1, 2, � � �n: ð5:244Þ

In Eq. (5.244) P(k)is the a priori probability of choosing a specific value of

k from the set, 1, 2, . . ., n and

P Zð Þ ¼
Xn
k¼1

P Zjkð ÞP kð Þ: ð5:245Þ

Since the minimum value of BIC is associated with the best fit, the conditional

probability P(Z|k)can be expressed as

P Zjkð Þ ¼ e�
1
2
Δk : ð5:246Þ

The value of Δkis given in Eq. (5.242). Using Eqs. (5.245) and (5.246), the

posterior probability P(k|Z )becomes

P kjZð Þ ¼ P Zjkð ÞP kð ÞPn
k¼1

P Zjkð ÞP kð Þ
: ð5:247Þ

Since one could have started exploring with any value of n to seek the fit, the a

priori probability of choosing any value of n ¼ k is

P kð Þ ¼ 1

n
, k ¼ 1, 2, . . . , n: ð5:248Þ

Using Eq. (5.248), the posterior probability becomes

P kjZð Þ ¼ P Zjkð ÞPn
k¼1

P Zjkð Þ
: ð5:249Þ

The posterior probability associated with kth model (k ¼ 1, 2, . . ., n) is

P kjZð Þ ¼ e�
1
2
ΔkPn

k¼1

e�1
2
Δk :

ð5:250Þ
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It is now possible to observe the strength of BIC as a qualifier since

P kjZð Þ ¼ e�
1
2
ΔkPn

k¼1

e�1
2
Δk

¼ 1Pn
k¼1

e�1
2
Δk

, BIC kð Þ ¼ BICmin, 1 � k � n ð5:251Þ

Since the maximum value of the numerator in Eq. (5.250) is unity, the posterior

probability forms the basis for the weight of evidence for the best fit for a specific

value of n ¼ k. Thus, Eq. (5.250) offers an opportunity to rank the models (defined

in terms of the number of components n) using a measure that ranges from 1 to

0, with the model with P(k|Z )¼1 offering an absolute certainty that none of the

other values of n fit the data.

This concept is demonstrated in an example. A number of gamma variables are

mixed and the data set analyzed using the technique described in Chaps. 2 and 4 to

obtain the parameter sets for n ¼ 1,2,. . .,6. Results are summarized in several

figures. Figure 5.110 shows the fit to a single gamma density and the parameters.

The slight misfit to the histogram of the data can be seen. Neither the BIC value nor

the MSE value conveys any specific information on the strength of the fit even

though the MSE value is small. Figure 5.111 shows the fit with n ¼ 3. One can see

that BIC value has come down while MSE still very low. Figure 5.112 shows the fit

n ¼ 5. The BIC value has come down w.r.t the values for n ¼ 1 and 3. Figure 5.113

shows the fit for n ¼ 6. It can be seen that the BSC value has gone up. These

observations have been summarized in Fig. 5.114 (generated automatically in

n = 1, BIC = 687194, MSE = 2.4652e-14
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Fig. 5.110 Gamma mixture fit to n ¼ 1
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n = 3, BIC = 677054, MSE = 1.7327e-16
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Fig. 5.111 Gamma mixture fit to n ¼ 3

n = 5, BIC = 676798, MSE = 1.551e-17
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Fig. 5.112 Gamma mixture fit to n ¼ 5
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n = 6, BIC = 676830, MSE = 9.2037e-20
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Fig. 5.113 Gamma mixture fit to n ¼ 6
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Fig. 5.114 Summary fits showing BIC, posterior probability, and chi-square test stats
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Matlab) showing all the parameter value sets, BIC, MSE, posterior probabilities,

and the chi-square test statistic for n ¼ 1, 2, and 3 for 10 bins. It is seen that

posterior probability is unity for n ¼ 5 suggesting that that is the best fit. Even

though the MSE value goes down with n ¼ 6, the results suggest that n ¼ 5 is

sufficient and n > 6 leads to higher levels of computations without offering any

better fits.

This concept is utilized to obtain the fits for the outputs of EGC (M ¼ 4 and

M ¼ 2) and GSC diversity (M ¼ 4) in McKay fading channels. Results for EGC are

shown in Figs. 5.115, 5.116, and 5.117. They show that n ¼ 2 is a sufficient fit.

A number of samples (5000) of McKay variables were created for the

diversity analysis. In the first step, the gamma mixture concept was explored for

n ¼ 1, 2, . . ., 6 and the results are displayed in Fig. 5.115.

The analysis was repeated five times and the average values are summarized in

Fig. 5.116.

A similar simulation was undertaken forM¼ 2 and the summary of the results is

given in Fig. 5.117.

The GSC fit is shown in Fig. 5.118 with MRC applied to three strongest

branches. Once again, the fit with n ¼ 2 is appropriate.

Once the best fit parameters are obtained, the error rates and outage probabilities

can be evaluated. While the technique seems direct in terms of having an analytical

expression for the equivalent pdf of the SNR following diversity processing, the
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2
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Fig. 5.115 Gamma mixture exploration of EGC (4) with Z0 ¼ 15 dB; α ¼ 0.75; ρ ¼ 0.7
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computational issues related to the determination of the optimum parameter set are

not simple.

As suggested in Chap. 4, other mixture densities including Gaussian mixtures

have been proposed to obtain analytical expression for the densities.
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Fig. 5.116 Gamma mixture fit data for EGC (M ¼ 4)
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Fig. 5.117 Gamma mixture fit data for EGC (M ¼ 2)
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5.14 Additional Examples of Random Number Simulation

It is possible to verify the results through random number simulation. The results on

the error rates and outage probabilities reported earlier are based on analytical

expressions.

5.14.1 Simulation of McKay Channels

A Matlab script that undertakes the comparison of error rates obtained

using random number simulation and analytical methods appears below.

The analytical approaches use Laplace transforms and summation using

Eq. (5.224) for the CDF (See Figs. 5.119, 5.120, 5.121, 5.122, 5.123, 5.124,

5.125, and 5.126).
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Fig. 5.118 Gamma mixture fit data for GSC(4,3)
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function ber_mckay_MRC_diversity

% P M Shankar

% BER in MRC diversity is calculated

% The error rate is calculated using random number simulation. Theoretical

% error rates calculated using the CDF and Laplace transforms for

% comparison

%July 2016

close all

global Z LK Z0 MM alpha rho MN

MM=20; % number of terms in the summation

Z0=[5:2:25];

Z=10.^(Z0/10);

LK=length(Z);

MN=[1,2,4];

for kq = 2:2

if kq==1

alpha=1.5; rho=0.35;

elseif kq==2

alpha=1.5; rho=0.65;

else

alpha=2.5; rho=0.5;

end;

ber_mckay_M

end;

end

function ber_mckay_M

% P M Shankar

global Z LK Z0 MM alpha rho MN

MQ=length(MN);

peS1=zeros(LK,MQ);% pe using random number simulation

peT1=zeros(LK,MQ);

% using Laplace transforms

peL1=zeros(LK,MQ);

%

for km=1:MQ

M=MN(km);

alphaM=M*alpha;

for k=1:LK

X=Z(k);

XM=M*X;

X1=X*(1+sqrt(rho))/2;

X2=X*(1-sqrt(rho))/2;

a1=alpha/2;

x=gamrnd(a1,X1/a1,M,1e7)+gamrnd(a1,X2/a1,M,1e7);

if M>1

x=sum(x);

else

end;

peS1(k,km)=berest(x);

peT1(k,km)=berMcKay(alphaM,rho,XM,MM);

peL1(k,km)=laplace_ber_func(alpha,rho,X,M);

clear x

end;

end;

%
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function ber = berest(simdata)

L=length(simdata);

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;

out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

figure,semilogy(Z0,peT1(:,1),'-r',Z0,peS1(:,1),'r*',Z0,peL1(:,1),'r^',...

Z0,peT1(:,2),'--k',Z0,peS1(:,2),'ko',Z0,peL1(:,2),'ks',...

Z0,peT1(:,3),'-.b',Z0,peS1(:,3),'bd',Z0,peL1(:,3),'bh')

xlabel('average SNR (dB)'),xlim([5,25]),ylim([1e-6,.1])

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),',  \rho = ',num2str(rho)])

legend(['Th (M = ',num2str(MN(1)),')'],...

['S (M = ',num2str(MN(1)),')'],...

['L (M = ',num2str(MN(1)),')'],...

['Th (M  = ',num2str(MN(2)),')'],...

['S (M  = ',num2str(MN(2)),')'],...

['L (M = ',num2str(MN(2)),')'],...

['Th (M  = ',num2str(MN(3)),')'],...

['S (M  = ',num2str(MN(3)),')'],...

['L (M = ',num2str(MN(3)),')'])

end

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end

function peTT =berMcKay(aa,rr,ZZ,MM)

% p m shankar, BER calculation using the summation

% the function is obtained symbolically first

syms a X k M r

ak=a+2*k;

Xa=a/(X*(1-r));

X2=2*X;

Nr1=(a/X2)^ak*r^k*gamma(ak+1/2);

Dr1=factorial(k)*gamma(1/2+ak/2)*gamma(a/2)*ak*(1-r)^(2*k+a/2);

NDR=Nr1/Dr1;

pes=symsum(NDR*hypergeom([ak,ak+1/2],[ak+1],(-Xa)),k,0,M);

pesk=subs(pes,[a,X,r,M],[aa,ZZ,rr,MM]);

peTT=double(pesk); % this is the ber

end

function pe = laplace_ber_func(alpha,rho,Z,M) % Laplace based

syms s r a X y

fLr=a^a/(a^2+s^2*X^2+2*s*X*a-s^2*X^2*r)^((1/2)*a);

fLRf=subs(fLr,[a,X,r],[alpha,Z,rho]);

f1M=fLRf^M; % laplace transform MRC

fun2M=subs(f1M,s,1/(sin(y))^2);

mckayf2=matlabFunction(fun2M);

pe=(1/pi)*integral(mckayf2,0,0.999975*pi/2);

end
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Fig. 5.119 Bit error rates (MRC), random number simulation (S), summation with 20 terms for

CDF (Th), and Laplace (L ) [α¼ 1.2, ρ¼ 0.65]
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Fig. 5.120 Bit error rates (MRC), random number simulation (S), summation with 20 terms for

CDF (Th), and Laplace (L ) [α¼ 1.5, ρ¼ 0.35]

5.14 Additional Examples of Random Number Simulation 659



function ber_mckay_SC_diversity

% P M Shankar

% BER in SC diversity is calculated.. use the CDF

%July 2016

close all

global Z LK Z0 MM alpha rho MN

MM=20; % number of terms in the summation

Z0=5:2:25;

Z=10.^(Z0/10);

LK=length(Z);

alpha=1.5;

rho=0.35;

MN=[1,3,4];

ber_mckay_M

end

function ber_mckay_M

% P M Shankar

global Z LK Z0 MM alpha rho MN M

MQ=length(MN);

peS1=zeros(LK,MQ);% pe using random number simulation

peT1=zeros(LK,MQ);

for km=1:MQ

M=MN(km);

for k=1:LK

X=Z(k);

X1=X*(1+sqrt(rho))/2;

X2=X*(1-sqrt(rho))/2;

a1=alpha/2;

x=gamrnd(a1,X1/a1,M,1e7)+gamrnd(a1,X2/a1,M,1e7);

if M>1

x=max(x);

else

end;

peS1(k,km)=berest(x);

peT1(k,km)=berMcKay(alpha,rho,X,MM);

clear x

end;

end;

%

figure,semilogy(Z0,peT1(:,1),'-r',Z0,peS1(:,1),'r*',...

Z0,peT1(:,2),'--k',Z0,peS1(:,2),'ko',Z0,peT1(:,3),'-.b',Z0,peS1(:,3),'b^')

xlabel('average SNR (dB)'),xlim([5,25]),ylim([1e-6,.1])

ylabel('Average probability of error')

title(['\alpha = ',num2str(alpha),',  \rho = ',num2str(rho)])

legend(['Th (M = ',num2str(MN(1)),')'],...

['S (M = ',num2str(MN(1)),')'],...

['Th (M  = ',num2str(MN(2)),')'],...

['S (M  = ',num2str(MN(2)),')'],...

['Th (M  = ',num2str(MN(3)),')'],...

['S (M  = ',num2str(MN(3)),')'])

end

function ber = berest(simdata)

L=length(simdata);

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;
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out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end

function peTT =berMcKay(aa,rr,ZZ,KK)

% create the McKay CDF % KK is the number of terms in the summation

global M

syms a r X K z

syms k

xa=a/(X*(1-r));

a2=a/2;

gamaprt=gamma(a+2*k)-igamma(a+2*k,xa*z);

Nr=gamaprt*r^k;

Dr=factorial(k)*gamma(k+1/2+a2)*2^(a+2*k-1);

CDF=((sqrt(sym(pi))*(1-r)^(a2))/gamma(a2))*symsum(Nr/Dr,k,0,K);

%in order of variables @(K,X,a,r,z)

CDFF=subs(CDF,[X,a,r,K],[ZZ,aa,rr,KK]);

integraN=(1/2)*1/sqrt(z*sym(pi))*exp(-z)*CDFF^M;

mckCDF=matlabFunction(integraN); % function of z only

peTT=integral(mckCDF,1e-5,inf);

end
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Fig. 5.121 Bit error rates (SC), random number simulation (S), summation with 20 terms for

CDF (Th) [α¼ 1.5, ρ¼ 0.35]
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5.14.2 Simulation of Diversity in Nakagami Fading
Channels SC, EGC, GSC, and MRC

function diversityALL_demo

% diversity demo for mckay fading. Random number simulation only

%SC, EGC, MRC if M=3 or more,  also GSC for two cases GSC(M,2) GSC(M,3)

% PDF's are obtained and error rates estimated. P M Shankar, October 2016

close all

numb=1e6;%numbers used for simulation

Z0=10;

m=1.5;

M=5;

Z=10^(Z0/10);

a=m; % alpha

r=0.7; % rho

X1=Z*(1+sqrt(r))/2;

X2=Z*(1-sqrt(r))/2;

a1=a/2;

x=gamrnd(a1,X1/a1,M,numb)+gamrnd(a1,X2/a1,M,numb);

xm=max(x);%SC

xs=sqrt(x);%for EGC

xem=(1/M)*sum(xs).^2;%EGC

xmr=sum(x);%MRC
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Fig. 5.122 Bit error rates (SC), random number simulation (S), summation with 20 terms for

CDF (Th) [α¼ 0.9, ρ¼ 0.7]
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for k=1:LZ

X1=Z(k)*(1+sqrt(r))/2;

X2=Z(k)*(1-sqrt(r))/2;

x=gamrnd(a1,X1/a1,M,4e7)+gamrnd(a1,X2/a1,M,4e7);

xx=x(:);

pe1(k)=berest(xx');% no diversity ber

xm=max(x);%SC

pes(k)=berest(xm);% SC ber

xs=sqrt(x);%for EGC

xem=(1/M)*sum(xs).^2;%EGC

pee(k)=berest(xem);% EGC ber

xmr=sum(x);%MRC

per(k)=berest(xmr);% MRC ber

y=sort(x,'descend');%sorts the columns in descending order

ym3=sum(y(1:3,:));%GSC of 3 out of M

pey3(k)=berest(ym3);% %GSC of 3 out of M  ber

clear x xs xm xmr y ym3

end;

figure,semilogy(Z0,pe1,'r-*',Z0,pes,'k-o',...

Z0,pey3,'b--p',Z0,per,'-m^')

ylim([1e-6,0.1])

legend('No diversity',name1,name3g,name3)

figure,semilogy(Z0,pe1,'r-*',Z0,pes,'k-o',...

Z0,pee,'b--p',Z0,per,'-m^')

ylim([1e-6,0.1])

legend('No diversity',name1,name2,name3)

end

tt1=strcat('(',num2str(M),')');

name1=strcat('SC',tt1);name2=strcat('EGC',tt1);name3=strcat('MRC',tt1);

tt=strcat([' \alpha = ',num2str(m),',  \rho = ',num2str(r),', X = ',num2str(Z0),' dB']);

[f1,x1]=ksdensity(x(:)); [f2]=ksdensity(xm(:),x1);

[f3]=ksdensity(xem(:),x1);[f4]=ksdensity(xmr(:),x1);

figure, plot(x1,f1,'k-',x1,f2,'m--',x1,f3,'r-.',x1,f4,'--+b','linewidth',1.2)

xlabel('Signal-to-Noise ratio '),ylabel('Probability density function')

xlim([0,0.6*max(x1)])

title(tt)

legend('No Div',name1,name2,name3),grid on

%generalized selection combining

if M>2

y=sort(x,'descend');%sorts the columns in descending order

ym2=sum(y(1:2,:));%GSC of 2 out of M

ym3=sum(y(1:3,:));%GSC of 3 out of M

[fg2]=ksdensity(ym2(:),x1);[fg3]=ksdensity(ym3(:),x1);

name2g=strcat('GSC(',num2str(M),',2)'); name3g=strcat('GSC(',num2str(M),',3)');

figure

plot(x1,f1,'k-',x1,f2,'r--',x1,fg2,'m-.',x1,fg3,'b--+',x1,f4,'r:h')

xlim([0,0.6*max(x1)]), title(tt)

xlabel('Signal-to-Noise ratio'),ylabel('Probability density function')

legend('No Div',name1,name2g,name3g,name3),grid on

else

end;

clear Z0 x xs xm xmr y ym2 ym3

a=1.2;

a1=a/2;

r=0.75;

Z0=5:.5:20; % average SNR

Z=10.^(Z0/10);

LZ=length(Z);

pe1=zeros(1,LZ);

pes=zeros(1,LZ);

per=zeros(1,LZ);

pee=zeros(1,LZ);

pey3=zeros(1,LZ);
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function ber = berest(simdata)

L=length(simdata);

nn=normrnd(0,1,1,L);%Gaussian noise of zero mean and unit variance

h=simdata;%data is in units of power

h=sqrt(h);%needs to be converted into envelope or amplitude units

%%input data is the BPSK bit sequence

ip = rand(1,L)>0.5;%generate 0's and 1's

indata=2*ip-1;%bipolar data

s=indata;

out= sqrt(2)*h.*s+nn;% this simulates sqrt(2E/T)*bk*a+n

x1=out>0;%detects 1s and zeros

x2=-1*(out<0);%detect-1's and zeros

outdata=x1+x2;%recreates the output bit stream in bipolar form

Diffdata=s-outdata;% will be either +2 or -2 when there is an error

DIF=abs(Diffdata);%will be 2 or zero

berN=sum(DIF>0);%counts how many times the abs difference exceeds zero.

ber=berN/L;

end
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5.15 Summary

In this chapter, we investigate the impact of diversity in wireless channels. Our

study is limited to those fading and shadowing models based on the Nakagami or

gamma densities. The benefits of diversity can be understood by carrying out the

computations of the error rates and outage probabilities. The error rates and outage

probabilities show reductions with diversity. Maximal ratio combining (MRC)

diversity provides maximum improvement in performance.

We also explored the need to have diversity at the microlevel and macrolevel.

This mitigates the channel impairments in shadowed fading channels. The hybrid

diversity implemented at the microlevel through generalized selection combining

offers a compromise between pure selection combining on one end and MRC on the

other end. It must be understood that the trends in improvement with diversity will

be similar regardless of the specific models used for fading or shadowing.

There is a large body of published work available in the literature of wireless

which examines diversity in fading and shadowed fading channels modeled using

other density functions. The improvements seen in Weibull channels through the

implementation of the GSC algorithm have been reported by several researchers

(Bithas et al. 2005; Alouini and Simon (2006) Wireless Comm. & Mobile Comp.

6:1077–1084). Results on other diversity algorithms in Weibull channels are

additionally available (Sagias et al. (2003) Electronics Letters 39(20):1472–1474;

Sagias et al. (2004) Communications, IEEE Transactions on 52(7):1063–1067;

Karagiannidis et al. (2005) Wireless Communications, IEEE Transactions on 4
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(3):841–846). While the diversity in generalized gamma channels was briefly

discussed earlier on, several published results which undertook detailed studies of

generalized gamma fading channels are available (Bithas et al. (2007a) Communi-

cations Letters, IEEE 11(12):964; Aalo et al. (2007) Communications, IET

Proceedings 1(3):341–347; Samimi and Azmi (2008) Int. J. Electronics & Comm.

(AEU) 62:496–605). The case of shadowed fading channels modeled using Rician-

lognormal density has been studied by researchers (Wang and Stuber (1999)

Vehicular Technology, IEEE Trans. on 48(2):429–436; Zhang and Aalo (2001)

Communications, IEEE Transactions on 49(1):14–18). Diversity in Nakagami–

Hoyt channels has also been studied (Iskander and Mathiopoulos (2005) Proceed-

ings. IEEE 233–239; Zogas et al. (2005) Wireless Communications, IEEE

Transactions on 4(2):374–379; Fraidenraich et al. (2008) Communications,

IEEE Transactions on 56(2):183–188).

In the updated edition, diversity in McKay faded channels has been studied. The

effect of shadowing on the improvement in performance from diversity is also

discussed. Gamma mixtures are examined as replacements for the density of SNR

following diversity. In all cases, Matlab scripts have been provided to complete the

analysis of diversity in wireless systems.
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Chapter 6

Interference in Wireless Channels

6.1 Introduction

The analysis and discussion so far in Chaps. 4 and 5 examined the effects of fading

and shadowing in wireless systems while ignoring the possibility that the signal

under consideration might be impacted by other signals, typically from other

channels operating at the same frequency band. The contribution from other

channels is often referred to as the cochannel interference or CCI. In simple

terms, if the contribution from CCI exceeds a certain value, the ability to detect

the signal of interest is adversely impacted leading to outage as well as further

degradation in error rate performance (MacDonald 1979; Aalo and Zhang 1999;

Muammar and Gupta 1982; Winters 1984; Abu-Dayya and Beaulieu 1991; Cardieri

and Rappaport 2001; Yang and Alouini 2003). Often, there might be several

cochannels instead of a single one. Even these cochannels might not be operating

all the time, making it necessary to model the number of cochannels as a random

variable. Thus, there are two factors that affect the performance of wireless systems

in fading or shadowed fading channels, namely the noise and CCI. The analysis and

studies carried out in Chaps. 4 and 5 can be treated as noise limited. If noise is

neglected, we will be dealing with interference limited systems. In reality, wireless

systems operating in fading should be analyzed when both the noise and interfer-

ence cannot be ignored (Okui 1992; Yao and Sheikh 1992; Simon and Alouini

2005). The interference from cochannels affects both the outage probabilities and

error rates. In fact, outage probabilities and error rates go up in the presence of CCI.

The existence of CCI even leads to outage floors or error floors, suggesting that any

further increase in the desired signal power or SNR will have no impact on the

outages or error rates.

The effect of CCI will be analyzed in two steps. First, we examine the effect on

outage probabilities. This will be followed by the examination of error rates.
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6.2 Outage Probabilities

We will start the discussion by looking at the simple case of Rayleigh channel

before proceeding to other fading and shadowed fading channels. As we had done

in Chap. 5, we will be examining fading and shadowing channels modeled using

gamma densities including Rayleigh ones.

6.2.1 Rayleigh Channels

Let us consider the case of a single interfering channel first. Since the interfering

channel is undesirable, the level of the interference will play a role in outage.

We assume that we have a Rayleigh fading environment. This means that the

desired channel is undergoing Rayleigh fading and we have an interfering channel

which is also undergoing Rayleigh fading. It is intuitive that we will have outage if

the desired signal power falls below the interfering signal power. Let the desired

signal power (average) be Ps0 Watts. Let the interfering power (average) at the MU

be Pc0 Watts. Note that both the desired signal power (ps) and interfering power

(pc) will be exponentially distributed as

f psð Þ ¼ 1

Ps0
exp � ps

Ps0

� �
, ð6:1Þ

f pcð Þ ¼ 1

Pc0
exp � pc

Pc0

� �
: ð6:2Þ

Outage occurs when the interfering channel power exceeds the desired signal

power (Sowerby and Williamson 1987; Abu-Dayya and Beaulieu 1991). The

outage probability Pout is

Pout ¼ Prob Pc > Psð Þ: ð6:3Þ

The outage probability is given by the shaded area in Fig. 6.1.

Treating the desired signal and interfering signal to be independent, the outage

probability becomes

Pout ¼
ð1
0

f psð Þ
ðps
0

f pcð Þdpc

2
4

3
5dps ¼ Pc0

Pc0 þ Ps0
¼ 1

1þ Ps0=
Pc0
:

ð6:4Þ

Equation (6.4) indicates that the outage probability depends only on the ratio of

the average powers and not on the individual powers (signal or interference). The

outage probability is plotted in Fig. 6.2.
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The results in Fig. 6.2 demonstrate the existence of potential problems in

wireless communication from interfering signals. We will now explore the effect

of interfering signals in detail.

As we had done in the previous chapters, we will transition from power to signal-

to-noise ratio since the density functions will be similar. Let us consider the case of

N cochannels. Since the base stations from where they originate are sufficiently

separated from one another, so that we will assume that they lack coherence, and

the total contribution from the cochannels can be expressed as the sum of the signal-

to-noise ratio terms from the N cochannels (Sowerby and Williamson 1988a, b;

Linnartz 1992; Sowerby and Williamson 1992, 2002; Aalo and Chayawan 2000).

