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Prefacing the Full Series

The current work is part of a series, comprised of five volumes. In broad terms,
the principal aim is to develop tools in Real and Harmonic Analysis, of geometric
measure theoretic flavor, capable of treating a broad spectrum of boundary value
problems formulated in rather general geometric and analytic settings.

InVolume Iweestablish a sharpversionofDivergenceTheorem (akaFundamental
Theorem of Calculus) which allows for an inclusive class of vector fields whose
boundary trace is only assumed to exist in a nontangential pointwise sense.

Volume II is concerned with function spaces measuring size and/or smooth-
ness, such as Hardy spaces, Besov spaces, Triebel–Lizorkin spaces, Sobolev spaces,
Morrey spaces, Morrey–Campanato spaces, and spaces of functions of Bounded
Mean Oscillations, in general geometric settings. Work here also highlights the
close interplay between differentiability properties of functions and singular integral
operators.

The topic of singular integral operators is properly considered inVolume III,where
we develop a versatile Calderón–Zygmund theory for singular integral operators of
convolution type (and with variable coefficient kernels) on uniformly rectifiable sets
in the Euclidean ambient, and the setting of Riemannian manifolds. Applications to
scattering by rough obstacles are also discussed in this volume.

InVolume IVwe focus on singular integral operators of boundary layer typewhich
enjoy more specialized properties (compared with generic, garden variety singular
integral operators treated earlier in Volume III). Applications to Complex Analysis in
several variables are subsequently presented, starting from the realizations that many
natural integral operators in this setting, such as the Bochner–Martinelli operator,
are actual particular cases of double layer potential operators associated with the
complex Laplacian.

In Volume V, where everything comes together, finer estimates for a certain class
of singular integral operators (of chord-dot-normal type) are produced in a manner
which indicates how their size is affected by the (infinitesimal and global) flatness
of the “surfaces” on which they are defined. Among the library of double layer
potential operators associated with a given second-order system, we then identify
those double layers which fall under this category of singular integral operators. It
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viii Prefacing the Full Series

is precisely for this subclass of double layer potentials that Fredholm theory may
then be implemented assuming the underlying domain has a compact boundary,
which is sufficiently flat at infinitesimal scales. For domains with unbounded bound-
aries, this very category of double layer potentials may be outright inverted, using
a Neumann series argument, assuming the “surface” in question is sufficiently flat
globally. In turn, this opens the door for solving a large variety of boundary value
problems for second-order systems (involving boundary data from Muckenhoupt
weighted Lebesgue spaces, Lorentz spaces, Hardy spaces, Sobolev spaces, BMO,
VMO, Morrey spaces, Hölder spaces, etc.) in a large class of domains which, for
example, are allowed to have spiral singularities (hence more general than domains
locally described as upper-graphs of functions). In the opposite direction, we show
that the boundary value problems formulated for systems lacking such special layer
potentials may fail to be Fredholm solvable even for really tame domains, like the
upper half-space, or the unit disk. Save for the announcement [184], all principal
results appear here in print for the first time.

We close with a short epilogue, attempting to place the work undertaken in this
series into a broader picture. The main goal is to develop machinery of geometric
harmonic analysis flavor capable of ultimately dealingwith boundary value problems
of a very general nature. One of the principal tools (indeed, the piecè de résistance)
in this regard is a new and powerful version of the Divergence Theorem, devised in
Volume I, whose very formulation has been motivated and shaped from the outset
by its eventual applications to Harmonic Analysis, Partial Differential Equations,
Potential Theory, and Complex Analysis. The fact that its footprints may be clearly
recognized in the makeup of such a diverse body of results, as presented in Volumes
II–V, serves as a testament to the versatility and potency of our brand of Divergence
Theorem. Alas, our enterprise is multifaceted, so its success is crucially dependent
on many other factors. For one thing, it is necessary to develop a robust Calderón–
Zygmund theory for singular integrals of boundary layer type (as we do in Volumes
III–IV), associated with generic weakly elliptic systems, capable of accommodating
a large variety of function spaces of interest considered in rather inclusive geometric
settings (of the sort discussed inVolume II). This renders these (boundary-to-domain)
layer potentials useful mechanisms for generating lots of null-solutions for the given
system of partial differential operators, whose format is compatible with the demands
in the very formulation of the boundary value problem we seek to solve. Next, in
order to be able to solve the boundary integral equation to which matters are reduced
in this fashion, the success of employing Fredholm theory hinges on the ability to
suitably estimate the essential norms of the (boundary-to-boundary) layer potentials.
In this vein, we succeed in relating the distance from such layer potentials to the
space of compact operators to the flatness of the boundary of the domain in question
(measured in terms of infinitesimalmean oscillations of the unit normal) in a desirable
manner which shows that, in a precise quantitative fashion, the flatter the domain, the
smaller the proximity to compact operators. This subtle and powerful result, bridging
between analysis and geometry, may be regarded as a far-reaching extension of the
pioneering work of Radon and Carleman in the early 1900s.
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Ultimately, our work aligns itself with the program stemming from A. P.
Calderón’s 1978 ICM plenary address in which he advocates the use of layer poten-
tials “for much more general elliptic systems [than the Laplacian]”, see [36, p. 90],
and may be regarded as an optimal extension of the pioneering work of E. B. Fabes,
M. Jodeit, and N. M. Rivière in [81] (where layer potential methods have been first
used to solve boundary value problems for the Laplacian in boundedC 1 domains). In
this endeavor, we have been also motivated by the problem1 posed by A. P. Calderón
on [36, p. 95], asking to identify the function spaces on which singular integral oper-
ators (of boundary layer type) are well-defined and continuous. This is relevant since,
as Calderón mentions, “A clarification of this question would be very important in
the study of boundary value problems for elliptic equations [in rough domains]. The
methods employed so far seem to be insufficient for the treatment of these problems.”
We also wish to mention that our work is also in line with the issue raised as an
open problem by C. Kenig in [147, Problem 3.2.2, pp. 116–117], where he asked
whether operators of layer potential type may be inverted on appropriate Lebesgue
and Sobolev spaces in suitable subclasses on NTA domains with compact Ahlfors
regular boundaries.

The task of making geometry and analysis work in unison is fraught with diffi-
culties, and only seldom can a two-way street be built on which to move between
these two worlds without loss of information. Given this, it is actually surprising
that in many instances we come very close to having optimal hypotheses, almost an
accurate embodiment of the slogan if it makes sense to write it, then it’s true.

Waco, TX, USA
Philadelphia, PA, USA
Waco, TX, USA
March 2022

Dorina Mitrea
Irina Mitrea

Marius Mitrea

1 In the last section of [36], simply titled “Problems,” Calderón singles two directions for further
study. The first one is the famous questionwhether the smallness condition on ‖a′‖L∞ (the Lipschitz
constant of the curve

{
(x, a(x)) : x ∈ R

}
on which he proved the L2-boundedness of the Cauchy

operator) may be removed (as is well known, this has been solved in the affirmative by Coifman,
McIntosh, and Meyer in [53]). We are referring here to the second (and final) problem formulated
by Calderón on [36, p. 95].
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Description of Volume I

What sort of analysis can a certain geometric environment support2? What kind of
geometry is required to ensure the veracity of a specific analytical result3? This series,
comprised of five volumes, is a journey into Geometric Harmonic Analysis, a brand
of harmonic analysis4 of definite geometric flavor, whose ultimate goal is to build the
necessary machinery capable of dealing with problems involving Partial Differential
Equations in very general settings. The linchpin of this enterprise is a new, powerful
and adaptable, higher-dimensional version of the Fundamental Theorem of Calculus.

If we were to summarize the key message of Volume I in just a few words, it
would simply read:

it’s time to redefine what the Divergence Theorem can do!

It seems faintly miraculous that after three centuries of being in the limelight this
remains an active area of research, but the reality of thematter is that this is a demand-
driven subject. Indeed, progress in a certain field often requires yet a new, and ever
more potent, brand of Divergence Theorem, which can accommodate certain specific
features.

For example, to deal with Plateau’s problem, R. Caccioppoli and E. De Giorgi
have introduced the class of sets of locally finite perimeter, an environment in which
E. De Giorgi and H. Federer have subsequently produced a magnificent version of
the Divergence Theorem. Alas, the class of vector fields to which the De Giorgi–
Federer Divergence Theorem applies, smooth and compactly supported in the entire
Euclidean space (in particular, completely unrelated to the original domain), is far too

2 Is there a Hardy–Littlewood maximal inequality, a Poincaré inequality, a Fundamental Theorem
of Calculus, a rich function space theory, etc.? Also, in a given setting, how can one measure
smoothness of functions, what sort of operators are natural to consider, what type of boundary
value problems are well-posed or Fredholm solvable, etc.?
3 For example, one may seek geometrical conditions guaranteeing that certain singular integral
operators (of boundary layer type) are bounded, or Fredholm, or invertible, on a variety of function
spaces of interest.
4 Classically understood as the breaking up of a whole into its parts as to elucidate their nature.

xiii



xiv Description of Volume I

small for many other applications. For one thing, the very formulation of the Diver-
gence Theorem in a given domain suggests it is unnatural to ask that the vector field
in question is defined outside said domain. It is also apparent that vector fields used in
the formulation of the Divergence Theorem should be allowed to have certain types
of singularities. Since every college student who has completed the basic calculus
sequence has learned about the Divergence Theorem, it is worth recalling a common
experience in which the Divergence Theorem could not be applied directly due to a
point-singularity for the given vector field. The only route available was to excise a
small ball centered at the singularity, apply the Divergence Theorem in the resulting
domain, then pass to limit as the radius of the ball shrinks to zero. However, this feels
like reproving each time what the Divergence Theorem should do automatically, in
the first place! Thus, as far as regularity is concerned, there is no compelling reason
to assume continuity (as it turns out, not even in an almost everywhere sense) for the
vector field involved in the formulation of the Divergence Theorem. Among other
things, this renders the issue of defining the trace of the vector field on the boundary
of the domain delicate.

In the first volume of this series, we produce a version of the Divergence Theorem
for vector fields which may lack any type of continuity and for which the boundary
trace is taken in a strong, nontangential pointwise fashion. The rationale for insisting
on the latter feature is properly documented in the last part of Sect. 1.1, where
this is traced back to classical results in Harmonic Analysis, Complex Analysis,
Partial Differential Equations, and Potential Theory (specifically, the theory of Hardy
spaces, Fatou-type theorems, boundary value problems, and Calderón–Zygmund
theory for singular integral operators, among others). In turn, this innate affinity
with the design of such basic results makes our brand of Divergence Theorem an
effective tool in dealing with problems in these areas of mathematics. In short, the
very formulation of our versions of the Divergence Theorem has been motivated and
shaped from the outset by potential applications. Indeed, we have envisioned the
versions of the Divergence Theorem described in Sect. 1 not as end-products, in and
of themselves, but as effective tools to further progress in Harmonic Analysis, Partial
Differential Equations, Potential Theory, and Complex Analysis. Subsequently, in
Volumes II–Vwe elaborate on a wide spectrum of applications. The sheer magnitude
of this portion of our work serves as a testament to the versatility of the Divergence
Theorems established here5. Except for the announcement [184], all principal results
(and proofs) appear here in print for the first time.

Volume I is made up of Chaps. 1–9, in addition to the present overview. Chapter 1
debuts by recalling, in Sect. 1.1, the De Giorgi–Federer version of the Divergence
Theorem and a statement of the goals in Volume I. Our main results concerning
the Divergence Theorem are given in Sects. 1.2–1.12. First, in progressively more
generality, they treat the case when the divergence of the vector field is absolutely
integrable (Sect. 1.2), the case when no decay conditions at infinity are imposed and

5 Certain mathematical constructs reach rather far from their origins, and this is particularly true of
the machinery surrounding the Fundamental Theorem of Calculus (recall the popular quip “when
all else fails, integrate by parts”).
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when the divergence of the vector field (considered in the sense of distributions)
is actually a measure (Sect. 1.3), the scenario in which the vector field lacks local
integrability on a compact subset of the domain and when no decay conditions are
assumed (Sect. 1.4), the situation in which the surface measure of the domain may
fail to be doubling and the vector field is, in our terminology, maximally singular
(Sect. 1.5) and, finally, Divergence Formulas in domains whose boundaries may lack
lower Ahlfors regularity (Sect. 1.6). We then proceed to discuss integration by parts
formulas in open sets with Ahlfors regular boundaries, first for partial differential
operators of first order in Sect. 1.7, then for those of higher order in Sect. 1.8. In Sects.
1.9–1.10 we present versions of the Divergence Theorem exhibiting other special-
ized features, such as the involvement of weak boundary traces, and the averaged
nontangential maximal operator, respectively. The setting of Riemannian manifolds
is treated in Sect. 1.11, where we state a sharp version of Stokes’ formula, and in
Sect. 1.12, where we prove a plethora of integration by parts formulas on boundaries
of Ahlfors regular domains on manifolds.

Chapter 2 is largely reserved for discussing examples and counterexamples (Sects.
2.1–2.7), as well as other versions of the Divergence Theorem (Sect. 2.8). All details
in the statements of our main results in Chap. 1 have their own significance, and
the examples/counterexamples presented in Sects. 2.1–2.7 are designed to elucidate
their specific nature. The picture that emerges is that our results are optimal6 from a
multitude of (geometric and analytic) points of view. In particular, in stark contrast
with the classical De Giorgi–Federer Divergence Theorem, our simplest version
of the Divergence Theorem already contains the sharp version of the Fundamental
Theorem of Calculus, to which it precisely reduces in the one-dimensional setting.

In Chap. 3 we review useful basic notions of measure and topology, including the
sigma-algebra of Borelian sets in a topological space, abstract measures and outer
measure, inner, outer, andBorel regularity, the support of ameasure, special classes of
measures (Radon measures, complex Borel measures, separable measures), density
and separability results for Lebesgue spaces, the topology on the space ofmeasurable
functions, and Riesz’s Representation Theorem.

Chapter 4 contains a variety of selected topics from (or inspired by) distribution
theory. Specifically, in Sect. 4.6 we study the algebraic dual of the space of functions
which are simultaneously smooth and bounded in an open subset of the Euclidean
ambient. In Sect. 4.1, we develop a brand of distribution theory on arbitrary subsets
of R

n , taking Lipschitz functions with bounded support as test functions. Next, in
Sect. 4.2 we define and study what we call the “bullet product” which, in essence,
is a weak version (modeled upon integration by parts) of the inner product of the
normal vector to a domain with a given vector field satisfying only some very mild
integrability properties in that domain. In Sect. 4.3 we provide a proof of Leibniz’s
product rule for weak derivatives, while in Sect. 4.4 we compare the divergence of

6 One may argue that “optimality of a mathematical result” becomes a phrase of indefinite meaning
in the absence of a concrete and clear identification of the sense in which said optimality is to be
understood.
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a differentiable vector field, taken in a pointwise sense, to its distributional diver-
gence. Also, Sect. 4.5 contains a discussion pertaining to the issue of removability
of singularities for distributional derivatives. Chapter 4 ends with a presentation in
Sect. 4.7 of what we call the contribution at infinity of a vector field.

In Chap. 5 we then proceed to discuss basic results from Geometric Measure
Theory, such as thick sets, the corkscrew condition, the geometric measure theoretic
boundary, area and coarea formulas, countable rectifiability, approximate tangent
planes, functions of bounded variation, sets of locally finite perimeter, Ahlfors
regularity, uniformly rectifiable (UR) sets, and nontangentially accessible (NTA)
domains. This body of facts is further augmented in Chap. 6, where we collect and
develop tools from Harmonic Analysis which are relevant to our work. Concretely,
in Sect. 6.1 we discuss the regularized distance function and Whitney’s Extension
Theorem, while Sect. 6.2 amounts to a brief survey of Lorentz spaces in generic
measure spaces. Also, in Sect. 6.3 we introduce and study the fractional Hardy–
Littlewood maximal operator in a very general, non-metric setting. Next, in Sect. 6.4
we review the setting of Clifford algebras. These are higher-dimensional versions of
the field of complex numbers, that happen to be highly non-commutative, in which a
brand of complex analysis may be developed (for example, there is a natural version
in this setting of the classical Cauchy integral operator from the complex plane). We
shall put the Clifford algebra machinery to good use later, in Volumes III–IV, to build
a Calderón–Zygmund theory for singular integral operators on uniformly rectifiable
sets. The discussion in Sect. 6.5 pertains to subaveraging functions, reverse Hölder
estimates, and interior estimates. Finally, in Sect. 6.6 we introduce and study the
solid maximal function introduced and maximal Lebesgue spaces.

Chapter 7 is concerned with analysis on quasi-metric spaces and on spaces of
homogeneous type, such as a sharpmetrization theorem, dyadic andWhitney decom-
positions, functions of bounded mean oscillations, a sharp version of Lebesgue’s
Differentiation Theorem, Muckenhoupt weights, and the Fractional Integration
Theorem. The Hardy–Littlewood maximal operator, which has first been discussed
in Sect. 6.3 in a non-metric setting, is also revisited in Sect. 7 in the framework of
spaces of homogeneous type.

Chapter 8 contains the main technology behind our principal results pertaining
to the Divergence Theorem from Sect. 1. Among the technical tools required in
this endeavor, certain off-diagonal Carleson measure estimates of reverse Hölder
type, which we formulate and prove in Sect. 8.6, feature prominently. In turn, these
estimates use information on the nontangential maximal operator developed in Sects.
8.1–8.4 (as well as its version from Sect. 8.10), and the solid maximal function
introduced and studied in Sect. 6.6. Other key players in this regard are the notion of
nontangentially accessible boundary which we define and study in Sect. 8.8, and the
pointwise nontangential boundary trace operator considered at length in Sect. 8.9.

Chapter 9 is exclusively reserved for presenting the proofs of the main results
concerning the Divergence Theorem, formulated in Sect. 1.
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A

Aκ(∂�) := {
x ∈ ∂� : x ∈ �κ(x)

}
the subset of ∂� which is κ-accessible from

within � (8.8.2)

the characteristic of the weight w

on a space of homogeneous type (X, ρ, μ) (7.7.2)
Ap(X, ρ, μ) := {

w weight function : [w]Ap < ∞}
the Muckenhoupt Ap-class on

a space of homogeneous type (X, ρ, μ) (7.7.2)
A∞(X, ρ, μ) := ⋃

1≤p<∞
Ap(X, μ) the Muckenhoupt A∞-class on a space of

homogeneous type (X, ρ, μ) (7.7.9)

B

Bρ(x, r) := {y ∈ X : ρ(x, y) < r} the ρ-ball with center at x ∈ X and radius r > 0
in the quasi-metric space (X, ρ) (7.1.5)
Bn−1(x ′, r) := {

y′ ∈ R
n−1 : |y′ − x ′| < r

}
the (n − 1)-dimensional ball in R

n−1

centered at x ′ ∈ R
n−1 and of radius r ∈ (0,∞)

BMO1 is the BMO-based Sobolev spaces of order one

local BMO norm of f on the surface ball � (7.4.60)

homogeneous BMO semi-norm

of f in the context of a space of homogeneous type (X, ρ, μ) (7.4.70)
‖·‖BMO(X,μ) inhomogeneous BMO “norm” in the context of a space of homogeneous
type (X, ρ, μ) (7.4.81)
BMO

(
X, μ

) := {
f ∈ L1

loc(X, μ) : ‖ f ‖BMO(X,μ) < +∞}
the space of functions of

bounded mean oscillations for a space of homogeneous type (X, ρ, μ) (7.4.92)

B̃MO(X, μ) := BMO(X, μ)
/ ∼= {[ f ] : f ∈ BMO(X, μ)

}
the space BMO

modulo constants for a space of homogeneous type (X, ρ, μ) (7.4.96)
∂E the topological boundary of the set E

xxi
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Borelτ (X) Borelians of the topological space (X, τ )

BL(	) bounded Lipschitz functions defined on the set 	
BV(O) the space of functions of bounded variation in the set O (5.5.5)
BVloc(O) the space of functions of locally bounded variation in O (5.5.6)
[A; B] := [A, B] := AB − BA the commutator of A and B
{A; B} := AB + BA the anti-commutator of A and B

C

C k(�) functions of class C k in an open neighborhood of �

C k
c (�) functions of class C k with compact support in the open set �

C k
b (�) bounded functions of class C k in �(
C∞
b (�)

)∗
the algebraic dual of C∞

b (�)

CBM(�) complex Borel measures in the open set � ⊆ R
n

CBM(X, τ ) complex Borel measures in the topological space (X, τ )

U closure of the set U ⊆ R
n

Cθ,b(x, h) := {y ∈ R
n : cos(θ/2) |y − x | < (y − x) · h < b} cone with vertex at

x ∈ R
n , symmetry axis along h ∈ Sn−1 and full aperture θ ∈ (0, π) (5.6.93)

C
alt

max the maximal “altered” Cauchy integral operator (5.9.27)
Cmax the maximal Cauchy–Clifford integral operator (5.10.12)
Cε the truncated Cauchy–Clifford integral operator (5.10.13)
C the boundary-to-boundary Cauchy–Clifford integral operator (5.10.14)
Cn = (Cn,+,
) Clifford algebra generated by n imaginary units Sect. 6.4
Cρ triangle inequality “penalty” constant associated with the quasi-distance ρ (7.1.3)
C̃ρ symmetry “penalty” constant associated with the quasi-distance ρ (7.1.4)

homogeneous Hölder space of order α > 0 in the set U ⊆ X , in the
context of a quasi-metric space (X, ρ) (7.3.1)

homogeneous Hölder space semi-norm of order α > 0 in the setU ⊆ X ,
in the context of a quasi-metric space (X, ρ) (7.3.2)

homogeneous Hölder space of order α > 0 modulo constants, in the
set U ⊆ X , in the context of a quasi-metric space (X, ρ) (7.3.6)

local homogeneous Hölder space of order α > 0 in the setU ⊆ X , in the
context of a quasi-metric space (X, ρ) (7.3.7)
C α(U, ρ) inhomogeneous Hölder space of order α > 0 in the set U ⊆ X , in the
context of a quasi-metric space (X, ρ) (7.3.19)
‖ · ‖C α(U,ρ) inhomogeneous Hölder space norm of order α > 0 in the set U ⊆ X , in
the context of a quasi-metric space (X, ρ) (7.3.20)
C α
c (U, ρ)Hölder functions of orderα > 0with ρ-bounded support in the setU ⊆ X ,

in the context of a quasi-metric space (X, ρ) (7.3.26)

D

u · w = 〈u, w〉 dot product of two vectors u, w ∈ R
n

div F the divergence of the vector field F
divg differential geometric divergence (associated with the metric tensor g)
D′(�) space of distributions in the open set �
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D′(�)〈·, ·〉D(�) distributional pairing in �

� := ∂2
1 + · · · + ∂2

n the Laplace operator in R
n

δx Dirac distribution with mass at x
D� (real) transpose of the first-order system D
D complex conjugate of the first-order system D
D∗ Hermitian adjoint of the first-order system D
dg(x, y) geodesic distance (induced by the metric tensor g) between x and y
du := ∑n

j=1

∑
J

∂uJ
∂x j

dx j ∧ dx J exterior derivative operator acting on the differential

form u = ∑
J u Jdx J (1.11.32) (see also (6.4.140)–(6.4.141) for the Clifford algebra

context)
δ formal adjoint of the exterior derivative operator d on differential forms (see also
(6.4.142) for the Clifford algebra context)
δ jk Kronecker symbol, i.e., δ jk := 1 if j = k and δ jk := 0 if j �= k
Dist [E, F] Pompeiu–Hausdorff distance between E and F (2.8.131)
δF (·) distance function to the set F
δ∂�(·) distance function to the boundary of �

U�V := (U \ V ) ∪ (V \U ) the symmetric difference of the sets U and V
�(x, r) := B(x, r)∩ ∂� surface ball on ∂� with center at x ∈ ∂� and radius r > 0
�(x, r) := B(x, r) ∩ 	 surface ball on 	 with center at x ∈ 	 and radius r > 0
D := ∑n

j=1 e j 
 ∂ j the classical (homogeneous) Dirac operator in R
n (6.4.139)

DLu := ∑n
j=1 e j 
 (∂ j u)Dirac operator acting from the left on the Clifford algebra-

valued function u (6.4.48)
DRu := ∑n

j=1(∂ j u)
e j Dirac operator acting from the right on the Clifford algebra-
valued function u (6.4.49)
diamρ(A) := sup{ρ(x, y) : x, y ∈ A} the ρ-diameter of the set A ⊆ X , in the
context of a quasi-metric space (X, ρ) (7.1.6)
Dk(X) := {Qk

α}α∈Ik the k-th generation of dyadic cubes in X (7.5.7)
D(X) := ⋃

k∈Z, k≥κX
Dk(X) dyadic grid on X (7.5.8)

E

e j := (δ jk)1≤k≤n ∈ R
n where δ jk is the Kronecker symbol

{e j }1≤ j≤n standard orthonormal basis in R
n

E� standard fundamental solution for the Laplacian (2.3.57)
ext∗(E) measure theoretic exterior of the set E ⊆ R

n (2.8.19)
E ′
K (�) distributions in � supported in the compact set K ⊂ �

E ′(�) distributions compactly supported in the open set � ⊆ R
n

εA
B generalized Kronecker symbol (6.4.116)

F

[ F]∞ contribution of the vector field F at infinity (1.3.2)
f ∗
E non-increasing rearrangement of f : E → R (6.2.2)
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G

g = ∑
1≤ j,k≤n g jkdx j ⊗ dxk Riemannian metric tensor

∇u gradient (Jacobian matrix) of u (3.0.8)
∇′ gradient operator in R

n−1

�κ(x) = ��,κ(x) := {
y ∈ � : |x − y| < (1 + κ)δ∂�(y)

}
the (κ-)nontangential

approach region with vertex at x ∈ ∂� (8.1.2)

H

Hn−1 the (n − 1)-dimensional Hausdorff measure in R
n

H s the s-dimensional Hausdorff measure in R
n

H s∗ the s-dimensional Hausdorff outer measure in R
n

Hn−1
g the (n − 1)-dimensional Hausdorff measure induced by the metric tensor g

μ
∧

the Cauchy–Clifford transform of the measure μ (6.4.96)

I

i := √−1 ∈ C complex imaginary unit
ι∗ pull-back map induced by the canonical inclusion ι

ι∗# sharp pull-back (1.11.58)
ι∗n.t. nontangential pull-back (1.11.68)
int∗(E) measure theoretic interior of the set E ⊆ R

n (2.8.18)
Ů interior of the set U ⊆ R

n

, or , integral average of the
function f on the set E ⊆ X , in a measure space (X, μ)

integral average of f
over the ρ-ball Bρ(x, r), in the context of a space of homogeneous type (X, ρ, μ)

(7.4.9)
IE,α f (x) := ∫

E
f (y)

ρ(x,y)d−α dμ(y) the fractional integral operator of order α on the
set E contained in a metric space (X, ρ) equipped with upper d-dimensional Borel
measure μ on (X, τρ) (7.8.3)

K

K� boundary-to-boundary harmonic double layer potential (1.1.32)
K #

� transpose harmonic double layer potential (1.1.33)

L

Ln Lebesgue measure in R
n

L∞
comp essentially bounded functions with compact support

dLn
g := √

g dLn Lebesgue measure induced by the metric tensor g
�T M the -th exterior power of the vector bundle on the manifold M
L0(X, μ) measurable functions which are pointwise finite μ-a.e. on X
L p
bdd(�,Ln) functions p-th power integrable on bounded subsets of � (4.2.4)

Lip(X) Lipschitz functions on the (quasi-)metric space X (3.7.2)
‖ · ‖Lip(X) the natural semi-norm on Lip(X) (3.7.1)
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Lipc(X) the space of Lipschitz functions with bounded support in the (quasi-)metric
space X(
Lipc(	)

)′
the space distributions on the set 	 (4.1.34)

(Lipc(	))′ 〈·, ·〉Lipc(	) (or simply 〈·, ·〉) distributional pairing on the set 	
L p,q(X, μ) Lorentz space on X with respect to the measure μ (6.2.13)
Lr
fin(X, μ) the space of Lr -integrable functions on subsets of X of finite μ-measure

(6.2.35)
L p,q

� (�,μ) := {
u : � → C : u is Ln-measurable and u�,θ ∈ L p,q(�,μ)

}

maximal Lorentz space with respect to the Borel measure μ in the open set � ⊆ R
n

(6.6.41)
L(ξ) := (−1)m

∑

|α|=|β|=m
ξα+β Aαβ characteristic matrix of the constant-coefficient

system L = ∑

|α|=|β|=m
∂αAαβ∂β (6.5.39)

L p
� (�,μ) = {

u : � → C : u is Ln-measurable and u�,θ ∈ L p(�,μ)
}
maximal

Lebesgue space with respect to the Borel measure μ in the open set� ⊆ R
n (6.6.43)

log+ the positive part of ln (7.6.68)

M

M∗
γ (F) upper γ -dimensional Minkowski content of the set F (4.5.1)

mE (λ, f ) := μ
({x ∈ E : | f (x)| > λ}) measure of the level set of f at height λ > 0

MA,s,α fractional Hardy–Littlewood maximal operator (6.3.9)

the Ls-based fractional

Hardy–Littlewood maximal operator of order α in the space of homogeneous type
(X, ρ, μ) (7.6.1)

the Ls-based Hardy–Littlewood maximal

operator in the space of homogeneous type (X, ρ, μ) (7.6.7)

the local Ls-based Hardy–Littlewood

maximal operator in the space of homogeneous type (X, ρ, μ) (7.6.12)

the Hardy–Littlewood maximal operator of the

function f on the space of homogeneous type (X, ρ, μ) (7.6.16)

umax
M (x) :=

∥∥∥u(y)
(

δ∂�(y)
|x−y|

)M∥∥∥
L∞
y (�,Ln)

the tangential maximal function of u (with

exponent M), defined at x ∈ ∂� (8.5.2)

N

N0 := N ∪ {0} = {0, 1, 2, . . . }
(Nκu)(x) := ‖u‖L∞(�κ (x),Ln) the (κ-)nontangential maximal operator acting on the
measurable function u : � → R

n at the point x ∈ ∂� (8.2.1)
(Nε

κu)(x) := ess-sup
{|u(y)| : x ∈ �κ(x), dist(y, ∂�) < ε

}
the (κ-)nontangential

maximal operator truncated at height ε > 0, acting on the function u : � → R
n at

the point x ∈ ∂� (1.5.5)
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N E
κ u := Nκ(u · 1E ) restricted nontangential maximal function of u : � → R

(relative to the set E) (8.2.4)

the

averaged (κ-)nontangential maximal operator acting on the measurable function
u : � → R at the point x ∈ ∂� (8.10.1)
ν geometric measure theoretic outward unit normal (5.6.2)–(5.6.3)
νg geometric measure theoretic outward unit normal induced by the metric tensor g
νE geometric measure theoretic outward unit normal induced by the standard
Euclidean metric
ν • F the “bullet” product of ν with F (1.9.1), (4.2.12)
N p

κ (�;μ) := {
u : � → C : u isLn-measurable, and Nκu ∈ L p(∂�,μ)

}
the

space of measurable functions with a p-th power integrable nontangential maximal
function (8.3.31)(
u|κ−n.t.

∂�

)
(x) nontangential trace of the function u : � → R at the point x ∈ ∂�, is

defined as the number a ∈ R with the property that for every ε > 0 there exists some
r > 0 such that |u(y)−a| < ε forLn-a.e. point y ∈ �κ(x)∩ B(x, r) (see Definition
8.9.1)

O

1E characteristic function of E
ωn−1 := Hn−1(Sn−1) surface area of Sn−1

Oε := {
x ∈ � : δ∂�(x) < ε

}
one-sided collar neighborhood of ∂�

the L p-based mean

oscillation of the function f at scales up to R, in a space of homogeneous type
(X, ρ, μ) (7.4.107)

P

(Pu)(x) := sup
0<r<2 diam(∂�)

{
1

σ(∂�∩B(x,r))

∫
�∩B(x,r) |u| dLn

}
the P-maximal operator

acting on a Lebesgue measurable function u : � → R
n at the point x ∈ ∂� (1.9.3)〈·, ·〉E pointwise (real) pairing in the fibers of the Hermitian vector bundle E

E ′(�)

〈〈·, · 〉〉E (�) pairing between compactly supported distributions in � and smooth
functions in � (2.2.33)
〈·, ·〉�T M (real) pointwise pairing on �T M
∧ exterior product of differential forms
∨ interior product of differential forms
∂τXY

tangential derivative operator on manifolds (1.12.88)

weak tangential derivative (4.2.28)
∂∗E measure theoretic boundary of E (5.2.1)
∂∗E reduced boundary of E (5.6.13)
∂T E points on ∂∗E at which an approximate tangent plane exists (5.6.65)
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∂N E points at which E possesses a reasonable unit normal vector (5.6.69)
∂lfp� the “locally finite perimeter” boundary of the set � (5.7.47)
∂nta� := ⋂

κ>0 Aκ(∂�) = {
x ∈ ∂� : x ∈ �κ(x) for each κ > 0

}
the

nontangentially accessible boundary of � (8.8.47)
�

m projection map of differential forms of mixed degree m onto �
m , the space of

differential forms of degree  (6.4.112)
(a)+ := max{a, 0} the positive part of the number a ∈ R

πκ(E) = π�,κ(E) := {
x ∈ ∂� : �κ(x) ∩ E �= ∅

}
“shadow” (or projection) of a

given set E ⊆ � onto ∂� (8.1.15)

R

the Lq reverse Hölder constant of the

weight function w on a space of homogeneous type (X, ρ, μ) (7.7.17)
RHq(X, ρ, μ) := {

w weight function : [w]RHq < ∞}
the Lq reverse Hölder class

on a space of homogeneous type (X, ρ, μ) (7.7.17)
regsupp u smallest closed set outside ofwhich the distribution u is a locally integrable
function (1.5.4)
R

n+ (open) upper half-space in R
n

R
n− (open) lower half-space in R

n

RRn→∂� restriction operator from R
n to ∂�

R j,max the maximal j-th Riesz transform (5.10.15)
R j,ε the truncated j-th Riesz transform (5.10.16)
R j the boundary-to-boundary j-th Riesz transform (5.10.17)
Rweak

j the distributional j-th Riesz transform (5.10.18)
rad(�) := inf

{
r ∈ (0,∞] : there exists x ∈ � so that � ⊆ B(x, r)

}
, for any

nonempty connected open set � ⊆ R
n , (5.11.31), (5.11.32)

S

σ := Hn−1�∂� surface measure on ∂�

σ∗ := Hn−1�∂∗� surface measure on ∂∗�
σg surface measure induced by the metric tensor g
σ E surface measure induced by the standard Euclidean metric
Sym(D; ξ) principal symbol of the first-order system D (1.7.16)
∗ Hodge star operator
ξ �→ ξ�, X �→ X � musical isomorphisms (1.12.139)
Sn−1 := ∂B(0, 1) unit sphere in R

n

Sn−1
± := Sn−1 ∩ R

n± upper and lower (open) hemispheres
C k-singsup u the smallest closed set outside of which the distribution u is of class
C k

S(X, μ) simple functions on the measure space (X, μ)

Sfin(X, μ) simple functions on (X, μ) with support of finite measure (3.1.10)
suppμ the support of the measure μ (3.8.1)
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supp f the support of the measurable function f (3.8.7)
S (Rn) Schwartz functions
S ′(Rn) tempered distributions
uscal scalar part of the Clifford element u ∈ Cn (6.4.26)
u�,θ (x) := ‖u‖L∞(B(x,θδ∂�(x)),Ln) the solid maximal function of u : � → C at the
point x ∈ � (6.6.2)
uE

�,θ local solid maximal function of u : E → C in � (6.6.79)
ρsym the symmetrized version of the quasi-distance ρ for a quasi-metric space (X, ρ)

(7.1.15)
ρ# the regularized version of the quasi-distance ρ for a quasi-metric space (X, ρ)

(7.1.17)

the L p-based Fefferman–Stein

sharp maximal function of f (7.4.110)

T

τt dilation by a factor of t (4.5.36)
τρ the topology induced by the quasi-distance ρ in a quasi-metric space (X, ρ) (7.1.7)

U

U � V the union of two disjoint sets U, V

V

dVg := √
gdx1 ∧ · · · ∧ dxn volume element induced by the metric tensor g

Var F pointwise variation of F (2.6.12)
V( f ;O) the variation of the function f in the set O (5.5.1)
uvect vector part of the Clifford element u ∈ Cn (6.4.25)

W

weakly elliptic system: a system L whose characteristic matrix satisfies the condition
det [L(ξ)] �= 0 for each ξ ∈ R

n \ {0}
Wk,p(�) the L p-based Sobolev space of order k in � (intrinsically defined)
Wk,p

loc (�) local L p-based Sobolev space of order k in �

Wk,p
bdd (�) Sobolev functions on any bounded measurable subset of � (3.0.4)

X

X∗
(·, ·)X the duality pairing between a vector space X and its algebraic dual X∗



Chapter 1
Statement of Main Results Concerning
the Divergence Theorem

This chapter debuts with a brief overview of the Divergence Theorem, from its
one-dimensional version (known as the Fundamental Theorem of Calculus) to the
De Giorgi–Federer version involving sets of locally finite perimeter, in Sect. 1.1.
This chapter also contains an outline of the main goals of the work undertaken in
Volume I, as well as arguments pointing to the naturalness and suitability of these
goals. Sections 1.2–1.12 comprise the main results concerning a new generation
of Euclidean versions of the Divergence Theorem, and their generalizations to the
setting of Riemannian manifolds.

1.1 The De Giorgi–Federer Version of the Divergence
Theorem

The Fundamental Theorem of Calculus, one of the greatest mathematical achieve-
ments of all time, stands as beautiful, powerful, and relevant today as it did more
than three centuries ago. Typically, Isaac Newton and Gottfried Leibniz are credited
with fully developing the surrounding mathematical theory into a coherent calcu-
lus for infinitesimal quantities, a mathematical landscape within which the Funda-
mental Theorem of Calculus stands out as the crowning achievement. In its sharp
one-dimensional version, involving the class AC

([a, b]), of absolutely continuous
functions on a finite interval [a, b], the Fundamental Theorem of Calculus simply
reads ˆ b

a
F ′(x) dx = F(b)− F(a) for every F ∈ AC

([a, b]). (1.1.1)

It is a stark example of how local information, encoded in the instantaneous rate of
change (aka derivative) F ′, can be pieced together via integration to derive conclu-
sions of a global nature about the variation of F over [a, b], a fundamental paradigm
in calculus.
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2 1 Statement of Main Results Concerning the Divergence Theorem

Intriguingly, while (1.1.1) is essentially optimal, dealing with higher-dimensional
versions of the Fundamental Theorem of Calculus remains an active area of research
in contemporary mathematics. In its standard version, with the symbol Ln denoting
the n-dimensional Lebesgue measure in R

n and C k(�) denoting functions of class
C k in an open neighborhood of �, the Divergence Theorem asserts that

if� ⊆ R
n is a bounded domain of classC 1, with outward unit normal ν and

surface measure σ , then
´
�
div �F dLn = ´

∂�
ν · ( �F∣∣

∂�

)
dσ for each vector

field �F ∈ [
C 1(�)

]n
.

(1.1.2)
Since the divergence of a continuously differentiable vector field �F may be com-
puted pointwise as (div �F)(x) = lim

r→0+
Ln(B(x, r))−1

´
∂B(x,r)

( y−x
r

) · �F(y) dHn−1(y)

where, here and elsewhere,Hn−1 stands for the (n − 1)-dimensional Hausdorff mea-
sure in R

n , it follows that the quantity (div �F)(x) is emblematic of the tendency of
the vector field �F to collect (sink effect) or disperse (source effect) at the point x .
In view of this feature, the Divergence Formula in (1.1.2) may be regarded as a
conservation law, asserting that the solid integral of all such sources and sinks asso-
ciated with a given vector field is equal to the net flow of said vector field through
the solid’s boundary.1 Ergo, in complete analogy to the Fundamental Theorem of
Calculus mentioned earlier, the Divergence Theorem describes how the infinitesimal
sink/source effects created by a vector field may be pieced together inside a given
domain to produce a global, macroscopic effect, along the boundary.

The classical result recorded in (1.1.2) is usually associated with the names of
J.-L. Lagrange who first established a special case of the Divergence Theorem in
1762 working on the propagation of sound waves (cf. [159]), C. F. Gauss who inde-
pendently considered a particular case in 1813 (cf. [101]), M. V. Ostrogradsky who
gave the first proof of the general theorem in 1826 (cf. [213]), G. Green who used a
related formula in 1828 (cf. [109]), A. Cauchy who in 1846 first published, without
proof, the nowadays familiar form of Green’s Theorem (cf. [42]), B. Riemann who
provided proof of Green’s Formula in his 1851 inaugural dissertation (see [229]),
Lord Kelvin who in 1850 discovered the special version of Stokes’ theorem (in the
three-dimensional setting, also known as the curl theorem), and É. Cartan who first
published the general form of Stokes’ theorem (in the language of differential forms
on manifolds) in 1945, among others. However, a precise attribution is fraught with
difficulty since the Divergence Theorem in its modern format has undergone suc-
cessive waves of reformulations, generalizations, as well as more rigorous proofs,
with inputs from a multitude of sources (general historical accounts may be found
in [145, 246]).

Specializing theDivergenceFormula in (1.1.2) to the casewhen �F is the restriction
to� of vector fields from

[
C∞
c (Rn)

]n
(where C∞

c (Rn) denotes the space of smooth,
compactly supported functions in R

n) yields the statement:

1 For example, imagining �F as the velocity field for an incompressible fluid flow (i.e., a given mass
occupying a fixed region �), this informally states that “what goes in must come out”.
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if � ⊆ R
n is a bounded domain of class C 1, with outward unit

normal ν and surface measure σ , then ∇1� = −νσ in
[
D′(Rn)

]n
,

(1.1.3)

where 1� is the characteristic function of � and D′(Rn) denotes the space of distri-
butions in R

n . Conversely, since both ∇1� and −νσ are vector distributions in R
n

of order ≤ 1, their action canonically extends to vector fields from
[
C 1
c (R

n)
]n
, in

which scenario we precisely recover (1.1.2). Hence, (1.1.3) amounts to an equivalent
reformulation of the classical Divergence Theorem (1.1.2), which has a purely geo-
metric measure theoretic nature. In particular, (1.1.3) brings into focus the fact that
the distributional gradient of the characteristic function of a bounded C 1 domain is
a locally finite Borel vector-valued measure in R

n .
As far as the latter property is concerned, R. Caccioppoli, E. De Giorgi, and

H. Federer registered a decisive leap forward by considering the largest class of
Euclidean subsets enjoying the aforementioned property, i.e., the class of sets of
locally finite perimeter.2 It turns out that this consists of Lebesguemeasurable subsets
� of R

n with the property that 1� is of locally bounded variation in R
n , that is,

1� ∈ BVloc(R
n) (cf. also (5.6.1)). In turn, membership to BVloc(R

n) is conceived in
such a way that the Riesz Representation Theorem (cf. Proposition 3.9.1) may be
naturally applied to the functional

�( �F) :=
ˆ
�

div �F dLn for all �F ∈ [
C 1
c (R

n)
]n
, (1.1.4)

to conclude that there exist some locally finite Borel measure σ∗ inR
n , which is actu-

ally supported on ∂� (in otherwords, satisfying3 σ∗(Rn \ ∂�) = 0), alongwith some
σ∗-measurable vector-valued function ν : R

n → R
n with the property that |ν| = 1

at σ∗-a.e. point in R
n and

�( �F) =
ˆ
Rn

ν · �F dσ∗ for all �F ∈ [
C 1
c (R

n)
]n
. (1.1.5)

The function ν is referred to as the geometric measure theoretic outward unit normal
to � (see also (5.6.2)–(5.6.3)). Bearing in mind that σ∗ is actually supported on the
set ∂�, from (1.1.4) and (1.1.5) the following version of the Divergence Theorem
emerges:

ˆ
�

div �F dLn =
ˆ
∂�

ν · �F dσ∗ for each �F ∈ [
C 1
c (R

n)
]n
. (1.1.6)

The real achievement of De Giorgi and Federer is further refining (1.1.6) by estab-
lishing that actually

σ∗ = Hn−1�∂∗�, (1.1.7)

2 Also referred to as Caccioppoli sets, in honor of Renato Caccioppoli who has first studied this
class in [32].
3 As is visible from (3.9.6) and the very format of � in (1.1.4).
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where Hn−1 is the (n − 1)-dimensional Hausdorff measure in R
n and ∂∗� denotes

the measure theoretic boundary of� (which, in principle, can be a much smaller set
than the topological boundary ∂�; see (5.2.1)). Substituting (1.1.7) back into (1.1.6)
then yields the following result.

Theorem 1.1.1 (De Giorgi–Federer’s version of the Divergence Theorem [72, 73,
84, 86]) Suppose� ⊆ R

n is a set of locally finite perimeter.Denote by ν the geometric
measure theoretic outward unit normal to � and abbreviate σ := Hn−1�∂�. Then
for each vector field �F ∈ [

C 1
c (R

n)
]n
, one has

ˆ
�

(
div �F)∣∣

�
dLn =

ˆ
∂∗�

ν · ( �F∣∣
∂∗�

)
dσ. (1.1.8)

In a nutshell, one of the key results of the De Giorgi–Federer theory is the identity

∇1� = −νHn−1�∂∗� in the sense of distributions in R
n,

whenever � ⊆ R
n is a set of locally finite perimeter,

(1.1.9)

which may then readily be re-interpreted as the Divergence Formula (1.1.8) simply
by untangling jargon. A timely exposition may be found in [80, Sect. 5.8, Theorem 1,
p. 209]. For the original work, see [72, 73, 84, 86], as well as [46] for additional
comments and references.

The nature of the Divergence Theorem is such that the smoother the category of
vector fields considered, the rougher the class of domainswhichmaybe allowed in the
formulation of this theorem. While the De Giorgi–Federer version of the Divergence
Theorem applies to a large class of domains (i.e., sets of locally finite perimeter),
the vector fields involved are assumed to have components in C 1

c (R
n). Thus, the

vector fields in the De Giorgi–Federer version of the Divergence Theorem belong to
a very restrictive class, are exceedingly regular, as well as completely unrelated to
the underlying domain. Moreover, when specialized to the case n = 1, for a finite
interval of the real line, the De Giorgi–Federer version of the Divergence Theorem
formulated in Theorem 1.1.1 fails to yield the sharp version of the Fundamental
Theorem of Calculus, recorded in (1.1.1).

While formula (1.1.8) has been successfully used in many branches of mathemat-
ics, Theorem 1.1.1 is not adequate for a variety of problems in partial differential
equations, scattering, and harmonic analysis, since in many fundamental instances
�F is not continuous up to and including the boundary, but rather the trace of �F to ∂�

is considered in a pointwise nontangential sense. As such, one needs a divergence
formula for rough integrands and rough boundaries that can handle these cases. Of
course, any significant weakening of the assumptions on the vector field �F in Theo-
rem 1.1.1 should be accompanied by a corresponding strengthening of the assump-
tions on �, the underlying domain.4 Ad hoc techniques, based on approximating

4 As such, the repertoire of divergence theorems is rather fluid. This has prompted some authors
(see, e.g., [104, p. 17], [139, p. 31], [248, Theorem 2.3, p. 39]) to utilize the rather ambiguous label
“domain for which the Divergence Theorem holds.”
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the original set � by a suitable sequence of subdomains � j ↗ �, have sufficed for
continuous vector field in Lipschitz domains (cf. [63, 210, 257]), and also for a class
of Reifenberg flat domains (cf. [150]), but to go beyond this one needs genuinely
new techniques. Progress in this regard has been registered in [125] which treats
a much larger class of domains than Lipschitz, without any flatness assumptions.
However, the version of the Divergence Theorem established in [125] requires that
the (nontangential) trace of the vector field �F on the boundary is p-th power inte-
grable for some p > 1. This requirement is an artifact of the proof, which relies on
the boundedness of the Hardy–Littlewood maximal function on L p with p > 1.

One of the main goals of this volume is to produce a brand of Divergence The-
orem (that continues to imply the De Giorgi–Federer Divergence Formula stated in
Theorem 1.1.1; see the discussion in the very last part of Sect. 1.3) exhibiting the
following features (all of which are absent from De Giorgi–Federer’s version of the
Divergence Theorem recorded in Theorem 1.1.1):

•when n = 1 and� is a finite interval on the real line, our theorem reduces precisely
to the sharp version of the Fundamental Theorem of Calculus formulated in (1.1.1);

• the vector field �F is intrinsically defined in �, and may lack continuity, or even
local boundedness;

• the divergence of �F is computed in the sense of distributions and is allowed to
exhibit certain types of singularities;

• the only quantitative aspect not directly associatedwith the ability ofwriting the two
integrals making up the Divergence Formula in a meaningful way is an integrability
condition imposed on the nontangential maximal function of the vector field �F ;
• the trace of �F on the boundary is considered in a pointwise nontangential sense
(i.e., considering the limit of �F from within certain nontangential approach regions
with vertices at points on ∂�).

Compared with the classical results of De Giorgi–Federer, our work brings into
focus the role of the nontangential maximal operator and the nontangential bound-
ary trace in the context of the Divergence Theorem. In relation to these aspects, we
would like to mention that the idea of imposing an integrability condition on the
nontangential maximal operator and then using this to prove the existence of nontan-
gential boundary limits originates in the classical work of Fatou [83]. In particular,
the class of functions for which such a nontangential boundary trace exists serves as
a natural enlargement of the category of functions which are continuous up to, and
including, the topological boundary of the underlying domain. In a broader perspec-
tive, describing the qualitative and quantitative boundary behavior of a function via
its nontangential boundary trace and its nontangential maximal operator is a natural
point of viewwhich has been adopted in amultitude of branches of analysis. Here are
concrete examples of this flavor, highlighting the adequacy and appropriateness of
taking boundary traces in a nontangential pointwise sense, and imposing integrability
conditions on the nontangential maximal operator.
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(I) HardySpaceofHolomorphicFunctions: Classically, if 0 < p ≤ ∞
then the Hardy space H p in the unit disk D := {z ∈ C : |z| < 1} of the complex
plane consists of holomorphic functions F : D → C satisfying

sup
0<r<1

(ˆ 2π

0
|F(reiθ )|p dθ

)1/p

< +∞. (1.1.10)

See, e.g., [97, Definition 2.17, pp. 35–36], [100, Appendix A, p. 435], [121, p. 39],
[155], and [231, Definition 17.7, p. 330]. One of the central results of the theory
associated with this brand of Hardy spaces is that for a holomorphic function F in
D membership to H p is equivalent to

NκF ∈ L p(∂D,H1) (1.1.11)

for some, or all, κ ∈ (0,∞), where the nontangential maximal function NκF is
defined as

(NκF)(z) := sup
|ζ−z|<(1+κ)(1−|ζ |)

|F(ζ )|, ∀z ∈ ∂D. (1.1.12)

Also, given any κ ∈ (0,∞), for each function F in H p the nontangential boundary
limit

(
F

∣∣κ−n.t.
∂D

)
(z) := lim

|ζ−z|<(1+κ)(1−|ζ |)
ζ−→z

F(ζ ) exists for H1-a.e. z ∈ ∂D, (1.1.13)

and is actually independent of the aperture parameter κ . These considerations have
perfectly natural analogues in the setting of the upper half-plane R

2+.
Turning to higher dimensions, the Hardy space H p in the upper half-space R

n+,
with n ≥ 2 and n−1

n < p <∞, as defined in Stein–Weiss and Fefferman–Stein (cf.
[90, 240, 243–245]), is the collection of n-tuples (u j )1≤ j≤n of functions satisfying the
Moisil–Teodorescu system (cf. [202–204, 252]), or generalized Cauchy–Riemann
equations,5

n∑

j=1
∂ j u j = 0 and ∂ j uk = ∂ku j for 1 ≤ j, k ≤ n, (1.1.14)

in R
n+, subject to the uniform integrability condition

sup
t>0

( ˆ

Rn−1

n∑

j=1
|u j (x

′, t)|p dx ′
)1/p

< +∞. (1.1.15)

5 A piece of terminology used in [239, 244] (both of these papers cite [204]).
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These conditions turn out to be equivalent with demanding that the Clifford algebra-
valued function F := ∑n

j=1 u je j is monogenic in R
n+, i.e., F is a null-solution in

R
n+ of the Dirac operator

D :=
n∑

j=1
e j∂ j (1.1.16)

(for more on this, see Sect. 6.4), and is uniformly L p-integrable on hyperplanes
parallel to ∂R

n+ ≡ R
n−1. In fact, one of the main results in [90] is that, having fixed

a background parameter a ∈ (0,∞), the latter uniform integrability condition is
further equivalent to the demand that

Na F ∈ L p(Rn−1,Ln−1) where

(Na F)(x ′) := sup|y′−x ′ |<a t |F(y′, t)|, x ′ ∈ R
n−1.

(1.1.17)

In addition, given any a > 0, the nontangential boundary limit

(
F

∣∣a−n.t.
∂Rn+

)
(x ′) := lim

|y′−x ′ |<a t
(y′, t)−→(x ′,0)

F(y′, t) exists for Ln−1-a.e. x ′ ∈ R
n−1, (1.1.18)

and is in fact independent of the aperture parameter a.
One of the upshots of recasting (1.1.15) as (1.1.17) is making the theory more

readily adaptable to domains with a more intricate geometry than the upper half-
space. For example, a systematic study of Hardy spaces of holomorphic functions
in Lipschitz domains in C has been taken up in [146], and a higher-dimensional
theory for monogenic functions in Lipschitz domains in R

n (involving the Clifford
algebra formalism) has been developed in [196]. See also [133] for Hardy spaces
of holomorphic functions defined in terms of the nontangential maximal operator in
chord-arc domains in the plane. Here, we only wish to mention that not only is the
formulation of our main results concerning the Divergence Theorem sharing features
intrinsic to the theory of Hardy spaces but, in turn, also having aDivergence Theorem
that is compatible with the nature of these spaces leads to further progress in this
theory (cf. the discussion in [186, Chap. 3]).

(II) SingularIntegralOperatorsofCalderón−Zygmundtype :
Let us review some consequence of the classical Calderón–Zygmund theory of sin-
gular integral operators in the upper half-space R

n+. The starting point is fixing a
kernel

K ∈ C N (Rn \ {0}) satisfying K (−x) = −K (x) and

K (λ x) = λ−(n−1)K (x) for all λ > 0 and x ∈ R
n \ {0}, (1.1.19)

where N = N (n) is a sufficiently large positive integer, depending solely on the
dimension of the ambient space. Associated with this kernel, define the integral
operator mapping functions defined on R

n−1 into functions defined in R
n+ according
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to

T f (x) :=
ˆ
Rn−1

K
(
x − (y′, 0)

)
f (y′) dy′, x ∈ R

n
+. (1.1.20)

Let us also consider its maximal version

Tmax f (x
′) := sup

ε>0
|(Tε f )(x

′)|, x ′ ∈ R
n−1, where (1.1.21)

(Tε f )(x
′) :=

ˆ

y′∈Rn−1
|x ′−y′ |>ε

K (x ′ − y′, 0) f (y′) dy′, x ′ ∈ R
n−1. (1.1.22)

Then for each p ∈ [1,∞), there exists a constant C ∈ (0,∞) depending only on
n and p such that for each f ∈ L p(Rn−1,Ln−1) one has

‖Tmax f ‖L p(Rn−1,Ln−1) ≤ C‖K |Sn−1‖C N (Sn−1)‖ f ‖L p(Rn−1,Ln−1) if p > 1, (1.1.23)

‖Tmax f ‖L1,∞(Rn−1,Ln−1) ≤ C‖K |Sn−1‖C N (Sn−1)‖ f ‖L1(Rn−1,Ln−1) if p = 1. (1.1.24)

Furthermore, for each f ∈ L p(Rn−1,Ln−1) with p ∈ [1,∞) the limit

(T f )(x ′) := lim
ε→0+

(Tε f )(x
′) exists for Ln−1-a.e. x ′ ∈ R

n−1, (1.1.25)

and the induced principal-value singular integral operators

T : L p(Rn−1,Ln−1) −→ L p(Rn−1,Ln−1), if p ∈ (1,∞), (1.1.26)

T : L1(Rn−1,Ln−1) −→ L1,∞(Rn−1,Ln−1), if p = 1 (1.1.27)

arewell-defined, linear, and bounded. In addition, for each fixed background parame-
ter a ∈ (0,∞), the following pointwise Cotlar inequality for the nontangential max-
imal operator holds:

Na(T f )(x ′) := sup
|x ′−y′ |<a t

|(T f )(y′, t)| (1.1.28)

≤ (Tmax f )(x
′)+ C

∥
∥K

∣
∣
Sn−1

∥
∥
C 1(Sn−1)M f (x ′), ∀x ′ ∈ R

n−1,

for some C = C(n, p, a) ∈ (0,∞), where M is the Hardy–Littlewood maximal
operator inR

n−1. As a consequence, for each p ∈ [1,∞) there exists a finite constant
C = C(n, p, a) > 0 such that for each f ∈ L p(Rn−1,Ln−1) one has the nontangen-
tial maximal function estimates

∥∥Na(T f )
∥∥
L p(Rn−1,Ln−1) ≤ C‖K |Sn−1‖C N (Sn−1)‖ f ‖L p(Rn−1,Ln−1) if p > 1, (1.1.29)

∥∥Na(T f )
∥∥
L1,∞(Rn−1,Ln−1) ≤ C‖K |Sn−1‖C N (Sn−1)‖ f ‖L1(Rn−1,Ln−1) if p = 1. (1.1.30)
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Finally, for each f ∈ L p(Rn−1,Ln−1) with p ∈ [1,∞), the nontangential trace of
T f on ∂R

n+ ≡ R
n−1 may be expressed as the jump-formula

(
T f

∣∣a−n.t.
∂Rn+

)
(x ′) := lim

|y′−x ′ |<a t
(y′,t)−→(x ′,0)

(T f )(y′, t) = 1

2i
K̂ (−en) f (x ′)+ T f (x ′) (1.1.31)

at Ln−1-a.e. point x ′ ∈ R
n−1, where en := (0, . . . , 0, 1) ∈ Sn−1 and K̂ is the Fourier

transform of K .
Indeed, the estimates in (1.1.23)–(1.1.24) and the existence of the limit in (1.1.25)

are part of the standard Calderón–Zygmund theory (as presented in, e.g., [179]). In
turn, these imply that the operators in (1.1.26)–(1.1.27) are well-defined, linear and
bounded. Going further, the pointwise Cotlar-type inequality for the nontangential
maximal operator recorded in (1.1.28) is standard real-variable calculus. In concert
with (1.1.23)–(1.1.24) and the boundedness of M, this implies the nontangential
maximal function estimates in (1.1.29)–(1.1.30). Lastly, the nontangential trace for-
mula (1.1.31) is proved in [181, Corollary 4.81, p. 174] in the case when f is a
Schwartz function, and then known real-variable techniques (relying on (1.1.29)–
(1.1.30) and the density of the space of Schwartz functions in L p(Rn−1,Ln−1)) yield
(1.1.31) as stated. Jump-formulas of this flavor in a much more general geometric
setting have been proved in [125].

While the issue of boundedness of singular integral operators of Calderón–
Zygmund type on the Lebesgue scale L p with p ∈ (1,∞) is now largely understood,
thanks to seminal work by G. David and S. Semmes which has brought to promi-
nence the class of uniformly rectifiable sets (cf. (5.10.6)), more effort is required to
clarify the behavior of basic singular integral operators, such as the harmonic double
layer potential operator

K f (x) := lim
ε→0+

1

ωn−1

ˆ
∂�\B(x,ε)

〈ν(y), y − x〉
|x − y|n f (y) dHn−1(y), x ∈ ∂�,

(1.1.32)
and the transpose harmonic double layer potential operator

K #
 f (x) := lim

ε→0+

1

ωn−1

ˆ
∂�\B(x,ε)

〈ν(x), x − y〉
|x − y|n f (y) dHn−1(y), x ∈ ∂�,

(1.1.33)
where� ⊆ R

n is an open set with a uniformly rectifiable boundary whose geometric
measure theoretic outward unit normal ν is assumed to be defined Hn−1-a.e. on ∂�,
and ωn−1 is the surface area of the unit sphere in R

n . For example, consider the
issue as to whether K # acts naturally on the scale of Hardy spaces H p(∂�,Hn−1)
for p ∈ (

n−1
n , 1

]
, defined in relation to (∂�,Hn−1) viewed as a space of homoge-

neous type when equipped with the Euclidean distance. Since membership to this
scale is subtly connected with cancelation properties, elucidating the aforementioned
issue requires a considerably more sophisticated Divergence Theorem than anything
currently available. Likewise, establishing that K preserves the scale of boundary
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Sobolev spaces L p
1 (∂�,Hn−1)with 1 < p <∞ (consisting of p-th power integrable

functions on ∂�whose weak tangential derivatives are also p-th power integrable on
∂�; cf. the discussion in [185, Chap. 11]) requires the ability to integrate by parts on
the boundary and compute tangential derivatives of principal-value singular integral
operators, a task which once again hinges on the availability of a potent version of
the Divergence Theorem.

Our present work addresses this aspect in a satisfactory manner. Indeed, in [186,
Chap. 2] we systematically pursue the goal of developing a Calderón–Zygmund
theory for singular integral operators in geometrically inclusive classes of domains.
In turn, this body of results becomes a collection of tools which are particularly
well-suited for treating boundary value problems, via boundary layer potentials, of
the sort described in the next item below.

(III) BoundaryValueProblemsinRoughDomains : Given some open
subset � of R

n , define σ := Hn−1�∂� and fix a background parameter κ ∈ (0,∞).
Then for each p ∈ (1,∞) the L p Dirichlet problem for the Laplacian in � reads as
follows: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ C∞(�),

u = 0 in �,

Nκu ∈ L p(∂�, σ),

u
∣
∣κ−n.t.
∂�

= f at σ -a.e. point on ∂�,

(1.1.34)

for arbitrary data f ∈ L p(∂�, σ). Ergo, from the outset it is apparent that the non-
tangential maximal operator

(
Nκu

)
(x) := sup

{|u(y)| : y ∈ �, |x − y| < (1+ κ) dist(y, ∂�)
}
, x ∈ ∂�,

(1.1.35)
together with the nontangential boundary trace

(
u
∣
∣κ−n.t.
∂�

)
(x) := lim

��y−→x
|x−y|<(1+κ) dist(y,∂�)

u(y), x ∈ ∂�, (1.1.36)

plays a crucial role in the very formulation of (1.1.34). Boundary value problems of
this flavor have been considered by many authors, both in the Euclidean setting and
in the context of manifolds. Some basic work in this regard is due to R. Brown, A.
P. Calderón, B. E. Dahlberg, M. Dindoš, E. Fabes, S. Hofmann, D. Jerison,M. Jodeit,
C. E.Kenig, J. Lewis, D.Mitrea, I.Mitrea,M.Mitrea, J. Pipher, N. Rivière,M. Taylor,
G. Verchota, and Z. Shen, among others; see [28, 37, 62, 63, 74, 75, 81, 122, 125,
131, 133, 147, 189, 192, 194, 197, 198, 201, 237, 257], and the references therein.

While, as noted earlier, the nontangential maximal operator and the nontangential
pointwise trace play a basic role in the formulation of the Dirichlet problem (1.1.34),
the connection with a version of the Divergence Theorem amenable to such features
is even more apparent when considering the Neumann boundary value problem for
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the Laplacian in an Ahlfors regular domain � ⊂ R
n (cf. Definition 5.9.15):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ C∞(�),

u = 0 in �,

Nκ(∇u) ∈ L1(∂�, σ),

ν · ((∇u)∣∣κ−n.t.
∂�

) = f at σ -a.e. point on ∂�.

(1.1.37)

Here ν is the geometric measure theoretic outward unit normal to�, which is defined
a.e. on ∂� with respect to the measure σ = Hn−1�∂�. Then a necessary condition
for the solvability of (1.1.37) is that the boundary datum f ∈ L1(∂�, σ) satisfies

ˆ
∂�

f dσ = 0. (1.1.38)

In view of the last demand in (1.1.37), this may conceivably be proved by applying
some suitable version of the Divergence Theorem to the divergence-free vector field
�F := ∇u. The aforementioned version of the Divergence Theorem should be sophis-
ticated enough to be applicable to the vector field �F which is defined strictly inside the
Ahlfors regular domain �, satisfies Nκ

�F ∈ L1(∂�, σ), and whose boundary values
exist only in the nontangential pointwise sense σ -a.e. on ∂�. While� is a domain of
locally finite perimeter, these weak hypotheses on �F render the De Giorgi–Federer’s
version of the Divergence Theorem recalled in Theorem 1.1.1 (along with any other
version presently available in the literature) hopelessly ineffective in this case.

An evenmore subtle and delicate aspect of theNeumann problem (1.1.37) directly
affected by the Divergence Theorem is the fact that a necessary condition for its
solvability is themembership of the boundarydatum f to theHardy space H 1(∂�, σ)

(associated with the space of homogeneous type (∂�, | · − · |, σ ) as in [57]). In this
regard, see the definition and properties of the (co)normal derivative discussed in
[185, Sect. 10.1].

Finally, we wish to note that similar considerations apply to other types of bound-
ary value problems (involving mixed, transmission, Robin boundary conditions, etc.,
in the Euclidean setting as well as on Riemannian manifolds). In particular, formu-
lating boundary value problems with more regular data requires developing a brand
of Sobolev spaces on the boundaries of sets of locally finite perimeter, as we do in
[185, Chap. 11].

(IV) Fatou−TypeResults : Here is a classical result originating in Fatou’s
1906 work [83]:

withDdenoting the unit disk in the complex plane, if the functionu : D → C

is holomorphic and bounded then for each aperture κ > 0 the nontangential

boundary trace
(
u
∣∣κ−n.t.
∂D

)
(eiθ ) exists for L1-a.e. angle θ ∈ [0, 2π).

(1.1.39)
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While u
∣∣κ−n.t.
∂D

always belongs to L∞(∂D,H1), in general this may exhibit jump-
discontinuities even when such a nontangential limit exists at every point on ∂D. A
good example is offered by the function6

u : D −→ C, u(z) := exp
{ z + 1

z − 1

}
for each z ∈ D. (1.1.40)

Then, by design, u is holomorphic in D and extends continuously to D \ {1}. More-
over, u is bounded since

|u(z)| = exp
{ |z|2 − 1

|z − 1|2
}
≤ 1, ∀z ∈ D \ {1}. (1.1.41)

Let us now fix an arbitrary aperture parameter κ > 0. From the equality in (1.1.41)
and the fact that u extends continuously to D \ {1}, it follows that the nontangential
limit

(
u
∣∣κ−n.t.
∂D

)
(eiθ ) exists and satisfies

∣∣∣
(
u
∣∣κ−n.t.
∂D

)
(eiθ )

∣∣∣ = 1 for each θ ∈ (0, 2π). This

being said, we claim that we actually have

(
u
∣∣κ−n.t.
∂D

)
(1) = 0. (1.1.42)

To justify (1.1.42) observe that if z ∈ D belongs to the nontangential approach region
(or Stolz region) with apex at the point 1 ∈ ∂D and aperture κ , i.e., if z satisfies
|z − 1| < (1+ κ) dist(z, ∂D) = (1+ κ)(1− |z|), we have

|z|2 − 1

|z − 1|2 < − (1+ κ)−1

|z − 1| . (1.1.43)

Then (1.1.42) follows by observing that (1.1.41) and (1.1.43) permit us to estimate

0 ≤ |u(z)| = exp
{ |z|2 − 1

|z − 1|2
}
< exp

{
− (1+ κ)−1

|z − 1|
}
→ 0 as z → 1. (1.1.44)

In general, one cannot hope for a better conclusion in (1.1.39) since Lusin has
proved in [166] that

for any Lebesgue measurable set E ⊆ [0, 2π) with L1(E) = 0
there exists a bounded holomorphic function u : D → C whose
radial limit lim

r→1−
u(reiθ ) fails to exist for each θ ∈ E .

(1.1.45)

Also, insisting that the limit is taken from within nontangential approach regions is
both natural and optimal in the context of Fatou’s Theorem. Indeed, on the one hand,
Lindelöf has shown in [163] that

6 Often referred to as the atomic function.
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if γ : [0, 1)→ D is a continuous curve such that lim
t→1−

γ (t) = z ∈ ∂D

and u is a bounded holomorphic function in D with the property that
ζ := lim

t→1−
u(γ (t)) exists in C then actually the nontangential limit of

u at the point z exists and equals ζ .

(1.1.46)

On the other hand, Littlewood has given an example in [164] of a bounded holomor-
phic function in the unit disk which diverges almost everywhere along rotated copies
of any given curve in the unit disk ending tangentially to the boundary. Specifically,
the following result holds (see also [165] and [265, Theorem 7.44]):

if γ0 ⊆ D ∪ {1} is a simple closed curve which is tangent to the unit circle
∂D at the point 1, and for any angle θ ∈ [0, 2π)we denote by γθ the rotation
of γ0 by θ (i.e., set γθ := eiθγ0), then there exists a bounded holomorphic
function u : D → C (which may be taken to be a suitable Blaschke product)
with the property that for L1-a.e. θ ∈ [0, 2π) the limit of u along γθ , i.e.,

lim|z|→1, z∈γθ

u(z), does not exist.

(1.1.47)

In this vein, we wish to note that H. Aikawa has given in [4] a stronger rendition
of (1.1.47) to the effect that

there exists a bounded harmonic function u in the unit
disk D in the plane with the property that the limit

lim|z|→1, z∈γθ

u(z) does not exist for any angle θ ∈ [0, 2π).
(1.1.48)

Subsequently, in [5] H. Aikawa has established a higher-dimensional version of this
result, of the following flavor:

if n ∈ N with n ≥ 2, and if γ ⊆ R
n+ ∪ {0} is a simple closed curve

which is tangent to the hyperplane ∂R
n+ at the origin, then there exists

a bounded harmonic function u in the upper half-space R
n+ with the

property that the limit limxn→0,(x ′,xn)∈γ+(z′,0) u(x ′, xn) does not exist for
any vector z′ ∈ R

n−1.

(1.1.49)

On the positive side, in 1950 A. P. Calderón has proved in [34] that if u is a
harmonic function in R

n+ which is nontangentially bounded at every point of a mea-
surable set F ⊆ ∂R

n+ ≡ R
n−1 (in the sense that for each x ∈ F there exist κ, h, M

positive numbers such that |u(y)| ≤ M whenever y ∈ B(x, h) ∩ R
n+ is such that

|y − x | < (1+ κ) dist(y, ∂R
n+)) then u has a nontangential limit at Ln−1-a.e. point

in F . In 1962, L. Carleson [40] obtained the same conclusion, but with the hypothesis
of nontangential boundedness replaced by nontangential boundedness from below.
In 1977, B. Dahlberg has proved in [61] that non-negative harmonic functions in
Lipschitz domains have nontangential limits at every boundary point except perhaps
for a set of zero (n − 1)-dimensional Hausdorff measure.
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This body ofwork has been generalized byD. Jerison andC.Kenig in [132],whose
stated goal was “to extend classical results on the boundary behavior of harmonic
functions in [the upper half-space] to domains � of as general a type as possible.”
Specifically, the Fatou-type result in [132, Theorem 6.4, p. 112] in the setting of
nontangentially accessible domains (aka NTA domains) asserts that

if � ⊆ R
n is a bounded NTA domain, ω is the harmonic measure in

� with pole at a fixed point in �, and u is a harmonic function in �

which is nontangentially bounded from below (cf. [132, p. 110]) at
each point belonging to some set F ⊆ ∂�, then u has nontangential
limits at ω-a.e. point on F .

(1.1.50)

Again, the formulation of our main results regarding the Divergence Theorem
exhibits features that are intrinsic to the Fatou-type results described above. In
turn, the availability of such a brand of Divergence Theorem allows for a num-
ber of significant extensions and generalizations in this area, of the sort discussed in
[186, Chap. 3].

(V) IntegralRepresentationFormulasinComplexAnalysis :
The very path that complex analysis has carved for itself, while emerging early on
as an independent branch of mathematics, has been strongly influenced by the two-
dimensional version of the Fundamental TheoremofCalculus, akaGreen’s Theorem.
One remarkable example of the deep and long-lasting impact that the latter theorem
has had on the field as a whole is the following integral representation formula, valid
for bounded C 1 domains � ⊆ C and complex-valued functions u ∈ C 1(�):

u(z) = 1

2π i

ˆ
∂�

u(ζ )

ζ − z
dζ − 1

π

ˆ
�

(∂̄u)(ζ )

ζ − z
dL2(ζ ), ∀z ∈ �. (1.1.51)

This played a crucial role in the development of modern function theory in the
twentieth century and continues to be most relevant today. For example, an elegant
approach, adopted by Hörmander [126] and followed by many authors since (cf.,
e.g., [13, 16, 18, 119, 158, 227, 228]), is to derive the basic theorems of the theory
of functions of one complex variable starting with the integral representation formula
(1.1.51). The cornerstone of this approach is that formula (1.1.51) provides an integral
solution operator for the inhomogeneous Cauchy–Riemann equation ∂̄u = f in the
set � ⊆ C, that is, u = T f with

(T f )(z) := 1

π

ˆ
�

f (ζ )

z − ζ
dL2(ζ ), z ∈ �. (1.1.52)

The idea, which appears to originate in the multidimensional case, is that many of
these basic theorems reduce to solving ∂̄ equations.

The integral representation formula (1.1.51) has been first published by Dimitrie
Pompeiu in 1912 in a series of papers [221–223], and then revisited in 1913 in
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[225]. In its original formulation, Pompeiu’s integral representation formula reads
as follows: If � is a bounded piecewise C 1 domain in the complex plane, then for
each function u ∈ C 0(�) with a continuous areolar derivative in a neighborhood of
� one has

u(z) = 1

2π i

ˆ
∂�

u(ζ )

ζ − z
dζ − 1

π

ˆ
�

Du

Dω
(ζ )

1

ζ − z
dL2(ζ ), z ∈ �. (1.1.53)

Above, the areolar derivative Du/Dω (dérivée aréolaire in Pompeiu’s original paper)
is defined as the limit

Du

Dω
(ζ ) := lim

O↓ζ

´
∂O u(z) dz

2i · area(O)
, ζ ∈ �, (1.1.54)

where O is a piecewise C 1 domain shrinking to the point ζ . This concept can be
thought of as a quantitative way of measuring the failure of u to be holomorphic
near the point ζ (indeed, if u were holomorphic in a neighborhood of ζ Morera’s
theorem would imply (Du/Dω)(ζ ) = 0). It was introduced by Pompeiu in 1912, in
[224], where he also noted that for continuously differentiable functions D/Dω = ∂ ,
the Cauchy–Riemann operator. The integral representation formula (1.1.53) was the
result of Pompeiu’s efforts to construct an integration theory corresponding to this
notion of areolar derivative. In his own words [222]:

“La considération de cette dérivée aréolaire conduit à une théorie de l’intégration
tout à fait analogoue à la théorie classique de l’intégration d’une fonction réelle de
variable réelle [· · · ]. Dans ma derniére note des ‘Rendiconti’ [cf. [225]] j’ai donné
la formule [see (1.1.53)] qui est tout à fait analogue à la formule classique

F(x) = F(x0)+
ˆ x

x0

F ′(ξ) dξ [· · · ]′′. (1.1.55)

For more information on the history of (1.1.53), the interested reader is referred to
[200].

As is apparent from the above discussion, the very format of Green’s Theorem
available influences the nature of the integral representation formula presented earlier.
In particular, Pompeiu’s formula (1.1.53) brings into focus the usefulness of con-
sidering derivatives in a weak or generalized sense, rather than the standard strong
pointwise sense. This aspect manifests itself in the manner we formulate our main
results pertaining to the Divergence Theorem later in this chapter.

The higher-dimensional version of the Cauchy integral operator, tacitly appearing
in (1.1.53), is the Bochner–Martinelli integral operator. Classically, the Bochner–
Martinelli integral operator acting on a complex-valued function f defined on a
C 1-smooth submanifold � of C

n is given by

B f (z) :=
ˆ
�

f (ζ )K (z, ζ ), ∀z ∈ C
n \�, (1.1.56)
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where, if d[ζ ] j := dζ 1 ∧ · · · ∧ dζ n with dζ j omitted,

K (z, ζ ) := cn

n∑

j=1
(−1) j ζ j − z j

|ζ − z|2n d[ζ ] j ∧ dζ. (1.1.57)

However, this commonly held point of view is no longer practical if � is lacking
regularity. To find an alternative formula, we note that the pull-back of the differential
form d[ζ ] j ∧ dζ under the canonical embedding ι : � ↪→ C

n is

ι∗
(
d[ζ ] j ∧ dζ

)
= cn

n∑

j=1
(−1) j (νC) j dσ, (1.1.58)

where, with ν = (ν1, . . . , ν2n) ∈ R
2n denoting the (real) outward unit normal vector

to�, we have denoted by νC := (ν1 + iν2, . . . , ν2n−1 + iν2n) ∈ C
n the complex out-

ward unit normal to �, and we have let σ stand for the surface measure on �. Thus,
in some sense, the analysis implicit in (1.1.58) brings to light the geometry of � in
a much more transparent fashion than (1.1.56) (admittedly, an elegant formula but
which nonetheless obscures the geometric nature of �).

The true virtue of this seemingly mundane observation is that the concept of
unit normal and surface measure makes sense in much greater generality (than that
of a smooth surface) and, hence, it allows us to consider the Bochner–Martinelli
integral operator in some very rough settings, and study it from the perspective of
Calderón–Zygmund theory in a class of domains which is essentially optimal from
the point of view of Geometric Measure Theory. We shall amply elaborate on this
aspect later on. For now, we wish to point out that even when the underlying surface
� is smooth, if the function f is merely p-th power integrable on � (with respect
to the surface measure σ ), then the size of B f is most naturally measured using
the nontangential maximal operator, and the boundary trace of B f is most naturally
described in terms of nontangential pointwise limits. The bottom line is that in order
for the Bochner–Martinelli integral operator to maintain its central relevance within
the theory of functions of several complex variables in rough settings, we need a
Divergence Theorem which is the accommodating of such features.

(VI) PotentialTheory : Centered around the study of harmonic functions,
potential theory is a highly refined branch of mathematics within which the concepts
of harmonic measure ω, Poisson kernel k, and Green function G play a key role.
If � is a bounded domain of class C∞ in R

n , then boundary regularity shows that
its associated Green function G is of class C∞ in �×� \ diag. Also, the stan-
dard version of the Divergence Theorem gives that the Poisson kernel is the normal
derivative of the Green function, k = −∂νG where ν is the outward unit normal to
�, and the harmonic measure ωxo with pole at some fixed point xo ∈ � is related to
the surface measure σ on ∂� via ωxo = k(·, xo)σ . In particular, given that Hopf’s
Boundary Point Principle ensures that inf∂�

(− ν · ∇G(·, xo)
) ≥ εo > 0, it follows
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that in the smooth setting the harmonic measure ωxo behaves essentially like the
surface measure σ .

This straightforward correlation between the smoothness of the domain and the
regularity of the associated Green function remains valid up to the threshold C 1,α

for some α ∈ (0, 1) (cf. [111, Theorem 3.5, p. 33]), though it breaks down at the
end-point α = 0. This being said, certain resilient features continue to survive well
beyond this mark. For example, in the class of NTA domains with Ahlfors regular7

boundaries the harmonic measure and the surface measure are mutually absolutely
continuous, the gradient of the Green function has an integrable (truncated) maximal
function, and the normal gradient of the Green function continues to make sense if

interpreted as ν · [(∇G)
∣∣n.t.
∂�

]
. Elucidating the relationship of the normal derivative of

G, thus interpreted, to the Poisson kernel requires a Divergence Theorem which is
applicable to vector fields exhibiting similar behavior to ∇G. See the discussion in
[186, Chap. 5] in this regard.

Our Divergence Theorem, several progressively more general versions of which
are discussed in Sects. 1.2–1.12 (with certain specialized features presented in Sects.
1.9–1.10), then becomes a powerful and versatile tool in all these areas, as well as
others. This point is amply illustrated by the applications discussed in subsequent
volumes, which deal with topics in Function Space Theory, Complex Analysis (in
one and several variables), CliffordAnalysis, Potential Theory, Scattering, Calderón–
Zygmund Theory, Partial Differential Equations, and Harmonic Analysis.

1.2 The Case When the Divergence Is Absolutely Integrable

Our first main result pertains to the Divergence Theorem in its standard format, as
the equality between the solid integral of the divergence of the given vector field and
the boundary integral of the inner product of the field in question with the geometric
measure theoretic outward unit normal to the underlying domain. To facilitate its
reading, here is a glossary of terms entering its formulation:

• The notion of lower Ahlfors regular set is introduced in part (i) of Definition 5.9.1.
Also, it being a doubling measure is defined in (7.4.1).

• Given an open set � ⊆ R
n , the notation ∂nta� (cf. Definition 8.8.5) is reserved for

whatwe call the nontangentially accessible boundary of�, discussed in detail in Sect.
8.8. In particular, part (iii) of Proposition 8.8.6 shows that if ∂� is a lower Ahlfors
regular set and the measure σ := Hn−1�∂� is doubling, then σ(∂∗� \ ∂nta�) = 0,
i.e., ∂nta� covers ∂∗� up to a σ -nullset.

• For a given vector field �F whose components areLn-measurable functions defined

in an open set �, we shall denote by �F ∣∣κ−n.t.
∂�

its nontangential boundary trace on ∂�

(in the sense of Definition 8.9.1, in a componentwise fashion), i.e., the boundary limit

7 Aka Ahlfors–David regular, or ADR for short.
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of �F taken from within nontangential approach regions, �κ(x), with apex at points
x ∈ ∂� and fixed aperture parameter κ ∈ (0,∞) (described in (8.1.2)). Finally, the
nontangentially maximal operator Nκ with aperture κ > 0 is formally introduced in
(8.2.1) as the essential supremum of a given Lebesgue measurable function in� over
such nontangential approach regions.

Here is the actual statement of the theorem alluded to earlier.

Theorem 1.2.1 Pick n ∈ N and let� be an open nonempty proper subset ofRn with
a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling measure
on ∂�. In particular, � is a set of locally finite perimeter, and its geometric mea-
sure theoretic outward unit normal ν is defined σ -a.e. on ∂∗�. Fix κ ∈ (0,∞) and
assume that the vector field �F = (F1, . . . , Fn) : �→ C

n, with Lebesguemeasurable
components, has the property that

the nontangential trace �F∣∣κ−n.t.
∂�

exists (in C
n)σ -a.e. on ∂nta�,

Nκ
�F ∈ L1(∂�, σ), and div �F := ∂1F1 + · · · + ∂n Fn ∈ L1(�,Ln),

(1.2.1)

where all partial derivatives are considered in the sense of distributions in �.

Then for any κ ′ > 0 the nontangential trace �F∣
∣κ
′−n.t.

∂�
exists σ -a.e. on ∂nta� and is

actually independent of κ ′. When regarding it as a function defined σ -a.e. on ∂∗�
(which, up to a σ -nullset, is contained in ∂nta�), this nontangential trace belongs to[
L1(∂∗�, σ)

]n
. Also, with the dependence on the parameter κ ′ dropped, one has

ˆ
�

div �F dLn =
ˆ
∂∗�

ν · ( �F ∣∣n.t.
∂�

)
dσ (1.2.2)

when either � is bounded, or ∂� is unbounded. In the remaining case, i.e., when
� is unbounded and ∂� is bounded, formula (1.2.2) continues to hold under the
additional assumption that there exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x) = o(R2) as R →∞. (1.2.3)

A few remarks, designed to elaborate on the nature and scope of the above theorem,
are in order.

Remark 1. Assuming that the set� is open is natural from the perspective of being
able to compute div �F in the sense of distributions. In relation to this, the membership
of Nκ

�F to L1(∂�, σ) forces �F to be locally bounded, hence, locally integrable (cf.
Lemma 8.3.1), so it is meaningful to consider div �F in D′(�). The hypotheses made
on the vector field �F are just about strong enough to ensure that the two sides of
the Divergence Formula (1.2.2) are meaningful (i.e., given by absolutely convergent
integrals ofmeasurable functions). Also, weworkwith the standard notion of integral
(in the sense of Lebesgue) and the right-hand side of the Divergence Formula (1.2.2)
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is defined in a logically independent way from the left-hand side of (1.2.2). These
attributes are very desirable in applications.

Remark 2. The lower Ahlfors regularity condition imposed on ∂� is automatically
satisfied if the set� is two-sided n-thick (cf. Definition 5.1.1 and Proposition 5.9.16),
or if n = 2 and ∂� is a rectifiable curve (cf. Lemma 5.9.3). Also, it is clear from
definitions that

all conclusions in Theorem 1.2.1 are valid in the case
when the underlying domain � is an open nonempty
proper subset ofR

n with anAhlfors regular boundary.
(1.2.4)

Open sets with Ahlfors regular boundaries are rife in analysis, and a multitude of
examples may be found in Sect. 5. Here we only wish to remark that the Ahlfors
regularity of the boundary does not imply any regularity for the domain in question
in a traditional sense (for example, it does not prevent the formation of inner or outer
cusps) (Fig. 1.1).

Fig. 1.1 An Ahlfors regular domain with cusps

Any reasonable definition of the class of piecewise Lipschitz domains should
produce examples of open sets with lower Ahlfors regular boundaries. We further
elaborate on the format of our brand of Divergence Theorem in the aforementioned
class of domains in Corollary 1.2.4.

Remark 3. Since the geometric measure theoretic outward unit normal ν may be

regarded as a function in
[
L∞(∂∗�, σ)

]n
, being guaranteed that �F∣∣n.t.

∂�
is a well-

defined function σ -a.e. on ∂∗�, which actually belongs to
[
L1(∂∗�, σ)

]n
, allows us

to make sense of the right-hand side of (1.2.2) as an absolutely convergent integral.

Remark 4. Let us call an open subset� of R
n an exterior domain provided�

is the complement of a compact subset of R
n . Under the assumption n ≥ 2, an open

set � ⊆ R
n is an exterior domain if and only if � is unbounded and ∂� is bounded

(cf. Lemma 5.10.10). In this regard, we wish to observe that, as a simple application
of Hölder’s inequality shows,

if n ≥ 2 and � is an exterior domain in R
n , then (1.2.3) holds

whenever | �F |n/(n−1) is Lebesgue integrable in a neighborhood of
infinity in R

n .
(1.2.5)

More generally, condition (1.2.3) is satisfied whenever
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there exists a compact set Ko ⊆ R
n with the property that

�F ∈ [
L p(� \ Ko,Ln)

]n
for some finite p ∈ [

1, n
n−1

]
.

(1.2.6)

Indeed, in such a scenario we may use Hölder’s inequality to estimate

R−1
ˆ

[B(0,λ R)\B(0,R)]∩�
| �F | dLn ≤ CR(n−1)−n/p

( ˆ

[B(0,λ R)\B(0,R)]∩�
| �F |p dLn

)1/p
, (1.2.7)

for some constant C = Cn,λ ∈ (0,∞), and since (n−1)− n/p≤0 for p ∈ [
1, n

n−1
]
,

Lebesgue’s Dominated Convergence Theorem (which uses (1.2.6) and the finiteness
of p) may then be invoked to conclude that (1.2.3) holds.

In all dimensions n ∈ N, if � ⊆ N is an unbounded set then condition (1.2.3) is
also implied by

ˆ
[B(0,λ R)\B(0,R)]∩�

| �F(x)| dLn(x) = o(R) as R →∞, (1.2.8)

which, in turn, is implied by the following pointwise decay property:

�F(x) = o(|x |1−n) as x ∈ � satisfies |x | → ∞. (1.2.9)

In particular, condition (1.2.3) holds in such a setting provided there exists some
number ε > 0 for which �F(x) = O(|x |1−n−ε) as x ∈ � satisfies |x | → ∞.

Finally, if n ≥ 2 and � is an exterior domain in R
n , then (1.2.3) may be equiva-

lently recast as

 
B(0,λ R)\B(0,R)

|x · �F(x)| dLn(x) = o(R2−n) as R →∞ (1.2.10)

(where the barred integral stands for integral average), which holds whenever

 
B(0,λ R)\B(0,R)

| �F | dLn = o(R1−n) as R →∞. (1.2.11)

Remark 5. Both the geometric hypotheses on the domain � and the analytic
hypotheses on the vector field �F made in Theorem 1.2.1 are stable under bi-Lipschitz
changes of variables of the Euclidean ambient (see Lemma 8.1.7 and the transfor-
mational properties under bi-Lipschitz maps established in [124], in this regard).

Remark 6. It turns out (as may be seen with the help of Proposition 8.6.3) that the
class of vector fields �F , with Ln-measurable components in �, satisfying (1.2.1)
and, whenever applicable, the growth condition (1.2.3), is a linear subspace of[
L1
loc(�,Ln)

]n
which is stable under multiplication by scalar Lipschitz functions

with bounded support. As regards the latter property, let us also note that if �F is as
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above, and if ϕ ∈ Lip(�) (the space of Lipschitz functions in �) is scalar-valued
with bounded support, then the Divergence Formula (1.2.2) written for the vector
field ϕ �F yields the integration by parts formula

ˆ
�

ϕ div �F dLn = −
ˆ
�

∇ϕ · �F dLn +
ˆ
∂∗�

ϕ ν · ( �F ∣∣n.t.
∂�

)
dσ. (1.2.12)

Remark 7. Of course, Theorem 1.2.1 contains (1.1.2) as a very special case. More
generally, the scenario in which � is a bounded Lipschitz domain in R

n and the
vector field �F belongs to

[
C 0(�)

]n
, it is differentiable at every point in �, and

the expression
n∑

j=1
∂ j Fj (where the partial derivatives are considered in a pointwise,

classical sense) is continuous and absolutely integrable on �, is also covered by
Theorem 1.2.1; cf. Proposition 2.8.11 for a more general result of this flavor.

Significantly, Theorem 1.2.1 contains (when n = 1) the sharp form of the Funda-
mental Theorem of Calculus recorded in (1.1.1) (see the discussion in Sect. 2.6 in
this regard).

Remark 8.As regards the sharpness of Theorem1.2.1, inChap. 2we provide a series
of counterexamples which point to the fact that our hypotheses are in the nature of
best possible, as far as the format of the conclusion is concerned. Concretely, the
fact that the lower Ahlfors regularity of the boundary hypothesized in Theorem 1.2.1
may not be eliminated is visible from (2.4.9), or (2.4.18), while the naturalness of
considering div �F in the sense of distributions is apparent from (2.5.13). Hypothesiz-

ing, as we do in the first line of (1.2.1), that the nontangential boundary trace �F∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂nta� cannot be relaxed to merely demanding that �F∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂∗�, even though it is precisely the latter set that enters the
formulation of the Divergence Formula (1.2.2).We justify this (bymeans of concrete
counterexamples) in (2.1.17), or (2.1.47), or (2.1.64), or (2.1.87), or (2.1.102). The
counterexample in (2.3.7) shows that, as far as the validity of the Divergence For-
mula (1.2.2) is concerned, the hypothesis that Nκ

�F belongs to L1(∂�, σ) cannot be
weakened to either Nκ

�F ∈ L1,∞(∂�, σ), or Nκ
�F ∈ L1(∂∗�, σ). See also (2.3.64)

in this regard. In (2.2.15) we note that replacing o(R2) by O(R2) in the formula-
tion of the growth condition (1.2.3) may invalidate the Divergence Formula (1.2.2).
Lastly, from (2.3.72) we learn that the Divergence Formula (1.2.2) may fail for open
sets � with an unbounded lower Ahlfors regular boundary and a doubling “surface
measure” if the assumption Nκ

�F ∈ L1(∂�, σ) is replaced by the weaker condition
Nκ

�F ∈ L1
loc(∂�, σ).

Remark 9. In relation to the hypothesis made in the first line of (1.2.1), we wish to
note that the largest set onwhich it is meaningful to even contemplate the existence of

the nontangential trace �F∣∣κ−n.t.
∂�

is Aκ(∂�) := {
x ∈ ∂� : x ∈ �κ(x)

}
. By design (cf.

(8.8.46)), the set Aκ(∂�) always contains the nontangentially accessible boundary
∂nta�, but whenever σ is a doubling measure it turns out that σ

(
Aκ(∂�) \ ∂nta�

) = 0;
see item (ii) in Proposition 8.8.6.
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While it is natural to hypothesize, as we currently do, that the nontangential
boundary trace of �F exists σ -a.e. on ∂nta�, the format of the Divergence Formula
(going back to its classical formulation in (1.1.8)) requires that said trace is integrated
over ∂∗�. For this to be possible we must therefore have that ∂nta� covers, up to a
σ -nullset, ∂∗�. The current geometric hypotheses ensure that this is indeed the case,
which is remarkable given that ∂nta� is of a purely metric/topological nature while
∂∗� has a geometric measure theoretic character.

Remark 10. From Lemma 4.7.5 and (4.7.37), we see that Theorem 1.2.1 actually
continues to hold in the limiting case � = R

n .

Remark 11. The proof of Theorem 1.2.1 as stated is presented in Sect. 9.1.

While we shall present several more refined versions of Theorem 1.2.1 in subse-
quent sections, our result here already improves upon [125, Theorem 2.8, p. 2587]
where the set � was assumed to be bounded, ∂∗� was assumed to have full Hn−1
measure in ∂�, the topological boundary of the set � was assumed to be upper
Ahlfors regular, the vector field �F was assumed to be continuous in �, and its non-
tangential maximal functionwas assumed to satisfy the higher integrability condition
Nκ

�F ∈ L p(∂�, σ) for some exponent p ∈ (1,∞). As apparent from the statement
of Theorem 1.2.1, these features are unnecessarily strong demands for the validity
of the Divergence Formula (1.2.2).

Theorem 1.2.1 yields new, nontrivial results even in ordinary geometric settings,
such as the case when � is the upper half-space R

n+ with n ≥ 2. In such a scenario,
the specific geometry of the environment impacts the very formulation of the result.
For one thing, the nontangential approach regions become genuine upright circular
cones, of various fixed apertures, with vertices on the boundary of R

n+. Specifically,
in this setting for each κ ∈ (0,∞) we now have

�κ(x)=
{
y= (y′, yn) ∈ R

n
+ : |x ′ − y′|<(

κ2 + 2κ
)1/2

yn
}
, ∀x = (x ′, 0) ∈ ∂R

n
+.

(1.2.13)
For another thing, there is a version of Theorem 1.2.1 inR

n+ which requires less when
it comes to demanding the existence of the nontangential boundary trace in the first
line of (1.2.1). Here is the actual statement of the result we have in mind.

Corollary 1.2.2 Fix n ∈ Nwith n ≥ 2 and pick some arbitrary κ ∈ (0,∞). Assume
that the vector field �F = (F1, . . . , Fn) : R

n+ → C
n, with Lebesgue measurable com-

ponents, satisfies the following properties:

the nontangential trace Fn

∣∣κ−n.t.
∂Rn+

exists (inC)Ln−1-a.e. on ∂R
n+ ≡ R

n−1,

Nκ
�F ∈ L1(Rn−1,Ln−1), and div �F := ∂1F1 + · · · + ∂n Fn ∈ L1(Rn+,Ln),

(1.2.14)

where all partial derivatives are considered in the sense of distributions in R
n+.

Then for any other aperture parameter κ ′ > 0, the nontangential trace Fn

∣∣κ
′−n.t.

∂Rn+
exists Ln−1-a.e. on R

n−1 and is actually independent of κ ′. When regarding it as a
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function defined Ln−1-a.e. on R
n−1, this belongs to L1(Rn−1,Ln−1) and, with the

dependence on the parameter κ ′ dropped,
ˆ
R

n+
div �F dLn = −

ˆ
Rn−1

(
Fn

∣∣n.t.
∂Rn+

)
dLn−1. (1.2.15)

The crucial difference between Theorem 1.2.1 stated for � := R
n+ and Corol-

lary 1.2.2 is that in the formulation of the latter result we only demand that Fn ,
the n-th component of �F , has a nontangential trace at a.e. every boundary point (as
opposed to asking that the entire vector field �F has this property). For example, if
n ≥ 2 and f1, . . . , fn ∈ C 1

c (R
n) then Theorem 1.2.1 may not be applicable (with

� := R
n+) to the vector field defined as

�F(x) := (
sin(1/xn) f1(x), f2(x), . . . , fn(x)

)

for each point x = (x1, . . . , xn) ∈ R
n+,

(1.2.16)

while Corollary 1.2.2 works just fine in this case. This being said, Theorem 1.2.1 is
the key ingredient in the proof of Corollary 1.2.2, presented in Sect. 9.1.

The version of Corollary 1.2.2 corresponding to a vector field �F with Fn = 0
already yields the significant, nontrivial formula

´
R

n+

∑n−1
j=1 ∂ j Fj dLn = 0. This par-

ticular result is covered by Proposition 2.8.19, upon realizing that the membership
imposed on the nontangential maximal function in (1.2.14) guarantees that all com-
ponents of �F belong to Ln/(n−1)(Rn+,Ln) (see (8.6.50) in this regard).

At a first glance, it may seem peculiar that in the formulation of Corollary 1.2.2
even though only the n-th component of �F is required to have a nontangential bound-
ary trace one actually demands nontangential maximal function control of the entire
vector field �F . However, without some type of quantitative control for the entire
vector field �F the Divergence Formula (1.2.15) may fail. For example, this is the
case in the two-dimensional setting (i.e., when n = 2) for the vector field

�F(x, y) := (
(arctan x)e−y, 0

)
for each (x, y) ∈ R

2
+, (1.2.17)

whose last component is identically zero and its divergence,

(
div �F)

(x, y) = e−y

1+ x2
for each (x, y) ∈ R

2
+, (1.2.18)

belongs to L1(R2+,L2) but does not integrate to zero. The root of the failure of the
Divergence Formula (1.2.15) in this situation lies in the lack of integrability of Nκ

�F
on the real line.

A result similar in flavor to Corollary 1.2.2 formulated for a ball, in place of a
half-space, is presented in Proposition 2.8.21.

If in place of the first line in (1.2.14) one actually assumes that
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the full nontangential trace �F ∣∣κ−n.t.
∂Rn+

exists (in C
n)

at Ln−1-a.e. point on ∂R
n+ ≡ R

n−1,
(1.2.19)

then we may rephrase the conclusion in (1.2.15) more in line with the traditional
formulation on the Divergence Formula, namely as

ˆ
R

n+
div �F dLn = −

ˆ
Rn−1

( �F∣∣n.t.
∂Rn+

)
· en dLn−1. (1.2.20)

For mundane applications, it is worth stating a user-friendly version of the Diver-
gence Theorem obtained by specializing Theorem 1.2.1 to a setting where some of
the geometric measure theory jargon employed in the formulation of the latter the-
orem may be omitted by making more familiar, albeit stronger, assumptions on the
vector field involved.

Corollary 1.2.3 Let� be an open, bounded, nonempty subset of Rn (where n ∈ N),
with a lower Ahlfors regular boundary, and such that σ := Hn−1�∂� is a doubling
measure on ∂�. Denote by ν the geometric measure theoretic outward unit normal to
�, and fix a σ -measurable set N ⊆ ∂� satisfying σ(N ) = 0. Assume the vector field
�F ∈ [

C 0(� \ N )
]n

has bounded components in� and its divergence, considered in

the sense of distributions, satisfies div
( �F∣∣

�

) ∈ L1(�,Ln). Then

ˆ
�

div
( �F∣∣

�

)
dLn =

ˆ
∂∗�

ν · ( �F ∣∣
∂�

)
dσ. (1.2.21)

It should be noted that the above corollary cannot be derived directly fromDeGiorgi–
Federer’s version of the Divergence Theorem recorded in Theorem 1.1.1.

Here is another practical corollary of Theorem 1.2.1, in which all hypotheses
are formulated in relation to the topological boundary of the underlying domain.
This, nonetheless, is quite versatile. In particular, it applies to the class of piecewise
smooth domains without cusps. See also Corollary 1.6.5 for a related version in the
two-dimensional case.

Corollary 1.2.4 Let� be an open nonempty proper subset of Rn (where n ∈ N with
n ≥ 2) which is two-sided n-thick, in the sense that there exists c ∈ (0,∞) with the
property that for each x ∈ ∂� one has

min
{
Ln

(
B(x, r) ∩�

)
,Ln

(
B(x, r) \�

)} ≥ crn, ∀r ∈ (
0, 2 diam(∂�)

)
. (1.2.22)

Also, make the assumption that

∂� ⊆
N⋃

j=1
� j (1.2.23)
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where N ∈ N, each � j is the graph of a real-valued Lipschitz function defined in
R

n−1, which has been rotated and translated (as a set in R
n), and

Hn−1(� j1 ∩� j2) = 0 for each j1, j2 ∈ {1, . . . , N } with j1 �= j2. (1.2.24)

Use (1.2.23)–(1.2.24) to define the surface measure σ on ∂� and the outward unit
normal ν to � at σ -a.e. point on ∂�. Finally, suppose �F = (F1, . . . , Fn) : �→ C

n

is a vector field with Lebesgue measurable components with the property that, for
some κ ∈ (0,∞),

the nontangential trace �F ∣∣κ−n.t.
∂�

exists (in C
n) σ -a.e. on ∂�,

Nκ
�F ∈ L1(∂�, σ), and div �F := ∂1F1 + · · · + ∂n Fn ∈ L1(�,Ln),

(1.2.25)

where all partial derivatives are considered in the sense of distributions in �.

Then for any other aperture parameter κ ′ > 0 the nontangential trace �F∣∣κ
′−n.t.

∂�

exists σ -a.e. on ∂� and is actually independent of κ ′. When regarding it as a
vector-valued function defined σ -a.e. on ∂�, this nontangential trace belongs to[
L1(∂�, σ)

]n
and, with the dependence on the parameter κ ′ dropped, one has

ˆ
�

div �F dLn =
ˆ
∂�

ν · ( �F ∣∣n.t.
∂�

)
dσ (1.2.26)

when either � is bounded, or ∂� is unbounded. In the case when � is an exterior
domain (i.e., the complement of a compact set in R

n), formula (1.2.26) continues to
hold under the additional assumption that there exists some λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x) = o(R2) as R →∞. (1.2.27)

Concrete details as to what is meant when saying that (1.2.23)–(1.2.24) are used to
define the surface measure on ∂� and the outward unit normal to � are given in the
first part of the proof of Corollary 1.2.4 (itself provided in Sect. 9.1). Here we only
wish to indicate that each Lipschitz graph � j has a canonical surface measure (see
(2.8.69)) and, thanks to (1.2.23)–(1.2.24), these may be pieced together to induce a
surface measure on ∂�. Also, according to the classical Rademacher Theorem, each
Lipschitz function is differentiable almost everywhere. As such, each Lipschitz graph
� j has a tangent plane almost everywhere which, at points on ∂�, we shall consider
as being tangent planes to� itself. In view of (1.2.23)–(1.2.24) this is unambiguous,
and ultimately yields an outward unit normal vector (cf. (2.8.68)) at almost every
point on ∂� (chosen as to “point away” from the set �). Once again, this is made
precise in the first part of the proof of Corollary 1.2.4.

It is clear that Corollary 1.2.4 applies to all Lipschitz domains (with compact
boundaries, or upper-graph type), but the class of sets covered by this result extends
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beyond the category of Lipschitz domains. For example, the configuration known at
the “two-brick” domain, depicted below

P

is a non-Lipschitz domain8 for which, nonetheless, Corollary 1.2.4 does apply.

We close this section by specializing our main result so far to the two-dimensional
setting. In this vein, recall the classical version of Green’s Theorem asserting the
validity of the formula

˛
C
P dx + Q dy =

¨
�

(
∂Q

∂x
− ∂P

∂y

)
dx dy (1.2.28)

whenever C is a positively oriented, piecewise smooth, simple closed curve in the
plane, � is the two-dimensional open region enclosed by C , and P, Q ∈ C 1(�).
If r(t) = (x(t), y(t)) with a ≤ t ≤ b is a piecewise smooth parametrization of the
curve C , then the line integral in the left-hand side of (1.2.28) may be recast as

˛
C
P dx+Q dy =

ˆ b

a

{
P(x(t), y(t))x ′(t)+ Q(x(t), y(t))y′(t)

}
dt

=
ˆ b

a

(
P(x(t), y(t)), Q(x(t), y(t))

) · r ′(t)
|r ′(t)|

√
[x ′(t)]2 + [y′(t)]2 dt

=
ˆ
C
(P, Q) · τ ds, (1.2.29)

where (P, Q) is viewed as a vector field, τ(x(t), y(t)) := r ′(t)
|r ′(t)| is the unit tangent

vector to the curve C , and ds = √[x ′(t)]2 + [y′(t)]2 dt is the arc-length element on
C . In this notation, (1.2.28) becomes

ˆ
C
(P, Q) · τ ds =

¨
�

(
∂Q

∂x
− ∂P

∂y

)
dx dy. (1.2.30)

8 Indeed, a moment’s reflection shows that, near the point P , the boundary of the above domain is
not the graph of any function (as it fails the vertical line test) in any system of coordinates isometric
to the original one.



1.2 The Case When the Divergence Is Absolutely Integrable 27

To make the connection between (1.2.30) and the two-dimensional version of the
Divergence Formula even more apparent, it is convenient to consider the vector field
�F := (Q,−P) and observe that

(P, Q) · τ = �F · ν and
∂Q

∂x
− ∂P

∂y
= div �F, (1.2.31)

where, with (τ1, τ2) denoting the scalar components of the unit tangent vector τ to
the curve C , we have set ν := (τ2,−τ1) (hence ν := −iτ , under the identification
R

2 ≡ C). This makes ν the outward unit normal vector to the domain�, and (1.2.30)
now simply reads (after slight adjustments in notation)

ˆ
∂�

ν · ( �F∣
∣
∂�

)
ds =

ˆ
�

div �F dL2. (1.2.32)

Since Theorem 1.2.1 provides a much more potent version of (1.2.32), we may
reverse-engineer the route just taken from (1.2.28) to (1.2.32) in order to obtain a
considerablymore refined version of the classicalGreen formula recorded in (1.2.28).

Theorem 1.2.5 Let� be an open nonempty proper subset ofR2 with a lower Ahlfors
regular boundary, such that σ := H1�∂� is a doublingmeasure on ∂�. In particular,
� is a set of locally finite perimeter, and its geometric measure theoretic outward unit
normal ν = (ν1, ν2) is defined σ -a.e. on ∂∗�. Denote by τ := (−ν2, ν1) (or, equiv-
alently, τ := iν under the identification R

2 ≡ C) the positively oriented geometric
measure theoretic unit tangent vector9 to the boundary of � (which, once again, is
defined σ -a.e. on ∂∗�).

Fix an aperture parameter κ ∈ (0,∞) and assume P, Q : �→ C are two
Lebesgue measurable functions with the following properties:

the nontangential traces P
∣∣κ−n.t.
∂�

and Q
∣∣κ−n.t.
∂�

exist σ -a.e. on ∂nta�,

Nκ P, NκQ ∈ L1(∂�, σ), and ∂x Q − ∂y P belongs to L1(�,L2),
(1.2.33)

where all partial derivatives are considered in the sense of distributions in �.

Then for any κ ′ > 0 the nontangential traces P
∣∣κ
′−n.t.

∂�
and Q

∣∣κ
′−n.t.

∂�
exist σ -a.e. on

∂nta� and are actually independent of κ ′.When regarding themas functions definedσ -
a.e. on ∂∗� (which, up to aσ -nullset, is contained in ∂nta�), these nontangential traces
belong to L1(∂∗�, σ). Also, with the dependence on the parameter κ ′ suppressed,
one has ˆ

∂∗�

(
P

∣∣n.t.
∂�

, Q
∣∣n.t.
∂�

) · τ dσ =
ˆ
�

(
∂x Q − ∂y P

)
dL2 (1.2.34)

when either � is bounded, or ∂� is unbounded. In the remaining case, i.e., when �

is unbounded and ∂� is bounded (in other words, when � is an exterior domain),

9 See (5.6.29)–(5.6.31) in this regard.
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formula (1.2.34) continues to hold under the additional assumption that there exists
λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|x Q(x, y)− y P(x, y)| dx dy = o(R2) as R →∞. (1.2.35)

Moreover, if α, β ∈ [0, π ] denote the angles made by the positively oriented unit
tangent vector τ with the coordinate axes in the plane, then in terms of the “differ-
entials”

dx := cosαH1�∂∗� and dy := cosβH1�∂∗� (1.2.36)

formula (1.2.34) may be recast as

ˆ
∂∗�

(
P

∣∣n.t.
∂�

)
dx + (

Q
∣∣n.t.
∂�

)
dy =

ˆ
�

(
∂x Q − ∂y P

)
dL2. (1.2.37)

As noted earlier, (1.2.34) is implied by Theorem 1.2.1 currently employed with
�F := (Q,−P). Formula (1.2.34) refines (1.2.30), while (1.2.37) is a powerful ver-
sion of the classical Green formula recalled in (1.2.28). Passing from (1.2.34) to
(1.2.37) is done by writing (with i and j denoting the basic unit vectors along the
coordinate axes in the plane)

(
P

∣∣n.t.
∂�

, Q
∣∣n.t.
∂�

) · τ =
{(

P
∣∣n.t.
∂�

)
i+ (

Q
∣∣n.t.
∂�

)
j
}
· τ = (

P
∣∣n.t.
∂�

)
i · τ + (

Q
∣∣n.t.
∂�

)
j · τ

= (
P

∣∣n.t.
∂�

)
cosα + (

Q
∣∣n.t.
∂�

)
cosβ at σ -a.e. point on ∂∗�.

(1.2.38)

One key feature of (1.2.37) is the interpretation of the differentials dx , dy as Radon
measures on ∂∗�, of the sort described in (1.2.36). It is of interest to single out a
result in the spirit of Corollary 1.2.3, namely that

Green’s Formula (1.2.37) is valid when the set� ⊂ R
2, considered as in

Theorem 1.2.5, is also assumed to be bounded, whenever the functions
P, Q belong to C 0(� \ N ) ∩ L∞(�,L2) for some σ -nullset N ⊆ ∂�,
and satisfy ∂x Q − ∂y P ∈ L1(�,L2), with the partial derivative consid-
ered in the sense of distributions in �.

(1.2.39)

Our result in (1.2.37) also frees Green’s Formula from the traditional constraints that
the topological boundary of the underlying domain� is connected and compact. As
regards the latter feature, even the version of (1.2.37) corresponding to � := R

2+ is
new. Indeed, when specialized to such a scenario, Theorem 1.2.5 gives that

ˆ
R

(
P

∣
∣n.t.
∂R2+

)
dL1 =

ˆ
R

2+

(
∂x Q − ∂y P

)
dL2 (1.2.40)
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whenever P, Q : R
2+ → C are two Lebesguemeasurable functions with the property

that, for some aperture parameter κ ∈ (0,∞),

the nontangential traces P
∣∣κ−n.t.
∂R2+

and Q
∣∣κ−n.t.
∂R2+

exist L1-a.e. on ∂R
2+ ≡ R,

Nκ P, NκQ ∈ L1(R,L1), and ∂x Q − ∂y P belongs to L1(R2+,L2),
(1.2.41)

where all partial derivatives are considered in the sense of distributions in R
2+.

1.3 The Case Without Decay and When the Divergence Is a
Measure

Since absolutely integrable functions in an open subset � of R
n may be identified

with complex Borel measures in � (the collection of which is henceforth denoted
by CBM(�); see Definition 3.5.4) via

L1(�,Ln) � f �−→ μ := f Ln ∈ CBM(�), (1.3.1)

adopting this point of view, we can make Theorem 1.2.1 be a special case of a more
general result, stated in Theorem 1.3.1, in which the divergence of the vector field
in question is allowed to be an arbitrary complex Borel measure. In addition, we are
going to relax the assumption that the nontangential maximal function is absolutely
integrable bymerely assuming its local integrability plus the absolute integrability of
the inner product of the normal with the nontangential trace of the given vector field
on the geometric measure theoretic boundary. Finally, in contrast to Theorem 1.2.1,
no decay conditions on the vector field are imposed to begin with. The price to pay
is to incorporate an extra term in the formulation of the Divergence Formula which
accounts for the behavior of the vector field at infinity.

To quantify the behavior of a vector field at infinity in a manner that suits the
purposes we have in mind, we make the following definition. Given an open set
� ⊆ R

n along with a vector field �F whose components are integrable on bounded
open subsets of�, define the contribution of �F at infinity as the (formal,
for now) limit

[ �F]∞ := − lim
R→∞

ˆ
�

∇φR · �F dLn (1.3.2)

where the family {φR}R>0 (henceforth referred to as a system of auxiliary functions)
consists of smooth compactly supported functions inR

n which are globally bounded
and progressively become pointwise equal to 1 on compact sets in a uniform fashion,
i.e.,
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{φR}R>0 ⊆ C∞
c (Rn) such that supR>0supx∈Rn |φR(x)| < +∞ and

for each compact set K ⊂ R
n there exists some RK ∈ (0,∞) with

the property that φR(x) = 1 for each x ∈ K whenever R > RK .

(1.3.3)

We shall say that the contribution of �F at infinity is meaningfully and unambiguously
defined provided the limit in (1.3.2) exists (in C) for each system of auxiliary func-
tions {φR}R>0 and is independent of the actual choice of such a system of auxiliary
functions. Whenever this is the case, we may, for example, take {φR}R>0 of the form

φR := φ(·/R) for some fixed φ ∈ C∞
c (Rn)

satisfying φ ≡ 1 near the origin in R
n ,

(1.3.4)

in which scenario we have

[ �F]∞ = − lim
R→∞

{ 1

R

ˆ
�

(∇φ)(x/R) · �F(x) dLn(x)
}
. (1.3.5)

As the name suggests, the contribution of �F at infinity depends only on �F∣
∣
�\B(0,R)

,

for each R > 0. In particular, [ �F]∞ = 0 whenever � is bounded. For more on this
topic, see Sect. 4.7.

We now turn to the formulation of the brand of Divergence Theorem advertised
earlier.

Theorem 1.3.1 Fix n ∈ N and let � be an open nonempty proper subset of R
n

with a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling mea-
sure on ∂�. In particular, � is a set of locally finite perimeter, and its geometric
measure theoretic outward unit normal ν is defined σ -a.e. on ∂∗� (which, up to a
σ -nullset, is contained in ∂nta�). Fix κ ∈ (0,∞) and assume that the vector field
�F = (F1, . . . , Fn) : �→ C

n, with Ln-measurable components, has the following
properties:

the nontangential trace �F∣
∣κ−n.t.
∂�

exists(inC
n) σ -a.e. on ∂nta�,

its inner product with the normal ν · ( �F∣∣κ−n.t.
∂�

)
is in L1(∂∗�, σ),

the nontangential maximal function Nκ
�F belongs to L1

loc(∂�, σ),

(1.3.6)

(
with the last membership in (1.3.6) implying �F ∈ [

L1
loc(�,Ln)

]n ⊂ [
D′(�)

]n)
and,

with all individual partial derivatives considered in the sense of distributions in �,

the distribution div �F := ∂1F1 + · · · + ∂n Fn ∈ D′(�) extends
to a complex Borel measure in �, still denoted by div �F. (1.3.7)

Then for any κ ′ > 0 the nontangential trace �F∣∣κ
′−n.t.

∂�
exists σ -a.e. on ∂nta� and is

actually independent of κ ′. Also, [ �F]∞, the contribution of �F at infinity, is mean-
ingfully and unambiguously defined and, with the dependence on the parameter κ ′
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dropped, one has

(
div �F)

(�) =
ˆ
∂∗�

ν · ( �F ∣∣n.t.
∂�

)
dσ + [ �F]∞. (1.3.8)

Moreover, formula (1.3.8) reduces to

(
div �F)

(�) =
ˆ
∂∗�

ν · ( �F ∣∣n.t.
∂�

)
dσ (1.3.9)

(i.e., one has [ �F]∞ = 0) if either � is bounded, or when

∂� is unbounded and Nκ
�F ∈ L1(∂�, σ), (1.3.10)

or when there exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x) = o(R2) as R →∞. (1.3.11)

Wemake several comments aimed at clarifying the context and scope of the above
theorem.

Comment 1. Given any open set � ⊆ R
n , we say that a distribution u ∈ D′(�)

extends to a complex Borel measure μ in � provided

D′(�)〈u, φ〉D(�) =
ˆ
�

φ dμ, ∀φ ∈ C∞
c (�), (1.3.12)

where D′(�)〈·, ·〉D(�) denotes the distributional pairing in the open set �. Recall that
(cf. (3.5.18)–(3.5.19))

every complex Borel measure in � is Radon, (1.3.13)

and, as seen from the classical Riesz–Markov–Kakutani Representation Theorem
(cf. (3.5.17)),

any complexRadonmeasure in� is uniquely determined by its
action (via integration) on Co(�), the collection of continuous
functions on � vanishing at infinity (i.e., such that the set
{x ∈ � : | f (x)| ≥ ε} is compact for every ε > 0).

(1.3.14)

Then, since (as a standard mollifier argument shows)

for � ⊆ R
n open, the collection of test functions C∞

c (�)

is dense in Co(�), equipped with the supremum norm,
(1.3.15)
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the demand in (1.3.7) that the distribution div �F ∈ D′(�) extends to a complex Borel
measure in� (in the sense of (1.3.12)) determines uniquely the measure in question.
For example,

if � is an open set in R
n , then the Dirac distribution δxo ∈ D′(�) with

mass at xo ∈ � extends uniquely (in the sense of (1.3.12)) to the complex
Borel measure μ in � defined as μ(A) := 1A(xo) for each A ⊆ �; this
is a probability measure for which we shall henceforth retain the symbol
δxo .

(1.3.16)

In the context of Theorem 1.3.1, with div �F thus identified with a complex Radon
measure in � (cf. (1.3.7)), it is therefore meaningful and unambiguous to speak of(
div �F)

(�) in the left-hand side of (1.3.8).

Comment 2.As seen from (1.3.15) and theRiesz–Markov–Kakutani Representation
Theorem mentioned earlier, a linear functional � : C∞

c (�)→ C (where � ⊆ R
n is

an arbitrary open set) is representable via integration against a complexBorelmeasure
μ in � if and only if

sup

{∣∣�(φ)
∣∣ : φ ∈ C∞

c (�), sup
x∈�

|φ(x)| ≤ 1

}
< +∞. (1.3.17)

Moreover, in such a case the complexmeasureμ is uniquely determined by� and, as
seen from (3.5.14), the supremum in (1.3.17) is precisely |μ|(�), where |μ| denotes
the total variation of μ. Specializing these considerations to the scenario when

� : C∞
c (�)→ C is given by �(φ) := −

ˆ
�

�F · ∇φ dLn, ∀φ ∈ C∞
c (�),

(1.3.18)
shows that the demand in (1.3.7) may be equivalently rephrased as asking that the
vector field �F satisfies

sup

{∣
∣∣
ˆ
�

�F · ∇φ dLn
∣
∣∣ : φ ∈ C∞

c (�), sup
x∈�

|φ(x)| ≤ 1

}
< +∞. (1.3.19)

Parenthetically, we note that the supremum in (1.3.19) is precisely |div �F |(�), where
the symbol div �F is presently used to denote the unique extension of the distributional
divergence of �F to a complex Radon measure in �.

Comment 3. Assume O ⊂ R
n is a bounded domain of class C 1, and consider a

vector field �G such that

�G ∈ [
C 0(O) ∩ C 1(O)

]n
with div �G ∈ L1(O,Ln). (1.3.20)

Pick an open set � ⊆ R
n such that O ⊂ �, then introduce
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�F :=
{ �G in O,

0 ∈ C
n in � \O.

(1.3.21)

Then the vector field �F belongs to
[
L∞(�,Ln)

]n
, vanishes near ∂�, and its diver-

gence, computed in the sense of distributions in �, is given by

div �F = ˜div �G Ln −
(
νO · �G

∣∣
∂O

)
Hn−1�∂O ∈ CBM(�), (1.3.22)

where tilde denotes the extension by zero to �, and νO is the outward unit normal
to O.

This extension-by-zero procedure of reasonably smooth vector fields already
points to the fact that there exist plenty of natural situations when one encounters
Lebesgue measurable vector fields with distributional divergence a complex Borel
measure. An amusing feature of it is that, in the case when� satisfies the background
geometric assumptions in the statement of Theorem 1.3.1, the Divergence Formula
(written as in (1.3.8)) for �F in � reduces precisely to the ordinary Divergence For-
mula for the vector field �G in the bounded C 1 domain O.

Comment 4.Other natural examples of vector fields �F = (F1, . . . , Fn)whose scalar
components are locally integrable functions in an open set � ⊆ R

n and whose dis-
tributional divergence is a complex Borel measure in� are provided by vector fields
in

[
BV(�)

]n
. More generally, if

�F = (Fj )1≤ j≤n ∈
[
L1
loc(�,Ln)

]n
with

V(Fj ;�) < +∞ for each j ∈ {1, . . . , n}, (1.3.23)

(where V(Fj ;�) denotes the variation of Fj in �, cf. (5.5.1)), then item (v) of
Proposition 5.5.1 implies that div �F ∈ CBM(�).

Comment 5. The fact that Nκ
�F belongs to L1

loc(∂�, σ) is automatically satisfied
if, e.g., �F is essentially bounded in �, or if Nκ

�F belongs to the Lorentz space
L p,q(∂�, σ) for some p ∈ (1,∞) and q ∈ (0,∞].
Comment 6. In the context of Theorem 1.3.1 it is also instructive to remark that,
under the additional assumption that

�F is continuous in � \ B(0, R) for some R > 0, (1.3.24)

Proposition 4.7.1 implies (keeping in mind (4.7.3)) that the contribution of �F at
infinity (originally defined in (1.3.4)–(1.3.5)) may be expressed as

[ �F]∞ = lim
R→∞

{
R−1

ˆ
|x |=R

x · �F(x) dHn−1(x)
}

whenever n ≥ 2 and R
n \� is bounded,

(1.3.25)
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while Proposition 4.7.2 (together with (4.7.3)) gives

[ �F]∞ =

⎧
⎪⎪⎨

⎪⎪⎩

�F
∣∣
∣
+∞
−∞

if � unbounded both from below and from above,

�F(+∞) if � bounded from below but unbounded from above,

− �F(−∞) if � unbounded from below but bounded from above,
(1.3.26)

in the case when n = 1 and� is unbounded (since, in this setting, the local finiteness
of the measure σ = H0�∂� implies that the set ∂� is of locally finite cardinality).

Comment 7. As in the case of Theorem 1.2.1, both the geometric hypotheses on
the domain � as well as the analytic hypotheses on the vector field �F stipulated in
Theorem 1.3.1 are stable under bi-Lipschitz changes of variables of the Euclidean
ambient. Also, the class of vector fields �F satisfying the hypotheses of Theorem 1.3.1
is a linear subspace of

[
L1
loc(�,Ln)

]n
which is stable under multiplication by scalar

Lipschitz functions with bounded support.
Moreover, if �F is as in the statement of Theorem 1.3.1 and ϕ ∈ Lip(�) is scalar-

valued with bounded support, then the Divergence Formula (1.3.8) written for the
vector field ϕ �F yields the integration by parts formula

ˆ
�

∇ϕ · �F dLn = −
ˆ
�

ϕ d(div �F)+
ˆ
∂∗�

ϕ ν · ( �F ∣∣n.t.
∂�

)
dσ. (1.3.27)

In turn, this implies that if

�G :=
{ �F in �,

0 ∈ C
n in R

n \�,
(1.3.28)

then �G ∈ [
L1
loc(R

n,Ln)
]n

and, with the divergence taken in the sense of distributions
in R

n ,
div �G = div �F − ν · ( �F ∣∣n.t.

∂�

)
Hn−1�∂∗� ∈ CBM(Rn). (1.3.29)

In light of Lemma 4.7.5, formula (1.3.29) is actually equivalent to the Divergence
Formula (1.3.8).

Comment 8. Theorem 1.3.1 is sharp. Concretely, the role of the lower Ahlfors reg-
ular assumption on the boundary is brought into focus by (2.4.9) and (2.4.18), while
the fact that it is natural to consider the divergence in the sense of distributions

becomes apparent from (2.5.13). The hypothesis that �F∣
∣κ−n.t.
∂�

exists at σ -a.e. point
on ∂nta�, made in the first line of (1.3.6), cannot be weakened to simply asking

that �F∣∣κ−n.t.
∂�

exists σ -a.e. on ∂∗�, in spite of the fact that it is precisely the latter set
that enters the formulation of the Divergence Formula (1.3.8). This is clear from
the counterexamples provided in (2.1.17), or (2.1.47), or (2.1.64), or (2.1.87), or
(2.1.102). Also, the counterexample in (2.3.7) shows that Nκ

�F ∈ L1
loc(∂�, σ) can-

not be weakened to either Nκ
�F ∈ L1,∞

loc (∂�, σ), or Nκ
�F ∈ L1

loc(∂∗�, σ). See also
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(2.3.64) in this vein. Next, that replacing o(R2) by O(R2) in the formulation of the
growth condition (1.3.11) may invalidate the Divergence Formula (1.3.9) is clear
from (2.2.15). Lastly, the role of [ �F]∞ in the context of (1.3.8) is highlighted by the
manner in which the counterexample in (2.2.14) has been turned into the positive
result in (2.2.18), the counterexample in (2.2.52) has been turned into the positive
result in (2.2.59), and the counterexample in (2.2.14) has been turned into the positive
result in (2.2.18).

Comment 9. Specializing Theorem 1.3.1 to the two-dimensional setting yields a
version of Green’s Formula in the spirit of (1.2.37) in which now ∂x Q − ∂y P is a
complex Borel measure in �, the integral in the right-hand side is replaced by its
total mass, i.e., (∂x Q − ∂y P)(�), while the left-hand side of (1.2.37) is augmented
by including the contribution at infinity of the vector field defined as �F := (Q,−P).

Comment 10. Lemma 4.7.5 may be regarded as the version of Theorem 1.3.1 cor-
responding to the limit case � = R

n .

Comment 11. It turns out that condition (1.3.11) is automatically satisfied when
either � is bounded, or when

∂� is unbounded, n ≥ 2, and N�\K
κ

�F ∈ L1(∂�, σ). (1.3.30)

This is seen from the last part in Lemma 4.7.3 (used with � \ K in place of �) and
(8.6.51) (used with E := � \ K ).

Comment 12. The proof of Theorem 1.3.1, as stated, is given in Sect. 9.1.

The next corollary contains a refinement of what Theorem 1.3.1 specialized to
the case when the underlying set is the upper half-space would normally give.

Corollary 1.3.2 Fix n ∈ Nwith n ≥ 2 and pick some arbitrary κ ∈ (0,∞). Assume
that the vector field �F = (F1, . . . , Fn) : R

n+ → C
n, with Lebesgue measurable com-

ponents, satisfies the following properties:

Fn

∣∣κ−n.t.
∂Rn+

exists Ln−1-a.e. on ∂R
n+ and Fn

∣∣κ−n.t.
∂Rn+

∈ L1(Rn−1,Ln−1),
the nontangential maximal function Nκ

�F belongs to L1
loc(R

n−1,Ln−1),
div �F ∈ D′(Rn+) extends to a complex Borel measure in R

n+,
(1.3.31)(

still denoted by div �F)
.

Then for any other κ ′ > 0 the nontangential trace Fn

∣∣κ
′−n.t.

∂Rn+
exists Ln−1-a.e. on

R
n−1 ≡ ∂R

n+ and is actually independent ofκ ′. Also, the contributionof �F at infinity is
meaningfully and unambiguously defined and, with the dependence on the parameter
κ ′ dropped, one has

(
div �F)

(Rn
+) = −

ˆ
Rn−1

(
Fn

∣∣n.t.
∂Rn+

)
dLn−1 + [ �F]∞. (1.3.32)
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Furthermore, formula (1.3.32) reduces to

(
div �F)

(Rn
+) = −

ˆ
Rn−1

(
Fn

∣∣n.t.
∂Rn+

)
dLn−1 (1.3.33)

(i.e., one has [ �F]∞ = 0) whenever there exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩Rn+

|x · �F(x)| dLn(x) = o(R2) as R →∞, (1.3.34)

a condition which is automatically satisfied when

Nκ
�F ∈ L1(Rn−1,Ln−1). (1.3.35)

While one of the key features of Theorem 1.3.1 (compared with Theorem 1.1.1)
is the ability of decreasing the regularity of the vector field provided the regularity
of the underlying domain is (necessarily) increased, in and of itself, this does not
tell the whole story. Indeed, the possibility of allowing far less regular vector fields
than those considered in the DeGiorgi–Federer Divergence Theorem is vastly useful,
and can actually compensate for stipulating that the set in question is smoother than
being of locally finite perimeter. For example, our version of theDivergence Formula,
presented in Theorem 1.3.1, incorporates that of De Giorgi and Federer (recorded
earlier in Theorem 1.1.1) in the manner indicated below.

How Theorem 1.3.1 subsumes the De Giorgi–Federer Divergence Formula:

Let� ⊆ R
n be a set of locally finite perimeter, and fix a vector field �F ∈ [

C∞
c (Rn)

]n
.

The idea is to select an open ball B ⊆ R
n containing the support of �F and apply

Theorem 1.3.1 to the (smooth, bounded) domain B and vector field

�G := (
1�
�F)∣∣

∣
B
: B −→ C

n. (1.3.36)

Note that, by design,
�G ∈ [

L∞comp(B,Ln)
]n
. (1.3.37)

In turn, having picked some arbitrary aperture parameter κ ∈ (0,∞), this member-
ship trivially implies that Nκ

�G ∈ L∞(∂B,Hn−1) ⊆ L1(∂B,Hn−1). Also, it is clear
that �G∣∣κ−n.t.

∂B = 0 at every point on ∂B since �G vanishes identically near ∂B. Finally,
with the divergence taken in the sense of distributions in B, we have (see (5.6.24))

div �G =
[
div

(
1�
�F)]∣∣∣

B
=

[
(∇1�) · �F + 1�(div �F)

]∣∣∣
B

=
[
− (ν · �F)σ∗ + 1�(div �F)

]∣∣∣
B

(1.3.38)
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whereσ∗ := Hn−1�∂∗� and ν is the geometricmeasure theoretic outward unit normal
to �. In relation to this, observe that

the total variation of the measure −(ν · �F)σ∗ is
≤ (

sup
Rn | �F |)Hn−1(∂∗� ∩ supp �F)

< +∞ (1.3.39)

where the very last inequality is a consequence of the fact that � is a set of locally
finite perimeter in R

n (cf. (5.6.35)). Since div �F ∈ L1(Rn,Ln), we conclude from
(1.3.38)–(1.3.39) that the distribution div �G extends to a complex Borel measure in
� (as discussed in Comment 1 above; cf. (1.3.12) in particular). Thus,

div �G ∈ CBM(�). (1.3.40)

At this stage, all hypotheses of Theorem 1.3.1 have been verified by the set B and
the vector field �G. As such, with N denoting the outward unit normal to the ball
B, we may invoke the Divergence Formula (1.3.9) to write (bearing in mind that
�G∣∣κ−n.t.

∂B ≡ 0 on ∂B and that �F is supported in B)

0 =
ˆ
∂∗B

N · ( �G ∣∣κ−n.t.
∂B

)
dHn−1 = (

div �G)
(B)

= −
ˆ
∂∗�

ν · �F dσ∗ +
ˆ
�

div �F dLn . (1.3.41)

From this, the De Giorgi–Federer Divergence Formula (1.1.8) for �F ∈ [
C∞
c (Rn)

]n

readily follows. Finally, passing to arbitrary vector fields in
[
C 1
c (R

n)
]n

is just a
standard mollifier argument. The transition from Theorems 1.3.1 to 1.1.1 is therefore
complete.

1.4 The Divergence Theorem for Singular Vector Fields
Without Decay

Theorem1.4.1, stated below, further extends Theorem1.3.1 in two important regards.
First, we now allow the intervening vector field to be singular (again, without explic-
itly requiring any type of decay for said vector field at infinity, while permitting the
nontangentialmaximal function to be only locally integrable). Second, the divergence
of the intervening vector field, considered in the sense of distributions, is allowed to
be the sum of a compactly supported distribution and a complex Borel measure.

The reader is alerted to the fact that the local version of the nontangential maximal
operator N E

κ , relative to a measurable subset E of the underlying domain, is defined
in (8.2.4). Also, C∞

b (�) stands for the space of smooth and bounded functions in a
given open set � ⊆ R

n (in particular, the constant function 1 belongs to this space),
while

(
C∞
b (�)

)∗
denotes its algebraic dual; for more on this, see Chap. 4.
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Theorem 1.4.1 Fix n ∈ N and let� be an open nonempty proper subset of R
n with

a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling measure
on ∂�. In particular,� is a set of locally finite perimeter, and its geometric measure
theoretic outward unit normal ν is defined σ -a.e. on ∂∗� (which, up to a σ -nullset,
is contained in ∂nta�). Fix κ ∈ (0,∞) and assume that the vector field

�F = (F1, . . . , Fn) ∈
[
D′(�)

]n
(1.4.1)

satisfies the following conditions:

there exists a compact set K contained in � such that
�F∣∣

�\K ∈
[
L1
loc(� \ K ,Ln)

]n
and N�\K

κ
�F ∈ L1

loc(∂�, σ),
(1.4.2)

the pointwise nontangential boundary trace

�F∣∣κ−n.t.
∂�

=
(
F1

∣∣κ−n.t.
∂�

, . . . , Fn

∣∣κ−n.t.
∂�

)
exists ( in C

n) σ -a.e. on ∂nta� and

has the property that ν · ( �F ∣∣κ−n.t.
∂�

)
belongs to the space L1(∂∗�, σ),

(1.4.3)

and the divergence of �F, considered in the sense of distributions in �, is the sum (in
D′(�)) of a compactly supported distribution in � and a complex Borel measure in
�, i.e.,

div �F ∈ E ′(�)+ CBM(�) ⊆ (
C∞
b (�)

)∗
. (1.4.4)

Then for any κ ′ > 0 the nontangential trace �F∣∣κ
′−n.t.

∂�
exists σ -a.e. on ∂nta� and

is actually independent of κ ′. Also, the contribution of �F at infinity (cf. (1.3.2)–
(1.3.3)) is meaningfully and unambiguously defined and, with the dependence on the
parameter κ ′ dropped, one has

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣n.t.
∂�

)
dσ + [ �F]∞. (1.4.5)

Moreover, the contribution at infinity vanishes, a scenario inwhich formula (1.4.5)
reduces to

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣n.t.
∂�

)
dσ, (1.4.6)

if either � is bounded, or when

∂� is unbounded and N�\K
κ

�F ∈ L1(∂�, σ), (1.4.7)

or when there exists λ ∈ (1,∞) such that
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ˆ
[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x) = o(R2) as R →∞. (1.4.8)

We make a number of notes clarifying some aspects of the above theorem.

Note 1. Under the additional assumption that

�F is continuous in � \ B(0, R) for some R ∈ (0,∞), and
either R

n \� is bounded, or n = 1 and � is unbounded,
(1.4.9)

it follows from Propositions 4.7.1 and 4.7.2 (while also keeping in mind (4.7.3)) that
[ �F]∞, the contribution of �F at infinity, may be computed as in (1.3.25)–(1.3.26).

Note 2. The nontangential maximal operator in (1.4.2) is understood naturally, in
the sense of (8.2.43)–(8.2.44).

Note 3. Since the contribution of the vector field �F at infinity is meaningfully and
unambiguously defined, it follows from (1.3.5) that

�F(x) = o(|x |1−n) for x ∈ � with |x | → ∞=⇒ [ �F]∞ = 0. (1.4.10)

Note 4. Having a vector field �F ∈ [
D′(�)

]n
with the property that there exists a

compact set K ⊆ � such that �F∣∣
�\K ∈

[
L1
loc(� \ K ,Ln)

]n
(see (1.4.1)–(1.4.2)) is

simply equivalent to having

�F ∈ [
E ′(�)+ L1

loc(�,Ln)
]n
. (1.4.11)

Note 5.As may be seen with the help of Proposition 8.6.3, the class of vector fields
satisfying the hypotheses of Theorem 1.4.1 is a linear subspace of

[
D′(�)

]n
which

is stable under multiplication by scalar functions in C∞ with bounded support.

Note 6. As is apparent from (4.6.6),

all conclusions in Theorem 1.4.1 are valid when in place
of (1.4.4) we now ask that div �F ∈ E ′(�)+ L1(�,Ln).

(1.4.12)

Note 7. For various applications it is useful to observe that the vector field �F from
(1.4.1) may be allowed to have components in D′(�)⊗ V , where V is an arbitrary,
fixed, finite-dimensional vector space. In such a scenario, the first condition in (1.4.2)
now reads

�F∣∣
�\K ∈

[
L1
loc(� \ K ,Ln)⊗ V

]n
, (1.4.13)

in place of (1.4.4) we now demand

div �F ∈ E ′(�)⊗ V + CBM(�)⊗ V , (1.4.14)
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and (1.4.5) becomes the equality of two vectors inV . A case in point, dealt with later,
is the situation when the vector field �F has Clifford algebra-valued components.

Note 8. Another version of Theorem 1.4.1 is demanding in place of (1.4.4) and
(1.4.2) that

div �F ∈ E ′
K (�)+ L1(�,Ln) for some compact set K ⊂ �

with the property that N�\K
κ

�F ∈ L1(∂�, σ),
(1.4.15)

a scenario in which all conclusions in Theorem 1.4.1 continue to be valid.

Note 9. For similar reasons as in the case of Theorem 1.3.1, discussed under the
heading Comment 8 at the end of Sect. 1.3, Theorem 1.4.1 is sharp.

Note 10.SpecializingTheorem1.4.1 to the two-dimensional setting yields a version
of Green’s Formula of the following sort

ˆ
∂∗�

(
P

∣∣n.t.
∂�

)
dx + (

Q
∣∣n.t.
∂�

)
dy = (C ∞

b (�))
∗
(
∂x Q − ∂y P, 1

)
C ∞

b (�) − [(Q,−P)]∞,

(1.4.16)
which is valid under the assumption that � and the vector field �F := (Q,−P) are
as in Theorem 1.4.1 when n = 2.

Note 11. In the case when in place of (1.4.4) we simply have div �F ∈ CBM(�),
formula (1.4.5) reduces to (1.3.8). Also, if in place of the membership in (1.4.4) we
now have div �F ∈ E ′(�), then formula (1.4.5) becomes

E ′(�)

〈
div �F, 1〉E (�) =

ˆ
∂∗�

ν · ( �F ∣
∣n.t.
∂�

)
dσ + [ �F]∞, (1.4.17)

where the bracket on the left-hand side is understood as the distributional pairing
between the compactly supported distribution div �F ∈ E ′(�) and the smooth function
1 ∈ E (�).

Note 12. As seen from the last part in Lemma 4.7.3 (used with � \ K in place of
�) and (8.6.51) (used with E := � \ K ), condition (1.4.8) is automatically satisfied
when either � is bounded, or when

∂� is unbounded, n ≥ 2, and N�\K
κ

�F ∈ L1(∂�, σ). (1.4.18)

Note 13. The proof of Theorem 1.4.1 may be found in Sect. 9.2.

In the next corollary, we present a refinement of what Theorem 1.4.1 specialized
to the case when the underlying set is the upper half-space would ordinarily give.

Corollary 1.4.2 Fix n ∈ Nwith n ≥ 2 and pick some arbitrary κ ∈ (0,∞). Assume
that the vector field

�F = (F1, . . . , Fn) ∈
[
D′(Rn

+)
]n

(1.4.19)
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satisfies the following conditions:

there exists some compact set K contained in R
n+ such that

�F∣∣
R

n+\K ∈
[
L1
loc(R

n+ \ K ,Ln)
]n

and NR
n+\K

κ
�F ∈ L1

loc(R
n−1,Ln−1),

(1.4.20)

the pointwise nontangential boundary trace

Fn

∣∣κ−n.t.
∂Rn+

exists at Ln−1-a.e. point on ∂R
n+

and Fn

∣∣κ−n.t.
∂Rn+

∈ L1(Rn−1,Ln−1),
(1.4.21)

and the divergence of �F, considered in the sense of distributions inR
n+, is the sum (in

D′(Rn+)) of a compactly supported distribution in R
n+ and a complex Borel measure

in R
n+, i.e.,

div �F ∈ E ′(Rn
+)+ CBM(Rn

+). (1.4.22)

Then for any other κ ′ > 0 the nontangential trace Fn

∣∣κ
′−n.t.

∂Rn+
exists Ln−1-a.e. on

R
n−1 ≡ ∂R

n+ and is actually independent ofκ ′. Also, the contributionof �F at infinity is
meaningfully and unambiguously defined and, with the dependence on the parameter
κ ′ dropped, one has

(C ∞
b (Rn+))

∗
(
div �F, 1)C ∞

b (Rn+) = −
ˆ
Rn−1

(
Fn

∣∣n.t.
∂Rn+

)
dLn−1 + [ �F]∞. (1.4.23)

In addition, the contribution at infinity vanishes, a scenario in which formula
(1.4.23) simply reduces to

(C ∞
b (Rn+))

∗
(
div �F, 1)C ∞

b (Rn+) = −
ˆ
Rn−1

(
Fn

∣∣n.t.
∂Rn+

)
dLn−1, (1.4.24)

whenever there exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩Rn+

|x · �F(x)| dLn(x) = o(R2) as R →∞. (1.4.25)

In turn, condition (1.4.25) is automatically satisfied provided

NR
n+\K

κ
�F ∈ L1(Rn−1,Ln−1) (1.4.26)

(a scenario in which the last condition in (1.4.21) is automatically guaranteed).

Via a rotation and a translation, a similar result is valid in any half-space in R
n ,

i.e., any set of the form � := {
x ∈ R

n : (x − xo) · h > 0
}
for some fixed xo ∈ R

n

and h ∈ Sn−1, a setting in which h · �F plays the role of the scalar component Fn .
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Corollary 1.4.2 is in the nature of best possible. To illustrate this, work in the two-
dimensional setting and identify R

2 ≡ C. Having fixed a point z ∈ C+, consider the
vector field10 defined for each ζ ∈ C+ \ {z} by

�F(ζ ) :=
(

i

ζ(ζ − z)
+ i

ζ (ζ − z)
,

−1
ζ(ζ − z)

+ 1

ζ (ζ − z)

)
. (1.4.27)

Then
�F ∈ [

L1
loc

(
C+,L2) ∩ C∞(

C+ \ {0, z}
)]2

, (1.4.28)

and a simple computation shows that

div �F = 2π i

z
δz in D′(C+). (1.4.29)

In particular, div �F belongs to E ′(C+). Also, it is apparent from (1.4.27) that the

nontangential boundary trace F2

∣∣κ−n.t.
∂R2+

vanishes on ∂C+ \ {0} ≡ R \ {0}, hence

F2

∣∣κ−n.t.
∂R2+

vanishes at L1-a.e. point on ∂R
2
+. (1.4.30)

Finally, if K := B
(
z, 2−1 Im z

)
, which is a compact neighborhood of z contained in

C+, we have
| �F(ζ )| ≤ CK |ζ |−2 for all ζ ∈ C+ \ K , (1.4.31)

(hence (1.4.25) is presently satisfied for any λ ∈ (1,∞)), and from (1.4.27) and
Lemma 8.3.7 we see that

NR
2+\K

κ
�F ∈ L1,∞(R,L1). (1.4.32)

However, it is clear from (1.4.29) and (1.4.30) that the Divergence Formula (1.4.24)
fails in this setting. The source of this failure is the lack of local integrability for

NR
2+\K

κ
�F . This analysis shows that, in the context of Corollary 1.4.2, the last mem-

bership in (1.4.20), namely havingNR
n+\K

κ
�F locally integrable inR

n−1 cannot, gener-
ally speaking, be replaced by the weaker propertyNR

n+\K
κ

�F ∈ L1,∞(Rn−1,Ln−1) (cf.
(1.4.32)) even if we now additionally assume that Fn

∣∣κ−n.t.
∂Rn+

belongs to L1(Rn−1,Ln−1).

It is also of interest to derive the following refinement of what Theorem 1.4.1,
specialized to the case when the underlying set is the unit ball, would ordinarily give.

Corollary 1.4.3 Fix n ∈ N and denote by B(0, 1) the (open) unit ball centered at
the origin inR

n. Also, set Sn−1 = ∂B(0, 1) and abbreviate σ := Hn−1�Sn−1. Having

10 Inspired by the counterexample to the Schwarz–Pompeiu formula in the upper-half space dis-
cussed in the last part of [186, Sect. 1.1].
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picked an arbitrary aperture parameter κ ∈ (0,∞), consider a vector field whose
scalar components are distributions in B(0, 1),

�F = (F1, . . . , Fn) ∈
[
D′(B(0, 1)

)]n
, (1.4.33)

satisfying

there exists a compact set K contained in B(0, 1) such that
�F∣∣

B(0,1)\K ∈
[
L1
loc

(
B(0, 1) \ K ,Ln

)]n
and N B(0,1)\K

κ
�F ∈ L1(Sn−1, σ ).

(1.4.34)
Also, with

f (x) := x · �F(x) =
n∑

j=1
x j Fj (x) for each x = (x1, . . . , xn) ∈ B(0, 1) \ K ,

(1.4.35)
assume that

f
∣∣κ−n.t.
∂B(0,1) exists at σ -a.e. point on Sn−1. (1.4.36)

Finally, suppose that the divergence of �F, considered in the sense of distributions in
B(0, 1), is the sum (in D′(B(0, 1)

)
) of a compactly supported distribution in B(0, 1)

and a complex Borel measure in B(0, 1), i.e.,

div �F ∈ E ′(B(0, 1)
)+ CBM

(
B(0, 1)

) ⊆ (
C∞
b

(
B(0, 1)

))∗
. (1.4.37)

Then for any κ ′ > 0 the nontangential trace f
∣∣κ
′−n.t.

∂B(0,1) exists σ -a.e. on Sn−1 and is
actually independent of κ ′. When regarding it as a function defined σ -a.e. on Sn−1,
this belongs to L1(Sn−1, σ ) and, with the dependence on the aperture parameter κ ′
dropped, one has

(C ∞
b (B(0,1)))

∗
(
div �F, 1)C ∞

b (B(0,1)) =
ˆ
Sn−1

(
f
∣
∣n.t.
∂B(0,1)

)
dσ. (1.4.38)

Of course, a natural version of Corollary 1.4.3 is valid in any (open) ball in
R

n . Corollary 1.4.3 is in fact optimal. To elaborate on this aspect, work in the two-
dimensional setting and identifyR

2 ≡ C.WithD := B(0, 1) denoting the unit disk in
the plane, fix an arbitrary point z ∈ D \ {0} and define the complex-valued functions

F1(ζ ) := 1

2π

{
1− ζ

ζ(1+ ζ )

ζ + z

ζ − z
+ 1− ζ

ζ (1+ ζ )

1+ zζ

1− zζ

}
(1.4.39)

and
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F2(ζ ) := 1

2π

{
1− ζ

ζ(1+ ζ )

ζ + z

ζ − z
− 1− ζ

ζ (1+ ζ )

1+ zζ

1− zζ

}
, (1.4.40)

for each ζ ∈ D \ {0, z}. Use these scalar-valued functions to define11 the vector field
(with complex-valued components)

�F(ζ ) := (
F1(ζ ), iF2(ζ )

)
for ζ ∈ D \ {0, z}. (1.4.41)

Then
�F ∈ [

L1
loc

(
D,L2

) ∩ C∞(
D \ {0, z,−1})]2, (1.4.42)

and a computation (taking into account the formula for the standard fundamental
solution for the Cauchy–Riemann operator in the plane) shows that

div �F = 2(1− z)

1+ z
δz in D′(D), (1.4.43)

hence div �F belongs to E ′(D). Also, if K := B(0, R) for some fixed R ∈ (|z|, 1) (a
choice which renders K a compact subset of the unit disk such that both 0 and z
are contained in its interior), then (1.4.39)–(1.4.41) and Lemma 8.3.7 allow us to
conclude that

ND\K
κ

�F ∈ L1,∞(∂D, σ ). (1.4.44)

In addition, for each ζ = x + iy ∈ D \ K we have

f (ζ ) := xF1(ζ )+ iyF2(ζ ) = 1

2π

{
1− ζ

ζ(1+ ζ )

ζ + z

ζ − z

}
ζ + 1

2π

{
1− ζ

ζ (1+ ζ )

1+ zζ

1− zζ

}
ζ

= 1

π

ζ + z

ζ − z
Re

[1− ζ

1+ ζ

]
− 1

π

1− ζ

1+ ζ

z(1− |ζ |2)
(1− zζ )(ζ − z)

, (1.4.45)

where the first equality defines f (ζ ), and where we have used (1.4.39)–(1.4.40) in

the second equality. Due to the presence of the factors Re
[
1−ζ

1+ζ

]
and 1− |ζ |2 in the

last line in (1.4.45), it follows that

f
∣∣κ−n.t.
∂D

vanishes at σ -a.e. point on S1 = ∂D. (1.4.46)

On account of the properties recorded in (1.4.43) and (1.4.46), we see that the
Divergence Formula (1.4.38) presently fails. The source of this failure is that in
place of N B(0,1)\K

κ
�F ∈ L1(S1, σ ) (as demanded in (1.4.34)) we currently only have

11 Inspired by the counterexample to the Schwarz–Pompeiu formula in the unit disk discussed in
the last part of [186, Sect. 1.1].
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(1.4.44). Altogether, this analysis shows that the last membership in (1.4.34), namely
having N B(0,1)\K

κ
�F ∈ L1(Sn−1, σ ) cannot, in general, be weakened to demanding

thatN B(0,1)\K
κ

�F ∈ L1,∞(Sn−1, σ ), even if we now additionally assume that f
∣
∣κ−n.t.
∂B(0,1)

belongs to L1(Sn−1, σ ).

Finally, we present a companion result to Corollary 1.4.3, now dealing with a
version of the Divergence Theorem in the complement of the closed unit ball in R

n

which is a refinement of what Theorem 1.4.1 would give in such a setting.

Corollary 1.4.4 Pick n ∈ N and let B(0, 1) stand for the (open) unit ball centered
at the origin in R

n; in particular, Sn−1 = ∂B(0, 1) is the unit sphere in R
n. Abbre-

viate σ := Hn−1�Sn−1 and choose some aperture parameter κ ∈ (0,∞). Consider
a vector field whose scalar components are distributions in R

n \ B(0, 1),
�F = (F1, . . . , Fn) ∈

[
D′(

R
n \ B(0, 1))]n, (1.4.47)

satisfying

there exists a compact set K contained in R
n \ B(0, 1) such that

�F∣∣(
Rn\B(0,1)

)
\K ∈

[
L1
loc

((
R

n \ B(0, 1)) \ K ,Ln
)]n

and N (Rn\B(0,1))\K
κ

�F ∈ L1(Sn−1, σ ).

(1.4.48)

In addition, having set

f (x):=x · �F(x)=
n∑

j=1
x j Fj (x) for each x = (x1, . . . , xn) ∈

(
R

n \ B(0, 1)) \ K ,

(1.4.49)
suppose

f
∣∣κ−n.t.
∂

(
Rn\B(0,1)

) exists at σ -a.e. point on Sn−1. (1.4.50)

Finally, assume that the divergence of �F, considered in the sense of distributions in
R

n \ B(0, 1), is the sum in D′(
R

n \ B(0, 1)) of a compactly supported distribution
in R

n \ B(0, 1) and a complex Borel measure in R
n \ B(0, 1), i.e.,

div �F ∈ E ′(
R

n \ B(0, 1))+ CBM
(
R

n \ B(0, 1)) ⊆
(
C∞
b

(
R

n \ B(0, 1))
)∗

.

(1.4.51)

Then for any κ ′ > 0 the nontangential trace f
∣∣κ
′−n.t.

∂

(
Rn\B(0,1)

) exists σ -a.e. on Sn−1, is

actually independent of κ ′ and, when regarded as a function defined σ -a.e. on Sn−1,
it belongs to L1(Sn−1, σ ). Also, the contribution of �F at infinity is meaningfully and
unambiguously defined and, with the dependence on the parameter κ ′ dropped, one
has
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(C ∞
b (Rn\B(0,1)))∗

(
div �F, 1)C ∞

b (Rn\B(0,1)) = −
ˆ
Sn−1

(
f
∣∣n.t.
∂

(
Rn\B(0,1)

)
)
dσ + [ �F]∞.

(1.4.52)
Finally, the contribution of �F at infinity vanishes if there exists λ ∈ (1,∞) such

that ˆ
B(0,λR)\B(0,R)

| f | dLn = o(R2) as R →∞, (1.4.53)

a scenario in which the Divergence Formula (1.4.52) reduces to

(C ∞
b (Rn\B(0,1)))∗

(
div �F, 1)C ∞

b (Rn\B(0,1)) = −
ˆ
Sn−1

(
f
∣∣n.t.
∂

(
Rn\B(0,1)

)
)
dσ. (1.4.54)

We wish to note that Corollary 1.4.4 is in the nature of best possible. To be
specific, we shall work in the two-dimensional setting and identify R

2 ≡ C. Denote
byD := B(0, 1) the (open) unit disk in the plane, and fix an arbitrary point z ∈ C \ D.
Consider the complex-valued functions

F1(ζ ) := 1

2π

{
1

ζ(1+ ζ )

ζ + z

ζ − z
+ 1

ζ (1+ ζ )

1+ zζ

1− zζ

}
(1.4.55)

and

F2(ζ ) := 1

2π

{
1

ζ(1+ ζ )

ζ + z

ζ − z
− 1

ζ (1+ ζ )

1+ zζ

1− zζ

}
, (1.4.56)

for each ζ ∈ (
C \ D

) \ {z}. Use these scalar-valued functions to define12 the vector
field (with complex-valued components)

�F(ζ ) := (
F1(ζ ), iF2(ζ )

)
for ζ ∈ (

C \ D
) \ {z}. (1.4.57)

It is then clear that

�F ∈ [
L1
loc

(
C \ D,L2

) ∩ C∞(
C \ D

) \ {z})]2, (1.4.58)

and a computation (taking into account the formula for the standard fundamental
solution for the Cauchy–Riemann operator in the plane) shows that

div �F = 2

1+ z
δz in D′(

C \ D
)
, (1.4.59)

hence div �F belongs to E ′(
C \ D

)
. Next, if K is a compact subset of C \ D whose

interior contains z, then (1.4.55)–(1.4.57) and Lemma 8.3.7 allow us to conclude that

12 Inspired by the counterexample to the Schwarz–Pompeiu formula in the complement of the unit
disk discussed in the last part of [186, Sect. 1.1].
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N (C\D)\K
κ

�F ∈ L1,∞(∂D, σ ). (1.4.60)

Moreover, for each ζ = x + iy ∈ (
C \ D

) \ K we have

f (ζ ) := xF1(ζ )+ iyF2(ζ )

= 1

π

ζ + z

ζ − z
Re

[ 1

1+ ζ

]
− 1

π

1

1+ ζ

z(1− |ζ |2)
(1− zζ )(ζ − z)

, (1.4.61)

where the first equality defines f (ζ ), and the second equality uses (1.4.55)–(1.4.56).
Consequently,

(
f
∣∣κ−n.t.
∂

(
C\D

)
)
(ζ ) = 1

2π

ζ + z

ζ − z
for each ζ ∈ S1 = ∂

(
C \ D

)
, (1.4.62)

so a simple residue calculation gives

ˆ
S1

(
f
∣∣n.t.
∂

(
C\D

)
)
dσ = − 1

2π i

ˆ
S1

ζ + z

ζ(ζ − z)
dζ = 1. (1.4.63)

Finally, (1.4.61) implies

| f (ζ )| ≤ CK |ζ |−1 for all ζ ∈ (
C \ D

) \ K , (1.4.64)

hence (1.4.53) with n = 2 is satisfied for any λ ∈ (1,∞). From (1.4.59) and (1.4.63)
we see that the Divergence Formula (1.4.54) presently fails. The source of this fail-

ure is that in place of N (Rn\B(0,1))\K
κ

�F ∈ L1(Sn−1, σ ) (as requested in (1.4.48)) we
currently only have (1.4.60).

Altogether, this analysis shows that the lastmembership in (1.4.48), namelyhaving

N (Rn\B(0,1))\K
κ

�F ∈ L1(Sn−1, σ ) cannot, generally speaking, beweakened to demand-

ing that N (Rn\B(0,1))\K
κ

�F ∈ L1,∞(Sn−1, σ ), even if we now additionally assume that

f
∣∣n.t.
∂

(
Rn\B(0,1)

) belongs to L1(Sn−1, σ ).

1.5 Non-doubling Surface Measures and Maximally
Singular Vector Fields

There is also a version of Theorem 1.4.1 formulated in an open set � ⊆ R
n with-

out imposing the condition that the “surface measure” σ := Hn−1�∂� is doubling.
Remarkably, there is only a relatively small price to pay in this scenario, namely the
loss of flexibility in the choice of the aperture parameter κ ∈ (0,∞) used to define the
nontangential approach regions entering the definition of the nontangential boundary
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trace �F∣∣κ−n.t.
∂�

and the nontangential maximal function Nκ
�F for the given vector field

�F . At the same time, we may further relax the demand made in (1.4.4) on the nature
of the distribution div �F by now merely asking that this may be extended to a func-
tional in the algebraic dual

(
C∞
b (�)

)∗
exhibiting a mild, natural, continuity property

(that is automatically satisfied when (1.4.4) holds).
To concretely state the theorem of the flavor just described, we make a cou-

ple of definitions. Given an open set � ⊆ R
n , call a functional � ∈ (

C∞
b (�)

)∗

continuous provided for each function f ∈ C∞
b (�) one has

lim
j→∞ (C ∞

b (�))
∗
(
�, f j

)
C ∞

b (�) = (C ∞
b (�))

∗
(
�, f

)
C ∞

b (�) (1.5.1)

whenever the sequence

{ f j } j∈N ⊂ C∞
b (�) is such that sup j∈N supx∈� | f j (x)| < +∞ and

for each compact set K ⊂ � there exists some jK ∈ N with the
property that f j ≡ f on K if the integer j ∈ N satisfies j ≥ jK .

(1.5.2)

Also, given u ∈ D′(�) call a functional � ∈ (
C∞
b (�)

)∗
an extension of u pro-

vided
�

∣∣∣
C ∞

c (�)
= u. (1.5.3)

Define the regular support of a given distribution u ∈ D′(�) to be

regsupp u := the smallest relatively closed subset of�
outside of which u is a locally integrable function.

(1.5.4)

Finally, for each truncation parameter ε satisfying 0 < ε < dist(regsupp u, ∂�),
henceforth we shall abbreviate

N ε
κ u := Nκ(u · 1Oε

) where Oε :=
{
x ∈ � : dist(x, ∂�) < ε

}
. (1.5.5)

In view of Corollary 8.9.9, Lemma 4.6.2, and Proposition 8.8.6, the following
result generalizes Theorem 1.4.1.

Theorem 1.5.1 Pickn ∈ Nand let�beanopennonempty proper subset ofRn with a
lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a locally finite measure.
The latter condition forces � to be a set of locally finite perimeter; in particular, its
geometric measure theoretic outward unit normal ν is defined σ -a.e. on ∂∗�. Then
there exists κ� ∈ (0,∞) such that if κ > κ� it follows that the accessibility set

Aκ(∂�) := {
x ∈ ∂� : x ∈ �κ(x)

}
is σ -measurable

and has the property that σ
(
∂∗� \ Aκ(∂�)

) = 0.
(1.5.6)

Moreover, if the vector field
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�F ∈ [
E ′(�)+ L1

loc(�,Ln)
]n ⊂ [

D′(�)
]n

(1.5.7)

satisfies, for some κ > κ�,

for each x ∈ ∂� there exist rx > 0 and εx ∈
(
0, dist(regsupp �F, ∂�)

)

with the property that
ˆ
B(x,rx )∩∂�

N εx
κ
�F dσ < +∞ (1.5.8)

(
a condition automatically satisfiedwheneverN ε

κ
�F belongs to L1

loc(∂�, σ), for some

0 < ε < dist(regsupp �F, ∂�)
)
, as well as

�F∣∣κ−n.t.
∂�

exists σ -a.e. on Aκ(∂�), ν · ( �F ∣∣κ−n.t.
∂�

) ∈ L1(∂∗�, σ), and

div �F ∈ D′(�) extends to a continuous functional in
(
C∞
b (�)

)∗ (1.5.9)

(with the agreement that the symbol div �F is retained for this extension), then the
contribution of �F at infinity is meaningfully and unambiguously defined and one has

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dσ + [ �F]∞. (1.5.10)

Furthermore, one has [ �F]∞ = 0, a scenario in which (1.5.10) simply reduces to

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dσ, (1.5.11)

if either � is bounded, or when

∂� is unbounded and there exists some large R∗ > 0

with regsupp �F ⊆ B(0, R∗) and N�\B(0,R∗)
κ

�F ∈ L1(∂�, σ),
(1.5.12)

or when there exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x) = o(R2) as R →∞. (1.5.13)

We continue with a series of annotations designed to further clarify the scope and
breadth of this theorem.

Annotation 1. From the last part of Lemma 4.6.1 it follows that if the distribution
div �F ∈ D′(�) has an extension to a continuous functional � ∈ (

C∞
b (�)

)∗
then �

is uniquely determined by these properties. An important consequence of this obser-
vation is that retaining the symbol div �F for the functional � is unambiguous. In
particular, the Divergence Formula (1.5.10) has a clear meaning.
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Annotation 2.As regards the nature of the hypothesesmade in its statement, The-
orem 1.5.1 is sharp in every respect. Specifically, in (2.3.30) we indicate (by means
of a concrete counterexample) that the failure of the local integrability condition in
the second line of (1.5.8), even at a single point x ∈ ∂�, may invalidate the Diver-
gence Formula recorded in (1.5.11), evenwhenwe assume thatNκ

�F ∈ L1,∞(∂�, σ)

and ν · ( �F∣∣n.t.
∂�

) ∈ L1(∂∗�, σ), or that �F∣∣n.t.
∂�
∈ L1(∂�, σ). Next, the requirement that

�F∣∣κ−n.t.
∂�

exists at σ -a.e. point on Aκ(∂�) made in (1.5.9) cannot be relaxed to merely

asking that �F∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂∗�. This is apparent from (2.1.17), or
(2.1.47), or (2.1.64), or (2.1.87), or (2.1.102). Also, the role of the lower Ahlfors
regularity assumption on the boundary, made in Theorem 1.5.1, is highlighted by
(2.4.9) and (2.4.18), while the necessity of considering div �F in the sense of distribu-
tions has been justified in (2.5.13). Lastly, that o(R2)may not be replaced by O(R2)

in the formulation of the growth condition (1.5.13) has been pointed out in (2.2.15).

Annotation 3. In the case when � is bounded, (1.5.11) implies a more general
version of itself of the following sort:

(C ∞
b (�))

∗
(
div �F, f )C ∞

b (�) = −
ˆ
�

∇ f · �F dLn +
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
f dσ (1.5.14)

for each function f ∈ C∞
b (�) ∩ C 0(�) such that the distribution ∇ f · �F actually

belongs to L1(�,Ln). Indeed, this may be seen by applying (1.5.11) to the vector
field f �F , keeping in mind that its divergence (originally considered in the sense
of distributions in �) may be extended to a continuous functional in

(
C∞
b (�)

)∗

according to

(C ∞
b (�))

∗
(
div( f �F), g

)
C ∞

b (�) :=
ˆ
�

(∇ f · �F)g dLn

+ (C ∞
b (�))

∗
(
div �F, f g)C ∞

b (�) (1.5.15)

for each g ∈ C∞
b (�).

Annotation 4. We also wish to note that the local integrability condition for
the truncated nontangential maximal function recorded in (1.5.8) is automatically
satisfied whenever �F is locally bounded at boundary points, i.e., when for each
x ∈ ∂� there exists some rx ∈ (0,∞) such that �F ∈ [

L∞
(
B(x, rx ) ∩�,Ln

)]n
. In

particular, this is the case when there exists some closed set S ⊂ �with the property
that �F∣

∣
�\S extends to

[
C 0(� \ S)]n .

Annotation 5. If σ is a doubling measure, then any κ > 0 will do, and Aκ(∂�)

may be replaced by ∂nta�.

Annotation 6. Reflecting back on the statements of Theorems 1.2.1, 1.3.1, 1.4.1,
and 1.5.1, the emerging philosophy is that while the lower Ahlfors regularity of ∂� is
a common assumption, having the surface measure σ = Hn−1�∂� doubling enables
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us to harmlessly change the aperture parameter κ in the nontangential approach
regions used to define the nontangential boundary trace, but otherwise we may only
request that σ is a locally finite measure without drastically affecting the format of
the Divergence Formula.

Annotation 7. By specializing Theorem 1.5.1 to the two-dimensional setting we
obtain a version of Green’s Formula (1.4.16) in which now themeasure σ := H1�∂�
is no longer assumed to be doubling.

Annotation 8. It turns out that condition (1.5.13) is automatically satisfied when
either � is bounded, or when

∂� is unbounded and there exists some large R∗ > 0

with regsupp �F ⊆ B(0, R∗) and N�\B(0,R∗)
κ

�F ∈ L1(∂�, σ).
(1.5.16)

Indeed, this follows from the last part in Lemma 4.7.3 (used with � \ B(0, Ro) in
place of �) and (8.6.51) (used with E := � \ B(0, Ro)).

Annotation 9. The proof of Theorem 1.5.1 is presented in Sect. 9.3.

In applications, it is useful to have a version of the Divergence Theorem in a
context which assumes the “surface measure” to be doubling (as in Theorem 1.4.1)
but allows the divergence of the vector field to be essentially “maximally singular”
(as in Theorem 1.5.1). Compared with Theorem 1.5.1, the gain is the ability of
considering arbitrary aperture parameters. Compared with Theorem 1.4.1, the gain
is a less demanding hypothesis on the divergence of the vector field in question. Our
next corollary accomplishes just that.

Corollary 1.5.2 Fix n ∈ N and let� be an open nonempty proper subset of Rn with
a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling measure
on ∂�. In particular,� is a set of locally finite perimeter, and its geometric measure
theoretic outward unit normal ν is defined σ -a.e. on ∂∗� (which, up to a σ -nullset,
is contained in ∂nta�). Fix κ ∈ (0,∞) arbitrary and assume that the vector field

�F ∈ [
E ′(�)+ L1

loc(�,Ln)
]n ⊂ [

D′(�)
]n

(1.5.17)

satisfies

N ε
κ
�F ∈ L1(∂�, σ) for some 0 < ε < dist(regsupp �F, ∂�),

the nontangential trace �F∣∣κ−n.t.
∂�

exists σ -a.e. on ∂nta�, and

div �F ∈ D′(�) extends to a continuous functional in
(
C∞
b (�)

)∗

(for which the symbol div �F ∈ (
C∞
b (�)

)∗
is henceforth retained ).

(1.5.18)

Then for any κ ′ > 0 the nontangential trace �F∣∣κ
′−n.t.

∂�
exists σ -a.e. on ∂nta� and

is actually independent of κ ′. Also, the contribution of �F at infinity (cf. (1.3.2)–
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(1.3.3)) is meaningfully and unambiguously defined and, with the dependence on the
parameter κ ′ dropped, one has

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣n.t.
∂�

)
dσ + [ �F]∞. (1.5.19)

Furthermore, one has [ �F]∞ = 0, a scenario in which (1.5.19) simply reduces to

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣n.t.
∂�

)
dσ, (1.5.20)

if either � is bounded, or when

∂� is unbounded and there exists some large R∗ > 0

with regsupp �F ⊆ B(0, R∗) and N�\B(0,R∗)
κ

�F ∈ L1(∂�, σ),
(1.5.21)

or when there exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x) = o(R2) as R →∞. (1.5.22)

Finally,

all the above conclusions remain valid if the condition in the first line
of (1.5.18) is replaced by the demand that N ε

κ
�F belongs to L1

loc(∂�, σ)

for some 0 < ε < dist(regsupp �F, ∂�) together with the membership

ν · ( �F ∣∣κ−n.t.
∂�

) ∈ L1(∂∗�, σ).

(1.5.23)

The proof of Corollary 1.5.2 is given in Sect. 9.3.

1.6 Divergence Formulas Without Lower Ahlfors
Regularity

Apermanency in the statements of our brands ofDivergenceTheorems so far has been
the assumption that the domains involved have lowerAhlfors regular boundaries. The
main goal of this section is to explore scenarios in which a version of the Divergence
Theoremmay be formulated in domains which may not have a lower Ahlfors regular
boundary. Necessarily, stronger hypotheses should be imposed on the intervening
vector fields. This being said, as in the past, we insist on having these vector fields
defined exclusively inside the domains in question (again, in contrast to the classical
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De Giorgi–Federer result recalled in Theorem 1.1.1, where the vector fields are
completely unrelated to the underlying domain).

Here is our first result of this flavor (the notion of upper Minkowski content is
reviewed in Definition 4.5.1).

Theorem 1.6.1 Let �̃ be a nonempty bounded open subset of R
n (where n ∈ N)

with a lower Ahlfors regular boundary satisfying Hn−1(∂�̃) < +∞. Suppose K is
a compact subset of �̃ of finite upper (n − d)-dimensional Minkowski content for
some d > 1 and define� := �̃ \ K. Also, fix a compact set Ko ⊆ �. Next, consider
a vector field

�F ∈ [
L

d
d−1 (�,Ln)+ E ′

Ko
(�)

]n ⊂ [
D′(�)

]n
(1.6.1)

satisfying, for some sufficiently large aperture parameter κ = κ�̃ ∈ (0,∞),

there exists some ε ∈ (
0, dist(Ko, ∂�)

)

with the property that
ˆ
∂�

N ε
κ
�F dHn−1 < +∞,

(1.6.2)

as well as

the boundary trace �F∣
∣κ−n.t.
∂�

exists Hn−1 -a.e. on Aκ(∂�) \ K and

div �F, computed in D′(�), belongs to L1(�,Ln)+ E ′
Ko

(�).
(1.6.3)

Then� is a set of locally finite perimeter, the nontangential boundary trace �F∣∣κ−n.t.
∂�

exists at Hn−1-a.e. point on ∂∗� and actually belongs to L1(∂∗�,Hn−1) and, with
ν denoting the geometric measure theoretic outward unit normal to �, one has

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dHn−1. (1.6.4)

Furthermore, the same result is valid for d = 1
(
with L

d
d−1 (�,Ln) in (1.6.1)

now interpreted as L∞(�,Ln)
)
if the set K is assumed to have vanishing upper

(n − 1)-dimensional Minkowski content.

Note 1. Even though the auxiliary set �̃ is assumed to have a lower Ahlfors reg-
ular boundary, in general there is no reason to expect that � := �̃ \ K has a lower
Ahlfors regular boundary. To see this, consider �̃ := {x ∈ R

n : |x | < 1}, where
n ≥ 2, and K := {0} which is a compact subset of �̃ having finite 0-dimensional
upper Minkowski content. In such a scenario, the boundary of � := B(0, 1) \ {0}
fails to satisfy the lower Ahlfors regularity condition at 0 ∈ ∂�. Hence, in contrast
to our earlier results, the Divergence Formula (1.6.4) involves a set which may not
have a lower Ahlfors regular boundary.

Note 2.Theorem 1.6.1 is sharp in the following precise sense. If �̃ := B(0, 1) is the
unit ball inR

n with n ≥ 2, and K := {0}, then K ⊂ �̃ is a compact set of finite upper
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0-dimensional Minkowski content (cf. Definition 4.5.1). Taking �F(x) := x/|x |n for
Ln-a.e. x ∈ � = B(0, 1) \ {0} then invalidates (1.6.4), even though (1.6.2)–(1.6.3)
are satisfied (with, say, Ko := ∅). The issue is that the membership in (1.6.1) fails
for d := n, even though �F ∈ [

L
n

n−1 ,∞(�,Ln)
]n
.

Note 3. The proof of Theorem 1.6.1 is given in Sect. 9.4.

Several consequences of Theorem 1.6.1 of independent interest are singled out in
a series of corollaries below.

Corollary 1.6.2 Let �̃ be a nonempty bounded open subset ofRn (for n ∈ N, n ≥ 2)
with a lower Ahlfors regular boundary satisfying Hn−1(∂�̃) < +∞. Also, suppose
K is a compact subset of �̃ of finite upper (n − d)-dimensional Minkowski content
for some d > 1 and such that Hn−1(K ) < +∞. Define the set � := �̃ \ K, abbre-
viate σ := Hn−1�∂�, and denote by ν the geometric measure theoretic outward unit
normal to �. In this context, consider a vector field

�F ∈ [
L∞(�,Ln)

]n ⊂ [
D′(�)

]n
(1.6.5)

with the property that, for some sufficiently large κ = κ�̃ ∈ (0,∞),

�F∣∣κ−n.t.
∂�

exists at σ -a.e. point on Aκ(∂�) \ K , and

div �F, computed in D′(�), belongs to L1(�,Ln).
(1.6.6)

Then the nontangential trace �F∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂∗� and, as a func-
tion, actually belongs to L1(∂∗�, σ). Also,

ˆ
�

div �F dLn =
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dσ. (1.6.7)

Furthermore, the same results are valid for d = 1 if the compact set K is now
assumed to have vanishing upper (n − 1)-dimensional Minkowski content.

The case when K = ∅ is already of interest. The proof of Corollary 1.6.2 is
presented in Sect. 9.4.

Corollary 1.6.3 Let �̃ be a nonempty bounded open subset of R
n (where n ∈ N,

n ≥ 2)with a lower Ahlfors regular boundary satisfyingHn−1(∂�̃) < +∞. Suppose
K is a compact subset of �̃ of finite upper (n − d)-dimensional Minkowski content
for some d > 1 and such that Hn−1(K ) < +∞. Define � := �̃ \ K and consider a
vector field

�F ∈ [
L∞(�,Ln)

]n
with the property that

div �F, computed in D′(�), belongs to L1(�,Ln),
(1.6.8)

such that
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�Fb(x) := lim
��y→x

�F(y) exists at Hn−1-a.e. x ∈ ∂� \ K . (1.6.9)

Then �Fb belongs to L1(∂∗�,Hn−1) and, with ν denoting the geometric measure
theoretic outward unit normal to �, one has

ˆ
�

div �F dLn =
ˆ
∂∗�

ν · �Fb dHn−1. (1.6.10)

Furthermore, the same result is valid for d = 1 if the compact set K is assumed
to have vanishing upper (n − 1)-dimensional Minkowski content.

Again, the case when K = ∅ is already significant. See Sect. 9.4 for a proof of
Corollary 1.6.3.

Corollary 1.6.4 Let � be a nonempty bounded open subset of R
2 with the property

that ∂� has finitely many connected components and H1(∂�) < +∞. Abbreviate
σ := H1�∂� and denote by ν the geometric measure theoretic outward unit normal
to �. Finally, consider a vector field

�F ∈ [
L∞(�,L2)

]2
with the property that

div �F, computed in D′(�), belongs to L1(�,Ln),
(1.6.11)

such that
�Fb(x) := lim

��y→x
�F(y) exists at σ -a.e. x ∈ ∂�. (1.6.12)

Then �Fb belongs to L1(∂∗�,H1) and one has

ˆ
�

div �F dL2 =
ˆ
∂∗�

ν · �Fb dσ. (1.6.13)

The proof of Corollary 1.6.4 is given in Sect. 9.4.

Corollary 1.6.5 Let � be a nonempty bounded open subset of R
2 with the property

that ∂� has finitely many connected components and H1(∂�) < +∞. Abbreviate
σ := H1�∂� and denote by ν the geometric measure theoretic outward unit normal
to �. Next, fix a compact set Ko ⊆ � and consider a vector field

�F ∈ [
L2(�,L2)+ E ′

Ko
(�)

]2 ⊂ [
D′(�)

]2
(1.6.14)

satisfying, for some sufficiently large aperture parameter κ = κ� ∈ (0,∞) and some
truncation parameter ε ∈ (

0, dist(Ko, ∂�)
)
,

ˆ
∂�

N ε
κ
�F dσ < +∞, (1.6.15)



56 1 Statement of Main Results Concerning the Divergence Theorem

as well as

the nontangential trace �F∣∣κ−n.t.
∂�

exists σ -a.e. on Aκ(∂�) and

div �F, computed in D′(�), belongs to L1(�,L2)+ E ′
Ko

(�).
(1.6.16)

Then �F∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂∗� and, as a function, actually belongs to
L1(∂∗�, σ). Moreover,

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dσ. (1.6.17)

Again, see Sect. 9.4 for a proof of Corollary 1.6.5.
We conclude this section with the following refined version of the classical Green

formula in the plane, accompanying our earlier result of this flavor in Theorem 1.2.5
(see Sect. 9.4 for a proof).

Corollary 1.6.6 Let � be a nonempty bounded open subset of R
2 with the property

that ∂� has finitely many connected components and H1(∂�) < +∞. Abbreviate
σ := H1�∂� and denote by ν the geometric measure theoretic outward unit normal
to�. Also, under the identificationR

2 ≡ C, consider τ := iν, the positively oriented
geometric measure theoretic unit tangent vector13 to the boundary of �. Finally, fix
a sufficiently large aperture parameter κ ∈ (0,∞) along with some small truncation
parameter ε > 0 and assume P, Q are two complex-valued functions defined in �

with the following properties:

the functions P and Q belong to the space L2(�,L2),

the boundary traces P
∣∣κ−n.t.
∂�

and Q
∣∣κ−n.t.
∂�

exist σ -a.e. on Aκ(∂�),

N ε
κ P, N ε

κ Q ∈ L1(∂�, σ), and ∂x Q − ∂y P belongs to L1(�,L2),

(1.6.18)

where all partial derivatives are considered in the sense of distributions in �.

Then the nontangential traces P
∣∣κ−n.t.
∂�

and Q
∣∣κ−n.t.
∂�

exist σ -a.e. on ∂∗� belong to
L1(∂∗�, σ), and

ˆ
∂∗�

(
P

∣∣κ−n.t.
∂�

, Q
∣∣κ−n.t.
∂�

) · τ dσ =
ˆ
�

(
∂x Q − ∂y P

)
dL2. (1.6.19)

Furthermore, if α, β ∈ [0, π ] denote the angles made by the positively oriented
unit tangent vector τ with the coordinate axes in the plane, then in terms of the
“differentials”

dx := cosα H1�∂∗� and dy := cosβ H1�∂∗� (1.6.20)

13 See (5.6.29)–(5.6.31) in this regard.
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formula (1.6.19) may be recast as

ˆ
∂∗�

(
P

∣∣κ−n.t.
∂�

)
dx + (

Q
∣∣κ−n.t.
∂�

)
dy =

ˆ
�

(
∂x Q − ∂y P

)
dL2. (1.6.21)

1.7 Integration by Parts in Open Sets with Ahlfors Regular
Boundaries

Let us specialize Theorem 1.2.1 to the case when the vector field involved has the
particular form

�F = uw e j = (0, . . . , 0, uw, 0, . . . , 0) : � −→ C
n (1.7.1)

for some complex-valued functions u, w defined on �. In view of the Leibniz for-
mula for weak derivatives from Proposition 4.3.1, this then produces the following
integration by parts formula.

Theorem 1.7.1 Pick n ∈ N and let� be an open nonempty proper subset ofRn with
a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling measure
on ∂�. This implies that � is a set of locally finite perimeter, and its geometric
measure theoretic outward unit normal ν = (ν1, . . . , νn) is defined σ -a.e. on ∂∗�.
Fix κ, κ ′ > 0 and suppose u, w : �→ C are two Ln-measurable functions with the
property that

Nκu <∞ and Nκ ′w <∞ at σ -a.e. point on ∂�,

Nκu ·Nκ ′w belongs to the space L1(∂�, σ),

u
∣∣κ−n.t.
∂�

, w
∣∣κ
′−n.t.

∂�
exist at σ -a.e. point on ∂nta�,

(1.7.2)

(in particular, u, w ∈ L1
loc(�,Ln); cf. Lemma 8.3.1). Also, pick j ∈ {1, . . . , n} and

assume, with all partial derivatives considered in the sense of distributions in�, that

∂ j u, ∂ jw ∈ L1
loc(�,Ln) and u ∂ jw + w∂ j u ∈ L1(�,Ln). (1.7.3)

Then, with the nontangential traces u
∣∣κ−n.t.
∂�

, w
∣∣κ
′−n.t.

∂�
regarded as functions defined

σ -a.e. on ∂∗� (which, up to a σ -nullset, is contained in ∂nta�), their product belongs
to L1(∂∗�, σ) and one has

ˆ
�

{
u∂ jw + w∂ j u

}
dLn =

ˆ
∂∗�

ν j
(
u
∣∣κ−n.t.
∂�

)(
w

∣∣κ
′−n.t.

∂�

)
dσ (1.7.4)
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in the case when either � is bounded, or ∂� is unbounded. Furthermore, formula
(1.7.4) also holds if � is unbounded and ∂� is bounded provided there exists some
λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|u||w| dLn = o(R) as R →∞. (1.7.5)

In the context of Theorem 1.7.1, the memberships

u, w ∈ L1
loc(�,Ln) and uw ∈ L1

loc(�,Ln) (1.7.6)

are consequences of Lemma 8.3.1 and the assumptions in the first line of (1.7.2). In
particular, it is meaningful to consider

∂ j u, ∂ jw, ∂ j (uw) ∈ D′(�). (1.7.7)

It should also be noted that, when the last condition in (1.7.3) is strengthened to

u∂ jw ∈ L1(�,Ln) and w∂ j u ∈ L1(�,Ln), (1.7.8)

then in place of (1.7.4) we may write

ˆ
�

u∂ jw dLn = −
ˆ
�

w∂ j u dLn +
ˆ
∂∗�

ν j
(
u
∣∣n.t.
∂�

)(
w

∣∣n.t.
∂�

)
dσ, (1.7.9)

which is more in line with the traditional format of an integration by parts formula.
Finally, we remark that the properties demanded in the first two lines of (1.7.2)

are satisfied if, for example,

Nκu ∈ L p(∂�, σ) and Nκ ′w ∈ L p′(∂�, σ)

for some p, p′ ∈ [1,∞] with 1/p + 1/p′ = 1.
(1.7.10)

Moreover, in such a scenario Proposition 8.9.8 guarantees that

for each κ ′′ ∈ (0,∞) the nontangential traces u
∣∣κ
′′−n.t.

∂�
, w

∣∣κ
′′−n.t.

∂�

exist σ -a.e. on the set ∂nta�, and are actually independent of κ ′′.
(1.7.11)

One very useful extension of Theorem 1.7.1 is by allowing more general differen-
tial operators than individual first-order partial derivatives. Specifically, consider an
N × N ′ first-order system (where N , N ′ ∈ N are arbitrary) with constant complex
coefficients

D =
( n∑

j=1
aαβ

j ∂ j + bαβ
)
1≤α≤N
1≤β≤N ′

. (1.7.12)
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We shall refer to D as being homogeneous if all zero-th order terms vanish, i.e.,
if bαβ = 0 for all α, β. Denote by D� the real transpose of D, i.e., the N ′ × N
first-order system given by

D� :=
(
−

n∑

j=1
aαβ

j ∂ j + bαβ
)
1≤β≤N ′
1≤α≤N

, (1.7.13)

by D the complex conjugate of D, i.e.,

D :=
( n∑

j=1
aαβ

j ∂ j + bαβ

)
1≤α≤N
1≤β≤N ′

, (1.7.14)

and by D∗ the Hermitian adjoint of D, i.e.,

D∗ := (D�) = (D)� =
(
−

n∑

j=1
aαβ

j ∂ j + bαβ

)
1≤β≤N ′
1≤α≤N

. (1.7.15)

Also, define the principal symbol of D as the N × N ′ matrix

Sym(D; ξ) := i
( n∑

j=1
aαβ

j ξ j

)
1≤α≤N
1≤β≤N ′

for each ξ = (ξ1, . . . , ξn) ∈ R
n. (1.7.16)

In particular, the principal symbol satisfies the transposition, complex conjugation,
Hermitian adjunction, and commutator laws:

Sym
(
D�; ξ) = (−1)Sym(D; ξ)�, (1.7.17)

Sym
(
D; ξ) = (−1)Sym(D; ξ), (1.7.18)

Sym
(
D∗; ξ) = Sym(D; ξ)∗, (1.7.19)

(−i)Sym(D; ∇ϕ) = [D, ϕ], (1.7.20)

for every real-valued function ϕ of class C 1 (also identified with the operator of
pointwise multiplication by ϕ) where, generally speaking, [A, B] stands for the
commutator AB − BA of the operators A, B. It is also of interest to observe that

if D is a homogeneous first-order system
inR

n then D = ∑n
j=1(−i)Sym(D; e j )∂ j .

(1.7.21)

Finally, for each generic integer M ∈ N, let us also agree to denote by 〈·, ·〉 the (real)
inner product in C

M , namely
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〈a, b〉 :=
M∑

k=1
akbk for every a = (ak)1≤k≤M ∈ C

M and b = (bk)1≤k≤M ∈ C
M .

(1.7.22)

Theorem 1.7.2 Let� be an open nonempty proper subset of Rn, where n ∈ N, with
a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling measure
on ∂�. In particular,� is a set of locally finite perimeter, and its geometric measure
theoretic outward unit normal ν is defined σ -a.e. on ∂∗�.

In this context, consider an N × N ′ first-order system D, with constant complex
coefficients in R

n, and suppose u : �→ C
N ′

and w : �→ C
N are two Lebesgue

measurable vector-valued functions with the property that, for some κ, κ ′ > 0,

Nκu <∞ and Nκ ′w <∞ at σ -a.e. point on ∂�,

Nκu ·Nκ ′w belongs to the space L1(∂�, σ),

u
∣∣κ−n.t.
∂�

, w
∣∣κ
′−n.t.

∂�
exist at σ -a.e. point on ∂nta�,

Du ∈ [
L1
loc(�,Ln)

]N
, D�w ∈ [

L1
loc(�,Ln)

]N ′
,

and
〈
Du, w

〉− 〈
u, D�w

〉
belongs to L1(�,Ln).

(1.7.23)

Then, with u
∣
∣κ−n.t.
∂�

, w
∣
∣κ
′−n.t.

∂�
regarded as functions defined σ -a.e. on ∂∗� (which,

up to a σ -nullset, is contained in ∂nta�) the following formula, involving absolutely
convergent integrals,

ˆ
�

{〈
Du, w

〉− 〈
u, D�w

〉}
dLn =

ˆ
∂∗�

〈
(−i)Sym(D; ν)(u∣∣κ−n.t.

∂�

)
, w

∣∣κ
′−n.t.

∂�

〉
dσ,

(1.7.24)

holds in the case when either � is bounded, or ∂� is unbounded. Furthermore,
formula (1.7.24) also holds if � is unbounded and ∂� is bounded provided there
exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|u||w| dLn = o(R) as R →∞. (1.7.25)

As a corollary, if the integrability condition in the last line of (1.7.23) is strength-
ened to 〈

Du, w
〉 ∈ L1(�,Ln) and

〈
u, D�w

〉 ∈ L1(�,Ln) (1.7.26)

then (1.7.24) may be refashion as the integration by parts formula

ˆ
�

〈
Du, w

〉
dLn =

ˆ
�

〈
u, D�w

〉
dLn +

ˆ
∂∗�

〈
(−i)Sym(D; ν)(u∣∣κ−n.t.

∂�

)
, w

∣∣κ
′−n.t.

∂�

〉
dσ.

(1.7.27)
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For example, the assumptions in the first two lines of (1.7.23) are satisfied if

Nκu ∈ L p(∂�, σ) and Nκ ′w ∈ L p′(∂�, σ)

for some p, p′ ∈ [1,∞] with 1/p + 1/p′ = 1.
(1.7.28)

In such a scenario, Proposition 8.9.8 ensures that

for each κ ′′ ∈ (0,∞) the nontangential traces u
∣∣κ
′′−n.t.

∂�
,

w
∣∣κ
′′−n.t.

∂�
exist σ -a.e. on ∂nta�, and are independent of κ ′′.

(1.7.29)

While the main tool in the proof of the above theorem (presented in Sect. 9.5) is
Theorem 1.2.1, we could have based the proof on Theorem 1.3.1 instead. In view
of the format of the latter theorem, other versions of Theorem 1.7.2 then become
possible. For example, in place of the last two lines in (1.7.23) we may demand that

Du = (μα)1≤α≤N ∈
[
CBM(�)

]N
, D�w = (λβ)1≤β≤N ′ ∈ [

CBM(�)
]N ′

,

wα ∈ L1(�, |μα|) for α ∈ {1, . . . , N }, uβ ∈ L1(�, |λβ |) for β ∈ {1, . . . , N ′},
and either u = (uβ)1≤β≤N ′ and w = (wα)1≤α≤N are continuous in �,

or |μα| << Ln for α ∈ {1, . . . , N } and |λβ | << Ln for β ∈ {1, . . . , N ′}.
(1.7.30)

In such a scenario, the integration by parts formula (1.7.27) takes the form

∑

1≤α≤N

ˆ

�

wαdμα =
∑

1≤β≤N ′

ˆ

�

uβ dλβ +
ˆ

∂∗�

〈
(−i)Sym(D; ν)(u∣∣n.t.

∂�

)
, w

∣∣n.t.
∂�

〉
dσ.

(1.7.31)

Also, taking inspiration from (1.3.6), we may replace the second line in (1.7.23)
by

Nκu ·Nκ ′w ∈ L1
loc(∂�, σ) and

〈
Sym(D; ν)(u∣∣κ−n.t.

∂�

)
, w

∣
∣κ
′−n.t.

∂�

〉
∈ L1(∂∗�, σ),

(1.7.32)

inwhich case (1.7.24) remains valid providedwe also ask that there exists λ ∈ (1,∞)

such that (1.7.25) holds.
As regards the optimality of Theorem 1.7.2, a glimpse is offered by considering

the special case when n = 1,� = (a, b) ⊂ R is a finite open interval, and D = d/dx
is the ordinary derivative on the real line. Then Theorem 1.7.2 asserts that for any
functions u, w ∈ L∞

(
(a, b),L1

)
with weak derivatives u′, w′ in L1

loc

(
(a, b),L1

)
,

such that u′w and uw′ are in L1
(
(a, b),L1

)
, and the limits u(a+) := lim

x→a+
u(x),

w(a+) := lim
x→a+

w(x), u(b−) := lim
x→b−

u(x), w(b−) := lim
x→b−

w(x) exist, we have
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ˆ b

a
u′w dL1 = u(b−)w(b−)− u(a+)w(a+)−

ˆ b

a
uw′ dL1. (1.7.33)

The special case when u ∈ AC
([a, b]) and w = 1 yields the sharp Fundamental

Theorem of Calculus stated in (1.1.1).
Specializing Theorem 1.7.2 to the case when u, w are null-solutions of D and D�,

respectively, yields the following remarkable corollary (which plays an important role
in the context of Hardy spaces associated with first-order systems; cf. the discussion
in [186, Sect. 3.2]).

Corollary 1.7.3 Retain the assumptions made on the set � ⊆ R
n and the N × N ′

first-order system D in Theorem 1.7.2, and suppose u : �→ C
N ′

andw : �→ C
N

are two Lebesgue measurable functions with the property that, for some κ, κ ′ > 0,

Nκu <∞ and Nκ ′w <∞ at σ -a.e. point on ∂�,

Nκu ·Nκ ′w belongs to the space L1(∂�, σ),

both u
∣∣κ−n.t.
∂�

and w
∣∣κ
′−n.t.

∂�
exist at σ -a.e. point on ∂nta�,

Du = 0 and D�w = 0 in the sense of distributions in �.

(1.7.34)

Then the cancelation property

ˆ
∂∗�

〈
(−i)Sym(D; ν)(u∣∣κ−n.t.

∂�

)
, w

∣
∣κ
′−n.t.

∂�

〉
dσ = 0 (1.7.35)

is valid in the case when either � is bounded, or ∂� is unbounded. Moreover,
formula (1.7.35) is also valid if � is unbounded and ∂� is bounded provided there
exists λ ∈ (1,∞) such that (1.7.25) holds.

Specializing Theorem 1.7.2 to the case when the system D is homogeneous andw

is chosen to be an arbitrary constant CN -valued function yields at once the following
corollary.

Corollary 1.7.4 Let� be an open nonempty proper subset ofRn, where n ∈ N, with
a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling measure
on ∂�. In particular,� is a set of locally finite perimeter, and its geometric measure
theoretic outward unit normal ν is defined σ -a.e. on ∂∗�. In this context, consider
a homogeneous N × N ′ first-order system D, with constant complex coefficients in
R

n, and suppose u : �→ C
N ′
is a Lebesguemeasurable vector-valued function with

the property that, for some κ > 0,

Nκu ∈ L1(∂�, σ), Du ∈ [
L1(�,Ln)

]N
,

and u
∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂nta�.
(1.7.36)

Then, with u
∣
∣κ−n.t.
∂�

regarded as a function defined σ -a.e. on ∂∗� (which, up to a
σ -nullset, is contained in ∂nta�), the following formula
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ˆ
�

Du dLn =
ˆ
∂∗�

(−i)Sym(D; ν)(u∣∣κ−n.t.
∂�

)
dσ (1.7.37)

holds in the case when either � is bounded, or ∂� is unbounded. Furthermore,
formula (1.7.37) also holds if � is unbounded and ∂� is bounded provided there
exists λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|u| dLn = o(R) as R →∞. (1.7.38)

It is interesting to re-state Corollary 1.7.4 in the special case when� := R
n+ with

n ≥ 2.Due to the specific nature of this geometric environment, we are able to require
less when it comes to demanding the existence of the nontangential boundary trace
in the second line of (1.7.36). Concretely, we have the following result, which is
proved by relying on Corollary 1.7.4 and a regularization argument in precisely the
same manner in which Corollary 1.2.2 has been deduced from Theorem 1.2.1 (cf.
Sect. 9.1).

Corollary 1.7.5 Fix n ∈ N with n ≥ 2, and consider a homogeneous N × N ′ first-
order system D, with constant complex coefficients in R

n. Suppose u : R
n+ → C

N ′

is a Lebesgue measurable vector-valued function with the property that, for some
aperture parameter κ > 0,

Nκu ∈ L1(Rn−1,Ln−1), Du ∈ [
L1(Rn+,Ln)

]N
, and

[
Sym(D; en)u

]∣∣κ−n.t.
∂Rn+

exists Ln−1-a.e. on R
n−1 ≡ ∂R

n+.
(1.7.39)

Then the following formula, involving absolutely convergent integrals, holds:

ˆ
R

n+
Du dLn =

ˆ
Rn−1

i
[
Sym(D; en)u

]∣∣κ−n.t.
∂Rn+

dLn−1. (1.7.40)

For example, the choice D := div (which entails N = 1 and N ′ = n) in Corol-
lary 1.7.5 yields precisely the version of the Divergence Theorem recorded in Corol-
lary 1.2.2.

A suitable version ofTheorem1.7.2 holdswhen D is the standardDirac operator in
R

n , and when the functions involved take values in the Clifford algebra (C�n,+,�),
canonically associated with R

n as discussed in Sect. 6.4.

Theorem 1.7.6 Assume � is an open nonempty proper subset of R
n, where n ∈

N, with a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling
measure on ∂�; in particular, � is a set of locally finite perimeter. Canonically
identify its geometric measure theoretic outward unit normal ν = (ν1, . . . , νn) with
the C�n-valued function ν = ∑n

j=1 ν je j defined σ -a.e. on ∂∗� (cf. (6.4.3)).
Suppose u, w : �→ C�n are two Lebesgue measurable Clifford algebra-valued

functions with the property that, for some κ, κ ′ > 0,
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Nκu <∞ and Nκ ′w <∞ at σ -a.e. point on ∂�,

Nκu ·Nκ ′w belongs to the space L1(∂�, σ),

u
∣
∣κ−n.t.
∂�

, w
∣
∣κ
′−n.t.

∂�
exist in C�n at σ -a.e. point on ∂nta�,

DRu ∈ L1
loc(�,Ln)⊗ C�n, DLw ∈ L1

loc(�,Ln)⊗ C�n,
(DRu)� w + u � (DLw) belongs to L1(�,Ln)⊗ C�n,

(1.7.41)

where DL and DR denote the action of the Dirac operator D := ∑n
j=1 e j � ∂ j on

a given C�n-valued distribution from the left and from the right, respectively (cf.
(6.4.48)–(6.4.49)).

Then, with the nontangential traces u
∣∣κ−n.t.
∂�

, w
∣∣κ
′−n.t.

∂�
regarded as C�n-valued func-

tions defined σ -a.e. on ∂∗� (which, up to a σ -nullset, is contained in ∂nta�), the
following formula, involving absolutely convergent integrals,

ˆ
∂∗�

(
u
∣∣κ−n.t.
∂�

)� ν � (
w

∣∣κ
′−n.t.

∂�

)
dσ

=
ˆ
�

{
(DRu)� w + u � (DLw)

}
dLn (1.7.42)

holds in the case when either� is bounded, or ∂� is unbounded. Moreover, formula
(1.7.42) also holds if � is unbounded and ∂� is bounded provided there exists
λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|u||w| dLn = o(R) as R →∞. (1.7.43)

In particular, if the integrability condition in the last line of (1.7.41) is strength-
ened to

(DRu)� w ∈ L1(�,Ln) and u � (DLw) ∈ L1(�,Ln) (1.7.44)

then (1.7.42) may be reformulated as the integration by parts formula

ˆ
�

(DRu)� w dLn = −
ˆ
�

u � (DLw) dLn

+
ˆ
∂∗�

(
u
∣∣κ−n.t.
∂�

)� ν � (
w

∣∣κ
′−n.t.

∂�

)
dσ. (1.7.45)

The proof of Theorem 1.7.6 is given in Sect. 9.5. Once again, the assumptions in
the first two lines of (1.7.41) are satisfied if we impose (1.7.28), in which scenario
Proposition 8.9.8 ensures that (1.7.29) holds.
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1.8 Higher-Order Integration by Parts

Herewe are concernedwith a higher-order version of the integration by parts formula
proved in Theorem1.7.1. To be able to state our first result of this nature, we introduce
a brand of Sobolev spaces in relation to a specified arbitrary multi-index α ∈ N

n
0.

Definition 1.8.1 Let� ⊆ R
n be an open set. For each multi-index α ∈ N

n
0 and each

exponent p ∈ [1,∞] define the “partial” Sobolev space W α,p
loc (�) as

W α,p
loc (�) :=

{
u ∈ L p

loc(�,Ln) : ∂βu ∈ L p
loc(�,Ln) for all β ∈ N

n
0, β ≤ α

}
.

(1.8.1)

The reader is also reminded about our convention of denoting by e j , for each
j ∈ {1, . . . , n}, the multi-index in N

n
0 of length one with 1 on the j-th component.

We are now ready to state our higher-order integration by parts formula alluded to
earlier.

Theorem 1.8.2 Let n ∈ N and assume � is an open nonempty proper subset of
R

n with a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling
measure on ∂�.Denote by ν = (ν1, . . . , νn) the geometricmeasure theoretic outward
unit normal to�. Also, fix a multi-index α ∈ N

n
0 along with some aperture parameter

κ ∈ (0,∞). In this setting, suppose u, w ∈ W α,1
loc (�) are two scalar-valued functions

such that
(∂αu) · w − (−1)|α|u · (∂αw) ∈ L1(�,Ln) (1.8.2)

and, for all multi-indices β, γ ∈ N
n
0 with β + γ < α and |β| + |γ | = |α| − 1, the

following properties hold:

(1) Nκ(∂
βu), Nκ(∂

γw) < +∞ at σ -a.e. point on ∂� and Nκ(∂
βu) ·Nκ(∂

γw)

belongs to L1(∂�, σ);

(2) the nontangential boundary traces (∂βu)
∣∣κ−n.t.
∂�

and (∂γw)
∣∣κ−n.t.
∂�

exist atσ -a.e. point
on ∂nta�.

When � is unbounded and ∂� is bounded, make the additional assumption that
there exists λ ∈ (1,∞) such that, with Aλ,R := B(0, λ R) \ B(0, R), one has

∑

β,γ∈Nn
0

j∈{1,...,n},β+γ+e j=α

ˆ
Aλ,R∩�

|∂βu| |∂γw| dLn = o(R) as R →∞. (1.8.3)

Then
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ˆ
�

{
(∂αu) w − (−1)|α|u(∂αw)

}
dLn (1.8.4)

=
|α|∑

�=1

∑

β,γ∈Nn
0

j∈{1,...,n},β+γ+e j=α
|γ |=�−1, |β|=|α|−�

(−1)�+1α!(|α| − �)!(�− 1)!
|α|!β!γ ! ×

×
ˆ
∂∗�

ν j (∂
βu)

∣∣κ−n.t.
∂�

· (∂γw)
∣∣κ−n.t.
∂�

dσ.

We make some remarks aimed to shed further light on the nature and scope of
this theorem. The first observation we make is that when (1.8.2) is strengthened to

(∂αu) · w ∈ L1(�,Ln) and u · (∂αw) ∈ L1(�,Ln) (1.8.5)

then in place of (1.8.4) we may write

ˆ
�

(∂αu)w dLn = (−1)|α|
ˆ
�

u(∂αw) dLn (1.8.6)

+
|α|∑

�=1

∑

β,γ∈Nn
0

j∈{1,...,n},β+γ+e j=α
|γ |=�−1, |β|=|α|−�

(−1)�+1α!(|α| − �)!(�− 1)!
|α|!β!γ ! ×

×
ˆ
∂∗�

ν j (∂
βu)

∣∣κ−n.t.
∂�

· (∂γw)
∣∣κ−n.t.
∂�

dσ,

which is more in line with the traditional format of an integration by parts Formula.
Theorem 1.8.2 readily implies Theorem 1.7.1. Indeed, if some functions u, w sat-

isfy the hypotheses of Theorem 1.7.1, then these functions also satisfy the hypothesis
of Theorem 1.8.2 (with aperture equal to the largest of the apertures in the hypothe-
ses of Theorem 1.7.1) corresponding to α = e j , β = γ = 0. In particular, (1.8.4)
becomes (1.7.4).

Finally, we note that the properties listed in (1) are satisfied if, for example,

Nκu ∈ L p(∂�, σ) and Nκw ∈ L p′(∂�, σ)

for some p, p′ ∈ [1,∞] with 1/p + 1/p′ = 1.
(1.8.7)

Moving on, let m, n, M ∈ N. For each α, β ∈ N
n
0 such that |α| = |β| = m, let

Aαβ be an M × M complex matrix and consider the M × M homogeneous constant
coefficient system of order 2m in R

n given by

L :=
∑

|α|=|β|=m
∂αAαβ∂

β. (1.8.8)
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In what follows, we will call A = (Aαβ)|α|=|β|=m the tensor coefficient of L . We
shall denote by L� the transpose operator, that is, the M × M system whose tensor
coefficient is

A� := (A�βα)|α|=|β|=m, (1.8.9)

where the superscript � indicates matrix transposition. In particular, we have

L� =
∑

|α|=|β|=m
∂αA�βα∂

β. (1.8.10)

We are prepared to state a version of the “half” Green formula for the higher-order
system L in a very general setting, described below.

Theorem 1.8.3 Let n ∈ N and assume � is an open nonempty proper subset of
R

n with a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling
measure on ∂�.Denote by ν = (ν1, . . . , νn) the geometricmeasure theoretic outward
unit normal to� and fix some aperture parameter κ ∈ (0,∞). Also, with m, M ∈ N

consider the higher-order system L as in (1.8.8).
In this context, suppose u ∈ [W 2m,1

loc (�)]M and w ∈ [Wm,1
loc (�)]M are two vector-

valued functions such that

〈Lu, w〉 belongs to L1(�,Ln), (1.8.11)

and for each multi-index α, β ∈ N
n
0 with |α| = |β| = m the following properties

hold:

(1) the product |∂αu| · |∂βw| belongs to L1(�,Ln);
(2) for all multi-indices δ, γ ∈ N

n
0 and j ∈ {1, . . . , n} satisfying δ + γ + e j = α

one has

Nκ(∂
δ+βu), Nκ(∂

γw) < +∞ at σ -a.e. point on ∂�,

Nκ(∂
δ+βu) ·Nκ(∂

γw) ∈ L1(∂�, σ),

(∂δ+βu)
∣∣κ−n.t.
∂�

and (∂γw)
∣∣κ−n.t.
∂�

exist at σ -a.e. point on ∂nta�,

(1.8.12)

where the derivatives and the nontangential traces are taken componentwise.
Also, when � is unbounded and ∂� is bounded, make the additional assumption

that there exists some λ ∈ (1,∞) such that, with Aλ,R := B(0, λ R) \ B(0, R), one
has ∑

δ,γ∈Nn
0|δ|+|γ |=m−1

ˆ
Aλ,R∩�

|∂δ+βu| |∂γw| dLn = o(R) as R →∞. (1.8.13)

Then
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ˆ
�

〈Lu, w〉 dLn =
∑

|α|=|β|=m
(−1)m

ˆ
�

〈
Aαβ∂

βu, ∂αw
〉
dLn (1.8.14)

+
∑

|α|=|β|=m

m∑

�=1

∑

δ+γ+e j=α
|γ |=�−1, |δ|=m−�

(−1)�+1α!(m − �)!(�− 1)!
m!δ!γ ! ×

×
ˆ
∂∗�

〈
ν j Aαβ(∂

β+δu)
∣∣κ−n.t.
∂�

, (∂γw)
∣∣κ−n.t.
∂�

〉
dσ.

Formula (1.8.14) suggests making the following definition.

Definition 1.8.4 Let n ∈ N and assume � is an open nonempty proper subset of
R

n of locally finite perimeter, set σ := Hn−1�∂�, and let ν = (ν1, . . . , νn) denote
its geometric measure theoretic outward unit normal. Fix some aperture parameter
κ ∈ (0,∞).

Then, if k ∈ N and u ∈ Wk,1
loc (�) is such that for all β ∈ N

n
0 with |β| ≤ k the

nontangential trace
(
∂βu

)∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂nta�, define the multi-trace
operator

Tr
n.t.

k (u) :=
(
(∂γ u)

∣∣κ−n.t.
∂�

)

|γ |≤k
. (1.8.15)

Also, if m, M ∈ N and A = (Aαβ)|α|=|β|=m is a coefficient tensor with the property
that Aαβ ∈ C

M×M for each pair α, β ∈ N
n
0 with |α| = |β| = m, given a function

u ∈ W 2m−1,1
loc (�) for which the nontangential trace

(
∂μu

)∣∣κ−n.t.
∂�

exists at σ -a.e. point
on ∂nta�, for everyμ ∈ N

n
0 withm ≤ |μ| ≤ 2m − 1, define the higher-order conormal

derivative of u associated with A as

∂ A
ν u :=

(
(∂ A

ν u)γ
)
|γ |≤m−1 (1.8.16)

where

(∂ A
ν u)γ := (−1)|γ | |γ |!

m!γ !
∑

|α|=|β|=m
α>γ

∑

δ,γ∈Nn
0 , j∈{1,...,n}

δ+e j=α−γ
|δ|=m−|γ |−1

α!|δ|!
δ! ν j Aαβ

(
∂β+δu

) ∣∣∣
κ−n.t.

∂�

(1.8.17)
for each γ ∈ N

n
0 with |γ | ≤ m − 1.

Using Definition 1.8.4, we may then recast the “half” Green formula (1.8.14) as

ˆ

�

〈Lu, w〉 dLn =
∑

|α|=|β|=m
(−1)m

ˆ

�

〈
Aαβ∂

βu, ∂αw
〉
dLn +

ˆ

∂∗�

〈
∂ A
ν u,Tr

n.t.

m−1(w)
〉
dσ.

(1.8.18)
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Wewish to augment this result by establishing the “full”Green formula for higher-
order operators stated in the theorem below.

Theorem 1.8.5 Let n ∈ N and assume � is an open nonempty proper subset of
R

n with a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a doubling
measure on ∂�.Denote by ν = (ν1, . . . , νn) the geometricmeasure theoretic outward
unit normal to� and fix some aperture parameter κ ∈ (0,∞). Also, with m, M ∈ N

consider the higher-order system L as in (1.8.8).
In this context, suppose u, w ∈ [W 2m,1

loc (�)]M are two vector-valued functions
such that

(1)
〈
Lu, w

〉− 〈
u, L�w

〉 ∈ L1(�,Ln);
(2) if θ, μ ∈ N

n
0 with |θ | + |μ| = 2m − 1 thenNκ(∂

θu), Nκ(∂
μw) < +∞ at σ -a.e.

point on ∂� and
Nκ(∂

θu) ·Nκ(∂
μw) ∈ L1(∂�, σ); (1.8.19)

(3) the nontangential traces (∂γ u)
∣∣κ−n.t.
∂�

and (∂γw)
∣∣κ−n.t.
∂�

exist at σ -a.e. point on ∂nta�

for all γ ∈ N
n
0 with |γ | ≤ 2m − 1.

When � is unbounded and ∂� is bounded, make the additional assumption that
there exists some λ ∈ (1,∞) such that, with Aλ,R := B(0, λ R) \ B(0, R), one has

∑

δ,γ∈Nn
0|δ|+|γ |=m−1

ˆ
Aλ,R∩�

{|∂δ+βu| |∂γw| + |∂δu| |∂α+γw|} dLn = o(R) as R →∞.

(1.8.20)
Then
ˆ
�

〈
Lu, w

〉
dLn −

ˆ
�

〈
u, L�w

〉
dLn (1.8.21)

=
ˆ
∂∗�

〈
∂ A
ν u,Tr

n.t.

m−1(w)
〉
dσ −

ˆ
∂∗�

〈
Tr

n.t.

m−1(u), ∂
A�
ν w

〉
dσ.

In relation toTheorem1.8.5wemake twocomments. First, note thatwhen assump-
tion (1) in Theorem 1.8.5 is strengthened by demanding

〈
Lu, w

〉 ∈ L1(�,Ln) and〈
u, L�w

〉 ∈ L1(�,Ln) then in place of (1.8.21) we may write

ˆ
�

〈
Lu, w

〉
dLn =

ˆ
�

〈
u, L�w

〉
dLn (1.8.22)

+
ˆ
∂∗�

〈
∂ A
ν u,Tr

n.t.

m−1(w)
〉
dσ −

ˆ
∂∗�

〈
Tr

n.t.

m−1(u), ∂
A�
ν w

〉
dσ,

which is more in line with the traditional format of Green’s Formula.
Our second observation is that the assumptions in (2) are naturally satisfied when

suitable conditions are imposed separately on the functions u and w. For example,
this is the case if there exist two integrability exponents p, p′ ∈ [1,∞] such that
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1/p + 1/p′ = 1 with the property that for each θ, μ ∈ N
n
0 |θ | + |μ| = 2m − 1 one

has Nκ(∂
θu) ∈ L p(∂�, σ) and Nκ(∂

μw) ∈ L p′(∂�, σ).

1.9 The Divergence Theorem with Weak Boundary Traces

We are interested in devising a version of the Divergence Formula (1.2.2) in the class
of vector fields which may not necessarily possess nontangential pointwise traces
on the boundary. In the absence of nontangential pointwise traces we are proposing
to use a weaker notion of boundary trace, defined as the “bullet product,” via a
variational approach mimicking integration by parts.

To be specific, let� be an open subset ofRn and denote by L1
bdd(�,Ln) the collec-

tion of allLn-measurable functions which are absolutely integrable on each bounded
Ln-measurable subset of the set �. Given any vector field �F ∈ [

L1
bdd(�,Ln)

]n

whose divergence, considered in the sense of distributions in the set �, satisfies
div �F ∈ L1

bdd(�,Ln), we shall denote by ν • �F (read “nu bullet F”) the functional
acting on each function14 ψ ∈ Lipc(∂�) according to

〈
ν • �F, ψ 〉 :=

ˆ
�

�F · ∇� dLn +
ˆ
�

(div �F)� dLn, (1.9.1)

where � is any complex-valued function satisfying

� ∈ Lip(�), �
∣∣
∂�
= ψ , and � ≡ 0 out-

side of some compact subset of �.
(1.9.2)

See Sect. 4.2 for more details.
We find it logistically convenient to start by presenting a version of the integration

by parts formula (1.2.12) involving thisweak boundary trace in Theorem1.9.1 below,
then use this to state a version of the Divergence Formula involving weak boundary
traces in (1.9.11). To state Theorem 1.9.1, we make one more definition. Concretely,
given any open subset � of R

n , we define the action of the maximal operator P on
any Ln-measurable function u : �→C as

(Pu)(x) := sup
0<r<2 diam(∂�)

{
1

σ
(
∂� ∩ B(x, r)

)
ˆ
�∩B(x,r)

|u| dLn

}
∈ [0,∞],

(1.9.3)
at every point x ∈ ∂�. For more on this topic, the reader is referred to [185, Sect.
10.1].

Theorem 1.9.1 Let � ⊆ R
n (where n ≥ 2) be an open set with an Ahlfors regular

boundary and abbreviate σ := Hn−1�∂�. Consider a vector field �F : �→ C
n with

14 Here and elsewhere, Lip(E) is the space of complex-valued Lipschitz functions defined in a given
set E ⊆ R

n , and Lipc(E) is subspace of Lip(E) consisting of functions with compact support.
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Ln-measurable components satisfying

Nκ
�F ∈ L p(∂�, σ) for some κ > 0 and p ∈ [1,∞]. (1.9.4)

Also, with the divergence taken in the sense of distributions15 in �, assume that

div �F ∈ L1
loc(�,Ln) and P(div �F) ∈ L p(∂�, σ). (1.9.5)

Then the following statements are true.

(i) There exists a unique function, denoted by ν • �F, which belongs to L p(∂�, σ)

and for which the following integration by parts formula holds

ˆ
∂�

(ν • �F)� dσ=
ˆ
�

�F · ∇� dLn+
ˆ
�

(div �F)� dLn for all � ∈ Lipc(R
n).

(1.9.6)
(ii) There exists some constant C = C(�, n, κ, p) ∈ (0,∞) independent of �F such

that

∥∥ν • �F∥∥
L p(∂�,σ)

≤ C
∥∥Nκ

�F∥∥
L p(∂�,σ)

+ C
∥∥P(div �F)

∥∥
L p(∂�,σ)

. (1.9.7)

(iii) If p = 1, then actually ν • �F belongs to the Hardy space H 1(∂�, σ) and, for
some constant C = C(�, n, κ) ∈ (0,∞) independent of �F,

∥∥ν • �F∥∥
H 1(∂�,σ)

≤ C
∥∥Nκ

�F∥∥
L1(∂�,σ)

+ C
∥∥P(div �F)

∥∥
L1(∂�,σ)

. (1.9.8)

(iv) Under the additional assumptions that16 Hn−1(∂� \ ∂∗�) = 0 and �F∣∣κ−n.t.
∂�

exists
at σ -a.e. point on ∂�, one has

ν • �F = ν ·
( �F∣∣κ−n.t.

∂�

)
at σ -a.e. point on ∂�, (1.9.9)

where ν is the geometric measure theoretic outward unit normal to �.

Here are a few observations designed to shed further light on the nature of Theo-
rem 1.9.1.

Observation 1. Theorem 1.9.1 shows that there exists a mapping which is linear
and bounded17

15 Lemma 8.3.1 ensures that �F ∈ [
L1
loc(�,Ln)

]n .
16 The demand that Hn−1(∂� \ ∂∗�) = 0 precludes ∂� from developing “too many” cusps and
also prevents � from having “significant” cracks.
17 When we consider the space in the left equipped with the natural norm �F �→ ∥∥Nκ

�F∥∥
L p(∂�,σ)

+
∥∥P(div �F)

∥∥
L p(∂�,σ)

with κ > 0 fixed.
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{ �F ∈ [
L1
loc(�,Ln)

]n : satisfying (1.9.4)− (1.9.5)
} � �F �→ ν • �F ∈ L p(∂�, σ)

(1.9.10)
which renders the integration by parts formula (1.9.6) true. We shall refer to (1.9.10)
as the weak normal trace of the vector field �F on ∂�.

Observation 2. In the case when � is bounded, we may choose � ∈ Lipc(R
n)

to be identically one in a neighborhood of �. Such a choice makes the integration
by parts formula (1.9.6) look more in line with the traditional Divergence Formula,
namely ˆ

∂�

ν • �F dσ =
ˆ
�

div �F dLn . (1.9.11)

Observation 3. In the case when p = ∞, the condition that Nκ
�F ∈ L∞(∂�, σ)

in (1.9.4) may be alternatively reformulated as �F ∈ L∞(�,Ln) (thanks to
Lemma 8.3.1), while the hypothesis thatP(div �F) ∈ L∞(∂�, σ) in (1.9.5) is equiv-
alent to the demand that (div �F)Ln is a Carleson measure in�. In particular, the latter
condition is satisfied if

div �F ∈ Ln(�,Ln). (1.9.12)

Observation 4. Generally speaking, the function ν • �F is supported on the full
topological boundary ∂�, and not just on the measure theoretic boundary ∂∗�. In

addition, �F∣∣κ−n.t.
∂�

may fail to exist at σ -a.e. point on ∂�. See (2.7.12) in this regard
(cf. also (2.7.18)). We also wish to note that the hypothesis that ∂� is Ahlfors regular
cannot be weakened to asking that ∂� is merely upper Ahlfors regular; see (2.7.27).

Observation 5. As is apparent from inspecting the main ingredients involved in
its proof, a suitable version of Theorem 1.9.1 continues to be valid onC 1 Riemannian
manifolds.

Remarkably, Theorem 1.9.1 may be extended to the range p ∈ (
n−1
n , 1

)
provided

Hardy spaces are used in place of Lebesgue spaces on ∂�. The scale of Hardy spaces
on Ahlfors regular sets is discussed at length in [185, Chap. 4].

Theorem 1.9.2 Suppose� ⊆ R
n (where n ≥ 2) is an open set with an Ahlfors regu-

lar boundary and abbreviate σ := Hn−1�∂�. Let �F : �→ C
n be a vector field with

Ln-measurable components satisfying

Nκ
�F ∈ L p(∂�, σ) for some κ > 0 and p ∈ (

n−1
n , 1

)
. (1.9.13)

In addition, with the divergence taken in the sense of distributions18 in �, assume
that

div �F ∈ L1
loc(�,Ln) and P(div �F) ∈ L p(∂�, σ). (1.9.14)

18 Lemma 8.3.1 ensures that �F ∈ [
L1
loc(�,Ln)

]n .
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Then there exists a unique distribution on ∂�, denoted by ν • �F, which belongs
to the Hardy space H p(∂�, σ) and with the property that for each � ∈ Lipc(R

n)

the following integration by parts formula is satisfied:

ˆ
�

�F · ∇� dLn +
ˆ
�

(div �F)� dLn =
⎧
⎨

⎩

〈
ν • �F, �|∂�

〉
if ∂� bounded,

〈
ν • �F, [�|∂�

]〉
if ∂� unbounded,

(1.9.15)
with

〈·, ·〉 denoting the duality bracket between the Hardy space H p(∂�, σ) and its
dual,

(
H p(∂�, σ)

)∗ =
{
C α(∂�) if ∂� bounded,
.

C α(∂�)
/ ∼ if ∂� unbounded,

(1.9.16)

where α := (n − 1)
(
1
p − 1

) ∈ (0, 1) (cf. the discussion in [185, Sect. 4.6]).
Moreover, there exists some constant C = C(�, n, κ, p) ∈ (0,∞) independent

of �F such that

∥∥ν • �F∥∥
H p(∂�,σ)

≤ C
∥∥Nκ

�F∥∥
L p(∂�,σ)

+ C
∥∥P(div �F)

∥∥
L p(∂�,σ)

. (1.9.17)

One of the salient features of Theorems 1.9.1–1.9.2 is the fact that the bullet prod-
uct ν • �F is intimately linked with the principal symbol of the divergence operator
acting on vector fields. As such, it is desirable to expand upon these results by allow-
ing first-order systems with constant complex coefficients which are more general
than the divergence operator, say

D =
( n∑

j=1
aαβ

j ∂ j

)
1≤α≤N
1≤β≤M

. (1.9.18)

If � is an open subset of R
n and F ∈ [

L1
bdd(�,Ln)

]M
is a C

M -valued function
with the property that DF , considered in the sense of distributions in �, has com-
ponents in L1

bdd(�,Ln), we define the functional Sym(D; ν) • F acting on each

ψ ∈ [
Lipc(∂�)

]N
according to

〈
(−i)Sym(D; ν) • F, ψ 〉 :=

ˆ
�

〈DF, �〉 dLn −
ˆ
�

〈F, D��〉 dLn, (1.9.19)

whenever � is a C
N -valued function satisfying

� ∈ [
Lip(�)

]N
, �

∣
∣
∂�
= ψ , and � ≡ 0

outside of some compact subset of �.
(1.9.20)
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This brand of “bullet product,” between the principal symbol of a first-order
differential operator and a suitable vector field, is studied at length in [185, Sect.
10.2] where, among other things, it is shown that the functional Sym(D; ν) • F is
meaningfully and unambiguously defined and, in fact, is a distribution on ∂�, i.e.,

it belongs to
[(
Lipc(∂�)

)′]M
. Here the focus is on the following version of the

Divergence Theorem, whose formulation employs the bullet product introduced in
(1.9.19).

Theorem 1.9.3 Fix n ∈ N with n ≥ 2, and suppose � ⊆ R
n is an open set with

an Ahlfors regular boundary. Abbreviate σ := Hn−1�∂�. Also, pick two integers
N , M ∈ N and consider an arbitrary N × M homogeneous first-order system D
with constant complex coefficients inR

n, as in (1.7.12), and recall its (real) transpose
D�, defined in (1.7.13).

In this setting, consider a vector-valued function F : �→ C
M, whose compo-

nents are Ln-measurable, with the property that

NκF ∈ L p(∂�, σ) for some κ ∈ (0,∞) and p ∈ (
n−1
n ,∞]

. (1.9.21)

In particular, F ∈ [
L1
loc(�,Ln)

]M
(cf. Lemma 8.3.1), and one also assumes that

DF, computed in the sense of distributions in �, has components in L1
loc(�,Ln)

and satisfies
P(DF) ∈ L p(∂�, σ). (1.9.22)

Then the following statements are valid.

(1) Corresponding to the regime p ∈ [1,∞], there exists a unique function, denoted
by Sym(D; ν) • F, which belongs to

[
L p(∂�, σ)

]N
and such that for each

� ∈ [
Lipc(R

n)
]N

the following integration by parts formula is satisfied19:

ˆ
∂�

〈
(−i)Sym(D; ν) • F, �〉

dσ =
ˆ
�

〈DF, �〉 dLn −
ˆ
�

〈F, D��〉 dLn .

(1.9.23)
In addition, there exists some constant C = C(�, D, κ, p) ∈ (0,∞) indepen-
dent of F such that

∥∥∥Sym(D; ν) • F
∥∥∥[L p(∂�,σ)]N

≤ C
∥∥NκF

∥∥
L p(∂�,σ)

+ C‖P(DF)‖L p(∂�,σ).

(1.9.24)
Moreover, if p = 1 then actually Sym(D; ν) • F belongs to the Hardy space[
H 1(∂�, σ)

]N
and, for some constant C = C(�, D, κ) ∈ (0,∞) independent

of F,

19 Compare with (1.7.24), which inspired the notation Sym(D; ν) • F .
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∥∥
∥Sym(D; ν) • F

∥∥
∥[H 1(∂�,σ)]N

≤ C
∥∥NκF

∥∥
L1(∂�,σ)

+ C‖P(DF)‖L1(∂�,σ).

(1.9.25)
Finally, under the additional assumptions that20 Hn−1(∂� \ ∂∗�) = 0 and the

nontangential trace F
∣
∣κ−n.t.
∂�

exists (in C
M ) at σ -a.e. point on ∂�, one has

Sym(D; ν) • F = Sym(D; ν)
(
F

∣
∣κ−n.t.
∂�

)
at σ -a.e. point on ∂�, (1.9.26)

where ν is the geometric measure theoretic outward unit normal to �.

(2) In the regime p ∈ (
n−1
n , 1

)
, there exists a unique distribution on ∂�, denoted by

the symbol Sym(D; ν) • F, which belongs to the Hardy space
[
H p(∂�, σ)

]N

and has the property that for each function � ∈ [
Lipc(R

n)
]N

the following
integration by parts formula is satisfied:

ˆ
�

〈DF, �〉 dLn −
ˆ
�

〈F, D��〉 dLn (1.9.27)

=
⎧
⎨

⎩

〈
(−i)Sym(D; ν) • F, �|∂�

〉
if ∂� bounded,

〈
(−i)Sym(D; ν) • F, [�|∂�

]〉
if ∂� unbounded,

where the pairings under the integral sign are pointwise inner products, while〈·, ·〉 appearing in the right-hand side of (1.9.27) denotes the duality bracket

between the Hardy space
[
H p(∂�, σ)

]N
and its dual space, identified analo-

gously to (1.9.16) with the exponent α := (n − 1)
(
1
p − 1

) ∈ (0, 1).
Moreover, there exists some constant C = C(�, D, κ, p) ∈ (0,∞) independent
of F such that

∥∥Sym(D; ν) • F∥∥[H p(∂�,σ)]N

≤ C
∥∥NκF

∥∥
L p(∂�,σ)

+ C
∥∥P(divF)

∥∥
L p(∂�,σ)

. (1.9.28)

We conclude this section by stating a version of the Divergence Theorem with
weak traces valid in arbitrary open subsets of R

n . Before stating it, the reader is
reminded that, given a Lebesgue measurable set � ⊆ R

n , we let L1
bdd(�,Ln) stand

for the space of (complex-valued) functions which are absolutely integrable on any
bounded Lebesgue measurable subset of �.

20 The demand that Hn−1(∂� \ ∂∗�) = 0 precludes ∂� from developing “too many” cusps and
also prevents � from having “significant” cracks.
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Theorem 1.9.4 Let� be an arbitrary open subset of Rn and consider a vector field

�F ∈ [
L1
bdd(�,Ln)+ E ′(�)

]n
with div �F ∈ L1(�,Ln)+ E ′(�), (1.9.29)

where the divergence is taken in the sense of distributions in the set�. Also, suppose
F := {φR}R>0 is a systemof auxiliary functions (as in (1.3.3)) forwhich the following
limit exists:

[ �F]F := − lim
R→∞

ˆ
�

∇φR · �F dLn . (1.9.30)

Then the limit (
ν • �F, 1)

F
:= lim

R→∞

〈
ν • �F, φR

∣∣
∂�

〉
(1.9.31)

exists, where the pairing in the right-hand side is considered in the sense of Defini-
tion 4.2.6, and

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
(
ν • �F, 1)

F
+ [ �F]F . (1.9.32)

A significant particular case of Theorem 1.9.4 is as follows. Assume that there
exists λ ∈ (1,∞) such thatˆ

[B(0,λ R)\B(0,R)]∩�
| �F | dLn = o(R) as R →∞. (1.9.33)

Then taking

F := {φ(·/R)}R>0 with φ ∈ C∞
c

(
B(0, λ)

)
satisfying φ ≡ 1 on B(0, 1) (1.9.34)

ensures that [ �F]F = 0. Thus, in such a scenario, the Divergence Formula (1.9.32)
reduces to

(C ∞
b (�))

∗
(
div �F, 1)C ∞

b (�) =
(
ν • �F, 1)

F
, (1.9.35)

where the right-hand side is defined as in (1.9.31) withφR := φ(·/R) for each R > 0.

To close, we note that the proofs of Theorems 1.9.1–1.9.4 are presented in Sect.
9.7.

1.10 The Divergence Theorem Involving an Averaged
Nontangential Maximal Operator

One key common characteristic shared by the versions of the Divergence Theorem
recorded in Sects. 1.2–1.9 is the involvement of the nontangential maximal operator
�F �→ Nκ

�F , as a means of quantifying information about the given vector field. It
turns out that asking, as we do in Theorems 1.2.1 and 1.3.1, that Nκ

�F is locally
integrable on ∂� makes �F locally bounded in the domain �. As such, the question
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arises whether a version of the Divergence Theorem in the spirit of those given in
Theorems 1.2.1 and 1.3.1 exists for locally integrable vector fields which are not
necessarily locally bounded.

Of course, as mentioned earlier, this presupposes that we alter the very definition
of the nontangential maximal operator and work with a weakened variant which,
nonetheless, continues to encode relevant information about the function it acts on
even when the function in question is merely r -th power locally integrable for some
exponent r <∞. Having additionally fixed a scale parameter θ ∈ (0, 1), for each
such function u and each point x ∈ ∂�we shall denote by (Ñκ,θ,r u)(x) the supremum
of21

�κ(x) � y �→
(  

B(y,θ dist(y,∂�))

|u|r dLn
)1/r

. (1.10.1)

In relation to this “averaged” nontangential maximal operator, which is discussed at
length in Sect. 8.10, we then have the following version of the Divergence Theorem.

Theorem 1.10.1 Suppose n ∈ N satisfies n ≥ 2. Let� be an open nonempty proper
subset of R

n with a lower Ahlfors regular boundary, such that σ := Hn−1�∂� is a
doubling measure on ∂�. In particular, � is a set of locally finite perimeter, and its
geometric measure theoretic outward unit normal ν is defined σ -a.e. on ∂∗�(which,
up to a σ -nullset, is contained in ∂nta�). Fix κ ∈ (0,∞) along with θ ∈ (0, 1) and
r ∈ [1,∞), and assume the vector field �F = (F1, . . . , Fn) ∈

[
Lr
loc(�,Ln)

]n
, with

complex-valued components, enjoys the following properties:

the nontangential trace �F∣∣κ−n.t.
∂�

exists (in C
n) σ -a.e. on ∂nta�, and

the averaged nontangential maximal function Ñκ,θ,r �F is in L1(∂�, σ).

(1.10.2)
Also, with all individual partial derivatives considered in the sense of distributions
in �, assume

the distribution div �F := ∂1F1 + · · · + ∂n Fn ∈ D′(�) extends

to a complex Borel measure in �, still denoted by div �F. (1.10.3)

Then the contribution of �F at infinity is meaningfully and unambiguously defined
and (

div �F)
(�) =

ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dσ + [ �F]∞. (1.10.4)

Moreover, [ �F]∞ = 0 in either of the following three cases:

(i) � is bounded;

(ii) ∂� is unbounded and r ≥ n
n−1 ;

(iii) �F satisfies (1.2.3) for some λ ∈ (1,∞).

(1.10.5)

21 The reader is reminded that �κ(x) is the nontangential approach region with apex at x ∈ ∂� and
aperture parameter κ ∈ (0,∞), defined in (8.1.2).
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Ergo, in either of these three scenarios, the Divergence Formula (1.10.4) reduces
simply to

(
div �F)

(�) =
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dσ. (1.10.6)

As with the other main results discussed so far, we make a number of remarks
designed to provide additional context for the above theorem.

FirstRemark. The ordinary nontangential maximal operator u �→ Nκu encodes
more nuanced information about a given function than the averaged nontangential
maximal operator u �→ Ñκ,θ,r u. Specifically, in Proposition 8.10.2we shall show that
if � ⊂ R

n is an open set and σ is a doubling measure on ∂� then, in a quantitative
sense,

Nκu ∈ L1(∂�, σ)=⇒Ñκ,θ,r u ∈ L1(∂�, σ). (1.10.7)

This points to the fact that asking Ñκ,θ,r �F ∈ L1(∂�, σ), as we do in the second line
of (1.10.2), is weaker than the assumption that Nκ

�F ∈ L1(∂�, σ) made in (1.2.1)
in Theorem 1.2.1. This being said, Theorem 1.2.1 and its proof self-improve and
eventually yield Theorem 1.10.1, which is remarkable.

SecondRemark.As far as the sharpness of Theorem 1.10.1 is concerned, there are
counterexamples which show that the current requirement that Ñκ,θ,r �F ∈ L1(∂�, σ)

cannot be weakened to either Ñκ,θ,r �F ∈ L1,∞(∂�, σ), or Ñκ,θ,r �F ∈ L1(∂∗�, σ).
Indeed, the counterexample in (2.3.7) does the job, since the vector field employed
there has harmonic components, a scenario in which the ordinary and averaged
nontangential maximal operators are essentially equivalent (cf. (8.10.14)).

ThirdRemark. It is instructive to give a concrete example of a vector field which
is not locally bounded and yet the version of the Divergence Formula from Theo-
rem 1.10.1 is valid for it. Concretely, work in R

n with n ≥ 2 and take

� := B(0, 1) and �F(x) := 1

ωn−1
x

|x |n for Ln-a.e. x ∈ �. (1.10.8)

Then, having fixed r ∈ [
1, n

n−1
)
, it follows that the vector field �F actually belongs

to
[
Lr (�,Ln)

]n
and satisfies div �F = δ ∈ CBM(�), regarded as the Dirac measure

acting according to δ(A) := 1A(0) for each set A ⊆ � (cf. (1.3.16)). We also claim
that for each κ ∈ (0,∞) and θ ∈ (0, 1) we have

Ñκ,θ,r �F ∈ L∞(∂�, σ) ⊆ L1(∂�, σ). (1.10.9)

Indeed, given y ∈ � and z ∈ B
(
y, θ dist(y, ∂�)

)
, if |y| ≥ 3

4 then |z| ≥ 1
2 hence

| �F(z)| ≤ 2n−1/ωn−1, whereas if |y| < 3/4 then dist(y, ∂�) ≥ 1/4 which, in turn,
permits us to conclude that
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(  
B(y,θ dist(y,∂�))

| �F |r dLn
)1/r ≤ Cn,θ,r · ‖ �F‖Lr (�,Ln). (1.10.10)

Thus, the supremum of (1.10.1) is a finite number independent of x ∈ ∂�, ulti-

mately proving (1.10.9). In addition, we have ( �F∣
∣κ−n.t.
∂�

)(x) = x/ωn−1 at every point
x ∈ ∂� = Sn−1. Hence, all hypotheses of Theorem 1.10.1 are satisfied and, as the
Divergence Formula (1.10.6) predicts, the numbers

(
div �F)

(�) = 1 and
ˆ
∂∗�

ν · ( �F ∣∣κ−n.t.
∂�

)
dσ = 1

ωn−1

ˆ
Sn−1

x · x dHn−1(x) = 1

(1.10.11)
indeed match. By way of contrast, an attempt to justify this particular divergence
formula via Theorem 1.2.1, or Theorem 1.3.1, runs into the insurmountable issue
that

(Nκ
�F)(x) = +∞ at every point x ∈ ∂�. (1.10.12)

This being said, Theorems 1.4.1 and 1.5.1 (which are applicable to vector fields
that are locally bounded only near ∂�) are refined enough to handle the example
given in (1.10.8). Nevertheless, it is possible to further modify this example so as to
place it beyond the realm of Theorems 1.4.1 and 1.5.1, but still remain within the
scope of Theorem 1.10.1. Concretely, with� and �F as in (1.10.8), pick {x j } j∈N ⊆ �

which converges to some point x∗ ∈ Sn−1 and, having fixed some r ∈ [
1, n

n−1
)
along

with κ ∈ (0,∞) and θ ∈ (0, 1), define

�F∗ :=
∞∑

j=1

1

C j

�F(· − x j ) at Ln-a.e. point in �,

where C j := 2 j ·max
{
1,

∥∥Ñκ,θ,r
( �F(· − x j )

)∥∥
L1(∂�,σ)

}
.

(1.10.13)

Then �F∗ ∈
[
Lr (�,Ln)

]n
satisfies the hypotheses of Theorem 1.10.1 and fails to be

locally bounded near x∗ ∈ ∂� (hence, �F∗ lies outside the scope of Theorems 1.4.1–
1.5.1).

FourthRemark. The proof of Theorem 1.10.1 which, as alluded earlier, proceeds
along the line of reasoning employed in the proof of Theorem 1.3.1, is given in Sect.
9.8.

1.11 The Manifold Setting and a Sharp Version of Stokes’
Formula

In this section, the goal is to extend the scope of our earlier results by considering
vector fields on subdomains of Riemannian manifolds. To set the stage, assume that
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M is a connected, compact, boundaryless, oriented manifold of class
C 1, of real dimension n, equipped with a continuous Riemannian
metric tensor g = ∑

1≤ j,k≤n g jkdx j ⊗ dxk .
(1.11.1)

Denote by dVg the volume element on M induced by the metric tensor g and let
Ln

g be the measure canonically associated with the n-form dVg . Hence, for each
f ∈ L1(M,Ln

g) we have ˆ
M

f dLn
g =

ˆ
M

f dVg (1.11.2)

with the right side interpreted as the integral of the n-form f dVg on M . Since in
local coordinates (x1, . . . , xn) we have (cf. [189, (2.1.14), p. 50])

dVg = √
gdx1 ∧ · · · ∧ dxn where

√
g :=

√
det

[
(g jk)1≤ j,k≤n

]
, (1.11.3)

it follows that locally
dLn

g =
√
g dLn, (1.11.4)

where Ln is the ordinary n-dimensional Lebesgue measure in R
n .

Next, let T M and T ∗M stand, respectively, for the tangent and cotangent bundles
onM . In particular, the symbol T ∗M

(·, ·)T M is reserved for themetric pairing between
cotangent vector and tangent vectors on M . For each � ∈ {0, 1, . . . , n}, the symbol
〈·, ·〉

��T M
is used to denote the inner product canonically induced by the metric g on

��T M , the �-th exterior power of the vector bundle on M . Sections in ��T M are
differential forms of degree � (or, simply, �-forms) on M .

By Hn−1
g we shall denote the (n − 1)-dimensional Hausdorff measure associated

with the intrinsic metric induced by g on M , aka the geodesic (inner) metric on M .
The latter is defined (cf. [29, Proposition 3.103, p. 281], [140, pp. 15–16]) as

dg(x, y) := inf
{ ˆ 1

0
‖ .
γ (t)‖T M dt : γ : [0, 1] → M piecewise C 1

curve joining x and y
}
. (1.11.5)

In particular, the metric topology generated by dg on M coincides with the standard
background (Hausdorff) topology on M . Also, (M, dg) becomes a length metric
space, and the length of any C 1 curve in the metric space (M, dg) is equal to its
ordinary Riemannian length.22

Classes of Euclidean domains which are invariant under C 1 diffeomorphisms
(such as domains of locally finite perimeter) then extend naturally to the manifold

22 Recall that a metric space is called a length metric space if the intrinsic metric agrees with the
original metric of the space. Metric spaces enjoying the stronger property that there exists a path
achieving the infimum in the definition of the intrinsic metric between any two points are called
geodesic metric spaces; see, e.g., [140, Theorem 1.6.1 on p.31, and Theorem 1.7.1 on pp.34–35]
in this regard.



1.11 The Manifold Setting and a Sharp Version of Stokes’ Formula 81

setting. See [124] for a discussion in this regard. Throughout, we agree to retain
notation already introduced in the Euclidean setting whenever the corresponding
object has a natural analogue in the context of manifolds.

If d denotes the exterior derivative operator on M , one may also define what it
means for some given Ln

g-measurable subset � of the manifold M to be of locally
finite perimeter in an intrinsicmanner, asking that (with 1� denoting the characteristic
function of �) we have23

d1� = −νg σg as distributions, for a locally finite Borel-regular measure σg

supported on ∂∗�, and for a T ∗M-valued function νg ∈ L∞(∂∗�, σg)⊗ T ∗M
satisfying |νg|T ∗M = 1 at σg-a.e. point on ∂∗�.

(1.11.6)
As in the Euclidean setting, σg and νg are uniquely determined by �.

It turns out that the quality of � ⊆ M being a set of locally finite perimeter is
independent of the choice of the background Riemannian metric g. To elaborate on
this topic, work near a boundary point x0 ∈ ∂� and locally identify � ⊆ M with
its Euclidean image under the corresponding coordinate chart (for which we retain
the same notation). Under such an identification the quality of being a set of locally
finite perimeter is preserved.

Next, in any local coordinates (x1, . . . , xn) on M , we let

(
νEj

)
1≤ j≤n denote the geometric measure theoretic outward unit normal

to the given set � with respect to the standard Euclidean metric tensor
gE := ∑

1≤ j≤n dx j ⊗ dx j in R
n , and define σ E := Hn−1�∂� where

Hn−1 is the usual (n − 1)-dimensional Hausdorff measure in R
n .

(1.11.7)

These are naturally related to one another. For one thing, in local coordinates we
have the identification

dσg = ρ dσ E for some ρ ∈ L∞(∂�, σ E) with ρ−1 ∈ L∞(∂�, σ E). (1.11.8)

Indeed, we claim that there exists a constant C ∈ (1,∞) with the property that

C−1σ(A) ≤ σg(A) ≤ Cσ(A) for each measurable set A ⊆ ∂�. (1.11.9)

Keeping in mind that σg = Hn−1
g �∂� and σ E = Hn−1�∂�, this can be seen from the

very definition of the Hausdorff measure in metric spaces, by noting that subsets of a
local coordinate patch on M have diameters relative to either the Euclidean metric or
the Riemannian metric on M varying only by a bounded factor. Having established
(1.11.9), we may then invoke the Radon–Nikodym theorem to conclude (1.11.8).

In fact, more can be said. Specifically, from [125, Proposition 5.7, p. 2774] (cf.
also the discussion in [189, pp. 408–409]) it follows that we have the identifications

23 This should be compared with the result recorded in Proposition 5.6.3.
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σg�∂∗� = √
gG1/2 σ E�∂∗� and νg = G−1/2 ∑n

j=1 ν
E
j dx j

where G := ∑n
r,s=1 grsνEr νEs on ∂∗�, and where we have set

√
g :=

√
det

[
(g jk)1≤ j,k≤n

]
with (grs)1≤r,s≤n :=

[
(g jk)1≤ j,k≤n

]−1
.

(1.11.10)

We also agree to follow the convention in [199, Sect. 2] regarding the manner in
which distributions on the manifold M may be locally identified with distributions
in the Euclidean setting. Specifically,

if f is a locally integrable function on M and X ∈ T M is a vector
field which in local coordinates is written as

∑n
j=1 X j∂ j then X f ,

treated as a distribution on M , is identified in local coordinates with∑n
j=1
√
g X j∂ j f , where now f is regarded as a function in R

n and the
partial derivatives are considered in the sense of distributions in R

n .

(1.11.11)

From (1.11.6) and (1.11.10)–(1.11.11) we then conclude that

the equation d1� = −νg σg in the sense of distributions on M
becomes, in local Euclidean coordinates, ∇1� = −νE σ E.

(1.11.12)

In particular, this goes to show that, indeed, being a set of locally finite perimeter is
independent of the particular choice of the background Riemannian metric g.

Given a set � ⊆ M of locally finite perimeter, untangling what it means to have
d1� = −νg σg in the sense of distributions onM readily leads to a divergence formula
for vector fields �F of class C 1 on M . A slightly more general result is obtained by
patching together the version of the Divergence Theorem for the Euclidean space
equipped with a generic continuous Riemann metric from [125, Proposition 5.8,
p. 2775], using a smooth partition of unity subordinate to a suitable finite open cover
of the underlying domain with local coordinate patches (cf. [125, Remark, p. 2775]).
This procedure yields the following extension of De Giorgi–Federer’s version of the
Gauss–Green Formula from Theorem 1.1.1 (cf. also (2.8.1)) to the manifold setting.

Theorem 1.11.1 Let the Riemannian manifold (M, g) be as in (1.11.1) and denote
by Ln

g the measure induced by the volume element dVg on M. Consider a set� ⊆ M
of locally finite perimeter, and define σg := Hn−1

g �∂�. In particular, the geometric
measure theoretic outward unit conormal to �, denoted by νg : ∂∗�→ T ∗M is
defined σg-a.e. on ∂∗�. In this setting, assume a vector field �F ∈ C 0(M, T M) has
been given, with the property that divg �F ∈ L1(M,Ln

g), where divg is the (differential
geometric) divergence taken in the sense of distributions on M (see, e.g., [189,
(9.1.13), p. 373]). Then

ˆ
�

divg �F dLn
g =

ˆ
∂∗�

T ∗M
(
νg, �F

∣∣
∂∗�

)
T M

dσg. (1.11.13)
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Remark 1.11.2 Regarding the hypotheses on the ambient manifold M , the com-
pactness assumption placed on M is not essential, in the sense that natural versions
of Theorem 1.11.1 continue to hold when M is merely an open (Riemannian, ori-
ented) manifold. For example, this is the case if � is a relatively compact set of
locally finite perimeter contained in the open manifold M . Indeed, in such a scenario
matters may always be reduced to the compact setting by embedding� isometrically
in a compact, boundaryless RiemannianmanifoldM having the same dimension and
regularity as the original M . Specifically, starting with a compact submanifold (with
boundary) O of M whose interior contains �, one can take M to be the so-called
geometric double of O, manufactured by taking two replicas of O with opposite
orientations and “gluing” them together by identifying boundary points (specifi-
cally, take M := O × {0, 1}/ ∼ where (x, 0) ∼ (x, 1) for every x ∈ ∂O). Another
favorable scenario is when the vector field �F is also assumed to be compactly sup-
ported. Under this additional hypothesis, no relative compactness condition needs to
be imposed on M or � (since we may once again reduce matters to working on a
compact boundaryless manifold by arguing as before).

Very often, the vector fields arising in the applications of the Divergence Theorem
are merely defined in� and may not extend to continuous vector fields on the entire
manifold M . This renders Theorem 1.11.1 ill-suited for handling this basic case.
Theorem 1.11.3, stated below, establishes a version of the Divergence Theorem
which addresses this issue.

Theorem 1.11.3 Assume the Riemannian manifold (M, g) is as in (1.11.1). Let �
be a nonempty, open, proper subset of the manifold M such that ∂� is lower Ahlfors
regular, and σg := Hn−1

g �∂� is a doubling measure on ∂�. In particular, � is a
set of finite perimeter and its geometric measure theoretic outward unit conormal
νg : ∂∗�→ T ∗M is defined σg-a.e. on ∂∗�. Denote by Ln

g the measure induced by
the volume element dVg on M.

Fix κ ∈ (0,∞) and assume that the vector field �F ∈ D′(�)⊗ T M has the prop-
erty that

there exists a compact set K ⊂ � such that
�F∣
∣
�\K ∈ L1

loc(� \ K ,Ln
g)⊗ T M and N�\K

κ

( �F∣
∣
�\K

) ∈ L1(∂�, σg),
(1.11.14)

the pointwise nontangential boundary trace

�F∣∣κ−n.t.
∂�

exists (in T M) at σg-a.e. point on ∂nta�, (1.11.15)

and its (differential geometric) divergence, taken in the sense of distributions in�, is
the sum (in D′(�)) of a compactly supported distribution in � and a complex Borel
measure in �, i.e.,

divg �F ∈ E ′(�)+ CBM(�). (1.11.16)
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Then for any aperture κ ′ > 0 the nontangential trace �F∣∣κ
′−n.t.

∂�
exists σg-a.e. on

∂nta� and is actually independent of κ ′. When regarding it as a function defined
σg-a.e. on ∂∗� (which, up to a σg-nullset, is contained in ∂nta�), this nontangential
trace belongs to L1(∂∗�, σg)⊗ T M and, with the dependence on the parameter κ ′
dropped,

(C 1
b (�))

∗
(
divg �F, 1

)
C 1

b (�) =
ˆ
∂∗�

T ∗M
(
νg, �F

∣∣n.t.
∂�

)
T M

dσg. (1.11.17)

The proof of Theorem 1.11.3 is presented in Sect. 9.9.

Remark 1.11.4 In applications, it is often useful to keep in mind that the vector
field �F from Theorem 1.11.3 may be allowed to take values in V ⊗ T M, where V
is an arbitrary, fixed, finite-dimensional vector space. In such a scenario, in place of
(1.11.16) we now demand

divg �F ∈ V ⊗ E ′(�)+ V ⊗ CBM(�), (1.11.18)

and (1.11.17) becomes the equality of two vectors in V .

A special case of Theorem 1.11.3 which is already quite general and practical,
corresponding to a locally integrable vector field whose differential geometric diver-
gence (considered in the sense of distributions) is actually a globally integrable
function, reads as follows.

Corollary 1.11.5 Let the Riemannian manifold (M, g) be as in (1.11.1). Assume�

is a nonempty, open, proper subset of M such that ∂� is a lower Ahlfors regular
set, and σg := Hn−1

g �∂� is a doubling measure on ∂�. In particular, � is a set
of finite perimeter, hence its geometric measure theoretic outward unit conormal
νg : ∂∗�→ T ∗M is defined σg-a.e. on ∂∗�. Denote by Ln

g the measure induced by
the volume element on M, and fix some κ ∈ (0,∞).

In this context, assume the vector field �F ∈ L1
loc(�,Ln

g)⊗ T M has the property
that, with the differential geometric divergence taken in the sense of distributions in
�,

divg �F ∈ L1(�,Ln
g), Nκ

�F ∈ L1(∂�, σg), and

�F∣∣κ−n.t.
∂�

exists (in T M) at σg-a.e. point on ∂nta�.
(1.11.19)

Then, for any other aperture κ ′ > 0, the nontangential trace �F∣∣κ
′−n.t.

∂�
exists σg-a.e.

on ∂nta� and is actually independent of κ ′. When regarding it as a function defined
σg-a.e. on ∂∗� (which, up to a σg-nullset, is contained in ∂nta�), this nontangential
trace belongs to L1(∂∗�, σg)⊗ T M and, with the dependence on the parameter κ ′
dropped, ˆ

�

divg �F dLn
g =

ˆ
∂∗�

T ∗M
(
νg, �F

∣∣n.t.
∂�

)
T M

dσg. (1.11.20)
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A consequence of Corollary 1.11.5 which is remarkably versatile in practice is
contained in Theorem 1.11.6, stated a little later below. For now, we recall that given
a first-order differential operator

D : C 1(M, E) −→ C 0(M,F) (1.11.21)

acting between sections of two vector bundles E,F → M , its principal symbol
Sym(D; ξ) is defined for each ξ ∈ T ∗x M (with x ∈ M arbitrary) as a mapping in
Hom(Ex ,Fx ) whose action on some u ∈ Ex is described as

Sym(D; ξ)u := iD
(
ψ ũ

)
(x) ∈ Fx . (1.11.22)

Above, ψ is a scalar-valued function of class C 1 near the point x with the property
that ψ(x) = 0 and (dψ)(x) = ξ , and ũ is a smooth section in E with the property
that ũ(x) = u. See, e.g., [259, p. 115]. For example, if in a local coordinate chart
U ⊆ M we may express

D =
∑

|α|≤1
Aα(x)∂

α (1.11.23)

for some matrix-valued coefficients Aα then, for each x ∈ U and each ξ ∈ T ∗x M ,

Sym(D; ξ) =
∑

|α|=1
(iξ)αAα(x). (1.11.24)

In particular, this notion of principal symbol agrees with the one considered in the
Euclidean setting in (1.7.16). For further use, let us also observe from (1.11.22)
that if D is as in (1.11.21) then for every scalar-valued function ψ of class C 1

on M (identified with the operator of pointwise multiplication by ψ) we have the
commutator identity

[D, ψ] = (−i)Sym(D; dψ) (1.11.25)

where d is the exterior derivative operator on M .

Theorem 1.11.6 Let the Riemannianmanifold (M, g) be as in (1.11.1), and suppose
D : E → F is a first-order differential operator, acting between the sections of two
Hermitian vector bundles E,F → M, whose top coefficients are of class C 1 and the
lower order coefficients are continuous.

Also, let � be a nonempty, open, proper subset of M such that ∂� is a lower
Ahlfors regular set, and σg := Hn−1

g �∂� is a doubling measure on ∂�. In particular,
� is a set of finite perimeter and its (geometric measure theoretic) outward unit
conormal νg : ∂∗�→ T ∗M is defined σg-a.e. on ∂∗�. Denote by Ln

g the measure
induced by the volume element dVg on M.

In this context, consider an Ln
g-measurable section u of E on �, along with an

Ln
g-measurable section w of F on � which, for some κ, κ ′ > 0, satisfy
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Nκu <∞ and Nκ ′w <∞ at σg-a.e. point on ∂�,

Nκu ·Nκ ′w belongs to the space L1(∂�, σg),

u
∣
∣κ−n.t.
∂�

, w
∣
∣κ
′−n.t.

∂�
exist at σg-a.e. point on ∂nta�,

Du ∈ L1
loc(�,Ln

g)⊗ F , D�w ∈ L1
loc(�,Ln

g)⊗ E,

and
〈
Du, w

〉
F −

〈
u, D�w

〉
E belongs to L1(�,Ln

g),

(1.11.26)

where all intervening differential operators are taken in the sense of distributions
(with D� denoting the real transpose of D), and where

〈·, ·〉E and
〈·, ·〉F are the real

(i.e., complex bilinear) pointwise pairings in the fibers of E and F , respectively.
Then, up to a σ -nullset, ∂∗� is contained in ∂nta� and, with the nontangential

traces u
∣∣κ−n.t.
∂�

, w
∣∣κ
′−n.t.

∂�
regarded as functions defined σg-a.e. on ∂∗�, the following

integration by parts formula holds:

ˆ
�

{
〈Du, w〉F−〈u, D�w〉E

}
dLn

g=
ˆ
∂∗�

〈
(−i)Sym(D; νg)

(
u
∣∣κ−n.t.
∂�

)
, w

∣∣κ
′−n.t.

∂�

〉

E
dσg

=
ˆ
∂∗�

〈
u
∣
∣n.t.
∂�

, iSym(D�; νg)
(
w

∣
∣n.t.
∂�

)〉

F
dσg,

(1.11.27)

where Sym(D; ξ) and Sym(D�; ξ) denote the principal symbols of D and D�,
respectively, evaluated at a generic covector ξ ∈ T ∗M.

As a corollary, if the integrability condition in the last line of (1.11.26) is strength-
ened to

〈
Du, w

〉
F ∈ L1(�,Ln

g) and
〈
u, D�w

〉
E ∈ L1(�,Ln

g) (1.11.28)

then (1.11.27) may be recast as the integration by parts formula

ˆ
�

〈Du, w〉F dLn
g =

ˆ
�

〈u, D�w〉E dLn
g (1.11.29)

+
ˆ
∂∗�

〈
(−i)Sym(D; νg)

(
u
∣
∣κ−n.t.
∂�

)
, w

∣
∣κ
′−n.t.

∂�

〉

E
dσg.

For instance, the demands in the first two lines of (1.7.23) are satisfied if

Nκu ∈ L p(∂�, σg) and Nκ ′w ∈ L p′(∂�, σg)

for some p, p′ ∈ [1,∞] with 1/p + 1/p′ = 1.
(1.11.30)

In such a setting, Proposition 8.9.8 guarantees that

for each κ ′′ ∈ (0,∞) the nontangential traces u
∣∣κ
′′−n.t.

∂�
, w

∣∣κ
′′−n.t.

∂�

exist σg-a.e. on ∂nta�, and are actually independent of κ ′′.
(1.11.31)
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The proof of Theorem 1.11.6 is given in Sect. 9.9. To offer an example of themany
concrete embodiments of Theorem 1.11.6, we need some notation. Given a manifold
M of classC 1, denote by d the exterior derivative operator onM . In local coordinates,
the action of d on a differential form locally expressed as u = ∑

J u J dx J is

du =
n∑

j=1

∑

J

∂uJ

∂x j
dx j ∧ dx J , (1.11.32)

where n is the dimension of M and “wedge” ∧ denotes the exterior product of
differential forms on M . Assuming that M is equipped with aC 1 Riemannian metric
tensor g, we also denote by δ the formal adjoint of d on M , and use the symbol ∨
for the interior product of differential forms on M . Let us also denote by ��T M the
�-th exterior power of the tangent plane to M (i.e., the vector bundle of differential
forms of degree � on M). The Riemannian metric tensor on M canonically induces
a Hermitian structure on ��T M and we let 〈·, ·〉��T M stand for the associated (real)
bilinear pointwise pairing on ��T M .

Corollary 1.11.7 Let M be a connected, compact, boundaryless, oriented manifold
of class C 1, of real dimension n, equipped with a C 1 Riemannian metric tensor g.
Suppose � is a nonempty, open, proper subset of M such that ∂� is lower Ahlfors
regular, and σg := Hn−1

g �∂� is a doubling measure on ∂�. In particular, � is a
set of finite perimeter and its (geometric measure theoretic) outward unit conormal
νg : ∂∗�→ T ∗M ≡ �1T M is defined σg-a.e. on ∂∗�. Denote by Ln

g the measure
induced by the volume element dVg on M.

In this context, fix an arbitrary degree � ∈ {0, 1, . . . , n} and suppose

u : �→ ��T M and w : �→ ��+1T M (1.11.33)

are two Ln
g-measurable differential forms which, for some aperture parameters

κ, κ ′ ∈ (0,∞), satisfy

Nκu <∞ and Nκ ′w <∞ at σg-a.e. point on ∂�,

Nκu ·Nκ ′w belongs to the space L1(∂�, σg),

the traces u
∣
∣κ−n.t.
∂�

, w
∣
∣κ
′−n.t.

∂�
exist at σg-a.e. point on ∂nta�,

du ∈ L1
loc(�,Ln

g)⊗��+1T M, δw ∈ L1
loc(�,Ln

g)⊗��T M,

and
〈
du, w

〉
��+1T M −

〈
u, δw

〉
��T M belongs to L1(�,Ln

g),

(1.11.34)

where the exterior derivative operator d and its (formal) transpose δ are considered
in the sense of distributions.

Then, up to a σg-nullset, ∂∗� is contained in ∂nta� and, when the nontangential

traces u
∣∣κ−n.t.
∂�

,w
∣∣κ
′−n.t.

∂�
are regarded as functions defined σg-a.e. on ∂∗�, the following

formula holds:
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ˆ
�

{〈
du, w

〉
��+1T M −

〈
u, δw

〉
��T M

}
dLn

g =
ˆ
∂∗�

〈
νg ∧ u

∣∣κ−n.t.
∂�

, w
∣∣κ
′−n.t.

∂�

〉
dσg

=
ˆ
∂∗�

〈
u
∣∣κ−n.t.
∂�

, νg ∨ w
∣∣κ
′−n.t.

∂�

〉
dσg.

(1.11.35)

In particular, if the integrability condition in the last line of (1.11.34) is strength-
ened to

〈
du, w

〉
��+1T M

∈ L1(�,Ln
g) and

〈
u, δw

〉
��T M

∈ L1(�,Ln
g) (1.11.36)

then (1.11.35) may be reformulated as the integration by parts formula

ˆ
�

〈
du, w

〉
��+1T M dLn

g =
ˆ
�

〈
u, δw

〉
��T M dLn

g

+
ˆ
∂∗�

〈
νg ∧ u

∣∣κ−n.t.
∂�

, w
∣∣κ
′−n.t.

∂�

〉
dσg. (1.11.37)

This is implied by Theorem 1.11.6 in the particular case when E := ��T M ,
F := ��+1T M , and D := d, the exterior derivative operator from (1.11.32). The
latter choice entails D� = δ, and it is well known that the principal symbols of the
operators d and δ are, respectively, given by

Sym(d; ξ)u = iξ ∧ u and Sym(δ; ξ)u = (−i)ξ ∨ u (1.11.38)

for each covector ξ ∈ T ∗M ≡ �1T M and each differential form u. Granted these,
(1.11.35) follows on account of (1.11.27).

Other examples of first-order differential operators for which Theorem 1.11.6
yields integration by parts formulas of practical interest include

(1) D := divg , the differential geometric divergence on theRiemannianmanifoldM ,
with principal symbol Sym(divg; ξ)u = iξ(u) = iT M(u, ξ)T ∗M for any covector
ξ ∈ T ∗M and any vector field u ∈ T M ;

(2) D := ∇, a connection on a Hermitian vector bundle E → M (such as the
Levi-Civita connection acting on differential forms), with principal symbol
Sym(∇; ξ)u = iξ ⊗ u for any covector ξ ∈ T ∗ and any section u ∈ E ;

(3) D := ∇X , the covariant derivative associated with a connection ∇ on a Hermi-
tian vector bundle E → M and a vector field X ∈ T M , with principal symbol
Sym(∇X ; ξ)u = iξ(X)u for each covector ξ ∈ T ∗ and each section u ∈ E ;

(4) D := Def, the deformation tensor, mapping any field X ∈ T M into a symmetric
tensor fields of type (0, 2) according to

(Def X)(Y, Z) := 1
2 {〈∇Y X, Z〉 + 〈∇Z X,Y 〉}, ∀X,Y, Z ∈ T ∗M, (1.11.39)
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whose principal symbol is given by Sym(Def; ξ)u = i
2 (ξ ⊗ u + u ⊗ ξ) for each

covector ξ ∈ T ∗M and each vector field u ∈ T M .

Corollary 1.11.5 can be a valuable tool even in the treatment of results formulated
plainly in theEuclidean ambient.An example of this flavor is provided by the theorem
below, dealing with an integration by parts formula on a patch of aC 1 surface, whose
proof (given in Sect. 9.9) proceeds by applyingCorollary 1.11.5 to a suitablemanifold
and differential geometric vector field.

Theorem 1.11.8 Fix n ∈ N with n ≥ 2 and suppose D ⊆ R
n is a bounded C 1

domain (consequently, ∂D may be regarded as an oriented, compact, boundary-
less, C 1 Riemannian manifold, equipped with the natural metric inherited from R

n).
Denote by N = (N1, . . . , Nn) the outward unit normal vector to D, and abbreviate
S := Hn−1�∂D. Next, consider a relatively open subset � of ∂D with the property
that there exists a constant c ∈ (0,∞) such that

c rn−2 ≤ Hn−2(B(x, r) ∩ ∂�
)
for each x ∈ ∂� and r ∈ (

0, 2 diam(∂�)
)
.

(1.11.40)
Also, assume σ := Hn−2�∂� is a doubling measure on ∂�. In particular, � is a
set of locally finite perimeter in the Riemannian manifold ∂D, hence its geometric
measure theoretic outward unit normal ν = (ν1, . . . , νn) is defined σ -a.e. on ∂∗�
(the geometric measure theoretic boundary of�, defined relative to the Riemannian
manifold ∂D as ambient). Going further, fix M, M ′ ∈ N and consider a coefficient
tensor A = (

aαβ

jk

)
1≤ j,k≤n

1≤α≤M, 1≤β≤M ′
with complex entries. Also, with Liploc(�) denoting

the space of all complex-valued functions which are locally Lipschitz in �, assume

u = (uβ)1≤β≤M ′ ∈ [
L1
1,loc(�, S)

]M
and w = (wα)1≤α≤M ∈ [

Liploc(�)
]M ′

(1.11.41)
are vector-valued functions for which

n∑

j,k=1

M∑

α=1

M ′∑

β=1
aαβ

jk

(
∂τ jk uβ

)
wα belongs to L1(�, S) (1.11.42)

and
n∑

j,k=1

M∑

α=1

M ′∑

β=1
aαβ

jk uβ

(
∂τ jkwα

)
belongs to L1(�, S), (1.11.43)

where
{
∂τ jk

}
1≤ j,k≤n are the tangential derivative operators defined as in [185,

Chap. 11] on ∂D. In addition, for some aperture parameter κ ∈ (0,∞) assume
that

Nκu <∞ and Nκw <∞, Nκu ·Nκw ∈ L1(∂�, σ),

the traces u
∣∣κ−n.t.
∂�

, w
∣∣κ−n.t.
∂�

exist at σ -a.e. point on ∂nta�,
(1.11.44)
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where the nontangential maximal operators and traces of u, w, as well as the non-
tangentially accessible boundary of � are defined relative to the ambient ∂D (itself
regarded as a Riemannian manifold).

Then, up to a σ -nullset, ∂∗� is contained in ∂nta� and, regarding the nontangential

traces u
∣∣κ−n.t.
∂�

,w
∣∣κ−n.t.
∂�

as functions defined at σ -a.e. point on ∂∗�, one has the following
integration by parts formula in �:

ˆ

�

n∑

j,k=1

M∑

α=1

M ′∑

β=1
aαβ

jk

(
∂τ jk uβ

)
wα dS (1.11.45)

= −
ˆ

�

n∑

j,k=1

M∑

α=1

M ′∑

β=1
aαβ

jk uβ

(
∂τ jkwα

)
dS

+
ˆ

∂∗�

n∑

j,k=1

M∑

α=1

M ′∑

β=1
aαβ

jk (N jνk − Nkν j )
(
uβ

∣∣κ−n.t.
∂�

)(
wα

∣∣κ−n.t.
∂�

)
dσ.

A particular useful case of (1.11.45) is the formula

ˆ
�

∂τ jk u dS =
ˆ
∂∗�

(N jνk − Nkν j )
(
u
∣∣κ−n.t.
∂�

)
dσ (1.11.46)

valid, in the same geometric context as in Theorem 1.11.8, for any j, k ∈ {1, . . . , n}
and any function u ∈ L1

1(�, S) with the property that there exists κ > 0 such that

Nκu ∈ L1(∂�, σ) and u
∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂nta�.
We also wish to remark that, in the three-dimensional setting, (1.11.45) contains

as a particular case a sharp version of Stokes’ classical formula to the effect that, with
τ := N × ν regarded as a positively oriented unit tangent vector to ∂�, we have

ˆ
�

N · (curl �F)∣∣
�
dS =

ˆ
∂∗�

τ · ( �F∣∣κ−n.t.
∂�

)
dσ (1.11.47)

for any vector field �F ∈ [
C 1(O)

]3
, where O is an open neighborhood in R

3 of �,
with the property that N · (curl �F)∣∣

�
∈ L1(�, S) and for which one can find some

κ > 0 such that Nκ
�F ∈ L1(∂�, σ) and �F∣∣κ−n.t.

∂�
exist σ -a.e. on ∂nta�. Moreover, if

(P, Q, R) are the scalar components of �F and if i, j, k denote the basic unit vectors
along the coordinate axes in R

3, we may express the inner product under the integral
in the right-hand side of (1.11.47) at σ -a.e. point on ∂∗� as
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τ · ( �F∣∣κ−n.t.
∂�

) = τ · (P∣∣κ−n.t.
∂�

, Q
∣∣κ−n.t.
∂�

, R
∣∣κ−n.t.
∂�

)

= τ ·
{(

P
∣∣κ−n.t.
∂�

)
i+ (

Q
∣∣κ−n.t.
∂�

)
j+ (

R
∣∣κ−n.t.
∂�

)
k
}

= (
P

∣∣κ−n.t.
∂�

)
i · τ + (

Q
∣∣κ−n.t.
∂�

)
j · τ + (

R
∣∣κ−n.t.
∂�

)
k · τ

= (
P

∣∣κ−n.t.
∂�

)
cosα + (

Q
∣∣κ−n.t.
∂�

)
cosβ + (

R
∣∣κ−n.t.
∂�

)
cos γ, (1.11.48)

where α, β, γ ∈ [0, π ] are the angles made by the unit tangent vector τ with the
coordinate axes in R

3. Thus, if we interpret the “differentials” dx , dy, dz as the
Radon measures on ∂∗� given by

dx := cosαH1�∂∗�, dy := cosβH1�∂∗�, dz := cos γH1�∂∗�, (1.11.49)

we may recast formula (1.2.34) as24

ˆ
∂∗�

(
P

∣∣κ−n.t.
∂�

)
dx + (

Q
∣∣κ−n.t.
∂�

)
dy + (

R
∣∣κ−n.t.
∂�

)
dz =

ˆ
�

N · (curl �F)∣∣
�
dS. (1.11.50)

The next goal is to present a version of Stokes’ theorem on manifolds in the spirit
of our results in Sects. 1.2–1.5. To set the stage, let M be an oriented manifold of
class C 1, of real dimension n. Given a domain � ⊆ M of class C 1, the classical
Stokes’ formula reads

ˆ
�

dω =
ˆ
∂�

ι∗ω, ∀ω ∈ C 1
c (M,�n−1T M), (1.11.51)

where ι∗ is the pull-back map induced by the canonical inclusion ι : ∂� ↪→ M of
the C 1 manifold ∂� into M . The goal is to find sharper geometrical and analytical
conditions on the set � and the differential form ω under which Stokes’ formula
continues to hold.

A basic obstacle in this regard is that relaxing the smoothness assumptions on
� to the point where ∂� is no longer a C 1 submanifold of M calls into question
the very meaning of the integral in the right-hand side of (1.11.51). This suggests
that an alternative, more flexible, and accommodating route should be found for
interpreting it. To accomplish this, equip the given manifold M with a continuous
Riemannian metric tensor g (which is always possible). Subsequently, let dVg denote
the volume n-form induced by the Riemannian metric g on M , and denote by Hn−1

g
the Hausdorff (n − 1)-dimensional measure associated with the metric g on M .
Continuing to assume that � ⊆ M is a domain of class C 1, also denote by dSg the
volume (n − 1)-form induced by the Riemannian metric g on the submanifold ∂� of
M . Finally, let νg : ∂�→ T ∗M ≡ �1T M be the (differential geometric) outward
unit conormal to �. Then, on the one hand, it is well known (cf., e.g., [250, (2.15),

24 This is very much in line with the classical algebraic format of Stokes’ theorem for the vector
field �F = (P, Q, R) and the “surface” �.
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p.127]) that for any 1-form a defined in a neighborhood of ∂� one has

ι∗(a ∨ dVg) =
〈
a
∣∣
∂�

, νg
〉
T∗M

dSg on ∂�. (1.11.52)

On the other hand, if ∗ stands for the Hodge star operator canonically associated with
the metric g on M (cf., e.g., [189, 250]), for any (n − 1)-form ω defined in a subset
of M one has

ω = (−1)n−1(∗ω) ∨ (∗1) = (−1)n−1(∗ω) ∨ dVg. (1.11.53)

Above, the first equality is implied by [189, Lemma 2.2(2), p. 54], while the second
equality is a consequence of [189, (2.1.17), p. 53]. From (1.11.52)–(1.11.53) we then
conclude that

for every (n − 1)-form ω defined in a neighborhood of ∂�

on M one has ι∗ω = (−1)n−1〈(∗ω)
∣∣
∂�

, νg
〉
T∗M

dSg on ∂�,
(1.11.54)

where 〈·, ·〉T∗M is the inner product in T ∗M ≡ �1T M .
We wish to emphasize that the volume (n − 1)-form dSg on ∂� has no clear

meaning if ∂� does not carry a manifold structure, hence ι∗ω is lacking a clear
interpretation in the latter case. This being said, with the help of [125, Proposition 5.7,
p. 2774] one may check that

the measure canonically induced by the volume (n − 1)-form dSg
on the submanifold ∂� is given by the formula σg := Hn−1

g �∂�. (1.11.55)

In view of (1.11.54)–(1.11.55), it follows that if� is, as before, a domain of classC 1

in the manifold M , then the classical Stokes’ formula (1.11.51) may be equivalently
recast as ˆ

�

dω = (−1)n−1
ˆ
∂�

〈
(∗ω)

∣∣
∂�

, νg
〉
T∗M

dσg,

for each (n − 1)-form ω ∈ C 1
c (M,�n−1T M),

(1.11.56)

where g is a background continuous Riemannian metric tensor on M . Simply put,

passing from (1.11.51) to (1.11.56) is made possible by identifying,
for each fixed differential form ω ∈ C 1

c (M,�n−1T M), the (n − 1)-
form ι∗ω on the (n − 1)-dimensional C 1 manifold ∂� with the Radon
measure given by (−1)n−1〈(∗ω)

∣
∣
∂�

, νg
〉
T∗M

σg on the set ∂�.

(1.11.57)

The real upshot of reformulating Stokes’ classical formula as in (1.11.56) is that
in the latter scenario having a meaningfully defined right-hand side does not require
∂� to necessarily be a differentiable manifold. In stark contrast with (1.11.51), this
actually opens the door for considering Stokes’ formula on sets � which merely
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possess a reasonable notion of outward unit conormal. Of course, the class of sets
which most naturally comes to mind is that of sets of locally finite perimeter. The
veracity of the version of Stokes’ formula recorded in (1.11.56) in such a setting is
confirmed by the theorem below.

Theorem 1.11.9 Let M be an oriented manifold of class C 1, of real dimension n,
and suppose � ⊆ M is a set of locally finite perimeter.

In this setting, define a pull-back operator, mapping (n − 1)-forms with contin-
uous coefficients on M into Radon measures on the set ∂∗�, of the following sort.
As a preliminary step, bring in a continuous Riemannian metric tensor25 g on M,
and consider the (n − 1)-dimensional Hausdorff measure Hn−1

g associated with the
metric g on M. Also, denote by νg : ∂∗�→ T ∗M the geometric measure theoretic
outward unit conormal to�, which is defined almost everywhere on ∂∗�with respect
to the measure σg := Hn−1

g �∂�. Finally, let 〈·, ·〉T∗M be the inner product canonically
induced by the metric g on T ∗M ≡ �1T M, let dVg be the volume n-form induced by
the Riemannian metric g on M, and let ∗ stand for the Hodge star operator canon-
ically associated with the metric g on M. With these in place, proceed to define the
sharp pull-back to the set ∂∗� of any given (n − 1)-form ω ∈ C 0(M,�n−1T M) as
the Radon measure

ι∗# ω := (−1)n−1〈(∗ω)
∣∣
∂∗�

, νg
〉
T∗M

σg on ∂∗�. (1.11.58)

Then the definition of the sharp pull-back in (1.11.58) is actually independent of
the background Riemannian metric g, and the sharp pull-back of any (n − 1)-form
ω ∈ C 0(M,�n−1T M) may be alternatively expressed as

ι∗# ω =
〈
ω
∣∣
∂∗�

, ∗νg
〉
�n−1T M

σg =
〈
ω
∣∣
∂∗�

, νg ∨ dVg
〉
�n−1T M

σg

= 〈
νg ∧

(
ω
∣∣
∂∗�

)
, dVg

〉
�n T M

σg = ∗
(
νg ∧

(
ω
∣∣
∂∗�

))
σg

= (−1)n−1νg ∨
( ∗ ω

∣∣
∂∗�

)
σg on ∂∗�. (1.11.59)

Moreover, for each (n − 1)-form ω ∈ C 1
c (M,�n−1T M) one has

ˆ
�

dω =
ˆ
∂∗�

ι∗# ω. (1.11.60)

Remark 1. From (1.11.54) to (1.11.56) and (1.11.58) it follows that (1.11.60)
reduces precisely to the classical Stokes formula (1.11.51) in the case when � is
actually a domain of class C 1 in M .

25 This may be constructed by locally transferring to M the Euclidean metric from R
n , then fash-

ioning a global Riemannian metric on M by gluing these local metrics using a suitable partition of
unity.
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Remark 2. In terms of the volume element dVg , the integrand in the left-hand side
of (1.11.60) may be expressed (cf. [189, Lemma 2.2(1), p. 63] and [189, (2.1.29),
p. 54]) as

dω = 〈
dω, dVg

〉
�nT M dVg. (1.11.61)

Remark 3. Fix � ∈ {0, 1, . . . , n} and consider an �-form u ∈ C 1
c (M,��T M) along

with some (�+ 1)-form w ∈ C 1
c (M,��+1T M). Then Stokes’ formula (1.11.60)

written for the form ω := u ∧ (∗w) becomes equivalent with the integration by parts
formula for the exterior derivative operator (compare with Corollary 1.11.7)

ˆ
�

〈
du, w

〉
��+1T M

dLn
g =

ˆ
�

〈
u, δw

〉
��T M

dLn
g

+
ˆ
∂∗�

〈
νg ∧ u

∣∣
∂∗�

,w
∣∣
∂∗�

〉
dσg. (1.11.62)

Indeed, from [189, (2.1.27), p. 53], [189, Lemma 2.8(2), p. 63] we know that

du ∧ (∗w) = 〈
du, w

〉
��+1T M dVg (1.11.63)

and

(−1)�u ∧ d(∗w) = −u ∧ ∗(δw) = −〈
u, δw

〉
��T M dVg, (1.11.64)

hence

dω = 〈
du, w

〉
��+1T M dVg −

〈
u, δw

〉
��T M dVg. (1.11.65)

Also, from the third equality in (1.11.59) together with [189, (2.1.29), p. 54] and
[189, Lemma 2.2, p. 54] we see that

ι∗# ω =
〈
νg ∧

((
u
∣∣
∂∗�

) ∧ ∗(w∣∣
∂∗�

))
, dVg

〉
�nT M σg

= (−1)(�+1)(n−�−1)〈( ∗ w
∣∣
∂∗�

) ∧ (
νg ∧ u

∣∣
∂∗�

)
, dVg

〉
�nT M σg

= (−1)(�+1)(n−�−1)〈νg ∧ u
∣∣
∂∗�

,
( ∗ w

∣∣
∂∗�

) ∨ dVg
〉
��+1T M σg

= (−1)(�+1)(n−�−1)〈νg ∧ u
∣∣
∂∗�

, ∗ ∗ w
∣∣
∂∗�

〉
��+1T M σg

= 〈
νg ∧ u

∣∣
∂∗�

,w
∣∣
∂∗�

〉
��+1T M σg. (1.11.66)

Then (1.11.62) is implied by (1.11.60), on account of (1.11.65) and (1.11.66).
The proof of Theorem 1.11.9 is contained in Sect. 9.9.
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We complement the result presented in Theorem 1.11.9 with a version of Stokes’
theorem in which the boundary integral involves what we call the nontangential
pull-back to ∂∗�, defined in a suitable sense, as a Radon measure.

Theorem 1.11.10 Assume the Riemannian manifold (M, g) is as in (1.11.1). Let �
be a nonempty, open, proper subset of M such that ∂� is a lower Ahlfors regular
set, and σg := Hn−1

g �∂� is a doubling measure on ∂�. In particular, � is a set
of finite perimeter and its (geometric measure theoretic) outward unit conormal
νg : ∂∗�→ T ∗M is defined σg-a.e. on ∂∗�. Denote by Ln

g the measure induced by
the volume element dVg on M, and let∗ stand for theHodge star operator canonically
associated with the metric g on M. In this context, fix κ ∈ (0,∞) and consider an
(n − 1)-form ω ∈ L1

loc(�,Ln
g)⊗�n−1T M satisfying the following properties:

the nontangential trace ω
∣∣κ−n.t.
∂�

exists σg-a.e. on ∂nta�,

Nκω ∈ L1(∂�, σg), and dω ∈ L1(�,Ln
g)⊗�nT M,

(1.11.67)

where the action of the exterior derivative operator is considered in the sense of
distributions in �.

Then for any κ ′ > 0 the nontangential trace ω
∣
∣κ
′−n.t.

∂�
exists σg-a.e. on ∂nta� and

is actually independent of κ ′. Moreover, if one defines (with the dependence on the
parameter κ ′ dropped) the nontangential pull-back ofω to ∂∗� as the Radonmeasure

ι∗n.t. ω := (−1)n−1〈(∗ω)
∣
∣n.t.
∂�

, νg
〉
T∗M

σg on ∂∗�, (1.11.68)

then this is actually independent of the Riemannian metric tensor g, it may be alter-
natively expressed as

ι∗n.t. ω =
〈
ω
∣∣n.t.
∂�

, ∗νg
〉
�n−1T M

σg =
〈
ω
∣∣n.t.
∂�

, νg ∨ dVg
〉
�n−1T M

σg

= 〈
νg ∧

(
ω
∣∣n.t.
∂�

)
, dVg

〉
�n T M

σg = ∗
(
νg ∧

(
ω
∣∣n.t.
∂�

))
σg

= (−1)n−1νg ∨
( ∗ ω

∣∣n.t.
∂�

)
σg on ∂∗�, (1.11.69)

and one has ˆ
�

dω =
ˆ
∂∗�

ι∗n.t. ω. (1.11.70)

The proof of Theorem 1.11.10 is presented in Sect. 9.9.
While Theorem 1.11.10 establishes Stokes’ formula in its traditional format under

rather general assumptions on the domain � and the differential form ω, its proof
relies on a particular case of Corollary 1.11.5, applied to a vector field that suitably
fashioned out the given (n − 1)-form ω. As such, it is significant to note that by
making use of the full force of Theorem 1.11.3 one may further extend the scope
of Theorem 1.11.10 by allowing the (n − 1)-form ω to actually be singular on a
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compact subset of �, a scenario in which the left-hand side of (1.11.70) should be
suitably interpreted. Specifically, we have the following theorem.

Theorem 1.11.11 Retain the geometric hypotheses made on the Riemannian man-
ifold (M, g) and the set � ⊆ M made in Theorem 1.11.10, and fix some κ > 0. In
this setting, assume the (n − 1)-form ω ∈ D′(�)⊗�n−1T M has the property that

there exists a compact set K ⊂ � such that

ω
∣∣
�\K ∈ L1

loc(� \ K ,Ln
g)⊗�n−1T M

and N�\K
κ

(
ω
∣∣
�\K

) ∈ L1(∂�, σg),

(1.11.71)

the pointwise nontangential boundary trace

ω
∣∣κ−n.t.
∂�

exists at σg-a.e. point on ∂nta�, (1.11.72)

and
∗ dω ∈ E ′(�)+ CBM(�). (1.11.73)

Then for any other aperture parameter κ ′ > 0 the nontangential trace ω
∣∣κ
′−n.t.

∂�

exists σg-a.e. on ∂nta� and is actually independent of κ ′. Moreover, with the non-
tangential pull-back of ω to ∂∗� defined (with the dependence on the parameter κ ′
dropped) as the Radon measure (1.11.68), one has

(C 1
b (�))

∗
( ∗ dω, 1

)
C 1

b (�) =
ˆ
∂∗�

ι∗n.t. ω. (1.11.74)

For a proof of Theorem 1.11.11, see Sect. 9.9.

1.12 Integrating by Parts on Boundaries of Ahlfors
Regular Domains on Manifolds

The main aim here is to produce a versatile integration by parts formula on the
boundary of an Ahlfors regular subdomains on a Riemannian manifold, involving
general first-order (tangential) differential operators. This is accomplished later, in
(1.12.91).We begin building in this direction by first proving the following key result.

Theorem 1.12.1 Let M be a C 2 manifold of dimension n, equipped with a Rie-
mannian metric g, and denote by Ln

g the Lebesgue measure induced by the volume
element on M. Next, consider three Hermitian vector bundles, E , F , H, over M, of
class C 2. Assume all metrics involved are of class C 1. Going further, suppose

P : C 1(M, E) −→ C 0(M,H) and Q : C 1(M,H) −→ C 0(M,F) (1.12.1)
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are two first-order differential operators with C 1 coefficients for the top part and
C 0 coefficients for the zero-th order part, having the property that their principal
symbols satisfy the cancelation condition

Sym(Q; ξ)Sym(P; ξ) = 0, ∀ξ ∈ T ∗M. (1.12.2)

Denote by P� : C 1(M,H)→ C 0(M, E) and Q� : C 1(M,F)→ C 0(M,H) the
(real ) transpose of P, Q (considered in the usual sense on the manifold M).

