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Preface 

I consider that I understand an equation when I can predict the 
properties of its solutions, without actually solving it 

(Paul Dirac) 

This booklet is a collection of thermofluid dynamics problems involving, at some 
crucial step, the use of analytical solutions. All these problems have been encountered 
by the author during his research activity; most of the solutions proposed are his own 
contributions, but a few either are classic literature results or can be reconducted to 
them. 

Chapter 1 (“Introduction”) discusses the issue of exact versus approximate solu-
tions to physical problems. The concepts of analytic and numerical solution are 
rigorously defined, pros and cons of the two approaches are compared, and exam-
ples of illustrious solutions obtained long before the computer era are provided. The 
role of modelling in shaping a complex physical problem into a form amenable to 
exact solutions is also discussed. 

Chapter 2 treats the problem of two solid bodies approaching each other in a 
viscous fluid. Exactly solving the Stokes equations (asymptotic form of the Navier-
Stokes equations in the limit of low velocities) leads to the apparent paradox that the 
bodies will never touch each other, because the frictional forces necessary to squeeze 
the fluid out of the (vanishing) interposed gap diverge. In the real world, the paradox 
is avoided by the irregular shape of the facing surfaces and by the loss of validity of 
the continuum hypothesis itself at sufficiently small length scales. 

Chapter 3 regards the velocity and displacement of spherical particles (e.g. 
droplets) subjected only to drag forces by a surrounding fluid medium (e.g. air). 
Expressing the drag coefficient as CD = (24/Re)(1+0.16·Re0.67) (Re  ≤ 103) and 
assuming that no other force but drag (e.g. gravity) acts on the particles, the exact 
solution of the relevant equation of motion shows that, for t→∞, the velocity of a 
particle tends to zero while its displacement tends to a finite value which depends 
on the particle’s diameter and initial velocity. Thus, for example, in zero gravity 
identical particles emitted from the same point with the same initial speed but along
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vi Preface

different directions will eventually accumulate on a spherical surface surrounding 
the emission point. 

Chapter 4 considers two fluids flowing in parallel- or counter-flow through 
passages separated by a permeable wall, as occurs in membrane modules used for 
separation processes such as filtration or hemodialysis. A one-dimensional model of 
the system is presented and exact solutions for the pressure and flow rate distribu-
tion along the module’s length are obtained under different assumptions on the wall 
permeability and on the inlet/outlet pressure—velocity boundary conditions. 

Chapter 5 is an extension of Stokes’ second problem to the case of oscillatory 
flow in a plane channel subject to a harmonic forcing Fx(t) = F0cos(ωt). An analytic 
solution of the relevant Navier-Stokes equations, highly simplified by the assumption 
of parallel flow, was presented in 1959 by Landau and Lifshitz, and later by other 
authors, and is discussed here under two alternative physical interpretations. 

In Chap. 6, the classic solutions for the Nusselt number in parallel channel flow 
under conditions of uniform wall temperature and uniform wall heat flux are gener-
alized by imposing third type (Robin) thermal boundary conditions. As a dimension-
less parameter R, expressing the ratio of the wall thermal resistance to the channel’s 
conductive resistance, varies between zero and infinity, the two above limiting condi-
tions are recovered, while intermediate values of R yield an intermediate Nusselt 
number which varies continuously between the two extrema. This problem implies 
the numerical solution of a non-integrable ordinary differential equation and thus is 
an example of hybrid analytical-numerical procedure. 

Chapter 7 concerns buoyant flow in a heated duct. The one-dimensional 
momentum equation for the fluid, in conjunction with the classic Boussinesq approx-
imation for thermal expansion and with a suitable friction correlation, form a closed 
system of equations whose exact steady-state solution is the fluid’s flow rate as a func-
tion of the imposed inlet/outlet pressures and of the thermal power input. Several 
special cases can be obtained by letting the boundary conditions, the duct’s incli-
nation and other parameters vary. The case of a closed loop with simultaneous heat 
addition and subtraction can be treated similarly and the solution is the circulating 
flow rate as a function of the thermal power input/output. 

Chapter 8 deals with the stability of two-phase flow in a heated duct. The main 
purpose of the study is to obtain a curve (internal characteristic) relating the inlet-
outlet pressure drop to the mass flow rate for any given geometry, system’s pressure 
and heating power. The intersection of this internal characteristic with the flow rate— 
prevalence curve characterizing the pump (external characteristic) allows the working 
point to be determined and its stability to be assessed. The model adopted is based 
on the one-dimensional continuity, momentum and energy equations for two-phase 
pipe flow in conjunction with suitable expressions for slip ratio/void fraction and 
two-phase friction pressure losses, based on the popular Chisholm and Lockhart-
Martinelli correlations but modified for consistency and easy computability. In the 
case of a horizontal pipe, the internal characteristic is obtained in a simple, low-order, 
polynomial form. 

Chapter 9 asks one to derive the wall superheat—wall heat flux relationship in the 
spray cooling of a flat rectangular target from empirical time-temperature histories

https://avxhm.se/blogs/hill0



Preface vii

at an internal point. This is a classic transient inverse heat conduction problem and, 
in the present case, is solved by using exact expressions, due to Stefan [1889], for 
the wall temperature and the wall heat flux as functions of the midplane temperature 
and its time derivatives of increasing order. Filtering the raw data is a mandatory step 
before numerical derivatives can be evaluated. 

Chapter 10 regards the apparent Sherwood number in simultaneous diffusive 
and convective mass transfer from or into a transpiring wall. This is the Sherwood 
number that would explain the observed overall mass flux from or into the wall if there 
were no transpiration, i.e. no convective contribution to mass transport. Using only 
elementary definitions of diffusive and convective mass fluxes, a complete classifi-
cation of the possible cases is presented and a synthetic map is built representing the 
apparent Sherwood number as a function of two dimensionless parameters, named 
“transpiration” and “flux” numbers. 

Finally, Chap. 11 considers the magnetohydrodynamics (MHD) flow in a verti-
cally indefinite rectangular channel. Internal heat generation and a nonuniform elec-
tric potential may optionally be present. Magnetic field, gravity acceleration and elec-
tric potential gradient are assumed to be mutually orthogonal, while the temperature 
gradient is assumed to be parallel to the electric potential gradient. The governing 
equations include, besides the fluid’s continuity, momentum and energy equations, 
also an equation for the electric potential and a constitutive relation for the total 
current density. Exact solutions show that, depending on boundary conditions and 
source terms, the system can operate in different regimes including direct and reverse 
EM pump, direct and reverse MHD generator, and a purely dissipative mode. In the 
presence of buoyancy, the system can also operate as a thermal engine converting 
thermal power into electrical and/or mechanical power. 

The potential readership of this book includes M.Sc./Ph.D. students and scholars 
in different fields of science and engineering, with special attention to fluid dynamics 
and heat or mass transfer. To them, hopefully, it may offer food for thought, 
suggestions for lectures and ideas for further original developments. 

Palermo, Italy 
March 2023 

Michele Ciofalo
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Chapter 1 
Introduction 

There is nothing so practical as a good theory 
(Kurt Lewin) 

Abstract This introductory chapter treats the issue of exact versus approximate 
solutions to physical problems. The concepts of analytic and numerical solution are 
rigorously defined, pros and cons of the two approaches are compared, and examples 
of illustrious solutions obtained long before the computer era are provided. The role 
of modelling in shaping a complex physical problem into a form amenable to exact 
solutions is also discussed. 

An analytic solution to a physical problem is an analytic function that satisfies the 
set of equations representing the problem in a mathematical form. In a vast class of 
cases, these will be ordinary or partial differential equations complete with boundary 
conditions (BC’s) and—if appropriate—initial conditions (IC’s). 

In its turn, an analytic function is any function that can be defined, within a certain 
convergence region, as the sum of an infinite power series. For mainly historical 
reasons, some of these power series have been given a name of their own and are 
usually regarded as “closed form” expressions (e.g. ex, ln(x), sin(x), J0(x), …) while 
others have never achieved this status; but no special intrinsic property other than 
popularity is associated with possessing a name. In the end, sin(x) is the power series 

sin(x) = 
∞∑

n=0 

( − 1)n 
x2n+1 

(2n + 1)! (1.1) 

(or any equivalent form) whether or not we synthetically name it “sin(x)”. 
Contrariwise, by numerical solution to a physical problem one usually means a 

set of numbers satisfying a (usually very large) system of algebraic equations which, 
in their turn, are a discrete approximation of the differential equations (plus IC’s and 
BC’s) representing the problem.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Ciofalo, Thermofluid Dynamics, UNIPA Springer Series, 
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2 1 Introduction

It is important to recognize that, in most cases, for a physical problem to admit 
an analytical solution it has to be reduced to a sufficiently simple mathematical 
description, often at the expense of a complete inclusion of all phenomena. In the field 
of thermofluid dynamics, typical simplifying assumptions are those of steady state, 
one-dimensional or two-dimensional flow, constant physical properties, negligible 
axial conduction and so on. By contrast, a numerical solution does not necessarily rely 
on such simplifications, and can be obtained for arbitrarily complex mathematical 
descriptions. 

What are, then, the advantages of an analytical solution? Well, first, since it satis-
fies by definition the equations governing a given problem, an analytical solution is 
exact. Second, at least in principle, it exhibits in an explicit form the dependence 
of the solution upon the parameters specifying the problem, making their influence, 
and the reasons for this influence, easier to understand. Third, again in principle, an 
analytical solution is cheaper to evaluate, to the point that an electronic computer 
may not be required. 

As an example of the first property (exactness), consider the fully developed flow 
with heat transfer to or from a constant-property fluid in a straight circular pipe with 
uniform imposed wall heat flux. It is well known that under these circumstances 
the Nusselt number is ~4.36… (Ciofalo 2022a). However, perhaps some ignore that 
“ ~ 4.36…” is not a generic truncated real number, but an approximate decimal 
representation of the fraction 48/11, which is the exact solution of the heat transfer 
problem under consideration. Of course, no numerical solution will ever achieve the 
same level of accuracy. Rather, being exact, an analytical solution like this can serve 
as a benchmark against which to test any numerical method for accuracy. 

As an example of the second property (explicit dependence of the solution upon 
the data) consider the thermosyphon loop discussed in Chap. 6 of this book. For a 
closed circuit of uniform circular cross section and diameter d, consisting of two 
horizontal branches of length Lh and two vertical branches of length Lv kept at 
two different temperatures TB, TD, under the assumption of fully turbulent flow a 
one-dimensional model predicts the natural circulation mass flow rate to be 

G = 2.0114 μd
(

Lv 

Lv + Lh 
Gr

)5/9 

(1.2) 

in which Gr = gβ (TB − TD)d3/(μ/ρ)2 (Grashof number based on d). From the above 
expression, it is immediate to recognize that, for example, G is proportional to the 
diameter raised to the power 8/3 or to the thermal dilatation coefficient β raised to the 
power 5/9 (and so on). A “brute force” solution of the flow and energy equations by 
computational fluid dynamics (CFD) for the same loop would probably yield more 
accurate G predictions (thanks to a 2-D or 3-D representation of the problem), but 
would certainly obscure the solution’s dependence upon the data, and a full picture 
of the system’s behavior could only be obtained by simulating a large number of test 
cases, much as though individual simulations were experimental measurements.



1 Introduction 3

Finally, as an example of the third property (easy computability of the solu-
tion) consider the oscillatory flow problem discussed in Chap. 4 of this book. The 
exact asymptotic (i.e., valid for large times) solution for the streamwise velocity in a 
plane channel of half-thickness δ subject to a harmonic streamwise driving pressure 
gradient Fx(t) = F0 cos(ωt) is  

u(y, t) = F0 

ωρβW 
{ [sinh ϕ1(y) sin ϕ2(y) + sinh ϕ2(y) sin ϕ1(y)] cos(ωt) 

+ [βW − cosh ϕ1(y) cos ϕ2(y) − cosh ϕ2(y) cos ϕ1(y)] sin(ωt)} (1.3) 

in which ϕ1(y) = α √
2

(
1 + y 

δ

)
, ϕ2(y) = α √

2

(
1 − y 

δ

)
, βW = cosh

(√
2α

)
+cos

(√
2α

)

and α = δ
√

ω/ν is the Womersley number. 
For any given time t and cross-stream location y, the above formulae allow u 

to be computed by performing about twenty operations, some of which involve 
the evaluation of transcendent functions and thus expand in their turn into some 
10–20 elementary floating point operations (FLOPS) each, still with a negligible 
overall consumption of CPU time. Computing the cross-stream velocity profile for a 
reasonable number of time steps could be done by a hand-held calculator in a matter 
of minutes. On the other hand, should we use a numerical method to solve the same 
problem, the prediction of u at any location y and time t would require the calculation 
of the whole u profile across the computational domain at all previous time steps. The 
solution would exhibit an accuracy depending crucially on the spatial and temporal 
discretization and, even if the coarsest acceptable grid and time step were used, could 
never be practically obtained without an electronic computer and a suitable software. 

Of course, this last property of analytic solutions (easy computability) explains 
why they were so important up to the 1940s–1950s, before electronic computers 
became available and the science of Computational Fluid Dynamics came into 
existence. The literature up to ~1940–1950 offers a spectacular repertoire of inge-
nious analytic solutions to problems that, today, would doubtless be tackled without 
a second thought by setting up a numerical simulation. Illustrious examples are 
Stokes’(1850) solution to the so called “Stokes second problem” of oscillatory 
viscous flow adjacent to a flat plate, partially recalled in Chap. 4 of this book; Stefan’s 
(1889) theory of heat transfer with phase change and melting front propagation, 
partially recalled in Chap. 8; Boussinesq’s (1868) analytic solutions to various prob-
lems of viscous fluid flow, including the counter-rotating secondary vortices arising 
in curved pipes; Blasius’ (1908) solutions for the velocity distribution near a flat 
plate, now the fundament of all boundary layer studies. 

Analytic solutions to fluid flow and heat transfer problems have not vanished 
after the advent of CFD, as is also witnessed by recent books (Emanuel 2015; Brenn 
2018); but certainly they regard today only a small fraction of the whole literature 
on the subject. 

The superiority of analytical solutions with respect to numerical ones should not be 
unduly overemphasized. Quoting Ardourel and Jebeile (2017), “analytical solutions 
are sometimes an excessively sophisticated mathematical machinery for the problem

https://avxhm.se/blogs/hill0



4 1 Introduction

at stake”. The authors cite the example of the simple pendulum problem, which, 
unless the angular displacement is very small, is described by a nonlinear differential 
equation. An analytical solution to this does actually exist (Belendez et al. 2007), 
but involves complicated special functions such as complete and incomplete elliptic 
integrals of the first kind and Jacobi elliptic functions, all rather cumbersome to 
calculate; most scientists, if required, will prefer to solve the pendulum’s equation 
of motion numerically, probably with less computational effort and certainly with 
less human (programming) effort. More generally, there is little point in using a very 
sophisticated computational tool to obtain exact solutions to already very idealized 
model equations; approximate numerical solutions, possibly to a more complete and 
realistic mathematical model, can be preferable. 

Nevertheless, the intellectual satisfaction gained by finding an analytical solution 
is priceless. The enterprise may involve the purely mathematical skill necessary to 
find a viable solution to a formally well-defined problem; and, in this case, it is better 
left to mathematicians. But it may also rest on the ability to formulate a given general 
problem in such terms that an analytical solution becomes possible (i.e., the ability 
to develop models); and, in this latter case, also physicists and engineers may have 
a word on the subject.



Chapter 2 
Solid Bodies Approaching Each Other 
in a Viscous Fluid 

How wonderful that we have met with a paradox! 
Now we have some hope of making progress 
(Niels Bohr) 

Abstract Consider two solid bodies approaching each other in a viscous fluid. 
Exactly solving the Stokes equations (asymptotic form of the Navier–Stokes equa-
tions in the limit of low velocities) leads to the apparent paradox that the bodies 
will never touch each other, because the frictional forces necessary to squeeze the 
fluid out of the (vanishing) interposed gap diverge. In the real world, this paradox is 
avoided by the irregular shape of the facing surfaces and by the loss of validity of 
the continuum hypothesis itself at sufficiently low length scales. 

Suppose that at t = 0 two solid bodies with perfectly flat and parallel surfaces, initially 
a distance 2δ0 apart, start to move towards each other orthogonally to these surfaces 
in a fluid of viscosity μ under the influence of an applied force F. As the distance 2δ 
between the surfaces decreases, the interposed fluid is squeezed out of the interposed 
region. We want to derive the law of motion δ(t) for given δ0, F and μ. 

For simplicity, we assume the surfaces to be circular with radius R and cylindrical 
symmetry to hold, so that the problem can be studied in the cylindrical coordinate 
system (r, z) as sketched in Fig. 2.1.

The shape of the solid bodies themselves is irrelevant once the approaching 
surfaces are specified as circular faces of radius R. Also, the results do not significantly 
change if either of the surfaces is replaced by an indefinite plane. 

For symmetry reasons, the fluid-filled computational domain can be limited to the 
region 0 ≤ r ≤ R, 0  ≤ y ≤ δ delimited by the symmetry midplane y = 0, the upper 
plane surface y = δ and the outlet boundary r = R. 

Neglecting all inertial terms, the problem is governed by the 2-D continuity and 
Stokes equations along r and y, written in cylindrical coordinates (r, y): 

1 

r 

∂ 
∂r 

(ru) + 
∂v 
∂y 

= 0 (2.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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6 2 Solid Bodies Approaching Each Other in a Viscous Fluid

)b()a( 

Fig. 2.1 Approach of plane surfaces in a viscous fluid. a Axonometric view; b 2-D (r, z) compu-
tational domain with symmetry midplane

1 

r 

∂ 
∂r 

(pr ) − μ 
∂2u 

∂ y2 
= 0 (2.2)  

∂p 

∂y 
+ μ 

∂ 
∂r

(
r 
∂v 
∂r

)
= 0 (2.3) 

in which u and v are the velocity components along r and y and p is pressure relative 
to the far fluid. 

Boundary conditions appropriate to the problem’s formulation are 

u(0, y) = 0; u(r, δ)  = 0; ∂u 

∂y 
(r, 0) = 0 (2.4)  

v(r, 0) = 0; v(r, δ)  = −V /2 (2.5) 

p(R, y) = 0 (2.6) 

in which V is the instantaneous (and so far unknown) relative approach velocity 
between the two flat surfaces. 

We seek solutions of the form u(r, y) = ϕ(r)ψ(y); v = v(y); p = p(r), i.e. solutions 
in which the pressure p does not depend on the normal coordinate y and the normal 
velocity v does not depend on the radius r, while the radial velocity u depends on 
both r and y but can be expressed as the product of a function of r by a function of y. 