Let Z represent the received SNR from the channel of interest. Let the total

contribution to CCI from the N cochannels be Zc such that

Zc ¼
XN
k¼1

Zck: ð6:5Þ

pc

Ps < Pc

ps

Ps > Pc

Fig. 6.1 The outage

probability is indicated by

the probability (volume)

contained within the

shaded area
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Fig. 6.2 Outage probability as a function of the ratio of the average powers
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In (6.5), each term in the summation is the contribution from the cochannel. In a

simple case, we will assume that all the cochannels are identical and the contribu-

tions are equal (i.e., are not weighted). We must also note that it is possible to have

different forms of fading affecting the signal of interest and the CCI. Let us consider

the simple case of Rayleigh fading taking place over the whole geographical region

so that we can treat both the signal channel and the CCI channels as undergoing

Rayleigh fading. This means that the density function of the signal-to-noise ratio

signal of interest will be exponentially distributed as

f zð Þ ¼ 1

Z0

exp � z

Z0

� �
: ð6:6Þ

Since all the cochannel powers add incoherently, the density function of the SNR

from the cochannels in (6.5) will be pdf of the sum of N independent and identically

distributed exponential random variables. This pdf can be written as

(Moschopoulos 1985; Papoulis and Pillai 2002)

f zcð Þ ¼ 1

Z0c

� �N zN�1
c

Γ Nð Þ exp � zc
Z0c

� �
: ð6:7Þ

In obtaining (6.7), we have made use of the fact that an exponential pdf is a

gamma pdf of order unity and that the pdf of the sum of independent and identically

distributed gamma random variables is another gamma pdf or more specifically an

Erlang pdf since N is an integer. In (6.6) and (6.7) Z0 is the average SNR of the

channel of interest and Z0c is the average SNR in any one of the cochannels,

respectively. On a channel to channel basis, we can define the signal-to-interference

ratio (SIR) as

SIR ¼ Z0

Z0c
: ð6:8Þ

Note that using the definition in (6.8), SIR goes down with an increasing number

of cochannels. It is also possible to define the signal-to-interference ratio on a

composite basis as SIRN,

SIRN ¼ Z0PN
k¼1 Z0ck

: ð6:9Þ

In (6.9), each cochannel is assumed to have a different SNR. For our discussion,

we will use the definition in (6.8), which suggests that SIR goes down as the number

of cochannels increases. To prevent outage from occurring, there is a need to

maintain a minimum protection ratio q given as

q ¼ Z

Zc
: ð6:10Þ

678 6 Interference in Wireless Channels



Typical values of q might be in the range of 10–15 dB depending on how much

separation is expected between the desired signal of interest and the cochannels

(Helstrom 1986; Abu-Dayya and Beaulieu 1991, 1992; Cui and Sheikh 1999;

Mostafa et al. 2004; Shankar 2005). Note that outage will also occur if the SNR

of the desired signal falls below a certain threshold (as discussed in Chaps. 4 and 5),

with the value of the threshold being determined by the modulation and maximum

acceptable error rates. Therefore, the outage is governed by two factors, the

threshold and the protection factor. The outage probability can now be expressed as

Pout ¼ 1� Prob Z > ZT ;
Z

Zc
> q

� �

¼ 1�
ð1
ZT

f zð Þ
ðz=qð Þ

0

f zcð Þdzc

2
64

3
75dz: ð6:11Þ

In (6.11) ZT is the threshold SNR required to maintain an acceptable bit error

rate. In writing down the expression for the outage, we have assumed that the signal

of interest (desired signal) and the CCI are independent. The outage probability can

be simplified to

Pout ¼ 1�
ð1
ZT

1

Z0

exp � z

Z0

� �
γ½N, ðz=qZ0cÞ�

Γ Nð Þ dz, ð6:12Þ

where γ (,) is the incomplete gamma function defined in Chap. 2. In terms of

SIR, we can rewrite Eq. (6.12) as

Pout ¼ 1�
ð1
ZT

1

Z0

exp � z

Z0

� �
γ½N, ðSz=Z0Þ�

Γ Nð Þ dz: ð6:13Þ

In (6.13), S is

S ¼ SIR

q
: ð6:14Þ

Equation (6.13) can be further simplified to

Pout ¼ 1�
ð1
ZZ

exp �yð Þ γ N; Sy½ �
Γ Nð Þ dy, ð6:15Þ

with

ZZ ¼ ZT

Z0

: ð6:16Þ
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Before we examine the case of several cochannels, we will look at the case of

N ¼ 1. In this case, (6.15) becomes

Pout ¼ 1�
ð1
ZZ

exp �yð Þ 1� exp �Syð Þ½ �dy: ð6:17Þ

Equation (6.17) reduces to

Pout ¼ 1þ Sð Þ 1� exp �ZZð Þ½ � þ exp �ZZ 1þ Sð Þ½ �
1þ S

: ð6:18Þ

Figure 6.3 shows the outage probability in a Rayleigh faded channel when there

is only a single CCI channel expressed in (6.18). The most obvious outcome seen

from Fig. 6.3 is the existence of “outage floors.” The outage probabilities appear to

reach certain values depending on the threshold, and often these values are signif-

icantly higher than what is expected in terms of outage levels.

Let us examine (6.18) to understand the outage performance in terms of the two

limiting cases, one related to CCI and the other related to noise. If CCI is weak, i.e.,

we have a noise limited case, S is large and (6.18) becomes

Pout ¼ 1þ Sð Þ 1� exp �ZZð Þ½ � þ exp �ZZ 1þ Sð Þ½ �
1þ S

� 1� exp �ZZð Þ: ð6:19Þ
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Fig. 6.3 Outage probability is plotted against SIR/q for various values of the ratio of the average

SNR in the desired channel to the threshold SNR. Only one cochannel is present
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The outage probably depends only on the ZZ (note that this is also the outage

probability we had obtained in Chap. 4, where no CCI was considered). This means

that outage probability will continue to decrease as the average SNR Z0 increases.
The limiting value is determined by the average SNR of the desired signal.

If we have a CCI limited case, i.e., ZZ is small, (6.18) becomes

Pout ¼ 1þ Sð Þ 1� exp �ZZð Þ½ � þ exp �ZZ 1þ Sð Þ½ �
1þ S

� 1

1þ Sð Þ : ð6:20Þ

The outage probability is inversely proportional to the signal-to-CCI ratio as

seen in Fig. 6.3. The outage is plotted against Z0/ZT for a few values of SIR/q to

further illustrate this behavior (Fig. 6.4). The outage floors are clearly seen.

The result in (6.20) can also be obtained directly by considering the effect of CCI

alone. If the channel has very little noise, outage occurs when the SNR in the

desired channel falls below the threshold determined by the protection ratio. In

other words, the outage probability is given by

Pout ¼ Prob
Z

Zc
< q

� �
: ð6:21Þ

Using the density functions, the outage in (6.21) is given by
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Fig. 6.4 Outage probability vs. Z0/ZT for several values of SIR/q. Only a single cochannel is

present
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Pout ¼
ð1
0

1

Z0c
exp � zc

Z0c

� � ðq zc
0

1

Z0

exp � z

Z0

� �
dz

2
4

3
5dzc ¼ 1

1þ S
: ð6:22Þ

The outage probability in (6.22) can also be interpreted as the outage probability

in the absence of any constraints on the desired signal power. Note that the result in

(6.22) is identical to the one obtained in (6.4).

Examining these figures, we see that CCI presents a serious problem in wireless

systems: we see outage probabilities becoming almost a constant (floor). This value

might be higher than what is tolerable and acceptable for data communication

services which expect uninterrupted transmission. The only means to bring the

outage probabilities lower is to operate at higher values of SIR (low CCI value) as

well as average SNR in the desired signal (Z0 high).
So far, we have only examined the existence of a single cochannel. We will now

look at the effect of a fixed number of channels as well as a random number of

cochannels. The results for the case of a fixed number of cochannels obtained using

(6.15) are shown in Fig. 6.5.

To highlight the effect of no constraints on the desired signal power, the outage

probabilities are plotted for the high value of Z0/ZT of 50 dB for several values of

N in Fig. 6.6. We clearly see that the outage probabilities go down and outage floor

behavior is absent. Thus, the floor behavior is associated with the existence of CCI

along with the requirement on the desired signal through the existence of the

threshold ZT.
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Fig. 6.5 Outage probabilities for multiple cochannels. The number of cochannels is fixed (N ¼ 1,

3, and 6)
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It is possible that all the cochannels may not be operating at the same time

(Abu-Dayya and Beaulieu 1992; Yang and Petropulu 2003; Shankar 2005). This

can be taken into consideration by treating the number of interfering channels as a

Poisson random variable. The number of cochannels in use is described by

P n ¼ Nð Þ ¼ Nav½ �Ne�Nav

N!
, ð6:23Þ

where Nav is the average number of cochannels. The outage probability, PoutNr,

in the presence of random number of cochannels can be evaluated by calculating the

outage for various values of N from a Poisson distributed set of random numbers

with an average of Nav followed by averaging over the Poisson probability. The

expression for PoutNr becomes

PoutNr ¼ e�Nav

X1
k¼0

Poutk
Nav½ �k
k!

, ð6:24Þ

where Poutk is given in (6.15) for k ¼ N. The outage probabilities are compared

for the case of three cochannels in Fig. 6.7. It is seen that the effect of random

number of cochannels is a slight reduction in outage probabilities.

Another way of exploring the existence of random number of cochannels is

through the use of a binomial model. The average outage probability can now be

expressed as
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Fig. 6.6 Outage probabilities with almost no restrictions on the desired signal power or SNR
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Pav
out ¼

XL
N¼0

PoutN∗P Nð Þ: ð6:25Þ

where PoutN is the outage in equation for N ¼ 0,1,2,... ,L, and P(N ) is the

probability that the number of interfering channels is N. This probability P(N ) is

determined by the number of voice channels (Ns) and the blocking probability B. It
can be expressed as (Abu-Dayya and Beaulieu 1991; Reig and Cardona 2000)

P Nð Þ ¼ L
N

� �
BN=Ns 1� B1=Ns

� �L�N
: ð6:26Þ

Equation (6.25) can now be evaluated using (6.15) and (6.26) with the maximum

value of N being 6. Outage probabilities in a random number of cochannels were

evaluated for Ns ¼ 10 and B ¼ 0.02 that are shown in Fig. 6.8.

6.2.2 Nakagami Channels

We can now look at the general case of a desired signal in a Nakagami channel

when the cochannels are also operating in Nakagami faded channels (Okui 1992;

Abu-Dayya and Beaulieu 1991). The density function of the SNR in the desired

channel becomes
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Fig. 6.7 Outage when the number of cochannel interference (CCI) channels is random (Nav ¼ 3)

684 6 Interference in Wireless Channels



f zð Þ ¼ m

Z0

� �m zm�1

Γ mð Þ exp �m

Z0

z

� �
: ð6:27Þ

If we assume that all the cochannels are identical, each with a Nakagami

parameter m1, the density function of the SNR of the cochannels is (Aalo and

Chayawan 2000; Simon and Alouini 2005)

f zcð Þ ¼ m1

Z0c

� �m1NI zm1N�1
0

Γ m1Nð Þ exp �m1

Z0c
zc

� �
: ð6:28Þ

The outage probability in (6.11) now becomes

Pout ¼ 1�
ð1
ZZ

mmy
m�1

Γ mð Þ exp �myð Þ γ mIN;mSy½ �
Γ mINð Þ dy: ð6:29Þ

The outage probability in a Nakagami channel in the presence of a single

Nakagami CCI channel is plotted in Fig. 6.9 for three values of Z0/ZT. The outage
probability, plotted as multiple interferers (3 and 5), is compared with the case of a

single interferer in Fig. 6.10.
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Fig. 6.8 Outage when the number of CCI channels is random. Binomial approximation. Maxi-

mum number of channels N is 6. The number of voice channels Ns is 10 and the blocking

probability B is 0.02
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Fig. 6.9 Outage probability in Nakagami-m faded channel in the presence of a single Nakagami

CCI channel
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Fig. 6.10 Outage probability in Nakagami-m faded channel in the presence of CCI coming from

N ¼ 1, 3, and 5
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6.2.3 Shadowed Fading Channels

We will now explore the effect of CCI in shadowed fading channels. Instead of

using the Nakagami-lognormal model for the shadowed fading channels, we will

use the equivalent Nakagami-gamma or the GK model for the shadowed fading

channel (Shankar 2004, 2005). In this model, the pdf of the SNR in the desired

channel can be written as

f zð Þ ¼ 2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

Z0

r� �νþm

zððνþmÞ=2Þ�1Km�ν 2

ffiffiffiffiffiffiffiffi
mν

Z0

z

r� �
: ð6:30Þ

Note that ν is the gamma parameter related to the shadowing level σdB, with low
values ν corresponding to severe levels of shadowing (high values of σdB) and vice

versa. First, we assume that CCI channels do not undergo shadowing and they are

all independent and identically distributed Nakagami fading channels as discussed

in the previous sections. This means that the density function of the SNR of the CCI

component is gamma distributed as in (6.28), where m1 is the Nakagami parameter

and N one again is the number of CCI channels. Using (6.11) the outage probability

becomes

Pout ¼ 1�
ð1
ZT

2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

Z0

r� �νþm

zððνþmÞ=2Þ�1Km�ν 2

ffiffiffiffiffiffiffiffi
mν

Z0

z

r� �

�
ðz=q
0

m1

Z0c

� �m1N1 zm1N�1
0

Γ mINð Þ exp �m1

Z0c
zc

� �
dzcdz:

ð6:31Þ

Using (6.16) and (6.29), the outage probability becomes

Pout ¼ 1�
ð1
ZZ

2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

p	 
νþm
y

νþm
2ð Þ�1Km�ν 2

ffiffiffiffiffiffiffiffi
mνy

p	 
 γ m1N;mSy½ �
Γ m1Nð Þ dy: ð6:32Þ

The outage probability in a shadowed fading channel in the presence of a single

Nakagami-m distributed cochannel is shown in Fig. 6.11 for three different levels of

shadowing. Figure 6.12 shows the results for N ¼ 1 and 5.

Next, we consider the case when both the desired channel and the interfering

cochannels undergo short-term fading and shadowing. We will once again use the

equivalent gamma model for shadowing. We make the assumption that the

cochannels are identical where the short-term fading components are Nakagami-

m distributed and the shadowing can be treated the same in all the cochannels. This

means that the density function of the SNR of the CCI can be expressed in the form

of conditional density function as (Shankar 2005, 2007)
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Fig. 6.11 Outage probability in a shadowed fading channel in the presence of a single Nakagami-

m distributed interferer for three levels of shadowing ν ¼ 0.55 (heavy shadowing), ν ¼ 2.5

(moderate shadowing), and ν ¼ 5.5 (light shadowing)
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Fig. 6.12 Outage probability in a shadowed fading channel in the presence of Nakagami-m
distributed interferers for two levels of shadowing ν ¼ 0.55 (heavy shadowing) and ν ¼ 2.5

(moderate shadowing) for N ¼1 and N ¼ 5
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f zcjwð Þ ¼ m1

w

� �Nm1 zNm1�1
c

Γ Nm1ð Þ exp �m1

w
zc

� �
: ð6:33Þ

The density function of the shadowing component is expressed as

f wð Þ ¼ ν1
Z0c

� �v1 wν1�1

Γ ν1ð Þ exp � ν1
Z0c

w

� �
: ð6:34Þ

Note that c1 is the gamma parameter which is related to the shadowing in the CCI

channel. Using (6.34), the density function of the SNR of the interference becomes

f zcð Þ ¼ 2

Γ Nm1ð ÞΓ ν1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm1ν1
Z0c

r� �ν1þNm1

z
ν1þNm1

2ð Þ�1
c KNm1�ν1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm1ν1
Z0c

zc

r� �
:

ð6:35Þ

Following the procedures discussed earlier, the outage probability becomes

Pout ¼ 1�
ð1
ZT

2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

Z0

r� �νþm

zððνþmÞ=2Þ�1Km�ν 2

ffiffiffiffiffiffiffiffi
mν

Z0

z

r� �

�
ðz=q
0

2

Γ Nm1ð ÞΓ ν1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm1ν1
Z0c

r� �ν1þNm1

zððν1þmÞ=2Þ�1
c

2
64

� KNm1�ν1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm1ν1
Z0c

zc

r� �
dzc

�
dz: ð6:36Þ

Equation (6.36) can be rewritten as

Pout ¼ 1�
ð1
ZZ

2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

p	 
νþm
yððνþmÞ=2Þ�1Km�ν 2

ffiffiffiffiffiffiffiffi
mνy

p	 


�
ðSy
0

2

Γ Nm1ð ÞΓ ν1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm1ν1

p	 
ν1þNm1
wððν1þNm1Þ=2Þ�1

2
4

�KNm1�ν1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm1ν1w

p	 

dw

�
dy: ð6:37Þ

The inner integral becomes (Gradshteyn and Ryzhik 2007)
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ðSy
0

2

Γ Nm1ð ÞΓ ν1ð Þ Nm1ν1ð Þν1þNm1w
ν1þNm1

2ð Þ�1KNm1�ν1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm1ν1w

p	 

dzc ¼F yð Þ

¼ Γ Nm1�ν1ð Þ
Γ Nm1ð ÞΓ 1þν1ð Þ m1Nν1Sy½ �ν1 1F12 ν1½ �; ν1þ1;ν1þ1�m1N½ �;m1Nν1Syð Þ

þ Γ ν1�Nm1ð Þ
Γ Nm1þ1ð ÞΓ ν1ð Þ m1Nν1Sy½ �Nm1

1F
12 Nm1½ �; Nm1þ1;Nm1þ1�ν1½ �;m1Nν1Syð Þ:

ð6:38Þ

The outage probability becomes

Pout ¼ 1�
ð1
ZZ

2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

p	 
νþm
y

νþm
2ð Þ�1Km�ν 2

ffiffiffiffiffiffiffiffi
mνy

p	 

F yð Þdy: ð6:39Þ

where F(y) is given in (6.38). The outage probability in a single interfering

channel (both desired and cochannel components are shadowed fading ones) is

shown in Fig. 6.13.

The case of multiple interfering shadowed fading channels is shown in Fig. 6.14.

These results can now be extended to any combination of models of fading and

shadowing such as Rician, Weibull, and generalized gamma. We expect that trends

in behavior will be similar to the ones we have seen with Nakagami-m channels with

or without shadowing being present in the wireless environment as the case may be.
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Fig. 6.13 Outage probabilities in a shadowed fading channel in the presence of a single interferer
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6.3 Average Probability of Error

Even though outage probabilities are affected by the existence of interference from

cochannels leading to outage “floors,” the effect of the existence of CCI on bit error

rates must also be examined to fully understand the degrading effects of CCI. The

analysis of the effects of CCI on error rates is far more complicated than the

calculations involved with the outages since we need to obtain explicit expressions

for the density function of the received SNR when the CCI is present. Treating CCI

as unwanted random component, the SNR of the desired signal can be written as

(Winters 1984; Aalo and Zhang 1999; Beaulieu and Cheng 2004).

U ¼ P

Ns þ PCCI

: ð6:40Þ

In (6.40), P is the signal power which can be deterministic or random (due to

fading, shadowing, or both) and PCCI is the power from the CCI, similarly

considered to be deterministic or random (due to fading, shadowing, or both).

The noise power is given by Ns. Eq. (6.40) can be rewritten as
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Fig. 6.14 Outage probabilities in shadowed fading channels in the presence of multiple shadowed

fading interferers
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U ¼
P
Ns

� �
1þ PCCI

Ns

� � ¼ Z

1þ Zc
: ð6:41Þ

In (6.41), Z is the SNR of the desired signal and Zc is the SNR of the CCI

component as defined earlier in this chapter. The average probability of error when

CCI exists can now be expressed as

pav eð Þ ¼
ð1
0

f uð Þ1
2
erfc

ffiffiffi
u

p	 

du: ð6:42Þ

In (6.42) we have considered, as before, the case of a coherent BPSK modem. To

evaluate (6.42), there is a need to obtain the probability density function (pdf) of the

SNR U in (6.41).

We will obtain general expressions for the pdf and CDF of the SNR U. Using the

results from Chap. 2 on the pdf of the ratio of two random variables, the density

function ofU in (6.41) becomes (Rohatgi and Saleh 2001; Papoulis and Pillai 2002)

f U uð Þ ¼
ð1
0

1þ zcð Þf z u 1þ zcð Þ½ �f zcð Þdzc: ð6:43Þ

In arriving at (6.43) we have assumed, as we did earlier in this chapter, that the

SNR of the desired channel Z and the CCI Zc are independent random variable. As

before, we will start with the case of Rayleigh channels before we look into other

fading and shadowed fading channels. This will also be done in two steps: obtaining

the density function in (6.43) for each case and then estimating the error rates.

6.3.1 Probability Density Function (Rayleigh Channels)

For the case of the Rayleigh (desired) channel in the presence of a single CCI

channel (Rayleigh), the density function of the overall SNR U in (6.43) can be

obtained as

f uð Þ ¼ Z0 þ uZ0c þ Z0Z0c

Z0 þ uZ0cð Þ2 exp � u

Z0

� �
: ð6:44Þ

In expressing (6.44), we have used the density function of the SNR of the desired

signal and the SNR of the CCI component in (6.6) and (6.7), respectively, (N ¼ 1).

Note that (6.44) becomes (6.6) when the average SNR of the CCI component Z0c is
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much smaller than the average SNR of the desired signal, Z0. In terms of the signal-

to-interference ratio SIR defined in (6.8), the pdf in (6.44) becomes

f uð Þ ¼ 1þ u
SIR þ Z0

SIR

	 

Z0 1þ u

SIR

	 
2 exp � u

Z0

� �
: ð6:45Þ

The density function is plotted in Fig. 6.15.

Similarly, we can obtain an expression for the pdf of the SNR when there are

N cochannels, and the desired cochannels are all Rayleigh faded. Using (6.6), (6.7),

and (6.43), we get the pdf of the SNR as

f U uð Þ ¼ ZN�1
0

Z0 þ uZ0cð ÞN þ NZN
0 Z0c

Z0 þ uZ0cð ÞNþ1

" #
exp � u

Z0

� �
: ð6:46Þ

Using the definition of SIR in (6.8), the density function becomes

f U uð Þ ¼ 1þ u
SIR

	 
þ N Z0

SIR

	 

Z0 1þ u

SIR

	 
Nþ1

" #
exp � u

Z0

� �
: ð6:47Þ

Note that (6.47) becomes (6.45) when N ¼ 1 (single cochannel). The density

function is plotted in Fig. 6.16.
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Fig. 6.15 Probability density function of the SNR in the presence of CCI (single channel)
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6.3.2 Probability Density Function (Nakagami Channels)

We will now attempt to get the density function of the SNR when both the desired

channel and the CCI channel are described in terms of the Nakagami density

functions as in (6.27) and (6.28). Substituting in (6.43), we have

f U uð Þ ¼
ð1
0

1þ zcð Þ mm

Γ mð ÞZm
0

u 1þ zcð Þ½ �m�1
exp �mu 1þ zcð Þ

Z0

 �

� m1

Z0c

� �Nm1 zNm1�1
c

Γ Nm1ð Þ exp �m1

Z0c
zc

� �
dzc:

ð6:48Þ

The pdf of the SNR is plotted in Fig. 6.17 form¼ 2.2,m1¼ 1.5, N¼ 4, and three

values of SIR. The pdf of the SNR in the absence of CCI is also plotted alongside.

The density functions are plotted in Fig. 6.18 for N ¼ 1, 2, 4, and 6 as a function

of the SNR in a channel with CCI.

6.3.3 Probability Density Function (Shadowed Fading
Channels)

We can now include the effects of shadowing. First, we consider the desired

channel to be a shadowed fading channel while CCI channels are considered to
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Fig. 6.16 Density function of the SNR in the presence of N-cochannels. All channels are Rayleigh
channels
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be independent and identically distributed Nakagami channels. In terms of (6.43),

the density function of the SNR in the presence of CCI now becomes

f U uð Þ ¼
ð1
0

1þ zcð Þ 2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

Z0

r� �νþm

u 1þ zcð Þ½ � νþm
2ð Þ�1Km�ν

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mν

Z0

u 1þ zcð Þ
r� �

m1

Z0c

� �Nm1 zNm1�1
c

Γ Nm1ð Þ exp �m1

Z0c
zc

� �
dzc:

ð6:49Þ

The density function in (6.49) can be obtained through numerical integration.

The density function for N ¼ 1, 3, and 6 is plotted along with the case of no CCI in

Fig. 6.19 for the case ofm¼ 1.5, n¼ 2.5,m1¼ 1.2, and SIR of 10 dB. The problems

associated with the increasing values of N are seen from the shifting of the peaks of

the densities to the left as N increases.

Figure 6.20 shows the density functions for three values of the signal-to-CCI

ratio for the case of four interfering channels along with the density function in the

absence of any CCI. Once again, as expected, the density function of the signal-to-

noise ratio approaches the pdf of the SNR in the absence of CCI as signal-to-CCI

ratio increases.

We can now examine the last case considered in connection with the outage

probabilities, namely the presence of interferers which also undergo shadowing and

fading when the desired channel is undergoing shadowing and fading.
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Fig. 6.19 Probability density functions of the signal-to-noise ratio in the presence of CCI

(shadowed fading channels; Nakagami CCI). m ¼ 1.5, n ¼ 2.5, m1 ¼ 1.2, SIR ¼ 10 dB. Average

SNR of the desired channel is 5 dB
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The difficulty in obtaining an expression for the pdf of the SNR in the presence

of CCI lies in the fact that the density function of the sum of a number of

independent GK distributed variables (treating the Nakagami-lognormal shadowed

fading channel to be equivalent to a GK channel) is not readily available analyti-

cally. One of the ways of overcoming this hurdle is to use the approximation to the

sum of GK variables by another GK variable as suggested by Al-Ahmadi and

Yanikomeroglu (2010) and others (Sriv et al. 2005; Chatzidiamantis et al. 2009;

Al-Ahmadi and Yanikomeroglu 2010). Considering N interfering channels, each

with parametersm1 and ν1 such that the density functions of any one of the channels
can be expressed as

f wið Þ ¼ 2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffiffiffiffiffi
m1ν1
Z0c

r� �ν1þm1

wi½ �
ν1þm1

2ð Þ�1Km1�ν1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ν1
Z0c

wi

r� �
,

i ¼ 1, 2, ::,N:

ð6:50Þ

Zc ¼
XN
i¼1

Wi: ð6:51Þ
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(shadowed fading channels; Nakagami CCI). m ¼ 1.5, n ¼ 2.5, m1 ¼ 1.2, N ¼ 4. Average SNR

of the desired channel is 5 dB
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the density function of the CCI component can be written as

f zcð Þ ¼ 2

Γ mnð ÞΓ νnð Þ
ffiffiffiffiffiffiffiffiffiffi
mnνn
NZ0c

r� �νnþmn

zc½ � νnþmn
2ð Þ�1Kmn�νn 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnνn
NZ0c

zc

r� �
: ð6:52Þ

In (6.52),

mn ¼
1þ að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ að Þ2 þ ð4=Nν21Þk1

q
2 aþ ð1=ν1Þ þ 1ð Þ m1N: ð6:53Þ

νn ¼ mn

a
: ð6:54Þ

The parameters a and k1 are

a ¼ m1

ν1
, ð6:55Þ

k1 ¼ 1þ m1 þ ν1: ð6:56Þ

Using (6.52), the density function in (6.43) of the signal-to-noise ratio in the

presence of CCI becomes

f U uð Þ¼
ð1
0

1þ zcð Þ 2

Γ mð ÞΓ νð Þ
ffiffiffiffiffiffi
mν

Z0

r� �νþm

u 1þ zcð Þ½ � νþm
2ð Þ�1Km�ν 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mν

Z0

u 1þ zcð Þ
r� �

� 2

Γ mnð ÞΓ νnð Þ
ffiffiffiffiffiffiffiffiffiffi
mnνn
NZ0c

r� �νnþmn

zc½ � νnþmn
2ð Þ�1Kmn�νn 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnνn
NZ0c

zc

r� �
dzc:

ð6:57Þ

The density function is plotted in Fig. 6.21 for three values of N and for the case

of absence of any CCI.

The density functions for two values of the SIR are shown in Fig. 6.22.

Now that we have seen the density functions of the SNR in the presence of CCI,

we can estimate the error rates and understand how the presence of CCI will impact

the error rates in wireless channels.