Next, let� be a relatively compact open subset of M, with a lower Ahlfors regular
boundary, such that σg := Hn−1

g �∂� is a doubling measure. Denote by νg the geo-
metric measure theoretic outward unit conormal to� and fix an aperture parameter
κ > 0. Finally, pick two Lebesguemeasurable sections, u : �→ E andw : �→ F ,
satisfying

Pu ∈ L1
loc(�,Ln

g)⊗H, Nκ(Pu), Nκu <∞ at σg-a.e. point on ∂�,

Nκ(Pu) ·Nκu belongs to the space L1(∂�, σg),

the nontangential traces u
∣∣κ−n.t.
∂�

, (Pu)
∣∣κ−n.t.
∂�

exist σg-a.e. on ∂nta�,

(1.12.3)

and

Q�w ∈ L1
loc(�,Ln

g)⊗H, Nκ(Q�w), Nκw <∞ at σg-a.e. point on ∂�,

Nκ(Q�w) ·Nκw belongs to the space L1(∂�, σg),

the nontangential traces w
∣∣κ−n.t.
∂�

, (Q�w)
∣∣κ−n.t.
∂�

exist σg-a.e. on ∂nta�.

(1.12.4)

Then
QP : C 1(M, E) −→ C 0(M,F) and

P�Q� : C 1(M,F) −→ C 0(M, E)

are first-order differential operators,

(1.12.5)

and, with all principal symbols taken in the sense of first-order differential operators,

ˆ
∂∗�

〈
iSym(Q; νg)(Pu)

∣∣κ−n.t.
∂�

, w
∣∣κ−n.t.
∂�

〉

F
dσg (1.12.6)

=
ˆ
∂∗�

〈
u
∣
∣κ−n.t.
∂�

, iSym
(
P�; νg

)
(Q�w)

∣
∣κ−n.t.
∂�

〉

E
dσg

+
ˆ
∂∗�

〈
iSym

(
QP; νg

)
u
∣
∣κ−n.t.
∂�

, w
∣
∣κ−n.t.
∂�

〉

F
dσg

=
ˆ
∂∗�

〈
u
∣∣κ−n.t.
∂�

, iSym
(
P�; νg

)
(Q�w)

∣∣κ−n.t.
∂�

− iSym
(
P�Q�; νg

)
w

∣∣κ−n.t.
∂�

〉

E
dσg.
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Moreover, if the original assumptions on the sections u, w are strengthened to
u ∈ C 1(M, E) and w ∈ C 1

c (M,F), then formula (1.12.6) is valid provided � is
merely a set of locally finite perimeter in M.

Proof First, (1.12.5) is a direct consequence of (1.12.2). Second, from Lemma 8.3.1
and (1.12.3)–(1.12.4) we obtain

u ∈ L∞loc(�,Ln
g)⊗ E and Pu ∈ L∞loc(�,Ln

g)⊗H,

w ∈ L∞loc(�,Ln
g)⊗ F and Q�w ∈ L∞loc(�,Ln

g)⊗H.
(1.12.7)

Consider now the vector field �F : �→ T M defined by asking that

T ∗M
(
ξ, �F)

T M =
〈
iSym(Q; ξ)(Pu), w

〉

F
−

〈
u, iSym(P�; ξ)(Q�w)

〉

E

−
〈
iSym(QP; ξ)u, w

〉

F
(1.12.8)

for Ln
g-a.e. point in �, and each covector ξ in the corresponding fiber in T ∗M . The

linearity of the right-hand side in ξ ensures that this is a well-defined object. Also,
from (1.12.7) we conclude that �F ∈ L1

loc(�,Ln
g)⊗ T M . We now claim that

divg �F = 0 in D ′(�). (1.12.9)

To justify this claim, fix a scalar-valued function ψ ∈ C 2
c (�) and compute the dis-

tributional pairing

D ′(�)

(
divg �F, ψ

)
D (�)

= −D ′(�)

( �F, gradψ
)
D (�)

= −
ˆ
�

T M
〈
gradψ, �F 〉

T M dLn
g

= −
ˆ
�

T ∗M
(
dψ, �F)

T M dLn
g

= −
ˆ
�

〈
iSym

(
Q; dψ)

Pu, w
〉

F
dLn

g

+
ˆ
�

〈
u, iSym

(
P�; dψ)

Q�w
〉

E
dLn

g

+
ˆ
�

〈
iSym

(
QP; dψ)

u, w
〉

F
dLn

g

= I + I I + I I I, (1.12.10)

where, in view of (1.12.5) and (1.11.25), we may take
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I :=
ˆ
�

〈[
Q, ψ

]
Pu, w

〉

F
dLn

g,

I I := −
ˆ
�

〈
u,

[
P�, ψ

]
Q�w

〉

E
dLn

g, (1.12.11)

I I I := −
ˆ
�

〈[
QP, ψ

]
u, w

〉

F
dLn

g.

Thanks to (1.12.7), wemay employ a local mollifier procedure to produce a sequence

{w j } j∈N ⊆ C 2(�,F) (1.12.12)

such that

w j → w and Q�w j → Q�w pointwise Ln
g-a.e. in � as j →∞,

sup j∈Nsupsuppψ |w j |F <∞ and sup j∈Nsupsuppψ |Q�w j |F <∞.
(1.12.13)

In particular, if for each j ∈ N we denote by I j , I I j , I I I j the versions of I, I I, I I I
with w replaced by w j , then (1.12.7) and (1.12.13) ensure that

I j → I, I I j → I I, and I I I j → I I I, as j →∞. (1.12.14)

For each fixed j ∈ N, we may integrate by parts (without boundary terms, since ψ

is compactly supported in �) to obtain

I j =
ˆ
�

〈
u, P�

[
Q, ψ

]�
w j

〉

E
dLn

g

= −
ˆ
�

〈
u, P�

[
Q�, ψ

]
w j

〉

E
dLn

g, (1.12.15)

where the last equality is a consequence of the fact that, in general,

[A, B]� = −[
A�, B�

]
. (1.12.16)

Another application of (1.12.16) gives

I I I j =
ˆ
�

〈
u,

[
P�Q�, ψ

]
w j

〉

E
dLn

g. (1.12.17)

For each j ∈ N we also have

−P�
[
Q�, ψ

]
w j −

[
P�, ψ

]
Q�w j +

[
P�Q�, ψ

]
w j = 0 in �. (1.12.18)
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Thismaybeverifiedbywritingout all commutators and canceling like-terms, keeping
in mind that w j ∈ C 2(�,F). From (1.12.10)–(1.12.18) we may then conclude that
(1.12.9) holds.

Moving on, (1.12.8) and the original assumptions on u, w imply that the nontan-

gential trace �F∣∣κ−n.t.
∂�

exists σg-a.e. on ∂nta� and, moreover,

T ∗M
(
νg, �F

∣
∣κ−n.t.
∂�

)
T M

=
〈
iSym(Q; νg)(Pu)

∣
∣κ−n.t.
∂�

, w
∣
∣κ−n.t.
∂�

〉

F

−
〈
u
∣∣κ−n.t.
∂�

, iSym
(
P�; νg

)
(Q�w)

∣∣κ−n.t.
∂�

〉

E

−
〈
iSym

(
QP; νg

)
u
∣
∣κ−n.t.
∂�

, w
∣
∣κ−n.t.
∂�

〉

F
. (1.12.19)

In addition, (1.12.8) also gives that

Nκ
�F ≤ C

{
Nκu ·Nκw +Nκ(Pu) ·Nκw +Nκu ·Nκ(Q

�w)
}

on ∂�.

(1.12.20)

Granted the original assumptions on u, w, this shows that Nκ
�F belongs to

L1(∂�, σg).With this in hand, the first equality in formula (1.12.6) now follows from
Corollary 1.11.5, bearing in mind (1.12.19) and (1.12.9). The second equality in for-
mula (1.12.6) is a consequence of what we have just proved and (1.7.17).

Lastly, the very last claim in the statement of the theorem (pertaining to the validity
of (1.12.6) when u ∈ C 1(M, E),w ∈ C 1

c (M,F), and� ⊆ M is a set of locally finite
perimeter) is proved in a similar fashion, the main difference being that we nowmake
use of Theorem 1.11.1 in place of Corollary 1.11.5. �

We next discuss an integral identity which may be regarded as a far-reaching
generalization of the classical Stokes’ formula in the three-dimensional setting (see
the comments following the statement of Theorem 1.12.2 in this regard).

Theorem 1.12.2 Let M̃ be a C 2 manifold of dimension n + 1, equipped with a
Riemannian metric g, and consider an open, oriented, C 1 submanifold M of M̃, of
dimension n. Denote by Ln

g the Lebesgue measure induced by the intrinsic volume
element on M (regarded as a Riemannian manifold in its own right), and also let
Ng : M → T ∗M̃ stand for the unit conormal to M.

Next, consider three Hermitian vector bundles, E , F , H, over M̃, of class C 2.
Assume all metrics involved are of class C 1. Going further, suppose

P : C 1(M̃, E) −→ C 0(M̃,H) and Q : C 1(M̃,H) −→ C 0(M̃,F) (1.12.21)

are two first-order differential operators with C 1 coefficients for the top part and
C 0 coefficients for the zero-th order part, having the property that their principal
symbols satisfy the cancelation condition
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Sym(Q; ξ̃ )Sym(P; ξ̃ ) = 0, ∀̃ξ ∈ T ∗M̃ . (1.12.22)

Denote by P� : C 1(M̃,H)→ C 0(M̃, E) and Q� : C 1(M̃,F)→ C 0(M̃,H) the
(real ) transpose of P, Q, considered in the usual sense on the manifold M̃.

Next, let � be a relatively compact open subset of M, with a lower Ahlfors reg-
ular boundary, such that σg := Hn−1

g �∂� is a doubling measure (all relative to the
manifold M, as ambient). Denote by νg the geometric measure theoretic outward
unit conormal to � and fix an aperture parameter κ > 0. Finally, consider an open
neighborhoodO of� in M̃ and pick two sections, u ∈ C 1(O, E) andw ∈ C 1(O,F),
satisfying (with the nontangential maximal operator and nontangential traces taken
from within �)

Nκ

(
u
∣∣
�

)
<∞ and Nκ

(
w

∣∣
�

)
<∞ at σg-a.e. point on ∂�,

Nκ

(
u
∣∣
�

) ·Nκ

(
w

∣∣
�

)
belongs to the space L1(∂�, σg),

(u|�)
∣
∣κ−n.t.
∂�

and (w|�)
∣
∣κ−n.t.
∂�

exist at σg-a.e. point on ∂nta�,

(1.12.23)

as well as

|Pu||w| + |u||Q�w| + |u||w| ∈ L1(�,Ln
g). (1.12.24)

Then
QP : C 1(M̃, E) −→ C 0(M̃,F) and

P�Q� : C 1(M̃,F) −→ C 0(M̃, E)

are first-order differential operators,

(1.12.25)

and, with all principal symbols taken in the sense of first-order differential operators,

ˆ
�

〈
iSym(Q; Ng)(Pu)

∣∣
�
,w

∣∣
�

〉

F
dLn

g (1.12.26)

=
ˆ
�

〈
u
∣∣
�
, iSym

(
P�; Ng

)
(Q�w)

∣∣
�
− iSym

(
P�Q�; Ng

)
w

∣∣
�

〉

E
dLn

g

+
ˆ
∂∗�

〈
Sym

(
Q; Ng

)
Sym

(
P; ν̃g

)
(u|�)

∣∣κ−n.t.
∂�

, (w|�)
∣∣κ−n.t.
∂�

〉

E
dσg,

where ν̃g is the unique extension of νg ∈ T ∗M to a linear functional ν̃g ∈ T ∗M̃ such
that ν̃g(Ng) = 0.

Moreover, if the original assumptions on the sections u, w are strengthened to
u ∈ C 1(M̃, E) and w ∈ C 1

c (M̃,F), then formula (1.12.26) is valid provided � is
merely a set of locally finite perimeter in M.

Note that if QP = 0 on M̃ then (1.12.22) is automatically satisfied; in this case
we also have P�Q� = 0 on M̃ , hence Sym

(
P�Q�; Ng

) = 0 (so (1.12.26) takes
a simpler form in this situation). To see a concrete example of this sort, pick some
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� ∈ {1, . . . , n, n + 1} (recall that dimM̃ = n + 1) and, with dM̃ denoting the exterior
derivative operator on M̃ , define

E := ��−1T M̃, H := ��T M̃, F := ��+1T M̃,

P := dM̃ on �-forms on M̃, Q := dM̃ on (�+ 1)-forms on M̃ .
(1.12.27)

In such a scenario, with δM̃ := (dM̃)� denoting the transpose of dM̃ on M̃ , formula
(1.12.26) becomes

−
ˆ
�

〈
Ng ∧ (dM̃u)

∣
∣
�
,w

∣
∣
�

〉
��+1T M̃ dLn

g =
ˆ
�

〈
u
∣
∣
�
, Ng ∨ (δM̃w)

∣
∣
�

〉
��−1T M̃ dLn

g

−
ˆ
∂∗�

〈
Ng ∧

(
ν̃g ∧ (u|�)

∣∣κ−n.t.
∂�

)
, (w|�)

∣∣κ−n.t.
∂�

〉
��−1T M̃ dσg, (1.12.28)

for any (�− 1)-form u and (�+ 1)-form w which are of class C 1 in an open neigh-
borhood of � in M̃ and satisfy (1.12.23) as well as

|dM̃u||w| + |u||δM̃w| + |u||w| ∈ L1(�,Ln
g). (1.12.29)

Further specialize these considerations to following scenario. Suppose dimM̃ = 3
(i.e., n = dim M = 2) and recall that, in this context, the curl operator and cross-
product are defined as follows (with ∗ denoting the Hodge star operator on M̃):

curlω := ∗(dM̃ω), α × β := ∗(α ∧ β)

for any 1-forms ω, α, β on M̃ .
(1.12.30)

Take u to be a 1-form in an open neighborhood of � in M̃ satisfying

Nκ

(
u
∣
∣
�

) ∈ L p(∂�, σg), |curl u| + |u| ∈ L1(�,L2
g)

and (u|�)
∣∣κ−n.t.
∂�

exists at σg-a.e. point on ∂nta�,
(1.12.31)

and consider the 2-form w := ∗1 on M̃ . Then (1.12.28) becomes

ˆ
�

〈
Ng, (curl u)

∣∣
�

〉
�1T M̃ dL2

g =
ˆ
∂∗�

〈
(u|�)

∣∣κ−n.t.
∂�

, Ng × ν̃g
〉
�1T M̃ dσg. (1.12.32)

Interpreting τg := Ng × ν̃g as the tangent covector to the “curve” ∂∗�, we may
rephrase (1.12.32) as

ˆ
�

〈
Ng, (curl u)

∣∣
�

〉
�1T M̃ dL2

g =
ˆ
∂∗�

〈
τg, (u|�)

∣∣κ−n.t.
∂�

〉
�1T M̃ dσg. (1.12.33)
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This is very much akin to the classical Stokes’ formula in the three-dimensional
setting, with the added bonus of providing very general geometric and analytic con-
ditions ensuring its actual validity.

Proof (Proof of Theorem 1.12.2) We start by defining the vector field �F : �→ T M̃
in an implicit fashion, via the demand that

T ∗ M̃
(
ξ̃ , �F)

T M̃ =
〈
Sym(Q; Ng)Sym(P; ξ̃ )u, w

〉

F
(1.12.34)

for each point in � and each covector ξ̃ in the corresponding fiber in T ∗M̃ . The
linearity of the right-hand side in ξ̃ ensures that this is indeed well defined. From
(1.12.34) and (1.12.22) we see that

T ∗ M̃
(
Ng, �F

)
T M̃ =

〈
Sym(Q; Ng)Sym(P; Ng)u, w

〉

F
= 0, (1.12.35)

hence �F is tangent to M at points in �. As such, we may regard �F as an intrinsic
vector field to the manifold M , i.e., �F : �→ T M . Viewed as such, it follows that,
in fact,

�F ∈ L1
loc(�,Ln

g)⊗ T M. (1.12.36)

Let divM denote the differential geometric divergence operator on the manifold M
(equipped with the Riemann metric inherited from the ambient M̃). We claim that,
in the sense of distributions in �, we have

divM �F =
〈
iSym(Q; Ng)(Pu)

∣∣
�
,w

∣∣
�

〉

F
(1.12.37)

−
〈
u
∣∣
�
, iSym

(
P�; Ng

)
(Q�w)

∣∣
�
− iSym

(
P�Q�; Ng

)
w

∣∣
�

〉

E
.

To justify this claim, fix an arbitrary scalar-valued function ψ ∈ C 1
c (M̃) with the

property that suppψ ∩ M ⊆ �. With gradM denoting the gradient operator on M ,
and d denoting the exterior derivative operator on M̃ , we may then compute (bearing
in mind (1.12.35))

D ′(�)

(
divM �F, ψ |�

)
D (�)

= −D ′(�)

( �F, gradM(ψ |�)
)
D (�)

= −
ˆ
�

T M
〈
gradM(ψ |�), �F

〉
T M dLn

g

= −
ˆ
�

T ∗ M̃
(
dψ, �F)

T M̃ dLn
g

= −
ˆ
�

〈
Sym

(
Q; Ng

)
Sym

(
P; dψ)

u, w
〉

F
dLn

g

= I − I I, (1.12.38)
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where, in view of (1.12.25) and (1.11.25), we may take

I := −
ˆ
�

〈
iSym

(
Q; Ng

)
P(ψu), w

〉

F
dLn

g, (1.12.39)

I I := −
ˆ
�

〈
iSym

(
Q; Ng

)
(Pu), w

〉

F
ψ dLn

g. (1.12.40)

Given the nature of our hypotheses and the format of the conclusion we seek,
there is no loss of generality in assuming that there exists a relatively compact C 1

domain �̃ of M̃ whose closure is contained in the open neighborhood O and with
the property that suppψ ∩ M = suppψ ∩ ∂�̃, or, equivalently,

suppψ ∩ M ⊆ ∂�̃ and suppψ ∩ ∂�̃ ⊆ M. (1.12.41)

In such a scenario, Ng agrees with the outward unit conormal to ∂�̃ on suppψ ∩�.
Keeping this in mind, denoting by σg the surface measure on ∂�̃, and making use of
(1.12.6) (with M , � replaced by M̃ , �̃), we may then express

I = −
ˆ
∂�̃

〈
iSym

(
Q; Ng

)
P(ψu), w

〉

F
dσ̃g

= −
ˆ
∂�̃

〈
ψu, iSym

(
P�; Ng

)
(Q�w)− iSym

(
P�Q�; Ng

)
w

〉

E
dσ̃g

= −
ˆ
�

〈
u, iSym

(
P�; Ng

)
(Q�w)− iSym

(
P�Q�; Ng

)
w

〉

E
ψ dLn

g. (1.12.42)

From (1.12.38)–(1.12.40), and (1.12.42), formula (1.12.37) now follows. In concert
with (1.12.24), this implies

divM �F ∈ L1(�,Ln
g). (1.12.43)

Next, (1.12.34) and the original assumptions on u, w imply that the nontangential

trace �F∣∣κ−n.t.
∂�

exists at σg-a.e. point on ∂nta� (when considered fromwithin the ambient
� ⊂ M) and

T ∗M
(
νg, �F

∣∣κ−n.t.
∂�

)
T M

= T ∗ M̃
(
ν̃g, �F

∣∣κ−n.t.
∂�

)
T M̃

(1.12.44)

=
〈
Sym(Q; Ng)Sym(P; ν̃g)

(
(u|�)

∣∣κ−n.t.
∂�

)
,
(
(w|�)

∣∣κ−n.t.
∂�

)〉

F
.

In addition, (1.12.34) also gives that

Nκ
�F ≤ CNκu ·Nκw on ∂�. (1.12.45)
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Granted theoriginal assumptions onu, w, this shows thatNκ
�F belongs to L1(∂�, σg).

With this in hand, formula (1.12.6) now follows from Corollary 1.11.5, bearing in
mind (1.12.44) and (1.12.37).

Lastly, the very last claim in the statement of the theorem (pertaining to the
validity of (1.12.26) when u ∈ C 1(M̃, E), w ∈ C 1

c (M̃,F), and � ⊆ M is a set of
locally finite perimeter) is proved in a similar fashion, the main difference being that
we now make use of Theorem 1.11.1 in place of Corollary 1.11.5. �

One significant instance when the cancelation condition (1.12.2) is automatically
satisfied is singled out next.

Corollary 1.12.3 Let M be a C 2 manifold of dimension n, equipped with a Rie-
mannian metric g, and denote by Ln

g the Lebesgue measure induced by the volume
element on M. Let E , F be Hermitian vector bundles over M, of class C 2. Assume
all metrics involved are of class C 1. Suppose

P : C 1(M, E) −→ C 0(M,F) (1.12.46)

is a first-order differential operator with C 1 coefficients for the top part and C 0

coefficients for the zero-th order part. Let P� : C 1(M,F)→ C 0(M, E) denote its
transpose.

Next, let � be a relatively compact open subset of M, with a lower Ahlfors reg-
ular boundary, such that σg := Hn−1

g �∂� is a doubling measure. Denote by νg the
geometric measure theoretic outward unit conormal to � and select some aperture
parameter κ > 0. Finally, pick two Lebesgue measurable sections, u : �→ E and
w : �→ F , satisfying

∇u ∈ L1
loc(�,Ln

g)⊗ (T ∗M ⊗ E),

Nκu, Nκ(∇u) <∞ at σg-a.e. point on ∂�,

u
∣
∣κ−n.t.
∂�

and (∇u)∣∣κ−n.t.
∂�

exist at σg-a.e. point on ∂nta�,

(1.12.47)

as well as

∇w ∈ L1
loc(�,Ln

g)⊗ (T ∗M ⊗ F),

Nκw, Nκ(∇w) <∞ at σg-a.e. point on ∂�,

w
∣∣κ−n.t.
∂�

and (∇u)∣∣κ−n.t.
∂�

exist σg-a.e. on ∂nta�,

(1.12.48)

and

Nκu ·Nκw, Nκu ·Nκ(∇w), Nκ(∇u) ·Nκw ∈ L1(∂�, σg). (1.12.49)

Lastly, fix aC 1-vector field X on M and denote by∇E
X ,∇F

X , the covariant derivatives
along X for sections of E and F , respectively.
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Then
P∇E

X − ∇F
X P : C 2(M, E) −→ C 0(M,F) (1.12.50)

is a first-order differential operator and
ˆ
∂∗�

〈
νg(X)(Pu)

∣∣κ−n.t.
∂�

+ iSym(P; νg)(∇E
Xu)

∣∣κ−n.t.
∂�

, w
∣∣κ−n.t.
∂�

〉

F
dσg (1.12.51)

=
ˆ
∂∗�

〈
u
∣
∣∣
κ−n.t.

∂�
, νg(X)

(
P�w

)∣∣∣
κ−n.t.

∂�
− iSym

(
P�; νg

)(
(∇F

X )�w
)∣∣∣

κ−n.t.

∂�

+ iSym
(
P∇E

X −∇F
X P; νg

)�
w

∣∣
∣
κ−n.t.

∂�

〉

E
dσg,

where all principal symbols are taken in the sense of first-order differential operators.
In addition, if the original assumptions on the sections u, w are strengthened to

u ∈ C 1(M, E) and w ∈ C 1
c (M,F), then formula (1.12.51) is valid provided � is

simply a set of locally finite perimeter in M.

Proof Recall that for each vector field X = X j∂ j ∈ T M the covariant derivative∇X

associated with a connection∇ on a vector bundle is a first-order differential operator
whose principal symbol is given by

Sym(∇X ; ξ) = iξ(X) I = iX jξ j I, ∀ξ = ξ jdx j ∈ T ∗M, (1.12.52)

where I is the identity operator (cf., e.g., [189, Proposition 9.3, pp. 375–377]). To
proceed in earnest, withE,F , P, Q as in the statement, consider theHermitian vector
bundle H := E ⊕ F , and define the first-order differential operators

P̃ : C 1(M, E) −→ C 0(M,H),

P̃φ := (∇E
Xφ,−Pφ

)
, ∀φ ∈ C 1(M, E),

(1.12.53)

and
Q̃ : C 1(M,H) −→ C 0(M,F),

Q̃(ϕ, ψ) := Pϕ +∇F
X ψ, ∀(ϕ, ψ) ∈ C 1(M,H).

(1.12.54)

Their transposes are given, respectively, by

P̃ � : C 1(M,H) −→ C 0(M, E),

P̃ �(ϕ, ψ) = (∇E
X

)�
ϕ − P�ψ, ∀(ϕ, ψ) ∈ C 1(M,H),

(1.12.55)

and
Q̃� : C 1(M,F) −→ C 0(M,H),

Q̃�η = (
P�η, (∇F

X )�η
)
, ∀η ∈ C 1(M,F).

(1.12.56)

Observe that, by (1.12.53)–(1.12.54) and (1.12.52), for every section φ ∈ E we have
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Sym(Q̃; ξ)Sym(P̃; ξ)φ = Sym(Q̃; ξ)(Sym(∇E
X ; ξ)φ,−Sym(P; ξ)φ)

= Sym(P; ξ)Sym(∇E
X ; ξ)φ − Sym(∇F

X ; ξ)Sym(P; ξ)φ
= iξ(X)Sym(P; ξ)φ − iξ(X)Sym(P; ξ)φ
= 0 for all ξ ∈ T ∗M. (1.12.57)

Also, for each section η ∈ F ,

P̃ � Q̃ �η = P̃ �(
P�η, (∇F

X )�η
) = (∇E

X

)�
P�η − P�(∇F

X )�η

= (
P∇E

X −∇F
X P)�η. (1.12.58)

Granted these identifications, all desired conclusions are now seen directly from
Theorem 1.12.1 applied to the vector bundles E , F , H, and differential operators
P̃ , Q̃. �

Appropriately specializing Theorem 1.12.1 yields the following useful result.

Corollary 1.12.4 Let M be a C 2 manifold of dimension n, equipped with a Rie-
mannian metric g, and denote by Ln

g the Lebesgue measure induced by the volume
element on M. Let E be a Hermitian vector bundle over M, of class C 2. Assume
all metrics involved are of class C 1. Suppose P, Q : C 1(M, E)→ C 0(M, E) are
first-order differential operators with C 1 coefficients having the property that their
principal symbols commute, in the sense that

Sym(P; ξ)Sym(Q; ξ) = Sym(Q; ξ)Sym(P; ξ), ∀ξ ∈ T ∗M. (1.12.59)

Denote by P�, Q� : C 1(M, E)→ C 0(M, E) the transposes of P, Q (considered in
the usual sense on the manifold M).

Next, let � be a relatively compact open subset of M, with a lower Ahlfors reg-
ular boundary, such that σg := Hn−1

g �∂� is a doubling measure. Denote by νg the
geometric measure theoretic outward unit conormal to � and select an aperture
parameter κ > 0. Finally, pick two Lebesgue measurable sections u, w : �→ E
satisfying

Pu and Qu belong to the space L1
loc(�,Ln

g)⊗ E,

Nκu, Nκ(Pu), Nκ(Qu) <∞ at σg-a.e. point on ∂�,

u
∣∣κ−n.t.
∂�

, (Pu)
∣∣κ−n.t.
∂�

, (Qu)
∣∣κ−n.t.
∂�

exist σg-a.e. on ∂nta�,

(1.12.60)

as well as

P�w and Q�w belong to the space L1
loc(�,Ln

g)⊗ E,

Nκw, Nκ(P�w), Nκ(Q�w) <∞ at σg-a.e. point on ∂�,

w
∣∣κ−n.t.
∂�

, (P�w)
∣∣κ−n.t.
∂�

, (Q�w)
∣∣κ−n.t.
∂�

exist σg-a.e. on ∂nta�,

(1.12.61)
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and
[
Nκu +Nκ(Pu)+Nκ(Qu)

] ·Nκw ∈ L1(∂�, σg),
[
Nκw +Nκ(P�w)+Nκ(Q�w)

] ·Nκu ∈ L1(∂�, σg).
(1.12.62)

Then the commutator [P, Q] is a first-order differential operator acting on sec-
tions of E and

ˆ
∂∗�

〈
iSym(P; νg)(Qu)

∣
∣κ−n.t.
∂�

− iSym(Q; νg)(Pu)
∣
∣κ−n.t.
∂�

,w
∣
∣κ−n.t.
∂�

〉

E dσg

= −
ˆ
∂∗�

〈
u
∣∣κ−n.t.
∂�

, iSym
(
P�; νg

)
(Q�w)

∣∣κ−n.t.
∂�

− iSym
(
Q�; νg

)
(P�w)

∣∣κ−n.t.
∂�

〉

E dσg

+
ˆ
∂∗�

〈
iSym

([P, Q]; νg
)
u
∣∣κ−n.t.
∂�

,w
∣∣κ−n.t.
∂�

〉

E dσg, (1.12.63)

where all principal symbols are taken in the sense of first-order differential operators.
Furthermore, if the original assumptions on the sections u, w are strengthened

to u ∈ C 1(M, E) and w ∈ C 1
c (M,F), then formula (1.12.63) remains valid if � is

simply a set of locally finite perimeter in M.

Proof With E, P, Q as in the statement of the corollary, consider the Hermitian vec-
tor bundlesF := E andH := E ⊕ E . Also, define thefirst-order differential operators

P̃ : C 1(M, E) −→ C 0(M,H),

P̃φ := (Qφ,−Pφ), ∀φ ∈ C 1(M, E),
(1.12.64)

and
Q̃ : C 1(M,H) −→ C 0(M,F),

Q̃(ϕ, ψ) := Pϕ + Qψ, ∀(ϕ, ψ) ∈ C 1(M,H).
(1.12.65)

Their transposes are given, respectively, by

P̃ � : C 1(M,H) −→ C 0(M, E),

P̃ �(ϕ, ψ) = Q�ϕ − P�ψ, ∀(ϕ, ψ) ∈ C 1(M,H),
(1.12.66)

and
Q̃� : C 1(M,F) −→ C 0(M,H),

Q̃�η = (P�η, Q�η), ∀η ∈ C 1(M,F).
(1.12.67)

Note that, by design and (1.12.59), for every section θ ∈ E we have

Sym(Q̃; ξ)Sym(P̃; ξ)θ = Sym(Q̃; ξ)(Sym(Q; ξ)θ,−Sym(P; ξ)θ)

= Sym(P; ξ)Sym(Q; ξ)θ − Sym(Q; ξ)Sym(P; ξ)θ
= 0 for all ξ ∈ T ∗M, (1.12.68)
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and

Q̃ P̃θ = Q̃(Qθ,−Pθ) = PQθ − QPθ = [P, Q]θ, (1.12.69)

hence

P̃ � Q̃ � = (
Q̃ P̃

)� = [P, Q]�. (1.12.70)

In light of these identifications, the desired conclusions are now seen directly from
Theorem 1.12.1 applied to the vector bundles E , F , H, and differential operators
P̃ , Q̃. �

A useful consequence of Theorem 1.12.2 is recorded below.

Corollary 1.12.5 Let M̃ be a C 2 manifold of dimension n + 1, equipped with a
Riemannian metric g, and consider an open, oriented, C 1 submanifold M of M̃, of
dimension n. Denote by Ln

g the Lebesgue measure induced by the intrinsic volume

element on the Riemannian manifold M, and let Ng : M → T ∗M̃ stand for the unit
conormal to M. Also, consider a Hermitian vector bundle E , of class C 2 over the
manifold M̃. Assume all metrics involved are of class C 1. Going further, suppose

P, Q : C 1(M̃, E) −→ C 0(M̃, E) (1.12.71)

are two first-order differential operators with C 1 coefficients for the top part and
C 0 coefficients for the zero-th order part, having the property that their principal
symbols commute, in the sense that

Sym(P; ξ̃ )Sym(Q; ξ̃ ) = Sym(Q; ξ̃ )Sym(P; ξ̃ ), ∀̃ξ ∈ T ∗M̃ . (1.12.72)

Denote by P�, Q� : C 1(M̃, E)→ C 0(M̃, E) the (real ) transpose of P, Q, consid-
ered in the usual sense on the manifold M̃.

Next, let� be a relatively compact open subset of M, with a lower Ahlfors regular
boundary, such that σg := Hn−1

g �∂� is a doubling measure (all relative to the man-
ifold M, as ambient). Denote by νg the geometric measure theoretic outward unit
conormal to � and select an aperture parameter κ > 0. Lastly, consider an open
neighborhoodO of� in M̃ and pick two sections, u, w ∈ C 1(O, E), satisfying (with
the nontangential maximal operator and nontangential traces taken from within �)

Nκ

(
u
∣∣
�

)
<∞ and Nκ

(
w

∣∣
�

)
<∞ at σg-a.e. point on ∂�,

Nκ

(
u
∣
∣
�

) ·Nκ

(
w

∣
∣
�

)
belongs to the space L1(∂�, σg),

(u|�)
∣∣κ−n.t.
∂�

and (w|�)
∣∣κ−n.t.
∂�

exist at σg-a.e. point on ∂nta�,

(1.12.73)

as well as
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(|Pu| + |Qu|)|w| + |u|(|P�w| + |Q�w|)+ |u||w| ∈ L1(�,Ln
g). (1.12.74)

Then the commutator [P, Q] is a first-order differential operator on sections of E
and, with all principal symbols taken in the sense of first-order differential operators,

ˆ
�

〈
iSym(P; Ng)(Qu)

∣∣
�
− iSym(Q; Ng)(Pu)

∣∣
�
,w

∣∣
�

〉

E
dLn

g

= −
ˆ
�

〈
u
∣∣
�
, iSym

(
P�; Ng

)
(Q�w)

∣∣
�
− iSym

(
Q�; Ng

)
(P�w)

∣∣
�

〉

E
dLn

g

+
ˆ
�

〈
iSym

([P, Q]; Ng
)
u
∣∣
�
,w

∣∣
�

〉

E
dLn

g

−
ˆ
∂∗�

〈
Sym

(
Q; Ng

)
Sym

(
P; ν̃g

)
(u|�)

∣∣κ−n.t.
∂�

, (w|�)
∣∣κ−n.t.
∂�

〉

E
dσg

+
ˆ
∂∗�

〈
Sym

(
P; Ng

)
Sym

(
Q; ν̃g

)
(u|�)

∣∣κ−n.t.
∂�

, (w|�)
∣∣κ−n.t.
∂�

〉

E
dσg, (1.12.75)

where ν̃g is the unique extension of νg ∈ T ∗M to a linear functional ν̃g ∈ T ∗M̃ such
that ν̃g(Ng) = 0.

Moreover, if the original assumptions on the sections u, w are strengthened to
u ∈ C 1(M̃, E) and w ∈ C 1

c (M̃, E), then formula (1.12.75) is valid provided � is
merely a set of locally finite perimeter in M.

Proof The same purely algebraic argument which has produced Corollary 1.12.4 by
applying Theorem 1.12.1 to the differential operators P̃ , Q̃ from (1.12.64)–(1.12.65)
proves the present corollary if in place of Theorem 1.12.1 we now employ Theo-
rem 1.12.2. �

A version of Corollary 1.12.4 which is particularly useful in the development of
our brand of boundary Sobolev spaces on manifolds is established in the proposition
below. To facilitate its statement, we introduce some basic notation. The context is
that of a C 2 manifold M of dimension n, equipped with a Riemannian metric g.
Consider a set of locally finite perimeter� ⊂ M and denote by ν : ∂∗�→ T ∗M its
geometric measure theoretic outward unit conormal. Finally, let E be a Hermitian
vector bundle over M . Assume all metrics involved are of class C 1. In this setting,
given two continuous vector fields X,Y ∈ T M , for every section ϕ ∈ C 1

c (M, E) we
define

∂τXY ϕ := ν(X)
(∇Yϕ

)∣∣∣
∂∗�

− ν(Y )
(∇Xϕ

)∣∣∣
∂∗�

on ∂∗�, (1.12.76)

where ∇ is a connection (or covariant derivative) on E , with continuous connection
coefficients. In particular, if in local coordinates the outward unit conormal ν is

expressed as ν =
n∑

�=1
ν�dx�, then we agree to re-denote ∂τXY defined as in (1.12.76)
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corresponding to the choice X := ∂ j and Y := ∂k simply as ∂τ jk . That is, for every
section ϕ ∈ C 1

c (M, E) we define

∂τ jkϕ := ν j
(∇∂kϕ

)∣∣∣
∂∗�

− νk
(∇∂ jϕ

)∣∣∣
∂∗�

locally on ∂∗�. (1.12.77)

We are now ready to present the result alluded to the above.

Proposition 1.12.6 Let M be a C 2 manifold of dimension n, equipped with a Rie-
mannian metric g, and denote by Ln

g the Lebesgue measure induced by the volume
element on M. Let E be a Hermitian vector bundle over M, of class C 2. Assume
all metrics involved are of class C 1. Next, consider a set of locally finite perimeter
� ⊂ M. Define σg := Hn−1

g �∂�, and denote by νg the geometric measure theoretic
outward unit conormal to �.

Then for every pair of sections ϕ ∈ C 1(M, E), ψ ∈ C 1
c (M, E) and every pair of

C 1 vector fields X,Y on M there holds

ˆ
∂∗�

〈
∂τXY ϕ,ψ

〉
E dσg = −

ˆ
∂∗�

〈
ϕ, ∂τXY ψ

〉
E dσg (1.12.78)

−
ˆ
∂∗�

〈
ϕ,ψ

〉
E
(
νg(X) divgY − νg(Y ) divg X + νg([X,Y ])) dσg,

where the tangential derivative operator ∂τXY is defined as in (1.12.76) relative to a
metric connection ∇ on E .

In particular, if ψ is supported in a local chart with coordinates (x1, . . . , xn)
relative to which the outward unit normal is expressed as νg = ∑n

r=1 νrdxr , then for
every j, k ∈ {1, . . . , n} one has (with ∂τ jk defined as in (1.12.77))

ˆ
∂∗�

〈
∂τ jkϕ,ψ

〉
E dσg = −

ˆ
∂�

〈
ϕ, ∂τ jkψ

〉
E dσg

−
n∑

�=1

ˆ
∂∗�

〈
ϕ,ψ

〉
E
(
ν j�

�
k� − νk�

�
j�

)
dσg, (1.12.79)

where �s
r t are the Christoffel symbols associated with the metric g.

Proof With ∇ denoting a metric connection on the vector bundle E , consider the
first-order differential operators

P := ∇X , Q := ∇Y , P, Q : C 1(M, E)→ C 0(M, E). (1.12.80)

Bearing inmind (1.12.52), it follows that such a choice satisfies (1.12.59). In addition,
in such a scenario we have
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iSym(P; νg)(Qϕ)
∣∣
∂∗�

− iSym(Q; νg)(Pϕ)
∣∣
∂∗�

= iSym
(∇X ; νg

)(∇Yϕ
)∣∣

∂∗�
− iSym

(∇Y ; νg
)(∇Xϕ

)∣∣
∂∗�

= −νg(X)
(∇Yϕ

)∣∣
∂∗�

+ νg(Y )
(∇Xϕ

)∣∣
∂∗�

= −∂τXY ϕ at σg-a.e. point on ∂∗�, (1.12.81)

by virtue of (1.12.52) and (1.12.76). Since the connection ∇ on the vector bundle E
is metric, we have (cf. [189, (9.1.55), p. 377])

(∇Z )
� = −∇Z − divg Z , ∀Z ∈ C 1(M, T M). (1.12.82)

In turn, from (1.12.82), (1.12.52), and (1.12.76) we deduce that

iSym
(
P�; νg

)
(Q�ψ)

∣∣
∂∗�

− iSym
(
Q�; νg

)
(P�ψ)

∣∣
∂∗�

(1.12.83)

= iSym
(∇X ; νg

)((∇Yψ
)∣∣

∂∗�
+ (

(divgY )ψ
)∣∣

∂∗�

)

− iSym
(∇Y ; νg

)((∇Xψ
)∣∣

∂∗�
+ (

(divg X)ψ
)∣∣

∂∗�

)

= −νg(X)
((∇Yψ

)∣∣
∂∗�

+ (
(divgY )ψ

)∣∣
∂∗�

)

+ νg(Y )
((∇Xψ

)∣∣
∂∗�

+ (
(divg X)ψ

)∣∣
∂∗�

)

= −∂τXY ψ +
(
νg(Y )(divg X)

∣∣
∂∗�

− νg(X)(divgY )
∣∣
∂∗�

)(
ψ

∣∣
∂∗�

)

at σg-a.e. point on ∂∗�. Lastly, with I denoting the identity operator, we have

iSym
([P, Q]; νg

) = iSym
([∇X ,∇Y

]; νg
)

= iSym
(∇[X,Y ] + R(X,Y ); νg

)

= iSym
(∇[X,Y ]; νg

) = −νg
([X,Y ]) I, (1.12.84)

thanks to (1.12.52) and the fact that the curvature

R(X,Y ) := ∇X∇Y − ∇Y∇X − ∇[X,Y ] =
[∇X ,∇Y

]− ∇[X,Y ] (1.12.85)

is actually a zero-th order operator. Granted these, formula (1.12.63) (used with ϕ,ψ

in place of u, w) then yields (1.12.78), keeping in mind the very last comment in the
statement of Corollary 1.12.4.

Finally, (1.12.79) is obtained by particularizing (1.12.78) to the casewhen X = ∂ j ,
Y = ∂k , keeping in mind (1.12.77) and the identity
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divg∂r =
n∑

�=1
��
r� for every r ∈ {1, . . . , n}, (1.12.86)

valid in any local coordinate system on M . �

In the geometric context considered in the proposition above, we shall say that a
function f ∈ L p(∂∗�, σg)⊗ E , with 1 ≤ p ≤ ∞, belongs to the (global, boundary)
Sobolev space L p

1 (∂∗�, σg)⊗ E if for any two C 1 vector fields X,Y ∈ T M there
exists some function hXY ∈ L p(∂∗�, σg)⊗ E with the property that for each section
ϕ ∈ C 1

c (M, E) one has

ˆ
∂∗�

〈
f, ∂τXY ϕ

〉
E dσg =

ˆ
∂∗�

〈
hXY , ϕ

∣∣
∂∗�

〉
E dσg. (1.12.87)

It turns out that the function hXY ∈ L p(∂∗�, σg)⊗ E doing the job in (1.12.87) is
unique (see the discussion in [185, Sect. 11.6]). Comparing (1.12.87) with (1.12.78)
then suggests making the following definition.

Definition 1.12.7 Suppose M is a C 2 manifold equipped with a Riemannian metric
g, and consider a Hermitian vector bundle E over M of class C 2. Assume all metrics
involved are of classC 1. Also, let� ⊂ M bea set of locally finite perimeter. Introduce
σg := Hn−1

g �∂�, and denote by νg the geometric measure theoretic outward unit
conormal to �.

Then for any function f ∈ L p
1 (∂∗�, σg)⊗ E with 1 ≤ p ≤ ∞, and any two com-

pactly supported C 1 vector fields X,Y on M, define

∂τXY f := −hXY −
(
νg(X) divgY − νg(Y ) divg X + νg([X,Y ])) f (1.12.88)

at σg-a.e. point on ∂∗�, where the function hXY ∈ L p(∂∗�, σg)⊗ E is uniquely
associated with f and X,Y as in (1.12.87) relative to a metric connection ∇ on E .

Thanks to Corollary 1.12.6, this definition is then consistent with that made in
(1.12.77) for functions in C 1(M, E). Other basic properties of the tangential dif-
ferential operators ∂τXY considered in (1.12.88) in the context of boundary Sobolev
spaces are contained in the proposition below.

Proposition 1.12.8 Let M be a C 2 manifold equipped with a Riemannian metric g,
and consider a Hermitian vector bundle E over M of class C 2. Assume all metrics
involved are of classC 1. Also, let� ⊂ M bea set of locally finite perimeter. Introduce
σg := Hn−1

g �∂�, and denote by νg the geometric measure theoretic outward unit
conormal to �.

Then, given any compactly supported C 1 vector fields X,Y on M,

∂τXY : L p
1 (∂∗�, σg)⊗ E −→ L p(∂∗�, σg)⊗ E, 1 ≤ p ≤ ∞,

is a well-defined, linear and bounded operator,
(1.12.89)
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and

∂τY X
f = −∂τXY f, ∀ f ∈ L p

1 (∂∗�, σg)⊗ E . (1.12.90)

Moreover, given any function f ∈ L p
1 (∂∗�, σg)⊗ E with 1 ≤ p ≤ ∞, for every

section ϕ ∈ C 1
c (M, E) and every compactly supported C 1 vector fields X,Y on

M one has
ˆ
∂∗�

〈
∂τXY f, ϕ

〉
E dσg = −

ˆ
∂∗�

〈
f, ∂τXY ϕ

〉
E dσg (1.12.91)

−
ˆ
∂∗�

〈
f, ϕ

〉
E
(
νg(X) divgY − νg(Y ) divg X + νg([X,Y ])) dσg.

In particular, if ϕ is supported in a local patch on the manifold M, with local
coordinates (x1, . . . , xn) relative to which the outward unit normal is expressed
as νg = ∑n

r=1 νrdxr , then for every index j, k ∈ {1, . . . , n} one has
ˆ
∂∗�

〈
∂τ jk f, ϕ

〉
E dσg = −

ˆ
∂∗�

〈
f, ∂τ jkϕ

〉
E dσg

−
n∑

�=1

ˆ
∂∗�

〈
f, ϕ

〉
E
(
ν j�

�
k� − νk�

�
j�

)
dσg. (1.12.92)

Also, for each p ∈ [1,∞],
{
ϕ
∣∣
∂∗�

: ϕ ∈ C 1
c (M, E)

} ⊂ L p
1 (∂∗�, σg)⊗ E, (1.12.93)

and for each ϕ ∈ C 1
c (M, E) the following compatibility property holds for any com-

pactly supported C 1 vector fields X,Y on M:

∂τXY

(
ϕ
∣
∣
∂∗�

)
, considered in the sense of (1.12.88) by viewing ϕ

∣
∣
∂∗�

in the Sobolev space L p
1 (∂∗�, σg)⊗ E , agrees σg-a.e. on ∂∗� with

νg(X)
(∇Yϕ

)∣∣
∂∗�

− νg(Y )
(∇Xϕ

)∣∣
∂∗�

.
(1.12.94)

Lastly, for any function f ∈ L p
1 (∂∗�, σg)⊗ E with 1 ≤ p ≤ ∞, any compactly

supported C 1 vector fields X,Y on M, any scalar-valued function ψ ∈ C 1(M), one
has ψ f ∈ L p

1 (∂∗�, σg)⊗ E , while at σg-a.e. point on ∂∗� one has

∂τXY (ψ f )− ψ∂τXY f = (
νg(X)Y (ψ)− νg(Y )X (ψ)

)
f. (1.12.95)

Proof The claims in (1.12.89)–(1.12.90) follow from definitions, while (1.12.91)
follows from (1.12.88) and (1.12.78). The inclusion in (1.12.93) is seen from
(1.12.78) and the discussion pertaining to (1.12.87). Next, the claim in (1.12.94)
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is a consequence of (1.12.78) and (1.12.88). Finally, given an arbitrary function
f ∈ L p

1 (∂∗�, σg)⊗ E with 1 ≤ p ≤ ∞, along with two compactly supported C 1

vector fields X,Y on M and a scalar-valued function ψ ∈ C 1(M), consider the task
of proving (1.12.95). To this end, fix an arbitrary section ϕ ∈ C 1

c (M, E) and observe
that

∂τXY (ψϕ)− ψ∂τXY ϕ (1.12.96)

= νg(X)∇Y (ψϕ)− νg(Y )∇X (ψϕ)− νg(X)ψ∇Yϕ − νg(Y )ψ∇Xϕ

= (
νg(X)Y (ψ)− νg(Y )X (ψ)

)
ϕ at σg-a.e. point on ∂∗�.

Next, based on (1.12.91) and (1.12.96) we compute

ˆ
∂∗�

〈
ψ f, ∂τXY ϕ

〉
E dσg (1.12.97)

=
ˆ
∂∗�

〈
f, ψ∂τXY ϕ

〉
E dσg

=
ˆ
∂∗�

〈
f, ∂τXY (ψϕ)

〉
E dσg

−
ˆ
∂∗�

〈
f,

(
νg(X)Y (ψ)− νg(Y )X (ψ)

)
ϕ
〉
E dσg

= −
ˆ
∂∗�

〈
∂τXY f, ψϕ

〉
E dσg

−
ˆ
∂∗�

〈
f, ϕ

〉
E
(
νg(X) divgY − νg(Y ) divg X + νg([X,Y ])) dσg

−
ˆ
∂∗�

〈(
νg(X)Y (ψ)− νg(Y )X (ψ)

)
f, ϕ

〉
E dσg.

From this and the discussionpertaining to (1.12.87)we then conclude thatψ f belongs
to L p

1 (∂∗�, σg)⊗ E . In addition, from (1.12.97), (1.12.87), and (1.12.88) we see that

∂τXY (ψ f ) = ψ∂τXY f + (
νg(X)Y (ψ)− νg(Y )X (ψ)

)
f (1.12.98)

which establishes (1.12.95). �

We are now in a position to elaborate on the manner in which weak tangential
derivatives interact with pointwise nontangential traces, in the manifold setting.

Proposition 1.12.9 Let M be a C 2 manifold equipped with a Riemannian metric g,
and consider a Hermitian vector bundle E over M of class C 2. Assume all metrics
involved are of class C 1. Also, let � be a relatively compact open subset of M, with
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a lower Ahlfors regular boundary, such that σg := Hn−1
g �∂� is a doubling measure

on ∂�. Denote by νg the geometric measure theoretic outward unit conormal to �.
Pick some p ∈ [1,∞] and suppose u : �→ E is a Lebesgue measurable section
satisfying (with the dependence on the aperture parameter suppressed)

Nu ∈ L p(∂�, σg), N (∇u) ∈ L p(∂�, σg),

and u
∣∣n.t.
∂�

, (∇u)∣∣n.t.
∂�

exist σg-a.e. on ∂nta�.
(1.12.99)

Then

the function u
∣∣n.t.
∂�

belongs to L p
1 (∂∗�, σg)⊗ E and

∥∥u
∣∣n.t.
∂�

∥∥
L p
1 (∂∗�,σg)⊗E ≤ C

(∥∥Nu
∥∥
L p(∂�,σg)

+ ∥∥N (∇u)∥∥L p(∂�,σg)

) (1.12.100)

for some finite constant C > 0 independent of u. Moreover, for every two C 1 vector
fields X,Y , at σg-a.e. point on ∂∗� one has

∂τXY

(
u
∣
∣n.t.
∂�

) = νg(X)
(∇Y u

)∣∣n.t.
∂�
− νg(Y )

(∇Xu
)∣∣n.t.

∂�
. (1.12.101)

In particular, for every j, k ∈ {1, . . . , n}, one locally has

∂τ jk
(
u
∣
∣n.t.
∂�

) = ν j
(∇∂k u

)∣∣n.t.
∂�
− νk

(∇∂ j u
)∣∣n.t.

∂�
at σg-a.e. point on ∂∗�. (1.12.102)

Proof Clearly,

u
∣∣n.t.
∂�
∈ L p(∂∗�, σg)⊗ E, (∇u)∣∣n.t.

∂�
∈ L p(∂∗�, σg)⊗ (T ∗M ⊗ E), (1.12.103)

and

∥∥u
∣∣n.t.
∂�

∥∥
L p(∂∗�,σg)⊗E +

∥∥(∇u)∣∣n.t.
∂�

∥∥
L p(∂∗�,σg)⊗(T ∗M⊗E)

≤ C
(∥
∥Nu

∥
∥
L p(∂�,σg)

+ ∥
∥N (∇u)∥∥L p(∂�,σg)

)
, (1.12.104)

for some finite constantC > 0 independent of u. To proceed, fix an arbitrary function
ϕ ∈ C 1

c (M, E) along with two C 1 vector fields X,Y . Then, granted the assumptions
on u, from formula (1.12.63) used with P = ∇X , Q = ∇Y , and (1.12.81)–(1.12.83)
we obtain
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ˆ
∂∗�

〈
u
∣∣n.t.
∂�

, ∂τXY ϕ
〉

E
dσg (1.12.105)

= −
ˆ
∂∗�

〈
νg(X)

(∇Y u
)∣∣n.t.

∂�
− νg(Y )

(∇Xu
)∣∣n.t.

∂�
, ϕ

∣
∣
∂∗�

〉

E
dσg

−
ˆ
∂∗�

〈
u
∣∣n.t.
∂�

, ϕ
∣∣
∂∗�

〉

E
(
νg(X) divgY − νg(Y ) divg X + νg([X,Y ])) dσg.

From this, it follows that the function

hXY := −νg(X)
(∇Y u

)∣∣n.t.
∂�
+ νg(Y )

(∇Xu
)∣∣n.t.

∂�
(1.12.106)

− (
νg(X) divgY − νg(Y ) divg X + νg([X,Y ]))(u∣∣n.t.

∂�

) ∈ L p(∂∗�, σg)⊗ E

does the job in (1.12.87). Together with the discussion pertaining to (1.12.87), this

shows that u
∣∣n.t.
∂�

belongs to the Sobolev space L p
1 (∂∗�, σg)⊗ E . Having established

this, formula (1.12.88) from Definition 1.12.7 then gives that

∂τXY

(
u
∣∣n.t.
∂�

) = −hXY −
(
νg(X) divgY − νg(Y ) divg X + νg([X,Y ]))(u∣∣n.t.

∂�

)

= νg(X)
(∇Y u

)∣∣n.t.
∂�
− νg(Y )

(∇Xu
)∣∣n.t.

∂�
. (1.12.107)

This justifies (1.12.101). Lastly, the estimate in the second line of (1.12.100) is
implicit in what we have proved so far. �

We next present a basic integration by parts formula along the geometric measure
theoretic boundary of an open set in a Riemannian manifold.

Corollary 1.12.10 Let M be a C 2 manifold equipped with a Riemannian metric g,
and consider a Hermitian vector bundle E over M of class C 2. Assume all metrics
involved are of class C 1. Also, let � be a relatively compact open subset of M, with
a lower Ahlfors regular boundary, such that σg := Hn−1

g �∂� is a doubling measure
on ∂�. Denote by νg the geometric measure theoretic outward unit conormal to
�. Suppose u, w : �→ E are two Lebesgue measurable sections which, for some
p, p′ ∈ [1,∞] with 1/p + 1/p′ = 1, satisfy (with the dependence on the aperture
parameter suppressed)

Nu ∈ L p(∂�, σg), N (∇u) ∈ L p(∂�, σg),

Nw ∈ L p′(∂�, σg), N (∇w) ∈ L p′(∂�, σg),

u
∣∣n.t.
∂�

, w
∣∣n.t.
∂�

, (∇u)∣∣n.t.
∂�

, (∇w)
∣∣n.t.
∂�

exist σg-a.e. on ∂nta�.

(1.12.108)

Then

u
∣∣n.t.
∂�
∈ L p

1 (∂∗�, σg)⊗ E, w
∣∣n.t.
∂�
∈ L p′

1 (∂∗�, σg)⊗ E, (1.12.109)
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and for each twoC 1 vector fields X,Y on M one has the integration by parts formula
on the geometric measure theoretic boundary:

ˆ
∂∗�

〈
∂τXY

(
u
∣∣n.t.
∂�

)
, w

∣∣n.t.
∂�

〉

E
dσg = −

ˆ
∂∗�

〈
u
∣∣n.t.
∂�

, ∂τXY

(
w

∣∣n.t.
∂�

)〉

E
dσg (1.12.110)

−
ˆ
∂∗�

〈
u
∣
∣n.t.
∂�

, w
∣
∣n.t.
∂�

〉

E
(
νg(X) divgY − νg(Y ) divg X + νg([X,Y ])) dσg.

In particular, if one of the sections u, w is supported in a coordinate patch on M
then, in local coordinates, for each j, k ∈ {1, . . . , n} one has

ˆ
∂∗�

〈
∂τ jk

(
u
∣∣n.t.
∂�

)
, w

∣∣n.t.
∂�

〉

E
dσg = −

ˆ
∂∗�

〈
u
∣∣n.t.
∂�

, ∂τ jk
(
w

∣∣n.t.
∂�

)〉

E
dσg (1.12.111)

−
ˆ
∂∗�

〈
u
∣∣n.t.
∂�

, w
∣∣n.t.
∂�

〉

E
(
ν j�

�
k� − νk�

�
j�

)
dσg.

Proof The memberships in (1.12.109) are direct consequences of (1.12.100) and
assumptions. Formula (1.12.110) is implied by (1.12.63) used with P, Q as in
(1.12.80), reasoning much as in (1.12.81)–(1.12.84). Finally, (1.12.111) is a con-
sequence of (1.12.110) and (1.12.86). �

Regarding the results presented so far in this section, there is a more general
phenomenon at play, which we would like to describe. To set things up, let the
Riemannian manifold (M, g), the Hermitian vector bundles E , F , H, and the first-
order differential operators P, Q be as in Theorem 1.12.1. That is,

P : C 1(M, E) −→ C 0(M,H) and

Q : C 1(M,H) −→ C 0(M,F)
(1.12.112)

are two first-order differential operators with C 1 coefficients for the top part and
C 0 coefficients for the zero-th order part, having the property that their principal
symbols satisfy the cancelation condition

Sym(Q; ξ)Sym(P; ξ) = 0, ∀ξ ∈ T ∗M. (1.12.113)

Next, consider a relatively compact set of locally finite perimeter� ⊂ M and define
σg := Hn−1

g �∂�. Also, denote by νg the geometric measure theoretic outward unit
conormal to �. Work in local coordinates (x1, . . . , xn) and express

P = A j∇∂ j + A0, Q = Bk∇∂k + B0 (1.12.114)

for some matrices A j , Bk . As such, the cancelation property (1.12.113) reads

ξ jξk Bk A j = 0 for every cotangent vector ξ = ξ� dx�. (1.12.115)
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In turn, this is equivalent to having

Bk A j = −Bj Ak for every j, k ∈ {1, . . . , n}. (1.12.116)

Granted this, if we locally express νg = νrdxr , we may then write

iSym(Q; νg)P = −Bk A jνk∇∂ j − ν�B�A0

= 1
2

(
Bk A jν j∇∂k − Bk A jνk∇∂ j

)− ν�B�A0

= 1
2 Bk A j∂τ jk − ν�B�A0. (1.12.117)

Bearing (1.12.89) inmind, for each p ∈ [1,∞]we then proceed to define the bounded
linear mapping

∂Q,P
τ : L p

1 (∂∗�, σg)⊗ E −→ L p(∂∗�, σg)⊗ F ,

∂Q,P
τ f := 1

2 Bk A j∂τ jk f − ν�B�A0 f.
(1.12.118)

From (1.12.118), (1.12.117), and (1.12.93)–(1.12.94) we may then conclude that,
under the embedding (1.12.93),

∂Q,P
τ

(
ψ

∣∣
∂∗�

) = iSym(Q; νg)(Pψ)
∣∣
∂∗�

, ∀ψ ∈ C 1
c (M, E). (1.12.119)

Let us also note that since the (ordered pair of) differential operators Q�, P� satisfy
analogous properties as the original P, Q, we may define

∂ P�, Q�
τ : L p

1 (∂∗�, σg)⊗ F −→ L p(∂∗�, σg)⊗ E, p ∈ [1,∞] (1.12.120)

in a similar fashion to (1.12.118) and conclude that

∂ P�, Q�
τ

(
ϕ
∣∣
∂∗�

) = iSym(P�; νg)(Q�ϕ)
∣∣
∂∗�

, ∀ϕ ∈ C 1
c (M,F). (1.12.121)

Having made these definitions, we are ready to state and prove the following
versatile boundary integration by parts formula.

Theorem 1.12.11 Let M be a C 2 manifold equipped with a Riemannian metric g,
and consider three Hermitian vector bundles, E ,F ,H, over M, of classC 2. Suppose
all metrics involved are of class C 1. Assume

P : C 1(M, E) −→ C 0(M,H) and

Q : C 1(M,H) −→ C 0(M,F)
(1.12.122)

are two first-order differential operators with C 1 coefficients for the top part and
C 0 coefficients for the zero-th order part, having the property that their principal
symbols satisfy
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Sym(Q; ξ)Sym(P; ξ) = 0, ∀ξ ∈ T ∗M. (1.12.123)

Denote by P� : C 1(M,H)→ C 0(M, E) and Q� : C 1(M,F)→ C 0(M,H) the
(real ) transposes of P, Q (considered in the usual sense on the manifold M). Finally,
given a set of locally finite perimeter� ⊂ M, introduce σg := Hn−1

g �∂�, and denote
by νg the geometric measure theoretic outward unit conormal to �.

Then for any f ∈ L p
1 (∂∗�, σg)⊗ E with 1 ≤ p ≤ ∞, and any ϕ ∈ C 1

c (M,F)

one has
ˆ
∂∗�

〈
∂Q,P
τ f, ϕ

∣
∣
∂∗�

〉

F
dσg (1.12.124)

=
ˆ
∂∗�

〈
f, ∂ P�, Q�

τ

(
ϕ
∣∣
∂∗�

)〉

E
dσg +

ˆ
∂∗�

〈
iSym

(
QP; νg

)
f, ϕ

∣∣
∂∗�

〉

E
dσg

=
ˆ
∂∗�

〈
f, ∂ P�, Q�

τ

(
ϕ
∣∣
∂∗�

)− iSym
(
P�Q�; νg

)
ϕ
∣∣
∂∗�

〉

E
dσg

=
ˆ
∂∗�

〈
f, iSym(P�; νg)(Q�ϕ)

∣∣
∂∗�

− iSym
(
P�Q�; νg

)
ϕ
∣∣
∂∗�

〉

E
dσg,

where all principal symbols are taken in the sense of first-order differential operators.

Proof Fix ϕ ∈ C 1
c (M,F) along with f ∈ L p

1 (∂∗�, σg)⊗ E for some p ∈ [1,∞].
There is no loss of generality in assuming that ϕ is supported in a coordinate patch.
Working locally, by making use of (1.12.118) and (1.12.92) we may write

ˆ
∂∗�

〈
∂Q,P
τ f, ϕ

∣∣
∂∗�

〉
F dσg =

ˆ
∂∗�

〈
1
2 Bk A j∂τ jk f − ν�B�A0 f, ϕ

∣∣
∂∗�

〉
F dσg

= −
ˆ
∂∗�

〈
f, 1

2∂τ jk
(
A�j B

�
k ϕ

∣∣
∂∗�

)〉
E dσg

−
n∑

�=1

ˆ
∂∗�

〈
f, 1

2 A
�
j B

�
k ϕ

∣∣
∂∗�

〉
E
(
ν j�

�
k� − νk�

�
j�

)
dσg

−
ˆ
∂∗�

〈
f, ν�A

�
0 B

�
� ϕ

∣∣
∂∗�

〉
E dσg. (1.12.125)

Given the goal we have in mind, in view of (1.12.121) it remains to show that

iSym(P�; νg)(Q�ϕ)
∣∣
∂∗�

− iSym
(
P�Q�; νg

)
ϕ
∣∣
∂∗�

= − 1
2∂τ jk

(
A�j B

�
k ϕ

∣∣
∂∗�

)

−
n∑

�=1

(
ν j�

�
k� − νk�

�
j�

)
1
2 A

�
j B

�
k ϕ

∣∣
∂∗�

− ν�A
�
0 B

�
� ϕ

∣
∣
∂∗�

(1.12.126)
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at σg-a.e. point on ∂∗�. Thanks to Proposition 3.7.2, it suffices to check that the two
sides of (1.12.126) match when paired (in an integral sense) with the restriction to
∂∗� of an arbitrary section ψ ∈ C 1

c (M, E). To this end, fix such a ψ and write

−
ˆ
∂∗�

〈
ψ

∣∣
∂∗�

, 1
2∂τ jk

(
A�j B

�
k ϕ

∣∣
∂∗�

)〉
E dσg

−
n∑

�=1

ˆ
∂∗�

〈
ψ

∣∣
∂∗�

, 1
2 A

�
j B

�
k ϕ

∣∣
∂∗�

〉
E
(
ν j�

�
k� − νk�

�
j�

)
dσg

−
ˆ
∂∗�

〈
ψ

∣
∣
∂∗�

, ν�A
�
0 B

�
� ϕ

∣
∣
∂∗�

〉
E dσg

=
ˆ
∂∗�

〈
1
2 Bk A j∂τ jk

(
ψ

∣
∣
∂∗�

)− ν�B�A0ψ
∣
∣
∂∗�

, ϕ
∣
∣
∂∗�

〉
F dσg

=
ˆ
∂∗�

〈
∂Q,P
τ

(
ψ

∣
∣
∂∗�

)
, ϕ

∣
∣
∂∗�

〉
F dσg

=
ˆ
∂∗�

〈
iSym(Q; νg)(Pψ)

∣∣
∂∗�

, ϕ
∣∣
∂∗�

〉
F dσg

=
ˆ
∂∗�

〈
ψ

∣∣
∂∗�

, iSym(P�; νg)(Q�ϕ)
∣∣
∂∗�

〉
F dσg

−
ˆ
∂∗�

〈
ψ

∣∣
∂∗�

, iSym
(
P�Q�; νg

)
ϕ
∣∣
∂∗�

〉

F
dσg. (1.12.127)

Above, the first equality is implied by (1.12.79), the second equality follows from
(1.12.118), the third equality is seen from (1.12.119), and the last equality is a
consequence of the very last claim in Theorem 1.12.1. Having proved (1.12.127),
we conclude that (1.12.126) holds, and this finishes the proof of the theorem. �

Here is a special case of Theorem 1.12.11 when the cancelation condition
(1.12.123) is automatically satisfied.

Corollary 1.12.12 Let M be a C 2 manifold equipped with a Riemannian metric,
and let E , F be Hermitian vector bundles, over M, of class C 2. Suppose all metrics
involved are of class C 1. Assume

P : F −→ E (1.12.128)

is a first-order differential operator with C 1 coefficients for the top part and C 0

coefficients for the zero-th order part, and denote by P� : E → F its transposed
(considered in the usual sense on the manifold M).

Next, fix a C 1-vector field X ∈ T M and denote by ∇E
X , ∇F

X , the covariant deriva-
tives along X for sections of E and F , respectively. Also, introduce the first-order
differential operators
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P : E → F ⊕ E, Pu := (
P�u,−∇E

Xu
)
,

Q : F ⊕ E → F , Q(v,w) := ∇F
X v + P�w.

(1.12.129)

Consider a set � ⊂ M of locally finite perimeter, let σ := Hn−1
g �∂�, and denote by

νg the geometric measure theoretic outward unit conormal to �.
Then the operators P, Q satisfy

Sym(Q; ξ)Sym(P; ξ) = 0, ∀ξ ∈ T ∗M. (1.12.130)

Consequently, for each p ∈ [1,∞], the mapping

∂Q,P
τ : L p

1 (∂�, σg)⊗ E −→ L p(∂�, σg)⊗ F , (1.12.131)

associated with P, Q as in (1.12.118), is well defined, linear, and continuous.
Moreover, for any two given functions, f ∈ L p

1 (∂�, σg)⊗ E with 1 ≤ p ≤ ∞, and
ϕ ∈ C 1

c (M)⊗ F , one has

ˆ
∂∗�

〈
∂Q,P
τ f, ϕ

∣
∣
∂∗�

〉
F dσg (1.12.132)

=
ˆ
∂∗�

〈
f, iSym(P; νg)

(
(∇F

X )∗ϕ
)∣∣

∂∗�
− νg(X)

(
Pϕ

)∣∣
∂∗�

+ iSym
(
∇F

X P� − P�∇E
X ; νg

)�
ϕ
∣∣
∂∗�

〉

E
dσg,

where all principal symbols are taken in the sense of first-order differential operators.

Proof The covariant derivative∇F
X associated with the connection∇F onF and the

vector field X = X j∂ j ∈ T M is a first-order differential operator whose principal
symbol is given by (see, e.g., [189, Proposition 9.3, pp. 375–377])

Sym(∇F
X ; ξ) = iξ(X) I = iX jξ j I

= i〈X  , ξ 〉 I = i〈X, ξ !〉 I, ∀ξ = ξ jdx j ∈ T ∗M, (1.12.133)

where 〈·, ·〉 denotes the pointwise inner product in T ∗M , and I is the identity oper-
ator. Keeping this in mind, (1.12.132) follows from Theorem 1.12.11 applied to the
operators P, Q. �

With the definition (1.12.118) of the tangential differential operators ∂Q,P
τ in place,

it is now possible to prove a generalization of Proposition 1.12.9 of the sort discussed
below.

Theorem 1.12.13 Let M be a C 2 manifold equipped with a Riemannian metric g,
and consider three Hermitian vector bundles, E , F , H, over M, of class C 2. Assume
all metrics involved are of class C 1. Also, let � be a relatively compact open subset
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of M, with a lower Ahlfors regular boundary, and such that σg := Hn−1
g �∂� is a

doubling measure on ∂�. Denote by νg the geometric measure theoretic outward
unit conormal to �. Pick some p ∈ [1,∞] and suppose u : �→ E is a Lebesgue
measurable section satisfying (with the dependence on the aperture parameter sup-
pressed)

Nu ∈ L p(∂�, σg), N (∇u) ∈ L p(∂�, σg),

and u
∣
∣n.t.
∂�

, (∇u)∣∣n.t.
∂�

exist σg-a.e. on ∂nta�.
(1.12.134)

In addition, consider two first-order differential operators

P : C 1(M, E) −→ C 0(M,H) and

Q : C 1(M,H) −→ C 0(M,F)
(1.12.135)

with C 1 coefficients for the top part and C 0 coefficients for the zero-th order part,
having the property that their principal symbols satisfy the cancelation condition

Sym(Q; ξ)Sym(P; ξ) = 0, ∀ξ ∈ T ∗M. (1.12.136)

Then the function u
∣∣n.t.
∂�

belongs to the boundary Sobolev space L p
1 (∂∗�, σg)⊗ E ,

and at σg-a.e. point on ∂∗� one has

∂Q,P
τ

(
u
∣∣n.t.
∂�

) = iSym(Q; νg)(Pu)
∣∣n.t.
∂�

. (1.12.137)

Proof That f := u
∣∣n.t.
∂�

belongs to L p
1 (∂∗�, σg)⊗ E has been already proved in

Proposition 1.12.9. To justify the identity in (1.12.137), pick an arbitrary section
ϕ ∈ C 1

c (M,F). In addition, as before, denote by P� : C 1(M,H)→ C 0(M, E) and
Q� : C 1(M,F)→ C 0(M,H) the (real) transposes of P, Q (considered in the usual
sense on the manifold M). Then, on account of (1.12.124), (1.12.121), and (1.12.6),
we may write (with all principal symbols taken in the sense of first-order differential
operators)

ˆ
∂∗�

〈
∂Q,P
τ

(
u
∣
∣n.t.
∂�

)
, ϕ

∣
∣
∂∗�

〉
F dσg =

ˆ
∂∗�

〈
u
∣
∣n.t.
∂�

, ∂ P�, Q�
τ

(
ϕ
∣
∣
∂∗�

)〉
E dσg

−
ˆ
∂∗�

〈
u
∣
∣n.t.
∂�

, iSym
(
P�Q�; νg

)
ϕ
∣
∣
∂∗�

〉
E dσg

=
ˆ
∂∗�

〈
u
∣∣n.t.
∂�

, iSym(P�; νg)(Q�ϕ)
∣∣
∂∗�

〉
E dσg

−
ˆ
∂∗�

〈
u
∣∣n.t.
∂�

, iSym
(
P�Q�; νg

)
ϕ
∣∣
∂∗�

〉
E dσg

=
ˆ
∂∗�

〈
iSym(Q; νg)(Pu)

∣∣n.t.
∂�

, ϕ
∣∣
∂∗�

〉

F
dσg. (1.12.138)
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Having established this, Proposition 3.7.2 applies and yields (1.12.137). �

To proceed, the reader is reminded that, given a Riemannian manifold (M, g)
of real dimension n, the musical isomorphisms (aka metric identifications)
between tangent and cotangent vectors are given by

T M � X = X j∂ j �−→ X  := g jk Xkdx j ∈ T ∗M,

T ∗M � ξ = ξ jdx j �−→ ξ! := g jkξ j∂k ∈ T M.
(1.12.139)

These satisfy, for each X,Y ∈ T M , ξ, η ∈ T ∗M , and i, j ∈ {1, . . . , n},
〈
ξ!, X

〉 = ξ(X) = 〈
ξ, X  

〉
, X  (Y ) = 〈X,Y 〉 = 〈X  ,Y  〉,

(ξ !) = ξ, 〈ξ!, η!〉 = 〈ξ, η〉 = ξ(η!), (X  )! = X,

(∂ j )
 = g jk dxk, (dx j )

! = g jk ∂k, ∂ j = g jk(dxk)!,

dx j = g jk(∂k)
 ,

〈
dx j , (∂i )

 
〉 = δi j ,

〈
(dx j )

!, ∂i
〉 = δi j .

(1.12.140)

We conclude this section with an integration by parts formula on an open patch
� of a codimension one submanifold M on an ambient Riemannian manifold M̃ .

Theorem 1.12.14 Let M̃ be a C 2 manifold of dimension n + 1, equipped with a
Riemannian metric g, and consider a relatively compactC 1 domain D ⊂ M̃. Denote
by Ln

g the surface measure on ∂�, and let Ng : ∂D → T ∗M̃ stand for the unit

conormal to D. In particular, M := ∂D is a compact, oriented, submanifold of M̃, of
dimension n, which may be naturally equipped with the Riemannian metric inherited
from M̃. Denote byHn−1

g the (n − 1)-dimensional Hausdorff measure induced on M
by said metric. In addition, consider a Hermitian vector bundle E , of class C 2 over
the manifold M̃. Assume all metrics involved are of class C 1.

Next, let�be a relatively open subset of M,with a lowerAhlfors regular boundary,
such that σg := Hn−1

g �∂� is a doubling measure (all relative to the manifold M, as
ambient). Denote by νg : ∂∗�→ T ∗M the geometric measure theoretic outward
unit conormal to � and select two integrability exponents p, p′ ∈ [1,∞] such that
1/p + 1/p′ = 1. Also, consider an open neighborhood O of � in M̃ and pick two
sections26

u ∈ W 1,1
loc (�)⊗ E, w ∈ C 1(O, E), (1.12.141)

satisfying (with the nontangential maximal operator and nontangential traces taken
from within �, and with the dependence on the aperture parameter suppressed
throughout)

26 Where W 1,1
loc (�) is a local Sobolev space in �, with respect to the measure Ln

g .
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Nu ∈ L p(∂�, σg), N
(
w

∣∣
�

) ∈ L p′(∂�, σg),

u
∣∣n.t.
∂�

and (w|�)
∣∣n.t.
∂�

exist at σg-a.e. point on ∂nta�,
(1.12.142)

as well as

|∂τXY u||w| + |u||∂τXY w| + |u||w| ∈ L1(�,Ln
g). (1.12.143)

Lastly, fix two arbitrary C 1 vector fields X,Y on M̃ and denote by ∂τXY the tangen-
tial derivative operator along M = ∂D. (cf. Definition 1.12.7). Then the following
integration by parts formula in � holds:

ˆ
�

〈
∂τXY u,w

〉
E dL

n
g = −

ˆ
�

〈
u, ∂τXY (w|�)

〉
E dL

n
g (1.12.144)

−
ˆ
�

〈
u, w

〉
E
(
Ng(X) divgY − Ng(Y ) divg X + Ng([X,Y ])) dLn

g

+
ˆ
∂∗�

〈(
Ng(X )̃νg(Y )− Ng(Y )̃νg(X)

)(
u
∣∣n.t.
∂�

)
,
(
(w|�)

∣∣n.t.
∂�

)〉

E
dσg

where ν̃g is the unique extension of νg ∈ T ∗M to a linear functional ν̃g ∈ T ∗M̃ such
that ν̃g(Ng) = 0.

Proof By design,

|Ng| = 1 and Ng(Z) = 0 for each Z ∈ T M. (1.12.145)

With the help of the musical isomorphism on the Riemannian manifold (M̃, g),

T ∗M̃ � η =
∑

j

η jdx j �−→ η! :=
∑

j,k

g jkη j∂k ∈ T M̃, (1.12.146)

we can consider N !
g ∈ T M̃ which, thanks to (1.12.145) and (1.12.140), satisfies

|N !
g | = 1, 〈N !

g, Z〉 = Ng(Z) for each Z ∈ T M̃, and

N !
g is orthogonal to T M with respect to the inner product in T M̃ .

(1.12.147)

Granted these properties, we may then express the orthogonal projection operator of
T M̃ onto its subspace T M as

T M̃ � Z �−→ Z − Ng(Z)N !
g ∈ T M. (1.12.148)

In turn, this allows us to introduce the assignment
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T ∗M � ξ �−→ ξ̃ ∈ T ∗M̃
ξ̃ (Z) := ξ(Z − Ng(Z)N !

g), ∀Z ∈ T M̃,
(1.12.149)

lifting covectors on M to covectors on M̃ . With this mechanism in place, we then
proceed to define the vector field �F : �→ T M by asking that

T ∗M
(
ξ, �F)

T M =
〈(
Ng(X )̃ξ (Y )− Ng(Y )̃ξ (X)

)
u, w

〉

E
(1.12.150)

for Ln
g-a.e. point in �, and each covector ξ in the corresponding fiber in T ∗M . The

linearity of the right-hand side in ξ ensures that this is a well-defined object. Also,
from (1.12.7) we conclude that �F ∈ L1

loc(�,Ln
g)⊗ T M . We now claim that in the

sense of distributions in � we have

divM �F = 〈
∂τXY u, w

〉
E +

〈
u, ∂τXY w

〉
E

+ 〈
u, w

〉
E
(
Ng(X) divgY − Ng(Y ) divg X + Ng([X,Y ])). (1.12.151)

To justify the above claim, fix some scalar-valued functionψ ∈ C 1
c (M̃)with the addi-

tional property that suppψ ∩ M = suppψ ∩�. If divM and gradM stand, respec-
tively, for the differential geometric divergence operator and gradient operator on the
manifold M , then (1.12.150) allows us to compute

D ′(�)

(
divM �F, ψ |�

)
D (�)

(1.12.152)

= −D ′(�)

( �F, gradM(ψ |�)
)
D (�)

= −
ˆ
�

T M
〈
gradM(ψ |�), �F

〉
T M dLn

g

= −
ˆ
�

T ∗M
(
dM(ψ |�), �F

)
T M

dLn
g

= −
ˆ
�

〈(
Ng(X) ˜dM(ψ |�)(Y )− Ng(Y ) ˜dM(ψ |�)(X)

)
u, w

〉

E
dLn

g

where dM denotes the intrinsic exterior derivative operator on the differentiable man-
ifold M . Recall that if dM̃ stands for the exterior derivative on M̃ and ι : M ↪→ M̃ is
the canonical inclusion of M into M̃ , then

ι∗
(
dM̃ψ) = dM(ψ |M) on M. (1.12.153)

Based on this and (1.12.149), for each Z ∈ T M̃ we may then write

˜dM(ψ |�)(Z) = (
dM(ψ |�)

)
(Z − Ng(Z)N !

g) =
(
dM̃ψ

)
(Z − Ng(Z)N !

g)

= Z(ψ)− Ng(Z)
(
dM̃ψ

)
(N !

g) on �. (1.12.154)
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Consequently, at points in � we have

(
Ng(X) ˜dM(ψ |�)(Y )− Ng(Y ) ˜dM(ψ |�)(X)

)
u

= {
Ng(X)Y (ψ)− Ng(X)Ng(Y )

(
dM̃ψ

)
(N !

g)
}
u

− {
Ng(Y )X (ψ)− Ng(Y )Ng(X)

(
dM̃ψ

)
(N !

g)
}
u

= Ng(X)Y (ψ)u − Ng(Y )X (ψ)u

= ∂τXY (ψu)− ψ ∂τXY u, (1.12.155)

where the last equality is provided by (1.12.95). Using this back in (1.12.152) and
then integrating by parts as in (1.12.91) permits us to further compute

D ′(�)

(
divM �F, ψ |�

)
D (�)

=
ˆ
�

〈
ψ ∂τXY u − ∂τXY (ψ u), w

〉
E (1.12.156)

=
ˆ
�

〈
∂τXY u, w

〉
Eψ dLn

g −
ˆ
M

〈
∂τXY (ψ u), w

〉
E dL

n
g

=
ˆ
�

〈
∂τXY u, w

〉
Eψ dLn

g +
ˆ
M

〈
ψ u, ∂τXY w

〉
E dL

n
g

+
ˆ
M

〈
ψ u, w

〉
E
(
Ng(X) divgY − Ng(Y ) divg X + Ng([X,Y ])) dLn

g.

At this stage, the claim in (1.12.151) follows from (1.12.156).
In turn, from (1.12.151) and (1.12.143) we deduce that

divM �F ∈ L1(�,Ln
g). (1.12.157)

Also, from (1.12.150) and the assumptions on u, w we see that the nontangential

trace �F∣∣n.t.
∂�

(considered from within the ambient � ⊂ M) exists at σg-a.e. point on
∂nta� and, in fact,

T ∗M
(
νg, �F

∣∣n.t.
∂�

)
T M

=
〈(
Ng(X )̃νg(Y )− Ng(Y )̃νg(X)

)(
u
∣∣n.t.
∂�

)
,
(
(w|�)

∣∣n.t.
∂�

)〉

E
.

(1.12.158)

Moreover, (1.12.34) also implies that N ( �F) ≤ CNu ·N (w|�) on ∂�, hence

N ( �F) ∈ L1(∂�, σg), (1.12.159)

given the original assumptions on u, w. At this point, the integration by parts formula
(1.12.144) is implied by the Divergence Formula established in Corollary 1.11.5,
taking into account (1.12.151) and (1.12.158). �



Chapter 2
Examples, Counterexamples,
and Additional Perspectives

This chapter is largely reserved for discussing examples and counterexamples (Sects.
2.1–2.7), as well as other versions of the Divergence Theorem (Sect. 2.8). All details
in the statements of our main results in Chap. 1 have their own significance, and
the examples/counterexamples presented in Sects. 2.1–2.7 are designed to elucidate
their specific nature. The picture that emerges is that our results are optimal1 from a
multitude of (geometric and analytic) points of view. In particular, in stark contrast
with the classical De Giorgi–Federer Divergence Theorem, our simplest version
of the Divergence Theorem already contains the sharp version of the Fundamental
Theorem of Calculus, to which it precisely reduces in the one-dimensional setting.

As a cursory search of the literature reveals, there are no significant counterex-
amples of the classical formulation of the Divergence Theorem,2 to the effect that

given a bounded domain � of class C 1 in R
n , with outward unit

normal ν and surfacemeasureσ , for each vector field �F belonging
to
[
C 1(�)

]n
it follows that

´
�
div �F dLn = ´

∂�
ν · ( �F∣∣

∂�

)
dσ .

(2.0.1)

Indeed, one typically looks for counterexamples as a justification as to why a certain
result can no longer be improved, and it has long been understood that the statement
of the Divergence Theorem given in (2.0.1) is far from sharp. For instance, one may
allow the domain � to only be piecewise smooth and ask that the vector field �F
belongs to

[
C 0(�) ∩ C 1(�)

]n
and has an absolutely integrable divergence in �.

1 One may argue that “optimality of a mathematical result” becomes a phrase of indefinite meaning
in the absence of a concrete and clear identification of the sense in which said optimality is to be
understood.
2 Save, perhaps, for the one-dimensional case, corresponding to the Fundamental Theorem of
Calculus.
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Of course, this version is not sharp either, and so the search for counterexamples is
further postponed.

In contrast to this state of affairs, it is possible to produce counterexamples illus-
trating the necessity of the hypotheses made in our main results, formulated in
Chap. 1, and the goal in this chapter is to do just that. Often, such counterexam-
ples are slightly tweaked to produce positive results, thus yielding relevant examples
for the range and scope of the theorems stated in Chap. 1. The aforementioned fine-
tuning also provides a better understanding of how wide or narrow the gap between
positive and negative results (embodied by the counterexamples discussed here and
their accompanying examples) really is. Ultimately, this analysis reveals that there
is a razor-thin margin between what holds and what fails. Remarkably, on one side
of that margin, even simple counterexamples abound, while on the other side of the
margin there is a vastly powerful and general array of positive results (of the sort
described in Chap. 1).

The close relationship of our theorems from Chap. 1 with classical results per-
taining to the formulation of the Fundamental Theorem of Calculus in the one-
dimensional setting is highlighted in Sect. 2.6. The penultimate section of the present
chapter (Sect. 2.8) includes other variants of the Divergence Theorem, and concludes
with a brief survey of additional work concerning the Divergence Theorem. Finally,
the last section in this chapter (Sect. 4.7) is reserved for introducing what we call
the “contribution at infinity” of vector fields, and for an in-depth discussion of this
notion.

Some notation used throughout is as follows. We let Sn−1 := ∂B(0, 1) stand for
the origin-centered unit sphere in R

n , and denote by ωn−1 := Hn−1(Sn−1) its area.
By {e j }1≤ j≤n we denote the standard orthonormal basis in R

n , i.e., e j = (δ jk)1≤k≤n
for each j ∈ {1, . . . , n}, where δ jk is the Kronecker symbol (i.e., δ jk := 1 if j = k
and δ jk := 0 if j �= k). The upper and lower half-spaces R

n± are defined as

R
n
± :=

{
x ∈ R

n : ±〈x, en〉 > 0
}
, (2.0.2)

and we denote the upper and lower hemispheres of Sn−1 by

Sn−1± := Sn−1 ∩ R
n
±. (2.0.3)

Going further, denote by 0′ the origin in R
n−1 and let

Bn−1(x ′, r) :=
{
y′ ∈ R

n−1 : |y′ − x ′| < r
}

(2.0.4)

stand for the (n − 1)-dimensional ball of radius r ∈ (0,∞) centered at x ′ ∈ R
n−1.

Finally, we make the following agreement (sometimes tacitly employed):

Convention:We shall canonically identify (in a two-way fashion) scalar-
valued functions F : � → R, where � is an open subset of the real line
(−∞,+∞), with one-dimensional vector fields �F defined on � simply
by thinking of the number 1 as a unit vector (spanning R, regarded as a
one-dimensional vector space).

(2.0.5)
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2.1 Failure of Hypotheses on the Nontangential Boundary
Trace

Consistently, in Theorems 1.2.1, 1.3.1, and 1.4.1 we have assumed that the vector
field in question has a nontangential boundary limit atHn−1-a.e. point belonging to
the nontangentially accessible boundary of the underlying domain. Since in the class
of domains considered there, the latter set is, up to a Hn−1-nullset, larger than the
geometric measure theoretic boundary, at a superficial glance this might seem too
strong of an assumption, particularly in light of the way the Divergence Formula is
written in the aforementioned theorems. The main goal of this section is to dispel
this perceived disparity between the strength of the assumption and the manner in
which the conclusion is formulated.

Counterexamples/Examples Part 2.1A: Fix n ∈ Nwith n ≥ 2 and consider the slit
unit ball in R

n given by (Fig. 2.1)

� := B(0, 1) \ {(x ′, 0) ∈ R
n : x ′ ∈ R

n−1}. (2.1.1)

Fig. 2.1 � as in (2.1.1)

Also, define the piecewise constant vector field

�F :=
{+en in � ∩ R

n+,

−en in � ∩ R
n−.

(2.1.2)

Then, introducing

� := {
(x ′, 0) ∈ R

n : x ′ ∈ R
n−1 with |x ′| ≤ 1

}
, (2.1.3)

�0 :=
{
(x ′, 0) ∈ R

n : x ′ ∈ R
n−1 with |x ′| < 1

}
, (2.1.4)

ϒ := � \�0 =
{
(x ′, 0) ∈ R

n : x ′ ∈ R
n−1 with |x ′| = 1

}
, (2.1.5)
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we have that

� is a bounded, nonempty, open set in R
n , with an

Ahlfors regular boundary, and ∂� = Sn−1 ∪�0.
(2.1.6)

Consequently, � has finite perimeter and

σ := Hn−1�∂� is a doubling finite measure on ∂�. (2.1.7)

Moreover, it is apparent from definitions that

∂∗� = Sn−1, ∂nta� = ∂� \ ϒ, ∂nta� \ ∂∗� = �0, (2.1.8)

and if ν denotes the geometric measure theoretic outward unit normal to �, then

ν(x) = x for each x ∈ ∂∗� = Sn−1. (2.1.9)

Since �F is locally constant in �, we have

�F ∈ [
C∞(�)

]n
and div �F = 0 in �. (2.1.10)

Also, having fixed κ ∈ (0,∞) arbitrary, it follows that

Nκ
�F ∈ L∞(∂�, σ) ⊂ L1(∂�, σ). (2.1.11)

As regards the nontangential boundary behavior of �F , it is clear that

�F∣∣κ−n.t.

∂�
= ±en at every point on Sn−1± . (2.1.12)

Hence, on the one hand we have (with ν as in (2.1.9) and �0 as in (2.1.4))

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1+
ν · en dHn−1 −

ˆ

Sn−1−
ν · en dHn−1

= 2
ˆ

�0

en · en dHn−1 = 2Hn−1(�0) �= 0, (2.1.13)

where the fact that
´
Sn−1±

ν · en dHn−1 = ± ´
�0

en · en dHn−1 (used in the second step)
uses the Divergence Theorem in a half-ball for the constant vector field en . On the
other hand, (2.1.10) gives

ˆ

�

div �F dLn = 0. (2.1.14)
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In turn, from (2.1.13)–(2.1.14) we see that

the Divergence Formula (1.2.2) fails for the set � as
in (2.1.1), and for the vector field �F given in (2.1.2).

(2.1.15)

A direct comparison with the statement of Theorem 1.2.1 points to the first condition
in (1.2.1) as the only possible source of this failure. To check that this is indeed the
case, observe that

�F∣∣κ−n.t.

∂�
does not exist at any point on �0 = ∂nta� \ ∂∗� (2.1.16)

and, sinceσ(�0) > 0, it follows that the first condition in (1.2.1) is presently violated.
In particular,

the counterexample from (2.1.15) highlights the necessity of demanding

that the nontangential trace �F∣∣κ−n.t.

∂�
exists σ -a.e. on ∂nta�, and not just

on the (potentially smaller) set ∂∗�, even though it is the latter which
appears in the very formulation of the Divergence Formula (1.2.2).

(2.1.17)

This being said, the gap between failure and validity is rather thin. Let us indicate
how the counterexample described in (2.1.15) may be slightly altered as to produce
an example which is relevant as far as the scope of Theorem 1.3.1 is concerned. The
idea is to eliminate the slit inside the domain, then consider the vector field to be only
defined Ln-a.e. in the domain thus enlarged. This procedure affects the divergence
of the latter vector field and, ultimately, it is this which ensures the validity of the
Divergence Formula (1.3.8). Specifically, if instead of (2.1.1)–(2.1.2) we now take

� := B(0, 1) and �F :=
{+en in � ∩ R

n+,

−en in � ∩ R
n−,

(2.1.18)

then �F is a well-defined vector field in
[
L∞(�,Ln)

]n
. Moreover, a simple compu-

tation reveals that its divergence (taken in the sense of distributions in �) is given
by

div �F = 2Hn−1��0 ∈ CBM(�). (2.1.19)

Hence, on the one hand,

(
div �F)(�) = 2Hn−1(�0). (2.1.20)

On the other hand, a computation similar to (2.1.13) gives that
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ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1
ν ·

(
1Sn−1+ en − 1Sn−1− en

)
dHn−1 = 2Hn−1(�0),

(2.1.21)

which is in agreement with (2.1.20). Consequently, this discussion shows that

all hypotheses of Theorem 1.3.1 are satisfied by the domain�

and vector field �F as in (2.1.18), and the Divergence Formula
(1.3.8) is valid for this choice.

(2.1.22)

Counterexamples/Examples Part 2.1B: Fix n ∈ N satisfying n ≥ 2. Consider a
real-valued function

φ : Bn−1(0′, 1/2) −→ (−1/2, 1/2), of class C 1, (2.1.23)

and denote by � its graph, i.e.,

� := {
(x ′, φ(x ′)) ∈ R

n : x ′ ∈ R
n−1, |x ′| ≤ 1/2

} ⊂ B(0, 1). (2.1.24)

Then there is a unique choice of a unit normal vector field N� on the C 1 surface �

with the property that en · N� < 0 at every point on �, namely

N�

(
x ′, φ(x ′)

) =
(
(∇′φ)(x ′),−1)

√|(∇′φ)(x ′)|2 + 1
, ∀x ′ ∈ Bn−1(0′, 1/2), (2.1.25)

where ∇′ denotes the gradient in R
n−1.

If we now consider the crack domain (Fig. 2.2)

� := B(0, 1) \� ⊂ R
n, (2.1.26)

Fig. 2.2 � as in (2.1.26)
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then

� is a bounded, connected, nonempty, open set

in R
n , possessing an Ahlfors regular boundary.

(2.1.27)

In particular, � has finite perimeter, and

σ := Hn−1�∂� is a doubling measure on ∂� = Sn−1 ∪�. (2.1.28)

In addition, it is clear from definitions that

∂∗� = Sn−1, ∂nta� = ∂�, ∂nta� \ ∂∗� = �. (2.1.29)

Also, if ν denotes the geometric measure theoretic outward unit normal to �, then

ν(x) = x for each x ∈ ∂∗� = Sn−1. (2.1.30)

Regarding the nature of the nontangential approach regions for �, with apexes at
points on �, we note the following. Fix κ ∈ (0,∞) along with r ∈ (0, 1/4) and, for
every x ∈ B(0, 1/4) ∩�, introduce

�(+)
κ (x) := {

y = (y′, yn) ∈ �κ(x) ∩ B(x, r) : yn > φ(y′)
}
,

�(−)
κ (x) := {

y = (y′, yn) ∈ �κ(x) ∩ B(x, r) : yn < φ(y′)
}
.

(2.1.31)

Then we have the decomposition

�κ(x) ∩ B(x, r) = �(+)
κ (x) ∪ �(−)

κ (x), disjoint union,

for every point x belonging to B(0, 1/4) ∩�.
(2.1.32)

Going forward, pick a complex-valued function satisfying

f ∈ C 0(�), supp f ⊆ � ∩ B(0, 1/4),
ˆ

�

f dHn−1 �= 0, (2.1.33)

and use it to define the vector field �F : � → C
n by setting

�F(x) := 1

ωn−1

ˆ

�

x − y

|x − y|n f (y) dHn−1(y), ∀x ∈ �. (2.1.34)

Then, by design, we have

�F ∈ [
C∞(�)

]n
, div �F = 0 in �, and

�F may be extended continuously across Sn−1.
(2.1.35)
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In particular, the latter quality of �F implies that the nontangential boundary trace
�F∣∣κ−n.t.

∂�
exists at every point on Sn−1 = ∂∗� and, in fact,

( �F∣∣κ−n.t.

∂�

)
(x) = 1

ωn−1

ˆ

�

x − y

|x − y|n f (y) dHn−1(y), ∀x ∈ Sn−1 = ∂∗�.

(2.1.36)

Also, given that f ∈ L2(�,Hn−1��), the Calderón–Zygmund theory ensures that
Nκ

�F belongs to L2(∂�, σ). Hence, since σ(∂�) < ∞, we have

Nκ
�F ∈ L1(∂�, σ). (2.1.37)

Going further, based on (2.1.36) and Fubini’s theorem we may write

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1
x ·

(
1

ωn−1

ˆ

�

x − y

|x − y|n f (y) dHn−1(y)
)
dHn−1(x)

=
ˆ

�

f (y)

(
1

ωn−1

ˆ

Sn−1
x · x − y

|x − y|n dHn−1(x)
)
dHn−1(y).

(2.1.38)

To proceed, for each y ∈ � ⊂ B(0, 1) fixed introduce the auxiliary vector field

�Gy(x) := 1

ωn−1
x − y

|x − y|n , ∀x ∈ R
n \ {y}, (2.1.39)

and note that (div �Gy)(x) = 0 for each x ∈ R
n \ {y}. Keeping this in mind, an appli-

cation of the classical Divergence Theorem for the smooth, divergence-free, vector
field �Gy considered in the smooth domain B(0, 1) \ B(y, ε), with ε > 0 sufficiently
small, permits us to re-write the inner integral in (2.1.38) as

ˆ

Sn−1
x · �Gy(x) dHn−1(x) =

ˆ

∂B(y,ε)

x − y

ε
· �Gy(x) dHn−1(x)

= 1

ωn−1

ˆ

∂B(y,ε)

x − y

ε
· x − y

|x − y|n dHn−1(x)

= 1. (2.1.40)

Plugging this back in (2.1.38) then proves that, on the one hand,

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

�

f (y) dHn−1(y) �= 0, (2.1.41)
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on account of the last property in (2.1.33). On the other hand, thanks to the second
property in (2.1.35), we trivially have

ˆ

�

div �F dLn = 0. (2.1.42)

The bottom line (apparent from (2.1.41)–(2.1.42)) is that

the Divergence Formula (1.2.2) fails for the set � as
in (2.1.26), and for the vector field �F given in (2.1.34).

(2.1.43)

As such, one of the hypotheses in Theorem 1.2.1 must be violated by the present
choice of domain and vector field. A glance at the statement of Theorem 1.2.1
then points to the first condition in (1.2.1) as the source of this failure. Since

the nontangential trace �F∣∣κ−n.t.

∂�
is known to exist everywhere on Sn−1 = ∂∗� (cf.

(2.1.36)), this warrants taking a closer look at the nontangential trace �F∣∣κ−n.t.

∂�
at

points on ∂nta� \ Sn−1 = �. To this end, according to classical jump-formulas (for
the gradient of the harmonic single layer across C 1 surfaces), at Hn−1-a.e. point
x ∈ B(0, 1/4) ∩� we have

lim
�

(±)
κ (x)�z→x

�F(z) = ∓1

2
N�(x) f (x)+ lim

ε→0+

1

ωn−1

ˆ

y∈�
|x−y|>ε

x − y

|x − y|n f (y) dHn−1(y),

(2.1.44)

where �(±)
κ (x) are as in (2.1.31), and the unit vector field N� is as in (2.1.25). In

turn, from (2.1.44) and (2.1.32) we deduce that for each x ∈ � the nontangential
boundary trace

( �F∣∣κ−n.t.

∂�

)
(x) = lim

�κ(x)�y→x
�F(y) does not exist if x ∈ � is such that f (x) �= 0.

(2.1.45)

The assumption
´

�
f dHn−1 �= 0 ensures thatHn−1({x ∈ � : f (x) �= 0})>0which,

in light of (2.1.45), forces

σ
({

x ∈ ∂nta� :
( �F∣∣κ−n.t.

∂�

)
(x) does not exist

})
> 0. (2.1.46)

Thismakes it clear that our example violates thefirst condition in (1.2.1). In particular,

the counterexample in (2.1.43) points to the necessity of hypothesizing

the σ -a.e. existence of the nontangential trace �F∣∣κ−n.t.

∂�
on the entire ∂nta�,

and not just on the (potentially smaller) set ∂∗�, even though it is the
latter set which appears in the Divergence Formula (1.2.2).

(2.1.47)
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Next, we shall indicate how to modify the counterexample described in (2.1.43)
in order to turn it into an actual example. The idea is to eliminate the crack inside
the domain while now considering the vector field to be only defined Ln-a.e. in the
domain thus enlarged. This affects the divergence of the new vector field which, in
turn, iswhat eventually renders theDivergenceFormula (1.4.5) valid. In the execution
of this plan, we adopt a more general point of view. Specifically, in place of (2.1.26)
we now take

� an arbitrary bounded open subset of R
n

possessing an Ahlfors regular boundary.
(2.1.48)

Also, consider an arbitrary compact subset � of � satisfying Hn−1(�) < +∞,
and pick an arbitrary function f ∈ L1(�,Hn−1��). These choices imply that the
measure

μ := f Hn−1�� belongs to CBM(�) and has compact support. (2.1.49)

Hence, if we define

�F(x) := 1

ωn−1

ˆ

�

x − y

|x − y|n f (y) dHn−1(y) for Ln-a.e. x ∈ �, (2.1.50)

then Lemma 3.5.6 ensures that

�F ∈ [
L1
loc(�,Ln)

]n
and div �F = μ in D′(�). (2.1.51)

Thus, bearing (4.6.24) in mind, on the one hand we have

(C ∞
b (�))

∗
(
div �F, 1

)
C ∞

b (�) =
(
div �F)(�) =

ˆ

�

f dHn−1. (2.1.52)

On the other hand, ifO is an open subset of� such that� ⊂ O ⊂ O ⊂ � then� \ O
is a compact set and

�F∣∣
�\O ∈

[
C 0(� \ O,Ln)

]n
. (2.1.53)

Hence conditions (1.4.2)–(1.4.4) are presently satisfied and having fixed some κ > 0
then, much as in the case of (2.1.41), we have

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

�

f dHn−1, (2.1.54)

which agrees with (2.1.52). We may therefore conclude that
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all hypotheses of Theorem 1.4.1 are satisfied by the domain �

as in (2.1.48) and the vector field �F as in (2.1.50), and the
Divergence Formula (1.4.5) is valid for these choices.

(2.1.55)

Counterexamples/Examples Part 2.1C: Consider the open subset of R
n described

as (Fig. 2.3)
� := B(0, 2) \ Sn−1 (2.1.56)

Fig. 2.3 � as in (2.1.56)

and introduce the vector field

�F(x) :=

⎧
⎪⎨

⎪⎩

x

|x |n for x ∈ B(0, 2) \ B(0, 1),

0 ∈ C
n for x ∈ B(0, 1).

(2.1.57)

Then, by design,

∂� = ∂B(0, 2) ∪ Sn−1 is Ahlfors regular, and we have

∂∗� = ∂B(0, 2), ∂nta� = ∂�, ∂nta� \ ∂∗� = Sn−1.
(2.1.58)

In particular, σ := Hn−1�∂� is a doubling finite measure on ∂�. Also,

�F ∈ [
C∞(�) ∩ L∞(�,Ln)

]n
, div �F = 0 in �, and

�F may be extended continuously across ∂B(0, 2).
(2.1.59)

As such, on the one hand we have

ˆ

�

div �F dLn = 0. (2.1.60)

On the other hand, with ν denoting the geometric measure theoretic outward unit
normal to �, and having fixed some aperture parameter κ > 0,
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ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

∂B(0,2)

x

2
· x

|x |n dHn−1(x) = ωn−1 �= 0. (2.1.61)

Thus, from (2.1.60)–(2.1.61) we conclude that

the Divergence Formula (1.2.2) fails for the set � as
in (2.1.56), and for the vector field �F given in (2.1.57).

(2.1.62)

Contrasting the present settingwith that in Theorem1.2.1 identifies the first condition
in (1.2.1) as the only possible source of this failure. To see that this is indeed the
case, note that

�F∣∣κ−n.t.

∂�
does not exist at any point on Sn−1 = ∂nta� \ ∂∗� (2.1.63)

and, since σ(Sn−1) = ωn−1 > 0, it follows that the first condition in (1.2.1) is cur-
rently violated. Consequently,

the counterexample described in (2.1.62) shows the necessity

of having �F∣∣κ−n.t.

∂�
exist σ -a.e. on ∂nta�, and not just on ∂∗�.

(2.1.64)

The counterexample just presented may be altered to yield an actual example for
theDivergence Formula (1.3.8) by eliminating the cut inside the domain. Specifically,
let us now take

� := B(0, 2) and �F(x) :=
⎧
⎨

⎩

x

|x |n for x ∈ B(0, 2) \ B(0, 1),

0 ∈ C
n for x ∈ B(0, 1).

(2.1.65)

This time, we have (compare with (1.3.20)–(1.3.22))

�F ∈ [
L∞(�,Ln)

]n
, div �F = Hn−1�Sn−1 in D′(�),

and �F may be extended continuously across ∂�.
(2.1.66)

Hence, on the one hand, div �F is a complex Borel measure in � with total mass

(
div �F)(�) = Hn−1(Sn−1) = ωn−1, (2.1.67)

while on the other hand,

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

∂B(0,2)

x

2
· x

|x |n dHn−1(x) = ωn−1, (2.1.68)

in agreement with (2.1.67). Thus,
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all hypotheses of Theorem 1.3.1 are satisfied by the domain � and
vector field �F as in (2.1.65), and the Divergence Formula (1.3.8)
holds for such a choice.

(2.1.69)

Counterexamples/Examples Part 2.1D: Start by considering the open subset of
C ≡ R

2 given by (Fig. 2.4)

� := {
z ∈ C : |z| < 1 and z /∈ [0, 1)}. (2.1.70)

Fig. 2.4 � as in (2.1.70)

Hence, by design,

∂� = ∂B(0, 1) ∪ ([0, 1)× {0}) is Ahlfors regular, and we have

∂∗� = ∂B(0, 1), ∂nta� = ∂� \ {(1, 0)}, ∂nta� \ ∂∗� = [0, 1)× {0}. (2.1.71)

In particular, σ := H1�∂� is a doubling finite measure on ∂�. Next, observe that
the function

f : (0, 1)× (0, 2π) → �, f (r, θ) := reiθ = r cos θ + ir sin θ,

for each r ∈ (0, 1) and each θ ∈ (0, 2π),
(2.1.72)

is a bijection of classC∞,whose Jacobianmatrix Df satisfies det(Df )(r, θ) = r > 0
for each pair (r, θ) ∈ (0, 1)× (0, 2π). The Inverse Function Theorem then ensures
that f is a C∞-diffeomorphism and, if (u, w) are the real-components of f −1, we
have

u : � → (0, 1), w : � → (0, 2π) are of class C∞

and for each pair (r, θ) ∈ (0, 1)× (0, 2π) we have
(

(∂xu)(reiθ ) (∂yu)(reiθ )

(∂xw)(reiθ ) (∂yw)(reiθ )

)
= 1

r

(
r cos θ r sin θ

− sin θ cos θ

)
.

(2.1.73)

In particular, this shows that
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(∂yw)(r cos θ, r sin θ) = cos θ

r
= r cos θ

r2
, ∀(r, θ) ∈ (0, 1)× (0, 2π), (2.1.74)

which further entails

(∂yw)(x, y) = x

x2 + y2
, ∀(x, y) ∈ �. (2.1.75)

Let us also observe that since similar considerations imply that for each R ∈ (0,∞)

the function

fR : (0, R)× (0, 2π) → �R :=
{
z ∈ C : |z| < R and z /∈ [0, R)

}
,

fR(r, θ) := reiθ for each pair (r, θ) ∈ (0, R)× (0, 2π),
(2.1.76)

is also a C∞-diffeomorphism, it follows that

w ∈ C∞(� \ [0, 1] × {0}), and w(r cos θ, r sin θ) = θ

for each r ∈ (0, 1] and each θ ∈ (0, 2π).
(2.1.77)

To proceed, introduce the vector field

�F : � → R
2, �F(x, y) := (

0, w(x, y)
)
for each (x, y) ∈ �. (2.1.78)

From (2.1.73) and (2.1.77) we see that

�F ∈ [
C∞(�) ∩ L∞(�,L2)

]2
and

�F extends continuously to � \ [0, 1] × {0}. (2.1.79)

In particular, if σ := H1�∂� (which is a doubling finite measure on ∂�), then for
each κ > 0 we have that

Nκ
�F ∈ L∞(∂�, σ) ⊂ L1(∂�, σ) and

�F∣∣κ−n.t.

∂�
exists everywhere on ∂∗� = ∂� \ [0, 1)× {0}. (2.1.80)

In fact, as is apparent from (2.1.77),

( �F∣∣κ−n.t.

∂�

)
(cos θ, sin θ) = (0, θ) for each θ ∈ (0, 2π). (2.1.81)

Also,

(div �F)(x, y) = (∂yw)(x, y) = x

x2 + y2
, ∀(x, y) ∈ �, (2.1.82)

has a weak singularity at the origin, and is an odd function in � \ (R× {0}). Hence,
on the one hand,
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div �F ∈ L1(�,L2) and
ˆ

�

div �F dL2 = 0. (2.1.83)

On the other hand, if ν is the geometric measure theoretic outward unit normal to �

then (2.1.81) gives

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ 2π

0
θ sin θ dθ = −2π �= 0. (2.1.84)

Collectively, (2.1.83)–(2.1.84) prove that

the Divergence Formula (1.2.2) fails for the set � as
in (2.1.70), and for the vector field �F given in (2.1.78).

(2.1.85)

A direct comparison of the present setting with that of Theorem 1.2.1 points to the
first condition in (1.2.1) as the only possible source of this failure. That the first
condition in (1.2.1) is indeed violated is clear upon noting that (2.1.77)–(2.1.78)
imply

�F∣∣κ−n.t.

∂�
does not exist at any point on [0, 1)× {0} = ∂nta� \ ∂∗�

(as �F has a jump-discontinuity of 2π across the slit (0, 1)× {0}),
and σ

([0, 1)× {0}) = H1
([0, 1)× {0}) = L1

([0, 1)) = 1 > 0.

(2.1.86)

In summary,

the counterexample described in (2.1.85) highlights the necessity of hav-

ing �F∣∣κ−n.t.

∂�
exist σ -a.e. on ∂nta� and shows that, without it, the Divergence

Formula (1.2.2) may fail even when � is a bounded simply connected
open set with an Ahlfors regular boundary, and �F is a bounded vector
field of classC∞ with an absolutely integrable divergence in� and such

that �F∣∣κ−n.t.

∂�
exists everywhere on ∂∗�.

(2.1.87)

The issue of �F∣∣κ−n.t.

∂�
failing to exist σ -a.e. on ∂nta� may be avoided if, to begin

with, the vector field �F is restricted to a suitably smaller domain. Specifically, with
� and �F as above (cf. (2.1.70) and (2.1.78), respectively), for an angle α ∈ (0, π)

consider (Fig. 2.5)

�α :=
{
z ∈ � : α < arg z < 2π − α

}
and �Fα := �F∣∣

�α
. (2.1.88)
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Fig. 2.5 � as in (2.1.88)

Then �α is a bounded open subset of R
2 with an Ahlfors regular boundary. In

particular, σα := Hn−1�∂�α is a finite doubling measure. Also, for each fixed κ > 0
we have

Nκ
�Fα ∈ L∞(∂�α, σα) and �Fα

∣∣κ−n.t.

∂�α
exists everywhere on ∂�α \ {0}. (2.1.89)

Actually, from the definitions of �α , �Fα , and (2.1.77) we see that

( �Fα

∣∣κ−n.t.

∂�α

)
(z) =

⎧
⎪⎨

⎪⎩

(0, θ) if z = eiθ with θ ∈ (α, 2π − α),

(0, α) if z = reiα with r ∈ (0, 1],
(0, 2π − α) if z = rei(2π−α) with r ∈ (0, 1],

(2.1.90)

hence, if να is the geometric measure theoretic outward unit normal to �α , then

ˆ

∂∗�α

να·
( �Fα

∣∣κ−n.t.

∂�α

)
dσα

=
ˆ 2π−α

α

θ sin θ dθ −
ˆ 1

0
α cosα dr +

ˆ 1

0
(2π − α) cosα dr

= −2 sin α. (2.1.91)

Lastly, it is clear from (2.1.82) that div �Fα ∈ L1(�α,L2) and

ˆ

�α

div �Fα dL2 =
ˆ

�α

x

x2 + y2
dxdy = 2

ˆ

{z=x+iy∈�α :α<arg z<π}
x

x2 + y2
dxdy

= 2
ˆ

{z=x+iy∈�α :π−α<arg z<π}
x

x2 + y2
dxdy

= 2
ˆ π

π−α

ˆ 1

0

(r cos θ

r2

)
r dr dθ

= 2
ˆ π

π−α

cos θ dθ = −2 sin α, (2.1.92)

in agreement with (2.1.91). Hence, as predicted by Theorem 1.2.1, the Divergence
Formula (1.2.2) holds for the domain �α and vector field �Fα defined in (2.1.88).
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To close, we wish to remark that even though the Divergence Formula (1.2.2) is
verified by such a choice of domain�α and vector field �Fα with α ∈ (0, π) arbitrary,
the aforementioned formula fails for the limiting value α = 0, which corresponds
precisely to the counterexample presented in (2.1.85).

Counterexamples/Examples Part 2.1E:Work in the one-dimensional setting (i.e.,
n = 1). Take the bounded open subset of R given by (Fig. 2.6)

� := (−1, 0) ∪ (0, 1) (2.1.93)

Fig. 2.6 � as in (2.1.93)

and, for two fixed numbers a, b ∈ R, consider F : � → R defined at each x ∈ � as

F(x) :=
{
a if x ∈ (−1, 0),
b if x ∈ (0, 1).

(2.1.94)

Then, by design,

∂� = {−1, 0, 1} is an Ahlfors regular subset of R, and

∂∗� = ∂∗� = {−1, 1}, ∂nta� = ∂�, ∂nta� \ ∂∗� = {0}. (2.1.95)

Also, σ := H0�∂� is the counting measure (thus, finite and doubling) on ∂�. Next,

F ∈ C∞(�) ∩ L∞(�,L1) and F ′ = 0 in �, (2.1.96)

hence, on the one hand,

ˆ

�

F ′ dL1 = 0. (2.1.97)

On the other hand, for each κ > 0 we have

F
∣∣κ−n.t.

∂�
exists everywhere on ∂∗�, specifically

(
F
∣∣κ−n.t.

∂�

)
(−1) = a and

(
F
∣∣κ−n.t.

∂�

)
(1) = b,

(2.1.98)

and, with ν denoting the geometric measure theoretic outward unit normal to �, we
have
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ˆ

∂∗�
ν ·

(
F
∣∣κ−n.t.

∂�

)
dσ = b − a. (2.1.99)

From (2.1.97)–(2.1.99) we conclude that

if a �= b then the Divergence Formula (1.2.2)
fails for � as in (2.1.93) and F as in (2.1.94).

(2.1.100)

Comparing the present setting with that in Theorem 1.2.1 points to the first condition
in (1.2.1) as the only possible source of this failure. To see that this is indeed the
case, note that

if a �= b then F
∣
∣κ−n.t.

∂�
does not exist at 0 ∈ ∂nta� \ ∂∗� (2.1.101)

and, since σ({0}) = 1 > 0, it follows that the first condition in (1.2.1) is currently
violated. Consequently,

the counterexample described in (2.1.100) shows the necessity

of having F
∣∣κ−n.t.

∂�
exist σ -a.e. on ∂nta�, and not just on ∂∗�.

(2.1.102)

Of course, the counterexample just presented may be altered to yield an actual
example for the Divergence Formula (1.3.8) simply by taking a = b.

2.2 Failure of Hypotheses on Behavior at Infinity

Theorems 1.2.1, 1.3.1, 1.4.1, and 1.5.1 take into account the behavior of the vector
field �F at infinity either directly, through the incorporation of the contribution of [ �F ]∞
in the Divergence Formula, or indirectly by imposing suitable decay conditions on �F .
The aim of this section is to study the extent to which these actions are appropriate.

Counterexamples/Examples Part 2.2A:A simple yet revealing counterexample to
the Divergence Formula (1.2.2) in the one-dimensional setting (i.e., when n = 1) is
to take3

� := (0,+∞) and F : � → R given by

F(x) := 1 for each x ∈ �.
(2.2.1)

� is an open nonempty proper subset of R with ∂� = {0}, with σ := H0�∂� given
by σ({0}) = 1 and σ(∅) = 0. This makes ∂� an Ahlfors regular set (given that
n = 1), and σ a doubling measure on ∂�. Also, ∂∗� = ∂∗� = ∂� = {0}, and the
geometric measure theoretic outward unit normal to � at the point 0 is ν(0) = −1.
Next, F is Lebesgue measurable and F ′ = 0 in �, so trivially F ′ ∈ L1(�,L1). In

3 Recall the convention made in (2.0.5).
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addition, having fixed an aperture parameter κ ∈ (0,∞), we see that
(
F
∣∣κ−n.t.

∂�

)
(0) = 1

and since (NκF)(0) = 1 < +∞, it follows that NκF ∈ L1(∂�, σ). And yet

ˆ

�

F ′ dL1 = 0, while
ˆ

∂∗�
ν · (F ∣∣κ−n.t.

∂�

)
dσ = −1. (2.2.2)

This shows that
the Divergence Formula (1.2.2) fails
if n = 1 and �, F are as in (2.2.1).

(2.2.3)

When comparing the present setting with that of Theorem 1.2.1, it becomes apparent
that the source for this failure is the behavior of F at infinity. Specifically, the issue
is that � is unbounded with ∂� bounded, a scenario in which according to Theo-
rem 1.2.1 we should also impose (1.2.3) to guarantee the validity of the Divergence
Formula (1.2.2). Let us look further and zoom in on this issue. Fix a dilation param-
eter λ ∈ (1,∞) and, bearing in mind that we are presently working with n = 1,
consider the “annulus”

Aλ,R := (−λ R, λ R) \ (−R, R) for each R > 0. (2.2.4)

Then for � and F as in (2.2.1) we have

ˆ

Aλ,R∩�

|x · F(x)| dL1(x) =
ˆ λR

R
x dx = 1

2 (λ
2 − 1)R2 = O(R2) as R →∞,

(2.2.5)
whereas the integral condition (1.2.3) imposed in Theorem 1.2.1 actually requires
o(R2) in place of O(R2). In summary,

the counterexample in (2.2.1) points to the fact that the behav-
ior of F at infinity is an essential attribute, strongly influencing
the correctness of the Divergence Formula (1.2.2); in partic-
ular, o(R2) may not be replaced by O(R2) in the formulation
of the growth condition (1.2.3).

(2.2.6)

Let us also note that F(x) = O(1) as x →∞, whereas the pointwise decay
condition (1.2.9) written for n = 1 stipulates that we should have F(x) = o(1) as
x →∞ in order for the Divergence Formula (1.2.2) to hold. Consequently, at least
in dimension one (see (2.2.16) for higher dimensions),

the counterexample in (2.2.1) shows that in the class of
unbounded sets � ⊆ R

n , the pointwise decay condition (1.2.9)
(to the effect that �F(x) = o(|x |1−n) at infinity)may not be weak-
ened to asking �F(x) = O(|x |1−n) at infinity.

(2.2.7)
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The counterexample presented in (2.2.3) may be converted into a positive result if
we include information about the behavior of F at infinity in the very formulation of
theDivergence Formula, aswe have done in Theorem 1.3.1 through the consideration
of the contribution of F at infinity. Specifically, in the present case Proposition 4.7.2
gives

[F]∞ = F(+∞) = 1, (2.2.8)

which, in view of (2.2.2), ultimately shows that

all hypotheses of Theorem 1.3.1 are satisfied when n = 1
and �, F are as in (2.2.1), and the Divergence Formula
(1.3.8) is valid in this setting.

(2.2.9)

Counterexamples/Examples Part 2.2B: Here we discuss higher-dimensional ver-
sions of the counterexamples/examples from Part 2.2A above. To set the stage,
assume n ∈ N satisfies n ≥ 2. Consider the exterior domain � ⊂ R

n , and the vector
field �F on �, given by (Fig. 2.7)

� := R
n \ B(0, 1) and �F(x) := x

|x |n for each x ∈ �. (2.2.10)

Fig. 2.7 � as in (2.2.10)

Then

∂� = ∂∗� = Sn−1, �F ∈ [
C∞(�)

]n
, div �F = 0 in �,

and �F extends continuously to �.
(2.2.11)

Hence,

ˆ

�

div �F dLn = 0. (2.2.12)

Also, having fixed an aperture parameter κ > 0, the nontangential boundary trace
�F∣∣κ−n.t.

∂�
exists pointwise everywhere on ∂�, and
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ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1
(−x) · x

|x |n dHn−1(x) = −ωn−1 �= 0. (2.2.13)

Thus, as is apparent from (2.2.12)–(2.2.13),

the Divergence Formula (1.2.2) fails for the set
� and the vector field �F , as defined in (2.2.10). (2.2.14)

When comparing the present setting with that of Theorem 1.2.1, it becomes apparent
that the source for this failure is the fact that condition (1.2.3) is not presently satisfied.
To see that this is indeed the case, note that |x · �F(x)| = |x |2−n for each x ∈ �,
and

´
Aλ R∩�

|x |2−n dx = cn,λR2 for each R > 0, where cn,λ ∈ (0,∞). In the bigger
picture,

the counterexample in (2.2.14) points to the fact that the behav-
ior of �F at infinity can be a pivotal factor, strongly affecting the
veracity of the Divergence Formula (1.2.2); in particular, o(R2)

may not be replaced by O(R2) in the formulation of the growth
condition (1.2.3).

(2.2.15)

We also wish to observe that �F(x) = O(|x |1−n) as |x | → ∞, while the pointwise
decay condition (1.2.9) actually requires that �F(x) = o(|x |1−n) as |x | → ∞ for the
Divergence Formula (1.2.2) to hold. Therefore, in dimensions n ≥ 2,

the counterexample in (2.2.14) shows that in the class of
unbounded sets � ⊆ R

n , the pointwise decay condition (1.2.9)
(to the effect that �F(x) = o(|x |1−n) at infinity)may not be weak-
ened to asking �F(x) = O(|x |1−n) at infinity.

(2.2.16)

The counterexample in (2.2.14) may be turned into a positive result if one incor-
porates information about the behavior of �F at infinity in the very formulation of
the Divergence Formula, as done in Theorem 1.3.1 through the consideration of the
contribution of �F at infinity. Concretely, in the present case we have (cf. (1.3.25))

[ �F]∞ = lim
R→∞

ˆ

|x |=R

x

|x | ·
x

|x |n dHn−1(x) = ωn−1 (2.2.17)

which, in light of (2.2.12) and (2.2.13), proves that

all hypotheses of Theorem 1.3.1 are satisfied by the set
� and vector field �F as in (2.2.10), and the Divergence
Formula (1.3.8) is valid for this choice.

(2.2.18)
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Counterexamples/Examples Part 2.2C: Here we discuss a more revealing fam-
ily of counterexamples and examples for the Divergence Formula than the ones in
Part 2.2B above. To get started, suppose n ∈ N satisfies n ≥ 2. Consider the exterior
domain (Fig. 2.8)

� := R
n \ B(0, 1) (2.2.19)

Fig. 2.8 � as in (2.2.19)

and, for some μ ∈ CBM
(
B(0, 1)

)
which is compactly supported in B(0, 1), define

the vector field �F as the Riesz transform of the measure μ in �, i.e., set

�F(x) := 1

ωn−1

ˆ

B(0,1)

x − y

|x − y|n dμ(y) for each x ∈ �. (2.2.20)

Then, by design,

�F ∈ [
C∞(�)

]n
and div �F = 0 in �. (2.2.21)

In particular, on the one hand,

ˆ

�

div �F dLn = 0. (2.2.22)

On the other hand, having fixed an aperture parameter κ > 0, the nontangential

boundary trace �F∣∣κ−n.t.

∂�
exists pointwise everywhere on ∂� and based on Fubini’s

theorem we may write

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1
(−x) ·

(
1

ωn−1

ˆ

B(0,1)

x − y

|x − y|n dμ(y)

)
dHn−1(x)

= −
ˆ

B(0,1)

(
1

ωn−1

ˆ

Sn−1
x · x − y

|x − y|n dHn−1(x)
)
dμ(y)

= −
ˆ

B(0,1)
1 dμ(y) = −μ

(
B(0, 1)

)
, (2.2.23)
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where the penultimate equality uses (2.1.39)–(2.1.40). From (2.2.22)–(2.2.23) we
conclude that

if μ
(
B(0, 1)

) �= 0, the Divergence Formula (1.2.2) fails for the
domain � as in (2.2.19) and the vector field �F as in (2.2.20).

(2.2.24)

When μ
(
B(0, 1)

) �= 0, the source of failure of formula (1.2.2) in the present setting
is the violation of the growth condition in (1.2.3). This is most apparent from the
following equivalence:

(1.2.3) holds ⇐⇒ μ
(
B(0, 1)

) = 0. (2.2.25)

To prove (2.2.25), for any compact set K ⊂ R
n use the Mean Value Theorem to

write

x − y

|x − y|n −
x

|x |n = O
(|x |−n) as |x | → ∞, uniformly for y ∈ K . (2.2.26)

In turn, this shows that �F has the following asymptotic behavior at infinity

�F(x) = μ
(
B(0, 1)

)

ωn−1
x

|x |n + O
(|x |−n) as |x | → ∞, (2.2.27)

which further implies

∣∣x · �F(x)
∣∣ =

∣
∣μ
(
B(0, 1)

)∣∣

ωn−1
|x |2−n + O

(|x |1−n) as |x | → ∞. (2.2.28)

Hence, if λ ∈ (1,∞) is fixed and Aλ,R := B(0, λ R) \ B(0, R) for each R > 0, there
exists a constant cn,λ ∈ (0,∞) for which

ˆ

Aλ,R∩�

∣∣x · �F(x)
∣∣ dLn(x) = cn,λ

∣∣μ
(
B(0, 1)

)∣∣R2 + O(R) as R →∞. (2.2.29)

From this, (2.2.25) is now clear.
Moving on, we may turn the counterexample presented in (2.2.24) into a positive

result by either requiring thatμ
(
B(0, 1)

) = 0, or employing the version of the Diver-
gence Formula recorded in (1.4.5), which also takes into account the contribution
of �F at infinity. As regards the latter scenario, observe that the asymptotic formula
(2.2.27) permits us to identify the contribution of �F at infinity (cf. (1.3.25)) as

[ �F]∞ = lim
R→∞

ˆ

|x |=R

x

|x | · �F(x) dHn−1(x) = μ
(
B(0, 1)

)
. (2.2.30)
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In view of (2.2.22)–(2.2.23) and (2.2.30), wemay summarize our findings as follows:

all hypotheses of Theorem 1.4.1 are satisfied by the domain� as in
(2.2.19) and the vector field �F as in (2.2.20), and the Divergence
Formula (1.4.5) holds for these choices.

(2.2.31)

It is worth remarking that the vector field defined in (2.2.20) reduces precisely to
the vector field in (2.2.10) when μ is the measure canonically induced on B(0, 1) by
Dirac’s delta distribution with mass at zero (i.e., μ(A) := 1A(0) for every Borel set
A ⊆ B(0, 1)).

Counterexamples/Examples Part 2.2D: Here we present a counterexample,
together with a naturally accompanying example, in the spirit of those discussed
in Part 2.2C above, but now working with a vector field whose divergence is an
arbitrary compactly supported distribution. The construction of such a vector field,
presented in Proposition 2.2.2, requires the functional analytic result described in
Lemma 2.2.1 below. Before stating the latter, we make a definition.

Specifically, given an open set � ⊆ R
n and a distribution in � with compact

support, call it u ∈ E ′(�), we agree to extend the action of u to the family of functions

C∞(supp u) :=
⋃

O open subset of �
with supp u⊂O

C∞(O), (2.2.32)

which is strictly larger than C∞(�), in the following natural manner. For each func-
tion f ∈ C∞(supp u), say f ∈ C∞(O) with O ⊆ � open set containing supp u,
define

E ′(�)

〈〈
u, f

〉〉
E (�) := E ′(�)

〈
u, F

〉
E (�) (2.2.33)

where F is any function in C∞(�) with the property that F = f near supp u. It is
then clear that the above definition is meaningful and unambiguous (i.e., the right-
hand side of (2.2.33) does not depend on the choice of F).With this piece of notation,
we then have the following result.

Lemma 2.2.1 Let f ∈ D′(Rn) be such that f
∣∣
Rn\{0} ∈ C∞(Rn \ {0}), and fix an

arbitrary u ∈ E ′(Rn). Then the convolutionw := f ∗ u ∈ D′(Rn) is of function type
on R

n \ supp u. In fact,
w ∈ C∞(Rn \ supp u), (2.2.34)

and for each x ∈ R
n \ supp u one has

w(x) = E ′(Rn)

〈〈
u, f (x − ·)〉〉E (Rn) (2.2.35)

where the right-hand side is interpreted in the sense of (2.2.33), viewing f (x − ·)
as a function in C∞(Rn \ {x}).
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Proof Abbreviate K := supp u and consider the family of compact sets

Kε :=
{
x ∈ R

n : dist(x, K ) ≤ ε
}
, for each ε > 0. (2.2.36)

Also, for each ε > 0 pick ηε ∈ C∞(Rn) satisfying ηε ≡ 1 on R
n \ B(0, ε/2) and

ηε ≡ 0 on B(0, ε/4). In particular, ηε f ∈ C∞(Rn) for each ε > 0.
To proceed, fix ε > 0 and consider an arbitrary ϕ ∈ C∞

c (Rn \ Kε). Denote by ϕ̃

the extension of ϕ by zero to the entire R
n , and select a function ψ ∈ C∞

c (Rn × R
n)

which is identically one on the set

{
(x, y) : x ∈ K and y ∈ R

n such that x + y ∈ suppϕ
}
. (2.2.37)

Bearing in mind that ηε ≡ 1 on the algebraic difference (Rn \ Kε)− K and that,
in a natural sense we have E ′(Rn) ∗ C∞(Rn) ⊆ C∞(Rn) (cf. [181, Exercise 2.103,
p. 74]), we may then compute

D′(Rn\Kε)

〈
w
∣∣
Rn\Kε

, ϕ
〉
D(Rn\Kε) (2.2.38)

= D′(Rn)

〈
w, ϕ̃

〉
D(Rn) = D′(Rn)

〈
u ∗ f, ϕ̃

〉
D(Rn)

= D′(Rn)

〈
u(x),D′(Rn)

〈
f (y), ψ(x, y)ϕ̃(x + y)

〉
D(Rn)

〉

D(Rn)

= D′(Rn)

〈
u(x),D′(Rn)

〈
(ηε f )(y), ψ(x, y)ϕ̃(x + y)

〉
D(Rn)

〉
D(Rn)

= D′(Rn)

〈
u ∗ (ηε f ), ϕ̃

〉
D(Rn)

=
ˆ

Rn

(
E ′(Rn)

〈
u(y), (ηε f )(x − y)

〉
E (Rn)

)
ϕ̃(x) dx

=
ˆ

Rn\Kε

(
E ′(Rn)

〈
u(y), (ηε f )(x − y)

〉
E (Rn)

)
ϕ(x) dx .

This proves that the distribution w
∣∣
Rn\Kε

is of function type and, in fact, for each
x ∈ R

n \ Kε we have

(
w
∣∣
Rn\Kε

)
(x) = E ′(Rn)

〈
u, (ηε f )(x − ·) 〉E (Rn)

= E ′(Rn)

〈
u, ηε(x − ·) f (x − ·) 〉E (Rn)

= E ′(Rn)

〈〈
u, f (x − ·)〉〉E (Rn) (2.2.39)

where the last equality uses the fact that ηε(x − ·) ≡ 1 near K for each fixed point
x ∈ R

n \ Kε. Since ε > 0 was arbitrary, all desired conclusions follow from this. �

In turn, Lemma 2.2.1 is an important ingredient in the proof of Proposition 2.2.2
below. To facilitate stating the latter result, we introduce one piece of notation.
Concretely, given n ∈ N define the vector field �R = (R1, . . . , Rn) by setting



154 2 Examples, Counterexamples, and Additional Perspectives

�R(x) := 1

ωn−1
x

|x |n for each x ∈ R
n \ {0}. (2.2.40)

Proposition 2.2.2 Let O ⊆ R
n be a nonempty open set and suppose u ∈ E ′(O) is

arbitrary. Then the vector field defined as

�F := ( �R ∗ u)∣∣O ∈
[D′(O)

]n
(2.2.41)

satisfies

div �F = u in D′(O), �F∣∣O\supp u ∈
[
C∞(O \ supp u)

]n
, (2.2.42)

and, at each point x ∈ O \ supp u,

�F(x) = E ′(Rn)

〈〈
u, �R(x − ·)〉〉E (Rn) :=

n∑

j=1
E ′(Rn)

〈〈
u, R j (x − ·)〉〉E (Rn)e j . (2.2.43)

Proof To get started, observe that, by design,

�R ∈ [
C∞(Rn \ {0}) ∩ L1

loc(R
n,Ln)

]n ⊂ [D′(Rn)
]n

,

and div �R = δ in the sense of distributions in R
n.

(2.2.44)

In particular, from (2.2.44) and the fact that distributional derivatives commute with
the operator of restriction to open sets, we conclude that

div �F = div
[( �R ∗ u)∣∣O

]
= (

(div �R) ∗ u)∣∣O
= (δ ∗ u)

∣
∣
O = u

∣
∣
O = u in D′(O). (2.2.45)

This justifies the first equality in (2.2.42). Finally, all remaining claims in (2.2.42)–
(2.2.43) follow from Lemma 2.2.1 and (2.2.44). �

After this detour, we are ready to deal with the main item of business. Bring in
the exterior domain (Fig. 2.9)

� := R
n \ B(0, 1) (2.2.46)

Fig. 2.9 � as in (2.2.46)
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and, for some given distribution u ∈ E ′(Rn) with compact support contained in
B(0, 1), define the vector field

�F := ( �R ∗ u)∣∣
�
∈ [D′(�)

]n
. (2.2.47)

FromProposition 2.2.2 (usedwithO = R
n) and the fact that distributional derivatives

commute with restriction to open sets, we see that

div �F = div
[( �R ∗ u)∣∣

�

]
= u

∣
∣
�
= 0 in D′(�), (2.2.48)

and �F ∈ [
C∞(�)

]n
is given at every point x ∈ � by

�F(x) = E ′(Rn)

〈〈
u, �R(x − ·)〉〉E (Rn). (2.2.49)

As a result, for each aperture parameter κ > 0 it follows that the nontangential

boundary trace �F∣∣κ−n.t.

∂�
exists pointwise everywhere on ∂� and

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1
(−x) ·

(
E ′(Rn)

〈〈
u, �R(x − ·)〉〉E (Rn)

)
dHn−1(x)

= − E ′(Rn)

〈〈
u(y),

1

ωn−1

ˆ

Sn−1
x · x − y

|x − y|n dHn−1(x)
〉〉
E (Rn)

= − E ′(Rn)〈〈u, 1〉〉E (Rn) = − E ′(Rn)〈u, 1〉E (Rn) (2.2.50)

where the third equality is based on (2.1.39)–(2.1.40). Also, as seen from (2.2.48),
we have

(C ∞
b (�))

∗
(
div �F, 1

)
C ∞

b (�) = 0. (2.2.51)

Together, (2.2.50) and (2.2.51) prove that

if E ′(Rn)〈u, 1〉E (Rn) �= 0, the Divergence Formula (1.4.6) fails for the
domain � as in (2.2.46) and the vector field �F as in (2.2.47).

(2.2.52)

In the case when E ′(Rn)〈u, 1〉E (Rn) �= 0, the reason for the failure of formula (1.4.6)
in the current setting is the fact that the growth condition (1.4.8) is not satisfied.
Remarkably, the following equivalence actually holds:

(1.4.8) holds ⇐⇒ E ′(Rn)〈u, 1〉E (Rn) = 0. (2.2.53)

To justify (2.2.53) recall first (cf., e.g., [181, Fact 2.63, p. 43]) that since u is a
compactly supported distribution inR

n , there exist a compact set K ⊂ R
n , an integer
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N ∈ N0, and a constant C ∈ (0,∞), with the property that

∣
∣∣E ′(Rn)〈u, ϕ〉E (Rn)

∣
∣∣ ≤ C sup

α∈Nn
0 , |α|≤N
x∈K

|(∂αϕ)(x)|, ∀ϕ ∈ C∞(Rn). (2.2.54)

Also, observe that, thanks to (2.2.26), for each multi-index α ∈ N
n
0 we have

∂α
y

{
x − y

|x − y|n −
x

|x |n
}
= O

(|x |−n) as |x | → ∞, uniformly for y ∈ K .

(2.2.55)

Collectively, (2.2.54) and (2.2.55) prove that

E ′(Rn)

〈〈
u, �R(x − ·)〉〉E (Rn) = E ′(Rn)〈u, 1〉E (Rn)

�R(x)+ O
(|x |−n) as |x | → ∞,

(2.2.56)

which, in turn, goes to show that �F defined in (2.2.49) has the following asymptotic
behavior at infinity:

�F(x) = E ′(Rn)〈u, 1〉E (Rn)

ωn−1
x

|x |n + O
(|x |−n) as |x | → ∞. (2.2.57)

With this in hand, (2.2.53) is then proved much like the equivalence in (2.2.25).
The counterexample in (2.2.52) may be turned into a positive result by either

requiring that E ′(Rn)〈u, 1〉E (Rn) = 0, or employing the version of the Divergence For-
mula recorded in (1.4.5). The latter also takes into account the contribution of �F
at infinity which, in view of the asymptotic formula (2.2.57), may be concretely
identified as

[ �F]∞ = lim
R→∞

ˆ

|x |=R

x

|x | · �F(x) dHn−1(x) = E ′(Rn)〈u, 1〉E (Rn). (2.2.58)

Keeping in mind (2.2.50)–(2.2.51) and (2.2.58), we may therefore conclude that

all hypotheses of Theorem 1.4.1 are satisfied by the domain� as in
(2.2.46) and the vector field �F as in (2.2.47), and the Divergence
Formula (1.4.5) holds for these choices.

(2.2.59)

In closing we wish to note that the domain and vector field from (2.2.46)–(2.2.47)
also constitute, for the same reasons as above, a counterexample for the version of
the Divergence Formula recorded in Theorem 1.5.1.
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2.3 Failure of Hypotheses on the Nontangential Maximal
Function

Invariably, in Theorems 1.2.1, 1.3.1, 1.4.1, and 1.5.1 some integrability condition (of
a global or local nature) has been imposed on the nontangential maximal function of
the given vector field. Since the nontangential maximal function does enter (directly)
the formulation of our Divergence Formulas, it is therefore important to clarify the
role of such a quantitative assumption, and the goal of this section is to do just that.

Counterexamples/Examples Part 2.3A:Assume n ≥ 2 and consider the open sub-
set of R

n given by (Fig. 2.10)

� := B(0, 1) \�, where � := Bn−1(0′, 1/2)× {0}. (2.3.1)

Fig. 2.10 � as in (2.3.1)

Also, bring in the vector field

�F(x) := x

|x |n for each x ∈ �. (2.3.2)

These definitions ensure that

∂� = Sn−1 ∪� is Ahlfors regular,

∂∗� = Sn−1, and ∂� \ ∂∗� = �.
(2.3.3)

In particular, σ := Hn−1�∂� is a doubling finite measure on ∂�. Furthermore,

�F ∈ [
C∞(�)

]n
, div �F = 0 in �, and

�F extends continuously to � \ {0}. (2.3.4)

Fix κ > 0. SinceHn−1({0}) = 0 (given thatwe are assuming n ≥ 2), the last property

above shows that �F∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�. As far as theDivergence Formula (1.2.2)

is concerned, we therefore have
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ˆ

�

div �F dLn = 0, (2.3.5)

whereas with ν denoting the geometric measure theoretic outward unit normal to �

we have
ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

∂∗�
ν ·

( �F∣∣
∂�

)
dσ

=
ˆ

Sn−1
x · x

|x |n dHn−1(x) = ωn−1 �= 0. (2.3.6)

Hence, as is apparent from (2.3.5)–(2.3.6),

the Divergence Formula (1.2.2) fails for the set � as in
(2.3.1), and for the vector field �F as in (2.3.2).

(2.3.7)

A direct comparison of the present setting with that in Theorem 1.2.1 points to the
second condition in (1.2.1), namely the membership of Nκ

�F to L1(∂�, σ), as the
only possible source of this failure. To check that this is the case, observe that for
each κ > 0 fixed we have

(Nκ
�F)(x) ≈ |x ′|−(n−1) uniformly for x = (x ′, 0) ∈ �, (2.3.8)

and since
´
Bn−1(0′,1/2) |x ′|−(n−1) dx ′ = +∞, we conclude that

Nκ
�F /∈ L1(∂�, σ). (2.3.9)

Consequently, the second condition in (1.2.1) is indeed violated in the present context,
even though

Nκ
�F ∈ L1,∞(∂�, σ) and Nκ

�F ∈ L1(∂∗�, σ). (2.3.10)

In summary,

the counterexample in (2.3.7) shows that, as far as the validity
of the Divergence Formula (1.2.2) is concerned, the hypothesis
that Nκ

�F belongs to L1(∂�, σ) cannot be weakened to either
Nκ

�F ∈ L1,∞(∂�, σ), or Nκ
�F ∈ L1(∂∗�, σ), or even both.

(2.3.11)

In other words, as far as the integrability properties of the nontangential maximal
function Nκ

�F are concerned, the space L1(∂�, σ) cannot be enlarged to its weak
version, nor can we alter the set over which this Lebesgue space is defined by con-
sidering L1(∂∗�, σ) instead, even though the Divergence Formula (1.2.2) takes into

account only the behavior of �F∣∣κ−n.t.

∂�
on ∂∗�.

It is worth noting that (2.3.7) is also a counterexample for the version of the
Divergence Formula recorded in Theorem 1.5.1.
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Going forward, it is instructive to slightly alter the counterexample in (2.3.7) in
order to produce an actual example for the applicability of the Divergence Formula
(1.4.6). The idea is to eliminate the cut inside the domain and interpret the vector field
as nowbeing definedonlyLn-a.e. in this larger environment. This interpretation alters
the divergence of the vector field, and it is precisely this change which ultimately
produces a valid Divergence Formula. Specifically, in place of (2.3.1)–(2.3.2) let us
now take

� := B(0, 1) and �F(x) := x

|x |n for Ln-a.e. x ∈ �. (2.3.12)

Then, of course, � is a bounded C∞ domain, and with δ denoting the Dirac distri-
bution with mass at the origin in �, we have

�F ∈ [
L1
loc(�,Ln)

]n
, div �F = ωn−1δ in D′(�),

and �F extends continuously to � \ {0}. (2.3.13)

Since δ ∈ E ′(�), it follows that � and �F satisfy all hypotheses of Theorem 1.4.1.
We therefore expect the Divergence Formula (1.4.6) to be valid and, indeed, (4.6.21)
gives

(C ∞
b (�))

∗
(
div �F, 1

)
C ∞

b (�) = ωn−1 E ′(�)〈δ, 1〉E (�) = ωn−1 (2.3.14)

and from (2.3.12) we see that for each κ > 0 we have
ˆ

∂∗�
ν · ( �F ∣

∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1
x · x

|x |n dHn−1(x) = ωn−1, (2.3.15)

in agreement with (2.3.14). This discussion proves that

all hypotheses of Theorem 1.4.1 are satisfied by the
domain � and vector field �F as in (2.3.12), and the
Divergence Formula (1.4.6) holds for this choice.

(2.3.16)

Counterexamples/Examples Part 2.3B: Suppose n ∈ N satisfies n ≥ 2, and let
(Fig. 2.11)

� := B(0, 1) ∩ R
n
+ and �F(x) := x

|x |n for each x ∈ �. (2.3.17)

Fig. 2.11 � as in (2.3.17)
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Introducing � := Bn−1(0′, 1)× {0} then allows us to express

∂� = ∂∗� = Sn−1+ ∪�, disjoint union. (2.3.18)

In particular, ∂� is compact and Ahlfors regular, hence σ := Hn−1�∂� is a doubling
finite measure on ∂�. Also,

�F ∈ [
C∞(�)

]n
, div �F = 0 in �,

and �F extends continuously to � \ {0}. (2.3.19)

As such,

ˆ

�

div �F dLn = 0, (2.3.20)

and for each κ > 0 the nontangential pointwise boundary trace �F∣∣κ−n.t.

∂�
exists σ -a.e.

on ∂�. Since the geometric measure theoretic outward unit normal to � is given by
ν(x) = x for each x ∈ Sn−1+ and ν(x) = −en for σ -a.e. x ∈ �, it follows that

(
ν · �F∣∣κ−n.t.

∂�

)
(x) =

{
1 for each x ∈ Sn−1+ ,

0 for σ -a.e. x ∈ �.
(2.3.21)

As a consequence,

ν ·
( �F∣∣κ−n.t.

∂�

)
∈ L1(∂�, σ), (2.3.22)

and
ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1+
1 dHn−1(x) = 1

2ωn−1 �= 0. (2.3.23)

At this stage, it becomes apparent from (2.3.20) and (2.3.23) that

the Divergence Formula (1.2.2) fails for the
domain � and vector field �F as in (2.3.17).

(2.3.24)

As for the source of this failure, a direct comparison of the present setting with the
hypotheses of Theorem 1.2.1 points to the second condition in (1.2.1), namely the
membership of Nκ

�F to L1(∂�, σ). To see that this, indeed, does not materialize,
for each κ > 0 fixed we observe that there exists a constant C ∈ (1,∞), depending
only on κ and n, with the property that
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for each number ε > 0 one has the estimates

C−1|x ′|−(n−1) ≤ (Nε
κ
�F)(x) ≤ C |x ′|−(n−1),

at all points x = (x ′, 0) belonging to � \ {0}.
(2.3.25)

Given that
´
Bn−1(0′,r) |x ′|−(n−1) dx ′ = +∞ for every r > 0,we conclude from (2.3.25)

and the second line in (2.3.19) that

ˆ

B(0,r)∩∂�

Nε
κ
�F dσ = +∞ for each ε > 0 and r > 0,whereas

∀x ∈ ∂� \ {0}, ∃ εx , rx > 0 with
ˆ

B(x,rx )∩∂�

Nεx
κ
�F dσ < +∞.

(2.3.26)

In particular, as anticipated,

Nκ
�F /∈ L1(∂�, σ). (2.3.27)

This being said, the failure in (2.3.27) is minimal, in the sense that

Nκ
�F belongs to the weak Lebesgue space L1,∞(∂�, σ). (2.3.28)

In summary, the counterexample in (2.3.24) shows that

as far as the validity of the Divergence Formula (1.2.2) is concerned,
the hypothesis Nκ

�F ∈ L1(∂�, σ) cannot be weakened by demanding

instead Nκ
�F ∈ L1,∞(∂�, σ) and ν ·

( �F∣∣κ−n.t.

∂�

)
∈ L1(∂∗�, σ),

(2.3.29)

even though it is precisely the latter condition which is most directly connected with
the very formulation of the Divergence Formula (1.2.2).

In view of (2.3.26) the counterexample in (2.3.24) also shows that

in the context of Theorem 1.5.1, the failure of the local integrability
condition in the second line of (1.5.8), even at a single point x0 on
∂�,may invalidate the Divergence Formula recorded in (1.5.11) even
if one additionally assumes that � is bounded, that �F belongs to[
C∞(� \ {x0})

]n
, and that Nκ

�F belongs to L1,∞(∂�, σ).

(2.3.30)

The above counterexample may be further generalized to conical domains of
arbitrary aperture as follows. Assume n ∈ N satisfies n ≥ 2 and, for each θ ∈ (0, π),
consider the open set in R

n described as (Fig. 2.12)

�θ :=
{
x ∈ B(0, 1) : 〈x, en〉 > |x | cos θ

}
, (2.3.31)
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Fig. 2.12 �θ as in (2.3.31)

along with the vector field

�F(x) := x

|x |n for each x ∈ �θ. (2.3.32)

Then �F ∈ [
C∞(�θ)

]n
, div �F = 0 in �θ , and �F extends continuously to �θ \ {0}.

Also, ∂� is an Ahlfors regular set, and if we introduce the sets

�θ :=
{
x ∈ B(0, 1) : 〈x, en〉 = |x | cos θ

}
,

Sn−1θ := {
x ∈ Sn−1 : 〈x, en〉 > cos θ

}
,

(2.3.33)

then
∂∗�θ = ∂�θ = Sn−1θ ∪�θ, disjoint union. (2.3.34)

Having fixed κ > 0 and with νθ denoting the geometric measure theoretic outward
unit normal to �θ , we therefore have

νθ ·
( �F∣∣κ−n.t.

∂�θ

)
=
{
1 everywhere on Sn−1θ ,

0 Hn−1-a.e. on �θ.
(2.3.35)

Thus, if σθ := Hn−1�∂�θ , it follows that νθ ·
( �F∣∣κ−n.t.

∂�θ

)
∈ L1(∂�θ , σθ ) and

ˆ

∂∗�θ

νθ ·
( �F∣∣κ−n.t.

∂�θ

)
dσθ =

ˆ

Sn−1
θ

1 dHn−1 = Hn−1(Sn−1θ

)

= θ

π
ωn−1 �= 0 =

ˆ

�θ

div �F dLn. (2.3.36)

The conclusion from (2.3.36) is that

the Divergence Formula (1.2.2) fails for the set �θ in
(2.3.31) and the vector field �F defined as in (2.3.32).

(2.3.37)

The source of failure of formula (1.2.2) in the present setting is the violation of the
second condition in (1.2.1). Concretely, for each κ > 0 fixed we have
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(Nε
κ
�F)(x) ≈ |x |−(n−1), uniformly for x ∈ �θ \ {0} and ε > 0. (2.3.38)

This ultimately implies that for each ε > 0 the truncated nontangentialmaximal func-
tionNε

κ
�F is not locally integrable near the origin. In particular,Nκ

�F /∈ L1(∂�θ , σθ ),
even though

Nκ
�F ∈ L1,∞(∂�θ , σθ ) and νθ ·

( �F∣∣κ−n.t.

∂�θ

)
∈ L1(∂�θ , σθ ). (2.3.39)

To turn the counterexample mentioned in (2.3.37) into a positive result, we retain
the domain �θ as in (2.3.31) and alter the vector field by taking, in place of (2.3.32),

�Fε(x) := x

|x |n−ε
for each x ∈ �θ, (2.3.40)

where ε > 0 is arbitrary and fixed. Then, as before, �Fε ∈
[
C∞(�θ)

]n
, and �Fε extends

continuously to �θ \ {0}. This time, however, a direct computation gives that

(div �Fε)(x) = ε

|x |n−ε
for each x ∈ �θ. (2.3.41)

Hence,
div �Fε ∈ L1(�θ ,Ln) (2.3.42)

and

ˆ

�θ

div �Fε dLn =
ˆ

�θ

ε

|x |n−ε
dx = Hn−1(Sn−1θ

)ˆ 1

0
ερε−1 dρ

= θ

π
ωn−1. (2.3.43)

Another aspect affected by the change in the definition of the vector field is the size
of the nontangential maximal function since, in lieu of (2.3.38), we now have

(Nκ
�F)(x) ≈ |x |−(n−1−ε), uniformly for x ∈ �θ. (2.3.44)

In turn, this ultimately implies that

Nκ
�F ∈ L1(∂�θ , σθ ). (2.3.45)

Since, much as in (2.3.35),

νθ ·
( �Fε

∣
∣κ−n.t.

∂�θ

)
= 1Sn−1

θ
at Hn−1-a.e. point on ∂∗�θ, (2.3.46)

we see that
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ˆ

∂∗�θ

νθ ·
( �F∣∣κ−n.t.

∂�θ

)
dσθ = Hn−1(Sn−1θ

) = θ

π
ωn−1, (2.3.47)

which is in agreement with (2.3.43). All in all, this discussion shows that

all hypotheses of Theorem 1.2.1 are satisfied by the domain �θ

as in (2.3.31) and the vector field �Fε as in (2.3.40), and the
Divergence Formula (1.2.2) holds for these choices.

(2.3.48)

Counterexamples/Examples Part 2.3C: Fix n ∈ N satisfying n ≥ 2, and pick

ϕ ∈ C∞
c (Rn) real-valued even function, satisfying

ϕ ≡ 1 on B(0, 1) and ϕ ≡ 0 on R
n \ B(0, 2).

(2.3.49)

Define
� := R

n
+ and �F(x) := ϕ(x)

x

|x |n for each x ∈ �. (2.3.50)

Then � is an open set with an unbounded Ahlfors regular boundary satisfying
∂∗� = ∂� ≡ R

n−1, and σ := Hn−1�∂� may be canonically identified with Ln−1
(in particular, σ is doubling). Also,

�F ∈ [
C∞(�)

]n
, �F ≡ 0 on R

n+ \ B(0, 2),

(div �F)(x) = (∇ϕ)(x) · x
|x |n at each point x ∈ �,

and �F extends continuously to � \ {0}.
(2.3.51)

Since �F vanishes identically outside of a bounded set, it trivially follows that

the growth condition (1.2.3) is satisfied and [ �F]∞ = 0. (2.3.52)

In addition, div �F vanishes outside the bounded set B+(0, 2) := B(0, 2) ∩ R
n+ and

belongs to C∞(�), so

div �F ∈ L1(�,Ln), (2.3.53)

and for each κ > 0 the nontangential pointwise boundary trace �F∣∣κ−n.t.

∂�
exists σ -a.e.

on ∂�. Given that the geometric measure theoretic outward unit normal to � is
ν = −en at each point on ∂�, it follows that ν(x) · x = 0 for each x ∈ ∂�, hence

ν ·
( �F∣∣κ−n.t.

∂�

)
= 0 at σ -a.e. point on ∂�. (2.3.54)

Thus, trivially,

ν ·
( �F∣∣κ−n.t.

∂�

)
∈ L1(∂∗�, σ), (2.3.55)
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so, on the one hand,

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ = 0. (2.3.56)

To compute the solid integral featuring in the divergence formula, bring in the
standard fundamental solution for �, the Laplacian in R

n , i.e.,

E�(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

ωn−1(2− n)

1

|x |n−2 if n ≥ 3,

1

2π
ln |x | if n = 2,

(2.3.57)

for each x ∈ R
n \ {0}, and note that, in all dimensions n ≥ 2,

(∇E�)(x) = 1

ωn−1
· x

|x |n for x ∈ R
n \ {0}. (2.3.58)

Bearing in mind that ϕ is a smooth, compactly supported, even function, with the
property that ϕ(0) = 1, we may then compute

ˆ

�

div �F dLn =
ˆ

R
n+
(∇ϕ)(x) · x

|x |n dx = 1

2

ˆ

Rn

(∇ϕ)(x) · x

|x |n dx

= ωn−1
2

〈∇E�,∇ϕ
〉 = −ωn−1

2

〈
div∇E�, ϕ

〉

= −ωn−1
2

〈
�E�, ϕ

〉 = −ωn−1
2

〈
δ, ϕ

〉

= −ωn−1
2

ϕ(0) = −ωn−1
2

, (2.3.59)

where the angled brackets stand for pairing in the sense of distributions in R
n , and δ

is the Dirac distribution in R
n . Thus, on the other hand,

ˆ

�

div �F dLn = −ωn−1
2

. (2.3.60)

It is then apparent from (2.3.56) and (2.3.60) that

the Divergence Formulas (1.2.2) and (1.3.8) fail for the
domain � and the vector field �F as in (2.3.49)–(2.3.50).

(2.3.61)

As to what causes this failure, a direct comparison of the present setting with the
hypotheses of Theorems 1.2.1 and 1.3.1 points to the second condition in (1.2.1), and
the last condition in (1.3.6). Indeed, for each κ > 0 fixed, the membership of Nκ

�F
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to L1
loc(∂�, σ) does not materialize. To see that this is the case, observe that there

exists a constant C ∈ (1,∞), depending only on κ and n, with the property that

C−1|x ′|−(n−1) ≤ (Nκ
�F)(x) ≤ C |x ′|−(n−1)

at all points x = (x ′, 0) belonging to ∂� ∩ B(0, 1).
(2.3.62)

Given thatNκ
�F vanishes outside of a bounded subset of ∂�, we ultimately conclude

that
Nκ

�F belongs to the weak Lebesgue space L1,∞(∂�, σ)

but Nκ
�F fails to be in L1

loc(∂�, σ).
(2.3.63)

In this sense, the failure described in (2.3.61) is minimal, so there is a razor-thin
margin between what’s valid and what fails. To summarize, the counterexample in
(2.3.61) shows (compare with (2.3.29) in the case of bounded domains) that

for the open set with unbounded boundary � and the vector field �F
as in (2.3.49)-(2.3.50), the Divergence Formula (1.2.2) and the Diver-
gence Formula (1.3.8) fail if in place of the hypothesisNκ

�F ∈ L1(∂�, σ),
respectively, in place of the hypothesisNκ

�F ∈ L1
loc(∂�, σ), one now only

demands Nκ
�F ∈ L1,∞(∂�, σ) and ν ·

( �F∣∣κ−n.t.

∂�

)
∈ L1(∂∗�, σ).

(2.3.64)

Counterexamples/Examples Part 2.3D:Work in the one-dimensional setting (i.e.,
when n = 1), and consider the following subset of the real line:

� :=
( ∞⋃

j=1

(− 2 j,−2 j + 1
))⋃

(0,+∞). (2.3.65)

Also, define

F : � → R, F(x) :=
{
1 if x > 0,

0 if x < 0,
x ∈ �. (2.3.66)

Then� is an open unbounded set inR, with unbounded boundary ∂� = Z \ Nwhich
has no (finite) accumulation points. Consequently, σ := H0�∂� is the counting
measure on ∂�, whichmakes ∂� lower Ahlfors regular (bearing inmind that n = 1).
Also, σ is locally finite. In fact, an elementary analysis shows that σ is a doubling
measure on ∂� (though ∂� is not upper Ahlfors regular).

To proceed, fix an aperture parameter κ > 0. Observe that for each x ∈ ∂� the
nontangential approach region�κ(x) contains (−x/κ,+∞), which is an open subset
of (0,+∞) where F is identically 1. Thus,

(NκF)(x) = 1 for each x ∈ ∂�. (2.3.67)
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As such,

NκF ∈ L1
loc(∂�, σ) yet NκF fails to be in L1(∂�, σ). (2.3.68)

Next, ∂nta� = ∂� and the nontangential boundary trace F
∣∣κ−n.t.

∂�
exists at each point

in ∂�. Specifically, for each x ∈ ∂� we have

(
F
∣
∣κ−n.t.

∂�

)
(x) =

{
1 if x = 0,

0 if x �= 0.
(2.3.69)

Consequently, ˆ

∂∗�
ν ·

(
F
∣∣κ−n.t.

∂�

)
dL1 = −1. (2.3.70)

Finally, F ′ = 0 on �, so ˆ

�

F ′ dL1 = 0. (2.3.71)

Collectively, (2.3.70)–(2.3.71) prove that the Divergence Formula (1.2.2) fails for
� and F as in (2.3.65)–(2.3.66). In view of this analysis, we conclude that

the Divergence Formula (1.2.2) may fail for open sets � with an
unbounded lower Ahlfors regular boundary and a doubling “surface
measure” if the assumption Nκ

�F ∈ L1(∂�, σ) is replaced by the
weaker condition Nκ

�F ∈ L1
loc(∂�, σ).

(2.3.72)

Lastly, we remark that the counterexample discussed in (2.3.72) may be converted
into a positive result if information about the behavior of F at infinity is included in
the very formulation of the Divergence Formula, as we have done in Theorem 1.3.1
through the consideration of the contribution of F at infinity. Concretely, in the
present case Proposition 4.7.2 gives

[F]∞ = F
∣∣∣
+∞
−∞

= 1− 0 = 1, (2.3.73)

which, in light of (2.3.70)–(2.3.71), ultimately shows that

all hypotheses of Theorem 1.3.1 are satisfied when n = 1
and �, F are as in (2.3.65)–(2.3.66), and the Divergence
Formula (1.3.8) is valid in this setting.

(2.3.74)

Counterexamples/Examples Part 2.3E: Consider

� := B(0, 1), the unit disk in R
2 ≡ C, (2.3.75)
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and abbreviateσ := H1�∂�. In this setting, fix an arbitrary point z ∈ � and introduce
the vector field �Fz ∈

[
L1
loc(�,L2)

]2
defined for each ζ ∈ � \ {z} according to

�Fz(ζ ) :=
(exp

{
1+ζ

1−ζ

}

ζ − z
, i
exp

{
1+ζ

1−ζ

}

ζ − z

)
∈ C

2, (2.3.76)

where i := √−1 ∈ C. Then, taking the divergence in the sense of distributions in
the variable ζ = (ζ1, ζ2) ∈ � yields (bearing in mind [181, Theorem 7.43, p. 289])

div �Fz(ζ ) = ∂ζ1

[exp
{
1+ζ

1−ζ

}

ζ − z

]
+ i∂ζ2

[exp
{
1+ζ

1−ζ

}

ζ − z

]

= 2∂ζ

[exp
{
1+ζ

1−ζ

}

ζ − z

]
= 2π exp

{1+ ζ

1− ζ

}
δz(ζ )

= 2π exp
{1+ z

1− z

}
δz(ζ ) ∈ E ′(�), (2.3.77)

where ∂ζ := 1
2 (∂ζ1 + i∂ζ2) is the Cauchy–Riemann operator in the variable ζ , and δz

is the Dirac distribution with mass at z in �. Also, as is apparent from (2.3.76),

�Fz ∈
[
C 0

(
� \ {1, z})]2 (2.3.78)

and since

exp
{1+ eiθ

1− eiθ

}
= exp

{ i sin θ

1− cos θ

}
∈ T := ∂B(0, 1), ∀θ ∈ (0, 2π), (2.3.79)

it follows that, for each fixed κ ∈ (0,∞),

�Fz

∣
∣∣
κ−n.t.

∂�
exists everywhere on ∂� \ {1} (ergo, σ -a.e. on ∂�),

and �Fz

∣∣∣
κ−n.t.

∂�
belongs to L∞(∂�, σ), hence also to L1(∂�, σ).

(2.3.80)

On the other hand, an elementary computation shows that

lim
θ→0+

(eiθ − (1− θ))/θ = 1+ i. (2.3.81)

Thus, given any aperture parameter κ >
√
2− 1, we have

|eiθ − (1− θ)| < (1+ κ) θ provided

θ ∈ (0, 1) is sufficiently small,
(2.3.82)
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hence
1− θ ∈ �κ(e

iθ ) for every θ ∈ (0, 1) small. (2.3.83)

As such,

(Nκ
�Fz
)
(eiθ ) ≥ | �Fz(1− θ)| ≈ e2/θ , uniformly for θ ∈ (0, 1) small. (2.3.84)

This goes to show that
Nκ

�Fz /∈ L1(∂�, σ). (2.3.85)

If the Divergence Formula (1.4.6) were to hold for the vector field �Fz in �, it
would give (keeping in mind that dζ = iν(ζ ) dσ(ζ ) on ∂� = {ζ ∈ C : |ζ | = 1})

2π exp
{1+ z

1− z

}
= (C ∞

b (�))
∗
(
div �Fz, 1

)
C ∞

b (�) =
ˆ

∂�

〈
ν,
( �Fz

∣∣κ−n.t.

∂�

)〉
dσ

=
ˆ

∂�

exp
{
1+ζ

1−ζ

}

ζ − z
ν(ζ ) dσ(ζ ) = 1

i

ˆ

|ζ |=1

exp
{
1+ζ

1−ζ

}

ζ − z
dζ, (2.3.86)

whichwould then ultimately lead to the conclusion that the followingCauchy integral
representation formula holds:

exp
{1+ z

1− z

}
= 1

2π i

ˆ

|ζ |=1

exp
{
1+ζ

1−ζ

}

ζ − z
dζ, ∀z ∈ B(0, 1). (2.3.87)

Introducing

u : B(0, 1) → C, u(z) := exp
{1+ z

1− z

}
, ∀z ∈ B(0, 1), (2.3.88)

and

f (ζ ) := exp
{1+ ζ

1− ζ

}
, ∀ζ ∈ ∂B(0, 1), (2.3.89)

we may refashion (2.3.87) as

u(z) = (C f )(z), ∀z ∈ B(0, 1), (2.3.90)

where C denotes the classical Cauchy integral operator in the unit disk. Note that,
thanks to (2.3.79),

f ∈ L∞
(
∂B(0, 1), σ

) ⊆
⋂

1<p<∞
L p

(
∂B(0, 1), σ

)
. (2.3.91)
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In turn, from (2.3.90), (2.3.91), and standard Hardy space theory in the unit disk we
would then be able to conclude that, for each κ > 0,

Nκu = Nκ(C f ) ∈
⋂

1<p<∞
L p

(
∂B(0, 1), σ

) ⊆ L1
(
∂B(0, 1), σ

)
. (2.3.92)

This being said, if κ >
√
2− 1 then (2.3.83) holds which, in turn, permits us to

estimate

(Nκu
)
(eiθ ) ≥ |u(1− θ)| ≈ e2/θ , uniformly for θ ∈ (0, 1) small, (2.3.93)

thus arriving at the conclusion that

Nκu /∈ L1(∂B(0, 1), σ
)
. (2.3.94)

The fact that (2.3.92) and (2.3.94) are mutually exclusive is a contradiction which
proves that

there exists a number z ∈ B(0, 1) with the property that the
Divergence Formula (1.4.6) fails for the domain � as in
(2.3.75) and the vector field �Fz as in (2.3.76),

(2.3.95)

even though� is a bounded domain of classC∞, and for each z ∈ B(0, 1) the vector
field �Fz satisfies

�Fz ∈
[
L1
loc(�,L2) ∩ C 0

(
� \ {1, z})]2, div �Fz ∈ E ′(�),

and, for each κ > 0, the nontangential boundary trace

�Fz

∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to L1(∂�, σ).

(2.3.96)

Comparing these properties with the hypotheses of Theorem 1.4.1 reveals that the
only possible source of failure for formula (1.4.6) in the present setting is for the
second membership in (1.4.2) not to hold. That, indeed, the second membership in
(1.4.2) is violated can be seen directly from (2.3.84).

In summary, the counterexample (2.3.95) to theDivergence Formula (1.4.6) shows
that

as far as the validity of theDivergenceFormula (1.4.6) is concerned,
the hypothesisN�\K

κ

( �F∣∣
�\K

) ∈ L1
loc(∂�, σ), for some compact set

K ⊂ �, cannot be weakened to �F∣∣κ−n.t.

∂�
∈ L1(∂�, σ),

(2.3.97)

even though the latter condition would, otherwise, suggest itself as a natural hypoth-
esis, given the very formulation of the Divergence Formula (1.4.6).
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Lastly,wewish to point out that the domain and vector field from (2.3.75)–(2.3.76)
also serve as a counterexample for the version of the Divergence Formula found in
Theorem 1.5.1.

2.4 Failure of Hypotheses of Geometric Measure Theoretic
Nature

Here we examine the lower Ahlfors regular hypothesis made on the boundary of the
domain in Theorems 1.2.1, 1.3.1, 1.4.1, and 1.5.1.

Counterexamples/Examples Part 2.4A: Assume n ≥ 2 and let

� := B(0, 1) \ {0} and �F(x) := x

|x |n for each x ∈ �. (2.4.1)

Fig. 2.13 � as in (2.4.1)

Then, by design, � is a bounded open set in R
n , with an upper Ahlfors regular

boundary, satisfying (Fig. 2.13)

∂� = Sn−1 ∪ {0}, ∂∗� = Sn−1, ∂nta� = ∂�. (2.4.2)

In particular,
σ := Hn−1�∂� is a locally finite measure on ∂� (2.4.3)

(albeit not doubling in the sense of (7.4.1), since σ
(
B(0, r) ∩ ∂�

) = 0 whenever
0 < r < 1). Let us also note that since n ≥ 2, we have

σ(∂� \ ∂∗�) = σ({0}) = 0. (2.4.4)

As regards the vector field �F , for each fixed κ > 0 we have

�F ∈ [
C∞(� \ {0})]n and Nκ

�F ∈ L∞(∂�, σ) ⊂ L1(∂�, σ). (2.4.5)

Also, the nontangential trace �F∣∣κ−n.t.

∂�
exists everywhere on Sn−1, hence σ -a.e. on ∂�.

Moreover, div �F = 0 in �, which implies
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(C ∞
b (�))

∗
(
div �F, 1

)
C ∞

b (�) = 0. (2.4.6)

Finally, with ν denoting the geometric measure theoretic outward unit normal to �,
we have

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

Sn−1
x · x

|x |n dHn−1(x) = ωn−1 �= 0. (2.4.7)

Thus, from (2.4.6)–(2.4.7) we conclude that

the Divergence Formula (1.5.11) fails for the
domain � and vector field �F as in (2.4.1).

(2.4.8)

Contrasting the current setting with that of Theorem 1.5.1 reveals that only the
condition that ∂� is lowerAhlfors regular fails to be satisfied (due to the fact that there
is not sufficient mass on ∂� near the point 0 ∈ ∂�). In summary, the counterexample
(2.4.8) shows that

as far as the validity of the Divergence Formula (1.5.11) is con-
cerned, the hypothesis that ∂� is lower Ahlfors regular cannot
be replaced by asking that ∂� is upper Ahlfors regular.

(2.4.9)

The issue just mentioned may be eliminated by considering

� := B(0, 1) and �F(x) := x

|x |n for Ln-a.e. x ∈ � (2.4.10)

in place of (2.4.1). Indeed, while for each κ > 0 we now have

(Nκ
�F)(x) = +∞ at every point x ∈ ∂�, (2.4.11)

such a choice ensures that all hypotheses of Theorem 1.4.1 (and also Theorem 1.5.1)
are satisfied and, sincewenowhavediv �F = ωn−1δ inD′(�), theDivergenceFormula
(1.4.6) presently holds.

Counterexamples/Examples Part 2.4B:The example/counterexample in Part 2.4A
may be generalized as follows. Work in R

n with n ≥ 2 and let � ⊆ B(0, 1) be a
compact set withHn−1(�) = 0. Fix a measure μ ∈ CBM

(
B(0, 1)

)
supported on �

and satisfying μ(�) �= 0. Lastly, define

�F(x) := 1

ωn−1

ˆ

�

x − y

|x − y|n dμ(y), ∀x ∈ � := B(0, 1) \�. (2.4.12)

Then � is a bounded open subset of R
n , satisfying ∂� = Sn−1 ∪� and

∂∗� = Sn−1. In particular,Hn−1(∂� \ ∂∗�) = Hn−1(�) = 0.Moreover,� is upper
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Ahlfors regular and has finite perimeter. As in the past, abbreviate σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Going
further, observe that for each fixed aperture parameter κ > 0 we have

�F ∈ [
C∞(�)

]n
, div �F = 0 in �, Nκ

�F is bounded on Sn−1,

and �F may be extended continuously across Sn−1.
(2.4.13)

As such,

Nκ
�F ∈ L1(∂�, σ), (2.4.14)

and the nontangential boundary trace �F∣∣κ−n.t.

∂�
exists at every point on Sn−1 = ∂∗�,

ergo σ -a.e. on ∂�. In fact,

( �F∣∣κ−n.t.

∂�

)
(x) = 1

ωn−1

ˆ

�

x − y

|x − y|n dμ(y), ∀x ∈ Sn−1 = ∂∗�. (2.4.15)

Arguing as in (2.1.38)–(2.1.41) (and bearing in mind the assumptions onμ), we then
obtain

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ = μ(�) �= 0. (2.4.16)

Since �F is divergence-free in �, this ultimately permits us to conclude that

the Divergence Formula (1.5.11) fails for the
domain � and vector field �F as in (2.4.12).

(2.4.17)

Comparing the present context with that of Theorem 1.5.1 shows that only the
condition that ∂� is lower Ahlfors regular fails to be presently satisfied (as there is
not enough mass on ∂� near points �). To summarize, the counterexample (2.4.17)
shows that

the Divergence Formula (1.5.11) is not expected to hold if the
hypothesis that ∂� is lower Ahlfors regular is replaced by the
demand that ∂� is upper Ahlfors regular.

(2.4.18)

The above issue is rendered moot by considering in place of (2.4.12)

�F(x) := 1

ωn−1

ˆ

�

x − y

|x − y|n dμ(y) for Ln-a.e. x ∈ � := B(0, 1). (2.4.19)

Specifically, ∂∗� = ∂� = Sn−1 so as before we have
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ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ = μ(�), (2.4.20)

while part (ii) in Lemma 3.5.6 gives that

�F ∈ [
L1
loc(�,Ln)

]n
and div �F = μ in D′(�). (2.4.21)

Then all hypotheses of Theorem 1.5.1 are satisfied, and the Divergence Formula
(1.5.11) now holds, as visible from (2.4.20)–(2.4.21).

2.5 Failure of Hypotheses on the Nature of the Divergence
of the Vector Field

In the standard formulation of the Divergence Formula, there are several compet-
ing points of view pertaining to the manner in which the actual divergence of the
given vector field �F should be interpreted. For example, while in Theorems 1.2.1,
1.3.1, 1.4.1, and 1.5.1 we have consistently considered div �F in the sense of distri-
butions, one may wonder whether the Divergence Formula holds assuming that �F
has components which are differentiable in a classical sense almost everywhere and
div �F , considered in this pointwise sense, is an absolutely integrable function. The
counterexamples in this section dispel this notion.

Counterexamples/Examples Part 2.5A: Let SC ⊆ (0, 1) be Cantor’s ternary set
(obtained by recurrently removing middle thirds), and denote by fC : [0, 1] → R

the associated Cantor’s ternary function (aka the Devil’s staircase); see, e.g., [161,
Example 1.43 and Exercise 1.44, pp. 30–32], [249], as well as [76] and the references
therein. Then, with

αC := ln 2

ln 3
∈ (0, 1), (2.5.1)

it is well known that the function fC enjoys the following properties:

fC ∈ C αC ([0, 1]), fC is non-decreasing on [0, 1], fC(0) = 0, fC(1) = 1,
fC is not absolutely continuous on [0, 1], the graph of fC is a rectifiable
curve of arc-length 2, fC is differentiable L1-a.e. in (0, 1) and its pointwise
derivative satisfies ( fC)′(x) = 0 for L1-a.e. x ∈ (0, 1) (i.e., fC is a singular
function, in the sense of [161, Definition 3.71, p. 107]).

(2.5.2)
Moreover,

μC := HαC �SC is a Borel-regular probability measure on (0, 1) and
fC(x) = μC

(
(0, x)

)
for every x ∈ [0, 1]; hence, with the derivative of

fC taken in the sense of distributions, we have ( fC)′ = μC inD′((0, 1)
)
.

(2.5.3)
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Recall that for a continuously differentiable function in an open subset of R
n , its

pointwise derivative and its distributional derivative coincide Ln-a.e. The fact that
fC is differentiableL1-a.e. in (0, 1) with ( fC)′(x) = 0 forL1-a.e. x ∈ (0, 1) and yet
( fC)′ = μC in D′((0, 1)

)
points to the fact that this correspondence breaks down if

the function in question ismerely a.e. differentiable even if the derivative is absolutely
integrable.

Next, having fixed n ∈ N, consider the set

� := (0, 1)n = (0, 1)× · · · × (0, 1) ⊆ R
n (2.5.4)

and define the vector field

�F : � → R
n, �F(x) := (

fC(x1), 0, . . . , 0
)
for each x = (x1, . . . , xn) ∈ �.

(2.5.5)
Note that � is a bounded Lipschitz domain. In particular, � is a bounded open
set with an Ahlfors regular boundary, σ := Hn−1�∂� is a doubling measure, and
∂∗� = ∂�. Also,

∂∗� =
⋃

i∈{0,1}

n⋃

j=1
Si j (2.5.6)

where the Si j ’s are mutually disjoint sets given for each i ∈ {0, 1} and j ∈ {1, . . . , n}
by

Si j := (0, 1)× · · · × (0, 1)× {i} × (0, 1)× · · · × (0, 1) (2.5.7)

with n factors in the Cartesian product, the singleton occupying the j-th slot. Also,
the geometric measure theoretic outward unit normal ν to � is identified as

ν = (−1)i+1e j on each Si j . (2.5.8)

As regards the vector field �F defined in (2.5.5), from (2.5.2) and (2.5.5) it follows
that for each κ > 0 we have

�F ∈ [
C αC (�)

]n
, Nκ

�F ∈ L∞(∂�, σ) ⊂ L1(∂�, σ),

and �F∣∣κ−n.t.

∂�
exists everywhere on ∂�.

(2.5.9)

Finally,

the components of �F are differentiableLn-a.e. in� and the diver-
gence of �F computed in a pointwise sense satisfies (div �F)(x) = 0
for Ln-a.e. x ∈ �.

(2.5.10)
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Consequently, on the one handwe have
´

�
(div �F)(x) dx = 0where the divergence

of �F is considered in a pointwise sense. On the other hand, (5.6.21), (2.5.2), and
(2.5.4)–(2.5.9) imply

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ =

ˆ

∂∗�
ν ·

( �F∣∣κ−n.t.

∂�

)
dσ

=
∑

i∈{0,1}
(−1)i+1

ˆ

{i}×(0,1)n−1
fC(x1) dHn−1(x)

= fC(1)− fC(0) = 1− 0 = 1. (2.5.11)

This analysis shows that

given any n ∈ N, the Divergence Formula (1.2.2) fails for the
domain � as in (2.5.4) and the vector field �F as in (2.5.5) if the
divergence of �F is considered in a pointwise sense.

(2.5.12)

Incidentally, the case n = 1 corresponds to saying that the (one-variable) Fundamen-
tal Theorem of Calculus

´ 1
0 f ′(x) dx = f (1)− f (0) in which the derivative is taken

in a pointwise sense at L1-a.e. x ∈ (0, 1) fails for Cantor’s ternary function fC .
Ultimately, the counterexample (2.5.12) proves that

theDivergence Formula (1.2.2)may fail evenwhen� ⊂ R
n is a bounded

Lipschitz domain if �F ∈ [
C 0(�)

]n
is a vector field whose components

are only assumed to be differentiable at Ln-a.e. point in �, and whose
divergence, computed in a pointwise sense, is assumed to belong to
L1(�,Ln).

(2.5.13)

By way of contrast, Theorem 1.2.1 requires that div �F , taken in the sense of distri-
butions, belongs to L1(�,Ln). Hence, the specific manner in which the divergence
is considered (pointwise sense versus distributional sense) drastically affects the
veracity of the Divergence Formula (1.2.2).

According to Theorem 1.3.1, the remedy to (2.5.12) is to consider the divergence
of �F in the sense of distributions in �, provided the latter turns out to be a complex
Borel measure in �. To this end, consider an arbitrary test function ϕ ∈ C∞

c (�) and
use (2.5.3) together with (1.3.12) to write
ˆ

�

�F(x) · ∇ϕ(x) dx =
ˆ

�

fC(x1)(∂1ϕ)(x) dx

=
ˆ

(0,1)n−1

( ˆ 1

0
fC(x1)(∂1ϕ)(x1, x2, . . . , xn) dx1

)
dx2 · · · dxn

= −
ˆ

(0,1)n−1

( ˆ 1

0
ϕ(x1, x2, . . . , xn) dμC (x1)

)
dx2 · · · dxn
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= −
ˆ

�

ϕ d(μC ⊗Ln−1). (2.5.14)

In view of the arbitrariness of ϕ, this yields

div �F = μC ⊗
(Ln−1�(0, 1)n−1) in D′(�). (2.5.15)

Thus, the distributional divergence of �F satisfies div �F ∈ CBM(�) and

(div �F)(�) =
(
μC ⊗

(Ln−1�(0, 1)n−1)
)(

(0, 1)× (0, 1)n−1
)

= μC
(
(0, 1)

) ·Ln−1((0, 1)n−1
) = 1 · 1 = 1. (2.5.16)

The latter value agrees with (2.5.11), as indeed predicted by Theorem 1.3.1.

2.6 Relationship with Classical Results in the
One-Dimensional Setting

Recall that the classical formulation of the one-variable Fundamental Theorem of
Calculus, involving the notion of Riemann integral, reads as follows.

Theorem 2.6.1 Suppose −∞ < a < b < +∞ and let F : [a, b] → C be a con-
tinuous function which is differentiable at each point in (a, b) and such that F ′
is Riemann integrable on [a, b]. Then the Riemann integral of F ′ on [a, b] equals
F(b)− F(a).

Since any Riemann integrable function is bounded, it follows that any function F
as in Theorem 2.6.1 is Lipschitz on [a, b] hence, in particular, absolutely continuous
on [a, b]. Within the latter class of functions (which, generally speaking, are only
differentiable L1-a.e. in (a, b)) there is a version of the Fundamental Theorem of
Calculuswhich employs the notion of Lebesgue integral (cf., e.g., [91, Theorem3.35,
p. 106], or [161, Theorem 3.30, p. 85], among a plethora of texts on real analysis).

Theorem 2.6.2 Suppose −∞ < a < b < +∞ and let F : [a, b] → C be an abso-
lutely continuous function. Then F is differentiable L1-a.e. in (a, b), the pointwise
derivative F ′ belongs to L1

(
(a, b),L1

)
and agrees with the distributional derivative

of F in (a, b), and ˆ b

a
F ′(x) dx = F(b)− F(a). (2.6.1)

Before going any further we wish to note that, given a bounded interval [a, b],
there exist absolutely continuous functions on [a, b] satisfying all hypotheses of
Theorem 2.6.1 except the Riemann integrability of the derivative. A striking example
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was given in 1906 by D. Pompeiu4 (cf. [220]). Pompeiu’s construction (discussed in
detail in, e.g., [253, pp. 402–421]) yields a

strictly increasing, Lipschitz function fP : [a, b] → R,which
is differentiable everywhere on (a, b), and whose derivative
is bounded and vanishes on a dense subset of (a, b).

(2.6.2)

Note that beingLipschitzmakes fP absolutely continuous on [a, b], hence the version
of the Fundamental Theorem of Calculus from Theorem 2.6.2 applies to Pompeiu’s
function fP , though this is not the case for Theorem 2.6.1. Indeed, we claim that

( fP)′ is not Riemann integrable on any subinterval of [a, b]. (2.6.3)

To justify this, observe that if ( fP)′ were to be Riemann integrable on some interval
[c, d] ⊆ [a, b] then, using Riemann sums with intermediate points selected from
the set where ( fP)′ = 0, we conclude that the Riemann integral of ( fP)′ on [c, d]
vanishes, while on the other hand Theorem 2.6.1 gives that the Riemann integral of
( fP)′ on [c, d] equals fP(d)− fP(c) > 0, bearing in mind the fact that fP is strictly
increasing. This contradiction proves (2.6.3).

In summary, using the Lebesgue notion of integrability in place of Riemann inte-
grability leads to a more inclusive brand of the Fundamental Theorem of Calculus,
as recorded in Theorem 2.6.2.

We wish to compare the latter result with the one-dimensional version of The-
orem 1.2.1 stated for a finite interval of the real line. To this end, assume n = 1,
fix a, b ∈ R with a < b, and consider � := (a, b). Then � is a set of locally finite
perimeter in R, with ∂� = {a, b}, ∂∗� = ∂∗� = ∂�, and since H0 is the count-
ing measure, we also haveH0

(
B(x, r) ∩ ∂�

) ≈ 1 = r0 for every x ∈ ∂� and every
r ∈ (0,∞). Hence, ∂� is an Ahlfors regular set in R

1. Also, if κ ∈ (0,∞) is fixed,
then the nontangential approach regions �κ(a), �κ(b) are as in (8.1.28).

Turning to the conditions on F : (a, b) → C stated in Theorem 1.2.1, requiring
thatNκF ∈ L1(∂�,H0) is equivalentwith (NκF)(a) < +∞ and (NκF)(b) < +∞
which, in light of (8.1.29), is further equivalent to having F ∈ L∞

(
(a, b),L1

)
. Thus,

NκF ∈ L1({a, b},H0) ⇐⇒ F ∈ L∞
(
(a, b),L1

)
. (2.6.4)

Consider next the requirement that F ′, taken in the distributional sense in (a, b),
belongs to the space L1

(
(a, b),L1

)
. If we define G(x) := ´ x

a F ′ dL1 for each
x in [a, b], it follows that G is absolutely continuous on [a, b] and G ′ = F ′ in
D′((a, b)

)
. Consequently, there exists some constant c ∈ C with the property that

F = G + c at L1-a.e. point in (a, b) (cf., e.g., [181, Proposition 2.47(2), p. 35]).

4 D. Pompeiu was a student of H. Poincaré who, ironically, was unjustifiably biased against uncon-
ventional mathematical objects such as Pompeiu’s function fP , as apparent from his well-known
quote: “In the old days when people invented a new function they had something useful in mind.
Now, they invent them deliberately just to invalidate our ancestors’ reasoning, and that is all they
are ever going to get out of them.”
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Hence, the fact that F has an integrable distributional derivative on (a, b) is equiva-
lent to F agreeing at L1-a.e. point in (a, b) with an absolutely continuous function
F̃ defined on [a, b]. Note that whenever such a coincidence takes place, the nontan-
gential trace of F exists on ∂� = {a, b} since

(
F
∣∣κ−n.t.

∂�

)
(a) = F̃(a) and

(
F
∣∣κ−n.t.

∂�

)
(b) = F̃(b). (2.6.5)

In summary,

F : (a, b) → C satisfies the hypotheses of Theorem 1.2.1 (stated for
n = 1 and � := (a, b) where a, b ∈ R with a < b) if and only if there
exists an absolutely continuous function F̃ : [a, b] → C which agrees
with F at L1-a.e. point in (a, b) (in which case we have F ′ = F̃ ′ in
D′((a, b)

)
and the formulas in (2.6.5) hold).

(2.6.6)

On the other hand, it is well known (cf. [161, Exercise 3.7 on p.75 and Corollary 7.14
on p.223]) that, for any numbers a, b ∈ R with a < b, we have (with W 1,1

(
(a, b)

)

denoting the standard L1-based Sobolev space of order one in the interval (a, b))

if F : (a, b) → C is a given function, then F ∈ W 1,1
(
(a, b)

)
if and

only if there exists an absolutely continuous function F̃ : [a, b] → C

which agrees with the given F at L1-a.e. point in the interval (a, b).
(2.6.7)

Given that the Divergence Formula (1.2.2) in Theorem 1.2.1 stated for n = 1 and
� := (a, b) becomes

ˆ b

a
F ′ dL1 = (

F
∣
∣κ−n.t.

∂�

)
(b)− (

F
∣
∣κ−n.t.

∂�

)
(a), (2.6.8)

from (2.6.6)–(2.6.8) we may then conclude that

the one-dimensional version of our Theorem 1.2.1 stated for a bounded
interval (a, b)of the real line is an extensionof the classicalFundamental
Theorem of Calculus stated in Theorem 2.6.2 from absolutely continuous
functions on [a, b] to functions in the Sobolev space W 1,1

(
(a, b)

)
(alter-

natively, an extension to the class of functions on (a, b) which become
absolutely continuous on [a, b] after eventually being redefined on an
L1-nullset).

(2.6.9)

After some further streamlining, the one-dimensional version of Theorem 1.2.1
for a bounded interval on the real line may ultimately be stated as follows.

Theorem 2.6.3 Suppose −∞ < a < b < +∞ and let F ∈ L1
loc

(
(a, b),L1

)
be a

function with the property that its distributional derivative F ′ ∈ D′((a, b)
)
actually

belongs to the space L1
(
(a, b),L1

)
(in particular, this is the case if F ∈ W 1,1

(
(a, b)

)

to begin with). Then there exists an L1-nullset N ⊆ (a, b) such that the limits
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F(a) := lim
(a,b)\N�x→a

F(x) and F(b) := lim
(a,b)\N�x→b

F(x) exist in C (2.6.10)

and, with the values of F at end-points interpreted as such,

ˆ b

a
F ′ dL1 = F(b)− F(a). (2.6.11)

Let us remark that, in contrast to the classical result recorded in Theorem 2.6.2,
the version of the Fundamental Theorem of Calculus presented above is stable to
altering the function F on an L1-nullset which, for a multitude of purposes, is a
desirable feature.

Proof of Theorem 2.6.3 In view of (2.6.9), it suffices to show that if F is a distri-
bution on (a, b) such that F ′ ∈ L1

(
(a, b),L1

)
, then F ∈ W 1,1

(
(a, b)

)
. To this end,

consider the function G : (a, b) → C given by G(x) := ´ x
a F ′ dL1 for each x in

(a, b). Then G is locally integrable and bounded in (a, b), and also satisfies G ′ = F ′
in D′((a, b)

)
. Hence, the distribution F − G satisfies (F − G)′ = 0 in D′((a, b)

)

which forces it to be a constant (cf., e.g., [181, Proposition 2.47(2), p. 35]). This
proves that F = c + G for some c ∈ C, thus F ∈ L∞

(
(a, b),L1

) ⊂ L1
(
(a, b),L1

)
.

The desired conclusion follows.

We can rephrase Theorem 2.6.2 in a manner which points more transparently to
the fact that the class of absolutely continuous functions is the largest environment
in which the Fundamental Theorem of Calculus may be formulated in the context
of Lebesgue integration. Specifically, for a complex-valued function F defined on a
compact interval [a, b] the following two conditions are equivalent:

(1) F is absolutely continuous on [a, b];
(2) F is differentiable L1-a.e. on (a, b), and the (pointwise) derivative F ′ belongs

to L1
(
(a, b),L1

)
, and

´ x
a F ′ dL1 = F(x)− F(a) for each x ∈ [a, b].

This being said, a suitable version of the Fundamental Theorem of Calculus does
hold outside the scope of Lebesgue integration. This involves the class of functions
F : (a, b) → C whose pointwise variation

Var F
∣∣
∣
b

a
:= sup

{ N∑

j=1
|F(x j )− F(x j−1)| : N ∈ N and

a < x0 < · · · < xN < b
}
∈ [0,+∞] (2.6.12)

is finite. In such a scenario, the distributional derivative of F turns out to be a complex
Borel measure μ, called the Lebesgue–Stieltjes measure generated by
F on (a, b) and, on the left-hand side of (2.6.1), the total mass of μ, i.e., μ

(
(a, b)

)
,

now plays the role of the Lebesgue integral of the pointwise derivative of F . As is
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apparent from Theorem 2.6.4 below (which is essentially a classical result; cf., e.g.,
[161, Theorem 5.13, p. 162], or [91, Theorem 3.29, p. 105]), this only affects the
manner in which the Fundamental Theorem of Calculus is written. Moreover, since
absolutely continuous functions are precisely those functions of finite pointwise
variation whose distributional derivatives happen to be absolutely continuous (as
measures) with respect to L1 (cf. (2.6.23)), Theorem 2.6.4 constitutes a natural
generalization of Theorem 2.6.2.

Theorem 2.6.4 Suppose −∞ < a < b < +∞ and let F : (a, b) → C have finite
pointwise variation. Then the one-sided limits

F(a+) := lim
x↘a

F(x) and F(b−) := lim
x↗b

F(x) exist in C, (2.6.13)

the function F is L1-measurable and bounded on (a, b) (in particular, F is locally
integrable on (a, b)), and there exists a unique measure μ ∈ CBM

(
(a, b)

)
with the

property that the distributional derivative of F satisfies F ′ = μ inD′((a, b)
)
, and

μ
(
(a, b)

) = F(b−)− F(a+). (2.6.14)

Proof We find it convenient to extend F by zero to the entire real line by setting

F̃(x) :=
{
0 if x ∈ R \ (a, b),

F(x) if a < x < b,
∀x ∈ R. (2.6.15)

Since for every c ∈ (a, b) we obviously have

sup
x∈(a,b)

|F(x)| ≤ |F(c)| + Var F
∣∣
∣
b

a
(2.6.16)

it follows that F is bounded. In turn, this readily implies that the function F̃ : R → C

has finite pointwise variation, i.e.,

Var F̃
∣∣∣
+∞
−∞

< +∞. (2.6.17)

Granted this, the Jordan decomposition theorem (cf., e.g., [161, Theorem2.18, p. 46])
implies that both the real and the imaginary part of F̃ may be written as a difference
of two real-valued bounded non-decreasing functions defined on R. This has several
notable consequences. First, F̃ (hence also F) is L1-measurable. Second, as noted
in [161, Corollary 2.23, p. 47], for each x ∈ [−∞,+∞) and y ∈ (−∞,+∞] the
one-sided limits,

F̃(x+) := lim
z↘x

F̃(z), F̃(y−) := lim
z↗y

F̃(z), (2.6.18)
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exist in C. In particular, this takes care of the claim made about the one-sided limits
in (2.6.13). Third, [161, Theorem 5.3, p. 157] and [161, Remark 5.6, p. 159] ensure
the existence of a complex Borel measure μ̃ on R with the property that

μ̃
(
(x, y)

) = F̃(y−)− F̃(x+) whenever −∞ < x < y < +∞, (2.6.19)

and

μ̃
({x}) = F̃(x+)− F̃(x−) for each x ∈ R. (2.6.20)

Furthermore, according to [161, Corollary 5.41, p. 183] this measure turns out to be
the distributional derivative of F̃ on R. In particular, if μ := μ̃�(a, b) then

μ ∈ CBM
(
(a, b)

)
and F ′ = μ in D′((a, b)

)
. (2.6.21)

Lastly, there remains to notice that

μ
(
(a, b)

) = μ̃
(
(a, b)

) = F̃(b−)− F̃(a+) = F(b−)− F(a+), (2.6.22)

since, as seen from (2.6.15), we have F̃(b−) = F(b−) and F̃(a+) = F(a+). �

A couple of comments pertaining to the nature of Theorem 2.6.4 are in order.
First, if F is as in the statement of this theorem, [161, Corollary 2.23, pp. 47–48]
implies that F is differentiable atL1-a.e. point in (a, b) and the pointwise derivative
of F belongs to L1

(
(a, b),L1

)
. However, even though this pointwise derivative is

absolutely integrable with respect to the one-dimensional Lebesgue measure, the
(one-variable) Divergence Formula

´ b
a F ′(x) dx = F(b−)− F(a+) may fail even

when F has a continuous extension to [a, b], with Cantor’s ternary function fC
serving as a counterexample. In this vein, observe that the Lebesgue–Stieltjes mea-
sure generated by fC on (0, 1) is μC = HαC �SC , which is singular with respect to
the one-dimensional Lebesgue measure since L1(SC) = 0. In general, we have the
following result (compare with [161, Theorem 5.19, p. 166]), establishing a bridge
between Theorems 2.6.2 and 2.6.4:

if (a, b) is a bounded interval of the real line and F : (a, b) → C has
finite pointwise variation, then F extends to an absolutely continuous
function on [a, b] (a scenario in which formula (2.6.1) does hold; cf.
Theorem 2.6.2) if and only if the Lebesgue–Stieltjes measure generated
by F on (a, b) is absolutely continuous with respect to L1.

(2.6.23)

To justify (2.6.23), suppose −∞ < a < b < +∞, the function F : (a, b) → C has
finite pointwise variation, and its Lebesgue–Stieltjes measure μF ∈ CBM

(
(a, b)

)

satisfies μF << L1 on (a, b). In concert with (2.6.20) the latter property eventually
forces F to be continuous on (a, b). This also implies that the Radon–Nikodym
derivative f := dμF/dL1 ∈ L1

(
(a, b),L1

)
. Bearing these in mind and having fixed
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some x0 ∈ (a, b), formula (2.6.14) allows us to write F(x) = F(x0)+
´ x
x0

f dL1

for every x ∈ (a, b) which finally shows that F canonically extends to an abso-
lutely continuous function on [a, b]. The opposite implication follows easily from
Theorem 2.6.2, finishing the proof of (2.6.23).

Our second comment elaborates on the relationship between functions of finite
pointwise variation in the sense of (2.6.12) and the one-dimensional version of the
class BV, the space of functions of bounded variation in a distributional sense (see
(5.5.5) for a definition). In one direction, given a bounded interval (a, b) of R and a
function F : (a, b) → C, we have (as seen from [161, Theorem 7.2, p. 216] and also
taking into account the one-dimensional version of item (v) in Proposition 5.5.1)

Var F
∣∣b
a < +∞ =⇒ F ∈ BV

(
(a, b)

)
and V

(
F; (a, b)

) ≤ Var F
∣∣b
a . (2.6.24)

In the converse direction we have that, given any interval (a, b) of R,

F ∈ BV
(
(a, b)

) =⇒

⎧
⎪⎨

⎪⎩

there exists some F̃ : (a, b) → C such that

F̃ is right-continuous, agrees with F at L1-a.e.

point in (a, b), and Var F̃
∣∣b
a = V

(
F; (a, b)

)
.

(2.6.25)

As such, given a bounded interval (a, b) of the real line, the space BV
(
(a, b)

)
of

functions of bounded variation in the open set (a, b) may be viewed as the space
of L1-measurable functions having a representative of finite pointwise variation on
(a, b) (i.e., which can be redefined on anL1-nullset in order to have finite pointwise
variation in the sense of (2.6.12)). Also, from (2.6.25) and the fact that functions of
pointwise finite variation are bounded we conclude that

BV
(
(a, b)

) ⊂ L∞
(
(a, b),L1

)
whenever −∞ ≤ a < b ≤ +∞. (2.6.26)

Lastly, we note that up to L1-a.e. identification of functions and with the derivative
understood in the sense of distributions,

BV
(
(a, b)

) ≡ {
F∈L1

(
(a, b),L1

) : F ′ ∈ CBM
(
(a, b)

)}
if −∞ < a < b < +∞.

(2.6.27)

Indeed, we have a genuine left-to-right inclusion, as a consequence of (2.6.25) and
Theorem 2.6.4, while the right-to-left inclusion (with the caveat about L1-a.e. iden-
tification of functions in effect) is seen from [161, Theorem 7.8, p. 220].

Moving on, we wish to compare the one-dimensional version of Theorem 1.3.1
with Theorem 2.6.4. In this vein, observe that, collectively, (2.6.4), (2.6.25), (2.6.27),
and Theorem 2.6.4 lead to the following conclusion:
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a function F : (a, b) → C satisfies the hypotheses of Theorem 1.3.1
(stated for n = 1 and� := (a, b)where a, b ∈ Rwith a < b) if and only
if there exists a function F̃ : (a, b) → Chavingfinite pointwise variation
in the sense of (2.6.12) (i.e., such that Var F

∣
∣b
a

< +∞) and which agrees
with the given function F at L1-a.e. point in (a, b); moreover, in such a

scenario we have F ′ = F̃ ′ inD′((a, b)
)
, as well as

(
F
∣∣n.t.
∂�

)
(a) = F̃(a+)

and
(
F
∣∣n.t.
∂�

)
(b) = F̃(b−).

(2.6.28)

Since the Divergence Formula (1.3.8) presently reads (interpreting F ′ as a measure
on � = (a, b))

F ′((a, b)
) = (

F
∣∣n.t.
∂�

)
(b)− (

F
∣∣n.t.
∂�

)
(a), (2.6.29)

from (2.6.28)–(2.6.29) we may then conclude that

the one-dimensional version of our Theorem 1.3.1 stated for a bounded
interval (a, b) of the real line is an extension of Theorem 2.6.4 which, in
place of functions of finite bounded variation on (a, b), allows the con-
sideration of functions from BV

(
(a, b)

)
(or, alternatively, an extension

to the class of functions which acquire a finite pointwise variation on
(a, b) after eventually being redefined on an L1-nullset).

(2.6.30)

After further fine-tuning this result, the one-dimensional version of Theorem 1.3.1
for a bounded interval on the real line finally reads as follows.

Theorem 2.6.5 Let −∞ < a < b < +∞ and consider a complex-valued function
F ∈ L1

loc

(
(a, b),L1

)
with the property that V

(
F; (a, b)

)
< +∞ (which is the case

if F ∈ BV
(
(a, b)

)
to begin with). Then the distributional derivative F ′ ∈ D′((a, b)

)

actually belongs to CBM
(
(a, b)

)
, there exists some L1-nullset N ⊆ (a, b) such that

the limits

F(a) := lim
(a,b)\N�x→a

F(x) and F(b) := lim
(a,b)\N�x→b

F(x) exist in C (2.6.31)

and, with the values of F at end-points considered as above and interpreting F ′ as
a measure on (a, b), one has

F ′((a, b)
) = F(b)− F(a). (2.6.32)

Proof In light of (2.6.30), we only need to check that if F is as in the statement
of the theorem then actually F belongs to BV

(
(a, b)

)
. With this goal in mind, pick

two monotonic sequences {a j } j∈N ⊆
(
a, (a + b)/2

)
and {b j } j∈N ⊆

(
(a + b)/2, b

)

such that a j → a and b j → b as j →∞. Since for each j ∈ N the assumptions
on F imply that F ∈ BV

(
(a j , b j )

)
, from (2.6.25) and (5.5.3) we deduce that there

exists some F̃j : (a j , b j ) → C which agrees with F at L1-a.e. point in (a j , b j ) and
satisfies
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Var F̃j

∣∣
∣
b j

a j

= V
(
F; (a j , b j )

) ≤ V
(
F; (a, b)

)
. (2.6.33)

Note that it is possible to pick c ∈ ⋂

j∈N
(a j , b j ) with the property that |F(c)| < +∞

and such that F̃j (c) = F(c) for each j ∈ N. Using this, and keeping in mind (2.6.16)
as well as (5.5.3), for each j ∈ N we may then estimate

‖F‖L∞((a j ,b j ),L1) ≤ sup
x∈(a j ,b j )

|F̃j (x)| ≤ |F̃j (c)| + Var F̃j

∣∣∣
b j

a j

= |F(c)| + V
(
F; (a j , b j )

) ≤ |F(c)| + V
(
F; (a, b)

)
. (2.6.34)

In turn, this readily implies

‖F‖L∞((a,b),L1) ≤ |F(c)| + V
(
F; (a, b)

)
< +∞, (2.6.35)

hence F ∈ L∞
(
(a, b),L1

) ⊂ L1
(
(a, b),L1

)
. In view of (5.5.5) and the assumptions

on F , this ultimately proves that F ∈ BV
(
(a, b)

)
, as wanted. �

In closing, we wish to note that, in contrast to Theorem 2.6.4, the version of the
Fundamental Theorem of Calculus presented above is stable to altering the function
F on an L1-nullset.

2.7 Examples and Counterexamples Pertaining to Weak
Traces

The aim of this section is to shed further light on the nature of the results in Sect. 1.9,
centered around the Divergence Theorem with weak boundary traces formulated in
Theorem 1.9.1.

Counterexamples/Examples Part 2.7A:Havingpickedn ∈ Nwithn ≥ 2, consider

φ : R
n−1 → R Lipschitz function, and

� := {
(x ′, φ(x ′)) ∈ R

n : x ′ ∈ R
n−1}.

(2.7.1)

Also, set (Fig. 2.14)

� := R
n \�, �± :=

{
(x ′ ± t, φ(x ′)) ∈ R

n : x ′ ∈ R
n−1, t ∈ (0,∞)

}
. (2.7.2)
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Fig. 2.14 � as in (2.7.2)

Then

�± are Ahlfors regular domains sharing a common boundary, ∂� =
∂�+ = ∂�− = �, satisfying � = �+ ∪�− and �+ ∩�− = ∅.

(2.7.3)

Moreover,

�± are actually (graph) Lipschitz domains, and if N is the outward
unit normal to �+, then the outward unit normal to �− is −N .

(2.7.4)

Introduce σ := Hn−1�� and, having fixed some p ∈ (1,∞) along with some
complex-valued function f ∈ L p(�, σ ), define the vector field �F : � → C

n by set-
ting

�F(x) := 1

ωn−1

ˆ

�

x − y

|x − y|n f (y) dσ(y), ∀x ∈ �. (2.7.5)

Note that, by design,

�F ∈ [
C∞(�)

]n
and div �F = 0 in �. (2.7.6)

In addition, for each fixed κ > 0, the Calderón–Zygmund theory ensures that

Nκ
�F ∈ L p(∂�, σ) (2.7.7)

and that at Hn−1-a.e. point x ∈ � we have

( �F∣∣κ−n.t.

∂(�±)

)
(x) = ∓1

2
N (x) f (x)+ lim

ε→0+

1

ωn−1

ˆ

y∈�
|x−y|>ε

x − y

|x − y|n f (y) dσ(y). (2.7.8)

In particular,

N ·
( �F∣∣κ−n.t.

∂(�+)

)
− N ·

( �F∣∣κ−n.t.

∂(�−)

)
= − f at σ -a.e. point on �. (2.7.9)
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Then, based on (2.7.3)–(2.7.4), (2.7.6)–(2.7.9), and the Divergence Theorem in The-
orem 1.2.1, for each � ∈ Lipc(R

n) we may write

ˆ

�

�F · ∇� dLn =
ˆ

�+

�F · ∇� dLn +
ˆ

�−

�F · ∇� dLn

=
ˆ

∂(�+)

N ·
( �F∣∣κ−n.t.

∂(�+)

)
� dσ −

ˆ

∂(�−)

N ·
( �F∣∣κ−n.t.

∂(�−)

)
� dσ

= −
ˆ

∂�

f � dσ. (2.7.10)

In turn, from (2.7.10), (2.7.6), (1.9.6), and Corollary 3.7.3 we conclude that

ν • �F = − f at σ -a.e. point on ∂�. (2.7.11)

As a consequence, we have

The weak normal trace ν • �F of the vector field �F defined as in (2.7.5)
on the boundary of the domain � introduced in (2.7.2),may have full

support in the topological boundary ∂�. At the same time, �F∣∣κ−n.t.

∂�
may

fail to exist at σ -a.e. point on ∂� (as seen from (2.7.8)).

(2.7.12)

This stands in sharp contrast with Theorem 1.2.1, whose formulation involves the
nontangential pointwise normal trace of the vector field in an essential fashion (see
the integrand on the right-hand side of the Divergence Formula (1.2.2)). Due to the
presence of the geometric measure theoretic outward unit normal, the latter trace
could only make sense at σ -a.e. point on the geometric measure theoretic boundary
of the underlying domain.

Counterexamples/Examples Part 2.7B Fix n ∈ N with n ≥ 2 and consider the slit
unit ball in R

n given by (Fig. 2.15)

� := B(0, 1) \� where � := {
(x ′, 0) ∈ R

n : x ′ ∈ R
n−1 with |x ′| < 1

}

(2.7.13)

Fig. 2.15 � as in (2.1.1)

along with the piecewise constant vector field
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�F :=
{+en in � ∩ R

n+,

−en in � ∩ R
n−.

(2.7.14)

Then

� is a bounded, nonempty, open set in R
n , with

an Ahlfors regular boundary, ∂� = Sn−1 ∪�. (2.7.15)

Also, since �F is locally constant in � we have

�F ∈ [
C∞(�) ∩ L∞(�,Ln)

]n
and div �F = 0 in �. (2.7.16)

Then, with ν(x) = x for each x ∈ ∂∗� = Sn−1, a direct computation based on
(4.2.12) shows that the distribution ν • �F ∈ (

Lipc(∂�)
)′
is given by a locally inte-

grable function (in the sense of Proposition 4.1.4), namely

ν • �F = (ν · en)1Sn−1+ − (ν · en)1Sn−1− − 21� on ∂�. (2.7.17)

Hence, for each fixed background aperture parameter κ ∈ (0,∞),

the weak normal trace ν • �F of the vector field �F defined as in (2.7.14)
on the boundary of the domain� introduced in (2.7.13)has full support

in the topological boundary ∂�, while the nontangential trace �F∣∣κ−n.t.

∂�

fails to exist at each point on � := ∂� \ ∂∗�.

(2.7.18)

Given that Hn−1(�) > 0, this once again points to the fact that the weak normal
boundary trace and the pointwise nontangential trace of a vector field can have
rather distinct natures.

Counterexamples/Examples Part 2.7C:Fixn ∈ Nwithn ≥ 2 anddefine (Fig. 2.16)

� := B(0, 1) \ {0} and �F(x) := x

|x |n for each x ∈ �. (2.7.19)

Fig. 2.16 � as in (2.7.19)

Then, by design,
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� is a bounded open set in R
n , with an upper Ahlfors

regular boundary, and ∂� = Sn−1 ∪ {0}, ∂∗� = Sn−1. (2.7.20)

Consequently,

σ := Hn−1�∂� becomes a locally finite measure on the
topological boundary ∂�, satisfying σ(∂� \ ∂∗�) = 0.

(2.7.21)

Also, � is a set of finite perimeter whose geometric measure theoretic outward unit
normal is given by ν(x) = x at σ -a.e. x ∈ ∂�. As regards the vector field �F , for each
fixed κ > 0 we have

�F ∈ [
C∞(� \ {0}) ∩ L1

bdd(�,Ln)
]n

,

Nκ
�F ∈ L∞(∂�, σ), and div �F = 0 in �.

(2.7.22)

Granted these properties, Theorem 1.2.1 implies that for each� ∈ Lipc(R
n)we have

ˆ

�

�F · ∇� dLn =
ˆ

�

div(� �F) dLn

=
ˆ

∂�

ν ·
( �F∣∣κ−n.t.

∂�

)
� dσ =

ˆ

∂�

� dσ. (2.7.23)

From (2.7.23), Propositions 4.2.3 and 4.1.4, we then deduce that

ν • �F = 1 at σ -a.e. point on ∂�. (2.7.24)

Choosing � ∈ Lipc(R
n) so that � ≡ 1 near B(0, 1) then forces (in light of (2.7.24)

and (2.7.22))

ˆ

∂�

(ν • �F)� dσ = 1 and
ˆ

�

�F · ∇� dLn +
ˆ

�

(div �F)� dLn = 0. (2.7.25)

Finally, from (2.7.25) we conclude that

the integration by parts formula (1.9.6) fails for the
domain � and vector field �F as in (2.7.19).

(2.7.26)

Comparing the current context with that of Theorem 1.9.1 shows that only the
condition that ∂� is lower Ahlfors regular fails to be satisfied (given that there is
not sufficient mass on ∂� near the point 0 ∈ ∂�). Ultimately, the counterexample
(2.7.26) shows that



190 2 Examples, Counterexamples, and Additional Perspectives

regarding the validity of the integration by parts formula (1.9.6), the
hypothesis that ∂� is Ahlfors regular cannot be weakened to asking
that ∂� is merely an upper Ahlfors regular set.

(2.7.27)

2.8 Other Versions of the Gauss–Green Formula

An easy extension of Theorem 1.1.1, based on a standard mollifier argument (as in
[125, Proposition 2.6]), states that

if � ⊆ R
n is a set of locally finite perimeter, then

Gauss–Green’s Formula (1.1.8) holds for each vector
field �F ∈ [

C 0
c (Rn)

]n
such that div �F ∈ L1(Rn,Ln).

(2.8.1)

It seems reasonable to try to establish a version of theDeGiorgi–Federer’s version
of the Divergence Theorem in which the underlying set is asked to be of the locally
finite perimeter (in an appropriate sense) only near the support of the given vector
field. In the theorem below we accomplish this goal, using terminology and results
developed in Chap. 5.

Theorem 2.8.1 Let � ⊆ R
n be an Ln-measurable set. Denote by N� its geometric

outward unit normal (defined at points in ∂N� as in item (i) of Lemma 5.6.12), and
recall the definition of ∂lfp� from (5.7.47). Then for each vector field �F ∈ [

C 1
c (Rn)

]n

with the property that (
supp �F) ∩ ∂� ⊆ ∂lfp� (2.8.2)

one has ˆ

�

div �F dLn =
ˆ

∂∗�
N� · �F dHn−1. (2.8.3)

We wish to note that if � is a set of locally finite perimeter to begin with, then
∂lfp� = ∂� (cf. (5.7.51)), a scenario in which condition (2.8.2) is trivially satisfied
and N� coincides with the geometric measure theoretic outward unit normal ν to �

up to aHn−1-nullset (cf. item (ii) of Lemma 5.6.12). As such, Theorem 2.8.1 extends
Theorem 1.1.1 by allowing a more general class of sets.

Let us also remark that, thanks to (2.8.2), (5.2.3), and (5.7.55), we have (using
the convention made in (5.7.38))

(
supp �F) ∩ ∂∗� ⊆ ∂∗� ∩ ∂lfp� ⊆ ∂N� modulo Hn−1. (2.8.4)

Hence, N� is defined Hn−1-a.e. on
(
supp �F) ∩ ∂∗� which, in turn, ensures that the

integral on the right-hand side of (2.8.3) is meaningful.
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Proof of Theorem 2.8.1 From (2.8.2) it follows that for each x ∈ (
supp �F) ∩ ∂�

there exists some rx > 0 with the property that B(x, rx ) ∩� is a set of locally finite
perimeter. Next, using the fact that

(
supp �F) ∩ ∂� is a compact set, it is possible

to find a finite collection of points {x j }1≤ j≤M ⊆ (
supp �F) ∩ ∂� such that, if r j :=

rx j ∈ (0,∞) for j ∈ {1, . . . , M}, then

(
supp �F) ∩ ∂� ⊆

M⋃

j=1
B(x j , r j ). (2.8.5)

Subordinate to this finite open cover of a compact set, bring in a smooth partition of
unity. That is, select a family of functions {ψ j }1≤ j≤M with ψ j ∈ C∞

c

(
B(x j , r j )

)
for

each j ∈ {1, . . . , M} and satisfying

ψ :=
∑

1≤ j≤M

ψ j = 1 near
(
supp �F) ∩ ∂�. (2.8.6)

See, e.g., [181, Theorem14.37, p. 562]. Then for each j ∈ {1, . . . , M}wemay invoke
Theorem 1.1.1 for the set of locally finite perimeter B(x j , r j ) ∩� and the vector field
ψ j �F ∈ [

C 1
c (Rn)

]n
to write

ˆ

B(x j ,r j )∩�

div(ψ j �F) dLn =
ˆ

∂∗(B(x j ,r j )∩�)

ν j · (ψ j �F) dHn−1, (2.8.7)

where ν j is the geometric measure theoretic outward unit normal to B(x j , r j ) ∩�.
Note that since supp(ψ j �F) ⊆ suppψ j ⊆ B(x j , r j ), we may re-write the integral on
the right-hand side above as

ˆ

∂∗(B(x j ,r j )∩�)

ν j · (ψ j �F) dHn−1 =
ˆ

B(x j ,r j )∩∂∗(B(x j ,r j )∩�)

ν j · (ψ j �F) dHn−1

=
ˆ

B(x j ,r j )∩∂∗�
ν j · (ψ j �F) dHn−1

=
ˆ

B(x j ,r j )∩∂∗�
N� · (ψ j �F) dHn−1

=
ˆ

∂∗�
N� · (ψ j �F) dHn−1, (2.8.8)

where we have also used Proposition 5.2.3 in the second equality, and (5.7.54) in the
third equality. Based on (2.8.8) and (2.8.6) (and keeping in mind that ∂∗� ⊆ ∂�) we
therefore obtain
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M∑

j=1

ˆ

∂∗(B(x j ,r j )∩�)

ν j · (ψ j �F) dHn−1 =
M∑

j=1

ˆ

∂∗�
N� · (ψ j �F) dHn−1

=
ˆ

∂∗�

( M∑

j=1
ψ j

)
N� · �F dHn−1

=
ˆ

∂∗�
N� · �F dHn−1. (2.8.9)

On the other hand, since for each j ∈ {1, . . . , M} we have
ˆ

B(x j ,r j )∩�

div(ψ j �F) dLn =
ˆ

�

div(ψ j �F) dLn, (2.8.10)

it follows that

M∑

j=1

ˆ

B(x j ,r j )∩�

div(ψ j �F) dLn =
ˆ

�

div
( M∑

j=1
ψ j �F

)
dLn =

ˆ

�

div(ψ �F) dLn

=
ˆ

�

div �F dLn +
ˆ

�

div
(
(ψ − 1) �F) dLn. (2.8.11)

If we now introduce

�G :=
{

(ψ − 1) �F in �,

0 in R
n \�,

(2.8.12)

then property (2.8.6) ensures that �G ∈ [
C 1
c (Rn)

]n
, hence

ˆ

�

div
(
(ψ − 1) �F) dLn =

ˆ

Rn

div �G dLn = 0 (2.8.13)

by the standard version of the Divergence Theorem in a sufficiently large ball, con-
taining the support of �G. Collectively, (2.8.7), (2.8.9), (2.8.11), and (2.8.13) now
imply (2.8.3).

A consequence of Theorem 2.8.1 worth stating separately is recorded in the corol-
lary below.

Corollary 2.8.2 Suppose� ⊆ R
n is anLn-measurable set anddenote by N� its geo-

metric outward unit normal (defined at points in ∂N� as in item (i) of Lemma 5.6.12).
Also, let O ⊆ R

n be an open set with the property that O ∩� is a set of locally finite
perimeter. Then for each vector field �F ∈ [

C 1
c (Rn)

]n
satisfying

(
supp �F) ∩ ∂� ⊆ O (2.8.14)
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there holds ˆ

�

div �F dLn =
ˆ

∂∗�
N� · �F dHn−1. (2.8.15)

Proof The fact that O ⊆ R
n is open and O ∩� has locally finite perimeter implies

(with the help of (5.7.47) and Lemma 5.6.5) that

O ∩ ∂� ⊆ ∂lfp�. (2.8.16)

Consequently, (
supp �F) ∩ ∂� ⊆ O ∩ ∂� ⊆ ∂lfp�, (2.8.17)

so (2.8.15) is provided by Theorem 2.8.1. �

In Proposition 2.8.6 below we present a version of Theorem 1.1.1 in which the
vector field is allowed to be singular. To set the stage, we begin by making a couple
of definitions and recall some background results. Our first definition introduces the
measure theoretic interior and exterior of Euclidean sets.

Definition 2.8.3 Given a Lebesgue measurable set E ⊆ R
n, its measure

theoretic interior is defined as

int∗(E) :=
{
x ∈ R

n : lim
r→0+

Ln
(
B(x, r) \ E)

Ln
(
B(x, r)

) = 0
}

=
{
x ∈ R

n : lim
r→0+

Ln
(
B(x, r) ∩ E

)

Ln
(
B(x, r)

) = 1
}
, (2.8.18)

and its measure theoretic exterior is defined as

ext∗(E) := int∗(Rn \ E)

=
{
x ∈ R

n : lim
r→0+

Ln
(
B(x, r) ∩ E

)

Ln
(
B(x, r)

) = 0
}
. (2.8.19)

Clearly, for each Lebesgue measurable set E ⊆ R
n we have

E̊ ⊆ int∗(E) ⊆ E, R
n \ E ⊆ ext∗(E) ⊆ R

n \ E̊, (2.8.20)

and (recall (5.2.2))
R

n = ∂∗E  int∗(E)  ext∗(E). (2.8.21)

Also, [80, Lemma 2(i), p. 222], Lebesgue’s Differentiation Theorem and the above
definitions imply that



194 2 Examples, Counterexamples, and Additional Perspectives

given any Lebesguemeasurable set E ⊆ R
n , it follows that int∗(E) and ext∗(E)

are Borel-measurable sets with Ln
(
int∗(E) \ E) = 0, Ln

(
E \ int∗(E)

) = 0,
Ln

(
ext∗(E) ∩ E

) = 0, Ln
(
R

n \ (E ∪ ext∗(E)
)) = 0.

(2.8.22)
A variety of other useful properties enjoyed by the measure theoretic interiors and
exteriors may be found in [216, pp. 49–58].

Lemma 2.8.4 Let θ ∈ L∞comp(R
n,Ln) be a non-negative radial function satisfying´

Rn θ dLn = 1 and supp θ ⊆ B(0, 1). For each ε > 0, define θε := ε−nθ(·/ε) in R
n.

Then for every set E ⊆ R
n of locally finite perimeter one has

lim
ε→0+

(
θε ∗ 1E

)
(x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ int∗(E),
1
2 if x ∈ ∂∗E,

0 if x ∈ ext∗(E),

(2.8.23)

for each
x ∈ ∂∗E  int∗(E)  ext∗(E). (2.8.24)

Proof Assume first that x ∈ ext∗(E). Then, on account of the properties of θ and
(2.8.19), we may write

0 ≤ lim sup
ε→0+

(
θε ∗ 1E

)
(x) = lim sup

ε→0+

ˆ

E
θε(x − y) dy

= lim sup
ε→0+

ε−n
ˆ

E∩B(x,ε)
θ
(
(x − y)/ε

)
dy

≤ ωn−1
n

‖θ‖L∞(Rn ,Ln) lim sup
ε→0+

Ln
(
B(x, ε) ∩ E

)

Ln
(
B(x, ε)

) = 0. (2.8.25)

This is in agreement with (2.8.23). Consider next the case when x ∈ int∗(E). First,
making use of the properties of θ and (2.8.18) we may estimate

0 ≤ lim sup
ε→0+

ˆ

B(x,ε)\E
θε(x − y) dy = lim sup

ε→0+
ε−n

ˆ

B(x,ε)\E
θ
(
(x − y)/ε

)
dy

≤ ωn−1
n

‖θ‖L∞(Rn ,Ln) lim sup
ε→0+

Ln
(
B(x, ε) \ E)

Ln
(
B(x, ε)

) = 0. (2.8.26)

This ultimately proves that in this case

lim
ε→0+

ˆ

B(x,ε)\E
θε(x − y) dy = 0. (2.8.27)

Consequently,
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lim
ε→0+

(
θε ∗ 1E

)
(x) = lim

ε→0+

ˆ

E
θε(x − y) dy

= lim
ε→0+

ε−n
ˆ

E∩B(x,ε)
θ
(
(x − y)/ε

)
dy

= lim
ε→0+

ε−n
ˆ

B(x,ε)
θ
(
(x − y)/ε

)
dy

− lim
ε→0+

ε−n
ˆ

B(x,ε)\E
θ
(
(x − y)/ε

)
dy

= 1− 0 = 1, (2.8.28)

which once again is in agreement with (2.8.23). There remains to consider the case
when x ∈ ∂∗E . In such a scenario, we shall employ a blow-up argument. Specifically,
with ν(x) denoting the geometric measure theoretic outward unit normal to E at the
point x , bring in the half-space

Hx :=
{
y ∈ R

n : 〈ν(x), y〉 ≤ 0
}

(2.8.29)

and, for each ε > 0, define

Eε :=
{
y ∈ R

n : ε(y − x)+ x ∈ E
}
. (2.8.30)

Next, making the change of variables z = (y − x)/ε and also observing that we have
the equality (E − x)/ε = Eε − x , we may compute

lim
ε→0+

(
θε ∗ 1E

)
(x) = lim

ε→0+

ˆ

E
θε(x − y) dy = lim

ε→0+

ˆ

E
θε(y − x) dy

= lim
ε→0+

ε−n
ˆ

E
θ
(
(y − x)/ε

)
dy

= lim
ε→0+

ˆ

(E−x)/ε
θ(z) dz = lim

ε→0+

ˆ

Rn

θ1Eε−x dLn

=
ˆ

Rn

θ1Hx dLn, (2.8.31)

where the last equality is supplied by [80, Theorem 1, p. 199]. However, θ is radial
so working in polar coordinates allows us to conclude that

ˆ

Rn

θ1Hx dLn =
ˆ

Hx

θ dLn = 1

2

ˆ

Rn

θ dLn = 1

2
. (2.8.32)

Together, (2.8.31) and (2.8.32) then finish the proof of (2.8.23)–(2.8.24). �

Finally, we define the C k-singular support of a distribution.
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Definition 2.8.5 Let k ∈ N0 be an arbitrary number and let� ⊆ R
n be an arbitrary

open set. Given a distribution u ∈ D′(�), define its C k-singular support,
denoted by C k-singsup u, as the smallest relatively closed subset K of � with the
property that u

∣∣
�\K ∈ C k(� \ K ).

Here is the version of the Divergence Theorem advertised earlier.

Proposition 2.8.6 Given an open set of locally finite perimeter� ⊆ R
n, denote by ν

its geometricmeasure theoretic outward unit normal and abbreviateσ := Hn−1�∂�.
SupposeO ⊆ R

n is an open set containing� and consider a vector field �F satisfying
the following properties:

�F ∈ [
E ′(O)

]n
, C 0- singsupp �F is a compact subset of �

and div �F = μ+ u in D′(O) where

μ ∈ CBM(O) and u ∈ E ′(O) with supp u ⊆ �.

(2.8.33)

Then (
div �F)∣∣

�
∈ CBM(�)+ E ′(�) ↪→ (

C∞
b (�)

)∗
(2.8.34)

and

(C ∞
b (�))

∗
((
div �F)∣∣

�
, 1
)
C ∞

b (�) =
ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
dσ

− 1
2μ(∂∗�)− μ

(
int∗(�) \�

)
. (2.8.35)

In particular, with L1(O,Ln) canonically identified as a subspace of CBM(O),

if actually μ ∈ L1(O,Ln) then (2.8.35) simply becomes

(C ∞
b (�))

∗
((
div �F)∣∣

�
, 1
)
C ∞

b (�) =
ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
dσ.

(2.8.36)

Since both ∂∗� and int∗(�) \� are contained in ∂� (cf. (5.6.21) and (2.8.20)),
another natural scenario when (2.8.35) reduces to the Divergence Formula recorded
in (2.8.36) is when |μ|(∂�) = 0.

Proof of Proposition 2.8.6 The fact that �F belongs to
[
E ′(O)

]n
implies that μ has

compact support in O. Observing that μ|� ∈ CBM(�) and u|� ∈ E ′(�) then yields
(2.8.34). Next, let K be the union ofC 0-singsupp �F and supp u. Then K is a compact
subset of �, which makes it possible to select a scalar function ϕ ∈ C∞

c (�) with
ϕ ≡ 1 near K . Split

�F = �G + �H in
[D′(O)

]n
where �G := (1− ϕ) �F and �H := ϕ �F . (2.8.37)

Note that since the support of �H ∈ [D′(O)
]n

is a compact subset of �, we have



2.8 Other Versions of the Gauss–Green Formula 197

�H ∣∣
�
∈ [

E ′(�)
]n

hence also
(
div �H)∣∣

�
= div

( �H ∣∣
�

) ∈ E ′(�). (2.8.38)

By virtue of the compatibility condition (4.6.21), this permits us to compute

(C ∞
b (�))

∗
((
div �H)∣∣

�
, 1
)
C ∞

b (�) = E ′(�)

〈(
div �H)∣∣

�
, 1
〉
E (�)

= E ′(�)

〈
div

( �H ∣∣
�

)
, 1
〉
E (�)

= − [E ′(�)]n
〈 �H ∣∣

�
,∇1

〉
[E (�)]n = 0. (2.8.39)

Also, since (1− ϕ)u = 0, we have

�G ∈ [
C 0
c (O)

]n
and div �G = f + λ in D′(O) where

f := −(∇ϕ) · �F ∈ C 0
c (�) and λ := (1− ϕ)μ ∈ CBM(O).

(2.8.40)

In addition, with |div �G| denoting the total variation of the measure div �G, from [44,
Proposition 3.1, p. 101] we conclude that

|div �G|(A) = 0 whenever A ⊆ O is a Borel
measurable set satisfying Hn−1(A) = 0.

(2.8.41)

In view of (2.8.40), from (2.8.41) we further deduce that

|λ|(A) = 0whenever A ⊆ O is a Borel set
with the property that Hn−1(A) = 0. (2.8.42)

Next, pick a non-negative radial function θ ∈ C∞
c (Rn) satisfying

´
Rn θ dLn = 1

as well as supp θ ⊆ B(0, 1) and, for each ε > 0, introduce θε := ε−nθ(·/ε) in R
n .

Lastly, fix some εo > 0 sufficiently small and, whenever 0 < ε < εo, define

�Gε := θε ∗ �G ∈ [
C∞
c (O)

]n
. (2.8.43)

Note that

⋃
0<ε<εo

supp �Gε is a relatively compact subset of O
and supO

∣∣ �G − �Gε

∣∣ −→ 0 as ε → 0+.
(2.8.44)

Granted these, Theorem 1.1.1 applies and, together with (2.8.44), permits us to write

lim
ε→0+

ˆ

�

(
div �Gε

)∣∣
�
dLn = lim

ε→0+

ˆ

∂∗�
ν · ( �Gε

∣
∣
∂∗�

)
dσ =

ˆ

∂∗�
ν · ( �G∣∣

∂∗�

)
dσ

=
ˆ

∂∗�
ν · (((1− ϕ) �F)

∣∣
∂∗�

)
dσ
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=
ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
dσ, (2.8.45)

where the last equality uses the fact that, by design, 1− ϕ ≡ 1 near ∂� ⊇ ∂∗�. The
decomposition of div �G in (2.8.40) implies

div �Gε = θε ∗
(
div �G) = θε ∗ f + θε ∗ λ in D′(O) (2.8.46)

for each ε ∈ (
0, εo

)
. Then, thanks to Lebesgue’s Dominated Convergence Theorem

and (4.6.19), we have

lim
ε→0+

ˆ

�

(
θε ∗ f

)∣∣
�
dLn =

ˆ

�

(
f
∣∣
�

)
dLn = −

ˆ

�

(∇ϕ) · �F dLn

= (C ∞
b (�))

∗
(− (

(∇ϕ) · �F)∣∣
�
, 1
)
C ∞

b (�). (2.8.47)

Since Hn−1(∂∗� \ ∂∗�
) = 0 (cf. (5.6.21)) and since Hn−1�∂� is a Borel-regular

measure (cf. Lemma 3.6.4) it follows that there exists a Borel set A ⊆ ∂� such that

∂∗� \ ∂∗� ⊆ A and Hn−1(A) = 0. (2.8.48)

In concert with (2.8.42) (and (3.1.1)), the last property above further implies

|λ|(A) = 0. (2.8.49)

In view of Lemma 2.8.4, (2.8.48), and (2.8.49), Fubini’s theorem together with
Lebesgue’s Dominated Convergence Theorem and (4.6.19) permits us to compute

lim
ε→0+

ˆ

�

(
θε ∗ λ

)∣∣
�
dLn (2.8.50)

= lim
ε→0+

ˆ

�

ˆ

O
θε(x − y) dλ(y) dLn(x)

= lim
ε→0+

ˆ

O

(ˆ

�

θε(x − y) dLn(x)
)
dλ(y)

= lim
ε→0+

ˆ

O

(
θε ∗ 1�

)∣∣
O dλ =

ˆ

O

{
1
21∂∗� + 1int∗(�)

}
dλ

= 1
2λ(∂∗�)+ λ

(
int∗(�) \�

)+ λ(�)

= 1
2μ(∂∗�)+ μ

(
int∗(�) \�

)+
ˆ

�

(1− ϕ) dμ

= 1
2μ(∂∗�)+ μ

(
int∗(�) \�

)+ (C ∞
b (�))

∗
((

(1− ϕ)μ
)∣∣

�
, 1
)
C ∞

b (�).
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Above, we have also used the fact that since 1− ϕ ≡ 1 near ∂� it follows that λ

coincides with μ on Borel subsets of ∂�. Collectively, (2.8.46), (2.8.47), (2.8.50),
and (2.8.40) imply

lim
ε→0+

ˆ

�

(
div �Gε

)∣∣
�
dLn = 1

2μ(∂∗�)+ μ
(
int∗(�) \�

)

+ (C ∞
b (�))

∗
((
div �G)∣∣

�
, 1
)
C ∞

b (�). (2.8.51)

At this stage, (2.8.35) follows from (2.8.37), (2.8.39), (2.8.45), and (2.8.51).
To finish the proof of the proposition, there remains to justify the claim in (2.8.36).

In this regard, recall from (2.8.22) that Ln
(
int∗(�) \�

) = 0. Also, we know from
Lemma 5.2.1 that Ln(∂∗�) = 0. Hence, in the case when μ ∈ L1(O,Ln) we have
μ
(
int∗(�) \�

) = 0 and μ(∂∗�) = 0, so (2.8.35) reduces to (2.8.36). �

Corollary 2.8.7 Let � ⊆ R
n be an open set of locally finite perimeter. Denote by ν

its geometricmeasure theoretic outward unit normal and abbreviateσ := Hn−1�∂�.
Then, given an open set O ⊆ R

n containing �, for each vector field

�F ∈ [
C 0
c (O)

]n
with div �F ∈ CBM(O) (2.8.52)

one has
ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
dσ = (

div �F)(int∗(�)
)+ 1

2

(
div �F)(∂∗�). (2.8.53)

Moreover, if � is also bounded, then the compact support assumption on �F may
be dropped.

Proof Formula (2.8.53) is a direct consequence of (2.8.35) in Proposition 2.8.6
(corresponding to the case when u = 0). The last claim is justified simply working
with ϕ �F in place of �F where ϕ ∈ C∞

c (O) satisfying ϕ ≡ 1 near �. �

In the context of Corollary 2.8.7, if div �F = μa + μs is the Lebesgue decompo-
sition (cf., e.g., [231, Theorem 6.10, p. 121]) of the complex measure div �F into an
absolutely continuous part, μa , and a singular part, μs , with respect to the Lebesgue
measure Ln in O, arguing as in the proof of (2.8.36) we may recast (2.8.53) as

ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
dσ = (

div �F)(�)+ μs
(
int∗(�) \�

)+ 1
2μs(∂

∗�). (2.8.54)

Comparing (2.8.54) with the Divergence Formula (1.3.9), we conclude that
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given an open set O ⊆ R
n along with a vector field �F ∈ [

C 0
c (O)

]n
such

that div �F ∈ CBM(O) it follows that for every open set � with � ⊆ O,
having a lower Ahlfors regular boundary and such that Hn−1�∂� is a
doubling measure (which is the case if, e.g., ∂� is Ahlfors regular), we
necessarily have μs

(
int∗(�) \�

)+ 1
2μs(∂

∗�) = 0.

(2.8.55)

This points to the fact that the singular parts (with respect to the Lebesguemeasure) of
complex Borel measures arising as (distributional) divergences of continuous vector
fields have rather subtle vanishing properties. For more on this topic, see [217, 226],
and the references therein.

Corollary 2.8.8 Assume � ⊆ R
n is an open set of locally finite perimeter. Denote

by ν its geometric measure theoretic outward unit normal and let σ := Hn−1�∂�.
Then for each vector field �F ∈ [

E ′(Rn)
]n

whose C 1-singular support is a compact
subset of � one has (with the divergence taken in the sense of distributions in R

n)

(
div �F)∣∣

�
∈ L1(�,Ln)+ E ′(�) ↪→ (

C∞
b (�)

)∗
(2.8.56)

and

(C ∞
b (�))

∗
((
div �F)∣∣

�
, 1
)
C ∞

b (�) =
ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
dσ. (2.8.57)

Proof This is a corollary of Proposition 2.8.6 specialized to O := R
n . Specifically,

the present assumptions on �F imply that div �F = f + u where f ∈ C 0
c (Rn) and

u ∈ E ′(Rn) with supp u ⊆ �. Hence, the measure μ := fLn ∈ CBM(Rn) belongs
to L1(O,Ln), so (2.8.36) applies and the desired conclusion follows. �

Wemake a couple of comments on the nature of Corollary 2.8.8. First, asking that
� ⊆ R

n is an open set of locally finite perimeter is natural in light of the conclusions
in (2.8.56)–(2.8.57). Second, in the case when the C 1-singular support of the given
vector field �F is the empty set, it follows that �F ∈ [

C 1
c (Rn)

]n
and (2.8.57) reduces

precisely to the Divergence Formula (1.1.8). Third, given any �F ∈ [
E ′(Rn)

]n
it fol-

lows that C 1-singsupp �F is a compact subset of R
n . That having C 1-singsupp �F

actually contained in � is necessary in the context of Corollary 2.8.8 may be seen
by considering the following counterexample to (2.8.56)–(2.8.57). Work in R

n with
n ∈ N, n ≥ 2. Pick a scalar-valued cutoff function ψ ∈ C∞

c (Rn) satisfying ψ ≡ 1
on B(0, 2), then define

� := B(0, 1) \ {0} and �F(x) := ψ(x)
x

|x |n for Ln-a.e. x ∈ R
n. (2.8.58)

It follows that � ⊆ R
n is an open set of locally finite perimeter, and

�F ∈ [
L1
comp(R

n,Ln)
]n ⊂ [

E ′(Rn)
]n

has C 1-singsupp �F = {0}. (2.8.59)



2.8 Other Versions of the Gauss–Green Formula 201

Also, in the sense of distributions in R
n ,

div �F = f + ωn−1δ, where f ∈ L1
comp(R

n,Ln) ⊂ E ′(Rn)

is given by f (x) = x · (∇ψ)(x)

|x |n for Ln-a.e. x ∈ R
n.

(2.8.60)

In particular, granted the choice of � and ψ , we have
(
div �F)∣∣

�
= 0, so (2.8.56) is

trivially satisfied. However, (2.8.57) fails since its right-hand side presently becomes
ωn−1 �= 0. The source of this failure is the fact that the C 1-singular support of �F is
not a compact subset of �.

In many practical situations, given an open set � ⊆ R
n , one deals with functions

defined only on �, and one would like to avoid assuming they have extensions to
R

n with nice properties. To describe a result for such functions, following [125] we
shall say that � has a tame interior approximation if there exists a family
{� j } j∈N of open subsets of R

n satisfying

� j ⊆ � and � j ⊆ � j+1 for each j ∈ N, � =
⋃

j∈N
� j , (2.8.61)

as well as
sup
j∈N

‖∇1� j‖TV(B(0,R)) < +∞, ∀R ∈ (0,∞), (2.8.62)

where TV stands for the total variation norm of a vector measure. In such a scenario,
we shall call {� j } j∈N a tame interior approximation to �. The following
result, appearing in [125, Proposition 2.7, p. 2583], is a partial extension of (2.8.1):

if the set � ⊆ R
n has locally finite perimeter and a tame interior

approximation, then Gauss–Green’s Formula (1.1.8) holds for each
�F ∈ [

C 0(�)
]n

with bounded support satisfying div �F ∈ L1(�,Ln).
(2.8.63)

This should be compared with the following result, which is a slight version of
the one given by Federer in [85, p. 314]:

if � ⊆ R
n is a bounded open set such thatHn−1(∂�) < +∞ (so that,

in particular, � has finite perimeter), then for each j ∈ {1, . . . , n} we
have

´
�

∂ j f dLn = ´
∂∗� ν j f dHn−1 where ν j is the j-th component of

the geometric measure theoretic outward unit normal to �, and where
f ∈ C 0(�) is some scalar-valued function with the property that ∂ j f
belongs to the space L1(�,Ln).

(2.8.64)

In turn, Federer’s result described in (2.8.64) yields a version of Gauss–Green’s For-
mula (1.1.8) for vector fields �F = (F1, . . . , Fn) ∈

[
C 0(�)

]n
with the property that

each individual term ∂ j Fj in div �F belongs to L1(�,Ln). However, the vector fields
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arising in the applications of Gauss–Green’s Formula need not have this additional
structure, so the result just mentioned is not effective.

The class of open nonempty proper subsets � of R
n such that

� has locally finite perimeter, satisfies ∂� = ∂(�), has a tame interior
approximation, and σ := Hn−1�∂� is a Borel measure which is locally
finite, complete, and Borel-regular (hence a complete Radon measure),
with the property that σ(∂� \ ∂∗�) = σ(∂� \ ∂∗�) = 0,

(2.8.65)

is rather large. For example, it includes the upper-graph

� := {
x = (x ′, xn) ∈ R

n−1 × R : xn > φ(x ′)
}

(2.8.66)

of any real-valued function

φ ∈ C 0(Rn−1) such that ∇′φ ∈ [
L1
loc(R

n−1,Ln−1)
]n−1

(2.8.67)

(with ∇′ denoting the gradient in R
n−1), as well as open sets which locally coincide,

up to a rigid transformation of the space, with upper-graphs as in (2.8.66). Moreover,
in such a scenario, the geometric measure theoretic outward unit normal of� is given
by

ν
(
x ′, φ(x ′)

) =
(∇′φ(x ′),−1)

√
1+ |(∇′φ)(x ′)|2 for Ln−1-a.e. x ′ ∈ R

n−1, (2.8.68)

and for each Ln−1-measurable set O′ ⊆ R
n−1 we have

σ
({

(x ′, φ(x ′)) : x ′ ∈ O′}) = Hn−1({(x ′, φ(x ′)) : x ′ ∈ O′})

=
ˆ

O′

√
1+ |(∇′φ)(x ′)|2 dx ′. (2.8.69)

All these properties follow from [125, Proposition2.3, p. 2578], [125, Proposition2.4,
p. 2581], [125, Proposition 2.5, p. 2582], and [125, p. 2583] where it was noted that
the family

� j :=
{
(x ′, xn) ∈ R

n : xn > φ(x ′)+ j−1
}
, ∀ j ∈ N, (2.8.70)

is a tame interior approximation to �. In particular, as seen from (2.8.63),

if � is as in (2.8.66)–(2.8.67), Gauss–Green’s Formula (1.1.8) holds
for all vector fields �F ∈ [

C 0(�)
]n

with bounded support satisfying
div �F ∈ L1(�,Ln).

(2.8.71)

In this vein, let us also remark that if (2.8.67) is strengthened to
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φ ∈ L1
loc(R

n−1) with ∇′φ ∈ [
BMO(Rn−1)

]n−1
, (2.8.72)

then, in fact, the upper-graph � in (2.8.66) has an Ahlfors regular boundary (see
[125, Proposition 2.25, p. 2616]). Furthermore, from [125, Proposition 3.15, p. 2637]
and [132, Proposition 3.6, p. 94] it follows that actually � is an NTA domain (cf.
Definition 5.11.1). In particular, � satisfies a two-sided corkscrew condition (cf.
Definition 5.1.3), hence ∂∗� = ∂� in this case (compare with (2.8.65)).

It is natural to attempt to consider the closure of the space of vector fields used
in the formulation of the De Giorgi–Federer Divergence Theorem in a norm which
takes into account the quantitative aspects of the Divergence Formula recorded in
(1.1.8). A result in this spirit is presented next, in Proposition 2.8.9. To facilitate its
statement, given an arbitrary closed set E ⊆ R

n , we agree to denote

C∞
c (E) := {

φ|E : φ ∈ C∞
c (Rn)

}
. (2.8.73)

Proposition 2.8.9 Let � ⊆ R
n be a set of locally finite perimeter and abbreviate

σ := Hn−1�∂�. Consider a vector field �F : � → C
n whose components are abso-

lutely integrable in each bounded open subset of � and fix some linear functional
� : C∞

c (�) → C. Assume that these are related via the existence of a sequence
{ �ϕ j } j∈N ⊂

[
C∞
c (�)

]n
satisfying

sup
j∈N

sup
x∈∂∗�

| �ϕ j (x)| < +∞, (2.8.74)

lim
j→∞

ˆ

�∩B(0,R)

∣∣ �ϕ j − �F∣∣ dLn = 0 for each R > 0, (2.8.75)

lim
j→∞

ˆ

�

ψ div �ϕ j dLn = �(ψ) for each ψ ∈ C∞
c (�). (2.8.76)

Then there exists a unique function f ∈ L∞(∂∗�, σ) such that

�(ψ) = −
ˆ

�

∇ψ · �F dLn +
ˆ

∂∗�
f ψ dσ for every ψ ∈ C∞

c (�). (2.8.77)

Moreover, f depends linearly on the pair ( �F,�), and

‖ f ‖L∞(∂∗�,σ) ≤ sup
j∈N

sup
∂∗�

| �ϕ j |. (2.8.78)

Proof With ν denoting the geometric measure theoretic outward unit normal to �,
for each function ψ ∈ C∞

c (�) we may write
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�(ψ)+
ˆ

�

∇ψ · �F dLn = lim
j→∞

{ ˆ

�

ψ div �ϕ j dLn +
ˆ

�

∇ψ · �ϕ j dLn

}

= lim
j→∞

ˆ

�

div(ψ �ϕ j ) dLn

= lim
j→∞

ˆ

∂∗�
ψ ν · �ϕ j dσ, (2.8.79)

thanks to assumptions and Theorem 1.1.1. In particular,

�(ψ)+
ˆ

�

∇ψ · �F dLn = 0 whenever ψ ∈ C∞
c (�) has ψ

∣∣
∂∗�

= 0. (2.8.80)

Let us also observe that Corollary 3.7.3 (whose applicability in the present setting is
ensured by hypotheses, (5.2.6), (3.0.3), and (5.6.35)) gives that

V := {
ψ |∂∗� : ψ ∈ C∞

c (�)
}

is dense in L1(∂∗�, σ). (2.8.81)

If we now introduce the functional L : V → C by setting

L
(
ψ |∂∗�

) := �(ψ)+
ˆ

�

∇ψ · �F dLn for each ψ ∈ C∞
c (�), (2.8.82)

then (2.8.80) implies that this definition is unambiguous, while (2.8.79) shows that

L
(
ψ |∂∗�

) = lim
j→∞

ˆ

∂∗�
ψ ν · �ϕ j dσ for each ψ ∈ C∞

c (�). (2.8.83)

Hence, for each ψ ∈ C∞
c (�) we may estimate

∣∣L
(
ψ |∂∗�

)∣∣ ≤ lim sup
j→∞

∣∣∣∣

ˆ

∂∗�
ψ ν · �ϕ j dσ

∣∣∣∣

≤ ∥∥ψ |∂∗�
∥∥
L1(∂∗�,σ)

sup
j∈N

sup
∂∗�

| �ϕ j |. (2.8.84)

In light of (2.8.74) this goes to show that L : V → C is continuous when V is
equipped with the norm inherited from L1(∂∗�, σ). In concert with (2.8.81), this fur-
ther implies that L extends uniquely to a continuous linear functional on L1(∂∗�, σ).
Since

(
L1(∂∗�, σ)

)∗ = L∞(∂∗�, σ) by Riesz’ Representation Theorem, it follows
that there exists a unique function f ∈ L∞(∂∗�, σ) with the property that (2.8.78)
holds and such that

L
(
ψ |∂∗�

) =
ˆ

∂∗�
f ψ dσ for all ψ ∈ C∞

c (�). (2.8.85)
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In turn, (2.8.82) and (2.8.85) prove (2.8.77). �

As an application of Proposition 2.8.9, in Corollary 2.8.10 below we present a
result of the flavor of [45, Theorem 2, p. 257]. While this result extends (2.8.1), it
does not imply (2.8.63), nor any of the results given in the earlier sections of this
volume. Further results related to (2.8.1) and (2.8.63) can be found in [46, 205].

Corollary 2.8.10 Assume � ⊆ R
n is a bounded set of locally finite perimeter.

Denote by ν the geometric measure theoretic outward unit normal to � and abbre-
viate σ := Hn−1�∂�. Also, consider an open set O ⊆ R

n containing � and fix

�F ∈ [
L∞loc(O,Ln)

]n
with div �F = u + μ in D′(O), (2.8.86)

where the distribution u ∈ D′(O) is compactly supported in �̊, the interior of�, and
μ is a Borel measure of locally finite total variation in O. Then there exists a unique
function f ∈ L∞(∂∗�, σ) such that

E ′(�̊)〈u, ψ〉E (�̊) +
ˆ

�

ψ dμ = −
ˆ

�

∇ψ · �F dLn +
ˆ

∂∗�
f ψ dσ

for every function ψ ∈ C∞
c (�).

(2.8.87)

Moreover, f depends linearly on �F, one has

‖ f ‖L∞(∂∗�,σ) ≤ lim
r→0+

∥∥ �F∥∥[L∞(Kr ,Ln)]n where

Kr := {x ∈ O : dist(x, ∂�) ≤ r} for each r > 0,
(2.8.88)

and

f = ν · ( �F∣∣
∂∗�

)
if �F is actually continuous in a neighborhood of ∂�. (2.8.89)

Proof Consider a real-valued, non-negative function θ ∈ C∞
c (Rn) (the space of com-

pactly supported functions from C∞(Rn)) satisfying θ ≡ 1 on B(0, 1) as well as´
Rn θ dLn = 1, then set θ j (x) := j nθ( j x) for each j ∈ N and each x ∈ R

n . Next,
having fixed some compact neighborhood K of � contained in O, introduce

�G ∈ [
L∞comp(R

n,Ln)
]n

by setting �G :=
{ �F in K ,

�0 in R
n \ K ,

(2.8.90)

then define
�ϕ j :=

( �G ∗ θ j
)∣∣∣

�
∈ [

C∞
c (�)

]n
for each j ∈ N. (2.8.91)

In particular, standard properties of mollifiers ensure that

sup
j∈N

sup
x∈�

| �ϕ j (x)| ≤
∥∥ �F∥∥[L∞(K ,Ln)]n for each r > 0, (2.8.92)
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and

lim
j→∞

ˆ

�

∣∣ �ϕ j − �F∣∣ dLn = 0. (2.8.93)

Moreover, for each j ∈ N large enough we may split

div �ϕ j = A j + Bj in �, (2.8.94)

where

A j (x) :=
ˆ

O
θ j (x − y) dμ(y) for each x ∈ �, (2.8.95)

and
Bj (x) := E ′(O)〈u, θ j (x − ·)〉E (O) for each x ∈ �. (2.8.96)

As such, if ψ ∈ C∞
c (�) and ψ̃ denotes the extension of ψ |� by zero to R

n , we may
compute

lim
j→∞

ˆ

�

ψ A j dLn = lim
j→∞

ˆ

�

ψ(x)
( ˆ

O
θ j (x − y) dμ(y)

)
dLn(x)

= lim
j→∞

ˆ

O

(ˆ

Rn

ψ̃(x)θ j (x − y) dLn(x)
)
dμ(y)

=
ˆ

O
ψ̃(y) dμ(y) =

ˆ

�

ψ dμ, (2.8.97)

based on a simple application of Fubini’s theorem (bearing in mind that μ is sigma-
finite) and Lebesgue’s Dominated Convergence Theorem. Also, if � ∈ C∞

c (Rn) is
such that �

∣∣
�
= ψ , then keeping in mind that u is compactly supported in �̊, we

may compute

lim
j→∞

ˆ

�

ψ Bj dLn = lim
j→∞

ˆ

�

ψ(x)
(
E ′(O)〈u, θ j (x − ·)〉E (O)

)
dLn(x)

= lim
j→∞ E ′(O)

〈
u ,

ˆ

�

ψ(x)θ j (x − ·) dLn(x)
〉
E (O)

= lim
j→∞ E ′(O)

〈
u ,

ˆ

Rn

�(x)θ j (x − ·) dLn(x)
〉
E (O)

= E ′(O)

〈
u, �|O

〉
E (O) = E ′(�̊)〈u, ψ〉E (�̊). (2.8.98)

Hence, if we define the linear functional � : C∞
c (�) → C by setting

�(ψ) := E ′(�̊)〈u, ψ〉E (�̊) +
ˆ

�

ψ dμ for every ψ ∈ C∞
c (�), (2.8.99)
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it follows from (2.8.92)–(2.8.99) that conditions (2.8.74)–(2.8.76) are satisfied.
Granted these, the existence of a unique function f ∈ L∞(∂∗�, σ) satisfying
(2.8.87)–(2.8.88) and which depends linearly on �F follows from Proposition 2.8.9.

Finally, in the case when �F is also assumed to be continuous in a neighborhood
of ∂�, from (2.8.90)–(2.8.91) we conclude that

lim
j→∞ sup

x∈∂�

∣
∣ �ϕ j (x)− �F(x)

∣
∣ = 0. (2.8.100)

Together with (2.8.79) and the current choice of � (made in (2.8.99)) this allows us
to conclude that

E ′(�̊)〈u, ψ〉E (�̊) +
ˆ

�

ψ dμ = −
ˆ

�

∇ψ · �F dLn +
ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
ψ dσ

for every function ψ ∈ C∞
c (�).

(2.8.101)
Comparing (2.8.101) with (2.8.87) and invoking (3.7.23) from Corollary 3.7.3 ulti-
mately proves that, in this case, we actually have f = ν · ( �F∣∣

∂∗�

)
at σ -a.e. point on

∂∗�. This finishes the proof of Corollary 2.8.10. �
A version of the Divergence Theorem for differentiable vector fields whose point-

wise divergence happens to be a continuous function is described next.

Proposition 2.8.11 Let � ⊆ R
n be a bounded open set with an Ahlfors regular

boundary, and suppose �F = (Fj )1≤ j≤n is a vector field satisfying the following prop-
erties:

�F is continuous on � and differentiable at every point in �,

and
n∑

j=1
∂ j Fj is continuous and absolutely integrable on �, (2.8.102)

where the partial derivatives are considered in a pointwise, classical sense.
Then, if ν denotes the geometric measure theoretic outward unit normal to �,

there holds
ˆ

∂∗�
ν · ( �F∣∣

∂∗�

)
dHn−1 =

ˆ

�

( n∑

j=1
∂ j Fj

)
dLn. (2.8.103)

We make a couple of comments regarding the nature of Proposition 2.8.11. First,
if n = 1, then of course the conditions in (2.8.102) imply �F ∈ C 1(�). However, if
n ≥ 2, there are vector fields satisfying the hypotheses made in (2.8.102) and which
are not of class C 1 in �. An example is as follows. Consider the case when n = 2
and take �F(x, y) := (

f (x − y), f (x − y)
)
for each (x, y) ∈ R

2 where f : R → R

is a differentiable function with the property that f ′ is not continuous (for example,
f (t) := t2 sin(1/t) if t ∈ R \ {0} and f (0) := 0 will do). Then �F = (F1, F2) is dif-
ferentiable in R

2, its pointwise divergence ∂x F1 + ∂y F2 is zero at each point in R
2,

yet �F fails to be of class C 1 in any neighborhood of the origin in R
2.
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Second, the counterexample in (2.5.13) shows that weakening the assumption
in (2.8.102) to asking that the vector field �F ∈ [

C 0(�)
]n

is only differentiable at
Ln-a.e. point in � and whose divergence, computed in a pointwise sense, belongs
to L1(�,Ln) no longer guarantees the validity of the Divergence Formula (2.8.103)
(even when � is very nice, say a bounded Lipschitz domain in R

n).
Finally, we wish to note that variants of Proposition 2.8.11 may be found in [142]

where a notion of absolute continuity for differential forms (hence also for vector
fields) was introduced and used to formulate suitable versions of Stokes’ theorem
(both in the Euclidean setting and on manifolds).

After this preamble, we are ready to present the proof of Proposition 2.8.11.

Proof of Proposition 2.8.11 Fix κ > 0. Since the current hypotheses imply that �F
is bounded in �, we haveNκ

�F ∈ L∞(∂�,Hn−1) ⊆ L1(∂�,Hn−1). Also, the non-
tangential trace �F∣∣κ−n.t.

∂�
exists and matches the ordinary restriction �F∣∣

∂�
atHn−1-a.e.

point on ∂∗�, thanks to item (iii) in Proposition 8.8.6. In addition, Proposition 4.4.2
(presently used with O := �) guarantees that div �F , considered in sense of distribu-
tions in�, is equal to the pointwise divergence

∑n
j=1 ∂ j Fj which, in turn, is assumed

to belong to L1(�,Ln). Granted these properties, Theorem 1.2.1 applies and yields
(2.8.103). �

We continue by giving the formal definition of the category of Lipschitz domains,
aswell as Lyapunov domains of orderα (or, domains of classC 1,α), whereα ∈ (0, 1].
Definition 2.8.12 Let� be a nonempty, proper, open subset ofRn. Also, fix x0 ∈ ∂�.
Call� aLipschitz domain near x0 if there exist two finite parameters r, c > 0
with the following significance. There exist an (n − 1)-dimensional plane H ⊆ R

n

passing through the point x0, a choice N of the unit normal to H, and an open
cylinder

Cr,c := C(x0, H, N , r, c) := {
x ′ + t N : x ′ ∈ H, |x ′ − x0| < r, |t | < c

}

(2.8.104)
(called coordinate cylinder near x0) such that

Cr,c ∩� = Cr,c ∩ {x ′ + t N : x ′ ∈ H and t > ϕ(x ′)}, (2.8.105)

for some Lipschitz function ϕ : H → R, called the defining function for ∂� near x0,
satisfying

ϕ(x0) = 0 and |ϕ(x ′)| < c if |x ′ − x0| ≤ r. (2.8.106)

Collectively, the pair (Cr,c, ϕ) will be referred to as a local chart near x0, whose
geometrical characteristics consist of r, c and the Lipschitz constant of ϕ.

Moreover, call � a locally Lipschitz domain if it is a Lipschitz domain
near every point x ∈ ∂�. Finally, � is simply called a Lipschitz domain if it
is locally Lipschitz and such that the geometrical characteristics of the local charts
associated with each boundary point (making up what occasionally is referred to as
the Lipschitz character of the domain) are independent of the point in question. In
this scenario, call a family of local charts covering ∂� an atlas.
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The categories of C 1,α domains with α ∈ (0, 1] (occasionally referred to as Lya-
punov domains of order α), as well as their local versions, are defined analogously,
requiring that the defining functions ϕ have first-order directional derivatives (along
vectors parallel to the hyperplane H ) which are of class C α (the Hölder space of
order α).

A few useful observations related to the property of an open subset of R
n being

a Lipschitz domain near one of its boundary points are collected below. The reader
is reminded that the superscript c is the operation of taking the complement of a set,
relative to the ambient R

n .

Lemma 2.8.13 Assume that � is a nonempty, proper, open subset of R
n, and fix

x0 ∈ ∂�.

(i) If � is a Lipschitz domain near x0 and if (Cr,c, ϕ) is a local chart near x0 (in the
sense of Definition 2.8.12) then, in addition to (2.8.105), one also has

Cr,c ∩ ∂� = Cr,c ∩ {x ′ + t N : x ′ ∈ H, t = ϕ(x ′)}, (2.8.107)

Cr,c ∩ (�)c = Cr,c ∩ {x ′ + t N : x ′ ∈ H, t < ϕ(x ′)}. (2.8.108)

Furthermore,

Cr,c ∩� = Cr,c ∩ {x ′ + t N : x ′ ∈ H, t ≥ ϕ(x ′)}, (2.8.109)

Cr,c ∩ �̊ = Cr,c ∩ {x ′ + t N : x ′ ∈ H, t > ϕ(x ′)}, (2.8.110)

and, consequently,

E ∩ ∂� = E ∩ ∂(�), ∀E ⊆ Cr,c. (2.8.111)

(ii) Assume that there exist an (n − 1)-dimensional plane H ⊆ R
n passing through

x0, a choice N of the unit normal to H, an open cylinder

Cr,c := {x ′ + t N : x ′ ∈ H, |x ′ − x0| < r, |t | < c}, (2.8.112)

and a Lipschitz function ϕ : H → R satisfying (2.8.106) such that (2.8.107)

holds. Then, if x0 /∈ �̊, it follows that � is a Lipschitz domain near x0.

See [9, Proposition 2.8] for a proof. From Definition 2.8.12 and Lemma 2.8.13 it
follows that5

5 Recall that the strict epigraph or strict supergraph of a function f : R
n−1 → R is the set of points

lying strictly above its graph, i.e., Sepigraph f := {(x ′, xn) ∈ R
n−1 × R : xn > f (x ′)}.
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if � is a Lipschitz domain in R
n with compact boundary then ∂� is an

Ahlfors regular set, σ := Hn−1�∂� is a doubling Borel-regular mea-
sure, ∂∗� = ∂�, and ∂(�) = ∂�; moreover, in any local chart where
� may be locally identified with the strict epigraph of some Lips-
chitz functions φ : R

n−1 → R, formulas (2.8.68)–(2.8.69), detailing
the nature of the surface measure σ and the outward unit normal vector
ν to �, are valid.

(2.8.113)

Here is a utilitarian version of the Divergence Theorem in bounded Lipschitz
domains.

Proposition 2.8.14 Let � ⊆ R
n be a bounded Lipschitz domain. Denote by ν its

outward unit normal and by σ its surface measure. Suppose �F ∈ [
C 1(�)

]n
is a

vector field which, for some aperture parameter κ ∈ (0,∞), satisfies

Nκ
�F ∈ L1(∂�, σ), �F∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�,

and div �F belongs to the space L1(�,Ln).
(2.8.114)

Then ˆ

�

div �F dLn =
ˆ

∂�

ν · ( �F∣∣κ−n.t.

∂�

)
dσ. (2.8.115)

While, in view of (2.8.113), Proposition 2.8.14 is a special case of Theorem 1.2.1,
its perceived versatility and usefulness in applications prompted us to single it out.
There is also a version of Proposition 2.8.14 involving the strict epigraph of a real-
valued Lipschitz function, which is an unbounded Lipschitz domain. Specifically,
Theorem 1.2.1 implies the following result:

Supposeφ : R
n−1 → R is a given Lipschitz function and consider the set

� := {
x = (x ′, xn) ∈ R

n−1 × R : xn > φ(x ′)
}
. Then, the Divergence

Formula (2.8.115) holds for each vector field �F ∈ [
C 1(�)

]n
satisfying

the conditions in (2.8.114) for some aperture parameter κ ∈ (0,∞).

(2.8.116)

Moreover, according to [194, Proposition 2.2, p. 25]wemay replace the nontangential
approach regions �κ(x), with x ∈ ∂�, used in the definition of the nontangential
maximal operator Nκ (cf. (8.2.1)) by any family of the form x + �, with x ∈ ∂�,
where � is a fixed genuine open, one-component, circular cone, whose symmetry
axis is in the vertical direction and whose aperture is sufficiently small (depending
on the Lipschitz constant of φ). We also wish to note that Theorem 1.2.1 implies
(bearing in mind (5.9.21)–(5.9.22)) that

the result stated in (2.8.116) continues to hold if φ is assumed to
belong to the larger category of BMO1 functions, i.e., assuming that
φ ∈ L1

loc(R
n−1,Ln−1) has distributional first-order partial derivatives

∂ jφ, with j ∈ {1, . . . , n − 1}, belonging to the space BMO(Rn−1).

(2.8.117)
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Finally, we remark that the version of the Divergence Theorem from (2.8.117) may
be adapted to the class of bounded BMO1-domains, i.e., nonempty open bounded
subsets of R

n which may be locally described (up to a rigid transformation) as strict
epigraphs of real-valued BMO1 functions defined in R

n−1.
Moving on, we shall give Proposition 2.8.14 two proofs, the first of which is the

reasonably self-contained argument presented below.

Proof of Proposition 2.8.14 For starters, the fact that �F has an absolutely integrable
nontangential maximal function implies that �F ∈ [

L1
bdd(�,Ln)

]n
(cf. (8.6.50)).

Bearing this in mind and using a smooth, finite, partition of unity, matters may
be localized to the case when � is the strict epigraph of some Lipschitz function
ϕ : R

n−1 → R and �F ∈ [
C 1(�)

]n
is as in (2.8.114) with the additional property that

it vanishes identically outside of a bounded subset of �. Fix an arbitrary ε > 0 and
define

�Fε := �F(· + εen) ∈
[
C 1(�)

]n
. (2.8.118)

Next, we temporarily digress and make the claim that, if� is the strict epigraph of
a Lipschitz function ϕ : R

n−1 → R, then for each scalar-valued f ∈ C 1(�) which
vanishes outside of a compact subset of � we have

ˆ

�

ξ · ∇ f dLn =
ˆ

∂�

(ν · ξ) f dσ each vector ξ ∈ R
n. (2.8.119)

In the proof of this claim we follow [251, Proposition 1.2, p. 310], with some addi-
tional clarifications. Consider first the case when ξ = en , in which scenario we may
write

ˆ

�

en · ∇ f dLn =
ˆ

�

∂n f dLn =
ˆ

Rn−1

(ˆ ∞

ϕ(x ′)
(∂n f )(x

′, xn) dxn
)
dx ′

= −
ˆ

Rn−1
f
(
x ′, ϕ(x ′)

)
dx ′ =

ˆ

∂�

νn f dσ

=
ˆ

∂�

(ν · en) f dσ. (2.8.120)

Above, the second equality is a consequence of Fubini’s theorem, the third equality is
implied by the Fundamental Theorem of Calculus (applied in the variable xn , keeping
in mind that, for each x ′ fixed, f (x ′, xn) vanishes for xn sufficiently large), and the
fourth equality is a consequence of (2.8.66)–(2.8.69) (cf. also Proposition 5.6.17).
Allowing other vectors ξ ∈ R

n is done as follows. According to (the proof of) Corol-
lary 5.6.23, having� the strict epigraph of a real-valued Lipschitz function defined in
R

n−1 is a quality preserved in any other system of coordinates obtained by a rotation
in R

n sufficiently close to the identity. As such, the argument in (2.8.120) (carried
out in this new, rotated coordinate system of axes, in place of the “standard” one)
shows that the integral identity
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ˆ

�

en · ∇ f dLn =
ˆ

∂�

(ν · en) f dσ (2.8.121)

remains valid if en is replaced by Ren where R is any rotation in R
n sufficiently

close to the identity. Hence, there exists some small δ > 0 with the property that for
each j ∈ {1, . . . , n} we have

ˆ

�

(en + δe j ) · ∇ f dLn =
ˆ

∂�

ν · (en + δe j ) f dσ. (2.8.122)

Subtracting (2.8.121) from (2.8.122) then dividing by δ proves the integral identity
in (2.8.119) for each vector ξ ∈ {

e1, . . . , en
}
. By linearity, this establishes (2.8.119)

as stated.
Returning to the mainstream discussion, writing formula (2.8.119) for ξ := e j

and f := Fε
j , the j-th component of the vector field from (2.8.118), then summing

up over j ∈ {1, . . . , n} leads to the conclusion that

ˆ

�

div �Fε dLn =
ˆ

∂�

ν · �Fε dσ. (2.8.123)

Note that, thanks to the first two hypotheses in (2.8.114) and Lebesgue’s Dominated
Convergence Theorem,

�Fε
∣
∣
∂�

−→ �F∣∣κ−n.t.

∂�
in L1(∂�, σ) as ε → 0+. (2.8.124)

Also,

ˆ

�

div �Fε dLn =
ˆ

�

(div �F)(· + εen) dLn =
ˆ

�+εen
div �F dLn

=
ˆ

�

1�+εendiv �F dLn −→
ˆ

�

div �F dLn as ε → 0+, (2.8.125)

by the last hypothesis in (2.8.114) andLebesgue’sDominatedConvergenceTheorem.
At this stage, (2.8.115) follows from (2.8.123)–(2.8.125).

In relation to the proof of Proposition 2.8.14 it is worth pointing out that we
could have established (2.8.123) directly, albeit via an argument that is a little less
elementary. Concretely, use the bi-Lipschitz change of variables

R
n−1 × (0, t) � (x ′, t) "−→ (

x ′, ϕ(x ′)+ t
) ∈ � (2.8.126)

whose Jacobian is 1 almost everywhere (cf., e.g., [80, Theorem 2, p. 99]), then rely
on Fubini’s theorem to write
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ˆ

�

div �Fε dLn =
ˆ

Rn−1

ˆ ∞

0

n∑

j=1
(∂ j F

ε
j )
(
x ′, ϕ(x ′)+ t

)
dt dx ′. (2.8.127)

Observe that, if 1 ≤ j ≤ n − 1, then for each t ∈ (0,∞) and Ln−1-a.e. x ′ ∈ R
n−1

we have

(∂ j F
ε
j )
(
x ′, ϕ(x ′)+ t

) =∂ j
[
Fε
j

(
x ′, ϕ(x ′)+ t

)]

− d

dt

[
(∂ jϕ)(x ′)Fε

j

(
x ′, ϕ(x ′)+ t

)]
(2.8.128)

and, corresponding to j = n,

(∂n F
ε
n )
(
x ′, ϕ(x ′)+ t

) = d

dt

[
Fε
n

(
x ′, ϕ(x ′)+ t

)]
. (2.8.129)

Since for each fixed t ∈ (0,∞) the function ∂ j
[
Fε
j

(
x ′, ϕ(x ′)+ t

)]
integrates to

zero in the variable x ′ ∈ R
n−1 given that Fε

j has compact support, from (2.8.127)–
(2.8.129) and the Fundamental Theorem of Calculus we therefore obtain

ˆ

�

div �Fε dLn =
ˆ

Rn−1

ˆ ∞

0

n∑

j=1
(∂ j F

ε
j )
(
x ′, ϕ(x ′)+ t

)
dt dx ′

=
ˆ

Rn−1

{( n−1∑

j=1
(∂ jϕ)(x ′)Fε

j

(
x ′, ϕ(x ′)

))− Fε
n

(
x ′, ϕ(x ′)

)}
dx ′

=
ˆ

Rn−1

(
(∇′ϕ)(x ′),−1)

√∣∣(∇′ϕ)(x ′)
∣∣2 + 1

· �Fε
(
x ′, ϕ(x ′)

)√∣
∣(∇′ϕ)(x ′)

∣
∣2 + 1 dx ′

=
ˆ

∂�

ν · �Fε dσ, (2.8.130)

again, bearing in mind (2.8.66)–(2.8.69). This proves (2.8.123).

There is yet another proof of Proposition 2.8.14 inwhich the idea is to approximate
� by smooth subdomains � j ↗ � in an appropriate sense as j →∞, then pass to
the limit in the Divergence Formula written for �F restricted to each � j to obtain
the desired Divergence Formula in the original domain �. Such an approximation
theorem, of wider interest, is proved in [183]. To state it, we agree to let Dist [E, F]
denote the Pompeiu–Hausdorff distance6 between arbitrary nonempty subsets E, F

6 What we here call the Pompeiu–Hausdorff distance has been typically referred to in the literature
simply as the Hausdorff distance. For historical accuracy, it is significant to note that D. Pompeiu
was the first to introduce (a slight version of) this concept in his thesis (written under the supervision
of H. Poincaré). Pompeiu’s thesis has appeared in print in [219], published in 1905, where Pompeiu
calls this notion écart (mutuel) between two sets. Subsequently, F. Hausdorff has revisited this topic
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of R
n , defined as

Dist [E, F] := max
{
sup
x∈E

inf
y∈F |x − y|, sup

y∈F
inf
x∈E |x − y|

}
. (2.8.131)

Theorem 2.8.15 Let � ⊆ R
n be a Lipschitz domain with compact boundary. Then

there exist two sequences of open subsets of R
n, denoted by {�±

j } j∈N, which satisfy
the following properties.

(1) For each j ∈ N, the sets �±
j are C 1,1 domains with compact boundaries, and

�+
j ⊆ �+

j+1 ⊆ � ⊆ � ⊆ �−
j+1 ⊆ �−

j for all j ∈ N, (2.8.132)

lim
j→∞Dist

[
∂�, ∂(�+

j )
] = 0 = lim

j→∞Dist
[
∂�, ∂(�−

j )
]
. (2.8.133)

(2) For each j ∈ N, both �+
j and �−

j are Lipschitz domains and the Lipschitz char-
acter of �±

j is controlled by that of � independently of j ∈ N.

(3) There exist a vector field �h ∈ [
C∞(Rn)

]n
and a constant c > 0 such that the

following transversality conditions hold for every j ∈ N:

�h · ν±j ≥ c on ∂(�±
j ) and �h · ν ≥ c at Hn−1-a.e. point on ∂�, (2.8.134)

where ν and ν±j are, respectively, the outward unit normals to � and �±
j .

(4) There exists a covering of ∂� with finitely many local coordinate cylinders (cf.
Definition 2.8.12), say,

∂� ⊆
⋃

1≤k≤K

Ck, Ck = C(xk, Hk, Nk, rk, ck), (2.8.135)

which, along with their concentric doubles, are also local coordinate cylinders
for ∂(�±

j ) for each j ∈ N. Also, if for 1 ≤ k ≤ K one denotes the middle cross-
section of the cylinder Ck by �Ck := {x ′ ∈ Hk : |x ′ − xk | < rk}, and if

ϕk : Hk −→ R, ϕ±k, j : Hk −→ R, j ∈ N, (2.8.136)

denote the Lipschitz functions whose graphs inside Ck coincide, respectively,
with ∂� and ∂(�±

j ), then

sup
j∈N

(
max
1≤k≤K

‖∇ϕ±k, j‖L∞(Hk ,Hn−1)

)
< +∞, (2.8.137)

and, for each k ∈ {1, . . . , K },

in 1914, and on p. 463 of his book [117] he correctly attributes the introduction of this notion to
Pompeiu.
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∇ϕ±k, j −→ ∇ϕk at Hn−1-a.e. point in �Ck as j →∞. (2.8.138)

(5) For each j ∈ N there exist bi-Lipschitz homeomorphisms (with constants inde-
pendent of j)

�±
j : ∂� −→ ∂(�±

j ) (2.8.139)

with the property that there exists an aperture parameter κ > 0 such that

�±
j (x) ∈ �κ(x) for each j ∈ N, and each x ∈ ∂�, (2.8.140)

�±
j (x) → x as j →∞, for each fixed point x ∈ ∂�, (2.8.141)

ν±j ◦�±
j → ν at Hn−1-a.e. point on ∂� as j →∞. (2.8.142)

Furthermore, there exist two constants, C0 ∈ (0, 1) andC1 ∈ (1,∞), along with
a sequence ofHn−1-measurable functions ω±

j : ∂� → [C0,C1] for j ∈ N, such
that

lim
j→∞ω±

j (x) = 1 forHn−1-a.e. x ∈ ∂�, (2.8.143)

and with the property that for each j ∈ N and each f ∈ L1
(
∂(�±

j ),Hn−1) the
following change of variable formula holds:

ˆ

∂(�±
j )

f dHn−1 =
ˆ

∂�

f ◦�±
j ω±

j dHn−1. (2.8.144)

(6) If, in addition, � satisfies a uniform exterior ball condition with radius R > 0,
then there exists a (typically small) constant c > 0, which depends only on the
Lipschitz character of �, and which has the property that for each j ∈ N both
�+

j and �−
j satisfy a uniform exterior ball condition with radius c · R.

Furthermore, in this scenario, there exists a constant C ∈ Rwhich depends only
on the Lipschitz character of � with the property that if W±

j are the Weingarten
matrices (i.e., second fundamental forms) of ∂(�±

j ) then, for every j ∈ N,

W±
j ≥ C/R at Hn−1-a.e. point on ∂(�±

j ). (2.8.145)

In particular, if G±
j are the mean curvatures of ∂(�±

j ) then, for every j ∈ N,

G±
j ≥ C/R at Hn−1-a.e. point on ∂(�±

j ). (2.8.146)

(7) If � is a convex set then both �+
j and �−

j are also convex sets for each j ∈ N.

Approximation results similar in spirit, of various degrees of generality and inclu-
siveness, have been previously proved by a number of authors, including J. Nečas
[210], P. Grisvard [110], A.P. Calderón [37], G. Verchota [257], C. Kenig and T. Toro
[150], V. Adofsson [3], S. Hofmann, M. Mitrea, and M. Taylor [124].
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Here is how Theorem 2.8.15 may be used to produce an alternative proof of
Proposition 2.8.14.

Second Proof of Proposition 2.8.14 Consider a sequence {�+
j } j∈N of boundedC 1,1

subdomains of�, which exhaust� in themanner described inTheorem2.8.15.Given
that for each fixed j ∈ N we have �F∣∣

�+
j
∈ [

C 1(�+
j )
]n
, we may rely on the classical

Divergence Theorem (for smooth vector fields in smooth bounded domains) to write

ˆ

�+
j

div �F dLn =
ˆ

∂(�+
j )

ν+j ·
( �F∣∣

∂�+
j

)
dHn−1, (2.8.147)

where ν+j is the outward unit normal to �+
j . In addition, for each fixed j ∈ N the

change of variable formula (2.8.144) gives

ˆ

∂(�+
j )

ν+j ·
( �F∣∣

∂�+
j

)
dHn−1 =

ˆ

∂�

(ν+j ◦�+
j ) ·

( �F ◦�+
j

)
ω+

j dHn−1, (2.8.148)

where the bi-Lipschitz homeomorphism �+
j : ∂� → ∂(�+

j ) and the Jacobian ω+
j

are as in item (5) of Theorem 2.8.15. In particular, there exists κo ∈ (0,∞) such that

�+
j (x) ∈ �κo(x) for each j ∈ N, and each x ∈ ∂�, (2.8.149)

�+
j (x) −→ x as j →∞, for each fixed point x ∈ ∂�, (2.8.150)

ν+j ◦�+
j −→ ν at Hn−1-a.e. point on ∂� as j →∞, (2.8.151)

there exists C ∈ (0,∞)with sup
j∈N

‖ω+
j ‖L∞(∂�,σ) ≤ C, (2.8.152)

and lim
j→∞ω+

j (x) = 1 for Hn−1-a.e. point x ∈ ∂�. (2.8.153)

The properties recorded in (2.8.149)–(2.8.150) imply that

( �F ◦�+
j

)
(x) −→ ( �F∣∣κo−n.t.

∂�

)
(x) as j →∞,

for each x ∈ ∂� where the nontangential limit exists,
(2.8.154)

and ∣∣ �F ◦�+
j

∣∣ ≤ Nκo
�F on ∂�, for each j ∈ N. (2.8.155)

From (2.8.154), (2.8.155), (2.8.114), Propositions 8.4.1 and 8.9.8 we then conclude
that

�F ◦�+
j −→ �F∣∣κ−n.t.

∂�
in L1(∂�, σ) as j →∞. (2.8.156)

At this stage we may pass to the limit j →∞ in (2.8.147) and, on account of
(2.8.148), (2.8.151), (2.8.156), (2.8.152), (2.8.153), the fact that div �F ∈ L1(�,Ln),
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and Lebesgue’s Dominated Convergence Theorem, conclude that (2.8.115)
holds. �

Moving on, let � ⊆ R
n be an arbitrary open set, and pick a sequence {K j } j∈N of

compact subsets of � such that K j ↗ �. Then, as is well known,

d( f, g) :=
∞∑

j=1

‖ f − g‖L1(K j ,Ln)

1+ ‖ f − g‖L1(K j ,Ln)

, ∀ f, g ∈ L1
loc(�,Ln), (2.8.157)

is a distance, and

(
L1
loc(�,Ln), d

)
is a complete metric space. (2.8.158)

Proposition 2.8.16 Suppose � ⊆ R
n is an open set of locally finite perimeter.

Denote by ν the geometric measure theoretic outward unit normal to � and abbre-
viate σ := Hn−1�∂�. Also, assume

∣∣∣∣∣∣ · ∣∣∣∣∣∣ is a norm on the space

[
C 1
c (Rn)

∣∣
�

]n :=
{ �G∣∣

�
: �G ∈ [

C 1
c (Rn)

]n}
(2.8.159)

satisfying the properties:

(i) the canonical embedding
([
C 1
c (Rn)

∣∣
�

]n
,
∣∣∣∣∣∣ · ∣∣∣∣∣∣

)
↪→ [

L1
loc(�,Ln)

]n
, where the

latter space is equipped with the topology induced by the distance function
(2.8.157), is continuous;

(ii) there exists a constant C ∈ (0,∞) such that, for every �F ∈ [
C 1
c (Rn)

∣∣
�

]n
,

‖div �F‖L1(�,Ln) +
∥∥ �F∣∣

∂∗�
‖[L1(∂∗�,σ)]n ≤ C

∣∣∣∣∣∣ �F∣∣∣∣∣∣. (2.8.160)

Define
V(�) := the closure of

[
C 1
c (Rn)

∣∣
�

]n
in

∣∣∣∣∣∣ · ∣∣∣∣∣∣. (2.8.161)

Then the following conclusions are true:

(a) V(�) ↪→ [
L1
loc(�,Ln)

]n
continuously;

(b) if �F ∈ V(�) then div �F, taken in the sense of distributions inD′(�) belongs to
L1(�,Ln);

(c) there exists a linear and bounded mapping

Tr : V(�) −→ [
L1(∂∗�, σ)

]n
(2.8.162)

such that
ˆ

�

div �F dLn =
ˆ

∂∗�
ν · Tr �F dσ for every �F ∈ V(�). (2.8.163)
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Proof We begin by noting that the continuity of the embedding from item (i) implies
that for every ε ∈ (0,∞) there exists δ ∈ (0,∞) with the property that the ball

B|||·|||(0, δ) considered in
([
C 1
c (Rn)

∣∣
�

]n
,
∣∣∣∣∣∣ · ∣∣∣∣∣∣

)
is contained in the pre-image under

the aforementioned embedding of the ball Bd(0, ε) considered in the metric space([
L1
loc(�,Ln)

]n
, d
)
, where d is the distance defined in (2.8.157). As such, if �F in

[
C 1
c (Rn)

∣∣
�

]n
satisfies

∣∣∣∣∣∣ �F∣∣∣∣∣∣ < δ then necessarily d( �F, 0) < ε. In particular,

if { �Fj } j∈N is a Cauchy sequence in
([
C 1
c (Rn)

∣
∣
�

]n
,
∣
∣
∣
∣
∣
∣ · ∣∣∣∣∣∣

)
then

{ �Fj } j∈N is a Cauchy sequence in
([
L1
loc(�,Ln)

]n
, d
)
.

(2.8.164)

Then (2.8.164) and (2.8.158) guarantee that

for each Cauchy sequence { �Fj } j∈N in
([
C 1
c (Rn)

∣
∣
�

]n
,
∣
∣
∣
∣
∣
∣ · ∣∣∣∣∣∣

)

there exists a unique �F ∈ [
L1
loc(�,Ln)

]n
such that �Fj → �F in[

L1
loc(�,Ln)

]n
as j →∞.

(2.8.165)

Within the space of Cauchy sequences in
([
C 1
c (Rn)

∣
∣
�

]n
,
∣
∣
∣
∣
∣
∣ · ∣∣∣∣∣∣

)
, use the notation

{ �Fj } j∈N ∼ { �G j } j∈N if interlacing { �Fj } j∈N and { �G j } j∈N yields a Cauchy sequence in([
C 1
c (Rn)

∣∣
�

]n
,
∣∣∣∣∣∣ · ∣∣∣∣∣∣

)
. Then ∼ is an equivalence relation on the space of Cauchy

sequences in
([
C 1
c (Rn)

∣∣
�

]n
,
∣∣∣∣∣∣ · ∣∣∣∣∣∣

)
and V(�) may be realized as the space of

Cauchy sequences in
([
C 1
c (Rn)

∣∣
�

]n
,
∣∣∣∣∣∣ · ∣∣∣∣∣∣

)
modulo ∼, i.e.,

V(�) =
{[{ �Fj } j∈N

] : { �Fj } j∈N Cauchy sequence in
([
C 1
c (Rn)

∣∣
�

]n
,
∣∣∣∣∣∣ · ∣∣∣∣∣∣

)}
,

(2.8.166)
where [·] denotes the equivalence class modulo ∼. The mapping

V(�) � [{ �Fj } j∈N
] "−→ �F ∈ [

L1
loc(�,Ln)

]n
(2.8.167)

where �F is associated with { �Fj } j∈N as in (2.8.165) then yields a continuous embed-
ding of V(�) into the space

[
L1
loc(�,Ln)

]n
. This proves (a).

To prove (b), let �F ∈ V(�) be arbitrary. What we proved so far ensures the
existence of a sequence { �Fj } j∈N from

[
C 1
c (Rn)

∣∣
�

]n
which is Cauchy with respect

to the norm
∣
∣
∣
∣
∣
∣ · ∣∣∣∣∣∣ and such that �Fj → �F as j →∞ in

[
L1
loc(�,Ln)

]n
. By (ii) it

follows that

{div �Fj } j∈N is a Cauchy sequence in L1(�,Ln) (2.8.168)
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and { �Fj

∣∣
∂∗�

}
j∈N is a Cauchy sequence in L1(∂∗�, σ). (2.8.169)

Hence, (2.8.168) guarantees the existence of some function u ∈ L1(�,Ln) such that

div �Fj −→ u in L1(�,Ln) as j →∞. (2.8.170)

Then for each test function ψ ∈ C∞
c (�) we may write (with 〈·, ·〉 denoting the

distributional pairing in �)

〈 �F,∇ψ〉 =
ˆ

�

�F · ∇ψ dLn = lim
j→∞

ˆ

�

�Fj · ∇ψ dLn

= − lim
j→∞

ˆ

�

(div �Fj )ψ dLn = −
ˆ

�

uψ dLn, (2.8.171)

where the last equality uses (2.8.170). Thus, div �F = u ∈ L1(�,Ln), proving (b).
From (2.8.169) we also see that there exists some �f ∈ [

L1(∂∗�, σ)
]n

such that
�Fj

∣∣
∂∗�

→ �f in [L1(∂∗�, σ)
]n

as j →∞. By interlacing sequences we see that �f is
uniquely determined by �F . Moreover, (2.8.160) implies ‖ �f ‖[L1(∂∗�,σ)]n ≤ C

∣∣∣∣∣∣ �F∣∣∣∣∣∣.
Denoting Tr �F := �f then yields a mapping as in (2.8.162) which is well-defined,
linear, and bounded. In addition, the De Giorgi–Federer version of the Divergence
Theorem (cf. Theorem 1.1.1) gives

ˆ

�

div �Fj dLn =
ˆ

∂∗�
ν · ( �Fj

∣∣
∂∗�

)
dσ for each j ∈ N. (2.8.172)

Passing to the limit as j →∞ in the latter equality then establishes (2.8.163). This
completes the proof of (c). �

A special case of Proposition 2.8.16 worth singling out is when � is a bounded
Lipschitz domain in R

n . In that scenario, if we take

∣∣∣∣∣∣ �F∣∣∣∣∣∣ := ‖ �F‖[L1(�,Ln)]n +∑n
j=1 ‖∂ j �F‖[L1(�,Ln)]n

for each �F ∈ [
C 1
c (Rn)

∣∣
�

]n
,

(2.8.173)

then conditions (i)–(ii) in Proposition 2.8.16 are satisfied. Also, corresponding to this
choice of

∣
∣
∣
∣
∣
∣ · ∣∣∣∣∣∣ the space defined in (2.8.161) becomesV(�) = [

W 1,1(�)
]n

and the
mapping (2.8.162) is the Sobolev trace operator

Tr : [W 1,1(�)
]n −→ [

L1(∂�, σ)
]n

. (2.8.174)

As a consequence of (2.8.163), whenever � is a bounded Lipschitz domain in R
n

we have the Divergence Formula (with the trace understood in the sense of (2.8.174))
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ˆ

�

div �F dLn =
ˆ

∂�

ν · Tr �F dσ for every �F ∈ [
W 1,1(�)

]n
. (2.8.175)

Our next proposition contains a version of the Divergence Theorem for NTA
domains with Ahlfors regular boundaries, and vectors fields in Sobolev spaces with
bounded support possessing a nontangential pointwise trace.

