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Chapter 1

Introduction

The most informative way to study laboratory and

astrophysical plasmas is by analyzing their radiation.

Nonlinear phenomena are encountered almost everywhere

in nature and in laboratory experiments. The overturning of

a wave coming into a beach is an example of nonlinearity in

nature that most people have seen: the wave becomes

nonlinear. A ubiquitous example of man-made nonlinearity

can be found in electric circuits: as the current heats the

wire, its resistance changes, so that the linear Ohm’s law

ceases to be valid.

The radiation from plasmas is no exception. The

nonlinear phenomena in the radiation from plasmas are

important both fundamentally as well as practically and are

the subject of this book. The book is structured as follows.

Chapter 2 presents an overview of the studies of

nonlinear effects in the radiation of satellites of hydrogenic

spectral lines from plasmas and their applications. The

satellites are caused by various types of

quasimonochromatic electric field. These fields can be

either intrinsic to plasmas (such as Langmuir waves) or

extrinsic (such as a laser field). The effects under

consideration are nonlinear with respect to the energy

density E0
2/(16π) of a quasimonochromatic electric field of

amplitude E0. This chapter covers nonlinear effects in the

following situations: (1) satellites under a one-dimensional

one-mode monochromatic electric field in the non-opaque



case; (2) satellites under a one-dimensional one-mode

monochromatic electric field in the opaque case; (3)

satellites under a one-dimensional two-mode

monochromatic electric field; (4) satellites under a one-

dimensional multimode monochromatic electric field; (5)

satellites under a two-dimensional multimode electric field;

(6) satellites in an elliptically polarized electric field; (7)

nonlinear spectral effects in the case of Langmuir solitons.

Chapter 3 presents nonlinear effects in the radiation of

hydrogenic spectral lines under the broadband electric field

of Langmuir turbulence. The Langmuir waves, which are

quasimonochromatic in plasmas of relatively low electron

densities Ne, can be broadband waves (turbulent) at high

electron densities, such as Ne ≫ 1018 cm−3. The broadening

of the power spectrum of the Langmuir waves at high

electron densities is mainly caused by electron collisions.

We consider two possible shapes of the power spectrum of

the stochastic electric field (such as broadband Langmuir

turbulence): the Lorentzian shape and the Gaussian shape.

We analyze effects that are nonlinear with respect to the

energy density of the stochastic electric field.

Chapter 4 presents a study of various nonlinear effects in

the radiation of satellites of non-hydrogenic spectral lines

from plasmas and their applications. This kind of satellite

can occur in the spectral lines of helium and lithium atoms

as well as in the spectral lines of He-like and Li-like ions. We

cover the early theoretical results obtained for the situation

in which the quasimonochromatic electric field (causing the

satellites) is relatively weak, so that the effects can be

described in the frame of the perturbation theory. We then

cover theoretical and experimental results obtained for

stronger fields: the adiabatic theory of satellites and its

applications, as well as the case in which the frequency of

the quasimonochromatic electric field is much greater than

the corresponding atomic frequencies.



Chapter 5 presents the simultaneous interaction between

the radiating atom or ion and the quasimonochromatic

electric field and with the quasistatic part of the plasma

electric field, which led to the discovery of a new sub-area

of plasma spectroscopy: intra-Stark spectroscopy. It deals

with Langmuir-wave-induced structures (bump-dip-bump

structures) in certain locations of the profiles of hydrogenic

spectral lines. These structures (called for brevity Langmuir

‘dips’), consisting of a local intensity minimum surrounded

by two ‘bumps’ (peaks)—are emergent phenomena that

spring from multifrequency nonlinear dynamic resonances.

The analytical predictions of the emergent phenomenon of

the Langmuir-wave-induced ‘dips’ have been confirmed by a

large number of experiments by various experimental

groups working with different plasma machines as well as

by astrophysical observations. In these experiments and

observations, which span about ten orders of magnitude of

electron density, the highly localized Langmuir-wave-

induced structures were reliably detected, identified, and

used for plasma diagnostics. In particular, this included

high-precision, benchmark experiments at the gas-liner

pinch, where plasma parameters were measured using

coherent Thomson scattering independently of

measurements of the line profiles.

Chapter 6 presents nonlinear effects in the radiation of

quasistatically Stark-broadened spectral lines from plasmas

under a high-frequency laser field E0 cos ωt. The high-

frequency laser field partially or completely suppresses the

components of the quasistatic field F perpendicular to E0.

This leads to a highly nonlinear dependence of the

intensities of the spectral line components and the shift of

spectral line components on the scaled energy density of

the high-frequency laser field.

Chapter 7 presents nonlinear effects in the radiation of

dynamically Stark-broadened hydrogenic spectral lines by



plasma electrons. In analytical theories of the Stark

broadening of spectral lines by the electron microfield in

plasmas, the effects of the electrons were considered in the

dynamic regime. Specifically, Stark broadening was treated

as resulting from a sequence of binary collisions with the

perturbing electrons (some collisions were not completed).

Due to the binary nature of this framework, it might be

expected that the resulting Stark width would be linear with

respect to the plasma electron density Ne. However, in

reality, the Stark width turned out to be nonlinear with

respect to Ne: either weakly nonlinear, as in the early

theories, or strongly nonlinear, as in the more sophisticated

theories. This chapter covers the following: (1) early

theoretical results; (2) the refinement of the conventional

theory for hydrogen spectral lines; (3) the refinement of the

conventional theory for hydrogenlike spectral lines; (4) the

generalized theory; (5) reduction of Stark broadening due to

the acceleration of electrons by the ion field in plasmas.

Chapter 8 presents nonlinear effects in dynamical Stark

broadening by plasma ions. We demonstrate that the ion

dynamical Stark width of the lines without the central Stark

components (such as the Ly-beta, Lyman-delta, Balmer beta,

or Balmer-delta lines) depends on the ion density Ni in a

significantly nonlinear way. At relatively small ion densities,

the dependence is quasi-linear. However, at relatively large

ion densities, the dependence becomes significantly

nonlinear: proportional to Ni
1/2. We also show that the ion

dynamical Stark width of these spectral lines has the

following dependence on the ion temperature T. At

relatively large temperatures, the ion dynamical Stark width

is proportional to (1/T)1/2. At relatively small temperatures,

the ion dynamical Stark width is proportional to T4.

Some additional topics are covered in the appendices.

Appendix A exhibits the effects of various electric fields on

the energy levels 5D, 5F, and 5G of helium. Appendix B



provides practical examples of the use of spectral line

radiation to diagnose oscillatory electric fields in laser-

produced plasmas. Appendix C is devoted to the validity of

using the analytical method based on the separation of

rapid and slow subsystems for a more accurate analysis of

the Stark broadening of hydrogenlike spectral lines by

plasma electrons. Appendix D provides a brief outline of the

impact approximation in the conventional theory of the

Stark broadening of spectral lines in plasmas.

Major publications related to the topic of this book are

listed below.
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Chapter 2

Nonlinear effects in the radiation of satellites of

hydrogenic spectral lines from plasmas and their

applications

2.1 Satellites under a one-dimensional one-mode

monochromatic electric field in the non-opaque case

In this section, we consider a hydrogenic atom/ion that has a nuclear charge of Z under a

linearly-polarized field E0 cos ωt, such as that of a laser field. As early as 1933, Blochinzew

[1] analytically solved this problem for a model hydrogenic line consisting of just one Stark

component. His result for the profile of the Stark component can be represented in the

following way:

Sprofile(Δω/ω) =
∞

∑
p=−∞

[Jp(Xε)]2δ(Δω/ω − p).

In equation (2.1), Δω is the detuning from the unperturbed frequency ω0 of the

spectral line and Jp(Xε) are the Bessel functions, where

ε = 3ℏE0/(2Zmeeω), X = (nq)upper − (nq)lower, q = (n1 − n2).

In equation (2.2), me and e are the electron mass and charge, respectively; n is the

principal quantum number; n1 and n2 are the parabolic quantum numbers; and the

subscripts ‘upper’ and ‘lower’ relate to the upper and lower energy levels involved in the

radiative transition.

The profile S(Δω/ω) is normalized to unity:

∫
∞

−∞

Sprofile(Δω/ω)d(Δω/ω) = 1.

It can be seen that, generally speaking, the profile of the Stark component splits into

an infinite number of satellites separated from the unperturbed frequency ω0 of the

spectral line by pω, where p is any positive or negative integer (the value p = 0

corresponds to the ‘main line,’ that is, to Δω = 0).

We focus on the nonlinear dependence of the satellite intensities on the energy density

E0
2/(8π) of the laser field. For this purpose, it is convenient to let

a = (Xε)2,

which is the scaled energy density of the laser field (see equation (2.2)). Equation (2.1)

can now be rewritten as
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Sprofile(Δω/ω) =
∞

∑
p=−∞

[Jp(a1/2)]
2

δ(Δω/ω − p).

Thus, the dependence of the satellite intensity S(a, p) on the scaled energy density of

the laser field and on the satellite number is as follows:

S(a, p) = [Jp(a1/2)]
2
.

Let us consider, for example, the intensity of the first satellite S(a,1) = [J1(a1/2)]2. At

relatively small energy densities of the laser field (a ≪ 1), the intensity linearly depends on

the energy density:

S(a, 1) ≈ a/4.

However, at a ⩾ 1, the dependence of the intensity on the scaled energy density of the

laser field becomes nonlinear. This is illustrated by figure 2.1, in which the dashed line

corresponds to an assumed linear dependence, while the solid line corresponds to the

actual dependence.

Figure 2.1. The intensity of the first satellite of the Blochinzew profile of the Stark

component of a hydrogenic spectral line versus the scaled energy density of the laser

field a, defined by equations (2.2) and (2.6). The solid line represents the actual

dependence, while the dashed line represents a projected linear dependence, which is

relevant only for a ≪ 1.

Figures 2.2 and 2.3 present three-dimensional plots of the dependence of the satellite

intensity on the scaled energy density a of the laser field and on the satellite number p. It

can be seen that for any satellite, the dependence on the energy density of the laser field

is highly nonlinear.
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Figure 2.2. Dependence of the satellite intensity on the scaled energy density a of

the laser field and on the satellite number p.

Figure 2.3. The same as in figure 2.2 but from the alternative viewpoint, so that

together with figure 2.2, it gives a comprehensive view of the nonlinear dependence

on the scaled energy density of the laser field.

The same problem has sometimes been treated in the quasistatic limit, that is ω → 0. In

this case, the profile mimics the distribution of the instantaneous field intensity:

Squasist(p) = (1/π)[a − p2]
−1/2

.

Figures 2.4–2.8 provide comparisons between the quasistatic results from equation

(2.8) with the actual satellite intensities from equation (2.6) for values of the scaled laser

field energy density of 1, 4, 16, 64, and 256, respectively.



Figure 2.4. A comparison between the quasistatic result from equation (2.8), shown

by the dashed line, and the actual satellite intensity from equation (2.6), shown by the

solid line, for a scaled laser field energy density of a = 1.

Figure 2.5. The same as in figure 2.4, but for a = 4.



Figure 2.6. The same as in figure 2.4, but for a = 16.

Figure 2.7. The same as in figure 2.4, but for a = 64.

Figure 2.8. The same as in figure 2.4, but for a = 256.

It can be seen that for all the above values of the scaled laser field energy density, the

actual dependence of the satellite intensity on the satellite number exhibits much more

structure than its quasistatic counterpart. In distinction to the latter, the actual

dependence is oscillatory and thus ‘more nonlinear’ than in the quasistatic case.

Figure 2.9 shows the dependence of the intensity of the main line S(a,0) on the scaled

energy density of the laser field. It can be seen that this dependence is also highly

nonlinear.
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Figure 2.9. The dependence of the intensity of the main line S(a,0) on the scaled

energy density of the laser field.

2.2 Satellites under a one-dimensional one-mode

monochromatic electric field in the opaque case

The satellites of hydrogenic spectral lines in laser-produced plasmas have not yet been

used to measure the laser field (or the transverse electromagnetic field caused by the laser

field)—to the best of our knowledge. Most probably, this is because the laser field would be

deduced from the experimental ratio of the intensity of the satellite to the intensity of the

main line. The problem would be that in plasmas produced by lasers, especially by

relativistic laser pulses (those that drive plasma electrons to relativistic energies), the most

frequently observed hydrogenic lines—Ly-alpha and Ly-beta—could have an opacity. In such

a case, the observed peak intensity of the main line would be affected by the optical

thickness, but the observed peak intensity of the satellite would remain unaffected.

Obviously, in this case, the theory presented in the previous section would not be a good

tool for determining the laser field.

A method appropriate for such a situation was proposed in [2]. This method allows one

to use hydrogenic lines that display satellites to measure both the laser field and the

opacity.

In this section, we define the scaled dimensionless energy density of the laser field as

a = ε2.

The profile of a multicomponent hydrogenic spectral line is as follows (see section 3.1

of [3]):

In equation (2.9), f0 is the total intensity of all central Stark components and fk is the

intensity of the lateral Stark component with the number k = 1, 2,…, kmax.

S(Δω/ω) =
+∞

∑
p=−∞

I(p, a1/2)δ(Δω/ω) − p,

I(p, ε) = [f0δp0 + 2
kmax

∑
k=1

fkJp
2(Xka1/2)]/(f0 + 2∑ fk).
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The focus of [2] was the case in which ε < 1 and thus a < 1. In this case, the intensities

of the satellites are significantly smaller than the intensity of the main line. Therefore, the

satellites would be optically thin even if the optical depth τ0 the main line were greater

than unity.

The ratio of the intensity of the second satellite to the intensity of the first satellite has

the form:

R21(a1/2) = I(2, a1/2)/I(1, a1/2).

This ratio depends only on the scaled energy density of the electric field. Therefore,

from the experimental value of the ratio R21, one can determine the value of a and then

(using equations (2.2) and (2.9)) the laser amplitude E0.

As for the ratio of the intensity of the first satellite to the intensity of the main line, at

the zero optical depth of the main line, it would be

R10(τ0 = 0, a1/2) = I(1, a1/2)/I(0, a1/2).

Below, we illustrate the dependence of the ratio R21 on the scaled energy density of

the laser field a and the corresponding dependence of the ratio R10, calculated at τ0= 0 for

several hydrogenic lines in two different directions of observation: perpendicular to the

laser field and parallel to the laser field.

Figure 2.10 shows the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line), for the Ly-beta line for observation perpendicular to the laser field.

Figure 2.10. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0= 0 (dashed line), for the Ly-beta line for observation perpendicular to the laser

field.

Figure 2.11 presents the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line) for the Ly-beta line for observation parallel to the laser field.



Figure 2.11. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0= 0 (dashed line), for the Ly-beta line for observation parallel to the laser field.

Figure 2.12 shows the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line) for the Ly-delta line for observation perpendicular to the laser field.

Figure 2.12. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0= 0 (dashed line), for the Ly-delta line for observation perpendicular to the laser

field.

Figure 2.13 presents the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line), for the Ly-delta line for observation parallel to the laser field.



Figure 2.13. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0= 0 (dashed line), for the Ly-delta line for observation parallel to the laser field.

Figure 2.14 shows the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line), for the Balmer-beta line for observation perpendicular to the laser field.

Figure 2.14. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0 = 0 (dashed line), for the Balmer-beta line for observation perpendicular to the

laser field.

Figure 2.15 presents the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line), for the Balmer-beta line for observation parallel to the laser field.



Figure 2.15. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0= 0 (dashed line), for the Balmer-beta line for observation parallel to the laser

field.

Figure 2.16 shows the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line), for the Balmer-delta line for observation perpendicular to the laser field.

Figure 2.16. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0= 0 (dashed line), for the Balmer-delta line for observation perpendicular to the

laser field.

Figure 2.17 presents the dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated at τ0

= 0 (dashed line), for the Balmer-delta line for observation parallel to the laser field.
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Figure 2.17. The dependence of the ratio R21 on the scaled energy density of the

laser field a (solid line) and the corresponding dependence of the ratio R10, calculated

at τ0= 0 (dashed line), for the Balmer-delta line for observation parallel to the laser

field.

Figures 2.10–2.17 demonstrate the highly nonlinear dependence of these ratios on the

scaled energy density of the laser field.

We now discuss the corresponding analytical results for cases of nonzero optical depth.

At τ0 > 0 (and especially at τ0 > 1), the calculation of the ratio R10(τ0) has to be done in

the following way [2]. The profile P(Δω) of a spectral line, with an allowance for its opacity,

is

P(τ0, Δω) = {1 − exp[−τ0P0(Δω)]}/τ0.

In equation (2.13), P0(Δω) is the profile of the absorption coefficient with the

normalization chosen to be P0(0) = 1. At τ0 = 0, we have P(0, Δω) = P0(Δω); consequently,

P(0, 0) = 1. The intensity at the peak of the normalized profile becomes

P(τ0, 0) = [1 − exp(−τ0)]/τ0.

So, the factor reducing the intensity at the peak of the profile compared to the

situation of the optically thin profile is

f(τ0) = [1 − exp(−τ0)]/τ0.

Figure 2.18 shows a plot of the reducing factor f versus the optical depth τ0. One can

see that as the optical depth increases, the reduction of the peak intensity becomes more

and more significant.
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Figure 2.18. The reducing factor f from equation (2.15) versus the optical depth τ0.

Reproduced from [2]. CC BY 4.0.

In view of the fact that the satellites are optically thin and that P(0,0) = 1, the ratio of

the peak intensities of the second and first satellites R21 is still described by equation

(2.11). However, for the ratio of the peak intensities of the first satellite and the main line,

one finds that

R10(τ0, a1/2) = I(1, a1/2)/[I(0, a1/2)f(τ0)]

or

f(τ0) = I(1, a1/2)/[I(0, a1/2)R10(τ0, a1/2)].

So, the scaled energy density a (and thus the laser amplitude E0) can be deduced from

the experimental ratio R21. Thereafter, on substituting the determined value of a and the

experimental ratio R10 into the right-hand side of equation (2.16), it is possible to obtain

the optical depth τ0 of the main line. For the spectral lines Lyman-beta, Lyman-delta,

Balmer-beta, and Balmer-delta, which are often utilized in plasma spectroscopy, the ratio

I(1,a)/I(0,a) that appears in equations (2.12) and (2.16) can be also deduced from figures

2.10–2.17.

2.3 Satellites under a one-dimensional two-mode

monochromatic electric field

The corresponding profile of a Stark component, according to equation (3.2.8) of [3], is

S2,profile(Δω/ω) =
∞

∑
p=−∞

S(a, p)(Δω/ω − p),

where a is defined by equation (2.24) and
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S(a, p) = J 2
p(a1/2) − Jp−1(a1/2)Jp+1(a1/2).

For the first satellite (p = 1) at a ≪ 1, the dependence of the satellite intensity on the

scaled laser field energy density is approximately linear:

S(a, p) ≈ a/8.

However, as the scaled energy density of the laser field grows, the corresponding

dependence becomes nonlinear, as illustrated below.

Figure 2.19 shows the dependence of the intensity of the first satellite of the profile of

the Stark component of a hydrogenic spectral line versus the scaled energy density of the

two-mode laser field a.

Figure 2.19. The dependence of the intensity of the first satellite of the profile of the

Stark component of a hydrogenic spectral line versus the scaled energy density of the

two-mode laser field a. The solid line represents the actual dependence, the dashed

line represents the projected linear dependence, which is relevant only for a ≪ 1.

Figures 2.20 and 2.21 present three-dimensional plots of the dependence of the satellite

intensity on the scaled energy density a of the two-mode laser field and on the satellite

number p. It can seen that for any satellite, the dependence on the energy density of the

two-mode laser field is highly nonlinear.



Figure 2.20. The dependence of the satellite intensity on the scaled energy density a

of the two-mode laser field and on the satellite number p.

Figure 2.21. The same as in figure 2.20 but from the alternative viewpoint, so that

together with figure 2.20, it gives the most comprehensive view of the nonlinear

dependence on the scaled energy density of the two-mode laser field.

Figure 2.22 shows the dependence of the satellite intensity on the satellite number for

the scaled energy density on the two-mode laser field a = 1. It can be seen that the

dependence is monotonic.



Figure 2.22. The dependence of the satellite intensity on the satellite number for the

scaled energy density on the two-mode laser field a = 1.

However, as the scaled energy density of the two-mode laser field increases, the

dependence ceases to be monotonic. Figure 2.23 illustrates this for a = 4.

Figure 2.23. The same as in figure 2.22, but for a = 4.

Figure 2.24 presents the same kind of dependence for a = 10. It can be seen that for a

= 10, the intensity of the first satellite exceeds the intensity of the main line.



Figure 2.24. The same as in figure 2.22, but for a = 10.

Figures 2.25 and 2.26 show this dependence for a = 16 and a = 64, respectively. It can

be seen that the intensities of the second and higher satellites never exceed the intensity

of the main line—in contrast to the case of the one-mode laser field.

Figure 2.25. The same as in figure 2.22, but for a = 16.



Figure 2.26. The same as in figure 2.22, but for a = 64.

Figure 2.27 shows this kind of dependence for a = 256. It can be seen that as the scaled

energy density of the two-mode laser field increases, the difference in the intensities of the

various satellites decreases—in contrast to the case of the one-mode laser field.

Figure 2.27. The same as in figure 2.22, but for a = 256.

Finally, figure 2.28 presents the dependence of the intensity of the main line on the

scaled energy density of the two-mode laser field. It can be seen that the intensity

oscillates much less than for the case of the one-mode laser field (see figure 2.9).
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Figure 2.28. The dependence of the intensity of the main line on the scaled energy

density of the two-mode laser field.

We note that all the dependencies presented in figures 2.22–2.28 are nonlinear.

2.4 Satellites under a one-dimensional multimode

monochromatic electric field

A one-dimensional multimode monochromatic electric field can be represented in the form

E(t) =
N

∑
j=1

Ej cos (ωt + φj),

where the number of modes is N ≫ 1. For this situation, the profile of a Stark

component was calculated analytically by Lifshitz [4]:

SL,profile(Δω/ω) =
∞

∑
p=−∞

S(a, p)(Δω/ω − p),

where a is defined by equation (2.4) and

S(a, p) = I∣p∣(a/2) exp(−a/2).

In equation (2.23), I∣p∣(a/2) are the modified Bessel functions and the scaled energy

density of the multimode monochromatic electric field is defined by equation (2.4) with the

replacement of E0 by

E0L = (
N

∑
j=1

E 2
j)

1/2

.

For the first satellite (p = 1) at a ≪ 1, the dependence of the satellite intensity of the

scaled energy density of the field is approximately linear:
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S(a, p) ≈ a/4.

However, as the scaled energy density of the laser field grows, the corresponding

dependence becomes nonlinear. This is illustrated by figure 2.29, where the dashed line

corresponds to the projected linear dependence, while the solid line corresponds to the

actual dependence.

Figure 2.29. The intensity of the first satellite of the Lifshitz profile of the Stark

component of a hydrogenic spectral line versus the scaled energy density of the

multimode monochromatic electric field a. The solid line represents the actual

dependence, the dashed line represents the projected linear dependence, which is

relevant only for a ≪ 1.

Figures 2.30 and 2.31 present three-dimensional plots of the dependence of the satellite

intensity on the scaled energy density a of the laser field and on the satellite number p. It

can be seen that for any satellite, the dependence on the energy density of the laser field

is highly nonlinear.

Figure 2.30. The dependence of the satellite intensity on the scaled energy density a

of the multimode monochromatic electric field and on the satellite number p.
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Figure 2.31. The same as in figure 2.30 but from the alternative viewpoint, so that

together with figure 2.30, it gives the most comprehensive view of the nonlinear

dependence on the scaled energy density of the multimode monochromatic electric

field.

For the case in which

a ≫ p ≫ 1,

the satellite intensity from equation (2.23) simplifies to (see equation (3.2.4) from [3]):

S(a, p) ≈ (πa)−1/2 exp(−p2/a).

It can be seen that at fixed a, the approximate envelope of the satellites is Gaussian.

Figures 2.32–2.35 present a comparison between the exact satellite intensity from

equation (2.23), shown by the solid line, and the approximate result from equation (2.27),

shown by the dashed line, for several values of the scaled energy density of the multimode

monochromatic electric field.



Figure 2.32. A comparison between the exact satellite intensity from equation (2.23),

shown by the solid line, and the approximate result from equation (2.27), shown by

the dashed line, for the scaled energy density of the multimode monochromatic

electric field a = 1.

Figure 2.33. The same as in figure 2.32, but for a = 4.



Figure 2.34. The same as in figure 2.32, but for a = 9.

Figure 2.35. The same as in figure 2.32, but for a = 16.

From figures 2.32–2.35, one can see that at a > 10, the approximate satellite intensity

from equation (2.27) practically coincides with the exact result from equation (2.23). It can

also be seen that for the multimode electric field, the envelope of the satellites does not

exhibit the oscillatory behavior—in contrast to the cases of the one-mode field and the two-

mode field.

Finally, figure 2.36 presents the dependence of the intensity of the main line on the

scaled energy density of the multimode monochromatic electric field. It can be seen that

the intensity does not oscillate—in contrast to the cases of the one-mode field and the two-

mode field (see figures 2.9 and 2.28).

Figure 2.36. The dependence of the intensity of the main line on the scaled energy

density of the multimode monochromatic electric field.

We note that all the dependencies presented in figures 2.32–2.36 are nonlinear.
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2.5 Satellites under a two-dimensional multimode

electric field

In all the preceding sections of this chapter, the monochromatic electric field was

considered to be one-dimensional. In this section, we consider the Stark broadening of

hydrogenic spectral lines by a two-dimensional multimode monochromatic electric field.

One of the primary differences between the effect of one-dimensional multimode

monochromatic fields on hydrogenic spectral lines, described in the previous section, and

the effect of the two-dimensional multimode monochromatic fields on hydrogenic spectral

lines, presented in this section, involves the concept of quasienergy states introduced by

Zeldovich [5] and Ritus [6], So, let us first briefly describe quasienergy states.

For an atom in a monochromatic electric field that has a frequency of ω, quasienergy

states are those of the combined system ‘atom plus field.’ In the absence of a coupling

between the atom and the field, each atomic state of energy Ei corresponds to an infinite

number of states of the combined system of energies Eij
(0) = Ei + jħω, where j is any

positive or negative integer or zero. In other words, the quasienergy state of Eij
(0) is the

combination of the atomic state Ei and j quanta of the field. Here, the superscript (0)

indicates that the coupling between the atom and the field has been disregarded.

When allowance is made for the coupling between the atom and the field, the energies

Eij of the combined system generally differ from the unperturbed values Eij
(0):

Eij = Eij
(0) + Ki.

The quantities Ki are called quasienergies.