6.3.4 Error Rates (Rayleigh Channels)

Having seen the density functions, we can estimate the error rates (Winters 1984;

Beaulieu and Cheng 2004; Sivanesan and Beaulieu 2004; Ismail and Matalgah

2007). The bit error rate in a Rayleigh channel in the presence of a single Rayleigh

interferer can be expressed in integral form using (6.42) and (6.45)
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Fig. 6.21 Probability density functions for N ¼ 1, 3, 6 and for the case of no CCI. The average

SNR of the desired channel is 10 dB and the SIR is 20 dB
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pav eð Þ ¼
ð1
0

1

2
erfc

ffiffiffi
u

p 1þ ðu=SIRÞ þ ðZ0=SIRÞð Þ
Z0 1þ ðu=SIRÞð Þ2 exp � u

Z0

� �
du: ð6:58Þ

Equation (6.58) can be integrated numerically. The results are shown in Fig. 6.23

as a function of the SNR of the desired signal and SIR. Error rates when multiple

interferers are present can be evaluated using (6.47). The average error rate in the

presence of multiple Rayleigh interferers will be

pav eð Þ ¼
ð1
0

1

2
erfc

ffiffiffi
u

p 1þ ðu=SIRÞ þ NðZ0=SIRÞ
Z0 1þ ðu=SIRÞð ÞNþ1

" #
exp � u

Z0

� �
du: ð6:59Þ

The results are shown in Fig. 6.24.

6.3.5 Error Rates (Nakagami Channels)

The error probabilities in Nakagami-m faded channels can now be evaluated (Aalo

and Zhang 1999; Beaulieu and Cheng 2004). We will make use of the expression for

the pdf of the SNR in (6.48). The expression for the average error probability

becomes
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Fig. 6.23 Average probability of error in a Rayleigh channel with a single interferer from a

Rayleigh cochannel
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pav eð Þ ¼
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p ð1
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1þ zcð Þ mm

Γ mð ÞZm
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u 1þ zcð Þ½ �m�1
exp �mu 1þ zcð Þ
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� �Nm1 zNm1�1
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ð6:60Þ

Defining

Zu ¼ Z0

1þ zcð Þ , ð6:61Þ

we can rewrite (6.60) as

pav eð Þ ¼
ð1
0

ð1
0

1

2
erfc

ffiffiffi
u

p	 
 m

Zu

� �mum�1

Γ mð Þ exp �mu
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� �
du

� m1

Z0c

� �Nm1 zNm1�1
c

Γ Nm1ð Þ exp �m1

Z0c
zc

� �
dzc:

ð6:62Þ

The double integral in (6.62) can be converted to a single integral by performing

the integral over the variable u. Then we have
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Fig. 6.24 Average BER in Rayleigh fading channel in the presence of N Rayleigh distributed

cochannels for several values of N (SIR ¼20 dB)
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I ¼
ð1
0
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2
erfc

ffiffiffi
u

p	 
 m

Zu

� �mum�1

Γ mð Þ exp �mu

Zu
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du
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exp �uð Þ
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ffiffiffiffiffi
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du:

ð6:63Þ

In writing down (6.63), we have made use of the fact that we can express the

error rates using the CDF as discussed in Chaps. 4 and 5. We also expressed the

gamma pdf as a Meijer G-function which has as its CDF, another Meijer G-function

as follows (Mathai 1993; Mathai and Haubold 2008). We have the density function

of the gamma pdf as

f uð Þ ¼ m

Zu

� �mum�1

Γ mð Þ exp �mu

Zu

� �
¼ 1

uΓ mð ÞG
1,0
0, 1

mu

Zu

�����m
� �

, ð6:64Þ

and the corresponding CDF as

F uð Þ ¼ 1

Γ mð ÞG
1,1
1,2

mu

Zu

���� 1

m, 0

� �
: ð6:65Þ

The integral I in (6.63) becomes

I ¼ 1

2

Γ mþ 1
2

	 
 m 1þzcð Þ
Z0

h im
Γ mð Þm ffiffiffi

π
p 2F1 m;mþ 1

2

 �
; 1þ m½ �;�m 1þ zcð Þ

Z0

� �
: ð6:66Þ

Note that 2F1([., .], [.], .) is the hypergeometric function (Mathai 1993;

Abramowitz and Segun 1972; Gradshteyn and Ryzhik 2007).

pav eð Þ ¼
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m 1þzcð Þ
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h im
Γ mð Þm ffiffiffi
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� �Nm1 zNm1�1
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Γ Nm1ð Þ exp �m1

Z0c
zc

� �
dzc:

ð6:67Þ

Equation (6.67) can be integrated numerically.

The results for the case of three values of N are compared with the case of the

absence of CCI for an SIR of 20 dB, shown in Fig. 6.25. The value of m is 1.5 and

m1 is 0.75.

The effect of the variation in SIR values is shown in Fig. 6.26, where the error

rates are plotted for the case of six interfering channels (m ¼ 1.5 and m1 ¼ 0.75).
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cochannels (N ¼ 1, 3, and 6; m ¼ 1.5, m1 ¼ 0.75, and SIR ¼ 20 dB)
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6.3.6 Error Rates (Shadowed Fading Channels)

We can now study the error rates in a shadowed fading channel when the interferers

operate in a Nakagami faded environment. The error rate in a shadowed fading

channel in the presence of N Nakagami interferers can be expressed as a double

integral as

pav eð Þ ¼
ð1
0

1

2
erfc

ffiffiffi
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p ð1
0

1þ zcð Þ � 2
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� Km�ν 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Γ Nm1ð Þ exp �m1

Z0c
zc

� �
dzcdu:

ð6:68Þ

In arriving at (6.68), we have made use of the expression for the error rate in

(6.43) and the density function of the SNR in (6.49). As we had done before, the

double integral in (6.68) can be converted to a single integral using

I1 ¼
ð1
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1

2
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ffiffiffi
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p	 
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ð6:69Þ

Using the table of integrals (Gradshteyn and Ryzhik 2007; Wolfram 2011),

(6.69) becomes

I1 ¼ 1

2
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The parameter W in (6.70) is
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The error rate in (6.68) now becomes
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zc
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dzc: ð6:72Þ

The effect of CCI on the bit error rates in shadowed fading channels can be

obtained from (6.72), which can be integrated numerically. The error rates for three

values of N are shown in Fig. 6.27.

Figure 6.28 shows the effects of the shadowing on the error rates. Error rates are

plotted for three levels of shadowing corresponding to ν ¼ 5.25, 2.2, and 1.1.

Error rates in shadowed fading channels, while the cochannels are also under-

going fading and shadowing, can be obtained using (6.57) and (6.43). The error rate

now becomes
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Fig. 6.27 Average error rates in shadowed fading channels in the presence of Nakagami faded

cochannels (m ¼ 1.5, ν ¼ 5.25, m1 ¼ 1.2, and SIR ¼ 20 dB)
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Note what we have made of the approximation for the pdf of the sum of N i.i.d

GK variables. Using (6.69–6.71), the error rate in a shadowed fading channel in the

presence of N shadowed fading cochannels is

pav eð Þ ¼
ð1
0

I1
2

Γ mnð ÞΓ νnð Þ
ffiffiffiffiffiffiffiffiffiffi
mnνn
NZ0c
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zc½ � νnþmn
2ð Þ�1Kmn�νn 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnνn
NZ0c

zc

r� �
dzc:

ð6:74Þ

The error rates in shadowed fading channels in the presence of cochannels which

also undergo shadowed fading are plotted in Fig. 6.29.

6.3.7 Error Rates Following Diversity

We have examined the effect of CCI in wireless systems in the absence of any

diversity to mitigate the fading (Shah and Haimovich 1998, 2000; Cui et al. 1997;

Aalo and Zhang 1999; Aalo and Chayawan 2000). We will now look at the error

rates when diversity is implemented for the mitigation of short-term fading

modeled in terms of the Nakagami-m distribution. As an example, a maximal

ratio combiner (MRC) is considered. While the diversity is implemented for the

desired channel, the cochannels are treated as if no mitigation is applied to the

cochannels. The probability density function of the SNR in the presence of CCI can

now be expressed using (6.48) as
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Fig. 6.28 Average error rates in shadowed fading channels in the presence of Nakagami faded

cochannels (m ¼ 1.5, m1 ¼ 1.2, N ¼ 4, and SIR ¼ 20 dB, ν ¼ 5.25, 2.2, 1.1)
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The probability density functions are plotted in Fig. 6.30 forM¼ 1 (no diversity),

M ¼ 2, and 4 for N ¼ 4 and SIR of 15 dB. The average SNR is 10 dB.

In (6.75), M is the order of diversity. The error rate following diversity can be

written using (6.67) as
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The average probability of error is plotted in Fig. 6.31 for M ¼ 2 and compared

with the case of no diversity.

Figure 6.32 shows the BER for N ¼ 3 for the case of M ¼ 2 and 3.
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6.4 Summary

We presented the effects of the existence of cochannels. Starting with the simple

notion of outage when the interfering signal strength exceeds the strength of the

desired signal, outage probabilities in the presence of multiple cochannels were

derived. The density functions of the signal-to-noise ratio (by taking noise as well

as CCI) were obtained for the case of pure short-term fading and shadowed fading.

The error probabilities were then estimated to illustrate the degrading effects of

CCI. Using the example of maximal ratio combining algorithm we demonstrated

the improvement gained through diversity.
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Chapter 7

Cognitive Radio

7.1 Introduction

Spectral band available for use in wireless communications is a limited commodity

regardless of whether it is used by the traditional wireless subscribers or by digital

television. It is also known that these limited resources often remain underutilized

raising the possibility that the unused channels may be utilized during the downtime

of the authorized users. This opportunistic access to the wireless spectrum

(of licensed bands) by unlicensed users when the licensed users are not online

constitutes the concept of the cognitive radio (Urkowitz 1967; Haykin et al. 2009).

This means that such unlicensed users, generally referred to as secondary users

(as opposed to primary users who own the license), must rely on a mechanism to

detect the absence of any activity in the spectral band by the licensed (primary)

user. The secondary users are allowed to use the licensed spectrum only when such

a use does not cause any interference to the primary users. This means that adequate

sensing mechanism needs to be placed to detect the presence of the primary users

and the monitoring needs to take place continuously. In other words, techniques

must exist to undertake what is termed as “spectrum sensing” (Haykin et al. 2009).

Spectrum sensing might be accomplished through the use of simple energy detec-

tion, pilot based coherent detection, or any other such techniques that are able to

detect the presence of signals effectively. Since energy detection is the simplest

form of detection, it will be used as the primary mechanism in this discussion.

7.2 Energy Detection in Ideal Channels

Energy detection is a noncoherent form of signal processing which involves

estimation of energy during a certain period of observation (Urkowitz 1967;

Digham et al. 2007; Alam et al. 2012; Hossain et al. 2012; Yu et al. 2012;
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Umar et al. 2014). Energy is estimated by taking samples of the received signals.

The collection of samples is followed by a comparison of the estimated energy to a

set threshold to conclude whether the signal from the primary user is present or

absent. The simplicity of the energy detection schemes arises from the fact that it

can be implemented using low cost devices.

The fundamental process of the energy detection scheme can be best described

using the concept of hypothesis testing introduced in Chap. 2. The two hypotheses

are H0 and H1, the former implying the absence of primary users and the latter

implying the presence of the primary or the licensed user. These can be stated as

(Digham et al. 2007; Atapattu et al. 2010; Sithamparanathan and Giorgetti 2012)

x nð Þ ¼ w n½ �, n ¼ 1, 2, � � �,Ns H0

x nð Þ ¼ hs n½ � þ w n½ �, n ¼ 1, 2, � � �,Ns H1

: ð7:1Þ

In Eq. (7.1), samples of the received signals are represented by x[n]. The samples

of the signal from the primary user are represented by s(n) while w[n] are the noise
samples. The channel gain is represented by h. Noise samples w[n] come from zero

mean additive white Gaussian noise with power spectral density of N0. The number

of independent samples is given by Ns.

Using the appropriate representation of noise as a bandpass process with inphase

and quadrature components, Eq. (7.1) can be transformed into units of energy or

signal-to-noise ratio as

Z ¼
XNs

n¼1

x n½ �j j2 ð7:2Þ

If T is observation time andW is the bandwidth, the time bandwidth product u is
given by (Urkowitz 1967)

u ¼ TW: ð7:3Þ

The number of samples Ns ¼ u. Since the noise is zero mean Gaussian, the

energy detected will be

Z ¼ χ22u H0

χ22u 2γð Þ H1

(
ð7:4Þ

In Eq. (7.4), γ is the instantaneous signal-to-noise ratio of the primary user

defined as

γ ¼ h2
Es

N0

: ð7:5Þ

While Z is a chi-square random variable, χ22u, of order u under the hypothesis H0,

Z is a non-central chi-square variable, χ22u 2γð Þ, with mean of 2u and 2γ under the
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hypothesis H1. The probability density functions of these random variables are

(Papoulis and Pillai 2002; Digham et al. 2003)

f Z zð Þ ¼

1

2uΓ uð Þz
u�1e�

z
2 H0

1

2

z

2γ

� �u�1
2

e�
2γþz
2 Iu�1

ffiffiffiffiffiffiffi
2γz

p� �
H1

8>>><
>>>:

: ð7:6Þ

In Eq. (7.6), Iu� 1(.) is the modified Bessel function of order (u � 1) of the first

kind (Gradshteyn and Ryzhik 2007). From Chap. 2, one can now formulate a

hypothesis testing setup to determine whether the primary user is present or absent.

First, let us examine the nature of these two densities. In an ideal channel, the

average energy or SNR γ is constant while in a fading or shadowed fading channel γ
will be a random variable. For an ideal channel (only noise is present and fading is

absent), the two densities in Eq. (7.6) are shown in Fig. 7.1 for the case of u ¼ 3,

5 and γ ¼ 5 dB.

% densities cognitiveRadio

% pdfplots  August 2016

clear ;clc; close all

u=3;

gdB=5;

g=10^(gdB/10);

x=0:.5:80;

ncx21 = ncx2pdf(x,2*u,2*g); % non-central chi square pdf

chi21 = chi2pdf(x,2*u); % Central chi square pdf

subplot(2,1,1),plot(x,chi21,'r--',x,ncx21,'k-','linewidth',2)

xlabel('snr '),ylabel('pdf')

legend('f(z|H_0)','f(z|H_1)')

title(['u = ',num2str(u),', \gamma = ',num2str(gdB),'dB'])

xlim([0,40])

hold on

xx=[10,10];

yy=[0,0.5*max(max(chi21,ncx21))];

plot(xx,yy,'linewidth',1.5)

text(9.9,1.4*yy(2),'\lambda','fontweight','bold','color','b')

u=5;

ncx22 = ncx2pdf(x,2*u,2*g);

chi22 = chi2pdf(x,2*u);

subplot(2,1,2),plot(x,chi22,'r--',x,ncx22,'k-','linewidth',2)

xlabel('snr '),ylabel('pdf')

legend('f(z|H_0)','f(z|H_1)')

title(['u = ',num2str(u),', \gamma = ',num2str(gdB),'dB'])

hold on

xx=[16,16];

yy=[0,0.5*max(max(chi21,ncx21))];

plot(xx,yy,'linewidth',1.5)

text(15.9,1.2*yy(2),'\lambda','fontweight','bold','color','b')

xlim([0,60])

If an arbitrary threshold λ is chosen, the probability of false alarm (Pf) and the

probability of detection (Pd) are given by (van Trees 1968)
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Pf ¼
Ð1
λ f zjH0ð Þdz

Pd ¼
Ð1
λ f zjH1ð Þdz�

ð7:7Þ

Substituting the appropriate density functions, the probabilities can be expressed

in compact form as

Pf ¼ Pf u; λð Þ ¼ Γ u; λ
2

� �
Γ uð Þ ð7:8Þ

Pd ¼ Pd u; γ; λð Þ ¼ Qu

ffiffiffiffiffi
2γ

p
;

ffiffiffi
λ

p� �
ð7:9Þ

In Eq. (7.8), Γ(., .) is the upper incomplete gamma function given by

(Gradshteyn and Ryzhik 2007)

Γ a; bð Þ ¼
ð1
b

xa�1exp �xð Þdx: ð7:10Þ

In Eq. (7.9), Qu(., .) is the generalized Marcum Q function expressed in integral

form as (Simon and Alouini 2005)
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Fig. 7.1 The probability density function of the energy (SNR) for two values of u. Threshold
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Qu α; βð Þ ¼ 1

αu�1

ð1
β
xuexp � x2 þ α2

2

� �
Iu�1 αxð Þdx ð7:11Þ

For integer values of u, the probability of detection can be obtained from Matlab

using the command marcumq(.). Once the probabilities of false alarm and detection

are available, it is possible to create the ROC plots. The Matlab script used for the

creation of the ROC curves and estimation of Az is given below along with the results.

While Az is used in medical and clinical research to represent the area under the ROC

curve, often the term AUC is used in cognitive radio. There is a need to pay close

attention to the use of the polyarea(.) command to ensure that the area is completely

accounted for in the estimation. This aspect is explained in the Matlab script.

function ROC_analysis_idealChannel

% ROC curves in an indeal channel. The area under the ROC curve is obtained

% using polyarea(.) command. Since time bandwidth product is an integer,

% the Marcum Q function is obtained using the command marcumq(.)

% two plots are obtained. First one shows the ROC curves for a fixed value

% of the SNR for different value of u while the second one is a plot of the

% AUC versus u for a few values of the SNR

% P M Shankar, September 2016

close all

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:20;

KU=length(uu); % values of u and their count

PD=zeros(LF,KU);

lam=mylamb(uu); % get values of lambda for this set of u

% no fading

Z=10^(5/10); % 5 dB

for k=1:KU

u=uu(k);

PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);

if k==1

plot(PF,PD(:,k),'-r*')

elseif k==KU;

plot(PF,PD(:,k),'--ko')

else

plot(PF,PD(:,k))

end;

hold on

end;

% create an arrow

xx=[0.4 0.2];yy=[0.5 0.8];

annotation('textarrow',xx,yy,'String',...

['u = ',num2str(max(uu)),' to  u = ',num2str(min(uu))],...

'color','r','fontweight','bold')

title(['Ideal Channel : \gamma = ',num2str(10*log10(Z)), ' dB'])

xlabel('P_f')

ylabel('P_d')

text(0.2,0.9,'u = 1')

text(0.46,0.7,[' u = ',num2str(max(uu))])

hold off
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end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end

ZdB=[0,5,8,10];

LZ=length(ZdB);

Azz=zeros(LZ,KU);

for k1=1:LZ

Z=10^(ZdB(k1)/10);

for k=1:KU

u=uu(k);

PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);

PF1=[0,PF,1];

PD1=[0;PD(:,k);1];

% padding is needed so that the ends are not missed. otherwise,

% it will give a lower area

Azz(k1,k)=polyarea(PF1',PD1)+0.5;%0.5 accounts for the area below the

% diagonal. Polyarea only gives area between the curve & diagonal

end;

end;

% get the plot of the AUC

figure,plot(uu,Azz(1,:),'r-*',uu,Azz(2,:),'k-o',uu,Azz(3,:),'b-s',...

uu,Azz(4,:),'m-d'),title('Ideal Channel')

xlabel('time bandwidth product u'),ylabel('Area under the ROC curve A_z')

legend(['\gamma = ',num2str(ZdB(1)),' dB'],...

['\gamma = ',num2str(ZdB(2)),' dB'],...

['\gamma = ',num2str(ZdB(3)),' dB'],...

['\gamma = ',num2str(ZdB(4)),' dB'])

ylim([0.5,1.1])

Several plots of the receiver operating characteristics are shown in Fig. 7.2. As

the number of samples goes up, the ROC curves move closer and closer to the

diagonal indicating that the performance worsens. As described in Chap. 2, the best

measure of the performance of the energy detection scheme is the area under the

receiver operating characteristics (ROC) curve (AUC), generally identified as Az

(Metz 1978; Hanley and McNeil 1982). From the ROC curves, the AUC can be

evaluated directly in Matlab using the command polyarea(.). The AUC values are

plotted in Fig. 7.3.

One can see that as the value of u increases, the area under the ROC curves

(AUC) comes down. This seems to be an apparent contradiction since one expects

to have performance levels increase (higher values of AUC) as the dimensionality
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defined by the time bandwidth product goes up (Urkowitz 1967; Atapattu et al.

2010; Banjade et al. 2012). Indeed, the best performance occurs when the time

bandwidth product is unity and it goes down as u increases to 20. As expected, for a
fixed value of the time bandwidth product, the performance improves with SNR.

The behavior of the AUC can be explored further through the concept of a

performance index.

7.2.1 Performance Index and AUC

The unexpected trend in the decline in performance with increasing values of u can
be explained using the concept of performance index. It can be defined in terms

of the moments of the central chi-square and non-central chi-square variables

having densities in Eq. (7.6). The mean and variance are (Evans et al. 2000;

Papoulis and Pillai 2002)

μ ¼ 2u,

σ2 ¼ 2 2uð Þ

)
H0

μ ¼ 2uþ 2γ,

σ2 ¼ 2 2uþ 4γð Þ

)
H1

ð7:12Þ

Using the concepts used in image analysis where the performance of a detector is

quantified in terms of a detection index or contrast, the performance index η in

cognitive radio is defined as (Patterson and Foster 1983; Evans and Nixon 1995)

η ¼ μjH1ð Þ � μjH0ð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
σ2jH1ð Þ þ σ2jH0ð Þ

q ð7:13Þ

Using the moments in Eq. (7.12), the performance index η becomes

η ¼ η u; γð Þ ¼ γffiffiffiffiffiffiffiffiffiffiffi
uþ γ

p ð7:14Þ

Equation (7.14) shows that the performance index goes down when u increases.

In other words, it is expected that the performance of an energy detector charac-

terized in terms of AUC is expected to go down when the time bandwidth product

u goes up. Thus, the performance index provides a quantitative explanation of the

decline in AUC with increasing values of u.
The plots of the performance index and AUC are explored next. The Matlab

script used is given next along with the results.
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function ROC_analysis_idealChannel_performance
% ROC curves in an indeal channel. The area under the ROC curve is obtained
% using polyarea(.) command. Since time bandwidth product is an integer,
% the Marcum Q function is obtained using the command marcumq(.)
% two plots are obtained. First one shows the ROC curves for a fixed value
% of the SNR for different value of u while the second one is a plot of the
% AUC versus u for a few values of the SNR
% P M Shankar, September 2016
close all
PF=valuesofpf; % get the values of PF
LF=length(PF); % count the PF
uu=1:20;
KU=length(uu); % values of u and their count
PD=zeros(LF,KU);
lam=mylamb(uu); % get values of lambda for this set of u

ZdB=[3,5,7];
LZ=length(ZdB);
Azz=zeros(LZ,KU);
perf=zeros(LZ,KU);
for k1=1:LZ
Z=10^(ZdB(k1)/10);
for k=1:KU

u=uu(k);
PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);
PF1=[0,PF,1];
PD1=[0;PD(:,k);1];
% padding is needed so that the ends are not missed. otherwise,
% it will give a lower area
Azz(k1,k)=polyarea(PF1',PD1)+0.5;%0.5 accounts for the area below the
% diagonal. Polyarea only gives area between the curve & diagonal
perf(k1,k)=Z/sqrt(u+Z);

end;
end;
% get the plot of the AUC
figure,plot(uu,Azz(1,:),'r-+',uu,Azz(2,:),'k-o',uu,Azz(3,:),'b-s',...

uu,perf(1,:),'m--d',uu,perf(2,:),'m--^',uu,perf(3,:),'m--p' )
title('Ideal Channel')
xlabel('time bandwidth product u'),ylabel(' A_z  or   \eta')
legend([' A_z, \gamma = ',num2str(ZdB(1)),' dB'],...

[' A_z, \gamma = ',num2str(ZdB(2)),' dB'],...
[' A_z, \gamma = ',num2str(ZdB(3)),' dB'],...
[' \eta, \gamma = ',num2str(ZdB(1)),' dB'],...
[' \eta, \gamma = ',num2str(ZdB(2)),' dB'],...
[' \eta, \gamma = ',num2str(ZdB(3)),' dB'])

end

function PF1=valuesofpf
PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...
.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...
.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...
.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...
0.99999 0.999999 0.9999999];

end

function lambda=mylamb(U) % get values of lambda
PF=valuesofpf; %values of PF
LF=length(PF);  KU=length(U);
lambda=zeros(LF,KU);
for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold
end;

end

Figure 7.4 shows the AUC and the performance index as a function of u. As the
time bandwidth product u increases, the AUC goes down. The downward trajectory

is consistent with the decrease in performance index η with increasing values of the
time bandwidth product demonstrating the usefulness of the performance index as a

reliable indicator of the decline in AUC (Urkowitz 1967; Atapattu et al. 2010;

Banjade et al. 2012).
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7.2.2 Direct Evaluation of AUC

While AUC can be obtained from the probability of false alarm versus probability

of detection plots, often it is necessary to examine the behavior of AUC without

using these ROC plots so that the effect of fading on the performance in cognitive

radio can be interpreted and understood directly. It is possible to evaluate AUC

without generating the ROC curves by extending the concept of the area to an

integral. The area under the ROC curve (AUC) can be mathematically expressed as

(Metz 1978; Papoulis and Pillai 2002; Atapattu et al. 2010)

Az ¼
ð1
0

Pd λð Þd Pf λð Þ	 

: ð7:15Þ

As the threshold λ goes from 0 ! 1, the probabilities of false alarm and

detection go from 1 ! 0. Taking note of this, the expression for Az in Eq. (7.15)

becomes

Az ¼ Az u; γð Þ ¼ �
ð1
0

Pd γ; u; λð Þ∂Pf

∂λ
u; λð Þdλ ð7:16Þ
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Using the definition of the gamma density, Eq. (7.16) becomes

Az ¼ 1�
ð1
0

f Z λjH0ð ÞFZ λjH1ð Þdλ ¼
ð1
0

1

2uΓ uð Þ λ
u�1e�

λ
2Qu

ffiffiffiffiffi
2γ

p
;

ffiffiffi
λ

p� �
dλ ð7:17Þ

One can see the benefits of estimating the AUC using the integral since there is

no need to determine the threshold from the probability of false alarm. This aspect

is explored next. Note that an analytical solution to Eq. (7.17) does not exist and one

needs to use numerical integration. The Matlab script appears next. The results of

the numerical integration are compared to those obtained using the polyarea(.)
command directly.

function ROC_analysis_compareAUC
% ROC curves in an indeal channel. The area under the ROC curve is obtained
% using polyarea(.) command. Since time bandwidth product is an integer,
% the Marcum Q function is obtained using the command marcumq(.)
% ARea is obtained directly using the integral
% instead of finding the probability of detection. The results are compared
% to those obtained using the polyarea.
% P M Shankar, September 2016
close all
global u Z
PF=valuesofpf; % get the values of PF
LF=length(PF); % count the PF
uu=1:20;
KU=length(uu); % values of u and their count

PD=zeros(LF,KU);
lam=mylamb(uu); % get values of lambda for this set of u

ZdB=[3,5,7];
LZ=length(ZdB);
Azz=zeros(LZ,KU);
Azint=zeros(LZ,KU);
Azsum=zeros(LZ,KU);
for k1=1:LZ
Z=10^(ZdB(k1)/10);
for k=1:KU

u=uu(k);
PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);
PF1=[0,PF,1];
PD1=[0;PD(:,k);1];
% padding is needed so that the ends are not missed. otherwise,
% it will give a lower area
Azz(k1,k)=polyarea(PF1',PD1)+0.5;%0.5 accounts for the area below the
% diagonal. Polyarea only gives area between the curve & diagonal
Azint(k1,k)=integral(@aucintf,0,inf);

end;
end;
% get the plot of the AUC
figure,plot(uu,Azz(1,:),'r-', uu,Azint(1,:),'rd',...
uu,Azz(2,:),'k--',uu,Azint(2,:),'k--^', uu,Azz(3,:),'b-.',...

uu,Azint(3,:),'bp' )
title('Ideal Channel')
xlabel('time bandwidth product u'),ylabel(' A_z ')
legend([' A_z, \gamma = ',num2str(ZdB(1)),' dB (polyarea)'],...