Proposition 2.8.17 Let � ⊆ R
n (where n ∈ N, n ≥ 2) be an NTA domain with the

property that ∂� is an Ahlfors regular set. Denote by ν the geometric measure
theoretic outward unit normal to� and abbreviate σ := Hn−1�∂�. Then there exists
an aperture parameterκ = κ(�) ∈ (0,∞)with the property that for each vector field
�F ∈ [

W 1,p(�)
]n
, with p ∈ (1,∞), which vanishes outside of a bounded subset of

� and whose nontangential boundary trace �F∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂� one

has ˆ

�

div �F dLn =
ˆ

∂�

ν · ( �F∣∣κ−n.t.

∂�

)
dσ. (2.8.176)

Proof For each z ∈ ∂�, denote by zρ the corkscrew point relative to z at scale
ρ ∈ (0,∞) in�, then abbreviateUρ(z) := B(zρ, ρ/C)whereC = C(�) ∈ (1,∞)

is some fixed, sufficiently large constant. In particular, there exist c ∈ (0,∞) and
ρo ∈ (0,∞) such that

Uρ(z) ⊆ � ∩ B(z, ρ) and Ln
(Uρ(z)

) ≥ c ρn,

for all z ∈ ∂� and all ρ ∈ (0, ρo).
(2.8.177)

Also, since dist(y, ∂�) ≈ ρ ≈ |y − z| uniformly for y ∈ Uρ(z), there exists some
aperture parameter κ ∈ (0,∞) such that

Uρ(z) ⊆ �κ(z) for each z ∈ ∂�. (2.8.178)

To proceed, fix a vector field �F ∈ [
W 1,p(�)

]n
, with p ∈ (1,∞), whose nontan-

gential boundary trace �F∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�, and such that �F van-

ishes outside � ∩ K where K ⊆ R
n is a compact set. Assume that for each point

x ∈ ∂� ∩ K it is possible to find a radius rx ∈ (0,∞)with the property that for each
vector field �G ∈ [

W 1,p(�)
]n
, with p ∈ (1,∞), whose nontangential boundary trace

�G∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�, and such that �G vanishes outside � ∩ B(x, rx )

we have
ˆ

�

div �G dLn =
ˆ

∂�

ν · ( �G∣∣κ−n.t.

∂�

)
dσ. (2.8.179)

We then claim that (2.8.176) holds. This follows from a partition of unity argu-
ment. Specifically, the open cover

{
B(x, rx )

}
x∈∂�∩K of the compact set ∂� ∩ K

may be refined to a finite cover, say
{
B(xi , rxi )

}
1≤i≤N . Bring in a family of func-

tions ξi ∈ C∞
c

(
B(xi , rxi )

)
with 1 ≤ i ≤ N , satisfying

∑N
i=1 ξi ≡ 1 near ∂� ∩ K ,
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and decompose �F =∑N
i=0 �Gi where �G0 :=

(
1−∑N

i=1 ξi
) �F and �Gi := ξi �F for

1 ≤ i ≤ N . Then for each i ∈ {1, . . . , N } the vector field �Gi has all the qualities
required in relation to (2.8.179). As such, for each i ∈ {1, . . . , N } we have

ˆ

�

div �Gi dLn =
ˆ

∂�

ν · ( �Gi

∣
∣κ−n.t.

∂�

)
dσ. (2.8.180)

Also, since �G0 ∈
[
W 1,p(�)

]n
is compactly supported in �, ordinary integration by

parts gives

ˆ

�

div �G0 dLn =
ˆ

∂�

ν · ( �G0

∣
∣κ−n.t.

∂�

)
dσ. (2.8.181)

Summing up formulas (2.8.180)–(2.8.181) then yields (2.8.176), as claimed.
Recall from Proposition 5.11.15 that there exist r, R ∈ (0,∞) with r < R such

that for each x ∈ ∂� one may find an NTA domain �x ⊆ R
n such that �x ⊆ �

and � ∩ B(x, r) ⊆ �x ⊆ � ∩ B(x, R). In view of the fact that (2.8.179) implies
(2.8.176) it is therefore enough to show that for each x ∈ ∂� ∩ K and each vector

field �G ∈ [
W 1,p(�)

]n
, with p ∈ (1,∞), whose nontangential boundary trace �G∣∣κ−n.t.

∂�

exists at σ -a.e. point on ∂�, and such that �G vanishes outside � ∩ B(x, r), formula
(2.8.179) holds. To justify (2.8.179), observe that �G∣∣

�x
∈ [

W 1,p(�x )
]n
. On the other

hand,�x is a bounded NTA domain, hence an (ε, δ)-domain (cf. (5.11.66)). As such,
P. Jones’ result recorded in (5.11.30) ensures that there exists

�H ∈ [
W 1,p(Rn)

]n
with compact support, such that �H ∣∣

�x
= �G∣∣

�x
. (2.8.182)

Wemay then find a large number R ∈ (0,∞) and a sequence { �Hj } j∈N ⊆
[
C∞
c (Rn)

]n

such that each �Hj is supported in B(0, R) and �Hj → �H in
[
W 1,p(Rn)

]n
as j →∞.

Also, as a special case of general results regarding traces on Ahlfors regular closed
subsets of R

n proved by A. Jonsson and H. Wallin in [138], we know that for each
ω ∈ W 1,p(Rn) the limit

(
RRn→∂� ω

)
(x) := lim

r→0+

 

B(x,r)
ω dLn exists at σ -a.e. x ∈ ∂�, (2.8.183)

and this trace operator induces a well-defined, linear, and continuous mapping

RRn→∂� : W 1,p(Rn) −→ L p(∂�, σ). (2.8.184)

We may then write
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ˆ

�

div �G dLn =
ˆ

�x

div �G dLn =
ˆ

�x

div �H dLn

= lim
j→∞

ˆ

�x

div �Hj dLn = lim
j→∞

ˆ

�

div �Hj dLn

= lim
j→∞

ˆ

∂�

ν · ( �Hj

∣∣
∂�

)
dσ = lim

j→∞

ˆ

∂�

ν · (RRn→∂�
�Hj
)
dσ

=
ˆ

∂�

ν · (RRn→∂�
�H)

dσ. (2.8.185)

At this stage, there remains to show that

RRn→∂�
�H = �G∣∣κ−n.t.

∂�
at σ -a.e. point on ∂� ∩ B(x, r). (2.8.186)

With the goal of proving (2.8.186), denote by A the collection of all z ∈ ∂� ∩ B(x, r)

with the property that both
(
RRn→∂�

�H)
(z) = lim

ρ→0+

ffl
B(z,ρ)

�H dLn and
( �G∣∣κ−n.t.

∂�

)
(z)

exist. In such a scenario, we then have

lim
ρ→0+

 

Uρ(z)

�H dLn = lim
ρ→0+

 

Uρ(z)

�G dLn = ( �G∣∣κ−n.t.

∂�

)
(z) (2.8.187)

by (2.8.182). Note that σ
(
∂� ∩ B(x, r) \ A

) = 0 by (2.8.183) and assumptions. For
each λ > 0 fixed, let us now introduce

Eλ :=
{

z ∈ A :
∣∣
∣∣ lim

ρ→0+

 

B(z,ρ)

�H dLn − lim
ρ→0+

 

Uρ(z)

�H dLn

∣∣
∣∣ > λ

}

. (2.8.188)

Then, with MRn denoting the classical Hardy–Littlewood maximal operator in R
n ,

for every z ∈ Eλ and each �ϕ ∈ [
C∞
c (Rn)

]n
we have

λ <

∣∣
∣ lim

ρ→0+

 

B(z,ρ)

�H dLn − lim
ρ→0+

 

Uρ (z)

�H dLn
∣∣
∣

=
∣∣∣ lim

ρ→0+

 

B(z,ρ)

( �H − �ϕ) dLn − lim
ρ→0+

 

Uρ(z)
( �H − �ϕ) dLn

∣∣∣

≤ CMRn ( �H − �ϕ)(z), (2.8.189)

thanks to (2.8.177). To continue, we shall make two claims asserting that, for any
ω ∈ W 1,p(Rn),

(MRnω
)
(z) ≤ lim

t→0+

 

B(z,t)
MRnω dLn for σ -a.e. z ∈ ∂�, (2.8.190)
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and ∥∥MRnω
∥∥
W 1,p(Rn)

≤ C(n, p)‖ω‖W 1,p(Rn), (2.8.191)

whereC(n, p) > 0 is a finite constant independent ofω. Assuming these for the time
being, we then deduce from (2.8.189)–(2.8.190) that

λ < C lim
t→0+

 

B(z,t)
MRn ( �H − �ϕ) dLn = CRRn→∂�

(MRn ( �H − �ϕ)
)
(z)

for σ -a.e. point z ∈ Eλ and each �ϕ ∈ [
C∞
c (Rn)

]M
.

(2.8.192)

Thus, on account of (2.8.191)–(2.8.192), Chebyshev’s inequality, and (2.8.184), for
every vector field �φ ∈ [

C∞
c (Rn)

]n
we may estimate

λpσ(Eλ) ≤ C
ˆ

∂�

∣∣RRn→∂�

(MRn ( �H − �ϕ)
)∣∣p dσ

≤ C
∥∥MRn ( �H − �ϕ)

∥∥p

W 1,p(Rn)
≤ C

∥∥ �H − �ϕ∥∥p

[W 1,p(Rn)]n , (2.8.193)

where C ∈ (0,∞) is a constant independent of �ϕ. Upon recalling that we have
C∞
c (Rn) ↪→ W 1,p(Rn) densely, we may conclude from (2.8.193) that σ(Eλ) = 0

for every λ > 0. In view of (2.8.188) and (2.8.178), this further entails

(RRn→∂�
�H)(z) = lim

ρ→0+

 

B(z,ρ)

�H dLn = lim
ρ→0+

 

Uρ(z)

�H dLn

= lim
ρ→0+

 

Uρ(z)

�G dLn

= ( �G∣∣κ−n.t.

∂�

)
(z) for σ -a.e. z ∈ ∂� ∩ B(x, r), (2.8.194)

so (2.8.186) follows from (2.8.194). This finishes the proof of (2.8.186), modulo the
justification of (2.8.190)–(2.8.191).

Estimate (2.8.191) has been established in [152]. As regards (2.8.190), fix
ω ∈ W 1,p(Rn) and denote by S the collection of points z ∈ ∂� where the limit
lim
t→0+

ffl
B(z,t) MRnω dLnexists. Since by (2.8.191) the function MRnω belongs to

W 1,p(Rn), it follows from (2.8.183) that, on the one hand,

σ(∂� \ S) = 0. (2.8.195)

On the other hand, for every z ∈ S and every R > 0 we may write
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lim
t→0+

 

B(z,t)

(MRnω
)
(y) dy

≥ lim
t→0+

[
1

Ln(B(z, t))

ˆ

B(z,t)

1

Ln(B(y, R))

ˆ

B(y,R)

|ω(x)| dx dy
]

= lim
t→0+

[
1

Ln(B(z, t))Ln(B(0, R))

ˆ

B(z,t+R)

|ω(x)|Ln
(
B(z, t) ∩ B(x, R)

)
dx

]

≥ lim
t→0+

[ 

B(z,R)

|ω(x)| L
n
(
B(z, t) ∩ B(x, R)

)

Ln(B(z, t))
dx

]

=
 

B(z,R)

|ω(x)| dx, (2.8.196)

where the first equality in (2.8.196) uses Fubini’s theorem, and the very last equality
in (2.8.196) follows from an application of Lebesgue’s Dominated Convergence
Theorem. In this regard, it helps to observe that if x ∈ B(z, R) then z ∈ B(x, R),
hence B(z, t) ⊆ B(x, R) for t > 0 sufficiently small. On account of (2.8.195), the
estimate in (2.8.190) now follows by taking the supremum over R > 0 of the most
extreme sides in (2.8.196). This justifies (2.8.190) and finishes the proof of the
proposition. �

If a compactly supported vector distribution is such that its divergence is a complex
Borel measure, then the total mass of this measure is zero.

Lemma 2.8.18 Let � ⊆ R
n be an arbitrary open set and consider

�F ∈ [
E ′(�)

]n
with div �F ∈ CBM(�). (2.8.197)

Then

(div �F)(�) = 0. (2.8.198)

In particular, with L1(�,Ln) canonically identified as a subspace of CBM(�),

if actually div �F ∈ L1(�,Ln) then
ˆ

�

div �F dLn = 0. (2.8.199)

Proof The current assumptions imply that div �F belongs to E ′(�) ∩ CBM(�). As
such, we may invoke (4.6.25) to write

(div �F)(�) = E ′(�)〈div �F, 1〉E (�) = −[E ′(�)]n
〈 �F,∇1〉[E (�)]n = 0, (2.8.200)

as wanted. �

In turn, Lemma 2.8.18 is an ingredient in the proof of the following result.
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Proposition 2.8.19 Fix n ∈ N with n ≥ 2. Then for each family of functions

f1, . . . , fn−1 ∈ Ln/(n−1)(Rn
+,Ln) with

n−1∑

j=1
∂ j f j ∈ L1(Rn

+,Ln) (2.8.201)

one has ˆ

R
n+

n−1∑

j=1
∂ j f j dLn = 0. (2.8.202)

Proof Pick some function θ ∈ C∞
c (Rn) with the property that θ ≡ 1 near the origin

in R
n , and for each R > 0 define θR(x) := θ(x/R) for all x ∈ R

n . Then, in the sense
of distributions in R

n+, for each j ∈ {1, . . . , n − 1} we have
∂ j (θR f j ) = θR(∂ j f j )+ (∂ jθR) f j for each R > 0. (2.8.203)

Note that there exists C ∈ (0,∞) with the property that for each j ∈ {1, . . . , n − 1}
and each R > 0 we may write

ˆ

R
n+
|∂ jθR|| f j | dLn ≤ C

R

ˆ

|x |≈R
x∈Rn+

| f j (x)| dx

≤ C
( ˆ

|x |≈R
x∈Rn+

| f j (x)| n
n−1 dx

) n−1
n

. (2.8.204)

Since the first condition in (2.8.201) and Lebesgue’s Dominated Convergence The-
orem entail

lim
R→∞

( ˆ

|x |≈R
x∈Rn+

| f j (x)| n
n−1 dx

) n−1
n = 0 for each j ∈ {1, . . . , n − 1}, (2.8.205)

we conclude that

lim
R→∞

ˆ

R
n+
(∂ jθR) f j dLn = 0 for each j ∈ {1, . . . , n − 1}. (2.8.206)

Also, the last condition in (2.8.201) and Lebesgue’s Dominated Convergence Theo-
rem give

lim
R→∞

ˆ

R
n+
θR

n−1∑

j=1
∂ j f j dLn =

ˆ

R
n+

n−1∑

j=1
∂ j f j dLn . (2.8.207)

Collectively, (2.8.203), (2.8.206), and (2.8.207) prove that

ˆ

R
n+

n−1∑

j=1
∂ j f j dLn = lim

R→∞

ˆ

R
n+

n−1∑

j=1
∂ j (θR f j ) dLn . (2.8.208)
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Henceforth, fix a number R ∈ (0,∞). Bring in a function η ∈ C∞(R) with the
property that η ≡ 0 on (−1, 1) and η ≡ 1 onR \ (−2, 2). Also, for each ε > 0 define
ηε(x) := η(xn/ε) for all x = (x ′, xn) ∈ R

n = R
n−1 × R. Then

ˆ

R
n+

n−1∑

j=1
∂ j (θR f j ) dLn = lim

ε→0+

ˆ

R
n+
ηε

n−1∑

j=1
∂ j (θR f j ) dLn

= lim
ε→0+

ˆ

R
n+

n−1∑

j=1
∂ j (ηεθR f j ) dLn = 0, (2.8.209)

with the first equality a consequence of Lebesgue’s Dominated Convergence Theo-
rem, the second equality implied by the fact that ∂ jηε = 0 for j ∈ {1, . . . , n − 1},
and the final equality provided by Lemma 2.8.18 (bearing in mind that each function
ηεθR f j has compact support in R

n+).
Then (2.8.202) follows from (2.8.208) and (2.8.209). �

Our next result generalizes Proposition 2.8.19, which corresponds precisely to the
choice

D( f1, . . . , fn−1) :=
n−1∑

j=1
∂ j f j . (2.8.210)

Proposition 2.8.20 Consider a homogeneous first-order M × N system Dwith con-
stant (complex) coefficients inR

n, where n ∈ Nwith n ≥ 2, so that Sym(D; en) = 0.
Then for any

u ∈ [
Ln/(n−1)(Rn

+,Ln)
]N

with Du ∈ [
L1(Rn

+,Ln)
]M

(2.8.211)

one has ˆ

R
n+
Du dLn = 0. (2.8.212)

Proof Having Sym(D; en) = 0 guarantees the absence of the partial derivative ∂xn
in the writing of D, that is, D =∑n−1

j=1 A j∂ j where each A j is an M × N matrix
with complex entries. Keeping this in mind, the desired result follows by suitably
invoking Proposition 2.8.19. �

We have seen in Corollary 1.2.2 that in special circumstances (having to do with
a very particular geometry of the underlying domain �), we may further relax the
hypotheses made on the existence of the nontangential boundary trace of the vector
field �F in Theorem 1.2.1. Here is a result of a similar flavor to Corollary 1.2.2,
corresponding to the case when � is a ball.

Proposition 2.8.21 Fix n ∈ N and pick some aperture parameter κ ∈ (0,∞). Con-
sider a vector field �F = (F1, . . . , Fn) : B(0, 1) → C

n with Lebesgue measurable
components and define
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f (x) := x · �F(x) =
n∑

j=1
x j Fj (x) for each x = (x1, . . . , xn) ∈ B(0, 1).

(2.8.213)
With Sn−1 = ∂B(0, 1), abbreviate σ := Hn−1�Sn−1, and assume that the following
properties are satisfied:

f
∣∣κ−n.t.

∂B(0,1) exists at σ -a.e. point on Sn−1, Nκ
�F ∈ L1(Sn−1, σ ), and

div �F ∈ D′(B(0, 1)
)
extends to a complex Borel measure on B(0, 1)

(2.8.214)

(still denoted by div �F).
Then for any other aperture parameter κ ′ > 0 the nontangential trace f

∣∣κ
′−n.t.

∂B(0,1)

existsσ -a.e. on Sn−1 and is actually independent of κ ′.When regarding it as a function
defined σ -a.e. on Sn−1, this belongs to L1(Sn−1, σ ) and, with the dependence on the
parameter κ ′ dropped,

(div �F)
(
B(0, 1)

) =
ˆ

Sn−1

(
f
∣∣n.t.
∂B(0,1)

)
dσ. (2.8.215)

In particular, if in place of the second line in (2.8.214) one now assumes that

div �F := ∂1F1 + · · · + ∂n Fn ∈ L1
(
B(0, 1),Ln

)
, (2.8.216)

where all partial derivatives are considered in the sense of distributions in B(0, 1),
then (2.8.215) becomes

ˆ

B(0,1)
div �F dLn =

ˆ

Sn−1

(
f
∣∣n.t.
∂B(0,1)

)
dσ. (2.8.217)

For example, if �F : B(0, 1) → C
n has Lebesgue measurable components, and

satisfies (for some aperture parameter κ > 0)

Nκ
�F ∈ L1(Sn−1, σ ), div �F ∈ L1

(
B(0, 1),Ln

)
,

and x · �F(x) = 0 for Ln-a.e. point x ∈ B(0, 1),
(2.8.218)

then Proposition 2.8.21 guarantees that

ˆ

B(0,1)
div �F dLn = 0. (2.8.219)

In relation to this special case, there is a more general phenomenon at play here,
namely
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if �F ∈ [D′(B(0, 1)
)]n

has x · �F(x) = 0 in D′(B(0, 1) \ B(0, r)
)
for

an r ∈ (0, 1), and div �F ∈ CBM
(
B(0, 1)

)
, then (div �F)

(
B(0, 1)

) = 0.
(2.8.220)

A direct justification of (2.8.220), which also sheds some light on the role of the
condition stipulating that x · �F(x) = 0 as a distribution near the boundary of the unit
ball, goes as follows. Choose η ∈ C∞(R) with the property that η ≡ 0 on (−1, 1)
and η ≡ 1 onR \ (−2, 2). For each ε > 0 set ηε(x) := η

(
(1− |x |2)/ε) for all points

x ∈ B(0, 1). Also, introduce �Gε := ηε
�F ∈ [

E ′(B(0, 1)
)]n

for each ε ∈ (0, 1). Since

div �Gε = ηε div �F + (∇ηε) · �F in D′(B(0, 1)
)
and

(∇ηε)(x) · �F(x) = −2ε−1η′((1− |x |2)/ε)x · �F(x) = 0

in D′(B(0, 1) \ B(0, r)
)
,

(2.8.221)

we have div �Gε = ηε div �F ∈ E ′(B(0, 1)
)
. Thus, with μ := div �F ∈ CBM

(
B(0, 1)

)
,

we may write (using Lebesgue’s Dominated Convergence Theorem, (1.3.12), and
[181, Proposition 2.72, p. 47])

(div �F)
(
B(0, 1)

) = μ
(
B(0, 1)

) = lim
ε→0+

ˆ

B(0,1)
ηε dμ

= lim
ε→0+

D′(�)

〈
div �F, ηε

〉
D(�) = lim

ε→0+
E ′(�)

〈
ηε div �F, 1

〉
E (�)

= lim
ε→0+

E ′(�)

〈
div �Gε, 1

〉
E (�) = − lim

ε→0+
[E ′(�)]n

〈 �Gε,∇1
〉
[E (�)]n

= 0. (2.8.222)

Thus, (2.8.220) is established. As a consequence,

if �F ∈ [D′(B(0, 1)
)]n

satisfies x · �F(x) = 0 in D′(B(0, 1)
)

and has div �F ∈ CBM
(
B(0, 1)

)
then (div �F)

(
B(0, 1)

) = 0.
(2.8.223)

Here is the proof of Proposition 2.8.21.

Proof of Proposition 2.8.21 In view of the assumption that Nκ
�F ∈ L1(Sn−1, σ ),

Lemma 8.3.1 implies
�F ∈ [

L∞loc
(
B(0, 1),Ln

)]n
. (2.8.224)

As such, it is meaningful to consider div �F in the sense of distributions in B(0, 1).
We next make the claim that there exists a small constant c = c(κ) ∈ (

0, 1/2
)
such

that
B
(
(1+ ε)−1x, c ε

) ⊆ �κ(z) for each ε ∈ (0, 1),

each z ∈ Sn−1, and each x ∈ �κ(z).
(2.8.225)
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Indeed, given any z ∈ Sn−1, x ∈ �κ(z), ε ∈ (0, 1), and y ∈ B
(
(1+ ε)−1x, c ε

)
, we

have

|y| < c ε + (1+ ε)−1|x | (2.8.226)

hence |y| < ε
2 + (1+ ε)−1 < 1 and

dist
(
y, Sn−1

) = 1− |y| > 1− c ε − (1+ ε)−1|x |. (2.8.227)

Since we also have

|y − z| ≤ ∣∣y − (1+ ε)−1x
∣∣+ (1+ ε)−1|x − z| + (

ε
1+ε

)|z|
≤ c ε + (1+ ε)−1(1+ κ) dist

(
x, Sn−1

)+ ε
1+ε

= ε
(
c + (1+ ε)−1

)+ (1+ ε)−1(1+ κ)(1− |x |), (2.8.228)

we then conclude that |y − z| < (1+ κ) dist
(
y, Sn−1

)
provided

ε
(
c + (1+ ε)−1

)+ (1+ ε)−1(1+ κ)(1− |x |) < (1+ κ)
(
1− c ε − (1+ ε)−1|x |)

(2.8.229)

or, equivalently, c <
(

κ
2+κ

)
(1+ ε)−1. Thus, any c ∈ (

0, κ
4+2κ

)
will do, as far as the

claim in (2.8.225) is concerned.
Going further, pick a non-negative function θ ∈ C∞

c (Rn) with supp θ ⊆ B(0, c)
such that

´
Rn θ dLn = 1. For each ε ∈ (0, 1) set θε(x) := ε−nθ(x/ε) for all x ∈ R

n ,
then define

�Gε(x) :=
ˆ

Rn

�F((1+ ε)−1(x − y)
)
θε(y) dy

= (1+ ε)n
ˆ

B(0,1)

�F(z)θε

(
x − (1+ ε)z

)
dz

= (1+ ε)n
(
D′(B(0,1))

〈
Fj , θε

(
x − (1+ ε) · )

〉

D(B(0,1))

)

1≤ j≤n
(2.8.230)

for each x ∈ B(0, 1). From (2.8.230) and (2.8.224) we see that �Gε is well-defined
and, in fact,

�Gε ∈
[
C∞(B(0, 1))

]n
. (2.8.231)

Also, if we abbreviate
μ := div �F ∈ CBM

(
B(0, 1)

)
, (2.8.232)

then for each ε ∈ (0, 1) and each x ∈ B(0, 1) we may write
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(div �Gε)(x) = (1+ ε)n
n∑

j=1
D′(B(0,1))

〈
Fj , (∂ jθε)

(
x − (1+ ε) · )

〉

D(B(0,1))

= −(1+ ε)n−1
n∑

j=1
D′(B(0,1))

〈
Fj , ∂ j

[
θε

(
x − (1+ ε) · )]

〉

D(B(0,1))

= (1+ ε)n−1
n∑

j=1
D′(B(0,1))

〈
∂ j Fj , θε

(
x − (1+ ε) · )

〉

D(B(0,1))

= (1+ ε)n−1D′(B(0,1))

〈
div �F, θε

(
x − (1+ ε) · )

〉

D(B(0,1))

= (1+ ε)n−1
ˆ

B(0,1)
θε

(
x − (1+ ε)y

)
dμ(y), (2.8.233)

where we have used (2.8.230) and (1.3.12). For every ε ∈ (0, 1) define

fε(y) :=
ˆ

B(0,1)
θε

(
x − (1+ ε)y

)
dx for each y ∈ B(0, 1), (2.8.234)

and note that, for each y∈B(0, 1) fixed, the change of variables z := x− (1+ε)y
places the new variable z in B(0, 1)− (1+ ε)y = B

(− (1+ ε)y, 1
)
. Thus,

fε(y) =
ˆ

B(−(1+ε)y,1)
θε(z) dz for each y ∈ B(0, 1). (2.8.235)

Since for each given point y ∈ B(0, 1) there exists a small threshold εy ∈ (0, 1)
with the property that the inclusion B(0, c ε) ⊆ B

(− (1+ ε)y, 1
)
holds whenever

ε ∈ (0, εy), we conclude from (2.8.235) and the properties of θ that

lim
ε→0+

fε(y) = 1 for each y ∈ B(0, 1). (2.8.236)

Also, as seen from (2.8.234), for every ε ∈ (0, 1) we have

| fε(y)| ≤
ˆ

Rn

θε

(
x − (1+ ε)y

)
dx = 1 for each y ∈ B(0, 1). (2.8.237)

Since (2.8.233), Fubini’s theorem, and (2.8.234) imply that for each ε ∈ (0, 1) we
have
ˆ

B(0,1)
(div �Gε)(x) dx = (1+ ε)n−1

ˆ

B(0,1)

(ˆ

B(0,1)
θε

(
x − (1+ ε)y

)
dμ(y)

)
dx

= (1+ ε)n−1
ˆ

B(0,1)

(ˆ

B(0,1)
θε

(
x − (1+ ε)y

)
dx
)
dμ(y)

= (1+ ε)n−1
ˆ

B(0,1)
fε(y) dμ(y), (2.8.238)
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we deduce from (2.8.238), (2.8.236), (2.8.237), and Lebesgue’s Dominated Conver-
gence Theorem (bearing in mind (2.8.232)) that

lim
ε→0+

ˆ

B(0,1)
div �Gε dLn =

ˆ

B(0,1)
1 dμ = μ

(
B(0, 1)

) = (div �F)
(
B(0, 1)

)
.

(2.8.239)

Moving on, we claim that for each ε ∈ (0, 1) we have

| �Gε| ≤ Nκ
�F at each point on Sn−1 = ∂B(0, 1). (2.8.240)

Indeed, (2.8.225) implies that for each x ∈ Sn−1 and each y ∈ supp θε ⊆ B(0, c ε)

we have (1+ ε)−1(x − y) ∈ B
(
(1+ ε)−1x, c ε

) ⊆ �κ(x). Keeping this in mind, we
conclude from (2.8.230) that (2.8.240) holds.

Next, observe that for each ε ∈ (0, 1), each y ∈ supp θε ⊆ B(0, c ε), and each
x ∈ Sn−1, we have

(1+ ε)−1(x − y) ∈ B
(
(1+ ε)−1x, c ε

) ⊆ �κ(x)

and
∣∣(1+ ε)−1(x − y)− x

∣∣ ≤ ε(1+ ε)−1(1+ c),
(2.8.241)

thanks to (2.8.225). Since for each ε ∈ (0, 1) we may write

x · �Gε(x) =
ˆ

Rn

x · �F((1+ ε)−1(x − y)
)
θε(y) dy for each x ∈ Sn−1, (2.8.242)

it follows that for σ -a.e. point x ∈ Sn−1 we have
∣∣∣x · �Gε(x)−

(
f
∣∣κ−n.t.

∂B(0,1)

)
(x)

∣∣∣

≤
ˆ

Rn

∣∣∣x · �F((1+ ε)−1(x − y)
)−

(
f
∣∣κ−n.t.

∂B(0,1)

)
(x)

∣∣∣θε(y) dy

≤ Iε(x)+ IIε(x), (2.8.243)

where

Iε(x) :=
ˆ

Rn

∣
∣∣x · �F( x−y

1+ε

)− x−y
1+ε

· �F( x−y
1+ε

)∣∣∣θε(y) dy

=
ˆ

Rn

∣∣
∣
(
x − x−y

1+ε

) · �F( x−y
1+ε

)∣∣
∣θε(y) dy, (2.8.244)

and
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IIε(x) :=
ˆ

Rn

∣∣∣ x−y
1+ε

· �F( x−y
1+ε

)−
(
f
∣∣κ−n.t.

∂B(0,1)

)
(x)

∣∣∣θε(y) dy

=
ˆ

Rn

∣∣∣ f
( x−y
1+ε

)−
(
f
∣∣κ−n.t.

∂B(0,1)

)
(x)

∣∣∣θε(y) dy, (2.8.245)

with the second equality provided by (2.8.213). Note that (2.8.241) implies

Iε(x) ≤ ε(1+ c)

1+ ε
Nκ

�F(x) for each x ∈ Sn−1 and each ε ∈ (0, 1). (2.8.246)

From (2.8.241), the first line in (2.8.214), and Definition 8.9.1 we also see that

lim
ε→0+

IIε(x) = 0 for σ -a.e. point x ∈ Sn−1. (2.8.247)

Collectively, (2.8.243), (2.8.246), and (2.8.247) imply that

lim
ε→0+

x · �Gε(x) =
(
f
∣∣κ−n.t.

∂B(0,1)

)
(x) at σ -a.e. x ∈ Sn−1 = ∂B(0, 1). (2.8.248)

In turn, as a consequence of (2.8.240), (2.8.248), the first membership in (2.8.214),
and Lebesgue’s Dominated Convergence Theorem we have

the family of functions Sn−1 � x "→ x · �Gε(x), indexed by

ε ∈ (0, 1), converges to f
∣
∣κ−n.t.

∂B(0,1) in L1(Sn−1, σ ) as ε → 0+.
(2.8.249)

Granted (2.8.231),wemay invoke the classical version of theDivergenceTheorem
(i.e., (1.1.2) with� := B(0, 1), so that ν(x) = x for each x ∈ Sn−1 = ∂B(0, 1)) and
conclude that

ˆ

B(0,1)
div �Gε dLn =

ˆ

Sn−1
x · �Gε(x) dσ(x) for each ε ∈ (0, 1). (2.8.250)

Sending ε → 0+ in (2.8.250) then yields (2.8.215), in view of (2.8.239) and
(2.8.249). Lastly, that for any other aperture parameter κ ′ > 0 the nontangential

trace f
∣∣κ
′−n.t.

∂B(0,1) exists σ -a.e. on Sn−1, is actually independent of κ ′, and belongs to

L1(Sn−1, σ ) are consequences of assumptions, Proposition 8.9.8, Corollary 8.9.6,
and (8.9.8).

Parenthetically, we wish to remark that if the stronger assumption (2.8.216) is
adopted, then in place of (2.8.239) we actually have

lim
ε→0+

div �Gε = div �F in L1
(
B(0, 1),Ln

)
. (2.8.251)

To justify this claim, observe that (2.8.233) presently implies that for each point
x ∈ B(0, 1) we have
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(div �Gε)(x) = (1+ ε)n−1
ˆ

B(0,1)
(div �F)(z)θε

(
x − (1+ ε)z

)
dz

= (1+ ε)−1
ˆ

Rn

(div �F)
(
(1+ ε)−1(x − y)

)
θε(y) dy, (2.8.252)

also using (2.8.230) and a change of variables (also keeping in mind the inclusion
supp θε ⊆ B(0, c ε)). To proceed, pick an arbitrary threshold δ > 0 and select a func-
tion φ ∈ C∞

c

(
B(0, 1)

)
such that

∥
∥(div �F)− φ

∥
∥
L1(B(0,1),Ln)

≤ δ. (2.8.253)

We may then estimate

ˆ

B(0,1)

( ˆ

Rn

∣∣∣(div �F)
( x−y
1+ε

)− φ
( x−y
1+ε

)∣∣∣θε(y) dy
)
dx

=
ˆ

Rn

θε(y)
( ˆ

B(0,1)

∣∣∣(div �F)
( x−y
1+ε

)− φ
( x−y
1+ε

)∣∣∣ dx
)
dy

= (1+ ε)n
ˆ

Rn

θε(y)
( ˆ

(1+ε)−1(B(0,1)+B(0,c ε))

∣∣(div �F)(z)− φ(z)
∣∣ dz

)
dy

≤ (1+ ε)n
ˆ

Rn

θε(y)
( ˆ

B(0,1)

∣∣(div �F)(z)− φ(z)
∣∣ dz

)
dy

≤ (1+ ε)n
∥∥(div �F)− φ

∥∥
L1(B(0,1),Ln)

≤ (1+ ε)nδ. (2.8.254)

In addition, using the Mean Value Theorem we may estimate

ˆ

B(0,1)

(ˆ

Rn

∣∣φ
(
(1+ ε)−1(x − y)

)− φ(x)
∣∣θε(y) dy

)
dx

≤ Cε ·
(
sup
B(0,1)

|∇φ|
)ˆ

Rn

θε(y) dy = Cε ·
(
sup
B(0,1)

|∇φ|
)
, (2.8.255)

for some universal constant C ∈ (0,∞). Together, (2.8.252), (2.8.254), (2.8.255),
and (2.8.253) allow us to write

∥∥div �Gε − (1+ ε)−1div �F∥∥L1(B(0,1),Ln)

≤ (1+ ε)−1
ˆ

B(0,1)

(ˆ

Rn

∣∣(div �F)
( x−y
1+ε

)− φ
( x−y
1+ε

)∣∣θε(y) dy
)
dx

+ (1+ ε)−1
ˆ

B(0,1)

( ˆ

Rn

∣∣φ
( x−y
1+ε

)− φ(x)
∣∣θε(y) dy

)
dx

+ (1+ ε)−1‖(div �F)− φ‖L1(B(0,1),Ln)
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≤ δ(1+ ε)n−1 + Cε(1+ ε)−1 ·
(
sup
B(0,1)

|∇φ|
)
+ δ(1+ ε)−1. (2.8.256)

Consequently,

lim sup
ε→0+

∥∥div �Gε − (1+ ε)−1div �F∥∥L1(B(0,1),Ln)
≤ 2δ (2.8.257)

which, in view of the arbitrariness of δ > 0, ultimately establishes (2.8.251). �

It is also of interest to prove a version of Proposition 2.8.21 for the complement
of the closed unit ball in R

n , of the sort presented below.

Proposition 2.8.22 Fix n ∈ N and pick some aperture parameter κ ∈ (0,∞). Con-
sider a vector field �F = (F1, . . . , Fn) : R

n \ B(0, 1) → C
n with Lebesgue measur-

able components and define

f (x) := x · �F(x) =
n∑

j=1
x j Fj (x) for each x = (x1, . . . , xn) ∈ R

n \ B(0, 1).

(2.8.258)
With Sn−1 = ∂B(0, 1), abbreviate σ := Hn−1�Sn−1, and assume that the following
properties are satisfied:

f
∣∣κ−n.t.

∂

(
Rn\B(0,1)

) exists at σ -a.e. point on Sn−1,

Nκ
�F ∈ L1(Sn−1, σ ), and div �F ∈ D′(

R
n \ B(0, 1)

)

extends to a complex Borel measure in R
n \ B(0, 1)

(2.8.259)

(still denoted by div �F).
Then [ �F]∞, the contribution of �F at infinity, is meaningfully and unambigu-

ously defined. Also, for any other aperture parameter κ ′ > 0 the nontangential trace

f
∣∣κ
′−n.t.

∂

(
Rn\B(0,1)

) exists σ -a.e. on Sn−1 and is actually independent of κ ′. When the latter

is regarded as a function defined σ -a.e. on Sn−1, it belongs to L1(Sn−1, σ ) and, with
the dependence on the parameter κ ′ dropped, one has

(div �F)
(
R

n \ B(0, 1)
) = −

ˆ

Sn−1

(
f
∣∣n.t.
∂

(
Rn\B(0,1)

)
)
dσ + [ �F]∞. (2.8.260)

Furthermore, the contribution of �F at infinity vanishes if there exists λ ∈ (1,∞)

such that ˆ

B(0,λR)\B(0,R)

| f | dLn = o(R2) as R →∞, (2.8.261)

a scenario in which the Divergence Formula (2.8.260) becomes
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(div �F)
(
R

n \ B(0, 1)
) = −

ˆ

Sn−1

(
f
∣∣n.t.
∂

(
Rn\B(0,1)

)
)
dσ. (2.8.262)

Proof To get started, as a consequence of assumptions, Proposition 8.9.8, Corol-
lary 8.9.6, and (8.9.8), it follows that for any other aperture parameter κ ′ > 0 the

nontangential trace f
∣∣κ
′−n.t.

∂

(
Rn\B(0,1)

) exists σ -a.e. on Sn−1, is actually independent of

κ ′, and belongs to L1(Sn−1, σ ). Next, invoke Lemma 8.3.1 to conclude that

�F ∈ [
L∞loc

(
R

n \ B(0, 1),Ln
)]n

. (2.8.263)

Pick a test function ϕ ∈ C∞
c (Rn) satisfying ϕ ≡ 1 in B(0, 2) and use this to decom-

pose

�F = �Fnear + �Ffar where �Fnear := ϕ �F and �Ffar := (1− ϕ) �F . (2.8.264)

From (2.8.263)–(2.8.264) and assumptions we then see that

�Fnear ,
�Ffar belong to the space

[
L∞loc

(
R

n \ B(0, 1),Ln
)]n

,

�Fnear vanishes at infinity and coincides with �F in B(0, 2) \ B(0, 1),
�Ffar coincides with �F near infinity and vanishes in B(0, 2) \ B(0, 1),

div �Fnear = ϕ div �F + (∇ϕ) · �F ∈ CBM
((

R
n \ B(0, 1)

)
,

div �Ffar = (1− ϕ)div �F − (∇ϕ) · �F ∈ CBM
((

R
n \ B(0, 1)

)
,

Nκ
�Fnear ∈ L1(Sn−1, σ ) and Nκ

�Ffar ∈ L1(Sn−1, σ ).

(2.8.265)

Granted these properties, Theorem 1.3.1 (used with � := R
n \ B(0, 1)) guarantees

that [ �Ffar ]∞, the contribution of �Ffar at infinity, is meaningfully and unambiguously
defined, and (1.3.8) presently gives

(
div �Ffar

)(
R

n \ B(0, 1)
) = [ �Ffar ]∞. (2.8.266)

Since the contribution at infinity only depends on the behavior of the vector field in
question in a neighborhood of infinity (cf. (1.3.5)), from this and the third line in
(2.8.265) we conclude that [ �F]∞, the contribution of �F at infinity, is meaningfully
and unambiguously defined, and in fact

[ �F]∞ = [ �Ffar ]∞. (2.8.267)

Together, (2.8.264)–(2.8.267) imply

(
div �F)(Rn \ B(0, 1)

) = (
div �Fnear

)(
R

n \ B(0, 1)
)+ (

div �Ffar

)(
R

n \ B(0, 1)
)

= (
div �Fnear

)(
R

n \ B(0, 1)
)+ [ �F]∞. (2.8.268)
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Hence, as far as (2.8.260) is concerned, there remains to show that

(
div �Fnear

)(
R

n \ B(0, 1)
) = −

ˆ

Sn−1

(
f
∣∣n.t.
∂

(
Rn\B(0,1)

)
)
dσ. (2.8.269)

We shall accomplish this using a regularization procedure akin to the one used
in the proof of Proposition 2.8.21. As a preliminary step, we fix c ∈ (

0, κ
4+2κ

)
and

claim that this implies that

B
(
(1− ε)−1x, 2c ε

) ⊆ �κ(x) for each x ∈ Sn−1 and each ε ∈ (0, 1).
(2.8.270)

To justify this, pick x ∈ Sn−1, ε ∈ (0, 1), and y ∈ B
(
(1− ε)−1x, 2c ε

)
. Then

|y| ≥ ∣∣(1− ε)−1x
∣∣− ∣∣(1− ε)−1x − y

∣∣ > (1− ε)−1 − 2c ε

= 1+ ε
(

1
1−ε

− 2c
)

> 1+ ε(1− 2c) > 1, (2.8.271)

since c < 1/2. Thus, y belongs to R
n \ B(0, 1). In addition,

dist
(
y, ∂

(
R

n \ B(0, 1)
)) = dist

(
y, Sn−1

) = |y| − 1 > ε
(

1
1−ε

− 2c
)
. (2.8.272)

On the other hand,

|y − x | ≤ ∣∣y − (1− ε)−1x
∣∣+ ∣∣(1− ε)−1x − x

∣∣ < 2c ε + ε
1−ε

(2.8.273)

so in order to have |y − x | < (1+ κ) dist
(
y, Sn−1

)
it suffices that

2c ε + ε
1−ε

< (1+ κ)ε
(

1
1−ε

− 2c
)

(2.8.274)

or, equivalently, 4c < κ
(

1
1−ε

− 2c
)
. Since 1

1−ε
> 1, this inequality holds whenever

we have 4c < κ(1− 2c) which, in turn, is true by virtue of the initial choice of c.
The above reasoning shows that y ∈ �κ(x), finishing the proof of the claim made in
(2.8.270).

Next, with c as before, bring in a non-negative function θ ∈ C∞
c (Rn) satisfying

supp θ ⊆ B(0, c) and
´
Rn θ dLn = 1. For each ε ∈ (0, 1) set θε(x) := ε−nθ(x/ε) for

all x ∈ R
n . Introduce the vector field defined for each x ∈ R

n \ B(0, 1) as

�Gε(x) :=
ˆ

Rn

�Fnear

(
(1− ε)−1(x − y)

)
θε(y) dy (2.8.275)

= (1− ε)n
ˆ

Rn\B(0,1)

�Fnear (z)θε

(
x − (1− ε)z

)
dz

= (1− ε)n
(
D′(Rn\B(0,1))

〈( �Fnear

)
j , θε

(
x − (1− ε) · )

〉

D(Rn\B(0,1))

)

1≤ j≤n
.
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From (2.8.275) and the first two lines in (2.8.265) we see that �Gε is well-defined
and, in fact,

�Gε ∈
[
C∞(

R
n \ B(0, 1)

)]n
and �Gε vanishes

identically in a neighborhood of infinity.
(2.8.276)

Also, if we abbreviate

μ := div �Fnear ∈ CBM
(
R

n \ B(0, 1)
)
, (2.8.277)

then reasoning much as in (2.8.233) from (2.8.275) and (1.3.12) we see that for each
ε ∈ (0, 1) and each x ∈ R

n \ B(0, 1) we have

(div �Gε)(x) = (1− ε)n−1
ˆ

Rn\B(0,1)
θε

(
x − (1− ε)y

)
dμ(y). (2.8.278)

To proceed, for every ε ∈ (0, 1) define

fε(y) :=
ˆ

Rn\B(0,1)
θε

(
x − (1− ε)y

)
dx for each y ∈ R

n \ B(0, 1), (2.8.279)

and note that, for each y∈R
n\B(0, 1) fixed, the change of variables z := x − (1−ε)y

places the new variable z in R
n \ B(0, 1)− (1− ε)y = R

n \ B
(− (1− ε)y, 1

)
.

Thus,

fε(y) =
ˆ

Rn\B(−(1−ε)y,1)
θε(z) dz for each y ∈ R

n \ B(0, 1). (2.8.280)

We claim that for each given point y ∈ R
n \ B(0, 1) there exists a small threshold

εy ∈ (0, 1) with the property that

B(0, c ε) ⊆ R
n \ B

(− (1− ε)y, 1
)
for each ε ∈ (0, εy). (2.8.281)

Indeed, for each y ∈ R
n \ B(0, 1) and ξ ∈ B(0, c ε) we have

|ξ + (1− ε)y| ≥ (1− ε)|y| − |ξ | > (1− ε)|y| − c ε > 1, (2.8.282)

with the very last inequality valid provided 0 < ε < (|y| − 1)/(|y| + c) =: εy . Hav-
ing established (2.8.281), we conclude from (2.8.280) and the properties of θ that

lim
ε→0+

fε(y) = 1 for each y ∈ R
n \ B(0, 1). (2.8.283)

Also, as seen from (2.8.279), for every ε ∈ (0, 1) we have
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| fε(y)| ≤
ˆ

Rn

θε

(
x − (1− ε)y

)
dx = 1 for each y ∈ R

n \ B(0, 1). (2.8.284)

Going further, (2.8.278), Fubini’s theorem, and (2.8.279) imply that for each given
ε ∈ (0, 1) we have

ˆ

Rn\B(0,1)
(div �Gε)(x) dx

= (1− ε)n−1
ˆ

Rn\B(0,1)

(ˆ

Rn\B(0,1)
θε

(
x − (1− ε)y

)
dμ(y)

)
dx

= (1− ε)n−1
ˆ

Rn\B(0,1)

(ˆ

Rn\B(0,1)
θε

(
x − (1− ε)y

)
dx
)
dμ(y)

= (1− ε)n−1
ˆ

Rn\B(0,1)
fε(y) dμ(y). (2.8.285)

In turn, from (2.8.285), (2.8.283), (2.8.284), andLebesgue’sDominatedConvergence
Theorem (bearing in mind (2.8.277)) we deduce that

lim
ε→0+

ˆ

Rn\B(0,1)
div �Gε dLn =

ˆ

Rn\B(0,1)
1 dμ = μ

(
R

n \ B(0, 1)
)

= (
div �Fnear

)(
R

n \ B(0, 1)
)
. (2.8.286)

Pressing on, we claim that

| �Gε(x)| ≤ Nκ
�Fnear (x) for each ε ∈ (0, 1/2)

and each x ∈ Sn−1 = ∂
(
R

n \ B(0, 1)
)
.

(2.8.287)

To justify this, fix some ε ∈ (0, 1/2). The key observation is that for each point
x ∈ Sn−1 and each point y ∈ supp θε ⊆ B(0, c ε) we have

(1− ε)−1(x − y) ∈ B
(
(1− ε)−1x, 2c ε

) ⊆ �κ(x), (2.8.288)

with the veracity of the membership ensured by the assumption ε ∈ (0, 1/2), and the
subsequent inclusion coming from (2.8.270). From (2.8.288) and (2.8.275) we then
conclude that (2.8.287) holds.

Next, observe that for each ε ∈ (0, 1/2), each y ∈ supp θε ⊆ B(0, c ε), and each
x ∈ Sn−1 we have

(1− ε)−1(x − y) ∈ B
(
(1− ε)−1x, 2c ε

) ⊆ �κ(x)

and
∣∣(1− ε)−1(x − y)− x

∣∣ ≤ ε(1− ε)−1(1+ c),
(2.8.289)

thanks to (2.8.288). Henceforth, restrict
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0 < ε < min
{1
2
,

1

1+ c

}
(2.8.290)

and write

x · �Gε(x) =
ˆ

Rn

x · �Fnear

(
(1− ε)−1(x − y)

)
θε(y) dy for each x ∈ Sn−1.

(2.8.291)
For σ -a.e. point x ∈ Sn−1 = ∂

(
R

n \ B(0, 1)
)
, use (2.8.291) to estimate

∣∣∣x · �Gε(x)−
(
f
∣∣κ−n.t.

∂

(
Rn\B(0,1)

)
)
(x)

∣∣∣

≤
ˆ

Rn

∣∣∣x · �Fnear

(
(1− ε)−1(x − y)

)−
(
f
∣∣κ−n.t.

∂

(
Rn\B(0,1)

)
)
(x)

∣∣∣θε(y) dy

≤ Iε(x)+ IIε(x), (2.8.292)

where

Iε(x) :=
ˆ

Rn

∣∣
∣x · �Fnear

( x−y
1+ε

)− x−y
1+ε

· �Fnear

( x−y
1+ε

)∣∣
∣θε(y) dy

=
ˆ

Rn

∣∣∣
(
x − x−y

1+ε

) · �Fnear

( x−y
1+ε

)∣∣∣θε(y) dy, (2.8.293)

and

IIε(x) :=
ˆ

Rn

∣∣∣ x−y
1+ε

· �Fnear

( x−y
1+ε

)−
(
f
∣∣κ−n.t.

∂

(
Rn\B(0,1)

)
)
(x)

∣∣∣θε(y) dy

=
ˆ

Rn

∣∣∣ f
( x−y
1+ε

)−
(
f
∣∣κ−n.t.

∂

(
Rn\B(0,1)

)
)
(x)

∣∣∣θε(y) dy. (2.8.294)

In (2.8.294), the second equality is provided by (2.8.258), the second line in (2.8.265),
and the observation that (2.8.290) forces (1− ε)−1(x − y) to be in B(0, 2) \ B(0, 1)
whenever x ∈ Sn−1 and y ∈ supp θε. Together, (2.8.293) and (2.8.289) imply

Iε(x) ≤ ε(1− ε)−1(1+ c)Nκ
�Fnear (x) for each x ∈ Sn−1. (2.8.295)

From (2.8.289), the first property in the first line of (2.8.259), and Definition 8.9.1
we also see that

lim
ε→0+

IIε(x) = 0 for σ -a.e. point x ∈ Sn−1. (2.8.296)

Collectively, (2.8.292), (2.8.295), and (2.8.296) imply
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lim
ε→0+

x · �Gε(x) =
(
f
∣∣κ−n.t.

∂

(
Rn\B(0,1)

)
)
(x) at σ -a.e. x ∈ Sn−1 = ∂

(
R

n \ B(0, 1)
)
.

(2.8.297)
In turn, as a consequence of (2.8.287), (2.8.297), the first membership in (2.8.259),
and Lebesgue’s Dominated Convergence Theorem we obtain

the family of functions Sn−1 � x "→ x · �Gε(x), indexed by ε as in

(2.8.290), converges to f
∣∣κ−n.t.

∂

(
Rn\B(0,1)

) in L1(Sn−1, σ ) as ε → 0+. (2.8.298)

Granted (2.8.276),wemay invoke the ordinary version of theDivergenceTheorem
for the domain R

n \ B(0, 1), whose outward unit normal is ν(x) = −x for each
x ∈ Sn−1 = ∂

(
R

n \ B(0, 1)
)
, and the smooth vector field �Gε as in (2.8.276), and

conclude that
ˆ

Rn\B(0,1)
div �Gε dLn = −

ˆ

Sn−1
x · �Gε(x) dσ(x) for each ε ∈ (0, 1). (2.8.299)

Upon letting ε → 0+ in (2.8.299) we arrive at (2.8.269), in light of (2.8.286) and
(2.8.298). This finishes the proof of (2.8.260).

Finally, that [ �F]∞ is actually zero if (2.8.261) holds for some λ ∈ (1,∞) is a
direct consequence of the definition made in (2.8.258), Lemma 4.7.3, and what we
have proved already. �

Weconclude this section byproviding a brief surveyof additionalwork concerning
the Divergence Theorem. Various versions of the Divergence Theorem involving
sets with fractal boundaries appear in [115], where the authors establish a version of
Stokes’s Theorem by introducing a certain brand of surface integral for smooth forms
over what they called chainlets (a class of sets general enough to contain fractals),
and [167] where the classical Gauss–Green Theorem is extended to certain fractal
domains (by showing that the boundary of a Hölder domain is a geometric rough
path). See also [114] in this regard, where versions of Gauss’, Green’s, and Stokes’
Theorems are produced on regions that may not be locally Euclidean and have no
tangent vectors defined anywhere, by replacing the parametrization of a domain with
suitable polyhedral approximations.

There is also a considerable body of work pertaining to the Divergence Theorem
whose formulation employs the Henstock–Kurzweil integral; cf., e.g., [130, 143,
157, 168, 212, 215], and the references therein.

Within the framework of Lebesgue integration, the monograph [216] starts by
establishing a variety ofDivergenceTheoremvia a combinatorial argument involving
dyadic cubes, which is subsequently adapted to sets of locally finite perimeter and
a certain class of bounded vector fields which are admissible, in a suitable sense,
relative to the underlying domain (cf. [216,Definition 2.3.1, p. 27]). Earlier references
to the Divergence Theorem in the context of Lebesgue integration and emphasis on
weaker assumptions on the vector fields involved include [24, 51, 235, 236].
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Finally, we wish to mention the version of the Gauss–Green Theorem for BV
functions with integrable rough traces, as presented in [178, Theorem, p. 506] (cf.
also [80, Theorem 1, p. 177] and [216, Theorem 7.6.1, p. 179] for versions of this
result involving Lipschitz domains).



Chapter 3
Measure Theoretical and Topological
Rudiments

The material in this chapter is centered around the notions of measure and topol-
ogy, including sigma-algebras, Borelians, ordinary measures, outer measures, Borel
regularity, inner and outer regularity, separable measures, the support of a measure,
Radon measures, complex Borel measures, Lebesgue spaces (separability, density
results), the topology on the space of measurable functions, and Riesz’s Represen-
tation Theorem.

Before beginning in earnest, we first describe some standard notation, and elab-
orate on conventions frequently employed. Throughout, we set N0 := N ∪ {0}. In
the absence of any other specifications, it is understood that n ∈ N. For s ≥ 0, by
H s∗ we denote the s-dimensional Hausdorff outer measure in R

n , with the usual
normalization. Specifically, for each set A ⊆ R

n one defines

H s
∗(A) := lim sup

ε→0+
H s

ε (A), (3.0.1)

where, for each ε > 0,

H s
ε (A) := inf

{ π s/2

�(1 + s/2)

∞∑
j=1

(diam(A j )

2

)s}
(3.0.2)

where �(t) := ´ ∞
0 e−x x t−1 dx with 0 < t < ∞ is the usual Gamma function, and

where the infimum is taken over all countable families {A j } j∈N of subsets of R
n hav-

ingdiameters≤ ε andwith theproperty that A ⊆ ⋃
j∈N

A j . Finally, for each s ∈ [0,∞),

we then denote by H s the s-dimensional Hausdorff measure in R
n (i.e., the restric-

tion ofH s∗ to the sigma-algebra of its measurable sets, in the sense of Carathéodory;
cf., e.g., [80, p. 2], [91, p. 29]). As is well known (cf., e.g., [80, Theorem 1, p. 61])

H s is a Borel-regular measure in R
n , for each s ∈ [0,∞). (3.0.3)
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Corresponding to s = 0, it is clear that H0 is the counting measure. We also let
Ln stand for the Lebesgue measure in R

n . The interior, closure, and (topological)
boundary of an arbitrary setU ⊆ R

n are denoted by Ů ,U , and ∂U , respectively. We
also letU
V denote the symmetric difference (U \ V ) ∪ (V \U ) of any two given
setsU, V , and writeU � V for the union of two disjoint setsU, V . The symbol 1E is
used to denote the characteristic function of a given set E . We let {e1, . . . , en} denote
the standard orthonormal basis inR

n . Given an arbitrary open set� ⊆ R
n along with

p ∈ [1,∞] and k ∈ N, denote by Wk,p(�) the standard L p-based Sobolev space of
order k in �, consisting of locally integrable functions (with respect to the Lebesgue
measure) in � whose partial derivatives of order ≤ k (considered in the sense of
distributions in �) are p-th power integrable functions in �. Also, we denote by
Wk,p

loc (�) the local version of this space, and let

Wk,p
bdd (�) denote the space of functions u ∈ Wk,p

loc (�) with the property
that ∂αu ∈ L p(O,Ln) for each α ∈ N

n
0 with |α| ≤ k and each bounded

Lebesgue measurable subset O of �.
(3.0.4)

In particular, classical embeddings ensure that

W 1,p
loc (�) ↪→ C 0

loc(�) if p > n, (3.0.5)

and
W 1,∞

loc (�) = Liploc(�), (3.0.6)

the space of locally Lipschitz functions in�. Throughout, we shall adopt the follow-
ing convention. For a function u belonging to Wk,1

loc (with k ∈ N) in an open subset
of R

n , we agree to abbreviate

|∇ku| :=
∑

γ∈Nn
0 , |γ |=k

|∂γ u|. (3.0.7)

The Jacobian matrix of a differentiable C
M -valued function u = (uα)1≤α≤M defined

in an open subset of R
n is the C

M ·n-valued function

∇u := (
∂ j uα

)
1≤α≤M
1≤ j≤n

=
⎡
⎢⎣

∂1u1 · · · ∂nu1
...

...
...

∂1uM · · · ∂nuM

⎤
⎥⎦ . (3.0.8)

Finally, we shall retain the same symbol ∇u when the components of u are actually
distributions.
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3.1 Sigma-Algebras, Measures, Lebesgue Spaces

Recall that a sigma-algebra of subsets of an arbitrary set X is a family that contains
the empty set and which is closed under taking complements relative to X , as well
as countable unions (hence also countable intersections).

Let (X, τ ) be now a topological space. We agree to denote by Borelτ (X) the
Borelians of (X, τ ), i.e., the smallest sigma-algebra of X containing τ . Also, given
an arbitrary set A ⊆ X , we shall denote by τ |A the (relative) topology induced by τ

on A. Of course, (A, τ |A) then becomes a topological space itself. In this connection,
it is useful to remark that for any A ⊆ X

{
A ∩ B : B ∈ Borelτ (X)

} = Borelτ |A(A). (3.1.1)

Indeed, if we consider

F := {
A ∩ B: B ∈ Borelτ (X)

}
, G := {

B ⊆ X : B ∩ A ∈ Borelτ |A(A)
}
, (3.1.2)

then it is easily checked that F is a sigma-algebra of subsets of A which contains the
open subsets of (A, τ |A), whereasG is a sigma-algebra of subsets of X which contains
the open subsets of (X, τ ). Consequently, Borelτ |A(A) ⊆ F and Borelτ (X) ⊆ G.
Now, the first of these two inclusions yields the right-to-left inclusion in (3.1.1), while
the second one gives the left-to-right inclusion in (3.1.1). Hence, (3.1.1) follows.

Assume X is an arbitrary, fixed set. Denote by 2X the collection of all subsets
of X . A measure space structure on X is a triplet (X,M, μ) in which M ⊆ 2X is
a sigma-algebra of sets and the measure μ is an extended real-valued, non-negative
function μ : M → [0,+∞] satisfying

μ(∅) = 0 and μ
(⋃

j∈N
A j

)
=
∑
j∈N

μ(A j ) if A j ∈ M, j ∈ N, are mutually disjoint.

(3.1.3)
Whenever (X,M, μ) is a measure space, we shall refer to (M, μ) as being ameasure
on X .

As is well known, in any measure space (X,M, μ), one has

μ
(⋃

j∈N
A j

)
≤
∑
j∈N

μ(A j ) if A j ∈ M, j ∈ N, (3.1.4)

μ
(⋂

j∈N
A j

)
= lim

j→+∞ μ(A j ) if A j ∈ M, A j+1 ⊆ A j , j ∈ N, and μ(A1) < +∞,

(3.1.5)

μ
(⋃

j∈N
A j

)
= lim

j→+∞ μ(A j ) if A j ∈ M, A j ⊆ A j+1, j ∈ N. (3.1.6)
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Sets in the family M will be referred to as being μ-measurable. A given function
f : X → [−∞,+∞] is called μ-measurable (or M-measurable) if f −1(I ) ∈ M
for any interval I of any (hence all) of the following types:

{[−∞, α] : α ∈ R
}
,{[−∞, α) : α ∈ R

}
,
{[α,+∞] : α ∈ R

}
,
{
(α,+∞) : α ∈ R

}
.

Given an arbitrary measure space (X,M, μ) along with an arbitrary integrabil-
ity exponent p ∈ (0,∞), the Lebesgue space L p(X, μ) = L p(X,M, μ) consists
of equivalence classes1 of scalar-valued μ-measurable functions f on X satisfy-

ing ‖ f ‖L p(X,μ) :=
( ´

X | f |p dμ
)1/p

< +∞. Corresponding to the end-point case

p = ∞, the space L∞(X, μ) consists of all equivalence classes of scalar-valued
μ-measurable functions f on X for which

‖ f ‖L∞(X,μ) := inf
{
λ > 0 : μ({x ∈ X : | f (x)| > λ}) = 0

}
< +∞. (3.1.7)

As is well known, for each p ∈ (0,∞], the space L p(X, μ) is quasi-Banach. More-
over, for each p ∈ (0, 1], the space L p(X, μ) is a p-Banach space since

L p(X, μ) � f, g �→ ‖ f − g‖p
L p(X,μ) ∈ [0,∞) is a metric (3.1.8)

with respect to which this space is complete, and L p(X, μ) is a Banach space if
p ∈ [1,∞].

Given a measure space (X,M, μ), denote by S(X, μ) the space of all simple
functions on X (i.e., μ-measurable real-valued functions defined on X whose
range has finite cardinality). More specifically, S(X, μ) consists of all functions
which may be expressed as

∑N
i=1 ai1Ai , where N ∈ N, the ai ’s are nonzero real

numbers, the Ai ’s are mutually disjoint sets in M. Such a writing is unique. It is
known (cf., e.g., [91, Theorem 6.8(e), p. 184]) that

S(X, μ) ↪→ L∞(X, μ) densely. (3.1.9)

Consider the subspace of S(X, μ) consisting of functions s = ∑N
i=1 ai1Ai , where

N , ai , Ai are as before, with the additional property that μ(Ai ) < ∞ for each index
i ∈ {1, . . . , N }. If we denote the aforementioned space by Sfin(X, μ), then

Sfin(X, μ) = {
s ∈ S(X, μ) : μ({s �= 0}) < ∞}

, (3.1.10)

and
Sfin(X, μ) ↪→ L p(X, μ) densely, for each p ∈ (0,∞). (3.1.11)

Ultimately, (3.1.11) is a consequence of Lebesgue’s Monotone Convergence Theo-
rem and the fact that if f is a non-negative, μ-measurable, function on X then [231,
Theorem 1.17, p. 15] guarantees the existence of a sequence of simple functions
{s j } j∈N ⊂ S(X, μ) with the property that

1 identifying functions which are equal μ-a.e. on X .
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0 ≤ s j ≤ s j+1 ≤ f everywhere on X, for each j ∈ N,

and such that lim
j→∞ s j (x) = f (x) for every point x ∈ X. (3.1.12)

Indeed, if f also belongs to L p(X, μ) then the pointwise inequality 0 ≤ s j ≤ f on
X implies that each s j actually belongs to Sfin(X, μ). As a corollary of (3.1.11), we
deduce that

L p(X, μ) ∩ Lq(X, μ) ↪→ L p(X, μ) densely, for each p, q ∈ (0,∞), (3.1.13)

and that

given any function f ∈ L p(X, μ) ∩ Lq(X, μ)with p, q ∈ (0,∞), there
exists some sequence {s j } j∈N ⊂ Sfin(X, μ) which converges to f both
in L p(X, μ) and in Lq(X, μ).

(3.1.14)

For further use, let us also point out that

if (X,M, μ) is a sigma-finitemeasure space, thengiven anynon-negative
μ-measurable function f defined on X , there exists a sequence {s j } j∈N
of functions in Sfin(X, μ) satisfying all properties listed in (3.1.12).

(3.1.15)

Specifically, assume X = ⋃∞
i=1 Oi with each Oi ∈ M satisfying μ(Oi ) < +∞, and

set Wj := ⋃ j
i=1 Oi for each j ∈ N. If {s j } j∈N ⊂ S(X, μ) are as in (3.1.12), then the

sequence
{
s j · 1Wj

}
j∈N ⊂ Sfin(X, μ) does the job.

In the proposition below, we introduce some generalized local-L p spaces and
study their topologies.

Proposition 3.1.1 Let (X,M, μ) be a measure space and suppose F := {� j } j∈N
is a countable subfamily of M with the property that X = ⋃

j∈N � j . For each inte-
grability exponent p ∈ (0,∞], consider the linear space

L p
F (X, μ) :=

{
f : X → C : f is μ-measurable and

‖ f ‖L p(� j , μ) < +∞ for each j ∈ N

}
(3.1.16)

thendefine τF to be the collection of all subsetsOof L p
F (X, μ) enjoying the following

property:

for each given f ∈ O there exist some number ε > 0 and
some finite set J ⊆ N such that any g ∈ L p

F (X, μ) satisfying
max j∈J ‖ f − g‖L p(� j , μ) < ε necessarily belongs to the set O.

(3.1.17)
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Then τF is a topology on L p
F (X, μ), which is actually locally convex whenever

p ∈ [1,∞], and (L p
F (X, μ), τF

)
is a topological vector space which is metrizable

via a translation invariant metric which renders L p
F (X, μ) a complete metric space.

Proof That τF is indeed a topology on L p
F (X, μ) (which is actually locally convex

if p ∈ [1,∞]), and (L p
F (X, μ), τF

)
is a topological vector space, may be seen from

definitions in a straightforward fashion. To show that the topology τF is metrizable,
starting from the observation that the function  : [0,∞] → [0, 1], defined for each
t ∈ [0,∞] as (t) := t/(1 + t), is a strictly increasing homeomorphism which is
subadditive (i.e., satisfies(t1 + t2) ≤ (t1) + (t2) for all t1, t2 ∈ [0,∞]),wemay
check without difficulty that the assignment

L p
F (X, μ) � f, g �−→ dp( f, g) :=

∞∑
j=1

2− j
(∥∥ f − g

∥∥min{1,p}
L p(� j , μ)

)
(3.1.18)

defines a complete, translation invariantmetric on L p
F (X, μ)which induces the same

topology as τF on this space. �

Going forward, given a measure space (X,M, μ) and an arbitrary set E ∈ M,
the restriction of μ to E is the measure μ�E defined on the sigma-algebra

M�E := {A ∈ M : A ⊆ E} = {B ∩ E : B ∈ M} (3.1.19)

of subsets of E via

μ�E : M�E −→ [0,+∞], (
μ�E)(B) := μ(B), ∀B ∈ M�E . (3.1.20)

Hence, for each E ∈ M, the triplet
(
E,M�E, μ�E) is a measure space. We shall

also say that
the measure μ is concentrated on E provided

μ(A) = μ(A ∩ E) for every A ∈ M.
(3.1.21)

Henceforth, we shall tacitly adopt the following convention:

Convention: given any measure space (X,M, μ) with the prop-
erty that μ is concentrated on E ∈ M, we shall identify the orig-
inal measure μ with μ�E , its restriction to the set E .

(3.1.22)

We next briefly review the concept of complete measure. Let (X,M, μ) be a
measure space. Recall that the measure μ is called complete if any subset of one
of its null sets is μ-measurable. That is

A ⊆ B where B is μ-measurable and μ(B) = 0

implies A is μ-measurable and μ(A) = 0.
(3.1.23)
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There is a simple procedure which associates to μ a complete measure μ on X .
Specifically

M := {A ∪ E : A ∈ M, E ⊆ B ∈ M, μ(B) = 0}, (3.1.24)

is a sigma-algebra on X which contains M, and μ : M → [0,+∞] defined by

μ(A ∪ E) := μ(A) whenever A ∈ M and E ⊆ B ∈ M are such that μ(B) = 0,
(3.1.25)

is a well-defined measure which is complete and extends μ. It is then easy to check
that the null sets for μ are precisely all subsets of null sets of μ, i.e.

{A ∈ M : μ(A)= 0} = {E ⊆ X : there exists B ∈ M with E ⊆ B and μ(B)= 0}.
(3.1.26)

Of course

given a measure space (X,M, μ), it follows that μ, μ coincide on
M, and the measure μ is complete if and only if one hasM = M.

(3.1.27)

One may also easily see from definitions that completeness is hereditary, in the sense
that

completeness is preserved when restricting a complete
measure to any measurable subset of the ambient.

(3.1.28)

As indicated in the remark below, completeness is equivalent to a number of desirable
properties in a general measure space.

Remark 3.1.2 Generally speaking, for a measure μ on a set X, the following prop-
erties are equivalent (cf., e.g., [91, Proposition 2.11, p. 47]):

(i) the measure μ is complete;
(ii) whenever f, g : X → R are two functions satisfying f = g at μ-a.e. point on

X and the function f is μ-measurable, then g is also μ-measurable;
(iii) if ( f j ) j∈N is a sequence of real-valued functions defined on X, each of which is

μ-measurable, and if the pointwise limit f := lim
j→∞ f j exists μ-a.e. on X then

f is also μ-measurable.

It is worth noting that passing from a measure μ to its completion μ (described
above) preserves the space of measurable functions on X in the following precise
sense:

if f is μ-measurable on X then f is μ-measurable on X and, in the
converse direction, if f is μ-measurable on X , then there exists a
unique (up to μ-a.e. coincidence) function g which is μ-measurable
on X with the property that f = g at μ-a.e. (or μ-a.e.) point in X .

(3.1.29)
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Indeed, this can be checked first at the level of simple functions and then passing
to the limit using (3.1.12) (cf. also [91, Proposition 2.12, p. 48]). From (3.1.29) and
Remark 3.1.2, it follows that

whenever ( f j ) j∈N is some sequence of μ-measurable real-valued
functions defined on X with the property that the pointwise limit
f := lim

j→∞ f j exists at μ-a.e. point in X , then it is possible to redefine

f on a μ-nullset as to become itself μ-measurable.

(3.1.30)

Another consequence of (3.1.29) is that completing a given measure μ on X
preserves the Lebesgue scale L p, 0 < p ≤ ∞, in the sense that if f ∈ L p(X, μ),
then f ∈ L p(X, μ) and, conversely, whenever f ∈ L p(X, μ) there exists a unique
(up to μ-a.e. coincidence) function g ∈ L p(X, μ) with the property that f = g at
μ-a.e. point in X .

In fact, there is a more general phenomenon at work here that we now wish to
describe. First, we make a definition

Definition 3.1.3 Let (X,M, μ) be a measure space and assume thatM0 is a sigma-
algebra of subsets of X contained inM. Then the measureμ is calledM0-regular
provided

for each A ∈ M there exists B ∈ M0

such that A ⊆ B and μ(A) = μ(B).
(3.1.31)

In order to link this regularity concept to the notion of completion of a measure, it
is worth noting that, as is trivially checked, if (X,M, μ) is a measure space and if
(X,M, μ) is the measure space obtained by completing the original measure, then
μ isM-regular. Now, the phenomenon alluded to above may be stated as follows:

if (X,M, μ) is a measure space and if the measure μ is M0-regular
for some sigma-algebra M0 ⊆ M, then the μ-measurable functions on
X may be canonically identified with μ0-measurable functions on X ,
where μ0 := μ

∣∣
M0

.

(3.1.32)

Indeed, this is proved much as in the particular case of a measure and its comple-
tion, described above. As a consequence, granted the above assumptions, for any
integrability exponent p ∈ (0,∞) there is a natural identification (understood as
before)

L p(X, μ) ≡ L p(X, μ0), where μ0 := μ
∣∣
M0

. (3.1.33)

3.2 The Topology on the Space of Measurable Functions

Given a measure space (X,M, μ), denote by L0(X, μ) the linear space consisting
of (equivalence classes of) μ-measurable functions which are finite μ-a.e. on X .
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Consider now a measure space (X,M, μ) with the property that there exists a
function

ω ∈ L0(X, μ) such that ω(x) > 0 for μ-a.e. x ∈ X, and
ˆ

X
ω dμ < +∞.

(3.2.1)
In this context, onemay define a translation invariant distance on L0(X, μ) according
to

L0(X, μ) × L0(X, μ) � ( f, g) �→
ˆ

X

| f − g|
1 + | f − g| ω dμ ∈ [0,∞). (3.2.2)

In this conjunction, we have the following basic result describing the nature of the
topology of the space of measurable functions (compare with [30, Theorem 1.2.1,
p. 4]).

Lemma 3.2.1 Let (X,M, μ) be a sigma-finite measure space. Then the following
properties hold:

(i) A function ω with the properties specified in (3.2.1) always exists in this setting.
(ii) For each ω as in (3.2.1), the Lévy distance introduced in (3.2.2) defines on

L0(X, μ) a Hausdorff topology of a separable linear topological space, which
is independent of the choice of the function ω.

(iii) Let {A j } j∈N be a nested, increasing family of sets inM, of finite measure, which
exhausts X. Then a fundamental system of neighborhoods for the zero function
in the topology described above is given by

Vε, j :=
{
f ∈ L0(X, μ) : μ

({x ∈ A j : | f (x)| > ε}) < ε
}
, ε > 0, j ∈ N.

(3.2.3)
(iv) For each choice of the function ω as in (3.2.1), the space L0(X, μ) is complete

in the metric (3.2.2) provided the measure μ is complete. In fact, whenever μ is
complete, L0(X, μ) becomes an F-space though this is not, in general, locally
bounded, nor is it locally convex.

(v) For each choice of ω as in (3.2.1), the convergence of a sequence ( f j ) j∈N from
L0(X, μ) to some f ∈ L0(X, μ) in the metric (3.2.2) is equivalent to conver-
gence in measure on sets of finite measure, i.e.

∀A ∈ M with μ(A) < +∞, ∀ε > 0=⇒
lim
j→∞ μ

({
x ∈ A : | f j (x) − f (x)| > ε

}) = 0. (3.2.4)

As a consequence of this and Chebytchev’s inequality

L p(X, μ) ↪→ L0(X, μ) continuously, for each p ∈ (0,∞). (3.2.5)



252 3 Measure Theoretical and Topological Rudiments

3.3 Outer Measures

Let X be a fixed, arbitrary set. An outer measure μ∗ on X is an extended real-
valued, non-negative function μ∗ : 2X → [0,+∞] (recall that 2X denotes the col-
lection of all subsets of X ) satisfying

μ∗(∅) = 0 and μ∗(A) ≤
∑
j∈N

μ∗(A j ) if A, A j ⊆ X, j ∈ N, with A ⊆
⋃
j∈N

A j .

(3.3.1)
In this context, a set A ⊆ X is said to be μ∗-measurable provided

μ∗(Y ) = μ∗(Y ∩ A) + μ∗(Y \ A) for each Y ⊆ X. (3.3.2)

Note that the left-pointing inequality in (3.3.2) is always true (thanks to (3.3.1)), so
the crux of the matter is the validity of the right-pointing inequality in (3.3.2). We
set

Mμ∗ := {A ⊆ X : A is μ∗-measurable}. (3.3.3)

Lemma 3.3.1 Consider an outer measureμ∗ on an arbitrary set X. Then any nullset
for μ∗ belongs toMμ∗ (i.e., is μ∗-measurable).

Proof Let A ⊆ X be such that μ∗(A) = 0. Given that, by the monotonicity of the
outer measure, any subset of A is a nullset for μ∗, verifying the right-pointing
inequality in (3.3.2) presently reduces to checking that for every Y ⊆ X we have
μ∗(Y ) ≥ μ∗(Y \ A). This, however, is clear from the monotonicity of μ∗. �

In fact, according to Carathéodory’s classical theorem (cf., e.g., [91, Theo-
rem 1.11, p. 29]), if μ∗ is an outer measure on X , then

Mμ∗ is a sigma-algebra of subsets of X , and
μ∗∣∣

Mμ∗ is a complete measure on X . (3.3.4)

Given an arbitrary set E ⊆ X , the restriction of the outer measure μ∗ to E is the
outer measure μ∗�E on E defined by

μ∗�E := μ∗
∣∣∣
2E

. (3.3.5)

Then, as is easily verified, for any E ⊆ X

μ∗�E is an outer measure on E, and {A ∩ E : A ∈ Mμ∗ } ⊆ Mμ∗�E . (3.3.6)

Remark 3.3.2 Assume that X is a given set, E ⊆ X and μ∗ is an outer measure on
E. In this context, define (μ∗)X , the lifting of μ∗ from E to X, by setting

(μ∗)X (A) := μ∗(A ∩ E), ∀A ⊆ X. (3.3.7)
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Then the following properties can be verified based on definitions:

(i) (μ∗)X is an outer measure on X;
(ii) {A ⊆ X : A ∩ E ∈ Mμ∗ } ⊆ M(μ∗)X .

The next lemma indicates when the measure associated with the restriction of
an outer measure to a set coincides with the restriction to that set of the measure
associated with the given outer measure.

Lemma 3.3.3 If μ∗ is an outer measure on X, then

(
μ∗�A)

∣∣∣
M(μ∗�A)

= (
μ∗∣∣

Mμ∗

)�A, ∀A ∈ Mμ∗ . (3.3.8)

Proof Fix some A ∈ Mμ∗ . Since both sides of (3.3.8) act in a compatible fashion
with μ∗ on their domains of definition, it suffices to show that the two measures in
(3.3.8) act on the same sigma-algebra. Unraveling definitions, this comes down to
checking that

{C ⊆ A : μ∗(Y ) = μ∗(Y ∩ C) + μ∗(Y \ C), ∀Y ⊆ A} = {B ∈ Mμ∗ : B ⊆ A}.
(3.3.9)

The right-to-left inclusion in (3.3.9) is clear from the definition ofMμ∗ , so we shall
focus on the opposite one. To this end, assume that C ⊆ A satisfies

μ∗(Y ) = μ∗(Y ∩ C) + μ∗(Y \ C), ∀Y ⊆ A, (3.3.10)

and fix an arbitrary set Z ⊆ X . Then

μ∗(Z) = μ∗(Z \ A) + μ∗(Z ∩ A)

= μ∗(Z \ A) + μ∗((Z ∩ A) \ C)+ μ∗((Z ∩ A) ∩ C
)

= μ∗(Z \ A) + μ∗((Z ∩ A) \ C)+ μ∗(Z ∩ C)

≥ μ∗(Z \ C) + μ∗(Z ∩ C), (3.3.11)

where the first equality is due to the fact that A ∈ Mμ∗ , the second equality follows
from (3.3.10) used with Y := Z ∩ A ⊆ A, the third equality uses C ⊆ A, while the
subsequent inequality is a consequence of the subadditivity of μ∗ and the readily
checked identity

(Z \ A) ∪ ((Z ∩ A) \ C) = Z \ C. (3.3.12)

In turn, (3.3.11) and the subadditivity ofμ∗ give thatμ∗(Z)=μ∗(Z \ C)+μ∗(Z∩C).
Since the set Z ⊆ X has been arbitrarily chosen, this proves that C belongs to the
right-hand side of (3.3.9). Hence, the left-to-right inclusion in (3.3.9) holds as well,
finishing the proof of this equality. As noted earlier, this concludes the proof of the
lemma. �
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To any given measure space (X,M, μ) one can associate an outer measure μ∗ by
setting

μ∗(A) := inf
{∑

j∈N
μ(A j ) : A j ∈ M, j ∈ N, A ⊆

⋃
j∈N

A j

}

= inf
{
μ(E) : A ⊆ E ∈ M

}
for each A ⊆ X. (3.3.13)

Then, it is apparent from this definition that

μ∗(A) = μ(A), ∀A ∈ M, (3.3.14)

and (see, e.g., [251, # 9, p. 68]),

if (X,M, μ) is a measure space and μ∗ is the
outer measure associated with μ as in (3.3.13)

}
=⇒
{
Mμ∗ = M and

μ∗∣∣
Mμ∗ = μ,

(3.3.15)

i.e., the measure μ∗∣∣
Mμ∗ becomes the completion μ of μ (given in (3.1.25)). Fur-

thermore, from the last statement of [230, Proposition 6, p. 293], we know that

whenever (X,M, μ) is a measure space and the outer measure μ∗ is
associated with μ as in (3.3.13), it follows that for every A ⊆ X there
exists some set B ∈ M with the property that A⊆B and μ∗(A)=μ(B).

(3.3.16)

We now introduce the following piece of terminology, pertaining to the regularity
of outer measures, in the spirit of Definition 3.1.3.

Definition 3.3.4 Let X be an arbitrary set and assume that μ∗ is an outer measure
on X. Furthermore, suppose that M is a sigma-algebra of subsets of X. Then the
outer measure μ∗ is called M-regular provided M ⊆ Mμ∗ and

∀A ⊆ X ∃ B ∈ M such that A ⊆ B and μ∗(A) = μ∗(B). (3.3.17)

There is a close relationship between the concept of regularity for genuine mea-
sures from Definition 3.1.3 and the notion of regularity for outer measures from
Definition 3.3.4. For example, it is immediate from these definitions that

if M is a sigma-algebra on X, and

μ∗ is aM-regular outer measure on X

}
=⇒μ∗∣∣∣

Mμ∗
is a M-regular measure on X.

(3.3.18)
In the same spirit, we also wish to note the following result.

Lemma 3.3.5 Let (X,M, μ) be a measure space and assume that M0 is a sigma-
algebra of subsets of X contained inM. Denote by μ∗ the outer measure associated
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with μ as in (3.3.13). Then

the measure μ isM0-regular (in the sense of Definition 3.1.3) ⇐⇒
the outer measure μ∗ isM0-regular (in the sense of Definition 3.3.4). (3.3.19)

As a corollary

the outer measure
(
μ
∣∣
M0

)∗
isM0-regular. (3.3.20)

Proof The left-pointing implication in (3.3.19) is a simple consequence of (3.3.16)
and definitions, so we shall focus on the right-pointing implication in (3.3.19).
To this end, fix an arbitrary set A ⊆ X . If μ∗(A) = +∞, then μ∗(X) = +∞ and
A ⊆ X ∈ M0. There remains to treat the case when μ∗(A) < +∞. In this scenario,
from (3.3.13), we know that for each j ∈ N, there exists E j ∈ M with the property
that A ⊆ E j and μ(E j ) < μ∗(A) + 1/j . Next, using the fact that the measure μ is
M0-regular, for each j ∈ N it is possible to find Fj ∈ M0 such that E j ⊆ Fj and
μ(E j ) = μ(Fj ). Consequently

A ⊆ Fj ∈ M0 and μ∗(A) ≤ μ(Fj ) < μ∗(A) + 1/j for very j ∈ N. (3.3.21)

Hence, if we set F := ⋂
j∈N Fj , it follows from (3.3.14) and (3.3.21) that

A ⊆ F ∈ M0 and μ∗(A) ≤ μ∗(F) = μ(F) ≤ μ(Fj ) < μ∗(A) + 1/j (3.3.22)

for very j ∈ N. Note that the above double inequality forces μ∗(A) = μ(F). Since
F ∈ M, this ultimately permits us to conclude that μ∗(A) = μ∗(F) (cf. (3.3.14)).
All in all, the above reasoning shows that μ∗ is aM0-regular outer measure. Finally,
(3.3.20) is a direct consequence of (3.3.19) and the obvious fact that the measure
μ
∣∣
M0

isM0-regular. �

Lemma 3.3.6 Assume X is an arbitrary set and μ∗ is an outer measure on X. Also,
suppose M is a sigma-algebra of subsets of X with the property that M ⊆ Mμ∗ .
Then

the outer measure μ∗ isM-regular ⇐⇒ μ∗ =
(
μ∗
∣∣∣
M

)∗
. (3.3.23)

Proof To prove the right-pointing implication in (3.3.23), observe that if A ⊆ X is
arbitrary then, on the one hand,

(
μ∗
∣∣∣
M

)∗
(A) = inf

{
μ∗(E) : A ⊆ E ∈ M

}
≥ μ∗(A), (3.3.24)

by the monotonicity of μ∗. On the other hand, given that the outer measure μ∗ is
M-regular, it follows that there exists B ∈ M such that A ⊆ B andμ∗(A) = μ∗(B).
In turn, this shows that the opposite of the inequality in (3.3.24) also holds, and
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hence
(
μ∗∣∣

M

)∗
(A) = μ∗(A). Since the left-pointing implication in (3.3.23) is a direct

consequence of (3.3.20) in Lemma 3.3.5, the desired conclusion follows. �

3.4 Borel-Regular Measure and Outer Measures

To get started, recall the class of Borel-regular measures on a topological space.

Definition 3.4.1 Givena topological space (X, τ ), call ameasureμ : M → [0,+∞]
(where M is a sigma-algebra of subsets of X ) a Borel measure (or, simply,
Borel) provided Borelτ (X) ⊆ M. In the same context as above, call a given mea-
sure μ : M → [0,+∞] Borel-regular (on X ) provided μ is a Borel measure
(on X ) and

for every E ∈ M there exists B ∈ Borelτ (X) with
the property that E ⊆ B as well as μ(E) = μ(B).

(3.4.1)

Tautologically, in a given topological space (X, τ )

any measure μ : Borelτ (X) → [0,+∞] is Borel-regular. (3.4.2)

Lemma 3.4.2 Let μ be a locally finite Borel-regular measure on a sigma-compact
topological space (X, τ ). Also, pick an arbitrary μ-measurable non-negative func-
tion f on X. Then μ̃ := f μ is a Borel-regular measure on (X, τ ).

Proof By design, μ̃ is a Borel measure on (X, τ ), defined on the sigma-algebra
Mμ̃ = Mμ. To prove that μ̃ is, in fact, Borel-regular, let {KN }N∈N be a sequence
of compact sets in X such that KN ↗ X as N → ∞. Fix some set A ∈ Mμ̃ and
define AN := A ∩ KN ∈ Mμ for each N ∈ N. In particular, AN ↗ A as N → ∞.
Given that μ is Borel-regular, for each N ∈ N there exists a Borel set BN such that
AN ⊆ BN and μ(BN ) = μ(AN ) ≤ μ(KN ) < ∞. Hence, μ(BN \ AN ) = 0, which
implies f 1AN = f 1BN atμ-a.e. point in X . This further entails

´
AN

f dμ = ´
BN

f dμ
which, in turn, gives

μ̃(AN ) = μ̃(BN ) for each N ∈ N. (3.4.3)

We find it useful to replace the BN ’s with a nested family of sets enjoying similar
properties. Specifically, consider the Borel set CN := B1 ∪ B2 ∪ · · · ∪ BN for each
N ∈ N . Then

C :=
⋃
N∈N

BN is a Borel set and CN ↗ C as N → ∞. (3.4.4)
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From definitions, it is also clear that A ⊆ C . In addition, for each N ∈ N, we may
express

CN = BN �
( N−1⋃

j=1

(Bj \ BN )
)
. (3.4.5)

Note that whenever 1 ≤ j ≤ N − 1, we have Bj \ BN ⊆ Bj \ A j , hence

μ(Bj \ BN ) ≤ μ(Bj \ A j ) = 0 for j ∈ {1, . . . , N − 1}. (3.4.6)

The latter combined with (3.4.5) forces

μ̃(AN ) = μ̃(CN ) for each N ∈ N. (3.4.7)

The definition of C , the fact that AN ↗ A, properties (3.4.4) and (3.4.7), and
Lebesgue’sMonotoneConvergenceTheoremultimately yield μ̃(A) = μ̃(C). Hence,
the measure μ̃ is Borel-regular. �

Aweaker notion of regularity than the one considered in Definition 3.4.1 has been
introduced in [11, Definition 3.9, pp. 87-88]. As a preamble, the reader is reminded
that A
B stands for the symmetric difference of the sets A and B, in other words,
A
B := (A \ B) ∪ (B \ A).

Definition 3.4.3 If (X, τ ) is a topological space andM is a sigma-algebra of subsets
of X, call a measure μ : M → [0,+∞] Borel-semiregular on (X, τ ) (or
simply on X if the topology is understood) providedμ is Borel (i.e., Borelτ (X) ⊆ M),
and

for every E ∈ M with μ(E) < +∞, there exists
B ∈ Borelτ (X) with the property that μ(E
B) = 0.

(3.4.8)

Amoment’s reflection shows that anyBorel-regularmeasure is Borel-semiregular.
A related definition may be considered by demanding, in place of (3.4.8), that for
every E ∈ M there exists B ∈ Borelτ (X) such that μ(E
B) = 0. Under the back-
ground assumption that X is sigma-finite (relative to M), this definition becomes
equivalent to Definition 3.4.3.

It turns out that for a givenBorelmeasureμ, the quality of beingBorel-semiregular
hinges upon the ability to express characteristic functions of μ-measurable sets as
limits, pointwiseμ-almost everywhere, of sequences of Borel-measurable functions.
The following result of this nature is proved in [11, Lemma 3.10, p. 88].

Lemma 3.4.4 Assume (X, τ ) is a topological space and μ : M → [0,+∞] is a
Borel measure. In this context, consider a set E ∈ M which has the property that
there exists a sequence { f j } j∈N of real-valued Borel-measurable functions defined
on X such that f j → 1E pointwise μ-almost everywhere on X as j → ∞. Then
there exists B ∈ Borelτ (X) satisfying μ(E
B) = 0.
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The notion of Borel-regularity may be naturally adapted to outer measures. Based
on the general blueprint employed in Definition 3.3.4, we introduce this concept as
follows.

Definition 3.4.5 Let (X, τ ) be a topological space and let μ∗ be an outer measure
on X. Callμ∗ a Borel outer measure on X if Borelτ (X) ⊆ Mμ∗ . Furthermore,
call μ∗ a Borel-regular outer measure ifμ∗ is a Borel outer measure on X
and

for each A ⊆ X there exists some B ∈ Borelτ (X)

with the property that A ⊆ B and μ∗(A) = μ∗(B).
(3.4.9)

Remark 3.4.6 Let (X, τ ) be a topological space, E ⊆ X arbitrary, and assume that
μ∗ is a Borel outer measure on E. Lift μ∗ to an outer measure (μ∗)X on X as in
Remark 3.3.2. It follows then from property (i i) in Remark 3.3.2 and (3.1.1) that if
μ∗ is a Borel outer measure on E then (μ∗)X is a Borel outer measure on X.

Given a topological space (X, τ ) and aBorel outermeasureμ∗ on X , Lemma 3.3.6
implies that

μ∗ Borel-regular outer measure ⇐⇒ μ∗ =
(
μ∗∣∣

Borelτ (X)

)∗
. (3.4.10)

Also, if μ is a Borel measure on (X, τ ) and μ∗ denotes the outer measure associated
with μ as in (3.3.13), then Lemma 3.3.5 guarantees that

μ is a Borel-regular measure ⇐⇒ μ∗ is a Borel-regular outer measure. (3.4.11)

Lemma 3.4.7 Let (X, τ ) be a topological space and assume μ is a Borel measure
on X. Then, employing the notation introduced in (3.3.13), it follows that

(
μ
∣∣
Borelτ (X)

)∗
is a Borel-regular outer measure on X. (3.4.12)

Moreover, with the outer measure μ∗ associated with μ as in (3.3.13)

μ∗ is a Borel-regular outer measure ⇐⇒ μ∗ =
(
μ
∣∣
Borelτ (X)

)∗
. (3.4.13)

Proof The claim in (3.4.12) follows from definitions and the second part in
Lemma 3.3.5, whereas (3.4.13) is easily seen from (3.4.12) and Lemma 3.3.6. �

Given a topological space (X, τ ) along with a Borel outer measure μ∗ on X , in
the lemma below, we identify some useful features retained by restricting μ∗ to an
arbitrary set A ⊆ X .

Lemma 3.4.8 Let (X, τ ) be a topological space and assume thatμ∗ is a Borel outer
measure on X. Then for every A ⊆ X, it follows that μ∗�A is a Borel outer measure
on (A, τ |A).
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If actually the outer measure μ∗ is Borel-regular on (X, τ ), then for every set
A ⊆ X, the outer measure μ∗�A is Borel-regular on (A, τ |A).
Proof To deal with the claim made in the first part of the statement of the lemma,
fix an arbitrary set A ⊆ X . From (3.3.6), we know that μ∗�A is an outer measure on
A and, by (3.1.1) and the fact that Borelτ (X) ⊆ Mμ∗ ,

Borelτ |A(A) = {
A ∩ B : B ∈ Borelτ (X)

}

⊆ {
A ∩ B : B ∈ Mμ∗

} ⊆ Mμ∗�A, (3.4.14)

where we have also used the second part in (3.3.6). This allows us to conclude that
μ∗�A is a Borel outer measure on A.

There remains to settle the regularity issue from the second part of the statement
of the lemma. To this end, assume that μ∗ is a Borel regular outer measure on X
and let E ⊆ A be arbitrary. Then there exists B ∈ Borelτ (X) such that E ⊆ B
and μ∗(E) = μ∗(B). Then if we set Bo := B ∩ A, we have E ⊆ Bo ⊆ A and
Bo ∈ Borelτ |A(A) by (3.1.1). By the monotonicity of the outer measures μ∗ and
μ∗�A, and keeping in mind these inclusions, we may write

(μ∗�A)(Bo) = μ∗(Bo)≤μ∗(B) = μ∗(E) = (μ∗�A)(E) ≤ (μ∗�A)(Bo). (3.4.15)

Hence, (μ∗�A)(E) = (μ∗�A)(Bo)which, givenwhat we have shown already, proves
that μ∗�A is a Borel-regular outer measure on A. �
Remark 3.4.9 Given a topological space (X, τ ), the quality of being Borel-regular
is hereditary, in the precise sense that for each A ⊆ X, one has

μ∗ Borel-regular outer measure on (X, τ )

=⇒μ∗�A Borel-regular outer measure on (A, τ |A)
=⇒ (μ∗�A)

∣∣∣
M(μ∗�A)

Borel-regular measure on (A, τ |A), (3.4.16)

thanks to Lemma3.4.8 and (3.3.18). In concert with Lemma3.3.3, the last implication
in (3.4.16) further proves that

μ∗ Borel-regular outer measure on (X, τ ) and A ∈ Mμ∗

=⇒ (
μ∗∣∣

Mμ∗

)�A is a Borel-regular measure on (A, τ |A). (3.4.17)

For a measure, the quality of being Borel-regular is preserved under completion.
Here is a more general result of this flavor.

Lemma 3.4.10 Let (X, τ ) be a topological space and let (X,M, μ) be a measure
space such thatμ is a Borel-regularmeasure on (X, τ ). Let (M, μ) be the completion
of this measure. Then for each E ∈ M, it follows thatμ�E is a Borel-regularmeasure
on
(
E, τ

∣∣
E

)
.
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As a corollary, if (X, τ ) is a topological space and (X,M, μ) is a measure space
such that μ is a complete Borel-regular measure on (X, τ ), then μ�E is a Borel-
regular measure on

(
E, τ

∣∣
E

)
for each E ∈ M.

Proof The first claim is a consequence of (3.4.11), (3.4.17), and (3.3.15). The second
claim is implied by the first and (3.1.27). �

Given a measure space (X,M, μ), for each fixed set E ∈ M define

μE : M −→ [0,+∞], μE (B) := μ(B ∩ E), ∀B ∈ M. (3.4.18)

Then μE = 1E · μ, and it is clear from definitions (cf. (3.1.21)) that

μE is a measure on X which is concentrated on E . (3.4.19)

Since μE�E = μ�E , it follows from (3.4.19) and (3.1.22) that

the measure μE may be canonically identified with μ�E . (3.4.20)

Lemma 3.4.11 Let (X, τ ) be a topological space and let (X,M, μ) be a measure
space such thatμ is aBorel-regularmeasure on (X, τ ). Then for each E ∈ Borelτ (X)

it follows thatμE (defined as in (3.4.18)) is a Borel-regular measure on (X, τ )which
is concentrated on E.

Proof Pick an arbitrary set A ∈ M. Since μ is Borel, Borelτ (X) ⊆ M, hence
A ∩ E ∈ M. Next, the fact that μ is a Borel-regular measure on (X, τ ) ensures that
we may find some B ∈ Borelτ (X) such that

A ∩ E ⊆ B and μ(A ∩ E) = μ(B). (3.4.21)

Define C :=B∪(X \ E)∈Borelτ (X). Then A=(A∩E)∪ (A\E)⊆ B∪(X\E) = C .
As such, A ⊆ C so, on the one hand, we have μE (A) ≤ μE (C). On the other hand,

μE (C) = μ(C ∩ E) = μ(B ∩ E) ≤ μ(B) = μ(A ∩ E) = μE (A), (3.4.22)

thanks to (3.4.18), the definition of C , and (3.4.21). Ultimately, this proves that
C ∈ Borelτ (X) satisfies μE (C) = μE (A), hence μE is a Borel-regular measure on
(X, τ ). Finally, that μE is concentrated on E has been already noted in (3.4.19). �

For the next lemma, see also [80, Lemma 1, p. 6] for the case X = R
n and [88,

Theorem 2.2.2, p. 60] for the case when X is a metric space.

Lemma 3.4.12 Assume (X, τ ) is a topological space with the property that

any open set (in the topology τ) can be written as
a countable union of closed sets (in the topology τ).

(3.4.23)
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Also, suppose μ∗ is a Borel outer measure on X. Then

B ∈ Borelτ (X) and μ∗(B) < +∞=⇒μ∗(B) = sup
C closed
C ⊆B

μ∗(C). (3.4.24)

Condition (3.4.23) is satisfied in a variety of situations of interest. For example,
the following result is proved in [11, Lemma 2.2, p. 39].

Lemma 3.4.13 Assume (X, ρ) is a quasi-metric space. Equip X with the topology
τρ canonically induced by the quasi-distance ρ (cf. (7.1.7)). Then any open subset
of X may be written as a countable union of closed sets of X.

Proof of Lemma 3.4.12 Fix a set B ∈ Borelτ (X) for which μ∗(B) < +∞ and let
ν := μ∗�B . Then ν is a finite Borel outer measure on B. Define the set

F := {A ⊆ X : A is μ-measurable and ∀ε > 0 there exists

C ⊆ A closed set such that ν(A \ C) < ε}. (3.4.25)

Then clearly all closed sets in X belong to F . We next claim that

{Ai }i∈N ⊆ F =⇒
⋂
i∈N

Ai ∈ F and
⋃
i∈N

Ai ∈ F . (3.4.26)

To prove (3.4.26), assume that Ai ∈ F for each i ∈ N and fix an arbitrary ε > 0.
Then, for each i ∈ N, there exists a closed set Ci ⊆ Ai such that ν(Ai \ Ci ) < ε/2i .
Consequently,

⋂
i∈N

Ci is a closed set contained in
⋂
i∈N

Ai , and we have

ν
(⋂

i∈N
Ai\

⋂
i∈N

Ci

)
≤ν
(⋃

i∈N
(Ai\Ci )

)
≤
∑
i∈N

ν(Ai \ Ci ) <
∑
i∈N

2−iε = ε, (3.4.27)

proving that
⋂
i∈N

Ai ∈ F . Also, since ν is finite, we can apply (3.1.5) (note that, by

(3.3.4), μ∗
∣∣∣
Mμ∗

is a measure on X ) to write

lim
N→∞ ν

(⋃
i∈N

Ai \
N⋃
i=1

Ci

)
= ν

(⋃
i∈N

Ai \
⋃
i∈N

Ci

)
≤ ν

(⋃
i∈N

(Ai \ Ci )
)

≤
∑
i∈N

ν(Ai \ Ci ) <
∑
i∈N

2−iε = ε. (3.4.28)
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Hence, there exists No ∈ N such that ν
( ⋃

i∈N
Ai \

No⋃
i=1

Ci

)
< ε. The latter, together

with the fact that
No⋃
i=1

Ci is closed proves that
⋃
i∈N

Ai ∈ F . This completes the proof

of (3.4.26).
In light of (3.4.23), what we proved so far also implies that all open sets in X are

contained in F . Consider next the set

G := {A ∈ F : X \ A ∈ F }. (3.4.29)

Trivially, if A ∈ G, then X \ A ∈ G, soG is closed under taking complements. Since
we proved thatF contains all open and closed sets of X , it follows thatG also contains
all open and closed sets of X . Moreover, G is closed under taking countable unions.
Indeed, if {Ai }i∈N ⊆ G, then by definition {Ai }i∈N ⊆ F and {X \ Ai }i∈N ⊆ F , so that
by (3.4.26), we have

⋃
i∈N

Ai ∈ F and X \ ⋃
i∈N

Ai = ⋂
i∈N(X \ Ai ) ∈ F . This proves

that
⋃
i∈N

Ai ∈ G, as desired. Summing up, we have proved that G is a sigma-algebra

containing all open sets of X . Hence, G also contains Borelτ (X). In particular,
B ∈ G. The latter implies that B ∈ F which ultimately shows that (3.4.24) holds. �

It turns out that any Borel outer measure on a topological space satisfying a few
milder assumptions enjoys a certain type of inner and outer regularity as described
in the lemma below.

Lemma 3.4.14 Assume (X, τ ) is a topological space which satisfies (3.4.23) and
suppose μ∗ is a Borel outer measure on X with the property that

there exists a sequence {Oj } j∈N of open sets in X such that

X = ⋃
j∈N

Oj and μ∗(Oj ) < +∞ for each j ∈ N. (3.4.30)

Then

for each B ∈ Borelτ (X) and each ε > 0 one can find

an open set O ⊆ X with B ⊆ O and μ∗(O \ B) < ε.
(3.4.31)

Moreover,

if μ∗ is a Borel-regular outer measure on X satisfying
(3.4.30) then μ∗(A) = inf

O open
A⊆O

μ∗(O) for every A ⊆ X. (3.4.32)

Proof Introduce
Ui :=

⋃
1≤ j≤i

O j , ∀i ∈ N, (3.4.33)
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so that

X=
⋃
i∈N

Ui , and Ui is open, μ∗(Ui ) < +∞, Ui ⊆ Ui+1, for all i ∈ N. (3.4.34)

Also, fix some set B ∈ Borelτ (X) along with an arbitrary number ε > 0. Then for
each i ∈ N, we have thatUi \ B ∈ Borelτ (X) andμ(Ui \ B) < +∞. Consequently,
we may invoke Lemma 3.4.12 and deduce that there exists a closed set Ci ⊆ X with
the property that Ci ⊆ Ui \ B and

μ∗((Ui \ B) \ Ci
)

< 2−iε. (3.4.35)

Note that
O :=

⋃
i∈N

(Ui \ Ci ) is an open set. (3.4.36)

Since for each i ∈ N, we have Ci ⊆ X \ B, it follows thatUi ∩ B ⊆ Ui \ Ci , so that

B =
⋃
i∈N

(Ui ∩ B) ⊆
⋃
i∈N

(Ui \ Ci ) = O. (3.4.37)

Furthermore, by (3.4.36), (3.4.35) and the subadditivity of the outer measure μ∗

μ∗(O \ B) = μ∗
(⋃

i∈N

(
(Ui \ Ci ) \ B

)) ≤
∑
i∈N

μ∗((Ui \ Ci ) \ B
)

=
∑
i∈N

μ∗((Ui \ B) \ Ci
) ≤

∑
i∈N

2−iε = ε. (3.4.38)

Now, (3.4.31) follows from (3.4.36), (3.4.37) and (3.4.38).
As far as (3.4.32) is concerned, assume that μ∗ is a Borel-regular outer measure

on X and let A ⊆ X be arbitrary. If μ∗(A) = +∞, there is nothing to prove, so
there is no loss of generality in assuming in what follows that μ∗(A) < +∞. Also,
fix an arbitrary ε > 0. Given that μ∗ is a Borel-regular outer measure, there exists
B ∈ Borelτ (X)with the property that A ⊆ B andμ∗(B) = μ∗(A). Going further, by
(3.4.31), one may find some open set O ⊆ X such that B ⊆ O and μ∗(O \ B) < ε.
This entails A ⊆ O and since O = (O \ B) ∪ B, the subadditivity of μ∗ gives

μ∗(O) ≤ μ∗(O \ B) + μ∗(B) < ε + μ∗(A). (3.4.39)

Since ε > 0 is arbitrary, this shows that

μ∗(A) ≥ inf
O open
A⊆O

μ∗(O). (3.4.40)
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The opposite inequality in (3.4.40) is clear from the monotonicity of μ∗ and this
finishes the proof of (3.4.32). �

Our next proposition shows that any Borel measure (on a topological space satis-
fying an additional mild condition) automatically possesses some type of inner and
outer regularity.

Proposition 3.4.15 Let (X, τ ) be a topological space and assumeμ : M→[0,+∞]
is a Borel measure on X. Then the following statements are true:

(1) If (X, τ ) satisfies (3.4.23) then

μ(B) = sup
C closed
C ⊆B

μ(C) (3.4.41)

for any Borel set B of the form

B =
∞⋃
j=1

Bj with B j ∈ Borelτ (X) and μ(Bj ) < +∞ for each j ∈ N.

(3.4.42)
In particular, (3.4.41) holds for every B ∈ Borelτ (X) whenever the background
measure space satisfies

there exist {X j } j∈N ⊆ Borelτ (X) such that

X = ⋃
j∈N

X j and μ(X j ) < +∞ for each j ∈ N. (3.4.43)

(2) If (X, τ ) satisfies (3.4.23) and

there exists a sequence {Oj } j∈N of open subsets of X such that

X = ⋃
j∈N

Oj and μ(Oj ) < +∞ for each j ∈ N. (3.4.44)

then
for each B ∈ Borelτ (X) and each ε > 0 there exists

an open set O ⊆ X with B ⊆ O and μ(O \ B) < ε.
(3.4.45)

(3) If (X, τ ) satisfies (3.4.23) and the measure μ is Borel-regular and satisfies
(3.4.44), then μ also satisfies the outer-regularity condition

μ(E) = inf
O open
E ⊆O

μ(O), ∀E ∈ M, (3.4.46)

as well as the inner-regularity condition

μ(E) = sup
C closed
C ⊆E

μ(C), ∀E ∈ M. (3.4.47)
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Proof Letμ∗ be the outermeasure associatedwithμ as in (3.3.13). From (3.3.15),we
know thatμ∗ is a Borel outer measure. If (X, τ ) satisfies (3.4.23) then Lemma 3.4.12
gives (keeping (3.3.13) in mind) that

∀B ∈ Borelτ (X) with μ(B) < +∞=⇒μ(B) = sup
C closed
C ⊆B

μ(C). (3.4.48)

Consider now the case when B is as in (3.4.42) and has the additional prop-
erty that μ(B) = +∞. Without loss of generality, we may assume that the sets
Bj ∈ Borelτ (X) are pairwise disjoint to begin with. For each integer j ∈ N, use
(3.4.48) to find a closed set C j ⊆ X such that C j ⊆ Bj and μ(Bj ) < μ(C j ) + 2− j .
If for each N ∈ N, we now define CN := ⋃N

j=1 C j , then CN is closed and CN ⊆ B.
Moreover, as N → ∞, we have

μ
(
CN ) =

N∑
j=1

μ(C j ) ≥
N∑
j=1

[
μ(B j ) − 2− j ] →

( ∞∑
j=1

μ(B j )
)

− 1 = μ(B) − 1 = +∞,

(3.4.49)
which goes to show that sup

{
μ(C) : C closed, C ⊆ B

} = +∞ in this case. Since
we are currently assuming μ(B) = +∞, the desired conclusion follows. This con-
cludes the treatment of item (1).

Moving on, the claims in item (2) as well as (3.4.46) in item (3) in the statement
of the proposition are direct consequence of (3.4.31) and (3.4.32) in Lemma 3.4.14,
respectively, given that μ and μ∗ agree on M which, in turn, contains Borelτ (X).

At this point, there remains to prove (3.4.47) under the assumption that (X, τ )

satisfies (3.4.23) and μ is a Borel-regular measure which satisfies (3.4.44). To this
end, fix E ∈ M and note that, obviously

μ(E) ≥ sup
C closed
C ⊆E

μ(C). (3.4.50)

To prove the opposite inequality, assume first that

μ(E) < +∞ (3.4.51)

and fix an arbitrary ε > 0. Since μ is a Borel-regular measure, there exists

B ∈ Borelτ (X) with the property that E ⊆ B and μ(E) = μ(B). (3.4.52)

In particular, thanks to (3.4.51), μ(B) < +∞ so (3.4.48) applies and yields

C ⊆ X closed with the property that C ⊆ B and μ(B) < μ(C) + ε/2. (3.4.53)



266 3 Measure Theoretical and Topological Rudiments

On the other hand, from (3.4.46) applied to the set B \ E ∈ M, we know that there
exists

an open set O ⊆ X such that B \ E ⊆ O and μ(O) < μ(B \ E) + ε/2. (3.4.54)

At this stage, defineCε := C \ O ⊆ X and observe that, since B \ E ⊆ O andC⊆B,
we necessarily have Cε ⊆ C \ (B \ E) = C ∩ E . Hence

Cε is closed and Cε ⊆ E . (3.4.55)

Furthermore, since E \ C ⊆ B \ C and E ∩ O = O \ (B \ E), we have

E \ Cε = (E \ C) ∪ (E ∩ O) ⊆ (B \ C) ∪ [O \ (B \ E)]. (3.4.56)

Consequently, from (3.4.56), (3.4.53) and (3.4.54), we obtain

μ(E \ Cε) ≤ μ(B \ C) + μ(O \ (B \ E)) < ε/2 + ε/2 = ε. (3.4.57)

Thus, μ(E) < μ(Cε) + ε which, when used in concert with (3.4.55), justifies the
opposite inequality in (3.4.50), completing the proof of (3.4.47) under the additional
hypothesis that (3.4.51) holds.

Finally, there remains to prove (3.4.47) as stated.To this end, assume that E ∈ M is
such that μ(E) = +∞ and recall the sequence {Oj } j∈N from (3.4.44). Furthermore,
let the Ui ’s retain the same significance as in (3.4.33), so that

X =
⋃
i∈N

Ui and Ui is open, μ(Ui )< + ∞, , Ui ⊆ Ui+1, for all i ∈ N. (3.4.58)

Then E ∩Ui ∈ M and μ(E ∩Ui ) < +∞ for each i ∈ N, so what we have proved
up to this point in relation to (3.4.47) applies and gives that for each i ∈ N there
exists some closed set Ci ⊆ X with Ci ⊆ E ∩Ui and μ(Ci ) + 1/ i > μ(E ∩Ui ).
Hence,

lim
i→∞ μ(Ci ) ≥ lim

i→∞
(
μ(E ∩Ui ) − 1/ i

) = μ(E) = +∞, (3.4.59)

which proves that there are closed subsets of E of arbitrarily large measure. As
a result, (3.4.47) also holds in the case when E ∈ M satisfies μ(E) = +∞. This
finishes the proof of the proposition. �

Remark 3.4.16 Let (X, τ ) be a locally compact, Hausdorff topological space with
the property that every open set in X is sigma-compact, i.e.,

for each open set O ⊆ X there exist compact sets

K j ⊆ X, with j ∈ N, such that O = ⋃
j∈N

K j
(3.4.60)
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(parenthetically, note that any separable, locally compact, topological space whose
topology is induced by a metric satisfies (3.4.60)).

Then, if μ is a Borel measure on X such that μ(K ) < +∞ for every compact
set K ⊆ X, it follows that conditions (3.4.23) and (3.4.44) hold. Likewise, if μ∗ is a
Borel outer measure on X, which is finite on compact subsets of X, then conditions
(3.4.23) and (3.4.30) hold as well.

3.5 Radon Measures

To set the stage, we formally recall the class of Radon measures.

Definition 3.5.1 Let (X, τ ) be a topological space, and letM be a sigma-algebra of
subsets of X. Call a measure μ : M → [0,+∞] Radon provided Borelτ (X) ⊆ M
(i.e.,μ is Borel),μ is locally finite (i.e.,μ(K ) < +∞ for every compact set K ⊆ X ),
every open set is inner-regular, i.e.,

μ(O) = sup
K compact

K⊆O

μ(K ), for each open set O ⊆ X, (3.5.1)

and every Borel set is outer-regular, i.e.

μ(E) = inf
O open
E⊆O

μ(O), ∀E ∈ Borelτ (X). (3.5.2)

It turns out (cf. [91, Proposition 7.5, p. 216]) that in any topological space,

any Radonmeasure is inner-regular on all sets whichmay be
written as countable unions of Borel sets of finite measure.

(3.5.3)

In addition, the following regularity result holds (compare with [91, Theorem 7.8,
p. 217]).

Proposition 3.5.2 Let (X, τ ) be a locally compact Hausdorff topological space in
which every open set is sigma-compact (recall that the latter condition automatically
holds if (X, τ ) is second countable hence, in particular, if (X, τ ) is metrizable and
separable). Also, let μ : M → [0,+∞] be a locally finite Borel measure on X (i.e.,
Borelτ (X) ⊆ M and μ(K ) < +∞ for every compact set K ⊆ X ). Then every set in
Borelτ (X) is both inner-regular and outer-regular with respect to μ, i.e.

μ(E) = sup
K compact

K⊆E

μ(K ) = inf
O open
E⊆O

μ(O), ∀E ∈ Borelτ (X). (3.5.4)

In particular, μ is a Radon measure.
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As a corollary, (3.5.4) is valid for any locally finite Borel measure μ on a locally
compact, separable metric space X (equipped with the topology τ canonically
induced by the metric).

Proof The outer-regularity formula in (3.5.4) is a consequence of part (2) in Propo-
sition 3.4.15 and Remark 3.4.16. As far as the inner-regularity formula in (3.5.4) is
concerned, let us first treat the case when μ(E) < +∞. In this scenario, thanks to
part (1) in Proposition 3.4.15 and Remark 3.4.16, it suffices to observe that if

⋃
j∈N

K j = X with K j ⊆ X compact and K j ⊆ K j+1 for every j ∈ N, (3.5.5)

then for every closed set C ⊆ X , we have μ(C ∩ K j ) → μ(C) as j → ∞,
and each C ∩ K j is a compact set (since (X, τ ) is a Hausdorff topological space). In
the situation when μ(E) = +∞, consider the pairwise disjoint Borel sets
Dj := K j+1 \ K j , j ∈ N, and note that since E = ∪ j∈N(Dj ∩ E), it follows that
+∞ = μ(E) = ∑

j∈N μ(Dj ∩ E). On the other hand, since Dj ∩ E is a Borel set
of finite measure, what we have proved already gives that, for each j ∈ N, one can
find a compact set C j ⊆ Dj ∩ E with the property that μ(C j ) ≥ μ(Dj ∩ E) − 2− j .
Then, since the C j ’s are disjoint, we obtain

lim
k→∞ μ

( k⋃
j=1

C j

)
=

∞∑
j=1

μ(C j ) ≥
∞∑
j=1

(
μ(Dj ∩ E) − 2− j

) = +∞. (3.5.6)

Since for each fixed k the set
k⋃
j=1

C j is compact and contained in E , it follows that

the inner-regularity formula in (3.5.4) is valid in the case whenμ(E) = +∞ as well.
Finally, the very last claim in the statement of the proposition is a corollary of

what has just been proved, given that any separable metric space is Lindelöf. �

Corollary 3.5.3 Assume (X, τ ) is a locally compact Hausdorff topological space in
which every open set is sigma-compact (recall that the latter condition automatically
holds if (X, τ ) is second countable hence, in particular, if (X, τ ) is metrizable and
separable) and suppose μ : M → [0,+∞] is a locally finite Borel-regular measure
on X.

Then μ is a Radon measure which is both outer-regular and inner-regular, i.e.,

μ(E) = inf
O open
E⊆O

μ(O), ∀E ∈ M, (3.5.7)

and
μ(E) = sup

K compact
K⊆E

μ(K ), ∀E ∈ M. (3.5.8)
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Proof All claims in the statement follow from Proposition 3.5.2, bearing in mind
(the second part of) Definition 3.4.3. �

Moving on, we record the following basic definition:

Definition 3.5.4 (i) Let X be an arbitrary set. Call μ a complex measure on X
provided μ is a function mapping a sigma-algebraM (of subsets of X ) into the field
of complex numbers C with the property that

for each countable family {E j } j∈N ⊆ M of mutually disjoint sets it
follows that

∑∞
j=1 |μ(E j )| < +∞andμ

(⋃∞
j=1 E j

) = ∑∞
j=1 μ(E j ).

(3.5.9)

(ii) Let (X, τ ) be a topological space. Call μ a complex Borel measure on
X provided μ is a complex measure on X with the property that the sigma-algebra
M on which μ is defined contains Borelτ (X). Henceforth, the family of all complex
Borel measures in a topological space (X, τ ) is going to be denoted by CBM(X, τ )

(or simply CBM(X) if the topology τ is understood from the specific context).

It is worth stressing that a complex measure cannot take infinite values, so an
“ordinary” positive measure is a complex measure if and only if it is finite. Standard
references are [231, Chapter 6], [91, Sect. 3.3]. The class of signed/complex Radon
measures is formally introduced next.

Definition 3.5.5 Let (X, τ ) be a topological space. A signed Radon measure
on X is a signed Borel measure on X whose positive and negative variations (given
by the Jordan Decomposition Theorem; cf. [91, Theorem 3.4, p. 87]) are positive
Radon measures.

Also, a complex Radon measure on X is a complex Borel measure μ on X
whose real and imaginary parts are signed Radon measures on X.

It turns out (see [91, Proposition 7.16, p. 222]) that for any topological space
(X, τ ) and any complex Borel measure μ on X ,

μ is a complex Radon measure on X if and only if
|μ| is a (positive, finite) Radon measure on X .

(3.5.10)

Here and elsewhere, if μ is a complex measure on an arbitrary measurable space X ,
we let |μ| denote its total variation, i.e.

|μ|(E) := sup
∞∑
j=1

|μ(E j )|, ∀E ∈ M, (3.5.11)

whereM is the sigma-algebra on whichμ is defined and the supremum is taken over
all partitions {E j } j∈N of E (i.e., countable families of mutually disjoint sets in M
whose union in E ; see [231, p. 116]). As is well known (cf., e.g., [231, Theorem 6.2,
p. 117] and [231, Theorem 6.4, p. 118])
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the total variation |μ| of the complex measure μ

is a finite (positive) measure on X.
(3.5.12)

Let us also recall (cf. [91, pp. 94-95]) that the action of |μ| may alternatively be
described as

|μ|(E) = sup

{∣∣∣
ˆ

E
f dμ

∣∣∣ : f μ-measurable, with | f | ≤ 1μ-a.e. on X

}
(3.5.13)

for each μ-measurable set E ⊆ X . If the ambient set X is an open subset � of R
n

and if the given measure μ is actually a complex Radon measure on �, then Lusin’s
theorem (cf. [91, Theorem 7.10, p. 217]) plus a standard mollifier argument permit
us to express

|μ|(�) = sup

{∣∣∣
ˆ

�

φ dμ
∣∣∣ : φ ∈ C∞

c (�), sup
x∈�

|φ(x)| ≤ 1

}
. (3.5.14)

Given a topological space (X, τ ), denote by CRM(X, τ ) the collection of all
complex Radon measures on (X, τ ). This is a linear space and

CRM(X, τ ) � μ �−→ ‖μ‖ := |μ|(X) ∈ [0,∞) (3.5.15)

is a norm on it. The classical Riesz–Markov–Kakutani Representation Theorem
isometrically identifies this normed space with the topological dual of continuous
functions vanishing at infinity. Concretely, if (X, τ ) is a locally compact Hausdorff
topological space, denote by C 0(X) the space of continuous functions on X , and
define

Co(X) :=
{
f ∈ C 0(X) : ∀ε > 0 ∃ K ⊆ X compact, such that sup

x∈X\K
| f (x)| < ε

}

=
{
f ∈ C 0(X) : {x ∈ X : | f (x)| ≥ ε} is compact for each ε > 0

}
,

(3.5.16)

which is a Banach space when equipped with the supremum norm. Then themapping

CRM(X, τ ) � μ �−→ �μ ∈ (Co(X)
)∗

,

�μ( f ) := ´
X f dμ for all f ∈ Co(X),

constitutes an isometric isomorphism.

(3.5.17)

Cf., e.g., [91, Theorem 7.17, p. 223] for a proof.
For future references, let us also agree to denote by CBM(X, τ ) the collection

of all complex Borel measures on a given topological space (X, τ ). By design
CRM(X, τ ) ⊆ CBM(X, τ ), and we also have (cf. [91, p. 222])
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CRM(X, τ ) = CBM(X, τ ) whenever (X, τ ) is a second
countable locally compact Hausdorff topological space.

(3.5.18)

In particular, since any given open subset � of R
n becomes a second countable

locally compact Hausdorff topological space when equipped with the relative topol-
ogy induced by the Euclidean ambient, we have (after a slight adjustment in notation)

CRM(�) = CBM(�). (3.5.19)

In the next lemma, we study the vector Riesz transforms of certain Borel measures
in open subsets of R

n .

Lemma 3.5.6 Let � be an open subset of R
n.

(i) Suppose μ is a positive Borel measure on � with the property that, for some
d ∈ [0, n), satisfies ˆ

�

1

1 + |y|d dμ(y) < +∞. (3.5.20)

Then the function

R
n � x �−→

ˆ

�

1

|x − y|d dμ(y) ∈ [0,+∞] (3.5.21)

belongs to L p
loc(R

n,Ln) whenever 1 ≤ p < n/d.
(ii) If either μ is a positive measure as in item (i) corresponding to d := n − 1, or

μ ∈ CBM(�), then the vector Riesz transform of the measure μ, i.e., the vector
field

�F(x) := 1

ωn−1

ˆ

�

x − y

|x − y|n dμ(y) for Ln-a.e. x ∈ �, (3.5.22)

is well defined as an element in
[
L p
loc(�,Ln)

]n
whenever 1 ≤ p < n/(n − 1),

and satisfies
div �F = μ in D′(�). (3.5.23)

Proof First note that, given any m ∈ [0, n), there exists a constant Cn,m ∈ (0,∞)

such that for each R ∈ (0,∞), we have

ˆ

B(0,R)

dx

|x − y|m ≤ Cn,m · Rn

Rm + |y|m for each y ∈ R
n. (3.5.24)

Indeed, since m < n, it follows that if y ∈ B(0, 2R), then

ˆ

B(0,R)

dx

|x − y|m ≤
ˆ

B(0,3R)

dz

|z|m ≤ Cn,m R
n−m, (3.5.25)
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while since m ≥ 0, if y ∈ R
n \ B(0, 2R), we have

ˆ

B(0,R)

dx

|x − y|m ≤
ˆ

B(0,R)

2m

|y|m dx ≤ Cn,m R
n|y|−m . (3.5.26)

Collectively, (3.5.25)–(3.5.26) prove (3.5.24).
To proceed, select some d ∈ [0, n) along with some p ∈ [1, n/d). Then for each

R ∈ (0,∞) Minkowski’s inequality and (3.5.20) permit us to estimate

(ˆ

B(0,R)

(ˆ

�

dμ(y)

|x − y|d
)p

dx

)1/p

≤
ˆ

�

(ˆ

B(0,R)

dx

|x − y|pd
)1/p

dμ(y)

≤
ˆ

�

(
Cn,p,d · Rn

Rpd + |y|pd
)1/p

dμ(y)

≤ Cn,p,d,R

ˆ

�

1

1+|y|d dμ(y)<+∞, (3.5.27)

where the second inequality is implied by (3.5.24) used with m := pd ∈ [0, n).
Bearing in mind that the function in (3.5.21) is also Ln-measurable (as seen from
Fubini–Tonelli’s Theorem, which is presently applicable given that (3.5.20) ensures
that the measure μ is sigma-finite), this finishes the proof of the claim in item (i).

In turn, this readily implies the first claim in item (ii). As regards the second claim
in item (ii), pick an arbitrary test function ϕ ∈ C∞

c (�) and compute

D′(�)〈div �F, ϕ〉D(�) = −[D′(�)]n 〈 �F,∇ϕ〉[D(�)]n = −
ˆ

�

〈 �F,∇ϕ〉 dLn

= − 1

ωn−1

ˆ

�

〈ˆ

�

x − y

|x − y|n dμ(y),∇ϕ(x)
〉
dx

=
ˆ

�

(
− 1

ωn−1

ˆ

Rn

〈x − y,∇ϕ(x)〉
|x − y|n dx

)
dμ(y)

=
ˆ

�

ϕ(y) dμ(y) = D′(�)〈μ, ϕ〉D(�) (3.5.28)

where we have used the fact that �F ∈ [L1
loc(�,Ln)

]n
in the second equality, Fubini’s

Theorem in the fourth equality, and the well-known fact that the distributional Lapla-
cian of the classical Newtonian potential is Dirac’s distribution in the fifth equality.

�
The following result is useful, among other things, in establishing embeddings of

Lorentz spaces into weighted Lebesgue spaces (see Lemma 6.2.9).

Lemma 3.5.7 Suppose n ∈ N, m ∈ [0, n), and consider a Lebesgue measurable set
� ⊆ R

n along with a non-negative Lebesgue measurable function w defined in �.
Then the following statements are equivalent:
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(1) The function w belongs to the space L1
(
�,

dy
1+|y|m

)
, i.e.

ˆ

�

w(y)

1 + |y|m dy < +∞. (3.5.29)

(2) There exists a point x ∈ R
n with the property that

ˆ

�

w(y)

|x − y|m dy < +∞. (3.5.30)

(3) For Ln-a.e. point x ∈ R
n, one has

ˆ

�

w(y)

|x − y|m dy < +∞. (3.5.31)

Proof To show that (1)⇒ (3), for each R ∈ (0,∞) use Fubini–Tonelli’s Theorem
and (3.5.24) to write

ˆ

B(0,R)

( ˆ

�

w(y)

|x − y|m dy
)
dx =

ˆ

�

w(y)
( ˆ

B(0,R)

dx

|x − y|m
)
dy

≤ C
ˆ

�

w(y)

1 + |y|m dy < +∞, (3.5.32)

for some constant C = C(n,m, R) ∈ (0,∞). In turn, (3.5.32) implies that (3.5.31)
holds for Ln-a.e. point x ∈ B(0, R), and the claim in item (3) follows on account of
the arbitrariness of R. Next, the implication (3)⇒ (2) is obvious, while the impli-
cation (2)⇒ (1) is justified by observing that for each fixed x ∈ R

n , there exists
Cx ∈ (0,∞) such that |x − y|m ≤ Cx (1 + |y|m) for each y ∈ R

n . �

It is also of interest to have a version of Lemma 3.5.7 for a logarithmic weight,
of the sort described below.

Lemma 3.5.8 Let � ⊆ R
n be a Lebesgue measurable set and consider a non-

negativeLebesguemeasurable functionw defined in�. Then the following statements
are equivalent:

(1) One has ˆ

�

w(y) ln(2 + |y|) dy < +∞. (3.5.33)

(2) There exists a point x ∈ R
n with the property that

ˆ

�

w(y)
(
1 + ∣∣ ln |x − y|∣∣) dy < +∞. (3.5.34)
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(3) For Ln-a.e. point x ∈ R
n, one has

ˆ

�

w(y)
(
1 + ∣∣ ln |x − y|∣∣) dy < +∞. (3.5.35)

Proof We reason similarly to the proof of Lemma 3.5.7, this time noting that for
each R ∈ (0,∞) there exists a constant CR ∈ (0,∞) such that

ˆ

B(0,R)

(
1 + ∣∣ ln |x − y|∣∣) dx ≤ CR ln(2 + |y|) for each y ∈ R

n. (3.5.36)

In turn, estimate (3.5.36) is established by analyzing two cases, namely the situations
when y ∈ B(0, 2R) and, y ∈ R

n \ B(0, 2R), respectively. �

3.6 Separable Measures

Let (X,M, μ) be an arbitrary measure space. Consider the equivalence relation on
M given by

A ∼ B
def⇐⇒ μ(A
B) = 0, (3.6.1)

where “
” denotes the set theoretic symmetric difference, and denote by [A] the
equivalence class of a generic set A ∈ M. Then (cf., e.g., [188, Corollary 5.19,
p. 342])

{[A] : A ∈ M, μ(A) < +∞}
equipped with the distance([A], [B]) �−→ μ(A
B) is a complete metric space.

(3.6.2)

Definition 3.6.1 Givenameasure space (�,M, μ), call themeasureμseparable
provided the metric space (3.6.2) is separable.

Then [188, Theorem 5.5, p. 300] implies that

if (X,M, μ) is a sigma-finite measure space and p ∈ (0,∞), then
the Lebesgue space L p(X, μ) is separable whenever the measure
μ is separable (in the sense of Definition 3.6.1).

(3.6.3)

In fact, an inspection of the proof of [17, Theorem 5.5, p. 27] shows that the separa-
bility of the measure μ is actually also a necessary condition for the separability of
the space L p(X, μ).

Lemma 3.6.2 Let (X, τ ) be a second-countable2 topological space and consider a
Borel measure μ : M → [0,∞] on X with the property that

2 A topological space is called second countable if there exists a countable family U of open sets
with the property that any given open set may be written as the union of the sets belonging to a
subfamily of U .
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there exist {X j } j∈N ⊆ Borelτ (X) such that

X =
⋃
j∈N

X j and μ(X j ) < +∞ for each j ∈ N. (3.6.4)

Then the measure μ
∣∣
Borelτ (X)

is separable.

Proof In a first stage, strengthen the hypothesis made in (3.6.4) by asking that μ

is actually finite. Let U := {Oj } j∈N be a sequence of open subsets of X with the
property that any open set in X may be written as a union of sets in U . If we then
define

F1(X) :=
{
A ⊆ X : either A = ∅, or A ∈ U , or X \ A ∈ U

}
(3.6.5)

F2(X) :=
{ N⋂

j=1

E j : N ∈ N and E j ∈ F1(X) for 1 ≤ j ≤ N
}
, (3.6.6)

F3(X) :=
{ M⋃

j=1

Fj : M ∈ N and Fj ∈ F2(X) for 1 ≤ j ≤ M
}
, (3.6.7)

it follows (cf. [25, p. 5] for the simple argument) that the collection F3(X) is an
algebra of subsets of X , i.e., it satisfies

∅, X ∈ F3(X), and for each A, B ∈ F3(X) one has

A ∩ B ∈ F3(X), A ∪ B ∈ F3(X), A \ B ∈ F3(X).
(3.6.8)

Moreover, it is apparent from the above definitions that

F3(X) is a countable family of subsets of X with
the property that U ⊆ F3(X) ⊆ Borelτ (X). (3.6.9)

In particular, the double inclusion in (3.6.9) implies that

the sigma-algebra generated by F3(X) is precisely Borelτ (X). (3.6.10)

In relation to this, we claim that if

A :=
{
E ⊆ X : for each ε > 0 there exists

F ∈ F3(X) such that μ(E�F) < ε
}

(3.6.11)

then
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A is a sigma-algebra of subsets of X, containing Borelτ (X). (3.6.12)

To justify this claim, first observe that ∅, X ∈ A. Also, if E∈A, ε > 0, and
F∈F3(X) are such that μ(E�F) < ε, then X \ F belongs to F3(X) and satisfies
μ
(
(X \ E)�(X \ F)

) = μ(E�F) < ε. This goes to show that A is stable under
taking complements. To prove thatA is a sigma-algebra, there remains to show that
if {E j } j∈N ⊆ A, then E := ⋃

j∈N E j belongs toA. To this end, fix some ε > 0 and
note that (3.6.11) guarantees that

for each j ∈ N there exists some Fj ∈ F3(X)

with the property that μ(E j�Fj ) < ε · 2− j−1.
(3.6.13)

Upon recalling that we are assuming the measure μ to be finite, it is possible to

pick N ∈ N such that μ
(
E \

N⋃
j=1

E j

)
< ε/2. (3.6.14)

Then (3.6.8) implies that F := ⋃N
j=1 Fj belongs to F3(X) and (3.6.13)–(3.6.14)

permit us to estimate

μ(E�F) ≤ μ
(
E \

N⋃
j=1

E j

)
+

N∑
j=1

μ(E j�Fj ) < ε/2 + ε/2 = ε. (3.6.15)

This proves that E ∈ A, henceA is indeed a sigma-algebra. Since, by design,A con-
tainsF3(X), we conclude from (3.6.10) that the sigma-algebraA actually contains
Borelτ (X). This finishes the proof of (3.6.12).

In turn, from (3.6.11)–(3.6.12), we see that, given any E ∈ Borelτ (X), for each
ε > 0 there exists F ∈ F3(X) such thatμ(E�F) < ε. In view of the first property in
(3.6.9) andDefinition 3.6.1, it follows that themeasureμ

∣∣
Borelτ (X)

is indeed separable.
At this stage, there remains to relax the assumption that the measure μ is finite

to (3.6.4). In the latter scenario, for each j ∈ N define τ j to be the relative topology
induced by X on X j , and consider μ j := μ�X j . Then each (X j , τ j ) continues to be
a second-countable topological space (since this property is hereditary) and, thanks
to (3.1.1), we have

Borelτ j (X j ) = {
B ∩ X j : B ∈ Borelτ (X)

}

= {
B ∈ Borelτ (X) : B ⊆ X j

}
. (3.6.16)

Since μ j is defined on the sigma-algebra

M j := {
E ∩ X j : E ∈ M

} = {
E ∈ M : E ⊆ X j

}
, (3.6.17)
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it follows that each μ j is a finite Borel measure on (X j , τ j ). Granted this, it follows
from the first part of the proof that for each j ∈ N, the measure μ j

∣∣
Borelτ j (X j )

is

separable. More specifically, what we have proved so far implies that

for each j ∈ N, each E j ∈ Borelτ j (X j ), and each ε > 0, there
exists some set Fj ∈ F3(X j ) such that μ j (E j�Fj ) < ε. (3.6.18)

Then

F :=
⋃
j∈N

F3(X j ) is a countable subset of Borelτ (X). (3.6.19)

Fix now B ∈ Borelτ (X) along with ε > 0 arbitrary. It follows from (3.6.18) that for
each j ∈ N, we have B ∩ X j ∈ Borelτ j (X j ) so there exists Fj ∈ F3(X j ) such that
μ j
(
(B ∩ X j )�Fj

)
< ε · 2− j . If we now define F := ⋃

j∈N Fj , then F ∈ F and

μ(B�F) ≤
∞∑
j=1

μ
(
(B ∩ X j )�Fj

) =
∞∑
j=1

μ j
(
(B ∩ X j )�Fj

)
(3.6.20)

<

∞∑
j=1

ε · 2− j = ε. (3.6.21)

This and (3.6.19) then imply that the measure μ
∣∣
Borelτ (X)

is separable.
�

Separability is particularly important from the point of view of the Sequential
Banach–Alaoglu Theorem (cf. [232, Theorem 3.17, p. 70]), which asserts that

given a separable topological vector space X , if {� j } j∈N ⊆ X∗ has the
property that there exists a neighborhood V of the origin in X for which
supx∈V sup j∈N |� j x | < +∞ then there exists a subsequence {� jk }k∈N
of {� j } j∈N which is weak-∗ convergent to a � ∈ X∗, i.e., � jk x → �x
in C as k → ∞ for each fixed x ∈ X .

(3.6.22)

As a corollary3,

if V is a reflexive normed space such that V ∗ is separable then
the closed unit ball in V is sequentially weakly compact.

(3.6.23)

Here is a versatile criterion guaranteeing the separability of Lebesgue spaces in a
fairly general setting.

3 In relation to (3.6.23), generally speaking, the closed unit ball in the reflexive normed space V is
merely weakly compact if the separability assumption on V ∗ is dropped.
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Proposition 3.6.3 Let (X, τ ) be a second-countable topological space and consider
a sigma-finite Borel-regular measure μ : M → [0,+∞] on X. Then the measure
μ is separable, and for each integrability exponent p ∈ (0,∞) the Lebesgue space
L p(X, μ) is separable.

Proof Sinceμ is sigma-finite, there exist {E j } j∈N ⊆ M such that X = ⋃
j∈N E j and

μ(E j ) < +∞ for each j ∈ N. Then (3.4.1) implies that for each j ∈ N, there exists
X j ∈ Borelτ (X)with the property that E j ⊆ X j andμ(X j ) = μ(E j ) < +∞. Thus,
condition (3.6.4) holds for the family {X j } j∈N. Granted this, Lemma 3.6.2 applies
and gives that the measure μ

∣∣
Borelτ (X)

is separable. More specifically, from the proof
of Lemma 3.6.2, we know that there exists a countable subsetF of Borelτ (X) with
the property that

for each B ∈ Borelτ (X) and each ε > 0 there
exists some set F ∈ F such thatμ(B�F) < ε.

(3.6.24)

Fix now an arbitrary set E∈M with μ(E) < + ∞, and pick some arbitrary ε > 0.
Then (3.4.1) guarantees that there exists B ∈ Borelτ (X) satisfying E ⊆ B and
μ(E) = μ(B). Consequently, the set F ∈ F associated with the current B, ε as in
(3.6.24) satisfies μ(E�F) = μ(B�F) < ε (since the fact that E has finite measure
forces μ(B \ E) = 0).

Hence,
{[F] : F ∈ F , μ(F) < +∞}

is a dense countable subset of the metric
space defined in (3.6.2). Thus, this metric space is separable, which proves that the
measure μ is separable. In concert with (3.6.3), this shows that each Lebesgue space
L p(X, μ) with p ∈ (0,∞) is separable. �

When restricted to measurable sets of locally finite mass, the Hausdorff measure
enjoys a wealth of useful properties, described in the following lemma.

Lemma 3.6.4 Consider s ∈ [0,∞) and let

X ⊆ R
n be some H s -measurable set satisfying

H s(X ∩ K ) < +∞ for every compact K ⊂ R
n.

(3.6.25)

If τRn

∣∣
X denotes the topology induced by the ambient Euclidean space R

n on the set
X, then

H s�X is a complete, locally finite,

Borel-regular measure on
(
X, τRn

∣∣
X

)
.

(3.6.26)

Moreover,

the measure H s�X is separable, and for each exponent
p in (0,∞) the Lebesgue space L p

(
X,H s�X) is separable. (3.6.27)

Proof First, it is well known (cf. [80, Theorem 1, p. 61]) that the s-dimensional
Hausdorff outer measure is a Borel-regular outer measure inR

n . Second, themeasure
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inducedby an arbitrary outermeasure (as inCarathéodory’s theorem) is automatically
complete (cf. (3.3.4)), hence

H s is a complete Borel-regular measure in R
n. (3.6.28)

Third, the quality of being Borel-regular is hereditary, in the precise described in
(3.4.17). Fourth, completeness is also hereditary, as remarked in (3.1.28). In concert
with (3.6.25), these considerations imply that H s�X is a complete locally finite
Borel-regular measure on

(
X, τRn

∣∣
X

)
.

Having established this, Proposition 3.6.3 applies (upon observing that, as a topo-
logical space, R

n is second countable, and this property is hereditary) and gives
(3.6.27). �

3.7 Density Results for Lebesgue Spaces

In the proposition below, we identify an optimal geometric measure theoretic context
in which the associated Lebesgue spaces enjoy useful density properties. To set the
stage, for a given subset X of an ambient metric space (X , d), consider the semi-
norm

‖ f ‖Lip(X) := sup
x,y∈X, x �=y

| f (x) − f (y)|
d(x, y)

(3.7.1)

for each (scalar-valued) function f defined on X , and introduce the space of complex-
valued Lipschitz functions defined on X as

Lip(X) := {
f : X → C : ‖ f ‖Lip(X) < +∞}

(3.7.2)

Also, denote by Lipc(X) the space of complex-valued Lipschitz functions defined
on X which vanish identically outside of a bounded subset of X . Classical work of
McShane and Whitney (cf., e.g., the discussion in [10], [11], and [188, Sect. 4.2,
pp. 156-164]) gives

Lipc(X) = {
f
∣∣
X : f ∈ Lipc(R

n)
}
, ∀X ⊆ R

n. (3.7.3)

Proposition 3.7.1 Assume X ⊆ R
n is an arbitrary set, and denote by τRn

∣∣
X the

topology induced by the Euclidean ambient on X. Also, let μ be a locally finite Borel
measure on

(
X, τRn

∣∣
X

)
. Then the following are equivalent:

(1) the measure μ is Borel-semiregular;
(2) for some, or every, p ∈ (0,∞) the natural inclusion

Lipc(X) ↪→ L p(X, μ) has dense range; (3.7.4)
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(3) for some, or every, p ∈ (0,∞) the natural inclusion

{
φ
∣∣
X : φ ∈ C∞

c (Rn)
}

↪→ L p(X, μ) has dense range. (3.7.5)

Proof In a first stage, assume themeasureμ is Borel-semiregular and fix an arbitrary
exponent p ∈ (0,∞). The goal is to approximate arbitrarily well in L p(X, μ) a given
function f ∈ L p(X, μ) with functions from Lipc(X). Since simple functions are
dense in L p(X, μ) (cf. (3.1.11)), there is no loss of generality in assuming that f = 1E
where E ⊆ X is μ-measurable and μ(E) < ∞. Because μ is a Borel-semiregular
measure, there exists B ∈ Borelτ (X) satisfying μ(B�E) = 0. This forces 1E = 1B
pointwiseμ-almost everywhere on X , hence 1E = 1B when regarded as functions in
L p(X, μ). As such, matters have been reduced to approximating 1B arbitrarily well
in L p(X, μ) with functions from Lipc(X), for any B ∈ Borelτ (X) with μ(B) < ∞.

With this goal in mind, we first claim that it may be assumed that the Borel set B
is actually bounded. Indeed, if we consider Bj := B ∩ B(0, j) for each j ∈ N, then
each Bj is a boundedBorel subset of X and1Bj → 1B in L p(X, μ) as j → ∞.Hence,
approximating 1B in the desired manner is implied by the ability of approximating
each 1Bj in a similar fashion. This concludes the proof of the claim at the beginning
of the paragraph.

Moving on, in the scenario when B is a bounded Borel set, item (1) in Proposi-
tion 3.4.15 applies (since (3.4.23) holds in the current setting thanks toLemma3.4.13,
and since μ(B) < ∞) and (3.4.41) gives

μ(B) = sup
C relatively closed in X

C bounded, C⊆B

μ(C). (3.7.6)

From (3.7.6), we can find a sequence of sets {Ci }i∈N ⊆ B such thatμ(Ci ) ↗ μ(B) as
i → ∞ where each Ci is a bounded, relatively closed subset of X . In particular, this
implies 1Ci → 1B in L p(X, μ) as i → ∞. Hence, ultimately it suffices to approx-
imate each 1Ci in L p(X, μ) with functions from Lipc(X). At this point, for each
fixed i ∈ N, we may invoke [188, Lemma 4.14, p. 166] in order to find a sequence
{φ(i)

j } j∈N ⊂ Lipc(X) along with a number R ∈ (0,∞) satisfying

supp φ
(i)
j ⊆ B(0, R) for each j ∈ N,

0 ≤ φ
(i)
j ≤ 1 on X for each j ∈ N,

and φ
(i)
j ↘ 1Ci pointwise on X as j → ∞.

(3.7.7)

In particular, φ
(i)
j → 1Ci in L p(X, μ) as j → ∞, finishing the proof of (3.7.4).

Bearing in mind (3.7.3), a standard mollifier argument then allows us to deduce
(3.7.5) from (3.7.4).

Finally, that (3.7.5) forces μ to be a Borel-semiregular measure follows from
Lemma 3.4.4. �
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We augment Proposition 3.7.1 with the following criterion ensuring that a locally
integrable function vanishes almost everywhere.

Proposition 3.7.2 Let X ⊆ R
n be an arbitrary set, and denote by τRn

∣∣
X the topology

induced on X by the ambient Euclidean topology. Also, letμ be a locally finite Borel-
regular measure on

(
X, τRn

∣∣
X

)
. Then for every function f ∈ L1

loc(X, μ), one has

f = 0 at μ-a.e. point on X ⇐⇒
ˆ

X
f φ dμ = 0 for every φ ∈ C∞

c (Rn). (3.7.8)

Moreover, for every open set O ⊆ R
n and every f ∈ L1

loc(O ∩ X, μ) one has

f = 0 at μ-a.e. point on O ∩ X ⇐⇒
ˆ

O∩X
f φ dμ = 0 for every φ ∈ C∞

c (O).

(3.7.9)

Proof Consider an arbitrary f ∈ L1
loc(X, μ) satisfying the cancellation condition

recorded in the right-hand side of (3.7.8). The first observation is that, thanks to
(3.7.3) and a standard mollifier argument, this self-improves to

ˆ

X
f φ dμ = 0 for every φ ∈ Lipc(X). (3.7.10)

To proceed, fix an arbitrary bounded and relatively closed subset K of X , and again
invoke [188, Lemma 4.14, p. 166] in order to find a sequence {φ j } j∈N ⊂ Lipc(X)

along with a number R ∈ (0,∞) satisfying

supp φ j ⊆ B(0, R) for each j ∈ N,

0 ≤ φ j ≤ 1 on ∂� for each j ∈ N,

and φ j ↘ 1K pointwise as j → ∞.

(3.7.11)

Granted these, Lebesgue’s Dominated Convergence Theorem and (3.7.10) permit us
to conclude that ˆ

K
f dμ = lim

j→∞

ˆ

X
f φ j dμ = 0. (3.7.12)

Next, if for every r ∈ (0,∞), we introduce

A±
r := {

x ∈ B(0, r) ∩ X : ± f (x) ≥ 0
}
, (3.7.13)

then item (3) in Proposition 3.4.15 applies and gives that for each r > 0, we have

μ(A±
r ) = sup

{
μ(K ) : K ⊆ A±

r , K bounded, relatively closed subset of X
}
.

(3.7.14)
Fix r > 0 and ε > 0 arbitrary. Since 1B(0,r)∩X | f | dμ is a finite measure which is
absolutely continuous with respect to μ, it follows that there exists θ > 0 with the
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property that

ˆ

E
| f | dμ < ε for each μ-measurable set E ⊆ B(0, r) ∩ X with μ(E) < θ.

(3.7.15)
For this θ , use (3.7.14) to find two bounded relatively closed subsets K±

r of X such
that

K±
r ⊆ A±

r and μ
(
A±
r \ K±

r

)
< θ. (3.7.16)

Then, thanks to (3.7.12), we may write

ˆ

B(0,r)∩X
| f | dμ =

ˆ

A+
r

f dμ −
ˆ

A−
r

f dμ =
ˆ

A+
r \K+

r

f dμ −
ˆ

A−\K−
r

f dμ,

(3.7.17)
and then rely on (3.7.15) and (3.7.16) to estimate

∣∣∣∣
ˆ

A±
r \K±

r

f dμ

∣∣∣∣ ≤
ˆ

A±
r \K±

r

| f | dμ < ε. (3.7.18)

The bottom line is that
´
B(0,r)∩X | f | dμ < 2ε for every r > 0 and ε > 0. Ultimately,

this forces f = 0 at μ-a.e. point on X , finishing the left-pointing implication in
(3.7.8). Since the opposite implication is trivial, this concludes the proof of (3.7.8).

As regards the last claim in the statement of the proposition, pick an open set
O ⊆ R

n and assume f ∈ L1
loc(O ∩ X, μ) satisfies the cancellation condition in the

right-hand side of (3.7.9). Pick a sequence of functions {ψ j } j∈N ⊆ C∞
c (O) with the

property that
lim
j→∞ ψ j (x) = 1 for every x ∈ O. (3.7.19)

For each j ∈ N, introduce f j := ψ̃ j f , where tilde denotes the extension by zero
outside of O to the entire X . Then for each j ∈ N, we have f j ∈ L1(X, μ) and

ˆ

X
f jφ dμ =

ˆ

O∩X
f (ψ jφ) dμ = 0 for every φ ∈ C∞

c (Rn). (3.7.20)

Thanks to (3.7.8), this proves that for each j ∈ N we have f j = 0 at μ-a.e. point on
X . In light of (3.7.19), this ultimately implies that

f = 0 at μ-a.e. point on O ∩ X, (3.7.21)

finishing the proof of the proposition. �

Corresponding to the Hausdorff measure, our earlier work yields the following
result.
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Corollary 3.7.3 Pick s ∈ (0,∞) and consider a H s -measurable set X ⊆ R
n with

the property thatH s(X ∩ K ) < ∞ for every compact K ⊂ R
n. Define μ := H s�X.

Then for every p ∈ (0,∞), the natural inclusion

{
φ
∣∣
X : φ ∈ C∞

c (Rn)
}

↪→ L p(X, μ) has dense range, (3.7.22)

and for every function f ∈ L1
loc(X, μ) and every open set O ⊆ R

n, one has

f = 0 μ-a.e. on O ∩ X ⇐⇒
ˆ

O∩X
f φ dμ = 0 for every φ ∈ C∞

c (O). (3.7.23)

Proof All claims follow by combining Lemma 3.6.4, Proposition 3.7.1, and Propo-
sition 3.7.2. �

3.8 The Support of a Measure

The notion of the support of a measure is formally defined below.

Definition 3.8.1 Given a topological space (X, τ ) along with some (non-negative)
Borel measure μ on X, define the support of μ to be

suppμ := {
x ∈ X : μ(O) > 0 for each O ⊆ X open such that x ∈ O

}
. (3.8.1)

In the proposition below, we collect a number of basic properties of the brand of
support introduced in Definition 3.8.1. Before stating this, we wish to clarify some
terminology. Call a topological space (X, τ ) Lindelöf if every open cover of X
has a countable sub-cover. Next, a strongly Lindelöf space is a topological
space such that every open set is itself Lindelöf (with the topology inherited from
the ambient). Lastly, a topological space (X, τ ) is said to be second-countable
if there exists a countable familyU of open subsets of X with the property that any
open set O ⊆ X may be written as a union of sets in U . In particular, being second
countable is a hereditary property that implies separability. Second countability also
implies that any collection of mutually disjoint open sets is at most countable. It is
well known that any second-countable space is a strongly Lindelöf space. Also, a
quasi-metric space is strongly Lindelöf if and only if it is separable.

Proposition 3.8.2 Suppose (X, τ ) is a topological space and that μ is a (non-
negative) Borel measure on X. Then the following statements are true:

(1) Given x ∈ X, one has x ∈ X \ suppμ if and only if there exists an open set
O ⊆ X such that x ∈ O and μ(O) = 0.

(2) One has
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X \ suppμ =
⋃

O open
μ(O)=0

O. (3.8.2)

(3) The set suppμ is closed in (X, τ ).
(4) One may describe suppμ as the largest (with respect to inclusion) closed set

C in (X, τ ) with the property that whenever O ⊆ X is an open set satisfying
O ∩ C �= ∅ one necessarily has μ(O) > 0.

(5) If A ⊆ X is a μ-measurable set with the property that

μ is concentrated on A, in the sense that μ(E) = μ(E ∩ A)

for every μ-measurable set E ⊆ X(cf. (3.1.21)),
(3.8.3)

then suppμ ⊆ A, the closure of A in the topological space (X, τ ).
(6) If λ is another (non-negative) Borel measure on X such that μ << λ then

suppμ ⊆ supp λ.
(7) Given any another (non-negative) Borel measure λ on X, one has

supp(μ + λ) = (suppμ) ∪ (supp λ). (3.8.4)

(8) Under the additional assumption that (X, τ ) is strongly Lindelöf (which, e.g., is
the case if (X, τ ) is second countable), it follows that X \ suppμ is a μ-nullset.
In particular, μ(A) = 0 whenever A ⊆ X \ suppμ is a μ-measurable set, and

ˆ

X
f dμ =

ˆ

suppμ

f dμ, ∀ f ∈ L1(X, μ). (3.8.5)

Also, in such a scenario, X \ suppμ is the largest (with respect to inclusion)
open μ-nullset in the topological space (X, τ ).

Proof The claim in item (1) is a direct consequence of Definition 3.8.1, and the claim
in item (2) is readily implied by (1). Clearly, (3.8.2) implies the claim made in item
(3). Also, the claim in item (4) follows by untangling definitions, while the claim in
item (5) is straightforward. To prove the claim in item (6), recall that if μ << λ then
any λ-nullset is a μ-nullset. Bearing this in mind, (3.8.2) permits us to write

X \ supp λ =
⋃

O open
λ(O)=0

O ⊆
⋃

O open
μ(O)=0

O = X \ suppμ. (3.8.6)

Passing to complements then gives suppμ ⊆ supp λ, as wanted. Next, the left-to-
right inclusion in (3.8.4) is seen from item (6) upon observing that μ << μ + λ and
λ << μ + λ. To prove the opposite inclusion, suppose x ∈ X \ (suppμ ∪ supp λ).
The fact that x /∈ suppμ implies the existence of some open set O ⊆ such that x ∈ O
and μ(O) = 0, while having x /∈ supp λ guarantees the existence of some open
set Õ ⊆ X such that x ∈ Õ and λ(Õ) = 0. Then O ∩ Õ is an open set satisfying
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x ∈ O ∩ Õ and (μ + λ)(O ∩ Õ) = 0 which, according to Definition 3.8.1, goes to
show that x /∈ supp(μ + λ). This finishes the proof of (3.8.4). Finally, themain claim
in item (8) is a consequence of (3.8.2) and assumptions. �

The definition below elaborates on the notion of support for a given measurable
function, relative to the background measure.

Definition 3.8.3 Let (X, τ ) be a topological space and let μ be a (non-negative)
Borel measure on X. Given any scalar-valuedμ-measurable function f on X, define
the support of f (relative to the measure μ) to be the support of the measure
| f |μ, i.e.,

supp f :=
{
x ∈ X :

ˆ

O
| f | dμ > 0 for each O ⊆ X open with x ∈ O

}
. (3.8.7)

Some of the most basic properties of the support of measurable functions are
collected in the lemma below which, to a large extent, parallels Proposition 3.8.2
dealing with the support of measures.

Lemma 3.8.4 Let (X, τ ) be a topological space and assume μ is a (non-negative)
Borel measure on X. Also, let f, g be two scalar-valued μ-measurable functions on
X. Then the following properties hold:

(1) The set supp f is closed in (X, τ ).
(2) If f = g at μ-a.e. point on X then supp f = supp g.
(3) One has

X \ supp f =
⋃

O open such that
f =0 μ-a.e. on O

O. (3.8.8)

(4) Given x ∈ X, one has x ∈ X \ supp f if and only if there exists an open set
O ⊆ X such that x ∈ O and f = 0 at μ-a.e. point in O.

(5) If O ⊆ X is an open set and f = 0 at μ-a.e. point in O, then O ∩ supp f = ∅.
(6) For any μ-measurable subset E of X, one has supp 1E ⊆ E, the closure of E in

(X, τ ). Moreover,

if μ(O) > 0 for each nonempty open subset O of X, then
for each open set E ⊆ X one has supp 1E = E.

(3.8.9)

(7) If A is some μ-measurable subset of X with the property that f = 0 at μ-a.e.
point in A, then supp f ⊆ supp 1X\A ⊆ X \ A.

(8) Assuming that f, g are finite μ-a.e., one has

supp( f g) ⊆ (
supp f

) ∩ (supp g), (3.8.10)

supp( f + g) ⊆ (
supp f

) ∪ (supp g). (3.8.11)
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(9) Under the additional assumption that (X, τ ) is strongly Lindelöf (which, e.g., is
the case if (X, τ ) is second countable), it follows that f = 0 at μ-a.e. point on
X \ supp f .

(10) One has supp f ⊆ {x ∈ X : f (x) �= 0}, where the closure is taken in (X, τ ).
Moreover, one actually has equality if μ has the property that μ(O) > 0 for
every nonempty open subset O of X, and if the function f is continuous on
(X, τ ).

Proof Part (1) follows from Definition 3.8.3 and item (1) in Proposition 3.8.2. Part
(2) is implied directly by Definition 3.8.3 upon noting that having f = g at μ-a.e.
point on X forces | f |μ = |g|μ as measures. Formula (3.8.8) is clear from (3.8.2)
and Definition 3.8.3, while parts (4)-(5) are immediate consequences of (3.8.8).
The first claim in part (6) is readily seen from Definition 3.8.3. As regards (3.8.9),
suppose the measure μ has the property that μ(O) > 0 for each nonempty open
subset O of X . Fix an arbitrary open set E ⊆ X . From what we have proved
so far, supp 1E ⊆ E . To justify the opposite inclusion, start with some arbitrary
point x ∈ X \ supp 1E . Thanks to item (4), this implies that there exists an open
set O ⊆ X and a nullset N ⊆ X for μ such that x ∈ O and 1E = 0 at each point in
O \ N . The latter condition then forces O \ N ⊆ X \ E hence, further, O ∩ E ⊆ N .
As a consequence, O ∩ E is an open set with the property thatμ(O ∩ E) = 0. Thus,
O ∩ E = ∅ given the current assumptions on μ. In turn, this permits us to con-
clude that x /∈ E hence, ultimately, E ⊆ supp 1E . Via double inclusion, (3.8.9) is
now established.

To deal with the claim in part (7), observe that if A is a μ-measurable subset of
X such that f = 0 at μ-a.e. point in A, then | f | << 1X\A μ. Thanks to item (6) in
Proposition 3.8.2 and Definition 3.8.3, this gives supp f ⊆ supp 1X\A ⊆ X \ A, with
the last inclusion provided by part (6).

As regards part (8), since | f g|μ << | f |μ and | f g|μ << |g|μ, item (6) in Propo-
sition 3.8.2 and Definition 3.8.3 combined imply that supp( f g) ⊆ supp f and
supp( f g) ⊆ supp g. Collectively, these establish (3.8.10). To prove (3.8.11), start
by noting that | f + g|μ << | f |μ + |g|μ, hence

supp( f + g) = supp
(| f + g|μ) ⊆ supp

(| f |μ + |g|μ)

= (
supp(| f |μ)

) ∪ (supp(|g|μ)
) = (

supp f
) ∪ (supp g), (3.8.12)

by Definition 3.8.3 and items (6)-(7) in Proposition 3.8.2. Going further, the claim in
part (9) is readily implied by (3.8.8) and assumptions. There remains to deal with the
claims in part (10). First, if x ∈ X \ { f �= 0}, then there exists an open set O ⊆ X
such that x ∈ O and f = 0 everywhere on O . In light of (3.8.8), this places x in
X \ supp f , proving that supp f ⊆ { f �= 0}. Let us now prove the opposite inclusion
under the additional assumptions that f is continuous and μ is strictly positive on
nonempty open sets. With this goal in mind, pick an arbitrary point x ∈ X \ supp f .
In view of part (4), there exist an open set O ⊆ X and a μ-measurable set N ⊆ O
with the property that μ(N ) = 0 such that x ∈ O and f = 0 everywhere on O \ N .
We claim that

O ⊆ O \ N . (3.8.13)
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If not, there exists y∈O and an open setU⊆X such that y ∈ U andU ∩ (O \ N )= ∅.
The latter property forces Õ := O ∩U to be contained in N which, in turn, would
make the open set Õ be a μ-nullset, hence necessarily empty. However, y ∈ Õ , a
contradictionwhich proves (3.8.13). Next, recall that O \ N ⊆ f −1({0}) and observe
that f −1({0}) is a closed set given that f is continuous. In concert with (3.8.13), this
permits us to write

O ⊆ O \ N ⊆ f −1({0}) = f −1({0}). (3.8.14)

As such, the function f vanishes everywhere on O which (bearing in mind that x
belongs to the open set O) goes to show that x /∈ { f �= 0}. Since x ∈ X \ supp f has
been arbitrarily chosen, this ultimately proves that { f �= 0} ⊆ supp f , as desired. �

3.9 The Riesz Representation Theorem

We discuss the following version of the Riesz Representation Theorem describing
the nature of linear continuous functionals on smooth compactly supported vector
fields.

Proposition 3.9.1 Fix n,m ∈ N. Assume � ⊆ R
n is an open set and consider a

linear functional
� : [C∞

c (�)
]m −→ R (3.9.1)

with the property that for each compact set K ⊂ �, one has

C(K ) := sup
{
|� �φ| : �φ ∈ [C∞

c (�)
]m

, supp �φ ⊆ K , sup
K

| �φ| ≤ 1
}

< +∞.

(3.9.2)
Then � extends uniquely to a linear functional

�̃ : [C 0
c (�)

]m −→ R (3.9.3)

with the property that for each compact set K ⊂ �, one has

sup
{
|�̃ �ψ | : �ψ ∈ [C 0

c (�)
]m

, supp �ψ ⊆ K , sup
K

| �ψ | ≤ 1
}

< +∞, (3.9.4)

and there exist some locally finite Borel-regular measureμ on�, together with some
μ-measurable vector-valued function N : � → R

m, satisfying

|N | = 1 at μ-a.e. point belonging to �, and

�̃ �ψ =
ˆ

�

N · �ψ dμ for each �ψ ∈ [C 0
c (�)

]m
.

(3.9.5)

Moreover, for each open set W ⊆ �, one has



288 3 Measure Theoretical and Topological Rudiments

μ(W ) = sup
{
|�̃ �ψ | : �ψ ∈ [C 0

c (�)
]m

, supp �ψ ⊆ W, sup
�

| �ψ | ≤ 1
}

= sup
{
|� �φ| : �φ ∈ [C∞

c (�)
]m

, supp �φ ⊆ W, sup
�

| �φ| ≤ 1
}
. (3.9.6)

Proof Fix an arbitrary compact set K ⊂ � and choose an open set O such that
K ⊂ O and O is a compact subset of �. Given a vector field �ψ ∈ [C 0

c (�)
]m

with
supp �ψ ⊆ K , use a mollifier to produce a sequence

{ �φ j } j∈N ⊆ [
C∞
c (O)

]m
such that

�φ j −→ �ψ uniformly on � as j → ∞.
(3.9.7)

Since (3.9.2) entails

|� �φ| ≤ C(O) sup
O

| �φ| for each �φ ∈ [C∞
c (O)

]m
, (3.9.8)

it follows {� �φ} j∈N is a Cauchy sequence of real numbers, hence convergent. Con-
sequently, the following limit exists:

�̃ �ψ := lim
j→∞ � �φ j . (3.9.9)

A well-known argument based on interlacing sequences also shows that said limit is
independent of the sequence { �φ j } j∈N as in (3.9.7). Hence, � extends uniquely to a
linear functional �̃ as in (3.9.3) with the property that (3.9.4) holds for each compact
set K ⊂ �. Granted this, a version of the Riesz Representation Theorem discussed
in [80, Theorem 1, p. 49] applies and yields the existence of a locally finite Borel-
regular measure μ on � and a μ-measurable vector-valued function N : � → R

m

satisfying (3.9.5) as well as the first equality in (3.9.6) (see [80, item 1 in the proof
of Theorem 1, p. 49]).

There remains to prove the second equality in (3.9.6). We proceed by double
inequality. Since �̃ is an extension of �, one such inequality is immediate. To
establish the remaining inequality, fix an arbitrary open set W ⊆ � and pick an
arbitrary �ψ ∈ [C 0

c (�)
]m

with supp �ψ ⊆ W and sup� | �ψ | ≤ 1. From the first part of
the proof, we know that there exists a sequence

{ �φ j } j∈N ⊆ [
C∞
c (�)

]m
with supp �φ j ⊆ W for each j ∈ N, such that

�φ j → �ψ uniformly on � as j → ∞, and �̃ �ψ = lim
j→∞ � �φ j .

(3.9.10)

Note that for each j ∈ N, we have

sup
�

| �φ j | ≤ sup
�

| �φ j − �ψ | + sup
�

| �ψ | ≤ sup
�

| �φ j − �ψ | + 1. (3.9.11)
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As such, given any ε > 0, after eventually excluding finitely many terms in the
sequence { �φ j } j∈N there is no loss of generality in assuming that

sup
�

| �φ j | ≤ 1 + ε for each j ∈ N. (3.9.12)

In concert with (3.9.10), this permits us to estimate

(1 + ε)−1
∣∣�̃ �ψ∣∣ = lim

j→∞

∣∣∣�( �φ j/(1 + ε)
)∣∣∣ (3.9.13)

≤ sup
{
|� �φ| : �φ ∈ [C∞

c (�)
]m

, supp �φ ⊆ W, sup
�

| �φ| ≤ 1
}
.

After sending ε → 0+ this ultimately yields

∣∣�̃ �ψ∣∣ ≤ sup
{
|� �φ| : �φ ∈ [C∞

c (�)
]m

, supp �φ ⊆ W, sup
�

| �φ| ≤ 1
}
. (3.9.14)

which now readily implies the missing inequality in the justification of the second
equality in (3.9.6). This concludes the proof of Proposition 3.9.1. �



Chapter 4
Selected Topics in Distribution Theory

The topics treated in this chapter are as follows. First we develop a brand of distri-
bution theory on arbitrary subsets of R

n , taking Lipschitz functions with bounded
support as test functions. Second, we define and study what we call the “bullet prod-
uct” which, in essence, is a weak version (modeled upon integration by parts) of the
inner product of the normal vector to a domain with a given vector field satisfying
only some verymild integrability properties in that domain. Third, we provide a proof
of the product rule for weak derivatives. Fourth, we compare the divergence of a dif-
ferentiable vector field, taken in a pointwise sense, to its distributional divergence.
Fifth, we study the algebraic dual of the space of functions which are simultane-
ously smooth and bounded in an open subset of the Euclidean ambient. Finally, we
introduce and study the notion of contribution at infinity of a given vector field.

4.1 Distribution Theory on Arbitrary Sets

In this section, we discuss a certain brand of distribution theory on arbitrary subsets
of the Euclidean ambient. Let � be a subset of R

n . Denote by Lip(�) the space of
complex-valued Lipschitz functions defined on �, equipped with the semi-norm

‖φ‖Lip(�) := sup
x,y∈�
x �=y

|φ(x) − φ(y)|
|x − y| , ∀φ ∈ Lip(�). (4.1.1)

Consider the space of bounded Lipschitz functions on �, i.e.,

BL(�) := {φ ∈ Lip(�) : φ bounded on �
}
. (4.1.2)
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This becomes a Banach space when equipped with the norm

‖φ‖ := sup
x∈�

|φ(x)| + ‖φ‖Lip(�), ∀φ ∈ BL(�). (4.1.3)

Recall that Lipc(�) denotes the subspace of Lip(�) consisting of functions which
vanish identically outside a bounded subset of �. We define the class of test
functions on � as (

Lipc(�), τD
)

(4.1.4)

i.e., the space of complex-valued Lipschitz functions defined on � which vanish
identically outside a bounded subset of �, equipped with a certain topology, τD . To
define this topology on Lipc(�), fix a reference point x0 ∈ � and pick

{Km}m∈N, bounded sets inR
n,with the property thatKm ⊆ Km+1

for eachm ∈ N, and for every r > 0 there existsm ∈ N such that
B(x0, r) ⊆ Km .

(4.1.5)

For each m ∈ N, denote

Vm(�) := {φ ∈ Lip(�) : φ ≡ 0 on � \ Km
}
. (4.1.6)

This becomes a Banach space when equipped with the norm from (4.1.3), and we
have

Vm(�) ⊆ Vm+1(�) for every m ∈ N, and Lipc(�) =
⋃

m∈N

Vm(�). (4.1.7)

Denote by τm the topology induced on Vm(�) by the norm from (4.1.3). Then

τm is the topology induced by BL(�) on Vm(�). (4.1.8)

To justify this, consider an arbitrary set O ⊆ Vm(�) which is open in τm . Then for
each φ ∈ O there exists rφ > 0 with the property that B(φ, rφ), the ball in BL(�)

centered at φ with radius rφ , satisfies B(φ, rφ) ∩ Vm(�) ⊆ O. If we now define
U :=⋃φ∈O B(φ, rφ), then U is open in BL(�) and U ∩ Vm(�) = O. Conversely,
it is clear that whenever U is open in BL(�) the set U ∩ Vm(�) is open in τm ,
finishing the proof of (4.1.8).

In particular, (4.1.8) implies that for each m ∈ N the topology induced by τm+1

on Vm(�) coincides with τm . As such, we may define the topological space (4.1.4)
as the strict inductive limit of the family of topological spaces

{
(Vm(�), τm)

}
m∈N

(cf., e.g., the discussion in [181, p. 546]). That is,

τD is the finest topology on the space Lipc(�) making
each inclusion

(
Vm(�), τm

)
↪→ (Lipc(�), τD ) a continuous

map.
(4.1.9)
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More specifically,1

W :=
{
W ⊆ Lipc(�) :W is balanced, convex, and

W ∩ Vm(�) is open in τm for each m ∈ N

}
(4.1.10)

is a local base in the topology τD on Lipc(�), i.e.,

τD is the collection of all unions of sets of the
form φ + W , with φ ∈ Lipc(�) and W ∈ W. (4.1.11)

Proposition 4.1.1 Let � be a subset of R
n. Then the space of test functions intro-

duced in (4.1.4) satisfies the following properties.

(1) The topology τD is independent of the particular choice of the family {Km}m∈N

as in (4.1.5).
(2) The pair (Lipc(�), τD ) is a Hausdorff, locally convex, topological vector space.

Also, for each m ∈ N, the topology induced by τD on Vm(�) coincides with τm.
(3) A convex and balanced subset O of Lipc(�) is open in τD if and only if

O ∩ Vm(�) is open in τm for every m ∈ N, i.e., if and only if

for each m ∈ N there exists some ε > 0 with the property that
{
φ ∈ Lip(�) : φ ≡ 0 on � \ Km and sup� |φ| + ‖φ‖Lip(�) < ε

} ⊆ O.

(4.1.12)
(4) One has

{φ j } j∈N ⊆ Lipc(�) converges to zero in the topology τD if and only
if there exists m ∈ N such that φ j ≡ 0 on � \ Km for all j ∈ N and
lim
j→∞
[
sup� |φ j | + ‖φ j‖Lip(�)

] = 0.
(4.1.13)

(5) Agivensequence {φ j } j∈N ⊆ Lipc(�) isCauchy (in thesenseof topological vector
spaces) if and only if there exists m ∈ Nwith the property that φ j ≡ 0 on� \ Km

for every j ∈ N and sup� |φ j − φk | + ‖φ j − φk‖Lip(�) → 0 as j, k → ∞.
(6) The topological space

(
Lipc(�), τD

)
is sequentially complete, in the sense that

any Cauchy sequence in
(
Lipc(�), τD

)
converges to a (unique) function from

Lipc(�) in the topology τD .
(7) A set B ⊆ Lipc(�) is bounded in τD (i.e., any neighborhood of the origin in

this topology contains a positive dilate of B) if and only if there exists m ∈ N

with the property that

φ ≡ 0 on � \ Km for each φ ∈ B, and

sup
{
sup� |φ| + ‖φ‖Lip(�) : φ ∈ B

}
< ∞.

(4.1.14)

1 Recall that a set W is said to be balanced if λW ⊆ W for all scalars λ with |λ| ≤ 1.
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Proof To deal with the claim in item (1), fix two families {Km}m∈N and {K̃m}m∈N as
in (4.1.5). We agree to decorate by tilde objects associated with the second family,
much as those associated with the former family in the build-up to the statement of
Proposition 4.1.1. In this regard, we shall prove that

if O ⊆ Lipc(�) has the property that O ∩ Vm(�) is open in τm for
each m ∈ N then O ∩ Ṽm(�) is also open in τ̃m for each m ∈ N.

(4.1.15)

To this end, assume the setO satisfies the hypotheses in (4.1.15) and fix some number
m0 ∈ N. Also, pick an arbitrary function φ ∈ O ∩ Ṽm0(�). Then (4.1.5) implies that
there exists m1 ∈ N such that K̃m0 ⊆ Km1 . This ensures that φ ∈ O ∩ Vm1(�). Since
the latter set is open in τm1 , there exists some r > 0 such that if B(φ, r) denotes the
ball in BL(�) centered at φ and of radius r then B(φ, r) ∩ Vm1(�) ⊆ O ∩ Vm1(�).
The key observation is that since Ṽm0(�) ⊆ Vm1(�), intersecting both sides with
Ṽm0(�) yields B(φ, r) ∩ Ṽm0(�) ⊆ O ∩ Ṽm0(�). Since φ has been chose arbitrarily,
this goes to show that O ∩ Ṽm0(�) is open in τ̃m0 . The proof of (4.1.15) is therefore
complete. In turn, from (4.1.15) and (4.1.11) we conclude that the set τ̃D = τD ,
finishing the treatment of item (1).

For the remainder of the proof we reason along the lines of the classical setting
considered in [232, Theorems 6.4–6.5, pp. 152–153]. Let us first show that

τD is a topology on Lipc(�) and the
familyW is a local base for τD .

(4.1.16)

This follows as soon as we prove that, whenever O1,O2 are open sets in τD and
φ ∈ O1 ∩ O2, there exists W ∈ W such that

φ + W ⊆ O1 ∩ O2. (4.1.17)

To find such a set W , recall from (4.1.11) that there exist φ1, φ2 ∈ Lipc(�) and
W1,W2 ∈ W such that

φ ∈ φ1 + W1 ⊆ O1 and φ ∈ φ2 + W2 ⊆ O2. (4.1.18)

Select m ∈ N large enough so that φ, φ1, φ2 ∈ Vm(�). Given that W1 ∩ Vm(�)

and W2 ∩ Vm(�) are open in Vm(�) (cf. (4.1.10)), it follows that we may find
θ1, θ2 ∈ (0, 1) such that, for j ∈ {1, 2},

(1 − θ1)
−1(φ − φ j ) ∈ Wj ∩ Vm(�), hence φ − φ j ∈ (1 − θ j )Wj . (4.1.19)

Upon recalling that W1,W2 are convex, we then conclude that, for j ∈ {1, 2},

φ − φ j + θ jW j ∈ (1 − θ j )Wj + θ jW j = Wj , (4.1.20)

hence
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φ + θ jW j ∈ φ j + Wj ⊆ O j . (4.1.21)

This shows that (4.1.17) holds with W := (θ1W1) ∩ (θ2W2), completing the proof
of (4.1.16).

Next, given twodistinct functionsφ1, φ2 ∈ Lipc(�), introduce r : =‖φ1 − φ2‖>0
and define W0 := {φ ∈ Lipc(�) : ‖φ‖ < r/2}. Then W0 ∈ W and we also have
(φ1 + W0) ∩ (φ2 + W0) = ∅, proving that τD is a Hausdorff topology on Lipc(�).

Let us now show that (Lipc(�), τD ) is a topological vector space. Note that for
any two functions φ1, φ2 ∈ Lipc(�) and any setW ∈ W, the convexity ofW implies

(φ1 + 1
2W ) + (φ2 + 1

2W ) = (φ1 + φ2) + W, (4.1.22)

which goes to show that the addition is continuous in the product topology induced by
τD on Lipc(�) × Lipc(�). As regards multiplication by scalars, fix some function
φ0 ∈ Lipc(�) along with some number λ0 ∈ C. Also, pick some W ∈ W. Then
there exists ε > 0 small enough so that εφ0 ∈ 1

2W . If we now choose λ ∈ C such
that |λ − λ0| < ε and φ ∈ φ0 + δW where δ := [2(|λ0| + ε)]−1, then, since W is
convex and balanced,

λφ − λ0φ0 = λ(φ − φ0) + (λ − λ0)φ0 ∈ 1
2W + 1

2W = W. (4.1.23)

This proves that multiplication by scalars is a continuous mapping. The reasoning
so far shows that (Lipc(�), τD ) is a Hausdorff, locally convex, topological vector
space, which is the first claim in item (2). For further use, let us also observe here
that

each set W ∈ W is an open neighborhood of
the origin 0 ∈ Lipc(�) in the topology τD .

(4.1.24)

Indeed, givenW ∈ W, the fact thatW is balanced entails 0 ∈ W , while from (4.1.11)
it is clear thatW is open in τD , henceW is an open neighborhood of 0 in the topology
τD .

Pressing on, we claim that

for each m ∈ N, and each O ⊆ Lipc(�) which is
open in τD , the set O ∩ Vm(�) is open in τm .

(4.1.25)

To prove this, fix a numberm ∈ N along with a setO ⊆ Lipc(�)which is open in τD .
Also, pick φ ∈ O ∩ Vm(�) arbitrary. Then (4.1.11) guarantees the existence of some
W ∈ W such thatφ + W ⊆ O. Consequently,φ + (W ∩ Vm(�)) ⊆ O ∩ Vm(�) and
since from (4.1.10) we know that W ∩ Vm(�) is open in τm , we conclude that
O ∩ Vm(�) is a neighborhood of φ in τm . Then the arbitrariness of φ ∈ O ∩ Vm(�)

establishes (4.1.25).
Collectively, (4.1.24)–(4.1.25) prove (keeping in mind (4.1.10)) the claim in item

(3).
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Another significant consequence of (4.1.25) is the fact that, for each m ∈ N, the
topology induced by τD on Vm(�) is contained in τm . For the opposite inclusion,
pick an arbitrary r > 0 and recall that B(0, r) denotes the ball in the normed space
BL(�) centered at 0 ∈ BL(�) and of radius r . Then the setWr := B(0, r) ∩ Lipc(�)

is balanced, convex, and satisfiesWr ∩ Vm(�) = B(0, r) ∩ Vm(�) for each number
m ∈ N. Given that B(0, r) is open in BL(�), from this and (4.1.8) we conclude that
the set Wr ∩ Vm(�) is open in τm for each m ∈ N. Collectively, the properties just
established guarantee that

Wr = B(0, r) ∩ Lipc(�) ∈ W for each r > 0. (4.1.26)

To proceed, fix m ∈ N and pick someU ⊆ Vm(�) which is open in τm . The desired
conclusion (i.e., that the topology induced by τD on Vm(�) contains τm) follows as
soon as we find a set O ⊆ Lipc(�) which is open in τD and satisfies

U = O ∩ Vm(�). (4.1.27)

With this goal in mind, consider an arbitrary φ ∈ U. SinceU is open in τm , it follows
that there exists rφ > 0with the property that if B(φ, rφ) is the ball inBL(�) centered
at φ with radius rφ then B(φ, rφ) ∩ Vm(�) ⊆ U. Consequently, withWrφ defined as
in (4.1.26) with r := rφ , we have

Vm(�) ∩ (φ + Wrφ

) = Vm(�) ∩ B(φ, rφ) ⊆ U. (4.1.28)

If at this stage we define O :=⋃φ∈U
(
φ + Wrφ

)
, then (4.1.11) ensures that the set O

is open in τD and that O ∩ Vm(�) = U (here, (4.1.28) and (4.1.26) are used). This
proves (4.1.27) which, in turn, completes the proof of the fact that for each m ∈ N

the topology induced by τD on Vm(�) coincides with τm . This is the second claim
in item (2), hence the treatment of item (2) is complete.

Jumping on to item (7), suppose next that B ⊆ Lipc(�) is not contained in any
Vm(�). Then there exist a sequence of functions {φm}m∈N ⊆ B together with a
sequence of points {xm}m∈N ⊆ � such that

xm ∈ � \ Km and φm(xm) �= 0 for each m ∈ N. (4.1.29)

In particular, (4.1.5) and (4.1.29) force lim
m→∞ |xm − x0| = +∞, hence

for eachm ∈ N, the set Km contains only finitely
many points from the sequence {xm}m∈N.

(4.1.30)

We next claim that if

W := {φ ∈ Lipc(�) : |φ(xm)| < m−1 · |φm(xm)| for each m ∈ N
}

(4.1.31)
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then
W ∩ Vm(�) is open in τm, for each m ∈ N. (4.1.32)

To justify this claim, fix an integer m0 ∈ N and define I0 := {m ∈ N : xm ∈ Km0

}
.

Then (4.1.30) implies that I0 is a finite set of positive integers. Pick now an arbitrary
φ ∈ W ∩ Vm0(�) and set ε := min

{
m−1 · |φm(xm)| − |φ(xm)| : m ∈ I0

}
> 0. It is

then clear from (4.1.3) that for eachψ ∈ Vm0(�)with the property that ‖ψ − φ‖ < ε

we necessarily have

|ψ(xm)| ≤ |ψ(xm) − φ(xm)| + |φ(xm)| < ‖ψ − φ‖ + |φ(xm)|
< ε + |φ(xm)| ≤ m−1 · |φm(xm)| for each m ∈ I0. (4.1.33)

Since ψ(xm) = 0 for each m ∈ N \ I0, we conclude that ψ ∈ W ∩ Vm0(�). This
further proves that B(φ, ε) ∩ Vm0(�) ⊆ W ∩ Vm0(�) which ultimately establishes
the claim made in (4.1.32). Since, as is apparent from (4.1.31), the set W is also
balanced and convex, we deduce from (4.1.32) and (4.1.10) that actually W ∈ W.
However, since bydesignφm /∈ m · W , it follows that no scalarmultiple ofW contains
B. Thus, B cannot be bounded in the topology τD . This proves that, given a set
B ⊆ Lipc(�) which is bounded in τD , there exists m ∈ N such that B ⊆ Vm(�).
Thanks to the last claim in item (2),B is then bounded in τm . In view of (4.1.8), this
finishes the proof of the claim made in item (7).

Given that any Cauchy sequence is bounded (cf., e.g., [232, Sect. 1.29]), item (7)
implies that any sequence {φ j } j∈N ⊆ Lipc(�) which is Cauchy in τD necessarily
lies in some Vm(�). By the last claim in item (2) and (4.1.8), this also implies that
this sequence is Cauchy in ‖ · ‖. This proves the claim in item (5). In turn, item (5)
implies the claimmade in item (4) by interlacing the given convergent sequence with
0’s and writing what it means for this new sequence to be Cauchy.

Finally, the claim in item (6) is a consequence of item (2), item (5), and the fact
that each Vm(�) is complete. �

Having talked about “test” functions, our next goal is to introduce distributions
in this general setting. Specifically, we agree to let

the space of distributions
(
Lipc(�)

)′
on a set

� ⊆ R
n be the topological dual of

(
Lipc(�), τD

)
.

(4.1.34)

Also, we agree to

denote by 〈·, ·〉, or more precisely, (Lipc(�))′ 〈·, ·〉Lipc(�), the natural dual-
ity pairing between distributions in

(
Lipc(�)

)′
and test functions in

Lipc(�).
(4.1.35)

Here are various characterizations of continuity in the spirit of [232, Theorem 6.6
on p.155, and Theorem 6.8 on p.156].
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Proposition 4.1.2 Let � ⊆ R
n be an arbitrary set, and consider a linear mapping

� : Lipc(�) → C. Then the following conditions are equivalent.

(1) The mapping � belongs to
(
Lipc(�)

)′
.

(2) The mapping � is bounded, i.e., it sends bounded subsets of the topological
vector space (Lipc(�), τD ) into bounded subsets of C.

(3) If a sequence of functions {φ j } j∈N ⊆ Lipc(�) converges to zero in the topology
τD then �(φ j ) → 0 in C as j → ∞.

(4) For each m ∈ N, the restriction of � to (Vm(�), τm) is continuous.
(5) For each m ∈ N there exists Cm ∈ (0,∞) with the property that

∣∣�(φ)
∣∣ ≤ Cm

(
sup
�

|φ| + ‖φ‖Lip(�)

)
, ∀φ ∈ Vm(�). (4.1.36)

Proof The implication (1)⇒ (2) follows from the first part of item (2) in Proposi-
tion 4.1.1 and [232, Theorem 1.32(a)⇒(b), p. 24]. To prove that (2)⇒ (3), assume�

is bounded and pick a sequence {φ j } j∈N ⊆ Lipc(�) convergent to zero in τD . Thanks
to item (4) in Proposition 4.1.1, there exists m ∈ N such that {φ j } j∈N ⊆ Vm(�) and
{φ j } j∈N convergent to zero in τm . Also, from (4.1.9) and [232, Theorem 1.32(a)⇒(b),
p. 24] (applied to the inclusion map) we see that � : (Vm(�), τm

)→ C is bounded.
Since τm is obviouslymetrizable, [232, Theorem 1.32(b)⇒(d), p. 24]may be invoked
to conclude that �(φ j ) → 0 in C as j → ∞. This establishes that (2)⇒ (3).

Going further, assume that (3) holds, and pick somem ∈ N along with a sequence
of functions {φ j } j∈N ⊆ Vm(�) convergent to zero in the topology τm . The second
part of item (2) in Proposition 4.1.1 then implies that {φ j } j∈N convergent to zero
in the topology τD . As such, the current hypotheses imply that �(φ j ) → 0 in C as
j → ∞. Since, as already noted, τm is metrizable, this proves that the restriction of
� to (Vm(�), τm) is continuous. Hence, (3)⇒ (4).

Next, we shall show that (4)⇒ (1). Let O be a convex balanced neighborhood of
0 ∈ C and define U := �−1(O). Then U is obviously convex and balanced. From
item (3) in Proposition 4.1.1 it follows thatU is open in τD if and only ifU ∩ Vm(�)

is open in τm for every m ∈ N. This concludes the proof (4)⇒ (1). Hence, at this
stage, we have shown the equivalence of (1), (2), (3), and (4).

Finally, the fact that (1) is also equivalent to (5) is a consequence of the equivalence
between (1) and (4), bearing in mind the description of the topology τm in terms of
the norm ‖ · ‖. �

Given an arbitrary set � ⊆ R
n , it follows that

(
Lipc(�)

)′
has a natural vector

space structure. We shall turn this into a locally convex topological vector space by
equipping it with the weak-∗ topology, which we shall denote by τD ′ . Hence, τD ′ is

the topology induced by the family of semi-norms
{pφ}φ∈Lipc(�) on

(
Lipc(�)

)′
, where pφ(�) := |〈�,φ〉| for

each φ ∈ Lipc(�) and each � ∈ (Lipc(�)
)′
.

(4.1.37)
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Thus, for a sequence {� j } j∈N ⊆ (Lipc(�)
)′
and a distribution � ∈ (Lipc(�)

)′
,

lim
j→∞ � j = � in τD ′ ⇐⇒ lim

j→∞〈� j , φ〉 = 〈�,φ〉 in C for each φ ∈ Lipc(�).

(4.1.38)
We also wish to explicitly mention that

the topology τD ′ is Hausdorff. (4.1.39)

Indeed, given any distinct �1,�2 ∈ (Lipc(�)
)′

it follows that there exists some
φo ∈ Lipc(�) such that r := ∣∣〈�1, φo〉 − 〈�2, φo〉

∣∣ > 0. Then

O j := {� ∈ (Lipc(�)
)′ : pφo(� − � j ) < r/2

}
, j = 1, 2, (4.1.40)

are disjoint open neighborhoods in the topology τD ′ of �1 and, respectively, �2.
This proves (4.1.39).

As in the standard Euclidean setting (cf. [127, Theorems 2.1.8, pp. 38–39]), the
space of distributions on an arbitrary set is sequentially complete, in the sense made
precise below.

Proposition 4.1.3 Suppose � is a set in R
n. If a sequence {� j } j∈N ⊆ (Lipc(�)

)′

has the property that

lim
j→∞〈� j , φ〉 exists in C for each φ ∈ Lipc(�), (4.1.41)

then the functional which associates to each test function φ ∈ Lipc(�) the number
defined as the limit in (4.1.41) is a distribution � ∈ (Lipc(�)

)′
, and the following

additional properties are satisfied:

(1) one has lim
j→∞ � j = � in τD ′ ;

(2) for every m ∈ N there exists Cm ∈ (0,∞) such that

∣∣〈� j , φ〉∣∣ ≤ Cm

(
sup
�

|φ| + ‖φ‖Lip(�)

)
for all φ ∈ Vm(�) and all j ∈ N;

(4.1.42)
(3) for every sequence {φ j } j∈N ⊆ Lipc(�) converging in the topology τD to a limit

φ ∈ Lipc(�) one has lim
j→∞〈� j , φ j 〉 = 〈�,φ〉.

Proof Recall (4.1.5), (4.1.6). For each m ∈ N, we know that
(Vm(�), ‖ · ‖) is a

Banach space and each � j maps this space linearly and boundedly into C (cf.
Proposition 4.1.2). The hypothesis in (4.1.41) ensures that for each φ ∈ Vm(�)

the sequence
{〈� j , φ〉} j∈N

is bounded in C. As such, the Banach–Steinhaus prin-
ciple of uniform boundedness applies. This guarantees the existence of a constant
Cm in (0,∞) such that (4.1.42) holds. Passing to the limit j → ∞ then proves that
� satisfies (4.1.36). Thanks to the equivalence (1)⇔ (5) in Proposition 4.1.2, this
ultimately shows that � belongs to

(
Lipc(�)

)′
. Having established this, (4.1.38)
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then gives that lim
j→∞ � j = � in τD ′ . Finally, if {φ j } j∈N ⊆ Lipc(�) converges in τD

to some φ ∈ Lipc(�), then item (4) in Proposition 4.1.1 guarantees the existence of
some integerm ∈ Nwith the property thatφ, φ j ∈ Vm(�) for all j ∈ N and such that
sup� |φ − φ j | + ‖φ − φ j‖Lip(�) → 0 as j → ∞. Thanks to (4.1.7) we may actually
assume that m is large enough so that (4.1.42) holds. When used with φ replaced
by φ − φ j , the latter estimate implies that lim

j→∞〈� j , φ − φ j 〉 = 0 in C. In concert

with the current item (1) and (4.1.38), this finally yields lim
j→∞〈� j , φ j 〉 = 〈�,φ〉, as

wanted.
�

A variety of other features enjoyed by the classical notion of distribution have
natural counterparts in the present, general setting. As an example, given an arbitrary
set� ⊆ R

n , we maymultiply distributions� ∈ (Lipc(�)
)′
by a given fixed function

ψ ∈ Lip(�) according to

ψ� : Lipc(�) → C, (ψ�)(φ) := 〈�,ψ · φ〉, ∀φ ∈ Lipc(�). (4.1.43)

Then (7.3.23) and the equivalence (1)⇔ (5) in Proposition 4.1.2 imply that this
definition is meaningful and that, in fact,ψ� ∈ (Lipc(�)

)′
. Moreover, from (4.1.38)

we see that the multiplication operator
(
Lipc(�)

)′ � � �−→ ψ� ∈ (Lipc(�)
)′

is well defined, linear and sequentially continuous,
(4.1.44)

when
(
Lipc(�)

)′
is equipped with the topology τD ′ .

The proposition below elaborates on the manner in which locally integrable func-
tions induce distributions via integration against test functions.

Proposition 4.1.4 Let� ⊆ R
n bearbitrary and letμbea locally finiteBorel-regular

measure on �. Then for each f ∈ L1
loc(�,μ) the functional � f : Lipc(�) → C

given by
� f (φ) :=

ˆ
�

f φ dμ for every φ ∈ Lipc(�) (4.1.45)

belongs to
(
Lipc(�)

)′
and the mapping

L1
loc(�,μ) � f �−→ � f ∈ (Lipc(�)

)′
(4.1.46)

is linear, injective, and continuous.
As a consequence, one may naturally identify L1

loc(�,μ) with a linear subspace
of
(
Lipc(�)

)′
via the embedding (4.1.46). As such, by simply writing f in place of

� f , one has

〈 f, φ〉 =
ˆ

�

f φ dμ for every f ∈ L1
loc(�,μ) and φ ∈ Lipc(�), (4.1.47)

where 〈·, ·〉 is the distributional pairing on � (cf. (4.1.35)).
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Proof The fact that for each f ∈ L1
loc(�,μ) we have � f ∈ (Lipc(�)

)′
is clear

from (4.1.45) and the equivalence (1)⇔ (5) in Proposition 4.1.2. That the mapping
in (4.1.46) is linear is obvious, while its injectivity is a consequence of Proposi-
tion 3.7.2. Finally, the continuity of the mapping in (4.1.46) is a consequence of
[232, Theorem 1.32(d)⇒ (a), p. 24] and (4.1.38), bearing in mind that the topology
on L1

loc(�,μ) is metrizable (cf. Proposition 3.1.1). �

In the same spirit, given an arbitrary set � ⊆ R
n , any locally finite Borel-regular

measure μ on � induces a distribution �μ on � via

〈�μ, φ〉 :=
ˆ

�

φ dμ for every φ ∈ Lipc(�), (4.1.48)

and the mapping which associates to each such μ the distribution �μ ∈ (Lipc(�)
)′

is linear and injective. We also wish to note that for each fixed point xo ∈ �,

the Dirac distribution with mass at xo is the functional δxo ∈ (Lipc(�)
)′

acting on each test function φ ∈ Lipc(�) according to 〈δxo φ〉 := φ(xo).
(4.1.49)

We conclude by discussing a criterion guaranteeing the coincidence of a distribu-
tion with a function in a Lebesgue space.

Proposition 4.1.5 Let� ⊆ R
n be an arbitrary set, and letμ be a locally finite Borel-

regular measure on�. Also, fix p ∈ (1,∞] and p′ ∈ [1,∞) such that 1/p+1/p′=1,
and if p = ∞ make the additional assumption that the measure μ is sigma-finite.
Finally, assume � ∈ (Lipc(�)

)′
is a distribution with the property that there exists

C ∈ (0,∞) such that

∣∣〈�,φ〉∣∣ ≤ C‖φ‖L p′ (�, μ) for every φ ∈ Lipc(�). (4.1.50)

Then there exists a unique function f ∈ L p(�,μ) such that

〈�,φ〉 =
ˆ

�

f φ dμ for every φ ∈ Lipc(�). (4.1.51)

In addition, ‖ f ‖L p(�, μ) ≤ C, where C is as in (4.1.50).

Proof Since Lipc(�) is dense in the space L p′
(�,μ) (cf. Proposition 3.7.1) and

since the mapping Lipc(�) � φ �→ 〈�,φ〉 ∈ C is linear and bounded with respect
to the norm in L p′

(�,μ) it follows that this mapping extends (by density) to a unique
functional� ∈ (L p′

(�,μ)
)∗

of norm≤ C , the constant appearing in (4.1.50). Given
that the current hypotheses guarantee that

(
L p′

(�,μ)
)∗ = L p(�,μ) quantitatively

(cf., e.g., [91, Theorem 6.15, p. 190]), we conclude that there exists f ∈ L p(�,μ)

satisfying ‖ f ‖L p(�, μ) ≤ C and such that�(g) = ´
�

f g dμ for each g ∈ L p′
(�,μ).

In concert with the fact that �(φ) = 〈�,φ〉 for each φ ∈ Lipc(�), this establishes
(4.1.51). The uniqueness of f is then a consequence of Proposition 3.7.2. �
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4.2 The Bullet Product

The ultimate goal here is to define a weak notion of inner product between the
outward unit normal ν to a given domain and a vector field �F satisfying some mild
integrability properties in said domain. It is worth noting that this notion is so general
that it does not actually require the outward unit normal to actually exist. We shall
denote the resulting object ν • �F and call it the bullet product (of ν and �F), in order to
distinguish it from the ordinary dot product. In general, this distinction is self-evident,
as ν • �F typically makes sense only as a distribution on the boundary. These matters
are elucidated in Proposition 4.2.3 where the bullet product is first introduced, via
a variational formula mimicking integration by parts. As a preamble, we deal with
some preparatory results.

Lemma 4.2.1 Let � be an open subset of R
n and suppose �F ∈ [L1

loc(�,Ln)
]n

is a vector field whose divergence, considered in the sense of distributions in �,
satisfies div �F ∈ L1

loc(�,Ln). Then for every scalar-valued functionϕ ∈ Lip(�)with
compact support in � one has

ˆ
�

�F · ∇ϕ dLn = −
ˆ

�

(div �F)ϕ dLn. (4.2.1)

Proof Astandardmollifier argument yields a sequence {ϕε}0<ε<ε∗ ⊂ C∞
c (�) (where

ε∗ > 0 depends only on the distance from suppϕ to ∂�) satisfying, for some compact
subset K of �,

suppϕε ⊆ K for each ε ∈ (0, ε∗),
supx∈� |ϕε(x) − ϕ(x)| −−−→

ε→0+
0,

∇ϕε −−−→
ε→0+

∇ϕ at Ln-a.e. point in �,

supε∈(0,ε∗) supx∈�

{|ϕε(x)| + |(∇ϕε)(x)|
}

< +∞.

(4.2.2)

Then, based on this and Lebesgue’s Dominated Convergence Theoremwemay write

ˆ
�

�F · ∇ϕ dLn = lim
ε→0+

ˆ
�

�F · ∇ϕε dLn = − lim
ε→0+

ˆ
�

(div �F)ϕε dLn

= −
ˆ

�

(div �F)ϕ dLn, (4.2.3)

proving (4.2.1). �

Wemomentarily digress for the purpose of introducing a useful piece of notation,
frequently used in the sequel. Specifically, given an Ln-measurable set � ⊆ R

n and
some p ∈ (0,∞), we let
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L p
bdd(�,Ln) be the space consisting of all Ln-measurable

functions which are p-th power absolutely integrable on
each bounded Ln-measurable subset of the set �.

(4.2.4)

Equivalently,

L p
bdd(�,Ln) consists of all functions f : � → C which are

Ln-measurable and
´

B(0,R)∩�

| f |p dLn < ∞ for each R > 0. (4.2.5)

By Hölder’s inequality, L p
bdd(�,Ln) ⊆ Lq

bdd(�,Ln) whenever 0 < q ≤ p < ∞,
and if � is open then obviously L p

bdd(�,Ln) ⊂ L p
loc(�,Ln) for each p ∈ (0,∞).

Our next result shows that, under slightly stronger hypotheses on the vector field
involved, we may relax the assumptions made on the Lipschitz function intervening
in Lemma 4.2.1.

Lemma 4.2.2 Let � be an open subset of R
n and suppose �F ∈ [L1

bdd(�,Ln)
]n

is a vector field whose divergence, considered in the sense of distributions in �,
satisfies div �F ∈ L1

bdd(�,Ln). Then for every scalar-valued function ϕ ∈ Lip(�)

which vanishes outside of a compact subset of � and satisfies ϕ
∣∣
∂�

= 0 one has

ˆ
�

�F · ∇ϕ dLn = −
ˆ

�

(div �F)ϕ dLn. (4.2.6)

Proof Bring in the family of functions {�ε}ε>0 constricted as in Lemma 6.1.2 in
relation to the set �. Availing ourselves of Lebesgue’s Dominated Convergence
Theorem and then invoking Lemma 4.2.1 (bearing in mind that, for each ε > 0, the
function �εϕ ∈ Lip(�) has compact support in �) we may write

ˆ
�

(div �F)ϕ dLn = lim
ε→0+

ˆ
�

(div �F)(�εϕ) dLn

= − lim
ε→0+

ˆ
�

�F · ∇(�εϕ) dLn = − lim
ε→0+

Iε − lim
ε→0+

IIε (4.2.7)

where, for each ε > 0, we have set

Iε :=
ˆ

�

�F · (∇�ε)ϕ dLn and IIε :=
ˆ

�

�F · (∇ϕ)�ε dLn . (4.2.8)

Next fix ε > 0 and consider an arbitrary x ∈ Oε. If x∗ ∈ ∂� is selected such that
|x − x∗| = dist(x, ∂�) then, using the fact that ϕ vanishes on the boundary of �

and that ϕ is Lipschitz (with, say, Lipschitz constant M ∈ [0,∞)), we may write
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|ϕ(x)| = |ϕ(x) − ϕ(x∗)| ≤ M |x − x∗| ≤ Mε. In turn, for each fixed ε > 0 this per-
mits us to estimate

∣∣Iε
∣∣ ≤

ˆ
�

| �F ||∇�ε||ϕ| dLn ≤ Cε−1
ˆ
Oε∩suppϕ

| �F(x)||ϕ(x)| dx

≤ C
ˆ
Oε∩suppϕ

| �F | dLn. (4.2.9)

Having proved this, Lebesgue’s Dominated Convergence Theorem then shows that

lim
ε→0+

Iε = 0. (4.2.10)

Finally, by once again appealing to Lebesgue’s Dominated Convergence Theorem
we see that

lim
ε→0+

IIε =
ˆ

�

�F · (∇ϕ) dLn . (4.2.11)

At this stage, (4.2.6) is clear from (4.2.7) and (4.2.10)–(4.2.11). �

In the proposition below we introduce a notion of normal component of a vector
field in an arbitrary open set, considered in a weak sense, as a functional on the space
of compactly supported Lipschitz functions on the boundary of the given set. The
actual definition, given in (4.2.12) below, is of variation nature and is inspired by the
integration by parts formula (1.2.12).

Proposition 4.2.3 Let � be an open subset of Rn and suppose �F ∈ [L1
bdd(�,Ln)

]n

is a vector field whose divergence, considered in the sense of distributions in �,
satisfies div �F ∈ L1

bdd(�,Ln). Consider a functional, denoted by ν • �F (read “nu
bullet F”), which acts on each ψ ∈ Lipc(∂�) according to

〈
ν • �F, ψ

〉 :=
ˆ

�

�F · ∇� dLn +
ˆ

�

(div �F)� dLn, (4.2.12)

where � is any complex-valued function satisfying

� ∈ Lip(�), �
∣∣
∂�

= ψ, and

� ≡ 0 outside of some compact subset of �.
(4.2.13)

Then ν • �F is meaningfully and unambiguously defined, and actually belongs to(
Lipc(∂�)

)′
. Moreover, for each given scalar-valued function ϕ ∈ Lip(�) it follows

that
ϕ �F ∈ [L1

bdd(�,Ln)
]n

, div(ϕ �F) ∈ L1
bdd(�,Ln),

and ν • (ϕ �F) = (ϕ∣∣
∂�

)
(ν • �F) in

(
Lipc(∂�)

)′ (4.2.14)
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where the distribution in the right-hand side of the last line in (4.2.14) is considered
in the sense of (4.1.43). Also,

ν • �F = 0 in
(
Lipc(∂�)

)′
if there exists ε > 0

such that �F vanishes Ln-a.e. in the set

Oε := {x ∈ � : dist(x, ∂�) < ε
}
.

(4.2.15)

Finally, the bullet product mapping

{ �F ∈ [L1
bdd(�,Ln)

]n : div �F ∈ L1
bdd(�,Ln)

}
� �F �→ ν • �F ∈ (Lipc(∂�)

)′

(4.2.16)
is a well-defined, linear, and continuous mapping (assuming that the space on the
left is equipped with the topology canonically induced by the family of semi-norms
p j ( �F) := ´

�∩B(0, j)

{| �F | + |div �F |} dLn indexed by j ∈ N).

We wish to stress that the symbol ν above is purely formal, simply part of the
formalism associated with the bullet product. In particular, ν does not represent, in
and of itself, the actual outward unit normal to �, which generally does not exist in
any conventional sense given that � is merely an arbitrary open set.

Proof of Proposition 4.2.3 First, observe that for each ψ ∈ Lipc(∂�) there exists
a function � as in (4.2.13). Indeed, we may take � as the Whitney extension of
ψ to R

n (cf. Theorem 6.1.3), suitably truncated and restricted to �. Second, note
that for each � as in (4.2.13) the integrals in the right-hand side of (4.2.12) are
absolutely convergent, thanks to the assumptions on �F and the properties of�. Third,
if �1, �2 ∈ Lip(�) vanish outside a compact subset of � and �1

∣∣
∂�

= �2

∣∣
∂�
, then

since the difference � := �1 − �2 belongs to Lip(�), vanishes outside a compact
subset of �, and satisfies �

∣∣
∂�

= 0, Lemma 4.2.2 applied to this particular function
� presently yields

ˆ
�

�F · ∇�1 dLn +
ˆ

�

(div �F)�1 dLn =
ˆ

�

�F · ∇�2 dLn +
ˆ

�

(div �F)�2 dLn . (4.2.17)

Collectively, these observations prove that ν • �F is meaningfully and unambiguously
defined. In turn, these qualities further imply that ν • �F is linear on Lipc(∂�).

As regards the continuity of the linear functional ν • �F , fix x0 ∈ ∂� along with
some r > 0. Also, select a cutoff function θ ∈ C∞

c

(
B(x0, 2r)

)
satisfying θ ≡ 1 on

B(x0, r) and |∇θ | ≤ Cn/r . If for ψ ∈ Lipc(∂�) with suppψ ⊆ ∂� ∩ B(x0, r) we
now let Eψ be the Whitney extension of ψ to R

n (as described in Theorem 6.1.3)
and set � := (θEψ

)∣∣
�
, then � satisfies
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� ∈ Lip(�) ∩ C∞(�), �
∣∣
∂�

= ψ, � ≡ 0 on � \ B(x0, 2r),

sup
�

|∇�| ≤ Cn

{
1

r
· sup

∂�

|ψ | + sup
x,y∈∂�
x �=y

|ψ(x) − ψ(y)|
|x − y|

}
,

as well as sup� |�| ≤ Cn · sup∂� |ψ |,

(4.2.18)

for some purely dimensional constant Cn ∈ (0,∞). In concert with (4.2.12), this
implies

∣∣〈ν • �F, ψ
〉∣∣ ≤ Cn

(1
r

· sup
∂�

|ψ | + sup
x,y∈∂�
x �=y

|ψ(x) − ψ(y)|
|x − y|

)ˆ
�∩B(x0,2r)

| �F | dLn

+ Cn ·
(
sup
∂�

|ψ |
)ˆ

�∩B(x0,2r)
|div �F | dLn, (4.2.19)

from which we ultimately conclude that ν • �F belongs to
(
Lipc(∂�)

)′
, on account

of the equivalence (1)⇔ (5) in Proposition 4.1.2.
Going further, fix a scalar-valued function ϕ ∈ Lip(�). Then we clearly have

ϕ �F ∈ [L1
bdd(�,Ln)

]n
. The fact that div(ϕ �F) ∈ L1

bdd(�,Ln) also follows as soon as
we show that

div(ϕ �F) = ϕ(div �F) + �F · ∇ϕ in D′(�). (4.2.20)

With this goal in mind, fix some arbitrary scalar-valued function φ ∈ C∞
c (�) and

set K := suppφ. Then a standard mollifier argument allows us to construct

{ϕε}ε>0 ⊂ C∞(�) with lim
ε→0+

ϕε = ϕ uniformly on K , lim
ε→0+

∇ϕε = ∇ϕ

at Ln-a.e. point in K , and such that sup
ε>0

‖∇ϕε‖[L∞(K ,Ln)]n < ∞. (4.2.21)

Granted this, we may write

ˆ
�

ϕ �F · ∇φ dLn = lim
ε→0+

ˆ
�

�F · (ϕε∇φ) dLn

= lim
ε→0+

ˆ
�

�F · ∇(ϕεφ) dLn − lim
ε→0+

ˆ
�

φ �F · ∇ϕε dLn

= − lim
ε→0+

ˆ
�

(div �F)ϕεφ dLn − lim
ε→0+

ˆ
�

φ �F · ∇ϕε dLn

= −
ˆ

�

(div �F)ϕ φ dLn −
ˆ

�

φ �F · ∇ϕ dLn (4.2.22)

which, in view of the arbitrariness of φ, establishes (4.2.20). Consider now an arbi-
trary function ψ ∈ Lipc(∂�), and pick � as in (4.2.13). Then
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ϕ� ∈ Lip(�), (ϕ�)
∣∣
∂�

= (ϕ∣∣
∂�

)
ψ , and also

ϕ� ≡ 0 outside of some compact subset of �.
(4.2.23)

As such, (4.1.43) and (4.2.12) permit us to compute

〈(
ϕ
∣∣
∂�

)
ν • �F, ψ

〉 = 〈ν • �F,
(
ϕ
∣∣
∂�

)
ψ
〉

=
ˆ

�

�F · ∇(ϕ�) dLn +
ˆ

�

(div �F)ϕ� dLn

=
ˆ

�

ϕ �F · ∇� dLn +
ˆ

�

� �F · ∇ϕ dLn +
ˆ

�

(div �F)ϕ� dLn

=
ˆ

�

(ϕ �F) · ∇� dLn +
ˆ

�

div(ϕ �F)� dLn

= 〈ν • (ϕ �F), ψ
〉
, (4.2.24)

where the next-to-last equality makes use of (4.2.20). At this stage, the formula on
the second line of (4.2.14) follows from (4.2.24).

Consider next the task of proving the claim made in (4.2.15). To set the stage,
denote by C0,C1 the constants appearing in (6.1.2) with F := ∂�, pick some num-
ber N > C1/C0 then choose a function θ ∈ C∞(R) satisfying 0 ≤ θ ≤ 1, as well as
θ ≡ 1 on (−∞,C1/N ) and θ ≡ 0 on (C0,∞). For ε > 0 as in (4.2.15) define

�ε(x) := θ
(

δ
reg
∂� (x)
ε/2

)
for all x ∈ R

n , where δ
reg

∂� denotes the regularized distance to

∂� (cf. Proposition 6.1.1). Then

�ε ∈ C∞(Rn), �ε ≡ 0 in � \ Oε/2, �ε ≡ 1 near ∂�,

and sup
x∈Rn

∣∣(∂α�ε)(x)
∣∣ < +∞ for each α ∈ N

n
0.

(4.2.25)

Given any ψ ∈ Lipc(∂�) along with � as in (4.2.13), it follows that

�ε� ∈ Lip(�), (�ε�)
∣∣
∂�

= ψ, and

�ε� ≡ 0 outside of some compact subset of �.
(4.2.26)

Granted this, we may now write (4.2.12) with � replaced by �ε� and conclude that〈
ν • �F, ψ

〉 = 0 since �ε� ≡ 0 in � \ Oε/2 and �F vanishes in Oε. This finishes the
proof of (4.2.15).

The argument in the first part of the proof shows that the bullet product mapping
(4.2.16) is well defined and linear. To prove its continuity, observe that since the
countable family of semi-norms {p j } j∈N is separating (in the sense that p j ( �F) = 0
for each j forces �F = 0), the topology inducedby this family on the spaceof functions{ �F ∈ [L1

bdd(�,Ln)
]n : div �F ∈ L1

bdd(�,Ln)
}
is metrizable (cf., e.g., [181, pp. 545–

546]). Bearing this in mind, it follows from [232, Theorem 1.32(d)⇒ (a), p. 24] that
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we only need to check the sequential continuity of the bullet productmapping (4.2.16)
at the origin. However, this is clear from (4.1.38) and (4.2.19). �

Example 4.2.4 Assume � ⊆ R
n is an open set and consider a scalar function

u ∈ L1
loc(�,Ln) with the property that ∇u ∈ [L1

bdd(�,Ln)
]n
. For any two indices

j, k ∈ {1, . . . , n} define the divergence-free vector field
�Fu
jk := (∂ku)e j − (∂ j u)ek ∈ [L1

bdd(�,Ln)
]n

. (4.2.27)

Then Proposition 4.2.3 implies that the weak tangential derivative

.
∂τ jk u := ν • �Fu

jk = ν • ((∂ku)e j − (∂ j u)ek
)

(4.2.28)

is a well-defined distribution on ∂�, i.e., belongs to
(
Lipc(∂�)

)′
, and

(Lipc(∂�))′
〈 .
∂τ jk u, �

∣∣
∂�

〉
Lipc(∂�) =

ˆ
�

{
(∂ku)(∂ j�) − (∂ j u)(∂k�)

}
dLn (4.2.29)

for each � ∈ Lipc(R
n).

Here is another example casting light on the notion of bullet product, introduced
earlier.

Example 4.2.5 Let � be a closed UR set in R
n (in the sense of Definition 5.10.1).

Consider the open set� := R
n \ � with ∂� = �, and abbreviate σ := H1��. Hav-

ing picked an arbitrary function f ∈ L1
(
�, σ(x)

1+|x |n−1

)
define the vector field by setting

�F(x) := 1

ωn−1

ˆ
�

x − y

|x − y|n f (y) dσ(y) for each x ∈ �. (4.2.30)

Then
�F ∈ [L1

bdd(�,Ln) ∩ C∞(�)
]n

with div �F = 0 in �, (4.2.31)

and
ν • �F = − f in

(
Lipc(∂�)

)′
. (4.2.32)

Let us prove the claimsmade in Example 4.2.5. First, by design �F is a divergence-
free vector field, with smooth components in �. If we pick an arbitrary aperture
parameter κ > 0, then Calderón-Zygmund theory (cf. [186, Sect. 2.4]) tells us that

N�c

κ
�F ∈ L1,∞

loc (�, σ ), (4.2.33)

with the nontangential maximal operator in (4.2.33) being associated with the open
set �c := R

n \ � = �. In concert with Lemma 6.2.4, this implies

N�c

κ
�F ∈ L p

loc(�, σ ) for each p ∈ (0, 1), (4.2.34)
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which together with Proposition 8.6.3 further gives

�F ∈ [Lq
bdd(�,Ln)

]n
for each q ∈ (0, n

n−1

)
. (4.2.35)

Thus, all claims in (4.2.31) are justified.
To verify (4.2.32), select an arbitrary ψ ∈ Lipc(∂�) and let� ∈ Lipc(R

n) be any
complex-valued function satisfying�

∣∣
∂�

= ψ . In view of (4.2.12) and the properties

of �F we may write

〈
ν • �F, ψ

〉 =
ˆ

�

�F · ∇� dLn

= 1

ωn−1

ˆ
�

( ˆ
�

x − y

|x − y|n · (∇�)(x) dx
)
f (y) dσ(y). (4.2.36)

The last equality above is a consequence of Fubini’s Theorem. To check that this is
applicable in the present setting, write

ˆ
�

(ˆ
�

1

|x − y|n−1
|(∇�)(x)| dx

)
| f (y)| dσ(y)

≤ ‖∇�‖[L∞(Rn ,Ln)]n
ˆ

�

( ˆ
supp�

dx

|x − y|n−1

)
| f (y)| dσ(y)

≤ C
ˆ

�

| f (y)|
1 + |y|n−1

dσ(y) < +∞, (4.2.37)

where the first equality is based on the fact that � ∈ Lipc(R
n), the second inequality

uses (3.5.24) (withm := n − 1), and the last inequality is ensured by themembership
of f to L1

(
�,

σ(y)
1+|y|n−1

)
.

Thus, (4.2.36) is established. Let us also observe that for each fixed y ∈ � we
have

1

ωn−1

ˆ
�

x − y

|x − y|n · (∇�)(x) dx = 1

ωn−1

ˆ
Rn

x − y

|x − y|n · (∇�)(x) dx

= −�(y) = −ψ(y), (4.2.38)

given that Ln(Rn \ �) = Ln(�) = 0 since � is upper Ahlfors regular, and the dis-
tributional divergence of the vector field R

n � x �→ (x − y)/|x − y|n is ωn−1δy .
Collectively, (4.2.36) and (4.2.38) imply

〈
ν • �F, ψ

〉 = −
ˆ

�

f (y)ψ(y) dσ(y), (4.2.39)

so (4.2.32) follows from this, in view of the arbitrariness of ψ ∈ Lipc(∂�). This
completes the verification of all claims made in Example 4.2.5.
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Our last remark is that, having dealt with Proposition 4.2.3, it is now possible to
extend the definition of the bullet product to vector fields which are allowed to be
singular. Specifically, we make the following definition:

Definition 4.2.6 Let� be an arbitrary open subset ofRn and consider a vector field

�F ∈ [L1
bdd(�,Ln) + E ′(�)

]n
with div �F ∈ L1

bdd(�,Ln) + E ′(�), (4.2.40)

where the divergence is taken in the sense of distributions in �.
Define the distribution ν • �F ∈ (Lipc(∂�)

)′
as being ν • ((1 − η) �F), interpreted

in the sense of Proposition 4.2.3, where

η ∈ C∞
c (�) is a function satisfying η ≡ 1 near K , with K ⊆ �

some compact set such that �F ∈ [L1
bdd(�,Ln) + E ′

K (�)
]n

and

div �F ∈ L1
bdd(�,Ln) + E ′

K (�).
(4.2.41)

In relation to this definition, we wish to make a couple of comments. First, since for
any function η as in (4.2.41) we have (1 − η) �F ∈ [L1

bdd(�,Ln)
]n

and

div
(
(1 − η) �F) = (1 − η) div �F − ∇η · �F ∈ L1

bdd(�,Ln), (4.2.42)

it is meaningful to consider ν • ((1 − η) �F) ∈ (Lipc(∂�)
)′
in the sense of Propo-

sition 4.2.3. Second, (4.2.15) ensures that the extension of the bullet product in
Definition 4.2.6 is unambiguous (i.e., is independent of the choice of the function η

as in (4.2.41)).

4.3 The Product Rule for Weak Derivatives

A suitable version of Leibniz’s product formula holds for weak derivatives. Such a
result appears to be folklore, but since a reference does not seem to be easy to find,
we include a complete proof.

Proposition 4.3.1 Let � ⊆ R
n be a nonempty open set and fix some arbitrary

j ∈ {1, . . . , n}. Suppose u, w are two scalar-valued functions on � satisfying

u, w ∈ L1
loc(�,Ln), ∂ j u, ∂ jw ∈ L1

loc(�,Ln),

u · w ∈ L1
loc(�,Ln), u ∂ jw + w∂ j u ∈ L1

loc(�,Ln).
(4.3.1)

Then
∂ j (u · w) = u ∂ jw + w∂ j u in D′(�). (4.3.2)

Proof As a preamble, we remark that a standard mollifier argument gives the fol-
lowing approximation result.
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for each φ ∈ L∞
loc(�,Ln) with the property that ∂ jφ ∈ L1

loc(�,Ln),
there exists a sequence {φα}α∈N ⊂ C∞(�) such that both lim

α→∞ φα = φ

and lim
α→∞ ∂ jφα = ∂ jφ in L1

loc(�,Ln), and supα∈N
‖φα‖L∞(K ,Ln) < +∞

for each fixed compact set K ⊂ �.

(4.3.3)

The remainder of the proof is divided into five steps.

Step I. Formula (4.3.2) holds whenever

u, w ∈ L∞
loc(�,Ln), ∂ j u, ∂ jw ∈ L1

loc(�,Ln),

u · w ∈ L1
loc(�,Ln), u ∂ jw + w∂ j u ∈ L1

loc(�,Ln).
(4.3.4)

Consider u, w as in (4.3.4) and fix ϕ ∈ C∞
c (�). Apply (4.3.3) to u and w to

produce two approximating sequences {uα}α∈N and {wα}α∈N enjoying the conditions
specified there. Note that

〈∂ j (uw), ϕ〉 = −〈uw, ∂ jϕ〉 = −
ˆ

�

uw∂ jϕ dLn

= − lim
α→∞

ˆ
�

uαwα∂ jϕ dLn = lim
α→∞

ˆ
�

(uα∂ jwα + wα∂ j uα)ϕ dLn

=
ˆ

�

(u∂ jw + w∂ j u)ϕ dLn = 〈u∂ jw + w∂ j u, ϕ〉. (4.3.5)

As regards the third equality above, note that for each α ∈ N

ˆ
�

uαwα∂ jϕ dLn = Iα + IIα +
ˆ

�

uw∂ jϕ dLn (4.3.6)

where

Iα :=
ˆ

�

(uα − u)wα∂ jϕ dLn and IIα :=
ˆ

�

u(wα − w)∂ jϕ dLn . (4.3.7)

Since the approximation properties from (4.3.3) imply

lim sup
α→∞

|Iα| ≤
(
sup
α∈N

‖wα‖L∞(suppϕ,Ln)

)
‖∂ jϕ‖L∞(�,Ln)×

× lim sup
α→∞

‖uα − u‖L1(suppϕ,Ln) = 0, (4.3.8)

we have lim
α→∞ Iα = 0. Similarly, lim

α→∞ IIα = 0, so the third equality in (4.3.5) is jus-

tified.
As regards the fifth equality in (4.3.5), for each α ∈ N re-write
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(uα∂ jwα + wα∂ j uα)ϕ (4.3.9)

= uα(∂ jwα − ∂ jw)ϕ
︸ ︷︷ ︸

IIIα

+uα(∂ jw)ϕ + wα(∂ j uα − ∂ j u)ϕ
︸ ︷︷ ︸

IVα

+wα(∂ j u)ϕ.

Thanks to the approximation properties of the scheme discussed in (4.3.3), much as
before, the integrals of the terms IIIα and IVα above vanish after passing to limit
α → ∞. As such,

lim
α→∞

ˆ
�

(uα∂ jwα + wα∂ j uα)ϕ dLn = lim
α→∞

ˆ
�

(uα∂ jw + wα∂ j u)ϕ dLn, (4.3.10)

assuming the second limit exists. To see that this is indeed the case, split the integrand

(uα∂ jw + wα∂ j u)ϕ = (uα − u)(∂ jw)ϕ + (wα − w)(∂ j u)ϕ + (u∂ jw + w∂ j u)ϕ

=: Vα + VIα + VII (4.3.11)

and observe that Lebesgue’s Dominated Convergence Theorem gives that both the
integral of Vα and the integral of VIα converge to zero as α → ∞. Therefore,

lim
α→∞

ˆ
�

(uα∂ jw + wα∂ j u)ϕ dLn =
ˆ

�

(u∂ jw + w∂ j u)ϕ dLn, (4.3.12)

finishing the proof of (4.3.5). In turn, in view of the arbitrariness of ϕ ∈ C∞
c (�),

formula (4.3.5) implies (4.3.2).

Step II. Formula (4.3.2) holds whenever

u ∈ L∞
loc(�,Ln), w ∈ L1

loc(�,Ln), ∂ j u, ∂ jw ∈ L1
loc(�,Ln),

u · w ∈ L1
loc(�,Ln), u ∂ jw + w∂ j u ∈ L1

loc(�,Ln).
(4.3.13)

To justify this, fix u, w as in (4.3.13). For each k ∈ N, define the piecewise smooth
function fk ∈ C 0(R) by, setting for each t ∈ R,

fk(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

k, if t > k,

t, if |t | ≤ k,

−k, if t < −k.

(4.3.14)

Then for each k ∈ N we have fk ◦ w ∈ L∞(�,Ln) and an inspection of the proof of
the Chain Rule Formula given in [104, Theorem 7.8, p. 153] shows that the function
∂ j ( fk ◦ w) belongs to L1

loc(�,Ln) and, in fact,

∂ j ( fk ◦ w) = (∂ jw) · 1|w|<k atLn-a.e. point in �. (4.3.15)
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In view of the fact that | fk ◦ w| ≤ |w| on � and uw ∈ L1
loc(�,Ln), we have the

membership u · ( fk ◦ w) ∈ L1
loc(�,Ln). In addition,

u︸︷︷︸
L∞
loc(�,Ln)

· ∂ j ( fk ◦ w)
︸ ︷︷ ︸
L1
loc(�,Ln)

+ ( fk ◦ w)
︸ ︷︷ ︸
L∞(�,Ln)

· ∂ j u︸︷︷︸
L1
loc(�,Ln)

∈ L1
loc(�,Ln). (4.3.16)

As such, for each fixed k ∈ N, the functions u and fk ◦ w satisfy all hypotheses in
(4.3.4). Having fixed an arbitrary ϕ ∈ C∞

c (�), Step I then implies that for each k ∈ N

we may write

−
ˆ

�

u( fk ◦ w)∂ jϕ dLn =
ˆ

�

{
u∂ j ( fk ◦ w) + ( fk ◦ w)∂ j u

}
ϕ dLn . (4.3.17)

Observe that fk ◦ w → w pointwise Ln-a.e. in � as k → ∞ and note that we have
| fk ◦ w| ≤ |w| ∈ L1

loc(�,Ln). Also, recall that uw ∈ L1
loc(�,Ln). These permit us

to invoke Lebesgue’s Dominated Convergence Theorem to conclude that

lim
k→∞

ˆ
�

u( fk ◦ w)∂ jϕ dLn =
ˆ

�

uw∂ jϕ dLn . (4.3.18)

Moreover, (4.3.15) implies that at Ln-a.e. point in � we have |∂ j ( fk ◦ w)| ≤ |∂ jw|
for each k ∈ N, and

∂ j ( fk ◦ w) → ∂ jw as k → ∞. (4.3.19)

In addition, the fact that we are currently assuming u ∈ L∞
loc(�,Ln) permits us to

estimate

|ϕ u ∂ j ( fk ◦ w)| ≤ |uϕ|︸︷︷︸
L∞
comp(�,Ln)

· |∂ jw|
︸ ︷︷ ︸

L1
loc(�,Ln)

∈ L1(�,Ln). (4.3.20)

We also remark that

|ϕ( fk ◦ w)∂ j u| = |ϕ|| fk ◦ w||∂ j u| ≤ |ϕ||w||∂ j u| = |ϕ||w∂ j u| (4.3.21)

≤ |ϕ|︸︷︷︸
L∞
comp(�,Ln)

· |u∂ jw + w∂ j u|
︸ ︷︷ ︸

L1
loc(�,Ln)

+ |ϕu|︸︷︷︸
L∞
comp(�,Ln)

· |∂ jw|
︸ ︷︷ ︸

L1
loc(�,Ln)

∈ L1(�,Ln).

Granted (4.3.19), (4.3.20), and (4.3.21), we may once again rely on Lebesgue’s
Dominated Convergence Theorem to conclude that

lim
k→∞

ˆ
�

{u∂ j ( fk ◦ w) + ( fk ◦ w)∂ j u}ϕ dLn =
ˆ

�

(
u∂ jw + w∂ j u

)
ϕ dLn .

(4.3.22)
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Combining now (4.3.17), (4.3.18), and (4.3.22) yields (4.3.2).
As an intermission, for any real-valued function f define

f + := max{ f, 0} = | f | + f

2
=
{
f if f ≥ 0,

0 if f < 0,
(4.3.23)

and

f − := max{− f, 0} = | f | − f

2
=
{− f if f < 0,

0 if f ≥ 0.
(4.3.24)

In particular, f ± ≥ 0 and f = f + − f −. From the proof of [104, Lemma 7.6, p. 152]
we know that if f ∈ L1

loc(�,Ln) has ∂ j f ∈ L1
loc(�,Ln), then f ± have similar prop-

erties and, in fact,

∂ j f
+ =
{

∂ j f if f > 0,

0 if f ≤ 0,
∂ j f

− =
{
0 if f ≥ 0,

−∂ j f if f < 0,
(4.3.25)

hence
∂ j f

+ = (∂ j f ) · 1 f >0 and ∂ j f
− = −(∂ j f ) · 1 f <0. (4.3.26)

Step III. Formula (4.3.2) holds whenever

u ≥ 0 and w ≥ 1 at Ln-a.e. point in �,

u, w ∈ L1
loc(�,Ln), ∂ j u, ∂ jw ∈ L1

loc(�,Ln),

u · w ∈ L1
loc(�,Ln), u ∂ jw + w ∂ j u ∈ L1

loc(�,Ln).

(4.3.27)

Consider u, w as in (4.3.27) and define uk := min{u, k/w} for each integer k ∈ N.
Then

0 ≤ uk ≤ u ∈ L1
loc(�,Ln), and (4.3.28)

0 ≤ uk ≤ k

w
≤ k ∈ L∞(�,Ln). (4.3.29)

In particular, uk ∈ L∞(�,Ln) for each k ∈ N. Upon recalling (4.3.23), for each
k ∈ N we may express

uk=u + min

{
0,

k

w
−u

}
= u − max

{
u − k

w
, 0

}
= u −

(
u − k

w

)+
. (4.3.30)

For each k ∈ N we also have k/w ∈ L∞(�,Ln) ⊂ L1
loc(�,Ln), and the Chain

Rule in the spirit of [104, Lemma 7.5, p. 151] (applied with f ∈ C 1(R) such that
f (t) = k/t for t ≥ 1) further yields
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∂ j

(
k

w

)
= −k∂ jw

w2
∈ L1

loc(�,Ln). (4.3.31)

Using (4.3.31) and (4.3.25) we have that

∂ j uk =
⎧
⎨

⎩
−k

∂ jw

w2
if uw > k,

∂ j u if uw ≤ k,
(4.3.32)

thus ∂ j uk ∈ L1
loc(�,Ln). Furthermore,

0 ≤ uk · w ≤ k

w
· w = k ∈ L∞(�,Ln) ⊂ L1

loc(�,Ln). (4.3.33)

From the definition for uk and (4.3.32) we obtain

uk∂ jw + w ∂ j uk =
⎧
⎨

⎩

k

w
∂ jw − k

∂ jw

w
= 0 if uw > k,

u∂ jw + w ∂ j u if uw ≤ k.
(4.3.34)

In particular, uk∂ jw + w ∂ j uk ∈ L1
loc(�,Ln). All together, the functions uk and w

satisfy the hypotheses in (4.3.13). As such, Step II applies and, for each ϕ ∈ C∞
c (�),

permits us to write

−
ˆ

�

ukw∂ jϕ dLn =
ˆ

�

{uk∂ jw + w ∂ j uk}ϕ dLn, ∀k ∈ N. (4.3.35)

As k → ∞, it is clear that uk → u at Ln-a.e. point in �. In addition, we have
|ukw| ≤ |uw| ∈ L1

loc(�,Ln). Hence, Lebesgue’s Dominated Convergence Theorem
applies and gives

lim
k→∞

ˆ
�

ukw ∂ jϕ dLn =
ˆ

�

uw ∂ jϕ dLn. (4.3.36)

In addition, from (4.3.34), the last condition in (4.3.27), and Lebesgue’s Dominated
Convergence Theorem we conclude that

lim
k→∞

ˆ
�

{uk∂ jw + w ∂ j uk}ϕ dLn =
ˆ

�

{u∂ jw + w ∂ j u}ϕ dLn . (4.3.37)

Formula (4.3.2) now follows from (4.3.35)–(4.3.37).

Step IV. Formula (4.3.2) holds whenever
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u ≥ 0 and w ≥ 0 at Ln-a.e. point in �,

u, w ∈ L1
loc(�,Ln), ∂ j u, ∂ jw ∈ L1

loc(�,Ln),

u · w ∈ L1
loc(�,Ln), u ∂ jw + w ∂ j u ∈ L1

loc(�,Ln).

(4.3.38)

Take u, w as in (4.3.38) and define w̃ := w + 1 ∈ L1
loc(�,Ln). Since u, w̃ satisfy

(4.3.27), the result in Step III applies and allows us to write

∂ j (uw) = ∂ j
(
u(w̃ − 1)

) = ∂ j (uw̃) − ∂ j u = u∂ j w̃ + w̃ ∂ j u − ∂ j u

= u∂ j (w + 1) + (w + 1)∂ j u − ∂ j u = u∂ jw + w ∂ j u, (4.3.39)

proving (4.3.2) in this case.

Step V. Formula (4.3.2) holds whenever u, w are as in (4.3.1). To see that this is
the case, consider

0 ≤ u± := |u| ± u

2
∈ L1

loc(�,Ln), 0 ≤ w± := |w| ± w

2
∈ L1

loc(�,Ln). (4.3.40)

Then |u± · w±| ≤ |uw| ∈ L1
loc(�,Ln), and (4.3.25) implies that

∂ j (u
+) =

{
∂ j u if u > 0,

0 if u ≤ 0,
and ∂ j (u

−) =
{
0 if u ≥ 0,

−∂ j u if u < 0,
(4.3.41)

plus similar formulas for ∂ j (w
±). These entail

u+∂ jw
+ + w+∂ j u

+ =
{
u∂ jw + w ∂ j u if u > 0 and w > 0,

0 otherwise,
(4.3.42)

u+∂ jw
− + w−∂ j u

+ =
{−(u∂ jw + w ∂ j u) if u > 0 and w < 0,

0 otherwise,
(4.3.43)

u−∂ jw
+ + w+∂ j u

− =
{−(u∂ jw + w ∂ j u) if u < 0 and w > 0,

0 otherwise,
(4.3.44)

and

u−∂ jw
− + w−∂ j u

− =
{
u∂ jw + w ∂ j u if u < 0 and w < 0,

0 otherwise.
(4.3.45)

In particular, from (4.3.42)–(4.3.45) and the last hypothesis in (4.3.1) we conclude
that
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u+∂ jw
+ + w+∂ j u+ ∈ L1

loc(�,Ln), u+∂ jw
− + w−∂ j u+ ∈ L1

loc(�,Ln),

u−∂ jw
+ + w+∂ j u− ∈ L1

loc(�,Ln), u−∂ jw
− + w−∂ j u− ∈ L1

loc(�,Ln).
(4.3.46)

Consequently, any of the pairs (u+, w+), (u+, w−), (u−, w+), (u−, w−) satisfy
the hypotheses in (4.3.38). Having established this, Step IV applies and, for each
ϕ ∈ C∞

c (�), allows us to compute

−
ˆ

�

uw ∂ jϕ dLn

= −
ˆ

�

(u+ − u−)(w+ − w−)∂ jϕ dLn

= −
ˆ

�

u+w+∂ jϕ dLn +
ˆ

�

u+w−∂ jϕ dLn

+
ˆ

�

u−w+∂ jϕ dLn −
ˆ

�

u−w−∂ jϕ dLn

=
ˆ

�

{u+∂ jw
+ + w+∂ j u

+}ϕ dLn −
ˆ

�

{u+∂ jw
− + w−∂ j u

+}ϕ dLn

−
ˆ

�

{u−∂ jw
+ + w+∂ j u

−}ϕ dLn +
ˆ

�

{u−∂ jw
− + w−∂ j u

−}ϕ dLn

=
ˆ

�

{
(u+ − u−)∂ j (w

+ − w−) + (w+ − w−)∂ j (u
+ − u−)

}
ϕ dLn

=
ˆ

�

{u∂ jw + w ∂ j u}ϕ dLn. (4.3.47)

In view of the arbitrariness of ϕ ∈ C∞
c (�), formula (4.3.2) follows. This concludes

the proof of Proposition 4.3.1. �

4.4 Pointwise Divergence Versus Distributional Divergence

We first establish a Divergence Formula in rectangles, for differentiable vector fields
whose divergence, considered in a pointwise sense, happens to continuous.

Lemma 4.4.1 Let O be an open set in R
n and suppose R is an open rectangle in

R
n such that R ⊆ O. Suppose �F = (Fi )1≤i≤n : O → C

n is a vector field with the
property that
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�F is differentiable at every point in R and
n∑

i=1

∂i Fi is continuous on R,

(4.4.1)
where the partial derivatives are considered in a pointwise, classical sense.

Then, with ν denoting the outward unit normal to R, one has

ˆ
∂R

ν · �F dHn−1 =
ˆ
R

( n∑

i=1

∂i Fi
)
dLn . (4.4.2)

Proof For any sub-rectangle Q ⊆ R we agree to denote

�(Q) :=
ˆ

∂Q
ν · �F dHn−1 −

ˆ
Q

( n∑

i=1

∂i Fi
)
dLn (4.4.3)

where ν denotes the outward unit normal to Q. Seeking a contradiction, suppose
(4.4.2) fails. Hence, there exists ε > 0 such that

|�(R)| ≥ ε. (4.4.4)

Bydividing each side of the rectangle R into two equal partswe generate 2n congruent
sub-rectangles, call them {Rk

1}1≤k≤2n , of R with disjoint interiors. Given the fact the
union of the closures of these sub-rectangles is R, and that �(R) =∑2n

k=1 �(Rk
1)

(since for any two such sub-rectangles sharing a common face their outward unit
normals on that face have opposite orientations), from (4.4.4) it follows that we may
select one sub-rectangle, call it R1 ∈ {Rk

1}1≤k≤2n , with the property that

|�(R1)| ≥ ε

2n
. (4.4.5)

Proceeding inductively, we obtain a sequence of rectangles {R j } j∈N satisfying

R j+1 ⊆ R j ⊆ R for j ∈ N, diam R j → 0 as j → ∞, and
∣∣∣
ˆ

∂R j

ν j · �F dHn−1 −
ˆ
R j

( n∑

i=1

∂i Fi
)
dLn
∣∣∣ ≥ ε

2nj
for j ∈ N,

(4.4.6)

where ν j is the outward unit normal to R j . Then there exists x∗ = (x∗
1 , . . . , x

∗
n ) ∈ R

with
⋂

j∈N

R j = {x∗} and, using the continuity property from (4.4.1), we have

1

Ln(R j )

ˆ
R j

( n∑

i=1

∂i Fi
)
dLn −→

n∑

i=1

(∂i Fi )(x
∗) as j → ∞. (4.4.7)
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In addition, for x = (x1, . . . , xn) near x∗, the differentiability property from (4.4.1)
implies

�F(x) = �F(x∗) +
n∑

i=1

(xi − x∗
i )(∂i

�F)(x∗) + o(|x − x∗|). (4.4.8)

Thus, if we define �G(x) := �F(x∗) +∑n
i=1(xi − x∗

i )(∂i
�F)(x∗) for each x ∈ R

n , then
�G is a smooth vector field whose divergence is constant, div �G =∑n

i=1(∂i Fi )(x
∗) in

R
n . The Divergence Theorem applied to �G on each rectangle R j then gives

ˆ
∂R j

ν j · �G dHn−1 =
ˆ
R j

div �G dLn = Ln(R j )

n∑

i=1

(∂i Fi )(x
∗), ∀ j ∈ N. (4.4.9)

Moreover, from (4.4.8) and the definition of �G it follows that

1

Ln(R j )

ˆ
∂R j

ν j · ( �F − �G) dHn−1 −→ 0 as j → ∞. (4.4.10)

In concert, (4.4.9)–(4.4.10) yield

1

Ln(R j )

ˆ
∂R j

ν j · �F dHn−1 −→
n∑

i=1

(∂i Fi )(x
∗) as j → ∞. (4.4.11)

From (4.4.7) and (4.4.11), we conclude that

2nj
∣∣∣
ˆ

∂R j

ν j · �F dHn−1 −
ˆ
R j

( n∑

i=1

∂i Fi
)
dLn
∣∣∣ −→ 0 as j → ∞. (4.4.12)

The conclusion in (4.4.12) contradicts the condition in the second line of (4.4.6).
This contradiction shows that in fact (4.4.2) holds true, completing the proof of the
lemma. �

In turn, Lemma 4.4.1 is the main ingredient in the proof of the following criterion
guaranteeing the coincidence between the divergence of a vector field taken in the
sense of distributions and the divergence of the vector field in question computed in
a classical pointwise sense.

Proposition 4.4.2 LetO be an open set inR
n and suppose �F = (Fi )1≤i≤n : O → C

n

is a vector fieldwhich is differentiable at every point inO and
∑n

i=1 ∂i Fi is continuous
on O, where the partial derivatives are considered in a pointwise, classical sense.
Then div �F taken in sense of distributions inD′(O) is equal to

∑n
i=1 ∂i Fi .

Proof Let ϕ ∈ C∞
c (O) be arbitrary. Then ϕ �F is differentiable in O and the product

rule gives
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div(ϕ �F) = ∇ϕ · �F + ϕ

n∑

i=1

∂i Fi pointwise in O. (4.4.13)

In concert with the hypotheses on �F , this allows us to conclude that, for every
open rectangle R with R ⊆ O, the vector field ϕ �F satisfies the assumptions in
Lemma 4.4.1. As such, for every open rectangle R with R ⊆ O we may write

ˆ
∂R

ν · (ϕ �F) dHn−1 =
ˆ
R

(
∇ϕ · �F + ϕ

n∑

i=1

∂i Fi
)
dLn (4.4.14)

where ν is the outward unit normal to R.
Next, fix a scale 0 < r < dist

(
suppϕ, ∂O)/√n and consider the standard gridQr

of closed cubes in R
n of side-length r . Then the polyhedron

U :=
⋃

Q∈Qr , Q∩suppϕ �=∅

Q (4.4.15)

has the property that U ⊆ O and suppϕ ⊆ Ů. Since for each Q ∈ Qr with the
property that Q ∩ suppϕ �= ∅ formula (4.4.14) holds for each R := Q̊, summing
up over all such Q’s yields

ˆ
∂U

ν · (ϕ �F) dHn−1 =
ˆ
U

(
∇ϕ · �F + ϕ

n∑

i=1

∂i Fi
)
dLn . (4.4.16)

From (4.4.16) and the fact that suppϕ ⊆ Ů it follows that the integral in the left-hand
side of (4.4.16) is zero, which further implies

ˆ
O

∇ϕ · �F dLn = −
ˆ
O

ϕ
( n∑

i=1

∂i Fi
)
dLn . (4.4.17)

Since ϕ ∈ C∞
c (O) is arbitrary, the desired conclusion follows. �

4.5 Removability of Singularities for Distributional
Derivatives

The main result in this section is Proposition 4.5.2. To set the stage, we first review
the upper Minkowski content in the definition below.

Definition 4.5.1 Given a nonempty set F ⊆ R
n and some number γ ∈ R, the upper

γ -dimensional Minkowski content of F is defined as
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M∗
γ (F) := lim sup

r→0+

Ln
({x ∈ R

n : dist(x, F) < r})
rn−γ

∈ [0,+∞]. (4.5.1)

Refer to F as having finite upper γ -dimensional Minkowski content
if M∗

γ (F) < +∞, and say that F has vanishing upper γ -dimensional
Minkowski content provided M∗

γ (F) = 0.
Moreover, say that F has locally finite upper γ -dimensional

Minkowski content if M∗
γ (F ∩ K ) < +∞ for each compact set K ⊆ R

n

with F ∩ K �= ∅, and say that F has locally vanishing upper γ -
dimensional Minkowski content provided M∗

γ (F ∩ K ) = 0 for each com-
pact set K ⊆ R

n with F ∩ K �= ∅.

Obviously, any singleton has finite upper 0-dimensional Minkowski content, and
so does any set of finite cardinality. Also, for each γ ∈ R we have

M∗
γ (E) ≤ M∗

γ (F) whenever ∅ �= E ⊆ F ⊆ R
n . (4.5.2)

Givenm ∈ Nwithm ≤ n, for anyLipschitz function f : R
m → R

n and anynonempty
compact set K ⊂ R

m the set F := f (K ) has M∗
m(F) = Hm(F); see [88, p. 275].

Consequently, in this case M∗
m(F) < +∞ wheneverHm(F) < +∞ (hence, in par-

ticular, when Lm(K ) < +∞; cf. (5.3.1)). As a consequence,

any rectifiable curve in R
n has finite upper

1-dimensional Minkowski content.
(4.5.3)

Later on, in (8.6.88), we shall prove a result which readily implies that

any nonempty closed Ahlfors regular set in R
n has locally

finite upper (n − 1)-dimensional Minkowski content.
(4.5.4)

The notion of upper Minkowski content plays a crucial role in the following
criterion for removability of singularities for distributional derivatives.

Proposition 4.5.2 Let � ⊆ R
n be an open set, and consider a relatively closed

subset K of � having locally finite upper (n − d)-dimensional Minkowski content
for some d > 1. Also, fix a compact set Ko ⊆ � \ K. Suppose D is a homogeneous
constant (complex) coefficient first-order M × N system (for some M, N ∈ N), and
assume

u ∈
[
L

d
d−1
loc (�,Ln) + E ′

Ko
(�)
]N

and f ∈
[
L1
loc(�,Ln) + E ′

Ko
(�)
]M

(4.5.5)

are such that
D
(
u
∣∣
�\K
) = f

∣∣
�\K in

[D′(� \ K )
]M

. (4.5.6)

Then
Du = f in

[D′(�)
]M

. (4.5.7)
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Moreover, the same result is valid for d = 1
(
with the space L

d
d−1
loc (�,Ln) now

interpreted as L∞
loc(�,Ln)

)
if the set K is assumed to have locally vanishing upper

(n − 1)-dimensional Minkowski content.

For example, if K is a singleton, say K = {xo} for some xo ∈ �, it follows that

whenever u ∈
[
L

n
n−1
loc (�,Ln)

]N
and f ∈ [L1

loc(�,Ln)
]M

are such that

D
(
u
∣∣
�\{xo}

) = f
∣∣
�\{xo} in

[D′(� \ {xo})
]M

then Du = f in
[D′(�)

]M
.

(4.5.8)

The exponent n
n−1 in (4.5.8) is sharp. To see this consider� := B(0, 1), the open unit

ball in R
n , xo := 0, u(x) := x/|x |n for Ln-a.e. x ∈ �, f := 0, and D := div (hence

N := n and M := 1). The source of failure is that u /∈
[
L

n
n−1
loc (�,Ln)

]n
, even though

we do have u ∈
[
L

n
n−1 ,∞(�,Ln)

]n
as well as u ∈ [L p(�,Ln)

]n
for each p < n

n−1 .

When further specialized to n := 2 and D := ∂̄ , the Cauchy–Riemann operator
in R

2 ≡ C, the result in (4.5.8) becomes a criterion for removability of isolated
singularities for holomorphic functions. Typically, the function u is required to be
bounded in a neighborhood of the singularity, and (4.5.8) shows that boundedness
maybe relaxed to square-integrability. This being said,we do stress that the first-order
system D in the statement of Proposition 4.5.2 is not required to be elliptic.

Finally, we wish to note that related removability results (and additional biblio-
graphical references) may be found in [116].

Here is the proof of Proposition 4.5.2.

Proof of Proposition 4.5.2 We divide the argument into two steps, the first of which
deals with the special case when K is assumed to be compact, while the second treats
the general case.

Step I: Assume K is actually a compact subset of �. For each given number
ε ∈ (0, dist(K , ∂�)

)
define Kε := {x ∈ � : dist(x, K ) < ε}. Hence, K ⊆ Kε and

there exists εo > 0 such that

Ln(K ) ≤ Ln(Kε) ≤ (1 + M∗
n−d(K )

) · εd for each ε ∈ (0, εo), (4.5.9)

thanks to our assumption on K . In particular, (4.5.9) implies that

Ln(K ) = 0. (4.5.10)

Let us also note that for any ε ∈ (0, dist(K , ∂�)
)
we have dist(Rn \ K2ε, Kε) ≥ ε.

This separation property permits us to select a real-valued functionψε ∈ C∞
c (�) (the

space of compactly supported functions from C∞(�)) satisfying, for some purely
dimensional constant Cn ∈ (0,∞) (see [181, Proposition 14.33, p. 561]),

suppψε ⊆ K2ε, 0 ≤ ψε ≤ 1, |∇ψε| ≤ Cn/ε, and ψε ≡ 1 on Kε. (4.5.11)
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In concert with (4.5.10), these ensure that

lim
ε→0+

ψε(x) = 0 for Ln-a.e. x ∈ �. (4.5.12)

To proceed, pick ϕ ∈ [C∞
c (�)

]M
arbitrary and for each ε ∈ (0, dist(K , ∂�)

)

introduce
ηε := [(1 − ψε)ϕ]∣∣

�\K ∈ [C∞
c (� \ K )

]M
. (4.5.13)

In particular, if tilde denotes the extension by zero from � \ K to �, we have

η̃ε = (1 − ψε)ϕ. (4.5.14)

We may then compute

[D′(�)]M
〈
Du, ϕ

〉
[D(�)]M = − [D′(�)]N

〈
u, D�ϕ

〉
[D(�)]N

= − [D′(�)]N
〈
u, D�[ψεϕ]

〉
[D(�)]N

− [D′(�)]N
〈
u, D�[(1 − ψε)ϕ]

〉
[D(�)]N

=: Iε + IIε. (4.5.15)

Note that if ε > 0 is sufficiently small (say, 0 < ε < dist(K , Ko)) we may compute

IIε = − [D′(�)]N
〈
u, D̃�ηε

〉
[D(�)]N

= − [D′(�\K )]N
〈
u
∣∣
�\K , D�ηε

〉
[D(�\K )]N

= [D′(�\K )]M
〈
D
(
u
∣∣
�\K
)
, ηε

〉
[D(�\K )]M

= [D′(�\K )]M
〈
f
∣∣
�\K , ηε

〉
[D(�\K )]M

= [D′(�)]M
〈
f, η̃ε

〉
[D(�)]M = [D′(�)]M

〈
f, (1 − ψε)ϕ

〉
[D(�)]M

= [D′(�)]M
〈
f, ϕ
〉
[D(�)]M − [D′(�)]M

〈
f, ψεϕ

〉
[D(�)]M

= [D′(�)]M
〈
f, ϕ
〉
[D(�)]M −

ˆ
�

〈 f, ϕ〉ψε dLn . (4.5.16)

Since, thanks to the second membership in (4.5.5), (4.5.12), and Lebesgue’s Domi-
nated Convergence Theorem,

lim
ε→0+

ˆ
�

〈 f, ϕ〉ψε dLn = 0, (4.5.17)
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we conclude that

lim
ε→0+

IIε = [D′(�)]M
〈
f, ϕ
〉
[D(�)]M . (4.5.18)

As regards Iε in (4.5.15), use the commutator law (1.7.20) to decompose

Iε = I(1)ε + I(2)ε , (4.5.19)

where
I(1)ε := − [D′(�)]N

〈
u, (−i)Sym(D�;∇ψε)ϕ

〉
[D(�)]N (4.5.20)

and
I(2)ε := − [D′(�)]N

〈
u, ψεD

�ϕ
〉
[D(�)]N . (4.5.21)

If 0 < ε < dist(K , Ko) we actually have

I(1)ε = −
ˆ

�

〈
u, (−i)Sym(D�;∇ψε)ϕ

〉
dLn (4.5.22)

and

I(2)ε = −
ˆ

�

〈
u, ψεD

�ϕ
〉
dLn. (4.5.23)

From the first membership in (4.5.5), (4.5.12), and Lebesgue’s Dominated Conver-
gence Theorem we see that

lim
ε→0+

ˆ
�

〈
u, ψεD

�ϕ
〉
dLn = 0, (4.5.24)

hence
lim

ε→0+
I(2)ε = 0. (4.5.25)

Moreover, based on (4.5.11) and Hölder’s inequality we may estimate

∣∣∣−
ˆ

�

〈
u , (−i)Sym(D�;∇ψε)ϕ

〉
dLn
∣∣∣

≤ C

ε

ˆ
K2ε\Kε

|u| dLn

≤ C

ε

(ˆ
K2ε\Kε

|u| d
d−1 dLn

) d−1
d
( ˆ

K2ε\Kε

1 dLn
) 1

d

= C

ε

( ˆ
K2ε\Kε

|u| d
d−1 dLn

) d−1
d · Ln

(
K2ε \ Kε

) 1
d (4.5.26)
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which, in concert with (4.5.20) and (4.5.9), goes to show that

∣∣I(1)ε

∣∣ ≤ C

ε

( ˆ
K2ε\Kε

|u| d
d−1 dLn

) d−1
d · (1 + M∗

n−d(K )
) 1

d · (2ε)

= 2C
(
1 + M∗

n−d(K )
) 1

d

( ˆ
K2ε\Kε

|u| d
d−1 dLn

) d−1
d

, (4.5.27)

for each ε ∈ (0, εo/2). From this, (4.5.10), and Lebesgue’s Dominated Convergence
Theorem we finally conclude that

lim
ε→0+

I(1)ε = 0. (4.5.28)

At this stage, combining (4.5.15), (4.5.18), (4.5.19), (4.5.25), and (4.5.28) yields
(4.5.7), in view of the arbitrariness of ϕ ∈ [C∞

c (�)
]M

.
The last claim in the statement, corresponding to d = 1, is proved in a similar

fashion, in place of (4.5.26) now writing

∣∣∣−
ˆ

�

〈
u , (−i)Sym(D�;∇ψε)ϕ

〉
dLn
∣∣∣ ≤ C

ε

ˆ
K2ε\Kε

|u| dLn

≤ C

ε
‖u‖L∞(K2ε\Kε,Ln) · Ln

(
K2ε \ Kε

)
(4.5.29)

and using the fact that, since we are presently assuming that K has vanishing upper
(n − 1)-dimensional Minkowski content, in place of (4.5.9) we have

for each δ > 0 there exists some εδ > 0 such
that Ln(Kε) ≤ δ · ε whenever ε ∈ (0, εδ).

(4.5.30)

Then from (4.5.22), (4.5.29), and (4.5.30) we once again deduce that (4.5.28) holds,
and the desired conclusion follows.

Step II: Assume K is merely a relatively closed subset of �. Fix an arbitrary
point x∗ ∈ � and select r ∈ (0,∞) such that B(x∗, r) ⊆ �. In a first stage, the goal
is to show that

D
(
u
∣∣
B(x∗,r)

) = f
∣∣
B(x∗,r)

in
[D′(B(x∗, r)

)]M
. (4.5.31)

To this end, pick a scalar-valued function φ ∈ C∞
c (�) with φ ≡ 1 on B(x∗, r), and

introduce

w := φu ∈
[
L

d
d−1 (�,Ln) + E ′

Ko
(�)
]N

,

g := φ f + (−i)Sym(D; ∇φ)u ∈
[
L1(�,Ln) + E ′

Ko
(�)
]M

.
(4.5.32)

In addition, consider the compact set
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K∗ := K ∩ suppφ ⊆ �, (4.5.33)

and note that Ko ⊆ � \ K∗. From (4.5.6) and (4.5.32)–(4.5.33) we see that

D
(
w
∣∣
�\K∗

) = g
∣∣
�\K∗

in
[D′(� \ K∗)

]M
. (4.5.34)

If K∗ = ∅ then (4.5.34) readily implies (4.5.31) by further restricting to B(x∗, r) and
keeping in mind that φ is identically one there. Henceforth assume K∗ �= ∅. In this
scenario, K∗ has finite upper (n − d)-dimensional Minkowski content. Moreover,
if K is assumed to have locally vanishing upper (n − 1)-dimensional Minkowski
content, then K∗ has vanishing upper (n − d)-dimensional Minkowski content. As
such, we may use the result proved in Step I (with u, f, K replaced by w, g, K∗) to
conclude that

Dw = g in
[D′(�)

]M
. (4.5.35)

From this, (4.5.31) once again readily follows. Thus, (4.5.31) is established in all
cases. With this in hand, we may then conclude that (4.5.7) holds since, as is well
known, the equality of distributions has a local character (cf., e.g., [181, Proposi-
tion 2.52, p. 38]). �

Moving on, recall that S (Rn) and S ′(Rn) denote, respectively, the space of
Schwartz functions and the space of tempered distributions in R

n .
For each t ∈ (0,∞) define the operator of dilation by a factor of t , i.e.,

τt : S (Rn) → S (Rn), (τtϕ)(x) := ϕ(t x), ∀ϕ ∈ S (Rn), ∀x ∈ R
n, (4.5.36)

and
τt : S ′(Rn) → S ′(Rn), 〈τt u, ϕ〉 := t−n〈u, τ 1

t
ϕ〉,

for all u ∈ S ′(Rn) and ϕ ∈ S (Rn).
(4.5.37)

Then (see, e.g., [181, Exercise 4.46, p. 141]) one has

F (τt u) = t−nτ 1
t
F (u) in S′(Rn), ∀u ∈ S′(Rn), (4.5.38)

where F denotes the Fourier transform acting on tempered distributions in R
n .

Call a tempered distribution u ∈ S ′(Rn) positive homogeneous of
degree m ∈ R provided

τt u = tmu in S ′(Rn) for every t ∈ (0,∞). (4.5.39)

For example,
the Dirac delta function δ ∈ S ′(Rn) is a positive
homogeneous distribution of degree −n.

(4.5.40)

It is also clear from definitions that
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if u ∈ S ′(Rn) is a positive homogeneous distribution having the degree
m ∈ R, then for eachmulti-indexα ∈ N

n
0 it follows that ∂

αu is a positive
homogeneous distribution of degree m − |α|

(4.5.41)

and that

if u ∈ S ′(Rn) is a positive homogeneous distribution of degreem ∈ R,
then its Fourier transform, F u, is a positive homogeneous distribution
of degree −m − n.

(4.5.42)

Lemma 4.5.3 Suppose u1, u2, . . . , uN ∈ S ′(Rn) are tempered distributions such
that u j is positive homogeneous of degree m j for each index j ∈ {1, . . . , N }, where
−∞ < m1 < m2 < · · · < mN < +∞. In addition, assume u1 + · · · + uN = 0 in
S ′(Rn). Then u1 = u2 = · · · = uN = 0 inS ′(Rn).

Proof Fix a Schwartz function ϕ ∈ S (Rn) along with some t ∈ (0,∞). Then

0 = t−n
〈 N∑

j=1

u j , τ 1
t
ϕ
〉
=
〈
τt

( N∑

j=1

u j

)
, ϕ
〉

=
N∑

j=1

〈
τt u j , ϕ

〉 =
N∑

j=1

tm j
〈
u j , ϕ
〉
. (4.5.43)

The fact the latter expression vanishes for each t ∈ (0,∞) forces (in view of the
fact that we are assuming −∞ < m1 < m2 < · · · < mN < +∞) that

〈
u j , ϕ
〉 = 0

for each j ∈ {1, . . . , N }. Hence, u1 = u2 = · · · = uN = 0 inS ′(Rn), as wanted. �

Wemay now use Lemma 4.5.3 to establish the following brand of linear indepen-
dence result for tempered distributions.

Proposition 4.5.4 Suppose u1, u2, . . . , uN ∈ S ′(Rn) are tempered distributions
such that each u j is positive homogeneous of degree m j for 1 ≤ j ≤ N, where
−n < m1 < m2 < · · · < mN < +∞. If supp(u1 + · · · + uN ) ⊆ {0} then necessar-
ily u1 = u2 = · · · = uN = 0 inS ′(Rn).

Proof The fact that supp(u1 + · · · + uN ) ⊆ {0} implies thatu1 + · · · + uN is a linear
combination of derivatives of the Dirac distribution δ, say

u1 + · · · + uN =
∑

|α|≤M

cα∂αδ in S ′(Rn), (4.5.44)

for some M ∈ N0 and some coefficients cα ∈ C with |α| ≤ M . Consequently,

u1 + · · · + uN −
∑

|α|≤M

cα∂αδ = 0 in S ′(Rn), (4.5.45)
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and sincem j > −n for each j ∈ {1, . . . , N }, Lemma4.5.3 applies (thanks to assump-
tions and (4.5.40)–(4.5.41)) and gives that, in fact, u1 = u2 = · · · = uN = 0 in
S ′(Rn). �

Here is a useful consequence of Proposition 4.5.4.

Lemma 4.5.5 Suppose f ∈ L1
loc(R

n,Ln) is positive homogeneous of degree k for
some k ∈ R with k > −n and there exists C ∈ (0,∞) such that | f (x)| ≤ C |x |k for
all x ∈ R

n \ {0}. Also, suppose u ∈ S ′(Rn) is positive homogeneous of degree k
and satisfies u

∣∣
Rn\{0} = f . Then integration of Schwartz functions against f in R

n

induces a tempered distribution u f , and u = u f inS ′(Rn).

Proof That integration against f induces a tempered distribution u f is clear from the
properties of f . Moreover, the tempered distribution u f is positive homogeneous of
degree k. Since u

∣∣
Rn\{0} = u f

∣∣
Rn\{0} in D′(Rn \ {0}), we have supp(u − u f ) ⊆ {0}.

Then Proposition 4.5.4 applies and gives that u − u f = 0 inS ′(Rn). �

We conclude by computing the divergence, in the sense of distributions, of vector-
valued functions which are smooth and positive homogeneous of degree 1 − n in
R

n \ {0}.
Proposition 4.5.6 Consider a vector-valued function �k ∈ [C 1(Rn \ {0})]n which is
positive homogeneous of degree 1 − n.

Then �k induces a tempered distribution via integration against Schwartz functions
inR

n. Also, div�k is a continuous functionwhich is positive homogeneous of degree−n
inR

n \ {0}, and integrates to zero on Sn−1; in particular, it induces a principal-value
distribution P.V.

(
div�k) in R

n (see [181, (4.4.2), p. 148] and [181, Example 4.71,
p. 51]). Finally, with δ denoting Dirac’s distribution with mass at the origin in R

n,
one has

div�k =
( ˆ

Sn−1

〈
ω, �k(ω)

〉
dHn−1(ω)

)
δ + P.V.

(
div�k) in S ′(Rn). (4.5.46)

As a corollary, if k ∈ C 1(Rn \ {0}) is a scalar-valued function which is positive
homogeneous of degree−n, then for each j ∈ {1, . . . , n} the function x j k(x) induces
a tempered distribution via integration against Schwartz functions in R

n and

n∑

j=1

∂ j
[
x j k(x)

] =
( ˆ

Sn−1
k dHn−1

)
δ in S ′(Rn). (4.5.47)

Proof That the vector-valued function �k defines a tempered distribution is a well-
known fact; see [181, Exercise 4.54, p. 142]. Also, [181, Theorem 4.27, p. 152] yields
(4.5.46). As regards the final portion in the statement, it suffices to observe that since
k is positive homogeneous of degree −n in R

n \ {0}, Euler’s formula gives

x · (∇k)(x) = −nk(x), for all x ∈ R
n \ {0}, (4.5.48)
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hence

n∑

j=1

∂ j
[
x j k(x)

] = nk(x) +
n∑

j=1

x j (∂ j k)(x) = 0 pointwise in R
n \ {0}. (4.5.49)

With this in hand, (4.5.47) follows from (4.5.46) applied to �k(x) := xk(x) for all
x ∈ R

n \ {0}. �

4.6 The Algebraic Dual of the Space of Smooth
and Bounded Functions

Consider a nonempty open set� ⊆ R
n . Throughout,we letD′(�) denote the space of

distributions in the set �. For some M ∈ N, when working with vector distributions
u = (u1, . . . , uM) ∈ [D′(�)]M , the distributional pairing with a vector-valued test
function ϕ = (ϕ1, . . . , ϕn) ∈ [C∞

c (�)]M is defined as

[D′(�)]M 〈u, ϕ〉[D(�)]M := D′(�)〈u1, ϕ1〉D(�) + · · · + D′(�)〈uM , ϕM 〉D(�). (4.6.1)

As is customary, the notation E (�) is reserved for the space C∞(�) equipped with
the topology of uniform convergence on compact subsets of � for partial derivatives
of any given order. This becomes a Frechét space, and we denote by E ′(�) its
topological dual, endowed with the weak-∗ topology. Then E ′(�) may be identified
with the subspace ofD′(�) consisting of distributionswhich are compactly supported
in �. In particular, if for each compact set K ⊂ � we define

E ′
K (�) := {u ∈ D′(�) : supp u ⊆ K

}
, (4.6.2)

then
E ′(�) =

⋃

K compact
subset of�

E ′
K (�). (4.6.3)

Given a nonempty open set � ⊆ R
n , we agree to denote by CBM(�)) the collec-

tion of all complex Borel measures on the set � (equipped with the relative topology
induced by the Euclidean ambient). In this vein, we wish to note that

within CBM(�), viewed as a subspace of D′(�), the restrictions to an
open subset O of � taken, respectively, in a distributional sense and in
the sense of measures, actually coincide.

(4.6.4)

In other words, given any μ ∈ CBM(�) ⊂ D′(�), the distributional restriction μ
∣∣
O

coincides with the measure μ�O. Indeed, for every ϕ ∈ C∞
c (O), if ϕ̃ ∈ C∞

c (�)

denotes the extension of ϕ by zero outside O, we have
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D′(O)

〈
μ
∣∣
O, ϕ
〉
D(O) = D′(�)

〈
μ, ϕ̃
〉
D(�) =

ˆ
�

ϕ̃ dμ =
ˆ
O

ϕ dμ

=
ˆ
O

ϕ d
(
μ�O) = D′(O)

〈
μ�O, ϕ

〉
D(O) (4.6.5)

where the penultimate equality is justified by observing that it holds when ϕ is a
simple function, then using a standard density argument.

We continue to assume that � ⊆ R
n is a nonempty open set. Also, as in the past,

CBM(�) denotes the collection of all complex Borel measures on �. We then have
the injective embeddings

E ′(�) ↪→ D′(�) and L1(�,Ln) ↪→ CBM(�) ↪→ D′(�). (4.6.6)

In view of these embeddings, it makes sense to consider the subspace of D′(�)

defined as follows:

E ′(�) + CBM(�) := {u ∈ D′(�) : there exist w ∈ E ′(�) and μ ∈ CBM(�)

such that u = w + μ in D′(�)
}
. (4.6.7)

Also, introduce the space of smooth, bounded, complex-valued functions in �, i.e.,

C∞
b (�) := { f ∈ C∞(�) : f bounded in �

}
, (4.6.8)

and denote by
(
C∞
b (�)

)∗
the algebraic dual of this linear space. Throughout, we

agree to use X∗
(·, ·)X to denote the duality pairing between a linear space X and its

algebraic dual X∗.

Lemma 4.6.1 Let � ⊆ R
n be an open set and consider u ∈ D′(�). Suppose

� ∈ (C∞
b (�)

)∗
is a functional which is continuous in the sense of (1.5.1)–(1.5.2)

and which extends the distribution u, in the sense that

�
∣∣
C ∞

c (�)
= u. (4.6.9)

Then
(C ∞

b (�))
∗
(
�, f
)
C ∞

b (�) = 0 for each function

f ∈ C∞
b (�) satisfying f ≡ 0 near supp u.

(4.6.10)

In particular, corresponding to the case when u = 0, one has

� ∈ (C∞
b (�)

)∗
continuous

and such that �
∣∣
C ∞

c (�)
= 0

}

=⇒ � ≡ 0 as a functional on C∞
b (�).

(4.6.11)
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Proof Bring in the sequence {�ε}ε>0 of functions constructed in Lemma 6.1.2 for
the set �. Also, fix some � ∈ C∞

c (Rn) with � ≡ 1 near the origin in R
n and, for

each ε > 0, define �ε(x) := �(x/ε) for every x ∈ R
n . Then for each f ∈ C∞

b (�)

satisfying f ≡ 0 near supp u we may write

(C ∞
b (�))

∗
(
�, f
)
C ∞

b (�) = lim
ε→0+ (C ∞

b (�))
∗
(
�,�ε�ε f

)
C ∞

b (�)

= lim
ε→0+ D′(�)

〈
u,�ε�ε f

〉
D(�) = 0, (4.6.12)

thanks to the continuity of �, the extension condition recorded in (4.6.9), and the
fact that, for each ε > 0, the function �ε�ε f belongs to C∞

c (�) and vanishes near
the support of u. �

For an arbitrary open set � ⊆ R
n , compactly supported distributions in � along

with complex Borel measures in � are prime examples of functionals in the dual
space (C∞

b (�))∗.

Lemma 4.6.2 Let � ⊆ R
n be an arbitrary nonempty open set. Given an arbitrary

distribution u ∈ E ′(�) + CBM(�) ⊂ D′(�), pick w ∈ E ′(�) and μ ∈ CBM(�)

such that u = w + μ inD′(�), and define the functional �u ∈ (C∞
b (�)

)∗
by

(C ∞
b (�))∗

(
�u, f

)
C ∞

b (�) := E ′(�)〈w, f 〉E (�) +
ˆ

�

f dμ, ∀ f ∈ C∞
b (�). (4.6.13)

Then
E ′(�) + CBM(�) � u �−→ �u ∈ (C∞

b (�)
)∗

is an unambiguous assignment
(4.6.14)

which induces an injective embedding

E ′(�) + CBM(�) ↪→ (C∞
b (�)

)∗
. (4.6.15)

Moreover,�u is the unique extension of the original distribution u to a continuous
functional in

(
C∞
b (�)

)∗
(in the sense of (1.5.1)–(1.5.3)).

Proof The fact that the assignment u �→ �u just defined is unambiguous follows by
observing thatwheneverw ∈ E ′

K (�) for some compact set K ⊂ � andμ ∈ CBM(�)

are such that w + μ = 0 inD′(�) then

E ′(�)〈w, f 〉E (�) +
ˆ

�

f dμ = 0, ∀ f ∈ C∞
b (�). (4.6.16)

Indeed, the hypotheses on w,μ imply that μ
∣∣
�\K = −w

∣∣
�\K = 0 in D′(� \ K ).

Bearing in mind (4.6.4), we then conclude that the measure μ is supported in K .
Consequently, if ϕ ∈ C∞

c (�) is such that ϕ ≡ 1 near K then (1 − ϕ)μ = 0 as a
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complex Borel measure in �. Since w = −μ in D′(�), for each f ∈ C∞
b (Rn) we

may then write

E ′(�)〈w, f 〉E (�) = D′(�)

〈
w, ϕ f

〉
D(�) = −

ˆ
�

ϕ f dμ = −
ˆ

�

f dμ, (4.6.17)

from which the claim in (4.6.16) follows. Having established the well-definiteness
of the assignment u �→ �u , the injectivity of the mapping

E ′(�) + CBM(�) � u �→ �u ∈ (C∞
b (�)

)∗
(4.6.18)

follows from (4.6.13), (4.6.6), and the inclusion C∞
c (�) ⊂ C∞

b (�).
Going further, the continuity of the functional �u ∈ (C∞

b (�)
)∗

(in the sense of
(1.5.1)–(1.5.2)) is clear from (4.6.13), the manner in which the topology on E (�) is
defined (cf., e.g., [181, Sect. 14.1.0.1, p. 549]), and Lebesgue’s Dominated Conver-
gence Theorem. Lastly, that �u ∈ (C∞

b (�)
)∗

is an extension of the original distri-
bution u (in the sense of (1.5.3)) is readily implied by (4.6.13) and (1.3.12), while
its uniqueness among all functionals in

(
C∞
b (�)

)∗
with these qualities is seen from

Lemma 4.6.1 and linearity. �

In the context of Lemma 4.6.2, since the assignment u �→ �u is injective, in
the sequel we may identify u ≡ �u and, in place of (4.6.13), simply write, in an
unambiguous fashion,

(C ∞
b (�))∗

(
u, f
)
C ∞

b (�) = E ′(�)〈w, f 〉E (�) +
ˆ

�

f dμ, for every f ∈ C∞
b (�),

if u ∈ D′(�),w ∈ E ′(�), and μ ∈ CBM(�) satisfy u = w + μ inD′(�).

(4.6.19)
This implies that we have the injective embeddings

E ′(�) + L1(�,Ln) ↪→ E ′(�) + CBM(�) ↪→ (C∞
b (�)

)∗
(4.6.20)

as well as the compatibility properties

(C ∞
b (�))

∗
(
u, ϕ
)
C ∞

b (�) = E ′(�)〈u, ϕ〉E (�) whenever

u ∈ E ′(�) ⊂ (C∞
b (�)

)∗
and ϕ ∈ C∞

b (�) ⊂ E (�),
(4.6.21)

and

(C ∞
b (�))

∗
(
μ, ϕ
)
C ∞

b (�) =
ˆ

�

ϕ dμ whenever

μ ∈ CBM(�) ⊂ (C∞
b (�)

)∗
and ϕ ∈ C∞

b (�) ⊂ L∞(�,μ).

(4.6.22)

In particular,
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(C ∞
b (�))

∗
(
f, ϕ
)
C ∞

b (�) =
ˆ

�

f ϕ dLn provided ϕ ∈ C∞
b (�)

and L1(�,Ln) � f ≡ fLn ∈ CBM(�) ⊂ (C∞
b (�)

)∗
,

(4.6.23)

and

(C ∞
b (�))

∗
(
μ, 1
)
C ∞

b (�) = μ(�) if μ ∈ CBM(�) ⊂ (C∞
b (�)

)∗
. (4.6.24)

Finally, as a consequence of (4.6.16) (or (4.6.21) and (4.6.24)), we have

E ′(�)〈ω, 1 〉E (�) = ω(�) for each ω ∈ E ′(�) ∩ CBM(�). (4.6.25)

4.7 The Contribution at Infinity of a Vector Field

Fix n ∈ N. Let � be an open subset of R
n and consider a vector field �F ∈ [D′(�)

]n

with the property that there exists Ro ∈ (0,∞) such that

�F∣∣
�∩[B(0,R)\B(0,Ro)] ∈ [L1

(
� ∩ [B(0, R) \ B(0, Ro)],Ln

)]n
for all R > Ro.

(4.7.1)
In this setting, recall from (1.3.2)–(1.3.3) that, whenever meaningfully and unam-
biguously defined, the contribution of �F at infinity is given by

[ �F]∞ = − lim
R→∞

ˆ
�

∇φR · �F dLn for any

system of auxiliary functions {φR}R>0 as in (1.3.3).
(4.7.2)

Note that, by design, the contribution at infinity is entirely determined by how the
vector field behaves in the complement of an arbitrarily large ball, i.e.,

[ �F]∞ =
[ �F∣∣

�\B(0,R)

]

∞
for each R > Ro, (4.7.3)

in the sense that whenever one side happens to be meaningfully and unambiguously
defined then so is the other side and the two quantities are equal.

Our first goal here is to offer alternative descriptions of the contribution at infinity
in the case when the vector in question is also assumed to be continuous. A concrete
result in this regard, formulated for domains with a bounded complement, reads as
follows.

Proposition 4.7.1 Let � ⊆ R
n be an open set with bounded complement. Consider

a vector field �F ∈ [C 0(�)
]n

such that div �F ∈ CBM(�). Lastly, consider a family
{Dj } j∈N of bounded closed subsets of Rn of locally finite perimeter with the property
that
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for each compact set K ⊂ R
n there exists

jK ∈ N such that K ⊆ Dj whenever j > jK .
(4.7.4)

Then the contribution of �F at infinity is meaningfully and unambiguously defined,
and may actually be expressed as the limit

[ �F]∞ = lim
j→∞

ˆ
∂∗Dj

ν j · ( �F∣∣
∂∗Dj

)
dHn−1 (4.7.5)

where ν j is the geometric measure theoretic outward unit normal to D j .

In the context of Proposition 4.7.1,

if there exists a compact set K0 ⊆ R
n such that div �F = 0 in� \ K0,

then there exists some j0 ∈ N such that
´

∂∗Dj
ν j · ( �F∣∣

∂∗Dj

)
dHn−1 is

independent of j ≥ j0.
(4.7.6)

This follows froma suitable applicationofCorollary 2.8.7. Specifically, pick anorigin
centered open ball B0 containing K0 ∪ (Rn \ �) and assume j ∈ N is large enough
so that B0 ⊆ Dj . Also, select an origin centered open ball Bj containing Dj , and
introduceO := � \ K0. Then Corollary 2.8.7 applied first with� := Bj \ Dj yields´

∂∗Dj
ν j · ( �F∣∣

∂∗Dj

)
dHn−1 = ´

∂Bj
(x/|x |) · �F(x) dHn−1(x). A second application of

Corollary 2.8.7 with � := Bj \ B0 implies

ˆ
∂Bj

(x/|x |) · �F(x) dHn−1(x) =
ˆ

∂B0

(x/|x |) · �F(x) dHn−1(x). (4.7.7)

Ultimately,

ˆ
∂∗Dj

ν j · ( �F∣∣
∂∗Dj

)
dHn−1 =

ˆ
∂B0

(x/|x |) · �F(x) dHn−1(x) (4.7.8)

and the desired conclusion follows.

Proof of Proposition 4.7.1 In light of the conclusions we presently seek, there is no
loss of generality in assuming that

�F vanishes identically near ∂�. (4.7.9)

Indeed, thanks to (4.7.3), this may be arranged by considering (1 − ψ) �F in place of
�F , where ψ ∈ C∞

c (Rn) is such that ψ ≡ 1 in a large ball containing ∂�.
To begin in earnest, fix an arbitrary system of auxiliary functions, that is, a family

of scalar functions {φR}R>0 ⊆ C∞
c (Rn) satisfying
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supR>0 supx∈Rn |φR(x)| < +∞ and for each compact set K ⊂ R
n

there exists RK > 0 such that φR ≡ 1 on K whenever R > RK .
(4.7.10)

Fix ρ ∈ (0,∞) so that ∂� ⊆ B(0, ρ) and pick jρ ∈ N large enough so that
B(0, ρ) ⊆ Dj for each j ≥ jρ . Next, for each j ≥ jρ select R j ∈ (0,∞) so that
φR ≡ 1 near Dj whenever R > R j . Abbreviate

μ �F := div �F ∈ CBM(�) (4.7.11)

and, having fixed j ≥ jρ , for R ∈ (R j ,∞) approaching infinity we may compute

lim
R→∞

ˆ
�

∇φR · �F dLn = lim
R→∞

ˆ
�\Dj

∇φR · �F dLn (4.7.12)

= lim
R→∞ (C ∞

b (�\Dj ))
∗
(∇φR · �F, 1

)
C ∞

b (�\Dj ) = I + II,

where

I := lim
R→∞ (C ∞

b (�\Dj ))
∗
(
div(φR �F)

∣∣
�\Dj

, 1
)
C ∞

b (�\Dj ), (4.7.13)

II := − lim
R→∞ (C ∞

b (�\Dj ))
∗
((

φR div �F)∣∣
�\Dj

, 1
)
C ∞

b (�\Dj ). (4.7.14)

Above, the first equality in (4.7.12) uses the fact that ∇φR ≡ 0 near Dj , since
R > R j . The second equality in (4.7.12) is a consequence of the compatibility con-
dition (4.6.21), while the third equality in (4.7.12) relies on the product rule.

The idea is now to invoke (2.8.35) in Proposition 2.8.6 applied with � replaced
by R

n \ Dj , the ambient set O replaced by the current �, and with the vector field
�F replaced by φR �F regarded as a vector field in

[
C 0
c (�)

]n
(cf. (4.7.9)). Since

div(φR �F) = φR div �F + ∇φR · �F , the role of the complexBorelmeasureμ in Propo-
sition 2.8.6 is presently played byφR μ �F , withμ �F as in (4.7.11). Bearing this inmind,
we may now write

I = − lim
R→∞

ˆ
∂∗Dj

ν j · ( �F∣∣
∂∗Dj

)
φR dHn−1

− lim
R→∞

1
2

(
φR μ �F

)(
∂∗(Rn \ Dj )

)− lim
R→∞

(
φR μ �F

)(
int∗(Rn \ Dj ) \ (Rn \ Dj )

)

= −
ˆ

∂∗Dj

ν j · ( �F∣∣
∂∗Dj

)
dHn−1 − 1

2μ �F
(
∂∗Dj

)− μ �F
(
ext∗(Dj ) ∩ Dj

)
(4.7.15)

= −
ˆ

∂∗Dj

ν j · ( �F∣∣
∂∗Dj

)
dHn−1 − 1

2

ˆ
�

1∂∗Dj dμ �F −
ˆ

�

1ext∗(Dj )∩Dj dμ �F .

The second equality in (4.7.15) follows by observing that φR ≡ 1 on ∂Dj since
R > R j . Here we have also used (5.6.16) and the fact that
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both ∂∗Dj and ext∗(Dj ) ∩ Dj are contained in ∂Dj (4.7.16)

(cf. (2.8.20)). The final equality in (4.7.15) is obvious. Also, based on Lebesgue’s
Dominated Convergence Theorem (whose current applicability is guaranteed by
(4.7.10) and (4.7.11)) we may express

II = − lim
R→∞

ˆ
�\Dj

φR dμ �F = −
ˆ

�\Dj

1 dμ �F =
ˆ

�

1�\Dj dμ �F . (4.7.17)

Let us record our progress so far. From (4.7.12)–(4.7.17), we conclude that for
each j ≥ jρ we have

lim
R→∞

ˆ
�

∇φR · �F dLn = −
ˆ

∂∗Dj

ν j · ( �F∣∣
∂∗Dj

)
dHn−1 (4.7.18)

− 1
2

ˆ
�

1∂∗Dj dμ �F −
ˆ

�

1ext∗(Dj )∩Dj dμ �F −
ˆ

�

1�\Dj dμ �F .

Let us also observe that, in view of (4.7.4) and (4.7.16), Lebesgue’s Dominated
Convergence Theorem gives

lim
j→∞

ˆ
�

1∂∗Dj dμ �F = 0, lim
j→∞

ˆ
�

1ext∗(Dj )∩Dj dμ �F = 0, lim
j→∞

ˆ
�

1�\Dj dμ �F = 0.

(4.7.19)

Granted this, we may now conclude that the contribution of �F at infinity is mean-
ingfully and unambiguously defined, and that formula (4.7.5) holds, by combining
(4.7.2), (4.7.18), and (4.7.19). �

Corresponding to n = 1 we have the result described in the proposition below.

Proposition 4.7.2 Let � ⊆ (−∞,+∞) be an unbounded open set of locally finite
perimeter such that ∂� is locally of finite cardinality, and abbreviate σ := H0�∂�.
In this context, assume F : � → R is a continuous function with the property that2

F ′ ∈ CBM(�), and such that F
∣∣n.t.
∂�

exists at each point on ∂� and its restriction
to ∂∗� belongs to the space L1(∂∗�, σ). Then the contribution of F at infinity (cf.
(1.3.4)–(1.3.5)) may be computed as

[F]∞ =

⎧
⎪⎪⎨

⎪⎪⎩

F
∣∣∣
+∞
−∞

if � unbounded both from below and from above,

F(+∞) if � bounded from below but unbounded from above,

−F(−∞) if � unbounded from below but bounded from above,
(4.7.20)

where F(±∞) stand for the limits of F at ±∞ (taken from within �), and

2 With the derivative taken in the sense of distributions.
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F
∣∣∣
+∞
−∞

:= lim
j→∞
[
F(β j ) − F(α j )

]
for any two sequences

{α j } j∈N, {β j } j∈N ⊂ � with lim
j→∞ α j = −∞ and lim

j→∞ β j = +∞.
(4.7.21)

Before proving this proposition, we make some preliminary observations. First,
we note that ∂� is an at most countable set and σ is simply the counting measure on
∂�. The fact that ∂� is locally of finite cardinality is then equivalent to saying that
σ is a locally finite measure. Also, since � is open, it follows that � is Lebesgue
measurable and for each R ∈ (0,∞) we have

σ
(
∂∗� ∩ (−R, R)

) ≤ σ
(
∂� ∩ (−R, R)

)
< +∞, (4.7.22)

with the last inequality a consequence of the fact that ∂� is locally of finite cardinality.
From (4.7.22) and (5.6.35) we then see that � is a set of locally finite perimeter.
Finally, we wish to note that, thanks to Proposition 8.8.10 we have ∂nta� = ∂�. As
such, in view of Definition 8.9.1 it is meaningful to assume that the nontangential

limit F
∣∣n.t.
∂�

exists at every point on ∂�.
We are ready to present the proof of Proposition 4.7.2.