Substituting ϕ(r)ψ(y) for  u(r, y) in the continuity Eq. (2.1) one obtains
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1 

r 

d 

dr 
(r ϕ) = −  

1 

ψ 
dv 
dy 

(2.7) 

Since the LHS of Eq. (2.7) is a function of r only, while the RHS is a function of 
y only, for the identity (2.7) to hold for any r and y it is necessary that both sides are 
equal to a constant which, for physical reasons, must be positive, say B2: 

1 

r 

d 

dr 
(r ϕ) = B2 (2.8) 

− 
1 

ψ 
dv 
dy 

= B2 (2.9) 

From Eq. (2.8), imposing the first of the boundary conditions (2.4) or just requiring 
ϕ to remain finite for r = 0, one has 

ϕ(r) = 
B2r 

2 
(2.10) 

with B2 still to be determined. 
Similarly, substituting ϕ(r)ψ(y) for  u(r, y) in the radial Stokes Eq. (2.2) one 

obtains 

1 

r ϕ 
d 

dr 
(rp) = μ 

d2 ψ 
dy2 

(2.11) 

Since the LHS of Eq. (2.11) is a function of r only, while the RHS is a function 
of y only, for the identity (2.11) to hold for any r and y it is necessary that both sides 
are equal to a constant which in this case, for physical reasons, must be negative, say 
−C2: 

1 

r ϕ 
d 

dr 
(rp) = −C2 (2.12) 

μ 
d2 ψ 
dy2 

= −C2 (2.13) 

The solution to Eq. (2.13) satisfying the boundary conditions dψ /dy(0) = 0 and 
ψ(δ) = 0, which are a consequence of Eq. (2.4), is 

ψ(y) = 
C2δ2 

2μ

(
1 − 

y2 

δ2

)
(2.14) 

By substituting Eq. (2.10) for  ϕ(r) and (2.14) for  ψ(y) into the expression u(r, y) 
= ϕ(r)ψ(y), one has

https://avxhm.se/blogs/hill0
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u(r, y) = 
α2δ2 

4μ 
r

(
1 − 

y2 

δ2

)
(2.15) 

in which α = BC is a (single) constant still to be determined. 
By substituting Eq. (2.14) for  ψ(y) into Eq. (2.9) and imposing to v(y) the first of 

the two boundary conditions (2.5), i.e. v(0) = 0, one has 

v(y) = −  
α2δ2 

2μ 
y

(
1 − 

y2 

3δ2

)
(2.16) 

Imposing now to v(y) the second of the two boundary conditions (2.5), i.e. v(δ) 
= −V /2, one has 

α2 = 
3μV 

2δ3 
(2.17) 

which allows u(r, y), Eq. (2.15), and v(y), Eq. (2.16), to be written in closed form: 

u(r, y) = 
3 

8 

V 

δ 
r

(
1 − 

y2 

δ2

)
(2.18) 

v(y) = −3 

4 

V 

δ 
y

(
1 − 

y2 

3δ2

)
(2.19) 

Note that from Eq. (2.18) one also has 

∂2u 

∂y2 
= 

3 

4 

V 

δ3 
r (2.20) 

Now, substituting Eq. (2.18) for  u and Eq. (2.20) for  ∂2u/∂y2 into the radial Stokes 
Eq. (2.2), one obtains the following ODE for pressure: 

1 

r 

d 

dr 
(pr) = −  

3 

4 

V μ 
δ3 

r (2.21) 

which, integrated with the boundary condition (2.6), yields: 

p(r ) = −  
V μR2 

4δ3

(
R 

r 
− 

r2 

R2

)
(2.22) 

Equations (2.18), (2.19) and (2.22) are the complete solution to the problem 
represented by Eqs. (2.1)–(2.3) with boundary conditions (2.4)–(2.6). Also, due to 
the linearity of the Stokes equations, the solution found is the only possible one, 
which means that the assumptions made on the behaviour of u, v and p do not cause 
any loss of generality.
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However, the solution still contains the (unknown) approach velocity V rather 
than the (known) applied force F. Therefore, as a last step, let us write 

F = 
R∫

0 

p(r)2πrdr (2.23) 

Substituting Eq. (2.22) for  p into Eq. (2.23) yields 

dδ 
dt 

= −  
V 

2 
= −  

4F 

3πμR4 
δ3 (2.24) 

i.e., an ODE in δ(t) whose solution, subject to the initial condition δ(0) = δ0, is  

δ(t) =
[
1 

δ2 0 
+ 8F 

3πμR4 
t

]−1/2 

(2.25) 

A noteworthy feature of this solution is that δ remains > 0 for any finite time. 
Hence, the two surfaces will never get in contact, but their distance will only 
asymptotically tend to zero for any finite value of the applied force. 

By deriving δ(t) with respect to time, one also obtains the behavior of the 
approaching velocity V (t): 

V = −2 
dδ 
dt 

= 8F 

3πμR4

[
1 

δ2 0 
+ 

8F 

3πμR4 
t

]−3/2 

(2.25) 

As an example, Figs. 2.2 and 2.3 report δ(t) and V (t) for  R = 0.1 m, δ0 = 10−3 m, 
F = 1 N and four values of μ (1.8 · 10−5, 0.9  · 10−3, 0.045 and 2.25 Pa s, roughly 
representative of air, water, light oil and heavy oil, respectively). Note that the time 
necessary for δ to decrease from its initial value of 1 mm to molecular size (1 nm) 
varies between 109 and 1014 s (30 to 3 million years!) depending on the fluid’s 
viscosity.
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Fig. 2.2 Behaviour of the surface-to-surface half distance δ for R = 0.1 m, δ0 = 10−3 m, F = 1 N  
and four values of μ (1.8 · 10−5, 0.9  · 10−3, 0.045 and 2.25 Pa s) 
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Fig. 2.3 Behaviour of the approach velocity V for R = 0.1 m, δ0 = 10−3 m, F = 1 N and four 
values of μ (1.8 · 10−5, 0.9  · 10−3, 0.045 and 2.25 Pa s)



Chapter 3 
Velocity and Displacement of Spherical 
Particles Subjected Only to Drag 

There are things which seem incredible to those who have not 
studied Mathematics 
(Archimedes of Syracuse) 

Abstract The problem regards the velocity and displacement of spherical particles 
(e.g. droplets) subjected only to drag forces by a surrounding fluid medium (e.g. air). 
Expressing the drag coefficient as CD = (24/Re)(1 + 0.16 · Re0.67) (Re  ≤ 103) and 
assuming that no other force but drag (e.g. gravity) acts on the particles, the exact 
solution of the relevant equation of motion shows that, for t → ∞, the velocity of 
a particle tends to zero while its displacement tends to a finite value which depends 
on the particle’s diameter and initial velocity. Thus, for example, in zero gravity 
identical particles emitted from the same point with the same initial speed but along 
different directions will eventually accumulate on a spherical surface surrounding 
the emission point. 

The drag force FD on a particle of cross sectional area A that moves with velocity u 
through a viscous medium of density ρm can be expressed as 

FD = CD Aρm 
u2 

2 
(3.1) 

in which CD is the drag coefficient. For spherical particles of diameter d, CD is 
a complex function of the Reynolds number Re = ud/νm, νm being the kinematic 
viscosity of the medium. It is shown as a solid line in Fig. 3.1 (Perry and Green 1984) 
in the broad range Re = 10−2–108.

Clift et al. (1978) report ten simple correlations that approximate CD in as many 
Reynolds number intervals. However, the single correlation 

CD = 
a 

Re

(
1 + b · Rec) (3.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Fig. 3.1 Drag coefficient for spheres as a function of the Reynolds number

with a = 24, b = 0.16, c = 0.67 approximates well the data up to Re ≈ 103. 
Equation (3.2) is also reported as a broken line in Fig. 3.1. 

If no other force than drag (in particular, gravity) acts on the particle, then, writing 
the acceleration as du/dt =−FD/m, expressing the mass m as ρ(4/3)π (d/2)3 and using 
Eqs. (3.1) and (3.2) for  FD, the following differential equation in u is obtained: 

du 

dt 
= −  

u 

cτ

[
1 +

( u 

U

)c]
(3.3) 

in which τ and U are two constants having physical dimensions of time and velocity, 
respectively: 

τ = 4ρd2 

3ρmνmac 
(3.4) 

U = νm 

db1/c 
(3.5) 

By introducing the auxiliary variable 

z = bRec 

1 + bRec
(3.6) 

Equation (3.3) simplifies to
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dz 

dt 
= −  

z 

τ 
(3.7) 

whose solution is 

z = z0 exp
(

− 
t 

τ

)
(3.8) 

z0 = z(0) being the value of z for t = 0, depending on the initial particle velocity. 
The velocity u is then obtained from z by inverting Eq. (3.6), which, taking account 

of the definition of Re, yields 

u(t) = U
(

z 

1 − z

)1/c 

(3.9) 

with z expressed as a function of t by Eq. (3.8). For water droplets in air (ρ = 
103 kg/m3, ρm = 1.15 kg/m3, νm = 1.5 · 10−5 m2/s) the velocity u(t) is reported in 
Fig. 3.2a for an initial velocity u0 = 10 m/s and different particle diameters d, and 
in Fig. 3.2b for a particle diameter d = 1 mm and different initial velocities u0.

The displacement x at time t* is formally given, assuming x(0) = 0, by 

x(t∗) = 
t∗∫

0 

u(t)dt (3.10) 

Using Eq. (3.9) for  u(t), Eq. (3.10) becomes 

x(t∗) = U 
t∗∫

0

(
z 

1 − z

)1/c 

dt (3.11) 

By observing that from Eq. (3.7) one has dt = −τ dz/z, Eq.  (3.11) becomes 

x(z∗) = Uτ 
z∗∫

z0 

z1/c−1 

(1 − z)1/c 
dz (3.12) 

where z* = z0exp(−t*/τ ). The integral in Eq. (3.12) is a particular case of the 
incomplete beta function 

beta(z∗, α, β)  = 
z∗∫

0 

zα−1 (1 − z)β−1 dz (3.13)

https://avxhm.se/blogs/hill0
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(a) 

(b) 

Fig. 3.2 Spherical particle velocity as a function of time. a u0 = 10 m/s, different diameters d; b 
d = 1 mm, different initial velocities u0
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(Abramowitz and Stegun 1972) for α = 1/c and β = 1 − 1/c. More precisely, it can 
be written as 

x(z∗) = Uτ

[
beta

(
z0, 

1 

c 
, 1 − 

1 

c

)
− beta

(
z∗, 

1 

c 
, 1 − 

1 

c

)]
(3.14) 

The incomplete beta function admits the following series expansion 

beta
(
z∗, α, β

) = 
∞∑

k=0 

(1 − β)k 

(α + k)k!
(
z∗)α+k 

(3.15) 

in which (1 − β)k is the Pochammer symbol, defined in general as 

(�)k = �(� + 1) . . .  (� + k − 1); (�)0 = 1 (3.16) 

Taking account of Eq. (3.15), Eq. (3.14) can be explicitly written as 

x(z∗) = U τ 
∞∑

k=0 

(1/c)k 
(1/c + k)k!

[
(z0)

1/c+k − (
z∗)1/c+k

]
(3.17) 

For water droplets in air (ρ = 103 kg/m3, ρm = 1.15 kg/m3, νm = 1.5 · 10−5 m2/s) 
the displacement x(t) is reported in Fig. 3.3a for a given initial velocity u0 = 10 m/s 
and different particle diameters d, and in Fig. 3.3b for a given particle diameter d = 
1 mm and different initial velocities u0.

A noteworthy feature of the displacement x is that, for t → ∞, it tends to an 
asymptotic value x∞. For example, for water droplets with d = 1 mm travelling in 
air, x∞ is ~ 0.243 m for u0 = 1 m/s and ~ 1.36 m for u0 = 10 m/s. In the absence 
of gravity, droplets issued with random orientations but uniform speed from a point 
source will form a stationary spherical shell of radius x∞ surrounding the emission 
point. 

Equations (3.9) for  u and (3.17) for  x (in which z = z0exp(−t/τ )) represent the 
complete analytical solution to the particle motion problem defined by Eqs. (3.1)– 
(3.3). Of course, they are applicable only as far as the initial Reynolds number is 
below 103, i.e., the initial velocity is below 

ulim = 103 νm/d (3.18) 

For example, for droplets of 1 mm diameter (d = 10−3 m) in ambient air (νm ≈ 1.5 
· 10−5 m2/s), one has ulim = 15 m/s.
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(a) 

(b) 

Fig. 3.3 Spherical particle displacement as a function of time. a u0 = 10 m/s, different diameters 
d; b d = 1 mm, different initial velocities u0



Chapter 4 
Flow Through Parallel Channels 
Separated by a Permeable Wall 

Prediction is very difficult, especially if it is about the future 
(Niels Bohr) 

Abstract Consider two fluids flowing in parallel- or counter-flow through passages 
separated by a permeable wall, as occurs in membrane modules used for separation 
processes such as filtration or hemodialysis. A 1-D model of the system is presented 
and solutions for the distribution of flow rates and pressures along the module’s 
length are obtained under different assumptions on the inlet/outlet pressure—velocity 
boundary conditions. 

In many applications, one has to consider two fluids flowing in parallel or counter 
flow through passages separated by a permeable wall. Examples are hollow-fiber 
membrane modules used for separation processes such as filtration (Nakatsuka et al. 
1996), membrane distillation (Yang et al. 2012) or hemodialysis/hemodiafiltration 
(Kerr and Huang 2010). 

Often the fluids are solutions or suspensions sharing the same solvent (e.g. water) 
but differing in the concentration of one or more solutes or suspended solids on the 
two sides. 

Considering only the hydrodynamic aspects of the problem, the flow of fluid 
across the dividing permeable wall alters the distribution of both flow rate and pres-
sure in the two compartments. Here a simplified one-dimensional hydrodynamic 
model of the problem is presented and analytical solutions are derived. Results 
can be obtained for different configurations by imposing, for each compartment, 
the appropriate boundary conditions on inlet—outlet flow rates and/or pressures. 
Figure 4.1 is a conceptual sketch of the computational domain, showing also the 
basic nomenclature.

• L is the length of the module and Γ is the exchange perimeter, so that S = LΓ is 
the total interfacial area;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Fig. 4.1 Schematic hydrodynamic model of two fluids flowing in two compartments separated by 
a permeable wall 

• QjA and QjB are the flow rates in m3/s of fluid j (j = 1 or 2) at the two ends A and 
B. The generic flow rate Qj at any location z in [0, L] and its end values QjA, QjB 

are arbitrarily oriented so that they are positive if directed from A to B, i.e. along 
the z axis; 

• pjA and pjB are the corresponding end pressures in Pa; 
• A1 and A2 are the cross-sectional areas in m2 of the two compartments, so that 

Qk/Ak is the mean velocity Uk in the k-th compartment in m/s; 
• q is the specific volumetric flux in m/s through the permeable membrane (oriented 

from compartment 1 to compartment 2), so that the net trans-membrane volumetric 
flow rate 1 → 2 in m3/s is

∫

S 

qdS = Γ 
L∫

0 

q(z)dz 

The following simplifying assumptions are made: 

• the trans-membrane flux does not alter the viscosities μ1, μ2 of the two fluids (of 
course, this assumption is trivially true if the two fluids share the same viscosity 
μ, while, if  μ1 /= μ2, it amounts to assuming that the net trans-membrane flow 
rate is small with respect to Q1 and Q2); 

• the membrane is perfectly rigid; 
• the flow in both compartments is Darcyan (i.e., the flow rate is proportional to the 

longitudinal pressure gradient).
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Based on these assumptions and on the configuration in Fig. 4.1, the governing 
equations are the following, independent of the direction of either fluid. 

(a) Continuity (volume balance) in compartments 1 and 2: 

dQ1(z) 
dz 

= −Γ q(z) (4.1) 

dQ2(z) 
dz 

= +Γ q(z) (4.2) 

(b) Darcy equations in compartments 1 and 2: 

Q1(z) = −β1 
dp1(z) 
dz 

(4.3) 

Q2(z) = −β2 
dp2(z) 
dz 

(4.4) 

in which β j = KjAj/μj (j = 1, 2) (expressed in m5s/kg), being Kj the Darcy 
permeability of the j-th compartment in m2; 

(c) Constitutive equation relating mass flux to trans-membrane pressure: 

q(z) = L p[p1(z) − p2(z)] (4.5) 

in which Lp is the membrane’s hydraulic permeability in m3/(m2sPa). 

Taking account of Eq. (4.5), Eqs. (4.1), (4.2) can be re-written as 

dQ1(z) 
dz 

= −Γ L p [p1(z) − p2(z)] (4.6) 

dQ2(z) 
dz 

= +Γ L p [p1(z) − p2(z)] (4.7) 

Equations (4.3), (4.4), (4.6) and (4.7) form a system of four first-order linear 
differential equations in the four unknowns Q1, Q2, p1 and p2. 

By expressing Q1 from Eq. (4.3) and substituting into Eq. (4.6), one has: 

d2 p1(z) 
dz2 

= 
Γ L p 
β1 

[p1(z) − p2(z)] (4.8) 

Similarly, by expressing Q2 from Eq. (4.4) and substituting into Eq. (4.7): 

d2 p2(z) 
dz2 

= −  
Γ L p 
β2 

[p1(z) − p2(z)] (4.9)
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By subtracting Eq. (4.9) from Eq.  (4.8) one obtains: 

d2 Δp(z) 
dz2 

= α2 Δp(z) (4.10) 

in which Δp = p1 − p2 and α2 = Γ L p
(

1 
β1 

+ 1 
β2

)
The general solution of the second-order differential Eq. (4.10) is  

Δp(z) = c1eαz + c2e−αz (4.11) 

where c1 and c2 are two arbitrary integration constants. Substituting Δp from 
Eq. (4.11) into Eqs. (4.8) and (4.9) and integrating twice yields first 

dp1(z) 
dz

= 
Γ L p 
αβ1

(
c1e

αz + c2e−αz
) + c3 (4.12) 

dp2(z) 
dz 

= −  
Γ L p 
αβ2

(
c1e

αz + c2e−αz
) + c3 (4.13) 

and then 

p1(z) = 
Γ L p 
α2β1

(
c1e

αz + c2e−αz
) + c3z + c4 (4.14) 

p2(z) = −  
Γ L p 
α2β2

(
c1e

αz + c2e−αz
) + c3z + c4 (4.15) 

in which c3 and c4 are two further integration constants. 
Substituting the pressure derivatives from Eqs. (4.12), (4.13) into Eqs. (4.3), (4.4) 

yields, for the flow rates: 

Q1(z) = −Γ L p 
α

(
c1e

αz − c2e−αz
) − β1c3 (4.16) 

Q2(z) = 
Γ L p 

α

(
c1e

αz − c2e−αz
) − β2c3 (4.17) 

Solutions depend now on the boundary conditions, specific for each physical 
configuration considered. Two cases will be treated here, but others are possible. 

Case 1): fluids in counter flow with forward- and back-filtration, as commonly 
encountered in hemodialysis modules. 