[' A_z, \gamma = ',num2str(ZdB(1)),' dB (integral)'],...
[' A_z, \gamma = ',num2str(ZdB(2)),' dB (polyarea)'],...
[' \eta, \gamma = ',num2str(ZdB(2)),' dB (integral)'],...
[' \eta, \gamma = ',num2str(ZdB(3)),' dB (polyarea)'],...
[' \eta, \gamma = ',num2str(ZdB(3)),' dB (integral)'])

end

function PF1=valuesofpf
PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...
.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...
.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...
.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...
0.99999 0.999999 0.9999999];

end
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function lambda=mylamb(U) % get values of lambda
PF=valuesofpf; %values of PF
LF=length(PF);  KU=length(U);
lambda=zeros(LF,KU);
for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold
end;

end

function F=aucintf(x)
% function to evaluate AUC directly instead of using PF, PD and polyarea
global u Z
f1=x.^(u-1);
f2=exp(-x/2);
f3=marcumq(sqrt(2*Z),sqrt(x),u);
F=f1.*f2.*f3/(2^u*gamma(u));

end

Figure 7.5 shows that the results of the numerical integration and polyarea(.)

match. It is also possible to eliminate the need for numerical integration by

expressing the modified Bessel function in Eq. (7.11) in series form allowing the

Marcum Q function to be expressed as (Simon and Alouini 2005; Atapattu et al.

2010; Olabiyi and Annamalai 2012; Alam et al. 2012)

Qu
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2γ

p
;

ffiffiffi
λ

p� �
¼

X1
k¼0

γke�γ Γ uþ k; λ
2

� �
Γ uþ kð ÞΓ k þ 1ð Þ : ð7:18Þ
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Fig. 7.5 The results of numerical integration compared to those obtained using polyarea(.) for

three values of SNR
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Using the series expansion, the expression for the AUC becomes

Az ¼
X1
k¼0

γke�γ

ð1
0

Γ uþ k;
λ

2

� �
λu�1e�

λ
2

2uΓ uð ÞΓ uþ kð ÞΓ k þ 1ð Þ dλ

¼
X1
k¼0

γke�γ

ð1
0

Γ uþ k; yð Þyu�1e�y

Γ uð ÞΓ uþ kð ÞΓ k þ 1ð Þ dy

ð7:19Þ

Using the table of integrals [Ref. Eq. (#6-45)] from Gradshteyn and Ryzhik

(2007), Eq. (7.19) becomes

Az ¼
X1
k¼0

γke�γ Γ 2uþ kð Þ
uΓ uð ÞΓ uþ kð ÞΓ k þ 1ð Þ22uþk 2F1 1; 2uþ k½ �; 1þ u½ �; 1

2

� �
ð7:20Þ

In Eq. (7.20), 2F1(.) is the hypergeometric function (Gradshteyn and Ryzhik

2007). Simplifying further, the expression for AUC becomes

Az ¼
X1
k¼0

γke�γ Γ 2uþ kð Þ
Γ uþ 1ð ÞΓ uþ kð ÞΓ k þ 1ð Þ22uþk 2F1 1; 2uþ k½ �; 1þ u½ �; 1

2

� �
:

ð7:21Þ

One of the unknowns here is the actual number of terms necessary to get

satisfactory results. Equation (7.21) can be expressed as a finite sum of K as

Az ¼
XK
k¼0

γke�γ Γ 2uþ kð Þ
Γ uþ 1ð ÞΓ uþ kð ÞΓ k þ 1ð Þ22uþk 2F1 1; 2uþ k½ �; 1þ u½ �; 1

2

� �
:

ð7:22Þ

It is possible to obtain an estimate of K by varying it and comparing the results to

AUC obtained using other methods such as those reported earlier using polyarea(.)
command. The Matlab script appears next and results are displayed in Figs. 7.6

and 7.7. Two values of K(¼10, 20) are used.

function ROC_analysis_compareAUC_sum
% ROC curves in an indeal channel. The area under the ROC curve is obtained
% using polyarea(.) command. Since time bandwidth product is an integer,
% the Marcum Q function is obtained using the command marcumq(.)
% two plots are obtained. ARea is obtained using the summation.
% The results are comparedto those obtained using the polyarea.
% P M Shankar, September 2016
close all

global u Z
PF=valuesofpf; % get the values of PF
LF=length(PF); % count the PF
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% symbolic calculations provide greater stability with hypergeom (.)
global u Z
syms k u1
u1=sym(u);
f1=sym(Z)^k*gamma(2*u1+k)*hypergeom([1,k+2*u1],1+u1,1/2);
f2=factorial(k)*gamma(u1+k)*2^(2*u1+k);
F1=exp(-sym(Z))*symsum(f1/f2,k,0,sym(K));
FF=F1/gamma(u1+1);
F=double(FF); % convert to double precision from symbolic
end

uu=1:20;
KU=length(uu); % values of u and their count
PD=zeros(LF,KU);
lam=mylamb(uu); % get values of lambda for this set of u
ZdB=[3,5,7];
LZ=length(ZdB);
Azz=zeros(LZ,KU);
Azsum10=zeros(LZ,KU);
Azsum20=zeros(LZ,KU);
for k1=1:LZ
Z=10^(ZdB(k1)/10);
for k=1:KU

u=uu(k);
PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);
PF1=[0,PF,1];
PD1=[0;PD(:,k);1];
% padding is needed so that the ends are not missed. otherwise,
% it will give a lower area
Azz(k1,k)=polyarea(PF1',PD1)+0.5;%0.5 accounts for the area below the
% diagonal. Polyarea only gives area between the curve & diagonal
K=10;% number of terms in the summation
Azsum10(k1,k)=aucsum(K);
K=20;% number of terms in the summation
Azsum20(k1,k)=aucsum(K);

end;
end;

figure
plot(uu,Azsum10(1,:),'-rd',uu,Azsum20(1,:),'-rs',...
uu,Azsum10(2,:),'k--^',uu,Azsum20(2,:),'k--+',...
uu,Azsum10(3,:),'b-.*',uu,Azsum20(3,:),'b--o')
title('Ideal Channel')
xlabel('time bandwidth product u'),ylabel(' A_z ')
legend([' A_z, \gamma = ',num2str(ZdB(1)),' dB (K = 10)'],...

[' A_z, \gamma = ',num2str(ZdB(1)),' dB (K = 20)'],...
[' A_z, \gamma = ',num2str(ZdB(2)),' dB (K = 10)'],...
[' A_z, \gamma = ',num2str(ZdB(2)),' dB (K = 20)'],...
[' A_z, \gamma = ',num2str(ZdB(3)),' dB (K = 10)'],...
[' A_z, \gamma = ',num2str(ZdB(3)),' dB (K = 20)'])

figure,plot(uu,Azz(1,:),'r-', uu,Azsum20(1,:),'rd',...
uu,Azz(2,:),'k--',uu,Azsum20(2,:),'k--^', uu,Azz(3,:),'b-.',...

uu,Azsum20(3,:),'bp' )
title('Ideal Channel')
xlabel('time bandwidth product u'),ylabel(' A_z ')
legend([' A_z, \gamma = ',num2str(ZdB(1)),' dB (polyarea)'],...

[' A_z, \gamma = ',num2str(ZdB(1)),' dB (K = 20)'],...
[' A_z, \gamma = ',num2str(ZdB(2)),' dB (polyarea)'],...
[' \eta, \gamma = ',num2str(ZdB(2)),' dB (K = 20)'],...
[' \eta, \gamma = ',num2str(ZdB(3)),' dB (polyarea)'],...
[' \eta, \gamma = ',num2str(ZdB(3)),' dB (K = 20)'])

end

function PF1=valuesofpf
PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...
.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...
0.99999 0.999999 0.9999999];

end

function lambda=mylamb(U) % get values of lambda
PF=valuesofpf; %values of PF
LF=length(PF);  KU=length(U);
lambda=zeros(LF,KU);
for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold
end;

end

function F=aucsum(K)
% function to evaluate AUC as a sum in place of integral or polyarea
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Figure 7.6 shows that at high values of the average SNR, the AUC values do not

match indicating the likelihood that K¼ 10 is insufficient. To test whether K¼ 20 is

sufficient, the results of the summation are compared to those obtained using the

polyarea(.) command. Figure 7.7 shows that for K ¼ 20, the results of the summa-

tion and those of polyarea(.) match. Another reason for the use of the polyarea
command is that the time taken by summation is far greater than the computational

time needed to perform the polyarea(.) command.

7.3 Energy Detection in Fading and Shadowed Fading
Channels

The analysis so far has been limited to an ideal channel. As described in Chap. 4,

wireless channels undergo fading, shadowing, and often both concurrently. Signal

strength fluctuations arising from fading necessitate modification of the model of

the energy detector in cognitive radio. The performance is likely to worsen when

the channel conditions are not ideal (similar to the degradation of error rates and

outage probabilities seen in Chap. 4). The effects of fading and shadowed fading

channels on the energy detector are explored next (Ghasemi and Sousa 2007;

Herath et al. 2009; Herath et al. 2011; Kakkar et al. 2014).

7.3.1 Nakagami Fading Channel

In a Nakagami fading channel, the SNR associated with the primary user becomes a

random variable, with the SNR being described as a gamma random variable. The

density function of the SNR is

f γð Þ ¼ 1

Γ mð Þ
m

γ0

� �m

γm�1e
�m

γ0
γ
U γð Þ: ð7:23Þ

In Eq. (7.23),m is the Nakagami parameter and γ0 is the average SNR. While the

signal strength fluctuations from fading have no impact on the probability density of

the energy in the absence of the primary user in Eq. (7.6), the detected energy from

the primary user becomes a random variable. This means that the probability of

false alarm remains unchanged in a fading channel. But, the probability of detection

and consequently, the area under the ROC curve become random variables and this

aspect needs to be addressed. Since the performance index also depends on the

SNR, the fading effects the performance index defined earlier. The performance

index in a Nakagami fading channel becomes

η ¼ η u; γ0ð Þ ¼
ð1
0

γffiffiffiffiffiffiffiffiffiffiffi
uþ γ

p f γð Þdγ ¼
ð1
0

γffiffiffiffiffiffiffiffiffiffiffi
uþ γ

p 1

Γ mð Þ
m

γ0

� �m

γm�1e
�m

γ0
γ
dγ: ð7:24Þ
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The performance indices are calculated and the Matlab script appears below.

function performance_Nakagamichannel
% performance index in a Nakagami channel
% P M Shankar, September 2016
close all
global m Z u
for kk=1:4
m=0.5*kk;
uu=1:20;
KU=length(uu); % values of u and their count
ZdB=[3,5,7];
LZ=length(ZdB);
perf=zeros(LZ,KU);
perfN=zeros(LZ,KU);
for k1=1:LZ
Z=10^(ZdB(k1)/10);
for k=1:KU

u=uu(k);
perf(k1,k)=Z/sqrt(u+Z);
perfN(k1,k)=integral(@perfun,0,inf);

end;
end;
% get the plot of the AUC
figure,plot(uu,perf(1,:),'r-',uu,perfN(1,:),'r-*',...
uu,perf(2,:),'k--',uu,perfN(2,:),'k--o',...

uu,perf(3,:),'b-.',uu,perfN(3,:),'b-.s' )
title(['Nakagami Channel, m = ',num2str(m)])
xlabel('time bandwidth product u'),ylabel('Performance index \eta')
legend(['\gamma_0 = ',num2str(ZdB(1)),' dB'],...

['\gamma_0 = ',num2str(ZdB(1)),' dB, m = ',num2str(m)],...
['\gamma_0 = ',num2str(ZdB(2)),' dB'],...
['\gamma_0 = ',num2str(ZdB(2)),' dB, m = ',num2str(m)],...
['\gamma_0 = ',num2str(ZdB(3)),' dB'],...
['\gamma_0 = ',num2str(ZdB(3)),' dB, m = ',num2str(m)])

end;
end

function F=perfun(x) % external function for integration
global m Z u
f1=(m/Z)^m*(x.^(m-1)).*exp(-m*x/Z)/gamma(m);
f2=x./sqrt(x+u);
F=f1.*f2;
end

Figures 7.8, 7.9, 7.10, and 7.11 show the results for the different values of the

Nakagami parameter.

The performance index declines in the presence of fading and it starts to regain

as the fading level decreases (higher values of the Nakagami parameter). The trend

with respect to the time bandwidth product is identical to the ideal case with

performance index declining with increase in the time bandwidth product.

To determine the degradation in AUC, the probability of detection in the

presence of fading needs to be calculated. The probability of detection in a

Nakagami fading channel becomes (Digham et al. 2007; Altrad and

Muhaidat 2013)

Pd ¼ Pd u;m; γ0; λð Þ ¼
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0

Qu

ffiffiffiffiffi
2γ

p
;

ffiffiffi
λ

p� �
f γð Þdγ

¼
ð1
0

Qu

ffiffiffiffiffi
2γ

p
;

ffiffiffi
λ

p� � 1

Γ mð Þ
m

γ0

� �m

γm�1e
�m

γ0
γ
dγ ð7:25Þ

7.3 Energy Detection in Fading and Shadowed Fading Channels 729



2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4
0 2 4 6 8 10 12 14

time bandwidth product u

Nakagami Channel, m = 1

16 18 20

P
er

fo
rm

an
ce

 in
de

x 
h 

g0 = 3 dB

g0 = 5 dB

g0 = 7 dB

g0 = 3 dB, m = 1

g0 = 5 dB, m = 1

g0 = 7 dB, m = 1
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The area under the ROC curve becomes

Az ¼
ð1
0

ð1
0
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As it was done earlier, the AUC can be obtained using the polyarea(.) command

by plotting the ROC curve, with the probability of detection in Eq. (7.25) avoiding

the double integral in Eq. (7.26). First, Eq. (7.25) needs to be simplified. To

accomplish this step, the Marcum Q function is written as a series using

Eq. (7.18) as
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Simplifying further,
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After completing the integration, the probability of detection becomes

Pd u;m; γ0; λð Þ ¼
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The first set of results is generated by performing the integration in Eq. (7.25)

and estimating the AUC using the polyarea(.) command in Matlab. The Matlab

script appears below.

function ROC_Nakagami_book

% ROC in a Nakagami channel. The probability of detection is evaluated

% using numerical integration and AUC estimated using polyarea(.)

% P M Shankar, Sept. 2016

close all

global m lamb Z u

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:20;  KU=length(uu); % values of u and their count

PD=zeros(LF,KU);

lam=mylamb(uu); % get values of lambda for this set of u

% no fading

Z=10^(5/10);

for k=1:KU

u=uu(k);

PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);

PF1=[0,PF,1]; % padding is needed so that the ends are not missed.

% otherwise, it will give a lower area

Az(k)=polyarea(PF1',[0;PD(:,k);1])+0.5; % area with no fading

end;
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% study of Az as a function of the Nakagami parameter

Mk=[0.5,1,1.5,2,3];

ZdB=5;

Z=10^(ZdB/10);

for km=1:length(Mk);

m=Mk(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k);

pdF(kk,k)=integral(@myfun,0,inf);

end;

Azm(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure,plot(uu,Az,'-k',uu,Azm(1,:),'-*',uu,Azm(2,:),...

uu,Azm(3,:),'--o',uu,Azm(4,:),'-d',uu,Azm(5,:),'--^')

legend('No fading',['m = ',num2str(Mk(1))],['m = ',num2str(Mk(2))],...

['m = ',num2str(Mk(3))],['m = ',num2str(Mk(4))],...

['m = ',num2str(Mk(5))])

xlim([min(uu),max(uu)])

ylim([0.6,.9])

title(['Nakagami fading channel: Average SNR = ',num2str(ZdB),'dB'])

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')

% study a few values of SNR as a function of u

mm=1.5;

m=mm;

Z1dB=[0,5,10,15];

ZZ=10.^(Z1dB/10);

for km=1:length(ZZ);

Z=ZZ(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k); % this is the original set

pdF(kk,k)=integral(@myfun,0,inf);

end;

Azz(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure,plot(uu,Azz(1,:),'-*',uu,Azz(2,:),'-s',...

uu,Azz(3,:),'--o',uu,Azz(4,:),'-d')

legend(['SNR = ',num2str(Z1dB(1)),'dB'],...

['SNR = ',num2str(Z1dB(2)),'dB'],...

['SNR = ',num2str(Z1dB(3)),'dB'],['SNR = ',num2str(Z1dB(4)),'dB'])

xlim([min(uu),max(uu)])

ylim([0.5,1])

title(['Nakagami fading channel: m = ',num2str(mm)])

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')

% a few values of u as a function of SNR

mm=1.5;

m=mm;

Z1dB=[0:20];

ZZ=10.^(Z1dB/10);

UU=[1,3,5,7];

lamm=mylamb(UU); % new set of lambda values for this U and PF

for km=1:length(ZZ);

Z=ZZ(km);

for k=1:4

u=UU(k);

for kk=1:LF

lamb=lamm(kk,k);

pdF(kk,k)=integral(@myfun,0,inf);

end;
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function Fg=myfun(x)

% Nakagami channel

global m lamb Z u

Fg=gampdf(x,m,Z/m).*marcumq(sqrt(2*x),sqrt(lamb),u);

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end

Azu(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure,plot(Z1dB,Azu(:,1),'-*',Z1dB,Azu(:,2),'-s',...

Z1dB,Azu(:,3),'--o',Z1dB,Azu(:,4),'-d')

legend(['u = ',num2str(UU(1))],['u = ',num2str(UU(2))],...

['u = ',num2str(UU(3))],['u = ',num2str(UU(4))],'location','best')

ylim([0.6,1])

title(['Nakagami fading channel: m = ',num2str(mm)])

xlabel('Average SNR (dB)')

ylabel('Area under the ROC curve A_z')

% area for a few value of m

u=4;

lamU=mylamb(u); % value of lambda for the set pf PF

mm=[1,2,3,4];

for km=1:length (mm)

m=mm(km);

for k=1:length(ZZ)

Z=ZZ(k);

for kk=1:LF

lamb=lamU(kk);

pdF(kk,k)=integral(@myfun,0,inf);

end;

Az1(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end;

end;

figure,plot(Z1dB,Az1(1,:),'-*',Z1dB,Az1(2,:),'-s',...

Z1dB,Az1(3,:),'--o',Z1dB,Az1(4,:),'-d')

legend(['m = ',num2str(mm(1))],['m = ',num2str(mm(2))],...

['m = ',num2str(mm(3))],['m = ',num2str(mm(4))],'location','best')

ylim([0.5,1])

title({'Nakagami fading channel';[' u = ',num2str(u)]})

xlabel('Average SNR (dB)')

ylabel('Area under the ROC curve A_z')

end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end
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Area under the ROC curve for a few values of the Nakagami parameter is shown

in Fig. 7.12 as a function of the time bandwidth product u. As m increases, the AUC

starts approaching the AUC of an ideal channel. Figure 7.13 shows the results for a

fixed value of m for a set of average SNR values. Figure 7.14 shows the AUC as a

function of the average SNR for a few values of the time bandwidth product. As

expected, the performance worsens with increasing values of u. Figure 7.15 shows

the results for a few value of the Nakagami parameter for a fixed value of the time

bandwidth product.

2

0.9

0.85

0.8

0.75

0.7

0.65

0.6
4 6 8

Time bandwidth product u

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

 A
z

Nakagami fading channel: Average SNR = 5dB

10 12 14 16 18 20

m = 2
m = 3

m = 0.5

No fading

m = 1

m = 1.5
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The results of the numerical integration are compared to those obtained using the

summation in Eq. (7.29). Computations were done with the number of terms limited

to 35. The Matlab script appears below.

function ROC_Nakagami_book_pdsum

% ROC in a Nakagami channel. The probability of detection is evaluated

% as a sum and AUC estimated using polyarea(.)

% P M Shankar, Sept. 2016

close all

global m lamb Z u

K=35; % number of terms in the summation

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:20;  KU=length(uu); % values of u and their count

PD=zeros(LF,KU);

lam=mylamb(uu); % get values of lambda for this set of u

% no fading

Z=10^(5/10);

for k=1:KU

u=uu(k);

PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);

PF1=[0,PF,1]; % padding is needed so that the ends are not missed.

% otherwise, it will give a lower area

Az(k)=polyarea(PF1',[0;PD(:,k);1])+0.5; % area with no fading

end;

2

0.55

0.5
0

0.6

0.65

0.75

0.8

0.85

0.9

0.95

1

0.7

4 6 8

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

 A
z

Nakagami fading channel
u = 4

10 12 14 16 18 20

Average SNR (dB)

m = 1
m = 2
m = 3
m = 4

Fig. 7.15 AUC as a function of the Nakagami parameter for u ¼ 4
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figure,plot(uu,AzI(1,:),'r-*', uu,AzS(1,:),'r-s',...

uu,AzI(2,:),'b--o',uu,AzS(2,:),'b-->',...

uu,AzI(3,:),'k-.^', uu,AzS(3,:),'k-.p')

legend(['SNR = ',num2str(Z1dB(1)),'dB (integral)'],...

['SNR = ',num2str(Z1dB(1)),'dB (sum)'],...

['SNR = ',num2str(Z1dB(2)),'dB (integral)'],...

['SNR = ',num2str(Z1dB(2)),'dB (sum)'],...

['SNR = ',num2str(Z1dB(3)),'dB (integral)'],...

['SNR = ',num2str(Z1dB(3)),'dB (sum)'])

xlim([min(uu),max(uu)]),ylim([0.5,1])

title(['Nakagami fading channel: m = ',num2str(mm)])

xlabel('Time bandwidth product u'),ylabel('Area under the ROC curve A_z')

end

% study of Az as a function of the Nakagami parameter

Mk=[0.5,1.5,3];

ZdB=5;

Z=10^(ZdB/10);

for km=1:length(Mk);

m=Mk(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k);

pdFS(kk,k)=pdfsum(K);

pdF(kk,k)=integral(@myfun,0,inf);

end;

AzI(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

AzS(km,k)=polyarea(PF1',[0;pdFS(:,k);1])+0.5;

end

end;

figure,plot(uu,Az,'-k',uu,AzI(1,:),'r-*', uu,AzS(1,:),'r-s',...

uu,AzI(2,:),'b--o',uu,AzS(2,:),'b-->',...

uu,AzI(3,:),'m-.^', uu,AzS(3,:),'m-.p')

legend('No fading',['m = ',num2str(Mk(1)),'(integral)'],...

['m = ',num2str(Mk(2)),'(integral)'],['m = ',num2str(Mk(2)),'(sum)'],...

['m = ',num2str(Mk(3)),'(integral)'],['m = ',num2str(Mk(3)),'(sum)'])

xlim([min(uu),max(uu)])

ylim([0.6,.9])

title(['Nakagami fading channel: Average SNR = ',num2str(ZdB),'dB'])

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')

% study a few values of SNR as a function of u

mm=1.5;

m=mm;

Z1dB=[0,3,7];

ZZ=10.^(Z1dB/10);

for km=1:length(ZZ);

Z=ZZ(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k); % this is the original set

pdFS(kk,k)=pdfsum(K);

pdF(kk,k)=integral(@myfun,0,inf);

end;

AzI(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

AzS(km,k)=polyarea(PF1',[0;pdFS(:,k);1])+0.5;

end

end;
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function pd=pdfsum(K)

% Nakagami channel prob detection as a sum

global m lamb Z u

syms ss k

u1=sym(u);

m1=sym(m);

Z1=sym(Z);

f1=gamma(m1+k)*Z1^k;

f2=gamma(u1+k)*gamma(k+1)*(m1+Z1)^(k+m1);

f3=igamma(u1+k,sym(lamb)/2);

ss=(m1^m1)*(1/gamma(m1))*symsum(f3*f1/f2,k,0,sym(K));

pd=double(ss);

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end

function Fg=myfun(x)

% Nakagami channel

global m lamb Z u

Fg=gampdf(x,m,Z/m).*marcumq(sqrt(2*x),sqrt(lamb),u);

end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end

The results of the comparison of the numerical integration and summation are

shown in Figs. 7.16 and 7.17. It can be seen that one can use either approach to

obtain the AUC.

Equation (7.26) for the estimation of AUC as an integral can also be simplified.

Note that the area under the ROC curve obtained for the ideal channel expressed as

a sum in Eq. (7.22) can be used to replace Eq. (7.26) as

Az ¼
Ð1
0

XK
k¼0

γke�γ m

γ0

� �m γm�1

Γ mð Þe
� m

γ0
γ Γ 2uþ kð Þ
Γ uþ 1ð ÞΓ uþ kð ÞΓ k þ 1ð Þ22uþk

� 2F1 1; 2uþ k½ �; 1þ u½ �; 1
2

� �
� dγ

ð7:30Þ
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Equation (7.30) can be further simplified by performing the integration w. r. t. γ
resulting in the expression for Az as

Az ¼ mm

Γ uþ1ð ÞΓ mð Þ
X1
k¼0

Γ mþkð ÞΓ 2uþ kð Þγ k0
Γ uþ kð ÞΓ kþ1ð Þ mþ γ0ð Þkþm

22uþk 2F1 1;2uþk½ �; 1þu½ �;1
2

� �

ð7:31Þ

Results on directly estimating AUC using the summation in Eq. (7.31) are

obtained next. The Matlab script appears below. Figures 7.18 and 7.19 compare

the results of Eq. (7.31) to those obtained using the integration. Note that the

number of terms in the summation was limited to 10.

function ROC_Nakagami_AUCsum

% ROC in a Nakagami channel. AUC is directly deteremined as a sum without

% using polyarea and compared to the result from polyarea

% P M Shankar, Sept. 2016

close all

global m lamb Z u

K=10; % number of terms in the summation

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:20;  KU=length(uu); % values of u and their count

PD=zeros(LF,KU);

lam=mylamb(uu); % get values of lambda for this set of u

% no fading

Z=10^(5/10);

for k=1:KU

u=uu(k);

PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);

PF1=[0,PF,1]; % padding is needed so that the ends are not missed.

% otherwise, it will give a lower area

Az(k)=polyarea(PF1',[0;PD(:,k);1])+0.5; % area with no fading

end;

% study of Az as a function of the Nakagami parameter

Mk=[0.5,1.5,3];

ZdB=5;    Z=10^(ZdB/10);

for km=1:length(Mk);

m=Mk(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k);

pdF(kk,k)=integral(@myfun,0,inf);

end;

AzI(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

AzS(km,k)=aucsum(K);

end

end;

figure,plot(uu,Az,'-k',uu,AzI(1,:),'r-*', uu,AzS(1,:),'r-s',...

uu,AzI(2,:),'b--o',uu,AzS(2,:),'b-->',...

uu,AzI(3,:),'m-.^', uu,AzS(3,:),'m-.p')

legend('No fading',['m = ',num2str(Mk(1)),'(integral)'],...