In terms of the quasienergies, the outcome for a hydrogenic atom under the one-

dimensional multimode monochromatic electric field, presented in the previous section,

was zero quasienergies. In other words, the outcome was only the splitting of the

hydrogenic line into satellites, but not a shift of the positions of all satellites and the main

line—the shift that would be the same for all satellites and for the main line. In contrast, for

a hydrogenic atom under a two-dimensional multimode monochromatic electric field, the

quasienergies are generally nonzero, as presented below.

We consider the hydrogenic Ly-alpha line of a hydrogenic atom/ion that has a nuclear

charge of Z acted upon by the following two-dimensional multimode monochromatic

electric field:

E(t) = Ex(t)ex + Ez(t)ez,

Ex(t) = ∑
k

Ek cos (ωt + φk) = ρx cos (ωt + αx),

Ez(t) = ∑
p

Ep cos (ωt + φp) = ρz cos (ωt + αz).

In equations (2.30) and (2.31), the phases αx and αz are uniformly distributed within

the (0,2π) interval. The quantities ρx and ρz, which are the amplitudes of the x- and z-

components of the field, respectively, have the Rayleigh distributions

W(ρx) = (2ρx/ρx0
2) exp(−ρx

2/ρx0
2), W(ρz) = (2ρz/ρx0

2) exp(−ρz
2/ρz0

2).
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In equation (2.32), ρx0 and ρz0 are the root-mean-square values of the field amplitudes ρx

and ρz, respectively. Below, we focus on the situation in which ρx ≪ ρz.

At the fixed difference of the phases

Δ = αz − αx,

the spectrum of the Ly-alpha line is as presented in section 4.1.5 of [3], as follows

(here and below, the atomic units ħ = e = me are used):

Ix(Δω) = δ(Δω − K) + δ(Δω + K),

Iy(Δω) = 2δ(Δω),

Iz(Δω) =
∞

∑
p=−∞

{ }.

Here, the quantity K is the quasienergy:

K = −ωvxJ1(vz) sin (Δ),

where J1( ) are the Bessel functions. In equations (2.36) and (2.37),

vx = 3ρx/(Zω), vz = 3ρz/(Zω).

So, the two-dimensional multimode monochromatic electric field indeed leads to

nonzero values ±K of the quasienergy—in contrast to the case of the one-dimensional

multimode monochromatic field.

We introduce the scaled dimensionless energy densities of each component of the field

as follows:

ax = vx
2, az = vz

2.

Figures 2.37 and 2.38 present three-dimensional plots of the dependence of the

quasienergy K (in units of the field frequency ω) on the scaled energy densities ax and az of

the two components of the field for the phase difference Δ = π/2.

2J2p+1
2(vz)δ[Δω − (2p + 1)ω]

+ J2p
2(vz)[δ(Δω − 2pω − K) + δ(Δω − 2pω + K)]



Figure 2.37. The dependence of the quasienergy K (in units of the field frequency ω)

on the scaled energy densities ax and az of the two components of the multimode

monochromatic electric field for the phase difference Δ = π/2.

Figure 2.38. The same as in figure 2.37 but from the alternative viewpoint, so that

together with figure 2.37, it gives the most comprehensive view of the nonlinear

dependence of the quasienergy on the scaled energy densities ax and az of the two

components of the multimode monochromatic electric field for the phase difference Δ

= π/2.

Figures 2.39 and 2.40 display three-dimensional plots of the dependence of the

quasienergy K (in units of the field frequency ω) on the scaled energy density az of the z-

component of the field and on the phase difference Δ for ax = 1.



Figure 2.39. The dependence of the quasienergy K (in units of the field frequency ω)

on the scaled energy density az of the z-component of the field and on the phase

difference Δ for ax = 1.

Figure 2.40. The same as in figure 2.39 but from the alternative viewpoint, so that

together with figure 2.39, it gives the most comprehensive view of the nonlinear

dependence of the quasienergy on the scaled energy density az of the z-component of

the multimode monochromatic electric field and on the phase difference Δ for ax = 1.

Figure 2.41 depicts the dependence of the quasienergy K (in units of ω) on the scaled

energy density az of the z-component of the field for ax = 1 and on the phase difference Δ

= π/2.
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Figure 2.41. The dependence of the quasienergy K (in units of ω) on the scaled

energy density az of the z-component of the field for the phase difference Δ = π/2 and

ax = 1.

From figures 2.37–2.41, it can be seen that the dependence of the quasienergy on the

energy density of the field components is highly nonlinear.

The next task is to average over the phase difference Δ (except that there is no need to

average Iy(Δω) = 2δ(Δω)). The result is as follows [7]:

⟨Ix(Δω)⟩phase = (2/π){[3ρxJ1(az
1/2)/Z]

2
− (Δω)2}

−1/2

θ[3ρz∣J1(az
1/2)∣/Z− ∣ Δω

In equations (2.40) and (2.41), θ(w) is the step function.

From equations (2.40) and (2.41), one can see that the Ly-alpha spectrum, averaged

over the phase difference, comprises terms of the following kind (with different statistical

weights):

S0(D) = (1/π){[3ρxJ1(az
1/2)/(Zω)]

2

− D2}
−1/2

θ[3ρx∣J1(az
1/2)∣/(Zω)− ∣ D ∣].

In equation (2.42),

D = (Δω)/ω, or D = (Δω)/ω − (2p + 1), or D = (Δω)/ω − 2p.

⟨Iz(Δω)⟩ = (1/π)
∞

∑
p=−∞

{2J2p+1
2(a1/2){[3ρxJ1(az

1/2)/Z]
2

− [Δω − (2p + 1)ω]2}
−1/2

θ[3ρx∣J1(az
1/2)∣/Z− ∣ Δω − (2p + 1)ω ∣]

+ 2J2p
2(az

1/2)[(3ρxJ1(az
1/2)/Z)]

2

− (Δω − 2pω)2}
−1/2

θ[(3ρx∣J1(az
1/2)∣/Z − ∣Δω − 2pω∣)].
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Here, the selected unit of the frequency scale is the frequency ω of the two-dimensional

multimode monochromatic electric field.

The next step is to integrate S0(D) from equation (2.42) over the distribution W(ρx) from

equation (2.32). The corresponding analytical result is:

⟨S0(D)⟩ρx = exp{−D2/[3ρx0J1(vz)/(Zω)]2}/[π1/23ρx0∣J1(vz)∣/(Zω)].

Finally, 〈S0(D)〉ρx from equation (2.44) has to be averaged over the distribution W(ρz)

from equation (2.32):

S(D) = ⟨⟨S0(D)⟩ρx⟩
ρz

= (2/π1/2)∫
∞

0

dww exp{−w2 − D2/[aJ1(bw)]2}/[a ∣ J1(bw

In equation (2.54),

w = ρz/ρz0, a = 3ρx0/(Zω), b = 3ρz0/(Zω).

In the case where

b << 1, ab/2 ≪ ∣D∣ ≪ a/(2b),

and assuming that the argument of the exponential in equation (2.45) has a maximum

at some value w = w0, where bw0 ≪ 1, the integration in equation (2.45) can be performed

using the approximate analytical method of the steepest descent. The outcome is [7]:

S0(D) ≈ 2 exp[−4∣D∣/(ab)]/(ab).

Equation (2.48) shows that the Stark profile S0(D) of each satellite and of the main line

can have a cusp in its center. Figure 2.42 presents a numerical example, calculated using

equation (2.45), that confirms this analytical result.

Figure 2.42. A Stark profile S(D) calculated using equation (2.45) for a = 0.75, b =

7.5, where D = (Δω)/ω, a = 3ρx0/(Zω), b = 3ρz0/(Zω).
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The cusp-shaped type of spectral profile of the main line and of the satellites is a

counterintuitive result. The prospective application of this result is the spectroscopic

diagnosis of multidimensional Bernstein–Greene–Kruskal modes in laboratory and space

plasmas [8].

It should be noted that plasmas in which the quasimonochromatic electric field

dominates other broadening mechanisms are encountered, for instance, in flare stars (with

an electron density Ne ~ 1015 cm−3), in solar flares (Ne ~ 1013 cm−3), as well as in the edge

plasmas of tokamaks (Ne ~ 1013–1015) cm−3—see, e.g. [9] and references therein.

2.6 Satellites in an elliptically polarized electric field

The splitting of hydrogenic spectral lines under an elliptically polarized laser field has been

studied, for example, in [10, 11]. Here we present some results related to the situation in

which the laser frequency is much greater than the corresponding atomic frequencies.

The elliptically polarized laser field can be represented in the form

E(t) = exbε sin (ωt) + ezε cos (ωt).

In equation (2.49), ex and ez are the unit vectors along the corresponding axes, b is the

ellipticity degree, and

ε = E0/(1 + b2)
1/2

,

where E0 is the laser intensity. The instantaneous rotational frequency of the laser field

is

Ω(t) = bω/[cos2 (ωt) + b2 sin2 (ωt)].

The following results for the quasienergies were produced by employing the general

formalism for the action of a high-frequency oscillatory field on a quantum system

presented in section 2.3 of [3]. For the Ly-alpha line, the quasienergies are

w1,2 = 0, w3 = κ, w4 = −κ,

where

κ = bωvJ1(v), v = 3E0/[Zω(1 + b2)
1/2
].

In equation (2.53), J1( ) is the Bessel function. (Here and below, atomic units are used.)

It can be seen that the quasienergies λ3 and λ4 are nonlinear functions of the laser

amplitude E0, so they are nonlinear functions of the energy density (proportional to E0
2) of

the laser field.

For an arbitrary hydrogenlike spectral line, the analytical calculation of the

quasienergies w in the elliptically polarized laser field can be reduced to calculating the

Stark splitting in some effective static electric field, yielding

w = qb[a/(1 + b2)]
1/2

J1{[a/(1 + b2)]
1/2
}.
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In equation (2.54), the electric quantum number q is as defined in equation (2.2), and the

scaled dimensionless energy density of the laser field, denoted by a, is:

a = [3nE0/2ω]2.

Figures 2.43 and 2.44 show three-dimensional plots of the quasienergy w from

equation (2.54) for q = 1 versus the scaled energy density a of the laser field and the

ellipticity degree b.

Figure 2.43. The quasienergy w from equation (2.54) for q = 1 versus the scaled

energy density a of the laser field and the ellipticity degree b.

Figure 2.44. The same as in figure 2.43 but from the alternative viewpoint, so that

together with figure 2.43, it gives the most comprehensive view of the nonlinear

dependence of the quasienergy on the scaled energy density a of the laser field and

on the ellipticity degree b.
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Figure 2.45 presents the dependence of the quasienergy w from equation (2.54) for q =

1 on the scaled energy density a of the laser for three values of the ellipticity degree: b =

0.2 (dotted line), b = 0.5 (dashed line), and b = 0.8 (solid line).

Figure 2.45. The dependence of the quasienergy w from equation (2.54) for q = 1 on

the scaled energy density a of the laser for three values of the ellipticity degree: b =

0.2 (dotted line), b = 0.5 (dashed line), and b = 0.8 (solid line).

From figures 2.43–2.45, it can be seen that the dependence of the quasienergies on the

scaled energy density of the elliptically polarized laser field and on the ellipticity degree is

highly nonlinear.

2.7 Nonlinear spectral effects in the case of Langmuir

solitons

A set of Langmuir solitons separated by a distance L has the following spatial and temporal

dependence [12]:

F(x, t) = E(x) cos ωt, E(x) = E0/ch(x/λ), λ ≪ L,

where

ω = ωpe − 3Te/(2meωpeλ2).

In equations (2.56) and (2.57), λ is the characteristic size of the soliton and ωpe is the

plasma electron frequency. The experimental task of identifying solitons consists of

detecting an electric field that oscillates at the frequency ~ωpe and confirming that the

amplitude is spatially distributed according to the form factor E(x) from equation (2.56).

The corresponding method was developed in [13], which we follow here.

At a given coordinate x, the spectrum of a Stark component of a hydrogenic spectral

line is described by equation (2.1) with the notations defined in equation (2.2). The next

step is to average the spectrum over the form factor E(x) from equation (2.56). First, we

substitute the form factor in the argument of the Bessel function in equation (2.1). We then

integrate with respect to x from −λ to λ, or equivalently

/
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f(p, a, b) = (1/b)∫
b/2

−b/2

dyJp
2[a1/2/ch(y)].

In equation (2.58),

b = L/λ, y = x/λ.

The scaled dimensionless energy density of the Langmuir wave, denoted by a, was

given by equation (2.4) (see also equation (2.2)).

For a ≫ 1, the maximum intensity has the satellite at the position pmax(a), where

pmax(a) = a1/2 − 0.809(a)1/6.

The spatially integrated intensity of the maximum intensity satellite is 

I = f[pmax(a), a, b].

Figure 2.46 demonstrates the dependence of the quantity I on the scaled separation b of

the Langmuir solitons in the sequence for three values of the scaled energy density of the

Langmuir wave: a = 100, a = 225, and a = 400. From figure 2.46, one can see that the

integrated intensity of the most intense satellite decreases as either the parameter b

increases (i.e. the separation L between Langmuir solitons in the sequence increases) or

the scaled energy density of the Langmuir wave a increases.

Figure 2.46. The spatially integrated intensity I of the most prominent satellite versus

the scaled separation b = L/λ of Langmuir solitons in the sequence for three values of

the scaled amplitude a = 3ħXkE0/(2Zrmeeω) of the soliton electric field: a = 100 (solid

line), a = 225 (dashed line), and a = 400 (dotted line). Reproduced from [13]. CC BY

4.0.

Figure 2.47 displays a three-dimensional plot of the dependence of the spatially

integrated intensity of the most prominent satellite on both the scaled energy density of

the Langmuir wave a and on the scaled separation b of the Langmuir solitons in the

sequence. The nonlinear character of the dependence of the intensity of this satellite on

the scaled energy density of the Langmuir wave can clearly be seen.



Figure 2.47. The spatially integrated intensity of the most prominent satellite versus

the scaled energy density a of the soliton electric field and the scaled separation b =

L/λ of Langmuir solitons in the sequence. Reproduced from [13]. CC BY 4.0.

Figures 2.48 and 2.49 present the dependence of the ratio f[pmax(a),a,b]/f[0,a,b] on a

and b. The ratio presented in these figures is the spatially integrated intensity of the most

intense satellite divided by the spatially integrated intensity of the main line (the ‘zeroth’

satellite). One can see that this ratio is also a nonlinear function of the scaled energy

density a of the soliton electric field.

Figure 2.48. The ratio f[pmax(a),a,b]/f[0,a,b] of the spatially integrated intensity of

the most prominent satellite to the spatially integrated intensity of the main line (the

‘zeroth’ satellite) versus the scaled energy density of the soliton electric field and the

scaled separation b = L/λ of Langmuir solitons in the sequence. Reproduced from [13].

CC BY 4.0.



Figure 2.49. The same as in figure 2.48 but from the alternative viewpoint, so that

together with figure 2.48, it gives the most comprehensive view of the nonlinear

dependence of the intensity ratio under consideration on the scaled energy density of

the soliton electric field a.

The next few figures present calculated profiles of the Ly-beta line for the direction of

observation perpendicular to the soliton electric field E0. Figure 2.50 shows the profile of

the Ly-beta line versus the scaled distance Δω/ω from the unperturbed position of this line

for the (differently) scaled energy density of the Langmuir wave ε = [3ħE0/(2Zrmeeω)]2 = 1

and the scaled separation between Langmuir solitons in the sequence b = L/λ = 2 (solid

line). The corresponding profile of the Ly-beta line for the situation in which the Langmuir

waves are non-solitonic, for the same value of ε = 1, is shown by the dashed line.

Figure 2.50. The profile of the Ly-beta line versus the scaled distance Δω/ω from the

unperturbed position of this line for the (differently) scaled energy density of the

Langmuir wave ε = [3ħE0/(2Zrmeeω)]2 = 1 and the scaled separation b = L/λ = 2 of

Langmuir solitons in the sequence (solid line). Also shown is the corresponding profile

for the case of the non-solitonic Langmuir waves for the same value of ε = 1 (dashed

line). The direction of observation is perpendicular to the vector E0. Reproduced from

[13]. CC BY 4.0.

Paper [13] noted:



‘The profiles are continuous (rather than being a set of satellites isolated from each
other) because additional broadening mechanisms (the Stark broadening by plasma
microfields and the Doppler broadening) were taken into account in amount of δω =
2ω. An example of the fulfillment of the latter relation could be plasmas of multi-
charged ions produced by a powerful Nd-glass laser, where at the surface of the
critical density, the electron density is Ne = 1021 cm−3 (or slightly higher due to
relativistic effects) and the temperature would be up to T ~ 103 eV. It is seen that in
the case of the solitons, the profile is narrower than in the non-solitonic case. It is
also seen that both profiles have practically the bell-shape without any significant
features.’

Figure 2.51 depicts the same results as figure 2.50 but for more intense Langmuir solitons,

corresponding to ε = 9. It can be seen that in the non-solitonic situation, shown by the

dashed line, the profile has four maxima. In the solitonic case, the two secondary maxima

become just shoulders.

Figure 2.51. The same as figure 2.50 but for more intense Langmuir solitons,

corresponding to ε = 9. Reproduced from [13]. CC BY 4.0.

Figure 2.52 presents the same results as figure 2.51 but for even more intense Langmuir

solitons, corresponding to ε = 36. Both the solitonic profile (solid line) and the non-solitonic

profile (dashed line) have six maxima. Some of these maxima are more pronounced in the

solitonic situation, while other maxima are more pronounced in the non-solitonic situation.

Figure 2.52. The same as figure 2.51 but for even stronger Langmuir waves,

corresponding to ε = 36. Reproduced from [13]. CC BY 4.0.



Paper [13] then discussed the dependence of the solitonic Ly-beta profiles on the scaled

separation b = L/λ between Langmuir solitons in the sequence. Figure 2.53 presents the Ly-

beta profiles for the case of ε = 9 for the following three values of the parameter b: b = 2,

b = 4, and b = 6. One can see that with an increase in the scaled separation b = L/λ

between Langmuir solitons, various features (minima, maxima, and shoulders) gradually

fade away.

Figure 2.53. The dependence of the Ly-beta profiles for the case of Langmuir

solitons, corresponding to the scaled energy density of the solitons ε = 9, on the

scaled distance b = L/λ between Langmuir solitons in the sequence: b = 2 (solid line),

b = 4 (dashed line), and b = 6 (dash-dotted line). Reproduced from [13]. CC BY 4.0.

Thus, the diagnostic of Langmuir solitons based on the use of experimental profiles of

the Ly-beta line can be implemented as follows: pronounced secondary maxima would

appear in the wings of the spectral line in the non-solitonic situation, but those maxima

would appear like shoulders in the solitonic situation—see figures 2.51 and 2.52 and the

solid line in figure 2.53. All these transformations of the line profiles are due to their

nonlinear dependence on the scaled energy density of the Langmuir solitons.
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Chapter 3

Nonlinear effects in the radiation of hydrogenic

spectral lines under the broadband electric field of

Langmuir turbulence

Langmuir waves, which are quasimonochromatic in plasmas of relatively low electron

densities Ne, can be broadband waves (turbulent) at high electron densities, such as Ne ≫

1018 cm−3. The broadening of the power spectrum of Langmuir waves at high electron

densities is mainly caused by electron collisions. The corresponding effect on the spectral

lines was utilized in papers [1–3] to interpret some of the experimental results. It was also

studied theoretically by Gavrilenko [4].

Gavrilenko [4] considered the power spectrum of the stochastic electric field (such as

broadband Langmuir turbulence) to be Lorentzian. In [5], his results were further

developed for the Gaussian power spectrum of the stochastic electric field. Also, in

distinction to [4], where only hydrogen lines were analyzed, the analysis of [5] was

extended to hydrogenic spectral lines; in other words, it included the spectral lines of

hydrogenlike ions of any nuclear charge Z. In addition, a new diagnostic method was

developed in [5] to measure the Langmuir turbulence average field and to get some

information on the Langmuir turbulence power spectrum. We present some details from

paper [5] below.

Gavrilenko [4] considered a linearly polarized electric field

E(t) =
N

∑
j=1

Ej cos (ωjt + φj), N ≫ 1.

where fE(t) was a stationary Gaussian random process characterized by a zero average

 and whose correlation function was

{E(t)E(t + τ)}av = BG(τ), B = {E
2}

av
.

In equation (3.2), G(τ) is a correlation coefficient.

A hydrogenic spectral line, representing the radiative transition between Stark sublevels

α of the upper state a and Stark sublevels β of the lower state b, has the following profile

S(Δω):

S(ΔΩ) = (1/π)∑
α,β

Re ∫
∞

0

exp(−iτΔΩ)Φαβ(τ)dτ.

In equation (3.3), the argument ΔΩ is meant to be in the frequency scale and

Φαβ(τ) = exp (iδabτ)∣⟨φα∣re∣ φβ⟩∣
2
Pαβ(τ),
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Pαβ(τ) = exp[−bI(τ)], b = Cαβ
2B, I(τ) = ∫

τ

0

(τ − t)G(t)dt, τ > 0.

In equations (3.4) and (3.5), e is the unit vector of the polarization of the emitted

photons, r is the radius vector of the atomic electron, and re stands for the scalar product

of r and e. The other notations are as follows: the energy difference between levels a and b

is denoted by δab; φα and φβ are the parabolic wave functions of the hydrogenic atom/ion

(the z-axis, which is the parabolic quantization axis, is along E(t)); the quantity Cαβ in

equation (3.5) is the Stark constant

Cαβ = 3(naqα − nbqβ)/(2Z),

where n and q are the principal and electric quantum numbers. (Atomic units have

been used in equations (3.5) and (3.6): ħ = e = me = 1.)

It should be emphasized that the quantity b = Cαβ
2B = Cαβ

2{E2}a  is the scaled energy

density of the Langmuir turbulence. Therefore, we will pay special attention to the

dependences of various physical quantities on the parameter b.

The Lorentzian-shaped power spectrum of the stochastic field E(t) was characterized by

the following correlation coefficient:

G(τ) = exp(−γ ∣ τ ∣) cos ωτ.

The analytical result calculated by Gavrilenko [4] for the integral I(τ) in equation (3.5)

was:

On substituting equation (3.7) into equation (3.4), he obtained the result for the

correlation function Φαβ(τ). We remind that the spectral line shape is the Fourier transform

of the correlation function.

In [5], the author analyzed the case in which the correlation coefficient is

G(τ) = exp(−τ 2/g2) cos ωτ,

which represents the Gaussian form of the power spectrum of the stochastic field. He

calculated the integral I(τ) in equation (3.5) by employing the correlation coefficient G(τ)

from equation (3.9). As a result, he obtained:

In equation (3.10), erf(z) is the error function. On substituting equation (3.10) into

equation (3.4), we the following analytical expression for the correlation function Φαβ(τ):

I(τ) = {exp(−γτ)[(γ 2 − ω2) cos (ωτ) − 2γω sin (ωτ)] + γτ(γ 2 + ω2)

−(γ 2 − ω2)}/(γ 2 − ω2)
2
.

I(τ) = (g2/2)[exp(−τ 2/g2) cos h(ωτ) − 1]

+ (π1/2g/4) exp (−g2ω2/4) {Re [(2τ + ig2ω) erf(τ/g + igω/2)] + ig2ω erf(ig

Φαβ(τ) = exp (iδabτ)∣⟨φα∣re∣ φβ⟩∣
2 exp {−b{(g2/2)[exp(−τ 2/g2) cos h(ωτ) − 1]

+ (π1/2g/4) exp(−g2ω2/4) {Re [(2τ + ig2ω) erf(τ/g + igω/2)] + ig2ω erf(i
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It can be seen that in this case, the line profile in equation (3.3) is also the one-fold integral

—just as it was in [4].

The author of [5] then considered different limits of the general result of equation

(3.11). The first limit was the case in which the carrier frequency is much greater than the

characteristic width g of the power spectrum of the stochastic field E(t):

ωg ≫ 1.

In this situation, equation (3.10) simplifies to

I(τ) = [1 − cos (ωτ)]/ω2,

so that

Pαβ(τ) = exp{−b[1 − cos (ωτ)]/ω2}.

Equation (3.14) for Pαβ(τ) describes the shape of the spectral line found by Lifshitz [6].

The second limit analyzed in [5]—the more interesting limit physically—was the case in

which the carrier frequency is much smaller than the characteristic width g of the power

spectrum of the stochastic field E(t):

ωg ≪ 1.

In this situation, equation (3.10) simplifies to

I(τ) = (g2/2)[exp(−τ 2/g2) − 1] + (π1/2/2)gτ erf(τ/g),

so that

Pαβ(τ) = exp{−(bg2/2)[exp(−τ 2/g2) − 1] + (π1/2/2)bg τ erf(τ/g)}.

When the time τ is relatively large, so that τ/g ≫ 1, the following expression for Pαβ(τ)

was obtained in [5]:

Pαβ(τ) = exp[−(π1/2/2)bg τ].

This signifies that at relatively small detunings from the unperturbed frequency, the

shape of the spectral line is Lorentzian. This Lorentzian would have the following full width

at half maximum (FWHM):

FWHML = π1/2 bg.

When the time τ is relatively small, so that τ/g ≪ 1, the author of [5] obtained the

following for Pαβ(τ):

Pαβ(τ) = exp(−bτ 2/2).

This signifies that at relatively large detunings from the unperturbed frequency, the

shape of the spectral line changes to Gaussian. This Gasussian shape would have the
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following FWHM:

FWHMG = 2(2b ln 2)1/2.

The author of [5] then let D denote the detuning in the frequency scale from the

unperturbed frequency of the spectral line:

D = ΔΩ − δab.

For the profile of any Stark component of the hydrogenic spectral line, he then

obtained the following (for the situation in which ωg ≪ 1):

In all figures below, the quantities b, g, and D are measured in units of the carrier

frequency ω (for example, D = (ΔΩ − δab)/ω). Figure 3.1 presents the calculated profile of

any Stark component for b = 25 and g = 0.25. (Here and below, in all figures of this

chapter, the quantities b, g, and D are measured in units of the carrier frequency ω: for

instance, D = (ΔΩ − δab)/ω.) Figure 3.1 also displays the Gaussian of FWHMG = 2(2b ln 2)1/2

and the Lorentzian of FWHML = π1/2bg. One can see that the central part of the profile is

close to a Lorentzian shape, but in the wings, the shape becomes Gaussian, thus

confirming the above analytical results.

Figure 3.1. The calculated profile of any Stark component for b = 25 and g = 0.25

(solid line). Also shown is the Lorentzian of FWHML = π1/2bg (dashed line) as well as

the Gaussian of FWHMG = 2(2b ln 2)1/2 (dotted line).