In this case, assuming that for each fluid the inlet flow rate and the outlet pressure 
are known, and that the flow rate is positive (A → B) for fluid 1, the appropriate 
boundary conditions are:
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Q1(0) = Q1A(> 0) (4.18) 

Q2(L) = Q1B (< 0) (4.19) 

p1(L) = p1B (4.20) 

p2(0) = p2A (4.21) 

Taking account of Eqs. (4.14)–(4.17), the above BC’s yield a system of four 
algebraic equations in the four unknowns c1 … c4: 

− 
Γ L p 

α 
(c1 − c2) − β1c3 = Q1A (4.22) 

Γ L p 
α

(
c1e

α L − c2e−αL
) − β2c3 = Q2B (4.23) 

Γ L p 
α2β1

(
c1e

α L + c2e−αL
) + c3L + c4 = p1B (4.24) 

− 
Γ L p 
α2β2 

(c1 + c2) + c4 = p2A (4.25) 

The (somewhat cumbersome) solution of the above system yields 

c1 = 
a22b1 − a12b2 
a11a22 − a12a21 

(4.26) 

c2 = 
a11b2 − a21b1 
a11a22 − a12a21 

(4.27) 

c3 = 
p1B − p2A 

L
− 

Γ L p 
α2β2L 

(c1 + c2) − 
Γ L p 
α2β1L

(
c1e

α L + c2e−αL
)

(4.28) 

c4 = p2A + 
Γ L p 
α2β2 

(c1 + c2) (4.29) 

in which the terms a and b are defined as 

a11 = 
Γ L p 

α

[
−1 + 

1 

αL

)
β1 

β2 
+ eα L

)]
(4.30) 

a12 = 
Γ L p 

α

[
1 + 

1 

αL

)
β1 

β2 
+ e−α L

)]
(4.31)

https://avxhm.se/blogs/hill0



22 4 Flow Through Parallel Channels Separated by a Permeable Wall

a21 = 
Γ L p 

α 
eα L

[
1 + 

1 

αL

)
β2 

β1 
+ e−α L

)]
(4.32) 

a22 = 
Γ L p 

α 
e−α L

[
−1 + 

1 

αL

)
β2 

β1 
+ eα L

)]
(4.33) 

b1 = Q1A + β1 
p1B − p2A 

L 
(4.34) 

b2 = Q2B + β2 
p1B − p2A 

L 
(4.35) 

The complete solution is now given by Eqs. (4.14)–(4.15) for the two pressures 
and by Eqs. (4.16)–(4.17) for the two flow rates, in which the constants c1…c4 are 
given by Eqs. (4.26)–(4.29) with the positions (4.30)–(4.35). 

As an example of the results, Fig. 4.2 compares profiles of pressure (a) and flow 
rate (b) computed for different values of the wall hydraulic permeability Lp from 
10–10 m/(sPa) (practically impermeable wall) to 10−8 m/(sPa). The remaining data 
are representative of a hollow-fiber cartridge for hemodiafiltration (Cancilla et al. 
2022): L = 0.244 m, Γ = 7.21 m, A1 = 3.14 · 10−4 m2, A2 = 5.38 · 10−4 m2, K1 

= 3.58 · 10−10 m2, K2 = 8.64 · 10−10 m2, Q1A = 300 ml/min, Q2B = −500 ml/min 
(oriented flow rates), p1B = p2A = 0 (relative outlet pressures) and μ1 = μ2 = 0.9 · 
10–3 Pa s (viscosities).

In the presence of a permeable wall, and provided the outlet pressures are such that 
the pressure profiles exhibit the “butterfly” shape in Fig. 4.2a, in both compartments 
the flow rate decreases (in absolute value) from the inlet to some intermediate distance 
and then increases back. The inlet-to-outlet pressure drop decreases significantly in 
both compartments with respect to the impermeable wall case. 

Case 2): dead-end filtration. 

In this case, identifying fluid 1 with the feed and fluid 2 with the permeate, the 
appropriate boundary conditions are: 

Q1(0) = Q1A(> 0) (4.36) 

Q1(L) = 0 (4.37) 

Q2(0) = 0 (4.38) 

p2(L) = p2B (4.39) 

The further condition Q2(L) = Q1(0) = Q1A is implicated by the balance 
Eqs. (4.6)–(4.7) and thus is redundant.
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Fig. 4.2 Profiles of pressures a and flow rates b computed under conditions representative of a 
hollow-fiber cartridge for hemodiafiltration and Lp = 10−10 to 10−8 m3/(m2sPa)

Taking account of Eqs. (4.14)–(4.17), the above BC’s yield the following system 
of 4 algebraic equations in the four unknowns c1 … c4: 

− 
Γ L p 

α 
(c1 − c2) − β1c3 = Q1A (4.40) 

−Γ L p 
α

(
c1e

α L − c2e−α L) − β1c3 = 0 (4.41)
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Γ L p 
α 

(c1 − c2) − β2c3 = 0 (4.42) 

− 
Γ L p 
α2β2

(
c1e

α L + c2e−α L) + c3L + c4 = p2B (4.43) 

The solution of the sub-system of Eqs. (4.40)–(4.42) in  c1…c3 yields 

c1 = Q1A 
α 

Γ L p 
1 + (β2/β1)e−αL 

(1 + β2/β1)
(
eα L − e−α L

) (4.44) 

c2 = Q1A 
α 

Γ L p 
1 + (β2/β1)eα L 

(1 + β2/β1)
(
eαL − e−α L

) (4.45) 

c3 = −  
Γ L p 
αβ1

(
c1e

α L − c2e−αL
)

(4.46) 

while the stand-alone Eq. (4.43) yields 

c4 = p2B + 
Γ L p 
α2β2

(
c1e

α L + c2e−α L) − c3L (4.47) 

The complete solution is now given by Eqs. (4.14)–(4.15) for the two pressures 
and by Eqs. (4.16)–(4.17) for the two flow rates, in which the constants c1–c4 are 
given by Eqs. (4.44)–(4.47). 

As an example of the results, Fig. 4.3 compares profiles of pressure (a) and flow 
rate (b) computed for different values of the wall hydraulic permeability Lp from 
10−10 (practically impermeable wall) to 10−8 m3/(m2s Pa). The remaining data are 
representative of a hollow-fiber filter cartridge for the production of ultra-pure water: 
L = 0.15 m, Γ = 5 m, viscosities, areas and Darcy permeabilities as in case 1 (μ1 = 
μ2 = 0.9 · 10–3 Pa s, A1 = 3.14 · 10−4 m2, A2 = 5.38 · 10−4 m2, K1 = 3.58 · 10−10 

m2, K2 = 8.64 · 10−10 m2), Q1A = 100 mL/min (feed flow rate) and p2B = 0 (relative 
outlet pressures).

Note that a logarithmic scale was used for pressures. For any value of Lp, the pres-
sure in the permeate compartment (2) remains low while that in the feed compartment 
(1) increases approximately as 1/Lp. Profiles of flow rate along the filter length are 
roughly linear in all cases.



4 Flow Through Parallel Channels Separated by a Permeable Wall 25

(a) 

(b) 

0.1 

1 

10 

100 

1000 

10000 

100000 

1000000 

0 0.2 0.4 0.6 0.8 1 
z/L 

p
 (P

a)
 

p1, Lp=1E-10 m/(sPa) p2, Lp=1E-10 m/(sPa) 
p1, Lp=1E-9 m/(sPa) p2, Lp=1E-9 m/(sPa) 
p1, Lp=1E-8 m/(sPa) p2, Lp=1E-8 m/(sPa) 

0.0E+00 

2.0E-07 

4.0E-07 

6.0E-07 

8.0E-07 

1.0E-06 

1.2E-06 

1.4E-06 

1.6E-06 

1.8E-06 

0 0.2 0.4 0.6 0.8 1 
z/L 

Q
 (m

3 /s
) 

Q1, Lp=1E-10 m/(sPa) Q2, Lp=1E-10 m/(sPa) 
Q1, Lp=1E-9 m/(sPa) Q2, Lp=1E-9 m/(sPa) 
Q1, Lp=1E-8 m/(sPa) Q2, Lp=1E-8 m/(sPa) 

Fig. 4.3 Profiles of pressures a and flow rates b computed under conditions representative of a 
hollow-fiber cartridge for dead-end filtration and Lp = 10−10 to 10−8 m3/(m2s Pa)
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Chapter 5 
Laminar Oscillatory Flow in a Plane 
Channel 

A theory with mathematical beauty is more likely to be correct 
than an ugly one that fits some experimental data 
(Paul Dirac) 

Abstract This problem regards the oscillatory flow in a plane channel subject to a 
harmonic forcing Fx(t) = F0cos(ωt). An analytic solution to the relevant Navier– 
Stokes equations, highly simplified by the assumption of parallel flow, was presented 
for example by Landau and Lifshitz (1959) and later by other authors and is discussed 
here under two possible physical interpretations. 

The simplest oscillatory flow is that studied in the so called Stokes’ second problem 
(Stokes 1850): the motion of a viscous fluid adjacent to an indefinite plane wall which 
oscillates harmonically along x with velocity 

uw(t) = u0 sin(wt) (5.1) 

The analytical solution found by Stokes for the fluid’s velocity is: 

u(y, t) = u0 exp(−y/ lS) sin(wt − y/ lS) (5.2) 

where y is the normal distance from the wall and lS = (2ν/ω)1/2. Today lS is 
called Stokes length, and the near-wall region of thickness lS is called Stokes layer. 
Equation (5.2) shows that the perturbation caused by the wall’s motion decreases 
exponentially with y and penetrates a few Stokes lengths into the fluid. 

Only slightly more complex is the oscillatory flow in a channel. The problem 
has been investigated for its relevance in physiology (Womersely 1955) but finds 
applications also in the field of industrial engineering (Mackley and Stonestreet 
1995). Often the flow is classified as pulsatile when the flow rate oscillates about a 
non-zero mean value, reciprocating when this value is nil. 

In the following, we will consider an indefinite plane channel of half height δ, 
with the origin of the coordinate y in the channel’s midplane (Fig. 5.1).
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Fig. 5.1 A streamwise and spanwise indefinite plane channel 

We will first consider the case of reciprocating flow. In the laminar regime, the 
flow is purely parallel, u = (u, 0, 0), and is a function of only y and time. The only 
relevant Navier–Stokes equation is that along x and reduces to 

∂u 

∂t 
= ν 

∂2u 

∂y2 
+ 

1 

ρ 
Fx (t) (5.3) 

in which Fx is a forcing term (dimensionally, a force per unit volume) which can 
be interpreted either as a pressure gradient or as a body force, as will be discussed 
below. In any case, Fx is assumed to vary harmonically in time as 

Fx (t) = F0 cos(wt) (5.4) 

The hydrodynamic problem consists of determining u(y, t) for any choice of 
δ, F0, ω and fluid’s physical properties (density ρ, viscosity μ = ρν). The main 
parameter controlling the solution is the ratio between the momentum diffusion time 
scale (viscous scale), δ2/ν, and the period of the forced oscillation, T = 2π /ω. It is  
customary to use the Womersley number α, proportional to the square root of the 
above ratio: 

α = δ
√

ω/ν (5.5) 

If T » δ2/ν (slow oscillations, small α) the Stokes layer has time to grow along 
the channel’s walls as the harmonic forcing term increases, and the u profile follows 
closely a sequence of stationary Poiseuille profiles u(y, t) = Fx/(2μ) × (δ2 − y2). 
Contrarywise, if T « δ2/ν (rapid oscillations, large α), instantaneous u profiles are 
affected by inertial terms and differ largely from the parabolic, steady-state shape; 
they may exhibit local maxima out of the midplane and also change sign along y.
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Maxima of u are smaller than the steady-state value Fxδ
2/(2μ) and are out of phase 

with respect to the forcing term; amplitude damping and phase lag increase with α. 
The analytical solution for u(y, t) was given, in a rather concise form, by Landau 

and Lifschitz (1959); a more explicit formulation was presented by Loudon and 
Tordesillas (1998): 

u(y, t) = F0 

ωρβW 
{[sinh ϕ1(y) sin ϕ2(y) + sinh ϕ2(y) sin ϕ1(y)] cos(ωt) 

+ [βW − cosh ϕ1(y) cos ϕ2(y) − cosh ϕ2(y) cos ϕ1(y)] sin(ωt)} (5.6) 

in which 

ϕ1(y) = 
α √
2

(
1 + 

y 

δ

)
(5.7) 

ϕ2(y) = 
α √
2

(
1 − 

y 

δ

)
(5.8) 

βW = cosh
(√

2α
)

+ cos
(√

2α
)

(5.9) 

The problem admits two distinct physical interpretations. 
On one hand, Fx can be regarded as a pressure gradient, Fx = −dp/dx, applied 

to a fluid confined between fixed walls; in this case, u is the absolute velocity in the 
laboratory reference frame. 

As an alternative, more consistent with Stokes’ second problem, the channel’s 
walls can be assumed to move along x according to the harmonic law 

xw = x0 cos(wt) (5.10) 

which implies velocity and acceleration 

ẋw = −ωx0 sin(ωt) (5.11) 

ẍw = −ω2 x0 cos(ωt) (5.12) 

In this second interpretation, the channel can be assumed to be open at both ends to 
a uniform-pressure environment, so that no pressure gradient exists and the true force 
Fx is nil. However, if the resulting flow is described with respect to an accelerated 
(non-inertial) reference frame integral with the walls, then a fictitious acceleration, 
opposite to that of the walls, must be added to the RHS of the momentum equation. 
This is obtained by setting F0 = ρω2x0 in Eq. (5.4). In this case, u must be interpreted 
as the velocity of the fluid relative to the walls, while its absolute velocity (in the 
laboratory reference frame) will be 

uabs(y, t) = u(y, t) + ẋW (t) = u(y, t)−wx0 sin(wt) (5.13)
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Note that the amplitude u0 of the walls’ velocity ẋw is ωx0 = F0/(ρω). 
As an example of the results obtained for different values of the Womersley 

number, Figs. 5.2 and 5.3 report the cross-stream profiles of u (a) and uabs (b) at 
different phase angles ωt for α = 1 and α = 5, respectively. In both cases, velocities 
are normalized with respect to u0 and their profiles are reported only for y ≤ 0 since 
they are symmetric with respect to the midplane.

For low α, Fig.  5.2, the velocity perturbation caused by the oscillating walls (or 
pressure gradient) has time to diffuse to the bulk of the fluid during a semi-period, 
and the flow field can be described as a sequence of steady parabolic (Poiseuille) 
profiles in instantaneous equilibrium with the applied forcing. Velocity maxima are 
attained for ωt ≈ 0, in phase with the forcing term. 

Results are different for higher α, Fig.  5.3. A noteworthy feature of the solution is 
evidenced by the absolute velocity profiles in Fig. 5.3b: the central region of the fluid 
moves very little with respect to the laboratory reference frame through the whole 
period of the oscillations, while only the fluid layers adjacent to the walls follow the 
harmonic oscillations of these latter. Therefore, with respect to the walls, Fig. 5.3a, 
the bulk of the fluid oscillates with a velocity amplitude close to that of the walls 
themselves, u0 = F0/(ρω). The maximum relative velocity is attained for ωt ≈ 90°, 
in quadrature with the forcing term F(t). 

Velocity damping can be better appreciated by comparing the peak value of the 
midplane velocity, upeak , with the value that would be attained if F0 were applied 
statically, which is the Poiseuille value (upeak)0 = F0δ

2/(2μ). 
Figure 5.4 reports Bode plots of the amplitude damping upeak /(upeak)0 (a) and of 

the associated phase lag (b) as functions of the Womersley number α. Note that, as 
shown in Fig. 5.2a, for large α peak velocities may be attained at locations away 
from the midplane. Figure 5.3 shows that, for α > 2–3, the amplitude of the peak 
midplane velocity decreases as α−2. The phase lag increases as α2 up to α ≈ 1 and 
attains its limiting value of 90° for α ≈ 3.

If a laminar, parallel channel flow is pulsatile rather than reciprocating, i.e., if the 
mean value of the flow rate is not nil, then the linear nature of the governing Eq. (5.3) 
allows the overall instantaneous flow to be obtained as the simple superposition of its 
constant component and its oscillatory component, the former being the Poiseuille 
solution and the latter being identical to the above solution for reciprocating flow 
(principle of superposition of effects). Therefore, the case of pulsatile flow does not 
present any real novelty with respect to reciprocating flow.
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Fig. 5.2 Case α = 1: cross stream velocity profiles, normalized by u0 = F0/(ρω), at different phase 
angles ωt. a Velocity relative to oscillating walls, equal to the velocity in a still channel under the 
effect of an oscillating pressure gradient; b absolute velocity between oscillating walls
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Fig. 5.3 Case α = 5: cross stream velocity profiles, normalized by u0 = F0/(ρω), at different phase 
angles ωt. a Velocity relative to oscillating walls, equal to the velocity in a still channel under the 
effect of an oscillating pressure gradient; b absolute velocity between oscillating walls
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Fig. 5.4 Bode plots of the amplitude damping a and of the phase lag b of the velocity at the midplane 
as functions of the Womersley number α for laminar reciprocating flow in a plane channel



Chapter 6 
Nusselt Number in Channel Flow 
with General Thermal Boundary 
Conditions 

Before I came here I was confused about this subject. Having 
listened to your lecture I am still confused. But on a higher level 
(Enrico Fermi) 

Abstract The classic solutions for the Nusselt number in parallel channel flow under 
conditions of uniform wall temperature and uniform wall heat flux are generalized 
by imposing third type (Robin) thermal boundary conditions. As a dimensionless 
parameter R, expressing the ratio of the wall thermal resistance to the channel’s 
conductive resistance, varies between 0 and infinity, the two above limiting conditions 
are recovered, while intermediate values of R yield an intermediate Nusselt number 
that varies continuously between the two extrema. 

Consider the steady, hydrodynamically and thermally fully developed, flow of a 
constant-property fluid in a streamwise and spanwise indefinite plane channel of 
half-thickness δ (as in Fig. 5.1). Let x and y be the streamwise and cross stream 
directions, with y = 0 at the midplane, and let u(y) be the velocity along x, U its 
average, T (x, y) the temperature and α = λ/(ρcp) the thermal diffusivity. 