Proof of Proposition 4.7.2 For starters, it is useful to observe that the assump-
tions on F ensure that this function extends continuously to �; in particular
F ∈ L1

bdd(�,L1) (which allows us to begin considering the contribution of F at
infinity). Indeed, � \ � = ∂� = ∂nta� so the function

F̃ : � −→ R (4.7.23)

given at each x ∈ � by

F̃(x) :=
{
F(x) if x ∈ �,
(
F
∣∣n.t.
∂�

)
(x) if x ∈ ∂�,

(4.7.24)

is well defined and satisfies

F̃ ∈ C 0
(
�
)
and F̃

∣∣
�

= F. (4.7.25)

Going further, the fact that � is unbounded forces � to be either unbounded from
below, or unbounded from above. To fix ideas, suppose first that � is unbounded
both from below and from above. Select two sequences

{α j } j∈N, {β j } j∈N ⊂ � such that lim
j→∞ α j = −∞ and lim

j→∞ β j = +∞ (4.7.26)

and consider the compact intervals

Dj := [α j , β j ] for each j ∈ N. (4.7.27)
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Next, fix an arbitrary system of auxiliary functions {φR}R>0 (i.e., a subfamily of
C∞
c (R) satisfying (4.7.10) with n = 1) and abbreviate μF := F ′ ∈ CBM(�). For

each j ∈ N, if ν j and ν denote the geometric measure theoretic outward unit normals
to � \ Dj , and to �, respectively, we may then compute

lim
R→∞

ˆ
�

φ′
R F dL1 = lim

R→∞

ˆ
�\Dj

φ′
R F dL1 = lim

R→∞(φ′
R F)
(
� \ Dj

)
(4.7.28)

= lim
R→∞(φR F)′

(
� \ Dj

)− lim
R→∞(φR F ′)

(
� \ Dj

)

= lim
R→∞

ˆ
∂∗(�\Dj )

ν j F φR dH0 − lim
R→∞

ˆ
�\Dj

φR dμF

=
ˆ

∂∗�\Dj

ν F dH0 − F(β j ) + F(α j ) −
ˆ

�\Dj

1 dμF .

Above, thefirst equality relies on the fact thatφ′
R ≡ 0 near Dj if R is large. The second

equality is simply the result of identifying φ′
R F with the measure φ′

R F dL1. The
third equality relies on the product rule to express the measure φ′

R F as the difference
ofmeasures (φR F)′ − φR F ′. The fourth equality uses Theorem2.6.5 applied to each
connected component of (IR ∩ �) \ Dj (which contains IR ∩ (� \ Dj )) intersecting
the support of φR , where IR is a large open finite interval containing the support of
φR . The assumption that ∂� is locally of finite cardinality guarantees that there are
only finitely many such components.

Bearing (4.7.25) in mind, it follows from (2.6.27) that Theorem 2.6.5 is indeed
applicable in the current context. Finally, the last equality in (4.7.28) takes into
account that φR ≡ 1 on ∂Dj if R is large, that since ∂� is locally of finite cardinality
we have

∂∗(� \ Dj ) = (∂∗� \ Dj
) ∪ {α j , β j } where the union is disjoint, (4.7.29)

as well as Lebesgue’s Dominated Convergence Theorem. Since, given the present
assumptions, Lebesgue’s Dominated Convergence Theorem also gives

ˆ
∂∗�\Dj

ν F dH0 → 0 and
ˆ

�\Dj

1 dμF → 0 as j → ∞, (4.7.30)

from (4.7.2), (4.7.28), and (4.7.30) we conclude that, in the present setting, the
contribution of F at infinity is meaningfully and unambiguously defined, and

[F]∞ = F
∣∣∣
+∞
−∞

(4.7.31)

which is in agreement with (4.7.20).
Consider next the scenario when� is unbounded from above but is bounded from

below. In this case, pick a ∈ R satisfying a < inf �. Augmenting �̃:=(−∞, a) ∪ �
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yields an open set of the sort just treated above. If we also denote by F̃ the extension
of the original F to �̃ by setting it zero on (−∞, a), then (4.7.31) is applicable to
F̃ and �̃ and presently yields

[F]∞ = [F̃ ]∞ = F̃
∣∣∣
+∞
−∞

= F(+∞), (4.7.32)

which once again is in agreementwith (4.7.20). Lastly, the casewhen� is unbounded
from below but is bounded from above is handled similarly, finishing the proof of
the proposition. �

We continue by identifying intrinsic conditions guaranteeing that the contribution
at infinity of a vector field is actually zero.

Lemma 4.7.3 Let � ⊆ R
n, where n ∈ N, be an open set and consider a vector field

�F whose components are absolutely integrable functions on bounded measurable
subsets of �, and whose contribution at infinity is meaningfully and unambiguously
defined. In addition, suppose that there exists some number λ ∈ (1,∞) such that

ˆ
[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x) = o(R2) as R → ∞. (4.7.33)

Then, in fact, [ �F]∞ = 0. As a corollary, if n ≥ 2 and in place of (4.7.33) one
assumes

�F ∈ [L n
n−1 (�,Ln)

]n
(4.7.34)

then (4.7.33) holds, hence once again [ �F]∞ = 0.

Proof With λ as in the statement of the lemma, pick a real-valued function θ in
C∞
c (R) satisfying θ ≡ 1 on the interval (−1, 1) as well as θ ≡ 0 on R \ (−λ2, λ2),

and define
φ : R

n → R, φ(x) := θ(|x |2), ∀x ∈ R
n. (4.7.35)

Consequently,

φ ∈ C∞
c (Rn), φ ≡ 1 on B(0, 1), φ ≡ 0 on R

n \ B(0, λ),

supp(∇φ) ⊆ B(0, λ) \ B(0, 1),

and (∇φ)(x) = 2θ ′(|x |2)x for all x ∈ R
n.

(4.7.36)

Thanks to (4.7.36) and the independence of [ �F]∞ in (1.3.5) on the choice of the
function φ as in (1.3.4) we have
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∣∣[ �F]∞
∣∣ ≤ lim sup

R→∞

∣∣∣∣∣∣

ˆ

�

R−1(∇φ)(x/R) · �F(x) dLn(x)

∣∣∣∣∣∣

≤ lim sup
R→∞

{
2R−2

(
sup

R

|θ ′|) ·
ˆ

[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x)

}
.

(4.7.37)

From this it is clear that [ �F]∞ = 0 if the integral growth condition (4.7.33) holds.
Finally, consider the case when n ≥ 2 and in place of (4.7.33) we now assume

(4.7.34). In such a scenario, fix some λ ∈ (1,∞) and for each R ∈ (0,∞) use
Cauchy–Schwarz’ inequality and Hölder’s inequality to estimate

R−2
ˆ

[B(0,λ R)\B(0,R)]∩�

|x · �F(x)| dLn(x)

≤ λR−1
ˆ

[B(0,λ R)\B(0,R)]∩�

| �F | dLn

≤ λR−1
( ˆ

[B(0,λ R)\B(0,R)]∩�

| �F | n
n−1 dLn

) n−1
n
( ˆ

B(0,λ R)

1 dLn
) 1

n

≤ C
( ˆ

[B(0,λ R)\B(0,R)]∩�

| �F | n
n−1 dLn

) n−1
n

, (4.7.38)

for some constant C = Cn,λ ∈ (0,∞). In view of (4.7.34), Lebesgue’s Dominated
Convergence Theorem applies and proves that (4.7.33) holds in this case. As noted
earlier, this integral growth condition forces [ �F]∞ = 0. �

We augment the result from the previous lemma with the following criterion
guaranteeing the vanishing of the contribution at infinity in the one-dimensional
setting.

Proposition 4.7.4 Suppose � ⊆ (−∞,+∞) is an open nonempty proper subset of
the real line, with the property that ∂� is an unbounded set without (finite) accumu-
lation points. Abbreviate σ := H0�∂� and fix an aperture parameter κ > 0. In this
context, assume F : � → R is a Lebesgue measurable function with the property
thatNκF ∈ L1(∂�, σ), and such that the contribution of F at infinity ismeaningfully
and unambiguously defined (as introduced in (1.3.4)–(1.3.5)).

Then the contribution of F at infinity actually vanishes, i.e., [F]∞ = 0.

Proof Since ∂� is an at most countable set which is unbounded and without (finite)
accumulation points, it follows that ∂� has infinite cardinality. Then the family of
connected components of� is countable and has infinite cardinality. Call this family



4.7 The Contribution at Infinity of a Vector Field 341

{I j } j∈N, where the I j ’s are mutually disjoint open intervals of the form I j = (a j , b j )

with −∞ ≤ a j < b j ≤ +∞ and min{|a j |, |b j |} < ∞ for each j ∈ N, such that

� =
∞⋃

j=1

I j . (4.7.39)

Moreover, as in the proof of Proposition 8.8.10, we have

∂� =
⋃

j∈N

∂ I j =
⋃

j∈N

∂ I j , (4.7.40)

while from (8.3.29) we see that

∞∑

j=1

‖F‖L∞(I j ,L1) ≤
∞∑

j=1

‖NκF‖L1(∂ I j ,σ ) ≤ ‖NκF‖L1(∂�,σ). (4.7.41)

Since we are assuming ‖NκF‖L1(∂�,σ) < +∞, this further implies

lim
j→∞ ‖F‖L∞(I j ,L1) = 0. (4.7.42)

We shall put this to good use shortly. For now, we wish to remark that from
Lemma 8.3.4 and current assumptions we also know that

‖F‖L∞(�,L1) ≤ ‖NκF‖L1(∂�,σ) < +∞, (4.7.43)

hence
F ∈ L∞(�,L1) ⊆ L1

bdd(�,L1). (4.7.44)

In particular, the latter property ensures that it is possible to consider the contribu-
tion of F at infinity as in (1.3.4)–(1.3.5). By assumption, this contribution of F at
infinity is meaningfully and unambiguously defined. To show that we actually have
[F]∞ = 0, we shall consider a special system of auxiliary functions. Specifically,
we shall construct a subfamily {φR}R>0 of C∞

c (R) satisfying (1.3.3) with n = 1,
depending on the nature of �, as discussed in the cases below.

Case I: Assume there exists jo ∈ N such that I jo = (−∞, a) for some a ∈ R.
In such a scenario, in light of the original assumptions on �, we may relabel the
intervals I j = (a j , b j ) with j ∈ N \ { jo}, now taking j ∈ N arbitrary, so that

− ∞ < a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ a j < b j ≤ a j+1 < b j+1 ≤ · · · < +∞.

(4.7.45)
Moreover, the fact that ∂� is an infinite set without (finite) accumulation points
implies that
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lim
j→∞ a j = +∞ and lim

j→∞ b j = +∞. (4.7.46)

For each R ∈ (0,∞) introduce

jR := min
{
j ∈ N : a j > R

}
(4.7.47)

and note that, as seen from (4.7.46),

{ jR}R>0 is a well-defined sequence of integers
convergent to +∞, as R tends to infinity.

(4.7.48)

For each R ∈ (0,∞) it is possible to construct φR ∈ C∞
c (R) such that

0 ≤ φR ≤ 1, φR ≡ 1 on
[
a − R, a jR

]
, φR ≡ 0 on R \ [a − 2R, b jR

]
,

|φ′
R| ≤ C/R on

[
a − 2R, a − R

]
, |φ′

R| ≤ C/(b jR − a jR ) on
[
a jR , b jR

]
,

(4.7.49)

for some absolute constant C ∈ (0,∞). Then {φR}R>0 is a family in C∞
c (R) which

satisfies (1.3.3) with n = 1. Also, the one-dimensional version of (4.7.2) becomes

[F]∞ = − lim
R→∞

ˆ
�

φ′
R F dL1

= − lim
R→∞

{ˆ
[a−2R,a−R]

φ′
R F dL1 +

ˆ
[a jR ,b jR ]

φ′
R F dL1

}
, (4.7.50)

in view of the support properties for φ′
R implicit in (4.7.49). Note that thanks to the

estimates in (4.7.49), (4.7.42), and (4.7.48),

lim
R→∞

∣∣∣
ˆ

[a jR ,b jR ]
φ′
R F dL1

∣∣∣ ≤ C lim
R→∞ ‖F‖L∞(I jR ,L1) = 0, (4.7.51)

which means that (4.7.50) reduces to

[F]∞ = − lim
R→∞

ˆ
[a−2R,a−R]

φ′
R F dL1. (4.7.52)

To proceed, observe that for each j ∈ N we have

(
− ∞, min

{
a, [(1 + κ)a − a j ]/κ

}) ⊆ �κ(a j ). (4.7.53)

Indeed, given any x in the interval above, it follows that x ∈ (−∞, a)

(hence also x ∈ �), and dist(x, ∂�) = a − x . Consequently, having
|a j − x | < (1+ κ) dist(x, ∂�) becomes equivalent to x < [(1+ κ)a − a j ]/κ ,
which is true given the membership of x to the interval in (4.7.53). In light
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of (8.1.1)–(8.1.2), this ultimately shows that x ∈ �κ(a j ), finishing the proof of
(4.7.53).

For each j ∈ N fixed, select R > 0 large enough so that

[a − 2R, a − R] ⊆
(

− ∞, min
{
a, [(1 + κ)a − a j ]/κ

})
. (4.7.54)

Then the first estimate in the second line of (4.7.49) together with (8.2.1) allow to
write

∣∣∣
ˆ

[a−2R,a−R]
φ′
R F dL1

∣∣∣ ≤ C‖F‖L∞([a−2R,a−R],L1) ≤ C(NκF)(a j ) (4.7.55)

given that [a − 2R, a − R] ⊆ �κ(a j ), as seen from (4.7.54) and (4.7.53). Thus, on
the one hand,

lim sup
R→∞

∣∣∣
ˆ

[a−2R,a−R]
φ′
R F dL1

∣∣∣ ≤ C(NκF)(a j ) for each j ∈ N. (4.7.56)

Since σ = H0�∂� is the counting measure on ∂�, the last estimate in (4.7.41) may
also be recast as

∞∑

j=1

{
(NκF)(a j ) + (NκF)(b j )

} ≤ ‖NκF‖L1(∂�,σ). (4.7.57)

Given we are assuming ‖NκF‖L1(∂�,σ) < +∞, this permits us to conclude that, on
the other hand,

lim
j→∞(NκF)(a j ) = 0. (4.7.58)

In concert, (4.7.56) and (4.7.58) show that

lim
R→∞

ˆ
[a−2R,a−R]

φ′
R F dL1 = 0 (4.7.59)

which, together with (4.7.52), ultimately proves that [F]∞ = 0.

Case II: Assume there exists jo ∈ N such that I jo = (a,+∞) for some a ∈ R.
Reasoning similarly as we have done in Case I, we once again have [F]∞ = 0 in this
scenario.

Case III: Assume all I j ’s are finite intervals. If either � is bounded from
above, or is bounded from below, then much as in Cases I-II we obtain [F]∞ = 0.
To be more specific, assume that � is bounded from below (the case when � is
bounded from above is treated similarly). Pick a ∈ R with a < inf � then augment
�̃ := (−∞, a) ∪ � and extend F by zero to a function F̃ defined on �̃. Then F̃
continues to be Lebesgue measurable. Also, since for each x ∈ ∂� we have
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��,κ(x) ⊆ ��̃,κ(x) and ��̃,κ(x) \ ��,κ(x) ⊆ (−∞, a) (4.7.60)

(where the first inclusion comes from Lemma 8.1.3), we see that

Nκ F̃ = NκF on ∂�. (4.7.61)

In addition, (4.7.43) gives

0 ≤ (Nκ F̃)(a) ≤ ‖F̃‖L∞(�̃,L1) = ‖F‖L∞(�,L1) ≤ ‖NκF‖L1(∂�,σ). (4.7.62)

If σ̃ := H0�∂�̃, then (4.7.61)–(4.7.62) collectively prove that

‖Nκ F̃‖L1(∂�̃,̃σ ) ≤ (Nκ F̃)(a) + ‖NκF‖L1(∂�,σ)

≤ 2‖NκF‖L1(∂�,σ) < +∞, (4.7.63)

since NκF is assumed to be in L1(∂�, σ). Hence, Nκ F̃ ∈ L1(∂�̃, σ̃ ). Finally, it is
clear from definitions and assumptions that the contribution of F̃ at infinity is mean-
ingfully and unambiguously defined and, in fact, [F̃]∞ = [F]∞. Having checked
these properties, what we have proved in Case I gives [F̃]∞ = 0, ergo [F]∞ = 0.

There remains to consider the situation when � is unbounded both from above
and below. Given that ∂� is an infinite set without (finite) accumulation points, it
follows that there exist two infinite subfamilies

{I+
j = (a+

j , b+
j )} j∈N and {I−

j = (a−
j , b−

j )} j∈N of {I j } j∈N with

lim
j→∞ a+

j = lim
j→∞ b+

j = +∞ and lim
j→∞ a−

j = lim
j→∞ b−

j = −∞.
(4.7.64)

Next, for each R ∈ (0,∞) introduce

j+R := min
{
j ∈ N : a+

j > R
}

and j−R := min
{
j ∈ N : a−

j < −R
}
. (4.7.65)

Bearing in mind (4.7.64), we then conclude that

{ j±R }R>0 are two well-defined sequences of
integers convergent to +∞, as R → ∞.

(4.7.66)

The stage is now set to consider, for each R ∈ (0,∞), a function φR ∈ C∞
c (R)

satisfying

0 ≤ φR ≤ 1, φR ≡ 1 on
[
b−
j−R

, a+
j+R

]
, φR ≡ 0 on R \ [a−

j−R
, b+

j+R

]
,

|φ′
R| ≤ C/(b−

j−R
− a−

j−R
) on

[
a−
j−R

, b−
j−R

]
, and

|φ′
R| ≤ C/(b+

j+R
− a+

j+R
) on

[
a+
j+R

, b+
j+R

]
,

(4.7.67)
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for some absolute constant C ∈ (0,∞). Then {φR}R>0 is a family in C∞
c (R) which

satisfies the one-dimensional version of (1.3.3). Then the same type of argument as
in Case I gives that

[F]∞ = − lim
R→∞

ˆ
�

φ′
R F dL1

= − lim
R→∞

{ ˆ
[a−

j−R
,b−

j−R
]
φ′
R F dL1 +

ˆ
[a+

j+R
,b+

j+R
]
φ′
R F dL1

}
= 0, (4.7.68)

thanks to (4.7.67) and (4.7.42) (keeping in mind (4.7.66)). This finishes the proof of
Proposition 4.7.4. �

Moving on,we shall change focus. Specifically, in a consistent fashionwith (4.7.2)
we shall now define, whenever meaningful and unambiguous, the contribution at
infinity of a vector field �F ∈ [D′(Rn)

]n
by setting (with 〈·, ·〉 denoting the distribu-

tional pairing in R
n)

[ �F]∞ := − lim
R→∞

〈 �F,∇φR
〉
for any

system of auxiliary functions {φR}R>0 (c f. (1.3.3)).
(4.7.69)

Lemma 4.7.5 Suppose �F ∈ [D′(Rn)
]n

has the property that the distribution div �F
extends to a complex Borel measure in R

n (in the sense of (1.3.12)). Then the con-
tribution of �F at infinity is meaningfully and unambiguously defined and, retaining
the notation div �F for the aforementioned measure, one has

(
div �F)(Rn) = [ �F]∞. (4.7.70)

More generally, if �F ∈ [D′(Rn)
]n

is such that

div �F ∈ E ′(Rn) + CBM(Rn) (4.7.71)

then the contribution of �F at infinity is meaningfully and unambiguously defined,
and (with C∞

b (Rn) defined as in (4.6.8)) one has

(C ∞
b (Rn))

∗
(
div �F, 1

)
C ∞

b (Rn) = [ �F]∞. (4.7.72)

Formula (4.7.72) may be thought of as the limiting case � = R
n of (1.4.5).

Proof of Lemma 4.7.5 Consider �F as in the first part of the statement and, for ease
of notation, abbreviate

μ := div �F ∈ CBM(Rn). (4.7.73)

Then, having fixed an arbitrary family of functions {φR}R>0 as in (1.3.3), based on
(1.3.12) and Lebesgue’s Dominated Convergence Theorem we may write
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− lim
R→∞

〈 �F,∇φR
〉 = lim

R→∞
〈
div �F, φR

〉 = lim
R→∞

ˆ
Rn

φR dμ

=
ˆ

Rn

1 dμ = μ(Rn). (4.7.74)

On account of (4.7.73), (4.7.74), and (4.7.69) we then conclude that the contribution
of �F at infinity is meaningfully and unambiguously defined and that (4.7.70) holds.

Under the assumption that �F ∈ [D′(Rn)
]n

satisfies (4.7.71), the fact that the con-
tribution of �F at infinity ismeaningfully and unambiguously defined and that (4.7.72)
is valid are justified in a similar manner, making use of (4.6.19). �



Chapter 5
Sets of Locally Finite Perimeter and
Other Categories of Euclidean Sets

Here we discuss basic results from Geometric Measure Theory, including thick sets,
the corkscrew condition, the geometric measure theoretic boundary, area and coarea
formulas, countable rectifiability, approximate tangent planes, functions of bounded
variation, sets of locally finite perimeter, Ahlfors regularity, uniformly rectifiable
(UR) sets, the local John condition, (ε, δ)-domains, and nontangentially accessible
(NTA) domains.

There are several excellent accounts on the topics dealt with in this chapter, includ-
ing the monographs by L.Evans and R.Gariepy [80], F.Lin and X.Yang [162],
H.Federer [88], P.Mattila [177], L.Simon [238], W.Ziemer [263]. Here we shall
review material that is relevant to the current goals from these (and other) sources,
and also further build, refine, and develop results and tools that are necessary in
subsequent work. Although here we shall work exclusively in Euclidean spaces, a
great deal of the material in this chapter translates routinely to the manifold setting.

5.1 Thick Sets and Corkscrew Conditions

We begin by making the following definition.

Definition 5.1.1 An Ln-measurable set E ⊆ R
n is said to be n-thick provided

there exists a number c ∈ (0,∞) such that for each x ∈ ∂E one has

Ln
(
B(x, r) ∩ E

) ≥ crn, ∀r ∈ (
0, 2 diam(∂E)

)
. (5.1.1)
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Also, call anLn-measurable set E ⊆ R
n two-sidedn-thick if both E andR

n \ E
are n-thick.

A quick inspection shows that in place of r ∈ (
0, 2 diam(∂E)

)
we may ask that

r ∈ (0, 2 diam E). This is equivalent to the condition in (5.1.1), up to a change in the
choice of the constant c ∈ (0,∞).

It is also easy to see that for any given Ln-measurable set E ⊆ R
n , the quality of

being n-thick is equivalent to the demand that (5.1.1) holds for every x ∈ E (hence
for every x ∈ E). Moreover, since the closure of an arbitrary set is bigger than the
original set but has a smaller boundary, it follows that

if an Ln-measurable set E ⊆ R
n is n-thick, then E is also n-thick. (5.1.2)

Lemma 5.1.2 If � ⊆ R
n is an Ln-measurable set which is n-thick then we have

Ln
(
� \�) = 0. In particular, any open set� ⊆ R

n which is n-thick has the property
that Ln(∂�) = 0.

Proof Assume � ⊆ R
n is an Ln-measurable set which is n-thick. From the earlier

discussion, it follows that there exists a constant c > 0 with the property that

Ln
(
B(x, r) ∩�) ≥ crn, ∀x ∈ �, ∀r ∈ (

0, 2 diam(∂�)
)
. (5.1.3)

On the other hand, Lebesgue’s Differentiation Theorem applied to the locally inte-
grable function 1Rn\� implies that there exists an Ln-measurable set N ⊆ R

n such
that Ln(N ) = 0 and

lim
r→0+

Ln
(
B(x, r) ∩�)

Ln
(
B(x, r)

) = 0 for each x ∈ (Rn \�) \ N . (5.1.4)

In concert, (5.1.3)–(5.1.4) imply (Rn \�) \ N ⊆ R
n \� which, after taking com-

plements, allows us to conclude that � ⊆ � ∪ N . Hence, � \� ⊆ N which forces
Ln

(
� \�) = 0. If� is open, then� \� = ∂�, so this further impliesLn(∂�) = 0,

as wanted. �

The following is a slight variation of concepts introduced by D. Jerison and
C. Kenig in [132].

Definition 5.1.3 Consider an arbitrary set D ⊆ R
n.

(i) The set D is said to satisfy an interior corkscrew condition if
there exists some constant θ ∈ (0, 1) such that for each x ∈ ∂D and each
r ∈ (

0, 2 diam(∂D)
)
one can find

zr (x) ∈ D, called corkscrew point relative to x,

with the property that B
(
zr (x), θr

) ⊆ B(x, r) ∩ D.
(5.1.5)
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(ii) The set D is said to satisfy anexteriorcorkscrewcondition1 if R
n \ D

satisfies an interior corkscrew condition.

(iii) Say that the set D satisfies a two-sided corkscrew condition if D
satisfies both an interior and exterior corkscrew condition.

(iv) Say that the set D satisfies an interior corkscrew condition up
to scale R ∈ (

0, 2 diam(∂D)
)
if (5.1.5) holds for each x ∈ ∂D and each

r ∈ (0, R). Likewise, one defines the exterior and the two-sided corkscrew con-
ditions up to scale R ∈ (

0, 2 diam(∂D)
)
.

As far as item (i) is concerned, in place of r ∈ (
0, 2 diam(∂D)

)
we may demand

that r ∈ (0, 2 diam D), as this is equivalent to the condition in (5.1.5) up to a change in
the choice of the constant θ ∈ (0, 1). This comment is also relevant in items (ii)–(iii).
Likewise, in item (iv), in place of R ∈ (

0, 2 diam(∂D)
)
we take R ∈ (0, 2 diam D),

with the same effect.
Obviously,

if an Ln-measurable set E ⊆ R
n satisfies an interior (resp., exterior)

corkscrew condition then E (resp., R
n \ E) is n-thick,

(5.1.6)

and
if an Ln-measurable set E ⊆ R

n satisfies a two-sided
corkscrew condition then E is also two-sided n-thick.

(5.1.7)

For example, the von Koch snowflake is a bounded, simply connected, open subset
of R

2, satisfying a two-sided corkscrew condition (in fact it is an NTA domain;
cf. Definition 5.11.1). In particular, Lemma 5.1.2 and (5.1.6) imply that von Koch
snowflake’s topological boundary has zero L2-measure.

Next, let us note that given any set D ⊆ R
n we always have

D̊ ⊆ D ⊆ D, ∂(D̊) ⊆ ∂D, and ∂(D) ⊆ ∂D. (5.1.8)

Hence, if D is assumed to satisfy an interior corkscrew condition, then it is clear from
Definition 5.1.3 that both D̊ and D also satisfy an interior corkscrew condition (with
the same constant as D). In addition, any point x ∈ ∂D is the limit of zr (x) ∈ D̊

as r → 0+. This implies that ∂D ⊆ (D̊) hence, further, ∂D ⊆ (D̊) \ D̊ = ∂(D̊).
Bearing in mind (5.1.8), these considerations prove that

1 Note that ∂(Rn \ D) = ∂D, and that having B
(
zr (x), θr

) ⊆ B(x, r) \ D is equivalent to hav-
ing B

(
zr (x), θr

)
contained in the interior of B(x, r) ∩ (Rn \ D), i.e., in B(x, r) ∩ (Rn \ D)◦ =

B(x, r) \ D. Hence, having D satisfy an exterior corkscrew condition is equivalent to the exis-
tence of some θ ∈ (0, 1) such that for each x ∈ ∂D and each r ∈ (

0, 2 diam(∂D)
)
one can find

zr (x) ∈ R
n \ D, corkscrew point relative to x , with the property that B

(
zr (x), θr

) ⊆ B(x, r) \ D.
The latter equivalent reformulation is how actually the exterior corkscrew condition is often defined
in the literature.
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if the subset D of R
n satisfies an interior corkscrew condition, then both

D̊ and D satisfy an interior corkscrew condition (with the same constant

as D) and ∂D = ∂(D̊), hence also ∂(D) = ∂
(
D̊

)
.

(5.1.9)

Note that condition (5.1.5) may be viewed as a quantitative, scale-invariant, version
of the topological property ∂D = ∂(D̊) featuring in (5.1.9). Passing to complements
in (5.1.9) also proves that

if the subset D of R
n satisfies an exterior corkscrew condition, then both

D and D̊ satisfy an exterior corkscrew condition (with the same constant

as D) and ∂D = ∂(D), hence also ∂(D̊) = ∂
(
D̊

)
.

(5.1.10)

We conclude with a companion result to Lemma 5.1.2.

Lemma 5.1.4 Let � ⊆ R
n be a Lebesgue measurable set which satisfies either an

interior corkscrew condition, or an interior corkscrew condition. ThenLn(∂�) = 0.

Proof Since the function 1∂� is Borel measurable and bounded, it follows that
1∂� ∈ L1

loc(R
n,Ln). Granted this, Lebesgue’s Differential Theorem ensures the exis-

tence of a Lebesgue measurable set N ⊆ R
n with Ln(N ) = 0 with the property that

1∂�(x) = lim
r→0+

 
B(x,r)

1∂� dLn for each x ∈ R
n \ N . (5.1.11)

In particular,

1 = lim
r→0+

Ln
(
B(x, r) ∩ ∂�)

Ln
(
B(x, r)

) for each x ∈ ∂� \ N . (5.1.12)

To fix ideas, suppose� satisfies the interior corkscrew condition. This guarantees the
existence of some θ ∈ (0, 1) with the following significance: having fixed x ∈ ∂�
and r ∈ (

0, 2 diam(∂�)
)
, we can find zr (x) ∈ �with the property that B

(
zr (x), θr

)

is included in B(x, r) ∩�. The latter self-improves to B
(
zr (x), θr

) ⊆ B(x, r) ∩ �̊.
Bearing in mind that ∂� and �̊ are Lebesgue measurable and disjoint, we may then
write

Ln
(
B(x, r)

) ≥ Ln
(
B(x, r) ∩ ∂�) +Ln

(
B(x, r) ∩ �̊)

≥ Ln
(
B(x, r) ∩ ∂�) +Ln

(
B
(
zr (x), θr

))

= Ln
(
B(x, r) ∩ ∂�) + θn ·Ln

(
B(x, r)

)
. (5.1.13)

As a consequence,

(1− θn)Ln
(
B(x, r)

) ≥ Ln
(
B(x, r) ∩ ∂�)

(5.1.14)
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which, when used back in (5.1.12), leads to the conclusion that 1 < 1− θn if ∂� \ N
is a nonempty set. Thus, we necessarily have ∂� ⊆ N , which ultimately shows that
Ln(∂�) = 0.

Finally, when � satisfies an exterior corkscrew condition, the same type of rea-
soning applied to R

n \� once again leads to the conclusion that Ln(∂�) = 0, since
� and R

n \� share the same boundary. �

5.2 The Geometric Measure Theoretic Boundary

Given an Ln-measurable set E ⊆ R
n , its geometric measure theoretic

boundary, ∂∗E , is defined (see, e.g., [80, Definitionp. 208]) as

∂∗E :=
{
x∈R

n : lim sup
r→0+

Ln(B(x, r) ∩ E)

rn
>0 and

lim sup
r→0+

Ln(B(x, r) \ E)

rn
>0

}
. (5.2.1)

Hence, near points in ∂∗E there is enough mass both in E and in R
n \ E (relative to

the scale). Alternatively,

∂∗E=
{
x ∈ R

n : lim sup
r→0+

Ln(B(x, r)∩E)
Ln(B(x, r))

>0 and

lim inf
r→0+

Ln(B(x, r)∩E)
Ln(B(x, r))

<1
}
. (5.2.2)

It is then clear from this definition that for each Ln-measurable set E ⊆ R
n we have

∂∗E ⊆ ∂E and ∂∗E = ∂∗(Rn \ E), (5.2.3)

and
∂∗E = ∂E if E is two-sided n-thick (hence, in particular,
if E satisfies a two-sided corkscrew condition).

(5.2.4)

Also,
for any Ln-measurable sets E1, E2 ⊆ R

n satisfying
Ln(E1� E2) = 0 we necessarily have ∂∗E1 = ∂∗E2.

(5.2.5)

From [80, Lemma 2, p. 222] we know that

any Ln-measurable set E ⊆ R
n has the property

that ∂∗E is a Borel-measurable subset of R
n .

(5.2.6)
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Lemma 5.2.1 For each Ln-measurable set E ⊆ R
n one has Ln(∂∗E) = 0.

Proof For starters, (5.2.6) guarantees that ∂∗E is a Borel-measurable subset of R
n .

In particular, ∂∗E is Ln-measurable. Since we have E ∩ ∂∗E ⊆ E \ int∗(E) (cf.
(2.8.21)), it follows that

Ln
(
E ∩ ∂∗E

) ≤ Ln
(
E \ int∗(E)

) = 0, (5.2.7)

with the equality provided by (2.8.22). Hence,

Ln
(
E ∩ ∂∗E

) = 0 for every Ln-measurable set E ⊆ R
n. (5.2.8)

Writing this for R
n \ E in place of E then gives (bearing in mind (5.2.3))

0 = Ln
(
(Rn \ E) ∩ ∂∗(Rn \ E)

) = Ln
(
(Rn \ E) ∩ ∂∗E

)
, (5.2.9)

which together with (5.2.8) ultimately proves that Ln(∂∗E) = 0. �

We next consider how the geometric measure theoretic boundary behaves under
set-theoretic operations. Related properties may be found in [216, Sect. 4.2, pp. 51–
53].

Lemma 5.2.2 For any Ln-measurable sets E, F ⊆ R
n one has

∂∗(E ∩ F) ⊆ [
(∂∗E) ∩ F

] ∪ [
(∂∗F) ∩ E

]
, (5.2.10)

∂∗(E ∪ F) ⊆ [
(∂∗E) \ F̊

] ∪ [
(∂∗F) \ E̊

]
, (5.2.11)

∂∗(E ∪ F) ∪ ∂∗(E ∩ F) ∪ ∂∗(E \ F) ∪ ∂∗(F \ E) ⊆ ∂∗E ∪ ∂∗F, (5.2.12)

∂∗(E ∪ F) ∩ ∂∗(E ∩ F) ⊆ ∂∗E ∩ ∂∗F. (5.2.13)

Proof Fix two arbitrary Ln-measurable sets E, F ⊆ R
n . In a first stage, we claim

that

∂∗(E ∩ F) ⊆ ∂∗E ∪ ∂∗F. (5.2.14)

To justify this, reason by contradiction and assume that there exists x ∈ ∂∗(E ∩ F)
such that x /∈ ∂∗E and x /∈ ∂∗F . The lack of membership of x to ∂∗E implies that
either

lim sup
r→0+

Ln(B(x, r) ∩ E)

rn
= 0, (5.2.15)

or (with Ec := R
n \ E denoting the complement of E in R

n)

lim sup
r→0+

Ln(B(x, r) ∩ Ec)

rn
= 0. (5.2.16)
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Note that the eventuality (5.2.15) cannot materialize since this would imply

lim sup
r→0+

Ln
(
B(x, r) ∩ (E ∩ F)

)

rn
= 0 (5.2.17)

which, in turn, would prevent x from belonging to ∂∗(E ∩ F). Likewise, the failure
of membership of x to ∂∗F implies that either

lim sup
r→0+

Ln(B(x, r) ∩ F)

rn
= 0, (5.2.18)

or

lim sup
r→0+

Ln(B(x, r) ∩ Fc)

rn
= 0. (5.2.19)

Once again, (5.2.18) cannot happen since this would prevent x from belonging to
∂∗(E ∩ F). As such, we conclude that both (5.2.16) and (5.2.19) hold. This further
implies

lim sup
r→0+

Ln
(
B(x, r) \ (E ∩ F)

)

rn
= lim sup

r→0+

Ln
(
B(x, r) ∩ (Ec ∪ Fc)

)

rn
= 0

(5.2.20)

which, in turn, conflicts with the membership of x to ∂∗(E ∩ F). This contradiction
establishes the claim made in (5.2.14).

In a second stage we observe that (thanks to the first formula in (5.2.3) and simple
topology)

∂∗(E ∩ F) ⊆ ∂(E ∩ F) ⊆ E ∩ F . (5.2.21)

Then (5.2.10) follows by combining (5.2.14) with (5.2.21) (keeping in mind that
∂∗E ⊆ ∂E ⊆ E , plus similar inclusions for F). Next, (5.2.11) is obtained by writing
(5.2.10) for Ec, Fc in place of E, F and bearing in mind the second formula in
(5.2.3) (as well as the fact that taking complements intertwines the closure with the
interior of an arbitrary set in the Euclidean setting). Going further, formula (5.2.12)
is a direct consequence of (5.2.10)–(5.2.11) (used also with E and/or F replaced by
their complements).

Lastly, as far as (5.2.13) is concerned, due to the symmetric role played by E and
F in the left-hand side of (5.2.13), it suffices to show that

∂∗(E ∪ F) ∩ ∂∗(E ∩ F) ⊆ ∂∗E . (5.2.22)

This, however, may be justified reasoning by contradiction (much as in the first part
of the current proof). �
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The geometric measure theoretic boundary also satisfies a locality property of the
sort described in the lemma below.

Proposition 5.2.3 If E ⊆ R
n is an Ln-measurable set and O ⊆ R

n is an open set,
then

O ∩ ∂∗E = O ∩ ∂∗(O ∩ E). (5.2.23)

Proof Pick an arbitrary point x ∈ O ∩ ∂∗E . Since for each r > 0 sufficiently small
we have (again, with the superscript “c” denoting the complement relative to R

n)

B(x, r) ∩ (O ∩ E) = B(x, r) ∩ E, as well as

B(x, r) ∩ (O ∩ E)c = B(x, r) ∩ (Oc ∪ Ec) = B(x, r) ∩ Ec,
(5.2.24)

it follows that

lim sup
r→0+

Ln
(
B(x, r) ∩ (O ∩ E)

)

rn
= lim sup

r→0+

Ln(B(x, r) ∩ E)

rn
> 0 (5.2.25)

and

lim sup
r→0+

Ln
(
B(x, r) ∩ (O ∩ E)c

)

rn
= lim sup

r→0+

Ln(B(x, r) ∩ Ec)

rn
> 0. (5.2.26)

Collectively, (5.2.25) and (5.2.26) prove that x ∈ ∂∗(O ∩ E) hence, ultimately,

O ∩ ∂∗E ⊆ ∂∗(O ∩ E). (5.2.27)

On the other hand, from Lemma 5.2.2 and (5.2.3) we see that

∂∗(O ∩ E) ⊆ ∂∗O ∪ ∂∗E ⊆ ∂O ∪ ∂∗E . (5.2.28)

Intersecting the most extreme sides with O and bearing in mind that O ∩ ∂O = ∅

(since O is open) then yields

O ∩ ∂∗(O ∩ E) ⊆ O ∩ ∂∗E . (5.2.29)

At this stage, (5.2.23) readily follows from (5.2.27) and (5.2.29). �
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5.3 Area/Coarea Formulas, and Countable Rectifiability

Vector-valued Lipschitz functions map sets of zero Hausdorff measure from the
Euclidean space containing the domain of the function into sets of zero Hausdorff
measure in the target Euclidean ambient. In fact, if A ⊆ R

n and f : A → R
m is

Lipschitz, then for each s ∈ [0,∞) and E ⊆ A we have2

H s
∗
(
f (E)

) ≤
[

sup
x,y∈A
x =y

| f (x)− f (y)|
|x − y|

]s

H s
∗(E) (5.3.1)

(comparewith [162, Theorem3.1.2, p. 61]).We continue by recording a basic approx-
imation result of Lipschitz functions (cf. [80, Theorem 1, p. 251]).

Proposition 5.3.1 Fix n ∈ N. Then there exists a dimensional constant Cn ∈ (0,∞)
with the property that for each Lipschitz function f : R

n → R and each ε > 0 there
exists a Lipschitz function fε : R

n → Rwhich is also continuously differentiable and
satisfies

Ln
({

x ∈ R
n : fε(x) = f (x) or ∇ fε(x) = ∇ f (x)

})
< ε, (5.3.2)

as well as

sup
z∈Rn

|(∇ fε)(z)| ≤ Cn · sup
x,y∈Rn

x =y

| f (x)− f (y)|
|x − y| . (5.3.3)

Next, we recall some basic change of variable formulas (see, e.g., [88], [80,
Theorem 2 on p.99, and Theorem 2 on p.117], [162, Theorem 4.1.2 on p.106, and
Theorem 4.2.1 on p.111]).

Proposition 5.3.2 Fix n,m ∈ N and assume f = ( f1, . . . , fm) : R
n → R

m is a
vector-valued Lipschitz function. If D f := (∂ f j/∂xk)1≤ j≤m

1≤k≤n
is the Jacobian m × n

matrix of first-order partial derivatives of the scalar components of f , define the
Jacobian determinant J f of f as

J f :=
{√

det [(Df )�(Df )] if n ≤ m,
√
det [(Df )(Df )�] if n ≥ m.

(5.3.4)

Also, fix an Ln-measurable set A ⊆ R
n along with a function g ∈ L1(A,Ln).

(i) If n ≤ m then

2 Recall that for each s ≥ 0 we have agreed to denote by H s∗ the s-dimensional Hausdorff outer-
measure in R

n .
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for Hn-a.e. point y ∈ R
m the set f −1({y}) is at

most countable and
∑

x∈A∩ f −1({y}) |g(x)| <∞, (5.3.5)

and the following change of variable formula holds:

ˆ
A
g(x)(J f )(x) dLn(x) =

ˆ
Rm

( ∑

x∈A∩ f −1({y})
g(x)

)
dHn(y). (5.3.6)

(ii) If n ≥ m then

g
∣∣∣
A∩ f −1({y})

isHn−m-summable for Lm-a.e. y ∈ R
m (5.3.7)

and the following change of variable formula holds:

ˆ
A
g(x)(J f )(x) dLn(x) =

ˆ
Rm

( ˆ
A∩ f −1({y})

g(x) dHn−m(x)
)
dLm(y).

(5.3.8)

In the particular case when g ≡ 1, the identities in (5.3.6) and (5.3.8) are typically
referred to as the Area Formula and the Coarea Formula, respectively. Specializing
Proposition 5.3.2 to the case when A := {x ∈ R

n : J f (x) = 0} and g ≡ 1 yields
variants of the Morse–Sard Theorem. Specifically, the Coarea Formula implies that

if n,m ∈ N satisfy n ≥ m and f : R
n → R

m is Lipschitz then for
Lm-a.e. y ∈ R

m one has Hn−m
({x ∈ f −1({y}) : J f (x) = 0}) = 0, (5.3.9)

while the Area Formula gives that

if n,m ∈ N satisfy n ≤ m and f : R
n → R

m is a Lipschitz func-

tion then one has Hn
(
f
({x ∈ R

n : J f (x) = 0})
)
= 0. (5.3.10)

The fact that {x ∈ R
n : J f (x) = 0} is unambiguously defined (thanks to the classical

Rademacher Theorem) only up to aLn-nullset does not create any issues in (5.3.9) or
(5.3.10). Indeed, in the case of (5.3.9) this follows by noting that the Coarea Formula
gives

if n,m ∈ N satisfy n ≥ m and f : R
n → R

m is a Lipschitz function
then for any Ln-nullset A ⊆ R

n one has Hn−m
(
A ∩ f −1({y})) = 0

for Lm-a.e. point y ∈ R
m ,

(5.3.11)

while in the case of (5.3.10) this is seen directly from (5.3.1).
In relation to (5.3.10), we also wish to make the following observation. Recall

that in general
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if n,m ∈ N satisfy n ≤ m and M is a real m × n matrix, then√
det(M�M) is the Hn-measure of the parallelepiped spanned in

R
m by the n columns of M ,

(5.3.12)

which further implies that

if n,m ∈ N satisfy n ≤ m and M is a real m × n matrix,
then det(M�M) = 0 if and only if rank M < n.

(5.3.13)

Using (5.3.13) with M := Df in the context of (5.3.10) then gives

if n,m ∈ N satisfy n ≤ m and f : R
n → R

m is Lipschitz,

one has Hn
(
f
({x ∈ R

n : rank(Df )(x) < n})
)
= 0. (5.3.14)

Moving on, we discuss the notion of countable rectifiability. Recall that � ⊂ R
2

is a rectifiable curve provided � is the image of a continuous function γ defined on
an interval [a, b] which has bounded total variation, i.e.,

length γ := sup
N∑

j=1

|γ (t j )− γ (t j−1)| < +∞, (5.3.15)

where the supremum is taken over all partitions a = t0 < t1 < · · · < tN = b of the
interval [a, b]. It turns out that� ⊂ R

2 is a rectifiable curve if and only if� = f (I )
for somebounded interval I ⊂ R and someLipschitzmap f : I → R

2 (this is a result
originally established in [258]; see also the discussion in [8, Theorem 4.4, p. 49]).
The higher-dimensional version of this notion is as follows. AHn−1-measurable set
� ⊂ R

n is called countably rectifiable (of dimension n − 1) provided

� ⊆
( ∞⋃

k=1

fk(R
n−1)

)
∪ N , (5.3.16)

where Hn−1(N ) = 0 and each fk : R
n−1 → R

n is a Lipschitz function. See, e.g.,
[170, p. 96], as well as [162, Definition 3.3.1, p. 71] and the subsequent comment;
compare also with [177, Definition 15.3, p. 204].

By McShane’s Extension Theorem and the regularity properties of Radon mea-
sures, it turns out that a Hn−1-measurable set � ⊂ R

n is countably rectifiable (of
dimension n − 1) provided

� =
( ∞⋃

k=1

fk(Fk)
)
∪ N , (5.3.17)

whereHn−1(N ) = 0 and for each k ∈ N, the function fk : R
n−1 → R

n is Lipschitz
and the set Fk ⊆ R

n−1 is Borel. See, e.g., [170, (10.4), p. 97]. To summarize, any
givenHn−1-measurable set � ⊂ R

n is countably rectifiable (of dimension n − 1) if
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(and only if) it may be written as a countable union

� =
( ∞⋃

k=1

Lk

)
∪ N , (5.3.18)

where Hn−1(N ) = 0 and each Lk is the image of a Borel subset of R
n−1 under

a R
n-valued Lipschitz map. In fact (cf., e.g., [162, Lemma 3.3.2, p. 71], or [238,

Lemma 11.1, p. 59]), (5.3.18) self-improves to

� =
( ⋃

k∈N
Mk

)
∪ N (5.3.19)

where the residual set N ⊆ R
n satisfiesHn−1(N ) = 0 and each Mk is a Borel subset

of an (n − 1)-dimensional C 1 submanifold3 of R
n . In Proposition 5.3.3 below we

discuss a more precise version of the structure theorem for countably rectifiable sets
than the one recorded in (5.3.19). To facilitate stating this proposition, we first make
a definition. Concretely, given a function φ : R

n−1 → R and some i ∈ {1, . . . , n},
we agree to define the graph of φ relative to the i-th coordinate axis as being the set
G (i)
φ ⊆ R

n described as

G (i)
φ := {

(x1, . . . , xi−1, φ(x
′),xi+1, . . . , xn) :
x ′ = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ R

n−1}. (5.3.20)

Proposition 5.3.3 Let � ⊂ R
n be a Hn−1-measurable set which is countably rec-

tifiable (of dimension n − 1). Then there exist a sequence of real-valued functions
{φ j } j∈N ⊆ C 1

c (R
n−1), a sequence of integers {i j } j∈N ⊆ {1, . . . , n}, and a set N ⊆ R

n

withHn−1(N ) = 0, such that

� ⊆
( ∞⋃

j=1

G
(i j )
φ j

)
∪ N . (5.3.21)

Proof Thanks to (5.3.18), it suffices to show that if F : R
n−1 → R

n is a Lipschitz
function then there exist {φ j } j∈N ⊆ C 1

c (R
n−1) along with {i j } j∈N ⊆ {1, . . . , n} and

N ⊆ R
n withHn−1(N ) = 0 such that

F(Rn−1) ⊆
( ∞⋃

j=1

G
(i j )
φ j

)
∪ N . (5.3.22)

3 Relatively open.
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With this goal in mind observe that, for each natural number j , Proposition 5.3.1
guarantees the existence of a Lipschitz function f j : R

n−1 → R
n which is also

continuously differentiable and satisfies

Ln−1
({

x ′ ∈ R
n−1 : f j (x

′) = F(x ′)
})
< j−1. (5.3.23)

Then

Ln−1

( ⋂

j∈N

{
x ′ ∈ R

n−1 : f j (x
′) = F(x ′)

}
)
= 0 (5.3.24)

which, in concert with (5.3.1), implies that

F

( ⋂

j∈N

{
x ′ ∈ R

n−1 : f j (x
′) = F(x ′)

})
is an Hn−1-nullset in R

n . (5.3.25)

Since the above set contains

A := F(Rn−1) \
( ⋃

j∈N
f j (R

n−1)

)
, (5.3.26)

we conclude that

F(Rn−1) ⊆
( ⋃

j∈N
f j (R

n−1)

)
∪ A, with Hn−1(A) = 0. (5.3.27)

To proceed, for each j ∈ N define the closed set

Z j :=
{
x ′ ∈ R

n−1 : rank(Df j )(x
′) < n − 1

}
(5.3.28)

and observe that, thanks to (5.3.14), we have

Hn−1
(
f j (Z j )

) = 0 for each j ∈ N. (5.3.29)

Let us temporarily fix j∗ ∈ N and x ′∗ ∈ R
n−1 \ Z j∗ . If we write ( f

(1)
j∗ , . . . , f

(n)
j∗ ) for

the scalar components of f j∗ then the latter membership ensures the existence of
some i j∗, x ′∗ ∈ {1, . . . , n} such that

det

⎛

⎝
D

(
f (1)j∗ , . . . , f

(i j∗ , x ′∗−1)

j∗ , f
(i j∗ , x ′∗+1)

j∗ , . . . , f (n)j∗

)

D(x ′1, . . . , x ′n−1)

⎞

⎠ (x ′∗) = 0. (5.3.30)

Let π ′ : R
n → R

n−1 be the coordinate projection mapping defined by

π ′(x) := (
x1, . . . , xi j∗ , x ′∗−1, xi j∗ , x ′∗+1, . . . , xn

)
, ∀x = (x1, . . . , xn) ∈ R

n, (5.3.31)
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and consider the function

f ′j∗ := π ′ ◦ f j∗ =
(
f (1)j∗ , . . . , f

(i j∗, x ′∗−1)

j∗ , f
(i j∗, x ′∗+1)

j∗ , . . . , f (n)j∗

) : R
n−1 −→ R

n−1.

(5.3.32)
Given that f j∗ is of class C

1, it follows that f ′j∗ is of class C
1 as well. In fact, by

virtue of the Inverse Function Theorem (whose applicability is ensured by (5.3.30)),

there exists an open set O ⊆ R
n−1 \ Z j∗ such that x ′∗ ∈ O , the set

f ′j∗(O) is an open neighborhood of π ′( f j∗(x ′∗)
)
in R

n−1, and the
function f ′j∗ : O −→ f ′j∗(O) is a C

1 diffeomorphism.
(5.3.33)

Then (
f ′j∗

)−1 : f ′j∗(O) −→ O is a function of class C 1, (5.3.34)

hence
f j∗ ◦

(
f ′j∗

)−1 : f ′j∗(O) −→ f j∗(O) is well defined. (5.3.35)

We claim that
the mapping (5.3.35) is bijective and its inverse
is the function π ′ : f j∗(O) −→ f ′j∗(O).

(5.3.36)

To justify this, note that π ′ ◦ f j∗ ◦
(
f ′j∗

)−1 = f ′j∗ ◦
(
f ′j∗

)−1
is the identity on f ′j∗(O),

whereas if x = f j∗(x
′) ∈ f j∗(O) for some x ′ ∈ O , then

(
f j∗ ◦

(
f ′j∗

)−1
)(
π ′(x)

) =
(
f j∗ ◦

(
f ′j∗

)−1
)(
π ′ ◦ f j∗

)
(x ′)

=
(
f j∗ ◦

(
f ′j∗

)−1 ◦ f ′j∗
)
(x ′) = f j∗(x

′) = x, (5.3.37)

proving the claim in (5.3.36). Define next

ψ := f
(i j∗ , x ′∗ )
j∗ ◦ (

f ′j∗
)−1 : f ′j∗(O) −→ R. (5.3.38)

Then ψ is a function of class C 1, and (5.3.36) implies that

(
f j∗ ◦

(
f ′j∗

)−1
)
(x ′) = (

x1, . . . , xi j∗ , x ′∗−1, ψ(x ′), xi j∗ , x ′∗+1, . . . , xn
)
,

for each point x ′ = (x1, . . . , xi j∗ , x ′∗−1, xi j∗ , x ′∗+1, xn) ∈ f ′j∗(O).
(5.3.39)

In turn, from (5.3.39) we conclude that

f j∗(O) =
{(
x1, . . . ,xi j∗ , x ′∗−1, ψ(x

′), xi j∗ , x ′∗+1, . . . , xn
) :

x ′ = (x1, . . . , xi j∗ , x ′∗−1, xi j∗ , x ′∗+1, xn) ∈ f ′j∗(O)
}
. (5.3.40)
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Having picked a cutoff function ξ ∈ C 1
c

(
f ′j∗(O)

)
which is identically one near

π ′( f j∗(x ′∗)
)
, let φ j∗, x ′∗ be the function defined as the extension of ξψ by zero outside

of f ′j∗(O) to the entire R
n−1. Then φ j∗, x ′∗ ∈ C 1

c (R
n−1) is real-valued and coincides

with ψ near π ′( f j∗(x ′∗)
)
. In particular, by further shrinking O to an open the neigh-

borhood Oj∗, x ′∗ of x
′∗ in R

n−1 it follows from (5.3.40) that

f j∗(Oj∗, x ′∗) ⊆ G
(i j∗ , x ′∗ )
φ j∗, x ′∗

. (5.3.41)

To summarize,

for each number j∗ ∈ N and each point x ′∗ ∈ R
n−1 \ Z j∗ , we have

identified some real-valued function φ j∗, x ′∗ ∈ C 1
c (R

n−1), along with an
integer i j∗, x ′∗ ∈ {1, . . . , n} and an open neighborhood Oj∗, x ′∗ of x

′∗ con-
tained in R

n−1 \ Z j∗ , with the property that (5.3.41) holds.

(5.3.42)

Tautologically, for each j∗ ∈ N fixed it follows that

{
Oj∗, x ′∗

}
x ′∗∈Rn−1\Z j∗

is an open cover of R
n−1 \ Z j∗ . (5.3.43)

Since any second-countable space is a strongly Lindelöf space, this open cover has
a countable sub-cover. Hence, there exists

{
x ′j∗, k

}
k∈N ⊆ R

n−1 \ Z j∗ such that

R
n−1 \ Z j∗ =

⋃

k∈N
Oj∗, x ′j∗ , k . (5.3.44)

Then for each j∗ ∈ N fixed, based on (5.3.41) and (5.3.44) we may write

f j∗(R
n−1) ⊆ f j∗(R

n−1 \ Z j∗) ∪ f j∗(Z j∗)

⊆
( ⋃

k∈N
f j∗

(
Oj∗, x ′j∗ , k

)) ∪ f j∗(Z j∗)

⊆
( ⋃

k∈N
G
(i j∗, x ′j∗ , k

)

φ j∗ , x ′j∗ , k

)
∪ f j∗(Z j∗). (5.3.45)

At this stage, (5.3.22) follows from (5.3.27), (5.3.29), and (5.3.45). �

It is easy to see (cf., e.g., [177, Lemma 15.4, p. 204]) that

(1) every countably rectifiable set of dimension n − 1 has sigma-finite Hn−1 mea-
sure;

(2) any subset of a countably rectifiable set (of dimension n − 1) is itself a countably
rectifiable set (of dimension n − 1);

(3) any countable union of countably rectifiable sets (of dimension n − 1) is itself a
countably rectifiable set (of dimension n − 1);
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(4) if � ⊆ R
n is a countably rectifiable set (of dimension n − 1) then there exists

B ⊆ R
n , a countably rectifiable set (of dimension n − 1) which is also Borel,

such that � ⊆ B and Hn−1(�) = Hn−1(B).

From (5.3.19) (or (5.3.21)) it follows that

if � ⊆ R
n is a countably rectifiable set (of dimension n − 1) then

either its Hausdorff dimension is n − 1, or Hn−1(�) = 0.
(5.3.46)

A result of X. Tolsa (cf. [254]) gives that if an Hn−1-measurable set � ⊆ R
n has

Hn−1(�) < +∞ then

� is countably rectifiable (of dimension n − 1) if and
only if for each index j ∈ {1, . . . , n} the principal-value
limit

lim
ε→0+

ˆ

y∈�
|y−x |>ε

x j − y j
|x − y|n dHn−1(y)

exists (in R) atHn−1-a.e. point x belonging to the set �.

(5.3.47)

A more general result of similar flavor is contained in the proposition below.

Proposition 5.3.4 Suppose k ∈ C 2(Rn \ {0}) is an odd complex-valued function
with the property that there exists a constant C ∈ (0,∞) such that for each point
x ∈ R

n \ {0} one has

|k(x)| ≤ C |x |1−n, |(∇k)(x)| ≤ C |x |−n, |(∇2k)(x)| ≤ C |x |−1−n . (5.3.48)

Also, assume μ is a signed (or complex) Radon measure in R
n (cf. Definition 3.5.5)

whose total variation, denoted by |μ|, satisfies
ˆ
Rn

d|μ|(x)
1+ |x |n−1

< +∞. (5.3.49)

Finally, let � ⊆ R
n be a Hn−1-measurable set which is countably rectifiable (of

dimension n − 1) and satisfies Hn−1(B ∩�) < +∞ for each open ball B ⊆ R
n.

Then the limit

lim
ε→0+

ˆ

y∈Rn

|x−y|>ε

k(x − y) dμ(y) exists for Hn−1-a.e. x ∈ �. (5.3.50)

Before presenting the proof of Proposition 5.3.4 we make two comments. First,
each truncated integral in (5.3.50) is absolutely convergent, thanks to (5.3.49) and
the first estimate in (5.3.48). Second, in [177, Theorem 20.27, p. 302] a similar result
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is established under more restrictive conditions. Specifically, one now demands that
μ is a complex Radon measure in R

n (cf. (3.5.10)), that Hn−1(�) < +∞, the odd
function k now belongs to C∞(Rn \ {0}) and, in place of (5.3.48), one now asks that
for each j ∈ N0 there exists C j ∈ (0,∞) such that

|(∇ j k)(x)| ≤ C j |x |1− j−n for all x ∈ R
n \ {0}. (5.3.51)

Here is the proof of Proposition 5.3.4.

Proof of Proposition 5.3.4 Fix an even function ψ ∈ C∞
c (R

n) with the property
that suppψ ⊆ B(0, 2) and ψ ≡ 1 on B(0, 1). Use this to decompose k = k0 +
k1 where k0 := ψk and k1 := (1− ψ)k in R

n \ {0}. In particular, the function
k0 ∈ C 2(Rn \ {0}) is odd and there exists some C ∈ (0,∞) such that for each
x ∈ R

n \ {0} we have
|k0(x)| ≤ C |x |1−n, |(∇k0)(x)| ≤ C |x |−n, |(∇2k0)(x)| ≤ C |x |−1−n . (5.3.52)

Also,
k1 ∈ C 2(Rn), k1 ≡ 0 on B(0, 1) and

|k1(x)| ≤ C
(
1+ |x |n−1

)−1
for all x ∈ R

n.
(5.3.53)

To proceed, pick an arbitrary R ∈ (0,∞) and choose some ε ∈ (0, 1). Keeping
in mind the first property in (5.3.53), for each point x ∈ B(0, R) ∩� we may then
writeˆ

y∈Rn

|x−y|>ε

k(x − y) dμ(y) =
ˆ

y∈Rn

1>|x−y|>ε

k0(x − y) dμ(y)+
ˆ

y∈Rn

|x−y|≥1

k(x − y) dμ(y).

(5.3.54)
Thanks to the first estimate in (5.3.48) and the first estimate in (5.3.52), all integrals
above are absolutely convergent. Also, for each y ∈ R

n with 1 > |x − y| we have
|y| ≤ |x − y| + |x | < R + 1 which places y in B(0, R + 1). Note that

the set E := � ∩ B(0, R + 1) is Hn−1-measurable, count-
ably rectifiable (of dimension n − 1), andHn−1(E) < +∞.

(5.3.55)

From (5.3.49) we also know thatμR := μ�B(0, R + 1) is a complex Radonmeasure
in R

n (of finite total variation). Decompose

ˆ

y∈Rn

1>|x−y|>ε

k0(x − y) dμ(y) =
ˆ

y∈Rn

1>|x−y|>ε

k0(x − y) dμR(y) (5.3.56)

=
ˆ

y∈Rn

|x−y|>ε

k0(x − y) dμR(y)−
ˆ

y∈Rn

|x−y|≥1

k0(x − y) dμR(y),
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and invoke [174, Corollary 1.6] (cf. also [177, Theorem 20.27, p. 302]) to conclude
that

lim
r→0+

ˆ

y∈Rn

|z−y|>r

k0(z − y) dμR(y) exists at Hn−1-a.e. z ∈ E . (5.3.57)

From (5.3.54), (5.3.56), and (5.3.57) we ultimately see that the limit

lim
ε→0+

ˆ

y∈Rn

|x−y|>ε

k(x − y) dμ(y) exists forHn−1-a.e. x ∈ B(0, R) ∩�. (5.3.58)

With this in hand, the claim in (5.3.50) now follows in view of the arbitrariness of
R ∈ (0,∞). �

We continue by presenting two corollaries to Proposition 5.3.4. The first such
corollary reads as follows:

Corollary 5.3.5 Suppose k ∈ C 2(Rn \ {0}) is an odd complex-valued function with
the property that there exists a constant C ∈ (0,∞) such that for each x ∈ R

n \ {0}
one has

|k(x)| ≤ C |x |1−n, |(∇k)(x)| ≤ C |x |−n, |(∇2k)(x)| ≤ C |x |−1−n . (5.3.59)

Next, assume � ⊆ R
n is an Hn−1-measurable set which is countably rectifiable (of

dimension n − 1) and satisfiesHn−1(K ∩�) < +∞ for each compact set K ⊆ R
n.

Finally, suppose μ is a Borel-regular measure in R
n which is locally finite and is

concentrated on � (cf. (3.1.21) and (3.1.22)).
Then for each function f ∈ L1

(
�,

μ(x)
1+|x |n−1

)
the limit

lim
ε→0+

ˆ

y∈�
|x−y|>ε

k(x − y) f (y) dμ(y) exists forHn−1-a.e. x ∈ �. (5.3.60)

Moreover, if for Hn−1-a.e. x ∈ � one denotes by F(x) the value of the limit
in (5.3.60), then the function F, thus defined at Hn−1-a.e. point on �, is actually
Hn−1-measurable.

Proof Fix a function f ∈ L1
(
�,

μ(x)
1+|x |n−1

)
.Without loss of generalitywemay assume

that f is real-valued andnon-negative. If for eachμ-measurable set A ⊆ R
n wedefine

μ̃(A) :=
ˆ
A∩�

f dμ, (5.3.61)

then Lemma 3.4.2 gives that μ̃ is a positive Borel-regular measure in R
n which is

concentrated on � (cf. (3.1.21)). In addition,
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ˆ
Rn

dμ̃(x)

1+ |x |n−1
=
ˆ
�

f (x)

1+ |x |n−1
dμ(x) < +∞. (5.3.62)

Let us also note that, for each compact set K ⊆ R
n , we have

μ̃(K ) =
ˆ
K∩�

f dμ ≤ CK

ˆ
�

f (x)

1+ |x |n−1
dμ(x) < +∞, (5.3.63)

with CK := supx∈K (1+ |x |n−1) ∈ (0,∞). This proves that μ̃ is locally finite in R
n .

We may therefore invoke Corollary 3.5.3 to conclude that μ̃ is a (positive) Radon
measure in R

n . Having established this, Proposition 5.3.4 applies and gives that the
limit

lim
ε→0+

ˆ

y∈Rn

|x−y|>ε

k(x − y) dμ̃(y) exists forHn−1-a.e. x ∈ �. (5.3.64)

Upon observing that for each x ∈ R
n and each ε > 0 we have

ˆ

y∈Rn

|x−y|>ε

k(x − y) dμ̃(y) =
ˆ

y∈�
|x−y|>ε

k(x − y) f (y) dμ(y), (5.3.65)

the claim in (5.3.60) follows from (5.3.64)–(5.3.65).
Finally, if for each fixed ε > 0 we define

Fε(x) :=
ˆ

y∈�
|x−y|>ε

k(x − y) f (y) dμ(y) for every x ∈ �, (5.3.66)

then each Fε is continuous on� (thanks to the continuity of k inR
n \ {0}, the first esti-

mate in (5.3.59), themembership of f to L1
(
�,

μ(x)
1+|x |n−1

)
, and Lebesgue’s Dominated

Convergence Theorem). Since in the first part of the proof we have already seen that
F(x) = lim

ε→0+
Fε(x) for Hn−1-a.e. point x ∈ �, we may now invoke Remark 3.1.2

(bearing in mind (3.6.28)) to conclude that F is indeed Hn−1-measurable. �

Here is the second corollary to Proposition 5.3.4 alluded to above; this is partic-
ularly useful in applications.

Corollary 5.3.6 Let k ∈ C 2(Rn \ {0}) be an odd complex-valued function for which
there exists a constant C ∈ (0,∞) such that for each x ∈ R

n \ {0} one has

|k(x)| ≤ C |x |1−n, |(∇k)(x)| ≤ C |x |−n, |(∇2k)(x)| ≤ C |x |−1−n . (5.3.67)

Also, suppose � ⊆ R
n is a Borel set which is countably rectifiable (of dimension

n − 1) and satisfiesHn−1(K ∩�) < +∞ for each compact set K ⊆ R
n. Abbreviate
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σ := Hn−1�� and pick an arbitrary function f ∈ L1
(
�, σ(x)

1+|x |n−1

)
. Then the limit

lim
ε→0+

ˆ

y∈�
|x−y|>ε

k(x − y) f (y) dσ(y) exists for σ -a.e. x ∈ �. (5.3.68)

Furthermore, if forσ -a.e. x ∈ � one denotes by F(x) the value of the limit in (5.3.68),
then the function F, thus defined at σ -a.e. point on �, is actually σ -measurable.

Finally, the limit

K (x) := lim
ε→0+

ˆ

y∈�
1>|x−y|>ε

k(x − y) dσ(y) exists for σ -a.e. x ∈ �, (5.3.69)

and the function K defined at σ -a.e. point on ∂� as in (5.3.69) is σ -measurable.

Proof SinceHn−1 is a Borel measure, it follows that � is anHn−1-measurable set.
Consider μ := Hn−1

� which, according to (3.4.18)–(3.4.19) is a measure in R
n con-

centrated on�. In addition, Lemma 3.4.11 guarantees that μ is a Borel-regular mea-
sure inR

n . Finally,μ(K ) = Hn−1(K ∩�) < +∞ for each compact set K ⊆ R
n , so

μ is also locally finite. Since, according to (3.4.20), wemay naturally identifyμ ≡ σ ,
we may invoke Corollary 5.3.5 to conclude that both (5.3.68) and the subsequent
measurability claim are true.

As far as the claims regarding (5.3.69) are concerned, pick a reference point
x0 ∈ ∂� along with an arbitrary radius r ∈ (1,∞), and define f := 1B(x0,r)∩� . Since
� has locally finiteHn−1 measure, it follows that f belongs to L1

(
�, σ(x)

1+|x |n−1

)
. Given

any ε ∈ (0, 1), for each x ∈ B(x0, r − 1) ∩� may write

ˆ

y∈�
1>|x−y|>ε

k(x − y) dσ(y) =
ˆ

y∈�
1>|x−y|>ε

k(x − y) f (y) dσ(y)

=
ˆ

y∈�
|x−y|>ε

k(x − y) f (y) dσ(y)

−
ˆ

y∈�
|x−y|≥1

k(x − y) f (y) dσ(y). (5.3.70)

Granted this, we may invoke (5.3.68) and the subsequent measurability claim to
conclude that the limit in (5.3.69) exists at σ -a.e. point x ∈ B(x0, r − 1) ∩� and
that the function defined as such on B(x0, r − 1) ∩� is σ -measurable. In view of
the arbitrariness of r in (1,∞), we ultimately conclude that the function K from
(5.3.69) is well defined and σ -measurable. �
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Examples of countably rectifiable sets are offered by level sets of real-valued
Lipschitz functions. Concretely, according to [88, 3.2.15],

if f : R
n → R is Lipschitz then f −1({y}) is a countably

rectifiable set (of dimension n − 1) for L1-a.e. y ∈ R.
(5.3.71)

Rectifiable curves are prime examples of countably rectifiable sets (of dimension 1)
in R

n . In this vein, it is worth recalling the following classical result (see, e.g., [82,
Exercise 3.5]) characterizing the images of rectifiable curves:

a set E ⊆ R
n is (the image of) a rectifiable curve (possibly self-

intersecting and/or re-tracing itself) if and only if E is compact,
connected, and H1(E) < +∞.

(5.3.72)

This points to the fact that countable rectifiability of dimension 1 for subsets of R
n

is much more straightforward to characterize, at least for connected compact sets of
finite one-dimensional Hausdorffmeasure. Indeed, amore precise version of (5.3.72)
(which appears in [69, Theorem 1.8, p. 6]) asserts that

every connected compact set K ⊆ R
n with H1(K ) < +∞ is of the

form f (I )where I ⊆ R is a compact interval of length comparable to
H1(K ) and f : I → R

n is a Lipschitz function satisfying | f ′(t)| = 1
for L1-a.e. point t ∈ R;

(5.3.73)

See also [8, Theorem 4.4, p. 49] which shows that, for any given continuum,4 the
upper comparability constant referred to above can always be taken to be 2.

5.4 Approximate Tangent Planes

Suppose � ⊆ R
n , where n ≥ 2, has the property that Hn−1∗ (� ∩ K ) < +∞ for

each compact set K ⊆ R
n . Given a point x0 ∈ �, an (n − 1)-plane π ⊂ R

n passing
through x0 is called an approximate tangent (n − 1)-plane to � at x0
provided

lim sup
r→0+

Hn−1∗
(
� ∩ B(x0, r)

)

rn−1
> 0 (5.4.1)

and, for each s ∈ (0, 1),

lim
r→0+

Hn−1∗
({x ∈ � ∩ B(x0, r) : dist(x, π) > s|x − x0|}

)

rn−1
= 0. (5.4.2)

4 I.e., a compact connected subset of R
n .
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Note that Cπ,s := {x ∈ R
n : dist(x, π) > s|x − x0|} is a double cone with vertex at

x0, axis perpendicular to the (n − 1)-plane π , and aperture angle 2 arccos s ∈ (0, π).
As a consequence, if π1 = π2 are two distinct (n − 1)-planes in R

n passing through
the point x0 then, collectively, the families

{
Cπ1, j−1

}
j∈N and

{
Cπ2, j−1

}
j∈N cover

R
n \ (π1 ∩ π2). Hence, such families cover R

n up to aHn−1-nullset. In concert with
conditions (5.4.1)–(5.4.2), this implies that

if an approximate tangent (n − 1)-planeπ
to the set � at x0 exists, then it is unique.

(5.4.3)

It turns out that countable rectifiability (of dimension n − 1) may actually be char-
acterized in terms of the existence of approximate tangent planes. Concretely, the
following result is contained in [88, Theorem 3.2.19]; see also [69, Theorem 1.5,
p. 5], [177, p. 214].

Proposition 5.4.1 Assume � ⊂ R
n, where n ∈ N with n ≥ 2, is Hn−1-measurable

and satisfiesHn−1(� ∩ K ) < +∞ for each compact set K ⊆ R
n. Then� is a count-

ably rectifiable set (of dimension n − 1) if and only if there exists an approximate
tangent (n − 1)-plane to � at Hn−1-a.e. point in �.

5.5 Functions of Bounded Variation

Given an open set O ⊆ R
n and a function f ∈ L1

loc(O,Ln), recall that the
variation of f in O is defined as

V( f ;O) := sup
{∣
∣∣
ˆ
O
f div �ϕ dLn

∣
∣∣ : �ϕ∈[

C 1
c (O)

]n
with sup

O

∣∣ �ϕ∣∣ ≤ 1
}
∈ [0,+∞].

(5.5.1)
Reasoning as in the proof of Proposition 3.9.1 we see that we may also express the
variation of f in O as

V( f ;O) = sup
{∣∣∣
ˆ
O
f div �ϕ dLn

∣∣∣ : �ϕ ∈ [
C∞
c (O)

]n
with sup

O

∣∣ �ϕ∣∣ ≤ 1
}
. (5.5.2)

Clearly, the variation is monotonic with respect to the underlying open set, in the
sense that

V( f ;U) ≤ V( f ;O) for every open set U ⊆ O. (5.5.3)

Also, it follows directly from (5.5.1) that the variation is lower-semicontinuous in
the sense that

for any sequence { f j } j∈N ⊂ L1
loc(O,Ln) that converges to

f in L1
loc(O,Ln) we have V( f ;O) ≤ lim inf

j→∞ V( f j ;O). (5.5.4)



5.5 Functions of Bounded Variation 369

Whenever V( f ;O) < +∞ we shall say that f has finite variation in O.
Let us also define

BV(O) := {
f ∈ L1(O,Ln) : V( f ;O) < +∞}

, (5.5.5)

called the space of functions of bounded variation in O, and its local
version

BVloc(O) :=
{
f ∈ L1

loc(O,Ln) :V( f ;U ) < +∞ for each open set (5.5.6)

U in R
n with U compact subset of O}

,

the space of functions of locally bounded variation in O. In par-
ticular, for each open set O ⊆ R

n we have

W 1,1(O) ⊆ BV(O) and W 1,1
loc (O) ⊆ BVloc(O). (5.5.7)

Proposition 5.5.1 Let O be an open subset of R
n and let f ∈ BVloc(O). Then there

exist a locally finite Borel-regular measure μ in O along with some μ-measurable
vector-valued function �h : O → R

n satisfying the following properties:

(i) For μ-a.e. x ∈ O one has |�h(x)| = 1.
(ii) For each �ϕ ∈ [

C∞
c (O)

]n
there holds

´
O f div �ϕ dLn = − ´

O �h · �ϕ dμ.
(iii) For each open set U in R

n withU compact subset of O one has

∇ f
∣∣
U = (�h∣∣U

)(
μ�U)

in
[D′(U)]n, (5.5.8)

hence the vector distribution ∇ f may be locally described as a locally finite
vector Borel-regular measure whose total variation in each set U as above is
μ�U.

(iv) The measure μ and the function �h are uniquely determined by f .
(v) For every open setU ⊆ O one hasμ(U) = V( f ;U) (in particular, μ is a finite

measure in O if and only if the function f has finite variation in O).
(vi) For each open setU in R

n withU compact subset of O the total variation norm
of the vector measure (∇ f )

∣∣
U satisfies

∥∥(∇ f )
∣∣
U

∥∥
TV(U) = V( f ;U).

Henceforth, in the context of Proposition 5.5.1 we shall say5 that

μ is the total variation measure of ∇ f , and simply write μ = |∇ f |. (5.5.9)

5 Slightly abusing notation and terminology, since ∇ f is not a genuine measure.
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Proof of Proposition 5.5.1 The claims in items (i)–(ii)make up the Structure Theo-
rem for functions of locally bounded variation as presented in [80, Theorem1,p. 167].
The proof of the latter result is based on the Riesz Representation Theorem applied
to the functional � : [C∞

c (O)
]n → R defined as

�( �ϕ) :=
ˆ
O
f div �ϕ dLn for each �ϕ ∈ [

C∞
c (O)

]n
. (5.5.10)

In the format given in Proposition 3.9.1, this also gives (see (3.9.6))

μ(U) = V( f ;U) for every open subsetU of O, (5.5.11)

which takes care of item (v). Going further, the claims in (iii) are implicit in (i)–(ii).
In particular, the last property in item (iii) also shows that μ is uniquely determined
by f . Since for each open set U in R

n withU compact subset of O we also have

�h∣∣U = d
(∇ f

∣∣
U

)

d
(
μ�U) = d

(∇ f
∣∣
U

)

d
(∣∣∇ f |U

∣∣) (5.5.12)

it follows that �h is uniquely determined by f . This finishes the proof of item (iv).
Finally, for every open setU ⊆ O we may use what we have proved in items (iii)

and (v) in order to write ‖∇ f ‖TV(U) = μ(U) = V( f ;U). �

5.6 Sets of Locally Finite Perimeter

Here the focus is on the concept of set of locally finite perimeter as initially introduced
byR. Caccioppoli and E.DeGiorgi (in connectionwith Plateau’s problem), aswell as
H. Federer. This is basically the largest category of domains possessing a reasonable
outward unit normal and boundary surface measure. Turning to details, call a subset
� of R

n a set of locally finite perimeter provided � is Ln-measurable
and its characteristic function has finite variation in every bounded open subset of
R

n . The latter property amounts to

1� ∈ BVloc(R
n), i.e., for each relatively compact open subset O of R

n one has

V
(
1�;O

) = sup
{∣∣∣
ˆ
�

div �ϕ dLn
∣∣∣ : �ϕ ∈ [

C∞
c (O)

]n
with sup

Rn

∣∣ �ϕ∣∣ ≤ 1
}
< +∞.

(5.6.1)
Equivalently, an Ln-measurable set � ⊆ R

n has locally finite perimeter if and
only if there exist

a locally finite Borel-regular measure σ∗ in R
n and a vector-valued

function ν ∈ [
L∞(Rn, σ∗)

]n
satisfying |ν(x)| = 1 at σ∗-a.e. x ∈ R

n (5.6.2)
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with the property that6

∇1� = −νσ∗ in
[D′(Rn)

]n
. (5.6.3)

Indeed, if � has locally finite perimeter, then the existence of σ∗ and ν as above
is guaranteed by Proposition 5.5.1 applied to the function 1�. For the converse
implication, observe that if (5.6.3) holds then for any relatively compact open subset
O of R

n and any �ϕ ∈ [
C∞
c (O)

]n
with sup

Rn

∣
∣ �ϕ∣∣ ≤ 1 we have

∣
∣∣
ˆ
�

div �ϕ dLn
∣
∣∣ =

∣
∣∣ − 〈∇1�, �ϕ

〉∣∣∣ =
∣
∣∣
〈
νσ∗, �ϕ

〉∣∣∣

=
∣
∣∣
ˆ
Rn

ν · �ϕ dσ∗
∣
∣∣ ≤

ˆ
O
| �ϕ| dσ∗ ≤ σ∗(O). (5.6.4)

This readily implies that V
(
1�;O

) ≤ σ∗(O) < +∞, hence � has locally finite
perimeter.

Furthermore, Proposition 5.5.1 ensures that, for an arbitrary set� ⊆ R
n of locally

finite perimeter, the measure σ∗ together with the vector-valued function ν from
(5.6.2)–(5.6.3) holds are uniquely determined7 by �. In this vein, it is also worth
recalling from Corollary 3.5.3 that, given any set� ⊆ R

n of locally finite perimeter,

σ∗ is a Radon measure (in the sense of Definition (3.5.1)) in R
n , both

outer-regular and inner-regular in the sense of (3.5.7)–(3.5.8).
(5.6.5)

Moreover, from item (v) in Proposition 5.5.1 we see that

σ∗(O) = V(1�;O) for every open set O ⊆ R
n. (5.6.6)

Remark 5.6.1 In spite of (5.6.3), for a given set� ⊆ R
n of locally finite perimeter

the distribution ∇1� is not, generally speaking, a vector-valued measure in R
n.

Indeed, multiplying the locally finite Borel-regularmeasure σ∗ with the vector-valued
function ν, which is locally (yet not necessarily globally) integrable with respect to
σ∗, while meaningful in the sense of distributions in R

n, does not yield a measure
in a traditional sense. However, restricting the distribution ∇1� to any relatively
compact open set O ⊆ R

n does yield a genuine measure, namely

∇1�
∣∣
O = −(

ν
∣∣
O
)(
σ∗�O

)
in

[D′(O)]n, (5.6.7)

6 Here, it is useful to observe that the product between a locally finite Borel measure ω in an
open set O ⊂ R

n and a vector-valued function �ψ ∈ [
L1
loc(O, ω)

]n is well defined as the vector
distribution �ψ ω ∈ [D′(O)]n , acting on each vector-valued test function �ϕ ∈ [

C∞
c (O)

]n according
to

〈 �ψ ω, �ϕ〉 := ´
O �ψ · �ϕ dω.

7 For a given set � ⊆ R
n of locally finite perimeter, σ∗ can be thought of as the total variation

measure of ∇1�, i.e., σ∗ =
∣∣∇1�

∣∣ in the sense of (5.5.9).



372 5 Sets of Locally Finite Perimeter and Other Categories of Euclidean Sets

with the right-hand side of the equality in (5.6.7) naturally interpreted as the measure
obtained by multiplying the measure σ∗�O by the integrable function −ν∣∣O (with
respect to σ∗�O).

In view of (5.6.7), it makes sense to think of the vector distribution ∇1� as being
locally a vector measure.

Prefiguring more refined Divergence Theorems discussed elsewhere in this vol-
ume, we wish to note here that by simply eliminating the distribution theory jargon
implicit in the interpretation of (5.6.3) one already arrives at the formula

ˆ
�

div �F dLn =
ˆ
∂�

ν · ( �F∣∣
∂�

)
dσ∗

for each vector field �F ∈ [
C∞
c (R

n)
]n
.

(5.6.8)

In fact, via a straightforward limiting argument involving a mollifier, the Divergence
Formula (5.6.8) readily extends to arbitrary vector fields �F ∈ [

C 1
c (R

n)
]n
. More work

goes into elucidating the nature of the measure σ∗, a topic discussed further below
(see (5.6.20)–(5.6.22) and (5.6.34) in this regard). For now we note the following
criteria for local finite perimeter.

Proposition 5.6.2 For anyLn-measurable set� ⊆ R
n the following statements are

equivalent:

(1) There exists a positive locally finite Borel measure λ in R
n with the property that

for each vector field �F ∈ [
C∞
c (R

n)
]n

one has

∣∣
∣
ˆ
�

div �F dLn
∣∣
∣ ≤

ˆ
Rn

| �F | dλ. (5.6.9)

(2) The set � has locally finite perimeter.

Proof It is apparent from definitions that (1) implies 1� ∈ BVloc(R
n), hence � has

locally finite perimeter. Also, the fact that (2)⇒ (1) is seen from (5.6.8). �

Continuing our discussion pertaining to a set � ⊆ R
n of locally finite perimeter,

we shall refer to ν in (5.6.2)–(5.6.3) as the geometric measure theoretic
outward unit normal to �. In particular, from (5.6.3) we see that the scalar
components (ν1, . . . , νn) of ν satisfy

∂ j1� = −ν j σ∗ in D′(Rn) for each j ∈ {1, . . . , n}. (5.6.10)

Also, bearing in mind the convention in the last part of Remark 5.6.1,

∂ν1� := ν · ∇1� = −σ∗ locally, as measures, (5.6.11)

while the Lebesgue–Besicovitch Differentiation Theorem (cf., e.g., [80, Theorem 1,
p. 43]) implies that
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at σ∗-a.e. x ∈ R
n one has 0 < σ∗(B(x, r)) <∞ for each r ∈ (0,∞)

and lim
r→0+

−∇1�
(
B(x, r)

)

|∇1�|
(
B(x, r)

) = lim
r→0+

 
B(x,r)

ν(y) dσ∗(y) = ν(x),
(5.6.12)

where the barred integral indicates mean average.
For a set � ⊆ R

n of locally finite perimeter, we let ∂∗� denote the reduced
boundary of �, that is,

∂∗� consists of all points x ∈ ∂� satisfying the following three
properties: 0 < σ∗(B(x, r)) < +∞ for each r ∈ (0,∞), formula
lim
r→0+

ffl
B(x,r) ν dσ∗ = ν(x) is valid, and |ν(x)| = 1.

(5.6.13)

For example, consider the open unit square � := (0, 1)× (0, 1) ⊆ R
2. Then � is a

set of locally finite perimeter (this may be checked using the original definition or,
more directly, employing the criterion given later in (5.6.37)) for which ∂∗� = ∂�,
and such that ∂∗� differs from ∂� by the vertices of the square, i.e.,

∂∗� = ∂� \ {
(0, 0), (0, 1), (1, 0), (1, 1)

}
. (5.6.14)

Indeed, anticipating results we shall discuss just a little later in (5.6.22) and (5.6.18),
for the set� := (0, 1)× (0, 1) ⊆ R

2 we may explicitly identify the limit (5.6.12) at
the vertex x := (0, 0) as being

lim
r→0+

 
B((0,0),r)∩∂�

ν dH1 = (−1,−1) (5.6.15)

and since |(−1,−1)| = √
2 = 1, it follows from (5.6.13) that (0, 0) /∈ ∂∗�. Simi-

lar considerations apply to all other remaining vertices and this ultimately justifies
(5.6.14).

Returning to the general setting we wish to note that since 1Rn\� = 1− 1�, from
(5.6.3) we see that

if� ⊆ R
n is a set of locally finite perimeter with geometric mea-

sure theoretic outward unit normal ν, then R
n \� is a set of

locally finite perimeter, its geometric measure theoretic outward
unit normal is −ν, and ∂∗(Rn \�) = ∂∗�.

(5.6.16)

If� ⊆ R
n is a set of locally finite perimeter, from the Structure Theorem for sets

of locally finite perimeter (cf. [80, Theorem 2,p. 205]) it follows that

∂∗� is countably rectifiable (of dimension n − 1). (5.6.17)

See also [262, Theorem 5.7.3, p. 244] in this regard. Moreover,
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on each of the compact pieces of (n − 1)-dimensional C 1 surfaces
covering ∂∗� up to a Hn−1-nullset as in (5.3.19), the geometric mea-
sure outward unit normal ν to � is orthogonal to the classical tangent
hyperplane to said C 1 surface.

(5.6.18)

It turns out that the measure σ∗ is concentrated on ∂∗�. In fact, a much more
nuanced result is true. Specifically, first (5.6.17) implies that

the set ∂∗� isHn−1-measurable, (5.6.19)

then [80, Theorem 2, p. 205] gives (keeping the convention made in (3.1.22) in mind)
that

σ∗ = Hn−1�∂∗�. (5.6.20)

Fix a set � ⊆ R
n of locally finite perimeter. It is then well known (see e.g., [80,

Lemma 1, p. 208]) that

∂∗� ⊆ ∂∗� ⊆ ∂� and Hn−1
(
∂∗� \ ∂∗�) = 0. (5.6.21)

Hence, σ∗ is also concentrated on ∂∗� (cf. (3.8.3)). As such, we may also identify
σ∗ withHn−1�∂∗�, i.e., write

σ∗ = Hn−1�∂∗�. (5.6.22)

In such a scenario, the geometric measure theoretic outward unit normal ν to � is
defined σ∗-a.e. on ∂∗�, and (5.6.2) gives

ν ∈ [
L∞(∂∗�, σ∗)

]n
is an R

n-valued function

satisfying |ν(x)| = 1 at σ∗-a.e. point x ∈ ∂∗�. (5.6.23)

Also, (5.6.3) and (5.6.22) imply (again, in light of the convention made in (3.1.22))

if � ⊆ R
n is a set of locally finite perimeter then

∇1� = −ν σ∗ = −νHn−1�∂∗� in
[D′(Rn)

]n
. (5.6.24)

Here is an extension of (5.6.3) to more general homogeneous first-order systems.

Proposition 5.6.3 Let � ⊆ R
n be a set of locally finite perimeter and denote by ν

its geometric measure theoretic outward unit normal. Also, let

D =
( n∑

j=1

aαβj ∂ j
)
1≤α≤N
1≤β≤N ′

(5.6.25)
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be a homogeneous N × N ′ first-order system (where N , N ′ ∈ N are arbitrary) with
constant complex coefficients and recall the definition of its principal symbol given
in (1.7.16). Make the convention that the action of D on an ordinary distribution u
in R

n is the matrix of distributions

Du :=
( n∑

j=1

aαβj ∂ j u
)
1≤α≤N
1≤β≤N ′

. (5.6.26)

Then one has

D
(
1�

) = iSym(D; ν)σ∗ = iSym(D; ν)Hn−1�∂∗� (5.6.27)

= iSym(D; ν)Hn−1�∂∗� (5.6.28)

in the sense of distributions in R
n.

Proof This is clear from (1.7.12), (5.6.10), (1.7.16), (5.6.20), and (5.6.22). �

We also wish to note that in the two-dimensional setting we may define
the geometric measure theoretic (positively oriented) unit tangent vector τ to a
given set of locally finite perimeter � ⊆ R

2 as the unique S1-valued function
τ ∈ [

L∞(∂∗�, σ∗)
]2

satisfying (cf. (3.1.22))

∇R
1� = τ σ∗ = τ H1�∂∗� in

[D′(R2)
]2
, (5.6.29)

where ∇R := (∂y,−∂x ) is the (clockwise, 90◦) “rotated” gradient in the xy-plane. In
particular, with ν = (ν1, ν2) denoting the geometric measure theoretic outward unit
normal to �, we have

τ = (−ν2, ν1) at σ∗-a.e. point on ∂∗�. (5.6.30)

Equivalently, under the identification R
2 ≡ C,

τ = iν at σ∗-a.e. point on ∂∗�. (5.6.31)

As expected, alterations by negligible sets do not affect the geometric measure
theoretic boundary, nor do they change the geometric measure theoretic outward unit
normal. For further use, we formally state this below.

Proposition 5.6.4 Let �, �̃ ⊆ R
n be two sets of locally finite perimeter with the

property that Ln(���̃) = 0. Then ∂∗� = ∂∗�̃ and, if ν, ν̃ denote the geometric
measure theoretic outward unit normals to � and �̃, respectively, it follows that
ν = ν̃ at Hn−1-a.e. point on ∂∗� = ∂∗�̃.

Proof Our assumptions imply 1� = 1�̃ as functions in L1
loc(R

n,Ln), so all desired
conclusions are consequences of (5.2.5), (5.6.3), (5.6.20), and (5.6.21). �
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In the class of sets of locally finite perimeter, the set ∂� \ ∂∗� can be quite large
(as may be seen by taking � to be a slit disk in the plane). This being said, given a
set � ⊆ R

n of locally finite perimeter,

if Hn−1(∂� \ ∂∗�) = 0 then σ∗ = Hn−1�∂�, the outward unit
normal ν is definedHn−1-a.e. on ∂�, and the set ∂� is countably
rectifiable (of dimension n − 1).

(5.6.32)

Moreover, from (5.2.6), (5.6.17), (5.6.21), and (3.0.3) we deduce that if� ⊆ R
n has

locally finite perimeter then

∂∗� is a Borel set (in particular,Hn−1-measurable), which
happens to be countably rectifiable (of dimension n − 1).

(5.6.33)

As a byproduct, we note that

σ∗ << σ := Hn−1�∂� and
dσ∗
dσ

= 1∂∗�. (5.6.34)

Let us also note here that (cf. [80, Theorem 1, p. 222])

given� ⊆ R
n which is Ln-measurable, the set� is of locally finite

perimeter if and only ifHn−1(K ∩ ∂∗�) <∞ for each compact set
K ⊂ R

n .
(5.6.35)

In particular Lemma 3.6.4 (in concert with (5.6.22), (5.6.33), and (5.6.35)) shows
that

if � ⊆ R
n is a set of locally finite perimeter then σ∗ is a

complete, locally finite, Borel-regular measure on ∂∗�.
(5.6.36)

From (5.6.35) and (5.2.3) we also see that

if � ⊆ R
n is an Ln-measurable set with the property that

Hn−1(K ∩ ∂�) <∞ for each compact K ⊂ R
n , then �

is of locally finite perimeter.
(5.6.37)

As a consequence of (5.6.37) and the monotonicity of the Hausdorff measure, we
see that

if� ⊆ R
n is an Ln-measurable set withHn−1(∂�) <∞

it follows that � is a set of locally finite perimeter.
(5.6.38)

Lemma 5.6.5 The class of sets of locally finite perimeter in R
n is an algebra of

subsets of R
n, i.e., it is closed under finite unions, finite intersections, as well as

complements.
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Proof Suppose E, F ⊆ R
n are two sets of locally finite perimeter, and consider an

arbitrary compact set K ⊆ R
n . Then E, F are Ln-measurable, and Lemma 5.2.2

gives that

K ∩ ∂∗(E ∪ F) ⊆ (K ∩ ∂∗E) ∪ (K ∩ ∂∗F),
K ∩ ∂∗(E ∩ F) ⊆ (K ∩ ∂∗E) ∪ (K ∩ ∂∗F).

(5.6.39)

As such,

Hn−1
(
K ∩ ∂∗(E ∪ F)

) ≤ Hn−1(K ∩ ∂∗E)+Hn−1(K ∩ ∂∗F) <∞,
Hn−1

(
K ∩ ∂∗(E ∩ F)

) ≤ Hn−1(K ∩ ∂∗E)+Hn−1(K ∩ ∂∗F) <∞, (5.6.40)

which in concert with (5.6.35) implies that E ∪ F and E ∩ F are sets of locally finite
perimeter. Let us also note that, thanks to (5.2.3), we have

Hn−1
(
K ∩ ∂∗(Rn \ E)

) = Hn−1(K ∩ ∂∗E) <∞. (5.6.41)

With the help of (5.6.35) we conclude from this that the set R
n \ E has locally finite

perimeter as well. With these in hand, the claim in the statement of the lemma readily
follows. �

We note the following result, comparing the geometric measure theoretic outward
unit normals of two sets of locally finite perimeter (on the intersection of their reduced
boundaries).

Proposition 5.6.6 Let E, F be two sets of locally finite perimeter in R
n. If νE and

νF denote the geometric measure theoretic outward unit normal vectors to E and F,
respectively, then atHn−1-a.e. point x ∈ ∂∗E ∩ ∂∗F one has either νE (x) = νF (x),
or νE (x) = −νF (x).
Proof This is a consequence of [170, Proposition 10.5, p. 101] according to which

any two locallyHn−1-rectifiable sets M1,M2 ⊆ R
n have identical

approximate tangent planes at Hn−1-a.e. point in M1 ∩ M2,
(5.6.42)

and [238, Theorem 14.3, (1), pp. 72–73] where it has been shown that

given any set of locally finite perimeter� ⊆ R
n , its approximate tangent

plane exists at each point x ∈ ∂∗� and is equal to 〈ν(x)〉⊥ (where ν is
the geometric measure theoretic outward unit normal vector to �).

(5.6.43)

Indeed, (5.6.35) and (5.6.21) tell us that ∂∗E , ∂∗F are locally Hn−1-rectifiable sets
(cf. [170, p. 96]), so (5.6.42) (used with M1 := ∂∗E and M2 := ∂∗F) together with
(5.6.43) imply that 〈νE (x)〉⊥ = 〈νF (x)〉⊥ at Hn−1-a.e. point x ∈ ∂∗E ∩ ∂∗F , from
which the desired conclusion follows (bearing in mind (5.6.13)). �
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It turns out that large classes of principal-value limits exist a.e. when considered
on the geometric measure theoretic boundary of a given set of locally finite perimeter.

Proposition 5.6.7 Suppose k ∈ C 2(Rn \ {0}) is an odd complex-valued function
with the property that there exists a constant C ∈ (0,∞) such that for each
x ∈ R

n \ {0} one has

|k(x)| ≤ C |x |1−n, |(∇k)(x)| ≤ C |x |−n, |(∇2k)(x)| ≤ C |x |−1−n . (5.6.44)

Also, assume � ⊆ R
n is a set of locally finite perimeter and set σ∗ := Hn−1�∂∗�.

Then for each function f ∈ L1
(
∂∗�, σ∗(x)

1+|x |n−1

)
the limit

lim
ε→0+

ˆ

y∈∂∗�|x−y|>ε

k(x − y) f (y) dσ∗(y) exists for σ∗-a.e. x ∈ ∂∗�. (5.6.45)

Also, if for σ∗-a.e. x ∈ ∂∗� one denotes by F(x) the value of the limit in (5.3.68),
then the function F, thus defined at σ∗-a.e. point on ∂∗�, is actually σ∗-measurable.

Moreover, if one additionally assumes that ∂� is countably rectifiable (of
dimension n − 1) and has locally finite Hn−1 measure, then for each function
f ∈ L1

(
∂∗�, σ∗(x)

1+|x |n−1

)
the limit in (5.6.45) actually exists forHn−1-a.e. x ∈ ∂� and

gives rise to a Hn−1-measurable function on ∂�.

Proof From (5.6.33) and (5.6.35) we know that the set ∂∗� ⊆ R
n is Borel, countably

rectifiable (of dimension n − 1), and satisfiesHn−1(K ∩ ∂∗�) < +∞ for each com-
pact set K ⊆ R

n . Granted these, we may invoke Corollary 5.3.6 with � := ∂∗� to
conclude that both (5.6.45) and the subsequent measurability claim are true. Finally,
the very last part of the statement is a consequence of Corollary 5.3.6 applied with
� := ∂� and with

f̃ :=
{
f on ∂∗�,
0 on ∂� \ ∂∗�, (5.6.46)

in place of f . �

Sets of locally finite perimeter enjoy nice infinitesimal density properties at each
point on their reduced boundary. Specifically, the following result appears in [80,
Lemma 2, p. 196] and [80, Corollary 1(ii), p. 203].

Lemma 5.6.8 Let E ⊆ R
n be a set of locally finite perimeter. Then there exist some

purely dimensional constants A1, . . . , A5 ∈ (0,∞) with the property that for each
x ∈ ∂∗E one has
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lim inf
r→0+

Ln
(
B(x, r) ∩ E

)

rn
> A1, (5.6.47)

lim inf
r→0+

Ln
(
B(x, r) \ E

)

rn
> A2, (5.6.48)

lim inf
r→0+

Hn−1
(
B(x, r) ∩ ∂∗E)

rn−1
> A3, (5.6.49)

lim sup
r→0+

Hn−1
(
B(x, r) ∩ ∂∗E)

rn−1
≤ A4, (5.6.50)

lim sup
r→0+

Hn−1
(
∂∗(B(x, r) ∩ E)

)

rn−1
≤ A5, (5.6.51)

and, in fact,

lim
r→0+

Hn−1
(
B(x, r) ∩ ∂∗E)

αn−1rn−1
= 1, where αn−1 := π(n−1)/2

�((n + 1)/2)
. (5.6.52)

It is apparent from the discussion so far that sets of locally finite perimeter which
differ by a set of Lebesgue measure zero have identical unit normals and surface
measures, as well as reduced and geometric measure theoretic boundaries. Given a
set E ⊆ R

n of locally finite perimeter it is therefore natural to single out a natural
representative among all such zero-measure alterations of E . Typically, one chooses
the complement of the measure theoretic exterior of E (cf. Definition 2.8.3), i.e.,

E# := R
n \ ext∗(E) =

{
x ∈ R

n : lim sup
r→0+

Ln
(
B(x, r) ∩ E

)

Ln
(
B(x, r)

) > 0
}

(5.6.53)

to play that role (see (2.8.22) in this regard). One of the upshots of such a choice is
that (cf. [262, (2.10) on p.273])

under the identification E ≡ E# it
follows that ∂∗E is dense in ∂E .

(5.6.54)

The following result appears as [263, Theorem 5.6.5, p. 241].

Theorem 5.6.9 Let E ⊆ R
n be a set of locally finite perimeter, and denote by ν its

geometric measure theoretic outward unit normal. Pick some x ∈ ∂∗E and consider
the half-spaces

H±
x := {y ∈ R

n : ±ν(x) · (y − x) > 0}, (5.6.55)

whose common boundary is the (n − 1)-plane

H 0
x := {y ∈ R

n : ν(x) · (y − x) = 0}. (5.6.56)
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Then

Ln
((

B(x, r) ∩ E
) ∩ H+

x

)
= o(rn) as r → 0+, (5.6.57)

Ln
((

B(x, r) \ E
) ∩ H−

x

)
= o(rn) as r → 0+, (5.6.58)

and for every s ∈ (0, 1) one has

Hn−1
({y ∈ ∂∗E ∩ B(x, r) : dist(y, H 0

x ) > s|y − x |}) = o(rn−1) as r → 0+.
(5.6.59)

In the limit, the normal is orthogonal to the chord. A version of this property,
which is characteristics to smooth domains, continues to be valid in the category of
sets of locally finite perimeter which are two-sided thick.

Proposition 5.6.10 Suppose E ⊆ R
n is a set of locally finite perimeter which is two-

sided n-thick, and denote by ν its geometric measure theoretic outward unit normal.
Then for each x ∈ ∂∗E one has

lim
∂E�y→x

y =x

〈
ν(x),

y − x

|y − x |
〉
= 0. (5.6.60)

Proof Reason by contradiction and assume that there exist a number ε ∈ (0, 1)
and a sequence {y j } j∈N ⊆ ∂E \ {x} which converges to x and has the property that∣∣〈ν(x), y j − x〉∣∣ > ε|y j − x | for each j ∈ N. Passing to a subsequence and working
with Ec := R

n \ E in place of E if necessary, there is no loss of generality in assuming
that actually 〈ν(x), y j − x〉 > ε|y j − x | for each j ∈ N. In turn, this amounts to
saying that each y j belongs to the infinite circular (one-component) cone with vertex
at x , symmetry axis along ν(x), and aperture angle 2 arcos ε. Such a membership
further implies that

B
(
y j , ε|y j − x |) ⊆ H+

x ∩ B
(
x, 2|y j − x |), ∀ j ∈ N, (5.6.61)

where H+
x is as in (5.6.55). Consequently,

B
(
y j , ε|y j − x |) \ E ⊆

(
B
(
x, 2|y j − x |) \ E

)
∩ H+

x , ∀ j ∈ N, (5.6.62)

hence Ln
(
B
(
y j , ε|y j − x |) \ E

) ≤ Ln
((
B
(
x, 2|y j − x |) \ E

) ∩ H+
x

)
for each

j ∈ N which, thanks to (5.6.57), forces

Ln
(
B
(
y j , ε|y j − x |) \ E

)
= o

(|y j − x |n) as j → ∞. (5.6.63)

On the other hand, the fact that E is two-sided n-thick entails the existence of a
constant c such that
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Ln
(
B
(
y j , ε|y j − x |) \ E

)
≥ c|y j − x |n for each j ∈ N. (5.6.64)

This contradicts (5.6.63) and ultimately establishes (5.6.60). �

Recall the notion of approximate tangent (n − 1)-plane from (5.4.1)–(5.4.2). Its
relation with the geometric measure theoretic outward unit normal is made transpar-
ent in the proposition below.

Proposition 5.6.11 Given a set E ⊆ R
n of locally finite perimeter, define

∂T E := {
x ∈ ∂∗E : there exists an approximate tangent

(n − 1)-plane to ∂∗E at x
}
. (5.6.65)

Then

∂∗E ⊆ ∂T E ⊆ ∂∗E (5.6.66)

and

Hn−1(∂T E \ ∂∗E) = 0, Hn−1(∂∗E \ ∂T E
) = 0. (5.6.67)

Also,

if ν denotes the geometric measure theoretic outward unit normal to
E, then for each x ∈ ∂∗E it follows that ν(x) is orthogonal to the
approximate tangent (n − 1)-plane to ∂∗E at x.

(5.6.68)

Proof The inclusions in (5.6.66) along with the orthogonality property described
in (5.6.68) are seen from (5.6.65), (5.4.1)–(5.4.2), (5.6.21), (5.6.49), and (5.6.59)
(keeping in mind the fact that the approximate tangent (n − 1)-plane is unique; cf.
(5.4.3)). Finally, the properties recorded in (5.6.67) are consequences of (5.6.66) and
(5.6.21) (alternatively, property Hn−1

(
∂∗E \ ∂T E

) = 0 is implied by (5.6.33) and
Proposition 5.4.1). �

Yet another point of view on the matter of outward unit normal is as follows.
Given some Ln-measurable set E ⊆ R

n , define

∂N E :=
{
x ∈ R

n : there exists N (x) ∈ Sn−1 with

lim
r→0+

Ln
(
B(x, r) ∩ {y ∈ E : (y − x) · N (x) > 0})

Ln
(
B(x, r)

) = 0 and

lim
r→0+

Ln
(
B(x, r) ∩ {y ∈ R

n \ E : (y − x) · N (x) < 0})

Ln
(
B(x, r)

) = 0
}
. (5.6.69)
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As our next lemma shows, in the class of sets of locally finite perimeter, this construc-
tion yields, up toHn−1-nullsets, the familiar reduced boundary and geometric mea-
sure theoretic outward unit normal defined earlier (cf. (5.6.13) and (5.6.2)–(5.6.3)).

Lemma 5.6.12 The following statements are true.
(i) If E ⊆ R

n is a Ln-measurable set, then for each x ∈ ∂N E the vector N (x)
doing the job described in (5.6.69) is unique. Henceforth, the notation NE (x) is used
for this vector in order to stress its dependence on the underlying set E.

(ii) If E ⊆ R
n is a set of locally finite perimeter, then

∂∗E ⊆ ∂N E and Hn−1(∂N E \ ∂∗E) = 0. (5.6.70)

Moreover, if ν denotes the geometric measure theoretic outward unit normal to E,
then actually

NE (x) = ν(x) for each point x ∈ ∂∗E . (5.6.71)

Proof Consider a Ln-measurable set E ⊆ R
n . To facilitate the proof of the claim in

item (i), for each point x ∈ R
n and vector N ∈ Sn−1 define the half-spaces

H±(x, N ) := {
y ∈ R

n : ±(y − x) · N > 0
}

(5.6.72)

then, for each r > 0, consider the half-balls

B±
N (x, r) := B(x, r) ∩ H±(x, N ). (5.6.73)

With this piece of notation we have that x ∈ ∂N E if and only if there exists N ∈ Sn−1

such that

Ln
(
B−
N (x, r)�

[
B(x, r) ∩ E

]) = o(rn) as r → 0+. (5.6.74)

Fix now x ∈ R
n and suppose there are two vectors N1, N2 ∈ Sn−1 doing the job

in (5.6.74). Since, generally speaking, for any sets A, B,C we have

A�B ⊆ (A�C) ∪ (B�C), (5.6.75)

we conclude that

Ln
(
B−
N1
(x, r)�B−

N2
(x, r)

) = o(rn) as r → 0+. (5.6.76)

However, since

Ln
(
B−
N1
(x, r)�B−

N2
(x, r)

) = c(N1, N2, n) · rn for each r > 0 (5.6.77)
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where c(N1, N2, n) is a strictly positive constant if N1 = N2, we see that (5.6.76)
forces N1 = N2. This proves the claim in item (i) of the statement.

Suppose next E ⊆ R
n is a set of locally finite perimeter. Then from (5.6.57)–

(5.6.58), (5.6.69) and the uniqueness result established in item (i), we conclude that

∂∗E ⊆ ∂N E and NE (x) = ν(x) for each x ∈ ∂∗E . (5.6.78)

In addition, [263,Corollary 5.6.8/(5.6.14), p. 242] gives thatHn−1
(
∂N E \ ∂∗E) = 0,

finishing the proof of (5.6.70)–(5.6.71). �

Later on, it is going to be useful to know that the Cartesian product of a set of
locally finite perimeter with a Euclidean space enjoys the properties described in the
lemma below.

Lemma 5.6.13 If� ⊆ R
n is a set of locally finite perimeter with geometric measure

theoretic outward unit normal ν, then �̃ := R
m ×� is also a set of locally finite

perimeter with geometric measure theoretic outward unit normal ν̃ = (0, ν).

Proof From definitions, �̃ is Lebesgue measurable and ∂∗�̃ = R
m × ∂∗�. In par-

ticular, from this, the fact that � is a set of locally finite perimeter, and (5.6.35) we
conclude that �̃ is a set of locally finite perimeter. Lemma 5.6.12 implies

∂∗� ⊆ ∂N�, Hn−1
(
∂N� \ ∂∗�) = 0,

and N�(x) = ν(x) for each x ∈ ∂∗�. (5.6.79)

Note that if, for each x ∈ R
n and r > 0, one replaces the ball B(x, r) in (5.6.69) with

the cube Qn(x, r) (the subscript n indicates that this is a cube in R
n) centered at x

and of side-length r , then the set ∂N E does not change. Hence, for each x ∈ ∂N�
we have

lim
r→0+

Ln
(
Qn(x, r) ∩ {y ∈ � : (y − x) · N�(x) > 0})

rn
= 0. (5.6.80)

Let us denote by X,Y points in R
m , by Qm(X, r) a cube in R

m centered at X and
of side-length r , and by Qm+n

(
(X, x), r

)
the cube in R

m+n centered at (X, x) and
of side-length r . Observe that, for each X ∈ R

m , x ∈ R
n , r > 0, and N ∈ Sn−1 we

have

Qm+n
(
(X, x), r

) ∩ {
(Y, y) ∈ �̃ : (

(Y, y)− (X, x)) · (0, N ) > 0
}

= Qm(X, r)×
[
Qn(x, r) ∩

{
y ∈ � : (Y − x) · N > 0

}]

(5.6.81)

and
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Qm+n
(
(X, x), r

) ∩ {
(Y, y) ∈ R

m+n \ �̃ : (
(Y, y)− (X, x)) · (0, N ) > 0

}

= Qm(X, r)×
[
Qn(x, r) ∩

{
y ∈ R

n \� : (Y − x) · N > 0
}]
. (5.6.82)

This implies that

∂N �̃ = R
m × ∂N� and

N�̃(X, x) =
(
0, N�(x)

)
for each X ∈ R

m, x ∈ ∂N�. (5.6.83)

Hence, from (5.6.83) and (5.6.80) we obtain that

N�̃(X, x) =
(
0, ν(x)

)
for each X ∈ R

m and Hn−1-a.e. x ∈ ∂∗�. (5.6.84)

Invoking againLemma5.6.12 for the set �̃weconclude that ν̃, the geometricmeasure
theoretic outward unit normal to �̃, satisfies

ν̃(X, x) = (
0, ν(x)

)
for each X ∈ R

m and Hn−1-a.e. x ∈ ∂∗�, (5.6.85)

and the desired conclusion follows. �

The next proposition elaborates on the structure of the reduced boundary for sets
of locally finite perimeter (since the reduced boundary is a countably rectifiable set,
this should be compared with Proposition 5.3.3). It is a slight version of the so-called
Structure Theorem for sets of locally finite perimeter (cf. [80, Theorem 2,p. 205])
with the added bonus that the compact pieces in which the reduced boundary is
decomposed are mutually disjoint. To state it, the reader is made aware that by a
C 1-hypersurfaces in R

n we shall understand a set S of the form f −1({0}) where
f ∈ C 1(Rn) is a real-valued function with the property that

inf{|(∇ f )(x)| : x ∈ R
n, f (x) = 0} > 0. (5.6.86)

Proposition 5.6.14 Let E ⊆ R
n be a set of locally finite perimeter, and denote by ν

its geometric measure theoretic outward unit normal. Then there exist a sequence of
C 1-hypersurfaces {S j } j∈N inR

n, along with a sequence {K j } j∈N of mutually disjoint
subsets of ∂∗E, such that each K j is a compact subset of S j ,

Hn−1
(
∂∗E \

⋃

j∈N
K j

)
= 0, (5.6.87)

and ν
∣∣
K j

is normal to S j for each j ∈ N.

Proof From (5.6.57)–(5.6.58) we know that for each x ∈ ∂∗E we have
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lim
r→0+

Ln
((

B(x, r) ∩ E
) ∩ H+

x

)
+Ln

((
B(x, r) \ E

) ∩ H−
x

)

rn
= 0. (5.6.88)

For each k ∈ N consider Ak := ∂∗E ∩ (
B(0, k + 1) \ B(0, k)

)
. The fact that E is of

locally finite perimeter implies that Hn−1(Ak) < +∞ for each k ∈ N (cf. (5.6.35)
and (5.6.21)). We claim that, for each fixed k ∈ N,

there is a sequence {Bi,k}i∈N of mutually disjoint subsets of Ak

with the property that Hn−1
(
Ak \ ⋃

i∈N Bi,k

)
= 0 and such that

for each i ∈ N the convergence in (5.6.88) is uniform for x ∈ Bi,k .

(5.6.89)

The existence of such a sequence is justified inductively, via repeated applications of
Egoroff’s Theorem (see, e.g., [80, Theorem 3, p. 16]). Specifically, a first application
of Egoroff’s Theorem ensures the existence of an Hn−1-measurable subset B1,k

of Ak satisfying Hn−1(Ak \ B1,k) < 1 and such that the convergence in (5.6.88) is
uniform for all points x ∈ B1,k , then a second application of Egoroff’s Theorem gives
anHn−1-measurable subset B2,k of Ak \ B1,k withHn−1

(
(Ak \ B1,k) \ B2,k

)
< 1/2

and such that the convergence in (5.6.88) is uniform for x ∈ B2,k , and so on.
Relabeling {Bi,k}i,k∈N simply as {Fi }i∈N then proves that

there exists some sequence {Fi }i∈N of mutually disjoint subsets of ∂∗E

with Hn−1
(
∂∗E \ ⋃

i∈N Fi
)
= 0 and such that for each i ∈ N we have

Hn−1(Fi ) < +∞ and the convergence in (5.6.88) is uniform for x ∈ Fi .
(5.6.90)

Next, we claim that for each fixed i ∈ N

there exists some sequence {E j
i } j∈N of mutually disjoint

compact subsets of Fi such that Hn−1
(
Fi \ ⋃

j∈N E j
i

)
= 0

and with the property that ν
∣∣
E j
i
is continuous for each i ∈ N.

(5.6.91)

Such a sequence of sets may be constructed inductively, via repeated applications of
Lusin’s Theorem (see, e.g., [80, Theorem 2, p. 15]). Concretely, a first application
of Lusin’s Theorem gives an Hn−1-measurable compact subset E1

i of Fi satisfying
Hn−1(Fi \ E1

i ) < 1 and such that ν
∣∣
E1
i
is continuous, then a second application of

Lusin’s Theorem provides anHn−1-measurable compact subset E2
i of Fi \ E1

i with
Hn−1

(
(Fi \ E1

i ) \ E2
i

)
< 1/2 and such ν

∣
∣
E2
i
is continuous, and so on.

If we re-index the sets {E j
i }i, j∈N and call them {Ki }i∈N, this proves that

there is a sequence {Ki }i∈N of mutually disjoint compact

subsets of ∂∗E satisfying Hn−1
(
∂∗E \ ⋃

i∈N Ki

)
= 0 and

with the property that ν
∣∣
Ki

is continuous for each i ∈ N.

(5.6.92)
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Having identified the sequence {Ki }i∈N as in (5.6.92), the remainder of the proof
now proceeds as in [80, items 2–5 on pp.206–207]. �

We next discuss a result in the spirit of [124, Proposition 2.9], establishing a link
between the direction of the geometricmeasure theoretic outward unit normal and the
cone property. To facilitate the statement of such a result, we first make a definition.
By a (open, convex, truncated, one-component, circular) cone in R

n we understand
any set of the form

Cθ,b(x, h) := {y ∈ R
n : cos(θ/2) |y − x | < (y − x) · h < b}, (5.6.93)

where the point x ∈ R
n is the vertex of the cone, the vector h ∈ Sn−1 is the direction

of its symmetry axis, the angle θ ∈ (0, π) is the (full) aperture of the cone, and the
number b ∈ (0,∞) is the height of the cone.
Lemma 5.6.15 Let E be a subset of R

n of locally finite perimeter. Fix a point x
belonging to ∂∗E with the property that there exist b > 0, θ ∈ (0, π), and h ∈ Sn−1

such that
Cθ,b(x, h) ⊆ E . (5.6.94)

Then, if ν(x) denotes the geometric measure theoretic outward unit normal to E at
x, there holds

ν(x) ∈ Cπ−θ,1(0,−h). (5.6.95)

Proof Since x ∈ ∂∗E , from Theorem 5.6.9 we know that (5.6.57)–(5.6.58) hold. In
particular, (5.6.57) and (5.6.94) imply that, on the one hand,

lim
r→0+

Ln
(
B(x, r) ∩ {y ∈ Cθ,b(x, h) : (y − x) · ν(x) > 0})

Ln
(
B(x, r)

) = 0. (5.6.96)

On the other hand, for each r ∈ (0, b) we have
Ln

(
B(x, r)∩{y ∈ Cθ,b(x, h) : (y − x) · ν(x) > 0}) = c(θ, h, ν(x)) · rn (5.6.97)

where c(θ, h, ν(x)) is a strictly positive constant whenever

Cθ,b(x, h) ∩ {y ∈ R
n : (y − x) · ν(x) > 0} = ∅. (5.6.98)

Collectively, (5.6.96) and (5.6.97) then force

Cθ,b(x, h) ∩ {y ∈ R
n : (y − x) · ν(x) > 0} = ∅ (5.6.99)

which further implies that the angle between −h and ν(x) is at most (π − θ)/2.
Given that |ν(x)| = 1, the latter property places ν(x) in the closure of the cone
Cπ−θ,1(0,−h), proving (5.6.95). �

In the proposition below we recall a useful differentiability criterion, of a purely
geometrical nature, from [9, Proposition 3.15, p. 315].
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Proposition 5.6.16 Fix n ∈ N with n ≥ 2. Assume that U ⊆ R
n−1 is an arbitrary

set, and pick a point x ′0 ∈ Ů . Given a function f : U → R, denote by G f the graph
of f , i.e.,

G f :=
{
(x ′, f (x ′)) : x ′ ∈ U

} ⊆ R
n. (5.6.100)

Then f is differentiable at the point x ′0 if and only if f is continuous at x ′0 and
there exists a non-horizontal vector h ∈ Sn−1 (i.e., satisfying h · en = 0) with the
following significance. For every angle θ ∈ (0, π) there exists b > 0 with the prop-
erty that G f ∩ B

(
(x ′0, f (x ′0)), b

)
lies in between the cones Cθ,b

(
(x ′0, f (x ′0)), h

)
and

Cθ,b
(
(x ′0, f (x ′0)),−h

)
, i.e.,

G f ∩ B
(
(x ′0, f (x ′0)), b

)

⊆ R
n \

[
Cθ,b

(
(x ′0, f (x ′0)), h

) ∪ Cθ,b
(
(x ′0, f (x ′0)),−h

)]
.

(5.6.101)

If this happens, then necessarily

h =
(
(∇′f )(x ′0),−1

)

√
1+ |(∇′ f )(x ′0)|2

, (5.6.102)

where ∇′ is the gradient operator in R
n−1.

The result in the proposition below shows that the geometric measure theoretic
notion of outward unit normal for a set of locally finite perimeter is naturally compat-
ible with the standard, analytical concept of outward unit normal in the case the set in
question may be locally described as the upper-graph of a real-valued differentiable
function.

Proposition 5.6.17 Assume E ⊆ R
n, where n ≥ 2, is a set of locally finite perime-

ter and suppose x = (x ′, xn) ∈ ∂∗E has the property that there exist a continuous
function f : R

n−1 → R and some r > 0 satisfying

f (x ′) = xn, f is differentiable at x ′, and

B(x, r) ∩ {y = (y′, yn) ∈ R
n−1 × R : yn > f (y′)} ⊆ E .

(5.6.103)

Then the geometric measure theoretic outward unit normal to E at x is given by

ν(x) =
(
(∇′f )(x ′),−1

)

√
1+ |(∇′f )(x ′)|2 . (5.6.104)

Proof Consider the vector

h = (h′, hn) :=
( − (∇′f )(x ′), 1

)

√
1+ |(∇′f )(x ′)|2 ∈ Sn−1. (5.6.105)
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The fact that the function f is differentiable at x ′ entails

f (x ′ + th′) = f (x ′)+ t (∇′f )(x ′) · h′ + o(t)

= xn − t |(∇′f )(x ′)|2
√
1+ |(∇′f )(x ′)|2 + o(t)

= xn − t
∣∣(∇′f )(x ′)

∣∣2hn + o(t)

= (xn + thn)− t
(
1+ |(∇′f )(x ′)|2)hn + o(t)

= (xn + thn)− t
√
1+ |(∇′f )(x ′)|2 + o(t) as t → 0+. (5.6.106)

This proves that f (x ′ + th′) < xn + thn for all t > 0 sufficiently small, which ulti-
mately goes to show that

the point x + th belongs to the upper-graph of
the function f for each t > 0 sufficiently small.

(5.6.107)

Next, Proposition 5.6.16 implies that for each angle θ ∈ (0, π) there exists some
b > 0 with the property that G f , the graph of the function f , is disjoint from
Cθ,b(x, h). Since f is continuous, U±

f := {y = (y′, yn) ∈ R
n : ±yn > f (y′)} are

open and, based on what we have just mentioned, cover the cone Cθ,b(x, h). Given
that the latter is a connected set, (5.6.107) implies that

for every angle θ ∈ (0, π) there exists b > 0 with the property that
Cθ,b(x, h) is contained in U+

f , the upper-graph of the function f . (5.6.108)

In light of the last condition in (5.6.103), this further gives that

for every angle θ ∈ (0, π) there exists a small
height b ∈ (0, r) such that Cθ,b(x, h) ⊆ E . (5.6.109)

Having established this, we may invoke Lemma 5.6.15 to conclude that

ν(x) ∈
⋂

θ∈(0,π)
Cπ−θ,1(0,−h) = {−h} (5.6.110)

which, in light of (5.6.105), proves (5.6.104). �

The above result should be compared and contrasted with the proposition below,
which also serves as a rich source of examples of sets of locally finite perimeter.

Proposition 5.6.18 Fix n ∈ N with n ≥ 2 and pick a real-valued function

φ ∈ C 0(Rn−1) with ∇′φ ∈ [
L1
loc(R

n−1,Ln−1)
]n−1

. (5.6.111)
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Then the upper-graph of the function φ, i.e.,

� := {
x = (x , xn) ∈ R

n−1 × R : xn > φ(x ′)
}
, (5.6.112)

is a set of locally finite perimeter, with the property that

Hn−1
(
∂� \ ∂∗�

) = 0. (5.6.113)

Moreover, the geometric measure theoretic outward unit normal of � is given by

ν
(
x ′, φ(x ′)

) =
(∇′φ(x ′),−1

)

√
1+ |(∇′φ)(x ′)|2 for Ln−1-a.e. x ′ ∈ R

n−1, (5.6.114)

and for each Ln−1-measurable set O′ ⊆ R
n−1 one has

Hn−1
({
(x ′, φ(x ′)) : x ′ ∈ O′}) =

ˆ
O′

√
1+ |(∇′φ)(x ′)|2 dx ′. (5.6.115)

All the aforementioned properties are seen from [125, Proposition 2.3, p. 2578],
[125, Proposition 2.4, p. 2581], [125, Proposition 2.5, p. 2582], and [125, p. 2583]
The proof of the fact that � is a set of locally finite perimeter is an adaptation of
an argument in [263, Remark 5.8.3, p. 248] showing that upper-graphs of Lipschitz
functions are sets of locally finite perimeter.

If in place of (5.6.111) we assume that

φ ∈ L1
loc(R

n−1,Ln−1) has ∇′φ ∈ [
Ln−1,1
loc (Rn−1,Ln−1)

]n−1
(5.6.116)

then [241] guarantees that (up to being redefined on aLn−1-nullset) the function φ is
continuous at each point in R

n−1 and also differentiable at Ln−1-a.e. point in R
n−1.

In view of Lemma 6.2.4, this shows that (5.6.116) implies (5.6.111). In addition, the
claim in (5.6.114) may now be seen directly from Proposition 5.6.17.

We continue by presenting a criterion for identifying “pieces of Lipschitz graphs”
within arbitrary sets. Recall from (5.6.93) that Cθ,∞(x, en) denotes the open, convex,
one-component, circular cone in R

n , with vertex at x ∈ R
n , symmetry axis along the

unit vector en ∈ Sn−1, and (full) aperture the angle θ ∈ (0, π), in other words, the
set Cθ,∞(x, en) = {y ∈ R

n : cos(θ/2) |y − x | < (y − x) · en}.
Proposition 5.6.19 Let E be an arbitrary set in R

n, fix θ ∈ (0, π), and define

� := {
x ∈ E : Cθ,∞(x, en) ∩ E = ∅

}
. (5.6.117)

Then either � = ∅ or there exists a Lipschitz function ϕ : R
n−1 → R with Lips-

chitz constant less than or equal to cot(θ/2) and such that

� = E ∩ Graph ϕ and E ∩ Sepigraph ϕ = ∅, (5.6.118)
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where Sepigraph ϕ := {
x = (x ′, xn) ∈ R

n−1 × R : xn > ϕ(x ′)
}
is the strict epi-

graph of ϕ.

Proof Suppose that� = ∅. For each point x = (x ′, xn) ∈ �, consider the function
ψx : R

n−1 → Rwhose graph is ∂Cθ,∞(x, en). Specifically, a direct calculation based
on (5.6.93) yields the formula

ψx (z
′) = xn + |z′ − x ′| cot(θ/2) for each z′ ∈ R

n−1. (5.6.119)

Consequently, ψx is a Lipschitz function with Lipschitz constant equal to cot(θ/2).
Next, we claim that

inf
x∈� ψx (z

′) > −∞ for each z′ ∈ R
n−1. (5.6.120)

To seewhy (5.6.120) is true, first observe that if x, y ∈ � are two arbitrary points then
necessarily x ∈ E and Cθ,∞(y, en) ∩ E = ∅, hence x /∈ Cθ,∞(y, en). Consequently,
(x − y) · en ≤ |x − y| cos(θ/2). Since the same formula holds by interchanging x
and y, we obtain |(x − y) · en| ≤ |x − y| cos(θ/2)which, after some algebra, implies

|xn−yn | ≤ |x ′ − y′|cot(θ/2), ∀x=(x ′, xn) ∈ � and ∀y = (y′, yn) ∈ �. (5.6.121)

Now fix y = (y′, yn) ∈ �. Starting with (5.6.121), then using the triangle inequality
and (5.6.119), for each x = (x ′, xn) ∈ � we may write

|xn − yn| ≤ |x ′ − y′| cot(θ/2) ≤ |x ′ − z′| cot(θ/2)+ |y′ − z′| cot(θ/2)
= ψx (z

′)+ ψy(z
′)− xn − yn if z′ ∈ R

n−1. (5.6.122)

From (5.6.122) we haveψx (z′) ≥ xn + |xn − yn| + yn − ψy(z′) ≥ 2yn − ψy(z′) for
each x = (x ′, xn) ∈ � and each z′ ∈ R

n−1. Thus inf x∈� ψx (z′) ≥ 2yn − ψy(z′) for
each z′ ∈ R

n−1. This proves (5.6.120). In turn, (5.6.120) allows us to define the
function ϕ : R

n−1 → R by setting

ϕ(z′) := inf
x∈� ψx (z

′) for every z′ ∈ R
n−1. (5.6.123)

From [188, Lemma 4.4, pp. 159–160] it follows that ϕ is a Lipschitz function with
Lipschitz constant bounded by cot(θ/2). To complete the proof of the proposition
we are left with showing that the conditions in (5.6.118) hold for this choice of ϕ.
With this goal in mind, we first claim that

Sepigraph ϕ =
⋃

x∈�
Cθ,∞(x, en). (5.6.124)

Indeed, a point z = (z′, zn) ∈ R
n−1 × R belongs to Sepigraph ϕ if and only if

zn > ϕ(z′) = inf x∈� ψx (z′), which is equivalent with the existence of some x ∈ �
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such that zn > ψx (z′). The latter is equivalent with the existence of some x ∈ �
such that z belongs to the strict epigraph of ψx , i.e., z ∈ Cθ,∞(x, en), completing the
proof of (5.6.124). Now the second property in (5.6.118) follows from (5.6.124) and
the fact that Cθ,∞(x, en) ∩ E = ∅ for each x ∈ �. In turn, the second property in
(5.6.118) and the inclusion � ⊆ E imply

� ∩ Sepigraph ϕ = ∅. (5.6.125)

Also, from (5.6.124) and the fact that any vertex x ∈ � may be approximated from
within the cone Cθ,∞(x, en) we conclude that

� ⊆ Sepigraph ϕ = {
x = (x ′, xn) ∈ R

n−1 × R : xn ≥ ϕ(x ′)
}
. (5.6.126)

Together, (5.6.125)–(5.6.126) imply � ⊆ Sepigraph ϕ \ Sepigraph ϕ = Graph ϕ,
hence

� ⊆ E ∩ Graph ϕ. (5.6.127)

The proof of the first property in (5.6.118) will be finished once we establish the
opposite inclusion, i.e.,

E ∩ Graph ϕ ⊆ �. (5.6.128)

With this goal in mind, let us fix an arbitrary point x ∈ E ∩ Graph ϕ. Given that
we have Graph ϕ = ∂

(
Sepigraph ϕ

)
, the identity in (5.6.124) allows us to invoke

Lemma 5.6.20 (formulated a little later below) to conclude that

Cθ,∞(x, en) ⊆ Sepigraph ϕ. (5.6.129)

Upon recalling the second property in (5.6.118), from (5.6.129) we see that
Cθ,∞(x, en) ∩ E = ∅. In light of the fact that x ∈ E , this forces x ∈ �, proving
(5.6.128). The proof of the first property in (5.6.118) is finished, and this completes
the proof of the proposition, modulo that of Lemma 5.6.20. �

Here is the lemma invoked in the proof of Proposition 5.6.19.

Lemma 5.6.20 Let {�i }i∈I be a family of open, one-component, infinite, circular
cones, with fixed (full) aperture θ ∈ (0, π), and symmetry axes along the vector en.
Then the set � := ⋃

i∈I �i has the property that

Cθ,∞(x, en) ⊆ � for every x ∈ �. (5.6.130)

Proof The inclusion Cθ,∞(x, en) ⊆ � for every x ∈ � follows from the definition
of � and the general fact that for each z ∈ R

n we have Cθ,∞(y, en) ⊆ Cθ,∞(z, en)
for every y ∈ Cθ,∞(z, en). There remains to show that the inclusion in (5.6.130) also
holds when x ∈ ∂�. Pick x ∈ ∂� and consider a sequence {x j } j∈N ⊆ � convergent
to x . Then based onwhatwe have already proved, Cθ,∞(x j , en) ⊆ � for every integer
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j ∈ N. Fix a point y ∈ Cθ,∞(x, en). Then necessarily (y − x) · en>|y − x | cos(θ/2)
which, in concert with the fact that lim

j→∞ x j = x , implies that there exists some

j ∈ N with the property that (y − x j ) · en > |y − x j | cos(θ/2). This proves that
y ∈ Cθ,∞(x j , en) thus, ultimately, y ∈ � as wanted. �

In turn, Proposition 5.6.19 is the main ingredient in the proof of the following
geometric characterization of strict epigraphs of Lipschitz functions.

Proposition 5.6.21 Let � be an open, nonempty, proper subset of R
n. Then the

following statements are equivalent:

(1) The set � is a graph Lipschitz domain, i.e., the strict epigraph of a real-valued
Lipschitz function defined in R

n−1;
(2) There exists an angle θ ∈ (0, π) such that Cθ,∞(x,−en) ∩� = ∅ for every

x ∈ ∂�;
(3) One has ∂� = ∂(�) and there exists θ ∈ (0, π) such that Cθ,∞(x, en) ⊆ � for

every x ∈ ∂�;
(4) There exists an angle θ ∈ (0, π) such that Cθ,∞(x,−en) ∩� = ∅ for every

x ∈ ∂�.
Proof We start by observing that whenever E ⊆ R

n is an arbitrary set we have

{
x ∈ E : Cθ,∞(x, en) ∩ E =∅

}= {
x ∈ E∩∂E : Cθ,∞(x, en)∩E = ∅

}
. (5.6.131)

Indeed, this is a consequence of E \ E◦ = E ∩ ∂E and the fact that for every x ∈ R
n ,

every θ ∈ (0, π), and every r ∈ (0,∞)we have Cθ,∞(x, en) ∩ B(x, r) = ∅. In what
follows, for each arbitrary set E ⊆ R

n we denote −E := {−x : x ∈ E}.
Clearly (4) ⇒ (2). To prove the opposite implication, reason by contradiction,

i.e., suppose (2) holds and for some x ∈ ∂� there exists y ∈ Cθ,∞(x, en) ∩�. Then
Cθ,∞(x, en) is an open neighborhood for y, hence Cθ,∞(x, en) ∩� = ∅ contradict-
ing (2). This proves that (2)⇒ (4).

Next, we show that (4)⇒ (1). Suppose the property formulated in (4) is true and
introduce

� := {
x ∈ −� : Cθ,∞(x, en) ∩ (−�) = ∅

}
(5.6.132)

Since � is an open set, we have ∂(�) = � \ (�)◦ ⊆ � \�◦ = � \� = ∂�,
which further implies ∂(−�) ⊆ −∂�. This, (5.6.132), and (5.6.131) (used
with E := −�) then yield � ⊆ −∂�. We claim that the opposite inclu-
sion is also true. Indeed, if x ∈ −∂�, then −x ∈ ∂� and, by assump-
tion, it follows that Cθ,∞(−x,−en) ∩� = ∅. Given that Cθ,∞(−x,−en) =
−Cθ,∞(x, en) (a fact easily seen from the definition of cones given in
(5.6.93)), the latter property becomes Cθ,∞(x, en) ∩ (−�) = ∅. Together with
(5.6.132) this gives x ∈ �, proving −∂� ⊆ �, as wanted. In summary, we have
� = −∂�, hence

∂� = −�. (5.6.133)
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From Proposition 5.6.19 applied with E := −� it follows that there exists a
Lipschitz function ϕ : R

n−1 → R such that

� = Graph ϕ ∩ (−�) and (−�) ∩ Sepigraph ϕ = ∅. (5.6.134)

Define the functionψ : R
n−1 → R byψ(x ′) := −ϕ(−x ′) for every x ′ ∈ R

n−1. Then
(5.6.133) and the first identity of sets in (5.6.134) imply

∂� = {( − x ′,−ϕ(x ′)) : x ′ ∈ R
n−1 is such that

( − x ′,−ϕ(x ′)) ∈ � }
(5.6.135)

= {(
y′, ψ(y′)

) : y′ ∈ R
n−1 is such that

(
y′, ψ(y′)

) ∈ � } = Graphψ ∩�.

Thus,
∂� ⊆ Graphψ. (5.6.136)

In addition, the second identity of sets in (5.6.134) implies

� ∩ {
(−x ′,−xn) : x ′ ∈ R

n−1, −xn < −ϕ(x ′)} = ∅

⇐⇒ � ∩ {
(y′, yn) : y′ ∈ R

n−1, yn < ψ(y
′)
} = ∅

⇐⇒ � ⊆ {
(y′, yn) : y′ ∈ R

n−1, yn ≥ ψ(y′)
}

=⇒� ⊆ (�)◦ ⊆ {
(y′, yn) : y′ ∈ R

n−1, yn > ψ(y
′)
} = Sepigraphψ. (5.6.137)

Since Sepigraphψ is a connected set and ∂(Sepigraphψ) = Graphψ , in light of
(5.6.136) and (5.6.137), we may invoke Lemma 5.6.22 (formulated right after the
current proof) for the current set � and for O := Sepigraphψ to conclude we have
that � = Sepigraphψ . This finishes the proof of (4)⇒ (1).

Next we will show that (3)⇒ (1). Consider the set E := R
n \�. Then ∂E = ∂�

and since E is closed we also have E ∩ ∂E = ∂E = ∂�. In particular, if we define
the set

� := {
x ∈ E ∩ ∂E : Cθ,∞(x, en) ∩ E = ∅

}
, (5.6.138)

then using the last assumption in (3) we obtain

� = {
x ∈ ∂� : Cθ,∞(x, en) ∩ E = ∅

} = ∂�. (5.6.139)

From (5.6.132), Proposition 5.6.19 applied for the current E , and (5.6.139) it follows
that there exists a Lipschitz function ϕ : R

n−1 → R such that

∂� = (Graph ϕ) ∩ (Rn \�) and (Rn \�) ∩ Sepigraph ϕ = ∅. (5.6.140)

From the second property in (5.6.140) it follows that

R
n \� ⊆ {

(x ′, xn) : x ′ ∈ R
n−1, xn ≤ ϕ(x ′)

}
(5.6.141)
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which, after taking interiors, further implies

R
n \� = (Rn \�)◦ ⊆ {

(x ′, xn) : x ′ ∈ R
n−1, xn < ϕ(x

′)
}
. (5.6.142)

Upon recalling the assumption ∂� = ∂(�), from the first property in (5.6.140) we
also deduce that

∂
(
R

n \�) = ∂(�) = ∂� ⊆ {
(x ′, xn) : x ′ ∈ R

n−1, xn = ϕ(x ′)
}
. (5.6.143)

Granted (5.6.142)–(5.6.143) and since ∂� ⊆ Graph ϕ (recall (5.6.140)), we may
invoke Lemma 5.6.22 with

{
(x ′, xn) : x ′ ∈ R

n−1, xn < ϕ(x ′)
}
in place of O and

R
n \� in place of � to obtain

R
n \� = {

(x ′, xn) : x ′ ∈ R
n−1, xn < ϕ(x

′)
}
. (5.6.144)

After taking first complements and then interiors in (5.6.144), we arrive at

� ⊆ (�)◦ ⊆ ({
(x ′, xn) : x ′ ∈ R

n−1, xn ≥ ϕ(x ′)
})◦ = Sepigraph ϕ. (5.6.145)

One more application of Lemma 5.6.22 for the current set � and O := Sepigraph ϕ
(bearing in mind that ∂� ⊆ Graph ϕ; cf. (5.6.140)) allows us to conclude that
� = Sepigraph ϕ. Hence, (1) holds so the proof of the implication (3) ⇒ (1) is
finished.

Finally, suppose now that (1) is true, and let ϕ : R
n−1 → R be the Lipschitz

function such that � = Sepigraph ϕ. In particular ∂� = Graph ϕ and the condition
∂� = ∂(�) is satisfied. If M denotes the Lipschitz constant of ϕ, choose θ ∈ (0, π)
such that cot(θ/2) > M . Fix x = (

x ′, ϕ(x ′)
) ∈ ∂� arbitrary. Then (3) and (4) will

be true if we prove that

Cθ,∞(x, en) ⊆ � and Cθ,∞(x,−en) ⊆ R
n \�. (5.6.146)

To prove the first inclusion in (5.6.146), pick y = (y′, yn) ∈ Cθ,∞(x, en) with
y′ ∈ R

n−1 and yn ∈ R. Then yn − ϕ(x ′) = (y − x) · en > |y − x | cos(θ/2). Sim-
ple algebra shows that the last inequality also implies yn − xn > |y′ − x ′| cot(θ/2).
Hence, yn − ϕ(x ′) > |y′ − x ′| cot(θ/2). In concert with the choice of θ and the def-
inition of M , this permits us to estimate

yn − ϕ(x ′) > |y′ − x ′| cot(θ/2) > M |y′ − x ′| ≥ ϕ(y′)− ϕ(x ′). (5.6.147)

Consequently, yn > ϕ(y′) which implies y ∈ �. The first inclusion in (5.6.146)
therefore follows. This establishes (3). Similarly, if y = (y′, yn) ∈ Cθ,∞(x,−en)
with y′ ∈ R

n−1 and yn ∈ R, then ϕ(x ′)− yn = (y − x) · (−en) > |y − x | cos(θ/2).
Much as before, this implies
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ϕ(x ′)− yn > M |y′ − x ′| ≥ ϕ(x ′)− ϕ(y′), (5.6.148)

which forces yn < ϕ(y′), hence y ∈ R
n \�. As such (4) also holds. Thus, (1)⇒ (3)

and (1)⇒ (4), completing the proof of the proposition. �

The auxiliary topological result used in the proof of Proposition 5.6.21 is discussed
next.

Lemma 5.6.22 Let � and O be nonempty open sets in R
n such that � ⊆ O, the set

O is connected, and ∂� ⊆ ∂O. Then necessarily � = O.
Proof Suppose there exists x∗ ∈ O such that x∗ /∈ �. The latter condition self-
improves to x∗ /∈ � (otherwise we would have x ∈ ∂� ⊆ ∂O, in contradiction with
x∗ ∈ O, given that O is open). Next, since� = ∅ there exists x0 ∈ �. Then x0 ∈ O.
Having O open connected Euclidean set implies that this is path-connected. Hence,
there exists a continuous map γ : [0, 1] → R

n with γ ([0, 1]) ⊆ O and such that
γ (0) = x0 and γ (1) = x∗. We necessarily have γ ([0, 1]) ∩ ∂� = ∅ (else � and
R

n \� constitute a nontrivial open cover of the set γ ([0, 1]), violating its connec-
tivity). This further implies γ ([0, 1]) ∩ ∂O = ∅. Since O is open, this contradicts
the fact that γ ([0, 1]) ⊆ O. Hence our assumption that O \� = ∅ is false, forcing
� = O. �

Let us define the angle of a given a unitary n × n matrix U as

θU := arccos
(

inf
x∈Sn−1

〈x,Ux〉
)
∈ [0, π ]. (5.6.149)

Observe that

if θ ∈ (0, π) and U is a unitary n × n matrix of
angle θU < θ/2, then en ∈ U

(
Cθ,∞(0, en)

)
. (5.6.150)

To justify this, write

〈U−1en, en〉 = 〈U�en, en〉 = 〈en,Uen〉 ≥ cos θU > cos(θ/2). (5.6.151)

Thus, U−1en ∈ Cθ,∞(0, en) which, in turn, implies the claim in (5.6.150). As a con-
sequence of this we have that

if θ ∈ (0, π) andU is a unitary n × nmatrix of angle θU < θ/2,
then there exists a small angle α ∈ (0, θ/2) with the property
that Cα,∞(0, en) ⊆ U

(
Cθ,∞(0, en)

)
.

(5.6.152)

Corollary 5.6.23 Let ϕ : R
n−1 → R be a given Lipschitz function with Lipschitz

constant M ∈ [0,∞) and denote by � := {
(x ′, ϕ(x ′)) : x ′ ∈ R

n−1
}

its graph.
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Consider θ ∈ (0, π) such that cot(θ/2) > M. Then the image of � under a rota-
tion in R

n of angle less than θ/2 is still the graph of a real-valued Lipschitz function
defined in R

n−1.

Proof From Proposition 5.6.21 and (5.6.152) we conclude that if� := Sepigraph ϕ
then the image of � under a rotation of angle < θ/2 is still the strict epigraph of a
Lipschitz functionψ : R

n−1 → R. From this the desired conclusion readily follows.
�

The result proved in Proposition 5.6.24 below generalizes the fact that

any bounded open convex subset of R
n is a Lipschitz domain. (5.6.153)

To set the stage for dealing with this more general version of (5.6.153), recall that
a set given � ⊆ R

n is called star-like with respect to some subset B ⊆ �

provided I(x, x0) ⊆ � for all x ∈ � and all x0 ∈ B where, generally speaking,

I(x, y) denotes the open segment with endpoints x and y. (5.6.154)

Here is a result elaborating on the structure and properties of Euclidean open sets
which are star-like with respect to a ball.

Proposition 5.6.24 Let� ⊆ R
n be a bounded open set with the property that 0 ∈ �.

Then � is star-like with respect to some ball centered at the origin in R
n if and only

if
� = {

rω : ω ∈ Sn−1 and 0 ≤ r < ϕ(ω)
}

for some Lipschitz function ϕ : Sn−1 → (0,∞). (5.6.155)

Moreover, whenever (5.6.155) holds, it follows that � is a Lipschitz domain (in the
sense of Definition 2.8.12), with topological boundary

∂� = {
ϕ(ω)ω : ω ∈ Sn−1

}
, (5.6.156)

with outward unit normal

ν
(
ϕ(ω)ω

) = ϕ(ω)ω − (∇tanϕ)(ω)√|(∇tanϕ)(ω)|2 + |ϕ(ω)|2 for Hn−1-a.e. ω ∈ Sn−1, (5.6.157)

(where∇tanϕ denotes the tangential gradient of ϕ on Sn−1), andwith surfacemeasure
σ satisfying

ˆ
∂�

f dσ =
ˆ
Sn−1

f
(
ϕ(ω)ω

)[
ϕ(ω)

]n−2√|(∇tanϕ)(ω)|2 + |ϕ(ω)|2 dHn−1(ω),

(5.6.158)
for every non-negative, σ -measurable function f on ∂�.
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Proof Assume � is star-like with respect to the ball B := B(0, ρ), for some radius
ρ ∈ (

0, dist(0, ∂�)
)
. The goal is to prove (5.6.155), and we shall do so in a number

of steps. Throughout, we shall employ the piece of notation introduced in (5.6.154).

Step I. We have I(x, x0) ⊆ � for all x ∈ �, and x0 ∈ B.

Proof of Step I.Since x ∈ �, there exists a sequence {x j } j∈N ⊆ � such that x j → x as
j → ∞. Fix y ∈ I(x, xo). Then there exists t ∈ (0, 1) such that y = x0 + t (x − x0).
For each j ∈ N consider y j := x0 + t (x j − x0) ∈ I(x, x0) ⊆ �. Then

lim
j→∞ y j = lim

j→∞[x0 + t (x j − x0)] = x0 + t (x − x0) = y. (5.6.159)

Since y j ∈ � for every j ∈ N, this entails y ∈ �. Given that y is an arbitrary point
in I(x, x0), this implies that

I(x, x0) ⊆ �. (5.6.160)

The argument so far proves that

I(x, x0) ⊆ � for all x ∈ � and x0 ∈ B. (5.6.161)

We next claim that

I(x, x0) ∩ ∂� = ∅ for all x ∈ � and x0 ∈ B. (5.6.162)

Reasoning by contradiction, assume that there exist x ∈ �, x0 ∈ B, and z ∈ I(x, x0)
such that z ∈ ∂�. Define the cone-like region

C :=
⋃

y∈B
I(z, y). (5.6.163)

Then C is open and C ⊆ � (recall (5.6.161)). Also, I(x, z) ⊆ I(x, x0) ⊆ � and we
claim that I(x, z) ∩� = ∅. Indeed, the existence of some w ∈ I(x, z) ∩� would
force z ∈ I(w, x0) ⊆ �, in contradiction with the fact that z ∈ ∂�. Hence,

I(x, z) ⊆ � \� = ∂�. (5.6.164)

To proceed, fix an arbitrary point z0 ∈ I(x, z). Then there exists a ball B0 centered at
z0 such that B0 ⊆ C ⊆ �. We may then pick three collinear points a, b, c (mutually
different) with a ∈ B0, b ∈ I(x, z), and c ∈ B (Fig. 5.1).

This means that a /∈ �, otherwise I(a, c) ⊆ �, which implies that b ∈ �. How-
ever, b ∈ I(x, z) ⊆ ∂�. Since, nonetheless, a ∈ B0 ⊆ C ⊆ �, it follows thatwe nec-
essarily have a ∈ ∂�. Perturbing a, we see that there exists some small radius r > 0
such that B(z0, r) ⊆ ∂�. However, having z0 ∈ ∂� implies B(z0, r) ∩� = ∅, in
contradiction with

B(z0, r) ∩� ⊆ ∂� ∩� = ∅. (5.6.165)
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Fig. 5.1 The points a, b, c

This contradiction proves (5.6.162). From (5.6.161) and (5.6.162), the conclusion in
Step I follows.

Step II. For all ω ∈ Sn−1, the open half line

Lω := {rω : r > 0} (5.6.166)

intersects ∂�.

Proof of Step II. Note that Lω ⊆ R
n = � ∪ ∂� ∪ (�)c, disjoint union. Thus, having

Lω ∩ ∂� = ∅ would imply that
{
�, (�)c

}
is a covering of the connected set Lω by

disjoint open sets. Consequently, either Lω ∩� = ∅, or Lω ∩ (�)c = ∅. Since �
is open and 0 ∈ � the first eventuality cannot occur. On the other hand, the second
scenario implies that Lω ⊆ � which is impossible since � is bounded. Thus this
contradiction proves Step II.

Step III. For each ω ∈ Sn−1the set Lω ∩ ∂� contains precisely one point.

Proof of Step III. From Step II we know that Lω ∩ ∂� = ∅. Suppose x1, x2∈Lω∩∂�
are two disjoint points. Then either x2 ∈ I(x1, 0), or x1 ∈ I(x2, 0). By Step I, in the
first eventuality we have ∂� � x2 ∈ I(x1, 0) ⊆ � which is a contradiction. In the
second eventuality, Step I gives ∂� � x1 ∈ I(x2, 0) ⊆ �, which once again is a
contradiction. This finishes the proof of Step III.

Step IV. If for all ω ∈ Sn−1 we set ϕ(ω):= the distance from the point in Lω∩∂�
to the origin then

ϕ : Sn−1 −→ (0,∞) (5.6.167)

is a well-defined function with the property that

� = {
rω : ω ∈ Sn−1 and 0 ≤ r < ϕ(ω)

}

and ∂� = {
ϕ(ω)ω : ω ∈ Sn−1

}
.

(5.6.168)

Proof of Step IV. This follows directly from the fact that 0 ∈ � and Step III.
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Step V. There exists a constant C ∈ (0,∞) such that for all

ω1, ω2 ∈ Sn−1 with |ω1 − ω2| < 1 (5.6.169)

we have
|ϕ(ω1)− ϕ(ω2)| ≤ C |ω1 − ω2| . (5.6.170)

Proof of Step V.Define x j := ϕ(ω j )ω j ∈ ∂� for j ∈ {1, 2}. By Step IV, x1, x2 ∈ ∂�.
The triangle inequality in the triangle with vertices at 0, x1, x2 then implies

|ϕ(ω1)− ϕ(ω2)| ≤ |x1 − x2| . (5.6.171)

Let us also note that if θ :=<) (ω1, ω2) then θ ∈ [0, π ] and

|ω1 − ω2|2 = 2− 2ω1 · ω2 = 2− 2 cos θ = 4 sin2
(
θ

2

)
. (5.6.172)

In concert with (5.6.169), this permits us to estimate

1 > |ω1 − ω2| = 2 sin

(
θ

2

)
, (5.6.173)

hence
θ ∈

(
0,
π

3

)
. (5.6.174)

Recall that B = B(0, ρ).

Claim 1. The line Lx1,x2 passing through x1, x2 does not intersect B(0,
ρ

2 ).

Proof of Claim 1. Seeking a contradiction, assume there exists z ∈ B(0, ρ2 ) ∩ Lx1,x2 .
Since z ∈ B = B(0, ρ) and x1, x2 ∈ ∂�, Step I implies that I(x j , z) ⊆ � for
j ∈ {1, 2}. The fact that x1, x2 ∈ ∂� further gives that (Fig. 5.2)

z ∈ I(x1, x2). (5.6.175)

Indeed, having, say, x2 ∈ I(z, x1) would place x2 in �, a contradiction. Similarly,
we cannot have x1 ∈ I(z, x2), so ultimately we are left with (5.6.175) as the only
viable option.
Now x1, x2 ∈ ∂� and B(0, ρ) ⊆ � implies that |x1| , |x2| ≥ ρ, hence

∣∣x j − z
∣∣ ≥ ∣∣x j

∣∣ − |z| ≥ ρ − ρ

2
= ρ

2
, j ∈ {1, 2}. (5.6.176)

Thus, |z| is the shortest side in the triangle with vertices at 0, z, x j . Consequently, if
for j ∈ {1, 2} we denote by α j the angle made by Lx1,x2 with Lω j within the triangle
with vertices at 0, x1, x2, then α j is the smallest angle in the triangle with vertices at
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0, z, x j . This further forces

α j ≤ π

3
for j ∈ {1, 2}. (5.6.177)

However, since from (5.6.174) we know that θ < π
3 , this makes it impossible to have

α1 + α2 + θ = π . This contradiction proves Claim 1 made above.

Β

1

x2

1α

2α ρ

O

Ω

z

θ

x

Fig. 5.2 A star-like set with respect to a ball centered at the origin

Claim 2. We have

dist
(
0, Lx1,x2

) = |x1| |x2| sin θ
|x1 − x2| . (5.6.178)

To justify this, denote by � the triangle with vertices at 0, x1, x2.
With c denoting the length of the side joining x1, x2, with a, b denoting the lengths

of the sides emerging from 0, and with h denoting the height from the vertex 0, we
may then write

h · c
s

= area� = b · a · sin θ
2

. (5.6.179)

For us, in the scenario just described,

h = dist
(
0, Lx1,x2

)
, a = |x2| , b = |x1| , c = |x1 − x2| . (5.6.180)

From (5.6.179), the desired conclusion readily follows.

Combining Claims 1 and 2 then yields
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|x1| |x2| sin θ
|x1 − x2| ≥ ρ

2
(5.6.181)

which, bearing the equality in (5.6.173) in mind, further implies

|x1 − x2| ≤ 2ρ−1 |x1| |x2| sin θ
= 4ρ−1 |x1| |x2| sin

(
θ

2

)
cos

(
θ

2

)

≤ 2ρ−1
(
diam(�)

)2 |ω1 − ω2| . (5.6.182)

All in all,
|ϕ(ω1)− ϕ(ω2)| ≤ |x1 − x2| ≤ C |ω1 − ω2| , (5.6.183)

with C := 2ρ−1
(
diam(�)

)2 ∈ (0,∞), proving Step V.

Step VI. The function

ϕ : Sn−1 → (0,∞) is Lipschitz. (5.6.184)

Proof of Step VI. From Step V we know that ϕ is locally Lipschitz. Since Sn−1 is
compact, we may conclude that ϕ is Lipschitz in the context of (5.6.184).

At this stage, from Steps IV and VI we conclude that (5.6.155) holds.

In the opposite direction, suppose next that the set� ⊆ R
n is as in (5.6.155). The

goal is now to show that� is star-like with respect to some ball centered at the origin.
To get started, given any ω ∈ Sn−1 and θ ∈ (0, π), recall from (5.6.93) that

Cθ,ω := {
y ∈ R

n : cos(θ/2) |y − ϕ(ω)ω| < ϕ(ω)− y · ω < ϕ(ω)} (5.6.185)

is the open, convex, truncated, one-component, circular cone in R
n with symmetry

axis along −ω ∈ Sn−1, vertex at the point ϕ(ω)ω ∈ ∂�, height ϕ(ω) ∈ (0,∞), and
(full) aperture θ . In relation to this we claim that

there exists θ ∈ (0, π) sufficiently small (depending only on ϕ) with
the property that we have Cθ,ω ⊆ � for each ω ∈ Sn−1.

(5.6.186)

Using polar coordinates, it becomes apparent from (5.6.185) and (5.6.155) that we
need to prove the existence of some θ = θ(ϕ) ∈ (0, π) such that

whenever r ∈ [0,∞) and ω,ωo ∈ Sn−1 are such that

cos(θ/2) |rω − ϕ(ωo)ωo| < ϕ(ωo)− rω · ωo < ϕ(ωo)

then we necessarily have r < ϕ(ω).
(5.6.187)

To justify (5.6.187), work with θ ∈ (0, π) to be determined later (in terms of ϕ)
and fix r ∈ [0,∞) along ω,ωo ∈ Sn−1 such that the estimate in the middle line of
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(5.6.187) is satisfied. The conclusion in (5.6.187) is trivially satisfied if r = 0, so
we shall assume that r ∈ (0,∞) in the remainder of the proof. In particular, the last
inequality in the middle line of (5.6.187) entails ω · ωo > 0. If we now abbreviate

ρ := r

ϕ(ωo)
∈ (0,∞), α := θ

2
∈ (0, π/2),

and β := arccos(ω · ωo) ∈ (0, π/2),
(5.6.188)

then

|ω − ωo| =
√
2− 2ω · ωo =

√
2(1− cosβ) = 2 sin(β/2), (5.6.189)

and first inequality in the middle line of (5.6.187) implies

(cosα) |ρω − ωo| < 1− ρ cosβ. (5.6.190)

In turn, (5.6.190) is equivalent to having

ρ <
1

cosβ
and ρ2

(
cos2 α − cos2 β

) + 2ρ cosβ sin2 α − sin2 α < 0. (5.6.191)

For further use it is convenient to observe that

cos2 α − cos2 β = sin(β − α) sin(α + β). (5.6.192)

Also, recall from the last line in (5.6.187) that the goal is to show that

ρ <
ϕ(ω)

ϕ(ωo)
. (5.6.193)

We proceed by distinguishing several cases.

Case 1. Assume α = β. In this scenario, the second inequality in (5.6.191)
becomes

2ρ cosα sin2 α − sin2 α < 0, or, equivalently, ρ <
1

2 cosα
. (5.6.194)

In view of the goal set in (5.6.193), it suffices to check that matters may be arranged,
by tanking α ∈ (0, π/2) small (in terms of ϕ alone), so that

1

2 cosα
<
ϕ(ω)

ϕ(ωo)
. (5.6.195)

Note that (5.6.195) is further equivalent to
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ϕ(ωo)

ϕ(ω)
− 1 < 2 cosα − 1, (5.6.196)

and that

ϕ(ωo)

ϕ(ω)
− 1 = ϕ(ωo)− ϕ(ω)

ϕ(ω)
≤ M

(
inf
Sn−1

ϕ
)−1|ω − ωo|, (5.6.197)

where M ∈ (0,∞) is the Lipschitz constant of the function ϕ. Since (5.6.189)
presently gives

|ω − ωo| = 2 sin(α/2), (5.6.198)

from (5.6.197) and (5.6.198) we see that (5.6.196) is satisfied provided

M
(
inf
Sn−1

ϕ
)−1

<
2 cosα − 1

2 sin(α/2)
. (5.6.199)

Given that

lim
α→0+

2 cosα − 1

2 sin(α/2)
= +∞, (5.6.200)

it follows that (5.6.199) can be made true by taking α ∈ (0, π/2) small (solely in
terms of ϕ).

Case 2. Assume α < β. Hence, 0 < α < β < π/2. Also, from (5.6.191)–
(5.6.192) we know that f (ρ) < 0 where, for each t ∈ R, we have set

f (t) := t2 sin(β − α) sin(α + β)+ 2t cosβ sin2 α − sin2 α. (5.6.201)

It turns out that the quadratic equation f (t) = 0 has two distinct real roots, namely

f (t) = 0 ⇐⇒ either t = sin α

sin(α + β) or t = sin α

sin(α − β) . (5.6.202)

Given that in the current case the leading coefficient in (5.6.201) is positive, having
f (ρ) < 0 then forces

ρ <
sin α

sin(α + β) . (5.6.203)

Granted this, and given the goal set in (5.6.193), it is then enough to verify that
matters may be arranged, by choosing α ∈ (0, π/2) sufficiently small (exclusively
in terms of ϕ alone), so that

sin α

sin(α + β) <
ϕ(ω)

ϕ(ωo)
. (5.6.204)

Observe that (5.6.204) is further equivalent to
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ϕ(ωo)

ϕ(ω)
− 1 <

sin(α + β)
sin α

− 1 = sin(α + β)− sin α

sin α
. (5.6.205)

In view of (5.6.197) and (5.6.189), the inequality in (5.6.205) is satisfied provided

2M
(
inf
Sn−1

ϕ
)−1

<
sin(α + β)− sin α

sin(β/2) sin α
. (5.6.206)

Wemomentarily digress to discuss some useful elementary inequalities. Specifically,
since the function (0, π/2) � y �→ (sin y)/y ∈ R is strictly decreasing (given that it
has a negative derivative), and since for each fixed y ∈ (0, π/2) the function

(0, π/2) � x �−→ sin(x + y)− sin x

y
∈ R (5.6.207)

is strictly increasing (as it has a positive derivative), we conclude (after also invoking
the Mean Value Theorem) that

1 >
sin(x + y)− sin x

y
>

sin y

y
>

2

π
for each x, y ∈ (0, π/2). (5.6.208)

From (5.6.208) we then see that

4

π sin α
<

sin(α + β)− sin α

sin(β/2) sin α
, (5.6.209)

so (5.6.206) holds provided

2M
(
inf
Sn−1

ϕ
)−1

<
4

π sin α
. (5.6.210)

Given that

lim
α→0+

4

π sin α
= +∞, (5.6.211)

we see that (5.6.210) becomes valid if α ∈ (0, π/2) is sufficiently small (exclusively
in terms of ϕ).

Case 3. Assume β < α. Thus 0 < β < α < π/2, and from (5.6.191)–(5.6.192)
we know that f (ρ) < 0 with the quadratic function f as in (5.6.201). Presently, the
leading coefficient in (5.6.201) is negative, so having f (ρ) < 0 forces (in view of
(5.6.202))

ρ ∈ R \
[ sin α

sin(α + β) ,
sin α

sin(α − β)
]
. (5.6.212)

From (5.6.201) and (5.6.192), let us also observe that
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f
( 1

cosβ

)
= cos2 α sin2 β

cos2 β
> 0 (5.6.213)

so we presently have

1

cosβ
∈

( sin α

sin(α + β) ,
sin α

sin(α − β)
)
. (5.6.214)

Since from (5.6.191) we also know that ρ < 1/(cosβ), by combining (5.6.212) with
(5.6.214) we ultimately conclude that in the current case we have

ρ <
sin α

sin(α + β) . (5.6.215)

Granted this, in view of the goal set in (5.6.193) it is enough to make sure that matters
may be arranged, by tanking α ∈ (0, π/2) small (purely in terms of ϕ), so that

sin α

sin(α + β) <
ϕ(ω)

ϕ(ωo)
. (5.6.216)

This, however, may be ensured by once again reasoning as in (5.6.204)–(5.6.211).

The argument so far shows that there exists θ = θ(ϕ) ∈ (0, π) for which (5.6.187)
holds. This finishes the proof of (5.6.186). Henceforth assume θ = θ(ϕ) ∈ (0, π) is
as in (5.6.186) and pick some small radius r , say

0 < r < min
{(

inf
Sn−1

ϕ
)
tan(θ/2), dist(0, ∂�)

}
. (5.6.217)

In particular, the ball B := B(0, r) is contained in �. Then from (5.6.186) and
elementary geometry we conclude that for any ω ∈ Sn−1, any point x belonging to
the axis of symmetry for the cone Cθ,ω, and any point x0 ∈ B we have

I(x, x0) ⊆ Cθ,ω ∪ B ⊆ �. (5.6.218)

Suppose now that x ∈ � and x0 ∈ B are two arbitrary points. If x ∈ B then
I(x, x0) ⊆ B ⊆ �. If x /∈ B then |x | = 0, so ω := x/|x | is a well-defined vector
in Sn−1 with the property that x belongs to the axis of symmetry for the cone Cθ,ω.
Granted this, we may invoke (5.6.218) to conclude that I(x, x0) ⊆ �. In view of the
arbitrariness of the points x, x0, this ultimately proves that� is star-like with respect
to B.

Finally, the fact that any set � as in (5.6.155) is a Lipschitz domain, as well
as the claims pertaining to (5.6.157) and (5.6.158), have been justified in [124,
Corollary 4.13]. This finishes the proof of Proposition 5.6.24. �

Here is an application of Proposition 5.6.24, in the two-dimensional setting.
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Proposition 5.6.25 Start with a function

F : R → R Lipschitz and periodic, with period 2π, (5.6.219)

and consider the curve

� :=
{
eF(θ)+iθ : θ ∈ [0, 2π)

}
⊆ C. (5.6.220)

Then � is the boundary of a Lipschitz domain in R
2 ≡ C, which is star-like with

respect to some ball centered at the origin in R
2.

Proof The idea is to eventually invoke Proposition 5.6.24 (with n = 2). To set the
stage, consider the functionϕ : S1 → (0,∞) given for eachω ∈ S1 byϕ(ω) := eF(θ)

whenever θ ∈ R is such that ω = eiθ . The fact that F is periodic, with period 2π ,
ensures that ϕ is well defined. We claim that ϕ is actually a Lipschitz function.

To justify this claim, pickω0, ω1 ∈ S1 arbitrary.Observe that there exist θ0, θ1 ∈ R

such that
|θ0 − θ1| ≤ π and ω0 = eiθ0 , ω1 = eiθ1 . (5.6.221)

Indeed, start with θ0, θ1 ∈ [0, 2π) such thatω0 = eiθ0 andω1 = eiθ1 . If |θ0 − θ1| ≤ π
we are done. If |θ0 − θ1| > π , replace the smaller angle by its value increased by
2π (while retaining the same symbol), and then all properties in (5.6.221) are now
satisfied.

To proceed, we remark that, in general,

|eix − 1| = 2| sin(x/2)| for each x ∈ R. (5.6.222)

In concert with (5.6.208) this gives

|eix − 1| ≥ 2x/π for each x ∈ [0, π ]. (5.6.223)

Replacing x by −x in (5.6.223) we then arrive at

|eix − 1| ≥ 2|x |/π for each x ∈ R with |x | ≤ π. (5.6.224)

Hence, if M ∈ (0,∞) is the Lipschitz constant of F , we may estimate

|ω1 − ω0| = |eiθ1 − eiθ0 | = ∣∣eiθ0
(
ei(θ1−θ0) − 1

)∣∣

= ∣∣ei(θ1−θ0) − 1
∣∣ ≥ 2

π
|θ1 − θ0| ≥ 2

πM
|F(θ1)− F(θ0)|, (5.6.225)

thanks to (5.6.221) and (5.6.224). Let us momentarily digress to observe that, since
ex ≥ 1+ x for each x ∈ R, it follows (after replacing x by −x and some simple
algebra) that

ex (x − 1)+ 1 ≥ 0 for each x ∈ R. (5.6.226)
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Consider the function f (x) := (ex − 1)/x for each x ∈ R \ {0} and f (0) := 1.
Then f is differentiable on R and f ′(x) = [ex (x − 1)+ 1]/x2 ≥ 0 x ∈ R \ {0} and
f ′(0) = 1/2. In view of (5.6.226) we therefore have f ′(x) ≥ 0 for each x ∈ Rwhich
goes to show that f is non-decreasing. Consequently, given any a ∈ (0,∞)we have

|ex − 1| ≤
(ea − 1

a

)
|x | for each x ∈ R with |x | ≤ a. (5.6.227)

Returning to the main topic of conversation, since F is Lipschitz and periodic it
follows that F is bounded. Hence, there exists C ∈ (0,∞) such that |F(θ)| ≤ C
for all θ ∈ R. In particular, eF(θ0) ≤ eC and |F(θ1)− F(θ0)| ≤ 2C which, in concert
with (5.6.227), permit us to estimate

|ϕ(ω1)− ϕ(ω0)| = |eF(θ1) − eF(θ0)| = eF(θ0)
∣∣eF(θ1)−F(θ0) − 1

∣∣

≤ eC
(e2C − 1

2C

)
|F(θ1)− F(θ0)|. (5.6.228)

Finally, from (5.6.225) and (5.6.228) we conclude that

|ϕ(ω1)− ϕ(ω0)| ≤ πM eC

2

(e2C − 1

2C

)
|ω1 − ω0|. (5.6.229)

Ultimately, this proves that ϕ : S1 → (0,∞) is indeed a Lipschitz function.
Granted this, Proposition 5.6.24 applies and gives that

� := {
rω : ω ∈ S1 and 0 ≤ r < ϕ(ω)

} ⊆ R
2 (5.6.230)

is a Lipschitz domain which is star-like with respect to some ball centered at the
origin in R

2, and whose boundary may be described as

∂� = {
ϕ(ω)ω : ω ∈ S1

}
. (5.6.231)

From this, (5.6.220), and the definition of the function ϕ we then see that � = ∂�,
so the desired conclusion then follows. �

The next lemma elaborates on the manner in which Lipschitz upper-graphs are
locally star-like with respect to balls.

Lemma 5.6.26 Let φ : R
n−1 → R be a Lipschitz function and consider

� := {
(x ′, xn) ∈ R

n−1 × R : xn > φ(x ′)
}
. (5.6.232)

Then for each t > 0 there exists ε > 0 such that if for each s > 0 and x ′ ∈ R
n−1

one defines8

8 Where Bn−1(x ′, ε) denotes the ball in R
n−1 centered at x ′ and of radius ε.
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Qt,s(x
′) := Bn−1(x

′, ε)× ( −∞, φ(x ′)+ t + s
)

(5.6.233)

then�∩ Qt,s(x ′) is a star-like set with respect to some ball centered at
(
x ′, φ(x ′)+t

)
.

Proof Recall that Cθ,∞(x, en) = {y ∈ R
n : cos(θ/2) |y − x | < (y − x) · en} is the

open, convex, one-component, infinite, circular cone in R
n , with vertex at x ∈ R

n ,
symmetry axis along the vector en ∈ Sn−1, and (full) aperture θ ∈ (0, π) (cf.
(5.6.93)). From Proposition 5.6.21, we know that there exists θ ∈ (0, π) such that

Cθ,∞(x, en) ⊆ � for each x ∈ ∂�. (5.6.234)

Given t > 0, we may then perturb this to find r > 0 and ε > 0 such that

B
(
(x ′, φ(x ′)+ t), r

) ⊆ Cθ,∞
(
(y′, φ(y′)), en

)

for each x ′ ∈ R
n−1 and y′ ∈ Bn−1(x ′, ε).

(5.6.235)

Fix now x ′ ∈ R
n−1 and s > 0 arbitrary. If z ∈ � ∩ Qt,s(x ′) then z = (z′, zn)

with z′ ∈ Bn−1(x ′, ε) and φ(z′) < zn < φ(x ′)+ t + s. In particular, z belongs to
Cθ,∞

(
(z′, φ(z′)), en

)
. Since the latter set is convex, and so is Qt,s(x ′), it follows

from (5.6.235) and (5.6.234) that any line segment joining z with a point in the ball
B
(
(x ′, φ(x ′)+ t), r

)
is contained in � ∩ Qt,s(x ′). This proves that � ∩ Qt,s(x ′) is

indeed star-like with respect to the ball B
(
(x ′, φ(x ′)+ t), r

)
. �

There are simple examples of bounded open sets which are star-like with respect
to a point and yet they fail to be Lipschitz domains (e.g., they may have inner or
outer cusps). This being said, it turns out that local star-likeness with respect to balls
fully characterizes the class of bounded Lipschitz domains.

Proposition 5.6.27 Let � be a nonempty, bounded, open subset of R
n. Then � is

a Lipschitz domain if and only if for each x ∈ ∂� there exists an open set Ox ⊆ R
n

with the property that � ∩ Ox is a star-like set with respect to a ball centered at x.

Proof The direct implication is a consequence of Lemmas 2.8.13 and 5.6.26. The
converse implication follows from Proposition 5.6.24 and Definition 2.8.12. �

5.7 Sets of Finite Perimeter

Turning to the topic of sets of finite perimeter, we first define the relative perimeter
function. Specifically, let E ⊆ R

n be an Ln-measurable set, and pick an arbitrary
open set � ⊆ R

n . In this context, define the (relative) perimeter of E in � to
be
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P�(E) := V
(
1E∩�;�

)
(5.7.1)

= sup
{∣∣∣
ˆ
E
div �ϕ dLn

∣∣∣ : �ϕ ∈ [
C∞
c (�)

]n
and sup

�

| �ϕ| ≤ 1
}
∈ [0,+∞].

In the case when � = R
n we agree to abbreviate P(E) := PRn (E) = V

(
1E ;R

n
)
.

The perimeter of E may also be defined relative to any given closed subset G of R
n

according to PG(E) := inf
{
P�(E) : G ⊆ � ⊆ R

n, � open
}
.

A classical result due to De Giorgi in [70] (cf. also [106, Theorem 4.4, p. 54] and
[88, Sect. 4.5]) asserts that

P�(E) = |∇1E∩�|(�) = Hn−1(� ∩ ∂∗E) = Hn−1(� ∩ ∂∗E)
if E ⊆ R

n has locally finite perimeter, and � ⊆ R
n is open.

(5.7.2)

In particular, corresponding to � = R
n we have

P(E) = V
(
1E ;R

n
) = Hn−1(∂∗E)

for each Ln-measurable set E ⊆ R
n.

(5.7.3)

Given a Lebesgue measurable set E ⊆ R
n along with� ⊆ R

n open, we shall say
that E has finite perimeter in� provided P�(E) < +∞. This is equivalent
with demanding that the locally integrable function 1E∩� has finite variation in �
(i.e.,V

(
1E∩�;�

)
< +∞). In particular, the distributional partial derivatives ∂ j1E∩�,

1 ≤ j ≤ n, areBorel-regularmeasures in�offinite total variation. In such a scenario,
the perimeter of E in � may be expressed as

P�(E) = |∇1E∩�|(�) = ‖∇1E∩�‖TV(�), (5.7.4)

the total variation norm of the vector measure ∇1E∩� = (∂11E∩�, . . . , ∂n1E∩�) in
�.

Simply call E ⊆ R
n a set of finite perimeter (or just say that E has

finite perimeter) if E has finite perimeter in � := R
n . In other words,

a given set E ⊆ R
n has finite perimeter if E is Ln-measurable and

P(E) < +∞. The latter finiteness condition is further equivalent with
V

(
1E ;R

n
)
< +∞, or Hn−1(∂∗E) < +∞ (compare with (5.6.35)).

(5.7.5)

From (5.7.1) and (5.5.4) one may conclude without difficulty that the (relative)
perimeter function P� is lower-semicontinuous, in the sense that

if E ⊆ R
n is Ln-measurable, then for any sequence {E j } j∈N of

Lebesgue measurable sets in R
n such that 1E j → 1E as j → ∞

at Ln-a.e. point in � we have P�(E) ≤ lim inf
j→∞ P�(E j ).

(5.7.6)
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In general, the (relative) perimeter function lacks genuine continuity, i.e., we may
have strict inequality in (5.7.6). A concrete example is offered by a sequence of sets
shaped like “castle towers” with smaller and smaller embrasures. Concretely, for
each odd integer j ∈ N consider the family of rectangles

R( j)k :=
{[

k
j ,

k+1
j

] × [0, 1] if k is even,
[
k
j ,

k+1
j

] × [
0, 1− 1

j

]
if k is odd,

(5.7.7)

indexed by k ∈ {0, 1, . . . , j − 1}, then define

E j :=
j−1⋃

k=0

R( j)k and E := [0, 1] × [0, 1]. (5.7.8)

Then P(E) = H1(∂∗E) = H1(∂E) = 4 and 1E j → 1E as j → ∞ at Ln-a.e. point
in R

n , yet P(E j ) = H1(∂∗E j ) = H1(∂E j ) = 5− 1/j for each odd number j ∈ N,
hence lim inf

j→∞ P(E j ) = 5 > 4.

It is worth pointing out that

whenever E ⊆ R
n is an Ln-measurable set with compact

boundary, it follows that E has finite perimeter if and only
if E is a set of locally finite perimeter.

(5.7.9)

Also, if E ⊆ R
n has finite perimeter then E has locally finite perimeter as well. In

particular, (5.6.38) may be strengthened to

whenever E ⊆ R
n is an Ln-measurable set such that

Hn−1(∂E) <∞ it follows that E has finite perimeter (in
particular, E also has locally finite perimeter) and one has
P(E) = Hn−1(∂∗E) ≤ Hn−1(∂E).

(5.7.10)

Regarding the above inequality, the gap between P(E) andHn−1(∂E) could be quite
large in general. Indeed,

there exists E ⊆ R
n compact set,with empty interior, of finite

perimeter, and with Ln(∂E) > 0 hence, in particular, with
Hn−1(∂E) = +∞.

(5.7.11)

For example, consider a countable dense subset {x j } j∈N of B(0, 1) and take

E := B(0, 1) \
( ∞⋃

j=1

B(x j , r j )
)

(5.7.12)
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where {r j } j∈N ⊆ (0, 1) is a numerical sequence satisfying
∑∞

j=1 r
n−1
j < 1. Then,

clearly, E is a compact set with E̊ = ∅. In particular, ∂E = E \ E̊ = E , and since
ωn−1/n is the volume of the n-dimensional unit ball in R

n we have

Ln(∂E) = Ln(E) ≥ Ln
(
B(0, 1)

) −
∞∑

j=1

Ln
(
B(x j , r j )

)

= ωn−1/n −
∞∑

j=1

(ωn−1/n)r
n
j ≥ (ωn−1/n)

(
1−

∞∑

j=1

rn−1
j

)
> 0. (5.7.13)

If for every N ∈ N we now consider EN := B(0, 1) \
(⋃N

j=1 B(x j , r j )
)
, then

∂EN ⊆ Sn−1 ∪
( N⋃

j=1

∂B(x j , r j )
)

(5.7.14)

which, together with (5.7.10), permits us to conclude that each EN is a set of finite
perimeter and

P(EN ) ≤ Hn−1(∂EN ) ≤ Hn−1(Sn−1)+
N∑

j=1

Hn−1
(
∂B(x j , r j )

)

= ωn−1 +
N∑

j=1

ωn−1r
n−1
j ≤ ωn−1

(
1+

∞∑

j=1

rn−1
j

)
< 2ωn−1. (5.7.15)

Moreover, since EN ↘ E as N → ∞, from this and (5.7.6) we see that

P(E) ≤ lim inf
N→∞ P(EN ) ≤ 2ωn−1, (5.7.16)

proving that E has finite perimeter. The set E constructed in (5.7.12) thus satisfies
all properties listed in (5.7.11) (this is often referred to as a “Swiss cheese” type set).

The isoperimetric inequality in the category of sets of finite perimeter takes the
following form ([71]; see also [80, p. 190] and [263, p. 81]): if the set E ⊆ R

n has
finite perimeter, then either Ln(E) < +∞, or Ln(Rn \ E) < +∞ and

min
{[Ln(E)

](n−1)/n
,
[Ln(Rn \ E)

](n−1)/n
}

≤ P(E)

n(voln)1/n
= Hn−1(∂∗E)

n1−1/n(ωn−1)1/n
, (5.7.17)

where, with � denoting here the classical gamma-function,
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voln := Ln
(
B(0, 1)

) = πn/2

�
(
n
2 + 1

) = ωn−1

n
(5.7.18)

is the volume of the unit ball inR
n . The version of the isoperimetric inequality proved

by H.Federer (cf. [88, 3.2.43–3.2.44, p. 278]) reads

E ⊆ R
n with Ln(E) <∞=⇒ [Ln(E)

](n−1)/n ≤ 1

n(voln)1/n
Hn−1(∂E). (5.7.19)

As seen from (5.7.2), for every set E ⊆ R
n of finite perimeter we have

P(E) = Hn−1(∂∗E) = Hn−1(∂∗E) < +∞. (5.7.20)

In concert with (5.2.12)–(5.2.13) in Lemma 5.2.2, this implies (cf. [12, Proposi-
tion 1] and the discussion in [264, p. 197]) that whenever E, F ⊆ R

n are sets of
finite perimeter

P(E ∪ F)+ P(E ∩ F) ≤ P(E)+ P(F). (5.7.21)

Consequently, (compare with Lemma 5.6.5)

the class of sets of finite perimeter in R
n is an algebra of

subsets of R
n , i.e., it is closed under finite unions, finite

intersections, and complements.
(5.7.22)

Lemma 5.7.1 Assume E ⊆ R
n is a set of locally finite perimeter, and F ⊆ R

n is a
bounded set of finite perimeter. Then E ∩ F is a set of finite perimeter.

Proof The assumptions on F imply that F is a compact set and Hn−1(∂∗F) <∞.
Based on (5.2.10) in Lemma 5.2.2 and (5.6.35) we may then estimate

Hn−1
(
∂∗(E ∩ F)

) ≤ Hn−1
(
(∂∗E) ∩ F

) +Hn−1(∂∗F) < +∞, (5.7.23)

which ultimately proves the lemma. �

The local version of the Divergence Theorem recorded in the lemma below refines
similar results in the literature (cf., e.g., [80, Lemma 1, p. 195], [162, Lemma 5.5.2,
p. 143], or [263, Lemma 5.5.2, p. 234]) by allowing the exceptional nullset involved
in the statement to be independent of the chosen vector field. This improvement is
going to come into play shortly.

Lemma 5.7.2 Let E ⊆ R
n be a set of locally finite perimeter. Set σ∗ := Hn−1�∂∗E

and denote by ν the geometric measure theoretic outward unit normal to E. Also, fix
some point x ∈ R

n. Then

E ∩ B(x, r), E \ B(x, r), E ∩ B(x, r), E \ B(x, r)
are all sets of locally finite perimeter.

(5.7.24)
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In addition, there exists some

L1-measurable set Nx ⊂ (0,∞), such that L1(Nx ) = 0, (5.7.25)

with the property that for each r ∈ (0,∞) \ Nx and each �F ∈ [
Liploc(R

n)
]n

one has

ˆ
E∩B(x,r)

div �F dLn =
ˆ
(∂∗E)∩B(x,r)

ν · �F dσ∗ +
ˆ
E∩∂B(x,r)

( y − x

r

)
· �F(y) dHn−1(y)

(5.7.26)
and, if E ∩ supp �F is bounded,

ˆ
E\B(x,r)

div �F dLn =
ˆ
(∂∗E)\B(x,r)

ν · �F dσ∗ −
ˆ
E∩∂B(x,r)

( y − x

r

)
· �F(y) dHn−1(y).

(5.7.27)
Moreover, similar integral formulas hold with B(x, r) replaced by B(x, r) in all
occurrences.

Proof The claim in (5.7.24) is a direct consequence of Lemma 5.6.5. To proceed,
observe that

for each �F ∈ [
C∞(Rn)

]n
there exists some L1-measurable set

Nx, �F ⊂ (0,∞), such that L1
(
Nx, �F

) = 0, with the property that
formula (5.7.26) is valid whenever r ∈ (0,∞) \ Nx, �F .

(5.7.28)

Indeed, in the case when the vector field in question is also compactly supported this
follows from [263, Lemma 5.5.2, p. 234]. To take advantage of this, pick a function
θ ∈ C∞

c (R
n)with the property that θ ≡ 1 near the origin and define θ j (x) := θ(x/j)

for each j ∈ N and each x ∈ R
n . Then, given any �F ∈ [

C∞(Rn)
]n
, we may invoke

[263,Lemma5.5.2, p. 234]which applies to the vector field �Fj := θ j �F ∈ [
C∞
c (R

n)
]n

and guarantees the existence of some L1-measurable set Nx, j ⊂ (0,∞) such that
L1

(
Nx, j

) = 0 with the property that formula (5.7.26) is valid with �Fj in place of �F
whenever r ∈ (0,∞) \ Nx, j . If we now introduce Nx, �F := ∪ j∈NNx, j it follows that
Nx, �F is an L1-measurable subset of (0,∞) such that L1

(
Nx, �F

) = 0 and with the

property that whenever r ∈ (0,∞) \ Nx, �F formula (5.7.26) is valid with �Fj in place

of �F for each j ∈ N. Passing to limit j → ∞ then proves (5.7.28).
Consider next the collection of all vector fields in R

n whose components are
polynomials with rational coefficients. Being a countable set, this may be arranged
in the form of a sequence, say { �Pj } j∈N. Since each �Pj belongs to

[
C∞(Rn)

]n
, from

(5.7.28) we know that for each j ∈ N there exists an L1-measurable set Ñx, j ⊂
(0,∞) such thatL1

(
Ñx, j

) = 0 and so that formula (5.7.26) is valid with �Pj in place
of �F whenever r ∈ (0,∞) \ Ñx, j . Define Nx := ∪ j∈N Ñx, j , so that Nx is an L1-
measurable subset of (0,∞) such that L1

(
Nx

) = 0. Pick an arbitrary r∈(0,∞)\Nx

along with an arbitrary vector field �F ∈ [
C∞(Rn)

]n
. We may then rely on [181,

Lemma 2.83, p. 52] to conclude that there exists a subsequence call it { �Pjk }k∈N, of
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{ �Pj } j∈N such that

supy∈B(x,r)
∣∣ �Pjk (y)− �F(y)∣∣ −→ 0 as k → ∞, and

supy∈B(x,r)
∣∣(div �Pjk )(y)− (div �F)(y)

∣∣ −→ 0 as k → ∞. (5.7.29)

As a consequence, the second line in (5.7.29) implies

∣
∣∣
ˆ
E∩B(x,r)

div �Pjk dLn −
ˆ
E∩B(x,r)

div �F dLn
∣
∣∣ (5.7.30)

≤ Ln
(
B(x, r)

) · sup
y∈B(x,r)

∣∣(div �Pjk )(y)− (div �F)(y)
∣∣ → 0 as k → ∞,

while the first line in (5.7.29) and the fact thatHn−1
(
B(x, r) ∩ ∂∗E

)
<∞ given that

E is a set of locally finite perimeter (cf. (5.6.35)) imply

∣∣∣
ˆ
(∂∗E)∩B(x,r)

ν · �Pjk dσ∗ −
ˆ
(∂∗E)∩B(x,r)

ν · �F dσ∗
∣∣∣ (5.7.31)

≤ Hn−1
(
B(x, r) ∩ ∂∗�

) · sup
y∈B(x,r)

∣∣ �Pjk (y)− �F(y)∣∣ → 0 as k → ∞,

and, finally, the first line in (5.7.29) implies

∣∣∣
ˆ
E∩∂B(x,r)

( y − x

r

)
· �Pjk (y) dHn−1(y)−

ˆ
E∩∂B(x,r)

( y − x

r

)
· �F(y) dHn−1(y)

∣∣∣

≤ Hn−1
(
∂B(x, r)

) · sup
y∈B(x,r)

∣
∣ �Pjk (y)− �F(y)∣∣ → 0 as k → ∞. (5.7.32)

Recall that our choice of theL1-nullset Nx ensures that for each r ∈ (0,∞) \ Nx we
have

ˆ
E∩B(x,r)

div �Pjk dLn =
ˆ
(∂∗E)∩B(x,r)

ν · �Pjk dσ∗

+
ˆ
E∩∂B(x,r)

( y − x

r

)
· �Pjk (y) dHn−1(y) (5.7.33)

for all k ∈ N. On account of (5.7.30)–(5.7.32), after passing to the limit k → ∞ in
(5.7.33) we arrive at the conclusion that

there exists some L1-measurable set Nx ⊂ (0,∞) with
L1

(
Nx

) = 0 and such that formula (5.7.26) holds when-
ever r ∈ (0,∞) \ Nx , for each �F ∈ [

C∞(Rn)
]n
.

(5.7.34)
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In the case when �F belongs to the larger class
[
Liploc(R

n)
]n

and some radius
r ∈ (0,∞) \ Nx has been specified, use a standard mollifier argument to produce a
sequence ( �Fε)ε∈(0,1) ⊂

[
C∞(Rn)

]n
with the property that

supy∈B(x,r)
∣∣ �Fε(y)− �F(y)∣∣ −→ 0 as ε→ 0+,

supε∈(0,1) supy∈B(x,r)
∣∣(div �Fε)(y)

∣∣ < +∞, and such that

(div �Fε)(y)→ (div �F)(y) as ε→ 0+ for Ln-a.e. y ∈ R
n.

(5.7.35)

From (5.7.34) we know that for each ε ∈ (0, 1) we have
ˆ
E∩B(x,r)

div �Fε dLn =
ˆ
(∂∗E)∩B(x,r)

ν · �Fε dσ∗

+
ˆ
E∩∂B(x,r)

( y − x

r

)
· �Fε(y) dHn−1(y). (5.7.36)

After passing to limit ε→ 0+ in (5.7.36), on account of (5.7.35) and several appli-
cations of Lebesgue’s Dominated Convergence Theorem we reach the conclusion
that, as claimed in the statement of the lemma, formula (5.7.26) holds whenever
r ∈ (0,∞) \ Nx and �F ∈ [

Liploc(R
n)

]n
. In fact, the version of (5.7.26) in which

B(x, r) has been replaced in all occurrences by B(x, r) is also valid. Indeed, this
is established in a similar fashion, relying now on [80, Lemma 1, p. 195] (and the
Structure Theorem for sets of locally finite perimeter from [80, Theorem 2,p. 205])
in place of [263, Lemma 5.5.2, p. 234] (which has been used to justify (5.7.28)).

With an eye towards proving formula claimed in (5.7.27), assume now that some
vector field �F ∈ [

Liploc(R
n)

]n
with the property that E ∩ supp �F is bounded has

been given. Pick a scalar function ψ ∈ C∞
c (R

n) such that ψ ≡ 1 near E ∩ supp �F ,
and define �G := ψ �F ∈ [

Lipc(R
n)

]n
. On the one hand, we may then write

ˆ
E
div �F dLn =

ˆ
E
div �G dLn =

ˆ
∂∗E
ν · �G dσ∗ =

ˆ
∂∗E
ν · �F dσ∗, (5.7.37)

where the middle equality is implied by the version of the Gauss–Green Theorem
recorded in (2.8.1). On the other hand, from what we have proved up to this point
we know that formula (5.7.26) (both as stated, and with B(x, r) replaced by B(x, r)
throughout) holds for the vector field �F ∈ [

Liploc(R
n)

]n
and for any r ∈ (0,∞) \ Nx .

Subtracting the latter from (5.7.37) then yields (5.7.27) (both as formulated, and with
B(x, r) replaced by B(x, r) in all occurrences). �

Localizing sets of locally finite perimeter yields sets of finite perimeter in the
precise sense described below. To facilitate its statement, we make the following
convention:



416 5 Sets of Locally Finite Perimeter and Other Categories of Euclidean Sets

for any two Hn−1-measurable sets A, B ⊆ R
n we agree to

write A ≡ B modulo Hn−1 ifHn−1(A� B) = 0, where A� B
denotes the symmetric difference between A and B.

(5.7.38)

Lemma 5.7.3 Given a set� ⊆ R
n of locally finite perimeter alongwith an arbitrary

point x ∈ R
n, the following assertions hold.

(i) For each arbitrary number r ∈ (0,∞) the set� ∩ B(x, r) has finite perimeter.
(ii) For L1-a.e. r ∈ (0,∞) one has, in the sense of distributions in R

n,

− ∇1�∩B(x,r)=νHn−1 �(∂∗�∩B(x, r)
)+Nx,r Hn−1 �(�∩∂B(x, r)), (5.7.39)

where Nx,r denotes the ordinary outward unit normal to ∂B(x, r), and ν stands
for the geometric measure theoretic outward unit normal to �.

(iii) For L1-a.e. r ∈ (0,∞) one has

∂∗
(
�∩B(x, r)) ≡ (

�∩∂B(x, r))∪(
∂∗� ∩ B(x, r)

)
modulo Hn−1. (5.7.40)

(iv) For L1-a.e. r ∈ (0,∞) the geometric measure theoretic outward unit normal
νx,r to � ∩ B(x, r) is given at Hn−1-a.e. point on ∂∗

(
� ∩ B(x, r)

)
by

νx,r =
{
Nx,r at Hn−1-a.e. point on � ∩ ∂B(x, r),
ν at Hn−1-a.e. point on ∂∗� ∩ B(x, r).

(5.7.41)

Based on (5.7.39), it has been shown in [124, Lemma 2.5] that

if � ⊆ R
n is open, of locally finite perimeter, with ∂� = ∂(�), then

Hn−1
(
∂∗� ∩ B(x, r)

)
> 0 for every point x ∈ ∂� and every r > 0.

(5.7.42)

It has been also pointed out in [124] that

for a set � ⊆ R
n of locally finite perimeter, the condition in the last

line of (5.7.42) is actually equivalent to having ∂∗� dense in ∂�.
(5.7.43)

Proof of Lemma 5.7.3 The claim in item (i) is a direct consequence of Lemma 5.7.1.
To justify (5.7.39), let Nx ⊂ (0,∞) be the L1-nullset associated with E := � and
the point x as in (5.7.25). For a fixed r ∈ (0,∞) \ Nx , write (5.7.26) for arbitrary
�F ∈ [

C∞
c (R

n)
]n

and observe that the resulting integral formula may be interpreted
as

−
〈
∇1�∩B(x,r), �F

〉
=

〈
νHn−1 �(∂∗� ∩ B(x, r)

)
, �F

〉

+
〈
Nx,r Hn−1 �(� ∩ ∂B(x, r)), �F

〉
, (5.7.44)



5.7 Sets of Finite Perimeter 417

with the brackets indicating duality between vector distributions and vector-valued
test functions. From this, (5.7.39) follows in view of the arbitrariness of the vector
field �F ∈ [

C∞
c (R

n)
]n
. This takes care of item (ii). Turning attention to the claim in

item (iii), from (5.6.3), (5.6.22), and the current item (i) we conclude that for each
r ∈ (0,∞) we have

− ∇1�∩B(x,r) = νx,r Hn−1�∂∗
(
� ∩ B(x, r)

)
. (5.7.45)

Above, νx,r is the geometric measure theoretic outward unit normal to the set of
locally finite perimeter � ∩ B(x, r), hence

|νx,r | = 1 at Hn−1-a.e. point on ∂∗
(
� ∩ B(x, r)

)
(5.7.46)

(cf. (5.6.13), (5.6.20), and (5.6.21)). Comparing the set on which the measure
∇1�∩B(x,r) is concentrated, as seen from (5.7.39) and (5.7.45), then yields (5.7.40).
Finally, the claim in item (iv) is seen by comparing (5.7.39) with (5.7.45), bearing
in mind (5.7.40). �

Given an Ln-measurable set � ⊆ R
n , define

∂lfp� := {
x ∈ ∂� : there exists rx > 0 such that

� ∩ B(x, rx ) has locally finite perimeter
}
. (5.7.47)

From Lemma 5.7.1 it follows that for each Ln-measurable set � ⊆ R
n we have

∂lfp� = {
x ∈ ∂� : there exists rx > 0 such that

� ∩ B(x, rx ) has finite perimeter
}

(5.7.48)

and

∂lfp� is a relatively open subset of ∂�, (5.7.49)

In fact,

∂lfp� =
⋃

x∈∂lfp�
B(x, rx ) ∩ ∂� (5.7.50)

where each rx > 0 is associated with x ∈ ∂lfp� as in (5.7.47). Let us also note here
that while we always have ∂lfp� ⊆ ∂�, Lemma 5.7.1 implies that

∂lfp� = ∂� whenever � is a set of locally finite perimeter. (5.7.51)
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Before stating our next result wemake a convention pertaining notation. Specifically,
for any twoHn−1-measurable sets A, B ⊆ R

n we shall write A ⊆ B modulo Hn−1

provided Hn−1(A \ B) = 0, i.e., if B contains A up to an Hn−1-nullset.

Proposition 5.7.4 Let � ⊆ R
n be an Ln-measurable set. Then the following state-

ments are true.

(i) If O ⊆ R
n is an open set with the property that O ∩� is a set of locally finite

perimeter, then

O ∩ ∂∗(O ∩�) ⊆ ∂N�. (5.7.52)

Also, if ν0 denotes the geometricmeasure theoretic outward unit normal toO ∩�
while N� denotes the unit vector field associated with the set � as in item (i) of
Lemma 5.6.12, then

ν0(x) = N�(x) for each x ∈ O ∩ ∂∗(O ∩�), (5.7.53)

and

ν0(x) = N�(x) for Hn−1-a.e. x ∈ O ∩ ∂∗�. (5.7.54)

(ii) One has

∂∗� ∩ ∂lfp� ⊆ ∂N� modulo Hn−1. (5.7.55)

Proof To justify the claims in item (i), pick x ∈ O ∩ ∂∗(O ∩�) arbitrary. On the
one hand, thanks to Lemma 5.6.12, the membership of x to ∂∗(O ∩�) entails

lim
r→0+

Ln
(
B(x, r) ∩ {y ∈ O ∩� : (y − x) · ν0(x) > 0})

Ln
(
B(x, r)

) = 0 and (5.7.56)

lim
r→0+

Ln
(
B(x, r) ∩ {y ∈ R

n \ (O ∩�) : (y − x) · ν0(x) < 0})

Ln
(
B(x, r)

) = 0. (5.7.57)

On the other hand, given that x belongs to the open set O, for each r > 0 sufficiently
small we have (with the superscript “c” denoting the complement relative to R

n)

B(x, r) ∩ (O ∩�) = B(x, r) ∩�, as well as

B(x, r) ∩ (O ∩�)c = B(x, r) ∩ (Oc ∪�c) = B(x, r) ∩�c,
(5.7.58)

we may simply re-write (5.7.56)–(5.7.57) as
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lim
r→0+

Ln
(
B(x, r) ∩ {y ∈ � : (y − x) · ν0(x) > 0})

Ln
(
B(x, r)

) = 0 and (5.7.59)

lim
r→0+

Ln
(
B(x, r) ∩ {y ∈ R

n \� : (y − x) · ν0(x) < 0})

Ln
(
B(x, r)

) = 0. (5.7.60)

In turn, from (5.7.59)–(5.7.60), (5.6.69), and (5.6.71) we conclude that

x ∈ ∂N� and ν0(x) = N�(x). (5.7.61)

The arbitrariness of x then finishes the proof of (5.7.52)–(5.7.53). Lastly, since by
(5.6.21) we have

O ∩ ∂∗(O ∩�) ≡ O ∩ ∂∗(O ∩�) modulo Hn−1, (5.7.62)

and since Proposition 5.2.3 gives

O ∩ ∂∗(O ∩�) = O ∩ ∂∗�, (5.7.63)

the claim in (5.7.54) follows from (5.7.53), (5.7.62), and (5.7.63).
Turning our attention to (5.7.55), start by observing that, as a second-countable

space, Rn is a strongly Lindelöf space. Hence, we may refine (5.7.50) to a countable
cover of the following sort: there exist {x j } j∈N ⊆ ∂lfp� and {r j } j∈N ⊆ (0,∞) such
that each � ∩ B(x j , r j ) is a set of locally finite perimeter and

∂lfp� =
⋃

j∈N
B(x j , r j ) ∩ ∂�. (5.7.64)

We may then write

∂∗� ∩ ∂lfp� =
⋃

j∈N
B(x j , r j ) ∩ ∂∗�

=
⋃

j∈N
B(x j , r j ) ∩ ∂∗

(
B(x j , r j ) ∩�

)

≡
⋃

j∈N
B(x j , r j ) ∩ ∂∗

(
B(x j , r j ) ∩�

)
modulo Hn−1. (5.7.65)

Above, the first equality is implied by (5.7.64) and (5.2.3), the second equality is
a consequence of Proposition 5.2.3, and the last equivalence is seen from (5.6.21).
Then (5.7.55) follows by combining (5.7.65) with (5.7.52). �
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5.8 Planar Curves

Recall that a simply connected domain is a connected open subset of R
2 ≡ C

in which all closed curves are homotopic to zero. Also, denote by Ĉ the Riemann
sphere (i.e., the one-point compactification C ∪ {∞} of the complex plane).

Proposition 5.8.1 For a connected open subset � of R
2 ≡ C the following condi-

tions are equivalent:

(1) � is simply connected;
(2) � is homeomorphic to the unit disk D := B(0, 1);
(3) the winding number of any closed curve γ ⊂ � with respect to any point

z ∈ Ĉ \� is zero;
(4) Ĉ \� is connected;
(5) every holomorphic function f in � may be approximated by polynomials in the

variable z, uniformly on compact subsets of �;
(6)

´
γ
f (z) dz = 0 for every holomorphic function f in � and for every rectifiable

closed curve γ ⊂ �;
(7) for every holomorphic function f in� there exists a holomorphic function F in

� with the property that F ′ = f in �;
(8) for every holomorphic function f in � which does not vanish in � there exists

a holomorphic function g in � such that f = eg in �;
(9) for every holomorphic function f in� which does not vanish in� and for every

n ∈ N there exists a holomorphic function h in � such that f = hn in �;
(10) for every real-valued harmonic function u in � there exists a real-valued har-

monic function w in � with the property that u + iw is holomorphic in �.

Proof The equivalence of conditions (1)–(9)may be found in [231, Theorem 13.11,
p. 274]. As far as condition (10) is concerned, assume that � is simply connected
and consider an arbitrary real-valued harmonic function u in �. Fix a point zo ∈ �
arbitrary and define w : �→ R by setting

w(z) :=
ˆ
γz

(−∂yu) dx + ∂xu dy, ∀z ∈ �, (5.8.1)

where the path-integral is taken over a rectifiable curve γz joining zo with z in �
(the existence of such a curve is a consequence of the fact that connected open sets
in the Euclidean setting are path-connected). Green’s Formula and the harmonicity
of u may be then employed to check that the above definition is unambiguous. In
turn, the freedom of choosing the rectifiable curve γz joining zo with z in � may be
exploited in order to verify that u and w satisfy the Cauchy–Riemann equations in
�. Thus,w is a real-valued harmonic function in� such that u + iw is holomorphic
in �. This proves that (1)⇒(10).

To prove that (10)⇒(1), reason by contradiction. Assume that there exist a point
zo ∈ C \� and a simple closed curve γ ⊂ �with the property that zo belongs to the
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inner domain of γ . Via a translation, there is no loss of generality in assuming that
zo is actually the origin 0 ∈ C. In this scenario, consider

u(x, y) := ln
√
x2 + y2 for all x + iy ∈ �, (5.8.2)

and note that u is a well-defined, real-valued, harmonic function in �. Suppose
that there exists a real-valued harmonic function w in � with the property that
F := u + iw is holomorphic in �. Since

G(z) := log z, ∀z ∈ C \ (−∞, 0], (5.8.3)

is a holomorphic functionwhose real part coincides with u in� \ (−∞, 0], it follows
that F − G is a purely imaginary constant in� \ (−∞, 0]. By taking imaginary parts
this further shows that there exists c ∈ R such that arg z = v(z)+ ic in� \ (−∞, 0].
Since w + ic is harmonic, hence continuous in �, this shows that the function
γ \ (−∞, 0] � z �→ arg z ∈ (−π, π) has a continuous extension to the entire loop
γ . This contradiction then finishes the proof. �

Remark 5.8.2 Assume � ⊆ C is a nonempty, open, connected, simply connected
set. If f is a holomorphic function in � which does not vanish in �, item (8) of
Proposition 5.8.1 guarantees the existence of a holomorphic function g in � with
the property that f = eg in �. Such a function g is not unique, but if g1, g2 are two
holomorphic functions in � satisfying f = eg j in � for j = 1, 2, then 1 = eg1−g2 in
�, and after applying d/dz we ultimately see that there exists some m ∈ Z such that
g1 − g2 = 2π im in �.

When specializing these considerations to the case when 0 /∈ � and for the func-
tion f (z) := z for each z ∈ �, we see that there exists a holomorphic function in�,
call it log� (or simply log if the set � is understood from context), with the property
that

z = elog� z for each z ∈ �. (5.8.4)

Moreover,

any holomorphic function g in� satisfying z = eg(z) for each
z ∈ � is of the form g = 2π im + log� for some m ∈ Z.

(5.8.5)

Each function of the form 2π im + log� corresponding to a choice of m ∈ Z will be
referred to as a branch of the complex logarithm in�. For example, under
the additional assumption that the real semi-axis (0,∞) is contained in�, the same
type of argument that has led to (5.8.5) shows that there exists a unique branch of
the complex logarithm in � (called the principal logarithmic branch) agreeing with
the ordinary natural logarithmic function ln on the interval (0,∞).

Continue to assume that � ⊆ C \ {0} is a nonempty, open, connected, simply
connected set. Then, as seen from (5.8.4), for each (x + iy) ∈ �, any branch log�
of the complex logarithm in � satisfies
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∂x log�(x + iy) = 1

x + iy
and ∂y log�(x + iy) = i

x + iy
. (5.8.6)

Formula (5.8.4) also implies that for each z, w ∈ � there exists m(z, w) ∈ Z sat-
isfying log�(zw) = log� z + log� w + 2π im(z, w). Since m(·, ·) : �×�→ Z is
continuous and integer-valued, it is actually constant. In the case when the real
semi-axis (0,∞) is contained in �, it follows that the principal logarithmic branch
log satisfies the usual identity log(zw) = log z + logw for each z, w ∈ �.

Finally, given a nonempty, open, connected, simply connected set � ⊆ C \ {0},
for each branch log� of the complex logarithm in � we can define complex powers,
with base a complex number in � and a given exponent w ∈ C, via the formula

zw := ew log� z for each z ∈ �. (5.8.7)

In particular, corresponding to a fixed exponent w ∈ C, there are infinitely many
complex power functions � � z �→ zw ∈ C.

A (compact) curve in the plane R
2 (canonically identified with the field of

complex numbers C) is a set of the form� = γ ([a, b]), where a, b ∈ R, a < b, and
γ : [a, b] → R

2 is a continuous function, called parametrization of�. Call the curve
� closed9 if it has a parametrization γ : [a, b] → R

2 satisfying γ (a) = γ (b).
Also, call � ⊂ C a Jordan curve, or a simple closed curve, provided10

� is a closed curve admitting a parametrization γ : [a, b] → R
2 whose restriction

to [a, b) is injective.11 Thus, a curve is Jordan if and only if it is the homeomorphic
image of the unit circle S1. Recall that the classical Jordan Curve Theorem asserts
that

the complement of� ⊂ C consists of two connected components, one
bounded and simply connected �+, and one unbounded �−, which
satisfy ∂�± = �.

(5.8.8)

Recall that a simply connected domain is a connected open set in which all closed
curves are homotopic to zero,12 or, equivalently, a connected open set whose fun-
damental group is trivial (see also Proposition 5.8.1 for other alternative character-
izations). Given a bounded planar connected domain �, the fact that � is a simply
connected domain is equivalent to ∂� being a connected set. Also, all planar simply
connected domains are homeomorphic to an open disk (see Proposition 5.8.1). A
bounded open set� ⊂ C is called a Jordan domain if ∂� is a Jordan curve. Then

any Jordan domain is simply connected. (5.8.9)

9 Or, a continuous loop.
10 Alternatively, � is the image of an injective continuous map of the circle S1 into R

2.
11 A condition stipulating that � has no self-intersection points.
12 Or null-homotopic.
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The length L ∈ [0,+∞] of the (not necessarily closed) curve � = γ ([a, b])
is defined as

L := sup
N∑

j=1

|γ (t j )− γ (t j−1)|, (5.8.10)

where the supremum is taken over all partitions a = t0 < t1 < · · · < tN−1 < tN = b
of the interval [a, b]. As is well known (cf., e.g., [161, Theorem 4.38, p. 135]), the
length L of any simple13 curve�may be expressed in terms of theHausdorffmeasure
by

L = H1(�), (5.8.11)

and
|z1 − z2| ≤ H1(�) for each curve � with endpoints z1, z2. (5.8.12)

Call the curve � rectifiable provided L < +∞. Clearly, if � = γ ([a, b]) is a
rectifiable curve then γ (I ) is also a rectifiable curve, for any closed subinterval I of
[a, b]. Also,

a simple curve is rectifiable if and only if
it has a Lipschitz parametrization

(5.8.13)

(see [161, Theorem 4.22, p. 129 and Theorem 4.31, p. 132]).

Remark 5.8.3 Let � ⊂ C be a bounded simply connected domain satisfying
H1(∂�) < +∞. While in this case ∂� is a rectifiable curve (as seen by invok-
ing [69, Theorem 1.8, p. 6]), it is not necessarily true that ∂� is a Jordan curve
(with the slit disk B(0, 1) \ [0, 1] serving as a counterexample). On the other hand,
rectifiable curves may be characterized as in (5.3.72).

If � = γ ([a, b]) is a rectifiable Jordan curve of length L , define the function
z : [0, L] → C by asking that for each s ∈ [0, L] the complex number z(s) is the
unique point γ (t) ∈ � with the property that the length of the curve γ ([a, t]) is s.
The map [0, L] � s �→ z(s) ∈ � is called the arc-length parametrization
of � (every rectifiable curve admits an arc-length parametrization; see, e.g., [31,
161, 255]). Then

z(0) = z(L) and |z(s1)− z(s2)| ≤ |s1 − s2| for all s1, s2 ∈ [0, L], (5.8.14)

by (5.8.11)–(5.8.12). As a consequence of the fact that the curve� is simple we also
have

z(·) : [0, L) −→ � bijectively. (5.8.15)

Furthermore, as is well known (see, e.g., [161, Definition 4.21 and Theorem 4.22,
pp. 128–129]),

13 i.e., non self-intersecting.
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z(s) is differentiable for a.e. s ∈ [0, L]
and |z′(s)| = 1 for a.e. s ∈ [0, L]. (5.8.16)

Let us also note here that since the Jacobian of the map [0, L] � s �→ z(s) ∈ C ≡ R
2

is equal to |z′(s)| = 1 for L1-a.e. s ∈ [0, L], the area formula (cf. Proposition 5.3.2)
yields

H1
(
z(A)

) = L1(A) (5.8.17)

for every L1-measurable set A ⊆ [0, L]. Thanks to (5.8.15) we may alternatively
express this as

H1(E) = L1
(
z−1(E)

)
for each H1-measurable set E ⊆ �. (5.8.18)

Formula (5.8.18) may be interpreted in terms of the push-forward of a measure.
Recall that, in general, if X and X̃ are two locally compact Hausdorff topological
spaces, F : X → X̃ is a continuous proper map, and if μ is a Borel measure on X,
the push-forward of μ via F is the Borel measure F∗μ on X̃ given by

(F∗μ)(E) := μ
(
F−1(E)

)
for each Borel set E ⊆ X̃. (5.8.19)

In this regard, let us also note that an equivalent characterization of the measure F∗μ
is via

ˆ
X̃
f dF∗μ =

ˆ
X
f ◦ F dμ, ∀ f continuous, compactly supported in X̃.

(5.8.20)
In our setting, formula (5.8.18) may then be re-phrased as

H1�� = z∗
(
L 1� [0, L]). (5.8.21)

Our next proposition contains useful properties of the arc-length parametrization
of a rectifiable Jordan curve in the plane.

Proposition 5.8.4 Assume that� ⊂ C is a rectifiable Jordan curve of length L and
arc-length parametrization [0, L) � s �→ z(s) ∈ �, and define

ρ(s1, s2) := min
{|s1 − s2|, L − |s1 − s2|

}
, ∀s1, s2 ∈ [0, L). (5.8.22)

Then ρ is a metric on [0, L) and, if τρ is the topology induced by it on the set
[0, L), ([0, L), τρ

)
is a compact topological space, (5.8.23)

and
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if f : [0, L] → C is continuous in the ordinary topology then

f
∣∣[0,L) :

([0, L), τρ
) −→ C is continuous ⇐⇒ f (0) = f (L).

(5.8.24)

Furthermore,

z(·) : ([0, L), ρ) −→ � is a bijective Lipschitz map with constant ≤ 1,
(5.8.25)

and if z−1(·) : � → [0, L) denotes its inverse then

z−1(·) : � −→ ( [0, L), τρ
)
continuously. (5.8.26)

Finally, if for each z1, z2 ∈ � one denotes by �(z1, z2) the length of the shortest
sub-arc of � joining z1 with z2, then

�(z1, z2) = ρ
(
z−1(z1), z

−1(z2)
)
for all z1, z2 ∈ �, (5.8.27)

and
�(·, ·) : � ×� −→ [0, L/2] has the property that

for each ε > 0 there exists δ > 0 such that �(z1, z2) < ε

whenever the points z1, z2 ∈ � are such that |z1 − z2| < δ.
(5.8.28)

Let us momentarily digress for the purpose of recording the following general
elementary fact, which is going to be useful shortly.

Lemma 5.8.5 Suppose that X is a compact topological space, Y is a Hausdorff
topological space, and f : X → Y is a given continuous bijection. Then its inverse
f −1 : Y → X is also continuous.

Proof To conclude that f −1 is continuous, it suffices to prove that if A ⊆ X is an
arbitrary closed set then ( f −1)−1(A) = f (A) is closed in Y . Since X is assumed to
be compact, and A ⊆ X is closed, it follows that A is compact. Hence, f (A) is a
compact subset of Y , given that f is continuous. Finally, Y being Hausdorff entails
that f (A) is closed in Y , as wanted. �

Having dealt with Lemma 5.8.5, we now turn our attention to the

Proof of Proposition 5.8.4 From definitions, one may easily check that ρ is a metric
on [0, L). Assume next that {x j } j∈N is a sequence of numbers in [0, L), and consider

N1 :=
{
j ∈ N : x j ∈ [0, L/2)}, N2 :=

{
j ∈ N : x j ∈ [L/2, L)}. (5.8.29)

If the set N1 is infinite, then by Weierstrass’ theorem N1 has an infinite subset M1

such that the sequence {x j } j∈M1 converges in the ordinary topology of the real line to
some x∗ ∈ [0, L/2]. Granted this, one can readily verify that {x j } j∈M1 also converges
to x∗ in τρ .
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On the other hand, if N1 is finite then necessarily N2 is infinite. Hence, N2 has
an infinite subset M2 with the property that the sequence {x j } j∈M2 converges in the
ordinary topology of the real line to some x∗ ∈ [L/2, L]. If, in fact, x∗ ∈ [L/2, L)
then one can easily verify that {x j } j∈M2 also converges to x∗ in τρ . Finally, if x∗ = L ,
then one can show that {x j } j∈M2 converges to 0 in τρ . Thus, in all cases, any sequence
in [0, L) has a subsequence that converges in τρ to a number in [0, L) and, given that
τρ is metrizable, (5.8.23) follows.

Let now f : [0, L] → C be a continuous function in the ordinary topology, with
the property that f (0) = f (L). Pick a sequence {x j } j∈N ⊆ [0, L) which converges
in τρ to some x∗ ∈ [0, L) and introduce

N1 :=
{
j ∈ N : |x∗ − x j | < L/2

}
, N2 :=

{
j ∈ N : |x∗ − x j | ≥ L/2

}
.

(5.8.30)
Then since

ρ(x∗, x j ) =
{ |x∗ − x j | if j ∈ N1,

L − |x∗ − x j | if j ∈ N2,
(5.8.31)

the fact that {x j } j∈N converges to x∗ in τρ has the following consequences:

N1 infinite=⇒{x j } j∈N1 converges to x∗ in the ordinary topology, (5.8.32)

and

N2 infinite=⇒x∗ = 0 and {x j } j∈N2 converges to L in the ordinary topology.
(5.8.33)

Given that f : [0, L] → C is continuous in the ordinary topology, these imply

N1 infinite=⇒{ f (x j )} j∈N1 converges to f (x∗) in C, (5.8.34)

and

N2 infinite=⇒x∗ = 0 and { f (x j )} j∈N2 converges to f (L) in C. (5.8.35)

Keeping in mind that we are currently assuming that f (0) = f (L), one may readily
conclude from (5.8.34)–(5.8.35) that the sequence { f (x j )} j∈N converges to f (x∗) in
C. This proves that themap f

∣
∣[0,L) :

([0, L), τρ
) → C is continuous at x∗, thus estab-

lishing the right-to-left implication in (5.8.24). In the converse direction, assume that
f : [0, L] → C is a continuous function in the ordinary topology with the property
that the map f

∣
∣[0,L) :

([0, L), τρ
) → C is also continuous. For each j ∈ N consider

x j := L − L/(2 j) ∈ [0, L). Then since the sequence {x j } j∈N converges to 0 in τρ
and converges to L in the ordinary topology on the real line, it follows that we
necessarily have f (0) = f (L). This finishes the proof of (5.8.24).

As regards (5.8.25), note that for any s1, s2 ∈ [0, L), the points z(s1), z(s2) divide
� into two arcs, call them �1 and �2, such that
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both arcs, �1 and �2, have z(s1), z(s2) as endpoints, and

the lengths of �1, �2 are |s1 − s2| and L − |s1 − s2|, respectively. (5.8.36)

From this and (5.8.43) and (5.8.12) we may then conclude that |z(s1)− z(s2)| is no
larger than both |s1 − s2| and L − |s1 − s2|. Hence,

|z(s1)− z(s2)| ≤ min
{|s1 − s2|, L − |s1 − s2|

} = ρ(s1, s2), (5.8.37)

proving that z(·) : ([0, L), τρ
) → � is Lipschitz, with constant ≤ 1.

Going further, (5.8.26) follows from (5.8.15), (5.8.23), (5.8.24) (or (5.8.25)), and
Lemma 5.8.5. Next, (5.8.27) is a consequence of definitions.

Finally, we shall prove (5.8.28) reasoning by contradiction. To this end, assume
there exist ε > 0 along with {z( j)1 } j∈N ⊆ � and {z( j)2 } j∈N ⊆ � such that for each
j ∈ N we have |z( j)1 − z( j)2 | < 1/j and �

(
z( j)1 , z

( j)
2

) ≥ ε. Since � is compact, we
my invoke Bolzano–Weierstrass to conclude that, after eventually passing to sub-
sequences, both {z( j)1 } j∈N and {z( j)2 } j∈N converge to some point z∗ ∈ �. Then, on the
one hand, (5.8.27) gives

ε ≤ �(z( j)1 , z
( j)
2

) = ρ
(
z−1(z( j)1 ), z

−1(z( j)2 )
)
for each j ∈ N. (5.8.38)

On the other hand, (5.8.26) implies

ρ
(
z−1(z( j)1 ), z

−1(z∗)
) → 0 and ρ

(
z−1(z( j)2 ), z

−1(z∗)
) → 0 as j → ∞. (5.8.39)

Given that ρ is a metric, for each j ∈ N we may write

ρ
(
z−1(z( j)1 ), z

−1(z( j)2 )
) ≤ ρ(z−1(z( j)1 ), z

−1(z∗)
) + ρ(z−1(z( j)2 ), z

−1(z∗)
)

(5.8.40)

which, in view of (5.8.39), entails

lim
j→∞ ρ

(
z−1(z( j)1 ), z

−1(z( j)2 )
) = 0. (5.8.41)

The fact that this stands in contradiction with (5.8.38) proves (5.8.28). �

Further topologic and geometric measure theoretic properties of planar domains
encompassed by rectifiable Jordan curves are discussed in the proposition below.

Proposition 5.8.6 Let � ⊂ C be a rectifiable Jordan curve and denote by � the
bounded connected component of C \�.

(i) Then � is an open set of finite perimeter which satisfies

∂� = ∂
(
�

) = � and H1(∂� \ ∂∗�) = 0. (5.8.42)
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(ii) Let L be the length of the curve� and let [0, L] � s �→ z(s) ∈ � be its arc-length
parametrization. Then

L = H1(�). (5.8.43)

Also, if ν denotes the geometric measure theoretic outward unit normal to �,

ν
(
z(s)

) = −iz′(s) for L1-a.e. s ∈ [0, L] (5.8.44)

and

for L1-a.e. s ∈ [0, L] the line {z(s)+ t z′(s) : t ∈ R} is
an approximate tangent line to � at the point z(s).

(5.8.45)

Proof For (5.8.43) see (5.8.11). As a consequence of the fact that the curve �
is simple we have (5.8.15). Furthermore, the properties recorded in (5.8.16) are
presently valid. In addition, (5.8.12) implies

|z(s1)− z(s2)| ≤ |s1 − s2|, ∀s1, s2 ∈ [0, L]. (5.8.46)

Moving on, Jordan Curve Theorem (recalled earlier in (5.8.8)) implies that we
presently have ∂� = � and � = � ∪ ∂� = �+ ∪� = C \�−, hence

∂
(
�

) = ∂
(
C \�−

) = ∂�− = �. (5.8.47)

Also, fromH1(∂�) = H1(�) = L < +∞ (with the last equality provided by [161,
Theorem 4.38, p. 135]) and (5.6.38) we conclude that� is a domain of finite perime-
ter.

Next, if so ∈ (0, L) is a point of differentiability for the complex-valued function
z(·), then for every ε > 0 there exists δ > 0 such that

z(so + s) ∈ B
(
z(so)+ s z′(so), ε|s|

)
,

∀s ∈ (−δ, δ) with so + s ∈ (0, L). (5.8.48)

In turn, from this geometric property and (5.6.93) we deduce (keeping in mind that
the vectors z′(so) and iz′(so) are perpendicular) that for each angle θ ∈ (0, π) there
exists a height h = h(θ) > 0 such that if�±

θ,h denote the open truncated plane sectors
with common vertex at z(so), common aperture θ , common height h, and symmetry
axis along the vectors ±iz′(so), then

�+
θ,h ⊆ � and �−

θ,h ⊆ C \�. (5.8.49)

Together, (5.8.49) and (5.2.1) then imply that
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A := {z(so) : so ∈ A} ⊆ ∂∗�, where we have set

A := {so ∈ (0, L) : so differentiability point for z(·)}. (5.8.50)

From (5.8.50) and (5.8.17) we conclude that

H1(∂�\∂∗�)≤H1(� \A)=H1
(
z([0, L] \ A)

) = L1
([0, L] \ A

) = 0, (5.8.51)

which completes the proof of (5.8.42). As a consequence of (5.8.51) and (5.6.21)
let us also observe thatA ∩ ∂∗� has fullH1-measure in ∂�. On account of (5.8.18)
this entails

L1
([0, L] \ z−1(A ∩ ∂∗�)) = 0. (5.8.52)

Next, pick an arbitrary point zo ∈ A and recall that (5.8.49) holds. From this and
Lemma 5.6.15 it follows that if �π−θ is the infinite open plane sector with vertex at
0, aperture π − θ , and symmetry axis along the vector −iz′(so), then the geometric
measure theoretic outward unit normal to � satisfies

ν(z(so)) ∈ �π−θ (5.8.53)

provided ν(z(so)) exists, i.e., if z(so) ∈ ∂∗�. The fact that θ ∈ (0, π)may be chosen
arbitrarily close to π then forces ν(z(so)) = −iz′(so)whenever z(so) ∈ ∂∗�, i.e., for
so ∈ z−1(A ∩ ∂∗�). Given that by (5.8.52) the latter set has full one-dimensional
Lebesgue measure in [0, L], the claim in (5.8.44) is established. Lastly, the claim in
(5.8.45) is a consequence of (5.6.68), and (5.8.44). �

We continue to assume that � ⊂ C is a rectifiable Jordan curve. As in the past,
denote by L the length of� and let [0, L] � s �→ z(s) ∈ � an arc-length parametriza-
tion of �. Since the Jacobian of the map [0, L] � s �→ z(s) ∈ C ≡ R

2 is equal to
|z′(s)| = 1 forL1-a.e. s ∈ [0, L], the change of variable formula (cf. [80, Theorem 2,
p. 99]) gives that

ˆ
�

g(z) dσ(z) =
ˆ L

0
g(z(s)) ds, ∀g ∈ L1(�, σ ), (5.8.54)

where σ , the arc-length measure, is defined as

σ := H1��. (5.8.55)

Note that (5.8.54) also follows from (5.8.20) since, in light of (5.8.55), formula
(5.8.21) entails

σ = z∗
(L1� [0, L]), (5.8.56)

i.e., the arc-length measure is the push-forward of the one-dimensional Lebesgue
measure (restricted to the interval [0, L]) via the arc-length parametrization.
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In the same context as above, we agree to define the complex measure dz on �
by setting

dz := iν dσ (5.8.57)

where the measure σ is as in (5.8.55), and ν is the geometric measure theoretic
outward unit normal to the bounded connected component of C \� (that ν is mean-
ingfully defined is a consequence of Lemma 5.8.6).

Lemma 5.8.7 Suppose � ⊂ C is a rectifiable Jordan curve, of length L and arc-
length parametrization [0, L] � s �→ z(s) ∈ �. Then

ˆ
�

f (z) dz =
ˆ L

0
f (z(s))z′(s) ds, ∀ f ∈ L1(�, σ ). (5.8.58)

Also, with � denoting the inner domain of �,

ˆ
�

∂F dL2 = 1

2i

ˆ
∂�

F(z) dz

= 1

2i

ˆ L

0
F(z(s))z′(s) ds, ∀F ∈ Lip(�,C), (5.8.59)

where ∂ = 1
2

(
∂x + i∂y

)
is the Cauchy–Riemann operator.

Proof Given any function f ∈ L1(�, σ ), we may write

ˆ
�

f (z) dz = i
ˆ
�

f (z)ν(z) dσ(z) = i
ˆ L

0
f (z(s))ν(z(s)) ds

=
ˆ L

0
f (z(s))z′(s) ds, (5.8.60)

by (5.8.57), (5.8.54), and (5.8.44). This proves (5.8.58). As regards (5.8.59), for any
function F ∈ Lip(�,C) we have

ˆ
�

∂F dL2 = 1

2

ˆ
�

(∂x + i∂y)F dL2 = 1

2

ˆ
∂∗�
(ν1 + iν2)F dH1

= 1

2

ˆ
∂�

Fν dσ = 1

2i

ˆ
∂�

F(z) dz. (5.8.61)

Above, the first equality is simply the definition of the Cauchy–Riemann operator.
The second equality follows from the classical De Giorgi–Federer version of the
Divergence Theorem, recalled in Theorem 1.1.1 (here we use the fact that � has
finite perimeter; cf. Lemma 5.8.6). The third equality is implied by (5.8.42) and
(5.8.55), while the fourth equality is a consequence of (5.8.57). This establishes the
first equality in (5.8.59), and the second equality in (5.8.59) follows from this and
(5.8.58). �
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Remark 5.8.8 It is clear that the first equality in (5.8.59) continues to hold in the
case when � is an open set in the plane whose boundary consists of finitely many
rectifiable Jordan curves. A further refinement of the first equality in (5.8.59) is
contained in [59].

5.9 Ahlfors Regular Sets

An important class of sets of locally finite perimeter consists of open subsets of R
n

with boundaries satisfying an upper Ahlfors regularity condition. Together with other
related notions, this is defined next.

Definition 5.9.1 Let � ⊆ R
n be an arbitrary set.

(i) Call� lowerAhlforsregular provided there exists a constant c ∈ (0,∞)
such that

c rn−1≤Hn−1
∗

(
B(x, r)∩�)

for each x ∈ � and r ∈ (
0, 2 diam(�)

)
. (5.9.1)

(ii) Call� upper Ahlfors regular if there exists C ∈ (0,∞)with the property
that

Hn−1
∗

(
B(x, r) ∩�) ≤ Crn−1 for each x ∈ � and r > 0. (5.9.2)

(iii) Finally, call � simply Ahlfors regular14 if it is both lower and upper
Ahlfors regular.

The constants intervening above will be referred to as the (lower/upper) ADR con-
stants (or character) of the set �.

The Ahlfors regularity condition described in item (iii) of the above definition has
been first introduced byL.Ahlfors for planar curves, then subsequently considered by
G. David for subsets of Euclidean spaces of arbitrary dimension. Roughly speaking,
Ahlfors regular sets are environments which behave much like (n − 1)-dimensional
Euclidean spaces in terms of size and mass distribution, even though they can be
quite different in other aspects of their respective geometries (e.g., they may lack
nontrivial rectifiable curves, like the highly disconnected four-corner planar Cantor
set, described a little later below). It should be pointed out that Ahlfors regularity is
not a regularity property per se, but rather a scale-invariant way of expressing the fact
that the set in question is (n − 1)-dimensional in a uniform, scale-invariant fashion,
involving the Hausdorff outer measure.

In this regard, let us note that Ahlfors regularity allows the set in question to
develop singularities even when the constants c,C appearing in (5.9.1)–(5.9.2) coin-
cide. For example, it has been observed by Kowalski and Preiss in [156] that, if vn−1

14 Or Ahlfors–David regular, or ADR for short.



432 5 Sets of Locally Finite Perimeter and Other Categories of Euclidean Sets

denotes the volume of the unit ball in R
n−1, then

�n :=
{
x = (x1, . . . , xn) ∈ R

n : x24 = x21 + x22 + x23
}

with n ≥ 4 (5.9.3)

has the property that15

Hn−1
(
�n ∩ B(x, r)

) = vn−1r
n−1 for all x ∈ �n and all r ∈ (0,∞). (5.9.4)

In spite of (5.9.4), the Kowalski–Preiss four-dimensional (double) cone

�4 :=
{
x = (x1, x2, x3, x4) ∈ R

4 : x24 = x21 + x22 + x23
}

(5.9.5)

has a singularity at the origin.
Moving on, it is easy to see that

for a subset� of R
n , being upper Ahlfors regular is equivalent to the

demand that the inequality in (5.9.2) actually holds for every point
x ∈ R

n (albeit with a possibly different constant).
(5.9.6)

For future reference we wish to remark that

if� ⊆ R
n is upper Ahlfors regular then� is Lebesgue

measurable, has an empty interior, and Ln(�) = 0.
(5.9.7)

Indeed, this is a consequence of (5.9.2), keeping in mind that any null-set for the
Hausdorff outer-measure is Hausdorff measurable (cf. [80, Remarks, p. 2]). Trivially,

any subset of an upper Ahlfors regular set
is itself an upper Ahlfors regular set,

(5.9.8)

and, by induction,

finite unions of lower Ahlfors regular sets
are themselves lower Ahlfors regular.

(5.9.9)

Also, from (5.9.6) it is clear that

a finite union of upper Ahlfors regular sets
is itself an upper Ahlfors regular set.

(5.9.10)

15 In fact, [156, Main Theorem (Measure-theoretic version), p. 116] asserts that � as in (5.9.3)
along with (n − 1)-dimensional planes in R

n (in all dimensions) are, up to a rigid transformation of
R
n , the only Ahlfors regular sets satisfying (5.9.1)–(5.9.2) with the same constant (i.e., the “Global

Besicovitch Property” in the terminology of [156, p. 115]). Parenthetically, we wish to remark
that “tight” Ahlfors regularity estimates like (5.9.4) are true for non-flat smooth surfaces such as
spheres in the three-dimensional Euclidean space. Specifically, Archimedes’ formula for the area
of a spherical cap in the tree-dimensional setting gives thatH2

(
S2 ∩ B(x, r)

) = πr2 for all x ∈ S2

and all r ∈ (0, 1).
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In particular, from (5.9.9) and (5.9.10) we conclude that

finite unions ofAhlfors regular sets are
themselves Ahlfors regular sets.

(5.9.11)

Since for each two integersn,m ∈ N, each set E ⊆ R
n , each point (x, y) ∈ R

n × R
m ,

and each number r ∈ (0,∞) we have ∂(E × R
m
) = (∂E)× R

m and, using a self-
explanatory piece of notation,

(
Bn

(
x, r/

√
2
) ∩ E

) × Bm
(
y, r/

√
2
) ⊆ Bn+m

(
(x, y), r

) ∩ (
E × R

m
)

⊆ (
Bn(x, r) ∩ E

) × Bm(y, r), (5.9.12)

we conclude that

if E is anAhlfors regular set inR
n then E × R

m

happens to be an Ahlfors regular set in R
n+m .

(5.9.13)

Let us also note that

assuming � ⊆ R
n is Hn−1-measurable and Ahlfors regular,

then Hn−1�� is a complete Radon, doubling measure on �.
(5.9.14)

In addition, from (5.6.35) it is apparent that for each given Lebesgue measurable
subset � of R

n the following implications hold:

∂� is upper Ahlfors regular =⇒ the measure σ := Hn−1�∂� is locally finite

=⇒� is a set of locally finite perimeter, (5.9.15)

and

∂∗� is upper Ahlfors regular =⇒ the measure σ∗ := Hn−1�∂∗� is locally finite

=⇒� is a set of locally finite perimeter. (5.9.16)

It is also clear from (5.9.15), (5.6.35), and (5.7.5) that

anyLebesguemeasurable set E ⊆ R
n with a compact upper

Ahlfors regular boundary has finite perimeter.
(5.9.17)

Also,
whenever� ⊆ R

n is lowerAhlfors regular and A ⊆ �

is a set satisfying Hn−1∗ (� \ A) = 0 then A is dense
in � (equipped with the topology inherited from R

n).
(5.9.18)

Lastly, we wish to note that, as we shall show later on, in Proposition 8.6.12,
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for open subsets of R
n with Ahlfors regular boundaries, being n-thick

is actually equivalent to the interior corkscrew property.
(5.9.19)

The following criterion for upper Ahlfors regularity has been proved in [183].

Proposition 5.9.2 Assume that E ⊆ R
n is a set satisfying (E◦) = E as well as a

uniform exterior ball condition, in the sense that there exists some r ∈ (0,∞) with
the property that

∀x ∈ ∂E ∃ω ∈ Sn−1 such that B(x + rω, r) ⊆ R
n \ E . (5.9.20)

Then ∂E is upper Ahlfors regular. In particular, if E is also Ln-measurable, then
E has locally finite perimeter.

Graphs of BMO1 functions defined inR
n−1 are Ahlfors regular sets inR

n . Specif-
ically, if φ ∈ BMO1(R

n−1), i.e.,

φ : R
n−1 → R is locally integrable, ∇′φ ∈ [

L1
loc(R

n−1,Ln−1)
]n−1

, and

‖∇′φ‖∗ := sup
B ball in Rn−1

 
B

∣∣
∣(∇′φ)(x ′)−

(  
B
(∇′φ)(y′) dy′

)∣∣
∣ dx ′ < +∞,

(5.9.21)
then φ is continuous (thanks to John–Nirenberg inequality and Sobolev embeddings)
and its graph,

� := {(
x ′, φ(x ′)

) ∈ R
n : x ′ ∈ R

n−1
}

is a closed Ahlfors regular set in R
n,

(5.9.22)

with constants depending only on n and ‖∇′φ‖∗. See [125, Corollary 2.26, p. 2622].
Examples of Ahlfors regular sets also include certain types of fractals, such

as the four-corner planar Cantor set. To describe the latter, let E0 := [0, 1]2 be
the unit square in R

2, and consider the four (closed) squares {Q j
1}1≤ j≤4, of side-

length 4−1 located in the corners of E0. Let E1 := ⋃4
j=1 Q

j
1. Iteratively, for each

m ∈ N, consider the m-th generation of squares defined as the collection of 4m

squares {Q j
m}1≤ j≤4m , of side-length �(Q

j
m) = 4−m , which are located in the cor-

ners of Em−1 (i.e., each Q j
m , with j ∈ {1, . . . , 4m}, is located in one of the corners

of a square Qk
m−1, for some k ∈ {1, . . . , 4m−1}) and define Em := ⋃4m

j=1 Q
j
m . The

four-corner Cantor set in R
2 is then given by (Fig. 5.3)

E :=
∞⋂

m=0

Em . (5.9.23)
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Fig. 5.3 The first four iterations in the construction of the four-corner planar Cantor set

It is then known (cf. [188, Proposition 4.79, p. 238] and [214, p. 7]) that

the four-corner planar Cantor set E ⊆ R
2 from (5.9.23) is a compact

Ahlfors regular set, satisfying H1(E) = √
2, and has the property that

the Euclidean distance restricted to E is equivalent (in the sense of
quasi-distances) to an ultrametric.

(5.9.24)

Given an Ahlfors regular set � ⊆ R
2 ≡ C, for each ε > 0 define the truncated

“altered” Cauchy operator16 acting on any function

f ∈ L1
(
�,

H1(ζ )

1+ |ζ |
)

(5.9.25)

according to

C
alt

ε f (z) :=
ˆ

ζ∈�
|z−ζ |>ε

f (ζ )

ζ − z
dH1(ζ ) for all z ∈ �, (5.9.26)

and define the maximal “altered” Cauchy operator acting on any function f as in
(5.9.25) by

C
alt

max f (z) := sup
ε>0

∣∣C
alt

ε f (z)
∣∣ for all z ∈ �. (5.9.27)

From [98] (cf. also [68, p. 8], [65, 99, 137, 175]) we know that

if E denotes the four-corner Cantor set in R
2 ≡ C (cf. (5.9.23)) then

the truncated “altered” Cauchy operator defined as in (5.9.25)-(5.9.26)
with � := E fails to be bounded on L2

(
E,H1�E)

with operator norm
controlled uniformly in ε ∈ (0,∞).

(5.9.28)

This should be contrasted with a celebrated result of G. David (originally proved in
[64]; cf. also [209, Theorem 3.2, p. 285]) according to which

16 Ordinarily, the Cauchy integral operator is considered with respect to the complex arclength dζ .
Defining the latter requires making certain assumptions on the underlying set. For example, if the
Cauchy operator is considered on the boundary of a set of locally finite perimeter � ⊂ R

2 ≡ C,
then we may define dζ as −2i∂1�, or iν(ζ ) dσ(ζ ). If the underlying set is merely upper Ahlfors
regular, a convenient substitute for dζ is H1. In such a scenario, since we no longer deal with the
classical Cauchy operator, we shall call the resulting object the “altered” Cauchy operator.
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given a rectifiable curve� ⊆ R
2 ≡ C, the maximal “altered” Cauchy

operator C
alt

max (cf. (5.9.27)) is bounded on L2
(
�,H1��)

if and only
if � is upper Ahlfors regular.

(5.9.29)

In particular, (5.9.29) points to the prominence of connectivity in relation to the
boundedness of the singular Cauchy integral operator. Let us also note that, as shown
in [176],

given an Ahlfors regular set � ⊆ R
2 ≡ C, the maximal “altered”

Cauchy operator C
alt

max (cf. (5.9.27)) is bounded on L2
(
�,H1��)

if and only if � is contained in a rectifiable upper Ahlfors regular
curve.

(5.9.30)

Moving on, we observe from (5.8.11) and item (ii) in Definition 5.9.1 that

any compact upper Ahlfors regular curve � ⊂ C is rectifiable. (5.9.31)

In this vein, it is also of interest to establish the following result.

Lemma 5.9.3 Any rectifiable curve� ⊂ Cwhich does not reduce to a point is lower
Ahlfors regular. More precisely, for any rectifiable curve � ⊂ C one has

r ≤ H1
(
B(z, r) ∩�)

for all z ∈ � and r ∈ (
0, diam�

)
. (5.9.32)

In particular, as a consequence of this and (5.9.31),

any compact upper Ahlfors regular curve in C is rectifiable, hence also
lower Ahlfors regular if it does not reduce to a point.

(5.9.33)

Proof Pick some location z ∈ � and some scale r ∈ (
0, diam�

)
. Then since � is

connected it follows that ∂B(z, r) ∩� = ∅. Hence, there exists z0 ∈ ∂B(z, r) ∩�.
Taking z0 to be the first exit point of the curve � out of the ball B(z, r), there is
no loss of generality in assuming that �z,z0 , the sub-arc of � emerging from z and
ending in z0, is contained in B(z, r). Granted this, we may then rely on (5.8.12) to
estimate

H1
(
B(z, r) ∩�) ≥ H1

(
�z,z0

) ≥ |z − z0| = r, (5.9.34)

as claimed in (5.9.32). �

Combining (5.9.32) with (5.3.72) leads to the conclusion that

any compact connected set E ⊆ R
2 which is not a singleton and

satisfies H1(E) <∞ is necessarily lower Ahlfors regular.
(5.9.35)
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Below we give an example of a compact simple curve which is rectifiable and
does not reduce to a point, hence is lower Ahlfors regular, but which is not upper
Ahlfors regular.

Proposition 5.9.4 Fix α ∈ (1, 2) and consider the function f : [0, 1] → R given at
each x ∈ [0, 1] by

f (x) :=
{
xα · cos(1/x) if x ∈ (0, 1],
0 if x = 0.

(5.9.36)

Define � ⊆ R
2 to be the graph of f , i.e.,

� := {
(x, f (x)) : x ∈ [0, 1]}. (5.9.37)

Then� is a compact simple curve which is rectifiable, lower Ahlfors regular, and
has H1(�) <∞, but is not upper Ahlfors regular.

Proof An inspection of the definition of� reveals that this is indeed a compact simple
curve which does not reduce to a point. Clearly, 0 ∈ �. To estimate the length of �,
first observe that

f ′(x) = α · xα−1 · cos(1/x)+ xα−2 · sin(1/x) for each x ∈ (0, 1). (5.9.38)

In particular,
| f ′(x)| ≤ (α + 1)xα−2 for each x ∈ (0, 1), (5.9.39)

so

H1(�) =
ˆ 1

0

√
1+ | f ′(x)|2 dx ≤ 1+ (α + 1)

ˆ 1

0
xα−2 dx = 2α

α − 1
. (5.9.40)

Thus, � has finite length, hence � is rectifiable. Granted this, Lemma 5.9.3 ensures
that � is a lower Ahlfors regular set.

To prove that � fails to be upper Ahlfors regular it suffices to show that

lim
r→0+

H1
(
� ∩ B(0, r)

)

r
= +∞. (5.9.41)

With this goal inmind, fix an arbitrary r ∈ (0, 1) and note that for each x ∈ (
0, r/

√
2
)

we have

∣
∣ f (x)

∣
∣ ≤ xα ≤ x < r/

√
2, hence

√
x2 + (

f (x)
)2
< r. (5.9.42)

This shows that

{
(x, f (x)) : 0 < x < r/

√
2
} ⊆ � ∩ B(0, r) for each r ∈ (0, 1). (5.9.43)
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Consequently, for each r ∈ (0, 1) we have

H1
(
� ∩ B(0, r)

)

r
≥

H1
({
(x, f (x)) : 0 < x < r/

√
2
})

r

= 1

r

ˆ r/
√
2

0

√
1+ | f ′(x)|2 dx ≥ 1

r

ˆ r

0
| f ′(x)| dx, (5.9.44)

so the claim made in (5.9.41) follows as soon as we show that

lim
r→0+

1

r

ˆ r

0
| f ′(x)| dx = +∞. (5.9.45)

To justify this, start by estimating

| f ′(x)| ≥ xα−2 · | sin(1/x)| − α · xα−1 · | cos(1/x)|
≥ xα−2 · | sin(1/x)| − α · xα−1 for each x ∈ (0, 1), (5.9.46)

and note that since α > 1 we have

lim
r→0+

1

r

ˆ r

0
α · xα−1 dx = lim

r→0+
rα−1 = 0. (5.9.47)

In view of the current goal, it therefore suffices to show that

lim
r→0+

1

r

ˆ r

0
xα−2 · | sin(1/x)| dx = +∞. (5.9.48)

To this end, use R := 1/r and make the change of variable y := 1/x to write

lim
r→0+

1

r

ˆ r

0
xα−2 · | sin(1/x)| dx = lim

R→+∞

(
R
ˆ ∞

R

| sin y|
yα

dy
)
. (5.9.49)

For each R ∈ (10,∞), consider the unique n ∈ N such that πn ≤ R < π(n + 1).
This guarantees that

n − 1 > (R/π)− 2 and IR := [
π(n + 1), π(2n)

] ⊆ [R, 2R]. (5.9.50)

If we then define

JR :=
n−1⋃

j=1

[
π(n + j)+ π/6, π(n + j + 1)− π/6] (5.9.51)
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it follows that JR ⊆ IR ⊆ [R, 2R] and the length of JR is (2/3)(n − 1)π . In view
of (5.9.50), the latter implies that the length of JR is ≥ (2/3)(R − 2π). Since we
also have | sin y| ≥ 1/2 and 1/yα ≥ 1/(2R)α for each y ∈ JR ⊆ [R, 2R], we may
estimate

lim
R→+∞

(
R
ˆ ∞

R

| sin y|
yα

dy
)
≥ lim

R→+∞

(
R
ˆ
JR

| sin y|
yα

dy
)

≥ lim
R→+∞

(
R · 1

2
· 1

(2R)α
· 2(R − 2π)

3

)

= +∞, (5.9.52)

given that α < 2. Together with (5.9.49), this finally shows that (5.9.48) holds, thus
finishing the proof of Proposition 5.9.4. �

To give examples of Ahlfors regular sets of a different nature, we make one more
definition. Specifically, make the following definition.

Definition 5.9.5 Call a set � ⊆ R
2 a chord-arc curve provided � is a simple

locally rectifiable closed curve17 satisfying

sup
z1 =z2
z1,z2∈�

�(z1, z2)

|z1 − z2| < +∞, (5.9.53)

where �(z1, z2) is the length of the shorter sub-arc of � joining z1 with z2.

For example, the boundary of an infinite sector in the plane of (full) aper-
ture θ ∈ (0, π) is a chord-arc curve with the corresponding supremum in (5.9.53)
equal to

(
sin(θ/2)

)−1
. Curves satisfying (5.9.53) have been introduced in 1936 by

M.A. Lavrentiev in [160], and are sometimes called Lavrentiev curves. It is well
known (cf., e.g., [218, Proposition 7.7, p. 163]) that

any simple locally rectifiable closed curve � ⊆ R
2 satisfying

(5.9.53) (hence any chord-arc curve) is an Ahlfors regular set.
(5.9.54)

The converse of the statement in (5.9.54) is not true, as may be seen by considering
curves with a cusp, such as a rectifiable closed curve � ⊂ R

2 which passes through
the origin and such that � ∩ (−1, 1)2 = {

(x,
√|x |) : x ∈ (−1, 1)

}
.

Any simple locally rectifiable closed curve in R
2 which contains � defined in

(5.9.37) as a sub-arc fails to be a chord-arc curve. Indeed, since � is not upper
Ahlfors regular (cf. Proposition 5.9.4), this is implied by (5.9.54). A direct proof is
as follows: Abbreviate z0 := (0, 0) ∈ �, and for each r ∈ (0, 1) consider the point
zr :=

(
r, f (r)

) ∈ �. The failure to be chord-arc becomes evident once we show that

17 Possibly passing through infinity.
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lim
r→0+

�(z0, zr )

|z0 − zr | = +∞, (5.9.55)

where �(z0, zr ) is the length of the shorter subarc of � joining z0 with zr . To prove
(5.9.55), fix an arbitrary r ∈ (0, 1) and note that

∣∣ f (r)
∣∣ ≤ rα ≤ r hence |z0 − zr | =

√
r2 + (

f (r)
)2 ≤ √

2r. (5.9.56)

Since we also have

�(z0, zr ) =
ˆ r

0

√
1+ | f ′(x)|2 dx ≥

ˆ r

0
| f ′(x)| dx, (5.9.57)

the claim made in (5.9.55) follows from (5.9.45).

Concrete examples of chord-arc curves may be constructed from graphs of real-
valued BMO1 functions defined on the real line. More specifically, we have the
following result:

Proposition 5.9.6 Assume f : R → R is a locally integrable functionwith the prop-
erty that f ′, its distributional derivative on the real line, belongs to the space
BMO(R,L1). Denote the graph of f by �, i.e., � := {

(x, f (x)) : x ∈ R
} ⊆ R

2.
Then � is a locally rectifiable curve and, for any x ∈ R and r > 0, the length of the
sub-arc of � with endpoints

(
x ± r, f (x ± r)

)
is bounded by

⎧
⎨

⎩
1+ sup

�⊂R|�|≤2r

 
�

∣
∣ f (y)− f�| dy

⎫
⎬

⎭

∣
∣∣
(
x − r, f (x − r)

)−(
x + r, f (x + r)

)∣∣∣, (5.9.58)

where the supremum is taken over all sub-intervals� ofRwith length |�| ≤ 2r , and
where f� abbreviates

ffl
�
f (y) dy. As a consequence, for any two points z1, z2 ∈ �,

the sub-arc of � with endpoints z1 and z2
has length ≤ (

1+ ‖ f ′‖BMO(R,L1)

)|z1 − z2|. (5.9.59)

Proof Recall from [125, (2.2.34) on p.2580] that every function f ∈ C 0(R) with
f ′ ∈ L1

loc(R,L1) has the property that

H1
({(x, f (x)) : x ∈ O}) =

ˆ
O

√
1+ | f ′(x)|2 dx, ∀O ⊆ R Borel set.

(5.9.60)
Granted this, all claims follow as soon as we show that for each x ∈ R and r > 0 we
have

ˆ x+r

x−r

√
1+ | f ′(y)|2 dy ≤ {

1+ M( f ; r)}
∣
∣
∣
(
x − r, f (x − r)

) − (
x + r, f (x + r)

)∣∣
∣,

(5.9.61)
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where we have set

M( f ; r) := sup
�⊂R|�|≤2r

 
�

∣∣ f (y)− f�| dy. (5.9.62)

With this goal in mind, fix x ∈ R along with r > 0, and introduce

m(x, r) :=
 x+r

x−r
f ′(y) dy. (5.9.63)

Given that we are assuming f ′ ∈ BMO(R,L1) ⊂ L1
loc(R,L1), it follows that the

function f belongs to the local Sobolev spaceW 1,1
loc (R). In turn, this implies that18 the

function f is locally absolutely continuous (cf., e.g., [161,Corollary 7.14, p. 223]).As
a consequence, the fundamental theorem of calculus holds19 and we may re-express
the integral average m(x, r) as

m(x, r) = 1

2r

ˆ x+r

x−r
f ′(y) dy = 1

2r

(
f (x + r)− f (x − r)

)
. (5.9.64)

Then, since the function F(t) := √
1+ t2, t ∈ R, is non-negative and Lipschitz with

constant ≤ 1 (given that |F ′(t)| = |t |/√1+ t2 ≤ 1 for each t), we may estimate

ˆ x+r

x−r

√
1+ | f ′(y)|2 dy =

ˆ x+r

x−r
F( f ′(y)) dy (5.9.65)

≤
ˆ x+r

x−r

∣∣F( f ′(y))− F(m(x, r))
∣∣ dy +

ˆ x+r

x−r
F(m(x, r)) dy

≤
ˆ x+r

x−r

∣∣ f ′(y)− m(x, r)
∣∣ dy + 2r F(m(x, r))

≤ 2r M( f ; r)+ 2r

√

1+
( f (x + r)− f (x − r)

2r

)2

≤ {
1+ M( f ; r)}

√
(2r)2 + (

f (x + r)− f (x − r)
)2
,

from which (5.9.61) follows. Since (5.9.59) is an obvious consequence of (5.9.59),
the proof is complete. �

Heuristically, chord-arc curves are not much worse than Lipschitz curves. Indeed,
by [218, Theorem 7.9, p. 165], we have20

18 After being redefined on a set of measure zero.
19 Cf., e.g., [161, Theorem 3.30, p. 85].
20 A version for infinite chord-arc curves, described as bi-Lipschitzian images of straight lines, may
be found in [132, Proposition 1.13, p. 227]; see also [47, (ii), p. 104].
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a compact curve � ⊂ C is

a chord-arc curve

}
⇐⇒

{
there is a bi-Lipschitz map F

of C onto C such that � = F(S1).
(5.9.66)

Hence, a compact curve � ⊆ R
2 is chord-arc if and only if � is the image of the

unit circle T under a bi-Lipschitz homeomorphism F of C onto C.
Another useful characterization of the class of compact chord-arc curves is as

follows.

Lemma 5.9.7 Assume that � ⊂ C is a compact rectifiable Jordan curve. Let L be
its length and denote by [0, L] � s �→ z(s) ∈ � its arc-length parametrization. Then
� is a chord-arc curve if and only if the mapping (5.8.25) is bi-Lipschitz, i.e., if as
a mapping between metric spaces, its inverse

η=z−1(·) : (�, |· − ·| )−→( [0, L), d)
is Lipschitz (hence bi-Lipschitz), (5.9.67)

where | · − · | is the standard Euclidean distance, and the metric d is as in (5.8.22).

Proof Any two distinct points z1, z2 ∈ � divide � into two arcs, having z1, z2 as
endpoints, and whose lengths are �(z1, z2) and L − �(z1, z2). A moment’s reflection
then shows that� satisfies the chord-arc condition (5.9.53) if and only if there exists
C ∈ (0,∞) with the property that

min
{
�(z1, z2), L − �(z1, z2)

} ≤ C |z1 − z2|, ∀z1, z2 ∈ �. (5.9.68)

In turn, the validity of condition (5.9.68) for some C ∈ (0,∞) is readily seen to be
equivalent to the demand that η : (�, | · − · | ) → ( [0, L), d)

is a Lipschitz map. �

By definition, any compact chord-arc curve � ⊆ R
2 is a Jordan curve. In partic-

ular, Jordan’s theorem implies that � partitions the plane into two connected com-
ponents, namely a bounded simply connected open set, called the inner domain
of �, and an unbounded connected open set, called the outer domain of �.

Definition 5.9.8 Call an open set � ⊆ R
2 with compact boundary a chord-arc

domain provided � is either the inner domain or the outer domain of a compact
chord-arc curve (cf. Definition 5.9.5).

It is well known (cf. [132, p. 92]) that

any bounded chord-arc domain in R
2 is a quasi-disk

(hence also an NTA domain; cf. Definition 5.11.1).
(5.9.69)

In fact, it turns out that bounded chord-arc domains are precisely bi-Lipschitz dis-
tortions of the unit disk in the plane. Specifically, we have the following result.

Proposition 5.9.9 A bounded open set � ⊆ C is a chord-arc domain if and only if
there exists a bi-Lipschitz map F of C onto C such that � = F

(
B(0, 1)

)
.
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Proof In one direction, if F is a bi-Lipschitz map ofC ontoC and� := F
(
B(0, 1)

)
,

then � is a bounded open set whose boundary is F(S1). Since by (5.9.66) the latter
is a chord-arc curve, we deduce that � is a chord-arc domain.

In the converse direction, suppose that� ⊆ C is a bounded chord-arc domain. In
particular, � := ∂� is a chord-arc curve, and this makes � simply connected. Let
[0, L] � s �→ z(s) ∈ � be an arc-length parametrization of�, where L is its length.
To proceed, let

[0, 2π ] � θ �→ eiθ ∈ S1 (5.9.70)

be the standard arc-length parametrization of the unit circle. Then, as a particular
case of Lemma 5.9.7, its inverse is a bijective bi-Lipschitz map in the context of
metric spaces

(
S1, | · − · |) � eiθ �→ θ ∈

(
[0, 2π), δ(·, ·)

)
, (5.9.71)

where | · − · | is the standard Euclidean distance, and the distance δ(·, ·) on the set
[0, 2π) is defined by

δ(θ1, θ2) := min
{|θ1 − θ2|, 2π − |θ1 − θ2|

}
, ∀θ1, θ2 ∈ [0, 2π). (5.9.72)

Recall the distance d on [0, L) defined in (5.8.22) and define the dilation map

(
[0, 2π), δ(·, ·)

)
� θ �→ θ · L

2π
∈ ( [0, L), d), (5.9.73)

which is a bijection with the property that d
(
θ1 · L

2π , θ2 · L
2π

) = L
2π · δ(θ1, θ2), for

each θ1, θ2 ∈ [0, 2π). Given that we are currently assuming that � is a chord-arc
curve, Lemma 5.9.7 also ensures that

( [0, L), d) � s �→ z(s) ∈ (
�, | · − · |) (5.9.74)

is a bijective bi-Lipschitz map. Consider now the map defined as the compositions
of the bijective bi-Lipschitz maps from (5.9.71), (5.9.73), (5.9.74), as well as the
isometric embedding of

(
�, | · − · |) into

(
C, | · − · |). Thus, the map in question

operates as (
S1, | · − · |) � eiθ �→ z

(
θL/2π

) ∈ (
C, | · − · |) (5.9.75)

and is bi-Lipschitz. By [218, Theorem 7.10, p. 166], every bi-Lipschitz map of S1

into C may be extended to a bi-Lipschitz map of C onto C. Consequently, there
exists a bijective bi-Lipschitz map F : C → C which extends (5.9.75). In particular,
F(S1) = � which further implies that F maps the bounded component of C \ S1

onto the bounded component of C \�. Hence, F
(
B(0, 1)

) = � as wanted. �

In view of the transformational properties under bi-Lipschitz maps established in
[124], the characterization from Proposition 5.9.9 implies that
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if � ⊂ C is a chord-arc domain then � is a two-sided NTA domain
(Definition 5.11.1), ∂� is Ahlfors regular, and H1(∂� \ ∂∗�) = 0.

(5.9.76)

We note that, by design, any bounded chord-arc domain is a Jordan domain,
hence simply connected. Bounded simply connected Lipschitz domains in the plane
are chord-arc domains, but chord-arc domains need not be locally given by graphs
of functions. For example, this is seen by noting that logarithmic spiral domains are
chord-arc. We elaborate on this in (5.10.45) (and the subsequent comment).

Let us also note that, as may be seen with the help of Proposition 5.9.6,

all bounded simply connected BMO1-domains
in the plane (R2 ≡ C) are chord-arc domains.

(5.9.77)

Moving on, we record the following version of Definition 5.9.8.

Definition 5.9.10 Call a bounded open set � ⊆ C a chord-arc domain with
vanishing constant if � is a chord-arc domain and, in addition,

lim
∂��z2→z1

�(z1, z2)

|z1 − z2| = 1, uniformly for z1 ∈ ∂�, (5.9.78)

where, as before, �(z1, z2) denotes the length of the shorter arc of � joining z1 and
z2.

It is clear that bounded, simply connected, C 1 domains in the plane are chord-arc
domainswith vanishing constant. This being said, the class of chord-arc domainswith
vanishing constant contains non-Lipschitz domains. To make this transparent, call a
bounded open set� of the Euclidean space a VMO1-domain if locally, in a suitable
system of coordinates, � coincides with the upper-graph of a locally integrable
function f with distributional derivatives belonging to Sarason space VMO. Then
from the first part of Proposition 5.9.6 we see that

any bounded simply connected VMO1-domain in R
2

is a chord-arc domain with vanishing constant.
(5.9.79)

A closely related result is as follows:

Lemma 5.9.11 Assume u : R → C is a function in W 1,1
loc (R) such that u

′(t) = eib(t)

for L1-a.e. t ∈ R, where b ∈ BMO(R,L1)) is a real-valued function satisfying

dist
(
b,VMO(R,L1)

)
< 1, (5.9.80)

with the distance measured in BMO(R,L1).
Then for every number
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κ >
dist

(
b,VMO(R,L1)

)

1− dist
(
b,VMO(R,L1)

) (5.9.81)

there exists some r > 0 with the property that

|t1 − t2| ≤ (1+ κ)|u(t1)− u(t2)| for all t1, t2 ∈ R with |t1 − t2| < r. (5.9.82)

Proof Assume that some κ > 0 as in (5.9.81) has been fixed, and note that this
entails

dist
(
b,VMO(R,L1)

)
<

κ

1+ κ
. (5.9.83)

Since b is real-valued, this estimate ensures that there exists a real-valued function
w ∈ VMO(R,L1) such that

‖b − w‖BMO(R,L1) <
κ

1+ κ
. (5.9.84)

Pick δ > 0 such that
δ + ‖b − w‖BMO(R,L1) <

κ

1+ κ
. (5.9.85)

Since w ∈ VMO(R,L1), there exists r > 0 with the property that

sup
I⊂R|I |≤r

min
I

∣∣w(t)− wI | dt < δ, (5.9.86)

where the supremum is taken over all intervals I of R with length |I | ≤ r , and where
we have set wI := minI w(t) dt .

To proceed, select two arbitrary distinct numbers t1, t2 ∈ R satisfying |t1 − t2| < r
and denote by I the closed sub-interval ofRwith endpoints t1, t2. To fix ideas, assume
t1 < t2, hence I = [t1, t2]. Also, introduce

bI :=
 
I
b(t) dt, mI := eibI , (5.9.87)

and note that the fact that b is real-valued implies |mI | = 1. Upon observing that
m−1

I = e−ibI , this permits us to estimate

|u(t1)− u(t2)− mI (t1 − t2)| =
∣∣∣
ˆ t2

t1

(u′(t)− mI ) dt
∣∣∣ =

∣∣∣
ˆ t2

t1

(
u′(t)m−1

I − 1
)
dt

∣∣∣

=
∣∣∣
ˆ t2

t1

(
ei(b(t)−bI ) − 1

)
dt

∣∣∣

≤
ˆ t2

t1

∣∣ei(b(t)−bI ) − 1
∣∣ dt ≤

ˆ t2

t1

|b(t)− bI | dt
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≤
ˆ t2

t1

|(b − w)(t)− (b − w)I | dt +
ˆ t2

t1

|w(t)− wI | dt

≤ |t1 − t2|‖b − w‖BMO(R,L1) + δ|t1 − t2|
<

(
κ

1+ κ

)
|t1 − t2|, (5.9.88)

where, in addition to (5.9.84)–(5.9.86) and (5.9.85), we have used the fact that func-
tions inW 1,1

loc (R) are locally absolutely continuous (hence, the Fundamental Theorem
of Calculus applies), as well as the elementary inequality |eiθ − 1| ≤ |θ | for each
θ ∈ R. From (5.9.88), we obtain

|t1 − t2| = |mI (t1 − t2)| ≤ |u(t1)− u(t2)| + |u(t1)− u(t2)− mI (t1 − t2)|
≤ |u(t1)− u(t2)| +

(
κ

1+ κ

)
|t1 − t2|, (5.9.89)

which then readily yields (5.9.82). �

Remark 5.9.12 It is also natural to consider Jordan curves passing through
infinity in the plane. This class consists of sets of the form � = γ (R),
such that γ : R → R

2 is a continuous injective function with lim
t→±∞ |γ (t)|=∞.

For this class of curves a version of the Jordan separation theorem is also valid,
namely

if� is a Jordan curve passing through infinity, then its complement in C

consists precisely of two open connected components, called�±, which
satisfy ∂�+ = � = ∂�−.

(5.9.90)

A proof may be found in [171], where it has also been noted that

in the context of (5.9.90), the sets �± are simply connected. (5.9.91)

The above considerations are directly relevant in the context of the following
definition:

Definition 5.9.13 A nonempty, proper, open subset� of R2 is called a chord-arc
domain with unbounded boundary if ∂� is a locally rectifiable Jordan curve
passing through infinity in C ≡ R

2 with the property that

Co := sup
z1,z2∈∂�
z1 =z2

�(z1, z2)

|z1 − z2| < +∞, (5.9.92)

where �(z1, z2) denotes the length of the arc of ∂� joining z1 and z2.

Then
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any chord-arc domainwith unbounded boundary� ⊆ R
2 is a connected,

simply connected, unbounded, two-sided NTA domain with a connected
Ahlfors regular boundary (hence also an Ahlfors regular domain satis-
fying a two-sided local John condition and, in particular, a UR domain).

(5.9.93)

In fact, it has been shown in [171] that, for such a set �, the following companion
of Proposition 5.9.9 holds:

there exists some bi-Lipschitz homeomorphism F : R
2 → R

2 such
that 120−1C−1

o |z1 − z2| ≤ |F(z1)− F(z2)| ≤ 2000|z1 − z2| for all
z1, z2 ∈ C, and with the property that� = F(R2+), R2 \� = F(R2−),
as well as ∂� = F(R × {0}),

(5.9.94)

where the constant Co ∈ [1,∞) is as in (5.9.92). Moreover, given any chord-arc
domain with unbounded boundary � ⊆ R

2, if R � s �→ z(s) ∈ ∂� denotes the arc-
length parametrization of ∂� then the following properties have also been noted in
[171] (compare with Proposition 5.8.6):

(i) For each s1, s2 ∈ R one has

|z(s1)− z(s2)| ≤ |s1 − s2| ≤ Co|z(s1)− z(s2)|, (5.9.95)

and
z(·) is differentiable at L1-a.e. point in R,

with |z′(s)| = 1 for L1-a.e. s ∈ R.
(5.9.96)

(ii) For each zo ∈ ∂� and r ∈ (0,∞) abbreviate �(zo, r) := B(zo, r) ∩ ∂�. Then
for each so ∈ R and r ∈ (0,∞) one has

(so − r, so + r) ⊆ z−1
(
�(z(so), r)

) ⊆ (
so − Cor, so + Cor

)
. (5.9.97)

(iii) For every Lebesgue measurable set A ⊆ R one has

H1(z(A)
) = L1(A), (5.9.98)

and for each H1-measurable set E ⊆ ∂� one has

H1(E) = L1
(
z−1(E)

)
. (5.9.99)

(iv) With the arc-length measure σ on ∂� defined as σ := H1�∂�, it follows that for
each σ -measurable set E ⊆ ∂� and each non-negative σ -measurable function
g on E one has ˆ

E
g dσ =

ˆ
z−1(E)

g(z(s)) ds. (5.9.100)

(v) The geometric measure theoretic outward unit normal ν to � is given by
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ν(z(s)) = −iz′(s) for L1-a.e. s ∈ R. (5.9.101)

Consequently, for L1-a.e. s ∈ R the line {z(s)+ t z′(s) : t ∈ R} is an approxi-
mate tangent line to ∂� at the point z(s). In particular, � has an approximate
tangent line at H1-almost every point on ∂�.

Pressing on, we note the following elementary result.

Lemma 5.9.14 Assume that−∞ < a < b < +∞and that f is a real-valuedmono-
tonic function on [a, b] which is locally absolutely continuous on (a, b). Then

dist
(
(a, f (a)), (b, f (b))

) ≤ length graph f ≤ √
2 dist

(
(a, f (a)), (b, f (b))

)
.

(5.9.102)

Proof Recall that the length of the graph of f is originally defined as

L f := sup
a≤x0≤···≤xN=b

{ N∑

i=1

dist
(
(xi−1, f (xi−1)), (xi , f (xi ))

)}
(5.9.103)

This readily implies the first inequality in (5.9.102). To prove the second inequality in
(5.9.102), we begin by making several remarks. First, the present hypotheses imply
that actually f is absolutely continuous on [a, b], i.e.,

f ∈ AC
([a, b]). (5.9.104)

Second, standard one-variable analysis (cf., e.g., [161, Corollary 3.9, p. 76]) implies
that f is differentiable L1-a.e. in [a, b] and f ′ is Lebesgue integrable on [a, b].
Third, it is well known (see, e.g., [161, Remark 4.10, p. 119]) that whenever f is as
in (5.9.104) then

L f =
ˆ b

a

√
1+ | f ′(x)|2 dx . (5.9.105)

Fourth, we may assume that f is non-decreasing (otherwise work with − f in place
of f ). Granted this, it follows (from the Fundamental Theorem of Calculus and
Lebesgue’s Differentiation Theorem) that

f ′ ≥ 0 at L1-a.e. point in [a, b]. (5.9.106)

At this stage, basedon (5.9.104)–(5.9.106) and theFundamentalTheoremofCalculus
for absolutely continuous functions we may estimate

L f ≤
ˆ b

a

(
1+ f ′(x)

)
dx = (b − a)+ (

f (b)− f (a)
)

≤ √
2
√
(b − a)2 + (

f (b)− f (a)
)2 = √

2 dist
(
(a, f (a)), (b, f (b))

)
,

(5.9.107)
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as desired. �

As a consequence of Lemma 5.9.14, we have that half-graphs of power functions

�α :=
{
(x, xα) : x ≥ 0

}
, with α ∈ (0,∞), are

simple locally rectifiable curves satisfying (5.9.53).
(5.9.108)

Without the monotonicity assumption in Lemma 5.9.14 the conclusion in (5.9.102)
may fail. For example, (5.9.108) may be used to show that

the parabolaP := {
(x, x2) : x ∈ R

}
is a simple, locally rectifiable

curve, which is Ahlfors regular, yet failing to satisfy (5.9.53).
(5.9.109)

Indeed, P is clearly a simple, locally rectifiable curve in R
2. The fact that P is

a lower Ahlfors regular set is directly implied by Lemma 5.9.3, while the upper
Ahlfors regularity of P is established by considering two cases. First, assume that
z ∈ P and r > 0 are such that 0 /∈ B(z, r). Then B(z, r) ∩ P consists of at most two
parabola arcs, and (5.9.108) implies their individual arc-lengths are comparable with
the lengths of their respective subtended chords. Since such chords have length≤ 2r ,
the desired conclusion follows in this case. Second, if 0 ∈ B(z, r) then ∂B(z, r) ∩ P
consists of at most two points and the arc-length of the piece of P contained in
B(z, r) may be controlled in terms of the distance of these points to the origin (by
again relying on (5.9.108)). Given that these distances are at most 2r , this once more
yields an upper bound of the right order. This reasoning proves that P is an Ahlfors
regular set. Finally, the fact that (5.9.53) fails for the present example is seen by
taking z1 := (−a, a2) and z2 := (a, a2) with a → +∞.

To further elaborate on (5.9.54), fix a function

θ ∈ C 1((0,∞)), real-valued, such that M := sup
0<t<∞

|tθ ′(t)| < +∞, (5.9.110)

then consider the closed subset of R
2 defined as

�θ := {0} ∪ {
z(t) = teiθ(t) ∈ C : 0 < t <∞}

. (5.9.111)

Then, as is apparent from the above definition, �θ is a simple, locally rectifiable,
planar curve. We also claim that

�θ in (5.9.111) is a chord-arc curve whenever θ is as in (5.9.110). (5.9.112)

To justify this claim, fix 0 < t1 < t2 <∞ arbitrary. Then, on the one hand we have
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�
(
z(t1), z(t2)

) =
ˆ t2

t1

|z′(t)| dt ≤
ˆ t2

t1

∣∣eiθ(t)
(
1+ itθ ′(t)

)∣∣ dt

=
ˆ t2

t1

√
1+ |tθ ′(t)|2 dt ≤

√
1+ M2(t2 − t1), (5.9.113)

while on the other hand

∣∣z(t2)− z(t1)
∣∣ = ∣∣t2ei(θ(t2)−θ(t1)) − t1

∣∣ ≥ inf
α∈R

∣∣t2eiα − t1
∣∣ = t2 − t1. (5.9.114)

Together, (5.9.113) and (5.9.114) establish (5.9.53), thus finishing the proof of
(5.9.112).

Examples of curves �θ of the sort described in (5.9.111), corresponding to func-
tions θ as in (5.9.110), include all logarithmic spirals (wriggling out of the
origin as in Fig. 5.4), obtained by taking

θ(t) := c ln t for t ∈ (0,∞), where c ∈ R is an arbitrary constant. (5.9.115)

In particular, the above discussion shows that

all logarithmic spirals in the plane are chord-arc
curves, hence Ahlfors regular sets in R

2.
(5.9.116)

Fig. 5.4 �θ as in (5.9.111), with θ as in (5.9.115)

Let us also note here that if �θ is as in (5.9.111), then �θ ∩�θ+α = {0} for each
α ∈ (0, 2π). Consequently, if θ is as in (5.9.110), then for each α ∈ (0, 2π) the
region in the plane strictly contained in between the curves �θ and �θ+α , i.e.,

�θ,α :=
{
teiβ : 0 < t <∞ and θ(t) < β < θ(t)+ α} ⊆ C, (5.9.117)

is an open set whose boundary ∂�θ,α is an Ahlfors regular set and satisfies
H1

(
∂�θ,α \ ∂∗�θ,α

) = 0.
Subsets of the Euclidean space enjoying the aforementioned properties make up

a distinguished class of domains. Following [189, Sect. 2.2], we make the following
definition.
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Definition 5.9.15 Call a nonempty open subset � of R
n an Ahlfors regular

domain if ∂� is an Ahlfors regular set (cf. Definition 5.9.1) and the geometric mea-
sure theoretic boundary of � has full Hn−1-measure into the topological boundary
of �, i.e.,

Hn−1(∂� \ ∂∗�) = 0. (5.9.118)

Hence, a nonempty open set� ⊆ R
n is an Ahlfors regular domain provided ∂� is an

Ahlfors regular set (which, in particular, renders � a set of locally finite perimeter;
cf. (5.9.15)) and the geometric measure theoretic outward unit normal ν to� is well
defined at Hn−1-a.e. point on ∂�. Also, from (5.9.118), the definition of countable
rectifiability (of dimension n − 1) given in (5.3.16), and (5.6.33) we see that

if� ⊆ R
n is anAhlfors regular domain then ∂� is a closed set (in par-

ticular,Hn−1-measurable), which is countably rectifiable (of dimen-
sion n − 1).

(5.9.119)

The condition imposed in (5.9.118) precludes ∂� from developing “toomany” cusps
and also prevents � from having “significant” cracks. For example, if

φ : Bn−1(0′, 1/2) −→ (−1/2, 1/2) is a Lipschitz function, and

� := {
(x ′, φ(x ′)) ∈ R

n : x ′ ∈ R
n−1, |x ′| ≤ 1/2

} ⊂ B(0, 1)
(5.9.120)

then the “crack domain” (Fig. 5.5)

� := B(0, 1) \� ⊂ R
n (5.9.121)

is an open set with an Ahlfors regular boundary which, nonetheless, fails to be an
Ahlfors regular domain in the sense of Definition 5.9.15.

Fig. 5.5 � as in (5.9.121) is an open set with an Ahlfors regular boundary, but is not an Ahlfors
regular domain

In the terminology introduced in Definition 5.9.15,

all logarithmic spiral domains (of the brand described in
(5.9.117), (5.9.110)) are planar Ahlfors regular domains.

(5.9.122)
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To give higher-dimensional examples of Ahlfors regular domains, we shall say that
an open subset of R

n is a BMO1-domain provided this may be locally described,
in a uniform fashion, as the upper-graph of a function as in (5.9.21). Then

all BMO1-domains in R
n with n ≥ 2 are Ahlfors regular domains. (5.9.123)

To elaborate on this phenomenon, first recall that a function ϕ : R
n−1 → R belongs

to Zygmund’s class �∗(Rn−1) = B∞,∞
1 (Rn−1) provided

‖ϕ‖�∗(Rn−1) := sup
x∈Rn−1 and
h∈Rn−1\{0}

|ϕ(x + h)+ ϕ(x − h)− 2ϕ(x)|
|h| < +∞. (5.9.124)

Corresponding to n = 2, a typical example of a function in�∗(Rn−1) is Weierstrass’
continuous yet nowhere differentiable function

ϕ(x) :=
∞∑

j=0

sin(π2 j x)

2 j
, ∀x ∈ R. (5.9.125)

Call an open set� ⊆ R
n a Zygmund domain provided it may be locally described

as upper-graphs of functions in Zygmund’s class �∗(Rn−1), in a uniform fashion.21

In [132] it has been shown that

any Zygmund domain satisfies a two-sided corkscrew condition
(in fact, is a two-sided NTA domain; cf. Definition 5.11.1).

(5.9.126)

Since we also have the inclusion

BMO1(R
n−1) ↪→ �∗(Rn−1) (5.9.127)

(cf. [125, Proposition 3.15, p. 2637] for a proof), the claim in (5.9.123) follows from
(5.9.22), (5.9.126)–(5.9.127), and (5.2.4).

Next, we shall establish that measurable sets which are two-sided thick have lower
Ahlfors regular boundaries.

Proposition 5.9.16 Let E ⊆ R
n be aLn-measurable set which is two-sided n-thick.

Then ∂∗E = ∂E, and ∂E is lower Ahlfors regular.
As a corollary, any Ln-measurable set E ⊆ R

n satisfying a two-sided corkscrew
condition has the property that ∂∗E = ∂E and ∂E is lower Ahlfors regular.

Under the additional assumption that the set E is of locally finite perimeter,
the main claim in Proposition 5.9.16 is implied more or less directly by the Relative
Isoperimetric Inequality (cf., e.g., [80, Theorem2, p. 190]) and the StructureTheorem

21 See also the discussion in [261, p. 64] in this regard.
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for sets of locally finite perimeter (see [80, Theorem2,p. 205]). Indeed, these classical
results guarantee the existence of a finite purely dimensional constant Cn > 0 with
the property that for each x ∈ R

n and each r ∈ (0,∞) we have

min
{
Ln

(
B(x, r) ∩ E

)
,Ln

(
B(x, r) \ E

)}(n−1)/n ≤ CnHn−1
(
∂∗E ∩ B(x, r)

)
.

(5.9.128)

Given that ∂∗E = ∂E (as seen from (5.2.4)) and that E is two-sided n-thick, we
conclude from (5.9.128) that ∂E is indeed lowerAhlfors regular. That open subsets of
R

n satisfying a two-sided corkscrew condition have lowerAhlfors regular topological
boundaries has also been proved in [15, Lemma 2.3].

Remarkably, Proposition 5.9.16 is true without having to demand that the set in
question is of locally finite perimeter. The proof we shall give is more analytic in
nature than the argument just described in the latter scenario, and it makes use of
the quantitative solvability of the divergence equation for Sobolev vector fields in
a ball. Lemma 5.9.17 below is a consequence of much more general results of this
type discussed in [191]. The reader is reminded that, given an open set B ⊆ R

n along
with an integrability exponent p ∈ (1,∞), by W̊ 1,p(B) we denote the completion
of C∞

c (B) in the norm f �→ ‖ f ‖L p(B,Ln) + ‖∇ f ‖[L p(B,Ln)]n .

Lemma 5.9.17 If p ∈ (1,∞), then there exists a constant Cp ∈ (0,∞) with the
property that for every x ∈ R

n, every r ∈ (0,∞) and every f ∈ L p
(
B(x, r),Ln

)

such that
´
B(x,r) f dLn = 0, there exists some vector field �G with components in

W̊ 1,p
(
B(x, r)

)
satisfying div �G = f in B(x, r) as well as the estimate

‖∇ �G‖[L p(B(x,r),Ln)]n2 + r−1‖ �G‖[L p(B(x,r),Ln)]n ≤ Cp‖ f ‖L p(B(x,r),Ln). (5.9.129)

Proof of Proposition 5.9.16 Fix a two-sided n-thick set E ⊆ R
n . Then there exists

c > 0 such that for each x ∈ ∂E we have

min
{
Ln

(
B(x, r) ∩ E

)
,Ln

(
B(x, r) \ E

)} ≥ crn, ∀r ∈ (0, 2 diam E).

(5.9.130)

From (5.2.4) we also know that ∂∗E = ∂E .
Recall next the point set topological inclusion

∂(A ∩ B) ⊆ (∂A ∩ B) ∪ (A ∩ ∂B), ∀A, B ⊆ R
n. (5.9.131)

Given that for each set A ⊆ R
n we also have A = A ∪ ∂A, from (5.9.131) we deduce

that
∂(A ∩ B) ⊆ ∂A ∪ (A ∩ ∂B), ∀A, B ⊆ R

n. (5.9.132)
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If we now consider an arbitrary point x ∈ ∂E , the inclusion in (5.9.132) used with
A := B(x, r) with r > 0 arbitrary and B := E gives

∂
(
B(x, r) ∩ E

) ⊆ ∂B(x, r) ∪ (
B(x, r) ∩ ∂E)

for each r ∈ (0,∞). (5.9.133)

Fix now r ∈ (0, 2 diam E) and suppose first that Hn−1
(
B(x, r) ∩ ∂E)

< +∞.
This and (5.9.133) then imply

Hn−1
(
∂
(
B(x, r) ∩ E

)) ≤ Hn−1
(
∂B(x, r)

) +Hn−1
(
B(x, r) ∩ ∂E)

< +∞.
(5.9.134)

In light of (5.6.38) and the fact that E is Ln-measurable, the finiteness property
(5.9.134) guarantees that the set

B(x, r) ∩ E is of locally finite perimeter. (5.9.135)

Consider the function f : B(x, r)→ R defined by

f := 1B(x,r)∩E − λx,r1B(x,r)\E (5.9.136)

where the parameter λx,r ∈ R is given by

λx,r := Ln
(
B(x, r) ∩ E

)

Ln
(
B(x, r) \ E

) . (5.9.137)

As a consequence of (5.9.130), the function f is well defined and λx,r ∈ (C1,C2) for
some finite, positive constants C1,C2 independent of x and r , and depending only
on n and the constant c from (5.9.130). As a consequence, f ∈ L p

(
B(x, r),Ln

)
and

‖ f ‖L p(B(x,r),Ln) ≤ Crn/p (5.9.138)

for some C ∈ (0,∞) independent of x and r . Let us also observe that, as is apparent
from (5.9.136)–(5.9.137), the function f satisfies the vanishing moment condition´
B(x,r) f dLn = 0.

Fix p ∈ (n,∞) and note that f ∈ L p
(
B(x, r),Ln

)
. As such, Lemma 5.9.17

applies and ensures the existence of a vector field �G with components in
W̊ 1,p

(
B(x, r)

)
, satisfying div �G = f in B(x, r), as well as estimate (5.9.129). Con-

sider now a sequence of vector fields { �Fj } j∈N ⊆ [
C∞
c (R

n)
]n

such that

supp �Fj ⊆ B(x, r) for each j ∈ N, and
�Fj → �G in

[
L p

(
B(x, r),Ln

)]n
as j → ∞,

∇ �Fj → ∇ �G in
[
L p

(
B(x, r),Ln

)]n2
as j → ∞.

(5.9.139)
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(That such a sequence exists is implied by the very definition of W̊ 1,p
(
B(x, r)

)
,

given earlier.) In particular, it follows that div �Fj → div �G in L p
(
B(x, r),Ln

)
, thus

in L1
(
B(x, r),Ln

)
, as j → ∞. On account of (5.9.130) and the De Giorgi–Federer

Divergence Theorem (cf. Theorem 1.1.1, whose current applicability is ensured by
(5.9.135)) we then obtain

crn ≤ Ln
(
B(x, r) ∩ E

) =
ˆ
B(x,r)∩E

f dLn =
ˆ
B(x,r)∩E

div �G dLn

= lim
j→∞

ˆ
B(x,r)∩E

div �Fj dLn = lim
j→∞

ˆ
∂∗(B(x,r)∩E)

νE,r · �Fj dHn−1 (5.9.140)

where νE,r is the geometric measure theoretic outward unit normal to B(x, r) ∩ E .
Next, based on (5.2.3) and (5.9.133) we may write

B(x, r) ∩ ∂∗
(
B(x, r) ∩ E

) ⊆ B(x, r) ∩ ∂(B(x, r) ∩ E
)

⊆ B(x, r) ∩ [
∂B(x, r) ∪ (

B(x, r) ∩ ∂E)]

= B(x, r) ∩ ∂E . (5.9.141)

Combining (5.9.140)–(5.9.141) we may therefore estimate

crn ≤ lim sup
j→∞

ˆ
B(x,r)∩∂E

| �Fj | dHn−1

≤ lim sup
j→∞

{
sup
B(x,r)

| �Fj |
}
Hn−1

(
B(x, r) ∩ ∂E)

. (5.9.142)

Since we selected p > n, the embedding W 1,p
(
B(0, 1)

)
↪→ L∞(

B(0, 1),Ln
)
is

valid. Based on this, Poincaré’s inequality and a natural rescaling, we then obtain

sup
B(x,r)

| �Fj | ≤ Cr1−
n
p ‖∇ �Fj‖[L p(B(x,r),Ln)]n2 for each j ∈ N, (5.9.143)

for somefinite constantC > 0 independent of j, x, r, f . Hence, combining (5.9.143),
(5.9.139), (5.9.129), and (5.9.138) further gives

lim sup
j→∞

{
sup
B(x,r)

| �Fj |
}
≤ Cr1−

n
p lim sup

j→∞
‖∇ �Fj‖[L p(B(x,r),Ln)]n2

= Cr1−
n
p ‖∇ �G‖[L p(B(x,r),Ln)]n2

≤ Cr1−
n
p ‖ f ‖L p(B(x,r),Ln) = Cr, (5.9.144)

for some constant C ∈ (0,∞) independent of x and r . Together, estimates (5.9.142)
and (5.9.144) imply that, whenever the radius r ∈ (0, 2 diam E) is such that
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Hn−1
(
B(x, r) ∩ ∂E)

< +∞, we have

crn−1 ≤ Hn−1
(
B(x, r) ∩ ∂E)

, (5.9.145)

where the constant c > 0 in (5.9.145) is independent of x and r . The fact that
(5.9.145) also holds whenever Hn−1

(
B(x, r) ∩ ∂E) = ∞ is trivial. All together,

estimate (5.9.145) is valid for every r ∈ (0, 2 diam E). Together with the fact that
diam E = diam(E) ≥ diam(∂E), this ultimately proves that the closed set ∂E ⊆ R

n

is indeed lower Ahlfors regular (cf. (5.9.1)). �

5.10 Uniformly Rectifiable Sets

We begin by formally introducing the notion of uniform rectifiability of G. David
and S. Semmes. The following is a slight variant of the original definition in [68].

Definition 5.10.1 Call � ⊂ R
n a uniformly rectifiable (UR) set pro-

vided � is closed, upper Ahlfors regular, and has Big Pieces of Lipschitz Images
(BPLI). The latter property signifies the existence of ε > 0 and M ∈ (0,∞) such
that, for each location x ∈ � and each scale r ∈ (0, 2 diam�), one can find a Lips-
chitz map � : Bn−1(0′, r)→ R

n (where Bn−1(0′, r) is the (n − 1)-dimensional ball
of radius r centered at the origin 0′ in R

n−1), having Lipschitz constant ≤ M, and
with the property that

Hn−1
(
� ∩ B(x, r) ∩�(

Bn−1(0
′, r)

)) ≥ εrn−1. (5.10.1)

All constitutive constants involved are collectively referred to as the UR constants
of �.