To make the transition from the Lorentzian in the profile center to the Gaussian in the

wings more visible, figure 3.2 presents parts of the profiles from figure 3.1 using a log[S]

versus D1/2 representation. One can see that in the wings, the calculated profile (bold line)

becomes a straight line in accordance with its transition to the Gaussian.

S(D) = (1/π)∫
∞

0

cos (Dτ)

exp{−(bg2/2)[exp(−τ 2/g2) − 1] + (π1/2/2)bg τ erf(τ/g)}dτ.



Figure 3.2. Parts of the spectral line profile from figure 3.1 but in a log[S] versus D1/2

representation.

Figure 3.3 shows how the profile of any Stark component of the spectral line transforms

at a fixed value of b = 40 as the quantity g varies. One can see that as g grows, the width

of the spectral profile increases—in accordance with the analytical results presented above.

Figure 3.3. The transformation of the profile of any Stark component of the spectral

line at a fixed value of b = 40 as the quantity g varies.

Figure 3.4 demonstrates the transformation of the profile of any Stark component of the

spectral line as the scaled energy density b of the Langmuir turbulence varies at a fixed

value of g = 0.3. One can see that as the scaled energy density b of the Langmuir

turbulence grows, the width of the spectral profile increases—in accordance with the

analytical results presented above. If the profile were Lorentzian, then its width would have

had a linear dependence on b—according to equation (3.19). The fact that the profile is not

actually Lorentzian means that the dependence of the width on the scaled energy density b

of the Langmuir turbulence is nonlinear.



Figure 3.4. The transformation of the profile of any Stark component of the spectral

line as the scaled energy density b of the Langmuir turbulence varies at a fixed value

of g = 0.3.

Figure 3.5 shows the calculated Ly-beta spectral profiles versus the scaled detuning D =

ΔΩ/ω at a fixed value of the scaled root-mean-squared field {E2}a
1/2/(Zrω) = 0.2 for the

following two values of the parameter g that controls the width of the power spectrum of

the Langmuir turbulence: g = 1/4 and g = 1/2. One can see that as the parameter g grows,

the spectral line width increases.

Figure 3.5. The calculated Ly-beta spectral profiles versus the scaled detuning D =

ΔΩ/ω at a fixed value of the scaled root-mean-squared field {E2}a
1/2/(Zrω) = 0.2 for

the following two values of the parameter g that controls the width of the power

spectrum of the Langmuir turbulence: g = 1/4 (solid line) and g = 1/2 (dashed line).

It is instructive to compare the profiles of the hydrogenic Ly-beta line for the Gaussian

power spectrum utilized in [5] and for the Lorentzian power spectrum employed in [4] for

the situation in which both types of power spectrum have the same FWHM. This

comparison is presented in figures 3.6 and 3.7. The solid line represents the case of the



Gaussian power spectrum and the dashed line represents the case of the Lorentzian power

spectrum. Figure 3.6 corresponds to {E2}a
1/2/(Zrω) = 0.2 and g = 0.5. Figure 3.7

corresponds to the {E2}a
1/2/(Zrω) = 5 and g = 1.

Figure 3.6. A comparison of the profiles of the hydrogenic Ly-beta line for the

Gaussian power spectrum utilized in [5] (solid line) and for the Lorentzian power

spectrum employed in [4] (dashed line) for the parameters {E2}a
1/2/(Zrω) = 0.2 and g

= 0.5.

Figure 3.7. The same plot as in figure 3.6 but for the parameters {E2}a
1/2/(Zrω) = 5

and g = 1.

It can be seen that that the profile corresponding to the Gaussian power spectrum is

narrower than the profile corresponding to the Lorentzian power spectrum. It can also be

seen that the difference in the widths of the two profiles increases with the growth of the

parameters {E2}a
1/2/(Zrω) and g. It is important to emphasize the following: at the

relatively small value of the scaled field of {E2}a
1/2/(Zrω) = 0.2 and thus a relatively small

energy density of the field (figure 3.6), the shapes of both profiles are Lorentzian. However,



at the relatively large value of the scaled field of {E2}a
1/2/(Zrω) = 5 and thus a relatively

large energy density of the field (figure 3.7), the shapes of both profiles become Gaussian.

This effect is nonlinear with respect to the energy density of the stochastic Langmuir

turbulence. Figure 3.8 is the same as figure 3.7 but for a smaller value of g = 0.1. One can

see that for the relatively small g, both profiles are practically the same. Both profiles are

Gaussian.

Figure 3.8. The same plot as figure 3.7 but for a smaller value of g = 0.1.

Furthermore, [5] revealed that there is a critical value of g: gcrit ~ 0.3. While at g < gcrit,

the two profiles are almost identical, at g > gcrit, the two profiles have very different

widths: the profile corresponding to the Gaussian power spectrum is narrower than the

profile corresponding to the Lorentzian power spectrum.

Finally, [5] emphasized that the obtained results present for the first time the

opportunity to deduce from the experimental spectral line profiles information about the

power spectrum of the stochastic Langmuir turbulence—in addition to measuring the

average stochastic field and thus the energy density of the Langmuir turbulence. It also

provided a detailed algorithm showing how to do this.
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Chapter 4

Nonlinear effects in the radiation of satellites of non-

hydrogenic spectral lines from plasmas and their

applications

4.1 Early theoretical results

This kind of satellite can occur in the spectral lines of helium and lithium atoms, as well

as in the spectral lines of He-like and Li-like ions. For example, Baranger and Mozer [1]

considered the situation where, in the energy spectrum of a helium atom, one can select

a system of three levels, namely zero, one, and two, which have the following

properties. Level two is coupled by dipole matrix elements with a closely located level

one and to the distant level zero, while levels one and zero are not coupled by a dipole

matrix element. So, in the absence of an external electric field, the radiative transition

from two to zero is allowed, while the radiative transition from one to zero is forbidden

(in the dipole approximation). Under a static electric field F, in addition to the allowed

spectral line at the frequency ω20 = ω2 − ω0, the dipole-forbidden spectral line appears

at the frequency ω10 = ω1 − ω0. (We use atomic units, so that the frequencies ω0, ω1,

and ω2 are the energies of the levels zero, one, and two, respectively.)

Under a relatively weak quasimonochromatic electric field (QEF) of frequency ω, two

satellites can appear at the frequencies ωsat = ω10 ± ω, instead of the dipole-forbidden

spectral line. For the case of the isotropic multimode QEF, Baranger and Mozer [1] used

the standard nonstationary perturbation theory to obtain the following ratio of the

satellite intensities S+ and S− to the intensity Ia of the allowed spectral line (in atomic

units):

S±/Ia = [6(Δ ± ω)2(2l2 + 1)]
−1

⟨E 2⟩ max(l1, l2)[∫
∞

0

Rl1(r)Rl2(r)r3dr]
2

,

In equation (4.1), l1 and l2 are the quantum numbers of the orbital momenta for

energy levels one and two; Δ is the separation between these two energy levels; Rl is

the radial part of the wave functions in the spherical quantization; the mean-square

amplitude of the QEF is denoted by 〈E2〉.

Several years later, Cooper and Ringler [2] performed similar calculations in frames

of the standard nonstationary perturbation theory for the case in which the QEF has a

single mode and is linearly polarized, being in the form of E(t) = E0 cos ωt. For

observation perpendicular to the field, they obtained the following result:
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S±

Ia
=

E 2
0

4(Δ ± ω)2

∑
m0,m1,m2

∣ z12 ∣2 (∣ y20 ∣2 + ∣ z20 ∣2)

∑
m0,m2

(∣ y20 ∣2 + ∣ z20 ∣2)
.

The summations in equation (4.2) are performed over the magnetic quantum

numbers m0, m1, and m2 of the sublevels of the levels zero, one, and two.

Baranger and Mozer suggested measuring the QEF amplitude by measuring the

experimental value of the ratio S±/Ia and then comparing it with the corresponding

theoretical ratio. This idea was first implemented experimentally by Kunze and Griem [3]

and was then employed by other authors in several experiments. However, these

experiments soon entered the situation in which the QEF was relatively strong, so that

the Baranger–Mozer theoretical results [1] and the Cooper–Ringler theoretical results [2]

became invalid.

4.2 The adiabatic theory of satellites

The overwhelming majority of these later experiments corresponded to the low-

frequency case, where ω ≪ Δ. In this case, the employment of the adiabatic

perturbation theory allowed the corresponding analytical results to be obtained beyond

the limits of validity of the standard nonstationary perturbation theory—see section 5.1

of [3]. To illustrate this, we let:

α = 2E0z12/Δ.

The nonstationary perturbation theory is valid only for α ≪ 1. In contrast, the

adiabatic perturbation theory is valid for

αω/Δ ≪ 1.

So, as long as ω ≪ Δ, condition (4.4) can be satisfied even for α > 1, that is, for the

stronger QEF. The analytical results obtained using the adiabatic perturbation theory

(the results of which are presented below) allowed the experimental determination of

the QEF amplitude for relatively strong fields.

The adiabatic perturbation theory of satellites starts from the instantaneous

eigenvalues of the operator

H(t) = Ha + zE0 cos ωt

(where Ha is the Hamiltonian of the unperturbed atom) for the two-level subsystem

consisting of levels one and two:

ω1,2(t) = [ω1
(0) + ω2

(0) ± (−Δ)(1 + α2 cos2 ωt)
1/2

]/2.

The corresponding instantaneous eigenfunctions that constitute the adiabatic basis,

are
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The solution of the Schrödinger equation

i ∂ψ/∂t = (Ha + zE0 cos ωt)ψ

is sought in the form

ψ(t) =
2

∑
j=1

Cj(t)χj(t)exp[−i∫
t

0

dt′ωj(t′)].

On substituting equation (4.9) into equation (4.8), one obtains:

β̇ = −αω(sinωt)/(1 + α2cos2ωt).

To calculate the intensities of the satellites, the following initial conditions are

chosen: C1(0) = 1, C2(0) = 0. With these initial conditions, the solution of the system of

equations (4.10) is

C2(t) ≈
1

2
∫

t

0

dt′β̇(t′) exp(i∫
t′

0

dτω21(t)).

In order to calculate the integrals in equation (4.12), the quantities β̇(t) and ω21(t)
have been expanded into the corresponding Fourier series:

The notations used in equation (4.13) are as follows:

k ≡ α(1 + α)−1/2,

∣ ∣

χ1(t) = ψ1 cos(β/2) − ψ2 sin(β/2),

χ2(t) = ψ1 cos(β/2) − ψ2 sin(β/2),

β ≡ arctan(α cos ωt).

Ċ1 = − C2(β̇/2)exp[−i∫
t

0

dt′ω21(t′)]

Ċ2 = C1(β̇/2)exp[i∫
t

0

dt′ω21(t′)];

β̇(t) = i(kω/4)
+∞

∑
p=−∞

(a2p − a2p+2)exp[i(2p + 1)ωt],

ω21(t) = Δ +
∞

∑
q=1

ε2q cos 2qω,

Δ ≡ (2/π)Δ(1 + α2)
1/2

E(k).

¯

¯
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a2p = 2(−1)p
k−2∣p∣[(1 − k2)

1/2
− 1]

2∣p∣

,

ε2 = (4/3π)Δ(1 + α2)
1/2

[E(k) − 2(1 − k2)D(k)],

ε4 = (4(15πk4))
−1

Δ × (1 + α2)
1/2

[(8k4 − 24k2 + 16)K(k) + (−k4 + 16k2 − 16)E(k)].

In equations (4.16) and (4.17), E(k), D(k), and K(k) are the complete elliptic

integrals.

To illustrate the last line of equation (4.13) pictorially in terms of its dependence on

the energy density of the field, we rewrite it in the form

D = (2/π)Δ(1 + a/Δ2)
1/2

E[(a1/2/Δ)/(1 + a/Δ2)
1/2
],

where

a = 4z1/2E0
2

is the scaled energy density of the field. Figure 4.1 shows the dependence of the

perturbed separation D of levels one and two versus the scaled energy density a and the

unperturbed separation Δ, all quantities being in atomic units.

Figure 4.1. The dependence of the perturbed separation D of levels one and two

versus the scaled energy density a and the unperturbed separation Δ, all quantities

being in atomic units (see equations (4.18) and (4.19)).

Figure 4.2 shows the same results as those of figure 4.1 but from the alternative

viewpoint, so that together with figure 4.1, it demonstrates in a comprehensive way the

nonlinear dependence of the perturbed separation D of levels one and two on the scaled

energy density a of the laser field for various values of the unperturbed separation Δ.



Figure 4.2. The same results as those shown in figure 4.1 but from the alternative

viewpoint, so that together with figure 4.1, this figure demonstrates in a

comprehensive way the nonlinear dependence of the perturbed separation D of

levels one and two on the scaled energy density a of the laser field.

Figure 4.3 presents the dependence of the perturbed separation D of levels one and

two on the scaled energy density a of the laser field at the unperturbed separation Δ =

1.

Figure 4.3. The dependence of the perturbed separation D of levels one and two

on the scaled energy density a of the laser field at the unperturbed separation Δ =

1.

From figures 4.1–4.3, it can be seen that the dependence of the perturbed separation

D of levels one and two on the scaled energy density a of the laser field is significantly

nonlinear.



Figure 4.4 shows the dependence of the Fourier expansion coefficient ε2q from

equation (4.13) on the scaled energy density a and the unperturbed separation Δ for q =

1.

Figure 4.4. The dependence of the Fourier expansion coefficient ε2q from equation

(4.13) on the scaled energy density a and the unperturbed separation Δ for q = 1.

Figure 4.5 shows the same results as those of figure 4.4 but from the alternative

viewpoint, so that together with figure 4.4, it demonstrates in a comprehensive way the

nonlinear dependence of the Fourier expansion coefficient ε2q from equation (4.13) on

the scaled energy density a and the unperturbed separation Δ for q = 1.

Figure 4.5. The same results as those shown in figure 4.4 but from the alternative

viewpoint, so that together with figure 4.4, this figure demonstrates in a

comprehensive way the nonlinear dependence of the Fourier expansion coefficient



ε2q from equation (4.13) on the scaled energy density a and the unperturbed

separation Δ for q = 1.

Figure 4.6 shows the dependence of the Fourier expansion coefficient ε2q from

equation (4.13) on the scaled energy density a and the unperturbed separation Δ for q =

2.

Figure 4.6. The dependence of the Fourier expansion coefficient ε2q from equation

(4.13) on the scaled energy density a and the unperturbed separation Δ for q = 2.

Figure 4.7 shows the same results as those of figure 4.6 but from the alternative

viewpoint, so that together with figure 4.6, it demonstrates in a comprehensive way the

nonlinear dependence of the Fourier expansion coefficient ε2q from equation (4.13) on

the scaled energy density a and the unperturbed separation Δ for q = 2.



Figure 4.7. The same results as those of figure 4.6 but from the alternative

viewpoint, so that together with figure 4.6, this figure demonstrates in a

comprehensive way the nonlinear dependence of the Fourier expansion coefficient

ε2q from equation (4.13) on the scaled energy density a and the unperturbed

separation Δ for q = 2.

Figure 4.8 shows the dependence of the Fourier expansion coefficient ε2q from

equation (4.13) on the scaled energy density a and the unperturbed separation Δ for q =

3.

Figure 4.8. The dependence of the Fourier expansion coefficient ε2q from equation

(4.13) on the scaled energy density a and the unperturbed separation Δ for q = 3.

Figure 4.9 shows the same results as those of figure 4.8 but from the alternative

viewpoint, so that together with figure 4.8, this figure demonstrates in a comprehensive

way the nonlinear dependence of the Fourier expansion coefficient ε2q from equation

(4.13) on the scaled energy density a and the unperturbed separation Δ for q = 3.



Figure 4.9. The same results as those shown in figure 4.8 but from the alternative

viewpoint, so that together with figure 4.8, this figure demonstrates in the

comprehensive way the nonlinear dependence of the Fourier expansion coefficient

ε2q from equation (4.13) on the scaled energy density a and the unperturbed

separation Δ for q = 3.

Figure 4.10 shows the dependence of the Fourier expansion coefficient ε2q from

equation (4.13) on the scaled energy density a and the unperturbed separation Δ for q =

4.

Figure 4.10. The dependence of the Fourier expansion coefficient ε2q from

equation (4.13) on the scaled energy density a and the unperturbed separation Δ

for q = 4.
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Figure 4.11 shows the same results as those shown in figure 4.10 but from the

alternative viewpoint, so that together with figure 4.8, it demonstrates in a

comprehensive way the nonlinear dependence of the Fourier expansion coefficient ε2q

from equation (4.13) on the scaled energy density a and the unperturbed separation Δ

for q = 4.

Figure 4.11. The same results as those shown in figure 4.10 but from the

alternative viewpoint, so that together with figure 4.8, this figure demonstrates in a

comprehensive way the nonlinear dependence of the Fourier expansion coefficient

ε2q from equation (4.13) on the scaled energy density a and the unperturbed

separation Δ for q = 4.

From figures 4.2 and 4.4–4.11, it can be seen that the dependence of the Fourier

expansion coefficients ε2q from equation (4.13) on the scaled energy density a is

significantly nonlinear for any q.

The solution of equation (4.12) is

where J0 and J1 stand for the Bessel functions J0[ε2/(2ω)] and J1[ε2/(2ω)]. The

corresponding approximate solution of equation (4.8) is

ψ(t) ≈ χ1(t)exp[−i∫
t

0

dt′ω1(t′)] + C2(t)χ2(t)exp[−i∫
t

0

dt′ω2(t′)].

The spectrum of the spontaneous emission to level zero is determined by the

following equation

C2(t) ≈

g(u) ≡ [exp(iut) − 1]/u,

(kω/8){[(2 − a2)J0 − 2J1]g(Δ + ω) − [(2 − a2)J0 + 2J1]

× g(Δ − ω) + (2J1 + a2J0)g(Δ + 3ω) + (2J1 − a2J0)g(Δ − 3ω)},

¯

¯̄̄
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I (e)(Δω) = lim
T → ∞

(2πT )−1∣∫
T

0

dt ⟨ψ(t) ∣ re ∣ ψ0⟩ exp(−itΔω)∣

2

,

where the unit vector of photon polarization is denoted by e.

In many experiments, the satellites are emitted from a much smaller volume than the

allowed spectral line. In this situation, both the theoretical ratio of the intensity S− of the

near satellite to the intensity Ia of the allowed line and the theoretical ratio of the

intensity S+ of the far satellite to the intensity Ia of the allowed line cannot be used to

determine the field amplitude E0. A possible way to resolve this is to compare the

experimental ratio of the satellite intensities S−/S+ with the corresponding theoretical

ratio. However, within the first nonvanishing order of the standard perturbation theory

(~E0
2), this theoretical ratio does not depend on E0 and cannot be used to determine E0.

To obtain the dependence of the theoretical ratio S−/S+ within the standard perturbation

theory, one should extend the calculations to at least the next order (~E0
4). The

corresponding result for the satellite intensities σ± is

σ± ≈
1

(Δ ± ω)2
[(

E0z12

2
)

2

± (
E0z12

2
)

4 Δ3 ∓ 7Δ2ω + 3Δω2 ∓ ω3

ω(Δ2 − ω2)2
].

Figure 4.12 presents (in solid lines) the dependence of the satellite intensity ratio

S−/S+ on the field amplitude E0 for the lines He I 4471 Å and He I 4922 Å, calculated by

the adiabatic theory for the frequency ω/(2πc) = 1.28 cm−1. For comparison, the dashed

lines show the corresponding results calculated by the standard perturbation theory up

to ~E0
4.

Figure 4.12. Solid lines—the dependence of the satellite intensity ratio S−/S+ on

the field amplitude E0 for the lines He I 4471 Å and He I 4922 Å, calculated by the

adiabatic theory for the frequency ω/(2πc) = 1.28 cm−1. Dashed lines—the

corresponding results calculated by the standard perturbation theory up to ~E0
4.
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The lines marked ‘1’ are for He I 4471 Å and the lines marked ‘2’ are for He I 4922

Å. Reprinted from [3], Copyright (1995), with permission from Springer.

One can see that even after the inclusion of the terms ~E0
4, the standard

perturbation theory can be used to determine the field amplitude E0 from the

corresponding experimental ratio alone for relatively small fields. In contrast, the

adiabatic theory opens up a way to extend this diagnostic method to stronger fields.

4.3 The high-frequency or strong field case in the

three-level scheme

We consider the same system of two closely lying levels one and two and the distant

level zero. The effect of the linearly polarized field E(t) = E0 cos ωt on the subsystem of

levels one and two in the high-frequency case turns out to be equivalent to the effect in

the strong field case. This is because the corresponding small parameter is

δ = Δ2/(z12E0ω) ≪ 1.

The corresponding solution for the probability amplitudes C1(t) and C2(t) can be

represented in the form [4]

where

Q = ΔJ0(2A)/2, A = z12E0/ω.

The quantities ±Q are the quasienergies. To study the dependence of the

quasienergies on the energy density of the field, we introduce the following scaled

energy density of the field:

B = A2 = (z12E0/ω)2.

 

Figure 4.13 shows a plot of the quasienergy Q versus the scaled energy density of the

field and the unperturbed separation Δ of levels one and two. We remind the reader that

all quantities are in atomic units.

C1,2(t) = 2−3/2 exp [−i(ω1
(0) + ω2

(0))t/2]

{cos (Qt) exp[−(iA) sin ωt] ± sin (Qt) exp [(iA) sin ωt]},



Figure 4.13. The dependence of the quasienergy Q from equation (4.26) on the

scaled energy density of the field B defined in equation (4.27) and on the

unperturbed separation Δ of the levels one and two.

Figure 4.14 shows the same results as those of figure 4.13 but from the alternative

viewpoint, so that together with figure 4.13, it demonstrates in a comprehensive way

the nonlinear dependence of the quasienergy Q on the scaled energy density of the field

B and on the unperturbed separation Δ of levels one and two.

Figure 4.14. The same results as those shown in figure 4.13 but from the

alternative viewpoint, so that together with figure 4.13, this figure demonstrates in

a comprehensive way the nonlinear dependence of the quasienergy Q on the scaled

energy density of the field B and on the unperturbed separation Δ of levels one and

two.
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Figure 4.15 shows the dependence of the quasienergy Q on the scaled energy density

of the field B for the unperturbed separation (of levels one and two) Δ = 1.

Figure 4.15. The dependence of the quasienergy Q on the scaled energy density

of the field B for the unperturbed separation (of levels one and two) Δ = 1.

From figures 4.13–4.15, it can be seen that the dependence of the quasienergy Q on

the energy density of the field is highly nonlinear. From equations (4.26) and (4.27), it is

clear that as the energy density of the field B increases, the separation 2Q of the two

quasienergies decreases. In this sense, it can be stated that the mutual ‘repulsion’ of

levels one and two, which is characteristic for relatively small fields (δ ≫ 1, ω ⩽ Δ),

changes to mutual ‘attraction’ for relatively strong fields (δ ≪ 1, ω ⩾ Δ).

From equation (4.25), it can be seen that in the spectrum of the radiative transition

from levels one and two to the relatively distant level zero, two systems of satellites

appear at the frequencies

ωsat,1 = Q + pω

and the frequencies

ωsat,2 = −Q + qω,

where p = 0, ±1, ±2, … and q = 0, ±1, ±2, … . As the amplitude or the frequency of

the field increases, this spectrum approaches Blochinzew’s spectrum [5].

4.4 The high-frequency or strong field case in the four-

level scheme

We consider a system of three closely lying levels one, two, and three and a distant level

zero. The effect of the linearly polarized field E(t) = E0 cos ωt on the subsystem of levels

one, two, and three in the high-frequency case turns out to be equivalent to the effect in

the strong field case—similarly to the situation presented in the previous section. The

subsystem of levels one, two, and three is characterized by the following dipole matrix

elements: z12 ≠ 0, z13 ≠ 0, z23 = 0.

The wave functions are sought in the following form
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where ψ
(0)
n  are the unperturbed wave functions. We remind the reader again that we

utilize the atomic units: ℏ = m = e = 1. After substituting equation (4.30) into the

corresponding Schrödinger equation, one gets

where

The corresponding equation for the probability amplitude C3 can be produced from

the equation for the probability amplitude C2 by transposing the indices 2 ↔ 3.

To obtain an approximate solution, we use the following Fourier expansions:

and neglect the oscillatory parts of the coefficients of the system of equation (4.31).

As a result, this system of equations takes the following form:

where

After finding the solution of the system (4.34), we obtain the following wave

functions of the quasienergy states in the high-frequency or strong field E(t):

ψ(t) =
3

∑
n=1

Cn(t)φn(t), φn(t) = exp(−iω−1E0ẑ sin ωt)ψ
(0)
n ,

Ċ1 = − iC1V sin2 α + C2z̃12 sin α(ω23z̃2
13 + V cos α)

+ C3z̃13 sin α(−ω23z̃2
13 + V cos α),

Ċ2 = − C1z̃12 sin α(ω23z̃2
13 + V cos α) − iC2(W z̃2

13 + 2z̃2
12z̃2

13ω23 cos α

+ V z̃2
12 cos2 α) − iC3z̃12z̃13[−W + (z̃2

13 − z̃2
12)ω23cosα + V cos2 α],

α ≡ B sin ωt, B ≡ ξE0/ω, ξ ≡ (z2
12 + z2

13)
1/2

,

z̃12 ≡ z12/ξ, z̃13 ≡ z13/ξ,

V ≡ ω21z̃2
12 + ω31z̃2

13,W = ω21z̃2
13 + ω31z̃2

12.

sin α = 2
∞

∑
k=1

J2k−1(B) sin(2k − 1)ωt, cos α = J0(B)

+ 2
∞

∑
k=1

J2k(B) sin 2kωt

Ċ1 = −ia11C1, Ċ2 = −ia22C2 − ia23C3, Ċ3 = −ia32C2 − ia32C3,

a11 = [1 − J0(2B)]V /2;

a23 = a32 = z̃12z̃13{(z̃2
13 − z̃2

12)ω23[J0(B) − 1] + [J0(2B) − 1]V /2};

app = ωp1 + (−1)p2z̃2
12z̃2

13ω23[J0(B) − 1]

+ z̃2
1p[J0(2B) − 1]V /2, (p = 2, 3).

/
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where

μ1 = a11, μ2,3 = (a22 + a33)/2 ± [(a22 − a33)2/4 + a2
23]

1/2

are the quasienergies.

We introduce the following scaled energy density of the field:

G = B2 = (ξE0/ω)2.

As an example, figure 4.16 shows the dependence of the quasienergy μ1 on the

scaled energy density of the field G and on the parameter V defined in equation (4.32).

Figure 4.16. The dependence of the quasienergy μ1 from equation (4.37) (see also

equation (4.35)) on the scaled energy density of the field G and on the parameter V

defined in equation (4.32).