Let us first deal with the case of symmetric two-side cooling, which can be char-
acterized by a symmetry condition at the midplane and a general (3rd type, or Robin) 
boundary conditions at one wall:

[
∂T 

∂ y

]
0 

= 0; −λ

[
∂T 

∂y

]
δ 
= 

1 

r 
[T (x, δ)  − T∞] (6.1) 

T∞ being a uniform external temperature and r an interposed thermal resistance. Let 
ϑ = T − T∞ and 

ϑb = 1 

2δρU 

δ∫
−δ 

ϑ u dy (6.2)
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its bulk (i.e., mass flow averaged) value. By introducing the following dimensionless 
variables: 

η ≡ 
y 

δ 
; ξ ≡ 

x 

δ 
; ũ ≡ 

u 

U 
; Peδ ≡ 

U δ 
α 

(6.3) 

the Poiseuille velocity distribution and the energy balance equation can be written 

ũ = 
3 

2

(
1 − η2) (6.4) 

∂2ϑ 
∂η2 

= Peδ ũ 
∂ϑ 
∂ξ 

(6.5) 

The assumption of thermally fully developed flow implies 

ϑ = ϑb(x)ϕ(y) (6.6) 

so that Eq. (6.5) can be written 

1 

ϕ ̃u 
d2ϕ 
dη2 

= Peδ 
dϑb 

dξ 
(6.7) 

Following the method of separation of variables, Eq. (6.7) splits into the two 
distinct equations 

1 

ϕ ̃u 
d2ϕ 
dη2 

= −B2 (6.8) 

Peδ 
1 

ϑb 

dϑb 

dξ 
= −B2 (6.9) 

in which the constant –B2 must be negative for physical reasons (for example, ϑb > 
0 implies dϑb/dξ < 0, i.e. cooled fluid). 

By substituting the velocity profile of Eq. (6.4) into Eq. (6.8) one obtains 

d2 ϕ 
dη2 

+ 
3 

2 
B2

(
1 − η2

)
ϕ = 0 (6.10) 

This is a non-integrable ODE with non-constant coefficients which must be solved 
numerically. The boundary conditions for ϕ are derived from Eqs. (6.1) and (6.6):

[
dϕ 
dη

]
0 

= 0; ϕ(1) = B2 R (6.11)



6 Nusselt Number in Channel Flow with General Thermal Boundary … 37

in which R = rλ/δ (dimensionless thermal resistance). The following condition must 
also be satisfied:

[
dϕ 
dη

]
1 

= −B2 (6.12) 

which is derived from the enthalpy balance: 

−λ

[
∂ϑ 
∂ y

]
δ 
= −δρcpU 

dϑb 

dx 
(6.13) 

Conceptually, Eq. (6.10) for  ϕ(η), with B.C.’s (6.11), must be solved numerically 
for any generic value of B2, which must be made to vary so as to satisfy Eq. (6.12). A 
simple iterative procedure was implemented in Fortran to perform this calculation. 
After convergence, the heat transfer coefficient is 

h = 
q ′′

w 
ϑb 

= −  
λ 

δϑb

[
∂ϑ 
∂η

]
δ 

(6.14) 

which can be made dimensionless as a Nusselt number Nu = h(4δ/λ) (based on the 
channel hydraulic diameter 4δ). From the above equations and definitions it follows 
that 

Nu = 
4 

R 

ϕ(1) 
1 − ϕ(1) 

(6.15) 

Note that a different value of Nu and a different profile ϕ(η) are computed for 
each choice of the dimensionless thermal resistance R. Note also that the Dirichlet 
and Neumann conditions are obtained as limiting cases for R = 0 and R → ∞, 
respectively. The function Nu(R) is represented in Fig. 6.1 by the “Two-side” line.

Consider then the case of one-side cooling, i.e. cooling from one wall with the 
opposite wall adiabatic. The thermal boundary conditions (6.1) are replaced by

[
∂T 

∂y

]
−δ 

= 0; −λ

[
∂T 

∂ y

]
δ 
= 

1 

r 
[T (x, δ)  − T∞] (6.16) 

and their dimensionless counterparts (6.11) are replaced by

[
∂ϕ 
∂η

]
−1 

= 0; ϕ(1) = 2B2 R (6.17) 

while all other equations and definitions remain unchanged. The solution for Nu is 
reported in Fig. 6.1 as the “One-side” line. Note the lower levels of Nu with respect 
to the “Two-side” case.
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Fig. 6.1 Nusselt number in a plane channel as a function of the dimensionless thermal resistance 
R

The above results can easily be extended to the case of parallel flow in a cylindrical 
duct. Also, by substituting mass transfer resistances for thermal resistances and a 
Schmidt number for the Prandtl number, the results can be interpreted as predicting 
the Sherwood number (dimensionless mass transfer coefficient) in lieu of the Nusselt 
number.



Chapter 7 
Buoyant Flow in a Duct or a Loop 

The light dove, cleaving the air in her free flight, and feeling its 
resistance, might imagine that its flight would be still easier in 
empty space 
(Immanuel Kant) 

Abstract Buoyant flow in a heated duct is considered. The one-dimensional 
momentum equation for the fluid, in conjunction with the classic Boussinesq approx-
imation for thermal expansion and with a suitable friction correlation, form a closed 
system of equations whose exact steady-state solution is the fluid’s flow rate as a func-
tion of the imposed inlet/outlet pressures and of the thermal power input. Several 
special cases can be obtained by letting the boundary conditions, the duct’s incli-
nation and other parameters vary. The case of a closed loop with simultaneous heat 
addition and subtraction can be treated similarly and the solution is the circulating 
flow rate as a function of the thermal power input/output. 

(a) Duct. Consider first the steady-state flow of a thermally dilatable fluid in a heated 
(or cooled) duct of uniform cross section A, between Sections 1 and 2 in the 
presence of a gravitational field (Fig. 7.1).

Let G be the fluid’s mass flow rate, g the acceleration of gravity and q' a uniform 
linear thermal power density (positive or negative) entering the fluid. 

We want to express the relation linking the pressure difference p1 − p2 between 
Sections 1 and 2 to the mass flow rate G in the presence of thermal buoyancy. 

The live forces theorem, written for an infinitesimal tract dz of duct, gives: 

αUdU  = −gdz − vdp − δr (7.1) 

The left hand side of this equation is the infinitesimal increase of the fluid’s kinetic 
energy per unit mass; U is the mean (i.e., cross section-averaged) velocity and α is 
a shape coefficient which depends on the velocity distribution and is very close to 
unity in the case of turbulent flow (flat velocity distribution).
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Fig. 7.1 Flow of a thermally 
dilatable fluid in a duct

The right hand side of the equation includes the infinitesimal work (per unit mass) 
of gravitational forces, −gdz; the infinitesimal work of pressure, −vdp (v = 1/ρ being 
the fluid’s specific volume); and the infinitesimal work of friction. 

Let’s adopt Boussinesq’s (1897) approximation for buoyancy, which consists of 
treating the density ρ as constant (and equal to some reference value ρ0) in all terms 
except the gravitational one, where it is expressed as a function of the temperature T 
as: 

ρ(T ) = ρ0[1 − β(T − T0)] (7.2) 

in which β = −(1/ρ0)dρ/dT is the cubic dilatation coefficient of the fluid and T 0 is 
the reference temperature for which ρ = ρ0. 

Consistently, the LHS of Eq. (7.1) vanishes; multiplying the remaining terms in 
Eq. (7.1) by  ρ0, except the gravitational term –gdz which is multiplied by ρ(T ) as  
provided by Eq. (7.2), one has: 

0 = −gρ0[1 − β(T − T0)]dz − dp − ρ0δr (7.3) 

(in which the assumption v ≈ 1/ρ0 was made). Integrating Eq. (7.3) between 
Sections 1 and 2 and observing that z2 −z1 = Lcos(ϕ), where ϕ is the angle formed 
by the duct’s axis with the vertical direction, yields: 

p1 − p2 = gρ0L cos(ϕ)
[
1 − β

(
T − T0

)] + |Δp|FR (7.4) 

in which T is the mean bulk temperature in the duct and |Δp|FR is the work done by the 
fluid against the frictional forces per unit volume, represented as a frictional pressure 
drop (dimensions = energy/volume). Consistent with the Boussinesq approximation, 
it can be expressed as:
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|Δp|FR  = f 
L 

deq 
ρ0 

U 2 

2 
(7.5) 

in which deq is the hydraulic diameter and f is the Darcy friction coefficient. 
Expressing f , for example, by the McAdams (1933) correlation, valid for 5000 < 
Re < 2 : 105: 

f = 0.184Re−0.2 (7.6) 

and writing Re = Udeqρ0/μ, U = G/(ρ0A), Eq. (7.5) becomes 

|Δp|FR  = 
0.092μ0.2 

0 

ρ0 A1.8d1.2 
eq 

G1.8 L (7.7) 

where also μ was evaluated at the reference temperature T 0. 
Evaluating also the fluid’s specific heat cp at T 0, the fluid’s bulk temperature varies 

along the duct as 

T (z) = T1 + 
q'

Gcp0 
l (7.8) 

in which l is a coordinate along the duct’s axis. Therefore, the mean bulk temperature 
in the duct is 

T = T1 + 
q'L 

2Gcp0 
(7.9) 

Substituting Eq. (7.9) for  T in the expansion term of Eq. (7.4) yields 

1 − β
(
T − T0

) = 1 − β
[
(T1 − T0) + 

q'L 
2Gcp0

]
(7.10) 

Finally, taking account of Eq. (7.10) for the gravitational term and of Eq. (7.7) 
for the frictional term, Eq. (7.4) becomes: 

p1 − p2 = gρ0L cos(ϕ)

⎧
[1 − β(T1 − T0)] − 

βq'L 
2Gcp0

⎫
+ 

0.092μ0.2 
0 

ρ0 A1.8d1.2 
eq 

G1.8 L (7.11) 

This can be synthetically written: 

p1 − p2 = C − 
E 

G 
+ FG1.8 (7.12) 

in which
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C = gρ0L cos(ϕ)[1 − β(T1 − T0)] (7.13a) 

E = gρ0 cos(ϕ) 
βq'L2 

2cp0 
(7.13b) 

F = 
0.092μ0.2 

0 L 

ρ0 A1.8d1.2 
eq 

(7.13c) 

Note that the condition T 2 = T 1 + (q'L)/(Gcp) <  Tsat must be met for any G; this  
sets for any q' a minimum value of G, below which saturated boiling would occur in 
the pipe and, of course, the present treatment would lose validity: 

|G| > 
L 

cp(Tsat − T1) 
q' (7.14) 

(the reason for using the absolute value of G is discussed immediately below). 
The equations derived so far are based on the assumption that the flow is directed 

upward (G > 0). If the fluid flows downward (G < 0),  but  Sections 1 and 2 remain as 
they are defined in Fig. 7.1 (i.e., with z1 < z2), a moment’s reflection shows that. 

• the (hydrostatic) term C remains unchanged as it is independent of G; 
• the buoyancy term E remains unchanged despite G changing sign; 
• the friction term changes sign. 

This behaviour can be described by re-formulating Eq. (7.12) as:  

p1 − p2 = C − 
E 

|G| + FG|G|0.8 (7.15) 

In addition, in downward flow it is consistent to adopt the temperature in 2 (which 
is now the inlet section) as the boundary condition, which amounts to re-formulating 
Eqs. (7.13a–c) with the subscript “i” (either “1” or “2”) instead of “1”: 

C = gρ0L cos(ϕ)[1 − β(Ti − T0)] (7.16a) 

E = gρ0 cos(ϕ) 
βq 'L2 

2cp0 
(7.16b) 

F = 
0.092μ0.2 

0 L 

ρ0 A1.8d1.2 
eq 

(7.16c) 

Equations (7.15) and (7.16) generalize Eqs. (7.12) and (7.13) to the case of either 
upward or downward flow. As an example, Fig. 7.2 reports the three components of 
p1 − p2, as provided by Eqs. (7.15) and (7.16), and their sum as functions of the 
mass flow rate G for water entering at 300 K (ρ i = 1000 kg/m3, μi = 0.9 : 10−3 Pa
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Fig. 7.2 Separate contributions to p1 − p2 and corresponding sum as functions of the mass flow 
rate G in a water-filled channel for q' = 3000 W/m 

s, cp = 4186 J/(kg K), β = 2.1 : 10−4 K−1) a vertical circular pipe 2 cm in diameter 
and 10 m in length (A = π : 10−4 m2, deq = 2 : 10−2 m), heated by a power density 
q' = 3000 W/m.

For Tsat = 373.15 K (atmospheric pressure), Eq. (7.14) gives the condition |G| >  
0.098 kg/s; the “forbidden” G range has been highlighted to stress that corresponding 
results are purely virtual but could never be realized in a single-phase fluid. The 
reference temperature T 0 was assumed equal to the inlet temperature Ti = T 1 (300 K). 
In the admissible G range, the contribution of buoyancy (term –E/|G|) is negligible 
and pressure drop mainly consists of the sum of the frictional and mean hydrostatic 
components. 

Figure 7.3 reports the overall pressure difference p1 − p2 as a function of G for 
the same water-filled channel of the above example and q' varying between 100 and 
3000 W/m. “Forbidden” values have been represented by broken lines. Note that, 
as q' increases, the “forbidden” G range broadens and the importance of buoyancy, 
which tends to reduce p1 − p2, increases.

Similarly, Fig. 7.4 reports the overall pressure difference p1 − p2 as a function of 
G for q' = 1000 W/m but the pipe diameter D varying between 1.5 and 3 cm. As in 
the previous Fig., “forbidden” values have been represented by broken lines. Note 
that, as D decreases, p1 − p2 increases strongly, mainly because of the contribution 
of friction.

Figure 7.5 is for the flow of air (ρ i = 1.25 kg/m3, μi = 1.8 : 10−5 Pa s, cp = 
1005 J/(kg K), β = 1/T = 1/300 K−1) entering at 300 K a vertical, circular pipe 2 cm 
in diameter and 10 m in length (A = π 10−4 m2, deq = 2 : 10−2 m) heated by a linear 
power density q' varying between 30 and 1000 W/m. In this case there is no phase 
change issue and thus all flow rates are admissible (except, of course, G = 0 which 
is incompatible with the condition of steady-state heating).
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Fig. 7.3 Pressure drop p1 − p2 as a function of the mass flow rate G in a water-filled pipe for D = 
2 cm and  q' = varying between 100 and 3000 W/m
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Fig. 7.4 Pressure drop p1 − p2 as a function of the mass flow rate G in a water-filled pipe for q' = 
1000 W/m and D varying between 1.5 and 3 cm

Note that it is possible to have G > 0 with p1 − p2 = 0 (pure natural convection); 
this would be the case of a duct with both ends open to the (uniform pressure) 
environment, in which the driving force for the flow is only the thermal buoyancy 
caused by heating. In the example of Fig. 7.5, this flow rate increases from 0 to ~ 0.3 
: 10–3 kg/s as q' increases from 0 to 1000 W/m. 

The purely buoyant flow rate G can be computed by imposing p1 − p2 = 0 
in Eq. (7.15), restricting the attention to positive values of G (upward flow) and 
taking account of Eqs. (7.16a–c). The following relation is thus obtained between
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Fig. 7.5 Pressure drop p1 − p2 as a function of the mass flow rate G for air flowing through a pipe 
for q' varying between 30 and 1000 W/m

the controlling parameters and G: 

G2.8 + MG = N (7.17) 

M = g cos(ϕ) 
ρ2 
0 A

1.8d1.2 
eq 

0.092μ0.2 
0 

[1 − β(Ti − T0)] (7.18a) 

N = g cos(ϕ) 
βq 'L 
2cp0 

ρ2 
0 A

1.8d1.2 
eq 

0.092μ0.2 
0 

(7.18b) 

For example, one may let q' vary while all other quantities are kept fixed, re-compute 
for each q' the parameter N and solve Eq. (7.17) by any suitable numerical method 
to obtain the corresponding value of G. 

(b) Thermosyphon loop. The results obtained above for a single duct can be used 
to compute the buoyancy-induced flow rate in a closed thermosyphon loop. 
Consider, for example, that schematically shown in Fig. 7.6.

It consists of two adiabatic vertical pipes of length Lv and two horizontal pipes of 
length Lh, respectively heated and cooled by a uniform linear power density q'

0. For  
simplicity, let the duct cross section be the same through the whole loop, so that the 
hydraulic diameter deq and the area A are the same in all branches. 

The general form of p1 − p2, from Eqs. (7.15) and (7.16), is: 

p1 − p2 = gρ0L cos(ϕ)[1 − β(Ti − T0)] − gρ0 cos(ϕ) 
βq 'L2 

2cp0 

1 

|G| + 
0.092μ0.2 

0 L 

ρ0 A1.8d1.2 
eq 

G|G|0.8 

(7.19)
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Fig. 7.6 Schematic of a 
thermosyphon loop

This can be written for each of the four branches AB, BC, CD and DA in Fig. 7.6. 
In the horizontal branches AB and CD one has C = E = 0 since cos(ϕ) = 0, so that, 
calling G0 the mass flow rate in the clockwise direction: 

pA − pB = 
0.092μ0.2 

0 Lh 

ρ0 A1.8d1.2 
eq 

G1.8 
0 (7.20) 

pC − pD = 
0.092μ0.2 

0 Lh 

ρ0 A1.8d1.2 
eq 

G0.8 
0 (7.21) 

In the vertical branch BC with upward flow (i = 1 = B, 2 = C, L = Lv, cos(ϕ) = 
1, G = +  G0, q' = 0): 

pB − pC = gρ0Lv[1 − β(TB − T0)] + 
0.092μ0.2 

0 Lv 

ρ0 A1.8d1.2 
eq 

G1.8 
0 (7.22) 

In the vertical branch DA with downward flow (1 = A, i = 2 = D, L = Lv, cos(ϕ) 
= 1, G = −G0, q' = 0): 

pD − pA = −gρ0Lv[1 − β(TD − T0)] + 
0.092μ0.2 

0 Lv 

ρ0 A1.8d1.2 
eq 

G1.8 
0 (7.23) 

Note that the heat flux q' does not appear in any of the individual pressure drops. 
By summing Eqs. (7.20)–(7.23) one has 

0.184μ0.2 
0 (Lh + Lv) 

ρ0 A1.8d1.2 
eq 

G1.8 
0 − gρ0Lvβ(TB − TD) = 0 (7.24) 

Substituting, from a heat balance: 

TB − TD = 
q

'
0Lh 

G0cp0 
(7.25)
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and solving for G0 one has 

G0 =
[

gβq
'
0 

ρ2 
0 A

1.8d1.2 
eq 

0.184μ0.2 
0 cp0 

· Lh Lv 

Lh + Lv

]5/14 

(7.26) 

For example, in a water loop with circular cross section, D = 0.05 m, Lh = Lv 

= 10 m, q'
0 = 104 W/m, using the same conventional properties as in the previous 

examples, one has G0 = 3.341 kg/s, corresponding to a mean velocity U = 1.702 m/s 
and to a Reynolds number Re = 94,556. The maximum temperature difference in 
the system, Eq. (7.25), is TB − TD = 7.15 K. 