Since, in the class of closed sets, having BPLI implies lower Ahlfors regularity,
it follows that

any UR set is Ahlfors regular. (5.10.2)

Also, since the property of havingBPLI is preserved under arbitrary unions, it follows
from (5.9.11) that

finite unions of UR sets are themselves UR sets. (5.10.3)

In general, UR sets can be quite wild, e.g., may have infinitely many spirals, holes,
or handles, though not without certain restrictions.

Observe that
any given compact, upper Ahlfors regular,
curve � ⊂ C is a uniformly rectifiable set.

(5.10.4)
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Indeed, (5.9.33) ensures that � is an Ahlfors regular set, while (5.8.13) guarantees
that the entire � is a Lipschitz image. According to Definition 5.10.1, this renders
� a uniformly rectifiable set.

It is also known (cf. [68], [214, Theorem 25, p. 25], and Lemma 5.9.3) that an
Ahlfors regular set � ⊆ R

2 ≡ C may be contained in a rectifiable upper Ahlfors
regular curve if and only if � is a UR set. In concert with (5.9.30) this shows that

given an Ahlfors regular set � ⊆ R
2 ≡ C, the maximal

“altered” Cauchy operator C
alt

max (cf. (5.9.27)) is bounded
on L2

(
�,H1��)

if and only if � is a UR set.
(5.10.5)

As far as the higher-dimensional case is concerned, according to a deep result of
G. David and S. Semmes (cf. [68, Theorem, pp. 10–14]), given a closed set � ⊆ R

n

which is Ahlfors regular, we have that

� is a UR set if and only if the truncated singular integral
operator Tk,ε f (x) :=

´
y∈�\B(x,ε) k(x − y) f (y)Hn−1(y), for x ∈ �, is

bounded on L2(�,Hn−1)with norm majorized by a constant independent
of ε>0, whenever the integral kernel k ∈ C∞(Rn \ {0}) is odd
and satisfies supx∈Rn\{0} |x |n−1+�|(∇�k)(x)| < +∞ for each � ∈ N0.

(5.10.6)
When � is a (n − 1)-dimensional plane or smooth submanifold of R

n the bound-
edness of the singular integral operators described in (5.10.6) is a classical result
(going back to the work of Calderón and Zygmund), but the corresponding bound-
edness result for non-smooth sets is much deeper. In relation to (5.10.6), F. Nazarov,
X. Tolsa, and A. Volberg have proved in [208] that

under the background assumption ofAhlfors regularity on the closed set
� ⊆ R

n , operator norm bounds on L2
(
�,Hn−1��)

for the truncated
Riesz transforms on � (corresponding to the kernels k j (x) := x j/|x |n
for 1 ≤ j ≤ n) which are in fact uniform with respect to the truncation
parameter imply that � is actually a UR set.

(5.10.7)

The story that emerges is that of a strong, two-way link, between singular integral
operators on Lebesgue spaces and uniform rectifiability. We summarize some of
these results in the next two theorems.

Theorem 5.10.2 Given a closed set� ⊆ R
n which is Ahlfors regular, the following

conditions are equivalent:

(i) � is a UR set;

(ii) The maximal singular integral operator acting on any given f ∈L1
(
�, Hn−1(x)

1+|x |n−1

)

according to



458 5 Sets of Locally Finite Perimeter and Other Categories of Euclidean Sets

(
Tk,max f

)
(x) := sup

ε>0

∣∣∣
ˆ
y∈�\B(x,ε)

k(x − y) f (y)Hn−1(y)
∣∣∣ for x ∈ �,

(5.10.8)
is bounded on L2

(
�,Hn−1��)

for each integral kernel

k ∈ C∞(Rn \ {0}) which is odd and satisfies

sup
x∈Rn\{0}

|x |n−1+�|(∇�k)(x)| < +∞ for all � ∈ N0.
(5.10.9)

(iii) The maximal singular integral operator Tk,max from (5.10.8) is bounded on
L2

(
�,Hn−1��)

for each integral kernel

k ∈ C∞(Rn \ {0}) which is odd and

positive homogeneous of degree 1− n.
(5.10.10)

(iv) The maximal singular integral operator Tk,max from (5.10.8) is bounded on
L2

(
�,Hn−1��)

for each integral kernel of the form k(x) := x j/|x |n for all
x ∈ R

n \ {0}, where j ∈ {1, . . . , n}.
Proof That the implication (i)⇒ (ii) is true follows from (5.10.6) and the fact that

the boundedness of the family of truncated operators, in a uniform
fashion with respect to the truncation parameter, ensures the bound-
edness of the corresponding maximal operator (cf. [186, Sect. 2.2]).

(5.10.11)

Next, the implications (ii)⇒ (iii)⇒ (iv) are obvious, while the implication (iv)⇒ (i)
is a consequence of (5.10.7). �

The theorem below further elaborates on the role of uniform rectifiability and
higher-dimensional Cauchy operators (within the framework of Clifford algebras,
properly discussed in Sect. 6.4), as well as variety of brands of Riesz transforms.

Theorem 5.10.3 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Then
the following conditions are equivalent:

(a) The boundary ∂� is a UR set (which makes � a UR domain in the sense of
Definition 5.10.6);

(b) The maximal Cauchy–Clifford operator acting on any Clifford algebra-valued

function f ∈ L1
(
∂�, σ(x)

1+|x |n−1

)
⊗ C�n according to

(
Cmax f

)
(x) := sup

ε>0

∣
∣∣∣∣∣∣
∣∣

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

x − y

|x − y|n " ν(y)" f (y) dσ(y)

∣
∣∣∣∣∣∣
∣∣

, ∀x ∈ ∂�,

(5.10.12)
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is bounded on L2(∂�, σ)⊗ C�n.
(c) The truncated Cauchy–Clifford singular integral operators Cε defined for each

ε > 0 and each function f ∈ L1
(
∂�, σ(x)

1+|x |n−1

)
⊗ C�n as

(
Cε f

)
(x) := 1

ωn−1

ˆ

y∈∂�
|x−y|>ε

x − y

|x − y|n " ν(y)" f (y) dσ(y), ∀x ∈ ∂�,

(5.10.13)
are continuous on L2(∂�, σ)⊗ C�n with operator norms bounded uniformly
with respect to the truncation parameter ε ∈ (0,∞).

(d) The boundary-to-boundary (or principal-value) Cauchy–Clifford singular inte-

gral operator C acting on each f ∈ L1
(
∂�, σ(x)

1+|x |n−1

)
⊗ C�n according to

(
C f

)
(x) := lim

ε→0+

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

x − y

|x − y|n " ν(y)" f (y) dσ(y) for σ -a.e. x ∈ ∂�,

(5.10.14)
is well defined, linear, and bounded on L2(∂�, σ)⊗ C�n.

(e) For each j ∈ {1, . . . , n}, the maximal Riesz transform R j,max defined as the

mapping acting on each f ∈ L1
(
∂�, σ(x)

1+|x |n−1

)
according to

(R j,max f )(x) := sup
ε>0

2

ωn−1

∣∣∣∣∣∣
∣∣∣

ˆ

y∈∂�
|x−y|>ε

x j − y j
|x − y|n f (y) dσ(y)

∣∣∣∣∣∣
∣∣∣

, ∀x ∈ ∂�,

(5.10.15)
is bounded on L2(∂�, σ).

(f) For each j ∈ {1, . . . , n}, the j-th truncated Riesz transform defined for each

ε > 0 and each function f ∈ L1
(
∂�, σ(x)

1+|x |n−1

)
as

(
R j,ε f

)
(x) := 2

ωn−1

ˆ

y∈∂�
|x−y|>ε

x j − y j
|x − y|n f (y) dσ(y), ∀x ∈ ∂�, (5.10.16)

is continuous on L2(∂�, σ)with operator norm bounded uniformly with respect
to the truncation parameter ε ∈ (0,∞).

(g) For each j ∈ {1, . . . , n}, the boundary-to-boundary (or principal-value) Riesz
transform R j defined as the mapping acting on any given f ∈ L1

(
∂�, σ(x)

1+|x |n−1

)



460 5 Sets of Locally Finite Perimeter and Other Categories of Euclidean Sets

according to

(R j f )(x) := lim
ε→0+

2

ωn−1

ˆ

y∈∂�
|x−y|>ε

x j − y j
|x − y|n f (y) dσ(y) for σ -a.e. x ∈ ∂�,

(5.10.17)
is well defined, linear, and bounded on L2(∂�, σ).

(h) For each j ∈ {1, . . . , n}, the distributional Riesz transform Rweak
j defined as the

mapping
Rweak

j : Lipc(∂�) −→ Lipc(∂�)
′ (5.10.18)

acting for all f, g ∈ Lipc(∂�) according to

Lipc(∂�)′
〈
Rweak

j f, g
〉

Lipc(∂�)
(5.10.19)

:= 2

ωn−1

ˆ

∂�

ˆ

∂�

x j − y j
|x − y|n

[
f (y)g(x)− f (x)g(y)

]
dσ(y) dσ(x)

induces a linear and bounded operator on L2(∂�, σ).

Proof The fact that (a)⇔ (b) follows from the equivalence (i)⇔ (ii) in Theo-
rem 5.10.2, bearing in mind Definitions 5.9.15, 5.10.6 and that (see (6.4.59))

Clifford algebra multiplication by ν
is an isomorphism of L2(∂�, σ)⊗ C�n. (5.10.20)

Next, (b)⇒ (c) is justified upon noting that Cmax f = supε>0 |Cε f | pointwise on ∂�
for each function f ∈ L2(∂�, σ)⊗ C�n , while the converse implication follows from
(5.10.11), again keeping in mind (5.10.20). Hence, (b)⇔ (c).

To proceed, from Definition 5.9.15, (5.9.119), and Corollary 5.3.6 (applied with
� := ∂�) we conclude that

the limit lim
ε→0+

ˆ

y∈∂�
1>|x−y|>ε

x − y

|x − y|n dσ(y) exists for σ -a.e. x ∈ ∂�. (5.10.21)

Let us also recall a general principle in the theory of singular integral operators to
the effect that

given a standard kernel and a complete Borel-semiregular measure
for which the corresponding principal-value singular integral operator
exists, then this is bounded (on Lebesgue spaces) if and only if the cor-
responding maximal operator associated with said kernel and measure,
is bounded (on Lebesgue spaces); see the discussion in [186, Sect. 2.2].

(5.10.22)
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Granted (5.10.21), from (5.10.22) we conclude (once again on account of (5.10.20))
that (b)⇔ (d).

Going further, from the definitions of the operators involved and (5.10.20) we see
that (b)⇔ (e). Also, since for each j ∈ {1, . . . , n}we have R j,max f = supε>0 |R j,ε f |
pointwise on ∂� for each function f ∈ L2(∂�, σ), with the help of (5.10.11) we
deduce that (e)⇔ (f). Next, (5.10.21) together with (5.10.22) show that (e)⇔ (g).
Finally, from (5.10.22) (whose applicability in the present setting is ensured by
(5.10.21)) we see that (g)⇔ (h). �

Moving on, on account of (5.10.6) and the fact that boundedness on L2 is hered-
itary, it readily follows that

any lower Ahlfors regular closed subset of
a UR set happens to be itself a UR set.

(5.10.23)

G. David and D. Jerison have identified in [66] the following purely geometric suf-
ficient condition guaranteeing uniform rectifiability.

Proposition 5.10.4 Let � ⊂ R
n be a closed Ahlfors regular set which satisfies the

following “two disk” condition: there exists C ∈ (0,∞) such that for each x ∈ �
and each r ∈ (0, 2 diam�) one can find two (n − 1)-dimensional disks of radius
r/C with centers at distance ≤ r from x and which are contained in two different
connected components of R

n \�. Then � is a uniformly rectifiable set.

The somewhat more restrictive case of Proposition 5.10.4 where the disks are
replaced by balls has been established earlier by S.Semmes in [234]. As pointed
out on [66, p. 844], the same conclusion holds if the two disks can be replaced by
bi-Lipschitz images of disks. What David and Jerison actually prove is that any set
� as in the statement of Proposition 5.10.4 contains “big pieces of Lipschitz graphs”
(cf. [66, Theorem 1, p. 840]).

A significant consequence of Propositions 5.10.4 and 5.9.16 states that

any open set � ⊆ R
n with an upper Ahlfors regular boundary and

satisfying a two-sided corkscrew condition has the property that ∂�
is a UR set; in particular, if � ⊆ R

n is an NTA domain (in the sense
of Definition 5.11.1, given a little later) with an upper Ahlfors regular
boundary then its topological boundary, ∂�, is a UR set.

(5.10.24)

As seen from Proposition 5.10.5 below, being uniformly rectifiable is stronger
than being countably rectifiable and, in fact, uniform rectifiability may be regarded
as a quantitative version of the latter property.

Proposition 5.10.5 Any uniformly rectifiable set in R
n is countably rectifiable (of

dimension n − 1).

Proof To see this, suppose � ⊂ R
n is a uniformly rectifiable set. Let (x j ) j∈N be a

countable, dense subset of�, and consider (rk)k∈N an enumeration ofQ+ (or (0, 1) ∩
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Q+ if � happens to be a compact set). For each j, k ∈ N let � jk := � ∩ B(x j , rk)
and L jk := � jk(B ′

jk), where B
′
jk is the (n − 1)-dimensional ball of radius rk centered

at the origin 0′ in R
n−1, and � jk : B ′

jk → R
n is a Lipschitz function with Lipschitz

constant ≤ M such that

Hn−1
(
� ∩ B(x j , rk) ∩� jk(B

′
jk)

)
≥ εrn−1

k , (5.10.25)

where ε > 0 and M ∈ (0,∞) are two constants (cf. Definition 5.10.1), independent
of j, k. Introduce

E :=
⋃

j,k∈N
(L jk ∩�) and N := � \ E, (5.10.26)

hence
� =

( ⋃

j,k∈N
(L jk ∩�)

)
∪ N . (5.10.27)

Then, using the fact that � is upper-Ahlfors regular and (5.10.25), we may estimate

 
� jk

1E dHn−1 ≥
 
� jk

1L jk∩� dHn−1

= Hn−1(L jk ∩� jk)

Hn−1(� jk)
≥ Hn−1(L jk ∩� jk)

Crn−1
k

≥ ε/C, (5.10.28)

for every j, k ∈ N. By density (eventually also making use of the Ahlfors regularity
of �), this further entails the existence of a constant c > 0 with the property that

 
B(x,r)∩�

1E dHn−1 ≥ c, ∀x ∈ �, ∀r > 0. (5.10.29)

Granted (5.10.29), Lebesgue–Besicovitch Differentiation Theorem (cf., e.g., [80,
Theorem 1, p. 43]) gives that 1E (x) > 0 at Hn−1-a.e. point x ∈ � which proves
that Hn−1(N ) = 0. In turn, this and (5.10.27) show that (5.3.18) holds, thus � is
countably rectifiable. �

Following [125, Definition 3.7, p. 2631], let us now introduce the class of uni-
formly rectifiable domains (UR domains, for short).

Definition 5.10.6 Call a nonempty open subset � of R
n a UR domain provided

∂� is a UR set (cf. Definition 5.10.1) and ∂∗� has full measure (relative to the
(n − 1)-dimensional Hausdorff measure) in the topological boundary ∂�, i.e.,

Hn−1(∂� \ ∂∗�) = 0. (5.10.30)

We emphasize that, by definition, the topological boundary of any UR domain
is an Ahlfors regular set. As such, any UR domain is an Ahlfors regular domain.
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As in the case of Ahlfors regular domains, condition (5.10.30) prevents ∂� from
developing “too many” cusps and also precludes� from having “significant” cracks.
For example, the “crack domain” � defined in (5.9.120)–(5.9.121) is an open set
whose boundary is a UR set, and yet it fails to be a UR domain in the sense of
Definition 5.10.6 (Fig. 5.6).

Fig. 5.6 An open set with a UR boundary, which fails to be a UR domain

Let us note that, as seen from (5.9.21)–(5.9.22), (5.9.126)–(5.9.127), Proposi-
tion 5.10.4, and (5.2.4),

any BMO1-domain is a UR domain. (5.10.31)

In particular, any Lipschitz domain is a UR domain. In the plane, (5.9.76) and
(5.10.24) imply that

any bounded chord-arc domain in C ≡ R
2 is a UR domain. (5.10.32)

From (5.10.24), (5.2.4), and Definition 5.10.6 we also see that

any open set � ⊆ R
n with an upper Ahlfors regular boundary and

satisfying a two-sided corkscrew condition is, in fact, a UR domain (in
a quantitative fashion).

(5.10.33)

Further examples of two-dimensional UR domains are offered by the following
result.

Proposition 5.10.7 Assume that � ⊆ C is a connected, bounded, open set, whose
boundary is a finite union of mutually disjoint, upper Ahlfors regular, Jordan curves,
each of which is the boundary of a connected component of C \�. Then � is a UR
domain and ∂� = ∂(�).

Proof It suffices to treat the case when ∂� is an upper Ahlfors regular Jordan curve.
FromLemma5.9.3 and assumptions, it follows that ∂� is a rectifiableAhlfors regular
curve. In concert with the second formula in (5.8.42), this implies that� is anAhlfors
regular domain (cf. Definition 5.9.15). Since from (5.10.4) we also know that ∂� is
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a uniformly rectifiable set, we may conclude at this stage that � is a UR domain.
Finally, ∂� = ∂

(
�

)
thanks to the first formula in (5.8.42). �

It is also useful to record here the following equivalence.

Corollary 5.10.8 For a bounded connected open set� ⊆ C the following are equiv-
alent:

(1) ∂� is a finite union of mutually disjoint, upper Ahlfors regular, Jordan curves,
each of which is the boundary of a connected component of C \�;

(2) � is a UR domain satisfying ∂� = ∂(�) and such that ∂� is a finite union of
mutually disjoint rectifiable Jordan curves, each of which is the boundary of a
connected component of C \�.

Proof The implication (1)⇒ (2) is a direct consequence of Proposition 5.10.7,
while the implication (2)⇒ (1) is clear from Definition 5.10.1. �

In the context of Proposition 5.10.7, in the absence of any type of (local) connec-
tivity for its boundary, � may fail to be a UR domain even if ∂� is compact and
Ahlfors regular. To give an example, let G denote the Cantor-type set obtained from
the usual procedure starting with [0, 1], except that one now excludes the “middle-
centered half” (i.e., the second and third quarter) of the interval at each stage. ThenG
is compact and has an empty interior. As such, the Cartesian product E := G × G is
a compact subset of [0, 1] × [0, 1] with empty interior (an alternative description is
provided in (5.9.23)). This implies that if � := B(0, 10) \ E , then � is a connected
bounded open set in C with the property that ∂� = ∂B(0, 10) ∪ E . In particular,
(5.9.24) implies that ∂� is Ahlfors regular. Yet, in light of (5.9.28) and (5.10.6) we
conclude that � is not a UR domain.

Proposition 5.10.7 already hints to the fact that UR domains can be topologically
intricate and, indeed, in [195, Sect. A.4, p. 755] a class of UR domains in R

n (with
n ≥ 2 arbitrary) of infinite topological type was constructed.

To give other concrete examples of UR domains, of a different nature, fix two real
numbers a, b > 0 satisfying e−2πb < a < b and define the following logarithmic
spiral domain in the complex plane:

�a,b :=
{
reiθ ∈ C : θ ∈ R and r ∈ (

ae−θ , be−θ
)} ⊂ R

2. (5.10.34)

To study its nature, consider the family of functions�t : R
2 → R

2, indexed by t ∈ R,
defined as follows:

�t (x, y) :=

⎧
⎪⎨

⎪⎩

(
x cos(t ln r)− y sin(t ln r), x sin(t ln r)+ y cos(t ln r)

)

if (x, y) ∈ R
2 \ {(0, 0)}, where r := √

x2 + y2,

(0, 0) if (x, y) = (0, 0).
(5.10.35)
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In terms of z = x + iy ∈ C we may re-express �t as

�t (z) =
{
zeit ln |z| if z ∈ C \ {0},
0 if z = 0,

for each t ∈ R, (5.10.36)

which readily implies that

�t1+t2 = �t1 ◦�t2 for every t1, t2 ∈ R,

and �0(z) = z for each z ∈ C.
(5.10.37)

Moreover,
�t ∈ C 0(R2) ∩ C∞(R2 \ {(0, 0)}), (5.10.38)

and the Jacobian matrix D�t (x, y) is given at each (x, y) ∈ R
2 \ {(0, 0)} by

(
(1− t xyr2 ) cos(t ln r)− t x

2

r2 sin(t ln r) (−1− t xyr2 ) sin(t ln r)− t y
2

r2 cos(t ln r)

(1− t xyr2 ) sin(t ln r)+ t x
2

r2 cos(t ln r) (1+ t xyr2 ) cos(t ln r)− t y
2

r2 sin(t ln r)

)

.

(5.10.39)
In particular, |D�t | ≤ Ct <∞ in R

2 \ {(0, 0)} which goes to show that �t is Lips-
chitz in R

2. Upon recalling (5.10.37), we may therefore conclude that

each �t : R
2 → R

2 a bi-Lipschitz map, with inverse �−t . (5.10.40)

If we now define the sector in R
2 by setting

Sa,b :=
{
ρ eiω ∈ C : ρ > 0 and ω ∈ (

ln a, ln b
)}
, (5.10.41)

a direct calculation shows that

�a,b = �−1
(
Sa,b

)
. (5.10.42)

Note that Sa,b is a Lipschitz domain in R
2. In concert with the transformational

properties studied in [124], this implies that

the planar logarithmic spiral domain �a,b defined in (5.10.34) is a
UR domain satisfying a two-sided corkscrew condition (hence, in
particular, ∂∗�a,b = ∂�a,b); in addition, �a,b is a two-sided NTA
domain, in the sense of Definition 5.11.1.

(5.10.43)

Moreover, if z, w ∈ ∂�a,b and �(z, w) denotes the length of the arc (z, w), with
endpoints z, w, then borrowing notation and results from [124] we may write
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�(z, w) = H1
(
(z, w)

) = H1
(
�−1

(
(�1(z),�1(w)

))

=
ˆ
(�1(z),�1(w))

J�−1 dH1

≤ CH1
(
(�1(z),�1(w))

) = C�
(
�1(z),�1(w)

)

≤ C |�1(z)−�1(w)| ≤ C |z − w|. (5.10.44)

In particular, the above reasoning proves that

the planar logarithmic spiral domain �a,b defined in (5.10.34) is a
chord-arc domain with unbounded boundary (cf. Remark 5.9.12 and
subsequent discussion).

(5.10.45)

One may further fashion a bounded chord-arc domain out of �a,b by considering a
suitable truncated version near the spiral point.

In the next lemma we study how the quality of being an Ahlfors regular domain,
or UR domain, is preserved under passing to complements (of the closure).

Lemma 5.10.9 Suppose � ⊆ R
n is Ln-measurable. Abbreviate σ∗ := Hn−1�∂∗�

as well as σ := Hn−1�∂�, and also define

�+ := � and �− := R
n \�. (5.10.46)

Then the following statements are true.

(1) The set �− ⊆ R
n is open, ∂(�−) ⊆ ∂�, and

∂� \ ∂(�−) is a relatively open subset of ∂�. (5.10.47)

Moreover, if ∂� is upper Ahlfors regular, then ∂(�−) is upper Ahlfors regular.
(2) One has

Ln(∂� \�) = 0 ⇐⇒ Ln(� \�) = 0=⇒
{
∂∗(�−) = ∂∗� = ∂∗(�+),
and ∂�\∂(�−) ⊆ ∂� \ ∂∗�.

(5.10.48)
(3) Make the additional assumptions that

Ln(∂� \�) = 0 and � has locally finite perimeter. (5.10.49)

In such a scenario, denote by ν the geometric measure theoretic outward unit
normal to �.
Then �− is a set of locally finite perimeter with the property that

the geometric measure theoretic outward unit nor-
mal to �− is −ν at σ∗-a.e. point on ∂∗�. (5.10.50)
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(4) One has

Hn−1(∂� \ ∂∗�) = 0

and Hn−1(∂� ∩ B(x, r)) > 0

for all x ∈ ∂� and all r > 0

⎫
⎪⎬

⎪⎭
=⇒ ∂(�−) = ∂�. (5.10.51)

In particular,

whenever � is an Ahlfors regular domain (cf.
Definition 5.9.15) one has ∂(�) = ∂�.

(5.10.52)

Also,

assuming ∂� is a UR set, and

∂(�) is lower Ahlfors regular

}
=⇒ ∂(�−) is a UR set. (5.10.53)

(5) Assume Hn−1(∂� \ ∂∗�) = 0, as well as Hn−1(∂� ∩ B(x, r)) > 0 for each
x ∈ ∂� and r > 0. Then �− = ∅ if and only if � = R

n. As a corollary, an
Ahlfors regular domain (in the sense of Definition 5.9.15) is dense in R

n if and
only if it coincides with R

n.
(6) If � � R

n is an Ahlfors regular domain (in the sense of Definition 5.9.15) then
�− is also an Ahlfors regular domain, whose topological boundary coincides
with that of �, and whose geometric measure theoretic boundary agrees with
that of �, i.e.,

∂(�−) = ∂� and ∂∗(�−) = ∂∗�. (5.10.54)

Moreover, the geometric measure theoretic outward unit normal to �− is −ν at
σ -a.e. point on ∂�.

(7) If � � R
n is a UR domain (in the sense of Definition 5.10.6) then �− is also a

UR domain, whose topological boundary coincides with that of �, and whose
geometric measure theoretic boundary agrees with that of � (i.e., ∂(�−) = ∂�

and ∂∗(�−) = ∂∗�). In addition, the geometric measure theoretic outward unit
normal to �− is −ν at σ -a.e. point on ∂�.

Proof Since ∂(�−) is a closed subset ofR
n , it follows that ∂� \ ∂(�−) is a relatively

open subset of ∂�. Also,

∂(�−) = ∂(Rn \�) = ∂(�) = � \ �̊ ⊆ � \ �̊ = ∂�. (5.10.55)

In addition, if ∂� is upper Ahlfors regular, then it is clear from (5.9.2) that ∂(�−) is
also upper Ahlfors regular. This proves (1).

As regards the claims in (2), observe that
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� \� =
((
� \ �̊) ∪ �̊

)
\� = (∂� \ �̊) ∪ (�̊ \�) = (∂� \�) ∪ ∅ = ∂� \�.

(5.10.56)
This readily gives the equivalence in (5.10.48). To prove the subsequent implication,
make the assumption that Ln(� \�) = 0. Then the geometric measure theoretic
boundary of �− may be expressed as

∂∗(�−) = ∂∗(Rn \�) = ∂∗(�) = ∂∗
(
� $ (

� \�)) = ∂∗�, (5.10.57)

where we have also used (5.2.3) and (5.2.5). Hence ∂∗� = ∂∗(�−). Since the latter
set is contained in ∂(�−) (cf. (5.2.3)), it follows that Rn \ ∂(�−) ⊆ R

n \ ∂∗�. Inter-
secting both sides of this inclusion with ∂� then gives ∂� \ ∂(�−) ⊆ ∂� \ ∂∗�,
finishing the proof of (5.10.48).

Turning to the claims in (3), work under the additional assumptions stipulated in
(5.10.49). In particular, the fact that Ln(� \�) = 0 entails

1�− = 1− 1� at Ln-a.e. point in R
n (5.10.58)

which, after taking gradients, yields

∇1�− = −∇1� as (vector) distributions in R
n. (5.10.59)

Hence, �− is a set of locally finite perimeter and, in concert with (5.6.3), this also
readily implies (5.10.50).

As regards the first claim in item (4), since ∂(�−) ⊆ ∂� (cf. item (1)), there
remains to prove that ∂� ⊆ ∂(�−). With this goal in mind, reason by contradiction
and assume that there exists a point x ∈ ∂� \ ∂(�−). In concert with (5.10.47) this
implies that we may select some r ∈ (0,∞) such that B(x, r) ∩ ∂� ⊆ ∂� \ ∂(�−).
In particular,

Hn−1
(
∂� \ ∂(�−)

) ≥ Hn−1
(
B(x, r) ∩ ∂�)

> 0, (5.10.60)

thanks to the second assumption made in (5.10.51). On the other hand, the
first assumption made in (5.10.51) implies that Ln(∂� \ ∂∗�) = 0. In view of
Lemma 5.2.1, this forcesLn(∂�) = 0. Granted this, wemay invoke (5.10.48) which,
together with the first assumption made in (5.10.51), permits us to conclude that
Hn−1

(
∂� \ ∂(�−)

) = 0. However, this contradicts (5.10.60). This finishes the proof
of (5.10.51).

Concerning the last claim in item (4), assume ∂� is a UR set, and ∂(�) is lower
Ahlfors regular. Then from (5.10.55) and (5.10.23) we conclude that ∂(�−) is a UR
set.

Let us now turn our attention to item (5). Together with (5.10.51), the present
assumptions imply ∂� = ∂(�−). As such, having�− = ∅ forces ∂� = ∂(∅) = ∅

which ultimately implies � = R
n . The converse implication is obvious.
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Consider next the claims in item (6). If � is an Ahlfors regular domain,
then Ln(∂�) = 0 and Hn−1(∂� \ ∂∗�) = 0. Granted these, (5.10.51) implies
∂(�−) = ∂� while item (1) guarantees that ∂∗(�−) = ∂∗�. In particular, we have
Hn−1

(
∂(�−) \ ∂∗(�−)

) = Hn−1
(
∂� \ ∂∗�

) = 0. Since, by design,�− is open, and
since having � = R

n entails �− = ∅ (on account of item (5)), we ultimately con-
clude that�− is itself an Ahlfors regular domain. Lastly, that the geometric measure
theoretic outward unit normal to �− is −ν at σ -a.e. point on ∂� is a consequence
of (5.10.50).

Finally, the claims in item (7) are clear from (6) and (5.10.53). �

We augment Lemma 5.10.9 with the following purely topological result which is
going to be relevant later.

Lemma 5.10.10 Given n ∈ N along with an arbitrary subset� of R
n, consider the

statements:

(i) R
n \� is bounded;

(ii) � is unbounded and ∂� is bounded.

Then (i)=⇒(ii) and, if n ≥ 2, then (i)⇐⇒(ii).

Proof If R
n \� is bounded, the fact that R

n = (Rn \�) ∪� forces � to be
unbounded. Also, ∂� is bounded since it matches the boundary of the bounded
set R

n \�. This establishes (i)⇒(ii).
Assume next that n ≥ 2 and that� is an unbounded subset ofR

n with the property
that ∂� is bounded. The goal is to prove (i). To see that this is the case, if r > 0 is
such that

∂� ⊆ B(0, r), (5.10.61)

we claim that Rn \� ⊂ B(0, r), from which the desired conclusion follows. In turn,
the claim is easily justified when � = R

n , since in this case we have

R
n \� = � \� ⊆ � \ �̊ = ∂� ⊆ B(0, r). (5.10.62)

The remaining case, when � = R
n , is a consequence of a connectivity argument.

Specifically, if the aforementioned inclusion fails, then there exists x ∈ R
n such that

x /∈ B(0, r) and x /∈ �. In concert with (5.10.61), these imply that x /∈ � ∪ ∂� = �.
Given that � is unbounded, we may find y ∈ � \ B(0, r). In view of (5.10.61),
we therefore have y ∈ � \ ∂� = �̊. Since R

n \ B(0, r) is pathwise connected (as
n ≥ 2), we may join x and y with a continuous curve L which is contained in
R

n \ B(0, r). Writing R
n as the disjoint union �̊ ∪ ∂� ∪ (Rn \�) and recalling

that ∂� is contained in B(0, r), it follows the connected set L is covered by the
disjoint nonempty open sets �̊ and R

n \�. Hence, either L ⊆ �̊, or L ⊆ R
n \�,

both of which cannot materialize since x, y ∈ L with x ∈ R
n \� and y ∈ �̊. This

contradiction finishes the proof of the lemma. �
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We shall employ the following characterization of the category of locallyLipschitz
domains (originally introduced in Definition 2.8.12), itself proved in [124], in the
proof of Proposition 5.10.12 below.

Theorem 5.10.11 Let� be a nonempty, proper open subset of Rn which has locally
finite perimeter. Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure
theoretic outward unit normal to�. Then� is a locally Lipschitz domain if and only
if

∂� = ∂(�) (5.10.63)

and � has continuous locally transverse vector fields, in the sense that for each
point x ∈ ∂� there exist r > 0, c > 0, and some continuous vector field �h defined
on B(x, r) ∩ ∂� satisfying

ν · �h ≥ c at σ -a.e. point on B(x, r) ∩ ∂∗�. (5.10.64)

Here is a useful geometricmeasure theoretic characterization of half-spaces (com-
pare with [170, Proposition 15.15, p. 174]).

Proposition 5.10.12 Let � ⊂ R
n be an Ahlfors regular domain. Then � is a half-

space if and only if its geometric measure theoretic outward unit normal is a constant
vector.

Proof Of course, the geometric measure theoretic outward unit normal of any half-
space is a constant vector. The crux of thematter is establishing the converse implica-
tion, namely that if� ⊂ R

n is an Ahlfors regular domain whose geometric measure
theoretic outward unit normal is a constant vector then � is a half-space.

To this end, in a first stage we may invoke Theorem 5.10.11 (keeping in mind
(5.10.63) is presently satisfied thanks to (5.10.52), and that (5.10.64) holds with
�h := ν, the constant outward unit normal to �) to conclude that

� is a locally Lipschitz domain. (5.10.65)

Fix an arbitrary point x0 ∈ ∂�. From (5.10.65) and Lemma 2.8.13, we know that
near x0 the topological boundary ∂� agrees (up to a rotation and a translation) with
the graph of a Lipschitz function φ : R

n−1 → R. This, Proposition 5.6.17, and the
fact that ν is assumed to be constant then imply that

(∇′φ(x ′),−1
)

√
1+ |(∇′φ)(x ′)|2 (5.10.66)

is a constant vector for Ln−1-a.e. x ′ ∈ R
n−1 such that

(
x ′, φ(x ′)

)
is (up to the earlier

rotation and translation) near x0. Thus φ is actually an affine function when restricted
to the aforementioned patch. As a consequence, there exists an (n − 1)-dimensional
plane πx0 ⊆ R

n with the property that ∂� and πx0 coincide near x0, say

O ∩ ∂� = O ∩ πx0 for some open neighborhood O of x0. (5.10.67)
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Consider � := ∂� ∩ πx0 which is therefore a closed subset of πx0 , and denote by
�◦ the interior of� relative to πx0 (viewed as a topological space, with the structure
inherited from R

n). From (5.10.67) we see that

O ∩ πx0 = O ∩ ∂� ∩ πx0 = O ∩� ⊆ � (5.10.68)

which, in particular, shows that x0 ∈ �◦. The claim we make at this stage is that
∂(�◦), considered in πx0 , is empty. Indeed, if x ∈ ∂(�◦) then x ∈ � and x /∈ �◦. As
such, x ∈ ∂� and we can run the same argument as above (this time, for x ∈ ∂� in
place of x0 ∈ ∂�) to conclude that there exist an open neighborhood U of x in R

n

along with an (n − 1)-dimensional plane π ⊆ R
n , such thatU ∩ ∂� = U ∩ π . Note

that x ∈ U ∩ πx0 since x ∈ U and x ∈ � ⊆ πx0 , and thatU ∩ πx0 is a relatively open
subset ofπx0 . Bearing inmind that x ∈ ∂(�◦), we then see thatW := (U ∩ πx0) ∩�◦
is a nonempty subset of πx0 , which is relative open in the topology of πx0 , with the
property that W ⊆ U ∩ ∂� = U ∩ π ⊆ π . As a consequence, the hyperplanes πx0
and π must coincide. In turn, this implies

U ∩ πx0 = U ∩ π ∩ πx0 = U ∩ ∂� ∩ πx0 = U ∩� ⊆ � (5.10.69)

which shows that U ∩ πx0 is a relatively open subset of πx0 contained in �. Hence,
U ∩ πx0 ⊆ �◦. However, since x ∈ U ∩ πx0 we further conclude that x ∈ �◦, which
is a contradiction. Thus, �◦ is an open, nonempty, boundaryless subset of the con-
nected topological space πx0 . We can therefore conclude that �◦ = πx0 . As such
� ⊆ πx0 = �◦ ⊆ �, which goes to show that � = πx0 , i.e., πx0 ⊆ ∂�.

To summarize the analysis so far, with the arbitrary point x0 ∈ ∂� we have asso-
ciated an (n − 1)-dimensional plane πx0 ⊆ R

n which is orthogonal to the constant
vector ν, with the property that x0 ∈ πx0 ⊆ ∂�, and such that ∂� coincides with
πx0 near x0. In concert with (5.10.65), this also implies that � coincides with the
half-space H+

x0 := {x ∈ R
n : 〈x − x0, ν〉 < 0

}
near x0, say

H+
x0 ∩ B(x0, R) = � ∩ B(x0, R) for some R > 0. (5.10.70)

In the case when ∂� ∩ H+
x0 = ∅, consider

{
πz : z ∈ ∂� ∩ H+

x0

}
, i.e., the family of

(n − 1)-dimensional planes associated as above with points in ∂� ∩ H+
x0 . By design,

these are all parallel (since they are all orthogonal to the constant vector ν) and
contained in ∂�. In view of (5.10.70), these properties further imply that the distance
from each πz with z ∈ ∂� ∩ H+

x0 to πx0 is at least R (otherwise the corresponding
plane, which is contained in ∂�, would intersect H+

x0 ∩ B(x0, R), which is contained
in �, an impossibility given that � is open). Consequently, there exists an (n − 1)-
dimensional plane, call it πz0 for some z0 ∈ ∂� ∩ H+

x0 , which is closest to πx0 among
all planes in the family

{
πz : z ∈ ∂� ∩ H+

x0

}
. From (5.10.65) and Lemma 2.8.13 we

know that R
n \� coincides with the half-space H−

z0 := {x ∈ R
n : 〈x − z0, ν〉 > 0

}

near z0, i.e.,
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H−
z0 ∩ B(z0, r) =

(
R

n \�) ∩ B(z0, r) for some r ∈ (0, R). (5.10.71)

Let us denote by L := [y0, y1] the line segment joining some point y0 ∈ � ∩
B(x0, R)with some point y1 ∈

(
R

n \�) ∩ B(z0, r). Then from (5.10.70)–(5.10.71)
we see that L is contained in H+

x0 and a connectivity argument shows that L must
intersect ∂�. Consequently, L contains a point z∗ ∈ ∂� ∩ H+

x0 . As such, the (n − 1)-
dimensional planeπz∗ is strictly closer toπx0 thanπz0 , in contradictionwith the choice
of z0. This contradiction proves that actually ∂� ∩ H+

x0 = ∅.
Having established this property, we may now deduce that any point x∗ ∈ ∂�

cannot belong to the half-space H−
x0 := {x ∈ R

n : 〈x − x0, ν〉 > 0
}
, since otherwise

what we have just proved (applied to x∗ in place of x0) would imply ∂� ∩ H+
x∗ = ∅,

in contradiction with the fact that πx0 is contained both in ∂� and in H+
x∗ . Ultimately,

this shows that ∂� is precisely the (n − 1)-dimensional plane πx0 and, hence, �
coincides with the half-space H+

x0 . �

5.11 Nontangentially Accessible Domains

The class of nontangentially accessible domains has been introduced by D. Jerison
and C. Kenig in [132] in their quest to address the question raised by E. Stein of
extending classical results in Harmonic Analysis pertaining to the nature of harmonic
functions near the boundary to the most general domains “for which non-tangential
behavior is meaningful.”

Definition 5.11.1 Let � be a nonempty open proper subset of R
n.

(i) Say that the set � satisfies the Harnack chain condition provided there
exist two parameters M ∈ (1,∞) and R ∈ (

0, diam ∂�
]
(the latter required to

be∞ if ∂� is unbounded) with the following significance. First, given x, y ∈ �,
a Harnack chain from x to y in � is a sequence of balls B1, . . . , BN ⊂ � such
that x ∈ B1, y ∈ BN , B j ∩ Bj+1 = ∅ for 1 ≤ j ≤ N − 1, and such that each
Bj has a radius r j satisfying M−1r j < dist(Bj , ∂�) < Mr j . The length of the
chain is N . With this piece of terminology, one then demands that if

ε ∈ (0,∞), k ∈ N, z ∈ ∂�, and x, y ∈ � with

max
{|x − z|, |y − z|} < R/4 are such that

dist(x, ∂�) > ε, dist(y, ∂�) > ε, and dist(x, y) < 2kε,
(5.11.1)

then there exists a Harnack chain B1, . . . , BN from x to y, whose length N
satisfies N ≤ Mk, which further has the property that the diameter of each ball
B j is ≥ M−1 min

(
dist(x, ∂�), dist(y, ∂�)

)
.

(ii) Call � a one-sided NTA domain (or an interior NTA domain)
provided � satisfies an interior corkscrew condition as well as a Harnack
chain condition. More precisely, it is assumed that there exist M ∈ (1,∞) and
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R ∈ (
0, diam ∂�

]
(the latter required to be ∞ if ∂� is unbounded) with the

property that � satisfies an interior corkscrew condition up to scale R, as in
item (iv) of Definition 5.1.3 with constant θ := M−1 ∈ (0, 1), and � satisfies a
Harnack chain condition as in item (i) above with constants M, R.

(iii) Call � an NTA domain provided � satisfies a two-sided corkscrew condition,
as well as a Harnack chain condition (in the same precise quantitative sense as
before).

(iv) Call � a two-sided NTA domain provided both � and R
n \� are NTA

domains (again, in the same quantitative sense).

The Harnack chain condition in item (i) of Definition 5.11.1 roughly asserts that,
locally, points x, y ∈ �maybe “joined” by a pairwise overlapping family ofWhitney
balls, whose cardinality is cardinality does not exceed a multiple of

log2

( |x − y|
min

{
dist(x, ∂�), dist(y, ∂�)

}
)
. (5.11.2)

In particular, more suchWhitney balls are allowed if x, y are further apart, or if either
of these points gets closer to the boundary.

In the context of Definition 5.11.1, whenever necessary to emphasize the role of
the constants R,M , in item (ii) we shall say that� is a one-sided NTA domain with
constants (R,M), with similar conventions for items (iii) and (iv). In this regard, let
us note that22

if λ ∈ (0,∞) and� ⊆ R
n is a one-sidedNTA domainwith constants

(R,M) then λ� is a one-sided NTA domain with constants (λR,M),
plus similar results, for “ordinary” NTA domains and two-sidedNTA
domains.

(5.11.3)

Remark 5.11.2 If � ⊆ R
n has compact boundary and is a one-sided NTA domain

with constants (R,M) as in item (ii) of Definition 5.11.1, then � satisfies a (global)
interior corkscrew condition as formulated in item (i) of Definition 5.1.3 with the
constant θ := R/(2M · diam ∂�).

Indeed, up to scale R the existence of a corkscrew point with constant θ := M−1 is
guaranteed by definition, while for scales in the interval (R, 2 diam ∂�) the existence
of a corkscrew point follows from this by adjusting the constant as indicated.

As noted in (5.10.43), planar logarithmic spiral domains (defined in (5.10.34))
are two-sided NTA domains. Next we note that Proposition 5.9.16 implies that

if � ⊆ R
n is an NTA domain then ∂� is a lower

Ahlfors regular set which coincides with ∂∗�.
(5.11.4)

From (5.10.24), (5.2.4), and Definition 5.10.6 we also see that

22 See, e.g., [211, Lemma 2.2, p. 341].
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if � ⊆ R
n is an NTA domain, in the sense of Definition 5.11.1, with

an upper Ahlfors regular boundary then � is also a UR domain.
(5.11.5)

Let us also mention here that

if � ⊆ R
n is an one-sided NTA domain with an upper Ahlfors

regular boundary, then ∂� is a UR set if and only if � satisfies
an exterior corkscrew condition (thus rendering � both an NTA
domain, and a UR domain).

(5.11.6)

Indeed, the left-pointing implication is seen from Propositions 5.9.16 and 5.10.4,
while the right-pointing implication has been established in [14].

TheHarnack chain condition should be thought of as a (local) quantitative connec-
tivity condition. At the qualitative level, any locally path-connected open set23 with
a compact boundary has finitely many connected components, which are separated
(i.e., have mutually disjoint closures). In particular, we have the following result.

Lemma 5.11.3 Let � ⊆ R
n (where n ∈ N with n ≥ 2) be an open set satisfying a

Harnack chain condition (in particular, any one-sided NTA domain will do). Then
� has finitely many connected components. Moreover, if ∂� is bounded then the
distance between any two connected components of � is strictly positive, while if
∂� is unbounded then actually � is connected.

Proof If ∂� is unbounded, then there is no restriction on the scale up to which
the Harnack chain condition is valid, so item (i) in Definition 5.11.1 implies that
the open set � is pathwise connected, hence connected. For the remainder of the
proof assume that ∂� is bounded. Seeking a contradiction, assume � has infinitely
many distinct connected components, say {Oj } j∈N. Then ∂Oj ⊆ ∂� for each j ∈ N.
Picking a point x j ∈ ∂Oj for each j ∈ N then yields a sequence of distinct points
{x j } j∈N ⊆ ∂�, which is therefore bounded. By Bolzano–Weierstrass’ theorem, this
has an accumulation point, call it z, which necessarily belongs to ∂� since this set
is closed. From item (i) in Definition 5.11.1 we then know that there exists some
ρ ∈ (0,∞)with the property that� ∩ B(z, ρ) is pathwise connected (since if ρ > 0
is sufficiently small any two points in this set may be joined by a Harnack chain,
relative to some small ε ∈ (0,∞) and some large k ∈ N). Since z is an accumula-
tion point for {x j } j∈N, there exist j1, j2 ∈ N such that x j1 , x j2 ∈ B(z, ρ). Given that
x j1 ∈ ∂Oj1 and x j2 ∈ ∂Oj2 , we have B(z, ρ) ∩ Oj1 = ∅ and B(z, ρ) ∩ Oj2 = ∅. As
such, we may select two points y1 ∈ B(z, ρ) ∩ Oj1 and y2 ∈ B(z, ρ) ∩ Oj2 . Upon
recalling that Oj1 , Oj2 ⊆ �, it follows that y1, y2 belong to the pathwise connected
set � ∩ B(z, ρ). Hence, there exists a continuous curve γ ⊆ � ∩ B(z, ρ) joining
the point y1 with the point y2. Since y2 ∈ Oj2 which is an open set disjoint from
Oj1 , it follows that y2 ∈ R

n \ Oj1 . The fact that y1 ∈ Oj1 then forces (via a standard
connectivity argument) γ to intersect ∂Oj1 . Upon recalling that ∂Oj1 is contained in

23 i.e., an open set � ⊆ R
n with the property that for each x ∈ � there exists r > 0 such that any

two points in B(x, r) ∩� may be joined by a continuous path in �.
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∂�, we see that γ intersects ∂� contradicting the fact that γ is contained in the open
set �. This proves that � has finitely many connected components.

If the distance distance between two connected components of �, call them O1

and O2 is zero, then there exists a common point x ∈ ∂O1 ∩ ∂O2 ⊆ ∂� (recall
that we are assuming that ∂� is bounded). For some r > 0 sufficiently small, the
Harnack chain condition then guarantees that � ∩ B(x, r) is connected. Now, for
j = 1, 2, the fact that x ∈ ∂Oj implies that B(x, r) ∩ Oj = ∅, hence there exists
some x j ∈ B(x, r) ∩ Oj ⊆ B(x, r) ∩�. Since the latter set is open and connected,
there exists a closed curveC joining x1 with x2 in B(x, r) ∩�. Observe thatC ∪ O1

is a connected subset of �, since both C and O1 are connected subsets of � and
C ∩ O1 = ∅. By the maximality of O1, this forces C ⊆ O1, hence x2 ∈ C ⊆ O1.
Having O1 ∩ O2 = ∅ is a contradiction, and the desired conclusion follows. �

The Harnack chain condition allows us to connect interior corkscrew points.
Specifically, as is apparent from part (i) of Definition 5.11.1,

if� is a one-sidedNTAdomainwith constants (R,M), as in item (ii) of
Definition 5.11.1, then for each given θ ∈ (0, 1) there exist Nθ ∈ N and
CM ∈ (1,∞) with the property that for each x ∈ ∂� and r ∈ (0, R)
one may connect any two interior corkscrew points relative to x and
scales θr and r , respectively, via a Harnack chain of length ≤ Nθ and
whose balls have radii belonging to (r/CM ,CMr).

(5.11.7)

(See also the comment in [132, p. 93] when θ = 1/2.) In fact, it turns out that
one-sided NTA domains are literally nontangentially accessible, in the precise
sense described in the lemma below (which is a slight improvement upon [125,
Lemma 3.13, p. 2634]). To state it, for any given open set� ⊆ R

n , parameter κ > 0,
and point x ∈ ∂� define the nontangential approach region

�κ(x) :=
{
y ∈ � : |x − y| < (1+ κ) dist(y, ∂�)}. (5.11.8)

Lemma 5.11.4 Let � ⊆ R
n be a one-sided NTA domain with constants (R,M).

Suppose x ∈ �, y ∈ ∂� and r ∈ (0, R), C > 1 satisfy B(x, r) ⊂ B(y,Cr) ∩�.
Then there exists Co > 1 which depends only on C and M along with a rectifiable
simple curve γx,y joining x with y, of length ≤ Cor, such that γx,y \ {y} ⊆ �, and
with the property that

dist(z, ∂�) ≥ |z − y|/Co for each point z ∈ γx,y . (5.11.9)

In particular, with the piece of notation introduced in (5.11.8), there exists κ > 0
which depends only on C, M, R, such that

γx,y \ {y} ⊆ �κ(y). (5.11.10)
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Proof Given x, y as in the statement, set x0 := x and, for each j ∈ N, let x j denote a
corkscrew point relative to y at scale≈ 2− j r . From (5.11.7) we know that there exist
a number No ∈ N and a constant C1 > 1 (both depending only on the NTA constants
of� and the constantC in the statement of the lemma)with the property that, for each
j ∈ N, one can find a family of balls {Bk}1≤k≤N , with N ≤ No, of radii≈ 2− j r such
thatC1Bk ⊂ �, x j−1 ∈ B1, x j ∈ BN , and Bk ∩ Bk+1 = ∅ for k ∈ {1, . . . , N − 1}. In
particular, there exists a polygonal path γ j joining x j−1 with x j which stays roughly
at distance 2− j r from ∂�, and has length≤ C22− j r , for some C2 = C2(M,C) > 1.
If we now take γx,y to be the union of the paths γ j for all j ∈ N (and discard all loops),
it follows that γx,y is a rectifiable simple curve, of length≤ C3

∑∞
j=1 2

− j r = C3r , for
some constant C3 = C3(M,C) > 1. Furthermore, if z ∈ γx,y , say z ∈ γ j for some
j ∈ N, then, on the one hand, dist(z, ∂�) ≥ C42− j r , while on the other hand

|z − y| ≤ |z − x j | + |x j − y| ≤ length(γ j )+ C5 dist(x j , ∂�) ≤ C62
− j r.
(5.11.11)

Altogether, |z − y| ≤ Co dist(z, ∂�) for some finite Co = Co(M,C) > 1, finishing
the proof of the lemma. �

The same type of argument used in the proof of Lemma 5.11.4 yields the result
recorded in the remark below (see also Lemma 5.11.6 in this regard).

Remark 5.11.5 If� ⊆ R
n is a one-sidedNTA domain, then there exist C ∈ (0,∞)

and R ∈ (0,∞] (with R = ∞ allowed if ∂� is unbounded) having the following
significance: Whenever y ∈ ∂� and 0 < r1 ≤ r2 < R, any two corkscrew points
x1, x2 relative to the location y and scales r1, r2, respectively, may be join by a
rectifiable simple curve γ in � satisfying

length(γ ) ≤ C |x1 − x2| and

length(γx1,z) ≤ C · dist(z, ∂�) for each z ∈ γ, (5.11.12)

where γx1,z denotes the arc of the curve γ joining x1 with z.

A result related to Lemma 5.11.4 (which also implies the result in Remark 5.11.5)
is proved below.

Lemma 5.11.6 Let� ⊆ R
n be an interiorNTA and fix some κ ∈ (0,∞). Then there

exist parameters R ∈ (0,∞), κ̃ ∈ (0,∞), and C ∈ (0,∞), with the property that
whenever

r ∈ (0, R), x ∈ ∂�, and y0, y1 ∈ �κ(x) ∩ B(x, r), (5.11.13)

one may find

a rectifiable path γ ⊆ �κ̃(x) joining y0 with y1 and
whose length is ≤ C ·max

{|x − y0|, |x − y1|
}
. (5.11.14)
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Proof Let R ∈ (
0, diam ∂�

]
be as in part (i) of Definition 5.11.1, and fix an arbitrary

r ∈ (0, R). Also, let j0, j1 ∈ N be such that

2− j0r ≤ |x − y0| < 2−( j0−1)r and

2− j1r ≤ |x − y1| < 2−( j1−1)r.
(5.11.15)

To fix ideas, assume j0 ≤ j1. In turn, this entails

2− j0r ≤ max
{|x − y0|, |x − y1|

}
. (5.11.16)

For each j ∈ { j0, . . . , j1}, let z j be a corkscrew point relative to x at scale 2− j r . That
is, for some constant C ∈ (1,∞) which depends only on �, we have

B(z j , 2
− j r/C) ⊂ B(x, 2− j r) ∩�. (5.11.17)

Relabel z j0 to be y0 and z j1 to be y1. As observed at the bottom of p. 93 in [132], the
Harnack chain condition implies that we may find θ ∈ (0, 1) with the property that,
for each j , there exists a polygonal path γ j joining z j−1 with z j in �, such that

inf
z∈γ j

dist(z, ∂�) > θ2− j r and length(γ j ) ≤ θ−12− j r. (5.11.18)

Note that for each z ∈ γ j we have

|z − x | ≤ length(γ j )+ |z j − x | ≤ θ−12− j r + 2− j r = (1+ θ−1)2− j r

< (1+ θ−1)θ−1dist(z, ∂�), (5.11.19)

thanks to (5.11.18) and (5.11.17). Hence, if we set

κ̃ := (1+ θ−1)θ−1 − 1 ∈ (0,∞), (5.11.20)

it follows from (5.11.19) and (5.11.8) that

γ j ⊆ �κ̃(x) for each j. (5.11.21)

If we now define γ to be the union of the γ j ’s, then γ is a rectifiable path joining y0
with y1 in �, with

length(γ ) ≤
∑

j0≤ j≤ j1

length(γ j ) ≤
∞∑

j= j0

θ−12− j r = 2θ−12− j0r

≤ 2θ−1 max
{|x − y0|, |x − y1|

}
, (5.11.22)
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by (5.11.18) and (5.11.16). Also, (5.11.21) implies γ ⊂ �κ̃(x), finishing the proof
of (5.11.14). �

Going further, we recall the following definition from [125].

Definition 5.11.7 Let� ⊆ R
n be an open set. This is said to satisfy a local John

condition if there exist θ ∈ (0, 1), Mo ∈ (1,∞), and R ∈ (
0, diam ∂�

]
(the latter

required to be∞ if ∂� is unbounded), called the John constants of�, with the
following significance. For every location x ∈ ∂� and every scale r ∈ (0, R∗) one
can find a point

xr ∈ B(x, r) ∩�, (5.11.23)

called John center relative to the surface ball �(x, r) := B(x, r) ∩ ∂�, such
that

B(xr , θr) ⊆ � (5.11.24)

and for each y ∈ �(x, r) one can find

a rectifiable path γy : [0, 1] → � whose length is ≤ Mo · r ,
which satisfies γy(0) = y, γy(1) = xr , and such that for every
t ∈ (0, 1] one has dist(γy(t), ∂�

)
> θ · |γy(t)− y|.

(5.11.25)

Finally,� is said to satisfy a two-sided local John condition if both� and
R

n \� satisfy a local John condition.

Note that, by design,

any open set satisfying a local John condition automatically satisfies
an interior corkscrew condition, and any open set which satisfies a
two-sided local John condition also satisfies a two-sided corkscrew
condition.

(5.11.26)

In concert with (5.10.24) this further implies that

any open set � ⊆ R
n satisfying a two-sided local John condition

and with an upper Ahlfors regular boundary has the property that its
topological boundary, ∂�, is a UR set in a quantitative fashion; in
particular, � is a UR domain (in the sense of Definition 5.10.6) in a
quantitative fashion.

(5.11.27)

Let also remark here that, as a corollary of Definition 5.11.7 and Lemma 5.11.4,

any one-sided NTA domain with constants (R,M) satisfies an inte-
rior local John condition with constants θ = θ(M) ∈ (0, 1), Mo =
Mo(M) ∈ (1,∞), R ∈ (0,∞), and any two-sided NTA domain sat-
isfies a two-sided local John condition (once again, in the same quan-
titative fashion).

(5.11.28)
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We next consider the class of domains introduced by P. Jones in [135].

Definition 5.11.8 Assume that ε ∈ (0, 1] and δ ∈ (0,∞]. A nonempty, open, proper
subset� ofRn is called an (ε, δ)-domain if for any x, y ∈ �with |x − y| < δ there
exists a rectifiable curve γ : [0, 1] → � such that γ (0) = x, γ (1) = y, and

length(γ ) ≤ 1
ε
|x − y| and |z−x | |z−y|

|x−y| ≤ 1
ε
dist(z, ∂�)

for each z ∈ γ ([0, 1]). (5.11.29)

Informally, the first condition in (5.11.29) says that � is locally path-connected in
some quantitative sense (such domains are sometimes called quasi-convex), while
the second condition in (5.11.29) says that there exists some type of “croissant-like”
region C , with γ ([0, 1]) ⊆ C ⊆ � and the width of C at any point z on the curve is
at least a fixed fraction of min{|z − x |, |z − y|}.

Examples of (ε, δ)-domains include Lipschitz domains, bi-Lipschitz images of
Lipschitz domains, open sets whose boundaries are given locally as graphs of func-
tions in the Zygmund class�1, or of functions with gradients in the John–Nirenberg
space BMO, as well as the classical von Koch snowflake domain of conformal map-
ping theory. We wish to note that the boundary of an (ε, δ)-domain � can be highly
non-rectifiable and, in general, no regularity condition on ∂� can be inferred from
the (ε, δ) property described in Definition 5.11.8. The fact that (ε, δ)-domains are,
generally speaking, not even sets of finite perimeter can be seen from the fact that
the classical von Koch snowflake domain fails to have this property. In fact, for each
d ∈ [n − 1, n) there exists an open set � ⊆ R

n such that � is an (ε,∞)-domain for
some ε = ε(d) ∈ (0,∞) and ∂� has Hausdorff dimension d.

A remarkable result due to P. Jones (cf. [135, Theorem 1, p. 73]) states that

if� ⊆ R
n is an (ε, δ)-domain and k ∈ N, then there exists a linear

and bounded extension operator�k : Wk,p(�)→ Wk,p(Rn), for
all integrability exponents p ∈ [1,∞).

(5.11.30)

Going further, given an arbitrary, nonempty, open set � ⊆ R
n define

rad(�) := inf
j

inf
x∈� j

sup
y∈� j

|x − y|, where

{� j } j are the connected components of �.
(5.11.31)

Unraveling definitions then yields

rad(�) = inf
{
r ∈ (0,∞] : there exists x ∈ � such that � ⊆ B(x, r)

}
,

for any nonempty connected open set � ⊆ R
n,

(5.11.32)
hence, for any nonempty open set � ⊆ R

n with connected components {� j } j , we
have
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rad(�) = inf
j

rad(� j ). (5.11.33)

In particular, 1
2 diam(�) ≤ rad(�) ≤ diam(�) in the class of nonempty, connected,

open subsets � of R
n . It is also clear that rad(�) > 0 for every nonempty, finitely

connected, open set � in R
n , and that for every nonempty open set � ⊆ R

n ,

rad(�) > 0 if and only if there exists κ > 0 such that

diam(�′) > κ for every connected component �′ of �.
(5.11.34)

Elementary topological considerations show that

any (ε, δ)-domain � ⊆ R
n with compact boundary

is finitely connected, hence satisfies rad(�) > 0.
(5.11.35)

Lemma 5.11.9 Any (ε, δ)-domain � ⊆ R
n with rad(�) > 0 satisfies the interior

corkscrew condition (with constants depending on ε, δ, and rad(�)). In particular,
any (ε, δ)-domain � ⊆ R

n with rad(�) > 0 is n-thick (cf. (5.1.6)).

Proof Assume that x ∈ ∂� and 0 < ρ < min
{
4δ/5, 4 rad(�)/5

}
have been given.

The fact that x ∈ ∂� guarantees the existence of some x0 ∈ � ∩ B(x, ρ/4). Let�′ be
the connected component of� containing x0. From (5.11.32)–(5.11.33) and the fact
that 5ρ/4 < rad(�) ≤ rad(�′) it follows that�′ is not contained in B(x0, 5ρ/4) and,
as such, there exists x∗ ∈ �′ \ B(x0, 5ρ/4). Note that this forces x∗ /∈ B(x, ρ). Since
�′ is open and connected, it is path-wise connected. Let� ⊆ �′ be a continuous path
joining x0 and x∗. Given that x0 ∈ B(x, ρ) and x∗ /∈ B(x, ρ), a simple connectivity
argument shows that there exists x1 ∈ � ∩ ∂B(x, ρ). In particular, we have x1 ∈ �
and |x − x1| = ρ. This implies that |x0 − x1| ≤ ρ + ρ/4 = 5ρ/4 < δ. Based on this
and the fact that� is an (ε, δ)-domain we deduce that there exists a rectifiable curve
γ : [0, 1] → � such that γ (0) = x0, γ (1) = x1, and

length(γ ) ≤ 1
ε
|x0 − x1| and |z−x0| |z−x1|

|x0−x1| ≤ 1
ε
dist(z, ∂�)

for all z ∈ γ ([0, 1]). (5.11.36)

Elementary connectivity considerations imply that the set γ ([0, 1]) ∩ ∂B(x, ρ/2) is
nonempty. Pick a point Pρ(x) belonging to this set. Then Pρ(x) ∈ γ ([0, 1]) ⊆ � and
the fact that |x0 − x1| ≤ 5ρ/4, |x0 − Pρ(x)| ≥ ρ/4, |x1 − Pρ(x)| ≥ ρ/2 yields (by
the second inequality in (5.11.36))

dist
(
Pρ(x), ∂�

) ≥ ε|Pρ(x)− x0| |Pρ(x)− x1|
|x0 − x1| ≥ (

ε
10

)
ρ. (5.11.37)

Keeping in mind that |Pρ(x)− x | = ρ/2 < ρ, the desired conclusion follows. �
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Wecontinue by recording the definition of the class of uniformdomains introduced
by O. Martio and J. Sarvas in [173].

Definition 5.11.10 Let � ⊆ R
n be an open set.

(i) Call� a c-uniform domain for some c ∈ (0,∞) (or, simply, c-uniform)
if

for any x, y ∈ � there exists a rectifiable simple curve γ joining x
with y in � such that length(γ ) ≤ c|x − y| and with the property
that

min
{
length(γx,z), length(γz,y)

} ≤ c · dist(z, ∂�)

for each z ∈ γ , where γx,z and γz,y stand for the two connected
components of the curveγ , joining x with z, and z with y, respectively.

(5.11.38)
(ii) Call � a uniform domain (or, simply, uniform) if there exists c ∈ (0,∞)

such that � is a c-uniform domain.

Condition (5.11.38) asserts that the length of γ is comparable to the distance
between its endpoints and that, away from its endpoints, the curve γ stays corre-
spondingly far from ∂�. Hence, heuristically, condition (5.11.38) implies that points
in� can be joined in� by a curvilinear (or twisted) double cone which is neither too
crocked nor too thin. The class of uniform domains is bi-Lipschitz invariant. Exam-
ples of uniform domains include bounded Lipschitz domains and their bi-Lipschitz
images, as well as bounded logarithmic spiral domains (as seen from (5.10.40)–
(5.10.42)). The classical von Koch snowflake is a uniform domain, and so is any
quasidisk (the image of a disk or half-plane under a quasiconformal mapping of C

onto itself). At the expense of increasing c, an equivalent reformulation of condition
(5.11.38) is as follows (for a proof see [256, Sect. 2.4, p. 102]):

for any two points x, y ∈ � there exists a rectifiable simple
curve γ joining x with y in �, such that length(γ ) ≤ c|x − y|
and |z−x | |z−y|

|x−y| ≤ c · dist(z, ∂�) for all z ∈ γ .
(5.11.39)

There is yet also another competing definition of uniformity which involves a
weaker, more rudimentary version of the inequality in (5.11.38); cf. (5.11.40) below.
Given that many papers in the literature use the latter notion of uniformity, it is of
interest to establish the equivalence of these two definitions.

Proposition 5.11.11 Let � be an open set in R
n. Then � is a uniform domain (in

the sense of Definition 5.11.10) if and only if there exists a constant c ∈ [1,∞) such
that

for each pair of given points x, y ∈ � one may find some rectifiable
simple curve ϒ joining x with y in �, with length(ϒ) ≤ c|x − y| and
such thatmin

{|x − z|, |z − y|} ≤ c · dist(z, ∂�) for each point z ∈ ϒ .
(5.11.40)
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Proof This follows by combining results from [172, 256]. To elaborate, we note that
there are several types of competing definitions describing uniformity in the litera-
ture. For one thing, there is the notion of uniformity recalled in Definition 5.11.10.
For another thing, there is the notion of uniformity proposed in (5.11.40). In [256,
Theorem 2.10, p. 104], it is shown that the latter is equivalent to the so-calledMöbius
uniformity (cf. [256, Sect. 2.7, p. 103]). Möbius uniformity has been introduced ear-
lier byO.Martio in [172, Definition 5.1, p. 201], who has shown that this is equivalent
to the notion of uniformity from Definition 5.11.10 (this is seen by combining [172,
Theorem 5.4, p. 201] with [172, Theorem 3.4, p. 199]). Together, these show that an
open set � ⊆ R

n is a uniform domain in the sense of Definition 5.11.10 if and only
if there exists a constant c ∈ [1,∞) such that (5.11.40) holds.

Below we present an alternative, direct proof,24 which is also going to be useful
for establishing a local version of Proposition 5.11.11 (cf. Proposition 5.11.13, stated
a little later).

If � is a uniform domain in the sense of Definition 5.11.10 then for any points
x, y ∈ � the conditions in (5.11.40) are satisfied by taking ϒ to be the curve γ
joining x with y as in (5.11.38).

For the remainder of the proof assume� ⊆ R
n is an open set satisfying (5.11.40).

Fix two arbitrary distinct points x, y ∈ � and let ϒ : [0, 1] → � be a rectifiable
simple curve joining x with y as in (5.11.40). Abbreviate r := |x − y| > 0 and
define

t∗ := inf
{
t ∈ [0, 1] : ϒ(t) ∈ B(y, r/4)

}
,

s∗ := sup
{
s ∈ [0, t∗] : ϒ(s) ∈ B(x, r/4)

}
.

(5.11.41)

It is then apparent from these definitions that y∗ := ϒ(t∗) ∈ ∂B(y, r/4) is the first
point from the curve ϒ on ∂B(y, r/4), while x∗ := ϒ(s∗) ∈ ∂B(x, r/4) is the last
point on the curveϒ belonging to ∂B(x, r/4), before said curve hits ∂B(y, r/4). Let
ϒ̃ := ϒ

∣
∣[s∗,t∗]. This is a rectifiable simple curve joining the point x∗ with the point

y∗ in the set � \ (
B(x, r/4) ∪ B(y, r/4)

)
, satisfying

length(ϒ̃) ≤ length(ϒ) ≤ c|x − y| = cr, (5.11.42)

and with the property that

r ≤ 4 ·min
{|x − z|, |z − y|} ≤ 4c · dist(z, ∂�) for each z ∈ ϒ̃. (5.11.43)

We are going to alter ϒ : [0, 1] → � by replacing the initial arc ϒx,x∗ with a
rectifiable simple curve ϒ(0) joining x with x∗ in �, and replacing the final arc
ϒy∗,y with a rectifiable simple curve ϒ(1) joining y∗ with y in �. In addition, we
shall arrange matters so that ϒ(0), ϒ(1) are disjoint from ϒ̃ , and we shall ensure the
existence of a constant C ∈ (0,∞) for which

24 We are grateful to Chema Martell for useful discussions on this topic.
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max
{
length(ϒ(0)), length(ϒ(1))

} ≤ Cr (5.11.44)

and
length(ϒ(0)x,z) ≤ C · dist(z, ∂�) for every z ∈ ϒ(0),
length(ϒ(1)z,y) ≤ C · dist(z, ∂�) for every z ∈ ϒ(1). (5.11.45)

Assume for now that the aforementioned alterations are possible, and have been
implemented. We claim that the resulting concatenated curve, i.e.,

γ := ϒ(0) ∪ ϒ̃ ∪ ϒ(1), (5.11.46)

is as in (5.11.38) (for a possibly different constant c). For starters, observe that,
by design, γ is a rectifiable simple curve joining x with y in �. Also, from
(5.11.46), (5.11.44), and (5.11.42)we see that length(γ ) ≤ (c + 2C)|x − y|. Finally,
on account of (5.11.42)–(5.11.43), (5.11.45), and (5.11.46) we conclude that

min
{
length(γx,z), length(γz,y)

} ≤ 2c(c + 2C) · dist(z, ∂�) (5.11.47)

for each z ∈ γ , finishing the justification of the claim.
At this stage, we turn to the construction of a rectifiable curveϒ(0) joining x with

x∗ in �, along with a rectifiable curve ϒ(1) joining y∗ with y in �, which satisfy
the properties listed in (5.11.44)–(5.11.45). We shall only carry out the construction
of ϒ(0), since ϒ(1) may be dealt with in a completely similar fashion. To this end,
set x0 := x∗ and for each k ∈ N pick xk ∈ ϒ ∩ ∂B(x, 2−k−2r). Using (5.11.40), for
each k ∈ N we may find a rectifiable curve ϒk such that

ϒk joins xk−1 with xk in �, has length(ϒk) < c|xk−1 − xk |, and
min

{|xk−1 − z|, |z − xk |
}
< c · dist(z, ∂�) for each point z ∈ ϒk .

(5.11.48)

Next, define

ϒ(0) :=
⋃

k∈N
ϒk . (5.11.49)

Then ϒ(0) is a rectifiable curve joining x with x∗ in � and satisfies

length(ϒ(0)) =
∞∑

k=1

length(ϒk) ≤ c
∞∑

k=1

|xk−1 − xk | (5.11.50)

≤ c
∞∑

k=1

2−k−1r = (3c/4)r. (5.11.51)

To proceed, fix an arbitrary k ∈ N ∪ {0}. On the one hand, the fact that xk ∈ ϒ
implies, in light of (5.11.40), that
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min
{|x − xk |, |xk − y|} ≤ c · dist(xk, ∂�). (5.11.52)

On the other hand, since xk ∈ ∂B(x, 2−k−2r) we have |x − xk | = 2−k−2r ≤ r/4
which permits us to estimate r = |x − y| ≤ |x − xk | + |xk − y| ≤ r/4+ |xk − y|.
Hence |xk − y| ≥ 3r/4 which, together with (5.11.52), further entails

2−k−2r = |x − xk | = min
{|x − xk |, |xk − y|} ≤ c · dist(xk, ∂�). (5.11.53)

Consider now k ∈ N fixed, arbitrary. We make the claim that

dist(z, ∂�) ≥ c−2 · 2−k−3r for each z ∈ ϒk . (5.11.54)

To justify this claim, consider first the case when z ∈ ϒk is such that

|xk−1 − z| ≥ c−1 · 2−k−3r and |xk − z| ≥ c−1 · 2−k−3r. (5.11.55)

In such a scenario, we may rely on the second line in (5.11.48) to write

dist(z, ∂�) ≥ c−1 ·min
{|xk−1 − z|, |z − xk |

} ≥ c−2 · 2−k−3r, (5.11.56)

as wanted. Next, assume that z ∈ ϒk satisfies

|xk−1 − z| < c−1 · 2−k−3r. (5.11.57)

Then based on the triangle inequality, (5.11.53) (written with k − 1 in place of k),
and (5.11.57) we may estimate

dist(z, ∂�) ≥ dist(xk−1, ∂�)− |xk−1 − z|
≥ c−1 · 2−k−1r − c−1 · 2−k−3r = 3c−1 · 2−k−3r, (5.11.58)

which suits our purposes (recall that c ≥ 1). Finally, the case when in place of
(5.11.57) we have |xk − z| < c−1 · 2−k−3r is handled similarly, and this finishes
the proof of (5.11.54).

We are now ready to check the first inequality in (5.11.45). Specifically, pick an
arbitrary point z ∈ ϒ(0) and recall from (5.11.49) that there exists some ko ∈ N such
that z ∈ ϒko . Then, on the one hand, from the first line in (5.11.48) and (5.11.49) we
see that

length(ϒ(0)x,z) ≤
∞∑

k=ko

length(ϒk) ≤ c
∞∑

k=ko

|xk−1 − xk |

≤ c
∞∑

k=ko

3 · 2−k−2r = 3c2−ko−1r. (5.11.59)
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On the other hand, from (5.11.54) we know that dist(z, ∂�) ≥ c−2 · 2−ko−3r which,
in concert with (5.11.59), ultimately implies

length(ϒ(0)x,z) ≤ 12c3 · dist(z, ∂�). (5.11.60)

This establishes the first inequality in (5.11.45), with C := 12c3. To finish the proof
of the proposition there remains to observe that we may prune γ by discarding loops
as to make the resulting curve simple, without affecting the validity of (5.11.38). �

We shall also need a local version of the uniformity property, as described in the
following definition.

Definition 5.11.12 Let � ⊆ R
n be an open set.

(i) Call � a (c, r)-locally uniform domain, for some c, r ∈ (0,∞), (or,
simply, (c, r)-locally uniform) if (5.11.38) holds for all points x, y ∈ �
satisfying |x − y| < r .

(ii) Call � a locally uniform domain (or, simply, locally uniform) if
there exist c, r ∈ (0,∞) such that � is a (c, r)-locally uniform domain.

Examples of domains which are locally uniform but not uniform are an infinite
cylinder and the complement of a semi-infinite slab. Obviously, if � is a uniform
domain then � is a locally uniform domain. In the converse direction, [256, Theo-
rem 4.1, p. 114] implies that

if � is a locally uniform domain and ∂� is bounded, then
any connected component of � is a uniform domain.

(5.11.61)

It turns out that a local version of the equivalence established earlier in Proposi-
tion 5.11.11 is also true. Specifically, we have the following result.

Proposition 5.11.13 Let� be an open set inR
n. Then� is a locally uniform domain

(in the sense of Definition 5.11.12) if and only if there exist two constant c ∈ [1,∞)
and R ∈ (0,∞) such that

for each x, y ∈ � with |x − y| < R one may find some rectifiable sim-
ple curveϒ joining x with y in�, with length(ϒ) ≤ c|x − y| and such
that min

{|x − z|, |z − y|} ≤ c · dist(z, ∂�) for each point z ∈ ϒ .
(5.11.62)

Proof This is seen from a cursory inspection of the second proof of Proposi-
tion 5.11.11. �

In view of the fact that both the Harnack chain condition and (5.11.39) may be
thought of as quantitative connectivity properties, it should not be too surprising that
the class of uniform domains interfaces tightly both with the Jerison–Kenig class
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of NTA domains (cf. Definition 5.11.1) and with Jones’ class of (ε, δ)-domains (cf.
Definition 5.11.8). For the benefit of the reader, below we summarize some of the
most basic interconnections among the various classes of domains discussed above,
which are scattered in the literature.

Proposition 5.11.14 Let� ⊆ R
n be an open set. Then the following statements are

true.

(1) The set � is an (ε, δ)-domain for some ε > 0 and δ > 0 if and only if � is a
locally uniform domain.

(2) The set � is an (ε,∞)-domain for some ε > 0 if and only if � is a uniform
domain.25

(3) If� is a uniform domain, or� is a locally uniform domain with compact bound-
ary, then� satisfies an interior corkscrew condition as well as a Harnack chain
condition (i.e., � is one-sided NTA, or interior NTA).

(4) If � satisfies an interior corkscrew condition and a Harnack chain condition
(i.e., if � is one-sided NTA, or interior NTA) then any connected component of
� is a uniform domain.

Proof As a preliminary matter, we note that if γ ⊆ � is a rectifiable curve with
end-points x, y ∈ � satisfying length(γ ) ≤ c|x − y| for some number c ∈ [1,∞),
then for each point z ∈ γ we have

1

2
·min

{|x − z|, |z − y|} ≤ |z − x | |z − y|
|x − y| ≤ c ·min

{|x − z|, |z − y|}.
(5.11.63)

Indeed, if z ∈ γ has |x − z| ≤ |z − y| then |x − y| ≤ |x − z| + |z − y| ≤ 2|z − y|
which readily gives the first inequality in (5.11.63) in this case. The same type of
reasoning works when z ∈ γ is such that |y − z| ≤ |x − y|, and this finishes the
proof of the first inequality in (5.11.63). As regards the remaining inequality, for
each point z ∈ γ write

|z − x | |z − y|
|x − y| ≤ |z − x | · length(γ )

|x − y| ≤ c|x − z|,

|z − x | |z − y|
|x − y| ≤ |z − y| · length(γ )

|x − y| ≤ c|y − z|,
(5.11.64)

from which the second inequality in (5.11.63) follows.
The claim in item (1) is seen from by definitions, (5.11.63), and Proposi-

tion 5.11.13. The claim in item (2) is a consequence of definitions, (5.11.63), and
Proposition 5.11.11. Also, the statement in item (3) is implied by [113, Proposi-
tion A.2, p. 481] and its proof.

25 It is known that there are unbounded (ε, δ)-domains which are not uniform; this is seen from the
example in [136, p. 71].
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Consider next the version of (4) in the class of sets with compact boundaries.
Specifically, assume� is an open set with compact boundary andwhich satisfies both
an interior corkscrew condition as well as a Harnack chain condition, as described
in Definition 5.11.1. In view of Lemma 5.11.3, these properties are inherited by any
connected component of �. Hence, if we fix such a connected component �′ of �,
it follows that �′ satisfies both an interior corkscrew condition as well as a Harnack
chain condition with constants (R,M). Then, on the one hand, from the proof of
[113, Proposition A.3, p. 481] we see that any two points x, y ∈ �′ with the property
that there exists w ∈ ∂� such that x, y ∈ �′ ∩ B(w, R/100) may be joined with a
rectifiable curve γ in �′ satisfying (5.11.38) for some c ∈ (0,∞) depending only
on R,M . On the other hand, it is known that uniformity of an open connected set
with compact boundary is a local property of the boundary. Indeed, this follows from
[256, Theorem 4.1, p. 114] (applied to the set in question intersected with a large ball
centered at the origin) In concert, these properties allow us to conclude that �′ is a
uniform domain.

Finally, the version of (4) for an one-sided NTA domain � for which ∂� is
unbounded is proved in [171, Lemma 2.19]. See also [14, Theorem 2.15], [23, Lem-
mas 4.2–4.3], [102, 256] for more in this regard (here we also wish to note that the
fact that a uniform domain satisfies a Harnack chain condition may also be found in
[39, Proposition 4.2]). �

A consequence of item (3) in Proposition 5.11.14 is that if the complement of
a uniform domain � ⊆ R

n satisfies an interior corkscrew condition, then � is an
NTA domain. We also wish to observe that, as seen from items (3)–(4) in Proposi-
tion 5.11.14,

the class of uniform domains coincides, in a quantitative fashion,
with the class of connected one-sided NTA domains (or interior NTA
domains), i.e., the class of open connected sets satisfying an interior
corkscrew condition as well as a Harnack chain condition,

(5.11.65)

while items (1)–(4) in Proposition 5.11.14 together with Lemma 5.11.3 ensure that,
in a quantitative fashion,

the class of (ε, δ)-domainswith compact boundaries coincideswith that
of one-sided NTA (or interior NTA domains; i.e., open sets satisfying
an interior corkscrew condition and a Harnack chain condition) with
compact boundaries.

(5.11.66)

Another useful result is that being an NTA domain is a property locally inherited
near boundary points. More specifically, the following version of the main result in
[136] holds; see also [132, Theorem 3.11, p. 96] (a direct proof in the smaller class
of Zygmund domains is given in [132, Appendix, p. 140]).

Proposition 5.11.15 Let � ⊆ R
n be an NTA domain (in the sense of Defini-

tion 5.11.1). Then there exist a constant C ∈ (1,∞) and a threshold R ∈ (0,∞],
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depending only on the NTA constants of � (and such that R = ∞ if ∂� is
unbounded), with the property that for each x ∈ ∂� and r ∈ (0, R) one may find
a connected NTA domain �x,r (with constants depending only on those of �) such
that

�x,r ⊆ � and � ∩ B(x, r) ⊆ �x,r ⊆ � ∩ B(x,Cr). (5.11.67)

Proof Suppose first that ∂� is unbounded. Then the Harnack chain condition from
item (i) in Definition 5.11.1 holds without any limitations on the size of the scale.
In turn, this implies that any two points in � may be joined via a polygonal path,
hence � is connected. Granted this, items (4) and (2) in Proposition 5.11.14 imply
that there exists some ε > 0 such that � is an (ε, δ)-domain for each δ > 0.

To summarize, in the present case we conclude that there exists some ε > 0 with
the property that � is a connected open subset of R

n which satisfies an exterior
corkscrew condition and is an (ε, δ)-domain for each δ > 0. This is what P. Jones
calls in [136, p. 71] “an (ε, δ) nontangentially accessible domain” (or “(ε, δ) N .T .A.”
for short). For this class of domains �, [136, Theorem, p. 71] guarantees that for
each x ∈ ∂� and each r ∈ (0,∞) there exists a connected NTA domain �x,r (with
constants depending only on �) enjoying the properties listed in (5.11.67).

Consider next the case when ∂� is compact. From Lemma 5.11.3 we know that
� has finitely many connected components, call them �1, . . . , �N (where N ∈ N),
with the distance between any two of them strictly positive. In particular,

R := inf
1≤ j =k≤N

dist
(
� j ,�k

)
> 0. (5.11.68)

To proceed, fix an arbitrary j ∈ {1, . . . , N }. Then � j is itself a connected NTA
domain with compact boundary. Once again, we may invoke items (4) and (2) in
Proposition 5.11.14 to conclude that there exists some number ε j > 0 such that
� j is an (ε j , δ)-domain for each δ > 0. Hence, in the terminology employed by
P. Jones in [136, p. 71], the set � j is an (ε j , δ) N .T .A. for each given δ > 0. As
such, [136, Theorem, p. 71] applies and guarantees the existence of a positive constant
A j , depending only on ε j and n, with the property that for each x ∈ ∂� j and each
r ∈ (0,∞) we can find a connected NTA domain �x,r (with constants depending
only on � j ) such that

�x,r ⊆ � j and � j ∩ B(x, r) ⊆ �x,r ⊆ � j ∩ B(x, A jr). (5.11.69)

Introduce C := max1≤ j≤N A j . Restricting r to the interval (0, R) then ultimately
implies

�x,r ⊆ � and � ∩ B(x, r) ⊆ �x,r ⊆ � ∩ B(x,Cr)

for each x ∈ ∂� and r ∈ (0, R). (5.11.70)

The proof is therefore complete. �
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Moving on, we discuss the following result, refining work in [193, Lemma 2.10,
p. 972].

Lemma 5.11.16 Let � ⊂ R
n be a locally uniform domain. Recall from Defini-

tion 5.11.12 that this means that � is an open subset of R
n and there exist

c ∈ (0,∞) and R ∈ (0,∞] such that (5.11.38) holds for all points x, y ∈ � sat-
isfying |x − y| < R. As before, let δ∂�(x) abbreviate dist(x, ∂�) for each x ∈ R

n.
Next, fix a non-increasing function φ : (0,∞)→ [0,∞) and define

φ̃ : [0,∞)→ [0,∞), φ̃(r) :=
ˆ r/2

0
φ(t) dt for each r ≥ 0. (5.11.71)

Then there exists a constant C ∈ (0,∞), depending only on the uniform character
of �, such that for every function u ∈ C 1(�) with the property that

|∇u(x)| ≤ φ(
δ∂�(x)

)
for each x ∈ � (5.11.72)

one has

|u(x)− u(y)| ≤ Cφ̃
(|x − y|) for each x, y ∈ � with |x − y| < R. (5.11.73)

As a corollary, let us note that if� ⊆ R
n is a (c, R)-locally uniform domain then

for each α ∈ (0, 1) there exists a finite constant Cα,c > 0 such that for each function
u ∈ C 1(�) we have

sup
x,y∈�

0<|x−y|<R

|u(x)− u(y)|
|x − y|α ≤ Cα,c · sup

x∈�

{
|(∇u)(x)| · dist(x, ∂�)1−α

}
. (5.11.74)

To justify this, fix some u ∈ C 1(�) and denote by M the supremum in the right-hand
side of (5.11.74). We can assume that M < +∞, since otherwise there is nothing
to prove. Granted this, (5.11.74) follows from (5.11.73) and (5.11.71) used with
φ(t) := M · tα−1 for each t > 0.

In particular, (5.11.74) implies that if � ⊆ R
n is a locally uniform domain then

for each α ∈ (0, 1) there exists a finite constant C = C(�, α) > 0 such that

‖u‖C α(�) ≤ C · sup
x∈�

{
|(∇u)(x)| · dist(x, ∂�)1−α + |u(x)|

}
, ∀u ∈ C 1(�).

(5.11.75)
A related version of the result recorded in (5.11.75) reads as follows: if
the set � ⊆ R

n is a locally uniform domain possessing a compact bound-
ary, then there exists some closed set D⊆� satisfying dist(D, ∂�)>0
and with the property that for each given exponent α ∈ (0, 1) there exists a finite
constant C = C(�, α) > 0 such that for each function u ∈ C 1(�) we have
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‖u‖C α(�) ≤ C · sup
x∈�

{
|(∇u)(x)| · dist(x, ∂�)1−α

}
+ C · sup

x∈D
|u(x)|. (5.11.76)

To justify this, assume� is a (c, R)-locally uniform domain. Then there exists some
small threshold r > 0 such that D := {

x ∈ � : dist(x, ∂�) ≥ r
}
has the property

that for each point x ∈ �we can find some x ′ ∈ D with |x − x ′| < R. Since accord-
ing to (5.11.74) this further entails that for each x ∈ � we have

|u(x)| ≤ |u(x ′)| + |u(x)− u(x ′)|
≤ sup

D
|u| + Rα · sup

�

{
|∇u| · dist(·, ∂�)1−α

}
, (5.11.77)

we may now invoke (5.11.75) to conclude that (5.11.76) holds.
For further use it is also of interest to note that if � ⊆ R

n is actually a uniform
domain then we may take R = ∞ in (5.11.74) and conclude that for each α ∈ (0, 1)
there exists a finite constant C�,α > 0 such that

‖u‖ .
C α(�)

= sup
x,y∈�
x =y

|u(x)− u(y)|
|x − y|α (5.11.78)

≤ C�,α · sup
x∈�

{
|(∇u)(x)| · dist(x, ∂�)1−α

}
, ∀u ∈ C 1(�).

Another useful observation is that if φ̃ is not identically +∞, i.e., if

ˆ ε

0
φ(t) dt < +∞ for some ε > 0, (5.11.79)

then Lebesgue’s Dominated Convergence Theorem gives lim
r→0+

φ̃(r) = 0. In concert

with (5.11.73), this shows that u is a uniformly continuous function on �. Conse-
quently,

if � ⊆ R
n is a locally uniform domain and u ∈ C 1(�) satisfies

(5.11.72) for a non-increasing function φ : (0,∞)→ [0,∞) such
that (5.11.79) holds, it follows that u has a unique extension to a
function in C 0(�).

(5.11.80)

There is also a local version of Lemma 5.11.16 in which, having fixed some
number ro ∈ (0,∞), we now ask that

φ : (0, ro)→ [0,∞) is non-increasing, and φ̃ : [0, 2ro)→ [0,∞)
is given by φ̃(r) := ´ r/2

0 φ(t) dt for each r ∈ [0, 2ro).
(5.11.81)
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For each ρ > 0 define �ρ :=
{
x ∈ � : δ∂�(x) < ρ

}
. Then, if u ∈ C 1(�) is a func-

tion with the property that

|∇u(x)| ≤ φ(
δ∂�(x)

)
for each x ∈ �ro , (5.11.82)

the same type of proof given below shows that there exist C0,C1,C2 ∈ (1,∞),
depending only on the uniform character of �, such that

|u(x)− u(y)| ≤ C0φ̃
(|x − y|) for all x, y ∈ �ro/C1 with |x − y| < C2. (5.11.83)

Granted this, much as in (5.11.80) we see that

if � ⊆ R
n is a locally uniform domain and u ∈ C 1(�) satisfies

(5.11.82) for a non-increasing function φ : (0, ro)→ [0,∞) such
that (5.11.79) holds, it follows that u has a unique extension to a
function in C 0(�).

(5.11.84)

For example, if � ⊆ R
n is a locally uniform domain and u ∈ C 1(�) satisfies

|∇u(x)| ≤ C
∣∣ ln

(
δ∂�(x)

)∣∣ for each x ∈ � with δ∂�(x) < 1/2, (5.11.85)

then u extends uniquely to a function in C 0(�), since
´ 1/2
0 | ln t | dt < +∞. In fact,

whenever (5.11.85) holds we conclude from (5.11.83) that there exist C0 ∈ (0,∞)
and some ρ > 0 such that

|u(x)− u(y)| ≤ C0 |x − y|∣∣ ln |x − y|∣∣
for all x, y ∈ �ρ with |x − y| < ρ. (5.11.86)

We now present the proof of Lemma 5.11.16.

Proof of Lemma 5.11.16 Consider c > 0 such that condition (5.11.38) is satisfied.
Let then x, y ∈ � be two arbitrary points with |x − y| < R and assume γ is as in
Definition 5.11.10. To proceed, denote by L ∈ (0,∞) and s ∈ [0, L], respectively,
the length of the curve γ ∗ := γ ([0, 1]) and the arc-length parameter on γ ∗. Also,
let [0, L] � s �→ γ (s) ∈ γ ∗ be the canonical arc-length parametrization of γ ∗. In
particular, s �→ γ (s) is absolutely continuous and

∣∣
∣ dγds

∣∣
∣ = 1 for almost every point

s ∈ [0, L]. In addition, as seen from (5.11.38), we have L ≤ c|x − y| and

min
{
s, L − s

} ≤ c · δ∂�
(
γ (s)

)
for each s ∈ [0, L], (5.11.87)

hence
δ∂�

(
γ (s)

) ≥ s/c for s ∈ (0, L/2) and

δ∂�
(
γ (s)

) ≥ (L − s)/c for s ∈ (L/2, L). (5.11.88)

We may therefore write
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ˆ L

0
φ
(
δ∂�(γ (s))

)
ds =

ˆ L/2

0
φ
(
δ∂�(γ (s))

)
ds +

ˆ L

L/2
φ
(
δ∂�(γ (s))

)
ds

≤
ˆ L/2

0
φ(s/c) ds +

ˆ L

L/2
φ((L − s)/c) ds

= 2
ˆ L/2

0
φ(s/c) ds = 2c

ˆ L/(2c)

0
φ(s) ds

≤ 2c
ˆ |x−y|/2

0
φ(s) ds = 2cφ̃(|x − y|), (5.11.89)

bearing in mind (5.11.88), that φ is non-increasing, the definition in (5.11.71), and

the fact that L ≤ c|x − y| (cf. Definition 5.11.10). Then, since
∣∣∣ dγds

∣∣∣ = 1 for almost

every s ∈ [0, L], for each function u ∈ C 1(�) satisfying (5.11.72) we may estimate

|u(x)− u(y)| =
∣∣∣
ˆ L

0

d

ds

[
u(γ (s))

]
ds

∣∣∣

≤
ˆ L

0

∣∣(∇u)(γ (s))
∣∣ ds ≤

ˆ L

0
φ
(
δ∂�(γ (s))

)
ds

≤ 2cφ̃(|x − y|), (5.11.90)

finishing the proof of (5.11.73). �

The following diagram charts some of the known relations among various classes
of domains in R

n that are relevant in the present work:

{
C 1 domains

}
�

{
domains locally given as upper-graphs

of functions with gradients in VMO ∩ L∞}

= {
Lipschitz domains with VMO normals

}

�
{
Lipschitz domains

}
�

{
BMO1-domains

}

�
{
Zygmund domains

} ∩ {
Ahlfors regular domains

}

�
{
two-sided NTA domains

} ∩ {
Ahlfors regular domains

}

= {
two-sided NTA domains with Ahlfors regular boundaries

}

�
{
UR domains

}
�

{
two-sided NTA domains

}

�
{
open sets satisfying a two-sided corkscrew condition

}

�
{
open sets which are two-sided n-thick

}

�
{
open sets with lower Ahlfors regular boundaries

}
. (5.11.91)
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Also,

{
C 1 domains

}
�

{
regular SKT domains

}
�

{
UR domains

}
. (5.11.92)

The label26 “regular SKT domain” was proposed in [125], where it has been shown
that this class of domains can be characterized as the family of sets

� ⊂ R
n open with a compact Ahlfors regular boundary, satisfying a

two-sided local John condition, and whose geometric measure theo-
retic unit normal ν has components belonging to the Sarason space
VMO(∂�, σ), where σ := Hn−1�∂�.

(5.11.93)

Moreover, it has been shown in [125] that this class of sets coincides with what
was previously called “chord-arc domains with vanishing constant”, and the above
characterization eliminates certain redundancies in the original definition of the class
of chord-arc domains with vanishing constant.

The following definition also originates in [125].

Definition 5.11.17 Given δ > 0, call � ⊆ R
n a δ-regular SKT domain pro-

vided � is an open set satisfying a two-sided local John condition (cf. Definition
5.11.7), with a compact Ahlfors regular boundary, and whose geometric measure
theoretic outward unit normal ν satisfies

dist
(
ν,

[
VMO(∂�, σ)

]n) := inf
φ∈[VMO(∂�,σ)]n

‖ν − φ‖[BMO(∂�,σ)]n < δ, (5.11.94)

where σ := Hn−1�∂�.
The above class of sets interfaces tightly with the category of Reifenberg flat

domains, hence also with the family of NTA domains.

Theorem 5.11.18 Let � ⊆ R
n be a δ-regular SKT domain. If δ > 0 is sufficiently

small relative to the dimension n, the John constants of �, and Ahlfors regularity
constants of ∂�, then there exists a geometric constant C ∈ (1,∞), which depends
only on the dimension n, the John constants of�, and the Ahlfors regularity constants
of ∂�, with the property that � is a (Cδ)-Reifenberg flat domain, hence also a two-
sided NTA domain.

Proof This theorem is a consequence of [125, Theorem 4.19, p. 2710] and Defini-
tion 5.11.17. �

In the last portion of this section we review the notion of flatness, in the sense
of Reifenberg. To facilitate the subsequent discussion, the reader is reminded that
the Pompeiu–Hausdorff distance between two arbitrary nonempty sets A, B ⊂ R

n

is defined as (cf. (2.8.131))

26 With SKT acronym for Semmes–Kenig–Toro.
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Dist[A, B] := max
{
sup{dist(a, B) : a ∈ A}, sup{dist(b, A) : b∈ B}

}
. (5.11.95)

We start by recalling the following definitions (see [149]).

Definition 5.11.19 Fix R ∈ (0,∞] along with δ ∈ (0,∞), and let � ⊂ R
n be a

closed set. Then � is called a (R, δ)-Reifenberg flat set if for each for each
x ∈ � and each r ∈ (0, R) there exists an (n − 1)-dimensional plane π(x, r) in R

n

which contains x and satisfies

Dist
[
� ∩ B(x, r), π(x, r) ∩ B(x, r)

] ≤ δr. (5.11.96)

For example, given δ > 0, the graph of a real-valued Lipschitz function defined in
R

n−1 whose Lipschitz constant is ≤ δ happens to be a δ-Reifenberg flat set (since
(5.11.96) is then satisfied for the choice π(x, r) := x + (Rn−1 × {0})).
Definition 5.11.20 Fix R ∈ (0,∞] along with δ ∈ (0,∞). A nonempty, proper sub-
set � of R

n is said to satisfy the (R, δ)-separation property if for each
x ∈ ∂� and r ∈ (0, R) there exist an (n − 1)-dimensional plane π̃(x, r) in R

n pass-
ing through x and a choice of unit normal vector �nx,r to π̃(x, r) such that

{
y + t �nx,r ∈ B(x, r) : y ∈ π̃(x, r), t > 2δr

} ⊂ � and
{
y + t �nx,r ∈ B(x, r) : y ∈ π̃(x, r), t < −2δr

} ⊂ R
n \�. (5.11.97)

Definition 5.11.21 Fix R ∈ (
0, diam ∂�

]
along with δ ∈ (0,∞). A nonempty,

proper subset� of R
n is called an (R, δ)-Reifenberg flat domain (or simply

a Reifenberg flat domain if the particular values of R, δ are not important)
provided � satisfies the (R, δ)-separation property and ∂� is an (R, δ)-Reifenberg
flat set.

As is apparent from definitions,

the class of (R, δ)-Reifenberg flat domains inR
n becomes

larger (in a set theoretic sense) as δ ∈ (0,∞) increases. (5.11.98)

It also turns out that sufficiently flat Reifenberg domains are NTA domains. More
specifically, from [149, Theorem 3.1, p. 524] and its proof we see that

there exists a purely dimensional constant δn ∈ (0, 1) with the prop-
erty that any (R, δ)-Reifenberg flat domain � ⊆ R

n is an NTA
domain in the sense of Definition 5.11.1 with constants (R,M),
where M is controlled in terms of δ and R.

(5.11.99)



Chapter 6
Tools from Harmonic Analysis

In this chapterwe collect anddevelop tools fromHarmonicAnalysiswhich are central
to our subsequent work. Concretely, in Sect. 6.1 we discuss the regularized distance
function andWhitney’s Extension Theorem,while Sect. 6.2 amounts to a brief survey
of Lorentz spaces in generic measure spaces. Also, in Sect. 6.3 we introduce and
study the fractional Hardy–Littlewood maximal operator in a very general, non-
metric setting. Next, in Sect. 6.4 we review the setting of Clifford algebras. These
are higher-dimensional versions of the field of complex numbers that happen to be
highly non-commutative, in which a brand of complex analysis may be developed
(for example, there is a natural version in this setting of the classical Cauchy integral
operator from the complex plane). We shall put the Clifford algebra machinery to
good use later, in Volumes III–IV, to build a Calderón–Zygmund theory for singular
integral operators on uniformly rectifiable sets. The discussion in Sect. 6.5 pertains to
subaveraging functions, reverse Hölder estimates, and interior estimates. Finally, in
Sect. 6.6 we introduce and study the solid maximal function introduced and maximal
Lebesgue spaces.

6.1 The Regularized Distance Function and Whitney’s
Extension Theorem

Given a nonempty closed subset F of R
n , define

δF (x) := dist(x, F) = inf
{|x − y| : y ∈ F

}
, ∀x ∈ R

n . (6.1.1)

In general, the function δF is merely Lipschitz, and a more regular version of it is
described below.
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D. Mitrea et al., Geometric Harmonic Analysis I, Developments in Mathematics 72,
https://doi.org/10.1007/978-3-031-05950-6_6

495

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05950-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-05950-6_6


496 6 Tools from Harmonic Analysis

Proposition 6.1.1 Let F be a nonempty closed subset of R
n. Then there exist two

finite purely dimensional constants C0,C1>0 alongwith a function δ
reg

F :Rn→[0,∞) ,
the regularized distance to the set F, such that

(1) for all x ∈ R
n,

C0 · δF (x) ≤ δ
reg

F (x) ≤ C1 · δF (x), (6.1.2)

(2) δ
reg

F ∈ C∞(Rn \ F),
(3) for every multi-index α ∈ N

n
0 there exists a finite constant Cα > 0, depending

only on α and n, such that

∣∣(∂αδ
reg

F )(x)
∣∣ ≤ Cα · δF (x)1−|α|, ∀x ∈ R

n \ F. (6.1.3)

For a proof, see [240, Theorem 2, p. 171]. We shall next use Proposition 6.1.1 in
the construction of a family of smooth functions, which vanish near the boundary,
suitably approximating the characteristic function of an arbitrary open set.

Lemma 6.1.2 Let� be an open, nonempty, proper subset of Rn, and for each ε > 0
introduce the (open, one-sided) collar neighborhood Oε of ∂� by setting

Oε :=
{
x ∈ � : δ∂�(x) < ε

}
, (6.1.4)

where δ∂�(x) denotes the distance from the point x to the boundary ∂�.
Then there exist a number N > 1 and a family of functions {�ε}ε>0 satisfying the

following properties for each ε > 0:

�ε ∈ C∞(�), supp �ε ⊆ � \ Oε/N , 0 ≤ �ε ≤ 1, �ε ≡ 1 on � \ Oε, (6.1.5)

and for each α ∈ N
n
0 there is Cα ∈ (0,∞) so that

supx∈�

∣∣(∂α�ε)(x)
∣∣ ≤ Cαε−|α|. (6.1.6)

Proof To justify the existence of a family of functions {�ε}ε>0 satisfying (6.1.5)–
(6.1.6), let δ

reg

∂� be the regularized distance to ∂� and for φ ∈ C∞(R), 0 ≤ φ ≤ 1,
and φ ≡ 0 on (−∞,C1/N ) and φ ≡ 1 on (C0,∞), where N > C1/C0 is fixed
and 0 < C0 ≤ C1 < +∞ are such that (6.1.2) holds with F := ∂�. For each ε > 0

consider the function�ε(x) := φ
(

δ
reg
∂� (x)

ε

)
for all x ∈ �. For each point x ∈ Oε/N we

have δ
reg
∂� (x)

ε
≤ C1

δ∂�(x)
ε

< C1
N , thus �ε(x) = 0. Moreover, if x ∈ � \ Oε, then x ∈ �

and δ∂�(x) ≥ ε hence δ
reg

∂�(x) ≥ C0δ∂�(x) ≥ C0ε which forces�ε(x) = 1. Thus, all
properties listed in (6.1.5) hold. Finally, the estimate in (6.1.6) is implied by (6.1.3).

�

Next, we recall Whitney’s extension operator. The reader is advised to recall the
homogeneous Hölder space and its accompanying semi-norm from (7.3.1)–(7.3.2).
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Theorem 6.1.3 Let F be a nonempty, proper, closed subset of R
n. Then there exists

a linear operator E, mapping the vector space of real-valued functions defined on F
into the vector space of real-valued functions defined on R

n, enjoying the following
properties:

(1) E is an extension operator, in the sense that (E f )
∣∣
F = f on F for every function

f : F → R.
(2) E preserves constants (i.e., maps constant functions on F into constant functions

on R
n).

(3) E maps bounded functions on F into bounded functions on R
n, in the precise

quantitative sense that

sup
x∈Rn

|(E f )(x)| ≤ sup
x∈F

| f (x)|, ∀ f : F → R. (6.1.7)

(5) E maps continuous real-valued functions defined on F into continuous real-
valued functions defined on R

n.
(6) For each γ ∈ (0, 1], the operator E maps functions from the homogeneous

Hölder space
.

C γ (F) (cf. (7.3.1)–(7.3.2)) into functions belonging to the space.
C γ (Rn) ∩ C∞(Rn \ F) in the quantitative sense that there exists a constant
Cn,γ ∈ (0,∞) with the property that, for every f ∈ .

C γ (F), we have

‖E f ‖ .
C γ (Rn)

+ sup
x∈Rn\F

{
δ
1−γ

F (x)
∣∣∇(E f )(x)

∣∣
}
≤ Cn,γ ‖ f ‖ .C γ (F)

. (6.1.8)

This result is a version of [240, Proposition on p.172, Theorem 3 on p.174],
with some extra features noted in [10, Theorem 7.1] where the more general set-
ting of geometrically doubling quasi-metric ambient has been considered. See also
[188, Theorem 4.11, p. 164] in this regard. Classically, the extension operator E is
constructed as

E f (x) :=
{

f (x) if x ∈ F,∑

j∈J
f (x∗j )ϕ j (x) if x ∈ R

n \ F, (6.1.9)

where, starting with a Whitney decomposition {Q j } j∈J of R
n \ F , the points x∗j are

arbitrarily chosen in Q j for each j ∈ J , and {ϕ j } j∈J is a suitable partition of unity
associatedwith thisWhitney decomposition. Specifically, fix ε > 0 sufficiently small
(depending on the chosen Whitney decomposition of R

n \ F), and pick a function

ψε ∈ C∞(Rn) with 0 ≤ ψε ≤ 1,
ψε ≡ 1 on Q0, and suppψε ⊆ (1+ ε)Q0,

(6.1.10)

where Q0 :=
[− 1

2 ,
1
2

]n ⊆ R
n . If for each cube Q ⊆ R

n , of side-length �(Q) and
center xQ , we now define

ψε
Q(x) := ψε

( x−xQ
�(Q)

)
, ∀x ∈ R

n, (6.1.11)



498 6 Tools from Harmonic Analysis

then the family of functions

ϕ j :=
ψε

Q j∑
i∈J ψε

Qi

, ∀ j ∈ J, (6.1.12)

is the aforementioned Whitney partition of unity in R
n \ F .

6.2 Short Foray into Lorentz Spaces

The scale of Lorentz spaces constitutes an environment in which a number of basic
operators in Harmonic Analysis, including the Hardy–Littlewood maximal function
and large classes of singular integral operators, act in a natural fashion. In this section
we record some basic information about this scale.

To set the stage, let (X, μ) be an arbitrary measure space and fix a μ-measurable
set E ⊆ X . For a given μ-measurable function f : E → R, introduce

mE (λ, f ) := μ
({x ∈ E : | f (x)| > λ}), ∀λ ≥ 0. (6.2.1)

The non-increasing rearrangement of the function f is then defined as

f ∗E (t) := inf
{
λ ≥ 0 : mE (λ, f ) ≤ t

}

= sup
{
λ ≥ 0 : mE (λ, f ) > t

}
, ∀t ∈ [0,∞). (6.2.2)

The following proposition summarizes a number of properties of the non-increasing
rearrangement of a function.

Proposition 6.2.1 Let (X, μ) be a measure space and fix some μ-measurable set
E ⊆ X. Suppose f, g : E → R are two arbitrary μ-measurable functions. Then the
following properties are true.

(1) The function f ∗E : [0,∞) → [0,∞] is non-increasing, continuous to the right,
and satisfies f ∗E (0) = ‖ f ‖L∞(E, μ). Furthermore, for every λ > 0 one has
mE (λ, f ) = mR+(λ, f ∗E ). Moreover, (c f )∗E = |c| f ∗E for every scalar c, and
(| f |p)∗E = ( f ∗E )p for every p ∈ (0,∞).

(2) Assuming | f | ≤ |g| at μ-a.e. point in E it follows that g∗E (t) ≤ f ∗E (t) for
each t ∈ [0,∞). In addition, ( f + g)∗E(t1 + t2) ≤ f ∗E (t1)+ g∗E (t2) for each
t1, t2 ∈ [0,∞).

(3) For any sequence { f j } j∈N of μ-measurable functions on E, if | f | ≤ lim inf
j→∞ | f j |

atμ-a.e. point in E then f ∗E ≤ lim inf
j→∞ ( f j )∗E on [0,∞). In particular, if | f j |↗| f |

as j →∞ at μ-a.e. point in E then ( f j )∗E ↗ f ∗E as j →∞ at each point in the
interval [0,∞).

(4) If t ∈ [0,∞) is such that f ∗E (t) < +∞ then
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μ
({x ∈ E : | f (x)| > f ∗E (t)}) ≤ t ≤ μ

({x ∈ E : | f (x)| ≥ f ∗E (t)}). (6.2.3)

(5) For every p ∈ (0,∞] one has (with the usual convention when p = ∞)

( ˆ
E
| f |p dμ

)1/p =
( ˆ ∞

0

(
f ∗E (s)

)p
ds
)1/p

. (6.2.4)

(6) Fix p ∈ (0,∞) and suppose t ∈ [0,∞) is such that f ∗E (t) < +∞. Then

ˆ

{x∈E : | f (x)|> f ∗E (t)}
| f (x)|p dμ(x) ≤

ˆ t

0

(
f ∗E (s)

)p
ds. (6.2.5)

Proof For (1)–(5) we refer the reader to, e.g., [30, Propositions 1.9.2–1.9.6, pp. 49–
51], and [107, Proposition 1.4.5, p. 47]. To prove (6.2.5), for each M ∈ [0,∞) intro-
duce

[ f ]M(x) :=
{
f (x) if | f (x)| > M,

0 if | f (x)| ≤ M,
∀x ∈ E . (6.2.6)

Then it is obvious that |[ f ]M | ≤ | f | on E , so by (2), we have

([ f ]M)∗E ≤ f ∗E on E , for all M ∈ [0,∞). (6.2.7)

From definitions we also have that

([ f ]M)∗
E
(s) = inf

{
τ ≥ 0 : μ

({x ∈ E : [ f ]M(x) > τ }) ≤ s
}

(6.2.8)

for each s ∈ [0,∞) and

μ
({x ∈ E : [ f ]M(x) > τ }) = μ

({x ∈ E : | f (x)| > M}) (6.2.9)

for all τ ∈ [0, M]. Hence, given any cutoff parameter M ∈ [0,∞), we have

s > μ
({x ∈ E : | f (x)| > M}) =⇒ ([ f ]M)∗E (s) = 0. (6.2.10)

Now set M := f ∗E (t) ∈ [0,∞). Combining (4) with (6.2.10) yields

s > t =⇒ s > μ
({x ∈ E : | f (x)| > f ∗E (t)}) =⇒ ([ f ]M)∗E (s) = 0. (6.2.11)

Therefore, for each given p ∈ (0,∞) we may write
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ˆ

{x∈E : | f (x)|> f ∗E (t)}
| f (x)|p dμ(x) =

ˆ

E

([ f ]M(x)
)p

dμ(x) =
ˆ ∞

0

(([ f ]M)∗E (s)
)p

ds

=
ˆ t

0

(([ f ]M)∗E (s)
)p

ds ≤
ˆ t

0

(
f ∗E (s)

)p
ds, (6.2.12)

where for the first equality in (6.2.12) we used (6.2.6) (given the current choice of
M), for the second equality we used (5), the implication in (6.2.11) was used in the
third equality, while the last inequality is based on (6.2.7). This completes the proof
of (6.2.5). �

Continuing to assume that (X, μ) is an arbitrary measure space, we next define
the scale of Lorentz spaces, L p,q(X, μ) with p, q ∈ (0,∞]. Specifically, we
set

L p,q(X, μ) :=
{
f : X → R, μ-measurable : ‖ f ‖L p,q (X,μ) < +∞

}
(6.2.13)

where, for each μ-measurable function f on X , the quasi-norm ‖ f ‖L p,q (X,μ) is
definedas1

‖ f ‖L p,q (X,μ) :=

⎧
⎪⎪⎨

⎪⎪⎩

( ˆ ∞

0

[
t1/p f ∗X (t)

∣∣q dt

t

)1/q
if 0 < p, q < ∞,

supt>0

[
t1/p f ∗X (t)

]
if 0 < p ≤ ∞, q = ∞,

‖ f ‖L∞(X,μ) if p = ∞, 0 < q ≤ ∞.

(6.2.14)

Since for each μ-measurable function f we have supt>0

[
f ∗X (t)

] = ‖ f ‖L∞(X,μ), the
overlap in the last two lines of (6.2.14) causes no problems. Also, it is clear that

L∞,q(X, μ) = L∞(X, μ) for all q ∈ (0,∞]. (6.2.15)

It is also apparent from the above definitions and Proposition 6.2.1 that

if f, g : X → R are two μ-measurable functions such that
|g| ≤ | f | at μ-a.e. point on X and f ∈ L p,q(X, μ), then
g ∈ L p,q(X, μ) and one has ‖g‖L p,q (X,μ) ≤ ‖ f ‖L p,q (X,μ).

(6.2.16)

In addition, it is useful to observe that, much as for ordinary Lebesgue spaces, for
each μ-measurable set E ⊆ X we have (with tilde denoting extension by zero from
E to X )

L p,q(E, μ) � f �−→ f̃ ∈ L p,q(X, μ) continuously,
L p,q(X, μ) � f �−→ f

∣∣
E ∈ L p,q(E, μ) continuously.

(6.2.17)

1 The choice of the quasi-norm in the case when p = ∞ is natural; indeed, since f ∗X is non-

increasing, having
´ 1
0

[
f ∗X (t)

∣∣q dt
t < +∞ for some q ∈ (0,∞) would always force f to vanish

μ-a.e. on X .
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Based on (6.2.16) one may justify that the sum of any two Lorentz spaces is a lattice.
Specifically, given any pi , qi ∈ (0,∞] with i ∈ {0, 1},

if f, g : X → R are μ-measurable functions with |g| ≤ | f |,
μ-a.e. on X , and the function f ∈ L p0,q0(X, μ)+ L p1,q1(X, μ),
then the function g ∈ L p0,q0(X, μ)+ L p1,q1(X, μ) and there holds
‖g‖L p0 , q0 (X,μ)+L p1 , q1 (X,μ) ≤ ‖ f ‖L p0 , q0 (X,μ)+L p1 , q1 (X,μ).

(6.2.18)

Indeed, if f = f0 + f1 with fi ∈ L pi ,qi (X, μ) for i ∈ {0, 1}, thenwemaydecompose
g = g0 + g1, with g0 := g · 1{| f0|≥| f1|} belonging to the space to L p0,q0(X, μ), and
g1 := g · 1{| f1|>| f0|} belonging to L p1,q1(X, μ).

We also wish to note that for each μ-measurable function f on X and each
p, q ∈ (0,∞] simple power-dilation considerations show that

∥∥ | f |α∥∥L p,q (X,μ)
= ‖ f ‖α

Lαp,αq (X,μ) for each α ∈ (0,∞). (6.2.19)

Recall next (cf., e.g., [233, p. 332]) that whenever 0 < p, q < ∞ we have

‖ f ‖L p,q (X,μ) ≈
( ˆ ∞

0

[
λp · mX (λ, f )

]q/p dλ

λ

)1/q
, (6.2.20)

uniformly in the class of μ-measurable functions f on X . Also, corresponding to
the case when q = ∞ and 0 < p < ∞,

‖ f ‖L p,∞(X,μ) ≈ |‖ f |‖L p,∞(X,μ) := sup
{
λ · mX (λ, f )1/p : λ > 0

}
, (6.2.21)

uniformly in the class of μ-measurable functions f on X .

Example 6.2.2 Given an upper Ahlfors regular set� ⊆ R
n, abbreviate σ := Hn−1

�� and fix an arbitrary number d ∈ (0,∞). Then there exists a purely geometric
constant C ∈ (0,∞) with the property that for each point xo ∈ R

n the function

fxo : � → R, fxo(x) := |x − xo|−d , ∀x ∈ �,

satisfies fxo ∈ L(n−1)/d,∞(�, σ ) and ‖ fxo‖L(n−1)/d,∞(�,σ ) ≤ C.
(6.2.22)

Indeed, having picked some point xo ∈ R
n together with an arbitrary threshold

λ > 0, for each x ∈ � we have

| fxo(x)| > λ ⇐⇒ |x − xo| < λ−1/d ⇐⇒ x ∈ � ∩ B(xo, λ
−1/d) (6.2.23)

hence, in view of the upper Ahlfors regularity of � and (5.9.6),

m�(λ, f ) = σ
({x ∈ � : | fxo(x)| > λ}) = σ

(
� ∩ B(xo, λ

−1/d)
)

≤ C · λ−(n−1)/d . (6.2.24)
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From this and (6.2.21) (used with p := (n − 1)/d) we conclude that (6.2.22) holds.
Moving on, we note that the scale of Lorentz spaces contains the ordinary

Lebesgue spaces,
L p,p(X, μ) = L p(X, μ), 0 < p ≤ ∞, (6.2.25)

and is (quantitatively) increasing in the second exponent, in the sense that the fol-
lowing inclusions are well-defined and continuous

L p,q1(X, μ) ↪→ L p,q2(X, μ), 0 < p ≤ ∞, 0 < q1 ≤ q2 ≤ ∞. (6.2.26)

In particular,

L p,q(X, μ) ↪→ L p(X, μ) ↪→ L p,∞(X, μ) continuously,
for each p ∈ (0,∞] and each q ∈ (0, p]. (6.2.27)

Lemma 6.2.3 Let (X, μ) be an arbitrary measure space. Then the following prop-
erties are valid:

if 0 < r < p < ∞ then for each μ-measurable function f on X one has

sup
E⊆X μ-measurable
0<μ(E)<∞

μ(E)
1
p− 1

r

(ˆ
E
| f |r dμ

)1/r ≤
( p

p − r

) 1
r ‖ f ‖L p,∞(X,μ),

(6.2.28)
and

if p, r ∈ (0,∞) then for each function f ∈ L p,∞(X, μ) one has

‖ f ‖L p,∞(X,μ) ≤ sup
E⊆X μ-measurable
0<μ(E)<∞

μ(E)
1
p− 1

r

( ˆ
E
| f |r dμ

)1/r
. (6.2.29)

Hence, as a consequence of (6.2.28) and (6.2.29),

‖ f ‖L p,∞(X,μ) ≈ sup
E⊆X μ-measurable
0<μ(E)<∞

μ(E)
1
p− 1

r

( ˆ
E
| f |r dμ

)1/r
,

for each fixed r ∈ (0, p), uniformly in f ∈ L p,∞(X, μ).

(6.2.30)

Finally, there is the following variant of (6.2.29), valid for μ-measurable func-
tions:

if (X, μ) is sigma-finite, then for each p, r ∈ (0,∞)

and each μ-measurable function f on X one has

‖ f ‖L p,∞(X,μ) ≤ sup
E⊆X μ-measurable
0<μ(E)<∞

μ(E)
1
p− 1

r

( ˆ
E
| f |r dμ

)1/r
.

(6.2.31)

Proof To justify (6.2.28), fix an arbitraryμ-measurable function f on X , along with
some r ∈ (0, p). In this setting, note that if E ⊆ X is a μ-measurable set with the
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property μ(E) ∈ (0,∞) then

ˆ
E
| f |r dμ = r

ˆ ∞

0
λr−1μ

({x ∈ E : | f (x)| > λ}) dλ

≤ r
ˆ ∞

0
λr−1 ·min

{

μ(E),

(‖ f ‖L p,∞(X,μ)

λ

)p
}

dλ

= rμ(E)

ˆ ‖ f ‖L p,∞(X,μ)/μ(E)1/p

0
λr−1 dλ

+ r‖ f ‖pL p,∞(X,μ)

ˆ ∞

‖ f ‖L p,∞(X,μ)/μ(E)1/p
λr−p−1 dλ

= μ(E)1−r/p‖ f ‖rL p,∞(X,μ) +
( r

p − r

)
μ(E)1−r/p‖ f ‖rL p,∞(X,μ)

=
( p

p − r

)
μ(E)1−r/p‖ f ‖rL p,∞(X,μ). (6.2.32)

From this, (6.2.28) readily follows.
To justify (6.2.29), fix f ∈ L p,∞(X, μ). Hence, if for each λ ∈ (0,∞) we define

Eλ := {x ∈ X : | f (x)| > λ} (6.2.33)

then each Eλ is aμ-measurable subset of X satisfyingμ(Eλ) < ∞. In the process of
proving the estimate in (6.2.29) it suffices to treat the case when ‖ f ‖L p,∞(X,μ) > 0,
since otherwise this is trivially satisfied. In such a scenario, we have that there exists
some λ ∈ (0,∞) with the property that μ(Eλ) > 0. In light of these comments we
may then write

sup
E⊆X μ-measurable
0<μ(E)<∞

μ(E)
1
p− 1

r

(ˆ
E
| f |r dμ

)1/r ≥ sup
λ∈(0,∞)

μ(Eλ)>0

μ(Eλ)
1
p− 1

r

( ˆ
Eλ

| f |r dμ
)1/r

≥ sup
λ∈(0,∞)

μ(Eλ)>0

μ(Eλ)
1
p− 1

r · μ(Eλ)
1
r · λ

= sup
λ∈(0,∞)

λ · μ({x ∈ X : | f (x)| > λ}) 1
p

= ‖ f ‖L p,∞(X,μ), (6.2.34)

establishing (6.2.29). As regards (6.2.31), assume that X = ∪i∈NXi with each Xi a
μ-measurable set satisfying μ(Xi ) < ∞. There is no loss of generality in assuming
that the family {Xi }i∈N is nested and exhausts X . In this context, (6.2.31) is proved
in a similar manner to (6.2.29), this time working with Xi ∩ Eλ in place of Eλ, and
eventually passing to limit as i →∞. �

Going further, given an arbitrary measure space (X, μ), for each r ∈ (0,∞) we
define
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Lr
fin(X, μ) :=

{
f μ-measurable on X :

ˆ
E
| f |r dμ < ∞ for each (6.2.35)

μ-measurable set E ⊆ X with μ(E) < ∞
}
.

Lemma 6.2.4 If (X, μ) is an arbitrary measure space then

L p,q(X, μ) ⊆ Lr
fin(X, μ) whenever 0 < r < p ≤ ∞ and 0 < q ≤ ∞,

(6.2.36)
in a quantitative fashion. In fact, if 0 < r < p < ∞ and f ∈ L p,∞(X, μ), then for
each μ-measurable subset E of X one has

ˆ
E
| f |r dμ ≤

( p

p − r

)
μ(E)

1− r
p ‖ f ‖rL p,∞(X,μ). (6.2.37)

As a corollary of this and (6.2.17),

L p,q(E, μ) ↪→ L p∗(E, μ) continuously whenever E ⊆ X is
a μ-measurable set with μ(E) < +∞ and p, q, p∗ are such
that 0 < p∗ < p ≤ ∞ and 0 < q ≤ ∞.

(6.2.38)

Proof Having fixed 0 < r < p < ∞ along with f ∈ L p,∞(X, μ), for each given
μ-measurable subset E of X the estimate in (6.2.37) follows from (6.2.32) in the
case when 0 < μ(E) < ∞ and is otherwise trivially true. In turn, (6.2.37) readily
implies (6.2.36) on account of (6.2.26). �

Additional basic properties of functions belonging to Lorentz spaces are contained
in the lemma below.

Lemma 6.2.5 Assume (X, μ) is an arbitrary measure space.

(a) If f ∈ L p,q(X, μ) with p, q ∈ (0,∞] then

| f (x)| < +∞ for μ-a.e. point x ∈ X and
μ
({x ∈ X : | f (x)| > λ}) < +∞ for each λ > 0.

(6.2.39)

(b) For each p ∈ (0,∞) and q ∈ (0,∞] one has
∥∥1A

∥∥
L p,q (X,μ)

≈ μ(A)1/p, uniformly in
the class of μ-measurable subsets A of X.

(6.2.40)

(c) For each μ-measurable function f on X and each p ∈ (0,∞) one has

f ∗X (t) ≤ Ct−1/p‖ f ‖L p,∞(X,μ) for each t ∈ (0,∞), (6.2.41)

where C ∈ (0,∞) is independent of f .
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Proof To prove (a), fix some f ∈ L p,q(X, μ) with p, q ∈ (0,∞]. Consider the
claim in the first line of (6.2.39). If p = ∞ this is clear from (6.2.15), so assume
p ∈ (0,∞). Define A := {x ∈ X : | f (x)| = +∞} and note that A is μ-measurable
and satisfiesμ(A) ≤ mX (λ, f ) for eachλ ∈ (0,∞). Consequently, havingμ(A) > 0
would prevent the integral in (6.2.20) to converge at the end-point+∞when q < ∞
and, corresponding to q = ∞, having μ(A) > 0 would force the supremum in
(6.2.21) to be +∞. These eventualities contradict the fact that ‖ f ‖L p,q (X,μ) < +∞,
thus finishing the proof of the claim in the first line of (6.2.39).

Turning to the claim in the second line of (6.2.39), observe that if q = ∞ then the
result is clear from the nature of the norm in L p,∞(X, μ). Assume next that q < ∞.
Then (ˆ ∞

0

[
t

1
p f ∗X (t)

]q dt

t

) 1
q = ‖ f ‖L p,q (X,μ) < +∞, (6.2.42)

which implies
f ∗X (t) < +∞ for L1-a.e. t > 0. (6.2.43)

Since f ∗X is non-increasing, (6.2.43) further implies

inf
{
s > 0 : mX (s, f ) ≤ t

} = f ∗X (t) < +∞ for all t > 0. (6.2.44)

Therefore, for each t > 0 there exists st > 0 such thatmX (st , f ) ≤ t . Fix now λ > 0,
and assume that mX (λ, f ) = +∞. Then necessarily, f ∗X (t) ≥ λ for all t > 0. But
then, (6.2.42) gives

+∞ >
( ˆ ∞

0

[
t

1
p f ∗X (t)

]q dt

t

) 1
q ≥ λ

(ˆ ∞

0
t

q
p−1 dt

) 1
q = +∞, (6.2.45)

a contradiction which finishes the proof of (6.2.39).
Next, the claim in (6.2.40) is clear from (6.2.20) if q < ∞ and from (6.2.21) if

q = ∞, bearing in mind that mX (λ, 1A) = μ(A)1(0,1)(λ) for each λ ∈ (0,∞). This
takes care of part (b).

As regards part (c), since (6.2.21) implies λ · mX (λ, f )1/p ≤ C‖ f ‖L p,∞(X,μ) for
each λ > 0, it follows that

mX (λ, f ) ≤ t whenever t ∈ (0,∞) and λ ≥ Ct−1/p‖ f ‖L p,∞(X,μ). (6.2.46)

Then (6.2.41) becomes a consequence of (6.2.46) and (6.2.2). �

Using the real interpolation method between Lebesgue spaces over a measure
space (X, μ) yields that if 0 < p0, p1, q0, q1 ≤ ∞ then

(
L p0,q0(X, μ), L p1,q1(X, μ)

)
θ,q
= L p,q(X, μ),

if 0 < q ≤ ∞, 0 < θ < 1, if p0 = p1 = p and 1
q = 1−θ

q0
+ θ

q1
,

or if 1
p = 1−θ

p0
+ θ

p1
when p0 �= p1.

(6.2.47)



506 6 Tools from Harmonic Analysis

See [19, Theorem 5.3.1, p. 113]. In particular,

(
L p0(X, μ), L p1(X, μ)

)
θ,q
= L p,q(X, μ)

if 0 < p0, p1 ≤ ∞ with p0 �= p1, and
0 < q ≤ ∞, 0 < θ < 1, 1

p = 1−θ
p0
+ θ

p1
.

(6.2.48)

There are also natural log-convex estimates accompanying (6.2.47)–(6.2.48). For
example,

if 0 < p0 < p1 ≤ ∞, q ∈ (0,∞], and f ∈ L p0(X, μ) ∩ L p1(X, μ),
it follows that f ∈ L p,q(X, μ) for all p ∈ [p0, p1], and for each
θ ∈ [0, 1] there exists a constant C = C(p0, p1, q, θ) ∈ (0,∞) with
the property that ‖ f ‖L pθ ,q (X,μ) ≤ C‖ f ‖1−θ

L p0 (X,μ)‖ f ‖θ
L p1 (X,μ) where

pθ :=
(
1−θ
p0
+ θ

p1

)−1
.

(6.2.49)

Recall that for any pair of compatible quasi-Banach spaces X0, X1 one has (cf. [185,
Sect. 1.3])

X0 ∩ X1 ↪→ (X0, X1)θ,q ↪→ X0 + X1 continuously,
for each θ ∈ (0, 1) and q ∈ (0,∞]. (6.2.50)

Then, if 0 < p0 < p < p1 ≤ ∞ and 0 < q ≤ ∞ we may invoke (6.2.48) and we
conclude that

L p0(X, μ) ∩ L p1(X, μ) ↪→ L p,q(X, μ) continuously,
and also densely if q < ∞,

(6.2.51)

while (6.2.50), (6.2.48), (3.1.11), and (6.2.40) imply

L p,q(X, μ) ↪→ L p0(X, μ)+ L p1(X, μ) continuously,
and also densely if p1 < ∞.

(6.2.52)

It turns out that restricting functions from Lorentz spaces to subsets of finite mea-
sure yields functions in Lebesgue spaces, albeit for a smaller integrability exponent.
A precise statement is as follows.

Lemma 6.2.6 Let (X, μ) be a measure space and let E ⊆ X be a μ-measurable set
with μ(E) < ∞. Then, for 0 < p∗ < p < ∞ and 0 < q1, q2 ≤ ∞,

L p,q1(X, μ) � f �−→ f
∣∣
E ∈ L p∗,q2(E, μ) (6.2.53)

is a well-defined, linear, and bounded operator.

Proof This follows fromLemma 6.2.4 and interpolation. A direct proof is as follows.
Ifμ(E) = 0 the statement is trivial, so assumeμ(E) ∈ (0,∞). According to (6.2.26)
it suffices to establish (6.2.53) in the case when q1 = ∞ and q2 ∈ (0,∞). Assuming



6.2 Short Foray into Lorentz Spaces 507

this is the case, fix an arbitrary function f ∈ L p,∞(X, μ) and, for ease of notation,
abbreviate c := ‖ f ‖L p,∞(X,μ). Then

mE (λ, f ) ≤ mX (λ, f )≤ cp

λp
and also mE (λ, f )≤μ(E) for all λ > 0, (6.2.54)

so we may estimate

∥∥ f |E
∥∥
L p∗,q2 (E, μ)

≤ C
( ˆ ∞

0

[
λp∗ · mE (λ, f )

]q2/p∗ dλ
λ

)1/q2

≤ C
( ˆ ∞

0

[
λp∗ ·min

{
μ(E), cpλ−p

}]q2/p∗ dλ
λ

)1/q2

≤ Cμ(E)1/p
∗(
ˆ c

μ(E)1/p

0
λq2

dλ

λ

)1/q2

+ C · cp/p∗
(ˆ ∞

c
μ(E)1/p

[
λp∗−p

]q2/p∗ dλ
λ

)1/q2

≤ Cμ(E)
1
p∗ − 1

p ‖ f ‖L p,∞(X,μ), (6.2.55)

from which the desired conclusion follows. �

We also have the following useful result, pertaining to the completeness, separa-
bility, and pointwise convergence of sequences of functions in Lorentz spaces.

Proposition 6.2.7 Let (X, μ) be a measure space which is sigma-finite and com-
plete. Denote by L0(X, μ) the vector space of scalar-valued,μ-measurable functions
which are μ-a.e. finite on X, and equip this space with the topology induced by con-
vergence in measure on sets of finite measure.

Then for each p ∈ (0,∞) and q ∈ (0,∞] the Lorentz space L p,q(X, μ) is a
complete quasi-metric space, containing all simple functions on X, and with the
property that any of its convergent sequences has a subsequence which converges
(to its limit in L p,q(X, μ)) in a pointwise μ-a.e. fashion. In fact, whenever q < ∞,
the space of simple functions is dense in L p,q(X, μ).

In addition, whenever the measureμ is sigma-finite, the space L p,q(X, μ) embeds
continuously into L0(X, μ). Also, if p, q ∈ (0,∞) and the measure μ is separable
and sigma-finite, then the Lorentz space L p,q(X, μ) is separable.

Finally, if q < ∞ then ‖ · ‖L p,q (X,μ) is absolutely continuous, in the sense that for
any given f ∈ L p,q(X, μ) the following property holds:

if A j ⊆ X is μ-measurable for each j ∈ N and 1A j → 0 as j →∞
at μ-a.e. point on X, then one has lim

j→∞
∥∥ | f | · 1A j

∥∥
L p,q (X,μ)

= 0. (6.2.56)

Proof All claims follow from (6.2.40), the discussion in [190, Example 6, pp. 4776–
4777], and [30, Theorem 1.9.9, p. 55]. �
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There is a companion result of the absolute continuity property recorded in (6.2.56)
in which the a.e. pointwise convergence to zero for the characteristic functions 1A j

is replaced by the condition that the measures of the A j ’s go to zero.

Lemma 6.2.8 Given an arbitrary measure space (X, μ) along with p, q ∈ (0,∞),
then for each fixed function f ∈ L p,q(X, μ) one has

lim
j→∞

∥∥ f · 1A j

∥∥
L p,q (X,μ)

= 0 provided each A j ⊆ X is

a μ-measurable set and μ(A j ) → 0 as j →∞.
(6.2.57)

Proof If for each j ∈ N we define

Fj (λ) := mX
(
λ, f · 1A j

) = μ
({x ∈ A j : | f (x)| > λ}), ∀λ > 0, (6.2.58)

then (6.2.20) gives

∥∥ f · 1A j

∥∥
L p,q (X,μ)

≈
( ˆ ∞

0

[
λp · Fj (λ)

]q/p dλ

λ

)1/q
, uniformly in j ∈ N. (6.2.59)

Since for each λ > 0 fixed we have 0 ≤ Fj (λ) ≤ mX
(
λ, f ) for all j ∈ N and

0 ≤ Fj (λ) ≤ μ(A j ) → 0 as j →∞, Lebesgue’s Dominated Convergence Theo-
rem applies and gives that

lim
j→∞

(ˆ ∞

0

[
λp · Fj (λ)

]q/p dλ

λ

)1/q = 0. (6.2.60)

Thus, (6.2.57) follows from (6.2.59) and (6.2.60). �

A natural version of Hölder’s inequality (due to O’Neil) is valid on the scale
of Lorentz spaces. Specifically, if f ∈ L p1,q1(X, μ) and g ∈ L p2,q2(X, μ) with
0 < p1, p2, q1, q2 ≤ ∞ then f g ∈ L p3,q3(X, μ) provided 1/p3 = 1/p1 + 1/p2 and
1/q3 = 1/q1 + 1/q2, and the naturally accompanying estimate

‖ f g‖L p3, q3 (X,μ) ≤ C‖ f ‖L p1 , q1 (X,μ)‖g‖L p2 , q2 (X,μ) (6.2.61)

holds for some finite constant C = C(p1, p2, q1, q2) > 0 independent of f, g.
Let us also note here that when X is sigma-finite and non-atomic then (cf., e.g.,

[19, p. 126] and [107, Theorem 1.4.17, p. 52]),

(
L p,q(X, μ)

)∗ =

⎧
⎪⎪⎨

⎪⎪⎩

{0} if 0 < p < 1 and 0 < q ≤ ∞, or p = 1 and 1 < q < ∞,

L∞(X, μ) when p = 1 and 0 < q ≤ 1,
L p′,∞(X, μ) when 1 < p < ∞ and 0 < q ≤ 1,
L p′,q ′(X, μ) whenever 1 < p, q < ∞,

(6.2.62)
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where, as usual, p′ and q ′ are defined by 1/p + 1/p′ = 1, 1/q + 1/q ′ = 1. In all
cases, the duality pairing is realized via integration, i.e.,

(L p,q (X,μ))∗
〈
f, g

〉
L p,q (X,μ) =

ˆ
X
f g dμ,

for all f ∈ (
L p,q(X, μ)

)∗
and g ∈ L p,q(X, μ).

(6.2.63)

In addition, it is known (cf., e.g., [43, p. 112]) that if 1 < p < ∞ and 1 ≤ q ≤ ∞, or
p = q = 1, or p = q = ∞, then with 1

p + 1
p′ = 1 and 1

q + 1
q ′ = 1 the assignment

L p,q(X, μ) � f �−→ sup
{∣∣∣
ˆ
X
f g dμ

∣∣∣ : ‖g‖L p′,q′ (X,μ) ≤ 1
}

(6.2.64)

is a genuine norm on L p,q(X, μ) which is equivalent to the original quasi-norm
‖ · ‖L p,q (X,μ). Moreover, when equipped with this norm, L p,q(X, μ) becomes a
Banach space and, when q < ∞, its dual Banach space is L p′,q ′(X, μ) under the
natural integral pairing.

Lemma 6.2.9 For each Lebesgue measurable set � ⊆ R
n and each m ∈ (0, n) one

has the continuous embedding

Ln/(n−m),1(�,Ln) ↪→ L1
(
�,

dy

1+ |y|m
)
. (6.2.65)

Proof From (6.2.21) we know that

sup
x∈Rn

∥∥|x − ·|−m∥∥
Ln/m,∞(�,Ln)

< +∞, (6.2.66)

while from (6.2.62), (6.2.63) we see that

Ln/m,∞(�,Ln) =
(
Ln/(n−m),1(�,Ln)

)∗
, (6.2.67)

with the duality pairing realized via integration on �. Granted these, Lemma 3.5.7
applies and yields the desired conclusion. �

We shall also need the following result concerning the convergence of series in
weak Lebesgue spaces.

Proposition 6.2.10 Let (X, μ) be a measure space, fix p ∈ (0,∞) arbitrary, and
define

αp :=
{ p

p+1 if 0 < p ≤ 1,
2−1 if 1 ≤ p < ∞.

(6.2.68)

Also, recall the quasi-norm |‖ · |‖L p,∞(X,μ) from (6.2.21). Consider an at most count-
able family { fi }i∈I of μ-measurable real-valued functions defined on X with the
property that
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∑

i∈I
|‖ fi |‖αp

L p,∞(X,μ) < ∞. (6.2.69)

Then the series
∑

i∈I fi converges in the quasi-Banach space L p,∞(X, μ), and

∣∣∣
∥∥∥
∑

i∈I
fi
∣∣∣
∥∥∥
L p,∞(X,μ)

≤ 22/αp

(∑

i∈I
|‖ fi |‖αp

L p,∞(X,μ)

)1/αp

. (6.2.70)

Proof This is a consequence of the sort of quantitative Aoki–Rolewicz result proved
in [188, Theorem 3.39, pp. 130–131]. �

We conclude this section by discussing an abstract embodiment of the principle
that, for a family of operators mapping vectors from a common quasi-normed space
into functions defined on a certain measurable space, pointwise almost everywhere
convergence for a dense subset of the quasi-normed space, along with the bounded-
ness of the maximal operator naturally associated with such a family into a Lorentz
space, ultimately imply pointwise almost everywhere convergence for the family
of functions obtained by applying the given operators to any vector from the given
quasi-normed space.

Proposition 6.2.11 Let (X , τ ) be a topological space. Consider an arbitrary set
X ⊆X and suppose μ is a complete measure on X. Assume that for each x ∈ X a
set �(x) ⊆X \ X has been assigned, with the property that

x ∈ �(x) for μ-a.e. x ∈ X. (6.2.71)

Next, let (Y, ‖ · ‖Y ) be a quasi-normed space and suppose T is an operator mapping
vectors from Y into real-valued functions defined onX \ X with the property that

|T f − T g| ≤ |T ( f − g)| on X \ X, for all f, g ∈ Y. (6.2.72)

Furthermore, assume that the associated maximal operator, acting on each f ∈ Y
according to

T� f (x) := sup
y∈�(x)

|(T f )(y)| at μ-a.e. x ∈ X, (6.2.73)

has the property that there exists an integrability exponent p ∈ (0,∞) along with a
constant C ∈ (0,∞) such that

for each f ∈ Y the function T� f belongs to theLorentz space
L p,∞(X, μ) and one has ‖T� f ‖L p,∞(X,μ) ≤ C‖ f ‖Y . (6.2.74)

Lastly, suppose that there exists a setV ⊆ Y , which is dense in Y with respect to the
topology induced by the quasi-norm ‖ · ‖Y , and such that for every f ∈ V the limit

T f (x) := lim
�(x)�y→x

(T f )(y) exists for μ-a.e. x ∈ X. (6.2.75)
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Then (6.2.75) actually holds for every f ∈ Y , and |T f | ≤ T� f at μ-a.e. point in
X.

Proof To justify the existence of the limit in (6.2.75), let f ∈ Y be arbitrary. To avoid
measurability issues, we find it useful to consider the outer measure μ∗ canonically
associated with the given μ as in (3.3.13). In view of Lemma 3.3.1 and (3.3.15), it is
then enough to show

μ∗
({

x ∈ X : lim sup
�(x)�y→x

(T f )(y) �= lim inf
�(x)�y→x

(T f )(y)
})

= 0. (6.2.76)

For each threshold θ > 0, consider the disagreement set

Sθ :=
{

x ∈ X :
∣∣∣∣∣
lim sup

�(x)�y→x
(T f )(y)− lim inf

�(x)�y→x
(T f )(y)

∣∣∣∣∣
> θ

}

. (6.2.77)

Since

{
x ∈ X : lim sup

�(x)�y→x
(T f )(y) �= lim inf

�(x)�y→x
(T f )(y)

}
=

∞⋃

j=1
S1/j , (6.2.78)

it suffices (cf. (3.3.1)) to prove that μ∗(Sθ ) = 0 for each fixed θ ∈ (0,∞). To this
end, fix θ, δ > 0 arbitrary and select

g ∈ V such that ‖ f − g‖Y < δ. (6.2.79)

Observe that

Sθ ⊆ A1 ∪ A2 (6.2.80)

where

A1 :=
{

x ∈ X :
∣∣∣∣∣
lim sup

�(x)�y→x
(T f )(y)− lim

�(x)�y→x
(T g)(y)

∣∣∣∣∣
> θ/2

}

=
{

x ∈ X :
∣∣∣∣∣
lim sup

�(x)�y→x
(T f − T g)(y)

∣∣∣∣∣
> θ/2

}

⊆ {
x ∈ X : T�( f − g)(x) > θ/2

}
, (6.2.81)

and



512 6 Tools from Harmonic Analysis

A2 :=
{
x ∈ X :

∣∣∣∣ lim inf
�(x)�y→x

(T f )(y)− lim
�(x)�y→x

(T g)(y)

∣∣∣∣ > θ/2

}

=
{
x ∈ X :

∣∣∣∣ lim inf
�(x)�y→x

(T f − T g)(y)

∣∣∣∣ > θ/2

}

⊆ {
x ∈ X : T�( f − g)(x) > θ/2

}
. (6.2.82)

It follows from (6.2.80), (6.2.81), (6.2.82), (6.2.74), (6.2.21), and (6.2.79) that there
exists a constant C ∈ (0,∞) independent of f, g, θ, δ with the property that

μ∗(Sθ ) ≤ μ∗(A1)+ μ∗(A2) ≤ 2μ∗
({x ∈ X : T�( f − g)(x) > θ/2})

= 2μ
({x ∈ X : T�( f − g)(x) > θ/2})

≤ C

θ p
‖ f − g‖pY ≤

C

θ p
δ p. (6.2.83)

The equality in (6.2.83) is a consequence of the fact that T�( f − g) belongs to
L p,∞(X, μ) (cf. the membership condition in (6.2.74)), and (3.3.15) (recall that the
measure μ is assumed to be complete). Sending δ → 0+ in (6.2.83) then proves that
μ∗(Sθ ) = 0. Hence (6.2.76) holds. Finally, that for every f ∈ Y we have |T f | ≤ T� f
at μ-a.e. point in X is clear from definitions. �

6.3 The Fractional Hardy–Littlewood Maximal Operator
in a Non-Metric Setting

The main result in this section is Theorem 6.3.3 describing the mapping properties
in Lorentz spaces of a maximal operator constructed using the same blueprint as for
the fractional Hardy–Littlewood maximal operator in the classical setting of R

n but
substituting the balls used in this schemewith amore general family of sets satisfying
some basic axioms which are formulated independently of the notion of distance. As
a preamble, we first establish an appropriate version of Vitali’s Covering Lemma in
this abstract setting.

Lemma 6.3.1 Let X be a nonempty set and assume A := {A(x, r)}x∈X,r>0 is a
family of subsets of X indexed by pairs (x, r) ∈ X × (0,∞) satisfying the following
two properties:

(a) (Monotonicity) If x ∈ X and 0 < r1 ≤ r2 then A(x, r1) ⊆ A(x, r2).
(b) (Enveloping) There exists C > 0 with the property that whenever x1, x2 ∈ X

and r1, r2 > 0 are such that r1 ≥ r2 and A(x1, r1) ∩ A(x2, r2) �= ∅ it follows
that A(x2, r2) ⊆ A(x1,Cr1).

Then for any fixed number λ > 1 and any set I ⊆ X × (0,∞) with the property
that

M := sup {r > 0 : ∃ x ∈ X such that (x, r) ∈ I } < +∞, (6.3.1)
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there exists J ⊆ I satisfying

A(x1, r1) ∩ A(x2, r2) = ∅ for all distinct (x1, r1), (x2, r2) ∈ J, (6.3.2)

and ∀(x, r) ∈ I ∃ (x0, r0) ∈ J such that A(x, r) ⊆ A(x0, λCr0). (6.3.3)

If, in addition, the set I has the property that

for every sequence {(x j , r j )} j∈N ⊆ I such that {A(x j , r j )} j∈N

consists of mutually disjoint sets one necessarily has lim
j→∞ r j = 0, (6.3.4)

then the set J in (6.3.2)–(6.3.3) can be taken to be at most countable.

Proof Let λ > 1 be fixed and, for each k ∈ N, consider

Ik := {(x, r) ∈ I : λ−kM < r ≤ λ−k+1M}. (6.3.5)

In particular, I is the disjoint union of the Ik’s. When equipped with the inclusion,
the set

{J1 ⊆ I1 : A(x1, r1) ∩ A(x2, r2) = ∅ for all distinct (x1, r1), (x2, r2) ∈ J1}
(6.3.6)

becomes partially ordered and any of its totally ordered subsets has an upper bound.
Therefore, byZorn’s lemma, the set (6.3.6) contains amaximal elementwhichwewill
denote by J ∗1 . Inductively,we then construct a family {J ∗k }k∈N as follows.Assume that
k ∈ N is such that J ∗1 , J ∗2 , . . . , J ∗k have been already introduced. We then consider

{
Jk+1 ⊆ Ik+1 : A(x1, r1) ∩ A(x2, r2) = ∅ for all (x1, r1) ∈ Jk+1 (6.3.7)

and all (x2, r2) ∈ Jk+1 ∪
( ∪k

j=1 J ∗j
)
such that (x2, r2) �= (x1, r1)

}

and note that, again, this is partially ordered by the inclusion of sets and any of its
totally ordered subsets has an upper bound. Zorn’s lemma then ensures that the set
(6.3.7) has a maximal element which we define to be J ∗k+1.

Having constructed the family {J ∗k }k∈N, we then claim that

J :=
∞⋃

k=1
J ∗k (6.3.8)

does the job advertised in (6.3.2)–(6.3.3). That (6.3.2) holds is clear from the fact
that J ∗k+1 belongs to the set described in (6.3.7), for each k ∈ N. As far as (6.3.3) is
concerned, if (x, r) ∈ I pick k ∈ N such that (x, r) ∈ Ik . Then, by the maximality of
J ∗k , there exist h ∈ N and (x0, r0) ∈ J ∗h such that h ≤ k and A(x, r) ∩ A(x0, r0) �= ∅.
Then, since J ∗h ⊆ Ih , it follows that r0 > λ−hM ≥ λ−kM ≥ λ−1r . Hence, we have
λ r0 > r and also A(x0, λ r0) ∩ A(x, r) �= ∅ (given that A(x0, r0) ⊆ A(x0, λ r0) by
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monotonicity).As such, the envelopingproperty ensures that A(x, r) ⊆ A(x0, λCr0).
This justifies (6.3.3).

To complete the proof of the lemma, there remains to show that J can be taken to
be at most countable in the case when (6.3.4) holds. In this scenario, however, each
of the sets Ik , k ∈ N, is finite which, in turn, implies that each of the sets J ∗k , k ∈ N,
is finite. Hence, J defined in (6.3.8) is indeed at most countable. �

Remark 6.3.2 In the context of Lemma 6.3.1, if X is a separable topological space
and the sets in the familyA have nonempty interiors it follows, a posteriori, that any
set of indices J satisfying (6.3.2) is countable.

The stage is now set for discussing the following extension of the analysis per-
taining to the fractional Hardy–Littlewood maximal operator in a measure theoretic,
non-metric setting.

Theorem 6.3.3 Let (X,M, μ) be a given measure space, and consider a family of
μ-measurable subsets of X, sayA = {A(x, r)}x∈X,r>0 ⊆M, satisfying the following
conditions:

(i) x ∈ A(x, r) and 0 < μ(A(x, r)) < ∞ for each x ∈ X and r > 0;
(ii) A(x, r1) ⊆ A(x, r2) whenever x ∈ X and 0 < r1 ≤ r2, and A(x, r) ↗ X as

r ↗∞ for each x ∈ X;
(iii) for each x ∈ X, each r > 0, and each sequence {r j } j∈N such that r j ↗ r as

j →∞, one has A(x, r j ) ↗ A(x, r) as j →∞;
(iv) there exists a constant C ∈ (0,∞) with the property that whenever x1, x2 ∈ X

and r1, r2 > 0 are such that r1 ≥ r2 and A(x1, r1) ∩ A(x2, r2) �= ∅ it follows
that A(x2, r2) ⊆ A(x1,Cr1);

(v) the measure μ is doubling relative to the family A, i.e., there exists a finite
constant c > 0 such thatμ(A(x, 2r)) ≤ c · μ(A(x, r)) for each x ∈ X and each
r > 0;

(vi) for each r > 0 and E ∈M, the function X � x �→ μ(A(x, r) ∩ E) ∈ [0,∞) is
μ-measurable.

Having fixed s ∈ (0,∞) and α ∈ [0, 1/s), define the action of the Ls-based
fractional maximal operator of order α associated with the family A on each μ-
measurable function f on X as

MA,s,α f (x) := sup
r>0

[
μ
(
A(x, r)

)α(
 
A(x,r)

| f |s dμ
) 1

s

]
, ∀x ∈ X. (6.3.9)

Then

MA,s,α : L p,q(X, μ) −→ L p∗,q(X, μ) is well defined,
sub-linear and bounded, provided 0 < s < p < 1

α
≤ ∞,

p∗ = (
1
p − α

)−1
, and 0 < q ≤ ∞.

(6.3.10)

Moreover, corresponding to the limiting case p = s, the operator
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MA,s,α : Ls(X, μ) −→ L
s

1−αs ,∞(X, μ) is well defined,
sub-linear and bounded, for each s ∈ (0,∞) and 0 ≤ α < 1/s,

(6.3.11)

and, corresponding to the limiting case p = 1/α, the operator

MA,s,α : L1/α(X, μ) −→ L∞(X, μ) is well defined,
sub-linear and bounded, for each s ∈ (0,∞) and 0 ≤ α < 1/s.

(6.3.12)

A direct consequence of Theorem 6.3.3 is the following corollary, of independent
interest, pertaining to the mapping properties of a Hardy–Littlewood maximal type
operator (defined as in (6.3.9) with α = 0) in a non-metric setting.

Corollary 6.3.4 Let (X,M, μ) be a measure space and consider a family of sets
A = {A(x, r)}x∈X,r>0 ⊆M satisfying conditions (i)–(vi) from the statement of The-
orem 6.3.3. In this context, having fixed some s ∈ (0,∞), for each μ-measurable
function f on X define

MA,s f (x) := sup
r>0

(  
A(x,r)

| f |s dμ
) 1

s
, ∀x ∈ X. (6.3.13)

Then
MA,s : L p,q(X, μ) −→ L p,q(X, μ)

is well defined, sub-linear and bounded
provided 0 < s < p ≤ ∞ and 0 < q ≤ ∞,

(6.3.14)

with the convention that q = ∞ if p = ∞. In particular, for every s ∈ (0,∞) the
operator MA,s is well-defined, sub-linear and bounded in each of the following
settings:

MA,s : L p(X, μ) −→ L p(X, μ) with p ∈ (s,∞], (6.3.15)

MA,s : Ls(X, μ) −→ Ls,∞(X, μ). (6.3.16)

We are now ready to present the proof of Theorem 6.3.3.

Proof of Theorem 6.3.3 As a preamble, we shall first establish that

given a sequence {A(x j , r j )} j∈N ⊆ Awith the property that there exist
x0 ∈ X and r0 ∈ (0,∞) such that A(x j , r j ) ⊆ A(x0, r0) for each j ∈ N

and lim
j→∞μ(A(x j , r j )) = 0, we necessarily have lim

j→∞ r j = 0.
(6.3.17)

Seeking a contradiction, after eventually passing to a subsequence, we may assume
that there exists r∗ ∈ (0,∞) such that r j ≥ r∗ for each j ∈ N. By property (ii), we
then have A(x j , r∗) ⊆ A(x j , r j ), hence 0 ≤ μ

(
A(x j , r∗)

) ≤ μ
(
A(x j , r j )

)
for each

j ∈ N. Since we are currently assuming lim
j→∞μ

(
A(x j , r j )

) = 0, this forces
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lim
j→∞μ

(
A(x j , r∗)

) = 0. (6.3.18)

To proceed, fix an arbitrary index j ∈ N. Then property (i) implies that x j ∈ A(x j , r0)
and also that x j ∈ A(x j , r j ) ⊆ A(x0, r0), with the last inclusion being part of
the assumptions made in (6.3.17). Thus, x j ∈ A(x j , r0) ∩ A(x0, r0) which goes to
show that A(x0, r0) ∩ A(x j , r0) �= ∅. Granted this, property (iv) guarantees that
A(x0, r0) ⊆ A(x j ,Cr0). Hence, if we pick N ∈ N such that Cr0 < 2Nr∗, then prop-
erty (ii) further implies A(x0, r0) ⊆ A(x j , 2Nr∗). On account of this and property
(v), we may then iteratively estimate

0 < μ
(
A(x0, r0)

) ≤ μ
(
A(x j , 2

Nr∗)
) ≤ cNμ

(
A(x j , r∗)

)
. (6.3.19)

Upon letting j →∞ and invoking (6.3.18), this leads to a contradiction. Thus,
(6.3.17) is established.

Our next goal is to prove (6.3.11). To this end, fix s ∈ (0,∞) and 0 ≤ α < 1/s
and consider a truncated version of (6.3.9). Namely, for each fixed R ∈ (0,∞) define

MR
A,s,α f (x) := sup

0<r<R

[
μ
(
A(x, r)

)α(
 
A(x,r)

| f |s dμ
) 1

s

]
, ∀x ∈ X, (6.3.20)

for each μ-measurable function f on X . The first order of business is to show that,
for each R > 0,

MR
A,s,α f is μ-measurable, for every μ-measurable function f. (6.3.21)

To prove this, fix a μ-measurable function f on X . The first observation is that

MR
A,s,α f (x) = sup

0<r<R
r rational

[
μ
(
A(x, r)

)α(
 
A(x,r)

| f |s dμ
) 1

s

]
, ∀x ∈ X. (6.3.22)

Indeed, this is a consequence of the fact that if x ∈ X is arbitrary and fixed, then
for each r > 0 and each sequence {r j } j∈N such that r j ↗ r as j →∞ one has, by
virtue of (iii) and Lebesgue’s Monotone Convergence Theorem,

μ
(
A(x, r j )

)α(
 
A(x,r j )

| f |s dμ
) 1

s −→ μ
(
A(x, r)

)α(
 
A(x,r)

| f |s dμ
) 1

s
as j →∞.

(6.3.23)
Granted (6.3.22) and since the supremum of a countable family of μ-measurable
functions is itself a μ-measurable function, it suffices to show that, for each fixed
μ-measurable function f and each fixed r > 0, the assignment

X � x �−→ � f,r (x) := μ
(
A(x, r)

)α(
 
A(x,r)

| f |s dμ
) 1

s ∈ [0,∞] (6.3.24)
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is aμ-measurable function.With this goal inmind, recall from (3.1.12) that given any
μ-measurable function f on X one can find a sequence {h j } j∈N of simple functions
on X with the property that 0 ≤ h j (x) ↗ | f (x)| as j →∞ for every x ∈ X . Since

�h j ,r (x) ↗ � f,r (x) as j →∞, for every x ∈ X, (6.3.25)

it therefore suffices to prove that for each fixed r > 0 and each fixed j ∈ N the
function �h j ,r is μ-measurable. In turn, given the structure of simple functions it
suffices to prove that, if r > 0 and E ∈M are fixed, the function

X � x �−→ μ
(
A(x, r)

)αs−1
μ
(
A(x, r) ∩ E

) ∈ [0,∞]
is μ-measurable.

(6.3.26)

This, however, is a consequence of assumption (vi) (used twice: first as stated, and
second for the choice E := X ). This finishes the proof of the claim made in (6.3.21).

To proceed, fix an arbitrary function f ∈ Ls(X, μ). Then, having fixed λ > 0
along with xo ∈ X and 0 < R < Ro < ∞, consider

ER,λ(xo, Ro) :=
{
x ∈ A(xo, Ro) : (MR

A,s,α f )(x) > λ
} ⊆ A(xo, Ro). (6.3.27)

By (6.3.21), we have ER,λ(xo, Ro) ∈M. Furthermore, for each x ∈ ER,λ(xo, Ro)

there exists a number rx ∈ (0, R) such that

μ
(
A(x, rx )

)α(
 
A(x,rx )

| f |s dμ
) 1

s
> λ, (6.3.28)

i.e.,
μ
(
A(x, rx )

)1−αs
< λ−s

ˆ
A(x,rx )

| f |s dμ. (6.3.29)

Consider
{
A(x, rx )

}
x∈ER,λ(xo,Ro)

which, by condition (i), covers ER,λ(xo, Ro). Also,
by design,

sup
x∈ER,λ(xo,Ro)

rx ≤ R < ∞. (6.3.30)

Moreover, for every point x belonging to ER,λ(xo, Ro) the first part in condition (i)
ensures that we have x ∈ A(x, rx ) ∩ A(xo, Ro), hence A(x, rx ) ∩ A(xo, Ro) �= ∅.
Based on this observation, the fact that 0 < rx < R < Ro for every x ∈ ER,λ(xo, Ro),
and condition (iv), we may then conclude that

⋃

x∈ER,λ(xo,Ro)

A(x, rx ) ⊆ A(xo,CRo). (6.3.31)

Assumenow that
{
A(x j , rx j )

}
j∈N

is a sequenceofmutually disjoint sets selected from

the family
{
A(x, rx )

}
x∈ER,λ(xo,Ro)

, associated with an arbitrary sequence of points
{x j } j∈N ⊆ ER,λ(xo, Ro). Then it follows from (6.3.29) that
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∞∑

j=1
μ
(
A(x j , rx j )

)1−αs ≤ λ−s
∞∑

j=1

ˆ
A(x j ,rx j )

| f |s dμ (6.3.32)

= λ−s
ˆ
∪ j∈NA(x j ,rx j )

| f |s dμ ≤ λ−s
ˆ
X
| f |s dμ < ∞.

In turn, given that we are assuming αs < 1, this forces

lim
j→∞μ

(
A(x j , rx j )

) = 0. (6.3.33)

Consequently, from (6.3.31), (6.3.33), and (6.3.17) we deduce that, in the scenario
we are currently considering, one necessarily has

lim
j→∞ rx j = 0. (6.3.34)

This analysis shows that condition (6.3.4) in Lemma 6.3.1 is satisfied in the current
setting. Furthermore, by virtue of the first part in condition (ii), condition (iv), and
(6.3.30),we also have that conditions (a), (b), and (6.3.1) inLemma6.3.1 are satisfied.
Thus, Lemma 6.3.1 applies and yields an at most countable family

{
A(x, rx )

}
x∈J ,

with J ⊆ ER,λ(xo, Ro), of pairwise disjoint sets with the property that for some finite
positive constant, which without loss of generality can be assumed to be of the form
2N for some N ∈ N, one has

ER,λ(xo, Ro) ⊆
⋃

x∈J
A(x, 2Nrx ). (6.3.35)

By availing ourselves of this condition and keeping in mind the doubling property
of μ relative to the familyA (cf. condition (v) where the constant c used below first
appears) we may write

μ
(
ER,λ(xo, Ro)

) ≤
∑

x∈J
μ
(
A(x, 2Nrx )

) ≤ cN
∑

x∈J
μ
(
A(x, rx )

)

≤ cN
(∑

x∈J
μ
(
A(x, rx )

)1−αs
) 1

1−αs

≤ cN
(∑

x∈J
λ−s

ˆ
A(x,rx )

| f |s dμ
) 1

1−αs

≤ cN
(
λ−s

ˆ
X
| f |s dμ

) 1
1−αs = cN

(‖ f ‖Ls (X,μ)

λ

) s
1−αs

, (6.3.36)

where we have also made use of the fact that 0 ≤ α < 1/s, and (6.3.29). Thus, there
exists a finite positive constant C , independent of f , λ, R, and Ro, with the property
that
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sup
λ>0

(
λ · μ(ER,λ(xo, Ro)

) 1−αs
s

)
≤ C‖ f ‖Ls (X,μ). (6.3.37)

Going further, for each λ > 0 and R > 0 introduce the set

ER,λ :=
{
x ∈ X : (MR

A,s,α f )(x) > λ
} ⊆ X. (6.3.38)

Based on (6.3.21) we see that ER,λ ∈M and, by design, for each fixed λ > 0, R > 0,
and any Ro > R, we also have ER,λ ∩ A(xo, Ro) = ER,λ(xo, Ro). From this and the
second part of condition (ii), we may therefore conclude by sending Ro ↗∞ (via a
countable sequence of values) that

sup
λ>0

(
λ · μ(ER,λ)

1−αs
s

)
≤ C‖ f ‖Ls (X,μ), (6.3.39)

for some finite constant C > 0 which is independent of f , λ, and R.
We next make the observation that since (MR

A,s,α f )(x) ↗ (MA,s,α f )(x) as
R ↗∞ for each x ∈ X , we may conclude thatMA,s,α f is a μ-measurable function
on X . Furthermore, if for each λ > 0 we introduce

Eλ :=
{
x ∈ X : (MA,s,α f )(x) > λ

} ⊆ X, (6.3.40)

it follows that for each fixed λ > 0 we have Eλ ∈M and ER,λ ↗ Eλ as R ↗∞.
Consequently, μ(ER,λ) ↗ μ(Eλ) as R ↗∞, for each fixed λ > 0, hence passing
to the limit R ↗∞ in (6.3.39) yields

sup
λ>0

(
λ · μ(Eλ)

1−αs
s

)
≤ C‖ f ‖Ls (X,μ), ∀λ > 0, (6.3.41)

for some finite constant C > 0 independent of the function f ∈ Ls(X, μ). This
proves (6.3.11).

Moving on, consider the case when

1 ≤ p ≤ ∞, 0 < s < ∞ and α = 1
sp , (6.3.42)

and assume that f ∈ L
1
α (X, μ) is an arbitrary function. If p is finite, then for each

x ∈ X and each r > 0 Hölder’s inequality gives

μ
(
A(x, r)

)α(
 
A(x,r)

| f |s dμ
) 1

s ≤ μ
(
A(x, r)

)α(
 
A(x,r)

| f |sp dμ
) 1

sp

= μ
(
A(x, r)

)α− 1
sp

( ˆ
A(x,r)

| f |sp dμ
) 1

sp

≤ ‖ f ‖Lsp(X,μ), (6.3.43)
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i.e.,

μ
(
A(x, r)

)α(
 
A(x,r)

| f |s dμ
) 1

s ≤ ‖ f ‖
L

1
α (X,μ)

, ∀x ∈ X, ∀r > 0. (6.3.44)

Moreover, (6.3.44) is trivially true in the casewhenα = 0 (corresponding to p = ∞).
The bottom line is that (6.3.44) holds whenever 0 < s < ∞ and 0 ≤ α < 1/s. This
shows that, as claimed in (6.3.12), we also have

MA,s,α : L 1
α (X, μ) −→ L∞(X, μ) is well defined, sub-linear and bounded

granted 0 < s < ∞ and 0 ≤ α < 1/s.
(6.3.45)

The next step is to interpolate between the boundedness results established in
(6.3.11) and (6.3.45). Given that the operatorMA,s,α is quasi-additive, the real inter-
polation theorem for sub-linear operators (cf. [185, Sect. 1.3]) applies and gives that
if 0 < s < ∞ and 0 ≤ α < 1/s then for each θ ∈ (0, 1) and each q ∈ (0,∞],

MA,s,α :
(
Ls(X, μ), L

1
α (X, μ)

)
θ,q
−→ (

L
s

1−αs ,∞(X, μ), L∞(X, μ)
)
θ,q

is a well-defined, sub-linear and bounded operator.
(6.3.46)

It remains to identify the intermediate spaces appearing in (6.3.46) for a suitable
choice of θ , which we do using (6.2.48). Specifically, given p ∈ (s, 1/α), taking

θ :=
1
s − 1

p
1
s − α

∈ (0, 1) (6.3.47)

yields (
Ls(X, μ), L

1
α (X, μ)

)
θ,q = L p,q(X, μ) (6.3.48)

and, if p∗ := (
1
p − α

)−1
,

(
L

s
1−αs ,∞(X, μ), L∞(X, μ)

)
θ,q
= L p∗,q(X, μ). (6.3.49)

This finishes the proof Theorem 6.3.3. �

6.4 Clifford Algebra Fundamentals

Taking “square roots” of quadratic forms is one of the primary reasons for work-
ing in the Clifford algebra context. In particular, in such an algebraic setting one
can consider the square root of the Laplacian and still be within the class of
differential operators2 (see (6.4.56) further below). Originating in the pioneering

2 As opposed to, say, pseudodifferential calculus.
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work of Grigore Moisil, Nicolae Teodorescu3 [202–204, 252], and Rud Fueter [93]
among others, the study of the resulting elliptic first-order differential operator in
higher-dimensional settings, much in the spirit of the Cauchy–Riemann ∂̄ operator
in the plane, has become by now a well-established area of mathematics (see, for
instance, the monographs [26, 105, 120, 196], and the references therein). While we
shall delve into some of these aspects later, for now the goal is to elaborate on the
algebraic framework.

The Clifford algebra with n imaginary units is the minimal enlargement
of R

n to a unitary real algebra (C�n,+,�), which is not generated (as an algebra)
by any proper subspace of R

n , and such that

x � x = −|x |2 for each x ∈ R
n ↪→ C�n. (6.4.1)

This identity is equivalent to the demand that, if {e j }1≤ j≤n is the standard orthonormal
basis in R

n , then

e j � e j = −1 and e j � ek = −ek � e j whenever 1 ≤ j �= k ≤ n. (6.4.2)

In particular, identifying the canonical basis {e j }1≤ j≤n from R
n with the n imaginary

units generating C�n yields the embedding4

R
n ↪→ C�n, R

n � x = (x1, . . . , xn) ≡
n∑

j=1
x j e j ∈ C�n. (6.4.3)

Note that if
R

n � x = (x1, . . . , xn) ≡∑n
j=1 x j e j ∈ C�n,

R
n � y = (y1, . . . , yn) ≡∑n

k=1 yk ek ∈ C�n,
(6.4.4)

then (6.4.2) implies

x � y = −〈x, y〉 + 1

2

n∑

j,k=1
(x j yk − xk y j )e j � ek . (6.4.5)

3 Théodoresco, in the French spelling of the early 1990s.
4 As the alerted reader might have noted, for n = 2 the identification in (6.4.3) amounts to
embedding R

2 into quaternions, i.e., R
2 ↪→ H := {x0 + x1i+ x2j+ x3k : x0, x1, x2, x3 ∈ R} via

R
2 � (x1, x2) ≡ x1i+ x2j ∈ H. The reader is reassured that this is simply a matter of convenience,

and we might as well have arranged things so that the embedding (6.4.3) comes down, when n = 2,
to perhaps the more familiar identification R

2 ≡ C, by taking R
n � x = (x0, x1, . . . , xn−1) ≡

x0 + x1e1 + . . . xn−1en−1 ∈ C�n−1. The latter choice leads to a parallel theory to the one pre-
sented here, entailing only minor natural alterations. Indeed, if in the latter scenario we factor out
e1 and re-denote ẽ1 := e1 � e2, . . . , ẽn−1 := e1 � en , then

{
ẽ j
}
1≤ j≤n−1 become anti-commuting

imaginary units and the identification (6.4.3) becomes, modulo multiplication by e1, equivalent to
R
n � x = (x0, x1, . . . , xn−1) ≡ x0 + x1̃e1 + . . . xn−1̃en−1 ∈ C�n−1.
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Hence, the scalar component of the Clifford algebra product x � y is precisely (−1)
times the inner product of the vectors x, y ∈ R

n , whereas the bi-vector component of
x � y contains as much information as the vector product of x and y. This points to
the fact that theClifford algebra has strong ties to the geometry of the Euclidean space
(indeed, C�n is occasionally referred to as geometric algebra). For further reference
let us also note here that (6.4.5) implies the following generalization of (6.4.1):

x � y + y � x = −2〈x, y〉 for all x, y ∈ R
n ↪→ C�n. (6.4.6)

The fact that C�n is not generated (as an algebra) by any proper subspace of R
n

ensures that any element u ∈ C�n may be uniquely represented in the form

u =
∑

I

u I eI :=
n∑

�=0

∑

|I |=�

′
uI eI , uI ∈ C. (6.4.7)

Here
∑′ indicates that the sum is performed only over strictly increasing multi-

indices I with � components, i.e., ordered �-tuples of the form I = (i1, i2, . . . , i�)
with 1 ≤ i1 < i2 < · · · < i� ≤ n. Also, we abbreviate

eI := ei1 � ei2 � · · · � ei� if I = (i1, i2, . . . , i�), (6.4.8)

and denote the multiplicative unit in C�n by

e0 := e∅ := 1. (6.4.9)

Let us momentarily digress for the purpose of establishing the existence of such
a Clifford algebra. An example may be produced as a suitable sub-algebra of the
matrix algebra R

2n×2n . Specifically, for each M ∈ N denote by IM the M × M iden-
tity matrix, and consider the double-indexed family of matrices

{
Em

j

}
1≤m≤n
1≤ j≤m

defined

inductively by

E1
1 :=

(
0 −1
1 0

)
∈ R

2×2 (6.4.10)

and, in general, for m ∈ {1, . . . , n − 1} and j ∈ {1, . . . ,m},

Em+1
j :=

(
Em

j 0
0 −Em

j

)
∈ R

2m+1×2m+1

and Em+1
m+1 :=

(
0 −I2m
I2m 0

)
∈ R

2m+1×2m+1 .
(6.4.11)

Observe that if m ∈ {2, . . . , n}, � ∈ {1, . . . ,m}, and ( j1, j2, . . . , j�) ∈ {1, . . . ,m}�
are such that 1 ≤ j1 < j2 < · · · < j� ≤ m, we have
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Em
j1E

m
j2 · · · Em

j� =
(
Em−1

j1
Em

j2
· · · Em−1

j�
0

0 Em−1
j1

Em
j2
· · · Em−1

j�

)
if j�≤m − 1, (6.4.12)

and

Em
j1E

m
j2 · · ·Em

j� =
(

0 −Em−1
j1

Em
j2
· · · Em−1

j�−1
−Em−1

j1
Em

j2
· · · Em−1

j�−1 0

)
if j�=m. (6.4.13)

In particular, an induction on m ∈ {1, . . . , n} shows that
(
Em

j

)2 = −I2m for each m ∈ {1, . . . , n} and j ∈ {1, . . . ,m},
and that Em

j1
Em

j2
= −Em

j2
Em

j1
for all m ∈ {1, . . . , n}

and j1, j2 ∈ {1, . . . ,m} with j1 �= j2.
(6.4.14)

Hence,

the conditions in (6.4.2) are satisfied if we identify e j := En
j for

each j ∈ {1, . . . , n} and take � to be the ordinary multiplication of
matrices.

(6.4.15)

In addition, from (6.4.10)–(6.4.11) and induction we see that

(Em
j )� = −Em

j for each m ∈ {1, . . . , n} and j ∈ {1, . . . ,m};
in particular, (En

j )
� = −En

j for each j ∈ {1, . . . , n}. (6.4.16)

With the identification from (6.4.15) and the conventions from (6.4.8)–(6.4.9),
we also claim that

the matrices {eI }I are linearly independent over R. (6.4.17)

To justify this, note that (6.4.12)–(6.4.13) and induction on m ∈ {1, . . . , n} imply

Trace
(
Em

j1
Em

j2
· · · Em

j�

) = 0 if m ∈ {1, . . . , n}, � ∈ {1, . . . ,m}, and
( j1, j2, . . . , j�) ∈ {1, . . . ,m}� with 1 ≤ j1 < j2 < · · · < j� ≤ m.

(6.4.18)

As such,

Trace(eI ) = 0 whenever I �= ∅, and Trace(e∅) = n. (6.4.19)

Consequently, if
∑

I u I eI = 0 for some coefficients uI ∈ R, then for each given
�-tuple of integers J = (i1, i2, . . . , i�) with 1 ≤ i1 < i2 < · · · < i� ≤ n we have∑

I u I eJ eI = 0, hence ∑

I

u ITrace
(
eJ eI

) = 0. (6.4.20)
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However, since each eJ eI is of the form ±eJ�I where J�I is the symmetric differ-
ence between J and I , on account of (6.4.19) and (6.4.20) we conclude that uJ = 0.
Given that J has been arbitrarily selected, the claim in (6.4.17) follows. The bottom
line is that

a concrete model for the Clifford algebra C�n is the sub-algebra
of the matrix algebra R

2n×2n consisting of all matrices of the form
u =∑

I u I eI with uI ∈ R (with the identification from (6.4.15) and
the conventions from (6.4.8)–(6.4.9)).

(6.4.21)

This concludes the digression aimed at clarifying the existence of a Clifford algebra.
Returning to the mainstream discussion, we endowC�n with the natural Euclidean

metric

|u| :=
{∑

I

|uI |2
}1/2

for each u =
∑

I

u I eI ∈ C�n. (6.4.22)

The Clifford conjugation on C�n , denoted by “bar,” is defined as the unique real-
linear involution on C�n for which eI � eI = eI � eI = 1 for any multi-index I .
More specifically, given u =∑

I u I eI ∈ C�n we set u :=∑
I u I eI where, for each

I = (i1, i2, . . . , i�) with 1 ≤ i1 < i2 < · · · < i� ≤ n,

eI = (−1)�ei� � ei�−1 � · · · � ei1 . (6.4.23)

In particular,
e j = −e j for each j ∈ {1, . . . , n}. (6.4.24)

For each u =∑
I u I eI ∈ C�n define

uvect :=
n∑

j=1
u je j ∈ R

n the vector part of u, (6.4.25)

and denote by

uscal := u∅e∅ = u∅ ∈ R, the scalar part of u. (6.4.26)

We shall endow C�n with the natural Hilbert space structure

〈u, w〉 :=
∑

I

u IwI , if u =
∑

I

u I eI , w =
∑

I

wI eI ∈ C�n. (6.4.27)

If we define a complex conjugation on C�n by setting uc :=∑
I u

c
I eI for each

u =∑
I u I eI , where zc denotes the usual complex conjugation of z ∈ C, then the

aforementioned Hilbert space structure and Euclidean metric are related via
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|u| = √〈u, uc〉 =
{∑

I

|uI |2
}1/2

for each u =
∑

I

u I eI ∈ C�n. (6.4.28)

It also follows directly from definitions that

x = −x for each x ∈ R
n ↪→ C�n. (6.4.29)

Moreover, for any u, w ∈ C�n one has

|u|2 = (u � u)0 = (u � u)0, (6.4.30)

〈u, w〉 = (u � w)0 = (u � w)0, (6.4.31)

u � w = w � u, (6.4.32)

|u| = |u|, u = u, (6.4.33)

|u � w| ≤ 2n/2|u||w|, (6.4.34)

and
|u � w| = |u||w| if either u or w belongs to R

n ↪→ C�n. (6.4.35)

Also,
u + u = 2 u0 for each u ∈ R

n � R
n. (6.4.36)

More detailed accounts of these and related matters can be found in [26] and [196].

Lemma 6.4.1 Let a ∈ C�n be arbitrary. Then

〈a � u, w〉 = 〈u, a � w〉, ∀u, w ∈ C�n. (6.4.37)

In particular, as a consequence of (6.4.37) and (6.4.24), for each j ∈ {1, . . . , n} one
has

〈e j � u, w〉 = −〈u, e j � w〉, ∀u, w ∈ C�n. (6.4.38)

Proof By linearity, it suffices to show that for any two multi-indices I, K and any
index j ∈ {1, . . . , n}, there holds

〈e j � eI , eK 〉 = −〈eI , e j � eK 〉. (6.4.39)

In turn, this identity may be justified by analyzing three cases. First, when j /∈ I and
j /∈ K , both sides in (6.4.39) vanish. Second, consider the casewhen j /∈ I and j∈K ,
say K = K1 ∪ { j} ∪ K2 with K1 = {k ∈ K : k < j} and K2 = {k ∈ K : k > j}.
On the one hand, if I �= K1 ∪ K2 then once again both sides of (6.4.39) vanish. If,
on the other hand, I = K1 ∪ K2 then both sides in (6.4.39) become (−1)|K1|. The
third (and final) case, when j ∈ I and j /∈ K is handled in a similar fashion. �

Consider an open nonempty set � ⊆ R
n . We will work with C�n-valued distribu-

tions in �, i.e., withD′(�)⊗ C�n . More specifically,
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u ∈ D′(�)⊗ C�n
de f⇐⇒ u =

n∑

�=0

∑

|I |=�

′
uI eI with each uI ∈ D′(�). (6.4.40)

We agree to pair such a C�n-valued distribution u in � with a scalar-valued test
function ϕ ∈ C∞

c (�) according to

D′(�)⊗C�n
〈
u, ϕ

〉
D(�) :=

n∑

�=0

∑

|I |=�

′
D′(�)〈uI , ϕ〉D(�) eI ∈ C�n. (6.4.41)

It is also natural to consider the subspace E ′(�)⊗ C�n ofD′(�)⊗ C�n , consisting of
C�n-valued distributions with compact support in�. The pairing of u ∈ E ′(�)⊗ C�n
with a scalar-valued smooth function ϕ ∈ C∞(�) is defined in a similar fashion to
(6.4.41).

Formula (6.4.41) is a particular case of amore general way of pairing aC�n-valued
distribution u as in (6.4.40) with a C�n-valued test function φ ∈ C∞

c (�)⊗ C�n , say

φ =
n∑

�=0

∑

|J |=�

′
φJ eJ with each φJ ∈ C∞

c (�), (6.4.42)

of the following sort:

D′(�)⊗C�n
〈
u, φ

〉
D(�)⊗C�n :=

∑

I,J

′
D′(�)〈uI , φJ 〉D(�) eI � eJ ∈ C�n. (6.4.43)

This should be contrasted with the scalar pairing

D′(�)⊗C�n
(
u, φ

)
D(�)⊗C�n :=

n∑

�=0

∑

|I |=�

′
D′(�)〈uI , φI 〉D(�) ∈ C

for every u =
n∑

�=0

∑

|I |=�

′
uI eI with each uI ∈ D′(�),

and every φ =
n∑

�=0

∑

|J |=�

′
φJ eJ with each φJ ∈ C∞

c (�).

(6.4.44)

Given a set � ⊆ R
n , in analogy with (6.4.43) we agree to define the Clifford

algebra pairing (from the left) of a C�n-valued distribution u on � (in the sense of
(4.1.34)) with a C�n-valued test function ψ on � (in the sense of (4.1.4)) as

Lipc(�)⊗C�n
〈
ψ, u

〉
Lipc(�)′⊗C�n :=

∑

I,J

′
Lipc(�)〈ψI , uJ 〉Lipc(�)′ eI � eJ ∈ C�n (6.4.45)

whenever
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ψ =∑n
�=0

∑′
|I |=� ψI eI with each ψI ∈ Lipc(�) and

u =∑n
�=0

∑′
|J |=� uJ eJ with each uJ ∈ Lipc(�)′. (6.4.46)

Objects fromD′(�)⊗ C�n and E ′(�)⊗ C�n obey natural rules, much as ordinary
distributions, with the added bonus that the Clifford algebra formalism is in full
effect. For example, while ordinary distributions could be multiplied by smooth
scalar-valued functions, Clifford algebra-valued distributions can be multiplied, via
�, by smooth Clifford algebra-valued functions. We may also consider the action of
differential operators with Clifford algebra coefficients. A prominent example is the
classical (homogeneous) Dirac operator, given by

D :=
n∑

j=1
e j � ∂ j . (6.4.47)

This acts on each u ∈ D′(�)⊗ C�n from the left and from the right according to

DLu :=
n∑

j=1
e j � (∂ j u), (6.4.48)

and, respectively,

DRu :=
n∑

j=1
(∂ j u)� e j , (6.4.49)

where the right-hand sides in (6.4.48)–(6.4.49) are regarded as C�n-valued distribu-
tion in �. When no subscript “L” or “R” is employed, it is understood that D acts
from the left.

For example, with these conventions in mind it may be easily verified from defi-
nitions that for each function u ∈ C 1(�)⊗ C�n we have

DRu = −DL(u) in �. (6.4.50)

Let us also observe that, for each distribution u ∈ D′(�)⊗ C�n and each test function
φ ∈ C∞

c (�)⊗ C�n we have

D′(�)⊗C�n
〈
DLu, φ

〉
D(�)⊗C�n = −D′(�)⊗C�n

〈
u, DRφ

〉
D(�)⊗C�n , (6.4.51)

whereas (6.4.38) entails

D′(�)⊗C�n
(
Du, φ

)
D(�)⊗C�n = D′(�)⊗C�n

(
u, D φ

)
D(�)⊗C�n . (6.4.52)

Let us also note that if� ⊆ R
n is a set of locally finite perimeter, and ν denotes its

geometric measure theoretic outward unit normal, then in the sense of distributions
in R

n we have
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D
(
1�

) = −ν � σ∗ = −ν �Hn−1�∂∗� = −ν �Hn−1�∂∗�, (6.4.53)

where the vector ν = (ν1, . . . , νn) is canonically identified with theC�n-valued func-
tion ν = ν1e1 + · · · + νnen . In view of thematrix formalism associated with the Clif-
ford algebras (see (6.4.21)), this is a special case of the more general result described
in Proposition 5.6.3.

As just mentioned, the Dirac operator (6.4.47) may be naturally regarded as a
homogeneous, constant coefficient, first-order 2n × 2n system in R

n , by adopting
the model for the Clifford algebra C�n described in (6.4.21). Specifically, with the
identification from (6.4.15) we have

D =
n∑

j=1
En

j ∂ j . (6.4.54)

To illustrate this point of view, consider the case n = 2, in which scenario the afore-
mentioned model identifies the Dirac operator (6.4.47) with the 22 × 22 system

D =

⎛

⎜⎜
⎝

0 −∂1 −∂2 0
∂1 0 0 −∂2
∂2 0 0 ∂1
0 ∂2 −∂1 0

⎞

⎟⎟
⎠ . (6.4.55)

FollowingMoisil and Teodorescu [203, 204], we shall call u monogenic in� if
Du = 0 in �. One of the most fundamental properties of Dirac operator introduced
above is that this may be thought of as the square-root of the (minus) Laplacian.
More precisely, D satisfies

D2 = −� (6.4.56)

where � :=∑n
j=1 ∂2

j is the usual Laplace operator in R
n . In particular, monogenic

functions are null-solutions of the Laplacian (i.e., harmonic functions).
In general, if

(
X , ‖ · ‖X

)
is a Banach space then by X ⊗ C�n we shall denote

the Banach space consisting of elements of the form

u =
n∑

�=0

∑

|I |=�

′
uI eI , uI ∈X , (6.4.57)

equipped with the natural norm

‖u‖X ⊗C�n :=
n∑

�=0

∑

|I |=�

′‖uI‖X . (6.4.58)

A simple but useful observation in this context is that, as is apparent from (6.4.1)
and (6.4.35),
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if � ⊂ R
n is a set of locally finite perimeter, ν denotes its geomet-

ric measure theoretic outward unit normal, and σ∗ := Hn−1�∂∗�, then
ν� : L p(∂∗�, σ∗)⊗ C�n → L p(∂∗�, σ∗)⊗ C�n happens to be an iso-
metric isomorphism, with inverse −ν�, for each p ∈ (0,∞].

(6.4.59)

To state our next result we need some notation. Specifically, for any two elements
A, B of a given ring R, denote by

[A; B] := AB − BA (6.4.60)

the commutator of A and B, and by

{A; B} := AB + BA (6.4.61)

the anti-commutator of A and B.

Lemma 6.4.2 Let R be a unitary ring and, given some n ∈ N, let {Bjk}1≤ j,k,≤n be
a family of elements of R with the property that

Bkj = −Bjk for every j, k ∈ {1, . . . , n}. (6.4.62)

Also, fix A ∈ R arbitrary. Then one has the following quadratic expansion formula
in C�n ⊗R:

6
(
A + 2 ·

n∑

j,k=1
(e j � ek)⊗ Bjk

)2 = 6A2 − 48 ·
n∑

j,k=1
(Bjk)

2 (6.4.63)

− 12 ·
n∑

j,k=1
(e j � ek)⊗

n∑

�=1

(
4[Bj�; B�k] − {A; Bjk}

)

+ 4 ·
n∑

i, j,k,�=1
(ei � e j � ek � e�)⊗

(
{Bi j ; Bk�} + {Bi�; Bjk} − {Bik; Bj�}

)
.

Proof For starters, the fact that 2Bj j = 0 for every j ∈ {1, . . . , n} implies

2 ·
n∑

j,k=1
(e j � ek)⊗ Bjk = 2 ·

∑

1≤ j �=k≤n
(e j � ek)⊗ Bjk . (6.4.64)

Also,
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A
(
2·

∑

1≤ j �=k≤n
(e j � ek)⊗ Bjk

)
+
(
2 ·

∑

1≤ j �=k≤n
(e j � ek)⊗ Bjk

)
A

= 2 ·
∑

1≤ j �=k≤n
(e j � ek)⊗ (Bjk A + ABjk)

= 2 ·
∑

1≤ j �=k≤n
(e j � ek)⊗ {A; Bjk}

= 2 ·
n∑

j,k=1
(e j � ek)⊗ {A; Bjk}. (6.4.65)

Consider next,

(
2 ·

∑

1≤ j �=k≤n
(e j � ek)⊗ Bjk

)2
(6.4.66)

=
(
2 ·

∑

1≤a �=b≤n
(ea � eb)⊗ Bab

)(
2 ·

∑

1≤c �=d≤n
(ec � ed)⊗ Bcd

)

=
∑

1≤a �=b≤n
1≤c �=d≤n

4(ea � eb � ec � ed)⊗ (BabBcd).

Note that the sets

J± :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a �= b, c �= c, ea � eb � ec � ed = ±1

}

(6.4.67)

may be explicitly described as

J+ =
{
(a, b, c, d) ∈ {1, . . . , n}4 : a �= b, a = d, b = c

}
,

J− =
{
(a, b, c, d) ∈ {1, . . . , n}4 : a �= b, a = c, b = d

}
.

(6.4.68)

Moreover,

∑

(a,b,c,d)∈J+
4(ea � eb � ec � ed)⊗ (BabBcd)

= 4 ·
∑

1≤a �=b≤n
BabBba = −4 ·

n∑

j,k=1
(Bjk)

2, (6.4.69)

and
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∑

(a,b,c,d)∈J−
4(ea � eb � ec � ed)⊗ (BabBcd)

= −4 ·
∑

1≤a �=b≤n
BabBab = −4 ·

n∑

j,k=1
(Bjk)

2. (6.4.70)

From these identities we then conclude that

the scalar component of the left side
of (6.4.63) is 6A2 − 48 ·∑n

j,k=1(Bjk)
2. (6.4.71)

To identify the bi-vector component of the left-hand side of (6.4.63), fix two
distinct indices j, k ∈ {1, . . . , n} which are otherwise arbitrary. Then, on the one
hand, the set

Q jk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a �= b, c �= c, ea � eb � ec � ed = ±e j � ek

}

(6.4.72)

may be written as the disjoint union of the following eight sets:

I jk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = j, b = c /∈ { j, k}, d = k

}
,

I I jk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = k, b = c /∈ { j, k}, d = j

}
,

I I I jk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = j, b = d /∈ { j, k}, c = k

}
,

I Vjk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = k, b = d /∈ { j, k}, c = j

}
,

Vjk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = c /∈ { j, k}, b = j, d = k

}
,

V I jk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = c /∈ { j, k}, b = k, d = j

}
,

V I I jk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = d /∈ { j, k}, b = j, c = k

}
,

V I I I jk :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a = d /∈ { j, k}, b = k, c = j

}
. (6.4.73)

On the other hand,

∑

(a,b,c,d)∈I jk
4(ea � eb � ec � ed)⊗ (BabBcd) (6.4.74)

= −4(e j � ek)⊗
( ∑

b∈{1,...,n}
b �= j, b �=k

B jbBbk

)
= −4(e j � ek)⊗

( n∑

�=1
Bj�B�k

)
,

and
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∑

(a,b,c,d)∈I I jk
4(ea � eb � ec � ed)⊗ (BabBcd)

= 4(e j � ek)⊗
( ∑

b∈{1,...,n}
b �= j, b �=k

BkbBbj

)
= 4(e j � ek)⊗

( n∑

�=1
Bk�B�j

)

= 4(e j � ek)⊗
( n∑

�=1
B�k B j�

)
, (6.4.75)

hence

∑

(a,b,c,d)∈I jk∪I I jk
4(ea � eb � ec � ed)⊗ (BabBcd)

= −4(e j � ek)⊗
( n∑

�=1
Bj�B�k

)
+ 4(e j � ek)⊗

( n∑

�=1
B�k B j�

)

= −4(e j � ek)⊗
n∑

�=1
[Bj�; B�k]. (6.4.76)

In a similar fashion,

∑

(a,b,c,d)∈I I I jk∪I Vjk

4(ea � eb � ec � ed)⊗ (BabBcd)

= −4(e j � ek)⊗
n∑

�=1
[Bj�; B�k], (6.4.77)

∑

(a,b,c,d)∈Vjk∪V I jk

4(ea � eb � ec � ed)⊗ (BabBcd)

= −4(e j � ek)⊗
n∑

�=1
[Bj�; B�k], (6.4.78)

and

∑

(a,b,c,d)∈V I I jk∪V I I I jk

4(ea � eb � ec � ed)⊗ (BabBcd)

= −4(e j � ek)⊗
n∑

�=1
[Bj�; B�k]. (6.4.79)

Consequently, the bi-vector component of the left-hand side of (6.4.63) is given by
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6 ·
∑

1≤ j<k≤n

∑

(a,b,c,d)∈Q jk

4(ea � eb � ec � ed)⊗ (BabBcd)

= −96 ·
∑

1≤ j<k≤n
(e j � ek)⊗

n∑

�=1
[Bj�; B�k]

= −48 ·
n∑

j,k=1
(e j � ek)⊗

n∑

�=1
[Bj�; B�k]. (6.4.80)

We are left with identifying the quartet-vector component of the left-hand side of
(6.4.63). To this end, fix i, j, k, � ∈ {1, . . . , n}mutually distinct, and consider the set

Si jk� :=
{
(a, b, c, d) ∈ {1, . . . , n}4 : a �= b, c �= c, and

ea � eb � ec � ed = ±ei � e j � ek � e�

}
. (6.4.81)

The above set may be written as the disjoint union of the following six sets:

S1 :=
{
(i, j, k, �), ( j, i, �, k), (i, j, �, k), ( j, i, k, �)

}
,

S2 :=
{
(i, k, j, �), (k, i, �, j), (i, k, �, j), (k, i, j, �)

}
,

S3 :=
{
(i, �, j, k), (�, i, j, k), (i, �, k, j), (�, i, k, j)

}
,

S4 :=
{
( j, k, i, �), (k, j, i, �), ( j, k, �, i), (k, j, �, i)

}
,

S5 :=
{
( j, �, i, k), (�, j, i, k), ( j, �, k, i), (�, j, k, i)

}
,

S6 :=
{
(k, �, i, j), (�, k, i, j), (k, �, j, i), (�, k, j, 1)

}
. (6.4.82)

Then since

∑

(a,b,c,d)∈S1
4(ea � eb � ec � ed)⊗ (BabBcd)

= 16(ei � e j � ek � e�)⊗ (Bi j Bk�),
∑

(a,b,c,d)∈S2
4(ea � eb � ec � ed)⊗ (BabBcd)

= −16(ei � e j � ek � e�)⊗ (Bik B j�),
∑

(a,b,c,d)∈S3
4(ea � eb � ec � ed)⊗ (BabBcd)

= 16(ei � e j � ek � e�)⊗ (Bi�Bjk),
∑

(a,b,c,d)∈S4
4(ea � eb � ec � ed)⊗ (BabBcd)

= 16(ei � e j � ek � e�)⊗ (Bjk Bi�),
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∑

(a,b,c,d)∈S5
4(ea � eb � ec � ed)⊗ (BabBcd)

= −16(ei � e j � ek � e�)⊗ (Bj�Bik),
∑

(a,b,c,d)∈S6
4(ea � eb � ec � ed)⊗ (BabBcd)

= 16(ei � e j � ek � e�)⊗ (Bk�Bi j ), (6.4.83)

it follows that

∑

(a,b,c,d)∈Si jk�
4(ea � eb � ec � ed)⊗ (BabBcd) (6.4.84)

= 16(ei � e j � ek � e�)⊗
(
{Bi j ; Bk�} + {Bi�; Bjk} − {Bik, Bj�}

)
.

From this we then conclude that the quartet-vector component of the left-hand side
of (6.4.63) is given by

6 ·
∑

1≤i< j<k<�≤n

∑

(a,b,c,d)∈Si jk�
4(ea � eb � ec � ed)⊗ (BabBcd) (6.4.85)

= 4! ·
∑

1≤i< j<k<�≤n
4(ei � e j � ek � e�)

⊗
(
{Bi j ; Bk�} + {Bi�; Bjk} − {Bik; Bj�}

)

= 4 ·
n∑

i, j,k,�=1
(ei � e j � ek � e�)⊗

(
{Bi j ; Bk�} + {Bi�; Bjk} − {Bik; Bj�}

)
.

Formula (6.4.63) now follows from (6.4.71), (6.4.80), and (6.4.85). �

The next lemma elaborates on the structure of a double Clifford product of three
arbitrary vectors from R

n .

Lemma 6.4.3 Consider the vectors a = (ai )1≤i≤n ∈ R
n, b = (b j )1≤ j≤n ∈ R

n,
c = (ck)1≤k≤n ∈ R

n, canonically identified with the Clifford algebra elements

a =
n∑

i=1
aiei ∈ C�n, b =

n∑

j=1
b je j ∈ C�n, c =

n∑

i=1
ckek ∈ C�n. (6.4.86)

Then

a � b � c=−〈a, b〉c+〈a, c〉b−〈b, c〉a+
∑

1≤i, j,k≤n
pairwise distinct

ai b j ckei � e j � ek . (6.4.87)
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Proof For starters, write

a � b � c =
n∑

i=1

n∑

j=1

n∑

k=1
aib j ckei � e j � ek . (6.4.88)

Let us focus on the piece of the above sum corresponding to k = i , i.e.,

n∑

i=1

n∑

j=1
aib j ciei � e j � ei . (6.4.89)

This further breaks up into the piece corresponding to j = i , i.e.,

−
n∑

i=1
aibi ciei , (6.4.90)

and the piece corresponding to j �= i , that is,

n∑

i=1

∑

j �=i
ai b j cie j =

n∑

i=1
aici

(∑

j �=i
b je j

)
=

n∑

i=1
aici

( n∑

j=1
b je j − biei

)

= 〈a, c〉b −
n∑

i=1
aibi ciei . (6.4.91)

Next, let us look at the piece of the sum in (6.4.88) corresponding to k �= i , i.e.,

n∑

i=1

n∑

j=1

∑

k �=i
ai b j ckei � e j � ek . (6.4.92)

The portion of this sum corresponding to j = i is

−
n∑

i=1

∑

k �=i
ai bi ckek = −

n∑

i=1
aibi

(∑

k �=i
ckek

)
= −

n∑

i=1
aibi

( n∑

k=1
ckek − ciei

)

= −〈a, b〉c +
n∑

i=1
aibi ciei . (6.4.93)

The portion of the sum in (6.4.92) corresponding to j �= i breaks up into the piece
where we also have k �= j , i.e.,

∑

1≤i, j,k≤n
pairwise distinct

aib j ckei � e j � ek, (6.4.94)
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and the piece where we have k = j , i.e.,

−
n∑

i=1

∑

j �=i
ai b j c jei = −

n∑

i=1
aiei

(∑

j �=i
b j c j

)
= −

n∑

i=1
aiei

( n∑

j=1
b j c j − bici

)

= −〈b, c〉a +
n∑

i=1
aibi ciei . (6.4.95)

Gathering everything and canceling like-terms, the identity claimed in (6.4.87) fol-
lows. �

Given an arbitrary open subset � of R
n , recall that CBM(�)⊗ C�n consists of

elements of the form μ =∑
I μI eI where each μI is a complex Borel measure in

�. In such a case, define |μ| :=∑
I |μI |. For each Clifford algebra-valued measure

μ =∑
I μI eI ∈ CBM(�)⊗ C�n and eachBorel function f =∑

J f J eJ : � → C�n
we define

´
�
f � dμ in a natural fashion, i.e., as

∑
I,J

( ´
�
f J dμI

)
eJ � eI , assum-

ing all scalar integrals are absolutely convergent.
Continue to assume that � is an open subset of R

n . The Cauchy–Clifford
transform of a Clifford algebra-valued measure μ ∈ CBM(�)⊗ C�n is defined
as

μ̂(x) := 1

ωn−1

ˆ
�

x − y

|x − y|n � dμ(y) (6.4.96)

at each point x ∈ � with the property that

ˆ
�

1

|x − y|n−1 d|μ|(y) < +∞. (6.4.97)

Lemma 6.4.4 Let� be an open subset ofRn, and pick an arbitrary Clifford algebra-
valued measure μ ∈ CBM(�)⊗ C�n. Then its Cauchy–Clifford transform, the func-
tion μ̂ introduced in (6.4.96), is well-defined at Ln-a.e. point in � and, in fact, μ̂

belongs to L p
loc(�,Ln)⊗ C�n whenever 1 ≤ p < n/(n − 1). Moreover,

Dμ̂ = μ in D′(�)⊗ C�n. (6.4.98)

Proof Lemma 3.5.6 shows that, indeed, μ̂ is well-defined as a function in
L p
loc(�,Ln)⊗ C�n whenever 1 ≤ p < n/(n − 1). As regards (6.4.98), given any

scalar test function ϕ ∈ C∞
c (�) we may compute

D′(�)⊗C�n 〈Dμ̂, ϕ〉D(�) = −
n∑

j=1
D′(�)⊗C�n 〈e j � μ̂, ∂ jϕ〉D(�)

= −
n∑

j=1

ˆ
�

(∂ jϕ)e j � μ̂ dLn
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= − 1

ωn−1

ˆ
�

(Dϕ)(x)�
( ˆ

�

x − y

|x − y|n � dμ(y)
)
dx

=
ˆ

�

(
− 1

ωn−1

ˆ
Rn

(Dϕ)(x)� x − y

|x − y|n dx

)
� dμ(y)

=
ˆ

�

ϕ(y) dμ(y) = D′(�)⊗C�n 〈μ, ϕ〉D(�) (6.4.99)

where we have used the fact that μ̂ ∈ L1
loc(�,Ln)⊗ C�n in the second equality,

Fubini’s theorem in the fourth equality, and took advantage of the fact that the inner
integral in the fifth equality involves the fundamental solution (with pole at y) for
the Dirac operator D in R

n . �

In the two-dimensional setting considered in [99, Problem 4.2, p. 55], J. Garnett
asks to

describe the sets whose characteristic functions
are Cauchy transforms almost everywhere.

(6.4.100)

A solution in the class of compact subsets of R
n with n ≥ 2 arbitrary is offered in

our next proposition.

Proposition 6.4.5 Let E ⊆ R
n be a compact set. Then E has finite perimeter if and

only if there exists a Clifford algebra-valuedmeasureμ ∈ CBM(Rn)⊗ C�n such that

μ̂ = 1E at Ln-a.e. point in R
n . (6.4.101)

Proof Suppose first that E ⊆ R
n is a compact set with the property that there exists

a measure μ ∈ CBM(Rn)⊗ C�n such that (6.4.101) holds. Then (6.4.98) (used with
� := R

n) gives
D1E = Dμ̂ = μ in D′(Rn)⊗ C�n, (6.4.102)

hence
∂ j1E ∈ CBM(Rn) for each j ∈ {1, . . . , n}. (6.4.103)

Ultimately, this shows that E has finite perimeter (cf. (5.6.4) in this regard).
In the converse direction, suppose E ⊆ R

n is a compact set of finite perimeter.
Then the Clifford algebra-measure μ := D1E belongs to CBM(Rn)⊗ C�n and sat-
isfies suppμ ⊆ ∂E , hence μ is compactly supported. Fix an arbitrary scalar test
function ϕ ∈ C∞

c (Rn) and, for each j ∈ {1, . . . , n}, define

ψ j (y) := 1

ωn−1

ˆ
Rn

z j
|z|n ϕ(z + y) dz, ∀y ∈ R

n. (6.4.104)

Then ψ j ∈ C∞(Rn) for each j ∈ {1, . . . , n} and
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D
( n∑

j=1
ψ je j

)
= −ϕ in R

n. (6.4.105)

It is useful to further refashion the latter property as

n∑

j,k=1
∂kψ jek � e j = −ϕ in R

n. (6.4.106)

Bearing in mind that both ϕ and the ψ j ’s are scalar-valued, this entails

n∑

j=1
∂ jψ j = ϕ, (6.4.107)

and

n∑

1≤ j �=k≤n
∂kψ jek � e j = 0, (6.4.108)

hence (given that ek � e j = −e j � ek for j �= k) also

n∑

1≤ j �=k≤n
∂kψ je j � ek = 0. (6.4.109)

Re-combining (6.4.107) and (6.4.109) then yields

n∑

j,k=1
∂kψ je j � ek = −ϕ in R

n. (6.4.110)

Since μ is compactly supported, on account of (6.4.96), (6.4.104), and (6.4.110)
we may then compute (keeping in mind that μ̂ belongs to L1

loc(R
n,Ln)⊗ C�n; cf.

Lemma 6.4.4)

D′(Rn)⊗C�n 〈μ̂, ϕ〉D(Rn) =
ˆ

Rn

(
1

ωn−1

ˆ
Rn

x − y

|x − y|n ϕ(x) dx

)
� dμ(y)

=
n∑

j=1

ˆ
Rn

ψ je j � dμ =
n∑

j=1
E ′(Rn)⊗C�n 〈e j � μ,ψ j 〉E (Rn)

=
n∑

j=1
E ′(Rn)⊗C�n 〈e j � D1E , ψ j 〉E (Rn)
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= −
n∑

j,k=1
E ′(Rn)⊗C�n 〈e j � ek1E , ∂kψ j 〉E (Rn)

= D′(Rn)⊗C�n 〈1E , ϕ〉D(Rn), (6.4.111)

which ultimately proves (6.4.101). �

For more flexibility, it is useful to work with a Clifford algebra C�m in which
m ∈ N is independent of the dimension n of the ambient Euclidean space. We shall
do so in what follows. For each � ∈ {0, 1, . . . ,m} consider the projection map ��

m
onto the �-homogeneous part of u, i.e.,

��
m u :=

∑

|I |=�

′uI eI if u =
m∑

�=0

∑

|I |=�

′uI eI ∈ C�m, (6.4.112)

and denote by ��
m the range of ��

m : C�m → C�m . It follows that

C�m = �0
m ⊕�1

m ⊕ · · · ⊕�m
m . (6.4.113)

Elements in �0
m , �

1
m , and �2

m are called scalars, vectors, and bi-vectors,
respectively. As is apparent from definitions, multiplication of a homogeneous Clif-
ford element by a vector consists of two parts, in which the degree of homogeneity
is either increased or decreased by one unit, so if a ∈ �1

m and u ∈ �
j
m for some

j ∈ {0, 1, 2, . . . ,m}, then
a � u ∈ � j−1

m ⊕� j+1
m , (6.4.114)

with the convention that �−1
m = ∅ and �m+1

m = ∅.
Next, fix arbitrary j ∈ {1, . . . ,m} and � ∈ {0, 1, . . . ,m}, along with an array I =

(i1, i2, . . . , i�) with 1 ≤ i1 < i2 < · · · < i� ≤ m. Define the exterior product
∧ and the interior product ∨ of the imaginary unit e j with eI by

e j ∧ eI :=
∑

|J |=�+1

′
ε
j I
J eJ and e j ∨ eI :=

∑

|J |=�−1

′
ε
j J
I eJ (6.4.115)

where, for any two arrays A, B the generalized Kronecker symbol εA
B is5

εA
B :=

{
det

(
(δab)a∈A,b∈B

)
if |A| = |B|,

0 otherwise.
(6.4.116)

Several useful properties of the generalized Kronecker symbol are contained in the
lemma below (see [189, Lemma 2.1, p. 51] for a proof).

5 Recall that δab := 1 if a = b and δab := 0 if a �= b.
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Lemma 6.4.6 The following identities hold:

(i) ε J
K = εK

J for all arrays J, K;
(ii)

∑′
J ε I

Jε
J
K = ε I

K for all arrays I, K;
(iii) ε I K

J K = εK I
K J = ε I

J if the arrays I, J, K satisfy K ∩ (I ∪ J ) = ∅ as sets, where
I K is the array obtained by concatenating I with K (in this order), etc.;

(iv) ε I J
K = (−1)|I ||J |ε J I

K for all arrays I, J, K;
(v) ε I J

J I = (−1)|I ||J | if the arrays I, J satisfy I ∩ J = ∅ as sets, while ε I J
K = 0 if

I ∩ J �= ∅ as sets;
(vi)

∑′
A εi AI εAJ

L + (−1)|I |∑′
B εi BJ ε I B

L = ε I J
i L for all arrays I, J, L and every index

i ∈ {1, . . . , n}.
Going further, note that

e j ∧ eI = 0 if j ∈ I, while e j ∨ eI = 0 if j /∈ I. (6.4.117)

Also, as a consequence of (6.4.115), we have that

e j � eI = e j ∧ eI − e j ∨ eI . (6.4.118)

To see why (6.4.118) holds, let I−j and I+j be the increasingly ordered arrays
(one possibly empty) with the property that I−j j I+j is an ordered array and either
I = I−j j I+j if j ∈ I or I = I−j I

+
j if j /∈ I . Then

j ∈ I =⇒ e j � eI = (−1)|I−j |e j � e j � eI−j � eI+j = −(−1)|I−j |eI−j � eI+j

= −ε
j I−j I

+
j

I = −
∑

|J |=�−1

′
ε
j J
I eJ = −e j ∨ eI , (6.4.119)

while

j /∈ I =⇒ e j � eI = (−1)|I−j |eI−j � e j � eI+j = ε
j I−j I

+
j

I−j j I+j

=
∑

|J |=�+1

′
ε
j I−j I

+
j

J eJ = e j ∧ eI . (6.4.120)

As a byproduct of the above proof, for every j ∈ {1, . . . ,m} and every array I we
have the following useful identities:

e j ∧ eI =
{

e j � eI if j /∈ I,
0 if j ∈ I,

and e j ∨ eI =
{−e j � eI if j ∈ I,
0 if j /∈ I.

(6.4.121)

As a consequence, an inductive argument shows that given any I = (i1, i2, . . . , i�),
with components 1 ≤ i1 < i2 < · · · < i� ≤ m, we have

ei1 � ei2 � · · · � ei� = eI = ei1 ∧ ei2 ∧ · · · ∧ ei� . (6.4.122)
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In general, if a ∈ C
m and u =∑

I u I eI ∈ C�m then a ∧ u and a ∨ u are mean-
ingfully defined by extending (6.4.115) by linearity. In particular, (6.4.118) yields
via linearity the identity

a � u = a ∧ u − a ∨ u, (6.4.123)

as well as

a ∧ u =
m∑

�=0
��+1

m

(
a �

∑

|I |=�

′
uI eI

)
and

a ∨ u = −∑m
�=0 ��−1

m

(
a �∑

|I |=�
′uI eI

)
.

(6.4.124)

From (6.4.115) it is immediate that e j ∧ ek = −ek ∧ e j for every j, k ∈ {1, . . . ,m}.
Thus, by linearity we have

a ∧ b = −b ∧ a for all a, b ∈ �1. (6.4.125)

Let us also point out here the (simple but useful) fact that

if a is a vector and u is a scalar then a ∧ u = ua and a ∨ u = 0,
whereas if both a and u are vectors then a ∨ u = 〈a, u〉. (6.4.126)

Other useful algebraic properties are collected in the next lemma.

Lemma 6.4.7 Suppose a, b ∈ �1
m and u, w ∈ C�m. Then the following identities

hold.

(1) a ∧ (a ∧ u) = 0 and a ∨ (a ∨ u) = 0.
(2) a ∧ (b ∨ u)+ b ∨ (a ∧ u) = 〈a, b〉u.
(3) 〈a ∧ u, w〉 = 〈u, a ∨ w〉 and 〈a ∨ u, w〉 = 〈u, a ∧ w〉.
(4) 〈a ∧ u, a ∨ w〉 = 0.
(5) 〈a ∧ u, b ∧ w〉 + 〈b ∨ u, a ∨ w〉 = 〈a, b〉〈u, w〉.
(6) a ∧ (b ∧ u) = −b ∧ (a ∧ u).
(7) a ∨ (b ∨ u) = −b ∨ (a ∨ u).

Proof By the linearity of∧ and∨, in order to prove (1) and (2) it suffices to consider
the case u = eI ∈ ��

m . Then the identities in (1) follow directly from (6.4.115). To
prove (2), starting with the second formula in (6.4.115) and (6.4.119), then using the
first formula in (6.4.115) and (6.4.120), we write

a ∧ (b ∨ eI ) =
∑

i∈I
a ∧ (biei ∨ eI ) = −

∑

i∈I
a ∧ (biei � eI )

= −
∑

i∈I

∑

j /∈I\{i}
a jbie j ∧ (ei � eI ) = −

∑

i∈I

∑

j /∈I\{i}
a jbie j � ei � eI

=
(∑

i∈I
ai bi

)
eI −

∑

i∈I

∑

j /∈I
a j bie j � ei � eI . (6.4.127)
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A similar computation gives

b ∨ (a ∧ eI ) =
(∑

i /∈I
ai bi

)
eI −

∑

i /∈I

∑

j∈I
ai b je j � ei � eI . (6.4.128)

Now (2) follows by summing (6.4.127)–(6.4.128) and using the anti-commutativity
formulas in (6.4.2).

Moving on, note that by (6.4.31), (6.4.32), and (6.4.29), for u, w ∈ C�m we have

〈a � u, w〉 = (a � u � w)scal = −(u � a � w)0 = 〈u,−a � w〉. (6.4.129)

Making use of (6.4.123) in the left- and right-most sides of (6.4.129) yields

〈a ∧ u, w〉 − 〈a ∨ u, w〉 = 〈u, a ∨ w〉 − 〈u, a ∧ w〉. (6.4.130)

Assume for the moment that u ∈ ��
m andw ∈ �s

m , for some �, s ∈ {1, . . . ,m}. Then
by degree considerations at least one term on each side of (6.4.130) should be zero. If
〈a ∧ u, w〉 �= 0 then we should have �+ 1 = s which implies 〈a∧u, w〉=〈u, a∨w〉.
Similarly, if 〈a ∨ u, w〉 �= 0 we obtain 〈a ∨ u, w〉 = 〈u, a ∧ w〉. This proves (3) in
the case u ∈ ��

m and w ∈ �s
m . The general statement in (3) now follows by linearity

and symmetry of the inner product. The identity in (4) is an immediate consequence
of (3) and (1). Identity (5) is implied by (2) and (3) since

〈a, b〉〈u, w〉 = 〈〈a, b〉u, w
〉 = 〈

a ∧ (b ∨ u), w
〉+ 〈

b ∨ (a ∧ u), w
〉

= 〈b ∨ u, a ∨ w〉 + 〈a ∧ u, b ∧ w〉. (6.4.131)

Formula (6) is directly seen from (6.4.125) and the associativity of the exterior
product. Finally, as a consequence of the second identity in (3) and (6) for each
w ∈ C�m we may write

〈a ∨ (b ∨ u), w〉 = 〈u, b ∧ a ∧ w〉 = −〈u, a ∧ b ∧ w〉 = −〈b ∨ (a ∨ u), w〉.
(6.4.132)

Granted this, formula in item (7) follows given the arbitrariness of w. �

We continue by establishing certain orthogonal decompositions of Clifford alge-
bra elements, and an accompanyingPythagoreanTheorem.Recall that the superscript
“c” denotes complex conjugation.

Corollary 6.4.8 For each u ∈ C�m, and each a ∈ �1
m with |a| = 1 and a = ac, one

has

u = a ∧ (a ∨ u)+ a ∨ (a ∧ u) and |u|2 = |a ∧ u|2 + |a ∨ u|2. (6.4.133)

Moreover,
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a ∨ (
a ∧ (a ∨ u)

) = a ∨ u and a ∧ (
a ∨ (a ∧ u)

) = a ∧ u. (6.4.134)

Proof The first formula in (6.4.133) is a direct consequence of item (2) in
Lemma 6.4.7 and the assumptions on a ∈ �1

m . To justify the second formula in
(6.4.133), write

|a ∧ u|2 + |a ∨ u|2 = 〈a ∧ u, (a ∧ u)c〉 + 〈a ∨ u, (a ∨ u)c〉
= 〈a ∧ u, a ∧ (uc)〉 + 〈a ∨ u, a ∨ (uc)〉
= 〈u, a ∨ (a ∧ (uc))〉 + 〈u, a ∧ (a ∨ (uc))〉
= 〈

u, a ∨ (a ∧ (uc))+ a ∧ (a ∨ (uc))
〉

= 〈u, uc〉 = |u|2, (6.4.135)

using (6.4.28), the fact that a = ac, item (3) in Lemma 6.4.7, and the identity estab-
lished in the first part of this proof, with uc in place of u. Finally, the formulas in
(6.4.134) are seen by applying a∨ and a∧ to the first identity in (6.4.133) (while
bearing in mind item (1) in Lemma 6.4.7). �

Given an open nonempty set � ⊆ R
n , recall that D′(�) stands for the space of

ordinary distributions in �. We shall denote byD′(�,C�m) the space of C�m-valued
distributions in �. More specifically,

u ∈ D′(�,C�m)
de f⇐⇒ u =

m∑

�=0

∑

|I |=�

′
uI eI with each uI ∈ D′(�). (6.4.136)

Similarly, for each � ∈ {0, 1, . . . ,m}, denote by D′(�,��
m) the subspace of

D′(�,C�m) consisting of those Clifford algebra-valued distributions representable
as u =∑′

|I |=� uI eI with uI ∈ D′(�). We shall refer to these as differential
forms of degree � (or, simply, �-forms). Since any u ∈ D′(�,C�m) may be
regarded as linear combination of differential forms of various degrees, it is conve-
nient to also think of such an object u as being a differential form (of mixed degrees).

These objects obey natural rules, much as ordinary distributions, with the added
bonus that theClifford algebra formalism is in full effect. For example,while ordinary
distributions could bemultiplied by smooth scalar-valued functions, Clifford algebra-
valued distributions can be multiplied with Clifford algebra-valued functions via�,
∧, and ∨. In particular, if w ∈ D′(�,�1

m) and u ∈ C∞(�,C�m), then

w � u = w ∧ u − w ∨ u. (6.4.137)

Moving on, we make the following convention, valid throughout:

when simultaneously dealing with two Clifford algebras, say C�m1 and
C�m2 , we canonically view them as the sub-algebras of C�m where
m := max{m1,m2} freely generated by the first m1 and, respectively,
first m2 imaginary units of C�m .

(6.4.138)
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Here is a concrete case of interest where this convention is called for. Let� be an open
set inR

n . Recall the classical (homogeneous) Dirac operator inR
n from (6.4.47), i.e.,

D :=∑n
j=1 e j � ∂ j . This acts on some u ∈ D′(�,C�m) wherem ∈ N0 according to

Du =
n∑

j=1
e j � (∂ j u) (6.4.139)

with the right-hand side regarded as a C�N -valued distribution, for N := max{n,m}.
One convenientway to introduce theexterior andinterior derivative oper-

ators d, δ is to set, for each u ∈ D′(�,C�m),

du :=
n∑

j=1
e j ∧ (∂ j u) and δu := −

n∑

j=1
e j ∨ (∂ j u). (6.4.140)

In particular, if u =∑m
�=0

∑′
|I |=�uI eI has components uI ∈ D′(�), then (6.4.140)

and (6.4.115) yield

du =
m∑

�=0

∑

|I |=�

′ n∑

j=1
(∂ j u I ) e j ∧ eI =

m∑

�=0

∑

|J |=�+1

′ ∑

|I |=�

′ n∑

j=1
ε
j I
J (∂ j u I ) eJ (6.4.141)

and

δu = −
m∑

�=0

∑

|J |=�−1

′ ∑

|I |=�

′ n∑

j=1
ε
j J
I (∂ j u I ) eJ . (6.4.142)

Note that based on (6.4.139) and (6.4.118) we may write

Du =
n∑

j=1
e j ∧ (∂ j u)−

n∑

j=1
e j ∨ (∂ j u) = du + δu, ∀u ∈ D′(�,C�m).

(6.4.143)
As a consequence of (6.4.143) it follows that

du =
m∑

�=0
��+1

m (Du) and δu = −
m∑

�=0
��−1

m (Du), ∀u ∈ D′(�,C�m). (6.4.144)

A simple but useful observation is that for any scalar distribution u one has
du = ∇u and δu = 0. In addition, d maps any �m

m-valued distributions into 0. From
definitions, it is also straightforward to check that, in the context of C�m-valued
distributions in an open subset of R

n , the following operator identities are valid:

d2 = 0, δ2 = 0, � = −dδ− δd = −(d + δ)2. (6.4.145)



6.5 Subaveraging Functions, Reverse Hölder Estimates, and Interior Estimates 545

6.5 Subaveraging Functions, Reverse Hölder Estimates,
and Interior Estimates

We begin by making the following definition.

Definition 6.5.1 Let � be an arbitrary open subset of Rn, and fix some p ∈ (0,∞).
A (complex-valued) function u defined in � is said to be p-subaveraging if
u ∈ L p

loc(�,Ln) and there exists a finite constant C > 0 with the property that

|u(x)| ≤ C

( 
B(x,r)

|u|p dLn

) 1
p

for Ln-a.e. x ∈ � and every r ∈ (
0, dist(x, ∂�)

)
.

(6.5.1)

It is clear from definitions that being p-subaveraging is hereditary (with respect to
the domain). More specifically, if O ⊆ � ⊆ R

n are open sets and p ∈ (0,∞), then

for any function u which is p-subaveraging in �, the
restriction u

∣∣
O
is p-subaveraging in the set O . (6.5.2)

The class of p-subaveraging functions also exhibits a number of self-improving
properties discussed in the next three lemmas (refining work in [181, Sect. 11.5,
p. 411]).

Lemma 6.5.2 Assume that u is a Lebesgue measurable (complex-valued) function
defined in an open subset � of R

n, and fix p ∈ (0,∞).
Consider a p-subaveraging functionu in�anddenote byC ∈ (0,∞) the constant

associated with u as in (6.5.1). Then for every x ∈ �, every r ∈ (
0, dist(x, ∂�)

)
, and

every λ ∈ (0, 1) one has

‖u‖L∞(B(x,λr),Ln) ≤ C(1− λ)−n/p

( 
B(x,r)

|u|p dLn

) 1
p

. (6.5.3)

In particular, any p-subaveraging function u in � belongs to L∞loc(�,Ln).
In the converse direction, any function u ∈ L p

loc(�,Ln) with the property that
there exist two constants, C ∈ (0,∞) and λ ∈ (0, 1), such that for every x ∈ � and
every r ∈ (

0, dist(x, ∂�)
)
one has

‖u‖L∞(B(x,λr),Ln) ≤ C

( 
B(x,r)

|u|p dLn

) 1
p

(6.5.4)

is necessarily p-subaveraging.

Proof The fact that u is p-subaveraging ensures the existence of a Ln-nullset
A ⊆ � with the property that the estimate in (6.5.1) holds at each point in � \ A.



546 6 Tools from Harmonic Analysis

Fix now an arbitrary point x ∈ � along with r ∈ (
0, dist(x, ∂�)

)
, λ ∈ (0, 1), and

pick some z ∈ B(x, λr) \ A. Then, if R := (1− λ)r , it follows that z ∈ � \ A and
0 < R < dist(z, ∂�). Furthermore, B(z, R) ⊆ B(x, r). Consequently, with C as in
(6.5.1),

|u(z)| ≤ C

(
min
B(z,R)

|u|p dLn

) 1
p

= C

(
(1− λ)−n

Ln
(
B(z, r)

)
ˆ
B(z,R)

|u|p dLn

) 1
p

≤ C(1− λ)−n/p

( 
B(x,r)

|u|p dLn

) 1
p

, (6.5.5)

which readily implies (6.5.3) by taking the supremum over z ∈ B(x, λr) \ A.
Conversely, assume u ∈ L p

loc(�,Ln) has the property that there exist a con-
stant C ∈ (0,∞) and λ ∈ (0, 1) such that (6.5.4) holds for every x ∈ � and every
r ∈ (

0, dist(x, ∂�)
)
. The goal is to show that u is p-subaveraging, i.e., that (6.5.1)

holds. To this end, fix an arbitrary x ∈ �. Then (6.5.4) implies that for each
r ∈ (

0, dist(x, ∂�)
)
there exists a Ln-nullset Ax,r ⊆ B(x, λr) such that

|u(z)| ≤ C

( 
B(x,r)

|u|p dLn

) 1
p

for each z ∈ B(x, λr) \ Ax,r . (6.5.6)

Arrange
(
0, dist(x, ∂�)

) ∩Q as a sequence, say
{
r xj
}
j∈N

and set

Ax :=
⋃

j∈N

Ax,r xj . (6.5.7)

Then Ax ⊆ � is Lebesgue measurable and Ln(Ax ) = 0. Pick r ∈ (
0, dist(x, ∂�)

)

and some point z ∈ B(x, λr) \ Ax . Then there exists a subsequence
{
r xjk
}
k∈N

of{
r xj
}
j∈N

with the property that r xjk ↘ r as k →∞. Consequently, if k is large then

z ∈ B
(
x, λr xjk

) \ Ax,r xjk
and r xjk ∈

(
0, dist(x, ∂�)

)
which permits us to invoke (6.5.6)

to write

|u(z)| ≤ C

( 
B(x,r xjk )

|u|p dLn

) 1
p

whenever k ∈ N is large. (6.5.8)

By passing to the limit k →∞ and relying on Lebesgue’s Dominated Convergence
Theorem, we then arrive at the conclusion that
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for each x ∈ � there exists some Lebesgue measurable set
Ax ⊆ � satisfying Ln(Ax ) = 0 and with the property that

|u(z)| ≤ C

( 
B(x,r)

|u|p dLn

) 1
p

for each r ∈ (
0, dist(x, ∂�)

)
and each z ∈ B(x, λr) \ Ax .

(6.5.9)

To proceed, consider now a sequence {x j } j∈N which is dense in � and observe
that

A :=
⋃

j∈N

Ax j =⇒ A ⊆ � is Lebesgue measurable and Ln(Ax ) = 0. (6.5.10)

Pick an arbitrary point x ∈ � alongwith some r ∈ (
0, dist(x, ∂�)

)
. Also, consider an

arbitrary point z ∈ B(x, λr) \ A.Wemay thenfind a subsequence
{
x jk

}
k∈N

of {x j } j∈N

such that x jk → x as k →∞. In particular, if k is large then z ∈ B
(
x jk , λr

) \ Ax jk

and r ∈ (
0, dist(x jk , ∂�)

)
. Granted these, (6.5.9) applies and gives that

|u(z)| ≤ C

( 
B(x jk ,r)

|u|p dLn

) 1
p

whenever k ∈ N is large. (6.5.11)

After passing to the limit k →∞ and invoking Lebesgue’s Dominated Convergence
Theorem we therefore obtain the following improvement over (6.5.9):

there exists some Lebesgue-nullset A ⊆ � with the property that

|u(z)| ≤ C

( 
B(x,r)

|u|p dLn

) 1
p

for each x ∈ �, each r ∈ (
0, dist(x, ∂�)

)
, and each z ∈ B(x, λr) \ A.

(6.5.12)

In particular, if x ∈ � \ A and r ∈ (
0, dist(x, ∂�)

)
, then trivially x ∈ B(x, λr) \ A,

so the estimate in (6.5.12) is valid for z := x . This ultimately allows us to conclude
that (6.5.1) holds, hence u is indeed p-subaveraging. �

The second self-improvement within the class of p-subaveraging functions is the
fact that the value of the integrability exponent p is immaterial.

Lemma 6.5.3 Let u be a (complex-valued) function defined in some open subset �
of R

n. If there exists p0 ∈ (0,∞) such that u is a p0-subaveraging function, then u
is in fact a p-subaveraging function for each p ∈ (0,∞).

In light of Lemma 6.5.3 we may (unequivocally)
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refer to a complex-valued function u simply as beingsubaveraging
if u is p-subaveraging for some p ∈ (0,∞); the optimal constant
which can be used in (6.5.1) is referred to as the p-subaveraging
constant of u.

(6.5.13)

Proof of Lemma 6.5.3 The proof is based on ideas used in the work of G. Hardy and
J. Littlewood [112] (cf. also [90, Lemma 2, pp. 172–173]). The case when p > p0
can be handled directly utilizing Hölder’s inequality with q = p

p0
> 1. Henceforth

we shall focus on the case when p < p0. Replacing u by a suitable power of |u|,
there is no loss of generality in assuming that, in fact, p0 = 1 and p ∈ (0, 1).

Fix some x ∈ � along with r ∈ (
0, dist(x, ∂�)

)
. In view of the second part in

Lemma 6.5.2, the goal is to show that there exist C ∈ (0,∞) and λ ∈ (0, 1), inde-
pendent of u, x, r , such that (6.5.4) holds. We may then assume (by rescaling and
making a translation) that B(0, 1) ⊆ �, that x := 0, and that the function u is nor-
malized so that

´
B(0,1) |u|p dLn = 1. Working with ur := r−n/pu(·/r) in place of u,

it suffices to prove the version of (6.5.4) when r = 1. If we therefore abbreviate

m∞(r) := ‖u‖L∞(B(0,r),Ln) for each r ∈ (0, 1], (6.5.14)

(recall from Lemma 6.5.2 that u is locally bounded) then the ultimate goal is to show
that

there exist some λ ∈ (0, 1) and some C ∈ (0,∞),
both independent of u, such that m∞(λ) ≤ C .

(6.5.15)

With this aim in mind, fix some parameter

a ∈ (1,∞) such that 1
a − 1+ p > 0. (6.5.16)

If m∞(2−a) ≤ 1 we are done, so it suffices to henceforth consider the case when

m∞(2−a) > 1. (6.5.17)

Suppose now that 0 < ρ < r < 1. Then (6.5.3) written for p := 1, x := 0, and with
λ := ρ/r ∈ (0, 1) (recall that we are currently assuming that u is 1-subaveraging
and

´
B(0,1) |u|p dLn = 1) gives that

m∞(ρ) = ‖u‖L∞(B(0,ρ),Ln) = ‖u‖L∞(B(0,λr),Ln)

≤ C(1− λ)−n
( 

B(0,r)
|u| dLn

)
= C(r − ρ)−n

(ˆ
B(0,r)

|u|p|u|1−p dLn

)

≤ C

(r − ρ)n
‖u‖1−p

L∞(B(0,r),Ln) =
C

(r − ρ)n
m∞(r)1−p. (6.5.18)

Hence,
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m∞(ρ) ≤ C

(r − ρ)n
m∞(r)1−p whenever 0 < ρ < r < 1. (6.5.19)

To continue, specialize (6.5.19) to the case when r ∈ (0, 1) and ρ := ra with a as in
(6.5.16), then apply the natural logarithm and, finally, integrate with respect to the
Haar measure dr/r to obtain

ˆ 1

1/2
ln m∞(ra)

dr

r
≤ C + n

ˆ 1

1/2
ln

1

(r − ra)

dr

r

+ (1− p)
ˆ 1

1/2
ln m∞(r)

dr

r
. (6.5.20)

For the first integral above, the change of variables t := ra gives

ˆ 1

1/2
ln m∞(ra)

dr

r
= 1

a

ˆ 1

(1/2)a
ln m∞(t)

dt

t
. (6.5.21)

Since our assumption in (6.5.17) implies m∞(t) ≥ 1, the right-hand side of (6.5.21)
is bounded from below by

1

a

ˆ 1

1/2
ln m∞(r)

dr

r
. (6.5.22)

Therefore, (6.5.20)–(6.5.22) imply

(1
a
− 1+ p

) ˆ 1

1/2
ln m∞(r)

dr

r
≤ C + C

ˆ 1

1/2
ln

1

(r − ra)

dr

r
≤ C < ∞.

(6.5.23)
Then (6.5.23) and the choice of a in (6.5.16) force

ˆ 1

1/2
ln m∞(r) dr ≤ C, (6.5.24)

hence ln m∞(1/2) ≤ C for some finite constant C > 0 independent of initial func-
tion u. Thus, we havem∞(1/2) ≤ eC . This establishes (6.5.15) and finishes the proof
of the lemma. �

Jensen’s inequality implies that the composition between a non-decreasing convex
function and a subaveraging function is itself subaveraging. For example, we have
the following result.

Lemma 6.5.4 Let � be an open subset of R
n and let u be a subaveraging function

in �. Then for each p ∈ (0,∞) the function |u|p is also subaveraging in �.

Proof The fact that u is subaveraging implies (cf. (6.5.13) and Lemma 6.5.3) that u
is p-subaveraging. As such, (6.5.1) holds, and this entails the existence of a constant
C ∈ (0,∞) with the property that
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|u(x)|p ≤ C
 
B(x,r)

|u|p dLn

for Ln-a.e. x ∈ � and every r ∈ (
0, dist(x, ∂�)

)
.

(6.5.25)

Hence, |u|p is 1-subaveraging in � which, in view of the convention in (6.5.13),
amounts to saying that |u|p is subaveraging in �. �

There are certain connections between the subaveraging property and reverse
Hölder estimates, brought to light by the next two results.

Lemma 6.5.5 Let u be a subaveraging function in an open set � ⊆ R
n. Then for

every p, q ∈ (0,∞) and λ ∈ (0, 1) the following reverse Hölder estimate holds:

(  
B(x,λr)

|u|q dLn
) 1

q ≤ C
(  

B(x,r)
|u|p dLn

) 1
p
, (6.5.26)

for x ∈ � and 0 < r < dist(x, ∂�), where C ∈ (0,∞) depends only on p, q, λ, n,
and the p-subaveraging constant of u.

Proof Given x ∈ � and 0 < r < dist(x, ∂�), we have

(  
B(x,λr)

|u|q dLn
) 1

q ≤ ‖u‖L∞(B(x,λr),Ln) ≤ C
(  

B(x,r)
|u|p dLn

) 1
p
, (6.5.27)

thanks to Lemma 6.5.2. �

Our next lemma contains weighted reverse Hölder estimates for subaveraging
functions, both global and local near the boundary.

Lemma 6.5.6 Assume that � is an arbitrary open, nonempty, proper subset of R
n.

Having fixed a Lebesgue measurable set E ⊆ � along with some number λ ∈ (0, 1),
define

E�,λ :=
⋃

x∈E
B
(
x, λδ∂�(x)

)
(6.5.28)

(where δ∂� is as in (6.1.1)with F := ∂�). Also, suppose 0 < q ≤ p ≤ ∞ and s ∈ R.
Then for each subaveraging function u in� there exists a constant C ∈ (0,∞)which
depends exclusively on p, q, s, λ, n, and the subaveraging character of u with the
property that

( ˆ
E

[
δ∂�(x)s+n( 1

q− 1
p )|u(x)|]p dx

) 1
p ≤ C

( ˆ
E�, λ

[
δ∂�(x)s |u(x)|]q dx

) 1
q
. (6.5.29)

Before presenting the proof of this result, we mention a few special cases of
interest. For example, given an arbitrary z ∈ ∂� together with some R > 0, con-
sider E := � ∩ B(z, R) and note that, in this case, E�,1/2 ⊆ � ∩ B(z, 2R). As a
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consequence, there exists C ∈ (0,∞) which depends only on p, q, s, n, and the
subaveraging character of u such that

( ˆ
�∩B(z,R)

[
δ∂�(x)s+n( 1

q− 1
p )|u(x)|]p dx

) 1
p

≤ C
( ˆ

�∩B(z,2R)

[
δ∂�(x)s |u(x)|]q dx

) 1
q
. (6.5.30)

Also, taking E := � in (6.5.29) (or, upon letting R →∞ in (6.5.30)) yields

(ˆ
�

[
δ∂�(x)s+n( 1

q− 1
p )|u(x)|]p dx

) 1
p ≤ C

( ˆ
�

[
δ∂�(x)s |u(x)|]q dx

) 1
q
. (6.5.31)

Since, as is apparent from definitions,

E�,λ ⊆ Ẽ�,λ :=
{
x ∈ � : dist(x, E) < λ sup

z∈E
δ∂�(z)

}
, (6.5.32)

we may further conclude from (6.5.29) that

( ˆ
E

[
δ∂�(x)s+n( 1

q− 1
p )|u(x)|]p dx

) 1
p ≤ C

( ˆ
Ẽ�, λ

[
δ∂�(x)s |u(x)|]q dx

) 1
q
. (6.5.33)

Finally, we wish to note that with the piece of notation introduced in (1.5.5), if
E := Oε for some ε > 0 then Ẽ�,λ ⊆ O(1+λ)ε. In particular, (6.5.33) implies

(ˆ
Oε

[
δ∂�(x)s+n( 1

q− 1
p )|u(x)|]p dx

) 1
p ≤ C

( ˆ
O2ε

[
δ∂�(x)s |u(x)|]q dx

) 1
q
. (6.5.34)

We now turn to the proof of Lemma 6.5.6.

Proof of Lemma 6.5.6 Observe that for each x ∈ E wehave B
(
x, λδ∂�(x)

) ⊆ E�,λ.
Thus, for each fixed x ∈ E we may estimate

|u(x)|q ≤ Cδ∂�(x)−n−qs
ˆ
B(x,λδ∂�(x))

(
δ∂�(y)s |u(y)|)q dy

≤ Cδ∂�(x)−n−qs
ˆ
E�, λ

(
δ∂�(y)s |u(y)|)q dy, (6.5.35)

owing to the subaveraging property of the function u and the fact that we have
δ∂�(x) ≈ δ∂�(y) uniformly for y ∈ B

(
x, λδ∂�(x)

)
. When p = ∞, the estimate

claimed in (6.5.30) follows straight from (6.5.35). Suppose next that p < ∞ and,
having chosen some θ ∈ (0, 1], use (6.5.35) to write
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|u(x)| = |u(x)|θ |u(x)|1−θ

≤ C |u(x)|θ δ∂�(x)−( n
q+s)(1−θ)

( ˆ
E�, λ

(
δ∂�(y)s |u(y)|)q dy

) 1−θ
q

. (6.5.36)

Consequently,

δ∂�(x)p
[
s+n

(
1
q− 1

p

)]
|u(x)|p (6.5.37)

≤ C |u(x)|θpδ∂�(x)−n+θp(s+ n
q )
( ˆ

E�, λ

(
δ∂�(y)s |u(y)|)q dy

)(1−θ)
p
q
.

At this stage, set θ := q
p (so that 0 < θ ≤ 1 given that q ≤ p) and integrate both sides

of the above inequality in x ∈ E . In view of the fact that E ⊆ E�, λ, this readily leads
to (6.5.29). �

We conclude by recalling [181, Theorem 11.12, p. 415], which combines interior
estimates and reverse Hölder estimates. The reader is reminded that the symbol
D′(�) denotes the space of distributions in a nonempty open set � ⊆ R

n . Also, we
shall work with higher-order homogeneous constant (complex) coefficient elliptic
systems in R

n . Specifically, for m, M ∈ N we shall consider an M × M system L in
R

n of order 2m of the form

L =
∑

|α|=|β|=m
∂αAαβ∂β (6.5.38)

where each Aαβ ∈ C
M×M . The characteristic matrix of L is defined as the M × M

matrix-valued function6 given by

L(ξ) := (−1)m
∑

|α|=|β|=m
ξα+β Aαβ, ∀ξ ∈ R

n. (6.5.39)

Theorem 6.5.7 Let n,m, M ∈ N and suppose L is a constant (complex) coeffi-
cient homogeneous M × M system of order 2m in the Euclidean space R

n, with the
property that det [L(ξ)] �= 0 for each ξ ∈ R

n \ {0}. Assume also that � ⊆ R
n is a

nonempty open set and u ∈ [
D′(�)

]M
is such that Lu = 0 in

[
D′(�)

]M
.

Then
u belongs to

[
C∞(�)

]M
, is subaveraging

(and so are all its partial derivatives),
(6.5.40)

and there exists some constant C = C(L , n) ∈ (0,∞) such that given any
p ∈ (0,∞) one may find some c = c(L , n, p) ∈ (0,∞) with the property that

6 The reader is alerted to the fact that our present definition of L(ξ) differs by a factor of (−1)m
from the one in [181, (11.3.2), p. 391].
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max
y∈B(x,λr)

|∂αu(y)| ≤ c(1− λ)−|α|−n/p · C
|α||α|!
r |α|

(  
B(x,r)

|u|p dLn
)1/p

, (6.5.41)

whenever x ∈ �, 0 < r < dist(x, ∂�), λ ∈ (0, 1), and α ∈ N
n
0 .

As a corollary of (6.5.40)–(6.5.41) and [181, Lemma 6.24, p. 229], a stronger
version of the membership in (6.5.40) holds, namely

the function u is real-analytic in �. (6.5.42)

In particular (cf. [181, Theorem 6.25, pp. 229-230]),

u vanishes identically in any connected component of � con-
taining a point x0 such that (∂αu)(x0) = 0 for each multi-index
α ∈ N

n
0 (which is the case if, e.g., u happens to be identically zero

in a neighborhood of the point x0).

(6.5.43)

6.6 The Solid Maximal Function and Maximal Lebesgue
Spaces

Suppose � is an open, nonempty, proper subset of R
n , and abbreviate

δ∂�(x) := dist(x, ∂�) = inf
{|x − y| : y ∈ ∂�

}
for each x ∈ R

n. (6.6.1)

Also, fix some parameter θ ∈ (0, 1). Then, if u : � → C is Lebesgue measurable,
we define its solid maximal function as

u�,θ (x) := ‖u‖L∞(B(x,θδ∂�(x)),Ln) ∈ [0,∞], ∀x ∈ �. (6.6.2)

In particular,
whenever u ∈ C 0(�) one has

u�,θ (x) = sup
|x−y|<δ∂�(x)

y∈�

|u(y)| for all x ∈ �. (6.6.3)

As is apparent from (6.6.2), for each Lebesgue measurable function u in � and each
scalar λ we have

|u|�,θ = u�,θ and (λu)�,θ = |λ|u�,θ in �. (6.6.4)

Other properties of interest are discussed in the lemma below.

Lemma 6.6.1 Let � be an arbitrary open, nonempty, proper subset of R
n, and

fix θ ∈ (0, 1). Assume u : � → C is a Lebesgue measurable function. Then its
associated solid maximal function
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u�,θ : � → [0,∞] is lower-semicontinuous, (6.6.5)

hence u�,θ is a Borel-measurable function in �. Moreover,

|u| ≤ u�,θ at Ln-a.e. point in �, (6.6.6)
∥∥u�,θ

∥∥
L∞(�,Ln)

= ‖u‖L∞(�,Ln), (6.6.7)

and for each γ ∈ R one has

(
u · δγ

∂�

)
�,θ
≈ u�,θ · δγ

∂� in �. (6.6.8)

Also, given any other Lebesgue measurable function w : � → R one has

(u + w)�,θ ≤ u�,θ + w�,θ at Ln-a.e. point in �, (6.6.9)
∣∣u�,θ − w�,θ

∣∣ ≤ (u − w)�,θ at Ln-a.e. point in �. (6.6.10)

Proof To prove the claim made in (6.6.5), pick some λ ∈ R and consider a point
x ∈ � such that u�,θ (x) > λ. This implies that there exists some number ε > 0 along
with some set A ⊆ B

(
x, θδ∂�(x)

)
which is Lebesgue measurable, with Ln(A) > 0,

and has the property that |u| > λ+ ε at Ln-a.e. every point in A. If for each j ∈ N

we define

r j :=
(

j

j + 1

)
θδ∂�(x), (6.6.11)

it follows that B(x, r j ) ∩ A ↗ A as j ↗∞. In particular, there exists jo ∈ N with
the property that

Ln
(
B(x, r jo) ∩ A

)
> 0. (6.6.12)

Selecting

0 < η <

(
θ

θ + 1

)(
1

jo + 1

)
δ∂�(x) (6.6.13)

then ensures that B(x, η) ⊆ � and

B(x, r jo) ⊆ B
(
z, θδ∂�(z)

)
for every z ∈ B(x, η). (6.6.14)

Indeed, since δ∂� is a Lipschitz function with Lipschitz constant ≤ 1, we have

δ∂�(x)− η ≤ δ∂�(z) for every z ∈ B(x, η). (6.6.15)

Consequently, having fixed an arbitrary point z ∈ B(x, η), for every y ∈ B(x, r jo)
we may estimate
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|z − y| ≤ |z − x | + |x − y| < η +
(

jo
jo + 1

)
θδ∂�(x)

≤ θδ∂�(x)− θη, (6.6.16)

where the last inequality is a consequence of the choice of η in (6.6.13). Then (6.6.14)
follows from (6.6.15) and (6.6.16).

Next, since the set A is Lebesgue measurable, from (6.6.14) and (6.6.12) we
deduce that for every z ∈ B(x, η) the set A ∩ B

(
z, θδ∂�(z)

)
is Lebesgue measurable

and satisfies
Ln

(
A ∩ B

(
z, θδ∂�(z)

)) ≥ Ln
(
B(x, r jo) ∩ A

)
> 0. (6.6.17)

Since we also know that |u| > λ+ ε at Ln-a.e. every point in A ∩ B
(
z, θδ∂�(z)

)
, it

ultimately follows that

u�,θ (z) = ‖u‖L∞(B(z,θδ∂�(z)),Ln) > λ for every z ∈ B(x, η). (6.6.18)

This finishes the proof of the claim made in (6.6.5).
Turning our attention to (6.6.6), introduce

�∞ := {
x ∈ � : u�,θ (x) = +∞}

. (6.6.19)

In this regard, we make the claim that

for every x ∈ � \�∞ we have |u| ≤ u�,θ at Ln-
a.e. point in B

(
x, θδ∂�(x)

)
. (6.6.20)

Indeed, if x∈� \�∞ then u∈L∞(B(x, θδ∂�(x)
)
,Ln

) ⊂ L1
(
B
(
x, θδ∂�(x)

)
,Ln

)
,

hence Lebesgue’s Differentiation Theorem gives that there exists an Ln-measurable
set Nx ⊆ B

(
x, θδ∂�(x)

)
with Ln(Nx ) = 0 such that

|u(y)| = lim
r→0+

 
B(y,r)

|u(z)| dz for every y ∈ B
(
x, θδ∂�(x)

) \ Nx . (6.6.21)

Note that for each y ∈ B
(
x, θδ∂�(x)

) \ Nx and each 0 < r < θδ∂�(y) we have
B(y, r) ⊆ B

(
y, θδ∂�(y)

)
, hence |u(z)| ≤ ‖u‖L∞(B(y,θδ∂�(y),Ln) = u�,θ (y) forLn-a.e.

point z ∈ B(y, r). In concert with (6.6.21), this implies that

|u(y)| ≤ u�,θ (y) for every y ∈ B
(
x, θδ∂�(x)

) \ Nx . (6.6.22)

Since
{
B
(
x, θδ∂�(x)

)}
x∈�\�∞

is a cover of � \�∞, by Lindelöf’s theorem there
exists a sequence {x j } j∈N ⊆ � \�∞ with the property that

� \�∞ ⊆
⋃

j∈N

B
(
x j , θδ∂�(x j )

)
. (6.6.23)
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Introducing N := ⋃

j∈N

Nx j , it follows that N is a Lebesgue measurable subset of �

with Ln(N ) = 0 and, in view of (6.6.22), with the property that

|u(y)| ≤ u�,θ (y) for every y ∈
⋃

j∈N

B
(
x j , θδ∂�(x j )

) \ N . (6.6.24)

Combining (6.6.23) and (6.6.24), we therefore arrive at the conclusion that

|u| ≤ u�,θ at Ln-a.e. point in � \�∞. (6.6.25)

At this stage, (6.6.6) follows from (6.6.25) since, obviously, |u| ≤ u�,θ at every point
in �∞. In turn, (6.6.7) is implied by (6.6.6) and (6.6.2). Going further, the claim in
(6.6.8) is a consequence of (6.6.2) and the observation that

(1− θ)δ∂�(x) ≤ δ∂�(y) ≤ (1+ θ)δ∂�(x)
for each x ∈ � and y ∈ B

(
x, θδ∂�(x)

)
.

(6.6.26)

Finally, given any other Lebesgue measurable function w : � → R, the estimate
claimed in (6.6.9) is a direct consequence of (6.6.2), and (6.6.10) follows by using
(6.6.9) with u replaced by u − w (bearing (6.6.4) in mind). �

It turns out that the choice of the parameter θ ∈ (0, 1) is largely immaterial, as far
as the size of the solid maximal function u�,θ on Lorentz spaces is concerned. This
is made precise in the lemma below.

Lemma 6.6.2 Let� be an arbitrary open, nonempty, proper subset ofRn, and select
two integrability exponents, p ∈ (0,∞) and q ∈ (0,∞]. Also, fix two parameters
θ1, θ2 ∈ (0, 1) along with some power γ ∈ R. Then

‖u�,θ1‖L p,q (�,δ
γ

∂�Ln) ≈ ‖u�,θ2‖L p,q (�,δ
γ

∂�Ln), (6.6.27)

uniformly in the class of Lebesgue measurable functions u : � → C.
As a consequence of (6.6.27) and (6.2.25), corresponding to the case when p = q

one has
‖u�,θ1‖L p(�,δ

γ

∂�Ln) ≈ ‖u�,θ2‖L p(�,δ
γ

∂�Ln), (6.6.28)

uniformly in the class of Lebesgue measurable functions u : � → C.

Proof We begin by noting that, thanks to (6.6.8), it suffices to prove (6.6.27) in the
particular case when γ = 0. To this end, choose two numbers (whose role is going
to become clear later), namely θ3 ∈ (θ1, 1) and

ε ∈
(
0,min

{
θ3 − θ1,

θ2(1−θ1)

2+θ2

})
. (6.6.29)

Then there exists a number N = N (θ1, ε) ∈ N with the following significance. Hav-
ing fixed an arbitrary point x ∈ �, and with r := δ∂�(x), there exists a family of
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points {x j }1≤ j≤N in B(x, θ1r) with the property that

B(x, θ1r) ⊆
N⋃

j=1
B(x j , εr). (6.6.30)

In a straightforward manner, it can be verified that the choice of ε in (6.6.29) ensures

B(x j , εr) ⊆ B
(
z, θ2δ∂�(z)

)
, ∀ j ∈ {1, . . . , N }, ∀z ∈ B(x j , εr). (6.6.31)

If we now let u : � → C be an arbitrary Lebesgue measurable function, we then
obtain from (6.6.31) that

u�,θ2(z) ≥ ‖u‖L∞(B(x j ,εr),Ln) ∀ j ∈ {1, . . . , N }, ∀z ∈ B(x j , εr), (6.6.32)

thus
inf

B(x j ,εr)
u�,θ2(z) ≥ ‖u‖L∞(B(x j ,εr),Ln) ∀ j ∈ {1, . . . , N }, (6.6.33)

and furthermore, for each s ∈ (0,∞), that

 
B(x j ,εr)

(
u�,θ2

)s
dLn ≥ ‖u‖sL∞(B(x j ,εr),Ln), ∀ j ∈ {1, . . . , N }. (6.6.34)

Making use of (6.6.30), (6.6.34), and the fact that ε < θ3 − θ1, we can write

(
u�,θ1(x)

)s = ‖u‖sL∞(B(x,θ1r),Ln) ≤
N∑

j=1
‖u‖sL∞(B(x j ,εr),Ln)

≤
N∑

j=1

 
B(x j ,εr)

(
u�,θ2

)s
dLn ≤ C

 
B(x,(θ1+ε)r)

(
u�,θ2

)s
dLn

≤ C
 
B(x,θ3r)

(
u�,θ2

)s
dLn . (6.6.35)

Combining (6.6.35) with the fact that δ∂�(z) ≈ δ∂�(x) uniformly for z ∈ B(x, θ3r),
we obtain

u�,θ1(x) ≤ C
(  

B(x,θ3δ∂�(x))

(
u�,θ2

)s
dLn

)1/s
, ∀x ∈ �. (6.6.36)

This is the key estimate in the proof of (6.6.27).
Here is the end-game in the proof of the lemma. Consider the non-negative, Borel-

measurable functions
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f j :=
{
u�,θ j in �,

0 in R
n \�,

j ∈ {1, 2}. (6.6.37)

Fix s ∈ (0, p) and recall the Ls-basedHardy–Littlewoodmaximal operatorMs in the
Euclidean space. This acts on anyLn-measurable function f defined inR

n according
to (cf. (7.6.7))

(
Ms f

)
(x) := sup

r>0

(  
B(x,r)

| f |s dLn
) 1

s
, ∀x ∈ R

n. (6.6.38)

Then estimate (6.6.36) translates into

f1(x) ≤ C
(
Ms f2

)
(x), ∀x ∈ R

n. (6.6.39)

Thus, by invoking the fact thatMs is bounded on L p,q(Rn,Ln) given that s < p (cf.
Corollary 7.6.2), it follows from (6.6.39) that

‖u�,θ1‖L p,q (�,Ln) ≈ ‖ f1‖L p,q (Rn ,Ln) ≤ C‖ f2‖L p,q (Rn ,Ln)

≈ ‖u�,θ2‖L p,q (�,Ln). (6.6.40)

At this stage, the equivalence in (6.6.27) in the case when γ = 0 readily follows
from (6.6.40). �

Let � be an arbitrary open, nonempty, proper subset of R
n and consider a Borel

measureμ in�. For each fixed integrability exponents p, q ∈ (0,∞) and parameter
θ ∈ (0, 1), introduce what we shall call the maximal Lorentz space

L p,q
� (�,μ) := {

u : � → C : u is Ln-measurable and u�,θ ∈ L p,q(�,μ)
}
,

(6.6.41)
equipped with the quasi-norm ‖u‖L p,q

� (�,μ) := ‖u�,θ‖L p,q (�,μ) for each u in
L p,q

� (�,μ). The obvious connection between the ordinary Lorentz scale in� and the
scale of maximal Lorentz scale just defined is that we have a continuous embedding

L p,q
� (�,μ) ↪→ L p,q(�,μ). (6.6.42)

Indeed, this is a consequence of the pointwise inequality (6.6.6), plus the fact that
Lorentz spaces are function latices (cf. (6.2.16)). The diagonal p = q in the scale
of maximal Lorentz spaces corresponds to what we shall refer to as maximal
Lebesgue spaces. Specifically, with �,μ as above, for each p ∈ (0,∞) and
θ ∈ (0, 1) we define

L p
� (�,μ) := L p,p

� (�,μ) (6.6.43)

= {
u : � → C : u is Ln-measurable and u�,θ ∈ L p(�,μ)

}
,
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and equip this space with the quasi-norm ‖u‖L p
� (�,μ) := ‖u�,θ‖L p(�,μ) for each func-

tion u ∈ L p
� (�,μ). Then (6.6.42) shows that we have a continuous embedding

L p
� (�,μ) ↪→ L p(�,μ), (6.6.44)

while from definitions and (6.6.5) it follows that

if the Borel measure μ is such that μ
(
B(x, r)

)
> 0 whenever x ∈ �

and 0 < r < δ∂�(x) then L p
� (�,μ) ⊆ L∞loc(�,Ln) for all p ∈ (0,∞).

(6.6.45)

We are primarily interested in the case when μ = δ
γ

∂�Ln for some γ ∈ R. In such a
scenario, Lemma 6.6.2 together with (6.6.8) ensures that the choice of the parameter
θ ∈ (0, 1)does not affect themaximalLorentz space L p,q

�

(
�, δ

γ

∂�Ln
)
, or themaximal

Lebesgue space L p
�

(
�, δ

γ

∂�Ln
)
. In this case, (6.6.45) yields a continuous embedding

L p
�

(
�, δ

γ

∂�L
n
)

↪→ L∞loc(�,Ln) for each p ∈ (0,∞) and γ ∈ R. (6.6.46)

Recall Definition 6.5.1 and the convention made in (6.5.13).

Proposition 6.6.3 Let � be an arbitrary open, nonempty, proper subset of R
n, and

fix a parameter θ ∈ (0, 1). Also, consider an arbitrary function u ∈ L∞loc(�,Ln).
Then the solid maximal function u�,θ is subaveraging in �.

Proof From definitions and (6.6.5) it follows that u�,θ ∈ L∞loc(�,Ln). Select an
arbitrary integrability exponent p ∈ (0,∞) and fix an arbitrary point x ∈ �. Our
goal is to show that there exists a constant C ∈ (0,∞) which is independent of
u, p, x with the property that for each r ∈ (

0, δ∂�(x)
)
we have

u�,θ (x) ≤ C
(  

B(x,r)

∣∣u�,θ

∣∣p dLn
) 1

p
. (6.6.47)

To this end, abbreviate R := θδ∂�(x) ∈ (0,∞). In addition, select some small
scaling factor μ ∈ (

0, (θ + 1)−1
)
and suppose first that r ∈ (0, μR). Let us also

pick a second scaling factor λ ∈ (
0, 1− μ(θ + 1)

)
. Given any ζ ∈ B(x, r) we may

then write

θ−1R = δ∂�(x) ≤ δ∂�(ζ )+ |x − ζ | ≤ δ∂�(ζ )+ r, (6.6.48)

from which we then conclude that

θδ∂�(ζ ) ≥ R − θr. (6.6.49)

Since for any point q ∈ B(x, λR) we have
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|q − ζ | ≤ |q − x | + |x − ζ | < λR + r < (1− μθ − μ)R + μR

= R − θ(μR) < R − θr ≤ θδ∂�(ζ ), (6.6.50)

it follows that
B(x, λR) ⊆ B

(
ζ, θδ∂�(ζ )

)
. (6.6.51)

Having established this, we conclude that

‖u‖L∞(B(x,λR),Ln) ≤ ‖u‖L∞(B(ζ,θδ∂�(ζ )),Ln)

= u�,θ (ζ ) for each ζ ∈ B(x, r). (6.6.52)

From (6.6.52) we readily obtain

‖u‖L∞(B(x,λR),Ln) ≤
(  

B(x,r)

∣∣u�,θ

∣∣p dLn
) 1

p
. (6.6.53)

Next we wish to estimate the essential norm of u near the boundary of B(x, R)

in a similar fashion. Pick y ∈ ∂B(x, R) and consider z := x + (r/R)(y − x). Then
the points x, y, z are collinear and since |z − x | = (r/R)|y − x | = r , we conclude
that z ∈ ∂B(x, r). Assume another small scaling factor τ ∈ (0, 1) has been chosen.
To estimate the distance from z to B(y, τ R) ∩ B(x, R) observe that it is realized
as |z − ξ | where ξ ∈ ∂B(y, τ R) ∩ B(x, R). Denote by α the angle between the line
joining x with y and the line joining x with ξ . Working in the two-dimensional plane
spanned by these two lines, we may compute

dist
(
z, B(y, τ R) ∩ B(x, R)

) = |z − ξ | = ∣∣(R cosα, R sin α)− (r, 0)
∣∣

=
√
R2 + r2 − 2r R cosα. (6.6.54)

Let us also note that since sin(α/2) = (τ R/2)/R = τ/2, we have

α = arcsin(τ/2). (6.6.55)

To proceed, bring in yet another small scaling factor ε ∈ (0, 1) and pick some
arbitrary point w ∈ B(z, εr). Then

θ−1R = δ∂�(x) ≤ δ∂�(w)+ |x − w| ≤ δ∂�(w)+ |x − z| + |z − w|
≤ δ∂�(w)+ r + εr, (6.6.56)

which further entails

θδ∂�(w) ≥ R − θ(1+ ε)r. (6.6.57)

From (6.6.54) and (6.6.57) we then see that
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dist
(
w, B(y, τ R) ∩ B(x, R)

) ≤ dist
(
z, B(y, τ R) ∩ B(x, R)

)+ |z − w|
<
√
R2 + r2 − 2r R cosα + εr. (6.6.58)

We claim that matters maybe arranged so that

√
R2 + r2 − 2r R cosα + εr < R − θ(1+ ε)r. (6.6.59)

For starters, choose ε ∈ (
0, 1−θ

1+θ

)
which ensures that

a := θ(1+ ε)+ ε belongs to (0, 1). (6.6.60)

Next, by choosing τ ∈ (0, 1) small enough (6.6.55) guarantees that α is sufficiently
close to zero so that cosα > a. Some elementary algebra shows that (6.6.59) may
be recast as

r < 2
[cosα − a

1− a2

]
R (6.6.61)

and, given the original choice of r , this is satisfied if to begin with we pick

μ ∈ (
0, 2(cosα−a)

1−a2
)
. (6.6.62)

In summary, taking the scaling factors ε, τ, μ as above ensures that (6.6.59) holds.
In turn, from (6.6.58), (6.6.59), and (6.6.57) we conclude that

dist
(
w, B(y, τ R) ∩ B(x, R)

)
< θδ∂�(w), (6.6.63)

hence

B(y, τ R) ∩ B(x, R) ⊆ B
(
w, θδ∂�(w)

)
. (6.6.64)

From this we deduce that

‖u‖L∞(B(y,τ R)∩B(x,R),Ln) ≤ ‖u‖L∞(B(w,θδ∂�(w)),Ln)

= u�,θ (w) for each w ∈ B(z, εr). (6.6.65)

Raising the most extreme sides of (6.6.65) to the p-th power and taking the integral
average over the set E := B(z, εr) ∩ B(x, r) leads to the conclusion that

‖u‖L∞(B(y,τ R)∩B(x,R),Ln) ≤
( 

E

∣∣u�,θ

∣∣p dLn
) 1

p ≤ C
(  

B(x,r)

∣∣u�,θ

∣∣p dLn
) 1

p

(6.6.66)
for some C ∈ (0,∞) independent of x, y, r , with the last inequality above a conse-
quence of the fact that
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E ⊆ B(x, r) and Ln(E) ≈ Ln
(
B(x, r)

)
. (6.6.67)

For estimate (6.6.66) to be useful we need
{
B(y, τ R)

}
y∈∂B(x,R)

to be a cover

of B(x, R) \ B(x, λR). This is indeed the case if τ R > R − λR, i.e., if λ > 1− τ .
Since we have originally assumed that λ < 1− μ(θ + 1), in order to be able to
select λ satisfying these requirements we shall demand that 1− τ < 1− μ(θ + 1)
or, equivalently, μ < τ/(θ + 1). In view of (6.6.62) we ultimately should choose

μ ∈
(
0,min

{ 2(cosα−a)

1−a2 , τ
θ+1

})
. (6.6.68)

Such a choice guarantees that we may find a finite family {y j }1≤ j≤N ⊆ ∂B(x, R),
where N ∈ N depends exclusively on the dimension n and the various scaling factors
considered earlier, with the property that

{
B(y j , τ R)

}
1≤ j≤N covers B(x, R) \ B(x, λR). (6.6.69)

Collectively, (6.6.69) and (6.6.66) then imply

‖u‖L∞(B(x,R)\B(x,λR),Ln) ≤ C
(  

B(x,r)

∣∣u�,θ

∣∣p dLn
) 1

p
. (6.6.70)

By combining this with (6.6.53) we arrive at the conclusion that there exists some
C ∈ (0,∞) with the property that for each x ∈ � and each r ∈ (

0, μδ∂�(x)
)
we

have

u�,θ (x) = ‖u‖L∞(B(x,θδ∂�(x)),Ln) = ‖u‖L∞(B(x,R),Ln)

≤ C
(  

B(x,r)

∣∣u�,θ

∣∣p dLn
) 1

p
. (6.6.71)

Finally, in the case when x ∈ � and we have r ∈ [
μδ∂�(x), δ∂�(x)

)
, we may

employ (6.6.71) with r := 2−1μδ∂�(x) to write

u�,θ (x) ≤ C
(  

B(x,2−1μδ∂�(x))

∣∣u�,θ

∣∣p dLn
) 1

p

≤ C
(  

B(x,r)

∣∣u�,θ

∣∣p dLn
) 1

p
. (6.6.72)

Collectively, (6.6.71), (6.6.72), and (6.5.13) allow us to conclude that (6.6.47)
holds. Hence, the function u�,θ is subaveraging in �. �

Since, as we have discussed earlier, subaveraging functions satisfy global
weighted reverse Hölder estimates, Proposition 6.6.3 permits us to establish use-
ful embedding results for weighted maximal Lebesgue spaces of the sort presented
below.
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Proposition 6.6.4 Let� be an arbitrary open, nonempty, proper subset ofRn. Also,
fix α, γ ∈ R with α ≥ 0, and pick an integrability exponent p ∈ (0,∞) such that
1/p > α. Then

L p
�

(
�, δ

γ p
∂�L

n
)

↪→ L pα

�

(
�, δ

(γ+nα)pα

∂� Ln
)
where pα :=

(
1
p − α

)−1
. (6.6.73)

In particular, whenever α ∈ (0,∞) and 0 < p < 1
α
, one has the continuous embed-

ding
L p

�

(
�, δ

−nαp
∂� Ln

)
↪→ L

p
1−αp (�,Ln). (6.6.74)

Proof Combining Proposition 6.6.3 with (6.5.31) yields (6.6.73). In turn, (6.6.73)
and (6.6.42) imply (6.6.74) by choosing γ := −nα.

An alternative proof of the embedding (6.6.73) is as follows. Fix θ ∈ (0, 1) and
pick θ3 ∈ (θ, 1). Also, select some s ∈ (0,∞). Making use of (6.6.8) and (6.6.36)
(with θ1 = θ2 = θ ) we see that there exists a constant C ∈ (0,∞) independent of u
with the property that

u�,θ (x)δ∂�(x)γ+nα ≤ CLn
(
B(x, θ3δ∂�(x)

)α×
×
(  

B(x,θ3δ∂�(x))

(
u�,θ δ

γ

∂�

)s
dLn

)1/s
, (6.6.75)

for each x ∈ �. In terms of the non-negative Borel-measurable function

f :=
{
u�,θ · δγ

∂� in �,

0 in R
n \�,

(6.6.76)

and the fractional Hardy–Littlewood maximal operator defined in (7.6.1) (presently
used with X := R

n and μ := Ln), inequality (6.6.75) gives that

f (x)δ∂�(x)nα ≤ C
(
Ms,α f

)
(x), ∀x ∈ R

n . (6.6.77)

BasedonTheorem7.6.1 and the fact thatwehave the freedomof selecting s ∈ (0,∞),
we may therefore conclude that if 0 < p < 1

α
and pα :=

(
1
p − α

)−1
then

‖u‖L pα
� (�,δ

(γ+nα)pα
∂� Ln)

≈ ∥∥u�,θ δ
γ+nα

∂�

∥∥
L pα (�,Ln)

= ∥∥ f δnα
∂�

∥∥
L pα (Rn ,Ln)

≤ C‖ f ‖L p(Rn ,Ln) = C
∥∥u�,θ δ

γ

∂�

∥∥
L p(�,Ln)

≈ ‖u‖L p
� (�,δ

γ p
∂�Ln), (6.6.78)

finishing the alternative proof of (6.6.73). �
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We can go a step further and consider a local version of the solidmaximal function
of the following sort. Let � be an open, nonempty, proper subset of R

n , and fix a
parameter θ ∈ (0, 1). Also, let E be an arbitrary Lebesgue measurable subset of
�. Given u : E → C Lebesgue-measurable, define its local solid maximal
function on E as

uE
�,θ (x) := ‖u‖L∞(E∩B(x,θδ∂�(x)),Ln) ∈ [0,+∞]. ∀x ∈ �. (6.6.79)

Directly from definitions we see that, if ũ denotes the extension of u by zero outside
E to the entire �, then

uE
�,θ =

(
ũ
)
�,θ

pointwise in �. (6.6.80)

Granted this, Lemma 6.6.1 applies and gives that

uE
�,θ : � → [0,+∞] is lower-semicontinuous, (6.6.81)

and |u| ≤ uE
�,θ at Ln-a.e. point in E . (6.6.82)

Moreover, Lemma 6.6.2 ensures that, having fixed p ∈ (0,∞) and q ∈ (0,∞] along
with any two parameters θ1, θ2 ∈ (0, 1), we have

‖uE
�,θ1
‖L p,q (�,Ln) ≈ ‖uE

�,θ2
‖L p,q (�,Ln), (6.6.83)

uniformly in the class of Lebesgue measurable functions u : � → C.

Moving on, recall from Theorem 6.5.7 that null-solutions of elliptic systems are
subaveraging functions, so it should be possible to prove weighted reverse Hölder
estimates (both of a local and global nature) for such functions in a general geomet-
ric setting. We do this in Proposition 6.6.6. As a preamble, we first discuss some
pointwise inequalities in the lemma below.

Lemma 6.6.5 Let n,m, M ∈ N and suppose L is a constant (complex) coefficient
homogeneous M × M systemof order2m inR

n,with the property thatdet [L(ξ)] �= 0
for each ξ ∈ R

n \ {0} (with the characteristic matrix L(ξ) defined as in (6.5.39)).
Assume also that � ⊆ R

n is an open set and u ∈ [
C∞(�)

]M
is such that Lu = 0

in �. Finally, suppose 0 < θ1 < θ2 < 1, k ∈ N0, s ∈ R, and p ∈ (0,∞). Then there
exists C ∈ (0,∞) which depends only on L , n, θ1, θ2, k, p such that for each x ∈ �

one has

δ∂�(x)k+s |(∇ku)(x)| ≤ δk+s∂� (x)|∇ku|�,θ1(x) ≤ C
(
δk+s∂� |∇ku|)

�,θ1
(x) (6.6.84)

≤ C
(  

B(x,θ2δ∂�(x))

[
δs∂�|u|

]p
dLn

) 1
p ≤ C · δs∂�(x)u�,θ2(x),

where ∇ku is the vector consisting of all partial derivatives of order k of u.



6.6 The Solid Maximal Function and Maximal Lebesgue Spaces 565

Proof This is a consequence of Theorem 6.5.7, (6.6.6), (6.6.8), and (6.6.2). �

Here are the weighted reverse Hölder estimates for null-solutions of elliptic sys-
tems in arbitrary open sets, referred to earlier.

Proposition 6.6.6 Let L be a constant (complex) coefficient homogeneous M × M
system of order 2m inR

n, where M,m ∈ N, with the property that det [L(ξ)] �= 0 for
each ξ ∈ R

n \ {0} (with the characteristic matrix L(ξ) defined as in (6.5.39)). Also,
assume that � is an arbitrary open (nonempty, proper) subset of R

n and that the
function u ∈ [

C∞(�)
]M

is such that Lu = 0 in�. Finally, suppose 0 < q ≤ p ≤ ∞
and fix s ∈ R, θ ∈ (0, 1), and k ∈ N0.

Then there exists a finite constant C = C(L , p, q, s, θ, k) > 0, independent of u,
with the property that

( ˆ
�∩B(z,R)

(
δ∂�(x)s+k+n( 1

q− 1
p )|∇ku|�,θ (x)

)p
dx
) 1

p
(6.6.85)

≤ C
( ˆ

�∩B(z,CR)

(
δ∂�(x)s |u(x)|)q dx

) 1
q

for each z ∈ ∂� and each R > 0. Also, whenever 0 < p ≤ ∞, s ∈ R, k ∈ N0, and
θ ∈ (0, 1) there exists some constant C = C(L , p, s, k, θ) ∈ (0,∞) with the prop-
erty that

(ˆ
�

(
δs+k∂� |∇ku|)p dLn

) 1
p ≤

(ˆ
�

(
δs+k∂� |∇ku|�,θ

)p
dLn

) 1
p

≤ C
( ˆ

�

(
δs∂�|u|

)p
dLn

) 1
p

≤ C
( ˆ

�

(
δs∂�|u|�,θ

)p
dLn

) 1
p

(6.6.86)

for each u ∈ [
C∞(�)

]M
satisfying Lu = 0 in �.

Proof Choose z ∈ ∂� along with R > 0, and fix some θ2 ∈ (θ, 1). Observe that for
each

B
(
x, θ2δ∂�(x)

) ⊆ � ∩ B
(
z, (1+ θ2)R

)
for each x ∈ � ∩ B(z, R). (6.6.87)

Bearing this in mind, in the case when p < ∞ we raise the penultimate inequality
in (6.6.84) (written with θ1 := θ ) to the p-th power, integrate over � ∩ B(z, R), and
then use Fubini’s theorem to write
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ˆ
�∩B(z,R)

[(
δk+s∂� |∇ku|)

�,θ
(x)

]p
dx

≤ C
ˆ

�∩B(z,R)

( 
B(x,θ2δ∂�(x))

[
δ∂�(y)s |u(y)|]p dy

)
dx

≤ C
ˆ

�∩B(z,(1+θ2)R)

[
δ∂�(y)s |u(y)|]p×

×
( ˆ

�∩B(z,R)

δ∂�(x)−n1B(x,θ2δ∂�(x))(y) dx
)
dy

≤ C
ˆ

�∩B(z,(1+θ2)R)

[
δ∂�(y)s |u(y)|]p dy, (6.6.88)

where the last inequality is based on the fact that for each fixed x ∈ � we have
δ∂�(y) ≈ δ∂�(x), uniformly for y ∈ B

(
x, θ2δ∂�(x)

)
. The version of (6.6.88) corre-

sponding to p = ∞ is a direct consequence of (6.6.84) and (6.6.87).
Having proved (6.6.88) when 0 < p ≤ ∞, the estimate claimed in (6.6.85) then

follows by re-denoting s by s + n( 1q − 1
p ) and making use of (6.5.30) (while also

bearing inmind (6.5.40)). Also, specializing (6.6.85) to the casewhen q := p and let-
ting R →∞ yields the second estimate in (6.6.86). Finally, the remaining estimates
in (6.6.86) are direct consequences of (6.6.6). �

In the last result in this section, we record a refinement of the estimates in Propo-
sition 6.6.6 corresponding to k = 0 (by only assuming that the function in question
is subaveraging rather than a null-solution of an elliptic system). This lemma also
strengthens the estimate in (6.5.30) through the consideration of the solid maximal
function.

Lemma 6.6.7 Let u be a subaveraging function defined in an arbitrary open
(nonempty, proper) subset � of R

n, and suppose 0 < q ≤ p ≤ ∞, s ∈ R, and
θ ∈ (0, 1). Then there exists some C ∈ (0,∞) which depends only on p, q, s, θ ,
and the subaveraging character of u, with the property that

( ˆ
�∩B(z,R)

(
δ∂�(x)s+n( 1

q− 1
p )u�,θ (x)

)p
dx
) 1

p

≤ C
( ˆ

�∩B(z,CR)

(
δ∂�(x)s |u(x)|)q dx

) 1
q

(6.6.89)

for each z ∈ ∂� and each R > 0. In particular, upon letting R →∞ and specializing
q := p, it follows that if u is a subaveraging function defined in �, 0 < p ≤ ∞, and
s ∈ R, then there exists C ∈ (0,∞) depending only on p, s, θ , and the subaveraging
character of u such that
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(ˆ
�

(
δ∂�(x)su�,θ (x)

)p
dx
) 1

p

≤ C
( ˆ

�

(
δ∂�(x)s |u(x)|)p dx

) 1
p
. (6.6.90)

As a corollary, for each p ∈ (0,∞] and γ ∈ R one has the inclusions

{
u ∈ L p

(
�, δ

γ

∂�L
n
) : u subaveraging in �

}
⊆L p

�

(
�, δ

γ

∂�L
n
)

⊆L p(�, δ
γ

∂�L
n), (6.6.91)

in a quantitative fashion.

Proof This is justified by largely reasoning as in the proof of Proposition 6.6.6
with k := 0, with one noticeable difference. Specifically, in place of the penulti-
mate inequality in (6.6.84), we now use the fact that for each fixed θ2 ∈ (θ, 1) and
p ∈ (0,∞) there exists C ∈ (0,∞) such that

u�,θ (x) ≤ C

( 
B(x,θ2δ∂�(x))

|u|p dLn

) 1
p

for each x ∈ �. (6.6.92)

In turn, (6.6.92) is clear from Lemma 6.5.2 and (6.6.2). Parenthetically we wish to
note that a direct proof of (6.6.90) may be given by performing a Whitney decom-
position of � and relying on (6.6.92). �



Chapter 7
Quasi-Metric Spaces and Spaces
of Homogeneous Type

Ever since the late 1970s it has been fully recognized that a significant portion of real
analysis may be developed using very little of the structural richness of the Euclidean
ambient. Maximal operators (à la Hardy–Littlewood), differentiation theorems (à
la Lebesgue), function spaces (à la John–Nirenberg, Sarason, Hölder, Lipschitz,
etc.), various classes of weights (à la Muckenhoupt), covering theorems (à la Vitali,
Whitney), and even a full-fledged Calderón–Zygmund theory, among many other
topics, make perfect sense and retain their potency in fairly scarce environments,
such as spaces of homogeneous type. These are quasi-metric spaces equipped with
a doubling Borel measure, and the goal here is to review and further develop those
aspects of analysis on spaces of homogeneous type that are deemed relevant to our
present work.

7.1 Quasi-Metric Spaces and a Sharp Metrization Result

To get started, fix a nonempty set X , which is going to play the role of the ambient
space.Call two functionsρ, ρ ′ : X × X → [0,∞)equivalent, andwriteρ ≈ ρ ′,
if there exists c ∈ (0, 1) with the property that

c ρ ≤ ρ ′ ≤ c−1ρ on X × X. (7.1.1)

Next, call a function ρ : X × X → [0,∞) a quasi-distance, or quasi-
metric, on X provided there exist two finite constantsC0, C1 ≥ 1with the property
that for any given points x, y, z ∈ X we have

ρ(x, y) = 0 ⇐⇒ x = y, ρ(y, x) ≤ C0 · ρ(x, y),

and ρ(x, y) ≤ C1 · max{ρ(x, z), ρ(z, y)}. (7.1.2)
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It is then clear that if ρ is a quasi-distance on X and ρ ′ : X × X → [0,∞) is such
that ρ ′ ≈ ρ then ρ ′ is a quasi-distance on X as well.

For each quasi-distance ρ on X we define Cρ to be the smallest constant which
can play the role of C1 in the last inequality in (7.1.2), i.e.,

Cρ := sup
x,y,z∈X

not all equal

ρ(x, y)

max{ρ(x, z), ρ(z, y)} ∈ [1,∞), (7.1.3)

and define ˜Cρ to be the smallest constant which can play the role of C0 in the first
inequality in (7.1.2), i.e.,

˜Cρ := sup
x,y∈X
x �=y

ρ(y, x)

ρ(x, y)
∈ [1,∞), (7.1.4)

with the convention that Cρ := ˜Cρ := 1 when X is a mere singleton.
By a quasi-metric space we shall understand a pair (X, ρ) where X is a

set and ρ is a quasi-distance on X . Given a quasi-metric space (X, ρ), define the
ρ-ball centered at x ∈ X with radius r > 0 to be

Bρ(x, r) := {y ∈ X : ρ(x, y) < r} . (7.1.5)

Also, for every A, B ⊆ X and x ∈ X define

diamρ(A) := sup {ρ(x, y) : x, y ∈ A},
distρ(x, A) := inf {ρ(x, y) : y ∈ A},

and distρ(A, B) := inf {ρ(x, y) : x ∈ A, y ∈ B}.
(7.1.6)

Turning to topological considerations, we note that any quasi-metric space (X, ρ)

has a canonical topology, naturally induced by the quasi-distance ρ which we will
denote by τρ . The latter is defined as the largest topology on X with the property that
for each point x ∈ X the family {Bρ(x, r)}r>0 is a fundamental system of neighbor-
hoods of x . In concrete terms, for each set O ⊆ X we have

O is open in τρ
def⇐⇒ for each x ∈ O there exists r > 0 such that Bρ(x, r) ⊆ O.

(7.1.7)
It is then clear from definitions that if (X, ρ) is a quasi-metric space

τρ = τρ ′ for any quasi-distance ρ ′ on X which is equivalent to ρ. (7.1.8)

Also, if Xo ⊆ X is arbitrary, then

ρo := ρ
∣

∣

Xo×Xo
is a quasi-metric on Xo and τρo = τρ

∣

∣

Xo
. (7.1.9)
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Lemma 7.1.1 Suppose that (X, ρ) is a quasi-metric space with the property that
(X, τρ) is a separable topological space. Then any subset of X is separable.

Proof Pick a dense subset {x j } j∈N of X and let Y ⊆ X be an arbitrary nonempty set.
For each j ∈ N consider y j ∈ Y such that ρ(x j , y j ) < distρ(x j , Y ) + 1/j . We claim
that {y j } j∈N is dense in Y . Indeed, given any y ∈ Y ⊆ X we may find a subsequence
{x jk }k∈N convergent in τρ to y. Given that

ρ(x jk , y jk ) < distρ(x jk , Y ) + 1/jk ≤ ρ(x jk , y) + 1/jk → 0 as k → ∞, (7.1.10)

one readily concludes that the sequence {y jk }k∈N is convergent in τρ to y. Hence, the
desired conclusion follows. �

As is well known, the topology induced by the given quasi-distance on a quasi-
metric space is metrizable. Below we shall review a result proved in [188] which is a
sharp quantitative version of this fact. To facilitate the subsequent discussion we first
make a couple of definitions. Assume that X is an arbitrary, nonempty set. Given an
arbitrary function ρ : X × X → [0,∞] and an arbitrary exponent α ∈ (0,∞] define
the function

ρα : X × X −→ [0,∞] (7.1.11)

by setting for each x, y ∈ X

ρα(x, y) := inf
{(

N
∑

i=1

ρ(ξi , ξi+1)
α
) 1

α : N ∈ N and ξ1, . . . , ξN+1 ∈ X,

(not necessarily distinct) such thatξ1 = x and ξN+1 = y
}

, (7.1.12)

wheneverα < ∞, and its natural counterpart corresponding to the casewhenα = ∞,
i.e.,

ρ∞(x, y) := inf
{

max
1≤i≤N

ρ(ξi , ξi+1) : N ∈ N and ξ1, . . . , ξN+1 ∈ X,

(not necessarily distinct) such thatξ1 = x and ξN+1 = y
}

. (7.1.13)

It is then clear from definitions that

for every quasi-distance ρ on X and every α ∈ (0,∞], the function
ρα is also a quasi-distance on X , which satisfies ρα ≤ ρ on X × X .

(7.1.14)

Going further, if ρ : X × X → [0,∞] is an arbitrary function, consider its sym-
metrization ρsym defined by

ρsym : X × X −→ [0,∞],
ρsym(x, y) := max{ρ(x, y), ρ(y, x)}, ∀x, y ∈ X.

(7.1.15)
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Then ρsym is symmetric, i.e., ρsym(x, y) = ρsym(y, x) for every x, y ∈ X , and
ρsym ≥ ρ on X × X . In fact, ρsym is the smallest [0,∞]-valued function defined
on X × X which is symmetric and ≥ ρ pointwise on X × X . Furthermore, if ρ is as
in (7.1.2) then

ρsym is a quasi-distance on X satisfying Cρsym ≤ Cρ and
˜Cρsym = 1 as well as ρ ≤ ρsym ≤ ˜Cρ · ρ pointwise on X × X .

(7.1.16)

Here is the quantitative metrization theorem from [188] alluded to above.

Theorem 7.1.2 Let (X, ρ) be a quasi-metric space and assume that Cρ,
˜Cρ ∈ [1,∞) are as in (7.1.3)–(7.1.4). In this context, define (cf. (7.1.12)–(7.1.13))

ρ# := (ρsym)α for α := (log2Cρ)
−1 ∈ (0,∞]. (7.1.17)

Then
ρ# : X × X −→ [0,∞) is a continuous function, (7.1.18)

when X × X is equipped with the natural product topology τρ × τρ . Furthermore,
for each finite exponent β ∈ (0, α], the function

dρ,β : X × X → [0,∞), dρ,β(x, y) := [ρ#(x, y)
]β

, ∀x, y ∈ X, (7.1.19)

is a genuine distance on X, i.e., for every x, y, z ∈ X one has

dρ,β(x, y) = 0 ⇐⇒ x = y, dρ,β(x, y) = dρ,β(y, x),

and dρ,β(x, y) ≤ dρ,β(x, z) + dρ,β(z, y).
(7.1.20)

In addition,
[

dρ,β

]1/β ≈ ρ. More specifically,

(Cρ)
−2ρ(x, y) ≤ [dρ,β(x, y)

]1/β = ρ#(x, y) ≤ ˜Cρ · ρ(x, y), ∀x, y ∈ X.

(7.1.21)
In particular, the topology induced by the distance dρ,β = (ρ#)

β on X is precisely
τρ , thus the topology induced by any quasi-metric is metrizable.

Moreover, for each finite exponent β ∈ (0, (log2Cρ)
−1
]

, the function ρ# satisfies
the following local Hölder-type regularity condition of order β in both variables
simultaneously (which is a stronger property than (7.1.18)):

∣

∣ ρ#(x, y) − ρ#(w, z)
∣

∣ (7.1.22)

≤ β−1 · max
{

ρ#(x, y)1−β, ρ#(w, z)1−β
}(

ρ#(x, w)β + ρ#(y, z)β
)

,

for all x, y, w, z ∈ X such that min{ρ(x, y), ρ(w, z)} < ∞ and, if β ≥ 1, also
assuming x �= y, w �= z. In particular, in the case x = w, formula (7.1.22) becomes
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∣

∣ ρ#(x, y) − ρ#(x, z)
∣

∣ ≤ β−1 · max
{

ρ#(x, y)1−β, ρ#(x, z)1−β
}[

ρ#(y, z)
]β

,

(7.1.23)
for all x, y, z ∈ X such thatmin{ρ(x, y), ρ(x, z)} < ∞ and, if β ≥ 1, also assuming
x /∈ {y, z}.

Finally, the Hölder-type results from (7.1.22)–(7.1.23) are sharp in the sense that
they may fail if β > (log2Cρ)

−1.
The key feature of the result discussed in Theorem 7.1.2 is the fact that if (X, ρ) is

any quasi-metric space then ρβ is equivalent to a distance on X for any finite number
β ∈ (0, (log2Cρ)

−1]. This result is sharp and improves upon an earlier version due
to R.A. Macías and C. Segovia [169], in which these authors have identified a non-
optimal upper bound for the exponent β.

7.2 Estimating Integrals Involving the Quasi-Distance

Often, we are in a position to estimate integrals involving a power of the quasi-
distance in a quasi-metric space equipped with a measure whose action on balls
obeys a growth condition with respect to the radii. A general result of this flavor is
discussed in the lemma below.