Figure 4.17 shows the same results as those of figure 4.16 but from the alternative

viewpoint, so that together with figure 4.16, it demonstrates in a comprehensive way

the nonlinear dependence of the quasienergy μ1 on the scaled energy density of the

field G and on the parameter V.

ψ1(t) = φ1 exp(−iμ1t), ψ2(t) = (1 + A2)
−1/2

(φ2 − Aφ3)exp(−iμ2t),

ψ3(t) = (1 + A2)
−1/2

(Aφ2 + φ3)exp(−iμ3t),

A ≡ (μ3 − a33)/a23 = (a22 − μ2)/a23,



Figure 4.17. The same results as those shown in figure 4.16 but from the

alternative viewpoint, so that together with figure 4.16, this figure demonstrates in

a comprehensive way the nonlinear dependence of the quasienergy μ1 on the

scaled energy density of the field G and on the parameter V.

Figure 4.18 shows the dependence of the quasienergy μ1 on the scaled energy

density of the field G for the parameter V = 5.

Figure 4.18. The dependence of the quasienergy μ1 on the scaled energy density

of the field G for the parameter V = 5.

From figures 4.16–4.18, it can be seen that the dependence of the quasienergy μ1 on

the scaled energy density of the field G is highly nonlinear.

Appendix A presents an example of the application of the above general results to

the specific case in which the three levels from which the radiative transitions originate

are the energy levels 5D, 5F, and 5G of helium.
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Chapter 5

Intra-Stark spectroscopy of plasmas: the

nonlinear optical phenomenon and its

applications

The simultaneous interaction of the radiator with the

quasimonochromatic electric field and the quasistatic part of the plasma

electric field led to the discovery of a new sub-area of plasma

spectroscopy: intra-Stark spectroscopy. It deals with Langmuir-wave-

induced structures (bump-dip-bump structures) at certain locations in

the profiles of hydrogenic spectral lines. These structures (called for

brevity Langmuir ‘dips’), which consist of a local intensity minimum

surrounded by two ‘bumps’ (peaks), constitute an emergent

phenomenon that springs from multifrequency nonlinear dynamic

resonances (see, e.g. papers [1, 2] and books [3, 4]). The analytical

predictions of the emergent phenomenon of the Langmuir-wave-caused

‘dips’ were confirmed by a large number of experiments by various

experimental groups working with different plasma machines as well as

by astrophysical observations. In these experiments and observations,

which span about ten orders of magnitude of electron densities, the

highly localized Langmuir-wave-induced structures were reliably

detected, identified, and used for plasma diagnostics. In particular, this

included the high-precision, benchmark experiments at the gas-liner

pinch by Kunze’s group [5, 6], in which plasma parameters were

measured using coherent Thomson scattering independently of

measurements of the line profiles.

The physics behind the Langmuir-wave-induced structures is as

follows. Let us consider the electric field

E(t) = F + E0 cos (ωt),

where F represents the quasistatic part of the electric field in the

plasma. The field F may not only include the contribution from the

quasistatic part of the ion microfield but also the contribution from the

low-frequency electrostatic plasma turbulence (such as ion acoustic
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waves, lower hybrid waves, or Bernstein modes). If F and E0 are not

collinear (which is true for the overwhelming majority of possible mutual

orientations of the vectors F and E0), then the total field E(t) is librating.

The frequency spectrum of this librating field consists not only of the

frequency ω but also its harmonics: the frequency spectrum of the

librating field is uω, where u = 1, 2, 3, … .

Feff denotes the absolute value of the total electric field averaged

over the period of the libration:

Feff = ⟨∣E(t)∣⟩.

If the librating nature of the total electric field is first disregarded,

the energy levels of a radiating hydrogenic atom/ion (the radiator) of the

nuclear charge Zr split into 2n − 1 Stark sublevels separated by (in

atomic units)

Ω = 3nFeff/(2Zr),

where n is the principal quantum number. The Stark sublevels are

distinguished by the electric quantum number

q = n1 − n2,

where n1 and n2 are the parabolic quantum numbers.

The combined system ‘radiator + field’ can be described in terms of

quasienergy states, whose quasienergies Q are as follows:

Q = Ω + vω, v = 0, ±1, ±2, ±3, ….

We now take into account the time-dependent component of the

librating electric field. We recall that its frequency spectrum is uω, where

u = 1, 2, 3, … . Here, we come to the central point. In the situation in

which

Ω = uω, u = 1, 2, 3, …,

there are multiple resonances between the harmonics of the

librating field and all quasienergy states of the quasienergies Q = Ω +

vω. In other words, the resonances are multiquantum (in terms of the

quanta of the Langmuir field) and multifrequency. This causes the

degeneracy of all quasienergy states: the quasienergy harmonics
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resulting from each of the 2n − 1 atomic Stark substates are

superimposed on each other.

In this multiquantum multifrequency resonance, each degenerate

quasienergy state is the superposition of several quasienergy harmonics

originating from different Stark sublevels (sublevels of different values of

the electric quantum number q). The Stark sublevel of some value of q is

coupled by the dipole matrix element with the sublevels q + 1 and q −

1. As a result of this coupling, additional splitting of all quasienergy

harmonics occurs. This splitting is analogous to Rabi splitting, but it is its

generalization for the case of the multiquantum multifrequency

resonances. The additional splitting of all quasienergy harmonics is

generally a nonlinear function of the Langmuir field amplitude E0 (see,

e.g. equation (5.9) from [2]).

The multiquantum multifrequency resonances correspond to a set of

specific locations in the profile of a hydrogenlike spectral line because

they correspond to specific resonance values of Feff that satisfy condition

(5.5). These locations are separated from the center of the spectral line

by well-defined amounts of the wavelength Δλdip(ω), where Δλdip(ω) are

well-defined functions of the Langmuir-wave frequency ω =

(4πe2Ne/me)1/2, so that (see, for example, [3, 4])

Δλdip = aNe
1/2 + bNe

3/4,

where the coefficients a and b are controlled by quantum numbers

and by the charges of the radiating and perturbing ions. The

identification of these structures in the experimental line profile allows

the electron density Ne to be very accurately determined from their

locations. From equation (5.7) it is clear that the locations of these

resonance structures in the spectral line profile depend on the electron

density in a nonlinear way. There is more nonlinearity in this

phenomenon, as explained further in this chapter.

At each exact location in the line profile corresponding to the

resonance (5.6), (for brevity, the ‘resonance location’), a partial transfer

of intensity takes place from the wavelength of the exact resonance

location to adjacent wavelengths on each side of the exact resonance

location due to the generalized Rabi splitting of the quasienergies. As a

result, a structure can appear that consists of the local depression of the

intensity surrounded by two relatively small ‘bumps,’ as illustrated in

figure 5.1.



Figure 5.1. A calculated ‘bump-dip-bump’ structure caused by the

multifrequency nonlinear dynamic resonance (5.5), superimposed

on an inclined ‘unperturbed’ spectral line profile.

When superimposed with an inclined ‘unperturbed’ spectral profile,

each bump-dip-bump structure can be responsible for two local minima

of the intensity—as shown in figure 5.1—rather than just one local

minimum of the intensity. The secondary minimum located at a higher

intensity than the primary minimum is of no physical significance.

Sometimes one of the two bumps and/or the secondary local minimum

manifests only as a small ‘shoulder.’

The analytically predicted Langmuir-wave-induced ‘dips’ were then

revealed in a large number of various experiments around the world [5–

19] and in astrophysical observations [20]. In these experiments and

observations, the Langmuir-wave-induced ‘dips’ were reliably detected,

identified, and used for plasma diagnostics in plasmas of electron

densities ranging from 1013 cm−3 to 3×1022 cm−3.

It should be noted that the nonlinear phenomenon of intra-Stark

spectroscopy is analogous to the ‘older’ nonlinear phenomenon of intra-

Doppler spectroscopy. In intra-Doppler spectroscopy, the nonlinear

phenomenon manifests as localized structures within the Doppler line

profile. In intra-Stark spectroscopy, the nonlinear phenomenon

manifests as localized structures within the quasistatic Stark profile of

the spectral line. Below are more analytical details of this phenomenon.

In order to present the analytical details in the simplest way, we focus

here on the case where in the total electric field given by equation (5.1),
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the quasistatic field F is perpendicular to the quasimonochromatic field

amplitude E0. In this case, the nonadiabatic effects are expected to be

the strongest. The general case, in which the angle between F and E0 is

arbitrary, is presented in paper [2] and book [3].

Let the z-axis of the fixed coordinate system lie along E0 and the x-

axis lie along F. The analysis is performed by adopting the rotating (or

more rigorously, librating) reference frame whose z′-axis lies along the

total electric field E(t) at all instants of time. The z′-axis constitutes a

time-dependent angle φ(t) with the z-axis. The Hamiltonian of the

radiator in the rotating frame can be represented as follows:

H = H0 + V1(t) + V2(t), V1(t) = zE(t), V2(t) = lydφ/dt.

In equation (5.8), ly is the angular momentum projection onto the y-

axis, H0 is the Hamiltonian of the unperturbed atom in the fixed

reference frame, and

E(t) = ∣E(t)∣, dφ/dt = ωFE0(sin ωt)/E 2(t).

The time-averaged value of the perturbation V1(t) splits the Stark

level of the principal quantum number n into 2n − 1 equidistant

sublevels separated from each other by

Δω = (3n/π)(F 2 + A)
1/2

E(k),

where

A = E0
2

is the scaled energy density of the oscillatory electric field, E(k) is

the complete elliptic integral of the second kind, and

k = A1/2/(F 2 + A)
1/2

.

Figure 5.2 shows the dependence of the separation Δω from

equation (5.10) on the scaled energy density A of the

quasimonochromatic electric field and on the quasistatic field F for n =

2.



Figure 5.2. The dependence of the separation Δω from equation

(5.10) on the scaled energy density A of the quasimonochromatic

electric field and on the quasistatic field F for n = 2.

Figure 5.3 shows the same plot as in figure 5.2 but from the

alternative viewpoint, so that together with figure 5.2 it demonstrates in

the most comprehensive way the dependence of the separation Δω from

equation (5.10) on the scaled energy density A of the

quasimonochromatic electric field and on the quasistatic field F for n =

2.



(5.1

3)

Figure 5.3. The same plot as in figure 5.2 but from the alternative

viewpoint, so that together with figure 5.2 it demonstrates in the

most comprehensive way the dependence of the separation Δω

from equation (5.10) on the scaled energy density A of the

quasimonochromatic electric field and on the quasistatic field F for

n = 2.

From figures 5.2 and 5.3, it can be seen that the separation Δω

depends on the scaled energy density A of the quasimonochromatic

electric field in a nonlinear way.

In the particular case of one-quantum resonance, corresponding to u

= 1 in equation (5.6), the system of equations used to determine the

quasienergies λ consists of n2 linear equations. To solve this system in a

straightforward way, one should equate the determinant of this system

to zero. As a result, one would have to find the roots of the polynomial of

degree n2 with respect to λ, so that for n > 2 there would be no

analytical solution. Luckily, there is a way out, namely that this system

of equations is equivalent to the system describing a static Stark effect

in the effective electric field E0/2. Consequently, the quasienergies can

be expressed as follows (for E0 ≪ F):

λ = 3nq A1/2/2, q = n1 − n2,



where A is the scaled energy density of the quasimonochromatic electric

field (see equation (5.11)) and n1 and n2 are the parabolic quantum

numbers.

Figure 5.4 presents the dependence of the quasienergies on the

scaled energy density of the quasimonochromatic electric field for n = 3.

It can be seen that the quasienergies depend on the energy density of

the quasimonochromatic electric field in a nonlinear way.

Figure 5.4. The dependence of the quasienergies on the scaled

energy density of the quasimonochromatic electric field for n = 3 in

the case of one-quantum resonance, corresponding to u = 1 in

equation (5.6).

Figure 5.5 presents the spectrum of the Lyman-alpha line in the

mutually perpendicular fields F and E0 cos ωt under one-quantum

resonance in the n = 2 level. The direction of observation is

perpendicular to both F and E0. The transmission axis of the linear

polarizer is either parallel to F or parallel to E. The split is equal to 

Ω0 = 3E0/2.



Figure 5.5. The spectrum of the Lyman-alpha line in the mutually

perpendicular fields F and E0 cos ωt under one-quantum

resonance in the n = 2 level. The direction of observation is

perpendicular to both F and E0. The transmission axis of the linear

polarizer is either parallel to F (solid lines) or parallel to E (dashed

lines). The split is equal to Ω0 = 3E0/2. Reprinted from [3],

Copyright (1995), with permission from Springer.

Figure 5.6 shows the same as figure 5.5 but for the Lyman-beta line

for the case of one-quantum resonance in the n = 3 level (Ω0 = 9E0/4)
.

Figure 5.6. The same as figure 5.5 but for the Lyman-beta line

under single-quantum resonance in the n = 3 level (Ω0 = 9E0/4).

Reprinted from [3], Copyright (1995), with permission from

Springer.



Figure 5.7 displays the same as in figure 5.6 but for the Balmer-alpha

line. The entire spectrum is presented only at Δω ⩾ 0, since the

spectrum is symmetric with respect to the unperturbed frequency 

Δω = 0. The intensities of the components inside the wavy lines are

shown enlarged by a factor of 200.

Figure 5.7. The same as in figure 5.6 but for the Balmer-alpha line.

The entire spectrum is presented only at Δω ⩾ 0, since the

spectrum is symmetric with respect to the unperturbed frequency 

Δω = 0. The intensities of the components inside the wavy lines

are shown enlarged by a factor of 200. Reprinted from [3],

Copyright (1995), with permission from Springer.

Let us now present some details from the high-precision, benchmark

experiments by Kunze’s group at the gas-liner pinch [5], where plasma

parameters were independently measured by both coherent Thomson

scattering and measurements of the line profiles. First, this reliably

established the existence of the Langmuir-wave-induced ‘dips’; the

evolution of their positions as the electron density varied was consistent

with theory—see figure 5.8.



Figure 5.8. A comparison of the experimental and theoretical

positions of the dips in Lyman-alpha line profiles caused by the

simultaneous action of the quasistatic part of the ion microfield and

the dynamic electric field of the Langmuir waves. The spectra were

taken 110 ns (top) and 200 ns (bottom) after the maximum

compression. The electron densities measured by coherent

Thomson scattering are also indicated. The theoretical positions of

the Langmuir dips are shown by pairs of vertical solid lines

connected by a dashed line. Reprinted figure with permission from

[5], Copyright (1991) by the American Physical Society.

Figure 5.9 presents a magnified part of the profile of the Ly-alpha line

obtained in the high-precision, benchmark experiment at the gas-liner

pinch [5], showing the observed bump-dip-bump structure, as predicted

by theory.



Figure 5.9. A magnified part of the profile of the Ly-alpha line

obtained in the high-precision, benchmark experiment at the gas-

liner pinch, showing the observed bump-dip-bump structure, as

predicted by theory. Reprinted figure with permission from [5],

Copyright (1991) by the American Physical Society.

Figure 5.10 demonstrates that the experimental positions of the

Langmuir dips yielded the values of the electron density just as

accurately as the electron densities measured using coherent Thomson

scattering.



Figure 5.10. Electron densities obtained from the experimental

positions of the Langmuir-wave-induced bump-dip-bump structures

versus the electron densities measured using coherent Thomson

scattering. The comparison is shown for many electron densities in

experiments at the gas-liner pinch. Reprinted figure with permission

from [5], Copyright (1991) by the American Physical Society.

During relativistic laser–plasma interactions, very strong magnetic

fields of gigagauss or multi-gigagauss scales are expected to develop.

Such strong magnetic fields influence the separation between Langmuir

dips in the same spectral line profile. Based on this effect, [21] proposed

a method for measuring these strong magnetic fields using non-Lyman

lines, e.g. Balmer lines in the x-ray range. The authors of [22] proposed

an alternative method based on the effect of the strong magnetic fields

on the width of the Langmuir dips.
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Figure 5.11 shows the theoretical ratio Δωdip
(β)/Δωdip

(α) of the dip

positions in a pair of Langmuir-wave-induced dips for the Balmer-alpha

line and the Balmer-beta line versus the scaled dimensionless magnetic

field b defined as follows:

b = μ0B/(sℏω) = (1/s)[B(GG)/0.201][ω(sec−1)/(1.77 × 1015)]
−1

,

where μ0 is the Bohr magneton and s is the number of the Langmuir-

wave quanta involved in the resonance that led to the dips.

Figure 5.11. The theoretical ratio Δωdip
(β)/Δωdip

(α) of the dip

positions in a pair of Langmuir-wave-induced dips for the Balmer-

alpha line (solid curve) and for the Balmer-beta line (dashed curve)

versus the scaled dimensionless magnetic field b defined in the

above equation (5.14). Reprinted from [22], Copyright (2019), with

permission from Elsevier.

The authors of [22] introduced the following three dimensionless

quantities:

f = ℏF/(Zrmeeω), γ = ℏE0/(Zrmeeω), b0 = μ0B/(ℏω),

where Zr is the nuclear charge of the radiating hydrogenlike ion.

Figure 5.12 displays the theoretical dependence of the scaled width w of

the Langmuir dips in the case of one-quantum resonance on the scaled



magnetic field b0 at γ = 0.01 for the following three values of the scaled

quasistatic electric field: f = 0.03, f = 0.1, and f = 0.3.

Figure 5.12. The theoretical dependence of the scaled width w of

the Langmuir dips in the case of one-quantum resonance on the

scaled magnetic field b0 at γ = 0.01 for the following three values of

the scaled quasistatic electric field: f = 0.03 (solid line), f = 0.1

(dashed line), and f = 0.3 (dotted line). The dimensionless

quantities b0, γ, and f are defined in the above equation (5.15).

Reprinted from [22], Copyright (2019), with permission from

Elsevier.

Figure 5.13 demonstrates the same results as figure 5.12 but for the

case of two-quantum resonance.



Figure 5.13. The same results as those of figure 5.12 but for the

case of two-quantum resonance. Reprinted from [22], Copyright

(2019), with permission from Elsevier.
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Chapter 6

Nonlinear effects in the spectrum of the

quasistatically Stark-broadened spectral lines of

plasma under a high-frequency laser field

The effect of the dynamic electric field

E(t) = E0 cos ωt + F

(where F represents the quasistatic field in a plasma) on a hydrogenic atom/ion of

the nuclear charge Z can be reduced to the Stark effect in the following effective static

field (if the field E0 cos ωt is either strong or has a high frequency):

F
(n)

eff
= (FxJ0(3nE0/2Zω), 0, Fz)

in the basis of the parabolic wave functions with the quantization axis Oz along the

vector E0 [1]. In equation (6.2), n is the principal quantum number. Physically, this

means that the high-frequency laser field E0 cos ωt suppresses—partially or completely

—the components of the quasistatic field perpendicular to E0. (This discussion uses

atomic units.)

The corresponding radiation spectrum of the Ly-alpha line in the x-polarization is as

follows [1]:

where δ(⋯) are the Dirac delta functions. So, the spectrum consists of the unshifted

component of the intensity [Fz
2/(2Feff

2)] and the two components of the intensity

Fx
2J0

2[3nE0/(2Zω)]/Feff
2 shifted by ±3Feff/Z.

We introduce the following scaled dimensionless energy density of the laser field

A = [3nE0/(2Zω)]2

and the ratio of the Fx and Fz components of the quasistatic field:

R = Fx/Fz.

Figure 6.1 shows the dependence of the intensity Iu of the unshifted component on

the scaled energy density of the field A and on the ratio R.

I(Δω, E0) = [Fz
2/(2Feff

2)]δ(Δω)

+{Fx
2
J0

2[3nE0/(2Zω)]/Feff
2} [δ(Δω − 3Feff/Z) + δ(Δω + 3Feff/Z)],



Figure 6.1. The dependence of the intensity Iu of the unshifted component on the

scaled energy density of the field A and on the ratio R.

Figure 6.2 shows the same results as those shown in figure 6.1 but from the

alternative viewpoint, so that together with figure 6.1, it demonstrates in a

comprehensive way the nonlinear dependence of the intensity of the unshifted

component on the scaled energy density of the field at various values of the ratio R =

Fx/Fz.

Figure 6.2. The same results as those shown in figure 6.1 but from the alternative

viewpoint, so that together with figure 6.1, this figure demonstrates in a

comprehensive way the nonlinear dependence of the intensity of the unshifted

component on the scaled energy density of the field at various values of the ratio R

= Fx/Fz.



Figure 6.3 shows the dependence of the intensity Iu of the unshifted component on

the scaled energy density of the field A at the ratio R = 1.

Figure 6.3. The dependence of the intensity Iu of the unshifted component on the

scaled energy density of the field A at the ratio R = 1.

Figure 6.4 shows the dependence of the intensity Is of any of the two shifted

components on the scaled energy density of the field A and on the ratio R.

Figure 6.4. The dependence of the intensity Is of any of the two shifted

components on the scaled energy density of the field A and on the ratio R.

Figure 6.5 shows the same results as those shown in figure 6.4 but from the

alternative viewpoint, so that together with figure 6.4, it demonstrates in a

comprehensive way the nonlinear dependence of the intensity of any of the two shifted



components on the scaled energy density of the field at various values of the ratio R =

Fx/Fz.

Figure 6.5. The same results as those shown in figure 6.4 but from the alternative

viewpoint, so that together with figure 6.4, this figure demonstrates in a

comprehensive way the nonlinear dependence of the intensity of any of the two

shifted components on the scaled energy density of the field at various values of

the ratio R = Fx/Fz.

Figure 6.6 shows the dependence of the intensity Is of any of the two shifted

components on the scaled energy density of the field A at the ratio R = 0.2.

Figure 6.6. The dependence of the intensity Is of any of the two shifted

components on the scaled energy density of the field A at the ratio R = 0.2.

Figure 6.7 shows the dependence of the shift S of the blue-shifted component on the

scaled energy density of the field A and on the ratio R.



Figure 6.7. The dependence of the shift S of the blue-shifted component on the

scaled energy density of the field A and on the ratio R.

Figure 6.8 shows the same results as those shown in figure 6.7 but from the

alternative viewpoint, so that together with figure 6.7, it demonstrates in a

comprehensive way the nonlinear dependence of the shift of the blue-shifted component

on the scaled energy density of the field at various values of the ratio R = Fx/Fz.

Figure 6.8. The same results as those shown in figure 6.7 but from the alternative

viewpoint, so that together with figure 6.7, this figure demonstrates in a

comprehensive way the nonlinear dependence of the shift of the blue-shifted

component on the scaled energy density of the field at various values of the ratio R

= Fx/Fz.



Figure 6.9 shows the dependence of the shift S of the blue-shifted component on the

scaled energy density of the field A at the ratio R = 0.2.

Figure 6.9. The dependence of the shift S of the blue-shifted component on the

scaled energy density of the field A at the ratio R = 0.2.

From figures 6.1–6.9, it can be seen that the intensities of the shifted and unshifted

components of the Ly-alpha line and the shift of the blue-shifted component depend on

the scaled energy density of the high-frequency laser field in a highly nonlinear way.
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Chapter 7

Nonlinear effects in the radiation of dynamically-Stark-

broadened hydrogenic spectral lines by plasma

electrons

7.1 Early theoretical results

In the early analytical theories of the Stark broadening of spectral lines by the electron

microfield in plasmas, the electrons were considered in the dynamic regime. The early

theories disregarded the back reaction of the radiating atom/ion (hereafter, the radiator) on

the perturbing electrons, i.e. they were developed in the approximation of ‘no back

reaction.’ In the frame of this approximation, there are two types of analytical theory:

semiclassical theories and limited-quantal theories. In the semiclassical theories, the

perturbing electrons are described as classical particles, whereas the radiator is described

quantum mechanically. In the limited-quantal theories, both the perturbing electrons and

the radiator are described quantum mechanically.

The first semiclassical theory was the so-called ‘conventional theory’ (sometimes called

the ‘standard theory’), in which the dynamic Stark broadening due to the perturbing

electrons was considered in the impact approximation [1, 2]. In a simplified way, it can be

stated that in the impact approximation, the influence of the perturbing electrons was

treated as a sequence of binary collisions, in which each collision was assumed to be

completed. An approximate solution of the Schrödinger equation for the radiating atomic

electron was then found in the second order of Dirac’s perturbation theory. Some additional

details of the impact approximation are presented in appendix C.

The so-called ‘unified theory’ [3, 4] was developed later. Its principal distinction

(compared to the conventional theory) was that it took into account incomplete collisions.

For completeness, we also mention the so-called relaxation theory [5, 6]. Its central

point is some integro-differential equation (rather than the Schrödinger equation) that

describes how the radiating atomic electron evolves over time on average. The

mathematical tools of the relaxation theory are Green’s function and Zwanzig’s projection

operators. However, in order to obtain an analytical solution, it is necessary to make almost

the same simplifying suppositions as those of the conventional theory, with the exception

of assuming that the collisions are complete. Therefore, the practical version of the

relaxation theory is basically the same as the unified theory.

An analytical solution of the Stark broadening problem—the exact solution beyond the

perturbation theory—was later found [7] in the binary approximation. Further, in [8], the

binary assumption was eliminated and an exact analytical solution was obtained in the

multiparticle (i.e. the most general) picture of the interaction of the radiator with the

electron microfield.

7.2 The refinement of the conventional theory for

hydrogen lines

In [9], we refined the conventional theory of the Stark broadening of hydrogen lines by

plasma electrons by allowing for the fact that the overwhelming majority of the hydrogen

atom states have nonzero electric dipole moments:
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e⟨R⟩ = −3e3A/(4 ∣ Eat ∣).

In equation (7.1), Eat and 〈R〉 are the energy and the average value of the radius vector

of the radiating atomic electron, and A is the conserved Runge–Lenz vector:

A = −R/R + (pxL − Lxp)/(2mee
2).

In equation (7.2), me, e, L, and p are the mass, charge, angular momentum, and linear

momentum of the radiating atomic electron, respectively.

Since the Runge–Lenz vector A and the dipole moment are antiparallel, it follows that

the motion of the perturbing electrons occurs in the following dipole potential:

V = e2⟨R⟩∙r/r3.

In equation (7.3), r is the radius vector of the perturbing electrons. Thus, in distinction

to the conventional theory, in which the perturbing electrons were considered to move as

free particles, in the refined conventional theory, they move in the potential given by

equation (7.3).

Another refinement made in [9] concerned the so-called Weisskopf radius (defined

below). Griem, in his description of the conventional theory presented in his book [10],

proposed a modification of the so-called strong collision constant without making the

corresponding change in the Weisskopf radius. In [9], it was demonstrated that the choices

of the strong collision constant and of the Weisskopf radius are interconnected.