If it is the temperature difference between the two vertical branches, TB − TD, 
that is imposed instead of the linear heat flux q'

0, Eq.  (7.24) can be directly solved 
yielding 

G0 =
[

gβ(TB − TD) 
ρ2 
0 A

1.8d1.2 
eq 

0.184μ0.2 
0 

Lv 

Lh + Lv

]5/9 

(7.27) 

After some manipulations, this solution can be put in the synthetic form 

Re = 2.561
(

Gr 

1 + h

)5/9 

(7.28) 

in which 
Re = Udeq 

ν0 
(Reynolds number, with U = G0/(ρ0A) and v0 = μ0/ρ0); 

Gr = gβ(TB−TD )d3 
eq 

ν2 
0 

(Grashof number based on the hydraulic diameter); 

h = Lh 
Lv 

(aspect ratio of the loop). 
This treatment must be appropriately modified if the flow is laminar, in which 

case Eq. (7.6) has to be replaced by f = 64/Re or similar (according to the shape of 
the ducts’ cross section), or if it is a low-Re turbulent flow, in which case Eq. (7.6) 
can be replaced, for example, by Blasius’ correlation f = 0.316 Re−0.25.
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Chapter 8 
Stability of Two-Phase Flow in a Heated 
Duct 

Lectures which really teach will never be popular; lectures 
which are popular will never really teach 
(Michael Faraday) 

Abstract The stability of two-phase flow in a heated duct is considered. The main 
purpose of the study is to obtain a curve (internal characteristic) relating the mass flow 
rate with the inlet–outlet pressure drop for any given geometry, system’s pressure and 
heating power. The intersection of this internal characteristic with the flow rate— 
prevalence curve characterizing the pump (external characteristic) allows the working 
point to be determined and its stability to be assessed. The model adopted is based on 
the 1-D continuity, momentum and energy equations for two-phase pipe flow together 
with suitable expressions for slip ratio/void fraction and two-phase friction pressure 
losses, based on the Chisholm and Lockhart-Martinelli correlations but modified for 
consistency and easy computability. In the case of a horizontal pipe, the internal 
characteristic is obtained in a simple, low-order, polynomial form. 

Consider a straight duct of length L, hydraulic diameter D and cross sectional area 
A in which a subcooled fluid enters with mass flow rate G and inlet specific enthalpy 
Ji. Let also a throttling valve of hydraulic resistance K be present at the foot of the 
duct (Fig. 8.1).

Let the fluid receive a uniform thermal power per unit length q' = q/L along its 
whole length L, so that its bulk enthalpy increases linearly from Ji at z = 0 to  Jo = 
Ji + q'z/G at a generic z, up to  Jo = Ji + q'L/G at z = L. 

By using the generalized definition of quality x: 

x = 
J − J f 
J f g  

(8.1) 

(in which Jf and Jg are the enthalpies of saturated liquid and saturated vapour, 
respectively, and Jfg = Jg − Jf is the latent heat of vaporization), one can write, 
along the whole pipe length:
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Fig. 8.1 Generic fluid flowing through a heated duct

0.0E+00 

2.0E+04 

4.0E+04 

6.0E+04 

8.0E+04 

0 0.1 0.2 0.3 0.4 
G  (kg/s) 

p i
- p

o 
(P

a)
 

Water 
T sat =150°C 
(p sat =4.76 bar) 
L =2 m 
D =0.01 m 
q' =17 kW/m 
K =105 Pa·s/kg 
x i =-5% 

|Δp |pump 
A B  C 

Fig. 8.2 Characteristic S-curve of a boiling duct, exhibiting stable and unstable working points 

x = xi + 
q 'z 
G J  f g  

(8.2) 

Since xi < 0 (subcooled fluid at inlet), for any q' and L two special flow rates can 
be identified, G0 = q'L/[(1 − xi)Jfg] and G1 = −q'L/[xiJfg] (G0 < G1) such that: 

(a) For G ≥ G1, one has xo ≤ 0 (single-phase subcooled liquid flow throughout L); 
(b) For G0 < G < G1, one has 0 < xo < 1 (single-phase subcooled liquid flow up to, 

say, zf and two-phase flow at increasing quality from zf to L); 
(c) For G ≤ G0, one has xo ≥ 1 (single-phase subcooled liquid flow up to a location 

zf , two-phase flow at increasing quality from zf to, say, zg and superheated 
vapour flow in the remaining end region L − zg). 

It is well known (Butterworth and Hewitt 1977) that in such a system (boiling 
duct) the curve representing the overall pressure drop pi − po as a function of the mass 
flow rate G (internal characteristic) may exhibit, under appropriate circumstances, 
a non-monotonic behaviour (S-shape), with a relative maximum at low values of G 
and a relative minimum at higher values. Figure 8.2 illustrates this behaviour for 
water at Tsat = 150 °C (p = 4.76 bar).
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Here and in the following, the properties of water are taken from the UK Steam 
Tables in SI Units (United Kingdom Committee on the Properties of Steam 1970). 

If the duct is fed by an ideal pump providing a prevalence |Δp|pump included in a 
suitable interval, three hypothetical working points A, B, C are obtained. It is easily 
shown that points A and B are stable, while point B is unstable: any infinitesimal 
perturbation will push a system starting from B towards either A or C, according to 
the sign of the initial disturbance. The criterion for stability is, in this case, ∂(pi − 
po)/∂G > 0, and is clearly met by points A and C but not B. 

The analysis is easily extended to a real pump, providing a prevalence |Δp|pump 
= |Δp|0 − KpG2, by including the internal resistance Kp in the constant K. 

Investigating the system’s behaviour as a function of the controlling parameters 
(system’s pressure p, length L, hydraulic diameter D, inlet subcooling xi, power  rate  
q', local resistance K) is of paramount importance, e.g. in the stability analysis of a 
boiling water nuclear reactor (Lahey and Moody 1996). Yet, when two-phase flow is 
implied, the pressure drop is usually obtained by the application of different empirical 
correlation providing slip ratio, void fraction and two-phase friction multipliers, so 
that the dependence of the system’s behaviour from the controlling parameters is 
obscured by the heavy formalism and by the necessarily numerical approach. 

Therefore, it would be desirable to express the dependence of pi − po upon G in 
a closed, possibly polynomial, form, so that the methods of stability analysis can be 
easily applied. 

In the following, such a polynomial form will be derived under two main 
simplifying assumptions: 

• the physical properties of both phases are constant and equal to those evaluated 
on the saturation line at the mean system pressure; 

• the friction coefficient for turbulent single-phase flow is not a function of G and 
can be evaluated at a suitable intermediate flow rate GREF . 

We will also assume the duct to be horizontal, so that gravitational contributions 
to pressure drop can be omitted. Further approximations will be discussed as they 
will be introduced. 

The pressure drop pi − po consists of two components: 

i. distributed frictional pressure loss (pi − po)FR; 
ii. expansion term (pi − po)EXP. 

To these terms one has to add the singular pressure loss in the valve V, which can 
be always be written for simplicity as KG2. 

Let’s discuss the three flow rate ranges (a)–(c) separately. 

Case (a) (G ≥ G1, xo ≤ 0) 

In this case, one has single-phase subcooled liquid flow in the whole duct. 

(1) Distributed frictional pressure loss 

The distributed frictional term, assuming fully turbulent flow, can be computed as 
usual by the Weisbach formula
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(pi − po)FR  = f 
L 

D 
ρ 
u2 

2 
(8.3) 

using for the Darcy friction coefficient f the MacAdams correlation f = 0.184·Re−0.2. 
Since we look for simple (polynomial) expressions of (pi − po) as a function of the 
flow rate G, f can be evaluated not at the actual flow rate G but at some fixed flow rate 
GREF representative of the whole range considered, e.g. GREF = (G0 + G1)/2. Thus, 
writing Re = uf Dρ f /μf (i.e., identifying the physical properties of the subcooled 
liquid with the saturation ones) and uf = G/(ρ f A) (mean fluid velocity), one has 

f = 0.184
(
G RE  F  D 

Aμ f

)−0.2 

(8.4) 

|Δp|FR  = 
f L  

2Dρ f A2 
G2 = FLG2 (8.5) 

in which F = f /(2Dρ f A2). 

(2) Expansion term 

Since there is only liquid in the whole duct, the expansion term can be neglected: 

|Δp|EX  P  = 0 (8.6) 

(3) Summary pressure loss for case a 

Using Eqs. (8.5) and (8.6), and taking into account also the pressure drop in the foot 
valve, simply parameterized as KG2, in case (a) (G ≥ G1) one has: 

(pi − p0)case a = (K + FL)G2 (8.7) 

Case (b) (G0 < G < G1, 0 <  xo < 1).  

In this case one has single-phase subcooled liquid flow up to a location zf identified 
by the condition 

xi + 
q 'z f 
G J  f g  

= 0 → z f = −  
J f gxi 
q ' G (8.8) 

in force of Eq. (8.2), and two-phase flow at increasing quality in the remaining tract 
from z = zf to z = L. Note that, by hypothesis, xi < 0 and thus zf > 0.  

(1) Pressure drop in the single-phase tract 

In the single-phase tract z = 0 to  zf , the pressure drop can be computed as in case 
(a), with the obvious substitution of zf for L; in particular, the expansion term can be 
neglected. Thus, apart from the localized loss in the valve, one has:
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|Δp|SP  = Fz  f G2 (8.9) 

(where “SP” stays for “single phase region”). Taking account of the expression of zf 
in Eq. (8.8), Eq. (8.9) becomes 

|Δp|SP  = −  
F J  f gxi 

q ' G3 (8.10) 

In the two-phase tract z = zf to L, the computation of both pressure drop 
components (i-ii) requires a more careful treatment. 

(2) Distributed frictional pressure loss in the two-phase tract 

The frictional term, following the classic procedure introduced by Lockhart and 
Martinelli (1949) and other authors, can be expressed for a generic elementary length 
dz as the product of two factors: 

|dp|FR  = |dp|FR,LOϕ2 
LO (8.11) 

in which |dp|FR,LO is the frictional loss that would be experienced if the whole fluid, 
with its total flow rate G, was liquid, while ϕLO 

2 is a two-phase friction multiplier. 
The first factor, in analogy with Eq. (8.5), can be expressed as 

|dp|FR,LO  = FdzG2 (8.12) 

The second factor, i.e. the two-phase multiplier, following Chisholm (1983) and 
several other authors, can be approximated, for the case of turbulent flow in both 
phases, by

ϕ2 
LO  = (1 − x)2

(
1 + 

21 

XLM  
+ 

1 

X2 
LM

)
(8.13) 

in which XLM is the dimensionless Lockhart-Martinelli parameter, defined as 

XLM  =
(
1 − x 
x

)0.9(
ρg 

ρ f

)0.5(
μ f 
μg

)0.1 

(8.14) 

XLM 
2 is the ratio between the frictional pressure drops that would occur if only 

the liquid fraction (1 − x)G and only the vapour fraction xG, respectively, flowed 
through the duct. 

Substituting Eqs. (8.12) and (8.13) into Eq. (8.11) yields 

|dp|FR  = FdzG2 (1 − x)2
(
1 + 

21 

XLM  
+ 

1 

X2 
LM

)
(8.15)
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Fig. 8.3 Two-phase “liquid only” friction multiplier ϕLO 
2 as a function of the quality x for water: 

empirical correlation (8.13) (solid lines) versus quadratic approximation (8.16) (broken lines) at 
different saturation pressures and temperatures

For physical consistency reasons, ϕLO 
2 must attain (I) the value 1 for x = 0 (“liquid 

only” condition), and (II) the value ϕ = (ρ f /ρg)(μg/μf )0.2 for x = 1 (“gas only” 
condition). Moreover, (III) at intermediate values of the quality x, ϕLO 

2 is known 
to exhibit a maximum M, the more marked as lower the pressure. Equation (8.13) 
satisfies conditions (I) and (III) but not (II), despite its widespread adoption in the 
literature. A simple quadratic expression that satisfies all three conditions (I)–(III) is 

ϕ2 
LO  = 

(x − x1)(x − x2) 
x1x2 

(8.16) 

Equation (8.16) implicitly satisfies condition (I) for any x1, x2; the values of x1 < 
0 and x2 > 1 are computed (for each given system pressure) by imposing condition 
(II) and by imposing the best agreement with correlation (8.13) forϕLO 

2 in the range 
in which it is applicable (say, x < 30%). 

For example, Fig. 8.3 compares (in a logarithmic plot) the two-phase “liquid only” 
friction multiplierϕLO 

2 as computed by Eq. (8.13) and by its quadratic approximation 
(8.16) for water at different values of the system’s pressure (and corresponding 
saturation temperature). 

Note that Eq. (8.16) is an acceptable approximation of the well-established 
Eq. (8.13) at relatively low qualities, where this latter is consistently applicable, 
and exhibits the correct asymptotic behaviour for x → 1, where Eq. (8.13) fails. 

Once Eq. (8.16) is used for ϕLO 
2, Eq.  (8.11) becomes 

|dp|FR  = Fdz 
(x − x1)(x − x2) 

x1x2 
G2 (8.17)
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Substituting xi + (q'z)/(GJfg) for  x in force of Eqs. (8.2, 8.17) becomes, after a 
few passages: 

|dp|FR  = 
F 

x1x2

[
(xi − x1)(xi − x2)G2 + (2xi − x1 − x2) 

q 'z 
J f g  

G + 
q '2z2 

J 2 f g

]
dz 

(8.18) 

By integrating between z = zf (beginning of the two-phase region) and z = L, one 
has 

|Δp|FR  = 
F 

x1x2 
×

[
(xi − x1)(xi − x2)

(
L − z f

)
G2 + (2xi − x1 − x2) 

q '

2J f g

(
L2 − z2 f

)
G 

+ 
q '2 

3J 2 f g

(
L3 − z3 f

)]
(8.19) 

Finally, by substituting Eq. (8.8) for  zf , Eq.  (8.19) becomes after a few passages: 

|Δp|FR  = 
F 

x1x2 
× 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

J f g  
q '

[
(xi − x1)(xi − x2)xi − x2 i

(
xi − 

x1 + x2 
2

)
+ 

x3 i 
3

]
G3 

+(xi − x1)(xi − x2)LG2 +
(
xi − 

x1 + x2 
2

)
q '

J f g  
L2 G + 

q '2 

3J 2 f g  
L3 

⎫⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
(8.20) 

This can be more synthetically written as 

|Δp|FR  = 
F 

x1x2

(
a3G

3 + a2LG2 + a1L2G + a0L3
)

(8.21) 

provided 

a3 = 
J f g  
q '

[
(xi − x1)(xi − x2)xi − x2 i

(
xi − 

x1 + x2 
2

)
+ 

x3 i 
3

]
(8.22) 

a2 = (xi − x1)(xi − x2) (8.23) 

a1 =
(
xi − 

x1 + x2 
2

)
q '

J f g  
(8.24)
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a0 = 
q '2 

3J 2 f g  
(8.25) 

(3) Expansion term in the two-phase tract 

The expansion term in the two-phase region from zf to L can be written as 

|Δp|EX  P  =
[
ρ f u2 f (1 − α) + ρgu

2 
gα

]
o 
− [

ρ f u2 f
]
z f 

(8.26) 

because α = 0 at  z = zf (beginning of the two-phase region). At zf one has

[
ρ f u2 f

]
z f = 

G2 

ρ f A2 
(8.27) 

whereas at the outlet, being uf = [G(1 − x)]/[ρ f (1 − α)A] and ug = [Gx]/[ρgαA], 
one has

[
ρ f u2 f (1 − α) + ρgu

2 
gα

]
o 

= 
G2 

ρ f A2

[
(1 − x)2 

1 − α 
+ 

ρ f 
ρg 

x2 

α

]
o 

= 
G2 

ρ f A2
ψo (8.28) 

in which the term ψ in square brackets is a function of x, α and of the densities (i.e., 
of the system’s pressure). Therefore, the expansion term in Eq. (8.26) can be written 

|Δp|EX  P  = 
G2 

ρ f A2 
[ψo − 1] (8.29) 

The void fraction can be expressed as a function of x and of the densities by using 
the fundamental relation between x, a and S (slip ratio ug/uf ): 

α = 1 

1 + S ρg 

ρ f 
1−x 
x 

(8.30) 

and computing S by Chisholm’s (1983) correlation: 

S =
/
1 + x

(
ρ f 
ρg 

− 1
)

(8.31) 

In this way, ψ becomes a function of x and densities (i.e., pressure) only. The 
solid lines in Fig. 8.4 illustrate its behaviour for water at different pressures. Broken 
lines show the simple quadratic approximation

ψ = 1 + 
ρ f − ρg 

ρg 
x2 (8.32)
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Fig. 8.4 Function ψ, Eq.  (8.28), for water as a function of the quality x: values computed from 
Chisholm’s slip correlation (solid lines) versus quadratic approximation (8.32) (broken lines) at 
different saturation temperatures 

which has the correct behaviour at x = 0 and x = 1 and approximates fairly well the 
computed profile of ψ provided the system’s pressure p is sufficiently high (say, p 
≥ 40 bar as for the quadratic approximation of the frictional term). 

By using the approximation (8.32) forψ, the expansion term (8.29) can be written 
as 

|Δp|EX  P  = 
ρ f − ρg 

ρ f ρg 

x2 o 
A2 

G2 = 
v f gx2 o 
A2 

G2 (8.33) 

in which vfg = 1/ρg − 1/ρ f = vg − vf is the difference between the specific volumes 
of the gas and liquid phases. 

By substituting xi + q'L/(GJfg) for  xo in force of Eq. (8.2), Eq. (8.33) becomes: 

|Δp|EX  P  = 
v f g  
A2

(
x2 i G

2 + 2xi 
q 'L 
J f g  

G + 
q '2L2 

J 2 f g

)
(8.34) 

(4) Summary pressure loss for case b 

By assembling Eqs. (8.21) for the frictional two-phase pressure drop and (8.34) for  
the expansion term, the overall pressure drop in the two-phase region from z = zf to 
z = L in case (b) (G0 < G < G1, 0 < xo < 1) can be written as 

|Δp|T P  = 
F 

x1x2

(
a3G

3 + a2LG2 + a1L2 G + a0L3
)

+ 
v f g  
A2

(
x2 i G

2 + 2xi 
q 'L 
J f g  

G + 
q '2L2 

J 2 f g

)
(8.35)
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Finally, by adding the pressure drop KG2 in the foot valve and the pressure drop in 
the single-phase (subcooled liquid) region from z = 0 to  z = zf , given by Eq. (8.10), 
one has 

pi − po =KG2 − 
F J  f gxi 

q ' G3 + 
F 

x1x2

(
a3G

3 + a2LG2 + a1L2 G + a0L3
)+ 

v f g  
A2

(
x2 i G

2 + 2xi 
q 'L 
J f g  

G + 
q '2L2 

J 2 f g

)
(8.36) 

The terms in Eq. (8.36) can be ordered by decreasing powers of G yielding 

(pi − po)case b = F
(

a3 
x1x2 

− 
J f gxi 
q '

)
G3 +

[
K +

(
Fa2L 

x1x2 
+ 

v f gx2 i 
A2

)]
G2+

(
Fa1L 

x1x2 
+ 

2v f gxi 
A2 

q '

J f g

)
LG  +

(
Fa0L 

x1x2 
+ 

v f g  
A2 

q '2 

J 2 f g

)
L2 (8.37) 

with the terms a0…a3 given by Eqs. (8.22)–(8.25). 