['m = ',num2str(Mk(2)),'(integral)'],['m = ',num2str(Mk(2)),'(sum)'],...

['m = ',num2str(Mk(3)),'(integral)'],['m = ',num2str(Mk(3)),'(sum)'])

xlim([min(uu),max(uu)])

ylim([0.6,.9])

title(['Nakagami fading channel: Average SNR = ',num2str(ZdB),'dB'])

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')

7.3 Energy Detection in Fading and Shadowed Fading Channels 741



legend(['SNR = ',num2str(Z1dB(1)),'dB (integral)'],...

['SNR = ',num2str(Z1dB(1)),'dB (sum)'],...

['SNR = ',num2str(Z1dB(2)),'dB (integral)'],...

['SNR = ',num2str(Z1dB(2)),'dB (sum)'],...

['SNR = ',num2str(Z1dB(3)),'dB (integral)'],...

['SNR = ',num2str(Z1dB(3)),'dB (sum)'])

xlim([min(uu),max(uu)]),ylim([0.5,1])

title(['Nakagami fading channel: m = ',num2str(mm)])

xlabel('Time bandwidth product u'),ylabel('Area under the ROC curve A_z')

end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end

function auc=aucsum(K)

% AUC as a sum directly

global m  Z u

syms ss k

u1=sym(u);  m1=sym(m);  Z1=sym(Z);

f1=gamma(m1+k)*gamma(2*u1+k)*Z1^k;

f2=gamma(u1+k)*gamma(k+1)*(m1+Z1)^(k+m1);

f3=hypergeom([1,2*u1+k],[1+u1],1/2);

ss=(m1^m1)*(1/(gamma(m1)*gamma(u1+1)))*symsum(f1*f3/f2,k,0,sym(K));

auc=double(ss);

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end

function Fg=myfun(x)

% Nakagami channel; computation of the probability of detection

global m lamb Z u

Fg=gampdf(x,m,Z/m).*marcumq(sqrt(2*x),sqrt(lamb),u);

end

% study a few values of SNR as a function of u

mm=1.5;   m=mm;

Z1dB=[0,3,7];

ZZ=10.^(Z1dB/10);

for km=1:length(ZZ);

Z=ZZ(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k); % this is the original set

pdF(kk,k)=integral(@myfun,0,inf);

end;

AzI(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

AzS(km,k)=aucsum(K);

end

end;

figure,plot(uu,AzI(1,:),'r-*', uu,AzS(1,:),'r-s',...

uu,AzI(2,:),'b--o',uu,AzS(2,:),'b-->',...

uu,AzI(3,:),'k-.^', uu,AzS(3,:),'k-.p')
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Fig. 7.19 Comparison of AUC from Eq. (7.31) and numerical integration (fixed value of m)
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Fig. 7.18 Comparison of AC from Eq. (7.31) and numerical integration (fixed value of the
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7.3.2 Shadowed Fading Channels

One of the models that can describe the statistical fluctuations in wireless channels

when both fading and shadowing are present simultaneously is the generalized

K model (Chap. 4). The probability density function of the SNR in a GK model is

f γð Þ ¼ 2

ffiffiffiffiffiffiffiffi
mc

γ0
γ

r� �mþc

Km�c 2

ffiffiffiffiffiffiffiffi
mc

γ0
γ

r� �
U γð Þ ð7:32Þ

In Eq. (7.32), m is the Nakagami parameter and c describes the level of

shadowing in the channel while Km–c (.) is the modified Bessel function of the

second kind of order (m�c). Lower values of c correspond to higher levels of

shadowing and higher values of c indicate low levels of shadowing. As described in

Chap. 4, the GK model provides a simple analytical description of the effects of

shadowed fading in place of the exact representation offered by the gamma-

lognormal model.

The performance index in a shadowed fading channel can be expressed as

η ¼ η u; γ0;m; cð Þ ¼
ð1
0

γffiffiffiffiffiffiffiffiffiffiffi
uþ γ

p f γð Þdγ

¼
ð1
0

γffiffiffiffiffiffiffiffiffiffiffi
uþ γ

p 2

ffiffiffiffiffiffiffiffi
mc

γ0
γ

r� �mþc

Km�c 2

ffiffiffiffiffiffiffiffi
mc

γ0
γ

r� �
dγ

ð7:33Þ

The performance index declines with increasing levels of the amount of fading

given by

AF ¼ 1

m
þ 1

c
þ 1

mc
: ð7:34Þ

The performance index in a GK channel is estimated for a few set of different

values of m and c and the results are displayed below along with the Matlab

script.

The Matlab script appears below. The performance index calculations in a GK

channel are shown in Fig. 7.20, 7.21, 7.22, and 7.23. In each case, results are

compared to the case of an ideal channel (no fading/shadowing).
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function performance_GKchannel

% performance index in a GK channel

% P M Shankar, September 2016

close all

global m Z u c

cc=[2.1, 8.5];

mm=[1, 2.5];

for k1=1:2

c=cc(k1);

for k2=1:2

m=mm(k2);

uu=1:20;

KU=length(uu); % values of u and their count

ZdB=[3,5,7];

LZ=length(ZdB);

perf=zeros(LZ,KU);

perfN=zeros(LZ,KU);

for k1=1:LZ

Z=10^(ZdB(k1)/10);

for k=1:KU

u=uu(k);

perf(k1,k)=Z/sqrt(u+Z);

perfN(k1,k)=integral(@perfun,0,inf);

end;

end;

% get the plot of the AUC

figure,plot(uu,perf(1,:),'r-',uu,perfN(1,:),'r-*',...

uu,perf(2,:),'k--',uu,perfN(2,:),'k--o',...

uu,perf(3,:),'b-.',uu,perfN(3,:),'b-.s' )

title(['GK Channel, m = ',num2str(m), ', c = ',num2str(c)])

xlabel('time bandwidth product u'),ylabel('Performance index \eta')

legend(['\gamma_0 = ',num2str(ZdB(1)),' dB'],...

['\gamma_0 = ',num2str(ZdB(1)),' dB, GK channel'],...

['\gamma_0 = ',num2str(ZdB(2)),' dB'],...

['\gamma_0 = ',num2str(ZdB(2)),' dB, GK channel'],...

['\gamma_0 = ',num2str(ZdB(3)),' dB'],...

['\gamma_0 = ',num2str(ZdB(3)),' dB, GK channel'])

ylim([0.2,2.2])

grid on

end;

end;

end

function F=perfun(x) % external function for integration

global m Z u c

f1=2*((sqrt(c/Z)*sqrt(m*x)).^(c+m)).*...

besselk(c-m, 2*sqrt(c/Z)*sqrt(m*x))*1./(x*gamma(m)*gamma(c));

f2=x./sqrt(x+u);

F=f1.*f2;

end

The properties of cognitive radio in a GK channel can be studied similar to the

one undertaken for the case of a Nakagami fading channel. Results are obtained

using the simple approach of obtaining the probability of detection in a

GK channel first followed by the estimation of AUC using the polyarea(.)
command in Matlab. The probability of detection in a GK channel becomes

(Alhennawi et al. 2014)
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Fig. 7.20 Performance index for m ¼ 1 and c ¼ 2.1 for three values of the average SNR. The

performance index in ideal channels (for identical values of the average SNR) is also shown
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The Matlab script used is given below. The results are displayed in Figs. 7.24,

7.25, 7.26, 7.27, and 7.28.

function ROC_analysis_fading_GK

% complete analysis of ROC. Examines the area under the ROC as a function

% of TBW product, ave. SNR, Nakagami parameter, shadowing parameter etc.

% The probability of detection is evaluated numerically.

% shadowed fading channel.   P M Shankar, September 2016

close all

global m lamb Z u c

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:20;  KU=length(uu); % values of u and their count

lam=mylamb(uu); % get values of lambda for this set of u

PF1=[0,PF,1];

% no fading

Z=10^(5/10);

for k=1:KU

u=uu(k);

PD(:,k)=marcumq(sqrt(2*Z),sqrt(lam(:,k)),u);

PF1=[0,PF,1]; % padding is needed so that the ends are not missed.

% otherwise, it will give a lower area

Az(k)=polyarea(PF1',[0;PD(:,k);1])+0.5; % area with no fading

end;

% study of Az as a function of the Nakagami parameter and u; SNR & c fixed

c=5.1;

Mk=[0.5,1,2,4];

ZdB=5;

Z=10^(ZdB/10);

for km=1:length(Mk);

m=Mk(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k);

pdF(kk,k)=integral(@myfun,0,inf);

end;

Azm(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure,plot(uu,Az,'-k',uu,Azm(1,:),'r-.*',uu,Azm(2,:),'g-^',...

uu,Azm(3,:),'b--o',uu,Azm(4,:),'m-d','linewidth',1.3)

legend('No fading',['m = ',num2str(Mk(1))],['m = ',num2str(Mk(2))],...

['m = ',num2str(Mk(3))],['m = ',num2str(Mk(4))])

xlim([min(uu),max(uu)])

ylim([0.5,1])

title({'Shadowed fading channel';

['\gamma_0 = ',num2str(ZdB),'dB; c = ',num2str(c)]})

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')
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legend(['\gamma_0 = ',num2str(Z1dB(1)),'dB'],...

['\gamma_0 = ',num2str(Z1dB(2)),'dB'],...

['\gamma_0 = ',num2str(Z1dB(3)),'dB'],['\gamma = ',num2str(Z1dB(4)),'dB'])

xlim([min(uu),max(uu)])

ylim([0.5,1])

title({'Shadowed fading channel';['m = ',num2str(mm),'; c = ',num2str(c)]})

xlabel('Time bandwidth product u'),ylabel('Area under the ROC curve A_z')

% a few values of u as a function of SNR: m and c fixed

mm=1.5;

m=mm;

Z1dB=[0:20];

ZZ=10.^(Z1dB/10);

UU=[1,3,5,7];

lamm=mylamb(UU); % new set of lambda values for this U and PF

for km=1:length(ZZ);

Z=ZZ(km);

for k=1:4

u=UU(k);

for kk=1:LF

lamb=lamm(kk,k);

pdF(kk,k)=integral(@myfun,0,inf);

end;

Azu(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure,plot(Z1dB,Azu(:,1),'r-*',Z1dB,Azu(:,2),'b-s',...

Z1dB,Azu(:,3),'k--o',Z1dB,Azu(:,4),'m-d')

legend(['u = ',num2str(UU(1))],['u = ',num2str(UU(2))],...

['u = ',num2str(UU(3))],['u = ',num2str(UU(4))])

ylim([0.5,1])

title({'Shadowed fading channel';

['m = ',num2str(mm),'; c = ',num2str(c)]})

xlabel('Average SNR \gamma_0 (dB)'),ylabel('Area under the ROC curve A_z')

% area for a few value of m. u & c fixed

u=4;

lamU=mylamb(u); % value of lambda for the set pf PF

mm=[1,2,3,4];

for km=1:length (mm)

m=mm(km);

for k=1:length(ZZ)

Z=ZZ(k);

for kk=1:LF

lamb=lamU(kk);

pdF(kk,k)=integral(@myfun,0,inf);

end;

Az1(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end;

end;

% study a few values of SNR as a function of u; m & c fixed

mm=1.5;

m=mm;

Z1dB=[0,5,10,15];

ZZ=10.^(Z1dB/10);

for km=1:length(ZZ);

Z=ZZ(km);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k); % this is the original set

pdF(kk,k)=integral(@myfun,0,inf);

end;

Azz(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure,plot(uu,Azz(1,:),'k-*',uu,Azz(2,:),'r-s',...

uu,Azz(3,:),'b--o',uu,Azz(4,:),'m-d')
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figure,plot(Z1dB,Az1(1,:),'r-*',Z1dB,Az1(2,:),'b-s',...

Z1dB,Az1(3,:),'k--o',Z1dB,Az1(4,:),'m-d')

legend(['m = ',num2str(mm(1))],['m = ',num2str(mm(2))],...

['m = ',num2str(mm(3))],['m = ',num2str(mm(4))])

ylim([0.5,1])

title({['Shadowed fading channel ; c = ',num2str(c)];...

[' u = ',num2str(u)]})

xlabel('Average SNR \gamma_0 (dB)'),ylabel('Area under the ROC curve A_z')

% study of Az as a function of the shadowing parameter c and u; SNR fixed

m=1.8;

Ck=[1.2,3.5,12.2];

ZdB=5;

Z=10^(ZdB/10);

for km=1:length(Ck);

c=Ck(km);

for k=1:KU

u=uu(k);

for kk=1:LF
lamb=lam(kk,k);

pdF(kk,k)=integral(@myfun,0,inf);

end;

Azm(km,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure,plot(uu,Az,'-k',uu,Azm(1,:),'r-*',uu,Azm(2,:),'b-s',...

uu,Azm(3,:),'m--o')

legend('No fading',['c = ',num2str(Ck(1))],['c = ',num2str(Ck(2))],...

['c = ',num2str(Ck(3))])

xlim([min(uu),max(uu)])

ylim([0.5,1])

title({'Shadowed fading channel';

['\gamma_0 = ',num2str(ZdB),'dB; m = ',num2str(m)]})

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')

end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end

function Fg=myfun(x) % external function for the integral

% GK channel

global m lamb Z u c

pd=2*((sqrt(c/Z)*sqrt(m*x)).^(c+m)).*...

besselk(c-m, 2*sqrt(c/Z)*sqrt(m*x))*1./(x*gamma(m)*gamma(c));

Fg=pd.*marcumq(sqrt(2*x),sqrt(lamb),u);

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end
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Fig. 7.24 AUC for a few values of the Nakagami parameter (fixed value of average SNR and

shadowing level). The performance in an ideal channel is also shown
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7.3.3 Partial AUC

While the area under the ROC curve provides very useful information, it becomes

difficult to compare the performances of two or more channels or detectors when

they have almost identical AUC values and one observes that the ROC curves

actually crossover. An example is shown in here where one sees that the ROC

curves cross. The Matlab script used here is given below. Results are shown in

Fig. 7.29.
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function partial_AUC_concept

% Concept of partial AUC.

%

% Two ROC curves are generated showing a cross-over point eventhough the

% AUC values are almost equal.

% P M Shankar, September 2016

close all

global m lamb Z u c

PF=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

LF=length(PF); %count the PF values

u=2;

lam=2*gammaincinv(PF,u,'upper');%invert PF & get threshold

for kk=1:LF

lamb=lam(kk);

c=2.8;m=4.5; ZdB=5.5;Z=10^(ZdB/10);

pdfGK(kk)=integral(@myfunGK,0,inf); % prob detection GK

m=3.1;ZdB=5;Z=10^(ZdB/10);

pdfN(kk)=integral(@myfunN,0,inf); % prob detection gamma

end;

loglog(PF,pdfGK,'r-',PF,pdfN,'--k','linewidth',1.2)

xlabel('P_f'),ylabel('P_d'), xlim([1e-2,1])

AUCGK=polyarea([0,PF,1],[0,pdfGK,1])+.5;%fill edges to complete shape

AUCN=polyarea([0,PF,1],[0,pdfN,1])+.5;%fill edges to complete shape

legend(['A_z = ',num2str(AUCGK)],['A_z = ',num2str(AUCN)],...

'location','best')

title(['Two ROC curves; u = ',num2str(u)]),grid on

text(0.11,0.59,'\Leftarrow Crossover point','color','b',...

'fontweight','bold')

end

function Fg=myfunGK(x) % external function for the integral

% GK channel

global m lamb Z u c

pd=2*((sqrt(c/Z)*sqrt(m*x)).^(c+m)).*...

besselk(c-m, 2*sqrt(c/Z)*sqrt(m*x))*1./(x*gamma(m)*gamma(c));

Fg=pd.*marcumq(sqrt(2*x),sqrt(lamb),u);

end

function F=myfunN(x) % external function for the Nakagami channel

global m Z u lamb

pd=gampdf(x,m,Z/m);

F=pd.*marcumq(sqrt(2*x),sqrt(lamb),u);

end

The ROC curves in Fig. 7.29 suggest that one needs to examine closely the ROC

in the region of interest characterized by a specific value of the probability of false

alarm required. To understand this issue, two false alarm probability values are

indicated in Fig. 7.30 and a region of interest is drawn.

It appears from Fig. 7.30 that the ROC curves # 1 and # 2 might end up with

identical AUC values. It is possible to imagine a scenario where both probabilities

of detection and false alarm are high. Such a case is not an ideal one since one must

have a high probability of detection and very low probability of false alarm

(McClish 1989; Obuchowski 2003; Dodd and Pepe 2003; Li and Liao 2008). This
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would require that greater examination of the AUC plot at the low end of the

probability of false alarm.

If λ1 and λ2 are the threshold values of the energy corresponding to the two

values of the probabilities of false alarm Pf1 and Pf2, it is possible to define a partial

AUC as (Adebola et al. 2014; Shankar 2016)

pAz ¼ �
ð1
0

ðλ2
λ¼λ1

1

2uΓ uð Þ λ
u�1e�

λ
2Qu

ffiffiffiffiffi
2γ

p
;

ffiffiffi
λ

p� �
f γð Þdλdγ ð7:36Þ

Notice the presence of the negative sign reflecting the trend of the probability of

false alarm. Using the series expansion for the MarcumQ function and inverting the

limits of the threshold,

pAz ¼
ð1
0

ðλ1
λ¼λ2

1

2uΓ uð Þ λ
u�1e�

λ
2

X1
k¼0

γke�γ Γ uþ k; λ
2
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Γ uþ kð ÞΓ k þ 1ð Þ f γð Þdλdγ ð7:37Þ

In Eqs. (7.36) and (7.37), f(γ) is the density function of the SNR in a fading

channel.

While partial AUC is conceptually useful, it has practical limitations. A close

examination of the rectangle in Fig. 7.30 suggests clearly that the value of partial AUC

depends on the interval of the probabilities of false alarm chosen. The interval is

ΔPf ¼ Pf 2 � Pf 1 : ð7:38Þ

Note that the typical values of the range lie between 0.1 and 0.3, a better way to

utilize the partial AUC is to define a partial AUC index as (Shankar 2016)

pAI ¼ pAz

ΔPf
: ð7:39Þ

The partial AUC index will lie between 0 and 1 providing a normalized param-

eter for comparison. For an ideal detector, the partial AUC index is the area of the

rectangle divided by the difference in the values of the probabilities of false alarm.

To demonstrate the characteristics of the partial AUC index, consider the case of

two fading distributions. The first one is the density function of a selection com-

bining algorithm in a Nakagami channel of order 3 resulting in a pdf (Chap. 4)

f γð Þ ¼ f γ1ð Þ ¼ 3 1�
Γ m; mγ1γ01

� �
Γ mð Þ

2
4

3
5
2

m

γ01

� �m γm�1
1

Γ mð Þ e
� m

γ01
γ1 : ð7:40Þ

The second density is the pdf associated with the maximal ratio combining

algorithm (order 3) resulting in a density of (Chap. 4)
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f γð Þ ¼ f γ2ð Þ ¼ m

γ02

� �3m γ3m�1
2

Γ 3mð Þ e
� m

γ02
γ2 ð7:41Þ

For this analysis, it has been assumed that

γ01 ¼ 2γ02 ð7:42Þ

Instead of using the summation in Eq. (7.37), it is much easier to use the double

integral in Eq. (7.36) since one set of the limits (thresholds) will be of finite extent

and numerical double integration can be easily carried out. For the two sets of

density functions, f(γ) in Eq. (7.36) is replaced by the two densities in Eqs. (7.40)

and (7.41).

The concept of partial AUC is demonstrated by considering the case of the

energy detection in a Nakagami fading channel. The two cases for the ROC are

constituted by the probability densities in Eqs. (7.40) and (7.41). Results are

displayed in Figs. 7.31 and 7.32. The Matlab script appears below.

function partial_AUC_calculations

% Concept of partial AUC.

%

% Two densities are used to examine the partial AUC index. Numerical double

% integration is used to estimate the partial AUC index.

% P M Shankar, September 2016

close all

global m  Z u

u=4;

ZZ=0:20; % SNR in dB

LZ=length(ZZ);

m=1.5;

for kk=1:2 % two sets of PF values

if kk==1

PF1=0.001;PF2=0.005; DP=PF2-PF1;

lam1=2*gammaincinv(PF1,u,'upper');%invert PF & get threshold

lam2=2*gammaincinv(PF2,u,'upper');%invert PF & get threshold

else

PF1=0.0001;PF2=0.001; DP=PF2-PF1;

lam1=2*gammaincinv(PF1,u,'upper');%invert PF & get threshold

lam2=2*gammaincinv(PF2,u,'upper');%invert PF & get threshold

end;

for k=1:LZ

Z=10.^(ZZ(k)/10);

p11=integral2(@myfun1,lam2,lam1,0,inf);%note  change in order of limits

p22=integral2(@myfun2,lam2,lam1,0,inf);%note  change in order of limits

p1(k)=p11/DP;

p2(k)=p22/DP;

end;

figure, plot(ZZ,p1,'k-o',ZZ,p2,'--r*')

legend('f(\gamma_1)','f(\gamma_2)')

xlabel('average SNR \gamma_{02} dB')

ylabel('Partial AUC index')

title(['P_f_1 = ',num2str(PF1),',  P_f_2 = ',num2str(PF2),...

', m = ',num2str(m),', u = ',num2str(u)])

end;

end

7.3 Energy Detection in Fading and Shadowed Fading Channels 757



function F1=myfun1(x,y) % external function for the integral

global u m Z

Z1=2*Z;

f1=gampdf(x,u,2).*marcumq(sqrt(2*y),sqrt(x),u);

f2=3*gampdf(y,m,Z1/m).*(gamcdf(y,m,Z1/m)).^2;

F1=f1.*f2;

end

function F2=myfun2(x,y) % external function for the Nakagami channel

global m u Z

M=3;

f1=gampdf(x,u,2).*marcumq(sqrt(2*y),sqrt(x),u);

f2=gampdf(y,M*m,M*Z/(m*M));

F2=f1.*f2;

end
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7.3.4 N*Nakagami Channels

The range of fading that can be modeled using the Nakagami model is limited. It is

possible to expand the range of fading from very severe through mild using the

N*Nakagami models as it was shown in Chap. 4 (Karagiannidis et al. 2007; Shankar

2013; Ilhan 2014; Shankar 2016). In this case, the fading is treated as a cascading

process resulting in the SNR becoming the product of a number of independent and

identically distributed gamma variables. If the number of “cascades” is N, the
density of the received SNR was shown to be

f γð Þ ¼ 1

γΓN mð ÞG
N, 0
0,N

mN

γ0
γ

���� �
m, ::,m

� �
, N ¼ 1, 2, 3, ::: ð7:43Þ

In Eq. (7.43),GN, 0
0,N

mN

γ0
γ

���� �
m, ::,m

� �
is the Meijer G-function and γ0 is the average

SNR (see Appendix, Chap. 4). For N ¼ 1, the N*Nakagami channel becomes a

Nakagami channel with m taking values larger than 0.5. In the most general case,

the only requirement on the value of m is that it is positive. As N increases, the

fading becomes more and more severe. Using the density of the SNR in Eq. (7.43),

the probability of detection in cognitive radio in Eq. (7.25) becomes
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Pd ¼
ð1
0

Qu

ffiffiffiffiffi
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p
;

ffiffiffi
λ

p� � 1

γΓN mð ÞG
N, 0
0,N

mN

γ0
γ

���� �
m, ::,m

� �
dγ: ð7:44Þ

The area under the ROC curve becomes

Az ¼
ð1
0

1

γΓN mð ÞG
N, 0
0,N

mN

γ0
γ

���� �
m, ::,m

� �ð1
0

1

2uΓ uð Þ λ
u�1e�

λ
2Qu
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p
;

ffiffiffi
λ

p� �
dλdγ

ð7:45Þ

Using the series expansion for the Marcum Q function, the probability of

detection in Eq. (7.44) becomes

Pd ¼
ð1
0

X1
k¼0

γke�γ Γ uþ k; λ
2

� �
Γ uþ kð ÞΓ k þ 1ð Þ

1

γΓN mð ÞG
N, 0
0,N

mN

γ0
γ

���� �
m, ::,m

� �
dγ ð7:46Þ

Using the table of integrals [Gradshteyn and Ryzhik 2007, Eq. 7-813], the

probability of detection in Eq. (7.46) becomes

Pd ¼
X1
k¼0

Γ uþ k; λ
2

� �
Γ uþ kð ÞΓ k þ 1ð Þ

1

ΓN mð ÞG
N, 1
1,N

mN

γ0

���� 1� k
m, ::,m

� �
ð7:47Þ

Using the table of integrals [Gradshteyn and Ryzhik 2007, Eqs. 7-813 and

6.455], the expression for AUC in Eq. (7.45) becomes

Az ¼ 1

u22uΓ uð ÞΓN mð Þ
X1
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mN
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���� 1� k
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The partial AUC becomes

pAz ¼
ð1
0

1

γΓN mð ÞG
N,0
0,N

mN
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γ

���� �
m, ::,m

� �ðλ1
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ð7:49Þ

Using the table of integrals [Gradshteyn and Ryzhik 2007, Eq. 7–813], the

expression for partial AUC becomes

pAz ¼
X1
k¼0

GN, 1
1,N

mN

γ0

��� 1� k
m, ::,m

� �
2uΓN mð ÞΓ uð ÞΓ uþ kð ÞΓ k þ 1ð Þ

ðλ1
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xu�1e�
x
2Γ uþ k;

x

2

� �
dx: ð7:50Þ

Results on the performance in cascaded channels are shown in Figs. 7.33, 7.34,

7.35, 7.36, 7.37, and 7.38. The Matlab script appears below. Results on partial AUC

are available elsewhere (Shankar 2016).