These refinements of the conventional theory are important for plasmas that have the

following parameters (called warm dense plasmas): a temperature T of a few eV (or less)

and the electron density Ne ~ 1018 cm−3 (or greater). Below are some details from paper

[9].

Equation (7.3) can be represented in the form

V (r, θ) = (d cos θ)/r2, d = e2∣⟨R⟩∣.

Here, θ is the polar angle of the vector r; the polar axis is parallel to the vector 〈R〉,

whose absolute value is [11]: ∣⟨R⟩∣ = 3nqaB/2, where n is the principal quantum

number; q = n1 − n2 is the difference between the parabolic quantum numbers; and aB is

the Bohr radius. Thus, d = 3n∣q∣e2aB/2 for the spectral lines of the Lyman series. For the

non-Lyman lines of hydrogen, it is appropriate to use the corresponding arithmetic average

for the lower (n′, q′) and upper (n, q) Stark sublevels involved in the radiative transition:

d = 3(n∣q∣ + n′∣ q′∣)e2aB/4.

The motion in the potential of the type given by equation (7.4) has been analyzed by

several authors [12–14]. An important property of this type of potential is the presence of

an additional conserved quantity B (in addition to the conservation of the projection Mz of

the perturbing electron angular momentum M):

B = M 2 + 2med cos θ.

This quantity is conserved at any instant of time. Consequently, it can be represented

via its asymptotic value at t = −∞ as follows:
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B = (mev0ρ0)2 + 2med cos θ0.

In equation (7.7), θ0 is the angle between r(−∞) and 〈R〉; ρ0 is the asymptotic impact

parameter at t = −∞. The angle θ0 is the same as the angle between −  and 〈R〉,  being

the perturbing electron asymptotic velocity (−∞) at t = −∞.

Another essential property of the physical system under consideration is the possibility

of separating the angular and radial motions, so that the radial motion occurs in the

effective potential

Ueff = B/(2mer
2).

As a result, one obtains the following formula for the dependence of the absolute value

of the perturbing electron radial coordinate on time:

r(t) = [B/(2meE) + (2E/me)t2]
1/2

.

In equation (7.9), E is the energy of the perturbing electron. On substituting the

expression for B from equation (7.7) and the expression E = me /2 in equation (7.9), we

find that

r(t) = (ρeff
2 + v0

2t2)
1/2

with

ρeff = [ρ0
2 + 2d cos θ0/(mev0

2)]
1/2

.

Below, the subscript 0 of the quantity  is omitted for brevity.

We introduced the notation

2d/(mev
2) = ρd

2

and represented equation (7.11) as follows:

ρeff = (ρ0
2 + ρd

2 cos θ0)
1/2

.

We then applied the method of effective trajectories employed in atomic physics in

calculations of cross-sections [15]. In the frames of this method, the nonrectilinear (actual)

trajectory of the perturbing electrons was replaced by a rectilinear trajectory corresponding

to the effective impact parameter ρeff from equation (7.13) and the velocity .

The Stark width caused by plasma electrons is controlled by the diagonal elements 

 of the operator σ( ), whose physical meaning is the cross-section of the

‘optical collisions’ (i.e. the collisions responsible for the Stark broadening). Here, α and β

are the Stark sublevels of the upper and lower energy levels (involved in the radiative

transition), respectively.

After some lengthy calculations (presented in full in our paper [9]), we obtained the

following expression for the ratio of the Stark width in the refined conventional theory to

the corresponding Stark width of the conventional theory:

/ /
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where contains two dimensionless parameters:

x = ⟨ρd⟩av/ρmax,

b = (2C/3)1/2(n2 + n′2)
1/2

/(n2 − n′2).

In equation (7.15), C is the strong collision constant, whose value should be chosen to

be between zero and two, and

⟨ρd⟩av = [(n2 + n′2)/2]
1/2

ħ/(mev),

while ρmax is typically the Debye radius

ρD = [Te/(4πe2Ne)]
1/2

.

We note that the parameter b defined in equation (7.16) is essentially just a

combination of the quantum numbers characterizing (and thus, identifying) the particular

hydrogen line.

Figure 7.1 shows the dependence of the WIDTH RATIO from equation (7.14) on the

parameters x and b.

Figure 7.1. The dependence of the WIDTH RATIO from equation (7.15) on the

parameters x and b defined in equation (7.16) at a strong collision constant value of C

= 3/2. Reprinted from [9], Copyright (2015), with permission from Elsevier.

Figure 7.2 represents the same plot as in figure 7.1, but from the alternative viewpoint,

so that together with figure 7.1 it shows the width ratio versus the parameters x and b in

the most comprehensive way.

WIDTH RATIO = {ln[(exp(2b2) − 1)
1/2

(1/x4 − 1)
1/4

/21/2] − b2/2 + [1/(4x2)]

ln[(1 + x2)/(1 − x2)]}/{ln[b/(xC 1/2)] + 0.356},



Figure 7.2. The same plot as in figure 7.1, but from the alternative viewpoint, so that

together with figure 7.1 it shows the width ratio versus the parameters x and b in the

most comprehensive way.

Figure 7.3 presents the ratio of the Stark widths from equation (7.15) for the Balmer-

alpha hydrogen line versus the dimensionless parameter x (defined in equation (7.16)) for

the following values of the strong collision constant: C = 2, C = 3/2, and C = 1 (figure 11.2

from my seventh book ‘Analytical Advances in Quantum and Celestial Mechanics:

Separating Rapid and Slow Subsystems’).

Figure 7.3. The ratio of the Stark widths from equation (7.15) for the Balmer-alpha

line of hydrogen versus the dimensionless parameter x (defined in equation (7.16)) for

the following values of the strong collision constant: C = 2 (solid curve), C= 3/2

(dotted curve), and C = 1 (dashed curve). Reproduced from [16]. © IOP Publishing Ltd.

All rights reserved.

From figures 7.1–7.3, one can see that in the refined conventional theory, the Stark

width due to plasma electrons is greater than the corresponding Stark width of the

conventional theory.

We now focus on the nonlinear dependence of the electron-induced Stark width on the

electron density Ne in the refined conventional theory. Since the conventional theory treats

this broadening using a sequence of binary encounters with the perturbing electrons, the
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corresponding Stark width might be expected to be linear with respect to the electron

density. However, in reality, it is nonlinear, as presented below.

A more explicit expression for the parameter x from equation (7.16) is

x = (2eħ/T )[(n2 + n′2)Ne/me]
1/2

.

We introduce the scaled electron density Ne,s as follows:

Ne,s = x2 = (2eħ/T )2(n2 + n′2)Ne/me.

The scaled electron-induced Stark width in the refined conventional theory Ws can now

be represented in the form

Figure 7.4 shows the dependence of the scaled electron-induced Stark width in the

refined conventional theory Ws on the scaled electron density Ne,s and on the parameter b.

Figure 7.4. The dependence of the scaled electron-induced Stark width in the refined

conventional theory Ws on the scaled electron density Ne,s and on the parameter b.

Figure 7.5 represents the same plot as in figure 7.4, but from the alternative viewpoint,

so that together with figure 7.4 it shows the scaled Stark width versus the scaled electron

density Ne,s and the parameter b in the most comprehensive way.

Ws = Ne,s{ln[(exp(2b2) − 1)
1/2

(1/Ne,s
2 − 1)

1/4
/21/2] − b2/2

+[1/(4Ne,s)] ln[(1 + Ne,s)/(1 − Ne,s)]}.



Figure 7.5. The same plot as in figure 7.4, but from the alternative viewpoint, so that

together with figure 7.4 it shows the scaled Stark width versus the scaled electron

density Ne,s and the parameter b in the most comprehensive way.

From figures 7.4 and 7.5, it can be seen that in the refined conventional theory, the

electron-induced Stark width depends on the electron density in a nonlinear way, even

though the interaction of the radiator with the perturbing electrons was considered using a

sequence of binary encounters.

7.3 The refinement of the conventional theory for

hydrogenlike lines

The so-called conventional theory of the electron-induced Stark broadening of hydrogenlike

spectral lines in plasmas was worked out in [17] and later also presented in [10]. Later

advances can be found in [18, 19] and in references therein. The conventional theory uses

a simplified picture of the corresponding interaction: there is a coulomb field that has an

effective charge of Z − 1, and the perturbing electrons follow hyperbolic paths in this

coulomb field. (Here, Z is the radiator nuclear charge; atomic units are used.) Thus, the

conventional theory is based on a simplification, i.e. a two-body problem (the charge Z − 1

plus the perturbing electron).

However, the actual system represents a three-body problem: the nucleus, the bound

electron, and the perturbing electrons. Therefore, the actual path of the perturbing electron

is more complex.

In [20], we treated this three-body problem by applying the standard analytical method

based on the separation of rapid and slow subsystems—see, e.g. [21]. The application of

this analytical method was possible because the characteristic frequency of the ‘rotation’

of the perturbing electron around the radiator is much smaller than the characteristic

frequency of the motion of the bound electron. Therefore, the latter can be treated as the

rapid subsystem and the former can be treated as the slow subsystem. We note that this

analytical method yields sufficiently accurate results in cases in which the standard

perturbation theory is invalid—see, e.g. [21].

Thus, in paper [20] we produced significantly more accurate analytical results (for the

operator of the Stark broadening by electrons) than those produced by the conventional

theory.
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We demonstrated that, for instance, for Lyman spectral lines of ionized helium (He II),

the three-body treatment increases the electron-induced Stark width, and that the higher

the electron density Ne, the greater this increase becomes. Some details are given below.

The conventional theory starts from the following expression for the operator of the

Stark broadening by electrons [16]:

Φab ≡ 2πv Ne ∫ dρ ρ {SaSb
* − 1},

where ρ and  are the impact parameter and the velocity of the perturbing electron,

respectively. In equation (7.22), Sa(0) and Sb(0) are the S matrices for the energy level ‘a’

(the upper state) and the energy level ‘b’ (the lower state) involved in the radiative

transition, respectively; the symbol {⋯} signifies averaging over the angular variables of

vectors ρ and .

The conventional theory subdivides the collisions into so-called weak collisions (treated

by Dirac’s standard perturbation theory) and strong collisions. In terms of the impact

parameter, the boundary between the two types of collision is determined from the

condition in which the expression {SaSb* − 1} (formally calculated for the weak collisions)

begins to violate the unitarity of the S matrices. This boundary value of the impact

parameter is called the electron Weisskopf radius ρWe.

In the conventional theory, the integral over the impact parameters diverges at small

values of ρ, which is why the conventional theory divides the range of the integration into

two subranges: from zero to ρWe (the strong collisional contribution) and from ρWe to ρmax

(the weak collisional contribution). The quantity ρmax is the upper cutoff, required because

the integral over the impact parameters also diverges at large ρ. The typical choice of the

upper cutoff is the Debye radius ρD = [T/(4πe2Ne)]
1/2

, T being the electron

temperature.

In the conventional theory, after the calculation of the S matrices is performed for the

weak collisions, the operator of the Stark broadening by plasma electrons is as follows (in

atomic units):

Φweak
ab ≡ C ∫

ρwe

ρmax

dρ ρ sin2 Θ(ρ)

2
=

C

2
∫

Θmin

Θmax

dΘ
dρ2

dΘ
sin2 Θ

2
,

where Θ is the scattering angle that describes the outcome of the collision between

the perturbing electron and the radiator. The quantities Θ and ρ are interrelated, as

elucidated below. In equation (7.23), the operator C has the form:

C = −
4 π

3
Ne[∫

0

∞
dv v3f(v)]

m2

(Z − 1)2
(ra − rb

*)
2
.

In equation (7.24), m is the reduced mass of the ‘perturbing electron—radiator’

system, and f( ) is the velocity distribution of the perturbing electrons. Further, in equation

(7.24), r is the operator of the radius vector of the atomic electron (it is proportional to

1/Z); the subscripts ‘a’ and ‘b’ relate to the action of this operator on the upper and lower

energy levels, respectively. The formula (ra − rb*)2 signifies the scalar product (sometimes

called the dot product) of the operator (ra − rb*) with itself. We note that the calculations of

the matrix elements of this operator in the theory of the electron-induced Stark broadening

in plasmas are performed on the basis of the unperturbed wave functions.
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Since, in the conventional theory, the scattering takes place in the effective coulomb

potential (in the effective nuclear charge Z − 1), the path of the perturbing electron has a

hyperbolic shape characterized by the following relation between the scattering angle and

the impact parameter:

ρ(0) =
Z − 1

m v2
cot

Θ

2
.

In equation (7.25), the superscript (0) in the impact parameter ρ(0) refers to the

hyperbolic paths.

In [20], we analyzed the real situation: the paths of the perturbing electrons are more

complex—the nucleus, the bound electron, and the perturbing electron should be treated

as a three-body (rather than a two-body) system. Based on the fact that the frequency Ωab

of the spectral line is much greater than the typical frequency /ρWe of the variation in the

perturbing electron electric field at the location of the radiator, we employed the analytical

method of separating the slow and rapid subsystems. (Details are presented in appendix

C.) We note that the frequency Ωab is the Kepler frequency or its harmonics if radiative

transition occurs between the Rydberg states.

Step one of this method is to ‘freeze’ the perturbing electron (the slow subsystem) and

obtain the analytical solution for the radiator (the rapid subsystem); the solution depends

on the frozen coordinates of the perturbing electron: namely, on the separation R between

the radiator and the perturbing electron. The corresponding energy, within the first

nonvanishing order of the dependence on R, is the following:

Enq(R) = −
Z 2

n2
+

3 n q

2 Z R2
,

where n is the principal quantum number and q = n1 − n2 is the difference between

the parabolic quantum numbers of the radiator state.

Step two is to analyze the motion of the perturbing electron (the slow subsystem) in the

‘effective potential’ Veff(R) that combines the actual potential and Enq(R). The effective

potential for the motion of the perturbing electron can be represented in the form (given

that the first term on the right-hand side of equation (7.26) does not depend on R and thus

does not influence the motion):

Veff(R) = −
α

R
+

β

R2
, α = Z − 1.

For the Lyman lines, since the lower state b can be considered to be unperturbed (up

to the order ~1/R2), the coefficient β can be represented in the form:

β =
3 naqa

2 Z
.

For other (non-Lyman) lines of hydrogenlike ions, in order to allow for both the upper

and lower states, the coefficient β can be formulated as follows:

β =
3 (naqa − nbqb)

2 Z
.
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For the motion in the potential given by equation (7.27), there is an exact analytical

solution. In particular, for the interrelation between the impact parameter and the

scattering angle, this exact analytical solution yields the following (instead of equation

(7.25); see, e.g. book [22]):

Θ = π −
2

√1 +
2 m β

M 2

arctan √
4 E

α2
(β +

M 2

2m
).

In equation (7.30), M  and E are the perturbing electron angular momentum and the

energy, respectively.

In terms of the impact parameter ρ, the angular momentum is

M = m v ρ.

Equation (7.30) can now be represented in the form:

tan(
π − Θ

2
√1 +

2 β

m v2ρ2
) =

v

α
√m2v2ρ2 + 2 m β.

After finding the solution of equation (7.32) and the subsequent substitution of the

solution in equation (7.23), one can obtain a more rigorous formula for the operator of the

dynamical Stark broadening by electrons compared to that given by the conventional

theory. However, this can be done only numerically because equation (7.32) does not allow

an exact analytical solution.

In [20], we gave an approximate analytical solution of equation (7.32), as follows. We

expanded equation (7.32) in powers of β and obtained the following:

tan(
π − Θ

2
)+ (

π − Θ

2
)[1 + tan2 (

π − Θ

2
)]

β

m v2ρ2
≈

m v2ρ

α
+

β

α ρ
.

We sought the solution with respect to ρ in the form

ρ ≈ ρ(0) + ρ(1).

In equation (7.34), ρ(1) ≪ ρ(0), where ρ(0)
 corresponds to β = 0 (and was presented in

equation (7.4)). On substituting equation (7.34) into equation (7.33), the result is

(π − Θ) β

2 m v2ρ(0)2
sin2 Θ

2

−
β

α ρ(0)
≈

m v2ρ(1)

α
.

After finding ρ(1)
 using equation (7.35), the formula for ρ becomes the following:
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ρ ≈
α

m v2
cot

Θ

2
+

β

α

π − Θ

2 cos2
Θ

2

− tan
Θ

2
.

The subsequent integration in equation (7.22) can be simplified if, instead of the

integral over ρ, the integration is performed over Θ. To achieve this task, we calculate the

square of equation (7.36):

ρ2 ≈
α2

m2 v4
cot2 Θ

2
+

β

m v2

π − Θ

sin
Θ

2
cos

Θ

2

− 1 ,

where we kept only the first-order terms with respect to β. For a further simplification

of the formulas, we let ϕ = Θ/2. We then differentiated equation (7.37) with respect to ϕ
and obtained the following:

dρ2

dϕ
≈ −

α2

m2 v4

2 cot ϕ

sin2ϕ
−

2 β

m v2
[(

1

sin ϕ cos ϕ
)+ (

π

2
− ϕ)(

1

sin2ϕ
−

1

cos2ϕ
)]

On substituting Θ = 2ϕ and then 
dρ2

dϕ  from equation (7.38) into the far right of

equation (7.23), we got

After performing the integrations in equation (7.39), we obtained the following

expression for the weak collisional contribution to the operator of the dynamical Stark

broadening by plasma electrons:

Φweak
ab = −

4 π

3
Ne(ra − rb

*)
2
[∫

0

∞
dv

f(v)

v
][log

sin ϕmax

sin ϕmin
+

mv2β

(Z − 1)2
(
π2

4
− 1)].

We then added the following formula for the contribution of strong collisions:

Φstrong
ab ≈ πvNeρWe2,

where ρWe corresponds to ϕmax. The formulas for ϕmax and ϕmin from [16] are as

follows:

sin ϕmax = √ 3

2

Z(Z − 1)

(n2
a − n2

b)m v
,

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠Φweak
ab = −C[

α2

m2v4
∫ ϕmin

ϕmax
cot ϕ dϕ +

β

m v2
∫

0
π
2

tan ϕ dϕ +
β

m v2
∫

0
π
2
(
π

2
− ϕ)(1 − ta
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sin ϕmin =

Z − 1

m v2ρD

√1 +
(Z − 1)2

m2v4ρ2
D

.

It should be underscored that the formula from [16] reproduced here as equation

(7.42) was an approximate expression for non-Lyman lines. For Lyman lines, the lower level

(the ground level) does not yield any contribution to the operator of the dynamical Stark

broadening by plasma electrons. Therefore, for the Lyman lines, we can write the following

instead of equation (7.42):

sin ϕmax = √ 3

2

Z(Z − 1)

n2
am v

.

It should be noted that the right-hand sides of equations (7.42) or (7.44) can become

greater than unity for relatively slow perturbing electrons. In this situation, one should use 

sinϕmax = 1. This corresponds to ρmin = 0 and thus a zero strong collisional contribution.

Usually, the statistical weight of such slow electrons in the velocity distribution of plasma

electrons is relatively small.

On substituting the expressions for sinϕmax and sinϕmin into equation (7.39) and

adding together the weak and strong collisional contributions, we found the following final

result for the operator of the dynamical Stark broadening by plasma electrons:

for the non-Lyman lines and

for the Lyman lines. In equations (7.45) and (7.46), the symbol log[⋯] signifies the

natural logarithm.

To reveal the importance of allowing for the non-hyperbolic trajectories, we analyzed the

ratio of the third term in braces in equation (7.46) to the combination of the first and

second terms:

Φab(β) = −
4 π

3
Ne(ra − rb

*)
2
[∫ 0

∞ dv
f(v)

v
]

1

2
[1 −

3

2

Z 2(Z − 1)2

(n2
a − n2

b)
2
m2 v2

] + log √ 3

2

Z v ρD

(n2
a − n2

b)
√1 + (

Z − 1

m v2ρD
)

⎧
⎨
⎩

⎡

⎣

Φab(β) = −
4 π

3
Ne(ra − rb

*)
2
[∫ 0

∞ dv
f(v)

v
]

1

2
[1 −

3

2

Z 2(Z − 1)2

n4
am

2 v2
]}

+ log √ 3

2

Z v ρD

n2
a

√1 + (
Z − 1

m v2ρD
)

2

+
mv2β

(Z − 1)2
(
π2

4
− 1)

⎡

⎣

⎤

⎦

⎫
⎬
⎭
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ratio =

3

2

mv2(naqa − nbqb)

(Z − 1)2
(
π2

4
− 1)

1

2
[1 −

3

2

Z 2(Z − 1)2

(n2
a − n2

b)
2
m2 v2

]+ log √ 3

2

Z v ρD

(n2
a − n2

b)
√1 + (

Z − 1

m v2ρD
)

2

for the non-Lyman lines or the ratio

ratio =

3

2

mv2naqa

(Z − 1)2
(
π2

4
− 1)

1

2
[1 −

3

2

Z 2(Z − 1)2

n4
am

2 v2
]+ log √ 3

2

Z v ρD

n2
a

√1 + (
Z − 1

m v2ρD
)

2

for the Lyman lines. We provided a quantitative example for some Lyman lines. Instead

of integrating over the velocities of the perturbing electrons, we utilized the mean thermal

velocity , which is usually used in the theories of the dynamical Stark broadening. Below

are the formulas for , the Debye radius ρD, and the reduced mass, m:

vT = 0.1917√
T (eV)

m
, ρD = 1.404 × 1011√

T (eV)

Ne(cm−3)
, m =

1 +
me

A mp

1 +
2 me

A mp

,

where A is the atomic number of the radiator (A ≈ 2Z), mp is the proton mass, and 

me is the electron mass.

As examples, for several Lyman lines of ionized helium, table 7.1 provides the numerical

values of the ratio from equation (7.48) for a plasma that has the following parameters: 

Ne = 2 × 1017
 cm−3, T = 8 eV.

Table 7.1. Ratios given by equation (7.26) for the Stark components of several Lyman lines of He II at a

temperature T = 8 eV and an electron density Ne = 2 × 1017
 cm

−3
. Reproduced from [20]. © IOP Publishing Ltd.

All rights reserved.

n ∣q∣ Ratio

2 1 0.3261

3 1 0.3748

3 2 0.7496

4 1 0.5156

4 2 1.0311

4 3 1.5467

⎡

⎣

⎤

⎦

⎡

⎣

⎤

⎦
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Figure 7.6 demonstrates the dependence of the ratio given by equation (7.48) on the

electron density Ne at the temperature T = 8 eV for the Stark components characterized by

the quantum number ∣q∣ = 1 for the following spectral lines: Lyman-alpha (n = 2), Lyman-

beta (n = 3), and Lyman-gamma (n = 4).

Figure 7.6. The dependence of the ratio given by equation (7.48) on the electron

density Ne at the temperature T = 8 eV for the Stark components characterized by the

quantum number ∣q∣ = 1 for the following spectral lines: Lyman-alpha (n = 2), Lyman-

beta (n = 3), and Lyman-gamma (n = 4). Reproduced from [20]. © IOP Publishing Ltd.

All rights reserved.

From table 7.1 and figure 7.6, one can see that the allowance for the non-hyperbolic

trajectories of the perturbing electrons already becomes important for the Lyman lines of

the ionized helium at Ne ~ 1017 cm−3. The effect becomes more and more important as the

electron density increases.

We note in passing that in the case in which the formally calculated ratio given by

equation (7.48) is comparable to unity, this would mean that the approximate analytical

solution is invalid. In this case, a numerical solution of equation (7.32) with respect to ρ

should be used.

In relation to the nonlinearity, we wish to emphasize the following. The ratio given by

equation (7.48), presented in figure 7.6, shows the nonlinear dependence on the electron

density Ne. As for the dependence of the Stark width on Ne, it is proportional to the right-

hand sides of equations (7.45) or (7.46). After introducing the properly scaled electron

density Ne,sc and the dynamical Stark width Wsc, the dependence of the latter on Ne,sc can

be represented in the following form:

Wsc = Ne,sc{C + ln [(1 + 1/Ne,sc)1/2]}.

In equation (7.50), the quantity C depends on the temperature T, the nuclear charge Z,

and quantum numbers but is independent of Ne,sc.



Figure 7.7 shows the dependence of the scaled electron-induced dynamical Stark width

Wsc on the scaled electron density Ne,sc and on the parameter C.

Figure 7.7. The dependence of the scaled electron-induced dynamical Stark width

Wsc on the scaled electron density Ne,sc and on the parameter C from equation (7.50).

Figure 7.8 represents the same plot as in figure 7.7, but from the alternative viewpoint,

so that together with figure 7.7 it shows the dependence of Wsc on Ne,sc in a

comprehensive way.

Figure 7.8. The same plot as in figure 7.7, but from the alternative viewpoint, so that

together with figure 7.7 it shows the dependence of Wsc on Ne,sc in a comprehensive

way.

Figure 7.9 presents the dependence of Wsc on Ne,sc for the following three values of the

parameter C: 0.02, 0.1, and 0.5.



Figure 7.9. Dependence of Wsc on Ne,sc for the following three values of the

parameter C from equation (7.50): 0.02 (solid line), 0.1 (dashed line), and 0.5 (dotted

line).

From figures 7.7–7.9, it can be seen that the dependence of the electron-induced

dynamical Stark width on the electron density is nonlinear.

It should be underscored that the possibility of obtaining the above analytical solution

was mainly facilitated by the algebraic (higher than geometrical) symmetry of the

potentials V(R) = −A/R + B/R2, where A and B are constants. The algebraic symmetry is

manifested by the existence of an additional conserved quantity Meff
2 = M2 + 2mB, where

m and M are the mass and the angular momentum of the particle, respectively. This

conserved quantity can be treated as the square of the effective angular momentum.

As for the utilization of the impact approximation, it was not critical to our study. Rather,

we employed it to simplify the formulas and thus the message of our work, as well as for a

comparison with the corresponding results produced by the conventional theory, for which

the impact approximation was critical. A brief description of the impact approximation is

presented in appendix D.

Finally, we mention [23], which contains noteworthy results on the same subject

(presented also in [24]). The results were obtained in the framework on the so-called

quantum theory of the dynamical Stark broadening, in which both the perturbing plasma

electrons and the radiator are treated on an equal footing by quantum mechanics. In

distinction, our results were produced in the framework of the corresponding semiclassical

theory, in which the perturbing plasma electrons are described by classical mechanics

whereas the radiator is described by quantum mechanics. (The same semiclassical

framework was used in the conventional theory of the dynamical Stark broadening.) Both

in our work [20] and in [23], the symmetry of the potentials V(R) = −A/R + B/R2 was used

to produce analytical results.