Case (c) (G ≤ G0, xo ≥ 1) 

This case exhibits single-phase subcooled liquid flow up to a location zf , two-phase 
flow at increasing quality from zf to, say, zg and superheated vapour flow in the 
remaining end region L − zg. 

The location zg is provided by Eq. (8.2) written for x = 1: 

xi + 
q 'zg 
G J  f g  

= 1 → zg = 
GJ  f g(1 − xi ) 

q ' (8.38) 

(1) Pressure loss in the single-phase tract 

The pressure drop in the single-phase tract z = 0 to  zf , can be computed as in case 
(b), Eq. (8.10), which therefore does not need to be repeated here. 

(2) Pressure loss in the two-phase tract 

The distributed frictional pressure loss between z = zf (beginning of the two-phase 
region) and z = zg (end of the two-phase region) can be obtained as that for case (b), 
Eq. (8.20), with the substitution of zg for L: 

|Δp|FR  = 
F 

x1x2 
× (

a3G
3 + a2zgG2 + a1z2 gG + a0z3 g

)
(8.39) 

where the terms a0…a3 are given by Eqs. (8.22)–(8.25). By substituting GJfg(1 − 
xi)/q' for zg in force of Eqs. (8.38, 8.39) and simplifying, becomes:

https://avxhm.se/blogs/hill0



8 Stability of Two-Phase Flow in a Heated Duct 59

|Δp|FR  = 
F J  f g  
q '

[
1 − 

x1 + x2 
2x1x2 

+ 1 

3x1x2

]
G3 (8.40) 

The expansion loss in the two-phase region between z = zf (where x = 0, α = 0) 
and z = zg (where x = 1, α = 1) can be written as 

|Δp|EX  P  = ρgu
2 
g − ρ f u2 f = 

v f g  
A2 

G2 (8.41) 

(3) Pressure loss in the superheated vapour tract 

The pressure drop between z = zg (end of the two-phase region) and z = L (channel 
outlet) consists only of single-phase (superheated vapour) frictional pressure losses, 
while expansion losses can be neglected. Therefore, in analogy with Eq. (8.7), one 
has: 

pg − p0 = 
f
(
L − zg

)
2Dρg A2 

G2 = F 
ρ f 
ρg

(
L − zg

)
G2 (8.42) 

By substituting GJfg(1 − xi)/q' for zg in force of Eqs. (8.41, 8.42) becomes: 

pg − p0 = −
[
F 

ρ f 
ρg 

J f g(1 − xi ) 
q '

]
G3 +

[
F 

ρ f 
ρg 

L

]
G2 (8.43) 

(4) Summary pressure loss for case c 

By summing the various terms (8.10), (8.40), (8.41) and (8.43), adding the local loss 
KG2, simplifying and ordering, as usual, by decreasing powers of G, an expression 
containing only the second and third powers of G is obtained: 

(pi − po)case c = 
F J  f g  
q '

[
− 
x1 + x2 
2x1x2 

+ 1 

3x1x2 
− 

ρ f − ρg 

ρg 
(1 − xi )

]
G3 +

[
K + 

v f g  
A2 

+ F 
ρ f 
ρg 

L

]
G2 

(8.44) 

Complete solution 

Equations (8.7), (8.37) and (8.44) are the complete solution for pressure drop, respec-
tively in the three ranges of flow rate: (a) G ≥ G1 (xo ≤ 0, single-phase subcooled 
liquid flow throughout L); (b) G0 < G < G1 (0 <  xo < 1, single-phase subcooled liquid 
flow up to zf and two-phase flow in the remaining tract L − zf ); and (c) G ≤ G0 (xo 
≥ 1, single-phase subcooled liquid flow up to zf , two-phase flow from zf to zg and 
superheated vapour flow in the remaining region L − zg). 

Figure 8.5 reports the results obtained for water at Tsat = 200 °C (psat = 15.55 bar) 
flowing in a pipe with L = 4m,  D = 1 cm,  q' = 20 kW/m, xi = −0.05 (subcooled inlet
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Fig. 8.5 Pressure drop in a heated horizontal channel for water at Tsat = 200 °C. Broken lines: 
partial solutions (8.7), (8.37) and  (8.44) in the high, intermediate and low flow rate ranges. Solid 
line: complete curve 

at T ≈ 188 °C), K = 104 Pa s/kg. Under these conditions one has G0 ≈ 0.04 kg/s, 
G1 ≈ 0.833 kg/s. Note that, in the intermediate flow rate range (e.g. G = 0.3 kg/s), 
pressure drops as high as ~ 3.5 bar can be obtained. Since this value is not much 
smaller than the mean system pressure (15.55 bar), it is clear that the assumptions 
made of constant fluid properties are barely tenable. 

The simple polynomial expression of (pi − po) proposed here allows a rapid 
evaluation of the influence of the parameters affecting the pressure drop (length L, 
diameter D and linear power rate q' of the channel, mean system pressure p, degree  
of subcooling xi, value of the foot hydraulic resistance K). 

For example, Fig. 8.6 shows the influence of the inlet subcooling (expressed as 
negative quality xi) with all other parameters fixed at the values indicated. As the 
subcooling decreases (i.e., as xi increases) the overall pressure drop increases while 
its maximum is attained at larger values of the flow rate G and tends to become more 
shallow, until it disappears for xi ≥ −0.025.

Figure 8.7 shows the surface G = G(pi − po, K) for the conditions indicated in 
the caption. It can be clearly seen that a cusp catastrophe exists (Arnold 1992), the 
function G being triple-valued for low K (whence the existence of the instability 
region delimited by the broken grey lines) and becoming single-valued only in the 
range K ≥ ~ 8 · 105 Pa s/kg, where the fold vanishes and the instability region 
disappears.

As a further step towards the a priori  assessment of stability conditions, note that 
unstable conditions, if any, can only occur in the intermediate range of flow rates G0 

< G < G1, where single-phase and two-phase flow regions coexist in the channel (0 <
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Fig. 8.6 Pressure drop in a heated horizontal channel for water at Tsat = 150 °C and different 
values of inlet subcooling (expressed as a negative quality xi)

Fig. 8.7 Pressure drop in a heated horizontal channel for water at Tsat = 150 °C and different 
values of the inlet hydraulic resistance K (in Pa s/kg)

xo < 1). In this range, the pressure drop is given by Eq. (8.37), which can be written 
as 

pi − po = aG3 + bG2 + cG + d (8.45) 

with
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a = F
(

a3 
x1x2 

− 
J f gxi 
q '

)
(8.46) 

b = K +
(
Fa2L 

x1x2 
+ 

v f gx2 i 
A2

)
(8.47) 

c = L
(
Fa1L 

x1x2 
+ 

2v f gxi 
A2 

q '

J f g

)
(8.48) 

d = L2

(
Fa0L 

x1x2 
+ 

v f g  
A2 

q '2 

J 2 f g

)
(8.49) 

and the terms a0…a3 given by Eqs. (8.22)–(8.25). 
Unstable flow may exist only if the polynomial function (pi − po) = f (G) in  

Eq. (8.45) exhibits a relative maximum and a relative minimum, i.e. if the equation 
d(pi − po)/dG = 0 has at least one real root. By deriving Eq. (8.45) with respect to 
G this condition can be written as 

d 

dG 
(pi − po) = 3aG2 + 2bG + c = 0 (8.50) 

which possesses real roots if

Δ = b2 − 3ac ≥ 0 (8.51) 

By using Eqs. (8.46)–(8.48), in addition to Eqs. (8.22)–(8.24), to obtain a, b 
and c, Δ can be computed for any combination of the operating parameters of the 
boiling channel and the existence of instability conditions can be checked. Equations 
providing a priori  the limiting values of parameters such as K, L, q' and so on for 
instabilities to occur might also be derived from Eq. (8.51).
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Chapter 9 
Heat Transfer in Spray Cooling 
as an Inverse Problem 

In any particular natural science, one encounters genuine 
scientific substance only to the extent that mathematics is present 
(Immanuel Kant) 

Abstract The wall superheat—wall heat flux relationship in the spray cooling of a 
flat rectangular target is derived here from empirical time–temperature histories at 
an internal point. This is a classic transient inverse heat conduction problem and, in 
the present case, is solved by using exact expressions, due to Stefan (1889), for the 
wall temperature and the wall heat flux as functions of the midplane temperature and 
its time derivatives of increasing order. 

Suppose that we want to investigate heat transfer in spray cooling by measuring the 
transient response of the midplane temperature Tmp(t) in a cooled slab (target) and 
reconstructing from this the time histories of both the surface temperature Tw(t) and 
the surface heat flux q''

w(t), so that a “boiling curve” representing q''
w as a function 

of Tw (or Tw − Tsat) can be drawn. 
Figure 9.1 shows the experimental arrangement used by Ciofalo et al. (2007). The 

target is first pre-heated up to 450–500 °C by an induction heater and then rapidly 
placed between twin spray jets issuing from identical nozzles under pressures ranging 
from 2 to 20 bar.

Figure 9.2 shows a detail of the target, made up of two aluminum slabs 
sandwiching three thin-foil thermocouples of negligible thermal inertia.

As it has been formulated above, the problem is a typical transient inverse heat 
conduction problem (Carslaw and Jaeger 1959). It can be reconducted to a Volterra 
equation of the first kind: 

T(t) = 
t∫

a 

K(t, ϑ)  · q(ϑ)dϑ (9.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Ciofalo, Thermofluid Dynamics, UNIPA Springer Series, 
https://doi.org/10.1007/978-3-031-30470-5_9 

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30470-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-30470-5_9


64 9 Heat Transfer in Spray Cooling as an Inverse Problem

Fig. 9.1 Sketch of the test apparatus to investigate spray cooling

in which T(t) is an array containing nT (≥1) known time histories (typically, measured 
internal temperatures as functions of time), K(t, ϑ) is a given continuous kernel func-
tion and q(ϑ) is an array of nq time-dependent unknown parameters to be determined 
(typically describing surface heat flux, surface temperature or surface heat transfer 
coefficient). In the present application, T(t) is a single temperature–time history 
(average of the three mid-plane TC readings) while q(ϑ) includes the time histo-
ries of both the surface heat flux q''

w and the surface temperature Tw, both assumed 
uniform over the target’s surface. 

In most inverse heat conduction problems an explicit expression for the kernel 
function K(t, ϑ) and/or an explicit solution of Eq. (9.1) cannot be determined, and 
the problem is formulated as a best estimate one (Beck 1970): minimise the error 
function (in the least square sense) 

E(q) = ||TEX  P  − TDI  R||2 2 (9.2) 

with respect to the array q of parameters describing the time history of the quantities to 
be determined (in the present case, the surface heat flux and the surface temperature).
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Fig. 9.2 Detail of the 
aluminum target

The right hand side of Eq. (9.2) is the square of the 2-norm of the array of differences 
between TEXP (the experimental history of T) and TDIR (the history of T obtained 
by solving the corresponding direct problem in which q is imposed as a boundary 
condition). The error function can be defined in different modified ways to include 
a regularization parameter (Tikhonov and Arsenin 1977). 

The present case, however, is one of the rare cases in which an exact (analytic) 
solution of the inverse conduction problem exists. It was given by Stefan as early in 
1889, in the context of a paper dedicated to ice formation, and can be written 

Tw(t) = Tmp(t) + 
1 

2 
τ 
dTmp 

dt
+ 

1 

24 
τ 2 

d2 Tmp 

dt2 
+ ... (9.3) 

q ''
w(t) = −λ 

δ

[
τ 
dTmp 

dt 
+ 

1 

6 
τ 2 

d2 Tmp 

dt2 
+ ...

]
(9.4) 

in which τ = αδ2/α is the conductive time constant of the target (whose half-thickness 
is δ, see Fig. 9.2) and α = λ/(ρcp) is its thermal diffusivity. Further terms in the 
series give a negligible contribution to Tw and q''

w and can be omitted; their eval-
uation would require the computation of third- and higher-order time derivatives, 
very difficult from uncertainty-affected experimental data. Stefan’s solution is valid 
for a uniform initial temperature, an assumption well satisfied in the experiments, 
and for a symmetry condition in the target’s midplane; this is why experiments were 
conducted with (supposedly symmetric) two-side cooling.
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Fig. 9.3 Qualitative relation between mid-plane time–temperature histories and reconstructed wall 
temperature and wall heat flux (arbitrary data) 

The relation between the time history of the mid-plane temperature and the corre-
sponding histories of wall temperature and wall heat flux, as predicted by Eqs. (9.3) 
and (9.4), is schematically elucidated in Fig. 9.3. Note that the heat flux peak corre-
sponds to the steepest tract of the mid-plane temperature descent and that, for the 
present data, the wall temperature remains close to the mid-plane one throughout the 
transient. 

Even truncated to the second term, the series in Eqs. (9.3) and (9.4) are obviously 
highly sensitive to noise. Unfortunately, temperature–time histories exhibit signifi-
cant noise, with special regard to interference from the 50-Hz grid. Therefore, some 
amount of data filtering is mandatory before applying Eqs. (9.3) and (9.4). Prelim-
inary tests showed that the best results are obtained by using a Gauss filter, i.e. by 
substituting for the original signal Tmp(t) its smoothed counterpart

⟨
Tmp

⟩
(t) = 1 √

2πσ  

+∞∫

−∞ 

Tmp(ϑ) exp
[
− 

(t − ϑ)2 

2σ 2

]
dϑ (9.5) 

in which σ is the filter half-width. σ must be large enough to eliminate most of the 
noise but small enough to preserve the overall behavior of the signal. In practice, the 
integral in Eq. (9.5) can be restricted to the interval [t − nσ, t + nσ] with n = 2 −
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Fig. 9.4 Unfiltered (symbols) and filtered (lines) signal 

4; a special treatment must be adopted for the initial region of the temperature–time 
history where t < nσ. 

For example, Fig. 9.4 reports a short segment of a temperature–time history, 
corresponding to a data acquisition frequency of 1000 Hz. Interference from the 
grid (f = 50 Hz) is clearly visible. The effect of applying two Gaussian filters, of 
half-widths σ of 20 and 5 ms, respectively, is shown. Clearly, only the filter with σ = 
20 ms (=1/f ) is effective in eliminating the grid-related noise, which is still detectable 
in the signal filtered at σ = 5 ms.  

Figure 9.5 reports two typical filtered midplane temperature (Tmp) histories, 
obtained for a given nozzle (SS3), an upstream pressure of 2 bar and a nozzle-target 
orthogonal distance L of 0.1 or 0.2 m.

The experiments reported by Ciofalo et al. (2007) gave for this configuration a 
drop mean volume diameter of 1.38 mm (mean volume 1.376 · 10−9 m3, i.e. 1.376 
μL) and a drop velocity of 17.2 m/s. The numerical drop fluence varied roughly as 
L−2 and was 2.62 · 106 m−2 s−1 for L = 0.1 m and 7.99 · 105 m−2 s−1 for L = 0.2 m. 
The corresponding mass flow rates G impinging on the target were 3.6 kg m−2 s−1 

for L = 0.1 m and 1.1 kg m−2 s−1 for L = 0.2 m. Therefore, the shorter the distance L, 
the faster the cooling transient; for L = 0.1 m peak cooling rates well above 1000 K/s 
were obtained at t ≈ 0.3–0.4 s. In all cases, the cooling transient was very rapid and 
was practically completed after a few seconds.
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Fig. 9.5 Typical midplane temperature histories

Figure 9.6 reports corresponding time histories of the wall heat flux q''
w, as  

computed from the above time–temperature curves by applying Eq. (9.4). Despite 
filtering, the curves still exhibit a significant amount of noise, especially that corre-
sponding to the larger nozzle-target distance of 0.2 m, yielding a lower heat flux and 
thus a lower signal-to-noise ratio. The peak heat flux (corresponding to the critical 
heat flux, i.e. to the condition known as Departure from Nucleate Boiling, or DNB) 
is ~3.64 MW m−2 for L = 0.1 m and ~1.52 MW m−2 for L = 0.2 m.

Corresponding boiling curves, in which the wall heat flux q''
w is reported against 

the wall temperature Tw as given by Eq. (9.3), are shown in Fig. 9.7. The fluid’s 
temperature Tf (293.15 K, or 20 °C) and the saturation temperature Tsat (373.15 K, 
or 100 °C) are evidenced. As in Fig. 9.6, a certain residual amount of noise can be 
observed.

Figure 9.8 shows the main physical parameters that can be extracted from boiling 
curves like those in Fig. 9.7. In particular, they include the subcooled (single-phase) 
heat transfer coefficient h1, which is the slope of the q''

w-Tw curve in its leftmost 
region Tw ≤ Tsat , and the maximum, or critical, heat flux q''

c, attained at a wall 
temperature Twc and corresponding to Departure from Nucleate Boiling (DNB) and 
transition to partial film boiling. A further feature of the curves, i.e., the Leidenfrost 
temperature, corresponding to transition from partial to complete film boiling, is 
not clearly visible in the experimental curves of Fig. 9.5 because it is close to the 
maximum temperature investigated (470 °C, or 743.15 K).

By applying the methodology sketched in Fig. 9.8 to the curves in Fig. 9.7, one 
obtains:
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Fig. 9.6 Wall heat flux histories computed from the Tmp-t histories in Fig. 9.5

Fig. 9.7 Boiling curves corresponding to the q”-t time histories in Fig. 8.6

• For L = 0.1 m (G = 3.6 kg m−2 s−1): h1≈ 8000 Wm−2 K−1, q''
c = 3.64 · 106 

Wm−2, Twc = 529 K; 
• For L = 0.1 m (G = 1.1 kg m−2 s−1): h1≈ 3100 Wm−2 K−1, q''

c = 1.52 · 106 
Wm−2, Twc = 496 K.
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Fig. 9.8 Main features that 
can be extracted from boiling 
curves, including the 
single-phase heat transfer 
coefficient h1 and the critical 
heat flux q''

c (arbitrary data)

Of course, the single-phase heat transfer coefficient h1 can be obtained only 
approximately due to the “noisy” nature of the boiling curve, while the estimate 
of q''

c and Twc can be more accurate since it concerns an extremal point. 
The above results show that the DNB temperature increases with the mass flow 

rate. They also show that h1 and q''
c remain roughly proportional, but they both 

increase less than linearly with the mass flow rate G (and thus with the numerical 
drop fluence), suggesting that the process of heat transfer to a single drop becomes 
less efficient when the numerical density of impinging drops increases. 