760 7 Cognitive Radio



function cascaded_AUC_book

% cognitive radio performance on a cascaded N*Nakagami channel. Numerical

% integration is used to estimate the probability of detection and polyarea

% command is used to obtain AUC

% Meijer G function is separately generated for N=1,2,3, and 4 and the

% concept can be extended to other values of N

% P M Shankar

close all

global m lamb Z u N

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:2:21;  KU=length(uu); % values of u and their count

pdF=zeros(LF,KU);

lam=mylamb(uu); % get values of lambda for this set of u

mm=[1.5,2.5,3.5];

ZdB=[5,10];

for kz=1:2

Z=10^(ZdB(kz)/10);

for kkm=1:length(mm)

m=mm(kkm);

NN=[1:4];

for kn=1:length(NN);

N=NN(kn);

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k);

pdF(kk,k)=integral(@cascad_pdF,0.01,0.9995*pi/2);

end;

PF1=[0,PF,1];

% padding is needed so that the ends are not missed. otherwise, it

% will give a incorrect lower area

Azn(kn,k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

end

end;

figure, plot(uu,Azn(1,:),'r-*',uu,Azn(2,:),'k-s',uu,Azn(3,:),'b-o',...

uu,Azn(4,:),'m--^')

legend('N = 1','N = 2','N = 3', 'N= 4')

xlabel('u'),ylabel('AUC A_z')

title(['Cascaded N*Nakagami channel:  m = ',num2str(m),',  \gamma_0 = ',...

num2str(10*log10(Z))])

xlim([min(uu),max(uu)])

end;

end;

end

function y = cascad_pdF(xx)

global N Z m lamb u

yy=tan(xx);

for k=1:length(yy);

x=yy(k);

pdf=Meijer Gpdf(N,m,x,Z);% gets the pdf

y(k)=pdf*marcumq(sqrt(2*x),sqrt(lamb),u)*(1+x^2);

end

end

function pd=Meijer Gpdf(N,m,x,Z)

% N number of cascades, m the parameter, x is the variable, Z is the mean SNR

gm=gamma(m);

xZ=x/Z;

if N==1

pd=gampdf(x,m,Z/m);

elseif N==2

pd=(1/x)*double(evalin(symengine,sprintf('Meijer G([[ ], [ ]], [[%e,%e], []], 

%e)',m,m,(m^N)*xZ)))/gm^N;

elseif N==3
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pd=(1/x)*double(evalin(symengine,sprintf('Meijer G([[ ], [ ]], [[%e,%e,%e], []], 

%e)',m,m,m,(m^N)*xZ)))/gm^N;

elseif N==4

pd=(1/x)*double(evalin(symengine,sprintf('Meijer G([[ ], [ ]], [[%e,%e,%e,%e], []], 

%e)',m,m,m,m,(m^N)*xZ)))/gm^N;

elseif N==5

pd=(1/x)*double(evalin(symengine,sprintf('Meijer G([[ ], [ ]], [[%e,%e,%e,%e,%e], []], 

%e)',m,m,m,m,m,(m^N)*xZ)))/gm^N;

end;

end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end
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7.3.5 Diversity in Cognitive Radio

As seen in Chap. 5, diversity techniques are implemented to mitigate the effects of

fading. The diversity techniques also can be employed in cognitive radio to improve

the probability of detection and consequently the area under the ROC curve. Since

the probability of false alarm does not depend on the signal strength it will not be

impacted by the presence of diversity. Going back to Eq. (7.25) and rewriting it, the

probability of detection becomes (Digham et al. 2007; Atapattu et al. 2011; Sun et

al. 2011 )

Pd ¼
ð1
0

Qu

ffiffiffiffiffiffiffiffiffiffi
2γdiv

p
;

ffiffiffi
λ

p� �
f γdivð Þdγdiv: ð7:51Þ

In Eq. (7.51), γdiv is the output of the diversity combing algorithm and f(γdiv) is
its probability density function. Consider the case of a Nakagami fading channel

with an average SNR of γ0 and Nakagami parameter m. The branches of diversity
are treated as independent and identically distributed.

If the order of diversity isM, the probability density function of the output of the

selection combining algorithm will be (Chap. 5)
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f γSCð Þ ¼ M 1�
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In the case of the MRC diversity, the probability density function of the output of

the MRC algorithm will be (Chap. 5)

f γMRCð Þ ¼ m

γ0

� �Mm γMm�1
MRC

Γ Mmð Þ e
�m

γ0
γMRC : ð7:53Þ

Results of the diversity analysis are shown in Figs. 7.39, 7.40, 7.41, 7.42, 7.43,

7.44, 7.45, 7.46, and 7.47. The Matlab script used appears below. The improvement

in performance gained through diversity is clearly seen with MRC performing

better than SC as expected.

function ROC_Nakagami_diversity

% ROC in a Nakagami channel. The probability of detection is evaluated

% using numerical integration and AUC estimated using polyarea(.)

% Both MRC and SC are implemented and results are ompared to the case of no

% P M Shankar, Sept. 2016

close all

global m lamb Z u M

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:20;  KU=length(uu); % values of u and their count

lam=mylamb(uu); % get values of lambda for this set of u

PF1=[0,PF,1]; % padding is needed so that the ends are not missed.

% study of Az as a function of the Nakagami parameter

for kz=1:2

if kz==1

ZdB=3;

else

ZdB=5;

end;

Z=10^(ZdB/10);

for km=1:4

if km==1

m=1.5; M=2;

elseif km==2

m=1.5; M=4;

elseif km==3

m=2; M=2;

else

m=2; M=5;

end;

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k);

pdF(kk,k)=integral(@myfun1,0,inf);

pdFSC(kk,k)=integral(@myfunSC,0,inf);

pdFMR(kk,k)=integral(@myfunMRC,0,inf);

end;
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Fg=gampdf(x,m,Z/m).*pd;

end

function Fg=myfunMRC(x) % Nakagami channel MRC diversity

global m lamb Z u M

pd=1-ncx2cdf(lamb,2*u,2*x);% use the CDF

Fg=gampdf(x,m*M,Z/m).*pd; % note that M*Z/(M*m) is same as Z/m

end

function Fg=myfunSC(x) % Nakagami channel SCC diversity

global m lamb Z u M

pd=1-ncx2cdf(lamb,2*u,2*x);% use the CDF

pdfSC=M*gampdf(x,m,Z/m).*(gamcdf(x,m,Z/m)).^(M-1);

Fg=pdfSC.*pd; % note that M*Z/(M*m) is same as Z/m

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end

Az(k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

AzS(k)=polyarea(PF1',[0;pdFSC(:,k);1])+0.5;

AzM(k)=polyarea(PF1',[0;pdFMR(:,k);1])+0.5;

end

figure,plot(uu,Az,'r-*',uu,AzS,'k-s',uu,AzM,'m-o')

legend('No Div.','SC','MRC')

title(['Nakagami fading channel: m = ', num2str(m),', Average SNR = ',...

num2str(ZdB),'dB, M = ',num2str(M)])

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')

end;

end;

end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end

function Fg=myfun1(x) % Nakagami channel No diversity

global m lamb Z u

pd=1-ncx2cdf(lamb,2*u,2*x);% use the CDF

A discussion of diversity in cognitive radio will be incomplete without intro-

ducing another form of diversity typically used with noncoherent systems, namely

the square law combining (SLC) diversity. This is similar to MRC without the need

for channel estimation [3, 4]. This leads to M signals being added regardless of
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whether primary user is present or not. Therefore, the energy received under the two

hypotheses now becomes

Z ¼ χ22Mu H0

χ22Mu 2γSLCð Þ H1

(
: ð7:54Þ

It can be seen that the chi-square variable is now of order Mu instead of u as it

was with the case of MRC and SC. The probability of false alarm now becomes

Pf ¼
Γ Mu; λ

2

� �
Γ Muð Þ : ð7:55Þ

The probability of detection becomes

P
d
��γSLC ¼ QMu

ffiffiffiffiffiffiffiffiffiffiffi
2γSLC

p
;

ffiffiffi
λ

p� �
ð7:56Þ
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M¼ 5)
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The density function of the SNR is similar to the pdf of the SNR at the output of

the MRC algorithm and it is given by

f γSLCð Þ ¼ 1

Γ mMð Þ
m

γ0

� �mM

γmM�1
SLC e

�m
γ0
γSLC , M ¼ 1, 2, 3, :: SLC Diversityð Þ

ð7:57Þ

Since Eq. (7.56) is conditioned on the output of the SLC algorithm, the proba-

bility of detection becomes

Pd ¼
ð1
0

P
d
��γSLC f γSLCð ÞdγSLC

¼
ð1
0

QMu

ffiffiffiffiffiffiffiffiffiffiffi
2γSLC

p
;

ffiffiffi
λ

p� � 1

Γ mMð Þ
m

γ0

� �mM

γmM�1
SLC e

�m
γ0
γSLCdγSLC: ð7:58Þ

The Matlab script used for the comparison is given below.

function ROC_Nakagami_diversity_comparison

% ROC in a Nakagami channel.

% MRC, SC and SLC are compared. NO diversity is also considered.

% P M Shankar, Sept. 2016

close all

global m lamb Z u M

PF=valuesofpf; % get the values of PF

LF=length(PF); % count the PF

uu=1:10;  KU=length(uu); % values of u and their count

lam=mylamb(uu); % get values of lambda for this set of u

PF1=[0,PF,1]; % padding is needed so that the ends are not missed.

% study of Az as a function of the Nakagami parameter

for kz=1:2

if kz==1

ZdB=3;

else

ZdB=5;

end;

Z=10^(ZdB/10);

m=1.5; M=3;

for k=1:KU

u=uu(k);

for kk=1:LF

lamb=lam(kk,k);

pdF(kk,k)=integral(@myfun1,0,inf);

pdFSC(kk,k)=integral(@myfunSC,0,inf);

pdFMR(kk,k)=integral(@myfunMRC,0,inf);

PFmt(kk,k)=1-chi2cdf(lamb,2*u*M); % theory SLC

pdFMt(kk,k)=integral(@myfun2,0,inf);

end;

Az(k)=polyarea(PF1',[0;pdF(:,k);1])+0.5;

AzS(k)=polyarea(PF1',[0;pdFSC(:,k);1])+0.5;

AzM(k)=polyarea(PF1',[0;pdFMR(:,k);1])+0.5;

AzML(k)=polyarea([0;PFmt(:,k);1],[0;pdFMt(:,k);1])+0.5;

end
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pd=1-ncx2cdf(lamb,2*u,2*x);% use the CDF

Fg=gampdf(x,m*M,Z/m).*pd; % note that M*Z/(M*m) is same as Z/m

end

function Fg=myfun2(x)  % SLC: integral function

global m lamb Z u M

pd=1-ncx2cdf(lamb,2*u*M,2*x);%1- non-central chiSquare CDF instead of MarcumQ

Fg=gampdf(x,M*m,Z/m).*pd;

end

function Fg=myfunSC(x) % Nakagami channel SCC diversity

global m lamb Z u M

pd=1-ncx2cdf(lamb,2*u,2*x);% use the CDF

pdfSC=M*gampdf(x,m,Z/m).*(gamcdf(x,m,Z/m)).^(M-1);

Fg=pdfSC.*pd; % note that M*Z/(M*m) is same as Z/m

end

function lambda=mylamb(U) % get values of lambda

PF=valuesofpf; %values of PF

LF=length(PF);  KU=length(U);

lambda=zeros(LF,KU);

for ku=1:KU

lambda(:,ku)=2*gammaincinv(PF,U(ku),'upper');%invert PF & get threshold

end;

end

figure,plot(uu,Az,'r-*',uu,AzS,'k-s',uu,AzM,'m-o',uu,AzML,'b-d')

legend('No Div.','SC','MRC','SLC')

title(['Nakagami fading channel: m = ', num2str(m),', \gamma_0 = ',...

num2str(ZdB),'dB, M = ',num2str(M)])

xlabel('Time bandwidth product u')

ylabel('Area under the ROC curve A_z')

end;

end

function PF1=valuesofpf

PF1=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4...

.001 .01 0.03 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

end

function Fg=myfun1(x) % Nakagami channel No diversity

global m lamb Z u

pd=1-ncx2cdf(lamb,2*u,2*x);% use the CDF

Fg=gampdf(x,m,Z/m).*pd;

end

% the integral for PD is same for SLC and MRC

% only PF is different

function Fg=myfunMRC(x) % Nakagami channel MRC diversity

global m lamb Z u M

Figures 7.48 and 7.49 compare the AUC in Nakagami channel for SC, MRC, and

SLC diversity. The performance of SLC lies between SC and MRC.
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7.4 Random Number Simulation

Having seen the results obtained analytically, we can now examine how random

number simulation of cognitive radio matches those results. Matlab scripts and

results are provided spanning the performance in ideal and fading channels

described in previous sections. The density functions corresponding to the two

hypotheses in Eq. (7.4) in an ideal Gaussian channel can be expressed in terms of

Matlab commands as

f zð Þ ¼ cx2pdf z; 2uð Þ H0

ncx2pdf z; 2u; 2γð Þ H1

�
: ð7:59Þ

The probabilities of false alarm and detection can be expressed as

Pf ¼ 1� cx2cdf λ; 2uð Þ
Pd ¼ 1� ncx2cdf λ; 2u; 2γð Þ: ð7:60Þ

It is important to mention that Eq. (7.60) for the probability of detection avoids

the need for MarcumQ function. For random number simulation, the number (N) of

samples used was fixed at 1e6. While the generation of samples in an ideal channel

is relatively easy and straightforward, generation of samples in fading and

shadowed fading channels required some extra manipulations. Table 7.1 provides

the Matlab commands for the generation of the various samples. For the case of

Nakagami-lognormal shadowed fading channels, we must be aware of the fact that

the average SNR in a showed fading channel μ is in decibel units while SNR

Table 7.1 Random number simulation of ideal, fading, and shadowed fading channels

Channel description H0 H1

Ideal (no fading) chi2rand(2*u,1,N ) ncx2rnd(2*u,2*γ0,1,N )

Nakagami (m,γ0) chi2rand(2*u,1,N ) h ¼ (gamrnd(m,γ0/m ,1,N ))

ncx2rnd(2*u,2*h,1,N )

Nakagami (m,γ0), MRC(M ) chi2rand(2*u,1,N ) h ¼ sum(gamrnd(m,γ0/m ,M,N ))

M ¼ 2, 3, . . . ncx2rnd(2*u,2*h,1,N )

Nakagami (m,γ0), SLC(M ) chi2rand(2*u*M,1,N ) h ¼ sum(gamrnd(m,γ0/m ,M,N ))

M ¼ 2, 3, . . . ncx2rnd(2*u*M,2*h,1,N )

Nakagami (m,γ0) , SC(M ) chi2rand(2*u,1,N ) h ¼ max(gamrnd(m,γ0/m ,M,N ))

M ¼ 2, 3, . . . ncx2rnd(2*u,2*h,1,N )

Shadowed fading (m,μ,σ) chi2rand(2*u,1,N ) h ¼ normrnd(m, σ,1,N )

hh ¼ 10.^(h/10)

hhh ¼ gamrnd(m,1/m,1,N ).*hh

ncx2rnd(2*u,2*hhh,1,N )

Generalized K (m,c,γ0) chi2rand(2*u,1,N ) r1 ¼ gamrnd(m,1/m,1,N )

r ¼ r1.*gamrnd(c,γ0/c,1,N )

ncx2rnd(2*u,2*r,1,N )

N is the number of samples
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γ0 in other channels is in absolute units (even though the plots show the values in dB

units). For the case of MRC diversity, results were obtained using both the infinite

series (terms limited to 50) and numerical integration with Eq. (7.53) to obtain the

probability of detection. For the case of selection diversity and GK channel,

integral(.) was used to perform the numerical integration. For the case of the

shadowed fading channel, integral2(.) was used to perform double integration.

Additionally, for the shadowed fading channels, the limits were converted to

0 and π/2 by transforming the variable to tan(.). The integrals were not used for

finding the area under the ROC curve (AUC). Only the probabilities of detection

and false alarm were estimated and the command polyarea(.) was used instead to

get the AUC.

7.4.1 Ideal Channel and Nakagami Channel (No Diversity)

The performance of the cognitive radio in a Nakagami channel is simulated using

random numbers. Figure 7.50 shows the ROC for an ideal channel. Figures 7.51 and

7.52 show the results the cognitive radio operating in a Nakagami channel.

The decline in performance with increasing values of u is seen. The results of the
simulation match the analytical results.

function cognitive_radio_SIM_Nakagami_fading

% Computer simulation of the ROC in cognitive radio operating in a Nakagami

% channel. ROC for an ideal channel and Nakagami channel obtained using

% theory and random number simulation. Instead of MarcumQ function, the

% non-central chi square pdf and CDF available in the Statistis and Machine

% Learning Tool box is used.

% probability of detection is estimated using integral(numerical

% integration) and summation

% P M Shankar September 2016

close all

Numb=1e6;

global m lamb g u

% no fading; ideal channel

Z=5;% dB

g=10.^(Z/10);

uu=[1,5,9];LU=length(uu);

% create labels for the legend

uu1=['u = ',num2str(uu(1))];uu2=['u = ',num2str(uu(2))];

uu3=['u = ',num2str(uu(3))];

L=100; % number of steps for PF

LT=L+1; % actual number of threshold values will be (L+1)

% place holders

PFs=zeros(LU,LT); PDs=zeros(LU,LT); % simulation

PFt=zeros(LU,LT); PDt=zeros(LU,LT); % theory

Az0s=zeros(1,LT);

Az0t=zeros(1,LT);

for kk=1:LU

u=uu(kk);

x1=chi2rnd(2*u,1,Numb);% H0

x2=ncx2rnd(2*u,2*g,1,Numb); % H1

xx=[x1,x2];%to determine maximum and minimum of the set for threshold

min1=min(xx);max1=max(xx);

step1=(max1-min1)/L;

thr=min1:step1:max1; % these will be L+1 steps

for k=1:LT;
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g=10^(ZZ(mk)/10);

LU=length(uu);

% place holders

PFms=zeros(LU,LT); PDms=zeros(LU,LT); % simulation

PFmt=zeros(LU,LT);PDmt=zeros(LU,LT); % theory

PDSmt=zeros(LU,LT);% prob. detection theory as a sum

Azs=zeros(1,LT);

Azt=zeros(1,LT);

AzSt=zeros(1,LT);

for kk=1:3

u=uu(kk);

x1=chi2rnd(2*u,1,Numb); % hypothesis H0

%hypothesis H1: non-centrality parameter a sample of a gamma variable

% generate a non-central chi square sample set with a non-centrality

% parameter = 2* gamma random variable of order m and mean g and it needs

% to match the size

x2=ncx2rnd(2*u,2*gamrnd(m,g/m,1,Numb),1,Numb); % H1

xx=[x1,x2];%to determine the maximum and minimum of the set for threshold

min1=min(xx);max1=max(xx);

step1=(max1-min1)/L;

thr=min1:step1:max1; % these will be L+1 steps

for k=1:LT;

lamb=thr(k); % lambda

PFms(kk,k)=sum(x1>lamb)/Numb; % sim

PDms(kk,k)=sum(x2>lamb)/Numb; % sim

PDmt(kk,k)=integral(@myfun,0,inf);% theory

PFmt(kk,k)=1-chi2cdf(thr(k),2*u); % theory

PDSmt(kk,k)=probdetnakagami(50); %Pd as a summation in a Nakagami channel

end;

figure, plot(PFs(1,:),PDs(1,:),'r*',PFt(1,:),PDt(1,:),'r-',...

PFs(2,:),PDs(2,:),'bo',PFt(2,:),PDt(2,:),'b-.',...

PFs(3,:),PDs(3,:),'ks',PFt(3,:),PDt(3,:),'k--')

legend(['A_z = ',num2str(Az0s(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Az0t(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(Az0s(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Az0t(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(Az0s(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Az0t(3)),', ', uu3,' (theory)'],...

'location','best')

xlabel('P_f'),ylabel('P_d'),grid on

title(['Ideal Channel: \gamma = ',num2str(Z),' dB'])

hold on

plot([0,1],[0,1],':m')

% simulation of the Nakagami channel

clear Z

mm=[1.3,2.8,4.1];

ZZ=[3,5,8];% average SNR dB

for mk=1:3

m=mm(mk);

PFs(kk,k)=sum(x1>thr(k))/Numb; % False alarm sim

PDs(kk,k)=sum(x2>thr(k))/Numb;

PFt(kk,k)=1-chi2cdf(thr(k),2*u); % False alarm theory

PDt(kk,k)=1-ncx2cdf(thr(k),2*u,2*g); % use the CDF

%this one as well as mrcumQ works

%    PDt(kk,k)=marcumq(sqrt(2*g),sqrt(thr(k)),u); % theory

end;

clear x1 x2 xx

Az0s(kk)=0.5+polyarea([0,PFs(kk,:),1],[0,PDs(kk,:),1]);

Az0t(kk)=0.5+polyarea([0,PFt(kk,:),1],[0,PDt(kk,:),1]);

end;
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function Pdet=probdetnakagami(KN) %Pd as a summation in a Nakagami channel

global m  u lamb g

pdd=0;

for kks=1:KN

ks=kks-1;

pd1=gammainc(lamb/2,u+ks,'upper')/factorial(ks);

% Matlab description of gammainc(.) includes the division by

% gamma(u+ks)

pd2=gamma(ks+m)*(g^ks)/(g+m)^(ks+m);

pdd=pdd+pd1*pd2;

end;

Pdet=pdd*(m^m)/gamma(m);

end

legend(['A_z = ',num2str(Azs(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Azt(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(AzSt(1)),', ', uu1,' (theory-SUM)'],...

['A_z = ',num2str(Azs(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Azt(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(AzSt(2)),', ', uu2,' (theory-SUM)'],...

['A_z = ',num2str(Azs(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Azt(3)),', ', uu3,' (theory)'],...

['A_z = ',num2str(AzSt(3)),', ', uu3,' (theory-SUM)'],...

'location','best')

xlabel('P_f'),ylabel('P_d'),grid on

title(['Nakagami Channel: m = ',num2str(m),', \gamma_0 = ',...

num2str(ZZ(mk)),' dB'])

hold on

plot([0,1],[0,1],':m')

clear x1 x2 xx

end;

end

function Fg=myfun(x)  % Nakagami channel: integral function

global m lamb g u

pd=1-ncx2cdf(lamb,2*u,2*x);%1- non-central chiSquare CDF instead of MarcumQ

%Fg=gampdf(x,m,g/m).*marcumq(sqrt(2*x),sqrt(lamb),u);

Fg=gampdf(x,m,g/m).*pd;

end

Azs(kk)=0.5+polyarea([0,PFms(kk,:),1],[0,PDms(kk,:),1]);

Azt(kk)=0.5+polyarea([0,PFmt(kk,:),1],[0,PDmt(kk,:),1]);

AzSt(kk)=0.5+polyarea([0,PFmt(kk,:),1],[0,PDSmt(kk,:),1]);

end;

figure,plot(PFms(1,:),PDms(1,:),'r*',PFmt(1,:),PDmt(1,:),'r-',...

PFmt(1,:),PDSmt(1,:),'r+',...

PFms(2,:),PDms(2,:),'mo',PFmt(2,:),PDmt(2,:),'m--',...

PFmt(2,:),PDSmt(2,:),'m>',...

PFms(3,:),PDms(3,:),'ks',PFmt(3,:),PDmt(3,:),'k-.',...

PFmt(3,:),PDSmt(3,:),'kd')

7.4 Random Number Simulation 779



0.9

1

0.8

0.7

0.6

P
d

0.1

0
0 0.1 0.2

0.2

0.3

0.3

0.4

0.5

0.4 0.5 0.6 0.7 0.8 0.9 1

A
z
 = 0.89569, u = 1 (sim)

A
z
 = 0.89606, u = 1 (theory)

A
z
 = 0.8277, u = 3 (theory)

A
z
 = 0.78835, u = 5 (theory)

A
z
 = 0.82744, u = 3 (sim)

A
z
 = 0.78817, u = 5 (sim)

Pf

Ideal Channel: g = 5 dB
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7.4.2 Generalized K Channel (Shadowed Fading)

Next, the performance is simulated in a generalized K channel. Note that in this

case, higher values of c correspond to lower levels of shadowing. The Matlab script

appears below.

function cognitive_radio_SIM_GKchannel

% Computer simulation of the ROC in cognitive radio operating in a GK

% channel.

% ROC for an ideal channel and GK channel obtained using

% theory and random number simulation.

% Instead of MarcumQ function, the

% non-central chi square pdf and CDF available in the Statistis and Machine

% Learning Tool box is used.

% P M Shankar November 2016

close all

Numb=1e6; % number of samples

global m lamb g u c

uu=[1,5,9];LU=length(uu);

% create labels for the legend

uu1=['u = ',num2str(uu(1))];uu2=['u = ',num2str(uu(2))];

uu3=['u = ',num2str(uu(3))];

L=150; % number of steps for PF

LT=L+1; % actual number of threshold values will be (L+1)

% simulate the ideal channel
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Fig. 7.52 AUC in a Nakagami channel (m¼ 3.2, γ0¼ 5 dB)
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m=1.5;c=2.2; Z=0;

elseif kQ==2

m=1.5;c=8.2;Z=5;

elseif kQ==3

m=2;c=5.2;Z=8;

elseif kQ==4

m=2.5;c=5.2;Z=3;

elseif kQ==5

m=2.5;c=15.2;Z=8;

else

m=3.1;c=12.2;Z=10;

end;

legend(['A_z = ',num2str(Az0s(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Az0t(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(Az0s(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Az0t(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(Az0s(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Az0t(3)),', ', uu3,' (theory)'],...

'location','best')

xlabel('P_f'),ylabel('P_d'),grid on

title(['Ideal Channel: \gamma = ',num2str(Z),' dB'])

hold on

plot([0,1],[0,1],':m')

% simulation of the GK channel

for kQ=1:6

if kQ==1

Z=5 ;% dB

g=10^(Z/10);

% place holders

PFs=zeros(LU,LT); PDs=zeros(LU,LT); % simulation

PFt=zeros(LU,LT); PDt=zeros(LU,LT); % theory

Az0s=zeros(1,LT);

Az0t=zeros(1,LT);

for kk=1:LU

u=uu(kk);

x1=chi2rnd(2*u,1,Numb);% H0

x2=ncx2rnd(2*u,2*g,1,Numb); % H1

xx=[x1,x2];%to determine maximum and minimum of the set for threshold

min1=min(xx);max1=max(xx);

step1=(max1-min1)/L;

thr=min1:step1:max1; % these will be L+1 steps

for k=1:LT;

PFs(kk,k)=sum(x1>thr(k))/Numb; % False alarm sim

PDs(kk,k)=sum(x2>thr(k))/Numb;

PFt(kk,k)=1-chi2cdf(thr(k),2*u); % False alarm theory

PDt(kk,k)=1-ncx2cdf(thr(k),2*u,2*g); % use the CDF

%this one as well as mrcumQ works

%    PDt(kk,k)=marcumq(sqrt(2*g),sqrt(thr(k)),u); % theory

end;

clear x1 x2 xx

Az0s(kk)=0.5+polyarea([0,PFs(kk,:),1],[0,PDs(kk,:),1]);

Az0t(kk)=0.5+polyarea([0,PFt(kk,:),1],[0,PDt(kk,:),1]);

end;

figure, plot(PFs(1,:),PDs(1,:),'r*',PFt(1,:),PDt(1,:),'b-',...

PFs(2,:),PDs(2,:),'bo',PFt(2,:),PDt(2,:),'b-.',...

PFs(3,:),PDs(3,:),'ks',PFt(3,:),PDt(3,:),'k--')
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besselk(c-m, 2*sqrt(c/g)*sqrt(m*x))*1./(x*gamma(m)*gamma(c));

%1- non-central chiSquare CDF instead of MarcumQ

Fg=pd.*(1-ncx2cdf(lamb,2*u,2*x));

end

figure,plot(PFms(1,:),PDms(1,:),'r*',PFmt(1,:),PDmt(1,:),'r-',...

PFms(2,:),PDms(2,:),'ko',PFmt(2,:),PDmt(2,:),'k--',...

PFms(3,:),PDms(3,:),'bs',PFmt(3,:),PDmt(3,:),'b-.')

legend(['A_z = ',num2str(Azs(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Azt(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(Azs(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Azt(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(Azs(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Azt(3)),', ', uu3,' (theory)'],...

'location','best')

xlabel('P_f'),ylabel('P_d'),grid on

title(['GK Channel: m = ',num2str(m),', c = ',num2str(c),...