Lemma 7.2.1 Let (X, ρ) be a given quasi-metric space endowed with a quasi-
distance ρ : X × X → [0,∞) which is continuous1 in the product topology τρ × τρ .
Assume μ is a Borel measure on (X, τρ) with the property that there exist d ∈ (0,∞)

and c ∈ (0,∞) such that

μ
(

Bρ(x, R)
) ≤ cRd ∀x ∈ X, ∀R ∈ (0, 2 diamρ(X)

)

. (7.2.1)

Also, suppose � : (0,∞) → [0,∞) has the property that there exists some m ∈ R

such that the function

(0,∞) � t �−→ �(t)

tm
∈ [0,∞) is monotone. (7.2.2)

Then there exists a finite constant C = C(d, c, m) > 0 such that for each radius
r ∈ (0, 2 diamρ(X)

)

and x ∈ X one has

ˆ
X\Bρ (x,r)

�
(

ρ(x, y)
)

dμ(y) ≤ C
ˆ 16 diamρ(X)

r/2
td−1�(t) dt (7.2.3)

and ˆ
Bρ(x,r)

�
(

ρ(x, y)
)

dμ(y) ≤ C
ˆ 2r

0
td−1�(t) dt. (7.2.4)

1 From Theorem 7.1.2 we know that any quasi-metric space has an equivalent quasi-distance which
satisfies this property.
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Particular cases of (7.2.3) and (7.2.4), frequently used in the sequel, are as follows:
given any δ ∈ (0,∞) there exists a finite constant C = C(d, c, δ) > 0 such that, for
each r > 0 and x ∈ X ,

ˆ
Bρ(x,r)

dμ(y)

ρ(x, y)d−δ
≤ Cr δ and

ˆ
X\Bρ(x,r)

dμ(y)

ρ(x, y)d+δ
≤ Cr−δ. (7.2.5)

Proof of Lemma 7.2.1 To begin with, observe that � is L1-measurable (since we
have �(t) = tm · (�(t)/tm

)

for each t ∈ (0,∞), and the function t �→ �(t)/tm is
assumed to be monotone), hence the last integrals in (7.2.3) and (7.2.4) are meaning-
ful. Granted the hypotheses on ρ and μ, this also ensures that for each fixed x ∈ X
the function X � y �→ �

(

ρ(x, y)
) ∈ [0,∞) isμ-measurable. Thus, the first integral

in (7.2.3) is also meaningful. Finally, since for each fixed x ∈ X we have
Bρ(x, R) ↘ {x} as R ↘ 0, we conclude from (7.2.1) that μ({x}) = 0 hence, even
though� is not defined at zero, the first integral in (7.2.4) is, nonetheless, meaningful
as well.

To deal with (7.2.3), fix x ∈ X along with r ∈ (0, 2 diamρ(X)
)

, then set

jr :=
[

log2
(diamρ(X)

r

)]

+ 1 ∈ N ∪ {∞}. (7.2.6)

Throughout, for each number a ∈ R we abbreviate (a)+ := max{a, 0}. Assume first
that

there exists m ∈ R with the property that
(0,∞) � t �→ �(t)/tm ∈ [0,∞) is decreasing.

(7.2.7)

In such a scenario, we combine (7.2.7) with (7.2.1) in order to estimate

ˆ
X\Bρ(x,r)

�
(

ρ(x, y)
)

dμ(y) (7.2.8)

=
jr
∑

j=0

ˆ

y∈X

2 j r≤ρ(x,y)<2 j+1r

ρ(x, y)m

(

�
(

ρ(x, y)
)

ρ(x, y)m

)

dμ(y)

≤ 2(m)+
jr
∑

j=0

ˆ

y∈X

2 j r≤ρ(x,y)<2 j+1r

(

2 j r
)m
(

�
(

2 j r
)

(2 j r)m

)

dμ(y)

≤ 2(m)+
jr
∑

j=0

(

2 j r
)m
(

�
(

2 j r
)

(2 j r)m

)

μ
(

Bρ(x, 2 j+1r)
)

≤ c2(m)+
jr
∑

j=0

(

2 j+1r
)d(

2 j r
)m
(

�
(

2 j r
)

(2 j r)m

)
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≤ c2d · 2(m)+ · 2(m+d)+
jr
∑

j=0

(

inf
2 j−1r<t≤2 j r

t d+m
)

·
(

inf
2 j−1r<t≤2 j r

�(t)

tm

)

≤ c
2d · 2(m)+ · 2(m+d)+

ln 2

jr
∑

j=0

ˆ 2 j r

2 j−1r
td+m �(t)

tm

dt

t

≤ c
2d · 2(m)+ · 2(m+d)+

ln 2

ˆ 4 diamρ(X)

r/2
td−1�(t) dt,

proving (7.2.3) in this case. Suppose next that

there exists m ∈ R with the property that
(0,∞) � t �→ �(t)/tm ∈ [0,∞) is increasing.

(7.2.9)

In such a scenario, based on (7.2.9) and (7.2.1) we may write

ˆ
X\Bρ(x,r)

�
(

ρ(x, y)
)

dμ(y) (7.2.10)

=
jr
∑

j=0

ˆ

y∈X

2 j r≤ρ(x,y)<2 j+1r

ρ(x, y)m

(

�
(

ρ(x, y)
)

ρ(x, y)m

)

dμ(y)

≤ 2(−m)+
jr
∑

j=0

ˆ

y∈X

2 j r≤ρ(x,y)<2 j+1r

(

2 j+1r
)m
(

�
(

2 j+1r
)

(2 j+1r)m

)

dμ(y)

≤ 2(−m)+
jr
∑

j=0

(

2 j+1r
)m
(

�
(

2 j+1r
)

(2 j+1r)m

)

μ
(

Bρ(x, 2 j+1r)
)

≤ c2(−m)+
jr
∑

j=0

(

2 j+1r
)d(

2 j+1r
)m
(

�
(

2 j+1r
)

(2 j+1r)m

)

≤ c2(−m)+ · 2(m+d)+
jr
∑

j=0

(

inf
2 j+1r≤t<2 j+2r

td+m
)

·
(

inf
2 j+1r≤t<2 j+2r

�(t)

tm

)

≤ c
2(−m)+ · 2(m+d)+

ln 2

jr
∑

j=0

ˆ 2 j+2r

2 j+1r
td+m �(t)

tm

dt

t

≤ c
2(−m)+ · 2(m+d)+

ln 2

ˆ 16 diamρ(X)

2r
td−1�(t) dt,

which implies (7.2.3) in this case. This finishes the proof of (7.2.3).
As regards (7.2.4), fix x ∈ X and r ∈ (0, 2 diamρ(X)

)

. In the case when (7.2.7)
holds, we write
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ˆ
Bρ(x,r)

�
(

ρ(x, y)
)

dμ(y) (7.2.11)

=
∞
∑

j=0

ˆ

y∈X

2− j−1r≤ρ(x,y)<2− j r

ρ(x, y)m

(

�
(

ρ(x, y)
)

ρ(x, y)m

)

dμ(y)

≤ 2(m)+
∞
∑

j=0

ˆ

y∈X

2− j−1r≤ρ(x,y)<2− j r

(

2− j−1r
)m
(

�
(

2− j−1r
)

(2− j−1r)m

)

dμ(y)

≤ 2(m)+
∞
∑

j=0

(

2− j−1r
)m
(

�
(

2− j−1r
)

(2− j−1r)m

)

μ
(

Bρ(x, 2− j r)
)

≤ c2d · 2(m)+
∞
∑

j=0

(

2− j−1r
)d(

2− j−1r
)m
(

�
(

2− j−1r
)

(2− j−1r)m

)

≤ c2d · 2(m)+ · 2(−m−d)+
∞
∑

j=0

(

inf
2− j−1r≤t<2− j r

t d+m
)

·
(

inf
2− j−1r≤t<2− j r

�(t)

tm

)

≤ c
2d · 2(m)+ · 2(−m−d)+

ln 2

∞
∑

j=0

ˆ 2− j r

2− j−1r
td+m �(t)

tm

dt

t

= c
2d · 2(m)+ · 2(−m−d)+

ln 2

ˆ r

0
td−1�(t) dt,

which implies (7.2.4) in this case. Finally, when (7.2.9) holds we write

ˆ
Bρ(x,r)

�
(

ρ(x, y)
)

dμ(y) (7.2.12)

=
∞
∑

j=0

ˆ

y∈X

2− j−1r≤ρ(x,y)<2− j r

ρ(x, y)m

(

�
(

ρ(x, y)
)

ρ(x, y)m

)

dμ(y)

≤ 2(m)+
∞
∑

j=0

ˆ

y∈X

2− j−1r≤ρ(x,y)<2− j r

(

2− j−1r
)m
(

�
(

2− j r
)

(2− j r)m

)

dμ(y)

≤ 2(m)+
∞
∑

j=0

(

2− j−1r
)m
(

�
(

2− j r
)

(2− j r)m

)

μ
(

Bρ(x, 2− j r)
)

≤ c2d · 2(m)+
∞
∑

j=0

(

2− j−1r
)d(

2− j−1r
)m
(

�
(

2− j r
)

(2− j r)m

)

≤ c2d · 2(m)+ · 2(−m−d)+
∞
∑

j=0

(

inf
2− j r≤t<2− j+1r

td+m
)

·
(

inf
2− j r≤t<2− j+1r

�(t)

tm

)
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≤ c
2d · 2(m)+ · 2(−m−d)+

ln 2

∞
∑

j=0

ˆ 2− j+1r

2− j r
t d+m �(t)

tm

dt

t

= c
2d · 2(m)+ · 2(−m−d)+

ln 2

ˆ 2r

0
td−1�(t) dt,

finishing the proof of (7.2.4). �
Here is another useful estimate of a similar nature butwhere the integral in question

exhibits multiple point singularities.

Lemma 7.2.2 Let (X, ρ) be a given quasi-metric space endowed with a quasi-
distance ρ : X × X → [0,∞) which is continuous in the product topology τρ × τρ .
Assume μ is a Borel measure on (X, τρ) with the property that there exist
d ∈ (0,∞) and c ∈ (0,∞) such that μ

(

Bρ(x, R)
) ≤ cRd for all x ∈ X and

R ∈ (0, 2 diamρ(X)
)

. Then for each M, N ∈ [0, d) satisfying M + N > d one can
fine a constant C ∈ (0,∞) for which

ˆ
X

dμ(x)

ρ(x, y)Mρ(x, z)N
≤ Cρ(y, z)d−M−N f or all y, z ∈ X wi th y �= z.

(7.2.13)

Proof In view of Theorem 7.1.2 there is no loss of generality in assuming that ρ

is actually a genuine distance on X . Assume this is the case, fix a pair or arbitrary
distinct points y, z ∈ X , and abbreviate r := ρ(y, z) ∈ (0, diamρ(X)

]

. Note that,
thanks to (7.2.5),

ˆ
Bρ(y,r/2)

dμ(x)

ρ(x, y)Mρ(x, z)N
≤ (r/2)−N

ˆ
Bρ(y,r/2)

dμ(x)

ρ(x, y)M

≤ C(r/2)−N (r/2)d−M = Cρ(y, z)d−M−N , (7.2.14)

since ρ(x, z) ≥ ρ(y, z) − ρ(x, y) ≥ r/2 for each x ∈ Bρ(y, r/2). Likewise,

ˆ
Bρ(z,r/2)

dμ(x)

ρ(x, y)Mρ(x, z)N
≤ Cρ(y, z)d−M−N . (7.2.15)

In addition, if S := X \ (Bρ(y, r/2) ∪ Bρ(z, r/2)
)

then

ˆ
S∩Bρ(z,2r)

dμ(x)

ρ(x, y)Mρ(x, z)N
≤ (r/2)−M(r/2)−N

ˆ
Bρ(z,2r)

dμ(x)

≤ Crd−M−N = Cρ(y, z)d−M−N , (7.2.16)

since the growth assumption on the measure μ implies that μ
(

Bρ(z, 2r)
) ≤ Crd .

Finally, whenever x ∈ S \ Bρ(z, 2r) we may estimate

ρ(x, y) ≥ ρ(x, z) − ρ(y, z) ≥ ρ(x, z) − 1
2ρ(x, z) = 1

2ρ(x, z) (7.2.17)
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as well as ρ(x, y) ≤ ρ(x, z) + ρ(y, z) ≤ 3
2ρ(x, z), hence

ˆ
S\Bρ (z,2r)

dμ(x)

ρ(x, y)Mρ(x, z)N
≤ C

ˆ
X\Bρ(z,2r)

dμ(x)

ρ(x, z)M+M

≤ Crd−M−N = Cρ(y, z)d−M−N , (7.2.18)

once again by (7.2.5). At this stage, (7.2.13) follows from (7.2.14)–(7.2.18). �

7.3 Hölder Spaces on Quasi-Metric Spaces

Given a quasi-metric space (X, ρ), for U ⊆ X arbitrary set and α ∈ (0,∞) arbitrary
exponent, define the homogeneous Hölder space of order α on U as

.
C α(U, ρ) :=

{

f : U → R : ‖ f ‖ .
C α(U,ρ)

< +∞
}

, (7.3.1)

where ‖ · ‖ .
C α(U,ρ)

stands for the semi-norm defined as2

‖ f ‖ .
C α(U,ρ)

:= sup
x,y∈U
x �=y

| f (x) − f (y)|
ρ(x, y)α

. (7.3.2)

Clearly,
‖ f ‖ .

C α(U,ρ)
= 0 ⇐⇒ f is constant on U. (7.3.3)

Given this, we find it occasionally useful to “mod out” the null-space of the semi-
norm ‖ · ‖ .

C α(U,ρ)
in order to render the resulting quotient space genuinely normed.

Specifically, for any two functions f, g defined on U write f ∼ g provided the
difference f − g is constant on U . This is an equivalence relation and we denote the
equivalence class of any given function f defined on U by

[ f ] := {g : U → R : f ∼ g
}

. (7.3.4)

If for any function f defined on U we now set

∥

∥ [ f ] ∥∥ .
C α(U,ρ)/∼ := ‖ f ‖ .

C α(U,ρ)
, (7.3.5)

then
∥

∥ [·] ∥∥ .
C α(U,ρ)/∼ becomes a genuine norm on the quotient space

.
C α(U, ρ)/ ∼ := {[ f ] : f ∈ .

C α(U, ρ)
}

. (7.3.6)

2 With the convention that ‖ f ‖ .
C α(U,ρ)

:= 0 when the cardinality of U is at most one.



7.3 Hölder Spaces on Quasi-Metric Spaces 579

In fact, when equipped with the norm (7.3.5), the space (7.3.6) is complete (hence
Banach).

Occasionally, we shall work with the local version of the homogeneous Hölder
space introduced in (7.3.1), namely

.
C α
loc(U, ρ) :=

{

f : U → C : f
∣

∣

Bρ(x,r)∩U
∈ .
C α
(

Bρ(x, r) ∩ U, ρ
)

for each x ∈ U and r ∈ (0,∞)
}

. (7.3.7)

The lower triangle inequality readily implies that for any function f : U → R we
have

∥

∥ | f | ∥∥ .
C α(U,ρ)

≤ ‖ f ‖ .
C α(U,ρ)

, (7.3.8)

hence,
f ∈ .

C α(U, ρ)=⇒ | f | ∈ .
C α(U, ρ). (7.3.9)

Given that max{ f, g} = 1
2 ( f + g + | f − g|) and min{ f, g} = 1

2 ( f + g − | f − g|),
it follows from (7.3.9) that

.
C α(U, ρ) is a lattice and, for every f, g ∈ .

C α(U, ρ),

∥

∥max{ f, g}‖ .
C α(U,ρ)

≤ ‖ f ‖ .
C α(U,ρ)

+ ‖g‖ .
C α(U,ρ)

,

∥

∥min{ f, g}‖ .
C α(U,ρ)

≤ ‖ f ‖ .
C α(U,ρ)

+ ‖g‖ .
C α(U,ρ)

.
(7.3.10)

In particular, given any real-valued function f on U , if for each N ∈ N we define

fN := min
{

max{ f,−N }, N
}

= max
{

min{ f, N },−N
}

, (7.3.11)

i.e.,

fN (x) :=
⎧

⎨

⎩

N if f (x) > N
f (x) if − N ≤ f (x) ≤ N ,

−N if f (x) < −N ,

∀x ∈ U, (7.3.12)

then
| fN (x)| ≤ min{| f (x)|, N } for each x ∈ U,

and lim
N→∞ fN (x) = f (x) for each point x ∈ U. (7.3.13)

Moreover, from (7.3.11) and (7.3.10) we see that

‖ fN ‖ .
C α(U,ρ)

≤ ‖ f ‖ .
C α(U,ρ)

, ∀N ∈ N. (7.3.14)

In the same setting as above there is a log-convexity law for the homogeneous
Hölder scale, to the effect that if 0 < α0 < α1 < ∞ and f ∈ .

C α0(U, ρ) ∩ .
C α1(U, ρ)

then f ∈ .
C η(U, ρ) for each η ∈ [α0, α1] and
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‖ f ‖ .
C η(U,ρ)

≤ ‖ f ‖1−θ.
C α0 (U,ρ)

· ‖ f ‖θ.
C α1 (U,ρ)

if θ ∈ [0, 1]

and η ∈ [α0, α1] are such that η = (1 − θ)α0 + θα1.

(7.3.15)

This is easily seen, by multiplying two inequalities, obtained by raising

| f (x) − f (y)| ≤ ρ(x, y)α j ‖ f ‖ .
C α j (U,ρ)

for all x, y ∈ U, (7.3.16)

to the power 1 − θ if j = 0 and, respectively, the power θ if j = 1. In fact, the
same type of proof also allows the inclusion of the end-point α0 = 0 in the following
format

‖ f ‖ .
C η(U,ρ)

≤ 21−η/α
(

sup
U

| f |)1−η/α · ‖ f ‖η/α.
C α(U,ρ)

if 0 < η ≤ α. (7.3.17)

Indeed, this is seen by multiplying the two inequalities obtained by raising

| f (x) − f (y)| ≤ 2 · supU | f | and
| f (x) − f (y)| ≤ ρ(x, y)α‖ f ‖ .

C α(U,ρ)
for all x, y ∈ U,

(7.3.18)

respectively, to the power 1 − η/α and η/α.
Moving on, theinhomogeneousHölderspaceoforderα onU is defined

as
C α(U, ρ) := { f ∈ .

C α(U, ρ) : f is bounded inU
}

, (7.3.19)

and is equipped with the norm

‖ f ‖C α(U,ρ) := sup
U

| f | + ‖ f ‖ .
C α(U,ρ)

, ∀ f ∈ C α(U, ρ). (7.3.20)

When the quasi-distance ρ is naturally understood from the context we omit to drop
it in the above notation (this is often the case when working with subsets of R

n , in
which case the Euclidean distance plays the role of ρ). Observe that

C α(U, ρ) ⊆ .
C α(U, ρ), with equality if

the set U happens to be bounded,
(7.3.21)

and
C α(U, ρ) is an algebra. (7.3.22)

In addition,

if f, g ∈ .
C α(U, ρ) and g vanishes identically outside of

a bounded subset of U then the product f · g belongs to
C α(U, ρ) and a naturally accompanying estimate holds.

(7.3.23)
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For further reference we also wish to note that since functions in
.

C α(U, ρ) are
uniformly continuous, it follows that

.
C α(U, ρ) may be canonically identified with

.
C α(U , ρ),

and C α(U, ρ) may be canonically identified with C α(U , ρ),
(7.3.24)

where U denotes the closure of U in the topology τρ .
It turns out that the inhomogeneous Hölder scale is nested, in a quantitative sense.

Specifically, if 0 < α0 < α1 < ∞ and f ∈ C α1(U, ρ) then f ∈ C α0(U, ρ) and, with
θ := α0/α1 ∈ (0, 1),

‖ f ‖C α0 (U,ρ) ≤ sup
U

| f | + 21−θ
(

sup
U

| f |)1−θ‖ f ‖θ.
C α1 (U,ρ)

≤ 3‖ f ‖C α1 (U,ρ). (7.3.25)

The first estimate in (7.3.25) is seen from (7.3.17), and the second estimate in (7.3.25)
then follows on account of this and (7.3.20).

In the same setting as above, let us also agree to define

C α
c (U, ρ) := { f ∈ .

C α(U, ρ) : f vanishes outside of a ρ-bounded subset ofU
}

.

(7.3.26)
It is then clear from definitions that

C α
c (U, ρ) = { f ∈ C α(U, ρ) : f vanishes outside of a ρ-bounded subset of U

}

.

(7.3.27)

Lemma 7.3.1 Let (X, ρ) be a metric space and let μ be a Borel measure on X with
the property that there exist c, d ∈ (0,∞) such that3

c rd ≤ μ
(

Bρ(x, r)
)

for all x ∈ X and all r ∈ (0,∞). (7.3.28)

Then any function f ∈ .
C α(X, ρ) ∩ L p(X, μ) with α ∈ (0,∞) and p ∈ (0,∞)

is bounded and

supx∈X | f (x)| ≤ 2c−θ/p‖ f ‖1−θ.
C α(X,ρ)

· ‖ f ‖θ
L p(X,μ)

where θ := (1 + d/(pα)
)−1

.
(7.3.29)

As a consequence of (7.3.29), for any given α ∈ (0,∞) and p ∈ (0,∞) there
exists a constant C = C(d, p, α, c) ∈ (0,∞) with the property that

supx∈X | f (x)| ≤ C
(‖ f ‖ .

C α(X,ρ)
+ ‖ f ‖L p(X,μ)

)

for all f ∈ .
C α(X, ρ) ∩ L p(X, μ).

(7.3.30)

3 Note that (7.3.28) entails μ(X) = +∞.
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Proof Assume first that ‖ f ‖ .
C α(X,ρ)

= 0. Then f is a constant on X , and since
(7.3.28) entails μ(X) = +∞, the membership of f to L p(X, μ) forces f ≡ 0 on
X . In such a case, (7.3.29) is trivially true. Assume next that ‖ f ‖ .

C α(X,ρ)
> 0. Fix an

arbitrary point xo ∈ X , with the goal of proving that

| f (xo)| ≤ 2c−θ/p‖ f ‖1−θ.
C α(X,ρ)

· ‖ f ‖θ
L p(X,μ). (7.3.31)

This obviously holds if | f (xo)| = 0, so assume in what follows that | f (xo)| > 0.
Abbreviate

r :=
( | f (xo)|
2‖ f ‖ .

C α(X,ρ)

) 1
α ∈ (0,∞), (7.3.32)

and note that for each x ∈ Bρ(xo, r) we have

| f (xo) − f (x)| ≤ ‖ f ‖ .
C α(X,ρ)

·ρ(xo, x)α ≤ ‖ f ‖ .
C α(X,ρ)

· rα = | f (xo)|/2. (7.3.33)

Thus | f (xo)| ≤ | f (xo) − f (x)| + | f (x)| ≤ | f (xo)|/2 + | f (x)| hence, further,

| f (xo)|/2 ≤ | f (x)| for each x ∈ Bρ(xo, r). (7.3.34)

In concert with (7.3.28), this permits us to estimate

| f (xo)|
2

· rd/p ≤ | f (xo)|
2c1/p

· μ
(

Bρ(xo, r)
)1/p

(7.3.35)

≤ c−1/p
(

ˆ
Bρ(xo,r)

| f (x)|p dμ(x)
)1/p ≤ c−1/p‖ f ‖L p(X,μ).

In turn, from (7.3.32) and (7.3.35) we readily conclude that (7.3.31) holds. Now,
(7.3.29) follows from (7.3.31) after taking the supremum over xo ∈ X .

Finally, the estimate claimed in (7.3.30) is a direct consequence of (7.3.29) and
the sequence of inequalities a1−θ · bθ ≤ max{a, b} ≤ a + bwhere a, b ∈ [0,∞) and
θ ∈ (0, 1). �

7.4 Functions of Bounded Mean Oscillations on Spaces
of Homogeneous Type

To set the stage, recall the definition of a space of homogeneous type, introduced by
R.Coifman and G.Weiss in [57]. A space of homogeneous type is a triplet
(X, ρ, μ), where the ambient X is an arbitrary set, ρ is a quasi-distance on X , and
μ is a doubling measure on X , i.e.,
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μ is a positive measure on a sigma-algebra containing all ρ-balls in X
with the property that there exists some constant C ∈ [1,∞) so that
0 < μ

(

Bρ(x, 2r)
) ≤ Cμ

(

Bρ(x, r)
)

< ∞ for all x ∈ X , r ∈ (0,∞).
(7.4.1)

We emphasize that

a doubling measure μ on a quasi-metric space (X, ρ) is Borel (relative
to the topological space (X, τρ)), locally finite, sigma-finite, as well as
both strictly positive and finite on ρ-balls

(7.4.2)

(cf. the discussion pertaining to [11, (3.10), p. 74]). Whenever the measure μ is
doubling, the number

Dμ := log2

[

sup
x∈X, r>0

μ(Bρ(x, 2r))

μ(Bρ(x, r))

]

∈ [0,∞) (7.4.3)

is referred to as the doubling order of μ. Iterating (7.4.1) then shows that there
exists some constant Cμ ∈ (0,∞) with the property that

1 ≤ μ(B1)

μ(B2)
≤ Cμ

( radius of B1

radius of B2

)Dμ

, for all ρ-balls B2 ⊆ B1 ⊆ X. (7.4.4)

Example 7.4.1 Given an arbitrary closed set � ⊆ R
n which is Ahlfors regular,

denote by C, c ∈ (0,∞) its upper and lower Ahlfors regularity constants (cf. Defini-
tion 5.9.1), and abbreviate σ := Hn−1��. Then for each dilation factor λ ∈ [1,∞),
each point x ∈ �, and each radius r ∈ (0,∞) one has

0 < σ
(

B(x, λr) ∩ �
) ≤

(C

c

)

λn−1 · σ
(

B(x, r) ∩ �
)

< +∞. (7.4.5)

Indeed, in the regime r ∈ (0, 2 diam(�)
)

this follows from (5.9.1)–(5.9.2), while in
the case when � is bounded and r > diam(�) the claim in (7.4.5) is obviously true
(since C ≥ c and λ ≥ 1). In particular, (7.4.5) shows that

(

�, | · − · |, σ ) is a space
of homogeneous type.

It is also of interest to note that (cf., e.g., [188])

for any space of homogeneous type (X, ρ, μ),

the topological space (X, τρ) is separable.
(7.4.6)

We shall use this fact in the lemma below to show that, given any space of homo-
geneous type, the underlying measure space is non-atomic if and only if the corre-
sponding measure does not charge singletons.
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Lemma 7.4.2 If (X, ρ, μ) is a space of homogeneous type with the property that μ

does not charge singletons.4 Then the measure space (X, μ) is non-atomic.5

Proof As noted in (7.4.6), the topological space (X, τρ) is separable, so there exists a
dense set {x j } j∈N ⊆ X . Arrange the countable family of ρ-balls with centers {x j } j∈N

and radii inQ+ as a sequence {B j } j∈N ⊆ M. Seeking a contradiction, assume A ∈ M
is an atom. Fix x∗ ∈ X and note that μ

(

A ∩ Bρ(x∗, j)
)↗ μ(A) > 0 as j ↗ ∞.

Thus, there exists j∗ ∈ N so that μ
(

A ∩ Bρ(x∗, j)
)

> 0. Since A ∩ Bρ(x∗, j∗) ∈ M
is a subset of A with 0 < μ

(

A ∩ Bρ(x∗, j∗)
) ≤ μ

(

Bρ(x∗, j)
)

< ∞, the fact that A is
an atom forces μ(A) = μ

(

A ∩ Bρ(x∗, j∗)
) ≤ μ

(

Bρ(x∗, j)
)

< ∞. This proves that
0 < μ(A) < ∞.

Next, for each j ∈ N, the fact that A is an atom ensures that eitherμ(A ∩ B j ) = 0,
or μ(A ∩ B j ) = μ(A). In the latter case we have μ(A \ B j ) = 0 since μ(A) < ∞.
Hence, if for each j ∈ N we set E j := X \ B j when μ(A ∩ B j ) = 0, and E j := B j

when μ(A ∩ B j ) = μ(A), it follows that E j ∈ M satisfies μ(A \ E j ) = 0 for each
j ∈ N. Define

E := A ∩
(
⋂

j∈N

E j

)

. (7.4.7)

Then E ∈ M is a subset of A and

A \ E = A \
(
⋂

j∈N

E j

)

= A ∩
(
⋂

j∈N

E j

)c = A ∩
(
⋃

j∈N

Ec
j

)

=
⋃

j∈N

(A ∩ Ec
j ) =

⋃

j∈N

(A \ E j ), (7.4.8)

so μ(A \ E) ≤ ∑

j∈N

μ(A \ E j ) = 0. In view of the fact that μ(A) < ∞, this forces

μ(E) = μ(A) ∈ (0,∞) and, since A is an atom, we ultimately conclude that E is
an atom. Suppose E is not a singleton. Then there exist x, y ∈ E with x �= y. Upon
recalling the nature of {B j } j∈N, we see that there exists jo ∈ N such that x ∈ B jo but
y /∈ B jo . However, since x, y ∈ E jo , the former implies E jo = B jo , while the latter
implies E jo = X \ B jo , an impossibility. Thus E is necessarily a singleton. Given
that, by assumption, μ does not charge singletons, we then have μ(E) = 0. This
stands in contradiction with the fact that, as noted earlier, μ(E) ∈ (0,∞). �

For future references let us also note in the lemma below that suitably weighted
non-atomic sigma-finite measure spaces continue to be non-atomic sigma-finite.

Lemma 7.4.3 Let (X,M, μ) be a non-atomic measure space with the property
that there exists a family (X j ) j∈N ⊆ M with μ(X j ) < ∞ and X =⋃ j∈N

X j (hence

4 I.e., μ({x}) = 0 for each x ∈ X .
5 That is, there are no sets A ∈ M with μ(A) > 0 such that either μ(E) = 0 or μ(E) = μ(A) for
any E ∈ M with E ⊆ A.
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(X,M, μ) is also sigma-finite). Suppose w : X → [0,∞] is a μ-measurable func-
tion satisfying w > 0 at σ -a.e. point in X and

´
X j

w dμ < +∞ for each j ∈ N. Then
(X,M, wμ) is a non-atomic sigma-finite measure space as well.

Proof Fromassumptions, 0 < w < ∞ atσ -a.e. point in X , sow is aweight function.
Let us identify this weight with the measurewμ, i.e., set dw := w dμ. In view of the
fact that w(X j ) = ´

X j
w dμ < +∞ for each j ∈ N, we conclude that the measure

space (X,M, w) is sigma-finite. There remains to show that this measure space is
also non-atomic. To this end, assume A ∈ M is a set with w(A) > 0. The latter
forces μ(A) > 0 and, since (X,M, μ) is non-atomic, we conclude that there exists
E ∈ M with E ⊆ A and 0 < μ(E) < μ(A). Hence, w(E) > 0. If for each N ∈ N

wedefine EN := E ∩ (
⋃N

j=1 X j
)

, then EN ∈ M and EN ⊆ EN+1 ⊆ E ⊆ A for each
N ∈ N, and w(EN ) ↗ w(E) > 0 as N → ∞. The latter property guarantees that
w(EN ) > 0 for all N ’s large. If there exists such a number N for which we also have
w(EN ) < w(A), then A cannot be an atom, andwe are done. Seeking a contradiction,
assume w(EN ) = w(A) for all N large. From this and w(EN ) < ∞ we thus obtain
w(A \ EN ) = 0 for all N large, hence alsoμ(A \ EN ) = 0 for all N large. In turn, this
permits us to write μ(A) = μ(A \ EN ) + μ(EN ) = μ(EN ) for all N large. Passing
now to limit N → ∞ then yields μ(A) = μ(E), which stands in contradiction with
the fact that μ(E) < μ(A). �

Moving on, in the context of a generic space of homogeneous type (X, ρ, μ),
given any function f ∈ L1

loc(X, μ) we agree to abbreviate

fBρ(x,r) :=
 

Bρ(x,r)

f dμ := 1

μ
(

Bρ(x, r)
)

ˆ
Bρ (x,r)

f (y) dμ(y), (7.4.9)

for each x ∈ X and r > 0. In the next proposition we record a sharp version of
Lebesgue’s Differentiation Theorem.

Proposition 7.4.4 Let (X, ρ, μ) be a space of homogeneous type. Recall (7.3.26)
and denote by C 0

c (X, τρ) the space of functions f : X → R which are continuous
with respect to the topology τρ and vanish outside of a ρ-ball in X. Then the following
conditions are equivalent:

(1) the measure μ is Borel-semiregular on (X, τρ);
(2) for every function f ∈ L1

loc(X, μ) one has

lim
r→0+

 
Bρ(x,r)

| f (y) − f (x)| dμ(y) = 0 for μ-almost every x ∈ X; (7.4.10)

(3) for every function f ∈ L1
loc(X, μ) there holds

lim
r→0+

 
Bρ(x,r)

f dμ = f (x) for μ-almost every x ∈ X; (7.4.11)
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(4) for some (or all ) p ∈ (0,∞) one has

C 0
c (X, τρ) ↪→ L p(X, μ) densely; (7.4.12)

(5) for any finite β ∈ (0, (log2Cρ)
−1
]

(where the number Cρ ∈ [1,∞) is associated
with ρ as in (7.1.4)) and some (or all ) p ∈ (0,∞) one has

C β
c (X, ρ) ↪→ L p(X, μ) densely. (7.4.13)

Proof Bring in the regularized version ρ# of the original quasi-distance ρ, con-
structed in Theorem 7.1.2. From (7.1.21) we see that

Bρ# (x, C−2
ρ r) ⊆ Bρ(x, r) ⊆ Bρ# (x, ˜Cρr),

for every point x ∈ X and every radius r > 0.
(7.4.14)

Based on this and the fact that the measure μ is doubling, we then conclude that
there exist two constants c, C ∈ (0,∞) with the property that for every function
f ∈ L1

loc(X, μ), every point x ∈ X , and every radius r > 0 we have

c
 

Bρ# (x,C−2
ρ r)

| f | dμ ≤
 

Bρ(x,r)

| f | dμ ≤ C
 

Bρ# (x,˜Cρr)

| f | dμ. (7.4.15)

In particular, for each function f ∈ L1
loc(X, μ) and each fixed point x ∈ X ,

lim
r→0+

 
Bρ(x,r)

| f (y) − f (x)| dμ(y) = 0 ⇐⇒ lim
r→0+

 
Bρ# (x,r)

| f (y) − f (x)| dμ(y) = 0

(7.4.16)
and, as a consequence,

lim
r→0+

 
Bρ(x,r)

f dμ = f (x) ⇐⇒ lim
r→0+

 
Bρ# (x,r)

f dμ = f (x). (7.4.17)

Having established these equivalences, all desired conclusions are now provided by
[11, Theorem 3.14, p. 93]. �

Proposition 7.4.4 is frequently employed in the future. For now, we use it to prove
the following density result.

Lemma 7.4.5 Suppose (X, ρ, μ) is a space of homogeneous type with the prop-
erty that the measure μ is Borel-semiregular on (X, τρ). Fix a finite number
β ∈ (0, (log2Cρ)

−1
]

along with an integrability exponent p ∈ (0,∞). Then for each
μ-measurable set E ⊆ X it follows that

C β
c (E, ρ) ↪→ L p(E, μ) densely. (7.4.18)
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Proof Given some μ-measurable set E ⊆ X , for each f ∈ L p(E, μ) apply Propo-
sition 7.4.4 to the function

˜f :=
{

f in E,

0 in X \ E,
(7.4.19)

to conclude that there exists a sequence {φ j } j∈N ⊆ C β
c (X, ρ)which converges to ˜f in

L p(X, μ). Then {φ j |E } j∈N ⊆ C β
c (E, ρ) is a sequence convergent to f in L p(E, μ),

so (7.4.18) is established. �

In turn, Lemma 7.4.5 plays a role in the proof of the density result reminiscent of
the fact that test functions (i.e., smooth compactly supported functions) are dense in
Lebesgue spaces in open subsets of the Euclidean ambient.

Lemma 7.4.6 Assume (X, ρ, μ) is a space of homogeneous type with the prop-
erty that the measure μ is Borel-semiregular on (X, τρ). Fix a finite number
β ∈ (0, (log2Cρ)

−1
]

along with an open set O in (X, τρ). Denote by C β

0 (O, ρ) the
collection of functions f ∈ C β(O, ρ) with the property that there exists a ρ-bounded
subset K of O such that distρ(K , X \ O) > 0 and f ≡ 0 on O \ K . Then for each
integrability exponent p ∈ (0,∞) it follows that

C β

0 (O, ρ) ↪→ L p(O, μ) densely. (7.4.20)

Proof By eventually replacing ρ by ρ# (cf. Theorem 7.1.2), there is no loss of
generality in assuming that the quasi-distance ρ : X × X → [0,∞) is continuous
in the product topology τρ × τρ . Fix an arbitrary function f ∈ L p(O, μ) together
with a reference point x∗ ∈ X . Since f 1O∩Bρ(x∗, j) → f in L p(O, μ) as j → ∞ by
Lebesgue’s Dominated Convergence Theorem, it suffices to prove (7.4.20) with O
replaced by O ∩ Bρ(x∗, j) for each fixed j ∈ N. In other words, there is no loss of
generality in assuming that the open set O is also ρ-bounded.

Pick an arbitrary threshold δ > 0. Then Lemma 7.4.5 guarantees that there exists
g ∈ C β

c (O, ρ) such that ‖ f − g‖L p(O,μ) < δ/2. To proceed, for each ε > 0 define

Oε := {x ∈ O : distρ(x, X \ O) > ε
}

. (7.4.21)

Then according to the version of Urysohn’s lemma proved in [188, Theorem 4.12,
p. 165] for each ε > 0 there exists ψε ∈ .

C β(X, ρ) satisfying

0 ≤ ψε ≤ 1 on X, ψε ≡ 1 on Oε, ψε ≡ 0 on X \ Oε/2. (7.4.22)

In particular, ψε ∈ C β(X, ρ) given that we are presently assuming that O is
ρ-bounded (cf. (7.3.21)). Then gψε belongs to C β

0 (O, ρ) for each ε > 0, and
gψε → g in L p(O, μ) as ε → 0+ by Lebesgue’s Dominated Convergence Theorem.
Hence, ‖ f − gψε‖L p(O,μ) < δ if ε > 0 is small enough, and the desired conclusion
follows. �
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We next concern ourselves with the following characterization of Hölder conti-
nuity in terms of integral mean oscillations. Results similar in spirit may be found in
[169, Theorem 4, p. 259], [96, Theorem 3.3, p. 292].

Proposition 7.4.7 Let (X, ρ, μ) be a space of homogeneous type with the property
that the measure μ is Borel-semiregular on (X, τρ). Fix an integrability exponent
p ∈ [1,∞) along with some number α ∈ (0,∞). Then there exists some constant
C ∈ (0,∞) which depends only on the ambient with the following significance: for
each f ∈ L1

loc(X, μ) satisfying

M f,p,α := sup
r>0

sup
B⊂X

ρ-ball of radius r

{

r−α
(

 
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣

p
dμ
)1/p

}

< +∞ (7.4.23)

one can find a function ˜f ∈ .
C α(X, ρ) which coincides with f at μ-a.e. point in X

and has the property that
‖˜f ‖ .

C α(X,ρ)
≤ C M f,p,α. (7.4.24)

In the opposite direction, there exists a constant C ∈ (0,∞) which depends only
on ρ with the property that for any function f ∈ .

C α(X, ρ) and each ρ-ball B ⊆ X
of radius r one has

r−α
(

 
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣

p
dμ
)1/p ≤ C‖ f ‖ .

C α(X,ρ)
. (7.4.25)

Proof To set the stage, we introduce a piece of notation and make an observation.
Specifically, given any function f ∈ L1

loc(X, μ) we agree to abbreviate

fBρ(x,r) :=
 

Bρ(x,r)

f dμ for each x ∈ X and r > 0. (7.4.26)

In this regard, we observe that if a function f ∈ L1
loc(X, μ) satisfies (7.4.23) then for

each x ∈ X , r ∈ (0,∞), and R ∈ (r, 2r) we may employ (7.4.23) to write

∣

∣ fBρ(x,r) − fBρ(x,R)

∣

∣ =
∣

∣

∣

 
Bρ (x,r)

(

f − fBρ (x,R)

)

dμ
∣

∣

∣ ≤
 

Bρ(x,r)

∣

∣ f − fBρ (x,R)

∣

∣ dμ

= 1

μ
(

Bρ(x, r)
)

ˆ
Bρ(x,r)

∣

∣ f − fBρ (x,R)

∣

∣ dμ

≤ μ
(

Bρ(x, 2r)
)

μ
(

Bρ(x, r)
)

 
Bρ(x,R)

∣

∣ f − fBρ (x,R)

∣

∣ dμ

≤ C Rα · M f,p,α, (7.4.27)

where C ∈ [1,∞) is the doubling constant of μ (cf. (7.4.1)). To proceed, denote by
L f the set of all Lebesgue points of f , i.e.,
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L f :=
{

x ∈ X : lim
r→0+

 
Bρ(x,r)

f (y) dμ(y) = f (x)
}

. (7.4.28)

From Proposition 7.4.4 we know that N f := X \ L f is a nullset for the measure μ.
In particular,

L f is a dense subset of X, in the topology τρ. (7.4.29)

Next, pick two distinct points x1, x2 ∈ X \ N f = L f and set R := ρ(x1, x2) > 0.
Fix some r ∈ (0, R) and define j∗ := min

{

j ∈ N : 2 j r ≥ R
}

. Note that the later
choice entails

2 j∗r ≥ R > 2 j∗−1r, hence also 2R > 2 j∗r. (7.4.30)

Based on this and (7.4.27) we may then estimate

∣

∣ fBρ (x1,r) − fBρ (x1,2R)

∣

∣ ≤
j∗−1
∑

j=1

∣

∣ fBρ(x1,2 j r) − fBρ(x1,2 j+1r)

∣

∣+ ∣∣ fBρ (x1,2 j∗ r) − fBρ (x1,2R)

∣

∣

≤ C
(

j∗
∑

j=1

(2 j r)α
)

· M f,p,α ≤ C(2 j∗r)α · M f,p,α

≤ C Rα · M f,p,α = Cρ(x1, x2)
α · M f,p,α, (7.4.31)

given the significance of R. After sending r → 0+ we arrive at

∣

∣ f (x1) − fBρ (x1,2R)

∣

∣ ≤ Cρ(x1, x2)
α · M f,p,α, (7.4.32)

on account of Proposition 7.4.4 (here is where we use the fact that μ is Borel-
semiregular). Likewise, we obtain

∣

∣ f (x2) − fBρ(x2,2R)

∣

∣ ≤ Cρ(x1, x2)
α · M f,p,α. (7.4.33)

Going further, since for each y ∈ Bρ(x1, 2R) we have

ρ(y, x2) ≤ Cρ · max
{

ρ(y, x1), ρ(x1, x2)
} = 2Cρ R (7.4.34)

it follows that
Bρ(x1, 2R) ⊆ Bρ(x2, 2Cρ R) (7.4.35)

and, similarly,

Bρ(x2, 2Cρ R) ⊆ Bρ(x1, λR) where λ := C2
ρ · max{2, ˜Cρ}. (7.4.36)

Bearing these inclusions in mind, we may now estimate
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∣

∣ fBρ(x1,2R) − fBρ (x2,2R)

∣

∣ ≤ I + II, (7.4.37)

where, reasoning much as in (7.4.27),

I := ∣∣ fBρ (x2,2R) − fBρ(x2,2Cρ R)

∣

∣ ≤ Cρ(x1, x2)
α · M f,p,α, (7.4.38)

and

II := ∣∣ fBρ(x2,2Cρ R) − fBρ (x1,2R)

∣

∣

=
∣

∣

∣

 
Bρ(x1,2R)

(

f − fBρ(x2,2Cρ R)

)

dμ
∣

∣

∣ ≤
 

Bρ(x1,2R)

∣

∣ f − fBρ(x2,2Cρ R)

∣

∣ dμ

= 1

μ
(

Bρ(x1, 2R)
)

ˆ
Bρ(x1,2R)

∣

∣ f − fBρ(x2,2Cρ R)

∣

∣ dμ

≤ μ
(

Bρ(x2, 2Cρ R)
)

μ
(

Bρ(x1, 2R)
)

 
Bρ(x2,2Cρ R)

∣

∣ f − fBρ(x1,2Cρ R)

∣

∣ dμ

≤ μ
(

Bρ(x1, λR)
)

μ
(

Bρ(x1, 2R)
)

 
Bρ(x2,2Cρ R)

∣

∣ f − fBρ (x1,2Cρ R)

∣

∣ dμ

≤ C Rα · M f,p,α. (7.4.39)

Gathering (7.4.32), (7.4.33), and (7.4.37)–(7.4.39) leads to the conclusion that

∣

∣ f (x1) − f (x2)
∣

∣ ≤ Cρ(x1, x2)
α · M f,p,α. (7.4.40)

In view of the arbitrariness of x1, x2 ∈ L f , the reasoning so far shows that

f ∈ .
C α(L f , ρ) and ‖ f ‖ .

C α(L f ,ρ)
≤ C M f,p,α. (7.4.41)

Since L f is a dense subset of X in the topology τρ (cf. (7.4.29)), we conclude from
(7.4.41) and (7.3.24) that there exists a unique function

˜f ∈ .
C α(L f , ρ) with ‖˜f ‖ .

C α(L f ,ρ)
≤ C M f,p,α and ˜f

∣

∣

L f
= f. (7.4.42)

In particular, ˜f = f at μ-a.e. point in X . This completes the proof of the first claim
in the statement.

As regards the second claim, assume the measure μ does not charge singletons
and fix a function f ∈ .

C α(X, ρ). In particular, f is continuous with respect to the
topology τρ , hence f is μ-measurable, since μ is a Borel measure (cf. (7.4.2)). As
such, for each given ρ-ball B ⊆ X of radius r it is meaningful to write
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(

 
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣

p
dμ
)1/p ≤

(

μ(B)−2
ˆ

B

ˆ
B

| f (x) − f (y)|p dμ(x) dμ(y)
)1/p

≤ ‖ f ‖ .
C α(X,ρ)

· (CρC̃ρ · r
)α

, (7.4.43)

thanks to Hölder’s inequality and the fact that ρ(x, y) < CρC̃ρ · r for each pair of
points x, y ∈ B. Now (7.4.25) readily follows from (7.4.43). �

The next proposition contains a Hölder regularity criterion which prefigures the
duality result between Hardy spaces and Hölder spaces (cf. [185, Sect. 4.6]).

Proposition 7.4.8 Let (X, ρ, μ) be a space of homogeneous type with the property
that the measure μ is Borel-semiregular on (X, τρ) and there exist C, d ∈ (0,∞)

such that
μ
(

Bρ(x, r)
) ≤ Crd for all x ∈ X and r ∈ (0,∞). (7.4.44)

Fix an integrability exponent p ∈ (0, 1) and define α := d
(

1
p − 1

) ∈ (0,∞). Then
there exists a constant C ∈ (1,∞) which depends only on the ambient with the
following significance. Suppose f ∈ L1

loc(X, μ) is such that

M f := sup
g

∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ < +∞, (7.4.45)

where the supremum is taken over all μ-measurable functions g : X → R for which
there exists a ρ-ball B in X such that

supp g ⊆ B, ‖g‖L∞(X,μ) ≤ μ(B)−1/p,

ˆ
X

g dμ = 0. (7.4.46)

Then there exists a function ˜f ∈ .
C α(X, ρ) which coincides with f at μ-a.e. point

in X and has the property that

‖˜f ‖ .
C α(X,ρ)

≤ C · M f . (7.4.47)

Finally, if in place of (7.4.44) one now assumes that there exist c, d ∈ (0,∞)

such that

c rd ≤ μ
(

Bρ(x, r)
)

for all x ∈ X and r ∈ (0, diamρ(X)
)

, (7.4.48)

then for each function f ∈ .
C α(X, ρ) one has

∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ ≤ C‖ f ‖ .
C α(X,ρ)

(7.4.49)

for each g ∈ L∞(X, μ) enjoying the properties listed in (7.4.46) for some ρ-ball B
in X.
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Proof Fix an arbitrary ρ-ball B ⊂ X . Bearing in mind that we have 0 < μ(B) < ∞
(cf. (7.4.2)) as well as

´
B

(

f − ffl
B f dμ

)

dμ = 0, from Lemma 7.4.11 and (7.4.45)–
(7.4.46) we conclude that

 
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣ dμ

≤ 2μ(B)−1 sup
{∣

∣

∣

ˆ
B

f g dμ
∣

∣

∣ : g ∈ L∞(B, μ), ‖g‖L∞(B,μ) ≤ 1,
ˆ

B
g dμ = 0

}

≤ 2M f · μ(B)1/p−1 ≤ C M f · rα, (7.4.50)

thanks to (7.4.48) plus the fact that 1
p − 1 = α

d . In turn, from this and (7.4.23) we
see that

M f,1,α = sup
r>0

sup
B⊂X

ρ-ball of radius r

{

r−α

 
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣ dμ

}

≤ C M f < +∞. (7.4.51)

Granted this, Proposition 7.4.7 applies and implies the existence of ˜f ∈ .
C α(X, ρ)

which coincides with f at μ-a.e. point in X and such that (7.4.47) holds.
Finally, work under the assumption (7.4.48) in place of (7.4.44).We now consider

a function f ∈ .
C α(X, ρ) along with some g ∈ L∞(X, μ) satisfying the properties

listed in (7.4.46) for some ρ-ball B ⊆ X of radius r . Then (7.4.48) permits us to
estimate

∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ =
∣

∣

∣

ˆ
X

(

f −
 

B
f dμ

)

g dμ
∣

∣

∣ =
∣

∣

∣

ˆ
B

(

f −
 

B
f dμ

)

g dμ
∣

∣

∣

≤ ‖g‖L∞(X,μ)μ(B)−1
ˆ

B

ˆ
B

| f (x) − f (y)| dμ(x) dμ(y)

≤ ‖ f ‖ .
C α(X,ρ)

μ(B)1−1/p sup
x,y∈B

ρ(x, y)α

≤ C‖ f ‖ .
C α(X,ρ)

μ(B)1−1/prα

≤ C‖ f ‖ .
C α(X,ρ)

, (7.4.52)

proving (7.4.49). �

The following local version of Proposition 7.4.7 extends the characterization of
the class of Hölder functions in the Euclidean space given by N.Meyers in [180] to
the setting of spaces of homogeneous type.

Proposition 7.4.9 Let (X, ρ, μ) be a space of homogeneous type with the property
that the measure μ is Borel-semiregular on (X, τρ). Fix an integrability exponent
p ∈ [1,∞) along with some α ∈ (0,∞). Then there exist two constants C ∈ (0,∞)

and λ ∈ (2,∞) which depend only on the ambient with the following significance.
Suppose B is a ρ-ball in X and f ∈ L1(λB, μ) satisfies
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M f,p,α,B := sup
B ′⊆λB

{

r−α
(

 
B ′

| f − fB ′ |p dμ
)1/p

}

< +∞, (7.4.53)

where the supremum is taken over all ρ-balls B ′ contained in B, the radius of B ′
is denoted by r , and fB ′ := μ(B ′)−1

´
B ′ f dμ for each such ρ-ball B ′. Then there

exists a function ˜f ∈ .
C α(B, ρ) which coincides with f at μ-a.e. point in B and has

the property that
‖˜f ‖ .

C α(B,ρ)
≤ C M f,p,α,B . (7.4.54)

Proof The global version of this result (formally corresponding to B := X ) is con-
tained in Proposition 7.4.7, and the local version described here may be estab-
lished in the very same manner. The only novel aspect is the observation that for
each pair of distinct points x1, x2 ∈ B and any constant C ∈ (0,∞) the ρ-ball
B ′ := Bρ

(

x1, Cρ(x1, x2)
) ⊆ λB for some sufficiently large λ ∈ (0,∞), depending

only on the ambient and C , which makes (7.4.53) applicable. �

Let
(

X, ρ, μ
)

be a measure metric space. That is, (X, ρ) is a metric space
and μ is a doubling measure on X (in particular, the triplet

(

X, ρ, μ
)

is a space of
homogeneous type). Recall the piece of notation introduced in (7.4.9). In relation to
this, we note that if � and �′ are two ρ-balls in X with the property that �′ ⊆ �,
then for any f ∈ L1

loc(X, μ) and any p ∈ [1,∞) we have

(

 
�′

| f − f�′ |p dμ
) 1

p ≤ 2
( μ(�)

μ(�′)

) 1
p
(

 
�

| f − f�|p dμ
) 1

p
, (7.4.55)

(

 
�

| f − f�′ |p dμ
) 1

p ≤
[

1 +
( μ(�)

μ(�′)

) 1
p
](

 
�

| f − f�|p dμ
) 1

p
, (7.4.56)

1

2

(

 
�

| f − f�|p dμ
) 1

p ≤ inf
c∈C

(

 
�

| f − c|p dμ
) 1

p ≤
(

 
�

| f − f�|p dμ
) 1

p
,

(7.4.57)

(

 
�

| f − f�|p dμ
) 1

p ≤ 2
(

 
�

| f |p dμ
) 1

p
, (7.4.58)

as well as

(

 
�

| f (x) − f�|pμ(x)
) 1

p ≤
(

 
�

 
�

| f (x) − f (y)|p dμ(y) dμ(x)
) 1

p

≤ 2
(

 
�

| f (x) − f�|pμ(x)
) 1

p
. (7.4.59)

Next, given an arbitrary ρ-ball � ⊆ X along with some function f ∈ L1(�,μ),
let us agree to abbreviate
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‖ f ‖∗(�) := sup
�′⊆�

 
�′

| f − f�′ | dμ (7.4.60)

with the supremum taken over all ρ-balls �′ ⊆ X contained in �. In relation to this,
we make several simple but useful observations. First we note that there is no loss
of generality in assuming that

the supremum in (7.4.60) is taken over all ρ-balls �′ ⊆ X
contained in � with radii less than or equal to diamρ(X).

(7.4.61)

Second, (7.4.56) implies that there exists some constant C ∈ (0,∞) which depends
only on n and the doubling constant of μ with the property that for each function
f ∈ L1

loc(X, μ) and each ρ-ball � ⊆ X we have

∣

∣ f2� − f�
∣

∣ ≤ C‖ f ‖∗(2�). (7.4.62)

In turn, (7.4.62) may be used to estimate

∣

∣ f2 j � − f�
∣

∣ ≤
j
∑

k=1

∣

∣ f2k� − f2k−1�

∣

∣ ≤ C j‖ f ‖∗(2 j�), (7.4.63)

for each function f ∈ L1
loc(X, μ), each ρ-ball � ⊆ X , and each integer j ∈ N. For

future use, let us also note here that there exists someC ∈ (0,∞)which depends only
on the doubling constant ofμwith the property that for each function f ∈ L1

loc(X, μ)

we have
∣

∣ f�(x,R) − f�(y,R)

∣

∣ ≤ C‖ f ‖∗(�(x, 2R))

for each pair of points x, y ∈ X and each radius R > ρ(x, y).
(7.4.64)

Finally, we note that the same arguments that have produced (7.4.62)–(7.4.64) may
be used to show that there existsC ∈ (0,∞) depending only on the doubling constant
of μ with the property that for each f ∈ L1

loc(X, μ) we have

∣

∣ f� − f�′
∣

∣ ≤ C

[

1 + log2

∣

∣

∣

μ(�)

μ(�′)

∣

∣

∣

]

· max
{

‖ f ‖∗(9�), ‖ f ‖∗(9�′)
}

for every pair of ρ-balls �,�′ in X with � ∩ �′ �= ∅.

(7.4.65)

Let us now recall the John–Nirenberg inequality in the present setting which
asserts that (see, e.g., [1, Theorem 5.2], [22, Theorem 3.15], [78, Theorem 3.1,
p. 1397], as well as [153, Lemma 2.4, p. 409] and the references therein) there exist
two constantsC1, C2 ∈ (0,∞), depending only on the doubling constant of the mea-
sureμ, with the property that for any ρ-ball� ⊆ X and any function f ∈ L1(5�,μ)

with 0 < ‖ f ‖∗(5�) < +∞ there holds



7.4 Functions of Bounded Mean Oscillations on Spaces of Homogeneous Type 595

μ
({x ∈ � : | f (x) − f�| > λ}) ≤ C1 exp

{

−
( C2

‖ f ‖∗(5�)

)

λ
}

μ(�), ∀λ > 0.

(7.4.66)
As a corollary of this John–Nirenberg inequality, we obtain the following basic result.

Lemma 7.4.10 Assume
(

X, ρ, μ
)

is some given measure metric space. Then for
each ρ-ball � ⊆ X, each function f ∈ L1(5�,μ), and each exponent p ∈ [1,∞),
one has

(

 
�

| f − f�|p dμ
) 1

p ≤
p
√

C1 · �(p + 1)

C2
‖ f ‖∗(5�)

= Cμ,p · sup
�′⊆5�

 
�′

| f − f�′ | dμ (7.4.67)

where C1, C2 ∈ (0,∞) are the constants intervening in the local John–Nirenberg
level set estimate recorded in (7.4.66), and

�(t) :=
ˆ ∞

0
λt−1e−λ dλ for all t ∈ (0,∞) (7.4.68)

is the classical Gamma function.

Proof Since (7.4.67) is clear when ‖ f ‖∗(5�) is 0 or +∞, we may assume that
0 < ‖ f ‖∗(5�) < +∞. Granted this, the local John–Nirenberg level set estimate
with exponential bound from (7.4.66) plus a natural change of variables permit us to
write

 
�

| f − f�|p dμ = p

μ(�)

ˆ ∞

0
λp−1μ

(

{

x ∈ � : | f (x) − f�| > λ
}

)

dλ

≤ C1 p
ˆ ∞

0
λp−1exp

( −C2λ

‖ f ‖∗(5�)

)

dλ

= C1 p
(

C−1
2 ‖ f ‖∗(5�)

)p
ˆ ∞

0
t p−1e−t dt

= C1 p �(p)
(

C−1
2 ‖ f ‖∗(5�)

)p
. (7.4.69)

Since p �(p) = �(p + 1), this readily justifies (7.4.67). �

Moving on, with each f ∈ L1
loc(X, μ) associate the quantity (which may happen

to be +∞)

‖ f ‖ .
BMO(X,μ)

:= sup
x∈X, r>0

 
Bρ(x,r)

∣

∣ f − fBρ(x,r)

∣

∣ dμ. (7.4.70)

For further use, let us observe here that the John–Nirenberg inequality (cf. (7.4.67))
implies that for each integrability exponent p ∈ [1,∞) we have (again, with �

denoting arbitrary ρ-balls in the ambient X )
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‖ f ‖ .
BMO(X,μ)

≈ sup
�⊆X

( 
�

∣

∣ f − f�
∣

∣

p
dμ

) 1
p

≈ sup
�⊆X

inf
c∈C

( 
�

∣

∣ f − c
∣

∣

p
dμ

) 1
p

,

(7.4.71)

uniformly for f ∈ L1
loc(X, μ).

Proposition 7.4.12 deals with the end-point case p = 1 in Proposition 7.4.8.
Before stating it, we recall a basic duality result and prove a useful variant.
Specifically, if (X, μ) is an arbitrary measure space, and p ∈ [1,∞) together with
p′ ∈ (1,∞] are Hölder conjugate exponents, then it is well known (cf., e.g., [91,
Proposition 6.13, p. 188]) that

‖ f ‖L p(X,μ) = sup
{∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ : g ∈ L p′
(X, μ) with ‖g‖L p′

(X,μ) = 1
}

(7.4.72)

for each function f ∈ L p(X, μ). We are interested in a version of this formula for
functions with a vanishing moment, as described in the lemma below.

Lemma 7.4.11 Assume (X, μ) is a measure space satisfying μ(X) < ∞. In addi-
tion, suppose p ∈ [1,∞) and p′ ∈ (1,∞] are two Hölder conjugate exponents. Then

‖ f ‖L p(X,μ) ≤ 2 sup
{∣

∣

∣

´
X f g dμ

∣

∣

∣ : g ∈ L p′
(X, μ), ‖g‖L p′

(X,μ)= 1,
´

X g dμ = 0
}

for each function f ∈ L p(X, μ) with
´

X f dμ = 0.
(7.4.73)

Proof If μ identically zero, there is nothing to prove, so assume μ(X) > 0 in what
follows.Consider an arbitrary function g ∈ L p′

(X, μ)with‖g‖L p′
(X,μ) = 1. Sincewe

are presently assumingμ(X) < ∞, it follows that h := g − μ(X)−1
´

X g dμbelongs
to L p′

(X, μ) ⊆ L1(X, μ) and satisfies ‖h‖L p′
(X,μ) ≤ 2 as well as

´
X h dμ = 0. Fix

now an arbitrary function f ∈ L p(X, μ) with
´

X f dμ = 0. In particular, the latter
property ensures that

´
X f h dμ = ´

X f g dμ which, in turn, implies

∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ (7.4.74)

≤ 2 sup
{∣

∣

∣

ˆ
X

f φ dμ
∣

∣

∣ : φ ∈ L p′
(X, μ), ‖φ‖L p′

(X,μ) ≤ 1,
ˆ

X
φ dμ = 0

}

.

Taking the supremum over all functions g ∈ L p′
(X, μ) with ‖g‖L p′

(X,μ) = 1 and
relying on (7.4.72) then yield

‖ f ‖L p(X,μ) (7.4.75)

≤ 2 sup
{∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ : g ∈ L p′
(X, μ), ‖g‖L p′

(X,μ) ≤ 1,
ˆ

X
g dμ = 0

}

.

Let us also observe that for each g ∈ L p′
(X, μ) which is not identically zero and

satisfies ‖g‖L p′
(X,μ) ≤ 1 as well as

´
X g dμ = 0, the function g̃ := g

/‖g‖L p′
(X,μ)
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enjoys the following properties:

g̃ ∈ L p′
(X, μ), ‖g̃‖L p′

(X,μ) = 1,
ˆ

X
g̃ dμ = 0,

and
∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ ≤
∣

∣

∣

ˆ
X

f g̃ dμ
∣

∣

∣.
(7.4.76)

Now (7.4.73) is seen from this observation and (7.4.75). �

Here is the proposition advertised earlier, prefiguring6 a basic duality result
between Hardy spaces and Hölder spaces (cf. [185, Sect. 4.6]).

Proposition 7.4.12 Let
(

X, ρ, μ
)

be a measure metric space. Pick an integrability
exponent p ∈ [1,∞) and denote by p′ ∈ (1,∞] its Hölder conjugate exponent.
Then there exist constants c, C ∈ (0,∞) with the property that for each function
f ∈ L p

loc(X, μ) one has

c‖ f ‖ .
BMO(X,μ)

≤ sup
g

∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ ≤ C‖ f ‖ .
BMO(X,μ)

, (7.4.77)

where the supremum is taken over all μ-measurable functions g : X → R for which
there exists a ρ-ball B in X such that

supp g ⊆ B, ‖g‖L p′
(X,μ) ≤ μ(B)−1/p,

ˆ
X

g dμ = 0. (7.4.78)

Proof Pick an arbitraryρ-ball B ⊆ X . In viewof the fact thatwehaveμ(B) < ∞ (cf.
(7.4.2)) and

´
B

(

f − ffl
B f dμ

)

dμ = 0, Lemma 7.4.11 applies and, with p′ ∈ (1,∞]
denoting the Hölder conjugate exponent of p, gives

(

ˆ
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣

p
dμ
)1/p

(7.4.79)

≤ 2 sup
{∣

∣

∣

ˆ
B

f g dμ
∣

∣

∣ : g ∈ L p′
(B, μ), ‖g‖L p′

(B, μ) ≤ 1,
ˆ

B
g dμ = 0

}

.

Keeping in mind (7.4.71), this readily yields the first inequality in (7.4.77). To justify
the second inequality in (7.4.77), assume g ∈ L p′

(X, μ) is a function satisfying the
properties listed in (7.4.78) for some ρ-ball B ⊆ X . Then

∣

∣

∣

ˆ
X

f g dμ
∣

∣

∣ =
∣

∣

∣

ˆ
X

(

f −
 

B
f
)

g dμ
∣

∣

∣ =
∣

∣

∣

ˆ
B

(

f −
 

B
f
)

g dμ
∣

∣

∣

≤
(

 
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣

p
dμ
)1/p ≤ C‖ f ‖ .

BMO(X,μ)
, (7.4.80)

6 See the discussion in [144, pp. 327–328].
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by Hölder’s inequality and (7.4.71). Granted this, the second inequality in (7.4.77)
is obtained after taking the supremum over all such functions g. �

Going further, for each f ∈ L1
loc(X, μ) let us set

‖ f ‖BMO(X,μ) :=
⎧

⎨

⎩

‖ f ‖ .
BMO(X,μ)

if X is unbounded,

‖ f ‖ .
BMO(X,μ)

+
∣

∣

∣

ˆ
X

f dμ
∣

∣

∣ if X is bounded.
(7.4.81)

Note that ‖ · ‖BMO(X,μ) is non-degenerate if X is bounded, but vanishes on constants if
X is unbounded. Regarding the format of ‖ · ‖BMO(X,μ) when X is bounded, observe
that for each f ∈ L1(X, μ) and each p ∈ [1,∞) we have

∣

∣

∣

ˆ
X

f dμ
∣

∣

∣ ≤ μ(X)1−1/p‖ f ‖L p(X,μ) and

‖ f ‖L p(X,μ) ≤ μ(X)1/p‖ f ‖ .
BMO(X,μ)

+ μ(X)1/p−1
∣

∣

∣

ˆ
X

f dμ
∣

∣

∣,
(7.4.82)

where the inequality in the second line uses (7.4.71). Hence,

if X is bounded, ‖ f ‖BMO(X,μ) ≈ ‖ f ‖L p(X,μ) + ‖ f ‖ .
BMO(X,μ)

uni-
formly for functions f ∈ L p(X, μ) with 1 ≤ p < ∞.

(7.4.83)

In the Euclidean setting, it is well known that the logarithm is a prototype of a
BMO function. The point of our next lemma is that this continues to be the case in
a much more general geometric environment.

Lemma 7.4.13 Let (X, ρ) be a metric space and consider a nonempty closed7 set
� ⊆ X. Also, let μ be a doubling measure on � with the property that there exist
C, d ∈ (0,∞) such that

μ
(

Bρ(x, r1) ∩ �
)

μ
(

Bρ(x, r2) ∩ �
) ≤ C

(r1
r2

)d
for all x ∈ � and 0 < r1 < r2 < ∞. (7.4.84)

In particular, this is the case if there exists c ∈ (0, 1) such that

crd ≤ μ
(

Bρ(x, r) ∩ �
) ≤ c−1rd for all x ∈ � and r ∈ (0, 2 diamρ�

)

.

(7.4.85)
Then μ does not charge singletons8 and

7 In the topology induced by ρ on X .
8 I.e., μ({x}) = 0 for each x ∈ �.
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sup
x∈X

∥

∥

∥ ln(ρ(x, ·))∣∣
�

∥

∥

∥ .
BMO(�, μ)

< +∞. (7.4.86)

Proof That μ({x}) = 0 for each x ∈ � is seen by sending r1 to zero in (7.4.84):

μ({x}) = lim
n→∞ μ

(

Bρ(x, 1/n) ∩ �
) ≤ C lim

n→∞

(1

n

)d
μ
(

Bρ(x, 1) ∩ �
) = 0.

(7.4.87)
To proceed, fix x ∈ X , xo ∈ �, and r ∈ (0,∞). Set f (y) := ln(ρ(x, y)) for each

y ∈ � \ {x}, hence for μ-a.e. y ∈ �. Then f is continuous on � \ {x}. With �

abbreviating Bρ(xo, r) ∩ �, the goal is to estimate
ffl

�
| f − c| dμ for a suitable choice

of a constant c ∈ R. To describe the actual value of c, we distinguish two cases.

Case I: Assume ρ(x, xo) > 3r . In this scenario, for each point y ∈ � we may
estimate

ρ(x, xo) < ρ(y, x) + ρ(y, xo) < ρ(y, x) + r < ρ(y, x) + ρ(x, xo)/3,
ρ(y, x) < ρ(y, xo) + ρ(x, xo) < r + ρ(x, xo) < 4ρ(x, xo)/3.

(7.4.88)

Thus 2/3 < ρ(x, y)
/

ρ(x, xo) < 4/3, so if we take c := ln(ρ(x, xo)) then

 
�

| f (y) − c| dμ(y) =
 

�

∣

∣

∣ ln
( ρ(x, y)

ρ(x, xo)

)∣

∣

∣ dμ(y) ≤ ln(3/2). (7.4.89)

Case II: Assume ρ(x, xo) ≤ 3r . First, we claim that there exists some point x∗
belonging to � such that ρ(x, x∗) ≤ 2 distρ(x, �). Indeed, if distρ(x, �) > 0 then
this is a direct consequence of definitions. On the other hand, if distρ(x, �) = 0
then for each n ∈ N there exists xn ∈ � such that ρ(x, xn) < 1/n. In particular,
lim

n→∞ xn = x in the topology induced by ρ on X , so x ∈ � given that � is closed.

Hence, x∗ := x will do in this scenario.
Moving on, observe that ρ(x, x∗) ≤ 2 distρ(x, �) ≤ 2ρ(x, xo) ≤ 6r . Hence, for

each point y ∈ � we have ρ(y, x∗) < ρ(y, xo) + ρ(xo, x) + ρ(x, x∗) < 10r . Also,

ρ(y, x∗) ≤ ρ(y, x) + ρ(x, x∗) ≤ ρ(y, x) + 2 distρ(x, �) ≤ 3ρ(y, x),

and ρ(x, y) ≤ ρ(x, x∗) + ρ(y, x∗) < 16r.
(7.4.90)

Consequently, 0 ≤ ρ(y, x∗)/(48r)<ρ(x, y)/(16r)<1. If we now take c : = ln(16r)

wemayuse(7.4.4)and(7.4.84)towrite(withDμ ∈ [0,∞)denotingthedoublingorder
ofμ; cf. (7.4.3))
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�

| f (y) − c| dμ(y) (7.4.91)

≤ 1

μ(�)

ˆ
Bρ(x∗,10r)∩�

∣

∣

∣ ln
(ρ(x, y)

16r

)∣

∣

∣ dμ(y)

≤ 1

μ(�)

ˆ
Bρ(x∗,10r)∩�

∣

∣

∣ ln
(ρ(y, x∗)

48r

)∣

∣

∣ dμ(y)

= 1

μ(�)

∞
∑

j=0

ˆ
[Bρ (x∗,10r2− j )\Bρ(x∗,10r2− j−1)]∩�

∣

∣

∣ ln
(ρ(y, x∗)

48r

)∣

∣

∣ dμ(y)

≤
∞
∑

j=0

∣

∣

∣ ln
(10 · 2− j−1

48

)∣

∣

∣

μ
(

Bρ(x∗, 10r · 2− j ) ∩ �
)

μ(�)

≤ Cμ

3
∑

j=0

∣

∣

∣ ln
(10 · 2− j−1

48

)∣

∣

∣(10 · 2− j )Dμ

+ C
∑

j≥4

∣

∣

∣ ln
(10 · 2− j−1

48

)∣

∣

∣(10 · 2− j )d < +∞.

From the analysis carried out in Cases I–II we conclude that there exists some
C = C(μ) ∈ (0,∞) with the property that if for each xo ∈ � and r ∈ (0,∞) we set
� := Bρ(xo, r) ∩ � then we may find c� ∈ R such that

ffl
�

| f − c�| dμ ≤ C . Then
the conclusion in (7.4.86) follows in view of (7.4.71). �

The John–Nirenberg space, denoted by9 BMO
(

X, μ
)

, consists of functions of
bounded mean oscillations on X . Specifically,

BMO
(

X, μ
) :=

{

f ∈ L1
loc(X, μ) : ‖ f ‖BMO(X,μ) < +∞

}

. (7.4.92)

Note that while BMO(X, μ) is a Banach space when X is bounded, ‖ · ‖BMO(X,μ) is
only a semi-norm on BMO(X, μ) when X is unbounded, since

if X is unbounded then, for each f ∈ L1
loc(X, μ),

‖ f ‖BMO(X,μ) = 0 ⇐⇒ f is constant μ-a.e. on X .
(7.4.93)

Given this, we find it occasionally useful to mod out its null-space, in order to render
the resulting quotient space Banach. Specifically, for two μ-measurable functions
f, g defined on X we write f ∼ g provided the difference f − g is constant μ-a.e.
on X . This is an equivalence relation and we let

[ f ] := {g : X → C : g is μ-measurable and f ∼ g
}

(7.4.94)

9 A more precise notation, which also indicates the dependence on the background quasi-distance
ρ, would be BMO

(

X, ρ, μ
)

.



7.4 Functions of Bounded Mean Oscillations on Spaces of Homogeneous Type 601

denote the equivalence class of any given μ-measurable function f defined on X . In
the case when X is unbounded, if for each function f ∈ BMO(X, μ) we now set

∥

∥ [ f ] ∥∥B̃MO(X,μ)
:= ‖ f ‖BMO(X,μ), (7.4.95)

then
∥

∥ [·] ∥∥B̃MO(X,μ)
becomes a genuine norm on the quotient space

B̃MO(X, μ) := BMO(X, μ)
/ ∼= {[ f ] : f ∈ BMO(X, μ)

}

. (7.4.96)

In fact, when equipped with the norm (7.4.95), the space (7.4.96) is complete (hence
Banach).

We wish to note that, given any f ∈ L1
loc(X, μ), from (7.4.59) (used with p = 1),

the lower triangle inequality (which implies
∣

∣| f (x)| − | f (y)|∣∣ ≤ | f (x) − f (y)|),
and (7.4.81)–(7.4.92), we obtain that

∥

∥ | f | ∥∥ .
BMO(X,μ)

≤ 2‖ f ‖ .
BMO(X,μ)

. (7.4.97)

In turn, with CX := 2 if X is unbounded and CX := 2 + μ(X) if X is bounded, this
readily implies that

if f ∈ BMO(X, μ) then | f | ∈ BMO(X, μ)

and
∥

∥ | f | ∥∥BMO(X,μ)
≤ CX‖ f ‖BMO(X,μ).

(7.4.98)

Since max{ f, g} = 1
2 ( f + g + | f − g|) and min{ f, g} = 1

2 ( f + g − | f − g|), it
follows from (7.4.98) that BMO(X, μ) is a lattice, and (7.4.97) implies that for
every two functions f, g ∈ BMO(X, μ) we have

∥

∥max{ f, g}‖ .
BMO(X,μ)

≤ 3
2

{

‖ f ‖ .
BMO(X,μ)

+ ‖g‖ .
BMO(X,μ)

}

,
∥

∥min{ f, g}‖ .
BMO(X,μ)

≤ 3
2

{

‖ f ‖ .
BMO(X,μ)

+ ‖g‖ .
BMO(X,μ)

}

.
(7.4.99)

In particular, given any f ∈ BMO(X, μ), if for each N ∈ N we define

fN := min
{

max{ f,−N }, N
}

= max
{

min{ f, N },−N
}

, (7.4.100)

i.e.,

fN (x) :=
⎧

⎨

⎩

N if f (x) > N
f (x) if − N ≤ f (x) ≤ N ,

−N if f (x) < −N ,

∀x ∈ X, (7.4.101)

then
fN ∈ L∞(X, μ), hence fN ∈ BMO(X, μ),

| fN (x)| ≤ min{| f (x)|, N } for all x ∈ X,

lim
N→∞ fN (x) = f (x) for each point x ∈ X.

(7.4.102)
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Moreover, from (7.4.100) and (7.4.99) we see that

‖ fN ‖ .
BMO(X,μ)

≤ 9
4‖ f ‖ .

BMO(X,μ)
, ∀N ∈ N, (7.4.103)

which, in concert with (7.4.81)–(7.4.82) and (7.4.102), further implies that, for each
N ∈ N,

‖ fN ‖BMO(X,μ) ≤
{ 9

4‖ f ‖BMO(X,μ) if X is unbounded,
(

9
4 + μ(X)

)‖ f ‖BMO(X,μ) if X is bounded.
(7.4.104)

We next note that (7.4.67) and (7.4.81) imply the following continuous embed-
dings:

L∞(X, μ) ↪→ BMO(X, μ) ↪→
⋂

0<p<∞
L p
loc(X, μ). (7.4.105)

In particular,

if X is bounded, then the space BMO(X, μ) embeds
continuously into L p(X, μ) for each given p ∈ [1,∞).

(7.4.106)

In what follows, for each p ∈ [1,∞) and r ∈ (0,∞) we define the L p-based mean
oscillations of a function f ∈ L1

loc(X, μ) at a given scale R ∈ (0,∞) as

oscp( f ; R) := sup
x∈X, r∈(0,R)

(

 
Bρ(x,r)

∣

∣ f (y) − fBρ (x,r)

∣

∣

p
dμ(y)

) 1
p ∈ [0,+∞].

(7.4.107)
Then, (7.4.67) and (7.4.81) imply that for each fixed p ∈ [1,∞) we have

‖ f ‖BMO(X,μ) ≈

⎧

⎪

⎨

⎪

⎩

sup
0<R<∞

oscp( f ; R) if X is unbounded,
∣

∣

∣

ˆ
X

f dμ
∣

∣

∣+ sup
0<R<∞

oscp( f ; R) if X is bounded,
(7.4.108)

uniformly for f ∈ L1
loc(X, μ). As a consequence, for each p ∈ [1,∞) we have

BMO(X, μ) =
{

f ∈ L1
loc(X, μ) : sup

0<R<∞
oscp( f ; R) < +∞

}

. (7.4.109)

An alternative point of view to the John–Nirenberg space involves the Fefferman–
Stein sharp maximal operator. Specifically, having fixed p ∈ [1,∞), for each func-
tion f ∈ L1

loc(X, μ) define

f #p (x) := sup
r>0

(

 
Bρ(x,r)

∣

∣ f (y) − fBρ (x,r)

∣

∣

p
dμ(y)

)1/p
, ∀x ∈ X. (7.4.110)
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This turns out to be a μ-measurable function,10 and for each fixed p ∈ [1,∞) the
first equivalence in (7.4.71) implies

‖ f ‖ .
BMO(X,μ)

≈ ‖ f #p ‖L∞(X,μ), uniformly for f ∈ L1
loc(X, μ). (7.4.111)

In particular, for each fixed p ∈ [1,∞) we have

‖ f ‖BMO(X,μ) ≈
⎧

⎨

⎩

‖ f #p ‖L∞(X,μ) if X is unbounded,
∣

∣

∣

ˆ
X

f dμ
∣

∣

∣+ ‖ f #p ‖L∞(X,μ) if X is bounded,
(7.4.112)

uniformly for f ∈ L1
loc(X, μ). In particular, for each p ∈ [1,∞) we have

BMO(X, μ) =
{

f ∈ L1
loc(X, μ) : f #p ∈ L∞(X, μ)

}

. (7.4.113)

In the lemma belowwe discuss themanner inwhich global integrability properties
of a given function are related to the behavior at infinity of its mean oscillation
function.

Lemma 7.4.14 Assume (X, ρ, μ) is a measure metric space with the property that
there exist two numbers, d ∈ (0,∞) and c ∈ (0,∞), such that

μ
(

Bρ(x, R)
) ≤ cRd ∀x ∈ X, ∀R ∈ (0,∞). (7.4.114)

Then whenever 1 ≤ p ≤ q < ∞ and ε > 0 there exists a constant C ∈ (0,∞),
depending only on d, ρ, ε, p, the constant c from (7.4.114), and the doubling constant
of μ, such that for each function f ∈ L1

loc(X, μ), each point x0 ∈ X, and each radius
r ∈ (0,∞), there holds

( ˆ

X

∣

∣ f (x) − fBρ(x0,r)

∣

∣

p

[

r + ρ(x, x0)
]d+ε

dμ(x)

)1/p

(7.4.115)

≤ C

r ε/p

ˆ ∞

1

(

 
Bρ(x0,λr)

∣

∣ f (x) − fBρ (x0,λr)

∣

∣

q
dμ(x)

)1/q dλ

λ1+ε/p

≤ C

r ε/p
min

{

f #q (x0),
ˆ ∞

1
oscq

(

f ; λr
) dλ

λ1+ε/p

}

.

As a consequence, whenever 1 ≤ p ≤ q < ∞ and ε > 0 there exists a constant
C ∈ (0,∞) with the property that for each function f ∈ L1

loc(X, μ) and each point
x0 ∈ X one has

10 The same argument used in the proofs of Theorems 6.3.3 and 7.6.1 applies.
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( ˆ

X

| f (x)|p

1 + ρ(x, x0)d+ε
dμ(x)

)1/p

≤ C
ˆ ∞

1
oscq( f ; λ)

dλ

λ1+ε/p
+ C

∣

∣

∣

 
Bρ(x0,1)

f dμ
∣

∣

∣. (7.4.116)

This further implies that if 1 ≤ p ≤ q < ∞ then for each function f ∈ L1
loc(X, μ),

each number ε > 0, and each point x0 ∈ X one has

ˆ ∞

1
oscq( f ; λ)

dλ

λ1+ε/p
< +∞=⇒ f ∈ L p

(

X,
μ

1 + ρ(·, x0)d+ε

)

. (7.4.117)

In particular, for each fixed point x0 ∈ X,

BMO
(

X, μ
) ⊂

⋂

1≤p<∞
L p
(

X,
μ

1 + ρ(·, x0)d+ε

)

, ∀ε > 0, (7.4.118)

and for each x0 ∈ X, ε > 0, and p ∈ [1,∞),

.
C α(X, ρ) ⊂ L p

(

X,
μ

1 + ρ(·, x0)d+ε

)

, ∀α ∈ (0, ε/p). (7.4.119)

Proof Suppose 1 ≤ p ≤ q < ∞. Given f ∈ L1
loc(X, μ), along with x0 ∈ X and

r ∈ (0,∞), breaking up the domain of integration in a dyadic fashion and using
Minkowski’s inequality allow us to estimate

( ˆ

X

∣

∣ f (x) − fBρ (x0,r)

∣

∣

p

[

r + ρ(x, x0)
]d+ε

dμ(x)

)1/p

(7.4.120)

≤ r−d/p−ε/p
(

ˆ
Bρ(x0,r)

∣

∣ f (x) − fBρ (x0,r)

∣

∣

p
dμ(x)

)1/p

+
∞
∑

j=0

(

ˆ
2 j r≤ρ(x,x0)<2 j+1r

∣

∣ f (x) − fBρ (x0,r)

∣

∣

p

ρ(x, x0)d+ε
dμ(x)

)1/p

≤ Cr−ε/p
(

 
Bρ(x0,r)

∣

∣ f (x) − fBρ(x0,r)

∣

∣

p
dμ(x)

)1/p

+ Cr−ε/p
∞
∑

j=0

2− jε/p
(

 
Bρ(x0,2 j+1r)

∣

∣ f (x) − fBρ (x0,r)

∣

∣

p
dμ(x)

)1/p

≤ Cr−ε/p
(

 
Bρ(x0,r)

∣

∣ f (x) − fBρ(x0,r)

∣

∣

q
dμ(x)

)1/q

+ Cr−ε/p
∞
∑

j=0

2− jε/p
(

 
Bρ(x0,2 j+1r)

∣

∣ f (x) − fBρ (x0,r)

∣

∣

q
dμ(x)

)1/q
,
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where the last step is based on Hölder’s inequality (recall that q ≥ p). Next, for each
j ∈ N0 we have

(

 
Bρ(x0,2 j+1r)

∣

∣ f (x) − fBρ (x0,r)

∣

∣

q
dμ(x)

)1/q
(7.4.121)

≤
(

 
Bρ(x0,2 j+1r)

∣

∣ f (x) − fBρ(x0,2 j+1r)

∣

∣

q
dμ(x)

)1/q

+
j
∑

�=0

∣

∣ fBρ (x0,2�r) − fBρ(x0,2�+1r)

∣

∣

≤
(

 
Bρ(x0,2 j+1r)

∣

∣ f (x) − fBρ(x0,2 j+1r)

∣

∣

q
dμ(x)

)1/q

+ C
j
∑

�=0

 
Bρ(x0,2�+1r)

∣

∣ f (x) − fBρ (x0,2�+1r)

∣

∣ dμ(x)

≤
(

 
Bρ(x0,2 j+1r)

∣

∣ f (x) − fBρ(x0,2 j+1r)

∣

∣

q
dμ(x)

)1/q

+ C
j
∑

�=0

(

 
Bρ(x0,2�+1r)

∣

∣ f (x) − fBρ (x0,2�+1r)

∣

∣

q
dμ(x)

)1/q

≤ C
j
∑

�=0

(

 
Bρ(x0,2�+1r)

∣

∣ f (x) − fBρ(x0,2�+1r)

∣

∣

q
dμ(x)

)1/q
.

Hence,

∞
∑

j=0

2− jε/p
(

 
Bρ(x0,2 j+1r)

∣

∣ f (x) − fBρ(x0,r)

∣

∣

q
dμ(x)

)1/q
(7.4.122)

≤ C
∞
∑

j=0

2− jε/p

{

j
∑

�=0

(

 
Bρ (x0,2�+1r)

∣

∣ f (x) − fBρ(x0,2�+1r)

∣

∣

q
dμ(x)

)1/q
}

= C
∞
∑

�=0

2−�ε/p
(

 
Bρ(x0,2�+1r)

∣

∣ f (x) − fBρ(x0,2�+1r)

∣

∣

q
dμ(x)

)1/q
,

where the equality is the result of interchanging the sums in j and � (here we make
use of the fact that ε > 0). Collectively, (7.4.120) and (7.4.122) permit us to conclude
that
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( ˆ

X

∣

∣ f (x) − fBρ(x0,r)

∣

∣

p

[

r + ρ(x, x0)
]d+ε

dμ(x)

)1/p

(7.4.123)

≤ Cr−ε/p
∞
∑

j=0

2− jε/p
(

 
Bρ(x0,2 j r)

∣

∣ f (x) − fBρ (x0,2 j r)

∣

∣

q
dμ(x)

)1/q
.

To proceed, from (7.4.55) we deduce that there exists a constant C ∈ (0,∞) with
the property that

(

 
Bρ(x0,2 j r)

∣

∣ f (x) − fBρ(x0,2 j r)

∣

∣

q
dμ(x)

)1/q

≤ C
( ffl

Bρ(x0,λr)

∣

∣ f (x) − fBρ(x0,λr)

∣

∣

q
dμ(x)

)1/q
,

for each j ∈ N0 and each λ ∈ [2 j , 2 j+1].
(7.4.124)

In turn, via integration, this implies that for each j ∈ N0 we have

2− jε/p
(

 
Bρ(x0,2 j r)

∣

∣ f (x) − fBρ(x0,2 j r)

∣

∣

q
dμ(x)

)1/q
(7.4.125)

≤ C
ˆ 2 j+1

2 j

(

 
Bρ(x0,λr)

∣

∣ f (x) − fBρ(x0,λr)

∣

∣

q
dμ(x)

)1/q dλ

λ1+ε/p
.

Availing ourselves of this estimate back into (7.4.123) then establishes the first
inequality in (7.4.115). The second inequality in (7.4.115) is a direct consequence of
(7.4.107) and (7.4.110). Going further, (7.4.116) follows from the second inequality
in (7.4.115) and Lemma 7.2.1. In turn, (7.4.116) readily implies (7.4.117), as well
as (7.4.118) (keeping in mind (7.4.109)).

As regards the inclusion in (7.4.119), we first note that for each p ∈ [1,∞) and
each α > 0 there exists C ∈ (0,∞) such that for every function f ∈ .

C α(X, ρ) we
have

oscp( f ; r) ≤ Crα‖ f ‖ .
C α(X,ρ)

, ∀r ∈ (0,∞). (7.4.126)

Indeed, given an arbitrary ρ-ball � ⊆ X of radius ≤ r , based on (7.4.59) we may
estimate

(

 
�

| f (x) − f�|pμ(x)
) 1

p ≤
(

 
�

 
�

| f (x) − f (y)|p dμ(y) μ(x)
) 1

p

≤ Crα‖ f ‖ .
C α(X,ρ)

. (7.4.127)

On account of (7.4.127) and (7.4.107), the inequality in (7.4.126) now readily fol-
lows. Having proved this, (7.4.119) is now implied by (7.4.117) and (7.4.126). �
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For later purposes, we find it useful to supplement the results established in
Lemma 7.4.14 with two other related lemmas. In the first such lemma we estimate
for the difference of two integral averages over concentric balls.

Lemma 7.4.15 Suppose (X, ρ, μ) is a measure metric space and fix some exponent
p ∈ [1,∞). Then there exists a constant C ∈ (0,∞) with the property that for each
function f ∈ L1

loc(X, μ) and each point x0 ∈ X one has (recall (7.4.9))

∣

∣ fBρ (x0,r) − fBρ (x0,R)

∣

∣ ≤ C
ˆ 2R

r

(

 
Bρ(x0, t)

∣

∣ f − fBρ (x0, t)

∣

∣

p
dμ
)1/p dt

t
(7.4.128)

≤ C
ˆ 2R

r
oscp( f ; t)

dt

t
whenever 0 < r < R < ∞.

Proof Assume r, R ∈ (0,∞) with r < R have been given, and denote by N ∈ N0

the unique integer such that 2N r < R ≤ 2N+1r . Then based on Hölder’s inequality
and reasoning as in (7.4.121) permits us to estimate

∣

∣ fBρ(x0,r) − fBρ(x0,2N r)

∣

∣ ≤
 

Bρ (x0,2N r)

∣

∣ f − fBρ(x0,r)

∣

∣ dμ

≤
(

 
Bρ(x0,2N r)

∣

∣ f − fBρ (x0,r)

∣

∣

p
dμ
)1/p

≤ C
N
∑

�=1

(

 
Bρ(x0,2�r)

∣

∣ f − fBρ(x0,2�r)

∣

∣

p
dμ
)1/p

. (7.4.129)

On the other hand, from (7.4.55) and (7.4.107) it follows that there exists a constant
C ∈ (0,∞) with the property that for each integer � ∈ N0 we have

(

 
Bρ(x0,2�r)

∣

∣ f − fBρ (x0,2�r)

∣

∣

p
dμ
)1/p

≤ C
(

 
Bρ(x0, tr)

∣

∣ f − fBρ(x0, tr)

∣

∣

p
dμ
)1/p

≤ C · oscp( f ; tr) for each t ∈ [2�, 2�+1]. (7.4.130)

After integrating over the interval [2�, 2�+1] with respect to the Haar measure dt/t
this further shows that for each � ∈ N0 we have

(

 
Bρ (x0,2�r)

∣

∣ f − fBρ(x0,2�r)

∣

∣

p
dμ
)1/p

≤ C
ˆ 2�+1

2�

(

 
Bρ(x0, tr)

∣

∣ f − fBρ(x0, tr)

∣

∣

p
dμ
)1/p dt

t

≤ C
ˆ 2�+1

2�

oscp( f ; tr)
dt

t
. (7.4.131)
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Combining (7.4.129)with (7.4.131) and keeping inmind that 2N+1r = 2 · 2N r ≤ 2R
then yield (after making the change of variables λ := r t)

∣

∣ fBρ (x0,r) − fBρ (x0,2N r)

∣

∣ ≤ C
ˆ 2R

2r

(

 
Bρ(x0, λ)

∣

∣ f − fBρ(x0, λ)

∣

∣

p
dμ
)1/p dλ

λ

≤ C
ˆ 2R

2r
oscp( f ; λ)

dλ

λ
. (7.4.132)

In addition,

∣

∣ fBρ(x0,R) − fBρ(x0,2N r)

∣

∣ ≤
 

Bρ(x0,2N r)

∣

∣ f − fBρ (x0,R)

∣

∣ dμ

≤ C
(

 
Bρ(x0,R)

∣

∣ f − fBρ(x0,R)

∣

∣

p
dμ
)1/p

≤ C
(

 
Bρ(x0, t R)

∣

∣ f − fBρ(x0, t R)

∣

∣

p
dμ
)1/p

(7.4.133)

for all t ∈ [1, 2], thanks to (7.4.55). Integrating over [1, 2] with respect to the Haar
measure dt/t this gives

∣

∣ fBρ(x0,R) − fBρ (x0,2N r)

∣

∣ ≤ C
ˆ 2

1

(

 
Bρ(x0, t R)

∣

∣ f − fBρ(x0, t R)

∣

∣

p
dμ
)1/p dt

t

= C
ˆ 2R

R

(

 
Bρ(x0, λ)

∣

∣ f − fBρ(x0, λ)

∣

∣

p
dμ
)1/p dλ

λ

≤ C
ˆ 2R

r

(

 
Bρ(x0, λ)

∣

∣ f − fBρ(x0, λ)

∣

∣

p
dμ
)1/p dλ

λ

≤ C
ˆ 2R

r
oscp( f ; λ)

dλ

λ
. (7.4.134)

At this point, (7.4.128) is seen from (7.4.132) and (7.4.134). �

Here is the second companion result to Lemma 7.4.14, referred to above.

Lemma 7.4.16 Let (X, ρ, μ) be a measure metric space and fix some p ∈ [1,∞).
Also, assume

φ : (1/4,∞)→ [0,∞) is a non-increasing function (7.4.135)

and define

˜φ : (1,∞) → [0,∞), ˜φ(λ) := 1

λ

ˆ ∞

λ/4
φ(t)

dt

t
for each λ > 1. (7.4.136)
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Then there exists a constant C ∈ (0,∞), independent of φ, with the property that
for each function f ∈ L1

loc(X, μ), each point x0 ∈ X, and each radius r > 0 one has
(recall (7.4.9))

∞
∑

j=0

φ(2 j )
(

 
Bρ(x0,2 j r)

∣

∣ f − fBρ (x0,r)

∣

∣

p
dμ
)1/p

≤ C
ˆ ∞

1

(

 
Bρ(x0,λr)

∣

∣ f − fBρ(x0,λr)

∣

∣

p
dμ
)1/p

˜φ(λ) dλ. (7.4.137)

Proof Much as in (7.4.121), for each j ∈ N0 we have

(

 
Bρ(x0,2 j+1r)

∣

∣ f − fBρ(x0,r)

∣

∣

p
dμ
)1/p

≤ C
j
∑

�=0

(

 
Bρ (x0,2�+1r)

∣

∣ f − fBρ(x0,2�+1r)

∣

∣

p
dμ
)1/p

. (7.4.138)

Multiply by φ(2 j ), sum up in j ∈ N0, and interchange the sums in j and � to obtain

∞
∑

j=0

φ(2 j )
(

 
Bρ(x0,2 j+1r)

∣

∣ f − fBρ(x0,r)

∣

∣

p
dμ
)1/p

(7.4.139)

≤ C
∞
∑

�=0

(
∞
∑

j=�

φ(2 j )
)(

 
Bρ(x0,2�+1r)

∣

∣ f − fBρ (x0,2�+1r)

∣

∣

p
dμ
)1/p

.

Next, observe that since φ is non-increasing we have

φ(2 j ) ≤ (ln 2)
ˆ 2 j

2 j−1
φ(t)

dt

t
for each j ∈ N0, (7.4.140)

hence for each � ∈ N0 we may write

∞
∑

j=�

φ(2 j ) ≤ (ln 2)
ˆ ∞

2�−1
φ(t)

dt

t
≤ C · inf

λ∈[2�,2�+1]
(

λ˜φ(λ)
)

, (7.4.141)

in view of the definition made in (7.4.136). Also, after integrating in λ ∈ [2�, 2�+1]
with respect to the Haar measure dλ/λ, from (7.4.124) (written with � in place of j)
we see that for each � ∈ N0 we have
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(

 
Bρ(x0,2�r)

∣

∣ f − fBρ(x0,2�r)

∣

∣

p
dμ
)1/p

≤ C
ˆ 2�+1

2�

(

 
Bρ(x0,λr)

∣

∣ f − fBρ (x0,λr)

∣

∣

p
dμ
)1/p dλ

λ
. (7.4.142)

Thanks to (7.4.141), this further implies

(
∞
∑

j=�

φ(2 j )
)(

 
Bρ(x0,2�r)

∣

∣ f − fBρ (x0,2�r)

∣

∣

p
dμ
)1/p

≤ C
(

inf
λ∈[2�,2�+1]

(

λ˜φ(λ)
)

)

ˆ 2�+1

2�

(

 
Bρ(x0,λr)

∣

∣ f − fBρ (x0,λr)

∣

∣

p
dμ
)1/p dλ

λ

≤ C
ˆ 2�+1

2�

(

 
Bρ(x0,λr)

∣

∣ f − fBρ(x0,λr)

∣

∣

p
dμ
)1/p

˜φ(λ) dλ, (7.4.143)

for each � ∈ N0. Gathering (7.4.139) and (7.4.143) then leads to (7.4.137). �

7.5 Whitney Decompositions on Geometrically Doubling
Quasi-Metric Spaces

We begin by defining the quality of being geometrically doubling in the category of
quasi-metric spaces (cf. [56, p. 67]).

Definition 7.5.1 A quasi-metric space (X, ρ) is called geometrically
doubling if there exists a number N ∈ N, called the geometrically doubling con-
stant of (X, ρ), with the property that any ρ-ball of radius r in X may be covered by
a family of cardinality at most N , consisting of ρ-balls in X of radii r/2.

Via iterations it follows that if (X, ρ) is a geometrically doubling quasi-metric space
then

for any θ ∈ (0, 1) there exists N ∈ N so that any ρ-ball of radius
r > 0 in X may be covered by at most N ρ-balls in X of radii θr .

(7.5.1)

It is also useful to note that (cf., e.g., [188])

any space of homogeneous type (X, ρ, μ) is geometrically
doubling, in the sense described in Definition 7.5.1.

(7.5.2)

The property of being geometrically doubling is hereditary in the following natural
sense.
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Lemma 7.5.2 Given a geometrically doubling quasi-metric space (X, ρ), for any
Y ⊆ X the pair

(

Y, ρ
∣

∣

Y×Y

)

is also a geometrically doubling quasi-metric space (with
control of the geometrically doubling constant).

Proof Any
(

ρ
∣

∣

Y×Y

)

-ball in Y is of the form Bρ(y, r) ∩ Y for some y ∈ Y and r > 0.
Fix such a ball and, relying on (7.5.1), pick x1, . . . , xN ∈ X with the property that

Bρ(y, r) ⊆
N
⋃

j=1

Bρ

(

x j , r/2C2
ρ

)

. (7.5.3)

Let J be the collection of all j ∈ {1, . . . , N } such that Bρ(x j , r/2C2
ρ

)

intersects
Y . If for each j ∈ J we select y j ∈ Bρ(x j , r/2C2

ρ

) ∩ Y , we see from (7.1.2) that
Bρ(x j , r/2C2

ρ

) ⊆ Bρ(y j , r/2). This goes to show that

Bρ(y, r) ∩ Y ⊆
⋃

j∈J

Bρ(y j , r/2) ∩ Y, (7.5.4)

and the desired conclusion follows. �

The version of Whitney’s decomposition theorem recorded below is a particular
case of [188, Theorem 4.21, p. 184].

Proposition 7.5.3 Assume (X, ρ) is a geometrically doubling quasi-metric space.
Then for each λ ∈ (1,∞) there exist constants � ∈ (λ,∞) and M ∈ N, both depend-
ing only on λ, Cρ , and the geometrically doubling constant of (X, ρ), and which have
the following significance.

For each open, nonempty, proper subset O of the topological space (X, τρ) there
exists a sequence of ρ-balls,

{

Bρ(x j , r j )
}

j∈N
, with centers {x j } j∈N ⊂ O and radii

{r j } j∈N ⊂ (0,∞), for which the following properties are valid:

(1) O = ⋃

j∈N

Bρ(x j , r j ) and
∑

j∈N

1Bρ (x j ,λr j ) ≤ M on O. In fact, there exists ε ∈ (0, 1),

which depends only on Cρ, λ, and the geometrically doubling constant of (X, ρ),
with the property that for any given point x ∈ O one has

#
{

j ∈ N : Bρ

(

x, ε · distρ(x, X \ O)
) ∩ Bρ(x j , λr j ) �= ∅

}

≤ M. (7.5.5)

(2) Bρ(x j , λr j ) ⊆ O and Bρ(x j ,�r j ) ∩ [X \ O] �= ∅ for every j ∈ N.
(3) ri ≈ r j uniformly for i, j ∈ N such that Bρ(xi , λri ) ∩ Bρ(x j , λr j ) �= ∅.

In the context of Proposition 7.5.3 we shall refer to the collection
{

Bρ(x j , r j )
}

j∈N

as being a family of Whitney balls (or, alternatively, amounting to a Whitney
decomposition) for the set O.
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In certain situations it is particularly useful to have a Whitney decomposition
of a set into mutually disjoint pieces, and a result of this flavor is presented in
Proposition 7.5.6 below. As a preamble, we first discuss the existence of a dyadic
grid structure on geometrically doubling quasi-metric spaces which plays a
key role in the proof of Proposition 7.5.6. The following result is essentially due to
M. Christ [48] (see also [67, Theorem 3.2, p. 143]), with two refinements, worked out
in [123, Proposition 2.11, p. 19]. First, Christ’s dyadic grid result is established in the
presence of a background doubling, Borel-regular measure, which is more restrictive
than merely assuming that the ambient quasi-metric space is geometrically doubling.
Second, Christ’s dyadic grid result involves a scale δ ∈ (0, 1) and it was shown in
[123] that we may always take δ = 1

2 , as in the Euclidean setting.

Proposition 7.5.4 Let (X, ρ) be a geometrically doubling quasi-metric space and
fix an integer κX ∈ Z ∪ {−∞} with the property that

2−κX −1 ≤ diamρ(X) ≤ 2−κX . (7.5.6)

Then there are finite constants a1 ≥ a0 > 0 such that, for each k ∈ Z with k ≥ κX ,
there exists a collection

Dk(X) := {Qk
α}α∈Ik (7.5.7)

of subsets of X indexed by a nonempty, at most countable set of indices Ik , as well
as a family {xk

α}α∈Ik of points in X, for which the collection of all dyadic cubes
in X, i.e.,

D(X) :=
⋃

k∈Z, k≥κX

Dk(X), (7.5.8)

has the following properties:

(1) [All dyadic cubes are open]
For each k ∈ Z with k ≥ κX and each α ∈ Ik , the set Qk

α is open in τρ .
(2) [Dyadic cubes are mutually disjoint within the same generation]

For each k ∈ Z with k ≥ κX and each α, β ∈ Ik with α �= β there holds
Qk

α ∩ Qk
β = ∅.

(3) [No partial overlap across generations]
For each k, � ∈ Z with � > k ≥ κX , and each α ∈ Ik , β ∈ I�, either Q�

β ⊆ Qk
α

or Qk
α ∩ Q�

β = ∅.
(4) [Any dyadic cube has a unique ancestor in any earlier generation]

For each k, � ∈ Z with k > � ≥ κX and each α ∈ Ik there is a unique β ∈ I�
such that Qk

α ⊆ Q�
β .

(5) [The size is dyadically related to the generation]
For each k ∈ Z with k ≥ κX and each α ∈ Ik one has

Bρ(xk
α, a02

−k) ⊆ Qk
α ⊆ Bρ(xk

α, a12
−k). (7.5.9)



7.5 Whitney Decompositions on Geometrically Doubling Quasi-Metric Spaces 613

In particular, given a measure μ on X for which (X, ρ, μ) is a space of homoge-
neous type, there exists some constant c ∈ (0,∞) such that μ(Qk+1

β ) ≥ cμ(Qk
α)

whenever α ∈ Ik and β ∈ Ik+1 are such that Qk+1
β ⊆ Qk

α .
(6) [Control of the number of children]

There exists an integer N ∈ N with the property that for each k ∈ Z with k ≥ κX

one has

#
{

β ∈ Ik+1 : Qk+1
β ⊆ Qk

α

} ≤ N , for every α ∈ Ik . (7.5.10)

Furthermore, this integer may be chosen such that, for each k ∈ Z with k ≥ κX ,
each x ∈ X, and r ∈ (0, 2−k), the number of Q’s in Dk(X) that intersect Bρ(x, r)

is at most N .
(7) [Any generation covers a dense subset of the entire space]

For each k ∈ Z with k ≥ κX , the set
⋃

α∈Ik
Qk

α is dense in (X, τρ). In particular,
for each k ∈ Z with k ≥ κX one has

X =
⋃

α∈Ik

{

x ∈ X : distρ(x, Qk
α) ≤ ε2−k

}

, ∀ε > 0, (7.5.11)

and there exist b0, b1 ∈ (0,∞) depending only on the geometrically doubling
character of X with the property that

for each xo ∈ X and each r ∈ (0, 2 diamρ(X)
)

there
exist k ∈ Z with k ≥ κX and α ∈ Ik such that

Qk
α ⊆ Bρ(xo, r) and b0r ≤ 2−k ≤ b1r.

(7.5.12)

Moreover, for each k ∈ Z with k ≥ κX and each α ∈ Ik

⋃

β∈Ik+1, Qk+1
β ⊆Qk

α

Qk+1
β is dense in Qk

α, (7.5.13)

and, for each ε > 0, we have

Qk
α ⊆

⋃

β∈Ik+1, Qk+1
β ⊆Qk

α

{

x ∈ X : distρ(x, Qk+1
β ) ≤ ε2−k−1

}

. (7.5.14)

(8) [Dyadic cubes have thin boundaries with respect to a background doubling
measure]
Given a measure μ on X for which (X, ρ, μ) is a space of homogeneous type,
a collection D(X) may be constructed as in (7.5.8) such that properties (1)–(7)
above hold and, in addition, there exist constants ϑ ∈ (0, 1) and c ∈ (0,∞) such
that for each k ∈ Z with k ≥ κX and each α ∈ Ik one has

μ
({

x ∈ Qk
α : distρ# (x, X \ Qk

α) ≤ t · 2−k
}) ≤ c · tϑμ(Qk

α), (7.5.15)
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for all t > 0. Moreover, in such a context matters may be arranged so that, for
each k ∈ Z with k ≥ κX and each α ∈ Ik ,

(

Qk
α, ρ|Qk

α
, μ�Qk

α

)

is a space of homogeneous type, (7.5.16)

and the doubling constant of the measure μ�Qk
α is independent of k, α (i.e., the

quality of being a space of homogeneous type is hereditary at the level of dyadic
cubes, in a uniform fashion).

(9) [Each generation covers the space a.e. with respect to a background doubling
measure]
If μ is a measure on X for which (X, ρ, μ) is a space of homogeneous type, then
a collection D(X) as in (7.5.8) may be associated with the doubling measure μ

such that properties (1)–(8) above hold and, in addition,

if Nk := X \
⋃

α∈Ik

Qk
α then μ(Nk) = 0, for each k ∈ Z, k ≥ κX . (7.5.17)

In particular, in such a setting, for each k ∈ Z with k ≥ κX one has

μ
(

Qk
α \

⋃

β∈Ik+1, Qk+1
β ⊆Qk

α

Qk+1
β

)

= 0, for every α ∈ Ik . (7.5.18)

(10) [The boundaries of dyadic cubes are nullsets of any given background doubling
measure]
If μ is a measure on X for which (X, ρ, μ) is a space of homogeneous type, then
a collection D(X) as in (7.5.8) may be associated with the doubling measure μ

such that properties (1)–(9) above hold and, in addition,

∂ Qk
α ⊆ Nk for each k ∈ Z with k ≥ κX ,

where the set Nk is defined as in (7.5.17).
(7.5.19)

In particular, in such a setting, for each k ∈ Z with k ≥ κX one has

μ(∂ Qk
α) = 0 for every α ∈ Ik . (7.5.20)

(11) [Dyadic tiling of open sets with respect to a given background doublingmeasure]
If μ is a measure on X for which (X, ρ, μ) is a space of homogeneous type, then
a collection D(X) as in (7.5.8) may be associated with the doubling measure
μ such that properties (1)–(10) above hold and such that, given any open set
O ⊆ X with μ(O) < ∞, if

DO denotes the collection of all “maximal dyadic cubes” contained
in O (i.e., if DO is the family of sets Q ∈ D(X) with Q ⊆ O and for
which one cannot find any ˜Q ∈ D(X) such that Q ⊆ ˜Q ⊆ O and
Q �= ˜Q)

(7.5.21)
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it follows that any two sets in DO are disjoint and

μ
(

O \
⋃

Q∈DO

Q
)

= 0. (7.5.22)

Proof The proofs of the claims in items (1)–(9) may be found in [123, Proposi-
tion 2.11, p. 19]. As regards item (10), having fixed k ∈ Z with k ≥ κX we claim
that

Qk
α ∩ Qk

β = ∅ for every α, β ∈ Ik with α �= β. (7.5.23)

Indeed, if Qk
α ∩ Qk

β �= ∅ then, since Qk
β is open, we would have Qk

α ∩ Qk
β �= ∅

which cannot happen for any two distinct indices α, β ∈ Ik . In turn, from (7.5.23)
and (7.5.17) we conclude (bearing in mind the property from item (2)) that for each
α ∈ Ik we have

∂ Qk
α \ Nk = (Qk

α \ Qk
α

) \ Nk = (Qk
α ∩ (X \ Nk)

) ∩ ((X \ Qk
α) ∩ (X \ Nk)

)

=
(

Qk
α ∩

(
⋃

β∈Ik

Qk
β

))

∩
((
⋃

β∈Ik

Qk
β

)

\ Qk
α

)

= Qk
α ∩

(
⋃

β∈Ik\{α}
Qk

β

)

= ∅. (7.5.24)

This proves (7.5.19). Then (7.5.20) follows on account of (7.5.17).
To justify (7.5.22), fix an open set O ⊆ X with μ(O) < +∞. With the set Nk

defined as in (7.5.17) for each k ∈ Z with k ≥ κX , introduce

N :=
⋃

k∈Z, k≥κX

Nk . (7.5.25)

Then (7.5.17) ensures that

N is a μ-measurable subset of X with μ(N ) = 0. (7.5.26)

In relation to this, we claim that

for each x ∈ O \ N there exists a unique
Q ∈ DO with the property that x ∈ Q.

(7.5.27)

Indeed, given x ∈ O \ N it follows that there exists r ∈ (0, 2 diamρ(X)
)

such that
Bρ(x, r) ⊆ O. Pick k ∈ Z with k ≥ κX large enough so that

Cρ
˜Cρa12

−k < r (7.5.28)
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where Cρ, ˜Cρ ∈ [1,∞) are as in (7.1.3) and (7.1.4). Next, the fact that x ∈ X \ Nk

implies (cf. (7.5.17)) that there existsα ∈ Ik such that x ∈ Qk
α . In concertwith (7.5.9),

this gives
x ∈ Qk

α ⊆ Bρ(xk
α, a12

−k). (7.5.29)

Hence, further,ρ(x, xk
α) < a12−k . Consequently, for each y ∈ Bρ(xk

α, a12−k)wemay
estimate

ρ(x, y) ≤ Cρ max{ρ(x, xk
α), ρ(xk

α, y)} ≤ Cρ max
{

ρ(x, xk
α), ˜Cρρ(y, xk

α)
}

≤ Cρ max
{

a12
−k, ˜Cρa12

−k
} = Cρ

˜Cρa12
−k < r. (7.5.30)

Thus the point y belongs to Bρ(x, r) and since y ∈ Bρ(xk
α, a12−k) was arbitrary, this

proves that Bρ(xk
α, a12−k) ⊆ Bρ(x, r) ⊆ O. Based on this and (7.5.29) we ultimately

conclude that
x ∈ Qk

α ⊆ O. (7.5.31)

To proceed, denote by Jx the set of all � ∈ Zwith � ≥ κX and such that there is β ∈ I�
such that x ∈ Q�

β ⊆ O. From (7.5.31)weknow that k ∈ Jx , so Jx is a nonempty subset
of Z. We claim that Jx is bounded from below. This is clear if κX > −∞. Suppose
next that κX = −∞, a scenario in which X is unbounded (cf. (7.5.6)). As is well
known (cf., e.g., [11]), this is further equivalent to having μ(X) = +∞. Seeking a
contradiction, assume that Jx is not actually bounded from below. Then we would
be able to find a sequence {� j } j∈N ⊆ Z convergent to −∞ such that for each j ∈ N

there exists α j ∈ I� j for which x ∈ Q
� j
α j ⊆ O. From this, (7.5.9), and the fact that μ

is doubling we may then conclude that there exists a constant C ∈ (0,∞) such that

μ
(

Bρ# (x, 2−� j )
) ≤ Cμ(Q

� j
α j ) for each j ∈ N. (7.5.32)

However, since we presently have μ
(

Bρ# (x, 2−� j )
)↗ μ(X) = +∞ as j → ∞

while at the same time μ(Q
� j
α j ) ≤ μ(O) < +∞ for each j ∈ N leads to a con-

tradiction. This ultimately shows that Jx is indeed bounded from below. As such
k0 := inf Jx is a well-defined integer, belonging to Jx . Consequently, there exists
α0 ∈ Ik0 such that x ∈ Qk0

α0
⊆ O. We claim that Qk0

α0
∈ DO. To justify this, assume we

can find some ˜Q ∈ D(X) such that Qk0
α0

⊆ ˜Q ⊆ O and Qk0
α0

�= ˜Q, with the goal of
finding a contradiction. Then there exist � ∈ Z with � ≥ κX along with β ∈ I� such
that ˜Q = Q�

β . This places the number � in the set Jx , so we necessarily have � ≥ k0.
Since x ∈ Qk0

α0
∩ Q�

β , items (2)–(3) imply that Q�
β ⊆ Qk0

α0
. Via double inclusion we

therefore have Q�
β = Qk0

α0
, contradicting the fact that Qk0

α0
�= ˜Q = Q�

β . This shows
that, as claimed, Qk0

α0
∈ DO.

To complete the proof of (7.5.27) there remains to prove uniqueness. In this regard,
observe that if Q, Q′ ∈ DO are such that x ∈ Q and x ∈ Q′ then Q, Q′ ∈ D(X)

satisfy Q ∩ Q′ �= ∅. From items (2)–(3) we then see that either Q ⊆ Q′ ⊆ O or
Q′ ⊆ Q ⊆ O. In any eventuality we may then conclude that Q = Q′ by maximality.
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At this point, (7.5.27) is established. In turn, from (7.5.27) we deduce that

O \ N ⊆
⋃

Q∈DO

Q ⊆ O, (7.5.33)

so
O \

⋃

Q∈DO

Q ⊆ N (7.5.34)

from which (7.5.22) follows in view of (7.5.26). �

A few words clarifying terminology inspired by Proposition 7.5.4 are in order.

Remark 7.5.5 As already mentioned in the statement, sets Q belonging to D(X) will
be referred to as dyadic cubes (on X ). Moreover, for each k ∈ Z with k ≥ κX , we
shall call Dk(X) thedyadiccubesofgeneration k and, for each Q ∈ Dk(X),
define the side-length of Q to be �(Q) := 2−k , and the center of Q to be the
point xQ := xk

α ∈ X if Q = Qk
α .

Finally, we make the convention that saying that D(X) is a dyadic cube
structure (or dyadic grid) on X will always indicate that the collection
D(X) is associated with X as in Proposition 7.5.4. This presupposes that X is the
ambient set for a geometrically doubling quasi-metric space, in which case D(X)

satisfies properties (1)–(7) above and that, in the presence of a background Borel
doubling measure μ, properties (8) and (9) also hold.

Here is the Whitney decomposition result advertised earlier which, in contrast to
the one presented in Proposition 7.5.3, allows breaking up a set into mutually disjoint
pieces; on occasions, this is quite a desirable feature.

Proposition 7.5.6 Let (X, ρ, μ) be a space of homogeneous type. In the case when
X is unbounded, make the additional assumption that for each sequence of ρ-balls
{B j } j∈N in X there holds

lim
j→∞ μ(B j ) = +∞ if radius(B j ) → +∞ as j → ∞. (7.5.35)

Also, consider a dyadic grid D(X) on X, in the sense of Proposition 7.5.4; in par-
ticular recall the constant a1 from (7.5.9).

Then for each λ ∈ (a1,∞) there exists a constant � ∈ (0,∞), depending only
on λ and the ambient, such that for each open, nonempty, proper subset O of the
topological space (X, τρ) with the property that μ(O) < +∞ there exists a sequence
of dyadic cubes {Q j } j∈N ⊆ D(X) for which

(1) the cubes {Q j } j∈N are mutually disjoint, are contained in O, and also satisfy

μ
(

O \ ⋃
j∈N

Q j

)

= 0;

(2) Bρ

(

x j , λ �(Q j )
) ⊆ O and distρ

(

Q j , X \ O) ≤ � · �(Q j ) for each j ∈ N, where
x j and �(Q j ) denote, respectively, the center and side-length of Q j .
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Proof With Nk as in (7.5.17), observe that if

N :=
⋃

k∈Z, k≥κX

Nk then μ(N ) = 0. (7.5.36)

From items (2) and (9) in Proposition 7.5.4 we see that for each x ∈ X \ N and each
k ∈ Z with k ≥ κX there exists a unique dyadic cube Q(x)

k ∈ Dk(X) containing x . In
addition, item (3) in Proposition 7.5.4 implies

x ∈ Q(x)
k+1 ⊆ Q(x)

k for each k ∈ Z with k ≥ κX . (7.5.37)

Henceforth, assume some open, nonempty, proper subset O of X has been given,
and fix a point x ∈ O \ N . For each k ∈ Z with k ≥ κX introduce

ck := 2k · distρ
(

Q(x)
k , X \ O) ≥ 0. (7.5.38)

In relation to these numbers we make five useful observations. First, the fact that O
is open implies that ck becomes strictly positive if k is large enough. Second, since
each cube Q(x)

k contains the point x , from (7.5.38) we see that

ck ≤ 2k · distρ(x, X \ O) for each k ∈ Z with k ≥ κX . (7.5.39)

Third, from (7.5.39) and (7.5.6) we obtain

cκX ≤ 2κX · diamρ(X) ≤ 1 in the case when X is bounded. (7.5.40)

Fourth, observe that (7.5.37) entails

2ck ≤ ck+1 for each k ∈ Z with k ≥ κX . (7.5.41)

Fifth, since distρ
(

Q(x)
k+1, X \ O) ≤ C · distρ

(

Q(x)
k , X \ O)+ C · 2−k , we conclude

that there exists some purely geometric number θ ∈ (0, 1), independent of k and
x , such that

θ · ck+1 − 1 ≤ ck for each k ∈ Z with k ≥ κX . (7.5.42)

Pressing on, bring in an arbitrary λ ∈ (a1,∞). Make the general observation, of
geometric nature, that for each given constant A > 0 there exists some small number
ε = ε(λ, A, ρ) > 0, independent of x , such that

Bρ(z, λr) ⊆ O if 0 < r < εdistρ(x, X \ O)

and z ∈ X with ρ(x, z) < A · r.
(7.5.43)

In turn, such a number ε corresponding to the choice A := a1 with a1 as in (7.5.9)
guarantees that, with z(x)

k and �(Q(x)
k ) = 2−k denoting the center and, respectively,
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the side-length of the dyadic cube Q(x)
k , we have

Bρ

(

z(x)
k , λ �(Q(x)

k )
) ⊆ O provided ε−1 ≤ 2k · distρ(x, X \ O). (7.5.44)

Suppose now that some number M > max
{

1, ε−1
}

has been fixed, and let kx ∈ Z

with kx ≥ κX be the smallest integer k ∈ Z with k ≥ κX for which ck+1 > M . Then
the number kx is well defined and, by design, ckx +1 > M ≥ ckx . Since we also know
from (7.5.42) that ckx ≥ θ · ckx +1 − 1, we eventually conclude that

M < ckx +1 ≤ θ−1(M + 1). (7.5.45)

In light of (7.5.38), the second inequality in (7.5.45) ultimately entails

distρ
(

Q(x)
kx +1, X \ O) ≤ � · �

(

Q(x)
kx +1

)

where � := θ−1(M + 1). (7.5.46)

Bearing in mind that M > ε−1, from (7.5.44), (7.5.38), and the first inequality in
(7.5.45) we also conclude that

B
(

z(x)
kx +1, λ �

(

Q(x)
kx +1

)) ⊆ O. (7.5.47)

In particular, since λ > a1 to begin with, from (7.5.47) and (7.5.9) we conclude that

Q(x)
kx +1 ⊆ O. (7.5.48)

Consider next the family of all dyadic cubes of the form Q(x)
kx +1 corresponding to

x ∈ O \ N . Assume all redundant duplications have been eliminated, and denote the
resulting set of distinct dyadic cubes by F . Then we have

Q ⊆ O for each Q ∈ F and μ
(

O \
⋃

Q∈F
Q
)

= 0, (7.5.49)

as well as

Bρ

(

xQ, λ �(Q)
) ⊆ O and distρ

(

Q, X \ O) ≤ � · �(Q) for each
Q ∈ F , where xQ and �(Q) denote, respectively, the center and
side-length of Q.

(7.5.50)

Since the two inequalities in (7.5.50) imply the existence of a finite constant C > 0
with the property that distρ

(

xQ, X \ O) ≤ C · �(Q) for each Q ∈ F , it follows that
we cannot have an infinite nested sequence Q1 ⊃ Q2 ⊃ · · · ⊃ Q j ⊃ Q j+1 ⊃ · · ·
of cubes in F for which �(Q j ) → 0 as j → ∞. Indeed, this would imply that
{xQ j } j∈N ⊆ Q1 with lim

j→∞ distρ
(

xQ j , X \ O) = 0, contradicting the fact that Q1 ⊆ O
is quantitatively separated from X \ O (cf. (7.5.50)). Thus, any nested subfamily of
in F necessarily has a smallest cube.
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At the other end of the spectrum, if X is bounded, �(Q) ≤ 2−κX < +∞ for each
Q ∈ D(X) by design. Hence, in particular, all cubes in F obey a uniform upper
bound on their side-lengths. If X is unbounded, then the additional property (7.5.35)
is in effect. As such, the fact that Bρ

(

xQ, λ �(Q)
) ⊆ O for each Q ∈ F together with

the knowledge that O has finite measure imply that supQ∈F �(Q) < +∞.
Let us record our progress. The above reasoning shows that any nested subfamily

of F necessarily is finite. As such, if we now consider the subset of F consist-
ing of all maximal cubes (with respect to inclusion), then this may be relabeled as
{Q j } j∈N yielding a sequence of mutually disjoint dyadic cubes {Q j } j∈N ⊆ D(X)

which, thanks to (7.5.49)–(7.5.50), satisfy properties (1)–(2) in the statement. �

We conclude by discussing a brand of Vitali’s Covering Lemma in generic quasi-
metric spaces, and one of its useful corollaries. These should be compared with [57,
Theorem 3.1, p. 623], [35, Lemma 3, p. 299] in the less general setting of spaces of
homogeneous type, and with [56, Theorem 1.2, p. 69] for a version which requires
the underlying set to be bounded. See also [118, Theorem 1.2, p. 2] for a version in
metric spaces.

Lemma 7.5.7 Let (X, ρ) be a quasi-metric space and fix Co ∈ (0, C2
ρ · ˜Cρ

)

, where
Cρ, ˜Cρ are as in (7.1.3) and (7.1.4). Consider a family of ρ-balls

F = {Bρ(xα, rα)
}

α∈I , xα ∈ X, rα > 0 for every α ∈ I, (7.5.51)

such that
sup
α∈I

rα < +∞. (7.5.52)

In addition, suppose that either

(X, τρ) is separable, (7.5.53)

(recall from [188, (4.49), p. 164] that this condition is always satisfied if the quasi-
metric space (X, ρ) is geometrically doubling in the sense of Definition 7.5.1), or

for every sequence {Bρ(x j , r j )} j∈N ⊆ F consisting
of mutually disjoint of ρ-balls one has lim

j→∞ r j = 0. (7.5.54)

Then there exists an at most countable set J ⊆ I with the property that

Bρ(x j , r j ) ∩ Bρ(x j ′ , r j ′) = ∅ for each j, j ′ ∈ J with j �= j ′, (7.5.55)

and each ρ-ball from F is contained in a dilated ρ-ball of the form Bρ(x j , Cor j ) for
some j ∈ J . In particular,

⋃

α∈I

Bρ(xα, rα) ⊆
⋃

j∈J

Bρ(x j , Cor j ). (7.5.56)
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Proof This is a consequence of Lemma 6.3.1, used here with A(x, r) := Bρ(x, r)

for each x ∈ X and r > 0. The version when (7.5.53) holds is based on Remark 6.3.2
and the readily verified fact that

Bρ(x, r) ⊆ (Bρ(x, θ−1r)
)◦

, ∀x ∈ X, ∀r > 0, ∀θ ∈ (0, C−1
ρ ), (7.5.57)

(where S◦ denotes the interior of a set S ⊆ X with respect to the topology τρ),whereas
the version when (7.5.54) holds is modeled upon (6.3.4). In either case, a direct
computation shows that the enveloping property stated in part (b) of Lemma 6.3.1
holds for the choice C := C2

ρ · ˜Cρ . Consequently, if we choose λ > 1 such that
λC < Co to being with, it follows from (6.3.3) that the condition described just
above (7.5.56) holds as well. �

Here is a rather versatile corollary of Lemma 7.5.7, more in line with the original
Euclidean result.

Lemma 7.5.8 Assume (X, ρ) is a geometrically doubling quasi-metric space. Then
there exists a constant c = c(X, ρ) ∈ (1,∞) with the following property. Suppose
E ⊆ X and r : E → (0,∞) are such that either the set E is ρ-bounded, or the
function r is bounded.

Then there exists an at most countable sequence of points {x j } j∈J in E such that

Bρ(x j , r(x j )) ∩ Bρ(x j ′ , r(x j ′)) = ∅ for all j, j ′ ∈ J, j �= j ′ (7.5.58)

and
E ⊆

⋃

j∈J

Bρ(x j , cr(x j )). (7.5.59)

Proof The case when r : E → (0,∞) is bounded is a direct consequence of
Lemma 7.5.7. If the function r : E → (0,∞) is unbounded but the set E is
ρ-bounded, then there exists some x∗ ∈ E such that E ⊆ Bρ(x∗, r(x∗)

)

, so the con-
clusion is trivially true (by taking family {x j } j∈J to be the singleton {x∗}). �

7.6 The Hardy–Littlewood Maximal Operator on Spaces
of Homogeneous Type

Let (X, ρ, μ) be a space of homogeneous type with the property that the quasi-
distance ρ : X × X → [0,∞) is continuous11 in the product topology τρ × τρ .
Given s ∈ (0,∞) and 0 ≤ α < 1

s , define the Ls-based fractional Hardy–
Littlewood maximal operator of order α as

11 Recall from Theorem 7.1.2 that any quasi-metric space has an equivalent quasi-distance which
satisfies this property.
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MX,s,α f (x) := sup
r>0

[

μ(Bρ(x, r))α
(

 
Bρ(x,r)

| f |s dμ
) 1

s

]

, ∀x ∈ X, (7.6.1)

for each μ-measurable function f on X .

Theorem 7.6.1 Let (X, ρ, μ) be a space of homogeneous type having the property
that the quasi-distance ρ : X × X → [0,∞) is continuous in the product topology
τρ × τρ . Having fixed an integrability exponent s ∈ (0,∞) along with some power
α ∈ [0, 1/s) consider MX,s,α , the Ls-based fractional Hardy–Littlewood operator
of order α defined in this setting as in (7.6.1). Then

MX,s,α f is μ-measurable, for each μ-measurable function f on X. (7.6.2)

Moreover,
MX,s,α : L p,q(X, μ) −→ L p∗,q(X, μ)

is well defined, sub-linear, and bounded whenever

s < p < 1
α
, p∗ := ( 1p − α

)−1
, and 0 < q ≤ ∞.

(7.6.3)

In particular,
MX,s,α : L p(X, μ) −→ L p∗

(X, μ)

is well defined, sub-linear, and bounded

whenever s < p < 1
α

and p∗ := ( 1p − α
)−1

.

(7.6.4)

Furthermore, corresponding to the end-point case p = s,

MX,s,α : Ls(X, μ) −→ L
s

1−αs ,∞(X, μ)

is well defined, sub-linear, and bounded,
(7.6.5)

and, corresponding to the end-point case p = 1/α,

MX,s,α : L1/α(X, μ) −→ L∞(X, μ)

is well defined, sub-linear, and bounded.
(7.6.6)

In the sequel, for each s ∈ (0,∞) it is convenient to abbreviateMX,s := MX,s,0,
i.e.,definetheactionoftheLs-basedHardy–Littlewoodmaximaloperator
MX,s on eachμ-measurable function f on X as

MX,s f (x) := [MX (| f |s)]1/s
(x) = sup

r>0

(

 
Bρ (x,r)

| f |s dμ
) 1

s
, ∀x ∈ X. (7.6.7)

As a direct consequence of Theorem 7.6.1, we obtain the following result:

Corollary 7.6.2 Suppose (X, ρ, μ) is a space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous in the product topology
τρ × τρ , and fix some s ∈ (0,∞). Then
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MX,s f is μ-measurable, for each μ-measurable function f onX. (7.6.8)

Furthermore,

MX,s : L p,q(X, μ) −→ L p,q(X, μ) is well defined, sub-linear,
and bounded if s < p ≤ ∞ and 0 < q ≤ ∞,

with the convention that q = ∞ if p = ∞,

(7.6.9)

and, corresponding to the case p = s,

MX,s : Ls(X, μ) −→ Ls,∞(X, μ)

is well defined, sub-linear, and bounded.
(7.6.10)

In particular,

MX,s : L p(X, μ) −→ L p(X, μ) is well defined,
sub-linear, and bounded if p ∈ (s,∞]. (7.6.11)

We shall occasionally need to consider the truncated (or local) version of the above
Ls-based Hardy–Littlewood maximal operator. Specifically, suppose (X, ρ, μ) is a
space of homogeneous type in which the quasi-distance ρ : X × X → [0,∞) is
continuous in the product topology τρ × τρ . Also, pick an exponent s ∈ (0,∞) and
a scale R ∈ (0,∞). In this context, for each μ-measurable function f defined on X
set

MR
X,s f (x) := sup

0<r≤R

(

 
Bρ(x,r)

| f |s dμ
) 1

s
, ∀x ∈ X. (7.6.12)

In relation to this, we mention that

MR
X,s : L p

loc(X, μ) −→ L p
loc(X, μ) is well defined ,

sub-linear, and bounded if p ∈ (s,∞]. (7.6.13)

Explicitly, the boundedness in question amounts to saying that for every ρ-ball
B ⊆ X there exist a constant C ∈ (0,∞) and some ρ-ball ˜B ⊆ X such that

∥

∥MR
X,s f

∥

∥

L p(B,μ)
≤ C‖ f ‖L p(˜B,μ) for each f ∈ L p

loc(X, μ). (7.6.14)

To see this, it suffices to observe that for each f ∈ L p
loc(X, μ) and each ρ-ball

Bρ(xo, Ro) in X we have

(MR
X,s f

)

(x) ≤ (MX,s( f · 1Bρ(xo,C(R+Ro))

)

(x) (7.6.15)

for each x ∈ Bρ(xo, Ro), where C ∈ (0,∞) depends only on the quasi-distance ρ.
Based on this and (7.6.11), the claim made in (7.6.14) follows.
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Moving on, it is worth dealing separately with the standard Hardy–Littlewood
maximal operator, defined as in (7.6.7) with s := 1. Specifically, by further special-
izing Corollary 7.6.2 to this choice of s yields the following result.12

Corollary 7.6.3 Let (X, ρ, μ) be a space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous13 in the product topology
τρ × τρ . In this context, define the action of the standard the Hardy–Littlewood
maximal operator MX on each μ-measurable function f : X → C as

MX f (x) := sup
r∈(0,∞)

1

μ
(

Bρ(x, r)
)

ˆ
Bρ(x,r)

| f | dμ, ∀x ∈ X. (7.6.16)

Then

MX f : X −→ [0,∞] is a well-defined μ-measurable function
for each μ-measurable function f : X → C,

(7.6.17)

and the mapping

MX : L p(X, μ) −→ L p(X, μ) is well defined,
sub-linear, and bounded for every p ∈ (1,∞],

with ‖MX‖L p(X,μ)→L p(X,μ) = O
(

(p − 1)−1
)

as p → 1+.

(7.6.18)

Furthermore, corresponding to the case p = 1, the mapping

MX : L1(X, μ) −→ L1,∞(X, μ)

is well defined, sub-linear, and bounded.
(7.6.19)

Finally, the standard Hardy–Littlewood maximal operator defined as in (7.6.16)
induces a mapping

MX : L p,q(X, μ) −→ L p,q(X, μ) which is well defined,
sub-linear, and bounded for each p ∈ (1,∞] and q ∈ (0,∞]. (7.6.20)

We now take up the task of providing the proof of Theorem 7.6.1.

Proof of Theorem 7.6.1 The idea is to specialize the result proved in Theorem 6.3.3
to the case when the familyA of subsets of X is given by

A := {Bρ(x, r)}x∈X,r>0. (7.6.21)

Accordingly, the bulk of the proof consists of a verification that conditions (i)-(vi)
from the statement of Theorem 6.3.3 are satisfied. To get started, recall that the

12 A direct proof of Corollary 7.6.3 may be found in [11, Theorem 3.7, p. 82].
13 Theorem 7.1.2 guarantees that any quasi-metric space has an equivalent quasi-distance which
satisfies this property.
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measure μ is defined on a sigma-algebra M of subsets of X with the property that
Borelτρ

(X) ⊆ M.
Consider first condition (vi) in the statement of Theorem 6.3.3. In the current

setting, this amounts to requiring that for each r > 0 and each E ∈ M fixed, the
function

X � x �−→ μ(Bρ(x, r) ∩ E) ∈ [0,∞) (7.6.22)

is μ-measurable. To see that this is the case, observe that it suffices to show that

f : X → [0,∞), f (x) := μ
(

Bρ(x, r) ∩ E
)

, ∀x ∈ X,

is lower-semicontinuous,
(7.6.23)

since any lower-semicontinuous function is Borelτρ
-measurable. To this end, fix

xo ∈ X arbitrary. The assumed continuity of ρ ensures that if {x j } j∈N is a sequence of
points in X with the property that x j → xo as j → ∞, with convergence understood
in the (metrizable) topology τρ , then

lim inf
j→∞ 1Bρ(x j ,r)(y) ≥ 1Bρ(xo,r)(y), ∀y ∈ X. (7.6.24)

Indeed, this is easily verified by analyzing separately the cases y ∈ Bρ(xo, r) and
y ∈ X \ Bρ(xo, r). In turn, based on this and Fatou’s lemma we may then estimate

f (xo) = μ
(

Bρ(xo, r) ∩ E
) =

ˆ
E

1Bρ(xo,r)(y) dμ(y)

≤
ˆ

E
lim inf

j→∞ 1Bρ (x j ,r)(y) dμ(y) ≤ lim inf
j→∞

ˆ
E

1Bρ(x j ,r)(y) dμ(y)

= lim inf
j→∞ μ

(

Bρ(x j , r) ∩ E
) = lim inf

j→∞ f (x j ), (7.6.25)

as desired. This concludes the verification of the version of condition (vi) from the
statement of Theorem 6.3.3 corresponding to the present setting.

All the remaining conditions are basically direct consequences of definitions and
assumptions. In summary, all background hypotheses made in Theorem 6.3.3 are
valid for the family (7.6.21), and the conclusions inTheorem6.3.3 prove all the claims
we have set to justify here save for the very last line in (7.6.18). However, this may be
justified directly, much as in the Euclidean case (cf., e.g., [107, Theorem 2.1.6, p. 80],
[240, p. 7]), or based on (7.6.19), L∞-bounds, and the Marcinkiewicz Interpolation
Theorem (cf., e.g., [107, Theorem 1.3.2, pp. 32–33]). �

We continue by making four comments pertaining to the above considerations.
First, given any functions f, g ∈ L0(X, μ), we have

MX ( f + g) ≤ MX f + MX g pointwise on X, (7.6.26)

from which we conclude that
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if x ∈ X is such that
(MX f

)

(x) < +∞ and
(MX g

)

(x) < +∞
it follows that

∣

∣

∣

(MX f
)

(x) − (MX g
)

(x)

∣

∣

∣ ≤ (MX ( f − g)
)

(x).
(7.6.27)

In turn, from (7.6.27), (7.6.18), and (7.6.19) see that

for any two given functions f, g ∈ L p(X, μ) with p ∈ [1,∞] we have
∣

∣

∣

(MX f
)

(x) − (MX g
)

(x)

∣

∣

∣ ≤ (MX ( f − g)
)

(x) at μ-a.e. point x ∈ X.
(7.6.28)

As a corollary of (7.6.28) and (7.6.18)–(7.6.19), we conclude that

the Hardy-Littlewood maximal operator MX is a continuous
mapping both in the context of (7.6.18) and of (7.6.19).

(7.6.29)

To set the stage for our second comment, assume (X, ρ, μ) is a space of homo-
geneous type in which the quasi-distance ρ : X × X → [0,∞) is continuous in the
product topology τρ × τρ , and suppose ω is a Borel measure on X (viewed as a
topological space, equipped with the topology τρ). For γ ∈ [0, 1] fixed, consider the
maximal function

φγ (x) := sup
B⊆X ,ρ-ball

x∈B

(

ω(B)
[

μ(B)
]γ

)

, ∀x ∈ X. (7.6.30)

Then the same type of argument as in the proof of Theorem 6.3.3 (based on a Vitali-
type covering lemma and Hölder’s inequality) yields the following estimates:

‖φγ ‖L1/γ,∞(X,μ) ≤ C‖φ0‖L∞(X,μ), if 0 < γ ≤ 1, (7.6.31)

‖φγ ‖L∞(X,μ) ≤ C‖φ1‖L1/(1−γ )(X,μ), if 0 ≤ γ < 1, (7.6.32)

for some finite C > 0 which depends only of the quasi-distance constant of ρ and
the doubling constant of μ.

Note that (7.6.31)–(7.6.32) can be viewed as a generalization of two key estimates
implicit in Theorem 7.6.1. Indeed, given any μ-measurable function f on X , for
0 < s < 1/α we have the pointwise equivalence

(MX,s,α f )(x) ≈ (φ1−sα
)

(x)1/s uniformly in x ∈ X, provided
φ1−sαis defined as in (7.6.30) with γ := 1 − sα and ω := | f |sμ.

(7.6.33)

This permits us to deduce (7.6.5) directly from (7.6.31) and also to conclude from
(7.6.32) that

∥

∥MX,s,α f
∥

∥

L∞(X,μ)
≤ C

∥

∥MX (| f |s)∥∥1/s

L p(X,μ)

whenever 1 < p < ∞ and α = 1
sp .

(7.6.34)
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In view of the boundedness of the standard Hardy–Littlewoodmaximal operatorMX

on L p(X, μ) with 1 < p < ∞, the latter estimate then shows that

MX,s,α : Lsp(X, μ) −→ L∞(X, μ) is bounded
whenever 1 < p < ∞ and α = 1

sp .
(7.6.35)

Our third comment concerns a weighted version of Theorem 7.6.1, of the sort
recorded below.

Proposition 7.6.4 Let (X, ρ, μ) be a space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous in the product topology
τρ × τρ . Fix s ∈ (0,∞) and α ∈ [0, 1/s), along with p, q such that s < p ≤ q < ∞.
Also, suppose that w, v are two weights on X with the property that v−s/(p−s) belongs
to the Muckenhoupt class A∞(X, μ). Then there exists a finite constant C > 0 with
the property that

∥

∥MX,s,α f
∥

∥

Lq (X,wμ)
≤ C‖ f ‖L p(X,vμ) for all f ∈ L p(X, vμ) (7.6.36)

if and only if

sup
Bρ-ball in X

[

μ(B)−(1/s−α)p
(

ˆ
B

w dμ
)p/q(

ˆ
B

v−s/(p−s) dμ
)p/s−1

]

< +∞.

(7.6.37)

Indeed, the case corresponding to s = 1 is (up to re-adjusting notation) the main
result in [20]. The general case s ∈ (0,∞) is then obtained by relying based on the
equalityMX,s,α f = [MX,1,sα(| f |s)]1/s

. See also [206, Theorem 3, pp. 265–266] and
[260, Theorem 1, p. 258] in this regard.

Our fourth (and final) comment is the following useful lower pointwise bound for
the Hardy–Littlewood maximal function.

Corollary 7.6.5 Let (X, ρ, μ) be a space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous in the product topology
τρ × τρ , and the measureμ is Borel-semiregular on (X, τρ). Then for each s ∈ (0,∞)

and each μ-measurable function f : X → R one has

| f (x)| ≤ (MX,s f
)

(x) at μ-a.e. point x ∈ X. (7.6.38)

Proof Fix an arbitraryμ-measurable function f : X → R. As far as (7.6.38) is con-
cerned, there is no loss in generality in assuming that s = 1 (since matters may
be reduced to this case by working with | f |s in place of f ; see (7.6.7)). Sup-
pose this is the case (and write MX in place of MX,1). If

(MX f
)

(x) = +∞ for
each x ∈ X there is nothing to prove. Assume

(MX f
)

(x0) < +∞ for some x0 ∈ X
which, in view of (7.6.16), forces f ∈ L1

loc(X, μ). Granted this membership and the
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current hypotheses, Lebesgue’s Differentiation Theorem (see (1) ⇔ (3) in Propo-
sition 7.4.4) applies and gives, on account of (7.6.16),

| f (x)| = lim
r→0+

 
Bρ(x,r)

| f | dμ ≤ (MX f
)

(x) for μ-almost every x ∈ X, (7.6.39)

as wanted. �

We continue by recording the version of the classical vector-valued maximal
function inequality of Fefferman and Stein in the setting of space of homogeneous
type; see, e.g., [108, Theorem 1.2, p. 299].

Theorem 7.6.6 Let (X, ρ, μ) be a space of homogeneous type and recall that MX

is the Hardy–Littlewood maximal operator on X (cf. (7.6.16)). Then for p ∈ (1,∞)

and q ∈ (1,∞], there exists a finite positive CX , depending only on X, such that
for any sequence of μ-measurable functions f j : X → R, with j ∈ N, the following
inequalities hold

∥

∥

∥

(
∑

j∈N

(MX f j )
q
) 1

q
∥

∥

∥

L1,∞(X,μ)
≤ CX Cq

∥

∥

∥

(
∑

j∈N

| f j |q
) 1

q
∥

∥

∥

L1(X,μ)
, (7.6.40)

and

∥

∥

∥

(
∑

j∈N

(MX f j )
q
) 1

q
∥

∥

∥

L p(X,μ)
≤ CX C p,q

∥

∥

∥

(
∑

j∈N

| f j |q
) 1

q
∥

∥

∥

L p(X,μ)
, (7.6.41)

where Cq = max{1, 1
q−1 } and C p,q = max{1, 1

q−1 } · max{p, 1
p−1 } if q ∈ (1,∞); if

q = ∞, C∞ coincides with the norm ofMX : L1(X, μ) → L1,∞(X, μ), whereas for
p ∈ (1,∞), C p,∞ coincides with the norm of MX : L p(X, μ) → L p(X, μ).

Wenext extendFefferman–Stein’smaximal inequality from [89, Lemma1, p. 111]
to the setting of spaces of homogeneous type. The original argument makes use of
dilation and translation properties of the Euclidean space and, as such, does not fully
lend itself to the present, more general, geometric setting.

Proposition 7.6.7 Let
(

X, ρ, μ
)

be a space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous.14 Then for each exponent
s ∈ (0, 1) there exists some constant C = C(μ, ρ, s) ∈ (0,∞) such that for any two
μ-measurable functions f, g : X → [0,∞] one has

ˆ
X

(MX,s f
)

g dμ ≤ C
ˆ

X
f
(MX g

)

dμ, (7.6.42)

14 Theorem 7.1.2 guarantees that any quasi-metric space has an equivalent quasi-distance which
satisfies this property.
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where MX and MX,s are, respectively, the Hardy–Littlewood maximal operator on
X (cf. (7.6.16)) and its Ls-based version (defined as in (7.6.7)).

Before presenting the proof of Proposition 7.6.7 wemake two remarks. First, from
(7.6.8) and (7.6.17) we know that

MX,s f and MX g are non-negative μ-measurable function on X, (7.6.43)

so the integrals in (7.6.42) are meaningful. Second, the range s ∈ (0, 1) is sharp, in
the sense that (7.6.42) fails if s ≥ 1. To see this, it suffices to consider the case when
s = 1. In such a scenario (7.6.42) written for g ≡ 1 amounts to the boundedness of
MX on L1(X, μ), which generally fails (in this regard, see also (7.6.67)).

Proof of Proposition 7.6.7 For each R ∈ (0,∞) define the following local maximal
operators acting on arbitrary μ-measurable functions f : X → R according to

(MR f
)

(x) := sup
r∈(0,R)

 
Bρ(x,r)

| f | dμ for all x ∈ X. (7.6.44)

Choose s ∈ (0, 1) and define p := 1/s ∈ (1,∞). Also, pick f : X → [0,∞] an
arbitrary μ-measurable function. Fix λ, R ∈ (0,∞) arbitrary and define the set

�λ,R := {x ∈ X : (MR f
)

(x) > λ
}

. (7.6.45)

Recalling (7.6.44), it follows that for each x ∈ �λ,R there exists rx ∈ (0, R) such
that  

Bρ(x,rx )

f dμ > λ. (7.6.46)

Since, by design, supx∈�λ,R
rx ≤ R, we may apply Vitali’s Covering Lemma in the

version recorded in Lemma 7.5.8 to the family of ρ-balls
{

Bρ(x, rx )
}

x∈�λ,R
. Specif-

ically, Lemma 7.5.8 guarantees the existence of a constant C0 ∈ (1,∞) along with
an at most countable family of points

{

x j
}

j∈J ⊆ �λ,R such that

the ρ-balls
{

Bρ(x j , rx j )
}

j∈J are mutually disjoint and

�λ,R ⊆
⋃

x∈�λ,R

Bρ(x, rx ) ⊆
⋃

j∈J

Bρ(x j , C0rx j ).
(7.6.47)

Bring in another arbitraryμ-measurable function g : X → [0,∞]. Fix j ∈ J and,
starting with (7.6.46), write
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ˆ
Bρ(x j ,C0rx j )

g dμ

<
1

λ

ˆ
Bρ (x j ,C0rx j )

g(x)
(

 
Bρ(x j ,rx j )

f (y) dμ(y)
)

dμ(x)

≤ C

λ

ˆ
Bρ(x j ,rx j )

f (y)
(

 
Bρ(x j ,C0rx j )

g(x) dμ(x)
)

dμ(y), (7.6.48)

where the second inequality uses the fact that μ is a doubling measure (cf. (7.4.4)).
Next, observe that there exists C1 ∈ (0,∞) such that Bρ(x j , C0rx j ) ⊆ Bρ(y, C1rx j )

for each y ∈ Bρ(x j , rx j ). Based on this and the doubling property of μ (see (7.4.4)
once again) we have

 
Bρ(x j ,C0rx j )

g(x) dμ(x) ≤ 1

μ
(

Bρ(x j , C0rx j )
)

ˆ
Bρ(y,C1rx j )

g dμ

≤ C

μ
(

Bρ(y, C1rx j )
)

ˆ
Bρ(y,C1rx j )

g dμ

≤ C
(MX g

)

(y) for each y ∈ Bρ(x j , rx j ), (7.6.49)

where C ∈ (0,∞) depends only on μ and ρ. Together, (7.6.48) and (7.6.49) imply

ˆ
Bρ(x j ,C0rx j )

g dμ ≤ C

λ

ˆ
Bρ (x j ,rx j )

f
(MX g

)

dμ. (7.6.50)

The latter when combined with (7.6.47) gives

ˆ
�λ,R

g dμ ≤
∑

j∈J

ˆ
Bρ(x j ,C0rx j )

g dμ ≤
∑

j∈J

C

λ

ˆ
Bρ(x j ,rx j )

f
(MX g

)

dμ

= C

λ

ˆ
⋃

j∈J Bρ (x j ,rx j )

f
(MX g

)

dμ ≤ C

λ

ˆ
X

f
(MX g

)

dμ, (7.6.51)

where C ∈ (0,∞) is independent of R.
To proceed, fix an arbitrary λ ∈ (0,∞) and define

�λ := {x ∈ X : (MX f
)

(x) > λ
}

. (7.6.52)

Given that for each R ∈ (0,∞)wehaveMR f ≤ MX f pointwise in X , it follows that
�λ,R ⊆ �λ. In addition, MR1 f ≤ MR2 f whenever R2 ≥ R1 > 0. Together, these
imply that the sequence {�λ,R}R>0 is nested. In fact, we have

�λ,R ↗ �λ as R → ∞. (7.6.53)
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Indeed, if x ∈ �λ, then there exists r ∈ (0,∞) such that
ffl

Bρ(x,r)
f dμ > λ. In turn,

the latter forces (MR f )(x) > λ whenever R ≥ r , thus x ∈ �λ,R whenever R ≥ r .
Having proved (7.6.53), we may pass to the limit R → ∞ in the resulting inequality
in (7.6.51) and apply Lebesgue’s Monotone Convergence Theorem to obtain

ˆ
�λ

g dμ ≤ C

λ

ˆ
X

f
(MX g

)

dμ. (7.6.54)

Hence, if we regard gμ and (MX g)μ as measures on X with the same sigma-algebra
of measurable sets at μ itself (something permissible, in light of (7.6.43)), we may
recast (7.6.54) simply as

(gμ)(�λ) ≤ C

λ
‖ f ‖

L1
(

X,(MX g)μ

). (7.6.55)

This shows that the sub-linear operator

MX : L1
(

X, (MX g)μ
) −→ L1,∞(X, gμ) is bounded. (7.6.56)

We also claim that the sub-linear operator

MX : L∞(X, (MX g)μ
) −→ L∞(X, gμ) is bounded. (7.6.57)

Note that, without loss of generality, we may assume that we do not have g = 0 at
μ-a.e. on X , since otherwise (7.6.57) is trivially true. In turn, this implies

(MX g
)

(x) > 0 for all x ∈ X. (7.6.58)

The claimmade in (7.6.57) will follow once we succeed in establishing that for every
given μ-measurable function f : X → [0,∞] there holds

‖MX f ‖L∞(X,gμ) ≤ ‖ f ‖
L∞
(

X,(MX g)μ

). (7.6.59)

Given that the inequality in (7.6.59) is true whenever ‖ f ‖
L∞
(

X,(MX g)μ

) = ∞, we

shall henceforth focus on the case when ‖ f ‖
L∞
(

X,(MX g)μ

) < ∞. Assuming this to

be the case, let λ ∈ (0,∞) be such that

λ > ‖ f ‖
L∞
(

X,(MX g)μ

). (7.6.60)

Then necessarily we have
[

(MX g)μ
]

(

{

x ∈ X : | f (x)| > λ
}

)

= 0, which further

implies
´

{x∈X : | f (x)|>λ}(MX g) dμ = 0. Since MX g ≥ 0, we therefore obtain that
MX g = 0 at μ-a.e. point in the set {x ∈ X : | f (x)| > λ}. In light of (7.6.58), we
infer that μ

({x ∈ X : | f (x)| > λ}) = 0 which forces ‖ f ‖L∞(X,μ) ≤ λ. As a result,
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‖MX f ‖L∞(X,μ) ≤ λ hence, further,

μ
(

{

x ∈ X : (MX f
)

(x) > λ
}

)

= 0. (7.6.61)

The latter implies
´

{x∈X : (MX f )(x)>λ} g dμ = 0 or, equivalently,

(gμ)
(

{

x ∈ X : (MX f
)

(x) > λ
}

)

= 0. (7.6.62)

Consequently,
‖MX f ‖L∞(X,gμ) ≤ λ. (7.6.63)

Now (7.6.59) follows by letting λ ↘ ‖ f ‖L∞(X,(MX g)μ) in (7.6.63).
Having established (7.6.56)–(7.6.57), we may invoke the Marcinkiewicz inter-

polation theorem for sub-linear operators to conclude that there exists a constant
C ∈ (0,∞) such that

‖MX f ‖L p(X,gμ) ≤ C‖ f ‖L p(X,(MX g)μ), (7.6.64)

for all non-negative μ-measurable functions f defined on X . Raising both sides of
the estimate in (7.6.64) to the p-th power and re-denoting f p by f , we obtain

ˆ
X

[MX ( f 1/p)
]p

g dμ ≤ C p
ˆ

X
f (Mg) dμ (7.6.65)

for all μ-measurable functions f ≥ 0. The inequality stated in (7.6.42) now follows
from (7.6.65) by recalling that s = 1/p and observing that

[MX ( f 1/p)
]p = MX,s f

(as seen from (7.6.16) and (7.6.7)). �
We conclude by including a couple of useful pointwise estimates for the Hardy–

Littlewood maximal operator in the context of Ahlfors regular subsets of the
Euclidean ambient.

Proposition 7.6.8 Given a closed Ahlfors regular set � ⊆ R
n, let σ := Hn−1��

and denote by M� the Hardy–Littlewood maximal operator associated with the
space of homogeneous type

(

�, | · − · |, σ ) (cf. Example 7.4.1). Then

(

M�

(

1�(x0,R)

)

)

(x) ≈ Rn−1

(R + |x − x0|)n−1
,

uniformly for x0, x ∈ � and R ∈ (0,∞),

(7.6.66)

where �(x0, R) := � ∩ B(x0, R), and the implicit proportionality constants depend
only on the dimension n and the Ahlfors character of �. In particular, corresponding
to R = 1,
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(

M�

(

1�(x0,1)
)

)

(x) ≈ 1

1 + |x − x0|n−1
,

uniformly for x0, x ∈ �.

(7.6.67)

Furthermore, if for each t ∈ [0,∞) one defines

log+t :=
{

0 if t ∈ [0, 1],
ln t if t ∈ [1,∞),

(7.6.68)

then

[

(M� ◦ M�

)(

1�(x0,1)
)

]

(x) ≈
(

M�

(

1
1+|·−x0|n−1

)

)

(x) ≈ 1 + log+|x − x0|
1 + |x − x0|n−1

,

(7.6.69)
in a uniform fashion for x0, x ∈ �.

Proof If c�, C� denote the lower and upper Ahlfors regularity constants of �, then
0 < c� ≤ C� < ∞. To deal with (7.6.66), pick x0, x ∈ � and R ∈ (0,∞). Consider
first the case where |x − x0| ≤ 2R. In this scenario,

(

M�

(

1�(x0,R)

)

)

(x) = sup
r∈(0,∞)

1

σ
(

�(x, r)
)

ˆ
�(x,r)

1�(x0,R) dσ

= sup
r∈(0,∞)

σ
(

�(x, r) ∩ �(x0, R)
)

σ
(

�(x, r)
)

≤ 1 = (2R)n−1

(R + R)n−1
≤ (2R)n−1

(R + 2−1|x − x0|)n−1

≤ (4R)n−1

(R + |x − x0|)n−1
, (7.6.70)

a bound of the right order. Suppose next that |x − x0| > 2R, and pick r ∈ (0,∞). On
the one hand, if �(x, r) ∩ �(x0, R) = ∅ then σ

(

�(x, r) ∩ �(x0, R)
) = 0. On the

other hand, if �(x, r) ∩ �(x0, R) �= ∅ then necessarily r > |x − x0| − R. Indeed,
since currently there exists some point y ∈ �(x, r) ∩ �(x0, R), we may estimate

r > |x − y| ≥ |x − x0| − |x0 − y| > |x − x0| − R, (7.6.71)

aswanted. In addition, sincewe are presently assuming that |x − x0| > 2R, it follows
that we have r > |x − x0| − R > 1

3 (R + |x − x0|). Using this analysis we may then
write
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(

M�

(

1�(x0,R)

)

)

(x) = sup
r∈(0,2 diam�)

1

σ
(

�(x, r)
)

ˆ
�(x,r)

1�(x0,R) dσ (7.6.72)

= sup
r∈(|x−x0|−R,2 diam�)

σ
(

�(x, r) ∩ �(x0, R)
)

σ
(

�(x, r)
)

≤ sup
r∈(|x−x0|−R,2 diam�)

C� Rn−1

c�rn−1
≤ C�(3R)n−1

c�(R + |x − x0|)n−1
,

where the second inequality relies on the Ahlfors regularity of �. From (7.6.70) and
(7.6.72) we then conclude that

(

M�

(

1�(x0,R)

)

)

(x) ≤ C Rn−1

(R + |x − x0|)n−1
, (7.6.73)

where C := max
{

4n−1, 3n−1(C�/c�)
}

. This is one of the desired estimates in
(7.6.66).

To establish the remaining (right-pointing) inequality in (7.6.66), fix two points
x0, x ∈ � along with some R ∈ (0,∞). Since �(x0, R) ⊆ �

(

x, R + |x − x0|
)

, we
may invoke (7.4.5) to write

(

M�

(

1�(x0,R)

)

)

(x) ≥
 

�(x,R+|x−x0|)
1�(x0,R) dσ = σ

(

�(x0, R)
)

σ
(

�(x, R + |x − z0|)
)

≥ c� Rn−1

C�(R + |x − x0|)n−1
, (7.6.74)

which suits our purposes. At this stage, (7.6.66) follows from (7.6.73)–(7.6.74). Also,
(7.6.67) is a special case of (7.6.66).

As far as (7.6.69) is concerned, the first equivalence is a direct consequence of
(7.6.67) and the definition ofM� . There remains to deal with the second equivalence
in (7.6.69). In preparation, we make three observations. First, we claim that

ˆ
�(x0,R)

dσ(y)

1 + |y − x0|n−1
≈ ln(1 + Rn−1),

uniformly for x0 ∈ � and R ∈ (0, 6 diam(�)
)

.

(7.6.75)

To justify (7.6.75), choose

ε :=
( c�

2C�

)1/(n−1) ∈ (0, 1). (7.6.76)

Then for each x0 ∈ � and r ∈ (0, 2 diam(�)
)

we may write
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C�rn−1 ≥ σ
(

�(x0, r) \ �(x0, εr)
) = σ

(

�(x0, r)
)− σ

(

�(x0, εr)
)

≥
(

c� − εn−1C�

)

rn−1 = (c�/2)rn−1, (7.6.77)

where the inequalities rely on the Ahlfors regularity of �, and the last equality uses
(7.6.76). For each R ∈ (0, 2 diam(�)

)

we are now ready to estimate

ˆ
�(x0,R)

dσ(y)

1 + |y − x0|n−1
=

∞
∑

j=0

ˆ
�(x0,ε j R)\�(x0,ε j+1 R)

dσ(y)

1 + |y − x0|n−1

≈
∞
∑

j=0

ˆ
�(x0,ε j R)\�(x0,ε j+1 R)

dσ(y)

1 + (ε j R)n−1

≈
∞
∑

j=0

(ε j R)n−1

1 + (ε j R)n−1
≈

∞
∑

j=0

ˆ ε j R

ε j+1 R

tn−2

1 + tn−1
dt

=
ˆ R

0

tn−2

1 + tn−1
dt = 1

n − 1
ln(1 + tn−1)

∣

∣

∣

t=R

t=0

= 1

n − 1
ln(1 + Rn−1), (7.6.78)

so (7.6.75) is established in the regime R ∈ (0, 2 diam�
)

. In turn, this readily implies
that (7.6.75) also holds whenever diam� < +∞ and R ∈ (2 diam�, 6 diam�

)

simply by adjusting constants. Specifically, in this scenario we write

ˆ
�(x0,R)

dσ(y)

1 + |y − x0|n−1
=
ˆ

�(x0,diam�)

dσ(y)

1 + |y − x0|n−1

≈ ln
(

1 + (diam�)n−1
) ≈ ln(1 + Rn−1) (7.6.79)

again, with proportionality constants depending only on n and the Ahlfors regularity
character of �.

The second preparatory observation we wish to make is that

φ(t) :=
( tn−1

1 + tn−1

)

· 1 + log+t

ln(1 + tn−1)
≈ 1, uniformly for t ∈ (0,∞). (7.6.80)

This is a consequence of the fact that the function φ is continuous and does not vanish
on (0,∞), and φ as well as 1/φ have finite limits both at 0+ and at +∞ (as may be
seen by once again relying on L’Hôspital’s rule).

The third (and final) preliminary remark is that the function

ψ(t) := ln(1 + tn−1)

tn−1
for t ∈ (0,∞) is decreasing (7.6.81)
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and satisfies
lim

t→0+
ψ(t) = 1. (7.6.82)

In this regard, note that for each t ∈ (0,∞) we have

ψ ′(t) = n − 1

tn

[ tn−1

1 + tn−1
− ln(1 + tn−1)

]

. (7.6.83)

Since the function [0,∞) � s �→ ln(1 + s) − s/(1 + s) is increasing (as its deriva-
tive is positive) and vanishes at the origin, it follows that the expression in the square
brackets above is negative.Hence,ψ ′(t) < 0 for each t ∈ (0,∞), which goes to show
that ψ defined in (7.6.81) is indeed decreasing. Also, an application of L’Hôspital’s
rule gives (7.6.82).

We are now ready to check the second equivalence in (7.6.69). Let us focus on the
right-pointing inequality. Fix two points x0, x ∈ �. If x = x0, then the upper Ahlfors
regularity of �, the fact that ψ in (7.6.81) is decreasing, and (7.6.82) permit us to
write

(

M�

(

1
1+|·−x0|n−1

)

)

(x0) = sup
r∈(0,2 diam�)

1

σ
(

�(x0, r)
)

ˆ
�(x0,r)

dσ(y)

1 + |y − x0|n−1

≈ sup
r∈(0,2 diam�)

ln(1 + rn−1)

rn−1
= sup

r∈(0,2 diam�)

ψ(r)

= lim
r→0+

ψ(r) = 1 = 1 + log+|x − x0|
1 + |x − x0|n−1

∣

∣

∣

x=x0
, (7.6.84)

in agreement with what we are trying to prove. Consider next the case when the two
points x0, x ∈ � are distinct. In this situation, we have |x − x0| > 0 and we may
write

(

M�

(

1
1+|·−x0|n−1

)

)

(x) = sup
r∈(0,∞)

1

σ
(

�(x, r)
)

ˆ
�(x,r)

dσ(y)

1 + |y − x0|n−1

≥ 1

σ
(

�(x, 2|x − x0|)
)

ˆ
�(x,2|x−x0|)

dσ(y)

1 + |y − x0|n−1

≥ 21−n

C�|x − x0|n−1

ˆ
�(x0,|x−x0|)

dσ(y)

1 + |y − x0|n−1
, (7.6.85)

with the last inequality implied by the fact that �(x0, |x − x0|) ⊆ �(x, 2|x − x0|)
and the upper Ahlfors regularity of �. Combining (7.6.85) with (7.6.75), written for
the choice R := |x − x0| ∈ (0, 2 diam(�)

)

, yields

(

M�

(

1
1+|·−x0|n−1

)

)

(x) ≥ c
ln(1 + |x − x0|n−1)

|x − x0|n−1
, (7.6.86)
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for some constant c ∈ (0,∞) which depends only on n and �. From (7.6.86) and
(7.6.80) we then conclude that

(

M�

(

1
1+|·−x0|n−1

)

)

(x) ≥ c
1 + log+|x − x0|
1 + |x − x0|n−1

, (7.6.87)

for some constant c ∈ (0,∞)which depends only on n and�. This finishes the proof
of the right-pointing inequality in the final equivalence in (7.6.69).

There remains to prove the left-pointing inequality in the final equivalence claimed
in (7.6.69). To set the stage, pick two arbitrary points x0, x ∈ � along with a scale
r ∈ (0, 2 diam(�)

)

. The goal is to prove that

 
�(x,r)

dσ(y)

1 + |y − x0|n−1
≤ C

1 + log+|x − x0|
1 + |x − x0|n−1

, (7.6.88)

for a constant C ∈ (0,∞) which depends only on n and �. To this end, we analyze
several cases, starting with

Case I: Assume |x − x0| ≤ 1. Then, since 1/(1 + |y − x0|n−1) ≤ 1, we have

 
�(x,r)

dσ(y)

1 + |y − x0|n−1
≤ 1 ≤ 2

1 + |x − x0|n−1
= 2 · 1 + log+|x − x0|

1 + |x − x0|n−1
,

(7.6.89)
which suits our purposes.

Case II: Assume |x − x0| > 1 and r ≤ |x − x0|/2. In this scenario, for each
y ∈ �(x, r) we have

|x − x0| ≤ |x − y| + |y − x0| < r + |y − x0| ≤ |x − x0|/2 + |y − x0|, (7.6.90)

which forces |x − x0| < 2|y − x0| and, further,

(1 + |y − x0|n−1)−1 <
(

1 + (|x − x0|/2)n−1
)−1

< 2n−1
(

1 + |x − x0|n−1
)−1

.

(7.6.91)
As such, we may write

 
�(x,r)

dσ(y)

1 + |y − x0|n−1
<

2n−1

1 + |x − x0|n−1
< 2n−1 1 + log+|x − x0|

1 + |x − x0|n−1
, (7.6.92)

which is in line with (7.6.88).

Case III: Assume |x − x0| > 1 and r > |x − x0|/2. Note that if y ∈ �(x, r)

then
|y − x0| ≤ |y − x | + |x − x0| < r + |x − x0| < 3r, (7.6.93)
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so �(x, r) ⊆ �(x0, 3r). The latter allows us to write, for some C ∈ (0,∞) depend-
ing only on n and �,

 
�(x,r)

dσ(y)

1 + |y − x0|n−1
= 1

σ
(

�(x, r)
)

ˆ
�(x,r)

dσ(y)

1 + |y − x0|n−1

≤ 1

c�rn−1

ˆ
�(x0,3r)

dσ(y)

1 + |y − x0|n−1

≤ C
ln(1 + rn−1)

rn−1
, (7.6.94)

with the last inequality implied by (7.6.75). The format of the last expression above
matches well with the function ψ defined in (7.6.81). Since, as noted earlier, ψ is
decreasing, the current working hypotheses imply

ln(1 + rn−1)

rn−1
= ψ(r) < ψ

(|x − x0|/2
) = ln

(

1 + (|x − x0|/2)n−1
)

(|x − x0|/2)n−1

< Cn
ln
(

1 + |x − x0|n−1
)

|x − x0|n−1
< Cn

1 + log+|x − x0|
1 + |x − x0|n−1

. (7.6.95)

Combining (7.6.94) with (7.6.95) once again gives an estimate which is in agreement
with (7.6.88).

Collectively, Cases I–III prove the inequality claimed in (7.6.88) which, after
taking the supremum in r ∈ (0, 2 diam(�)

)

, yields

(

M�

(

1
1+|·−x0|n−1

)

)

(x) ≤ C
1 + log+|x − x0|
1 + |x − x0|n−1

, (7.6.96)

with C ∈ (0,∞) depending only on n and �. Hence, the claim made in (7.6.69) is
now fully proved.

�

7.7 Muckenhoupt Weights on Spaces of Homogeneous Type

We shall work in the context of a space of homogeneous type (X, ρ, μ) with the
property that the quasi-distance ρ : X × X → [0,∞) is continuous15 in the product
topology τρ × τρ . In this setting, call a real-valued functionw definedon X aweight
if it is μ-measurable as well as (strictly) positive and finite μ-a.e. on X . We agree to
also use the symbol w for the weighted measure w μ, i.e., define

15 FromTheorem7.1.2 it follows that any quasi-metric space has an equivalent quasi-distancewhich
satisfies this property.
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w(E) :=
ˆ

E
w dμ for each μ-measurable set E ⊆ X. (7.7.1)

Then the measures w and μ have the same sigma-algebra of measurable sets and are
mutually absolutely continuous with each other.

Next, given p ∈ (1,∞), a weight w is said to belong to the Muckenhoupt
class Ap(X, ρ, μ) (occasionally denoted by Ap(X, μ) if the quasi-distance ρ is
understood, or even just simply Ap if the background (X, ρ, μ) is clear from the
context)

[w]Ap := sup
B ρ-ball

( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B

w−1/(p−1) dμ
)p−1

= sup
B ρ-ball

( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B

w1−p′
dμ
)p−1

< +∞, (7.7.2)

where p′ ∈ (1,∞) is the Hölder conjugate exponent of p. Corresponding to the
case when p = 1, the class A1 = A1(X, ρ, μ) = A1(X, μ) is then defined as the
collection of weights w for which

[w]A1 := sup
B ρ-ball

(

ess inf
B

w
)−1( 1

μ(B)

ˆ
B

w dμ
)

< +∞. (7.7.3)

Hence, a weight w belongs to A1 if and only if there exists C ∈ (0,∞) with the
property that for every ρ-ball B ⊆ X we have

1

μ(B)

ˆ
B

w dμ ≤ Cw(x) for μ-a.e. x ∈ B, (7.7.4)

and the best constant in (7.7.4) is actually [w]A1 . In all cases,

[λw]Ap = [w]Ap for each w ∈ Ap with p ∈ [1,∞) and λ ∈ (0,∞). (7.7.5)

It is also useful to note that

[w]Ap ≥ 1 for each w ∈ Ap with p ∈ [1,∞). (7.7.6)

Indeed, if p, p′ ∈ (1,∞) are such that 1/p + 1/p′ = 1 and w ∈ Ap, then for each
ρ-ball B ⊆ X we may use Hölder’s inequality and (7.7.2) to write

1 = 1

μ(B)

ˆ
B

w1/p · w−1/p dμ

≤
( 1

μ(B)

ˆ
B

w dμ
)1/p( 1

μ(B)

ˆ
B

w−p′/p dμ
)1/p′

≤ [w]1/p
Ap

, (7.7.7)

from which (7.7.6) follows when p ∈ (1,∞). The case p = 1 is seen from (7.7.3).
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Next, as it is clear from definitions,

Ap(X, μ) ⊆ L1
loc(X, μ) for each p ∈ [1,∞). (7.7.8)

Corresponding to the end-point p = ∞,

the class A∞(X, μ) is defined as
the union of all Ap(X, μ) with p ∈ [1,∞).

(7.7.9)

An equivalent characterization of the membership of a weight w ∈ L1
loc(X, μ) to

the Muckenhoupt class Ap(X, ρ, μ) with p ∈ [1,∞) is the demand that there exists
a constant C ∈ (0,∞) with the property that

1

μ(B)

ˆ
B

| f | dμ ≤ C
( 1

w(B)

ˆ
B

| f |pw dμ
)1/p

where w(B) := ´
B w dμ, for eachμ-measurable

function f defined on X, and each ρ-ball B ⊆ X.

(7.7.10)

Indeed, if p ∈ (1,∞) then specializing (7.7.10) to the case when f := w−1/(p−1)

(which ensures that we also have | f |pw = w−1/(p−1)) yields

( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B

w−1/(p−1) dμ
)p−1 ≤ C (7.7.11)

for each ρ-ball B ⊆ X , which proves that w ∈ Ap(X, ρ, μ) (cf. (7.7.2)). In the
case when p = 1, for each ρ-ball B ⊆ X and each λ > ess inf B w specialize the
estimate in (7.7.10) to the case f := 1Eλ

where Eλ := {x ∈ B : w(x) < λ}. This
yieldsμ(Eλ)/μ(B) ≤ Cw(Eλ)/w(B), and since Chebyshev’s inequality guarantees
thatw(Eλ) ≤ λμ(Eλ)we ultimately obtain (bearing inmind that 0 < μ(Eλ) < +∞,
thanks to the choice of λ) that w(B)/μ(B) ≤ Cλ. By taking the infimum over all
λ’s which are greater than ess inf B w we arrive at the conclusion that (7.7.4) holds,
hence w ∈ A1(X, ρ, μ). In the opposite direction, assume w ∈ Ap(X, ρ, μ) with
p ∈ (1,∞), pick an arbitrary μ-measurable function f defined on X along with
some ρ-ball B ⊆ X , and denote by p′ ∈ (1,∞) the Hölder conjugate exponent of
p. Then, based on Hölder’s inequality and (7.7.2), we may estimate

1

μ(B)

ˆ
B

| f | dμ = 1

μ(B)

ˆ
B

(| f |w1/p
)

w−1/p dμ

≤ 1

μ(B)

(

ˆ
B

| f |pw dμ
)1/p(

ˆ
B

w−p′/p dμ
)1/p′

=
( 1

w(B)

ˆ
B

| f |pw dμ
)1/p( 1

μ(B)

ˆ
B

w dμ
)1/p×

×
( 1

μ(B)

ˆ
B

w−p′/p dμ
)(p−1)/p

≤ [w]1/p
Ap

( 1

w(B)

ˆ
B

| f |pw dμ
)1/p

, (7.7.12)
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proving (7.7.10) with C := [w]1/p
Ap

∈ (0,∞). Finally, when w ∈ A1(X, ρ, μ), we
may rely on (7.7.3) to write

1

μ(B)

ˆ
B

| f | dμ = 1

μ(B)

ˆ
B

(| f |w)w−1 dμ

=≤ 1

μ(B)

(

ˆ
B

| f |w dμ
)

ess sup
B

w−1

=
( 1

w(B)

ˆ
B

| f |w dμ
)(

ess inf
B

w
)−1( 1

μ(B)

ˆ
B

w dμ
)

≤ [w]A1

( 1

w(B)

ˆ
B

| f |w dμ
)

, (7.7.13)

proving the version of (7.7.10) when p = 1 with C := [w]A1 ∈ (0,∞).
In the lemma belowwe summarize a number of other basic properties (see, e.g., [7,

55, 97, 103, 107, 128, 129, 141, 154, 247] for proofs and other pertinent references).
The reader is alerted to the fact that some natural examples of Muckenhoupt weights
are given later, in Propositions 8.7.4–8.7.5 and Examples 8.7.6–8.7.7.

Lemma 7.7.1 Consider a space of homogeneous type (X, ρ, μ) with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous16 in the product topology
τρ × τρ . In this context, the following properties hold:

(1) [Boundedness of Maximal Operator]Given a weight function w on X along with
an integrability exponent p ∈ (1,∞), the Hardy–Littlewood maximal operator
MX on X is bounded on L p(X, w) := L p(X, wμ) (cf. (7.7.1)) if and only if
w ∈ Ap, in which case there exists some constant C = C(ρ, μ, p) ∈ (0,∞)

with the property that

[w]1/p
Ap

≤ ‖MX‖L p(X,w)→L p(X,w) ≤ C[w]1/(p−1)
Ap

. (7.7.14)

Also, corresponding to p = 1, the operatorMX satisfies the weak-(1, 1) inequal-
ity

sup0<λ<∞ λ · w
({x ∈ X : MX f (x) > λ}) ≤ C‖ f ‖L1(X,w)

for all f ∈ L1(X, w), with C ∈ (0,∞) independent of f,
(7.7.15)

if and only if w ∈ A1.
(2) [Dual/Conjugate Weights] If 1 < p < ∞ then the weight w ∈ Ap if and only

if w1−p′ = w−p′/p ∈ Ap′ , where p′ is the Hölder conjugate exponent of p, in

which case [w1−p′ ]Ap′ = [w]1/(p−1)
Ap

.

16 Theorem 7.1.2 guarantees that any quasi-metric space has an equivalent quasi-distance which
satisfies this property.
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(3) [Products/Reverse Factorizations] Given any two weights w0, w1 ∈ A1 along
with an arbitrary exponent p ∈ [1,∞), it follows that w0 · w

1−p
1 ∈ Ap and one

has [w0 · w
1−p
1 ]Ap ≤ [w0]A1[w1]p−1

A1
.

(4) [Membership to A1] There exists some CX ∈ (0,∞) which depends only on the
quasi-distance ρ (via the constants Cρ, ˜Cρ appearing in (7.1.3)–(7.1.4)) and
the doubling charter of μ, with the property that for any C ∈ (0,∞) and any
weight function w on X satisfying MX (w) ≤ Cw on X one has w ∈ A1 and
[w]A1 ≤ CX · C.

(5) [Monotonicity] If w ∈ Ap for some p ∈ [1,∞) then w ∈ Aq for any exponent
q ∈ [p,∞) and one has [w]Aq ≤ [w]Ap . In particular, one has Ap ⊆ Aq when-
ever 1 ≤ p ≤ q ≤ ∞.

(6) [Doubling] If w ∈ Ap with p ∈ [1,∞) then for every ρ-ball B ⊆ X and every
μ-measurable set E ⊆ B one has17

(

μ(E)

μ(B)

)p

≤ [w]Ap · w(E)

w(B)
. (7.7.16)

In particular, w μ is a doubling measure on X (in the sense of (7.4.1)).
(7) [Logarithmic Convexity] If w0, w1 ∈ Ap with p ∈ [1,∞) then for each expo-

nent θ ∈ [0, 1] one has wθ
0 · w1−θ

1 ∈ Ap and [wθ
0 · w1−θ

1 ]Ap ≤ [w0]θAp
· [w1]1−θ

Ap

(in particular, choosing w1 ≡constant, if w ∈ Ap for some p ∈ [1,∞) then
wθ ∈ Ap for each θ ∈ [0, 1]).

(8) [Building A1 Weights] There exists C ∈ (0,∞) which depends only on the
ambient with the property that if f ∈ L1

loc(X, μ) is not identically zero and
satisfies MX f < ∞ at μ-a.e. point on X then for each θ ∈ (0, 1) one has
(MX f )θ ∈ A1 and

[

(MX f )θ
]

A1
≤ C(1 − θ)−1.

(9) [Self-Improving] If the measure μ is Borel-semiregular, then for each w ∈ Ap

with p ∈ (1,∞) there exists some small ε ∈ (0, p − 1), which depends only on
the ambient, p, and [w]Ap , such that w ∈ Ap−ε with [w]Ap−ε

controlled in terms
of the ambient, p, and [w]Ap .

(10) [Power Stability] If the measure μ is Borel-semiregular then for each w ∈ Ap

with p ∈ [1,∞) there exists some small δ > 0 (which depends only on the ambi-
ent, p, and [w]Ap ) such that w1+δ ∈ Ap with

[

w1+δ
]

Ap
controlled in terms of

the ambient, p, and [w]Ap .
(11) [Reverse Hölder Inequalities] Given q ∈ (1,∞), denote by RHq(X, ρ, μ) (or

simply RHq(X, μ), or even just RHq, if the ambient is clear from context) the
collection of weight functions w on X with the property that

[w]RHq := sup
B ρ-ball

( 1

μ(B)

ˆ
B

wq dμ
) 1

q
( 1

μ(B)

ˆ
B

w dμ
)−1

< +∞. (7.7.17)

Then

17 With the piece of notation introduced in (7.7.1).
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⋃

1≤p<∞
Ap(X, ρ, μ) ⊆

⋃

1<q<∞
RHq(X, ρ, μ). (7.7.18)

More specifically, for every w ∈ Ap with p ∈ [1,∞) there exist some q ∈ (1,∞)

and some C ∈ (0,∞) (which both depend only on p, [w]Ap , and the ambient
space of homogeneous type) such that18

( 
B

wq dμ

)1/q

≤ C
 

B
w dμ for every ρ-ball B ⊆ X. (7.7.19)

As a consequence of (7.7.19) and Hölder’s inequality, for each μ-measurable
function f on X and each ρ-ball B ⊆ X one has

 
B

| f | dw ≤ C

( 
B

| f |q ′
dμ

)1/q ′

(7.7.20)

where q ′ ∈ (1,∞) is the Hölder conjugate exponent of q, and C ∈ (0,∞) is
as in (7.7.19). In particular, there exist some power τ > 0 and some constant
C ∈ (0,∞) (in fact, C is the same as in (7.7.19) and τ = 1/q ′ where q ′ is the
Hölder conjugate of the exponent q from (7.7.19)) such that

w(E)

w(B)
≤ C

(

μ(E)

μ(B)

)τ

(7.7.21)

for every ρ-ball B ⊆ X and every μ-measurable set E ⊆ B.
(12) [BMO and Weights] For each weight w ∈ Ap with p ∈ (1,∞) there exist

ε > 0 and C ∈ (0,∞), both depending only on X, p, [w]Ap , such that for
each function b ∈ BMO(X, μ) with ‖b‖BMO(X,μ) < ε one has w · eb ∈ Ap

and
[

w · eb
]

Ap
≤ C. In particular, for each integrability exponent p ∈ (1,∞)

the set Up := {b ∈ BMO(X, μ) : eb ∈ Ap
}

is open in BMO(X, μ). Also, for
each weight w ∈ A1, the function logw belongs to BMO(X, μ) and one has
‖ logw‖BMO(X,μ) ≤ C(X, [w]A1). Finally, as a consequence of (7.7.9), item (5)
above, (7.7.20), and (7.4.105),

BMO(X, μ) ⊆ L1
loc(X, w) continuously for each w ∈ A∞(X, μ). (7.7.22)

We wish to augment the list of properties in Lemma 7.7.1 with two other related
results. The first such result may be regarded as a “precise openness property” for
Muckenhoupt weights (compare with item (9) in Lemma 7.7.1).

Lemma 7.7.2 Let (X, ρ, μ) be a space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous in the product topology
τρ × τρ . Having fixed an exponent p ∈ (1,∞), select some w ∈ Ap and denote by

18 Using the convention adopted in (7.7.1).
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w′ := w−p′/p = w1−p′ ∈ Ap′ the conjugate weight of w (where p′ is the Hölder
conjugate exponent of p; see item (2) in Lemma 7.7.1). Then if w′ belongs to the
reverse Hölder class RHq for some q ∈ (1,∞) it follows that

w ∈ Ap−ε where ε := p − 1

q ′ ∈ (0, p − 1), (7.7.23)

and q ′ is the Hölder conjugate exponent of q. As a consequence,

for each w ∈ Ap ∩ RHq with p, q ∈ (1,∞) one
has w′ ∈ Ap′−ε with ε := p′−1

q ′ ∈ (0, p′ − 1). (7.7.24)

Proof The choice of ε in (7.7.23) entails

p − ε − 1 = p − 1

q
. (7.7.25)

Bearing this in mind, for each ρ-ball B ⊆ X we may then write

( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B

w−1/(p−ε−1) dμ
)p−ε−1

(7.7.26)

=
( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B

w−q/(p−1) dμ
)(p−1)/q

=
( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B
(w′)q dμ

)(p−1)/q

≤ C
( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B

w′ dμ
)p−1

= C
( 1

μ(B)

ˆ
B

w dμ
)( 1

μ(B)

ˆ
B

w−1/(p−1) dμ
)p−1 ≤ C[w]Ap ,

thanks to the fact that w′ ∈ RHq . In view of (7.7.2), this shows that w ∈ Ap−ε,
finishing the proof of (7.7.23).

As far as (7.7.24) is concerned, assumew ∈ Ap ∩ RHq with p, q ∈ (1,∞). Then
w′ ∈ Ap′ by item (2) in Lemma 7.7.1 and (w′)′ = w ∈ RHq , so (7.7.23) (applied for
w′ in place of w and p′ in place of p) shows that we have w′ ∈ Ap′−ε for the choice
ε := p′−1

q ′ ∈ (0, p′ − 1). �

Here is the second result mentioned above (refining work in the Euclidean setting
from [134]).

Lemma 7.7.3 Let (X, ρ, μ) be some space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous in the product topology
τρ × τρ . Select two arbitrary exponents, p ∈ [1,∞) and q ∈ (1,∞). Then for each
weight w ∈ Ap ∩ RHq one has wq ∈ Aq(p−1)+1.
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Proof First consider the case when p = 1. Assume w ∈ A1 ∩ RHq , and let B ⊆ X
be an arbitrary ρ-ball. Then for some C ∈ (0,∞) independent of B wemay estimate

(

essinf B wq
)−1( 1

μ(B)

ˆ
B

wq dμ
)

=
(

essinf B w
)−q( 1

μ(B)

ˆ
B

wq dμ
)

≤ C
(

essinf B w
)−q( 1

μ(B)

ˆ
B

w dμ
)q

≤ C[w]q
A1

, (7.7.27)

with the first inequality above a consequence of the fact thatw ∈ RHq , while the last
inequality uses the fact that w ∈ A1. In turn, (7.7.27) readily implies that wq ∈ A1.

There remains to consider the case when p ∈ (1,∞). In such a scenario, define
s := q(p − 1) + 1, and denote by p′, q ′, and s ′ the Hölder conjugate exponents of
p, q, and s, respectively. Pick an arbitrary ρ-ball B ⊆ X . Then there exists some
C ∈ (0,∞), independent of B, such that

( 1

μ(B)

ˆ
B

wq dμ
)( 1

μ(B)

ˆ
B

wq(1−s ′) dμ
)s−1

=
( 1

μ(B)

ˆ
B

wq dμ
)( 1

μ(B)

ˆ
B

w1−p′)q(p−1)

≤ C
( 1

μ(B)

ˆ
B

w dμ
)q( 1

μ(B)

ˆ
B

w1−p′
dμ
)q(p−1)

≤ C[w]q
Ap

. (7.7.28)

The equality above employs the observation that q(1 − s ′) = 1 − p′, which may
be checked from definitions. The first inequality above is based on the membership
w ∈ RHq . The last inequality above is implied by the fact thatw ∈ Ap. Finally, from
(7.7.28) we see that wq ∈ Aq(p−1)+1, as wanted. �

Here is the third result alluded to earlier, complementing the list of properties in
Lemma 7.7.1 (compare with [107, 9.1.5, p. 683]).

Lemma 7.7.4 Let (X, ρ, μ) be a space of homogeneous type with the property
that the quasi-distance ρ : X × X → [0,∞) is continuous in the product topology
τρ × τρ . Suppose w0 ∈ Ap0 with p0 ∈ (1,∞), and w1 ∈ Ap1 with p1 ∈ (1,∞). Also,
pick some θ ∈ [0, 1] and define

p := ( 1−θ
p0

+ θ
p1

)−1 ∈ (1,∞). (7.7.29)

Then the weight
w :=

(

w
1−θ
p0

0 · w
θ
p1
1

)p
(7.7.30)

belongs to Muckenhoupt’s class Ap(X, ρ, μ) and satisfies
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[w]Ap ≤ C
(

[w0]
p

p0−1

Ap0

)1−θ ·
(

[w1]
p

p1−1

Ap1

)θ

(7.7.31)

for some constant C = C(ρ, μ, p) ∈ (0,∞).

Proof From item (1) in Lemma 7.7.1 we know that the Hardy–Littlewood maximal
operator MX on X is bounded on L pi (X, wi ) for i = 0, 1 and there exists some
constant C = C(ρ, μ, p) ∈ (0,∞) with the property that

‖MX‖L pi (X,wi )→L pi (X,wi ) ≤ C[wi ]1/(pi −1)
Api

for i = 0, 1. (7.7.32)

From this and the real interpolation theorem for sub-linear operators (cf. [185,
Sect. 1.3]) we then conclude that

MX :
(

L p0(X, w0), L p1(X, w1)
)

θ,p
−→

(

L p0(X, w0), L p1(X, w1)
)

θ,p
(7.7.33)

is a bounded operator with norm dominated by

C
(

[w0]1/(p0−1)
Ap0

)1−θ ·
(

[w1]1/(p1−1)
Ap1

)θ

. (7.7.34)

In addition, we know (see [19, Theorem 5.5.1, p. 119], [92]) that

(

L p0(X, w0), L p1(X, w1)
)

θ,p
= L p(X, w) where w :=

(

w
1−θ
p0

0 · w
θ
p1
1

)p
.

(7.7.35)
In view of the converse results in item (1) in Lemma 7.7.1 and (7.7.14), we may
then conclude that w from (7.7.30) belongs to Muckenhoupt’s class Ap(X, ρ, μ)

and satisfies (7.7.31). �
For each weight function w on X we have L∞(X, μ) = L∞(X, w), i.e., these

vector spaces coincide and they also have identical norms. Remarkably, whenever
w ∈ A∞(X, μ) it follows that the BMO spaces on X with respect to μ and w are
once again identical. Here is a formal statement of this fact (compare with [207,
Theorem 5, p. 236]).

Lemma 7.7.5 Suppose (X, ρ, μ) is a measure metric space. Then for each weight
w ∈ A∞(X, μ) it follows that

BMO(X, μ) and BMO(X, w) coincide as sets, and
‖ f ‖BMO(X,μ) ≈ ‖ f ‖BMO(X,w) uniformly for f in this set.

(7.7.36)

Proof From (7.7.9) and item (5) in Lemma 7.7.1 we know that w ∈ Ap(X, μ) for
some p ∈ (1,∞). In particular, w is a doubling measure on X , so it makes sense to
consider BMO(X, w). Pick a function f ∈ L1

loc(X, μ) ∩ L1
loc(X, w). Our first goal

is to show that there exists a constant C ∈ [1,∞) which depends only on p, [w]Ap ,
and the ambient, such that
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C−1‖ f ‖ .
BMO(X,μ)

≤ ‖ f ‖ .
BMO(X,w)

≤ C‖ f ‖ .
BMO(X,μ)

. (7.7.37)

To prove the first inequality claimed in (7.7.37), use (7.4.71) (twice) and (7.7.10)
with f replaced by f − ffl

B f dw, for some arbitrary ρ-ball B ⊆ X , to obtain

‖ f ‖ .
BMO(X,μ)

≤ C sup
B⊆X

inf
c∈C

( 
B

∣

∣ f − c
∣

∣ dμ

)

≤ C sup
B⊆X

 
B

∣

∣

∣ f −
 

B
f dw

∣

∣

∣ dμ

≤ C sup
B⊆X

(

 
B

∣

∣

∣ f −
 

B
f dw

∣

∣

∣

p
dw
)1/p

≤ C‖ f ‖ .
BMO(X,w)

, (7.7.38)

for some constant C ∈ (0,∞) as in the statement. To prove the second inequality in
(7.7.37), observe first that w belongs to some Reverse Hölder class, i.e., w satisfies
(7.7.19) for some q ∈ (1,∞). If q ′ ∈ (1,∞) denotes the Hölder conjugate exponent
of q, then (7.7.20) allows to estimate

inf
c∈C

( 
B

∣

∣ f − c
∣

∣ dw

)

≤
 

B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣ dw

≤ C

( 
B

∣

∣

∣ f −
 

B
f dμ

∣

∣

∣

q ′
dμ

)1/q ′

, (7.7.39)

for some constant C ∈ (0,∞) of the same nature as before. Taking the supremum
in (7.7.39) over all ρ-balls B ⊆ X and then using (7.4.71), we ultimately obtain
‖ f ‖ .

BMO(X,w)
≤ C‖ f ‖ .

BMO(X,μ)
, as desired.

We next claim that for eachμ-measurable function f on X one has the equivalence

f ∈ BMO(X, μ) ⇐⇒ f ∈ BMO(X, w) (7.7.40)

and if either of these memberships materializes then

‖ f ‖BMO(X,μ) ≈ ‖ f ‖BMO(X,w), (7.7.41)

where the implicit proportionality constants depend only on p, [w]Ap , and the
ambient.

As regards the equivalence in (7.7.40), assume first that f ∈ BMO(X, μ). Then
(7.7.22) and (7.4.81) imply that f ∈ L1

loc(X, μ) ∩ L1
loc(X, w), so (7.7.37) holds,

thanks to what we have proved so far. In particular, f ∈ BMO(X, w) if X is
unbounded (cf. (7.4.81) and (7.4.92)), and (7.7.37) presently yields (7.7.41) (cf.
(7.4.81)). Consider now the case when X is bounded. Then (7.7.22) gives that
f ∈ L1(X, w) and ‖ f ‖L1(X,w) ≤ C‖ f ‖BMO(X,μ). With this in hand, (7.4.83) (written
for the measure w) together with (7.7.37) allow us to write
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‖ f ‖BMO(X,w) ≈ ‖ f ‖L1(X,w) + ‖ f ‖ .
BMO(X,w)

≤ C‖ f ‖BMO(X,μ) + ‖ f ‖ .
BMO(X,μ)

≤ C‖ f ‖BMO(X,μ). (7.7.42)

Hence, f ∈ BMO(X, w) and the right-pointing inequality in (7.7.41) holds.
Conversely, assume f ∈ BMO(X, w). In particular, f ∈ L1

loc(X, w) (cf. (7.4.81))
and the John–Nirenberg inequality (for the doubling measure w) guarantees that we
also have f ∈ L p

loc(X, w). In concert with (7.7.10) the latter membership implies
that f ∈ L1

loc(X, μ). Hence, in a quantitative fashion,

f ∈ L1
loc(X, μ) ∩ L1

loc(X, w). (7.7.43)

Thus, once again (7.7.37) applies. If X is unbounded, this gives f ∈ BMO(X, μ),
which ultimately finishes the proof of (7.7.40) and (7.7.41) in the case when X is
unbounded.

Finally, consider the situationwhen X is bounded andpick f ∈ BMO(X, w). Then
(7.7.43) presently gives f ∈ L1(X, μ) and ‖ f ‖L1(X,μ) ≤ C‖ f ‖BMO(X,w). Granted
this, (7.4.83) and (7.7.37) permit us to estimate

‖ f ‖BMO(X,μ) ≈ ‖ f ‖L1(X,μ) + ‖ f ‖ .
BMO(X,μ)

≤ C‖ f ‖BMO(X,w) + ‖ f ‖ .
BMO(X,w)

≤ C‖ f ‖BMO(X,w). (7.7.44)

As such, f ∈ BMO(X, μ) and the left-pointing inequality in (7.7.41) is valid. In
summary, we proved that BMO(X, μ) = BMO(X, w) as sets and that the equiv-
alence ‖ f ‖BMO(X,μ) ≈ ‖ f ‖BMO(X,w) holds uniformly for functions f in the space
BMO(X, μ) = BMO(X, w). �

A fundamental result in the theory of Muckenhoupt weights is Rubio de Francia’s
extrapolation theorem. Its philosophy is perfectly summed up in Antonio Córdoba’s
delightful quip19:

T here are no L p spaces, only weighted L2. (7.7.45)

We shall present a version of this result in the context of spaces of homogeneous type
(refining work in [58], [125, Proposition 2.17, p. 2603]). A more general result in
this spirit, extrapolating Muckenhoupt weighted Lebesgue space estimates to norm
estimates on Generalized Banach Function Spaces (of the sort introduced in [185,
Sect. 5.1]) is discussed later, in [185, Sect. 5.2].

Proposition 7.7.6 Consider a space of homogeneous type (X, ρ, μ) with the prop-
erty that the quasi-distance ρ : X × X → [0,∞) is continuous20 in the product

19 “L p no existe; sólo existe L2 con peso” [94, p. 8].
20 Theorem 7.1.2 guarantees that any quasi-metric space has an equivalent quasi-distance satisfying
this property.
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topology τρ × τρ . Let f, g be two non-negative μ-measurable real-valued func-
tions defined on X with the property that there exists some integrability exponent
p0 ∈ [1,∞) such that for every Muckenhoupt weight w ∈ Ap0(X, ρ, μ) one has

(

ˆ
X

f p0 w dμ
)1/p0 ≤ Cw

(

ˆ
X

g p0 w dμ
)1/p0

, (7.7.46)

for some constant Cw ∈ (0,∞) which depends only on ρ, μ, p0, and w.
Then for each integrability exponent p ∈ (1,∞) there exists some C ∈ (0,∞),

depending only on the quasi-distance ρ (via the constants Cρ, ˜Cρ appearing in
(7.1.3)–(7.1.4)), the doubling charter of μ, as well as p and p0, such that for each
weight ω ∈ Ap(X, ρ, μ) if one defines

Wω,p := C[ω]1+(p0−1)/(p−1)
Ap

(7.7.47)

(hence Wω,p ∈ (0,∞) is a constant which depends only on ρ, μ, p0, p, and [ω]Ap )
it follows that

(

ˆ
X

f pω dμ
)1/p ≤ Cω,p

(

ˆ
X

g pω dμ
)1/p

, (7.7.48)

where

Cω,p := 22−1/p0 ·
(

sup
w∈Ap0 (X,ρ,μ)

[w]A p0
≤Wω,p

Cw

)

∈ (0,∞]. (7.7.49)

Proof For each integrability exponent p ∈ [1,∞) and each weight function ω on X
abbreviate L p(ω) := L p(X, ω μ). Throughout, denote byM the Hardy–Littlewood
maximal operator on (X, ρ, μ). Whenever p ∈ (1,∞) and ω ∈ Ap(X, μ), imple-
ment Rubio de Francia’s iterative algorithm, i.e., define

T = T (p, ω) : L p(ω) −→ L p(ω) by setting

T h :=
∞
∑

j=0

M j h

2 j‖M‖ j
L p(ω)→L p(ω)

for each function h ∈ L p(ω),
(7.7.50)

where M0h := |h| for each h ∈ L p(ω), and M j := M ◦ · · · ◦ M (involving j fac-
tors) for each j ∈ N. Then, thanks to item (1) in Lemma 7.7.1, T is a well-defined
sub-linear operator for which

‖T ‖L p(ω)→L p(ω) := sup
{‖T h‖L p(ω) : ‖h‖L p(ω) = 1

} ≤ 2. (7.7.51)
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In addition,
for each function h ∈ L p(ω) with h ≥ 0 one has
h ≤ T h and M(T h) ≤ 2‖M‖L p(ω)→L p(ω) T h,

(7.7.52)

by virtue of the first term in (7.7.50) being equal to h in this case, plus the sub-linearity
and boundedness ofM on L p(ω). Given a non-negative function h ∈ L p(ω)which is
not identically zero (μ-a.e.), it follows from (7.7.52) and (7.7.50) that 0 < T h < ∞
at μ-a.e. point on X . In particular, T h is a weight on X , hence

T acting on any non-negative function in L p(ω)which is not identically
zero (μ-a.e.) is a weight on X (i.e., a μ-measurable function which is
strictly positive and finite μ-a.e. on X ).

(7.7.53)

Next, observe that there existC1 ∈ (0,∞), which depends only on the quasi-distance
ρ (via the constants Cρ, ˜Cρ appearing in (7.1.3)–(7.1.4)), along with C2 ∈ (0,∞)

and the doubling charter of μ, with the property that for each non-negative function
h ∈ L p(ω), each ρ-ball B = Bρ(x0, r) ⊆ X , and each point x ∈ B we may write

 
B

T h dμ ≤ C2

 
Bρ(x,C1r)

T h dμ

≤ C2
(M(T h)

)

(x) ≤ 2C2‖M‖L p(ω)→L p(ω)(T h)(x), (7.7.54)

thanks to the last property in (7.7.52). In view of (7.7.4) (plus the subsequent com-
ment), (7.7.14), and (7.7.53), this implies that

if 0 ≤ h ∈ L p(ω) is not identically zero (μ-a.e.),
then T h ∈ A1(X, μ) and

[T h]A1 ≤ 2C2‖M‖L p(ω)→L p(ω) ≤ C3[ω]1/(p−1)
Ap

(7.7.55)

where C3 ∈ (0,∞) depends only on the quasi-distance ρ (via the constants Cρ, ˜Cρ

appearing in (7.1.3)–(7.1.4)), the doubling charter of μ, and p (see also item (4) in
Lemma 7.7.1).

With the goal of proving (7.7.48), fix some integrability exponent p ∈ (1,∞)

along with an arbitrary Muckenhoupt weight ω ∈ Ap(X, ρ, μ). If g = 0 at μ-a.e.
point in X then (7.7.46) (with, say, w ≡ 1) forces f = 0 at μ-a.e. point in X , in
which case (7.7.48) is trivially true. Since the claim in (7.7.48) is also trivially true
if ‖g‖L p(ω) = ∞, henceforth assume that

f is not identically zero (μ-a.e.), and 0 < ‖g‖L p(ω) < ∞. (7.7.56)

In particular, the latter property permits us to define

g̃ := g

‖g‖L p(ω)

, (7.7.57)
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which satisfies
0 ≤ g̃ ∈ L p(ω) and ‖g̃‖L p(ω) = 1. (7.7.58)

The remainder of the proof is divided into several steps, starting with

Step I. Suppose p0 ∈ (1,∞) and f ∈ L p(ω). Let p′ ∈ (1,∞) denote the
Hölder conjugate exponent of p, and set ω′ := ω1−p′ ∈ Ap′(X, μ) (see item (2)
in Lemma 7.7.1). Denote by T = T (p, ω) the sub-linear operator associated as in
(7.7.50) with the integrability exponent p and the weight ω ∈ Ap(X, μ), and by
T ′ = T ′(p′, ω′) the sub-linear operator associated as in (7.7.50)with the integrability
exponent p′ and the weight ω′ ∈ Ap′(X, μ). Then, as a consequence of (7.7.56) and
the current working assumptions, if

h := | f |p−1ω

‖ f ‖p−1
L p(ω)

(7.7.59)

then
h is a well-defined, non-negative, μ-measurable function,
not identically zero (μ-a.e.), and belonging to L p′

(ω′) (7.7.60)

since we actually have

‖h‖L p′
(ω′) =

(

ˆ
X

|h|p′
ω′ dμ

)1/p′
= ‖ f ‖1−p

L p(ω)

(

ˆ
X

| f |p′(p−1)ωp′
ω1−p′

dμ
)1/p′

= ‖ f ‖1−p
L p(ω)

[(

ˆ
X

| f |pω dμ
)1/p]p/p′

= ‖ f ‖1−p
L p(ω)‖ f ‖p−1

L p(ω) = 1, (7.7.61)

given that p′(p − 1) = p and p/p′ = p − 1. Granted (7.7.60) and (7.7.58), we con-
clude from (7.7.55) and item (2) in Lemma 7.7.1 that

T g̃, T ′h ∈ A1(X, μ) with [T g̃]A1 ≤ C3[ω]1/(p−1)
Ap

and

[T ′h]A1 ≤ C4[ω′]1/(p′−1)
Ap′ = C4[ω]1/[(p′−1)(p−1)]

Ap
= C4[ω]Ap

(7.7.62)

since (p′ − 1)(p − 1) = 1, where C4 ∈ (0,∞), much like C3, depends only on the
quasi-distance ρ (via the constantsCρ, ˜Cρ appearing in (7.1.3)–(7.1.4)), the doubling
charter of μ, and p. In turn, based on these properties and item (3) in Lemma 7.7.1
we see that if

w := (T g̃)1−p0(T ′h) (7.7.63)

then

w ∈ Ap0(X, μ) and [w]Ap0
≤ C5[ω]1+(p0−1)/(p−1)

Ap
≤ Wω,p (7.7.64)
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for some C5 ∈ (0,∞) depending only on the quasi-distance ρ (via the constants
Cρ, ˜Cρ appearing in (7.1.3)–(7.1.4)), the doubling charter of μ, as well as p and
p0. The last inequality in (7.7.64) is implied by (7.7.47) assuming C ≥ C5. With
q0 ∈ (1,∞) denoting the Hölder conjugate exponent of p0, we may now write

‖ f ‖L p(ω) =
(

ˆ
X

| f |pω dμ
)1/p = ‖ f ‖(p−1)/p

L p(ω)

(

ˆ
X

| f |h dμ
)1/p

≤ ‖ f ‖1/p′
L p(ω)

(

ˆ
X

| f |(T ′h) dμ
)1/p

= ‖ f ‖1/p′
L p(ω)

(

ˆ
X

| f |(T g̃)p0−1 w dμ
)1/p

= ‖ f ‖1/p′
L p(ω)

(

ˆ
X

| f |(T g̃)p0−1 dw
)1/p

≤ ‖ f ‖1/p′
L p(ω)

(

ˆ
X

| f |p0 dw
)1/(pp0)(

ˆ
X
(T g̃)(p0−1)q0 dw

)1/(pq0)

= ‖ f ‖1/p′
L p(ω)‖ f ‖1/p

L p0 (w)

(

ˆ
X
(T g̃)(p0−1)q0(T g̃)1−p0(T ′h) dμ

)1/(pq0)

= ‖ f ‖1/p′
L p(ω)‖ f ‖1/p

L p0 (w)

(

ˆ
X
(T g̃)(T ′h) dμ

)1/(pq0)

≤ ‖ f ‖1/p′
L p(ω)‖ f ‖1/p

L p0 (w)

(

‖T g̃‖L p(ω)‖T ′h‖L p′
(ω′)

)1/(pq0)

≤ 41/(pq0)‖ f ‖1/p′
L p(ω)‖ f ‖1/p

L p0 (w). (7.7.65)

Above, the first equality uses the fact that dω = ωdμ, while the second equality is
based on (7.7.59). Thefirst inequality is a consequence of thefirst property in (7.7.52),
and the subsequent equality comes from (7.7.63). To write the next equality we have
used w dμ = dw, and then we have employed Hölder’s inequality. Next, we have
again employed (7.7.63), then took advantage of the identity (p0 − 1)(q0 − 1) = 1,
and once more applied Hölder’s inequality. Lastly, we have invoked (7.7.51) (twice)
together with the last property in (7.7.58) and (7.7.61). Having established (7.7.65),
bearing in mind the current working assumptions we obtain that

‖ f ‖L p(ω) ≤ 41/q0‖ f ‖L p0 (w). (7.7.66)

We next estimate g. To get started, recall from (7.7.53) and (7.7.58) that

0 < T g̃ < ∞ at μ-a.e. point in X. (7.7.67)

Also, use (7.7.57) and the first property in (7.7.52) to write

|g| = ‖g‖L p(ω)g̃ ≤ ‖g‖L p(ω)T g̃. (7.7.68)

Bearing (7.7.67) in mind, this implies
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|g|(T g̃)−1 ≤ ‖g‖L p(ω) at μ-a.e. point in X. (7.7.69)

After rising both sides of (7.7.69) to the power p0 − 1 > 0 and multiplying by |g|,
we arrive (again, bearing (7.7.67) in mind) at the conclusion that

|g|p0
(

T g̃
)1−p0 ≤ ‖g‖p0−1

L p(ω)|g| at μ-a.e. point in X. (7.7.70)

Based on the definition of the weight w given in (7.7.63), (7.7.70), Hölder’s inequal-
ity, and (7.7.51) (written for T ′) we therefore obtain

‖g‖L p0 (w) =
(ˆ

X
|g|p0

(

T g̃
)1−p0

(T ′h) dμ

)1/p0

≤ ‖g‖
p0−1

p0
L p(ω)

(ˆ
X

|g|(T ′h) dμ

)1/p0

≤ ‖g‖
p0−1

p0
L p(ω)

(

‖g‖L p(ω)‖T ′h‖L p′
(ω′)
)1/p0 = ‖g‖L p(ω)‖T ′h‖1/p0

L p′
(ω′)

≤ 21/p0‖g‖L p(ω), (7.7.71)

hence ‖g‖L p0 (w) ≤ 21/p0‖g‖L p(ω). (7.7.72)

At this stage, (7.7.48) readily follows by combining (7.7.66), (7.7.46), and (7.7.72)
(in this order) and upon recalling (7.7.64).

Step II. Suppose p0 = 1 and f ∈ L p(ω). In this scenario, in place of (7.7.63)
we now simply define

w := T ′h (7.7.73)

which in view of (7.7.62) implies

w ∈ A1(X, μ) and [w]A1 ≤ C4[ω]Ap ≤ Wω,p (7.7.74)

with the last inequality in (7.7.74) a consequence of (7.7.47), assuming C ≥ C4.
Much as in (7.7.65), we then have

‖ f ‖L p(ω) =
(

ˆ
X

| f |pω dμ
)1/p = ‖ f ‖(p−1)/p

L p(ω)

(

ˆ
X

| f |h dμ
)1/p

≤ ‖ f ‖1/p′
L p(ω)

(

ˆ
X

| f |(T ′h) dμ
)1/p = ‖ f ‖1/p′

L p(ω)

(

ˆ
X

| f | dw
)1/p

= ‖ f ‖1/p′
L p(ω)‖ f ‖1/p

L1(w)
(7.7.75)

which then implies
‖ f ‖L p(ω) ≤ ‖ f ‖L1(w). (7.7.76)

As far as the function g is concerned, (7.7.73), Hölder’s inequality, (7.7.61), and the
version of (7.7.51) written for T ′ yield
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‖g‖L1(w) =
ˆ

X
|g|(T ′h) dμ ≤ ‖g‖L p(ω)‖T ′h‖L p′

(ω′) ≤ 2‖g‖L p(ω). (7.7.77)

The claim made in (7.7.48) (with p0 = 1) then becomes a consequence of (7.7.75),
(7.7.46), and (7.7.77) (in this order), bearing in mind (7.7.74).

Step III. The end-game in the proof of (7.7.48). Fix p ∈ (1,∞) and an arbitrary
weightω ∈ Ap(X, ρ, μ). FromSteps I–IIwe know that (7.7.48) is true if f ∈ L p(ω).
To eliminate the latter additional assumption, fix a reference point x0 ∈ X and define

fN := min{ f, N } · 1Bρ (x0,N ) for each N ∈ N. (7.7.78)

Then each fN is a non-negative μ-measurable function on X , and (7.7.46) implies
that for every Muckenhoupt weight w ∈ Ap0(X, ρ, μ) we have

(

ˆ
X

f p0
N w dμ

)1/p0 ≤
(

ˆ
X

f p0 w dμ
)1/p0 ≤ Cw

(

ˆ
X

g p0 w dμ
)1/p0

. (7.7.79)

Since, as is apparent from (7.7.78), each fN belongs to L p(ω), we conclude from
(7.7.79) and Steps I–II that

(

ˆ
X

f p
N ω dμ

)1/p ≤ Cω,p

(

ˆ
X

g pω dμ
)1/p

for each N ∈ N, (7.7.80)

where Cω,p is as in (7.7.49). Passing to limit N → ∞ and relying on Lebesgue’s
Monotone Convergence Theoremwe then arrive at the conclusion that (7.7.48) holds
as stated. �

As a byproduct of the proof of Rubio De Francia’s extrapolation theorem included
above, we obtain the following useful embedding result for Muckenhoupt weighted
Lebesgue spaces.

Lemma 7.7.7 Let (X, ρ, μ) be a space of homogeneous type with the property that
the quasi-distance ρ : X × X → [0,∞) is continuous21 in the product topology
τρ × τρ . Then

⋃

1≤p<∞
ω∈Ap(X,μ)

L p(X, ωμ) =
⋃

w∈A1(X,μ)

L1(X, wμ) (7.7.81)

and for each p0 ∈ (1,∞) one has

⋃

1<p<∞
ω∈Ap(X,μ)

L p(X, ωμ) =
⋃

w∈Ap0 (X,μ)

L p0(X, wμ). (7.7.82)

21 Theorem 7.1.2 guarantees that any quasi-metric space has an equivalent quasi-distance satisfying
this property.
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Proof Weshall freely borrownotation and results from theproof ofProposition7.7.6.
To deal with (7.7.82), fix two integrability exponents p0, p ∈ (1,∞) along with
an arbitrary Muckenhoupt weight ω ∈ Ap(X, μ). Let p′ ∈ (1,∞) be such that
1
p + 1

p′ = 1, and defineω′ := ω1−p′ ∈ Ap′(X, μ). Also, fix an arbitrary non-negative

function h ∈ L p′
(ω′)with the property that ‖h‖L p′

(ω′) = 1. For this choice of h, given
any nontrivial non-negative function g ∈ L p(ω), run the argument (7.7.67)–(7.7.71),
which has produced (7.7.72). This shows that there exists w ∈ Ap0(X, μ) with the
property that g ∈ L p0(w), ultimately proving the left-to-right inclusion in (7.7.82).
Since the opposite inclusion is trivially satisfied, the claim in (7.7.82) is established.
Finally, (7.7.81) is justified in a similar manner, now relying on (7.7.77) and (7.7.74).

�

Moving on, it turns out that there is a closely related version of (7.7.9), in the
context of measures. Membership to this class amounts to a quantitative version of
mutual absolute continuity.

Definition 7.7.8 Suppose (X, ρ, μ) is a measure metric space. Let μ̃ be a non-
negative measure defined on the same sigma-algebra of subsets of X as μ, such that
0 < μ̃

(

Bρ(x, r)
)

< ∞ for every x ∈ X and r > 0. The measure μ̃ belongs to the
class A∞(μ) if for any ε > 0 there exists a number δ = δ(ε) > 0 such that for each
x ∈ X, r > 0, and each μ-measurable set E ⊆ Bρ(x, r) one has

μ(E)

μ(Bρ(x, r))
< δ=⇒ μ̃(E)

μ̃(Bρ(x, r))
< ε. (7.7.83)

Some of the main properties of the class of measures A∞(μ) are summarized
below, following [52, 247], [147, Theorem 1.4.13, pp. 17–18], and [154].

Proposition 7.7.9 Let (X, ρ, μ) be measure metric space and suppose μ̃ is a non-
negative measure defined on the same sigma-algebra of subsets of X as μ with the
property that 0 < μ̃

(

Bρ(x, r)
)

< ∞ for every x ∈ X and r > 0. Then the following
are true.

(i) If μ̃ ∈ A∞(μ) then μ̃ is doubling and absolutely continuous with respect to μ.
(ii) If μ̃ ∈ A∞(μ) then μ ∈ A∞(μ̃). In particular, if μ̃ ∈ A∞(μ) then μ and μ̃ are

actually mutually absolute continuous.
(iii) One has μ̃ ∈ A∞(μ) if and only if there exist some ε, δ ∈ (0, 1) such that if

x ∈ X, r > 0, and E ⊆ Bρ(x, r) is a μ-measurable set, then

μ(E)

μ(Bρ(x, r))
< δ=⇒ μ̃(E)

μ̃(Bρ(x, r))
< ε. (7.7.84)

(iv) One has μ̃ ∈ A∞(μ) if and only if there exist C ∈ (0,∞) along with η, θ > 0,
such that for each x ∈ X, r > 0, and μ-measurable set E ⊆ Bρ(x, r) one has
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μ̃(E)

μ̃(Bρ(x, r))
≤ C

( μ(E)

μ(Bρ(x, r))

)θ

and

μ(E)

μ(Bρ(x, r))
≤ C

( μ̃(E)

μ̃(Bρ(x, r))

)η

.

(7.7.85)

(v) One has A∞(μ) = ⋃

1<q<∞
Bq(μ), where each reverse Hölder class Bq(μ) con-

sists of locally finite Borel measures λ on X, which are absolutely contin-
uous with respect to μ, the Radon–Nikodym derivative k := dλ

dμ belongs to

Lq
loc(X, μ), and there exists some C ∈ (0,∞) such that the following reverse

Hölder condition is satisfied22:

(

 
Bρ(x,r)

kq dμ
) 1

q ≤ C
 

Bρ(x,r)

k dμ, ∀x ∈ X, ∀r > 0. (7.7.86)

(vi) One has Bq(μ) ⊆ Bp(μ) whenever 1 < p ≤ q < ∞, and if λ ∈ Bq(μ) for
some q ∈ (1,∞) then there exists ε > 0 such that λ ∈ Bq+ε(μ).

(vii) Let λ be a non-negative Borel measure on X satisfying 0 < λ
(

Bρ(x, r)
)

< ∞
for every x ∈ X and r > 0. Also, fix q, q ′ ∈ (1,∞) with the property that
1
q + 1

q ′ = 1. Then λ ∈ Bq(μ) if and only if the Hardy–Littlewood maximal
operator associated with λ, i.e.,

(Mλ f
)

(x) := sup
r>0

(

 
Bρ(x,r)

| f | dλ
)

, ∀x ∈ X, (7.7.87)

has the property that there exists C ∈ (0,∞) such that for each f ∈ Lq ′
(X, μ)

one has
‖Mλ f ‖Lq′

(X,μ) ≤ C‖ f ‖Lq′
(X,μ). (7.7.88)

(viii) One has

A∞(μ) = {w μ : w ∈ Ap(X, μ) for some p ∈ [1,∞)
}

. (7.7.89)

Our next goal is to prove that the property of being a compact operator extrapolates
on the scales of Muckenhoupt weighted Lebesgue spaces (see Lemma 7.7.12 further
below). To set the stage, we begin by recalling some relevant abstract interpolation
results. First, we have the following remarkable one-sided compactness property for
the real method of interpolation23 for (compatible) Banach couples established in
[49, Theorem 2.3, p. 286], [50, 60]:

22 Hence, Bq (μ) consists of all locally finite Borel measures λ on X satisfying λ << μ and dλ/dμ
belongs to the reverse Hölder class R Hq with respect to μ; cf. (7.7.19).
23 The corresponding result for the complex method of interpolation remains open.
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Proposition 7.7.10 Let X j , Y j , where j ∈ {0, 1}, be two compatible Banach couples
and suppose that the linear operator T : X j → Y j is bounded for j = 0 and compact
for j = 1. Then the linear operator T : (X0, X1)θ,q → (Y0, Y1)θ,q is compact for all
θ ∈ (0, 1) and q ∈ [1,∞].

Second, we have the following useful real interpolation result for weighted
Lebesgue spaces (cf. [19, Theorem 5.5.1, p. 119]).

Proposition 7.7.11 Let (X, μ) be a measure space, and consider two weights24

w0, w1 on X. Also, let

θ ∈ (0, 1), 0 < p0, p1 < ∞, p := ( 1−θ
p0

+ θ
p1

)−1
,

w := w
p(1−θ)/p0
0 · w

pθ/p1
1 .

(7.7.90)

Then
(

L p0(X, w0 μ), L p1(X, w1 μ)
)

θ,p
= L p(X, w μ). (7.7.91)

Here is the extrapolation result of compactness on the scales of Muckenhoupt
weighted Lebesgue spaces, advertised earlier.

Proposition 7.7.12 Let (X, ρ, μ) be a measure metric space and suppose T is a
linear operator mapping each Muckenhoupt weighted Lebesgue space L p(X, w μ)

with p ∈ (1,∞) and w ∈ Ap(X, ρ, μ) boundedly into itself. Then

there exists po ∈ (1,∞) and wo ∈ Apo(X, ρ, μ) so
that T is a compact operator on L po(X, wo μ)

(7.7.92)

if and only if
T is a compact operator on L p(X, w μ) for each
p ∈ (1,∞) and each weight w ∈ Ap(X, ρ, μ). (7.7.93)

Proof Work under the assumption made in (7.7.92). If p′
o ∈ (1,∞) denotes the

Hölder conjugate exponent of po then item (2) in Lemma 7.7.1 guarantees that

w
1−p′

o
o ∈ Ap′

o
(X, ρ, μ). As such, it follows that

T : L p′
o(X, w

1−p′
o

o μ) −→ L p′
o(X, w

1−p′
o

o μ) is bounded. (7.7.94)

From (7.7.92), (7.7.94), and Proposition 7.7.10 we then conclude that, on the one
hand,

T is compact on
(

L p′
o(X, w

1−p′
o

o μ), L po(X, woμ)
)

θ,q

for each θ ∈ (0, 1) and q ∈ [1,∞]. (7.7.95)

24 That is, μ-measurable functions defined on X which are finite and strictly positive at μ-a.e. point
in X .
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On the other hand, from (7.7.91) we see that

(

L p′
o(X, w

1−p′
o

o μ), L po(X, woμ)
)

1
2 ,2 = L2(X, μ). (7.7.96)

Together, (7.7.95) and (7.7.96) prove that

T : L2(X, μ) −→ L2(X, μ) is compact. (7.7.97)

By once again appealing to Proposition 7.7.10 and interpolationwe then deduce from
(7.7.97) that

T : L p(X, μ) −→ L p(X, μ) is compact for each p ∈ (1,∞). (7.7.98)

Fix now some integrability exponent p ∈ (1,∞) along with some Muckenhoupt
weight w ∈ Ap(X, ρ, μ). From item (10) in Lemma 7.7.1 we know that there exists
some small δ > 0 such that w1+δ ∈ Ap(X, ρ, μ). Then since from (7.7.91) we see
that

(

L p(X, μ), L p(X, w1+δμ)
)

θ,p
= L p(X, w μ) if θ := (1 + δ)−1 ∈ (0, 1),

(7.7.99)
and since T is bounded on L p(X, w1+δμ) (by hypotheses) and compact on L p(X, μ)

(by (7.7.98)), Proposition 7.7.10 ultimately gives that T is compact on L p(X, w μ).
This finishes the proof of the fact that (7.7.92) implies (7.7.93). Finally, it is clear
that (7.7.93) implies (7.7.92). �

We shall also need more specialized properties of Muckenhoupt weights, such as

if (X, ρ) is a metric space andμ is a non-negative measure defined on a
sigma-algebra of subsets of X which contains all ρ-balls and for which
there exists d ∈ (0,∞) such that μ

(

Bρ(x, r)
) ≈ rd uniformly for all

x ∈ X and r ∈ (0, diamρ(X)
)

, then given any w ∈ Ap(X, ρ, μ) with
p ∈ (1,∞) there exists a constant C ∈ (0,∞), depending only on p
and the ambient (X, ρ), with the property that for each λ ∈ (1,∞) we
have

´
λB w dμ ≤ C[w]Apλ

dp
´

B w dμ for each ρ-ball B ⊆ X (where
λB denotes the concentric dilate of the ρ-ball B by a factor of λ > 0).

(7.7.100)

This is a direct consequence of the doubling property (7.7.16). See also [97,
Lemma 2.2, p. 396] for a proof in the Euclidean case that readily adapts to the setting
considered in (7.7.100).

In particular, (7.7.100) is relevant in establishing the embeddings in Lemma 7.7.13
below, which are going to be useful for us later on. Before stating this, we introduce
a piece of notation frequently used in the sequel. Specifically, given a closed set
� ⊆ R

n along with a Borel measure σ on � and an exponent m ∈ [0,∞), we shall
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denote by L1
(

�, σ(x)

1+|x |m
)

the Lebesgue space of absolutely integrable functions on �

with respect to the weighted measure μ := (1 + |x |m)−1σ .

Lemma 7.7.13 Suppose � ⊆ R
n, where n ∈ N with n ≥ 2, is a closed set which is

Ahlfors regular, and let σ := Hn−1��. Fix p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(�, | · − · |, σ ). Then there exists ε = ε(�, n, p, [w]Ap ) ∈ (0, 1) for
which ˆ

�

w(x)

(1 + |x |n−1−ε)p
dσ(x) < +∞. (7.7.101)

Moreover,

there exists ε = ε(�, n, p, [w]Ap ) ∈ (0, 1) such that

L p(�,wσ) ↪→ L1
(

�,
σ(x)

1 + |x |n−1−ε

)

,
(7.7.102)

and one can find an exponent po = po(�, n, p, [w]Ap ) ∈ (1, p] with the property
that

for each q ∈ (0, po) there exists ε = ε(�, n, p, [w]Ap , q) ∈ (0, 1) such that

L p(�,wσ) ↪→ Lq
(

�,
σ(x)

1 + |x |n−1−ε

)

↪→ Lq
(

�,
σ(x)

1 + |x |n−1

)

.

(7.7.103)
As a consequence,

L p(�,wσ) ↪→ L1
(

�,
σ(x)

1 + |x |n−1

)

continuously, (7.7.104)

and
L p(�,wσ) ⊆

⋃

1<q<p

Lq
loc(�, σ ). (7.7.105)

In particular, (7.7.104) with w ≡ 1 entails

L p(�, σ ) ↪→ L1
(

�,
σ(x)

1 + |x |n−1

)

continuously for each p ∈ [1,∞), (7.7.106)

while (7.7.106), (6.2.48), (6.2.50), and (6.2.36) imply that

L p,q(�, σ ) ↪→ L1
(

�,
σ(x)

1 + |x |n−1

)

∩
(
⋂

1<s<p

Ls
loc(�, σ )

)

continuously, for each p ∈ (1,∞) and each q ∈ (0,∞].
(7.7.107)

Proof The self-improving property of Muckenhoupt weights from item (9) in
Lemma 7.7.1 (whose present validity is ensured by (3.6.26)) together with the mono-
tonicity of the Muckenhoupt classes of weights (cf. item (5) in Lemma 7.7.1) guar-
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antee that

there exists some small number ε ∈ (0, p − 1) with
the property that w belongs to Ap−ε(�, | · − · |, σ ). (7.7.108)

Pick x0 ∈ � and observe that there exists some constant C = Cx0 ∈ (0,∞) with
the property that 1 + |x − x0| ≤ C(1 + |x |) for all x ∈ R

n . Keeping this in mind, for
each choice

θ ∈ (− ∞, (n−1)ε
p

)

(7.7.109)

we may estimate

ˆ
�

w(x)

(1 + |x |n−1−θ )p
dσ(x)

≤ C
ˆ

�

w(x)

(1 + |x − x0|n−1−θ )p
dσ(x) ≤ C

ˆ
B(x0,1)∩�

w(x) dσ(x)

+ C
∞
∑

j=0

ˆ
[B(x0,2 j+1)\B(x0,2 j )]∩�

w(x)

|x − x0|(n−1−θ)p
dσ(x)

≤ C
ˆ

B(x0,1)∩�

w dσ + C
∞
∑

j=0

1

2 j (n−1−θ)p

ˆ
B(x0,2 j+1)∩�

w dσ

≤ C[w]Ap−ε

ˆ
B(x0,1)∩�

w dσ + C
∞
∑

j=0

2 j (n−1)(p−ε)

2 j (n−1−θ)p

ˆ
B(x0,1)∩�

w dσ

≤ C[w]Ap−ε

(

1 +
∞
∑

j=0

2− j[(n−1−θ)p−(n−1)(p−ε)]
)

ˆ
B(x0,1)∩�

w dσ

= C
(

�, x0, p, [w]Ap

)

ˆ
B(x0,1)∩�

w dσ < +∞, (7.7.110)

where we have made use of (7.7.108), (7.7.100), (7.7.8), (7.7.6), item (9) in
Lemma 7.7.1, and the observation that (n − 1 − θ)p − (n − 1)(p − ε) > 0 due to
the choice in (7.7.109). This establishes (7.7.101).

To proceed, by once again relying on the self-improving property ofMuckenhoupt
weights from item (9) in Lemma 7.7.1, and keeping in mind the monotonicity of the
Muckenhoupt classes of weights (cf. item (5) in Lemma 7.7.1), we conclude that

there exists some ro ∈ [1, p) with the property that
w belongs to Ar (�, |· − ·|, σ ) for each r∈(ro,∞).

(7.7.111)

Define po := p/ro ∈ (1, p], pick q ∈ (0, po) arbitrary, and set r := p/q ∈ (ro,∞).
Denote by r ′ ∈ (1,∞) the conjugate exponent of r . Then (7.7.111) and item (2) in
Lemma 7.7.1 guarantee that
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ω := w−r ′/r = w1−r ′ ∈ Ar ′(�, | · − · |, σ ). (7.7.112)

Having fixed an arbitrary function f ∈ L p(�,wσ), for each θ associated with the
weightωmuch as the choice in (7.7.109) has been associatedwithwwe then estimate

(

ˆ
�

| f (x)|q
1 + |x |n−1−θ

dσ(x)
)1/q

=
( ˆ

�

(| f (x)|qw(x)q/p
) w(x)−q/p

1 + |x |n−1−θ
dσ(x)

)1/q

≤
[

ˆ
�

(| f |q w p/q
)r
dσ
]1/(qr)[

ˆ
�

w(x)−(q/p)r ′

(1 + |x |n−1−θ )r ′ dσ(x)
]1/(qr ′)

= ‖ f ‖L p(�,wσ)

[

ˆ
�

ω(x)

(1 + |x |n−1−θ )r ′ dσ(x)
]1/(qr ′)

≤ C
(

�, x0, p, q, [w1−r ′ ]Ar ′
)

(

ˆ
B(x0,1)∩�

ω dσ
)1/(qr ′)‖ f ‖L p(�,wσ)

≤ C
(

�, x0, p, q, [w]Ar

)[ω]1/(qr ′)
Ar ′ ×

×
(

ˆ
B(x0,1)∩�

ω−1/(r ′−1) dσ
)(1−r ′)/(qr ′)‖ f ‖L p(�,wσ)

≤ C
(

�, x0, p, q, [w]Ap

)

(

ˆ
B(x0,1)∩�

w dσ
)−1/p‖ f ‖L p(�,wσ), (7.7.113)

using Hölder’s inequality, (7.7.110) (used withw replaced by ω, and with p replaced
by r ′ ), (7.7.112), (7.7.2), theAhlfors regularity of�, Lemma 7.7.1, and the definition
of r . At this stage, (7.7.103) becomes a consequence of (7.7.113). Finally, (7.7.102),
(7.7.104), and (7.7.105) are obvious consequences of (7.7.103). �

The measure induced by a Muckenhoupt weight enjoys the properties described
in the next lemma.

Lemma 7.7.14 Let � ⊆ R
n be a closed Ahlfors regular set, and set σ := Hn−1��.

Also, fix some integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(�, | · − · |, σ ). Then

the measure w σ is complete, locally finite (hence also sigma-finite),
separable, Borel-regular on �, and the Lebesgue space Lq(�,wσ) is
separable for each integrability exponent q ∈ (0,∞).

(7.7.114)

Also, for each integrability exponent q ∈ (0,∞) the natural inclusion

{

φ
∣

∣

�
: φ ∈ C∞

c (Rn)
}

↪→ L p(�,wσ) has dense range, (7.7.115)
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and for every function f ∈ L1
loc(�,wσ) and every open set O ⊆ R

n one has

f = 0 at σ -a.e. point on O ∩ � ⇐⇒
ˆ
O∩�

f φ w dσ = 0 for every φ ∈ C∞
c (O).

(7.7.116)

Proof From assumptions, (5.2.6), and Lemma 3.6.4 we see that

σ is a complete, locally finite (hence sigma-finite as well),
separable, Borel-regular measure on� (considered equipped
with the topology canonically inherited from R

n).
(7.7.117)

Since the weight w is a real-valued function which is (strictly) positive and finite
σ -a.e. on �, and which belongs to L1

loc(�, σ ), we conclude from (7.7.117) and def-
initions that the measure w σ is complete, locally finite, and Borel-regular on �.
Having established this, Proposition 3.6.3 applies (upon noting that, as a topological
space, R

n is second-countable, and this property is hereditary) and gives that the
measure w σ is separable and the Lebesgue space Lq(�,wσ) is separable for each
integrability exponent q ∈ (0,∞). This finishes the proof of (7.7.114). Granted this,
Proposition 3.7.1 then applies and guarantees that (7.7.115) holds, while Proposi-
tion 3.7.2 ensures that (7.7.116) is true. The proof is therefore complete. �

For future reference, let us also note here the following result.

Lemma 7.7.15 Suppose � ⊆ R
n is a closed upper Ahlfors regular set, and abbre-

viate σ := Hn−1��. Then

(1 + |x |)1−n ∈ L p,q(�, σ ) for each p ∈ (1,∞) and each q ∈ (0,∞]. (7.7.118)

Proof This is implied by Lemma 7.2.1, (6.2.50), and (6.2.48). �

We conclude by including an elementary but useful weighted estimate for frac-
tional integration operators.

Lemma 7.7.16 Let � ⊆ R
n (n ∈ N with n ≥ 2) be a closed set which is Ahlfors

regular and abbreviate σ := Hn−1��. Also, fix some α ∈ (0,∞) together with some
R ∈ (0,∞) and, given f ∈ L1

loc(�, σ ), define

F(x) :=
ˆ

y∈�
|x−y|<R

f (y)

|x − y|n−1−α
dσ(y), x ∈ �. (7.7.119)

Then there exists C = C(�, n, α) ∈ (0,∞) such that, with M� denoting the
Hardy–Littlewood maximal operator associated with � (cf. (7.6.16)), one has

|F | ≤ C RαM� f on �. (7.7.120)
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As a consequence, having fixed an integrability exponent p ∈ (1,∞) along
with some Muckenhoupt weight w ∈ Ap(�, | · − · |, σ ), for each given function
f ∈ L p(�,wσ) it follows that F ∈ L p(�,wσ) and there exists some constant
C = C(�, n, p, α, [w]Ap ) ∈ (0,∞) with the property that

‖F‖L p(�,wσ) ≤ C Rα‖ f ‖L p(�,wσ). (7.7.121)

Proof For each x ∈ � we may estimate

ˆ

y∈�
|x−y|<R

| f (y)|
|x − y|n−1−α

dσ(y)

=
∞
∑

j=0

ˆ

y∈�

2− j−1 R≤|x−y|<2− j R

|(1B(x,R) f )(y)|
|x − y|n−1−α

dσ(y)

≤ C
∞
∑

j=0

(2− j R)−(n−1−α)

ˆ

y∈�

2− j−1 R≤|x−y|<2− j R

|(1B(x,R) f )(y)| dσ(y)

≤ C
∞
∑

j=0

(2− j R)−(n−1−α)

ˆ

y∈�

|x−y|<2− j R

|(1B(x,R) f )(y)| dσ(y)

≤ C
∞
∑

j=0

(2− j R)−(n−1−α)σ
(

� ∩ B(x, 2− j R)
)

 
�∩B(x,2− j R)

|1B(x,R) f | dσ

≤ C Rα

∞
∑

j=0

(2−α) j
(M�(1B(x,R) f )

)

(x). (7.7.122)

This proves that F in (7.7.119) is a well-defined function, given by an absolutely
convergent integral for σ -a.e. x ∈ � (cf. (7.7.15)), and that (7.7.120) holds.

Since F is also σ -measurable, from (7.7.120) and item (1) in Lemma 7.7.1
we conclude that F belongs to the space L p(�,wσ) and (7.7.121) holds for any
the function f ∈ L p(�,wσ). �

7.8 The Fractional Integration Theorem

The goal here is to recall the Fractional Integration Theorem in a general setting,
described next. Let (X, ρ) be a metric space and suppose μ is a Borel measure on
(X, τρ)which is doubling and has the property that there exist C > 0 and d > 0 such
that
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μ
(

Bρ(x, r)
) ≤ Crd , ∀x ∈ X, ∀r ∈ (0,∞). (7.8.1)

In particular, as a measure space, (X, μ) is sigma-finite. Also, sending the radius to
zero in (7.8.1) implies that themeasureμ does not charge singletons, i.e.,μ({x}) = 0
for each x ∈ X .

Fix a reference point x0 ∈ X . Given someμ-measurable set E ⊆ X together with
some parameter α ∈ (0, d), consider the fractional integral operator IE,α of order α

on E ,

IE,α : L1
(

E,
μ(x)

1 + ρ(x, x0)d−α

)

−→ L1
loc(E, μ), (7.8.2)

acting on functions f ∈ L1
(

E,
μ(x)

1+ρ(x,x0)d−α

)

according to

IE,α f (x) :=
ˆ

E

f (y)

ρ(x, y)d−α
dμ(y) for μ-a.e. x ∈ E . (7.8.3)

Note that if f ∈ L1
(

E,
μ(x)

1+ρ(x,x0)d−α

)

then for each R > 0 we may use Fubini’s The-
orem (bearing in mind that, as noted earlier, (X, μ) is sigma-finite) and the first
estimate in (7.2.5) to write

ˆ
E∩Bρ(x0,R)

(

ˆ
E

| f (y)|
ρ(x, y)d−α

dμ(y)
)

dμ(x)

=
ˆ

E∩Bρ(x0,R)

(

ˆ
E∩Bρ(x0,2R)

| f (y)|
ρ(x, y)d−α

dμ(y)
)

dμ(x)

+
ˆ

E∩Bρ(x0,R)

(

ˆ
E\Bρ(x0,2R)

| f (y)|
ρ(x, y)d−α

dμ(y)
)

dμ(x)

≤
ˆ

E∩Bρ(x0,2R)

| f (y)|
(

ˆ
Bρ(x0,R)

dμ(x)

ρ(x, y)d−α

)

dμ(y)

+ 2d−α

ˆ
Bρ(x0,R)

(

ˆ
E\Bρ(x0,2R)

| f (y)|
ρ(y, x0)d−α

dμ(y)
)

dμ(x)

≤ C Rd
ˆ

E∩Bρ(x0,2R)

| f (y)| dμ(y)

+ 2d−αμ
(

Bρ(x0, R)
)

ˆ
E\Bρ(x0,2R)

| f (y)|
1 + ρ(y, x0)d−α

dμ(y)

≤ CR

ˆ
E

| f (y)|
1 + ρ(y, x0)d−α

dμ(y) < +∞, (7.8.4)

for some finite constant CR > 0. This goes to show that
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for each function f ∈ L1
(

E,
μ(x)

1+ρ(x,x0)d−α

)

it follows that (IE,α f )(x)

is well defined, via an absolutely convergent integral, at μ-a.e. point
x ∈ E , and IE,α f ∈ L1

loc(E, μ); in fact, the fractional integral operator
IE,α in (7.8.2) is well defined, linear, and continuous.

(7.8.5)

In addition, the same type of estimate as in (7.8.4) shows that Fubini’s Theorem
may be applied to conclude that

ˆ
E
(IE,α f )g dμ =

ˆ
E

f (IE,αg) dμ for any two given functions

f ∈ L1
(

E,
μ(x)

ρ(x,x0)d−α

)

, and g ∈ L∞(E, μ) with bounded support.
(7.8.6)

As regards mapping properties on ordinary Lebesgue spaces, in the same setting
as above the following result holds:

if p ∈ (1, d/α
)

and p∗ := ( 1p − α
d

)−1
, then there exists a finite con-

stantC = C(p, α) > 0 such that for each f ∈ L p(E, μ) the expression
(

IE,α f
)

(x) is defined in (7.8.3) by an absolutely convergent integral at
μ-a.e. point x ∈ E , and we have

∥

∥IE,α f
∥

∥

L p∗
(E, μ)

≤ C‖ f ‖L p(E, μ).

(7.8.7)

Indeed, this is proved in [95, Corollary 3.3, p. 249] when E = X and the present,
more flexible, version follows from this on account of (6.2.17) after observing that,
with tilde denoting extension by zero from E to X , we have

IE,α f = (IX,α
˜f
)

∣

∣

∣

E
on E . (7.8.8)

In a similar manner, based on [95, Theorem 3.2, p. 248], (7.8.8), and (6.2.17), we see
that the following result, corresponding to the end-point case p = 1 of (7.8.7) and
now involving a weak Lebesgue space, holds:

for each f ∈ L1(E, μ) the expression
(

IE,α f
)

(x) is defined in (7.8.3)
by an absolutely convergent integral at μ-a.e. point x ∈ E , and IE,α

maps L1(E, μ) into the Lorentz space L
d

d−α
,∞(E, μ) in a linear and

bounded fashion.

(7.8.9)

In fact, since much as in Example 6.2.2,

there exists some constant C ∈ (0,∞) such that for each given point
xo ∈ X the function fxo : E → R defined at each x ∈ E \ {xo} by
fxo(x) := ρ(x, xo)

−(d−α) belongs to the space Ld/(d−α),∞(E, μ) and
‖ fxo‖Ld/(d−α),∞(E,μ) ≤ C ,

(7.8.10)

which, together with (6.2.61), implies
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IE,α : Ld/α, 1(E, μ) −→ L∞(E, μ) boundedly, (7.8.11)

we may also obtain (7.8.7) by interpolating (7.8.9) with (7.8.11) (cf. (6.2.47)).
It is also worth pointing out that (7.8.7) self-extends, via real interpolation, to an

estimate involving the more inclusive scale of Lorentz spaces. More specifically,

if 1 < p < d
α
, 0 < q ≤ ∞, and 1

p∗ = 1
p − α

d , there exists C ∈ (0,∞)

such that ‖IE,α f ‖L p∗,q (E, μ) ≤ C‖ f ‖L p,q (E, μ) for each f ∈ L p,q(E, μ).
(7.8.12)

In particular, corresponding to the case q := p we have

if 1 < p < d
α

and 1
p∗ = 1

p − α
d , there exists C ∈ (0,∞) such that

‖IE,α f ‖L p∗, p(E, μ) ≤ C ‖ f ‖L p(E, μ) for each function f ∈ L p(E, μ).
(7.8.13)

In the case when E is bounded, estimates in the spirit of (7.8.7) are also valid
in the range p ∈ [d/α,∞). Concretely, Hölder’s inequality and the first estimate in
(7.2.5) (presently used with r := diamρ(E)) imply that

given any p ∈ (d/α,∞) there exists some constant C ∈ (0,∞),
depending only on p, d, α and the constant in (7.8.1), such that
‖IE,α f ‖L∞(E, μ) ≤ C

[

diamρ(E)
]α−d/p‖ f ‖L p(E, μ) holds for each

function f ∈ L p(E, μ).

(7.8.14)

The critical value p = d/α may be then covered from (7.8.9) and (7.8.14) via
interpolation, which gives that

if E is also bounded then for each q ∈ (0,∞) there exists some
C = C(E) ∈ (0,∞) such that ‖IE,α f ‖Lq (E, μ) ≤ C‖ f ‖Ld/α(E, μ)

for every function f ∈ Ld/α(E, μ).
(7.8.15)

There is a close relationship between fractional integral operators and the Hardy–
Littlewood maximal operator, which may be employed to give conceptually natural
proofs of the Fractional Integration Theorem. Specifically, we note the following
result.

Proposition 7.8.1 Assume (X, ρ) is a quasi-metric space with the property that the
quasi-distance ρ : X × X → [0,∞) is continuous25 in the product topology τρ × τρ .
In addition, suppose μ is a Borel measure on (X, τρ) with the property that there
exist Cμ ∈ (0,∞) and d ∈ (0,∞) such that

0 < μ
(

Bρ(x, r)
) ≤ Cμ rd for each x ∈ X and r > 0. (7.8.16)

25 Theorem 7.1.2 guarantees that any quasi-metric space has an equivalent quasi-distance which
satisfies this property.
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Then for each α ∈ (0, d) and each exponent p ∈ [1, d/α) there exists some con-
stant C = C(d, α, p, Cμ) ∈ (0,∞) with the property that for each μ-measurable
function f on X one has

ˆ
X

| f (y)|
ρ(x, y)d−α

dμ(y) ≤ C‖ f ‖pα/d
L p(X,μ)

[

(MX f )(x)
]1−pα/d

, ∀x ∈ X, (7.8.17)

where MX is the Hardy–Littlewood maximal operator on X, defined as in (7.6.16).
Moreover, if in place of (7.8.16) one assumes the lower bound

cμ rd ≤ μ
(

Bρ(x, r)
)

< +∞ for each x ∈ X
and each finite r ∈ (0, diamρ(X)

]

,
(7.8.18)

for some cμ ∈ (0,∞) and d ∈ (0,∞), then for each α ∈ (0, d) there exists a constant
C = C(d, α, cμ) ∈ (0,∞) with the property that for each μ-measurable function f
on X one has

MX,1,α/d f (x) ≤ C
ˆ

X

| f (y)|
ρ(x, y)d−α

dμ(y), ∀x ∈ X, (7.8.19)

where MX,1,α/d is the L1-based fractional Hardy–Littlewood maximal operator of
order α/d on X, defined as in (7.6.1).

Proof Fix α ∈ (0, d) along with an arbitrary μ-measurable function f on X . Then
for each x ∈ X and each r ∈ (0,∞) we may write, based on (7.8.16) and (7.6.16),

ˆ
Bρ(x,r)

| f (y)|
ρ(x, y)d−α

dμ(y)

=
∞
∑

j=0

ˆ
Bρ(x,2− j r)\Bρ(x,2− j−1r)

| f (y)|
ρ(x, y)d−α

dμ(y)

≤ C
∞
∑

j=0

(2− j r)α−dμ
(

Bρ(x, 2− j r)
)

 
Bρ(x,2− j r)

| f (y)| dμ(y)

≤ C
{

∞
∑

j=0

(2− j r)α−d(2− j r)d
}

(MX f )(x)

= Crα(MX f )(x), (7.8.20)

for a constant C ∈ (0,∞) which is independent of x, r, f . Assume p ∈ [1, d/α
)

has been fixed and choose p′ ∈ (d/(d − α),∞] such that 1/p + 1/p′ = 1. Observe
that this choice entails (d − α)p′ > d. Granted this, for each r > 0 and each x ∈ X
we may use Hölder’s inequality and (7.2.5) to estimate
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ˆ
X\Bρ(x,r)

| f (y)|
ρ(x, y)d−α

dμ(y)

≤
(

ˆ
X\Bρ(x,r)

| f (y)|p dμ(y)
)1/p(

ˆ
X\Bρ(x,r)

dμ(y)

ρ(x, y)(d−α)p′

)1/p′

≤ ‖ f ‖L p(X,μ)

(

ˆ
X\Bρ(x,r)

dμ(y)

ρ(x, y)(d−α)p′

)1/p′

≤ Crα−d/p‖ f ‖L p(X,μ). (7.8.21)

From (7.8.20) and (7.8.21) we then conclude that for each x ∈ X we have

ˆ
X

| f (y)|
ρ(x, y)d−α

dμ(y) ≤ C inf
r>0

{

rα(MX f )(x) + rα−d/p‖ f ‖L p(X,μ)

}

= C‖ f ‖pα/d
L p(X,μ)

[

(MX f )(x)
]1−pα/d

, (7.8.22)

for some constant C ∈ (0,∞) independent of x and f . This establishes (7.8.17).
As regards (7.8.19), making use of (7.8.18), for each point x ∈ X and each finite

r ∈ (0, diamρ(X)
]

write

ˆ
X

| f (y)|
ρ(x, y)d−α

dμ(y) ≥
ˆ

Bρ (x,r)

| f (y)|
ρ(x, y)d−α

dμ(y)

≥ μ
(

Bρ(x, r)
)

rd−α

 
Bρ(x,r)

| f (y)| dμ(y)

≥ C
[

μ
(

Bρ(x, r)
)

]α/d
 

Bρ(x,r)

| f (y)| dμ(y), (7.8.23)

where C ∈ (0,∞) is independent of f, x, r . Taking the supremum over all finite
r ∈ (0, diamρ(X)

]

yields (7.8.19) on account of (7.6.1). �

In relation to Proposition 7.8.1 we remark that, in concert with the mapping
properties of the Hardy–Littlewood maximal operator on spaces of homogeneous
type (cf. Corollary 7.6.3), estimate (7.8.17) readily implies both (7.8.7) and (7.8.9).
Indeed, (7.8.17) implies that

IX,α f (x) ≤ C‖ f ‖pα/d
L p(X,μ)

[

(MX f )(x)
]1−pα/d

, ∀x ∈ X. (7.8.24)

Hence, assuming (X, ρ, μ) is a space of homogeneous type for which (7.8.16) holds,
if p ∈ (1, d/α

)

and p∗ := ( 1p − α
d

)−1
we may rely on (7.8.24) and (7.6.18) to esti-

mate
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∥

∥IX,α f
∥

∥

L p∗
(X,μ)

≤ C‖ f ‖pα/d
L p(X,μ)

∥

∥(MX f )1−pα/d
∥

∥

L p∗
(X,μ)

= C‖ f ‖pα/d
L p(X,μ)

∥

∥MX f
∥

∥

p/p∗

L p(X,μ)

≤ C‖ f ‖pα/d
L p(X,μ)‖ f ‖p/p∗

L p(X,μ) = C‖ f ‖L p(X,μ). (7.8.25)

From this and (7.8.8), the claim in (7.8.7) follows. The claim in (7.8.9), corresponding
to p = 1, is proved similarly, this time using the weak boundedness result from
(7.6.19).

In closing, we also wish to note that under the assumption made in (7.8.18), the
pointwise estimate (7.8.19) trivially implies that for each p ∈ (0,∞) and q ∈ (0,∞]
we have

∥

∥MX,1,α/d f
∥

∥

L p,q (X,μ)
≤ C

∥

∥IX,α| f |∥∥L p,q (X,μ)
, (7.8.26)

for each μ-measurable function f on X , where C ∈ (0,∞) is independent of f .
Remarkably, under suitable assumptions on the ambient (X, ρ, μ), the opposite
inequality in (7.8.26) is also true. This may be seen by establishing a good-λ inequal-
ity as in the proof of [2, Theorem 3.6.1, p. 72] where this is done in the Euclidean
setting (see also [206, Theorem 1, p. 262] for a weighted version). In turn, such an
estimate once again yields (7.8.7) and (7.8.9), in view of the mapping properties of
the fractional Hardy–Littlewood maximal operator (cf. Theorem 7.6.1).



Chapter 8
Open Sets with Locally Finite Surface
Measures and Boundary Behavior

In this chapter, we develop the main technology behind our main results pertaining to
the Divergence Theorem from Sects. 1.2–1.12. Among the technical tools required
in this endeavor, there are certain off-diagonal Carleson measure estimates of reverse
Hölder type, which we formulate and prove in Sect. 8.6. In turn, these estimates use
information on the nontangential maximal operator developed in Sects. 8.1–8.4 (as
well as its version from Sect. 8.10), and the solid maximal function introduced earlier
in Sect. 6.6. Other key players in this regard are the notion of nontangentially accessi-
ble boundary which we define and study in Sect. 8.8, and the pointwise nontangential
boundary trace operator considered at length in Sect. 8.9.

8.1 Nontangential Approach Regions in Arbitrary Open
Sets

Here we introduce the nontangential approach regions in arbitrary open sets and
study some of their most basic properties.

As a preamble, we make the observation that the “distance to the boundary”
function satisfies a natural monotonicity property (with respect to the underlying
set), as described in the lemma below.

Lemma 8.1.1 AssumeO,� are two nonempty proper subsets ofRn with the property
that O ⊆ �. Then dist

(
x, ∂�

) ≥ dist
(
x, ∂O) for each x ∈ O.

Proof Fix an arbitrary point x ∈ O ⊆ �. If x ∈ ∂O, the inequality we seek to
establish is trivially true, so assume x ∈ O \ ∂O = O̊. Then r := dist

(
x, ∂O) is a

well-defined number in the interval (0,∞), and B(x, r) ⊆ O. As a consequence,
B(x, r) ⊆ �. The latter inclusion proves that dist

(
x, ∂�

) ≥ r , as desired. �
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Throughout, fix an open, nonempty, proper subset � of R
n . In agreement with

notation employed in the past, by δ∂�, we shall denote the distance function
to ∂�, i.e.

δ∂�(y) := dist(y, ∂�) := inf
x∈∂�

|x − y|, for all y ∈ R
n. (8.1.1)

Given κ > 0 arbitrary, we define the nontangential approach regions (to
∂� from within �) of aperture parameter κ by setting

�κ(x) = ��,κ(x) := {
y ∈ � : |x − y| < (1 + κ)δ∂�(y)

}
, ∀x ∈ ∂�. (8.1.2)

While it is clear from (8.1.2) that each nontangential approach region is an open1

subset of �, the reader is alerted that it may well happen that �κ(x) = ∅ for certain
points x ∈ ∂� and certain aperture parameters κ > 0. To give an example, assume
n ∈ N satisfies n ≥ 2 and fix θ ∈ (0, π). If we consider the open cone of half-aperture
angle θ/2 with vertex at the origin in R

n given by

�θ := {
x ∈ R

n : 〈x, en〉 > |x | cos(θ/2)
}
, (8.1.3)

then simple geometry shows that

�κ(0) = ∅ ⇐⇒ 0 < κ ≤ 1

sin(θ/2)
− 1. (8.1.4)

On the other hand, the nontangential approach regions at a boundary point where �

satisfies a cone condition are always nonempty if the aperture parameter is sufficiently
large. To make this precise, recall the cones Cθ,b(x, h) defined in (5.6.93). Then, if
x ∈ ∂� has the property that there exist h ∈ Sn−1, θ ∈ (0, π), and b ∈ (0,∞) for
which

Cθ,b(x, h) ⊆ �, (8.1.5)

simple geometric considerations show that

κ >
1

sin(θ/2)
− 1=⇒

{
x + th : 0 < t <

b

1 + sin(θ/2)

}
⊆ �κ(x). (8.1.6)

We also wish to note that, in the two-dimensional setting, nontangential approach
regions are preserved under quasi-conformalmappings in the precise sense described
in [133, Proposition 1.1, p. 223].

Moving on, it is clear from definitions that

1 Given that both the norm and the distance function are continuous.
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⋃

x∈∂�

�κ(x) = � for each fixed κ ∈ (0,∞), and
⋃

κ>0
�κ(x) = � for each fixed x ∈ ∂�.

(8.1.7)

Simple geometry also shows that for each x, y ∈ ∂�, we have

dist
(
y, �κ(x)

) ≤ |x − y| if x ∈ �κ(x),
dist

(
y, �κ(x)

) ≥ (2 + κ)−1|x − y| if �κ(x) �= ∅.
(8.1.8)

In addition, the following elementary topological result is going to be useful.

Lemma 8.1.2 Let� be an open, nonempty, proper subset of Rn, and fix an aperture
parameter κ > 0. Then

if x∗ ∈ R
n, x ∈ ∂�, and r > 0 satisfy B(x∗, r) ⊆ �κ(x) then there

exists ε > 0 such that B(x∗, r/2) ⊆ �κ(z) for all z ∈ ∂� ∩ B(x, ε).
(8.1.9)

Proof We proceed in a series of steps, starting with:

Step I: Under the assumptions that (X, τ ) is a topological space, K ⊆ X is a
compact set, and F,G : X → R are two continuous functions with the property that
F(x) < G(x) for each x ∈ K , it follows that there exists U ∈ τ such that K ⊆ U
and F(x) < G(x) for each x ∈ U .

Indeed, for each x ∈ K , the number rx := G(x) − F(x) is strictly pos-
itive which, in turn, ensures that x ∈ Ox := (F − G)−1

(− ∞,−rx/2)
) ∈ τ .

Hence, K ⊆ ⋃
x∈K Ox which means that there exist x1, . . . , xN ∈ K such that

K ⊆ U := ⋃
1≤ j≤N Ox j . At this stage, there remains to observe that U ∈ τ and that

(F − G)
∣∣
U < −min1≤ j≤N rx j < 0.

Step II: Let x∗ ∈ R
n , x ∈ ∂�, r > 0 be such that B(x∗, r) ⊆ �κ(x). Define

X := ∂� × B(x∗, r) equipped with the natural product topology τ (with ∂� con-
sideredwith the relative topology induced from R

n).Define F,G : X → R by setting
F(z, y) := |y − z| and G(z, y) := (1 + κ) dist(y, ∂�) for each (z, y) ∈ X . Then
there exists ε > 0 such that F < G on

(
B(x, ε) ∩ ∂�

)× B(x∗, r/2).
Applying Step I for the compact set K := {x} × B(x∗, r/2), we conclude

that there exists an open subset U of X which contains K and such that
F < G on U . Next, for each y ∈ B(x∗, r/2), there exist εy > 0 and ry > 0
such that

(
B(x, εy) ∩ ∂�

)× B(y, ry) ⊆ U (since (x, y) ∈ K ⊆ U ∈ τ ). Given that
B(x∗, r/2) ⊆ ⋃

y∈B(x∗,r/2) B(y, ry), it follows that there exist finitely many points

y1, . . . , yM ∈ B(x∗, r/2) such that B(x∗, r/2) ⊆ ⋃
1≤ j≤M B(y j , ry j ). If we now

make the choice ε := min1≤ j≤M εy j , then it is immediate that ε > 0 and we have
F < G on

(
B(x, ε) ∩ ∂�

)× B(x∗, r/2) since the latter set is contained in U .

Step III: The claim in (8.1.9) holds.
From Step II, we know that F(z, y) < G(z, y) whenever z ∈ B(x, ε) ∩ ∂� and

y ∈ B(x∗, r/2). Thus, |y − z| < (1 + κ) dist(y, ∂�) which comes down to having
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y ∈ �κ(z) for each z ∈ B(x, ε) ∩ ∂� and each y ∈ B(x∗, r/2). Consequently, we
have B(x∗, r/2) ⊆ �κ(z) for each z ∈ B(x, ε) ∩ ∂�, as desired. �

The nontangential approach region satisfies a natural monotonicity property (with
respect to the underlying domain), of the sort described in the lemma below.

Lemma 8.1.3 Assume O ⊆ � ⊆ R
n are open sets and x ∈ ∂O ∩ ∂�. Also, fix an

arbitrary aperture parameter κ > 0. Then �O,κ (x), the κ-nontangential approach
region in O with apex at x ∈ ∂O, is contained in ��,κ(x), the κ-nontangential
approach region in � with apex at x ∈ ∂�.

Proof This is a direct consequence of (8.1.2) and Lemma 8.1.1. �

Going further, we continue to assume that � is an open, nonempty, proper subset
of R

n . Observe that for each x ∈ ∂�, we have

�κ(x) ∩ ∂� ⊆ {x} and �κ(x) ⊆ � ∪ {x}. (8.1.10)

Indeed, if z ∈ �κ(x) ∩ ∂�, then there exists a sequence {y j } j∈N ⊆ �κ(x) such that
y j → z as j → ∞. In particular, we have |x − y j | < (1 + κ) dist(y j , ∂�) for each
j ∈ N, so passing to the limit yields |x − z| ≤ (1 + κ) dist(z, ∂�) = 0 since z ∈ ∂�.
Thus, necessarily z = x , proving the first property in (8.1.10). The second property
in (8.1.10) is then justified based on what we have just proved by observing that since
�κ(x) ⊆ �, we have �κ(x) ⊆ � = � ∪ ∂�, hence

�κ(x) ⊆ � ∪ (
∂� ∩ �κ(x)

) ⊆ � ∪ {x}. (8.1.11)

Lemma 8.1.4 Let� be an open, nonempty, proper subset of Rn and fix κ > 0. Then
for each x, y ∈ ∂�, one has

|y − x | ≤ (2 + κ) dist
(
y, �κ(x)

)
if �κ(x) �= ∅, (8.1.12)

and
dist

(
y, �κ(x)

) ≤ |y − x | if x ∈ �κ(x). (8.1.13)

Proof Pick x, y ∈ ∂�. Then for each z ∈ �κ(x), we may estimate

|y − x | ≤ |y − z| + |z − x | < |y − z| + (1 + κ) dist(z, ∂�)

≤ |y − z| + (1 + κ)|y − z| = (2 + κ)|y − z|. (8.1.14)

Taking the infimum over all points z ∈ �κ(x) then yields (8.1.12). As regards the
claim in (8.1.13), if x ∈ �κ(x), then there exists a sequence {x j } j∈N ⊆ �κ(x) which
converges to x . Hence, dist

(
y, �κ(x)

) ≤ |y − x j | → |y − x | as j → ∞, proving
(8.1.13). �

We continue to assume that � is a fixed, open, nonempty, proper subset of R
n .

Also, pick κ > 0 arbitrary. The “shadow” (or projection) of a given set E ⊆ � onto
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∂� (with respect to the nontangential approach regions in (8.1.2)) is defined as

πκ(E) = π�,κ(E) := {
x ∈ ∂� : �κ(x) ∩ E �= ∅

}
. (8.1.15)

Clearly

πκ(E) is a relatively open nonempty subset of ∂�, for each E ⊆ �. (8.1.16)

Also, straightforward geometry shows that

πκ

(
B(x, r) ∩ �

) ⊆ B
(
x, (2 + κ)r

) ∩ ∂�, ∀x ∈ ∂�, ∀r > 0. (8.1.17)

In particular
for any bounded subset E of �,
πκ(E) is a bounded subset of ∂�.

(8.1.18)

Also,

B
(
x∗, κδ∂�(x)

) ∩ ∂� ⊆ πκ

({x}) ⊆ B
(
x∗, (2 + κ)δ∂�(x)

) ∩ ∂�

if x ∈ � and x∗ ∈ ∂� are such that δ∂�(x) = |x − x∗|. (8.1.19)

For further use, we remark that

κ ′ ≥ κ =⇒ �κ(x) ⊆ �κ ′(x) for every x ∈ ∂�, and

πκ(E) ⊆ πκ ′(E) for eachLn-measurable E ⊆ �. (8.1.20)

Our next lemma contains several variants of the Pythagorean Theorem in a general
geometric setting.

Lemma 8.1.5 Let� be an open, nonempty, proper subset of Rn and fix κ > 0. Then
the following Pythagorean-like formula holds:

|x − y| ≈ |x − y∗| + δ∂�(y), uniformly for
x ∈ ∂�, y ∈ �, and y∗ ∈ π�,κ({y}). (8.1.21)

As a consequence

|x − y| ≈ |x − y∗| + δ∂�(y) uniformly for x ∈ ∂� and y ∈ �,
assuming the point y∗ ∈ ∂� is such that δ∂�(y) = |y − y∗|, (8.1.22)

and |z − y| ≈ |z − x | + |x − y| uniformly
for x ∈ ∂�, y ∈ ∂�, and z ∈ �κ(x).

(8.1.23)

Moreover

|y − z| + max
{
δ∂�(y), δ∂�(z)

} ≈ |y∗ − z∗| + max
{
δ∂�(y), δ∂�(z)

}
,

uniformly for y, z ∈ �, and y∗ ∈ π�,κ({y}), z∗ ∈ π�,κ({z}). (8.1.24)
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Proof If x ∈ ∂�, y ∈ �, and y∗ ∈ π�,κ({y}), then |y − y∗| < (1 + κ)δ∂�(y) since
y ∈ ��,κ(y∗). Thus, |x − y| ≤ |x − y∗| + |y − y∗| < |x − y∗| + (1 + κ)δ∂�(y).
This proves the left-pointing inequality in (8.1.21).

Conversely, |x − y| ≥ δ∂�(y) since x ∈ ∂�, so if δ∂�(y) > 1
2(1+κ)

|x − y∗|, we
have |x − y| ≥ 1

4(1+κ)

(|x − y∗| + δ∂�(y)
)
. On the other hand, if we are in the situa-

tion when δ∂�(y) ≤ 1
2(1+κ)

|x − y∗|, then

|x − y| ≥ |x − y∗| − |y − y∗| > |x − y∗| − (1 + κ)δ∂�(y)

≥ |x − y∗| − 1
2 |x − y∗| = 1

2 |x − y∗|, (8.1.25)

so that |x − y| ≥ 1
4

(|x − y∗| + δ∂�(y)
)
. The argument so far proves that in all

instances |x − y| ≥ c
(|x − y∗| + δ∂�(y)

)
for some c = c(κ) ∈ (0,∞). This estab-

lishes the right-pointing inequality in (8.1.21), finishing its proof.
In turn, (8.1.22) is a particular case of (8.1.21), since under the conditions stipu-

lated in (8.1.22), we have y∗ ∈ π�,κ({y}) for any κ > 0. It is also clear that (8.1.21)
implies (8.1.23) since for each x ∈ ∂� and z ∈ �κ(x), we have x ∈ π�,κ({z}) and
δ∂�(z) ≈ |z − x |.

As regards (8.1.24), if y, z ∈ �, and y∗ ∈ π�,κ({y}), z∗ ∈ π�,κ({z}), then

|y − z| ≤ |y − y∗| + |y∗ − z∗| + |z∗ − z|
< (1 + κ)δ∂�(y) + |y∗ − z∗| + (1 + κ)δ∂�(z)

≤ (1 + κ)
(
|y∗ − z∗| + max

{
δ∂�(y), δ∂�(z)

})
, (8.1.26)

proving the left-pointing inequality in (8.1.24). Finally, in the opposite direction

|y∗ − z∗| ≤ |y∗ − y| + |y − z| + |z − z∗|
≤ (1 + κ)

(
|y − z| + max

{
δ∂�(y), δ∂�(z)

})
. (8.1.27)

This finishes the justification of (8.1.24) and completes the proof of the lemma. �

The specific format of nontangential approach regions may vary wildly, and we
continue by presenting several concrete examples of this nature.

Example I: Corresponding to n = 1, whenever −∞ < a < b < +∞ for any given
κ ∈ (0,∞), we have

� = (a, b)=⇒�κ(a) =
(
a, (1+κ)b+a

2+κ

)
and �κ(b) =

(
(1+κ)a+b

2+κ
, b
)
. (8.1.28)

Note that, in agreement with (8.1.7), we have

�κ(a) ∪ �κ(b) = (a, b). (8.1.29)
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Also,

�κ(a) = � if � = (a,∞), or� = (−∞, a), for some a ∈ R, (8.1.30)

whereas if −∞ < a < b < +∞, then for each κ ∈ (0,∞), we have

� = R \ [a, b]=⇒
{

�κ(a) = (−∞, a) ∪ (
(1+κ)b−a

κ
,+∞)

�κ(b) = (− ∞, (1+κ)a−b
κ

) ∪ (b,+∞).
(8.1.31)

Example II: Working in the Euclidean space R
n with n ∈ N, for each κ ∈ (0,∞),

we have
� = B(0, 1) \ {0}=⇒ �κ(0) = B

(
0, 1+κ

2+κ

) \ {0}. (8.1.32)

Also, having � = R
n \ {0} implies �κ(0) = � for each κ > 0.

Example III: It is clear from definitions that

if � is an exterior domain in R
n , then for each κ > 0 there

exists some large R = R(�, κ) ∈ (0,∞) with the property
that R

n \ B(0, R) ⊆ �κ(x) for each x ∈ ∂�.
(8.1.33)

Moving on, if E is an arbitrary subset of�, we define the restricted nontangential
approach regions �E

κ (relative to the set E) as

�E
κ (x) := {

y ∈ E : |x − y| < (1 + κ)δ∂�(y)
}

= �κ(x) ∩ E, ∀x ∈ ∂�. (8.1.34)

It follows that

�E
κ (x) is a (relatively) open subset of E, for each x ∈ ∂�, (8.1.35)

and the first property in (8.1.7) implies

⋃

x∈∂�

�E
κ (x) = E . (8.1.36)

It turns out that, in the two-dimensional setting, conformal mappings preserve
nontangential approach regions in a double containment sense, up to adjustments in
the aperture parameter. This is made precise in the lemma below.

Lemma 8.1.6 Let � ⊆ R
2 be a chord-arc domain with unbounded boundary (cf.

Definition 5.9.13), and consider a conformal mapping � : R
2+ ≡ C+ → �. Then

the function � extends to a homeomorphism � : R
2+ → �, with �(∂R

2+) = ∂�. In
addition, for each aperture parameter κ ∈ (0,∞) there exist κ1, κ2 ∈ (0,∞) with
the property that
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�R
2+,κ1

(
�(x)

) ⊆ �
(
��,κ(x)

) ⊆ �R
2+,κ2

(
�(x)

)
, (8.1.37)

for each x ∈ R ≡ ∂R
2+.

The fact that �(∂R
2+) = ∂� ensures that �(x) ∈ ∂� for each x ∈ R ≡ ∂R

2+. In
particular, (8.1.37) is meaningfully formulated.

Proof of Lemma 8.1.6 Recall (5.9.93). Then, according to Carathéodory’s theorem
(cf. e.g., [100, Theorem 3.1, p. 13]), � extends to a homeomorphism � : R

2+ → �,
mapping ∂R

2+ bijectively onto ∂�. Bearing this in mind, (8.1.37) now follows from
(5.9.93), the fact that (as noted in [132, (iv), p. 92]) any NTA domain in the plane is
a quasicircle, and [133, Proposition 1.1, p. 223].

A result in the same spirit, for two-dimensional upper-graph Lipschitz domains,
appears in [146, Lemma 1.13, p. 136]. Here is a similar result to Lemma 8.1.6, in all
space dimensions, for bi-Lipschitz maps.

Lemma 8.1.7 Let �, �̃ ⊆ R
n be arbitrary sets, and suppose F : � → �̃ is a

bi-Lipschitz homeomorphism. Then F extends in a unique fashion to a bi-Lipschitz
homeomorphism mapping the closure of � onto the closure of �̃ (still denoted by
F), and F(∂�) = ∂�̃.

Moreover, if �, �̃ are open, then for each given aperture parameter κ > 0 there
exists κ̃ ∈ (0,∞), which depends only on κ and F, with the property that

F
(
��,κ(x)

) ⊆ ��̃,̃κ

(
F(x)

)
for every point x ∈ ∂�. (8.1.38)

Proof The fact that F is bi-Lipschitz entails the existence of c,C ∈ (0,∞), such
that

c|x − y| ≤ |F(x) − F(y)| ≤ C |x − y| for all x, y ∈ �. (8.1.39)

In particular, F is uniformly continuous which, in turn, implies that F extends
uniquely as a continuous function (still denoted by F) mapping the closure of �

into the closure of �̃. Passing to limit in (8.1.40) then shows that this extension
satisfies

c|x − y| ≤ |F(x) − F(y)| ≤ C |x − y| for all x, y ∈ �. (8.1.40)

Pick an arbitrary point y ∈ ∂�̃. Then there exists a sequence {y j } j∈N contained in the
interior of �̃ converging to y. Since F : � → �̃ is a homeomorphism, it follows that
there exists a sequence {x j } j∈N contained in the interior of � such that F(x j ) = y j
for each j ∈ N. Thus, on the one hand, lim

j→∞ F(x j ) = y. On the other hand, since

{y j } j∈N is a Cauchy sequence in �̃ it follows from (8.1.39) that {x j } j∈N is a Cauchy
sequence in �, hence convergent to some point x∗ ∈ �. Combining these two facts
leads to the conclusion that F(x∗) = y. In view of this, we see that x∗ cannot belong
to the interior of�, since otherwise the homeomorphism F would send it into a point
in the interior of �̃, which is not the case (recall that y ∈ ∂�̃). Hence, we necessarily
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have x∗ ∈ ∂�̃. Ultimately, this proves that ∂�̃ ⊆ F(∂�). Granted this, it follows that
the extension F of the original homeomorphism from � onto �̃ maps the closure of
� onto the closure of �̃, and satisfies (8.1.40). The latter shows that said extension
is also injective, thus a bi-Lipschitz bijection of the closure of � onto the closure of
�̃. This takes care of the claims in the first part of the statement.

To deal with the claim in the second part of the statement, assume �, �̃ are open
and fix some κ > 0. Also, pick a point x ∈ ∂� along with some y ∈ ��,κ(x), then
select ξ ∈ ∂�̃ with the property that |F(y) − ξ | = dist

(
F(y), ∂�̃

)
. From what we

have proved above, there exists a unique z ∈ ∂� such that F(z) = ξ . We may then
estimate

|F(y) − F(x)| ≤ C |y − x | < C(1 + κ) dist(y, ∂�) ≤ C(1 + κ)|y − z|
≤ (C/c)(1 + κ)|F(y) − F(z)| = (C/c)(1 + κ)|F(y) − ξ |
= (C/c)(1 + κ)dist

(
F(y), ∂�̃

)
, (8.1.41)

from which (8.1.38) follows whenever κ̃ ≥ (C/c)(1 + κ) − 1. �
We conclude this section by presenting two results, of a general geometric nature,

relating “solid” integrals to “surface” integrals. The first such result is amanifestation
of Fubini-Tonelli’s Theorem.

Lemma 8.1.8 Assume  ⊆ R
n is a nonempty closed set with empty interior, σ is a

sigma-finite Borel measure on , and μ is a sigma-finite Borel measure on R
n \ .

Then for each aperture parameter κ > 0 one has

ˆ


μ
(
�κ(z)

)
dσ(z) =

ˆ
Rn\

σ
(
πκ({x})

)
dμ(x), (8.1.42)

with the nontangential approach regions �κ(·) and the projection operator πκ con-
sidered relative to the open ambient c := R

n \ .

Proof To justify (8.1.42), write

ˆ


μ
(
�κ(z)

)
dσ(z) =

ˆ
z∈

(ˆ
�κ(z)

1 dμ
)
dσ(z)

=
ˆ
z∈

(ˆ
x∈Rn\

1�κ(z)(x) dμ(x)
)
dσ(z)

=
ˆ
x∈Rn\

( ˆ
z∈

1�κ(z)(x) dσ(z)
)
dμ(x)

=
ˆ
x∈Rn\

( ˆ
z∈

1πκ ({x})(z) dσ(z)
)
dμ(x)

=
ˆ
Rn\

σ
(
πκ({x})

)
dμ(x), (8.1.43)

thanks to (8.1.7) and Fubini-Tonelli’s Theorem. �
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The second result alluded to earlier uses Lemma 8.1.8 to produce estimates involv-
ing “solid” and “surface” integrals in a general geometric setting.

Lemma 8.1.9 Suppose  ⊆ R
n is a nonempty closed set with empty interior, and

denote by δ the distance function to . Also, assume σ is a sigma-finite Borel
measure on , and μ is a sigma-finite Borel measure on R

n \ . Finally, fix an
aperture parameter κ > 0 and denote by �κ(·) the nontangential approach regions
relative to the open ambient c := R

n \ .
If there exist an exponent d ∈ (0,∞) and a constant c ∈ (0,∞), such that

σ
(
B(x, r) ∩ 

) ≥ crd for all x ∈  and r ∈ (
0, 2 diam

)
(8.1.44)

then one can find C ∈ (0,∞), such that

ˆ
Rn\

δ(x)d dμ(x) ≤ C
ˆ



μ
(
�κ(z)

)
dσ(z). (8.1.45)

Moreover, if in place of (8.1.44) one now assumes that there exist an exponent
d ∈ (0,∞) and a constant c ∈ (0,∞), such that

σ
(
B(x, r) ∩ 

) ≤ crd for all x ∈  and r ∈ (
0, 2 diam

)
(8.1.46)

then one can find C ∈ (0,∞), such that

ˆ


μ
(
�κ(z)

)
dσ(z) ≤ C

ˆ
Rn\

δ(x)d dμ(x). (8.1.47)

As a corollary, if  is Ahlfors regular then

ˆ


μ
(
�κ(z)

)
dσ(z) ≈

ˆ
Rn\

δ(x)n−1 dμ(x). (8.1.48)

Proof All claims are clear from (8.1.42), (8.1.19), and assumptions. �

8.2 The Definition and Basic Properties of the
Nontangential Maximal Operator

Let� be an arbitrary, open, nonempty, proper subset ofR
n , fixed throughout. Having

also fixed some number κ ∈ (0,∞), if u : � → R is an arbitrary Lebesgue mea-
surable function2 define the nontangential maximal function of u with

2 All considerations in this section naturally adapt to Lebesgue measurable functions taking values
in the extended real line R, the field of complex numbers C, as well as the finite Cartesian products
of R or C.
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aperture κ as

Nκu : ∂� −→ [0,+∞], (Nκu)(x) := ‖u‖L∞(�κ (x),Ln) for all x ∈ ∂�. (8.2.1)

Explicitly, for each x ∈ ∂� we set

(Nκu)(x) := inf
{
λ ≥ 0 : Ln

({y ∈ �κ(x) : |u(y)| > λ}) = 0
}
, (8.2.2)

with the convention that inf ∅ = +∞. In particular, (8.2.1) implies that

whenever u ∈ C 0(�) one has(Nκu
)
(x) = sup

y∈�κ (x)
|u(y)| for all x ∈ ∂�. (8.2.3)

More generally, if u : � → R is a Lebesgue measurable function and E ⊆ � is
a Lebesgue measurable set, we denote byN E

κ u the nontangential maximal function
of u restricted to E

N E
κ u : ∂� −→ [0,+∞] defined as

(N E
κ u)(x) := ‖u‖L∞(�κ (x)∩E,Ln) for each x ∈ ∂�.

(8.2.4)

Hence, (N E
κ u)(x) = 0 whenever x ∈ ∂� \ πκ(E), and for each x ∈ ∂� we may

refashion the last line in (8.2.4) as

(N E
κ u)(x) = inf

{
λ ≥ 0 : Ln

({y ∈ �κ(x) ∩ E : |u(y)| > λ}) = 0
}

(8.2.5)

again, with the convention that inf ∅ = +∞. Note that, if we work (as one usually
does) with equivalence classes, obtained by identifying functions which coincide
Ln-a.e., the nontangential maximal operator is independent of the specific choice of
a representative in a given equivalence class. In other words,

N E
κ u=N E

κ w everywhere on ∂�, whenever u, w : �→R

are two Lebesgue measurable functions so that u = w for
Ln-a.e. point in �.

(8.2.6)

Given any two Lebesgue measurable functions u, w : � → R along with any
Lebesgue measurable set E ⊆ � we have

N E
κ

(
max{u, w}) ≤ max

{N E
κ u,N E

κ w
}

pointwise on ∂�. (8.2.7)

Indeed, this is a direct consequence of (8.2.4) and the fact that in any measure space
(X, μ) we have

∥∥max{ f, g}∥∥L∞(X,μ)
≤ max

{‖ f ‖L∞(X,μ), ‖g‖L∞(X,μ)

}

for anyμ − measurable functions f, g : X → R.
(8.2.8)
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For any two Lebesgue measurable functions u, w : � → R, which are assumed
to be finite Ln-a.e., and any Lebesgue measurable set E ⊆ � we have

N E
κ (u + w) ≤ N E

κ u + N E
κ w pointwise on ∂�, (8.2.9)

and

N E
κ (uw) ≤ (N E

κ u
) · (N E

κ w
)
pointwise on ∂�,

with the convention that 0 · ∞ = ∞ · 0 = 0 used in the right side.
(8.2.10)

Indeed, if x ∈ ∂� is a point at which, say,
(N E

κ u
)
(x) = 0 and

(N E
κ w

)
(x) = ∞, then

(8.2.1) forces u = 0 atLn-a.e. point in�κ(x), hence uw = 0 atLn-a.e. point in�κ(x)
since w is finite Ln-a.e. by assumption. Ultimately, this permits us to conclude that(N E

κ (uw)
)
(x) = 0, which goes to show that the estimate in (8.2.10) is valid at the

point x if we adopt the convention that 0 · ∞ = 0.
As a corollary of (8.2.9),

if x ∈ ∂� is such that
(N E

κ u
)
(x) < +∞ and

(N E
κ w

)
(x) < +∞

we have
∣∣
∣
(N E

κ u
)
(x) − (N E

κ w
)
(x)

∣∣
∣ ≤ (N E

κ (u − w)
)
(x).

(8.2.11)

It is also clear from earlier definitions that for each Lebesgue measurable function
u : � → R and each p ∈ (0,∞) we have

N E
κ

(|u|p) = (N E
κ u
)p

pointwise on ∂�, (8.2.12)

and
(N E

κ u
)
(x) = supy∈�κ (x)∩E |u(y)| at each point x ∈ ∂�, whenever

E ⊆ � is open and u is a Lebesgue measurable function defined
on � which happens to be actually continuous on the given set E .

(8.2.13)

Also, for every Lebesgue measurable function u : � → R and every Lebesgue mea-
surable set E ⊆ �, we have

N E
κ u = Nκ(u · 1E ) ≤ (Nκu

) · 1πκ (E) on ∂�. (8.2.14)

Moreover, for any Lebesgue measurable function u : � → R and any two Lebesgue
measurable set E1, E2 ⊆ � we have

N E1∪E2
κ u ≤ max

{N E1
κ u,N E2

κ u
}

on ∂�. (8.2.15)

To see that this is the case, use (8.2.14) and (8.2.7) to write
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N E1∪E2
κ u = Nκ

(
u · 1E1∪E2

) = Nκ

(
u · max{1E1 , 1E2}

)

= Nκ

(
max{u · 1E1 , u · 1E2}

) = max
{Nκ(u · 1E1),Nκ(u · 1E2)

}

= max
{N E1

κ u,N E2
κ u

}
on ∂�, (8.2.16)

proving (8.2.15). More generally, given any countable family (ui )i∈N of Lebesgue
measurable functions ui : E → C, we claim that

N E
κ

(
sup
i∈N

ui
)
(x) = sup

i∈N

(N E
κ ui

)
(x) for each x ∈ ∂�. (8.2.17)

This is a consequence of the definition made in (8.2.4) plus a general result contained
in the lemma below.

Lemma 8.2.1 Let (X, μ) be a measure space and consider some family ( fi )i∈N of
μ-measurable functions fi : X → [0,+∞]. Also, fix p ∈ (0,∞]. Then the formula

∥∥ sup
i∈N

fi
∥∥
L p(X,μ)

= sup
i∈N

‖ fi‖L p(X,μ) (8.2.18)

is valid when either p = ∞, or when the sequence ( fi )i∈N is pointwise non-
decreasing, i.e., when

for each i ∈ N one has
fi (x) ≤ fi+1(x) forμ-a.e. x ∈ X.

(8.2.19)

Proof In one direction, 0 ≤ fi ≤ supi∈N fi for each i ∈ N. Since supi∈N fi is
itself a μ-measurable function on X , taking the L p quasi-norm in (X, μ) yields
‖ fi‖L p(X,μ) ≤ ∥∥ supi∈N fi

∥∥
L p(X,μ)

for each i ∈ N, from which the right-pointing
inequality in (8.2.18) follows. To establish the inequality in the opposite direction, we
distinguish two cases. First, consider the case when p = ∞. Then for each i ∈ N we
have fi (x) ≤ ‖ fi‖L∞(X,μ) ≤ supi∈N ‖ fi‖L∞(X,μ) at μ-a.e. point x ∈ X , which then
further implies 0 ≤ supi∈N fi (x) ≤ supi∈N ‖ fi‖L∞(X,μ) at μ-a.e. point x ∈ X . Ulti-
mately, this shows that

∥∥ supi∈N fi
∥∥
L∞(X,μ)

≤ supi∈N ‖ fi‖L∞(X,μ), which finishes the
proof of (8.2.18) in the case when p = ∞.

Finally, assume 0 < p < ∞ and make the additional assumption that (8.2.19)
holds. The latter implies f p

i ↗ (
supi∈N fi

)p
pointwise on X as i ↗ ∞, so

Lebesgue’s Monotone Convergence Theorem then guarantees that

ˆ
X

(
sup
i∈N

fi
)p

dμ = lim
i→∞

ˆ
X
f p
i dμ. (8.2.20)

Hence, ∥∥ sup
i∈N

fi
∥∥p

L p(X,μ)
≤ sup

i∈N
‖ fi‖p

L p(X,μ), (8.2.21)

and the desired conclusion once again follows. �
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Here is another useful application of Lemma 8.2.1.

Lemma 8.2.2 Let� ⊆ R
n be an open set and fix a Lebesgue measurable set E ⊆ �

along with an aperture parameter κ > 0. Let u : � → R be anLn-measurable func-
tion. Finally, suppose {u j } j∈N is a sequence of real-valuedLn-measurable functions
defined in � with the property that lim

j→∞ u j (x) = u(x) at Ln-a.e. point x ∈ E. Then

N E
κ u ≤ sup

j∈N
N E

κ u j at each point on ∂�. (8.2.22)

Proof Since the limit of any convergent numerical sequence is less than, or equal
to, its supremum, we have |u(x)| ≤ sup

j∈N
|u j (x)| for Ln-a.e. x ∈ E . Consequently, at

each point x0 ∈ ∂� we may write

(N E
κ u)(x0) = ‖u‖L∞(E∩�κ(x0),Ln) ≤ ∥∥ sup

j∈N
|u j |

∥∥
L∞(E∩�κ(x0),Ln)

= sup
j∈N

‖u j‖L∞(E∩�κ(x0),Ln) = sup
j∈N

(N E
κ u j )(x0), (8.2.23)

where the penultimate equality uses (8.2.18) with p := ∞. �

Moving on, for further reference let us also note that

N E
κ 1F ≤ 1πκ (E∩F), ∀F ⊆ � Lebesgue measurable,

with equality if E, F are open subsets of�.
(8.2.24)

In addition, (8.1.20) implies

N E
κ u ≤ N E ′

κ ′ u everywhere on ∂�, if u : E → C is
Lebesguemeasurable,κ ′ ≥ κ > 0, and E, E ′ ⊆ � are any
two Lebesgue measurable sets such that E ⊆ E ′.

(8.2.25)

Proposition 8.2.3 Let � be an open, nonempty, proper subset of R
n, and fix an

aperture parameter κ ∈ (0,∞). Also, assume u : � → R is an arbitrary Lebesgue
measurable function and select some Lebesgue measurable set E ⊆ �. Then

N E
κ u is lower-semicontinuous on ∂�,

and vanishes identically on ∂� \ πκ(E).
(8.2.26)

In particular, for every number λ ∈ R,

the set
{
x ∈ ∂� : (N E

κ u)(x) > λ
}
is (relatively) open in ∂�, (8.2.27)

hence



8.2 The Definition and Basic Properties of the Nontangential Maximal Operator 685

N E
κ u : ∂� −→ [0,+∞] is a Borel-measurable function. (8.2.28)

Proof In addition to (8.2.5) we find it useful to consider

.N E
κ u : ∂� −→ (−∞,+∞] (8.2.29)

defined at each x ∈ ∂� by (again, with the convention that inf ∅ = +∞)

( .N E
κ u
)
(x) := inf

{
λ ∈ R : Ln

({y ∈ �κ(x) ∩ E : u(y) > λ}) = 0
}
. (8.2.30)

Inspecting definitions reveals that

N E
κ u = .N E

κ |u| on ∂�, (8.2.31)

and ∣∣ .N E
κ u
∣∣ ≤ N E

κ u on ∂�. (8.2.32)

In relation to this version of the nontangential maximal operator we claim that,
for every Lebesgue measurable function u : � → R and every number λ ∈ R,

the set
{
x ∈ ∂� : ( .N E

κ u
)
(x) > λ

}
is (relatively) open in ∂�. (8.2.33)

To prove this, suppose x ∈ ∂� is such that
( .N E

κ u
)
(x) > λ. In view of (8.2.30), this

implies that there exist

a number ε > 0 and a Lebesgue measurable set A ⊆ �κ(x) ∩ E , with
Ln(A) > 0, such that u > λ + ε at Ln-a.e. point on A.