This last concept can better be quantified by comparing the actual heat flux q''
w 

(as a function of the wall temperature Tw) with the corresponding maximum possible 
heat flux, associated with the complete transfer of both sensible heat and vaporization 
heat from the hot wall to the impinging drops. This latter quantity is 

q ''
max = G

[
cp, f

(
Tw − T f

)]
if Tw ≤ Tsat (9.6) 

q ''
max = G

[
cp, f

(
Tsat − T f

) + J f g  + cp,g(Tw − Tsat )
]

if Tw > Tsat (9.7) 

in which G, Tf and Tsat have been defined previously while cp,f and cp,g are the 
specific heats of the liquid and vapor phases (in J kg−1K−1) and Jfg is the latent heat of 
vaporization (in J kg−1). Note that q''

max increases discontinuously in correspondence 
with Tw = Tsat . 

Figure 9.9 shows the quantity η = q''/q''
max (cooling efficiency) as a function of 

Tw for both cases L = 0.1 and L = 0.2 m.
Note that, being built as a ratio between noise-affected quantities, η is character-

ized by a highly irregular behaviour, especially in the single-phase region where it 
oscillates between ~0.3 and ~0.7. In the boiling region η becomes more regular but
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Fig. 9.9 Cooling efficiency as a function of the wall temperature

also significantly smaller, attaining maxima of ~0.25 for L = 0.1 m and ~0.38 for L 
= 0.2 m in correspondence with the critical heat flux. Over most of the temperature 
range investigated, η is larger for the larger nozzle-target distance, i.e. for the smaller 
numerical drop fluence. 

In conclusion, an inverse heat transfer problem was dealt with on the basis of a 
classic analytic treatment by carefully designing the experimental setup so that it 
exhibited the required symmetries. In particular, two-side cooling was crucial for 
Stefan’s analytic solution to be applicable. 

Noise in the experimental data was still a major concern; the relatively crude 
filtering algorithm used here was sufficient to obtain acceptable results, but a more 
sophisticated approach would certainly improve their quality.



Chapter 10 
Apparent Sherwood Number in Mass 
Transfer with Wall Transpiration 

In questions of science, the authority of a thousand is not worth 
the humble reasoning of a single individual 
(Galileo Galilei) 

Abstract This problem regards the apparent Sherwood number in simultaneous 
diffusive and convective mass transfer from or into a transpiring wall. This is the 
Sherwood number that would explain the observed overall mass flux from or into 
the wall if there were no transpiration, i.e. no convective contribution to mass trans-
port. Using only elementary definitions of diffusive and convective mass fluxes, a 
complete classification of the possible cases is presented and a synthetic map is 
built representing the apparent Sherwood number as a function of two dimensionless 
parameters, named “transpiration” and “flux” numbers. 

A transpiring wall is a surface bounding a flow region through which fluid can pass 
either into the main stream (injection) or out of it (suction). As sketched in Fig. 10.1, 
transpiration may occur either through a porous wall (a) or through macroscopic 
orifices in an otherwise impermeable wall (b).

Here, we are mainly concerned with the influence of transpiration on mass transfer 
to or from a fluid flowing in a duct and bounded by a porous surface (e.g. a membrane). 
A typical example is the process of toxicant removal from the blood in hollow-
fiber haemodiafiltration modules (Cancilla et al. 2022), which is driven partly by a 
concentration difference between the lumen-side fluid (blood) and the shell-side solu-
tion (dialysate), partly by ultrafiltration (caused in its turn by a pressure difference) 
through the membrane, either towards the dialysate (forward filtration) or towards 
the blood (back filtration). 

Of course, transpiration is itself a mass transfer process; however, we will restrict 
this notion to the transport of a species (“solute”, subscript “S”) different from the 
carrying fluid (“solution”, subscript “W”—often water). Note that the terms “solute” 
and “solution” are not used here in their rigorous physico-chemical sense, but may 
well denote a solid suspended in a liquid. Many of the equations governing the
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Fig. 10.1 Transpiring walls with injection or suction. a Porous. b Perforated

phenomenon and of the conclusions drawn can be applied, with small changes, to a 
process of heat (rather than mass) transfer. 

With reference to Fig. 10.2, in the presence of transpiration the total solute mass 
flux into the solution, jS (measured in kg m−2 s−1) is the sum of a diffusive component 
jdiff and of a convective component jconv: 

jS = jdi  f  f  + jconv = −ρ D 
∂C 

∂y

|
|
|
|
w 

+ ρvCw (10.1)

in which ρ is the fluid (solution) density in kg/m3, D is the solute diffusivity in m2/s, 
C is its concentration in kg/kg, w denotes the wall, y is the direction normal to it and 
towards the fluid, and v is the transpiration velocity in m/s. All mass fluxes are taken 
as positive if directed into the fluid. Note that the expression of the diffusive flux as 
proportional to the concentration gradient at the wall holds also in turbulent flow, 
because there will always exist a near-wall diffusive sublayer in which mass transfer 
occurs only by diffusion. 

In the no transpiration case, graph (a), the mass flux at the wall is purely diffusive. 
For positive transpiration (injection, v > 0), graph (b), Cw, Cw − Cb and the diffusive 
mass flux—ρD(∂C/∂y)w decrease with respect to the no transpiration case (a), but 
this reduction is compensated by a positive (into the fluid) convective mass flux 
ρ|v|Cw, so that the overall mass transfer rate may increase. On the contrary, graph (c) 
is for a channel with negative transpiration (suction, v < 0) of the same intensity as 
in case (b). Here Cw, Cw − Cb and the diffusive mass flux—ρD(∂C/∂y)w increase 
with respect to the non-transpiring case (a), but this increment is compensated by 
a negative (out of the fluid) convective mass flux—ρ|v|Cw, so that the overall mass 
transfer coefficient rate may decrease with respect to the no transpiration case.
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Fig. 10.2 Concentration profiles and mass fluxes with non-transpiring and transpiring walls for the 
same values of the bulk concentration Cb and total mass flux jS . a No transpiration. b Injection. c 
Suction. Adapted from Ciofalo et al. (2019)

In all cases, the diffusive mass transfer coefficient is defined as 

kdi  f  f  = jdi  f  f  
ρ(Cw − Cb) 

= − D 

Cw − Cb 

∂C 

∂ y

|
|
|
|
w 

(10.2) 

It is a local quantity, is measured in m/s and is often made dimensionless as a 
(diffusive) Sherwood number 

Shdi  f  f  = kdi  f  f  
deq 
D 

= − deq 
Cw − Cb 

∂C 

∂y

|
|
|
|
w 

(10.3) 

By analogy with kdiff and Shdiff , also a convective mass transfer coefficient and a 
convective Sherwood number can be defined as 

kconv = jconv 

ρ(Cw − Cb) 
= vCw 

Cw − Cb 
(10.4)
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Fig. 10.3 Mass transfer in 
cross-flow filtration and 
reverse osmosis, with zero 
net solute flux. Adapted from 
Ciofalo et al. (2019) 

Shconv = kconv 
deq 
D 

= 
vdeq 
D 

Cw 

Cw − Cb 
(10.5) 

Finally, an apparent (total) mass transfer coefficient k and an apparent Sherwood 
number Sh can be defined as 

k = jS 
ρ(Cw − Cb) 

= kdi  f  f  + kconv (10.6) 

Sh = k 
deq 
D 

= Shdi  f  f  + Shconv (10.7) 

A special case of mass transfer with transpiration occurs in cross-flow filtration 
processes, including reverse osmosis (Fig. 10.3). 

Here, the solute concentration builds up near the wall, causing a wall-to-fluid 
diffusive flux of solute jdiff = −  ρD(∂C/∂y). At the same time, the (negative) y-
component v of the solution velocity causes a convective flux jconv = ρvC directed 
from the fluid to the wall. At the wall (y = 0), the two fluxes compensate each other 
(for a perfectly selective membrane), so that
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jS = −ρ D 
∂C 

∂y

|
|
|
|
w 

+ ρvCw = 0 (10.8) 

which is just a special case of Eq. (10.1). 
In these cases, although the net solute flux jS is nil, Eq. (10.8) is still required to 

establish a link between the transpiration velocity v and the wall concentration Cw. 
More precisely, if the diffusive mass transfer coefficient kdiff is known, one has − 
D(∂C/∂y)w = kdiff (Cw − Cb), which, together with Eq. (10.8), explicitly gives Cw 

= Cbkdiff /(kdiff + v). If kdiff is not known (for example, because the channel has a 
complex geometry or is filled with a spacer/mixing promoter), then Eq. (10.8) plays 
the role of a Robin wall boundary condition for the concentration C, allowing—once 
v is imposed—the solution of a solute transport equation and thus the assessment of 
the C profile and, in particular, of Cw (Amokrane et al. 2015). 

In the following, we will assume that concentration profiles across the channel 
are not excessively perturbed by transpiration, so that they remain self-similar at 
different transpiration intensities. Under this assumption, the diffusive Sherwood 
number Shdiff , Eq.  (10.3), coincides with that obtained under no-transpiration condi-
tions, Sh0, which depends on the duct’s geometry and on the boundary conditions. In 
the fully developed region, it is exactly known from analytical solutions for parallel 
flow in simple ducts such as circular pipes or plane channels. 

For physical reasons, the approximation Shdiff = Sh0 is the more accurate 
the smaller the transpiration intensity. Under this assumption, from the previous 
definitions one has: 

jS = jdi  f  f  + jconv = Sh0(Cw − Cb) 
ρ D 
deq 

+ jW Cw (10.9) 

For any given Cb, if the transpiration flux jW and the wall concentration Cw are 
known, then Eq. (10.9) directly provides the total solute mass flow rate jS . Conversely, 
if both the solute and the solution mass flow rates jS , jW are known, then the wall 
concentration can be obtained by solving Eq. (10.9) for  Cw: 

Cw = 
jS + Sh0Cbρ D/deq 
jW + Sh0ρ D/deq 

(10.10) 

Equations (10.9) and (10.10) solve the problem of determining jS for a given Cw 

or vice versa, once jW , Sh0 and the local bulk concentration Cb are known. 
The above results can be cast into a more elegant and physically meaningful form 

by expressing the apparent Sherwood number Sh as a function of dimensionless 
parameters. To this purpose, let us define the following local dimensionless numbers: 

Pe = 
Udeq 
D

(

Péclet number
)

(10.11) 

τ = 
jW 

ρ 
deq 
D 

1 

Sh0 
(transpiration number) (10.12)
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φ = 
jS 

ρCb 

deq 
D 

1 

Sh0 
(flux number) (10.13) 

in which ρ and D are the solution density and the solute diffusivity corresponding to 
the local bulk concentration Cb. Please note that these definitions are different from 
those used in Ciofalo et al. (2019). 

The transpiration number τ expresses the importance of the transpiration flow. 
Consistent with the above assumptions, it is positive for injection and negative for 
suction. The flux number φ expresses the importance of the net solute mass flux 
crossing the walls; also this quantity is positive for a net solute flow into the channel, 
negative for a net solute flow out of it. 

With some manipulations and taking account of the definitions in Eqs. (10.6), 
(10.7), (10.11)–(10.13), from Eq. (10.9) the following identity is obtained: 

R = 
Sh 

Sh0 
= 1+τ 

1 − τ/φ  
(10.14) 

This shows that, under the assumption of self-similar concentration profiles, the 
ratio R=Sh/Sh0 is a function of the dimensionless numbers τ and φ only, independent 
of the Péclet number and of Sh0. Isolines of Sh/Sh0 can be plotted in the (τ , φ) plane 
to build up the “universal” map shown in Fig. 10.4.

Note that the assumption of sufficiently small transpiration fluxes of solution and 
solvent, necessary for the approximation Shdiff = Sh0 to hold, translates into the 
fact that the identity (10.14), and thus its representative map in Fig. 10.4, must be  
restricted to absolute values of both τ and φ less than 1 (in this case, the map has 
been drawn for τ and φ ranging from −0.5 to +0.5). 

The map can be divided into several regions differing in the sign and relative 
importance of τ and φ and in the values correspondingly attained by the normalized 
Sherwood number Sh/Sh0. The various cases are discussed in detail in the following; 
the reported insets show the direction of solution and solute fluxes and the concen-
tration profile associated to each value, or range of values, of the polar coordinate θ 
defined by φ/τ = tan(θ ). 

• For θ = 0, i.e. along the τ > 0 half of the horizontal axis φ = 0, the net solute 
flux is nil but a positive solution transpiration flux exists (except at the origin), 
creating a concentration profile and a (negative) concentration drop ΔC = Cw − 
Cb. Therefore, one has Sh = 0. The origin itself is a singular case in which neither 
solution nor solute fluxes exist and Sh is undefined.
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Fig. 10.4 Isolines Sh/Sh0 = constant in the (τ , φ) plane. Red lines: Sh < 0; blue lines: Sh > 0. Note 
the ± ∞  asymptotes for φ = τ

• For 0 < θ < 45°, both the solute and the solution fluxes are positive (τ > 0,  φ > 0)  
but the convective solute flux is larger than the diffusive one (τ > φ) so that the
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wall concentration is still lower than the bulk concentration, yielding ΔC < 0 and 
thus Sh < 0. 

• For θ = 45°, i.e. along the bisecting line φ = τ (with φ > 0,  τ > 0), the solute 
influx is purely convective, so that ΔC = 0 and Sh diverges to −∞ on the side θ 
< 45° and to + ∞  on the opposite side θ > 45°. 

• For 45° < θ < 90°, both the solute and the solution fluxes are still positive (τ > 0,φ 
> 0), but the convective solute flux is less than the diffusive one (τ < φ); ΔC = 
Cw − Cb is now positive but less than it would be for the same jS in the absence of 
transpiration, so that Sh exceeds Sh0. This is the range in which blowing promotes 
mass or heat transfer from the wall to the fluid.
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• For θ = 90°, i.e. along the vertical axis (τ = 0, φ > 0), the classic condition of 
mass transfer from the wall to the fluid without transpiration is recovered, and Sh 
attains its reference value Sh0. 

• For 90° < θ < 180°, one has τ < 0,  φ > 0. The convective solute flux is negative 
but less, in absolute value, than the diffusive solute flux; for a given total solute 
flux, the diffusive component and ΔC = Cw − Cb (>0) are larger than for θ = 
90°, so that Sh becomes less than Sh0. This is the range in which suction inhibits 
mass or heat transfer from the wall to the fluid. 

• The case θ = 180° (left part of the horizontal axis φ = 0) is similar to the case θ 
= 0: the solute flux is nil but a negative solution transpiration flux exists, creating 
a concentration profile and a (positive) concentration drop Cw − Cb. Therefore, 
Sh = 0. This case is, basically, that previously discussed for reverse osmosis or 
filtration (Fig. 10.3).
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• For 180° < θ < 225°, both the solute and the solution fluxes are negative (τ < 0,  
φ < 0) but the convective solute flux dominates over the diffusive one (|τ | > |φ|), 
so that the wall concentration becomes higher than the bulk concentration and Sh 
< 0.  

• For θ = 225°, i.e. along the bisecting line φ = τ (with φ < 0,  τ < 0), the solute 
flux is purely convective, so that Cw − Cb = 0 and Sh diverges to −∞ on the side 
θ < 225° and to + ∞  on the opposite side θ > 225°. 

• For 225° < θ < 270°, both the solute and the solution fluxes are still negative (τ 
< 0,  φ < 0), but the solution outflow is relatively small (|τ | < |φ|); the result is 
a reduction of |Cw − Cb| (with Cw − Cb negative) and an increment of Sh with 
respect to the non-transpiring case (Sh > Sh0). In this range suction promotes 
mass or heat transfer from the fluid to the wall.
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• For θ = 270°, i.e. along the vertical axis (τ = 0, φ < 0), the classic condition of 
mass transfer (from fluid to wall) without transpiration is recovered, as in the case 
θ = 90°, and Sh = Sh0. 

• Finally, for 270° < θ < 360°, one has τ > 0,  φ < 0. The convective solute flux at 
the wall is positive but less, in absolute value, than the total (negative) solute flux; 
for a given total solute flux, the diffusive component and |Cw − Cb| increase (Cw 

− Cb is negative) with respect to the no-transpiration case, so that Sh becomes 
less than Sh0. In this range blowing inhibits mass transfer from fluid to wall (mass 
transfer analogue of transpiration cooling). 

The singularities at θ = 45° and 225° correspond to φ = τ . Under this condition, 
the combined effect of solution and solute inflow or outflow is equivalent to the inflow
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or outflow of a solution having a concentration equal to the bulk concentration in the 
channel: jS /= 0 but  Cw − Cb = 0, hence Sh = ±  ∞. 

Figure 10.4 suggests that not only the qualitative behaviour of the solution, but 
also the ratio Sh/Sh0 is mainly a function of the polar coordinate θ. In fact, an analysis 
of Eq. (10.14) shows that, for small values of τ , one has Sh/Sh0≈ (1 − τ /φ)−1, i.e. 
Sh/Sh0 is a function of the single dimensionless number φ/τ = tan(θ ) (ratio of flow 
and transpiration numbers). For larger values of τ , Sh/Sh0 in Eq. (10.14) becomes a 
function of τ and φ separately, and not only of their ratio. This behaviour corresponds 
to the departure of the iso-lines in Fig. 10.4 from straight lines crossing the origin, 
a departure which is particularly visible in the second and fourth quadrants where φ 
and τ have opposite signs.



Chapter 11 
One-Dimensional Mixed MHD 
Convection 

He is the wisest philosopher, who holds his theory with some 
doubt 
(Michael Faraday) 

Abstract This problem concerns the magnetohydrodynamics (MHD) flow in a verti-
cally indefinite rectangular channel. Internal heat generation and a nonuniform elec-
tric potential can optionally be present. If all present, magnetic field, gravity acceler-
ation and electric potential gradient are mutually orthogonal, while the temperature 
gradient is parallel to the electric potential one. The governing equations include, 
besides the fluid’s continuity, momentum and energy equations, also an equation for 
the electric potential and a phenomenological expression for the total current density. 
Exact solutions show that, according to the boundary conditions and the source terms, 
the system can operate in a variety of alternative regimes including direct and reverse 
EM pump, direct and reverse MHD generator, and a purely dissipative mode. In the 
presence of buoyancy, the system can also operate as a thermal engine converting 
thermal power into electrical and/or mechanical power. 

Magnetohydrodynamics (MHD) deals with the motion of electrically conducting 
fluids under the influence of a magnetic field (Moreau 1990). MHD phenomena are 
widely exploited in different industrial processes ranging from metallurgy to the 
production of pure crystals and nuclear fusion engineering (Ciofalo et al. 2005). 

Two- or three-dimensional MHD problems are rarely amenable to exact (analyt-
ical) solutions, and a combination of asymptotic analysis and numerical methods 
usually has to be employed (Bühler 1998; Di Piazza and Bühler 2000) which 
often obscures the meaning of the results since closed form expressions for various 
quantities of physical relevance cannot be written. 