',  \gamma_0 = ',num2str(Z),' dB'])

hold on

plot([0,1],[0,1],':m')

end;

end

function Fg=myfunGK(x) % external function for the integral

% GK channel

global m lamb g u c

pd=2*((sqrt(c/g)*sqrt(m*x)).^(c+m)).*...

Azt(kk)=0.5+polyarea([0,PFmt(kk,:),1],[0,PDmt(kk,:),1]);

end;

g=10^(Z/10);

% place holders

PFms=zeros(LU,LT); PDms=zeros(LU,LT); % simulation

PFmt=zeros(LU,LT);PDmt=zeros(LU,LT); % theory

Azs=zeros(1,LT);

Azt=zeros(1,LT);

for kk=1:3

u=uu(kk);

clear x1 x2 xx

x1=chi2rnd(2*u,1,Numb); % hypothesis H0

%hypothesis H1: non-centrality parameter a sample of a gamma variable

% generate a non-central chi square sample set with a non-centrality

% parameter = 2* gamma random variable of order m and mean g and it needs

% to match the size

x2=ncx2rnd(2*u,2*gamrnd(m,1/m,1,Numb).*gamrnd(c,g/c,1,Numb),1,Numb); % H1

xx=[x1,x2];%to determine the maximum and minimum of the set for threshold

min1=min(xx);max1=max(xx);

step1=(max1-min1)/L;

thr=min1:step1:max1; % these will be L+1 steps

for k=1:LT;

lamb=thr(k); % lambda

PFms(kk,k)=sum(x1>lamb)/Numb; % sim

PDms(kk,k)=sum(x2>lamb)/Numb; % sim

PDmt(kk,k)=integral(@myfunGK,0,inf);% theory

PFmt(kk,k)=1-chi2cdf(thr(k),2*u); % theory

end;

Azs(kk)=0.5+polyarea([0,PFms(kk,:),1],[0,PDms(kk,:),1]);

Results are displayed in Figs. 7.53, 7.54, and 7.55.
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7.4.3 Nakagami-Lognormal Channel (Shadowed Fading)

The performance in a Nakagami-lognormal channel is simulated. The Matlab script

appears below.
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Fig. 7.55 AUC in a GK channel (m¼ 2.5, c¼ 15.2, γ0¼ 8 dB)
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function cognitive_radio_SIM_shadowedfading

% Computer simulation of the ROC in cognitive radio operating in a Nakagami

% lognormalchannel. ROC for an ideal and shadowed fading channels obtained

% using theory and random number simulation. Instead of MarcumQ function,

% the non-central chi square pdf and CDF available in the Statistis and

% Machine Learning Tool box is used.

% P M Shankar September 2016

close all

Numb=1e6;

global m lamb g u sigm

% no fading; ideal channel

Z=5;% dB

g=10.^(Z/10);

uu=[1,5,9];

% create labels for the legend

uu1=['u = ',num2str(uu(1))];uu2=['u = ',num2str(uu(2))];

uu3=['u = ',num2str(uu(3))];

PF=[1e-12 5e-12 1e-11 5e-11 1e-10 1e-9,...

1e-8 1e-7 1e-6 1e-5 1e-4 0.001 0.004 0.008...

.009 .01 0.02 0.03 0.04 0.05 0.08 .1 0.14 0.16 .2 0.25 .3 0.35 .4 ...

.5 0.55 .6 0.65 .7 .75 .8 .85 .9 0.91 .92 0.93 .94 0.95 ...

.96 0.965 0.968 0.97 0.975 0.978 0.98 0.985 .99 0.995 ...

0.99999 0.999999 0.9999999];

LT=length(PF);

LU=length(uu);

% place holders

PFs=zeros(LU,LT); PDs=zeros(LU,LT); % simulation

PFt=zeros(LU,LT); PDt=zeros(LU,LT); % theory

Az0s=zeros(1,LT);Az0t=zeros(1,LT);

for kk=1:LU

u=uu(kk);

x1=chi2rnd(2*u,1,Numb);% H0

x2=ncx2rnd(2*u,2*g,1,Numb); % H1

thr=2*gammaincinv(PF,u,'upper'); % get the threshold values

for k=1:LT;

PFs(kk,k)=sum(x1>thr(k))/Numb; % False alarm sim

PDs(kk,k)=sum(x2>thr(k))/Numb;

PFt(kk,k)=1-chi2cdf(thr(k),2*u); % False alarm theory

PDt(kk,k)=1-ncx2cdf(thr(k),2*u,2*g); % Prob. det: use the CDF

end;

clear x1 x2 xx

Az0s(kk)=0.5+polyarea([0,PFs(kk,:),1],[0,PDs(kk,:),1]);

Az0t(kk)=0.5+polyarea([0,PFt(kk,:),1],[0,PDt(kk,:),1]);

end;

figure, plot(PFs(1,:),PDs(1,:),'r*',PFt(1,:),PDt(1,:),'b-',...

PFs(2,:),PDs(2,:),'bo',PFt(2,:),PDt(2,:),'b-.',...

PFs(3,:),PDs(3,:),'ks',PFt(3,:),PDt(3,:),'k--')

legend(['A_z = ',num2str(Az0s(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Az0t(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(Az0s(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Az0t(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(Az0s(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Az0t(3)),', ', uu3,' (theory)'],...

'location','best')

xlabel('P_f'),ylabel('P_d'),grid on

title(['Ideal Channel: \gamma = ',num2str(Z),' dB'])

hold on

plot([0,1],[0,1],':m')

% simulation of the Nakagami -lognormal channel

clear Z

mm=[1.1,2,3.5];

ZZ=[3,5,8];% average SNR dB

sd=[2,4,6];% shadowing levels in dB

for kks=1:3
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for mk=1:3

m=mm(mk);

g=ZZ(mk); % note that g is in dB here

LU=length(uu);

% place holders

PFms=zeros(LU,LT); PDms=zeros(LU,LT); % simulation

PFmt=zeros(LU,LT);PDmt=zeros(LU,LT); % theory

Azs=zeros(1,LT); Azt=zeros(1,LT);

for kk=1:3

u=uu(kk);

x1=chi2rnd(2*u,1,Numb); % hypothesis H0

%hypothesis H1: non-centrality parameter a sample of a gamma variable

%generate a non-central chi square sample set with a non-centrality

%parameter = 2*gammalognormal random number

thr=2*gammaincinv(PF,u,'upper'); % get  threshold values

g1=normrnd(g,sigm,1,Numb);%generate Gaussian

gg=10.^(g1/10);%lognormal random

hh=gamrnd(m,1/m,1,Numb).*gg;% gamma-lognormal

x2=ncx2rnd(2*u,2*hh,1,Numb); % H1

for k=1:LT;

lamb=thr(k); % lambda

PFms(kk,k)=sum(x1>lamb)/Numb; % sim

PDms(kk,k)=sum(x2>lamb)/Numb; % sim

PDmt(kk,k)=integral2(@myfunL,0,pi/2,0,pi/2);%theory

PFmt(kk,k)=1-chi2cdf(thr(k),2*u); % theory

end;

Azs(kk)=0.5+polyarea([0,PFms(kk,:),1],[0,PDms(kk,:),1]);

Azt(kk)=0.5+polyarea([0,PFmt(kk,:),1],[0,PDmt(kk,:),1]);

end;

figure,plot(PFms(1,:),PDms(1,:),'r*',PFmt(1,:),PDmt(1,:),'r-',...

PFms(2,:),PDms(2,:),'ko',PFmt(2,:),PDmt(2,:),'k--',...

PFms(3,:),PDms(3,:),'bs',PFmt(3,:),PDmt(3,:),'b-.')

legend(['A_z = ',num2str(Azs(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Azt(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(Azs(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Azt(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(Azs(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Azt(3)),', ', uu3,' (theory)'],...

'location','best')

xlabel('P_f'),ylabel('P_d'),grid on

title(['shadowed fading: m = ',num2str(m),', \sigma = ',...

num2str(sigm),' dB, \gamma_0 = ',num2str(ZZ(mk)),' dB'])

xlim([0,1]),ylim([0,1])

hold on

plot([0,1],[0,1],':m')

clear x1 x2 xx

end;

end;

end

function Fg=myfunL(xx,yy)  % Nakagami lognormal channel: integral function

global m lamb g u sigm

x=tan(xx);

y=tan(yy);

pd=1-ncx2cdf(lamb,2*u,2*x);%1- non-central chiSquare CDF instead of MarcumQ

K=10/log(10);

f1=K*1./sqrt(2*pi*y.*y*sigm^2);

f2=exp(-(10*log10(y)-g).^2/(2*sigm^2));

fL=f1.*f2;

pdfL=gampdf(x,m,y/m).*fL;

Fg=pdfL.*pd.*(1+x.^2).*(1+y.^2);

end

sigm=sd(kks); % shadowing sigma

The results are shown in Figs. 7.56, 7.57, and 7.58.
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7.4.4 Nakagami Channel (MRC and SC Diversity)

The simulation of cognitive radio when MRC and SC diversity algorithms are

implemented is undertaken next. The Matlab script appears below.
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function cognitive_radio_SIM_Nakagami_channel_div

% Computer simulation of the ROC in cognitive radio operating in a Nakagami

% channel. ROC for an ideal channel and Nakagami channel obtained using

% theory and random number simulation. Instead of MarcumQ function, the

% non-central chi square pdf and CDF available in the Statistis and Machine

% Learning Tool box is used.

% In this simulation, MRC and SC implemented. Note that M =1 corresponds to

% a Nakagami channel (no diversity)

% P M Shankar September 2016

close all

Numb=1e6;

global m lamb g u M

uu=[1,5,9];

L=100; % number of steps for PF

LT=L+1; % actual number of threshold values will be (L+1)

LU=length(uu);

% generate three sets of chi square random numbers: H0

xr=zeros(LU,Numb);

for kk=1:LU

xr(kk,:)=chi2rnd(2*uu(kk),1,Numb);

end;

% create labels for the legend

uu1=['u = ',num2str(uu(1))];uu2=['u = ',num2str(uu(2))];

uu3=['u = ',num2str(uu(3))];

clear Z

% simulation of the Nakagami channel MRC including M=1 (no diversity)

MM=[1,2,4];% order of diversity

mm=[0.5,1,1.5];

ZZ=[0,3,5];% average SNR dB

for k1=1:3

M=MM(k1);

for mk=1:3

m=mm(mk);

g=10^(ZZ(mk)/10);

% place holders

PFms=zeros(LU,LT); PDms=zeros(LU,LT); % MRC simulation

PFmt=zeros(LU,LT);PDmt=zeros(LU,LT); % MRC theory

Azs=zeros(1,LT); Azt=zeros(1,LT);

for kk=1:LU

u=uu(kk);

x1=xr(kk,:);% hypothesis H0

%   x1=chi2rnd(2*u,1,Numb); % hypothesis H0

%hypothesis H1: non-centrality parameter a sample of a gamma variable

% generate a non-central chi square sample set with a non-centrality

% parameter = 2* gamma random variable of order m and mean g and it needs

% to match the size

% generate an MRC sample

if M==1 % summation not needed

x2m=ncx2rnd(2*u,2*gamrnd(m,g/m,1,Numb),1,Numb); % H1

else

x2m=ncx2rnd(2*u,2*sum(gamrnd(m,g/m,M,Numb)),1,Numb); % H1

end;

xx=[x1,x2m];%to determine the maximum and minimum of the set for threshold

min1=min(xx);max1=max(xx);

step1=(max1-min1)/L;

thr=min1:step1:max1; % these will be L+1 steps

for k=1:LT;

lamb=thr(k); % lambda

PFms(kk,k)=sum(x1>lamb)/Numb; % sim

PDms(kk,k)=sum(x2m>lamb)/Numb; % sim

PDmt(kk,k)=integral(@myfunmrc,0,inf);% theory

PFmt(kk,k)=1-chi2cdf(thr(k),2*u); % theory

end;

Azs(kk)=0.5+polyarea([0,PFms(kk,:),1],[0,PDms(kk,:),1]);

Azt(kk)=0.5+polyarea([0,PFmt(kk,:),1],[0,PDmt(kk,:),1]);

end;
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figure,plot(PFms(1,:),PDms(1,:),'r*',PFmt(1,:),PDmt(1,:),'r-',...

PFms(2,:),PDms(2,:),'ko',PFmt(2,:),PDmt(2,:),'k--',...

PFms(3,:),PDms(3,:),'bs',PFmt(3,:),PDmt(3,:),'b-.')

legend(['A_z = ',num2str(Azs(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Azt(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(Azs(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Azt(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(Azs(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Azt(3)),', ', uu3,' (theory)'],...

'location','best')

xlabel('P_f'),ylabel('P_d'),grid on

if M==1

title(['m = ',num2str(m),', \gamma_0 = ',...

num2str(ZZ(mk)),' dB: No Diversity'])

else

title(['m = ',num2str(m),', \gamma_0 = ',...

num2str(ZZ(mk)),' dB:  MRC (M = ', num2str(M),')'])

end;

hold on

plot([0,1],[0,1],':m')

clear x1 x2m xx

end;

end;

% now SC

for k1=2:3 % M=1 is not needed

M=MM(k1);

for mk=1:3

m=mm(mk);

g=10^(ZZ(mk)/10);

% place holders

PFmsS=zeros(LU,LT); PDmsS=zeros(LU,LT); % simulation

PFmtS=zeros(LU,LT);PDmtS=zeros(LU,LT); % theory

AzsS=zeros(1,LT); AztS=zeros(1,LT);

for kk=1:LU

u=uu(kk);

x1=xr(kk,:);% hypothesis H0

%   x1=chi2rnd(2*u,1,Numb); % hypothesis H0

%hypothesis H1: non-centrality parameter a sample of a gamma variable

% generate a non-central chi square sample set with a non-centrality

% parameter = 2* gamma random variable of order m and mean g and it needs

% to match the size

% generate  SC sample

x2s=ncx2rnd(2*u,2*max(gamrnd(m,g/m,M,Numb)),1,Numb); % H1

xx=[x1,x2s];%to determine the maximum and minimum of the set for threshold

min1=min(xx);max1=max(xx);

step1=(max1-min1)/L;

thr=min1:step1:max1; % these will be L+1 steps

for k=1:LT;

lamb=thr(k); % lambda

PFmsS(kk,k)=sum(x1>lamb)/Numb; % sim

PDmsS(kk,k)=sum(x2s>lamb)/Numb; % sim

PDmtS(kk,k)=integral(@myfunsc,0,inf);% theory

PFmtS(kk,k)=1-chi2cdf(thr(k),2*u); % theory

end;

AzsS(kk)=0.5+polyarea([0,PFmsS(kk,:),1],[0,PDmsS(kk,:),1]);

AztS(kk)=0.5+polyarea([0,PFmtS(kk,:),1],[0,PDmtS(kk,:),1]);

end;

figure,plot(PFmsS(1,:),PDmsS(1,:),'r*',PFmtS(1,:),PDmtS(1,:),'r-',...

PFmsS(2,:),PDmsS(2,:),'ko',PFmtS(2,:),PDmtS(2,:),'k--',...

PFmsS(3,:),PDmsS(3,:),'bs',PFmtS(3,:),PDmtS(3,:),'b-.')

legend(['A_z = ',num2str(AzsS(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(AztS(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(AzsS(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(AztS(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(AzsS(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(AztS(3)),', ', uu3,' (theory)'],...

'location','best')
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xlabel('P_f'),ylabel('P_d'),grid on

title(['m = ',num2str(m),', \gamma_0 = ',...

num2str(ZZ(mk)),' dB:  SC (M = ', num2str(M),')'])

hold on

plot([0,1],[0,1],':m')

clear x1 x2s xx

end;

end;

end

function Fg=myfunmrc(x)  % MRC: integral function

global m lamb g u M

pd=1-ncx2cdf(lamb,2*u,2*x);%1- non-central chiSquare CDF instead of MarcumQ

Fg=gampdf(x,M*m,g/m).*pd;

end

function Fg=myfunsc(x)  % SC: integral function

global m lamb g u M

pd=1-ncx2cdf(lamb,2*u,2*x);%1- non-central chiSquare CDF instead of MarcumQ

Fg=M*(gamcdf(x,m,g/m).^(M-1)).*gampdf(x,m,g/m).*pd;

end

function F=probdetnakagami

global m KN u lamb g

pdd=0;

for kks=1:KN

ks=kks-1;

pd1=gammainc(lamb/2,u+ks,'upper')/factorial(ks);

pd2=gamma(ks+m)*(g^ks)/(g+m)^(ks+m);

pdd=pdd+pd1*pd2;

end;

F=pdd*(m^m)/gamma(m);

end

The results are displayed in Figs. 7.59, 7.60, 7.61, 7.62, 7.63, 7.64, and 7.65.
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7.4.5 Nakagami Channel (Square Law Combining Diversity)

The next simulation undertaken pertains to the square law combining diversity. The

Matlab script appears below.

function cognitive_radio_SIM_Nakagami_fading_sqlawdiv

% Computer simulation of the ROC in cognitive radio operating in a Nakagami

% channel. ROC for an ideal channel and Nakagami channel obtained using

% theory and random number simulation. Instead of MarcumQ function, the

% non-central chi square pdf and CDF available in the Statistis and Machine

% Learning Tool box is used. Instead of the MarcumQ function, theretical

% results are also obtained using the summation (Pd expressed as a series.

% In this simulation, SQUARE LAW COMBINING implemnted

% P M Shankar September 2016

close all

Numb=1e6;

global m lamb g u M

uu=[1,5,11];

% create labels for the legend

uu1=['u = ',num2str(uu(1))];uu2=['u = ',num2str(uu(2))];

uu3=['u = ',num2str(uu(3))];

L=100; % number of steps for PF

LT=L+1; % actual number of threshold values will be (L+1)

LU=length(uu);

clear Z
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Fig. 7.65 AUC in a Nakagami channel: m¼ 1.5, γ0¼ 5 dB: SC (M¼ 4)
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MM=[1,2,4];% order of diversity

mm=[0.75,1,1.5];

ZZ=[0,3,5];% average SNR dB

for k1=1:3

M=MM(k1);

for mk=1:3

m=mm(mk);

g=10^(ZZ(mk)/10);

% place holders

PFms=zeros(LU,LT); PDms=zeros(LU,LT); % simulation

PFmt=zeros(LU,LT);

PDmt1=zeros(LU,LT); % theory

PDmt2=zeros(LU,LT); % theory

Azs=zeros(1,LT); Azt1=zeros(1,LT);Azt2=zeros(1,LT);

for kk=1:3

u=uu(kk);

x1=chi2rnd(2*u*M,1,Numb); % hypothesis H0

%hypothesis H1: non-centrality parameter a sample of a gamma variable

% generate a non-central chi square sample set with a non-centrality

% parameter = 2* gamma random variable of order m and mean g and it needs

% to match the size

% generate an MRC sample

if M==1 % summation not needed

x2=ncx2rnd(2*u*M,2*gamrnd(m,g/m,1,Numb),1,Numb); % H1

else

x2=ncx2rnd(2*u*M,2*sum(gamrnd(m,g/m,M,Numb)),1,Numb); % H1

end;

xx=[x1,x2];%to determine the maximum and minimum of the set for threshold

min1=min(xx);max1=max(xx);

step1=(max1-min1)/L;

thr=min1:step1:max1; % these will be L+1 steps

KN=40;

for k=1:LT;

lamb=thr(k); % lambda

PFms(kk,k)=sum(x1>lamb)/Numb; % sim

PDms(kk,k)=sum(x2>lamb)/Numb; % sim

PDmt1(kk,k)=integral(@myfun,0,inf);% theory

PDmt2(kk,k)= probdetnakagami(KN); % theory; summation

PFmt(kk,k)=1-chi2cdf(lamb,2*u*M); % theory

end;

Azs(kk)=0.5+polyarea([0,PFms(kk,:),1],[0,PDms(kk,:),1]);

Azt1(kk)=0.5+polyarea([0,PFmt(kk,:),1],[0,PDmt1(kk,:),1]);

Azt2(kk)=0.5+polyarea([0,PFmt(kk,:),1],[0,PDmt2(kk,:),1]);

end;

on of the Nakagami channel MRC% simulati

figure,plot(PFms(1,:),PDms(1,:),'r-',...

PFmt(1,:),PDmt1(1,:),'r*',...

PFmt(1,:),PDmt2(1,:),'r^',...

PFms(2,:),PDms(2,:),'k--',...

PFmt(2,:),PDmt1(2,:),'ko',...

PFmt(2,:),PDmt2(2,:),'kd',...

PFms(3,:),PDms(3,:),'b-.',...

PFmt(3,:),PDmt1(3,:),'bs',...

PFmt(3,:),PDmt2(3,:),'b>')

legend(['A_z = ',num2str(Azs(1)),', ', uu1,' (sim)'],...

['A_z = ',num2str(Azt1(1)),', ', uu1,' (theory)'],...

['A_z = ',num2str(Azt2(1)),', ', uu1,' (theory-sum)'],...

['A_z = ',num2str(Azs(2)),', ', uu2,' (sim)'],...

['A_z = ',num2str(Azt1(2)),', ', uu2,' (theory)'],...

['A_z = ',num2str(Azt2(2)),', ', uu2,' (theory-sum)'],...

['A_z = ',num2str(Azs(3)),', ', uu3,' (sim)'],...

['A_z = ',num2str(Azt1(3)),', ', uu3,' (theory)'],...

['A_z = ',num2str(Azt2(3)),', ', uu3,' (theory-sum)'],...

'location','best')
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xlabel('P_f'),ylabel('P_d'),grid on

if M==1

title(['m = ',num2str(m),', \gamma_0 = ',...

num2str(ZZ(mk)),' dB: No Diversity'])

else

title(['m = ',num2str(m),', \gamma_0 = ',...

num2str(ZZ(mk)),' dB:  SLC (M = ', num2str(M),')'])

end;

hold on

plot([0,1],[0,1],':m','linewidth',1.2)

clear x1 x2 xx

end;

end;

end

function Fg=myfun(x)  % SLC: integral function

global m lamb g u M

pd=1-ncx2cdf(lamb,2*u*M,2*x);%1- non-central chiSquare CDF instead of MarcumQ

Fg=gampdf(x,M*m,g/m).*pd;

end

function Pdet=probdetnakagami(KN) %Pd sum in a Nakagami channel (SLC)

global m  u lamb g M

Mm=M*m;

pdd=0;

for kks=1:KN

ks=kks-1;

pd1=gammainc(lamb/2,u*M+ks,'upper')/factorial(ks);

% Matlab description of gammainc(.) includes the division by

% gamma(u+ks)

pd2=gamma(ks+Mm)*(g^ks)/(g+m)^(ks+Mm);

pdd=pdd+pd1*pd2;

end;

Pdet=pdd*(m^Mm)/gamma(Mm);

end

The results are displayed in Figs. 7.66, 7.67, and 7.68.

7.4.6 Performance Comparison

In the next simulation (no analytical results), performances of the cognitive radio in

all diversity combining algorithms are compared. The Matlab script appears below.

The results are displayed in Fig. 7.69, 7.70, and 7.71 for three different values ofM.

The performance of cognitive radio under MRC, SC, and SLC (M ¼ 2) is better

than the performance in an ideal Gaussian channel. This requires additional expla-

nation. For the case of MRC and SC, it should be noted that the probabilities of false

alarm matched those of the ideal channel while probabilities of detection improved

substantially. The case of SLC can be explained in terms of the higher values of the

order of the chi-square distribution and SNR. The probability of false alarm goes up

with M as seen in Eq. (7.55) while the probability of detection goes up faster since

the average SNR goes up by M resulting in improved performance associated with

SLC diversity. To verify these conclusions, an extra simulation was undertaken for

the ideal Gaussian channel with an SNR ¼ Mγ0 matching the SNR in MRC
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diversity. The results clearly show that the ideal channel performs the best when the

SNR is scaled to match the SNR in MRC.

else

m=0.75;% Nakagami parameter

c=8;% for GK channel

sigm=5; % shadowing level (dB)

M=4;

end;

u=7; % time bandwidth product

g0=6;% average SNR (dB)

g=10^(g0/10); % average SNR (absolute units)

%convert average SNR in dB in fading to mu (dB) in shadowing

mu=g0-sigm^2/(2*10/log(10));

thr=2*gammaincinv(PF,u,'upper'); % get the threshold values

thrL=2*gammaincinv(PF,u*M,'upper'); % get the threshold values for SLC

%

x1=chi2rnd(2*u,1,Numb);% H0

xL=chi2rnd(2*u*M,1,Numb);% H0 for SQLW combining

% now H1

y1=ncx2rnd(2*u,2*g,1,Numb); % no fading

y11=ncx2rnd(2*u,2*g*M,1,Numb); % no fading; SNR scaled to match SNR in MRC

y2=ncx2rnd(2*u,2*gamrnd(m,g/m,1,Numb),1,Numb); % Nakagami

y3=ncx2rnd(2*u,2*sum(gamrnd(m,g/m,M,Numb)),1,Numb); %Nakagami MRC

yL=ncx2rnd(2*u*M,2*sum(gamrnd(m,g/m,M,Numb)),1,Numb); %Nakagami SLC

y4=ncx2rnd(2*u,2*max(gamrnd(m,g/m,M,Numb)),1,Numb); %Nakagami SC

y5=ncx2rnd(2*u,2*gamrnd(m,1/m,1,Numb).*gamrnd(c,g/c,1,Numb),1,Numb);% GK

g1=normrnd(mu,sigm,1,Numb);%generate Gaussian

gg=10.^(g1/10);%lognormal random

hh=gamrnd(m,1/m,1,Numb).*gg;% gamma-lognormal

y6=ncx2rnd(2*u,2*hh,1,Numb); %shadowed fading

% place holders for prob. false and detection

pFs=zeros(1,LL);pDy1=zeros(1,LL);pDy2=zeros(1,LL);pDy3=zeros(1,LL);

pDy4=zeros(1,LL);pDy5=zeros(1,LL);pDy6=zeros(1,LL);

pFsL=zeros(1,LL);pDyL=zeros(1,LL);pDy11=zeros(1,LL);

% get PF and PD by counting the numbers exceeding the threshold

for k=1:LL;

function CR_allchannels_simulationONLY

% Cognitive radio simulation: ideal channel, Nakagami, Nakagami (MRC),

% Nakagami (SC), GK, shadowed fading

% notice that PF remains the same after diversity: This is due to the fact

% that there is only noise in the channel regardless of diversity. T

his

% leads to PF being same even when diversity is present.

% with MRC, the average SNR goes up by M and this leads to better

% performance.

% square law combining requires PF separately

% P M Shankar SEptember 2016

close all

Numb=1e5; % number of samples

PF=[1e-6 1e-4 0.001 0.004 0.006 .009 .01 0.02 0.03 0.04 0.05 0.08 

...

.1 0.14 0.16 .2 0.25 .3 0.35 .4 0.45 .5 0.55 .6 0.65 .7 

...

.75 .8 .85 .9 .92 0.93 .94 0.95 0.96 0.965 0.968 0.97 0.975  

...