(8.2.34)

By Lebesgue’s Differentiation Theorem we have

lim
r→0+

Ln
(
A ∩ B(y, r)

)

Ln
(
B(y, r)

) = 1 forLn-a.e. point y ∈ A. (8.2.35)

Given that Ln(A) > 0, it is then possible to find y∗ ∈ A and r∗ > 0, such that

Ln
(
A ∩ B(y∗, r)

)
> 1

2Ln
(
B(y∗, r)

)
whenever r ∈ (0, r∗). (8.2.36)

Since y∗ belongs to �κ(x) which is an open set (cf. (8.1.35)), it follows that there
is r∗∗ > 0 such that B(y∗, r∗∗) ⊂ �κ(x). Define r := min{r∗/2, r∗∗/2} > 0. Then
(8.1.9) implies that there exists εo > 0 with the property that

B(y∗, r) ⊆ �κ(z) for every z ∈ ∂� ∩ B(x, εo). (8.2.37)
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In concert with the containment property in the first line of (8.2.34) (which ensures
that A ⊆ E) this implies

A ∩ B(y∗, r) ⊆ E ∩ �κ(z) for every z ∈ ∂� ∩ B(x, εo). (8.2.38)

Moreover,
Ln
(
A ∩ B(y∗, r)

)
> 0 (8.2.39)

by (8.2.36) and our choice of r , while the last property in (8.2.34) implies

u > λ + ε at Ln-a.e. point on A ∩ B(y∗, r). (8.2.40)

Collectively, (8.2.38)–(8.2.40) then permit us to conclude that

( .N E
κ u
)
(z) > λ for every z ∈ ∂� ∩ B(x, εo). (8.2.41)

At this stage, (8.2.33) readily follows from (8.2.41). Having established (8.2.33) we
then conclude that

.N E
κ u is lower-semicontinuous on ∂�, and vanishes on ∂� \ πκ(E). (8.2.42)

In concert with (8.2.31), this proves (8.2.27) and all desired conclusions follow. �

To close, we remark that it is useful to extend the action of the nontangential
maximal operator to distributions which are of function type outside of a closed
subset of their domain. Specifically, given an open set � ⊆ R

n , some κ ∈ (0,∞),
and a distribution

u ∈ D′(�) such that there exists a closed set K ⊂ � for which
u
∣∣
�\K is of function type, i.e., u

∣∣
�\K ∈ L1

loc(� \ K ,Ln),
(8.2.43)

we agree to define

N�\K
κ u := Nκ ũ where ũ :=

{
u
∣∣
�\K in � \ K ,

0 in K .
(8.2.44)

In particular,N�\K
κ u is a well-defined function for each closed set K ⊂ � containing

regsupp u, the regular support of the given distribution u ∈ D′(�) (i.e., the smallest
relatively closed subset of � outside of which u is a locally integrable function; cf.
(1.5.4)). Finally, the reader is reminded (cf. (1.5.5)) that, throughout this work,

whenever 0 < ε < dist
(
regsupp u, ∂�

)
we shall abbreviate

Nε
κu := Nκ

(
u · 1Oε

)
where Oε := {

x ∈ � : dist(x, ∂�) < ε
}
.

(8.2.45)
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8.3 Elementary Estimates Involving the Nontangential
Maximal Operator

Our first observation is that any function whose nontangential maximal operator is
almost everywhere finite is necessarily locally bounded.

Lemma 8.3.1 Let � be an open nonempty proper subset of R
n and assume μ is a

Borel measure on ∂� satisfying

μ
(
B(x, r) ∩ ∂�

)
> 0 for every x ∈ ∂� and r > 0. (8.3.1)

Fix κ > 0 and assume that u : � → C is a Lebesgue measurable function with the
property that

Nκu < +∞ at μ-a.e. point on ∂�. (8.3.2)

Then u ∈ L∞
loc(�,Ln).

Proof Fix x∗ ∈ � arbitrary. From (8.1.36) (with E = �) and (8.1.9) it follows that
there exist x ∈ ∂� and r > 0 satisfying B(x∗, r) ⊆ �κ(z) for each z ∈ B(x, r) ∩ ∂�.
In turn, by relying on (8.3.1) and (8.3.2), we can find a point z∗ ∈ B(x, r) ∩ ∂�with(Nκu

)
(z∗) < +∞, and since

‖u‖L∞(B(x∗,r),Ln) ≤ ‖u‖L∞(�κ (z),Ln) = (Nκu
)
(z)

for each point z ∈ B(x, r) ∩ ∂�,
(8.3.3)

the desired conclusion follows. �

Our second observation is that the essential supremum of a function matches the
essential supremum of its nontangential maximal operator.

Lemma 8.3.2 Suppose � is an open nonempty proper subset of R
n and assume μ

is a Borel measure on ∂� with the property that

0 < μ
(
B(x, r) ∩ ∂�

)
< ∞ for every x ∈ ∂� and r > 0. (8.3.4)

Also, fix an Ln-measurable set E ⊆ � along with some aperture parameter κ > 0.
Then for each Ln-measurable function u : E → R one has

N E
κ u ∈ L∞(πκ(E), μ) and ‖N E

κ u‖L∞(πκ (E), μ) = ‖u‖L∞(E,Ln). (8.3.5)

In particular, corresponding to E := �, for each Lebesgue measurable function
u : � → R one has

Nκu ∈ L∞(∂�, μ) and ‖Nκu‖L∞(∂�,μ) = ‖u‖L∞(�,Ln). (8.3.6)
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Proof It suffices to show that (8.3.6) holds for each Lebesgue measurable function
u : � → R. Granted this, given someLn-measurable set E ⊆ � together with some
Ln-measurable function u : E → R, formula (8.3.5) follows by applying (8.3.6) to
the given function u extended by zero to the entire �.

On to the proof of (8.3.6). Fix a Lebesgue measurable function u : � → R. Since
Nκu is a lower-semicontinuous function on ∂�, hence μ-measurable, and for every
x ∈ ∂� we have

(Nκu
)
(x) = ‖u‖L∞(�κ (x),Ln) ≤ ‖u‖L∞(�,Ln), (8.3.7)

it follows that

Nκu ∈ L∞(∂�, μ) and ‖Nκu‖L∞(∂�,μ) ≤ ‖u‖L∞(�,Ln). (8.3.8)

We emphasize that property (8.3.4) has not been used in the proof of (8.3.8).
To prove the opposite inequality, fix an arbitrary point x∗ ∈ � and pick x ∈ ∂�

such that dist(x, ∂�) = |x − x∗|. This implies that x∗ belongs to �κ(x), and since
the latter set us open, there exists r > 0 such that B(x, r) ⊆ �κ(x), Granted this, we
conclude from (8.1.9) that there exists ε > 0, such that

B(x∗, r/2) ⊆ �κ(z) for each z ∈ ∂� ∩ B(x, ε). (8.3.9)

In turn, (8.3.9) implies

‖u‖L∞(B(x∗,r/2),Ln) ≤ ‖u‖L∞(�κ (z),Ln) = (Nκu
)
(z) (8.3.10)

for each z ∈ ∂� ∩ B(x, ε). Integrating (8.3.10) for z ∈ ∂� ∩ B(x, ε)with respect to
μ then yields

‖u‖L∞(B(x∗,r/2),Ln) · μ
(
∂� ∩ B(x, ε)

) ≤
ˆ

∂�∩B(x,ε)

(Nκu
)
(z) μ(z) (8.3.11)

≤ ‖Nκu‖L∞(∂�,μ) · μ
(
∂� ∩ B(x, ε)

)
.

In light of (8.3.4), after denoting r∗ := r/2 this further gives

‖u‖L∞(B(x∗,r∗),Ln) ≤ ‖Nκu‖L∞(∂�,μ). (8.3.12)

The end-game in the proof of (8.3.6) is as follows. Start with the open cover{
B(x∗, r∗)

}
x∗∈�

of � such that (8.3.12) holds for each of these balls, and use Lin-

delöf’s theorem to refine this to a countable sub-cover, say,
{
B(x j , r j )

}
j∈N. For each

j ∈ N, we know that there exists an Ln-nullset N j ⊆ B(x j , r j ), such that

|u(x)| ≤ ‖Nκu‖L∞(∂�,μ) for each x ∈ B(x j , r j ) \ N j . (8.3.13)
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Then N := ∪ j∈NN j is an Ln-nullset contained in � with the property that

|u(x)| ≤ ‖Nκu‖L∞(∂�,μ) for each x ∈ � \ N . (8.3.14)

This proves
‖u‖L∞(�,Ln) ≤ ‖Nκu‖L∞(∂�,μ) (8.3.15)

which, in concert with (8.3.8), establishes (8.3.6). �

Another remark closely related to Lemma 8.3.2 is as follows.

Lemma 8.3.3 Let � be an open nonempty proper subset of R
n and fix an aperture

parameter κ > 0. Then for each Ln-measurable function u : � → R one has

sup
x∈∂�

(Nκu)(x) = ‖u‖L∞(�,Ln). (8.3.16)

Proof It is clear from (8.2.1) that

sup
x∈∂�

(Nκu)(x) ≤ ‖u‖L∞(�,Ln). (8.3.17)

To prove the opposite inequality, pick λ ∈ R, such that λ < ‖u‖L∞(�,Ln). Then, by
definition, there exists a Lebesgue measurable set A ⊆ � with Ln(A) > 0 and such
that |u(x)| > λ for each x ∈ A. By Lebesgue’s Differentiation Theorem,

lim
r→0+

Ln
(
A ∩ B(x, r)

)

voln · rn = lim
r→0+

 
B(x,r)

1A dLn = 1A(x) (8.3.18)

forLn-a.e. x ∈ R
n , where voln denotes the volume of the unit ball inR

n (cf. (5.7.18)).
Since Ln(A) > 0, we may therefore find a point x∗ ∈ A with the property that

lim
r→0+

Ln
(
A ∩ B(x∗, r)

)

voln · rn = 1. (8.3.19)

In particular, this implies that x∗ ∈ � and

Ln
(
A ∩ B(x∗, r)

)
> 0 for each r > 0. (8.3.20)

Let xo ∈ ∂� be such that dist(x∗, ∂�) = |x∗ − xo|. In light of (8.1.1), this implies
that x∗ ∈ �κ(xo). Given that �κ(xo) is an open set, there exists r∗ > 0, such that we
actually have B(x∗, r∗) ⊆ �κ(xo). Consequently,

sup
x∈∂�

(Nκu)(x) ≥ (Nκu)(xo) = ‖u‖L∞(�κ (xo),Ln)

≥ ‖u‖L∞(B(x∗,r∗),Ln) ≥ λ, (8.3.21)
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where the last inequality is justified by recalling that for each x ∈ A ∩ B(x∗, r∗) we
have |u(x)| > λ and by observing that Ln

(
A ∩ B(x∗, r∗)

)
> 0 (cf. (8.3.20)). Upon

sending λ ↗ ‖u‖L∞(�,Ln) in (8.3.21) we arrive at the conclusion that

sup
x∈∂�

(Nκu)(x) ≥ ‖u‖L∞(�,Ln). (8.3.22)

Together with (8.3.17) this finishes the proof of (8.3.16). �

In the one-dimensional setting, it turns out that the essential supremum of a func-
tion is dominated by the integral of its nontangential maximal operator (with respect
to the counting measure).

Lemma 8.3.4 Let�beanonempty, open, proper subset of the real lineR. Abbreviate
σ := H0�∂� (thus, σ is the counting measure on ∂�) and fix κ > 0 arbitrary. Then
for each L1-measurable function u : � → R one has

‖u‖L∞(�,L1) ≤ ‖Nκu‖L1(∂�,σ). (8.3.23)

Proof The hypotheses on � imply that there exist an at most countable set J along
with a family {I j } j∈J of mutually disjoint intervals of the form I j = (a j , b j ) with
−∞ ≤ a j < b j ≤ +∞ and min{|a j |, |b j |} < ∞ for each j ∈ J , such that

� =
⋃

j∈J

I j . (8.3.24)

In fact, {I j } j∈J is the family of connected components of �. As such,

⋃

j∈N
∂ I j ⊆ ∂� (8.3.25)

which, in view of the fact that σ := H0�∂� is the counting measure on ∂�, implies.

∑

j∈J

‖Nκu‖L1(∂ I j ,σ ) ≤ ‖Nκu‖L1(∂�,σ). (8.3.26)

In turn, for each j ∈ J we have

‖Nκu‖L1(∂ I j ,σ ) =
⎧
⎨

⎩

(Nκu
)
(a j ) + (Nκu

)
(b j ) if − ∞ < a j < b j < +∞,(Nκu

)
(a j ) if − ∞ < a j < b j = +∞,(Nκu
)
(b j ) if − ∞ = a j < b j < +∞.

(8.3.27)
From this and (8.1.28)–(8.1.30) we may then conclude that

‖u‖L∞(I j ,L1) ≤ ‖Nκu‖L1(∂ I j ,σ ), ∀ j ∈ J (8.3.28)
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which, together with (8.3.24) and (8.3.26), permits us to write

‖u‖L∞(�,L1) = sup
j∈J

‖u‖L∞(I j ,L1) ≤
∑

j∈J

‖u‖L∞(I j ,L1)

≤
∑

j∈J

‖Nκu‖L1(∂ I j ,σ ) ≤ ‖Nκu‖L1(∂�,σ), (8.3.29)

proving (8.3.23). �

When naturally organized as a quasi-normed space, the collection of all measur-
able functions whose nontangential maximal operator is p-th power integrable (for
some fixed p ∈ (0,∞]) turns out to be a reasonably behaved quasi-Banach space.

Proposition 8.3.5 Let � be an open nonempty proper subset of R
n and suppose μ

is a Borel measure on ∂� satisfying

μ
(
B(x, r) ∩ ∂�

)
> 0 for every x ∈ ∂� and every r > 0. (8.3.30)

In this context, for each given aperture parameter κ > 0 and each integrability
exponent p ∈ (0,∞] define the space

N p
κ (�;μ) := {

u : � → C : u is Ln-measurable, and ‖u‖N p
κ (�;μ) < +∞}

(8.3.31)
where, for each Ln-measurable function u : � → C,

‖u‖N p
κ (�;μ) := ‖Nκu‖L p(∂�,μ). (8.3.32)

Then (8.3.32) is a quasi-norm, and N p
κ (�;μ) is a quasi-Banach space (respec-

tively, a genuine norm, andanactualBanach space,when1 ≤ p ≤ ∞)which embeds
continuously into L0(�,Ln) (the space of measurable, Ln-a.e. finite functions on
�) when the latter space is endowed with the topology induced by convergence in
measure on sets of finite measure.

Moreover,
N p

κ (�;μ) embeds continuously into L∞
loc(�,Ln) (8.3.33)

and
N p

κ (�;μ) ∩ C 0(�) is a closed subspace of N p
κ (�;μ). (8.3.34)

Also,
if 0 < p ≤ 1 then for all u, w ∈ N p

κ (�;μ) one has

‖u + w‖p
N p

κ (�;μ)
≤ ‖u‖p

N p
κ (�;μ)

+ ‖w‖p
N p

κ (�;μ)
,

hence ‖ · ‖N p
κ (�;μ) is a p-norm whenever p ∈ (0, 1].

(8.3.35)
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Finally, N p
κ (�;μ) has the property that any sequence {u j } j∈N in N p

κ (�;μ)which
is convergent to some u ∈ N p

κ (�;μ) in the topology induced by ‖ · ‖N p
κ (�;μ) has a

subsequence which converges to u pointwise Ln-a.e. on �.

Remark 8.3.6 In analogy with the classical work in [54], we may regard N p
κ (�;μ)

from (8.3.31) as the tent space T p
∞ associated with the set � and measure μ.

Proof of Proposition 8.3.5 Let us denote byM+(�,Ln) the collection of all equiv-
alence classes of scalar-valued, non-negative, Ln-measurable functions u defined in
�. Then, thanks to (8.2.26) and the fact thatμ is a Borel measure on ∂�, the mapping

‖ · ‖N p
κ (�;μ) : M+(�,Ln) −→ [0,+∞] (8.3.36)

introduced earlier in (8.3.32) is well defined. From (8.2.9) it follows that for each
u, w ∈ M+(�,Ln) we have

‖u + w‖N p
κ (�;μ) ≤ cp

(‖u‖N p
κ (�;μ) + ‖w‖N p

κ (�;μ)

)

≤ 2cp max
{‖u‖N p

κ (�;μ), ‖w‖N p
κ (�;μ)

}
, (8.3.37)

where
cp := 2max{0,1/p−1} ∈ [1,+∞). (8.3.38)

Hence, ‖ · ‖N p
κ (�;μ) satisfies a quasi-triangle inequality. The first inequality in (8.3.37)

also shows (bearing (8.3.38) in mind) that ‖ · ‖N p
κ (�;μ) satisfies the standard triangle

inequality when 1 ≤ p ≤ ∞. Let us also note that if 0 < p ≤ 1 then (8.2.9) implies
that for all u, w ∈ N p

κ (�;μ) we have

‖u + w‖p
N p

κ (�;μ)
≤ ‖u‖p

N p
κ (�;μ)

+ ‖w‖p
N p

κ (�;μ)
, (8.3.39)

proving (8.3.39). As is apparent from definitions, (8.3.32) is positive homogeneous
of degree one, in the sense that

‖λu‖N p
κ (�;μ) = λ‖u‖N p

κ (�;μ), ∀u ∈ M+(�,Ln), ∀λ ∈ (0,+∞). (8.3.40)

Recall from the proof of Lemma 8.3.1 that for each x∗ ∈ �, there exist x ∈ ∂� and
r > 0, such that (8.3.3) holds. In concert with (8.3.30), this shows that the mapping
(8.3.32) satisfies the non-degeneracy condition

‖u‖N p
κ (�;μ) = 0 ⇐⇒ u = 0 at Ln-a.e. point in �. (8.3.41)

It is also clear that ‖ · ‖N p
κ (�;μ) is monotone, meaning that for every two functions

u, w ∈ M+(�,Ln) we have

u ≤ w atLn-a.e. point in�=⇒ ‖u‖N p
κ (�;μ) ≤ ‖w‖N p

κ (�;μ). (8.3.42)
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Next, assume the functions {ui }i∈N are Ln-measurable on � and for each i ∈ N

satisfy 0 ≤ ui ≤ ui+1 at Ln-a.e. point in �. From (8.2.17) we know that for each
point x ∈ ∂� we have

Nκ

(
sup
i∈N

ui
)
(x) = sup

i∈N

(Nκui
)
(x). (8.3.43)

In turn, this implies

∥∥∥ sup
i∈N

ui
∥∥∥
N p

κ (�;μ)
=
∥∥∥Nκ

(
sup
i∈N

ui
)∥∥∥

L p(∂�,μ)
=
∥∥∥ sup

i∈N

(Nκui
)∥∥∥

L p(∂�,μ)

= sup
i∈N

∥∥∥
(Nκui

)∥∥∥
L p(∂�,μ)

= sup
i∈N

‖ui‖N p
κ (�;μ), (8.3.44)

where the third equality comes from Lemma 8.2.1 (in view of the fact that (8.2.19)
is satisfied with fi := Nκui ). In particular, (8.3.44) proves that ‖ · ‖N p

κ (�;μ) satisfies
the weak Fatou property. Keeping in mind that the Lebesgue measure is sigma-
finite, results proved in [188, 190] imply that

(
N p

κ (�;μ), ‖ · ‖N p
κ (�;μ)

)
is a quasi-

Banach space (actually a genuine Banach space when 1 ≤ p ≤ ∞) which embeds
continuously into L0(�,Ln) (equipped with the topology induced by convergence
in measure on sets of finite measure), and which has the property that any of its
convergent sequences has a subsequence which converges (to its limit in N p

κ (�;μ))
in a pointwise Ln-a.e. fashion.

The latter property, together with the fact that N p
κ (�;μ) embeds continuously

into L∞
loc(�,Ln) (as seen from the proof of Lemma 8.3.1; cf. (8.3.3)), then implies

(8.3.34) (keeping in mind that continuity is preserved under uniform convergence).

There are precise two-sided estimates for the nontangential maximal operator of
functions which are powers of the distance to a fixed point, of the sort described in
the next lemma.

Lemma 8.3.7 Suppose � is an arbitrary nonempty, open, proper subset of Rn. Pick
an aperture parameter κ > 0 and select an exponent N ∈ [0,∞).

Then, having fixed a point x0 ∈ �, there exists a constant C = CN ,κ ∈ (0,∞),
such that for each x ∈ ∂� \ {x0}, one has

(
N�\B(x0,d/2)

κ

(| · −x0|−N
))

(x) = sup
y∈�κ (x)\B(x0,d/2)

|y − x0|−N

≤ C |x − x0|−N (8.3.45)

where d := dist(x0, ∂�) ≥ 0 (with the understanding that B(x0, d/2) = ∅ if d = 0).
Moreover, at each point x ∈ ∂� \ {x0} with the property that x ∈ �κ(x), one also
has
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|x − x0|−N ≤ sup
y∈�κ (x)\B(x0,d/2)

|y − x0|−N

=
(
N�\B(x0,d/2)

κ

(| · −x0|−N
))

(x). (8.3.46)

Finally, there exists a constant C = C�,N ,κ ∈ (0,∞), such that

(
N�

κ

(
(1 + | · |)−N

))
(x) ≤ C

1 + |x |N for each x ∈ ∂�, (8.3.47)

and, in the opposite direction,

1

1 + |x |N ≤
(
N�

κ

(
(1 + | · |)−N

))
(x).

at each point x ∈ ∂� for which x ∈ �κ(x).
(8.3.48)

Proof Fix x0 as in the hypotheses of the lemma. If N = 0, there is nothing to
prove. Suppose N > 0 is fixed and let x∗ ∈ ∂� be such that |x0 − x∗| = d. Choose
M ∈ [

2(2 + κ),∞)
and take an arbitrary x ∈ ∂� \ B(x∗, Md). In particular, we

have
|x − x∗| ≥ Md. (8.3.49)

Also, pick some y ∈ �κ(x), hence

|y − x | < (1 + κ) dist(y, ∂�) ≤ (1 + κ)|y − x∗|. (8.3.50)

We may then estimate

|x − x∗| ≤ |x − y| + |y − x∗| < (2 + κ)|y − x∗|
≤ (2 + κ)|y − x0| + (2 + κ)|x0 − x∗|
= (2 + κ)|y − x0| + (2 + κ)d. (8.3.51)

Note that from (8.3.51) and (8.3.49), we obtain |y − x0| > Md−(2+κ)d
2+κ

≥ d, thus

�κ(x) ∩ B(x0, d/2) = ∅ for all x ∈ ∂� \ B(x∗, Md). (8.3.52)

Also, (8.3.51), (8.3.49), and the definition of M imply

(2 + κ)|y − x0| ≥ |x − x∗| − (2 + κ)d

≥ 1
2 |x − x∗| + Md

2 − (2 + κ)d ≥ 1
2 |x − x∗|. (8.3.53)

In addition, using (8.3.49), we have

|x − x0| ≤ |x − x∗| + |x∗ − x0| = |x − x∗| + d ≤ (
1 + 1

M

)|x − x∗|. (8.3.54)
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Together, (8.3.53) and (8.3.54) yield

|y − x0| ≥ 1
2(2+κ)

|x − x∗| ≥ M
2(2+κ)(M+1) |x − x0| ≥ 1

M+1 |x − x0|. (8.3.55)

Since (8.3.55) holds for any x ∈ ∂� \ B(x∗, Md) and any y ∈ �κ(x), we obtain

sup
y∈�κ (x)

[|y − x0|−N
] ≤ (M + 1)N |x − x0|−N , ∀x ∈ ∂� \ B(x∗, Md).

(8.3.56)
Next, consider x ∈ ∂� ∩ B(x∗, Md) and y ∈ �κ(x) \ B(x0, d/2). Then

|x − x0| ≤ |x − x∗| + |x∗ − x0| ≤ (M + 1)d, (8.3.57)

thus
|y − x0| ≥ 1

2d ≥ 1
2(M+1) |x − x0|. (8.3.58)

This further shows that at each point x ∈ (
∂� \ {x0}

) ∩ B(x∗, Md), we have

sup
y∈�κ (x)\B(x0,d/2)

[|y − x0|−N
] ≤ 2N (M + 1)N |x − x0|−N . (8.3.59)

At this point, (8.3.45) follows from (8.3.56), (8.3.52), and (8.3.59), by choosing
C := 2N (M + 1)N .

Moving on, (8.3.46) is justified by observing that for every x ∈ ∂� \ {x0} such
that x ∈ �κ(x), we may write

sup
y∈�κ(x)\B(x0,d/2)

[|y − x0|−N
] ≥ lim

�κ(x)�y→x
|y − x0|−N = |x − x0|−N . (8.3.60)

Consider next the task of establishing (8.3.47). Pick an arbitrary point x0 ∈ �

and abbreviate d := dist(x0, ∂�) ∈ (0,∞). Since |x − x0| ≈ 1 + |x | uniformly for
x ∈ R

n \ B(x0, d/2), we conclude from the estimate in (8.3.45) that there exists a
constant C = C�,N ,κ,x0 ∈ (0,∞) such that

(
N�\B(x0,d/2)

κ

(
(1 + | · |)−N

))
(x) ≤ C

(
N�\B(x0,d/2)

κ

(| · −x0|−N
))

(x) (8.3.61)

≤ C |x − x0|−N ≤ C

1 + |x |N for each x ∈ ∂�.

From (8.1.18), we know that E := πκ

(
B(x0, d/2)

)
is a bounded subset of ∂�, and

from (8.2.26), we see that

(
N B(x0,d/2)

κ

(
(1 + | · |)−N

))
(x) ≤ C1E (x) for each x ∈ ∂�. (8.3.62)

Since the boundedness of E entails
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1E (x) ≤ C

1 + |x |N for each x ∈ ∂�, (8.3.63)

we ultimately conclude from (8.3.61), (8.3.62), (8.3.63), and (8.2.15) that (8.3.47)
holds.

Finally, suppose some point x ∈ ∂� having the property that x ∈ �κ(x) has been
given. It is then possible to pick a sequence {x j } j∈N ⊆ �κ(x) convergent to x , and
we write

1

1 + |x |N = lim
j→∞

1

1 + |x j |N ≤ sup
j∈N

1

1 + |x j |N

≤ sup
y∈�κ (x)

1

1 + |y|N =
(
N�

κ

(
(1 + | · |)−N

))
(x), (8.3.64)

where the last equality comes from (8.2.13) (presently used with E := �). This
establishes (8.3.48), completing the proof of Lemma 8.3.7. �

We continue by presenting the following useful estimate on the nontangential
maximal function.

Proposition 8.3.8 Let � be an arbitrary nonempty, open, proper subset of R
n, and

pick an aperture parameter κ > 0. Also, suppose b ∈ C 1(Rn \ {0}) is such that, for
some constant C ∈ (0,∞),

|b(x)| ≤ C |x |1−n and |(∇b)(x)| ≤ C |x |−n for each x ∈ R
n \ {0}. (8.3.65)

Finally, fix two distinct points x1, x2 ∈ ∂� and define

u(x) := b(x − x1) − b(x − x2) for each x ∈ �. (8.3.66)

Then there exists C ∈ (0,∞) with the property that for each x ∈ ∂� one has

(Nκu
)
(x) ≤

{
C |x − x j |1−n if x is near x j with j = 1 or j = 2,
C(1 + |x |)−n if x is away from both x1 and x2.

(8.3.67)

In particular

if ∂� is upper Ahlfors regular and σ := Hn−1�∂� then
Nκu ∈ L p(∂�, σ) for each p ∈ (

n−1
n , 1

)
.

(8.3.68)

Proof This is a consequence of Lemma 8.3.7, theMean Value Theorem, and (7.2.5).
�

In the lemma below, we estimate a “solid” integral, which may be regarded as
the weighted Lebesgue norm of an arbitrary function (with the weight a power of
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the distance to the “boundary”) by a “surface” integral, involving the nontangen-
tial maximal operator of the function in question and a suitably weighted “surface
measure.”

Lemma 8.3.9 Suppose  ⊆ R
n is a nonempty closed set with empty interior, and

denote by δ the distance function to . Also, assume μ is a sigma-finite Borel
measure on R

n \  which is absolutely continuous with respect to the Lebesgue
measure, and σ is a sigma-finite Borel measure on  with the property that there
exist an exponent d ∈ (0,∞) and a constant c ∈ (0,∞), such that

σ
(
B(x, r) ∩ 

) ≥ crd for all x ∈  and r ∈ (
0, 2 diam

)
. (8.3.69)

Finally, fix an aperture parameter κ > 0, an exponent p ∈ (0,∞), a μ-measurable
set E ⊆ R

n \ , and a μ-measurable function u : E → C. Then there exists a con-
stant C ∈ (0,∞), such that

ˆ
E

δ(x)d |u(x)|p dμ(x) ≤ C
ˆ

πκ (E)

(N E
κ u
)
(z)p · μ

(
�E

κ (z)
)
dσ(z), (8.3.70)

where the nontangential maximal operatorN E
κ , the projection operator πκ , and the

nontangential approach regions�E
κ (·) are all considered relative to the open ambient

c := R
n \ .

Proof This is seen by applying (8.1.45)with themeasureμ replaced by
∣∣̃u
∣∣pμwhere

ũ is the extension of u to R
n \  by zero outside E , and using the fact that

ˆ
�κ(z)

∣∣̃u
∣∣p dμ ≤ (N E

κ u
)
(z)p · μ

(
�E

κ (z)
)
for each z ∈ , (8.3.71)

itself a consequence of (8.2.4), the absolute continuity of μ with respect to Ln , and
(8.1.34). �

8.4 Size Estimates for the Nontangential Maximal
Operator Involving a Doubling Measure

Proposition 8.4.1 below shows that the choice of the parameter κ , governing the
aperture of the nontangential approach regions (cf. (8.1.2)), plays a relatively minor
role when measuring the size of the nontangential maximal function on the scale
of Lorentz spaces with respect to a doubling measure. This refines work in [125,
Proposition 2.2], which deals with an open set with an Ahlfors regular boundary and
the scale of Lebesgue spaces on its topological boundary considered with respect
to the canonical surface measure. Later on, in Theorem 8.4.6 and Corollaries 8.4.7–
8.4.8, we shall present more versatile versions of this result, applicable to a variety
of function spaces of interest.
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Proposition 8.4.1 Assume that � is an open nonempty proper subset of R
n and

consider a doubling Borel measure σ on ∂�. Also, fix a pair of exponents p, q such
that either p ∈ (0,∞) and q ∈ (0,∞], or p = ∞ and q = ∞.

Then for every pair of aperture parameters κ1, κ2 > 0 there exist two finite con-
stants C0,C1 > 0, which depend only on κ1, κ2, p, q, and the doubling character of
σ , such that

C0‖N E
κ1
u‖L p,q (∂�,σ) ≤ ‖N E

κ2
u‖L p,q (∂�,σ) ≤ C1‖N E

κ1
u‖L p,q (∂�,σ), (8.4.1)

for each Lebesgue measurable set E ⊆ � and each Lebesgue measurable function
u : � → C.

In particular

C0‖N E
κ1
u‖L p(πκ1 (E),σ ) ≤ ‖N E

κ2
u‖L p(πκ2 (E),σ )

≤ C1‖N E
κ1
u‖L p(πκ1 (E),σ ). (8.4.2)

Proof The case p = q = ∞ (in which scenario L∞,∞(∂�, σ) = L∞(∂�, σ)) is
seen directly from Lemma 8.3.2 (applied to the function u1E ).

There remain to treat the case when p ∈ (0,∞) and q ∈ (0,∞], a scenario in
which we shall adapt a point-of-density argument of Fefferman and Stein [90] (cf.
also p. 62 in [242]). Specifically, fix λ > 0 and, for each κ > 0, define

Oκ,λ := {
x ∈ ∂� : (N E

κ u
)
(x) > λ

}
. (8.4.3)

By (8.2.27), this is a relatively open subset of ∂�. As a consequence, A := ∂� \ Oκ1,λ

is relatively closed (in the topology induced by the Euclidean ambient on ∂�). For
each γ ∈ (0, 1), consider

A∗
γ := {

x ∈ ∂� : σ(A ∩ �(x, r)) ≥ γ σ(�(x, r)) for all r > 0
}
, (8.4.4)

where we have set

�(x, r) := B(x, r) ∩ ∂�, for each x ∈ ∂� and r > 0. (8.4.5)

That is, A∗
γ is the collection of points of (global) γ -density for the set A, relative to

the measure σ . We now claim that there exists γ ∈ (0, 1), such that

Oκ2,λ ⊆ ∂� \ A∗
γ . (8.4.6)

To justify this inclusion, fix an arbitrary point x ∈ Oκ2,λ. Then, necessarily, we
have x ∈ ∂� and ‖u‖L∞(�κ2 (x)∩E,Ln) = (N E

κ2
u
)
(x) > λwhich entails that there exists

some small ε > 0 and a set U ⊆ �κ2(x) ∩ E with the property that Ln(U ) > 0 and
|u| > λ + ε on U . Since obviously
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�κ2(x) ∩ E ⊆
⋃

y∈�κ2 (x)∩E

B
(
y, εδ∂�(y)

)
, (8.4.7)

by Lindelöff’s theorem, we may refine this union to a countable one. As a conse-
quence, there exists a family of points {y j } j∈N ⊂ �κ2(x) ∩ E with the property that
U ⊆ ⋃∞

j=1 B(y j , εδ∂�(y j )). In particular,

0 < Ln(U ) ≤
∞∑

j=1

Ln
(
U ∩ B

(
y j , εδ∂�(y j )

))
(8.4.8)

which forces that Ln
(
U ∩ B(y jo , εδ∂�(y jo))

)
> 0 for some jo ∈ N. By further

decreasing ε as needed, we may conclude that

there exist ε ∈ (
0, κ1(1+κ1)

2+κ1

)
and y ∈ �κ2(x) ∩ E with the prop-

erty that |u| > λ + ε on a subset of positiveLebesguemeasure
of B

(
y, εδ∂�(y)

) ∩ E .
(8.4.9)

Next, select y∗ ∈ ∂� with |y − y∗| = δ∂�(y). We now make two observations of a
purely geometric nature. First

z ∈ �
(
y∗, κ1(2 + κ1)

−1δ∂�(y)
)
=⇒B

(
y, εδ∂�(y)

) ⊆ �κ1(z). (8.4.10)

Indeed, if z ∈ ∂�with |z − y∗| < κ1(2 + κ1)
−1δ∂�(y) and |w − y| < εδ∂�(y), then

|z − w| ≤ |z − y∗| + |y∗ − y| + |y − w|
< κ1(2 + κ1)

−1δ∂�(y) + |y − y∗| + εδ∂�(y)

< (1 + κ1)δ∂�(y), (8.4.11)

i.e., w ∈ �κ1(z), as desired.
Our second observation is that

�
(
y∗, κ1δ∂�(y)

) ⊆ �
(
x, (2 + κ1 + κ2)δ∂�(y)

)
. (8.4.12)

To see this, we note that if z ∈ ∂� and |z − y∗| < κ1δ∂�(y), then, since y ∈ �κ2(x),
we may write

|x − z| ≤ |x − y| + |y − y∗| + |y∗ − z|
< (1 + κ2)δ∂�(y) + δ∂�(y) + κ1δ∂�(y)

= (2 + κ1 + κ2)δ∂�(y), (8.4.13)

proving (8.4.12).
To proceed, note that since κ1(2 + κ1)

−1 < κ1, by combining (8.4.10), (8.4.12),
and (8.4.9), we obtain
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�
(
y∗, κ1(2 + κ1)

−1δ∂�(y)
) ⊆ Oκ1,λ ∩ �

(
x, (2 + κ1 + κ2)δ∂�(y)

)
. (8.4.14)

Hence, on account of (8.4.14) and (8.4.12), we may estimate

σ
(
Oκ1,λ ∩ �

(
x, (2 + κ1 + κ2)δ∂�(y)

))

σ
(
�
(
x, (2 + κ1 + κ2)δ∂�(y)

)) ≥
σ
(
�
(
y∗, κ1(2 + κ1)

−1δ∂�(y)
))

σ
(
�
(
x, (2 + κ1 + κ2)δ∂�(y)

))

≥ c

(
κ1(2 + κ1)

−1

2 + κ1 + κ2

)Dσ

, (8.4.15)

where Dσ is the doubling order of σ (cf. (7.4.3)) and the constant c ∈ (0,∞) depends
only on σ . In particular, if we abbreviate

r := (2 + κ1 + κ2)δ∂�(y), (8.4.16)

then
σ
(
A ∩ �(x, r)

)

σ
(
�(x, r)

) ≤ 1 − c

(
κ1(2 + κ1)

−1

2 + κ1 + κ2

)Dσ

. (8.4.17)

Thus, if we select γ , such that

1 − c

(
κ1(2 + κ1)

−1

2 + κ1 + κ2

)Dσ

< γ < 1, (8.4.18)

then (8.4.17) entails x /∈ A∗
γ . This proves the claim (8.4.6).

To proceed, bring in the Hardy–Littlewood maximal operator, M∂�, associated
with the space of homogeneous type (∂�, | · − · |, σ ), acting on functions f in the
space L1

loc(∂�, σ) according to

(M∂� f
)
(x) := sup

r>0

1

σ(�(x, r))

ˆ
�(x,r)

| f | dσ, ∀x ∈ ∂�. (8.4.19)

Cf. the discussion in Sect. 7. Then, based on (8.4.6) and Corollary 7.6.3, we may
write

σ(Oκ2,λ) ≤ σ(∂� \ A∗
γ ) = σ

(
{x ∈ ∂� : M∂�(1∂�\A)(x) > 1 − γ }

)

≤ C

1 − γ
σ(∂� \ A) = C(∂�, σ, γ ) σ (Oκ1,λ). (8.4.20)

Hence,
σ(Oκ2,λ) ≤ C(∂�, σ, κ1, κ2) σ (Oκ1,λ), (8.4.21)

which shows that for each λ > 0, we have
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σ
({x ∈ ∂� : (N E

κ2
u
)
(x) > λ}) ≤ Cσ

({x ∈ ∂� : (N E
κ1
u
)
(x) > λ}), (8.4.22)

where C = C(∂�, σ, κ1, κ2) ∈ (0,∞). Utilizing the abstract piece of notation from
(6.2.1) in relation to the measure space (∂�, σ) then permits us to write

m∂�

(
λ,N E

κ2
u
) ≤ Cm∂�

(
λ,N E

κ1
u
)
, ∀λ > 0. (8.4.23)

Consequently, for every t > 0

{
λ > 0 : m∂�

(
λ,N E

κ2
u
) ≤ t

} ⊆ {
λ > 0 : m∂�

(
λ,N E

κ1
u
) ≤ t

}
. (8.4.24)

In view of (6.2.2), this implies the rearrangement function estimate

(N E
κ1
u
)∗
∂�

(t) ≤ (N E
κ2
u
)∗
∂�

(t), ∀t > 0. (8.4.25)

Having established this, then invoking (6.2.14) yields

∥∥N E
κ1
u
∥∥
L p,q (∂�,σ)

≤ C
∥∥N E

κ2
u
∥∥
L p,q (∂�,σ)

, (8.4.26)

for some finite constant C > 0, independent of u and E . Changing the roles of κ1
and κ2 then finishes the proof of (8.4.1). �

Before stating our next result, the reader is reminded that the truncated nontan-
gential maximal operator Nε

κ has been defined in (8.2.45).

Corollary 8.4.2 Let� be an open nonempty proper subset of Rn and suppose σ is a
doubling Borel measure on ∂�. Fix an integrability exponent p ∈ (0,∞] along with
a truncation parameter ε ∈ (0,∞), and consider an arbitrary Lebesgue measurable
function u : � → C. Then

Nε
κ1
u ∈ L p

loc(∂�, σ) if and only if Nε
κ2
u ∈ L p

loc(∂�, σ). (8.4.27)

Proof To fix ideas, suppose Nε
κ1
u ∈ L p

loc(∂�, σ) and consider some xo ∈ ∂� and
r ∈ (0,∞). AbbreviateOε := {y ∈ � : dist(y, ∂�) < ε

}
, and� := B(xo, r) ∩ ∂�,

then define
E :=

(⋃

x∈�

�κ2(x)
)

∩ Oε. (8.4.28)

It follows that E is a bounded open subset of�. Also, since �κ2(x) ∩ Oε=�κ2(x)∩E
for every x ∈ �, from (8.2.45) and the equality in (8.2.14), we conclude that

(Nε
κ2
u
)
(x) = (N E

κ2
u
)
(x) for each x ∈ �. (8.4.29)

Also, since E ⊆ Oε, we have

(N E
κ1
u
)
(x) ≤ (Nε

κ1
u
)
(x) for each x ∈ ∂�. (8.4.30)
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On account of (8.4.29)–(8.4.30), Proposition 8.4.1, and (8.2.26), we may then write

‖Nε
κ2
u‖L p(�,σ ) = ‖N E

κ2
u‖L p(�,σ ) ≤ ‖N E

κ2
u‖L p(∂�,σ)

≤ C‖N E
κ1
u‖L p(∂�,σ) ≤ C‖Nε

κ1
u‖L p(∂�,σ)

= C‖Nε
κ1
u‖L p(πκ1 (E),σ ) < +∞, (8.4.31)

with the final inequality a consequence of (8.1.18), (8.1.16), and the assumption that
we have Nε

κ1
u ∈ L p

loc(∂�, σ). This justifies one of the implications in (8.4.27), and
the other one is proved in a similar fashion. �

It turns out that Proposition 8.4.1 is in the nature of best possible, in the sense
that, given a Borel measure σ which is positive and finite on balls in R

n−1 ≡ ∂R
n+,

the comparability of the Lebesgue norms of nontangential maximal operators with
arbitrary apertures, acting on measurable functions defined in the upper half-space
R

n+, is equivalent to σ being doubling. Specifically, we have the following result.

Proposition 8.4.3 Fix n ∈ N with n ≥ 2, and suppose σ is a Borel measure on
R

n−1 ≡ ∂R
n+ with the property that

0 < σ
(
Bn−1(x

′, r)
)

< +∞, ∀x ′ ∈ R
n−1, ∀r > 0, (8.4.32)

where Bn−1(x ′, r) := {
y′ ∈ R

n−1 : |x ′ − y′| < r
}
is the (n − 1)-dimensional ball

centered at x ′ and of radius r . Also, pick some integrability exponent p ∈ (0,∞).
Then the measure σ is doubling if and only if for each κ1, κ2 > 0, one has

‖Nκ1u‖L p(Rn−1,σ ) ≈ ‖Nκ2u‖L p(Rn−1,σ ) uniformly for
u : R

n+ −→ CLebesgue measurable function.
(8.4.33)

Proof If σ is doubling then Proposition 8.4.1 ensures that (8.4.33) holds. Conversely,
suppose (8.4.33) holds and fix x ′ ∈ R

n−1 and r > 0 arbitrary. Simple geometric
arguments show that for each κ > 0, we have

Nκ1B((x ′,0),r)∩Rn+ = 1Bn−1(x ′,r/((1+κ)) on R
n−1 (8.4.34)

hence

∥∥Nκ1B((x ′,0),r)∩Rn+

∥∥p

L p(Rn−1,σ )
= ∥∥1Bn−1(x ′,r/(1+κ))

∥∥p

L p(Rn−1,σ )

= σ
(
Bn−1(x

′, r/(1 + κ))
)
. (8.4.35)

From this and (8.4.33), we then conclude that for each κ1, κ2 > 0 fixed, we have

σ
(
Bn−1(x

′, r/(1 + κ1))
) ≈ σ

(
Bn−1(x

′, r/(1 + κ2))
)
, (8.4.36)

uniformly in x ′ ∈ R
n−1 and r > 0. Changing r into 2r and taking κ1 = 1, κ2 = 3

then yields
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σ
(
Bn−1(x

′, r)
) ≈ σ

(
Bn−1(x

′, r/2)
)
, uniformly in x ′ ∈ R

n−1 and r > 0 (8.4.37)

which, in concert with (8.4.32), proves that σ is a doubling measure on R
n−1 (cf.

(7.4.1)). �

We continue by presenting a weighted version of Proposition 8.4.1.

Corollary 8.4.4 Let � be an open nonempty proper subset of R
n and consider a

doubling Borel measure σ on ∂�. Also, fix a Muckenhoupt weight w ∈ Ap(∂�, σ)

with p ∈ [1,∞). Then for each κ1, κ2 ∈ (0,∞) there exist two finite constants
C0,C1 > 0, which depend only on κ1, κ2, p, q, the doubling character of σ , and
[w]Ap , such that

C0‖N E
κ1
u‖L p(∂�,wσ) ≤ ‖N E

κ2
u‖L p(∂�,wσ) ≤ C1‖N E

κ1
u‖L p(∂�,wσ) (8.4.38)

for each Lebesgue measurable set E ⊆ � and each Lebesgue measurable function
u : � → C.

Proof From item (6) in Lemma 7.7.1, applied to the space of homogeneous type
(∂�, | · − · |, σ ), we know that w σ is a doubling measure on ∂�. Granted this, the
estimates claimed in (8.4.38) are implied by Proposition 8.4.1. �

In turn, Corollary 8.4.4 is one of the main ingredients in the proof of the following
version of Proposition 8.4.1, in the context of Morrey spaces.

Corollary 8.4.5 Let � be an open nonempty proper subset of R
n (where n ∈ N

satisfies n ≥ 2) with the property that ∂� is Ahlfors regular. Set σ := Hn−1�∂� and
fix an integrability exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1).

Then for each κ1, κ2 ∈ (0,∞), there exist two finite constants C0,C1 > 0, which
depend only on κ1, κ2, p, λ and the Ahlfors regularity character of ∂�, such that

C0‖N E
κ1
u‖Mp,λ(∂�,σ ) ≤ ‖N E

κ2
u‖Mp,λ(∂�,σ ) ≤ C1‖N E

κ1
u‖Mp,λ(∂�,σ ) (8.4.39)

for each Lebesgue measurable set E ⊆ � and each Lebesgue measurable function
u : � → C.

Proof In [185, Sect. 6.2], it is shown that, for a given pair of measurable functions,
estimates in Muckenhoupt weighted Lebesgue spaces imply estimates in Morrey
spaces. The conclusion we currently seek follows from this result applied to the pair
of functions f := N E

κ1
u and g := N E

κ2
u, while bearing Corollary 8.4.4 in mind. �

The proof of Proposition 8.4.1 is based on a “point-of-density” argument, whose
main output is the level set estimate recorded in (8.4.22). Here we develop an alterna-
tive approach to said level set estimatewhich has the distinct benefit of also producing
pointwise estimates for the nontangential maximal operators corresponding to vari-
ous aperture parameters. The aforementioned pointwise estimates pin the nontangen-
tial maximal operator with a larger aperture in between the nontangential maximal
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operator with a smaller aperture and the action of the Hardy–Littlewood maximal
function on the latter (see (8.4.41) below for a precise formulation). In particular,
as we shall show a little later in Corollaries 8.4.7–8.4.8, this allows us to recover
all results obtained earlier in Proposition 8.4.1, Corollary 8.4.4, and Corollary 8.4.5
and, significantly, also consider new function spaces, for which these results are not
applicable. Here is the actual statement of Theorem 8.4.6 which, de facto, is our main
result in this section.

Theorem 8.4.6 Fix n ∈ N satisfying n ≥ 2, and let � be an arbitrary open
(nonempty, proper) subset of R

n. Also, let σ be a doubling Borel measure on
∂� and, having selected an exponent s ∈ (0,∞), bring in the Ls-based Hardy–
Littlewood maximal operator associated with ∂� and σ as in (7.6.7), acting on each
σ -measurable function f : ∂� → C according to

M∂�,s f (x) := sup
r>0

(  
B(x,r)∩∂�

| f |s dσ
) 1

s
, ∀x ∈ ∂�. (8.4.40)

Lastly, pick two aperture parameters κ̃, κ ∈ (0,∞) satisfying κ̃ ≥ κ .
Then there exists a constant C ∈ (0,∞) which depends only on κ̃, κ, s and the

doubling character of σ with the property that

N E
κ u ≤ N E

κ̃ u ≤ C · M∂�,s
(N E

κ u
)
at each point on ∂�, (8.4.41)

for each Lebesgue measurable set E ⊆ � and each Lebesgue measurable function
u : � → C. In particular, corresponding to E := �,

Nκu ≤ Nκ̃u ≤ C · M∂�,s
(Nκu

)
at each point on ∂�, (8.4.42)

for each Lebesgue measurable function u : � → C. Furthermore, corresponding to
s = 1, for each Lebesgue measurable function u : � → C, one has

Nκu ≤ Nκ̃u ≤ C · M∂�

(Nκu
)
at each point on ∂�, (8.4.43)

where M∂� is the standard Hardy–Littlewood maximal operator associated with
∂� and σ as in (7.6.16), i.e., the mapping acting on each σ -measurable function
f : ∂� → C according to

M∂� f (x) := sup
r>0

 
B(x,r)∩∂�

| f | dσ, ∀x ∈ ∂�. (8.4.44)

Also, for some constant C ∈ (0,∞) which depends only on κ̃, κ, s and the dou-
bling character of σ , one has

Nρ
κ u ≤ Nρ

κ̃ u ≤ C · MCρ

∂�,s

(Nρ
κ u
)
at each point on ∂�, (8.4.45)



8.4 Size Estimates for the Nontangential Maximal Operator Involving a Doubling Measure 705

for each ρ > 0 and each Lebesgue measurable function u : � → C, where the local
Ls-based Hardy–Littlewood maximal operator MR

∂�,s with R ∈ (0,∞) acts on a
σ -measurable function f : ∂� → C according to

MR
∂�,s f (x) := sup

0<r≤R

(  
B(x,r)∩∂�

| f |s dσ
) 1

s
, ∀x ∈ ∂�. (8.4.46)

Finally, there exists a constant C ∈ (0,∞) which depends only on κ̃, κ and the
doubling character of σ with the following significance. Given a Lebesgue measur-
able set E ⊆ � along with a Lebesgue measurable function u : � → C, if for each
λ ∈ (0,∞), one defines

UE
κ (λ) := {

x ∈ ∂� : (N E
κ u
)
(x) > λ

}
,

UE
κ̃ (λ) := {

x ∈ ∂� : (N E
κ̃ u
)
(x) > λ

}
,

(8.4.47)

then for each λ ∈ (0,∞), one has

1UE
κ̃ (λ) ≤ C · M∂�

(
1UE

κ (λ)

)
at each point on ∂�. (8.4.48)

As a consequence of this and the weak-(1, 1) boundedness of the Hardy–Littlewood
maximal operator M∂�,

σ
(UE

κ̃ (λ)
) ≤ C · σ

(UE
κ (λ)

) ∀λ > 0, (8.4.49)

for each Lebesgue measurable set E ⊆ � and each Lebesgue measurable function
u : � → C. In the special case when E := �, one, therefore, has

σ
({

x ∈ ∂� : (Nκ̃u
)
(x) > λ

}) ≤ C · σ
({

x ∈ ∂� : (Nκu
)
(x) > λ

})

for each Lebesgue measurable function u : � → C and each λ > 0.
(8.4.50)

It is possible to be more precise about the nature of the constant C ∈ (0,∞)

appearing in (8.4.41). Indeed, a glance at the proof below shows that we may take

C = Cσ,κ,s · κ̃Dσ /s (8.4.51)

whereCσ,κ,s ∈ (0,∞) is independent of κ̃ , and Dσ ∈ [0,∞) is the doubling order of
the measure σ (defined as in (7.4.3)). In fact, as seen from the proof of Theorem 8.4.6
presented below (cf. (8.4.61), (8.4.74), and (7.4.5) used with λ := (4 + ε)/ε),

in the particular casewhen ∂� is anAhlfors regular set and the doubling
measure σ is actuallyHn−1�∂�, the constantC ∈ (0,∞) appearing in
(8.4.41) may be taken to be of the form C = C∂�,n,κ,s · κ̃ (n−1)/s , where
C∂�,n,κ,s ∈ (0,∞) is independent of κ̃ ∈ [κ,∞).

(8.4.52)
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We now turn to the proof of Theorem 8.4.6.

Proof of Theorem 8.4.6 Throughout, we agree to abbreviate

�(xo, R) := B(xo, R) ∩ ∂� for each xo ∈ ∂� and R ∈ (0,∞). (8.4.53)

To start in earnest, consider a Lebesgue measurable function u : � → C. Fix an
arbitrary point x ∈ ∂�, with the goal of proving that

(Nκ̃u
)
(x) ≤ C ·

(
M∂�,s

(Nκu
))

(x) (8.4.54)

for some constant C ∈ (0,∞) which depends only on κ̃, κ and the doubling char-
acter of σ . If the left side in (8.4.54) is zero, there is nothing to prove, so assume(Nκ̃u

)
(x) > 0. Choose a number λ with

0 < λ <
(Nκ̃u

)
(x), (8.4.55)

otherwise arbitrary, and abbreviate

Aλ := {
y ∈ �κ̃(x) : |u(y)| > λ

}
. (8.4.56)

Note that Aλ is a Lebesgue measurable set, given that u is Lebesgue measurable and
�κ̃(x) is an open subset of �. Since (8.4.55) entails λ < ‖u‖L∞(�κ̃ (x),Ln), it follows
that

Ln(Aλ) > 0. (8.4.57)

In turn, this ensures that there exists a point y∗ ∈ Aλ with density 1, i.e., satisfying

lim
ρ→0+

Ln
(
Aλ ∩ B(y∗, ρ)

)

Ln
(
B(y∗, ρ)

) = 1. (8.4.58)

Pick a point

z∗ ∈ ∂� such that dist(y∗, ∂�) = |y∗ − z∗|, (8.4.59)

and define
r := |y∗ − x | > 0. (8.4.60)

Also, choose
ε := κ

2(1 + κ̃)
∈
(
0,

κ

1 + κ̃

)
. (8.4.61)

We claim that
y∗ ∈ �κ(z) for each z ∈ �(z∗, εr). (8.4.62)
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To justify this, select an arbitrary point z ∈ �(z∗, εr) and note that

|y∗ − z| ≤ |y∗ − z∗| + |z∗ − z| < dist(y∗, ∂�) + εr

= dist(y∗, ∂�) + ε · |y∗ − x | < dist(y∗, ∂�) + ε(1 + κ̃) dist(y∗, ∂�)

= (
1 + ε(1 + κ̃)

)
dist(y∗, ∂�) < (1 + κ) dist(y∗, ∂�), (8.4.63)

where the second inequality uses the fact that y∗ ∈ �κ̃(x), and the last inequality uses
(8.4.61). From (8.4.63), we conclude that y∗ ∈ �κ(z), which establishes (8.4.62).

To proceed, pick an arbitrary z ∈ �(z∗, εr). Since y∗ belongs to the open set
�κ(z), there exists ρ∗ > 0 with the property that B(y∗, ρ∗) ⊆ �κ(z). This implies

Aλ ∩ B(y∗, ρ) ⊆ Aλ ∩ �κ(z) for each ρ ∈ (0, ρ∗), (8.4.64)

which, in concert with (8.4.58), permits us to write

Ln
(
Aλ ∩ �κ(z)

)

Ln
(
B(y∗, ρ)

) ≥ Ln
(
Aλ ∩ B(y∗, ρ)

)

Ln
(
B(y∗, ρ)

) −→ 1 as ρ → 0+. (8.4.65)

In turn, from (8.4.65), we see that

Ln
(
Aλ ∩ �κ(z)

)
> 0 (8.4.66)

which, in view of the fact that |u| > λ in Aλ (cf. (8.4.56)), further implies

‖u‖L∞(�κ (z),Ln) ≥ λ. (8.4.67)

Bearing in mind (8.2.1), this ultimately proves that

(Nκu
)
(z) ≥ λ for each z ∈ �(z∗, εr). (8.4.68)

Recall from (8.2.28) that Nκu is a non-negative Borel-measurable function on ∂�.
Via integration, (8.4.68) then entails

( 
�(z∗,εr)

(Nκu
)s

(z) dσ(z)

)1/s

≥ λ. (8.4.69)

Moving on, we make a few observations. First

�(z∗, εr) ⊆ �
(
x, (2 + ε)r

)
. (8.4.70)

Indeed, for each z ∈ �(z∗, εr), we have
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|z − x | ≤ |x − y∗| + |y∗ − z∗| + |z∗ − z| < r + dist(y∗, ∂�) + εr

≤ r + |y∗ − x | + εr = (2 + ε)r, (8.4.71)

justifying (8.4.70). Second,

�
(
x, (2 + ε)r

) ⊆ �
(
z∗, (4 + ε)r

)
. (8.4.72)

To see that this is the case, for each w ∈ �
(
x, (2 + ε)r

)
, write

|w − z∗| ≤ |w − x | + |x − y∗| + |y∗ − z∗| < (2 + ε)r + r + dist(y∗, ∂�)

≤ (3 + ε)r + |y∗ − x | = (4 + ε)r, (8.4.73)

from which (8.4.72) follows. Lastly, we observe that

σ
(
�
(
x, (2 + ε)r

)) ≤ σ
(
�
(
z∗, (4 + ε)r

)) ≤ C · σ
(
�(z∗, εr)

)
, (8.4.74)

thanks to (8.4.72) and the fact that σ is a doubling Borel measure on ∂�. Above, the
constant C ∈ (0,∞) can be taken to depend only on κ̃, κ and the doubling character
of σ .

At this stage, we may combine (8.4.69) with (8.4.70), (8.4.74), and (8.4.40), to
write

λ ≤
(  

�(z∗,εr)

(Nκu
)s

(z) dσ(z)

)1/s

≤ C

(  
�(x,(2+ε)r)

(Nκu
)s

(z) dσ(z)

)1/s

≤ C ·
(
M∂�,s

(Nκu
))

(x). (8.4.75)

Upon letting λ ↗ (Nκ̃u
)
(x) (something permissible, in light of (8.4.55)), we then

arrive at the conclusion that (8.4.54) holds. Together with (8.2.25), this finishes the
proof of (8.4.42).

Next, given any Lebesgue measurable set E ⊆ �, from (8.4.42) written for u · 1E
in place of u, we obtain (8.4.41) (see the equality in (8.2.14) in this regard). The
claim in (8.4.43) also readily follows from (8.4.42), in view of (8.4.40) and (8.4.44).

To justify (8.4.45), we run the same argument that has produced (8.4.41) for the
function u · 1Oρ

where Oρ := {
x ∈ � : dist(x, ∂�) < ρ

}
. In this scenario, having

y∗ ∈ Aλ forces y∗ ∈ Oρ which further implies (cf. (8.4.60))

r = |y∗ − x | < (1 + κ̃) dist(y∗, ∂�) < (1 + κ̃)ρ. (8.4.76)

As a consequence of this and (8.4.46), in place of (8.4.75), we may now write
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λ ≤
(  

�(z∗,εr)

(Nρ
κ u
)s

(z) dσ(z)

)1/s

≤ C

(  
�(x,(2+ε)r)

(Nρ
κ u
)s

(z) dσ(z)

)1/s

≤ C ·
(
MC̃ρ

∂�,s

(Nρ
κ u
))

(x), (8.4.77)

with C̃ := (1 + κ̃)(2 + ε). Sending λ ↗ (Nρ
κ̃ u
)
(x) yields

(Nρ
κ̃ u
)
(x) ≤ C ·

(
MC̃ρ

∂�,s

(Nρ
κ u
))

(x) (8.4.78)

for some constantsC, C̃ ∈ (0,∞) depending only on κ̃, κ and the doubling character
of σ . Then (8.4.45) follows in view of this and (8.2.25).

Pressing on, suppose some Lebesgue measurable function u : � → C has been
given, and for each threshold λ ∈ (0,∞), define

Uκ(λ) := {
x ∈ ∂� : (Nκu

)
(x) > λ

}
,

Uκ̃ (λ) := {
x ∈ ∂� : (Nκ̃u

)
(x) > λ

}
.

(8.4.79)

Assume 0 < λ < λ′ < ∞, with the goal of showing that

1Uκ̃ (λ′) ≤ C · M∂�

(
1Uκ (λ)

)
at each point on ∂�, (8.4.80)

for a constant C ∈ (0,∞) which depends only on κ̃, κ and the doubling character
of σ .

To this end, pick an arbitrary point x ∈ Uκ̃ (λ
′). Then x ∈ ∂� and

(Nκ̃u
)
(x) > λ′.

The latter implies ‖u‖L∞(�κ̃ (x),Ln) > λ′ from which we conclude that, with

Aλ′ := {
y ∈ �κ̃(x) : |u(y)| > λ′}, (8.4.81)

(i.e., the version of (8.4.56) with λ replaced by λ′), we have

Ln(Aλ′) > 0. (8.4.82)

Then the same reasoning as in (8.4.57)–(8.4.68),run with λ′ in place of λ, shows that(Nκu
)
(z) ≥ λ′ for each z ∈ �(z∗, εr). In particular, since λ′ > λ, we have

(Nκu
)
(z) > λ for each z ∈ �(z∗, εr). (8.4.83)

Bearing in mind (8.4.79), we may recast this as

�(z∗, εr) ⊆ Uκ(λ). (8.4.84)

Then we may rely on (8.4.44), (8.4.70), (8.4.84), (8.4.72), and the fact that σ is a
doubling Borel measure on ∂� to write
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(
M∂�

(
1Uκ (λ)

))
(x) ≥

 
�(x,(2+ε)r)

1Uκ (λ) dσ (8.4.85)

≥ 1

σ
(
�(x, (2 + ε)r)

)
ˆ

�(z∗,εr)
1Uκ (λ) dσ

= σ
(
�(z∗, εr)

)

σ
(
�(x, (2 + ε)r)

) ≥ σ
(
�(z∗, εr)

)

σ
(
�(z∗, (4 + ε)r)

) ≥ c > 0,

where c ∈ (0,∞) depends solely on the doubling character of σ . In turn, this shows
that the inequality in (8.4.80) holds at each point x ∈ Uκ̃ (λ

′), with C := c−1. Since
the inequality in (8.4.80) is trivially true at each point x ∈ ∂� \ Uκ̃ (λ

′), the claim in
(8.4.80) is fully established.

Moving on, it is clear from (8.4.79) that

Uκ̃ (λ1) ⊆ Uκ̃ (λ2) if λ1 ≥ λ2 > 0 (8.4.86)

and for each λ ∈ (0,∞), we have

⋃

λ′>λ

Uκ̃ (λ
′) = Uκ̃ (λ). (8.4.87)

In turn, these readily imply that, at each point on ∂�,

sup
λ′>λ

1Uκ̃ (λ′) = 1Uκ̃ (λ). (8.4.88)

As such, given any λ ∈ (0,∞), taking the supremum in (8.4.80) over all λ′ > λ

yields
1Uκ̃ (λ) ≤ C · M∂�

(
1Uκ (λ)

)
at each point on ∂�. (8.4.89)

Having proved this, then (8.4.48) follows for each Lebesgue measurable set E ⊆ �

simply by writing (8.4.89) with u replaced by u · 1E (in this vein, see the equality in
(8.2.14)).

With (8.4.48) in hand, for each λ ∈ (0,∞), we may now write

σ
(UE

κ̃ (λ)
) ≤ C

∥∥1UE
κ̃ (λ)

∥∥
L1,∞(∂�,σ)

≤ C
∥∥∥M∂�

(
1UE

κ (λ)

)∥∥∥
L1,∞(∂�,σ)

≤ C
∥∥1UE

κ (λ)

∥∥
L1(∂�,σ)

= C · σ
(UE

κ (λ)
)
, (8.4.90)

where the first inequality comes from (6.2.40) (presently employed with p := 1 and
q := ∞), the second inequality is a consequence of (8.4.48) and (6.2.16), the third
inequality is provided by the weak-(1, 1) boundedness of the Hardy–Littlewood
maximal operatorM∂� (cf. (7.6.19)), and the final equality is clear from definitions.
This proves (8.4.49). Finally, (8.4.50) is a special case of (8.4.49). �
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Theorem 8.4.6 naturally lends itself to a useful, versatile, general principle for
establishing norm estimates involving nontangential maximal operators with differ-
ent aperture parameters. This is made precise in our next corollary.

Corollary 8.4.7 Fix n ∈ N satisfying n ≥ 2, and consider an arbitrary open
(nonempty, proper) subset � of R

n. Suppose σ is a doubling Borel measure on
∂�, and denote by M+(∂�, σ) the space of non-negative σ -measurable functions
on ∂�. Consider a mapping

‖ · ‖ : M+(∂�, σ) −→ [0,+∞] (8.4.91)

enjoying the following three properties:

(i) [Quasi-Monotonicity] There exists C1 ∈ (0,∞) such that ‖ f ‖ ≤ C1‖g‖ for any
pair of functions f, g ∈ M+(∂�, σ) satisfying f ≤ g at σ -a.e. point on ∂�.

(ii) [Quasi-Homogeneity] There exists C2 ∈ (0,∞) such that ‖λ f ‖ ≤ C2λ‖ f ‖ for
any function f ∈ M+(∂�, σ) and any number λ ∈ (0,∞).

(iii) [Boundedness of some Ls-based Hardy-Littlewood Maximal Operator] There
exist an integrability exponent s ∈ (0,∞) along with a constant C3 ∈ (0,∞),
such that

∥∥M∂�,s f
∥∥ ≤ C3‖ f ‖ for each f ∈ M+(∂�, σ), (8.4.92)

where M∂�,s is the Ls-based Hardy–Littlewood maximal operator acting on
σ -measurable functions on ∂� as in (8.4.40).

Then for any two aperture parameters κ̃, κ ∈ (0,∞), there exists some constant
C ∈ (0,∞) which depends only on C1,C2,C3, κ̃, κ and the doubling character of
σ with the property that ∥∥N E

κ̃ u
∥∥ ≤ C

∥∥N E
κ u
∥∥ (8.4.93)

for each Lebesgue measurable set E ⊆ � and each Lebesgue measurable function
u : � → C. In particular, corresponding to E := �, for any twoaperture parameters
κ̃, κ ∈ (0,∞)

there exists C ∈ (0,∞) as before such that
∥∥Nκ̃u

∥∥ ≤ C
∥∥Nκu

∥∥
for each Lebesgue measurable function u : � → C.

(8.4.94)

Proof This is a direct consequence of (8.4.41) in Theorem 8.4.6, and properties
(i)-(iii) in the statement, also bearing in mind (8.2.28). �

In particular, Corollary 8.4.7 is applicable to any Köthe function space (defined as
in [185, Sect. 1.5]) on which the Hardy–Littlewoodmaximal operator on ∂� happens
to be bounded.

In the corollary below, we present concrete embodiments of the general principle
established in Corollary 8.4.7, corresponding to a variety of specific function spaces
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for which conditions (i)-(iii) (formulated above) are satisfied. The reader is alerted
to the fact that the scale of Morrey and block spaces on Ahlfors regular sets are
discussed at length in [185, Chap. 6].

Corollary 8.4.8 Pick n ∈ N satisfying n ≥ 2, and suppose � is an arbitrary open
(nonempty, proper) subset ofRn. Also, let σ be a doubling Borel measure on ∂�, and
pick two arbitrary aperture parameters κ̃, κ ∈ (0,∞). Finally, consider an arbitrary
Lebesgue measurable set E ⊆ � and an arbitrary Lebesgue measurable function
u : � → C. Then the following results are true:

(1) [Ordinary Lebesgue Spaces] For each p ∈ (0,∞] there exists some constant
C ∈ (0,∞) which depends only on κ̃, κ, p and the doubling character of σ with
the property that

∥∥N E
κ̃ u
∥∥
L p(πκ̃ (E),σ )

≤ C
∥∥N E

κ u
∥∥
L p(πκ (E),σ )

. (8.4.95)

In particular ∥
∥Nκ̃u

∥
∥
L p(∂�,σ)

≤ C
∥
∥Nκu

∥
∥
L p(∂�,σ)

. (8.4.96)

(2) [Lorentz Spaces] Fix p ∈ (0,∞] and q ∈ (0,∞], and make the convention that
q = ∞ if p = ∞. Then there exists a constant C ∈ (0,∞) which depends only
on κ̃, κ, p, q and the doubling character of σ with the property that

∥
∥N E

κ̃ u
∥
∥
L p,q (∂�,σ)

≤ C
∥
∥N E

κ u
∥
∥
L p,q (∂�,σ)

. (8.4.97)

(3) [Muckenhoupt Weighted Lebesgue Spaces] For each exponent p ∈ (1,∞) and
each Muckenhoupt weight w ∈ Ap(∂�, σ) there exists a constant C ∈ (0,∞)

which depends only on κ̃ , κ , p, [w]Ap , and the doubling character of σ with the
property that ∥∥N E

κ̃ u
∥∥
L p(∂�,wσ)

≤ C
∥∥N E

κ u
∥∥
L p(∂�,wσ)

. (8.4.98)

(4) [Orlicz-type Spaces] Let � : [0,∞) → [0,∞) be a non-decreasing function
which is absolutely continuous on each compact sub-interval of [0,∞), and
satisfying �(0) = 0 as well as lim

t→∞ �(t) = ∞. Extend � to a function defined

on [0,∞] and taking values in [0,∞], by setting�(∞) := ∞. Then there exists
a constant C ∈ (0,∞) which depends only on κ̃ , κ , and the doubling character
of σ with the property that

ˆ
∂�

�
((N E

κ̃ u
)
(x)

)
dσ(x) ≤ C

ˆ
∂�

�
((N E

κ u
)
(x)

)
dσ(x). (8.4.99)

(5) [Morrey Spaces] Assume ∂� is Ahlfors regular and suppose σ := Hn−1�∂�.
Then for each p ∈ (1,∞) andλ ∈ (0, n − 1), there exists a constant C ∈ (0,∞)

which depends only on κ̃ , κ , p, λ, and the Ahlfors regularity constants of ∂�
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with the property that

∥∥N E
κ̃ u
∥∥
Mp,λ(∂�,σ )

≤ C
∥∥N E

κ u
∥∥
Mp,λ(∂�,σ )

. (8.4.100)

(6) [Block Spaces]Assume ∂� is Ahlfors regular and suppose σ := Hn−1�∂�. Then
for each q ∈ (1,∞) andλ ∈ (0, n − 1) there exists a constantC ∈ (0,∞)which
depends only on κ̃ , κ , q, λ, and the Ahlfors regularity constants of ∂� with the
property that ∥∥N E

κ̃ u
∥∥
Bq,λ(∂�,σ )

≤ C
∥∥N E

κ u
∥∥
Bq,λ(∂�,σ )

. (8.4.101)

Proof The claims in item (1) are implied by Corollary 8.4.7 with the choice ‖ · ‖ :=
‖ · ‖L p(∂�,σ), bearing in mind that, for this choice, condition (iii) in Corollary 8.4.7
follows from (7.6.11). In the case of (8.4.95), the property in the second line of
(8.2.26) is also relevant. Likewise, the claim in item (2) follows from Corollary 8.4.7
used with ‖ · ‖ := ‖ · ‖L p,q (∂�,σ). For this choice, condition (i) in Corollary 8.4.7
has been noted in (6.2.16),while condition (iii) in Corollary 8.4.7 is guaranteed by
(7.6.9). Next, the claim in item (3) is seen from Corollary 8.4.7 this time employed
with ‖ · ‖ := ‖ · ‖L p(∂�,wσ), a choice for which condition (iii) in Corollary 8.4.7
follows from item (1) in Lemma 7.7.1.

Let us now deal with the claim made in item (4). As a preamble, we first observe
that for each σ -measurable function f : ∂� → [0,∞], we have

ˆ
∂�

�
(
f (x)

)
dσ(x) =

ˆ ∞

0
σ
({

x ∈ ∂� : f (x) > t
})

�′(t) dt. (8.4.102)

To justify this, introduce

fN (x) := min{ f (x), N } for each N ∈ N and x ∈ ∂�. (8.4.103)

Also, for each N ∈ N, define FN : ∂� × (0,∞) → [0,∞) by setting

FN (x, t) := 1{ fN>t}(x) · �′(t) for each x ∈ ∂� and L1-a.e. t ∈ (0,∞).

(8.4.104)
Then we may write

ˆ
∂�

�
(
f (x)

)
dσ(x) = lim

N→∞

ˆ
∂�

�
(
fN (x)

)
dσ(x)

= lim
N→∞

ˆ
∂�

(ˆ fN (x)

0
�′(t) dt

)
dσ(x)

= lim
N→∞

ˆ
∂�

(ˆ ∞

0
FN (x, t) dt

)
dσ(x)

= lim
N→∞

ˆ ∞

0

( ˆ
∂�

FN (x, t) dσ(x)
)
dt
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= lim
N→∞

ˆ ∞

0
σ
({

x ∈ ∂� : fN (x) > t
})

�′(t) dt

=
ˆ ∞

0
σ
({

x ∈ ∂� : f (x) > t
})

�′(t) dt. (8.4.105)

Above, the first equality is a consequence of Lebesgue’s Monotone Convergence
Theorem (here is relevant to recall that� is non-decreasing, and the extended version
of � is continuous on [0,∞]), the second equality is provided by the Fundamental
Theorem of Calculus applied to �′ on the finite interval [0, fN (x)] (bearing in mind
that �(0) = 0), the third equality is seen directly from (8.4.104), the fourth equality
is implied by the Fubini–Tonelli’s Theorem for non-negative functions (keeping
in mind that �′ is a non-negative measurable function, and that σ is a sigma-finite
measure), the fifth equality follows from (8.4.104), and the sixth equality is ultimately
a consequence of Lebesgue’s Monotone Convergence Theorem. This establishes
(8.4.102). Granted this, we may then rely on (8.4.49) (bearing in mind (8.4.47)) to
write

ˆ
∂�

�
((N E

κ̃ u
)
(x)

)
dσ(x) =

ˆ ∞

0
σ
({

x ∈ ∂� : (N E
κ̃ u
)
(x) > t

})
�′(t) dt

≤ C
ˆ ∞

0
σ
({

x ∈ ∂� : (N E
κ u
)
(x) > t

})
�′(t) dt

= C
ˆ

∂�

�
((N E

κ u
)
(x)

)
dσ(x), (8.4.106)

proving (8.4.99). Incidentally, (8.4.99) contains (8.4.96) as a particular case, corre-
sponding to the choice �(t) := t p for each t ≥ 0.

Going further, the claim in item (5) is a consequence of Corollary 8.4.7, presently
used with ‖ · ‖ := ‖ · ‖Mp,λ(∂�,σ ). For such a choice, condition (i) in Corollary 8.4.7
is implied by the fact that

if f, g : ∂� → C are two σ -measurable functions such that
|g| ≤ | f | at σ -a.e. point on ∂� and f ∈ Mp,λ(∂�, σ), then
g also belongs to Mp,λ(∂�, σ) and one has the estimate
‖g‖Mp,λ(∂�,σ ) ≤ ‖ f ‖Mp,λ(∂�,σ ),

(8.4.107)

while condition (iii) in Corollary 8.4.7 is ensured by the fact that the Hardy–
Littlewood maximal operator on ∂� induces a well-defined, sub-linear, and bounded
mapping on Morrey spaces; see [185, Sect. 6.2] for proofs. The claim in item (6)
is treated similarly, now employing Corollary 8.4.7 with ‖ · ‖ := ‖ · ‖Bq,λ(∂�,σ ) and
relying on the lattice property for block spaces together with the boundedness of the
Hardy–Littlewood maximal operator on block spaces (again, see [185, Sect. 6.2] for
proofs of those properties). �
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Moving on, we note that in the setting of one-sided NTA domains it is possible
to obtain local control of the nontangential maximal operator of a given function in
terms of the nontangential maximal operator of its gradient.

Proposition 8.4.9 Let � ⊆ R
n be a one-sided NTA domain and fix an arbitrary

aperture parameter κ > 0. Then there exist κ̃ > 0 large enough along with some
threshold R ∈ (0,∞) (which may be taken +∞ if ∂� is unbounded) and some
constant C ∈ (1,∞), such that for each given ρ ∈ (0, R) and every point xo ∈ ∂�,
one may find a compact subset Kρ,xo of �, of diameter ≈ ρ and distance to the
boundary ≈ ρ, with the property that for every function u ∈ C 1(�), one has

(Nρ
κ u
)
(x) ≤ Cρ · NCρ

κ̃ (∇u)(x) + sup
Kρ,xo

|u|, ∀x ∈ B(xo, ρ) ∩ ∂�. (8.4.108)

As a consequence, for any given doublingBorelmeasureσ on ∂� and any function
u ∈ C 1(�), it follows that

ifNε
κ (∇u) ∈ L p

loc(∂�, σ) for some p ∈ (0,∞]and ε ∈ (0,∞) then
Nε/C

κ u ∈ L p
loc(∂�, σ) for some sufficiently large constant C > 1.

(8.4.109)

Proof Fix a point xo ∈ ∂� and recall thatOε := {x ∈ � : dist(x, ∂�) < ε} for each
ε > 0. Since � is a one-sided NTA domain, there exist R ∈ (0,∞) (which may
be taken +∞ if ∂� is unbounded) and c ∈ (0, 1) with the property that for each
ρ ∈ (0, R), we may find a corkscrew point Aρ ∈ � \ Ocρ relative to the location xo
and scale ρ. We may also select an aperture κ̃ > 0, large enough so that, given any
x ∈ B(xo, ρ) ∩ ∂�, we may join each point y ∈ �κ(x) ∩ Oρ with Aρ by a polygonal
path γ of length ≤ Cρ which is contained in �κ̃(x). Such a path may be constructed
in a fashion analogous to the procedure described in the proof of Lemma 5.11.4
which shows that there exist κ̃ > 0 along with C1,C2 ∈ (0,∞) with the property
that

any two corkscrew points relative to a common location x ∈ ∂�

and corresponding to scales which are ≤ C1ρ may be joined by
a polygonal path in �κ̃(x) of length ≤ C2ρ.

(8.4.110)

Upon observing that y and Aρ fit these attributes, the existence of the aforementioned
path γ follows. With ds and ∂s denoting, respectively, the arc-length measure and
tangential derivative along γ , for any given function u ∈ C 1(�) we may then use
the Fundamental Theorem of Calculus to estimate

|u(y)| ≤ |u(Aρ)| +
∣∣∣
ˆ

γ

∂su ds
∣∣∣ ≤ |u(Aρ)| + Cρ · NCρ

κ̃ (∇u)(x). (8.4.111)
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After taking the supremum over all y ∈ �κ(x) ∩ Oρ , the estimate recorded in
(8.4.108) readily follows. Finally, given a doubling Borel measure σ on ∂�, the
claim in (8.4.109) is a consequence of (8.4.108), (8.2.28), and Corollary 8.4.2. �

We next present a Hardy-type estimate, in which the nontangential maximal oper-
ator of the gradient of a function controls the nontangential maximal operator of the
function (suitably normalized). This is done on the Lebesgue scale, involving an arbi-
trary integrability exponent p ∈ (0, n − 1) and its associated embedding exponent
p∗ := (

1
p − 1

n−1

)−1
, on the boundary of upper-graph Lipschitz domains. In [187,

Sect. 1.8] and [187, Sect. 2.2], we shall establish similar results for more general
classes of sets, when the functions in question are null-solutions of elliptic PDE’s.

Proposition 8.4.10 Suppose n ≥ 3 and let � ⊆ R
n be an upper-graph Lipschitz

domain.Denote byσ its surfacemeasure and pick an aperture parameter κ ∈ (0,∞).
Then for each real-valued function w ∈ C 1(�) and each exponent p ∈ (0, n − 1)
there exist constants c = c(w) ∈ R and C = C(�, κ, p) ∈ (0,∞), such that

‖Nκ(w − c)‖L p∗ (∂�,σ) ≤ C‖Nκ(∇w)‖L p(∂�,σ) (8.4.112)

where
p∗ := (

1
p − 1

n−1

)−1
. (8.4.113)

Prior to presenting the proof of this result, we isolate one technical aspect in the
following lemma.

Lemma 8.4.11 Let�⊆ R
n be an upper-graphLipschitz domain. Assumeu ∈C 1(�)

is a real-valued function with the property that there exist two constants, C ∈ (0,∞)

and α ∈ (1,∞), such that

|(∇u)(x)| ≤ C
[
dist(x, ∂�)

]−α
, ∀x ∈ �. (8.4.114)

Then for each x ∈ � the limit

c := lim
t→∞ u(x + ten) (8.4.115)

exists, is independent of the point x and, moreover,

|u(x) − c| ≤ C
[
dist(x, ∂�)

]1−α
, ∀x ∈ �. (8.4.116)

Proof For every x ∈ � and t ≥ 0 set

c(x, t) := u(x + ten) +
ˆ ∞

t
(∂nu)(x + sen) ds. (8.4.117)

By (8.4.114), the integral in (8.4.117) is absolutely convergent, and the Fundamental
Theorem of Calculus ensures that the expression in the right side is independent
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of t ≥ 0. We may thus abbreviate c(x) := c(x, t). Thanks to this and Lebesgue’s
Dominated Convergence Theorem, the limit

lim
t→∞ u(x + ten) = lim

t→∞ c(x) − lim
t→∞

ˆ ∞

t
(∂nu)(x + sen) ds

= c(x) − 0 = c(x) exists for every x ∈ R
n
+. (8.4.118)

To prove that this limit is actually independent of x , suppose � is the upper-graph
of a function φ : R

n−1 → R, with Lipschitz constant M ∈ (0,∞). Fix two arbitrary
points, x = (x ′, xn) ∈ � and y = (y′, yn) ∈ �. Pick t ≥ M |x ′ − y′| and consider an
arbitrary point z ∈ [x + ten, y + ten].We claim that z ∈ � and there exists a constant
c ∈ (0,∞), independent of x, y, z, such that

dist(z, ∂�) ≥ ct. (8.4.119)

To justify this, observe that there exists θ ∈ [0, 1], such that

z = (z′, zn) = θ(x + ten) + (1 − θ)(y + ten)

= (
θx ′ + (1 − θ)y′, θxn + (1 − θ)yn + t

)
. (8.4.120)

Consequently, since xn > φ(x ′) and yn > φ(y′), we may write

zn−φ(z′) = θxn + (1 − θ)yn + t − φ
(
θx ′ + (1 − θ)y′)

> θφ(x ′) + (1 − θ)φ(y′) + t − φ
(
θx ′ + (1 − θ)y′)

= t + θ
[
φ(x ′) − φ

(
θx ′+(1 − θ)y′)]+ (1 − θ)

[
φ(y′)−φ

(
θx ′ + (1 − θ)y′)]

≥ t − θ
∣∣φ(x ′) − φ

(
θx ′ + (1 − θ)y′)∣∣− (1 − θ)

∣∣φ(y′) − φ
(
θx ′ + (1 − θ)y′)∣∣

≥ t − θM
∣∣x ′ − (

θx ′ + (1 − θ)y′)∣∣− (1 − θ)M
∣∣y′ − (

θx ′ + (1 − θ)y′)∣∣

= t − 2θ(1 − θ)M |x ′ − y′| ≥ t − 1
2M |x ′ − y′|

≥ 1
2 t. (8.4.121)

In particular, zn > φ(z′) which places z in �. Keeping this in mind, from (8.4.121)
and the fact that

dist(z, ∂�) ≈ zn − φ(z′) (8.4.122)

we then see that (8.4.119) holds. In turn, based on the fact that [x + ten, y + ten] is
contained in � whenever t ≥ M |x ′ − y′|, the Mean Value Theorem, (8.4.114), and
(8.4.119), we may estimate

|u(x + ten) − u(y + ten)| ≤ C |x − y|t−α → 0 as t → ∞, (8.4.123)
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which ultimately shows that c(x) = c(y) for every x, y ∈ �. As such, wemay simply
write c ∈ R for c(x) corresponding to arbitrary x ∈ �. Since for each x = (x ′, xn)∈ �,
we have

dist(x + sen, ∂�) ≈ xn + s − φ(x ′) ≈ dist(x, ∂�) + s, (8.4.124)

uniformly for s ≥ 0, we may use (8.4.117) with t = 0 and (8.4.114) to estimate

|u(x) − c| = |u(x) − c(x)| =
∣∣∣
ˆ ∞

0
(∂nu)(x + sen) ds

∣∣∣

≤
ˆ ∞

0
|(∂nu)(x + sen)| ds ≤ C

ˆ ∞

0

[
dist(x + sen, ∂�)

]−α
ds

≤ C
ˆ ∞

0

[
dist(x, ∂�) + s

]−α
ds ≤ C

[
dist(x, ∂�)

]1−α
, (8.4.125)

for each point x ∈ �. This establishes (8.4.116). �

We are now ready to discuss the proof of Proposition 8.4.10.

Proof of Proposition 8.4.10 To fix ideas, suppose � is the upper-graph of a Lips-
chitz function φ : R

n−1 → R, i.e.,� = {
x = (x ′, xn) ∈ R

n : xn > φ(x ′)
}
. For each

x = (x ′, xn) ∈ � denote by x̂ := (
x ′, φ(x ′)

) ∈ ∂� its vertical projection onto the
boundary, and abbreviate δ∂�(x) := dist(x, ∂�). Also, for each r ∈ (0,∞) and
x ∈ ∂�, set �(x, r) := B(x, r) ∩ ∂�. We claim that there exists an aperture param-
eter κ̃ ∈ (0,∞), depending only on the Lipschitz constant of φ, with the property
that

if x ∈ � and y ∈ �
(
x̂, δ∂�(x)

)
then x ∈ �κ̃(y). (8.4.126)

Indeed, there exists C� ∈ (0,∞) such that |x − x̂ | ≤ C� · δ∂�(x) for every x ∈ �.
Keeping this in mind, given any x ∈ � and y ∈ �

(
x̂, δ∂�(x)

)
we may estimate

|x − y| ≤ |x − x̂ | + |y − x̂ | < C� · δ∂�(x) + δ∂�(x) = (1 + C�)δ∂�(x),
(8.4.127)

and (8.4.126) follows by simply taking κ̃ := C� ∈ (0,∞).
Going further, assumeNκ(∇w) ∈ L p(∂�, σ), since otherwise there is nothing to

prove. Proposition 8.4.1 then guarantees that

Nκ̃ (∇w) ∈ L p(∂�, σ) and
‖Nκ̃ (∇w)‖L p(∂�,σ) ≈ ‖Nκ(∇w)‖L p(∂�,σ).

(8.4.128)

Fix an arbitrary point x ∈ �. For any exponent α ∈ (0,∞), we may use (8.4.126) to
estimate

|(∇w)(x)| ≤ C

( 
�

(
x̂,δ∂�(x)

) |Nκ̃ (∇w)|α dσ
) 1

α

. (8.4.129)
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This used with α := p implies that there exists some C ∈ (0,∞) independent of x
and w, such that

|(∇w)(x)| ≤ Cδ∂�(x)−
n−1
p
∥
∥Nκ̃ (∇w)

∥
∥
L p(∂�,σ)

. (8.4.130)

From (8.4.128), (8.4.130), the fact that p ∈ (0, n − 1), and Lemma 8.4.11, we see
that it is possible to choose c ∈ R, such that w − c vanishes at infinity, in the sense
that

|w(x) − c| ≤ Cδ∂�(x)1−
n−1
p , ∀x ∈ �. (8.4.131)

Henceforth, abbreviate u := w − c. Fix now x ∈ ∂� and pick some y ∈ �κ̃(x). Then
by virtue of (8.4.130)–(8.4.131), the definition of u, and the Fundamental Theorem
of Calculus

|u(y)| =
∣
∣∣∣

ˆ ∞

0
(∂nu)(y + ten) dt

∣
∣∣∣ ≤

ˆ ∞

0
|(∇u)(y + ten)| dt

=
ˆ ∞

0
|(∇w)(y + ten)| dt. (8.4.132)

Given that n ≥ 3 and p ∈ (0, n − 1), we have p
n−1 < min {1, p}. As such, it is pos-

sible to choose α so that p

n − 1
< α < min {1, p}. (8.4.133)

Observe that there exists some C ∈ (0,∞) with the property that

�
(
ŷ + ten, δ∂�(y + ten)

) ⊆ �
(
x,C(t + δ∂�(y))

)
and

δ∂�(y + ten) ≈ t + δ∂�(y), uniformly for t ∈ (0,∞).
(8.4.134)

Combining (8.4.132) with (8.4.129) and bearing in mind (8.4.134) then yields

|u(y)| ≤ C
ˆ ∞

0

( 
�

(
x,C(t+δ∂�(y))

) |Nκ̃ (∇w)|α dσ
) 1

α

dt

= C
ˆ ∞

0

( 
�

(
x,C(t+δ∂�(y))

) |Nκ̃ (∇w)|α dσ
) 1

α
−1

×

×
( 

�

(
x,C(t+δ∂�(y))

) |Nκ̃ (∇w)|α dσ
)

dt. (8.4.135)

Let M denote the Hardy-Littlewood maximal operator on ∂�. Then, by definition,

 
�

(
x,C(t+δ∂�(y))

) |Nκ̃ (∇w)|α dσ ≤ M(Nκ̃ (∇w)α
)
(x) (8.4.136)
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and so, from (8.4.135) and the fact that 1
α

− 1 > 0, we conclude that

|u(y)| ≤ C
[M(Nκ̃ (∇w)α

)
(x)

] 1
α
−1
( ∞̂

0

ˆ

�

(
x,C(t+δ∂�(y))

)

[Nκ̃ (∇w)(z)
]α

(
t + δ∂�(y)

)n−1 dσ(z) dt

)
.

(8.4.137)
For each θ ∈ (0, n − 1) denote by Iθ the fractional integration operator acting on
each non-negative measurable function f defined in ∂� according to

(
Iθ f

)
(x) :=

ˆ
∂�

f (z)

|x − z|n−1−θ
dσ(z), ∀x ∈ ∂�. (8.4.138)

Then by switching the order of integration in (8.4.137) and then making the change
of variables s := t + δ∂�(y), we can estimate

|u(y)| ≤ C
[M(Nκ̃ (∇w)α

)
(x)

] 1
α
−1×

×
ˆ

∂�

[Nκ̃ (∇w)(z)
]α
( ˆ ∞

|x−z|
C <t+δ∂�(y)

dt
(
t + δ∂�(y)

)n−1

)

dσ(z)

= C
[M(Nκ̃ (∇w)α

)
(x)

] 1
α
−1

ˆ

∂�

[Nκ̃ (∇w)(z)
]α

|x − z|n−2
dσ(z)

≤ C
[M(Nκ̃ (∇w)α

)
(x)

] 1
α
−1

I1
(Nκ̃ (∇w)α

)
(x), (8.4.139)

where the fact that the integral in the variable t is absolutely convergent is guaranteed
by the assumption that n ≥ 3. Taking the supremum over all points y ∈ �κ̃(x) in
(8.4.139), we obtain

(Nκ̃u)(x) ≤ C
[M(Nκ̃ (∇w)α

)
(x)

] 1
α
−1

I1
(Nκ̃ (∇w)α

)
(x) (8.4.140)

for each x ∈ ∂�, and so

ˆ

∂�

(Nκ̃u)p
∗
dσ ≤ C

ˆ

∂�

[M(Nκ̃ (∇w)α)
]p∗( 1

α
−1)[

I1(Nκ̃ (∇w)α)
]p∗

dσ. (8.4.141)

Choose r, r ′ ∈ (1,∞) such that 1/r + 1/r ′ = 1 and

(1 − α)r = 1 − p

n − 1
= p

p∗ . (8.4.142)

That this may be arranged is guaranteed by the fact that (1 − α)−1
(
1 − p

n−1

)
> 1,

itself a consequence of the choice ofα in (8.4.133). Next, from (8.4.141) andHölder’s
inequality,
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ˆ
∂�

(Nκ̃u)p
∗
dσ ≤ C

( ˆ
∂�

[M(Nκ̃ (∇w)α)
]p∗( 1−α

α
)r
dσ

) 1
r

×

×
( ˆ

∂�

[
I1(Nκ̃ (∇w)α)

]p∗r ′
dσ

) 1
r ′

. (8.4.143)

Let q := p
α
, so 1 < q < n − 1 thanks to the manner in which α has been selected in

(8.4.133), and abbreviate q∗ := (
1
q − 1

n−1

)−1
. Then from our choice of r in (8.4.142),

we conclude that the following identities hold:

p∗
(1 − α

α

)
r = p∗

α
· p

p∗ = p

α
= q, (8.4.144)

1

p∗r ′ = 1

p∗
(
1 − 1

r

)
= 1

p∗ − 1

p∗r
= 1

p
− 1

n − 1
− 1 − α

p
= α

p
− 1

n − 1
= 1

q∗ , (8.4.145)

hence q∗ = p∗r ′, and

1

r
+ q∗

qr ′ = p∗(1 − α)

p
+ p∗r ′

qr ′ = p∗(1 − α)

p
+ p∗

q

= p∗(1 − α)

p
+ αp∗

p
= p∗

p
. (8.4.146)

Applying identities (8.4.144)–(8.4.145) to (8.4.141) gives

ˆ
∂�

(Nκ̃u)p
∗
dσ ≤ C

( ˆ
∂�

[M(Nκ̃ (∇w)α)
]q

dσ

) 1
r

×

×
( ˆ

∂�

[
I1(Nκ̃ (∇w)α)

]q∗
dσ

) 1
r ′

. (8.4.147)

It is well known that since 1 < q < n − 1, the operator M is bounded from
Lq(∂�, σ) into itself, while the operator I1 is bounded from Lq(∂�, σ) into
Lq∗

(∂�, σ). Bearing these mapping properties in mind, it follows that

ˆ
∂�

(Nκ̃u)p
∗
dσ ≤ C

( ˆ
∂�

(Nκ̃ (∇w)α)q dσ

) 1
r
( ˆ

∂�

(Nκ̃ (∇w)α)q dσ

) q∗
qr ′

= C

( ˆ
∂�

Nκ̃ (∇w)p dσ

) 1
r + q∗

qr ′

= C

( ˆ
∂�

Nκ̃ (∇w)p dσ

) p∗
p

, (8.4.148)
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where the last equality uses identity (8.4.146). Granted this, we can finally conclude
that

‖Nκ̃u‖L p∗ (∂�,σ) ≤ C‖Nκ̃ (∇w)‖L p(∂�,σ). (8.4.149)

Upon invoking Proposition 8.4.1 and bearing in mind that u = w − c, this ultimately
establishes (8.4.112). �

We conclude this section by presenting an estimate for the nontangential maximal
operator in terms of the Hardy–Littlewood maximal operator.

Proposition 8.4.12 Let� ⊂ R
n be an open set with an upper Ahlfors regular bound-

ary and such that σ := Hn−1�∂� is doubling. Consider a measurable function
k(·, ·) : � × ∂� → [0,∞)with the property that there existα > 0 andC0 ∈ (0,∞),
such that

k(x, y) ≤ C0 · dist(x, ∂�)α|x − y|1−n−α, ∀x ∈ �, ∀y ∈ ∂�, (8.4.150)

and define the integral operator acting on each σ -measurable f : ∂� → [0,∞)

according to

P f (x) :=
ˆ

∂�

k(x, y) f (y) dσ(y) ∈ [0,∞], ∀x ∈ �. (8.4.151)

Then for each aperture parameter κ > 0, there exists C ∈ (0,∞), which depends
only on the constant C0 from (8.4.150), κ , and the upper Ahlfors regularity constant
of ∂�, with the property that for each σ -measurable function f : ∂� → [0,∞), one
has

Nκ(P f ) ≤ C · M∂� f at each point on ∂�, (8.4.152)

where M∂� denotes the Hardy–Littlewood maximal operator on ∂� (cf. (7.6.16)).
As a consequence, for each p ∈ (1,∞] there exists a constant Cp ∈ (0,∞) such

that

∥∥Nκ(P| f |)∥∥L p(∂�,σ)
≤ C‖ f ‖L p(∂�,σ), ∀ f ∈ L p(∂�, σ). (8.4.153)

In fact, estimates similar to (8.4.153) are also valid in the context of Mucken-
houptweightedLebesgue spaces L p(∂�,wσ)with p ∈ (1,∞)andw ∈ Ap(∂�, σ),
Lorentz spaces L p,q(∂�, σ) with p ∈ (1,∞) and q ∈ (0,∞]. In the case when ∂�

is actually Ahlfors regular, then estimates similar to (8.4.153) are also valid for
the Morrey spaces M p,λ(∂�, σ) with p ∈ (1,∞) and λ ∈ (0, n − 1), as well as the
block spaces Bq,λ(, σ ) with q ∈ (1,∞) and λ ∈ (0, n − 1).

Proof Fix an arbitrary σ -measurable function f : ∂� → [0,∞). For starters,
observe that (8.4.150) and (8.4.151) imply

P f (x) ≤ C0

ˆ
∂�

dist(x, ∂�)α

|x − y|n−1+α
f (y) dσ(y), ∀x ∈ �. (8.4.154)
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With the goal of estimating the nontangential maximal function ofP f with aperture
κ , consider an arbitrary boundary point z ∈ ∂�. We claim that

|x − y| ≥ (3 + κ)−1
(
dist(x, ∂�) + |y − z|), ∀x ∈ �κ(z), ∀y ∈ ∂�.

(8.4.155)
Indeed, dist(x, ∂�) ≤ |x − y| since y ∈ ∂�, and given that for each x ∈ �κ(x), we
also have

|y − z| ≤ |x − y| + |x − z| = |x − y| + (1 + κ) dist(x, ∂�) ≤ (2 + κ)|x − y|,
(8.4.156)

the estimate in (8.4.155) follows. Making use of (8.4.155) in (8.4.154), we arrive at
the conclusion that there exists C = C(κ) ∈ (0,∞), such that for each z ∈ ∂� and
each x ∈ �κ(z), we have

P f (x) ≤ C
ˆ

∂�

dist(x, ∂�)α

(
dist(x, ∂�) + |y − z|)n−1+α

f (y) dσ(y). (8.4.157)

Let us now fix z ∈ ∂� along with x ∈ �κ(z) and abbreviate r := dist(x, ∂�).
Also, for each R > 0 set �(z, R) := B(z, R) ∩ ∂�. Then we may decompose ∂�

into a family of dyadic annuli ∂� = ⋃∞
j=0 R j (z), where R0(z) := �(z, r) and

R j (z) := �(z, 2 j+1r) \ �(z, 2 j r) for each j ∈ N. Bearing in mind that ∂� is an
upper Ahlfors regular set, for each j ≥ 1 we may then estimate

ˆ

R j (z)

rα

(
r + |y − z|)n−1+α

f (y) dσ(y) ≤
ˆ

R j (z)

rα

|y − z|n−1+α
f (y) dσ(y)

≤ C

rn−12 j (n−1+α)

ˆ
�(z,2 j+1r)

f dσ

≤ C2− jα

σ
(
�(z, 2 j+1r)

)
ˆ

�(z,2 j+1r)
f dσ

≤ C2− jα
(M∂� f

)
(z). (8.4.158)

Also, corresponding to j = 0, we have

ˆ

R0(z)

rα

(
r + |y − z|)n−1+α

f (y) dσ(y) ≤ C

rn−1

ˆ
�(z,r)

f dσ

≤ C

σ
(
�(z, r)

)
ˆ

�(z,r)
f dσ

≤ C
(M∂� f

)
(z). (8.4.159)

On account of (8.4.157)–(8.4.159), we, therefore, obtain the pointwise inequality
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(Nκ(P f )
)
(z) ≤ C

(M∂� f
)
(z), ∀z ∈ ∂�, (8.4.160)

whereC = C(∂�,C0, κ) > 0 is a finite constant, independent of f . This establishes
(8.4.152).

In turn, the claims in the last part of the proposition are consequences of (8.4.152),
Corollary 7.6.3, item (1) in Lemma 7.7.1, plus the boundedness of the Hardy–
Littlewood maximal operator on Morrey and block spaces on Ahlfors regular sets
(cf. [185, Sect. 6.2]). �

8.5 Maximal Operators: Tangential Versus Nontangential

In addition to the nontangential maximal operator, introduced earlier in Sect. 8.2,
there is a related version in which the essential supremum is taken over the entire
open set, rather than just a nontangential approach region. Because this larger set
permits approaching the boundary in a tangential fashion, it is natural to call this
brand onmaximal operator “tangential.” For each given boundary point, the essential
supremum entering its definition is suitably weighted by a power of the ratio between
the distance to the boundary and the distance to the point in question. Here is a precise
definition.

Definition 8.5.1 Let � be an open, nonempty, proper subset of R
n, and abbreviate

δ∂�(x) := dist(x, ∂�) for each x ∈ R
n. (8.5.1)

Also, fix a power M ∈ [0,∞), and suppose u : � → R is a Lebesgue measurable
function. In this context, introduce the tangential maximal function of u
(with exponent M) to be

umax
M : ∂� −→ [0,+∞] defined by

umax
M (x) :=

∥∥∥u(y)
( δ∂�(y)

|x − y|
)M∥∥∥

L∞
y (�,Ln)

for each x ∈ ∂�,
(8.5.2)

where the subscript y indicates that the essential norm is taken with respect to the
variable y ∈ �.

It is then clear that, in the context of the above definition, for any Lebesgue
measurable function u : � → R we have

u /∈ L∞
loc(�,Ln) ⇐⇒ umax

M ≡ +∞ on ∂�, (8.5.3)

and
umax
M2

≤ umax
M1

on ∂� whenever 0 ≤ M1 ≤ M2 < +∞. (8.5.4)
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Much of the subsequent material in this section is devoted to comparing the
brand of tangential maximal operator from Definition 8.5.1 with its nontangential
counterpart, introduced earlier in Sect. 8.2. We begin by observing that the former
always dominates the latter, in a pointwise fashion, up to a multiplicative constant.

Lemma 8.5.2 Suppose � is an open, nonempty, proper subset of R
n, and fix an

arbitrary power M ∈ [0,∞) along with some aperture parameter κ ∈ (0,∞). Then
for each Lebesgue measurable function u : � → R, one has

(Nκu
)
(x) ≤ (1 + κ)M · umax

M (x) for each x ∈ ∂�. (8.5.5)

Proof This is a direct consequence of definitions, bearing in mind that for each point

x ∈ ∂�, we have 1
(1+κ)M

≤
(

δ∂�(y)
|x−y|

)M
for all y ∈ �κ(x). �

We slightly digress for the purpose of identifying a content in which the tangential
maximal function happens to be measurable.

Lemma 8.5.3 Let � be an open, nonempty, proper subset of R
n, satisfying

Hn−1(∂� ∩ K ) < +∞ for each compact K ⊂ R
n, (8.5.6)

and abbreviate σ := Hn−1�∂�. Also, fix some power M ∈ [0,∞) along with some
Lebesgue measurable function u : � → R. Then

umax
M : ∂� −→ [0,+∞] is σ -measurable. (8.5.7)

Proof From Lemma 3.6.4, we know that

σ is a complete, locally finite, Borel-regular measure on ∂�

(equipped with the relative topology, induced by R
n).

(8.5.8)

To proceed, recall from (8.5.3) that if u /∈ L∞
loc(�,Ln), then umax

M ≡ +∞ on ∂�, so
(8.5.7) is trivially true in this case. As such, there remains to consider the situation
when

u ∈ L∞
loc(�,Ln). (8.5.9)

In this scenario, for each j ∈ N introduce

� j := {
x ∈ � : |x | < j and δ∂�(x) > 1/j

}
(8.5.10)

and define

umax
M, j : ∂� −→ [0,+∞] acting according to

umax
M, j (x) :=

∥∥∥u(y)
( δ∂�(y)

|x − y|
)M∥∥∥

L∞
y (� j ,Ln)

for each x ∈ ∂�.
(8.5.11)



726 8 Open Sets with Locally Finite Surface Measures and Boundary Behavior

Since � j ↗ � as j ↗ ∞, it follows that

umax
M (x) = lim

j→∞ umax
M, j (x) for each x ∈ ∂�. (8.5.12)

As far as (8.5.7) is concerned, from (8.5.12), Remark 3.1.2, and (8.5.8), we see that
it suffices to show that

umax
M, j : ∂� −→ [0,+∞] is σ -measurable for each j ∈ N. (8.5.13)

With this goal inmind, fix an arbitrary index j ∈ N and observe from (8.5.9)–(8.5.10)
that

u
∣∣
� j

∈ L∞(� j ,Ln). (8.5.14)

As a result, for each fixed point x ∈ ∂�, we have

∥∥∥u(y)
( δ∂�(y)

|x − y|
)M∥∥∥

L∞
y (� j ,Ln)

< +∞. (8.5.15)

Since also Ln(� j ) < +∞, a well-known property of the family of Lebesgue norms
(cf., e.g., [91, Exercise 7, p. 187]) gives

∥∥∥u(y)
( δ∂�(y)

|x − y|
)M∥∥∥

L∞
y (� j ,Ln)

= lim
p→∞

∥∥∥u(y)
( δ∂�(y)

|x − y|
)M∥∥∥

L p
y (� j ,Ln)

. (8.5.16)

Hence, if for each p ∈ N, we introduce

umax
M, j,p : ∂� −→ [0,+∞] defined as

umax
M, j,p(x) :=

(ˆ
� j

|u(y)|p
( δ∂�(y)

|x − y|
)Mp

dy
)1/p

for each x ∈ ∂�,
(8.5.17)

then from (8.5.11) and (8.5.16), we see that

umax
M, j (x) = lim

p→∞ umax
M, j,p(x) for each x ∈ ∂�. (8.5.18)

In view of this, by once again appealing to Remark 3.1.2 and (8.5.8), we see that, as
far as (8.5.13) is concerned, it suffices to prove that

umax
M, j,p : ∂� −→ [0,+∞] is σ -measurable for each j, p ∈ N. (8.5.19)

However, it is clear from (8.5.17) and (8.5.14) that each umax
M, j,p is actually a con-

tinuous function (as may be seen using Vitali’s convergence theorem), hence Borel
measurable. Given that, as noted earlier, σ is a Borel measure, the desired conclusion
follows. �



8.5 Maximal Operators: Tangential Versus Nontangential 727

Returning to the task of comparing the tangential and nontangential maximal
operators, here is a pointwise inequality which goes in the opposite direction to the
one considered in Lemma 8.5.2.

Proposition 8.5.4 Let � be an open, nonempty, proper subset of Rn such that ∂� is
an Ahlfors regular set. Fix an exponent s ∈ (0,∞) along with an aperture parameter
κ ∈ (0,∞) and pick some real number M ≥ (n − 1)/s. Then there exists a constant
C ∈ (0,∞)with theproperty that for eachLebesguemeasurable functionu : � → R

one has the pointwise inequality

umax
M (x) ≤ C ·

(
M∂�,s

(Nκu
))

(x) for each x ∈ ∂�, (8.5.20)

where M∂�,s stands for the Ls-based Hardy–Littlewood maximal operator on ∂�

(defined as in (7.6.7), with respect to the measure σ := Hn−1�∂�).

In view of Lemma 8.5.2, we may regard Proposition 8.5.4 as an extension of
Theorem 8.4.6, where nontangential maximal functions corresponding to various
aperture parameters have been compared. We also wish to note that, in the setting
of Proposition 8.5.4, from (8.5.20) and (8.5.5) we deduce that for any given power
Mo ∈ [0,∞), there exists a constant C ∈ (0,∞), such that

umax
M ≤ C · M∂�,s

(
umax
Mo

)
on ∂� (8.5.21)

for each Lebesgue measurable function u : � → R (this should be compared with
(8.5.4)).

Proof of Proposition 8.5.4 Fix an arbitrary point x ∈ ∂� and decompose

� =
∞⋃

j=0

�2 jκ(x) = �κ(x) ∪
( ∞⋃

j=1

(
�2 jκ(x) \ �2 j−1κ(x)

))
. (8.5.22)

Given an arbitrary Lebesgue measurable function u : � → R, use this and (8.5.2) to
write

umax
M (x) =

∥∥∥u(y)
( δ∂�(y)

|x − y|
)M∥∥∥

L∞
y (�,Ln)

= max
{
I0, sup

j∈N
I j
}
, (8.5.23)

where

I0 :=
∥∥
∥u(y)

( δ∂�(y)

|x − y|
)M∥∥

∥
L∞
y (�κ (x),Ln)

(8.5.24)

and, for each j ∈ N,

I j :=
∥
∥∥u(y)

( δ∂�(y)

|x − y|
)M∥∥∥

L∞
y (�2 j κ (x)\�2 j−1κ

(x),Ln)
. (8.5.25)

Since M ≥ 0 and δ∂�(y)
|x−y| ≤ 1 for each y ∈ �, it follows that
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I0 ≤ ‖u‖L∞(�κ (x),Ln) = (Nκu
)
(x) ≤ C ·

(
M∂�,s

(Nκu
))

(x), (8.5.26)

where the last inequality is a consequence of (8.4.42), presently used with κ̃ := κ ,
bearing in mind that the measure σ := Hn−1�∂� is doubling (thanks to the Ahlfors
regularity of ∂�). Also, given any j ∈ N, for each point y ∈ �2 jκ(x) \ �2 j−1κ(x), we
have |x − y| ≥ (1 + 2 j−1κ)δ∂�(y), hence

( δ∂�(y)

|x − y|
)M ≤ 1

(1 + 2 j−1κ)M
≤
( 2M

κM

)
2− jM . (8.5.27)

Consequently, for each j ∈ N, we may rely on (8.5.27), (8.4.41), and (8.4.52) to
estimate

I j ≤
( 2M

κM

)
2− jM‖u‖L∞

y (�2 j κ (x),Ln) =
( 2M

κM

)
2− jM

(N2 jκu
)
(x)

≤ C∂�,n,κ,s,M · 2− jM · (2 jκ)(n−1)/s ·
(
M∂�,s

(Nκu
))

(x)

≤ C∂�,n,κ,s,M ·
(
M∂�,s

(Nκu
))

(x) (8.5.28)

where the last inequality uses the fact that M ≥ (n − 1)/s. All together, from
(8.5.23), (8.5.26), and (8.5.28), we deduce that (8.5.20) holds. �

At this stage, we may use the results developed so far in this section to prove a
general principle for comparing the size of the nontangential maximal function with
the size of the tangential maximal function in various abstract norms.

Theorem 8.5.5 Fix n ∈ N satisfying n ≥ 2, and consider an open, nonempty, proper
subset�ofRn such that ∂� is Ahlfors regular. Abbreviateσ := Hn−1�∂�anddenote
byM+(∂�, σ) the space of non-negative σ -measurable functions on ∂�. Consider
a mapping

‖ · ‖ : M+(∂�, σ) −→ [0,+∞] (8.5.29)

enjoying the following three properties:

(i) [Quasi-Monotonicity] There exists C1 ∈ (0,∞) such that ‖ f ‖ ≤ C1‖g‖ for any
pair of functions f, g ∈ M+(∂�, σ) satisfying f ≤ g at σ -a.e. point on ∂�.

(ii) [Quasi-Homogeneity] There exists C2 ∈ (0,∞) such that ‖λ f ‖ ≤ C2λ‖ f ‖ for
any function f ∈ M+(∂�, σ) and any number λ ∈ (0,∞).

(iii) [Boundedness of some Ls-based Hardy–Littlewood Maximal Operator] There
exist an integrability exponent s ∈ (0,∞) along with a constant C3 ∈ (0,∞),
such that

∥∥M∂�,s f
∥∥ ≤ C3‖ f ‖ for each f ∈ M+(∂�, σ), (8.5.30)

where M∂�,s is the Ls-based Hardy–Littlewood maximal operator acting on
σ -measurable functions on ∂� as in (8.4.40).
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Then for any power M ∈ [
n−1
s ,∞)

and any aperture parameter κ ∈ (0,∞),
there exists a constant C ∈ (1,∞), which depends only on C1,C2,C3, M, κ and
the Ahlfors regularity character of ∂�, with the property that

C−1
∥∥Nκu

∥∥ ≤ ‖umax
M ‖ ≤ C

∥∥Nκu
∥∥ (8.5.31)

for each Lebesgue measurable function u : � → C.

Proof The estimates claimed in (8.5.31) are consequences of Lemma 8.5.2,
Lemma 8.5.3, Proposition 8.5.4, (8.2.28), and properties (i)-(iii) in the statement.

�

Among other things, Theorem 8.5.5 is applicable to any Köthe function space
on ∂� (defined as in [185, Sect. 1.5]) on which the Hardy–Littlewood maximal
operator is bounded. Our next result contains further specific embodiments of the
general principle established in Theorem 8.5.5, corresponding to awealth of concrete
function spaces for which conditions (i)-(iii) formulated above hold (in this vein, we
wish to remark that the scale of Morrey and block spaces on Ahlfors regular sets are
methodically discussed in [185, Sect. 6.2]).

Corollary 8.5.6 Pick n ∈ N satisfying n ≥ 2, and suppose � is an open, nonempty,
proper subset of Rn with the property that ∂� is Ahlfors regular. Set σ := Hn−1�∂�

and select an arbitrary aperture parameter κ ∈ (0,∞). Then the following results
are true:

(1) [Ordinary Lebesgue Spaces] For each p ∈ (0,∞] and each M > (n − 1)/p,
one has ∥∥umax

M

∥∥
L p(∂�,σ)

≈ ∥∥Nκu
∥∥
L p(∂�,σ)

, (8.5.32)

in a uniformly fashion for Lebesgue measurable functions u : � → C.

(2) [Lorentz Spaces] Fix p ∈ (0,∞] and q ∈ (0,∞], employing the convention that
q = ∞ if p = ∞, and suppose M > (n − 1)/p. Then

∥∥umax
M

∥∥
L p,q (∂�,σ)

≈ ∥∥Nκu
∥∥
L p,q (∂�,σ)

, (8.5.33)

in a uniformly fashion for Lebesgue measurable functions u : � → C.

(3) [Muckenhoupt Weighted Lebesgue Spaces] Fix an exponent p ∈ (1,∞) along
with a Muckenhoupt weight w ∈ Ap(∂�, σ), and assume M ≥ n − 1. Then

∥∥umax
M

∥∥
L p(∂�,wσ)

≈ ∥∥Nκu
∥∥
L p(∂�,wσ)

, (8.5.34)

in a uniformly fashion for Lebesgue measurable functions u : � → C.

(4) [Morrey Spaces]Fix some p ∈ (1,∞) together with λ ∈ (0, n − 1), and suppose
M ≥ n − 1. Then
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∥∥umax
M

∥∥
Mp,λ(∂�,σ )

≈ ∥∥Nκu
∥∥
Mp,λ(∂�,σ )

, (8.5.35)

in a uniformly fashion for Lebesgue measurable functions u : � → C.

(5) [Block Spaces] Pick some p ∈ (1,∞) along with λ ∈ (0, n − 1), and assume
M ≥ n − 1. Then ∥∥umax

M

∥∥
Bq,λ(∂�,σ )

≈ ∥∥Nκu
∥∥
Bq,λ(∂�,σ )

, (8.5.36)

in a uniformly fashion for Lebesgue measurable functions u : � → C.

Proof The claim made in item (1) is a consequence of Theorem 8.5.5 used with
‖ · ‖ := ‖ · ‖L p(∂�,σ), keeping in mind that, for this choice, condition (iii) in Theo-
rem 8.5.5 is implied by (7.6.11). In a similar fashion, the claim in item (2) follows
from Theorem 8.5.5 used with ‖ · ‖ := ‖ · ‖L p,q (∂�,σ). For such a choice, condition
(i) in Theorem 8.5.5 is ensured by (6.2.16), while condition (iii) in Theorem 8.5.5
is guaranteed by (7.6.9). Going further, the claim in item (3) is implied by The-
orem 8.5.5 used with ‖ · ‖ := ‖ · ‖L p(∂�,wσ), a choice for which condition (iii) in
Theorem 8.5.5 seen from item (1) in Lemma 7.7.1.

Moving on, the claim made in item (4) is a consequence of Theorem 8.5.5,
presently used with ‖ · ‖ := ‖ · ‖Mp,λ(∂�,σ ). For this choice, condition (i) in Theo-
rem 8.5.5 is noted in (8.4.107), while condition (iii) in Theorem 8.5.5 follows from
the fact that the Hardy–Littlewood maximal operator on ∂� induces a well-defined,
sub-linear and bounded mapping on Morrey spaces (cf. [185, Sect. 6.2]). Likewise,
the claim in item (5) is dealt with similarly, now employing Theorem 8.5.5 with
‖ · ‖ := ‖ · ‖Bq,λ(∂�,σ ), and relying on the lattice property for block spaces together
with the boundedness of the Hardy–Littlewood maximal operator on block spaces
(see [185, Sect. 6.2]). �

It is also possible to produce a version of Proposition 8.5.4 inwhich the assumption
that the topological boundary of the underlying open set is Ahlfors regular has been
replaced by the weaker demand that the measure on said boundary (with respect
to which the Hardy–Littlewood maximal operator is considered) is doubling and
Borel-semiregular.

Proposition 8.5.7 Let � be an open, nonempty, proper subset of R
n, and suppose

σ is a doubling, Borel-semiregular measure on ∂�. Denote by Dσ the doubling
order of the measure σ (defined as in (7.4.3)), and fix an exponent s ∈ (0,∞). In
this setting, bring in M∂�,s , the Ls-based Hardy–Littlewood maximal operator on
∂�, defined as in (7.6.7) with respect to the measure σ . Finally, pick an aperture
parameter κ ∈ (0,∞).

Then, whenever M ≥ Dσ /s, one can find a constant C ∈ (0,∞), such that

umax
M (x) ≤ C ·

(
M∂�,s

(Nκu
))

(x) for all x ∈ ∂�, (8.5.37)

for every Lebesgue measurable function u : � → R.
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Proof The same type of argument as in the proof of Proposition 8.5.4 continues to
work, now making use of (8.4.51) (in place of (8.4.52)). �

In turn, Proposition 8.5.7 yields a version of Theorem 8.5.5 in which the assump-
tion that the topological boundary of the underlying open set is Ahlfors regular
is replaced by the weaker hypothesis that the measure on the said boundary (with
respect to which the Hardy–Littlewood maximal operator is defined) is doubling and
Borel-semiregular. Ultimately, this permits establishing versions of items (1)-(3) in
Corollary 8.5.6 in this more general setting.

8.6 Off-Diagonal Carleson Measure Estimates of Reverse
Hölder Type

Recall that, in the classical setting of the upper half-space R
n+, a Borel measure μ on

R
n+ is called a Carleson measure provided there exists a finite constant C > 0

with the property that

μ
(
B(x, r) ∩ R

n
+
) ≤ Crn−1, ∀x ∈ R

n−1 ≡ ∂R
n
+, ∀r > 0. (8.6.1)

For such a measure, the classical Carleson estimate asserts that

ˆ
R

n+
|u| dμ ≤ Cn,μ,κ

ˆ
Rn−1

Nκu dHn−1, (8.6.2)

for any Borel-measurable function u : R
n+ → R where κ > 0 is a fixed aperture

parameter andNκ is the corresponding nontangential maximal operator in the upper
half-space. Of course, replacing u by |u|p for some p ∈ (0,∞) in (8.6.2) yields

( ˆ
R

n+
|u|p dμ

)1/p ≤ Cn,μ,κ,p

(ˆ
Rn−1

(Nκu)p dHn−1
)1/p

, (8.6.3)

for anyBorel-measurable function u : R
n+ → R. Inequality (8.6.3) is a basic example

of what might be termed as a “collapsing” inequality, in the sense that it permits us
to estimate the L p norm of a function u in the domain R

n+ in terms of another L p

norm, this time taken on the boundary of the domain in question. The missing (in
this case, vertical) direction is, instead, accounted for in the way the nontangential
maximal operator has been defined in (8.2.1). Another key feature is the fact that
the definition of the Carleson measure in (8.6.1) may be refashioned as a condition
relating the growths of μ and Hn−1 (the two measures intervening in (8.6.3)). With
impending generalizations in mind, the aforementioned condition may be expressed
as

μ
(
B(x, r) ∩ R

n+
) ≤ C

[Hn−1
(
B(x, r) ∩ R

n−1
)]α

,

∀x ∈ R
n−1 ≡ ∂R

n+, ∀r > 0, provided α = 1.
(8.6.4)
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Themain goal in this section is to derive significantly more general versions of the
Carleson estimate (8.6.3), for pairs (μ, σ ) of measures satisfying a suitable variant
of (8.6.4), which we shall call a Carleson pair condition (see Definition 8.6.1). In
addition, the estimate that we have in mind is off-diagonal, i.e., of the type L p-Lq

with p not necessarily equal to q (by way of contrast, (8.6.3) is of type L p-L p), and
incorporates a reverse Hölder inequality, in the sense that p > q. It is precisely this
aspect where having α > 1 as opposed to α = 1 plays a crucial role.

One, albeit quite specialized, estimate which shares the above features is the
classical isoperimetric inequality to the effect that if� ⊆ R

n is a bounded, reasonably
decent set, then we have Ln(�) ≤ cn[Hn−1(∂�)]n/(n−1) (cf. (5.7.19)). Indeed, this
can be equivalently re-written as the L1-L(n−1)/n estimate

ˆ
�

|u| dLn ≤ cn
( ˆ

∂�

(Nκu)(n−1)/n dHn−1
)n/(n−1)

(8.6.5)

with the convention that u ≡ 1 and the nontangential maximal operator Nκ is now
associated with the domain �. Note that, in this scenario, the correlation between
the two measures involved in (8.6.5) continues to be of the form (8.6.4) though, this
time, α = n/(n − 1) > 1, i.e., for all x ∈ ∂� and r > 0 we have

Ln
(
B(x, r) ∩ �

) ≤ C
[Hn−1

(
B(x, r) ∩ ∂�

)]n/(n−1)
. (8.6.6)

Indeed, as we shall see later, (8.6.5) remains valid for any Ln-measurable function
u : � → R, and not just for u ≡ 1 which corresponds to the classical isoperimetric
inequality. As such, it is reasonable to think of (8.6.5) as a weighted isoperimetric
inequality, with |u| being the weight of Ln in � and (Nκu)(n−1)/n being the weight
of Hn−1 on ∂�.

The philosophy that emerges is that off-diagonal Carleson estimates of reverse
Hölder type ultimately involve two measures, μ defined on a metric space (X, ρ)

and σ defined on  ⊆ X , with the property that there exists α ≥ 1 such that

μ
(
Bρ(x, r) \ 

) ≤ C
[
σ(Bρ(x, r) ∩ )

]α
, ∀x ∈ , ∀r ∈ (0, diam()]. (8.6.7)

Note that if X = R
n+, μ is a Carleson measure in R

n+, and we take σ := Hn−1 on
 := ∂R

n+ ≡ R
n−1, then (8.6.7) holds with α = 1. We shall actually work with a

slightly more general condition than (8.6.7), as described in the following definition.

Definition 8.6.1 Let (X, ρ) be a quasi-metric space such that ρ : X × X → [0,∞)

is continuous with respect to the product topology τρ × τρ , and suppose  is a
nonempty subset of X. Given some α, β ∈ R, call (μ, σ ) an (α, β)-Carleson
pair for the ambient (X, ) provided μ is a Borel measure on X \ , σ is a Borel
measure on , and there exists a finite constant C > 0 such that

μ
(
Bρ(x, r) \ 

) ≤ Crβ
[
σ(Bρ(x, r) ∩ )

]α

for all x ∈  and all finite r ∈ (0, diamρ()]. (8.6.8)
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The quantity

sup
r∈(0,diamρ ()]
finite, and x∈

(
μ
(
Bρ(x, r) \ 

)

rβ
[
σ(Bρ(x, r) ∩ )

]α

)
∈ [0,∞) (8.6.9)

is referred to as the (α, β)-Carleson constant of the pair (μ, σ ).

Here is our first off-diagonal Carleson estimate of reverse Hölder type (the reader
is reminded that the local solid maximal operator u �→ uE

�,θ has been introduced in
(6.6.79)).

Theorem 8.6.2 Assume that � is an arbitrary nonempty open proper subset of R
n.

Suppose (μ, σ ) is an (α, β)-Carleson pair for the ambient (�, ∂�) for some α ≥ 1
and β ≥ 0. Next, select 0 < p < ∞, 0 < q ≤ ∞, κ > 0, 0 < θ < 1, along with
two μ-measurable sets E, F ⊆ �. For each power η ∈ [0,∞) define the weighted
measure

σ̃η :=
{(

dist(·, ∂� \ πκ(E))
)η · σ if η > 0,

σ if η = 0.
(8.6.10)

Then there exists a constantC0 ∈ (0,∞) such that for eachμ-measurable function
u : E → R one has the estimate

∥
∥uE

�,θ

∥
∥
Lαp,q (F, μ)

≤ C0

∥
∥N E

κ u
∥
∥
L p,q (πκ (E),̃σβ/α)

(8.6.11)

in any of the circumstances (i)-(iii) described below (the nature ofC0 being elucidated
in each case):

(i) πκ(E) �= ∂� and C0 is a finite, positive constant, which depends only on p, κ ,
α, θ , n, and the (α, β)-Carleson constant of the pair (μ, σ );

(ii) σ(∂�) = +∞, β = 0, and C0 is a finite, positive constant, which depends only
on p, κ , α, θ , n, and the (α, 0)-Carleson constant of the pair (μ, σ );

(iii) πκ(E) = ∂�, σ(∂�) < +∞, μ(F) < +∞, β = 0, and

C0 := max
{
C, μ(F)σ (∂�)−α

}1/(αp) ∈ (0,+∞) (8.6.12)

where C in (8.6.12) is a finite positive constant which depends only on p, κ , α,
θ , n, and the (α, 0)-Carleson constant of the pair (μ, σ ).

In particular, in either of the cases (i)-(iii) above one has the estimate

‖u‖Lαp(E, μ) ≤ C0

∥∥N E
κ u
∥∥
L p(πκ (E),̃σβ/α)

for everyμ-measurable function u : E → R.
(8.6.13)

Proof By extending u to the entire � to be zero outside E , we may assume that we
are dealing with an Ln-measurable function u : � → R. In light of the conclusions
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we presently seek to establish, Lemma 6.6.2 (cf. also (6.6.83)) guarantees that there
is no loss of generality in assuming that

θ ∈ (
0, κ/(κ + 2)

)
. (8.6.14)

Suppose that this is the case and define

κ ′ := (1 − θ)κ − 2θ > 0. (8.6.15)

Next, consider the restricted “tent” regions

TF,κ ′(O) := F \
[ ⋃

y∈∂�\O
�κ ′(y)

]
, for each

O ⊆ ∂� open in the relative topology on ∂�.

(8.6.16)

In relation to these we claim that, for each λ ∈ (0,∞),

{
x ∈ F : uE

�,θ (x) > λ
} ⊆ TF,κ ′

({z ∈ πκ(E) : (N E
κ u
)
(z) > λ}). (8.6.17)

We shall prove (8.6.17) reasoning by contradiction. Specifically, let λ > 0 be fixed
and suppose that the inclusion in (8.6.17) fails, i.e., there exists x ∈ F satisfying
uE

�,θ (x) > λ for which we can find y ∈ ∂�with the property that
(N E

κ u
)
(y) ≤ λ and

x ∈ �κ ′(y). In particular, on the one hand we have

‖u‖L∞(B(x,θδ∂�(x))∩E,Ln) > λ, (8.6.18)

while on the other hand
‖u‖L∞(�κ (y)∩E,Ln) ≤ λ. (8.6.19)

However, these two inequalities conflict with one another since

B
(
x, θδ∂�(x)

) ⊆ �κ(y). (8.6.20)

To justify the inclusion in (8.6.20), observe that for each point z ∈ B
(
x, θδ∂�(x)

)
we

necessarily have δ∂�(z) > (1 − θ)δ∂�(x)which, in turn, permits us to write (bearing
in mind the choice of κ ′ in (8.6.15))

|z − y| ≤ |z − x | + |x − y| < θδ∂�(x) + (1 + κ ′)δ∂�(x)

= (1 + θ + κ ′)δ∂�(x) <
1 + θ + κ ′

1 − θ
δ∂�(z) = (1 + κ)δ∂�(z). (8.6.21)

This shows that z ∈ �κ(y), finishing the proof of (8.6.20) which, in turn, completes
the proof of (8.6.17).
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Our next goal is to show that there exists a constant C ∈ (0,∞) with the property
that

μ
(
TF,κ ′(O)

) ≤ C
[ ˆ

O

(
dist(·, ∂� \ O)

)β/α
dσ
]α

for any proper (relatively) open subsetO of ∂�.

(8.6.22)

Note that since F ⊆ �, from (8.1.7) we have TF,κ ′(∅) = ∅, hence (8.6.22) trivially
holds when O = ∅. There remains to consider the case when the set O as in the
last line of (8.6.22) is also nonempty. Assume this is the case and, making use of
Proposition 7.5.3, decompose O it into a finite-overlap family of Whitney surface
balls {� j } j , by considering the set ∂� equipped with the Euclidean distance as
a geometrically doubling metric space (cf. Lemma 7.5.2). Also, for each surface
ball� := B(z, r) ∩ ∂�, with z ∈ ∂� and 0 < r < 2 diam(∂�), define the restricted
Carleson region

CF
τ (�) := B(z, τr) ∩ F, (8.6.23)

where τ > 0 is a large constant, to be specified later. We now claim that τ may be
chosen so that

TF,κ ′(O) ⊆
⋃

j

CF
τ (� j ). (8.6.24)

In order to justify (8.6.24) we note that definition (8.6.16) can be rephrased as

TF,κ ′(O) = {
x ∈ F : dist(x,O) ≤ (1 + κ ′)−1 dist(x, ∂� \ O)

}
. (8.6.25)

To see this, note that x ∈ TF,κ ′(O) if and only if x ∈ F and |x − y| ≥ (1 + κ ′)δ∂�(x)
for all y ∈ ∂� \ O, and that the last condition is equivalent with

(1 + κ ′)−1dist(x, ∂� \ O) ≥ δ∂�(x). (8.6.26)

Since dist(x,O) ≥ dist(x, ∂�) = δ∂�(x), this proves that the right-to-left inclusion
in (8.6.25) holds. On the other hand, given an arbitrary point x belonging to the set in
the left-hand side of (8.6.25) it follows that x ∈ F ⊆ � and we select x0 ∈ ∂� such
that |x − x0| = δ∂�(x). Of course, either x0 ∈ O or x0 ∈ ∂� \ O, and in the latter
eventuality we may write

dist(x, ∂� \ O) ≤ |x − x0| = δ∂�(x) < (1 + κ ′)δ∂�(x), (8.6.27)

contradicting (8.6.26). Thus, necessarily, x0 ∈ O which together with (8.6.26) then
permits us to estimate

dist(x,O) ≤ |x − x0| = δ∂�(x) ≤ (1 + κ ′)−1 dist(x, ∂� \ O). (8.6.28)

This shows that the left-to-right inclusion in (8.6.25) also holds, completing the proof
of (8.6.25).
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Let now x be an arbitrary point in TF,κ ′(O). This places x in F , hence in�, which
means that x does not belong toO ⊆ ∂�. In particular, dist(x,O) > 0. Going further,
assume that some small ε > 0 has been fixed. The previous discussion then shows
that it is possible to pick a point x∗ ∈ O with the property that

|x − x∗| < (1 + ε) dist(x,O). (8.6.29)

Then there exists an index j for which x∗ ∈ � j and we shall show that ε and τ can
be chosen so as to guarantee that

x ∈ CF
τ (� j ). (8.6.30)

Indeed, assume � j = B(z j , r j ) ∩  for some z j ∈ ∂� and r j ∈ (0, 2 diam(∂�)),
and write

|x − x∗| ≤ (1 + ε) dist(x,O) ≤ 1 + ε

1 + κ ′ dist(x,  \ O)

≤ 1 + ε

1 + κ ′
(
|x − x∗| + dist(x∗, ∂� \ O)

)

≤ 1 + ε

1 + κ ′
(
|x − x∗| + Cr j

)
, (8.6.31)

where C > 0 is a constants depending only on ∂�. The last step above uses the fact
that x∗ ∈ � j and that � j is a Whitney ball for O relative to the ambient ∂� (cf. item
(2) in Proposition 7.5.3). Choosing ε := κ ′/2, this now yields

|x − x∗| ≤ C
(2 + κ ′

κ ′
)
r j (8.6.32)

hence, further,

|x − z j | ≤ |x − x∗| + |x∗ − z j | < Cr j (2 + κ ′)/κ ′ + r j . (8.6.33)

Granted this, the membership in (8.6.30) holds provided we take τ := 2 + C( 2+κ ′
κ ′ )

to begin with.
Having established (8.6.24),wemay nowfinish the proof of (8.6.35) by estimating

μ
(
TF,κ ′(O)

) ≤
∑

j

μ
(CF

t (� j )
) ≤ C

∑

j

rβ

j σ(� j )
α

≤ C
∑

j

[
inf
x∈� j

(
dist(x, ∂� \ O)

)β/α
σ (� j )

]α

≤ C
∑

j

[ ˆ
� j

(
dist(·, ∂� \ O)

)β/α
dσ
]α
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≤ C
[∑

j

ˆ
� j

(
dist(·, ∂� \ O)

)β/α
dσ
]α

≤ C
[ ˆ

O

(
dist(·, ∂� \ O)

)β/α
dσ
]α

. (8.6.34)

Above, the second inequality in (8.6.34) is based on the fact that (μ, σ ) is an (α, β)-
Carleson pair, the third inequality makes use of the fact that for each x ∈ � j we have
r j ≈ dist(x, ∂� \ O), the fifth inequality uses the fact that α ≥ 1 and, finally, the
sixth inequality uses the finite-overlap property of the � j ’s. This finishes the proof
of (8.6.22), hence also of (8.6.35). Moreover, this analysis shows that the constant
in the last term in (8.6.34) depends only on n, κ , and the (α, β)-Carleson constant of
the pair (μ, σ ). This concludes the proof of (8.6.22).

Going further, recall the weighted measure σ̃β/α from (8.6.10). In relation to this,
we claim that there exists C ∈ (0,∞) with the property that

if β = 0, orπκ(E) �= ∂�, then μ
(
TF,κ ′(O)

) ≤ C σ̃β/α(O)α

for eachO proper (relatively) open subset of ∂� contained inπκ(E).
(8.6.35)

Indeed, if β = 0 the inequality in (8.6.35) is a direct consequence of (8.6.22) and
the convention in (8.6.10). On the other hand, if πκ(E) �= ∂� then for every subset
O of πκ(E) we have

dist(·, ∂� \ O) ≤ dist(·, ∂� \ πκ(E)) at all points in ∂�, (8.6.36)

so the inequality in (8.6.35) follows from (8.6.22) and (8.6.36), bearing in mind that
β ≥ 0.

We divide the remaining portion of the proof into three cases, corresponding to
the scenarios (i)-(iii) considered in the statement of the theorem.

Case I:Assume that πκ(E) �= ∂�. In such a situation, (8.2.26) ensures that for each
given λ > 0 the set

O := {
z ∈ ∂� : (N E

κ u
)
(z) > λ

} = {
z ∈ πκ(E) : (N E

κ u
)
(z) > λ

}

is a proper (relatively) open subset of ∂�, contained in πκ(E).
(8.6.37)

Granted this, we may then invoke (8.6.17) and (8.6.35) which yield the level set
estimate

μ
({x ∈ F : |uE

�,θ (x)| > λ}) ≤ C σ̃β/α

({x ∈ πκ(E) : (N E
κ u
)
(x) > λ})α (8.6.38)

for each λ > 0, where C > 0 is a finite constant depending only on p, κ , n, and the
(α, β)-Carleson constant of the pair (μ, σ ). In terms of the abstract piece of notation
introduced in (6.2.1), the above estimate reads

mF
(
λ, uE

�,θ

) ≤ Cmπκ (E)

(
λ,N E

κ u
)α

, for all λ > 0, (8.6.39)
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wheremF is defined relative to the measure μ, whilemπκ (E) is defined relative to the
measure σ̃β/α . In particular, for every t > 0,

{
λ > 0 : mπκ (E)

(
λ,N E

κ u
) ≤ t

} ⊆ {
λ > 0 : mF

(
λ, uE

�,θ

) ≤ Ctα
}
, (8.6.40)

which, by (6.2.2), proves the rearrangement function estimate

(
uE

�,θ

)∗
F (s) ≤ (N E

κ u
)∗
πκ (E)

(
(s/C)

1
α

)
, for all s > 0. (8.6.41)

In the case in which 0 < q < ∞, this further implies

∥∥uE
�,θ

∥∥
Lαp,q (F,Ln)

=
(ˆ ∞

0

[
s

1
αp
(
uE

�,θ

)∗
F (s)

]q ds
s

) 1
q

≤
(ˆ ∞

0

[
s

1
αp
(N E

κ u
)∗
πκ (E)

(
(s/C)

1
α

)]q ds
s

) 1
q

≤ C
1

αp

(ˆ ∞

0

[
t1/p

(N E
κ u
)∗
πκ (E)

(t)
]q dt

t

) 1
q

= C
1

αp
∥∥N E

κ u
∥∥
L p,q (πκ (E),σ )

, (8.6.42)

where in the second inequality we have made the change of variables t = (s/C)
1
α ,

and the last step uses (6.2.14). Likewise, corresponding to the case q = ∞, we have

∥∥uE
�,θ

∥∥
Lαp,∞(F,Ln)

= sup
s>0

[
s

1
αp
(
uE

�,θ

)∗
F (s)

]
≤ sup

s>0

[
s

1
αp
(N E

κ u
)∗
πκ (E)

(
(s/C)

1
α

)]

≤ C
1
αp sup

t>0

[
t1/p

(N E
κ u
)∗
πκ (E)

(t)
]

= C
1
αp
∥
∥N E

κ u
∥
∥
L p,∞(πκ (E),σ )

, (8.6.43)

as desired. Collectively, (8.6.42) and (8.6.43) prove (8.6.11) in case (i).

Case II: Assume that σ(∂�) = +∞ and β = 0. Note that the latter condition
entails σ̃β/α = σ (cf. (8.6.10)). Keeping this in mind, and taking into account the
nature of the conclusion we seek, there is no loss of generality in assuming that
N E

κ u ∈ L p,q(πκ(E), σ ). In such a scenario, from (8.2.26), (8.2.27), and (6.2.20) it
follows that, for each λ > 0, the set

O := {
z ∈ ∂� : (N E

κ u
)
(z) > λ

} = {
z ∈ πκ(E) : (N E

κ u
)
(z) > λ

}

is a proper (relatively) open subset of ∂�, contained in πκ(E).
(8.6.44)

Having made this observation, from (8.6.17) and (8.6.35) we may then conclude
that the level set estimate (8.6.38) with β = 0 holds in the present setting as well.
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With this in hand, the same argument that has produced (8.6.42) and (8.6.43) proves
(8.6.11) in case (ii).

Case III: Assume πκ(E) = ∂�, σ(∂�) < +∞, μ(F) < +∞, and β = 0. In par-
ticular, σ̃β/α = σ . We may once again run the argument as in Case I as soon as
we establish the estimate in (8.6.35) in the extreme case when O = ∂�. Given that
TF,κ ′(∂�) = F , the estimate in question presently takes the form

μ(F) ≤ Cσ(∂�)α. (8.6.45)

The smallest number C ∈ [0,+∞) which does this job is C := μ(F) σ (∂�)−α and,
as seen from (8.6.42)–(8.6.43), the manner in which this constant intervenes in the

final estimate (8.6.11) is as C
1

αp = [
μ(F)

] 1
αp σ(∂�)

− 1
p . This explains the choice of

C0 in (8.6.12) in case (iii). Hence, (8.6.38) holds in this case as well and the desired
conclusion follows as before.

At this point, (8.6.11) has been fully proved. Finally, (8.6.13) is a consequence of
(8.6.11), the embedding (6.2.26) and identification (6.2.25) which give

Lαp,p(E, μ) ↪→ Lαp,αp(E, μ) = Lαp(E, μ), (8.6.46)

as well as the pointwise estimate (6.6.82). This finishes the proof of Theorem 8.6.2.
�

One particular case of Theorem 8.6.2 worth singling out corresponds to � being
an open subset of R

n with a lower Ahlfors regular boundary and μ := Ln��. Such
a setting makes the object of Proposition 8.6.3 below. In dimensions two and higher,
taking σ := Hn−1�∂� renders (μ, σ ) an (n/(n − 1), 0)-Carleson pair for the ambi-
ent (�, ∂�) in such a setting, so Theorem 8.6.2 applies. In addition, thanks to the
availability of isoperimetric inequalities in the current case, wemay further elaborate
on the nature of the constant C0 inherited from (8.6.12).

Proposition 8.6.3 Fix n ∈ Nand let�beanopennonempty proper subset ofRn with
a lower Ahlfors regular boundary. Define σ := Hn−1�∂�, choose κ ∈ (0,∞), and
pick θ ∈ (0, 1) along with p ∈ (0,∞) and q ∈ (0,∞], all arbitrary. Also, consider
some Ln-measurable set E ⊆ � and make the assumption that

Ln(E) < +∞ in the scenario in which
Ln(�) = +∞, σ (∂�) < +∞, and πκ(E) = ∂�.

(8.6.47)

Then for every Ln-measurable function u : E → R one has

∥∥uE
�,θ

∥∥
L

np
n−1 ,q

(E,Ln)
≤ C#

∥∥N E
κ u
∥∥
L p,q (πκ (E),σ )

(8.6.48)

(with the understanding that L
np
n−1 ,q is L∞ when n = 1) where C# is a finite positive

number which depends only on p, q when n = 1, and in the case when n ≥ 2 the
number C# ∈ (0,∞) is defined as
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C# :=

⎧
⎪⎨

⎪⎩

Cgeo if either σ(∂�) = +∞, or πκ(E) �= ∂�,

Cgeo if both Ln(�) < +∞ and σ(∂�) < +∞,

max
{
Cgeo,

[Ln(E)
] n−1

np σ(∂�)
− 1

p
}

in all other cases,

(8.6.49)

for some geometric constant Cgeo ∈ (0,∞) which depends only on κ , θ , p, q, n, and
the lower ADR constant of ∂�.

As a corollary of (8.6.48), (6.6.82), (6.2.16), and (6.2.26), the estimates

∥
∥u
∥
∥
L

np
n−1 ,q

(E,Ln)
≤ C#

∥
∥N E

κ u
∥
∥
L p,q (πκ (E),σ )

, (8.6.50)

and
‖u‖

L
np
n−1 (E,Ln)

≤ C#

∥∥N E
κ u
∥∥
L p(πκ (E),σ )

(8.6.51)

(naturally interpreting L
np
n−1 as L∞ when n = 1) hold for everyLn-measurable func-

tion u : E → R, with C# ∈ (0,∞) as above.

Remark 8.6.4 We would like to point out that when n ≥ 2 estimate (8.6.51) may
also be regarded as a weighted isoperimetric inequality, involving the weighted mea-
sures

|u| n
n−1Ln in�, and (Nκu)Hn−1 on ∂�. (8.6.52)

Specifically, given an Ln-measurable set E ⊆ � and an Ln-measurable function
u : E → R, wemay recast estimate (8.6.51) as theweighted isoperimetric inequality

[
(|u| n

n−1Ln)(E)
] n−1

n ≤ C#
(
(N E

κ u)Hn−1)(πκ(E)), (8.6.53)

where C# is as in (8.6.49). Specializing this to the case when E := � and u ≡ 1
yields an estimate very much reminiscent of the classical isoperimetric inequality,
namely

[Ln(�)
] n−1

n ≤ C#Hn−1(∂�). (8.6.54)

Yet another way to understand the nature of Proposition 8.6.3 is from the perspective
of embeddings of tent spaces. Concretely, assuming that either σ(∂�) = +∞ or
Ln(�) < +∞, estimate (8.6.51) implies (taking E := � and u ≡ 1), in the language
suggested in Remark 8.3.6, that the tent space T p

∞ associated with � and σ embeds
continuously into theLebesgue space L

np
n−1 (�,Ln). Hence, in the scenariomentioned

above, using the piece of notation introduced in (8.3.31) we have the continuous
embedding

N p
κ (�; σ) ↪→ L

np
n−1 (�,Ln). (8.6.55)

Here is the proof of Proposition 8.6.3.

Proof of Proposition 8.6.3 If n = 1, then (8.6.48) follows from Lemma 8.3.2. Con-
sider now the case when n ≥ 2. As noted in the buildup to the statement of Propo-
sition 8.6.3, taking μ := Ln�� renders (μ, σ ) an (n/(n − 1), 0)-Carleson pair for
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the ambient (�, ∂�). Granted this, Theorem 8.6.2 applied with F := E (as well as
α := n/(n − 1) > 1 and β := 0) yields all the desired conclusions in the statement,
except for the fact that C# is a finite, purely geometric constant, in the case when
both Ln(�) < +∞ and σ(∂�) < +∞. In such a case, the latter condition forces
Ln(∂�) = 0 which further implies Ln(�) = Ln(�) < +∞. Having clarified this,
we may invoke the isoperimetric inequality (5.7.19) which presently gives

Ln(�) ≤ n−1(ωn−1)
−1/(n−1)σ (∂�)

n
n−1 . (8.6.56)

In turn, from (8.6.56) and (8.6.16) it follows that for every Lebesgue measurable set
E ⊆ � we have

Ln
(
TE,κ ′(∂�)

) = Ln(E) ≤ Ln(�) ≤ n−1(ωn−1)
−1/(n−1) σ (∂�)

n
n−1 . (8.6.57)

This shows that, in the current scenario, the estimate in (8.6.35) holds in the extreme
case when O = ∂�, with a purely dimensional constant. All things considered, we
conclude that the estimate in (8.6.35) presently takes the stronger form

Ln
(
TE,κ ′(O)

) ≤ Cσ(O)
n

n−1 , ∀O relatively open subset of ∂�, (8.6.58)

for some C ∈ (0,∞) which depends only on n, κ , and the lower ADR constant of
∂�. With this in hand, wemay now run the same argument as in Case I in the proof of
Theorem 8.6.2 and obtain (8.6.48) with C# = Cgeo ∈ (0,∞), a geometric constant
which depends only on κ , θ , p, q, n, and the lower AR constant of ∂�. �

Here is a versatile local estimate near the boundary, of a purely real-variable
nature, derived from Proposition 8.6.3 in a very general geometric setting.

Corollary 8.6.5 Assume � is an open nonempty proper subset of R
n with a lower

Ahlfors regular boundary, and abbreviate σ := Hn−1�∂�. Then for each integra-
bility exponent p ∈ (0,∞) and each aperture parameter κ > 0 there exists some
C ∈ (0,∞), which depends only on lower Ahlfors regularity constant of ∂� and
n, p, κ , with the property that for each Lebesgue measurable function u : � → R,
each point x ∈ ∂�, and each radius ρ ∈ (0,∞) one has

( ˆ
B(x,ρ)∩�

|u|p dLn
)1/p ≤ Cρ1/p

( ˆ
B(x,(2+κ)ρ)∩∂�

(Nρ
κ u)p dσ

)1/p
. (8.6.59)

Proof Fix p ∈ (0,∞) and κ > 0. Given any Ln-measurable function u : � → R,
for each x ∈ ∂� and ρ ∈ (0,∞) we may estimate

( ˆ
B(x,ρ)∩�

|u|p dLn
)1/p

≤
( ˆ

B(x,ρ)∩�

|u|np/(n−1) dLn
)(n−1)/(np)( ˆ

B(x,ρ)∩�

1 dLn
)1/(np)
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≤ C
( ˆ

B(x,(2+κ)ρ)∩∂�

(Nρ
κ u)p dσ

)1/p · ρ1/p, (8.6.60)

thanks to Hölder’s inequality, (8.6.51) presently used with E := B(x, ρ) ∩ �, the
inclusion in (8.1.17), and the definition of the truncated nontangential maximal oper-
ator from (1.5.5). �

An elementary, yet useful, version of the estimate in (8.6.48) is discussed in the
lemma below.

Lemma 8.6.6 Let � be an open nonempty proper subset of Rn with a lower Ahlfors
regular boundary, and abbreviate σ := Hn−1�∂�. Then for each p ∈ (0,∞),
θ ∈ (0, 1), and κ > 0 there exists a finite constant C > 0 depending on lower Ahlfors
regularity constant of ∂�, and θ, p, κ , with the property that for every Lebesguemea-
surable set E ⊆ � and every Lebesgue measurable function u : E → R there holds

∥
∥δ(n−1)/p

∂� · uE
�,θ

∥
∥
L∞(�,Ln)

≤ C‖N E
κ u‖L p(πκ (E),σ ). (8.6.61)

Hence, as a consequence of (8.6.61) and (6.6.82),

∥∥δ(n−1)/p
∂� · u∥∥L∞(E,Ln)

≤ C‖N E
κ u‖L p(πκ (E),σ ). (8.6.62)

Proof Fix some z ∈ � and pick x ∈ E ∩ B
(
z, θδ∂�(z)

)
arbitrary. If we now choose

x∗ ∈ ∂� such that |x − x∗| = δ∂�(x) then x ∈ �κ(y) for every point y in the surface
ball �

(
x∗, κδ∂�(x)

) := B
(
x∗, κδ∂�(x)

) ∩ ∂�. Hence,

|u(x)|p ≤ inf
y∈�(x∗,κδ∂�(x))

(N E
κ u
)
(y)p ≤

 
�(x∗,κδ∂�(x))

(N E
κ u
)
(y)p dσ(y). (8.6.63)

Since (1 − θ)δ∂�(z) < δ∂�(x) < (1 + θ)δ∂�(z), using (8.6.63) and the fact that ∂�

is lower Ahlfors regular we may now estimate

δ∂�(z)(n−1)/p|u(x)| ≤ C · δ∂�(x)(n−1)/p|u(x)| ≤ C · σ
(
�(x∗, κδ∂�(x))

)1/p|u(x)|
≤ C‖N E

κ u‖L p(πκ (E),σ ), (8.6.64)

where the constants in (8.6.64) depend only on p, κ , θ , and the lower Ahlfors regu-
larity constants of ∂�. On account of (6.6.79) this yields

δ∂�(z)(n−1)/p · uE
�,θ (z) ≤ C‖N E

κ u‖L p(πκ (E),σ ), (8.6.65)

and since z ∈ � was selected arbitrarily, the desired conclusion follows. �

We can go a step further and interpolate between (8.6.48) and (8.6.61) to obtain
the estimate in the next proposition.
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Proposition 8.6.7 Suppose� is an open nonempty proper subset ofRn with a lower
Ahlfors regular boundary and abbreviate σ := Hn−1�∂�. Select some arbitrary
κ ∈ (0,∞), θ ∈ (0, 1), p ∈ (0,∞), and q ∈ [ np

n−1 ,∞
)
. In addition, consider some

Ln-measurable set E ⊆ � satisfying (8.6.47).
Then for every Ln-measurable function u : E → R one has

( ˆ
E

δ
(n−1)q/p−n
∂� · ∣∣uE

�,θ

∣
∣q dLn

)1/q ≤ C
∥
∥N E

κ u
∥
∥
L p(πκ (E),σ )

(8.6.66)

whereC ∈ (0,∞) depends only on p, q, κ, θ , and the constantC# defined in (8.6.49).
In particular, (8.6.66) and (6.6.82) imply

( ˆ
E

δ
(n−1)q/p−n
∂� · |u|q dLn

)1/q ≤ C
∥∥N E

κ u
∥∥
L p(πκ (E),σ )

. (8.6.67)

Proof Upon observing that at Ln-a.e. point in � we have

δ
(n−1)q/p−n
∂� · ∣∣uE

�,θ

∣∣q =
[
δ

(n−1)/p
∂� · uE

�,θ

]q−np/(n−1) · ∣∣uE
�,θ

∣∣np/(n−1)

≤ ∥∥δ(n−1)/p
∂� · uE

�,θ

∥∥q−np/(n−1)
L∞(�,Ln)

· ∣∣uE
�,θ

∣∣np/(n−1)
, (8.6.68)

we may write

( ˆ
E

δ
(n−1)q/p−n
∂� · ∣∣uE

�,θ

∣
∣q dLn

)1/q

≤ ∥∥δ(n−1)/p
∂� · uE

�,θ

∥∥1−
np

(n−1)q

L∞(�,Ln)

( ˆ
E

∣∣uE
�,θ

∣∣np/(n−1)
dLn

)1/q

≤ C
∥∥N E

κ u
∥∥1−

np
(n−1)q

L p(πκ (E),σ ) · ∥∥N E
κ u
∥∥

np
(n−1)q

L p(πκ (E),σ )

= C
∥∥N E

κ u
∥∥
L p(πκ (E),σ )

, (8.6.69)

on account of (8.6.61) and (8.6.48) (used here with q := p, bearing inmind (6.2.25)–
(6.2.26)). �

Integrability properties corresponding to large exponents for the nontangential
maximal operator of the gradient of a given function imply Hölder regularity of the
function in question.

Corollary 8.6.8 Let � ⊆ R
n (where n ≥ 2) be a uniform domain (in the sense of

Definition 5.11.10) with a lower Ahlfors regular boundary. Set σ := Hn−1�∂�, fix an
aperture parameter κ ∈ (0,∞), and pick an integrability exponent p ∈ (n − 1,∞).
In this setting, assume u ∈ C 1(�) is a function satisfying Nκ(∇u) ∈ L p(∂�, σ).
Then u ∈ .

C α(�) where α := 1 − n−1
p ∈ (0, 1) and, for some C = C(�, n, p, κ) in

(0,∞), one has
‖u‖ .

C α(�)
≤ C‖Nκ(∇u)‖L p(∂�,σ). (8.6.70)
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Proof This is a consequence of (5.11.78) and (8.6.62). �

It is also possible to produce a weighted version of the estimate in (8.6.51) from
Proposition 8.6.3 of the kind described in our next result.

Proposition 8.6.9 Let � be an open nonempty proper subset of R
n (where n ≥ 2)

with a lower Ahlfors regular boundary and set σ := Hn−1�∂�. Fix an aperture
parameter κ ∈ (0,∞), an integrability exponent p ∈ (0,∞), and suppose 0≤N≤M.
Also, consider some Ln-measurable set E ⊆ � and retain the assumption made in
(8.6.47).

Then for each Ln-measurable function u : E → R and each y ∈ ∂� one has

[ ˆ
E

δ∂�(x)N

|x − y|M |u(x)| np
n−1 dLn(x)

] n−1
np

≤ C#

[ ˆ
πκ (E)

(N E
κ u
)
(x)p|x − y|(N−M) n−1

n dσ(x)

] 1
p

(8.6.71)

where C# ∈ (0,∞) is defined as in (8.6.49) (with the understanding that now the
constant Cgeo ∈ (0,∞) depends on κ , p, n, N , M, and the lower AR constant of
∂�).

Proof Applying (8.6.51) to the function E � x �→
(

δ∂�(x)N

|x−y|M
) n−1

np · u(x) ∈ R yields

[ ˆ
E

δ∂�(x)N

|x − y|M |u(x)| np
n−1 dLn(x)

] n−1
np

(8.6.72)

≤ C#

[ ˆ
πκ (E)

(N E
κ u
)
(x)p

(
sup

z∈�κ(x)∩E

δ∂�(z)N

|z − y|M
) n−1

np

dσ(x)

] 1
p

.

Since (8.1.23) and the fact that 0 ≤ N ≤ M entail that for each x ∈ πκ(E) \ {y} we
have

sup
z∈�κ (x)

δ∂�(z)N

|z − y|M ≈ sup
z∈�κ(x)

|z − x |N
(|z − x | + |x − y|)M

≤ sup
0<t<∞

t N

(t + |x − y|)M ≈ |x − y|N−M , (8.6.73)

and sinceHn−1({y}) = 0 (given that n ≥ 2), the estimate claimed in (8.6.71) follows
by combing (8.6.72) with (8.6.73). �

We next revisit Corollary 8.6.5, with the goal of establishing a similar estimate,
now involving a full one-sided collar neighborhood of the boundary in the left side.
To state it, recall that for any given open set � ⊆ R

n and any ε > 0, the one-sided
collar neighborhood Oε of ∂� has been introduced in (6.1.4), and the truncated
nontangential maximal operator Nε

κ is defined as
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Nε
κu := NOε

κ u = Nκ

(
u1Oε

)
, (8.6.74)

for each Lebesgue measurable function u : � → C.

Proposition 8.6.10 Fix n ∈ N and suppose � is an open nonempty proper subset of
R

n with a lower Ahlfors regular boundary. Consider the measure σ := Hn−1�∂�.
Then for each p ∈ (0,∞) and κ ∈ (0,∞) there exists C = C(∂�, n, κ, p) in

(0,∞) depending only on n, κ , p, and the lower ADR constant of ∂�, with the
property that, if

ε ∈ (
0, ε�,κ

)
with ε�,κ := diam(∂�)

n(2 + √
n)(3 + 2κ)

∈ (0,+∞], (8.6.75)

for each Ln-measurable function u : � → C one has

( ˆ
Oε

|u|p dLn
)1/p ≤ Cε1/p · ∥∥Nε

κu
∥∥
L p(∂�,σ)

. (8.6.76)

When the measure σ is also locally finite (which is the case if, for example, �

is a set of locally finite perimeter), then Lemma 8.3.2 shows that (8.6.76), suitably
interpreted, continues to be valid for the end-point value p = ∞.

Proof of Proposition 8.6.10 For each ε > 0 fixed, denote by Qε := εZ
n + [0, ε]n

the standard grid in R
n consisting of cubes of side-length ε. Also, let Jε(�) be the

collection of cubes Q ∈ Qε such that Q ∩ ∂� �= ∅. In general, for a cube Q and a
positive number λ, we denote by xQ the center of Q and by λQ the concentric cube
dilated by λ. We divide the proof of (8.6.76) into four steps.

Step (i). For each ε > 0 one has

Oε ⊆
⋃

Q∈Jε(�)

(2 + √
n)Q. (8.6.77)

Indeed, for x ∈ Oε, there exists x∗ ∈ ∂� such that |x − x∗| = δ∂�(x) < ε. Since
x∗ ∈ ∂�, there exists Q∗ ∈ Jε(�) such that x∗ ∈ Q∗. Then

|x − xQ∗ | ≤ |x − x∗| + |x∗ − xQ∗ | ≤ (1 + √
n/2)ε, (8.6.78)

so that x belongs to the cube centered at xQ∗ with side-length (2 + √
n)ε.

Step (ii). Having fixed ε > 0 arbitrary, for each λ ≥ 1, κ > 0, and Q ∈ Jε(�),
one has

πκ(λQ) ⊆ λ
√
n(3 + 2κ)Q. (8.6.79)

To prove (8.6.79), first observe that
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λ ≥ 1 and Q ∈ Jε(�)=⇒ ∅ �= Q ∩ ∂� ⊆ λQ ∩ ∂�=⇒ λQ ∩ ∂� �= ∅

=⇒ δ∂�(y) ≤ λ
√
n ε for each y ∈ λQ. (8.6.80)

Assume next that x ∈ πκ(λQ). Then �κ(x) ∩ λQ �= ∅. Pick y ∈ �κ(x) ∩ λQ.
Thanks to (8.1.2) and (8.6.80) we may then estimate

|x − xQ | ≤ |x − y| + |y − xQ | < (1 + κ)δ∂�(y) + λ
√
n

2
ε

≤ (1 + κ)λ
√
n ε + λ

√
n

2
ε = 1

2
λ
√
n(3 + 2κ)ε. (8.6.81)

This places x in λ
√
n(3 + 2κ)Q, as wanted.

Step (iii). For each M ∈ (0,∞), the collection of cubes {MQ}Q∈Jε(�) has a finite
overlap. More precisely,

∑

Q∈Jε(�)

1MQ ≤ (1 + M
√
n)n. (8.6.82)

To see that this is the case, assume Q1, . . . , Qm ∈ Jε(�) are such that the inter-
section (MQ1) ∩ · · · ∩ (MQm) is nonempty and pick x0 ∈ (MQ1) ∩ · · · ∩ (MQm).
For such a point we have |x0 − xQ j | ≤ M

√
nε

2 for each j ∈ {1, . . . ,m}, which

implies {xQ1 , . . . , xQm } ⊆ B
(
x0,

M
√
nε

2

)
. By design, |xQi − xQ j | ≥ ε for every i, j

in {1, . . . ,m} with i �= j . In other words, the family {xQ1 , . . . , xQm } is ε-disperse.
This readily implies that m ≤ (1 + M

√
n)n , as wanted.

Step (iv). The end-game in the proof of (8.6.76). Denoting λ := 2 + √
n ∈ [1,∞),

for each given Ln-measurable function u : � → C we may write

ˆ
Oε

|u| dLn ≤
∑

Q∈Jε(�)

ˆ
λQ

|u| dLn ≤
∑

Q∈Jε(�)

‖1λQ‖Ln(�,Ln)‖u‖
L

n
n−1 (λQ,Ln)

≤ Cε
∑

Q∈Jε(�)

∥∥NλQ
κ u

∥∥
L1(πκ (λQ),σ )

= Cε
∑

Q∈Jε(�)

ˆ
∂�

1πκ (λQ)NλQ
κ u dσ

≤ Cε

ˆ
∂�

( ∑

Q∈Jε(�)

1πκ (λQ)

)
Nκu dσ

≤ Cε

ˆ
∂�

( ∑

Q∈Jε(�)

1λ
√
n(3+2κ)Q

)
Nκu dσ

≤ Cε
(
1 + λ n(3 + 2κ)

)n
ˆ

∂�

Nκu dσ, (8.6.83)
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for someC ∈ (0,∞)which depends only on κ , n, the lowerADRconstant of ∂�, and
the doubling character of σ . Above, the first inequality is a consequence of (8.6.77),
given the present choice of λ. The second inequality is simply Hölder’s inequality.
The third inequality follows from the fact that ‖1λQ‖Ln(�,Ln) ≤ λε, together with
Proposition 8.6.3. The latter is applicable once we choose ε small enough so that

πκ(λQ) �= ∂� for each Q ∈ Jε(�). (8.6.84)

Note that, in light of (8.6.79), condition (8.6.84) is satisfied whenever

diam(∂�) > diam
(
λ
√
n(3 + 2κ)Q

) = λ n(3 + 2κ)ε, (8.6.85)

hence whenever ε is as in (8.6.75). Next, the equality in (8.6.83) is clear from defini-
tions, while the fourth inequality in (8.6.83) is trivial. The fifth inequality in (8.6.83)
is implied by (8.6.79), while the last inequality in (8.6.83) is seen from (8.6.82)
applied with M := λ

√
n(3 + 2κ). Estimate (8.6.83) establishes

ˆ
Oε

|u| dLn ≤ Cε · ∥∥Nκu
∥
∥
L1(∂�,σ)

. (8.6.86)

Finally, replacing the function u by
∣∣u · 1Oε

∣∣p in (8.6.86) readily yields (8.6.76), on
account of (1.5.5) and (8.2.12). �

Having established the estimate in Proposition 8.6.10 we now derive a very useful
geometric measure theoretic inequality.

Corollary 8.6.11 Let � be an open nonempty proper subset of R
n with a lower

Ahlfors regular boundary, and recall the family of one-sided collar neighborhoods
Oε of ∂�, indexed by ε > 0, introduced in (6.1.4). Then for each λ ∈ (2,∞) there
exist c,C ∈ (0,∞) with the property that

Ln
(
B(x, r) ∩ Oε

) ≤ Cε · σ
(
B(x, λr) ∩ ∂�

)

for each x ∈ ∂�, ε ∈ (
0, c · diam(∂�)

)
, and r ∈ (0,∞).

(8.6.87)

As a consequence, if  ⊆ R
n is a nonempty closed Ahlfors regular set and for

each threshold ε > 0 one definesUε := {
x ∈ R

n : dist(x, ) < ε
}
, then there exist

two constants c,C ∈ (0,∞) such that

Ln
(
B(x, r) ∩ Uε

) ≤ Cε rn−1

for each x ∈ , ε ∈ (
0, c · diam()

)
, and r ∈ (0,∞).

(8.6.88)

Proof Given λ ∈ (2,∞), consider the aperture parameter κ := λ − 2 ∈ (0,∞) and
recall the threshold ε�,κ from (8.6.75). Also, abbreviate σ := Hn−1�∂� and fix
x ∈ ∂� along with r ∈ (0,∞). Then (8.1.17) and (8.2.24) imply
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Nκ(1B(x,r)∩�) ≤ 1B(x,(2+κ)r)∩∂�. (8.6.89)

For each ε ∈ (
0, ε�,κ

)
we may now estimate

Ln
(
B(x, r) ∩ Oε

) =
ˆ
Oε

1B(x,r)∩� dLn ≤ Cε
∥∥Nε

κ (1B(x,r)∩�)
∥∥
L1(∂�,σ)

≤ Cε
∥∥Nκ(1B(x,r)∩�)

∥∥
L1(∂�,σ)

≤ Cε
∥∥1B(x,(2+κ)r)∩∂�

∥∥
L1(∂�,σ)

= Cε σ
(
B(x, (2 + κ)r) ∩ ∂�

)
, (8.6.90)

based on Proposition 8.6.10 and (8.6.89). In view of the fact that κ + 2 = λ, this
establishes (8.6.87).

In turn, (8.6.88) follows by applying (8.6.87) to � := R
n \ , which is an open

set whose boundary ∂� =  is Ahlfors regular, keeping in mind thatLn() = 0. �

With Corollary 8.6.11 in hand, we now momentarily digress for the purpose of
providing proof of the claim made earlier in (5.9.19).

Proposition 8.6.12 Assume � ⊆ R
n is an open set with an Ahlfors regular bound-

ary. Then � is n-thick if and only if � satisfies an interior corkscrew property.

Proof The fact that if � satisfies an interior corkscrew property implies that � is
n-thick has been observed in (5.1.6). In the opposite direction, assume � ⊆ R

n is an
open n-thick set with an Ahlfors regular boundary, and abbreviate σ := Hn−1�∂�.
Fix an arbitrary point x ∈ ∂� along with some r ∈ (

0, diam(∂�)
)
. Also, recall the

constants c,C ∈ (0,∞) from Corollary 8.6.11 and assume that

0 < ε < c · diam(∂�). (8.6.91)

Finally, bring in the one-sided collar neighborhood Oε of ∂� from (6.1.4). Based on
(8.6.87) we may then estimate

Ln
(
(B(x, r) ∩ �) \ Oε

) = Ln
(
B(x, r) ∩ �

)− Ln
(
B(x, r) ∩ Oε

)

≥ C1r
n − Cε rn−1, (8.6.92)

where C1 ∈ (0,∞) is the constant associated with the n-thickness condition of �.
Hence, if we now choose

0 < θ < min {c,C1/C} (8.6.93)

and take ε := θr , then (8.6.91) is satisfied so we may conclude from (8.6.92) that

Ln
(
(B(x, r) ∩ �) \ Oθr

)
> 0. (8.6.94)

In particular, this implies that the set (B(x, r) ∩ �) \ Oθr is not empty. There remains
to observe that for any point z ∈ (B(x, r) ∩ �) \ Oθr we have
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z ∈ �, dist(z, ∂�) ≥ θr, |z − x | < r, (8.6.95)

which ultimately proves that � satisfies an interior corkscrew property. �

As a consequence of Proposition 8.6.12, we see that complements of closed
Ahlfors regular set do satisfy an interior corkscrew property. Here is a formal state-
ment and proof.

Corollary 8.6.13 If  ⊆ R
n is a closed Ahlfors regular set, then R

n \  satisfies
an interior corkscrew property.

Proof Note that � := R
n \  is an open set with ∂� := . Moreover, since 

has zero Lebesgue measure, � is obviously n-thick. Granted these observations,
Proposition 8.6.12 applies and gives that � satisfies an interior corkscrew property.

�

In this vein, it is worth recalling the following definition.

Definition 8.6.14 Call a nonempty closed set  ⊆ R
n porous provided

there exists η ∈ (0, 1) with the property that for each x in  and r in
(0,∞) it is possible to find y ∈ R

n such that B(y, ηr) ⊆ B(x, r) \ .
(8.6.96)

As is apparent from Corollary 8.6.13 and Definition 8.6.14,

any closed Ahlfors regular set ⊆ R
n is porous. (8.6.97)

For more general results of this flavor see [33] (where (8.6.96) is referred to as a ball
condition).

Pressing on, we discuss yet another off-diagonal Carleson measure estimate of
reverse Hölder type which is going to be of basic importance for our later work.

Proposition 8.6.15 Assume  ⊆ R
n is a nonempty closed set with empty interior,

and σ is a doubling Borel measure on with the property that there exist β ∈ R and
c ∈ (0,∞) such that

σ
(
B(x, r) ∩ 

) ≥ crβ, ∀x ∈ , ∀r ∈ (
0, 2 diam

)
. (8.6.98)

Then for each α ∈ [1,∞), p ∈ (0,∞), κ ∈ (0,∞), θ ∈ (0, 1), and λ < n − αβ,
there exists a constant C ∈ (0,∞) which depends only on α, β, λ, p, κ , θ , c, and
the doubling constant of σ , with the property that, for every Ln-measurable subset
E of R

n \  and every Ln-measurable function u : E → C, one has

ˆ
E

δ−λ


∣∣uE
�,θ

∣∣p dLn ≤ C
(
sup
E

δ

)n−αβ−λ ∥∥N E
κ u
∥∥p

L p/α(πκ (E),σ )
(8.6.99)



750 8 Open Sets with Locally Finite Surface Measures and Boundary Behavior

where the intervening nontangential maximal operatorN E
κ , the projection operator

πκ , and local maximal function uE
�,θ (cf. (6.6.79)) are all considered relative to the

open ambient R
n \ .

Hence, as a corollary of (8.6.99) and (6.6.82),

ˆ
E

δ−λ
 |u|p dLn ≤ C

(
sup
E

δ

)n−αβ−λ ∥∥N E
κ u
∥∥p

L p/α(πκ (E),σ )
. (8.6.100)

Before presenting the proof of Proposition 8.6.15 we make four comments. First,
the particular version of (8.6.100) corresponding to taking u := 1 gives that, in the
geometric context described in Proposition 8.6.15, we have

ˆ
E

δ−λ
 dLn ≤ C

(
sup
E

δ

)n−αβ−λ · [σ (πκ(E)
)]α

. (8.6.101)

Second, specializing (8.6.100) to the case when u := 1 and E := B(x, r) \ 

with x ∈  and r > 0 arbitrary proves that

if we abbreviate μλ := δ−λ
 Ln , then (μλ, σ ) is

a (α, n − αβ − λ)-Carleson pair for the ambient
(Rn \ ,), in the sense of Definition 8.6.1.

(8.6.102)

Third, in the case when  := ∂�, where � ⊂ R
n is an open set with a lower

Ahlfors regular boundary, σ := Hn−1�∂� is doubling, α := 1, β := n − 1, and we
take λ := 0, it follows that the estimate recorded in (8.6.100) becomes

ˆ
E

|u|p dLn ≤ C
(
sup
E

δ∂�

)
· ∥∥N E

κ u
∥∥p

L p(πκ (E),σ )

whenever E is aLn-measurable subset of�
and u : E → C is a Ln-measurable function.

(8.6.103)

In particular, when E := Oε defined as in (6.1.4) for an arbitrary ε > 0, we recover
the estimate in (8.6.76) under the assumptionsmade in Proposition 8.6.15. This being
said, observe that Proposition 8.6.10 does not require the measure σ to be doubling,
as we presently do.

Fourth, in the context of Proposition 8.6.15, the values α := n
n−1 and β := n − 1

are permissible, and they force λ < n − αβ = 0. In the (precluded) limiting case
λ = 0, estimate (8.6.99) formally corresponds to (8.6.48), after readjusting the
exponent p. From this point of view we may regard Proposition 8.6.3 as a (pro-
hibited) limiting case of Proposition 8.6.15.

Proof of Proposition 8.6.15 For starters, observe that the topological conditions
imposed on  ensure that R

n \  is an open set with boundary . We claim that in
place of (8.6.99) it suffices to show that there exists C ∈ (0,∞) such that
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ˆ
E

δ−λ
 |u|p dLn ≤ C

(
sup
E

δ

)n−αβ−λ ∥∥N E
κ u
∥∥p

L p/α(πκ (E),σ )
(8.6.104)

for every Ln-measurable subset E of R
n \  and every Ln-measurable function

u : E → R. To see that (8.6.104) self-improves to (8.6.99) we reason as follows.
First, it is easy to check based on definitions that

B
(
y, θδ(y)

) ⊆ �κ+θ (x), ∀x ∈ , ∀y ∈ �κ(x). (8.6.105)

In concert with (6.6.79), this readily implies

N E
κ

(
uE

�,θ

) ≤ N E
κ+θ (u) everywhere on . (8.6.106)

In turn, from (8.6.106), (8.1.20), and (8.4.2) (bearing in mind that σ is doubling),
we deduce that

∥
∥N E

κ

(
uE

�,θ

)∥∥p

L p/α(πκ (E),σ )
≤ ∥
∥N E

κ+θu
∥
∥p

L p/α(πκ (E),σ )
(8.6.107)

≤ ∥∥N E
κ+θu

∥∥p

L p/α(πκ+θ (E),σ )
≤ C

∥∥N E
κ u
∥∥p

L p/α(πκ (E),σ )
,

for somefinite constantC = C(, κ, p, α) > 0.Writing (8.6.104) foruE
�,θ (restricted

to E) in place of u then yields (8.6.99) on account of (6.6.81) and (8.6.107).
Henceforth we focus on proving (8.6.104). To this end, fix an Ln-measurable

subset E of R
n \  and note that, given the goals we have in mind, there is no loss

of generality in assuming that sup {δ(x) : x ∈ E} < ∞. Suppose this is indeed
the case, and also fix some Ln-measurable function u : E → R. For each ε > 0
introduce

Oε
 := {

x ∈ R
n : δ(x) < ε

}
, (8.6.108)

then define the Whitney strip

Õε
E, := E ∩

(
Oε

 \ Oε/2


)
. (8.6.109)

Note that in order to prove (8.6.104) it suffices to show that

ˆ
Õε

E,

δ−λ
 |u|p dLn ≤ Cεn−αβ−λ

∥∥N E
κ u
∥∥p

L p/α(,σ )
. (8.6.110)

Indeed, since δ(x) ≈ ε uniformly for x ∈ Õε
E, , writing (8.6.110) with the parame-

ter ε > 0 replaced by 2− j r where r := sup {δ(x) : x ∈ E} ∈ (0,∞) and summing
over j ∈ N0, yields (8.6.104) on account of the fact that λ < n − αβ.

To continue, consider the collection of balls

C := {
B(y, ε/20) : y ∈ Õε

E,

}
(8.6.111)
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covering the Whitney strip Õε
E, . By Vitali’s covering lemma (cf. [240, Lemma 1.6,

p. 9]) there exists an at most countable sub-collection C0 ⊆ C such that

∀B, B ′ ∈ C0 =⇒ B ∩ B ′ = ∅ and Õε
E, ⊆

⋃

B∈C0

5B. (8.6.112)

For each such B ∈ C0, we will compare
´
B δ−λ

 |u|p dLn with the integral of
(N E

κ u
)p/α

over the -ball

�B := B
(
y∗, δ(y)

) ∩ , (8.6.113)

where y is the center of B and y∗ ∈  is closest to y. In order to facilitate this
comparison, we first discuss a preliminary geometrical result. Specifically, for each
ball B ∈ C0 set

A(B) := {
x ∈  : B ⊆ �κ(x)

}
, (8.6.114)

where �κ(x) is the nontangential approach region (with apex at x and aperture
parameter κ) associated with the open set R

n \ . The claim we make in this regard
is that

�B ⊆ A(5B), ∀B ∈ C0. (8.6.115)

To justify this inclusion, pick some B ∈ C0 assume that y and y∗ retain their
earlier significance relative to B. Then for each point z ∈ 5B = B(y, ε/4) we have

δ(z) ≥ |y − y∗| − |y − z| ≥ ε/2 − ε/4 = ε/4
and |z − y∗| ≤ |z − y| + |y − y∗| ≤ ε/4 + δ(y).

(8.6.116)

Given that δ(y) ≤ ε, we thus obtain |z − y∗| ≤ 5ε/4 ≤ 5δ(z). Consequently, for
every point x ∈ �B = B

(
y∗, δ(y)

) ∩  we may write

|x − z| ≤ |x − y∗| + |y∗ − z| ≤ δ(y) + 5δ(z) ≤ 9δ(z). (8.6.117)

Choosing κ ′ > 8 then guarantees, in light of (8.6.117), that

|x − z| < (1 + κ ′)δ(z). (8.6.118)

This goes to show that

z ∈ �κ ′(x) whenever z ∈ 5B and x ∈ �B, (8.6.119)

i.e., that 5B ⊆ �κ ′(x) for every x ∈ B
(
y∗, δ(y)

) ∩  = �B . As a consequence,
x ∈ A(5B) for every x ∈ �B , and (8.6.115) follows.

The usefulness of �B in establishing (8.6.110) is apparent from the estimate
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‖u‖L∞(5B∩E,Ln) ≤ (N E
κ ′u
)
(x), ∀x ∈ �B, (8.6.120)

which is clear from (8.6.119). In turn (8.6.120) implies that, on the one hand,

‖u‖L∞(5B∩E,Ln) ≤ inf
�B

N E
κ ′u. (8.6.121)

On the other hand, for every ball B ∈ C0 centered at y we have

5B = B(y, ε/4) ⊆ B(y∗, 5ε/4) ⊆ B
(
y∗, 5

2δ(y)
)
, (8.6.122)

since |y − y∗| < ε and δ(y) ≥ ε/2. Thus, making use of (8.6.122), (8.6.98),
(8.6.121), the fact that ε/2 ≤ δ(y) < ε, and thatσ is doubling,wemaynowestimate

ˆ
5B∩E

|u|p dLn ≤ Ln(5B)‖u‖p
L∞(5B∩E,Ln) ≤ Ln

(
B(y∗, 5

2δ(y)
)‖u‖p

L∞(5B∩E,Ln)

≤ Cδ(y)n−αβ
[
σ
(
B
(
y∗, 5

2δ(y)
) ∩ 

)]α‖u‖p
L∞(5B∩E,Ln)

≤ Cεn−αβ
[
σ(�B)

]α · inf
�B

(N E
κ ′u
)p

= Cεn−αβ
[
σ(�B) inf

�B

(N E
κ ′u
)p/α]α

≤ Cεn−αβ

[ ˆ
�B

(N E
κ ′u
)p/α

dσ

]α

. (8.6.123)

In turn, given that δ ≈ ε uniformly on Õε
E, , estimate (8.6.123) permits us to write

(bearing in mind that α ≥ 1)

ˆ

Õε
E,

δ−λ
 |u|p dLn ≤ Cε−λ

ˆ

Õε
E,

|u|p dLn ≤ Cε−λ
∑

B∈C0

ˆ

5B∩E

|u|p dLn

≤ Cεn−αβ−λ
∑

B∈C0

[ ˆ

�B

(N E
κ ′u
)p/α

dσ

]α

≤ Cεn−αβ−λ

[ ∑

B∈C0

ˆ

�B

(N E
κ ′u
)p/α

dσ

]α

≤ Cεn−αβ−λ

[ ˆ
⋃

B∈C0
�B

(N E
κ ′u)p/α dσ

]α

≤ C εn−αβ−λ

[ ˆ



( ∑

B∈C0

1�B

)(N E
κ ′u
)p/α

dσ

]α

. (8.6.124)
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Next we claim that ∑

B∈C0

1�B ≤ 81n . (8.6.125)

Accept for the moment (8.6.125) and notice that, in concert with (8.6.124) and
Proposition 8.4.1, this implies

ˆ
Õε

E,

δ−λ
 |u|p dLn ≤ Cεn−αβ−λ

∥∥N E
κ ′u
∥∥p

L p/α(,σ )
≈ εn−αβ−λ

∥∥N E
κ u
∥∥p

L p/α(,σ )

≈ εn−αβ−λ
∥∥N E

κ u
∥∥p

L p/α(π,κ (E),σ )
. (8.6.126)

This completes the proof of Proposition 8.6.15, granted the validity of (8.6.125).
Turning now to the proof of (8.6.125), observe that

B = B(y, ε/20), B ′ = B(y′, ε/20) ∈ C0

with the property that �B ∩ �B ′ �= ∅

}
=⇒ B ⊆ B(y′, 81ε/20). (8.6.127)

Let y∗, y′∗ ∈  be closest points to y and, respectively, y′, and observe that we have
δ(y) = |y − y∗| ≤ ε and δ(y′) = |y′ − y′∗| ≤ ε. Now, if z ∈ B is arbitrary then

|y′ − z| ≤ |y′ − y′
∗| + |y′

∗ − y∗| + |y∗ − y| + |y − z| ≤ 81ε/20, (8.6.128)

since |y′∗ − y∗|, the distance between the centers of the -balls �B ′ and �B , is less
than or equal to δ(y′) + δ(y), the sum of their radii, which in turn is ≤ 2ε. Thus,
(8.6.127) holds.

Going further, for each x ∈  we have
∑

B∈C0

1�B (x) = #{B ∈ C0 : x ∈ �B}
where, generally speaking, #A denotes the cardinality of the set A. On the one
hand, if x /∈ ⋃

B∈C0

�B then
∑

B∈C0

1�B (x) = 0. On the other hand, if there exists

B ′ = B(y′, ε/20) ∈ C0 such that x ∈ �B ′ then

{B ∈ C0 : x ∈ �B} ⊆ {B ∈ C0 : �B ∩ �B ′ �= ∅}, (8.6.129)

which thanks to (8.6.127) permits us to estimate (keeping (8.6.112) in mind)

∑

B∈C0

1�B (x) = #{B ∈ C0 : x ∈ �B} ≤ #{B ∈ C0 : �B ∩ �B ′ �= ∅} (8.6.130)

≤ #
{
B ∈ C0 : B ⊆ B

(
y′, 81ε/20

)} ≤ Ln
(
B(y′, 81ε/20)

)

Ln
(
B(y′, ε/20)

) = 81n .

This justifies (8.6.125), and finishes the proof of (8.6.110). In turn, (8.6.110) estab-
lishes (8.6.104) as indicated in the earlier part of the proof. The proof of Proposi-
tion 8.6.15 is now complete. �
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We conclude by noting that estimate (8.6.100) from Proposition 8.6.15 self-
improves in the fashion described in the proposition below.

Proposition 8.6.16 Assume  ⊆ R
n is a nonempty closed set with empty interior,

and σ is a doubling Borel measure on with the property that there exist an exponent
β ∈ R along with some constant c ∈ (0,∞) such that σ

(
B(x, r) ∩ 

) ≥ crβ for all
x ∈  and r ∈ (

0, 2 diam
)
.

Then for each α ∈ [1,∞), p ∈ (0,∞), κ ∈ (0,∞), and λ, N , M ∈ R such that
λ < n − αβ and 0 ≤ N ≤ M there exists a constant C ∈ (0,∞) which depends
only on α, β, λ, p, κ , c, N , M, and the doubling constant of σ , with the property
that for every Ln-measurable subset E of R

n \ , every Ln-measurable function
u : E → C, and every point y ∈  one has

ˆ
E

δ(x)N−λ

|x − y|M |u(x)|p dLn(x) (8.6.131)

≤ C
(
sup
E

δ

)n−αβ−λ ·
[ ˆ

πκ (E)

(N E
κ u
)
(x)p/α|x − y|(N−M)/α dσ(x)

]α

,

where the intervening nontangential maximal operatorN E
κ and the projection oper-

ator πκ are considered relative to the open ambient R
n \ .

Proof This follows by applying (8.6.100) to the function

E � x �→
( δ(x)N

|x − y|M
) 1

p · u(x) ∈ C (8.6.132)

and making use of (8.6.73) (for � := R
n \ ). �

8.7 Estimates for Marcinkiewicz Type Integrals
and Applications

Let  ⊆ R
n be a nonempty closed set and denote by δ(x) the (Euclidean) distance

from x ∈ R
n to. For some fixed λ, N ∈ R and r > 0 then define theMarcinkiewicz

integral

Iλ,N (x; r) :=
ˆ

|z|<r

δ(x + z)λ

|z|N dz =
ˆ
B(x,r)

δ(y)λ

|x − y|N dy, x ∈ R
n. (8.7.1)

This type of integral has along history and various versions have been considered
in the work of A. Zygmund (cf. [265, 266]), A.P. Calderón and A. Zygmund ([38]),
L. Carleson ([41]), C. Fefferman and E. Stein ([89]). The variant (8.7.1) is modeled
upon Stein’s book (cf. [240, pp. 14–16]), where it is proved that
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if λ > 0 then Iλ,n+λ(x; 1) < +∞ for Ln-a.e. x ∈ 

and Iλ,n+λ(x; 1) = +∞ for every x ∈ R
n \ .

(8.7.2)

Among other things,Marcinkiewicz type integrals are useful in the study of singu-
lar integral operators. Our goal here is to obtain quantitative versions of (8.7.2), under
appropriate geometric measure theoretical conditions, and derive consequences that
are of relevance to the present work.

We start by considering the geometric estimates formulated below and note that
Proposition 8.6.15 plays a key role in their proof. The reader is reminded that for
each number a ∈ R we use the abbreviation (a)+ := max{a, 0}.
Proposition 8.7.1 Let  ⊆ R

n be a closed Ahlfors regular set and denote by δ the
distance function to . Then the following statements are valid.

(i) Suppose α < 1 and N < n − α. Then there exists a finite constant C > 0
(depending only on the Ahlfors regularity constants of , N , and α) such that

ˆ

B(y,r)\

δ(x)−α

|x − y|N dx ≤ Crn−α−N , ∀r > 0, ∀y ∈ . (8.7.3)

(ii) Suppose α < 1 and N < n − (α)+. Also, fix a constant c > 0. Then there exists
a finite constant C > 0 depending on the Ahlfors regularity constants of , N ,
α, and c such that

ˆ

B(y,r)\

δ(x)−α

|x − y|N dx ≤ C rn−α−N , ∀r > 0, ∀y ∈ R
n with δ(y) < cr.

(8.7.4)
(iii) Suppose n − N < α < 1 and fix a constant c > 0. Then there exists C > 0

depending only on the Ahlfors regularity constants of , N , α, and c such
that

ˆ

(Rn\)\B(y,r)

δ(x)−α

|x − y|N dx ≤ Crn−α−N , ∀r > 0, ∀y ∈ R
n with δ(y) < cr.

(8.7.5)
(iv) Suppose n − N < α < 1 and assume E ⊆ R

n is a Ln-measurable set. Then
there exists C > 0 depending only on the Ahlfors regularity constants of , N ,
and α such that

ˆ

E\

δ(x)−α

|x − y|N dx ≤ C dist(y, E)n−α−N for all y ∈  \ E . (8.7.6)

(v) Suppose α < 1, N < n − (α)+, and make the assumption that E ⊆ R
n is a

bounded Ln-measurable set. Then there exists C > 0 depending only on the
Ahlfors regularity constants of , N , and α such that
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ˆ

E\

δ(x)−α

|x − y|N dx ≤ Cmax
{
δ(y), dist(y, E) + diam(E)

}n−α−N
, ∀y ∈ R

n.

(8.7.7)
(vi) Suppose α < 1, 0 ≤ N < n − (α)+, and assume E ⊆ R

n is an arbitrary
bounded Ln-measurable set. If  is bounded then there exists some finite con-
stant C0 = C0(N , α, E, ) > 0 such that

ˆ

E\

δ(x)−α

|x − y|N dx ≤ C0, ∀y ∈ R
n. (8.7.8)

In fact, one may take C0 = CRn−α−N where C is as in (iv)-(v) above and
R is any positive number with the property that there exists y0 ∈  such that
E ∪  ⊆ B(y0, R).

Proof In a first stage, note that there exists a constant C ∈ (0,∞) with the property
that for each point y ∈ R

n and each number r > 0 we have B(y, r) ⊆ B(y∗,Cr),
where y∗ ∈  is such that δ(y) = |y − y∗|. Granted this inclusion, we may now
apply (8.6.100) (with α := 1, p := 1, β := n − 1, u ≡ 1, and E := B(y∗,Cr) \ )
to obtain (also bearing (8.1.17) in mind) that

α < 1=⇒
ˆ

B(y,r)\
δ−α
 dLn ≤ Crn−α, ∀r > 0, ∀y ∈ R

n with δ(y) < cr.

(8.7.9)
With (8.7.9) in hand, for an arbitrary y ∈  we may now write

ˆ

B(y,r)\

δ(x)−α

|x − y|N dx ≤
∞∑

j=0

ˆ

[B(y,2− j r)\B(y,2− j−1r)]\

δ(x)−α

|x − y|N dx

≤ C
∞∑

j=0

(2− j r)−N
( ˆ

B(y,2− j r)\
δ(x)−α dx

)

≤ C
∞∑

j=0

(2− j r)−N (2− j r)n−α = Crn−N−α
( ∞∑

j=0

2− j (n−α−N )
)

= Crn−N−α, (8.7.10)

whenever N < n − α. This establishes (8.7.3).
Consider next (8.7.4). To get started, fix r > 0 along with y ∈ R

n satisfying
δ(y) < cr . We proceed by analyzing separately several cases.

Case 1: N ≤ 0 and α < 1. The fact that (8.7.4) holds under these circumstances
is an immediate consequence of (8.7.9) and the observation that |x − y|−N ≤ C r−N

whenever x ∈ B(y, r).
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Case 2: 0 ≤ α < 1 and 0 ≤ N < n − α. Pick y∗ ∈  so that δ(y) = |y − y∗|
and split the integral in (8.7.4) into two integrals corresponding to the following
additional restrictions on x : |x − y∗| ≤ 3|x − y| and3|x − y| < |x − y∗|. Denote the
resulting integrals by I and I I , respectively. Then, since we are currently assuming
that N ≥ 0, and since in I we have |x − y∗| ≤ 3|x − y| < 3r for every x ∈ B(y, r),
we may estimate

I ≤ C
ˆ

B(y∗,3r)\

δ(x)−α

|x − y∗|N dx ≤ Crn−α−N , (8.7.11)

where the last inequality follows from (8.7.3). In I I we have 3|x − y| < |x − y∗|,
hence

δ(y) = |y − y∗| ≥ |x − y∗| − |x − y| > 2|x − y|. (8.7.12)

In turn, since δ(x) + |x − y| ≥ δ(y) this further implies that δ(x) > |x − y| and
thus we can write (recall that we are assuming α ≥ 0 and N + α < n here)

I I ≤ C
ˆ

B(y,r)

dx

|x − y|N+α
= C rn−α−N . (8.7.13)

A combination of (8.7.11) and (8.7.13) proves (8.7.4) in this case as well.

Case 3: α ≤ 0 and N < n. Given that we are assuming δ(y) < cr , it follows
that for every x ∈ B(y, r) we have δ(x)−α < Cr−α . This permits us to estimate
(keeping in mind that N < n)

ˆ

B(y,r)\

δ(x)−α

|x − y|N dx ≤ C r−α

ˆ

B(y,r)

dx

|x − y|N = C rn−α−N . (8.7.14)

Collectively, Cases 1-3 above yield (8.7.4) whenever α < 1 and N < n − (α)+.
Consider next (8.7.5). To get started, fix r > 0 and let y∈R

n be such that
δ(y)<cr . Granted that α < 1, we may once again employ (8.7.9) to estimate

ˆ

(Rn\)\B(y,r)

δ(x)−α

|x − y|N dx ≤
∞∑

j=0

ˆ

(Rn\)∩[B(y,2 j+1r)\B(y,2 j r)]

δ(x)−α

|x − y|N dx

≤ C
∞∑

j=0

(2 j r)−N
( ˆ

B(y,2 j+1r)\
δ(x)−α dx

)

≤ C
∞∑

j=0

(2 j r)n−α(2 j r)−N
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= Crn−N−α
( ∞∑

j=0

2− j (−n+α+N )
)

= Crn−N−α, (8.7.15)

since the last series in (8.7.15) converges given that−n + α + N > 0.This concludes
the proof of (8.7.5).

Next, the estimate in (8.7.6) corresponding to some y ∈  \ E follows from
(8.7.5) written with r := dist(y, E), since we have E ⊆ R

n \ B
(
y, dist(y, E)

)
.

Consider the claim made in item (v). Now, the set E is bounded which allows
us to obtain (8.7.7) by applying (8.7.4) with r := max

{
δ(y), δE (y) + diam(E)

}
,

since this choice guarantees E ⊆ B(y, r) and δ(y) < r .
Finally, as far as (8.7.8) is concerned, pick an arbitrary point y0 ∈  and let R > 0

be large enough so that E ∪  ⊆ B(y0, R). Then, by (8.7.7),

ˆ

E\

δ(x)−α

|x − y|N dx ≤ C Rn−α−N , ∀y ∈ B(y0, 2R). (8.7.16)

On the other hand, if y∈R
n\B(y0, 2R), the fact that N≥0 forces |x − y|−N≤R−N

for each x ∈ E , so

ˆ

E\

δ(x)−α

|x − y|N dx ≤ R−N
ˆ

E\
δ(x)−α dx (8.7.17)

≤ R−N
ˆ
B(y0,R)\

δ(x)−α dx ≤ C Rn−α−N ,

by (8.7.3). In concert, (8.7.16)–(8.7.17) give (8.7.8). The proof of the proposition is
therefore complete. �

Our next goal is to establish growth estimates for the Lebesgue measure weighted
by a power of the distance function to an Ahlfors regular set, of the sort described in
thepropositionbelow.These are going tobeuseful in theproofs ofPropositions 8.7.3–
8.7.4 where we shall show that suitable powers of the distance function to a fixed
Ahlfors regular set are Muckenhoupt weights in R

n .

Proposition 8.7.2 Let  ⊆ R
n be a closed Ahlfors regular set, and fix a constant

C ∈ (0,∞).

(i) For each exponent α ∈ R there exists some c ∈ (0,∞), which depends only on
α, C, and the Ahlfors regularity constants of , with the property that for each
point x ∈ R

n one has

ˆ
B(x,r)

δ−α
 dLn ≥ c rn−α for each r ∈ (0,∞)

if eitherα ≤ 0, or α ∈ R and δ(x) < Cr.
(8.7.18)
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(ii) If α < 1 then there exists some c ∈ (0,∞), which depends only on α, C, and the
Ahlfors regularity constants of , such that

ˆ
B(x,r)

δ−α
 dLn ≈ rn−α, uniformly for x ∈ R

n and r ∈ (0,∞)

with the property that δ(x) < Cr.
(8.7.19)

Proof To prove the claim in part (i), pick ε ∈ (0, 1/3) such that ε < C . Also, select
x ∈ R

n and r ∈ (0,∞). We divide the proof of (8.7.18) into several cases. Consider
first the case when α ≤ 0 and δ(x) ≥ εr . Since B(x, εr/2) ⊆ B(x, r) and each
y ∈ B(x, εr/2) satisfies δ(y) ≥ δ(y)/2 ≥ εr/2, we may estimate

ˆ
B(x,r)

δ−α
 dLn ≥

ˆ
B(x,εr/2)

δ−α
 dLn ≥ c r−αLn

(
B(x, εr/2)

) = c rn−α, (8.7.20)

which suits our current purposes.
Next, consider the case when α ∈ R and δ(x) < εr . Then B(x, εr) ∩  �= ∅,

hence we may select x0 ∈  ∩ B(x, εr) such that δ(x) = |x − x0|. On the other
hand, from Corollary 8.6.13 we know that R

n \  satisfies an interior corkscrew
property. Hence, there exists θ ∈ (0, 1) (independent of x and r ) along with y ∈ R

n

such that B
(
y, θ(1 − 2ε)r

) ⊆ B
(
x0, (1 − 2ε)r

) \ . As a result, for each
z ∈ B(y, θ εr) we have

|z − x | ≤ |z − y| + |y − x0| + |x − x0| < θ εr + (1 − 2ε)r + δ(x)

< εr + (1 − 2ε)r + εr = r, (8.7.21)

and

θ(1 − 3ε)r = θ(1 − 2ε)r − θ εr ≤ δ(z) ≤ |z − x0|
≤ |z − y| + |y − x0| < θ εr + (1 − 2ε)r < (1 − ε)r. (8.7.22)

Hence, B(y, θ εr) ⊆ B(x, r) and δ(z) ≈ r uniformly for z ∈ B(y, θ εr). In turn,
these permit us to estimate

ˆ
B(x,r)

δ−α
 dLn ≥

ˆ
B(y,θ εr)

δ−α
 (z) dLn(z)

≈ r−αLn
(
B(y, θ εr)

) = c rn−α, (8.7.23)

as wanted. Finally, consider the case when α ∈ R and εr ≤ δ(x) ≤ Cr . Then
B(x, εr/2) ⊆ B(x, r) and for each z ∈ B(x, εr/2) we have

εr/2 ≤ δ(x) − εr/2 ≤ δ(z)

≤ |z − x | + δ(x) < εr/2 + Cr = (ε/2 + C)r. (8.7.24)
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Thus, δ(z) ≈ r uniformly for z ∈ B(x, εr/2). Consequently,

ˆ
B(x,r)

δ−α
 dLn ≥

ˆ
B(x,εr/2)

δ−α
 (z) dLn(z)

≈ r−αLn
(
B(x, εr/2)

) = c rn−α, (8.7.25)

as desired. This completes the proof of the claim in item (i) of the proposition.
There remains to deal with the claim in item (ii). The right-pointing inequality in

(8.7.19) follows from (8.7.18) (for this no restrictions on α are necessary), whereas
the left-pointing inequality in (8.7.19) is a consequence of (8.7.4) with N := 0 (it is
here that we make use of the fact that α < 1), as well as of (5.9.7). �

Here is the first result advertised earlier, showing that the reciprocal of sub-unital
power of the distance function to a givenAhlfors regular set is aMuckenhoupt weight
in A1(R

n,Ln).

Proposition 8.7.3 Let ⊆ R
n be a closedAhlfors regular set. Then for each number

θ ∈ [0, 1) the function δ−θ
 belongs to Muckenhoupt’s class A1(R

n,Ln).

Proof According to (7.7.4), we need to show that there exists someC ∈ (0,∞)with
the property that for each x ∈ R

n and each r ∈ (0,∞) we have

ˆ
B(x,r)

δ−θ
 dLn ≤ C rnδ(y)−θ forLn-a.e. y ∈ B(x, r). (8.7.26)

To this end, fix x ∈ R
n and r > 0 arbitrary. On the one hand, when δ(x) < 2r we

may invoke (8.7.19) to write

ˆ
B(x,r)

δ−θ
 dLn ≈ rn−θ ≤ C rnδ(y)−θ , for each y ∈ B(x, r), (8.7.27)

since, in this case, for each y ∈ B(x, r) we have δ(y) ≤ δ(x) + r < 3r . On the
other hand, if δ(x) ≥ 2r , then 1

2δ(x) ≤ δ(y) ≤ 3
2δ(x) for each y ∈ B(x, r)

which, in turn, permits us to estimate

ˆ
B(x,r)

δ−θ
 dLn ≈ δ(x)−θ · Ln

(
B(x, r)

) ≤ C rnδ(y)−θ , (8.7.28)

for each y ∈ B(x, r), as wanted. �

In light of factorization of Ap weights, in a fashion involving only (powers) of A1

weights, Proposition 8.7.3 self-improves as follows.

Proposition 8.7.4 Let  ⊆ R
n be a closed Ahlfors regular set. Pick an exponent

p ∈ [1,∞) and fix a parameter a ∈ (− 1
p , 1 − 1

p

)
. Then the function δ

ap
 belongs to

Muckenhoupt’s class Ap(R
n,Ln).
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Proof Proposition 8.7.3 implies that δ
−θ1
 , δ

−θ2
 ∈ A1(R

n,Ln) for each θ1, θ2 in
(0, 1). Based on this and item (3) in Lemma 7.7.1 we then conclude that

δ
−θ1−θ2(1−p)
 = δ

−θ1
 · δ

−θ2(1−p)
 ∈ Ap(R

n,Ln). (8.7.29)

There remains to observe that the expression −θ1 − θ2(1 − p) covers precisely the
interval

(− 1
p , 1 − 1

p

)
as θ1, θ2 range freely in (0, 1). Hence any a ∈ (− 1

p , 1 − 1
p

)

may bewritten as−θ1 − θ2(1 − p) for some θ1, θ2 ∈ (0, 1). This completes the proof
of Proposition 8.7.4.

In the range p ∈ (1,∞) a direct proof of the membership δ
ap
 ∈ Ap(R

n,Ln) is
as follows. According to (7.7.2), we need to show that there exists a finite constant
C > 0 with the property that for each x ∈ R

n and r ∈ (0,∞) we have

(  
B(x,r)

δ(y)ap dLn(y)
)(  

B(x,r)
δ(y)−

ap
p−1 dLn(y)

)p−1 ≤ C. (8.7.30)

We proceed by distinguishing two cases, starting with:

Case 1. Assume 2r < δ(x). Then 1
2δ(x) ≤ δ(y) ≤ 3

2δ(x) for each
y ∈ B(x, r). Making use of this, we obtain

(  
B(x,r)

δ(y)ap dLn(y)
)( 

B(x,r)
δ(y)−

ap
p−1 dLn(y)

)p−1

≤ Cδ(x)ap
(
δ(x)−

ap
p−1
)p−1 = C, (8.7.31)

for someC ∈ (0,∞) independent of x, r . This shows that (8.7.30) holds in this case.

Case 2.Assume δ(x)≤ 2r . In this scenario,we apply (8.7.19)withα:= − ap< 1
and C > 2 to obtain

 
B(x,r)

δ(y)ap dLn(y) ≈ r−n · rn+ap = rap. (8.7.32)

One more application of (8.7.19) with α := ap
p−1 < 1 and C > 2 also gives

 
B(x,r)

δ(y)−
ap
p−1 dLn(y) ≈ r− ap

p−1 . (8.7.33)

Combining (8.7.32) and (8.7.33), we conclude that (8.7.30) also holds in Case 2.
Having dealt with the situations described in Cases 1-2, (8.7.30) follows, completing
the alternative proof of Proposition 8.7.4 in the range p ∈ (1,∞). �

There are other results of a flavor similar to Proposition 8.7.4. Here is one of them
(see [79, 182]).

Proposition 8.7.5 Let  ⊆ R
n be a closed set which is Ahlfors regular and abbre-

viate σ := Hn−1�. Fix d ∈ [0, n − 1) and consider a d-set E ⊆ , i.e., a closed
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subset E of  with the property that there exists some Borel outer measure μ on E
satisfying

μ
(
B(x, r) ∩ E

) ≈ rd , uniformly for x ∈ E and r ∈ (
0, 2 diam(E)

)
. (8.7.34)

Then for each p ∈ (1,∞) and a ∈ (
d + 1 − n, (p − 1)(n − 1 − d)

)
the func-

tion w := [
dist(·, E)

]a
is a Muckenhoupt weight in Ap(, σ ). Moreover, [w]Ap

depends only on the Ahlfors regularity character of , the proportionality constants
in (8.7.34), d, p, and a.

It is of interest to recall the following result, appearing in [103, Proposition 1.5.9,
p. 42] (compare with Proposition 8.7.5 specialized to the case when E is a singleton).

Example 8.7.6 Let  ⊆ R
n be a closed set which is Ahlfors regular and abbrevi-

ate σ := Hn−1�. Also, fix some integrability exponent p ∈ (1,∞) along with an
arbitrary point x0 ∈  and some power a ∈ R. Then the function

w :  → [0,∞], w(x) := |x − x0|a for each x ∈ , (8.7.35)

is a Muckenhoupt weight in Ap(, σ ) if and only if a ∈ (
1 − n, (p − 1)(n − 1)

)
.

Furthermore, whenever this is the case, it follows that [w]Ap depends only on the
Ahlfors regularity character of , p, and a.

Example 8.7.6 should be compared with the following result, of a similar flavor:

Example 8.7.7 Let  ⊆ R
n be a closed set which is Ahlfors regular and abbreviate

σ := Hn−1�. Then from (7.6.66) in Proposition 7.6.8 and item (8) in Lemma 7.7.1
we deduce that for each power θ ∈ (0, 1) there exists a constant C(, θ) ∈ (0,∞)

with the property that the function

w :  → [0,∞], w(x) := 1
1+|x |(n−1)θ for each x ∈ ,

belongs to A1(, σ ) and satisfies [w]A1 ≤ C(, θ).
(8.7.36)

As a consequence of this and item (3) in Lemma 7.7.1, we then see that for each
exponent p ∈ (1,∞) and power a ∈ R, the function

ω :  → [0,∞], ω(x) := (1 + |x |)a for each x ∈ ,

belongs to Ap(, σ )whenever 1 − n < a < (p − 1)(n − 1).
(8.7.37)

Other examples of Muckenhoupt weights may be obtained in a similar fashion based
on (7.6.69) in Proposition 7.6.8 and items (8), (3) in Lemma 7.7.1.

Going further, Proposition 8.7.1 is a key ingredient in the proof of the estimate
below.

Proposition 8.7.8 Let  ⊆ R
n be a closed Ahlfors regular set and denote by δ

the distance function to . Also, fix a parameter κ > 0 and, for each z ∈ , denote



764 8 Open Sets with Locally Finite Surface Measures and Boundary Behavior

by �c,κ (z) nontangential approach regions of aperture κ relative to the open set
c := R

n \  (whose boundary is precisely ; cf. (8.1.2))
Then for each β < n and M > n − β there exists a finite constant C > 0 (depend-

ing only on κ , M, β, and n) such that

ˆ
�c ,κ (z)

δ(x)−β

|x − y|M dx ≤ C |y − z|n−β−M for all z, y ∈  with z �= y. (8.7.38)

Proof Fix z, y ∈  with z �= y and set r := |y − z| > 0. For each j ∈ N0 introduce

�c,κ, j (z) := {
x ∈ �c,κ (z) : 2 j−1r < |x − z| < 2 j r

}
(8.7.39)

and define

I j :=
ˆ

�c ,κ, j (z)

δ(x)−β

|x − y|M dx . (8.7.40)

For x ∈ �c,κ, j (z)we have |x − y| ≤ |x − z| + |z − y| ≤ (2 j + 1)r ≤ 2 j+1r . Also,
since δ(x) ≤ |x − z| < (1 + κ)δ(x), it follows that δ(x) ≈ |x − z| ≈ 2 j r .Using
these, for each α ∈ R we may then write

I j ≤ C(2 j r)α−β

ˆ
B(y,2 j+1r)

δ(x)−α

|x − y|M dx, ∀ j ∈ N0. (8.7.41)

Now we choose α < min{1, n − M} and apply (8.7.3) from Proposition 8.7.1 to the
integral in (8.7.41) to further obtain

I j ≤ C(2 j r)α−β(2 j r)n−α−M = 2 j (n−M−β)rn−M−β, ∀ j ∈ N0. (8.7.42)

Next, observe that our hypotheses entail n − M − β < 0, so
∞∑

j=0
2 j (n−M−β) < +∞

which, when used in combination with (8.7.42), gives that there exists some finite
C > 0 such that

ˆ
�c ,κ (z)\B(z,r/2)

δ(x)−β

|x − y|M dx ≤ C |y − z|n−β−M . (8.7.43)

There remains to find an appropriate bound for

ˆ
�c ,κ (z)∩B(z,r/2)

δ(x)−β

|x − y|M dx . (8.7.44)

To this end, observe that if x ∈ �,κ(z) ∩ B(z, r/2) then |x − y| ≈ |z − y| = r , thus
it suffices to prove that
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ˆ
�c ,κ (z)∩B(z,r/2)

δ(x)−β dx ≤ Crn−β. (8.7.45)

For each j ∈ N0 consider

�
j
,κ(z) := {

x ∈ �c,κ (z) : 2− j−1r ≤ |x − z| ≤ 2− j r
}
. (8.7.46)

Then, for each j ∈ N0,

δ(x) ≈ |x − z| ≈ 2− j r uniformly for x ∈ �
j
,κ(z),

and Ln
(
�

j
c,κ (z)

) ≤ Ln
(
B(z, 2− j r)

) = C(2− j r)n.
(8.7.47)

Thus, ˆ
�

j
c ,κ

(z)
δ(x)−β dx ≤ C(2− j r)−β(2− j r)n, ∀ j ∈ N0 (8.7.48)

and, furthermore,

ˆ
�c ,κ (z)∩B(z,r/2)

δ(x)−β dx =
∞∑

j=1

ˆ
�

j
,κ (z)

δ(x)−β dx

≤ Crn−β

∞∑

j=0

2 j (β−n) ≤ Crn−β, (8.7.49)

where for the last inequality in (8.7.49) we have used the fact that β − n < 0. This
establishes (8.7.45), hence the proof of Proposition 8.7.8 is complete. �

Combining Lemma 8.3.9 with Proposition 8.7.8 yields the estimate described in
our next result.

Proposition 8.7.9 Let be a closed Ahlfors regular set inR
n, where n ≥ 2. Denote

by δ the distance function to and abbreviate σ := Hn−1�. Also, fix p ∈ (0,∞),
κ ∈ (0,∞), β < n, and M > n − β. Then there exists a constant C ∈ (0,∞), which
depends only on β, M, p, κ , and the Ahlfors regularity character of , with the
property that for every Ln-measurable subset E of R

n \ , every Ln-measurable
function u : E → C, and every fixed point y ∈  one has

ˆ
E

δ(x)n−1−β

|x − y|M |u(x)|p dLn(x) ≤ C
ˆ

πκ (E)

(N E
κ u
)
(x)p · |x − y|n−β−M dσ(x),

(8.7.50)
where the intervening nontangential maximal operatorN E

κ and the projection oper-
ator πκ are considered relative to the open ambient c := R

n \ .

The above estimate is closely related to the estimate in Proposition 8.6.16
specialized to the case when α := 1, β := n − 1, and N := n − b (since writing
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δ(x)N−λ = δ(x)1−λδ(x)n−1−b and pulling supE δ1−λ
 out of the integral sign in

the left-hand side of (8.6.131) yields (8.6.131), on account of (8.7.50)). This being
said, the set is required to beAhlfors regular in Proposition 8.7.9whereas in Propo-
sition 8.6.16 it was only assumed that  is lower Ahlfors regular and σ := Hn−1�
is a doubling measure.

Proof of Proposition 8.7.9 Consider the Borel measure μ := δ(x)−β

|x−y|M dLn(x) for

x ∈ R
n \ . Since for each j ∈ N the set Oj := {

x ∈ B(0, j) \  : δ(x) > j−1
}

is open, satisfies μ(Oj ) < +∞, and
⋃

j∈N Oj = R
n \ , it follows that μ is sigma-

finite. Granted this, the estimate claimed in (8.7.50) follows by applying (8.3.70) for
the choice d := n − 1 and with μ as described above, then making use of Proposi-
tion 8.7.8. �

Proposition 8.7.1 also has a significant involvement in the proof of the following
result, containing a useful weighted norm estimate for an integral operator for which
only a size condition is imposed on its kernel.

Proposition 8.7.10 Assume that � is a nonempty, open, proper subset of Rn, whose
boundary is an Ahlfors regular set, and abbreviate σ := Hn−1�∂�. Consider the
integral operator

T f (x) :=
ˆ

∂�

k(x, y) f (y) dσ(y), x ∈ �, (8.7.51)

where k(·, ·) is a measurable function defined on� × ∂�which satisfies the estimate

|k(x, y)| ≤ Co

|x − y|n−ε∗
, x ∈ �, y ∈ ∂�, (8.7.52)

for some finite constant Co > 0 and some real number ε∗ < 1. Finally, fix an inte-
grability exponent p ∈ (1,∞) along with a parameter β > 1 − ε∗ − 1

p .
Then there exists a finite constant C = C(�,Co, p, β, ε∗) > 0 with the property

that for each r > 0 one has

( ˆ
{x∈�: δ∂�(x)<r}

δ∂�(x)βp|T f (x)|p dx
)1/p ≤ C rβ−1+ε∗+ 1

p ‖ f ‖L p(∂�,σ). (8.7.53)

In particular,

if � is also assumed to be bounded then the operator
T : L p(∂�, σ) −→ L p

(
�, δ

βp
∂�Ln

)
is continuous.

(8.7.54)

Proof Let {Q j } j∈J be a Whitney decomposition of the set �. For each r > 0 define
Or := {x ∈ � : δ∂�(x) < r} and consider Jr := {

j ∈ J : Q j ∩ (Or \ Or/2
) �= ∅

}
.

We now claim that if f ∈ L p(∂�, σ) is arbitrary, then
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ˆ
Or\Or/2

|T f (x)|p dx ≤ Cr1+(ε∗−1)p
ˆ

∂�

| f |p dσ, (8.7.55)

for some finite constant C > 0 independent of f . As a preamble, we note that if
θ ∈ (0, 1) is arbitrary and if p′ ∈ (1,∞) is such that 1/p + 1/p′ = 1, then for each
x ∈ � using Hölder’s inequality we obtain

|T f (x)|p ≤ C
( ˆ

∂�

| f (y)|p
|x − y|(n−ε∗)θp

dσ(y)
)(ˆ

∂�

dσ(y)

|x − y|(n−ε∗)(1−θ)p′

)p/p′

=: C I (x) · I I (x). (8.7.56)

Fix j ∈ Jr and pick an arbitrary point x ∈ Q j . Using (7.2.5) we may then estimate

I I (x) ≤ C r−(n−ε∗)(1−θ)p+(n−1)(p−1), (8.7.57)

provided (n − ε∗)(1 − θ)p′ > n − 1 or, equivalently,

1 − n−1
n−ε∗

(
1 − 1

p

)
> θ. (8.7.58)

Assuming this is the case, for each j ∈ Jr we may then conclude from (8.7.56) and
(8.7.57) that

ˆ
Q j

|T f (x)|p dx ≤ C r−(n−ε∗)(1−θ)p+(n−1)(p−1)
ˆ
Q j

ˆ
∂�

| f (y)|p
|x − y|(n−ε∗)θp

dσ(y) dx .

(8.7.59)
Observe that there exist λ > 1 with the property that

⋃

j∈Jr

Q j ⊆ Oλr \ Or/λ. (8.7.60)

Using this and summing up over j ∈ Jr inequalities of the type described in (8.7.59)
then allows us to write

ˆ
Or\Or/2

|T f (x)|p dx ≤ C r−(n−ε∗)(1−θ)p+(n−1)(p−1)× (8.7.61)

×
ˆ

∂�

| f (y)|p
( ˆ

Oλr\Or/λ

dx

|x − y|(n−ε∗)θp

)
dσ(y).

For each fixed y ∈ ∂�, the inner integral in the right-hand side of (8.7.61) is handled
as follows. Assuming we may choose α ∈ R so that 1 > α > n − (n − ε∗)θp or,
equivalently,

θ > n−1
p(n−ε∗) , (8.7.62)

we may invoke (8.7.5) (with  := ∂� and N := (n − ε∗)θp) to estimate
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ˆ
Oλr\Or/λ

dx

|x − y|(n−ε∗)θp
≈ rα

ˆ
Oλr\Or/λ

δ∂�(x)−α

|x − y|(n−ε∗)θp
dx

≤ rα

ˆ
�\B(y,r/λ)

δ∂�(x)−α

|x − y|(n−ε∗)θp
dx

≤ C rn−(n−ε∗)θp. (8.7.63)

Having ε∗ < 1 ensures that
(

n−1
p(n−ε∗) , 1 − n−1

n−ε∗

(
1 − 1

p

))
is a nonempty sub-interval

of (0, 1). Choosing θ in this sub-interval thus permits us to conclude that

ˆ
Or\Or/2

|T f (x)|p dx ≤ C r1+p(ε∗−1)
ˆ

∂�

| f (y)|p dσ(y), (8.7.64)

which further implies that

ˆ
Or\Or/2

δ∂�(x)βp|T f (x)|p dx ≤ C r1+p(ε∗−1)+βp‖ f ‖p
L p(∂�,σ). (8.7.65)

Replacing r by 2−kr in (8.7.65) and then summing up over k ∈ N0 yields

ˆ
Or

δ∂�(x)βp|T f (x)|p dx =
∞∑

k=0

ˆ
O2−k r\O2−k−1r

δ∂�(x)βp|T f (x)|p dx

≤ C r1+p(ε∗−1)+βp‖ f ‖p
L p(∂�,σ)

( ∞∑

k=0

(2−k)1+p(ε∗−1)+βp
)

= C r1+p(ε∗−1)+βp‖ f ‖p
L p(∂�,σ), (8.7.66)

given that, from assumptions, 1 + p(ε∗ − 1) + βp > 0. �

Here is a companion result to Proposition 8.7.10 which is relevant in the treatment
of L p-square function estimates.

Lemma 8.7.11 Suppose � ⊆ R
n is a bounded open set with an Ahlfors regular

boundary and define σ := Hn−1�∂�. Let p, p′ ∈ (1,∞) with 1/p + 1/p′ = 1, and
fix some ε ∈ (0, 1

p ). Assume b(x, y) is a measurable function satisfying

‖b(·, y)‖L p(B(x,r),Ln) ≤ Cb|x − y|1−ε−n/p′
, (8.7.67)

for each x ∈ � and y ∈ ∂�, with r := |x − y|/2 and with Cb ∈ (0,∞) independent
of x, y.

Then the integral operator

R f (x) :=
ˆ

∂�

b(x, y) f (y) dσ(y), x ∈ �, (8.7.68)
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has the property that for each power a > 0 there exists a finite constant C∗ > 0,
which depends only on n, a, p, ε, and the diameter of �, such that

ˆ
�

|R f (x)|p dist(x, ∂�)a dx ≤ C∗(Cb)
p
ˆ

∂�

| f |p dσ, ∀ f ∈ L p(∂�, σ).

(8.7.69)

Proof Denote d := diam� and, having fixed an arbitrary number δ ∈ (0, d], set

Aδ := {
x ∈ � : δ/2 < dist(x, ∂�) ≤ δ

}
. (8.7.70)

Next, let {Ik}k be a decomposition of � into non-overlapping Whitney cubes and
introduce

Jδ := {
k : I δ

k := Ik ∩ Aδ �= ∅
}
. (8.7.71)

It follows that the side-length �(Ik) of each Ik with k ∈ Jδ is comparable with δ.
More specifically, there exists a dimensional constant Cn ∈ (1,∞) such that

C−1
n δ ≤ �(Ik) ≤ Cnδ. (8.7.72)

Pick f ∈ L p(∂�, σ), arbitrary, with the goal of estimating
´
Aδ

|R f (x)|p dx . To
do this, decompose

b(x, y) =
∑

j≥0

b j,δ(x, y), (8.7.73)

with b0,δ(x, y) supported in the closed ball |x − y| ≤ 2
√
n Cnδ and b j,δ(x, y) sup-

ported in the annulus 2 j−1(2
√
n Cnδ) ≤ |x − y| ≤ 2 j (2

√
n Cnδ) for j ≥ 1. Since

having x ∈ � and y ∈ ∂� entails |x − y| ≤ d, it may be assumed that the sum
in (8.7.73) actually ranges only over Fδ := {

j ≥ 0 : 2 j−1(2
√
n Cnδ) ≤ d

}
. The

integral operator associated with the kernel b j,δ will be denoted by R j,δ . Hence,
R = ∑

j∈Fδ
R j,δ . We want to estimate R j,δ f on Aδ . In this regard, write

Aδ =
⋃

k∈Jδ

I δ
k , disjoint union. (8.7.74)

Since ∂� equipped with the measure σ and the Euclidean distance is a space of
homogeneous type, for each j ≥ 0 with 2 j−1(2

√
n Cnδ) ≤ d there exists a decom-

position of ∂� into a grid of dyadic boundary “cubes” Qδ
j , of side-length comparable

with 2 jδ (see Proposition 7.5.4). For each k ∈ Jδ , select one such boundary dyadic
cube Qδ

j,k with the property that

dist
(
I δ
k , ∂�

) = dist
(
I δ
k , Q

δ
j,k

)
. (8.7.75)

Matters can be arranged so that the concentric dilates of these boundary dyadic cubes
have bounded overlap. That is, for every λ ≥ 1 there exists a finite constant Cλ > 0
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such that ∑

k∈Jδ

1λ Qδ
j,k

≤ Cλ on ∂�. (8.7.76)

Let us now estimate ‖R j,δ f ‖L p(I δ
k ,Ln). In this regard, first note that if x ∈ I δ

k and
y ∈ ∂� are such that |x − y| ≤ 2 j (2

√
n Cnδ), then (8.7.75) implies that y ∈ λQδ

j,k
where λ ≥ 1 is a fixed, sufficiently large constant, independent of j, k. Based on this
observation and Minkowski’s inequality we may therefore write

‖R j,δ f ‖L p(I δ
k ,Ln) =

∥
∥∥
ˆ

λQδ
j,k

b j,δ(x, y) f (y) dσ(y)
∥
∥∥
L p
x (I δ

k ,Ln)

≤
ˆ

λQδ
j,k

∥∥b j,δ(·, y)
∥∥
L p(I δ

k ,Ln)
| f (y)| dσ(y). (8.7.77)

The next step is to estimate
∥∥b j,δ(·, y)

∥∥
L p(I δ

k ,Ln)
for a fixed point y ∈ λQδ

j,k . First

consider the case when j ≥ 1. If I δ
k is disjoint from the annulus

{
x : 2 j−1(2

√
n Cnδ) ≤ |x − y| ≤ 2 j (2

√
n Cnδ)

}
, (8.7.78)

where b j,δ(·, y) is supported, then the aforementioned norm is zero. Thus, suppose
there exists xo ∈ I δ

k with 2 j−1(2
√
n Cnδ) ≤ |xo − y| ≤ 2 j (2

√
n Cnδ). Then, if xk is

the center of Ik , using (8.7.72) we may estimate

|y − xk | ≤ |y − xo| + |xk − xo| ≤ 2 j (2
√
n Cnδ) + √

n Cnδ

= (2 j+1 + 1)
√
n Cnδ, (8.7.79)

and

|y − xk | ≥ |y − xo| − |xk − xo| ≥ 2 j−1(2
√
n Cnδ) − √

n Cnδ

= (2 j − 1)
√
n Cnδ. (8.7.80)

In particular, since 2 j − 1 ≥ 1, it follows from (8.7.80) and (8.7.72) that the radius
r := |y − xk |/2 has the property that Ik ⊆ B(xk, r). In concert with (8.7.67) and
(8.7.79)–(8.7.80), this inclusion implies

∥∥b j,δ(·, y)
∥∥
L p(I δ

k ,Ln)
≤ ∥∥b j,δ(·, y)

∥∥
L p(B(xk ,r),Ln)

≤ ∥∥b(·, y)∥∥L p(B(xk ,r),Ln)

≤ C |xk − y|1−ε−n/p′ ≈ (2 jδ)1−ε−n/p′
(8.7.81)

which is the desired estimate in the case when j ≥ 1.
We wish to derive a similar estimate in the case when j = 0. Use a grid to cover

Ik with a finite family of balls
{
B(xα, δ/6)

}
α
whose cardinality is independent

of δ and k. Denote by A the collection of all indices α in this family for which
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B(xα, δ/6) intersects both the set I δ
k and the closed ball

{
x : |x − y| ≤ 2

√
n Cnδ

}
,

where b0,δ(·, y) is supported. Thus, for each α ∈ A there exist zα ∈ I δ
k ∩ B(xα, δ/6)

and ζα ∈ B(xα, δ/6) satisfying |ζα − y| ≤ 2
√
n Cnδ. Since zα ∈ I δ

k ⊆ Aδ , we see
that |y − zα| ≥ δ/2. As a consequence,

|y − xα| ≥ |y − zα| − |zα − xα| > δ/2 − δ/6 = δ/3. (8.7.82)

Also,

|y − xα| ≤ |y − ζα| + |ζα − xα| ≤ 2
√
n Cnδ + δ/6 = Cδ. (8.7.83)

All together, for each α ∈ A we have

|y − xα| ≈ δ. (8.7.84)

In addition, from (8.7.82)we see that rα := |y − xα|/2 ≥ δ/6 for eachα ∈ A , which
further ensures that B(xα, δ/6) ⊆ B(xα, rα)wheneverα ∈ A . Togetherwith (8.7.67)
and (8.7.84), this inclusion implies

∥∥b0,δ(·, y)
∥∥
L p(I δ

k ,Ln)
≤
∑

α∈A

∥∥b0,δ(·, y)
∥∥
L p(B(xα,rα),Ln)

≤
∑

α∈A

∥∥b(·, y)∥∥L p(B(xα,rα),Ln)

≤ C
∑

α∈A
|xα − y|1−ε−n/p′ ≈ δ1−ε−n/p′

(8.7.85)

which matches the format of (8.7.81) in the case when j = 0.
Gathering (8.7.77), (8.7.81), and (8.7.85) then yields

‖R j,δ f ‖L p(I δ
k ,Ln) ≤ C(2 jδ)1−ε−n/p′ ‖ f ‖L1(λQδ

j,k ,Ln). (8.7.86)

On the other hand, by Hölder’s inequality and the fact that ∂� is Ahlfors regular,

‖ f ‖L1(λQδ
j,k ,Ln) ≤ C(2 jδ)(n−1)/p′ ‖ f ‖L p(λQδ

j,k ,Ln) (8.7.87)

so

‖R j,δ f ‖p
L p(Aδ ,Ln) =

∑

k∈Jδ

‖R j,δ f ‖p
L p(I δ

k ,Ln)

≤ C(2 jδ)1−pε
∑

k∈Jδ

‖ f ‖p
L p(λQδ

j,k ,σ )

≤ C(2 jδ)1−pε‖ f ‖p
L p(∂�,σ), (8.7.88)

by (8.7.74) and (8.7.76). Hence,
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( ˆ
Aδ

|R f (x)|p dx
)1/p ≤

∑

j∈Fδ

‖R j,δ f ‖L p(Aδ ,Ln)

≤ C
( ∑

{ j≥0: 2 j−1δ≤d}
(2 jδ)1/p−ε

)
‖ f ‖L p(∂�,σ)

≤ Cd,p,εCb‖ f ‖L p(∂�,σ), (8.7.89)

with the constant Cb as in (8.7.67), and with Cd,p,ε independent of δ and finite, as
long as ε ∈ (0, 1

p ), which we assume to begin with. Consequently, since

� =
⋃

μ∈N0

A2−μd , disjoint union, (8.7.90)

we may use the estimate obtained in (8.7.89) for δ := 2−μd ∈ (0, d] with μ ∈ N0 to
write

ˆ
�

|R f (x)|p dist(x, ∂�)a dx ≤ da
∑

μ∈N0

2−μa‖R f ‖p
L p(A2−μd ,Ln)

≤ Cd,a,p,εCb‖ f ‖p
L p(∂�,σ), (8.7.91)

with Cd,a,p,ε ∈ (0,∞) if a > 0. �
Several other useful estimates of a purely geometric measure theoretic nature are

established in the corollary below, based on the general results from Lemma 7.2.1
(cf. (7.2.5)).

Corollary 8.7.12 Assume � ⊆ R
n is an open set and abbreviate σ := Hn−1�∂�.

Then, if ∂� is upper Ahlfors regular, it follows that for each ε > 0 there exists
C ∈ (0,∞) with the property that

ˆ
∂�

dσ(y)

|x − y|n−1+ε
≤ C · δ∂�(x)−ε for each x ∈ �, (8.7.92)

and if ∂� is lower Ahlfors regular then for each ε > 0 there exists c ∈ (0,∞) such
that

c · δ∂�(x)−ε ≤
ˆ

∂�

dσ(y)

|x − y|n−1+ε
for each x ∈ �. (8.7.93)

As a consequence, if ∂� is an Ahlfors regular set then for each ε > 0 one has

ˆ
∂�

dσ(y)

|x − y|n−1+ε
≈ δ∂�(x)−ε uniformly for x ∈ �. (8.7.94)

Proof Fix an arbitrary point x ∈ �, introduce r := δ∂�(x), and consider a point
x∗ ∈ ∂� with the property that |x∗ − x | = r . Then, under the assumption that ∂� is
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upper Ahlfors regular set, we may estimate

ˆ
∂�

dσ(y)

|x − y|n−1+ε
≈
ˆ

∂�

dσ(y)

[r + |x∗ − y|]n−1+ε

≤ C
ˆ
B(x∗,2r)∩∂�

dσ(y)

rn−1+ε
+ C

ˆ
∂�\B(x∗,2r)

dσ(y)

|x∗ − y|n−1+ε

≤ Cr−(n−1+ε) · σ
(
B(x∗, 2r) ∩ ∂�

)+ Cr−ε ≤ Cr−ε, (8.7.95)

thanks to (8.1.22), the fact that ∂� is upper Ahlfors regular, and the second inequality
in (7.2.5). This establishes (8.7.92). If, on the other hand, ∂� is a lowerAhlfors regular
set, we have

ˆ
∂�

dσ(y)

|x − y|n−1+ε
≈
ˆ

∂�

dσ(y)

[r + |x∗ − y|]n−1+ε
≥ c

ˆ
B(x∗,r)∩∂�

dσ(y)

rn−1+ε

= cr−(n−1+ε) · σ
(
B(x∗, r) ∩ ∂�

) ≥ cr−ε, (8.7.96)

proving (8.7.93). Finally, under the assumption that ∂� is an Ahlfors regular set,
(8.7.94) is a consequence of (8.7.92)–(8.7.93). �

Our final result in this section is going to be relevant later on when dealing with
singular integral operators.

Proposition 8.7.13 Suppose � ⊆ R
n is an open set with an upper Ahlfors regular

boundary and abbreviate σ := Hn−1�∂�. In addition, assume a(·, ·) is a Borel-
measurable function on � × ∂� with the property that there exist some exponent
α ∈ [0,∞) and some constant Co ∈ (0,∞) such that

forLn-a.e. point x ∈ � one has |a(x, y)| ≤ Co |x − y|−(n−1+α)

at σ -a.e. point y belonging to ∂�.
(8.7.97)

Finally, define the integral operator

A f (x) :=
ˆ

∂�

a(x, y) f (y) dσ(y) at Ln-a.e. x ∈ �,

for each function f ∈ L1
(
∂�,

σ(x)

1 + |x |n−1+α

)
.

(8.7.98)

Then the integral in (8.7.98) is absolutely convergent, one has the continuous
embedding

L p(∂�, σ) ↪→ L1
(
∂�,

σ(x)

1 + |x |n−1+α

)
for each p ∈ [1,∞), (8.7.99)

and for each p ∈ [1,∞) there exists a constant C ∈ (0,∞) with the property that
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∥∥∥δ
n−1
p +α

∂� · A f
∥∥∥
L∞(�,Ln)

≤ C‖ f ‖L p(∂�,σ) for all f ∈ L p(∂�, σ). (8.7.100)

Finally, if α > 0 then p = ∞ is allowed in (8.7.99) and (8.7.100).

Proof All claims are consequences of (8.7.97)–(8.7.98), Hölder’s inequality, and
estimate (8.7.92) in Corollary 8.7.12. �

8.8 The Nontangentially Accessible Boundary

Consider an arbitrary open nonempty proper subset � of R
n and pick an arbitrary

aperture parameter κ ∈ (0,∞). From (8.1.10) we know that at each point x ∈ ∂�

we have the following dichotomy:

either x ∈ �κ(x), or �κ(x) ⊆ �. (8.8.1)

In fact, in the latter scenario it turns out that dist
(
�κ(x), ∂�

)
> 0. To study the

likelihood of the first eventuality in (8.8.1) materializing, we propose to study the set

Aκ(∂�) := {
x ∈ ∂� : x ∈ �κ(x)

}
. (8.8.2)

Informally, Aκ(∂�) consists of those boundary points which are “accessible” in a
nontangential fashion (specifically, from within nontangential approach regions of
aperture κ). From definitions, it follows that

Aκ(∂�) ∩ O ⊆ πκ(O) for each open set O ⊆ R
n . (8.8.3)

To proceed, recall that, in a given topological space, a Gδ set is a countable intersec-
tion of open sets.

Proposition 8.8.1 Let � be an open nonempty proper subset of R
n and consider

σ := Hn−1�∂�. Then

Aκ0(∂�) ⊆ Aκ(∂�) whenever 0 < κ0 ≤ κ < ∞, (8.8.4)

and, for each κ > 0,

Aκ(∂�) is a Gδ set in ∂� (equipped with the relative topology,
induced by R

n); in particular, each set Aκ(∂�) is Borelian, hence
σ -measurable.

(8.8.5)

Moreover,
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if σ is a doubling measure on the set ∂�, then
σ
(
Aκ(∂�) \ Aκ0(∂�)

) = 0 for all κ, κ0 > 0. (8.8.6)

Remarkably, (8.8.6) states that, under the assumption thatσ is a doublingmeasure,
the sets Aκ(∂�) indexed by κ ∈ (0,∞) are equal to one another up to σ -nullsets.
Later on, in Proposition 8.8.3, we shall show that in a suitable geometric setting there
exist sets in this family which are “large” (i.e., cover ∂∗� up to a σ -nullset).

As a prelude to the proof of Proposition 8.8.1, in the lemma below we isolate a
useful elementary result.

Lemma 8.8.2 Let X be an arbitrary set. Consider a sequence f j : X → R, indexed
by j ∈ N, such that f (x) := lim sup

j→∞
f j (x) exists in R for each x ∈ X. Then the

function f : X → Rhas the property that for each numberλ ∈ Rand eachnumerical
sequence {λi }i∈N ⊆ (−∞, λ) with λ = lim

i→∞ λi one has

f −1
([λ,∞)

) =
⋂

k∈N

⋂

i∈N

⋃

j≥k

f −1
j

(
(λi ,∞)

)
. (8.8.7)

As a consequence, if X is a topological space and each f j is a lower-
semicontinuous function, then f −1

([λ,∞)
)
is a Gδ set for each λ ∈ R.

Proof If for each k ∈ N we define gk := sup j≥k f j , then for each x ∈ X we have

f (x) = lim sup
j→∞

f j (x) = inf
k∈N

(
sup
j≥k

f j (x)
)

= inf
k∈N

gk(x). (8.8.8)

Consequently, for any λ ∈ R and {λi }i∈N ⊆ (−∞, λ)with λ = lim
i→∞ λi wemay write

f −1
([λ,∞)

) =
⋂

k∈N
g−1
k

([λ,∞)
) =

⋂

k∈N
g−1
k

(⋂

i∈N
(λi ,∞)

)

=
⋂

k∈N

⋂

i∈N
g−1
k

(
(λi ,∞)

) =
⋂

k∈N

⋂

i∈N

⋃

j≥k

f −1
j

(
(λi ,∞)

)
, (8.8.9)

proving (8.8.7). The last claim in the statement is then an immediate corollary of this
(bearing in mind that each f −1

j

(
(λi ,∞)

)
is now an open set). �

We are now ready to proceed to the proof of Proposition 8.8.1.

Proof of Proposition 8.8.1 The inclusion claimed in (8.8.4) is clear from (8.8.2) and
(8.1.20). The proof of (8.8.5) requires some preparations. Given a nonempty closed
set F ⊆ ∂� denote

Fε := {x ∈ � : dist(x, F) < ε}, ∀ε > 0. (8.8.10)



776 8 Open Sets with Locally Finite Surface Measures and Boundary Behavior

Thus, each Fε is an open subset of �. Moreover, for each fixed κ > 0 we have

πκ(F
ε) ⊆ {x ∈ ∂� : dist(x, F) < (2 + κ)ε}, ∀ε > 0. (8.8.11)

Indeed, if x ∈ πκ(Fε) then �κ(x) ∩ Fε �= ∅. If y is a point in this intersection,
then |x − y| < (1 + κ) dist(y, ∂�) and dist(y, ∂�) ≤ dist(y, F) < ε. Then (8.8.11)
follows by observing that these inequalities imply

dist(x, F) ≤ |x − y| + dist(y, F) < (2 + κ)ε. (8.8.12)

In relation to (8.8.10) we claim that for each fixed κ > 0 we have

Nκ(1Fε ) −→ 1{x∈F : x∈�κ (x) } pointwise on ∂�, as ε → 0+. (8.8.13)

To justify this claim, consider first a point z ∈ F with the property that z ∈ �κ(z) and
pick some ε > 0. Then the set Uε := {x ∈ R

n : dist(x, F) < ε} is a neighborhood
of z. Bearing in mind that �κ(z) ⊆ � and Uε ∩ � = Fε, this implies that for every
ε > 0 we have

∅ �= Uε ∩ �κ(z) = Uε ∩ � ∩ �κ(z) = Fε ∩ �κ(z). (8.8.14)

Hence, Fε ∩ �κ(z) is a nonempty open subset of � on which 1Fε is identically one.
In light of (8.2.5) this implies that Nκ(1Fε )(z) = 1 for every ε > 0. This suits our
purposes since, by the assumptions on z, we also have

(
1{x∈F : x∈�κ (x) }

)
(z) = 1.

Consider next the case when z ∈ ∂� \ F . Since F is a closed subset of ∂�,
this implies the existence of some εz > 0 with the property that B(z, εz) ∩ F = ∅.
Hence, dist(z, F) ≥ εz . In view of (8.2.24) and (8.8.11), this implies that whenever
ε ∈ (

0, εz/(2 + κ)
)
we have

Nκ(1Fε )(z) ≤ (
1πκ (Fε)

)
(z) = 0. (8.8.15)

This proves that Nκ(1Fε )(z) = 0 for every ε ∈ (
0, εz/(2 + κ)

)
, which once again

suits our goals since
(
1{x∈F : x∈�κ (x) }

)
(z) = 0 in this case.

Finally, consider the case when z ∈ ∂� is such that z /∈ �κ(z). Observe that the
latter condition guarantees the existence of some εz > 0 the property that

Fεz ∩ �κ(z) = ∅. (8.8.16)

Otherwise, one could find a sequence {x j } j∈N ⊂ �κ(z) with the property that
dist(x j , F) → 0 as j → ∞. In such a scenario,

|z − x j | < (1 + κ) dist(x j , ∂�) ≤ (1 + κ) dist(x j , F) → 0 as j → ∞,

(8.8.17)
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which would then force z = lim
j→∞ x j ∈ �κ(z), a contradiction. In turn, (8.8.16)

implies
z /∈ πκ(F

ε) for every ε ∈ (0, εz). (8.8.18)

As such, for every ε ∈ (0, εz) we have Nκ(1Fε )(z) ≤ (
1πκ (Fε)

)
(z) = 0, proving that

Nκ(1Fε )(z) = 0 for every ε ∈ (0, εz). This once more serves our current aims since(
1{x∈F : x∈�κ (x) }

)
(z) = 0 in this case. This finishes the proof of (8.8.13).

If we now specialize (8.8.13) to the case when F := ∂� it follows that for each
fixed κ > 0

Nκ(1(∂�)ε ) −→ 1{x∈∂�: x∈�κ (x) } pointwise on ∂�, as ε → 0+. (8.8.19)

In turn, from (8.8.19), (8.8.2), the lower-semicontinuity on ∂� of eachNκ (1(∂�)ε ) (cf.
(8.2.26)), and Lemma 8.8.2 applied with X := ∂�, the sequence f j := Nκ(1(∂�)1/j )

indexed by j ∈ N (a choice which forces f := lim
j→∞ f j = 1Aκ (∂�)), and λ := 1, we

conclude that Aκ(∂�) = f −1
([1,∞)

)
is a Gδ set in ∂�. Hence, (8.8.5) holds.

Before going any further, we wish to note that

if F ⊆ ∂� is a given nonempty, closed, bounded set,
then for each aperture parameter κ ∈ (0,∞)we have
Nκ(1Fε ) → 1{x∈F : x∈�κ(x) } in L1(∂�, σ), as ε → 0+.

(8.8.20)

Indeed, this is a consequence of Lebesgue’s Dominated Convergence Theorem,
whose applicability is ensured by (8.8.13) together with the observation that for
each ε ∈ (0, 1) we have (thanks to (8.2.24) and (8.8.11))

Nκ(1Fε ) ≤ 1πκ (Fε) ≤ 1{x∈∂�: dist(x,F)<2+κ} ∈ L1(∂�, σ). (8.8.21)

Moving on, make the assumption that σ = Hn−1�∂� is a doubling measure on
∂�, and consider κ, κ0 > 0 arbitrary. Then Proposition 8.4.1 implies that for each
nonempty, closed, and bounded set F ⊆ ∂� and each ε > 0 we have

‖Nκ1Fε‖L1(∂�,σ) ≈ ‖Nκ01Fε‖L1(∂�,σ) (8.8.22)

where the implicit constants depend only on κ, κ0, n and the doubling character of
σ . Upon letting ε → 0+ and availing ourselves of (8.8.20) then yields

σ
({x ∈ F : x ∈ �κ(x) }) ≈ σ

({x ∈ F : x ∈ �κ0(x) }), (8.8.23)

uniformly in F ⊆ ∂�, nonempty, closed, and bounded set. In fact, working with
Fj := F ∩ B(0, j) in place of F and passing to the limit j → ∞ (while mindful of
(3.1.6)), allows us to dispense with the demand that the set F is bounded. In light of
(8.8.2), this version of (8.8.23) implies
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σ
(
F ∩ Aκ(∂�)

) ≈ σ
(
F ∩ Aκ0(∂�)

)

for every closed set F ⊆ ∂�,
(8.8.24)

where the implicit constants depend only on κ, κ0, n and the doubling character of σ .
Specializing (8.8.24) to the case when F is any closed subset of Aκ(∂�) \ Aκ0(∂�)

yields

σ(F) = 0 for every closed subset F of Aκ(∂�) \ Aκ0(∂�). (8.8.25)

On the other hand, thanks to Lemma 3.4.13, Lemma 3.6.4, and the fact that (3.4.44)
always holds for a space of homogeneous type, item (3) in Proposition 3.4.15 applies
to the measure σ . In view of (8.8.25), the inner-regularity result described in (3.4.47)
then yields, in the case of the σ -measurable set Aκ(∂�) \ Aκ0(∂�), that

σ
(
Aκ(∂�) \ Aκ0(∂�)

)

= sup
{
σ(F) : F closed subset of Aκ(∂�) \ Aκ0(∂�)

} = 0. (8.8.26)

This establishes (8.8.6), and finishes the proof of the proposition. �

We continue by recording a delicate zero-density result for Hausdorff measures,
essentially due to Besicovitch [21], which is going to be relevant for us momentarily.
Specifically, given any s ≥ 0, if

E ⊆ R
n is a H s-measurable set satisfying

H s(E ∩ K ) < ∞ for every compact K ⊂ R
n ,

(8.8.27)

then

lim
r→0+

H s
(
B(x, r) ∩ E

)

r s
= 0 for H s-a.e. x ∈ R

n \ E . (8.8.28)

For a proof of (8.8.28) in the case when E ⊆ R
n is H s-measurable and satisfies

H s(E) < ∞ see [177, Theorem 6.2(2), p. 89], or [162, Theorem 1.3.7, p. 16]. This
result then readily self-improves to the slightly more general case described in
(8.8.27), where the set E is only required to be of locally finiteH s-measure.

Proposition 8.8.3 Suppose� is an open nonempty proper subset ofRn with a lower
Ahlfors regular boundary and such that σ := Hn−1�∂� is a locally finite measure
on ∂�. Then � has locally finite perimeter and there exists some κ� ∈ (0,∞) with
the property that

σ
(
∂∗� \ Aκ(∂�)

) = σ
(
∂∗� \ Aκ(∂�)

) = 0 for each κ > κ�. (8.8.29)

Proof Fromdefinitions and assumptions it follows that for each compact set K ⊂ R
n

we may estimate Hn−1
(
∂∗� ∩ K

) ≤ Hn−1
(
∂� ∩ K

) = σ
(
∂� ∩ K

)
< ∞. In light

of (5.6.35) this proves that � has locally finite perimeter, hence it is meaningful to
talk about its reduced boundary ∂∗�.
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Let us now turn out attention to (8.8.29). The first equality is a direct consequence
of (5.6.21), so we shall focus on the second equality. As a preamble, recall (5.6.19)
and observe that (8.8.27)–(8.8.28) used for s := n − 1 and E := ∂� \ ∂∗� give that,
on the one hand, in the current setting we have

lim
r→0+

Hn−1
(
B(x, r) ∩ (∂� \ ∂∗�)

)

rn−1
= 0 forHn−1-a.e. x ∈ ∂∗�. (8.8.30)

On the other hand, [80, Corollary 1(ii), p. 203] implies that if

voln−1 := π(n−1)/2
/
�
(
(n + 1)/2

) = ωn−2/(n − 1) (8.8.31)

denotes the volume of the unit ball in R
n−1 then

lim
r→0+

Hn−1
(
B(x, r) ∩ ∂∗�

)

rn−1
= voln−1 for each x ∈ ∂∗�. (8.8.32)

If for any point x ∈ ∂� and number r > 0 we abbreviate �(x, r) := B(x, r) ∩ ∂�,
then (8.8.30) and (8.8.32) allow us to conclude that

lim
r→0+

σ
(
�(x, r)

)

rn−1
= voln−1 for σ -a.e. x ∈ ∂∗�. (8.8.33)

Next, recall the family of one-sided collar neighborhoods Oε of ∂�, indexed by
ε > 0, introduced in (6.1.4). Also, fix some κ0 > 0. Then from (8.6.87) (and its
proof) used with λ := 2 + κ0 ∈ (2,∞) we know that

Ln
(
B(x, r) ∩ Oε

) ≤ Cε σ
(
�(x, (2 + κ0)r)

)
, (8.8.34)

for every ε ∈ (
0, ε�,κ0

)
, where ε�,κ0 is as in (8.6.75) (with κ := κ0) and the constant

C = C(∂�, κ0) ∈ (0,∞) is independent of x, r, ε. In concert with (8.8.33), this
implies that there exists some constant C̃ = C̃(∂�, κ0) ∈ (0,∞) such that

for σ -a.e. point x ∈ ∂∗� there exists some number
r (1)
x ∈ (0, 1) such that Ln

(
B(x, r) ∩ Oε

) ≤ C̃ ε rn−1

for every r ∈ (
0, r (1)

x

)
as well as every ε ∈ (

0, ε�,κ0

)
.

(8.8.35)

This property is going to be relevant momentarily.
Carrying on, from Lemma 5.6.8 we know that there exists some purely dimen-

sional constant cn ∈ (0,∞) for which

lim inf
r→0+

Ln(B(x, r) ∩ �)

rn
> cn, ∀x ∈ ∂∗�. (8.8.36)

Consequently, for each x ∈ ∂∗� there exists r (2)
x ∈ (0, 1) such that
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Ln(B(x, r) ∩ �) > cn r
n, ∀r ∈ (

0, r (2)
x

)
. (8.8.37)

Choose
ϑ = ϑ(∂�, κ0) := min

{
1/2, ε�,κ0 , cn

/
C̃
}
. (8.8.38)

Then for σ -a.e. point x ∈ ∂∗� and each scale r ∈ (
0, rx

)
where

rx := min
{
r (1)
x , r (2)

x

} ∈ (0, 1), (8.8.39)

a combination of (8.8.37) and (8.8.35) with ε replaced by εr := ϑr ∈ (
0, ε�,κ0

)

yields

Ln
([B(x, r) ∩ �] \ Oεr

) = Ln(B(x, r) ∩ �) − Ln
(
B(x, r) ∩ Oεr )

> cn r
n − C̃ εr r

n−1 = rn
(
cn − C̃ ϑ

) ≥ 0, (8.8.40)

bearing in mind the choice of ϑ .
What we have just proved implies that there exists a nullset N ⊆ ∂� for the

measure σ with the property that

[B(x, r) ∩ �] \ Oεr �= ∅ ∀x ∈ ∂∗� \ N , ∀r ∈ (0, rx ). (8.8.41)

Fix now x ∈ ∂∗� \ N and, for each r ∈ (0, rx ), choose yr ∈ [B(x, r) ∩ �] \ Oεr .
Then yr ∈ � and we have |x − yr | < r as well as δ∂�(yr ) ≥ ϑ r . Hence

lim
r→0+

yr = x (8.8.42)

and

yr ∈ �κ(x) for each r ∈ (0, rx ), provided κ > (1/ϑ) − 1. (8.8.43)

With κ� := (1/ϑ) − 1, this proves

κ > κ� =⇒ x ∈ �κ(x) for σ -a.e. x ∈ ∂∗�, (8.8.44)

from which the second equality in (8.8.29) follows. �

Circumstances under which the nontangential accessibility sets Aκ(∂�), with
arbitrary apertures κ ∈ (0,∞), compare favorably (from the point of view of Haus-
dorff measure) with the geometric measure theoretic boundary ∂∗� are described in
our next proposition.

Proposition 8.8.4 Suppose� is an open nonempty proper subset ofRn with a lower
Ahlfors regular boundary and such that σ := Hn−1�∂� is a doubling measure on
∂�. Then � has locally finite perimeter and
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σ
(
∂∗� \ Aκ(∂�)

) = σ
(
∂∗� \ Aκ(∂�)

) = 0 for each κ > 0. (8.8.45)

Proof That � has locally finite perimeter follows from Proposition 8.8.3 and the
fact that any doubling measure is, by definition, locally finite. To proceed, given
κ ∈ (0,∞) arbitrary, select κ0 > κ� where κ� ∈ (0,∞) is as in Proposition 8.8.3.
Then

∂∗� \ Aκ(∂�) ⊆ (
∂∗� \ Aκ0(∂�)

) ∪ (
Aκ0(∂�) \ Aκ(∂�)

)
(8.8.46)

which, in concert with (8.8.29) and (8.8.6), proves (8.8.45). �

The following definition is central to the present work.

Definition 8.8.5 Define the nontangentially accessible boundary of
any given nonempty open proper subset � of R

n as

∂nta� :=
⋂

κ>0

Aκ(∂�) = {
x ∈ ∂� : x ∈ �κ(x) for each κ > 0

}
. (8.8.47)

In particular, if Q+ denotes the set of positive rational numbers, based on (8.8.4) it
is easy to see that

for any open nonempty proper subset �
of R

n we have ∂nta� = ⋂
κ∈Q+ Aκ(∂�). (8.8.48)

Note that if

� := {
x ∈ R

n : cos(θ/2) |x − x0| < (x − x0) · h} (8.8.49)

is the open, convex, infinite, circular cone in R
n with vertex at x0 ∈ R

n , symmetry
axis along the vector unit h ∈ Sn−1, and full aperture angle θ ∈ (0, π), then for each
κ ∈ (0,∞) a simple computation shows that

x0 ∈ Aκ(∂�) ⇐⇒ κ >
1

sin(θ/2)
− 1. (8.8.50)

In particular, x0 /∈ ∂nta�, hence

if � is the cone defined in (8.8.49) then
∂nta� = ∂� \ {x0} whereas ∂∗� = ∂�.

(8.8.51)

As can be seen in the case of a slit disk in the plane, it may happen that ∂nta� is
considerably larger than ∂∗�. In the proposition below we identify qualities of �

guaranteeing that the nontangentially accessible boundary ∂nta� compares favorably
(as regards the Hausdorff measure) with the geometric measure theoretic boundary
∂∗�.
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Proposition 8.8.6 Let � be an open nonempty proper subset of R
n and consider

σ := Hn−1�∂�. Then the following statements are true.

(i) The set ∂nta� is Borelian, hence σ -measurable, and satisfies ∂nta� ⊆ Aκ(∂�) for
each κ > 0.

(ii) If σ is a doubling measure on ∂� then σ
(
Aκ(∂�) \ ∂nta�

) = 0 for each κ > 0.
(iii) If the set ∂� is lower Ahlfors regular, and the measure σ is doubling on ∂�, then

σ
(
∂∗� \ ∂nta�

) = 0 and σ
(
∂∗� \ ∂nta�

) = 0. (8.8.52)

Regarding the nature of (8.8.52), it is remarkable that the intrinsic properties of the
topological boundary ∂� (such as lower Ahlfors regularity and the surface measure
being doubling) provide information about the “thickness” of the set � itself, by
implying that, almost all points in the geometric measure theoretic boundary ∂∗�
may be approached nontangentially (with any fixed aperture parameter) from within
the open set �. Incidentally, it would be misleading to think of this as being merely
a “soft” topological property, since there are quantitative estimates (going back to
Proposition 8.4.1) underpinning this implication.

Proof of Proposition 8.8.6 Given any open nonempty proper subset � of R
n , from

(8.8.47) and the fact that the family
{
Aκ(∂�)

}
κ>0 is nested we conclude that

∂nta� =
∞⋂

j=1

A1/j (∂�). (8.8.53)

In light of (8.8.5), this formula implies that the set ∂nta� is indeed Borelian, therefore
σ -measurable. Moreover, for any κ > 0 we have ∂nta� ⊆ Aκ(∂�) by design. Hence,
the claims in part (i) are justified.

To treat part (ii), assume that σ is a doubling measure on ∂�. Since thanks to
(8.8.53) we have

Aκ(∂�) \ ∂nta� =
∞⋃

j=1

(
Aκ(∂�) \ A1/j (∂�)

)
, (8.8.54)

it follows from (8.8.6) that σ
(
Aκ(∂�) \ ∂nta�

) = 0, as wanted.
Finally, assume that ∂� and σ are as in part (iii). In concert with (8.8.45), the

result established in part (ii) then implies

σ
(
∂∗� \ ∂nta�

) = 0. (8.8.55)

Upon recalling (5.6.21), we see from (8.8.55) that

σ
(
∂∗� \ ∂nta�

) = 0, (8.8.56)

completing the proof of the proposition. �
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An open set � ⊂ R
n with the property that

for each κ > 0 one has x ∈ �κ(x) forHn−1-a.e. x ∈ ∂�, (8.8.57)

has been called in [125] a weakly accessible domain. Using the piece of
notation introduced in (8.8.2), we may refashion the condition formulated in (8.8.57)
as

Hn−1(∂� \ Aκ(∂�)
) = 0 for each κ > 0. (8.8.58)

In [125, Proposition 2.9] it has been proved that

if � is an open nonempty proper subset of R
n with an Ahlfors regular

boundary and satisfying Hn−1(∂� \ ∂∗�) = 0, then � is a weakly
accessible domain (in the sense that (8.8.57) holds).

(8.8.59)

Bearing in mind (8.8.58), the property in (8.8.59) is now an immediate consequence
of Proposition 8.8.6.

Next, we remark that (8.1.5)–(8.1.6) imply that for any given open set � ⊆ R
n

we have

if Cθ,b(x, h) ⊆ � for some x ∈ ∂�

h ∈ Sn−1, θ ∈ (0, π), and b ∈ (0,∞)

}
⇒ x ∈ Aκ(∂�) if κ >

1

sin(θ/2)
− 1.

(8.8.60)
As a consequence,

if the open set� ⊆ R
n satisfies an interior ball condition at a point

x ∈ ∂�, in the sense that there exist h ∈ Sn−1 and r > 0 such that
B(x + rh, r) ⊆ �, then actually x belongs to ∂nta�.

(8.8.61)

A related membership criterion to the nontangentially accessible boundary of a set
is presented below.

Proposition 8.8.7 Let � ⊆ R
n, where n ≥ 2, be an open set and suppose a point

x = (x ′, xn) ∈ ∂� has the property that there exist some r > 0 and a continuous
function f : R

n−1 → R satisfying

f (x ′) = xn, f is differentiable at x ′, and
B(x, r) ∩ {y = (y′, yn) ∈ R

n : yn > f (y′)} ⊆ �.
(8.8.62)

Then actually x belongs to ∂nta�.

Proof The same argument that has produced (5.6.109) in the proof of Proposi-
tion 5.6.17 presently yields

for every angle θ ∈ (0, π) there exists some
small height b > 0 so that Cθ,b(x, h) ⊆ �. (8.8.63)
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Granted this, (8.8.60) then implies that x ∈ Aκ(∂�) for each κ > 0, hence x belongs
to ∂nta�. �

In particular, Proposition 8.8.7 shows that

if � ⊆ R
n , where n ≥ 2, is the strict epigraph of a continuous

function f : R
n−1 → R then

(
x ′, f (x ′)

)
belongs to ∂nta�whenever

x ′ ∈ R
n−1 is a differentiability point for f .

(8.8.64)

Another result of similar flavor is as follows.

Proposition 8.8.8 Assume � ⊆ R
n is an open set satisfying an interior corkscrew

condition with constant θ ∈ (0, 1) (cf. (5.1.5)). Then

Aκ(∂�) = ∂� for each κ > 2(θ−1 − 1). (8.8.65)

Proof Fix κ > 2(θ−1 − 1). With notation introduced in Definition 5.1.3, we shall
show that

B
(
zr (x), θr/2

) ⊆ �κ(x), ∀x ∈ ∂�, ∀r ∈ (0, 2 diam�). (8.8.66)

Indeed, having fixed a point x ∈ ∂� along with some r ∈ (0, 2 diam�), for each
y ∈ B

(
zr (x), θr/2

)
we have dist(y, ∂�) > θr/2 (cf. (5.1.5)), so

|y − x | ≤ r − θr/2 < (1 + κ)θr/2 < (1 + κ) dist(y, ∂�), (8.8.67)

proving (8.8.66). In turn, (8.8.66) implies that x ∈ �κ(x), given that zr (x) → x as
r → 0+. Consequently, x ∈ Aκ(∂�) from which (8.8.65) follows. �

Combining the above result with Proposition 8.8.6 yields the following useful
corollary.

Corollary 8.8.9 If� ⊆ R
n is an open set satisfying an interior corkscrew condition

and with the property that σ := Hn−1�∂� is a doubling measure on ∂�, then

σ
(
∂� \ ∂nta�

) = 0. (8.8.68)

In particular,

if� ⊆ R
n is an open set which is n-thick and has an Ahlfors

regular boundary it follows thatHn−1
(
∂� \ ∂nta�

) = 0. (8.8.69)

Proof The main assertion is a consequence of Proposition 8.8.8 and item (ii) in
Proposition 8.8.6. In turn, (8.8.69) is implied by this and Proposition 8.6.12. �

We conclude with an elementary but useful observation.
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Proposition 8.8.10 For any open set � ⊆ R with the property that ∂� is of locally
finite cardinality one has ∂nta� = ∂�.

Proof For starters, ∂nta� ⊆ ∂� by (8.8.47). To prove the opposite inclusion, write�

as an at most countable union of open, mutually disjoint intervals (which are actually
the connected components of �), say

� =
⋃

j∈J

I j . (8.8.70)

We claim that
∂� =

⋃

j∈J

∂ I j . (8.8.71)

Indeed, since
⋃

j∈J ∂ I j is a subset of ∂�, and the latter is a closed set, the right-to-left
inclusion in (8.8.71) holds. To prove the left-to-right inclusion in (8.8.71), reason by
contradiction and assume that there exists

x ∈ ∂� such that x /∈
⋃

j∈J

∂ I j . (8.8.72)

The last property above guarantees the existence of some r > 0 such that

(x − r, x + r) ∩ ∂ I j for each j ∈ J. (8.8.73)

In turn, this shows that for each j ∈ J we have

either (x − r, x + r) ⊆ I j or (x − r, x + r) ∩ I j = ∅. (8.8.74)

However, the first eventuality above nevermaterializes since, if it did, the existence of
some j ∈ J for which (x − r, x + r) ⊆ I j would imply that x ∈ �, in contradiction
with the fact that � is open and we are presently assuming that x ∈ ∂�. Thus, we
actually have

(x − r, x + r) ∩ I j = ∅ for each j ∈ J. (8.8.75)

In turn, from (8.8.75) we conclude that

(x − r, x + r) ∩ � = (x − r, x + r) ∩
(⋃

j∈J

I j
)

= ∅. (8.8.76)

However, this is in contradiction with the fact that x ∈ ∂�. As such, (8.8.71) is
proved.

Since ∂� is of locally finite cardinality, it follows that
⋃

j∈J ∂ I j is also of locally
finite cardinality. As such,

⋃
j∈J ∂ I j is a closed set, hence in fact
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∂� =
⋃

j∈J

∂ I j . (8.8.77)

Having established this, the end-game in the proof of the inclusion

∂� ⊆ ∂nta� (8.8.78)

is as follows. Having fixed an arbitrary aperture parameter κ > 0, from (8.1.28),
(8.1.30) we see that for each j ∈ J we have

x ∈ �I j ,κ (x) for each x ∈ ∂ I j , (8.8.79)

hence
x ∈ ��,κ(x) for each x ∈ ∂ I j , (8.8.80)

on account of Lemma 8.1.3 (whose applicability uses (8.8.70)–(8.8.71)). In view of
(8.8.47), this proves ⋃

j∈J

∂ I j ⊆ ∂nta�. (8.8.81)

Together with (8.8.77), this proves (8.8.78). �

8.9 The Nontangential Boundary Trace Operator

We debut by making the following definition, which is central to our work. This
introduces the nontangential boundary trace of a measurable function at a (nontan-
gentially accessible) boundary point as the “essential limit” of said function at the
given point from within the corresponding nontangential approach region.

Definition 8.9.1 Fix a background parameter κ > 0 and let u be a real-valued
Lebesgue measurable function defined Ln-a.e. in an open set � ⊂ R

n. Consider a
point

x ∈ Aκ(∂�), i.e., x ∈ ∂� such that x ∈ �κ(x). (8.9.1)

Then one says that the nontangential limit3 of u at x from within �κ(x) exists, and
its value is the number a ∈ R, provided

for every ε > 0 there exists some r > 0 such that
|u(y) − a| < ε forLn-a.e. point y ∈ �κ(x) ∩ B(x, r).

(8.9.2)

Whenever the nontangential limit of u at x from within �κ(x) exists, its value is

denoted by
(
u
∣∣κ−n.t.

∂�

)
(x).

3 More precisely, the κ-nontangential limit.
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A few comments are in order. As a preamble, for each ε > 0, recall the neigh-
borhood collar Oε from (6.1.4) and that, for each Lebesgue measurable function
u : � → C, we have abbreviated

Nε
κu := NOε

κ u = Nκ

(
u1Oε

)
. (8.9.3)

Remark1. Definition 8.9.1 naturally extends to complex-valued and vector-valued
functions by working on components. In such cases, we shall retain the same symbol
to denote the nontangential boundary trace operator.

Remark2. Sometimes we will slightly abuse terminology and simply say that
(
u
∣∣κ−n.t.

∂�

)
(x) exists as a way of indicating that the nontangential limit of u at x exists

when considered from within nontangential approach regions with aperture param-
eter κ .

Remark3. If (as is usually the case) one works with equivalence classes, obtained by
identifying functions which coincide Ln-a.e., the nontangential limit is independent
of the specific choice of a representative in a given equivalence class. Thus,

(
u
∣
∣κ−n.t.

∂�

)
(x) = (

w
∣
∣κ−n.t.

∂�

)
(x) if u, w : � −→ R are

twoLebesguemeasurable functionswith the prop-
erty that u = w at Ln-a.e. point in the set �.

(8.9.4)

Remark4. Since for each x as in (8.9.1) the set �κ(x) ∩ B(x, r) is nonempty and
open (hence, of positive Lebesguemeasure) for every r > 0, it is clear that there could
be at most one number a ∈ R satisfying (8.9.2). As such, whenever the nontangential

limit at x exists, the number
(
u
∣∣κ−n.t.

∂�

)
(x) is unambiguously defined.

Remark5.The κ-nontangential limit of u at x exists (in the sense of Definition 8.9.1)
if and only if

there exists some Lebesgue measurable set N (x) ⊂ �κ(x),
with Ln(N (x)) = 0, such that lim

(�κ (x)\N (x))�y→x
u(y) exists. (8.9.5)

Furthermore, whenever the above limit exists, it actually equals
(
u
∣∣κ−n.t.

∂�

)
(x).

Let us re-write (8.9.5) more explicitly, and contrast it with the original definition
(cf. (8.9.2)). Concretely, (8.9.5) states that

there exist b ∈ C and a Lebesgue measurable set N (x) ⊂ �κ(x), with
Ln(N (x)) = 0, such that for every ε > 0 one can find rε > 0 with the
property that |u(y) − b| < ε for each y ∈ (

�κ(x) \ N (x)
) ∩ B(x, rε),

(8.9.6)

whereas the original definition (8.9.2) amounts to the demand that
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for every ε > 0 there exist some a ∈ C
M , some radius rε > 0 and some

set Nε(x) ⊆ �κ(x), which is Ln-measurable and has Ln(Nε(x))=0,
such that |u(y) − a| < ε for each y ∈ (

�κ(x) ∩ B(x, rε)
) \ Nε(x).

(8.9.7)

Compared with the latter, the demand stipulated in (8.9.6) involves a nullset N (x)
which is independent of ε. In particular, (8.9.6) implies (8.9.7). Let us check that the
converse implication is also true. Specifically, choose the number b := a and define
N (x) := ⋃

j∈N N1/j (x). Then N (x) isLn-measurable andLn(N (x)) = 0. In concert
with (8.9.7), this definition also implies that for each j ∈ N there exists some r j > 0
such that |u(y) − b| < 1/j for each point y ∈ (

�κ(x) \ N (x)
) ∩ B(x, r j ). From this,

(8.9.6) now readily follows (choosing j ∈ N such that 1/j < ε and defining rε := r j ).
This concludes the proof of the fact that the existence of the nontangential limit of u
at x (in the sense of Definition 8.9.1) is equivalent to (8.9.5).

As a consequence of (8.9.5), whenever x ∈ Aκ(∂�) and the κ-nontangential limit
of u at x exists, for each ε > 0 we have

∣∣∣
(
u
∣∣κ−n.t.

∂�

)
(x)

∣∣∣ ≤ (Nε
κu
)
(x) ≤ (Nκu

)
(x). (8.9.8)

Remark6. The existence of
(
u
∣∣κ−n.t.

∂�

)
(x) amounts to saying that we may redefine u

on an Ln-nullset as to make u
∣∣
�κ(x) have a continuous extension to �κ(x) ∪ {x}.

Remark7. In the class of continuous functions the definition of the nontangential
boundary limit takes a simpler form, namely if x is as in (8.9.1) then

(
u
∣
∣κ−n.t.

∂�

)
(x) = lim

�κ(x)�y→x
u(u), ∀u ∈ C 0(�). (8.9.9)

Moreover,
if x ∈ Aκ(∂�) then

(
u
∣∣κ−n.t.

∂�

)
(x) = (

u
∣∣
∂�

)
(x)

for every function u belonging to C 0(�).
(8.9.10)

Remark8.Whenever x ∈ Aκ(∂�) and u, w : � → R are two Lebesguemeasurable
functions such that the κ-nontangential limits of u and w at x exist, it follows that
(
(uw)

∣∣κ−n.t.

∂�

)
(x) exists as well, and

(
(uw)

∣∣κ−n.t.

∂�

)
(x) = (

u
∣∣κ−n.t.

∂�

)
(x) · (w∣∣κ−n.t.

∂�

)
(x). (8.9.11)

Remark9. The pointwise nontangentially boundary trace introduced in Defini-
tion 8.9.1 is compatible with other natural notions of boundary traces, such as
those considered on Sobolev-Besov-Triebel-Lizorkin scales of spaces in certain open



8.9 The Nontangential Boundary Trace Operator 789

sets with Ahlfors regular boundaries as in [27, Corollary 5.7, p. 4257, and Theo-
rem 8.7(iii), p. 4413].

Remark10. As seen from (8.9.1)–(8.9.2), the definition of the nontangential trace
(
u
∣∣κ−n.t.

∂�

)
(x) may, in principle, depend on the aperture parameter κ . However, under

suitable assumptions on � and u, this definition turns out to be independent of κ ,
an issue discussed in Proposition 8.9.8. This is why we overwhelmingly prefer the
simpler terminology “nontangential limit” in place of the more elaborate piece of
nomenclature “κ-nontangential limit.”

For now we make the simple observation that, as is apparent from definitions,

if x ∈ Aκ(∂�) and
(
u
∣∣κ−n.t.

∂�

)
(x) exists, then for any other smaller

aperture parameter, say κ ′ ∈ (0, κ], it follows that x ∈ Aκ ′(∂�) and
(
u
∣∣κ

′−n.t.

∂�

)
(x) = (

u
∣∣κ−n.t.

∂�

)
(x).

(8.9.12)

Our next lemma establishes two basic facts. First, the truncated nontangential
maximal operator (cf. (8.9.3)) of a given function converges to the absolute value of
the nontangential pointwise limit of the said function (whenever the latter exists),
as the truncation parameter approaches zero. Second, if the truncated nontangen-
tial maximal operator (cf. (8.9.3)) of a given function converges to zero then the
nontangential pointwise limit of the said function exists and is equal to zero.

Lemma 8.9.2 Given an open nonempty proper subset � of R
n, some Lebesgue

measurable function u defined in �, and some aperture parameter κ > 0,

if x ∈ ∂� is such that x ∈ �κ(x) and
(
u
∣∣κ−n.t.

∂�

)
(x) exists,

then necessarily
(Nε

κu
)
(x) →

∣∣∣
(
u
∣∣κ−n.t.

∂�

)
(x)

∣∣∣ as ε → 0+.
(8.9.13)

and
if x ∈ ∂� is such that x ∈ �κ(x) and

(Nε
κu
)
(x) → 0 as

ε → 0+ then
(
u
∣∣κ−n.t.

∂�

)
(x) exists and is equal to zero.

(8.9.14)

Proof We first deal with (8.9.13). To this end, fix x ∈ ∂� such that x ∈ �κ(x) and

a := (
u
∣∣κ−n.t.

∂�

)
(x) exists in R. Also, pick some η > 0 arbitrary. Then Definition 8.9.1

ensures the existence of some rη > 0 with the property that

|u(y) − a| < η forLn-a.e. y ∈ �κ(x) ∩ B(x, rη). (8.9.15)

To proceed, recall the notation introduced in (6.1.4). Upon observing that for every
r > 0 we have

�κ(x) ∩ B(x, r) ⊆ �κ(x) ∩ Or ⊆ �κ(x) ∩ B(x, (1 + κ)r), (8.9.16)
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it follows from (8.9.15) that

∀r ∈ (0, rη)=⇒ |a| − η < |u(y)| < |a| + η

forLn-a.e. y ∈ �κ(x) ∩ Or/(1+κ).
(8.9.17)

Bearing in mind that x ∈ �κ(x) forces �κ(x) ∩ Or/(1+κ) to be a nonempty open set,
hence a Lebesgue measurable set of strictly positive measure, this further entails

|a| − η ≤ ‖u‖L∞(�κ (x)∩Or/(1+κ),Ln) ≤ |a| + η, ∀r ∈ (0, rη). (8.9.18)

In summary, we have shown that for every η > 0 there exists rη > 0 such that

|a| − η ≤ (Nr/(1+κ)
κ u

)
(x) ≤ |a| + η, ∀r ∈ (0, rη) (8.9.19)

which, ultimately, establishes (8.9.13).
To justify (8.9.14), fix x ∈ ∂� such that x ∈ �κ(x) and

(Nρ
κ u
)
(x)→0 as ρ→0+.

In view of (8.9.3) and (8.2.4), the latter property implies that for each ε > 0 there
exists some ρ > 0 such that

‖u‖L∞(�κ (x)∩Oρ ,Ln) < ε where Oρ := {
y ∈ � : δ∂�(y) < ρ

}
. (8.9.20)

In particular, this shows that

|u(y)| < ε forLn-a.e. y ∈ �κ(x) ∩ B(x, ρ). (8.9.21)

Finally, from (8.9.21) and (8.9.2) (with a := 0) we then conclude that
(
u
∣
∣κ−n.t.

∂�

)
(x)

exists and is equal to zero. �

It is also useful to note that the existence of the nontangential pointwise limit for
a locally bounded function guarantees the finiteness of its truncated nontangential
maximal function.

Lemma 8.9.3 Let� be an open nonempty proper subset ofRn and fix some aperture
parameter κ > 0. Then

given some point x ∈ ∂� such that x ∈ �κ(x) together with some

function u ∈ L∞
loc(�,Ln) such that

(
u
∣∣κ−n.t.

∂�

)
(x) exists, it follows that(Nε

κu
)
(x) < +∞ for each truncation parameter ε > 0.

(8.9.22)

Proof If we set a := (
u
∣
∣κ−n.t.

∂�

)
(x), then Lemma 8.9.2 implies that

(Nε
κu
)
(x) → |a|

as ε → 0+. As such, there exists εo > 0 with the property that
(Nεo

κ u
)
(x) ≤ |a| + 1.

In view of (8.9.3), this implies

‖u‖L∞(�κ (x)∩Oεo ,Ln) < +∞. (8.9.23)
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Next, fix ε > 0 arbitrary and define K := Oε ∩ (
�κ(x) \ Oεo/2

)
. By design, any point

in K is at distance ≥ εo/2 from the boundary of �. Also, since any point y ∈ K
has |y − x | < (1 + κ) dist(y, ∂�) < (1 + κ)ε it follows that K ⊆ B

(
x, (1 + κ)ε

)
.

Thus, K is also bounded, which goes to show that K is a relatively compact subset
of �. As a consequence, ‖u‖L∞

loc(K ,Ln) < +∞ which, together with (8.9.23), the
definition of K , and (8.9.3), ultimately implies that

(Nε
κu
)
(x) < +∞, as wanted. �

Our next lemma, which builds on the result established earlier in Lemma 8.9.2,
is going to play a key role in the proof of Proposition 8.9.8, formulated a little later.

Lemma 8.9.4 Let � be an open nonempty proper subset of R
n and assume μ is a

complete Borel measure on ∂�. Fix κ > 0 and recall the set Aκ(∂�) from (8.8.2)
which is a Borelian (cf. (8.8.5)). Also, assume

U is aμ-measurable subset of ∂� satisfyingμ
(U \ Aκ(∂�)

) = 0. (8.9.24)

Finally, suppose u : � → R is a Lebesgue measurable function with the property
that

the nontangential limit
(
u
∣∣κ−n.t.

∂�

)
(x) exists

(in R) for μ-a.e. point x belonging to U.
(8.9.25)

Then the function w : ∂� → R defined (μ-a.e.) as

w :=
{
u
∣
∣κ−n.t.

∂�
in U,

0 in ∂� \ U,
(8.9.26)

is a μ-measurable function on ∂�. In particular, the nontangential trace of u on ∂�

u
∣∣κ−n.t.

∂�
is aμ-measurable function onU. (8.9.27)

Furthermore,

if one also assumes
ˆ
U

∣∣Nδ
κu
∣∣p dμ < ∞ for some δ > 0 and p ∈ (0,∞)

then w ∈ L p(∂�,μ) and 1U · Nε
κu → |w| in L p(∂�,μ) as ε → 0+,

(8.9.28)
while

if also
ˆ

∂�\(Aκ (∂�)\U)

∣∣Nδ
κu
∣∣p dμ < ∞ for some δ > 0 and p ∈ (0,∞), then

w ∈ L p(∂�,μ) and 1∂�\(Aκ (∂�)\U) · Nε
κu → |w| in L p(∂�,μ) as ε → 0+.

(8.9.29)

Proof Assume x ∈ ∂� is a point satisfying x /∈ �κ(x). Then there exists εx > 0
such that B(x, εx ) ∩ �κ(x) = ∅. Observe that
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if ε ∈ (
0, εx/(1 + κ)

)
then�κ(x) ∩ Oε = ∅. (8.9.30)

Indeed, the existence of some y ∈ �κ(x) ∩ Oε would imply

|x − y| < (1 + κ)δ∂�(y) < (1 + κ)ε < εx=⇒y ∈ B(x, εx ) ∩ �κ(x), (8.9.31)

which is a contradiction. This establishes (8.9.30) which, in turn, goes to show that

(Nε
κu
)
(x) = 0 whenever ε ∈ (

0, εx/(1 + κ)
)
. (8.9.32)

We are now prepared to show that

lim
ε→0+

(
1U · Nε

κu
)
(x) = |w(x)| forμ-a.e. x ∈ ∂�. (8.9.33)

Indeed, the formula in (8.9.33) is valid forμ-a.e. x ∈ U ∩ Aκ(∂�) thanks to (8.9.13),
(8.9.25), and (8.8.2). Given that we are assuming μ

(U \ Aκ(∂�)
) = 0 and that the

formula in (8.9.33) is trivially true when x ∈ ∂� \ U, we ultimately conclude that
(8.9.33) holds. Next, since from (8.2.26) we know that

for every ε > 0, the function Nε
κu is μ-measurable on ∂�, (8.9.34)

and since the set U is assumed to be μ-measurable and the measure μ is assumed
to be complete, we may then deduce from (8.9.33) (cf. Remark 3.1.2) that

the function |w| isμ-measurable on ∂�. (8.9.35)

From this, theμ-measurability of the functionw defined in (8.9.26) is then derived
as follows. Bring in

u± := max{±u, 0} = |u| ± u

2
: � → [0,∞]. (8.9.36)

These are Lebesgue measurable functions satisfying

0 ≤ u± ≤ |u| and u = u+ − u− in �. (8.9.37)

Also, since the absolute value function is continuous, our assumptions on u entail

that the pointwise nontangential limits
(
u±∣∣κ−n.t.

∂�

)
(x) exist for μ-a.e. x ∈ U, are non-

negative, and

(
u
∣
∣κ−n.t.

∂�

)
(x) = (

u+∣∣κ−n.t.

∂�

)
(x) − (

u−∣∣κ−n.t.

∂�

)
(x) forμ-a.e. x ∈ U. (8.9.38)

As a consequence, similar conclusions to (8.9.35) hold for w± associated with u±
much asw has been associatedwith u in (8.9.26). Specifically, sincewe are now deal-
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ing with non-negative functions, we have that w± are μ-measurable. Also, (8.9.38)
implies that w = w+ − w− on ∂�. From these considerations we then finally con-
clude that the original function w defined in (8.9.26) is indeed μ-measurable.

Moving on, make the additional assumption that
´
U
∣∣Nδ

κu
∣∣p dμ < ∞ for some

truncation height δ > 0 and some integrability exponent p ∈ (0,∞). Given that we
already know that the function w is μ-measurable, from (8.9.26) and (8.9.8) we
see that w ∈ L p(∂�,μ). Furthermore, for every ε ∈ (0, δ) we have the following
pointwise inequalities on ∂�:

0 ≤ 1U · Nε
κu ≤ 1U · Nδ

κu ∈ L p(∂�,μ). (8.9.39)

Granted these, from (8.9.33) and Lebesgue’s Dominated Convergence Theorem we
may then conclude that 1U · Nε

κu converges to |w| in L p(∂�,μ) as ε → 0+. This
establishes (8.9.28).

As regards the claim in (8.9.29), we first observe that since ∂� \ (Aκ(∂�) \ U)

contains U, the hypotheses in (8.9.29) imply the hypotheses in (8.9.28). As such,
w ∈ L p(∂�,μ). Also,

lim
ε→0+

(
1∂�\(Aκ (∂�)\U) · Nε

κu
)
(x) = |w(x)| forμ-a.e. x ∈ ∂�. (8.9.40)

Indeed, this follows by writing

1∂�\(Aκ (∂�)\U) = 1U + 1∂�\Aκ (∂�) − 1U\Aκ (∂�) (8.9.41)

then relying on (8.9.33), observing that
(
1∂�\Aκ (∂�) · Nε

κu
)
(x) → 0 as ε → 0+ for

each x ∈ ∂� (a consequence of (8.9.32)) and, finally, recalling that 1U\Aκ (∂�) = 0
at μ-a.e. point on ∂� (cf. (8.9.24)). With this in hand, the claim in (8.9.29) becomes
a consequence of Lebesgue’s Dominated Convergence Theorem. �

In applications, several natural choices of the setU in (8.9.24) present themselves.
First, we discuss a version of Lemma 8.9.4 corresponding to the case whenU is the
nontangentially accessible boundary of the underlying domain.

Proposition 8.9.5 Let� be an open nonempty proper subset ofRn with the property
thatσ := Hn−1�∂� is a doublingmeasure on ∂�. Fix κ > 0 and suppose u : � → R

is a Lebesgue measurable function such that

the nontangential limit
(
u
∣∣κ−n.t.

∂�

)
(x) exists (in R)

for σ -a.e. point x belonging to the set ∂nta�.
(8.9.42)

Then the function w : ∂� → R defined (σ -a.e.) as

w :=
{
u
∣
∣κ−n.t.

∂�
on ∂nta�,

0 on ∂� \ ∂nta�,
(8.9.43)
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is a σ -measurable function on ∂�. In particular,

u
∣∣κ−n.t.

∂�
is a σ -measurable function on ∂nta�. (8.9.44)

Moreover,

if Nδ
κu ∈ L p(∂�, σ) for some p ∈ (0,∞) and δ > 0, then

w ∈ L p(∂�, σ) andNε
κu −→ |w| in L p(∂�, σ) as ε → 0+. (8.9.45)

Proof The fact that w is a σ -measurable function on ∂� is implied by the corre-
sponding claim in Lemma 8.9.4 applied here withμ := σ (which Lemma 3.6.4 guar-
antees, bearing in mind (7.4.1), to be a complete Borel measure on ∂�), and for the
set U := ∂nta� (which satisfies (8.9.24), according to item (i) in Proposition 8.8.6).
Since ∂nta� is a σ -measurable set, the fact that w is a σ -measurable function on
∂� then implies (8.9.44). To justify (8.9.45), observe that 1∂�\(Aκ (∂�)\∂nta�)(x) = 1
for σ -a.e. x ∈ ∂� since item (ii) of Proposition 8.8.6 gives σ

(
Aκ(∂�) \ ∂nta�

) = 0.
Granted this, (8.9.45) is implied by (8.9.29). �

We continue by presenting a version of Lemma 8.9.4 corresponding to the case
when U is the geometric measure theoretic boundary of the given domain.

Corollary 8.9.6 Let � be an open nonempty proper subset of R
n such that ∂� is

lower Ahlfors regular and σ := Hn−1�∂� is a doubling measure on ∂�. Fix κ > 0
and suppose u : � → R is a Lebesgue measurable function with the property that

the nontangential limit
(
u
∣
∣κ−n.t.

∂�

)
(x) exists (in R)

for σ -a.e. point x belonging to the set ∂∗�.
(8.9.46)

Then
u
∣∣κ−n.t.

∂�
is a σ -measurable function on ∂∗�. (8.9.47)

Regarding the formulation of Corollary 8.9.6 we wish to remark that, purely
as a matter of design, the largest subset of ∂� on which one may even begin to

contemplate the existence of the nontangential pointwise limit u
∣
∣κ−n.t.

∂�
is Aκ(∂�).

The present assumptions on� ensure the applicability of Proposition 8.8.4 which, in
turn, guarantees that Aκ(∂�) covers ∂∗�, up to a σ -nullset. Ultimately, this makes
the assumption in (8.9.46) meaningful.