The authors of [23] employed the impact approximation to produce specific results for

the Stark width of Lyman lines in the classical limit only. In [20], we also compared their

results with the corresponding results of the conventional theory for ionized helium Lyman

lines for Ne ~ (1017–1018) cm−3. This is the range of Ne used by most of the experiments

that have measured the widths of the ionized helium lines. We found that the Stark widths

given in [23] are two or more orders of magnitude greater than the corresponding Stark

widths calculated by the conventional theory.

It should be emphasized that the widths of the ionized helium lines measured in

experiments where plasma parameters are determined independently of the width of these

spectral lines (i.e. in the benchmark experiments) always show the ratio of the

experimental width to the corresponding width given by the conventional theory to be a
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factor of two or less. The same is true for the corrections in our paper [20] to the Stark

width calculated by the conventional theory.

7.4 The generalized theory

The generalized theory of the dynamical Stark broadening of hydrogenic spectral lines in

plasmas was developed in [25–27]. This theory is based mostly on a generalization of the

formalism of dressed atomic states (DAS) in plasmas.

The usual formalism of dressed atomic states was initially intended for describing the

interaction of a monochromatic (or quasi-monochromatic) field (such as the electric field of

laser or maser radiation) with gases. Subsequently, this formalism was employed to

describe the interaction of the quasi-monochromatic electric field with plasmas [28]. The

utilization of this formalism in plasma spectroscopy facilitated better accuracy of the

analytical calculations and more advanced codes.

In contrast, in the generalization of the dressed atomic-state formalism in [25–27], the

atomic states were dressed by a broadband field of plasma electrons and ions. Obviously,

these generalized dressed atomic states result in a more complicated construct than the

usual dressed atomic states.

The design of the generalized theory consists of the following eight stages, as

formulated in [27], from which we quote these stages here:

1. Separation of static and dynamic ions. For a given value τ of the argument of the

correlation function C(τ), the ion-dynamical part of C(τ) originates from the collisions

for which the instants of the closest approach t0 fall within the interval (−τ/2,τ/2). The

rest of the perturbing ions are considered to be static. This is consistent with the fact

that at τ → ∞, all ions are dynamic, while at τ → 0, all ions are static. Thus, different

values of τ correspond different proportions of dynamic and static ions.

2. Partition of the Hamiltonian. The Hamiltonian H(t) is broken down into the following

four terms:

Here, H0 is the Hamiltonian of the unperturbed radiating atom/ion (radiator); the

superscripts IS, ID, and E refer to the interactions of the radiator with static ions,

dynamic ions, and electrons, respectively; the subscripts ∥ and ⊥ refer, respectively, to

parallel and perpendicular components of the electron and dynamic ion microfields

with respect to the direction of the quasistatic ion field at the location of the radiator.

3. Generalized dressed atomic states. The atomic states of the radiator are dressed by

the following time-dependent factor:

Q(t) = exp{(i/ħ)[(H0 + V IS)t + ∫
t

−∞
dt′Vpar(t

′)]}.

In other words, the interactions VIS and Vpar(t′) are taken into account exactly,

moreover—analytically. The interaction Vperp(t) is then allowed for by Dirac’s

perturbation theory.The dressing factor Q(t) is controlled by the interaction Vpar(t) with

a broadband field—in distinction to the usual DAS dressed by a monochromatic field

(examples of the latter can be found in book [28]).

4. Evolution operator in the MODIFIED interaction representation. This employs the

dressing factor Q(t) from equation (7.52):

t

H(t) = H0 + V IS + Vpar(t) + Vperp(t),Vpar(t) = V∣∣
ID(t) + V∣∣

E(t),Vperp(t)

= V┴
ID(t) + V┴

E(t).
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U(t1, t2) = T exp[−(i/ħ)∫
t2

t1

dtQ*(t)Vperp(t)Q(t)],

where Texp[⋯] is the time-ordered exponential.

5. Calculation of the M-matrix. The M-matrix that controls the calculation of the

correlation function (defined in stage 6) is calculated as follows:

M(t1, t2) = exp [(i/ħ)∫
t2

t1

dt′Vpar(t
′)]U(t1, t2),

where exp[⋯] is calculated exactly, analytically, while U(t1,t2) is calculated via the

perturbation theory. The impact approximation is not used.

6. Correlation function. This is defined by the formula

C(τ) = Tr {dd exp[−(i/ħ)(H0 + V IS)τ]ρ⟨M(τ/2, −τ/2)⟩av},

where Tr{⋯} stands for the trace, 〈⋯〉  denotes the ensemble average.

7. Line shape at a fixed quasistatic ion field F. This is calculated as the Fourier transform

of the correlation function C(τ).

8. Averaging over the distribution W(F). The distribution W(F) of the quasistatic ion field

can be produced using, e.g. APEX code [29].’

 

The central point of the generalized theory is the following: it treats the interaction V∥(t)

on an equal footing with the unperturbed Hamiltonian H0: no perturbation expansion is

involved.

In order to compare the generalized theory with the conventional theory, it is useful to

introduce the following parameter that plays a central role in the generalized theory:

Y ≡
< VIS >

ΩW (Vpar)
,

where ΩW(Vpar) is the Weisskopf frequency related to the dynamical interaction Vpar(t).

(The Weisskopf frequency is defined as the mean thermal velocity of perturbing charges

divided by the Weisskopf radius.) The generalized theory embraces the conventional theory

as the limiting case corresponding to Y → 0.

In the generalized theory, the integral over the impact parameters converges at small

impact parameters, while in the conventional theory for neutral radiators, the

corresponding integral diverges at small impact parameters. The physical reason for the

convergence of this integral in the generalized theory is as follows. The interaction Vperp(t)

causes the virtual transitions between the sublevels of the radiator that are ‘dressed’ by

the interaction Vpar(t). Due to this dressing, the divergence of the integral is eliminated and

the accuracy of the results is enhanced.

The matrix M(t2,t1) in equation (7.54) and its simplified counterpart—the scattering

matrix S = M(−∞, ∞)—are composed of two terms that differ physically:

M = Ma + Mna,

Ŝ = Ŝa + Ŝna.
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The first term in equations (7.57) and (7.58) is the adiabatic contribution. This is analogous

to the corresponding concept known as the ‘Old Adiabatic Theory’ of broadening (see

e.g. review [30]). For example, the form of the adiabatic term in the scattering matrix is as

follows:

Sa ≡ exp[
i

ℏ
∫

∞

∞
dtV̂1(t)].

 

Here and below, it is denoted by V1 = Vpar, V2 = Vperp.

The second term in equations (7.57) and (7.58) is nonadiabatic: it is nonzero only

because of the nonadiabatic virtual transitions produced by the interaction V2(t) between

sublevels of the radiator dressed by the interaction V1(t). The nonadiabatic term in the

scattering matrix is as follows:

Ŝna ≡ exp [
i

_
∫

∞

∞
dtV̂1(t)] {T̂ exp[

i

ℏ
∫

∞

∞
dtQ̂*V̂2(t)Q̂]},

where the first nonvanishing contribution, obtained after expanding Texp[⋯] and

performing the angular averaging, is typically of the second order with respect to V2.

It should be emphasized that the generalized theory, despite having more complex

starting expressions than those of the conventional theory, was analytically developed to

the same extent as the conventional theory. We give some details below.

For a hydrogen/deuterium atom subjected to the quasistatic part F of the ion microfield

and the dynamic field E(t) of the plasma electrons, the Hamiltonian is

H = H0 − dF − dE(t).

In equation (7.61), H0 is the Hamiltonian in the absence of the external fields and d is

the operator of the electric dipole moment. The choice of the z-axis of the parabolic

quantization to be along the quasistatic field F diagonalizes the operator –dF in the n-

subspace, corresponding to a fixed value of the principal quantum number n. In the version

of the conventional theory developed in paper [31], the interaction –dF was taken into

account ‘exactly’ (within the n-subspace). The interaction –dE(t) was processed in the

second order of Dirac’s perturbation theory.

In contrast, the generalized theory allowed exactly (within the n-subspace) for the entire

z-component of the total field F + E(t). This was possible because not only −dzF, but also

−dz[F + Ez(t)] is diagonal in any n-subspace. In this way, the z-component of the electron

microfield was taken into account more rigorously than in the conventional theory.

The perturbed wave functions are set up as follows:

ψj(t, r) = exp[−iωjt + i∫
t

−∞
dt′(dz)jjEz(t′)] U(t, −∞)φj(r),ωj = ω0j − (dz)jjF .

In equation (7.62), ω0j is the (unperturbed) energy of the Stark sublevel j (j = β, β′, …

for the lower sublevels involved in the radiative transition or j = α, α′, … for the upper

sublevels involved in the radiative transition). Here and below, we set ħ = 1.

In our modified interaction representation, the evolution operator U(t2,t1) is

t
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U(t2, t1) = T exp[−i∫
t2

t1

dt V (t)],

V (t) = exp [i ∫
t

−∞
dt′ H1(t′)][−d⊥E⊥(t)] exp[−i∫

t

−∞
dt′ H1(t′)].

In equation (7.64), d⊥E⊥ = dxEx + dyEy. The operator H1(t) is

H1(t) = H0 − dzF − dzEz(t).

In the expression for the shape of the spectral line,

J(Δω) = (2π)−1 ∫
∞

−∞
dτC(τ) exp(iΔωτ),

where Δω = ω − ω0, the correlation function can be written as

C(τ) = ∑
α,α′,β,β′

⟨a∣d∣β′⟩⟨β∣d∣α′⟩ exp[−i(ωα − ωβ)τ]⟨α′∣ ⟨β′∣ [M(τ/2, −τ/2)]av ∣ β⟩

In equation (7.67), the relation of the M-operator to the evolution operator (7.63) is

M(τ/2, −τ/2) = exp [idz ∫
τ/2

−τ/2
dtEz(t)]U(τ/2, −τ/2).

Since, in the M-operator, there are adiabatic and nonadiabatic contributions, the same

is true for the correlation function C(τ) (see equation (7.67)). The adiabatic term in the

correlation function, which is proportional to dzdz, is diagonal in the line space. The other

term in the correlation function, controlled by dxdx + dydy, is not diagonal in the line space.

The diagonal contribution to the correlation function has the form

In equation (7.69),

Δdz ≡ (dz)αα − (dz)ββ.

On expanding the evolution operator in equation (7.69) up to the second order, we get

Cdiag(τ) = ∣ dαβ ∣2 exp[−i(ωα − ωβ)τ][⟨fa(τ)⟩av + ⟨fna(τ)⟩av].

In equation (7.71), the adiabatic part is controlled by

Cdiag(τ) = ∣ dαβ ∣2 exp[−i(ωα − ωβ)τ]

{exp [iΔdz ∫
τ/2

τ/2
dtEz(t)] Uαα(τ/2, −τ/2)Uββ*(τ/2, −τ/2)}

av

.
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fa(τ) ≡ exp [iΔdz ∫
τ/2

−τ/2
dtEz(t)],

while the nonadiabatic part is controlled by

(δdz)α ≡ (dz)αα − (dz)α′α′.

In equation (7.73), the symbol Σβ′ [α→β, α′→β′] stands for the term obtained from the

term Σα′[⋯] in equation (7.73) on substituting α→β, α′→β′.

Equations (7.63)–(7.74) describe the most general form of the generalized theory. This

general form was employed for most of the numerical examples presented in [18].

We also present below the simplified generalized theory that uses the impact

approximation. The simplified version provides a better insight into the physics behind the

generalized theory and facilitates a better understanding of the relation between the

generalized and conventional theories.

The limits of the integration in equation (7.68) are now extended to infinities, the

corresponding notation being

[M(∞, −∞)]av ≡ Φ.

The operator Φ is called the electron impact operator (also known as the electron

broadening operator). Obviously, it does not depend on τ, while still depending on F.

The correlation function C(τ) is now

C(τ) = ∑
α,α′,β,β′

⟨α∣d∣β′⟩⟨β∣d∣α′⟩ exp[−i(ωα − ωβ)τ]⟨α′∣ ⟨β′∣ Φ ∣ β⟩ ∣ α⟩,

and the line shape J(Δω) is

J(Δω) = −π−1 Re ∑
α,α′,β,β′

⟨α ∣ d ∣ β′⟩⟨β ∣ d ∣ α′⟩⟨α′ ∣ ⟨β′ ∣ [i(Δω + ωβ − ωα) + Φ

If the operator dd were diagonal, then the line shape would consist of Lorentzians of

the half width at the half maximum (HWHM) Γαβ shifted by Dαβ, where

Γαβ = − Re⟨α ∣ ⟨β ∣ Φ ∣ β⟩ ∣ α⟩, Dαβ = −Im⟨α ∣ ⟨β ∣ Φ ∣ β⟩ ∣ α⟩.

However, in fact, the operator dd is not diagonal: its nondiagonal elements couple the

would-be Lorentzians. This complicates calculations of the line shape, requiring inversion of

fna(τ) ≡ −fa(τ){∑
α′

∫
τ/2

−τ/2
dt1 ∫

τ/2

−τ/2
dt2 exp [i(ωα − ωα′)(t1 − t2) − i(δdz)α

∫
t1

t2

dtdt Ez(t)Ez(t)][(d⊥)αα′E⊥(t1)][(d⊥)α′αE⊥(t2)] +∑
β′

[α → β,α′→ β′]* ,
⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
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the matrix of the rank (nαnβ)2, which for the example of the Balmer-gamma line is a matrix

of rank 100.

The adiabatic part of the electron impact operator has only diagonal elements:

In equation (7.79),

uαβ = mevρD/[3ℏXαβ], Xαβ = (nαqα − nβqβ),

I(u) = ∫
u

0
dz z[1 − z sin (1/z)] = Int(u).

The integration can be performed analytically to yield:

Int(u) = u2/2 − [u2 cos (1/u) + (2u3 − u) sin (1/u) + Ci(1/u)]/6.

In equation (7.80), ρD is the Debye radius and q = n1 − n2 is the difference between

the parabolic quantum numbers n1 and n2. In equation (7.81), Ci(x) is the integral cosine

function.

It is very important to underscore that the adiabatic part of the electron impact operator

presented in equations (7.79)–(7.81) is equivalent to the combined effect of all orders of

the Dyson expansion of the time-ordered exponential in equation (7.63). This is the crucial

advantage of the generalized theory over the conventional theory, in which both adiabatic

and nonadiabatic terms were calculated only in the first nonvanishing order of the Dyson

expansion.

Here is the nonadiabatic part of the electron impact operator:

In equation (7.82), the formula under the summation over β″ can be retrieved from the

formula under the summation over α″ by substituting (αα′α″) → (ββ′β″) and performing the

complex conjugation. The lower system of the signs relates to the diagonal elements (α′=α

in the first term or β′=β in the second term). The upper system of the signs relates to the

nondiagonal elements (α′≠α or β′≠β) of the operator dd.

Further, in equation (7.82), Zα and Zβ represent the scaled dimensionless impact

parameter:

Zα,β = 3nα,βℏFρ/(2meev).

In equation (7.83), F is the quasistatic part of the plasma ion microfield.

≪ αβ _ Φa d _ α β ≫= 4π_2Ne

3m2
ea

2
0

∫ 0
∞ d vWM(v) 1

v _

_ [ zααzαα − 2zααzββ + zββzββ ] I(uαβ).

+ ∑
α′′

[(αα′′α′′) → (ββ′′β′′)]*].

⟨⟨αβ ∣ Φn a ∣ α′ β ′ ⟩⟩ = 4πℏ
2Ne

3m2
ea

2
0

∫ 0
∞ dv WM(v) 1

v

× [∑
α′′

(xαα′′xα′′ α′ + yαα′′yα′′ α′) ∫ 0
∞

d Zα

Zα
C±(χα′,Yα,Zα)



(7.8

4)

(7.8

5)

(7.8

6)

(7.8

7)

(7.8

8)

Below are the formulas for the generalized broadening functions C± that appear in

equation (7.82):

In equation (7.84), j0(ε), j1(ε), and j2(ε) are the spherical Bessel functions:

In the nonadiabatic part of the electron impact operator, there are new parameters

that were absent from the conventional theory:

Yk = (
3nk_

2Zkme v
)

2
F

e
, k = α,β.

The parameter Y helps the generalized theory to embrace the conventional theory.

Indeed, in the limit Y → 0 (meaning that a plasma either has a relatively high temperature,

a relatively low density, or both), equation (7.84) simplifies to the corresponding formula of

the conventional theory:

C±(χ, 0,Z) = −
1

2
∫

−∞

+∞
dx1 ∫

−∞

x1

dx2 (1 + x1 x2)

[(1 + x2
1)(1 + x2

2)]
3
2

exp[iZ(x1 ± x2)].

As the parameter Y increases (meaning either a relatively low plasma temperature, or

a relatively high electron density, or both), the conventional theory becomes more and

more inaccurate.

In the generalized theory, the integral over the scaled impact parameter Z in equation

(7.82) converges at low Z for any nonzero value of the parameter Y, while in the

conventional theory the corresponding integral diverges at low Z. The physical reason is

that the generalized theory takes into account the average splitting of the Stark sublevels

caused by the z-component of the field of perturbing electrons (in addition to the allowance

for the Stark splitting by the quasistatic part F of the ion microfield in plasmas). This

additional splitting facilitates the convergence of the integral over the impact parameter at

small values of Z (i.e. at small values of ρ).

C±(χ,Y ,Z) = − 3
4

∞

∫

∞

dx1

x1

∫

∞

dx2[w(x1)w(x2)]3 exp[iZ(x1 ± x2)]

× {j0(ε) + (2x1x2 − 1) j1(ε)
ε + [(1 − x1x2)σ2

1 − (x1 + x2)σ1σ2]j2(ε)/ε2},

ε ≡ √σ2
1 + σ2

2,σ1 ≡ Y
Z [x1w(x1) ± x2w(x2) + 1 ± 12χ],

σ2 ≡ Y
Z [w(x1) ± w(x2)],w(x) ≡ 1/√1 + x2.

j0(ε) =
1

ε
sin ε, j1(ε) =

1

ε2
(sin ε − ε cos ε),

j2(ε) =
1

ε3
(3 sin ε − 3ε cos ε − ε2 sin ε).

χa ≡ (nαqαδαα′ nβqβδββ′) / (nα(qα qα′ ′)),

χb ≡ (nαqαδαα′ nβqβδββ′) / (nβ(qβ qβ′ ′)).
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The nonadiabatic part of the electron impact operator also contains the so-called

interference term (for the non-Lyman spectral lines), which is nonzero only for the

nondiagonal matrix elements of this operator:

≪ αβ _ Φx _ α ′ β ′ ≫= 2
g

a2
0

xαα ′ x
*
ββ ′ ∫

0

∞

dZα

Zα
Cx(χα,Yα,Yβ,Zα,Zβ).

In equation (7.89), Cx is as follows:

The quantity C±(χ,Y ,Z) from equation (7.84) can be broken down in two terms:

C±(χ,Y ,Z) ≡ A±(χ,Y ,Z) + iB±(χ,Y ,Z)

In equation (7.91), the terms A±(χ,Y ,Z) and B±(χ,Y ,Z) are real quantities. The

term A±(χ,Y ,Z) is called the width function, while the term B±(χ,Y ,Z) is called the

shift function.

Figure 7.10 shows the Z-dependence of the width function A−(Z) of the conventional

theory (labeled in the figure as ST, ‘standard theory’) and of the width function A−(Z,κ) of

the generalized theory for several values of the parameter κ defined as

κ = q∣χ∣Y ,

where χ and Y are as given in equations (7.86) and (7.87), respectively. One can see

that there is a very significant qualitative difference between the width function of the

conventional theory and the width function of the generalized theory. In the generalized

theory, it oscillates as Z approaches zero and vanishes at Z = 0. So, in the integral from

equation (7.82), even after the width function is multiplied by 1/Z, the integration

converges at small Z due to the oscillations of the width function. However, this is not the

case for the conventional theory, where the width function approaches unity (rather than

zero) at small Z without oscillation. Therefore, after this width function is multiplied by 1/Z,

the integral in equation (7.82) diverges.

Cx(χα,Yα,Yβ,Zα,Zβ) = 3
4

∞

∫

∞

dx1

∞

∫

∞

dx2 [w (x1)w(x2)]3
exp[i(Zβx2 − Zαx1)]

− {j0 (ε) + (2x1x21) j1(ε)
ε + [(1x1x2)σ2

1(x1 + x2)σ1σ2]ε2j2(ε)},

ε ≡ √σ2
1 + σ2

2,σ1 ≡ 2 χα

Zα
+ (1 + x2w(x2))

Yβ

Zβ
− (1 + x1w(x1)) Yα

Zα
,

σ2 ≡ w(x1) Yα

Zα
− w(x2)

Yβ

Zβ
,w(x) ≡ 1/√1 + x2.
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Figure 7.10. The Z-dependence of the width function A−(Z) of the conventional

theory (labeled in the figure as ST, ‘standard theory’) and of the width function A−

(Z,κ) of the generalized theory for several values of the parameter κ defined as κ =

q∣χ∣Y, where χ and Y are as given in equations (7.86) and (7.87), respectively.

Reproduced from [18]. © Alpha Science International Limited.

There are practical situations in which the nonadiabatic contribution to the electron-

induced dynamical Stark width is much smaller than the adiabatic contribution. For

example, in magnetized plasmas, a sufficiently strong magnetic field B significantly

suppresses the nonadiabatic contribution without affecting the adiabatic contribution, as

shown in [32–35]. Therefore, in the following, we focus on the adiabatic contribution given

by equations (7.79)–(7.81) and study its nonlinearities.

The parameter uαβ from equation (7.81) can be redefined in the form

uαβ = mev
2/[3ℏ(nαqα − nβqβ)ωpe],

where

ωpe = (4πe2Ne/me)
1/2

is the plasma electron frequency. From equation (7.93), it can be seen that the

parameter uαβ can be interpreted as the scaled kinetic energy Ks of the perturbing electron.

From equation (7.79), it can be seen that the adiabatic Stark width is controlled by the

product NeInt(uαβ) = NeInt(Ks), where the function Int(u) is given by equation (7.81). At

large u, the asymptotic expression for this function is
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Int(Ks) ≈ 0.209 + ln (Ks)/6.

Figure 7.11 presents the dependence of the factor Int on the scaled kinetic energy Ks of

the perturbing electron (solid line). For comparison, the asymptotic result given by

equation (7.95) is shown by the dashed line.

Figure 7.11. Dependence of the factor Int from equation (7.81) on the scaled kinetic

energy Ks of the perturbing electron (solid line). For comparison, the asymptotic result

given by equation (7.95) is shown by the dashed line.

From figure 7.11, it can be seen that the dependence of the factor Int on the scaled

kinetic energy Ks of the perturbing electron is nonlinear. It can also be seen that for Ks > 1,

the exact and approximate expressions for the factor Int are very close to each other.

Here, we introduce the scaled adiabatic Stark width Γs, which is related to the (unscaled)

adiabatic Stark width Γ as follows:

Γs = Γsme
5/4e1/2/(31/26π1/4

ℏ
3/2Xαβ

3/2).

We also introduce the scaled electron temperature Ts, which is related to the

(unscaled) electron temperature Te as follows:

Ts = Teme
1/2/(6π1/2Xαβℏe).

The scaled adiabatic Stark width from equation (7.79) can now be represented in the

form

Γs = Ne Int(Ts/Ne
1/2).

Figure 7.12 shows the dependence of the scaled adiabatic width Γs on the scaled

electron temperature Ts and on the electron density Ne (cm−3) for a relatively low range of

electron densities.



Figure 7.12. The dependence of the scaled adiabatic width Γs on the scaled electron

temperature Ts and on the electron density Ne (cm−3) for a relatively low range of

electron densities.

Figure 7.13 presents the same plot as that of figure 7.12 but rotated by 90°, so that

together with figure 7.12 it gives the most comprehensive view of the dependence of the

scaled adiabatic width Γs on the scaled electron temperature Ts and on the electron density

Ne at a relatively low range of Ne.

Figure 7.13. The same plot as in figure 7.12 but rotated by 90°, so that together with

figure 7.12 it gives the most comprehensive view of the dependence of the scaled

adiabatic width Γs on the scaled electron temperature Ts and on the electron density

Ne (cm−3) at a relatively low range of electron densities.

Figure 7.14 shows the dependence of the scaled adiabatic width Γs on the electron

density Ne (cm−3) at a relatively low range of electron densities for the scaled electron

temperature Ts = 106.



Figure 7.14. The dependence of the scaled adiabatic width Γs on the electron density

Ne (cm−3) at a relatively low range of electron densities for the scaled electron

temperature Ts = 106.

Figure 7.15 shows the dependence of the scaled adiabatic width Γs on the scaled

electron temperature Ts and on the electron density Ne (cm−3) at a relatively high range of

electron densities.

Figure 7.15. The dependence of the scaled adiabatic width Γs on the scaled electron

temperature Ts and on the electron density Ne (cm−3) at a relatively high range of

electron densities.

Figure 7.16 represents the same plot as that of figure 7.15 but rotated by 90°, so that

together with figure 7.15 it gives the most comprehensive view of the dependence of the

scaled adiabatic width Γs on the scaled electron temperature Ts and on the electron density

Ne at a relatively high range of Ne.



Figure 7.16. The same plot as that shown in figure 7.15 but rotated by 90°, so that

together with figure 7.15 it gives the most comprehensive view of the dependence of

the scaled adiabatic width Γs on the scaled electron temperature Ts and on the

electron density Ne at a relatively high range of Ne.

Figure 7.17 shows the dependence of the scaled adiabatic width Γs on the electron

density Ne (cm−3) at a relatively high range of electron densities for the scaled electron

temperature Ts = 2×108.

Figure 7.17. The dependence of the scaled adiabatic width Γs on the electron density

Ne (cm−3) at a relatively high range of electron densities for the scaled electron

temperature Ts = 2 × 108.

From figures 7.12–7.17, it can be seen that the dependence of the adiabatic Stark width

(due to plasma electrons) on the electron density is significantly nonlinear.

7.5 Reduction of the Stark broadening due to the

acceleration of electrons by the ion field in plasmas

The quasistatic part of the ion microfield in the vicinity of the radiator causes perturbing

electrons to pass the radiator faster than when no allowance is made for the ion microfield.
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Because the dynamical Stark widths and shifts are inversely (approximately) proportional

to the velocity of the perturbing electrons, this effect diminishes both the dynamical Stark

shift and the dynamical Stark width. The lower the electron temperature and the higher the

electron density, the more significant this decrease should become.

This effect was first presented analytically in [36] in frames of the binary approximation.

Some analytical improvements were then made in [37]. This effect was later presented

analytically using an approximate multiparticle description in [18] and [27].