However, exact solutions exist for one-dimensional MHD problems (Sposito and 
Ciofalo 2006). Consider, in particular, the configuration in Fig. 11.1: a plane channel, 
indefinite along y and z and delimited along x by two plane parallel walls placed at 
a distance D, in which a conducting fluid flows vertically with velocity w in the 
presence of a horizontal magnetic induction field B.
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Fig. 11.1 Lorentz forces and electric currents as an electrically conducting fluid flows upwards in 
a straight duct with velocity w in the presence of a horizontal magnetic induction field B 

The Lorentz forces F = qw × B acting on the (positive and negative) electric 
charges q convected by the fluid yield an induced current density ji = σw × B, σ 
being the fluid’s electric conductivity. At the same time, charge separation creates 
through the duct a gradient of electric potential which, in addition to any possibly 
present imposed potential difference between the two walls, results in a total potential 
ϕ and in a potential-driven electric current of density jd = −σ∇ϕ. The overall current 
density j = σ(w × B−∇ϕ) is shown in Fig. 11.1 as possessing the same direction 
of ji, but, depending on the boundary conditions, this is not necessarily true. The 
interaction between the current density j and the magnetic induction field B causes, 
in its turn, a magnetohydrodynamic force of volume density f = j × B, which may 
locally oppose or aid the fluid’s motion according to whether the induced or the 
diffusive current (i.e., ji or jd) prevails. 

The only nonzero velocity component is w, and the only nonzero electric current 
density component is jx. These quantities, as well as electric potential and tempera-
ture, depend only on x, while pressure depends only on z. Assuming, for greater gener-
ality, buoyancy forces to be present (which can be described by the usual Boussinesq 
approximation), the z-momentum equation for steady parallel flow can be written as 

0 = −  
dp 

dz 
+ μ 

d2 w 
dx2 

+ gβρϑ + jx B (11.1) 

in which g is the gravity acceleration, ϑ is the temperature relative to some arbitrary 
reference value and β is the fluid’s thermal expansion coefficient. Note that, for
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sufficiently large B, MHD flows tend to remain steady even at large Reynolds numbers 
due to turbulence damping by MHD forces. 

As mentioned above, the total current density can be written as 

jx = −σ

(
wB + 

dϕ 
dx

)
(11.2) 

By substituting Eq. (11.2) for  jx into Eq. (11.1), one obtains the following 
inhomogeneous modified Helmholtz equation governing the velocity w: 

μ 
d2 w 
dx2 

− σ B2 w = 
dp 

dz 
− gβρϑ + σ B 

dϕ 
dx 

(11.3) 

The electric potential ϕ follows the Poisson equation 

d2 ϕ 
dx2 

= −B 
dw 
dx 

(11.4) 

while the energy transport equation reduces, for a fully developed thermal field, to 

d2 ϑ 
dx2 

= −q '''

λ 
(11.5) 

in which q''' is the volumetric thermal power density (if any) and λ is the fluid’s 
thermal conductivity. 

Equations (11.3) through (11.5) are the complete set of governing equations for the 
problem under consideration. They can be set in a dimensionless form by choosing, 
for example, the following reference scales (here, ν = μ/ρ is the kinematic viscosity 
of the fluid): 

• Length: D; 
• Velocity: v/D; 
• Temperature: q'''D2/(8λ); 
• Electric potential: vB; 
• Electric current density: vBσ /D. 

Equations (11.3)–(11.5) then become 

d2 W 

dX2 
− M2 W = −  

Gr 

8 
Θ + M2 dΦ 

dX 
− P (11.6) 

d2 Φ 
dX2 

= −  
dW 

dX 
(11.7) 

d2 Θ 
dX2 

= −8 (11.8)
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in which X = x/D, W = wD/v, Θ = ϑ ·(8λ)/(q'''D2), Φ = ϕ/(vB), and M, Gr, P are 
dimensionless numbers defined as 

M = BD  

/
σ 
μ 

(Hartmann number) (11.9) 

Gr = 
gβq '''D5 

λν2 
(Grashof number) (11.10) 

P = −  
dp 

dz 

ρ D3 

μ2 
(pressure head number) (11.11) 

The case M = 0 corresponds to no MHD effects, the case Gr = 0 to no buoyancy 
and the case P = 0 to no forced flow. 

Similarly, the electric current in Eq. (11.2) is replaced by its dimensionless 
counterpart: 

Jx = −
(
W + 

dΦ 
dX

)
(11.12) 

Boundary conditions must now be imposed to the above system. In regard to 
velocity and temperature, the following ones will be considered here: 

• No slip conditions at the walls (located, say, at x = ±  D/2): 

W

(
±1 

2

)
= 0 (11.13) 

• Uniform and equal temperature at both walls; choosing this as the reference 
temperature for buoyancy, one has: 

Θ

(
±1 

2

)
= 0 (11.14) 

The heat Eq. (11.8) with B.C.s (11.14) immediately yields the parabolic 
temperature distribution: 

Θ(X ) = 1 − 4X2 (11.15) 

whose mean value is Θ = 2/3. 
In regard to the electric potential, two alternatives will be considered. 

(a) Equipotential walls 

In this case, the boundary conditions for Φ are simply
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Φ

(
± 
1 

2

)
= 0 (11.16) 

The potential Eq. (11.7) can be formally integrated once to give: 

dΦ 
dX 

= −W + c1 (11.17) 

in which c1 is an integration constant. Taking Eqs. (11.15) and (11.17) into account, 
the momentum Eq. (11.6) becomes: 

d2 W 

dX2 
= −Gr 

8

(
1 

3 
− 4X2

)
+ M2 c1 − P (11.18) 

By integrating twice with respect to X and imposing the boundary conditions 
(11.13), one has: 

W (X ) = 
Gr 

384 
+ 

P 

8 
− 

c1M2 

8 
+ 

1 

2

(
− 
Gr 

24 
+ c1M2 − P

)
X2 + 

Gr 

24 
X4 (11.19) 

This last expression, which still depends upon the integration constant c1, can be 
substituted for W in Eq. (11.17), which, once integrated again, gives: 

Φ(X ) =
[
c1

(
1 + 

M2 

8

)
− 

Gr 

384 
− 

P 

8

]
X − 

1 

6

(
c1M

2 − P − 
Gr 

24

)
X3 − 

Gr 

120 
X5 + c2 

(11.20) 

Finally, by imposing the boundary conditions (11.16) one obtains the two 
constants c1 and c2 which, once substituted in Eqs. (11.19) and (11.20), explicitly 
yield the profiles of W and Φ as functions of X: 

W (X) = 
1 

8

(
Gr 

48 
+ P − M2 

M2 + 12 
60P + Gr 

60

)
+ 

+ 
1 

2

(
M2 

M2 + 12 
60P + Gr 

60
− 

Gr 

24 
− P

)
X2 + 

Gr 

24 
X4 (11.21) 

Φ(X ) = 
1 

96

(
60P + Gr 

5 

M2 + 8 
M2 + 12 

− 
48P + Gr 

4

)
X+ 

+ 
1 

72

(
− 
60P + Gr 

5 

M2 

M2 + 12 
+ 

24P + Gr 
2

)
X3 − 

Gr 

120 
X5 (11.22) 

These profiles are reported in Figs. 11.2 and 11.3 for an arbitrary choice of the 
Grashof and pressure head numbers (Gr = 1010, P  = 109) and different values of the 
Hartmann number M.
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Fig. 11.2 Dimensionless velocity for Gr = 1010, P  = 109 and various M (equipotential walls) 

Fig. 11.3 Dimensionless potential for Gr = 1010, P  = 109 and various M (equipotential walls)
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Fig. 11.4 Dimensionless centreline velocity as a function of the Hartmann number M for P = 1010 
and various Gr/P ratios 

Note that, for sufficiently large M, the velocity profile W (X) exhibits two 
descending near-wall layers and an ascending core, whereas, for small M, W is 
directed upward everywhere. The centerline velocity WCL = W (0) tends to the 
following limiting values for M → 0 and M → ∞, respectively: 

WCL  (M → 0) = 
Gr 

384 
+ 

P 

8 
(11.23) 

WCL  (M → ∞) = 
Gr 

1920 
(11.24) 

Therefore, as the magnetic induction increases, the forced-flow velocity compo-
nent, proportional to P, is completely suppressed, but the velocity component asso-
ciated with natural convection, independent of P, can only be reduced by a factor of 
5 at most.  

This is also illustrated in Fig. 11.4, which reports the dimensionless centerline 
velocity WCL as a function of the Hartmann number M for P = 1010 and different 
values of the Gr/P ratio. 

The Figure also shows that MHD effects become significant as the Hartmann 
number M exceeds the value of ~1. This behaviour is different from that observed in 
two-dimensional channel flow, where MHD effects become significant only for M 
greater than ~100 and where also the natural convection component of the velocity 
is drastically suppressed by large values of the magnetic induction (Ciofalo and 
Cricchio 2002).
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Fig. 11.5 Dimensioned mean velocity and electric current as functions of the Hartmann number 
M for Pb-17Li, D = 0.15 m, By = 5 T and  q''' = 1 MW/m3 yielding P ≈ 1010, Gr  ≈ 1011 

The average W velocity is: 

W = 1 

M2 + 12 
60P + Gr 

60 
(11.25) 

By substituting Eq. (11.17) for  dΦ/dX into Eq. (11.12), one obtains for the current 
density Jx the constant value: 

Jx = − 1 

M2 + 12 
60P + Gr 

60
= −W (11.26) 

The behaviour of mean velocity and electric current as functions of the Hartmann 
number is best appreciated by considering these quantities in dimensioned, rather 
than dimensionless, form. For example, Fig. 11.5 reports w and jx for a particular 
choice of the geometrical dimension D of the channel and of the physical properties 
of the fluid (corresponding to the eutectic 83%Pb-17%Li alloy proposed for the 
breeder blanket of fusion nuclear reactors). 

The electric current attains its maximum values for M ≈ 3, which corresponds to 
the “knee” in the curve describing w as a function of M. The difference with respect to 
two-dimensional channel flow (Ciofalo and Cricchio 2002), in which current maxima 
are attained at M ≈ 100, is again clear. 

This difference is due to the fact that in two-dimensional flows the electric currents 
induced by MHD effects close themselves through the solid walls and the adjacent 
fluid layers orthogonal to B (Hartmann layers), whose electric resistance limits the
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current intensity and makes high values of the Hartmann number necessary for signif-
icant damping effects to occur. On the contrary, in the present 1-D configuration no 
return resistance is encountered by the electric current, so that lower values of the 
Hartmann number are sufficient to cause significant MHD braking effects. 

Equations (11.25) and (11.26) show that both the average velocity and the current 
density vanish for: 

Gr = −60 P (11.27) 

If the above condition is satisfied, there are no MHD effects on the flow, no 
matter how large the Hartmann number M. Equation (11.21) then gives for W (X) the  
following profile, which is independent from M and thus from the applied magnetic 
induction Bx: 

W = 
Gr 

1920

(
1 − 24X2 + 80X4

)
(11.28) 

This coincides with the W profile obtained for internal heating in the absence of 
MHD effects by Geršuni and Žukovitskij (1958) [as reported e.g. by Kulacki and 
Richards (1985)], and later by Di Piazza and Ciofalo (2000). 

(b) Imposed potential difference between the opposite walls 

The solution obtained for equipotential walls can easily be generalized to the case 
in which an electric potential difference V (made dimensionless by the same scale 
vB used for ϕ) is imposed between the opposite walls of the channel. The boundary 
conditions (11.16) are replaced by: 

Φ

(
− 
1 

2

)
= 

V 

2 
, Φ

(
1 

2

)
= −  

V 

2 
(11.29) 

Note that the potential difference V, like the pressure head number P, is taken to 
be positive if it drives the fluid towards positive z and the electric current towards 
positive x. 

Accordingly, the solutions (11.21), (11.22), (11.12) obtained above for W, Φ and 
Jx are replaced by: 

W (X ) = 
1 

8

(
Gr 

48 
+ P − M2 

M2 + 12 
60P + Gr − 720V 

60

)
+ 

+ 
1 

2

(
M2 

M2 + 12 
60P + Gr − 720V 

60
− 

Gr 

24 
− P

)
X2 + 

Gr 

24 
X4 (11.30) 

Φ(X ) = 
1 

96

(
60P + Gr − 720V 

5
· M

2 + 8 
M2 + 12 

− 
48P + Gr 

4

)
X+
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+ 
1 

72

(
−60P + Gr − 720V 

5 

M2 

M2 + 12 
+ 

24P + Gr 
2

)
X3 − 

Gr 

120 
X5 

(11.31) 

Jx = − 1 

M2 + 12 
60P + Gr − 720V 

60 
(11.32) 

while the average velocity becomes now: 

W = 1 

M2 + 12 
60P + Gr + 60M2 V 

60 
(11.33) 

Note that Jx = V − W , which generalizes the previous result Jx = −  W obtained 
for equipotential walls (V = 0). 

When a difference of electric potential is imposed between the opposite walls, it 
is possible to compute the electrical and mechanical powers PE , PM provided by the 
system. Let us consider the two cases in which buoyancy is present or not separately. 

(a) No buoyancy 

If no buoyancy forces act on the fluid (isothermal flow, negligible thermal expansion 
coefficient, or negligible gravity), by letting Gr = 0 in Eqs. (11.32) and (11.33) one 
has: 

Jx = −P − 12V 
M2 + 12 

(11.34) 

W = 
P + M2 V 

M2 + 12 
(11.35) 

By analogy with the working diagram of a hydraulic pump, working diagrams 
for the present generalized MHD engine can be drawn in a plane having abscissa W 
(directly proportional to the volumetric flow rate Q) and ordinate P (pressure head 
number, corresponding to the prevalence of a pump). 

The mechanical power provided by the system (positive if the mean velocity is 
opposite to the external applied force) can be expressed in dimensionless form as: 

PM = −PW (11.36) 

The electric power provided by the system is −VJx and is positive if the electric 
current flows in the direction of the imposed electric potential gradient. By using 
Eq. (11.34) for  Jx and eliminating V through Eq. (11.35) one has: 

PE = −V Jx = −  
1 

M4

[
P2 − (

M2 + 24
)
PW + 12

(
M2 + 12

)
W 

2
]

(11.37)
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Therefore, one has PM = 0 if  W = 0 (P axis) or P = 0 (W axis), while PE = 0 if P  
= 12 W or P = (M2 + 12)W (i.e., along two straight lines crossing the first and third 
quadrants). It is thus possible to build 8-region working diagrams like those shown 
in Fig. 11.6 for two values of the Hartmann number M.

The regions in which PE > 0,  PM < 0 correspond to the MHD generator mode, 
in which the system converts the mechanical energy of the forced flow to electrical 
energy. The regions in which PE < 0,  PM > 0 correspond to the MHD pump mode, 
in which the system converts electrical energy to mechanical energy. In the four 
remaining regions the system works as a pure dissipator since it absorbs both electric 
and mechanical energy (PE < 0,  PM < 0).  

The comparison of the two plots shows that the amplitude of the two sectors 
representing the MHD generator mode increases as M (i.e., the imposed magnetic 
induction field B) increases, while the two sectors representing the MHD pump mode 
have a fixed amplitude of 90°, independent of M. 

Alternative working diagrams could be drawn in the plane (V, P) or in the plane 
(W , V ). 

(b) Buoyancy 

In the presence of buoyancy forces, using again W and P as independent variables, 
the mechanical power is still PM = −PW , as in Eq.  (11.36), but the electric power 
PE = −VJx must be expressed using for Jx and V the more general Eqs. (11.32) 
and (11.33) instead of the simpler (11.34) and (11.35). This amounts to substituting 
P+Gr/60 for P in Eq. (11.37), which thus becomes 

PE = −  
1 

M4

[(
P + 

Gr 

60

)2 

− (
M2 + 24

)(
P + 

Gr 

60

)
W + 12

(
M2 + 12

)
W 

2

]

(11.38) 

The electric power PE now vanishes for 

P = 12 W − 
Gr 

60 
(11.39) 

P = (M2 + 12 ) W − 
Gr 

60 
(11.40) 

Both these last two equations represent straight lines of the (W , P) plane which 
do not intersect the origin of the axes. Therefore, the (W , P) plane is divided into 10 
regions rather than 8, as shown in Fig. 11.7 for an intermediate value of the Hartmann 
number (M = 20) and two different values of Gr.

It is possible to observe, for small positive values of W and negative values 
of P, a region in which the system provides both electric and mechanical power 
by converting the thermal power received, and thus operates as a (low efficiency) 
thermal engine (Mahmud et al. 2003).
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Fig. 11.6 Working diagrams in the (W , P) plane for a generalized MHD engine in the absence of 
buoyancy forces (Gr = 0) and for two different values of the Hartmann number M. a Low Hartmann 
number (M = 2). b high Hartmann number (M = 1000)
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Fig. 11.7 Working diagrams in the (W , P) plane for a generalized MHD engine in the presence of 
buoyancy forces for M = 20 and two different values of the Grashof number Gr. a Low Grashof 
number (Gr = 7200). b High Grashof number (Gr = 45,000)
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As in the previous non-buoyant case, alternative working diagrams can be drawn 
in the (V, P) or (W , V ) planes. 

In summary, when a difference of electric potential is imposed between the oppo-
site walls, it is possible to define the electrical and mechanical powers PE , PM 

provided by the system; in a suitable state space (e.g. the plane whose axes are 
the dimensionless mean velocity W and pressure head P), according to the signs of 
PE an PM one can distinguish alternative working regimes which, in the absence of 
buoyancy, include direct and reverse EM pumps, direct and reverse MHD genera-
tors, and purely dissipating modes. In the presence of buoyancy, a further regime is 
observed in which the system operates as a thermal engine by converting thermal 
power into both electrical and mechanical power. 

As a final caveat, it should be observed that the solutions derived here apply only to 
one-dimensional, fully developed flow, thermal and electric fields in a plane channel 
which is indefinite in the streamwise and spanwise directions. Some aspects of the 
solutions obtained, e.g. the fact that MHD effects cause the buoyancy component 
of the flow to decrease at most by a factor of 5, are peculiar to the present 1-D 
configuration and would not be observed in two-dimensional channels having a finite 
extent along the direction of the magnetic field, exhibiting closed current loops. 

The problem can be generalized by assuming the side walls to be of finite thickness 
and electric conductivity, and thus imposing to the electric potential Robin (third type) 
conditions in lieu of the Dirichlet conditions considered so far. For example, in the 
symmetric case:

[
Φ + L 

dΦ 
dX

]
X=±1/2 

= 0 (11.41) 

in which L is an extrapolation distance. 
A further generalization can be obtained by assuming the side walls to be differ-

entially heated and/or to possess a relative velocity as in Couette flow. The corre-
sponding boundary conditions on W and T would change accordingly, but it can be 
shown that the solutions obtained for W and Jx, and therefore the working diagrams 
in Figs. 11.6 and 11.7, would still be valid.
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