Proof of Corollary 8.9.6 From Lemma 3.6.4 (and (7.4.1)) we know that σ is a com-
plete Borel measure on ∂�. As such, (8.9.47) follows by appealing to Lemma 8.9.4
applied with the measure μ := σ and the set U := ∂∗�, which satisfies (8.9.24)
(according to (5.6.33) and Proposition 8.8.4, granted the current assumptions). �

Finally, here is yet another useful version of Lemma 8.9.4.
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Corollary 8.9.7 Let � be an open nonempty proper subset of Rn and assume μ is a
complete Borel measure on ∂�. Fix κ > 0 and recall the Borelian set Aκ(∂�) ⊆ ∂�

(cf. (8.8.2) and (8.8.5)). Also, suppose u : � → R is a Lebesguemeasurable function
with the property that

the nontangential limit
(
u
∣∣κ−n.t.

∂�

)
(x) exists (in R)

for μ-a.e. point x belonging to the set Aκ(∂�).
(8.9.48)

Then u
∣∣κ−n.t.

∂�
is a μ-measurable function on Aκ(∂�).

Proof This is a direct consequence of Lemma 8.9.4 used with U := Aκ(∂�). �

The next result elaborates on the degree of flexibility in the choice of the parameter
κ (used to regulate the aperture of the nontangential approach regions; cf. (8.1.2)) in
the process of taking nontangential pointwise limits (see Definition 8.9.1).

Proposition 8.9.8 Let� be an open nonempty proper subset ofRn with the property
that σ := Hn−1�∂� is a doubling measure on ∂�. Fix κ > 0 along with p ∈ (0,∞]
and assume that u : � → R is a Lebesgue measurable function satisfying

Nκu ∈ L p(∂�, σ) and the nontangential limit
(
u
∣∣κ−n.t.

∂�

)
(x) exists (in R) for σ -a.e. point x ∈ ∂nta�.

(8.9.49)

Then for every other κ ′ > 0 one has

Nκ ′u ∈ L p(∂�, σ) and the nontangential limit
(
u
∣∣κ

′−n.t.

∂�

)
(x) exists (in R) for σ -a.e. point x ∈ ∂nta�,

(8.9.50)

and the two nontangential limits agree, i.e.,

(
u
∣∣κ−n.t.

∂�

)
(x) = (

u
∣∣κ

′−n.t.

∂�

)
(x) at, σ -a.e. point x ∈ ∂nta�. (8.9.51)

Before proving this result we wish to note that a version in which the truncated
nontangentialmaximal operatorsNε

κ with ε > 0 afixed arbitrary number (cf. (8.9.3)),
replace the ordinary nontangential maximal operators Nκ also holds. Indeed, this is
seen from Proposition 8.9.8 applied to the function 1Oε

· u in place of the original
function u. For other related versions see Corollary 8.9.9.

Proof of Proposition 8.9.8 We shall first consider the scenario when p ∈ (0,∞)

and defer the treatment of the case when p = ∞ for later.
To get started, fix κ ′ > 0 arbitrary. We shall make a number of definitions in

relation to a given function w : � → R which is Lebesgue measurable and satisfies

Nκ ′w < +∞ at σ -a.e. point on ∂�. (8.9.52)
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Specifically, for every ε > 0 define

( .Nε
κ ′w

)
(x) := inf

{
λ ∈ R : Ln

({y ∈ �κ ′(x) ∩ Oε : w(y) > λ}) = 0
}
, (8.9.53)

at every x ∈ ∂�. Since for each x ∈ ∂� the quantity
( .Nε

κ ′w
)
(x) decreases (possibly

to −∞) as the parameter ε > 0 decreases to zero, it follows that the functions

w
∣∣κ

′−sup

∂�
: ∂� → [−∞,+∞], (w∣∣κ

′−sup

∂�

)
(x) := lim

ε→0+

( .Nε
κ ′w

)
(x), ∀x ∈ ∂�,

(8.9.54)
and

w
∣∣κ

′−inf

∂�
: ∂� → [−∞,+∞], (w∣∣κ

′−inf

∂�

)
(x) := − lim

ε→0+

( .Nε
κ ′(−w)

)
(x), ∀x ∈ ∂�,

(8.9.55)
are meaningfully defined. Note that these definitions imply

w
∣∣κ

′−inf

∂�
= −

(
(−w)

∣∣κ
′−sup

∂�

)
on ∂�, (8.9.56)

while (8.2.42) ensures that the functions

w
∣∣κ

′−inf

∂�
and w

∣∣κ
′−sup

∂�
are σ -measurable. (8.9.57)

Moreover, based on (8.9.54), the continuity of the absolute value function, and
(8.2.32), for each x ∈ ∂� we may write

∣∣∣∣
(
w
∣∣κ

′−sup

∂�

)
(x)

∣∣∣∣ = lim
ε→0+

∣∣∣
( .Nε

κ ′w
)
(x)

∣∣∣ ≤ lim sup
ε→0+

(Nε
κ ′w

)
(x)

= lim
ε→0+

(Nε
κ ′w

)
(x), (8.9.58)

where the last equality is a consequence of the fact that
(Nε

κ ′w
)
(x) decreases as the

parameter ε > 0 decreases to zero. Actually, the latter property implies (in light of
(8.9.58)) that

∣∣∣
∣w
∣∣κ

′−sup

∂�

∣∣∣
∣ ≤ Nε

κ ′w on ∂�, for each ε > 0. (8.9.59)

From this and (8.9.56) we also deduce that

∣∣∣
∣w
∣∣κ

′−inf

∂�

∣∣∣
∣ ≤ Nε

κ ′w on ∂�, for each ε > 0. (8.9.60)

As a consequence of (8.9.59)–(8.9.60) we therefore have
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∣∣
∣∣w
∣
∣κ

′−sup

∂�

∣∣
∣∣ ≤ Nκ ′w and

∣∣
∣∣w
∣
∣κ

′−inf

∂�

∣∣
∣∣ ≤ Nκ ′w on ∂�, (8.9.61)

from which we conclude, in view of the assumption (8.9.52), that

∣∣
∣∣w
∣
∣κ

′−sup

∂�

∣∣
∣∣ < +∞ and

∣∣
∣∣w
∣
∣κ

′−inf

∂�

∣∣
∣∣ < +∞ at σ -a.e. point on ∂�. (8.9.62)

Granted this, we may then meaningfully define

(
Gw

)
(x) :=

(
w
∣∣κ

′−sup

∂�

)
(x) −

(
w
∣∣κ

′−inf

∂�

)
(x) for σ -a.e. x ∈ ∂�. (8.9.63)

Thanks to (8.9.57), this is a σ -measurable function defined on ∂�. Also, as seen
from (8.9.63) and (8.9.59)–(8.9.60), this function satisfies

∣∣Gw

∣∣ ≤ 2Nε
κ ′w at σ -a.e. point on ∂�, for every ε > 0. (8.9.64)

We next claim that

φ ∈ C 0
c (Rn)=⇒ (Gw)(x) = (Gw+φ)(x) for σ -a.e. x ∈ ∂nta�. (8.9.65)

In turn, the latter claim is going to be a consequence of the fact that, given any
φ ∈ C 0

c (Rn), we have

(
(w + φ)

∣∣κ
′−sup

∂�

)
(x) =

(
w
∣∣κ

′−sup

∂�

)
(x) + φ(x) for σ -a.e. x ∈ ∂nta�, (8.9.66)

and
(

(w + φ)
∣∣κ

′−inf

∂�

)
(x) =

(
w
∣∣κ

′−inf

∂�

)
(x) + φ(x) for σ -a.e. x ∈ ∂nta�. (8.9.67)

Let us justify (8.9.66). It is useful to rephrase the definition made in (8.9.53) as

( .Nε
κ ′w

)
(x) = inf

{
λ ∈ R : w ≤ λ Ln-a.e. in �κ ′(x) ∩ Oε

}
, ∀x ∈ ∂�. (8.9.68)

Fix some φ ∈ C 0
c (Rn) and select some x ∈ ∂�. Observe that having w + φ ≤ λ at

Ln-a.e. point in �κ ′(x) ∩ Oε implies

w ≤ λ − inf
�κ′ (x)∩Oε

φ at Ln-a.e. point in �κ ′(x) ∩ Oε. (8.9.69)

Bearing (8.9.68) in mind, this further yields
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( .Nε
κ ′w

)
(x) ≤ ( .Nε

κ ′(w + φ)
)
(x) − inf

�κ′ (x)∩Oε

φ. (8.9.70)

By passing to the limit as ε → 0+ in the above inequality we arrive at the conclusion
that (

w
∣∣κ

′−sup

∂�

)
(x) ≤

(
(w + φ)

∣∣κ
′−sup

∂�

)
(x) − φ(x)

for every x ∈ ∂� such that x ∈ �κ ′(x),
(8.9.71)

thanks to (8.9.54) and the continuity of φ. In particular,

w
∣∣κ

′−sup

∂�
≤ (w + φ)

∣∣κ
′−sup

∂�
− φ at σ -a.e. point on ∂nta�. (8.9.72)

In fact, this inequality self-improves (given the relative arbitrariness of φ and w) to
the equality recorded in (8.9.66). Specifically, writing (8.9.72) for w + φ in place
of w and −φ in place of φ (both viable choices as far as the veracity of (8.9.72) is
concerned) yields

(w + φ)
∣
∣κ

′−sup

∂�
≤ (

(w + φ) − φ
)∣∣κ

′−sup

∂�
+ φ

= w
∣∣κ

′−sup

∂�
+ φ at σ -a.e. point on ∂nta�, (8.9.73)

from which the desired conclusion follows. This finishes the proof of (8.9.66), and
formula (8.9.67) is then readily justified with the help of (8.9.56). At this stage, the
proof of (8.9.65) is complete.

Pressing on, assume u : � → R is a Lebesgue measurable function satisfying
(8.9.49). Specifically, suppose

Nκu ∈ L p(∂�, σ) and for σ -a.e. point x ∈ ∂nta� one can find a
Lebesgue measurable set N (x) ⊆ �κ(x) with Ln(N (x)) = 0 and
the property that the limit lim(�κ (x)\N (x))�y→x u(y) exists (in R).

(8.9.74)

Our earlier work sets the stage for justifying the claims made in (8.9.50). For starters,
the fact that

Nκ ′u ∈ L p(∂�, σ) (8.9.75)

follows from (8.9.49) and Proposition 8.4.1. To proceed, for σ -a.e. point x ∈ ∂nta�

define
f (x) := lim

(�κ (x)\N (x))�y→x
u(y) (8.9.76)

where N (x) ⊆ �κ(x) is as in (8.9.74). From Proposition 8.9.5 and (8.8.47) it follows
that f belongs to L p(∂nta�, σ). For an arbitrary, fixed η > 0, pick φ ∈ C 0

c (Rn) such
that ∥∥∥φ

∣∣
∂nta�

− f
∥∥∥
L p(∂nta�,σ)

< η. (8.9.77)
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That this is possible is ensured by the density result established in Corollary 3.7.3 and
the current assumptions. Then, invoking (8.9.65) and (8.9.64) (which is permissible
given that (8.9.75) entails Nκ ′u < +∞ at σ -a.e. point in ∂�), for every ε > 0 we
may estimate

|Gu | = |Gu−φ| ≤ 2Nε
κ ′(u − φ) at σ -a.e. point on ∂�. (8.9.78)

When used in concert with Proposition 8.4.1 (here we use that σ is doubling), this
gives (bearing in mind that, as established earlier, Gu is a σ -measurable function)
that, on the one hand,

‖Gu‖L p(∂�,σ) ≤ 2‖Nε
κ ′(u − φ)‖L p(∂�,σ) ≤ C‖Nε

κ (u − φ)‖L p(∂�,σ), (8.9.79)

for some finite constant C > 0 which does not depend on ε. On the other hand, from
Proposition 8.9.5 (applied to u − φ) we know that

Nε
κ (u − φ)→

{ ∣∣ f − φ
∣
∣
∂nta�

∣
∣ on ∂nta�,

0 on ∂� \ ∂nta�,
in L p(∂�, σ) as ε→0+. (8.9.80)

This allows us to take the limit as ε → 0+ in (8.9.79) to obtain, based also on (8.9.77),
that

‖Gu‖L p(∂�,σ) ≤ C lim
ε→0+

‖Nε
κ (u − φ)‖L p(∂�,σ)

= C
∥∥ f − φ

∣∣
∂nta�

∥∥
L p(∂nta�,σ)

≤ Cη. (8.9.81)

Since η > 0 is arbitrary, (8.9.81) forces ‖Gu‖L p(∂�,σ) = 0 which ultimately yields
Gu = 0 at σ -a.e. point on ∂�. As a consequence,

a :=
(
u
∣
∣κ

′−sup

∂�

)
(x) =

(
u
∣
∣κ

′−inf

∂�

)
(x) (8.9.82)

is a well-defined real number for σ -a.e. point x ∈ ∂�, hence also for σ -a.e. point
x ∈ ∂nta�.

In the last part of the proof the goal is to show that for every such point x we have

|u(y) − a| < η forLn-a.e. y ∈ �κ ′(x) ∩ B(x, ε). (8.9.83)

To justify this, pick an arbitrary η > 0. Then from (8.9.82) and (8.9.54)–(8.9.55) we
see that there exists ε > 0 with the property that

( .Nε
κ ′u
)
(x) < a + η and − ( .Nε

κ ′(−u)
)
(x) > a − η. (8.9.84)

Unraveling definitions (cf. (8.9.68)), the first inequality above implies
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u(y) < a + η forLn-a.e. y ∈ �κ ′(x) ∩ Oε, (8.9.85)

while the second inequality in (8.9.84) yields

a − η < u(y) forLn-a.e. y ∈ �κ ′(x) ∩ Oε. (8.9.86)

Together, (8.9.85) and (8.9.86) prove (8.9.83). As remarked in (8.9.5), property
(8.9.83) may be equivalently rephrased as saying that for σ -a.e. point x ∈ ∂� one
can find a Lebesgue measurable set N ′(x) ⊆ �κ ′(x) with Ln(N ′(x)) = 0 such that
the limit lim(�κ′ (x)\N ′(x))�y→x u(y) exists. The proof of (8.9.50) is therefore complete,
assuming p < ∞. In such a scenario, (8.9.51) also follows from what we proved so
far and (8.1.20).

We now turn to the case when p = ∞. Then (8.9.49) and Proposition 8.4.1 imply
that for every other κ ′ > 0 we have

Nκ ′u ∈ L∞(∂�, σ). (8.9.87)

To proceed, select a scalar-valued function ϕ ∈ C∞(Rn)with the property that ϕ = 1
on B(0, 1) and ϕ = 0 on R

n \ B(0, 2) and, for each ε > 0, define ϕε : R
n → R by

setting ϕε(x) := ϕ(ε x) for every x ∈ R
n . Then from (8.1.18) and (8.2.26) we may

conclude that
Nκϕε ∈ L∞

comp(∂�, σ) for each ε > 0. (8.9.88)

If for each ε > 0 we now consider uε := (
ϕε

∣∣
�

) · u : � → R, then the function uε

is Ln-measurable, and (8.9.10)–(8.9.11) together with (8.9.49) ensure that

(
uε

∣
∣κ−n.t.

∂�

)
(x) = ϕε(x) · (u∣∣κ−n.t.

∂�

)
(x)

exists (in R) for σ -a.e. point x ∈ ∂nta�.
(8.9.89)

In addition, from (8.2.10) and (8.9.49) (with p = ∞) we have

0 ≤ Nκuε ≤ Nκϕε · Nκu ∈ L∞
comp(∂�, σ) (8.9.90)

which, in concert with (8.2.26), proves that

Nκuε ∈
⋃

0<q≤∞
Lq(∂�, σ). (8.9.91)

With (8.9.89) and (8.9.91) in hand, the first part in the current proof (dealing with the
scenariowhen p < ∞) applies and gives that for every other κ ′ > 0 the nontangential

limit
(
uε

∣∣κ
′−n.t.

∂�

)
(x) exists and matches

(
uε

∣∣κ−n.t.

∂�

)
(x) = ϕε(x) · (u∣∣κ−n.t.

∂�

)
(x) for σ -a.e.

point x ∈ ∂nta�. Since ϕε = 1 in B(0, 1/ε) it follows that u
∣
∣κ

′−n.t.

∂�
exists, and is equal

to uε

∣∣κ
′−n.t.

∂�
hence to u

∣∣κ−n.t.

∂�
, at σ -a.e. point in B(0, 1/ε) ∩ ∂nta�. By letting ε → 0+
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we finally conclude that
(
u
∣∣κ

′−n.t.

∂�

)
(x) exists at σ -a.e. point in ∂nta� and (8.9.51) holds.

This completes the proof of Proposition 8.9.8. �

For the following result, which may be regarded as a local version of Proposi-
tion 8.9.8, we shall provide two proofs: one employs a localization argument, while
another uses Lemma 8.9.2, Lemma 8.9.10, and Theorem 8.4.6.

Corollary 8.9.9 Let � be an open nonempty proper subset of R
n with the prop-

erty that σ := Hn−1�∂� is a doubling measure on ∂�. Fix κ, ε > 0 along with
p ∈ (0,∞] and assume that u : � → R is a Lebesgue measurable function
satisfying

Nε
κu ∈ L p

loc(∂�, σ) and the nontangential limit
(
u
∣∣κ−n.t.

∂�

)
(x) exists (in R) for σ -a.e. point x ∈ ∂nta�.

(8.9.92)

Then for every other κ ′ > 0 there holds

Nε
κ ′u ∈ L p

loc(∂�, σ) and the nontangential limit
(
u
∣∣κ

′−n.t.

∂�

)
(x) exists (in R) for σ -a.e. point x ∈ ∂nta�,

(8.9.93)

and the two nontangential limits agree, i.e.,

(
u
∣∣κ−n.t.

∂�

)
(x) = (

u
∣∣κ

′−n.t.

∂�

)
(x) at σ -a.e. point x ∈ ∂nta�. (8.9.94)

Here is the first proof of Corollary 8.9.9, while the second proof of Corollary 8.9.9
is provided a little later below.

First proof of Corollary 8.9.9 We use the same type of localization argument as in
the last portion of the proof of Proposition 8.9.8. Specifically, fix a scalar-valued
function ϕ ∈ C∞(Rn) satisfying ϕ = 1 on B(0, 1) and ϕ = 0 on R

n \ B(0, 2) and,
for each R ∈ (0,∞) and x ∈ R

n , define ϕR(x) := ϕ(x/R). In particular, (8.1.18)
and (8.2.26) imply

NκϕR ∈ L∞
comp(∂�, σ) for each R > 0. (8.9.95)

If for each R > 0 we now consider uR := (
ϕR

∣∣
�

) · u : � → R, then the function uR

is Ln-measurable, and (8.9.10)–(8.9.11) together with (8.9.92) imply that

for each R > 0 the nontangential limit
(
uR

∣∣κ−n.t.

∂�

)
(x) exists

(in R) for σ -a.e. point x ∈ ∂nta� and equals ϕR(x)
(
u
∣∣κ−n.t.

∂�

)
(x).

(8.9.96)

In addition, from (8.2.10) and (8.9.92) we have

0 ≤ Nε
κuR ≤ Nε

κϕR · Nε
κu ∈ L p

comp(∂�, σ) for each R > 0 (8.9.97)
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which, in concert with (8.2.26), proves that

Nε
κuR ∈ L p(∂�, σ) for each R > 0. (8.9.98)

Having established (8.9.96) and (8.9.98), Proposition 8.9.8 applies to the function
u · 1Oε

and gives that for every other κ ′ > 0 we have

Nε
κ ′uR ∈ L p(∂�, σ) for each R > 0, (8.9.99)

and the nontangential limit
(
uR

∣∣κ
′−n.t.

∂�

)
(x) = ϕR(x) · (u∣∣κ

′−n.t.

∂�

)
(x) exists and matches

the nontangential limit
(
uR

∣∣κ−n.t.

∂�

)
(x) = ϕR(x) · (u∣∣κ−n.t.

∂�

)
(x) for σ -a.e. point x ∈ ∂nta�.

The fact that ϕR = 1 in B(0, R) then implies that u
∣∣κ

′−n.t.

∂�
exists and matches u

∣∣κ−n.t.

∂�

at σ -a.e. point in B(0, R) ∩ ∂nta�. By letting R → ∞ we finally conclude that
(
u
∣∣κ

′−n.t.

∂�

)
(x) exists at σ -a.e. point in ∂nta� and (8.9.94) holds.

To prove the local p-th power integrability of the nontangential maximal function
with aperture parameter κ ′, fix some xo ∈ ∂� and r ∈ (0,∞) arbitrary. Observe that
for each x ∈ B(xo, r) ∩ ∂� and y ∈ �κ ′(x) ∩ Oε we have

|y − xo| ≤ |y − x | + |x − xo| < (1 + κ ′)ε + r. (8.9.100)

Since B
(
xo, (1 + κ ′)ε + r

)
is contained in B(0, R) for each R > 0 sufficiently large

(depending on xo, r , ε, and κ ′), it follows that ϕR(y) = 1 when x ∈ B(xo, r) ∩ ∂�

and y ∈ �κ ′(x) ∩ Oε provided R is sufficiently large. Consequently, for each point
x ∈ B(xo, r) ∩ ∂� we have u = uR on �κ ′(x) ∩ Oε if R is sufficiently large, hence

Nε
κ ′u = Nε

κ ′uR on B(xo, r) ∩ ∂� provided R > 0 is sufficiently large.
(8.9.101)

Together with (8.2.26) and (8.9.98), this shows that

Nε
κ ′u ∈ L p

(
B(xo, r) ∩ ∂�, σ

)
for each xo ∈ ∂� and each r > 0, (8.9.102)

which ultimately proves that Nε
κ ′u ∈ L p

loc(∂�, σ). �

We wish to present a second proof of Corollary 8.9.9 which makes use of the
pointwise inequality established in Theorem 8.4.6 together with the boundedness of
the local Ls-based Hardy-Littlewood maximal operator. In this endeavor, we shall
also need the extension result contained in the following lemma.

Lemma 8.9.10 Assume� is an arbitrary open (nonempty, proper) subset of Rn and
let σ be a doubling Borel-semiregular measure on ∂�. Also, pick some integrability
exponent p ∈ (0,∞]. Then for any given real-valued function f ∈ L p

loc(∂�, σ) there
exists a Lebesgue measurable function w : � → R with the property that for each
aperture parameter κ ∈ (0,∞) and each truncation parameter ρ ∈ (0,∞) one has
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Nρ
κ w ∈ L p

loc(∂�, σ) and w
∣∣κ−n.t.

∂�
= f at σ -a.e. point in Aκ(∂�). (8.9.103)

Before presenting the proof of Lemma 8.9.10 we make two comments. First, as
a consequence of the present assumptions and items (i)-(ii) in Proposition 8.8.6, we

may equivalently rephrase the last property above as the demand that w
∣∣κ−n.t.

∂�
= f at

σ -a.e. point in ∂nta�. Second, if we impose the stronger assumption f ∈ L p(∂�, σ)

then the membership in (8.9.103) improves to Nκw ∈ L p(∂�, σ); this is apparent
from the proof given below.

Proof of Lemma 8.9.10 Consider a Whitney decomposition of �

� =
⋃

Q∈W�

Q (8.9.104)

into a familyW� of mutually disjoint semi-open cubes in R
n , satisfying

dist(Q, ∂�) ≈ �(Q) uniformly for Q ∈ W� (8.9.105)

(with the constants involved depending only on the dimension), where �(Q) denotes
the side-length of the cube Q. See, e.g., [240, Theorem 3, p. 16]. For each Q ∈ W�

pick a point xQ ∈ ∂� with the property that

dist(Q, ∂�) = dist(Q, xQ) (8.9.106)

and abbreviate
�Q := B

(
xQ, �(Q)

) ∩ ∂�. (8.9.107)

To proceed, fix an arbitrary real-valued function f ∈ L p
loc(∂�, σ) and introduce

f± := 1
2 (| f | ± f ). (8.9.108)

Then f± are non-negative σ -measurable functions, satisfying

0 ≤ f± ≤ | f |, f = f+ − f−, and f± ∈ L p
loc(∂�, σ). (8.9.109)

Pick some s ∈ (0, p) and define w± : � → [0,∞) by setting

w±(x) :=
(  

�Q

( f±)s dσ
)1/s

whenever x ∈ Q ∈ W�. (8.9.110)

Thus, by design, w± are constant on each Q ∈ W�. The finiteness of w± is ensured
by the fact that

( f±)s ∈ L p/s
loc (∂�, σ) ⊆ L1

loc(∂�, σ), (8.9.111)
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given that s ∈ (0, p). In particular, w± are Lebesgue measurable functions taking
finite non-negative values.

Next, fix an aperture parameter κ ∈ (0,∞) and consider a truncation parameter
ρ ∈ (0,∞). Also, pick a point x ∈ ∂� along with some point y ∈ �κ(x). Then
there exists a (unique) cube Q ∈ W� such that y ∈ Q. We claim that there exists
C = C(n, κ) ∈ (0,∞) with the property that

�Q ⊆ �
(
x,C�(Q)

)
and �

(
x, �(Q)

) ⊆ �
(
xQ,C�(Q)

)
. (8.9.112)

Indeed, for each z ∈ �Q we may use (8.9.105), (8.9.106), and (8.9.107) to estimate

|z − x | ≤ |z−xQ | + |xQ − y|+|y − x | < �(Q) + |xQ − y| + (1 + κ) dist(y, ∂�)

≤ �(Q) + |xQ − y| + (1 + κ)|xQ − y| = �(Q) + (2 + κ)|xQ − y|
≤ �(Q)+(2 + κ)

(
dist(Q, ∂�)+diam(Q)

)≤C�(Q), (8.9.113)

from which the first inclusion in (8.9.112) follows. Likewise, for each
z ∈ �

(
x, �(Q)

)
we may rely on (8.9.105)–(8.9.107) to write

|z − xQ | ≤ |z − x | + |x−y| + |y−xQ | < �(Q) + (1 + κ) dist(y, ∂�) + |y − xQ |
≤ �(Q) + (1 + κ)|y − xQ | + |y − xQ | = �(Q) + (2 + κ)|y − xQ |
≤ �(Q) + (2 + κ)

(
dist(Q, ∂�) + diam(Q)

) ≤ C�(Q), (8.9.114)

which ultimately establishes the second inclusion in (8.9.112). In turn, from
(8.9.110), (8.9.112), and the fact that σ is a doubling measure we deduce that

0 ≤ w±(y) =
( 

�Q

( f±)s dσ
)1/s ≤ C

(  
�

(
x,C�(Q)

)( f±)s dσ
)1/s

. (8.9.115)

Let us also note that if we additionally assume that dist(y, ∂�) < ρ then, as seen
from (8.9.105),

�(Q) ≈ dist(Q, ∂�) ≤ dist(y, ∂�) < ρ, (8.9.116)

hence �(Q) ≤ Cnρ, for some purely dimensional constant Cn ∈ (0,∞). From this,
(8.9.115), and (7.6.12) we then conclude that

0 ≤ (Nρ
κ w±

)
(x) ≤ C

(MCρ

∂�,s f±
)
(x). (8.9.117)

In light of the fact that Nρ
κ w± are Borel-measurable functions (cf. (8.2.28)), hence

also σ -measurable functions since σ is a Borel measure, from (8.9.117) and (7.6.13)
we see that

Nρ
κ w± ∈ L p

loc(∂�, σ). (8.9.118)
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If we now define
w := w+ − w−, (8.9.119)

it follows thatw : � → R is a well-defined Lebesgue measurable function for which

0 ≤ Nρ
κ w ≤ Nρ

κ w+ + Nρ
κ w− on ∂�. (8.9.120)

In view of (8.2.28) and (8.9.118), we then deduce from (8.9.120) that

Nρ
κ w ∈ L p

loc(∂�, σ). (8.9.121)

This takes care of the first demand in (8.9.103). The second demand in (8.9.103)
follows from (8.9.119) as soon as we show that

w±
∣∣κ−n.t.

∂�
= f± at σ -a.e. point in Aκ(∂�). (8.9.122)

From (8.9.5) and the continuity of [0,∞) � t �→ ta for each fixed a ∈ (0,∞), we
see that this is further equivalent to showing that

(w±)s
∣
∣κ−n.t.

∂�
= ( f±)s at σ -a.e. point in Aκ(∂�). (8.9.123)

Recall the sharp version of Lebesgue’s Differentiation Theorem recorded in Propo-
sition 7.4.4. Granted (8.9.111) and bearing in mind that σ is a doubling Borel-
semiregular measure, this ensures the existence of a σ -measurable set N ⊆ ∂� with
the property that σ(N ) = 0 and

lim
r→0+

 
�(x,r)

| f±(z)s − f±(x)s | dσ(z) = 0 for every x ∈ ∂� \ N . (8.9.124)

Fix now a point x ∈ Aκ(∂�) \ N and pick an arbitrary y ∈ �κ(x). Then y ∈ � and
we denote by Qy the unique Whitney cube in W� containing y. As a consequence
of (8.9.105), we have

�(Qy) ≈ dist(Qy, ∂�) ≤ dist(y, ∂�) ≤ |x − y|, (8.9.125)

which shows that, on the one hand,

�(Qy) → 0+ as �κ(x) � y → x . (8.9.126)

On the other hand, from (8.9.110) we see that

∣∣w±(y)s − f±(x)s
∣∣ ≤ C

 
�

(
x,C�(Qy)

)
∣∣( f±)(z)s − ( f±)(x)s

∣∣ dσ(z). (8.9.127)



806 8 Open Sets with Locally Finite Surface Measures and Boundary Behavior

Together, (8.9.127), (8.9.126), (8.9.124), and the fact that x ∈ �κ(x) (given that
x ∈ Aκ(∂�)) show that

lim
�κ(x)�y→x

∣∣w±(y)s − f±(x)s
∣∣ = 0, (8.9.128)

from which (8.9.123) follows (on account of (8.9.5)). This completes the proof of
(8.9.122), thus finishing the proof of the second demand in (8.9.103). �

Here is the second proof of Corollary 8.9.9 mentioned earlier.4

Second proof of Corollary 8.9.9 Consider f : ∂� → R defined σ -a.e. as

f :=
{
u
∣∣κ−n.t.

∂�
on ∂nta�,

0 on ∂� \ ∂nta�.
(8.9.129)

Proposition 8.9.5 ensures that f is a σ -measurable function and from (8.9.8) we see
that

| f | ≤ Nε
κu on ∂�. (8.9.130)

As a consequence,
f ∈ L p

loc(∂�, σ). (8.9.131)

Granted this, the extension result proved in Lemma 8.9.10 (whose present applicabil-
ity is ensured by Lemma 3.6.4) guarantees that there exists a Lebesgue measurable
function w : � → R with the property that

for each aperture parameter κ̃ ∈ (0,∞)we have

Nε
κ̃w ∈ L p

loc(∂�, σ) and w
∣∣κ̃−n.t.

∂�
= f at σ -a.e. point in ∂nta�.

(8.9.132)

Fix now another aperture parameter κ ′ ∈ (0,∞) and select some integrability expo-
nent s ∈ (0, p). Then Theorem 8.4.6 applied to the Lebesgue measurable function
u − w : � → R shows that there exists some constant C ∈ (0,∞), which depends
only on κ, κ ′, s and the doubling character of σ , such that for each ρ ∈ (0, ε] we
have

Nρ

κ ′(u − w) ≤ C · MCε
∂�,s

(Nρ
κ (u − w)

)
at each point on ∂� (8.9.133)

(with the local Ls-based Hardy-Littlewood maximal operator as in (8.4.46)). We
claim that

Nρ
κ (u − w) → 0 in L p

loc(∂�, σ) as ρ → 0+. (8.9.134)

To justify this claim, first observe that

4 A similar argument may, in fact, be used to give another proof of Proposition 8.9.8.
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0 ≤ Nρ
κ (u − w) ≤ Nε

κ (u − w) ∈ L p
loc(∂�, σ) for each ρ ∈ (0, ε]. (8.9.135)

Next, recall from items (i)-(ii) in Proposition 8.8.6 that ∂nta� ⊆ Aκ(∂�) and
σ
(
Aκ(∂�) \ ∂nta�

) = 0. Bearing this in mind, at σ -a.e. point x ∈ Aκ(∂�) we may
then compute

lim
ρ→0+

(Nρ
κ (u − w)

)
(x) =

∣∣∣
(
(u − w)

∣∣κ−n.t.

∂�

)
(x)

∣∣∣ =
∣∣∣
(
u
∣∣κ−n.t.

∂�

)
(x) −

(
w
∣∣κ−n.t.

∂�

)
(x)

∣∣∣

= | f (x) − f (x)| = 0, (8.9.136)

thanks to (8.9.13) in Lemma 8.9.2, (8.9.129), and (8.9.132). Since at each point
x ∈ ∂� \ Aκ(∂�) we also have

(Nρ
κ (u − w)

)
(x) =

(
Nκ

(
(u − w) · 1Oρ

))
(x) (8.9.137)

= ∥∥(u − w) · 1Oρ

∥∥
L∞(�κ (x),Ln)

= 0 if ρ > 0 is small enough,

we ultimately conclude from (8.9.136) and (8.9.137) that

lim
ρ→0+

(Nρ
κ (u − w)

)
(x) = 0 for each x ∈ ∂�. (8.9.138)

At this stage, the claim made in (8.9.134) follows from (8.9.135), (8.9.138), and
Lebesgue’s Dominated Convergence Theorem.

In turn, (8.9.133), (8.9.134), and (7.6.13) imply

lim
ρ→0+

Nρ

κ ′(u − w) = 0 in L p
loc(∂�, σ) as ρ → 0+. (8.9.139)

As such, there exist a numerical sequence {ρ j } j∈N ⊆ (0, ε] which converges to zero,
together with some σ -measurable set N ⊆ ∂� satisfying σ(N ) = 0, such that

lim
j→∞

(
Nρ j

κ ′ (u − w)
)
(x) = 0 for each x ∈ ∂� \ N . (8.9.140)

Given themonotonicity of the truncated nontangential maximal operator with respect
to the truncation parameter, this self-improves to

lim
ρ→0+

(
Nρ

κ ′(u − w)
)
(x) = 0 for each x ∈ ∂� \ N . (8.9.141)

In concert with (8.9.14) in Lemma 8.9.2, the above property forces

(
(u − w)

∣
∣κ

′−n.t.

∂�

)
(x) = 0 for σ -a.e. x ∈ Aκ ′(∂�). (8.9.142)

In view of item (i) in Proposition 8.8.6 this further permits us to conclude that



808 8 Open Sets with Locally Finite Surface Measures and Boundary Behavior

(
(u − w)

∣∣κ
′−n.t.

∂�

)
(x) = 0 for σ -a.e. x ∈ ∂nta�. (8.9.143)

Writing u = (u − w) + w and recalling (8.9.132), we ultimately see from (8.9.143)
and (8.9.129) that

the nontangential limit
(
u
∣∣κ

′−n.t.

∂�

)
(x) exists (in R) for σ -a.e. x ∈ ∂nta�

and we have
(
u
∣∣κ−n.t.

∂�

)
(x) = (

u
∣∣κ

′−n.t.

∂�

)
(x) at σ -a.e. point x ∈ ∂nta�.

(8.9.144)

Finally, Theorem 8.4.6 also guarantees the existence of a constant C ∈ (0,∞),
which depends only on κ, κ ′, s and the doubling character of σ , such that

0 ≤ Nε
κ ′u ≤ C · MCε

∂�,s

(Nε
κu
)
at each point on ∂�. (8.9.145)

In view of this, the fact that Nε
κu ∈ L p

loc(∂�, σ), (7.6.13), and (8.2.28) we then
conclude thatNε

κ ′u also belongs to L
p
loc(∂�, σ). Togetherwith (8.9.144), this finishes

the (second) proof of Corollary 8.9.9. �

We next prove that for null-solutions of weakly elliptic systems, in arbitrary open
sets in the Euclidean space, multiplication by the distance to the boundary essentially
acts like integration under the action of the nontangential maximal operator. Here we
also show that null-solutions ofweakly elliptic systems, again in arbitrary open sets in
the Euclidean space, which possess nontangential boundary traces have the property
that their partial derivatives of any order multiplied by a corresponding power of the
distance to the boundary actually vanish on the boundary (in the nontangential trace
sense).

Proposition 8.9.11 Let � be an arbitrary open subset of R
n. Also, assume L is a

homogeneous constant (complex) coefficient weakly elliptic M × M system of order
2m in R

n (for some m ∈ N) and suppose

u ∈ [
C∞(�)

]M
satisfies Lu = 0 in �. (8.9.146)

Finally, fix two aperture parameters κ̃, κ ∈ (0,∞) with κ̃ > κ .
Then, given any multi-index α ∈ N

n
0 along with any number λ ∈ R, it follows that

there exists some constant C = C(L , κ̃, κ, α, λ) ∈ (0,∞) with the property that

Nκ

(
δ

|α|+λ

∂� · ∂αu
) ≤ C · Nκ̃

(
δλ
∂� · u) at each point on ∂�. (8.9.147)

In fact, for each given threshold δ > 0, each multi-index α ∈ N
n
0 , and each number

λ ∈ R there exists some constantC = C(L , κ̃, κ, δ, α, λ) ∈ (0,∞) such that for each
pair of truncation parameters ρ̃, ρ ∈ (0,∞) satisfying ρ̃ > (1 + δ)ρ one has

Nρ
κ

(
δ

|α|+λ

∂� · ∂αu
) ≤ C · N ρ̃

κ̃

(
δλ
∂� · u) at each point on ∂�. (8.9.148)



8.9 The Nontangential Boundary Trace Operator 809

As a corollary, given any α ∈ N
n
0 along with any λ ∈ R, one has

[
δ

|α|+λ

∂� · ∂αu
]∣∣κ−n.t.

∂�
(x) = 0 at each point

x ∈ Aκ(∂�) where
[
δλ
∂� · u]∣∣κ̃−n.t.

∂�
(x) = 0.

(8.9.149)

Finally,

if x ∈ Aκ(∂�) is so that the trace
(
u
∣∣κ̃−n.t.

∂�

)
(x) exists (in C

M) then
[
δ

|α|
∂� · ∂αu

]∣∣κ−n.t.

∂�
(x) = 0 for each multi-index α ∈ N

n
0 with |α| > 0.

(8.9.150)

In particular, (8.9.149) with |α| = 1 and λ = −1 shows that

(∇u)
∣∣κ−n.t.

∂�
(x) = 0 at each point

x ∈ Aκ(∂�) where
[
u/δ∂�

]∣∣κ̃−n.t.

∂�
(x) = 0.

(8.9.151)

Proof of Proposition 8.9.11 To justify (8.9.147), observe that it is possible to choose
some small number a ∈ (0, 1) for which

1 + κ + a

1 − a
< 1 + κ̃ . (8.9.152)

Next, select some multi-index α ∈ N
n
0 and fix an arbitrary point xo ∈ ∂�. Also, pick

an arbitrary point x belonging to the nontangential approach region �κ(xo) (which,
in particular, places x in �). Then for each point

y ∈ B
(
x, a · δ∂�(x)

) ⊆ � (8.9.153)

we have (bearing in mind that the distance function δ∂� is Lipschitz with constant
≤ 1),

δ∂�(x) ≤ δ∂�(y) + |x − y| < δ∂�(y) + a · δ∂�(x)

=⇒δ∂�(x) <
1

1 − a
δ∂�(y). (8.9.154)

In view of (8.9.152), this permits us to estimate

|y − xo| ≤ |y − x | + |x − xo| < a · δ∂�(x) + (1 + κ) dist(x, ∂�)

= (1 + κ + a)δ∂�(x) < (1 + κ̃)(1 − a) · δ∂�(x)

< (1 + κ̃)δ∂�(y). (8.9.155)

In turn, this shows that y ∈ �κ̃(xo) and, ultimately, that
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B
(
x, a · δ∂�(x)

) ⊆ �κ̃(xo). (8.9.156)

In addition,

(1 − a)δ∂�(x) < δ∂�(y) < (1 + a)δ∂�(x) for each y ∈ B
(
x, a · δ∂�(x)

)
.

(8.9.157)
Going further, pick a multi-index α ∈ N

n
0 and a number λ ∈ R, both arbitrary. Use

interior estimates for the null-solution u of the weakly elliptic system L in the ball
B
(
x, a · δ∂�(x)

) ⊆ � (cf. Theorem 6.5.7) to write

δ∂�(x)|α|+λ · |(∂αu)(x)| ≤ δ∂�(x)|α|+λ · C

(a · δ∂�(x))|α|

 
B
(
x,a·δ∂�(x)

) |u| dLn

≤ C
 
B
(
x,a·δ∂�(x)

) δλ
∂� · |u| dLn

≤ C
(
Nκ̃

(
δλ
∂� · u)

)
(xo), (8.9.158)

where the penultimate inequality is based on (8.9.157), and where the last step uses
(8.9.156). After taking the supremum over all x ∈ �κ(xo) we therefore arrive at

(
Nκ

(
δ

|α|+λ

∂� · ∂αu
))

(xo) ≤ C ·
(
Nκ̃

(
δλ
∂� · u)

)
(xo). (8.9.159)

In view of this and the arbitrariness of xo ∈ ∂�, it follows that the estimate claimed
in (8.9.147) holds.

The claim in (8.9.148) is established analogously, with a couple of alterations,
indicated below. For starters, in addition to the demand placed in (8.9.152), decrease
the value of a ∈ (0, 1) so that we also have a < δ. Hence, (1 + a)ρ < ρ̃ for any
pair of truncation parameters ρ̃, ρ ∈ (0,∞) satisfying ρ̃ > (1 + δ)ρ. In turn, this
ensures that (compare with (8.9.156))

B
(
x, a · δ∂�(x)

) ⊆ �κ̃(xo) ∩ Oρ̃ for each x ∈ �κ(xo) ∩ Oρ, (8.9.160)

where the neighborhood collars Oρ̃ , Oρ are defined as in (6.1.4). With this in hand
and arguing much as in (8.9.158) we then conclude (keeping in mind (8.9.3)) that
(8.9.148) holds.

Next, the claim in (8.9.149) is implied by (8.9.148) and Lemma 8.9.2. As far as
the last claim in the statement is concerned, fix a point xo ∈ Aκ(∂�) ⊆ Aκ̃ (∂�) at

which the nontangential limit
(
u
∣∣κ̃−n.t.

∂�

)
(xo) exists, and pick a multi-index α ∈ N

n
0

with |α| > 0. The goal is to show that

[
δ

|α|
∂� · ∂αu

]∣∣κ−n.t.

∂�
(xo) = 0. (8.9.161)
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Choose a ∈ (0, 1) as before (cf. (8.9.152)), and pick an arbitrary point x ∈ �κ(xo).
Then the inclusion in (8.9.156) holds. Using interior estimates (cf. Theorem 6.5.7)
in the ball B

(
x, a · δ∂�(x)

) ⊆ � for the null-solution of the weakly elliptic system
L defined as

ũ(y) := u(y) − (
u
∣∣κ̃−n.t.

∂�

)
(xo) for each y ∈ �, (8.9.162)

we may estimate, for some constant C = C(L , n, a, α) ∈ (0,∞) (here we use the
fact that |α| > 0),

δ∂�(x)|α| · |(∂αu)(x)| = δ∂�(x)|α| · |(∂α ũ)(x)|
≤ δ∂�(x)|α| · C

(a · δ∂�(y))|α| ×

×
 
B
(
x,a·δ∂�(x)

)
∣∣∣u − (

u
∣∣κ̃−n.t.

∂�

)
(xo)

∣∣∣ dLn

≤ C · sup
y∈�κ̃ (xo)|y−xo|<(1+κ+a)δ∂�(x)

∣∣
∣u(y) − (

u
∣
∣κ̃−n.t.

∂�

)
(xo)

∣∣
∣, (8.9.163)

since having y ∈ B
(
x, a · δ∂�(x)

)
entails y ∈ �κ̃(xo) (cf. (8.9.156)), as well as

|y − xo| ≤ |y − x | + |x − xo| < a · δ∂�(x) + (1 + κ)δ∂�(x)

= (1 + κ + a)δ∂�(x). (8.9.164)

In turn, (8.9.163) implies (in light of Definition 8.9.1)

[
δ

|α|
∂� · ∂αu

]∣∣κ−n.t.

∂�
(xo) = lim

�κ(xo)�x→xo

(
δ∂�(x)|α| · (∂αu)(x)

) = 0, (8.9.165)

proving (8.9.161). �
Other useful versions of Proposition 8.9.11 naturally present themselves, and we

isolate such a result in the remark below.

Remark 8.9.12 Retain the context of Proposition 8.9.11. Having fixed an arbitrary
point x0 ∈ � along with some r ∈ (

0 , 1
4 dist(x∗, ∂�)

)
, abbreviate K := B(x∗, r)

and K ′ := B(x∗, 3r). If in place of (8.9.146) we now only assume

u ∈ [
C∞(� \ K

)]M
satisfies Lu = 0 in � \ K , (8.9.166)

then in lieu of (8.9.147) we can conclude that for any multi-index α ∈ N
n
0 and any

number λ ∈ R, it follows that there exists C = C(L , κ̃, κ, α, λ, x0, r) ∈ (0,∞) with
the property that

N�\K ′
κ

(
δ

|α|+λ

∂� · ∂αu
) ≤ C · N�\K

κ̃

(
δλ
∂� · u) at each point on ∂�. (8.9.167)
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This is established by reasoning much as in the proof of (8.9.147), observing that
if the parameter a ∈ (0, 1) is sufficiently small (relative to x∗ and r ) then

B
(
x, a · δ∂�(x)

) ∩ B(x∗, r) = ∅ for each x ∈ � \ B(x∗, 3r). (8.9.168)

To justify (8.9.168), consider the number d := 2 · max
{
δ∂�(z) : B(x∗, r)

}
and (since

we only need to prove (8.9.168) for a ∈ (0, 1) sufficiently small) assume that
0 < a < min

{
1/2, (2r)/d

}
. Also, fix x ∈ � \ B(x∗, 3r) and y ∈ B

(
x, a · δ∂�(x)

)

arbitrary. We shall consider two cases. First, corresponding to the case δ∂�(x) ≥ d
we have δ∂�(y) > (1 − a)δ∂�(x) ≥ (1 − a)d > d/2 which forces y /∈ B(x∗, r), as
wanted. Second, if δ∂�(x) < d, then |x − y| < a · δ∂�(x) < a · d < 2r , and sincewe
also have 3r < |x − x∗| ≤ |x∗ − y| + |x − y| we may conclude that r < |x∗ − y|,
so once again y /∈ B(x∗, r), as wanted.

Next we revisit Proposition 8.9.11, with the goal of deriving (local and global)
integrability results out of these earlier pointwise properties.

Corollary 8.9.13 Let � be an open nonempty proper subset of Rn with the property
that σ := Hn−1�∂� is a doubling measure on ∂�, and fix an aperture parameter
κ ∈ (0,∞), a truncation parameter ε ∈ (0,∞), and an integrability exponent p ∈
(0,∞]. Also, assume L is a homogeneous constant (complex) coefficient weakly
elliptic M × M system of order 2m in R

n (for some m ∈ N) and suppose

u ∈ [
C∞(�)

]M
satisfies Lu = 0 in �,

as well as Nε
κu ∈ L p

loc(∂�, σ).
(8.9.169)

Then for each ρ ∈ (0, ε) one has

Nρ
κ

(
δ

|α|
∂� · ∂αu

) ∈ L p
loc(∂�, σ) for each multi-index α ∈ N

n
0. (8.9.170)

Furthermore, if in addition to (8.9.169) the function u is also assumed to satisfy

u
∣
∣κ−n.t.

∂�
exists (inC

M) at σ -a.e. point on ∂nta�, (8.9.171)

then [
δ

|α|
∂� · ∂αu

]∣∣κ−n.t.

∂�
= 0 at σ -a.e. point on ∂nta�

for each multi-index α ∈ N
n
0 with |α| > 0.

(8.9.172)

Finally, if the last property in (8.9.169) is strengthened to

Nκu ∈ L p(∂�, σ) (8.9.173)

then in place of (8.9.170) one now concludes that, for each multi-index α ∈ N
n
0 ,
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Nκ

(
δ

|α|
∂� · ∂αu

)
belongs to L p(∂�, σ) and

∥∥Nκ

(
δ

|α|
∂� · ∂αu

)∥∥
L p(∂�,σ)

≤ C‖Nκu‖L p(∂�,σ)

(8.9.174)

for some constant C = C(�, L , κ, α) ∈ (0,∞) independent of u.

Proof Pick another aperture parameter κ̃ > κ . From the second line in (8.9.169) and
Corollary 8.4.2 we conclude that

Nε
κ̃u ∈ L p

loc(∂�, σ). (8.9.175)

In concert with (8.2.28) and (8.9.148), this establishes the claim made in (8.9.170).
Next, assume that in addition to (8.9.169) the function u also satisfies (8.9.171).

The goal is to prove (8.9.172). First, based on the second line in (8.9.169), (8.9.171),
and Corollary 8.9.9 we conclude that

the nontangential limit
(
u
∣
∣κ̃−n.t.

∂�

)
(x) exists

(in C
M ) for σ -a.e. point x ∈ ∂nta�.

(8.9.176)

On the other hand, Proposition 8.8.6 ensures that ∂nta� is a Borelian set (hence also
σ -measurable), and satisfies

∂nta� ⊆ Aκ(∂�) and σ
(
Aκ(∂�) \ ∂nta�

) = 0. (8.9.177)

From (8.9.176), (8.9.177), and the last claim in the statement of Proposition 8.9.11
we then see that (8.9.172) holds.

To justify the claimmade in the last part of the statement, assume the last property
in (8.9.169) is strengthened to (8.9.173). Then (8.9.174) follows from (8.9.147),
Proposition 8.4.1, and (8.2.28). �

Moving on to a new topic, we make the following definition.

Definition 8.9.14 Call a set � locally pathwise nontangentially
accessible (or LPNA for short) provided � is an open nonempty proper subset
of R

n for which the following holds:

given κ > 0 there exist κ̃ ≥ κ along with c ∈ [1,∞) and d > 0 such
that σ -a.e. point x ∈ ∂� has the property that any y ∈ �κ(x) with
dist(y, ∂�) < d may be joined by a rectifiable curve γx,y satisfying
γx,y \ {x} ⊂ �κ̃(x) and whose length is ≤ c|x − y|.

(8.9.178)

In addition, it is agreed to adopt the adjective “globally” in the case when one
can allow d = ∞ in (8.9.178). More precisely, a set � is said to be globally
pathwise nontangentially accessible (or GPNA for short) provided �

is an open nonempty proper subset of R
n such that:
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given κ > 0 there exist κ̃ ≥ κ along with c ∈ [1,∞) such that σ -a.e.
point x ∈ ∂� has the property that any y ∈ �κ(x) may be joined by a
rectifiable curve γx,y satisfying γx,y \ {x} ⊂ �κ̃(x) and whose length
is ≤ c|x − y|.

(8.9.179)

Lemma 5.11.4 shows that

any one-sidedNTAdomain is a locally pathwise nontangentially acces-
sible set (and, in fact, a globally pathwise nontangentially accessible
set if the boundary of the said domain is unbounded).

(8.9.180)

Of course, being a locally pathwise nontangentially accessible (LPNA) set is a much
weaker condition than being a one-sided NTA domain. For example, a partially
slit disk is a locally pathwise nontangentially accessible set, but fails to satisfy the
Harnack chain condition.

Our notion of local pathwise nontangential accessibility should be compared with
the concept of semi-uniformity introduced byH.Aikawa andK.Hirata in [6]. The lat-
ter is a quantitative connectivity condition, whichmay be regarded as a less restrictive
version of the uniform condition considered in Definition 5.11.10. Specifically,

an open nonempty proper subset� ofR
n is said to be semi-uniform

if there exists some C > 1 such that each pair of points x ∈ ∂�

and y ∈ � may be joined by a rectifiable curve γ = γ (x, y) with
γ \ {x} ⊆ �, whose length is≤ C |x − y| andwhich satisfies the “cigar
path” condition min

{
length γ (x, z), length γ (z, y)

}
≤ C dist(z, ∂�)

for each point z ∈ γ , where γ (x, z) and γ (z, y) denote the two con-
nected components of the curve γ , joining x with z, and z with y,
respectively.

(8.9.181)

The quality of being semi-uniform is analogous to the property of being uniform
(see Definition 5.11.10), the sole difference being that in the former, as opposed to
the latter, only one of the points is inside of the domain (the second one being on
the boundary). We may employ an argument based on the Arzela–Ascoli Theorem
to show that, in fact,

any uniform domain is a semi-uniform set. (8.9.182)

In concert with (5.11.65), this also shows that

and connected one-sided NTA domain (i.e., an open connected set
satisfying an interior corkscrew condition as well as a Harnack chain
condition) is a semi-uniform set.

(8.9.183)

Proposition 8.9.15 Any semi-uniform set is globally (hence also locally) pathwise
nontangentially accessible.
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Proof With � ⊆ R
n a given semi-uniform set, let C ∈ (0,∞) be as in (8.9.181), fix

an arbitrary aperture parameter κ > 0, and pick

ε ∈ (
0, 2−1(1 + κ)−1C−1

)
. (8.9.184)

Next, select two points, x ∈ ∂� and y ∈ �κ(x) ⊆ �, and let γ = γ (x, y) be the
curve as in (8.9.181). Finally, consider an arbitrary point z ∈ γ .

Case I: Assume length γ (z, y) < ε · length γ (x, y). Then on account of this,
(8.9.181), (8.1.2), and (8.9.184) we may estimate

|y − z| ≤ length γ (z, y) < ε · length γ (x, y)

≤ ε · C |x − y| < ε · C(1 + κ) dist(y, ∂�) < 1
2 dist(y, ∂�). (8.9.185)

In turn, this implies dist(z, ∂�) > 1
2 dist(y, ∂�) which, together with part of

(8.9.185), permits us to write

dist(z, ∂�) > 1
2 dist(y, ∂�) ≥ ε · length γ (x, y) ≥ ε · length γ (x, z)

≥ ε|x − z|. (8.9.186)

This proves that, in this case,

z ∈ �κ̃(x) if κ̃ ≥ ε−1 − 1. (8.9.187)

Case II: Assume that we have length γ (z, y) ≥ ε · length γ (x, y) and that
length γ (z, y) < length γ (x, z). Then

ε|x − z| ≤ ε · length γ (x, z) ≤ ε · length γ (x, y)

≤ min
{
length γ (x, z), length γ (z, y)

}
≤ C dist(z, ∂�) (8.9.188)

hence, in this case,

z ∈ �κ̃(x) if κ̃ ≥ Cε−1 − 1. (8.9.189)

Case III: Assume that we have length γ (z, y) ≥ ε · length γ (x, y) as well as
length γ (z, y) ≥ length γ (x, z). Then

|x − z| ≤ length γ (x, z) = min
{
length γ (x, z), length γ (z, y)

}

≤ Cdist(z, ∂�). (8.9.190)

Thus, in this case,
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z ∈ {x} ∪ �κ̃(x) if κ̃ > C − 1. (8.9.191)

Collectively, (8.9.187), (8.9.189), and (8.9.191) prove that

γ \ {x} ⊆ �κ̃(x) if κ̃ > Cε−1 − 1. (8.9.192)

As such, condition (8.9.178) is satisfied (with c := C and d ∈ (0,∞) arbitrary), so
� is a globally pathwise nontangentially accessible set. �

For any locally pathwise nontangentially accessible (LPNA) set with a doubling
surface measure, the nontangentially accessible boundary has full (surface) measure
into the topological boundary.

Proposition 8.9.16 Let � ⊂ R
n be a locally pathwise nontangentially accessible

(LPNA) set with the property that σ := Hn−1�∂� is a doubling measure on ∂�.
Then

Hn−1(∂� \ ∂nta�
) = 0. (8.9.193)

Proof From (8.9.178) it is clear that there exists some κ0 ∈ (0,∞)with the property
that Hn−1

(
∂� \ Aκ0(∂�)

) = 0. Granted this, (8.9.193) becomes a consequence of
item (ii) in Proposition 8.8.6. �

In the class of locally pathwise nontangentially accessible sets, we may estimate
the nontangential maximal operator of a function which vanishes on the boundary
via the nontangential maximal operator of its gradient.

Proposition 8.9.17 Suppose � ⊂ R
n is a locally pathwise nontangentially acces-

sible set, and abbreviate σ := Hn−1�∂�. Also, fix κ > 0 arbitrary, then let κ̃ ≥ κ

together with d > 0 and c ∈ [1,∞) be associated with κ as in (8.9.178), and define
θ := [

c(1 + κ)
]−1 ∈ (0, 1). Finally, consider a function u ∈ C 1(�) with the prop-

erty that

u
∣∣κ̃−n.t.

∂�
exists at σ -a.e. point on ∂nta�. (8.9.194)

Then for each ε ∈ (0, d/θ) one has

(Nθ ε
κ u)(x) ≤

∣
∣∣
(
u
∣∣κ̃−n.t.

∂�

)
(x)

∣
∣∣+ ε

(
Nε

κ̃ (∇u)
)
(x) at σ -a.e. x ∈ ∂nta�. (8.9.195)

In particular, if actually

u
∣∣κ̃−n.t.

∂�
= 0 at σ -a.e. point on ∂nta� (8.9.196)

then for each ε ∈ (0, d/θ) the estimate in (8.9.195) reduces to

Nθ ε
κ u ≤ ε · Nε

κ̃ (∇u) at σ -a.e. point on ∂nta�. (8.9.197)



8.9 The Nontangential Boundary Trace Operator 817

Moreover,

if the set� is actually globally pathwise nontangentially accessible
(cf. (8.9.179)) then (8.9.195) (hence also the fact that (8.9.196)
implies (8.9.197)) is valid for every ε ∈ (0,∞).

(8.9.198)

We wish to note that, according to Corollary 8.9.9,

condition (8.9.194) automatically holds whenever there exists some

κ ′ > 0 such that the nontangential limit
(
u
∣∣κ

′−n.t.

∂�

)
(x) exists for σ -a.e.

x ∈ ∂nta�, the measure σ is doubling on ∂�, and Nρ

κ ′u ∈ L p
loc(∂�, σ)

for some arbitrary truncation parameter ρ > 0 and exponent p > 0.

(8.9.199)

Proof of Proposition 8.9.17 Without loss of generality it may be assumed that the
given function u is real-valued. Let A0 ⊆ ∂� be a σ -measurable set with σ(A0) = 0
and such that any point x ∈ ∂� \ A0 satisfies the pathwise connectivity property
described in (8.9.178). Also, the assumption in (8.9.194) implies that

there exists a σ -measurable set A1 ⊆ ∂nta� with σ(A1) = 0

and so that
(
u
∣∣κ̃−n.t.

∂�

)
(x) exists for each point x ∈ ∂nta� \ A1.

(8.9.200)

To proceed, fix ε ∈ (0, d/θ) and introduce

N := {
x ∈ ∂nta� \ A1 : Nε

κ̃ (∇u)(x) = +∞}
. (8.9.201)

In particular, the estimate in (8.9.195) is trivially true when x ∈ N . The proof is
therefore finished as soon as we show that the estimate in (8.9.195) also holds at
every point x ∈ (

∂nta� \ (A0 ∪ A1)
) \ N .

With this goal inmind, fix an arbitrary point x ∈ (
∂nta� \ (A0 ∪ A1)

) \ N and pick
some y ∈ �κ(x) satisfying dist(y, ∂�) < θ ε. In particular, dist(y, ∂�) < d, so the
fact that x ∈ ∂� \ A0 ensures the existence of a rectifiable curve γx,y joining x with
y in �, with the property that

γx,y \ {x} ⊆ �κ̃(x), (8.9.202)

and whose length L := length γx,y satisfies

L ≤ c|x − y| < c(1 + κ) dist(y, ∂�) < c(1 + κ)θ ε = ε. (8.9.203)

As a consequence,

dist(ξ, ∂�) ≤ |ξ − x | ≤ L ≤ ε, ∀ξ ∈ γx,y . (8.9.204)
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Going further, let [0, L] � s �→ γx,y(s) be the arc-length parametrization of the curve
γx,y and consider the function given for each s ∈ [0, L] by f (s) := u

(
γx,y(s)

)
. By

design, this is continuous on [0, L] and satisfies f (L) = u(y) and f (0) = (
u
∣∣κ̃−n.t.

∂�

)
(x)

(cf. (8.9.200)). Also, f is differentiable at L1-a.e. s ∈ (0, L) and, bearing in mind
that

∣∣ d
ds [γx,y(s)]

∣∣ = 1 for L1-a.e. s ∈ (0, L), the Chain Rule and Cauchy-Schwarz’
inequality imply that

| f ′(s)| =
∣
∣∣(∇u)

(
γx,y(s)

) · .γx,y(s)
∣
∣∣ ≤

∣
∣∣(∇u)

(
γx,y(s)

)∣∣∣ ≤ sup
ξ∈γx,y\{x}

∣∣(∇u)(ξ)
∣∣

≤ Nε
κ̃ (∇u)(x) forL1-a.e. s ∈ (0, L), (8.9.205)

where the last inequality uses (8.9.202) and (8.9.204). Upon recalling that the point
x ∈ ∂nta� \ (A0 ∪ A1) but x /∈ N , this implies that f is a Lipschitz function, with
Lipschitz constant Nε

κ̃ (∇u)(x) < +∞. Consequently,

|u(y)| = | f (L)| ≤ | f (L) − f (0)| + | f (0)| ≤ L · Nε
κ̃ (∇u)(x) +

∣∣∣
(
u
∣∣κ̃−n.t.

∂�

)
(x)

∣∣∣

≤ ε · Nε
κ̃ (∇u)(x) +

∣∣∣
(
u
∣∣κ̃−n.t.

∂�

)
(x)

∣∣∣. (8.9.206)

Taking the supremum in (8.9.206) over all y ∈ �κ(x) satisfying dist(y, ∂�) < θ ε

then ultimately yields

(Nθ ε
κ u

)
(x) ≤ ε · Nε

κ̃ (∇u)(x) +
∣∣∣
(
u
∣∣κ̃−n.t.

∂�

)
(x)

∣∣∣, ∀x ∈ (
∂nta� \ (A0 ∪ A1)

) \ N .

(8.9.207)

Given that σ(A0 ∪ A1 ∪ N ) = 0, this ultimately implies (8.9.195). Finally, the claim
in (8.9.198) is justified in an analogous manner (formally taking d = ∞). �

There is more we can extract from the proof of Proposition 8.9.17, such as the fact
that, for functions vanishing on the boundary, division by the distance to the boundary
“acts as differentiation,” as far as the size of the nontangential maximal operator is
concerned. This pointwise result, which should be comparedwith Proposition 8.9.11,
is made precise in the proposition below.

Proposition 8.9.18 Let � ⊂ R
n be a locally pathwise nontangentially accessible

set. Abbreviate σ := Hn−1�∂� and define δ∂� := dist(·, ∂�). Next, fix an arbitrary
κ > 0, then let κ̃ ≥ κ together with d > 0 and c ∈ [1,∞) be associated with κ as
in (8.9.178), and define θ := [

c(1 + κ)
]−1 ∈ (0, 1). Lastly, suppose

u ∈ C 1(�) is a function with the property that

u
∣∣κ̃−n.t.

∂�
= 0 at σ -a.e. point on ∂nta�.

(8.9.208)

Then for each ε ∈ (0, d/θ) one has
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(
Nθ ε

κ

(
u/δ∂�

))
(x) ≤ c(1 + κ) ·

(
Nε

κ̃ (∇u)
)
(x) at σ -a.e. x ∈ ∂nta�. (8.9.209)

Moreover, if � is actually globally pathwise nontangentially accessible (a sce-
nario in which d = ∞; cf. Definition 8.9.14) then one may allow ε = ∞ in (8.9.209),
i.e., one now has

(
Nκ

(
u/δ∂�

))
(x) ≤ c(1 + κ) ·

(
Nκ̃ (∇u)

)
(x) at σ -a.e. x ∈ ∂nta�. (8.9.210)

Proof The claim in (8.9.209) is implicit in the proof of Proposition 8.9.17, from
which we shall freely borrow notation and results. Specifically, from (8.9.203) we
know that

L ≤ c|x − y| < c(1 + κ) dist(y, ∂�) = c(1 + κ)δ∂�(y), (8.9.211)

while the first line in (8.9.206) presently yields (thanks to (8.9.208))

|u(y)| ≤ L · Nε
κ̃ (∇u)(x). (8.9.212)

Collectively, (8.9.211) and (8.9.212) give

|u(y)|
δ∂�(y)

≤ c(1 + κ) · Nε
κ̃ (∇u)(x) (8.9.213)

so, after taking the supremum over all points y ∈ �κ(x) satisfying dist(y, ∂�) < θ ε,
we arrive at (8.9.209). Finally, in the case when d = ∞, we obtain (8.9.210) from
(8.9.209) by simply sending ε → ∞. �

Moreover, a cursory inspection of the above proof reveals that the following
version of Proposition 8.9.18 is also true:

Remark 8.9.19 In the context of Proposition 8.9.18, if in place of the first line in
(8.9.208) one now assumes that u ∈ C 1(� \ K ) for some compact set K ⊆ �, then
(8.9.209) continues to hold provided ε ∈ (0, d/θ) is sufficiently small (relative to
dist(K , ∂�)).

There is one final variant of Proposition 8.9.18 which we wish to single out in
Proposition 8.9.21, stated a little further below. To facilitate its proof, we isolate a
technical result in the next lemma.

Lemma 8.9.20 Suppose � ⊂ R
n is a locally pathwise nontangentially accessible

set, and abbreviate σ := Hn−1�∂�. Recall the family of one-sided collar neigh-
borhoods

{Oε

}
ε>0 of ∂� defined in (1.5.5). Fix κ > 0 arbitrary, then let κ̃ ≥ κ

together with d > 0 and c ∈ [1,∞) be associated with κ as in (8.9.178). Also,
define κ̃o := 4 + 3̃κ . Next, pick an arbitrary point x0 ∈ � together with some num-
ber ρ ∈ (

0 , 1
4 dist(x0, ∂�)

)
then set K := B(x0, ρ) and 2K := B(x0, 2ρ). Finally,

choose a threshold εo ∈ (0, d) and set
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c̃ := c + 2πρ · ε−1
o ∈ (c,∞) and θ̃ := [

c̃(1 + κ)
]−1 ∈ (0, 1). (8.9.214)

Then

for any given function u ∈ C 1(� \ K ) having the property that

u
∣∣κ̃o−n.t.

∂�
= 0 at σ -a.e. point on ∂nta�, and for any ε ∈ (0, d/θ̃), one

has N (Oθ̃ ε\Oεo )\(2K )
κ u ≤ ε · NOε\K

κ̃o
(∇u) at σ -a.e. point on ∂nta�.

(8.9.215)

Furthermore, if� is actually a globally pathwise nontangentially accessible set then
(8.9.215) holds with d := ∞.

Proof Select some x ∈ ∂nta� and suppose

y ∈ (
�κ(x) \ Oεo

) \ (2K ) is such that
dist(y, ∂�) < d and γx,y ∩ (2K ) �= ∅,

(8.9.216)

where γx,y the curve associated with x, y as in (8.9.179). For y as above, denote
by z0 and z1, respectively, the first and last contact points of the curve γx,y with the
closed ball 2K . Define γ̃x,y to be the curve obtained by modifying γx,y in between
z0 and z1 by replacing the sub-arc of γx,y with end-points z0, z1 by a portion of a
big circle on ∂(2K ) joining z0 with z1. Then γ̃x,y is a rectifiable curve satisfying
γ̃x,y \ {x} ⊂ � \ K and whose length is

length
(
γ̃x,y

) ≤ length
(
γx,y

)+ 2πρ ≤ c|x − y| + 2πρ. (8.9.217)

Then from (8.9.217), the fact that |x − y| > εo, the formula of c̃ in (8.9.214), and
the last property in (8.9.179) we have

max
{
length

(
γx,y

)
, length

(
γ̃x,y

)} ≤ c̃|x − y|. (8.9.218)

We also claim that
2K ⊆ �κ̃o(x). (8.9.219)

Since having 0 < ρ < 1
4 dist(x0, ∂�) guarantees that 2K ⊆ �, there remains to

check that any given point ξ ∈ 2K satisfies

|ξ − x | < (1 + κ̃o) dist(ξ, ∂�). (8.9.220)

To justify this fix a point ξ ∈ 2K . Upon observing that

4ρ < dist(x0, ∂�) ≤ dist(ξ, ∂�) + |x0 − ξ | < dist(ξ, ∂�) + 2ρ (8.9.221)

we conclude that
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2ρ < dist(ξ, ∂�). (8.9.222)

Next, recall that z0 ∈ 2K ∩ γx,y and γx,y \ {x} ⊂ �κ̃(x). As such, z0 ∈ �κ̃(x) hence

|z0 − x | < (1 + κ̃) dist(z0, ∂�) ≤ (1 + κ̃) dist(ξ, ∂�) + (1 + κ̃)|ξ − z0|
< (1 + κ̃) dist(ξ, ∂�) + (1 + κ̃)4ρ < 3(1 + κ̃) dist(ξ, ∂�), (8.9.223)

thanks to (8.9.222). Consequently,

|ξ − x | ≤ |z0 − x | + |z0 − ξ | < 3(1 + κ̃) dist(ξ, ∂�) + 4ρ

< (5 + 3̃κ) dist(ξ, ∂�) = (1 + κ̃o) dist(ξ, ∂�). (8.9.224)

This establishes (8.9.220) and finishes the proof of (8.9.219). In particular, as seen
from (8.9.219) and the design of the curve γ̃x,y ,

γ̃x,y \ {x} ⊆ �κ̃o(x) \ K whenever
x ∈ ∂nta� and y is as in (8.9.216).

(8.9.225)

The above analysis may now be used to justify the claim made in (8.9.215).
Specifically, this is established by reasoning as in the proof of Proposition 8.9.17
with κ̃o in place of κ̃ , with γ̃x,y in place of γx,y in the scenario described in (8.9.216)
(and otherwise retaining γx,y instead if this curve is disjoint from 2K ), with c̃ in place
of c, and with θ̃ in place of θ (two relevant aspects to keep in mind in this regard are
(8.9.218) and (8.9.225)). �

We are now prepared to prove the following variant of Proposition 8.9.17, alluded
to before.

Proposition 8.9.21 Let � ⊂ R
n be a globally pathwise nontangentially accessible

set, and abbreviate σ := Hn−1�∂�. Fix an arbitrary point x0 ∈ � together with
some ρ ∈ (

0 , 1
4 dist(x0, ∂�)

)
and set K := B(x0, ρ) and 2K := B(x0, 2ρ). Then

for each aperture parameter κ > 0 there exist κ̃o ≥ κ and a constant C ∈ (0,∞)

with the property that for each function

u ∈ C 1(� \ 2K ) such that

u
∣∣κ̃o−n.t.

∂�
= 0 at σ -a.e. point on ∂nta�

(8.9.226)

one has
(
N�\2K

κ

(
u/δ∂�

))
(x) ≤ C ·

(
N�\K

κ̃o
(∇u)

)
(x) at σ -a.e. x ∈ ∂nta�. (8.9.227)

Proof Let κ̃ ≥ κ and c ∈ [1,∞) be associated with κ as in (8.9.178) (with d := ∞).
Consider κ̃o := 4 + 3̃κ . Also, fix a threshold εo ∈ (0,∞) and define θ̃ as in (8.9.214).
Finally, pick a function u as in (8.9.226). Then (8.9.215) ensures that there exists
some σ -measurable set N ⊆ ∂nta� with the property that σ(N ) = 0 and such that
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(
N (Oθ̃ ε\Oεo )\(2K )

κ u
)
(x) ≤ ε ·

(
NOε\K

κ̃o
(∇u)

)
(x)

for each x ∈ ∂nta� \ N and ε ∈ (0,∞) ∩ Q.
(8.9.228)

Fix some x ∈ ∂nta� \ N . Given an arbitrary point

y ∈ (
�κ(x) \ Oεo

) \ (2K ), (8.9.229)

choose ε ∈ (0,∞) ∩ Q such that ε>δ∂�(y)/θ̃ . This ensures y∈(Oθ̃ ε\Oεo)\(2K ),
so we may invoke (8.9.228) to estimate

|u(y)| ≤
(
N (Oθ̃ ε\Oεo )\(2K )

κ u
)
(x) ≤ ε ·

(
NOε\K

κ̃o
(∇u)

)
(x)

≤ ε ·
(
N�\K

κ̃o
(∇u)

)
(x). (8.9.230)

After letting ε ↘ δ∂�(y)/θ̃ we arrive at

|u(y)| ≤ (
δ∂�(y)/θ̃

) ·
(
N�\K

κ̃o
(∇u)

)
(x), (8.9.231)

hence |u(y)|
δ∂�(y)

≤ θ̃−1 ·
(
N�\K

κ̃o
(∇u)

)
(x). (8.9.232)

Taking the supremum over all points y as in (8.9.229) then leads to the conclusion
that

(
N (�\Oεo )\2K

κ

(
u/δ∂�

))
(x) ≤ C ·

(
N�\K

κ̃o
(∇u)

)
(x) at σ -a.e. x ∈ ∂nta�,

(8.9.233)
for some C = C(�, x0, ρ, κ, εo) ∈ (0,∞). The result described in Remark 8.9.19
implies

(
NOεo \2K

κ

(
u/δ∂�

))
(x) ≤ C ·

(
N�\K

κ̃o
(∇u)

)
(x) at σ -a.e. x ∈ ∂nta�. (8.9.234)

Together, (8.9.233) and (8.9.234) yield (8.9.227). �

Moving on, under suitable geometric assumptions on the underlying domain it
becomes possible to show that control of the nontangential maximal operator of the
gradient of a given function implies that the function in question has nontangential
pointwise traces a.e. on the boundary. Our next proposition elaborates on this topic.

Proposition 8.9.22 Let � ⊆ R
n be an interior NTA domain with the property that

σ := Hn−1�∂� is a doubling measure and the set ∂� is lower Ahlfors regular (the
latter condition is automatically satisfied if � is an NTA domain; cf. (5.11.4)). Fix
an aperture κ ∈ (0,∞), a truncation parameter ε ∈ (0,∞), and an integrability
exponent p ∈ (0,∞].
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Then if u ∈ C 1(�) has Nε
κ (∇u) ∈ L p

loc(∂�, σ) it follows that

the nontangential trace
(
u
∣∣κ−n.t.

∂�

)
(x) exists at σ -a.e. x ∈ ∂∗�,

and the function u
∣∣κ−n.t.

∂�
belongs to the space L p

loc(∂∗�, σ).
(8.9.235)

In particular,

under the additional assumption that ∂� is bounded, given any
function u ∈ C 1(�) such that Nκ(∇u) ∈ L p(∂�, σ) it follows

that the nontangential trace
(
u
∣∣κ−n.t.

∂�

)
(x) exists at σ -a.e. point

x ∈ ∂∗�, and the function u
∣∣κ−n.t.

∂�
belongs to the space L p(∂∗�, σ).

(8.9.236)

Proof Assume u ∈ C 1(�) is a function satisfying Nε
κ (∇u) ∈ L p

loc(∂�, σ). Let
κ̃, R,C ∈ (0,∞) be associate to the given setting as in Lemma 5.11.6. Without loss
of generality assume ε ∈ (0, R/2) and pick δ ∈ (

0, ε/(C + 1)
)
. Consider a measur-

able set A ⊆ ∂∗�, of full measure (relative to σ ), with the property that

Nε
κ̃ (∇u)(x) < ∞ and x ∈ �κ(x) for every x ∈ A. (8.9.237)

That such a set exists is guaranteed by the present assumptions, Proposition 8.4.1,
and Proposition 8.8.4. Pick an arbitrary point x ∈ A. Then for every pair of points
y0, y1 ∈ �κ(x) ∩ B(x, δ) consider γ as in (5.11.14). In concert with the Fundamental
Theorem of Calculus, this permits us to estimate

|u(y1) − u(y0)| ≤
ˆ

γ

|∇u| ds ≤ Nε
κ̃ (∇u)(x) · length(γ )

≤ C Nε
κ̃ (∇u)(x) · max

{|x − y0|, |x − y1|
}
, (8.9.238)

where ds denotes the arc-length measure on γ . In turn, this readily implies that the
numerical sequence {u(y j )} j∈N is Cauchy whenever {y j } j∈N ⊆ �κ(x) is a sequence
of points with the property that y j → x as j → ∞. This ultimately proves that

(
u
∣∣κ−n.t.

∂�

)
(x) = lim

�κ(x)�y→x
u(y) exists for σ -a.e. x ∈ ∂∗�. (8.9.239)

Granted this, the fact that u
∣
∣κ−n.t.

∂�
is σ -measurable on ∂∗� is implied by Corol-

lary 8.9.6. Then Proposition 8.4.9 and (8.9.8) ensure that said function belongs to
the space L p

loc(∂∗�, σ), finishing the proof of (8.9.235). Finally, (8.9.236) is a par-
ticular case of what we have proved earlier. �
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8.10 The Averaged Nontangential Maximal Operator

Fix an open, nonempty, proper subset � of R
n . As before, δ∂� denotes the distance

function to ∂�. In what follows we also fix κ > 0, θ ∈ (0, 1), and r ∈ (0,∞). Recall
the nontangential approach regions �κ defined in (8.1.2) and consider a function
u ∈ Lr

loc(�,Ln). Then the averaged nontangential maximal function
of u (with aperture κ , scale θ , and integrability r ) is the mapping5

Ñκ,θ,r u : ∂� −→ [0,+∞] defined at each x ∈ ∂� by

(Ñκ,θ,r u)(x) :=
∥∥
∥∥�κ(x) � y �→

(  
B(y,θδ∂�(y))

|u|r dLn
)1/r∥∥

∥∥
L∞
y (�κ (x),Ln)

. (8.10.1)

A special case has been considered earlier in [148]. In what follows we analyze
the properties of this averaged nontangential maximal operator. The first order of
business is understanding how this relates to the “ordinary” nontangential maximal
operator defined earlier in (8.2.1). As a prelude, define

ũ(y) :=
( 

B(y,θδ∂�(y))
|u|r dLn

)1/r
for every y ∈ �, (8.10.2)

and note that
ũ ∈ C 0(�). (8.10.3)

To justify (8.10.3), consider y ∈ � along with a sequence {y j } j∈N ⊆ � convergent
to y. Then the fact that the distance function δ∂� is Lipschitz (hence continuous)
implies

|u(x)|r1B(y j ,θδ∂�(y j ))(x) −→ |u(x)|r1B(y,θδ∂�(y))(x) as j → ∞
for each fixed point x ∈ � \ ∂B(y, θδ∂�(y)).

(8.10.4)

In concert, the pointwise Ln-a.e. convergence proved in (8.10.4), the membership
u ∈ Lr

loc(�,Ln), Lebesgue’s Dominated Convergence Theorem, and the fact that
lim
j→∞Ln

(
B(y j , θδ∂�(y j ))

) = Ln
(
B(y, θδ∂�(y))

)
imply lim

j→∞ ũ(y j ) = ũ(y), proving

(8.10.3).
It is then immediate from (8.10.1) and (8.10.3) that

Ñκ,θ,r u = Nκ ũ pointwise on ∂�. (8.10.5)

As a consequence of (8.10.5), (8.10.3), and (8.2.26) we see that

Ñκ,θ,r u is lower-semicontinuous on ∂�. (8.10.6)

5 Where the barred integral represents mean average, and L∞
y indicates that the L∞ norm is taken

in the y variable.
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In light of (8.10.3), we may also recast (8.10.1) as

(Ñκ,θ,r u)(x) = sup
y∈�κ (x)

(  
B(y,θδ∂�(y))

|u|r dLn
)1/r

for each x ∈ ∂�. (8.10.7)

In turn, (8.10.7), the assumption that u ∈ Lr
loc(�,Ln), and Hölder’s inequality imply

Ñκ,θ,su ≤ Ñκ,θ,r u on ∂�, for each s ∈ (0, r ]. (8.10.8)

It is also immediate from (8.10.7) that

Ñκ,θ ′,r u ≤ Cθ,θ ′Ñκ,θ,r u whenever 0 < θ ′ ≤ θ, (8.10.9)

and Ñκ ′,θ,r u ≤ Ñκ,θ,r u whenever 0 < κ ′ ≤ κ, (8.10.10)

for some constant Cθ,θ ′ ∈ (0,∞), where the inequalities in (8.10.9)–(8.10.10) hold
pointwise on ∂�.

Next, we claim that

Ñκ,θ,r u ≤ Nκ̃u pointwise on ∂�, where κ̃ := κ + 2θ

1 − θ
. (8.10.11)

To justify the inequality in (8.10.11), take an arbitrary x ∈ ∂� and some y ∈ �κ(x).
Then for each z ∈ B

(
y, θδ∂�(y)

)
we have δ∂�(z) ≥ (1 − θ)δ∂�(y) which, in turn,

permits us to estimate

|z − x | ≤ |z − y| + |y − x | < θδ∂�(y) + (1 + κ)δ∂�(y)

= (1 + θ + κ)δ∂�(y) <
1 + θ + κ

1 − θ
δ∂�(z) = (1 + κ̃)δ∂�(z). (8.10.12)

Hence,

B
(
y, θδ∂�(y)

) ⊆ �κ̃(x) for every y ∈ �κ(x) and x ∈ ∂�. (8.10.13)

Thus, if x ∈ ∂� and y ∈ �κ(x), then for Ln-a.e. point z ∈ B
(
y, θδ∂�(y)

)
we have

|u(z)| ≤ (Nκ̃u)(x)which, in concert with (8.10.1) and (8.2.1), establishes (8.10.11).
It is useful to observe that for subaveraging functions (cf. Definition 6.5.1 and

(6.5.13)) the ordinary and averaged nontangential maximal operators are essentially
equivalent. Indeed, it is apparent from (8.10.11) and Lemma 6.5.3 that

given any κ ∈ (0,∞), θ ∈ (0, 1), and r ∈ (0,∞) there exists a constant
C ∈ (1,∞) such that for each subaveraging function u in � we have
C−1 · Nκu ≤ Ñκ,θ,r u≤C ·Nκ̃u on ∂�, where κ̃ := (κ+2θ)/(1−θ).

(8.10.14)

The next claim we make is that
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for any given κ ∈ (0,∞), θ, θ ′ ∈ (0, 1), and r ∈ (0,∞) there exists
Cr,θ,θ ′ ∈ (0,∞)with the property that Ñκ,θ,r u ≤ Cr,θ,θ ′ · Ñκ̃,θ ′,r u at
every point on ∂�, where κ̃ := (κ + 2θ)/(1 − θ).

(8.10.15)

To prove (8.10.15), let κ ∈ (0,∞), θ, θ ′ ∈ (0, 1) and r ∈ (0,∞) be arbitrary. Also,
fix x ∈ ∂� and pick an arbitrary y ∈ �κ(x). Then there exists a family of points
z j ∈ B

(
y, θδ∂�(y)

)
, where j ∈ {1, . . . , Nθ,θ ′ } with Nθ,θ ′ ∈ N depending only on

θ, θ ′, n, such that

B
(
y, θδ∂�(y)

) ⊆
Nθ,θ ′⋃

j=1

B
(
z j , (1 − θ)θ ′δ∂�(y)

)
. (8.10.16)

Since δ∂�(z j ) ≥ (1 − θ)δ∂�(y) for each j ∈ {1, . . . , Nθ,θ ′ }, this further implies

B
(
y, θδ∂�(y)

) ⊆
Nθ,θ ′⋃

j=1

B
(
z j , θ

′δ∂�(z j )
)
. (8.10.17)

Hence,

ˆ
B(y,θδ∂�(y))

|u|r dLn ≤
Nθ,θ ′∑

j=1

ˆ
B(z j ,θ ′δ∂�(z j ))

|u|r dLn . (8.10.18)

Since for each j we also have δ∂�(z j ) ≤ |z j − y| + δ∂�(y) ≤ (1 + θ)δ∂�(y), from
(8.10.18) we deduce that

 
B(y,θδ∂�(y))

|u|r dLn ≤ 1

voln · (θδ∂�(y))n

Nθ,θ ′∑

j=1

ˆ
B(z j ,θ ′δ∂�(z j ))

|u|r dLn

≤ (θ ′)n(1 + θ)n

θn

Nθ,θ ′∑

j=1

 
B(z j ,θ ′δ∂�(z j ))

|u|r dLn

≤ Nθ,θ ′
(θ ′)n(1 + θ)n

θn
·
[(Ñκ̃,θ ′,r u

)
(x)

]r
, (8.10.19)

where the last inequality in (8.10.19) is a consequence of having z j ∈ B
(
y, θδ∂�(y)

)

for each j ∈ {1, . . . , Nθ,θ ′ }, (8.10.13), and (8.10.7). Now (8.10.15) follows from
(8.10.19) by taking the supremum over y ∈ �κ(x) and invoking (8.10.7).

The next proposition addresses the issue of the equivalence of L p-norms of the
averaged nontangential maximal function for different apertures and scales (compare
to Proposition 8.4.1).

Proposition 8.10.1 Assume that � is an open nonempty proper subset of R
n and

consider a doublingmeasureσ on ∂�. Also, fix an integrability exponent p ∈ (0,∞).
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Then for every apertures κ1, κ2 ∈ (0,∞), every scales θ1, θ2 ∈ (0, 1), and every
integrability exponent r ∈ (0,∞), there exist two finite constants C0,C1 > 0, which
depend only on κ1, κ2, θ1, θ2, p, r and the doubling character of σ , such that6

C0

∥∥Ñκ1,θ1,r u
∥∥
L p(∂�,σ)

≤ ∥∥Ñκ2,θ2,r u
∥∥
L p(∂�,σ)

≤ C1

∥∥Ñκ1,θ1,r u
∥∥
L p(∂�,σ)

, (8.10.20)

for each function u ∈ Lr
loc(�,Ln).

Proof Apply (8.10.15) with κ := κ1, θ := θ1, and θ ′ := θ2 to obtain that there exists
some constant c1 := Cr,θ1,θ2 ∈ (0,∞) such that

∥∥Ñκ1,θ1,r u
∥∥
L p(∂�,σ)

≤ c1
∥∥Ñκ̃1,θ2,r u

∥∥
L p(∂�,σ)

where κ̃1 := κ1 + 2θ1
1 − θ1

. (8.10.21)

Next, a combination of (8.10.5) and Proposition 8.4.1 proves that there exists some
finite constant c2 := C (̃κ1, κ2, p) > 0 with the property that

∥
∥Ñκ̃1,θ2,r u

∥
∥
L p(∂�,σ)

≤ c2
∥
∥Ñκ2,θ2,r u

∥
∥
L p(∂�,σ)

. (8.10.22)

From (8.10.21) and (8.10.22) the first inequality in (8.10.20) follows. The second
inequality in (8.10.20) is immediate from what we proved so far by reversing the
roles of κ1, θ1 and κ2, θ2. �

Concerning the relationship between the ordinary nontangentialmaximal operator
and the averaged one we wish to note the following result, pointing to the fact that
the former encodes more nuanced information about a given function than the latter.

Proposition 8.10.2 Let � be an open nonempty proper subset of Rn and consider a
doublingmeasureσ on ∂�. Fix an aperture parameter κ ∈ (0,∞), a scale parameter
θ ∈ (0, 1), along with two integrability exponents p, r ∈ (0,∞), and consider a
Lebesgue measurable function u : � → C. Then there exists a constant C ∈ (0,∞)

independent of u such that

Nκu ∈ L p(∂�, σ)=⇒
{ Ñκ,θ,r u ∈ L p(∂�, σ) and one has

‖Ñκ,θ,r u‖L p(∂�,σ) ≤ C‖Nκu‖L p(∂�,σ).
(8.10.23)

Proof SupposeNκu ∈ L p(∂�, σ). Then Lemma 8.3.1 implies that u ∈ L∞
loc(�,Ln)

(hence, in particular, u ∈ Lr
loc(�,Ln)). Also, if κ̃ := κ+2θ

1−θ
, then Proposition 8.4.1

ensures that Nκ̃u ∈ L p(∂�, σ) and ‖Nκ̃u‖L p(∂�,σ) ≈ ‖Nκu‖L p(∂�,σ), with propor-
tionality constants independent of u. In turn, from this, (8.10.11), and (8.10.6), the
desired conclusions follow. �

Suppose � is an open, nonempty, proper subset of R
n and let κ > 0, θ ∈ (0, 1),

and r ∈ (0,∞) be arbitrary. Then for each ε ∈ (0,∞) the truncated averaged non-
tangential maximal function of u ∈ Lr

loc(�,Ln) is defined as

6 Recall (8.10.6).
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(Ñε
κ,θ,r u)(x) := sup

y∈�κ (x),δ∂�(y)<ε

(  
B(y,θδ∂�(y))

|u|r dLn
)1/r

(8.10.24)

for each x ∈ ∂�. In particular, with the truncated version of the ordinary nontangen-
tial maximal function Nε

κ defined as in (1.5.5), it follows that

Ñε
κ,θ,r u = Nε

κ ũ pointwise on ∂�. (8.10.25)

and
Ñε

κ,θ,r u ≤ Ñκ,θ,r u pointwise on ∂�. (8.10.26)

If x ∈ ∂�, y ∈ �κ(x), and δ∂�(y) < ε, then for each z ∈ B
(
y, θδ∂�(y)

)
we have

δ∂�(z) ≤ |z − y| + δ∂�(y) < (1 + θ)ε which further entails z ∈ O(1+θ)ε, the one-
sided collar neighborhood of ∂� introduced in (6.1.4). Granted this, from (8.10.24)
we conclude that

Ñε
κ,θ,r u ≤ Ñκ,θ,r

(
u · 1O(1+θ)ε

)
on ∂�. (8.10.27)

In addition, whenever we have x ∈ ∂�, y ∈ �κ(x), and z ∈ Oε ∩ B
(
y, θδ∂�(y)

)
,

then we may estimate δ∂�(y) ≤ |y − z| + δ∂�(z) < θδ∂�(y) + ε which shows that
δ∂�(y) < ε

1−θ
. Together with (8.10.24) this further implies

Ñκ,θ,r
(
u · 1Oε

) ≤ Ñ
ε

1−θ

κ,θ,r u on ∂�. (8.10.28)

We next prove an analogue of Proposition 8.6.10 for the averaged nontangential
maximal function. In this vein, we wish to remark that, given Proposition 8.10.2,
estimate (8.10.30) in the proposition below may be viewed as an improvement over
(8.6.76).

Proposition 8.10.3 Fix n ∈ N and suppose � is an open nonempty proper sub-
set of R

n with a lower Ahlfors regular boundary. Abbreviate σ := Hn−1�∂�,
and fix some r ∈ (0,∞) along with κ ∈ (0,∞) and θ ∈ (0, 1). Then there exists
C = C(∂�, n, κ, θ, r) ∈ (0,∞) which depends only on n, κ , θ , r , and the lower
ADR constant of ∂� with the property that if

ε ∈
(
0, θ+1

2θ+1 · ε�,κ

)
with ε�,κ := diam(∂�)

n(2 + √
n)(3 + 2κ)

∈ [0,+∞], (8.10.29)

then for each u ∈ Lr
loc(�,Ln) one has

( ˆ
Oε

|u|r dLn
)1/r ≤ C · ε1/r ·

∥∥∥Ñ ( 2θ+1
1+θ

)ε

κ,θ,r u
∥∥∥
Lr (∂�,σ)

. (8.10.30)

Proof Working with |u|r in place of u, there is no loss of generality in assuming that
r = 1. Suppose this is the case and fix κ ∈ (0,∞) and θ ∈ (0, 1). Also, let ũ be as in
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(8.10.2) corresponding to r := 1. By Proposition 8.6.10, applied with u := ũ, there
exists some positive constant C = C(∂�, κ) such that if ε ∈ (

0, ε�,κ

)
then

ˆ
Oε

|̃u | dLn ≤ C · ε · ∥∥Nε
κ ũ
∥∥
L1(∂�,σ)

= C · ε · ∥∥Ñε
κ,θ,1u

∥∥
L1(∂�,σ)

(8.10.31)

where the last equality is a consequence of (8.10.25). In addition, we may write

ˆ
Oε

|̃u | dLn =
ˆ
Oε

(  
B(y,θδ∂�(y))

|u(z)| dz
)
dy (8.10.32)

=
ˆ

�

ˆ
�

1

cn(θδ∂�(y))n
|u(z)| 1Oε

(y)1B(y,θδ∂�(y))(z) dy dz

≥ (1 − θ)n

cnθn

ˆ
�

ˆ
�

1

δ∂�(z)n
|u(z)| 1Oε

(y)1B(y,θδ∂�(y))(z) dy dz

where for the last inequality in (8.10.32) we used the fact that whenever y ∈ � and
z ∈ B

(
y, θδ∂�(y)

)
we have (1 − θ)δ∂�(y) ≤ δ∂�(z). Furthermore, if we now take

z ∈ O( θ+1
2θ+1 )ε and y ∈ B

(
z,
(

θ
θ+1

)
δ∂�(z)

)
, (8.10.33)

then δ∂�(y) >
(
1 − θ

θ+1

)
δ∂�(z) = 1

θ+1δ∂�(z) hence

|y − z| < θ
θ+1δ∂�(z) < θδ∂�(y) (8.10.34)

and also

δ∂�(y) ≤ |y − z| + δ∂�(z) ≤
(

θ
θ+1 + 1

)
δ∂�(z) =

(
2θ+1
θ+1

)
δ∂�(z) < ε. (8.10.35)

The fact that (8.10.33) implies (8.10.34) and (8.10.35) may be rephrased as the
estimate

1O
( θ+1
2θ+1 )ε

(z) · 1B(z,( θ
θ+1 )δ∂�(z))(y) ≤ 1Oε

(y) · 1B(y,θδ∂�(y))(z) (8.10.36)

for all y, z ∈ �. Invoking (8.10.36) to bound from below the last integral in (8.10.32),
we may then write

ˆ
Oε

|̃u | dLn ≥ (1 − θ)n

cnθn

ˆ
�

ˆ
�

1

δ∂�(z)n
|u(z)| 1O

( θ+1
2θ+1 )ε

(z)×
× 1B(z,( θ

θ+1 )δ∂�(z))(y) dy dz

= (1 − θ)n

(1 + θ)n

ˆ
O

( θ+1
2θ+1 )ε

|u(z)| dz. (8.10.37)
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In concert, (8.10.37) and (8.10.31) prove that for every ε ∈ (
0, ε�,κ

)
we have

ˆ
O

( θ+1
2θ+1 )ε

|u(z)| dz ≤ C
(1 + θ)n

(1 − θ)n
· ε · ∥∥Ñε

κ,θ,1u
∥∥
L1(∂�,σ)

. (8.10.38)

If we now set ε̃ := (
θ+1
2θ+1

)
ε and C(∂�, n, κ, θ) := C (1+θ)n

(1−θ)n
· ( 2θ+1

θ+1

)
, then (8.10.38)

becomes the version (8.10.30) corresponding to r = 1 and with ε̃ in place of ε. �
Our next proposition elaborates on the relationship between the nontangential

boundary trace of a given function u and the nontangential boundary trace of the
function ũ, associated with u as in (8.10.2).

Proposition 8.10.4 Let� be an open set inR
n and let r ∈ (0,∞) and κ ∈ (0,∞) be

arbitrary. Consider some κ ′ ∈ (0, κ) and suppose u ∈ Lr
loc(�,Ln) and x ∈ Aκ ′(∂�)

are such that the nontangential limit
(
u
∣∣κ−n.t.

∂�

)
(x) exists. Then, if θ ∈ (0, 1) is small

enough so that κ ′+2θ
1−θ

< κ and ũ is defined as in (8.10.2) for this θ , then the nontan-

gential limit
(
ũ
∣
∣κ

′−n.t.

∂�

)
(x) exists and equals

∣
∣(u

∣
∣κ−n.t.

∂�

)
(x)

∣
∣.

Proof Abbreviate a := (
u
∣∣κ−n.t.

∂�

)
(x) ∈ C. ThenDefinition 8.9.1 ensures that for every

ε > 0 there exists δ > 0 and a Lebesgue measurable set N ⊆ �κ(x)withLn(N ) = 0
such that ∣∣|u(z)|r − |a|r ∣∣ < ε if z ∈ (

�κ(x) \ N
) ∩ Oδ. (8.10.39)

To prove that
(
ũ
∣∣κ

′−n.t.

∂�

)
(x) exists, it suffices to show that there exists λ > 0 such that

∣∣̃u(y)r − |a|r ∣∣ < ε for every y ∈ (
�κ ′(x) \ N

) ∩ Oλ. (8.10.40)

Note that

if y ∈ Oδ/(1+θ) and z ∈ B
(
y, θδ∂�(y)

)
then z ∈ Oδ, (8.10.41)

since δ∂�(z) ≤ |y − z| + δ∂�(y) < (θ + 1)δ∂�(y) < δ. Moreover, if κ̃ := κ ′+2θ
1−θ

,
then κ̃ < κ , hence �κ̃(x) ⊆ �κ(x). In addition, from (8.10.13) (applied with κ := κ ′
and the current κ̃), we know that

if y ∈ �κ ′(x) then B
(
y, θδ∂�(y)

) ⊆ �κ̃(x) ⊆ �κ(x). (8.10.42)

From (8.10.42) and (8.10.41) it follows that

y ∈ �κ ′(x) ∩ Oδ/(1+θ) and z ∈ B(y, θδ∂�(y)) \ N

=⇒ z ∈ (�κ(x) \ N ) ∩ Oδ. (8.10.43)

As such, takingλ := δ
1+θ

, for each y ∈ (
�κ ′(x) \ N

) ∩ Oλ wemay combine (8.10.43)
and (8.10.39) to conclude that
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|a|r − ε ≤
 
B(y,θδ∂�(y))

|u(z)|r dz ≤ |a|r + ε. (8.10.44)

Now (8.10.40) follows from (8.10.44) by recalling (8.10.2). �

In turn, Proposition 8.10.4 is one of the main ingredients in the proof of the
estimate given in the corollary below.

Corollary 8.10.5 Let � be an open set in R
n and pick some arbitrary κ ∈ (0,∞).

Also, suppose u ∈ Lr
loc(�,Ln) for some r ∈ (0,∞) and assume the nontangential

boundary trace
(
u
∣∣κ−n.t.

∂�

)
(x) exists at some point x ∈ ∂nta�. Then for any ε > 0 and

any θ ∈ (
0, κ/(κ + 2)

)
one has

∣∣∣
(
u
∣∣κ−n.t.

∂�

)
(x)

∣∣∣ ≤ (Ñε
κ,θ,r u

)
(x) ≤ (Ñκ,θ,r u

)
(x). (8.10.45)

Proof Since θ < κ/(κ + 2) it follows that 2θ/(1 − θ) < κ , hence there exists some
κ ′ ∈ (0, κ) such that κ ′+2θ

1−θ
< κ . Combining Proposition 8.10.4, (8.8.47), (8.9.8),

(8.2.25), (8.10.25), and (8.10.26) we obtain

∣∣∣
(
u
∣∣κ−n.t.

∂�

)
(x)

∣∣∣ =
∣∣∣
(
ũ
∣∣κ

′−n.t.

∂�

)
(x)

∣∣∣ ≤ (Nε
κ ′ ũ)(x) ≤ (Nε

κ ũ)(x)

= (Ñε
κ,θ,r u)(x) ≤ (Ñκ,θ,r u

)
(x), (8.10.46)

proving (8.10.45). �

Here is a result in the spirit of Proposition 8.9.5, for the averaged nontangential
maximal operator.

Proposition 8.10.6 Let� ⊆ R
n be an open nonempty proper subset of Rn such that

σ := Hn−1�∂� is a doubling measure on ∂�. Also, fix r ∈ (0,∞), κ ∈ (0,∞), and
θ ∈ (0, 1). Suppose u ∈ Lr

loc(�,Ln) is such that

(
u
∣∣κ−n.t.

∂�

)
(x) exists for σ -a.e. x ∈ ∂nta� (8.10.47)

and
Ñκ,θ,r u ∈ L p(∂�, σ) for some p ∈ (0,∞). (8.10.48)

Then u
∣
∣κ−n.t.

∂�
is a σ -measurable function on ∂nta� and, in fact, it belongs to

L p(∂nta�, σ). In addition, for any θ∗ ∈ (0, 1)which is small enough so that 2θ∗
1−θ∗ < κ ,

and any κ∗ ∈ (0,∞), one has

Ñε
κ∗,θ∗,r u −→

⎧
⎨

⎩

∣∣∣u
∣∣κ−n.t.

∂�

∣∣∣ on ∂nta�,

0 on ∂� \ ∂nta�

in L p(∂�, σ) as ε → 0+. (8.10.49)
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Proof That u
∣∣κ−n.t.

∂�
is a σ -measurable function on ∂nta� has been already noted in

(8.9.44). Choose some θ ′ ∈ (
0, κ/(κ + 2)

)
. Since Proposition 8.10.1 ensures that

Ñκ,θ ′,r u ∈ L p(∂�, σ), based on the aforementioned measurability property and

Corollary 8.10.5 we then conclude that u
∣∣κ−n.t.

∂�
belongs to the space L p(∂nta�, σ).

To proceed, let κ∗ ∈ (0,∞) and θ∗ ∈ (0, 1) be such that 2θ∗
1−θ∗ < κ , then pick

κ ′ ∈ (0, κ) with the property that
κ ′ + 2θ∗
1 − θ∗

< κ. (8.10.50)

The assumptions on u combined with (8.10.50) and Proposition 8.10.4 imply that

ũ∗∣∣κ
′−n.t.

∂�
exists and equals

∣
∣u
∣
∣κ−n.t.

∂�

∣
∣ at σ -a.e. point on ∂nta�, (8.10.51)

where ũ∗ is defined as in (8.10.2) with θ∗ in place of θ . Also, from Proposition 8.10.1
and (8.10.48) it follows that Ñκ ′,θ∗,r u ∈ L p(∂�, σ), which in concert with (8.10.5)
yields

Nκ ′ ũ∗ ∈ L p(∂�, σ). (8.10.52)

Together, (8.10.51), (8.10.52), and Proposition 8.9.8 imply that

Nκ∗ ũ
∗ belongs to L p(∂�, σ) and the nontangential limit ũ∗∣∣κ∗−n.t.

∂�

exists and happens to be equal
∣
∣u
∣
∣κ−n.t.

∂�

∣
∣ at σ -a.e. point on ∂nta�.

(8.10.53)

Then invoking Proposition 8.9.5 it follows that the function w : ∂� → R defined
(σ -a.e.) as

w :=
{∣
∣u
∣
∣κ−n.t.

∂�

∣
∣ on ∂nta�,

0 on ∂� \ ∂nta�,
(8.10.54)

belongs to L p(∂�, σ) and

Nε
κ∗ ũ

∗ −→ |w| in L p(∂�, σ) as ε → 0+. (8.10.55)

Since Nε
κ∗ ũ

∗ = Ñε
κ∗,θ∗,r u (as noted in (8.10.5)), the claim made in (8.10.49) now

follows from (8.10.54)–(8.10.55). �
In view of Proposition 8.10.2, our next result may be regarded as an improvement

over the version of (8.6.51) corresponding to E := �.

Proposition 8.10.7 Fix n ∈ Nwith n ≥ 2. Let� be an open nonempty proper subset
ofRn with a lower Ahlfors regular boundary and define σ := Hn−1�∂�. Also assume
that either σ(∂�) = +∞, or Ln(�) < +∞ and σ(∂�) < +∞. Finally, fix some
κ ∈ (0,∞), and pick θ ∈ (0, 1) and p ∈ (0,∞) arbitrary.

Then there exists some constant C0 ∈ (0,∞) which depends only on κ , θ , p, n,
and the lower ADR constant of ∂� such that7

7 The fact that n ≥ 2 ensures that the interval
[ np
n−1 ,∞)

is not degenerate.
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‖u‖
L

np
n−1 (�,Ln)

≤ C0

∥∥Ñκ,θ,r u
∥∥
L p(∂�,σ)

if r ∈ [ np
n−1 ,∞

)
, (8.10.56)

holds for every u ∈ Lr
loc(�,Ln).

Proof Fix u ∈ Lr
loc(�,Ln) with r ∈ [ np

n−1 ,∞
)
. Then

‖u‖np/(n−1)
Lnp/(n−1)(�,Ln)

=
ˆ

�

|u(z)|np/(n−1) dz

= (1 + θ)n

cnθn

ˆ
�

|u(z)|np/(n−1)δ∂�(z)−n
( ˆ

�

1
B
(
z,

θ
θ+1 δ∂�(z)

)(y) dy
)
dz

≤ (1 + θ)n

cnθn(1 − θ)n

ˆ
�

ˆ
�

δ∂�(y)−n|u(z)|np/(n−1)1B(y,θδ∂�(y))(z) dz dy

= (1 + θ)n

(1 − θ)n

ˆ
�

(  
B(y,θδ∂�(y))

|u|np/(n−1) dLn
)
dy

≤ (1 + θ)n

(1 − θ)n

ˆ
�

(  
B(y,θδ∂�(y))

|u|r dLn
) np

r(n−1)
dy

= (1 + θ)n

(1 − θ)n

ˆ
�

|̃u |np/(n−1) dLn ≤ (1 + θ)n

(1 − θ)n

(
Cgeo

)np/(n−1)∥∥Nκ ũ
∥∥np/(n−1)
L p(∂�,σ)

= (1 + θ)n

(1 − θ)n

(
Cgeo

)np/(n−1)∥∥Ñκ,θ,r u
∥∥np/(n−1)
L p(∂�,σ)

. (8.10.57)

Above, the first inequality uses the fact that

(1 − θ)δ∂�(y) ≤ δ∂�(z) for each y ∈ � and z ∈ B
(
y, θδ∂�(y)

)
(8.10.58)

and that

1
B
(
z,

θ
θ+1 δ∂�(z)

)(y) ≤ 1B(y,θδ∂�(y))(z) for all y, z ∈ �. (8.10.59)

The former claim is clear while the latter is justified by writing

z ∈ � and y ∈ B
(
z, θ

θ+1δ∂�(z)
)

=⇒ δ∂�(y) ≥
(
1 − θ

θ+1

)
δ∂�(z) = 1

θ+1δ∂�(z)

=⇒ |y − z| < θ
θ+1δ∂�(z) < θδ∂�(y)

=⇒ y ∈ � and z ∈ B
(
y, θδ∂�(y)

)
. (8.10.60)
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Going further, in the second inequality in (8.10.57) we have made use of Hölder’s
inequality with exponent r(n − 1)/(np) ∈ [1,∞), while the subsequent equality is
based in the definition of ũ from (8.10.2). The next inequality comes from Proposi-
tion 8.6.3 (cf. (8.6.51) with u := ũ and E := �, bearing in mind (8.10.3)). Finally,
the last equality in (8.10.57) is implied by (8.10.5). This proves (8.10.57) which, in
turn, establishes (8.10.56). �

We continue by presenting an off-diagonal Carleson measure estimate of reverse
Hölder type for the averaged nontangential maximal operator, in the spirit of Propo-
sition 8.6.3.

Proposition 8.10.8 Fix n ∈ Nwith n ≥ 2. Let� be an open nonempty proper subset
ofRn with a lower Ahlfors regular boundary and define σ := Hn−1�∂�. Also assume
that Ln(�) = +∞ and σ(∂�) < +∞. Finally, fix κ ∈ (0,∞), and pick θ ∈ (0, 1),
ε ∈ (0,∞), and p ∈ (0,∞) arbitrary.

Then there exists some constant Cε ∈ (0,∞) which depends on ε as well as κ , θ ,
p, n, the lower ADR constant of ∂�, and σ(∂�), such that8

‖u‖
L

np
n−1 (Oε,Ln)

≤ Cε

∥∥Ñκ,θ,r u
∥∥
L p(∂�,σ)

if r ∈ [ np
n−1 ,∞

)
, (8.10.61)

holds for every function u ∈ Lr
loc(�,Ln).

Proof The proof is similar to that of Proposition 8.10.7. Specifically, having fixed
u ∈ Lr

loc(�,Ln) with r ∈ [ np
n−1 ,∞

)
, write

‖u‖np/(n−1)
Lnp/(n−1)(Oε,Ln)

=
ˆ
Oε

|u(z)|np/(n−1) dz =
ˆ

�

|u(z)|np/(n−1)1Oε
(z) dz

= (1 + θ)n

cnθn

ˆ
�

|u(z)|np/(n−1)

δ∂�(z)n
1Oε

(z)
( ˆ

�

1
B
(
z,

θ
θ+1 δ∂�(z)

)(y) dy
)
dz

≤ (1 + θ)n

cnθn(1 − θ)n

ˆ
�

ˆ
�

|u(z)|np/(n−1)

δ∂�(y)n
1O

( 2θ+1
θ+1 )ε

(y)1B(y,θδ∂�(y))(z) dz dy

= (1 + θ)n

(1 − θ)n

ˆ
O

( 2θ+1
θ+1 )ε

(  
B(y,θδ∂�(y))

|u|np/(n−1) dLn
)
dy

≤ (1 + θ)n

(1 − θ)n

ˆ
O

( 2θ+1
θ+1 )ε

(  
B(y,θδ∂�(y))

|u|r dLn
) np

r(n−1)
dy

= (1 + θ)n

(1 − θ)n

ˆ
O

( 2θ+1
θ+1 )ε

|̃u |np/(n−1) dLn

8 The fact that n ≥ 2 ensures that the interval
[ np
n−1 ,∞)

is not degenerate.
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≤ (1 + θ)n

(1 − θ)n

(
Cε

)np/(n−1)∥∥Nκ ũ
∥∥np/(n−1)
L p(∂�,σ)

= (1 + θ)n

(1 − θ)n

(
Cε

)np/(n−1)∥∥Ñκ,θ,r u
∥∥np/(n−1)
L p(∂�,σ)

. (8.10.62)

Above, the first inequality uses (8.10.58) and the fact that, for all y, z ∈ �,

1Oε
(z) · 1B(z,( θ

θ+1 )δ∂�(z))(y) ≤ 1O
( 2θ+1

θ+1 )ε
(y) · 1B(y,θδ∂�(y))(z), (8.10.63)

itself a consequence of (8.10.36) written with ε replaced by ( 2θ+1
θ+1 )ε. The second

inequality in (8.10.62) uses Hölder’s inequality with the exponent r(n − 1)/(np) ∈
[1,∞), whereas the subsequent equality follows from (8.10.2). The next inequality
is derived from (8.6.51), presently used with u := ũ and with E := O( 2θ+1

θ+1 )ε (keeping
in mind (8.10.3)). For these choices, the constant C# ∈ (0,∞) in the last line of
(8.6.49) becomes

Cε := max
{
Cgeo,

[Ln
(O( 2θ+1

θ+1 )ε

)] n−1
np · σ(∂�)

− 1
p

}
. (8.10.64)

Finally, the last equality in (8.10.62) is implied by (8.10.5). This proves (8.10.62)
which, in turn, concludes the justification of (8.10.61). �

The reader is reminded that the notation L p
bdd(�,Ln) has been introduced in

(4.2.4).

Corollary 8.10.9 Fix n ∈ N with n ≥ 2. Let � be an open nonempty proper subset
of R

n with a lower Ahlfors regular boundary and define σ := Hn−1�∂�. Fix some
κ ∈ (0,∞), θ ∈ (0, 1), r ∈ (0,∞) arbitrary, and pick some9 p ∈ (

0, r(n − 1)/n
]
.

Then

u ∈ Lr
loc(�,Ln) and Ñκ,θ,r u ∈ L p(∂�, σ)=⇒u ∈ Lnp/(n−1)

bdd (�,Ln). (8.10.65)

Proof In the case when Ln(�) = +∞ and σ(∂�) < +∞ the implication claimed
in (8.10.65) is a consequence of (8.10.61). The remaining situations are covered by
Proposition 8.10.7 in which scenario (8.10.56) yields an even stronger conclusion
than in (8.10.65). �

9 The fact that n ≥ 2 ensures that the interval
(
0, r(n − 1)/n

]
is not degenerate.



Chapter 9
Proofs of Main Results Pertaining
to Divergence Theorem

This chapter is reserved for presenting the proofs of the main results formulated in
Sects. 1.1–1.11 in relation to our new brand of Divergence Theorems and related
topics.

9.1 Proofs of Theorems 1.2.1 and 1.3.1 and
Corollaries 1.2.2, 1.2.4, and 1.3.2

We first present the proof of Theorem 1.3.1 and subsequently deduce Theorem 1.2.1
from the latter result. The proofs of Corollaries 1.2.2, 1.2.4, and 1.3.2 are then
presented in the last part of this section.

Proof of Theorem 1.3.1 We begin with a series of preliminary remarks. First, the
fact that in the current setting the set � has locally finite perimeter may be seen

from (5.9.15). Also, that for each κ ′ > 0 the function �F∣∣κ
′−n.t.

∂�
exists σ -a.e. on ∂nta�

and is actually independent of κ ′ follows from assumptions and Corollary 8.9.9. In
particular, there is no ambiguity in dropping the dependence on the parameter κ ′

and henceforth simply denoting said function by �F∣∣n.t.
∂�
. For ease of notation, let us

actually abbreviate

�f := �F∣∣n.t.
∂�

at σ − a.e. point on ∂nta�. (9.1.1)

Thanks to the assumptions on �F , (8.9.44), and (8.9.8), this vector-valued function
satisfies

�f ∈ [L1
loc(∂nta�, σ)

]n
and |�f | ≤ Nκ

�F at σ − a.e. point on ∂nta�. (9.1.2)
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Moreover, since Proposition 8.8.6 ensures that

∂∗� ⊆ ∂nta� ∪ (∂∗� \ ∂nta�
)

and σ
(

∂∗� \ ∂nta�
) = 0, (9.1.3)

it follows that

�f , originally defined as in (9.1.1),may be canonically viewed as

aC
n−valued function defined σ−a.e. on ∂∗�, in which scenario (9.1.4)

�f belongs to the space [L1
loc(∂∗�, σ)

]n
.

Let us also note that the assumptions on �F and Lemma 8.3.1 imply

�F ∈ [L∞
loc(�,Ln)

]n
. (9.1.5)

We continue by introducing notation which will facilitate the subsequent dis-
cussion. Specifically, upon recalling that CBM(�) stands for the collection of all
complex Borel measures on �, define

F (�) :=
{ �G ∈ [L1

loc(�,Ln)
]n : div �G ∈ CBM(�)

}

, (9.1.6)

and, for each vector field �G ∈ F (�), abbreviate

μ �G := div �G. (9.1.7)

It is then clear that

F (�) is a complex vector space and the mapping
F (�) 
 �G �−→ μ �G ∈ CBM(�) is (complex) linear.

(9.1.8)

In our current setting, since �F ∈ F (�) we may use the Polar Decomposition
Theorem to write

dμ �F = h d|μ �F |, where |μ �F | is a finite positive Borel measure

on� (the total variation ofμ �F ), and h is a |μ �F | − measurable (9.1.9)

complex-valued function defined in�, with the property that

|h(x)| = 1 for each x ∈ �.

We divide the remainder of the proof into two steps, starting with the following:

Step I. Retain the initial background geometric measure theoretic assumptions on �

made in the statement of Theorem 1.3.1. Specifically, suppose� is an open nonempty
proper subset of R

n (with n ∈ N arbitrary ) with a lower Ahlfors regular boundary
and such that σ := Hn−1∂� is a doubling measure on ∂�. Also, pick �F : � → C

n
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with Ln-measurable components and fix κ ∈ (0,∞). As far as this vector field is
concerned, strengthen the original assumptions in Theorem 1.3.1 by now assuming
in place of (1.3.6)–(1.3.7) that

�F∣∣κ−n.t.

∂�
exists (inC

n) σ − a.e. on ∂nta�,

Nκ
�F ∈ L1(∂�, σ), and div �F ∈ CBM(�).

(9.1.10)

In this setting, we claim that the divergence formula recorded in (1.3.8) holds under
the additional assumption that

there exists R ∈ (0,∞) such that �F vanishes in� \ B(0, R). (9.1.11)

To see that this is the case, recall �f from (9.1.1) and fix η > 0 arbitrary. Since we
are now assuming that Nκ

�F ∈ L1(∂�, σ), from (9.1.2) we conclude that

�f ∈ [L1(∂nta�, σ)
]n

. (9.1.12)

Granted this, we may invoke the density result established in Corollary 3.7.3 (used
here with the choices X := ∂nta�, s := n − 1 ≥ 0, and p := 1) to guarantee the exis-
tence of a vector field

�G ∈ [C∞
c (Rn)

]n
such that

∥
∥�f − �G∣∣

∂nta�

∥
∥[L1(∂nta�,σ)]n < η. (9.1.13)

Also, let {�ε}ε>0 be the sequence of functions associated with the set � as in
Lemma 6.1.2. Then, using the properties of this sequence, the polar decomposition
discussed in (9.1.9), the fact that (as seen from (9.1.8))

dμ �F = dμ �F− �G + dμ �G = dμ �F− �G + (div �G) dLn

as complex Borel measures in�,
(9.1.14)

and Lebesgue’s Dominated Convergence Theorem, we may write

(

div �F)(�) =
∫

�

1 dμ �F =
∫

�

h d|μ �F | = lim
ε→0+

∫

�

�ε h d|μ �F | = lim
ε→0+

∫

�

�ε dμ �F

= lim
ε→0+

∫

�

�ε dμ �F− �G + lim
ε→0+

∫

�

�ε div �G dLn

=: I + I I. (9.1.15)

To estimate term I in (9.1.15), recall that R ∈ (0,∞) is as in (9.1.11) and pick
some scalar-valued function

ψ ∈ C∞
c (Rn) satisfyingψ ≡ 1 near B(0, R) ∪ supp �G. (9.1.16)
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In particular, ψ �ε ∈ C∞
c (�) for each ε > 0. Thus, with D′(�)〈·, ·〉D(�) denoting the

distributional pairing in the open set �, we have

I = lim
ε→0+

∫

�

ψ �ε dμ �F− �G

= lim
ε→0+ D′(�)

〈

div( �F − �G), ψ �ε

〉

D(�)

= − lim
ε→0+ [D′(�)]n

〈 �F − �G,∇(ψ �ε)
〉

[D(�)]n

= − lim
ε→0+ [D′(�)]n

〈 �F − �G, ψ ∇�ε

〉

[D(�)]n = − lim
ε→0+

∫

�

ψ( �F − �G) · ∇�ε dLn

= − lim
ε→0+

∫

�

( �F − �G) · ∇�ε dLn. (9.1.17)

Thefirst and last equalities in (9.1.17) use the fact thatψ ≡ 1on the support of �F − �G,
the second equality holds by virtue of (1.3.12) since ψ �ε belongs to C∞

c (�), the
third equality uses the fact that div �F is considered in the sense of distributions, the
fourth is based on the fact that∇ψ ≡ 0 on the support of �F − �G (as seen from (9.1.16)
and (9.1.11)), while the fifth equality relies on having �F − �G ∈ [L1

loc(�,Ln)
]n

(cf.
(9.1.5)). Consequently, from (9.1.17) we obtain

|I | ≤ lim sup
ε→0+

∫

�

| �F − �G| |∇�ε| dLn

≤ C lim sup
ε→0+

(

ε−1
∫

Oε

| �F − �G| dLn
)

≤ C lim sup
ε→0+

∥
∥Nε

κ ( �F − �G)
∥
∥
L1(∂�,σ)

= C
∥
∥
( �F − �G)∣∣n.t.

∂�

∥
∥[L1(∂nta�,σ)]n = C

∥
∥ �F∣∣n.t.

∂�
− �G∣∣

∂�

∥
∥[L1(∂nta�,σ)]n

= C
∥
∥�f − �G∣∣

∂nta�

∥
∥[L1(∂nta�,σ)]n < Cη, (9.1.18)

where C ∈ (0,∞) depends only on � and κ . Above, the second inequality follows
from properties (6.1.5)–(6.1.6) of�ε, while the third inequality comes from (8.6.76).
Moreover, the first equality in (9.1.18) is a consequence of Proposition 8.9.5, the
second is implied by (8.9.10), and the third uses (9.1.1). The last inequality in (9.1.18)
originates in (9.1.13).

Consider next the task of estimating I I in (9.1.15). By first invoking Lebesgue’s
Dominated Convergence Theorem and then using De Giorgi–Federer’s version of
the Gauss–Green Formula stated in Theorem 1.1.1 we obtain

I I =
∫

�

div �G dLn =
∫

∂∗�
ν · �G dσ. (9.1.19)
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Granted this and bearing in mind (9.1.3)–(9.1.4), we may therefore write

∣
∣
∣
∣
I I −

∫

∂∗�
ν · �f dσ

∣
∣
∣
∣
≤
∫

∂∗�

∣
∣�f − �G ∣∣ dσ ≤

∫

∂nta�

∣
∣�f − �G ∣∣ dσ

= ∥
∥�f − �G∣∣

∂nta�

∥
∥[L1(∂nta�,σ)]n < η. (9.1.20)

All together, the above analysis (which has produced (9.1.15), (9.1.18), and
(9.1.20)) proves that, for each η > 0,

∣
∣
∣

(

div �F)(�) −
∫

∂∗�
ν · �f dσ

∣
∣
∣ ≤ Cη, (9.1.21)

withC > 0 a finite geometric constant depending only on�. Since η > 0 is arbitrary,
(1.3.8) follows from this (bearing in mind (9.1.1)).

Step II.

The end-game in the proof of Theorem 1.3.1 The goal is to establish the Diver-
gence Formula (1.3.8) under the original assumptions made in Theorem 1.3.1. To
get started, combine Proposition 8.6.3, the membership Nκ

�F ∈ L1
loc(∂�, σ), and

Lemma 8.3.4 (in the case when n = 1) to conclude that

�F∣∣E ∈ [L n
n−1 (E,Ln)

]n
for every bounded

Ln − measurable set E ⊆ �
(9.1.22)

(naturally interpreting L
n

n−1 (E,Ln) as L∞(E,L1) in the case when n = 1). In par-
ticular, �F is absolutely integrable on every bounded open subset of �.

Next, fix a system of auxiliary functions {φR}R>0 ⊆ C∞
c (Rn) (in the sense of

(1.3.3)) and, for each number R ∈ (0,∞), define

�FR := φR �F in �. (9.1.23)

Hence, by design, for each R > 0 there exists a number R∗ ∈ (0,∞) such that

�FR ≡ 0 outside � ∩ B(0, R∗), (9.1.24)

and
div �FR = φR div �F + ∇φR · �F in D′(�). (9.1.25)

As a consequence of (9.1.25), (1.3.7), and (9.1.22),

div �FR is a complex Borel measure on �. (9.1.26)

In addition, thanks to (9.1.5), (8.2.10), the third line of (1.3.6), (8.2.26), and (8.1.18),
for each fixed R > 0 we have
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�FR ∈ [L∞
loc(�,Ln)

]n
and Nκ

�FR ∈ L1(∂�, σ). (9.1.27)

Also, from the first line of (1.3.6) and (8.9.9)–(8.9.10), we see that the nontangential
limit

�FR

∣
∣
n.t.

∂�
exists at σ − a.e. point on ∂nta� and, in fact,

�FR

∣
∣
n.t.

∂�
= (

φR

∣
∣
∂�

)( �F∣∣n.t.
∂�

)

at σ − a.e. point on ∂nta�.
(9.1.28)

In particular,

�FR

∣
∣
n.t.

∂�
−→ �F∣∣n.t.

∂�
at σ − a.e. point on ∂nta�, as R → ∞. (9.1.29)

Bearing in mind that ν · ( �F∣∣n.t.
∂�

)

belongs to the space L1(∂∗�, σ) (cf. (1.3.6)), from
(9.1.29), (8.8.52), and Lebesgue’s Dominated Convergence Theorem, we conclude
that, on the one hand,

∫

∂∗�
ν · ( �FR

∣
∣
n.t.

∂�

)

dσ −→
∫

∂∗�
ν · ( �F∣∣n.t.

∂�
) dσ as R → ∞. (9.1.30)

On the other hand, granted (9.1.27), (9.1.28), (9.1.26), and (9.1.24), the result proved
in Step I applies to the vector field �FR and gives

(

div �FR
)

(�) =
∫

∂∗�
ν · ( �FR

∣
∣
n.t.

∂�

)

dσ, ∀R > 0. (9.1.31)

Upon recalling (9.1.25), and bearing in mind that μ �F abbreviates div �F ∈ CBM(�),
the left-hand side of (9.1.31) may be refashioned as

(

div �FR
)

(�) =
∫

�

φR dμ �F +
∫

�

∇φR · �F dLn. (9.1.32)

To elucidate the behavior of this expression as R → ∞, we use (9.1.9) and
Lebesgue’s Dominated Convergence Theorem (for ordinary positive measures) to
compute

lim
R→∞

∫

�

φR dμ �F = lim
R→∞

∫

�

φR h d|μ �F | =
∫

�

h d|μ �F |

=
∫

�

1 dμ �F = (

div �F)(�). (9.1.33)

Granted (9.1.30)-(9.1.31), (9.1.32), and (9.1.33), it follows that the limit
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lim
R→∞

∫

�

∇φR · �F dLn exists, is independent of the family {φR}R>0,

and equals the complex number
∫

∂∗�
ν · ( �F∣∣n.t.

∂�
) dσ − (

div �F)(�).
(9.1.34)

In light of (1.3.2), from (9.1.34) we conclude that [ �F]∞, the contribution of �F at
infinity, is meaningfully and unambiguously defined and that formula (1.3.8) holds.

Consider next the claims made in the last portion of the statement of Theo-
rem 1.3.1. First, by design, [ �F]∞ = 0 whenever � is bounded. Next, we shall show
that [ �F]∞ also vanishes if the conditions in (1.3.10) are imposed, i.e., when ∂� is
unbounded and Nκ

�F ∈ L1(∂�, σ).
Corresponding to the case when n = 1, the “surface” measure σ = H0∂�

becomes the countingmeasure on the discrete set ∂� and, by assumption, σ is locally
finite (see the very last inequality in (7.4.1)). As such, ∂� has no (finite) accumu-
lation points. Granted this, Proposition 4.7.4 applies and presently gives [ �F]∞ = 0.
Suppose now n ≥ 2. The assumption thatNκ

�F belongs to L1(∂�, σ) together with
(8.6.51) (presently applied with E := �) ensure that

�F ∈ [L n
n−1 (�,Ln)

]n
. (9.1.35)

Given that we are also assuming that n ≥ 2, the last part in Lemma 4.7.3 guarantees
that [ �F]∞ = 0 in this case as well.

Finally, whenever the growth condition (1.3.11) holds for some λ ∈ (1,∞),
Lemma 4.7.3 implies that [ �F]∞ = 0. The proof of Theorem 1.3.1 is therefore com-
plete.

Let us formally record the proof of Theorem 1.2.1.

Proof of Theorem 1.2.1 In view of the identification (1.3.1), all claims are direct
consequences of Theorem 1.3.1 and its proof (noting that thanks to (8.9.8), (9.1.3),

and (8.9.44), we now have �F∣∣n.t.
∂�

∈ [L1(∂∗�, σ)
]n
).

We continue by presenting the proof of Corollary 1.2.2. �

Proof of Corollary 1.2.2 HavingNκ
�F ∈ L1(Rn−1,Ln−1) implies (cf. Lemma8.3.1)

�F ∈ [L∞
loc(R

n
+,Ln)

]n ⊆ [

L1
loc(R

n
+,Ln)

]n
. (9.1.36)

In particular, it is meaningful to consider div �F in the sense of distributions in R
n+.

To proceed, observe from simple geometric considerations that there exists a large
constant K = K (n, κ) ∈ (1,∞) such that

B
(

x + εen, ε/K
) ⊆ κ(z) for each ε > 0,

each z ∈ ∂R
n+, and each x ∈ κ(z).

(9.1.37)

Pick a non-negative function θ ∈ C∞
c (Rn) with supp θ ⊆ B(0, 1/K ) and with

∫

Rn θ dLn = 1. For each ε > 0 set θε(x) := ε−nθ(x/ε) for all x ∈ R
n, then define

�Gε := �F(· + εen) ∗ θε in R
n+. That is,



844 9 Proofs of Main Results Pertaining to Divergence Theorem

�Gε(x) =
∫

Rn

�F(x − y + εen)θε(y) dy =
∫

R
n+

�F(z)θε(x + εen − z) dz (9.1.38)

=
(

D′(Rn+)

〈

Fj, θε(x + εen − ·)〉D(Rn+)

)

1≤j≤n
for each x ∈ R

n
+,

where (Fj)1≤j≤n are the scalar components of �F . From (9.1.38) and (9.1.36) we see
that �Gε is well defined and belongs to

[

C∞(Rn+)
]n
. Moreover, for each x ∈ R

n+ we
may write

(div �Gε)(x) =
n
∑

j=1

D′(Rn+)

〈

Fj, (∂jθε)(x + εen − ·)〉D(Rn+)

= −
n
∑

j=1

D′(Rn+)

〈

Fj, ∂j
[

θε(x + εen − ·)]〉D(Rn+)

=
n
∑

j=1

D′(Rn+)

〈

∂j Fj, θε(x + εen − ·)〉D(Rn+)

= D′(Rn+)

〈

div �F, θε(x + εen − ·)〉D(Rn+)

=
∫

R
n+
(div �F)(z)θε(x + εen − z) dz, (9.1.39)

where we have used (9.1.38) and the last property in (1.2.14). We next claim that

div �Gε ∈ L1(Rn
+,Ln) and

∫

R
n+
div �Gε dLn =

∫

R
n+
div �F dLn for each ε > 0.

(9.1.40)
To justify the membership above fix ε > 0 arbitrary. Then div �Gε ∈ C∞(Rn+) and we
may estimate

∫

R
n+

∣
∣(div �Gε)(x)

∣
∣ dx ≤

∫

R
n+

( ∫

R
n+

∣
∣(div �F)(z)

∣
∣θε(x + εen − z) dz

)

dx

=
∫

R
n+

∣
∣(div �F)(z)

∣
∣

( ∫

R
n+
θε(x + εen − z) dx

)

dz

=
∫

R
n+

∣
∣(div �F)(z)

∣
∣

( ∫

Rn

θε(y) dy
)

dz

=
∫

R
n+

∣
∣(div �F)(z)

∣
∣ dz < ∞, (9.1.41)

using (9.1.39), a change of variables (note that supp θε ⊆ B(0, ε/K )), and the fact
that

∫

Rn θε dLn = 1. Similarly, we have
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∫

R
n+
(div �Gε)(x) dx =

∫

R
n+

( ∫

R
n+
(div �F)(z)θε(x + εen − z) dz

)

dx

=
∫

R
n+
(div �F)(z)

( ∫

R
n+
θε(x + εen − z) dx

)

dz

=
∫

R
n+
(div �F)(z)

( ∫

Rn

θε(y) dy
)

dz

=
∫

R
n+
(div �F)(z) dz, (9.1.42)

finishing the proof of (9.1.40). Moving on, observe that

Nκ
�Gε ≤ Nκ

�F at each point on R
n−1 ≡ ∂R

n
+. (9.1.43)

Indeed, for each z ∈ ∂R
n+, each x ∈ κ(z), and each y ∈ supp θε ⊆ B(0, ε/K ) we

have x − y + εen ∈ B
(

x + εen, ε/K
)

, hence (9.1.37) implies x − y + εen ∈ κ(z).
Keeping this in mind, we conclude from (9.1.38) that Nκ

�Gε(z) ≤ Nκ
�F(z) which,

in view of the arbitrariness of z ∈ ∂R
n+, establishes (9.1.43). In concert with the first

membership in (1.2.14) and (8.2.28), the estimate in (9.1.43) ultimately guarantees
that

Nκ
�Gε ∈ L1(Rn−1,Ln−1). (9.1.44)

Finally, since for ε > 0 we have

(

( �Gε)n
∣
∣
κ−n.t.

∂Rn+

)

(x) =
(

( �Gε)n
∣
∣
∂Rn+

)

(x)

=
∫

Rn

Fn(x − y + εen)θε(y) dy for each x ∈ ∂R
n
+, (9.1.45)

it follows that for Ln−1-a.e. point x ∈ ∂R
n+ we have

∣
∣
∣

(

( �Gε)n
∣
∣
κ−n.t.

∂Rn+

)

(x) −
(

Fn

∣
∣
κ−n.t.

∂Rn+

)

(x)
∣
∣
∣

≤
∫

Rn

∣
∣
∣Fn(x − y + εen) −

(

Fn

∣
∣
κ−n.t.

∂Rn+

)

(x)
∣
∣
∣θε(y) dy. (9.1.46)

Since for each x ∈ ∂R
n+ and each y ∈ supp θε ⊆ B(0, ε/K ) we have, thanks to

(9.1.37),
x − y + εen ∈ B

(

x + εen, ε/K
) ⊆ κ(x)

and
∣
∣(x − y + εen) − x

∣
∣ ≤ ε

(

1 + 1/K
)

,
(9.1.47)

wemay conclude from (9.1.46), (9.1.47),Definition 8.9.1, and the first line in (1.2.14)
that

lim
ε→0+

( �Gε)n
∣
∣
κ−n.t.

∂Rn+
= Fn

∣
∣
κ−n.t.

∂Rn+
atLn−1 − a.e. point on R

n−1 ≡ ∂R
n
+. (9.1.48)
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In turn, as a consequence of (9.1.43), (9.1.48), and Lebesgue’s Dominated Conver-
gence Theorem we have

lim
ε→0+

( �Gε)n
∣
∣
κ−n.t.

∂Rn+
= Fn

∣
∣
κ−n.t.

∂Rn+
in L1(Rn−1,Ln−1). (9.1.49)

Granted these properties, we may invoke Theorem 1.2.1 (with � := R
n+, a scenario

in which ν(x) = −en for each x ∈ ∂R
n+) to conclude that

∫

R
n+
div �Gε dLn = −

∫

Rn−1

(

( �Gε)n
∣
∣
κ−n.t.

∂Rn+

)

dLn−1 for each ε > 0. (9.1.50)

Passing to limit ε → 0+ in (9.1.50) then yields, on account of (9.1.40) and (9.1.49),

∫

R
n+
div �F dLn = −

∫

Rn−1

(

Fn

∣
∣
κ−n.t.

∂Rn+

)

dLn−1. (9.1.51)

Finally, the fact that for any other aperture parameter κ ′ > 0 the nontangential trace

Fn

∣
∣
κ′−n.t.

∂Rn+
exists Ln−1-a.e. on R

n−1 and is actually independent of κ ′ is a consequence
of assumptions and Proposition 8.9.8. �

We now present the proof of Corollary 1.2.4. In the first part, we elaborate on the
specific manner in which the surface measure and outward unit normal are defined
in the statement of this result.

Proof of Corollary 1.2.4 A word of clarification as to what is meant when saying
that (1.2.23)–(1.2.24) are used to define the surface measure σ on ∂� is in order.
Specifically, for each index j ∈ {1, . . . , N }, denote by σj the canonical surface mea-
sure on the (rotated and translated) Lipschitz graph �j. A set E ⊆ ∂� is said to be
σ -measurable provided each E ∩ �j is σj-measurable, in which case we define

σ(E) :=
N
∑

j=1

σj(E ∩ �j). (9.1.52)

Since σj = Hn−1�j for each j, from (1.2.23)–(1.2.24) we conclude that σ is a well-
defined measure on ∂� and, in fact, σ = Hn−1∂�.

Let us also elaborate on what is meant when saying that (1.2.23)–(1.2.24) are used
to define the outward unit normal ν to � at σ -a.e. point on ∂�. For each j, denote
by �±

j the two connected components of R
n \ �j and denote by Aj the collection of

points at which the Lipschitz graph �j is lacking a tangent plane. If we introduce
Ao := ∪N

j=1Aj and define

A := Ao ∪
( ⋃

1≤j1 �=j2≤N

(

�j1 ∩ �j2

))

(9.1.53)
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it follows that σ(A) = 0, each point x ∈ ∂� \ A belongs precisely to one�j, and the
aforementioned�j has a tangent plane at x. To fix notation, denote this index j as jx in
order to emphasize its dependence on the point x. Given an arbitrary x ∈ ∂� \ A, we
claim that there exists an open neighborhoodUx of x in R

n satisfying the following
properties:

Ux ∩ �j = ∅ for each j ∈ {1, . . . , N } \ {jx},
Ux ∩ �+

jx
and Ux ∩ �−

jx
are connected open sets,

precisely one of the setsUx ∩ �±
jx
is contained in�.

(9.1.54)

The first property in (9.1.54) may be arranged keeping in mind that x /∈ �j for
each j �= jx and that the sets �j are closed. We may also accommodate the second
property in (9.1.54) by virtue of the fact that �±

j are rotated and translated upper-
graph Lipschitz domains, hence locally star-like (cf. Lemma 5.6.26). Let us show
that the aforementioned choice ofUx also satisfies the third property in (9.1.54). The
starting point is to observe that, since � is open, we have (with disjoint unions)

Ux = (Ux ∩ �) � (Ux ∩ ∂�) � (Ux \ �)

= (Ux ∩ �) � (Ux ∩ �jx) � (Ux \ �) (9.1.55)

where the final equality uses (1.2.23) plus the first property in (9.1.54). As a conse-
quence of (9.1.55) and the fact that the sets �±

jx
are disjoint from �jx , we obtain

Ux ∩ �±
jx

⊆ (Ux ∩ �) � (Ux \ �). (9.1.56)

In view of this and the second property in (9.1.54), we conclude that each of
the sets Ux ∩ �±

jx
is contained in either Ux ∩ � or Ux \ �. If both are contained

in Ux ∩ �, then so is their union, i.e., Ux \ �jx ⊆ Ux ∩ �. Upon selecting some
r ∈ (0, 2 diam(∂�)

)

such that B(x, r) ⊆ Ux, this implies B(x, r)\�jx⊆B(x, r) ∩ �

which further forces Ln
(

B(x, r)
) = Ln

(

B(x, r) ∩ �
)

, since Ln(�jx) = 0. Thus,
Ln
(

B(x, r) \ �
) = 0,which contradicts the hypothesismade in (1.2.22). This contra-

diction shows thatUx ∩ �±
jx cannot be both contained inUx ∩ �. Likewise,Ux ∩ �±

jx

cannot be both contained in Ux \ �, finishing the proof of the third property in
(9.1.54). Having established (9.1.54), we now

define the outward unit normal ν(x) to the set� at the point x as being

the outward unit normal to the Lipschitz domain�+
jx
at the point x (9.1.57)

ifUx ∩ �+
jx
is contained in�, and as the outward unit normal to the

Lipschitz domain�−
jx
at the point x ifUx ∩ �−

jx
is contained in�.



848 9 Proofs of Main Results Pertaining to Divergence Theorem

Having made these comments, we now begin the proof of Corollary 1.2.4 in
earnest. On the one hand, from (1.2.23), (5.9.8), and (5.9.10) we conclude that ∂� is
an upper Ahlfors regular set. On the other hand, Proposition 5.9.16 guarantees that
∂∗� = ∂� and ∂� is lower Ahlfors regular. Hence,

∂∗� = ∂� and ∂� is Ahlfors regular. (9.1.58)

In particular, � is a set of locally finite perimeter and σ is a doubling measure (cf.
(5.9.15), (5.9.14)). Granted these properties, we may invoke item (iii) of Proposi-
tion 8.8.6 to conclude that

σ
(

∂� \ ∂nta�
) = 0. (9.1.59)

Going further, recall that the outward unit normal vector ν(x) to the set � has
been defined at σ -a.e. point x ∈ ∂� as in (9.1.57). If ν� denotes the geometric
measure theoretic outward unit normal to �, regarded as a generic set of locally
finite perimeter, we claim that

ν�(x) = ν(x) at σ − a.e. point x ∈ ∂�. (9.1.60)

To prove this, we shall freely use notation introduced in the buildup to the definition
made in (9.1.57). In addition, we bring in further notation which is relevant in this
argument. First, consider Ã := ∂� \ ∂∗� which, thanks to (9.1.58) and (5.6.21),
satisfies σ( Ã) = 0. Second, for each j ∈ {1, . . . , N } denote by ν�+

j
the outward unit

normal to the Lipschitz domain �+
j and let Bj be the Hn−1-nullset contained in

∂∗� ∩ ∂∗�+
j with the property that

at each point in
(

∂∗� ∩ ∂∗�+
j

) \ Bj we have
either ν� = ν�+

j
or ν� = −ν�+

j
,

(9.1.61)

whose existence is guaranteed by Proposition 5.6.6 (applied with E := � and
F := �+

j ).
Next, pick an arbitrary point

x ∈ ∂� \
(

A ∪ Ã ∪
N
⋃

j=1

Bj

)

(9.1.62)

and, without loss of generality, assume (see third property in (9.1.54)) that

Ux ∩ �+
jx
is contained in�. (9.1.63)

Then, by definition (cf. (9.1.57)),

ν(x) := ν�+
jx
(x), (9.1.64)
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where ν�+
jx
(x) is the outward unit normal to the Lipschitz domain �+

jx
at the point

x. Since the Lipschitz domain �+
jx
enjoys a (uniform) cone property, there exists an

open, truncated, one-component, circular cone in R
n with vertex at x, symmetry axis

along a vector h ∈ Sn−1, full aperture θ ∈ (0, π), and truncated at height b ∈ (0,∞),
i.e.,

Cθ,b(x, h) := {y ∈ R
n : cos(θ/2) |y − x| < (y − x) · h < b}, (9.1.65)

with the property that
Cθ,b(x, h) ⊆ Ux ∩ �+

jx . (9.1.66)

In view of this and (9.1.63), we also have

Cθ,b(x, h) ⊆ �. (9.1.67)

Granted (9.1.66)–(9.1.67), we may now invoke Lemma 5.6.15 (twice, first with
E := �, then with E := �+

jx
) to conclude that, on the one hand,

both ν�+
jx
(x) and ν�(x) belong to the coneCπ−θ,1(0,−h). (9.1.68)

On the other hand, (9.1.61) guarantees that

either ν�(x) = ν�+
jx
(x) or ν�(x) = −ν�+

jx
(x). (9.1.69)

From (9.1.68)–(9.1.69) we conclude that, in fact, we can only have ν�(x) = ν�+
jx
(x).

In view of (9.1.64), this finishes the proof of (9.1.60).
At this stage, Theorem 1.2.1 applies and yields all desired conclusions, on account

of (9.1.60), (9.1.58), and (9.1.59). �
We conclude by presenting the proof of Corollary 1.3.2.

Proof of Corollary 1.3.2 Abbreviate

μ := div �F ∈ CBM(Rn
+) (9.1.70)

and bring back the family of vector fields �Gε ∈ [C∞(Rn+)
]n

defined for each ε > 0
as in (9.1.38). This time, in place of (9.1.39), for every ε > 0 we have

(div �Gε)(x) = D′(Rn+)

〈

div �F, θε(x + εen − ·)〉D(Rn+)

=
∫

R
n+
θε(x + εen − z) dμ(z) at each x ∈ R

n
+. (9.1.71)
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Then using (9.1.71) for each ε > 0 we may write

∫

R
n+

∣
∣(div �Gε)(x)

∣
∣ dx ≤

∫

R
n+

( ∫

R
n+
θε(x + εen − z) d|μ|(z)

)

dx

=
∫

R
n+

( ∫

R
n+
θε(x + εen − z) dx

)

d|μ|(z)

=
∫

R
n+

( ∫

Rn

θε(y) dy
)

d|μ|(z)

= |μ |(Rn
+) < ∞, (9.1.72)

hence
div �Gε ∈ L1(Rn

+,Ln) for each ε > 0. (9.1.73)

Let us momentarily digress in order to prove a useful auxiliary result. Specifically,
we claim that if g ∈ L1(Rn+,Ln) and if for every ε > 0 we define

gε(x) :=
∫

Rn

g(x − y + εen)θε(y) dy

=
∫

R
n+
g(z)θε(x + εen − z) dz at each x ∈ R

n
+, (9.1.74)

then
gε ∈ L1(Rn

+,Ln) and lim
ε→0+

gε = g in L1(Rn
+,Ln). (9.1.75)

In particular,

there exists a sequence {εj}j∈N ⊆ (0,∞)with lim
j→∞ εj = 0

and such that lim
j→∞ gεj (x) = g(x) forLn − a.e. point x ∈ R

n+.
(9.1.76)

To justify this claim, pick an arbitrary δ > 0 and select φ ∈ C∞
c (Rn+) such that

‖g − φ‖L1(Rn+,Ln) ≤ δ. (9.1.77)

Then
∫

R
n+

( ∫

R
n+

∣
∣
∣g(x − y + εen) − φ(x − y + εen)

∣
∣
∣θε(y) dy

)

dx

=
∫

R
n+
θε(y)

( ∫

R
n+

∣
∣
∣g(x − y + εen) − φ(x − y + εen)

∣
∣
∣ dx

)

dy

=
∫

R
n+
θε(y)

( ∫

R
n++B(0,ε/K )+εen

∣
∣g(z) − φ(z)

∣
∣ dz

)

dy
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≤
∫

R
n+
θε(y)

( ∫

R
n+

∣
∣g(z) − φ(z)

∣
∣ dz

)

dy

= ‖g − φ‖L1(Rn+,Ln) ≤ δ. (9.1.78)

Also, if Sφ,ε := (suppφ)
⋃[

suppφ + B(0, ε/K ) + εen
]

, then using the fact that φ
is Lipschitz we may estimate, for some C = C(n, κ) ∈ (0,∞),

∫

R
n+

( ∫

R
n+

∣
∣φ(x − y + εen) − φ(x)

∣
∣θε(y) dy

)

dx

≤ CεLn(Sφ,ε) ·
(

sup
R

n+
|∇φ|

) ∫

R
n+
θε(y) dy

= CεLn(Sφ,ε) ·
(

sup
R

n+
|∇φ|

)

. (9.1.79)

Collectively, (9.1.39), (9.1.77), and (9.1.79) permit us to write

‖gε − g‖L1(Rn+,Ln) ≤
∫

R
n+

( ∫

R
n+

∣
∣g(x − y + εen) − φ(x − y + εen)

∣
∣θε(y) dy

)

dx

+
∫

R
n+

( ∫

R
n+

∣
∣φ(x − y + εen) − φ(x)

∣
∣θε(y) dy

)

dx

+ ‖φ − g‖L1(Rn+,Ln)

≤ 2δ + CεLn(Sφ,ε) ·
(

sup
R

n+
|∇φ|

)

. (9.1.80)

Thus,

lim sup
ε→0+

‖gε − g‖L1(Rn+,Ln) ≤ 2δ (9.1.81)

which, in view of the arbitrariness of δ > 0, ultimately establishes (9.1.75). Then
(9.1.76) follows from this and basic measure theory.

Returning to the principal topic of conversation, much as in (9.1.43), for each
ε > 0 we continue to have

Nκ
�Gε ≤ Nκ

�F at each point on R
n−1 ≡ ∂R

n
+ (9.1.82)

and, in place of (9.1.44), we now conclude (based on (9.1.82) and the second line in
(1.3.31)) that

Nκ
�Gε ∈ L1

loc(R
n−1,Ln−1). (9.1.83)
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Finally, the same proof as before (cf. (9.1.48)) gives

lim
ε→0+

( �Gε)n
∣
∣
∂Rn+

= Fn

∣
∣
κ−n.t.

∂Rn+
atLn−1 − a.e. point on R

n−1 ≡ ∂R
n
+, (9.1.84)

which, in light of (9.1.82), further implies

lim
ε→0+

( �Gε)n
∣
∣
∂Rn+

= Fn

∣
∣
κ−n.t.

∂Rn+
in L1

loc(R
n−1,Ln−1). (9.1.85)

We next reason as in the end-game of the proof of Theorem 1.3.1. Concretely, fix
a system of auxiliary functions {φR}R>0 ⊆ C∞

c (Rn) (in the sense of (1.3.3)), and for
each R ∈ (0,∞) and ε > 0 define

�Gε,R := φR �Gε in R
n+. (9.1.86)

Hence, by design, for each R > 0 there exists a number R∗ ∈ (0,∞) such that

�Gε,R ∈ [C∞(Rn+)
]n

and �Gε,R ≡ 0 outside R
n+ ∩ B(0, R∗). (9.1.87)

Also,
div �Gε,R = φR div �Gε + ∇φR · �Gε ∈ L1(Rn

+,Ln). (9.1.88)

In addition, thanks to (9.1.87), (8.2.26), and (8.1.18), for each fixed R > 0 we have

Nκ
�Gε,R ∈ L1(Rn

+,Ln). (9.1.89)

Going further, since at each point on ∂R
n+ we have

�Gε,R

∣
∣
∂Rn+

= (

φR

∣
∣
∂Rn+

)( �Gε

∣
∣
∂Rn+

)

, (9.1.90)

we may invoke (9.1.85) and conclude that

lim
ε→0+

( �Gε,R)n
∣
∣
∂Rn+

= (

φR

∣
∣
∂Rn+

)(

Fn

∣
∣
κ−n.t.

∂Rn+

)

in L1(Rn−1,Ln−1) for each fixed R > 0.
(9.1.91)

Granted (9.1.87), the standard version of the Divergence Theorem applies and
gives that

∫

R
n+
div �Gε,R dLn = −

∫

Rn−1

(

( �Gε,R)n
∣
∣
∂Rn+

)

dLn−1 for each ε, R > 0. (9.1.92)

In view of this and (9.1.88), for each ε, R > 0 we therefore have
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∫

R
n+
φR div �Gε dLn +

∫

R
n+
∇φR · �Gε dLn = −

∫

Rn−1

(

( �Gε,R)n
∣
∣
∂Rn+

)

dLn−1.

(9.1.93)
The idea is to send ε → 0+ and R → ∞, in this order. This requires some prepara-
tions. For every ε, R > 0 define

fε,R(z) :=
∫

R
n+
φR(x)θε(x + εen − z) dx at each z ∈ R

n
+. (9.1.94)

Then from this and (1.3.3) we see that for every ε, R ∈ (0,∞) we have

|fε,R(z)| ≤
(

sup
R>0

sup
Rn

|φR|
) ∫

Rn

θε(x + εen − z) dx

= sup
R>0

sup
Rn

|φR| < ∞ for each z ∈ R
n
+. (9.1.95)

Also, since φR has compact support in R
n, if ε ∈ (0, 1) it follows that for each

R ∈ (0,∞) the function fε,R vanishes identically outside of a bounded subset of R
n+

which depends only on R. In addition, from (9.1.76) we know that there exists a
sequence {εj}j∈N ⊆ (0,∞) with lim

j→∞ εj = 0 and such that

lim
j→∞ fεj,R(x) = φR(x) forLn − a.e. point x ∈ R

n
+. (9.1.96)

Next, since μ ∈ CBM(Rn+), we may use the Polar Decomposition Theorem to write

dμ = h d|μ|,where |μ| is a finite positive Borel measure onR
n
+ (the

total variation ofμ), and h is a |μ| − measurable complex-valued function

defined inR
n
+, with the property that |h(x)| = 1 for each point x ∈ R

n
+. (9.1.97)

Then (9.1.71), (9.1.94), and Fubini’s Theorem allow us to write

∫

R
n+
φR div �Gε dLn =

∫

R
n+
φR(x)

( ∫

R
n+
θε(x + εen − z) dμ(z)

)

dx

=
∫

R
n+

( ∫

R
n+
φR(x)θε(x + εen − z) dx

)

dμ(z)

=
∫

R
n+
fε,R(z) dμ(z), (9.1.98)

hence
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lim
j→∞

∫

R
n+
φR div �Gεj dLn = lim

j→∞

∫

R
n+
fεj,R dμ = lim

j→∞

∫

R
n+
fεj,R h d|μ|

=
∫

R
n+
φR h d|μ| =

∫

R
n+
φR dμ, (9.1.99)

thanks to (9.1.98), (9.1.97), and Lebesgue’s Dominated Convergence Theorem
(whose applicability in the present setting is ensured by (9.1.94)–(9.1.96)).

Next, from Proposition 8.6.3 and the fact that Nκ
�F ∈ L1

loc(R
n−1,Ln−1) we see

that �F∣∣E ∈ [L n
n−1 (E,Ln)

]n
for every bounded

Ln − measurable set E ⊆ R
n+.

(9.1.100)

In particular, �F is absolutely integrable on every bounded Ln-measurable subset of
R

n+. Keeping this in mind, we conclude from (9.1.38) and (9.1.74)–(9.1.75) that

lim
ε→0+

�Gε

∣
∣
E = �F∣∣E in

[

L1(E,Ln)
]n

for every

boundedLn − measurable set E ⊆ R
n+.

(9.1.101)

Having established this, for each fixed R > 0 we may then write

lim
ε→0+

∫

R
n+
∇φR · �Gε dLn =

∫

R
n+
∇φR · �F dLn. (9.1.102)

At this stage, from (9.1.93), (9.1.99), (9.1.102), and (9.1.91) we conclude that

∫

R
n+
φR dμ +

∫

R
n+
∇φR · �F dLn = −

∫

Rn−1
φR

(

Fn

∣
∣
κ−n.t.

∂Rn+

)

dLn−1 (9.1.103)

for each R > 0. Use (9.1.97) and Lebesgue’s Dominated Convergence Theorem (for
ordinary positive measures) to write

lim
R→∞

∫

R
n+
φR dμ = lim

R→∞

∫

R
n+
φR h d|μ| =

∫

R
n+
h d|μ|

=
∫

R
n+
1 dμ = (

div �F)(Rn
+). (9.1.104)

Given that Fn

∣
∣
κ−n.t.

∂Rn+
∈ L1(Rn−1,Ln−1) (cf. (1.3.31)), Lebesgue’s Dominated Conver-

gence Theorem also gives

lim
R→∞

∫

Rn−1
φR

(

Fn

∣
∣
κ−n.t.

∂Rn+

)

dLn−1 =
∫

Rn−1

(

Fn

∣
∣
κ−n.t.

∂Rn+

)

dLn−1. (9.1.105)

Granted (9.1.103)–(9.1.105), it follows that the limit
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lim
R→∞

∫

R
n+
∇φR · �F dLn exists, is independent of the family {φR}R>0, and

equals the (complex) number −
∫

Rn−1

(

Fn

∣
∣
κ−n.t.

∂Rn+

)

dLn−1 − (

div �F)(Rn
+).

(9.1.106)
Upon recalling (1.3.2), from (9.1.106) we then conclude that [ �F]∞, the contribution
of �F at infinity, is meaningfully and unambiguously defined, and we have

(

div �F)(Rn
+) = −

∫

Rn−1

(

Fn

∣
∣
κ−n.t.

∂Rn+

)

dLn−1 + [ �F]∞. (9.1.107)

In addition, from assumptions and Proposition 8.9.8we see that for any other aperture

parameter κ ′ > 0 the nontangential trace Fn

∣
∣
κ′−n.t.

∂Rn+
exists Ln−1-a.e. on R

n−1 and is

actually independent of κ ′. As a consequence, formula (1.3.32) holds as stated.
Finally, consider the claims made in the last portion of the statement of Corol-

lary 1.3.2. First, assuming the growth condition (1.3.34) holds for some λ ∈ (1,∞),
Lemma 4.7.3 (whose applicability is ensured by (9.1.106)) implies [ �F]∞ = 0. Sec-
ond, if (1.3.35) is imposed, then (8.6.51) (presently used with E := R

n+) ensures

�F ∈ [L n
n−1 (Rn

+,Ln)
]n

. (9.1.108)

Sincewe are also assuming n ≥ 2, the last part in Lemma4.7.3 guarantees the validity
of (1.3.34) (see also Comment 11 just before the statement of Corollary 1.3.2). The
proof of Corollary 1.3.2 is therefore complete.

9.2 Proof of Theorem 1.4.1 and Corollaries 1.4.2–1.4.4

The main idea in the proof of Theorem 1.4.1 is to localize matters as to be able to
invoke Theorem 1.3.1 for the “function” part of the distribution �F ∈ [D′(�)

]n
.

Proof of Theorem 1.4.1 By eventually enlarging the compact set K appearing in
(1.4.2) there is no loss of generality (cf. (4.6.3)) in assuming that (1.4.4) takes the
more precise form

div �F = w + μ in D′(�), where w ∈ E ′
K (�) and μ ∈ CBM(�). (9.2.1)

Suppose this is the case and fix a cutoff function ϕ ∈ C∞
c (�) such that 0 ≤ ϕ ≤ 1

in �, and ϕ ≡ 1 near K . With tilde denoting the pointwise extension of functions by
zero from � \ K to �, we then have

(1 − ϕ)
( �̃F∣∣

�\K
)

∈ [L1
loc(�,Ln)

]n ⊂ [D′(�)
]n

, (9.2.2)

and we claim that
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(1 − ϕ) �F = (1 − ϕ)
( �̃F∣∣

�\K
)

in
[D′(�)

]n
. (9.2.3)

Indeed, for eachψ ∈ [C∞
c (�)

]n
we have (1 − ϕ)ψ ∈ [C∞

c (� \ K )
]n
which permits

us to write (bearing (4.6.1) in mind)

[D′(�)]n
〈

(1 − ϕ) �F, ψ
〉

[D(�)]n = [D′(�)]n
〈 �F, (1 − ϕ)ψ

〉

[D(�)]n

= [D′(�\K )]n
〈 �F∣∣

�\K , (1 − ϕ)ψ
〉

[D(�\K )]n

=
∫

�\K

( �F∣∣
�\K

)

· [(1 − ϕ)ψ
]

dLn

=
∫

�

(1 − ϕ)
( �̃F∣∣

�\K
)

· ψ dLn, (9.2.4)

from which (9.2.3) follows.
To proceed, define (keeping in mind (9.2.2)–(9.2.3))

�G := (1 − ϕ) �F = (1 − ϕ)
( �̃F∣∣

�\K
)

∈ [L1
loc(�,Ln)

]n
. (9.2.5)

As such, the function

�G : � −→ C
n isLn − measurable (9.2.6)

and

| �G| = (1 − ϕ)

∣
∣
∣ �̃F∣∣

�\K
∣
∣
∣ ≤ 1�\K

∣
∣
∣ �̃F∣∣

�\K
∣
∣
∣ in �, (9.2.7)

hence
0 ≤ Nκ

�G ≤ N�\K
κ

�F on ∂�. (9.2.8)

In light of the last condition in (1.4.3), from (9.2.5)–(9.2.8) and (8.2.28) we conclude
that

Nκ
�G ∈ L1

loc(∂�, σ). (9.2.9)

Moreover, as is apparent from (9.2.5) and the choice of the cutoff function,

�G = �F∣∣
�\K pointwise near ∂�. (9.2.10)

In particular, from (9.2.10) and (1.4.3) we conclude that the pointwise nontangential
boundary trace

�G∣∣κ−n.t.

∂�
exists (inC

n) σ − a.e. on ∂nta� and equals �F∣∣κ−n.t.

∂�
. (9.2.11)

In concert, (9.2.11), (1.4.3), and (8.8.52) further entail
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ν · ( �G∣∣κ−n.t.

∂�

) = ν · ( �F∣∣κ−n.t.

∂�

) ∈ L1(∂∗�, σ). (9.2.12)

With (9.2.9) and (9.2.11) in hand, fromCorollary 8.9.9 wemay then conclude that

for any κ ′ > 0 the nontangential trace �G∣∣κ
′−n.t.

∂�
exists σ -a.e. on ∂nta� and is actually

independent of κ ′. In view of (9.2.10), (9.1.3), (8.9.44), and (8.9.8) we therefore have
that, for any κ ′ > 0,

the nontangential pointwise trace �F∣∣κ
′−n.t.

∂�
exists σ−a.e. on ∂nta�,

is actually independent of κ ′, and belongs to
[

L1
loc(∂∗�, σ)

]n
. (9.2.13)

Next, since both (1 − ϕ) ∈ C∞(�) ∩ L∞(�,Ln) and ∇ϕ ∈ [C∞
c (�)]n vanish

identically near K , in the sense of distributions in � we have

div �G = (1 − ϕ)div �F − ∇ϕ · �F
= (1 − ϕ)div �F
︸ ︷︷ ︸

∈CBM(�)

−∇ϕ ·
( �̃F∣∣

�\K
)

︸ ︷︷ ︸

∈L1(�,Ln)

∈ CBM(�), (9.2.14)

where we have used (9.2.1), the fact that CBM(�) is a module over L∞(�,Ln), the
first membership in (1.4.2), the properties of ϕ, and (4.6.6). On the one hand, since
∇ϕ ∈ [C∞

c (� \ K )]n, we may compute

−
∫

�

∇ϕ ·
( �̃F∣∣

�\K
)

dLn = −
∫

�\K

( �F∣∣
�\K

)

· ∇ϕ dLn

= −[D′(�\K )]n
〈 �F∣∣

�\K ,∇ϕ
〉

[D(�\K )]n

= −[D′(�)]n
〈 �F,∇ϕ

〉

[D(�)]n = D′(�)

〈

div �F, ϕ〉D(�)

= D′(�)

〈

w, ϕ〉D(�) +
∫

�

ϕ dμ

= E ′(�)

〈

w, 1〉E (�) + μ(�) +
∫

�

(ϕ − 1) dμ

= (C ∞
b (�))

∗
(

w + μ, 1
)

C ∞
b (�) +

∫

�

(ϕ − 1) dμ

= (C ∞
b (�))

∗
(

div �F, 1
)

C ∞
b (�) +

∫

�

(ϕ − 1) dμ, (9.2.15)

making use of (9.2.1) and (4.6.19). On the other hand, in light of (9.2.1) the total
mass of the complex Borel measure (1 − ϕ)div �F ∈ CBM(�) is

(

(1 − ϕ)div �F)(�) = (

(1 − ϕ)μ
)

(�) =
∫

�

(1 − ϕ) dμ. (9.2.16)
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Consequently, from (9.2.14)–(9.2.16) we obtain

(

div �G)(�) = (C ∞
b (�))

∗
(

div �F, 1
)

C ∞
b (�). (9.2.17)

Thanks to the assumptions on �, (9.2.6), (9.2.11), (9.2.12), (9.2.9), and (9.2.14),
all hypotheses of Theorem 1.3.1 are satisfied by the vector field �G. Consequently,
Theorem1.3.1 guarantees that [ �G]∞, the contribution of �G at infinity, ismeaningfully
and unambiguously defined. Having proved this, since �G and �F coincide outside
of a compact subset of �, the definition of the contribution at infinity given in
(1.3.5)–(1.3.4) implies that the contribution of �F at infinity is also meaningfully and
unambiguously defined and that we have

[ �G]∞ = [ �F]∞. (9.2.18)

Also, formula (1.3.8) written for �G, in concert with (9.2.17) and (9.2.12)–(9.2.18),
permits us to write

(C ∞
b (�))

∗
(

div �F, 1
)

C ∞
b (�) = (

div �G)(�)

=
∫

∂∗�
ν · ( �G ∣∣n.t.

∂�

)

dσ + [ �G]∞

=
∫

∂∗�
ν · ( �F ∣∣n.t.

∂�

)

dσ + [ �F]∞. (9.2.19)

This proves (1.4.5).
Moving on, if � is bounded then from the very definition of the contribution at

infinity we see that [ �F]∞ = 0. Next, work under the conditions imposed in (1.4.7),
i.e., when ∂� is unbounded and N�\K

κ
�F ∈ L1(∂�, σ). From the last property,

(9.2.8), and (8.2.28) we then see that Nκ
�G also belongs to L1(∂�, σ). Granted

this, and bearing in mind that ∂� is currently assumed to be unbounded, we may
invoke the last part in Theorem 1.3.1 to conclude that [ �G]∞ = 0. Thus, [ �F]∞ = 0
thanks to (9.2.18). Finally, if (1.4.8) holds, then a similar condition holds with �F
replaced by �G (given that �G and �F coincide outside of a compact subset of�). From
Theorem 1.3.1 we know that this forces [ �G]∞ = 0 hence, ultimately, [ �F]∞ = 0 by
(9.2.18).

This completes the proof of Theorem 1.4.1. �
Next, here is the proof of Corollary 1.4.2.

Proof of Corollary 1.4.2 This is deduced, via the same localization procedure, from
Corollary 1.3.2 in the same manner in which Theorem 1.4.1 has been established
from Theorem 1.3.1. �

Finally, we present the proof of Corollaries 1.4.3–1.4.4.

Proof of Corollaries 1.4.3–1.4.4 Each of these follows from Proposition 2.8.21 by
the same localization argument that has been employed to obtain Theorem 1.4.1 from
Theorem 1.3.1.
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9.3 Proofs of Theorem 1.5.1 and Corollary 1.5.2

As regards Theorem 1.5.1, we shall revisit a number of techniques employed in the
proof of Theorem 1.4.1 and, along the way, carefully monitor the effect of the loss
of the doubling property for the measure σ = Hn−1∂�.

Proof of Theorem 1.5.1 Let κ� ∈ (0,∞) be as in Proposition 8.8.3 and fix an arbi-
trary κ > κ�. A combination of (8.8.5), (8.8.29), and (5.6.21) then proves the claims
in (1.5.6).

Fix now a vector field �F as in (1.5.7) satisfying (1.5.8)–(1.5.9). In particular, with
the piece of notation introduced in (1.5.4), we have

K := regsupp �F is a compact subset of�
and �F∣∣

�\K belongs to
[

L1
loc(� \ K ,Ln)

]n
.

(9.3.1)

We find it convenient to temporarily strengthen the hypotheses on �F by assuming
that

there exists some Ro ∈ (0,∞) such that �F = 0 in� \ B(0, Ro), and
there exists εo ∈ (0, dist(K , ∂�)

)

such that Nεo
κ

�F ∈ L1(∂�, σ).
(9.3.2)

In this scenario, abbreviate

�f := �F∣∣κ−n.t.

∂�
on Aκ(∂�), (9.3.3)

and observe that Corollary 8.9.7 (whose applicability is, in turn, ensured by
Lemma 3.6.4) together with (8.9.8) currently imply

�f ∈ [L1(Aκ(∂�), σ )
]n

and
‖�f ‖[L1(Aκ (∂�),σ )]n ≤ ∥

∥Nεo
κ

�F∥∥L1(∂�,σ)
< +∞.

(9.3.4)

In addition, (1.5.6) (which has already been established) guarantees that

�f , originally defined as in (9.3.3), may be canonically

viewed as a C
n − valued function defined σ − a.e. on ∂∗�. (9.3.5)

Fix η > 0 arbitrary. Granted (8.8.5) and the fact that the measure σ is locally finite,
Corollary 3.7.3 applies for X := Aκ(∂�), s := n − 1 ≥ 0, and p := 1. This ensures
the existence of a vector field �G ∈ [C∞

c (Rn)
]n

such that

∥
∥�f − �G∣∣Aκ (∂�)

∥
∥[L1(Aκ (∂�),σ )]n < η. (9.3.6)
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Next, with R ∈ (0,∞) as in (9.3.2), select a cutoff function ψ ∈ C∞
c (Rn) satis-

fying ψ ≡ 1 near B(0, Ro) ∪ supp �G. Also, let {�ε}ε>0 be the sequence constructed
in Lemma 6.1.2 for the set �. On account of the properties of these functions, Lem-
mas 4.6.1 and 4.6.2, and the fact that the functional div( �F − �G) ∈ (C∞

b (�)
)∗

is
continuous in the sense of (1.5.1)–(1.5.2), we may write

(C ∞
b (�))

∗
(

div �F, 1
)

C ∞
b (�)

= (C ∞
b (�))

∗
(

div �F, ψ
)

C ∞
b (�)

= (C ∞
b (�))

∗
(

div( �F − �G), ψ
)

C ∞
b (�) + (C ∞

b (�))
∗
(

div �G, ψ
)

C ∞
b (�)

= lim
ε→0+ (C ∞

b (�))
∗
(

div( �F − �G), ψ �ε

)

C ∞
b (�) +

∫

�

ψ div �G dLn

=: I + I I. (9.3.7)

To further handle term I in (9.3.7), observe that ψ �ε ∈ C∞
c (�) for each ε > 0. As

such, with D′(�)〈·, ·〉D(�) denoting the distributional pairing in the open set �, we
have

I = lim
ε→0+ D′(�)

〈

div( �F − �G), ψ �ε

〉

D(�)

= − lim
ε→0+ [D′(�)]n

〈 �F − �G,∇(ψ �ε)
〉

[D(�)]n

= − lim
ε→0+ [D′(�)]n

〈 �F − �G, ψ ∇�ε

〉

[D(�)]n

= − lim
ε→0+

∫

�

ψ( �F − �G) · ∇�ε dLn

= − lim
ε→0+

∫

�

( �F − �G) · ∇�ε dLn. (9.3.8)

The first equality in (9.3.8) uses the compatibility of div( �F − �G) viewed as a func-
tional in

(

C∞
b (�)

)∗
with div( �F − �G) viewed as a distribution in �. The second

equality is standard, the third equality uses the fact that ∇ψ ≡ 0 on the support
of �F − �G, and the fourth equality is justified by noting that supp(∇�ε) ⊆ Oε and
( �F − �G)

∣
∣
Oε

∈ [L1
loc(Oε,Ln)

]n
whenever ε ∈ (0, dist(K , ∂�)

)

(thanks to (9.3.1)).

Finally, the last equality in (9.3.8) uses the fact that ψ ≡ 1 on the support of �F − �G.
Going further, (9.3.8) permits us to estimate

|I | ≤ lim sup
ε→0+

∫

�

| �F − �G| |∇�ε| dLn

≤ C lim sup
ε→0+

(

ε−1
∫

Oε

| �F − �G| dLn
)

≤ C lim sup
ε→0+

∥
∥Nε

κ ( �F − �G)
∥
∥
L1(∂�,σ)
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= C
∥
∥
( �F − �G)∣∣κ−n.t.

∂�

∥
∥[L1(Aκ (∂�),σ )]n

= C
∥
∥�f − �G∣∣Aκ (∂�)

∥
∥[L1(Aκ (∂�),σ )]n

< Cη, (9.3.9)

where C ∈ (0,∞) depends only on � and κ . In (9.3.9), the second inequality is
implied by properties (6.1.5)–(6.1.6) of �ε, while the third inequality follows by
applying (8.6.76) to the (components of the) C

n-valued function

u :=
{

( �F − �G)
∣
∣
�\K in � \ K ,

0 in K .
(9.3.10)

For the first equality in (9.3.9), in place of Proposition 8.9.5 which was used (9.1.18)
when σ was assumed to be doubling, we now invoke Lemma 8.9.4 (withμ := σ and
U := Aκ(∂�)). The final inequality in (9.3.9) is supplied by (9.3.6).

Consider next the task of estimating I I in (9.3.7). Upon recalling that ψ ≡ 1 on
supp �G and then using De Giorgi-Federer’s version of the Gauss–Green Formula
stated in Theorem 1.1.1 we obtain

I I =
∫

�

div �G dLn =
∫

∂∗�
ν · �G dσ. (9.3.11)

Granted this and bearing in mind (1.5.6) together with (9.3.6), we may therefore
write

∣
∣
∣
∣
I I −

∫

∂∗�
ν · �f dσ

∣
∣
∣
∣
≤
∫

∂∗�

∣
∣�f − �G ∣∣ dσ ≤

∫

Aκ (∂�)

∣
∣�f − �G ∣∣ dσ

= ∥
∥�f − �G∣∣Aκ (∂�)

∥
∥[L1(Aκ (∂�),σ )]n < η. (9.3.12)

Collectively, (9.3.7), (9.3.9), and (9.3.12)) prove that, for each η > 0,

∣
∣
∣(C ∞

b (�))
∗
(

div �F, 1
)

C ∞
b (�) −

∫

∂∗�
ν · �f dσ

∣
∣
∣ ≤ Cη, (9.3.13)

with C > 0 a finite geometric constant depending only on � and κ . Bearing in mind
(9.3.3) and recalling that η > 0 is arbitrary, from this we arrive at the following
conclusion:

under the additional hypotheses in (9.3.2) we have

(C ∞
b (�))

∗
(

div �F, 1
)

C ∞
b (�) =

∫

∂∗�
ν · ( �F∣∣κ−n.t.

∂�

)

dσ.
(9.3.14)

Moving on, the goal is to establish the Divergence Formula (1.5.10) under the
original assumptions (1.5.7)–(1.5.9) made on the vector field �F in the statement
of Theorem 1.5.1. For starters, observe that as a consequence of the Heine–Borel
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theorem, property (1.5.8) implies that

for each compact set S ⊆ ∂� there exists εS ∈ (0, dist(K , ∂�)
)

with the property that NεS
κ

�F ∈ L1(S, σ ).
(9.3.15)

Let us also fix a compact neighborhood K̃ of the set K = regsupp �F which is con-
tained in �. Consider now a bounded subset E of � \ K̃ which isLn-measurable. In
particular, (8.1.18) ensures that S := πκ(E) is a compact subset of ∂�. With εS asso-
ciated with S as in (9.3.15) wemay now combine Proposition 8.6.3 and Lemma 8.3.4
to conclude that, on the one hand,

�F
∣
∣
∣
E∩OεS

belongs to
[

L
n

n−1
(

E ∩ OεS ,Ln
)]n ⊂

[

L1
(

E ∩ OεS ,Ln
)]n

(9.3.16)

(naturally interpreting L
n

n−1 (E ∩ OεS ,Ln) as L∞(E ∩ OεS ,L1)when n = 1). On the
other hand, E \ OεS is a relatively compact subset of � \ K . Keeping this in mind,
from (9.3.16) and (9.3.1) we then conclude that �F∣∣E ∈ [L1(E,Ln)

]n
. In summary,

this argument proves that

the vector field �F is absolutely integrable on all

bounded Ln −measurable subsets of� \ K̃ .
(9.3.17)

Next, fix a system of auxiliary functions {φR}R>0 in the sense of (1.3.3). For the
purposes we have in mind, there is no loss of generality in assuming that

φR ≡ 1 near K̃ for each R ∈ (0,∞). (9.3.18)

For each number R ∈ (0,∞) define

�FR := φR �F ∈ [D′(�)
]n

. (9.3.19)

Hence, by design, for each R > 0 there exists a number ρ ∈ (0,∞) such that

�FR = 0 in � \ B(0, ρ), (9.3.20)

and
div �FR = ∇φR · �F + φR div �F in D′(�). (9.3.21)

As a consequence of (9.3.17), (9.3.18), and (4.6.23),

∇φR · �F ∈ L1(�,Ln) ⊂ (

C∞
b (�)

)∗
for each R > 0. (9.3.22)
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To proceed, let us denote by � the extension of the distribution div �F to a contin-
uous functional in

(

C∞
b (�)

)∗
(referred to in the last line of (1.5.9)). Also, for each

fixed R ∈ (0,∞) define the functional �R ∈ (C∞
b (�)

)∗
by setting

(

�R, f
)

C ∞
b (�)

= (

�,φR f
)

C ∞
b (�)

for each f ∈ C∞
b (�). (9.3.23)

In relation to this observe that, for each R > 0,

the functional �̃R := ∇φR · �F + �R ∈ (C∞
b (�)

)∗
is

a continuous extension of the distribution div �FR .
(9.3.24)

Indeed, it is clear fromdefinitions that �̃R is continuous in the sense of (1.5.1)–(1.5.2)
and satisfies

�̃R

∣
∣
C ∞

c (�)
= div �FR . (9.3.25)

Pressing on, thanks to (8.2.10), (8.2.26), (8.1.18), and the original assumptions
on �F , for each fixed R > 0 we have

Nε
κ

�FR ∈ L1(∂�, σ). (9.3.26)

Also, from the first line of (1.5.9) and (8.9.9)–(8.9.10), we see that the nontangential
limit

�FR

∣
∣
κ−n.t.

∂�
exists at σ − a.e. point on Aκ(∂�) and, in fact,

�FR

∣
∣
κ−n.t.

∂�
= (

φR

∣
∣
∂�

)( �F∣∣κ−n.t.

∂�

)

at σ − a.e. point on Aκ(∂�).

(9.3.27)

As a consequence of this and (1.5.6),

�FR

∣
∣
κ−n.t.

∂�
−→ �F∣∣κ−n.t.

∂�
at σ−a.e. point on ∂∗�, as R → ∞. (9.3.28)

Since we are assuming that ν · ( �F∣∣κ−n.t.

∂�

)

belongs to the space L1(∂∗�, σ) (see the first
line of (1.5.9)), from (9.3.28) and Lebesgue’s Dominated Convergence Theorem we
conclude that, on the one hand,

∫

∂∗�
ν · ( �FR

∣
∣
n.t.

∂�

)

dσ −→
∫

∂∗�
ν · ( �F∣∣n.t.

∂�
) dσ as R → ∞. (9.3.29)

On the other hand, granted (9.3.26), (9.3.27), and (9.3.20), the result established in
(9.3.14) applies to each �FR and, on account of (9.3.24), presently gives

(C ∞
b (�))

∗
(

�̃R, 1
)

C ∞
b (�) =

∫

∂∗�
ν · ( �FR

∣
∣
n.t.

∂�

)

dσ, ∀R > 0. (9.3.30)
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Let us take a closer look at the left-hand side above. For each R > 0 split

(C ∞
b (�))

∗
(

�̃R, 1
)

C ∞
b (�) = IR + I IR, (9.3.31)

with
IR := (C ∞

b (�))
∗
(∇φR · �F, 1

)

C ∞
b (�) (9.3.32)

and
I IR := (C ∞

b (�))
∗
(

�R, 1
)

C ∞
b (�) = (C ∞

b (�))
∗
(

�,φR
)

C ∞
b (�), (9.3.33)

where the second equality above is implied by (9.3.23). Then (9.3.22) and (4.6.23)
permit us to write

IR =
∫

�

∇φR · �F dLn for each R > 0, (9.3.34)

whereas thanks to (1.3.3) and the fact that the functional � ∈ (C∞
b (�)

)∗
is contin-

uous in the sense of (1.5.1)–(1.5.2) we have

lim
R→∞ I IR = lim

R→∞ (C ∞
b (�))

∗
(

�,φR
)

C ∞
b (�)

= (C ∞
b (�))

∗
(

�, 1
)

C ∞
b (�) = (C ∞

b (�))
∗
(

div �F, 1
)

C ∞
b (�), (9.3.35)

where the last equality is clear from the definition of �. Granted (9.3.29), (9.3.30),
(9.3.31), (9.3.34), and (9.3.35), it follows that the limit

lim
R→∞

∫

�

∇φR · �F dLn exists inC, is independent of the family {φR}R>0,

and equals the number
∫

∂∗�
ν · ( �F∣∣κ−n.t.

∂�
) dσ − (C ∞

b (�))
∗
(

div �F, 1
)

C ∞
b (�).

(9.3.36)
In view of (1.3.2), from (9.3.36) we conclude that [ �F]∞, the contribution of �F at
infinity, is meaningfully and unambiguously defined and that formula (1.5.10) holds.

Let us now turn to the claims made in the last part of the statement of The-
orem 1.5.1. If � is bounded then, obviously, [ �F]∞ = 0. Next, work under the
assumptions made in (1.5.12). The fact that we can pick some large R∗ > 0 such

that regsupp �F ⊆ B(0, R∗) and N�\B(0,R∗)
κ

�F ∈ L1(∂�, σ) together with (8.6.51)
(presently applied with E := � \ B(0, R∗)) ensures

�F
∣
∣
∣
�\B(0,R∗)

∈
[

L
n

n−1
(

� \ B(0, R∗),Ln
)]n

(9.3.37)

(with L
n

n−1 interpreted as L∞ when n = 1). If we are also assuming that n ≥ 2, from
(9.3.37) and the second part in Lemma 4.7.3 we then conclude that [ �F]∞ = 0.
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Next, suppose n = 1, while retaining (1.5.12). Introduce �̃ := � \ B(0, R∗) and
define F̃ := �F∣∣

�̃
. Then �̃ is an open subset of the real line, and the fact that ∂� is

unbounded and without finite accumulation points (given that σ is assumed to be a
locally finite measure) implies that ∂�̃ enjoys similar properties. Also, the choice
of R∗ guarantees that F̃ is a Lebesgue measurable function. Observe that �F and F̃
agree outside of a bounded set, and recall that the contribution of �F at infinity is
meaningfully and unambiguously defined (cf. (9.3.36)). It follows that [F̃]∞ is also
meaningfully and unambiguously defined and, in fact,

[ �F]∞ = [F̃]∞. (9.3.38)

In addition, the one-dimensional version of (9.3.37) yields

F̃ ∈ L∞(�̃,L1
)

. (9.3.39)

Hence, if σ̃ := H0∂�̃ and Ñκ denotes the nontangential maximal operator relative
to �̃, from (9.3.39) we conclude that

Ñκ F̃ ∈ L∞(∂�̃, σ̃
)

. (9.3.40)

Moreover, for each x ∈ ∂� ∩ ∂�̃wehave�̃,κ(x) ⊆ �,κ(x) ∩ �̃ (seeLemma8.1.3)
which goes to show that

(Ñκ F̃
)

(x) = ‖F̃‖L∞(�̃,κ (x),L1) ≤ ∥
∥ �F∣∣

�̃

∥
∥
L∞(�,κ (x)∩�̃,L1)

≤
(

N�\B(0,R∗)
κ

�F
)

(x). (9.3.41)

Observe that ∂�̃ ⊆ ∂� ∪ {±R∗}. Bearing this in mind, from (9.3.40)–(9.3.41) and

the fact that we are currently assumingN�\B(0,R∗)
κ

�F ∈ L1(∂�, σ) we then conclude
that

Ñκ F̃ ∈ L1
(

∂�̃, σ̃
)

. (9.3.42)

Granted these properties, Proposition 4.7.4 applies and gives [F̃]∞ = 0. In concert
with (9.3.38), this ultimately shows that [ �F]∞ = 0 when n = 1 and the assumptions
in (1.5.12) are imposed.

Finally, the fact that [ �F]∞ = 0 provided (1.5.13) holds is clear from the first part
of Lemma 4.7.3. The proof of Theorem 1.5.1 is therefore complete. �

The proof of Corollary 1.5.2, presented next, makes essential use of Theo-
rem 1.5.1.

Proof of Corollary 1.5.2 Work under the more general conditions specified in
(1.5.23). Fix an arbitrary aperture parameter κ ′ > 0. Granted the current assump-
tions, Corollary 8.9.9 guarantees that
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the nontangential boundary trace �F∣∣κ
′−n.t.

∂�
exists at σ − a.e. point on

∂nta�, is actually independent of κ ′, andNε
κ ′ �F ∈ L1

loc(∂�, σ).

(9.3.43)

In view of this, item (iii) in Proposition 8.8.6, and the last condition in (1.5.23) we
conclude that

ν · ( �F ∣∣κ
′−n.t.

∂�

) = ν · ( �F ∣∣κ−n.t.

∂�

) ∈ L1(∂∗�, σ). (9.3.44)

Also, from (9.3.43) and item (ii) in Proposition 8.8.6 we see that

�F∣∣κ
′−n.t.

∂�
exists at σ − a.e. point on Aκ ′(∂�). (9.3.45)

Finally, havingNε
κ ′ �F ∈ L1

loc(∂�, σ) implies that the condition formulated in (1.5.8)
is presently true.

At this stage, choosing κ ′ > 0 sufficiently large (specifically, κ ′ > κ� where κ�

is as in Theorem 1.5.1) ensures that all hypotheses of Theorem 1.5.1 are satisfied. As
such, Theorem 1.5.1 applies and yields all claims in the statement of Corollary 1.5.2.

�

9.4 Proofs of Theorem 1.6.1 and Corollaries 1.6.2–1.6.6

We begin by giving the proof of Theorem 1.6.1.

Proof of Theorem 1.6.1 As noted in (4.5.10), the fact that we are assuming that
K has finite upper (n − d)-dimensional Minkowski content forces Ln(K ) = 0.
In concert with (5.2.5) and (5.2.2), this implies ∂∗� = ∂∗�̃ ⊆ ∂�̃. In particular,
Hn−1(∂∗�) ≤ Hn−1(∂�̃) < +∞ which, in light of (5.6.35), proves that �, �̃ are
sets of locally finite perimeter. Having established this, Proposition 5.6.4 applies and
gives that

the geometric measure theoretic outward unit normals

to� and �̃ coincide atHn−1 − a.e. point on ∂∗� = ∂∗�̃.
(9.4.1)

Let us also observe that, as visible from (8.1.2), the fact that K is a compact subset
of �̃ implies that

for each aperture parameter κ > 0 the nontangential approach regions

�,κ(x) and�̃,κ(x)with apex at x (considered from within� and (9.4.2)

�̃, respectively) coincide near each point x ∈ ∂�̃ ⊆ ∂�.

Since σ̃ := Hn−1∂�̃ is currently assumed to be a finite measure, Proposition 8.8.3
ensures that there exists some κ�̃ ∈ (0,∞) with the property that if κ > κ�̃ then
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Hn−1
(

∂∗�̃ \ Aκ(∂�̃)
) = 0. (9.4.3)

From (8.8.2) and the property recorded in (9.4.2) we also see that

Aκ(∂�̃) ⊆ Aκ(∂�) \ K for each aperture parameter κ > 0. (9.4.4)

One notable consequence of (9.4.3), the fact that ∂∗� = ∂∗�̃ (cf. (9.4.1)), and (9.4.4)
is that

Hn−1
(

∂∗� \ (Aκ(∂�) \ K
)) = 0 if κ > κ�̃. (9.4.5)

Together with the first line in (1.6.3), this implies that

�F∣∣κ−n.t.

∂�
exists atHn−1 − a.e. point on ∂∗� if κ > κ�̃. (9.4.6)

Going further, denote by �G the extension by zero of �F from � to �̃. Then since
Ko is a compact subset of �, we see from (1.6.1) that

�G ∈ [L d
d−1 (�̃,Ln) + E ′

Ko
(�̃)

]n ⊂ [D′(�̃)
]n

. (9.4.7)

Also, as a consequence of (9.4.6) and (9.4.2), whenever κ > κ�̃ it follows that

the nontangential boundary trace �G∣∣κ−n.t.

∂�̃
, taken from within �̃,

exists and coincides with �F∣∣κ−n.t.

∂�
atHn−1 − a.e. point on ∂∗�.

(9.4.8)

Our next remark pertains to div �G ∈ D′(�̃). Specifically, set

f := div �F ∈ L1(�,Ln) + E ′
Ko

(�) (9.4.9)

and denote by f̃ the extension by zero of f to �̃ = � ∪ K . Then

f̃ ∈ L1(�̃,Ln) + E ′
Ko

(�̃) and div
( �G∣∣

�

) = f̃
∣
∣
�

in D′(�). (9.4.10)

Granted this, the removability criterion for singularities of distributional derivatives
from Proposition 4.5.2 (currently used with D := div, with �̃ in place of�, and with
u := �G) gives that

div �G = f̃ in D′(�̃). (9.4.11)

Having established (9.4.11), we may invoke Theorem 1.5.1 (used with �̃ in place of
�) to conclude that

(C ∞
b (�̃))

∗
(

f̃ , 1
)

C ∞
b (�̃) =

∫

∂∗�̃
ν̃ · ( �G ∣∣κ−n.t.

∂�̃

)

dHn−1. (9.4.12)
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Keeping in mind thatLn(�̃ \ �) = 0 and that Ko is a compact subset of �, it is also
apparent from (4.6.19) and (9.4.9)–(9.4.10) that

(C ∞
b (�̃))

∗
(

f̃ , 1
)

C ∞
b (�̃) = (C ∞

b (�))
∗
(

f , 1
)

C ∞
b (�) = (C ∞

b (�))
∗
(

div �F, 1
)

C ∞
b (�). (9.4.13)

At this stage, (1.6.4) becomes a consequence of (9.4.12), (9.4.1), (9.4.8), and (9.4.13).
�

Next, we present the proof of Corollary 1.6.2.

Proof of Corollary 1.6.2 Observe that since � is a subset of �̃, it follows that � is
bounded and that ∂� is contained in the closure of �̃. We claim that, in fact,

∂� ⊆ ∂�̃ ∪ K . (9.4.14)

To justify this, pick some x ∈ R
n which does not belong to ∂�̃ ∪ K . Then

x ∈ R
n \ ∂�̃ so either x is in �̃, or x does not belong to the closure of �̃. On the one

hand, the latter scenario implies (in light of our earlier observation) that x does not
belong to ∂�. On the other hand, if x ∈ �̃ then x ∈ �̃ \ K = �, so once again x does
not belong to ∂� (given that � is open, hence disjoint from ∂�). All together, this
proves that in all cases x /∈ ∂�, finishing the proof of (9.4.14). In turn, from (9.4.14)
and assumptions we deduce that

Hn−1(∂�) ≤ Hn−1(∂�̃) + Hn−1(K ) < +∞. (9.4.15)

Also, from (1.6.5), Proposition 8.2.3, and (9.4.15) we conclude that for each aperture
parameter κ > 0 we have (cf. (8.3.8))

Nκ
�F ∈ L∞(∂�,Hn−1) ⊆ L1(∂�,Hn−1). (9.4.16)

Finally, since � is open and bounded, from (1.6.5) we conclude that

�F ∈ [L∞(�,Ln)
]n ⊆ [

L
d

d−1 (�,Ln)
]n

. (9.4.17)

Granted these, Theorem1.6.1 applies and (1.6.4) yields (1.6.7) on account of (4.6.23).
�

Here is the proof of Corollary 1.6.3:

Proof of Corollary 1.6.3 This is a direct consequence of Corollary 1.6.2 upon

observing that �Fb agrees with �F∣∣κ−n.t.

∂�
at Hn−1-a.e. point on Aκ(∂�) \ K . �

We continue by discussing the proof of Corollary 1.6.4.

Proof of Corollary 1.6.4 Let {x1, . . . , xN } be the collection of connected compo-
nents of ∂� which are singletons. Since ∂� is assumed to have finitely many con-
nected components, this is a finite set of isolated points in ∂�. Hence, there exist
r1, . . . , rN > 0 with the property that
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B(xj, rj) ∩ ∂� = {xj} for each j ∈ {1, . . . , N }. (9.4.18)

Fix j ∈ {1, . . . , N }. Then Aj := B(xj, rj) \ {xj} is a subset of R
2, itself a set covered

by the (disjoint) union of �, ∂�, and R
2 \ �. Since, as visible from (9.4.18), the set

Aj is disjoint from ∂�, it follows that Aj is covered by � and R
2 \ �. Given that Aj

is connected, we conclude that

either Aj ⊆ �, or Aj ⊆ R
2 \ �. (9.4.19)

On the other hand, the fact that xj belongs to ∂� forces B(xj, rj) ∩ � �= ∅. Con-
sequently, there exists a point yj ∈ B(xj, rj) ∩ �. Note that we cannot have yj = xj
simply because yj ∈ �, xj ∈ ∂�, and � ∩ ∂� = ∅ given that � is open. Hence,
necessarily, we have

(

B(xj, rj) \ {xj}
) ∩ � �= ∅. This proves that Aj overlaps with

� which, in light of (9.4.19), ultimately shows that

B(xj, rj) \ {xj} ⊆ � for each j ∈ {1, . . . , N }. (9.4.20)

To proceed, introduce
�̃ := � ∪ {x1, . . . , xN } (9.4.21)

and note that (9.4.20) implies

B(xj, rj) ⊆ �̃ for each j ∈ {1, . . . , N }. (9.4.22)

From (9.4.21)–(9.4.22) and the fact that � is open we conclude that

�̃ is an open subset ofR
2. (9.4.23)

Also, since (9.4.21) ensures that

� ⊆ �̃ ⊆ � ∪ ∂� = �, (9.4.24)

we deduce that
the closure of �̃ is�. (9.4.25)

As a consequence of (9.4.21), (9.4.23), and (9.4.25) we then have

∂�̃ = � \ �̃ = � \ (� ∪ {x1, . . . , xN }) = ∂� \ {x1, . . . , xN }. (9.4.26)

This has two notable consequences. First, (9.4.26) implies that

H1(∂�̃) = H1(∂�) < +∞. (9.4.27)

Second, (9.4.26) guarantees that
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the set ∂�̃ has finitely many connected components,

none of which happen to actually be singletons.
(9.4.28)

In turn, from (9.4.27), (9.4.28), (5.3.72), and Lemma 5.9.3 we conclude that

∂�̃ is lower Ahlfors regular. (9.4.29)

Parenthetically, we also wish to note that (9.4.2) continues to hold in the present
setting and this implies that for each aperture parameter κ > 0 we have

Aκ(∂�̃) = Aκ(∂�) \ {x1, . . . , xN }. (9.4.30)

In addition, �̃ is nonempty and bounded, K := {x1, . . . , xN } is a compact subset
of �̃ having finite 0-dimensional upper Minkowski content in R

2, and �̃ \ K = �.
These properties make it possible to invoke Corollary 1.6.3 (with n := 2 and d := 2)
and conclude that (1.6.12) holds. �

We now turn to the proof of Corollary 1.6.5.

Proof of Corollary 1.6.5 Define the open bounded set �̃ ⊆ R
2 as in the proof of

Corollary 1.6.4 (cf. (9.4.21)) and set K := {x1, . . . , xN }, so that �̃ \ K = � and
H1(K ) = 0. Granted (9.4.27) and (9.4.29), all desired conclusions follow from
Theorem 1.6.1 (with n := 2 and d := 2). �

Finally, here is the proof of Corollary 1.6.6.

Proof of Corollary 1.6.6 The Divergence Formula claimed in (1.6.19) is implied by
Corollary 1.6.5 employed with �F := (Q,−P).

9.5 Proofs of Theorems 1.7.1, 1.7.2, and 1.7.6

Obviously, Theorem 1.7.1 is a particular case of Theorem 1.7.2, so we move on to
providing the proof of the latter result.

Proof of Theorem 1.7.2 Observing that, as a consequence of Lemma 8.3.1 and the
first line in (1.7.23), we have

u ∈ [L∞
loc(�,Ln)

]N ′
and w ∈ [L∞

loc(�,Ln)
]N

. (9.5.1)

In particular, it makes sense to consider partial derivatives of u and w in the sense of
distributions in � (and this is how Du and D�w should be interpreted in (1.7.23)).

As far as the integration by parts formula (1.7.27) is concerned, the idea is to
apply Theorem 1.2.1 to a suitably constructed vector field. Specifically, we define
�F : � → C

n by the requirement that
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ξ · �F(x) =
〈

(−i)Sym(D; ξ)u(x), w(x)
〉

, ∀ξ ∈ R
n,

forLn − a.e. point x ∈ �.
(9.5.2)

Since the right-hand side depends linearly in the variable ξ ∈ R
n, the above demand

determines �F uniquely (as a vector-valued function definedLn-a.e. on�) and unam-
biguously. Moreover, from (9.5.1) and (9.5.2) it is clear that �F ∈ [L∞

loc(�,Ln)
]n
. To

compute its distributional divergence in �, fix an arbitrary (scalar-valued) test func-
tion ϕ ∈ C∞

c (�) and write

D′(�)

〈

div �F, ϕ
〉

D(�) = −[D′(�)]n
〈 �F,∇ϕ

〉

[D(�)]n = −
∫

�

∇ϕ · �F dLn

= −
∫

�

〈

(−i)Sym(D; ∇ϕ)u, w
〉

dLn, (9.5.3)

where the last equality comes from (9.5.2) (presently used with ξ := ∇ϕ). Recall
that, by assumption Du ∈ [L1

loc(�,Ln)
]N

. In concert with (9.5.1), this implies that

D(ϕu) ∈ [L1
comp(�,Ln)

]N
, and since we have the commutator identity

(−i)Sym(D; ∇ϕ)u = D(ϕu) − ϕDu in �, (9.5.4)

we may further express

D′(�)

〈

div �F, ϕ
〉

D(�) = −
∫

�

〈

D(ϕu), w
〉

dLn +
∫

�

〈

ϕDu, w
〉

dLn =: I + I I.

(9.5.5)

To handle I , introduce �ε := {

x ∈ � : dist(x, ∂�) > ε
}

for each ε > 0 sufficiently
small. Also, pick θ ∈ C∞

c (Rn) such that supp θ ⊆ B(0, 1),
∫

Rn θ dLn = 1, and, for
each ε > 0 set θε(x) := ε−nθ(x/ε) for every x ∈ R

n. Next, for each sufficiently small
ε > 0 and each x ∈ �ε define

wε(x) :=
∫

Rn

w(x − y)θε(y) dy =
{

D′(�)

〈

wα, θε(x − ·)〉D(�)

}

1≤α≤N
. (9.5.6)

If D� is as in (1.7.13), for any ε > 0 small, any x ∈ �ε, and any β ∈ {1, . . . , N ′}, we
may then use (9.5.6) and the knowledge that D�w ∈ [L1

loc(�,Ln)
]N ′

to compute

(

D�wε

)

β
(x) = D′(�)

〈 N
∑

α=1

n
∑

j=1

aαβ

j wα, ∂j[θε(x − ·)]
〉

D(�)

+ D′(�)

〈 N
∑

α=1

bαβwα, θε(x − ·)
〉

D(�)
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= D′(�)

〈(

−
N
∑

α=1

n
∑

j=1

aαβ

j ∂j +
N
∑

α=1

bαβ
)

wα, θε(x − ·)
〉

D(�)

= D′(�)

〈

(D�w)β, θε(x − ·)
〉

D(�)

=
∫

�

(D�w)β(y)θε(x − y) dy

=
∫

Rn

(D�w)β(x − y)θε(y) dy. (9.5.7)

Ultimately, from (9.5.1), (9.5.6), (9.5.7), and the fact that D�w has locally integrable
components in �, we conclude that

wε ∈ [C∞(�ε)
]N ′

, wε −−−→
ε→0+

w at every Lebesgue point ofw in �,

for each compact K ⊂ � one has D�wε −−−→
ε→0+

D�w in
[

L1(K ,Ln)
]N ′

,

and there exists some εK > 0 such that sup0<ε<εK
supx∈K |wε(x)| < ∞.

(9.5.8)

Granted these, we may return to I in (9.5.5) and, with the help of Lebesgue’s
Dominated Convergence Theorem and (9.5.1), compute

I = −
∫

�

〈

D(ϕu), w
〉

dLn = − lim
ε→0+

∫

�

〈

D(ϕu), wε

〉

dLn

= − lim
ε→0+ [D′(�)]N

〈

D(ϕu), wε

〉

[D(�)]N

= − lim
ε→0+ [D′(�)]N ′

〈

ϕu, D�wε

〉

[D(�)]N ′

= − lim
ε→0+

∫

�

〈

ϕu, D�wε

〉

dLn

= −
∫

�

〈

ϕu, D�w
〉

dLn. (9.5.9)

Returning with this in (9.5.5) allows us to write

D′(�)

〈

div �F, ϕ
〉

D(�) = −
∫

�

〈

ϕu, D�w
〉

dLn +
∫

�

〈

ϕDu, w
〉

dLn

=
∫

�

{〈

Du, w
〉− 〈

u, D�w
〉}

ϕ dLn, (9.5.10)

which goes to show that

div �F = 〈

Du, w
〉− 〈

u, D�w
〉

in D′(�). (9.5.11)

In particular, from (9.5.11) and the last condition in (1.7.23) we conclude that

div �F ∈ L1(�,Ln). (9.5.12)
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With κ ′′ := min{κ, κ ′} > 0, from (9.5.2), (8.2.25), and (8.2.10) we see that

Nκ ′′ �F ≤ C Nκu · Nκ ′w pointwise on ∂�. (9.5.13)

Thanks to (8.2.26) and the second line in (1.7.23), this pointwise estimate ultimately
proves that

Nκ ′′ �F ∈ L1(∂�, σ). (9.5.14)

In addition, from (9.5.2)we conclude that the nontangential trace �F ∣∣κ
′′−n.t.

∂�
existsσ -a.e.

on ∂nta� and, in fact, for σ -a.e. x ∈ ∂∗� we have

ν(x) ·
( �F ∣∣κ

′′−n.t.

∂�

)

(x) =
〈

(−i)Sym(D; ν)
(

u
∣
∣
κ′′−n.t.

∂�

)

(x),
(

w
∣
∣
κ′′−n.t.

∂�

)

(x)
〉

=
〈

(−i)Sym(D; ν)
(

u
∣
∣
κ−n.t.

∂�

)

(x),
(

w
∣
∣
κ′−n.t.

∂�

)

(x)
〉

. (9.5.15)

Finally, it is clear from (9.5.2) that the growth condition (1.2.3) is satisfied whenever
(1.7.25) holds. At this stage, formula (1.7.27) follows readily from (1.2.2), with the
help of (9.5.11) and (9.5.15). This concludes the proof of Theorem 1.7.2. �

We continue by presenting the proof of Theorem 1.7.6.

Proof of Theorem 1.7.6 Lemma 8.3.1 and the first line in (1.7.41) imply

u ∈ L∞
loc(�,Ln) ⊗ C�n and w ∈ L∞

loc(�,Ln) ⊗ C�n. (9.5.16)

As such, it is meaningful to consider partial derivatives of u and w in the sense of
distributions in � (and this is how DRu and DLw should be interpreted in (1.7.41)).

Next, consider the vector field �F = (Fj)1≤j≤n with C�n-valued components given
by

Fj := u � ej � w in �. (9.5.17)

From (9.5.17) and (9.5.16) it is clear that

�F ∈ [L∞
loc(�,Ln) ⊗ C�n

]n ⊆ [

L1
loc(�,Ln) ⊗ C�n

]n
. (9.5.18)

For an arbitrary scalar-valued test function ϕ ∈ C∞
c (�) we may write

D′(�)⊗C�n
〈

div �F, ϕ
〉

D(�) = −
n
∑

j=1

∫

�

Fj∂jϕ dLn

= −
∫

�

u � (Dϕ) � w dLn. (9.5.19)

To proceed, consider �ε := {

x ∈ � : dist(x, ∂�) > ε
}

for each ε > 0 sufficiently
small. Pick θ ∈ C∞

c (Rn) such that supp θ ⊆ B(0, 1),
∫

Rn θ dLn = 1, and for each
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ε > 0 set θε(x) := ε−nθ(x/ε) for every x ∈ R
n. For each sufficiently small ε > 0

and each x ∈ �ε define

wε(x) :=
∫

Rn

w(x − y)θε(y) dy = D′(�)⊗C�n
〈

w, θε(x − ·)〉D(�). (9.5.20)

Using the fact that DLw ∈ L1
loc(�,Ln) ⊗ C�n we may then compute

(

DLwε

)

(x) =
n
∑

j=1

D′(�)⊗C�n
〈

ej � w, ∂j[θε(x − ·)]
〉

D(�)

= D′(�)⊗C�n
〈

(DLw), θε(x − ·)
〉

D(�)

=
∫

�

(DLw)(y)θε(x − y) dy =
∫

Rn

(DLw)(x − y)θε(y) dy. (9.5.21)

Ultimately, from (9.5.16), (9.5.20), (9.5.21), and the fact that DLw is locally
integrable in �, we conclude that

wε ∈ C∞(�ε) ⊗ C�n, wε −−−→
ε→0+

w at every Lebesgue point ofw in �,

for each compact K ⊂ � one has DLwε −−−→
ε→0+

DLw in L1(K ,Ln) ⊗ C�n,
and there exists some εK > 0 such that sup0<ε<εK

supx∈K |wε(x)| < ∞.

(9.5.22)

Returning to (9.5.19), we may further express

D′(�)⊗C�n
〈

div �F, ϕ
〉

D(�) = −
∫

�

u � (Dϕ) � w dLn

= − lim
ε→0+

∫

�

u � (Dϕ) � wε dLn = I + I I, (9.5.23)

where

I := − lim
ε→0+

∫

�

u � DL(ϕwε) dLn, and (9.5.24)

I I := lim
ε→0+

∫

�

u � ϕ(DLwε) dLn =
∫

�

u � ϕ(DLw) dLn, (9.5.25)

thanks to (9.5.22) and (9.5.16). To handle term I from (9.5.24), with the help of
Lebesgue’s Dominated Convergence Theorem, (9.5.16), (6.4.43), and (6.4.51), we
write (bearing in mind that DRu ∈ L1

loc(�,Ln) ⊗ C�n)
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I = − lim
ε→0+ D′(�)⊗C�n

〈

u, DL(ϕwε)
〉

D(�)⊗C�n

= lim
ε→0+ D′(�)⊗C�n

〈

DRu, ϕwε

〉

D(�)⊗C�n

= lim
ε→0+

∫

�

(DRu) � (ϕwε) dLn

=
∫

�

(DRu) � (ϕw) dLn. (9.5.26)

Collectively, (9.5.23)–(9.5.26) prove that

div �F = (DRu) � w + u � (DLw) in D′(�) ⊗ C�n. (9.5.27)

In concert with the last condition in (1.7.41) this shows that

div �F ∈ L1(�,Ln) ⊗ C�n. (9.5.28)

Considering κ ′′ := min{κ, κ ′} > 0 allows us to conclude, on account of (9.5.17),
(8.2.25), (8.2.10), and (6.4.34), that Nκ ′′ �F ≤ C Nκu · Nκ ′w pointwise on ∂�.
Togetherwith (8.2.26) and the second line in (1.7.41), this yieldsNκ ′′ �F ∈ L1(∂�, σ).

Furthermore, from (9.5.17) and (1.7.41) we see that the nontangential trace �F∣∣κ
′′−n.t.

∂�

exists σ -a.e. on ∂nta� and, in fact, at σ -a.e. x ∈ ∂∗� we have

n
∑

j=1

νj(x)
( �F ∣∣κ

′′−n.t.

∂�

)

j
(x) =

(

u
∣
∣
κ′′−n.t.

∂�

)

(x) � ν(x) �
(

w
∣
∣
κ′′−n.t.

∂�

)

(x)

=
(

u
∣
∣
κ−n.t.

∂�

)

(x) � ν(x) �
(

w
∣
∣
κ′−n.t.

∂�

)

(x). (9.5.29)

Moreover, as is apparent from (9.5.2), the growth condition (1.2.3) is satisfied when-
ever (1.7.43) holds. Granted these properties, formula (1.7.42) follows from (1.2.2),
with the help of (9.5.27) and (9.5.29). This finishes the proof of Theorem 1.7.6. �

9.6 Proofs of Theorems 1.8.2, 1.8.3, and 1.8.5

Before presenting the proof of Theorem 1.8.2, we establish the following auxiliary
result.

Lemma 9.6.1 For every fixedmulti-indexα ∈ N
n
0 with |α| > 0 the following identity

holds
∑

β∈Nn
0, 1≤i≤n

β+ei=α

1

β! = |α|
α! . (9.6.1)
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Proof Given an arbitrary multi-index α = (α1, · · · , αn) ∈ N
n
0 with |α| > 0, set

suppα := {

i ∈ {1, . . . , n} : αi �= 0
}

. Note it is possible to decompose α = β + ei
for some β ∈ N

n
0 and i ∈ {1, . . . , n} if and only if i ∈ suppα. Therefore,

∑

β∈Nn
0, 1≤i≤n

β+ei=α

1

β! =
∑

i∈suppα

1

(α − ei)! =
∑

i∈suppα

αi

α! = 1

α!
∑

i∈suppα

αi = |α|
α! , (9.6.2)

as wanted. �
Here is the proof of Theorem 1.8.2.

Proof of Theorem 1.8.2 The idea of the proof is to apply the Divergence Formula
as featured in Theorem 1.2.1. To this end, consider the vector field �F = (Fj)1≤j≤n

whose components are given by

Fj :=
|α|
∑

�=1

∑

β,γ∈Nn
0

β+γ+ej=α
|γ |=�−1, |β|=|α|−�

(−1)�+1 α!(|α| − �)!(� − 1)!
|α|!β!γ ! (∂βu)(∂γ w), (9.6.3)

for each j ∈ {1, . . . , n}. In relation to the sum in (9.6.3) we note that if β, γ ∈ N
n
0

and j ∈ {1, . . . , n} are such that β + γ + ej = α, then the functions f := ∂βu and
g := ∂γ w satisfy the hypotheses of Proposition 4.3.1. Indeed, since u, w belong to
W α,1

loc (�) and satisfy (1), we have

f , g, ∂j f , ∂jg ∈ L1
loc(�,Ln) and f · g ∈ L1

loc(�,Ln). (9.6.4)

Also, assumption (1) and Lemma 8.3.1 (with μ := σ which ensures that (8.3.1)
holds, due to the lower Ahlfors regularity assumption on ∂�) imply the membership
f , g ∈ L∞

loc(�,Ln). The latter combined with (9.6.4) further yields

f (∂jg) ∈ L1
loc(�,Ln) and g(∂jf ) ∈ L1

loc(�,Ln). (9.6.5)

Consequently, Proposition 4.3.1 applies and we obtain ∂j(f g) = f (∂jg) + g(∂jf ) in
D′(�) which, when written in terms of u and w, becomes

∂j
[

(∂βu)(∂γ w)
] = (∂βu)(∂γ+ejw) + (∂γ w)(∂β+ej u) in D′(�)

for eachβ, γ ∈ N
n
0 and j ∈ {1, . . . , n}withβ + γ + ej = α.

(9.6.6)

In light of this, we may write

div �F =
n
∑

j=1

∂j Fj = I + I I in D′(�), (9.6.7)



9.6 Proofs of Theorems 1.8.2, 1.8.3, and 1.8.5 877

where

I :=
n
∑

j=1

|α|
∑

�=1

∑

β,γ∈Nn
0

β+γ+ej=α
|γ |=�−1, |β|=|α|−�

(−1)�+1 α!(|α|−�)!(� − 1)!
|α|!β!γ ! (∂β+ej u)(∂γ w), (9.6.8)

and

I I :=
n
∑

j=1

|α|
∑

�=1

∑

β,γ∈Nn
0

β+γ+ej=α
|γ |=�−1, |β|=|α|−�

(−1)�+1 α!(|α| − �)!(� − 1)!
|α|!β!γ ! (∂βu)(∂γ+ejw).

(9.6.9)
The next task is to re-write I and I I in a form that allows for cancelations when the
two are combined. We first focus on I . Changing the order of the summation and
applying Lemma 9.6.1 we may recast I as

I =
|α|
∑

�=1

∑

γ∈Nn
0|γ |=�−1

γ<α

(
∑

β∈Nn
0,j∈{1,...,n}

β+ej=α−γ

1

β! (∂
β+ej u)

)

(−1)�+1α!(|α| − �)!(� − 1)!
|α|!γ ! (∂γ w)

=
|α|
∑

�=1

∑

γ∈Nn
0|γ |=�−1

γ<α

|α − γ |
(α − γ )! (−1)�+1 α!(|α| − �)!(� − 1)!

|α|!γ ! (∂α−γ u)(∂γ w)

=
|α|
∑

�=1

∑

γ∈Nn
0|γ |=�−1

γ<α

|α| − � + 1

(α − γ )! (−1)�+1α!(|α| − �)!(� − 1)!
|α|!γ ! (∂α−γ u)(∂γ w)

=
|α|
∑

�=1

∑

γ∈Nn
0|γ |=�−1

γ<α

(−1)�+1 (|α| − � + 1)!
(α − γ )!

α!(� − 1)!
|α|!γ ! (∂α−γ u)(∂γ w), (9.6.10)

where in the third equality we used the fact that if γ < α and |γ | = � − 1, then
|α − γ | = |α| − � + 1. Re-denoting � − 1 by � in the last expression in (9.6.10),
then setting β := α − γ (so that |β| = |α| − �), we may further write

I =
|α|−1
∑

�=0

∑

γ∈Nn
0|γ |=�

γ<α

(−1)�+2 (|α| − �)!
(α − γ )!

α! �!
|α|!γ ! (∂

α−γ u)(∂γ w)
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=
|α|−1
∑

�=0

∑

β,γ∈Nn
0

β+γ=α
|γ |=�,|β|=|α|−�

(−1)�
|β|!
β!

α! �!
|α|!γ ! (∂

βu)(∂γ w). (9.6.11)

Moving on to I I , by first applying Lemma 9.6.1 we obtain

I I =
|α|
∑

�=1

∑

β∈Nn
0|β|=|α|−�

β<α

(
∑

γ∈Nn
0,j∈{1,...,n}

γ+ej=α−β

1

γ ! (∂
γ+ejw)

)

(−1)�+1α!(|α| − �)!(� − 1)!
|α|!β! (∂βu)

=
|α|
∑

�=1

∑

β∈Nn
0|β|=|α|−�

β<α

|α − β|
(α − β)! (−1)�+1 α!(|α| − �)!(� − 1)!

|α|!β! (∂βu)(∂α−βw). (9.6.12)

Furthermore, by re-denoting α − β by γ in the last sum in (9.6.12), we see that

I I =
|α|
∑

�=1

∑

β,γ∈Nn
0

β+γ=α
|γ |=�,|β|=|α|−�

(−1)�+1 |γ |
γ !

α!(|α| − �)!(� − 1)!
|α|!β! (∂βu)(∂γ w)

=
|α|
∑

�=1

∑

β,γ∈Nn
0

β+γ=α
|γ |=�,|β|=|α|−�

(−1)�+1 1

γ !
α!|β|!�!
|α|!β! (∂βu)(∂γ w). (9.6.13)

Now we may combine (9.6.11) and (9.6.13) to conclude that

div �F = I + I I =
|α|−1
∑

�=0

∑

β,γ∈Nn
0

β+γ=α
|γ |=�,|β|=|α|−�

(−1)�
|β|!
β!

α! �!
|α|!γ ! (∂

βu)(∂γ w) (9.6.14)

+
|α|
∑

�=1

∑

β,γ∈Nn
0

β+γ=α
|γ |=�,|β|=|α|−�

(−1)�+1 1

γ !
α!|β|!�!
|α|!β! (∂βu)(∂γ w)

= (∂αu)w + (−1)|α|+1u(∂αw) = (∂αu)w − (−1)|α|u(∂αw).

In summary, by also recalling (1.8.2), we have proved

div �F = (∂αu)w − (−1)|α|u(∂αw) ∈ L1(�,Ln). (9.6.15)
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In addition, definition (9.6.3) and assumptions (1)–(2) imply

�F∣∣κ−n.t.

∂�
exists σ − a.e. on ∂nta� and Nκ

�F ∈ L1(∂�, σ), (9.6.16)

while (9.6.3) and (1.8.3) ensure that, whenever � is unbounded and ∂� is bounded,
there exists λ ∈ (1,∞) such that

∫

[B(0,λ R)\B(0,R)]∩�

| �F | dLn = o(R) as R → ∞. (9.6.17)

At this point, we have checked that �F satisfies all hypotheses of Theorem 1.2.1,
hence (1.2.2) holds for the current vector field �F and implies (1.8.4) upon observing
that

ν · ( �F ∣∣κ−n.t.

∂�

) =
|α|
∑

�=1

∑

β,γ∈Nn
0

j∈{1,...,n},β+γ+ej=α
|γ |=�−1, |β|=|α|−�

(−1)�+1α!(|α| − �)!(� − 1)!
|α|!β!γ ! ×

×νj(∂
βu)

∣
∣
κ−n.t.

∂�
· (∂γ w)

∣
∣
κ−n.t.

∂�
(9.6.18)

for σ -a.e. point on ∂∗� (which, up to a σ -nullset, is contained in ∂nta�; see (8.8.52)).
Next, we present the proof of Theorem 1.8.3, pertaining to the “half” Green

formula for a higher-order system.

Proof of Theorem 1.8.3 The proof is similar to that of Theorem 1.8.2, so we shall
only highlight themain steps involved.Once again, the idea is to applyTheorem1.2.1,
this time to the vector field �F = (Fj)1≤j≤n with components

Fj :=
∑

|α|=|β|=m
α≥ej

m
∑

�=1

∑

δ,γ∈Nn
0

δ+γ+ej=α
|γ |=�−1, |δ|=m−�

(−1)�+1 α!(m − �)!(� − 1)!
m!δ!γ ! ×

×
〈

Aαβ(∂β+δu)
∣
∣
κ−n.t.

∂�
, (∂γ w)

∣
∣
κ−n.t.

∂�

〉

(9.6.19)

for each j ∈ {1, . . . , n}. Analogous to (9.6.14),

div �F = 〈

Lu, w
〉−

∑

|α|=|β|=m

(−1)m
〈

Aαβ∂βu, ∂αw
〉

(9.6.20)

which, thanks to (1.8.11) and the second line in (1.8.12), belongs to L1(�,Ln).

Also, (1.8.12) ensures that the nontangential trace �F∣∣κ−n.t.

∂�
exists σ -a.e. on ∂nta� and

Nκ
�F ∈ L1(∂�, σ), while (1.8.13) implies that, whenever � is unbounded and ∂�

is bounded, there exists λ ∈ (1,∞) such that



880 9 Proofs of Main Results Pertaining to Divergence Theorem

∫

[B(0,λ R)\B(0,R)]∩�

| �F | dLn = o(R) as R → ∞. (9.6.21)

Having verified that �F satisfies all hypotheses of Theorem 1.2.1, formula (1.8.14) is
obtained by writing (1.2.2) for our current �F . �

Proof of Theorem 1.8.5 The reasoning is similar to the one used in proving the
higher-order integration by parts formula (1.8.4). The plan is to apply the Divergence
Formula stated in Theorem 1.2.1 to a suitable vector field. Specifically, consider
�F = (Fj)1≤j≤n whose jth component is given by

Fj :=
∑

α,β∈Nn
0

α≥ej,|α|=|β|=m

m
∑

�=1

∑

δ,γ∈Nn
0

δ+γ=α−ej
|γ |=�−1,|δ|=m−�

(−1)�+1α!(m − �)!(� − 1)!
m!δ!γ ! ×

× 〈

Aαβ(∂β+δu), (∂γ w)
〉

+
∑

α,β∈Nn
0

β≥ej,|α|=|β|=m

m
∑

�=1

∑

η,ω∈Nn
0

η+ω=β−ej
|ω|=�−1,|η|=m−�

(−1)m+�+1 β!(m − �)!(� − 1)!
m!η! ω! ×

× 〈

(∂ηu), A�
αβ(∂α+ωw)

〉

(9.6.22)

for each j ∈ {1, . . . , n}. Next, fix j ∈ {1, . . . , n} and α, β ∈ N
n
0 with |α| = |β| = m

and either α ≥ ej or β ≥ ej. Also, pick any θ, μ ∈ N
n
0 such that θ + μ + ej = α + β

and define functions f := ∂θu and g := ∂μw. Since u, w ∈ [W 2m,1
loc (�)]M and satisfy

(2), we have

f , g, ∂j f , ∂jg ∈ L1
loc(�,Ln) and f · g ∈ L1

loc(�,Ln). (9.6.23)

Also, the finiteness assumptions in (2) and Lemma 8.3.1 (withμ := σ which ensures
that (8.3.1) holds, due to the lower Ahlfors regularity assumption on ∂�) imply
f , g ∈ L∞

loc(�,Ln). The latter combined with (9.6.23) further yields

f (∂jg) ∈ L1
loc(�,Ln) and g(∂jf ) ∈ L1

loc(�,Ln). (9.6.24)

Together, (9.6.23) and (9.6.24) ensure that f , g satisfy all hypotheses of Proposi-
tion 4.3.1 which gives ∂j(f g) = f (∂jg) + g(∂jf ) in D′(�). Recalling the definition
of f and g we obtain

∂j
[

(∂θu)(∂μw)
] = (∂θu)(∂μ+ejw) + (∂μw)(∂θ+ej u) in D′(�) for any

j ∈ {1, . . . , n} andα, β ∈ N
n
0 with |α| = |β| = m satisfyingα ≥ ej orβ ≥ ej,

and for any multi-indices θ, μ ∈ N
n
0 such that θ + μ + ej = α + β.

(9.6.25)
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Now formula (9.6.25) implies

div �F =
n
∑

j=1

∂j Fj =
n
∑

j=1

(Ij + I Ij + I I Ij + I Vj) in D′(�), (9.6.26)

where

Ij :=
∑

α,β∈Nn
0

α≥ej,|α|=|β|=m

m
∑

�=1

∑

δ,γ∈Nn
0

δ+ej+γ=α
|γ |=�−1,|δ|=m−�

(−1)�+1α!(m − �)!(� − 1)!
m!δ!γ ! ×

× 〈

Aαβ(∂β+δ+ej u), ∂γ w
〉

, (9.6.27)

I Ij :=
∑

α,β∈Nn
0

α≥ej,|α|=|β|=m

m
∑

�=1

∑

δ,γ∈Nn
0

δ+ej+γ=α
|γ |=�−1,|δ|=m−�

(−1)�+1α!(m − �)!(� − 1)!
m!δ!γ ! ×

× 〈

Aαβ(∂β+δu), ∂γ+ejw
〉

, (9.6.28)

I I Ij :=
∑

α,β∈Nn
0

β≥ej,|α|=|β|=m

m
∑

�=1

∑

η,ω∈Nn
0

η+ej+ω=β
|ω|=�−1,|η|=m−�

(−1)m+�+1 β!(m − �)!(� − 1)!
m!η! ω! ×

× 〈

∂η+ej u, A�
αβ(∂α+ωw)

〉

, (9.6.29)

and

I Vj :=
∑

α,β∈Nn
0

β≥ej,|α|=|β|=m

m
∑

�=1

∑

η,ω∈Nn
0

η+ej+ω=β
|ω|=�−1,|η|=m−�

(−1)m+�+1 β!(m − �)!(� − 1)!
m!η! ω! ×

× 〈

∂ηu, A�
αβ(∂α+ω+ejw)

〉

. (9.6.30)

Considering first the terms in (9.6.27), we may write

n
∑

j=1

Ij =
n
∑

j=1

∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

δ,γ∈Nn
0

δ+ej+γ=α
|γ |=�−1,|δ|=m−�

(−1)�+1α!(m − �)!(� − 1)!
m!δ!γ ! ×

× 〈

Aαβ(∂β+δ+ej u), ∂γ w
〉
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=
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

δ̃,γ∈Nn
0

δ̃+γ=α

|γ |=�−1,|̃δ|=m−�+1

(
∑

δ∈Nn
0, j∈{1,...,n}
δ+ej=δ̃

1

δ!
)

×

× (−1)�+1α!(m − �)!(� − 1)!
m!γ !

〈

Aαβ(∂β+δ̃u), ∂γ w
〉

=
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

δ̃,γ∈Nn
0

δ̃+γ=α

|γ |=�−1,|δ̃|=m−�+1

(−1)�+1α!(m − � + 1)!(� − 1)!
m! δ̃!γ ! ×

×
〈

Aαβ(∂β+δ̃u), ∂γ w
〉

(9.6.31)

where for the last equality in (9.6.31) we have invoked Lemma 9.6.1 which presently
gives

∑

δ∈Nn
0, j∈{1,...,n}
δ+ej=δ̃

1

δ! = m − � + 1

δ̃! . (9.6.32)

Similarly, by summing up all I Ij’s, introducing γ̃ = γ + ej, and once again invoking
Lemma 9.6.1 for the sum ∑

γ∈Nn
0, j∈{1,...,n}
γ+ej=γ̃

1

γ ! = �

γ̃ ! , (9.6.33)

we may also write

n
∑

j=1

I Ij =
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

δ,γ̃ ∈Nn
0

δ+γ̃ =α
|γ̃ |=�,|δ|=m−�

(−1)�+1 α!(m − �)!�!
m!δ!γ̃ ! ×

× 〈

Aαβ(∂β+δu), (∂γ̃ w)
〉

=
∑

α,β∈Nn
0|α|=|β|=m

m+1
∑

�=2

∑

δ,γ̃ ∈Nn
0

δ+γ̃ =α
|γ̃ |=�−1,|δ|=m−�+1

(−1)�
α!(m − � + 1)!(� − 1)!

m!δ!γ̃ ! ×

× 〈

Aαβ(∂β+δu), (∂γ̃ w)
〉

, (9.6.34)

where the last equality in (9.6.34) is obtained by simply re-denoting � + 1 by �.
The resulting sums in (9.6.31) and (9.6.34) may be combined (after dropping the

“tilde” in both) to obtain
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n
∑

j=1

(Ij + I Ij) =
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

δ,γ∈Nn
0

δ+γ=α
|γ |=�−1,|δ|=m−�+1

(−1)�+1 α!(m − � + 1)!(� − 1)!
m!δ!γ ! ×

× 〈

Aαβ(∂β+δu), ∂γ w
〉

+
∑

α,β∈Nn
0|α|=|β|=m

m+1
∑

�=2

∑

δ,γ∈Nn
0

δ+γ=α
|γ |=�−1,|δ|=m−�+1

(−1)�
α!(m − � + 1)!(� − 1)!

m!δ!γ ! ×

× 〈

Aαβ(∂β+δu), ∂γ w
〉

=
∑

α,β∈Nn
0|α|=|β|=m

〈

Aαβ(∂α+βu), w
〉

+ (−1)m+1
∑

α,β∈Nn
0|α|=|β|=m

〈

Aαβ(∂βu), ∂αw
〉

. (9.6.35)

Based on the same type of reasoning, we also obtain

n
∑

j=1

I I Ij =
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

η̃,ω∈Nn
0

η̃+ω=β
|ω|=�−1,|̃η|=m−�+1

(
∑

η∈Nn
0,j∈{1,...,n}
η+ej=η̃

1

η!
)

×

× (−1)m+�+1 β!(m − �)!(� − 1)!
m! ω!

〈

∂η̃u, A�
αβ(∂α+ωw)

〉

=
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

η̃,ω∈Nn
0

η̃+ω=β
|ω|=�−1,|̃η|=m−�+1

(−1)m+�+1 β!(m − � + 1)!(� − 1)!
m!̃η! ω! ×

× 〈

∂η̃u, A�
αβ(∂α+ωw)

〉

, (9.6.36)

and

n
∑

j=1

I Vj =
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

η,ω̃∈Nn
0

η+ω̃=β
|ω̃|=�,|η|=m−�

(
∑

ω∈Nn
0,j∈{1,...,n}

ω+ej=ω̃

1

ω!
)

×

× (−1)m+�+1 β!(m − �)!(� − 1)!
m!η!

〈

∂ηu, A�
αβ(∂α+ω̃w)

〉

=
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

η,ω̃∈Nn
0

η+ω̃=β
|ω̃|=�,|η|=m−�

(−1)m+�+1 β!(m − �)! �!
m!η!ω̃!

〈

∂ηu, A�
αβ(∂α+ω̃w)

〉
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=
∑

α,β∈Nn
0|α|=|β|=m

m+1
∑

�=2

∑

η,ω̃∈Nn
0

η+ω̃=β
|ω̃|=�−1,|η|=m−�+1

(−1)m+� β!(m − � + 1)!(� − 1)!
m!η!ω̃!

〈

∂ηu, A�
αβ(∂α+ω̃w)

〉

. (9.6.37)

Combining (9.6.36) and (9.6.37) (with the tilde dropped in the writing for both) we
arrive at

n
∑

j=1

(I I Ij+I Vj) =
∑

α,β∈Nn
0|α|=|β|=m

m
∑

�=1

∑

η,ω∈Nn
0

η+ω=β
|ω|=�−1,|η|=m−�+1

(−1)m+�+1 β!(m − � + 1)!(� − 1)!
m!η! ω! ×

× 〈

∂ηu, A�
αβ(∂α+ωw)

〉

+
∑

α,β∈Nn
0|α|=|β|=m

m+1
∑

�=2

∑

η,ω∈Nn
0

η+ω=β
|ω|=�−1,|η|=m−�+1

(−1)m+� β!(m − � + 1)!(� − 1)!
m!η! ω! ×

× 〈

∂ηu, A�
αβ(∂α+ωw)

〉

=
∑

α,β∈Nn
0|α|=|β|=m

(−1)m
〈

(∂βu), A�
αβ(∂αw)

〉−
∑

α,β∈Nn
0|α|=|β|=m

〈

u, A�
αβ(∂α+βw)

〉

.

(9.6.38)

Finally, from (9.6.35), (9.6.38), and assumption (1) we see

div �F =
∑

α,β∈Nn
0|α|=|β|=m

〈

Aαβ(∂α+βu), w
〉+ (−1)m+1

∑

α,β∈Nn
0|α|=|β|=m

〈

Aαβ(∂βu), ∂αw
〉

+
∑

α,β∈Nn
0|α|=|β|=m

(−1)m
〈

(∂βu), A�
αβ(∂αw)

〉−
∑

α,β∈Nn
0|α|=|β|=m

〈

u, A�
αβ(∂α+βw)

〉

= 〈

Lu, w
〉− 〈

u, L�w
〉 ∈ L1(�,Ln). (9.6.39)

Moreover, the membership in (1.8.19) and the format of the components of �F
(recall (9.6.22)) ensure Nκ

�F ∈ L1(∂�, σ), while assumption (3) guarantees that
�F∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂nta�. Corresponding to the casewhen� is unbounded

and ∂� is bounded, assumption (1.8.20) implies that �F satisfies (1.2.3) as well.
In summary, we have checked that �F satisfies all hypotheses of Theorem 1.2.1,

thus formula (1.2.2) holds. In order to write this formula, we also need to compute

ν · ( �F∣∣κ−n.t.

∂�
). To do so, we use (9.6.22) to compute
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ν · ( �F∣∣κ−n.t.

∂�
) =

n
∑

j=1

∑

α,β∈Nn
0

α≥ej,|α|=|β|=m

m
∑

�=1

∑

δ,γ∈Nn
0

δ+γ=α−ej
|γ |=�−1,|δ|=m−�

(−1)�+1α!(m − �)!(� − 1)!
m!δ!γ ! ×

×
〈

νj Aαβ(∂β+δu)
∣
∣
∣

κ−n.t.

∂�
, (∂γ w)

∣
∣
κ−n.t.

∂�

〉

+
n
∑

j=1

∑

α,β∈Nn
0

β≥ej,|α|=|β|=m

m
∑

�=1

∑

η,ω∈Nn
0

η+ω=β−ej
|ω|=�−1,|η|=m−�

(−1)m+�+1 β!(m − �)!(� − 1)!
m!η! ω! ×

×
〈

(∂ηu)
∣
∣
κ−n.t.

∂�
, νj A

�
αβ(∂α+ωw)

∣
∣
κ−n.t.

∂�

〉

=
∑

γ∈Nn
0, |γ |≤m−1

(−1)|γ | |γ |!
m!γ !

∑

α,β∈Nn
0|α|=|β|=m,α>γ

∑

δ∈Nn
0, j∈{1,...,n}

δ+ej=α−γ

α! |δ|!
δ! ×

×
〈

νj Aαβ(∂β+δu)
∣
∣
κ−n.t.

∂�
, (∂γ w)

∣
∣
κ−n.t.

∂�

〉

−
∑

η∈Nn
0, |η|≤m−1

(−1)|η| |η|!
m!η!

∑

α,β∈Nn
0

β>η,|α|=|β|=m

∑

ω∈Nn
0, j∈{1,...,n}

ω+ej=β−η

β! |ω|!
ω! ×

×
〈

(∂ηu)
∣
∣
κ−n.t.

∂�
, νj A

�
αβ(∂α+ωw)

∣
∣
κ−n.t.

∂�

〉

=
〈

∂ A
ν u,Tr

n.t.

m−1(w)
〉

−
〈

Tr
n.t.

m−1(u), ∂
A�
ν w

〉

, (9.6.40)

where for the last equality we made use of the definition of conormal derivative from
(1.8.16)–(1.8.17). Now (1.8.14) is a consequence of (1.2.2), (9.6.39), and (9.6.40).
This finishes the proof of Theorem 1.8.5.

9.7 Proofs of Theorems 1.9.1–1.9.4

We begin by recording two useful results pertaining to the bullet product, proved in
[185, §10.2], which are relevant for the present goals.

Theorem 9.7.1 Let� ⊆ R
n (where n ∈ Nwith n ≥ 2) be an open set with anAhlfors

regular boundary and abbreviate σ := Hn−1∂�. Also, fix some aperture parameter
κ ∈ (0,∞) along with an integrability exponent p ∈ ( n−1

n ,∞]

. Consider a vector

field �F : � → C
n, having Ln-measurable components, with the property that

Nκ
�F ∈ Lp(∂�, σ). (9.7.1)

In particular, �F ∈ [L1
loc(�,Ln)

]n
(cf. Lemma 8.3.1) and, with the divergence taken

in the sense of distributions in �, assume
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div �F ∈ L1
loc(�,Ln) and P

(

div �F) ∈ Lp(∂�, σ). (9.7.2)

Then, first,

�F ∈ [L1
bdd(�,Ln)

]n
and div �F ∈ L1

bdd(�,Ln), (9.7.3)

hence it is meaningful to consider the “bullet product” ν • �F as a functional in
(

Lipc(∂�)
)′
(cf. Proposition 4.2.3). Second, if p < ∞ it follows that

ν • �F belongs to the Hardy space Hp(∂�, σ) (9.7.4)

and there exists a constant C�,κ,p ∈ (0,∞), independent of �F, such that

∥
∥ν • �F∥∥Hp(∂�,σ)

≤ C�,κ,p

{∥
∥Nκ

�F∥∥Lp(∂�,σ)
+ ∥
∥P(div �F)

∥
∥
Lp(∂�,σ)

}

. (9.7.5)

Third, corresponding to the limiting case p := ∞ and q := ∞, one has

ν • �F ∈ L∞(∂�, σ) and there exists C�,κ ∈ (0,∞) such that
∥
∥ν • �F∥∥L∞(∂�,σ)

≤ C�,κ

{∥
∥Nκ

�F∥∥L∞(∂�,σ)
+ ∥
∥P(div �F)

∥
∥
L∞(∂�,σ)

}

= C�,κ

{

‖ �F‖L∞(�,Ln) + ∥
∥P(div �F)

∥
∥
L∞(∂�,σ)

}

.

(9.7.6)

More generally, we have the following extension of Theorem 9.7.1 (to arbitrary
first-order systems in place of the divergence):

Theorem 9.7.2 Fix n ∈ N with n ≥ 2, and suppose � ⊆ R
n is an open set with

an Ahlfors regular boundary. Abbreviate σ := Hn−1∂� and select an integrability
exponent p ∈ ( n−1

n ,∞)

. Also, pick two integers N , M ∈ N and consider an arbi-
trary N × M homogeneous first-order system D with constant complex coefficients
in R

n, along with a vector-valued function F : � → C
M, having Ln-measurable

components, with the property that for some κ ∈ (0,∞) one has

NκF ∈ Lp(∂�, σ). (9.7.7)

In particular, F ∈ [L1
loc(�,Ln)

]M
(cf. Lemma 8.3.1), and one also assumes that

DF, computed in the sense of distributions in �, has components in L1
loc(�,Ln)

and satisfies
P(DF) ∈ Lp(∂�, σ). (9.7.8)

Then, with the bullet product defined as in (1.9.19), one has

Sym(D; ν) • F ∈ [Hp(∂�, σ)
]N

(9.7.9)

and there exists a constant C = C(�, D, p, κ) ∈ (0,∞) such that
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∥
∥
∥Sym(D; ν) • F

∥
∥
∥[Hp(∂�,σ)]N

≤ C
∥
∥NκF

∥
∥
Lp(∂�,σ)

+ C‖P(DF)‖Lp(∂�,σ). (9.7.10)

Moreover, if in place of (9.7.7) and (9.7.8) one now assumes

NκF ∈ Lp(∂�,wσ) and P(DF) ∈ Lp(∂�,wσ)

for some exponent p ∈ (1,∞),
(9.7.11)

then actually

Sym(D; ν) • F belongs to the Lebesgue space
[

Lp(∂�, σ)
]N

(9.7.12)

and there exists a constant C = C(�, κ, p) ∈ (0,∞), independent of F, such that

∥
∥Sym(D; ν) • F

∥
∥[Lp(∂�,σ)]N ≤ C

{∥
∥NκF

∥
∥
Lp(∂�,σ)

+ ∥
∥P(DF)

∥
∥
Lp(∂�,σ)

}

.

(9.7.13)

Granted these results, we may now present in quick succession the proofs of
Theorems 1.9.1–1.9.3.

Proof of Theorem 1.9.1 As regards the claims made in item (i) when p ∈ [1,∞),
the fact that ν • �F , originally defined as a distribution on ∂� in the manner described
in Proposition 4.2.3, actually belongs to Lp(∂�, σ) is a consequence of (9.7.4),
bearing in mind that the Hardy space Hp(∂�, σ) coincides, in a quantitative sense,
with the Lebesgue space Lp(∂�, σ) whenever p belongs to (1,∞). The case when
p = ∞ is handled based on (9.7.6).

Having established that ν • �F ∈ Lp(∂�, σ), on account of (3.7.3) and Proposi-
tion 4.1.4 we may rephrase (4.2.12)–(4.2.13) as the integration by parts formula
(1.9.6). Corollary 3.7.3 then ensures the uniqueness of the function ν • �F with these
properties. In addition, estimate (1.9.7) in item (ii) is implied by (9.7.5) (again, keep-
ing in mind that Hp(∂�, σ) = Lp(∂�, σ) if 1 < p < ∞). The claims in item (iii)
may be justified using Theorem 9.7.1 in the same fashion as above. Finally, the claim
in item (iv) is a consequence of work in [185, §10.2]. �
Proof of Theorem 1.9.2 All claims are justified based on Theorem 9.7.1, Proposi-
tion 4.2.3, and the compatibility between the distributional pairing on ∂� with the
duality brackets for the Hardy and Hölder spaces (see the discussion in [185, §4.6]).

Proof of Theorem 1.9.3 This is a consequence of Theorem 9.7.2 and the compat-
ibility between the distributional pairing on ∂� with the duality brackets for the
Hardy and Hölder spaces (cf. the discussion in [185, §4.6]). �

Finally, here is the proof of Theorem 1.9.4.

Proof of Theorem 1.9.4 Select a compact set K such that

�F ∈ [L1
bdd(�,Ln) + E ′

K (�)
]n

and
div �F = f + u in D′(�), where f ∈ L1(�,Ln) and u ∈ E ′

K (�).
(9.7.14)
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Also, bring in a cutoff function η ∈ C∞
c (�) satisfying η ≡ 1 near K . Starting with

(1.9.31) then using Definition 4.2.6 and (1.9.30), we may write (keeping in mind
(1.3.3))

lim
R→∞

〈

ν • �F, φR

∣
∣
∂�

〉

= lim
R→∞

〈

ν • ((1 − η) �F), φR

∣
∣
∂�

〉

= lim
R→∞

∫

�

(1 − η) �F · ∇φR dLn + lim
R→∞

∫

�

div
(

(1 − η) �F)φR dLn

= lim
R→∞

∫

�

�F · ∇φR dLn + lim
R→∞

∫

�

{

(1 − η)(div �F) − ∇η · �F
}

φR dLn

= −[ �F]F + lim
R→∞

∫

�

(1 − η)f φR dLn − lim
R→∞

∫

�

(∇η · �F)φR dLn

= −[ �F]F +
∫

�

(1 − η)f dLn − lim
R→∞

∫

�

∇(ηφR) · �F dLn

= −[ �F]F +
∫

�

(1 − η)f dLn −
∫

�

∇η · �F dLn. (9.7.15)

Hence, the limit in (1.9.31) exists and

(

ν • �F, 1
)

F
= −[ �F]F +

∫

�

(1 − η)f dLn −
∫

�

∇η · �F dLn. (9.7.16)

Let us also observe that
∫

�

∇η · �F dLn = [D′(�)]n
〈 �F,∇η

〉

[D(�)]n = −D′(�)

〈

div �F, η
〉

D(�)

= −D′(�)〈u, η〉D(�) − D′(�)〈w, η〉D(�)

= −
∫

�

ηf dLn − E ′(�)〈w, 1〉E (�). (9.7.17)

Combining (9.7.16) and (9.7.17) then yields

(

ν • �F, 1
)

F
= −[ �F]F +

∫

�

f dLn + E ′(�)〈w, 1〉E (�)

= −[ �F]F + (C ∞
b (�))∗

(

div �F, 1
)

C ∞
b (�), (9.7.18)

thanks to (4.6.19). From this, (1.9.32) follows. �
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9.8 Proof of Theorem 1.10.1

The proof of Theorem 1.10.1 proceeds along the line of reasoning employed in the
proof of Theorem 1.3.1.

Proof of Theorem 1.10.1 That in the current setting the set � has locally finite
perimeter is a consequence of (5.9.15). If we abbreviate

�f := �F∣∣κ−n.t.

∂�
on ∂nta�, (9.8.1)

then from (1.10.2) and Proposition 8.10.6 we know that this function is well defined
and satisfies

�f ∈ [L1(∂nta�, σ)
]n

. (9.8.2)

Thanks to (9.1.3) we therefore have

�f , originally defined as in (9.8.1), may be canonically
viewed as aC

n − valued function defined σ − a.e. on ∂∗�.
(9.8.3)

First we claim that the Divergence Formula recorded in (1.10.6) holds under the
additional assumption that

there exists R ∈ (0,∞) such that �F vanishes in� \ B(0, R). (9.8.4)

To see that this is the case, recall �f from (9.8.1) and fix η > 0 arbitrary. In view of
(9.8.2), we may invoke the density result established in Corollary 3.7.3 (used here
with the choices X := ∂nta�, s := n − 1 ≥ 0, and p := 1) to find

�G ∈ [C∞
c (Rn)

]n
such that

∥
∥�f − �G∣∣

∂nta�

∥
∥[L1(∂nta�,σ)]n < η. (9.8.5)

Also, let {�ε}ε>0 be the sequence of functions associated with the set � as in
Lemma 6.1.2. Then, as in (9.1.15)–(9.1.17), we obtain

(

div �F)(�) = − lim
ε→0+

∫

�

( �F − �G) · ∇�ε dLn + lim
ε→0+

∫

�

�ε div �G dLn. (9.8.6)

As regards the first limit above, pick θ∗ ∈ (0, 1) which is small enough such that
2θ∗
1−θ∗ < κ . For some C ∈ (0,∞) which depends only on � and κ we may then
estimate

lim sup
ε→0+

∫

�

| �F − �G| |∇�ε| dLn ≤ C lim sup
ε→0+

(

ε−1
∫

Oε

| �F − �G| dLn
)

≤ C lim sup
ε→0+

∥
∥
∥Ñ ( 2θ+1

1+θ
)ε

κ,θ∗,r ( �F − �G)

∥
∥
∥
L1(∂�,σ)
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= C
∥
∥
( �F − �G)∣∣κ−n.t.

∂�

∥
∥[L1(∂nta�,σ)]n

= C
∥
∥ �F∣∣κ−n.t.

∂�
− �G∣∣

∂�

∥
∥[L1(∂nta�,σ)]n

= C
∥
∥�f − �G∣∣

∂nta�

∥
∥[L1(∂nta�,σ)]n < Cη. (9.8.7)

Above, the first inequality is implied by properties (6.1.5)–(6.1.6) of �ε, while the
second inequality is a consequence of Proposition 8.10.3 (used with r := 1 and
θ := θ∗) and (8.10.8) (used with s := 1). Next, the first equality in (9.8.7) follows
from Proposition 8.10.6 (whose applicability is ensured by our choice of θ∗), the
second equality is based on (8.9.10), and the third equality uses (9.8.1). Finally, the
last inequality in (9.8.7) comes from (9.8.5).

Thanks toLebesgue’sDominatedConvergenceTheoremandDeGiorgi–Federer’s
version of the Gauss–Green Formula from Theorem 1.1.1 we have

lim
ε→0+

∫

�

�ε div �G dLn =
∫

�

div �G dLn =
∫

∂∗�
ν · �G dσ. (9.8.8)

Also, based on (9.1.3) and (9.8.3) we may write

∣
∣
∣
∣

∫

∂∗�
ν · �G dσ −

∫

∂∗�
ν · �f dσ

∣
∣
∣
∣
≤
∫

∂∗�

∣
∣�f − �G ∣∣ dσ ≤

∫

∂nta�

∣
∣�f − �G ∣∣ dσ

= ∥
∥�f − �G∣∣

∂nta�

∥
∥[L1(∂nta�,σ)]n < η. (9.8.9)

Combining (9.8.6)–(9.8.7) and (9.8.8)–(9.8.9) then proves that for each η > 0 we
have

∣
∣
∣

(

div �F)(�) −
∫

∂∗�
ν · �f dσ

∣
∣
∣ ≤ Cη, (9.8.10)

with C > 0 a finite geometric constant independent of η. Bearing in mind (9.8.1)
and that η > 0 is arbitrary, (1.10.6) follows from this, in the case when the additional
assumption (9.8.4) is imposed.

The next goal is to establish the Divergence Formula (1.3.8) under the original
assumptions made in Theorem 1.10.1. To this end, observe from Corollary 8.10.9
(used with p := 1) that

�F∣∣
E

∈ [L n
n−1 (E,Ln)

]n
for every bounded

Ln − measurable set E ⊆ �.
(9.8.11)

As in the proof of Theorem 1.3.1 bring in the auxiliary functions {φR}R>0 ⊆ C∞
c (Rn)

(in the sense of (1.3.3)) and, for each number R ∈ (0,∞), define

�FR := φR �F in �. (9.8.12)

Then, as before, for each R > 0 there exists a number R∗ ∈ (0,∞) such that
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�FR ≡ 0 outside � ∩ B(0, R∗), (9.8.13)

and
div �FR = φR div �F + ∇φR · �F in D′(�). (9.8.14)

As a consequence of (9.8.14), (1.10.3), and (9.8.11),

div �FR is a complex Borel measure on �. (9.8.15)

In addition, thanks to the original integrability assumptions on �F , the second line of
(1.10.2), (8.2.10), and (8.10.6), for each fixed R > 0 we have

�FR ∈ [Lr
loc(�,Ln)

]n
and Ñκ,θ,r �FR ∈ L1(∂�, σ). (9.8.16)

Also, from the first line of (1.10.2) and (8.9.9)–(8.9.10), we see that the nontangential
limit

�FR

∣
∣
κ−n.t.

∂�
exists at σ − a.e. point on ∂nta� and, in fact,

�FR

∣
∣
κ−n.t.

∂�
= (

φR

∣
∣
∂�

)( �F∣∣κ−n.t.

∂�

)

at σ − a.e. point on ∂nta�.
(9.8.17)

In particular,

�FR

∣
∣
κ−n.t.

∂�
−→ �F∣∣κ−n.t.

∂�
at σ − a.e. point on ∂nta�, as R → ∞. (9.8.18)

Let us also pick
θ∗ ∈ (0, κ

κ+2

)

. (9.8.19)

Together with the first line in (9.8.17), this choice of the scale parameter ensures that
we may invoke Corollary 8.10.5 (with θ := θ∗ and u := �FR) which yields

∣
∣
∣

( �FR

∣
∣
κ−n.t.

∂�

)

(x)
∣
∣
∣ ≤ (Ñκ,θ∗,r

�FR
)

(x) ≤ C
(Ñκ,θ∗,r

�F)(x)
for each R > 0, at σ − a.e. point on ∂nta�.

(9.8.20)

The last inequality above, involving a constant C ∈ (0,∞) independent of R, is
implied by (8.2.10) and (1.3.3). In relation to (9.8.20), let us also observe that the
second line of (1.10.2) and Proposition 8.10.1 ensure that

Ñκ,θ∗,r
�F ∈ L1(∂�, σ). (9.8.21)

From (9.8.18), (9.8.21), (8.8.52), and Lebesgue’s Dominated Convergence Theorem,
we conclude that, on the one hand,

∫

∂∗�
ν · ( �FR

∣
∣
κ−n.t.

∂�

)

dσ −→
∫

∂∗�
ν · ( �F∣∣κ−n.t.

∂�
) dσ as R → ∞. (9.8.22)
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On the other hand, granted (9.8.16), (9.8.17), (9.8.15), and (9.8.13), the result estab-
lished in the first part of the proof (under the additional assumption made in (9.8.4))
applies to each vector field �FR and gives

(

div �FR
)

(�) =
∫

∂∗�
ν · ( �FR

∣
∣
κ−n.t.

∂�

)

dσ, ∀R > 0. (9.8.23)

Granted (9.8.22)–(9.8.23) and reasoning as in (9.1.32)–(9.1.33), we conclude that
the limit

lim
R→∞

∫

�

∇φR · �F dLn exists, is independent of the family {φR}R>0,

and equals the complex number
∫

∂∗�
ν · ( �F∣∣κ−n.t.

∂�
) dσ − (

div �F)(�).
(9.8.24)

In light of (1.3.2), from (9.8.24) we conclude that [ �F]∞, the contribution of �F
at infinity, is meaningfully and unambiguously defined and that the version of the
Divergence Formula recorded in (1.10.4) holds.

At this stage, there remains to deal with the claim to the effect that [ �F]∞ = 0 under
any of the assumptions (i)-(iii) made in (1.10.5). That [ �F]∞ = 0 if � is bounded is
clear from (1.3.4)–(1.3.5). Consider next the casewhen ∂� is unbounded and r ≥ n

n−1
(recall that n ≥ 2). Then (4.7.37) implies that there exists someC ∈ (0,∞) such that

∣
∣[ �F]∞

∣
∣ ≤ C lim sup

R→∞

{

R−1 ·
∫

[B(0,2R)\B(0,R)]∩�

| �F | dLn

}

. (9.8.25)

Also, since r ≥ n
n−1 , Proposition 8.10.7 applies in the current setting (with p := 1)

and gives
�F ∈ [L n

n−1 (�,Ln)
]n

. (9.8.26)

Given thatwe are also assuming thatn ≥ 2, for each R ∈ (0,∞)wemayuseCauchy–
Schwarz’ inequality and Hölder’s inequality to estimate

R−1 ·
∫

[B(0,2R)\B(0,R)]∩�

| �F | dLn

≤ R−1
( ∫

[B(0,2R)\B(0,R)]∩�

| �F | n
n−1 dLn

) n−1
n
( ∫

B(0,2R)

1 dLn
) 1

n

≤ C
( ∫

[B(0,2R)\B(0,R)]∩�

| �F | n
n−1 dLn

) n−1
n

(9.8.27)
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for some purely dimensional constant C ∈ (0,∞). In view of (9.8.26), Lebesgue’s
Dominated Convergence Theorem applies and proves that the limit in (9.8.25) is
actually zero, hence [ �F]∞ = 0 in this case as well. Finally, when �F satisfies (1.2.3)
for some λ ∈ (1,∞), Lemma 4.7.3 implies that [ �F]∞ = 0 once more. The proof of
Theorem 1.10.1 is therefore complete. �

9.9 Proofs of Theorems 1.11.3, 1.11.6, and 1.11.8–1.11.11

Here is the proof of Theorem 1.11.3.

Proof of Theorem 1.11.3 We begin by arguing as in Step I in the proof of Theo-
rem1.3.1, bearing inmind that the bounded support property hypothesized in (9.1.11)
now happens automatically since � is a relatively compact set to begin with. All but
one of the ingredients used in this portion of the proof of Theorem 1.3.1 (abstract
measure theoretic results, purely real-variable results valid on general spaces of
homogeneous type, and distributional integrations by parts) have direct analogues
in the setting of compact Riemannian manifolds presently considered (replacing
the ordinary flat-space divergence and gradient operators with divg and the metric
gradient operator ∇g). The only step in this process which requires special care is
(9.1.19), which we now deal with by invoking Theorem 1.11.1 in lieu of De Giorgi–
Federer’s version of the Gauss–Green Formula employed earlier in the Euclidean
setting. Ultimately, we arrive at a version of Theorem 1.11.3 for measurable vector
fields �F : � → T M satisfying

Nκ
�F ∈ L1(∂�, σg) and divg �F ∈ CBM(�). (9.9.1)

In turn, this class may be enlarged to the category of vector fields described in
Theorem 1.11.3 by arguing as in the first part of the proof of Theorem 1.4.1, up to
(and including) (9.2.19) (while disregarding the contribution at infinity terms). The
latter argument is a localization procedure of a purely local, real-variable nature and
carries over, virtually verbatim, to the setting of manifolds. �

We continue by giving the proof of Theorem 1.11.6.

Proof of Theorem 1.11.6 Note that the current hypotheses and Lemma 8.3.2 imply
that

u ∈ L∞
loc(�,Ln

g) ⊗ E and w ∈ L∞
loc(�,Ln

g) ⊗ F . (9.9.2)

To proceed, define the vector field �F : � → T M via the requirement that at Ln
g-a.e.

point x ∈ � we have

T ∗
x M
(

ξ, �F(x)
)

TxM =
〈

(−i)Sym(D; ξ)u(x), w(x)
〉

Ex

(9.9.3)
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for each ξ ∈ T ∗
x M . Since the right-hand side of (9.9.3) is linear in ξ , this definition

is meaningful. Moreover, it is apparent from (9.9.2) and (9.9.3) that

�F ∈ L∞
loc(�,Ln

g) ⊗ T M ⊂ L1
loc(�,Ln

g) ⊗ T M. (9.9.4)

Also, if κ ′′ := min{κ, κ ′} > 0, then

Nκ ′′ �F ≤ C Nκu · Nκ ′w pointwise on ∂�. (9.9.5)

In particular, from (9.9.5), the second line in (1.11.26), and (8.2.26) we conclude
that

Nκ ′′ �F ∈ L1(∂�, σg). (9.9.6)

Finally,
the pointwise nontangential boundary

trace �F∣∣κ
′′−n.t.

∂�
exists σg − a.e. on ∂nta�,

(9.9.7)

and at σg-a.e. point x ∈ ∂∗� we have

T ∗
x M

(

νg(x),
( �F∣∣κ

′′−n.t.

∂�

)

(x)
)

TxM

=
〈

(−i)Sym(D; ν(x))
(

u
∣
∣
κ′′−n.t.

∂�

)

(x),
(

w
∣
∣
κ′′−n.t.

∂�

)

(x)
〉

Ex

=
〈

(−i)Sym(D; ν(x))
(

u
∣
∣
κ−n.t.

∂�

)

(x),
(

w
∣
∣
κ′−n.t.

∂�

)

(x)
〉

Ex

. (9.9.8)

The next goal is to compute the divergence of �F (in the sense of distributions).
To this end, select an arbitrary test function ψ ∈ C 1

c (�) and write

〈

divg �F, ψ
〉 = −

∫

�
T ∗M

(

dψ, �F)T M dLn
g

=
∫

�

〈

iSym(D; dψ)u, w
〉

E
dLn

g (9.9.9)

where the last equality is implied by (9.9.3) with ξ := dψ .Working locally and using
Friedrichs’ mollifier, construct next a sequence {uε}ε>0 ⊂ C 1(�,E) satisfying

uε −−−→
ε→0+

u atLn
g − a.e. point in suppψ,

Duε −−−→
ε→0+

Du in L1(suppψ,Ln
g) ⊗ F ,

and supε>0 supx∈suppψ |uε(x)|Ex < ∞.

(9.9.10)

Thanks to this, Lebesgue’s Dominated Convergence Theorem, and the commutator
identity
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iSym(D; dψ)u = ψDu − D(ψu) (9.9.11)

(cf. (1.11.25)) we may then compute

∫

�

〈

iSym(D;dψ)u, w
〉

E
dLn

g

= lim
ε→0+

∫

�

〈

iSym(D; dψ)uε, w
〉

E
dLn

g

= lim
ε→0+

∫

�

〈

ψDuε, w
〉

E dLn
g − lim

ε→0+

∫

�

〈

D(ψuε), w
〉

E dLn
g

=
∫

�

〈

ψDu, w
〉

E dLn
g − lim

ε→0+

∫

�

〈

ψuε, D
�w

〉

F dLn
g

=
∫

�

ψ
{〈

Du, w
〉

E − 〈

u, D�w
〉

F
}

dLn
g. (9.9.12)

In concert with (9.9.9), this proves that, in the sense of distributions in �,

divg �F = 〈

Du, w
〉

E − 〈

u, D�w
〉

F . (9.9.13)

In light of the last line in (1.11.26) this implies that

divg �F ∈ L1(�,Ln
g). (9.9.14)

Having established (9.9.4), (9.9.6), (9.9.7), and (9.9.14), Corollary 1.11.5 applies,
and (1.11.20) yields (1.11.27) on account of (9.9.8) and (9.9.13). �

Next, we present the proof of Theorem 1.11.8.

Proof of Theorem 1.11.8 The first two claims in the conclusion of Theorem 1.11.8
are consequences of Proposition 8.9.8 and Proposition 8.8.6, so the focus becomes
the integration by parts formula (1.11.45). To justify this, with {ei}1≤i≤n denoting the
standard orthonormal basis in R

n, we start by defining the vector field

�F :=
n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk uβwα(Njek − Nkej) : � → R
n. (9.9.15)

Clearly, �F ∈ [L1
loc(�, S)

]n
, and since

N · �F =
n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk uβwα(NjNk − NkNj) = 0 on �, (9.9.16)

it follows that �F is tangent to ∂D. As such, �F may be viewed as a vector field relative
to the manifold ∂D, with locally integrable components defined in �, i.e.,
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�F ∈ L1
loc(�, S) ⊗ T ∂D. (9.9.17)

When regarding it as such, the assumptions on u, w also imply that

Nκ
�F ∈ L1(∂�, σ) and �F∣∣κ−n.t.

∂�
exists σ − a.e. on ∂nta�. (9.9.18)

Moreover, the above nontangential boundary trace is independent of κ and, with the
dependence on κ systematically suppressed, at σ -a.e. point on ∂∗� we have

ν · ( �F∣∣n.t.
∂�

) =
n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk (Njνk − Nkνj)
(

uβ

∣
∣
n.t.

∂�

)(

wα

∣
∣
n.t.

∂�

)

. (9.9.19)

Let div
∂D stand for the differential geometric divergence on the manifold ∂D, and

denote by grad
∂D

the differential geometric gradient on the manifold ∂D. In order

to compute div
∂D

�F in the sense of distributions in � (regarded as an open subset
of the manifold ∂D), pick an arbitrary scalar-valued function ϕ ∈ C 1

c (Rn) with the
property that suppϕ ∩ ∂D ⊆ � and write

D′(�)

〈

div
∂D

�F, ϕ
∣
∣
�

〉

D(�)

= − [D′(�)]n
〈 �F, grad

∂D

(

ϕ
∣
∣
�

)〉

[D(�)]n = −
∫

�

�F · grad
∂D

(

ϕ
∣
∣
�

)

dS

= −
∫

�

�F ·
(

(∇ϕ)
∣
∣
�

− N · (∇ϕ)
∣
∣
�
N
)

dS = −
∫

�

�F · (∇ϕ) dS

= −
∫

�

n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk uβwα

(

Nj[∂kϕ]∣∣
�

− Nk [∂jϕ]∣∣
�

)

dS

= −
∫

�

n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk uβwα∂τjkϕ dS

=
∫

�

n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk ∂τjk (uβwα)ϕ dS

=
∫

�

n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk

{

(∂τjk uβ)wα + uβ(∂τjkwα)
}(

ϕ
∣
∣
�

)

dS. (9.9.20)

Above, the first equality uses that, up to a minus sign, the differential operators div
∂D

and grad
∂D

are transposed to one another on the manifold ∂D. The second equality
is a consequence of (9.9.17). The third equality is implied by [77, Theorem 5.1,
p. 1012], and the fourth equality is seen from (9.9.16). The fifth equality is clear
from (9.9.15), while the sixth equality follows from the definition of the tangential
differential operator ∂τjk on smooth functions. Finally, the last two equalities may be
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justified by integrating by parts on the boundary, keeping inmind that our (boundary)
Sobolev spaces are modules over space of compactly supported Lipschitz functions
(see the discussion in [185, §11.1] for details).

Ultimately, formula (9.9.20) proves that

div
∂D

�F =
n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk

{

(∂τjk uβ)wα + uβ(∂τjkwα)
}

in D′(�). (9.9.21)

In concert with (1.11.42)–(1.11.43) this shows that

div
∂D

�F belongs to L1(�, S) (9.9.22)

and

∫

�

div
∂D

�F dS =
∫

�

n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk (∂τjk uβ)wα dS

+
∫

�

n
∑

j,k=1

M
∑

α=1

M ′
∑

β=1

aαβ

jk uβ(∂τjkwα) dS. (9.9.23)

At this stage, Corollary 1.11.5 applies to the manifold M := ∂D and the vector
field �F : � → T M . On account of (9.9.17), (9.9.18), (9.9.19), and (9.9.23), the
Divergence Formula (1.11.20) then yields (1.11.45). �

The proof of Theorem 1.11.9 is presented below.

Proof of Theorem 1.11.9 Following a common convention, if in local coordinates
(x1, . . . , xn) the Riemannian metric tensor is expressed as

g =
∑

1≤j,k≤n

gjk dxj ⊗ dxk (9.9.24)

we let (gjk)1≤j,k≤n denote the inverse of the (real, symmetric) matrix (gjk)1≤j,k≤n. In
particular (see, e.g., [189, (2.1.23), p. 53])

〈

dxj, dxk
〉

T∗M
= gjk for each j, k ∈ {1, . . . , n}. (9.9.25)

It is also customary to use the symbol
√
g to denote

√

det
[

(gjk)1≤j,k≤n
]

. In addition,
for each index j ∈ {1, . . . , n} we agree to abbreviate

d̂xj := dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn. (9.9.26)

Then (cf. [189, (2.1.14), p. 50] and [189, (2.1.27), p. 53])
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dVg = √
g dx1 ∧ · · · ∧ dxn = ∗1 (9.9.27)

which, in concert with [189, Lemma 2.2(9), p. 54] and [189, Proposition 2.4, p. 55],
implies that for each i ∈ {1, . . . , n} we have

∗(dxi) = ∗(dxi ∧ 1) = dxi ∨ (∗1) = dxi ∨ dVg

= √
g

n
∑

j=1

(−1)j−1gijd̂xj. (9.9.28)

If we now pick k ∈ {1, . . . , n} then multiply the most extreme sides of (9.9.28) by
gik and sum up in i ∈ {1, . . . , n} we arrive at

d̂xk = (−1)k−1

√
g

n
∑

i=1

gik ∗ (dxi). (9.9.29)

Hence, on account of ∗ ∗ dxi = (−1)n+1dxi (see [189, Lemma 2.2(1), p. 54]), from
(9.9.29) we obtain that

∗(d̂xk) = (−1)k+n

√
g

n
∑

i=1

gik dxi for each k ∈ {1, . . . , n}. (9.9.30)

Given an arbitrary (n − 1)-form ω ∈ C 0(M,�n−1T M), we may locally express

ω =
n
∑

k=1

(−1)k−1ωk d̂xk (9.9.31)

for some scalar-valued continuous functionsωk , 1 ≤ k ≤ n. Then, based on (9.9.31),
(1.11.10), (9.9.30), and (9.9.25), we may compute (bearing in mind that the matrices
(gjk)1≤j,k≤n and (gjk)1≤j,k≤n are inverse to one another)

(−1)n−1
〈 ∗ ω, νg

〉

T∗M
σg = √

g
n
∑

j,k=1

(−1)n+kωkν
E
j

〈 ∗ (d̂xk), dxj
〉

T∗M
σ E

=
n
∑

i,j,k=1

ωkν
E
j gik

〈

dxi, dxj
〉

T∗M
σ E

=
n
∑

i,j,k=1

ωkν
E
j gkig

ijσ E =
n
∑

j,k=1

ωkν
E
j δjkσ

E

=
n
∑

j=1

ωjν
E
j σ E = (−1)n−1

〈 ∗E ω, νE
〉

Rnσ
E, (9.9.32)
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where ∗E is the Hodge star operator associated with the standard Euclidean metric in
R

n and 〈·, ·〉Rn is the standard inner product inR
n. Since the last expression above does

not depend on the Riemannian metric g, we conclude from (9.9.32) and (1.11.58)
that for each given (n − 1)-form ω ∈ C 0(M,�n−1T M) the Radon measure ι∗# ω is
actually independent of the Riemannian metric g (chosen to define it). This proves
that, as claimed, the definition of the sharp pull-back given in (1.11.58) is in fact
independent of the background Riemannian metric g.

Next, fix an arbitrary (n − 1)-form ω ∈ C 0(M,�n−1T M). That its sharp pull-
back ι∗# ω (originally defined in (1.11.58)) may be equivalently written as in (1.11.59)
is seen with the help of [189, Lemma 2.2,(3),(8), and (2.1.27)–(2.1.29), pp. 53–54].

Consider now the taskof establishing the integral formula (1.11.60) for an arbitrary
(n − 1)-form ω ∈ C 1

c (M,�n−1T M). To set the stage, recall from (1.12.139) the
musical isomorphism between cotangent and tangent vectors on M , expressed in
local coordinates by

T ∗M 
 ξ =
n
∑

j=1

ξjdxj �−→ ξ� :=
n
∑

j,k=1

gjkξj∂k ∈ T M. (9.9.33)

In turn, this metric identification of T ∗M with T M permits us to define the vector
field

�F := (∗ω)� ∈ C 1
c (M, T M). (9.9.34)

Thanks to [189, (9.1.16), p. 373] and [189, Lemma 2.8(2), p. 63], this satisfies

divg �F = −δ(∗ω) = (−1)n−1 ∗ dω on M, (9.9.35)

where divg is the differential geometric divergence, while d and δ are, respectively,
the exterior derivative operator and its transpose, on the Riemannian manifold M .
Bearing in mind that ∗ ∗ dω = dω and ∗1 = dVg (cf. [189, Lemma 2.2(1), p. 54] and
(9.9.27)), this further implies

dω = (−1)n−1(divg �F)(∗1) = (−1)n−1(divg �F) dVg on M. (9.9.36)

In addition, from (9.9.34) and [189, (9.1.3), p. 372] we see that

T ∗M
(

νg, �F ∣∣
∂∗�

)

T M
= T ∗M

(

νg,
(

(∗ω)
∣
∣
∂∗�

)�
)

T M

= 〈

(∗ω)
∣
∣
∂∗�

, νg
〉

T∗M
at σg − a.e. point on ∂∗�. (9.9.37)

At this stage, Theorem1.11.1 (cf. alsoRemark 1.11.2)may be applied to the vector
field (9.9.34), in which case the Divergence Formula (1.11.13) becomes precisely
(1.11.60), on account of (9.9.36), (9.9.37), and (1.11.4). �

We now turn to the proof of Theorem 1.11.10.
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Proof of Theorem 1.11.10 With the piece of notation introduced in (1.12.139), con-
sider the vector field (compare with (9.9.34))

�F := (∗ω)� ∈ L1
loc(�,Ln

g) ⊗ T M. (9.9.38)

Then, in a manner analogous to (9.9.35) and (9.9.36), we presently obtain

divg �F = (−1)n−1 ∗ dω ∈ L1(�,Ln
g), (9.9.39)

as well as
dω = (−1)n−1(divg �F) dVg on �. (9.9.40)

Also, much as in (9.9.37), we now have

T ∗M
(

νg, �F ∣∣n.t.
∂�

)

T M
= 〈

(∗ω)
∣
∣
n.t.

∂�
, νg

〉

T∗M
at σg − a.e. point on ∂∗�. (9.9.41)

Granted (9.9.39)–(9.9.41), we may invoke Corollary 1.11.5, and (1.11.20) gives
(1.11.70).

Going further, the fact that the nontangential pull-back of ω to ∂∗� defined as in
(1.11.68) is actually independent of the Riemannian metric g may be justified as in
the proof of Theorem 1.11.9. Specifically, if ω is locally represented as in (9.9.31),
then reasoning as in (9.9.32) presently gives

ι∗n.t. ω =
n
∑

j=1

(

ωj

∣
∣
n.t.

∂�

)

νE
j σ E

= (−1)n−1
〈 ∗E

(

ω
∣
∣
n.t.

∂�

)

, νE
〉

Rnσ
E on ∂∗�, (9.9.42)

from which the desired conclusion is clear. Another proof of the independence of
ι∗n.t. ω on the metric g goes as follows. First observe that for each scalar function
ϕ ∈ C 1(M) the differential (n − 1)-form ϕ ω belongs to L1

loc(�,Ln
g) ⊗ �n−1T M

and satisfies properties which are similar to those of ω recorded in (1.11.67). Indeed,
since ϕ is bounded we have Nκ(ϕ ω) ∈ L1(∂�, σg), and since ϕ is continuous it

follows that (ϕ ω)
∣
∣
κ−n.t.

∂�
exists and equals

(

ϕ
∣
∣
∂nta�

)(

ω
∣
∣
κ−n.t.

∂�

)

at σg-a.e. point on ∂nta�.
In particular,

ι∗n.t.(ϕ ω) = (

ϕ
∣
∣
∂∗�

)

ι∗n.t. ω on ∂∗�. (9.9.43)

Also, with the action of the exterior derivative operator d considered in the sense of
distributions in �, we have

d(ϕ ω) = ϕ dω + dϕ ∧ ω ∈ L1(�,Ln
g) ⊗ �nT M, (9.9.44)

where the membership is implied by (1.11.67) and Proposition 8.6.10. Having noted
this, (1.11.70) applies to the (n − 1)-form ϕ ω and, in concert with (9.9.43), permits
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us to write ∫

∂∗�
ϕ ι∗n.t. ω =

∫

∂∗�
ι∗n.t.(ϕ ω) =

∫

�

d(ϕ ω). (9.9.45)

Then the desired conclusion follows from (9.9.45), on account of the arbitrariness
of ϕ, by observing that the last expression above is independent of the metric g.

Finally, that ι∗n.t. ω (originally defined in (1.11.68)) may be equivalently expressed
as in (1.11.69) is a consequence of [189, Lemma 2.2,(3),(8), and (2.1.27)–(2.1.29),
pp. 53–54]. �

Here is the proof of Theorem 1.11.11.

Proof of Theorem 1.11.11 The idea is to reason as in the proof of Theorem 1.11.10,
now making use of the full force of Theorem 1.11.3 (in lieu of Corollary 1.11.5), for
the vector field given by �F := (∗ω)� ∈ D′(�) ⊗ T M . �
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O
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P
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product
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Riesz transform

boundary-to-boundary, 460
distributional, 460
truncated, 459

S
second-countable topological space, 283
semi-uniform set, 814
separable measure, 274
separation property, 494
set

(R, δ)-Reifenberg flat, 494
n-thick, 347
Ahlfors regular, 431
countably rectifiable, 357
lower Ahlfors regular, 431
of finite perimeter, 409
of locally finite perimeter, 370
porous, 749
two-sided n-thick, 348
uniformly rectifiable (UR), 456
upper Ahlfors regular, 431

sharp pull-back, 93
signed Radon measure, 269
simple functions, 246
simple functions with support of finite mea-

sure, 246
simply connected domain, 420
solid maximal function

definition, 553
local, 564

space
John-Nirenberg, BMO, 600
Lorentz, 500
maximal Lebesgue, 558
maximal Lorentz, 558
of functions of bounded variation, 369
of functions of locally bounded variation,
369

space of homogeneous type, 582
standard fundamental solution for the Lapla-

cian, 165
star-like with respect to a set, 396
strongly Lindelöf topological space, 283
subaveraging function, 547
support of a measurable function, 285
surface ball, 478
surface measure

σ := Hn−1�∂� on ∂�, 4
system of auxiliary function, 29

T
tame interior approximation, 201
tangential derivative

weak, 308
tangential derivative operator, 113
tangential maximal function, 724
test functions

on 	, 292
topological space

Lindelöf, 283
second countable, 283
strongly Lindelöf, 283

truncated
Cauchy-Clifford integral operator, 459
Riesz transform, 459

two disk condition, 461

U
uniformly rectifiable (UR)

domain, 462
set, 456

V
variation, 368

finite, 369
functions of bounded, 369
functions of locally bounded, 369
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W
weak tangential derivative, 308
weight

function, 638
Muckenhoupt, 639

Whitney
balls, 611

decomposition, 611, 617

Z
Zygmund domain, 452
Zygmund’s class, 452
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∗ Hodge star operator, 92
∧ exterior product of differential forms, 87
∨ interior product of differential forms, 87
� Clifford algebra multiplication, 521

 Laplace operator, 528
∇u gradient (Jacobian matrix) of u, 244
∇′ gradient operator in R

n−1, 387

 = 
(x, r) surface ball, 478
U
V symmetric difference ofU and V , 244
D′(�)〈·, ·〉D(�) distributional pairing in�, 31
X∗

(·, ·)X duality pairing between X and its
algebraic dual X∗, 330

(Lipc(	))′ 〈·, ·〉Lipc(	) (or simply 〈·, ·〉) distri-
butional pairing, 297〈·, ·〉E pointwise (real) pairing in the fibers of
Hermitian vector bundle E , 86

〈·, ·〉��T M (real) pointwise pairing on
��T M , 87

Lipc(∂�)′ 〈·, ·〉Lipc(∂�) pairing between
Lipc(∂�) and its dual Lipc(∂�)′,
460

[D′(�)]M 〈·, ·〉[D(�)]M vector-valued distribu-
tional pairing, 329

u · w = 〈u, w〉 dot product of two vectors
u, w ∈ R

n , 2, 59
[ �F]∞ contribution of �F at infinity, 29(
u|κ−n.t.

∂�

)
(x) nontangential trace of u at x ∈

∂�, 786
(a)+ := max{a, 0}, 574, 756
1E characteristic function of E , 3, 244ffl

E f dμ,
ffl

E f dμ integral average of f on
E , 373

Ů interior of the set U , 244

U closure of the set U , 244
i = √−1 ∈ C complex imaginary unit, 59
[A; B] := [A, B] := AB − B A the com-

mutator of A and B, 529
{A; B} := AB + B A the anti-commutator

of A and B, 529
d exterior derivative operator, 87, 544
δ formal adjoint of the exterior derivative

operator d, 87, 544
δ jk Kronecker symbol, 130
δx Dirac distribution with mass at x , 32
δF distance function to the set F , 495
δ
reg

F regularized distance function to the set
F , 496

δ∂�(·) distance function to the boundary,
496, 553, 672

εA
B generalized Kronecker symbol, 539

�κ(x) nontangential approach region, 672
κX , 612
��T M the �-th exterior power of the vector

bundle on M , 80
μ̂Cauchy-Clifford transform of the measure

μ, 536
ν geometric measure theoretic outward unit

normal, 372
νg GMT unit normal induced by the metric

tensor g, 81
νE GMTunit normal induced by the standard

Euclidean metric, 81
ν • �F the bullet product of ν with �F , 70, 304
ωn−1 surface area of Sn−1, 130
�+ inner domain, 422
�− outer domain, 422
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�θ cone of (full) aperture θ , 672
ρsym the symmetrized version of ρ, 571
ρ# the regularized version of ρ, 572
σg surface measure induced by the metric

tensor g, 81
σE surface measure induced by the standard

Euclidean metric, 81
σ∗ = Hn−1�∂∗� surface measure, 3
σ = Hn−1�∂� surface measure on ∂�, 4
∂ E (topological) boundary of E , 244
∂nta� nontangentially accessible boundary

of �, 781
∂lfp�, 417
∂∗ E measure theoretic boundary of E , 351
∂∗ E reduced boundary of E , 373
∂T E , 381
∂ N E , 381
∂τ jk weak tangential derivative, 308
∂τXY

tangential derivative operator on mani-
folds, 113

��
m projection map onto ��

m , 539
πκ(E),π�,κ (E) “shadow” (or projection) of

E ⊆ � onto ∂�, 674
τt dilation by a factor of t , 326
τρ topology induced by the quasi-distance ρ,

570
Aκ (∂�) accessibility set, 48, 774
Ap(X, ρ, μ) Muckenhoupt class, 639
[w]Ap characteristic of the Muckenhoupt

weight w, 639
A∞(X, ρ, μ) Muckenhoupt class, 640, 655
BMO(X, μ) space of functions of bounded

mean oscillations, 600
BMO1 function, 210
‖ · ‖BMO(X,μ) homogeneous BMO semi-

norm, 595
‖ · ‖BMO(X,μ) inhomogeneous BMO

“norm”, 598
‖ f ‖∗(
) local BMO norm of f on 
, 593
B̃MO(X, μ) the space BMO modulo con-

stants, 601
BV(O) space of functions of bounded vari-

ation in O, 369
BVloc(O) space of functions of locally

bounded variation in O, 369
Bn−1(x ′, r) open ball with center x ′ and

radius r in R
n−1, 130

Bρ(x, r) ρ-ball with center at x and radius
r , 570

Borelτ (X) Borelians of the topological
space (X, τ ), 245

BL(	) bounded Lipschitz functions on 	,
291

Cmax maximal Cauchy-Clifford integral
operator, 458

C
alt

max maximal “altered” Cauchy integral
operator, 435, 457

Cε truncated Cauchy–Clifford integral oper-
ator, 459

C boundary-to-boundary Cauchy–Clifford
integral operator, 459

C k(�) functions of class C k in an open
neighborhood of �, 2

C k -singsup u singular support of u, 196
C∞

c (Rn) smooth and compactly supported
functions in R

n , 2
C∞

c (�) smooth and compactly supported
functions in �, 322

C∞
b (�) smooth and bounded functions in�,

37, 330(
C∞

b (�)
)∗ the algebraic dual of C∞

b (�),
330(

C∞
b (�)

)∗ algebraic dual of C∞
b (�), 37

Ċ α(U, ρ) homogeneous Hölder space, 578
‖ · ‖ ˙C α(U,ρ) homogeneous Hölder space

semi-norm, 578
Ċ α(U, ρ)/ ∼ homogeneous Hölder space

modulo constants, 579
Ċ α
loc(U, ρ) local homogeneous Hölder

space, 579
C α(U, ρ) inhomogeneous Hölder space,

580
‖ · ‖C α(U,ρ) inhomogeneous Hölder space

norm, 580
C α

c (U, ρ) Hölder functions with ρ-bounded
support, 581

CBM(�) complex Borel measures in �, 29,
329, 330

CBM(X, τ ) complex Borel measures in the
topological space (X, τ ), 269

C�n Clifford algebra generated by n imagi-
nary units, 521

Cθ,b(x, h), 386
Cρ , 570
C̃ρ , 570
D(X) dyadic grid on X , 612
Dk(X), 612
D′(Rn) space of distributions in R

n , 3
D′(�) space of distributions in �, 18, 329
D = ∑n

j=1 e j � ∂ j Dirac operator in R
n ,

544
D first-order system, 58
D� (real) transpose of the first-order system

D, 59
D complex conjugate of the first-order sys-

tem D, 59



Symbol Index 923

D∗ Hermitian adjoint of the first-order sys-
tem D, 59

DL Dirac operator acting from the left, 527
DR Dirac operator acting from the right, 527
Dist [E, F] Pompeiu–Hausdorff distance

between E and F , 213
diamρ(A) ρ-diameter of the set A, 570
dg(x, y) geodesic distance between x and y,

80
div �F the divergence of the vector field �F , 2
divg differential geometric divergence, 82
dVg volume element on M induced by the

metric tensor g, 80
E
 standard fundamental solution for the

Laplacian, 165
E ′(�) distributions compactly supported in

�, 329
E ′

K (�) distributions in � supported in K ,
329

ext∗(E)measure theoretic exterior of E , 193
e j standard j th unit vector in R

n , 130
{e j }1≤ j≤n standard orthonormal basis inR

n ,
130, 244

F (�), 838
fBρ (x,r) integral average of f over Bρ(x, r),

585
f ∗
E non-increasing rearrangement of f :

E → R, 498
f #p L p-based Fefferman-Stein sharp maxi-

mal function, 602
G, 81
g = ∑

1≤ j,k≤n g jkdx j ⊗ dxk Riemannian
metric tensor, 79√

g, 81
Hn−1 the (n − 1)-dimensional Hausdorff

measure in R
n , 4

Hn−1
g (n − 1)-dimensional Hausdorff mea-

sure associated with the metric g, 80
Hs s-dimensional Hausdorff measure in R

n ,
243

Hs∗ s-dimensional Hausdorff outer measure
in R

n , 243
IE,α fractional integral operator of order α

on E , 664
int∗(E) measure theoretic interior of E , 193
ι∗ pull-back map induced by the canonical

inclusion ι, 91
ι∗# sharp pull-back, 93
ι∗n.t. nontangential pull-back, 95
K
 boundary-to-boundary harmonic double

layer potential, 9
K #


 transpose harmonic double layer poten-
tial, 9

L(ξ) characteristic matrix of L , 552
Ln Lebesgue measure in R

n , 2, 244
Ln

g measure associated with the n-form dVg ,
80

Lip(X) space of Lipschitz functions on X ,
279, 291

Lipc(X) space of Lipschitz functions with
bounded support in X , 279, 292, 460(

Lipc(	)
)′ distributions on 	, 297

L0(X, μ) measurable functions which are
a.e. pointwise finite, 250

Lr
fin(X, μ) Lr -integrable functions on sets of

finite μ-measure, 503
L∞
comp essentially bounded functions with

compact support, 36
L p
bdd(�,Ln) p-th power integrable func-

tions over bounded subsets of �, 302
L p

� (�,μ) maximal Lebesgue space, 558
L p
1 (∂∗�, σg) ⊗ E global (boundary)

Sobolev space on manifolds, 113
L p,q (X, μ) Lorentz space on X with respect

to the measure μ, 500
‖ · ‖L p,q (X,μ) Lorentz space quasi-norm, 500
L p,q

� (�,μ) maximal Lorentz space, 558
log+ positive ln, 633
M∗

γ (F) upper γ -dimensional Minkowski
content of F , 320

MX Hardy-Littlewoodmaximal operator on
X , 624

MA,s Hardy–Littlewood maximal operator,
515

MA,s,α fractional Hardy–Littlewood maxi-
mal operator, 514

MX,s Ls -based Hardy-Littlewood maximal
operator, 622

MR
X,s local Ls -based Hardy-Littlewood

maximal operator, 623
MX,s,α fractional Hardy-Littlewood maxi-

mal operator, 621
m E (λ, f ), 498
N0 = N ∪ {0}, 243
N p

κ (�; μ), 691
‖ · ‖N p

κ (�;μ), 692
Nκ nontangential maximal operator, 680
N E

κ the nontangential maximal operator
restricted to E , 681

N ε
κ the nontangential maximal function

truncated at height ε, 48, 686, 744,
787

Ñκ,θ,r averaged nontangential maximal
function, 824

Oε one-sided collar neighborhood of ∂�,
496
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oscp( f ; R) L p-based mean oscillation of f
at scales up to R, 602

P maximal function of Carleson type, 70
R

n+ upper half-space in R
n , 130

R
n− lower half-space in R

n , 130
R j boundary-to-boundary Riesz transform,

460
R j,ε truncated Riesz transform, 459
R j,max maximal Riesz transform, 459
Rweak

j distributional Riesz transform, 460
RRn→∂� restriction operator fromR

n to ∂�,
221

R Hq (X, ρ, μ) reverse Hölder class, 642
[w]RHq reverse Hölder constant of a weight

in R Hq (X, ρ, μ), 642
rad(�), 479
regsupp u regular support of a distribution

u ∈ D′(�), 48
Sn−1 unit sphere in R

n , 130
Sn−1± upper/lower hemispheres of Sn−1, 130
S(X, μ) simple functions on (X, μ), 246
Sfin(X, μ) simple functions on (X, μ) with

support of finite measure, 246
Sym(D; ξ) principal symbol of the first-

order system D, 59
Sym(D; ν) • F bullet product of F with

the principal symbol of the first-order
system D, 73

S (Rn) Schwartz functions, 326
S ′(Rn) tempered distributions, 326
suppμ support of the measure μ, 283
supp f support of the measurable function

f , 285
(
u|κ−n.t.

∂�

)
(x) nontangential trace of u at x ∈

∂�, 786
u|κ−n.t.

∂� nontangential trace of u on ∂�, 791
u�,θ solid maximal function of u, 553
uE

�,θ local solid maximal function of u, 564
umax

M tangential maximal function of u, 724
uscal scalar part of u, 524
uvect vector part of u, 524
Var F pointwise variation of F , 180
V( f ;O) variation of f in O, 368
W k,p(�) L p-based Sobolev space of order

k in �, 244
W k,p

bdd (�), 244

W k,p
loc (�) local L p-based Sobolev space of

order k in �, 244

X
X �, 124
ξ�, 124
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