This reduction of the Stark widths and shifts is a manifestation of the direct coupling

between the ion and electron microfields. It is called the direct coupling to distinguish it

from the coupling described in section 7.4. In the latter, indirect coupling, the radiator

plays the role of an intermediary. The coupling parameter given by equation (7.87)

depends on the parameters of the radiator (on its quantum numbers), on the parameter of

the perturbing electrons (on their velocity), and on the parameter of the ion microfield (on

the quasistatic field strength F).

Later, a group of authors performed simulations intended to reproduce this phenomenon

[38]. Their simulations were limited to just one value of the electron temperature, just one

value of the electron density, and just one spectral line (Balmer-alpha). They claimed that

they found an increase (rather than a decrease) in the Stark width caused by electrons.

The primary flaw of the fully-numerical approach of [38] is that its authors attempted to

‘mimic’ the binary version of this effect. Therefore, their results have no relevance to the

analytical results obtained in the (approximate) multiparticle description [18, 27].

This controversy was ultimately resolved in [39], where we treated this phenomenon

analytically within statistical mechanics—in contrast to our previous studies [27, 36, 37],

where we employed a dynamical treatment of this phenomenon (specifically, where we

first calculated the modification of the trajectory of a perturbing electron due to the ion

field and then averaged the contribution of the perturbing electron to the Stark width over

the ensemble of the perturbing electrons). In [39], our starting point was the modified

distribution function of the electron velocities from Romanovsky–Ebeling [40]: the

distribution modified by the ion microfield and calculated in [40] in the multiparticle

description of the ion microfield. We then used this distribution to calculate the electron-

caused Stark broadening within the conventional theory. The result demonstrated a

decrease in the Stark broadening. So, the two different analytical formalisms yielded

decreases in the Stark broadening and thus invalidated the simulation described in [38]. In

the following, we give some details from [39].

The authors of paper [40] subdivided the instantaneous state of a plasma under

consideration into a group of ‘domains,’ each having the size of about the Debye radius

and each experiencing a different constant value of the quasistatic field F representing the

ion microfield. The microfield was describe by the multiparticle formalism. The changes in

the domain structure occurred at time intervals of the order of 1/ωpe. The authors of [40]

employed the statistical approach to derive the corresponding (un-normalized) distribution

of the plasma electron velocities:

f (u)(v) = (2v/π)∫
∞

0
dt sin (tv) exp[− (vFt)

3/2 − (vTt)
2/4].

In equation (7.99), the superscript ‘u’ signifies ‘un-normalized’; the quantity  =

(2Te/m)1/2 is the electron’s mean thermal velocity. The quantity  is the typical ion

microfield scaled to the dimension of velocity:

vF = (eEH/me)[me/(4πe2Ni)]
1/2

(Ti/Te)1/4.
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In equation (7.100), the quantity EH is the standard characteristic strength of the ion

microfield:

EH = 2π(4/15)2/3
eNi

2/3.

In the limit of  = 0, the distribution from equation (7.99) simplifies to the Maxwell

distribution, while in the limit of  = 0, the distribution from equation (7.99) simplifies to

the Holtsmark distribution [41].

Obviously, the distribution function f(u)( ) from equation (7.99) is controlled by the ratio

vF/vT = (π/2)1/2(4/15)2/3eNe
1/6/Te.

Figure 7.18 shows the dependence of this ratio on the electron density Ne (in cm−3)

and on the electron temperature Te (in eV).

Figure 7.18. The dependence of the ratio /  on the electron density Ne (in cm−3)

and on the electron temperature Te (in eV).

Figure 7.19 presents the same plot as that of figure 7.18 but rotated by 90°, so that

together with figure 7.18 it gives the most comprehensive view of the dependence of the

ratio /  on the electron density Ne (in cm−3) and on the electron temperature Te (in eV).
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Figure 7.19. The same plot as in figure 7.18 but rotated by 90°, so that together with

figure 7.18 it gives the most comprehensive view of the dependence of the ratio /

on the electron density Ne (cm−3) and on the electron temperature Te (eV).

In paper [39], to obtain more explicit results, we analyzed the situation in which  ≪ ,

which is most important practically. We expanded exp[−(  t)3/2] in equation (7.99):

f
(u)
small(v) = (2v/π)∫

∞

0
dt sin (tv) [1 − (vFt)

3/2] exp[− (vTt)
2/4].

In equation (7.103), the subscript ‘small’ signifies a relatively small ion field (i.e. a

relatively small ion density). We analytically calculated the integral in equation (7.103) and

then analytically normalized the resulting distribution to the form:

In equation (7.104), F(a,c;z) is the confluent hypergeometric function and Γ(z) is the

gamma function.

Before calculating the average over the electron velocities, the electron impact operator

can be represented in the form

Φ(v) = K/v2,

where the operator K is practically independent of the electron velocities (see, e.g.

[41]):

K = − (rara − 2rarb
* + rb

*rb
*)[4πe4Ne/(3ℏ

2)][ln (ρmax /ρmin) + 1/2].

We then averaged Φ( ) from equation (7.105) over the distribution of the electron

velocities from equation (7.103),

fsmall(v) = [4 v2/(πvT
9/2)][π1/2vT

3/2 exp(−v2/vT
2)

−25/2Γ(9/4) vF
3/2F(9/4, 3/2; −v2/vT

2)].
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Φsmall = ∫
∞

0
dv vfsmall(v) Φ(v),

and obtained:

Φsmall = [2K/(π1/2vT)][1 − 23/2Γ(5/4) vF
3/2/(π1/2vT

3/2)].

Equation (7.107) clearly proves that as the ratio / , which is the scaled

dimensionless ion field, grows, the electron-induced Stark broadening decreases. Just this

single result nullifies the statement in [38] that presumably the acceleration of the

perturbing electrons by the ion field increases the Stark broadening by plasma electrons.

To study the nonlinearity of the electron impact operator Φsmall from equation (7.108),

we scaled the electron density:

Ne,scaled = Neπ
3(4/15)4

e6/me
3 = vF

6.

The scaled operator Φs,small can now be represented in the form:

Φs,small = (1/vT)[1 − 23/2Γ(5/4) Ne,scaled
1/4/(π1/2vT

3/2)].

Figure 7.20 shows the dependence of the scaled electron impact operator Φs,small on

the scaled electron density Ne,scaled and on the mean thermal velocity of plasma electrons 

.

Figure 7.20. The dependence of the scaled electron impact operator Φs,small on the

scaled electron density Ne,scaled and on the mean thermal velocity of plasma electrons 

.

Figure 7.21 presents the same plot as in figure 7.20 but rotated by 90°, so that together

with figure 7.20 it gives the most comprehensive view of the dependence of the scaled

electron impact operator Φs,small on the scaled electron density Ne and on the mean

thermal velocity of plasma electrons .
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Figure 7.21. The same plot as that shown in figure 7.20 but rotated by 90°, so that

together with figure 7.20 it gives the most comprehensive view of the dependence of

the scaled electron impact operator Φs,small on the scaled electron density Ne and on

the mean thermal velocity of plasma electrons .

From figures 7.20 and 7.21, it can be seen that the electron broadening operator Φsmall

depends on the electron density in a significantly nonlinear way.

We now analyze the opposite limit, where  ≫ . We expand exp[−(  t)2/4] in

equation (7.99):

f
(u)
large(v) = (2v/π)∫

∞

0
dt sin (tv) [1 − (vTt)

2/4] exp[− (vFt)
3/2].

In equation (7.111), the subscript ‘large’ signifies a relatively large ion field. We

perform the analytical integration in equation (7.111) and then analytically normalize the

result to obtain the normalized velocity distribution function flarge( ). We then employ flarge(

) to obtain the average over velocities:

Φlarge = ∫
∞

0
dv v flarge(v) Φ(v).

We perform the analytical integration in equation (7.112) and obtain the following:

Φlarge = [9K Γ(11/3)/(20πvF)]{1 − 20 vT
2/[27 Γ(11/3)vF

2]}.

To study the nonlinearity of the electron impact operator Φlarge from equation (7.113),

we again scale the electron density according to equation (7.109) and represent the scaled

operator Φs,large in the form:

Φs,large = (1/Ne,scaled
1/6)[1 − 20vT

2/(27 Γ(11/3) Ne,scaled)1/3].

Figure 7.22 shows the dependence of the scaled electron impact operator Φs,large on

the scaled electron density Ne,scaled and on the mean thermal velocity of plasma electrons 



.

Figure 7.22. The dependence of the scaled electron impact operator Φs,large on the

scaled electron density Ne,scaled and on the mean thermal velocity of plasma electrons 

.

Figure 7.23 presents the same plot as that of figure 7.22 but rotated by 90°, so that

together with figure 7.22 it gives the most comprehensive view of the dependence of the

scaled electron impact operator Φs,large on the scaled electron density Ne and on the mean

thermal velocity of plasma electrons .

Figure 7.23. The same plot as that of figure 7.22 but rotated by 90°, so that together

with figure 7.22 it gives the most comprehensive view of the dependence of the scaled

electron impact operator Φs,large on the scaled electron density Ne and on the mean

thermal velocity of plasma electrons .

From figures 7.22 and 7.23, it can be seen that the electron broadening operator Φlarge

depends on the electron density in a significantly nonlinear way.
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Finally, we define the factor R by which the electron-induced Stark broadening is

reduced due to the acceleration of the perturbing electrons by the ion field:

R = Φ(vF/vT)/Φ(0).

Figure 7.24 shows this reducing factor R versus the ratio / .

Figure 7.24. The reducing factor R from equation (7.115) versus the ratio / .

From figure 7.24, one can see that the formalism of the statistical mechanics used in our

paper [39] proves that the acceleration of the perturbing electron by the ion microfield

reduces the Stark broadening. This is unequivocal proof that the simulations by the authors

of [38], which reported the opposite effect, are incorrect.

We also note that the authors of paper [38] admitted the inability of their simulations to

reproduce the analytical results from [42] dealing with the breakdown of the concept of the

line space, while the authors of paper [38] did not find any flaws in the analytical

calculations of [42]. In addition, it should be mentioned that another program developed by

one of the authors of paper [38] (by Alexiou), which was similar to the code used in [38],

produced a discrepancy of about 30% relative to the benchmark experiment [43]. All of the

above create very significant doubts concerning the reliability of these programs.
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Chapter 8

Nonlinear effects in the ion-dynamical Stark

broadening of hydrogenic spectral lines in plasmas

Whether the effect of the ion microfield on the Stark broadening of hydrogen spectral lines

is mostly dynamical or quasistatic is controlled by the number of perturbing ions Nwi in the

sphere of the Weisskopf radius rwi:

Nwi = (4πNi/3)rwi
3,

where

rwi = n2
ℏ/(mevTi).

In equations (8.1) and (8.2), Ni is the ion density, n is the principal quantum number of

the upper energy level (from which the spectral line originates), me is the electron mass,

and  is the mean thermal velocity of plasma ions:

vTi = (2Ti/mi).

In equation (8.3), Ti is the ion temperature and mi is the ion mass. In the following, we

consider the plasma ions to be protons or deuterons, so that due to the quasi-neutrality of

plasmas, one has

Ni = Ne,

where Ne is the electron density. We also consider the situation in which the electron

temperature Te is equal to Ti, so that we let

T = Te = Ti.

When Nwi ≫ 1, the effect of the ion microfield is mostly quasistatic. When Nwi ≪ 1, the

effect of the ion microfield is mostly dynamical.

In this chapter, we are interested in the dynamical effect of the ion microfield, that is,

when

Nwi ≪ 1.

The condition (8.6) can be reformulated as follows. The plasma temperature T should

exceed the critical value Tcr, where

Tcr = [4πNe/(3Nwi)]2/3
n4

ℏ
2mi/me.



Figure 8.1 shows the dependence of the critical temperature Tcr on the electron density Ne

(in cm−3) and on the principal quantum number n for the number of ions in the ion

Weisskopf sphere Nwi = 1.

Figure 8.1. The dependence of the critical temperature Tcr on the electron density Ne

(in cm−3) and on the principal quantum number n for the number of ions in the ion

Weisskopf sphere Nwi = 1.

Figure 8.2 displays the same plot as that of figure 8.1 but from the alternative viewpoint,

so that together with figure 8.1 it shows the most comprehensive view of the dependence

of the critical temperature Tcr on the electron density Ne (in cm−3) and on the principal

quantum number n for the number of ions in the ion Weisskopf sphere Nwi = 1.

Figure 8.2. The same plot as that of figure 8.1 but from the alternative viewpoint, so

that together with figure 8.1 it shows the most comprehensive view of the dependence

of the critical temperature Tcr on the electron density Ne (in units of cm−3) and on the

principal quantum number n for the number of ions in the ion Weisskopf sphere Nwi =

1.



Figure 8.3 shows the dependence of the critical temperature Tcr on the electron density

Ne (in cm−3) and on the number of ions in the ion Weisskopf sphere Nwi for the principal

quantum number n = 2.

Figure 8.3. The dependence of the critical temperature Tcr on the electron density Ne

(in cm−3) and on the number of ions in the ion Weisskopf sphere Nwi for the principal

quantum number n = 2.

Figure 8.4 displays the same plot as that of figure 8.3 but from the alternative viewpoint,

so that together with figure 8.1 it shows the most comprehensive view of the dependence

of the critical temperature Tcr on the electron density Ne (in cm−3) and on the number of

ions in the ion Weisskopf sphere Nwi for the principal quantum number n = 2.

Figure 8.4. The same plot as that of figure 8.3 but from the alternative viewpoint, so

that together with figure 8.1 it shows the most comprehensive view of the dependence

of the critical temperature Tcr on the electron density Ne (in units of cm−3) and on the



number of ions in the ion Weisskopf sphere Nwi for the principal quantum number n =

2.

Figure 8.5 shows the dependence of the critical temperature Tcr on the number of ions in

the ion Weisskopf sphere Nwi and on the principal quantum number n for the electron

density Ne = 1014 cm−3.

Figure 8.5. The dependence of the critical temperature Tcr on the number of ions in

the ion Weisskopf sphere Nwi and on the principal quantum number n for the electron

density Ne = 1014 cm−3.

Figure 8.6 displays the same plot as that of figure 8.5 but from the alternative viewpoint,

so that together with figure 8.5 it shows the most comprehensive view of the dependence

of the critical temperature Tcr on the number of ions in the ion Weisskopf sphere Nwi and on

the principal quantum number n for the electron density Ne = 1014 cm−3.
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Figure 8.6. The same plot as that of figure 8.5 but from the alternative viewpoint, so

that together with figure 8.5 it shows the most comprehensive view of the dependence

of the critical temperature Tcr on the number of ions in the ion Weisskopf sphere Nwi

and on the principal quantum number n for the electron density Ne = 1014 cm−3.

We now focus on dynamical Stark broadening by the ion microfield not only in the

conventional case, where Nwi ≪ 1 (so that the ion microfield contributes mostly

dynamically) but in the general case, including in particular Nwi ~ 1 and Nwi ≫ 1. According

to the generalized theory of Stark broadening, in the latter case, a minor part of the ion

microfield still makes a dynamical contribution to Stark broadening. This contribution

exhibits a counterintuitive dependence on plasma parameters, as presented below

following [1].

In the generalized theory of Stark broadening [2–4], the ion Weisskopf radius is not

estimated by order of magnitude (as in equation (8.2)) but naturally arises from rigorous

analytical derivation in the form

Rwi = 3Xabℏ/(mevTi),

where

Xαβ = nα(n1 − n2)α − nβ(n1 − n2)β.

In equation (8.9), n, n1, and n2 are the principal and parabolic quantum numbers; the

subscripts α and β denote the upper and lower Stark sublevels, respectively. As the right-

hand side of equation (8.8) differs from the right-hand side of equation (8.2), we changed

the notation on the left-hand side from rwi to Rwi. Typically, the number of ions in the

sphere of the ion Weisskopf radius

Nwi = (4πNi/3)Rwi
3

is much greater than unity, so that the greater part of the ion microfield affects the

spectral lineshape quasistatically.

In this situation, that is, where Nwi ≫ 1, we analyzed the dynamical contribution to the

Stark broadening (due to a minor part of the ion microfield) using the following properties

of the generalized theory. First, the adiabatic part of the dynamical contribution

predominates over the nonadiabatic part (for Nwi ≫ 1), so that the latter was disregarded.

Second, the adiabatic contribution was exactly derived in the generalized theory (without

using the perturbation theory). The analytical outcome presented in [1] was the ion

dynamical contribution to the Stark broadening derived without engaging the binary

approximation or the impact approximation or by assuming the collisions to be complete.

Some details are offered below.

For a given argument τ of the correlation function C(τ), the ion dynamical contribution is

due to collisions such that the instant t0 of the closest approach to the radiator satisfies the

inequality

−τ/2 < t0 < τ/2.

We do not presume that τ ≫ ρ/ , that is, we do not engage the assumption of

completed collisions. We keep the ratio τ/ρ arbitrary, so that we take into account the
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incomplete collisions.

The ion dynamical part of the correlation function can be represented in the form

C(τ) ≈ exp[−NiV (τ)], V (τ) ≈ 2πv

∞

∫

0

dρ ρ ⟨{1 − exp[iI(v, ρ, τ)]}⟩

τ/2

∫

−τ/2

dt0,

where

I(v, ρ, τ) = (vRwi/2)

τ/2

∫

−τ/2

dtE(v, ρ, t) = (cos θRw/ρ)

vτ/(2ρ)

∫

0

dx(1 + x2)
−3/2

= G(v, ρ,

In equation (8.12), the symbol 〈⋯〉 signifies the angular average. In equation (8.13), θ

is the angle between the vectors ρ and F (where F is the quasistatic part of the ion

microfield at the location of the radiator), and

G(v, ρ, τ) = vτRwi/[2ρ(ρ2 + v2τ 2/4)
1/2

].

After the angular average is obtained, the symbol < ⋯ > in equation (8.12) takes the

form

⟨⋯⟩ = 1 − [ sin G(v, ρ, τ)]/G(v, ρ, τ).

We then expressed ρ via G by utilizing equation (8.15) and changed the variable of the

integration in equation (8.12) to be G instead of ρ. As a result, we found the final

expression for the ion dynamical part of the correlation function to be the following:

C(τ) = exp[−6Nwif(Ωwτ/4)], f(x) = ∫
∞

0

dy[1 − (sin y)/y]/[y2(y2 + 1/x2)
1/2

].

In equation (8.16),

Ωw = v/Rwi

is the Weisskopf frequency.

Expression (8.16) for the correlation function is valid for any value of the product Ωwτ.

Figure 8.7 shows the dependence of the correlation function C on Ωwτ and on the number

of ions Nwi in the sphere of the ion Weisskopf radius.



Figure 8.7. The dependence of the correlation function C on Ωwτ and on the number

of ions Nwi in the sphere of the ion Weisskopf radius.

Figure 8.8 displays the same plot as in figure 8.7 but from the alternative viewpoint, so

that together with figure 8.7 it shows in the most comprehensive way the dependence of

the correlation function C on Ωwτ and on the number of ions Nwi in the sphere of the ion

Weisskopf radius.

Figure 8.8. The same plot as that of figure 8.7 but from the alternative viewpoint, so

that together with figure 8.7 it shows in the most comprehensive way the dependence

of the correlation function C on Ωwτ and on the number of ions Nwi in the sphere of the

ion Weisskopf radius.

From figures 8.7 and 8.8, it can be seen that for Nwi ≪ 1, the correlation function falls off

with the growth of τ significantly slower than for Nwi > 1.



(8.1

8)

(8.1

9)

(8.2

0)

In the limiting case, in which

Ωwτ ≫ 1,

the correlation function simplifies to

C(τ) = exp[−Nwi(Ωwτ/4) ln(Ωwτ/4)].

This correlation function leads to a quasi-Lorentzian lineshape.

In the opposite limiting case, in which Ωwτ ≪ 1 (corresponding to ‘totally’ incomplete

collisions), the correlation function becomes

C(τ) = exp[−(3π/32)Nwi(Ωwτ)2].

In this limit, the correlation function yields a Gaussian lineshape. The result, namely

that dynamical Stark broadening yields the Gaussian lineshape, is counterintuitive.

So, in the situation in which Nwi ≫ 1, the total correlation function and the

corresponding lineshape have three different regions, as follows. First, there is the

quasistatic region: Ωwτ ≪ 1/Nwi
1/2. Second, there is the Gaussian (dynamic) region: 

1/Nwi
1/2 ≪ Ωwτ ≪ 1. Third, there is the quasi-Lorentzian (dynamic) region: 1 ≪ Ωwτ.

Figure 8.9 shows the dependence of the scaled ion dynamical Stark width Δω1/2/Ωw on

the scaled ion density Ni/N0, where N0 corresponds to the ion density, for which the number

of ions in the sphere of the ion Weisskopf radius is equal to unity.

Figure 8.9. The dependence of the scaled ion dynamical Stark width Δω1/2/Ωw on the

scaled ion density Ni/N0, where N0 corresponds to the ion density, for which the

number of ions in the sphere of the ion Weisskopf radius is equal to unity.

From figure 8.9, it can be seen that the ion dynamical Stark width depends on the

electron density in a significantly nonlinear way. At Ni ≪ N0, the dependence is quasi-linear.

However, as the ion density exceeds the value ~0.5N0, the dependence becomes

significantly nonlinear: at Ni ≫ N0, it becomes (Ni/N0)1/2.



Figure 8.10 shows the dependence of the scaled ion dynamical Stark width Δω1/2/Ωw on

the scaled ion temperature T/T0, where T0 corresponds to the ion temperature, for which

the number of ions in the sphere of the ion Weisskopf radius is equal to unity.

Figure 8.10. The dependence of the scaled ion dynamical Stark width Δω1/2/Ωw on

the scaled ion temperature T/T0, where T0 corresponds to the ion temperature, for

which the number of ions in the sphere of the ion Weisskopf radius is equal to unity.

Figure 8.10 illustrates the following. At T ≫ T0, the scaled ion dynamical Stark width is

(T0/T)1/2. As the temperature T decreases, the scaled width reaches its maximum at T/T0 =

1.64 and then decreases. At T ≪ T0, the scaled width becomes (T/T0)4.

Figure 8.11 shows a typical profile of any lateral Stark component for dynamical

broadening by the ion microfield. Our analytical result is shown by the bold solid line. The

Lorentzian, matching the central part of our calculated profile, is shown by the dashed line.

The Gaussian, matching our calculated profile in the wings, is shown by the thin solid line.

Figure 8.11. The typical profile of any lateral Stark component for dynamical

broadening by the ion microfield. Our analytical result is shown by the bold solid line.

The Lorentzian, matching the central part of our calculated profile, is shown by the

dashed line. The Gaussian, matching our calculated profile in the wings, is shown by

the thin solid line.



In equations (8.10)–(8.12) and in the subsequent results, it was assumed that Xαβ (given

by equation (8.9)) is nonzero, meaning that we considered lateral Stark components of

hydrogen spectral lines. The situation in which the hydrogen line is dominated by the

central (unshifted) Stark component, which is the case for the Ly-alpha line, was studied by

Stambulchik and Demura [5]. Using simulations, they demonstrated that the Stark width

for the Ly-alpha line is proportional to Np at relatively small perturber (e.g. ion) densities Np

(the impact limit), but at large Np it is proportional to Np
1/3 (while for the quasistatic case,

the Stark width would be proportional to Np
2/3). They correctly interpreted this result by the

consideration that for the central Stark component of the Ly-alpha line (the component that

has 2/3 of the total intensity of the Ly-alpha line), the so-called amplitude modulation (of

the atomic oscillator) is the dominating broadening mechanism for high Np. So, the Stark

width of the Ly-alpha line at relatively large perturber densities Np is proportional to the

rotational frequency of the perturbers, the rotational frequency being ~  Np
1/3. In the

same way, the authors of [5] demonstrated that for the Ly-alpha line, the Stark width is

proportional to 1/T1/2 at relatively large temperatures T (the impact result), but at relatively

small temperatures, it becomes proportional to T1/2 (i.e. it is again proportional to the

rotational frequency of the perturbers ~  Np
1/3).
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Appendix A

The effects of various electric fields on the 5D, 5F,

and 5G energy levels of helium

The simplest three-level scheme employed by Baranger and Mozer [1] to describe

the satellites of dipole-forbidden spectral lines under a quasimonochromatic electric

field (QEF) of frequency ω and amplitude E0 was applied by Kunze and Griem [2] to

observe the satellites of the 492.2 nm (singlet) and 447.1 nm (triplet) helium lines.

For these lines, the allowed transition is 4D–2P and the forbidden transition is 4F–2P.

In order for the QEF to sufficiently intermix the levels 4D and 4F, thus causing the

satellites, the QEF amplitude required to practically observe the satellites of these

two helium lines is relatively high: ~10 kV cm−1.

For many practical purposes, such as the spectroscopic diagnostic of the QEF at

the lower hybrid frequency in tokamaks, in which the QEF amplitude is expected to

be ~(1–4) kV cm−1, it is necessary to increase the sensitivity of the helium atoms to

the QEF. The following dimensionless parameter α controls the relative intensities of

the satellite, the total number of satellites that can be observed, and most

importantly, the sensitivity of this method:

α = 2dE0/(ħΔ).

Here, d is the dipole matrix element coupling the levels, which originates the

allowed spectral line and the satellites of the forbidden spectral line and Δ is the

separation (in the angular frequency scale) between these levels. Situations for

which α ≪ 1 can be described by the perturbation theory (as used by Baranger and

Mozer [1]). However, for situations in which α is greater than or of the order of unity,

the perturbation theory becomes inapplicable.

In order to increase the sensitivity parameter α at a fixed QEF amplitude E0, the

only way is to proceed to spectral lines originating from levels of the principal

quantum number n > 4. Indeed, α is proportional to the ratio d/Δ. As n increases, d

also increases (proportionally to n2), while the separation Δ between closely lying

levels decreases.
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Selecting prospective spectral lines of helium involves finding an optimal balance

between several competing, counter-acting factors, such as the sensitivity to the

anticipated QEF, the required spectral resolution, and sufficient absolute intensity.

Indeed, on the one hand, the higher the principal quantum number n of the upper

level, the better the sensitivity with respect to the electric fields. On the other hand,

the higher the value of n, the smaller the separation between the forbidden and

allowed components (or between satellites and the allowed component) of the

corresponding spectral lines, thus requiring a higher spectral resolution. Also, as n

increases, the absolute intensity of the spectral lines decreases. It should be also

emphasized that a spectral line of helium, sensitive enough to the QEF ~ (1–4) kV

cm−1, should be chosen such that the effect of the QEF is strong enough that it

cannot be described by the perturbation theory.