0.978 0.98 0.985 .99 0.995 0.99999 0.999999]; % values of PF

LL=length(PF);

for kp=1:3

if kp==1

m=1.2;% Nakagami parameter

c=5;% for GK channel

sigm=6; % shadowing level (dB)

M=2;

elseif kp==2

m=1;% Nakagami parameter

c=12;% for GK channel

sigm=4; % shadowing level (dB)

M=3;
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['Nakagami (SC: m = ',num2str(m),...

', M = ',num2str(M),'), A_z = ',num2str(AUC4)],...

['GK ( m = ',num2str(m),...

', c = ',num2str(c),'), A_z = ',num2str(AUC5)],...

['NL ( m = ',num2str(m),...

', \sigma = ',num2str(sigm),'dB), A_z = ',num2str(AUC6)],...

['Gaussian (SNR = M\gamma_0, M = ',num2str(M),') A_z = ',...

num2str(AUC11)],'location','southeast')

title([' u = ',num2str(u),', \gamma_0 = ',num2str(g0), ' dB'])

end;

end

pFs(k)=sum(x1>thr(k))/Numb;

pFsL(k)=sum(xL>thrL(k))/Numb;

pDy1(k)=sum(y1>thr(k))/Numb;

pDy11(k)=sum(y11>thr(k))/Numb;

pDy2(k)=sum(y2>thr(k))/Numb;

pDy3(k)=sum(y3>thr(k))/Numb;

pDy4(k)=sum(y4>thr(k))/Numb;

pDy5(k)=sum(y5>thr(k))/Numb;

pDy6(k)=sum(y6>thr(k))/Numb;

pDyL(k)=sum(yL>thrL(k))/Numb;

end;

AUC1=0.5+round(polyarea([0,pFs,1],[0,pDy1,1])*1000)/1000; % three digits

AUC2=0.5+round(polyarea([0,pFs,1],[0,pDy2,1])*1000)/1000;

AUC3=0.5+round(polyarea([0,pFs,1],[0,pDy3,1])*1000)/1000;

AUC4=0.5+round(polyarea([0,pFs,1],[0,pDy4,1])*1000)/1000;

AUC5=0.5+round(polyarea([0,pFs,1],[0,pDy5,1])*1000)/1000;

AUC6=0.5+round(polyarea([0,pFs,1],[0,pDy6,1])*1000)/1000;

AUC7=0.5+round(polyarea([0,pFsL,1],[0,pDyL,1])*1000)/1000;

AUC11=0.5+round(polyarea([0,pFs,1],[0,pDy11,1])*1000)/1000; % three digits

figure

plot(pFs,pDy1,'-r*',pFs,pDy2,'b-o',pFs,pDy3,'k-s',pFsL,pDyL,'r-^',...

pFs,pDy4,'b--',pFs,pDy5,'m--d',pFs,pDy6,'->',pFs,pDy11,'-b',...

'linewidth',1.5)

xlabel('P_f'),ylabel('P_d'),grid on

xlim([0,1]),ylim([0,1]),hold on, plot([0,1],[0,1],':m','linewidth',1.2)

legend(['Gaussian (SNR = \gamma_0), A_z = ',num2str(AUC1)],...

['Nakagami (m = ',num2str(m),'), A_z = ',num2str(AUC2)],...

['Nakagami (MRC: m = ',num2str(m),...

', M = ',num2str(M),'), A_z = ',num2str(AUC3)],...

['Nakagami (SLC: m = ',num2str(m),...

', M = ',num2str(M),'), A_z = ',num2str(AUC7)],...

7.5 Summary

In this chapter, the performance of cognitive radio has been studied. Quantitative

measures such as the performance index, area under the ROC curve, partial AUC

index have been used to compare the performance of energy detectors commonly

used in cognitive radio. The adverse effects of fading and shadowing have been

examined along with improvements obtained through diversity. Along with analyt-

ical and numerical methods for evaluating the performance, steps to simulate the

cognitive radio in ideal and faded channels have been provided along with complete

description of Matlab scripts for analytical evaluation and Monte Carlo simulation

using random numbers.
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Q function, 578

shadowed fading channels, 586, 589,

592, 593
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correlated SC and SSC receiver, 546

exponential correlation, 543

joint CDF, 548

Marcum’s Q function, 546

modified Bessel function, 547, 548

MRC algorithm (see Maximal ratio

combining algorithm)

Nakagami parameter, 541, 580

pdf, SC algorithm, 548

cascaded Nakagami channels (see
Cascaded Nakagami channels)

CDF, 533

diversity receivers, 530

EGC algorithm, 533

frequency diversity, 572

gamma shadowing, 571
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AF, 596

average error probability, 600, 601

BER, dual diversity, 602

CDFs, 561, 597–599
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detection scheme, 599

dual MRC, 602

dual SC, BER, 604

“keyhole” scattering, 605

MGF, 617
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Nakagami-m distribution, 595

Nakagami pdf, 595

SNR, pdfs, 595, 597, 600

GSC algorithm, 570

average error probabilities, 618, 619

average SNR, 566

CDFs, 567, 568, 570, 607, 619

CDMA system, 563

densities and distributions, 570

gamma random variables, 570

joint pdf, 564, 565

Mc signals, 564

Nakagami channels, 568, 569

Nakagami-m faded channels, 570, 595

normalized peak values, 570

outage probabilities, 617, 620

output SNR, pdfs, 618

RAKE reception, 563

Rayleigh channel, 563, 565

three-branch diversity receiver, pdfs,

568, 618

macrodiversity (see Macrodiversity

techniques)

MRC algorithm (see Maximal ratio

combining algorithm)

multipath diversity, 528

Nakagami-m distribution (see Nakagami-m
distribution)

noise power, 524

outage probability

CDF, 591

MRC algorithm, 591, 593

Nakagami fading channels, 592

SC algorithm, 617

sensitivity, 591

shadowed fading channel, 592, 593

short-term faded channel, 591

pdf, 523

polarization diversity, 527

Rayleigh faded channel, 523

received signal power, 523

SC algorithm, 525

CDFs, 530

SNR expression, 529, 530

SSC algorithm (see Switched and stay

combining algorithm)

signal processing methods, 521

SNR, 522

space diversity, 525–526

time diversity, 527–528

types, 524–525

E
Energy detection

AUC

gamma density, 723

performance index, 720, 721

polyarea(.), 727
ROC curve, 722

SNR, 719, 728

hypothesis testing, 714

ideal channel, 715

Matlab command

marcumq(.), 717
polyarea(.), 718

Nakagami fading channel, 728, 729, 732,

736, 741

N*Nakagami channels, 759, 760, 765

partial AUC, 753, 756, 757
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Energy detection (cont.)
shadowed fading channels, 744, 748

signal-to-noise ratio, 714

Equal gain combining (EGC) algorithm, 648

Ergodic channel capacity

additive white Gaussian noise, 393

cascaded short-term fading channel, 397

channel bandwidth, 393

density function, generalized K

distribution, 327

double Nakagami cascaded channels, 397

MeijerG function, 394

Nakagami faded channel, 394

Nakagami-Hoyt channels, 395, 396

normalized average channel capacity, 394

quadruple cascaded channels, 397, 398

Rayleigh fading, 394

Rician faded channel, 394, 396

shadowed fading channels, 399

triple cascaded channels, 397, 398

Erlang distribution, 21

Exponential distribution, 21, 22

F
F (Fisher-Snedecor) distribution, 22–23

Frequency diversity, 526

Frequency shift keying (FSK), 228, 229,

245–247

G
Gamma distribution, 24–26

Gaussian distribution, 36–37

Gaussian function, 507

Gaussian minimum shift keying (GMSK), 251

Generalized Bessel K (GBK) distribution, 68

Generalized gamma distribution

definition, 26

generalized gamma pdf, 27

normalization factor, 81

random variable, 26

scaling factor, 28

Stacy distribution, 26

two-sided generalized gamma pdf, 29

Generalized K (GK) distribution, 553, 554

Generalized selection combining (GSC)

algorithm, 618–641

average error probabilities, 618, 619

average SNR, 566

CDFs, 568, 570, 607, 619

CDMA system, 563

densities and distributions, 570

gamma random variables, 570

joint pdf, 564, 565

Mc signals, 564

Nakagami channels, 568, 569

Nakagami-m faded channels, 570, 595

normalized peak values, 570

outage probabilities, 617, 620

output SNR, pdfs, 618

RAKE reception, 563

Rayleigh channel, 563, 565

three-branch diversity receiver,

pdfs, 568, 618

GK distribution. See Generalized K

distribution

GMSK. See Gaussian minimum shift keying

K
Kibble’s bivariate gamma distribution, 79

Kurtosis coefficient, 12

L
Laplace distribution, 29

Laplace transforms, 13–14, 512

8-Level phase shift keying (8PSK)

demodulator, 263

modulator, 263

phase constellation, 235

phase encoding, 261, 262

waveform, 264

Lognormal distribution, 31, 32

M
Macrodiversity techniques

microdiversity systems

CDFs, 561

density functions, 557, 558

gamma pdf, 553

GK distribution, 554

joint pdf, 554, 555

MeijerG functions, 560

MRC diversity, 557, 559

MRC–SC, 554–556

pdfs, 561, 562

shadowed fading channel, 560

short-term fading effects, 549

SNR, SC, 558, 560

shadowing mitigation

CDF, SC algorithm, 549

dual correlated Nakagami channels, 551

multiple base stations, 548

810 Index



normalized Gaussian variable, 550

SNR, 549, 551, 552

three-base station arrangement, 548

Marcum’s Q functions, 3, 285, 287, 288

M-ary phase shift keying (MPSK). See Binary
phase shift keying

M-ary quadrature amplitude modulation

(MQAM), 243, 245

Matlab and Maple, 5

Maximal ratio combining (MRC) algorithm,

543–545, 709

Chebyshev inequality, 531

correlation coefficient

correlated branch expression, 543

density functions, 544

SNR, fractional decline, 545

noise power, 531

processing algorithm, 531

signal power, 531

McKay’s bivariate gamma distribution, 80

Meijer G function, 105, 136, 357, 503,

505–507, 509

MGF. See Moment generating function

Minimum shift keying (MSK)

modulator, 249, 250

power spectrum, 249

waveform, 249

Modems

bandwidth requirement, 279

bit energy, 268

carrier regeneration and synchronization,

271, 272

channel capacity, 281

complementary error function, 282, 284,

285, 287, 288

correlator, 218

cos() and sine() functions, 222

differentially encoded signals, 256

coherent vs. noncoherent modems, 261

DPSK, 258

error probability, 256

8-level PSK (see 8-Level phase shift
keying)

modified Bessel function, 258

noise variance, 257

noncoherent detection, 257

noncoherent receiver, 258, 259

non-Gaussian statistics, 256

phase encoding, 260

Rician statistics, 257

digital communication system, 214

digital modulation techniques, 221

digital signal bandwidth, 268, 269

digital transmission, 215

error function, 282

Euclidian distance, 224

gamma functions, 283

Gaussian Q function, 217, 252, 255

general nonlinear modulation schemes

DFM (see Digital frequency
modulation))

error rates, 255–256

FSK, 245, 246

GMSK, 251, 252

MSK (see Minimum shift keying)

orthogonal M-ary FSK, 252, 254, 255

gray coding, 214

inter symbol interference

cosine pulse shape, 289, 290

eye pattern, 291, 292

impulse response, 288

roll-off factor, 290

Kroenecker delta function, 222

Marcum’s Q functions, 285, 287, 288

M-ary signaling, 214

M-ary transmission system, 222

matched filter, 218

modulation techniques, 226–228

ASK, 225, 226

BPSK (see Binary phase shift keying)

FSK, 228–230

PSK, 226–228

QAM, 245

N-dimensional orthogonal space, 222

noise power, 268

noise variance, 216

Nyquist criteria, 219, 221

OFDM

digital Fourier transforms principle,

265, 266

fast Fourier transform algorithm, 266

frequency domain representations, 265

inter channel interference, 264, 266

inverse fast Fourier transform

approach, 266

subcarrier frequencies, 265, 266

transmitter and receiver, 266

optimum filter, impulse response, 218

phase mismatch

angular mismatch, 274, 275

coherent QPSK, 278

correlation function, 276

fixed phase mismatch, 274

jitter, 276

matched filter, 276

normalized timing offset, 277
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Modems (cont.)
random phase mismatch, 274, 275

timing offset, 276

power spectral density, 217

probability of error, 223–225

probability density function, 216

pulse shapes, 218–220

Q functions, 282, 285

Shannon’s channel capacity theorem, 280

signal-to-noise ratio, 217

sin c pulse, 220

spectral and power efficiencies, 280

symbol energy, 268

zero mean Gaussian white noise, 215

Moment generating function (MGF),

13–14, 577

MQAM. See M-ary quadrature amplitude

modulation

MRC algorithm. See Maximal ratio combining

algorithm

MSK. See Minimum shift keying

Multipath diversity, 528, 529

Multipath propagation phenomenon, 3

N
Nakagami channels, 684–685, 700, 702,

703, 705

bit error rates

average error probability, 700, 703, 705

hypergeometric function, 702

MeijerG function, 702

pdf, 694

N*Nakagami channels, 759–762

Nakagami distribution, 32–35

Nakagami fading

AF, 317

CDF, 351, 352

channel, 508–510

chi-square density function, 315

clustering/bunching concept, 314

density moments, 312

Gaussian densities, 315

Nakagami-m pdf moments, 314, 315

received signal envelope, 312, 313

Rician envelope densities, 316

Nakagami fading channel, 728–743

Nakagami-gamma/generalized K models, 326,

327, 329

Nakagami-inverse Gaussian distribution, 332

Nakagami-m distribution

CDF, 536–540

density functions, 536–537

EGC algorithm, 533

Matlab, 536

MRC algorithm, 534, 535, 543

received signal power, 605

SC algorithm, 530, 534

SNR improvement, 541

statistical model, 522

Nakagami-N-gamma channels, 4

Natural logarithm, 508

Non-central chi-squared distribution, 35

Nyquist criteria, 219, 221

O
Orthogonal frequency division multiplexing

(OFDM), 3

digital Fourier transforms principle,

265, 266

fast Fourier transform algorithm, 266

frequency domain representations, 265

inter channel interference, 264, 267

inverse fast Fourier transform

approach, 266

subcarrier frequencies, 265, 266

transmitter and receiver, 266

P
Pdf. See Probability density function

Phase shift keying (PSK), 226–228

Poisson distribution, 37–38

Polarization diversity, 527

Probability and statistics concepts

bivariate correlated distributions

gamma pdf, 79–81

generalized gamma pdf, 81–82

Nakagami pdf, 78–79

normal pdf

Rician distribution, 82

Weibull pdf, 82

CDF, 10–12

Chebyshev inequality, 97–99

Chernoff bound, 99–100

CHF, 13, 60

CLT, 49

conditional densities, 46–47

correlation coefficient, 48

covariance, 47

decision theory and error rates (see
Decision theory and error rates)

expected value, random variables, 46, 47

independent random variables, 48

joint densities, 46–47
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joint pdf, multiple random variable

CDF differentiation, 59

diversity combining algorithm, 60

Jacobian, 54, 55

Leibniz’s rule, 58
probability volume calculation, 58

region of interest, 58, 151

two-scaled random variables, 55

Laplace transforms, 13

marginal densities, 46, 47

moment generating functions, 13–14

normal pdf, 77

order statistics

bivariate correlated pdf, 86

bivariate lognormal densities, 87

bivariate Nakagami pdf, 86

bivariate Rayleigh pdf, 79, 86

exponential pdf, 85

generalized Bernoulli trial, 16

joint CDF, 83

lognormal random variables, 89

Marcum Q function, 87

selection combining algorithm, 83

short-term fading, indoor wireless

channels, 87

orthogonality, 47–48

pdf, 12, 26, 43

beta distribution, 14, 16

binomial distribution, 16, 17

Cauchy distribution, 18

chi-squared distribution, 18–20

Erlang distribution, 21

exponential distribution, 21–22

F distribution, 22–23

gamma distribution, 24, 25

Gaussian distribution, 29

generalized gamma distribution (see
Generalized gamma distribution)

Laplace distribution, 29–30

lognormal distribution, 31–32

Nakagami distribution, 32, 34, 35

non-central chi-squared distribution,

35–36

Poisson distribution, 37, 38

Rayleigh distribution, 38–41

rectangular/uniform distribution, 41–42

student’s t distribution (see Student’s t
distribution)

Weibull distribution, 45–46

random variable transformations

Bessel function, 62, 66

doubling formula, 65

gamma random variable sum, 65, 68

Gaussian, chi-squared and student t

distributions relationship, 75, 76

GBK distribution, 69

K distribution, 68

lognormal fading conditions, 71

marginal density function, 61

Meijer’s G function, 70, 71

monotonic transformation property, 66

Nakagami-m distributed envelope

values, 72

phase statistics, 62

Rician factor, 63

SNR, 74

stochastic processes, 100–105

autocovariance, 102

ergodicity concept, 104

first order density function, 102

higher-order density functions, 102

power spectral density, 104

second order density function, 102

spectral density, 104

thermal noise, 104

time domain function, 100

wide stationary sense process, 103

Y ¼ g(X), pdf and CDF derivation

filter, input-output relationship, 50, 51

many-to-one transformation, 52

monotonic transformation, 50, 51

non-monotonic transformation, 51, 52

Z ¼ X + Y, pdf, 53–54

Probability density function (pdf), 13, 29, 304,

401, 405, 694–699

beta distribution, 14, 16

binomial distribution, 16, 17

Cauchy distribution, 18

chi-squared distribution, 18–20

Erlang distribution, 21

exponential distribution, 21–22

F distribution, 22

gamma distribution, 24, 25

Gaussian distribution, 29

Gaussian pdf, 322

generalized gamma distribution (see
Generalized gamma distribution)

Laplace distribution, 29

lognormal distribution, 31–32

Nakagami channels, 694

Nakagami distribution, 32–34

Nakagami-Hoyt pdf, 391

Nakagami-m pdf, 307

non-central chi-squared distribution, 35–36

Poisson distribution, 37

Rayleigh channels, 698, 701
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Probability density function (pdf) (cont.)
Rayleigh distribution, 38–41

rectangular/uniform distribution, 41, 42

Rician fading, 313

second order statistics

conditional pdf, 401

envelope pdf, 405

SNR, joint pdf, 401

shadowed fading channels

N interfering channels, 697

probability density functions, 696,

698, 699

signal-to-CCI ratio, 696

SNR, density function, 694–696

student’s t distribution (see Student’s
t distribution)

Weibull distribution, 45–46

PSK. See Phase shift keying

Q
Quadrature amplitude modulation (QAM), 231

Quaternary phase shift keying (QPSK)

modulator, 236

offset-QPSK scheme, 237

phase constellation, 235

π/4-QPSK, 237–240
time domain waveforms, 236, 237

waveforms, 237

R
RAKE receiver, 528

Random number simulation

generalized K channel, 781

ideal channel and Nakagami channel,

777–779, 781

integral(.), 777
integral2(.), 777
Nakagami channel, 789, 799

Nakagami-lognormal channel,

785, 789

performance comparison, 798, 801

polyarea(.), 777
Rayleigh channels, 680–684

bit error rates, 698, 701

N cochannels, 677

outage probability, 680

CCI channels, 683, 684

desired signal power, 682, 683

multiple cochannels, 682

SIR/q, 680

Z0/ZT, 681

pdf, 693

Poisson random variable, 683

protection ratio, 678

signal-to-interference, 693

threshold and protection factor, 679

Rayleigh distribution, 38, 39, 41

Rayleigh fading

AF, 307

amplitude, 303

exponential densities, 305

Gaussian random variables, 304

histogram, 305, 306

inphase and quadrature notation, 303

multipath phenomenon, 303

Nakagami-m pdf, 307

pdf, 305

Rayleigh density function, 305

Rayleigh-lognormal channel, 328

Rectangular/uniform distribution, 41, 42

Rician factor, 63, 83

Rician fading

AF, 332

average power, 310, 394

density function, 308, 309, 312

error function, 312

Gaussian statistics, 310

Marcum Q function, 309

mean and second moments, 309

phase, pdf, 311

received power, 308

Rician factor, 308, 311

S
Selection combining (SC) algorithm, 529, 530

Shadowed fading channels

AF, 332, 333

BER, 362, 363

average error rates, 705, 706

BPSK, 364–366

CCI effect, 705

CDF, 366

cochannels, 707

fading channel, 366

moderately shadowed channel, 368

Nakagami interferers, 704

severely shadowed channel, 369

cascaded approach

AF, 349–351

CDF, 352, 419

central limit theorem, 344

density function, 345, 348

digamma and trigamma function, 346
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gamma parameter, 346

gamma random variables, 347

GK distribution, 397

inverse Gaussian distribution, 344

MeijerG function and Bessel

function, 347

Nakagami-N-gamma distribution, 344

outage probabilities and error rates, 349

shadowing, higher level, 347, 349

conditional density function, 687

equivalent gamma model, 687

generalized gamma model, 330, 331

N interfering channels, 697

Nakagami-gamma/generalized K models

Nakagami-inverse-Gaussian model,

328–330

Nakagami-lognormal models

average power, 325

density functions, 325

vs. short term fading, 326

outage probability

CDF, 378, 381

density function, 378, 381

multiple interfering shadowed fading

channels, 690, 691

Nakagami-cascaded gamma

channel, 377, 379

Nakagami inverse Gaussian

channel, 379

Nakagami-lognormal channel, 375,

377–379

Nakagami-m distributed cochannel,

687, 688

Nakagami parameter, 377

single interfering channel, 690

pdf, 696

N interfering channels

signal-to-CCI ratio, 696, 697

SNR, density function, 694, 704

shadowing density, 687

Shannon’s channel capacity theorem, 280

Short-term fading

attenuation, 302

average power, gamma pdf moments, 318

CDF, 319

gamma fading channel, 318, 320, 321

generalized gamma channel, 319–321

Nakagami fading

AF, 317

CDF, 314

chi-square density function, 315

clustering/bunching concept, 314

density moments, 312

Gaussian densities, 315

Nakagami-m pdf moments, 315

received signal envelope, 312

Rician envelope densities, 316

Rayleigh fading

AF, 307

amplitude, 303

exponential densities, 305

Gaussian random variables, 304

histogram, 305, 306

inphase and quadrature notation, 303

multipath phenomenon, 303

Nakagami-m pdf, 307

pdf, 305

Rayleigh density function, 305

Rician fading

AF, 332

average power, 310, 394

density function, 308, 309, 312

error function, 312

Gaussian statistics, 310

Marcum Q function, 309

mean and second moments, 309

phase, pdf, 311

received power, 308

Rician factor, 308, 311

statistical characteristics, 303

Weibull fading model, 320, 321

Signal transmission and deterioration, 1

Skewness coefficient, 12

Space Diversity, 525, 526

SSC algorithm. See Switched and stay

combining algorithm

Stacy distribution, 26

Statistical decision theory, 3

Statistical distributions, 2

Stochastic processes, 100

autocovariance, 102

ergodicity concept, 104

first order density function, 101

higher-order density functions, 102

power spectral density, 104

second order density function, 102

spectral density, 104

thermal noise, 104

time domain function, 100

wide stationary sense process, 103

Student’s t distribution, 43
cumulative distributions functions,

43, 44

Gaussian and Cauchy distributions, 43

moments of, 43

random variable, 43
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Switched and stay combining (SSC) algorithm

CDFs, 537, 538

logic and switching circuits, 538

Nakagami parameter, SNR improvement,

541, 542

vs. SC dual branch, density functions, 540

vs. SC SNR enhancement, 538, 542

T
Thermal noise, 104

Time diversity, 527

Time domain function, 100

W
Weibull distribution, 45, 46

Weibull fading model, 320, 321

Wireless channels, 1, 2, 300

attenuation, 302

average probability of error

bit error rate (see Bit error rate)
coherent BPSK modem, 692

probability density function (see
Probability density function)

cascaded models, 300, 353

cascaded fading channels (see
Cascaded fading channels)

cooperative diversity, 338

double Rician channels, 353

multiple scattering, 338

N*Weibull channels, 353

shadowed fading channels (see
Shadowed fading channels)

composite model

cluster power, 334

double Nakagami fading and

Nakagami-m fading, 336

double Rayleigh and Rayleigh

densities, 338

gamma–Weibull/Weibull–Weibull

channel, 337

“miniclusters”, 334

received signal power, 333

scaling factors, 334

signal-to-noise ratio, 338

Doppler fading, 302

ergodic channel capacity

additive white Gaussian noise, 393

cascaded short-term fading channel, 397

channel bandwidth, 393

density function, generalized K

distribution, 327

double Nakagami cascaded

channels, 397

MeijerG function, 394

Nakagami faded channel, 394

Nakagami-Hoyt channels, 395, 396

normalized average channel

capacity, 394

quadruple cascaded channels, 397, 398

Rayleigh fading, 394

Rician faded channel, 394, 396

shadowed fading channels, 399

triple cascaded channels, 397, 398

error rates, 364

cascaded channels, 361–363

complimentary error function, 355

generalized gamma channel, 359, 362

ideal Gaussian channel, 439

lognormal channel, 359

lognormal random variable, 359, 360

lognormal shadowing, 359

Nakagami channels, 358, 375

Nakagami-Hoyt channels, 392, 424

power penalty, 355, 357

Rayleigh fading channel, 355

Rician channel, 358

shadowed fading channels (see
Shadowed fading channels)

signal-to-noise ratio, 357

SNR correction factor, 360

Weibull channels, 361

fading channel, 509

frequency selective fading channels, 302

general fading models

AF, 392

central limit theorem, 382

cluster based scattering model, 383

Gaussian random variables, 388

generalized Nakagami pdf, 391

η–μ density, 384

α–η–μ distributions, 382

Hoyt fading channel, 387

κ–μ density, 389

α–λ–μ distributions, 391

modified Bessel function, 385

Nakagami-Hoyt distribution, 384

Nakagami-Hoyt pdf, 384

Nakagami parameter, 385, 386

Rice distribution, 388

total power, 388

unified model, 382

long-term fading, 301

multipath transmission, 301

multiple scattering, 301
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outage probability

cascaded N*Nakagami channel, 342

CDF, 372

generalized gamma fading channel, 372

Nakagami channels, 684–685

Nakagami-Hoyt channels, 392

Nakagami-m faded channel, 371

Rayleigh channels (see Rayleigh
channels)

shadowed fading channels (see
Shadowed fading channels)

SNR, 370

Weibull channels, 372, 374

second order statistics

average fade duration, 401, 403, 405

conditional pdf, 407

envelope pdf, 405

level crossing rates, 401

maximum Doppler frequency shift, 402

Nakagami fading channel, 406

Rayleigh faded channel, 401

Rician channel, LCR, 404

shadowed fading channels, 406

SNR, joint pdf, 401

temporal characteristics, 401

transmitter and receiver

effects, 307, 409

Weibull fading, 404, 405

shadowed fading channels, 301 (see also
Shadowed fading channels)

shadowing models

AF, 323

definition, 322

gamma distribution, 324

Gaussian pdf, 322

lognormal density function, 323

shadowing parameter vs. gamma

parameter, 324

short-term fading (see Short-term fading)

variance ratio, inphase and quadrature

component, 383, 386
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