The three-level scheme theoretically employed by Baranger and Mozer [1] (and

later by Cooper and Ringler [3]) was relatively simple because the QEF was

supposed to intermix only two levels: 4D and 4F. (We recall that there are no levels

4G, 4H. etc.) Since enhancing the sensitivity requires proceeding to helium spectral

lines originating from levels of n > 4, this means that the QEF will couple more than

two levels. For example, if one were to use helium spectral lines in the vicinity of the

allowed transition 5D–2P, then there would be two forbidden transitions: 5F–2P and

5G–2P. In other words, in this case, more sophisticated analytical approaches—going

beyond the perturbation theory—should be employed for the four-level scheme

whose three upper levels are 5D, 5F, and 5G.

The need may also arise to use helium spectral lines in the vicinity of the allowed

transition 6D–2P. There would then be three forbidden transitions: 6F–2P, 6G–2P, and

6H–2P. In other words, in this case, the more sophisticated analytical approaches

(beyond the perturbation theory) should be implemented for the five-level scheme

whose four upper levels are 6D, 6F, 6G, and 6H.

Specifically, the two following analytical theories presented in [4] are relevant for

this purpose. Both theories consider satellites of dipole-forbidden spectral lines

under a linearly-polarized electric field E(t) = E0 cos(ωt). Their regions of validity,

while differing, actually complement each other. For exactness, we provide below

details for helium spectral lines corresponding to the radiative transitions to the

lower level 2P from the upper levels (or sublevels) nD, nF, … . The total number of

upper sublevels is n − 2, where n is the principal quantum number of the upper

sublevels. Atomic units are used in the subsequent formulas.

The first theory is called the adiabatic theory of satellites. Its region of validity

can be expressed as follows:

(zE0/Δ)(ω/Δ) ≪ 1.

Here, z is the average of the matrix elements of the z-coordinate (chosen along

the oscillatory electric field) between sublevels nD and nF, nF, and nG, etc.; Δ is the

separation between the highest and the lowest of the sublevels nD, nF, … . For

example, the adiabatic theory of satellites allows situations in which the amplitude

E0 is relatively high (so that the standard perturbation theory fails) to be treated

analytically as long as the frequency ω is relatively low.

The second theory is called the high-frequency or strong-field theory of satellites.

As follows from its name, it is valid where either the amplitude E0 or the frequency ω

is sufficiently large. Its region of validity can be expressed as follows:



(A.3

)

(zE0/Δ)2 + (ω/Δ)2 ≫ 1.

Figure A.1 schematically illustrates the regions of validity of the adiabatic theory

of satellites and the high-frequency or strong-field theory of satellites. The former

theory is valid below the solid curve, while the latter theory is valid above the

dashed curve.

Figure A.1. Regions of validity of the adiabatic theory of satellites and the

high-frequency or strong-field theory of satellites. The former theory is valid

below the solid curve, while the latter theory is valid above the dashed curve.

We now specifically consider the situation in which the three upper energy levels

are 5D, 5F, and 5G. In figure A.2, these levels are denoted by numbers from one to

three for the brevity of the subsequent equations and the analytical results.

Figure A.2. The situation in which the three upper energy levels of helium in

the four-level scheme are 5D, 5F, and 5G.

In the following, we consider the subset of the energy levels corresponding to the

zero projection of the angular momentum in the direction of the electric field: m = 0.

They are coupled by the matrix elements of the z-coordinate, where (in atomic units)
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)

(A.5

)

(A.6

)

(A.7

)

(A.8

)

(A.9

)

(A.1

0)

z12 = 11.34, z13 = 15.21.

The energy differences in atomic units are the same as the frequency

differences, which are as follows:

ω21 = 2.237 × 10−6, ω31 = −1.294 × 10−5, ω23 = ω21 − ω31 = 1.518 × 10−5.

We introduce the following notations:

The primary parameter controlling the quasienergies is the quantity B from

equation (A.6). The practical formula for the parameter B is:

B = 24.28E0/ω,

where the field amplitude E0 is in kV cm−1 and the field frequency ω is in GHz.

Using the Fourier expansions

where Jq(B) are the Bessel functions, the quasienergies μ1, μ2, and μ3 can be

obtained in the following form [4]:

1/2

.

In equation (A.9), the quantities a11, a22, a33, and a23 are as follows:

ED denotes the scaled dimensionless energy density of the oscillatory field:

ED = B2.

α ≡ B sin ωt,B ≡ ξE0/ω, ξ ≡ (z2
12 + z2

13)
1/2

,

z̃12 ≡ z12/ξ, z̃13 ≡ z13/ξ,

V ≡ ω21z̃
2
12 + ω31z̃

2
13,W = ω21z̃

2
13 + ω31z̃

2
12.

sin α = 2
∞

∑
k=1

J2k−1 (B) sin (2k − 1)ωt, cos α = J0 (B)

+ 2
∞

∑
k=1

J2k (B) sin 2kωt,

μ1 = a11, μ2,3 = (a22 + a33)/2 ± [(a22 − a33)2/4 + a2
23]

a11 = [1 − J0 (2B)]V /2;

a23 = a32 = z̃12z̃13 {(z̃2
13 − z̃2

12)ω23 [J0 (B) − 1] + [J0 (2B) − 1]V /2};

app = ωp1 + (−1)p2z̃2
12z̃

2
13ω23 [J0 (B) − 1]

+ z̃2
1p [J0 (2B) − 1]V /2, (p = 2,3).
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1)
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Figure A.3 presents the quasienergies of the energy levels from figure A.2 versus the

scaled energy density ED of the oscillatory field.

Figure A.3. Quasienergies of the energy levels from figure A.2 versus the

scaled energy density ED of the oscillatory field.

From figure A.3, one can see that the dependence of the quasienergies on the

scaled energy density of the oscillatory field is highly nonlinear.

For comparison with the above situation, we consider below the same system

under a uniform electric field F. We slightly change the numeration of these energy

levels, as shown in figure A.4.

Figure A.4. The same as figure A.2 but with a different numeration of the

energy levels.

The energy is counted from level one. Its eigenvalues are denoted by w. We

introduce the following notations:

e = −E2 > 0, u = w/e, a = z12F/e, b = z13F/e, c = E3/e < 1.

The eigenvalues are the roots of the cubic equation:



(A.1

3)

(A.1

4)

(A.1

5)

(A.1

6)

(A.1

7)

(A.1

8)

u3 + (1 − c)u2 − (a2 + b2 + c)u − (b2 − ca2) = 0.

The strong-field approximation corresponds to the case in which

(a2 + b2)
1/2

≫ 1.

Under this condition, the roots of the cubic equation (A.13) are as follows:

u1 = −(b2 − ca2)/(a2 + b2),

u2 = (a2 + b2)
1/2

− d,

u3 = −(a2 + b2)
1/2

− d,

where

d = (1 − c − u1)/2.

It should be noted that in the above results, obtained in the strong-field

approximation, the quantities u1 and d do not depend on the field (they are

constants), while u2 and u3 linearly depend on the field. For comparison, figure A.5

presents the exact results for the energies versus the scaled field b for a = (9/5)1/2b

and c = 1/8 (as is the case for the levels from figure A.4). It can be seen that as the

scaled field b increases, the exact results approach the above asymptotic results

obtained in the strong-field approximation.

Figure A.5. The exact results for the energies versus the scaled field b for a =

(9/5)1/2b and c = 1/8 (as is the case for the levels from figure A.4).

It is instructive to represent the exact results for the energies versus b2, that is,

versus the scaled energy density of the field. This is shown in figure A.6. It can seen



that the dependence of the energies is not as highly nonlinear as in the case of the

quasienergies presented in figure A.3.

Figure A.6. The same results as those of figure A.5, but versus b2, that is,

versus the scaled energy density of the field.
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Appendix B

Examples of the use of spectral line

radiation to perform diagnostics of

oscillatory electric fields in laser-

produced plasmas

The authors of [1] were the first to use the spectral line

radiation (specifically, in the x-ray range) to perform

diagnostics of the oscillatory electric fields in laser-produced

plasmas. The experiment was conducted at the nanosecond

Nd:glass laser facility at LULI (France). The laser intensity at

the target was relatively moderate: 2 × 1014 W cm−2. The

target was structured: it consisted of a (20–60) μm thick

powdered aluminum carbide Al4C3 strip placed between

substrates made of plastic or magnesium. The plasma

parameters (estimated by hydrodynamic simulations) at the



surface of the target were an electron density of Ne ~ 5 ×

1022 cm−3 and a temperature of T ~ 300 eV.

The Vertical Johann Spectrometer produced two sets of

spatially resolved spectra simultaneously. The two sets were

symmetrically located in relation to the unperturbed

wavelength of the spectral line: the right set and the left

set. This feature very significantly enhanced the possibility

of identifying tiny details (Langmuir ‘dips’) within the

experimental line profiles.

Figure B.1 shows the experimental profile of the Lyman-

gamma line of Al XIII. In this figure, the right set and the left

set are superimposed. This demonstrates the reproducibility

of the Langmuir dip position (marked b2) in the blue part of

the experimental profile. The Langmuir-wave-induced

‘bump-dip-bump’ structures, being imposed on the inclined

unperturbed profile, can create a secondary minimum (in

addition to the primary minimum, whose location is

controlled by the electron density) of no practical

importance. The secondary minimum is marked by the

arrow in the blue part of the experimental profile. The

structures marked in the red part of the experimental

profiles are the charge-exchange-induced dips—irrelevant to

the phenomenon of Langmuir-wave-induced dips.



Figure B.1. The experimental profile of the Lyman-

gamma line of Al XIII. In this figure, the right set and

the left set are superimposed. This demonstrates the

reproducibility of the Langmuir dip position (marked b2)

in the blue part of the experimental profile—see the

text above the figure for more details. Reprinted from

[1], Copyright (2006), with permission from Elsevier.

From the experimental position of the Langmuir dip, the

electron density was determined to be 2.2 × 1022 cm−3.

From the width of the experimental Langmuir dip, the

amplitude of the Langmuir wave was estimated to be 0.1 GV

cm−1.



The authors of [2] analyzed the experimental profiles of

the Al XII beta line emitted from the aluminum plasma. The

experiment was conducted at the Friedrich Schiller

University Jena laser system, JETi.

The plasma was produced by a picosecond laser beam

and then exposed to the beam of another picosecond laser.

The second laser was turned on after the pulse of the first

laser had terminated.

The first laser beam had an intensity of 5 × 1015 W cm−2.

The second laser beam had an intensity of 1.2 × 1016 W

cm−2. Both beams overlapped in space and were

synchronized in time with a precision exceeding 1 ps.

Figure B.2 demonstrates the reproducibility of the

structures in the experimental profiles of the Al XII beta line.



Figure B.2. A demonstration of the reproducibility of

the structures in the experimental profiles of the Al XII

beta line. Reproduced from [2]. © IOP Publishing Ltd.

All rights reserved.



Simulations employing the Floquet–Liouville formalism

[3] were conducted for electron densities of 2.5 × 1020 cm−3

⩽ Ne ⩽ 1.5 × 1021 cm−3 at a temperature of Te = 150 eV for

a variety of field strengths of the quasimonochromatic

electric field: E = 0, 0.1, 0.3, and 0.6 in units of E0 = E0 =

5.146 GV cm−1, the latter being the atomic unit of the

electric field. The results are presented in figure B.3 (for the

‘parallel’ profiles, i.e. those polarized along the oscillatory

electric field) and in figure B.4 (for the ‘perpendicular’

profiles, i.e. those polarized perpendicular to the oscillatory

electric field).

Figure B.3. Simulated profiles of the Al XII beta line at

Te = 150 eV for the indicated range of electron density

and the indicated amplitude range E of the oscillatory



electric field, the latter being in units of E0 = 5.146 GV

cm−1. The profiles are polarized along the oscillatory

electric field. Reproduced from [2]. © IOP Publishing

Ltd. All rights reserved.

Figure B.4. The same profiles as those of figure B.3

but polarized perpendicular to the oscillatory electric

field. Reproduced from [2]. © IOP Publishing Ltd. All

rights reserved.

Figure B.5 displays the outcome of kinetic PIC simulations

of the distribution (in space) of the transverse averaged



oscillatory electric field inside the plasma for Ne = 0.1 Nc, Ne

= 0.2 Nc, and Ne = 0.3 Nc. Here, Nc = 1.7 × 1021 cm−3 is the

critical density. The nonlinear enhancement of the incident

laser field occurs at the surface of the critical density.

Figure B.5. The outcome of the kinetic PIC simulations

of the distribution (in space) of the transverse averaged

oscillatory electric field inside the plasma: (a) Ne =



0.1Nc; (b) Ne = 0.2Nc; (c) Ne = 0.3Nc. Here, Nc = 1.7 ×

1021 cm−3 is the critical density. Reproduced from [2].

© IOP Publishing Ltd. All rights reserved.

Figure B.6 shows a comparison of the experimental

profiles with the profiles simulated for the following four

values of the initial electron density: 0.05 Nc, 0.1 Nc, 0.2 Nc,

and 0.35 Nc.

Figure B.6. A comparison between the experimental

and simulated profiles for the following four values of

the initial electron density: 0.05 Nc, 0.1 Nc, 0.2 Nc, and



0.35 Nc. Reproduced from [2]. © IOP Publishing Ltd. All

rights reserved.

Figure B.7 presents a comparison between the

experimental profile and a profile simulated for an average

electron density of N̄ e = 0.2 Nc = 3.3 × 1020 cm−3 and a

time interval ΔTunpert = 8.9 ps. The comparison shows good

agreement in the central part of the profile as well as in the

first two satellites in the red and blue parts of the profile.

More distant satellites are in the far wings: there, the

experimental profile blends with the noise. An additional

maximum marked by the arrow corresponds to the dipole

forbidden transition 1s3s 1S0 — 1s2 1S0 caused by the

quadrupole interaction with the plasma ion field.



Figure B.7. A comparison between the experimental

profile and a profile simulated for an average electron

density of N̄ e = 0.2 Nc = 3.3 × 1020 cm−3 and a time

interval of ΔTunpert = 8.9 ps. Reproduced from [2]. ©

IOP Publishing Ltd. All rights reserved.

The authors of [4] analyzed the experimental hydrogenic

spectral lines of Si XIV and of Al XIII produced during the

interaction between relativistic laser radiation (at an

intensity of ~1021 W cm−2) and thin foils of silicon. As a

result, the authors of [4] revealed the development of ‘ionic

sound’ (i.e. the ion acoustic turbulence). This marked the

discovery of ionic sound in in spectroscopic studies of laser-

produced plasmas. Ionic sound developed at the surface of

the critical density due to the parametric decay instability in

the plasma. This experiment was conducted at the Vulcan

petawatt laser facility located at the Rutherford Appleton

Laboratory [5].

Parametric decay instability is a nonlinear process in

plasmas. In this process, the electromagnetic wave is

converted into an ionic sound wave and a Langmuir wave,

both of which represent electrostatic plasma turbulence.

The electrostatic plasma turbulence corresponds to the

collective degrees of freedom in those plasmas.

The ion acoustic turbulence strongly influences transport

phenomena in variety of plasmas. In particular, the

resistivity of the plasma becomes anomalous: the primary

cause of resistivity becomes the scattering of the

conductivity electrons on the ion acoustic wave—rather than

the scattering on individual plasma ions (the latter being the

cause of the ‘normal’ resistivity of plasmas).

Figure B.8 displays the experimental setup and the

experimental profiles of the Ly-beta and Ly-gamma lines of



(B.1

)

Si XIV. In the insets, the locations of the Langmuir dips are

indicated by vertical line segments. The distance between

the experimental Langmuir dips is either 2λpe or 4λpe, where

λpe = [λ2
0/(2πc)]ωpe.

Figure B.8. (a) The experimental setup and (b) the

experimental profiles of the Ly-beta and Ly-gamma

lines of Si XIV. In the insets, the locations of the

Langmuir dips are indicated by the vertical line

segments. Reproduced from [4]. © The Optical

Society.



(B.2

)

In equation (B.1), λ0 is the unperturbed wavelength of

the corresponding line and ωpe is the plasma electron

frequency:

ωpe = (4πe2Ne/me)
1/2

.

 

Figure B.9 presents a comparison between the

experimental and theoretical profiles of the Ly-beta and Ly-

gamma lines of Si XIV. The theoretical profiles were

calculated by allowing both for the effect of the ion acoustic

turbulence and for the Langmuir dips.

Figure B.9. A comparison between the experimental

and theoretical profiles of the Ly-beta and Ly-gamma

lines of Si XIV. The theoretical profiles were calculated

by allowing both for the effect of the ion acoustic

turbulence and for the Langmuir dips. The theoretical

profiles are calculated for the electron density Ne =

1.74 × 1022 cm−3. Reproduced from [4]. © The Optical

Society.



Figure B.10 displays the experimental profile of the Ly-

beta line of Al XIII obtained when the spectrometer was

directed at the front surface of the laser-irradiated target—in

contrast to the experimental profiles in figures B.8 and B.9,

which were obtained by directing the spectrometer at the

back surface of the laser-irradiated target. The target was

aluminum foil coated by a layer of CH. The corresponding

theoretical profile is also presented. The experimental

spectrum exhibits two pairs of Langmuir dips: one pair at a

distance of ±33.6 mÅ from the line center and the second

pair at a distance of ±16.8 mÅ from the line center.

Figure B.10. The experimental profile of the Ly-beta

line of Al XIII obtained by directing the spectrometer at

the front surface of the laser-irradiated target—in

contrast to the experimental profiles in figures B.8 and



B.9, which were obtained by directing the spectrometer

at the back surface of the laser-irradiated target. The

target was aluminum foil coated by a layer of CH. The

corresponding theoretical profile is also presented.

Reproduced from [4]. © The Optical Society.

The authors of [6] presented an in-depth spectroscopic

study of the simultaneous production of Langmuir waves

and the ionic sound at the surface of the relativistic critical

density. This experiment was also conducted at the Vulcan

petawatt laser facility located at the Rutherford Appleton

Laboratory [5]. The focus of the paper was the Langmuir

dips in the experimental profiles of the Ly-beta line of Si XIV.

The laser intensity at the target ranged from 1 to 3 × 1020

W cm−2 in different shots.

Figure B.11 displays experimental profiles obtained in

three different shots. There are very distinct ‘bump-dip-

bump’ structures in the experimental profiles. Actually,

these are Langmuir superdips, that is, the superposition of

two Langmuir dips at the same location in the profile. Also

shown are theoretical profiles calculated using the FLYCHK

code, which does not take into account the phenomenon of

the Langmuir dips and the broadening due to ion acoustic

turbulence. The best fit by this code yielded an

unrealistically high electron density of Ne = 6 × 1023 cm−3.

This was one of the indications that ion acoustic turbulence

had developed and that it has to be taken into account.



Figure B.11. Experimental profiles of the Si XIV Ly-

beta line obtained in three shots. Also shown are the

corresponding profiles simulated by the FLYCHK code.

The best fit produced by this code yielded an

unrealistically high electron density of Ne = 6 × 1023

cm−3. Reproduced from [6]. © IOP Publishing Ltd. All

rights reserved.

Figure B.12 shows the experimental profiles obtained in

the shots marked A, B, and C. Also shown are the

corresponding theoretical profiles calculated by more

advanced code that took account of the phenomenon of the

Langmuir dips and the broadening due to ion acoustic

turbulence—in addition to all other broadening mechanisms.

The deduced electron density was Ne = 2.2 × 1022 cm−3.

The root-mean-square strengths of the electric field of the

ion acoustic turbulence were deduced to be 4.8 GV cm−1,

4.4 GV cm−1, and 4.9 GV cm−1 for shots A, B, and C,

respectively.



Figure B.12. Experimental profiles of the Si XIV Ly-

beta line obtained in four different shots and their

comparison with the profiles calculated by more

advanced code that took into account the phenomenon

of the Langmuir dips and the broadening due to ion

acoustic turbulence (for shots A, B, and C)—in addition

to all other broadening mechanisms. The deduced

electron density was Ne = 2.2 × 1022 cm−3. The root-

mean-square strengths of the electric field of the ion

acoustic turbulence were deduced to be 4.8 GV cm−1,

4.4 GV cm−1, and 4.9 GV cm−1 for shots A, B, and C,

respectively. Reproduced from [6]. © IOP Publishing

Ltd. All rights reserved.



Shot D was obtained at a significantly lower laser

intensity at the target than shots A, B, and C. Therefore, in

shot D the electron density was significantly smaller than in

shots A, B, and C. The consequence was a significantly

smaller damping of the Langmuir waves, so that they

attained a considerably greater amplitude.

The deduced parameters for shot D were an electron

density of Ne = 6.6 × 1021 cm−3, a temperature of T = 550

eV, a root-mean-square electric field of the ion acoustic

turbulence of Ft,rms = 2.0 GV cm−1, and a Langmuir wave

amplitude of E0 = 2.0 GV cm−1. The theoretical and

experimental profiles in shot D do not exhibit bump-dip-

bump structures. This is because in the situation in which

E0/Ft,rms > 0.5, Langmuir dips cannot form, as explained in

[7].
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Appendix C

The validity of using the analytical

method based on separating rapid

and slow subsystems for a more

accurate analysis of the Stark

broadening of hydrogenlike spectral

lines by plasma electrons

The frequency of the spectral line is the frequency of the

revolution of the atomic electron around the nucleus:

Ω =
Z 2UH

ℏ
(

1

n2
b

−
1

n2
a

),



(C.2

)

(C.3

)

(C.4

)

(C.5

)

where UH is the ionization potential of hydrogen.

The typical frequency characterizing the motion of the

perturbing electron around the radiating ion, leading to the

Stark broadening of spectral lines, is the Weisskopf

frequency (see, e.g. [1]):

ωWe =
vT

ρWe
∼

Z m v2
T

(n2
a − n2

b)ℏ
∼

Z T

(n2
a − n2

b)ℏ
.

Consequently, the ratio of the above frequencies is

given by

ωWe

Ω
∼ (

T

Z UH
)[

n2
an2

b

(n2
a − n2

b)
2
].

In the situation in which na ≫ nb, this ratio simplifies as

follows:

ωWe

Ω
∼ (

T

Z n2
aUH

) ≪ 1

if

T (eV) ≪ (13.6 eV)Zn2
a.

Thus, under condition (C.5), it is legitimate to apply the

method of separating rapid and slow subsystems to the

problem under consideration.

For instance, for the case of ionized helium (Z = 2), the

above validity condition (C.5) becomes

T (eV) ≪ (27.2 eV) n2
a.



(C.6

)

The inequality (C.6) is met for a sufficiently large range of

temperatures at which the spectral line radiation of

ionized helium is observed in various plasmas.
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Appendix D

A brief outline of the impact

approximation in the conventional

theory of the Stark broadening of

spectral lines in plasmas

For the dynamical Stark broadening of spectral lines by

plasma electrons to be efficient, it is required that the

formally calculated number νWe of perturbing electrons

located within the sphere of the electron Weisskopf radius

ρWe should be much smaller than unity (see, e.g. [1]):

νWe = 4πNeρWe
3/3 ≪ 1.

In equation (D.1), ρWe ~ n2 ħ/(me ), where n is the

principal quantum number and  is the mean thermal



velocity of the perturbing electrons in a plasma. When

inequality (D.1) is satisfied, the instantaneous Stark splitting

in the electron microfield is much smaller than the typical

frequency of the variation in the electron microfield Ωe ~ 

/ρWe (for the overwhelming majority of perturbing

electrons). Physically, the electron Weisskopf radius is

associated with values of the impact parameters ρ ~ ρWe,

which provide the primary contribution to the electron-

induced dynamical Stark broadening of spectral lines in

plasmas [2, 3].

The essence of the electron-induced dynamical Stark

broadening is as follows: virtual transitions within the lower

(n′) and upper (n) multiplets occur in the process of the

radiative transition n ↔ n′. Their principal effect is to shorten

the lifetimes of the states n′ and/or n; this causes the

broadening of the line.

The assumption that virtual transitions take place mostly

within the upper and lower multiplets is called the no-

quenching approximation. Within this approximation, virtual

transitions between states that differ by the principal

quantum numbers are not taken into account. This

approximation makes it possible to use the concept of the

line space. The latter is the direct product of the Hilbert

space spanned on the basis vectors of the n-subspace with

the Hilbert space spanned on the (complex-conjugated)

basis vectors of the n′-subspace.

Not only the impact formalism (introduced in [2] and

further developed in [4]), but also the primary properties of

the unified theory of the electron-induced dynamical Stark

broadening [5] can stem from the same succession of

mathematical operations, as shown in [6]. The main

difference between these two formalisms is as follows.

The impact formalism treats all collisions as being

completed. In contrast, the unified theory of the dynamical

Stark broadening takes into account the fact that that not all



(D.2

)

collisions are completed. Another difference between the

two formalisms is that within the unified theory, the

calculated Stark profile of the spectra line contains a

transition to the quasistatic shape in the wings; however,

the unified formalism does not always produce this

transition in the correct way.

The crucial feature of the impact formalism is that it

introduces a coarse-grained timescale Δt defined through

the following condition:

ρ/ve ≪ Δt ≪ [ max (γ, Δω, ωpe)]−1.

In equation (D.2), ωpe = (4πNee2/me)1/2 is the plasma

electron frequency, Δω is the detuning from the

unperturbed frequency of the spectral line, and γ is the

inverse of the lifetime of the radiator (the latter being of the

order of the impact Stark width of the line).

The physical meaning of this coarse-grained timescale is

as follows. The focal point is the radiator evolution in time

during the intervals ~Δt defined by equation (D.2), while the

details of the time evolution during the intervals ~ρ/  (i.e.

during intervals of the order of the typical time of the

individual collision) are of no interest.

The validity limits of the impact formalism are controlled

by whether or not it is possible to introduce the coarse-

grained timescale defined by the inequality (D.2). It is worth

mentioning that in the unified theory, in the left part of the

condition (D.2), the strong inequality ρ/  ≪ Δt is lessened

to ρ/  ~ Δt.

The operator of the dynamical electron broadening Φab is

defined as follows:

Φab = [Ua(t, t + Δt)Ub*(t, t + Δt) − 1]/Δt.



(D.3

)

In equation (D.3), Ua and Ub are the operators of the

evolution in time for the upper and lower subspaces in

the line space, respectively. If Δt ≫ ρ/  (i.e. under the

impact approximation), these operators are replaced by the

respective scattering matrices Sa and Sb. The utilization of

the two scattering matrices (rather than one) is associated

with the concept of the line space.

A final note: for any hydrogenic spectral line of any

spectral series, dynamical Stark broadening takes place in

the overlapping situation—that is, there are overlaps of the

Stark components of the line. This is the case even for the

Lyman-alpha line (the simplest line) of hydrogenic

atoms/ions—see [7].

Further details on the impact approximation and its

comparison with the unified theory can be found in [8–11].

Also, [6] is quite illuminating on this issue.
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